-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathtf_to_uff.py
41 lines (33 loc) · 1.64 KB
/
tf_to_uff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# -*- coding: utf-8 -*-
# Author : Andy Liu
# Last modified: 2019-03-15
# This script is used to convert tensorflow model file to uff file
# Using:
# python tf_to_uff.py
import os
import uff
import tensorflow as tf
import tensorrt as trt
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# >>>>>> Here need to modify based on your data >>>>>>
model_path = "model/model.ckpt"
frozen_model_path = "model/frozen_graphs/frozen_graph.pb"
uff_path = "model/uff/model.uff"
frozen_node_name = ["fc_3/frozen"]
# <<<<<< Here need to modify based on your data <<<<<<
def getFrozenModel(model_path):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.import_meta_graph(model_path+'.meta')
saver.restore(sess, model_path)
graph = tf.get_default_graph().as_graph_def()
frozen_graph = tf.graph_util.convert_variables_to_constants(sess, graph, frozen_node_name)
return tf.graph_util.remove_training_nodes(frozen_graph)
tf_model = getFrozenModel(model_path)
with tf.gfile.FastGFile(frozen_model_path, mode='wb') as f:
f.write(tf_model.SerializeToString())
# 若用了output_filename参数则返回的是NULL,否则返回的是序列化以后的UFF模型数据
#uff_model = uff.from_tensorflow(tf_model, output_nodes=frozen_node_name, output_filename=uff_path, text=True, list_nodes=True)
uff_model = uff.from_tensorflow_frozen_model(frozen_model_path, output_nodes=frozen_node_name, output_filename=uff_path, text=True, list_nodes=True)
print('Success! Frozen model is stored in ', os.path.abspath(frozen_model_path))
print('Success! UFF file is stored in ', os.path.abspath(uff_path))