-
Notifications
You must be signed in to change notification settings - Fork 1
/
SymMat.h
371 lines (332 loc) · 7.65 KB
/
SymMat.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
/**
Faster Matrix Algebra (Eigen)
Eigen_Triangular.cpp
Purpose: To make a class, SymMat, accomodating symmetric matrices with
Eigen Matrices. Operations to be defined-
a) SymMat + & - SymMat
b) SymMat + & - Eigen::Matrix
c) SymMat * SymMat
d) SymMat * Eigen::Matrix
@author Adarsh Pal Singh
*/
#ifndef SYMMAT_H
#define SYMMAT_H
#include <iostream>
#include <vector>
#include <Eigen/Dense>
using namespace std;
/**
A template class SymMat to store only the upper triangular part of an Eigen
matrix as a linear array and evaluate the following expressions-
1. SymMat +&- SymMat/Eigen Matrix
2. SymMat * SymMat/Eigen Matrix
*/
template <typename T>
class SymMat
{
vector<T> V; //To store the upper triangular part of the Eigen Matrix.
int rows, cols; //To store the number of rows, columns in the Eigen Matrix.
public:
/**
Non-parametrized constructor which is invoked when no Eigen Matrix is
passed as an argument. Sets the number of rows and columns to 0.
@param None
@return NA
*/
SymMat();
/**
Parametrized constructor that accepts an arbitrary Eigen Matrix and
converts it into a linear array consisting of upper triangular elements.
@param Eigen Matrix.
@return NA
*/
template <typename D>
SymMat(Eigen::MatrixBase<D>&);
/**
Returns the element in (row, column) position of a SymMat. Note that for a
symmetric matrix, element at (i,j) = element at (j,i).
@param Row and column position.
@return Element at specified row and position.
*/
T Access(int, int);
/**
Operator '+' overloaded to account for addition of two symmetric matrices.
@param SymMat object.
@return The sum of SymMat and SymMat.
*/
SymMat<T> operator + (const SymMat<T>&);
/**
Operator '-' overloaded to account for subtraction of two symmetric matrices.
@param SymMat object.
@return The difference of SymMat and SymMat.
*/
SymMat<T> operator - (const SymMat<T> &Obj);
/**
Operator '+' overloaded to account for addition of a SymMat and Eigen Matrix.
@param Eigen Matrix.
@return The sum of SymMat and Eigen Matrix.
*/
template <typename D>
SymMat<T> operator + (const Eigen::MatrixBase<D>&);
/**
Operator '-' overloaded to account for sutraction of a SymMat and Eigen
Matrix.
@param Eigen Matrix.
@return The difference of SymMat and Eigen Matrix.
*/
template <typename D>
SymMat<T> operator - (const Eigen::MatrixBase<D>&);
/**
Operator '*' overloaded to account for multiplication between a SymMat and
SymMat.
@param SymMat object.
@return The product of SymMat and SymMat.
*/
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> operator * (SymMat<T>&);
/**
Operator '*' overloaded to account for multiplication between a SymMat and
an Eigen Matrix.
@param Eigen Matrix.
@return The product of SymMat and Eigen Matrix.
*/
template <typename D>
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> operator * (const Eigen::MatrixBase<D>&);
/**
Operator '<<' overloaded to display the contents of SymMat.
@param Reference to ostream object, SymMat object to be displayed.
@return ostream object
*/
template <typename U>
friend ostream & operator << (ostream&, const SymMat<U>&);
};
template <typename T>
SymMat<T>::SymMat()
{
rows=cols=0;
}
template <typename T>
template <typename D>
SymMat<T>::SymMat(Eigen::MatrixBase<D>& M)
{
rows = M.rows();
cols = M.cols();
try
{
if(rows!=cols)
throw "\nError: Input Matrix is not a square matrix!";
}
catch (const char* msg)
{
cerr << msg << endl;
exit(0);
}
//Visit only the upper triangular positions
for(int i=0; i<cols; i++)
{
for(int j=i; j<rows; j++)
{
V.push_back(M(i,j));
}
}
}
template <typename T>
T SymMat<T>::Access(int r, int c)
{
int k=0;
int flag=0;
try
{
if(r>=rows || c>=cols)
throw "\nError: The specified element to access is beyond the matrix";
}
catch (const char* msg)
{
cerr << msg << endl;
exit(1);
}
if(r>c) //If the element to return is in lower triangular part
{
int temp = r;
r=c;
c=temp;
}
for(int i=0; i<rows; i++)
{
for(int j=i; j<rows; j++)
{
if (i==r && j==c)
{
flag=1;
break;
}
else
k++;
}
if(flag==1)
break;
}
return V[k];
}
template <typename T>
SymMat<T> SymMat<T>::operator + (const SymMat<T> &Obj)
{
try
{
if(rows!=Obj.rows || cols!=Obj.cols)
throw "\nError: Cannot Add matrices of different orders!";
}
catch (const char* msg)
{
cerr << msg << endl;
exit(2);
}
SymMat<T> S;
S.rows = rows;
S.cols = cols;
for(int i=0; i<V.size(); i++)
{
S.V.push_back(V[i]+Obj.V[i]);
}
return S;
}
template <typename T>
SymMat<T> SymMat<T>::operator - (const SymMat<T> &Obj)
{
try
{
if(rows!=Obj.rows || cols!=Obj.cols)
throw "\nError: Cannot Subtract matrices of different orders!";
}
catch (const char* msg)
{
cerr << msg << endl;
exit(2);
}
SymMat<T> S;
S.rows = rows;
S.cols = cols;
for(int i=0; i<V.size(); i++)
{
S.V.push_back(V[i]-Obj.V[i]);
}
return S;
}
template <typename T>
template <typename D>
SymMat<T> SymMat<T>::operator + (const Eigen::MatrixBase<D> &Obj)
{
try
{
if(rows!=Obj.rows() || cols!=Obj.cols())
throw "\nError: Cannot Add matrices of different orders!";
}
catch (const char* msg)
{
cerr << msg << endl;
exit(2);
}
SymMat<T> S;
S.rows = rows;
S.cols = cols;
int k=0;
for(int i=0; i<cols; i++)
{
for(int j=i; j<rows; j++)
{
S.V.push_back(V[k]+Obj(i,j));
k++;
}
}
return S;
}
template <typename T>
template <typename D>
SymMat<T> SymMat<T>::operator - (const Eigen::MatrixBase<D> &Obj)
{
try
{
if(rows!=Obj.rows() || cols!=Obj.cols())
throw "\nError: Cannot Subtract matrices of different orders!";
}
catch (const char* msg)
{
cerr << msg << endl;
exit(2);
}
SymMat<T> S;
S.rows = rows;
S.cols = cols;
int k=0;
for(int i=0; i<cols; i++)
{
for(int j=i; j<rows; j++)
{
S.V.push_back(V[k]-Obj(i,j));
k++;
}
}
return S;
}
template <typename T>
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> SymMat<T>::operator * (SymMat<T> &Obj)
{
try
{
if(cols!=Obj.rows)
throw "\nError: The number of columns of Matrix 1 and the number of rows of Matrix 2 donot match!";
}
catch (const char* msg)
{
cerr << msg << endl;
exit(3);
}
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> M;
M.resize(rows, Obj.cols);
for(int i = 0; i < rows; i++)
{
for(int j = 0; j < Obj.cols; j++)
{
M(i,j)=0;
for(int k = 0; k < cols; k++)
M(i,j) += ((this->Access(i,k)) * Obj.Access(k,j));
}
}
return M;
}
template <typename T>
template <typename D>
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> SymMat<T>::operator * (const Eigen::MatrixBase<D> &Obj)
{
try
{
if(cols!=Obj.rows())
throw "\nError: The number of columns of Matrix 1 and the number of rows of Matrix 2 donot match!";
}
catch (const char* msg)
{
cerr << msg << endl;
exit(3);
}
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> M;
M.resize(rows, Obj.cols());
for(int i = 0; i < rows; i++)
{
for(int j = 0; j < Obj.cols(); j++)
{
M(i,j)=0;
for(int k = 0; k < cols; k++)
M(i,j) += ((this->Access(i,k)) * Obj(k,j));
}
}
return M;
}
template <typename U>
ostream & operator << (ostream& out, const SymMat<U>& S)
{
for(int i=0; i<S.V.size(); i++)
{
out<<S.V[i];
out<<" ";
}
}
#endif