forked from seq-to-mind/DMRST_Parser
-
Notifications
You must be signed in to change notification settings - Fork 0
/
module.py
361 lines (280 loc) · 15.2 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import config
import numpy as np
class EncoderRNN(nn.Module):
def __init__(self, language_model, word_dim, hidden_size, rnn_layers, dropout, bert_tokenizer=None, segmenter=None):
super(EncoderRNN, self).__init__()
'''
Input:
[batch,length]
Output:
encoder_output: [batch,length,hidden_size]
encoder_hidden: [rnn_layers,batch,hidden_size]
'''
self.rnn_layers = rnn_layers
self.hidden_size = hidden_size
self.word_dim = word_dim
self.nnDropout = nn.Dropout(dropout)
self.language_model = language_model
self.layer_norm = nn.LayerNorm(word_dim, elementwise_affine=True)
self.layer_norm_for_seg = nn.LayerNorm(word_dim, elementwise_affine=True)
self.bert_tokenizer = bert_tokenizer
self.reduce_dim_layer = nn.Linear(word_dim * 3, word_dim, bias=False)
self.segmenter = segmenter
self.doc_gru_enc = nn.GRU(word_dim, int(word_dim / 2), num_layers=2, batch_first=True, dropout=0.2, bidirectional=True)
def forward(self, input_sentence, EDU_breaks, is_test=False):
if EDU_breaks is not None or is_test is False:
max_edu_break_num = max([len(tmp_l) for tmp_l in EDU_breaks])
all_outputs = []
all_hidden = []
batch_token_len_list = [len(i) for i in input_sentence]
batch_token_len_max = max(batch_token_len_list)
""" version 3.0 """
# for segmenter initialization
total_edu_loss = torch.FloatTensor([0.0]).cuda()
predict_edu_breaks_list = []
tem_outputs = []
""" For averaging the edu level embeddings START """
for i in range(len(input_sentence)):
bert_token_ids = [self.bert_tokenizer.convert_tokens_to_ids(input_sentence[i])]
bert_token_ids = torch.LongTensor(bert_token_ids).cuda()
# print(bert_token_ids.shape)
""" fixed sliding window for encoding long sequence """
window_size = 300
sequence_length = len(input_sentence[i])
slide_steps = int(np.ceil(len(input_sentence[i]) / window_size))
# print(sequence_length, slide_steps)
window_embed_list = []
for tmp_step in range(slide_steps):
if tmp_step == 0:
one_win_res = self.language_model(bert_token_ids[:, :500])[0][:, :window_size, :]
window_embed_list.append(one_win_res)
elif tmp_step == slide_steps - 1:
one_win_res = self.language_model(bert_token_ids[:, -((sequence_length - (window_size * tmp_step)) + 200):])[0][:, 200:, :]
window_embed_list.append(one_win_res)
else:
one_win_res = self.language_model(bert_token_ids[:, (window_size * tmp_step - 100):(window_size * (tmp_step + 1) + 100)])[0][:, 100:400, :]
window_embed_list.append(one_win_res)
embeddings = torch.cat(window_embed_list, dim=1)
assert embeddings.size(1) == sequence_length
embeddings = self.layer_norm(embeddings)
""" add segmentation process """
if is_test:
predict_edu_breaks = self.segmenter.test_segment_loss(embeddings.squeeze())
cur_edu_break = predict_edu_breaks
predict_edu_breaks_list.append(predict_edu_breaks)
else:
cur_edu_break = EDU_breaks[i]
seg_loss = self.segmenter.train_segment_loss(embeddings.squeeze(), cur_edu_break)
""" Use this to pass the segmenation loss part: only for debug """
# seg_loss = 0.0
total_edu_loss += seg_loss
# apply dropout
embeddings = self.nnDropout(embeddings.squeeze(dim=0))
tmp_average_list = []
tmp_break_list = [0, ] + [tmp_j + 1 for tmp_j in cur_edu_break]
for tmp_i in range(len(tmp_break_list) - 1):
assert tmp_break_list[tmp_i] < tmp_break_list[tmp_i + 1]
tmp_average_list.append(torch.mean(embeddings[tmp_break_list[tmp_i]:tmp_break_list[tmp_i + 1], :], dim=0, keepdim=True))
tmp_average_embed = torch.cat(tmp_average_list, dim=0).unsqueeze(dim=0)
outputs = tmp_average_embed
""" For averaging the edu level embeddings END """
if config.document_enc_gru is True:
outputs, hidden = self.doc_gru_enc(outputs)
hidden = hidden.view(2, 2, 1, int(self.word_dim / 2))[-1]
hidden = hidden.transpose(0, 1).view(1, 1, -1).contiguous()
if config.add_first_and_last is True:
first_words = []
last_words = []
for tmp_i in range(len(tmp_break_list) - 1):
first_words.append(embeddings[tmp_break_list[tmp_i]].unsqueeze(dim=0))
last_words.append(embeddings[tmp_break_list[tmp_i + 1] - 1].unsqueeze(dim=0))
outputs = torch.cat((outputs, torch.cat(first_words, dim=0).unsqueeze(dim=0), torch.cat(last_words, dim=0).unsqueeze(dim=0)), dim=2)
outputs = self.reduce_dim_layer(outputs)
tem_outputs.append(outputs)
all_hidden.append(hidden)
if is_test:
max_edu_break_num = max([len(tmp_l) for tmp_l in predict_edu_breaks_list])
for output in tem_outputs:
cur_break_num = output.size(1)
all_outputs.append(torch.cat([output, torch.zeros(1, max_edu_break_num - cur_break_num, self.word_dim).cuda()], dim=1))
res_merged_output = torch.cat(all_outputs, dim=0)
res_merged_hidden = torch.cat(all_hidden, dim=1)
return res_merged_output, res_merged_hidden, total_edu_loss, predict_edu_breaks_list
def GetEDURepresentation(self, input_sentence):
tmp_max_token_num = len(input_sentence[0])
bert_token_ids = [self.bert_tokenizer.convert_tokens_to_ids(v) + [5, ] * (tmp_max_token_num - len(v)) for k, v in enumerate(input_sentence)]
bert_token_ids = torch.LongTensor(bert_token_ids).cuda()
bert_embeddings = self.language_model(bert_token_ids)
return bert_embeddings[0]
class DecoderRNN(nn.Module):
def __init__(self, input_size, hidden_size, rnn_layers, dropout):
super(DecoderRNN, self).__init__()
'''
Input:
input: [1,length,input_size]
initial_hidden_state: [rnn_layer,1,hidden_size]
Output:
output: [1,length,input_size]
hidden_states: [rnn_layer,1,hidden_size]
'''
# Define GRU layer
self.gru = nn.GRU(input_size, hidden_size, num_layers=rnn_layers, batch_first=True, dropout=(0 if rnn_layers == 1 else dropout))
def forward(self, input_hidden_states, last_hidden):
# Forward through unidirectional GRU
outputs, hidden = self.gru(input_hidden_states, last_hidden)
return outputs, hidden
class PointerAtten(nn.Module):
def __init__(self, atten_model, hidden_size):
super(PointerAtten, self).__init__()
'''
Input:
Encoder_outputs: [length,encoder_hidden_size]
Current_decoder_output: [decoder_hidden_size]
Attention_model: 'Biaffine' or 'Dotproduct'
Output:
attention_weights: [1,length]
log_attention_weights: [1,length]
'''
self.atten_model = atten_model
self.weight1 = nn.Linear(hidden_size, hidden_size, bias=False)
self.weight2 = nn.Linear(hidden_size, 1, bias=False)
def forward(self, encoder_outputs, cur_decoder_output):
if self.atten_model == 'Biaffine':
EW1_temp = self.weight1(encoder_outputs)
EW1 = torch.matmul(EW1_temp, cur_decoder_output).unsqueeze(1)
EW2 = self.weight2(encoder_outputs)
bi_affine = EW1 + EW2
bi_affine = bi_affine.permute(1, 0)
# Obtain attention weights and logits (to compute loss)
atten_weights = F.softmax(bi_affine, 0)
log_atten_weights = F.log_softmax(bi_affine + 1e-6, 0)
elif self.atten_model == 'Dotproduct':
dot_prod = torch.matmul(encoder_outputs, cur_decoder_output).unsqueeze(0)
# Obtain attention weights and logits (to compute loss)
atten_weights = F.softmax(dot_prod, 1)
log_atten_weights = F.log_softmax(dot_prod + 1e-6, 1)
# Return attention weights and log attention weights
return atten_weights, log_atten_weights
class LabelClassifier(nn.Module):
def __init__(self, input_size, classifier_hidden_size, classes_label=41,
bias=True, dropout=0.5):
super(LabelClassifier, self).__init__()
'''
Args:
input_size: input size
classifier_hidden_size: project input to classifier space
classes_label: corresponding to 39 relations we have.
(e.g. Contrast_NN)
bias: If set to False, the layer will not learn an additive bias.
Default: True
Input:
input_left: [1,input_size]
input_right: [1,input_size]
Output:
relation_weights: [1,classes_label]
log_relation_weights: [1,classes_label]
'''
self.classifier_hidden_size = classifier_hidden_size
self.labelspace_left = nn.Linear(input_size, classifier_hidden_size, bias=False)
self.labelspace_right = nn.Linear(input_size, classifier_hidden_size, bias=False)
self.weight_left = nn.Linear(classifier_hidden_size, classes_label, bias=False)
self.weight_right = nn.Linear(classifier_hidden_size, classes_label, bias=False)
self.nnDropout = nn.Dropout(dropout)
self.classifier_hidden_size = classifier_hidden_size
if bias:
self.weight_bilateral = nn.Bilinear(classifier_hidden_size, classifier_hidden_size, classes_label)
else:
self.weight_bilateral = nn.Bilinear(classifier_hidden_size, classifier_hidden_size, classes_label, bias=False)
def forward(self, input_left, input_right):
left_size = input_left.size()
right_size = input_right.size()
labelspace_left = F.elu(self.labelspace_left(input_left))
labelspace_right = F.elu(self.labelspace_right(input_right))
# Apply dropout
union = torch.cat((labelspace_left, labelspace_right), 1)
union = self.nnDropout(union)
labelspace_left = union[:, :self.classifier_hidden_size]
labelspace_right = union[:, self.classifier_hidden_size:]
output = (self.weight_bilateral(labelspace_left, labelspace_right) +
self.weight_left(labelspace_left) + self.weight_right(labelspace_right))
# Obtain relation weights and log relation weights (for loss)
relation_weights = F.softmax(output, 1)
log_relation_weights = F.log_softmax(output + 1e-6, 1)
return relation_weights, log_relation_weights
class Segmenter_pointer(nn.Module):
def __init__(self, hidden_size, atten_model=None, decoder_input_size=None, rnn_layers=None, dropout_d=None):
super(Segmenter_pointer, self).__init__()
self.hidden_size = hidden_size
self.pointer = PointerAtten(atten_model, hidden_size)
self.encoder = nn.GRU(hidden_size, int(hidden_size / 2), num_layers=1, batch_first=True, dropout=0.2, bidirectional=True)
self.decoder = DecoderRNN(decoder_input_size, hidden_size, rnn_layers, dropout_d)
self.loss_function = nn.NLLLoss()
def forward(self):
raise RuntimeError('Segmenter does not have forward process.')
def train_segment_loss(self, word_embeddings, edu_breaks):
outputs, last_hidden = self.encoder(word_embeddings.unsqueeze(0))
outputs = outputs.squeeze()
cur_decoder_hidden = outputs[-1, :].unsqueeze(0).unsqueeze(0)
edu_breaks = [0] + edu_breaks
total_loss = torch.FloatTensor([0.0]).cuda()
for step, start_index in enumerate(edu_breaks[:-1]):
cur_decoder_output, cur_decoder_hidden = self.decoder(outputs[start_index].unsqueeze(0).unsqueeze(0), last_hidden=cur_decoder_hidden)
_, log_atten_weights = self.pointer(outputs[start_index:], cur_decoder_output.squeeze(0).squeeze(0))
cur_ground_index = torch.tensor([edu_breaks[step + 1] - start_index]).cuda()
total_loss = total_loss + self.loss_function(log_atten_weights, cur_ground_index)
return total_loss
def test_segment_loss(self, word_embeddings, edu_breaks):
outputs, last_hidden = self.encoder(word_embeddings.unsqueeze(0))
outputs = outputs.squeeze()
cur_decoder_hidden = outputs[-1, :].unsqueeze(0).unsqueeze(0)
start_index = 0
predict_segment = []
sentence_length = outputs.shape[0]
while start_index < sentence_length:
cur_decoder_output, cur_decoder_hidden = self.decoder(outputs[start_index].unsqueeze(0).unsqueeze(0), last_hidden=cur_decoder_hidden)
atten_weights, log_atten_weights = self.pointer(outputs[start_index:], cur_decoder_output.squeeze(0).squeeze(0))
_, top_index_seg = atten_weights.topk(1)
seg_index = int(top_index_seg[0][0]) + start_index
predict_segment.append(seg_index)
start_index = seg_index + 1
if predict_segment[-1] != sentence_length - 1:
predict_segment.append(sentence_length - 1)
return predict_segment
class Segmenter(nn.Module):
def __init__(self, hidden_size):
super(Segmenter, self).__init__()
self.hidden_size = hidden_size
self.drop_out = nn.Dropout(p=0.5)
self.linear = nn.Linear(hidden_size, 2)
self.linear_start = nn.Linear(hidden_size, 2)
self.loss_function = nn.CrossEntropyLoss(weight=torch.Tensor([1.0, 10.0]).cuda())
def forward(self):
raise RuntimeError('Segmenter does not have forward process.')
def train_segment_loss(self, word_embeddings, edu_breaks):
edu_break_target = [0, ] * word_embeddings.size(0)
edu_start_target = [0, ] * word_embeddings.size(0)
for i in edu_breaks:
edu_break_target[i] = 1
edu_start_target[0] = 1
for i in edu_breaks[:-1]:
edu_start_target[i + 1] = 1
edu_break_target = torch.LongTensor(edu_break_target).cuda()
edu_start_target = torch.LongTensor(edu_start_target).cuda()
outputs = self.linear(self.drop_out(word_embeddings))
start_outputs = self.linear_start(self.drop_out(word_embeddings))
if config.if_edu_start_loss:
total_loss = self.loss_function(outputs, edu_break_target) + self.loss_function(start_outputs, edu_start_target)
else:
total_loss = self.loss_function(outputs, edu_break_target)
return total_loss
def test_segment_loss(self, word_embeddings):
outputs = self.linear(self.drop_out(word_embeddings))
pred = torch.argmax(outputs, dim=1).detach().cpu().numpy().tolist()
predict_segment = [i for i, k in enumerate(pred) if k == 1]
if word_embeddings.size(0) - 1 not in predict_segment:
predict_segment.append(word_embeddings.size(0) - 1)
return predict_segment