-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathevolution.py
275 lines (219 loc) · 7.57 KB
/
evolution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
"""Script to evovle morphology."""
import argparse
import os
import random
import signal
import subprocess
import sys
import time
from datetime import datetime
from multiprocessing import Pool
from pathlib import Path
import networkx as nx
from derl.config import cfg
from derl.config import dump_cfg
from derl.envs.morphology import SymmetricUnimal
from derl.utils import evo as eu
from derl.utils import file as fu
from derl.utils import sample as su
from derl.utils import similarity as simu
"""The script assumes the following folder structure.
cfg.OUT_DIR
- models
- metadata
- xml
- unimal_init
- rewards
The evolution code has the following structure:
-- init_population
-- evolve_population
1. select unimals to evolve
2. evolve unimal. Save the mujoco xml (in xml) and save data required to
instantiate the unimal class (in unimal_init). See SymmetricUnimal
3. train unimal. Save the weights (in models). Finally save metadata like
rews etc used in step 1.
Files inside metadata correspond to actual unimals in the population. Since we
use spot instances only if metadata file is present we can be sure all other
corresponding files will be present.
Distributed Training Setup: evolution.py is launched in parallel on multiple
cpu nodes. Node id can be identified by cfg.NODE_ID leveraging aws apis.
Each evolution script launches cfg.EVO.NUM_PROCESSES parallel subprocs.
For supporting SubprocEnv we need to use subprocess. Refer:
https://stackoverflow.com/questions/6974695/python-process-pool-non-daemonic
"""
def calculate_max_iters():
# Iter here refers to 1 cycle of experience collection and policy update.
cfg.PPO.MAX_ITERS = (
int(cfg.PPO.MAX_STATE_ACTION_PAIRS)
// cfg.PPO.TIMESTEPS
// cfg.PPO.NUM_ENVS
)
def setup_output_dir():
os.makedirs(cfg.OUT_DIR, exist_ok=True)
# Make subfolders
subfolders = [
"models",
"metadata",
"xml",
"unimal_init",
"rewards",
"videos",
"error_metadata",
"images",
]
for folder in subfolders:
os.makedirs(os.path.join(cfg.OUT_DIR, folder), exist_ok=True)
def parse_args():
"""Parses the arguments."""
parser = argparse.ArgumentParser(description="Train a RL agent")
parser.add_argument(
"--cfg", dest="cfg_file", help="Config file", required=True, type=str
)
parser.add_argument(
"opts",
help="See morphology/config.py for all options",
default=None,
nargs=argparse.REMAINDER,
)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
return parser.parse_args()
def wait_till_init():
init_setup_done_path = os.path.join(cfg.OUT_DIR, "init_setup_done")
max_wait = 3600 # one hour
time_waited = 0
while not os.path.exists(init_setup_done_path):
time.sleep(60)
time_waited += 60
if time_waited >= max_wait:
print("Initial xmls not made. Exiting!")
sys.exit(1)
def limb_count_pop_init(idx, unimal_id):
# Build unimals which initialize the population based on number of limbs.
unimal = SymmetricUnimal(unimal_id)
num_limbs = su.sample_from_range(cfg.LIMB.NUM_LIMBS_RANGE)
unimal.mutate(op="grow_limb")
while unimal.num_limbs < num_limbs:
unimal.mutate()
unimal.save()
return unimal_id
def create_init_unimals():
init_setup_done_path = os.path.join(cfg.OUT_DIR, "init_setup_done")
if os.path.isfile(init_setup_done_path):
print("Init xmls have already been.")
return
init_pop_size = cfg.EVO.INIT_POPULATION_SIZE
# Create unimal xmls
p = Pool(cfg.EVO.NUM_PROCESSES)
timestamp = datetime.now().strftime("%d-%H-%M-%S")
idx_unimal_id = [
(idx, "{}-{}-{}".format(cfg.NODE_ID, idx, timestamp))
for idx in range(10 * init_pop_size)
]
unimal_ids = p.starmap(globals()[cfg.EVO.INIT_METHOD], idx_unimal_id)
G = simu.create_graph_from_uids(
None, unimal_ids, "geom_orientation", graph_type="species"
)
cc = list(nx.connected_components(G))
unimals_to_remove = []
unimals_to_keep = []
for same_unimals in cc:
if len(same_unimals) == 1:
unimals_to_keep.extend(list(same_unimals))
continue
remove_unimals = sorted(
list(same_unimals),
key=lambda unimal_id: "-".join(unimal_id.split("-")[:2]),
)
unimals_to_keep.append(remove_unimals[0])
remove_unimals = remove_unimals[1:]
unimals_to_remove.extend(remove_unimals)
# Number of unimals to add to achieve init_pop_size.
padding_count = init_pop_size - len(cc)
if padding_count > 0:
random.shuffle(unimals_to_remove)
unimals_to_remove = unimals_to_remove[padding_count:]
else:
random.shuffle(unimals_to_keep)
unimals_to_remove.extend(unimals_to_keep[init_pop_size:])
for unimal in unimals_to_remove:
fu.remove_file(fu.id2path(unimal, "xml"))
fu.remove_file(fu.id2path(unimal, "unimal_init"))
fu.remove_file(fu.id2path(unimal, "images"))
Path(init_setup_done_path).touch()
print("Finished creating init xmls.")
def kill_pg(p):
try:
os.killpg(os.getpgid(p.pid), signal.SIGTERM)
except ProcessLookupError:
pass
def relaunch_proc(p, proc_id):
# Kill the process group
kill_pg(p)
# Launch the subproc again
print("Node ID: {}, proc-id: {} relaunching".format(cfg.NODE_ID, proc_id))
p = launch_subproc(proc_id)
return p
def wait_or_kill(subprocs):
# Main process will wait till we have done search
while eu.get_searched_space_size() < cfg.EVO.SEARCH_SPACE_SIZE:
time.sleep(10) # 10 secs
# Re-launch subproc if exit was due to error
new_subprocs = []
for idx in range(len(subprocs)):
p, proc_id = subprocs[idx]
poll = p.poll()
is_error_path = os.path.join(
cfg.OUT_DIR, "{}_{}".format(cfg.NODE_ID, p.pid)
)
if os.path.exists(is_error_path) or poll:
fu.remove_file(is_error_path)
p = relaunch_proc(p, proc_id)
new_subprocs.append((p, proc_id))
subprocs = new_subprocs
if eu.should_save_video():
video_dir = fu.get_subfolder("videos")
reg_str = "{}-.*json".format(cfg.NODE_ID)
while len(fu.get_files(video_dir, reg_str)) > 0:
time.sleep(60)
# Ensure that all process will close, dangling process will prevent docker
# from exiting.
for p, _ in subprocs:
kill_pg(p)
def launch_subproc(proc_id):
cfg_path = os.path.join(cfg.OUT_DIR, cfg.CFG_DEST)
cmd = "python tools/evo_single_proc.py --cfg {} --proc-id {} NODE_ID {}".format(
cfg_path, proc_id, cfg.NODE_ID
)
p = subprocess.Popen(
cmd, shell=True, executable="/bin/bash", preexec_fn=os.setsid
)
return p
def evolve():
# Create initial unimals only in master node
if cfg.NODE_ID == 0:
create_init_unimals()
else:
wait_till_init()
subprocs = []
for idx in range(cfg.EVO.NUM_PROCESSES):
p = launch_subproc(idx)
subprocs.append((p, idx))
wait_or_kill(subprocs)
print("Node ID: {} killed all subprocs!".format(cfg.NODE_ID))
def main():
# Parse cmd line args
args = parse_args()
# Load config options
cfg.merge_from_file(args.cfg_file)
cfg.merge_from_list(args.opts)
# Infer OPTIM.MAX_ITERS
calculate_max_iters()
setup_output_dir()
cfg.freeze()
# Save the config
dump_cfg()
evolve()
if __name__ == "__main__":
main()