-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgvpmsa.py
410 lines (351 loc) · 17 KB
/
gvpmsa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import sys, time,os, random,copy
import collections
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import ModuleDict
from torch_geometric.loader import DataLoader
from utils import *
from data import *
from model_utils import GVP, GVPConvLayer, LayerNorm
class GVPMSA(object):
def __init__(self,
output_dir,
dataset_names,
train_dfs_dict,
val_dfs_dict,
test_dfs_dict,
dataset_config,
pdb_path_prefix = '',
device='cuda:0',
node_in_dim = (6, 3),
node_h_dim = (100,16),
edge_in_dim = (32, 1),
edge_h_dim =(32,1),
lr = 1e-4,
batch_size=128,
top_k=15,data_category=False,
multi_train=False,out_dim=1,
n_ensembles=3,load_model_path = None,
esm_msa_linear_hidden=128, num_layers=2,msa_in=True,
drop_rate=0.1):
if data_category:
assert out_dim == 3
else:
assert out_dim ==1
self.batch_size = batch_size
self.dataset_names = dataset_names
self.top_k = top_k
self.data_category = data_category
self.output_dir = output_dir
self.device = device
self.msa_in = msa_in
self.coords_dict = self.get_coords_dict(pdb_path_prefix,dataset_config)
self.data_loader_dict = self.get_dataloader(train_dfs_dict = train_dfs_dict,
val_dfs_dict = val_dfs_dict,
test_dfs_dict = test_dfs_dict)
self.logger = Logger(output_dir)
if load_model_path:
model_dict = torch.load(load_model_path,map_location=self.device)
model = model_dict['model']
model.load_state_dict(model_dict['model_para'])
model.multi_train = False
self.models = [model]
else:
self.models = [
VEPModel(node_in_dim=node_in_dim, node_h_dim=node_h_dim,
edge_in_dim=edge_in_dim, edge_h_dim=edge_h_dim,dataset_names=dataset_names,
multi_train = multi_train,
esm_msa_linear_hidden = esm_msa_linear_hidden,
seq_in=True, num_layers=num_layers, drop_rate=drop_rate,
out_dim = out_dim,seq_esm_msa_in=msa_in)
.to(self.device) for _ in range(n_ensembles)]
weight = torch.tensor([1,100],dtype=torch.float,device=device)
self.Loss_c = nn.CrossEntropyLoss(weight = weight)
self.Loss_mse = nn.MSELoss()
self.batch_size = batch_size
self.optimizers = [torch.optim.Adam(model.parameters(),lr=lr) for model in self.models]
self._test_pack = None
def get_coords_dict(self,pdb_path_prefix,dataset_config):
coords_dict = {}
for dataset_ in self.dataset_names:
pdbfile = os.path.join(pdb_path_prefix,'{}/{}.pdb'.format(dataset_,dataset_))
coords_binds_pad,seq_bind_pad = get_coords_seq(pdbfile,dataset_config[dataset_],ifbindchain=True,ifbetac=False)
coords_dict[dataset_] = (coords_binds_pad,seq_bind_pad)
return coords_dict
def get_dataloader(self, train_dfs_dict,val_dfs_dict,test_dfs_dict):
train_loader_dict = {}
val_loader_dict = {}
test_loader_dict = {}
for dataset_name in train_dfs_dict.keys():
train_dataset = ProteinGraphDataset(train_dfs_dict[dataset_name],self.coords_dict[dataset_name][0],
self.coords_dict[dataset_name][1],
dataset_name,get_msa_info = self.msa_in,top_k=self.top_k,if_category=self.data_category,device=self.device)
train_loader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True,)
train_loader_dict[dataset_name] = train_loader
for dataset_name in val_dfs_dict.keys():
val_dataset = ProteinGraphDataset(val_dfs_dict[dataset_name],self.coords_dict[dataset_name][0],
self.coords_dict[dataset_name][1],
dataset_name,get_msa_info = self.msa_in,top_k=self.top_k,if_category=self.data_category,device=self.device)
val_loader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
val_loader_dict[dataset_name] = val_loader
for dataset_name in test_dfs_dict.keys():
test_dataset = ProteinGraphDataset(test_dfs_dict[dataset_name],self.coords_dict[dataset_name][0],
self.coords_dict[dataset_name][1],
dataset_name,get_msa_info = self.msa_in,top_k=self.top_k,if_category=self.data_category,device=self.device)
test_loader = DataLoader(test_dataset, batch_size=self.batch_size, shuffle=False)
test_loader_dict[dataset_name] = test_loader
return {'train':train_loader_dict,'val':val_loader_dict,'test':test_loader_dict}
def train_onefold(self, fold_idx,epochs=1000,patience=150, save_checkpoint=False, save_prediction=True):
pred_list_ensemble = 0
for midx, (model, optimizer) in enumerate(zip(self.models, self.optimizers)):
stopper = EarlyStopping(patience=patience,higher_better=True)
for epoch in range(epochs):
# Training
losses_all,(pred_list,target_list),spearman_v_train = self.runModel(model,optimizer,mode='train')
self.logger.write('Epoch{},train total loss: {}, Spearman:{}\n'.format(epoch,
losses_all,spearman_v_train))
# Validation
losses_all,(pred_list,target_list),spearman_v_val = self.runModel(model,optimizer,mode='val')
self.logger.write('Epoch{},val total loss: {}, Spearman:{}\n'.format(epoch,
losses_all,spearman_v_val))
if epoch% 20 == 19:
self.logger.flush()
spearman_v_val_mean = sum(spearman_v_val)/len(spearman_v_val)
is_best = stopper.update(spearman_v_val_mean)
if is_best:
best_model_para = model.state_dict()
best_epoch = epoch
# test
losses_all,(pred_list,target_list),spearman_v_test = self.runModel(model,optimizer,mode='test')
self.logger.write('Epoch{},test total loss: {}, Spearman is {},\n'.format(epoch,
losses_all,spearman_v_test))
best_pred_target_test = (pred_list,target_list)
best_val_spearman = spearman_v_val_mean
best_test_spearman = spearman_v_test
if stopper.early_stop or epoch == epochs-1:
self.logger.write('Early stop at epoch {}\n'.format(epoch))
self.logger.write(
'ensemble idx {}, best epoch {}, best validation spearman is {},best test spearman is {},\n\n'.format(
midx,best_epoch, best_val_spearman,best_test_spearman))
break
pred_list_ensemble += np.array(best_pred_target_test[0])
if save_checkpoint:
best_stat = {'data_fold':fold_idx,'model_para':best_model_para,
'model':model,
'epoch':best_epoch,'test_pred_target':best_pred_target_test,
'best_test_metrics':best_test_spearman,
'best_val_metrics':best_val_spearman,
}
torch.save(best_stat, os.path.join(self.output_dir,'model_fold{}_ensemble{}.pt'.format(fold_idx,midx))
)
if save_prediction:
dataframe = pd.DataFrame({'pred':pred_list_ensemble,'target':best_pred_target_test[1]})
dataframe.to_csv(os.path.join(self.output_dir,'pred_fold{}.csv'.format(fold_idx)))
ensemble_metrics_spearman = spearman(pred_list_ensemble,best_pred_target_test[1])
ensemble_metrics_ndcg = ndcg(pred_list_ensemble,best_pred_target_test[1])
self.logger.write('ensemble {} models, fold {}, spearman is {}, ndcg is {}\n'.format(
len(self.models),fold_idx,ensemble_metrics_spearman,ensemble_metrics_ndcg))
return dataframe
def runModel(self, model, optimizer,mode='test'):
device = self.device
losses_all = 0
if mode == 'train':
data_loader_dict = self.data_loader_dict[mode]
datasets_list = data_loader_dict.keys()
spearman_list = []
count = 0
target_list = []
pred_list = []
data_loader_dict_iter = {}
for dataset in datasets_list:
data_loader_dict_iter[dataset] = iter(data_loader_dict[dataset])
while True:
dataset = random.sample(datasets_list,1)[0]
try:
(graph,wt_graph) = next(data_loader_dict_iter[dataset])
except StopIteration:
break
count +=1
model.train()
out = model(graph.to(device),wt_graph.to(device))
target = graph.target.float().to(device)
if self.data_category:
out_classfy,out_reg = out
target_category = torch.tensor(graph.target_category,dtype=torch.long,device=device)
loss_classfy = self.Loss_c(out_classfy,target_category)
else:
out_reg = out
loss_classfy = 0
loss_reg = self.Loss_mse(out_reg,target)
loss = loss_classfy + loss_reg
loss.backward()
losses_all += loss.item()
optimizer.step()
optimizer.zero_grad()
target_list.extend(target.cpu().detach().numpy())
pred_list.extend(out_reg.cpu().detach().numpy())
pred_list = np.vstack(pred_list)[:,0]
target_list = np.vstack(target_list)[:,0]
spearman_v = spearman(pred_list,target_list)
return losses_all/count,(pred_list,target_list),spearman_v
elif mode == 'test' or 'val':
data_loader_dict = self.data_loader_dict[mode]
datasets_list = data_loader_dict.keys()
count = 0
losses_all = 0
spearman_list = []
outall_reg_all = []
target_all_all = []
for dataset in datasets_list:
target_list = []
pred_list = []
for (graph,wt_graph) in data_loader_dict[dataset]:
with torch.no_grad():
model.eval()
count +=1
out = model(graph.to(device),wt_graph.to(device))
target = graph.target.float().to(device)
if self.data_category:
out_classfy,out_reg = out
target_category = torch.tensor(graph.target_category,dtype=torch.long,device=device)
loss_classfy = self.Loss_c(out_classfy,target_category)
else:
out_reg = out
loss_classfy = 0
target_list.extend(target.cpu().detach().numpy())
pred_list.extend(out_reg.cpu().detach().numpy())
loss_reg = self.Loss_mse(out_reg,target)
loss = loss_classfy + loss_reg
losses_all += loss.item()
pred_list = np.vstack(pred_list)
target_list = np.vstack(target_list)
spearman_list.append(spearman(pred_list,target_list))
outall_reg_all.append(pred_list)
target_all_all.append(target_list)
return_out = (losses_all/count),(np.vstack(outall_reg_all)[:,0],np.vstack(target_all_all)[:,0]),spearman_list
return return_out
def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class VEPModel(nn.Module):
def __init__(self, node_in_dim, node_h_dim,
edge_in_dim, edge_h_dim,dataset_names,
multi_train = False,
esm_msa_linear_hidden = 128,
seq_in=True, num_layers=2, drop_rate=0.1,seq_esm_msa_in=True,
out_dim = 3):
super(VEPModel, self).__init__()
self.node_h_dim = node_h_dim
self.seq_esm_msa_in = seq_esm_msa_in
self.out_dim = out_dim
self.esm_msa_linear = nn.Linear(768,esm_msa_linear_hidden)
self.multi_train = multi_train
if seq_esm_msa_in:
node_in_dim = (node_in_dim[0] + esm_msa_linear_hidden, node_in_dim[1])
if seq_in:
self.W_s = nn.Embedding(21, 20)
node_in_dim = (node_in_dim[0] + 20*3, node_in_dim[1])
self.W_v = nn.Sequential(
LayerNorm(node_in_dim),
GVP(node_in_dim, node_h_dim, activations=(None, None))
)
self.W_e = nn.Sequential(
LayerNorm(edge_in_dim),
GVP(edge_in_dim, edge_h_dim, activations=(None, None))
)
self.layers = nn.ModuleList(
GVPConvLayer(node_h_dim, edge_h_dim, drop_rate=drop_rate)
for _ in range(num_layers))
ns, _ = node_h_dim
self.W_out = nn.Sequential(
LayerNorm(node_h_dim),
GVP(node_h_dim, (ns, 0)))
self.dense = nn.Sequential(
nn.Linear(ns, ns//2), nn.ReLU(inplace=True),
nn.Dropout(p=drop_rate),
nn.Linear(ns//2, ns*2)
)
self.readout = nn.Sequential(
AggregateLayer(d_model = ns*2),
GlobalPredictor(d_model = ns*2,
d_h=128, d_out=out_dim)
)
if multi_train:
readout_list = [copy.deepcopy(self.readout) for i in range(len(dataset_names))]
self.readout_dict = ModuleDict(dict(zip(dataset_names,readout_list)))
def forward(self,graph,wt_graph):
out = self.forward1(graph,wt_graph)
out = self.dense(out)
if self.multi_train:
out = self.readout_dict[graph.dataset_name[0]](out)
else:
out = self.readout(out)
if self.out_dim ==3:
return out[:,:2],out[:,2]
elif self.out_dim ==1:
return out[:,0]
elif self.out_dim ==4:
return out[:,:3],out[:,3]
else:
print('out dim not in [0,3], not implement')
def forward1(self, graph,graph_wt):
'''
:param h_V: tuple (s, V) of node embeddings
:param edge_index: `torch.Tensor` of shape [2, num_edges]
:param h_E: tuple (s, V) of edge embeddings
:param seq: if not `None`, int `torch.Tensor` of shape [num_nodes]
to be embedded and appended to `h_V`
'''
batch_num = graph_wt.batch[-1]+1
h_V = (graph_wt.node_s,graph_wt.node_v)
h_E = (graph_wt.edge_s,graph_wt.edge_v)
seq = graph.seq
seq_wt = graph_wt.seq
edge_index = graph_wt.edge_index
if seq is not None:
seq = self.W_s(seq.long())
seq_wt = self.W_s(seq_wt.long())
h_V = (torch.cat([h_V[0], seq,seq_wt,seq-seq_wt], dim=-1), h_V[1])
if self.seq_esm_msa_in: #[h_V[0].shape = (bs*seqlen,dim)
h_V = (torch.cat([h_V[0], self.esm_msa_linear(graph_wt.msa_rep[0])], dim=-1), h_V[1])
h_V = self.W_v(h_V)
h_E = self.W_e(h_E)
for layerid,layer in enumerate(self.layers):
h_V = layer(h_V, edge_index, h_E)
out = self.W_out(h_V)
hidden_dim = out.shape[-1]
out = out.reshape(batch_num,-1,hidden_dim)
return out
class AggregateLayer(nn.Module):
def __init__(self, d_model=None, dropout=0.1):
super(AggregateLayer, self).__init__()
self.attn = nn.Sequential(collections.OrderedDict([
('layernorm', nn.LayerNorm(d_model)),
('fc', nn.Linear(d_model, 1, bias=False)),
('dropout', nn.Dropout(dropout)),
('softmax', nn.Softmax(dim=1))
]))
def forward(self, context):
weight = self.attn(context)
output = torch.bmm(context.transpose(-1, -2), weight)
output = output.squeeze(-1)
return output
class GlobalPredictor(nn.Module):
def __init__(self, d_model=None, d_h=None, d_out=None, dropout=0.5):
super(GlobalPredictor, self).__init__()
self.batchnorm = nn.BatchNorm1d(d_model)
self.predict_layer = nn.Sequential(collections.OrderedDict([
# ('batchnorm', nn.BatchNorm1d(d_model)),
('fc1', nn.Linear(d_model, d_h)),
('tanh', nn.Tanh()),
('dropout', nn.Dropout(dropout)),
('fc2', nn.Linear(d_h, d_out))
]))
def forward(self, x):
if x.shape[0] !=1:
x = self.batchnorm(x)
x = self.predict_layer(x)
return x