You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am trying the recursive best first search algorithm for a different graph. But, the algorithm goes in loops before reaching the goal state. Any help is appreciated!
from collections import deque
from utils import *
class Problem:
"""The abstract class for a formal problem. You should subclass
this and implement the methods actions and result, and possibly
__init__, goal_test, and path_cost. Then you will create instances
of your subclass and solve them with the various search functions."""
def __init__(self, initial, goal=None):
"""The constructor specifies the initial state, and possibly a goal
state, if there is a unique goal. Your subclass's constructor can add
other arguments."""
self.initial = initial
self.goal = goal
def actions(self, state):
"""Return the actions that can be executed in the given
state. The result would typically be a list, but if there are
many actions, consider yielding them one at a time in an
iterator, rather than building them all at once."""
raise NotImplementedError
def result(self, state, action):
"""Return the state that results from executing the given
action in the given state. The action must be one of
self.actions(state)."""
raise NotImplementedError
def goal_test(self, state):
"""Return True if the state is a goal. The default method compares the
state to self.goal or checks for state in self.goal if it is a
list, as specified in the constructor. Override this method if
checking against a single self.goal is not enough."""
if isinstance(self.goal, list):
return is_in(state, self.goal)
else:
return state == self.goal
def path_cost(self, c, state1, action, state2):
"""Return the cost of a solution path that arrives at state2 from
state1 via action, assuming cost c to get up to state1. If the problem
is such that the path doesn't matter, this function will only look at
state2. If the path does matter, it will consider c and maybe state1
and action. The default method costs 1 for every step in the path."""
return c + 1
def value(self, state):
"""For optimization problems, each state has a value. Hill Climbing
and related algorithms try to maximize this value."""
raise NotImplementedError
# ______________________________________________________________________________
class Node:
"""A node in a search tree. Contains a pointer to the parent (the node
that this is a successor of) and to the actual state for this node. Note
that if a state is arrived at by two paths, then there are two nodes with
the same state. Also includes the action that got us to this state, and
the total path_cost (also known as g) to reach the node. Other functions
may add an f and h value; see best_first_graph_search and astar_search for
an explanation of how the f and h values are handled. You will not need to
subclass this class."""
def __init__(self, state, parent=None, action=None, path_cost=0):
"""Create a search tree Node, derived from a parent by an action."""
self.state = state
self.parent = parent
self.action = action
self.path_cost = path_cost
self.depth = 0
if parent:
self.depth = parent.depth + 1
def __repr__(self):
return "<Node {}>".format(self.state)
def __lt__(self, node):
return self.state < node.state
def expand(self, problem):
"""List the nodes reachable in one step from this node."""
return [self.child_node(problem, action)
for action in problem.actions(self.state)]
def child_node(self, problem, action):
"""[Figure 3.10]"""
next_state = problem.result(self.state, action)
next_node = Node(next_state, self, action, problem.path_cost(self.path_cost, self.state, action, next_state))
return next_node
def solution(self):
"""Return the sequence of actions to go from the root to this node."""
return [node.action for node in self.path()[1:]]
def path(self):
"""Return a list of nodes forming the path from the root to this node."""
node, path_back = self, []
while node:
path_back.append(node)
node = node.parent
return list(reversed(path_back))
# We want for a queue of nodes in breadth_first_graph_search or
# astar_search to have no duplicated states, so we treat nodes
# with the same state as equal. [Problem: this may not be what you
# want in other contexts.]
def __eq__(self, other):
return isinstance(other, Node) and self.state == other.state
def __hash__(self):
# We use the hash value of the state
# stored in the node instead of the node
# object itself to quickly search a node
# with the same state in a Hash Table
return hash(self.state)
def depth_limited_search(problem, limit=50):
"""[Figure 3.17]"""
def recursive_dls(node, problem, limit):
if problem.goal_test(node.state):
return node
elif limit == 0:
return 'cutoff'
else:
cutoff_occurred = False
for child in node.expand(problem):
result = recursive_dls(child, problem, limit - 1)
if result == 'cutoff':
cutoff_occurred = True
elif result is not None:
return result
return 'cutoff' if cutoff_occurred else None
# Body of depth_limited_search:
return recursive_dls(Node(problem.initial), problem, limit)
def iterative_deepening_search(problem):
"""[Figure 3.18]"""
for depth in range(sys.maxsize):
result = depth_limited_search(problem, depth)
if result != 'cutoff':
return result
def recursive_best_first_search(problem, h=None):
"""[Figure 3.26]"""
h = memoize(h or problem.h, 'h')
def RBFS(problem, node, flimit):
if problem.goal_test(node.state):
return node, 0 # (The second value is immaterial)
successors = node.expand(problem)
if len(successors) == 0:
return None, np.inf
for s in successors:
s.f = max(s.path_cost + h(s), node.f)
while True:
# Order by lowest f value
successors.sort(key=lambda x: x.f)
best = successors[0]
if best.f > flimit:
return None, best.f
if len(successors) > 1:
alternative = successors[1].f
else:
alternative = np.inf
result, best.f = RBFS(problem, best, min(flimit, alternative))
if result is not None:
return result, best.f
node = Node(problem.initial)
node.f = h(node)
result, bestf = RBFS(problem, node, np.inf)
return result
class Graph:
"""A graph connects nodes (vertices) by edges (links). Each edge can also
have a length associated with it. The constructor call is something like:
g = Graph({'A': {'B': 1, 'C': 2})
this makes a graph with 3 nodes, A, B, and C, with an edge of length 1 from
A to B, and an edge of length 2 from A to C. You can also do:
g = Graph({'A': {'B': 1, 'C': 2}, directed=False)
This makes an undirected graph, so inverse links are also added. The graph
stays undirected; if you add more links with g.connect('B', 'C', 3), then
inverse link is also added. You can use g.nodes() to get a list of nodes,
g.get('A') to get a dict of links out of A, and g.get('A', 'B') to get the
length of the link from A to B. 'Lengths' can actually be any object at
all, and nodes can be any hashable object."""
def __init__(self, graph_dict=None, directed=True):
self.graph_dict = graph_dict or {}
self.directed = directed
if not directed:
self.make_undirected()
def make_undirected(self):
"""Make a digraph into an undirected graph by adding symmetric edges."""
for a in list(self.graph_dict.keys()):
for (b, dist) in self.graph_dict[a].items():
self.connect1(b, a, dist)
def connect(self, A, B, distance=1):
"""Add a link from A and B of given distance, and also add the inverse
link if the graph is undirected."""
self.connect1(A, B, distance)
if not self.directed:
self.connect1(B, A, distance)
def connect1(self, A, B, distance):
"""Add a link from A to B of given distance, in one direction only."""
self.graph_dict.setdefault(A, {})[B] = distance
def get(self, a, b=None):
"""Return a link distance or a dict of {node: distance} entries.
.get(a,b) returns the distance or None;
.get(a) returns a dict of {node: distance} entries, possibly {}."""
links = self.graph_dict.setdefault(a, {})
if b is None:
return links
else:
return links.get(b)
def nodes(self):
"""Return a list of nodes in the graph."""
s1 = set([k for k in self.graph_dict.keys()])
s2 = set([k2 for v in self.graph_dict.values() for k2, v2 in v.items()])
nodes = s1.union(s2)
return list(nodes)
def UndirectedGraph(graph_dict=None):
"""Build a Graph where every edge (including future ones) goes both ways."""
return Graph(graph_dict=graph_dict, directed=False)
romania_map = UndirectedGraph(dict(
A=dict(C=10, G=5, D=17, B=15),
B=dict(A=15, D=12),
C=dict(A=10, G=7),
D=dict(A=17, B=12, F=10, E=2, H=4),
E=dict(D=2),
F=dict(D=10, H=11),
G=dict(C=7, A=5, H=25),
H=dict(G=25, D=4, F=11)))
romania_map.locations = dict(
A=(91, 492), B=(400, 327), C=(253, 288),
D=(165, 299), E=(562, 293), F=(305, 449),
G=(375, 270), H=(534, 350))
class GraphProblem(Problem):
"""The problem of searching a graph from one node to another."""
def __init__(self, initial, goal, graph):
super().__init__(initial, goal)
self.graph = graph
def actions(self, A):
"""The actions at a graph node are just its neighbors."""
return list(self.graph.get(A).keys())
def result(self, state, action):
"""The result of going to a neighbor is just that neighbor."""
return action
def path_cost(self, cost_so_far, A, action, B):
return cost_so_far + (self.graph.get(A, B) or np.inf)
def find_min_edge(self):
"""Find minimum value of edges."""
m = np.inf
for d in self.graph.graph_dict.values():
local_min = min(d.values())
m = min(m, local_min)
return m
def h(self, node):
"""h function is straight-line distance from a node's state to goal."""
locs = getattr(self.graph, 'locations', None)
if locs:
if type(node) is str:
return int(distance(locs[node], locs[self.goal]))
return int(distance(locs[node.state], locs[self.goal]))
else:
return np.inf
print("\n\nSolving for A to E....")
romania_problem = GraphProblem('A', 'B', romania_map)
resultnode = RecursiveBFS(romania_problem)
if(resultnode[0] != None ):
print("Path taken :" , resultnode[0].path())
print("Path Cost :" , resultnode[0].path_cost)
The text was updated successfully, but these errors were encountered:
Hi,
I am trying the recursive best first search algorithm for a different graph. But, the algorithm goes in loops before reaching the goal state. Any help is appreciated!
The text was updated successfully, but these errors were encountered: