Skip to content

Latest commit

 

History

History
135 lines (113 loc) · 5.76 KB

CHANGELOG.md

File metadata and controls

135 lines (113 loc) · 5.76 KB

Version 2.3-dev

The library has been tested using Agda 2.7.0 and 2.7.0.1.

Highlights

Bug-fixes

Non-backwards compatible changes

  • The implementation of ≤-total in Data.Nat.Properties has been altered to use operations backed by primitives, rather than recursion, making it significantly faster. However, its reduction behaviour on open terms may have changed.

  • issue #2471 In Relation.Binary.Definitions, the left/right order of the components of _Respects₂_ have been swapped. Previously the position of the _Respectsˡ_ (respects left) component was placed on the right hand side of the pair and _Respectsʳ_ (respects right) was placed on the left hand side of the pair. By switching them the names are now consistent with their location.

Minor improvements

Deprecated modules

Deprecated names

  • In Algebra.Definitions.RawMagma:

    _∣∣_   ↦  _∥_
    _∤∤_    ↦  _∦_
  • In `Algebra.Module.Consequences

    *ₗ-assoc+comm⇒*ᵣ-assoc      ↦  *ₗ-assoc∧comm⇒*ᵣ-assoc
    *ₗ-assoc+comm⇒*ₗ-*ᵣ-assoc   ↦  *ₗ-assoc∧comm⇒*ₗ-*ᵣ-assoc
    *ᵣ-assoc+comm⇒*ₗ-assoc      ↦  *ᵣ-assoc∧comm⇒*ₗ-assoc
    *ₗ-assoc+comm⇒*ₗ-*ᵣ-assoc   ↦  *ₗ-assoc∧comm⇒*ₗ-*ᵣ-assoc
  • In Algebra.Properties.Magma.Divisibility:

    ∣∣-sym       ↦  ∥-sym
    ∣∣-respˡ-≈   ↦  ∥-respˡ-≈
    ∣∣-respʳ-≈   ↦  ∥-respʳ-≈
    ∣∣-resp-≈    ↦  ∥-resp-≈
    ∤∤-sym  -≈    ↦  ∦-sym
    ∤∤-respˡ-≈    ↦  ∦-respˡ-≈
    ∤∤-respʳ-≈    ↦  ∦-respʳ-≈
    ∤∤-resp-≈     ↦  ∦-resp-≈
  • In Algebra.Properties.Monoid.Divisibility:

    ∣∣-refl            ↦  ∥-refl
    ∣∣-reflexive       ↦  ∥-reflexive
    ∣∣-isEquivalence   ↦  ∥-isEquivalence
  • In Algebra.Properties.Semigroup.Divisibility:

    ∣∣-trans   ↦  ∥-trans
  • In Data.List.Base:

    and       ↦  Data.Bool.ListAction.and
    or        ↦  Data.Bool.ListAction.or
    any       ↦  Data.Bool.ListAction.any
    all       ↦  Data.Bool.ListAction.all
    sum       ↦  Data.Nat.ListAction.sum
    product   ↦  Data.Nat.ListAction.product
  • In Data.List.Properties:

    sum-++       ↦  Data.Nat.ListAction.Properties.sum-++
    ∈⇒∣product   ↦  Data.Nat.ListAction.Properties.∈⇒∣product
    product≢0    ↦  Data.Nat.ListAction.Properties.product≢0
    ∈⇒≤product   ↦  Data.Nat.ListAction.Properties.∈⇒≤product
  • In Data.List.Relation.Binary.Permutation.Propositional.Properties:

    sum-↭       ↦  Data.Nat.ListAction.Properties.sum-↭
    product-↭   ↦  Data.Nat.ListAction.Properties.product-↭

New modules

  • Data.List.Base.{and|or|any|all} have been lifted out into Data.Bool.ListAction.

  • Data.List.Base.{sum|product} and their properties have been lifted out into Data.Nat.ListAction and Data.Nat.ListAction.Properties.

Additions to existing modules

  • In Algebra.Construct.Pointwise:
    isNearSemiring                  : IsNearSemiring _≈_ _+_ _*_ 0# 
                                      IsNearSemiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#)
    isSemiringWithoutOne            : IsSemiringWithoutOne _≈_ _+_ _*_ 0# 
                                      IsSemiringWithoutOne (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#)
    isCommutativeSemiringWithoutOne : IsCommutativeSemiringWithoutOne _≈_ _+_ _*_ 0# 
                                      IsCommutativeSemiringWithoutOne (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#)
    isCommutativeSemiring           : IsCommutativeSemiring _≈_ _+_ _*_ 0# 1# 
                                      IsCommutativeSemiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#)
    isIdempotentSemiring            : IsIdempotentSemiring _≈_ _+_ _*_ 0# 1# 
                                      IsIdempotentSemiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#)
    isKleeneAlgebra                 : IsKleeneAlgebra _≈_ _+_ _*_ _⋆ 0# 1# 
                                      IsKleeneAlgebra (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₁ _⋆) (lift₀ 0#) (lift₀ 1#)
    isQuasiring                     : IsQuasiring _≈_ _+_ _*_ 0# 1# 
                                      IsQuasiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#)
    isCommutativeRing               : IsCommutativeRing _≈_ _+_ _*_ -_ 0# 1# 
                                      IsCommutativeRing (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₁ -_) (lift₀ 0#) (lift₀ 1#)
    commutativeMonoid               : CommutativeMonoid c ℓ  CommutativeMonoid (a ⊔ c) (a ⊔ ℓ)
    nearSemiring                    : NearSemiring c ℓ  NearSemiring (a ⊔ c) (a ⊔ ℓ)
    semiringWithoutOne              : SemiringWithoutOne c ℓ  SemiringWithoutOne (a ⊔ c) (a ⊔ ℓ)
    commutativeSemiringWithoutOne   : CommutativeSemiringWithoutOne c ℓ  CommutativeSemiringWithoutOne (a ⊔ c) (a ⊔ ℓ)
    commutativeSemiring             : CommutativeSemiring c ℓ  CommutativeSemiring (a ⊔ c) (a ⊔ ℓ)
    idempotentSemiring              : IdempotentSemiring c ℓ  IdempotentSemiring (a ⊔ c) (a ⊔ ℓ)
    kleeneAlgebra                   : KleeneAlgebra c ℓ  KleeneAlgebra (a ⊔ c) (a ⊔ ℓ)
    quasiring                       : Quasiring c ℓ  Quasiring (a ⊔ c) (a ⊔ ℓ)
    commutativeRing                 : CommutativeRing c ℓ  CommutativeRing (a ⊔ c) (a ⊔ ℓ)