-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathjoes_chart_maker.py
executable file
·149 lines (117 loc) · 4.83 KB
/
joes_chart_maker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from pylab import *
from Slurp import *
import csv
from jmoo_problems import *
#GRAPH RRSLGA.DATATABLE
algorithms = ["NSGAII", "SPEA2", "GALE"]
#problems = ["Fonseca", "Golinski", "Kursawe", "Poloni", "Schaffer", "Viennet2", "Viennet3", "Viennet4", "Pom2Joe", "Srinivas", "Tanaka", "Osyczka2", "ConstrEx", "ZDT1", "ZDT2", "ZDT3", "ZDT4", "ZDT6"]
problems = [osyczka2(), zdt1(), schaffer(), tanaka()]
data = []
heads = []
for p,prob in enumerate(problems):
data.append([])
heads.append([])
for a,alg in enumerate(algorithms):
finput = open("Data/results_" + prob.name + "_" + alg + ".datatable", 'rb')
reader = csv.reader(finput, delimiter=',')
data[p].append( [] )
heads[p].append( [] )
for i,row in enumerate(reader):
for j,col in enumerate(row[:len(prob.objectives)*2+3]):
if i == 0:
heads[p][a].append(col)
data[p][a].append([])
else:
if not col == "":
data[p][a][j].append(float(col))
fignum = 0
colors = ['r', 'b', 'g']
from matplotlib.font_manager import FontProperties
fontP = FontProperties()
fontP.set_size('small')
ax = plt.subplot(111)
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
for p,prob in enumerate(problems):
for i in range((len(heads[p][0])-3)/2): #heads for any alg are same
for a,alg in enumerate(algorithms):
plot([x if x > 0 else 0 for x in data[p][a][0]], data[p][a][1 + i*2], colors[a], label=alg + ":" + heads[p][a][1 + i*2]) #median
plot([x if x > 0 else 0 for x in data[p][a][0]], data[p][a][2 + i*2], colors[a]+'--', label=alg + ":" + heads[p][a][2 + i*2]) #spread
if prob.objectives[i].lismore: dirn = "(Minimize)"
else: dirn = "(Maximize)"
title(prob.name + "_" + alg + ": " + heads[p][a][i*2 + 1] + "/" + heads[p][a][i*2 + 2] + " " + dirn)
xlabel("num evaluations")
legend(loc='center left', bbox_to_anchor=(1, 0.5), prop = fontP)
#show()
fignum += 1
plt.savefig('Charts/4-2-2013/figure' + str("%02d" % fignum) + "_" + prob.name + "_" + alg + '_f' + str(i+1) + '.png', dpi=100)
cla()
plot([x for x in data[p][a][0]], data[p][a][len(prob.objectives)*2 + 1], 'k', label="IBD")
plot([x for x in data[p][a][0]], data[p][a][len(prob.objectives)*2 + 2], 'k--', label="IBS")
title(prob.name + ": " + heads[p][a][i*2 + 1] + "/" + heads[p][a][i*2 + 2] + " " + dirn)
xlabel("num evaluations")
legend(loc='center left', bbox_to_anchor=(1, 0.5), prop = fontP)
#show()
fignum += 1
plt.savefig('Charts/4-2-2013/figure' + str("%02d" % fignum) + "_" + prob.name + "_" + alg + '_ibd_ibs.png', dpi=100)
cla()
"""
for i in range(numObjectives):
plot([x/100 for x in rrslgadata[0]], rrslgadata[1+i*2], 'r', label = headers[1+i*2]) #median
plot([x/100 for x in rrslgadata[0]], rrslgadata[2+i*2], '--r', label = headers[2+i*2]) #spread
plot([x/100 for x in nsgadata[0]], nsgadata[1+i*2], 'b', label = headers[1+i*2]) #median
plot([x/100 for x in nsgadata[0]], nsgadata[2+i*2], '--b', label = headers[2+i*2]) #spread
plot([x/100 for x in speadata[0]], speadata[1+i*2], 'g', label = headers[1+i*2]) #median
plot([x/100 for x in speadata[0]], speadata[2+i*2], '--g', label = headers[2+i*2]) #spread
title(headers[1+i*2] + "/" + headers[2+i*2])
legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=1,
ncol=2, mode="expand", borderaxespad=0.)
show()
# GRAPH A PARETO FRONTIER
input = open('Data/SchafferPF.pf', 'rb')
reader = csv.reader(input, delimiter='\t')
PF = [[], []]
for row in reader:
PF[0].append(float(row[0]))
PF[1].append(float(row[1]))
X = PF[0]
Y = PF[1]
input = open('Data/Schaffer_rrsl_front', 'rb')
reader = csv.reader(input, delimiter=',')
PF = [[], []]
for row in reader:
PF[0].append(float(row[0]))
PF[1].append(float(row[1]))
X2 = PF[0]
Y2 = PF[1]
plot(X, Y, '-')
plot(X2,Y2, 'ro')
show()
fig = matplotlib.pyplot.gcf()
fig.set_size_inches(18.5,10.5)
plt.savefig('Charts/schaffer10krrsl.png',dpi=100)
"""
#GRAPH OF THE DISTRIBUTIONS OF EACH POM2JOE OBJECTIVE
"""
readData = slurpFile("Data/foo10000.txt")
X = [[] for x in range(len(readData.headers))]
for row in readData.rows:
for i in range(len(X)):
X[i].append(row.cells[i])
print X[9]
subplot(2, 2, 0)
hist(X[1])
title("score")
subplot(2,2,1)
hist([X[10]])
title("cost")
subplot(2,2,2)
hist([X[11]])
title("completion")
subplot(2,2,3)
hist([X[12]])
title("idle")
fig = matplotlib.pyplot.gcf()
fig.set_size_inches(18.5,10.5)
plt.savefig('Charts/objective_distributions.png',dpi=100)
"""