-
Notifications
You must be signed in to change notification settings - Fork 53
/
model.py
236 lines (188 loc) · 9.02 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import re
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import StratifiedKFold
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.layers import Dense, Input, LSTM, Embedding, Dropout
from keras.layers.core import Lambda
from keras.layers.merge import concatenate, add, multiply
from keras.models import Model
from keras.layers.normalization import BatchNormalization
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.layers.noise import GaussianNoise
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.corpus import stopwords
np.random.seed(0)
WNL = WordNetLemmatizer()
STOP_WORDS = set(stopwords.words('english'))
MAX_SEQUENCE_LENGTH = 30
MIN_WORD_OCCURRENCE = 100
REPLACE_WORD = "memento"
EMBEDDING_DIM = 300
NUM_FOLDS = 10
BATCH_SIZE = 1025
EMBEDDING_FILE = "glove.840B.300d.txt"
def cutter(word):
if len(word) < 4:
return word
return WNL.lemmatize(WNL.lemmatize(word, "n"), "v")
def preprocess(string):
string = string.lower().replace(",000,000", "m").replace(",000", "k").replace("′", "'").replace("’", "'") \
.replace("won't", "will not").replace("cannot", "can not").replace("can't", "can not") \
.replace("n't", " not").replace("what's", "what is").replace("it's", "it is") \
.replace("'ve", " have").replace("i'm", "i am").replace("'re", " are") \
.replace("he's", "he is").replace("she's", "she is").replace("'s", " own") \
.replace("%", " percent ").replace("₹", " rupee ").replace("$", " dollar ") \
.replace("€", " euro ").replace("'ll", " will").replace("=", " equal ").replace("+", " plus ")
string = re.sub('[“”\(\'…\)\!\^\"\.;:,\-\??\{\}\[\]\\/\*@]', ' ', string)
string = re.sub(r"([0-9]+)000000", r"\1m", string)
string = re.sub(r"([0-9]+)000", r"\1k", string)
string = ' '.join([cutter(w) for w in string.split()])
return string
def get_embedding():
embeddings_index = {}
f = open(EMBEDDING_FILE)
for line in f:
values = line.split()
word = values[0]
if len(values) == EMBEDDING_DIM + 1 and word in top_words:
coefs = np.asarray(values[1:], dtype="float32")
embeddings_index[word] = coefs
f.close()
return embeddings_index
def is_numeric(s):
return any(i.isdigit() for i in s)
def prepare(q):
new_q = []
surplus_q = []
numbers_q = []
new_memento = True
for w in q.split()[::-1]:
if w in top_words:
new_q = [w] + new_q
new_memento = True
elif w not in STOP_WORDS:
if new_memento:
new_q = ["memento"] + new_q
new_memento = False
if is_numeric(w):
numbers_q = [w] + numbers_q
else:
surplus_q = [w] + surplus_q
else:
new_memento = True
if len(new_q) == MAX_SEQUENCE_LENGTH:
break
new_q = " ".join(new_q)
return new_q, set(surplus_q), set(numbers_q)
def extract_features(df):
q1s = np.array([""] * len(df), dtype=object)
q2s = np.array([""] * len(df), dtype=object)
features = np.zeros((len(df), 4))
for i, (q1, q2) in enumerate(list(zip(df["question1"], df["question2"]))):
q1s[i], surplus1, numbers1 = prepare(q1)
q2s[i], surplus2, numbers2 = prepare(q2)
features[i, 0] = len(surplus1.intersection(surplus2))
features[i, 1] = len(surplus1.union(surplus2))
features[i, 2] = len(numbers1.intersection(numbers2))
features[i, 3] = len(numbers1.union(numbers2))
return q1s, q2s, features
train = pd.read_csv("data/train.csv")
test = pd.read_csv("data/test.csv")
train["question1"] = train["question1"].fillna("").apply(preprocess)
train["question2"] = train["question2"].fillna("").apply(preprocess)
print("Creating the vocabulary of words occurred more than", MIN_WORD_OCCURRENCE)
all_questions = pd.Series(train["question1"].tolist() + train["question2"].tolist()).unique()
vectorizer = CountVectorizer(lowercase=False, token_pattern="\S+", min_df=MIN_WORD_OCCURRENCE)
vectorizer.fit(all_questions)
top_words = set(vectorizer.vocabulary_.keys())
top_words.add(REPLACE_WORD)
embeddings_index = get_embedding()
print("Words are not found in the embedding:", top_words - embeddings_index.keys())
top_words = embeddings_index.keys()
print("Train questions are being prepared for LSTM...")
q1s_train, q2s_train, train_q_features = extract_features(train)
tokenizer = Tokenizer(filters="")
tokenizer.fit_on_texts(np.append(q1s_train, q2s_train))
word_index = tokenizer.word_index
data_1 = pad_sequences(tokenizer.texts_to_sequences(q1s_train), maxlen=MAX_SEQUENCE_LENGTH)
data_2 = pad_sequences(tokenizer.texts_to_sequences(q2s_train), maxlen=MAX_SEQUENCE_LENGTH)
labels = np.array(train["is_duplicate"])
nb_words = len(word_index) + 1
embedding_matrix = np.zeros((nb_words, EMBEDDING_DIM))
for word, i in word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
print("Train features are being merged with NLP and Non-NLP features...")
train_nlp_features = pd.read_csv("data/nlp_features_train.csv")
train_non_nlp_features = pd.read_csv("data/non_nlp_features_train.csv")
features_train = np.hstack((train_q_features, train_nlp_features, train_non_nlp_features))
print("Same steps are being applied for test...")
test["question1"] = test["question1"].fillna("").apply(preprocess)
test["question2"] = test["question2"].fillna("").apply(preprocess)
q1s_test, q2s_test, test_q_features = extract_features(test)
test_data_1 = pad_sequences(tokenizer.texts_to_sequences(q1s_test), maxlen=MAX_SEQUENCE_LENGTH)
test_data_2 = pad_sequences(tokenizer.texts_to_sequences(q2s_test), maxlen=MAX_SEQUENCE_LENGTH)
test_nlp_features = pd.read_csv("data/nlp_features_test.csv")
test_non_nlp_features = pd.read_csv("data/non_nlp_features_test.csv")
features_test = np.hstack((test_q_features, test_nlp_features, test_non_nlp_features))
skf = StratifiedKFold(n_splits=NUM_FOLDS, shuffle=True)
model_count = 0
for idx_train, idx_val in skf.split(train["is_duplicate"], train["is_duplicate"]):
print("MODEL:", model_count)
data_1_train = data_1[idx_train]
data_2_train = data_2[idx_train]
labels_train = labels[idx_train]
f_train = features_train[idx_train]
data_1_val = data_1[idx_val]
data_2_val = data_2[idx_val]
labels_val = labels[idx_val]
f_val = features_train[idx_val]
embedding_layer = Embedding(nb_words,
EMBEDDING_DIM,
weights=[embedding_matrix],
input_length=MAX_SEQUENCE_LENGTH,
trainable=False)
lstm_layer = LSTM(75, recurrent_dropout=0.2)
sequence_1_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype="int32")
embedded_sequences_1 = embedding_layer(sequence_1_input)
x1 = lstm_layer(embedded_sequences_1)
sequence_2_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype="int32")
embedded_sequences_2 = embedding_layer(sequence_2_input)
y1 = lstm_layer(embedded_sequences_2)
features_input = Input(shape=(f_train.shape[1],), dtype="float32")
features_dense = BatchNormalization()(features_input)
features_dense = Dense(200, activation="relu")(features_dense)
features_dense = Dropout(0.2)(features_dense)
addition = add([x1, y1])
minus_y1 = Lambda(lambda x: -x)(y1)
merged = add([x1, minus_y1])
merged = multiply([merged, merged])
merged = concatenate([merged, addition])
merged = Dropout(0.4)(merged)
merged = concatenate([merged, features_dense])
merged = BatchNormalization()(merged)
merged = GaussianNoise(0.1)(merged)
merged = Dense(150, activation="relu")(merged)
merged = Dropout(0.2)(merged)
merged = BatchNormalization()(merged)
out = Dense(1, activation="sigmoid")(merged)
model = Model(inputs=[sequence_1_input, sequence_2_input, features_input], outputs=out)
model.compile(loss="binary_crossentropy",
optimizer="nadam")
early_stopping = EarlyStopping(monitor="val_loss", patience=5)
best_model_path = "best_model" + str(model_count) + ".h5"
model_checkpoint = ModelCheckpoint(best_model_path, save_best_only=True, save_weights_only=True)
hist = model.fit([data_1_train, data_2_train, f_train], labels_train,
validation_data=([data_1_val, data_2_val, f_val], labels_val),
epochs=15, batch_size=BATCH_SIZE, shuffle=True,
callbacks=[early_stopping, model_checkpoint], verbose=1)
model.load_weights(best_model_path)
print(model_count, "validation loss:", min(hist.history["val_loss"]))
preds = model.predict([test_data_1, test_data_2, features_test], batch_size=BATCH_SIZE, verbose=1)
submission = pd.DataFrame({"test_id": test["test_id"], "is_duplicate": preds.ravel()})
submission.to_csv("predictions/preds" + str(model_count) + ".csv", index=False)
model_count += 1