-
Notifications
You must be signed in to change notification settings - Fork 169
/
Copy pathvalidation.py
executable file
·61 lines (49 loc) · 1.85 KB
/
validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
from torch.autograd import Variable
import time
import sys
from utils import *
def val_epoch(epoch, data_loader, model, criterion, opt, logger):
print('validation at epoch {}'.format(epoch))
model.eval()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end_time = time.time()
for i, (inputs, targets) in enumerate(data_loader):
data_time.update(time.time() - end_time)
if not opt.no_cuda:
targets = targets.cuda()
with torch.no_grad():
inputs = Variable(inputs)
targets = Variable(targets)
outputs = model(inputs)
loss = criterion(outputs, targets)
prec1, prec5 = calculate_accuracy(outputs.data, targets.data, topk=(1,5))
top1.update(prec1, inputs.size(0))
top5.update(prec5, inputs.size(0))
losses.update(loss.data, inputs.size(0))
batch_time.update(time.time() - end_time)
end_time = time.time()
if i % 10 ==0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.5f} ({batch_time.avg:.5f})\t'
'Data {data_time.val:.5f} ({data_time.avg:.5f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.5f} ({top1.avg:.5f})\t'
'Prec@5 {top5.val:.5f} ({top5.avg:.5f})'.format(
epoch,
i + 1,
len(data_loader),
batch_time=batch_time,
data_time=data_time,
loss=losses,
top1=top1,
top5=top5))
logger.log({'epoch': epoch,
'loss': losses.avg.item(),
'prec1': top1.avg.item(),
'prec5': top5.avg.item()})
return losses.avg.item(), top1.avg.item()