-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
48 lines (40 loc) · 1.36 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#-- coding: utf-8 --
#@Time : 15/2/2022 下午 3:41
#@Author : wkq
import glob
import random
import os
import numpy as np
import torch
from torch.utils.data import Dataset
from PIL import Image
import torchvision.transforms as transforms
# Normalization parameters for pre-trained PyTorch models
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
class ImageDataset(Dataset):
def __init__(self, root, hr_shape):
hr_height, hr_width = hr_shape
# Transforms for low resolution images and high resolution images
self.lr_transform = transforms.Compose(
[
transforms.Resize((hr_height // 4, hr_height // 4), Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean, std),
]
)
self.hr_transform = transforms.Compose(
[
transforms.Resize((hr_height, hr_height), Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean, std),
]
)
self.files = sorted(glob.glob(root + "/*.*"))
def __getitem__(self, index):
img = Image.open(self.files[index % len(self.files)])
img_lr = self.lr_transform(img)
img_hr = self.hr_transform(img)
return {"lr": img_lr, "hr": img_hr}
def __len__(self):
return len(self.files)