forked from weixk2015/DeepSFM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pose_train.py
268 lines (217 loc) · 10.8 KB
/
pose_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import argparse
import csv
import time
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torch.optim
import torch.utils.data
from tensorboardX import SummaryWriter
import custom_transforms
from convert import *
from logger import AverageMeter
from models import PoseNet
from pose_sequence_folders import SequenceFolder
from utils import save_checkpoint, save_path_formatter, adjust_learning_rate
parser = argparse.ArgumentParser(description='DeepSFM pose subnet train script',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers')
parser.add_argument('--epochs', default=10, type=int, metavar='N', # 10
help='number of total epochs to run')
parser.add_argument('--epoch-size', default=0, type=int, metavar='N',
help='manual epoch size (will match dataset size if not set)')
parser.add_argument('-b', '--batch-size', default=6, type=int, # 6
metavar='N', help='mini-batch size')
parser.add_argument('--lr', '--learning-rate', default=2e-5, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--geo', '--geo-cost', default=True, type=bool,
metavar='GC', help='whether add geometry cost')
parser.add_argument('--noise', '--pose-noise', default=False, type=bool,
metavar='PN', help='whether add pose noise')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum for sgd, alpha parameter for adam')
parser.add_argument('--beta', default=0.999, type=float, metavar='M',
help='beta parameters for adam')
parser.add_argument('--weight-decay', '--wd', default=0, type=float,
metavar='W', help='weight decay')
parser.add_argument('--print-freq', default=1, type=int,
metavar='N', help='print frequency')
parser.add_argument('--pretrained-dps', dest='pretrained_dps',
default='',
metavar='PATH',
help='path to pre-trained model')
parser.add_argument('--seed', default=0, type=int, help='seed for random functions, and network initialization')
parser.add_argument('--log-summary', default='progress_log_summary.csv', metavar='PATH',
help='csv where to save per-epoch train and valid stats')
parser.add_argument('--log-full', default='progress_log_full.csv', metavar='PATH',
help='csv where to save per-gradient descent train stats')
parser.add_argument('--log-output', action='store_true',
help='will log dispnet outputs and warped imgs at validation step')
parser.add_argument('--ttype', default='train.txt', type=str, help='Text file indicates input data')
parser.add_argument('-f', '--training-output-freq', type=int,
help='frequence for outputting dispnet outputs and warped imgs at training for all scales if 0 will not output',
metavar='N', default=100)
parser.add_argument('--nlabel', type=int, default=10, help='number of label')
parser.add_argument('--std_tr', type=float, default=0.27, help='translation')
parser.add_argument('--std_rot', type=float, default=0.12, help='rotation')
parser.add_argument('--pose_init', default='demon', help='path to init pose')
parser.add_argument('--depth_init', default='demon', help='path to init depth')
n_iter = 0
def main():
global n_iter
args = parser.parse_args()
save_path = save_path_formatter(args, parser)
args.save_path = 'checkpoints_pose6' / save_path
print('=> will save everything to {}'.format(args.save_path))
args.save_path.makedirs_p()
# torch.manual_seed(args.seed)
training_writer = SummaryWriter(args.save_path)
output_writers = []
if args.log_output:
for i in range(3):
output_writers.append(SummaryWriter(args.save_path / 'valid' / str(i)))
# Data loading code
normalize = custom_transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
train_transform = custom_transforms.Compose([
custom_transforms.RandomScaleCrop(),
custom_transforms.ArrayToTensor(),
normalize
])
print("=> fetching scenes in '{}'".format(args.data))
train_set = SequenceFolder(
args.data,
transform=train_transform,
seed=args.seed,
ttype=args.ttype,
add_geo=args.geo,
depth_source=args.depth_init,
gt_source='g',
std=args.std_tr,
pose_init=args.pose_init,
dataset=""
)
num_sample = len(train_set)
print('{} samples found in {} train scenes'.format(len(train_set), len(train_set.scenes)))
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
if args.epoch_size == 0:
args.epoch_size = len(train_loader)
# create model
print("=> creating model")
pose_net = PoseNet(args.nlabel, args.std_tr, args.std_rot, add_geo_cost=args.geo, depth_augment=False).cuda()
if args.pretrained_dps:
# freeze feature extra layers
# for param in pose_net.feature_extraction.parameters():
# param.requires_grad = False
print("=> using pre-trained weights for DPSNet")
model_dict = pose_net.state_dict()
weights = torch.load(args.pretrained_dps)['state_dict']
pretrained_dict = {k: v for k, v in weights.items() if
k in model_dict and weights[k].shape == model_dict[k].shape}
model_dict.update(pretrained_dict)
pose_net.load_state_dict(model_dict)
else:
pose_net.init_weights()
cudnn.benchmark = True
pose_net = torch.nn.DataParallel(pose_net)
print('=> setting adam solver')
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, pose_net.parameters()), args.lr,
betas=(args.momentum, args.beta)
)
with open(args.save_path / args.log_summary, 'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['train_loss', 'validation_loss'])
with open(args.save_path / args.log_full, 'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['train_loss'])
for epoch in range(args.epochs):
adjust_learning_rate(args, optimizer, epoch)
train_loss = train(args, train_loader, pose_net, optimizer, training_writer, num_sample)
if epoch % 10 == 0:
save_checkpoint(
args.save_path, {
'epoch': epoch + 1,
'state_dict': pose_net.module.state_dict()
},
epoch)
with open(args.save_path / args.log_summary, 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow([train_loss])
def train(args, train_loader, pose_net, optimizer, train_writer, num_sample):
global n_iter
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter(precision=4)
# switch to train mode
pose_net.train()
end = time.time()
for i, (tgt_img, ref_imgs, ref_poses, intrinsics, intrinsics_inv, tgt_depth, ref_depths,
ref_noise_poses, initial_pose) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
tgt_img_var = Variable(tgt_img.cuda())
ref_imgs_var = [Variable(img.cuda()) for img in ref_imgs]
ref_poses_var = [Variable(pose.cuda()) for pose in ref_poses]
ref_noise_poses_var = [Variable(pose.cuda()) for pose in ref_noise_poses]
initial_pose_var = Variable(initial_pose.cuda())
ref_depths_var = [Variable(dep.cuda()) for dep in ref_depths]
intrinsics_var = Variable(intrinsics.cuda())
intrinsics_inv_var = Variable(intrinsics_inv.cuda())
tgt_depth_var = Variable(tgt_depth.cuda())
pose = torch.cat(ref_poses_var, 1)
noise_pose = torch.cat(ref_noise_poses_var, 1)
pose_norm = torch.norm(noise_pose[:, :, :3, 3], dim=-1, keepdim=True) # b * n* 1
p_angle, p_trans, rot_c, trans_c = pose_net(tgt_img_var, ref_imgs_var, initial_pose_var, noise_pose,
intrinsics_var, intrinsics_inv_var,
tgt_depth_var,
ref_depths_var, trans_norm=pose_norm)
batch_size = p_angle.shape[0]
p_angle_v = torch.sum(F.softmax(p_angle, dim=1).view(batch_size, -1, 1) * rot_c, dim=1)
p_trans_v = torch.sum(F.softmax(p_trans, dim=1).view(batch_size, -1, 1) * trans_c, dim=1)
p_matrix = Variable(torch.zeros((batch_size, 4, 4)).float()).cuda()
p_matrix[:, 3, 3] = 1
p_matrix[:, :3, :] = torch.cat([angle2matrix(p_angle_v), p_trans_v.unsqueeze(-1)], dim=-1) # 2*3*4
loss = 0.
loss_rot = 0.
loss_trans = 0.
for j in range(len(ref_imgs)):
exp_pose = torch.matmul(inv(pose[:, j]), noise_pose[:, j])
gt_angle = matrix2angle(exp_pose[:, :3, :3])
gt_trans = exp_pose[:, :3, 3]
loss_rot = F.l1_loss(p_angle_v, gt_angle) * 50
loss_trans = F.l1_loss((p_trans_v / pose_norm[:, :, 0]),
(gt_trans / pose_norm[:, :, 0])) * 50
loss = loss + loss_trans + loss_rot
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i > 0 and n_iter % args.print_freq == 0:
train_writer.add_scalar('total_loss', loss.item(), n_iter)
if n_iter > 0 and n_iter % 2000 == 0:
save_checkpoint(
args.save_path, {
'epoch': n_iter + 1,
'state_dict': pose_net.module.state_dict()
},
n_iter)
# record loss and EPE
losses.update(loss.data[0], batch_size)
batch_time.update(time.time() - end)
end = time.time()
with open(args.save_path / args.log_full, 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow([loss.data[0]])
# import pdb;pdb.set_trace()
if i % args.print_freq == 0:
print(
'Train {}: Time {} Data {} Loss: {:.4f} rot: {:.4f}trans: {:.4f}' \
.format(i, batch_time, data_time, loss.data[0], loss_rot.data[0],
loss_trans.data[0]))
n_iter += 1
return losses.avg[0]
if __name__ == '__main__':
main()