-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsetup.py
57 lines (47 loc) · 2.03 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import setuptools
setuptools.setup(
name="peamt", # Replace with your own username
version="0.2.0",
author="Adrien Ycart",
author_email="[email protected]",
description="PEAMT: a Perceptual Evaluation metric for Automatic Music Transcription",
long_description="""
# PEAMT
This package contains code to run PEAMT, a Perceptual Evaluation metric for Automatic Music Transcription.
If you use any of this, please cite:
Adrien Ycart, Lele Liu, Emmanouil Benetos and Marcus Pearce, 2020. ["Investigating the Perceptual Validity of Evaluation Metrics for Automatic Piano Music Transcription"](https://transactions.ismir.net/articles/10.5334/tismir.57), _Transactions of the International Society for Music Information Retrieval (TISMIR)_, 3(1), pp.68–81.
```
@article{ycart2019PEAMT,
Author = {Ycart, Adrien and Liu, Lele and Benetos, Emmanouil and Pearce, Marcus},
Booktitle = {Transactions of the International Society for Music Information Retrieval (TISMIR)},
Title = {Investigating the Perceptual Validity of Evaluation Metrics for Automatic Piano Music Transcription},
Year = {2020},
Volume = {3},
Issue = {1},
Pages = {68--81},
DOI = {http://doi.org/10.5334/tismir.57},
}
```
For more info, please visit: [https://github.com/adrienycart/PEAMT](https://github.com/adrienycart/PEAMT)
""",
long_description_content_type="text/markdown",
url="https://github.com/adrienycart/PEAMT",
project_urls={
"Bug Tracker": "https://github.com/adrienycart/PEAMT/issues",
},
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
install_requires=[
'numpy',
'pretty_midi==0.2.8',
'mir_eval',
],
package_dir={"": "peamt"},
packages=setuptools.find_packages(where="peamt"),
package_data={
"peamt": ["model_parameters/*.pkl"],
}
)