-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
116 lines (96 loc) · 5.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import streamlit as st
import os
from search_database import search
from sql_engine import critiquer_chat, generate_initial_query,generate_critique_query, get_sql_query
from bigquery_engine import query_to_dataframe
# Set the OpenAI API key
st.title("Sql assistant")
# Initialize chat history and other states
if "messages" not in st.session_state:
st.session_state.messages = []
if "user_query" not in st.session_state:
st.session_state.user_query = None
if "state" not in st.session_state:
st.session_state.state = 'search'
if "critique_response" not in st.session_state:
st.session_state.critique_response = None
if 'json_response' not in st.session_state:
st.session_state.json_response = None
if 'critiquer_chat' not in st.session_state:
st.session_state.critiquer_chat = critiquer_chat()
if 'error' not in st.session_state:
st.session_state.error = None
# Display chat messages from history on app rerun
for message in st.session_state.messages:
if message["role"] == "bigquery":
st.chat_message("bigquery").dataframe(message["content"])
else:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if st.checkbox("Click to Search", value=False):
st.session_state.state = 'search'
# React to user input
if prompt := st.chat_input("What is your question?"):
# Take a small checkbox for state, set default to search
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message in chat message container
st.chat_message("user").markdown(prompt)
if st.session_state.state == 'search':
# First iteration
if st.session_state.user_query is None:
st.session_state.user_query = prompt
st.session_state.json_response, string_response = search(st.session_state.user_query)
st.chat_message("assistant").markdown(string_response)
st.session_state.messages.append({"role": "ai", "content": string_response})
# Subsequent iterations
else:
if prompt == 'retry':
st.session_state.json_response, string_response = search(st.session_state.user_query)
st.chat_message("assistant").markdown(string_response)
st.session_state.messages.append({"role": "ai", "content": string_response})
elif prompt.startswith('new'):
st.session_state.user_query = prompt[4:] # Extract new query
st.session_state.json_response, string_response = search(st.session_state.user_query)
st.chat_message("assistant").markdown(string_response)
st.session_state.messages.append({"role": "ai", "content": string_response})
elif prompt == 'continue':
searched_values = st.session_state.json_response['output']
initial_response = generate_initial_query(st.session_state.user_query, searched_values)
st.chat_message("assistant").markdown(initial_response)
critique_response = generate_critique_query(st.session_state.user_query, get_sql_query(initial_response), searched_values, st.session_state.critiquer_chat, initial_response)
st.chat_message("assistant").markdown(critique_response)
st.session_state.messages.append({"role": "ai", "content": initial_response})
st.session_state.messages.append({"role": "ai", "content": critique_response})
st.session_state.state = 'critiquer'
st.session_state.critique_response = critique_response
else:
searched_values = prompt
initial_response = generate_initial_query(st.session_state.user_query, searched_values)
st.chat_message("assistant").markdown(initial_response)
critique_response = generate_critique_query(st.session_state.user_query, get_sql_query(initial_response), searched_values, st.session_state.critiquer_chat, initial_response)
st.chat_message("assistant").markdown(critique_response)
st.session_state.messages.append({"role": "ai", "content": initial_response})
st.session_state.messages.append({"role": "ai", "content": critique_response})
st.session_state.state = 'critiquer'
st.session_state.critique_response = critique_response
elif st.session_state.state == 'critiquer':
if prompt == 'exe':
sql_query = get_sql_query(st.session_state.critique_response)
bigquery_json = query_to_dataframe(sql_query)
if bigquery_json['response'] == 'error':
st.session_state.error = bigquery_json['error']
st.chat_message("assistant").markdown(f"This error occurred while executing the query: {st.session_state.error}")
st.session_state.messages.append({"role": "ai", "content": f"This error occurred while executing the query: {st.session_state.error}"})
else:
st.session_state.error = None
dataframe = bigquery_json['dataframe']
st.chat_message("assistant").dataframe(dataframe)
st.session_state.messages.append({"role": "bigquery", "content": dataframe.to_dict()})
else:
prompt = f"These are my suggestions: {prompt}"
if st.session_state.error is not None:
prompt = f"These error occured while executing { st.session_state.error }" +prompt
st.session_state.critique_response = st.session_state.critiquer_chat.invoke({"input": prompt},{"configurable": {"session_id": "unused"}}).content
st.chat_message("assistant").markdown(st.session_state.critique_response)
st.session_state.messages.append({"role": "ai", "content": st.session_state.critique_response})
# Store user input and assistant response in chat history