-
Notifications
You must be signed in to change notification settings - Fork 902
132 lines (111 loc) · 3.58 KB
/
e2e.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
name: E2E
on:
push:
branches:
- main
pull_request:
branches:
- main
concurrency:
group: ${{ github.workflow }}-${{ github.ref == 'refs/heads/main' && github.run_id || github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env:
FLWR_TELEMETRY_ENABLED: 0
jobs:
frameworks:
runs-on: ubuntu-22.04
timeout-minutes: 10
# Using approach described here:
# https://docs.github.com/en/actions/using-jobs/using-a-matrix-for-your-jobs
strategy:
matrix:
include:
- directory: bare
- directory: jax
- directory: pytorch
dataset: |
from torchvision.datasets import CIFAR10
CIFAR10('./data', download=True)
- directory: tensorflow
dataset: |
import tensorflow as tf
tf.keras.datasets.cifar10.load_data()
- directory: tabnet
dataset: |
import tensorflow_datasets as tfds
tfds.load(name='iris', split=tfds.Split.TRAIN)
- directory: opacus
dataset: |
from torchvision.datasets import CIFAR10
CIFAR10('./data', download=True)
- directory: pytorch-lightning
dataset: |
from torchvision.datasets import MNIST
MNIST('./data', download=True)
- directory: mxnet
dataset: |
import mxnet as mx
mx.test_utils.get_mnist()
- directory: scikit-learn
dataset: |
import openml
openml.datasets.get_dataset(554)
- directory: fastai
dataset: |
from fastai.vision.all import untar_data, URLs
untar_data(URLs.MNIST)
- directory: pandas
dataset: |
from pathlib import Path
from sklearn.datasets import load_iris
Path('data').mkdir(exist_ok=True)
load_iris(as_frame=True)['data'].to_csv('./data/client.csv')
name: Framework / ${{matrix.directory}}
defaults:
run:
working-directory: e2e/${{ matrix.directory }}
steps:
- uses: actions/checkout@v4
- name: Bootstrap
uses: ./.github/actions/bootstrap
with:
python-version: 3.8
- name: Install dependencies
run: python -m poetry install
- name: Download dataset
if: ${{ matrix.dataset }}
run: python -c "${{ matrix.dataset }}"
- name: Run edge client test
run: ./../test.sh "${{ matrix.directory }}"
- name: Run virtual client test
run: python simulation.py
- name: Run driver test
run: ./../test_driver.sh
strategies:
runs-on: ubuntu-22.04
timeout-minutes: 10
strategy:
matrix:
strat: ["FedMedian", "FedTrimmedAvg", "QFedAvg", "FaultTolerantFedAvg", "FedAvgM", "FedAdam", "FedAdagrad", "FedYogi"]
name: Strategy / ${{ matrix.strat }}
defaults:
run:
working-directory: e2e/strategies
steps:
- uses: actions/checkout@v4
- name: Bootstrap
uses: ./.github/actions/bootstrap
- name: Install dependencies
run: |
python -m poetry install
- name: Cache Datasets
uses: actions/cache@v3
with:
path: "~/.keras"
key: keras-datasets
- name: Download Datasets
run: |
python -c "import tensorflow as tf; tf.keras.datasets.mnist.load_data()"
- name: Test strategies
run: |
python test.py "${{ matrix.strat }}"