-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.cc
90 lines (63 loc) · 2.51 KB
/
train.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#include <eigen3/Eigen/Dense>
#include "party.h"
#include "train.h"
#include <vector>
double getLearningRate(Configuration* c, int iteration) {
int batches_per_epoch = c->m / c->batch_size;
int epoch_num = iteration / batches_per_epoch;
return c->initial_learning_rate / (1 + c->learning_rate_decay * epoch_num);
}
double getLearningRate(double initial, double decay, int epoch) {
return initial / (1 + decay * epoch);
}
Eigen::VectorXd gradient_train_simulation(std::vector<Party*> p, Configuration* c, bool use_noise) {
// TODO need to change the way noise is generated
Eigen::VectorXd params = Eigen::VectorXd::Zero(c->d + 1);
int num_batches_per_epoch = c->m / c->batch_size;
int effective_epochs = c->epochs / sqrt(c->n);
for (int i = 0; i < effective_epochs; i++) {
double learning_rate = getLearningRate(c, i*num_batches_per_epoch);
std::cout << "Epoch " << i << std::endl;
for (int j = 0; j < num_batches_per_epoch; j++) {
Eigen::VectorXd gradient = Eigen::VectorXd::Zero(c->d + 1);
for (auto party : p) {
auto local_gradient = party->ComputeGradient(c, params);
if (use_noise && c->n > 2) {
// and multiparty noise
local_gradient +=
c->privacy.generateLogisticRegressionMPCNoise(c->clipping,
c->batch_size, c->m,
effective_epochs, c->d, c->n);
local_gradient = reduceVectorPrecision(local_gradient, c->fractional_bits);
}
gradient += local_gradient;
}
if (use_noise && (c->n == 1 || c-> n == 2)) {
// add solo/two party noise
gradient +=
reduceVectorPrecision(c->privacy.generateLogisticRegressionNoise(c->clipping,
c->batch_size, c->m,
effective_epochs, c->d),
c->fractional_bits);
}
params = params - gradient * learning_rate;
}
}
std::cout << "Training Accuracy " << p[0]->Accuracy(params) << std::endl;
// std::cout << std::endl << params << std::endl;
return params;
}
Eigen::VectorXd train_single(Party* p, Configuration* c) {
Eigen::VectorXd params = Eigen::VectorXd::Zero(c->d + 1);
float learning_rate = c->initial_learning_rate;
int num_batches_per_epoch = c->m / c->batch_size;
for (int i = 0; i < c->epochs; i++) {
std::cout << "Epoch " << i << std::endl;
for (int j = 0; j < num_batches_per_epoch; j++) {
auto gradient = p->ComputeGradient(c, params);
params = params - gradient * learning_rate;
}
learning_rate = getLearningRate(c, i*num_batches_per_epoch);
}
return params;
}