-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
103 lines (87 loc) · 3.27 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import csv
import argparse
import json
import os
import numpy as np
import torch
from torchvision.transforms import Normalize as Normalize_th
import torch.nn.functional as F
import shutil
import time
import datetime
import cv2
from torch.autograd import Variable
import torch.optim as optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from config import *
from dataset import *
from lane_net import *
from utils.transforms.transforms import *
from utils.transforms.data_argumentation import *
from utils.lr_scheduler import PolyLR
from utils.postprocess import embedding_post_process
from sklearn.model_selection import train_test_split
def parse_args():
parse = argparse.ArgumentParser()
parse.add_argument('--model', type=str, default='runs/best.pth')
parse.add_argument('--save_dir', type=str, default='result_image/')
args = parse.parse_args()
return args
args = parse_args()
with open('//DESKTOP-3DNOAGH/traversable_region_detection/test.csv','r') as f:
lines = csv.reader(f)
coors = list(lines)
test_labels = [list(map(lambda sub: int(''.join([ele for ele in sub if ele.isnumeric()])), c[1:])) for c in coors]
# print(test_labels)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#------load data--------------------------
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
transform_test = Compose(Resize(224), Darkness(30), ToTensor(), Normalize(mean=mean, std=std))
test_dataset = Tusimple(Test_Path['test'], "test", transform_test)
test_loader = DataLoader(test_dataset, collate_fn=test_dataset.collate, batch_size=8, shuffle=True)
#------------------------------------------
net = LaneNet(pretrained=True)
save_dict = 'runs/epoch0-loss.pth'
check_point = torch.load(save_dict, map_location='cpu')
net.load_state_dict(check_point['net'])
net.to(device)
# for name, para in net.named_parameters():
# para.requires_grad = True
# print(name, para)
net.eval()
#
# #-----------------------------------------------------
#
out_path = args.save_dir
ratio_x = 224/1280
ratio_y = 224/720
with torch.no_grad():
for batch_idx, sample in enumerate(test_loader):
img = torch.tensor(sample['img']).to(device)
image_name = sample['img_name']
out_put = np.array(net(img))
print(out_put)
out_put[::2] = [l_o * 640 + 640 for l_o in out_put[::2]]
out_put[1::2] = [l_e * 360 + 360 for l_e in out_put[1::2]]
# out_put[::2] = [(l_o * 112+112)/ratio_x for l_o in out_put[::2]]
# out_put[1::2] = [(l_e * 112+112)/ratio_y for l_e in out_put[1::2]]
print(out_put)
# out_put = out_put[0][0][0]
# out_put = [int(out) for out_p in out_put for out in out_p]
# print(out_put)
for output in out_put:
points = [tuple(output[i:i + 2]) for i in range(0, len(output), 2)]
# print(points)
seg_img = np.zeros((720, 1280, 3))
cv2.line(seg_img, points[0], points[1], (255, 255, 255), 15 // 2)
cv2.line(seg_img, points[0], points[2], (200, 200, 200), 15 // 2)
cv2.imshow('result', seg_img)
cv2.waitKey(0)
# print(out_put)
# prob = F.softmax(out_put, dim=1)
#
# # print(prob[:2].data)
# max_probs, pred = torch.max(prob, dim = 1)
# print(pred)