-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain.py
191 lines (152 loc) · 7.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision.utils as vutils
import seaborn as sns
import os
import pickle
import math
import utils
import hmc
from torch.distributions.normal import Normal
real_label = 1
fake_label = 0
criterion = nn.BCELoss()
criterion_mse = nn.MSELoss()
def dcgan(dat, netG, netD, args):
device = args.device
X_training = dat['X_train'].to(device)
fixed_noise = torch.randn(args.num_gen_images, args.nz, 1, 1, device=device)
optimizerD = optim.Adam(netD.parameters(), lr=args.lrD, betas=(args.beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=args.lrG, betas=(args.beta1, 0.999))
for epoch in range(1, args.epochs+1):
for i in range(0, len(X_training), args.batchSize):
netD.zero_grad()
stop = min(args.batchSize, len(X_training[i:]))
real_cpu = X_training[i:i+stop].to(device)
batch_size = real_cpu.size(0)
label = torch.full((batch_size,), real_label, device=device, dtype=torch.int8)
output = netD(real_cpu)
errD_real = criterion(output, label)
errD_real.backward()
D_x = output.mean().item()
# train with fake
noise = torch.randn(batch_size, args.nz, 1, 1, device=device)
fake = netG(noise)
label.fill_(fake_label)
output = netD(fake.detach())
errD_fake = criterion(output, label)
errD_fake.backward()
D_G_z1 = output.mean().item()
errD = errD_real + errD_fake
optimizerD.step()
# (2) Update G network: maximize log(D(G(z)))
netG.zero_grad()
label.fill_(real_label)
output = netD(fake)
errG = criterion(output, label)
errG.backward()
D_G_z2 = output.mean().item()
optimizerG.step()
## log performance
if i % args.log == 0:
print('Epoch [%d/%d] .. Batch [%d/%d] .. Loss_D: %.4f .. Loss_G: %.4f .. D(x): %.4f .. D(G(z)): %.4f / %.4f'
% (epoch, args.epochs, i, len(X_training), errD.data, errG.data, D_x, D_G_z1, D_G_z2))
print('*'*100)
print('End of epoch {}'.format(epoch))
print('*'*100)
if epoch % args.save_imgs_every == 0:
fake = netG(fixed_noise).detach()
vutils.save_image(fake, '%s/dcgan_%s_fake_epoch_%03d.png' % (args.results_folder, args.dataset, epoch), normalize=True, nrow=20)
if epoch % args.save_ckpt_every == 0:
torch.save(netG.state_dict(), os.path.join(args.results_folder, 'netG_dcgan_%s_epoch_%s.pth'%(args.dataset, epoch)))
def presgan(dat, netG, netD, log_sigma, args):
device = args.device
X_training = dat['X_train'].to(device)
fixed_noise = torch.randn(args.num_gen_images, args.nz, 1, 1, device=device)
optimizerD = optim.Adam(netD.parameters(), lr=args.lrD, betas=(args.beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=args.lrG, betas=(args.beta1, 0.999))
sigma_optimizer = optim.Adam([log_sigma], lr=args.sigma_lr, betas=(args.beta1, 0.999))
if args.restrict_sigma:
logsigma_min = math.log(math.exp(args.sigma_min) - 1.0)
logsigma_max = math.log(math.exp(args.sigma_max) - 1.0)
stepsize = args.stepsize_num / args.nz
bsz = args.batchSize
for epoch in range(1, args.epochs+1):
for i in range(0, len(X_training), bsz):
sigma_x = F.softplus(log_sigma).view(1, 1, args.imageSize, args.imageSize)
netD.zero_grad()
stop = min(bsz, len(X_training[i:]))
real_cpu = X_training[i:i+stop].to(device)
batch_size = real_cpu.size(0)
label = torch.full((batch_size,), real_label, device=device, dtype=torch.float32)
noise_eta = torch.randn_like(real_cpu)
noised_data = real_cpu + sigma_x.detach() * noise_eta
out_real = netD(noised_data)
errD_real = criterion(out_real, label)
errD_real.backward()
D_x = out_real.mean().item()
# train with fake
noise = torch.randn(batch_size, args.nz, 1, 1, device=device)
mu_fake = netG(noise)
fake = mu_fake + sigma_x * noise_eta
label.fill_(fake_label)
out_fake = netD(fake.detach())
errD_fake = criterion(out_fake, label)
errD_fake.backward()
D_G_z1 = out_fake.mean().item()
errD = errD_real + errD_fake
optimizerD.step()
# update G network: maximize log(D(G(z)))
netG.zero_grad()
sigma_optimizer.zero_grad()
label.fill_(real_label)
gen_input = torch.randn(batch_size, args.nz, 1, 1, device=device)
out = netG(gen_input)
noise_eta = torch.randn_like(out)
g_fake_data = out + noise_eta * sigma_x
dg_fake_decision = netD(g_fake_data)
g_error_gan = criterion(dg_fake_decision, label)
D_G_z2 = dg_fake_decision.mean().item()
if args.lambda_ == 0:
g_error_gan.backward()
optimizerG.step()
sigma_optimizer.step()
else:
hmc_samples, acceptRate, stepsize = hmc.get_samples(
netG, g_fake_data.detach(), gen_input.clone(), sigma_x.detach(), args.burn_in,
args.num_samples_posterior, args.leapfrog_steps, stepsize, args.flag_adapt,
args.hmc_learning_rate, args.hmc_opt_accept)
bsz, d = hmc_samples.size()
mean_output = netG(hmc_samples.view(bsz, d, 1, 1).to(device))
bsz = g_fake_data.size(0)
mean_output_summed = torch.zeros_like(g_fake_data)
for cnt in range(args.num_samples_posterior):
mean_output_summed = mean_output_summed + mean_output[cnt*bsz:(cnt+1)*bsz]
mean_output_summed = mean_output_summed / args.num_samples_posterior
c = ((g_fake_data - mean_output_summed) / sigma_x**2).detach()
g_error_entropy = torch.mul(c, out + sigma_x * noise_eta).mean(0).sum()
g_error = g_error_gan - args.lambda_ * g_error_entropy
g_error.backward()
optimizerG.step()
sigma_optimizer.step()
if args.restrict_sigma:
log_sigma.data.clamp_(min=logsigma_min, max=logsigma_max)
## log performance
if i % args.log == 0:
print('Epoch [%d/%d] .. Batch [%d/%d] .. Loss_D: %.4f .. Loss_G: %.4f .. D(x): %.4f .. D(G(z)): %.4f / %.4f'
% (epoch, args.epochs, i, len(X_training), errD.data, g_error_gan.data, D_x, D_G_z1, D_G_z2))
print('*'*100)
print('End of epoch {}'.format(epoch))
print('sigma min: {} .. sigma max: {}'.format(torch.min(sigma_x), torch.max(sigma_x)))
print('*'*100)
if args.lambda_ > 0:
print('| MCMC diagnostics ====> | stepsize: {} | min ar: {} | mean ar: {} | max ar: {} |'.format(
stepsize, acceptRate.min().item(), acceptRate.mean().item(), acceptRate.max().item()))
if epoch % args.save_imgs_every == 0:
fake = netG(fixed_noise).detach()
vutils.save_image(fake, '%s/presgan_%s_fake_epoch_%03d.png' % (args.results_folder, args.dataset, epoch), normalize=True, nrow=20)
if epoch % args.save_ckpt_every == 0:
torch.save(netG.state_dict(), os.path.join(args.results_folder, 'netG_presgan_%s_epoch_%s.pth'%(args.dataset, epoch)))
torch.save(log_sigma, os.path.join(args.results_folder, 'log_sigma_%s_%s.pth'%(args.dataset, epoch)))