forked from je-suis-tm/quant-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMACD Oscillator backtest.py
143 lines (96 loc) · 3.99 KB
/
MACD Oscillator backtest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 6 11:57:46 2018
@author: Administrator
"""
# In[1]:
#need to get fix yahoo finance package first
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import fix_yahoo_finance as yf
# In[2]:
#simple moving average
def macd(signals):
signals['ma1']=signals['Close'].rolling(window=ma1,min_periods=1,center=False).mean()
signals['ma2']=signals['Close'].rolling(window=ma2,min_periods=1,center=False).mean()
return signals
# In[3]:
#signal generation
#when the short moving average is larger than long moving average, we long and hold
#when the short moving average is smaller than long moving average, we clear positions
#the logic behind this is that the momentum has more impact on short moving average
#we can subtract short moving average from long moving average
#the difference between is sometimes positive, it sometimes becomes negative
#thats why it is named as moving average converge/diverge oscillator
def signal_generation(df,method):
signals=method(df)
signals['positions']=0
#positions becomes and stays one once the short moving average is above long moving average
signals['positions'][ma1:]=np.where(signals['ma1'][ma1:]>=signals['ma2'][ma1:],1,0)
#as positions only imply the holding
#we take the difference to generate real trade signal
signals['signals']=signals['positions'].diff()
#oscillator is the difference between two moving average
#when it is positive, we long, vice versa
signals['oscillator']=signals['ma1']-signals['ma2']
return signals
# In[4]:
#plotting the backtesting result
def plot(new, ticker):
#the first plot is the actual close price with long/short positions
fig=plt.figure()
ax=fig.add_subplot(111)
new['Close'].plot(label=ticker)
ax.plot(new.loc[new['signals']==1].index,new['Close'][new['signals']==1],label='LONG',lw=0,marker='^',c='g')
ax.plot(new.loc[new['signals']==-1].index,new['Close'][new['signals']==-1],label='SHORT',lw=0,marker='v',c='r')
plt.legend(loc='best')
plt.grid(True)
plt.title('Positions')
plt.show()
#the second plot is long/short moving average with oscillator
#note that i use bar chart for oscillator
fig=plt.figure()
cx=fig.add_subplot(211)
new['oscillator'].plot(kind='bar',color='r')
plt.legend(loc='best')
plt.grid(True)
plt.xticks([])
plt.xlabel('')
plt.title('MACD Oscillator')
bx=fig.add_subplot(212)
new['ma1'].plot(label='ma1')
new['ma2'].plot(label='ma2',linestyle=':')
plt.legend(loc='best')
plt.grid(True)
plt.show()
# In[5]:
def main():
#input the long moving average and short moving average period
#for the classic MACD, it is 12 and 26
#once a upon a time you got six trading days in a week
#so it is two week moving average versus one month moving average
#for now, the ideal choice would be 10 and 21
global ma1,ma2,stdate,eddate,ticker,slicer
#macd is easy and effective
#there is just one issue
#entry signal is always late
#watch out for downward EMA spirals!
ma1=int(input('ma1:'))
ma2=int(input('ma2:'))
stdate=input('start date in format yyyy-mm-dd:')
eddate=input('end date in format yyyy-mm-dd:')
ticker=input('ticker:')
#slicing the downloaded dataset
#if the dataset is too large, backtesting plot would look messy
#you get too many markers cluster together
slicer=int(input('slicing:'))
#downloading data
df=yf.download(ticker,start=stdate,end=eddate)
new=signal_generation(df,macd)
new=new[slicer:]
plot(new, ticker)
#how to calculate stats could be found from my other code called Heikin-Ashi
# https://github.com/je-suis-tm/quant-trading/blob/master/heikin%20ashi%20backtest.py
if __name__ == '__main__':
main()