-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_glue_bert_high_resource.py
296 lines (265 loc) · 11.3 KB
/
run_glue_bert_high_resource.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning a 🤗 Transformers model for sequence classification on GLUE."""
import argparse
import json
import logging
import math
import os
import random
from pathlib import Path
from collections import deque
import numpy as np
import pandas as pd
import pickle
import datasets
import evaluate
import torch
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from datasets import load_dataset
from huggingface_hub import Repository, create_repo
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
PretrainedConfig,
SchedulerType,
default_data_collator,
get_scheduler,
)
from transformers.utils import check_min_version, get_full_repo_name, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.27.0.dev0")
logger = get_logger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
task_to_keys = {
"cola": ("sentence", None),
"mnli": ("premise", "hypothesis"),
"mrpc": ("sentence1", "sentence2"),
"qnli": ("question", "sentence"),
"qqp": ("question1", "question2"),
"rte": ("sentence1", "sentence2"),
"sst2": ("sentence", None),
"stsb": ("sentence1", "sentence2"),
"wnli": ("sentence1", "sentence2"),
}
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task")
parser.add_argument(
"--gpu",
type=int,
default=0,
help="The GPU index that we want to use.",
)
parser.add_argument(
"--task_name",
type=str,
default='rte',
help="The name of the glue task to train on.",
choices=list(task_to_keys.keys()),
)
parser.add_argument(
"--max_length",
type=int,
default=512,
help=(
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
" sequences shorter will be padded if `--pad_to_max_length` is passed."
),
)
parser.add_argument(
"--model_name_or_path",
type=str,
default = 'bert-base-cased',
help = "Path to pretrained model or model identifier from huggingface.co/models."
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=32,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=32,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=2e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--num_train_epochs", type=int, default=20, help="Total number of training epochs to perform.")
parser.add_argument("--output_dir", type=str, default='glue_results/', help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
parser.add_argument("--earlystop_patience", type=int, default=3)
args = parser.parse_args()
return args
def main():
args = parse_args()
torch.cuda.set_device(args.gpu)
args.output_dir = os.path.join(args.output_dir, args.task_name)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# download the dataset.
raw_datasets = load_dataset("glue", args.task_name)
# Labels
is_regression = args.task_name == "stsb"
if not is_regression:
label_list = raw_datasets["train"].features["label"].names
num_labels = len(label_list)
else:
num_labels = 1
set_seed(args.seed)
# Load pretrained model and tokenizer
# download model & vocab.
config = AutoConfig.from_pretrained(args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=True)
model = AutoModelForSequenceClassification.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
ignore_mismatched_sizes=False,
)
# Preprocessing the datasets
sentence1_key, sentence2_key = task_to_keys[args.task_name]
# Some models have set the order of the labels to use, so let's make sure we do use it.
label_to_id = None
if (
model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
and args.task_name is not None
and not is_regression
):
# Some have all caps in their config, some don't.
label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
if sorted(label_name_to_id.keys()) == sorted(label_list):
logger.info(
f"The configuration of the model provided the following label correspondence: {label_name_to_id}. "
"Using it!"
)
label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)}
else:
logger.info(
"Your model seems to have been trained with labels, but they don't match the dataset: ",
f"model labels: {sorted(label_name_to_id.keys())}, dataset labels: {sorted(label_list)}."
"\nIgnoring the model labels as a result.",
)
elif args.task_name is None and not is_regression:
label_to_id = {v: i for i, v in enumerate(label_list)}
if label_to_id is not None:
model.config.label2id = label_to_id
model.config.id2label = {id: label for label, id in config.label2id.items()}
elif args.task_name is not None and not is_regression:
model.config.label2id = {l: i for i, l in enumerate(label_list)}
model.config.id2label = {id: label for label, id in config.label2id.items()}
def preprocess_function(examples):
# Tokenize the texts
texts = (
(examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
)
result = tokenizer(*texts, padding="max_length", max_length=args.max_length, truncation=True)
if "label" in examples:
if label_to_id is not None:
# Map labels to IDs (not necessary for GLUE tasks)
result["labels"] = [label_to_id[l] for l in examples["label"]]
else:
# In all cases, rename the column to labels because the model will expect that.
result["labels"] = examples["label"]
return result
processed_datasets = raw_datasets.map(
preprocess_function,
batched=True,
remove_columns=raw_datasets["train"].column_names,
desc="Running tokenizer on dataset",
)
train_dataset = processed_datasets["train"]
eval_dataset = processed_datasets["validation_matched" if args.task_name == "mnli" else "validation"]
#test_dataset = processed_datasets["test"]
# DataLoaders creation:
train_dataloader = DataLoader(train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size, drop_last=True)
eval_dataloader = DataLoader(eval_dataset, shuffle=False, collate_fn=default_data_collator, batch_size=args.per_device_eval_batch_size, drop_last=False)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate)
# Get the metric function
if args.task_name is not None:
metric = evaluate.load("glue", args.task_name)
else:
metric = evaluate.load("accuracy")
starting_epoch = 0
av_score = deque(maxlen=100)
old_score = 0
model.train()
model.to(args.gpu)
loss_dict = {'train_loss':[], 'eval_res':[], 'test_res':[]}
print('Start training')
for epoch in range(starting_epoch, args.num_train_epochs):
print('episode:', epoch)
model.train()
print(count_parameters(model))
counter = 0
for step, batch in enumerate(train_dataloader):
counter += 1
batch = {k: v.to(device=args.gpu, non_blocking=True) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
av_score.append(loss.to('cpu').detach().numpy())
print('counter:',counter)
print('\rSample {}\tAverage Error: {:.10f} '.format(counter, np.mean(av_score)), end=" ")
loss_dict['train_loss'].append(np.mean(av_score))
model.eval()
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
batch = {k: v.to(device=args.gpu, non_blocking=True) for k, v in batch.items()}
outputs = model(**batch)
#loss = outputs.loss
predictions = outputs.logits.argmax(dim=-1) if not is_regression else outputs.logits.squeeze()
references = batch["labels"]
metric.add_batch(
predictions=predictions,
references=references,
)
eval_metric = metric.compute()
loss_dict['eval_res'].append(eval_metric)
new_score = [v for k, v in eval_metric.items()][0]
print('\nEVAL score is {} \n'.format(loss_dict['eval_res']))
if new_score > old_score:
# save model if val loss is smallest
torch.save(model.state_dict(), '{}/State_GLUE_finetune_BERTbase_lr{}.pth'.format(args.output_dir, args.learning_rate))
old_score= new_score
print('\nsaved model state dict\n')
save_ep_couter = epoch
else:
#early stopping
if epoch - save_ep_couter >= args.earlystop_patience:
break
loss_dict['save_ep'] = save_ep_couter
#save results
with open(f'{args.output_dir}/GLUE_BERTbase_res_lr{args.learning_rate}.pickle', 'wb') as handle:
pickle.dump(loss_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)
if __name__ == "__main__":
main()