-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfull_simple_cnn.lua
338 lines (265 loc) · 9.83 KB
/
full_simple_cnn.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
require 'torch'
require 'dp'
require 'hdf5'
require 'optim'
require 'gnuplot' --or 'image'
path = 'dataset/data.h5'
local function load_data(data_file)
local f = hdf5.open(data_file)
local dset = {}
dset.X_train = f:read('X_train'):all()
dset.y_train = f:read('y_train'):all() +1
dset.X_val = f:read('X_val'):all()
dset.y_val = f:read('y_val'):all() + 1
dset.X_test = f:read('X_test'):all()
dset.y_test = f:read('y_test'):all() + 1
f:close()
print('Data is loaded!')
return dset
end
--[[ preprocess data before feeding that into the convnet
subtract mean of training data, and reshape it to the
form (N, 1, H, W) ]]--
local function preprocess_data(dset)
local dset_new = {}
-- subtract mean
mean_image = torch.mean(dset.X_train)
dset_new.X_train = dset.X_train - mean_image
dset_new.X_val = dset.X_val - mean_image
dset_new.X_test = dset.X_test - mean_image
-- reshape
H = dset.X_train:size(2)
W = dset.X_train:size(3)
dset_new.X_train = torch.reshape(dset_new.X_train, dset.X_train:size(1), 1, H, W)
dset_new.X_val = torch.reshape(dset_new.X_val, dset.X_val:size(1), 1, H, W)
dset_new.X_test = torch.reshape(dset_new.X_test, dset.X_test:size(1), 1, H, W)
dset_new.y_train = dset.y_train
dset_new.y_val = dset.y_val
dset_new.y_test = dset.y_test
print('Data preprocessing done. ready to go!')
return dset_new
end
local function get_minibatch(X, y, batch_size)
local mask = torch.LongTensor(batch_size):random(X:size(1))
local X_batch = X:index(1, mask)
local y_batch = y:index(1, mask)
return X_batch, y_batch
end
local function check_accuracy(X, y, model, batch_size)
--[[ change the model mode to evaluation, Improtant for dropout
and batchnormalization ]]--
model:evaluate()
local num_correct = 0
local num_tested = 0
for t = 1, 20 do
local X_batch, y_batch = get_minibatch(X, y, batch_size)
--X_batch = X_batch:cuda()
--y_batch = y_batch:cuda()
local scores = model:forward(X_batch)
local _, y_pred = scores:max(2)
num_correct = num_correct + torch.eq(y_pred, y_batch):sum()
num_tested = num_tested + batch_size
end
return num_correct / num_tested
end
--build a convnet model
local function full_conv_net(convlayer_params, affinelayer_params, w_scale)
local num_filters = convlayer_params['num_filters'] --{64, 64, 128, 128, 256, 256, 512, 512, 1024}
local filter_sizes = convlayer_params['filter_size'] --{5, 3, 3, 3, 3, 3, 3, 3, 3}
local filter_strides = convlayer_params['stride'] --{2, 1, 2, 1, 2, 1, 2, 1, 2}
local use_sbatchnorm = convlayer_params['s_batch_norm']
local maxpool_dim = convlayer_params['pool_dims']
local maxpool_stride = convlayer_params['pool_strides']
local hidden_dims = affinelayer_params['hidden_dims']
local use_batchnorm = affinelayer_params['batch_norm']
local use_dropout = affinelayer_params['dropout']
local num_classes = 7
-- C: number of channels , H,W: height and width of an image
local C, H, W = 1, 48, 48
local next_C = C
local next_H = H
local next_W = W
-- add layers
local layer_counter = 0
local model = nn.Sequential()
local m = model.modules
for i = 1, #num_filters do
local zero_pad = (filter_sizes[i] - 1) / 2
model:add(nn.SpatialConvolution(next_C, num_filters[i], filter_sizes[i], filter_sizes[i],
filter_strides[i], filter_strides[i], zero_pad, zero_pad))
-- Manually initialize bias and weights
layer_counter = layer_counter + 1
m[layer_counter].bias:fill(0)
m[layer_counter].weight:randn(num_filters[i], next_C, filter_sizes[i], filter_sizes[i])
m[layer_counter].weight:div(w_scale)
-- data size after conv layer operation
next_C = num_filters[i]
next_W = (next_W + 2*zero_pad - filter_sizes[i]) / filter_strides[i] + 1
next_H = (next_H + 2*zero_pad - filter_sizes[i]) / filter_strides[i] + 1
if use_sbatchnorm then
model:add(nn.SpatialBatchNormalization(next_C))
layer_counter = layer_counter + 1
m[layer_counter].weight:fill(1.0)
m[layer_counter].bias:fill(0.0)
end
model:add(nn.ReLU())
layer_counter = layer_counter + 1
model:add(nn.SpatialMaxPooling(maxpool_dim, maxpool_dim, maxpool_stride, maxpool_stride))
layer_counter = layer_counter + 1
-- data size after max pooling operation
next_W = (next_W - maxpool_dim) / maxpool_stride + 1
next_H = (next_H - maxpool_dim) / maxpool_stride + 1
end
local next_D = next_C * next_W * next_H
model:add(nn.View(-1):setNumInputDims(3))
layer_counter = layer_counter + 1
for i = 1, #hidden_dims do
model:add(nn.Linear(next_D, hidden_dims[i]))
layer_counter = layer_counter + 1
m[layer_counter].bias:fill(0)
--m[layer_counter].weight:randn(hidden_dims[i], next_D)
--m[layer_counter].weight:div(w_scale)
next_D = hidden_dims[i]
if use_batchnorm then
model:add(nn.BatchNormalization(hidden_dims[i]))
layer_counter = layer_counter + 1
m[layer_counter].weight:fill(1.0)
m[layer_counter].bias:fill(0.0)
end
if use_dropout then
model:add(nn.Dropout(0.5))
layer_counter = layer_counter + 1
end
model:add(nn.ReLU())
layer_counter = layer_counter + 1
end
model:add(nn.Linear(next_D, num_classes))
layer_counter = layer_counter + 1
m[layer_counter].bias:fill(0)
--m[layer_counter].weight:randn(num_classes, next_D)
--m[layer_counter].weight:div(w_scale)
return model
end
-----------------------------Execution------------------------------------
-- load the data
local dset = load_data(path)
dset = preprocess_data(dset)
-- Print data size and shape
for k, v in pairs(dset) do
if v:dim() > 1 then
print(k, '(', v:size(1), v:size(2), v:size(3), v:size(4), ')')
else
print(k, '(', v:size(1), ')')
end
end
-- Sanity check 1: initial loss --> Passed!
-- generate some data for sanity check
require 'math'
local x = torch.randn(100, 1, 48, 48)
local y = torch.Tensor(100)
for i = 1, 100 do
y[i] = math.random(1, 7)
end
-- Build a sample model
local convlayer_params = {['num_filters']= {32, 64}, ['filter_size']= {3, 3} ,['stride']={1, 1},
['s_batch_norm']= true, ['pool_dims']= 2, ['pool_strides']= 2}
local affinelayer_params = {['hidden_dims']= {100}, ['batch_norm']= true,['dropout']= true}
local w_scale = 5e-2
model = full_conv_net(convlayer_params, affinelayer_params, w_scale)
--cudnn.convert(model, cudnn)
--model:cuda()
model:training()
print(model)
-- define log softmax criterion for loss computation
crit = nn.CrossEntropyCriterion()
-- sanity check 1 result:
local sanity_scores = model:forward(x)
local sanity_data_loss = crit:forward(sanity_scores, y)
print('Initial loss =', sanity_data_loss , '(should be about log(7)=1.945)')
-- Train realistic data
local num = 28709
small_dset = {}
small_dset.X_train = dset.X_train:narrow(1, 1, num)
small_dset.y_train = dset.y_train:narrow(1, 1, num)
small_dset.X_val = dset.X_val
small_dset.y_val = dset.y_val
local num_epoch = 20
local batch_size = 100
local itr_per_epoch = math.max(math.floor(num / batch_size), 1)
local reg = 1e-7
local num_iterations = itr_per_epoch * num_epoch
local config = {
learningRate= 0.0001,
}
local params, gradParams = model:getParameters()
local t = 0
local loss_history = torch.Tensor(num_iterations)
function f(w)
gradParams:zero()
local X_batch, y_batch = get_minibatch(small_dset.X_train, small_dset.y_train, batch_size)
-- X_batch = X_batch:cuda()
--y_batch = y_batch:cuda()
assert(w == params)
local scores = model:forward(X_batch)
local data_loss = crit:forward(scores, y_batch)
local dscores = crit:backward(scores, y_batch)
model:backward(X_batch, dscores)
-- add regularization to loss
data_loss = data_loss + reg/2.0 * torch.norm(params)^2
-- add regularization to gradients
gradParams:add(reg, params)
loss_history[t] = data_loss
if t % itr_per_epoch == 0 then
print(t,'/', num_iterations, data_loss, torch.abs(gradParams):mean())
end
return data_loss, gradParams
end
-- optimization process
local best_params = torch.Tensor(params:size())
print('best_paramt', best_params:type(), params:type())
local best_val_acc = 0.
epoch_counter = 1
local train_acc = torch.Tensor(num_epoch)
local val_acc = torch.Tensor(num_epoch)
print('Training started...\n')
while t < num_iterations do
t = t + 1
optim.adam(f, params, config)
--optim.sgd(f, params, config)
-- Check training and validation accuracy once in a while
if t % itr_per_epoch == 0 or t == num_iterations then
train_acc[epoch_counter] = check_accuracy(small_dset.X_train, small_dset.y_train, model, batch_size)
val_acc[epoch_counter] = check_accuracy(small_dset.X_val, small_dset.y_val, model, batch_size)
model:training()
config.learningRate = config.learningRate * 0.95
if val_acc[epoch_counter] > best_val_acc then
best_params:copy(params)
best_val_acc = val_acc[epoch_counter]
end
print('train acc: ', train_acc[epoch_counter], 'val_acc: ', val_acc[epoch_counter])
print('\n')
epoch_counter = epoch_counter +1
end
end
params:copy(best_params)
print('best val accuracy:', best_val_acc)
print('saving the trained model...')
torch.save('first_model.bin', model)
-- to load model use: model = torch.load('file_name')
-- plot results
print('plot results...')
-- loss--
gnuplot.pngfigure('loss_history.png')
gnuplot.plot(torch.range(1, num_iterations), loss_history)
gnuplot.xlabel('Iteration')
gnuplot.ylabel('Loss')
gnuplot.plotflush()
--accuracy--
gnuplot.pngfigure('Training_history.png')
gnuplot.plot({'Training', torch.range(1, num_epoch), train_acc, '-'},
{'Validation', torch.range(1, num_epoch), val_acc, '-'})
gnuplot.xlabel('Epoch')
gnuplot.ylabel('Accuracy')
gnuplot.plotflush()
-----
print('Done! Bye :)')