-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_classification_event_detection.py
50 lines (41 loc) · 1.83 KB
/
evaluate_classification_event_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from __future__ import annotations
import argparse
import os
import config.config as config
import utils.helpers as helpers
def get_argument_parser() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', '-d', type=str, default='sbsat')
parser.add_argument('--detection-method', type=str, default='ivt')
parser.add_argument('--flag-redo', type=int,default=0)
args = parser.parse_args()
return args
def evaluate(args):
dataset = args.dataset
detection_method = args.detection_method
flag_redo = args.flag_redo
if dataset == 'gazebasevr':
detection_params = helpers.get_detection_params(detection_method, sampling_rate=250)
elif dataset == 'hbn':
detection_params = helpers.get_detection_params(detection_method, sampling_rate=120)
elif dataset == 'gazeonfaces':
detection_params = helpers.get_detection_params(detection_method, sampling_rate=60)
elif dataset == 'gazegraph':
detection_params = helpers.get_detection_params(detection_method, sampling_rate=30)
else:
detection_params = helpers.get_detection_params(detection_method)
label_columns = helpers.get_datset_labels(dataset)
for label_column in label_columns:
for detection_param in detection_params:
exec_string = 'python train_classification_model.py --dataset ' + str(dataset) +\
' --label-column ' + str(label_column) +\
' --detection-method ' + str(detection_method) +\
' --flag-redo ' + str(flag_redo) +\
' ' + detection_param
os.system(exec_string)
def main() -> int:
args = get_argument_parser()
evaluate(args)
return 0
if __name__ == '__main__':
raise SystemExit(main())