-
Notifications
You must be signed in to change notification settings - Fork 246
/
Copy pathStrict.agda
304 lines (260 loc) · 13.5 KB
/
Strict.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
------------------------------------------------------------------------
-- The Agda standard library
--
-- Lexicographic products of binary relations
------------------------------------------------------------------------
-- The definition of lexicographic product used here is suitable if
-- the left-hand relation is a strict partial order.
{-# OPTIONS --cubical-compatible --safe #-}
module Data.Product.Relation.Binary.Lex.Strict where
open import Data.Product.Base
open import Data.Product.Relation.Binary.Pointwise.NonDependent as Pointwise
using (Pointwise)
open import Data.Sum.Base using (inj₁; inj₂; _-⊎-_; [_,_])
open import Data.Empty
open import Function.Base
open import Induction.WellFounded
open import Level
open import Relation.Nullary.Decidable
open import Relation.Binary.Core using (Rel; _⇒_)
open import Relation.Binary.Bundles
using (Preorder; StrictPartialOrder; StrictTotalOrder)
open import Relation.Binary.Structures
using (IsEquivalence; IsPreorder; IsStrictPartialOrder; IsStrictTotalOrder)
open import Relation.Binary.Definitions
using (Transitive; Symmetric; Irreflexive; Asymmetric; Total; Decidable; Antisymmetric; Trichotomous; _Respects₂_; _Respectsʳ_; _Respectsˡ_; tri<; tri>; tri≈)
open import Relation.Binary.Consequences
open import Relation.Binary.PropositionalEquality.Core as ≡ using (_≡_)
private
variable
a b ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level
A : Set a
B : Set b
------------------------------------------------------------------------
-- A lexicographic ordering over products
×-Lex : (_≈₁_ : Rel A ℓ₁) (_<₁_ : Rel A ℓ₂) (_≤₂_ : Rel B ℓ₃) →
Rel (A × B) _
×-Lex _≈₁_ _<₁_ _≤₂_ =
(_<₁_ on proj₁) -⊎- (_≈₁_ on proj₁) -×- (_≤₂_ on proj₂)
------------------------------------------------------------------------
-- Some properties which are preserved by ×-Lex (under certain
-- assumptions).
×-reflexive : (_≈₁_ : Rel A ℓ₁) (_∼₁_ : Rel A ℓ₂)
{_≈₂_ : Rel B ℓ₃} (_≤₂_ : Rel B ℓ₄) →
_≈₂_ ⇒ _≤₂_ → (Pointwise _≈₁_ _≈₂_) ⇒ (×-Lex _≈₁_ _∼₁_ _≤₂_)
×-reflexive _ _ _ refl₂ = λ x≈y →
inj₂ (proj₁ x≈y , refl₂ (proj₂ x≈y))
module _ {_≈₁_ : Rel A ℓ₁} {_<₁_ : Rel A ℓ₂} {_<₂_ : Rel B ℓ₃} where
private
_<ₗₑₓ_ = ×-Lex _≈₁_ _<₁_ _<₂_
×-transitive : IsEquivalence _≈₁_ → _<₁_ Respects₂ _≈₁_ → Transitive _<₁_ →
Transitive _<₂_ → Transitive _<ₗₑₓ_
×-transitive eq₁ resp₁@(respˡ , respʳ) trans₁ trans₂ = trans
where
module Eq₁ = IsEquivalence eq₁
trans : Transitive _<ₗₑₓ_
trans (inj₁ x₁<y₁) (inj₁ y₁<z₁) = inj₁ (trans₁ x₁<y₁ y₁<z₁)
trans (inj₁ x₁<y₁) (inj₂ y≈≤z) =
inj₁ (respʳ (proj₁ y≈≤z) x₁<y₁)
trans (inj₂ x≈≤y) (inj₁ y₁<z₁) =
inj₁ (respˡ (Eq₁.sym $ proj₁ x≈≤y) y₁<z₁)
trans (inj₂ x≈≤y) (inj₂ y≈≤z) =
inj₂ ( Eq₁.trans (proj₁ x≈≤y) (proj₁ y≈≤z)
, trans₂ (proj₂ x≈≤y) (proj₂ y≈≤z))
×-asymmetric : Symmetric _≈₁_ → _<₁_ Respects₂ _≈₁_ →
Asymmetric _<₁_ → Asymmetric _<₂_ →
Asymmetric _<ₗₑₓ_
×-asymmetric sym₁ resp₁ asym₁ asym₂ = asym
where
irrefl₁ : Irreflexive _≈₁_ _<₁_
irrefl₁ = asym⇒irr resp₁ sym₁ asym₁
asym : Asymmetric _<ₗₑₓ_
asym (inj₁ x₁<y₁) (inj₁ y₁<x₁) = asym₁ x₁<y₁ y₁<x₁
asym (inj₁ x₁<y₁) (inj₂ y≈<x) = irrefl₁ (sym₁ $ proj₁ y≈<x) x₁<y₁
asym (inj₂ x≈<y) (inj₁ y₁<x₁) = irrefl₁ (sym₁ $ proj₁ x≈<y) y₁<x₁
asym (inj₂ x≈<y) (inj₂ y≈<x) = asym₂ (proj₂ x≈<y) (proj₂ y≈<x)
×-total₁ : Total _<₁_ → Total _<ₗₑₓ_
×-total₁ total₁ x y with total₁ (proj₁ x) (proj₁ y)
... | inj₁ x₁<y₁ = inj₁ (inj₁ x₁<y₁)
... | inj₂ x₁>y₁ = inj₂ (inj₁ x₁>y₁)
×-total₂ : Symmetric _≈₁_ →
Trichotomous _≈₁_ _<₁_ → Total _<₂_ →
Total _<ₗₑₓ_
×-total₂ sym tri₁ total₂ x y with tri₁ (proj₁ x) (proj₁ y)
... | tri< x₁<y₁ _ _ = inj₁ (inj₁ x₁<y₁)
... | tri> _ _ y₁<x₁ = inj₂ (inj₁ y₁<x₁)
... | tri≈ _ x₁≈y₁ _ with total₂ (proj₂ x) (proj₂ y)
... | inj₁ x₂≤y₂ = inj₁ (inj₂ (x₁≈y₁ , x₂≤y₂))
... | inj₂ y₂≤x₂ = inj₂ (inj₂ (sym x₁≈y₁ , y₂≤x₂))
×-decidable : Decidable _≈₁_ → Decidable _<₁_ → Decidable _<₂_ →
Decidable _<ₗₑₓ_
×-decidable dec-≈₁ dec-<₁ dec-≤₂ x y =
dec-<₁ (proj₁ x) (proj₁ y)
⊎-dec
(dec-≈₁ (proj₁ x) (proj₁ y)
×-dec
dec-≤₂ (proj₂ x) (proj₂ y))
module _ {_≈₁_ : Rel A ℓ₁} {_<₁_ : Rel A ℓ₂}
{_≈₂_ : Rel B ℓ₃} {_<₂_ : Rel B ℓ₄} where
private
_≋_ = Pointwise _≈₁_ _≈₂_
_<ₗₑₓ_ = ×-Lex _≈₁_ _<₁_ _<₂_
×-irreflexive : Irreflexive _≈₁_ _<₁_ → Irreflexive _≈₂_ _<₂_ →
Irreflexive (Pointwise _≈₁_ _≈₂_) _<ₗₑₓ_
×-irreflexive ir₁ ir₂ x≈y (inj₁ x₁<y₁) = ir₁ (proj₁ x≈y) x₁<y₁
×-irreflexive ir₁ ir₂ x≈y (inj₂ x≈<y) = ir₂ (proj₂ x≈y) (proj₂ x≈<y)
×-antisymmetric : Symmetric _≈₁_ → Irreflexive _≈₁_ _<₁_ → Asymmetric _<₁_ →
Antisymmetric _≈₂_ _<₂_ → Antisymmetric _≋_ _<ₗₑₓ_
×-antisymmetric sym₁ irrefl₁ asym₁ antisym₂ = antisym
where
antisym : Antisymmetric _≋_ _<ₗₑₓ_
antisym (inj₁ x₁<y₁) (inj₁ y₁<x₁) =
⊥-elim $ asym₁ x₁<y₁ y₁<x₁
antisym (inj₁ x₁<y₁) (inj₂ y≈≤x) =
⊥-elim $ irrefl₁ (sym₁ $ proj₁ y≈≤x) x₁<y₁
antisym (inj₂ x≈≤y) (inj₁ y₁<x₁) =
⊥-elim $ irrefl₁ (sym₁ $ proj₁ x≈≤y) y₁<x₁
antisym (inj₂ x≈≤y) (inj₂ y≈≤x) =
proj₁ x≈≤y , antisym₂ (proj₂ x≈≤y) (proj₂ y≈≤x)
×-respectsʳ : Transitive _≈₁_ →
_<₁_ Respectsʳ _≈₁_ → _<₂_ Respectsʳ _≈₂_ →
_<ₗₑₓ_ Respectsʳ _≋_
×-respectsʳ trans resp₁ resp₂ y≈y' (inj₁ x₁<y₁) = inj₁ (resp₁ (proj₁ y≈y') x₁<y₁)
×-respectsʳ trans resp₁ resp₂ y≈y' (inj₂ x≈<y) = inj₂ (trans (proj₁ x≈<y) (proj₁ y≈y')
, (resp₂ (proj₂ y≈y') (proj₂ x≈<y)))
×-respectsˡ : Symmetric _≈₁_ → Transitive _≈₁_ →
_<₁_ Respectsˡ _≈₁_ → _<₂_ Respectsˡ _≈₂_ →
_<ₗₑₓ_ Respectsˡ _≋_
×-respectsˡ sym trans resp₁ resp₂ x≈x' (inj₁ x₁<y₁) = inj₁ (resp₁ (proj₁ x≈x') x₁<y₁)
×-respectsˡ sym trans resp₁ resp₂ x≈x' (inj₂ x≈<y) = inj₂ (trans (sym $ proj₁ x≈x') (proj₁ x≈<y)
, (resp₂ (proj₂ x≈x') (proj₂ x≈<y)))
×-respects₂ : IsEquivalence _≈₁_ →
_<₁_ Respects₂ _≈₁_ → _<₂_ Respects₂ _≈₂_ →
_<ₗₑₓ_ Respects₂ _≋_
×-respects₂ eq₁ resp₁ resp₂ = ×-respectsˡ sym trans (proj₁ resp₁) (proj₁ resp₂)
, ×-respectsʳ trans (proj₂ resp₁) (proj₂ resp₂)
where open IsEquivalence eq₁
×-compare : Symmetric _≈₁_ →
Trichotomous _≈₁_ _<₁_ → Trichotomous _≈₂_ _<₂_ →
Trichotomous _≋_ _<ₗₑₓ_
×-compare sym₁ cmp₁ cmp₂ (x₁ , x₂) (y₁ , y₂) with cmp₁ x₁ y₁
... | (tri< x₁<y₁ x₁≉y₁ x₁≯y₁) =
tri< (inj₁ x₁<y₁)
(x₁≉y₁ ∘ proj₁)
[ x₁≯y₁ , x₁≉y₁ ∘ sym₁ ∘ proj₁ ]
... | (tri> x₁≮y₁ x₁≉y₁ x₁>y₁) =
tri> [ x₁≮y₁ , x₁≉y₁ ∘ proj₁ ]
(x₁≉y₁ ∘ proj₁)
(inj₁ x₁>y₁)
... | (tri≈ x₁≮y₁ x₁≈y₁ x₁≯y₁) with cmp₂ x₂ y₂
... | (tri< x₂<y₂ x₂≉y₂ x₂≯y₂) =
tri< (inj₂ (x₁≈y₁ , x₂<y₂))
(x₂≉y₂ ∘ proj₂)
[ x₁≯y₁ , x₂≯y₂ ∘ proj₂ ]
... | (tri> x₂≮y₂ x₂≉y₂ x₂>y₂) =
tri> [ x₁≮y₁ , x₂≮y₂ ∘ proj₂ ]
(x₂≉y₂ ∘ proj₂)
(inj₂ (sym₁ x₁≈y₁ , x₂>y₂))
... | (tri≈ x₂≮y₂ x₂≈y₂ x₂≯y₂) =
tri≈ [ x₁≮y₁ , x₂≮y₂ ∘ proj₂ ]
(x₁≈y₁ , x₂≈y₂)
[ x₁≯y₁ , x₂≯y₂ ∘ proj₂ ]
module _ {_≈₁_ : Rel A ℓ₁} {_<₁_ : Rel A ℓ₂} {_<₂_ : Rel B ℓ₃} where
private
_<ₗₑₓ_ = ×-Lex _≈₁_ _<₁_ _<₂_
×-wellFounded' : Transitive _≈₁_ →
_<₁_ Respectsʳ _≈₁_ →
WellFounded _<₁_ →
WellFounded _<₂_ →
WellFounded _<ₗₑₓ_
×-wellFounded' trans resp wf₁ wf₂ (x , y) = acc (×-acc (wf₁ x) (wf₂ y))
where
×-acc : ∀ {x y} →
Acc _<₁_ x → Acc _<₂_ y →
WfRec _<ₗₑₓ_ (Acc _<ₗₑₓ_) (x , y)
×-acc (acc rec₁) acc₂ (inj₁ u<x)
= acc (×-acc (rec₁ u<x) (wf₂ _))
×-acc acc₁ (acc rec₂) (inj₂ (u≈x , v<y))
= Acc-resp-flip-≈
(×-respectsʳ {_<₁_ = _<₁_} {_<₂_ = _<₂_} trans resp (≡.respʳ _<₂_))
(u≈x , ≡.refl)
(acc (×-acc acc₁ (rec₂ v<y)))
module _ {_<₁_ : Rel A ℓ₁} {_<₂_ : Rel B ℓ₂} where
private
_<ₗₑₓ_ = ×-Lex _≡_ _<₁_ _<₂_
×-wellFounded : WellFounded _<₁_ →
WellFounded _<₂_ →
WellFounded _<ₗₑₓ_
×-wellFounded = ×-wellFounded' ≡.trans (≡.respʳ _<₁_)
------------------------------------------------------------------------
-- Collections of properties which are preserved by ×-Lex.
module _ {_≈₁_ : Rel A ℓ₁} {_<₁_ : Rel A ℓ₂}
{_≈₂_ : Rel B ℓ₃} {_<₂_ : Rel B ℓ₄} where
private
_≋_ = Pointwise _≈₁_ _≈₂_
_<ₗₑₓ_ = ×-Lex _≈₁_ _<₁_ _<₂_
×-isPreorder : IsPreorder _≈₁_ _<₁_ →
IsPreorder _≈₂_ _<₂_ →
IsPreorder _≋_ _<ₗₑₓ_
×-isPreorder pre₁ pre₂ =
record
{ isEquivalence = Pointwise.×-isEquivalence
(isEquivalence pre₁) (isEquivalence pre₂)
; reflexive = ×-reflexive _≈₁_ _<₁_ _<₂_ (reflexive pre₂)
; trans = ×-transitive {_<₂_ = _<₂_}
(isEquivalence pre₁) (≲-resp-≈ pre₁)
(trans pre₁) (trans pre₂)
}
where open IsPreorder
×-isStrictPartialOrder : IsStrictPartialOrder _≈₁_ _<₁_ →
IsStrictPartialOrder _≈₂_ _<₂_ →
IsStrictPartialOrder _≋_ _<ₗₑₓ_
×-isStrictPartialOrder spo₁ spo₂ =
record
{ isEquivalence = Pointwise.×-isEquivalence
(isEquivalence spo₁) (isEquivalence spo₂)
; irrefl = ×-irreflexive {_<₁_ = _<₁_} {_<₂_ = _<₂_}
(irrefl spo₁) (irrefl spo₂)
; trans = ×-transitive {_<₁_ = _<₁_} {_<₂_ = _<₂_}
(isEquivalence spo₁)
(<-resp-≈ spo₁) (trans spo₁)
(trans spo₂)
; <-resp-≈ = ×-respects₂ (isEquivalence spo₁)
(<-resp-≈ spo₁)
(<-resp-≈ spo₂)
}
where open IsStrictPartialOrder
×-isStrictTotalOrder : IsStrictTotalOrder _≈₁_ _<₁_ →
IsStrictTotalOrder _≈₂_ _<₂_ →
IsStrictTotalOrder _≋_ _<ₗₑₓ_
×-isStrictTotalOrder spo₁ spo₂ =
record
{ isStrictPartialOrder = ×-isStrictPartialOrder
(isStrictPartialOrder spo₁)
(isStrictPartialOrder spo₂)
; compare = ×-compare (Eq.sym spo₁) (compare spo₁)
(compare spo₂)
}
where open IsStrictTotalOrder
------------------------------------------------------------------------
-- "Bundles" can also be combined.
×-preorder : Preorder a ℓ₁ ℓ₂ →
Preorder b ℓ₃ ℓ₄ →
Preorder _ _ _
×-preorder p₁ p₂ = record
{ isPreorder = ×-isPreorder (isPreorder p₁) (isPreorder p₂)
} where open Preorder
×-strictPartialOrder : StrictPartialOrder a ℓ₁ ℓ₂ →
StrictPartialOrder b ℓ₃ ℓ₄ →
StrictPartialOrder _ _ _
×-strictPartialOrder s₁ s₂ = record
{ isStrictPartialOrder = ×-isStrictPartialOrder
(isStrictPartialOrder s₁) (isStrictPartialOrder s₂)
} where open StrictPartialOrder
×-strictTotalOrder : StrictTotalOrder a ℓ₁ ℓ₂ →
StrictTotalOrder b ℓ₃ ℓ₄ →
StrictTotalOrder _ _ _
×-strictTotalOrder s₁ s₂ = record
{ isStrictTotalOrder = ×-isStrictTotalOrder
(isStrictTotalOrder s₁) (isStrictTotalOrder s₂)
} where open StrictTotalOrder