-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathmain.py
238 lines (183 loc) · 8.15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#!/usr/bin/env python
from __future__ import print_function
import os
import editdistance
import numpy as np
import tensorflow as tf
from tensorflow.keras.utils import Progbar
from config import load_args
from data.list_generator import ListGenerator
from language_model.char_rnn_lm import CharRnnLmWrapperSingleton
from lip_model.training_graph import TransformerTrainGraph
from lip_model.inference_graph import TransformerInferenceGraph
config = load_args()
graph_dict = {
'train': TransformerTrainGraph,
'infer': TransformerInferenceGraph,
}
def evaluate_model():
np.random.seed(config.seed)
tf.set_random_seed(config.seed)
val_g, val_epoch_size, chars, sess, val_gen = init_models_and_data(istrain=0)
tb_writer = None
if config.tb_eval:
import shutil
try: shutil.rmtree('eval_tb_logs')
except: pass
tb_logdir = os.path.join(os.getcwd(), 'eval_tb_logs' , 'val')
tb_writer = tf.summary.FileWriter(tb_logdir, sess.graph)
with sess.as_default():
for _ in range(config.n_eval_times):
val_loss, val_cer, val_wer = validation_loop(sess, val_g,
val_epoch_size,
chars = chars,
val_gen = val_gen,
tb_writer = tb_writer,
)
out_str = "lm={}, beam={}, bs={:d}, test_aug:{:d}, horflip {}:" \
" CER {:.4f}, WER {:4f}\n".format(config.lm_path,
config.beam_size,
config.batch_size,
config.test_aug_times,
config.horizontal_flip,
val_cer, val_wer)
print(out_str)
with open('output.txt', 'a') as fw:
fw.write(out_str)
print("Done")
def validation_loop(sess, g, n_batches, chars=None, val_gen = None, tb_writer=None):
Loss = []
Cer = []
Wer = []
progbar = Progbar(target=n_batches, verbose=1, stateful_metrics=['t'])
print ('Strating validation Loop')
for i in range(n_batches):
x, y = val_gen.next()
if len(x) == 1: x = x[0]
if len(y) == 1: y = y[0]
# -- Autoregressive inference
preds = np.zeros((config.batch_size, config.maxlen), np.int32)
tile_preds = config.test_aug_times
# -- For train graph feed in the previous step's predictions manually for the next
if not 'infer' in config.graph_type:
prev_inp = np.tile(preds, [config.test_aug_times,1]) if tile_preds else preds
feed_dict = {g.x: x, g.prev: prev_inp, g.y: y}
enc = sess.run( g.enc, feed_dict)
if type(enc) is list:
for enc_tens, enc_val in zip(g.enc, enc): feed_dict[enc_tens] = enc_val
else:
feed_dict[g.enc] = enc
for j in range(config.maxlen):
_preds, loss, cer = sess.run( [g.preds, g.mean_loss, g.cer], feed_dict)
preds[:, j] = _preds[:, j]
prev_inp = np.tile(preds, [config.test_aug_times,1]) if tile_preds else preds
feed_dict[g.prev]=prev_inp
# if all samples in batch predict the pad symbol (char_id==0)
if np.sign(preds[:,j]).sum() == 0:
if g.tb_sum is not None:
tb_sum = sess.run( g.tb_sum, {g.x: x, g.prev: prev_inp, g.y: y})
break
# -- Autoregression loop is built into the beam search graph
else:
feed_dict = {g.x: x, g.y: y}
enc = sess.run( g.enc, feed_dict)
if type(enc) is list:
for enc_tens, enc_val in zip(g.enc, enc): feed_dict[enc_tens] = enc_val
else:
feed_dict[g.enc] = enc
_preds, loss, cer = sess.run( [g.preds, g.mean_loss, g.cer], feed_dict)
preds = _preds
# use last loss
gt_sents = [ ''.join([ chars[cid] for cid in prr]).strip() for prr in y]
gt_words = [ sent.split('-') for sent in gt_sents]
def decode_preds_to_chars(decoding):
return ''.join([ chars[cid] for cid in decoding]).strip()
pred_sentences = [ decode_preds_to_chars(prr) for prr in preds]
pred_words = [sent.split('-') for sent in pred_sentences]
edists = [rel_edist(gt, dec_str) for gt, dec_str in zip(gt_words, pred_words)]
wer = np.mean(edists)
# -- Write tb_summaries if any
if g.tb_sum is not None:
if wer == 0:
tb_writer.add_summary(tb_sum, i)
if config.print_predictions:
print()
for gts, prs, wr in zip(gt_sents, pred_sentences, edists):
print ('(wer={:.1f}) {} --> {}'.format(wr*100, gts, prs))
progbar.update(i+1, [ ('cer',cer), ('wer', wer) ] )
Wer.append(wer)
Cer.append(cer)
Loss.append(loss)
return np.average(Loss), np.average(Cer), np.average(Wer)
def init_models_and_data(istrain):
print ('Loading data generators')
val_gen, val_epoch_size = setup_generators()
print ('Done')
os.environ["CUDA_VISIBLE_DEVICES"] = str(config.gpu_id)
gpu_options = tf.GPUOptions(allow_growth=True)
sess_config = tf.ConfigProto(gpu_options=gpu_options)
sess = tf.Session(config=sess_config)
if config.lm_path:
# initialize singleton rnn so that RNN tf graph is created first
beam_batch_size = 1
lm_handle = CharRnnLmWrapperSingleton(batch_size=beam_batch_size,
sess=sess,
checkpoint_path=config.lm_path)
TransformerGraphClass = graph_dict[config.graph_type]
(shapes_in, dtypes_in), (shapes_out, dtypes_out) = \
TransformerGraphClass.get_model_input_target_shapes_and_types()
go_idx = val_gen.label_vectorizer.char_indices[val_gen.label_vectorizer.go_token]
x_val = tf.placeholder(dtypes_in[0], shape=shapes_in[0])
prev_shape = list(shapes_out[0])
if config.test_aug_times : prev_shape[0] *= config.test_aug_times
prev_ph = tf.placeholder(dtypes_out[0], shape=prev_shape)
y_ph = tf.placeholder(dtypes_out[0], shape=shapes_out[0])
y_val = [prev_ph, y_ph]
chars = val_gen.label_vectorizer.chars
val_g = TransformerGraphClass(x_val,
y_val,
is_training=False,
reuse=tf.AUTO_REUSE,
go_token_index=go_idx,
chars=chars)
print("Validation Graph loaded")
sess.run(tf.tables_initializer())
load_checkpoints(sess)
return val_g, val_epoch_size, chars, sess, val_gen
def load_checkpoints(sess, var_scopes = ('encoder', 'decoder', 'dense')):
checkpoint_path = config.lip_model_path
if checkpoint_path:
if os.path.isdir(checkpoint_path):
checkpoint = tf.train.latest_checkpoint(checkpoint_path)
else:
checkpoint = checkpoint_path
if config.featurizer:
if checkpoint_path:
from tensorflow.contrib.framework.python.framework import checkpoint_utils
var_list = checkpoint_utils.list_variables(checkpoint)
for var in var_list:
if 'visual_frontend' in var[0]:
var_scopes = var_scopes + ('visual_frontend',)
break
if not 'visual_frontend' in var_scopes:
featurizer_vars = tf.global_variables(scope='visual_frontend')
featurizer_ckpt = tf.train.get_checkpoint_state(config.featurizer_model_path)
featurizer_vars = [var for var in featurizer_vars if not 'Adam' in var.name]
tf.train.Saver(featurizer_vars).restore(sess, featurizer_ckpt.model_checkpoint_path)
all_variables = []
for scope in var_scopes:
all_variables += [var for var in tf.global_variables(scope=scope)
if not 'Adam' in var.name ]
if checkpoint_path:
tf.train.Saver(all_variables).restore(sess, checkpoint)
print("Restored saved model {}!".format(checkpoint))
def setup_generators(verbose=False):
val_gen = ListGenerator(data_list=config.data_list)
val_epoch_size = val_gen.calc_nbatches_per_epoch()
return val_gen, val_epoch_size
def rel_edist(tr, pred):
return editdistance.eval(tr,pred) / float(len(tr))
def main():
evaluate_model()
if __name__ == '__main__':
main()