-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathcomm.c
944 lines (853 loc) · 33.3 KB
/
comm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
/* Incorporates all parallelization related code, so most of it is directly involved in or closely related to
* interprocess communication
*
* Copyright (C) ADDA contributors
* This file is part of ADDA.
*
* ADDA is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
*
* ADDA is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with ADDA. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include "const.h" // keep this first
#include "comm.h" // corresponding header
// project headers
#include "cmplx.h"
#include "debug.h"
#include "fft.h"
#include "function.h"
#include "io.h"
#include "memory.h"
#include "parbas.h"
#include "timing.h"
#include "vars.h"
// system headers
#include <math.h>
#include <stdlib.h>
#include <string.h>
#ifdef ADDA_MPI
MPI_Datatype mpi_dcomplex,mpi_int3,mpi_double3,mpi_dcomplex3; // combined datatypes
int *recvcounts,*displs; // arrays of size ringid required for AllGather operations
bool displs_init=false; // whether arrays above are initialized
#endif
/* whether a synchronize call should be performed before parallel timing. It makes communication timing more accurate,
* but may deteriorate overall performance by introducing unnecessary delays (test showed only slight difference for
* granule generator)
*/
#define SYNCHRONIZE_TIMING
#ifdef PARALLEL
#ifndef SPARSE
// SEMI-GLOBAL VARIABLES
// defined and allocated in fft.c
extern double * restrict BT_buffer, * restrict BT_rbuffer;
// defined and initialized in timing.c
extern TIME_TYPE Timing_InitDmComm;
// LOCAL VARIABLES
static int Ntrans; // number of transmissions; used in CalcPartner
static int * restrict gr_comm_size; // sizes of transmissions for granule generator communications
static int * restrict gr_comm_overl; // shows whether two sequential transmissions overlap
static unsigned char * restrict gr_comm_ob; // buffer for overlaps
static bool * restrict gr_comm_buf; // buffer for MPI transfers
#endif // !SPARSE
// First several functions are defined only in parallel mode
//======================================================================================================================
static void RecoverCommandLine(int *argc_p,char ***argv_p)
// eliminate all NULL pointers from argv, shift the rest, and adjust argc accordingly. Used in InitComm
{
int i,j;
for (i=0,j=0;i<(*argc_p);i++) {
if ((*argv_p)[i]==NULL) j++;
else if (j!=0) (*argv_p)[i-j]=(*argv_p)[i];
}
(*argc_p)-=j;
}
//======================================================================================================================
#ifndef SPARSE
static inline size_t IndexBlock(const size_t x,const size_t y,const size_t z,const size_t lengthY)
// index block; used in BlockTranspose
{
return((z*lengthY+y)*gridX+x);
}
//======================================================================================================================
static inline int CalcPartner(const int tran)
/* calculate ringid of partner processor for current transmission; used in BlockTranspose. Many different
* implementations are possible; the only requirements are
* 1) f(tran,f(tran,ringid))=ringid
* 2) f({1,2,Ntrans},ringid)={0,1,Ntrans}\ringid
* where f=nprocs is equivalent to skipping this transmission (relevant for odd nprocs)
*/
{
int part;
if (ringid==0) part=tran;
else if (ringid==tran) part=0;
else {
part=2*tran-ringid;
if (part<=0) part+=Ntrans;
else if (part>Ntrans) part-=Ntrans;
}
return part;
}
#endif // !SPARSE
//======================================================================================================================
void CatNFiles(const char * restrict dir,const char * restrict tmpl,const char * restrict dest)
/* cat several temporary files (one for each processor, names defined by the template 'tmpl' that should contain %d to
* be replaced by ringid). Files are located in directory 'dir'. Combined into 'dest' in the same directory. Afterwards
* temporary files are removed.
*/
{
int i,c;
FILE * restrict in,* restrict out;
char fname_out[MAX_TMP_FNAME],fname_in[MAX_TMP_FNAME];
size_t shift;
// produce full path of destination file and open it
SnprintfErr(ONE_POS,fname_out,MAX_TMP_FNAME,"%s/%s",dir,dest);
out=FOpenErr(fname_out,"w",ONE_POS);
for (i=0;i<nprocs;i++) {
// produce full path of tmp file and open it
shift=SnprintfErr(ONE_POS,fname_in,MAX_TMP_FNAME,"%s/",dir);
/* the following will cause warning by GCC if -Wformat-nonliteral (or -Wformat=2) is used, but we do not know
* any other convenient way to make this function work for different file name templates.
*/
SnprintfShiftErr(ONE_POS,shift,fname_in,MAX_TMP_FNAME,tmpl,i);
in=FOpenErr(fname_in,"r",ONE_POS);
// copy file in to out
while ((c=getc(in))!=EOF) putc(c,out);
// close and remove tmp file
FCloseErr(in,fname_in,ONE_POS);
RemoveErr(fname_in,ONE_POS);
}
// close destination file
FCloseErr(out,fname_out,ONE_POS);
}
//======================================================================================================================
#ifdef ADDA_MPI
static MPI_Datatype MPIVarType(var_type type,bool reduce,int *mult)
/* Chooses MPI datatype corresponding to 'type'. When only copying operations are required (like cast, gather, etc.)
* exact correspondence is possible. But when reduce operations are used ('reduce'=true), only built-in datatypes can be
* directly used. In this case we emulate more complex datatypes through multiplication of double, and additional
* variable 'mult' is returned to account for this factor.
*
* Reduction of complex numbers is emulated if not supported; C99 implies that this emulation is portable. Anyway, it
* is only used for old (less modern) MPI implementations.
*/
{
if (reduce) *mult=1; // default value when direct correspondence is possible
switch (type) {
case uchar_type: return MPI_UNSIGNED_CHAR;
case int_type: return MPI_INT;
case sizet_type: return MPI_SIZE_T;
case double_type: return MPI_DOUBLE;
case cmplx_type:
#ifndef SUPPORT_MPI_COMPLEX_REDUCE
if (reduce) {
*mult=2;
return MPI_DOUBLE;
}
else
#endif
return mpi_dcomplex;
case int3_type:
if (reduce) {
*mult=3;
return MPI_INT;
}
else return mpi_int3;
case double3_type:
if (reduce) {
*mult=3;
return MPI_DOUBLE;
}
else return mpi_double3;
case cmplx3_type:
if (reduce) {
#ifdef SUPPORT_MPI_COMPLEX_REDUCE
*mult=3;
return mpi_dcomplex;
#else
*mult=6;
return MPI_DOUBLE;
#endif
}
else return mpi_dcomplex3;
}
LogError(ONE_POS,"Variable type %d is not supported",(int)type);
}
//======================================================================================================================
void InitDispls(void)
// initialize arrays recvcounts and displs once, further calls have no effect
{
if (!displs_init) {
if (nvoid_Ndip>INT_MAX)
LogError(ONE_POS,"int overflow in MPI function for number of non-void dipoles (%zu)",nvoid_Ndip);
MALLOC_VECTOR(recvcounts,int,nprocs,ALL);
MALLOC_VECTOR(displs,int,nprocs,ALL);
// !!! TODO: check for overflow of int
recvcounts[ringid]=local_nvoid_Ndip;
displs[ringid]=local_nvoid_d0;
MPI_Allgather(MPI_IN_PLACE,0,MPI_INT,recvcounts,1,MPI_INT,MPI_COMM_WORLD);
MPI_Allgather(MPI_IN_PLACE,0,MPI_INT,displs,1,MPI_INT,MPI_COMM_WORLD);
displs_init=true;
}
}
#endif // ADDA_MPI
//======================================================================================================================
void AllGather(void * restrict x_from,void * restrict x_to,const var_type type,TIME_TYPE *timing)
/* Gather distributed arrays; works for all types; x_from can be NULL then the data from x_to is used (in_place)
* increments 'timing' (if not NULL) by the time used
*/
{
#ifdef ADDA_MPI
MPI_Datatype mes_type;
TIME_TYPE tstart;
// redundant initialization to remove warnings
tstart=0;
if (timing!=NULL) {
#ifdef SYNCHRONIZE_TIMING
MPI_Barrier(MPI_COMM_WORLD); // synchronize to get correct timing
#endif
tstart=GET_TIME();
}
InitDispls(); // actually initialization is done only once
mes_type=MPIVarType(type,false,NULL);
if (x_from==NULL) MPI_Allgatherv(MPI_IN_PLACE,0,mes_type,x_to,recvcounts,displs,mes_type,MPI_COMM_WORLD);
else MPI_Allgatherv(x_from,local_nvoid_Ndip,mes_type,x_to,recvcounts,displs,mes_type,MPI_COMM_WORLD);
if (timing!=NULL) (*timing)+=GET_TIME()-tstart;
#endif
}
#endif // PARALLEL
//======================================================================================================================
void InitComm(int *argc_p UOIP,char ***argv_p UOIP)
// initialize communications in the beginning of the program
{
#ifdef ADDA_MPI
int ver,subver;
/* MPI_Init may alter argc and argv and interfere with normal parsing of command line parameters. The way of
* altering is implementation depending. MPI searches for MPI parameters in the command line and removes them (we
* assume some kind of removing does take place - otherwise ADDA will produce error 'unknown parameter'). The best
* would be to change argc and argv so that they look like no special command line arguments are present. However,
* MPICH 1.2.5, for example, just replaces corresponding parameters by NULLs. To incorporate it we introduce special
* function to restore the command line
*/
MPI_Init(argc_p,argv_p);
tstart_main = GET_TIME(); // initialize program time
RecoverCommandLine(argc_p,argv_p);
// initialize ringid and nprocs
MPI_Comm_rank(MPI_COMM_WORLD,&ringid);
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
#ifndef SPARSE
// initialize Ntrans
if (IS_EVEN(nprocs)) Ntrans=nprocs-1;
else Ntrans=nprocs;
#endif
// define a few derived datatypes
#ifdef SUPPORT_MPI_COMPLEX
mpi_dcomplex = MPI_C_DOUBLE_COMPLEX; // use built-in datatype if supported
#else
MPI_Type_contiguous(2,MPI_DOUBLE,&mpi_dcomplex);
MPI_Type_commit(&mpi_dcomplex);
#endif
MPI_Type_contiguous(3,MPI_INT,&mpi_int3);
MPI_Type_commit(&mpi_int3);
MPI_Type_contiguous(3,MPI_DOUBLE,&mpi_double3);
MPI_Type_commit(&mpi_double3);
MPI_Type_contiguous(3,mpi_dcomplex,&mpi_dcomplex3);
MPI_Type_commit(&mpi_dcomplex3);
// check MPI version at runtime
MPI_Get_version(&ver,&subver);
D("MPI library version: %d.%d",ver,subver);
/* Microsoft MPI claims to support most of the MPI 2.2 features (and even some of 3.1), but declares only 2.0, see
* https://github.com/microsoft/Microsoft-MPI/issues/15 . We, thus, use the following hack to assume its support for
* MPI 2.2. However, it is not perfect, if different vendor libraries are used at compile and runtime:
* - compiling with MS_MPI and further linking with another library (conforming to MPI 2.0 or 2.1), the hack is too
* optimistic, and may cause further problems during execution.
* - compiling with another library and further linking with MS_MPI, the hack is skipped and execution fails,
* although it may have worked.
* However, such cross usage is unlikely because there are not many MPI implementations for Windows, and even the
* main library file for MS_MPI is named differently (msmpi.lib).
* To get more confidence, we can use MPI_Get_library_version(), but this will cause complete failure for some
* older libraries that support MPI 2.2, but do not have this 3.0 function.
*/
#ifdef MSMPI_VER
if (ver==2 && subver<2) {
D("But we assume that this is Microsoft MPI library that supports MPI 2.2");
subver=2;
}
#endif
if (!GREATER_EQ2(ver,subver,RUN_MPI_VER_REQ,RUN_MPI_SUBVER_REQ)) {
if (GREATER_EQ2(ver,subver,MPI_VER_REQ,MPI_SUBVER_REQ)) // library fits into minimum requirements
LogError(ONE_POS,"MPI library version (%d.%d) is too old for current ADDA executable. Version %d.%d or "
"newer is required. Alternatively, you may recompile ADDA using this version of the library.",
ver,subver,RUN_MPI_VER_REQ,RUN_MPI_SUBVER_REQ);
else if (RUN_MPI_VER_REQ==MPI_VER_REQ && RUN_MPI_SUBVER_REQ==MPI_SUBVER_REQ) // executable requires minimum
LogError(ONE_POS,"MPI library version (%d.%d) is too old. Version %d.%d or newer is required",
ver,subver,RUN_MPI_VER_REQ,RUN_MPI_SUBVER_REQ);
else // two upgrade options
LogError(ONE_POS,"MPI library version (%d.%d) is too old. Version %d.%d or newer is required for the "
"current ADDA executable or at least %d.%d, if ADDA is recompiled using such library.",
ver,subver,RUN_MPI_VER_REQ,RUN_MPI_SUBVER_REQ,MPI_VER_REQ,MPI_SUBVER_REQ);
}
// if MPI crashes, it happens here
Synchronize();
#elif !defined(PARALLEL)
nprocs=1;
ringid=ADDA_ROOT;
#endif
#ifndef SPARSE // CheckNprocs does not exist in sparse mode
// check if weird number of processors is specified; called even in sequential mode to initialize weird_nprocs
CheckNprocs();
#endif // !SPARSE
}
//======================================================================================================================
void Stop(const int code)
// stops the program with exit 'code'
{
#ifdef ADDA_MPI
if (code!=EXIT_SUCCESS) { // error occurred
fflush(NULL);
fprintf(stderr,"Aborting process %d\n",ringid);
MPI_Abort(MPI_COMM_WORLD,code);
}
else { // regular termination
// clean MPI constructs and some memory
#ifndef SUPPORT_MPI_COMPLEX
MPI_Type_free(&mpi_dcomplex);
#endif
MPI_Type_free(&mpi_int3);
MPI_Type_free(&mpi_double3);
MPI_Type_free(&mpi_dcomplex3);
if (displs_init) {
Free_general(recvcounts);
Free_general(displs);
}
// wait for all processors
fflush(NULL);
Synchronize();
// finalize MPI communications
MPI_Finalize();
}
#endif
exit(code);
}
//======================================================================================================================
void Synchronize(void)
// synchronizes all processes
{
#ifdef ADDA_MPI
MPI_Barrier(MPI_COMM_WORLD);
#endif
}
//======================================================================================================================
void MyBcast(void * restrict data UOIP,const var_type type UOIP,const size_t n_elem UOIP,TIME_TYPE *timing UOIP)
/* casts values stored in '*data' from root processor to all other; works for all types;
* increments 'timing' (if not NULL) by the time used
*/
{
#ifdef ADDA_MPI
TIME_TYPE tstart=0; // redundant initialization to remove warnings
if (n_elem>INT_MAX) LogError(ONE_POS,"int overflow in MPI function (%zu)",n_elem);
if (timing!=NULL) {
#ifdef SYNCHRONIZE_TIMING
MPI_Barrier(MPI_COMM_WORLD); // synchronize to get correct timing
#endif
tstart=GET_TIME();
}
MPI_Bcast(data,n_elem,MPIVarType(type,false,NULL),ADDA_ROOT,MPI_COMM_WORLD);
if (timing!=NULL) (*timing)+=GET_TIME()-tstart;
#endif
}
//======================================================================================================================
void BcastOrient(int *i UOIP, int *j UOIP, int *k UOIP)
/* cast current orientation angle (in orientation averaging) to all processes from root. This can be done as atomic
* operation using some complex MPI datatype, but it is not worth it.
*/
{
#ifdef ADDA_MPI
int buf[3];
if (IFROOT) {
buf[0]=*i;
buf[1]=*j;
buf[2]=*k;
}
MPI_Bcast(buf,3,MPI_INT,ADDA_ROOT,MPI_COMM_WORLD);
if (!IFROOT) {
*i=buf[0];
*j=buf[1];
*k=buf[2];
}
#endif
}
//======================================================================================================================
double AccumulateMax(double data UOIP,double *max UOIP)
// given a single double on each processor, accumulates their sum (returns) and maximum on root processor
{
#ifdef ADDA_MPI
double buf;
// potentially can be optimized by combining into one operation
MPI_Reduce(&data,&buf,1,MPI_DOUBLE,MPI_SUM,ADDA_ROOT,MPI_COMM_WORLD);
MPI_Reduce(&data,max,1,MPI_DOUBLE,MPI_MAX,ADDA_ROOT,MPI_COMM_WORLD);
return buf;
#else
return data;
#endif
}
//======================================================================================================================
void Accumulate(void * restrict data UOIP,const var_type type UOIP,size_t n UOIP,TIME_TYPE *timing UOIP)
// Gather and add complex vector on processor root; total time is saved in timing (NOT incremented).
// Can be easily made to accept any variable type
{
#ifdef ADDA_MPI
MPI_Datatype mes_type;
int mult;
TIME_TYPE tstart;
if (n>INT_MAX) LogError(ONE_POS,"int overflow in MPI function (%zu)",n);
#ifdef SYNCHRONIZE_TIMING
MPI_Barrier(MPI_COMM_WORLD); // synchronize to get correct timing
#endif
tstart=GET_TIME();
mes_type=MPIVarType(type,true,&mult);
n*=mult;
// Strange, but MPI 2.2 doesn't seem to support calling the following the same way on all processes
if (IFROOT) MPI_Reduce(MPI_IN_PLACE,data,n,mes_type,MPI_SUM,ADDA_ROOT,MPI_COMM_WORLD);
else MPI_Reduce(data,NULL,n,mes_type,MPI_SUM,ADDA_ROOT,MPI_COMM_WORLD);
(*timing)=GET_TIME()-tstart;
#endif
}
//======================================================================================================================
void MyInnerProduct(void * restrict data UOIP,const var_type type UOIP,size_t n UOIP,TIME_TYPE *timing UOIP)
/* gather values stored in *data, add them and return them in *data; works for all types; increments 'timing' (if not
* NULL) by the time used;
* Similar to Accumulate(), but returns the result to _all_ processors, and timing is _incremented_
*/
{
#ifdef ADDA_MPI
MPI_Datatype mes_type;
int mult;
TIME_TYPE tstart=0; // redundant initialization to remove warnings
if (n>INT_MAX) LogError(ONE_POS,"int overflow in MPI function (%zu)",n);
if (timing!=NULL) {
#ifdef SYNCHRONIZE_TIMING
MPI_Barrier(MPI_COMM_WORLD); // synchronize to get correct timing
#endif
tstart=GET_TIME();
}
mes_type=MPIVarType(type,true,&mult);
n*=mult;
MPI_Allreduce(MPI_IN_PLACE,data,n,mes_type,MPI_SUM,MPI_COMM_WORLD);
if (timing!=NULL) (*timing)+=GET_TIME()-tstart;
#endif
}
//======================================================================================================================
void ParSetup(void)
// initialize common parameters; need to do in the beginning to enable call to MakeParticle
{
#ifndef SPARSE // FFT mode initialization
# ifdef PARALLEL
int unitZ,unitX;
# endif
// calculate size of 3D grid
gridX=fftFit(2*boxX,nprocs);
gridY=fftFit(2*boxY,1);
gridZ=fftFit(2*boxZ,2*nprocs);
// initialize some variables
smallY=gridY/2;
smallZ=gridZ/2;
/* if this check is passed then all other multiplications of 2 grids are OK, except for XY values, used in granule
* generator
*/
gridYZ=MultOverflow(gridY,gridZ,ALL_POS,"gridYZ");
# ifdef PARALLEL
unitZ=smallZ/nprocs; // this should always be an exact division
local_z0=ringid*unitZ;
local_z1=(ringid+1)*unitZ;
if (local_z1 > boxZ) local_z1_coer=boxZ;
else local_z1_coer=local_z1;
unitX=gridX/nprocs;
local_x0=ringid*unitX;
local_x1=(ringid+1)*unitX;
# else
local_z0=0;
local_z1=smallZ;
local_z1_coer=boxZ;
local_x0=0;
local_x1=gridX;
# endif
if (local_z1_coer<=local_z0) {
LogWarning(EC_INFO,ALL_POS,"No real dipoles are assigned");
local_z1_coer=local_z0;
}
local_Nz=local_z1-local_z0;
local_Nx=local_x1-local_x0;
boxXY=boxX*(size_t)boxY; // overflow check is covered by gridYZ above
local_Ndip=MultOverflow(boxXY,local_z1_coer-local_z0,ALL_POS,"local_Ndip");
D("%i : %i %i %i %zu %zu \n",ringid,local_z0,local_z1_coer,local_z1,local_Ndip,local_Nx);
#else // SPARSE
/* For sparse mode, nvoid_Ndip is defined in InitDipFile(), and here we define local_nvoid_d0 and local_nvoid_d1,
* since they are required already in ReadDipFile()
*/
D("%zu",nvoid_Ndip);
# ifdef PARALLEL
double unit_f=1.0/nprocs;
//making sure that the first local_f0 and last local_f1 are 0.0 and 1.0
double local_f0 = (ringid == 0) ? 0.0 : ringid*unit_f;
double local_f1 = (ringid == nprocs-1) ? 1.0 : (ringid+1)*unit_f;
local_nvoid_d0 = local_f0*nvoid_Ndip;
local_nvoid_d1 = local_f1*nvoid_Ndip;
# else
local_nvoid_d0=0;
local_nvoid_d1=nvoid_Ndip;
# endif // PARALLEL
#endif
}
//======================================================================================================================
void SetupLocalD(void)
// initialize local_nvoid_d0 and local_nvoid_d1 in FFT mode. In sparse mode those are set earlier in ParSetup()
{
#ifdef ADDA_MPI
/* use of exclusive scan (MPI_Exscan) is logically more suitable, but it has special behavior for the ringid=0. The
* latter would require special additional arrangements.
*/
MPI_Scan(&local_nvoid_Ndip,&local_nvoid_d1,1,MPI_SIZE_T,MPI_SUM,MPI_COMM_WORLD);
local_nvoid_d0=local_nvoid_d1-local_nvoid_Ndip;
#else
local_nvoid_d0=0;
local_nvoid_d1=local_nvoid_Ndip;
#endif
}
//======================================================================================================================
void ReadField(const char * restrict fname,doublecomplex *restrict field)
/* Reads a complex field from file 'fname' and stores into 'field'.
*
* In MPI mode the algorithm is very far from optimal, since the whole file is read in total nprocs/2 times.
* However, this is mainly the limitation of the text file (need to test for blank lines and format consistency).
* The only feasible way to improve it is to use binary format like NetCDF (which may work on top of MPI_IO)
*/
{
char linebuf[BUF_LINE];
TIME_TYPE tstart=GET_TIME();
FILE *file=FOpenErr(fname,"r",ALL_POS);
// the same format as used for saving the beam by StoreFields(...) in make_particle.c
const char format[]="%*f %*f %*f %*f %lf %lf %lf %lf %lf %lf";
const char test_form[]="%*f"; // a quick test for a blank line, without actual assignment
const int mustbe=6;
int scanned;
size_t i,j;
double buf[6];
#if defined(ADDA_MPI) && defined(SYNCHRONIZE_TIMING)
MPI_Barrier(MPI_COMM_WORLD); // synchronize to get correct timing
#endif
// skips first line with headers and any comments, if present
size_t line=SkipNLines(file,1);
line+=SkipComments(file);
i=j=0;
while (FGetsError(file,fname,&line,linebuf,BUF_LINE,ONE_POS)!=NULL) {
// scan numbers in a line
if (i<local_nvoid_d0) { // just count non-blank lines
if (sscanf(linebuf,test_form)!=EOF) i++;
}
else if (i==nvoid_Ndip) { // tests that file doesn't contains extra data rows
if (sscanf(linebuf,test_form)!=EOF) LogError(ALL_POS,"Field file %s contains more data rows than number of "
"dipoles (%zu) in the particle",fname,nvoid_Ndip);
}
else { // here local_nvoid_d0 <= i < local_nvoid_d1
scanned=sscanf(linebuf,format,buf,buf+1,buf+2,buf+3,buf+4,buf+5);
field[j] = buf[0] + I*buf[1];
field[j+1] = buf[2] + I*buf[3];
field[j+2] = buf[4] + I*buf[5];
if (scanned==EOF) {
/* in most cases EOF indicates blank line (which we just skip), but it can also be a short (ill-format)
* line, for which we test below. Otherwise, such lines may be interpreted differently b different
* processors
*/
if (sscanf(linebuf,test_form)!=EOF)
LogError(ALL_POS,"Error occurred during scanning of line %zu from field file %s",line,fname);
}
else {
if (scanned!=mustbe) // this in most cases indicates wrong format
LogError(ALL_POS,"Error occurred during scanning of line %zu from field file %s",line,fname);
j+=3;
i++;
/* all processors stop reading file as soon as possible, but the last processor reads one more line to
* test (above) for extra strings in the file
*/
if (i==local_nvoid_d1 && i!=nvoid_Ndip) break;
}
}
}
#if defined(ADDA_MPI) && defined(SYNCHRONIZE_TIMING)
MPI_Barrier(MPI_COMM_WORLD); // synchronize to get correct timing
#endif
Timing_FileIO+=GET_TIME()-tstart;
}
//======================================================================================================================
#ifndef SPARSE
void BlockTranspose(doublecomplex * restrict X UOIP,TIME_TYPE *timing UOIP)
/* do the data-transposition, i.e. exchange, between fftX and fftY&fftZ; specializes at Xmatrix; do 3 components in one
* message; increments 'timing' (if not NULL) by the time used
*
* !!! TODO: Although size_t is used for bufsize,etc., MPI functions take int as arguments. This limits the largest
* possible size to some extent. Moreover, the size of int is not really well predicted. The exact implications of this
* are still unclear.
*/
{
#ifdef ADDA_MPI
TIME_TYPE tstart;
size_t bufsize,msize,posit,step,y,z;
int transmission,part,Xpos,Xcomp;
MPI_Status status;
// redundant initialization to remove warnings
tstart=0;
if (timing!=NULL) {
#ifdef SYNCHRONIZE_TIMING
MPI_Barrier(MPI_COMM_WORLD); // synchronize to get correct timing
#endif
tstart=GET_TIME();
}
step=2*local_Nx;
msize=local_Nx*sizeof(doublecomplex);
bufsize=6*local_Nz*smallY*local_Nx;
if (bufsize>INT_MAX)
LogError(ALL_POS,"int overflow in MPI function for BT buffer (%zu)",bufsize);
for(transmission=1;transmission<=Ntrans;transmission++) {
// if part==nprocs then skip this transmission
if ((part=CalcPartner(transmission))!=nprocs) {
posit=0;
Xpos=local_Nx*part;
for(Xcomp=0;Xcomp<3;Xcomp++) for(z=0;z<local_Nz;z++) for(y=0;y<smallY;y++) {
memcpy(BT_buffer+posit,X+Xcomp*local_Nsmall+IndexBlock(Xpos,y,z,smallY),msize);
posit+=step;
}
MPI_Sendrecv(BT_buffer, bufsize, MPI_DOUBLE, part, 0,
BT_rbuffer, bufsize, MPI_DOUBLE, part, 0,
MPI_COMM_WORLD,&status);
posit=0;
Xpos=local_Nx*part;
for(Xcomp=0;Xcomp<3;Xcomp++) for(z=0;z<local_Nz;z++) for(y=0;y<smallY;y++) {
memcpy(X+Xcomp*local_Nsmall+IndexBlock(Xpos,y,z,smallY),BT_rbuffer+posit,msize);
posit+=step;
}
}
}
if (timing!=NULL) (*timing)+=GET_TIME()-tstart;
#endif
}
//======================================================================================================================
void BlockTranspose_DRm(doublecomplex * restrict X UOIP,const size_t lengthY UOIP,const size_t lengthZ UOIP)
/* do the data-transposition, i.e. exchange, between fftX and fftY&fftZ; specialized for D or R matrix. It can be
* updated to accept timing argument for generality. But, since this is a specialized function, we keep the timing
* variable hard-wired in the code.
*/
{
#ifdef ADDA_MPI
TIME_TYPE tstart;
size_t bufsize,msize,posit,step,y,z;
int transmission,part,Xpos;
MPI_Status status;
#ifdef SYNCHRONIZE_TIMING
MPI_Barrier(MPI_COMM_WORLD); // synchronize to get correct timing
#endif
tstart=GET_TIME();
step=2*local_Nx;
msize=local_Nx*sizeof(doublecomplex);
bufsize = 2*lengthZ*lengthY*local_Nx;
if (bufsize>INT_MAX)
LogError(ALL_POS,"int overflow in MPI function for BT buffer (%zu)",bufsize);
for(transmission=1;transmission<=Ntrans;transmission++) {
if ((part=CalcPartner(transmission))!=nprocs) {
posit=0;
Xpos=local_Nx*part;
for(z=0;z<lengthZ;z++) for(y=0;y<lengthY;y++) {
memcpy(BT_buffer+posit,X+IndexBlock(Xpos,y,z,lengthY),msize);
posit+=step;
}
MPI_Sendrecv(BT_buffer,bufsize,MPI_DOUBLE,part,0,
BT_rbuffer,bufsize,MPI_DOUBLE,part,0,
MPI_COMM_WORLD,&status);
posit=0;
Xpos=local_Nx*part;
for(z=0;z<lengthZ;z++) for(y=0;y<lengthY;y++) {
memcpy(X+IndexBlock(Xpos,y,z,lengthY),BT_rbuffer+posit,msize);
posit+=step;
}
}
}
Timing_InitDmComm += GET_TIME() - tstart;
#endif
}
//======================================================================================================================
#ifdef PARALLEL
void CalcLocalGranulGrid(const double z0,const double z1,const double gdZ,const int gZ,const int id,int *lz0,int *lz1)
/* calculates starting and ending (+1) cell of granule grid (lz0 & lz1) on a processor with ringid=id
*/
{
int dzl,dzh; // similar to local_z0 and local_z1
dzl=local_Nz*id;
// should not be coerced because the result differs only for dzh>boxZ, then dzh-1>z0
dzh=dzl+local_Nz;
if (dzl>z1) *lz0=*lz1=gZ;
else {
if (dzl>z0) *lz0=(int)floor((dzl-z0)/gdZ);
else *lz0=0;
if (dzh>z1) *lz1=gZ;
else if (dzh-1>z0) *lz1=(int)floor((dzh-z0-1)/gdZ)+1;
else *lz1=0;
}
}
#endif
//======================================================================================================================
void SetGranulComm(const double z0 UOIP,const double z1 UOIP,const double gdZ UOIP,const int gZ,const size_t gXY UOIP,
size_t max_gran UOIP,int *lz0,int *lz1,const int sm_gr UOIP)
/* sets communication for granule generator; max_gran - maximum number of granules in one set (used to allocate buffer);
* sm_gr - whether granules are small (simpler)
*/
{
#ifdef PARALLEL
int i,loc0,loc1,loc1_prev=0;
MALLOC_VECTOR(gr_comm_buf,bool,max_gran,ALL);
if (!sm_gr) {
if (IFROOT) {
MALLOC_VECTOR(gr_comm_size,int,nprocs,ONE);
MALLOC_VECTOR(gr_comm_overl,int,nprocs-1,ONE);
// always allocated, not to mess with its freeing
MALLOC_VECTOR(gr_comm_ob,uchar,gXY,ONE);
/* The following is very inefficient (may be significantly optimized), but using one
* common function is more robust.
*/
for (i=0;i<nprocs;i++) {
CalcLocalGranulGrid(z0,z1,gdZ,gZ,i,&loc0,&loc1);
if (i==ADDA_ROOT) {
*lz0=loc0;
*lz1=loc1;
}
gr_comm_size[i]=loc1-loc0;
if (i!=0) gr_comm_overl[i-1]=(loc0<loc1_prev);
loc1_prev=loc1;;
}
}
else CalcLocalGranulGrid(z0,z1,gdZ,gZ,ringid,lz0,lz1);
}
#else
*lz0=0;
*lz1=gZ;
#endif
}
//======================================================================================================================
void CollectDomainGranul(unsigned char * restrict dom UOIP,const size_t gXY UOIP,const int lz0 UOIP,
const int locgZ UOIP,TIME_TYPE *timing UOIP)
// collects the map of domain for granule generator on the root processor; timing is incremented by the total time used
{
#ifdef ADDA_MPI
int i,unit,index;
size_t j;
MPI_Status status;
TIME_TYPE tstart;
#ifdef SYNCHRONIZE_TIMING
MPI_Barrier(MPI_COMM_WORLD); // synchronize to get correct timing
#endif
tstart=GET_TIME();
unit=gXY*sizeof(char);
if (IFROOT) {
index=(lz0+gr_comm_size[ADDA_ROOT])*gXY;
for (i=ADDA_ROOT+1;i<nprocs;i++) {
if (gr_comm_size[i]!=0) {
if (gr_comm_overl[i-1]) {
index-=gXY;
memcpy(gr_comm_ob,dom+index,unit);
}
MPI_Recv(dom+index,unit*gr_comm_size[i],MPI_UNSIGNED_CHAR,i,0,MPI_COMM_WORLD,&status);
if (gr_comm_overl[i-1]) for (j=0;j<gXY;j++) dom[index+j]|=gr_comm_ob[j];
index+=gXY*gr_comm_size[i];
}
}
// that is only needed when ADDA_ROOT!=0; kind of weird but should work
index=lz0*gXY;
for (i=ADDA_ROOT-1;i>=0;i--) {
if (gr_comm_size[i]!=0) {
if (gr_comm_overl[i]) {
memcpy(gr_comm_ob,dom+index,unit);
index+=gXY;
}
MPI_Recv(dom+index-gXY*gr_comm_size[i],unit*gr_comm_size[i],MPI_UNSIGNED_CHAR,i,0,MPI_COMM_WORLD,
&status);
if (gr_comm_overl[i]) for (j=0;j<gXY;j++) dom[index-gXY+j]|=gr_comm_ob[j];
index-=gXY*gr_comm_size[i];
}
}
}
else if (locgZ!=0) {
// the test here implies the test for above MPI_Recv as well
size_t size=(size_t)unit*(size_t)locgZ;
if (size>INT_MAX) LogError(ALL_POS,"int overflow in MPI function (%zu)",size);
MPI_Send(dom,size,MPI_UNSIGNED_CHAR,ADDA_ROOT,0,MPI_COMM_WORLD);
}
(*timing)+=GET_TIME()-tstart;
#endif
}
//======================================================================================================================
void FreeGranulComm(const int sm_gr UOIP)
// frees all additional memory used for communications of granule generator; simpler if small granules
{
#ifdef PARALLEL
Free_general(gr_comm_buf);
if (!sm_gr && IFROOT) {
Free_general(gr_comm_size);
Free_general(gr_comm_overl);
Free_general(gr_comm_ob);
}
#endif
}
//======================================================================================================================
void ExchangeFits(bool * restrict data UOIP,const size_t n UOIP,TIME_TYPE *timing UOIP)
/* performs a collective AND operation on the (vector) data; timing is incremented by the total time used.
* Starting from MPI 2.2 (with errata) MPI_C_BOOL should occupy 1 byte, the same when substitute is used
*/
{
#ifdef ADDA_MPI
TIME_TYPE tstart;
if (n>INT_MAX) LogError(ONE_POS,"int overflow in MPI function (%zu)",n);
#ifdef SYNCHRONIZE_TIMING
MPI_Barrier(MPI_COMM_WORLD); // synchronize to get correct timing
#endif
tstart=GET_TIME();
MPI_Allreduce(data,gr_comm_buf,n,mpi_bool,MPI_LAND,MPI_COMM_WORLD);
memcpy(data,gr_comm_buf,n*sizeof(bool));
(*timing)+=GET_TIME()-tstart;
#endif
}
//======================================================================================================================
#ifdef PARALLEL
bool ExchangePhaseShifts(doublecomplex * restrict bottom, doublecomplex * restrict top,TIME_TYPE *timing)
/* propagates slice of complex values from bottom to top. In the beginning 'top' contains phase shift over the current
* processor, at the end 'bottom' and 'top' contain phase shifts from the bottom of the first processor to bottom and
* top of the current processor. Potentially, can be optimized by some tree algorithm. However, there seem to be no
* ready MPI function available.
*/
{
#ifdef ADDA_MPI
MPI_Status status;
TIME_TYPE tstart;
size_t i;
if (2*boxXY>INT_MAX) LogError(ONE_POS,"int overflow in MPI function (%zu)",2*boxXY);
#ifdef SYNCHRONIZE_TIMING
MPI_Barrier(MPI_COMM_WORLD); // synchronize to get correct timing
#endif
tstart=GET_TIME();
// receive slice from previous processor and increment own slice by these values
if (ringid>0) { // It is important to use 0 instead of ROOT
MPI_Recv(bottom,2*boxXY,MPI_DOUBLE,ringid-1,0,MPI_COMM_WORLD,&status);
for (i=0;i<boxXY;i++) top[i]+=bottom[i];
}
// send updated slice to previous processor
if (ringid<(nprocs-1)) MPI_Send(top,2*boxXY,MPI_DOUBLE,ringid+1,0,MPI_COMM_WORLD);
#ifdef SYNCHRONIZE_TIMING
MPI_Barrier(MPI_COMM_WORLD); // synchronize to get correct timing
#endif
(*timing)+=GET_TIME()-tstart;
return (ringid!=0);
#endif
}
#endif // PARALLEL
#endif // !SPARSE