-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.cpp
203 lines (167 loc) · 5.39 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/******************************************************************************
Primary Dual Hybrid Gradient Algorithm.
Part of convex optimization where there are two objectives. This example lends
itself to game theory where there are two players and accoring to a given
score matrix, the optimal path to maximize each players total scores are chosen.
*******************************************************************************/
#include <iostream>
#include <bits/stdc++.h>
#include <vector>
#include <iterator>
#include <numeric>
#include <cmath>
using namespace std;
using std::vector;
vector<double> proj(vector<double> y,int ysize){
//Vector "u" to contain the vector "y" sorted in descending order.
vector<double> u(ysize);
//Copying "y" into "u".
u=y;
//Initializing "K" to track largest entry in "y" that
int K = 0;
double tau=0.0;
vector<double> x_n(ysize);
vector<double> check_sum(ysize);
sort(u.begin(),u.end(),greater<double>());
double sum_amnt=0;
//Iterating sums to find spot most affected by change.
for (int i = 0; i < ysize; i++) {
sum_amnt=0;
for (int j=0;j < i+1; j++){
sum_amnt=sum_amnt+u[j];
}
check_sum[i]=(sum_amnt-1)/(i+1);
}
//"K" is chosen.
for (int i=0;i<ysize;i++){
if (check_sum[i]<u[i]){
K=i+1;
}else{
break;
}
}
//Tau is initialized.
for (int i=0;i<K;i++){
tau=tau+u[i];
}
tau=(tau-1)/K;
//Vector x_n is the probability vector for each projection.
//Sum of entries must add up to 1 i.e. 100%.
for (int i=0;i<ysize;i++){
x_n[i]=max((y[i]-tau),0.0);
}
return x_n;
}
vector<double> proj(vector<double> y,int ysize);
int main()
{
//Initial score matrix.
double x[2][2] ={{10,3},{2,9}};
int rows = sizeof(x)/sizeof(x[0]);
int cols = sizeof(x[0])/sizeof(x[0][0]);
double new_x[rows][rows];
double transpose[cols][rows];
//Transpose of matrix to compute the norm for rates of sigma and tau.
for (int i=0;i<rows;i++){
for (int j=0;j<cols;j++){
transpose[j][i]=x[i][j];
}
}
//Computing matrix norm. norm(A*A') .
double mult_sum;
int c2 = sizeof(transpose[0])/sizeof(transpose[0][0]);
for(int i=0; i<rows; ++i)
for(int j=0; j<c2; ++j)
for(int k=0; k<cols; ++k) {
new_x[i][j]=x[i][k]*transpose[k][j];
}
int sumSq = 0;
for (int i = 0; i < rows; i++) {
for (int j = 0; j < rows; j++) {
sumSq += sqrt(new_x[i][j]);
}
}
// Return the square root of
// the sum of squares
double x_L = sumSq;
////////////////////////////////end of norm of matrix
///////Initializing variables for probabilities/simplex
vector<double> X_n(rows,.1);
vector<double> Y_n(rows,.1);
vector<double> X_bar_zero(rows,.1);
vector<double> prob_x(rows,.1);
vector<double> prob_y(rows,.1);
vector<double> vec_mat_y(rows,.1);
vector<double> vec_mat_x(rows,.1);
vector<double> prev_y(rows,10);
vector<double> prev_x(rows,10);
int count=0;
double sigma=1;
double theta=1/sqrt(x_L);
double tow=1.0;
float tol=1e-8;
double check_tol=1;
double prev_tol=10000;
double for_x;
double for_y;
while (prev_tol>tol){
//Vector matrix multiplication per iteration for probabilities of column player.
for(int i=0;i<rows;i++){
for (int j=0;j<cols;j++){
vec_mat_y[i]=prev_y[i]+(X_bar_zero[i]*x[i][j]*sigma);
}
}
//Projecting onto simplex.
prob_y=proj(vec_mat_y,rows);
///Vector matrix multiplication per iteration for probabilities of row player.
for (int i=0; i<rows;i++){
for (int j=0;j<cols;j++){
vec_mat_x[i]=prev_x[i]-(prob_y[i]*transpose[j][i]*tow);
}
}
//Projecting onto simplex.
prob_x=proj(vec_mat_x,rows);
for (int i=0;i<rows;i++){
X_bar_zero[i]=prob_x[i]+(theta*(prob_x[i]-prev_x[i])*tow);
}
//Computing tolerance each iteration as a condition of convergence.
for_x=0;
for_y=0;
for (int i=0;i<rows;i++){
for_x=for_x+pow(prob_x[i]-prev_x[i],2);
for_y=for_y+pow(prob_y[i]-prev_y[i],2);
}
if (for_x==0 && for_y==0){
check_tol==0;
}else{
check_tol=(sqrt(for_x)/(2*sigma))+(sqrt(for_y)/(2*tow));
}
//Adjusting tolerance.//////////////////////////////////////
prev_tol=prev_tol-check_tol;
//Initializing for previous iteration for projecting at each iteration.
prev_x=prob_x;
prev_y=prob_y;
//Visualizing progress each 1000 iterations.
int mod_statement;
mod_statement=count%1000;
if (mod_statement==0){
cout << "Probabilities for y" << endl;
for (int i=0;i<rows;i++){
cout << prob_y[i] << " ";
}
cout << endl;
cout << "Probabilities for x" << endl;
for (int i=0;i<rows;i++){
cout << prob_x[i] << " ";
}
cout << endl;
}
//If tolerance is met.
if (prev_tol<tol){
cout << "Converged successfully after " << count << " iterations." << endl;
break;
}
count++;
}
return 0;
}