-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathobject_detector.py
71 lines (55 loc) · 2.42 KB
/
object_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import cv2
import numpy as np
from skimage.transform import resize
class ObjectDetector:
def __init__(self, weight_path, cfg_path):
# Load Yolo
self.net = cv2.dnn.readNet(weight_path, cfg_path)
with open("coco.names", "r") as f:
self.classes = [line.strip() for line in f.readlines()]
self.layer_names = self.net.getLayerNames()
self.output_layers = [self.layer_names[i[0] - 1] for i in self.net.getUnconnectedOutLayers()]
def detect(self, frame):
frame = resize(frame, (256, 256, 3), mode='constant', preserve_range=False)
height, width, channels = frame.shape
# frame = imutils.rotate(frame, 270)
# Detecting objects
blob = cv2.dnn.blobFromImage(np.float32(frame), 1, (256, 256), (0, 0, 0), True, crop=False)
self.net.setInput(blob)
outs = self.net.forward(self.output_layers)
# Showing informations on the screen
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
# print(detection)
scores = detection[5:]
# print(scores)
class_id = np.argmax(scores)
# print(class_id)
confidence = scores[class_id]
if confidence > 0.5:
# Object detected
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
if x >= 0 and y >= 0:
# print(x, y, w, h)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.4, 0.3)
# print(indexes)
detection_data = []
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(self.classes[class_ids[i]])
confidence = confidences[i]
detection_data.append([x, y, w, h, label, confidence])
return detection_data