-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_baller2vec.py
365 lines (300 loc) · 12.7 KB
/
train_baller2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import numpy as np
import pickle
import random
import sys
import time
import torch
import yaml
from baller2vec import Baller2Vec, Baller2VecSeq2Seq
from baller2vec_dataset import Baller2VecDataset
from settings import *
from torch import nn, optim
from torch.utils.data import DataLoader
SEED = 2010
torch.manual_seed(SEED)
torch.set_printoptions(linewidth=160)
def worker_init_fn(worker_id):
# See: https://pytorch.org/docs/stable/notes/faq.html#my-data-loader-workers-return-identical-random-numbers
# and: https://pytorch.org/docs/stable/data.html#multi-process-data-loading
# and: https://pytorch.org/docs/stable/data.html#randomness-in-multi-process-data-loading.
# NumPy seed takes a 32-bit unsigned integer.
np.random.seed(int(torch.utils.data.get_worker_info().seed) % (2 ** 32 - 1))
def get_train_valid_test_gameids(opts):
try:
with open("train_gameids.txt") as f:
train_gameids = f.read().split()
with open("valid_gameids.txt") as f:
valid_gameids = f.read().split()
with open("test_gameids.txt") as f:
test_gameids = f.read().split()
except FileNotFoundError:
print("No {train/valid/test}_gameids.txt files found. Generating new ones.")
gameids = list(set([np_f.split("_")[0] for np_f in os.listdir(GAMES_DIR)]))
gameids.sort()
np.random.seed(SEED)
np.random.shuffle(gameids)
n_train_valid = int(opts["train"]["train_valid_prop"] * len(gameids))
n_train = int(opts["train"]["train_prop"] * n_train_valid)
train_valid_gameids = gameids[:n_train_valid]
train_gameids = train_valid_gameids[:n_train]
valid_gameids = train_valid_gameids[n_train:]
test_gameids = gameids[n_train_valid:]
train_valid_test_gameids = {
"train": train_gameids,
"valid": valid_gameids,
"test": test_gameids,
}
for (train_valid_test, gameids) in train_valid_test_gameids.items():
with open(f"{train_valid_test}_gameids.txt", "w") as f:
for gameid in gameids:
f.write(f"{gameid}\n")
np.random.seed(SEED)
return (train_gameids, valid_gameids, test_gameids)
def init_datasets(opts):
baller2vec_config = pickle.load(open(f"{DATA_DIR}/baller2vec_config.pydict", "rb"))
n_player_ids = len(baller2vec_config["player_idx2props"])
filtered_player_idxs = set()
for (player_idx, player_props) in baller2vec_config["player_idx2props"].items():
if "playing_time" not in player_props:
continue
if player_props["playing_time"] < opts["train"]["min_playing_time"]:
filtered_player_idxs.add(player_idx)
(train_gameids, valid_gameids, test_gameids) = get_train_valid_test_gameids(opts)
dataset_config = opts["dataset"]
dataset_config["gameids"] = train_gameids
dataset_config["N"] = opts["train"]["train_samples_per_epoch"]
dataset_config["starts"] = []
dataset_config["mode"] = "train"
dataset_config["n_player_ids"] = n_player_ids
dataset_config["filtered_player_idxs"] = filtered_player_idxs
train_dataset = Baller2VecDataset(**dataset_config)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=None,
num_workers=opts["train"]["workers"],
worker_init_fn=worker_init_fn,
)
N = opts["train"]["valid_samples"]
samps_per_gameid = int(np.ceil(N / len(valid_gameids)))
starts = []
for gameid in valid_gameids:
y = np.load(f"{GAMES_DIR}/{gameid}_y.npy")
max_start = len(y) - train_dataset.chunk_size
gaps = max_start // samps_per_gameid
starts.append(gaps * np.arange(samps_per_gameid))
dataset_config["gameids"] = np.repeat(valid_gameids, samps_per_gameid)
dataset_config["N"] = len(dataset_config["gameids"])
dataset_config["starts"] = np.concatenate(starts)
dataset_config["mode"] = "valid"
valid_dataset = Baller2VecDataset(**dataset_config)
valid_loader = DataLoader(
dataset=valid_dataset,
batch_size=None,
num_workers=opts["train"]["workers"],
)
samps_per_gameid = int(np.ceil(N / len(test_gameids)))
starts = []
for gameid in test_gameids:
y = np.load(f"{GAMES_DIR}/{gameid}_y.npy")
max_start = len(y) - train_dataset.chunk_size
gaps = max_start // samps_per_gameid
starts.append(gaps * np.arange(samps_per_gameid))
dataset_config["gameids"] = np.repeat(test_gameids, samps_per_gameid)
dataset_config["N"] = len(dataset_config["gameids"])
dataset_config["starts"] = np.concatenate(starts)
dataset_config["mode"] = "test"
test_dataset = Baller2VecDataset(**dataset_config)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=None,
num_workers=opts["train"]["workers"],
)
if opts["train"]["task"] != "event":
opts["n_seq_labels"] = train_dataset.n_score_changes + 1
else:
opts["n_seq_labels"] = len(baller2vec_config["event2event_idx"])
return (
train_dataset,
train_loader,
valid_dataset,
valid_loader,
test_dataset,
test_loader,
)
def init_model(opts, train_dataset):
model_config = opts["model"]
# Add one for the generic player.
model_config["n_player_ids"] = train_dataset.n_player_ids + 1
model_config["seq_len"] = train_dataset.chunk_size // train_dataset.hz - 1
model_config["n_player_labels"] = train_dataset.player_traj_n ** 2
if opts["train"]["task"] == "seq2seq":
model = Baller2VecSeq2Seq(**model_config)
else:
model_config["n_seq_labels"] = opts["n_seq_labels"]
model_config["n_players"] = train_dataset.n_players
if opts["train"]["task"] == "ball_loc":
model_config["n_ball_labels"] = (
train_dataset.n_ball_loc_y_bins * train_dataset.n_ball_loc_x_bins
)
else:
model_config["n_ball_labels"] = train_dataset.ball_traj_n ** 3
model = Baller2Vec(**model_config)
return model
def get_preds_labels(tensors):
if ("player" in task) or ("ball" in task):
player_trajs = tensors["player_trajs"].flatten()
n_player_trajs = len(player_trajs)
if task == "player_traj":
labels = player_trajs.to(device)
preds = model(tensors)["player"][:n_player_trajs]
else:
if task == "ball_loc":
labels = tensors["ball_locs"].flatten().to(device)
else:
labels = tensors["ball_trajs"].flatten().to(device)
preds = model(tensors)["ball"][n_player_trajs:][: len(labels)]
elif (task == "event") or (task == "score"):
if task == "event":
labels = tensors["events"].flatten().to(device)
else:
labels = tensors["score_changes"].flatten().to(device)
preds = model(tensors)["seq_label"][-model.seq_len :]
elif task == "seq2seq":
# Randomly choose which team to encode.
start_stops = {"enc": (0, 5), "dec": (5, 10)}
if random.random() < 0.5:
start_stops = {"enc": (5, 10), "dec": (0, 5)}
(start, stop) = start_stops["dec"]
labels = tensors["player_trajs"][:, start:stop].flatten().to(device)
preds = model(tensors, start_stops)[: len(labels)]
return (preds, labels)
def train_model():
# Initialize optimizer.
if ((task == "event") or (task == "score")) and (opts["train"]["prev_model"]):
old_job = opts["train"]["prev_model"]
old_job_dir = f"{EXPERIMENTS_DIR}/{old_job}"
model.load_state_dict(torch.load(f"{old_job_dir}/best_params.pth"))
train_params = [params for params in model.event_classifier.parameters()]
else:
train_params = [params for params in model.parameters()]
optimizer = optim.Adam(train_params, lr=opts["train"]["learning_rate"])
criterion = nn.CrossEntropyLoss()
# Continue training on a prematurely terminated model.
try:
model.load_state_dict(torch.load(f"{JOB_DIR}/best_params.pth"))
try:
optimizer.load_state_dict(torch.load(f"{JOB_DIR}/optimizer.pth"))
except ValueError:
print("Old optimizer doesn't match.")
except FileNotFoundError:
pass
best_train_loss = float("inf")
best_valid_loss = float("inf")
test_loss_best_valid = float("inf")
total_train_loss = None
no_improvement = 0
for epoch in range(650):
print(f"\nepoch: {epoch}", flush=True)
model.eval()
total_valid_loss = 0.0
with torch.no_grad():
n_valid = 0
for valid_tensors in valid_loader:
# Skip bad sequences.
if len(valid_tensors["player_idxs"]) < model.seq_len:
continue
(preds, labels) = get_preds_labels(valid_tensors)
loss = criterion(preds, labels)
total_valid_loss += loss.item()
n_valid += 1
probs = torch.softmax(preds, dim=1)
(probs, preds) = probs.max(1)
print(probs.view(model.seq_len, model.n_players), flush=True)
print(preds.view(model.seq_len, model.n_players), flush=True)
print(labels.view(model.seq_len, model.n_players), flush=True)
total_valid_loss /= n_valid
if total_valid_loss < best_valid_loss:
best_valid_loss = total_valid_loss
no_improvement = 0
torch.save(optimizer.state_dict(), f"{JOB_DIR}/optimizer.pth")
torch.save(model.state_dict(), f"{JOB_DIR}/best_params.pth")
test_loss_best_valid = 0.0
with torch.no_grad():
n_test = 0
for test_tensors in test_loader:
# Skip bad sequences.
if len(test_tensors["player_idxs"]) < model.seq_len:
continue
(preds, labels) = get_preds_labels(test_tensors)
loss = criterion(preds, labels)
test_loss_best_valid += loss.item()
n_test += 1
test_loss_best_valid /= n_test
elif no_improvement < patience:
no_improvement += 1
if no_improvement == patience:
if ((task == "event") or (task == "score")) and (
opts["train"]["prev_model"]
):
print("Now training full model.")
train_params = [params for params in model.parameters()]
optimizer = optim.Adam(
train_params, lr=opts["train"]["learning_rate"]
)
else:
print("Reducing learning rate.")
for g in optimizer.param_groups:
g["lr"] *= 0.1
print(f"total_train_loss: {total_train_loss}")
print(f"best_train_loss: {best_train_loss}")
print(f"total_valid_loss: {total_valid_loss}")
print(f"best_valid_loss: {best_valid_loss}")
print(f"test_loss_best_valid: {test_loss_best_valid}")
model.train()
total_train_loss = 0.0
n_train = 0
start_time = time.time()
for (train_idx, train_tensors) in enumerate(train_loader):
if train_idx % 1000 == 0:
print(train_idx, flush=True)
# Skip bad sequences.
if len(train_tensors["player_idxs"]) < model.seq_len:
continue
optimizer.zero_grad()
(preds, labels) = get_preds_labels(train_tensors)
loss = criterion(preds, labels)
total_train_loss += loss.item()
loss.backward()
optimizer.step()
n_train += 1
epoch_time = time.time() - start_time
total_train_loss /= n_train
if total_train_loss < best_train_loss:
best_train_loss = total_train_loss
print(f"epoch_time: {epoch_time:.2f}", flush=True)
if __name__ == "__main__":
JOB = sys.argv[1]
JOB_DIR = f"{EXPERIMENTS_DIR}/{JOB}"
try:
os.environ["CUDA_VISIBLE_DEVICES"] = sys.argv[2]
except IndexError:
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
opts = yaml.safe_load(open(f"{JOB_DIR}/{JOB}.yaml"))
task = opts["train"]["task"]
patience = opts["train"]["patience"]
# Initialize datasets.
(
train_dataset,
train_loader,
valid_dataset,
valid_loader,
test_dataset,
test_loader,
) = init_datasets(opts)
# Initialize model.
device = torch.device("cuda:0")
model = init_model(opts, train_dataset).to(device)
print(model)
n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Parameters: {n_params}")
train_model()