Skip to content

Latest commit

 

History

History
37 lines (24 loc) · 1.75 KB

File metadata and controls

37 lines (24 loc) · 1.75 KB

spline-trajectory-optimization

Please head over to devel branch for the code in the paper "Spline-Based Minimum-Curvature Trajectory Optimization for Autonomous Racing".

Spline-based Trajectory Optimization tool for Autonomous Racing (Indy Autonomous Challenge)

Install

  1. Install SciPy, matplotlib, shapely, casadi, bezier.
  2. For min curvature problem, install Julia 1.8.5+.
  3. Clone this repository and install with pip install -e ..

Run

  • For min curvature problem, run julia/spline_traj_opt.ipynb.
  • For min time problem, copy traj_opt_double_track.yaml in spline_traj_optm/min_time_otpm/example to your workspace, and execute traj_opt_double_track.

Repository Organization

  • spline_traj_optm/examples: Example inputs for the trajectory optimization (Monza)
  • spline_traj_optm/models: Data classes for holding optimization information (race track, vehicle, and trajectory information)
  • spline_traj_optm/optimization: Optimization functions
  • spline_traj_optm/simulator: Quasi-Steady State (QSS) simulation of a given trajectory for optimal speed
  • spline_traj_optm/tests: Tests for the package
  • spline_traj_optm/visualization: Functions for visualization the optimization and simulation results
  • julia/spline_traj_opt.ipynb: Julia notebook of the optimization notebook

Input Format

csvs for inside bound , outside bound, and center line

  • 3 columns

image

If there is a bank angle, should be 4 columns with the fourth column as bank angle (if 3 columns bank default to zero) image