You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I want to select cells from my AUCell analysis output by my own manual threshold. But as I run the following code, I get the error mentioned after the code:
Error in h(simpleError(msg, call)) :
error in evaluating the argument 'x' in selecting a method for function 'which': no method or default for coercing “numeric” to “aucellResults”
could you please help me fix this code?
In the following, I will attach whole codes of my analysis and the session info.
Hi,
I want to select cells from my AUCell analysis output by my own manual threshold. But as I run the following code, I get the error mentioned after the code:
SelectedCells <- names(which(cells_AUC["aging-geneSet",]> 0.10))
Error in h(simpleError(msg, call)) :
error in evaluating the argument 'x' in selecting a method for function 'which': no method or default for coercing “numeric” to “aucellResults”
could you please help me fix this code?
In the following, I will attach whole codes of my analysis and the session info.
Thanks
script:$aging-geneSet$ aucThr$selected # L_k2 0.1535035
library(Seurat)
GBM <- readRDS(file = 'end-clustering.rds')
counts <- GetAssayData(GBM, slot = "data", assay = "RNA")
genes.percent.expression <- rowMeans(counts>0 )*100
genes.filter <- names(genes.percent.expression[genes.percent.expression >= 25])
counts <- counts[genes.filter,]
exprMatrix <- as(counts, "dgCMatrix")
genes <- read.delim(file = 'aging-genes.csv', header = FALSE)
genes <- as.character(genes$V1)
geneSets <- GeneSet(genes, setName="aging-geneSet")
library(AUCell)
cells_AUC <- AUCell_run(exprMatrix, geneSets)
set.seed(333)
par(mfrow=c(1,1))
cells_assignment <- AUCell_exploreThresholds(cells_AUC, plotHist=TRUE, assign=TRUE)
warningMsg <- sapply(cells_assignment, function(x) x$aucThr$comment)
warningMsg[which(warningMsg!="")]
cells_assignment
geneSetName <- rownames(cells_AUC)[grep("aging-geneSet", rownames(cells_AUC))]
AUCell_plotHist(cells_AUC[geneSetName,], aucThr=0.10)
abline(v=0.10)
SelectedCells <- names(which(cells_AUC["aging-geneSet",]> 0.10))
R version 4.3.2 (2023-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.4 LTS
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: Asia/Tehran
tzcode source: system (glibc)
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] HGNChelper_0.8.1 AUCell_1.26.0 GSEABase_1.62.0
[4] graph_1.78.0 annotate_1.78.0 XML_3.99-0.16.1
[7] AnnotationDbi_1.62.2 IRanges_2.34.1 S4Vectors_0.38.2
[10] Biobase_2.60.0 BiocGenerics_0.46.0 dplyr_1.1.4
[13] ggplot2_3.4.4 SeuratObject_4.1.4 Seurat_4.4.0
loaded via a namespace (and not attached):
[1] RcppAnnoy_0.0.22 splines_4.3.2
[3] later_1.3.2 bitops_1.0-7
[5] tibble_3.2.1 R.oo_1.26.0
[7] polyclip_1.10-6 lifecycle_1.0.4
[9] globals_0.16.2 lattice_0.21-9
[11] MASS_7.3-60 magrittr_2.0.3
[13] openxlsx_4.2.5.2 plotly_4.10.4
[15] httpuv_1.6.14 sctransform_0.4.1
[17] zip_2.3.1 spam_2.10-0
[19] sp_2.1-3 spatstat.sparse_3.0-3
[21] reticulate_1.35.0 cowplot_1.1.3
[23] pbapply_1.7-2 DBI_1.2.2
[25] RColorBrewer_1.1-3 abind_1.4-7
[27] zlibbioc_1.46.0 Rtsne_0.17
[29] GenomicRanges_1.52.1 purrr_1.0.2
[31] mixtools_2.0.0 R.utils_2.12.3
[33] RCurl_1.98-1.14 GenomeInfoDbData_1.2.10
[35] ggrepel_0.9.5 irlba_2.3.5.1
[37] listenv_0.9.1 spatstat.utils_3.0-4
[39] goftest_1.2-3 spatstat.random_3.2-2
[41] fitdistrplus_1.1-11 parallelly_1.37.0
[43] DelayedMatrixStats_1.22.6 leiden_0.4.3.1
[45] codetools_0.2-19 DelayedArray_0.26.7
[47] tidyselect_1.2.0 farver_2.1.1
[49] matrixStats_1.2.0 spatstat.explore_3.2-6
[51] jsonlite_1.8.8 ellipsis_0.3.2
[53] progressr_0.14.0 ggridges_0.5.6
[55] survival_3.5-8 segmented_2.1-0
[57] tools_4.3.2 ica_1.0-3
[59] Rcpp_1.0.12 glue_1.7.0
[61] gridExtra_2.3 MatrixGenerics_1.12.3
[63] GenomeInfoDb_1.36.4 withr_3.0.0
[65] BiocManager_1.30.22 fastmap_1.1.1
[67] fansi_1.0.6 digest_0.6.34
[69] R6_2.5.1 mime_0.12
[71] colorspace_2.1-1 scattermore_1.2
[73] tensor_1.5 spatstat.data_3.0-4
[75] RSQLite_2.3.5 R.methodsS3_1.8.2
[77] utf8_1.2.4 tidyr_1.3.1
[79] generics_0.1.3 data.table_1.15.0
[81] httr_1.4.7 htmlwidgets_1.6.4
[83] S4Arrays_1.0.6 uwot_0.1.16
[85] pkgconfig_2.0.3 gtable_0.3.4
[87] blob_1.2.4 lmtest_0.9-40
[89] XVector_0.40.0 htmltools_0.5.7
[91] dotCall64_1.1-1 scales_1.3.0
[93] png_0.1-8 rstudioapi_0.15.0
[95] reshape2_1.4.4 nlme_3.1-164
[97] zoo_1.8-13 cachem_1.0.8
[99] stringr_1.5.1 KernSmooth_2.23-22
[101] parallel_4.3.2 miniUI_0.1.1.1
[103] pillar_1.9.0 grid_4.3.2
[105] vctrs_0.6.5 RANN_2.6.1
[107] promises_1.2.1 xtable_1.8-6
[109] cluster_2.1.4 cli_3.6.2
[111] compiler_4.3.2 rlang_1.1.3
[113] crayon_1.5.2 future.apply_1.11.1
[115] labeling_0.4.3 plyr_1.8.9
[117] stringi_1.8.3 viridisLite_0.4.2
[119] deldir_2.0-2 munsell_0.5.0
[121] Biostrings_2.68.1 lazyeval_0.2.2
[123] spatstat.geom_3.2-8 Matrix_1.6-5
[125] patchwork_1.2.0 sparseMatrixStats_1.12.2
[127] bit64_4.0.5 future_1.33.1
[129] KEGGREST_1.40.1 shiny_1.8.0
[131] SummarizedExperiment_1.30.2 kernlab_0.9-32
[133] ROCR_1.0-11 igraph_2.0.2
[135] memoise_2.0.1 bit_4.0.5
The text was updated successfully, but these errors were encountered: