-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprep_MHWs.R
642 lines (577 loc) · 26.3 KB
/
prep_MHWs.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
# PLEASE CHECK EACH DF MANUALLY WHEN NEW REGIONS ARE INCORPORATED to be sure the lag calculations are working correctly and the region names were harmonized!
# this script does two things
# reshapes the marine heatwave anomaly data (for multiple source datasets) and matches it with survey month*years
# calculates aggregated biomass and community composition metrics for the survey data
########
# load packages
########
library(here)
library(lubridate)
library(tidyverse)
library(magrittr)
library(data.table)
########
# load data
########
# load FISHGLOB trawl data
cpue <- read_csv(here("processed-data","biomass_time.csv"))%>%
filter(year < 2020)
# surface temperature data (satellite)
oisst_raw <- read.delim(here("raw-data","MHW_95P_surveys_satellite_surf.csv"), sep=";")
oisst_raw_nod <- read.delim(here("raw-data","MHW_95P_surveys_satellite_surf_no_detrend.csv"), sep=";")
# bottom temperature data (reanalysis)
glorys_raw <- read.delim(here("raw-data","MHW_95P_surveys_glorys_surf.csv"), sep=";")
glorys_raw_nod <- read.delim(here("raw-data","MHW_95P_surveys_glorys_surf_no_detrend.csv"), sep=";")
# DHDs
# dhd_raw_all_glorys_nod <- read.delim(here("raw-data","all_1993_2020_wo_leap_dhd.csv"), sep=";") # uses all years to calculate MMM
# dhd_raw_all_glorys_d <- read.delim(here("raw-data","all_1993_2020_wo_leap_detrend_dhd.csv"), sep=";")
dhd_raw_baseline_glorys_nod <- read.delim(here("raw-data","all_1993_2020_wo_leap_dhd_1993_1997_baseline.csv"), sep=";") # uses a baseline period to calculate MMM
dhd_raw_baseline_oisst_nod <- read.delim(here("raw-data","all_no_detrend_dhd_1985_1990_baseline.csv"), sep=";")
# reshape MHW data, and fix some inconsistencies in region names (match MHWs to FISHGLOB)
oisst_d <- oisst_raw %>%
rename("dateRaw"=X) %>%
pivot_longer(cols=2:ncol(oisst_raw), names_to="survey", values_to="anom") %>%
mutate(survey = gsub('_','-',survey),
survey = toupper(survey),
survey = recode(survey,
"BALTIC-SEA" = "BITS",
"BRITISH-COLUMBIA" = "DFO-QCS",
"EASTERN-BERING-SEA" = "EBS",
"GULF-OF-MEXICO" = "GMEX",
"GULF-OF-ALASKA" = "GOA",
"NOR-BTS" = "Nor-BTS",
"SCOTIAN-SHELF" = "SCS",
"SOUTHEAST" = "SEUS",
"WEST-COAST" = "WCANN"))
oisst_nod <- oisst_raw_nod %>%
rename("dateRaw"=X) %>%
pivot_longer(cols=2:ncol(oisst_raw_nod), names_to="survey", values_to="anom") %>%
mutate(survey = gsub('_','-',survey),
survey = toupper(survey),
survey = recode(survey,
"BALTIC-SEA" = "BITS",
"BRITISH-COLUMBIA" = "DFO-QCS",
"EASTERN-BERING-SEA" = "EBS",
"GULF-OF-MEXICO" = "GMEX",
"GULF-OF-ALASKA" = "GOA",
"NOR-BTS" = "Nor-BTS",
"SCOTIAN-SHELF" = "SCS",
"SOUTHEAST" = "SEUS",
"WEST-COAST" = "WCANN"))
glorys_d <- glorys_raw %>%
rename("dateRaw"=X) %>%
pivot_longer(cols=2:ncol(oisst_raw), names_to="survey", values_to="anom") %>%
mutate(survey = gsub('_','-',survey),
survey = toupper(survey),
survey = recode(survey,
"BALTIC-SEA" = "BITS",
"BRITISH-COLUMBIA" = "DFO-QCS",
"EASTERN-BERING-SEA" = "EBS",
"GULF-OF-MEXICO" = "GMEX",
"GULF-OF-ALASKA" = "GOA",
"NOR-BTS" = "Nor-BTS",
"SCOTIAN-SHELF" = "SCS",
"SOUTHEAST" = "SEUS",
"WEST-COAST" = "WCANN"))
glorys_nod <- glorys_raw_nod %>%
rename("dateRaw"=X) %>%
pivot_longer(cols=2:ncol(oisst_raw_nod), names_to="survey", values_to="anom") %>%
mutate(survey = gsub('_','-',survey),
survey = toupper(survey),
survey = recode(survey,
"BALTIC-SEA" = "BITS",
"BRITISH-COLUMBIA" = "DFO-QCS",
"EASTERN-BERING-SEA" = "EBS",
"GULF-OF-MEXICO" = "GMEX",
"GULF-OF-ALASKA" = "GOA",
"NOR-BTS" = "Nor-BTS",
"SCOTIAN-SHELF" = "SCS",
"SOUTHEAST" = "SEUS",
"WEST-COAST" = "WCANN"))
dhd_glorys <- dhd_raw_baseline_glorys_nod %>%
rename("dateRaw"=X) %>%
pivot_longer(cols=2:ncol(dhd_raw_baseline_glorys_nod), names_to="survey", values_to="anom") %>%
mutate(survey = gsub('_','-',survey),
survey = toupper(survey),
survey = recode(survey,
"BALTIC-SEA" = "BITS",
"BRITISH-COLUMBIA" = "DFO-QCS",
"EASTERN-BERING-SEA" = "EBS",
"GULF-OF-MEXICO" = "GMEX",
"GULF-OF-ALASKA" = "GOA",
"NOR-BTS" = "Nor-BTS",
"SCOTIAN-SHELF" = "SCS",
"SOUTHEAST" = "SEUS",
"WEST-COAST" = "WCANN"))
dhd_oisst <- dhd_raw_baseline_oisst_nod %>%
rename("dateRaw"=X) %>%
pivot_longer(cols=2:ncol(dhd_raw_baseline_oisst_nod), names_to="survey", values_to="anom") %>%
mutate(survey = gsub('_','-',survey),
survey = toupper(survey),
survey = recode(survey,
"BALTIC-SEA" = "BITS",
"BRITISH-COLUMBIA" = "DFO-QCS",
"EASTERN-BERING-SEA" = "EBS",
"GULF-OF-MEXICO" = "GMEX",
"GULF-OF-ALASKA" = "GOA",
"NOR-BTS" = "Nor-BTS",
"SCOTIAN-SHELF" = "SCS",
"SOUTHEAST" = "SEUS",
"WEST-COAST" = "WCANN"))
maxyr <- max(cpue$year)
minyr_oisst <- 1982
minyr_glorys <- 1993
cti <- read_csv(here("raw-data/6855203","mxesr.csv")) %>% # https://figshare.com/articles/dataset/Species_Temperature_Index_and_thermal_range_information_forNorth_Pacific_and_North_Atlantic_plankton_and_bottom_trawl_species/6855203/1
select(-`...1`) %>% # get rid of an unneeded column and some duplicated rows
distinct()
# make plot for Reviewer 2
# reviewer2 <- dhd_glorys %>%
# mutate(date = dmy(dateRaw),
# dhd_anom = replace_na(anom, 0),
# .keep="unused") %>%
# inner_join(glorys_nod %>%
# mutate(date = dmy(dateRaw),
# mhw_anom = replace_na(anom, 0),
# .keep="unused"))
#
# reviewer2_gg <- reviewer2 %>%
# ggplot(aes(x=mhw_anom, y=dhd_anom)) +
# geom_point() +
# theme_bw() +
# labs(x="Anomaly above 95th percentile", y="Anomaly above MMM")
########
# match surveys to dates
########
# The goal of this part of code is to match each survey (noting that they start at different times of year in different regions, and don't all happen each year) to MHW data from only the 365 days preceding the survey in that region. H/t @GracoRoza and @KivaOken on Twitter for this solution
# step 1: get a dataframe of the survey start months
survey_start_times <- cpue %>%
mutate(month_year = paste0(startmonth,"-",year)) %>%
select(survey, year, month_year) %>%
distinct() %>%
mutate(ref_yr = paste0(survey,"-",month_year), # get unique survey identifier ("reference year")
survey_date = dmy(paste0('01-',month_year))# get earliest possible survey start date
)
# step 2: expand this out to all possible months, tracking which reference year they belong to
# get all month*year combinations for each survey and denote which reference year (12-month period custom to each region based on when survey began) each belongs to
oisst_ref_yrs <- expand.grid(month=seq(1, 12, 1), year=seq(minyr_oisst, maxyr, 1), survey=unique(survey_start_times$survey)) %>% # get a factorial combo of every possible month*year; have to start in 1982 even though we can't use surveys before 1983 because we need to match to env data from 1982
mutate(survey = as.character(survey),
survey_month_year = paste0(survey,"-",month,"-",year)) %>% # create unique identifier
mutate(ref_yr_prep = ifelse(survey_month_year %in% survey_start_times[survey_start_times$year>1982,]$ref_yr, survey_month_year, NA), # create a new column that only has a value when the month*year matches an actual survey (the "reference year")
month_year = paste0(month,"-",year)) %>%
group_by(survey) %>%
fill(ref_yr_prep, .direction="up") %>% # fill in each survey with the survey to which env data from each month*year should correspond. this is correct for all month*year combinations EXCEPT the month of the survey; e.g. 05-2010 should be matched to the survey from 05-2011 not 05-2010
group_by(survey) %>%
arrange(year) %>%
mutate(ref_yr = ifelse(survey_month_year==ref_yr_prep, lead(ref_yr_prep), ref_yr_prep)) %>% # reassign the months in which a survey was conducted to the following ref_yr
select(ref_yr, survey, month_year) %>%
ungroup() %>%
left_join(survey_start_times %>% select(ref_yr, survey_date) %>% distinct(), by="ref_yr") # add back in the survey start dates
# note that this works for both OISST data files
glorys_ref_yrs <- expand.grid(month=seq(1, 12, 1), year=seq(minyr_glorys, maxyr, 1), survey=unique(survey_start_times$survey)) %>%
mutate(survey = as.character(survey),
survey_month_year = paste0(survey,"-",month,"-",year)) %>%
mutate(ref_yr_prep = ifelse(survey_month_year %in% survey_start_times[survey_start_times$year>1982,]$ref_yr, survey_month_year, NA),
month_year = paste0(month,"-",year)) %>%
group_by(survey) %>%
fill(ref_yr_prep, .direction="up") %>%
group_by(survey) %>%
arrange(year) %>%
mutate(ref_yr = ifelse(survey_month_year==ref_yr_prep, lead(ref_yr_prep), ref_yr_prep)) %>%
select(ref_yr, survey, month_year) %>%
ungroup() %>%
left_join(survey_start_times %>% select(ref_yr, survey_date) %>% distinct(), by="ref_yr")
# step 3: join this list of all months to the MHW data and then calculate statistics based on survey-years
mhw_oisst_d <- oisst_d %>%
mutate(date = dmy(dateRaw), # standardize date formats
year = year(date),
month = month(date),
month_year = paste0(month,"-",year)
) %>%
select(-dateRaw) %>%
filter(str_detect(date, '-02-29', negate=TRUE) ) %>% # get rid of leap days
left_join(oisst_ref_yrs, by=c('survey','month_year')) %>% # note that because this is a left_join, and the mhw data starts at 1982, sometimes a ref_yr is matched with many years of data preceding the survey -- this is corrected below when we keep only dates a certain lag value before the survey
filter(!is.na(ref_yr))
# confirm that there are no ref_yrs matched with <365 days of data
tmp <- mhw_oisst_d %>% group_by(ref_yr) %>% summarise(n=length(anom))
if(min(tmp$n) < 365){
bad_ref_yrs <- tmp %>% filter(n<365) %>% pull(ref_yr)
mhw_oisst_d %<>% filter(!ref_yr %in% bad_ref_yrs)
}
mhw_oisst_d %<>%
mutate(date_lag = survey_date - date) %>% # how many days before the survey was the SST observation?
filter(date_lag < 365,
date_lag >= 0) # only keep SST data within 365 days of a survey for each region
# repeat for other datasets
mhw_oisst_nod <- oisst_nod %>%
mutate(date = dmy(dateRaw),
year = year(date),
month = month(date),
month_year = paste0(month,"-",year)
) %>%
select(-dateRaw) %>%
filter(str_detect(date, '-02-29', negate=TRUE)) %>%
left_join(oisst_ref_yrs, by=c('survey','month_year')) %>%
filter(!is.na(ref_yr))
tmp <- mhw_oisst_nod %>% group_by(ref_yr) %>% summarise(n=length(anom))
if(min(tmp$n) < 365){
bad_ref_yrs <- tmp %>% filter(n<365) %>% pull(ref_yr)
mhw_oisst_nod %<>% filter(!ref_yr %in% bad_ref_yrs)
}
mhw_oisst_nod %<>%
mutate(date_lag = survey_date - date) %>%
filter(date_lag < 365,
date_lag >= 0)
mhw_glorys_d <- glorys_d %>%
mutate(date = dmy(dateRaw),
year = year(date),
month = month(date),
month_year = paste0(month,"-",year)
) %>%
select(-dateRaw) %>%
filter(str_detect(date, '-02-29', negate=TRUE)) %>%
left_join(glorys_ref_yrs, by=c('survey','month_year')) %>%
filter(!is.na(ref_yr))
tmp <- mhw_glorys_d %>% group_by(ref_yr) %>% summarise(n=length(anom))
if(min(tmp$n) < 365){
bad_ref_yrs <- tmp %>% filter(n<365) %>% pull(ref_yr) # for GLORYS, this flags all the 1993 surveys
mhw_glorys_d %<>% filter(!ref_yr %in% bad_ref_yrs)
}
mhw_glorys_d %<>%
mutate(date_lag = survey_date - date) %>%
filter(date_lag < 365,
date_lag >= 0)
mhw_glorys_nod <- glorys_nod %>%
mutate(date = dmy(dateRaw),
year = year(date),
month = month(date),
month_year = paste0(month,"-",year)
) %>%
select(-dateRaw) %>%
filter(str_detect(date, '-02-29', negate=TRUE)) %>%
left_join(glorys_ref_yrs, by=c('survey','month_year')) %>%
filter(!is.na(ref_yr))
tmp <- mhw_glorys_nod %>% group_by(ref_yr) %>% summarise(n=length(anom))
if(min(tmp$n) < 365){
bad_ref_yrs <- tmp %>% filter(n<365) %>% pull(ref_yr)
mhw_glorys_nod %<>% filter(!ref_yr %in% bad_ref_yrs)
}
mhw_glorys_nod %<>%
mutate(date_lag = survey_date - date) %>%
filter(date_lag < 365,
date_lag >= 0)
mhw_dhd_glorys <- dhd_glorys %>%
mutate(date = dmy(dateRaw),
year = year(date),
month = month(date),
month_year = paste0(month,"-",year)
) %>%
select(-dateRaw) %>%
filter(str_detect(date, '-02-29', negate=TRUE)) %>%
left_join(glorys_ref_yrs, by=c('survey','month_year')) %>%
filter(!is.na(ref_yr))
tmp <- mhw_dhd_glorys %>% group_by(ref_yr) %>% summarise(n=length(anom))
if(min(tmp$n) < 365){
bad_ref_yrs <- tmp %>% filter(n<365) %>% pull(ref_yr)
mhw_dhd_glorys %<>% filter(!ref_yr %in% bad_ref_yrs)
}
mhw_dhd_glorys %<>%
mutate(date_lag = survey_date - date) %>%
filter(date_lag < 365,
date_lag >= 0)
mhw_dhd_oisst <- dhd_oisst %>%
mutate(date = dmy(dateRaw),
year = year(date),
month = month(date),
month_year = paste0(month,"-",year)
) %>%
select(-dateRaw) %>%
filter(str_detect(date, '-02-29', negate=TRUE)) %>%
left_join(oisst_ref_yrs, by=c('survey','month_year')) %>%
filter(!is.na(ref_yr))
tmp <- mhw_dhd_oisst %>% group_by(ref_yr) %>% summarise(n=length(anom))
if(min(tmp$n) < 365){
bad_ref_yrs <- tmp %>% filter(n<365) %>% pull(ref_yr)
mhw_dhd_oisst %<>% filter(!ref_yr %in% bad_ref_yrs)
}
mhw_dhd_oisst %<>%
mutate(date_lag = survey_date - date) %>%
filter(date_lag < 365,
date_lag >= 0)
########
# make summary datasets
########
#Make different summary datasets of survey data + MHW data
# Make summary datasets with MHW data
# generate two different satellite data outputs, using different definitions of a heatwave (any anomaly, or a 5-day continuous one)
# prep MHW for merging with surveys
mhw_summary_oisst_d_any <- mhw_oisst_d %>%
group_by(ref_yr) %>%
arrange(date) %>%
summarise(
anom_days = sum(anom>0, na.rm=TRUE),# count number of non-NA anomaly days
anom_sev = sum(anom, na.rm=TRUE), # add up total anomaly values
anom_int = anom_sev / anom_days # calculate mean intensity for every survey*year
) %>%
group_by(ref_yr) %>%
mutate(mhw_yes_no = ifelse(anom_days>0, "yes", "no")) %>%
ungroup() %>%
mutate(anom_int = replace_na(anom_int, 0)) # replacing NAs in anom_int that came from dividing by 0 with 0s
# trimming anomalies to only use those from events with a duration of >=5 days
mhw_oisst_d_5_day_prep <- NULL
for(i in unique(survey_start_times$survey)){
tmp <- mhw_oisst_d %>%
filter(survey==i) %>%
mutate(yn = ifelse(is.na(anom),0,1)) %>%
group_by(ref_yr, yn) %>%
arrange(date)
tmp <- transform(tmp, counter = ave(yn, rleid(ref_yr, yn), FUN=sum))
# count up the number of sequential mhw-days and put the sum in a column
# https://coderedirect.com/questions/412211/r-count-consecutive-occurrences-of-values-in-a-single-column-and-by-group -- couldn't get this to work with dplyr functions
mhw_oisst_d_5_day_prep <- bind_rows(mhw_oisst_d_5_day_prep, tmp)
}
mhw_summary_oisst_nod_any <- mhw_oisst_nod %>%
group_by(ref_yr) %>%
arrange(date) %>%
summarise(
anom_days = sum(anom>0, na.rm=TRUE),# count number of non-NA anomaly days
anom_sev = sum(anom, na.rm=TRUE), # add up total anomaly values
anom_int = anom_sev / anom_days # calculate mean intensity for every survey*year
) %>%
group_by(ref_yr) %>%
mutate(mhw_yes_no = ifelse(anom_days>0, "yes", "no")) %>%
ungroup() %>%
mutate(anom_int = replace_na(anom_int, 0)) # replacing NAs in anom_int that came from dividing by 0 with 0s
mhw_oisst_nod_5_day_prep <- NULL
for(i in unique(survey_start_times$survey)){
tmp <- mhw_oisst_nod%>%
filter(survey==i) %>%
mutate(yn = ifelse(is.na(anom),0,1)) %>%
group_by(ref_yr, yn) %>%
arrange(date)
tmp <- transform(tmp, counter = ave(yn, rleid(ref_yr, yn), FUN=sum))
# count up the number of sequential mhw-days and put the sum in a column
# https://coderedirect.com/questions/412211/r-count-consecutive-occurrences-of-values-in-a-single-column-and-by-group -- couldn't get this to work with dplyr functions
mhw_oisst_nod_5_day_prep <- bind_rows(mhw_oisst_nod_5_day_prep, tmp)
}
mhw_summary_glorys_d_any <- mhw_glorys_d %>%
group_by(ref_yr) %>%
arrange(date) %>%
summarise(
anom_days = sum(anom>0, na.rm=TRUE),
anom_sev = sum(anom, na.rm=TRUE),
anom_int = anom_sev / anom_days
) %>%
group_by(ref_yr) %>%
mutate(mhw_yes_no = ifelse(anom_days>0, "yes", "no")) %>%
ungroup() %>%
mutate(anom_int = replace_na(anom_int, 0))
mhw_glorys_d_5_day_prep <- NULL
for(i in unique(survey_start_times$survey)){
tmp <- mhw_glorys_d%>%
filter(survey==i) %>%
mutate(yn = ifelse(is.na(anom),0,1)) %>%
group_by(ref_yr, yn) %>%
arrange(date)
tmp <- transform(tmp, counter = ave(yn, rleid(ref_yr, yn), FUN=sum))
mhw_glorys_d_5_day_prep <- bind_rows(mhw_glorys_d_5_day_prep, tmp)
}
mhw_summary_glorys_nod_any <- mhw_glorys_nod %>%
group_by(ref_yr) %>%
arrange(date) %>%
summarise(
anom_days = sum(anom>0, na.rm=TRUE),
anom_sev = sum(anom, na.rm=TRUE),
anom_int = anom_sev / anom_days
) %>%
group_by(ref_yr) %>%
mutate(mhw_yes_no = ifelse(anom_days>0, "yes", "no")) %>%
ungroup() %>%
mutate(anom_int = replace_na(anom_int, 0))
mhw_glorys_nod_5_day_prep <- NULL
for(i in unique(survey_start_times$survey)){
tmp <- mhw_glorys_nod%>%
filter(survey==i) %>%
mutate(yn = ifelse(is.na(anom),0,1)) %>%
group_by(ref_yr, yn) %>%
arrange(date)
tmp <- transform(tmp, counter = ave(yn, rleid(ref_yr, yn), FUN=sum))
mhw_glorys_nod_5_day_prep <- bind_rows(mhw_glorys_nod_5_day_prep, tmp)
}
mhw_summary_dhd_glorys <- mhw_dhd_glorys %>%
group_by(ref_yr) %>%
arrange(date) %>%
summarise(
dhd_days = sum(anom>0, na.rm=TRUE),
dhd_sum = sum(anom, na.rm=TRUE)) %>%
ungroup()
mhw_summary_dhd_oisst <- mhw_dhd_oisst %>%
group_by(ref_yr) %>%
arrange(date) %>%
summarise(
dhd_days = sum(anom>0, na.rm=TRUE),
dhd_sum = sum(anom, na.rm=TRUE)) %>%
ungroup()
# for supplement only, create file with only summer MHWs
mhw_summary_glorys_d_any_summer <- mhw_glorys_d %>%
mutate(anom = ifelse(month %in% c(6, 7, 8), anom, NA)) %>% # overwrite all non-summer anomalies
group_by(ref_yr) %>%
arrange(date) %>%
summarise(
anom_days = sum(anom>0, na.rm=TRUE),
anom_sev = sum(anom, na.rm=TRUE),
anom_int = anom_sev / anom_days
) %>%
group_by(ref_yr) %>%
mutate(mhw_yes_no = ifelse(anom_days>0, "yes", "no")) %>%
ungroup() %>%
mutate(anom_int = replace_na(anom_int, 0))
# how many distinct MHWs per year? (for main text stats)
oisst_d_5_day_mhws_per_yr <- mhw_oisst_d_5_day_prep %>%
group_by(ref_yr) %>%
mutate(anom = ifelse(counter >= 5, anom, NA),# overwrite anom values that aren't part of a >=5 day event
anom_na = !is.na(anom), # create true/false column
n_mhw = sum(rle(anom_na)$values) # count lengths of discrete TRUE sequences by ref_yr
) %>%
select(survey, ref_yr, n_mhw) %>%
distinct()
write.csv(oisst_d_5_day_mhws_per_yr, file = here("processed-data","total_number_mhws_oisst_d.csv"))
sum(oisst_d_5_day_mhws_per_yr$n_mhw)
glorys_d_5_day_mhws_per_yr <- mhw_glorys_d_5_day_prep %>%
group_by(ref_yr) %>%
mutate(anom = ifelse(counter >= 5, anom, NA),
anom_na = !is.na(anom),
n_mhw = sum(rle(anom_na)$values)
) %>%
select(survey, ref_yr, n_mhw) %>%
distinct()
write.csv(glorys_d_5_day_mhws_per_yr, file = here("processed-data","total_number_mhws_glorys_d.csv"))
sum(glorys_d_5_day_mhws_per_yr$n_mhw)
mhw_summary_oisst_d_5_day <- mhw_oisst_d_5_day_prep %>%
group_by(ref_yr) %>%
mutate(anom = ifelse(counter >= 5, anom, NA))%>% # overwrite anom values that aren't part of a >=5 day event
summarise(
anom_days = sum(anom>0, na.rm=TRUE),
anom_sev = sum(anom, na.rm=TRUE),
anom_int = anom_sev / anom_days
)%>%
group_by(ref_yr) %>%
mutate(mhw_yes_no = ifelse(anom_days>0, "yes", "no")) %>%
ungroup() %>%
mutate(anom_int = replace_na(anom_int, 0))
mhw_summary_oisst_nod_5_day <- mhw_oisst_nod_5_day_prep %>%
group_by(ref_yr) %>%
mutate(anom = ifelse(counter >= 5, anom, NA))%>%
summarise(
anom_days = sum(anom>0, na.rm=TRUE),
anom_sev = sum(anom, na.rm=TRUE),
anom_int = anom_sev / anom_days
)%>%
group_by(ref_yr) %>%
mutate(mhw_yes_no = ifelse(anom_days>0, "yes", "no")) %>%
ungroup() %>%
mutate(anom_int = replace_na(anom_int, 0))
mhw_summary_glorys_d_5_day <- mhw_glorys_d_5_day_prep %>%
group_by(ref_yr) %>%
mutate(anom = ifelse(counter >= 5, anom, NA))%>%
summarise(
anom_days = sum(anom>0, na.rm=TRUE),
anom_sev = sum(anom, na.rm=TRUE),
anom_int = anom_sev / anom_days
)%>%
group_by(ref_yr) %>%
mutate(mhw_yes_no = ifelse(anom_days>0, "yes", "no")) %>%
ungroup() %>%
mutate(anom_int = replace_na(anom_int, 0))
mhw_summary_glorys_nod_5_day <- mhw_glorys_nod_5_day_prep %>%
group_by(ref_yr) %>%
mutate(anom = ifelse(counter >= 5, anom, NA))%>%
summarise(
anom_days = sum(anom>0, na.rm=TRUE),
anom_sev = sum(anom, na.rm=TRUE),
anom_int = anom_sev / anom_days
)%>%
group_by(ref_yr) %>%
mutate(mhw_yes_no = ifelse(anom_days>0, "yes", "no")) %>%
ungroup() %>%
mutate(anom_int = replace_na(anom_int, 0))
########
# CTI and CPUE data
########
# stats pooled across all species
# no MHWs yet, just biomass stats
survey_summary <- cpue %>%
left_join(survey_start_times, by=c('survey','year')) %>%
filter(!is.na(ref_yr)) %>% # just to double check (there shouldn't be any NAs)
group_by(ref_yr, survey, year) %>%
summarise(wt_mt = sum(wtcpue_mean) / 1000,
wt_mt_med = sum(wtcpue_median),
num = sum(numcpue_mean),
num_med = sum(numcpue_median),
depth_wt = weighted.mean(depth_mean, w=wtcpue_mean, na.rm=TRUE)) %>% # get total weight across all species for the survey*year
group_by(survey) %>%
arrange(year) %>%
mutate(wt_mt_log = log(wt_mt / lag(wt_mt)), # calculate log ratio
wt_mt_log_med = log(wt_mt_med / lag(wt_mt_med)),
num_log = log(num / lag(num)),
num_log_med = log(num_med / lag(num_med)),
depth_wt_log = log(depth_wt / lag(depth_wt))
) %>%
ungroup()
# species-level stats
survey_spp_summary <- cpue %>%
mutate(wt_mt = wtcpue_mean/1000,
wt_mt_med = wtcpue_median/1000) %>%
select(-wtcpue_mean, wtcpue_median) %>%
left_join(survey_start_times, by=c('survey','year')) %>%
filter(!is.na(ref_yr)) %>%
group_by(survey, accepted_name) %>%
arrange(year) %>%
mutate(wt_mt_log = log(wt_mt / lag(wt_mt)),
wt_mt_log_med = log(wt_mt_med / lag(wt_mt_med)),
num_log = log(numcpue_mean / lag(numcpue_mean)),
num_log_med = log(numcpue_median / lag(numcpue_median)),
depth_wt_log = log(depth_mean / lag(depth_mean))
) %>%
ungroup()
# ignore warning message about NAs being produced in the depth column; this is a feature, not a bug! (we want it to show NA when the species wasn't recorded)
# now add STI/CTI to the survey dataframes where available
cti_spp_prep <- cti %>%
select(speciesName, hadsstwannp50) %>% # keep only the species with CTIs, and use the hadsstwannp50 index (see dataset description in source file for CTI data)
distinct()%>%
rename('STI' = hadsstwannp50,
'accepted_name' =speciesName) %>%
filter(accepted_name %in% unique(survey_spp_summary$accepted_name))
length(unique(survey_spp_summary$accepted_name))
length(unique(cti_spp_prep$accepted_name))
survey_spp_summary_cti <- survey_spp_summary %>%
left_join(cti_spp_prep)
cti_prep <- survey_spp_summary_cti %>%
filter(!is.na(STI)) %>%
group_by(ref_yr) %>%
summarise(CTI = weighted.mean(STI, w=wt_mt))
survey_summary_cti <- survey_summary %>%
inner_join(cti_prep, by="ref_yr") %>%
group_by(survey) %>%
arrange(year) %>%
mutate(cti_diff = CTI - lag(CTI),
cti_log = log(CTI / lag(CTI))) %>%
filter(!is.na(CTI))
########
# write out dataframes
########
# trawl and cti datasets
write_csv(survey_summary_cti, here("processed-data","survey_biomass_with_CTI.csv"))
write_csv(survey_spp_summary_cti, here("processed-data","species_biomass_with_CTI.csv"))
write_csv(survey_start_times, here("processed-data","survey_start_times.csv"))
# MHWs paired with ref_years
write_csv(mhw_summary_oisst_d_any, here("processed-data","MHW_oisst.csv"))
write_csv(mhw_summary_oisst_d_5_day, here("processed-data","MHW_oisst_5_day_threshold.csv"))
write_csv(mhw_summary_oisst_nod_any, here("processed-data","MHW_oisst_no_detrending.csv"))
write_csv(mhw_summary_oisst_nod_5_day, here("processed-data","MHW_oisst_5_day_threshold_no_detrending.csv"))
write_csv(mhw_summary_glorys_d_any, here("processed-data","MHW_glorys.csv"))
write_csv(mhw_summary_glorys_d_any_summer, here("processed-data","MHW_glorys_summer_only.csv"))
write_csv(mhw_summary_glorys_d_5_day, here("processed-data","MHW_glorys_5_day_threshold.csv"))
write_csv(mhw_summary_glorys_nod_any, here("processed-data","MHW_glorys_no_detrending.csv"))
write_csv(mhw_summary_glorys_nod_5_day, here("processed-data","MHW_glorys_5_day_threshold_no_detrending.csv"))
write_csv(mhw_summary_dhd_glorys, here("processed-data","MHW_glorys_dhd_baseline.csv"))
write_csv(mhw_summary_dhd_oisst, here("processed-data","MHW_oisst_dhd_baseline.csv"))