forked from weixk2015/DeepSFM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convert.py
157 lines (123 loc) · 4.25 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
def depth2normal(d_im):
zy, zx = np.gradient(d_im)
# You may also consider using Sobel to get a joint Gaussian smoothing and differentation
# to reduce noise
# zx = cv2.Sobel(d_im, cv2.CV_64F, 1, 0, ksize=5)
# zy = cv2.Sobel(d_im, cv2.CV_64F, 0, 1, ksize=5)
normal = np.dstack((-zx, -zy, np.ones_like(d_im)))
n = np.linalg.norm(normal, axis=2)
normal[:, :, 0] /= n
normal[:, :, 1] /= n
normal[:, :, 2] /= n
return normal
def imgrad(img):
img = torch.mean(img, 1, True)
fx = np.array([[1, 0, -1], [2, 0, -2], [1, 0, -1]])
conv1 = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False)
weight = torch.from_numpy(fx).float().unsqueeze(0).unsqueeze(0)
if img.is_cuda:
weight = weight.cuda()
conv1.weight = nn.Parameter(weight, requires_grad=False)
grad_x = conv1(img)
fy = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])
conv2 = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False)
weight = torch.from_numpy(fy).float().unsqueeze(0).unsqueeze(0)
if img.is_cuda:
weight = weight.cuda()
conv2.weight = nn.Parameter(weight, requires_grad=False)
grad_y = conv2(img)
# grad = torch.sqrt(torch.pow(grad_x,2) + torch.pow(grad_y,2))
return grad_y, grad_x
class GradLoss(nn.Module):
def __init__(model):
super(GradLoss, model).__init__()
# L1 norm
def forward(model, grad_fake, grad_real):
return torch.sum(torch.mean(torch.abs(grad_real - grad_fake)))
def imgrad_yx(img):
N, C, h, w = img.size()
grad_y, grad_x = imgrad(img)
return torch.cat((grad_y.view(N, h, w), grad_x.view(N, h, w)), dim=1)
def matrix2angle(matrix):
"""
ref: https://github.com/matthew-brett/transforms3d/blob/master/transforms3d/euler.py
input size: ... * 3 * 3
output size: ... * 3
"""
i = 0
j = 1
k = 2
dims = [dim for dim in matrix.shape]
M = matrix.contiguous().view(-1, 3, 3)
cy = torch.sqrt(M[:, i, i] * M[:, i, i] + M[:, j, i] * M[:, j, i])
if torch.max(cy).item() > 1e-15 * 4:
ax = torch.atan2(M[:, k, j], M[:, k, k])
ay = torch.atan2(-M[:, k, i], cy)
az = torch.atan2(M[:, j, i], M[:, i, i])
else:
ax = torch.atan2(-M[:, j, k], M[:, j, j])
ay = torch.atan2(-M[:, k, i], cy)
az = torch.zero(matrix.shape[:-1])
return torch.cat([torch.unsqueeze(ax, -1), torch.unsqueeze(ay, -1), torch.unsqueeze(az, -1)], -1).view(dims[:-1])
def angle2matrix(angle):
"""
ref: https://github.com/matthew-brett/transforms3d/blob/master/transforms3d/euler.py
input size: ... * 3
output size: ... * 3 * 3
"""
dims = [dim for dim in angle.shape]
angle = angle.view(-1, 3)
i = 0
j = 1
k = 2
ai = angle[:, 0]
aj = angle[:, 1]
ak = angle[:, 2]
si, sj, sk = torch.sin(ai), torch.sin(aj), torch.sin(ak)
ci, cj, ck = torch.cos(ai), torch.cos(aj), torch.cos(ak)
cc, cs = ci * ck, ci * sk
sc, ss = si * ck, si * sk
M = torch.eye(3)
M = M.view(1, 3, 3)
M = Variable(M.repeat(angle.shape[0], 1, 1).cuda())
M[:, i, i] = cj * ck
M[:, i, j] = sj * sc - cs
M[:, i, k] = sj * cc + ss
M[:, j, i] = cj * sk
M[:, j, j] = sj * ss + cc
M[:, j, k] = sj * cs - sc
M[:, k, i] = -sj
M[:, k, j] = cj * si
M[:, k, k] = cj * ci
return M.view(dims + [3])
def b_inv(A):
eye = A.new_ones(A.size(-1)).diag().expand_as(A)
b_inv, _ = torch.gesv(eye, A)
return b_inv
def inv(A, eps=1e-10):
assert len(A.shape) == 3 and \
A.shape[1] == A.shape[2]
n = A.shape[1]
U = A.clone()
L = Variable(torch.zeros(A.shape).cuda(), requires_grad=False)
L[:, range(n), range(n)] = 1
L_inv = L.clone()
# A = LU
# [A I] = [LU I] -> [U L^{-1}]
for i in range(n - 1):
L[:, i + 1:, i:i + 1] = U[:, i + 1:, i:i + 1] / (U[:, i:i + 1, i:i + 1] + eps)
L_inv[:, i + 1:, :] = L_inv[:, i + 1:, :] - L[:, i + 1:, i:i + 1].matmul(L_inv[:, i:i + 1, :])
U[:, i + 1:, :] = U[:, i + 1:, :] - L[:, i + 1:, i:i + 1].matmul(U[:, i:i + 1, :])
# [U L^{-1}] -> [I U^{-1}L^{-1}] = [I (LU)^{-1}]
A_inv = L_inv.clone()
for i in range(n - 1, -1, -1):
A_inv[:, i:i + 1, :] = A_inv[:, i:i + 1, :] / (U[:, i:i + 1, i:i + 1] + eps)
U[:, i:i + 1, :] = U[:, i:i + 1, :] / (U[:, i:i + 1, i:i + 1] + eps)
if i > 0:
A_inv[:, :i, :] = A_inv[:, :i, :] - U[:, :i, i:i + 1].matmul(A_inv[:, i:i + 1, :])
U[:, :i, :] = U[:, :i, :] - U[:, :i, i:i + 1].matmul(U[:, i:i + 1, :])
return A_inv