Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

error while selecting cells by manual threshold #46

Open
Sara-Tavallaei opened this issue Jun 13, 2024 · 0 comments
Open

error while selecting cells by manual threshold #46

Sara-Tavallaei opened this issue Jun 13, 2024 · 0 comments

Comments

@Sara-Tavallaei
Copy link

Sara-Tavallaei commented Jun 13, 2024

Hi,

I want to select cells from my AUCell analysis output by my own manual threshold. But as I run the following code, I get the error mentioned after the code:

SelectedCells <- names(which(cells_AUC["aging-geneSet",]> 0.10))

Error in h(simpleError(msg, call)) :
error in evaluating the argument 'x' in selecting a method for function 'which': no method or default for coercing “numeric” to “aucellResults”

could you please help me fix this code?

In the following, I will attach whole codes of my analysis and the session info.

Thanks

script:
library(Seurat)
GBM <- readRDS(file = 'end-clustering.rds')
counts <- GetAssayData(GBM, slot = "data", assay = "RNA")
genes.percent.expression <- rowMeans(counts>0 )*100
genes.filter <- names(genes.percent.expression[genes.percent.expression >= 25])
counts <- counts[genes.filter,]
exprMatrix <- as(counts, "dgCMatrix")
genes <- read.delim(file = 'aging-genes.csv', header = FALSE)
genes <- as.character(genes$V1)
geneSets <- GeneSet(genes, setName="aging-geneSet")
library(AUCell)
cells_AUC <- AUCell_run(exprMatrix, geneSets)
set.seed(333)
par(mfrow=c(1,1))
cells_assignment <- AUCell_exploreThresholds(cells_AUC, plotHist=TRUE, assign=TRUE)
warningMsg <- sapply(cells_assignment, function(x) x$aucThr$comment)
warningMsg[which(warningMsg!="")]
cells_assignment$aging-geneSet$aucThr$selected # L_k2 0.1535035
geneSetName <- rownames(cells_AUC)[grep("aging-geneSet", rownames(cells_AUC))]
AUCell_plotHist(cells_AUC[geneSetName,], aucThr=0.10)
abline(v=0.10)
SelectedCells <- names(which(cells_AUC["aging-geneSet",]> 0.10))

sessionInfo()

R version 4.3.2 (2023-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.4 LTS

Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: Asia/Tehran
tzcode source: system (glibc)

attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] HGNChelper_0.8.1 AUCell_1.26.0 GSEABase_1.62.0
[4] graph_1.78.0 annotate_1.78.0 XML_3.99-0.16.1
[7] AnnotationDbi_1.62.2 IRanges_2.34.1 S4Vectors_0.38.2
[10] Biobase_2.60.0 BiocGenerics_0.46.0 dplyr_1.1.4
[13] ggplot2_3.4.4 SeuratObject_4.1.4 Seurat_4.4.0

loaded via a namespace (and not attached):
[1] RcppAnnoy_0.0.22 splines_4.3.2
[3] later_1.3.2 bitops_1.0-7
[5] tibble_3.2.1 R.oo_1.26.0
[7] polyclip_1.10-6 lifecycle_1.0.4
[9] globals_0.16.2 lattice_0.21-9
[11] MASS_7.3-60 magrittr_2.0.3
[13] openxlsx_4.2.5.2 plotly_4.10.4
[15] httpuv_1.6.14 sctransform_0.4.1
[17] zip_2.3.1 spam_2.10-0
[19] sp_2.1-3 spatstat.sparse_3.0-3
[21] reticulate_1.35.0 cowplot_1.1.3
[23] pbapply_1.7-2 DBI_1.2.2
[25] RColorBrewer_1.1-3 abind_1.4-7
[27] zlibbioc_1.46.0 Rtsne_0.17
[29] GenomicRanges_1.52.1 purrr_1.0.2
[31] mixtools_2.0.0 R.utils_2.12.3
[33] RCurl_1.98-1.14 GenomeInfoDbData_1.2.10
[35] ggrepel_0.9.5 irlba_2.3.5.1
[37] listenv_0.9.1 spatstat.utils_3.0-4
[39] goftest_1.2-3 spatstat.random_3.2-2
[41] fitdistrplus_1.1-11 parallelly_1.37.0
[43] DelayedMatrixStats_1.22.6 leiden_0.4.3.1
[45] codetools_0.2-19 DelayedArray_0.26.7
[47] tidyselect_1.2.0 farver_2.1.1
[49] matrixStats_1.2.0 spatstat.explore_3.2-6
[51] jsonlite_1.8.8 ellipsis_0.3.2
[53] progressr_0.14.0 ggridges_0.5.6
[55] survival_3.5-8 segmented_2.1-0
[57] tools_4.3.2 ica_1.0-3
[59] Rcpp_1.0.12 glue_1.7.0
[61] gridExtra_2.3 MatrixGenerics_1.12.3
[63] GenomeInfoDb_1.36.4 withr_3.0.0
[65] BiocManager_1.30.22 fastmap_1.1.1
[67] fansi_1.0.6 digest_0.6.34
[69] R6_2.5.1 mime_0.12
[71] colorspace_2.1-1 scattermore_1.2
[73] tensor_1.5 spatstat.data_3.0-4
[75] RSQLite_2.3.5 R.methodsS3_1.8.2
[77] utf8_1.2.4 tidyr_1.3.1
[79] generics_0.1.3 data.table_1.15.0
[81] httr_1.4.7 htmlwidgets_1.6.4
[83] S4Arrays_1.0.6 uwot_0.1.16
[85] pkgconfig_2.0.3 gtable_0.3.4
[87] blob_1.2.4 lmtest_0.9-40
[89] XVector_0.40.0 htmltools_0.5.7
[91] dotCall64_1.1-1 scales_1.3.0
[93] png_0.1-8 rstudioapi_0.15.0
[95] reshape2_1.4.4 nlme_3.1-164
[97] zoo_1.8-13 cachem_1.0.8
[99] stringr_1.5.1 KernSmooth_2.23-22
[101] parallel_4.3.2 miniUI_0.1.1.1
[103] pillar_1.9.0 grid_4.3.2
[105] vctrs_0.6.5 RANN_2.6.1
[107] promises_1.2.1 xtable_1.8-6
[109] cluster_2.1.4 cli_3.6.2
[111] compiler_4.3.2 rlang_1.1.3
[113] crayon_1.5.2 future.apply_1.11.1
[115] labeling_0.4.3 plyr_1.8.9
[117] stringi_1.8.3 viridisLite_0.4.2
[119] deldir_2.0-2 munsell_0.5.0
[121] Biostrings_2.68.1 lazyeval_0.2.2
[123] spatstat.geom_3.2-8 Matrix_1.6-5
[125] patchwork_1.2.0 sparseMatrixStats_1.12.2
[127] bit64_4.0.5 future_1.33.1
[129] KEGGREST_1.40.1 shiny_1.8.0
[131] SummarizedExperiment_1.30.2 kernlab_0.9-32
[133] ROCR_1.0-11 igraph_2.0.2
[135] memoise_2.0.1 bit_4.0.5

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant