From 71815713390f8a3aace690cb436eeb59f78b5ed1 Mon Sep 17 00:00:00 2001 From: Arief Rahmansyah Date: Mon, 26 Aug 2024 10:53:15 +0700 Subject: [PATCH] hypter parameter tuning, transfer learning --- docs/_toc.yml | 2 + docs/deep_learning/.gitignore | 1 + docs/deep_learning/keras_tuner.ipynb | 25125 +++++++++++++++++++ docs/deep_learning/model.png | Bin 0 -> 164820 bytes docs/deep_learning/transfer_learning.ipynb | 9730 +++++++ poetry.lock | 37 +- pyproject.toml | 1 + 7 files changed, 34895 insertions(+), 1 deletion(-) create mode 100644 docs/deep_learning/.gitignore create mode 100644 docs/deep_learning/keras_tuner.ipynb create mode 100644 docs/deep_learning/model.png create mode 100644 docs/deep_learning/transfer_learning.ipynb diff --git a/docs/_toc.yml b/docs/_toc.yml index 5fa86c0..35a41ca 100644 --- a/docs/_toc.yml +++ b/docs/_toc.yml @@ -109,6 +109,8 @@ parts: - caption: Deep Learning chapters: - file: deep_learning/intro_to_deep_learning + - file: deep_learning/keras_tuner + - file: deep_learning/transfer_learning - caption: LLM chapters: diff --git a/docs/deep_learning/.gitignore b/docs/deep_learning/.gitignore new file mode 100644 index 0000000..f3a8e7f --- /dev/null +++ b/docs/deep_learning/.gitignore @@ -0,0 +1 @@ +keras_tuner diff --git a/docs/deep_learning/keras_tuner.ipynb b/docs/deep_learning/keras_tuner.ipynb new file mode 100644 index 0000000..c370f2d --- /dev/null +++ b/docs/deep_learning/keras_tuner.ipynb @@ -0,0 +1,25125 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "cellView": "form", + "id": "tuOe1ymfHZPu" + }, + "outputs": [], + "source": [ + "# @title Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qFdPvlXBOdUN" + }, + "source": [ + "# Hyperparameter Tuning with Keras Tuner\n", + "\n", + "Copyright 2020 The TensorFlow Authors." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MfBg1C5NB3X0" + }, + "source": [ + "\n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " View on TensorFlow.org\n", + " \n", + " Run in Google Colab\n", + " \n", + " View source on GitHub\n", + " \n", + " Download notebook\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xHxb-dlhMIzW" + }, + "source": [ + "## Overview\n", + "\n", + "The Keras Tuner is a library that helps you pick the optimal set of hyperparameters for your TensorFlow program. The process of selecting the right set of hyperparameters for your machine learning (ML) application is called *hyperparameter tuning* or *hypertuning*.\n", + "\n", + "Hyperparameters are the variables that govern the training process and the topology of an ML model. These variables remain constant over the training process and directly impact the performance of your ML program. Hyperparameters are of two types:\n", + "1. **Model hyperparameters** which influence model selection such as the number and width of hidden layers\n", + "2. **Algorithm hyperparameters** which influence the speed and quality of the learning algorithm such as the learning rate for Stochastic Gradient Descent (SGD) and the number of nearest neighbors for a k Nearest Neighbors (KNN) classifier\n", + "\n", + "In this tutorial, you will use the Keras Tuner to perform hypertuning for an image classification application." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MUXex9ctTuDB" + }, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "IqR2PQG4ZaZ0" + }, + "outputs": [], + "source": [ + "import tensorflow as tf\n", + "from tensorflow import keras" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "g83Lwsy-Aq2_" + }, + "source": [ + "Install and import the Keras Tuner." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "_leAIdFKAxAD" + }, + "outputs": [], + "source": [ + "import keras_tuner as kt" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ReV_UXOgCZvx" + }, + "source": [ + "## Download and prepare the dataset\n", + "\n", + "In this tutorial, you will use the Keras Tuner to find the best hyperparameters for a machine learning model that classifies images of clothing from the [Fashion MNIST dataset](https://github.com/zalandoresearch/fashion-mnist)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HljH_ENLEdHa" + }, + "source": [ + "Load the data." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "OHlHs9Wj_PUM" + }, + "outputs": [], + "source": [ + "(img_train, label_train), (img_test, label_test) = (\n", + " keras.datasets.fashion_mnist.load_data()\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "bLVhXs3xrUD0" + }, + "outputs": [], + "source": [ + "# Normalize pixel values between 0 and 1\n", + "img_train = img_train.astype(\"float32\") / 255.0\n", + "img_test = img_test.astype(\"float32\") / 255.0" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "K5YEL2H2Ax3e" + }, + "source": [ + "## Define the model\n", + "\n", + "When you build a model for hypertuning, you also define the hyperparameter search space in addition to the model architecture. The model you set up for hypertuning is called a *hypermodel*.\n", + "\n", + "You can define a hypermodel through two approaches:\n", + "\n", + "* By using a model builder function\n", + "* By subclassing the `HyperModel` class of the Keras Tuner API\n", + "\n", + "You can also use two pre-defined [HyperModel](https://keras.io/api/keras_tuner/hypermodels/) classes - [HyperXception](https://keras.io/api/keras_tuner/hypermodels/hyper_xception/) and [HyperResNet](https://keras.io/api/keras_tuner/hypermodels/hyper_resnet/) for computer vision applications.\n", + "\n", + "In this tutorial, you use a model builder function to define the image classification model. The model builder function returns a compiled model and uses hyperparameters you define inline to hypertune the model." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "ZQKodC-jtsva" + }, + "outputs": [], + "source": [ + "def model_builder(hp):\n", + " model = keras.Sequential()\n", + " model.add(keras.layers.Flatten(input_shape=(28, 28)))\n", + "\n", + " # Tune the number of units in the first Dense layer\n", + " # Choose an optimal value between 32-512\n", + " hp_units = hp.Int(\"units\", min_value=32, max_value=512, step=32)\n", + " model.add(keras.layers.Dense(units=hp_units, activation=\"relu\"))\n", + " model.add(keras.layers.Dense(10))\n", + "\n", + " # Tune the learning rate for the optimizer\n", + " # Choose an optimal value from 0.01, 0.001, or 0.0001\n", + " hp_learning_rate = hp.Choice(\"learning_rate\", values=[1e-2, 1e-3, 1e-4])\n", + "\n", + " model.compile(\n", + " optimizer=keras.optimizers.Adam(learning_rate=hp_learning_rate),\n", + " loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", + " metrics=[\"accuracy\"],\n", + " )\n", + "\n", + " return model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0J1VYw4q3x0b" + }, + "source": [ + "## Instantiate the tuner and perform hypertuning\n", + "\n", + "Instantiate the tuner to perform the hypertuning. The Keras Tuner has four tuners available - `RandomSearch`, `Hyperband`, `BayesianOptimization`, and `Sklearn`. In this tutorial, you use the [Hyperband](https://arxiv.org/pdf/1603.06560.pdf) tuner.\n", + "\n", + "To instantiate the Hyperband tuner, you must specify the hypermodel, the `objective` to optimize and the maximum number of epochs to train (`max_epochs`)." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "oichQFly6Y46" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/ariefrahmansyah/Library/Caches/pypoetry/virtualenvs/applied-python-training-MLD32oJZ-py3.12/lib/python3.12/site-packages/keras/src/layers/reshaping/flatten.py:37: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", + " super().__init__(**kwargs)\n" + ] + } + ], + "source": [ + "tuner = kt.Hyperband(\n", + " model_builder,\n", + " objective=\"val_accuracy\",\n", + " max_epochs=10,\n", + " factor=3,\n", + " directory=\"keras_tuner\",\n", + " project_name=\"intro_to_kt\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VaIhhdKf9VtI" + }, + "source": [ + "The Hyperband tuning algorithm uses adaptive resource allocation and early-stopping to quickly converge on a high-performing model. This is done using a sports championship style bracket. The algorithm trains a large number of models for a few epochs and carries forward only the top-performing half of models to the next round. Hyperband determines the number of models to train in a bracket by computing 1 + log`factor`(`max_epochs`) and rounding it up to the nearest integer." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cwhBdXx0Ekj8" + }, + "source": [ + "Create a callback to stop training early after reaching a certain value for the validation loss." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "id": "WT9IkS9NEjLc" + }, + "outputs": [], + "source": [ + "stop_early = tf.keras.callbacks.EarlyStopping(monitor=\"val_loss\", patience=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UKghEo15Tduy" + }, + "source": [ + "Run the hyperparameter search. The arguments for the search method are the same as those used for `tf.keras.model.fit` in addition to the callback above." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "dSBQcTHF9cKt" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Trial 30 Complete [00h 00m 07s]\n", + "val_accuracy: 0.8732500076293945\n", + "\n", + "Best val_accuracy So Far: 0.8946666717529297\n", + "Total elapsed time: 00h 06m 50s\n", + "\n", + "The hyperparameter search is complete. The optimal number of units in the first densely-connected\n", + "layer is 256 and the optimal learning rate for the optimizer\n", + "is 0.001.\n", + "\n" + ] + } + ], + "source": [ + "tuner.search(\n", + " img_train, label_train, epochs=50, validation_split=0.2, callbacks=[stop_early]\n", + ")\n", + "\n", + "# Get the optimal hyperparameters\n", + "best_hps = tuner.get_best_hyperparameters(num_trials=1)[0]\n", + "\n", + "print(\n", + " f\"\"\"\n", + "The hyperparameter search is complete. The optimal number of units in the first densely-connected\n", + "layer is {best_hps.get('units')} and the optimal learning rate for the optimizer\n", + "is {best_hps.get('learning_rate')}.\n", + "\"\"\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Lak_ylf88xBv" + }, + "source": [ + "## Train the model\n", + "\n", + "Find the optimal number of epochs to train the model with the hyperparameters obtained from the search." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "McO82AXOuxXh" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.7786 - loss: 0.6399 - val_accuracy: 0.8556 - val_loss: 0.4018\n", + "Epoch 2/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.8591 - loss: 0.3858 - val_accuracy: 0.8647 - val_loss: 0.3759\n", + "Epoch 3/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.8771 - loss: 0.3376 - val_accuracy: 0.8747 - val_loss: 0.3436\n", + "Epoch 4/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.8834 - loss: 0.3133 - val_accuracy: 0.8726 - val_loss: 0.3592\n", + "Epoch 5/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.8907 - loss: 0.2950 - val_accuracy: 0.8773 - val_loss: 0.3320\n", + "Epoch 6/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.8975 - loss: 0.2750 - val_accuracy: 0.8849 - val_loss: 0.3203\n", + "Epoch 7/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9023 - loss: 0.2617 - val_accuracy: 0.8870 - val_loss: 0.3146\n", + "Epoch 8/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9102 - loss: 0.2483 - val_accuracy: 0.8795 - val_loss: 0.3301\n", + "Epoch 9/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9091 - loss: 0.2417 - val_accuracy: 0.8827 - val_loss: 0.3343\n", + "Epoch 10/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9129 - loss: 0.2305 - val_accuracy: 0.8932 - val_loss: 0.3032\n", + "Epoch 11/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9168 - loss: 0.2220 - val_accuracy: 0.8903 - val_loss: 0.3239\n", + "Epoch 12/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9228 - loss: 0.2075 - val_accuracy: 0.8912 - val_loss: 0.3149\n", + "Epoch 13/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9243 - loss: 0.2011 - val_accuracy: 0.8834 - val_loss: 0.3448\n", + "Epoch 14/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9288 - loss: 0.1919 - val_accuracy: 0.8826 - val_loss: 0.3454\n", + "Epoch 15/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9275 - loss: 0.1889 - val_accuracy: 0.8912 - val_loss: 0.3176\n", + "Epoch 16/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9301 - loss: 0.1850 - val_accuracy: 0.8882 - val_loss: 0.3389\n", + "Epoch 17/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9301 - loss: 0.1820 - val_accuracy: 0.8889 - val_loss: 0.3372\n", + "Epoch 18/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9357 - loss: 0.1705 - val_accuracy: 0.8979 - val_loss: 0.3271\n", + "Epoch 19/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9364 - loss: 0.1663 - val_accuracy: 0.8944 - val_loss: 0.3432\n", + "Epoch 20/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9400 - loss: 0.1597 - val_accuracy: 0.8892 - val_loss: 0.3624\n", + "Epoch 21/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9414 - loss: 0.1565 - val_accuracy: 0.8786 - val_loss: 0.3977\n", + "Epoch 22/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9423 - loss: 0.1549 - val_accuracy: 0.8886 - val_loss: 0.3790\n", + "Epoch 23/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9449 - loss: 0.1454 - val_accuracy: 0.8942 - val_loss: 0.3511\n", + "Epoch 24/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9451 - loss: 0.1427 - val_accuracy: 0.8965 - val_loss: 0.3549\n", + "Epoch 25/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9469 - loss: 0.1381 - val_accuracy: 0.8891 - val_loss: 0.3771\n", + "Epoch 26/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9501 - loss: 0.1339 - val_accuracy: 0.8945 - val_loss: 0.3577\n", + "Epoch 27/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9526 - loss: 0.1277 - val_accuracy: 0.8870 - val_loss: 0.3797\n", + "Epoch 28/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9520 - loss: 0.1260 - val_accuracy: 0.8888 - val_loss: 0.4092\n", + "Epoch 29/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9532 - loss: 0.1252 - val_accuracy: 0.8925 - val_loss: 0.3816\n", + "Epoch 30/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9556 - loss: 0.1199 - val_accuracy: 0.8930 - val_loss: 0.4015\n", + "Epoch 31/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9576 - loss: 0.1156 - val_accuracy: 0.8919 - val_loss: 0.4276\n", + "Epoch 32/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9568 - loss: 0.1136 - val_accuracy: 0.8918 - val_loss: 0.4119\n", + "Epoch 33/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9587 - loss: 0.1097 - val_accuracy: 0.8913 - val_loss: 0.4095\n", + "Epoch 34/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9601 - loss: 0.1063 - val_accuracy: 0.8942 - val_loss: 0.4112\n", + "Epoch 35/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9610 - loss: 0.1038 - val_accuracy: 0.8966 - val_loss: 0.4070\n", + "Epoch 36/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9631 - loss: 0.1008 - val_accuracy: 0.8913 - val_loss: 0.4609\n", + "Epoch 37/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9622 - loss: 0.0984 - val_accuracy: 0.8942 - val_loss: 0.4463\n", + "Epoch 38/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9639 - loss: 0.0955 - val_accuracy: 0.8903 - val_loss: 0.4602\n", + "Epoch 39/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9631 - loss: 0.0970 - val_accuracy: 0.8893 - val_loss: 0.4602\n", + "Epoch 40/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9649 - loss: 0.0929 - val_accuracy: 0.8918 - val_loss: 0.4625\n", + "Epoch 41/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9669 - loss: 0.0906 - val_accuracy: 0.8890 - val_loss: 0.4761\n", + "Epoch 42/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9679 - loss: 0.0853 - val_accuracy: 0.8896 - val_loss: 0.4874\n", + "Epoch 43/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9697 - loss: 0.0824 - val_accuracy: 0.8954 - val_loss: 0.4655\n", + "Epoch 44/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9691 - loss: 0.0857 - val_accuracy: 0.8927 - val_loss: 0.4706\n", + "Epoch 45/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9688 - loss: 0.0839 - val_accuracy: 0.8935 - val_loss: 0.4929\n", + "Epoch 46/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9706 - loss: 0.0803 - val_accuracy: 0.8946 - val_loss: 0.5048\n", + "Epoch 47/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9679 - loss: 0.0831 - val_accuracy: 0.8912 - val_loss: 0.5015\n", + "Epoch 48/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9696 - loss: 0.0799 - val_accuracy: 0.8893 - val_loss: 0.5154\n", + "Epoch 49/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9706 - loss: 0.0762 - val_accuracy: 0.8898 - val_loss: 0.5507\n", + "Epoch 50/50\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9719 - loss: 0.0733 - val_accuracy: 0.8938 - val_loss: 0.4920\n", + "Best epoch: 18\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.4741 - loss: 1.5390 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 85/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.5589 - loss: 1.2810" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 128/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.6045 - loss: 1.1472" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 171/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.6325 - loss: 1.0642" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 215/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.6533 - loss: 1.0027" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 258/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.6684 - loss: 0.9575" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 301/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.6809 - loss: 0.9207" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 343/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.6909 - loss: 0.8914" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 384/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.6990 - loss: 0.8675" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 424/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7060 - loss: 0.8472" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 465/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7122 - loss: 0.8288" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 506/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7177 - loss: 0.8127" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 546/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7225 - loss: 0.7984" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 587/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7269 - loss: 0.7852" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 628/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7309 - loss: 0.7732" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 670/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7348 - loss: 0.7618" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 713/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7385 - loss: 0.7508" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 755/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7418 - loss: 0.7410" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 796/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7448 - loss: 0.7320" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 839/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7478 - loss: 0.7231" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 882/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7505 - loss: 0.7150" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 924/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7531 - loss: 0.7074" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 965/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7554 - loss: 0.7004" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1008/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7578 - loss: 0.6934" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1051/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7599 - loss: 0.6869" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1093/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7619 - loss: 0.6808" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1135/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7638 - loss: 0.6750" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1179/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7658 - loss: 0.6693" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1222/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7676 - loss: 0.6639" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1265/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7693 - loss: 0.6588" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1307/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7708 - loss: 0.6540" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1349/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7724 - loss: 0.6495" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1390/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7738 - loss: 0.6452" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1431/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7752 - loss: 0.6411" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1472/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7765 - loss: 0.6371" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.7774 - loss: 0.6344 - val_accuracy: 0.8590 - val_loss: 0.4024\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:11\u001b[0m 48ms/step - accuracy: 0.8438 - loss: 0.3109" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 44/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8663 - loss: 0.3724 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 86/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8623 - loss: 0.3886" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 128/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8624 - loss: 0.3893" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 171/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8629 - loss: 0.3886" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 213/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8629 - loss: 0.3879" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 255/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8629 - loss: 0.3875" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 297/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8628 - loss: 0.3874" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 338/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8627 - loss: 0.3871" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 381/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8627 - loss: 0.3864" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 425/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8628 - loss: 0.3856" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 468/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8629 - loss: 0.3849" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 512/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8630 - loss: 0.3843" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 553/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8630 - loss: 0.3837" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 594/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8631 - loss: 0.3833" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 637/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8631 - loss: 0.3829" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 680/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8631 - loss: 0.3825" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 724/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8631 - loss: 0.3820" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 767/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8632 - loss: 0.3816" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 809/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8632 - loss: 0.3812" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 851/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8633 - loss: 0.3809" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 893/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8634 - loss: 0.3805" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 935/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8634 - loss: 0.3802" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 979/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8635 - loss: 0.3798" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1022/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8636 - loss: 0.3795" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1064/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8637 - loss: 0.3792" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1105/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8637 - loss: 0.3790" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1147/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8638 - loss: 0.3787" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1188/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8639 - loss: 0.3784" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1230/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8639 - loss: 0.3781" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1272/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8640 - loss: 0.3778" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1314/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8641 - loss: 0.3776" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1355/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8641 - loss: 0.3774" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1397/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8642 - loss: 0.3771" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1439/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8642 - loss: 0.3769" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1480/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8643 - loss: 0.3767" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.8643 - loss: 0.3766 - val_accuracy: 0.8632 - val_loss: 0.3783\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 3/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.8750 - loss: 0.4305" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8823 - loss: 0.3167 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 85/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8822 - loss: 0.3204" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 125/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8804 - loss: 0.3254" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 165/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8799 - loss: 0.3264" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 207/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8799 - loss: 0.3263" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 250/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8800 - loss: 0.3264" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 290/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8802 - loss: 0.3262" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 331/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8802 - loss: 0.3264" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 372/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8801 - loss: 0.3268" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 414/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8801 - loss: 0.3269" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 455/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8800 - loss: 0.3272" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 498/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8798 - loss: 0.3277" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 540/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8796 - loss: 0.3281" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 581/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8794 - loss: 0.3284" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 622/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8793 - loss: 0.3285" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 663/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8792 - loss: 0.3286" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 704/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8792 - loss: 0.3286" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 745/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8792 - loss: 0.3285" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 786/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8793 - loss: 0.3284" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 828/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8793 - loss: 0.3284" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 870/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8793 - loss: 0.3283" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 911/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8792 - loss: 0.3283" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 954/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8792 - loss: 0.3283" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 995/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8792 - loss: 0.3283" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1038/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8792 - loss: 0.3283" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1082/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8792 - loss: 0.3284" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1124/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8792 - loss: 0.3284" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1167/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8791 - loss: 0.3285" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1210/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8791 - loss: 0.3286" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1253/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8791 - loss: 0.3287" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1296/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8791 - loss: 0.3287" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1338/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8791 - loss: 0.3288" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1382/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8790 - loss: 0.3289" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1425/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8790 - loss: 0.3290" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1469/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8790 - loss: 0.3290" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.8790 - loss: 0.3291 - val_accuracy: 0.8803 - val_loss: 0.3296\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 4/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 46ms/step - accuracy: 0.9062 - loss: 0.2067" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8979 - loss: 0.2720 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 86/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8933 - loss: 0.2858" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 130/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8905 - loss: 0.2941" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 175/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8895 - loss: 0.2977" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 219/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8894 - loss: 0.2993" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 263/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8895 - loss: 0.2998" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 307/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8894 - loss: 0.3003" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 352/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8891 - loss: 0.3011" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 396/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8888 - loss: 0.3018" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 438/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8886 - loss: 0.3023" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 481/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8885 - loss: 0.3025" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 524/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8884 - loss: 0.3026" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 569/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8884 - loss: 0.3027" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 613/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8884 - loss: 0.3027" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 658/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8884 - loss: 0.3027" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 702/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8885 - loss: 0.3028" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 746/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8886 - loss: 0.3027" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 790/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8886 - loss: 0.3028" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 834/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8886 - loss: 0.3029" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 877/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8886 - loss: 0.3030" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 922/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8886 - loss: 0.3031" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 966/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8886 - loss: 0.3032" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1010/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8885 - loss: 0.3032" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1054/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8885 - loss: 0.3033" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1098/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8885 - loss: 0.3034" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1142/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8885 - loss: 0.3034" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1186/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8885 - loss: 0.3035" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1230/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8885 - loss: 0.3035" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1274/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8885 - loss: 0.3036" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1318/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8885 - loss: 0.3036" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1361/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8885 - loss: 0.3035" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1405/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8884 - loss: 0.3035" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1449/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8884 - loss: 0.3036" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1494/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8884 - loss: 0.3036" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.8884 - loss: 0.3036 - val_accuracy: 0.8708 - val_loss: 0.3529\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 5/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:07\u001b[0m 45ms/step - accuracy: 0.7812 - loss: 0.8163" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 46/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8788 - loss: 0.3400 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 90/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8856 - loss: 0.3150" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 135/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8887 - loss: 0.3029" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 180/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8905 - loss: 0.2977" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 225/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8920 - loss: 0.2941" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 270/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8929 - loss: 0.2923" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 316/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8935 - loss: 0.2906" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 362/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8941 - loss: 0.2891" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 406/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8946 - loss: 0.2877" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 451/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8949 - loss: 0.2867" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 496/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8952 - loss: 0.2860" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 541/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8953 - loss: 0.2854" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 586/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8954 - loss: 0.2851" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 631/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8954 - loss: 0.2848" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 675/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8954 - loss: 0.2846" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 719/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8954 - loss: 0.2843" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 763/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8955 - loss: 0.2841" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 808/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8955 - loss: 0.2840" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 853/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8955 - loss: 0.2840" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 898/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8955 - loss: 0.2840" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 942/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8955 - loss: 0.2839" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 987/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8956 - loss: 0.2838" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1032/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8956 - loss: 0.2838" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1077/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8956 - loss: 0.2838" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1121/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8956 - loss: 0.2838" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1165/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8956 - loss: 0.2838" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1211/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8956 - loss: 0.2838" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1256/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8956 - loss: 0.2838" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1301/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8956 - loss: 0.2838" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1346/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8956 - loss: 0.2838" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1391/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8955 - loss: 0.2838" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1436/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8955 - loss: 0.2839" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1481/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8955 - loss: 0.2839" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.8955 - loss: 0.2840 - val_accuracy: 0.8817 - val_loss: 0.3297\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 6/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 46ms/step - accuracy: 0.8125 - loss: 0.3783" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 44/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8980 - loss: 0.2575 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 87/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8975 - loss: 0.2585" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 130/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8973 - loss: 0.2599" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 172/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8983 - loss: 0.2601" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 215/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8993 - loss: 0.2596" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 258/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8998 - loss: 0.2597" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 300/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9001 - loss: 0.2598" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 342/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9003 - loss: 0.2601" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 384/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9002 - loss: 0.2609" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 427/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9000 - loss: 0.2615" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 470/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9000 - loss: 0.2620" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 514/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9000 - loss: 0.2623" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 558/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9000 - loss: 0.2625" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 600/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9000 - loss: 0.2626" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 645/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9000 - loss: 0.2627" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 689/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9001 - loss: 0.2628" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 732/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9002 - loss: 0.2627" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 776/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9003 - loss: 0.2627" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 821/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9004 - loss: 0.2628" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 866/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9004 - loss: 0.2630" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 910/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9003 - loss: 0.2633" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 955/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9003 - loss: 0.2636" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1000/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9002 - loss: 0.2638" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1044/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9002 - loss: 0.2641" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1088/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9001 - loss: 0.2643" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1132/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9001 - loss: 0.2644" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1177/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9000 - loss: 0.2646" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1221/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9000 - loss: 0.2648" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1265/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8999 - loss: 0.2649" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1309/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8999 - loss: 0.2650" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1352/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8999 - loss: 0.2651" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1393/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8999 - loss: 0.2652" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1434/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8999 - loss: 0.2653" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1475/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8998 - loss: 0.2654" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.8998 - loss: 0.2655 - val_accuracy: 0.8581 - val_loss: 0.4232\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 7/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 45ms/step - accuracy: 0.9062 - loss: 0.2649" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 45/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8895 - loss: 0.2842 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 90/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8960 - loss: 0.2703" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 135/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8989 - loss: 0.2649" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 178/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9005 - loss: 0.2612" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 220/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9010 - loss: 0.2595" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 262/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9012 - loss: 0.2590" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 305/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9018 - loss: 0.2583" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 348/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9022 - loss: 0.2576" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 391/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9026 - loss: 0.2570" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 433/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9029 - loss: 0.2564" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 477/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9031 - loss: 0.2559" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 521/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9032 - loss: 0.2556" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 566/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9034 - loss: 0.2554" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 611/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9035 - loss: 0.2552" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 655/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9037 - loss: 0.2550" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 700/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9039 - loss: 0.2549" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 744/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9040 - loss: 0.2549" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 789/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9040 - loss: 0.2551" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 834/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9040 - loss: 0.2552" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 879/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9039 - loss: 0.2554" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 924/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9039 - loss: 0.2557" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 968/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9039 - loss: 0.2558" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1011/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9039 - loss: 0.2559" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1054/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9039 - loss: 0.2561" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1098/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9039 - loss: 0.2561" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1142/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9039 - loss: 0.2562" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1186/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9039 - loss: 0.2563" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1230/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9039 - loss: 0.2563" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1274/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9039 - loss: 0.2563" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1317/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9039 - loss: 0.2563" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1360/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9040 - loss: 0.2563" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1404/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9040 - loss: 0.2563" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1449/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9040 - loss: 0.2564" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1494/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9040 - loss: 0.2564" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9040 - loss: 0.2564 - val_accuracy: 0.8808 - val_loss: 0.3396\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 8/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 46ms/step - accuracy: 0.9688 - loss: 0.0980" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 45/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9099 - loss: 0.2384 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 89/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9150 - loss: 0.2297" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 133/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9154 - loss: 0.2308" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 177/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9156 - loss: 0.2317" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 223/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9159 - loss: 0.2313" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 269/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9158 - loss: 0.2315" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 314/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9154 - loss: 0.2320" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 359/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9150 - loss: 0.2327" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 404/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9145 - loss: 0.2336" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 449/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9140 - loss: 0.2344" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 494/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9136 - loss: 0.2353" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 537/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9132 - loss: 0.2362" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 582/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9128 - loss: 0.2371" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 626/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9124 - loss: 0.2380" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 671/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9120 - loss: 0.2387" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 716/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9118 - loss: 0.2392" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 760/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9116 - loss: 0.2397" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 805/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9114 - loss: 0.2400" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 848/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9112 - loss: 0.2403" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 892/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9111 - loss: 0.2406" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 936/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9109 - loss: 0.2408" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 981/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9108 - loss: 0.2410" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1025/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9107 - loss: 0.2412" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1069/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9106 - loss: 0.2413" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1114/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9105 - loss: 0.2414" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1159/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9105 - loss: 0.2415" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1202/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9104 - loss: 0.2416" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1246/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9104 - loss: 0.2417" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1291/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9103 - loss: 0.2418" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1336/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9103 - loss: 0.2418" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1382/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9102 - loss: 0.2419" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1426/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9102 - loss: 0.2420" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1471/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9101 - loss: 0.2420" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9101 - loss: 0.2421 - val_accuracy: 0.8718 - val_loss: 0.3550\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 9/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 46ms/step - accuracy: 0.9375 - loss: 0.1517" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 44/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8915 - loss: 0.2557 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 87/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8996 - loss: 0.2430" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 131/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9029 - loss: 0.2383" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 176/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9051 - loss: 0.2344" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 220/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9060 - loss: 0.2338" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 264/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9062 - loss: 0.2340" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 308/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9064 - loss: 0.2344" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 353/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9067 - loss: 0.2346" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 398/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9070 - loss: 0.2347" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 444/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9074 - loss: 0.2347" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 489/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9077 - loss: 0.2345" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 534/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9079 - loss: 0.2343" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 579/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9081 - loss: 0.2341" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 624/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9082 - loss: 0.2341" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 670/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9083 - loss: 0.2341" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 716/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9084 - loss: 0.2342" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 762/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9085 - loss: 0.2342" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 807/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9085 - loss: 0.2342" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 851/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9086 - loss: 0.2342" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 895/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9087 - loss: 0.2342" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 939/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9087 - loss: 0.2342" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 983/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9087 - loss: 0.2344" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1023/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9087 - loss: 0.2345" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1063/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9087 - loss: 0.2346" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1105/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9088 - loss: 0.2347" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1148/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9088 - loss: 0.2348" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1190/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9088 - loss: 0.2349" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1231/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9088 - loss: 0.2350" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1272/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9088 - loss: 0.2351" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1315/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9088 - loss: 0.2351" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1358/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9088 - loss: 0.2352" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1402/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9088 - loss: 0.2352" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1447/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9089 - loss: 0.2353" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1493/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9089 - loss: 0.2353" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9089 - loss: 0.2353 - val_accuracy: 0.8920 - val_loss: 0.3055\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 10/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 47ms/step - accuracy: 0.8438 - loss: 0.3477" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9160 - loss: 0.2365 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 87/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9197 - loss: 0.2200" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 131/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9192 - loss: 0.2186" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 176/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9191 - loss: 0.2182" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 219/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9189 - loss: 0.2179" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 264/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9188 - loss: 0.2182" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 308/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9184 - loss: 0.2192" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 352/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9182 - loss: 0.2197" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 396/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9181 - loss: 0.2204" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 440/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9179 - loss: 0.2210" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 485/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9178 - loss: 0.2214" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 530/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9177 - loss: 0.2217" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 575/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9175 - loss: 0.2219" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 620/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9174 - loss: 0.2222" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 665/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9172 - loss: 0.2224" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 709/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9172 - loss: 0.2225" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 753/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9171 - loss: 0.2226" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 797/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9170 - loss: 0.2227" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 842/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9169 - loss: 0.2229" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 887/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9168 - loss: 0.2230" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 932/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9167 - loss: 0.2231" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 977/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9166 - loss: 0.2232" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1022/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9165 - loss: 0.2233" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1067/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9165 - loss: 0.2234" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1111/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9164 - loss: 0.2234" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1156/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9164 - loss: 0.2235" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1201/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9163 - loss: 0.2235" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1246/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9163 - loss: 0.2235" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1291/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9162 - loss: 0.2236" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1336/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9162 - loss: 0.2237" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1381/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9161 - loss: 0.2238" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1425/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9161 - loss: 0.2238" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1469/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9161 - loss: 0.2239" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9160 - loss: 0.2239 - val_accuracy: 0.8918 - val_loss: 0.3077\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 11/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.9375 - loss: 0.1171" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9231 - loss: 0.2038 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 84/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9187 - loss: 0.2183" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 126/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9183 - loss: 0.2197" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 169/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9191 - loss: 0.2177" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 212/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9194 - loss: 0.2164" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 253/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9195 - loss: 0.2157" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 295/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9198 - loss: 0.2149" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 338/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9202 - loss: 0.2140" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 380/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9205 - loss: 0.2133" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 421/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9208 - loss: 0.2128" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 462/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9209 - loss: 0.2124" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 502/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9210 - loss: 0.2121" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 543/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9211 - loss: 0.2118" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 584/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9211 - loss: 0.2117" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 624/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9211 - loss: 0.2116" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 666/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9212 - loss: 0.2115" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 709/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9212 - loss: 0.2113" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 751/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2110" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 792/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2108" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 834/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9214 - loss: 0.2106" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 873/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9214 - loss: 0.2105" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 915/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9214 - loss: 0.2105" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 958/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9214 - loss: 0.2104" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1002/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9214 - loss: 0.2104" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1044/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9214 - loss: 0.2104" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1086/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9214 - loss: 0.2105" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1128/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9214 - loss: 0.2105" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1170/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2105" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1212/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2106" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1254/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2106" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1297/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2107" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1340/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9212 - loss: 0.2108" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1383/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9212 - loss: 0.2108" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1425/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9211 - loss: 0.2109" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1468/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9211 - loss: 0.2110" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9211 - loss: 0.2111 - val_accuracy: 0.8913 - val_loss: 0.3258\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 12/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:07\u001b[0m 45ms/step - accuracy: 0.9062 - loss: 0.1803" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9225 - loss: 0.2012 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 85/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9208 - loss: 0.2052" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 128/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9228 - loss: 0.2020" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 173/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9234 - loss: 0.2022" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 217/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9231 - loss: 0.2038" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 260/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9228 - loss: 0.2051" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 304/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9228 - loss: 0.2056" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 349/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9228 - loss: 0.2057" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 392/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9228 - loss: 0.2058" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 436/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9228 - loss: 0.2058" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 480/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9228 - loss: 0.2060" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 524/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9228 - loss: 0.2060" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 569/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9228 - loss: 0.2060" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 614/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9228 - loss: 0.2060" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 659/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9229 - loss: 0.2060" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 703/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9228 - loss: 0.2061" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 747/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9228 - loss: 0.2063" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 791/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9227 - loss: 0.2064" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 836/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9227 - loss: 0.2065" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 881/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9227 - loss: 0.2066" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 925/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9227 - loss: 0.2067" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 969/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9226 - loss: 0.2068" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1011/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9226 - loss: 0.2069" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1053/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9226 - loss: 0.2069" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1095/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9225 - loss: 0.2070" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1140/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9225 - loss: 0.2071" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1185/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9225 - loss: 0.2071" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1229/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9225 - loss: 0.2072" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1274/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9224 - loss: 0.2073" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1318/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9224 - loss: 0.2073" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1362/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9224 - loss: 0.2074" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1407/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9223 - loss: 0.2075" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1452/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9223 - loss: 0.2075" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1496/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9223 - loss: 0.2076" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9223 - loss: 0.2076 - val_accuracy: 0.8936 - val_loss: 0.3115\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 13/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 46ms/step - accuracy: 0.9375 - loss: 0.1456" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9345 - loss: 0.1786 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 84/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9311 - loss: 0.1853" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 127/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9289 - loss: 0.1896" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 171/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9283 - loss: 0.1918" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 214/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9280 - loss: 0.1930" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 258/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9277 - loss: 0.1941" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 302/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9274 - loss: 0.1947" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 346/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9273 - loss: 0.1948" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 390/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9273 - loss: 0.1950" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 435/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9272 - loss: 0.1951" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 479/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9272 - loss: 0.1951" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 524/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9272 - loss: 0.1952" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 568/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9271 - loss: 0.1953" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 610/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9271 - loss: 0.1955" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 653/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9270 - loss: 0.1955" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 696/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9269 - loss: 0.1956" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 739/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9269 - loss: 0.1958" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 783/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9268 - loss: 0.1959" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 827/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9267 - loss: 0.1960" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 871/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9266 - loss: 0.1961" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 915/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9266 - loss: 0.1961" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 959/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9265 - loss: 0.1962" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1003/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9265 - loss: 0.1962" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1047/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9265 - loss: 0.1962" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1091/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9264 - loss: 0.1963" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1134/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9264 - loss: 0.1963" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1178/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9263 - loss: 0.1964" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1222/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9263 - loss: 0.1964" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1264/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9263 - loss: 0.1965" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1308/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9262 - loss: 0.1966" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1352/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9262 - loss: 0.1966" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1395/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9261 - loss: 0.1967" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1439/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9261 - loss: 0.1968" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1484/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9261 - loss: 0.1968" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9260 - loss: 0.1968 - val_accuracy: 0.8892 - val_loss: 0.3134\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 14/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.9375 - loss: 0.1956" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 44/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9322 - loss: 0.1958 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 88/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9327 - loss: 0.1870" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 133/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9318 - loss: 0.1861" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 178/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9303 - loss: 0.1874" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 223/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9297 - loss: 0.1875" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 267/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9293 - loss: 0.1877" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 313/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9292 - loss: 0.1878" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 358/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9290 - loss: 0.1879" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 402/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9288 - loss: 0.1882" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 447/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9287 - loss: 0.1885" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 492/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9285 - loss: 0.1890" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 537/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9283 - loss: 0.1893" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 582/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9281 - loss: 0.1895" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 628/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9280 - loss: 0.1896" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 673/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9278 - loss: 0.1899" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 718/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9277 - loss: 0.1901" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 763/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9276 - loss: 0.1904" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 808/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9275 - loss: 0.1906" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 853/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9275 - loss: 0.1907" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 898/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9274 - loss: 0.1909" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 943/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9273 - loss: 0.1910" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 988/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9273 - loss: 0.1911" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1033/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9273 - loss: 0.1912" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1078/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9273 - loss: 0.1912" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1123/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9273 - loss: 0.1913" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1167/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9273 - loss: 0.1912" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1211/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9273 - loss: 0.1912" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1256/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9273 - loss: 0.1913" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1300/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9273 - loss: 0.1913" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1344/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9273 - loss: 0.1913" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1388/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9273 - loss: 0.1914" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1433/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9273 - loss: 0.1914" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1478/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9273 - loss: 0.1914" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9273 - loss: 0.1914 - val_accuracy: 0.8890 - val_loss: 0.3284\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 15/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.9688 - loss: 0.0917" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9411 - loss: 0.1719 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 86/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9384 - loss: 0.1793" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 130/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9366 - loss: 0.1821" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 174/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9360 - loss: 0.1833" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 219/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9354 - loss: 0.1840" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 263/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9348 - loss: 0.1845" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 308/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9343 - loss: 0.1848" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 353/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9340 - loss: 0.1851" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 397/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9338 - loss: 0.1851" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 441/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9336 - loss: 0.1850" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 484/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9334 - loss: 0.1851" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 528/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9332 - loss: 0.1850" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 571/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9331 - loss: 0.1850" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 615/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9330 - loss: 0.1849" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 660/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9329 - loss: 0.1847" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 704/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9329 - loss: 0.1844" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 748/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9329 - loss: 0.1842" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 792/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9328 - loss: 0.1840" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 836/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9328 - loss: 0.1838" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 880/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9328 - loss: 0.1836" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 925/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9328 - loss: 0.1834" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 969/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9328 - loss: 0.1833" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1013/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9328 - loss: 0.1832" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1056/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9328 - loss: 0.1831" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1099/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9328 - loss: 0.1831" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1142/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9327 - loss: 0.1831" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1184/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9327 - loss: 0.1832" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1226/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9326 - loss: 0.1832" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1268/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9325 - loss: 0.1833" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1310/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9324 - loss: 0.1833" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1352/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9324 - loss: 0.1834" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1394/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9323 - loss: 0.1835" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1436/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9322 - loss: 0.1835" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1479/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9322 - loss: 0.1836" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9321 - loss: 0.1836 - val_accuracy: 0.8911 - val_loss: 0.3366\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 16/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 46ms/step - accuracy: 1.0000 - loss: 0.0528" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 44/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9622 - loss: 0.1196 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 89/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9514 - loss: 0.1395" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 134/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9464 - loss: 0.1493" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 179/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9441 - loss: 0.1543" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 225/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9430 - loss: 0.1569" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 271/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9422 - loss: 0.1586" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 316/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9416 - loss: 0.1597" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 362/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9412 - loss: 0.1605" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 408/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9409 - loss: 0.1612" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 454/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9405 - loss: 0.1618" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 500/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9402 - loss: 0.1626" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 545/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9399 - loss: 0.1632" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 589/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9396 - loss: 0.1638" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 634/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9394 - loss: 0.1642" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 679/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9393 - loss: 0.1646" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 724/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9390 - loss: 0.1651" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 770/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9388 - loss: 0.1655" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 815/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9386 - loss: 0.1659" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 860/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9385 - loss: 0.1663" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 904/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9383 - loss: 0.1667" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 948/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9380 - loss: 0.1671" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 992/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9379 - loss: 0.1675" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1037/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9377 - loss: 0.1679" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1082/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9375 - loss: 0.1682" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1127/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9374 - loss: 0.1685" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1172/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9372 - loss: 0.1688" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1217/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9371 - loss: 0.1692" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1261/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9370 - loss: 0.1695" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1306/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9368 - loss: 0.1698" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1351/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9367 - loss: 0.1700" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1396/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9366 - loss: 0.1703" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1441/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9365 - loss: 0.1706" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1486/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9363 - loss: 0.1709" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9363 - loss: 0.1710 - val_accuracy: 0.8952 - val_loss: 0.3252\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 17/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:07\u001b[0m 45ms/step - accuracy: 1.0000 - loss: 0.0097" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 44/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9383 - loss: 0.1666 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 89/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9348 - loss: 0.1788" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 133/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9344 - loss: 0.1795" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 177/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9352 - loss: 0.1781" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 220/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9358 - loss: 0.1769" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 264/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9364 - loss: 0.1752" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 309/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9370 - loss: 0.1736" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 353/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9375 - loss: 0.1723" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 398/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9377 - loss: 0.1716" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 443/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9378 - loss: 0.1711" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 488/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9379 - loss: 0.1705" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 534/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9380 - loss: 0.1702" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 580/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9380 - loss: 0.1700" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 625/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9381 - loss: 0.1699" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 670/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9382 - loss: 0.1697" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 715/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9382 - loss: 0.1696" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 759/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9383 - loss: 0.1696" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 803/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9383 - loss: 0.1696" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 847/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9383 - loss: 0.1696" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 891/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9383 - loss: 0.1696" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 935/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9383 - loss: 0.1696" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 980/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9382 - loss: 0.1697" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1025/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9382 - loss: 0.1697" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1070/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9382 - loss: 0.1698" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1115/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9381 - loss: 0.1699" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1159/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9380 - loss: 0.1700" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1204/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9380 - loss: 0.1701" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1249/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9379 - loss: 0.1703" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1294/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9378 - loss: 0.1704" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1338/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9377 - loss: 0.1706" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1383/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9376 - loss: 0.1707" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1428/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9375 - loss: 0.1708" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1472/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9375 - loss: 0.1710" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9374 - loss: 0.1710 - val_accuracy: 0.8898 - val_loss: 0.3381\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 18/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:10\u001b[0m 47ms/step - accuracy: 0.9375 - loss: 0.1524" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 41/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9329 - loss: 0.1686 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 81/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9350 - loss: 0.1651" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 124/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9375 - loss: 0.1604" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 166/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9389 - loss: 0.1578" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 207/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9396 - loss: 0.1572" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 249/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9400 - loss: 0.1568" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 290/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9400 - loss: 0.1570" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 332/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9400 - loss: 0.1571" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 373/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9401 - loss: 0.1573" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 414/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9401 - loss: 0.1574" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 454/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9401 - loss: 0.1576" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 494/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9400 - loss: 0.1578" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 532/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9398 - loss: 0.1581" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 573/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9397 - loss: 0.1584" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 616/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9396 - loss: 0.1588" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 662/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9395 - loss: 0.1591" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 706/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9394 - loss: 0.1592" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 749/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9393 - loss: 0.1595" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 792/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9393 - loss: 0.1597" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 836/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9392 - loss: 0.1599" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 879/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9391 - loss: 0.1601" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 923/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9390 - loss: 0.1604" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 967/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9390 - loss: 0.1606" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1011/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9389 - loss: 0.1609" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1053/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9388 - loss: 0.1610" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1095/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9388 - loss: 0.1612" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1137/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9387 - loss: 0.1614" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1179/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9386 - loss: 0.1616" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1224/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9386 - loss: 0.1618" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1268/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9385 - loss: 0.1620" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1311/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9385 - loss: 0.1622" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1355/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9384 - loss: 0.1624" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1400/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9384 - loss: 0.1625" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1443/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9383 - loss: 0.1627" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1488/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9383 - loss: 0.1628" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9383 - loss: 0.1629 - val_accuracy: 0.8913 - val_loss: 0.3500\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 19/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.9375 - loss: 0.1822" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 44/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9419 - loss: 0.1503 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 87/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9409 - loss: 0.1553" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 132/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9418 - loss: 0.1554" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 177/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9423 - loss: 0.1547" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 222/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9425 - loss: 0.1544" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 266/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9427 - loss: 0.1541" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 310/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9428 - loss: 0.1537" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 354/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9429 - loss: 0.1535" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 397/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9430 - loss: 0.1533" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 440/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9431 - loss: 0.1531" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 483/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9431 - loss: 0.1529" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 528/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9432 - loss: 0.1527" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 572/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9433 - loss: 0.1526" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 617/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9432 - loss: 0.1527" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 661/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9430 - loss: 0.1529" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 706/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9429 - loss: 0.1531" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 750/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9428 - loss: 0.1532" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 795/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9426 - loss: 0.1533" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 840/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9425 - loss: 0.1534" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 885/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9424 - loss: 0.1535" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 929/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9423 - loss: 0.1536" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 972/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9422 - loss: 0.1537" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1017/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9421 - loss: 0.1538" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1061/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9420 - loss: 0.1539" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1105/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9420 - loss: 0.1540" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1150/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9419 - loss: 0.1541" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1195/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9418 - loss: 0.1543" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1240/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9418 - loss: 0.1544" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1285/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9417 - loss: 0.1545" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1330/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9417 - loss: 0.1547" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1375/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9416 - loss: 0.1548" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1420/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9416 - loss: 0.1550" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1464/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9415 - loss: 0.1551" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9414 - loss: 0.1552 - val_accuracy: 0.8954 - val_loss: 0.3418\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 20/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.9375 - loss: 0.1369" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9500 - loss: 0.1226 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 85/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9491 - loss: 0.1313" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 127/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9487 - loss: 0.1346" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 170/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9483 - loss: 0.1361" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 213/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9483 - loss: 0.1364" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 255/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9482 - loss: 0.1367" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 298/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9480 - loss: 0.1372" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 341/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9478 - loss: 0.1379" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 385/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9476 - loss: 0.1388" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 429/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9472 - loss: 0.1398" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 472/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9468 - loss: 0.1407" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 516/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9465 - loss: 0.1416" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 559/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9462 - loss: 0.1424" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 602/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9460 - loss: 0.1429" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 646/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9458 - loss: 0.1434" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 690/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9456 - loss: 0.1439" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 733/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9454 - loss: 0.1443" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 775/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9453 - loss: 0.1447" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 818/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9451 - loss: 0.1452" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 861/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9449 - loss: 0.1456" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 903/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9448 - loss: 0.1460" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 946/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9447 - loss: 0.1463" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 990/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9446 - loss: 0.1466" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1033/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9445 - loss: 0.1469" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1075/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9443 - loss: 0.1472" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1118/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9442 - loss: 0.1475" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1162/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9442 - loss: 0.1478" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1205/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9441 - loss: 0.1480" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1248/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9440 - loss: 0.1482" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1290/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9439 - loss: 0.1484" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1332/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9439 - loss: 0.1486" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1375/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9438 - loss: 0.1488" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1419/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9437 - loss: 0.1491" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1463/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9436 - loss: 0.1493" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9435 - loss: 0.1495 - val_accuracy: 0.8926 - val_loss: 0.3455\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 21/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.9688 - loss: 0.1035" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9472 - loss: 0.1495 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 83/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9457 - loss: 0.1469" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 127/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9446 - loss: 0.1476" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 171/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9442 - loss: 0.1480" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 215/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9440 - loss: 0.1485" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 259/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9439 - loss: 0.1487" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 302/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9439 - loss: 0.1488" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 346/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9441 - loss: 0.1485" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 389/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9442 - loss: 0.1485" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 434/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9443 - loss: 0.1483" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 479/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9444 - loss: 0.1482" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 524/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9444 - loss: 0.1481" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 568/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9444 - loss: 0.1482" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 613/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9443 - loss: 0.1484" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 658/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9443 - loss: 0.1485" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 703/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9443 - loss: 0.1486" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 748/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9442 - loss: 0.1487" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 793/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9441 - loss: 0.1489" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 839/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9440 - loss: 0.1490" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 884/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9440 - loss: 0.1491" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 929/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9439 - loss: 0.1492" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 974/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9439 - loss: 0.1493" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1019/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9438 - loss: 0.1495" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1064/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9437 - loss: 0.1496" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1109/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9437 - loss: 0.1498" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1154/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9436 - loss: 0.1499" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1199/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9435 - loss: 0.1501" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1244/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9434 - loss: 0.1502" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1289/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9434 - loss: 0.1504" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1334/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9433 - loss: 0.1505" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1379/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9433 - loss: 0.1506" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1424/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9432 - loss: 0.1507" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1469/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9432 - loss: 0.1508" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9431 - loss: 0.1509 - val_accuracy: 0.8903 - val_loss: 0.3748\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 22/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 46ms/step - accuracy: 0.9062 - loss: 0.1068" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 44/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9528 - loss: 0.1236 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 88/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9531 - loss: 0.1291" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 133/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9519 - loss: 0.1326" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 177/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9510 - loss: 0.1349" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 221/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9500 - loss: 0.1371" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 265/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9494 - loss: 0.1379" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 310/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9489 - loss: 0.1383" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 354/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9484 - loss: 0.1390" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 397/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9481 - loss: 0.1395" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 441/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9479 - loss: 0.1398" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 485/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9476 - loss: 0.1401" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 529/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9475 - loss: 0.1404" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 574/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9473 - loss: 0.1406" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 619/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9471 - loss: 0.1408" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 664/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9470 - loss: 0.1409" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 709/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9468 - loss: 0.1411" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 754/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9467 - loss: 0.1413" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 799/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9465 - loss: 0.1415" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 843/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9464 - loss: 0.1416" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 888/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9464 - loss: 0.1417" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 933/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9463 - loss: 0.1418" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 977/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9462 - loss: 0.1420" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1022/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9461 - loss: 0.1421" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1067/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9460 - loss: 0.1422" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1112/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9459 - loss: 0.1423" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1157/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9459 - loss: 0.1424" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1201/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9458 - loss: 0.1425" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1245/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9457 - loss: 0.1425" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1290/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9457 - loss: 0.1426" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1334/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9456 - loss: 0.1427" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1379/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9455 - loss: 0.1428" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1423/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9455 - loss: 0.1429" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1467/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9454 - loss: 0.1430" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9454 - loss: 0.1431 - val_accuracy: 0.8960 - val_loss: 0.3444\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 23/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.9688 - loss: 0.0729" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9528 - loss: 0.1204 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 85/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9566 - loss: 0.1141" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 129/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9569 - loss: 0.1136" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 174/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9563 - loss: 0.1158" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 219/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9554 - loss: 0.1185" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 264/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9549 - loss: 0.1202" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 309/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9544 - loss: 0.1214" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 354/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9540 - loss: 0.1228" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 400/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9536 - loss: 0.1239" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 445/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9532 - loss: 0.1249" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 490/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9529 - loss: 0.1257" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 535/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9526 - loss: 0.1266" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 580/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9524 - loss: 0.1274" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 625/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9521 - loss: 0.1282" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 669/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9518 - loss: 0.1290" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 715/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9515 - loss: 0.1297" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 759/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9514 - loss: 0.1302" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 803/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9512 - loss: 0.1306" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 848/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9510 - loss: 0.1311" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 893/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9509 - loss: 0.1315" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 937/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9507 - loss: 0.1320" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 981/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9505 - loss: 0.1324" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1026/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9504 - loss: 0.1328" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1071/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9502 - loss: 0.1332" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1115/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9501 - loss: 0.1335" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1159/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9499 - loss: 0.1339" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1203/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9498 - loss: 0.1342" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1248/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9497 - loss: 0.1346" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1292/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9495 - loss: 0.1349" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1336/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9494 - loss: 0.1352" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1380/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9493 - loss: 0.1354" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1424/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9492 - loss: 0.1357" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1468/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9491 - loss: 0.1359" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9490 - loss: 0.1361 - val_accuracy: 0.8948 - val_loss: 0.3433\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 24/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 47ms/step - accuracy: 0.9375 - loss: 0.2237" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9432 - loss: 0.1533 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 85/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9449 - loss: 0.1488" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 129/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9469 - loss: 0.1430" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 173/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9478 - loss: 0.1396" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 217/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9485 - loss: 0.1373" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 260/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9489 - loss: 0.1359" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 304/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9494 - loss: 0.1347" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 349/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9498 - loss: 0.1337" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 394/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9500 - loss: 0.1331" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 438/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9501 - loss: 0.1329" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 483/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9501 - loss: 0.1328" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 527/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9502 - loss: 0.1326" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 571/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9503 - loss: 0.1325" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 615/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9503 - loss: 0.1323" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 659/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9504 - loss: 0.1323" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 703/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9504 - loss: 0.1323" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 747/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9503 - loss: 0.1323" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 791/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9503 - loss: 0.1323" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 835/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9503 - loss: 0.1323" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 879/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9502 - loss: 0.1324" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 923/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9502 - loss: 0.1324" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 967/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9501 - loss: 0.1325" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1011/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9501 - loss: 0.1326" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1055/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9500 - loss: 0.1328" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1099/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9499 - loss: 0.1329" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1143/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9498 - loss: 0.1330" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1187/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9497 - loss: 0.1331" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1231/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9497 - loss: 0.1332" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1275/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9496 - loss: 0.1334" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1319/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9495 - loss: 0.1335" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1363/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9494 - loss: 0.1337" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1408/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9494 - loss: 0.1339" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1452/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9493 - loss: 0.1340" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1497/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9492 - loss: 0.1342" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9492 - loss: 0.1342 - val_accuracy: 0.8918 - val_loss: 0.3569\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 25/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 47ms/step - accuracy: 0.9688 - loss: 0.0775" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9430 - loss: 0.1342 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 84/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9446 - loss: 0.1327" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 127/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9468 - loss: 0.1299" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 170/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9480 - loss: 0.1281" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 214/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9491 - loss: 0.1265" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 258/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9499 - loss: 0.1254" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 303/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9504 - loss: 0.1252" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 347/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9505 - loss: 0.1255" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 392/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9506 - loss: 0.1260" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 436/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9505 - loss: 0.1267" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 480/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9503 - loss: 0.1275" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 524/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9502 - loss: 0.1282" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 568/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9501 - loss: 0.1289" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 612/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9499 - loss: 0.1294" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 656/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9498 - loss: 0.1299" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 700/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9497 - loss: 0.1304" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 744/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9496 - loss: 0.1309" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 789/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9495 - loss: 0.1313" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 834/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9494 - loss: 0.1316" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 878/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9493 - loss: 0.1320" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 923/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9492 - loss: 0.1324" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 968/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9491 - loss: 0.1326" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1012/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9490 - loss: 0.1329" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1056/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9490 - loss: 0.1331" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1101/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9490 - loss: 0.1332" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1146/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9489 - loss: 0.1334" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1190/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9489 - loss: 0.1335" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1234/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9489 - loss: 0.1337" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1278/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9488 - loss: 0.1338" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1322/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9488 - loss: 0.1339" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1367/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9488 - loss: 0.1340" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1411/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9488 - loss: 0.1341" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1455/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9488 - loss: 0.1341" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1499/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9488 - loss: 0.1342" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9488 - loss: 0.1342 - val_accuracy: 0.8910 - val_loss: 0.3757\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 26/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 1.0000 - loss: 0.0679" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 44/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9616 - loss: 0.1197 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 87/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9602 - loss: 0.1186" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 131/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9597 - loss: 0.1172" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 176/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9592 - loss: 0.1170" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 221/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9588 - loss: 0.1173" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 265/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9582 - loss: 0.1176" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 309/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9577 - loss: 0.1180" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 353/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9573 - loss: 0.1185" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 396/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9569 - loss: 0.1192" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 440/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9565 - loss: 0.1198" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 483/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9562 - loss: 0.1203" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 527/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9558 - loss: 0.1209" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 571/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9555 - loss: 0.1214" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 614/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9552 - loss: 0.1217" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 656/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9550 - loss: 0.1220" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 699/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9548 - loss: 0.1224" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 743/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9547 - loss: 0.1227" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 787/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9545 - loss: 0.1229" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 831/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9544 - loss: 0.1231" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 875/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9543 - loss: 0.1233" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 919/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9542 - loss: 0.1236" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 963/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9540 - loss: 0.1239" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1007/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9539 - loss: 0.1241" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1051/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9538 - loss: 0.1244" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1095/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9537 - loss: 0.1246" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1139/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9536 - loss: 0.1248" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1183/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9535 - loss: 0.1250" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1226/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9534 - loss: 0.1252" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1270/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9533 - loss: 0.1254" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1313/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9532 - loss: 0.1256" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1356/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9531 - loss: 0.1257" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1399/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9531 - loss: 0.1259" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1443/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9530 - loss: 0.1261" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1487/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9529 - loss: 0.1263" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9528 - loss: 0.1263 - val_accuracy: 0.8914 - val_loss: 0.3831\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 27/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:10\u001b[0m 47ms/step - accuracy: 0.9688 - loss: 0.0632" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 41/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9542 - loss: 0.1178 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 81/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9535 - loss: 0.1174" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 120/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9531 - loss: 0.1190" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 161/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9531 - loss: 0.1197" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 201/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9530 - loss: 0.1207" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 244/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9529 - loss: 0.1216" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 285/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9528 - loss: 0.1220" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 327/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9528 - loss: 0.1224" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 370/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9527 - loss: 0.1227" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 412/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9527 - loss: 0.1229" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 451/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9527 - loss: 0.1232" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 493/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9527 - loss: 0.1233" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 535/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9526 - loss: 0.1234" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 576/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9526 - loss: 0.1235" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 617/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9526 - loss: 0.1236" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 660/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9526 - loss: 0.1237" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 702/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9526 - loss: 0.1238" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 744/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9526 - loss: 0.1240" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 786/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9525 - loss: 0.1241" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 828/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9525 - loss: 0.1242" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 871/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9525 - loss: 0.1244" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 913/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9525 - loss: 0.1245" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 956/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9524 - loss: 0.1246" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 999/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9524 - loss: 0.1247" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1043/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9523 - loss: 0.1249" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1086/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9523 - loss: 0.1250" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1129/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9523 - loss: 0.1252" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1173/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9522 - loss: 0.1253" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1217/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9521 - loss: 0.1254" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1259/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9521 - loss: 0.1255" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1302/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9520 - loss: 0.1256" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1344/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9520 - loss: 0.1258" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1387/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9519 - loss: 0.1259" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1431/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9519 - loss: 0.1260" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1475/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9518 - loss: 0.1261" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9518 - loss: 0.1261 - val_accuracy: 0.8935 - val_loss: 0.3801\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 28/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 46ms/step - accuracy: 0.8750 - loss: 0.2025" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9537 - loss: 0.1220 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 85/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9561 - loss: 0.1182" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 129/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9563 - loss: 0.1182" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 173/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1183" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 214/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9558 - loss: 0.1183" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 257/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9558 - loss: 0.1180" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 299/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9558 - loss: 0.1177" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 341/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9559 - loss: 0.1175" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 386/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9558 - loss: 0.1173" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 430/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9558 - loss: 0.1172" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 473/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9558 - loss: 0.1172" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 516/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9557 - loss: 0.1172" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 560/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9556 - loss: 0.1173" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 603/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9555 - loss: 0.1175" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 645/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9555 - loss: 0.1176" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 688/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9554 - loss: 0.1177" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 731/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9553 - loss: 0.1177" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 774/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9552 - loss: 0.1177" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 817/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9552 - loss: 0.1177" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 860/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9551 - loss: 0.1178" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 903/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9551 - loss: 0.1179" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 947/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9550 - loss: 0.1180" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 989/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9550 - loss: 0.1181" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1033/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9549 - loss: 0.1182" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1076/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9549 - loss: 0.1183" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1120/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9548 - loss: 0.1184" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1163/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9548 - loss: 0.1185" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1206/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9548 - loss: 0.1185" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1248/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9547 - loss: 0.1186" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1291/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9547 - loss: 0.1187" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1334/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9546 - loss: 0.1188" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1375/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9546 - loss: 0.1190" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1418/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9545 - loss: 0.1191" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1460/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9545 - loss: 0.1192" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9545 - loss: 0.1193 - val_accuracy: 0.8914 - val_loss: 0.4115\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 29/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.9688 - loss: 0.1498" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 40/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9402 - loss: 0.1479 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 77/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9450 - loss: 0.1359" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 115/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9467 - loss: 0.1314" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 154/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9480 - loss: 0.1287" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 192/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9492 - loss: 0.1264" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 230/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9502 - loss: 0.1245" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 269/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9509 - loss: 0.1231" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 308/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9514 - loss: 0.1225" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 346/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9517 - loss: 0.1221" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 385/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9520 - loss: 0.1216" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 423/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9524 - loss: 0.1212" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 460/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9527 - loss: 0.1207" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 497/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9530 - loss: 0.1203" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 535/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9533 - loss: 0.1201" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 574/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9535 - loss: 0.1198" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 612/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9537 - loss: 0.1195" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 652/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9539 - loss: 0.1192" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 691/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9542 - loss: 0.1189" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 730/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9543 - loss: 0.1187" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 769/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9545 - loss: 0.1185" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 809/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9546 - loss: 0.1183" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 848/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9547 - loss: 0.1181" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 887/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9548 - loss: 0.1180" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 926/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9549 - loss: 0.1180" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 965/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9549 - loss: 0.1179" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1005/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9550 - loss: 0.1179" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1048/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9550 - loss: 0.1179" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1091/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9550 - loss: 0.1179" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1135/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9550 - loss: 0.1180" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1178/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9551 - loss: 0.1180" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1221/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9551 - loss: 0.1180" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1264/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9551 - loss: 0.1180" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1307/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9551 - loss: 0.1180" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1350/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9551 - loss: 0.1180" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1393/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9551 - loss: 0.1181" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1435/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9551 - loss: 0.1181" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1479/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9551 - loss: 0.1182" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.9551 - loss: 0.1182 - val_accuracy: 0.8816 - val_loss: 0.4434\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 30/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:10\u001b[0m 47ms/step - accuracy: 0.9688 - loss: 0.0681" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9579 - loss: 0.1144 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 86/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9584 - loss: 0.1132" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 131/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9589 - loss: 0.1120" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 176/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9582 - loss: 0.1133" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 221/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9581 - loss: 0.1131" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 265/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9582 - loss: 0.1129" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 308/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9583 - loss: 0.1125" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 351/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9585 - loss: 0.1120" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 395/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9587 - loss: 0.1116" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 439/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9588 - loss: 0.1115" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 482/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9588 - loss: 0.1116" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 525/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9588 - loss: 0.1116" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 568/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9588 - loss: 0.1116" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 612/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9588 - loss: 0.1116" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 656/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9587 - loss: 0.1116" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 700/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9587 - loss: 0.1117" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 743/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9586 - loss: 0.1118" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 788/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9585 - loss: 0.1119" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 833/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9584 - loss: 0.1120" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 878/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9584 - loss: 0.1121" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 923/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9583 - loss: 0.1123" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 968/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9582 - loss: 0.1124" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1013/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9581 - loss: 0.1124" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1058/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9581 - loss: 0.1125" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1103/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9581 - loss: 0.1125" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1147/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9580 - loss: 0.1125" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1191/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9580 - loss: 0.1126" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1235/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9579 - loss: 0.1127" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1280/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9579 - loss: 0.1128" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1324/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9578 - loss: 0.1129" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1368/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9578 - loss: 0.1129" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1412/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9577 - loss: 0.1130" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1456/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9577 - loss: 0.1131" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9577 - loss: 0.1131 - val_accuracy: 0.8971 - val_loss: 0.3876\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 31/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.9688 - loss: 0.1016" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9536 - loss: 0.1070 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 85/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9543 - loss: 0.1063" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 128/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9546 - loss: 0.1078" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 171/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9550 - loss: 0.1091" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 214/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9553 - loss: 0.1105" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 257/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9554 - loss: 0.1116" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 300/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9556 - loss: 0.1123" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 343/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9557 - loss: 0.1128" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 384/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9558 - loss: 0.1131" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 425/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1134" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 466/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1137" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 510/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1140" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 554/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1143" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 597/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1146" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 641/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9561 - loss: 0.1147" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 684/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9561 - loss: 0.1148" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 728/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9561 - loss: 0.1150" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 771/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9562 - loss: 0.1151" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 814/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9562 - loss: 0.1152" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 858/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9562 - loss: 0.1153" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 902/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9562 - loss: 0.1154" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 946/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9562 - loss: 0.1155" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 989/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9561 - loss: 0.1156" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1032/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9561 - loss: 0.1157" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1074/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9561 - loss: 0.1158" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1118/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1160" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1161/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1161" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1205/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1162" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1248/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9559 - loss: 0.1163" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1291/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9559 - loss: 0.1165" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1333/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9559 - loss: 0.1166" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1378/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9558 - loss: 0.1167" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1423/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9558 - loss: 0.1168" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1467/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9558 - loss: 0.1169" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9558 - loss: 0.1169 - val_accuracy: 0.8903 - val_loss: 0.4025\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 32/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.9375 - loss: 0.0872" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 40/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9605 - loss: 0.0890 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 80/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9597 - loss: 0.0963" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 120/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9595 - loss: 0.0993" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 160/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9595 - loss: 0.1001" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 199/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9593 - loss: 0.1011" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 240/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9591 - loss: 0.1022" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 280/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9588 - loss: 0.1031" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 322/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9584 - loss: 0.1045" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 363/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9580 - loss: 0.1057" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 404/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9577 - loss: 0.1065" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 446/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9575 - loss: 0.1072" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 489/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9574 - loss: 0.1076" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 532/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9573 - loss: 0.1079" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 575/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9572 - loss: 0.1081" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 617/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9572 - loss: 0.1083" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 659/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9572 - loss: 0.1085" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 701/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9572 - loss: 0.1086" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 743/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9572 - loss: 0.1087" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 785/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9573 - loss: 0.1087" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 827/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9573 - loss: 0.1088" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 869/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9574 - loss: 0.1088" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 911/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9574 - loss: 0.1088" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 953/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9574 - loss: 0.1089" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 995/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9575 - loss: 0.1089" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1037/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9575 - loss: 0.1090" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1079/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9575 - loss: 0.1091" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1121/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9575 - loss: 0.1093" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1163/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9575 - loss: 0.1094" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1206/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9574 - loss: 0.1095" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1249/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9574 - loss: 0.1096" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1291/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9574 - loss: 0.1097" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1333/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9574 - loss: 0.1098" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1376/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9574 - loss: 0.1099" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1418/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9574 - loss: 0.1100" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1460/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9574 - loss: 0.1101" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.9574 - loss: 0.1101 - val_accuracy: 0.8984 - val_loss: 0.4147\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 33/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.9375 - loss: 0.1824" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9568 - loss: 0.1207 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 85/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9592 - loss: 0.1155" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 128/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9586 - loss: 0.1158" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 171/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9578 - loss: 0.1164" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 214/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9574 - loss: 0.1165" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 257/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9574 - loss: 0.1160" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 301/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9575 - loss: 0.1155" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 343/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9575 - loss: 0.1151" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 385/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9575 - loss: 0.1147" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 428/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9575 - loss: 0.1142" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 470/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9576 - loss: 0.1137" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 511/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9577 - loss: 0.1134" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 552/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9578 - loss: 0.1130" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 594/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9579 - loss: 0.1127" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 635/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9580 - loss: 0.1125" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 677/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9581 - loss: 0.1123" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 717/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9581 - loss: 0.1121" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 757/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9581 - loss: 0.1120" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 797/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9582 - loss: 0.1119" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 837/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9582 - loss: 0.1118" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 878/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9582 - loss: 0.1116" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 919/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9583 - loss: 0.1115" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 961/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9583 - loss: 0.1114" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1003/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9583 - loss: 0.1114" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1044/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9583 - loss: 0.1113" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1086/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9583 - loss: 0.1113" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1128/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9583 - loss: 0.1112" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1169/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9583 - loss: 0.1112" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1211/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9584 - loss: 0.1112" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1253/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9584 - loss: 0.1112" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1294/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9583 - loss: 0.1112" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1335/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9583 - loss: 0.1113" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1377/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9583 - loss: 0.1113" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1419/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9583 - loss: 0.1113" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1461/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9583 - loss: 0.1114" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9583 - loss: 0.1114 - val_accuracy: 0.8970 - val_loss: 0.4005\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 34/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.9688 - loss: 0.0621" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9691 - loss: 0.0751 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 86/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9681 - loss: 0.0784" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 129/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9681 - loss: 0.0799" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 170/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9676 - loss: 0.0824" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 213/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9668 - loss: 0.0854" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 252/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9662 - loss: 0.0877" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 292/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9657 - loss: 0.0894" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 333/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9653 - loss: 0.0909" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 375/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9650 - loss: 0.0922" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 417/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9646 - loss: 0.0932" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 458/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9644 - loss: 0.0938" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 499/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9642 - loss: 0.0944" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 540/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9640 - loss: 0.0950" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 581/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9639 - loss: 0.0954" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 623/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9638 - loss: 0.0958" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 665/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9637 - loss: 0.0961" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 710/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9636 - loss: 0.0965" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 752/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9636 - loss: 0.0967" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 794/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9635 - loss: 0.0971" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 836/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9634 - loss: 0.0974" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 879/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9633 - loss: 0.0977" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 921/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9632 - loss: 0.0980" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 964/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9631 - loss: 0.0983" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1007/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9631 - loss: 0.0985" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1051/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9630 - loss: 0.0987" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1095/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9629 - loss: 0.0990" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1138/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9628 - loss: 0.0992" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1181/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9628 - loss: 0.0994" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1224/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9627 - loss: 0.0996" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1268/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9626 - loss: 0.0998" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1311/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9626 - loss: 0.1000" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1353/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9625 - loss: 0.1002" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1396/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9624 - loss: 0.1003" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1440/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9624 - loss: 0.1005" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1484/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9623 - loss: 0.1006" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9623 - loss: 0.1007 - val_accuracy: 0.8935 - val_loss: 0.4260\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 35/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 1.0000 - loss: 0.0118" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9725 - loss: 0.0708 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 86/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9698 - loss: 0.0768" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 128/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9684 - loss: 0.0813" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 169/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9670 - loss: 0.0846" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 213/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9659 - loss: 0.0878" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 255/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9652 - loss: 0.0901" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 299/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9646 - loss: 0.0920" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 343/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9641 - loss: 0.0935" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 386/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9637 - loss: 0.0947" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 430/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9634 - loss: 0.0956" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 474/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9631 - loss: 0.0963" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 517/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9629 - loss: 0.0969" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 560/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9627 - loss: 0.0975" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 603/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9625 - loss: 0.0981" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 646/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9623 - loss: 0.0985" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 688/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9622 - loss: 0.0989" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 731/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9621 - loss: 0.0992" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 774/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9620 - loss: 0.0996" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 815/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9619 - loss: 0.0999" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 856/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9618 - loss: 0.1001" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 897/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9617 - loss: 0.1004" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 939/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9617 - loss: 0.1006" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 983/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9617 - loss: 0.1008" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1026/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9616 - loss: 0.1010" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1068/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9616 - loss: 0.1011" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1110/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9616 - loss: 0.1012" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1152/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9616 - loss: 0.1013" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1193/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9615 - loss: 0.1014" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1235/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9615 - loss: 0.1015" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1279/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9615 - loss: 0.1016" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1322/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9615 - loss: 0.1017" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1366/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9615 - loss: 0.1018" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1410/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9614 - loss: 0.1019" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1453/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9614 - loss: 0.1020" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1496/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9614 - loss: 0.1021" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9614 - loss: 0.1021 - val_accuracy: 0.8926 - val_loss: 0.4296\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 36/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 1.0000 - loss: 0.0139" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 41/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9713 - loss: 0.0775 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 83/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9667 - loss: 0.0877" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 124/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9665 - loss: 0.0890" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 165/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9662 - loss: 0.0899" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 206/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9660 - loss: 0.0905" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 246/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9661 - loss: 0.0906" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 288/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9660 - loss: 0.0911" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 329/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9658 - loss: 0.0915" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 370/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9656 - loss: 0.0919" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 411/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9655 - loss: 0.0921" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 452/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9654 - loss: 0.0924" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 493/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9652 - loss: 0.0928" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 534/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9651 - loss: 0.0930" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 575/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9650 - loss: 0.0932" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 616/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9650 - loss: 0.0933" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 658/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9649 - loss: 0.0934" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 700/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9649 - loss: 0.0935" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 742/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9649 - loss: 0.0936" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 783/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9649 - loss: 0.0937" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 823/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9649 - loss: 0.0938" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 864/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9649 - loss: 0.0938" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 905/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9649 - loss: 0.0939" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 945/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9648 - loss: 0.0940" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 985/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9648 - loss: 0.0941" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1025/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9648 - loss: 0.0942" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1066/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9647 - loss: 0.0944" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1106/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9647 - loss: 0.0945" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1147/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9646 - loss: 0.0947" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1189/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9646 - loss: 0.0948" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1231/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9645 - loss: 0.0950" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1275/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9645 - loss: 0.0952" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1317/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9644 - loss: 0.0954" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1360/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9644 - loss: 0.0955" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1404/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9643 - loss: 0.0957" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1448/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9643 - loss: 0.0959" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1492/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9642 - loss: 0.0960" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.9642 - loss: 0.0961 - val_accuracy: 0.8928 - val_loss: 0.4305\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 37/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.9375 - loss: 0.2036" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9480 - loss: 0.1324 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 84/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9528 - loss: 0.1190" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 127/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9552 - loss: 0.1137" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 170/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9568 - loss: 0.1097" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 214/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9580 - loss: 0.1069" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 257/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9588 - loss: 0.1051" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 300/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9594 - loss: 0.1037" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 344/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9599 - loss: 0.1025" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 388/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9604 - loss: 0.1014" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 431/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9608 - loss: 0.1005" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 474/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9612 - loss: 0.0997" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 517/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9615 - loss: 0.0989" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 560/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9618 - loss: 0.0982" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 604/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9621 - loss: 0.0977" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 648/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9623 - loss: 0.0972" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 691/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9625 - loss: 0.0969" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 734/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9627 - loss: 0.0966" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 778/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9628 - loss: 0.0964" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 822/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9630 - loss: 0.0962" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 865/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9631 - loss: 0.0960" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 909/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9631 - loss: 0.0959" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 952/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9632 - loss: 0.0959" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 995/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9632 - loss: 0.0958" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1039/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9633 - loss: 0.0958" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1082/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9633 - loss: 0.0959" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1125/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9633 - loss: 0.0959" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1169/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9633 - loss: 0.0960" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1213/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9633 - loss: 0.0960" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1257/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9633 - loss: 0.0961" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1300/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9633 - loss: 0.0961" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1343/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9633 - loss: 0.0962" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1386/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9633 - loss: 0.0963" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1430/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9633 - loss: 0.0963" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1474/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9633 - loss: 0.0964" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9633 - loss: 0.0964 - val_accuracy: 0.8891 - val_loss: 0.4603\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 38/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 46ms/step - accuracy: 0.8750 - loss: 0.1353" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9526 - loss: 0.0966 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 85/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9567 - loss: 0.0945" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 127/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9588 - loss: 0.0938" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 169/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9602 - loss: 0.0940" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 211/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9609 - loss: 0.0939" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 253/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9615 - loss: 0.0936" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 295/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9621 - loss: 0.0933" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 337/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9625 - loss: 0.0933" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 379/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9627 - loss: 0.0934" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 421/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9629 - loss: 0.0935" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 462/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9630 - loss: 0.0936" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 503/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9632 - loss: 0.0936" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 544/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9633 - loss: 0.0936" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 586/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9634 - loss: 0.0937" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 628/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9634 - loss: 0.0940" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 670/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9635 - loss: 0.0942" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 713/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9635 - loss: 0.0944" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 755/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9635 - loss: 0.0945" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 798/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9635 - loss: 0.0947" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 840/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9635 - loss: 0.0949" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 882/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9635 - loss: 0.0951" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 925/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9635 - loss: 0.0952" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 967/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9634 - loss: 0.0953" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1009/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9634 - loss: 0.0954" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1051/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9634 - loss: 0.0955" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1093/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9634 - loss: 0.0955" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1134/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9634 - loss: 0.0956" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1176/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9634 - loss: 0.0956" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1218/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9634 - loss: 0.0957" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1260/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9634 - loss: 0.0958" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1302/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9634 - loss: 0.0959" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1344/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9634 - loss: 0.0959" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1386/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9634 - loss: 0.0960" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1428/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9634 - loss: 0.0961" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1470/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9634 - loss: 0.0961" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9634 - loss: 0.0962 - val_accuracy: 0.8977 - val_loss: 0.4350\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 39/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.9688 - loss: 0.1152" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 40/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9693 - loss: 0.1047 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 81/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9673 - loss: 0.1045" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 123/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9666 - loss: 0.1027" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 166/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9664 - loss: 0.1008" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 208/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9664 - loss: 0.0994" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 249/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9661 - loss: 0.0987" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 289/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9661 - loss: 0.0978" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 329/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9662 - loss: 0.0969" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 369/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9662 - loss: 0.0963" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 411/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9660 - loss: 0.0960" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 452/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9659 - loss: 0.0958" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 493/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9657 - loss: 0.0956" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 536/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9656 - loss: 0.0955" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 578/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9656 - loss: 0.0953" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 620/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9655 - loss: 0.0952" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 662/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9654 - loss: 0.0952" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 704/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9653 - loss: 0.0951" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 746/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9652 - loss: 0.0950" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 789/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9652 - loss: 0.0950" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 832/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9651 - loss: 0.0949" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 874/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9650 - loss: 0.0950" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 916/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9650 - loss: 0.0950" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 958/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9649 - loss: 0.0950" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1001/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9649 - loss: 0.0950" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1043/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9648 - loss: 0.0950" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1084/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9648 - loss: 0.0950" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1126/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9648 - loss: 0.0951" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1168/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9647 - loss: 0.0951" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1211/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9647 - loss: 0.0951" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1254/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9646 - loss: 0.0952" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1297/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9646 - loss: 0.0952" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1341/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9646 - loss: 0.0952" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1384/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9646 - loss: 0.0952" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1427/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9645 - loss: 0.0953" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1469/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9645 - loss: 0.0953" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9645 - loss: 0.0953 - val_accuracy: 0.8938 - val_loss: 0.4520\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 40/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 1.0000 - loss: 0.0216" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9594 - loss: 0.0884 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 87/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9614 - loss: 0.0872" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 130/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9631 - loss: 0.0862" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 173/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9639 - loss: 0.0859" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 217/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9639 - loss: 0.0868" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 261/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9642 - loss: 0.0870" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 305/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9645 - loss: 0.0869" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 350/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9648 - loss: 0.0867" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 395/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9650 - loss: 0.0868" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 439/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9651 - loss: 0.0868" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 483/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9652 - loss: 0.0870" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 528/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9653 - loss: 0.0870" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 572/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9654 - loss: 0.0870" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 614/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9655 - loss: 0.0869" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 657/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9656 - loss: 0.0868" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 699/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9657 - loss: 0.0868" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 740/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9657 - loss: 0.0867" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 783/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9658 - loss: 0.0867" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 826/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9658 - loss: 0.0868" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 869/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9659 - loss: 0.0868" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 912/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9659 - loss: 0.0869" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 955/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9659 - loss: 0.0869" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 998/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9660 - loss: 0.0869" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1041/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9660 - loss: 0.0870" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1084/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9660 - loss: 0.0870" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1127/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9660 - loss: 0.0871" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1170/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9661 - loss: 0.0871" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1212/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9661 - loss: 0.0871" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1255/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9661 - loss: 0.0872" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1298/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9661 - loss: 0.0872" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1341/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9661 - loss: 0.0873" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1384/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9661 - loss: 0.0873" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1427/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9661 - loss: 0.0874" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1470/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9661 - loss: 0.0875" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9661 - loss: 0.0875 - val_accuracy: 0.8923 - val_loss: 0.4823\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 41/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 46ms/step - accuracy: 1.0000 - loss: 0.0238" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9655 - loss: 0.0953 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 84/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9642 - loss: 0.0943" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 128/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9638 - loss: 0.0945" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 172/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9640 - loss: 0.0939" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 217/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9641 - loss: 0.0934" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 260/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9641 - loss: 0.0929" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 304/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9642 - loss: 0.0921" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 347/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9644 - loss: 0.0913" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 390/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9646 - loss: 0.0904" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 434/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9648 - loss: 0.0899" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 477/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9649 - loss: 0.0896" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 520/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9649 - loss: 0.0896" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 564/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9649 - loss: 0.0897" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 608/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9649 - loss: 0.0897" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 652/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9649 - loss: 0.0898" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 696/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9649 - loss: 0.0899" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 739/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9649 - loss: 0.0899" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 780/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9650 - loss: 0.0899" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 823/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9650 - loss: 0.0899" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 868/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9650 - loss: 0.0899" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 913/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9651 - loss: 0.0899" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 958/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9651 - loss: 0.0899" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1003/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9651 - loss: 0.0899" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1048/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9651 - loss: 0.0899" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1094/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9651 - loss: 0.0899" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1139/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9651 - loss: 0.0899" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1182/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9652 - loss: 0.0900" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1225/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9652 - loss: 0.0900" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1268/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9652 - loss: 0.0901" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1312/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9652 - loss: 0.0901" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1356/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9652 - loss: 0.0902" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1399/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9652 - loss: 0.0902" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1443/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9652 - loss: 0.0902" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1488/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9652 - loss: 0.0903" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9652 - loss: 0.0903 - val_accuracy: 0.8904 - val_loss: 0.4852\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 42/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:07\u001b[0m 45ms/step - accuracy: 1.0000 - loss: 0.0069" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9765 - loss: 0.0636 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 86/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9749 - loss: 0.0691" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 129/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9737 - loss: 0.0720" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 172/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9737 - loss: 0.0720" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 215/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9735 - loss: 0.0725" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 259/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9731 - loss: 0.0733" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 302/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9728 - loss: 0.0742" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 345/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9724 - loss: 0.0750" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 388/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9722 - loss: 0.0756" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 431/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9720 - loss: 0.0760" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 474/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9718 - loss: 0.0765" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 517/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9716 - loss: 0.0770" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 560/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9714 - loss: 0.0774" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 603/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9713 - loss: 0.0778" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 646/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9711 - loss: 0.0781" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 689/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9709 - loss: 0.0786" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 732/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9707 - loss: 0.0790" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 775/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9705 - loss: 0.0795" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 817/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9703 - loss: 0.0800" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 860/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9701 - loss: 0.0804" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 904/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9700 - loss: 0.0809" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 948/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9698 - loss: 0.0813" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 991/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9696 - loss: 0.0817" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1033/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9695 - loss: 0.0821" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1073/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9694 - loss: 0.0824" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1114/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9693 - loss: 0.0827" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1155/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9692 - loss: 0.0829" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1199/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9691 - loss: 0.0832" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1242/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9690 - loss: 0.0834" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1285/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9689 - loss: 0.0836" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1327/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9688 - loss: 0.0838" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1369/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9688 - loss: 0.0840" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1411/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9687 - loss: 0.0841" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1455/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9686 - loss: 0.0843" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1496/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9686 - loss: 0.0844" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9686 - loss: 0.0844 - val_accuracy: 0.8822 - val_loss: 0.5031\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 43/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 46ms/step - accuracy: 0.9688 - loss: 0.0709" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 44/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9611 - loss: 0.0949 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 87/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9629 - loss: 0.0945" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 130/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9650 - loss: 0.0909" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 174/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9659 - loss: 0.0887" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 217/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9662 - loss: 0.0875" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 261/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9665 - loss: 0.0866" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 304/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9667 - loss: 0.0859" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 347/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9670 - loss: 0.0852" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 391/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9672 - loss: 0.0848" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 434/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9674 - loss: 0.0845" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 476/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9675 - loss: 0.0843" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 519/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9675 - loss: 0.0843" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 563/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9676 - loss: 0.0842" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 605/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9677 - loss: 0.0841" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 649/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9678 - loss: 0.0841" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 691/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9678 - loss: 0.0841" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 732/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9678 - loss: 0.0842" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 775/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9678 - loss: 0.0842" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 817/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9678 - loss: 0.0842" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 860/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9677 - loss: 0.0843" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 904/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9677 - loss: 0.0844" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 947/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9677 - loss: 0.0845" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 991/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9676 - loss: 0.0846" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1035/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9676 - loss: 0.0847" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1078/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9675 - loss: 0.0849" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1122/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9675 - loss: 0.0850" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1166/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9674 - loss: 0.0852" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1208/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9674 - loss: 0.0853" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1250/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9674 - loss: 0.0854" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1293/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9674 - loss: 0.0855" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1335/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9673 - loss: 0.0857" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1377/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9673 - loss: 0.0858" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1420/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9673 - loss: 0.0858" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1464/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9672 - loss: 0.0859" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9672 - loss: 0.0860 - val_accuracy: 0.8942 - val_loss: 0.4723\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 44/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:10\u001b[0m 47ms/step - accuracy: 0.9688 - loss: 0.1194" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 44/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9718 - loss: 0.0719 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 89/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9718 - loss: 0.0722" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 134/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9716 - loss: 0.0737" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 178/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9714 - loss: 0.0747" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 222/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9710 - loss: 0.0753" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 264/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9706 - loss: 0.0759" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 307/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9704 - loss: 0.0765" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 350/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9702 - loss: 0.0770" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 394/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9701 - loss: 0.0773" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 438/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9700 - loss: 0.0777" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 482/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9699 - loss: 0.0780" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 527/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9699 - loss: 0.0782" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 571/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9699 - loss: 0.0784" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 615/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9698 - loss: 0.0786" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 659/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9698 - loss: 0.0789" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 702/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9697 - loss: 0.0791" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 745/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9697 - loss: 0.0792" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 789/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9697 - loss: 0.0794" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 831/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9697 - loss: 0.0795" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 871/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9697 - loss: 0.0797" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 913/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9696 - loss: 0.0799" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 956/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9696 - loss: 0.0800" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1000/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9695 - loss: 0.0802" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1044/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9695 - loss: 0.0804" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1088/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9694 - loss: 0.0805" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1132/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9694 - loss: 0.0807" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1176/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9694 - loss: 0.0809" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1219/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9693 - loss: 0.0810" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1263/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9693 - loss: 0.0811" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1307/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9692 - loss: 0.0813" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1350/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9692 - loss: 0.0814" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1394/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9692 - loss: 0.0815" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1437/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9691 - loss: 0.0816" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1482/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9691 - loss: 0.0818" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9691 - loss: 0.0818 - val_accuracy: 0.8944 - val_loss: 0.4678\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 45/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:10\u001b[0m 47ms/step - accuracy: 0.9062 - loss: 0.1934" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 44/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9693 - loss: 0.0846 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 88/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9712 - loss: 0.0792" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 132/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9723 - loss: 0.0763" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 178/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9732 - loss: 0.0739" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 224/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9736 - loss: 0.0726" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 270/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9736 - loss: 0.0720" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 314/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9735 - loss: 0.0717" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 358/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9734 - loss: 0.0716" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 404/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9734 - loss: 0.0714" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 450/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9734 - loss: 0.0713" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 496/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9735 - loss: 0.0710" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 541/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9735 - loss: 0.0708" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 586/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9735 - loss: 0.0706" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 632/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9735 - loss: 0.0706" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 677/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9735 - loss: 0.0706" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 722/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9734 - loss: 0.0706" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 767/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9734 - loss: 0.0706" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 812/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9733 - loss: 0.0705" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 856/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9733 - loss: 0.0705" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 900/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9733 - loss: 0.0705" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 945/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9733 - loss: 0.0706" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 991/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9732 - loss: 0.0706" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1036/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9732 - loss: 0.0707" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1080/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9731 - loss: 0.0707" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1125/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9731 - loss: 0.0708" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1171/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9730 - loss: 0.0709" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1217/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9730 - loss: 0.0710" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1264/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9729 - loss: 0.0711" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1311/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9729 - loss: 0.0712" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1357/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9728 - loss: 0.0714" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1403/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9727 - loss: 0.0715" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1449/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9727 - loss: 0.0717" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1495/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9726 - loss: 0.0719" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9726 - loss: 0.0719 - val_accuracy: 0.8940 - val_loss: 0.4623\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 46/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:10\u001b[0m 47ms/step - accuracy: 1.0000 - loss: 0.0260" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 39/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9775 - loss: 0.0644 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 78/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9753 - loss: 0.0699" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 119/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9746 - loss: 0.0715" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 159/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9738 - loss: 0.0728" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 201/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9728 - loss: 0.0743" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 242/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9724 - loss: 0.0751" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 283/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9721 - loss: 0.0755" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 324/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9719 - loss: 0.0758" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 366/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9718 - loss: 0.0758" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 410/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9717 - loss: 0.0760" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 454/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9716 - loss: 0.0761" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 498/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9715 - loss: 0.0762" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 542/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9713 - loss: 0.0765" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 586/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9711 - loss: 0.0767" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 629/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9709 - loss: 0.0771" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 671/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9708 - loss: 0.0773" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 713/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9706 - loss: 0.0776" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 757/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9705 - loss: 0.0778" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 801/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9704 - loss: 0.0780" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 845/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9703 - loss: 0.0782" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 890/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9702 - loss: 0.0783" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 934/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9701 - loss: 0.0785" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 978/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9701 - loss: 0.0786" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1021/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9700 - loss: 0.0787" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1064/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9700 - loss: 0.0788" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1106/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9699 - loss: 0.0789" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1148/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9699 - loss: 0.0789" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1191/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9699 - loss: 0.0790" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1235/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9698 - loss: 0.0790" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1277/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9698 - loss: 0.0790" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1320/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9698 - loss: 0.0791" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1363/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9697 - loss: 0.0791" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1406/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9697 - loss: 0.0791" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1449/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9697 - loss: 0.0792" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1493/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9697 - loss: 0.0792" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9697 - loss: 0.0792 - val_accuracy: 0.8934 - val_loss: 0.4757\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 47/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 47ms/step - accuracy: 0.9375 - loss: 0.1291" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 41/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9688 - loss: 0.0719 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 83/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9721 - loss: 0.0670" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 126/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9731 - loss: 0.0659" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 169/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9734 - loss: 0.0659" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 210/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9734 - loss: 0.0661" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 250/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9736 - loss: 0.0659" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 291/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9739 - loss: 0.0655" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 333/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9741 - loss: 0.0653" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 376/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9742 - loss: 0.0650" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 419/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9743 - loss: 0.0649" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 460/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9744 - loss: 0.0649" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 503/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9744 - loss: 0.0650" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 546/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9744 - loss: 0.0651" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 588/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9743 - loss: 0.0653" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 631/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9743 - loss: 0.0656" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 674/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9742 - loss: 0.0660" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 717/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9741 - loss: 0.0664" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 761/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9740 - loss: 0.0668" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 804/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9738 - loss: 0.0673" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 846/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9737 - loss: 0.0677" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 889/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9735 - loss: 0.0682" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 932/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9734 - loss: 0.0686" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 975/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9732 - loss: 0.0691" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1017/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9731 - loss: 0.0695" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1058/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9730 - loss: 0.0698" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1099/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9728 - loss: 0.0702" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1141/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9727 - loss: 0.0705" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1183/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9726 - loss: 0.0708" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1223/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9725 - loss: 0.0711" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1265/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9724 - loss: 0.0714" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1307/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9723 - loss: 0.0717" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1349/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9722 - loss: 0.0719" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1391/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9722 - loss: 0.0722" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1432/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9721 - loss: 0.0724" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1474/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9720 - loss: 0.0726" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9720 - loss: 0.0728 - val_accuracy: 0.8953 - val_loss: 0.5138\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 48/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:10\u001b[0m 47ms/step - accuracy: 0.9375 - loss: 0.1247" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 41/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9648 - loss: 0.0806 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 82/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9676 - loss: 0.0789" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 125/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9695 - loss: 0.0762" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 168/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9707 - loss: 0.0749" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 209/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9714 - loss: 0.0741" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 251/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9720 - loss: 0.0733" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 293/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9723 - loss: 0.0728" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 334/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9724 - loss: 0.0724" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 376/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9725 - loss: 0.0722" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 418/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9725 - loss: 0.0721" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 460/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9725 - loss: 0.0721" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 502/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9724 - loss: 0.0723" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 545/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9723 - loss: 0.0725" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 587/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9723 - loss: 0.0726" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 629/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9722 - loss: 0.0728" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 672/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9721 - loss: 0.0730" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 715/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9720 - loss: 0.0732" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 759/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9720 - loss: 0.0734" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 802/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9719 - loss: 0.0736" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 844/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9719 - loss: 0.0738" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 887/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9718 - loss: 0.0740" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 930/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9718 - loss: 0.0741" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 974/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9717 - loss: 0.0743" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1017/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9717 - loss: 0.0744" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1060/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9717 - loss: 0.0746" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1103/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9717 - loss: 0.0747" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1145/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9717 - loss: 0.0747" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1187/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9717 - loss: 0.0748" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1230/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9717 - loss: 0.0749" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1273/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9717 - loss: 0.0749" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1315/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9717 - loss: 0.0750" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1358/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9717 - loss: 0.0750" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1401/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9717 - loss: 0.0751" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1441/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9717 - loss: 0.0751" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1482/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9717 - loss: 0.0752" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9717 - loss: 0.0752 - val_accuracy: 0.8931 - val_loss: 0.5226\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 49/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.9375 - loss: 0.1955" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9682 - loss: 0.0908 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 84/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9715 - loss: 0.0801" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 126/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9717 - loss: 0.0794" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 168/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9720 - loss: 0.0784" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 211/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9723 - loss: 0.0773" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 254/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9727 - loss: 0.0764" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 297/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9729 - loss: 0.0756" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 341/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9731 - loss: 0.0749" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 385/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9732 - loss: 0.0743" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 428/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9733 - loss: 0.0738" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 471/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9733 - loss: 0.0734" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 514/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9733 - loss: 0.0732" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 558/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9734 - loss: 0.0731" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 603/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9734 - loss: 0.0729" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 646/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9734 - loss: 0.0728" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 689/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9735 - loss: 0.0727" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 733/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9735 - loss: 0.0727" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 777/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9734 - loss: 0.0728" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 820/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9734 - loss: 0.0730" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 863/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9733 - loss: 0.0732" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 905/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9733 - loss: 0.0733" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 948/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9732 - loss: 0.0734" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 991/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9732 - loss: 0.0735" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1035/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9731 - loss: 0.0736" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1079/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9731 - loss: 0.0738" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1123/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9730 - loss: 0.0739" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1166/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9730 - loss: 0.0740" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1210/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9730 - loss: 0.0741" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1253/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9730 - loss: 0.0741" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1295/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9729 - loss: 0.0742" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1338/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9729 - loss: 0.0743" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1382/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9729 - loss: 0.0743" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1427/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9728 - loss: 0.0744" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1472/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9728 - loss: 0.0745" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9728 - loss: 0.0746 - val_accuracy: 0.8975 - val_loss: 0.5169\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 50/50\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:10\u001b[0m 47ms/step - accuracy: 1.0000 - loss: 0.0643" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 41/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9744 - loss: 0.0745 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 83/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9728 - loss: 0.0745" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 127/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9722 - loss: 0.0747" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 170/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9721 - loss: 0.0746" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 212/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9720 - loss: 0.0745" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 256/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9721 - loss: 0.0745" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 299/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9722 - loss: 0.0743" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 343/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9724 - loss: 0.0739" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 387/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9724 - loss: 0.0737" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 431/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9725 - loss: 0.0736" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 474/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9726 - loss: 0.0736" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 516/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9726 - loss: 0.0736" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 559/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9726 - loss: 0.0736" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 602/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9726 - loss: 0.0738" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 644/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9726 - loss: 0.0739" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 689/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9726 - loss: 0.0740" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 733/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9726 - loss: 0.0742" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 777/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9726 - loss: 0.0743" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 822/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9726 - loss: 0.0745" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 865/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9725 - loss: 0.0747" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 908/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9725 - loss: 0.0748" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 951/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9725 - loss: 0.0748" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 994/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9725 - loss: 0.0749" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1037/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9725 - loss: 0.0749" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1078/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9725 - loss: 0.0750" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1119/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9725 - loss: 0.0750" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1162/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9725 - loss: 0.0751" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1205/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9724 - loss: 0.0751" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1248/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9724 - loss: 0.0752" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1291/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9724 - loss: 0.0753" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1334/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9724 - loss: 0.0753" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1376/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9723 - loss: 0.0754" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1419/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9723 - loss: 0.0754" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1461/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9723 - loss: 0.0755" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9723 - loss: 0.0755 - val_accuracy: 0.8923 - val_loss: 0.5257\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Best epoch: 32\n" + ] + } + ], + "source": [ + "# Build the model with the optimal hyperparameters and train it on the data for 50 epochs\n", + "model = tuner.hypermodel.build(best_hps)\n", + "history = model.fit(img_train, label_train, epochs=50, validation_split=0.2)\n", + "\n", + "val_acc_per_epoch = history.history[\"val_accuracy\"]\n", + "best_epoch = val_acc_per_epoch.index(max(val_acc_per_epoch)) + 1\n", + "print(\"Best epoch: %d\" % (best_epoch,))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uOTSirSTI3Gp" + }, + "source": [ + "Re-instantiate the hypermodel and train it with the optimal number of epochs from above." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "NoiPUEHmMhCe" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/18\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.7779 - loss: 0.6366 - val_accuracy: 0.8545 - val_loss: 0.4020\n", + "Epoch 2/18\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.8605 - loss: 0.3841 - val_accuracy: 0.8593 - val_loss: 0.3978\n", + "Epoch 3/18\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.8753 - loss: 0.3350 - val_accuracy: 0.8733 - val_loss: 0.3498\n", + "Epoch 4/18\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.8834 - loss: 0.3167 - val_accuracy: 0.8792 - val_loss: 0.3370\n", + "Epoch 5/18\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.8927 - loss: 0.2902 - val_accuracy: 0.8702 - val_loss: 0.3628\n", + "Epoch 6/18\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.8938 - loss: 0.2823 - val_accuracy: 0.8834 - val_loss: 0.3228\n", + "Epoch 7/18\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9059 - loss: 0.2593 - val_accuracy: 0.8865 - val_loss: 0.3245\n", + "Epoch 8/18\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9064 - loss: 0.2495 - val_accuracy: 0.8835 - val_loss: 0.3229\n", + "Epoch 9/18\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9129 - loss: 0.2335 - val_accuracy: 0.8838 - val_loss: 0.3329\n", + "Epoch 10/18\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9152 - loss: 0.2264 - val_accuracy: 0.8851 - val_loss: 0.3243\n", + "Epoch 11/18\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9195 - loss: 0.2168 - val_accuracy: 0.8887 - val_loss: 0.3189\n", + "Epoch 12/18\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9228 - loss: 0.2098 - val_accuracy: 0.8877 - val_loss: 0.3246\n", + "Epoch 13/18\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9217 - loss: 0.2042 - val_accuracy: 0.8913 - val_loss: 0.3201\n", + "Epoch 14/18\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9267 - loss: 0.1967 - val_accuracy: 0.8932 - val_loss: 0.3213\n", + "Epoch 15/18\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9292 - loss: 0.1887 - val_accuracy: 0.8971 - val_loss: 0.3152\n", + "Epoch 16/18\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9306 - loss: 0.1839 - val_accuracy: 0.8925 - val_loss: 0.3347\n", + "Epoch 17/18\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9311 - loss: 0.1822 - val_accuracy: 0.8960 - val_loss: 0.3358\n", + "Epoch 18/18\n", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9352 - loss: 0.1743 - val_accuracy: 0.8934 - val_loss: 0.3432\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 128/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.6245 - loss: 1.0740" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 172/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.6500 - loss: 0.9983" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 215/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.6670 - loss: 0.9477" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 258/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.6796 - loss: 0.9100" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 301/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.6902 - loss: 0.8786" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 346/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.6994 - loss: 0.8516" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 391/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7070 - loss: 0.8289" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 435/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7137 - loss: 0.8092" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 480/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7197 - loss: 0.7917" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 525/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7251 - loss: 0.7762" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 569/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7298 - loss: 0.7626" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 612/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.7340 - loss: 0.7504" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 656/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7379 - loss: 0.7391" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 700/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7414 - loss: 0.7289" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 744/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7447 - loss: 0.7196" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 788/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7477 - loss: 0.7110" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 832/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7505 - loss: 0.7030" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 875/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7531 - loss: 0.6957" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 919/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7556 - loss: 0.6886" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 962/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7579 - loss: 0.6821" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1006/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7601 - loss: 0.6758" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1050/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7622 - loss: 0.6698" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1093/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7642 - loss: 0.6642" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1137/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7661 - loss: 0.6588" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1181/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7679 - loss: 0.6536" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1225/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7696 - loss: 0.6488" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1270/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7713 - loss: 0.6440" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1314/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7729 - loss: 0.6395" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1358/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7744 - loss: 0.6352" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1403/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7759 - loss: 0.6310" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1448/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7773 - loss: 0.6270" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1492/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.7786 - loss: 0.6232" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.7789 - loss: 0.6225 - val_accuracy: 0.8573 - val_loss: 0.4007\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:11\u001b[0m 47ms/step - accuracy: 0.9688 - loss: 0.1722" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8818 - loss: 0.3458 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 85/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8753 - loss: 0.3541" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 129/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8727 - loss: 0.3571" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 172/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8722 - loss: 0.3585" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 215/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8713 - loss: 0.3607" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 259/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8707 - loss: 0.3618" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 303/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8705 - loss: 0.3624" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 346/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8705 - loss: 0.3624" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 388/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8706 - loss: 0.3623" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 431/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8706 - loss: 0.3623" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 472/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8704 - loss: 0.3626" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 515/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8702 - loss: 0.3629" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 557/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8700 - loss: 0.3632" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 597/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8698 - loss: 0.3636" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 638/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8696 - loss: 0.3641" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 679/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8694 - loss: 0.3645" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 721/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8692 - loss: 0.3648" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 763/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8690 - loss: 0.3651" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 805/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8689 - loss: 0.3653" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 847/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8687 - loss: 0.3654" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 888/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8686 - loss: 0.3656" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 929/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8685 - loss: 0.3657" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 970/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8684 - loss: 0.3658" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1010/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8684 - loss: 0.3658" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1052/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8683 - loss: 0.3658" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1095/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8683 - loss: 0.3658" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1138/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8682 - loss: 0.3659" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1181/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8682 - loss: 0.3659" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1223/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8681 - loss: 0.3660" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1265/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8681 - loss: 0.3661" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1308/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8680 - loss: 0.3661" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1351/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8680 - loss: 0.3662" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1392/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8679 - loss: 0.3662" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1434/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8679 - loss: 0.3663" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1477/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8678 - loss: 0.3663" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.8678 - loss: 0.3664 - val_accuracy: 0.8658 - val_loss: 0.3632\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 3/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.8438 - loss: 0.3561" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8852 - loss: 0.3342 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 84/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8819 - loss: 0.3390" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 124/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8802 - loss: 0.3406" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 164/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8798 - loss: 0.3406" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 204/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8796 - loss: 0.3399" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 244/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8793 - loss: 0.3393" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 285/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8792 - loss: 0.3387" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 326/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8792 - loss: 0.3378" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 366/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8791 - loss: 0.3372" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 406/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8790 - loss: 0.3369" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 446/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8789 - loss: 0.3366" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 485/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8788 - loss: 0.3363" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 526/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8788 - loss: 0.3359" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 567/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8788 - loss: 0.3356" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 606/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8788 - loss: 0.3353" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 645/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8788 - loss: 0.3350" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 687/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8788 - loss: 0.3348" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 728/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8787 - loss: 0.3346" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 769/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8786 - loss: 0.3346" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 810/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8786 - loss: 0.3345" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 850/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8786 - loss: 0.3344" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 890/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8785 - loss: 0.3344" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 928/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8785 - loss: 0.3343" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 967/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8784 - loss: 0.3342" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1006/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8784 - loss: 0.3342" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1044/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8783 - loss: 0.3342" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1083/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8783 - loss: 0.3342" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1123/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8783 - loss: 0.3343" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1163/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8782 - loss: 0.3343" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1203/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8782 - loss: 0.3343" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1243/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8782 - loss: 0.3343" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1283/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8781 - loss: 0.3343" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1322/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8781 - loss: 0.3343" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1361/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8781 - loss: 0.3343" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1400/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8781 - loss: 0.3343" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1440/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8781 - loss: 0.3343" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1480/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8781 - loss: 0.3343" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.8781 - loss: 0.3343 - val_accuracy: 0.8702 - val_loss: 0.3546\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 4/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 1.0000 - loss: 0.1422" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 41/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9143 - loss: 0.2995 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 81/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9069 - loss: 0.3030" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 119/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9031 - loss: 0.3028" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 159/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8998 - loss: 0.3045" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 202/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8977 - loss: 0.3049" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 244/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8964 - loss: 0.3050" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 285/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8956 - loss: 0.3054" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 326/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8947 - loss: 0.3061" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 367/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8938 - loss: 0.3067" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 408/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8930 - loss: 0.3074" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 448/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8923 - loss: 0.3076" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 489/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8917 - loss: 0.3077" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 529/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8912 - loss: 0.3077" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 570/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8907 - loss: 0.3078" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 609/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8904 - loss: 0.3077" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 649/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8901 - loss: 0.3076" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 690/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8898 - loss: 0.3075" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 731/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8896 - loss: 0.3075" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 772/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8894 - loss: 0.3075" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 812/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8893 - loss: 0.3075" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 851/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8891 - loss: 0.3075" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 893/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8890 - loss: 0.3075" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 935/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8889 - loss: 0.3075" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 978/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8888 - loss: 0.3074" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1020/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8887 - loss: 0.3073" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1064/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8886 - loss: 0.3071" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1108/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8885 - loss: 0.3070" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1151/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8885 - loss: 0.3070" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1193/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8884 - loss: 0.3069" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1235/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8883 - loss: 0.3069" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1277/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8882 - loss: 0.3069" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1318/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8881 - loss: 0.3069" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1356/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8880 - loss: 0.3069" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1394/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8880 - loss: 0.3070" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1432/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8879 - loss: 0.3070" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1471/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8879 - loss: 0.3070" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.8879 - loss: 0.3070 - val_accuracy: 0.8768 - val_loss: 0.3472\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 5/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 46ms/step - accuracy: 0.8125 - loss: 0.3641" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 38/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.8715 - loss: 0.2836 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 76/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8775 - loss: 0.2862" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 114/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8812 - loss: 0.2883" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 153/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8837 - loss: 0.2892" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 191/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8849 - loss: 0.2896" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 230/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8855 - loss: 0.2900" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 268/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8860 - loss: 0.2903" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 305/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8864 - loss: 0.2906" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 341/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8867 - loss: 0.2908" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 379/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8869 - loss: 0.2910" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 417/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8872 - loss: 0.2912" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 456/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8874 - loss: 0.2917" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 495/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8875 - loss: 0.2923" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 533/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8876 - loss: 0.2927" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 571/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8878 - loss: 0.2929" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 610/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8880 - loss: 0.2930" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 648/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8882 - loss: 0.2930" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 688/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8884 - loss: 0.2928" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 727/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.8886 - loss: 0.2926" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 768/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8889 - loss: 0.2924" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 810/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8891 - loss: 0.2922" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 852/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8893 - loss: 0.2919" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 894/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8895 - loss: 0.2917" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 936/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8897 - loss: 0.2915" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 975/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8898 - loss: 0.2913" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1015/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8899 - loss: 0.2912" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1054/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8900 - loss: 0.2912" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1092/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8901 - loss: 0.2911" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1130/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8902 - loss: 0.2910" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1168/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8903 - loss: 0.2909" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1208/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8903 - loss: 0.2909" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1247/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8904 - loss: 0.2908" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1286/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8905 - loss: 0.2907" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1327/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8905 - loss: 0.2906" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1367/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8906 - loss: 0.2905" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1407/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8907 - loss: 0.2904" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1449/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8908 - loss: 0.2903" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1491/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8908 - loss: 0.2902" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.8908 - loss: 0.2902 - val_accuracy: 0.8777 - val_loss: 0.3441\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 6/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 47ms/step - accuracy: 0.9375 - loss: 0.1551" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 40/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9135 - loss: 0.2328 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 79/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9125 - loss: 0.2401" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 119/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9111 - loss: 0.2451" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 160/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9102 - loss: 0.2477" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 200/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9091 - loss: 0.2509" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 240/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9079 - loss: 0.2539" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 281/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9069 - loss: 0.2566" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 321/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9061 - loss: 0.2587" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 361/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9053 - loss: 0.2605" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 401/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9046 - loss: 0.2619" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 441/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9040 - loss: 0.2630" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 482/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9034 - loss: 0.2640" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 523/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9030 - loss: 0.2649" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 563/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9027 - loss: 0.2655" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 603/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9025 - loss: 0.2659" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 643/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9023 - loss: 0.2662" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 684/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9021 - loss: 0.2665" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 725/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9019 - loss: 0.2668" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 764/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9018 - loss: 0.2670" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 804/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9017 - loss: 0.2673" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 842/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9016 - loss: 0.2675" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 882/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9015 - loss: 0.2677" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 921/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9014 - loss: 0.2678" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 961/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9013 - loss: 0.2680" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1003/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9012 - loss: 0.2683" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1043/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9011 - loss: 0.2685" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1084/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9010 - loss: 0.2688" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1125/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9009 - loss: 0.2690" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1166/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9008 - loss: 0.2692" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1208/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9007 - loss: 0.2695" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1250/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9006 - loss: 0.2697" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1291/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9005 - loss: 0.2698" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1333/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9004 - loss: 0.2699" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1375/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9003 - loss: 0.2701" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1416/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9003 - loss: 0.2702" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1457/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9002 - loss: 0.2702" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1498/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9002 - loss: 0.2703" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.9002 - loss: 0.2703 - val_accuracy: 0.8832 - val_loss: 0.3262\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 7/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.9375 - loss: 0.1935" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9294 - loss: 0.2400 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 84/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9221 - loss: 0.2456" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 127/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9176 - loss: 0.2475" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 170/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9142 - loss: 0.2495" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 212/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9123 - loss: 0.2511" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 254/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9111 - loss: 0.2519" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 296/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9104 - loss: 0.2523" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 339/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9098 - loss: 0.2527" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 382/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9093 - loss: 0.2530" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 425/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9087 - loss: 0.2535" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 469/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9083 - loss: 0.2539" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 513/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9081 - loss: 0.2540" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 556/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9079 - loss: 0.2540" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 600/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9078 - loss: 0.2540" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 644/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9077 - loss: 0.2538" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 688/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9075 - loss: 0.2537" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 731/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9074 - loss: 0.2538" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 774/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9072 - loss: 0.2539" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 816/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9071 - loss: 0.2540" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 860/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9070 - loss: 0.2540" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 903/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9069 - loss: 0.2541" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 946/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9067 - loss: 0.2541" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 989/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9066 - loss: 0.2542" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1033/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9065 - loss: 0.2543" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1076/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9063 - loss: 0.2543" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1119/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9062 - loss: 0.2544" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1163/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9061 - loss: 0.2544" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1207/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9060 - loss: 0.2545" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1251/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9058 - loss: 0.2546" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1294/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9057 - loss: 0.2547" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1337/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9056 - loss: 0.2548" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1380/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9056 - loss: 0.2549" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1422/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9055 - loss: 0.2550" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1464/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9054 - loss: 0.2551" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9053 - loss: 0.2552 - val_accuracy: 0.8917 - val_loss: 0.3017\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 8/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 46ms/step - accuracy: 0.9375 - loss: 0.1920" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 41/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9135 - loss: 0.2449 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 82/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9084 - loss: 0.2492" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 124/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9086 - loss: 0.2461" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 166/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9090 - loss: 0.2450" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 208/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9093 - loss: 0.2447" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 250/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9094 - loss: 0.2445" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 292/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9092 - loss: 0.2447" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 333/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9088 - loss: 0.2457" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 373/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9086 - loss: 0.2465" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 414/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9085 - loss: 0.2469" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 457/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9085 - loss: 0.2472" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 500/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9086 - loss: 0.2474" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 540/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9086 - loss: 0.2473" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 580/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9087 - loss: 0.2471" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 622/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9088 - loss: 0.2471" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 664/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9088 - loss: 0.2471" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 706/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9088 - loss: 0.2471" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 748/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9088 - loss: 0.2472" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 791/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9088 - loss: 0.2471" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 832/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9089 - loss: 0.2471" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 873/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9089 - loss: 0.2471" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 913/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9089 - loss: 0.2471" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 955/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9089 - loss: 0.2471" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 998/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9088 - loss: 0.2471" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1040/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9088 - loss: 0.2471" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1083/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9088 - loss: 0.2472" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1126/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9088 - loss: 0.2472" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1168/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9087 - loss: 0.2473" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1207/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9087 - loss: 0.2473" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1247/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9086 - loss: 0.2474" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1288/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9086 - loss: 0.2474" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1329/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9086 - loss: 0.2474" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1372/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9086 - loss: 0.2475" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1410/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9085 - loss: 0.2475" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1453/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9085 - loss: 0.2475" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1497/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9085 - loss: 0.2475" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9085 - loss: 0.2475 - val_accuracy: 0.8852 - val_loss: 0.3255\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 9/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.9375 - loss: 0.2379" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 41/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9050 - loss: 0.2451 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 82/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9054 - loss: 0.2442" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 125/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9064 - loss: 0.2431" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 168/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9072 - loss: 0.2425" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 211/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9078 - loss: 0.2416" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 253/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9083 - loss: 0.2406" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 295/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9087 - loss: 0.2395" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 337/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9089 - loss: 0.2388" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 380/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9091 - loss: 0.2384" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 424/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9094 - loss: 0.2378" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 468/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9097 - loss: 0.2372" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 513/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9099 - loss: 0.2367" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 558/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9100 - loss: 0.2364" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 602/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9102 - loss: 0.2361" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 647/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9104 - loss: 0.2357" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 691/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9105 - loss: 0.2354" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 735/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9106 - loss: 0.2352" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 779/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9108 - loss: 0.2350" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 823/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9108 - loss: 0.2349" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 867/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9109 - loss: 0.2349" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 911/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9109 - loss: 0.2349" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 955/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9110 - loss: 0.2348" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 999/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9110 - loss: 0.2348" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1043/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9111 - loss: 0.2348" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1086/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9111 - loss: 0.2348" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1130/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9111 - loss: 0.2348" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1173/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9111 - loss: 0.2348" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1216/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9111 - loss: 0.2348" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1258/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9112 - loss: 0.2349" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1301/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9112 - loss: 0.2349" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1339/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9112 - loss: 0.2349" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1374/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9112 - loss: 0.2349" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1414/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9112 - loss: 0.2350" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1456/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9112 - loss: 0.2350" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1499/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9112 - loss: 0.2351" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9112 - loss: 0.2351 - val_accuracy: 0.8930 - val_loss: 0.3077\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 10/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 47ms/step - accuracy: 0.9062 - loss: 0.1572" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 40/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9110 - loss: 0.2322 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 78/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9139 - loss: 0.2279" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 117/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9161 - loss: 0.2240" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 159/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9179 - loss: 0.2208" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 200/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9186 - loss: 0.2184" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 241/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9188 - loss: 0.2174" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 283/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9189 - loss: 0.2172" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 325/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9189 - loss: 0.2175" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 368/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9188 - loss: 0.2180" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 411/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9186 - loss: 0.2184" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 454/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9185 - loss: 0.2187" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 497/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9183 - loss: 0.2190" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 540/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9182 - loss: 0.2192" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 584/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9180 - loss: 0.2194" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 627/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9179 - loss: 0.2196" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 671/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9177 - loss: 0.2199" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 715/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9175 - loss: 0.2203" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 759/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9173 - loss: 0.2207" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 802/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9172 - loss: 0.2210" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 845/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9171 - loss: 0.2212" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 887/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9170 - loss: 0.2213" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 930/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9169 - loss: 0.2214" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 973/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9168 - loss: 0.2216" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1017/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9167 - loss: 0.2217" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1061/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9166 - loss: 0.2218" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1105/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9165 - loss: 0.2220" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1148/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9164 - loss: 0.2222" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1191/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9163 - loss: 0.2224" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1234/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9162 - loss: 0.2225" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1278/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9161 - loss: 0.2228" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1321/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9160 - loss: 0.2230" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1364/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9159 - loss: 0.2232" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1408/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9159 - loss: 0.2233" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1452/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9158 - loss: 0.2235" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1496/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9157 - loss: 0.2237" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9157 - loss: 0.2237 - val_accuracy: 0.8913 - val_loss: 0.3110\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 11/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 47ms/step - accuracy: 0.9062 - loss: 0.2116" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 40/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9189 - loss: 0.1967 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 79/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9188 - loss: 0.2039" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 117/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9186 - loss: 0.2073" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 155/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9189 - loss: 0.2090" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 193/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9193 - loss: 0.2096" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 232/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9197 - loss: 0.2098" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 271/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9204 - loss: 0.2093" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 309/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9209 - loss: 0.2086" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 347/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2081" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 386/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9215 - loss: 0.2079" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 425/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9216 - loss: 0.2078" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 463/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9216 - loss: 0.2078" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 500/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9216 - loss: 0.2079" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 540/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9215 - loss: 0.2081" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 580/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9215 - loss: 0.2083" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 619/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9214 - loss: 0.2085" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 657/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2088" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 695/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9212 - loss: 0.2090" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 734/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9211 - loss: 0.2093" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 775/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9210 - loss: 0.2095" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 813/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9210 - loss: 0.2097" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 852/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9209 - loss: 0.2100" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 891/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9208 - loss: 0.2102" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 930/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9207 - loss: 0.2104" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 968/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9206 - loss: 0.2107" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1006/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9205 - loss: 0.2110" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1045/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9204 - loss: 0.2113" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1084/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9203 - loss: 0.2115" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1122/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9202 - loss: 0.2118" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1161/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9201 - loss: 0.2120" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1200/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9200 - loss: 0.2123" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1238/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9200 - loss: 0.2125" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1278/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9199 - loss: 0.2127" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1318/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9198 - loss: 0.2129" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1357/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9197 - loss: 0.2131" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1396/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9196 - loss: 0.2133" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1435/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9196 - loss: 0.2135" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1475/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9195 - loss: 0.2137" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.9194 - loss: 0.2138 - val_accuracy: 0.8927 - val_loss: 0.3143\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 12/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 46ms/step - accuracy: 1.0000 - loss: 0.0815" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9214 - loss: 0.2065 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 85/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9201 - loss: 0.2065" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 127/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9210 - loss: 0.2056" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 170/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9214 - loss: 0.2052" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 211/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2058" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 253/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2063" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 295/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2066" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 338/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9214 - loss: 0.2068" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 380/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2071" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 423/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9212 - loss: 0.2073" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 466/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9212 - loss: 0.2073" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 510/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2073" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 552/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2074" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 595/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2075" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 639/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2076" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 682/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2077" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 724/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9212 - loss: 0.2079" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 766/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9212 - loss: 0.2080" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 810/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9212 - loss: 0.2081" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 854/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9211 - loss: 0.2082" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 897/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9212 - loss: 0.2082" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 941/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9212 - loss: 0.2082" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 985/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9212 - loss: 0.2082" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1028/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9212 - loss: 0.2082" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1070/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9212 - loss: 0.2082" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1114/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9212 - loss: 0.2083" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1158/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9212 - loss: 0.2083" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1199/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9212 - loss: 0.2084" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1241/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2084" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1283/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2084" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1326/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2085" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1370/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2085" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1413/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2086" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1457/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2086" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2086 - val_accuracy: 0.8829 - val_loss: 0.3420\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 13/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:10\u001b[0m 47ms/step - accuracy: 0.9375 - loss: 0.1906" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 41/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9167 - loss: 0.2105 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 82/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9176 - loss: 0.2123" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 124/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9179 - loss: 0.2139" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 166/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9182 - loss: 0.2137" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 207/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9191 - loss: 0.2119" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 248/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9199 - loss: 0.2098" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 290/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9207 - loss: 0.2077" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 333/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9213 - loss: 0.2062" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 376/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9219 - loss: 0.2047" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 419/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9224 - loss: 0.2035" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 462/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9228 - loss: 0.2026" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 505/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9231 - loss: 0.2019" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 548/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9233 - loss: 0.2015" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 592/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9235 - loss: 0.2011" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 635/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9236 - loss: 0.2007" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 678/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9237 - loss: 0.2006" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 721/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9237 - loss: 0.2004" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 764/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9238 - loss: 0.2003" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 807/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9238 - loss: 0.2003" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 850/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9238 - loss: 0.2003" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 893/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9238 - loss: 0.2003" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 937/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9238 - loss: 0.2003" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 979/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9238 - loss: 0.2003" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1022/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9239 - loss: 0.2003" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1066/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9239 - loss: 0.2002" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1110/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9239 - loss: 0.2002" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1154/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9239 - loss: 0.2002" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1198/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9240 - loss: 0.2001" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1242/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9240 - loss: 0.2001" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1286/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9240 - loss: 0.2001" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1329/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9240 - loss: 0.2001" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1371/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9240 - loss: 0.2001" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1414/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9240 - loss: 0.2001" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1457/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9240 - loss: 0.2002" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9240 - loss: 0.2002" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9240 - loss: 0.2002 - val_accuracy: 0.8898 - val_loss: 0.3196\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 14/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 47ms/step - accuracy: 0.9062 - loss: 0.2159" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9413 - loss: 0.1746 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 87/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9364 - loss: 0.1807" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 131/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9332 - loss: 0.1854" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 175/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9315 - loss: 0.1877" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 218/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9306 - loss: 0.1888" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 263/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9303 - loss: 0.1891" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 308/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9300 - loss: 0.1897" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 352/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9296 - loss: 0.1902" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 397/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9293 - loss: 0.1905" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 442/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9290 - loss: 0.1907" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 486/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9287 - loss: 0.1912" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 530/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9284 - loss: 0.1917" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 574/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9282 - loss: 0.1922" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 616/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9281 - loss: 0.1925" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 659/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9280 - loss: 0.1927" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 702/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9280 - loss: 0.1927" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 747/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9280 - loss: 0.1927" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 791/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9280 - loss: 0.1928" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 835/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9280 - loss: 0.1929" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 878/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9280 - loss: 0.1930" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 921/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9280 - loss: 0.1931" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 964/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9280 - loss: 0.1932" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1009/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9280 - loss: 0.1933" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1054/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9280 - loss: 0.1933" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1097/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9280 - loss: 0.1934" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1140/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9280 - loss: 0.1934" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1184/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9280 - loss: 0.1935" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1228/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9280 - loss: 0.1935" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1272/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9280 - loss: 0.1935" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1315/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9280 - loss: 0.1936" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1359/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9279 - loss: 0.1936" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1402/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9279 - loss: 0.1936" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1445/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9279 - loss: 0.1936" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1489/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9279 - loss: 0.1937" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9279 - loss: 0.1937 - val_accuracy: 0.8892 - val_loss: 0.3296\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 15/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 46ms/step - accuracy: 0.9375 - loss: 0.1926" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9349 - loss: 0.1686 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 86/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9334 - loss: 0.1737" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 130/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9331 - loss: 0.1749" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 171/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9331 - loss: 0.1757" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 213/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9335 - loss: 0.1754" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 254/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9335 - loss: 0.1757" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 296/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9336 - loss: 0.1760" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 337/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9336 - loss: 0.1766" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 377/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9334 - loss: 0.1774" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 416/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9333 - loss: 0.1779" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 456/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9332 - loss: 0.1784" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 497/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9332 - loss: 0.1787" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 538/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9333 - loss: 0.1787" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 578/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9333 - loss: 0.1789" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 618/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9333 - loss: 0.1791" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 658/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9332 - loss: 0.1794" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 700/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9331 - loss: 0.1798" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 742/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9330 - loss: 0.1802" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 785/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9328 - loss: 0.1806" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 827/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9326 - loss: 0.1811" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 869/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9325 - loss: 0.1815" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 912/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9324 - loss: 0.1818" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 954/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9323 - loss: 0.1820" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 995/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9322 - loss: 0.1822" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1036/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9321 - loss: 0.1825" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1077/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9320 - loss: 0.1826" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1119/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9320 - loss: 0.1828" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1160/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9319 - loss: 0.1830" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1201/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9319 - loss: 0.1831" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1242/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9318 - loss: 0.1833" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1283/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9317 - loss: 0.1834" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1325/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9317 - loss: 0.1835" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1366/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9316 - loss: 0.1836" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1408/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9316 - loss: 0.1837" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1449/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9315 - loss: 0.1838" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1492/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9314 - loss: 0.1839" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.9314 - loss: 0.1839 - val_accuracy: 0.8842 - val_loss: 0.3548\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 16/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:07\u001b[0m 45ms/step - accuracy: 1.0000 - loss: 0.0360" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9404 - loss: 0.1651 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 86/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9385 - loss: 0.1675" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 129/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9379 - loss: 0.1683" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 169/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9379 - loss: 0.1687" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 210/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9381 - loss: 0.1687" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 253/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9382 - loss: 0.1688" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 296/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9381 - loss: 0.1694" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 338/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9378 - loss: 0.1701" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 378/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9376 - loss: 0.1707" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 419/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9373 - loss: 0.1713" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 460/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9370 - loss: 0.1719" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 504/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9367 - loss: 0.1725" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 546/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9364 - loss: 0.1731" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 588/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9361 - loss: 0.1736" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 629/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9359 - loss: 0.1740" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 671/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9357 - loss: 0.1744" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 714/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9355 - loss: 0.1747" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 757/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9352 - loss: 0.1752" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 800/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9350 - loss: 0.1755" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 843/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9348 - loss: 0.1759" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 886/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9347 - loss: 0.1762" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 928/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9345 - loss: 0.1765" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 971/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9344 - loss: 0.1767" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1013/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9343 - loss: 0.1769" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1054/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9341 - loss: 0.1771" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1096/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9340 - loss: 0.1773" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1139/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9339 - loss: 0.1775" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1180/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9338 - loss: 0.1777" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1221/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9337 - loss: 0.1779" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1263/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9336 - loss: 0.1780" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1306/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9336 - loss: 0.1782" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1349/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9335 - loss: 0.1783" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1389/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9335 - loss: 0.1784" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1430/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9334 - loss: 0.1786" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1473/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9333 - loss: 0.1787" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9333 - loss: 0.1788 - val_accuracy: 0.8895 - val_loss: 0.3340\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 17/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:10\u001b[0m 47ms/step - accuracy: 0.9375 - loss: 0.1898" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9508 - loss: 0.1578 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 80/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9458 - loss: 0.1631" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 120/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9422 - loss: 0.1665" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 162/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9409 - loss: 0.1667" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 204/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9401 - loss: 0.1670" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 247/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9395 - loss: 0.1675" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 290/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9390 - loss: 0.1681" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 332/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9385 - loss: 0.1687" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 373/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9380 - loss: 0.1692" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 414/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9376 - loss: 0.1697" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 456/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9372 - loss: 0.1701" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 499/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9369 - loss: 0.1705" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 540/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9366 - loss: 0.1708" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 582/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9364 - loss: 0.1711" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 623/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9362 - loss: 0.1713" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 664/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9360 - loss: 0.1714" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 707/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9359 - loss: 0.1716" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 750/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9358 - loss: 0.1718" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 793/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9357 - loss: 0.1720" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 837/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9356 - loss: 0.1721" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 882/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9355 - loss: 0.1722" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 928/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9354 - loss: 0.1723" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 972/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9353 - loss: 0.1724" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1016/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9353 - loss: 0.1726" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1062/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9352 - loss: 0.1727" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1108/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9352 - loss: 0.1728" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1150/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9351 - loss: 0.1729" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1193/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9351 - loss: 0.1730" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1235/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9350 - loss: 0.1731" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1279/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9350 - loss: 0.1733" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1323/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9349 - loss: 0.1734" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1368/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9349 - loss: 0.1735" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1412/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9348 - loss: 0.1736" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1456/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9348 - loss: 0.1737" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9348 - loss: 0.1738 - val_accuracy: 0.8977 - val_loss: 0.3317\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 18/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 47ms/step - accuracy: 1.0000 - loss: 0.0446" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9328 - loss: 0.1691 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 86/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9325 - loss: 0.1739" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 130/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9330 - loss: 0.1747" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 174/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9344 - loss: 0.1724" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 217/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9354 - loss: 0.1705" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 261/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9361 - loss: 0.1693" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 304/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9364 - loss: 0.1689" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 348/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9368 - loss: 0.1681" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 391/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9370 - loss: 0.1676" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 434/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9372 - loss: 0.1672" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 477/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9373 - loss: 0.1669" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 519/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9373 - loss: 0.1666" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 562/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9373 - loss: 0.1666" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 605/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9373 - loss: 0.1667" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 648/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9373 - loss: 0.1668" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 690/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9372 - loss: 0.1669" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 733/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9372 - loss: 0.1670" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 775/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9372 - loss: 0.1670" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 818/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9372 - loss: 0.1671" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 861/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9372 - loss: 0.1671" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 904/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9372 - loss: 0.1671" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 948/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9372 - loss: 0.1671" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 991/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9372 - loss: 0.1671" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1034/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9372 - loss: 0.1672" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1077/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9371 - loss: 0.1672" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1121/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9371 - loss: 0.1672" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1165/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9371 - loss: 0.1672" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1208/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9371 - loss: 0.1673" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1251/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9371 - loss: 0.1673" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1294/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9370 - loss: 0.1673" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1337/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9370 - loss: 0.1674" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1381/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9370 - loss: 0.1674" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1423/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9370 - loss: 0.1675" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1465/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9369 - loss: 0.1675" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9369 - loss: 0.1676 - val_accuracy: 0.8918 - val_loss: 0.3366\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 19/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 1.0000 - loss: 0.0248" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9470 - loss: 0.1380 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 84/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9459 - loss: 0.1404" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 128/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9443 - loss: 0.1440" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 172/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9429 - loss: 0.1473" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 215/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9422 - loss: 0.1500" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 260/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9413 - loss: 0.1523" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 305/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9408 - loss: 0.1538" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 350/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9405 - loss: 0.1546" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 395/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9402 - loss: 0.1554" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 440/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9398 - loss: 0.1564" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 485/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9395 - loss: 0.1572" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 530/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9393 - loss: 0.1578" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 575/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9391 - loss: 0.1583" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 619/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9389 - loss: 0.1587" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 664/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9387 - loss: 0.1590" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 708/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9386 - loss: 0.1593" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 752/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9385 - loss: 0.1596" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 797/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9383 - loss: 0.1599" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 841/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9383 - loss: 0.1601" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 885/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9382 - loss: 0.1603" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 930/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9382 - loss: 0.1605" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 975/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9381 - loss: 0.1606" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1020/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9381 - loss: 0.1608" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1065/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9381 - loss: 0.1608" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1108/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9381 - loss: 0.1609" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1153/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9381 - loss: 0.1611" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1199/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9381 - loss: 0.1612" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1243/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9381 - loss: 0.1613" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1287/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9380 - loss: 0.1614" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1332/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9380 - loss: 0.1616" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1375/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9380 - loss: 0.1617" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1419/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9380 - loss: 0.1618" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1462/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9379 - loss: 0.1619" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9379 - loss: 0.1621 - val_accuracy: 0.8974 - val_loss: 0.3227\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 20/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 46ms/step - accuracy: 0.9688 - loss: 0.0444" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9390 - loss: 0.1490 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 84/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9372 - loss: 0.1559" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 127/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9376 - loss: 0.1566" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 170/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9382 - loss: 0.1566" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 214/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9388 - loss: 0.1557" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 257/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9396 - loss: 0.1547" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 300/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9402 - loss: 0.1536" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 344/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9406 - loss: 0.1528" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 388/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9409 - loss: 0.1523" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 432/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9410 - loss: 0.1521" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 477/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9412 - loss: 0.1520" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 522/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9413 - loss: 0.1520" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 567/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9414 - loss: 0.1520" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 612/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9414 - loss: 0.1522" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 657/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9414 - loss: 0.1523" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 701/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9414 - loss: 0.1525" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 744/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9414 - loss: 0.1528" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 788/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9413 - loss: 0.1530" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 832/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9413 - loss: 0.1532" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 875/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9412 - loss: 0.1534" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 919/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9412 - loss: 0.1535" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 963/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9412 - loss: 0.1537" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1008/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9412 - loss: 0.1538" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1052/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9412 - loss: 0.1539" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1095/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9411 - loss: 0.1540" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1138/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9411 - loss: 0.1541" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1182/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9411 - loss: 0.1542" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1226/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9411 - loss: 0.1543" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1270/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9411 - loss: 0.1544" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1314/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9410 - loss: 0.1545" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1357/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9410 - loss: 0.1546" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1400/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9410 - loss: 0.1547" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1443/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9410 - loss: 0.1547" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1488/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9410 - loss: 0.1548" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9410 - loss: 0.1548 - val_accuracy: 0.8919 - val_loss: 0.3713\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 21/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.9688 - loss: 0.0375" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9421 - loss: 0.1496 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 85/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9426 - loss: 0.1486" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 129/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9432 - loss: 0.1483" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 173/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9438 - loss: 0.1481" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 217/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9440 - loss: 0.1479" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 261/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9440 - loss: 0.1479" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 305/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9439 - loss: 0.1481" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 349/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9436 - loss: 0.1486" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 393/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9433 - loss: 0.1493" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 436/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9430 - loss: 0.1499" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 479/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9429 - loss: 0.1503" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 522/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9427 - loss: 0.1506" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 565/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9426 - loss: 0.1508" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 608/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9424 - loss: 0.1510" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 651/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9424 - loss: 0.1512" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 695/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9423 - loss: 0.1514" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 738/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9422 - loss: 0.1516" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 781/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9422 - loss: 0.1517" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 824/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9421 - loss: 0.1518" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 867/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9421 - loss: 0.1520" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 911/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9420 - loss: 0.1522" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 954/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9420 - loss: 0.1523" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 998/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9420 - loss: 0.1524" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1041/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9419 - loss: 0.1525" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1083/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9419 - loss: 0.1525" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1126/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9419 - loss: 0.1526" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1170/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9419 - loss: 0.1526" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1213/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9419 - loss: 0.1527" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1257/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9419 - loss: 0.1528" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1300/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9418 - loss: 0.1529" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1344/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9418 - loss: 0.1530" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1387/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9418 - loss: 0.1530" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1429/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9418 - loss: 0.1531" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1470/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9417 - loss: 0.1532" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9417 - loss: 0.1532 - val_accuracy: 0.8823 - val_loss: 0.4058\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 22/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:10\u001b[0m 47ms/step - accuracy: 0.8125 - loss: 0.4498" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9440 - loss: 0.1617 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 84/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9467 - loss: 0.1509" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 125/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9471 - loss: 0.1478" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 167/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9475 - loss: 0.1458" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 210/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9477 - loss: 0.1447" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 254/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9479 - loss: 0.1440" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 298/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9481 - loss: 0.1432" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 342/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9482 - loss: 0.1428" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 386/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9483 - loss: 0.1426" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 429/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9483 - loss: 0.1426" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 472/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9483 - loss: 0.1426" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 515/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9484 - loss: 0.1427" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 559/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9483 - loss: 0.1429" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 602/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9483 - loss: 0.1431" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 646/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9482 - loss: 0.1433" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 689/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9481 - loss: 0.1435" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 731/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9480 - loss: 0.1436" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 774/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9479 - loss: 0.1438" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 817/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9478 - loss: 0.1439" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 860/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9477 - loss: 0.1440" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 903/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9476 - loss: 0.1441" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 945/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9475 - loss: 0.1442" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 989/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9474 - loss: 0.1444" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1033/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9473 - loss: 0.1445" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1077/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9472 - loss: 0.1446" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1120/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9471 - loss: 0.1447" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1162/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9471 - loss: 0.1447" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1204/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9471 - loss: 0.1447" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1247/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9470 - loss: 0.1447" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1289/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9470 - loss: 0.1448" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1332/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9469 - loss: 0.1448" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1375/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9468 - loss: 0.1449" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1417/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9468 - loss: 0.1450" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1461/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9467 - loss: 0.1451" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9467 - loss: 0.1451 - val_accuracy: 0.8979 - val_loss: 0.3486\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 23/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 1.0000 - loss: 0.0519" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9531 - loss: 0.1231 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 86/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9482 - loss: 0.1326" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 130/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9462 - loss: 0.1368" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 174/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9459 - loss: 0.1390" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 217/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9460 - loss: 0.1396" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 261/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9462 - loss: 0.1400" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 305/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9464 - loss: 0.1401" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 349/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9465 - loss: 0.1403" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 392/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9465 - loss: 0.1408" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 434/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9464 - loss: 0.1413" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 477/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9463 - loss: 0.1417" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 519/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9463 - loss: 0.1420" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 561/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9464 - loss: 0.1421" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 604/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9464 - loss: 0.1421" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 646/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9464 - loss: 0.1421" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 689/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9464 - loss: 0.1421" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 732/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9464 - loss: 0.1422" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 775/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9464 - loss: 0.1422" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 816/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9465 - loss: 0.1421" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 859/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9465 - loss: 0.1421" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 903/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9465 - loss: 0.1421" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 946/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9465 - loss: 0.1421" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 989/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9465 - loss: 0.1421" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1032/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9465 - loss: 0.1422" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1075/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9466 - loss: 0.1422" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1118/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9466 - loss: 0.1422" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1162/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9466 - loss: 0.1422" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1206/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9466 - loss: 0.1423" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1250/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9466 - loss: 0.1423" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1294/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9465 - loss: 0.1424" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1338/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9465 - loss: 0.1424" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1381/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9465 - loss: 0.1424" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1425/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9465 - loss: 0.1425" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1468/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9465 - loss: 0.1425" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9464 - loss: 0.1425 - val_accuracy: 0.8975 - val_loss: 0.3381\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 24/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:10\u001b[0m 47ms/step - accuracy: 0.9375 - loss: 0.1652" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 43/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9562 - loss: 0.1096 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 86/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9564 - loss: 0.1120" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 130/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9553 - loss: 0.1174" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 173/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9546 - loss: 0.1201" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 215/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9545 - loss: 0.1212" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 257/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9539 - loss: 0.1228" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 301/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9534 - loss: 0.1244" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 344/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9529 - loss: 0.1256" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 387/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9525 - loss: 0.1266" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 431/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9521 - loss: 0.1275" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 475/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9518 - loss: 0.1284" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 518/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9516 - loss: 0.1291" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 561/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9513 - loss: 0.1297" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 604/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9511 - loss: 0.1304" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 647/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9509 - loss: 0.1310" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 690/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9507 - loss: 0.1316" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 733/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9505 - loss: 0.1321" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 776/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9503 - loss: 0.1327" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 818/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9501 - loss: 0.1331" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 860/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9499 - loss: 0.1336" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 903/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9498 - loss: 0.1340" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 946/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9496 - loss: 0.1343" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 989/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9495 - loss: 0.1347" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1030/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9494 - loss: 0.1350" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1073/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9492 - loss: 0.1353" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1115/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9491 - loss: 0.1356" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1157/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9490 - loss: 0.1359" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1200/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9489 - loss: 0.1361" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1243/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9489 - loss: 0.1363" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1287/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9488 - loss: 0.1365" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1330/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9487 - loss: 0.1367" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1372/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9487 - loss: 0.1369" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1414/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9486 - loss: 0.1370" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1457/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9486 - loss: 0.1372" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9485 - loss: 0.1373 - val_accuracy: 0.8963 - val_loss: 0.3478\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 25/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 47ms/step - accuracy: 0.9375 - loss: 0.1622" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 44/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9467 - loss: 0.1485 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 85/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9478 - loss: 0.1499" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 127/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9491 - loss: 0.1474" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 168/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9500 - loss: 0.1447" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 209/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9505 - loss: 0.1426" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 251/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9507 - loss: 0.1411" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 292/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9510 - loss: 0.1397" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 334/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9511 - loss: 0.1384" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 377/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9512 - loss: 0.1376" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 420/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9512 - loss: 0.1368" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 463/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9512 - loss: 0.1363" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 506/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9512 - loss: 0.1358" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 548/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9512 - loss: 0.1354" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 592/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9512 - loss: 0.1351" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 635/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9512 - loss: 0.1349" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 680/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9511 - loss: 0.1346" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 722/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9511 - loss: 0.1344" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 766/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9510 - loss: 0.1343" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 810/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9509 - loss: 0.1342" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 854/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9508 - loss: 0.1341" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 897/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9508 - loss: 0.1340" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 938/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9507 - loss: 0.1340" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 981/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9507 - loss: 0.1339" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1025/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9507 - loss: 0.1337" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1069/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9506 - loss: 0.1337" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1112/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9506 - loss: 0.1336" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1154/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9505 - loss: 0.1336" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1196/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9505 - loss: 0.1337" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1239/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9504 - loss: 0.1337" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1283/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9503 - loss: 0.1338" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1326/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9503 - loss: 0.1338" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1369/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9502 - loss: 0.1339" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1413/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9501 - loss: 0.1340" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1454/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9501 - loss: 0.1340" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1496/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9500 - loss: 0.1341" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9500 - loss: 0.1341 - val_accuracy: 0.8926 - val_loss: 0.3846\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 26/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 1.0000 - loss: 0.0489" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 44/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9575 - loss: 0.1163 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 88/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9562 - loss: 0.1192" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 132/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9559 - loss: 0.1204" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 176/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1207" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 220/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9558 - loss: 0.1213" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 264/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9557 - loss: 0.1216" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 307/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9555 - loss: 0.1223" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 350/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9552 - loss: 0.1231" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 393/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9549 - loss: 0.1238" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 436/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9548 - loss: 0.1243" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 480/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9546 - loss: 0.1246" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 524/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9545 - loss: 0.1249" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 568/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9543 - loss: 0.1251" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 612/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9542 - loss: 0.1253" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 656/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9541 - loss: 0.1255" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 700/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9540 - loss: 0.1257" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 744/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9539 - loss: 0.1258" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 788/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9538 - loss: 0.1259" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 832/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9537 - loss: 0.1261" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 877/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9536 - loss: 0.1262" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 923/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9535 - loss: 0.1264" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 968/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9534 - loss: 0.1264" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1012/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9534 - loss: 0.1265" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1056/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9533 - loss: 0.1266" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1101/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9532 - loss: 0.1267" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1145/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9531 - loss: 0.1268" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1189/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9531 - loss: 0.1269" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1235/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9530 - loss: 0.1271" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1280/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9529 - loss: 0.1272" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1326/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9528 - loss: 0.1273" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1371/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9528 - loss: 0.1274" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1417/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9527 - loss: 0.1276" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1463/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9526 - loss: 0.1277" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9525 - loss: 0.1279 - val_accuracy: 0.8879 - val_loss: 0.3929\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 27/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:07\u001b[0m 45ms/step - accuracy: 1.0000 - loss: 0.0338" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 44/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9461 - loss: 0.1451 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 88/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9487 - loss: 0.1396" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 133/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9500 - loss: 0.1356" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 177/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9505 - loss: 0.1337" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 222/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9510 - loss: 0.1322" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 268/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9515 - loss: 0.1307" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 314/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9518 - loss: 0.1295" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 359/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9518 - loss: 0.1290" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 403/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9519 - loss: 0.1285" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 447/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9519 - loss: 0.1280" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 491/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9519 - loss: 0.1277" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 536/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9518 - loss: 0.1276" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 582/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9517 - loss: 0.1275" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 628/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9517 - loss: 0.1273" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 673/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9517 - loss: 0.1271" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 717/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9517 - loss: 0.1270" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 761/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9517 - loss: 0.1268" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 806/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9517 - loss: 0.1267" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 850/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9517 - loss: 0.1266" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 894/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9518 - loss: 0.1265" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 939/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9518 - loss: 0.1265" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 985/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9518 - loss: 0.1265" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1031/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9518 - loss: 0.1264" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1076/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9519 - loss: 0.1264" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1121/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9519 - loss: 0.1264" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1167/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9519 - loss: 0.1264" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1212/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9519 - loss: 0.1264" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1257/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9519 - loss: 0.1265" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1303/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9519 - loss: 0.1265" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1347/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9519 - loss: 0.1266" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1392/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9519 - loss: 0.1266" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1438/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9518 - loss: 0.1267" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1484/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9518 - loss: 0.1267" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9518 - loss: 0.1268 - val_accuracy: 0.8972 - val_loss: 0.3604\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 28/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 47ms/step - accuracy: 0.9375 - loss: 0.1569" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 40/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9536 - loss: 0.1327 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 81/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9564 - loss: 0.1213" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 123/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9569 - loss: 0.1188" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 165/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9572 - loss: 0.1174" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 206/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9573 - loss: 0.1167" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 247/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9570 - loss: 0.1169" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 289/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9568 - loss: 0.1167" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 331/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9567 - loss: 0.1164" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 374/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9565 - loss: 0.1163" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 416/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9564 - loss: 0.1163" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 458/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9563 - loss: 0.1163" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 500/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9561 - loss: 0.1163" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 540/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1164" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 583/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1166" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 622/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9559 - loss: 0.1167" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 660/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9559 - loss: 0.1169" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 700/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9558 - loss: 0.1171" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 740/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9557 - loss: 0.1173" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 781/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9557 - loss: 0.1175" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 822/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9556 - loss: 0.1178" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 860/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9555 - loss: 0.1180" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 899/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9555 - loss: 0.1182" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 937/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9554 - loss: 0.1184" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 976/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9553 - loss: 0.1187" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1016/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9553 - loss: 0.1189" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1057/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9552 - loss: 0.1191" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1098/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9552 - loss: 0.1193" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1139/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9551 - loss: 0.1195" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1180/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9550 - loss: 0.1197" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1221/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9550 - loss: 0.1199" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1261/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9549 - loss: 0.1201" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1302/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9548 - loss: 0.1202" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1342/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9548 - loss: 0.1204" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1383/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9547 - loss: 0.1205" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1423/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9547 - loss: 0.1206" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1464/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9546 - loss: 0.1208" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 2ms/step - accuracy: 0.9546 - loss: 0.1209 - val_accuracy: 0.8967 - val_loss: 0.3876\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 29/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 46ms/step - accuracy: 0.9375 - loss: 0.2177" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 44/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9572 - loss: 0.1278 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 88/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9563 - loss: 0.1258" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 133/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9568 - loss: 0.1237" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 177/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9568 - loss: 0.1229" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 221/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9567 - loss: 0.1222" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 265/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9566 - loss: 0.1217" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 309/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9562 - loss: 0.1217" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 354/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9558 - loss: 0.1219" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 399/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9556 - loss: 0.1219" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 443/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9554 - loss: 0.1217" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 488/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9553 - loss: 0.1217" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 533/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9552 - loss: 0.1217" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 578/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9550 - loss: 0.1218" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 623/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9549 - loss: 0.1219" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 669/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9548 - loss: 0.1220" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 715/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9547 - loss: 0.1220" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 761/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9546 - loss: 0.1220" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 806/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9546 - loss: 0.1220" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 852/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9545 - loss: 0.1221" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 898/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9544 - loss: 0.1222" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 945/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9543 - loss: 0.1223" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 992/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9542 - loss: 0.1224" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1037/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9542 - loss: 0.1226" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1083/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9541 - loss: 0.1227" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1129/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9540 - loss: 0.1228" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1173/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9539 - loss: 0.1229" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1219/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9539 - loss: 0.1230" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1264/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9538 - loss: 0.1231" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1309/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9538 - loss: 0.1231" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1354/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9537 - loss: 0.1232" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1399/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9537 - loss: 0.1232" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1444/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9537 - loss: 0.1232" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1489/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9537 - loss: 0.1233" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9537 - loss: 0.1233 - val_accuracy: 0.8942 - val_loss: 0.3985\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 30/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 0.9688 - loss: 0.0652" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 42/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9762 - loss: 0.0790 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 84/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9722 - loss: 0.0839" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 128/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9691 - loss: 0.0880" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 171/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9668 - loss: 0.0918" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 215/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9650 - loss: 0.0957" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 259/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9635 - loss: 0.0989" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 302/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9626 - loss: 0.1011" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 346/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9616 - loss: 0.1032" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 390/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9608 - loss: 0.1050" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 433/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9602 - loss: 0.1064" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 476/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9598 - loss: 0.1076" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 518/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9594 - loss: 0.1085" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 562/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9591 - loss: 0.1092" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 607/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9588 - loss: 0.1099" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 652/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9585 - loss: 0.1106" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 697/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9583 - loss: 0.1113" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 742/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9581 - loss: 0.1118" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 786/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9579 - loss: 0.1123" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 831/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9577 - loss: 0.1127" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 875/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9575 - loss: 0.1132" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 920/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9574 - loss: 0.1136" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 964/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9572 - loss: 0.1139" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1009/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9571 - loss: 0.1142" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1054/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9570 - loss: 0.1145" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1099/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9569 - loss: 0.1147" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1144/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9568 - loss: 0.1150" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1188/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9567 - loss: 0.1152" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1231/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9567 - loss: 0.1153" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1275/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9566 - loss: 0.1155" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1319/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9566 - loss: 0.1157" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1363/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9565 - loss: 0.1158" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1407/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9565 - loss: 0.1160" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1451/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9564 - loss: 0.1161" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1496/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9564 - loss: 0.1163" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9564 - loss: 0.1163 - val_accuracy: 0.8955 - val_loss: 0.4011\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 31/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:08\u001b[0m 46ms/step - accuracy: 0.9062 - loss: 0.1643" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 45/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9534 - loss: 0.1256 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 90/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9556 - loss: 0.1214" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 136/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9568 - loss: 0.1188" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 182/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9571 - loss: 0.1176" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 227/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9570 - loss: 0.1167" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 271/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9568 - loss: 0.1165" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 313/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9566 - loss: 0.1166" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 356/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9563 - loss: 0.1169" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 401/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1174" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 446/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9558 - loss: 0.1176" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 490/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9558 - loss: 0.1177" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 535/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9559 - loss: 0.1175" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 580/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1174" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 625/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1173" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 669/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1174" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 713/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1174" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 758/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9559 - loss: 0.1175" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 802/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9559 - loss: 0.1175" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 846/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9559 - loss: 0.1175" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 890/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9559 - loss: 0.1175" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 934/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9559 - loss: 0.1175" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 979/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1174" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1023/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1174" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1066/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1174" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1110/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1173" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1154/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1173" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1198/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1172" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1243/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1172" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1287/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1171" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1330/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1171" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1373/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1171" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1416/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1171" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1460/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9560 - loss: 0.1171" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9559 - loss: 0.1171 - val_accuracy: 0.8975 - val_loss: 0.3997\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 32/32\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1:09\u001b[0m 46ms/step - accuracy: 1.0000 - loss: 0.0871" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 44/1500\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9778 - loss: 0.0808 " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 88/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9747 - loss: 0.0859" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 131/1500\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9719 - loss: 0.0901" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 173/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9697 - loss: 0.0932" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 215/1500\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9685 - loss: 0.0949" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 257/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9675 - loss: 0.0962" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 298/1500\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9666 - loss: 0.0973" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 340/1500\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9659 - loss: 0.0984" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 381/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9652 - loss: 0.0994" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 423/1500\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9647 - loss: 0.1000" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 463/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9643 - loss: 0.1005" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 504/1500\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9640 - loss: 0.1008" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 544/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9636 - loss: 0.1013" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 582/1500\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9633 - loss: 0.1017" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 621/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9630 - loss: 0.1022" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 659/1500\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 1ms/step - accuracy: 0.9627 - loss: 0.1026" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 698/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9624 - loss: 0.1031" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 737/1500\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9621 - loss: 0.1035" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 778/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9619 - loss: 0.1039" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 820/1500\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9616 - loss: 0.1043" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 861/1500\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9614 - loss: 0.1047" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 903/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9612 - loss: 0.1050" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 945/1500\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9611 - loss: 0.1054" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 986/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9609 - loss: 0.1057" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1027/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9608 - loss: 0.1060" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1067/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9606 - loss: 0.1063" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1108/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9605 - loss: 0.1066" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1148/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9604 - loss: 0.1069" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1191/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9603 - loss: 0.1071" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1234/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9601 - loss: 0.1074" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1276/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9600 - loss: 0.1076" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1319/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9599 - loss: 0.1078" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1362/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9598 - loss: 0.1080" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1406/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9597 - loss: 0.1082" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1449/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9597 - loss: 0.1084" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1493/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.9596 - loss: 0.1086" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 1ms/step - accuracy: 0.9596 - loss: 0.1086 - val_accuracy: 0.8938 - val_loss: 0.4147\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "hypermodel = tuner.hypermodel.build(best_hps)\n", + "\n", + "# Retrain the model\n", + "hypermodel.fit(img_train, label_train, epochs=best_epoch, validation_split=0.2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MqU5ZVAaag2v" + }, + "source": [ + "To finish this tutorial, evaluate the hypermodel on the test data." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "9E0BTp9Ealjb" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 397us/step - accuracy: 0.8830 - loss: 0.3753\n", + "[test loss, test accuracy]: [0.37795379757881165, 0.8822000026702881]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 96/313\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8915 - loss: 0.4339" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m144/313\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8897 - loss: 0.4414" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m193/313\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8881 - loss: 0.4502" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m242/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8873 - loss: 0.4568" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m290/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 1ms/step - accuracy: 0.8872 - loss: 0.4588" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.8873 - loss: 0.4595" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.8873 - loss: 0.4595\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[test loss, test accuracy]: [0.4649185538291931, 0.8881000280380249]\n" + ] + } + ], + "source": [ + "eval_result = hypermodel.evaluate(img_test, label_test)\n", + "print(\"[test loss, test accuracy]:\", eval_result)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EQRpPHZsz-eC" + }, + "source": [ + "The `keras_tuner/intro_to_kt` directory contains detailed logs and checkpoints for every trial (model configuration) run during the hyperparameter search. If you re-run the hyperparameter search, the Keras Tuner uses the existing state from these logs to resume the search. To disable this behavior, pass an additional `overwrite=True` argument while instantiating the tuner." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sKwLOzKpFGAj" + }, + "source": [ + "## Summary\n", + "\n", + "In this tutorial, you learned how to use the Keras Tuner to tune hyperparameters for a model. To learn more about the Keras Tuner, check out these additional resources:\n", + "\n", + "* [Keras Tuner on the TensorFlow blog](https://blog.tensorflow.org/2020/01/hyperparameter-tuning-with-keras-tuner.html)\n", + "* [Keras Tuner website](https://keras-team.github.io/keras-tuner/)\n", + "\n", + "Also check out the [HParams Dashboard](https://www.tensorflow.org/tensorboard/hyperparameter_tuning_with_hparams) in TensorBoard to interactively tune your model hyperparameters." + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [ + "Tce3stUlHN0L" + ], + "name": "keras_tuner.ipynb", + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/docs/deep_learning/model.png b/docs/deep_learning/model.png new file mode 100644 index 0000000000000000000000000000000000000000..91dace9264149d1ad4bfe46f9bc5f274daa175c6 GIT binary patch literal 164820 zcmeFZcTiT_w{)Z;PXF=GG>pdd++992{#gCxl+Ad)3ZHlwJZNRBEwOU|I8phT4< z86`>jkeuO-g|~0Ne_q#nUENh(^{%(>?FJ2noeoZZTDhxyI{ zl~aQM+}nHj-huV(6W-;sOYgj94Y>Mbj(onizGObLLA|2MaKt6d`pBNZqxmzm53c-! zo4}u2eCl0;{r~X~N)E##u|HpbyYczV>OX%i`1gO=7iXOWDHP@nRY5#TQc@l8@NW+Im+ePU9rsUA!S~@IDOy|~Zp`Wm!#Si3ch>VVQ6kJ1L-X=4-_J8>;{qK0p z|N2b4rvE|MJmcgsX;4;G_3J-z^}|2%?(4SeI*;D(aZ*jz62QL@m4|+g^poJIFRQ7k z$!Kl#FJ{@rq^qmDcFh`opM4KrO-$It3@5gq#LwL1T(YI1P;U6IEU2mG& z7Dlrf-~0IgA$0TS{-WHv%5>nssrm#p|0}f3*%skxX=xr4j!R2R9#5VqTUn*mhFU7} zuUfTg!^VwDvtvCyeSIrQkZ&ExDOq_`7Ofe@u8o z@$#aDN{WtlQIY=mPF##fFJE#b2um8k?S0yLK(wZs_|f*8%V5610uCqqYVbvORzP+;M(5o31?DtRc4+A8HTIq>qj#7FHUzf zzC3+*Y={Ai>a9fe*i7^Z2H8XC?GHpuBavUibmkUenof=FjZq^>G;4IEa)I>yQFF#qccI}?+ zN9DM=PM#d!X@Bvex8-!3eel$tojVPh%o`Hb9ZJa>BF_b7xs4P~v$Y^nD!&&vq*qKo z^Yt|-KxCg+PBGA*21Ik@w>SjCd>*%rD*S9>};nPL$i;Or-LR$s%R6#|goUfjK z?U-&+L4R(XQcRGa*zdQi=kTMl66-Za$H!~242hG2jR{yGj_is!nLsX$jO)+i)lzg` zPGN`oujESlt+>7Z+89=DZf@OS9p}+=ZH|LUvqd_n6qDmMVyw)}pL%$GS=Ack#TFy6 zzM>tC`Kp`u@yeJrXRzFu-^L_$z4XbRyv3;&x@vW%UsC=YNexMwLc`fgF>=v8>({Su z&asRTcaV{J5-lH|+}U|~_iMWy+qXvqo;2(gnq`sfD)UlH(#YIkqm7jdxv;Q`Lh<@% z%NDhg2b+h>IdlqQhlWgJhMiqp%uHVPNL2W-@1&;>8?lR$@=eovJRD#w& zKF^7-dh?eGE^n zx#ZmHGTkPpH~2j@!f1B7!_7it>4!UmV4`F|Ef&=$AmEpcwfEF;i^+$FTjjdSlZ`!MWJ->CbhZK^2HI^i+GLi-@o61{fb97!5j3$x~J&I4l*4*YVs{oa-b#jWBTcwg|tkQO)WOFm()JPX^%9>fo=GQYncFk)V9qK<* zoM*?3+Y5601=2t0A|uHcf79%bMSKM{xc#`l zTlv+QwH4nhucFZ3*uBjSB_N_`VN6bu_DY+tx75@e{Dn-21wa$~Y~rcM9FT3)QO z5>oC)o5FCnCH1Xaw>l1`mT|kx*~kWRovRU@PYmL-NTw6A3&rUEVDxiQ$uLv*EZyz7;9xk^ZX-_f?b0|&YOgBnXt#vV}kB|EG>w2vGVr8CsE~bwuG^vktB^f4M0DY|c&15XwGH>x&)!VKc3Rb5Nt)Tl z-JhQ4O}9Jk+_NWc!_H$jZ6;WNYUZ91d_|vbP_b)qzGInJ#6K)7IlJAlBF(HV&vx9U zFfx*Hk}SPr?<;Zlx@g&bp#s*W8D@w*eA7g>tMsXCh1mSi$qHTx&;2LZx6sh2A{_UZ z8`gv+p*+^|+PB&I8#%Z}&$ipOn8j;k#)~^3M*rSKds!gUesOLx==ha8{ka9v2ZPn~ zY~nOBjiVGJ&Kpr%bLaZP-E4-wpFmyf&F9367(O(LqAYw34^>`SnIT+k*1}t1y>`#& zbe)oXKXRsDpBKGIyhYJ$>4esW3;zT=cON`;C@Rc;@#Hzs1>^ z8GfHoL0c)r&&ebU-^(YZ7xp}Og?JY5!TW5<@KQ-o6$qu_(B3O+9DSwa!EDg`d@NC$ zZKJjzR=C0pIis@ME%*ff%hy!ol3zPs?QJtl>V8FBiNNBB+j4q{t44wbf|k`b-lw_c2Y2LKTAwzxvNF zj+z;qIB_CgD>qHNO>AjKTvAe!rbkgxF}kre-`*l@P`Ed&+&R$8%PWZ6=rxnHAHSJf zlMjoMkDp)fMdS~P;h+4Gs-ZNJmYB$vt!;vr=BISlx;fW6W>d*=Ix|v0@u0c5zg@Jn zvB}!`@kmt0-y$EG=luA)mS=v$)%F4hL6^CVGveaI<%^4p^{ILivf-j_sts{UM{7kB z?Zz|rj!t*KkRSMbG@R}7hi_P*KC3pQ$XzqQ*c5>i^}B(MWOS5{w)LZSanx6Q`t)Xh zy;}M;S^EdwzDQ-0%_b@Ro$v0F8cXlcz4haV4>|1pN3}I9ET)EuD$2{h zA<$)8G?|t*Bp`irG}=xY?nJ}FNx;jkGXCJb1LnXuR=L#K@jlrK?L8-Mva>3_zSmn7 z9FwY7c8ra!GK#l&dC3V?Gc(_!uR7FBXokQcM04J6&B}ae=-a z_6R#Oy?8`l&XI0IJ(`5>nj)9^)}5Yz{q4bo$?6_~_NyF+`{mz8nIxy9LB>E=f+UTbwN4iIbGa{&}(rOB}y+j7%Oc`%P z)VNz0FN{3~aM5dush{&Cd3x_g03^$^KetdQS|{`DhJy@4fenKEVxpq@zq}H+Gf-7h zW@0&X=zYI!i0q@ny#T~D8O~o{pY!nY$~J9$bEV`jU280NbH06wQ8-GlBDPhDfMKmO zQ$HT=IQvnOFOtub0C~%!_x|2`Is0C-j-tZmEHe{F^V(=x8YQPtv-kh*+h^jCjLbXm zElQgHYaWN#K8YQ^ttP|TS#Ha&F~gPTdwSgKV~ep=LO!9QE*j%~HTKONV?7nJ6~V~q z?S)Q4W~ey|$SCDMF38ELUcUUYHVeym?l!?dZ+RkY`o9I8(0kxGIS^I6G*>}wUA;y4 zOPzn{f$veN&kVE4)I*0Rpgwzi(R8z!FBZKxy8A` z6vtn$-1k@G{*3{M@V*)W>v!(j6^$#iaC2w8P1R)jb>_?&ZrcInMcksG(^TTcix($a zEQ)jM4AEU|*kAMfu!QL{-R|9n8Zqb+_6k@RD3?UIY6J40o_S@@uIM z70R?7ROK1Uo4rb;Hq+`KG$h`jb5S{Q%1(auFM1tcq z)hzGG4{Ux}2?hWet@VF`1^u2pDz1V%4V_lJnEt1KE3DCUoRD46R*jLPLl!T4C4BOv zlBlRC2U9kO(2dSpJ-O7j`~;_Is(0ktjk|I}W~}{@4b;Q-ow#}r#V0x^haVgDvz5jT zbF^n1^}&L+#$k_&4@-DnM?K@12u0`=;7Mjxj zm9%cJ_Y_#`hV1urLoZi!G0xfZKOb{uT&vn!F^(6UrM0^{P)*lGrLQKOPsHDe{apou z ziCRM2S%;d0Xl#m_Q|+w@Px(>ezB?Y<_16180kOWRsfpk@Uh~#pR>9bFmlo%z?FsOl z?5~x`w;Q&Kt9iVe)A-kySB_{Xv^)nyyys)2!lv*ySn zog9B&To-l*w((=pJ7txS6k0!)F(#*7<3&H$BV zzHQvHX;a;Bc1Lo&N&>vL7TybD)ZfTl;7J- zfIfapF)rOQ@lSXpc5^pa6JTE%fMjd_-E?$GB2H5`4;-VYZ3Mb5sM{M2+Jn*=Pts3q zWJjLu;DxzWlv^gdRyaSc`oC7Mo-EyG5fC=NFkX{#gB#2E(Y-ikg&G`-0K|8k`Qfhe z`s{j@WG(f!e0#OCXYYv@qSx(q;zJ>$SezkMhN9-{v6Iz!VP@2!A(-FtHHTKtjkSkx zVdk)a0R#~x#d>N;y$~Qdj0PY5Hev-qy&c@NhwE&aC*Al85lDY-<)d`;mX{U>8j^yK z$OLruE8v%fJy#lDwWbWC7k`>6gsszoy*utlNO%!$1N_Q!z%?2M(L|tXvgoKD*R-*l zZ!No%YXAEfF!WdSmfiiw74BVBQX-jK-W^?_!q5tk!c{20&yYx8`NO$VJIP=F>x=*I z7Gx<59G&nh+rfrBR0l%!Vn33-fmbz+*Q;QPe&~j*$J3|vpm2o$eE&MY3fBCJFmo%W5PW9@N{q!++gcXi3#`-^HPI-ATL9(bjgjx&H3f zRg^KZ{XHI`1{2l+9Go9IuilJg&>!ac!@Ph?N+@1A3kwU$3O>IxmKXZO2;N|1K`O+S z95p@liNNJpVE<;FM)Yv2|K9YbupQJaGN?>Tbugbiu%A`G;McET0e*^y%EO$;BwgnE zW7a<0OPy+W8fjWA0v*yw?R&36_Bfcs2-GHHg{oiodiFUaiB_QO1AWVqE2Eyj^zqrDlBA&m z3P2SfjHitTF%^)N1T2qAr#CPDAUr(0Az7OgH=WO#pl^_3bYjtnK47fSYt69?qxpJ7 zM5K*Y)Hz2HIW^{lCLPEYZq>v~KfXGBDlbo?L*1u;`jO6KeDMjW%&B(w`}Z9L_jmum z>o|}0f5_F)ZRW?id_mx$%!S2dwUn^ufr0(sGVzqdUy9t8m(E#geu@Fcr9FN6wB3j- z8n>}}2~hE);Hmc9zI|J6Is8kmwc%k7j_N2;Kp6{VU{xbGe5cg9M#L~g%&q7^whrTl zdEu0LLkECPy|M1kG~trDUa_&vdU(uIg6ZZRKyVHZlzsR>yJycHwHfooB%Q*%Q_Eo_ zamR?SyY>1FVJY9~yfx$2oYW$8rZJPa@dys>JmwQ8z8V#RJ|RB_7?~NIOqIOv z5Y{-5URhp#aeivJK1QA)zlQN7IK_dl5$+_4Lq(h#ek>@-i$q!VlsD;=ef(%N^gY$w zYY(N95d3e&xwyDUw_pO!#;ymzV6T{K0a)J%}7hcD^cF8uM3kHxc;b zle1w!Nk_wOo&o)STtv*Cs)Zn8(>*cNnya)7WNQOf*g4ZW`@Lw5$)vjHULGm5I#p`H zgzJzOosATC05F~ewbSJLluk(1X=;c?`3dFL>(kiF!rf3N>}Dip2udOdr1R}<ou^*} z1;wMI&1GfNIygEyO2WfDw`Ui)uIRUm1$ak(5uyhGT zx{BkQ+^rZG7&R zA3O*O1EL&}HQXUQ-D5s5KRu_ zy?J;Nm27iu6tn~d7kUA!vxo(2=Hebd%?y`$bat82#fwwHOS63pgzBQ1gktmK&5w%G zr~71=Pt}2TS_BR5@%XWlv2pyh>JXzm%Q}z>Y7d31Li5A>G8foDeL5hExA+pKt0mh) z?dsLn4Jo=QXl_AGv}P=Vq1s=bT)gBsNo{LMHU<0dclhusN|-o#tDQ;N?PBsmmF*1TBN&MphoiLZ}Ow_ltm(n%vyUj{l3ujJGAs4^hzEt=n4 z5f3wo%_UowX7GzIn4u2W`J{oy6bsgkP{tq~$=YA75{a*5YuW)06}@*nHkxhb z;U^5u!EWRMqu-_;6>D82i7C+6H;P>|i{Gav;6w?v2m~5wQQNR&G`88MO;-iuQ+117 z?NT^(3a+=<(o+fB$TMG>ul8bSX;0_f4l%Be83glcXv-f?_}JN7zp|#0hg?p zX|=4JU zr+kc(V#^EZ?at$}=%YSo1u8-mGX_x)jZv8p{S}7~#mELnW4Vl4vdp9|TzDgW;QaaX z1Gm@Ff9diPOa6QF-kdsJOW%11DgOrJ1eF9oaR+cac${eLll(Cd{w;2Xz(VNAY0TC^ zn7|_l`4rC$B+x9o30n6)>8%b;pciq>aoqRuJ@N~3dbZCJfO zKMk3EaHM#dzyNVEgL0o#mj>x?iR$S#zdKKZ_4_Cbev_HIW|(;s;N^BnVE|h$u?3lMCd|o-Rw5I z;NjM{w^wg2IsSyRXy!dL-&;ae2>#LmmxkUV^6?Zz?Fu1YA;zy7TuuX1ptEx&Psp5%7-G`t2{ z+(YzY9Vq`-uE1ilgVziU_SA?>hy3X4^Y3$VnT@@a`uc=P16##BEvjXIjpX_B51?^o z3(u!O%1AY?KNeFn1>U$6gkI;x0%-K5Kw;*QF)>2Jwb~>J`G-d_Mu3Bmn0L6+mT9`M z5!fUTm1P3b0Dqwlh{sYdhLnH+S|&!uoE;JQ0ZHPj&lDX2rEkzaCFREjEX`U^*}RF_ zFX@KzfIjc8v~d~|jsc8a^Jj9{0p_HT3`8bQDb zJyND>jXbD!c#nk0n)oCT^-YDao6H~qg9xVUqLC9{0}i=Mwaafc13Idw2TJTlRuD`-&oH;^fj7YHy4U z>f!0B3V{?^D~1$4fW55AJ;n1>Aw-6}_=8QUL(|x;1RjFPgR&o^Q|K6nr^gET5xNM$ zo6p$%?4WoZj1aa1b)R3QsOdPIgZUz}(EQ8G+d2+CJIP0ZE0vO!tw-@q0u!l<9PM+3 z7LlO@sh7N+XV3nv;BTAM!QN8iYrh$xJ@&g=Xha#>2h0J7A%I;6upo{Mv)i*s7jYoR zH1h3|jw#1p-V>2;itPR9(IYzpbOOfU%!=kWfZf7_Cd`i%cO*MQYbI~H90J5kTEu?m z#Y5FHsOQ8d0x z8emp#sW>)i+tE?SXV%=UU^i=j2)_f!8Ifh)7LNw;{=Iv#mR+R;k_*}mUDwp*;7jk@ zy=&LCycfd;*Oab|&#iutpEKy7Q&BUPH<(;Y1h0#2*c8D_KcY0V&HcuoO_icH`xYJyCg%z-eJ6oZ+OlXdxvfy$2#6Z?&&^0JEIMX)&1fA zUh5c~zgP|YgcIkw+B8C^_|SCsz+%oogQi91WFu*c5Y!p%_c!i-A{Q#yG~magRLT!g zQadz6$;EnUKjCXLYFcZ4f0bb1NrL>^*fh|J+bqRzu#NPA-bx>|20);(_4rv>E%5Oq zKmT_tDH|y3B@=BBc{SR-gkt7s_HcdpQ3T8znw1(fAmlV8^jVHDuDr!UDS z0dHC8gHNM!2jTuR`dhM7PN2|5Xysb@)#Sn3Q3`k|GtWIgn~0rW%MU!%`{fAqhL>LN z*~jLE9sC-I0>#M4NZa8&{uG5~bL|Z52HhE6=n&lPfL>>J=B<_>4nHCM&n;G#Y4d!4 zKH(egt-*ZA$Bkw#yM0lfiKGvWFuE@sW`z7u1-FG!iKI)ZKc(*X?b^+$lhLA>isa}Q zaS2t8`{wVRyV>el?YeL^8SLVf# zO^2OUG47hE)vkXu23+T^9I^gy|J1eC3onGI3gj z^mrYqhh`E^wG@=)L1Kgg^-t2UY^b0L(ng_pTScvF%8_e_-=Stl!nGg|O8bqeJ#Z59hapRD#upzotAM@v5ZM%>)8G@ZLKN_sbOd_eqm?0zn>-|wGC9v&cxn&6E?iMSvJy*49v;1iyZBZwC;(R|gVgL7xj5yanf}qq~SUoa# zHO#K_?W%mn^E&IB(ApaVUy#&5g2iS-l8w>2&jryoK;Oez%e?bxd0^Fv{SBE=4c!v) zkMIw}4p?LEk*9u$CHs9*BiiA#MSG;`$)WTb!Qq6nkG9R#xGm{9x!^kNItAY|%<)K| zrUhD_tA$htBsKO7a0{_Q-KUYPCQ23jXR`x+AWw)iA?^UURy6Z-V=bNUV0}UiK~S$+ zk8dKTv8cf**wcvGYt*5t^bhj8-uws*59iU-WD7CCz61y*1F4wC4E=H(?014bHGwC~ zxMnr?qiL;vHG~ki%w5bds-1wfr`b1<>20OAVsc3F#afrP+lEHfO(SEfJr;)(1ku-4Uy(VXku5=6%Xv~wBXFo#y)~riN5ora)NLx?9#zW|Xq10J1a}GTe zliVxfm{AhsiZW(9m+qsfr4`cu-~?ykgm>+90s1G>!HDNJ9id!fnfJnr;zyeC)qAqM=Bko%m%>8ej*w=Q= zPuRAnApN=3$IUfd%LEain8Ph4NAqa9l`P%^G10%?X5Oh1p>%F2U;HQ{c9>?&+ev(t zz2_0O4ZsAJ4(U&j)>?{g^n`I}w-U)0SvJck9tlJRPgPgoU`^CC?K~Sx+N3~+f6WHM*2M=V7dOGjH8z0gpuH{em{1 zZ2YzC8D~mLN_gOREkvfV>p|#Rv8c03=G%|(vfCS!{XjP4XPhIHBg_E3xt|}V(_OOW zRJ>fu)--}u01Ns(O%|?cBL^)lts+-f;m^ipJ!nq|Z)+#?A&lSh%odS}XC=v_xc~Zx zTMtjvtLaL5_m^%*i*{qLd%c5U@TDDm!qV2SUcEx4x0!P&f+kxy@l9IJtpf|@{o(~& zjWA=jZeyjq>;%33cBgWYvqOF(Rpx4sPH;@l(WSBNy5KcR&zr1 zp#Dgs=SufY(k*V!YB53xHfNf|Kp;+l50=Ai{lw&?3J~{rqJKE24q*b2e29Mw!kP+T z2o|%_`h)w)`z|TgM~BcMbdSx4pFC*pyUA*I!d4FI-lqA=lQq}D5!ls$oRlMu;V{R6 zIN_FHrX{#pRFJ`hTYC3D3e2xTuDg^qK0dC5wwkRbpDU@^l)VH-9U}NTWK|6t2Zikg zu+UgS#%yAWkCc8C0WTQyv18>|23)GOeXCq|S$k2ct4xCuyThI*s%@zG)`|w2QG2en z13p60#R;WaZ5J{8r_F77k;vIbV%J6u_4R)tD%9$0)>Ce>Lb7|MtNMd3b*mdP zsCj?m@lDwiFEn)`?pXmsW-Vr4p^YA_>yc1wd*S>0_YHRSw6mxOTy%l9NMB@+JN|yR zP6duQ!U;tO-{@A&GF6A^GKZ-Yz9J%*5p!o9xUs_7-ryj#AMncdKbv^`@Zl$GDNQQB zw!xH6AN}a=-MeEz0p{537jdj>s5T8s5K@}Pm;!-lKQ zR}%q~Ny_I_dXkFO@szk}AVfL0^W$^c!f1gtU)Y{oJlQFCO-W8%TpZb%vvv;ZV(oT$ z;U5b03=Ao_H_6`hL3bDv%6(Y$@{Z_ReoVLFU}QXt_N@UIv&dWTd4+avtb&sruA*s= zt{vAXIlEv4y~Roppxycxpgm$tw&Wf=e7J-|vAe6QD~s-KO^863pQ}}c$<~PwD>ro* zo!RR$9}k3utlzSw5iTx>5^nuO(?-J~DeGO{0z7oXpdZ563 zk{X-M^sjzoTh%Z1ULh|-G%Ud-PYK==>DmBo1D>9AelBTMT%g7%IONfI1zf*o5l5=F zamUDq+cn2D_4U;AdOSAl&qJ$NKjFn=X=&+amMGelD7t+WMQztgFG<7+aKRZ@KW>op z-^QWqGU+Q_I}sAdYZlbToD*!G_t{M8%HsjfsoAE;!+m!K;I%uZ6fN^AdHA#9Kj6B) zz}UqD{6h#+;=q94@;_AUdh<1P$PUW+c4ifdEL1KiouKPVIZAiy+&pdH?hr$yf^X;d zR_~Z9tQK*cM9s4?@)-BMwo{4v)PBPt!mbv2wdr9mMk6?T96aAAYGx;ktE0{Iq!$S? z{Hw;;T`pa;jRj76+{lfYJ;XgQ`RTA%cfMExOZZ1c1PfjHSP-vy=82CzV%q{T#T>>W zk@!rTvYVO%KC-L(`jb|C;;RIW$&BsL_perbHvwXaC3vpKUw5b+0pS}MXe4;%`_M@a zfXpw;DHt7D2gy3;J-zeq)0#i!y$MM~T%-4c(q`YSWB6W3FY0{r_I!EOz(%(#0{cWd z*&Yy>Cb(5adD=%8$w3)HGjZ81P8ToNgY1Rp+M>T!UM#adkjp^o`H>|czBqv6#;Lgn z`^>)}^N#P2yOOEu8wenh`$F1naZ)W+W&wJ=96rtFCNDnEdeHWDM8qT#*Z0MCxA_8wSWJuk^I?cYL8(i z2Q#I!ocQRpu51xoc+*A`g9d&MjP}OX4m>|$@mdC9D(Hu~_e4^#b$M%3x*-;~KVt-@ zw%YrXZ3lstY9^mWN}JSR|5i`sp^>%gdt56Ls1COsX`A5)F@l3eZcsHrRW{st>=7~d zu(n`0;dv=ik0D?A?CjqIn zocu0Nq5bFYegv9mi@ZiGW(LT)S&AB<=8n^SzBVaf-Ti56?V9hz#?C$Uvsc5_@0w&y z$nv%0dVasW9z9Cc(s@60(i8gf4hE<;of}v|o-M&p+Tu&RefxM#KiTU7Ju4KuE)JE4 zByIG!*3O!km=NC1jDlTlFO$r*NgP|PJiQ$tF9Qa)mO&wEP6^f7GVka~fTDUhQKHM} zon(krC$0)M67%^HINEmiUt`RbxYK&G>#0N5=MnRGH6P36mo#@q>+CGgFJ zz0T?j_wn&b$=Uc*ifIW1Oy9RWSAlxyn+Gj9w52>X3S-a&)tRIeUK0%Zomxg;(KxxW z+>|{Fz@{G;%rdRTpamG^7CMmHp=PorfaV16(6}d<(Ce%Ri)QDx<{1YQH}H?K#xf8* zkwU~BsUPqps35*&-z7zJUgeE zWopT6Q5XBXho|!V!p<_qCd!Q}F3Q`DgaLh~@9<8$B}U824?2w_F5E9`i-L8whW*fX}Ae(Np{|}F*!6zhZ*dW3H;k8!s`O<7sl4EE{p95m_(qi_+& ziQ`170x@wIa&-WT(vQKxL4_1Fw=|YIn`_23T>Mn0>Gtd~G6hecb93}{5*3@`$(uLF zYv&*~W)?hXD$WgAEY69AF5KMT_qu+CO#KKt{5lWvxK13vCY~N^X0T@6I-w6!ze~34 zgFu@9JSfPxnF{w8VX%Mx_8R~6>4IKIk&9ePU_ik2nVFgI%|6Fe$}go~d#W7@3*24| z=y0KgcmEr#@-qc(h@I|)^$|ZSuK6?8EoRw!fMIEDl`dX<0uMk-y$ePVl0S*$I*KJ< zkdoqp`)Rl+L`N<;Kpj3yGVr6hcu@So_fUKLpPWogAE{cfW?A-D?x}Sp)`xo!9taAT zfKL#tvz>Md#VCmX0t>RpD9T7+sRNqs2+Y0MEfRyIU(Hd%lvBZ!vkmrsWZU{LE$wyK zqTZ#+p5E^E;0i77-EL0ZUue{jmJr{3F=mGjAAU;oh@_L&y)y2ukB^aWrJA=1mY^x- z3PUTh7g}e!K`RmK(O;V`YHxlNUqQ|3qN%+ke&);*tmYmBdYUsY=@g8@!J6_UjdXSC zaU0itnwVY~ONB(_zLe~@Vs2;+PZ96}ZrBSRoBNn*;&t^t5L=l;EkolKH8m-p+MU$M z41*Ao<;|FcgSZ+0^DlkDiE&k9y=j5Hx#p%vEQmAhIuzoPhdh#{0BIIz`0{P4Agcdnu^bYYP*#@}-0W&ba>d zy{cK432NOI~8oH9Ra*p@=vn`(wY+?d^Sci;W%aVld3c1yJ74uhX? zrs#coc5tmnBmP{O_*(BB%eAS5pBP}7*$gExH1`Ckxpu{}F}-fPnwQf^VWauI?*?iW z;{~eWJ&1>)rI$Y85x951?Xw@4{2 zwCYcxU;3xm57e>bM?S6pfpBpKf4U+dv8GEcEFwEbyCCs>OxCI9pS)3f_j?H_yk3(JT$*2ML zJ*vAt0f>h7sC*dr@Sw3H@qH`+a)x+{atoOk&0f<(4J(>kb+l71_}{A@fby!^~mR6@vyX` zKW>KqjQ(cls+Q^xsvv(SKzR>>H2JcbueCFSikX37o%#9s1SFFC9y=+WI-(C0?`f|6 z>z4c3vuA&yTk`8Gd%7a0nVK8Tjx$rg9P74e^3O zx7|6XfdT^69Dp;}X6E-5;=bT(y>Yj#`u?mXJgsOhEc6~ge#Dj$rPWR!Qt~ynC+zD%U?k9u_mN1tOM}RT@G^ChOprS9fbSzs5il@fT5E z{zI5CsJmH5rI&O6W zq8rJ+#|l&5J)}^o3Fx3OA0kla!KOV|)p)^RY&mzgf>a$q6&ZX6nFo(4$sHIKZi~qg zs{r}q{=9<0`S)$i9a95uQ78^$(>BC3+ir^COxS9IAUTXNhZ{-W@c2fXpIGE77hsM$LblpDjUnk2C9g0|=4=|ARO%4F(C+~iX_1^Se+{$m^2J&F!&;Q`)1oG|w zJ!fOub(Mfn&3xREKvOBzLR@p;e_ z>pF#EUUE@)&NY)c=8%W%D0gDYDp_6~-C_0a;D zi&dj+wYhG>uddL)lv~Hj+av`*7Vkm9()1$tIDL?eP%4}|Cm|sX8L_Ql83s8fSTD>L z$*57`%H~y8Y;SMpvKzXTJ;|_d-(Xe|ezVhcCBoy6+p|v-_xh%Nyp`-O_??%|DM2(KI?_5kP?(ZKjmW0>jI*q@T;VO?gWOYOy16eb;5qLj~VL1Cpt*`v|Kta4_> zT!K=Jr&gYgB&Hv<8jj+7nD7k!s$z7y6W;8V5M(`PSae|C&3$eyW(4a z6EipE?E$USv;GDob(Fqa$!B*j$jkc!ok(N#07sb4C1ITJPf>ljxWA^omz(>^tY$X+Y4C0J9v{rG@6O) zfec1QD`Jgb{`F?%M=pSA>3QW&ZH-P`FiK=73lL0IO7xKjs3~wJ(hl5xs8?Ab^L&Y|NPwCTsgpKt1zj! z%4_~ygj96MV;P#9fR#83qvFb0e3#kc&w_tyY0)h8q%+B;w;#tc9OwA+O9q^AY8Z6c z!)tm;;3-*xoB8lBLSU5 z6k#SoK@A`$)vw}ssiy=inMeI!yf}=MK&3|jV$usM3!4fjOyN64cHk>Mr!QQ1c+
XQttZ z7zZ3bBNZBQJWyuazJ09d)O|4;wcG38^F%BETwR@YjEw>Nc1Dau@u@g+n9MeMda8F3 z$aY4|3j5$-oZLvV!Qa+el9_XbV;HFQfx0(9t*NMZF*9>B7nFKyo~<+pCuUS2SjhC+ z2ov)H#Lj0}aa&L5lV6Wm+0s#I@M}~JJ2*IyzYr!Hrv@}#4fpr=haX5B%r!HHg6mAh z94D^B-{p;qcxtMvraP_R;S zV%RWf{Rg~;Sqw!RVA-uej=GnrF3^&ukeK(s!Grf$Xg5X)Dqt}(fcxJ2*|P(O4nZmO zBktPxaB|eofO$H25PuL7CiM2;4v?rLgp$F)R4mMn^GwTz@GF{k6q!vsWAp%_SGTudw6g# zYg}Ah8uYJO95|zoCYJH9Rg_a76==v2W!tuHxPRuA0`m^0L&jtT=tK#KiqL@=Xh8$u z9y5-SVM-kxoxI^ZoBr33`G+phM)+KefBEthyH<_@IYUf13$Hv5y5c+Y4)n|exqV?u zhhCHU7xfs7>8LJlp%=cCU4t=_=KY$Wt!!H`MA>pp)4oa@Dg$@RGPuXyE}cA^&(u*X zYwLPUF!;c{T7QC^jPW~XlquFtQrUv{BQU6moCnY$EYtJCRWTvXOB}5R2!98seq9P$Lr&c#!$TdA$bl`!=WaVBlr4K*RESP*gg?C zlevmj%AqpU4^pkV_VkM6u}NoI_(fsRuUNYqHSPYXWKcyGZfS+-IJ^_tHUKz%h zQfw^Nd_(zDQBZi5O9WMrJd0VRa_cy1BUnFxBjw9#_>9fMDT%&3_)`py;c(4&8 z`m&A=U1C_t)&}p*-QsKb(*n~1aw12!D&oJjrZ2FjWZhey%|!h7yF>L!!Vw$?5nSFR z>*aZ2a_!O6r@oL)w7?(gL(B@A#DcJ+IZb&-kBqCKP8A1MhT?F~_>Dr;wwaBp=O>PR`m@{B~4OKxs%8ioPevOosf z3|yjq!8~5oFcAyQgE1d)-8==5B&ui^Bf$JF0_I=Vfs~E}CgC#r#waNx!=|K*U-dyt z@TtIIJaGy~*PKbOf?{E&qa=H_8{$qwD;Xh>#^YCc!2@S&acUHDgS5GMGW7&DKl90J zm2U(*JucE)8`c2IFo}uj+Al-Yx1GkU>f0Y(InrR{17waQSi$I5H3!=T7e<}hmX4M1 zFyQnJ!yD8rQ*1jX0GCftE)3w9B0jA>V2&}xbOD$|y1oOBM1A-M(r~8Wcoq_ORUTZG z{$Sg`52aumS?8l-5f&PjbB;rY@Geu#8HjhI@Ja<3=HZ68e|k>XPlfPXzVBUvDk4xP zf9|Ug>&5PB?Uy4EiHw>v;vkJ&0Nsmg^1G;A#~svmTCZe??%=%G(UFLb~~cv=NzWfny@mp#Hee!x#PnSgb;KX>50b3v@Yu z$WqccCqOITP8K*-U!@PasNJv9eV%~UjjdD}t`S(sEOU~Ry1feXi<d z6v+X$3hrrgPA)ty`q(z!@J6J1^}NMRa9t)1>5Xy}97c4Q>7W*b+H|j7i|(Cz{rV8J zv#rmC)}Mh;U}HIV(-93QcQ&8tcLkj3XrAqYRykB^p)JQ!+&;W;un*X?@<*3XS?iuA zXiz-r#&&=}wPEMEHNw)r57G#UO&yi$+6w_I~%5KCZ*ECy9X_G1;4xyQ`lnn5Je9Wke!k51W9}>79aW zsoA-v6|P|F-falZlK&{2IE%>I2^}vR^bU|$`v(j$rZX1Yv2fnH16@z0*fM(H+QeF9 zXynLD2kh-@p8%i}r7-V31EF{jXB-WLx$r|W>W4dldIFQ62T}^gJgO{xY=)b8+FXcI z+qN4G$BGNQjKwQAK_(=(|KVXGO6Q8OuzbFjj~PIJPXfV}eOB{Yv?rduw}NaooO|>T zJ? z&4vplVGe2U3tbKN2N61aKkIWfPESp#0xb^!)AEK(Lu#u}l{xZa4)up;5VKwJfc%&0 z8GygatEw^`5@A5Tl);*kOPDcg0B-#H_@X{npiK)oq#zyVAG&Z40+eXt7|CDs*eUYU zmoOib8o!L!tCUW~K_9kWqvTLTdU2L0oOB%DBxg}11XuHq;_*M_@|fCZ%oXghSXg%b z*-MWAFoJL385!iT4>X6RqZ`v-&w%{}a9}HpDkS1@c&{X+%(LguHy2csxs`4lNx>sl zjg1P+u{MEa33*W9)10QwXEBGOkDvrhE5>nJ4<|-CbYY?3@xsBAj4*1YHe-}%S(}^` zuzvIA%;rW605;(?6SAu?@_!Hp`4@oC(m?9e@i$RO<9JPM#q(_=iBnJp)G@t>yCV4; zdFhfP1m<`>-^Nzo>^pbR;bFu2lT8cL7bm8?Nk`P-GOZowwH=CUZlT-q5*Omf0aJ{X z(j6u5-|J(3l*{tx*fj60o&g#0b6bl}kwW{yKp8vo!``JCiM$5>dPN(7+j~=bS zi0=V(ARL1y4<8msEOx_jqdJc~t`GIj3fwCfogQl9N)26vbDni#*HX*ULNR~=3@8Sof~ZKc6bzuE`|SPh_kEsU zdLB&wqXo#pF;%K~{=Cl&cD342O;svZEmq5yL6xl!A(b_BX63Vl7+}lJF>%DPJ;fm^ zcrP;l$1CvFAC+w^REmtek1|#=GBUlX6_Qn2xY+$LEt4MaaT~=TfcUM5naj(~t^RY_ znri5p&BpT(#Y*Ab+*~}!8%Xua)2oXjcPID@De%KJfbPB-@Trints3O|^2moV>P=%>pn9y%Dkf)%R-?4Y^IUM^P=$|`RZ`mRU zH7sA%5VQ|`Xq5_i}n!*9;gL{u+Q*+0*ZI7#Grza;%V2+Hyi-Lo2&9a|= zz6Y29*n$r<040E#-r22Ly?O`UgII5P5$mBiY0`s?M-F=u!CQpiVCN%%MikKuAnN?4 zM7ymf8vUbCho3_E90B{JLXwUID=ToI0Gu*(K9_l|VP)M$>Kg1ZvZxFjbDb1@eSN9Z zPQh=s7G1=OhmW<7Qva(mgSiM_%9I8%`C^VQms`C}DY2S<{%OB;@UQv|2p)wX*BX&Z1}B>Wy?hUjdnd`ouWxyJ-luTZ6cn42 zC?U;j$A*S{P%f3hFHN~rY?hXT)*HEbHtxGnb8N-Wte4nSw}%NxTspFA_flrs!Oe0s z9$!wXT38|8+%s7m{-AXS0!o2JzSIKj#Or*>5cP>jfdzo#brKw(tWa4~WUFUOCYgbs zyvM0&C$$SY$^@W?oQG9Ff5$fy zT=6*Ntz4w?!|;{3FGpAW9C=e+>#k$AtvL4*+l!kAcCB{b`~;_V=OkK>gzhg7SVxul zDF>`@Py=UUg5*i_#jadWa7uQ5Nd9?>C$qI6=lv2MDjaU@3cGS>!{`3~1WLC~tw258 z6!X(D6u>p8L$&v6)SFno~fXu)UG6^%G;-P+p+U1wpUe(=u!%% z29e77xPItf?@7&kS;@wrtr-P?*~7Qpr+}A|RKXeoMbCa>XrN^)h9RRJEs-^x1NDep z)I#w@i8bob=hlqb`Y8;fjW|3Ow&b(U8;@1n===3lZd<~~iI$avs!Db7M3C^}bKl#} zPS^khcqrzO7%b*szD_8EUcmb6lr0#HYHS z2KDPW_i&$=RX3ji{f6==2KiBjIoJb=(MyG{&+B_}Nk9fm5`OpX%h~uoG}fgVD+1s3 z{0WKv1Jtzg0#ZwBfIq3i6JYA3m5$ElaK*C^fb%M^lDzWyh$td*K|08w=G=)pw095> z(w8WXVxR2>SO_U_IHJ(nJE$sK0-FRsgqR)U91FU)FBvs^!EB!{FTesP);4 zzmojl_X)v;;6ae9~XlPkS>P|2Hs2{8e<)jL01FdyYM)w9b# zD5!VTCNm1?oHiu6P|jwxzv{`fY*9hxjS{?T(ck*KDFTEgFTiUFk4D|T7+~ErS3$Xn zfT58k3n?Fvua_+9Dt0)|YS79gOwEjh&zmV{0($GPzIaKsB2pntG#tP@TK|gP7dVw_ z;^*P-RIB+F0Wzm$`-I|H;rp?DA%uXmzNmxQw;CVF#GiUuP1^;olc~R{kJz^ zY=g*>9fnr?t;TiV-mL%Ne@kl1&?B{2#m62}8cj`0{f;6FX3cyqfbo;EV zF%aU5&wP7r?|o4YsMS^EAyWs&JmH=_qd^zk$bH5>v>gn|JsgmtHAZf3`4I1^087|O z%w>4EAgCwnZo54_cPkK~> z_CTreAr&D2>Kejq;kP*h0=w;-d6lrRFi_QsnHP9+*_lF_Se6nhbxhGc91(u81v!L7 z0wM^7MdkVF*|iSHl~Kod9t66`Bx+?nQIEo5BV^rvl6=PlF`v1(5S*Nm9d-umx*aDl zz+ciuLNdLT4)&RutE{ZlH9?N7N z#7`VD=hf@hb)0keS1y@cn`IN~MaC5q7hq4o3Xdo1E)j8j$#;^%%60Oj=56EIQg;v(zsLjly z3`kUb8TDNtF}`{+cRVEg@$B9EVL%*^p)v(8WC}Xu))scOw?|`*)rS_52OPZ8USlAg3hmU1jox%ORt&!r=gJPtEa zYxi9!nYb18#)Em#^luDXzsOoum;DpQ%HRgo^lHZYvJrp~CGQYjfqGukZGO6ik$bWW zQj7>BjRdKW#dZq1PkNpX+J9<7Gd;)J+PWQltbfbwfCE@dz0?7mbU<#8BU0SFHW-TC!vgg>zXiaN`!?;gu3S|$O*Orx(_@Hn& z3FNH<)iBH5s&&{YjM5YKw|t-^qTb+WY?Q@#_=>&Bw{Al6P>h;bAHD$vHMQ<5IXI+? z(GK#zSFw5nh_?f@?{iHu1>nrHYjKyF`Su4kQsehYw4xp&NaD@gw0d%X9nMuQ>#qGXMDXBnG_wne z;iU}KnYV~0$}Io45-xTJ7$s@xkx}gvbf~qCx8Vz7UwU>Dt(6jN@Wgo;y$|t0zSc1+ z?O0hS;pd11nllVC)?}P|A!wTXal1*40;p0Bn{x-iWPhMXR20fA7{lL`#qZKbH=*JR z^jn*@xREwo?n6n}>@?(A5dVbJY#7vk87`MnV6%2d0y8~vedQJb0=V#R`y?Gy^J|G5 zMEJJGPu_H?H#R$;1U$D3ohY?f^;q(gwS746?tvqyhu5Y$Nmth)B=HJfAyA@epV%P3 z0oHDnEeIo&Q(r=6yqmXSMHqi_auoE{&< z;JA4ln8THFf+gglOqM{e66V;tEbHoIN|l}tj)r$3qE)$#Z<W<8C4pYcU3-2yk04F5~*tpDa*JZG*+kJ^p(OvZ!iR}0-@8xz9own$6)&oo-oZ5z+T%+HvC!tkk@cLE2QcGMJ>03K>7)+;dbF= zt%aWaQ!_2|b4JQVoJr{lrLAk{0U`AW+$sU5qLB}ZWkpk0du-%pD6nE{M!euetv_!0 zun5OpjGqF};lm9kE!YzhrmXZI7NJR_`57YKG&+bTKSZMfj6*XQM`x8l*#?Ah)(oWw zI5qO4L&JbF)p8hLT#-{_LiD{{7_e5e8uHC2svkslELw@vs3Fc!Bs;tq2!`ZpMGNJ%Vh;wi~fCYVUwOYSmDQ@nPA=m06X ze`10{zv2rpIL))`Dtf^Y$%Hy?paF*NG+%D=v0q4t*~cyvgl6NakZ6E|vq&s}iXras zfMY@dBFa5y3HdP_2dQtwDt+Vn_1-0o*hG5q5_ev*jCV!>V>p(R=&)%t=j&ouQX^%v zc*1{LW8T5JY)S{ijmq^X)EsBM+TDI+DpTr>${4}>sEYY|8-AHen_DJj?^7 zJ)1`NX-3Qb={n~Ezrf0$KE8`e2fMt4P1aRQr}rE(OG>)6$cRBCZtSKM6~ca)CnN6kiwQAPh8*T?TJ%z7KXoJz<_ z5J*k4P?@or)>Tzi^^c1}Pcbx-mee>o$;CUv^XOeJUq@W~>>zCa_J^ryGPP~5p+#tG z=Jog3j()b69ma77NmE0=FcP8AVwQWCO>^ZXuG+ZK#ERbwOKdQEAv(Sty~tTKXwG$_ zXB50lHNiC9PwDDi*RyB6YWgY*+}%mqNybz1=AuYHFfAu9pSdZQt?PE(6b?PMy36aK z>pE8F){PlIG9FW?%R~>GMPU|JDMDrAGY($<@aUauMexCjUS|Ocr7WK~e+sJKAok_% zm^5Ub-w9p&eYA*b=5^T%;saoJ?Hhn+IiYjB)%_<#5G9OHKs`&dB^gPzV=}@*Lew8- zT-S(c2LU=Tg73+?{dh6HMh9@RdvJQ4NNq+3!#DR`r@*Z#)=TB{*J8JXd>-M>DpBhfr$+xTjaB|p(e?$ z*cezA_i}NeD*D(sP~6l>S=Q^?wP6Ipe1xw$7aD4tGC3x-K2DveKruHrmgL@(fd;s$ zaWgx6SG7wNS5K3968b)pSbGY`C+QXlFp2Sj^+7165aS$xmP{8#*^}3B(jO>#oY_*l z_zv&(&MFPi=@3ycX2dCaId^8b?0|bqnq(WQa+y8c*fj(;#IgF##M^e>S>z(yeD0;c z(VFZ(&=(BcnU@ydz9jyaq41ygJ=%QfWhKBk&Q66*`yRP&e)t`F0gZ=eUF%v;pKHK? zP82|%HyfAvLCdxSSvHYvR+*TfLIxW2y^Xo%zz{lfv@wA|7D5Qv9n^3KK7Y930cklD z?Kxv1laWYL_NBA{(gL82U}6BMzJmKR3)dytm3R=I$x^WN_WZF3_7yLFZ_eD5csQ<2 z-hJwRyjt?BO9CXUgIH|%hSbbo7A^^oV4flH;A;l|9RJl4$sD`BXN>o_yOaXZH0yOW zk!S#O2C6@^mi#6QhHq?T<)3h{{?NXnDYdX4kg%|jpZKgp9m z`bNZPpWm*|ss@}vGVSlX=7>Tk39y5$CPe0UAQD9YNK(Cb?I(bKJ0v9XO7r9!V{l}% zd22s>gT(&d3)@P=zK=w#|GNe_{s4(d~Xag1KFyg+7VM5|TEfa{emSWTg=Hrk~ zn4`$IDfv#i0dO6a7(1{5X|H^0&yO51Z`c8_Ddm^%D5$@Nz1Ol1@v3x5kaKI>#Lm78 zIq+Aa*A_HK)Cw(C{V1l)P|g%4i7YxohRHPE=yoVw?HQ)7rW#O+!o8W!P!Zglmid(j ztDw`Rx_Ph_V64{0=&X@32a$x1C1B%(V8kk)!m;3k%56f0f&C;BEwyyo{Gq^|=Rl8J zm$fW*xFk8IjFJ}=>~`#n?gj|?QJG%nFW&Z#7QkO&IDCHQL}s4O1=S6KNlFpEr#7nY zoRbY3VrOOj;_KG5PLObMukZ42Y%aZwT{VAe)gluh6cU%%>MjbHZ(mZ~EDVe%oGW*NlL-f)@u zI;`Ammdp=Gr2Weu%`d}DaVGp( z4tSXImItP@R{2gN&&nm!B?aSJ4?4b!(xcR+a`)=C)>d0ax9i&;*PYI>Kz%iLoW@pW zuH#aC9tZ{7EiOSp!Qi?A>+3nK+$id`IkC5%{bz4=*t#T5`keyy*0!4q`JLJobRDjA z{;RxD@R_mDLzvK_PZuS2uds#ipdATkzBI`bf_;7x;1dOb1wv+&)bC5oKzlIZNlR|6 zi$Ld6kZtQZL@B)p(b&zek#?n`acHzEgpIyc9DdSgkd9EEdhA=1 zn!8wiP$1OLF3HFLs4&p>;-zY``1Z`fVP}G*b_oPg*y|0)HaqvH*R>PaoGq1CHOu=H z>r>M_HBl9o|&M?K--mo8^s1fH-#2rSf6G$5OTpb#Y|~6>+bd|Dy{0q|nlB z{yl6}M5my~Lo}#Q!EC>!ub+iou8m7H4>11?kf=DhUHg-zGif17ta`mU8F zOgs>jNSlwGD~0oY9MEvYYr;t~vPmm|2>j#hQj2LwCSDEm@j&DPIz3i%ppb)jjdWQY zS=@+HyI-CS_{AT_yB3&~Oq=b|lVslIM@Q1Si30EIEnX5B9Jf5Iq4joMcKep^z`I1R z&H(Oh5T7qBsIgy~u<|efIbQ3o(+i9+JaqY#>|B+a0&dh*AS@~jXo&NL<`;GToM7n( zqoHZ)893av@|u!pH$H#a9nddM{~ktah`KpqOZU1Tt3%dRx#hkwNj*ZK zH_YG|dDZ!ece{M3e1gXWTHynX%d_|EP(U|DUegG-I=*a5s~<+B)EBRfVdj8=VQJ)m zC5mabBqP)!?P$De<24`R?Y^~;*Jfsyf(SOk)wB_2FWUEce(28!g`DC}0=E{HU4Ikq zxjRxH7i-^#NX+Aq;JowRf=C(9*}^1Y-{4@=gIm92V+-9Bz5FU*=V6RUD#4TErX0Cr z=2PSSrgNgayk+L>PX#9VJ+^0NIgFpxNOVj<@GmjrokbYM8FtLZ8bO2@estp9NO(xd z*XmE9$~wR4qUq(xekNx{{QFeYsrIuM;wOU8XqJ!yx7^Y<+_`s8l$WlCM%|Y~mQpr$=M~*0Hm6po9WPx7YC(nTQYyJ_D*ZK);`QzlpSQ&L z1LaVdlY%CeA_lH{5V8dRsXXhB+l6x={x!csv3v`@B3}!43>1k)yVN;__f`>VK{h+u zkvt`_%_TBg618*ua6e>b5o=^zOS6cx-oq!y;XLOoIrm-9Q;#z8EP}hjT;6LH;GFC1 zk95)wz!2%_Y`?2XZqVu-m_BUP`X|t>)XT!qhQ~RhF$Z3D`C}I_i+;%ojFWiKhj~+q z1_lPkwQ`u!031=6Jv?VJy$E!<0fB`sLeKb$MWObY~Hpu6b9MFj;*3Z*< zYzI7uf=`q=@0Uct)E7;-qfHZN_OVyX1uu_p;N`szFQF{cA~*nuJ~4OElKhikFr znq`Pux8LksKR+5J71P+LWkb{FYw(=ooKYQ9%g*My8UD!B3LxLH5bp6r`a!X)Y+4(C z9z17kGoYLJx9aOU6=Gudg@Y~4>*CnBF&18gh}*Yszq6w;TrgIP^bLMWJ~pu)AX##( zWuIko4pYF;MPd_PGc(zyNf(qY7x(Ryl9EaXFMMPAByJ-qe7nJFZ$7|KvdvXezVxzm zfeOljK)%l3kl(f z%g2NjC2S4+y;ue{u{s!aG(0>t|0!prdw1;Umo|B$mXm6)g8t-=Kl;k>(^CCU?A+Tu zudleh!t4E^?W|hvJf16hR|rIhSgl>MmR)+)Qklj2?Du4j{QT3lKlx8?jbFIB*sVoM zd{izf?r>;?Sd;ebY=~ml2Mqp_z@YlsZ?;W5_p{DG^U{EVTPC=&Qh_GN(h!xnwm$9@ z^qZ;QTY09nc(|~8lPTxwp{6P8niS)zohZ5tEns=72+kBe+=HnQ@r4-xitT2n?8@C> zGJgu7BH`^`*pOlqgmwB}y*lbCI1fEyG(bOD;aYro5u_V-+1%wz=}1w@&u3Wi6j=s%NNR7L`YGss`hl&J z!RT!j()*A zGKgb)y8%H51aWW1Omz|1l52=}6t0z)#%zRhaN#lRPOEmxh50VZHl2&|bLjF2y9eZ! z#c{edQFN=Qr$eVl^WlKzfJF-5d0%t>;*QG+r!4h;=PJa2^v(T+RZftK@2b2)eW4hf z->1oi-D!u11`KxpGzHR{@|E&H!G!>-byIrFSy)sEsq8M=aH<7orV{LDUvJYOY`9ut zAr@&g(L|%4C2y2h3mW%Q;q70z`9VerPAsbOxz#d1+cK|SxEJR})41}PDHN`JbE#LR zpG<7=#{$UF9bp6lE4n;)Dami-em>q_fX005RrBfyDb8}lyeDVxPFSEJf_;k_(;QcE$EPx0lvjHQv zos@5<$BIYN?VeP_A;mkRe$^Btj}pL9`z;mzlfF^y9s@yiL%Rni!xh>+G6e^M7Wt++ zTC#K}==GcteYAbKdt>A4-{9q-dW(=N+@_Ca$S2%NVh?!fKXmpdqV6$3Q9z2o?q(CP znawE}{Rg@Qm6fk`TOVHVT*Pd{*?pm94bO=qM?7Y}w|Nu9MCOS4TC^aj=s1w;hApY{ zUK;~UlX*QN&7iV!|6s0%qa+o9eeu{W5Nd*Dy%YYMjOnzH&pKOu^EOfdIv408Zc zltIR?k3CGq!N&R-nXpZoz`lms=iFBc=`8TQ93oGWOix-AQ9=1MW&1QPMY+;@qU&%t=q6nqQOkWCx&O50TJ4POdm4T z#~|JcG_)*+U11F;R1T@s;8#$2PR14#POFjI0wuH`8VyEoSw74%WSS!(3ifYuNzw0> zj_pckV}A*Gli&P?G4e0V*8U_B(MMfZCI;2zUppT5%JGiO>GU`~w)k8Eoe^=u zLL~5dv3uhuD15iU2fdcn2T@4uC)(=Q%N1EoBtr!AjP@$FK1As6##V9VJe1m-ix*1# zk>g(Byzy<7Rii6k9{19SZ%ZF(;S?tgrbaxC4xBv3F|ZA`A(CG~QwO;cH}P9qoW4bu z_&AH!ytT#~VGV_$ryWT}a(XT-IM-CXuqk}k)e7g;_+asie}C{x0cvQ-U394lyny!F zUrU4b>0KuYG|A1d>HC3|JB6wu?)C7=JCSXUuhiJs*~@s7axW#*fqlRd8vo`$IX<{L zy_$&Mby1vtePyuqkzd>we5Hg8h%}$SFr@*V`Y0y_?);JoeZp_FiXq+bhnt1gd)%>M zwI3fYppkYGkNq9Fn2Br=Kr%|>a?wZA!++vNzru~)btm#*hsWBv1)qRnS`4EC)r@yR zgO6*sm;hQ*3T(*$AQ2#tw%#k^8})h)4M+wcT}Z_!Ar~ZTC8*oFpMF|kahv0VMAq~~ zd=y=DQ&As^inBr%CBf9?J821wQC8vk_2mMIPr>QB#4D#IJ44UyqYN2oV#x$H@#vWRux_WC(zLWLf@h zjTR=G0|SOY^ctM0h8&Swe71VlA{rnUV3 zd))6}dR1?Dn7lHDBgSHz;J3~6f0So>)nK$(uwc=XZ!ihd&-zu@$S#AQmma(S4|~oR z^4H*J?^ZlA=8wn1^Zx`tuDJPX%a1?2a0Ivf$IpM}kDTGC`3N>?hnpKqAGuTdnsS}0 zI>%u~mq*j0c!rtJby(lXNGx9PhH@_rI*(4o*S>HAM+eEIwGfwy{HV1Uit^uaHzw<= zXgZV-DoLXvikRAU2&FA@Xf@-3Kwqc$a~VvlU+{>BW($}YDah{G#r%8hG>$Mt(zW4I z6VL*pOa&0Lx?n-g1+o9WEBgQMBmZA^t^W`G;`&&Us!Op%J#ITeN@DsY^l z0FC(N(A+}xmNQO9=jEaqEbzENq0Ei& z6QAvqLM?}ln-Z4JiqR_@ay=#={}V=sdnJ1Qs4;h-p9;*6z3}5>9|%Xa?%cIYEWr|g z@z56L3nh*&x+ns1?<|8*>}C7<`*WkpWf??D(}J4ce|%&-&PbGapTD_bnC$K;dNJ7aB>C3I~a9xq(%ujs9d;(8Rp!-Lu z&}|_vEBmAyufT;LYi`B6TBYXOjg$Da1z|Us%V~){YHv~!GT$UiXj@68jwRyBMN8!V zKIRfBe)8l=J7!FzXaKW6{gJ-+=O51?q}KLF%IAfvC`a*#UqEbo5)~1X&z1grfe3if z0y+Ek$K{a_b_D>W8AqV?0?b=hbB&IE5B3)#>2>--RtISz3I4_W>w;I>-u_At5hLbx zaF;rJui#&PzRH-@;>1&05F&`82-97+!C-L3Za4lUdZ&HpkOKyHPlEl3-M$%rbf^UV zL;}YAB6_e$K%>FKR#gpbVo8e*FAru0;Na z?#|NxUsZM5ZKEhew=Os({hJaN`TwP&F^9Nzj4TMv=hJ%ep+>&OygXd0KtazLtBh=w z2GFTcs#po~sdlB!~QskneYzc%MOLtWM61bP{gvDZ+aa%|pdJOyYl( z=&vT2c1uywjTY`P4CGPj75SNkg+$gAE{J6&hqS6(sQ=03=>(}&2cV6!H)|bVy?O;m zpwYw?K+tm9e|B$qh@2k}c1+#9M;x#qi{Lk9z#U z+&aEl1E3@e>nWi8KmNrcW}4!KKsaT{#9n4jTq8}iZ5+qlQ78aAl8^%4bswxLE8@JO7f>DD72|#HrZ@ML59e= z*mMHG4QZ`{7-S+SDJw&?7`D|$GA0A*rtBEp9rg56NE`;qUIJ*Pn%Zj(Lte!E7tFQd5OmsPAoo*(;&wtnS#pt%fj@s`dsLs ze<0DdSg0oO$MY*}j^t5vg$_bwLKCB5GmY$}6Ouj)NT)t`tpAo12#2ky>f&nk#1ID!* zH{!4sOfoN9*YUBxvJN6N5;qH3GHQHj_{D3P4rgl6u3iE-E^%RPY(Dk8_5bzvDTf9Hh z4qc9ds}2%rkaurdZcfP=X!0421%RF*7KqC_Gx#;X6voLwpkgPXsxLL)g!%->9zk(A z3Pr;a6L<&qZl>Dh<#vL2E5T@}-gwLlG)!`S#%37{OXBDpu-G+H1-)6TX;G8q%tjNK zg?aPBPXUyG<-kDFv)OtXSS(hIW5tX+K zZ~u>C#zGJQC7YeQx2fK^SOr^*-pKV;^ck>w+*XjyEQj2Y(r@1XEMEmf;r_bd(>w7Z zBr1gyVn95SMV#4}L9)p>oq2nk?5x1S9=)1I+K1{3kFHzHw}g*sHxEV}fXcXI&y4|O zR6;vkZVp=12X8;!*+`tY3Ya!RAtE4F%g4!Y0yO*ZzJ_^0Oiy-TBy5UOQbL*wMMK$W zV(%@49nnS;EFnCeCv1WfQh(;2r0skk*vsT$0zS9kNsEg zF%|scrBG}eKxZU`dBdcj!Efws{&(hKiV7fYewI0=22-S*sPkyFlQxtYxg+nzNLC90 zU2?-NfS0iIgs=_v15r%MNl3XS#X5Ub8=DuUyxC~NHMu{E-3S0Cz;j;CvVJmiG;s}M zTa3VZ7eeIHBn0*b*w)CeeCqFHrRWb<;*%2Cqwg@Qop0+gRq-AKd?j*%c{^zRkP8(7 zdeLI(X@^JAkBmH92cIeB@--QU073T!25Vvw_x0`$o?c91&SsFGtjCR}z?0Fq^FUrt zzH`-8h@8!Ac+6zTmt`|cj!{I>2N^YXbas}4s@?%pgBRDWole5SI$u@BY&Ne4c-W)iP*Ee6^2d{FCR+8%XO^{4walGpb0Pt3xt5-W?@BR!bung6bXr#M*vy@u1_C2$Zmw6Qyw3 z^iFo>M@B{l^&xx+|3vAmx*gxmlI@H%Ppq9I0d0Cdc9=>~#bhjX(uNtPbAvUm>V8^U z8c(5>9GD8*Oa!VvZ=6+)SK9`=dvc#z*i0DK#M`4(o;d!AxAn#0pUyZNIY=PY7XR^9 z%5DLzsp_ojQV-+<`Y7ezX~5%@WQCaK=W3Q@^;I3 zW$-gi`)mlOXXyk*0#Tgxip=hHbEUz~E^@}kF{J-U%=mA=Kv|$*4!!^^F=u;d4BDRA zW=d~H8(i6lWY3O!n@spHLwQ6X9TunkQUwsImmebC3Zxea_;|`UvLOX|lPe_84K?o- zTh?HQa%8p@;zx1Hr*rZ`vpJAK0v0sXabx6&LQf=Hgc|&=?4YSPs_0(H3bew9+Sfy7 zOgn6x@C;x?N~rU}pBICT!YkZjqI;sLx{WRGUo^bDe}HtV_UR+l|EHbto>^$Jq0mFK z0n@&L7=wvC=yPZsWNZ`p;BnOP?2@e`Wr$rSzuNPc7mElP-#^$6NctQ_4|VQu0nS|v zu~yIX_0rOnRaGK&2TiI^q8+ofjI|QWOI=bn{P*u;K9ghFzzYU4h787M_Sh%}T1>VB(CXAR^DwXWq{B4c zUQTP*0!_+Cz+R-%hh!xRUJ6n)=aeW{l`i|bY4hW)5Mmzpw?gp4A9X5 za>q0SJDm?gmtH62QME9OY@P&i;y z(Xb!$AxbjyAXoH&!l5vi@}7qk;v;vyHsz>-Ei%;ULbfuVeB6~UreLqg5>6*^O$N#R zfN_w^P=!G$e&7t)rKI|7&EUIQm%U6Hdu9iMldBuqkO~F&6}k2T#0sf2ujBVpE(B%9 zjgtd`eU`~sjpHijfqd$%X`8a(Vo@Z`Q{33LZQBqWrLsXt|0a@IG|Vt2kC}0Y67s90 zmsl>&$pzBPj_3~_etv)CXqCV&8lOQo0cmIi#e<~cCV4WJZBN)TBRQN<@1XCRn{Juc zFkk-5FTS7yN->j30Hy(dP*f*L)4qQ15!`~ z>(;Hq!H(v;#tK6>Na(_27oVczI;Pyzm5R9G8yrvLp>vEuuhP`E1QV+U7>MZ2(eZ>` z-n#8O^cr8?%y~Ce!L7t2a$I%~c+RA(xg_`5xU%Lod_R7gvyj^Q>HhJVVhXVHxaf-N zB)d*CwF9Zv_wmABwou%7Fdx-m0Cc`YNb+8dXShP402V!sXY4$NLMHeEN)t18LS!Pa4Gu#Jb`qMdYZLPzZzv1_0xh0gO9RS1d3O3C7lj`{3x=&SwhuAB6;BEmTQH0cwu-r^MveQ|MJtiteJ95=~r_z3d+K46}zodX%Q_oOEDTK!X<)?Dbv# zCVo^-h-0arrKEU=CcD7>*sh4ngeEWm*})`wBXIvq5j~NId(#5F@+UM`x3Ef+ z>g|~r9#VbA||GTfBIjT7W&Tt#(=y!kE!3fe{0JmH4-pi&%QfE?z4jpyTGvD@qRdS2{4@)Hmv2&MT_$m}i9ep5w$EU(Qq^+Grh~D>scYqy_XI&t~B526=Nm=0dMUr&oHDs}Y4gj^h z64{{_MZpk+AZ!7N$28c2(isU2ru_@kdwP1$E&OzgW0eQ1qbAGco3C21vvT3(-z$X( zv@{~PL79(F6-mu)Ls}=oV$cGRT0?u&s?sqig5)9nx!~3a*&rDzCx>Xr57>>MX^IjM zg2ph%3l7pv)P@yipV;gqO)>^0E|WvAgDvxohYm78op?@MmmpyWb4m&1NsxLGDMEe{ zJ%re#OOGm}qkz-|KwSTy$bom)KforPXxU2#nH_Fmypp?tXH>C%l!;GUD7m*cz zX^%vfT6c9FW9e2eUif&esOM83c~!5>b`O^L*Rv@GJqB{{4sp6v_ zj z<%bM&O<+3QCsxS#D??^G{CM zXSh&8#VFiqjz9@GkT;=2@fw9wkaAFtg+7{SYlv+z80a}laAjN<7ZFS_8fj|FQ&_L$ z)a7ftFZ0z|DArUxZv&7y}UXj(G?Xh;z^+Sr*F z&!69`i2214_ch-48w3!iAkaoC?MZ0pxDm>nTMmUKP+IJY3IT$;0(5PV8a~YAjnoG+ z?Hd-RV_vb)L(=-l;PLmZYVB42Cs@=L*Id2*SaEMn=GB42HGddy4*LSoFLf%oPVCq0 zT;t7LPq5x=z#yA%zHhua5lKb@cxAWNKr?Hd^mv>7=`+R1{Lfu-3b>_Lx zSrGmK6+JVOMSxjqOG?!zw7`5*w(A_idtKnQ>A=Wx)+!|7J#&%Zlz=rvrEV>$fkW4( zOFEPX@|1;!uM~Y`v~}sIBp$DfWd9-Phpg`w2<@Knuh3p2ar;j5FQZa?^%ISFJ7o2Z|*1reWlyj&tiBJ zB_UB7o9*P-34&L1bmUyttV`&7@aOgGv6xdEmjUdmI`_AiI6Evo?d8RX{!|XeQATp` zILUAd8q5Hc8y&EGjhOR)eU~ZiqNoW5FvDp|AXG7j@>axC0V=9=6ETQhq9oW|vRu9l z!YHhGO_E^_^N=Oq)bQ9?%~dI}`#GI*{vGctZg6}MzPG4X*o5UI^I>~^xyuy#y0vn{ z$gu+#z1FAYtUMV}1-ZB|S^zH$On1kqM?)mqYB*&H0>P7!1+r^5-H1#h_`Q^+r7>xR zCNM}#gEQiRLhT+|oDo~Jhh&s!9O$f}^A?%Tc2FaBg_mb0tz5B!=1y3LGq50bAiEA{ zD~Wgk+)7L9!(Gs6EChbClah2&aO)8~hFYA)sW$3;f>(ic0|0KxsEPA--ySrt_9LmTlO2`CQ;b_^}#sNepG2_GW_EVU3kU6xZ2Kco?6p^j?my9%a z4g))hV7wbNQ$d zrVWdUT7o-7*!uXrY<-BO6d)WI@N`9U)RzOfR^k|gXf{;8lM4eV9hxe>!SG9hWWHKZ z4`+aE?1cICdG9Xx%V*RDx#-$N5!{BL7E#2om0>hi2f}y`NR7i)?JTeK1{*~rf;&2m zUqgvGOe7wFq=bg-!@Aa893SqFNU;vSTiCRZ^r*RIVXrr41NDL6%G(j2SzET*>^D?Rqw7f6S`_ zx3drS{*_xnYeXm9*H>Yn4+cGhx_xO-lEs16QbnU!(YX(JVKq(uK@3|`9`uB&h{aE- z?}Fg7>@M8K@@FvC8XQlc7z^%!GVqg{{;~~8WBu@J*64Xls06tT(7*N4v!~HEwOpV*A~J9fLf{Cjc3?&FhR54G}JjUvpP;yo(9BEI1%p> zGF&b^Bxb*PkRVsv0^CmZQa_npT1W4a7-@m0K&e10&8AB zvJHKAuwghb`VUP}h!Iffhu(&V^N&1^S<|FUuP%TzCU)YQM*I9F{`gw^#37>;_bQ>G z!G&Gc$f`?tuC#N5`(&AJY-1Nt4vd3H`Tn(Ps@cXazx}=Fqh0OpvObGoR$v+o3|e+I z`@&&xh;1@W&ry%1SlgBJ0xA>&e&TeKOPyi2>;Na79#?_oQB1~~VD=u`VMu-yq--ZY z;yyp&KKx0~yJs%eUJkS#<(pCf3S7~d_4X)jgpjg?u_-C_XatP2*~iyT_6K^x=LUMf z3-cGs4RyJ=h+?3i4#M9pG+B%CYq7IcK0UG02>^|G1`TIHaI72&ySHzDop^}zBJvJY z`glf`_k%5uce{1i@!O+ZXr2AN&PYdK_lMCzf1oi71^Toy%z~0t_$o zv}QmCE(@E(z_cZ{O}v9qqWK!2=R1Hl(KOfc<%5S`OH4Fw$AS-%!v*qG*8v_%s1*U4 z9kkzAq364hu&_v-!-2HH$$zu}n7ZSzCBZyOK0MKO#kh4ldvZ;_z?U2Oaj2)0+?w1k}5I7M2vGaZIo~5?O=XSNa ziayHea_4IIFmRIl=dk#VMNLFUxMsp0Mm>LcSx({+eE%_Rm4e-{j<+L}C=iK+rO2mw z*AFa;{4s$P6`5H<$?#seasNr&_z3J;n54~zGvpr7EfP~x zfwzX$2PcaX>2qM;$u$heBp7RCVIl)2nJyeeaU|+rVlIiHM(M4wgBj;c{0zKFmul)z zaZ&v3ekm`+brLK`9|m6m!NE*O2!&XRS-sGC*;BY1J9h3Y#lC`R#?lj6V#Dc@#QY32 z)^j;=AoYcE><-&@6IJ0)ECP6$@=P5mSWZcTN$Nmlxbj%f9 z&@aOvZ!~8)DI^XEEV+&SZ(CvE*>hjiAc6%9P5`A6+MhXrM)y88p86(tL&Ik@tWXFE zJDy_*-lI?oDE||$yaUq`h~)2}sNh4e5$m~aX}|$jldb8#2FL9%^|e?`Op6CuEij9d z<~+fq%7?A4@~fih3`l{eh-A}Dd-j{(M7Zh+t7_&Fr1y$|YgGo|yYe5AY*?rfwDhgN zyjmRP-s~I%*piOpNh?fH@tWwxAzvQfofw5CmhK$i{nhK8)iOq@du=3^dO?;0<%N`|Oa;sz|K<*QBrO zCDEA$_0xB<5Jp+Z^ig&VqrTD@&4NiM?!bG;1b+p#sPFJE_np19XZP;sLHR@ACwe7! zoj5b*2-Gkk%mL(r*}&6-a{SH%zpWM50clW!_4|ah zCFt?u(NR4S<2OPXrczWF)M;gk_~i3+xCJ2~a0&90@?w zJR-zAbPAb-HCX5(46v**XjW9(BW+&*`d2SBFg1CFoIJA{H|RM`z|h3vcV_Ep!*exO zvMc=Zc+A+G8T6FpFA$t!k}mJ)=%{@CNh#0a0NH(E&Zq+t;VY=dT%`!qTF*AnfJw7) zR!sCwZ-Esfwr7KyOUap2W z|8jB#o+N)p&S9VQ6F`4ZjtNg>VxnwtKSV%ALm|-pm^VKg%f{rBmxk^r*i#V7_VA(c z$1bo02xZgKibpogyZ(9P5~-(Ky*16loGj0N%YxaA@;Q7Ozi&6n^rk<>Q0pPns6N+^ zJuVD6+?ulqeN9Vd1BQL`;l7CLdk#=Vvq_~nEMgEjrnTa=;G>nWJ1Coh+UGfNpf)zI zL|=hi_cEHAr^0L9k5<963|qJ1G)jqJMkw&=)>(T~imvHwdQOuZ%O%I=UMp(z1VvL; zLhNjRcyb3n1P3bfB|OsycXGwzZ9mX9hkTEi`hwc&$ZVyZw+zJ-eucrS)5ZdT#uQWe z5(TYSP+JGjfW~*m^NWATaF9txtws0h&^4JB0#1}SsdoKW&*ent-=0fK%j+l8rJj$x z*!A-^M-qp+7Jx_e6B~GO%pnKI{(~I1FR!jyPlq5x`1@pin1lo(2|bI}C>mVEZ5qL9pU(Y~ZD#?`@#uc{rb7XEF@ZBmz-{WGkV4XSAPD zXXp-KimmEC&67{fyQ!zs2dCA8`A|$;C3uRNvoA>LdGEYoW8()KS7o*dyfNmR2nlu+ z#-8ZY_;oz&Qo=5%QwTlqv_t(o46;=vIvg8e8RXIlwOA`hF+wiM=^&xNrR15a<&C7+ zmz2I2km&gD3UfS~YMED6I~5e+Ssn=btvim4ke&d`K@e`-72ULQkd-9Q{SB zu7eH~=a)VJD{s2XJSD@ER3-VWsqAl1c9px0W~kOFtvqp2JfVKdZu>a2gx33O3M0$G0B_8eR;)4Ss_r$s$Q9sg_)%U_x>Nnkc0a9MNXf`5V2iR(wn;zx|FTY92k z5NtodcT(5IYEp`AQzzp2NcDOe$vZU37r7bLW|+sY-&3#!C%IbsN7<16`ox+*F+FkK zXK86l1X)q=`jot?I&OK`ImcKF1KqY*wx298=ak#C$a(Oh!xw(hN5a&4z)iM|T94{u zENY^_5?-sRaEN}k%pLCB3^8IQ_(^Mq|7_tTwju&|>N8Nb*z4}j!VB6dm7&QlIlhDb z9(Ml`Z3|4YHGt)dN?;Php+I>;Li+5B{(rmwTzLAxcnAW(R>1 z)VX*e?~RZ`tMzi`?H(N?rLS}$FZV|%n}Sb78tyBlsk2VZVAw#|%SE)EH2 zC7902`*7G9fuq(ucMH^*Yf~M`n{ir^bQ(%{914~@F5Qrc41^-%`_A?G}5+d;Q zJ|)BxxCG_o{oLGK+0@yLLv32BD?WuG3MOZMrQiG?Ck5AES(2xFFvL!|2yHSGz$;V( z_)l)(4rpH!Z2t~{10oj52$)}&e<>Is&Bvzq;4$f7&S?&-@P}GPjh|$VKoXu+n)41n zi&=&;HmHp91U$FOv>*Sl*I_^l7nmGmuRM3lS!15vTpJ;95;8~Mh^p?Z-to4o0Xw2h z``fNL?2h^nKL*L$Qr4LLE$;xwWKdjcQ;1%9@U1y>894%NOS|6=G$* zZ3N}_C@1vCaY2oWU%LIju=gHNQD)n^D7LM3&{oU|Y*AE_m;fben?XQ{k`+ZHBM1mc zu!9)EKu|zHB^Mb1p$OW72nZrkfdVB8C53?G^uAf_?%w0RJI;9ThB5BF=Q7S2dvAfF z>i^fj)|}t`0#x}G<0h0n&xx01N zXCxj0fC#%6VMJ~w|1eC}Q8~ex#tPjLP6;BD%|Vc%5SYgB&1(v;*)hlTEmNaj$7ef% zREP?xG#`QYb1SZZpLOB@!wh>Eg2<98tOmY$Q5ZL8~ZzvZfKa8@AvWCV3%tDm-E zvTma99WIZ?HRoB`qNv2D>ILg>ZeQfFBykwCt#gXZglhp8g=U}MKfbY9W^0&KzK1}* zr|y**4DWjd&dZhRugn-2Io(58R zijWzZ^iHYA&OZ-^uyD_GCgL%x$|b;hpi!l030SC zjd;0W7vV^{gr0K=y_y>fmdw)c@es)d4e_UFL`N^8CVS=H-UF;vc8^SWjOLu^uhuflQ(Zng+P2?xC3Lqm_ z3K1mR=wd80;xm!M`0?>?28nKg*^+~YpY3IA)|3#je`<2PLqQ1?N-AU=S^M5EH4SE8 z(-t3xxYkkmT+CsYiI@wO16_e|rX|CsamL*%Tx<7E@h<@MGISl`Duxb8BjR~bW99uP zb>}0ov(eD9dg>u4Ifl4pEw-*M0b{O@fO#@Z{FGNzFok+c6&9qWBYM#n)!C=?cn72P zsy}Lc{>W&dbkxeONioE9*Sal?h94yv$o;!14LYU0rN$hU zJ9)zi*sc3Wr$T*#nM?X>OoW<+pVnJ5OU=|z8Y~eXF`xU%jGP?{JsY{+gIV9;dKw{r z=y^clo#ja`hsJkZjemV^e_Nidb!MBt`JA;OU$1n6!9(nD3eP0qvINtFwzOKqyXar; zvtK`usWrJ|gfxik$x(KDEto~VXpXc3BWjtdm$;Ymc>xx#?B*{NBMPdQ-px{+Ll3e- zF~oaC+a$LZECI$Ml4G|IlNsLIKq8djc4uiF^x%P2n&^%lPY#srL3Bs_uek`d2pYP% z^_zGRN8zBA(GETjJw18)<@~>v5eySSlr?s7Q$SZ_pQ_^5rMc1}Q@FeFzm}40AJ*lu z%$r(COJPv%s<0vc&CVRxUq-S3kK9}2As~Q-aTn-pw63~jiN~@l4fjSnMDgIl>un8O z2oKKvG>_{$%2+US(jyn9y1$D12yQ(wFx;wPr2VR-gmHdz_N$v?M4c`e&%*w+lwD%< zjXQ{!MB;sKh_0gjrm=w;9KwiALpT@3=A2={6ulTj8xdez?c^z8uhRrO22uBulT9!x zQJk5J%b~~mQpLTPMqg-8be*D@5a;odso3rxbl03On@rPged)*JJ!u!S?5pPZqAO^{olUTF1zMT3GZg*X9YU5;6E+qoJKsL`8fgNj$nkw?w8-QSC*GXm@VVXb-(Kc`^N6fd$4AjhKe0IC4o9v` zpo66?9+*pcjdG#`e;DQRC*=%^EudMeUZX4^_06dqdtEK94df#&;c?jg(?hS-bsm~# zEU#1W*PvRDWkvS>*rk_7pkrD(lzLy@NF)eDPx zb+RucBTJ#u+!^5G`Jsmc7Ks}TZ?}B^xAB`lES~qLTeG@s^-zo6MH{Ijn(AP*Qx#{B z;OwuhFdvmM-feT0Tnr7KFCk}j!N-N3)7L)ya}p3TK>$)!xTLhi}1QMWoC%g1*811 zruA?Xtb%gc0j)+{T54Mx1H zq41>91dtrd^fVBn{d|2-Czle++m+d@p9lTYQY)l9BvqX1LH&^Fj)=W1FnG`8pri7G zSKwxs0paZ+t}}*Qpk%eQwui%F>6_jZR==JNWIAR}A!W%~2 zLJ__+mDdKyqzPCcZ~$iF8gy*cgH-9SnL`xE!X$+1ln%n;&^*Dut$0Z_NE-}k%;hOq zr3)RUL~Ra88DQB>hQDuz5sg)H&$X$8HvZWC-+i{%OtWUynHz!1l9X8r05tA>A?015 zVlLJ1!IXtS1FZpKN#dK9Z`)DU?WkWZfAJ~oGwxwRf`=joI$WWR_W5irTD z>91OT3sue5>uQZ#Lvp44bC=JQ-a0?yYJTWE?+pkgW;xUvbYYIBWrZn6H0~_x5r+l{ z3>TPxQiPR0rcb{Bh1abT5)o0S+#K)^wZ>|HJdNvb)mxz1dwlgdJg-YuueR*{c)q_x zvjjrPM1&T;9td^i?CO^`o#O`hbSWEyg~#Ai?x@#6Z1yz-Ev$S29*l0aLqR4m^z`Ar zL~u_>@!&~}>B8BMn5l2uQ7Od99DrgsJ(`K}7b`3MtlRfM3m9lfKUu3+hp7rhP`qBh zeWY=Dl&=~rcO)}VSjByv-+_mvBGy2AmK!{$V9(QrK*9P@be9YqP3%D#7+he+Sn^2O z<~t4eVE|hWoS2I^9x#nbaaPF}M3``(73AUisktzF0gwGb``Gvya{bkGZQSOs=sbBL z%UD#zJ=b5HPFbu9&5Q=S>(&nliO;ZtDVv9fN5BJD*9$Jqc%$x6Vl07`dvyk$Up^Ctj!8#NgAHmb(XPwC{~itCjbR$%j0-GL+^j&d4f^qsG{c|A zD5&hoebB})|HKzNB53Xd60M1x)g9uZaR=t9K|ar;@;k8)3^nxYR?@I^TJy@FAUAh;nJWUdA%P%8%|Ni1sQ_5mEabeU75vEBDDK>4~~f4(}?FwNYr zdJY?(zZz~-RWMbqqCvj|Bx-*5?wviBi1V-u(0|sc*4NJxY39~5god%RCQ+q4s(Pqz zKYI%Doyk}rG{O@%Dn!t^Rekmnp*Q4$A#7}w5!m`8C3iEv6~@q|dSX_Y7PyE97ScLRBwY1}|UNJ8ZyHs3Mlxz{oxe<_!9lr{h4NcxNa@J0&Ut6AZ zv6uUR{+D+YMI8g#B<}`7H$$p5G!HAAav8q+J)(^Vb7SeRXMUVFPm?s0XA76?X+m|Qftitko1%(}77i*k;wi+}IDkmi5XmS@ zQ&Ys0Fzl^bs5R~FYug*Ir^6}$A7R*DOoz@z!3qv8Q+1a1sK9@kB|;gK zoFRXyn+VL43rSd6f-vv;@irX>#y&dT?^6rUFmd;L;?u{##g476?dtQ-4^@+DP6pp% zCrsH=Y4pRl%PyZYk-6Ql&wqKjdJFA&a&rHEVV$NQm1{E|+#hcF$gk4e(Xo-zE&+lb z!ZUN`0h$A9QOG$(wSS1Y$C>xc`jd0{7KJmaKPU)CR7-N5y2~#BR zG0@mZEeD>Fb!r0c4m?_4;n<9TY+vPlo*40;P=>#v#8JH{ASy(?+K-ZwMsM7i8XnBg z=1uoIboWt0Ik`H}!K0H1iw9yfkW4);q`g%UkaLo5y8DDnKsT*^3a9rf9*tJ|ghf@~+S#%!n`!2ZWyD&P0vCSbQj|<`^YeyUo zyGHyQ_~a5xl>2SyYw3OWuIE2Uu1GY~!yt&<(THhy;hMf?E88UjHfn& zd^s>{1v{|K8ZUJ@M{K#U2-^pFB>@f7*G?{6qx4*q6lF+dG%0f zFg*J3%#oCdXhihKQPINK<7eWaD}$V+1XFpiSq>42729Y9*%TK(Wh(92bBPc!90??wfln%FXi3fu5=`2KA5NGM zp5_dK0e!H|&fkP?$0N6oG7afNBi&e;o^JVeQdDEK^uh{bRduZdeWARG!61@Npb&ua zx@KIyV(gUibv*4?OnsslFZ+N85i^O>wCKku5)9*Se^7Q5K~5qXuw#w~Ox)w{Xrl8D z0O3$3K2ehwS0D3-EH+MStAQQ*s<%OAQt}tQjf+b+jb7?sT5re{1SKRiY3_=OrMgjD zxlpNb>C92xantX8;{W0TY-~2z8W#1E5Fm-?I#hl4y!1q!biilEgL_^jJ78MkB;+yD z1+c7v#rO19VkkMZ^@CcLX51fPxaxW{KW!*$U-!cOc!!;zm)4Xv< zb#1_~i~a|tixc_)Q0A*ng$zjEi0Z#Edfdf)?klJrBq;bvOZznRLnX>Nm&7n=C(0Es zx$@cC+hngg)hQby?@zasx)f0htQ}H`TX*sDT$pXVyXQk^Q)=Vo-t+wEPmHdjB$yGc zfg>I2&LU%slU!e~Y5p>obfVz&X1Y&gLCH~q2adzp>@0?NoPAQXqcmtEu4meD0%R^U zoZrF|ZI9}fJQ8sjanst#%#w<-R9_9V3y!saQ8FX z+Ym2-!Sod-v(0b0Qb+IQWKl?{z`Uw9)&VWeN`5sD&&BVzhIRB^?$NPhWw8Vk3y#z8wjuRP0GF)2 z_T$Ho^v9njALRLT*V*!En83Yqc+bR_<^1^LT9MY;6CyEwedsC5od4)~u=pWiXF;diCiuC))&k z1aH@WOxT*Cho!GAKO<3@`{nsRE*buRx0f6diqJ6eBmOU1O-XisK>_@9LMx?V3Z@b+gq570|FX{qCKCcVJ9KrT}p z4!Hrz{+oN7KriI!^tF7!RcOcP>zU`F|MeA^RApCD}Z>22idLtp=Q z3GnAlIxsv-2rKqenqQW@m!lWp#;KmL3b@Qd%ok6_gT4%0AZ~h7V)6=EX?@u2aKLwML zcEop(j9h_wJ1FYmM{HM3zdFR_*2Vga$jwxtyW4I>|api1XnD@&o^AB z8}2y+$=64LdKh#&f+V{Z^eL53y!7px)87UTQvw^3Sk_OK7x8L0e&hc09t|loz;&B2 zymU~r!H<8i<}RAK&CnA0KYjXC*d`RRGfcZwK678~>h!N6nGIaR#J<64N4cfkdpTRJ zx|N(Ys9Y|}!5{II;ohY!x6rYZEc!+LJoJI6GWE-8mwWmn_Y?g_-s&&vw{V@&F3_IG zdVueG_M<^jg3g0A0N|8Td(g+}zZ1c?s*;W*a82m$VFIm$dc8X#G$cfYyD+Br;N`d0 zsXN_o$1*x`WZKLu3|R3Ytd{VUqtH+NwIb$VMJ%7oy(c#|2?-rWSf{R84hZFU-0^p2 z@At)mIB|6F$VU^dzudWL54A87u0huVad>Pd;+oo1P^PcsEWxjse>eSNv6$9YKyu9* z(C?<#u$;cEueI!axK}WF`jwthEsc`b4!Gy_whWeI5R^Zq$~ky;cF&vkCcI5N2dslQ zf78>apFWhrABjFZ{b~u#zJ`Q?gWjZ0H}9xA_W)YnK#Ckxcnc3fAZ8aL8w8-rwXl8 zECmh+4yZilJlwmt<^%$yAhRc1Y$qq!#_>qx13nXGz~fEc8MUFsBYL)MZ-XIn82ykS zV!K%eSRA`0XjBarCEm+#31Y31{Wrf=kHKd0-(=Ne;P_}fGHPP1M!NOd?*dV2p^2D z{8((5%+nqR3U=aIwAn|6_JwdLqThp2cmw&%7%0S6UB-kNn+4fX!Ja}o)2s1gnM{u_ z5wMm-{vvbv98}ef-1YV4(3*>1E|EX4kX6CUmo#0cR$Hi>R(qo-x1{&k4wnB4OeQ#^ zP(z?YxeYqr;eVYJpbxIcBj`jLDkuercske%2n?&Iq+4 zEXLjqZhNuSd4Wp-ngCRR@sVn5+uUXknON=oH3 zdc$Vu@1l5lU)yPim}k*N8;;zS1XX41pB) zRbf6EL9QA%-$2@^K~`B~JD^Bc%t(wj&aMUURO$i%_Nc%kT*Np)y{FUM!9>!UfYSCD zanpo_gw92)9`s&)?6=wTQpSSkeEV%QS=|9TgLNB>k&ehA@>m!rf?&%bykora=4|Sy>7H1F#z9)Q zZ5M~Xtjzlp+F%Nai*Oz|y&s(SK1>cN2yk_yDtr_#P7KtNrx*zcEo>7qf|xQ4xN4kuwyht2roEJU6!Rd!X)o{JB0u)jku?J>Y<&Bz&ak1h}eH*}l;i z0sc>96YYwgNDu-?KqnCaMCWkwO5Nlh^sTVnk{AgA$L&iP!7 zzX2;dTwoGV{_&4xqW+lmzJivEJV3He#rSTkP1a0&gw<3GN653FZDaft&V?uAO9coFNPB^OY_S%Hi*ke5dcTYe1NLMI97=&>A zGFazfC-L{!{J3e@#zvhnPbEznQ=ve7zH*!f8Tw zbR5PgFzP((DZJq*SWH$+;sR;{y{&3!hY-)HYo{7LB)>d-`sm%5?R;(#%-;cc)($sE z(b3V-ub#+w*vrTkR1i@Qn5FS=94warD4i&Ca}Ym@r^A*N6Amu$ZLHB{gJl(frzoeO zkG!TZ$ZMrN24hYv$s3s}*mxx}2;+08r%d(sKDdcNgPNwBAms;H_EB8lbr1<_vCBf_ z7-P5Yq14wfD<-$ojohYFwgRw41omK(v>k?FPg)&$8jBicA18fz$N94TlzSm0EL>rb z2RNTXCU?}rm#coj*TD20u3!U1TqHya8o(I{I<1Z$&It3G`B2GXGW03Eqocz#4cq6L zKnH|^ne^vg0<0T@=0VSoCShik*c%%~r(4)^doa%EY@|5n+4EMe2U0{VWiy!fkrXZ+vPOxB129G8*I1WcLAKHo_w zzGJS7ggPqYx1D&#lZkzYoG=zHIGS^G2M)k~;oZDcaA`8E@DA2-Yya#r*l&>(xepJ~ z^(z$gOxj|MZ#NR2uVDv}LZsFz_tZVI_B>=5wt65kysz7l4pv?o?p|Wu@cLIy7!h57xDi->Zf` zH8XR;zt~5oDH&KIH?VYUMwgsbx-dG(;0hHSMxSFl5PyVXCy;G!K57Rv!(afj!3`MZ zl^cMPN}&y~xxj@JBi=P*<4o;1qmX!!`4IMfRyj(ps!O={ZY$L+(C1X>4`F>5ff)bU zntYwU~QC#nD+A~uLzZ~XjBdeNaa}w?al;&EY zAAraqIMGs?>T%^FhttwuXim;dz;;GmpXZx(^a*8O0yT~R!V$>k=o0M|N9h6M{hGq)d2gG}a%)rpwNA5cGrTQXV`g zP3LKS)8qyWK$4j`G?%q^#?Z>w&+ooby-U&otSdV7opR!1;=I2M4Fynz6yh=I95g_- zo26~!R*2$qXM}iJIh+mY^L5C;lq>uQ z1kL8o7zsvnV2wS~`(lfN{lhUFmX9)JaV$5wk6EECNoG7iyyYRBpAxn4h!1K`ix+x` zabS%>0Md3)YCT~n3|>H>tsrVTCpY}uG%pe(&P{+|9eb46=CY>5)@bj81hc+DrDymn zhH_?`*C2%SJhpNtCiXjv%}sFTC>4%vs_CaE0@C z|HKhq%gS4-?Sn#Rx5I)6TtOf5gVcF)_BLk+i=_E9oDk36smt2s0+=pZsqo8pCtrmyD0S%}RV=tf>H{xhJg-KJ$JI-dB$GnH0 z8{+d4%6cNUf%UIuARp6wx75K!^#c`Xpl|6@=?7m4Ur^KNV^@0b?NQ8z*YGPKbZwa0 zOEtaOg57|;ow4du-$&N;ibM2|v2B~T3@1r90OMYeU{X%Lm`%U`?d;i#h}mkrG>5<3 z5|ehL#*6*Rr4F2xRN$B&b36`DwuQXY<+SfgA?&uo5D0~ADOih&R1LL!;MhgP|Hf9G z!3+x3?pu9rprDKi6(+F~wL%e}txYj~PI2ln^ctE%!CMU8?D^U$Z1#3A9`dS> zPe5JwKKKW#ZTG{8EjRRyKIlE1UFI;lYwtq|qNCj8SVfAi)V%3y)5SeEWYxfZMdMox zK8Yv{Mx*Uy0Fjcd?_X6|Mu?iCJEUv%4=&QW0CBtoiYP`yMjruRc<>xIy&u6S@D&z^ zRjP`P&VAXjBNu6@vk4ysDI+3Y@8QsEI1WCGPb3P$E(Y^Uv6c*g3p6~e`!@=hS@ z_A`7=-n4lAwwhe}R{m zTDfAMj|I=D-HKd-brOM{X?3%e2MoY|TgdBo>sA=3Xi+k5$Au!WKUSd_<&#dp55-_e z$WHJ49Fr?Wj|1`Cg*R`mu@VQkF>j50Lv|@rI~~~aFg%qU8lrShY%!m#jYyW%1(yb; z!rR<;`$NH!g2tF!cSX&~R5JboHzGd89FO7VCFnK@J%L%E5}}v40u@isow|xD4=R9N z5b2Zk6!~z*W+y^qKos8ff`Vj*LslPnx2NI6Ox9Q%`Tf#S?-L)L8fs9Cs5?g|NTF9L zSOCHqda!o`d0mgBCZuy05TH>uo;92`KB-wYG&}|gMG#IGw@~9`!hHcm%Hw2Ai;dc@ z%kMlMchY`S)c}!b3_?%wU>=03l(ONV=U&%zvHvExER5nY+gjQguQWWpsjQ))VN$&f z({OxZd>Q69=C2w0e-AW9YG;oA#Rd4E0$FiUReA^io%53aWQgLdos5TAS-t)J_FDG1 zdh+7fNqyC_*zBs9brAeWyu+i(^ArVSZ7U8S6|)kvt9huf4&jkW4Md;&#TjH6H4Tk$ zraQ=4z(=00upLy1ONn2jN;A$TDgo;1{Unf>pR<^B~8ur2;aYdT!L?~%kx!y`` zpn7n+7YGjkFMEX(urv|MyA7}z4<8voSB-sbzkNMb|L{)wT&D`|5hbQBEt&k{rSJ+J zU~IX?(?4;(h&85?yl6P@qz|kIiU}a59gOxWA{^mm0^xxSry?eh(dvhTzG`>w-{*1( z!MZ1E67nVvp-Z5{kjz$y%Mo1~_~AzK;@;BUY>?66dt^Z9HRvp48;-(&blmul+bGiy z!^*!s9TParJrnOuT^T^7i}#}hkjWpr%&w8%C z_+<&)qhi1ZyxzYZ{Ub9&9DaPjS&kx|L^4m0a>oG_84w9qgUlGtxZ)cW6y1e$OH=NA z6oUh=!Jrl$9JV<37BSw0U!!va(JV%Oetu@@{bcY_Wdqz7M`gmt$8WW9>I4-^AuQL) z=`GF%3vw|6D4107^cVw$zn0azr04O4A7XmdG@bi;7tC~7X1sgT{@2Zx`IVY2B3r{2 z_1gv=8XviWhApUY}np$X$A_suE9z~G82a#bUdyTvkT@AT|nM! z>(5;cx)ykcW|0pt>4*ObiIyOi|+rZk4gq1a3YTGX{Jc$X*7055;?~?s@@gS*yonhetTt z!-w6$@mZ&YnuA(MgjtO1%~y8@#d4pQ!Z=zewDM#)w6uiGq~8M?NgMs71n|)WA|_M` zlGoeNHTTu%*&K!fQ2(jz9$fW}3X{W+sX23>7|_-MELJ^n-dBw@MP8GtGi}9;cVAgR zAMkwjf|*+L&$1K5uuo0kwq%=z7K&eO&ZfQ4Z7mq3Ghz%i71!V__;^ht2I66|ytA*#d^vISi zSK@72{RTk5eK1C1*4Sl0PY0o0A{4!Dm*9L1E%k6h5v>28EmdHaB(kTd)tLFI{h=?%L<be4fO`s}GUWmSGpdwHs_a3Gu&Hk8@5*m`G6jS^=#1qY(AHX_vp>{?VO$ zGvLJ%ichK@F;u=lCUOHg67=)0Crqdg-DPGYctch2Q+k}~1D5P{Nr-b|b;Q@L+Y2vO z8^xGaLwsWZ0sZpw@-%Y-M{{il@mw-noMG3h*PQ{lY-ypsn%W~WUU3!$mQ-t*(Y!+v zDwwyC%nPF$O{n2eu%CV#wPO33PmQVv$*C}oBeVlFyk!Hrp;0fDG~0>__s;#qcV&j# z{H@pRc~xb65(_*VS`xom=;7C2^~@*ijm%kAMkhqffezi@k3zu$C{J=o=RsIvT-*`Z zlxYJBQK6l|4e!bvIxT9iKAuWE0zd|J34gSPS2!#9q41n$4} z#}#d#GS%*@x)2j9J96R5jGUQU!{i^o^voA6+b`R_nshtcdzbwzZw#t1MNsf&o^y7= z=mE!ykRS~zaT=iG(4!eBxGxbHjoaY@DB%J)fL0%1L<(#H0b&rN*%lBW`)-OnqGtI{ zKmb10)`}SQjh$67cj>eR+=pKyw?UsoLPaqY)poH2qU(nRdiBa7>{b!*3lR`VvF}jn z-*F#vb^8gNHLvhj_V1&7XLyM=Dh{0_&STqMRe56Q7QyrYr{Q506@NTZWO+_gL=1X9 z9}U8OPLWqMZ=*AnY?;#Qty9_ADC9NPlM@CY5n#O`z?u#L^TsGk2~`DxxHYidn5NFt z4z>^@(lH&QM3;C(?|Txh9A!0EJ^$UIN5MoX4+4?!v~#p(&C`AK(r6 z)iKS;1rXjEodAx~>V#|{44|>GPVU7_Vi%{X0GXr2ls;^sorXVb79bNV#@PEER&^Ti zbT{GU9RbhfG}KOnG@zg7<-Lug&kS}zvcn&K>&suHdYsG#!AMU5WKa75JYIAgHm<|U zf}Q*f?&A*qTf*Sv8doQNzWsjUw&MYAYrmiI&1ui11K%xh{5@&bZ9W}e30wWyb3$9L ziT?VV=uh4PT|DdLmn`2uXW2{Mf@3rONLu$u^cNn%l-b{(oWI~_k)es_4~?V^sykI; zD_PY|Z+1DTWOX&_W!OY8A*IaH42f;MaIGOrQCdh6DS5hjd8 z@h{fuPT(tp1aFo)NuK>g?KNl7I0#k19e@bZqdR0Ti+gtfU^E|S+#qnr*Ef8OUmjPV zz>(@K+!8=X2Vv#W82O;sPeiYg4ZlW&vS9PPgFCtE>)h8=v(Z&8X~Fm+XzF`YE?f_j zIlahv%iu#vfjBe^RMv4SR0>%=)5RVF)}XCn8@W900^XVaKH@J$6Pg*P4$nQVvLx8- z{PzdThDAbFkc3gKtLDiL~R(4O&7?FbbySmvGSG!m7W zV0WNy6my_urh`P9VKpB;kWTpOy!^51frZ<|V9NcDMf^%#pj&5F>E;baLhXW`;k}hT zw3!iuJ@{oRXoQ7@W2??#_57yGbd0ywOW0XcfSo25>cZ@*a~B~*(NIxQiRqrVVq1PJ z2iX7WE-!ze@Vf@G%E!_&@K8&#(M4-Q4thqWY`o5OOlwd#DugYDvgs)1rsZz@un;XD zR{-lx8(^Y%+5|xs*b?jb>M>i0K{39ostH4y0q8*(X!n^`D~nzkZAwi^*}+D(WA^I_ z48DTS1mW1PjaP@?cTgYJunFh4$2TU^YPAddAN$CsybsMuy{8zm$IZnQ5P1r%|c#ua+~NS}B- zzw+gmg5|fEqbq*~XCK@2iGC5S!z9*#^#Poiu&cD)KFFW!db^Bjen^;hq;@s7i+hY* zmz^AL$;yjm`9leSS#C5<>j7L@WPHYelC%z}!_6`pP{KQie-^T12V4itKtodfOuGVW zJplnKG(ayqgk4ifOvLzeG7aI$$By)-%rSnXe*x8+8<4NNk2PiKDI<&;s6D6-+mFqXb0G%bR zTMxTfop$-1#jnszuzHEeGObB&^V2?GGKEDf$p$>?@J8#ci;ewPiLUEd;U)vacz{Km zf{?6n8x^1)|FWe^b<587pUz!8GfQA{QE$%j^2!zkUgKwXpj2LeX6w@4CtI(~C@D0J zgsK`+(IQ}0f;eu_{}6M8jt`i>-G%C$z`)ZG`T6%@0v?OzsEEX3_3bz^H{dy6$a@>u zQwi`na{ed#L9h91{84()@9k@?F&m~b8)UD>_8sc$=vnCVk;CDj^m8=`0;nBsT)EQT z$@CsZ*&lDM&IWtYtHZiASswQFG;0vP@VPR|hhku`F$jVp?vJtc9;`YsSQ$b$ zOhu^s@W(kZhB;Z*3OAE*$Wv@rbrzBZ`V=!h zuV1%_p?l!+Kmdj9t-MXGBrWY1-Qf7W!j4Kb1}%0!{Inl>@!x^+bSJ9=z4$8(%S0=c z^-G(Y?lpM2nAwMG61JnxzZvhZxP{@d?b*V%;giXrLLv=A!U0r` z45*~LR7zGLQlWG*Ez-Hc5WT!6Hdmx9rgFV>$z_HmqzcQn6tgiKkFlUL@1ZhF!?J*m zU3vgkM=>-&^2eZ4gG!|BUKO?kW^@MR#C%UP4I!+*<7p^*G$Rz3u#&yKy|su^aVAK2 zDin`#YJCqLx_4E;EQH@2^$kir6|=Y{rUUzH7w&AA(bQ-F$z0EnQO4(VUMQT^ZLrvu ze4T6Q+@;Y3X4CNjR5x#v(&6)as+t%BR>ePyRl!^ zYW4P)o(;z^Wldnf(+?`n^>m=39dJBqf)(j`iD6#QO(vaH_6(Q==oAI{T^r#UH(oY+M#{t=Te+;G>|vf~HeS zdSEYD=AQPucoRZnFd$g&dBBGPyDcX2G<;LOeS0G+9)y8U_#~bA}#;(DX9JWzj4P!>^HO`{l=&|+YI;ttZPSkz)377qe1!n2Z?b3|vSEr)cttU>J7 zagiGVkG!>Z<~`*-fH{bmM+Rb_DgBYzjTs#Ag3dZ$ghPrB?&q2Jihja}{e(3|mCW3# zA3Ma)KB$^pQ;CCoBy?(I4Z{JyLFtK6brjGc3fkQnH*hPsDS6f|5YFEPF8D4^Td@c$ zT-$4q%;HHayraHG#%&xjb^kmvyetBK8J|7}1ZdO%>k)DqX$@X_czF1`I3p@~A2i9b z08?AmOrRb7sn!UML^f?m>?e_nHDWc2tYuv4Ma*NpjxAT!8#J5`9%J8di;ohTIVG!u zY`Fx1gc+??itd9J%40$d@F(=-a^=!0?vDI2_fs+4L!96qa%IZ8Cu+U%ZsTVuKcCt9 z6W0{%ynN8`Dh2n8F(%iVR!YO1RrsBd5GYs(XgY2lMCoO~*GpQiHbA2e>UnXQ6yssgJP^@&0$Ny-9vkTAH?NGnV8XaBqsRrcaY@b-{uY89BsT zS(&}mG(R~P6P#*^l}M!hSe~{9evCFt!e~O~_@rJ%L|FI^{N{rOP_Axr!l3z0dS*xo zdI*!Dsc4vc?I^wehXRImjy@w`)`>YaI!BdqoeU|gjg!vJgcP4#dkds+g1D;)@QGWd&Cg(pDGYaN{0#?zCykIU7Jtr=Vl9c0!vltwqX z4ja72yXEpdP4>PvUJWH>zGud8YpEPIXPOIdO4Bbg3WlxtT1;mHP3oVRwS4*G4kql@ z&dIFYFUeB9KyYyc=yL4tVuppI%O7mVS9|Bntta*O3Ymku)Dl~_COPSUB@~QQGStxm zW1%Mag~QFAHG&GmsMXnDCULBqWrn%*8u8vl(qn|P*N%0$4cJTwzdntwLyHZQn@>l> zHVgD&m}{Qk)M{;yKbZb~AK6L+*o!bcQP;@ISnX`|cJ$FQcydmSWQEeR__U~70=MTA(vV*2ez(3{?Mdo?<`F55D=4_gpe zZ$y(AbI-;6pVZ^sxs6X6TQET1FGN{Am%moeRm|0vwtuRTwqwy=%abgx=-ha5+P>G%JD>ndV}7dLbKqt(K3R zTyKZc)-Vxh?3=EVF9kIARVcL_QD>bLO+%YjwlQkd++gToc5voAHxO>xY$7!7TXz@+ ztHtUMl#sn3-aJhV0`p!!07lXXXT%k-(AP*bG$67d@!MIFq`29+^WCjUWE2OB++rt+VJwv2uB~d4lZZ zfyzMZ1&D1zn^GfcgnGxh_4Yx_ny9EKGFiHE)?;UY;L#ZU%oHX0W%^fptCsQeld=~E zSD~)}Je*E75E3McfVJCS?t(?@Z{EI|cgJ+Rps;XNMFOK)(CFF>1Kz2t!zzEdlr6>1 zypDEeGkE67haMTvY~E2?vDs5czi62v0ItkIH`G~n)#40L@kg-zw_%cWx7N^A83S$! zk8a=wcW~EqHuuF9Mz?^ZA&$31XIGF^JTcyD;_g!m3&!|nnuep1*N4z|wRO{#QwH0j zV^CLWFtkcL3-0Ic6hYXCea`Jm2T=PG$pb9Q2QsD(ycTl0&!g5ofAlKe;_=S9$lE}} zRtNssyeX%0LhiO!SOp@znGV-H%(CLc!k+cPUC^r^bm7l%7j&O?7xZ?H={YXmS_ow=KfOBP_yvmtzs2KWJhX>#6} zry{x4mz)Se#TOOGSje?E-COzfGXa&=I<`Qlwp$9v(PF$gLrx55*7#p%miEuMvOjLU zE;8JAeBn(0`BxQwdsnhLKx2Gn6g+|2e)>hWb7>{YraNG8D&p+`MKHXLtk2dTp z>An;uXRve_RzMV(ZSCBEVIQ_kw-_Cl9QNX~Tbqvu%-u|UF`pmDV>My~@M0+|f-u8c zl@*H4#JTzE##S2FniydFk1_Q=JK-WIkm51rPE-?C7P8Zlbbv-^tt|`#_$9f=2y-D8 z`{lh$H7jHyl;>4ty*!F}XxmC9mqIqA8vb~r=GG$a2C?8Y%0ZCi^LD^6 zt-!u(;vX-GgVX3ILm!;&Dm{TmbFI-D!cgYQEAZb)2e7%;x3oEQmOw`2~Nk=pp)ycnAT``=>4RCAs=^VgbH58mbtUTctE^z6OS=7C>x?-;FADt`Ui zmumSlZfNUDCT6|n)y>;9g}dd*CbJS;4om;$yj!kWOiorwd%!cy#F)!AHQ|6N%>tLR zMEpF!tH3w@{LZ0LK^^$xO?3^67@AGOpxr|`bur|or6 z(4KJcssu%x#CatRjZ`CegFfCUgo$^BDEn~lokTcFte!S*6yq8fuypzIvjek^wrXvWfhl2WAB`h%_v_-s-3zy&=D>wc7V3v= z|E&A%%B+_-1biX4EjND<@7 zt6lWwRqwZ8xeyCpC!Tn;L^M~)pgg-3ppI5cyVm~EAAX?-wUny&)V}O>v%mV2dvN&@ zecqW1Q;%G>vE)5wwk*7RBlj4BUQ{39FT4 z^C4`PTJ=l^_L;OC;6=jV9%N9I4+ED$r`YR{KVmQyWo#paUNZRv6F5NWj` z{WeM`9rQo{Z6q=MG{UBg+G_dvnB$l~K$}~kCckUf`;=VK!nT`IjpcHi1*f$007NmZ zx|{Nhz;mvREyMiMsyMUx_#3#L#+Kp~@*iy=H#(s;yu1%7T|tL~%9XGQ|NV*jW|R=$ zuiHa$-qK|JbRxG9-6PS3$ zl9MT-(poerji4SFdyM%^0v6v@9`20tZNxt5{QCGB<>9!CEZkZUQy zuu>F?D;JhqRf0i%WOmLQV{O>hJ{ik>db(&~#(;8+UZ@kG0xh>6e)>s^hz&2S5CN=< z;j>=a+e~{?rb7dtxU=-m^+b_f$V#lI<;zkxwehudGEQ|~-x_ww z`DxGL@%JAsn^pH|V2-ST^HNz4u%{NE^!X%V8BE55>`+^4;|TEIh6j`^5w%Rvip5}2 zMZmttYA|uxt41KlT5I$LL$4!ac^f&~R0mad&({`1m!UzAbsr|2sg~QNKjATZQcXQ# zG}f|tdOuDo+`dggTWPGJtfRe}jn0rUe+r7G0h|fugA%X_xXCY97h9S)(QT7;Y6p@q z87ZLmzZJ9asqxy4zm;{a<+AmIl-Xn<2q=x&vt5wuZwH1uOBxqA!u{MN{DDtZCNO@5 z&0HPqntu51yYg;Tgb!+v0B($L;lf9tGniIKN_{J=CxShji z=6=GhwAlLd)x3qWYkRe2Kg^pyUmNlWb<+Fk!o+$d*$l!KT~iPJj20;b8f?JFiYvYh zw^3*}Bv7IuU+XNxqa7f&1VF};Q#rc_X_8}}icyp~Mn{2b9(mt`C{oiEn)NQ+7%jp_ zrENcW)?pLU1%k2?$R`$Lx-SJ$XW6w~i{N|Ay$jIzR}TWk7$D#R>%^%G+$9Z^Oj#Ho zr&wY-p4Ek?UULM!R178&#TAhZ?*X)9R*lC&(T)XF^_Y&50T4lAK$vFWwHS8jjJ3#P z>eT7eA8MnItqZChBW`m^z{XFNU9P=w863d)KzPH3$f}`DIVR6MX9P~znvnSD#$WiIXzm5`xrbiUkTlUd0vP)GNyRU}=QrVlR8yf^u3!K_ z^}LZSRwx|y89(o{0rgTn^kUyt7sP;yvcG=w9&}!_^keXd_j>s#9D7eS)UZ*8mO#9_ zKrl-(C!;|W7#d(itnN|=0T@3p#&vKEvO@8l@uV~MRJ^Ym2EgZq&mLA(6dssY`RW<6 z&PT2*uffp~p_iMzrwJZv@wuXljlSkaQ`*eOQ-&8;$X-Zl7avs2l>dZ`F>T@>X#k~t zF%b_WnA7<$r$KNZG|)rwxi^xDW`L1j5Qk5!lDDkM5EGq8*nCzuhW>MH zuW^TC@Eg1?&fWZmt+`JN8tL0t6|6ZY7l8V&gDl+F!MoI9t0qxGW*IbvLEGhM*%lU9YJ;DODyHt) zNJkImp_Z~}%u&0JMv_!Dx#N9G#7R(hdeiTF zq3AB0BCnxH65-AwP$X#z3t;M*Y?8jbT$}vZEysO@C$!W^{zag=*xd&Yy1(ujazrOi zmyS1c;Q3P=$Gn*irdbe4D4}UXZ*c&OD{;DbAnf@Cek&}52_XoNr*Ro58FX|x5h<91eEv`v_z~d@*MMY@CL9}QtW{-4 zgpE?}G&&EUDBd)%1KNAG|D+N4q^NEJa03Mn(&s~tq0tZu4zGgl=AQrck!?{*_O7vz+=c!!;_zdkj z$oVg<1&>c#3kH+5;5k?j%1O*V9V_nn!vOeQb-}lL0SPi=q>?&N5R*!YmzQ>qAlDYw za-|kH5jLW3MZAZ3S_0~F8ZJo4}p0Mjh~_MB6aUCd-t+fVu|_3R~D{% znSuenA?BnE2g0&lp%VBah$gdSl|0!Nnyt23t^^zo3J}{vFnq`c7^>xTvkuc*sEe|a zwVzs{lCi@Q&SWPr2_mM|?&MTtvDN=2d<#kB)=C{jA#Fw=u`&P6S+I3et|5SV>UF^v>y!sROcEe}7= zlI_l;9c2DTw;3hZi7+D3Gqb<^`6F$g@I_j7TQ6fl6Y5J!KmW&B@W^kt&QU&XurwC~ zjg;tp0s;hAVmMb+3eTT6`{sUfmYuM#soxUvviEE9S0HZC7AuN8!CEI2oV5)D0JTgz zlNZwM^H3v-!w(tGf-u&=4#0I5T+MYB+`qpF;HpCgv~T$>zgcV-*!+c$`<>U>{r{k89dLd$awJ7Jf1I(`YljR($|)?Tt_GTH_z|?RudfgM@I3>-%^=H ze_M;)`^O0H_rHzsHgKI&{`Y*zSu3l{u{XD(nmZr?&FzPNUp2=JBP62}hi4BtTPeemx``O$Oz_Y0G3d zU=`*&;h#1Xk^>BVJ^Mf7*8Qhlv;PZ!@Q1sdXsz*-VR!Fog&y!HKj1CNI!>SvQ8dTi z0U1aK(GWXEy5h&a@VF}qwQ*EvQSJg99RO;L)~nofo2JcZq?V+J;~UG*$dIs_M;rl{ zXuN9t9z7BW;6$NYrQ{P5q;-;y+li;$+@0;&kEmFb;N{Bco50Nf)>qP=sd2Zm>?#y5 z%E`3-{pBI30g-0@%a@86;VRYHkgW)dSu1FT-+9(H?fMsw4xd82H(MwGN;KhqYk<4; zUD&FvTrkkze~N1x7r>S5e<&cs2|SXQGhhs2N+-(4ZalwX&9_MF_{A7cqaA>_m5rNC z$?)%j0(TEKEc>+H00{bA=t;}Do`b#9e7j<|YPuJ;}vjc`l zKEf~Rrr*Ra?must@%WAdX0F?SpX{x}U-xw7E}1QtQ1h;^Th@qS&Ed9Uzmlf4bSe0_ zmv_+@2rH2Fb_?o~f>8ugS(Ldg!=ee6%h;+}e5T@BM}a+5nJnNOL{ z!O{+jDBldKw&Q0sws4KT?j0sAEZT6DT3BGL<-X#!=~s*tRd<{={*#|J{<{x=6Eouk z&@*>wn+A{j?n2oNVz_+H4JJ0WTZFhj@W5FMC_)MP6 zEwqh4`yIymR8WFE_SxTJdTnI<>H_;a&mUkzjo;o5qZfamg?_r;K`!{;_m*)lH?bAmea_{p!>Ypi%EUSL{b4@!m9yubO zNzRQxW}`ne;>W`Trf+02GRl=ex-T6C5~+yw(ZDrZ)L6`2O&gX1Gj%@GbZ_gahVoVT zHI4Pt|E_J9WrOw%F?adO(V*|bJz>;OTynye;5p^Qv*3A zEOL~*_}kx$!Zx1Nomdot|11fX0WCHQtNG`h=pp;yLR413ourC8Jc{2R{*L=bziHE`FpXYb*X2|0XC)Vd9Yw64SJa;8v>mAW(Q5B;g+0L+V8Q@Bu0K zQ_$BvHRR1I)wLy%+X}w^6Bjf83m**s)p}@C`LyS32X^thL?*J9v1`48`EmTO5U29+ zm~uam2?bOaW2W`tPCCRfB9vWqxZd^%bUj1~vDZVhO!)^(8rJofK+*DScm0=a^zGC@ zOMQhY<^>sAbzw(9P+2c5Tr6lcHZqbKZeY}knJy_F*?wwJ+;m*#-=n&Fw@Zsr>W=qo@}y;g;QoJi-m9Pp5DbbJ%-eu4voY}LB0sHJ=lQ_)bQ^GSU6(}cT_T1$^D+lg)E9Qi9K?i`Z z=<%dy56{^ToxA4a6F_bgKKyc|0w&^Inw+?}Dy|D96_9loTpzbz-A(m$@rkja9&G`v zA^I}zYXc#!`sN(yvgXyR5^Z^C5ijq_3~LNc9M}gA9<29GRExNF<~@3IA>L!eoGUIa z7M9>IE-6vRxauhGv#22&{#Eg!3SM?F~UJQx^>Ky0!LZ}Cw>=3yvK0uROAvdOO+rdvb@tJK~`n^nb-dhd+!-l<+-knYK)07 zqOl-WR1`#MQEW)lh$0{$AWfQ40qG#U8@qrah#*~Q(gXnk={5wUDMh4A5Tr<(NCzqN zTsN+@_xW+o7~lBX*grOFtdT^JIp_O6@AKUE)oxyus(}ndJG6~OZ8n1Pb6oveQ){zw(H^M?6U<{Ke)oS!q6VQ0^Vk+scGBJa=+%}VzL3ShM zZ;(lT4<1E|qXO3u0L7HCKilHPz9_aUha4bkCzODuuR_IDeh`nwQ$K_z-rI8I`q!~S zrLnL|VDeE|kTf%e?jV>q@)sfzu-4qU(8989$yV=b>^0md?+jc~6N`=3sL&5nItkQ} zb1p+zF=%Hk&tT>bD|Ce~p1WNi* zfJNru=Bw>vZW0rp7cjD6f-)CZ;EI4%t+fX8?BG{4`bhIM7B5*+llZz^Tx0Ib#ons6 zT>JoG9xvt-NGXOz6x4{C?mQ-=WZQz}JDa9p(Q^UY7})_Y(%fe=iXTFpp?aDw!VWq$ zjo9^(SrOD*2{eXo0%?EDQJ&0YTfrpXek#YwOG1H*3p?FM?E+*~GBPMCFH3@-{{-+z z+g=7x`Rnr*s3B`E!`#+MR1=D<049Xt-o%RGb1+yo5zHM~7P45GoaS%?mpkBn3 zo(GkXJ+-5EL>~{=j}z7M1)k=9^8%=>Uz=S+5F@sqy_sg1%xTWRzJYOVHV%61kI*K- z3zV4EPtR!VZEUl~JhPC~Mq|^oTWMFg)-lAqTJGDeri1>V8~vedlmR?Q!84?p@)jcK zWDYr6LPU=8KvaC;P0`ZqcR-x`%!T>|(+i=zKRKS54F0D!&du>MHX?=@tXNCa|4!D1 zuJQFP$*tb^{9&_Md(bA90`suOx56cWGyX3`=X?&lsf@>}m1g32E41Ceme-wGVGN3d znE_1Z^_Ys%$O?Cq3;y7^4%EB_oK44gP~DDa0UG=z#a~W^fO;UqJ!MJZP_!<=Ml{ds zZMiu9vEhtG_Tx0fa3$p6@|axje;gqtEp3v73vU&_F|RABE`K#17c=bDLzHC!sB#TrZV= zbw9*09>@M+lgSs|4l~zWXci#GL^!Ak3537ty#QA7$>nn!iMN4}jB*1*i3Un`W+&NT z>L0^QHU89K_M7l#+us)a^iveRvs9-GVdxdzV|;%BkQW;+6Ao&`2{*?uoh@7(yrbd7 zuc%1EE>Y_Cw+pyj9~o+ZAG6?lV2+`keI6m#VIVYEhp>bklAZ8SDQ9o)fu{|&KCu8YAc_mP4oNEATnN}H ztg@b@z;wuH8Lx-2@4Yq!6pKLWlQpHG2EwOWy8v?M9F@CJXLrX7;)y%}%pEt{+rXls z7X+M5=553jqFngwA-I+cY@GGXbE_}g5H*(BjOz1YmK#xpm2Uhpz5E$N6F6Y@)*+f! z2T}Yu_hDt7n=qEHrDXguF)nKsf)TskQ4CCHXW+Fg7gIO&`2*r6W1T;?fVCqkPOTS@ zlRl={WAsv$$5-9JJTPZLy$cpB=zy)WN^Ct&@PDdO&PkU$RqzypY2o?jpSSX}4yXWZ zAL}C-qHbSNcLovyOTe$jW%Z-4+-==?;`Mip)v)zdX}1v5deD9P%O;BFu+J%w+;RXB zsB7lBX3l=JW|VwLLtf1?5XV^x|Kv_YN7HawSv1R0xDCWDT@O3h6>O331J+m$zt=Q_ zo?C@*2?5B6{2@qFK)Xh7suK~ibA1`-usi2 zA(HO8*qOE_=MH&v=1a_ssMN#f3Y(+~4w`K!*nFVU!0YSSG*XT)<6ybE6sxQZsZ}K~ zvTTOnEp;RXcm@Snlemhp@Air3*k3)UvTJLH@AFwW6SMN`m0>7&M0r~|9o)sEX4)aa+&(Wg3ze3Zkm zd+R3cqYB0T^e{l{ZG3zQ+EbP!`*cBAivoMaS>OX)a*p-XgH})Ow6`A4%nVOR% zTp_`=UmR1*B99v~%S^3KtR9qzev9R7%)xcy;a2TD{{^0-C?f8lYP#aAW``o^nfVIE zQV{<De3#U-6v7DpBfEoUb7rBi>A+yC_!rIh zbsz?(7*Qk@Gc7N6V|OIm04Y~D$bO|Wla2;xt>qnadha3}R)*juDwQ`%m<-T!Vb9bi zl`+M{3o;*Jc>P5Jmnh?ak}U=7v3rt6o{CpcXEZK6r~`56T0OS&@cepxe!OIMavV`a zz8HOZ{vO`B8Wh=4C^41Md0_*(@5vz~3+9p(0N@U~naulvSWOgeL#gTzK`7@r*~XzM zpqUp~7UXWFU=nl;e8Uo03DHpd($C;Wkx>BJyqE?{;gcQ{XZOS*NYU<;1wjoKNL^Hq z0<`}DH!THjdLE}#D!NV-u6tcr$2`&8aEd!o&MT#i4e$bU73)Q~iZ9apA^a zzxAhiMR4X9<5>RN30`kOs3gq2iZv)#ff)GDFXoFN1e_pwbV*V0N+>@$y_e8+66x$z zOZ>__IsenG>1BsxxYW}UYuIPUFboqA!(MSF=xY}Q>zaEl8guGTuRA}~j$|8%OV}xA z+QInL)W_;eI$O%UDT_`DJTFX>C(~1e!f`qrTC;< z2q&Vkn|KXUhm(7z8C zWzq!h*0%|uAqr#}joFj}u`G#=F!fbcCjaNxx3KHt%sT}za~q9tZ1~vHqIb}?XB$Bt zko|jxhwJ@z^f!Ah*04gmd$csP8hD{qMw**8Z6dYQy{%P4*VmX?9h=2_2ZB|C*Cgfr z#nx8~e*@%(6G8@X_a5^m4b)s4dW0dFC6y7b7KK&eLihkKlA~NZbZ=F;j@CDZ3fkK5 zwHvGPZf}HsbH(z6YLEw^d8c#woAVm^{eR_jcwv^}5RZDH+Alb`muY!|#ProuR2$jf zSRhJ;T5YV->ppiT%ER5_?(hP8PTfMw6pJP+=VLXlPWcdt$7@S3Ux6%16+~A3R5jhn z05nTVq>u)#m;RkWCpJ3wWREWtk0n^{M)`qmjc1%k+#OFy)uQ8R9P zb1NRF_`cy|dEG#c)u4p8?=|^W;}RDuHadEj<+y36psEAfef}ypZ7IKG9HtE~*G{$o zp;g5LQdk$lrQqn#o;3gy||8;F~l14wz z+led3(1yLi-6p>&vW6|~4}3d|?e{+LmOxI#D;6`WpNwO%BIvlC%#>wu->05 z+S(Zr8plb;htv;)sjcF`Mj+=qMA#07A72P_NA_bh9>bU-00UGoKQ1!0q0)h5G9)0x zDjLpBPEMw*XHqW?#?FFRih^c-H$JBN4HKUaL)?*hoX?j{>UE#(ooZR>aK!85s_m>& zpb!x0I^qRrY>8T97*-3X`?Qr&W5yF;zD362*j}ojor1tLwZ4lYMkrYp6{MDFSE7rr zw)`e+c!DVqzXZa(Ri6tNGjLgNhATj2O#}#kZZAIRn_*hdg+9aFC%_%IfvQrwOqieV z11cujm`ykY8*vm5{%8&D2hgE~Bf?zdSx6eYy_SbxML!Lpc!wurK7-%qUm;^ZVVT_d}?e7Vx6;DU~p-6h4xG zfuRE`$hvY?NT8x`LU-i1Ute&OhAORyB!$SsJXlji<0)&^^=u6^c(;HRpBrTW>>TAI zN1Qhf@cK3-($G_NSid~47r#$(Euw0e&{ExAi7_+zxSRwlV(YUFn8GgFfqnDhW~VNz zw;8K;gf?0OW+aNGN5UR+8Dv4Rz%(H>K8XvZJ8qhaa41>OBHdPMYOAMq{3?c=dan?)dS$Xz++mF>1zwvh`d*qci~GOM^b) zMgl$gwkcj2Nnt_hQ>eZOYc6!s8M7S2HO*@r4m1q=0R7nO>q8LW2J2cQZ6OyxE@A5B zLu3i107iphKm|MSt9OY;c0jXzm+t1)Usz-3ai4b^R%}RfB-01QW!r_b?LnDFGqTW^ z6^$Gbgl@Ij;R{>E^nxa@>13OoF8g$-q9ZN8iDq8gT|PXbNyRJ_7*Cw9GcZbU?z+H$ zkp;y*MT`<^Rvwr^vJ1=|(IYswI+qNa)rPp=WhfRALr|t$NrO$Yavjjp(|~{noH<+F5 zZR$WCYtd@gfOx9K#ElwEWT?SI;xW?j1c#Usf``;_idnsT(GBZbctgHx4%rS4VsgPs zF8*vn3LpLBYsPk5`x|TKJGh5LL~iUcL+(L>^OZ|DdTSCH!j)o?Mk`mZjuF($Pwch^ zPn3P7-~Y|+9U*xF_jiUi(xJKV=btZp#K&g!WE3DkW{(+=QX7kr6g=MYjd+haed(V{ zt1Xy==!r$1S!5dEoHB3)E7I*2rc@B&Aa=iG!!Dy;QA2Pgv%7Pvmc=No^(m5o{`LP5^riDq!gLuwi@>^RRLSb zJ)pN(wq#7D7bjT&CGf&rbQjowNR1&7cKVy7Pp3Ks#RDbC>kP>KO^_4LbwZCRX&z-4 zHv$V`mJ$G&L9@ir(WEup;A=J!Cq5AsS~2Wkq#-AXTNWy@Xw;uXD&|-OhvDtu35_XY z-+AgTp0@+5jpykTD}$LGazB zQK&dX$$;2*QwxO!={u+fq!f9b8OQinjVjyR6ElL%vt@(}kc>jR8TSD>&>6PH0=wf_XYC{&5l%XTKM)NjcAc{&+kq_01mT5Vk{f-TLS)K zO0Oq}k5Xi>yq0~ZT)X>ZF{_y6ad~=xkhgV)#SY{B3e2 z>p8S8WTf?pqUxn752j7eKbX3;2D{Kyt+d2wz5^J*xl=+y!XRLD2(P68)4ZBqv)sWwFA?I~x!IS5jjRELk>g+SuaSVs`$qI+XF4 z|92s!5*Vn6%g;6w-&$kzPa}RK2n+Q>@Bjq^_Mg5HhU#`N(rr}H$t3hHLhKTGn#?yj zNxP_HdKfl!{q#y096otr5zMLpKT`rfyD#$yT8SFmZv7M?_1wCJFb~I*C9>0QE*bFH zvFqitz;;YB`taAx)i?Oh?bIv_je~8CFyoZxVz>3o{KvlirUmx@b%4alYCox~7Y-;l z2Ia%~!M*OV&1Q$+1BhK)04i*z?unMV87^6moxGf!3h`t*gWsp75^ywVVv&~{hgYG)K5uX2Jf#E^3P3YjSRLf;h?6`8g?9?$ElaJe<@jsGcn zP7As3{%aQDJ`(a9a8Y)qj5fYrfA-Y7$;lSD0``<*I+}*gF^f$q2zpN2M|}IUdhFfi z?wAS^lpy5d;!*?p<-T%K<#zF1>eh8@-J6sY%0B_~nhS3K)&g*9<_KbvAJT2Mpj<8}*YZ!+Ncju$ zKS82D8_dxRtp3%WqeN0}GfZ|w9cH;qrqVn0PZju2Sn zrw#N=NdQ2TTaZtf(`Mt32gj&W#3{-SZEKLQ4`L1Yu!lE}R~T zWZ?=1Ib!E~>X6~l>{i~)`cU;1(G|kZ+LkWi5ymih*nEBea^wIynJ)uP$7dhU-QKIy z$$whlBr^|EnlR0VUDN+Kzdz~+u8K<5oed%pft25!Q2N#E#w+_VGY~y7w{??t_!fBc zxr`Rd?`NFP4h%^cmbsYDdL5m=j|L*ab+`?e5SF8M5V!YHMA3{S!bVYVZAFLkXL>kt znxC1}DFB=`OsOQumeO6gCa-vTuiGn&lWiL`DmdNGqh2E;$np|NHZ-4)2+1ywK2}kK z;Xu{i!BFCBH>{>1po0)%v)RK zGky3V_+Kueyb)jXaEgG$okJ0_oV;A{xIx*kWS-s4gVx0t1ZNPp68$8(w?O$k>h8q> z5&#Ez5T`V>__**w#9H9&EvAYcuq|QBz!KmrI7o%`Y6Vt+&*@Q&} zI&{09%iy*8X`J*WPyc>R49(J_Tu|6FG_c!urMmUU&qYW&dS8|^D`^E8FIjiaLvpoZ z(8Ei*8K=)j>g^*!7J&bUurc&MDE%cF~TSa1`Swa?HFDm zTQV1F8VjqndFLsf7ql1$oPZM6G6nrc{wVCKn8u<_1&sdXeZ7|Eh z!ST36)s#)(q5U7vzOmUMh&3iF@FPraRJohb9;I6EYq;wu>7W zB?q)IK6AF~owdSm6Q49kOD$An6-dBySKJoY3xFv_vk^j2qlN>+%HEel#Gel%O2W7& z85q#&U(?aP$M?W-haB1cO$gr_kgOhd8lXC$0UmO5_iLH0Fnz{0CZSM@*+&@*+4viU zb>xr>9t9|HT7EswAK4vg)zd)o4F`Q6-~$^8wm2XPgg>9hP`78WN>0c~*BRJQ;h4YR z=mgg0ePvmORnf+vE($R1E(((qM?3v+r+QLiPCku$qZrL6*euDYYYd~}YN2vk^#(Ie z0Z!WCF0QU*Y_7%l$r{)WfB;4E>kgfoIOP=W=LAB|wh>ykcx-zKKyKoxZJ@c|nW3OO z5G`jn^28<{rM+=ms-5Gjt=?i0Mv|CGn2xGM6*hg(#_Y3&9zEa`KlG~%q|rRU)3=?G z1rwxis>9W4e8*fa`coJ&BnjAjM^Sbq;L>!zwS&7X!4(sojQyt&Y%lwj{eojpbUw<- zU7i?)_Rh$)068NDuI`8!4BE#m3!svvnDwlf<#msR7 zKPicBqpYAD!O`e%hSIH-0Dr)cR-O%qV<#RnB4Wmn>h|H;j*ul%xKyZj6H;)byf!EW zpI_1E2qQ5tS5>s-@-sjfDvhUbC4=%hFMnD1HBX3a|5JPpbzAa6i?NK$zoSKtuAK#K zMSAPDl;`OUn{BBn8>&2qA3+B;EIbDrOaOEs# zhzttHGFFh9`@-9^D0jSI%ii5v6!s?hTfpq75sIgs*t1t^fit4`QvsVS6lkI@+C@PTNF{5s2MH#C-nphLwF|IFN6QAtB zkvn`O;T!A0%~&jk)3>MaR8;lr4Gb$Qd-zVIh^IS^^%;%sm6noKwDEkZqS;_PF^STh*R^>J2G;slgu-8fB=scK1HsHYB51TD#^;)`X96cc_EvuZw5(~?f@B$B!5#pe z4r2p4GrHS@Hk;g#$EcuU3Pu&U6;7P+LlhLDwgl#xWikxXaj;0HmEMDv!y-NJrgd{K z(5|3ab9BsN7?O+oje9~cK}-?78kR#(1{*Y+XbuADK1S}(znmA)&`m`NAgnS|nlUvu zOl#B{7=Iu(d;>_Ku9gMul^cIHPGc;Qy0mBbzVZ<8uZHwy*xXC0J8sO3mRp3GW%BN% zAs`cGS{LLZ?Ks2&@Lxv$w~-qRT(5i@Mmro8<<+>u?m>>2^2O@Ybwm8}5YDyW^6H$Q ziB~t4^bZq?D|HRM)*q+e&w5!`r%n-&S$G!B#v(J_`EFTl&XaE)aLX&T@z^OQ*3>sR zTFNKRJ{c}CRNyk#S>$eKRj-$<)P=#*2NZOb<4cXtY`d~mV3($0a`s+LC?QH|5<=iy zM%ZYr`o`>)4%nectY)e!Lm2lY?{xj)frgP+02mCuPXP=zC{g$u5dB4LagBXxcqR>4 z8@R=fCktP_b}jIB(I9FQ%@c>DhCE{_3z{s>fI|~kYmdG)*^&4;eG2Dx&^UF$#8OcG zfY~K-C~6YN0{s0AgdGKn*A9&0xG#JAb={w5F6n%cgvIt9zswBsY5Lf5j^hFEfR;9B z68r$4S^;K0e(>ss*h4uXJn|JXzzhV9n?jx8OXjeKP5L$M36cS2V>poSkCBgn_nyhDlvyyV*exsMjQel%yWRL1i8lP z0rsjsCghmW<(QW*wzjc)7xpGxLc|-kgr>XslLSk7*TF0LsSoqH?wAF@VpQ;Q$ zt-Qk*QiA!BCs z@(&xgefqeuiC^5p?8V=TZ^mjC|Mr^?IHl8!a25_e3JuVlaj$MH2*qp=KV>YMFMb-g zAAZZP@)1@r+u_1;_dF=i&-W-XZUk+QL zKDO*2iMh$=yY*$`Zhz1r-#sZG%-uSBd-(_sgaYTQpkephT?knAgLHRJM2;a4)^EEZ zcx}fg^+)i5tduMdkib%$eAj6U>8-IBzq2ixPQW(?0_u?2(XQ@SkgX#!8B(A zXU~I9NQKI6iV~2CGB*GQMN-uht^GM}KY#!JT^9G%EW^4zd=i$-RHO&f1d6`qJS{{T zLX}@W&A$ANC!ynoGEE_s3Dp^YW6G0jOYf zB&Pa=89CqGkg-{XJnL>GftyP@r5J)_z{XbRs-PW*D`(&xs#&}fH*!12ER`!GcUhXp zX2;#dcCq;M@^cBgM%u**6<`R=F*4rMl;G@ZBwxATvqr7~d%<=ZWJCV@>`Ds01@l6x zvY@VirQO$*QTB=pN_PXpg9E@6G3qORM-;xRg&WEPF$uRX3f_*$Z-!T%Xz6lX+nO2S z?d7#+=82y#=%(P%`~lwRQ$7I#@raEf4ZRmSwAB~}DS{C7A0vLtLPgcFF_IvLLeH}R zSPG13rkp+c+oDC5vMzuD=*TF=<7LXcKw<6Jy3-uDwH-9ft-Izu@wTX_kzsh)Dd6CN zd(qVip;iea!0w8F-Q=V2c?-V-ed{?{BiaBA1U~ z$$leE)KwI=fHDa}&r;|)O~-PTW$975vDlq!a_V)J--!n0=O@3Ez0zwHo<)jGNL4c5 zkER5Vox7MLXLr|0qyja)2E77C!IAZ)it( zmEj=s9bBi4qzcw+)e;Lz!=!T%FktyVemD)4QNGA-qi3yXjr+dmZ6k_W3)EJhnz({6 zBjrR}L}hZAOhzDE^FE33$R7-P#s^7gjIFwW6oybM2L9rh@kVoibVvA%#gu|wUxHQ? zaeneqP%+XNvtoEg$oK$Pe?PMY2OFB(vQCVL)TB7JZ|%qVj{;_6V@y`a9zfx?1JClF zU^)l)-Aw0pDlu&BH!eZF(9f(6L{Dl`r_Vo@YLoSNdlla)Bv!oX*}c&HfKEVYsM$f| zr13&G%C&Lr=@-h|b@+^PL)SG9-S;zppXo2kh@J_Kp84CT7M*3 zd9S-uP?Xm0db*+2V-B2BTs9eQ+wNZY#b`2I*UiV*x9z=#RZ=Gyra~NMv>UDVbR+f# zrMVVA#taknA&ketiB$58u^$L?LSO+!h3p6fBPp=Sa60RstylJNY&gL{DP#V;_4?T- zjf^X?bF-|_F_Q}hnn}fd=1sg5KY}RRBX$GLW_GJg(Sg%hmUHJTdo5pbE*G&=o)$Pz z=BBp;L+)EARlknbe5LLu0Pi{hS$=!uc6HxQP&x$=F@G9cK5pQ-p#7kOgRi{U2S!#{ z2vs?tRZ|{If9Ch7y2rv`FOK7}*c1MUU_qMOXX)-QI6fi;(PmXynr+G5==n3rtm8FW zvj}^jv=2|$-rJt-GS_xG-v=ZJDc^;+?LC;jQke4(Hr;oq%j0E?@A>)?6+FIVdESiH z@#Du+3KDL=MOQeAP$#Bjg$;P=} zi=FfP;ccuk1;f>%o~5V_YOu8Q-#Q5F@n)pomkP~Lems}sf?M56$ zj*1d)kUp}9_9d|V-?G2|;x(Rac^QhxKA&4C9`A#!)JSv1=GXho7MAIjwz6=r^pu#KK*H zBV!i+Z?Em_hh*ja&gok>b5Smn1e3itwfu6+LaxaGmWU^9FH|CT7PCyZvWCm12f!1) z-*6@eBV748&#YX|$oYb0`25q<0lC~Q$J9kpqrNFD>}I~6(?cRZfPqZV(A(-Y!YLTa zC^xr@bcKfN3I$+7{cwY=&vc43(prt3njkYy>-wG37E;Woj^79INo{`hw2j86e}~+h zITVh<{LL(K2ai!qJaK+|EKu+XdJ15AP~W0qO#U*2tOk6Y!3$@TkU?FJSzr6}mi5Hi zJ)8NRv)+z9FEm!zd%~kV{I}0vKgh}5(revx`x;d?Zs_sKr*Rtj7Y7tHD|LY6($L{S zlp&tt$AODExyNlX8Fs;)#X7KL)Xsm0(ejT1IbgXuD3^fVG21Xjv!RIceKIF#bVNdm zb3|3P_^9tEpk=3Zjt$(!SqzF+1A7tpkz#RjWfsp+`hMRGfYZo7V51M1Q$=80tj>tBp?5KH`I38x&7I`fDKxe9JoJF_;h21UKE7%0`+!IS37g z6L0_CwFBD@?f&iVAEE2fomKzlK9Rl*(3SdZ0;jx=Rv5M zI|F=K2YOxmiA3kT5MCU482XmjI13#T(e);snV=k`v;)F9q>{#1JN|!#Q-`WML9Xr< zr;aq|d+1&hf6W3gh`XHg!7>_D;&y5wk>lN2cbuV00Ec&_3#liC9E2rPGZ^DKgGVV^ zRzTTNPU5H2pBp67r%z45{YP42Li|W3qwrL5(r&z|j`9I>Qdu zv{R^_VoH=noykoR#2SY_;Kl$kn!J!-HC z#o|QrQhY@V|m}{(|ZlB%VvrN7V3lC@~ov~f1)TzcXj z*C7A-L_ZM|X!K)@y1smg1VF3*v5T}CQ-Js%es5txL8sh9dN80B?{JJ)n*-kpI*|9b z*3OQNjn(yyRaGWSfB#(t*!D>@#W5M=%7lC7gBd1%7<={tk;;h4OCLC^Zh}m(+L<<# zu1%|hl_y*5VdOE`g)=x7%e{e71io4oMWf~>3ewE>5*@~tJ$;KvGsPTlE>>xmz+?-y z!01Lj@Li`ci$b#zcRvBM)Z`mMek7nvO7{4`Zq=Y%GhL~yYl$JdvA7ov;^>rRc0|{J zze#A+1A;(;iL#G*NG4^3C`;7oP*7#xGuR$+ zYL>$alwDZ^u$Yjqs^Bkix(?HH*kuS1kcSV;gcb;9vfj}b5W5r+T0W4tm*I1 zVBD5>Z%!4sKQ!In?O~?rz&dRik6OM5vYU9gGYj`oj#Od(=$IZ_enIDf{?_hm^d696 z1zK;M7sD&q9MAk3HwY;%Ah~i1aG8x^CiB2Uue&?e44_pjMN=wcno9 zL*YTMVIGb-8S!vt#Djp}xo1yJTdxKt*wqz&^*CU*Lv}V3!yOaCjih6GTgp+`_YkG? ziCBYp;4yQ+nsfYT8|0#yjCod6R3;C<(Z2mk@3+CLuk>DC-OtN=d=yTsyx|H_=#Dgv z@jS%SzV1qPo=_yH+2@f@S+f!S6#L4Rksya2Bd5@G>Ikx$BP<8a^xjZ(Te z`}*|>Q%8-x0h>J-C12-WNDD`?fhK@sqESr*_wPl1Sz09jeum9GG@z+*n+&%j^JOoz z8fjfXs%wAD<<`gy}Z2_I^nwrN6&AqRr6Tu{( zf{)D!AF>wemRi)KwTN{g<)&s1;Nv*ZU7n4_fw#gzf7n#Z2eBq`d%tD~D6~E1aDFK> zFzod0^Wg-&zKj_30Nrm}-_cToyFHq#u(!82!C9(wy)S#TA7qdZ3e%n@%0m&R4(Uv` z>n!lE)hm~qsL+J#ia&BHv@#GDS|F~IB7g+ub806n&(pxD!kHB1hO{K9XNKy2dn|aT zcieYh-2mR_%&rRTMhWm_#3E)T77IE7AJwSh^vdO`$aT5z=XbvDAmhG}4{Jsb2O7X_ zAC^&F>yt@rW#f{nsO-54;{pmu)#Xtg6w&UEB3R8wa`@Wg%fEJD=8?^^&-KD6))X>V zxA#p?A5<)><(A)%|FwcJU=37w!csq{r^VwB!YSm)buYtVrp<@z$ zEJi|SRF^Nh1}(=%S#5$>hJP=vztsZ!XzZ=mRo>-oJZ?C0vLCm5ex*flA9F0nopmjH zKo~HUoTIhFCorrz4ts+RJnZ!wE$H3qMto%}d1s4Z0+zg*o*o{`APzGdxd`phA!I z=eg0}9-nfPu)~gfAXg|~0(L!haP2kB(JVexfLmF7Oy?)7CiVVCfg!2L9m;|y_wA#~ z$7n&Ffa&ZFP;i#>O7g1q#qA&k^u(~a5rlZN5Lm|J5$is=3F55UnGn6MvLAP(Np<2& zC#U)6FJHF8cLR=D`52OF#f`1D^s! z+3aoIqa(jk=Kn^{zG`3mT}pjK!6uJ1f+rcHgM&U$70?tzgFjT&V=+2|^aNB7dYVDM z&nuMsjXXheD2M@ON|W#}=evEUvj7)y)FffYBGoWchYULKfK>#==2`DoR9_EKsX;SX zQ|;6w5-ovQ?|;9WIBx(^B~Z3SgQD8kNKG<&J5h>z@O~p#4a1ilMXLGdRmsNy`r7b!NF}H})HC8b3EE=vD{zU4byUG#xa7$UoI3 zK`=o#N35LNGFA;%^lLVmIU>qg2GkYltYUIjXstkU4$zl-=*zS))7CT{S|F2h&Z(&> zIa5>9l(Pcz=J}Hbq*5X5YJ91`6RHx5?@Yy3G#6H7-!Xg@yLIJm0#~K)vW&8XSvfdP zh}|n1) zZ9URgUwu|oomyR1k@SwP=G}aNh&ua|Kr!|X#xV6<(Nb7mpUtHN;3L~@KPC+YI4uR5EKPf^zo97BpFgj1Ku z{w8q7K|<4@G!c-IM#3&~fT9hf0Z>3u#!pM(eIBK|2_2UoZu@Tlr%09vgp1I61-T~A z2!KhLMtk0gvSDfbA{vCu!YCSJmx^p}8d5_h6oN2Gn}{|f4%0S?4MNq&0|6OxX>A#4 z1tlbONsNP;Ml`w-LA&IPLu9Cd{rqS8Ahw5~%sUP>W2oD&5{9J3;XnQCIJrzoOo;t0 zNY@&V0$iYltr8HO>P_MZ>%e-ZJlGuoV4?SUJ>q`8``2Jjiw1wLusm^{bO9lq>}^nG z2KONap9IAuwZmabIj-E8IgTo~|2qrHk*ZY*gjiq^=2V{*@E}eOi$Xv`5{)FLrCcmo z*nSBdH%$p4R}OA1CAzjDnF4h4UG!?lArqicl<>7H_1WG(pD#5VK%$+>dv{q`Oy@CF zfvL8=Y9vyDW|_3GVza9?Nm1A}dVw zohYMjvO>MmFpTDF>{3K zkXp?8Tu`c{F=|@1e4fKELy`lZyIaz@nwLl39Dk$Pa5upS=BUp$NJkq2avxj{?R|K+ z=W?cf+ne9Ws)-sQj-qHl7BH8Vn4}1V7Ol_dxV-Rp%FHzw#!YIs3b;D|kPILfm*#Kc zy==QY927&MmuCg7CcDC5`#nYDw?iQyfP*6rAI3O6f6yefbD|%6N2X4^G;?Vw-;dv{ z59A&(1GT2Q$lXtD-aK!f>`K529c(RW&40|j<#j&)68~eSUOOf?@6M^N#?z^fqTk$W zF&7s}vhe?RV3B!9c8}5}OLSXuVTKK-#V3DK-(n3_e?elw;WiFj}DMcRG0PX1DD`D!wL0pf*oaU^S``p)so$zMPkw2IG zSRC3IF+tcf)G9Y`5*!VaMPFy^ycfbgEJseP5B9-3YmVk_uc*4NUA}v*me7d3U8BPj213d5VQ={ztuZ{|D@O|K)yVamz-&85sX5gLz{D5+VMK z!jK9rSBWiK4uk5^`0E3Fg%2MBM$ggDlR#`^+0vCrYz90KNU?A9bzK#RP4KT5Jkg3{NLwZ{jYp2X}`nQohgWFC{DmGJrAd@K{GHLvVz$OY~tY9K3CWd!i4=| z#>G$h9pfuziDcXD1m4AL zJn$NR;2Ur7+PMs)-$_sasc`?$C}939myP(QCEJg`Z2ax>OTqpYU|paT+N*5o6>aBC z#11svShmoEUFRdsBqZ&>U@v)wla7+J_=VhkRHrnjAYfDyK~w>wZ1`Rs+-UHS7i!yP zS-=p49X3140)Ote39wr&<|X_Xr3N@bHk5smeIRFl*)*kj_VhSlYAcb zA5Zcs2C7TS3sLA50u@6+B0vfidMRs^+g#X?Y|jo^&~_Y0sS)xK;j1&elpeWe-kdjj z0S#iW{@%8mUhmvzR1fp!EjWPrB&d6yf105x7WoT1fTSqgT#WCTzlqMrKaTwYS21*U zLUxk)wGm(O+0OhiXO~{`YHh&Ri-AJ0xm#Jr(LWB;%yLYL;1&`}K3<9mN;1aA@e|)K zny$gcn)keh;z4vjvw!?^~bvtK_Y$)Vre0Q z*?3wI{{nQb_ts?tr=Zv?DI#q)ave$OS*IfwV34-g)!Z6da}tXH z8BCQ1qJqN+LH$#3?oR)rpAbs}G+~(GUPZr6cHP`vx{?hAz!TlK7%HonBS;BDm+a>r z>N6*y;~}q(XQlPrHBXu3jrPmAg1>sn#1u&)G;ceQfNJVwP$pz;*@^G@T`HdoR628p zLPfE_FLbtmZ(22j?=87A_W@o)j(c3#yOfejy}adI@sA};d`gn{Re!+}Ev0S&qj_#C z;ae{Xf858fl)M4REvD$-%i`qXlVq*uUAS1cp;VvNPV|Dg^UUujlI20vN5vzYN*>8V zMeg(}=4k~vTj>MzUc*{}#E`TZb8k)dx4Ekn{RS;#H2#pe6u)^M_tjV7Y-mUC0V>QE zMf3}Ot@>6bTuF+D&&)r?*3~)w_|yN@1N6U7xBt~3h5wnOXcFTB=3Sb?Xc!rI1-6jq z4oHCvWhw!qzX%yU%H&5 zlGDl@wW-;dr4^Fc>;3BKMQd6^fHM)dc^VL`@aS(8LrD8VrLt8%iR*@g3}* zKP6nZ9{AUE68htMv}VLBfq~;k1fcD6p?Q}$RG!kH4OyuN_*$|HS4|fAM~{l9-eAnp zD4c?Ecu~=3&A=ZRvv7NLkC~Axn(+ySi6%}hrR|0m1IT~`Ct*ICwhKPm%mVY6D&gB0 zoRbn7z>W#F#_h#E6cS+WuEPx4P;ZE+GL0sGaBJr70?ZH?m}~J0svt&cE46VAdf;?q z%(y{xTKL_I1G%JoMWsg&OXQpr29bwkc<+go_d=>>^cw_4I2V^>3v|=L5Ea|_J;WTNd|SKFJ8P@;jzdv3@8VUn}uZPFvYuUT$)Rh zHEC!OMM?nef$d^bLjP7Mhk%n(UaAamSUKKzE;#QfAFTu$U&;aC&NfHxH#V|M%Ad2k z!tPn*PaZ>a8B(Q(ZJfGul2RUsmUP%>5-_35fjKe2-RyspTJZcB_Q7_LbG8j`E24|g z5bKk_UC91l@EXkoS*WB5N>d~dW5Skjiamc*$2N~w6KCm*&)Ar^0dz}q{N?gZ0yFec zv|pT_unIQA7_JVG!G56l4{kl-5Q|UR4FQUd*+9;K1c&s3=O4+nfmYhie$6*7fXYuX zW}%?Cl!9Gpng%|q?b%afgQKG~g!MEQw^m#4FDN+R1fTbd8u$omeG@b293(81_~Nwr z1r%6EE*mU7Z4BRu%`t@nt+KS738B)G2**n|;w5RNZfZE;4a0Tk#vSQ+A`w2g9%q;PrXxbtDMiDL!4 zgQJ~LH_Fk>&u;X0N@PchF3|g^6V(aR734l0t`TI zM&5khi>FQE?;bt|c6{Q*iDt1mgP;TxX$q>i?fa(IV)ELYWyB3yAY)rcbEZ=2J>kr8 zi0%{Jt}k|m{ikX6d!U!3W=@tgu&!EtR~Ygx&0lZ|GQ>g&LUPCIG<@%EABYrpBv!7l z@;#toO7hU0!c%RFJIELV&_a#-%J_F9^Oi8Y!4pRV zq3e|orr6CT@n8%n!p^gD8E!#mMW~6o9=R`RCNien#7|8_)x8z_l&#V$eqX@LvQRdW z)kzuR!7QW)QkW{PAq{^K)UgL#PL&h{kwoqT4G*oN>Xb6vP`mJhmb(a$hkUfW(IHjt zN)$){S6}iJJ;!@4ygww&0y=$F^tL_t*nU zAxtvURn}V(ehWBz94J!S(?MJF!Y`)Kt7W0X{M31EM|3+aZR|(njQUDG=}_@4e{KC)rZ4Bym4~sed`4!spT!FZ z^w%jQJUN{cd)h=jo&8C=a=QPgah*T@y8H8%%bSA-)8&&l_xk4del4i8!0CT&}rg-}Lh3nsKB9+S{GJ_RZbOta{M-X-9Pm(c%k@$xPT z3kwVC$3;BgHhlnx)>ViNxpwR*d3X^Ak{1rF2v8>%K0V#i*Vp%K>~U1oW*(kjpy<>{ zGhhRDd;a6~7ue$K`+=yv0$0N8ye!?cenoS0^K<9%B;$I-+rGk;JwHxUhHD)TfQ6*t zSE=HA_p&eeWy#$=t3Q4E^iVNe;%j535J6%&%7ehY$^TEr@I}A>Uak2nw%YnfZg?<* zTJKg=RIJ%&x(2GJpYX@?UXaALr9g!F8}zm=aHYajECu<--XqJd{c+RF>kY(S-^h8p zZZqPPy>U{=zN4YFmJnamS_ifTt(UX3{1d}9Z$Y0bGuGYs&9I_N*-c_WT3Tji5g>5= zaR6#-AtAYEDs(FL4?H(~^|K@0DqbM*?{$GvdjU-B4%m1TW-0a%=-ApIUwHsT^5sB@ z-?%e?_Vbk@@H`i?0^po^3DEfix`dK^pzvqlx%(wg(iJ>Kgga|C_T;0VD6hGGpuPPn zyoTq1I`W7}E??deIo)G&VaI`*fLpgpR;YkXJBq-fwzMZe?z47|BN$>O3=*kv(ENH7 zb?C1N%*)H0K=pDI60O6P_-*HRnKkSQJrZckHfjdzDI|sO9rGb;{Q&+dFDWuDElmR~ zQJbw2A@(HZ3+-5M@~IhKLH$yClCI|D@dKZ6jH?S!`UBZXE{M>aa<2(z`PMMS9`Di@Vo;Z9$ zJMtX{|HAR5G4Bs>iUH*~w$|g;^aL$%T;CHcZU+5!h8I?ei>qMZl=gKo;SC!%vRC3F z$kh+EAbF#H8ZS`Y#J7x7?EPdIjH+)SKf8MGo=Sepz|y5l(N-MsMNXd*ensp@$V4?$ zyFLLDHJ!~}GFl!;XOY83zluuWpQrAwyz#xq#*5AU;L}!by4KYsu$j;<^?o6d$)HeU-xecjT;yze7rLUG0hd(bAa(DV2q`m`wd>}rJOC4 z!WM1nI6ly_|G5|s=6Oylm`+r8Kd{l8nZo7x9{ok^J7@fPLD z{CVUsH4Vd?ELnQLRHomWLX&z@puF*6%=Xm_Q$sq8z=8%`FLC(lZ9YmXpmC#pB2Rr^ zg*kbXUmv<_moQsId!#`S0fD=1u`7=gwV$DtLjeuI?|j+a;5;9{J5Cqu@I=xW-x{ zU}$*lg{8QubPo=XbI*h8bRFumm^L@-rh&f}A)x+{F9OaZhCk5>WbWN&EeVs3E7H@&lW=TI8`+&o{R>Ci3V&aYSP)Rm+^9@cD|aFBAyRjs50j@A zur|MnC1+-4w%r|~ahP3>8#ZisgFuS&-YhgJs@{w=L+?H-BDd5eqMJoE!z5gHnz!UX zIk-o6(UyGHtaH5+@8|@=^HPi*HN|JkY!%5cH~OjRLL>5_vQD^`&;K$q!KWJU*OtC) z*|N&IF5j%m`+DND?Vv4hVqXiLL|Uo#W~Tj-dy$cmH&H2z7vU_?_uggTEjjNjSUryc z6(jw>X}R=um}UK23vfB;(-+0x*zMc$Nj<2;u0fTw5fuT&{H8$mTFZGD-TVFi!7*|%j9r$Mk$H*Z zSt;uHa?}sMf}lQzoq^=>AyEE|ZNT~SuGaa3G=x_tvu%v(UGXnf(^J@8gPPq%NN3RH z2m#%y?Wq=x83MSf=f|_Mvv-aemp7-yL67f%DX-^;5z)3D!iuAKHb@M)YKQXAG-Ou0 z!y5eyuTsR-cR3$Anam`03G1enSa@qt2cF%C#^EU_Y)G&cpi?Y_Zp{*@=6OBgDsH;g zM?N()oE>Z{^vGL5appOUkjm)GBTM$&fNXN}=FRi4r`!k*UXQNo7W7iQoylnE`s}Qm z2eNj-g5ihQeY^0a!i!!s8OKWR<4^FyoIg60)1C70oVO(If}EUj-Yy$?jqv*bT((05 zVRRA}8o#rS*T)X^qTX+F)&SLMX=!=VWdJpfve-Uoi!OR4ak@h)?=P;7;3#&EfIt4a ziAyRAqR%nSv^gZNCUrY38};X)bGeE`Mk&d@BC2M6J1BNvncjlg?A3sVhU|$M?$?vw;)_$WlaxsUX={M*7o#K!7m`wj45SRcx36-ovMe)QG~?xE4F^A*->znA@K_qql3Hv9VB zwM@P(S1({K!{) z?aO`q@M&7w5j39q~E96(y)i?;LdoJE3F>J(`7`G$sudA&4P6O21AQ_^{i-=HF7 zM^0r$#Zsuf>KZ8i9FK{tZP|8kk?C*R{;KNqnqwA+J z$M=KDKi5%oyfarn{W%g1PikY@vSHQJ&stHFJ-6<rYJU14*Vl2SWn z#uUNo!0~Cn^Hl7^=kcE*N*UR?6&So-&XXqsP&me`uLWE~vd;<^kml-50oF&=w_G*- zX&$Z_ZFIP*uko2uAlYupbzBMMZ(TzE+lXgD7GPi7Wbeu*O!@OF{REb<&QT%ydI9>m z2&~-GjnLL8L6#}gjE{by+*=iwxPG?hXBi;#Yes6JWhrMrXR|{x0jdhhhuLY1mEtRJfR9guP~GZp&zE zPmc#gf1km@sDz}A0HykhQ{DK>;}k~+2VUm6*PE96jDDCA7DHd-2jvNuu<*)^jH(tp zR44w+_U=9bB%FQxsI+vi>h;t4D8_q77kqYVC#p|Ml@_>rG#;!2B^9wBQ z4wFOCeIB94dhuy=tm{r{3)~GE|AaV(1Ac5U=+vW5?dVI#jU- zj8;s2{jfD}C~zq3WY2u$J;hp22z-l|ZiC47)cRAYtFD@u#{!Z#3#Io1U@1Mrg>`MHn?V>ZY(p1#sH=%*Qb?ZRpDllGv6n4_vo? z_U6sRlNuUp<{Ba<=EUOk`V4F|zKEhHQ`t0MBs7ZxiQOwJ-oZPH!3`(&#D>6jRP5GW zn^_mxkZUS}_{3t}WC${z)S(Zcn*VI_K@lX*Na4U6sR-wgeeE*;__~iH9ayJ86+(-U zceoU}pjSgfLqCo|#QqvP5iWzJwe=BbJGhIOjhV}^d)74|FzbH8_a5IgH{+4D5f^%# z|1wfYfq&NM`l{Xt3-5%>mgV!$;F5U^2f|Ugb@%QSz>{uzc)WrVd1Pnxe_WPSxy^gQ+L6Tm9U``$$_otbeb-i+d=+|reA6!2R zKo*~pvt-oD-d-9#pCurkXBI8G8PaFRj*6%9?tS~Vuux{*dA3IhU1#mSHzma6Z}*!O za&~ll$zbRtzm;)yUd(aTWNEJPL=MdN2%#$aaVefjVZX4xXlq-D{e}ADLNTDZUt02quABkSXhq|90W5&?)_B-vX!EDxcVjy8Pe+f$Et7r?uXq@Z_~ z8iMbLFcDI`sL&O=$ZN!5obtwG;3(7NT_XOL<<_PDug{xijn9kH=|hyv%0e+vuWR6# zXs$l~;2qQz?Bghu%Dnb&;o`DxjYm$F+E>)e9=G|y+I_7{)=PR9irl7>bvIHG;m^l} zC@D-=AG^zb^$x?Xj*e*cWXW`EeT#`+hMp> z+>4f$hoF$O?fe}$+s3mD3guD4SRQ8dw=VLx7YAI_jBKCt$W=s z;5gf{h^#CWz`_wT-bLO`^(J2qH2b9T;I!Hn))tEl%hXllamEV6|UK{h>3~m!rzyumRq_L9~cKS zlFY}~AT&atdtp1tQ>RDF1SJ*Nsajoz5|dNPtoUPgCn~N_l>o+Ul48t z)0&Ver%Vz@wrS+4^lptv`;_}9;E!=_49$r;BlBoC-GWnyVXE=x?}e$Om(l)$lF+&p zVR{%e2vhPw8Bjw4@Gva0W@ct4V!8Npa!~#qN1FBa;`#W1Mm#QhMzJFnzo>yUT?AcT zlnaWa9XsU+s+MayNc<0?v}v$q22AxT@+7y#p?ZlCe0UpRNq>{!8_k)*azRJ#VrjOc zfQROMCHnUdBFQGQQ13eoL*{nEr zH;$JN;jAQ-#UCDxWKJBK4+y5xa=M}Hg@DY6Ey_d{si)CUR#HZ1c#7t zV^qs|Wa3Qo*+C+=f^}K2IDhPixVcP~(@ z@+tqoKyD(!B^;U4!i1_he4_HF_CBD)L+}YQK;yB;%zhYd$OiDm6=D95dIFp^(JLOV zK>-5LHDi~CDIE#(*bmzs@^a9J>(NDeuPBG`+uqFPCSf_e_a`|-zFu`z)mMb%6JYXA z;?uv9X@$hnj!eB7GXQ9TYdBMWG0WN{-!eTjGrF!KXzDAtQ)TaxCs;baON7_45leym zF=9q>t>TiUL_nz{pG@#}074$!H(-f+a|SK8t{nnE$fN6<>grTReqiVP?q6_1=gOPl zPT*FFLk55wPD#jHV~=m0oSfV@ckBx(8~cb$@NW z^=-VG6J9)RZtG1GlapA9x-W^tmAY%ZF~bo%NU#FMO5Qv*hD16 zBVcFYFDvTQq$ELNbdWWKNA5A!{l2KQR4J!^T>V!kFeouqR>ZEjatnkFWV_zt6$vR| zI-b)!6Y7@0sKNWhwl6*~7CaR#C@n?JM@rv#S1VLfY_(sGW%#yMNS(XxHJ1Y^?>?Qb z7GH?vAAvnJbLZdk-PnaBT9mtZ1%6u&CSnPg4G6Va%xDA*w{DB3?|YrA3mS(=~Owmz3&)Lo!>73 z$3uEWrJ;8jW0R?rq?7H|)YQFQn0M>+P=;g5w{n|TyJAk7rWulPx&2`h`Jddq_d z6ErMhN=J?!HTL^w*Di`*#SaM~cZ!SSmEGl#VXlM~z;j`AEjmO6>Zc2c<`7tA@cBYu)v7|5ioH zQo@|I=1QPduC2HC5uEngQQ)`(@kYUfiDE0zADU?w7=9W*h<& z`~=nV8+h8lE?g8iq#5=Yw%TcHCXVf=(FLS{xCnML99VReS^_)5nkx!7b|E2p?B36S z{7SVc^O^g>w6y>J?TV0fuDrdcCn`PK6pa1EpGPVRlnj9v*gYW?QpQ)k=3WEbFn~Pa zg@nDelj<9`qvfv0Sbhw{Q0@dJ21j8hQY)W9kW^;32}O2Fvc}_^kWC&~O;&`*+f9;r z#!~p+6Ym7E5srw7$)>{lwiEgSMTtq`q0-FC%v^Gcj{7P3nJtC{IlyQphW_R(5iwYD zW$~lJB3&fSjP&#ma7-2d5iH2Y7{`vel!}2UAD!TMn0xM6T*auFB4S?)Tsz9**fp^x$xI zp+k+H&;=KZ*$*9V8N#hH;#;fD3EEA58{p%USolv8i~Auws)WtSo`2u=f82r}ba|W6 znBs-;Bbou`7=8sS)=h+Z(JgcL^d=YZed+J*emA~?>=qDV0SHw(R@V4>0T4V#tOuA7 z8y{f-wPA(si|2S|KJ0{9y><^Raqx(uj&}bBP^5+$z61Bt(nPXza@w&P5slk`3fheR zS`PuG8BR2D=SA_n7+GI~?AAx_vHx^~@=14es&~N$xR(;Uts}5PaZ4UJJdFU zb>uR6n~}3`VPNoUt^IK0=5)y$9C}x92K>j5Vd6-wE14rHa2=n+eji+G&1Xc+)SAYi}~{?(_3 z5)7iFl5fI3i4Vm3$V{BLZXK}Z$&22-GSqjGC3gUj!FhPx!9lzjcL@1X80sGc%(Y-; zt|`2P=J3d!KRfX|?jnw}adU4#b|0k}u>sav_wb!zAUoF9kD=@EM~=M+{J!XznKvS{ z@ddVoQwS#l7ofvYbWkDEPw2IJ zt%6Yjp7GiRrT+VtZCul+pp`KGh7%Zax$~B z9utyjLF5XA*5P=FVkHr#pX*H3JWa|$xv2k-P|c$63(OY&%KeK z{p=Khg8r>K)E9^KJnyya(_2BRj6^%A$pB@#<>W|!r3h%P-MtZhT%6)I!%}0JP&e7# zdANDw#xGcH7nFq$-Gy<|eEdB*e}&V+;4q|N)f?{xuI==dD{Qb)@C5!J_1h8W9{C3f zVK!(iQcAHGLIHcH6G_A&H=6DD@S8dT&PCf|YSU>la;>}D&&TH;6zZQUD&&pbcThpI z!bB>>-^8G87}U>u|I?!+HAljuheGQN+%E^xQc_N0g;v5uEuVEOG)yElM;d9=*TQ)VY!*yh~?5Bc)Q$vSv!4ClD z?Wy-X--YvjMr+M$-Y_p&f*`;<;MeRl!7(94UCV;T_U+ja|JzIsywrV(YFi+x6n980 zuB9L!8d!wnf)V_UNK`2tAhUt+YUrcEj0wA_u6PQ!vm4EZp@}+o;JRRgzG`!PUfdun zD=V=5O|XdfLRr@dVI+Y*z{n|AEqT7Wg|idQ_< zXs={nrybp@mu)(-<|FPGwJ|%pgeN-7`>jAi4nv%^L#Y7QC15*xO;6?V`EOh8s@0`g zEHj-J#IQpjLQKhy5=T`Z4F4vq`Abbh9UbA*Cx=i{GhsgUwK+&{8A?hueuQEA(1#R1 zS2-XhAEBFLw;zCho9)5Vn`sFNcQJ5GQ%g(VyD`O>5gGQI6cd=*BR{Rlmb-AFOE6!G zz?XQ$ktuOVzNu+x^8vtORJ}K#E91!q$kve2gD+kOqaaUgmoE(s>Pb4(cQN3vXW-NE z6YmWE-fYq64!!Jna)rU!I#H76N|Ay{ljue2NP2>bB^G=cM& zzx;f>NiD}tn9N$htbyZ6CfJ}phgeux67Xh-cXv(*@_t#@C5+SELGF2qvC1B>;6v0Aol}FA$VfUX`(w9Ksa5Qpm6T^orPH|oDYL;Wa8qFZoU=d_+3<=W?5mE`Evti7ebJuo3l~qg>^$mK3OcY~>6$cAGSQF&5 zia>ZiCQt`{Q&va3W|FWI0%GG|Z&b8ZnoV4MCxl*7nwmRN4Jw46SP%akR_wpSeHn<4 zX5Hm1V2nREHXf~@1>t-)-EM+A==JN1(0-(6Wih{hm+?GFL<`Mg0@uDhoqzAS@?2CW z7W^;(%k6R55W0|F|HK@GU1Iq1Zbc+iDMXrxtob_>XJ;4D93S^lyt`7K3fGmaqOggI zNF1Tg-ay4=`ULf{~9gZFzuZ$WQ%JT|kF$w!_R;K0dxc z6Y`dUpbH8LpckFgsup}zP+|(j@#_%X2$n1jUnEXh$N(gXIIk=f6gLT}QA+Q9F80Zu za22>7yY`^=rAtpcFkOX-V!!+_uiu=ur-i?AI|4S9wv{bNUSStiXESgkuAng5$Vut$ z?t(>w^56jg;x{-)JoJGMT@-Y?i%J0=71UIS9@}wryTX2y&{)|1H)^7`ke|RMek>|F zn@|d%8{PKIR8-*Ti)7@>0n!LdXg4)Ce+NrI^%3}$P~JUph_0R=6BE-Ile%MWejLZt z?O>S;y1ML0Fdsr{%Er#V5|A{hMhQiYITu34bu^fuaWJYhnHVX2SOIw>rhC!@maK%m zL5^fV5c&*;v28lA8j02u*f3P#D}Yu&=N}5dCJNIsjkdp=j_qp7y0e*(TmWv&(Ct8; zJxag(d3nds#1}V}IEgwMcuQ?IpW<6;$be{~&smd#a{g1ia?CcoeM_z1hy?`LHe9pD z)(WPX=R+h}NVNJW@LEPsK6TXSrFcoo$ZjB_JOUbra4 zyku%^XxNT&>@z^i2e1g~S=cxS)awI=0zYtdMXoK~e=ft@do!u)5KTU!hmSJq*#(H! zN9PGNc7}CgJ-X|ygdUO<23{nI3!oGH2UBX1YY_KBL}d56$)M+Eq+`yjY{uBeAIpcF zAI9z%u3z5=#l&|!K`Kh_4HTww76S-u!pCjPXS-=i(MvpxEFm0xai9sXBTpjN^ac!Kn*hniIPUw76};xUbu(;Cg5q$(?FKn`;kMD!B<2(HL(*qVqFaVO4Pr$q?y=q>&zK<(oSRal30VQ z=b<`w2aK=*V%OL8Vdk9$x+uLp^j~%)mGfb~k^_8e#3-F0a!$a~qkNQrZ(hx?5!Ieh zI7GtU(ygXUt8=M~P>1^69GjS6K&778h1GD<#~CPiqAffi^Fdxd1k+qzA;#l}Ya)l| zh(yIp!PAqHXD?h}09IM0?gV%_A6KG8F@}v_PeW3q_C!ir8Y4E`KS->i^>A`^!4?fhY5&TAIl=|J;f_q77r=gPQY6A*lZRcav4Z5Be zD;uxzeiY#QGqM9V+sAP?`dKUnB1q^xS&phu4q>Z40b{0QwY3&`a5x%t6Y~_*0)e)y z#i{(TgWpOW?yLgn#&p1l39*3Ztr?d4fr`1KNut&PUgsYnl3|zv55RWtARXA80t6}L zl9et162kyhQ?FnD{UzhUKL#vYw%kQRq1*oXVe}07NOUQYy$pECuC`hYM>}uB^&b8_ ztf%KROK{FQ1VN}zWM)KU#)ACi5W?2!6iz74GFJ!zF+=tO^ ziE-$TiZ1-7hO+DQfyuq!XcMmFUJSuRkG zRNFR3 z^Cbc~Ud3j@AsQICfq)N3%8rwAD==Iy%)q^|MjzjJfM|t42c9k7anzc35pFYO#yUDW zSbf`|SbBid5A=v9qMj}u>5p{tJrC&4$jP0OlA>ajbZ|%SAXn}kJ*PSxW725TN?uuo znugR5IC1zee%TubEZg3_t5I&R7&h8{A9MgFVEsd+qPh}Kx{$y56fi)_)i5Job3|11 zDx~#3OQ-QeSQ&Ig{S-5cB2u365x?`)T4>bWMOqy$QQ9w%`W<}EI3JGE9hi^y3D%PD zQY1Jy)(~P8RM00Yu(pEeb)anjtSc*;mu;}d3Att=IyrzDdO^cxV`mqRJCD-IlXOLZ z6qIsk?t78{V&fxZd9wEuwPb1ulHTBN`I$&y&TTUwv9dyw_GAs}1I?$N#wCr+@ot40?7IC86Nx*ob@9+(4Z~zV2 zfqcx>$#?A>c4kU>e|tM>IdP>W*7S^wM^JY1NdBW;DAuQlEbA-_nnHxhIM5VVJ?;gG zZ>6O*cDV)-cyo{BC1*~|!?;HmZAb(e@QK6;)&bO5qpL{b7>KV(je7j6#Ob;Pa%>J; zXNYyhwPLclqhuW4goh{hA?g_?CjwoFRz`)D#9=#1(t-k;vY(y8GJ3+hnJ8W7{dZE{ z3s`wxjT?DLw}!ufv&ZDnwl*f_#oL@cBI>3)76%3gPvVHv1$poidHv<*t@wXF`wh%4 z;^v?E`@hquM~-xZ#S##9+=4&dnd{fCQ3J8LU`u4pWqEisaZ^E#lIt=mx{xPEcM;}) zVg(spt^6AWzH-Sqd3i?Ctne!YikiLNT$25$2#f~F)CYVKN#TZKYrs3K|B)u1^ zlvRb18u=`ZkzR;W3eQs-*lLvycC@vzAiZb{wV7W1v@Oo8vLpmUzAu z-NHGG{T1h@df=(=oT5GYkn-0?!l>~=E`W&}&9~Ii)NYLqth0)LP?T|8epeO1saIuS zx-){Fj_%6nthy|Vm4KB(Fr2`k9%ZwqB_3==OHk&K0_A>u1nhVao&Dd&22~uVA`DOT z!~)1T{fgaF&an7R^l^|Kn|N{VxXCoJV^Wa-`(T=!C}Q&St@0#N5)Ru9ieGkh3fp?t z^NMH-3X#)0P}Aw$llqz$hYCLYo|bmM$EZg?et7#vunXF!QKw0v1frj6{PE*P*($cQ z%!_h3fL(HOX1|TV*4{AZ@aRFNoACsi)%AlMDcJ15DC*UCvg(1#CY}Kf+^;< z4p52g*sToH7UXq=3?m>OqJBG!(G?Fs7%XR;UJU?DX>3)&Ozi0=J0fP%LPB<-8w@=I z_wTPFtqx`Vc#u~hYD%<4S?!5Yj55z}*D610YGTB`&fudU7bdFC8pe0TtHfiB1{pFwGAA_k(2As8|ewb+3ylyQlL;C_u47jT%f;awT$ zy?L_-nZZhMtVIdvS3nz@@6FAdHq~idD5wARyP~=tEaiPv56w1y7q6_hDwW41dXR%T z13|_}67%7sxTgW7mpOh{L#Q9eIwqd&kJn^8P0jud$N#ho0m(wWOE&>4wa`s>=x!lZ5a#8b-$G0 zN?ewANl`KRUStr?^I+{-S9uC?{3#E<8 zhI@{F`p`7L*8)j4{ZuWyoUQFAT{-|e_$&}yfiS@(ey?mY1;arL-)Kq~n4KE(MmOh~_}97PqI}&3p_3V$j~+jkxpr+Y z>j!jc_Ue?xjtM%24$_Tg{|oto*ddH=>R>f2(;TP^~YT6d*nJ6#iXuG@s3l-as}5jVdRr<K z!yw+$p`I3j6Tpyvm55W(0Of&kbLFfj5!H}hFrb40zC<;E1hy+BPS0ruv;fHm8~i3A zTSH4wuEq)KCCpT+zQaS{{cT2U5qzr2^P$ojc;=w8`qbzYj=MZC_f4&arNmRntT28nqGY}{*NV$zQCYD_Jn zMF$!mAQX8WXxgxjf~9STlVdOsF7D~gjVPK>vX<*vD((opLW6bW?(KaVwdg(+CMDXt z8Dw)6&A7 zxL`r(T?$A8vf&vmh#Il-DC#(l)WhoRCHp15J)7&&GQDhM#0?92&#K1!Kp<Hr%nX(50P0%W2xhIY7%j*lS0hoydR7J{6pDUv005grC?SN;KIZ|N10f`g{ zpNq^yQEVWyItIck^Vj1UATIIiOS@KfHm&}R)YNaGF^=8_fk%+DVz+_J69MK$i^*w7 zI}$Gz3!ilOf)hYdaz5w!`R~H2_1D51x*U3t z^mX+%!IsljOfn65;4)-}1o4HWqZs}Vf<4``|kp7&jNe2G{$-v4bO zAbc)L&y-;MP+F+a6yLvhk0@L6Lw8akk>1y!f(ATdK6*HhAY?F3X+VuQi6(D&kqs zL@7%6Wm8r|NVx-)4I0_k-Rp&OsZa&)nVfzjE_kh~dmv^7PyvyhIw`+8V$Kd$F}$AtK?X5PX$PsOF~KZqu@{mR7w~dD z!dyu^^c?C$?Pb8OX;ZEW{(h&lKf|`xf^;eWfG`9_tZ*aPq)5wqEuaR@roy#g4<4q0 zR8%s1fac4BUp+nUAU4nZAsAIV>>GvBvq6I~#~7V@X34pGI6Bfr;C^>D*wP(FAX#lt zEM0RhvbMDR0uo~cE#m#Wr%fMTO9@kyC4D>hkl{isS-dIVc6OW#Vr~Yvu%fbu5%e!g zBpw4o8lAsWyQ878@eN9qBe#3#TvVU%fk>`5jtUM07-tyw<0o*%H?(g5d6AYbg9}vs zkLt%K#0nXy^k|HsA1oG>$y_v8+M@!OU-5N^*BGjg;F8`zXiB!X)8dT5iIXRUuTVR`rS+h;{lk&K!`R$^pPS3Q?Ua|r{eLsLXZok+ltLk(>I+h(vJnm_Lid3% z1t>*)$}xM&bG*IRUn)RaU)vud909l%1Qi3xfB-+d3rs_ZQcE}64U1r*Mu2yEiJ3%P z+t1ifEF}!+Y>^X*+m4vc3?KMUpM9&#u#e6=Z~XVS_3%=Bdzz5b);sqX?<=qUxDBNoTHY`|2vIA9ro z3crWuAc`n`wUbZUkiX|+RP8+!#;XDQRQ12WR}2?l!#z21eZ1x3vm2G6cgyu?v|g7m zg@7aILI+&5?E(_peya=6V|tUZjg|}Opr(zsH+`|^g##w;jtB1Fmqm7WuKNngN|T5R zA+*7@I*dITpj3xAj6OQvU2!0zjo2}hz94#UgwM^0;>kXkH&(Y(6obR0p$FgFd(>M_ zu3@R-dIM$|Uz;fB1sZh{nDI4xd`Gf2b5bw}@k<)%W??EralFu3e!>(Bnm_quR7p`P z%pg`{VBK%@xPQi79%yL6MlQ=kHnIh-&_#lG{%AJv4_l0RzZDPxD@{ZB4E zCDazNk*P}s@!W=tVr>A!u3g@Mn~Y2@y<&_HCGoWel7~{8GEG`%&-xA8+1EFC@@rr9 zy!vqUd!wqikElXlz^ddKWg-gzkBTEQ`~5|NAb-oq(5!ytKd9PMiXEqi!|E2Ha=S4& zH9EQ#9H0U(KPoSxba>vHpMMg`mWyBP$ho$r||F(xT1d4D42atPX(C^GHbY z>~fqr&@EFZW&r2qaxy+Cyr>nGbJ=8*10PyOmFG3V&%RH&1;t9VKJp)RlIiuoz=&Ac zQ4j#Z00~rHLY^zuYLAdAJfo$hMT|CX=EA)K5?1O9ip7!MKfx)$;e z0fYK%5z!xF0AgR#bkO-K;;2>(1toG%0;QS-pUI5!H?(*w;jj}QxtM$!K5f!PM%{2NkDF2`AR zXP-_|1T<*$+K*^JQ^g@IM_v==cLysJ(CkH@Gz1EEs7tR+Btuv828-Iq5{mM(-R6Lt zpT-dn>l1*wC*;6_;1UVc)G#XR%ekAFJH=VLxw?9QzbgK{gpriVqrsT|bXW(j&|d)^ zKcth!9&*R&u)gKaoOi{bd-0IqJ4jw(p2p|H0@*t8c$ zS(FrlFF>GhJT(ZnzYz>lk?>AQhxEM^087ZM;#|VPDf=9AS~h8bJU&MGHyPbv^MtTS zqkk|mN`S&=;jHvJDCjE=SN*Z>!%so#Ae=`_8e6ROk*5A0qsm{a2U+onXY41H#t3Ds z82^6d+1(FF%L!ygmty5nPM*NVr|%zxQU{X+Q;LPG*3D_1fv0<(k&7#2k*71Q9P z_lRI@e;x%vce59&6HfH&^4XTRb%#%HaSB7e1w^r$k7G%r=w2IMc9jdx$WpqK=jl z2I$>rE{*?qs0_gE+XLDlI!%5^KDRvFSkO~@F%}ZVhtMDp%;8j=W1Pq6?1QXu) zk@MorX-puLnVy?7o($l;C=ClYO`awE?yqS4iQ%eN3b86@J%`eQG#lt5Kj^@ZF<=ca z0(55t>!LA(0u);3L-dqqs0kj>g~KJyXK8BLH|JG=lw$m!hUZNSc97!Ky0U1I=^}{} z2ld&w9?*gFFp2LoHa6y&Gk(LhvIu#q$5sy6U(vy`$0HK@4cA-MaEQ=4qdv5ZADRi` zvfonyA0~a~2jgcUQs@BElsM6h=|s8*DgMMrpY++3ls0s3csd#TZL@#n@cyqc+BZ^6&Wf7We)?f{Tdh>8>{v; zjIPk2-i^0PyWs&^`>fWkLyyiJ#uV?JAUHfo+O<9io{2JtR?J8#Qt!q(2%jT6-5QmKUd3E`7QEvj9 zgytcW`PMe4#nm;?oC3uS5v<%V=ETgW0mtBG9ILb&%5jnW=(mej(_UI!;3%92dN-?M z^G|}W>#^P1`SRowCUX9P2Q2(!CM0#7@|P={u8E{=;cbP+u3wF$4{AR@>djGTEKBo5 z0LhOc-G8X;%r_ScLR|^*&Psr{q$B*=7|Lp0tk-mm3+k(Chph>bL?X_wMSo<2I6~=1 zfKGHwOpspCyq-YKvK?(&dc)UZWzjc4CLPR!ec;qg|6rv3w|5RCgyx|~xm>^tI>BPv zbicksKL&dv8YJh!1PFn8<_$_`=&qciANiv{T;6zKU zww16y>F!7zL?84%QC0W}9z;XPeJ>2&-Um(lFlNGiLbx$lM1|Cb`9&wtMhVf7#pPOY zb2GD#>E@ka#Q5wTladk=jsq`-=D-69FY|3y$9T8Ev=+OKIKRKb^Dr(c7F*>CPJ3u^ z))IAyn7no$wu}(To1XhMqwQ8R$Bu#ILFIn`AaD{Y;Z-u z>%g<4(q2f=N;73~QRTsfr)@$rF^EH6g0$mofaZ3a*nN*6aN*`aOmGlxgQYOgCvG@) z+(k9j66Zx*zFoPvq2J>2Rw?LJNr?>0HyJFyHVEzD2DtKIg#j%UHXKpy zf5A=Ptc|wdJ%8?LWJzaSVr2D`wNJdHB?R&?!G;1GU;8WvQCSYR6AxaBk4e zatU=`!yFoZuj=jUyKHwKY}M$Ylm0xv*!Dr>)$0c7!wqEvW9H?-&tK1!8niqwy52h1 zGUIRxS>q*45rZ>f6o!X$!<~n4@(4&Zkg&j&c#W9Sek}1?7z`%Eyb9KD(Kt+vFw7+o zWgIHF$gB-^hk(supwC&1!5itH3mt#9?^dvubVb5%4fgdaIv*f6+rkJ{KqE*nc4 zqeCZCgTiuI&D7s#+zT+;yhDhyvOSc^Jig3L5wI~w<<(Copc|y^oo}wcr*7z;B=nWZ z18{!V=+d`WM@{@6R0-9HC=Ii+ib*eMK9BL^`^EH$OKtgc3lwyyhN1D>&8KQR-+gRp zy@Jq(M5qZc!%WG?*T-jT+l^R1*CXd-Ji~erUIRrf-&H4KheV^4T;V}Yb#GOMM(=U2 zEkWM|2A;sy+6L30Bf$1F88)Ee-FbH7O44iI*P54yp?At?r;@T02^!1A1 zIQURT>dQ+^C{@y~Tjk<&DqcnGsorXS3mSW3>8@?lc6S}h7r{vV3h}Y?E*M~fmql#i zQm%eks|@>eVgrokt(7ePkE`hLjs=vuy1IJdB5SEp_vZBGG?8^wE(+4|+nT-!++!4V zT_8T?{6yh1ls)EE{W{%gx_uq+>?1B0k1zX}LBrSo)0jd$b!(v}m2$flE%a4=hb|4? zTv-*+wVf46HYkXEJT6;SNSW(g(t?c z_F#sE5E->qN711mWXSrEW@4<%3y6+ZE_*g=A++BLl^K@(*IUn>?%0TC0Xe{!K5ubW z^aR`gS#PF9MHlp~_TE3Dr_9(3scGpK%`QsL{QBoLDi9xfNL|}*C>I@i-@cuE;FA)|0<7|A#mAkN?}}+jZHloqYN5vf(@V+lSrDHstu5 z3+=M2Jo%6RJAb4H&26fPW)yN{nBHnUUn&@!=hej^v6CZS>mAmn2^hIck z^bH9aN{$8Z4J=mCg&oHHoS7tv5ql8Ic%8|0OAi~qQ^5h*_8Wjvk@{HuF>v{04qf)# zU+FJMrVNlj|Hr+%|FVnrf8`s$>Ux#w?j|x}B6mB?t;xV^%1=|!U;y6aO89cd6`@~g zjTwaCGX`b!%uX`zV5N~L8TR0!NUYj0#!)_DXg{V~pvEKF$74qwe9v%97tI9bMQ}a@ zX%Ys!kzvjWg`C`X3?2#fU4A4A8%_dR#xTLPOF7?{QDE>AVde@tSf6c@v`Z7Q*<3j(FsNujqp zlfF2Dn?^)MZe=WZ)$BsM8Q+s)4&<`eWb!JLC54@1dQdza)fjr>0*%nhsYZvjAFB7C8wG9e)9df^^h>KWQJ<6bX;@ zgWF-CLv=;|?|=T*sH+WYN3@=J{JpM~f3FK6^||Vu-a%X*I0=tqZ1^bOBY%GjJ#GYT zE4DWa50a-iw?UBR3-xU>pk_D^Y3qA*9s2j9Eg&{FmKQ^DQdj?-sG?rZ;EeA%OqA}> zX_i_n{Ci>iVEX$@&&kQrB`P3TLm#r|4#DRLn@{^L5`V^LfU$x=NUUGq4%deYy1-9}fD5!j& zJ`Kgytrgozt}L(X*ITu7BWajmipl_=5J+XwWys|v0$PLwFPFe zTqKDjN(m`9yySao(2ZNwDyt&pnO-5|Xu<|i6FYSMZA{L=pO0%XS~d>*17D|SxkKUt z`7`j}$<6_ z^bUln)j6o8u@$E0VM(EakZ9HAr^*d&7xZ;1m`9+EQ2;0zc`Dr=vN6DJ05+}xr?IS7 zu^{-kV4m>`Dwn5<@6K;0mCr0XP;O(A#cHvgtHX@rGftttu(kzSCR!PWZ8QCVgjnjc zFuDm8&~ruS<<1@jT#AeCaT41e#Ntw5V{VVSal>s+@`YA&OMF4Why@G@5Cb7CMohUz zc??s(D3pf&j$lEJAn=++zu;|%_&PQ);Kw-4$wrfUZw0>#46bc5c?Ez**s$sZF}nj; zaK4f7yrA#ivf2+MbWoE~SJc!bBz>$K9Ub)z42%X4a|54C#wJ~8q(x&1@UTjh-28Sr zP!FpjlKQ=V9S3ONKIH;nDJ6=w1j6M7)FyRM(pbUPW3VaX62vHsERRJ{6@v|M4E#Waq8$f0iZ)QA$#lw< zBYbBw`{T2GpFh{jAhfu!)4WZ!6v(8GUYJiG~rI-K%G0Z}XN5Ru; zH8H9c=r+Eiehk)G)sCl6o!U_$ITuU(q(WNyEiEiO8MSRb5e&Cc4<;aKy_2})+}%ZR z#tSir5ZHT;%;>#{VX748$h%^EUk-W#1Wa#E1()OBh}QUq?|&i!v`4wD@f9FmYvxmc z6MdZ^HVRe0|Lw#)5EDw}%9N^x2$YHco_;CS}i_>~f zSS2*Dw6%v$i#ZE-=y^-LBT6}pWQ;W7CtxPAuL4A6cN1PRZvm^v;F+;DuANQC^1DLN z1uAMT3ae9KV?u>^xq;e2Y_1usU&pI@ZGvmIr-=z)KIBBtbiW`c+TQ4G@NYX1=(T+~t&1x*SORfqL6Z(>(B3vw}<` z2&+62t+OPx>E+Hq>P*;?cSHzr2@r3NN~~IYx}XUr#NuyZh-TW*$^`dXL->c6aNoh> zk`HLAD5QhUWau*JTGCi6fxU>6^fmfqFQh>eC6be5evpL}jHS!v{qAmb4fyxtmV2y@ zo%813A`&!8Hndj(HKz>Ly zc`09!h6Pn$ki6IXpO&lWAJg0IChbFLCO4zeOHo7=EXi8!Jlh+oJ!k+Ux_2dCzI-9T zBV`u0G0BidcO*0e!!*f=Z)5Si-$g#Ejg_QqbQVnvi`a5q%DWJy#(wO>+*1p!Q>R>2 z=gjNNwU*WpdqpwW{T5n7k9&w^1MgWx<#D4t4qI}+X5N379){>f^p0YnaGJ;>Cviq) zZB%3U0K7RGk|Nuj5EMmoHF@g0T1esqP4b0$Qb%< z!>xxIulR@V0j++;he-55buRs*5$o}o#f@Zqb^TmoU_1gAvUGukj zRAPrSL$I^FO#rGIWoEZF?drPG;Ekj-vC}d+tDQ=csFK z2Fd8wET3a%Y+*`tpgsqi)~UH3JivtjSSs}-mhg>5dt)(&%<-2thJn6Fz#N6cT4~S( z;8Wr|E$%Q}$Hr=0z&7j(Pa{>|;NN)g3;_r*`m1;}J=8;9v5=XE>{>0}7=?(cWAcsf z9pSV5QFtAM87s8L%1YK$9rnock>tB0;|B)xm-R6mS7Y3)c=kt^t43*QZ2JkQn$+V% zaJJWv&Dr*Y-6}3FKBOfAAe%Bv?C^U>@gCG$+`pU$c_op$GIx8}zqJ6{!H)NiV!BRb zCueUb#Bopck0Hf2ovKCwLg_&I@L|v2BbwM{qi0r$;MXWA&Nu$*?lwkn%}-oH15Y5| z5d6zfi;1N*PWF8NGRiF;<3#%B@_Wm(9}fcqd*Y zL#zurh<+oFWWx$uvtK!G#}!g5L$D3DMo3Hby&{J&1{dLZjUU-L4lPa{w8xM4oRF9s zNXqQ=I(lAj8t3(Guv&dEv$R$hL3?6}?k^%DwjNLm=|FFDIFO|noHRTK4wM--qjnj` zsjXo;hmerP%Tv@@TwY!W%t{FdSAdnb#N-PI0Xvf^$c`p@s|$znn{bM7A39VO!<>cZ zzj_sUETJ_x%M*4U>Wf3sWQaK8@6thoJ_pg!uqtWhZngL6G6R zb)N6s#n+EkVqs{5Oqw&5!C_~SpTPc6*KY2mjrpvNA<+}#qBL`5ypGMA52dR%oO$C&Aum|a|`ZRJ63#12wfrf3J5p>dcXU}rj zYZ4(Bf#XBw7C}Z}Nyxp7Pnul>6V&W4!jC1+dExH{O~f81y<#L{H)iF}HbR^ij&-JU z`*<(T62i=oU^kICIeeS~`$^ z&w?E%)hU#pN3HsNwQbthkSUL`Y)f?^&=yAxsWBX}0vVfuB}s(}6o$|qEW`qd zkVmmmi`Kn~p6@b*%7TOmqs3w&OYTE_{|T8JCWswfz}_h?DjJEFj}awpMQ;&jMT2#m zX1X%lU72f;Kq2|*#d|JBXB)aG-{7OxG@GjrM&jK@UyAf1ND-JCvV>uha`F20>(9Kx zK47IqgYCqE4n!uz@tU7|s5wg&C(vj=up#QTr6UH+C0z3j%d>FVY;_1fVCMEY#Ker$ zE#%KfFY-p0|NIYQ+4$*UZ{RTf?_QZ&s5=e(NT51_U*saSJQMiJKM;P@L)O1-8B3?z zyNq~{-}qmRhWP&h(IsUy=XOHDVLZk%%rg8P>s=TP;w2M6c&fn~o;%1+AjL8m{!?-$ zH9#q?4;^M?#}CvZic7iS^*ab5Jf`(y;MzxfalFkUC}~!)tdyl*hLgy<`makK{eSk> zp54VH@HXe6+_`u%+PMO6O$A2N>khKB9RWw(2ajoUahUtZqm^aXNB04aW5;xkEsQ@$ zdw(qAJvT5t)Zdqo*eIi^6o=7iWD1uM{#LPYQ}I93qY8ee!}da9TISI-5_b|M3&$>- zW}F04vgyi+;X0U=#Xx|6)`y&bAl26$X0sWGQmhZjh=usArt}2R{l9IXo{Ps{0!`tccSMmqbHy3a;WVlDQ-$K4|+b-v@Vb#~(q0h{&S9{0-N;kbqDY zjavy6G7LxCsFry?1EOM(yd%tfR3O5+2BMTWQh=XvOMJlRBx{Fu0I@%a)7M7uhSn3CQlcBf56xWDm99&inH#Q?G{BlzjVk zaBqg=JW!$)Pt5Ub;HF9@37YhfrL=5un*2AR=I|Y1`#jK=kXCden7OosStx z3uU}6X4(`BeB+mviTcG9_EaZ(w3x@#n`lGtZrZXq!ecqV;&?a;a+Cy0(4U%S4W>%D z-B%<7agjM=(Lfk2|78O?(4gyOIDLcjI97#{oLu=ylUD%&k>Ed?At}b8cDwN~z&H_+c{1Q}@c zaPr1Kc}q@OcD)f^-LOfm#8~g{RQYtY{=>PZ@2x?w?I~bHR_eO|2Ev9c3Q3H=>KQWK z4M1`&!r|kin&+(TkEJ$_u$g)I=snf>ahmfN(=Wyk%*a!({DXSC79B+W$v1J68#Znn zdmnA)_)vT`p;o1gENn!CTJ6*ZII4@q2LWv&1@_Ej+du z2CeqXc;vSg!q-cgLS~zi4WBPAPUU5dLj-P1o{d}yGyxl2mJU5O&9@@ zBlQU!QN7Mk=lp9izgv6mH=(eog(nC?h8(abMWl^*bo1;JWZq@wr@RUH)&vSqC9liFe2TxSBN-Y&DiuPLsriS5P#|!g6I7yN{1mc$<8;x>H|_yc;m1eJ;n4DL#y((d zZYA@Fkqw7G_~n0LNE7I`nP+mqQ2AS@a=b}0lO z>bB(K!YtxhER_^AGe(LA@TmZQLq*u1IG@^RTJ5|zwkzevcWKgdh*A+Cc`Q)9(&P~I zlO2`d7azam1MO1;c7CKjfu*og|5RB+moElrqWVzMS22LX2z=GR1NZehbU2qBNPDr! z!Vm19pz-QXK(xdpj-evx^m_AQ5=-$&PO544$SDcT!j_a5Bp!tUd3Uk)6bNUg)3Msj zeEuc2vD!xedFc(!B$`_@K)U0yk%T2QT*-huG0+i5@OQN6SRs^=jhBh( z69@Lk@(-YF1!`&~PQk0?%lNf5L^tCK`Y-q%$%EmhXJou{aY1Vsc|jjgvRYb^CWW_7 z8-Avnzv+|>#qWBRY6y6obmBsS$GvY~K_UgPbw;TO9DDaHz(>%3FTh|0!c~A3WD(hc zVMB_b8kfxgYPZ= zUy^dnk!&E*G4;Cog)x5i6`-YajZ(S0p6diL4v?+-eRSh{8w;Az$4l!U&P!tzAYk1* za7BdPwH1St(sO9j_I4sr(%$eStIwkwTg=jM3}?vEx;ukEYY)!V|Y?p;bGuZ zB@5{LY4~o6>xKrS0O#2g6oDF(_28QIkRbRw!e*@Wdn&@cHp>#w*RCJ$P)mAsL7YEj z^M`NpaG$NMZ2@*XF<;LbJO=#VW~@x)z#Ny2Hs8)6plwe|__9h(@*wx~EM$@g9_z^@ z@ELZsBh&UbfFh58SWur--r1cQ3N)qwJ@zl<-%NV=`tqETv+OE=@3kHPE8}tK2Qw%YO{M;*G>@O#wzBhmtvEaQ4PMv43 zUk~0GgQdd@)>ia8@OEYcK+yV$UYb{_gV0c(Yvj80E`33QJ`M5w$6!XzY+uZ(ZI|1p z5`Y)veRGUgPbz>g*wW7A<$@0FuQ_whZbsKF^LXX?OQ{EBovt$FcHwmH-W4H{chIx4 zR6trF&jxg6Q*eEFwme(Ze6fPg>Nv#F7=)yE0cMOs;FTm6r#rPLL_wl0v@R`#G@doA z$8bCB{#Q<&mjdVeb(X4DZ5F>W6W6^4ln2QL7Dv3D0s9o{<&hRM=s!~sR?-GBXDtT8 zbhY@3iV9WC&P8(cmY~i}L!_@8@hDTX<5qr1w;foyKD;XsaDAy-pc+UHLX^4q?_=C@ z&IeyvcIoDx+y$Q>_&2mA--I624l9UX>~Qb=uonV9!BKF+Xx~b6UUH({d8G2Tm&hG7 z&xHXYv%MMc>{%GP9ZK@@fCO?02z>7sH36$B1j;Vr?b{b}8wPJ->nS@q<@Ub8h#1MK zG!zK|`i!nAY68sViqrA-h`?5cV~9X6CrKw{B#-jm_mFAGSuS8py)bP=6;X1etWN*> z^}tkN`$2ju?L9~5u#|#=m&QVtcr8MZUMV7@VyPG#9o?y#vL;5MnE!2CITGRd5|UXw zOuACR{}wOk8~+spnu(JN5Hw%Pb6Nnu_y*W3Ez?0M7O~q34i4Fbmm<BUzfPQ^hL1^2jo>mb-P zc!h06iej-h6IW?*exuG?Do$qd61F;oIf@VX&8kNZjrkhMf;G%Md6zDeLru7RBpP`qV3{YIXUx zwVHjQC5RiQ;)NmKFhb6(fyv!^J}n>+CI%WVfpt*8ujTC=cY{9W2400+339xeh;xh~ zbL1!`_Zm?D{gS*y1eOX^#xvo%L9lmGeU$iee%_%Olaw-l2O4MZ;KMMVX!IX7_b&<_ zIyC-mk9QADcq}xWQ2jKU7qZ}Wgj5J%cC8LN;LT~)bIV=7^FB)r)ga&5_mN>nINNWl z*MW?V>;_d=2}(Q2A1Q+zO4!@~S9|XnR`vOH4HBa<5$q_afL*bH2-1s)ji?lrqBIc! zktV$f7!48?P*DM?R(esSABsu@l%`bSP*j@q-rKwOG5J3;U+0>c>v`T8KIAeYhjZ@V zecyZUwbovHVx8mEm=zK9&vV`iJq)>r+$>OOt{cPv!M;1$R~p?I2Ni1j<@F!u+-3Yl zQJdRL?1uH3gbrXmw{`|>g(eUxc}ihGqZ_MGe{;Z%=l5|BPP!00X2*8quge(=EA!Pm z^4K5g%j>E+F7MV)z41|SRr@mV4R`j#5ebaviAX_8DPX=}QE6Hq^(wV|ybA87II0__ zVO?c;VG33YE`k`1(}&augxW?b*OZHxwJCD$1=F$tL8Y|>tH{i_JaMoGz9>w+>^ z?r2}H#sKQtfq<#KoNYI@hF+5BL4BXf)Li&(9DU*(V5*VvH5k^zc2awy--y2ixxF_) z?0}x$=$QCDRO}ewwB&&yIS&`YGVAXZz)5vREJZon-fo1MGmUrYuQ;i^ihvTbVkum2 z;^FDdeO-SF8HA{L(49MHi7uhp@!m)SKf>AZg$V<7{zmW>{wLctfP2~8cwfGoM-Mvs z3KQ}0%Gm_eVG`5I8GZcNu2!%@TZ2}cOnUW=va$`&kK;$Yk*`Y(8;^*&BPn8d+o7pQ zfSI=D9489)vKj2EjPH$Vs`ENk8c_jcWQvUy{`uST;E7NX6W^mj2>G5DalyX{!=oIt zj7&(Nhde#Vp8LYmXX(xHc?zxyc?p~|X0PKta`09SkfHdwhDteEL>pu0##P!A2R$Qlt;QqzqiZ@zlj&L*E(C)}ydQ0D47p2CR zlv30d>8`mur^F^vw=lY4CR$1#_31RbVCI*yaPg91$e+I_xxu~EVzLk^-ozbD#jza! z<2zEmL-zJ5O<%XE?*K{R;FRUiUiPkAG<4Y@L;#GU2R83F`*RbG(UBkY_Y}&bz4g^d zEDW2Qo74Wr`MX#Fj`F!H0_aPs7*cwc*}U2y50S>wHET?3XHZu9*uxf0$=#BR4~i5q zP%kZIsH7(K%4OqjHf(;Jc5eViOltsa3Cr{Vp{RI14Q9w2`gzC83ERi0{qrR>lm6KY zax6BlqNls27lp88#^P5w^4M^w`_qz=17AgKnrr&i610$#6|7oIEnQ24#7d)jseDcP zE&MHt;(x-i$Ls)mZl4Se;0t#=w2@+p#K1)N1T-yv(}^wmX@!Qie!48>jk@z*NgZ4v z3U2J+p^UX(b;qhYvP)){UZ78u`W$^F4CV;1qH^I<>8EI+x`1tC;hA=%t=Fu@Bux$U zIj>xhjwoW?N_b^!5JP}0&8|DSI-^?t$C;?$bp3UmqgW5iXz(xO)lE+(G9Dq;WZ<|2`+?w42aq-p6$Y{Zarm8~ z6Of3#kY<#x=fibQ0Emv?n(L1v!rW?OrqKYTi6ivFq>=Kgc2Q6ZR#Q`8Nr`k<>MXp! z?I~G0LNy}5+_H7+4s>4|j$?pZa8HRb7cwvvvyURm1 zL%k6V_Se6~NZ|q)>)sT>m|^u?t0G+mb(@ht6W{g<8YzSdsAKIyLiM>C~_4&4c5O-0q@29uaG?AJ!U2G5r zGFHiQ?q-=A)~Y~NrHUT_%SzDP;#oF6rvn{vLq)=+-ya%>T4|X*I4`NEr$4VPs^I;5 zD+xjDNevjxqUk*uE#rulY2CdbvH0Y)Ih$|WxI&~Ar<+yVKLyG0@WuFh2-f1Re^D!Z zs{Z6oV6-Tg1q#uuuiKm*=G3~%U&28a{i&($M?FxKy|LXhimR@oTcQ_5WBd7HBb%%M z#ovEV)UHM$Ti!Bnc@n~LMr<#{EI>UhYZ7Xvo{-80NB^rp#R+3%SCoyB@*}aw_o#qX z;AqSvY_#vdfT~d}Wi?b&&l8kB>BoBDKcMfQVzf3O^R#7^|M{8K3r60aT*o;xy<+&N z=T*e<=Alg76mFf&#{HZBUG1=M1OW!$)tgd&WWzDQ{&|&$+}!72bAcoj7%<*y%nhiY zZoi73bCS7h_lBXS6A+M*gxGPENjN^!2?5QE-ClRV?N&A zm5Bc>iI;)H={8DO0zwEc%t~K#7JE+HkLXk^Q-4|=>D!N*AewYgJaXe!hDqP z$0uR(axH)Q!Ac;~DJX}HC**|C*+~kl@(@jSi&5M_%%P4y;dc~;;6R$6_W6xSNz=7| zGZ1~B5-}^J-Wj*0OVnjyH|Wg2tC?b5|7rnx!Zpuu&h%wNrJFOXGnVxsOk??kR%A1m zuMA2(_Fhg6A9=U0UQ^#P&la$9$ht}{`E8Pt8AlYB7mW=(evG_!0?%)A$m}{ejXZ^D zF(>b2FnGyuNOdF5e+8oCQ0Ki96+Eea$ow0EzqBkZHF-D=5*?Ut4~e&KzB8m|(|DmX ziRW*iB!~bLP1%%y!urc!X@MW}!8)MY{pWddV_o%(>Q2qehQkXV=fr0?L7lZ1?(Gqc z?|}7-kaP=JBwwo7(IQAioeMIwLK z0l8^+Q3^O5N8vKqg^kJ)}OV3H!G()Ve;!Xc6z+uP*%lj7S zJs3(AhZu!YQhfGszycYUuLT0K@$rwy{93ODx7nL3QfgMQ-^w`YH#l5IQel$P8t};;rx1iRX>q9OV{02Vgb>!0fHuO<`KejIvO@BX3yQXbE@6tw+s; zD-0S2L?le*J!Ws@|NS?oNh45F!Lku9w6CgTEa_cvI8e_CvQ%n~hg#d(Ix#lY`q=Ak zpPZ7TczWbo1_~rS^D((}Q$2x*xfkZ+#HAAi3EDcVr*UoD1jIN>g)wlVLY6%-)wg-2 z9=bHkZPVrMy#c00S*=nb?FEtdX)9hWp6}tFpdNd@ZY(C!fghtT2DX=p}ehP#>7N$^R{1W47JNcN4kQ)YhLYo+Xq_WbgG z%KZgnF0*6r`QbozH3%eZ0~_f$0TJ6}odcHT4BQ%;oRH`+C0<-s<>}3T?1%LVqLfeB zstu+6!IOd5gyKJLQH`nf=g0Qkuz$nY;o<2S0~3UUwW*b<;hP@=nQ(5tdze+OfUPCm ziVW9WQAJ}aUP!svee`4AM_%4snHqPHMpS?UsN0r@?zQjN*I1|^!e<6H*YeV))9{bg zVN}JeKeGA#_RzQYzHwC|p(7`+ZAbxMnt?ar+bV4Vo~AGnMH{d9rPl^m&FwseU&&5K zA&myX7h2f(5%@_I4rG1X49LNbgpa>hK!!s_^+UINyvvtAg%+d(7bYX$t*CX^ppFwf;N6srM?-bujBA1IHp#N1*tft?OF(rZllw`>V7=$&W39Q_+W@;Z=l_}XTF z--FYhaJ?g4*k!~lf{_f>S*>NR{;j5I@l#m3F*?7q+iqY}ZWtP1wcpZt{;`zzpPW6R zf{JFt)|+pvgGRtn$AIc_hP?{~Zg>iI&Q9mdwpFx3@5f)ojb6=fwi@w7SD<>0!5|=- zD62UWAJ_VEcN1NYKZykSZ~jQ_O68VQ(A9pgp2ld|?{DU>wLRm9-q3#L@YUR47QmVB z3d4kqows~^1nw?AZ1jE>L}mq)gJEl*3kkuMuo$R{d?g+!TQ+*n7 zaoyNrhmttUs3bTFSyBf=h#hkTE(g^}>PY^hN$B7?Z%br`N*Zj^6W^cm30gJ+#RV;$ z)!->tV)xZ@F06K&hiAA1w7-kbpO+xbzsTtQ)trQ}dnI~NUrl{Y9t3dBsOWvhD!?B^ z+P?)wv%rAodCP#!t*GuVF^<#KjeKK(-*JV42~D%8cWMg>PY9cx%$Y4m-F$hqbq#1z ze?xT#gUr`m%t5$$62G8>!Jdi$Vq9VM#u z5pHyC-H9M4`I%z_1U!ZMT5nKfZ%2_`$11WP96%smy854@o0UWE2W(0QP9_CosZ#)^ zwmZ5Z8<&g|6z4)_Vl2JI3{dyLu8$ig05sa6RP4lWs)BAQvo;*@$|p=2^Oy~bv>F$ONntU!l| zN7#sImtQ<6aliCZG6Kj!dCttRVEK;gJ=v2MVI%G@i}D|c4Pk*B%1b9 zJm5uv(fNx)3li8q-|>~xJBSpux6B9>bgdab%X5>9gM`4=YSrMChyn_ml)OClf;8|E zhCQtw?0%z7D)0Y=%Mvybw*9dH|6j_=bU0_0oM8Q1r)vwK2v0&wz!yh85FTjZ5>MVX zb^H#)QX3rv_Nof^rCkeqm4GVp%0YbasinutXu%?#bgb#kme%cDn1w1KgOlaJl!dnx zu;n2qxq~v*KzmmU8+kR2Bgsn!)O&l9=q=vgE~7j~Au3mHPxKWq2%g23z5JR1HS>eM zP3*peiQ;+1t-?PUizpZxl3jT)EgzEc?)w>B8g zQ|J2W;8Me%PFF8mF;9Em-Hdf}x9P2)YqI~sW3i~H!O3fD9cM4>dp^1%kmAb zb7&O~lW^D~X49iDE1c@t2#~QVDF;Qg)a6hJ3|8>+nopcA&=$XQUXp|IZ|9L3WAoX` zPz<%kvCG0#twrVt=c@jrUczf+S0NWka#a-r`plU03z2m_gHK*Pf9>Tj_G=-IA{x#Q@3bApna!Dek2*qXF6efEsFQF%MlLlgj~v zP%Fs(GcEyK&KlAP)ViVgBqLC>?tJex#;MX<^II^-)yi3$ROqQYAz@9kZnWYCam{rkqz1$90#-m5;{QKcWTbndX_)mO2S{69qk`~bqm+v)%7O!>yG3^cVpk~-)L~8qc zh}v!aCS?fWYkm=ekIm3FMm}>o^k`iOjQ%WvsbSW~8bW<);}H`Mp=S3&BL*WU=3xY2 z>mWBDR0GGElVfAtaQYCMW?H$BKWzE**^%+S!NJ0NP0jJ3`ZDSo@#_c9n5CNIAj4JM z_OEV$$zq`PEhj_Lz|XaL!5WSm#8r1E#1t%wN6d1LGsZ8~`YlqFB^ckZ`k>_3xb5Gc>!tU$0!C~hU_F&W6 z*)dO=F<^je@DRdC_XH(2RtP)g-S(YT#qs8t+U5locQq)Fz4Vkwabr<~($qX5WOFN# zT{>adI(txTnFoG9ZwR2w-j(_=AS;RPN2R+4rVe@7x89qN`f_O`Bljz{$Qr&a-s z9nG2D3lh9jqy%Ha$PkIVu)Sb@%8fW93Rf!LTD1h-`p*dBTFjxU@wCW)pEi3b{&Y8s zt_Z6&>V<+Fxf2qHR6hvvPpw$RITL&3ZJ5)5G55&Ux9ERar7Ye5rx?bi1-T<;0)zU|Z+1;8goPKY^ z^y?%WY2r|RjucS1JP1_k8$we{@(=C>g~+;a9kcuVLs)AmMQi!=LNoWl%|J6X&YOMX zbLZa!2fif4$*hrD)9pAeCP8qk^2Yok^xfN!^N;K?{O}!grV4n%mfl{=+HhRCH*eiK z32F!IQmEl&5^;bRNpv;P62`z@(!DgmW)JiC(#<-Xnx3Maj=&gP03U`^>Q$lCgP7?c zp^D|A5GR)F%?xk>kfY{3wb?WsFx|2K9W1s6r70kq>aJHvuCG1-7P z-3grb;nzPePBTNctx4ct`*J=@_5}-2>1I7ca}|2Ms|=agEHzmpqoW!)wL0Y&3 z5QW77QmEjkSQ}!|kO^BsNAt#P9f)ewvF;=>C&1^hkY1Lv8rB8@%ooKW<&-rt?Sc%b zSCT-cg4aAkExEYW{}o;0R>TaJIBTAmtt4)%g{=}s+EEuO#th;$PZ3vWaA)SQTz~Qu&X}fr+(bMN$47&t%9L)C*TWD+EBn+j$OCZ>`@>y>(6H$xUozU zNh97@(*sBCbc9M$hv9R>sqZB9bijZy9zak#p1V5kze+fENxK#tQwl~_*5BV>o8^*< z_r}S|`3xird?L03V(;1JeR>rJ8d5!k1iktF$pCgVF!*ePsuc@S4(i($I2tV>3Ui7Z zWD|w15cB~6Ah>`{Oxh*fGfz>&MFl!m_&Y<~z%K;vUgJBV^jL2=gjiL>(*u5(zWoohwl7(F3!sRcwG`QmKa25C>>r!Og( z>~{e!{q}SCy)6R-n!sdRS#Sw0{W-)88tGB0~eA$q*Paeic zY&&Vn52>~4GttZ9vTb!8`85+FiZmBIv4ksxDBEF-pPGC18L(6|KUZ4lVyEcHu47}n zxePCN>z|jSp6;C+)~(wIc~7d#lNvaEBtab|c*ui^g7PUo+jl&+as=KAm`zxE{y9rp z5=lJGZaYjylbz~Q5Ii)OZ63SCp*IKJR4?7td-UiLoJLlb;n|}cF0p6;7S{3n!kwDs z%F>S^KfDO)YQe&V!}j81vnNiR;E6xugmxDAj$0|)j%kku0l50K`TNVZ33 z@q&*3z98q!SrZr-Cc`mrvm!>n==%KPbi-g;4%5vD)k@7}Tj22z&epK#XAh3H;3wA% z%y0Ajd};Ccyame^xW7okxpR`5+q~RoFWb7DOC{SR#jDt^y!CPUw|`{ie;G)vqn0oF zx-#!S22wl!%eFzDWi&zGXaA47Uh}^^sjmK~CFOteOOCrpu{GZ&JuKu`Y-p zDQhQaHwfla{)7eCL1OMyg?+M*`!o&!d~%eU%f@zRKD?Eq0YExRk%vlXb4k+4wNXm-+ z&C%-g+CcOqwZZZK3FtW*C3Ne!Jv@KofTKm7fA8y*y$e6>SYg!DPo`17lGGWAUh!Zz zY_(64O%DGv*7d}B0ySX4pgE+4&Eul@nLA=Xyqk`6qXmy_ZePuiH4v`wNK7|yN?C}1 z)4YmhzQd^wWrfD6Q>Q|Q8`0%((+%J9U|9oQ*}qfJb8-*MgX+=`zo_*<@`R`z6x!jZ z)7P(G@4zWW_0xYL2R~LI#=0B$i}ouhR027@J-TN3as`%M)*V*+ok~H=yGxBzj_1h8 zZeS(r%q~cW2Qf*DAxG~&;*K{{4Z&u|UGxmHecAit1-qz?8L`JXHb)MMLcUITDX}#u zP~ZORInoj$qc8LM1~v8YmwkM!52g7UA&z>2fj{ihm`;MM43s?IO)>-0{hMV&wd2Rw3K5ca>m zA*ZJ=$A5gAg7{LD^>VP%dHi6x%$;tXCx2%oR1eFKT0{%ka z$KqFjK_I&-pkU<$KS+X*LFG3fL7q>|KmYhgYJd{Jg7(@v!4>zQ9KOTO+9PN61U* z)(^8H`dKTZTvzJk6+A#IJoV%G-vYiANZn_^(G`7>NRx4y;9)YGktQotHntd4S+qmU z6Le%SkeZFHieS zql00zCdfRA0VgPD$WLUrw^5JCc=F9ARRK_+(Gez20viu&V-`FH2!n1Wn+eE&hoGBu zmg2!TUoWE5eMK8Pu>vY9k+ZMaEXgR1?KA7A`e@G2G!)+_Fh)65fwtnNe%7v2ECa4c zC{MW|71t2LPzM!$M}#Z+_`_9z5>5fV>|l+@^m-O7|Cx2|Q{#iHVS7<13P^AP1U-<@ z<03g+E=opGBrAg0Y@6U)x&rH1mMyQ3qYw1=BS%zFQb7|gO-8%n-87*Wuw^?$Ar`}H zmMnP$V1OJcHvfMABbZ}bV5!nM7kA^jhH3?!|Cpdd-d%?$hH<2U1b{8sh>u1tTGWMw z)siX8Y0h#*rmBL5R-E&Ka6AneC`>aZdl+b2p6}TLojf48EVzMez^4St15f1DyU$($ zOc0AYT_ULl$RqhbyTb1UsFAXt6%8=&h3jzc6mD@7fGjDZfSk&yF&3!z_(VfSiw)iv zI-`@}dVL%NHStaX&_Bd-C_$pA0X;WqV=$Dr?r|}UwotZjFUBl%+-DE;xoc_<>2?WY zt&R#`(dLHoW<45t@D=s(7-~#0nFwCl%i>H|8JGbmmEMI6&?Z9{5`8bIcG6t4j~_iM zO!B3t06_$rwxJcSeFBpoUzm>q`#5bO2<=?}cmUN*$Nrt8e_&E2saKmY0mC9^Enr^M z)2re1W$mKZRw;{MgRkucC(X>vQc4nD^NRML!u5KE2k2G;+_cOxVnGsy4-)5tUQAt> zy;xZ0mzF9EW)1ne&5Rr40}C8}iEC01$j=D?>aWb`xsm|E(tT3P&zx(g<|Fd82c%!5 zE)7)@Rgpc=q3>imn}%U)a@w2PlT{TQu-%x;DAuyV2c-h8UfHU3}oO# zqnwL_>2JUOssfr5;Lp9dVT{gu3PFLC4mnZOw7V{ zU}%?CS8ITl64qIX_=(R{YFmR~O4ofBtWwC8i5jfH`;{e`<8%#SDyyXT8?8yij@JuV z*HiObsBuCB*cUELo~}cc1oee$csI4)VJj;W2#UXn!$J^@sT6iq>S6^yffa}Q0e7eX z*QFLD0^soXG?-5u3_AV!Ut1OX)dj&_}oxZcbLk=lh*cN>DdXx4T?e*Pn1 zH4E%xso9Bi_W-NGKpo9+o6ewSMqmS`fG@&3??Zx$n$aqN#u1f|%z{dI5E$68dlrX( z0(aBJ3?-D4xmoksKgiC&zWD#Y6iTQl4k`pr=4&Oxs+jnF-WgGr9z2-dC5NotHv9JN+vsl~cq#Q;9WctmmYQAH$s`cbB)pLB zYINq%{>*S5j;4Np#7T*jrh8dng|@YX~futF8drW$tLwQ6N?F4H75nt%&X66v)S?AhP4 zo>W&F8Jg@95V5HHZ0q*>?>EiGV_$7hw;;5;JLUAk+r{xPEIEkgln*1$xcpe#1m_>q zztzwvEo`o_WCX4)`}7a94y7kXxRDa8+z?GIDKRw&jf3YWOZcAX=hZy0OBXWyz)4|p zt8!@3rwJOJ0aX_6?yeWH>*x{%vc$?UC2WbhU$^eH?P;{4bhn|V;^*ftcwCGP^#Fr1 zn!0iC%j9=D|BkzZI$W{4qm{#CFEUf&F1yyx=Ct6zn*g~(4|@e-hWTJzW+}GE06Xis z@lZE+h(M5>dvV00;o0BN;l_dUbYUo;)?@*6#tf*smaiQYL5R;`LuA`ykSd(S#3XA$8w zBx~=H{1?&i%#+T-QV?o1xQ^;DoWNBgN>e`z=jzqbfPS{4&riQzYOU|NWD2Wa7P4OT zOE?y%{T-KH13$ZY@oN__Y12yx+?P>VsPz)vF0C$XC zO({TeJBXJUPJmobp?e%tQFv;pWrqk&42t;nA{OB~aJT-|scGJmDL~CzI@WWgQ%gYk zIPF8g($pOr(RuyPKLbh{!B5ni#&lC4wj@B7Z5;{Sz=5BNp8$G%jr!R<$D^X6oY8MR zOf97Pr@;=>po@2Tc^&`QKyfZx_5?u#Dz-zIX|$*lt!31yn|^bz7%HU%yrU?LDqK|9 z;6Ce01`{M5LE>PCmLXj2r%CFFnsFGE(Zi8+I25~co^KZ=@w_dD)5m1g31(+!D^-)ombZ4cUD@4w zN0pbC*G^`zq}>M^(yB4C>c^|fheB8>W6gKqZt@KlK-*k~SO^|Z*mHgMLzpQ=K~M?( z<>C00VW9h+(6kn+tqtvi#!m|qk_!?;YAPKbB0N&-ZMbrOaxH5wTK0XfzM&D0_Yj$KyG4Sw=B^IPS4XC$~e!O}_nF zolsRANBpXyc$Jit6r4TpHUsgB8jxX#&<-018<#BPX6@*eItAHg;ru`9jGoi}zY})Z zD|m)$*E$mr!*%>?kaWXm^g21AV&)v;Y82$|8K9bp^+8A=-v@eQskydCkzKDAHH(Cs zcA@A4L_=I}G)%yp`k=v)`!{uKn&2AvLKhMwBL7s8Q3S5&!j&AJ<(sB~O*AapTutLm zAo6V+w~tL?T}sRTe@yj%2$(!DYR~o}1-oRMfItaTpOWjo{(h@;X(*#XTNg$E$a)bP zTavub!s;F3Dt-Nf2hkt@hkVNa&h!k6BRji`Waz{iy3`}{_PBoCS!lzfFNz3$kRY6O z;YCi5+|@;BL#HClB&q9+@L6OXsH!6FqZb*yiIJeTC?h2U8Ca4!Nu6S|*pR=^{!;ur zs+5mTLJ&}i=2T`U=}K_dtLtm zwoz@O;Vm%pw*B7@5(JE!kC0zZU3D8dSZMW`&kM9zO>5a>QiV4 z$nct4B}n~~7?+cigN)`8d9whz#89Ea2>!3;&DZXCG<@_!ewqvo$9WCFEAZ7b|DWwbnU;P|rdWcaa9DBFTlqL9*~ z4=EbVTV7m_7J5;t0hlL)LiKlruJ1IekK#l&vWkJO;26qtB_^k!t~Qw@uCdGnnXr#x zNF^JDdgO?ym^!mkZn)xPEjs;>O#8J={_zx81ogP1XgmpQRI3w1!A#)8NZdGj=VY>g zQIHaY?{J5f6;63yD|HN#zWFCCHX=0frfn13-F{fW)JY z`SsC~HP9+RxM=9Y%g5IFZUJx8pW4L39bwdn}VGHBhab-n0!a>M+4jM`Km@ z_3(O8ycoh+!w4C)kgB+5Ytb~6ZR8xhMLE>$%n$*vsKXH7+lICmAu6`x(^h6W4Gu_Z zN5tAIrPNOTG1|N(|4xB$?1rrpzqFm9nH8^prf5#07>fpIKwIErX}=b5cXM>zehh6? zLYs1F{{*R#ks!QEEC3i~TNl&IOv$JXU9q?Iy*O=2@g7vs4@!{)3dhwh?%f4t3v+R14 zN|}r8X%KUJUoJ9j%1~?r+G4yu9G)&PK4eG(wa^BpzpLH>> zp--Y99C9BMROI%95H5sMiUMrmVtqz3$}Y1)K>zTN-$g2CjD4>HN~HGWz;8_J+}$Gh zr8^Ur%)28eeb?Yf^D2)ATdg@tlKDF*1G6>+oItig^_j3+De1YD!~lhsJNtU&9CC`n z(k0OJG29)57NX*}scZvKc`V_@8W>NY?VU>}-TENR+enmkQS5wM3Qf;N$(9r}`hIJe z_|PhVNMr&|9gaZQ$(aH&nTN6~2H=vD;*te(gz|GLAQNcFEpDF>jGRZ&`Mh0bjvO@X zo=yN%H1O^EOz4(TK#M1NJcaR$DNBVy#upcms8N-s#qv;shW-`G39~_(QICRC`TBx& z^Q9lMKDWGXGk375Y6aok%^yq?vYUgc34tRufXd zES_a2)=>jxG<<<02oyq!P3W14959F!7uU9r%I#GP8{nF0DMtP|&genlt%Z7519x9? zmgtT;M7fK&5u%Z?KGX7ehoBTN!zT!ETFj#EQot-kTFk7Hf`S(^=A7}g1?|HUpx#zN zc~(5K5Ge;p2^s_Y` zd%bq1Z@%KJlvDn@cP4->NdrSYa&mJSJuGxW}J=M&cIoeTHk7Y|#*p01VztOe*>JK|y{BLc0i|na0`aFd*dX+Nm-T3q!7pHQz4IAE$f-9e z!ou}dck}~PTQ#+7A>bZqk=ngm1vg@m^_qB0vs5FC6X+?Z$q;!pHIP72MFJtn)M8Ko zNHM3;xYGgo{zpVc+vb9$WVMJE@Am^~0Z=>Kq}fFzPee(B=XwfS4N!!!A3v(l*}>tq z%5c-=F%;qYrrJ% z-rPafhDVMZ@tK^0W{m(BEZ44l*E;eBNr}0F`of@=M%G}TRpEN1B0R#C+P%K&lAkR3 zX9*}`r1V4T4h3h$G_kIuQZsQbx<8o2`T z0b0{5PN8A@BTy6G*4Y+8ccEQhY`=e$$17H&=<0559KUlL>na}W0*o~%?<3M3NGCrp zY$`4&_(&2tDC+rTWOPWRmFon6+rJ{uDPV zcj?PMrX;AD+vYRmVUaDUcnI=yE#~ffett&ioyd=bM77ZTKELW)j1*ZMJaTV5tcmC}(~MU&p}O?~T)WEf!~OTxdP!zAWn*}w$0y(4G6<iR3K{Eoli9of`q&BIi zQFriW7`nAPVz$YNiRIsWzF^5T5R@|f`BfLqn9o2L%!B*)n-l913&KHXN$8LjDy6!J zfs{79s_TJkNG!-eNsf&oP45j{F&F^?-9t95MOHOEIPbvk{D2|Yq04ut!O*5xF7f9_ z-9LgvibvAKEM@}w#XyE@+VA}Q{KDy#u`Iu%#mOZL9+yO5EgE$w`~W0k2ymNWO%E;v z*rr=eFj6sWlbi`$<$_4nh~yLF1H%`G6tLsWo`R0D9gpa#*{B09I8Uck&k{)k(eooE zTPIUsmhiY3&-U0P6OCZ?54QWB0{X_Bo{KE-Vg@TCX0P_KX41 zdkQ{=sq4^Lb(}6L)KM$Axg$aIn?iFDh<=Xl21W8ZCm07LfJFBwauL*IVQ6Qjpp0HM zv|QLnW9R{4eV`6%H>UxPKZyZiRKR_#hAuc31TR*l`mu}FzghsGxa7)8FAD~gaujdU~#~uPxKtsX=UiQKuf~MY~H}E^Uf+4~$$J;U&+agQ- zcQ8FgrWA$pRB7~i1fG`yN*DXV-=Tj3Yh)A?hHT6f+|Z)1$KVnOwnP?MsCt=f?smwF z-osYL0i{kZ2h&JRgiNCOQYYnrT#+*visg?MZfIf+y*!|ZmM=-Bkf3g+CP>fJh4Vg` z8Y#amj>3kO+SGJ<;YlWn-U{1aNYvg+uaM>=JHuQPl z6>tjI>X7`#)cWy*CwbBCt9h1AcIk^+2sFL*Me>b$PB0|yRp(_Pg)STa3EoMe&?vJG={k`iHS ztWjz#rQ&Qt8$^5kK&E)rb^Xr^-%u}WAp0WZ0y&BevyNRtdV9{z%>m_!=La+(&g_yY(M)4TnzR5!#`@Ii0CnEf>m> zFex|v%}Jy)M%AN;r@Xa}|3?1XjGJfZ*1u=0Da5+K78C}A-J*pbIj*f%O=$_CnOF#X`I@nea zsc15Z^YpnEFi%mBL-z=oq%{FnUNr57CeCnI$;mx|dIK4K4lN&6G$F+lb?t4uJm{@3 z33_Q2{m`DM5@|>^>cla!L`TlS4HinsNv&6PHqOpCl+P5q%}4(e>_*!^R@KP-Gcq8%wx8lR}OQ@oOY{I<+Op=a_VKuMLe?RRYoWQ zRyA|a=AwRBGCKBi5yxtgBalH}%BaKV>S;J`r2Mp~3p~TUoSe?P!w#}avW(Gb{$Fu< zg(H&J(s?g1oCNSe6cSBd$h*C^*V^%xZD;$#(+g8GfJ2$f1uZoE3>y#BbR>4e9_oNb z-=+p?h_L#;m*DTx%zAGap#ALvvlOda4W6MlF$efuJ7fz%-BgrAn7F+>MP6Q>+=f}t ztf)tg8ZdZ9Y1AZ|W|_r+t}4+ekyu%ZpF4ptQt((WY=pMQ^(Rs;LYez55J_g~O+)sMRjo`e|RF_>E1c82pH zAdKZkqs|#8QF@xm!PSzv`RPOGB--J;`XMm~5sM)hIPUthp)!tkGDGshIt@KK4QbCjg_ z%H@`BhApdhj8S2KPA)3Qp%G7QG?C*AF(%y%Md3C{tQ}ZD3(HQJyPZH;+Qqld8bGV3 zy^)?@-DwLlP#WLHad4|;n$6nQly!G%#s}NFby0-Z8@RT4Jn=Q=97dfo{ZgPq;`%9D zx~OKqYTtVDm!}JxLm#j*zy`0(9NJd=gldt{9G+T|1h_8mq@Jsp{PvOKQS8g1d%_#3 z8L^GUDWHu&GE)k|@Knmx&oT6r>TGc02t{Aq%Q1 zDvo@PD8#g|4;%kIG4m4ehw`nTTSf{UP|=E@j}d47gT)LI%KC|An-vk>_J;J9++)K9 z)p6$vT-eW`-u^Jq+87@y(pJ*Q`AYCBWp9Wn!SOcm4lEys;<#p_e%tq%@ltnEZG&aSAGiFYe!cD?g;AgzwjL zBjYf^^3~^tkl89d4ikq;o8WORQ#Bg0n6t0B@=vG7kv!+ot)Z~I=YEJF2R>ODkl9W6U^auT#~+|DGkDqTNwb6y*pPVpn>XM+ zn7J%F4gD+0!w~BCA#t%AKTuSJExq0U_sega_o+Pj^s5h7 zw4%5FA)zfx_dadcj4=>C4rJ6z-F)jk5u+^)Mn?={{lg8ODXvQX^y!q!wd!sCZx7yD zcJQQX-?9_Q{JIS@^7TE5y}DO)RyyQ_Jq*!rlyPZz)vG@`)i4-pqwC;ylECHET^J`p z&Si~S_nt;QTO3HeT#(VQq*|T0P0qk166OtOM{7Z`4;Sjqlv%i-9wiM+kg71cKPis} z;c)JrJy1y4@%!KR^*uL{(|zGts@-_8`0C_yDOu6ckk;!A6dd7lU$%6q{$Sm`5Y4?2 zzG5RjIs0x3&ymQx)1g=WH+SV6p^|lZV{)};=5COjxw5*bswHxx%#EhCV7%IFbhzg2F{)pXA2?PN7uq3zR^u6M{mBDynBqiJw(u)d@`u!fUU*;+*Hlk@6R zq;k{-{8WjPW1b=ixfYqTj=Q~zsb!_o-eQO4U97BLmS4%l%PP&v>9}$w=rCG8?W<)D zH!eZzaRMnr?DFcX(M1MJTFKysB)4hj@}@q(0nFnMI?-iKiXVWTjC%usH+KL-8an?- zfY%*c(du)Fxa8L{#C7piQICzbdT*7Qx#%<2`RS?W;elcGpspD4YuvfPspmMNX6%l8 zsqXstjpH1LR#Nh>2V(o@SA1z--w?mjJym^h6U@&tbtkh?No6(YX`rv0o-}sCb0qD0 zXkZT4*nr|F2Hn1=SAMb2J2`wpO^wV~Y3QE)PfjSbfo+oU+yxBIBUlepP&rqvYFBRv zjqIeBaU&PNOgL>CorldooZtfE5YCiY!Qr!d@9&VdB-Yrsmu(K3m&Yq4B^2qT%^MXN zc}YrHdBJbLS(!TDWfX-UkvT$91Sp;KuhJ);3f2IqI$1T-t4>+!SY`Ew^COA@z+xKEB=*6{brp~zyC9XEUG%2 zS4YU4pXwc`WJO@%U!P{BfO`~39D_PrDc5T4XhtzayhEDZ^JLkT5J?ivci#$mw=)!3 z!}Oixg5-@@v%rlO3paIVLtvK?SI9D{A*w8rKGH z-dqqQ<&Hw;DQ3;tJ9(6TlGNGj^d#Q&7dOP|i}&Tn6&A}pBc}=joACj|+ud++)uqy# zu!S0RHMJJ&Q@4kQwwU6c5{Pg?i)F1j)S2dYBw@Guiv7dUqepe@)yMDAWD)d_hBu~T z+mTM#;&%3)HQpN4sxkmlZN}s-4SiSjhW+`_-cGxM9vjiPvaZRd3o`siAcOYvky9jW z9!jPp=i@a=Gg)_|BW9d#rq-US@je$UWKsOgh4 z{MXNxLhQcMu6x~}hfB^*?BZXS;Iv=wq=`usSynQ-A#@z>`P0F(rg8>+sHCg1n%V=< zUFSw$@MZNqN^|H9b(<&;3v}~z1N6LO>(&VMlLE_^E$d2=$XMRwYP4|(S92v)MJ$JG zOvQ7l|J1AQx{I%}B3Cj|2XPwvhC{5;HbpaUAddb#kO|0eQN(qz zaM7CO=E?>W(mr#Y|Jhkx*jY=z3tiv)BTBFd3Uko$vwLWP@>|knB({a-jF{`D>i*n{ zR~5LHOnpu9kNEn?*$1V5Ir`~E01u`%3_e{uT`({T{CsVKz)Ic0XW8Vk*LX6B5rRzy z@pJ`Rcnb%ykPN$HM5+TMI_*Q#8|wrdboL%lnE^qWp4{M*jQ$mdk4@CXvv;bl4Gafm z)CIy>ALOtj&UEL*7fD8wMH;{j@yn%f3&wqEGDxF#i_a(!EeEHzZoZ!Q!xbtZlgtlU z){7xgBXw6Y-@8i8&}Eq80wco(lL@5L+c9g_!UZ731Uk7-c!`?uCswZ}twig$-oPpJPe+a?)=mWA1HGn{i37Rbcju7b+-( zUi4klPluQ2M}-%&p9>%fo`+S z5`PtS4_s(k?ogy`dy;NyY;5c?k{p1dX}0GhA{v;G*`XKEj;KHhXgd~~SGA=&wcErj zET2Q@Q1V2@UZLyh`~DK1Ba`>ykk+j$=h=q);F+#=yGIkVW&WnZO-B~yZo45aF)Kr5!4%L@RJ^g2 zlk>b{IUWE(LZT+%9F1uR)gj=X^)tBhjVC0iG&vfGt2d}rRSTq_@c#Y#caGD5?=;(X z-`pW^hN95W8Y<4hFSjOB*WdXxIE`HAbRZ#26UgECOYqni<2k2fczXX zG<tqjcWLD5I_#se8ywRZ*}+d5;VgALXOAsIV|%Ik{Yfgo8TS*lw?ma-s1) zX$m=T_&93E;w|;Ki@lINO72uf%)J{N-1VZ4ULWIcj)xk}KK1oVOx)w2pC#Zt(q)oL zBTgh;OTiq4R4JJA!S@}#r@MO^vP?Pnq(AFtz~PA-+}j?gXU*KS;?~lf)OrUAh{Z(A zk%WB0@h)%lp1ckHqNMaMMvb@eo1NoA>smS-jnAJSOS%lMimEj9b#{Lc1$S)#y@TKE zjX-qqn6X@&YLj10nzK~?t`ix@M{Jo*ouy4a`@HZz2JN~Ngs$r^F%D?4C#nMRVU1 zyAfT8W34|mJmK6C6#*xdi_XI}cL7i-lc`P`cUp``JFcEMkh0n8EwKqmE{a2>G^q8c zz0=6_V|_Iy4j?9z`lw-hXm#DJ&fqgZNf(fGb?Sq^d96Ee>O-)Tr_@vvC z_&j*hy{fWn{;q0cTMaUeoW!cO--a&2Gu+Om5iL8tm+n8RX(B2bO8a2GYiOK%-{T6T z*?RW1%Z-@Qs(?f5c~BvI$C!+eSqDT7ZveFES#o+Q?;9?-{3WDq`kfmeipzLR%S)g8 z?^Q;VQ8j+^&i#9GO{ad+T?tzoN(LczA&|%<5XM{7eTJY*k2E(EbB=dCT^+brcg+EUJ6@umcwx?32td2;#Sl}VI5!r zf{o@AIvVFs0xBNLTVqMX)>#7tllC57kKV3hV7444_&z&#z0AKK6cmG)^RVGf*)df2 zP)MyKnGd#BbY%$dnxjEoQ7I8GFY_4_U?IJR>K*n!#WyZ7;4np@eM!bOv@C{81C}e*k5v0FbJtt{x8GEC`q`fXNq-`r{&Q zrf|q9he6fEAT>ZD&SFl%-b+3pt4r*v6G+qXglU#t5M!$HApV#14cn=n zZNbw{h4m)3fAzaP9M{?pd&Ae~%dbO7#vLz-jBsB=)b>K>z?F%I5;o!We?6os`S9~U zHX>XSp0SCz5?O(TJ=ilz4Eg=QaY?hf_Q9`gs~4a1ny+ARTL{VgcO>&{6-OydBgGCf z2b`Ze_ex(@S=k9dDY|&FKy5>YAaR?_I5HMSt#V+VMVWZO6_Mdrf4Y*e#6ZMt@qRCP zty}vJqf6{jgIoVCy-3vVqD;3@M&o#-$cq%%!P6W7FbdRrg$M8)KR=eCdB+xTMi#hN zQ6}PU&rlv4+mZ`^39U|;zaFbLkKUW(K1gh4ur{@Id+iX)aCiswqt+?n{*8`}t-ww6 z0MkUl&avJf>bjV;w9f<5fD&-S4(Q)td(^)^??NWupR{6+nijKtS&swY3}D|ZWf#l~ z4?ln73X*}Kn)@LkaY!^KGsMTjka04W?ts*VB!!j>=CYyGKh#w5*?^<=%%d~HdR%Cf zl3OXL8;coA)UoAzN>vp};v(X6^Eb0=6O3tte7GTmhHr*yguse8!nKv?0Dq)C> zo2RDw9oyPP$B!3W z=FGQS$QCJBMa|OmHMNA-{l}lKtbKw7VSV)}*#2wQgI}z4#L~n9RYph79Vl@isnO%2&$wv!xBt7AO686| z_w@w!Kjza=Q9CdwKYjxnTaGXkX7Glc%;0vs#7mo%_0=agKcIs=R`B)z%yW1=J4gLV WV2kLAXJnwkrg%{4K>Yr*SN|8Ot-vJ! literal 0 HcmV?d00001 diff --git a/docs/deep_learning/transfer_learning.ipynb b/docs/deep_learning/transfer_learning.ipynb new file mode 100644 index 0000000..1a9a046 --- /dev/null +++ b/docs/deep_learning/transfer_learning.ipynb @@ -0,0 +1,9730 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "cellView": "form", + "id": "d8jyt37T42Vf" + }, + "outputs": [], + "source": [ + "# @title Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# https://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "cellView": "form", + "id": "aPxHdjwW5P2j" + }, + "outputs": [], + "source": [ + "# @title MIT License\n", + "#\n", + "# Copyright (c) 2017 François Chollet # IGNORE_COPYRIGHT: cleared by OSS licensing\n", + "#\n", + "# Permission is hereby granted, free of charge, to any person obtaining a\n", + "# copy of this software and associated documentation files (the \"Software\"),\n", + "# to deal in the Software without restriction, including without limitation\n", + "# the rights to use, copy, modify, merge, publish, distribute, sublicense,\n", + "# and/or sell copies of the Software, and to permit persons to whom the\n", + "# Software is furnished to do so, subject to the following conditions:\n", + "#\n", + "# The above copyright notice and this permission notice shall be included in\n", + "# all copies or substantial portions of the Software.\n", + "#\n", + "# THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n", + "# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n", + "# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL\n", + "# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n", + "# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING\n", + "# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER\n", + "# DEALINGS IN THE SOFTWARE." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hRTa3Ee15WsJ" + }, + "source": [ + "# Transfer learning and fine-tuning\n", + "\n", + "Copyright 2020 The TensorFlow Authors." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dQHMcypT3vDT" + }, + "source": [ + "\n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " View on TensorFlow.org\n", + " \n", + " Run in Google Colab\n", + " \n", + " View source on GitHub\n", + " \n", + " Download notebook\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2X4KyhORdSeO" + }, + "source": [ + "In this tutorial, you will learn how to classify images of cats and dogs by using transfer learning from a pre-trained network.\n", + "\n", + "A pre-trained model is a saved network that was previously trained on a large dataset, typically on a large-scale image-classification task. You either use the pretrained model as is or use transfer learning to customize this model to a given task.\n", + "\n", + "The intuition behind transfer learning for image classification is that if a model is trained on a large and general enough dataset, this model will effectively serve as a generic model of the visual world. You can then take advantage of these learned feature maps without having to start from scratch by training a large model on a large dataset.\n", + "\n", + "In this notebook, you will try two ways to customize a pretrained model:\n", + "\n", + "1. Feature Extraction: Use the representations learned by a previous network to extract meaningful features from new samples. You simply add a new classifier, which will be trained from scratch, on top of the pretrained model so that you can repurpose the feature maps learned previously for the dataset.\n", + "\n", + " You do not need to (re)train the entire model. The base convolutional network already contains features that are generically useful for classifying pictures. However, the final, classification part of the pretrained model is specific to the original classification task, and subsequently specific to the set of classes on which the model was trained.\n", + "\n", + "1. Fine-Tuning: Unfreeze a few of the top layers of a frozen model base and jointly train both the newly-added classifier layers and the last layers of the base model. This allows us to \"fine-tune\" the higher-order feature representations in the base model in order to make them more relevant for the specific task.\n", + "\n", + "You will follow the general machine learning workflow.\n", + "\n", + "1. Examine and understand the data\n", + "1. Build an input pipeline, in this case using Keras ImageDataGenerator\n", + "1. Compose the model\n", + " * Load in the pretrained base model (and pretrained weights)\n", + " * Stack the classification layers on top\n", + "1. Train the model\n", + "1. Evaluate model\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "TqOt6Sv7AsMi" + }, + "outputs": [], + "source": [ + "import os\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import tensorflow as tf" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "v77rlkCKW0IJ" + }, + "source": [ + "## Data preprocessing" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0GoKGm1duzgk" + }, + "source": [ + "### Data download" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vHP9qMJxt2oz" + }, + "source": [ + "In this tutorial, you will use a dataset containing several thousand images of cats and dogs. Download and extract a zip file containing the images, then create a `tf.data.Dataset` for training and validation using the `tf.keras.utils.image_dataset_from_directory` utility. You can learn more about loading images in this [tutorial](https://www.tensorflow.org/tutorials/load_data/images)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "ro4oYaEmxe4r" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found 2000 files belonging to 2 classes.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m65462272/68606236\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 0us/step" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m68606236/68606236\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0us/step\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found 2000 files belonging to 2 classes.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", + "I0000 00:00:1723777686.391165 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777686.394572 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777686.398160 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777686.401884 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777686.413007 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777686.416056 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777686.419433 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777686.422845 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777686.426285 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777686.429299 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777686.432651 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777686.436148 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.681670 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.683734 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.685806 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.687890 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.689894 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.691778 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.693753 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.695758 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.697678 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.699566 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.701656 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.703653 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.742357 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.744341 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.746361 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.748387 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.750315 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.752217 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.754219 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.756268 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.758235 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.760671 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.763079 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", + "I0000 00:00:1723777687.765514 124422 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n" + ] + } + ], + "source": [ + "_URL = \"https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip\"\n", + "path_to_zip = tf.keras.utils.get_file(\"cats_and_dogs.zip\", origin=_URL, extract=True)\n", + "PATH = os.path.join(os.path.dirname(path_to_zip), \"cats_and_dogs_filtered\")\n", + "\n", + "train_dir = os.path.join(PATH, \"train\")\n", + "validation_dir = os.path.join(PATH, \"validation\")\n", + "\n", + "BATCH_SIZE = 32\n", + "IMG_SIZE = (160, 160)\n", + "\n", + "train_dataset = tf.keras.utils.image_dataset_from_directory(\n", + " train_dir, shuffle=True, batch_size=BATCH_SIZE, image_size=IMG_SIZE\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "cAvtLwi7_J__" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found 1000 files belonging to 2 classes.\n" + ] + } + ], + "source": [ + "validation_dataset = tf.keras.utils.image_dataset_from_directory(\n", + " validation_dir, shuffle=True, batch_size=BATCH_SIZE, image_size=IMG_SIZE\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yO1Q2JaW5sIy" + }, + "source": [ + "Show the first nine images and labels from the training set:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "K5BeQyKThC_Y" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-08-26 10:11:52.207848: I tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxkAAAMsCAYAAAA4VG/hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9a7Bt23XXh/5a732MMedaa+99ntaRLNl6WLZlWSYXg8k12EI8rPAs3XJ8i7ofTJy4XIFAqLLhA5AE2XGgiiqSVJFUbK6TQAFFUXZVTIUA5pFLgqkEbAyyQcbYFkiWZOtxdPZrrTnnGL33dj+03sfoc6y1j/YRxz7a9mxHU3uuOcccj/5s/397iaoqJznJSU5ykpOc5CQnOclJTvIqiXutb+AkJznJSU5ykpOc5CQnOckvLzmBjJOc5CQnOclJTnKSk5zkJK+qnEDGSU5ykpOc5CQnOclJTnKSV1VOIOMkJznJSU5ykpOc5CQnOcmrKieQcZKTnOQkJznJSU5ykpOc5FWVE8g4yUlOcpKTnOQkJznJSU7yqsoJZJzkJCc5yUlOcpKTnOQkJ3lV5QQyTnKSk5zkJCc5yUlOcpKTvKpyAhknOclJTnKSk5zkJCc5yUleVTmBjJOc5CQn+RUs73//+xGR1/o2TnKSk5zkJL/M5AQyfoXKxz/+cd7//vfzz/7ZP3utb+UkJznJSU5ykpP8CpSTLvLLW04g41eofPzjH+c7v/M7TxP7JCc5yUlOcpKTvCZy0kV+ecsJZJzkJCc5yUlOcpKTnOQkJ3lV5QQynkD52Mc+xn/0H/1HvOENb2AYBt7ylrfw+37f72McRz7zmc/wh//wH+Zd73oXFxcX3L59m9/2234bH/jAB+bf//2///f5tb/21wLwLd/yLYgIIsKf//N/HoCf/umf5hu/8Rt54YUX2Gw2vPGNb+T3/J7fw717916Lxz3JSU7yKskP//AP82t/7a9ls9nwtre9je/93u+9dkyMkf/yv/wvedvb3sYwDLz5zW/mj/2xP8bhcDg6LufM+9//ft7whjdwdnbGe97zHj74wQ/y5je/mf/gP/gP5uOmaeI7v/M7efvb385ms+HZZ5/lN/yG38Df+Tt/5xf7cU9ykpP8IspJFznJZ5PwWt/ASV6ZfPzjH+drvuZruHv3Lt/2bd/Gl3/5l/Oxj32MH/iBH+Dq6ooPfehD/OAP/iDf9E3fxFve8hY+8YlP8L3f+728+93v5oMf/CBveMMbeMc73sF3fdd38V/8F/8F3/Zt38bXfd3XAfC1X/u1jOPIe9/7Xg6HA3/wD/5BXnjhBT72sY/x1//6X+fu3bvcuXPnNW6Bk5zkJJ+L/MRP/ATf8A3fwPPPP8/73/9+Yoz8iT/xJ3jd6153dNy3fuu38hf+wl/g3//3/32+4zu+g3/0j/4Rf+pP/Sl+8id/kv/lf/lf5uP+6B/9o/zpP/2n+V2/63fx3ve+lw984AO8973vZb/fH53v/e9/P3/qT/0pvvVbv5Wv+Zqv4f79+/zoj/4oP/ZjP8Zv/a2/9Zfk2U9ykpO8unLSRU7yWKIneaLkm7/5m9U5pz/yIz9y7bucs+73e00pHX3+r//1v9ZhGPS7vuu75s9+5Ed+RAH9n//n//no2H/6T/+pAvr93//9vyj3f5KTnOS1kfe973262Wz0wx/+8PzZBz/4QfXea90K/tk/+2cK6Ld+67ce/fYP/+E/rID+7//7/66qqr/wC7+gIQR93/ved3Tc+9//fgX09/7e3zt/9qt+1a/S3/E7fscv0lOd5CQneS3kpIuc5HHk5C71BEnOmR/8wR/kd/2u38Wv+TW/5tr3IsIwDDhn3ZpS4sUXX+Ti4oIv+7Iv48d+7Mc+6zUqO/BDP/RDXF1dvboPcJKTnOQ1kZQSP/RDP8T73vc+vuiLvmj+/B3veAfvfe9757//xt/4GwB8+7d/+9Hvv+M7vgOA/+1/+98A+Ht/7+8RY+T3//7ff3TcH/yDf/DatZ966in+xb/4F/z0T//0q/MwJznJSV5TOekiJ3lcOYGMJ0g+9alPcf/+fb7yK7/ykcfknPlv/pv/hre//e0Mw8Bzzz3H888/z4//+I8/lh/jW97yFr7927+d7/u+7+O5557jve99L//9f//fn3wgT3KSJ1g+9alPsdvtePvb337tuy/7si+b33/4wx/GOceXfMmXHB3zwgsv8NRTT/HhD394Pg64dtwzzzzD008/ffTZd33Xd3H37l2+9Eu/lHe96138kT/yR/jxH//xV+W5TnKSk/zSy0kXOcnjyglk/DKTP/kn/yTf/u3fztd//dfzl/7SX+KHfuiH+Dt/5+/wzne+k5zzY53jz/yZP8OP//iP88f+2B9jt9vxn/6n/ynvfOc7+ehHP/qLfPcnOclJPh/k1SzO9/Vf//X87M/+LP/T//Q/8ZVf+ZV83/d9H7/6V/9qvu/7vu9Vu8ZJTnKSzy856SIngRPIeKLk+eef5/bt2/zzf/7PH3nMD/zAD/Ce97yH//F//B/5Pb/n9/AN3/AN/Jbf8lu4e/fu0XGfTYl417vexX/2n/1n/J//5//JP/gH/4CPfexjfM/3fM+r8RgnOclJfonl+eefZ7vd3uiy9FM/9VPz+y/+4i8m53ztuE984hPcvXuXL/7iL56PA/iZn/mZo+NefPFFXnrppWvXeOaZZ/iWb/kW/spf+Sv83M/9HF/1VV/F+9///n/bxzrJSU7yGshJFznJ48oJZDxB4pzjfe97H//r//q/8qM/+qPXvldVvPeo6tHn3//938/HPvaxo8/Oz88Brk34+/fvE2M8+uxd73oXzrlrKSxPcpKTPBnivee9730vP/iDP8hHPvKR+fOf/Mmf5Id+6Ifmv3/7b//tAPy3/+1/e/T7//q//q8B+B2/43cA8Jt/828mhMD/8D/8D0fH/Xf/3X937dovvvji0d8XFxd8yZd8yWk9OclJnlA56SIneVw5pbB9wuRP/sk/yd/+23+bd7/73Xzbt30b73jHO/j5n/95vv/7v58f/uEf5nf+zt/Jd33Xd/Et3/ItfO3Xfi0/8RM/wV/+y3+Zt771rUfnedvb3sZTTz3F93zP93Dr1i3Oz8/5db/u1/GBD3yAP/AH/gDf9E3fxJd+6ZcSY+Qv/sW/iPeeb/zGb3yNnvokJznJv61853d+J3/rb/0tvu7rvo7f//t/PzFG/uyf/bO8853vnGMkftWv+lX83t/7e/lzf+7PcffuXd797nfzj//xP+Yv/IW/wPve9z7e8573APC6172OP/SH/hB/5s/8GX737/7d/Hv/3r/HBz7wAf7m3/ybPPfcc0fs5Fd8xVfwG3/jb+Srv/qreeaZZ/jRH/1RfuAHfoA/8Af+wGvSDic5yUn+7eWki5zkseS1TW51ks9FPvzhD+s3f/M36/PPP6/DMOhb3/pW/U/+k/9ED4eD7vd7/Y7v+A59/etfr9vtVn/9r//1+n/9X/+Xvvvd79Z3v/vdR+f5a3/tr+lXfMVXaAhhTiH3oQ99SP/D//A/1Le97W262Wz0mWee0fe85z36d//u331tHvYkJznJqyb/x//xf+hXf/VXa9/3+ta3vlW/53u+R//En/gT2m4F0zTpd37nd+pb3vIW7bpO3/SmN+kf/aN/VPf7/dG5Yoz6n//n/7m+8MILut1u9Tf9pt+kP/mTP6nPPvus/sf/8X88H/fd3/3d+jVf8zX61FNP6Xa71S//8i/X/+q/+q90HMdfsuc+yUlO8urLSRc5yWcTUV3Zs05ykpOc5CQn+Rzk7t27PP3003z3d383f/yP//HX+nZOcpKTnOQkr6GcYjJOcpKTnOQkr1h2u921z2osx2/8jb/xl/ZmTnKSk5zkJJ93corJOMlJTnKSk7xi+at/9a/y5//8n+e3//bfzsXFBT/8wz/MX/krf4Vv+IZv4Nf/+l//Wt/eSU5ykpOc5DWWE8g4yUlOcpKTvGL5qq/6KkII/Ok//ae5f//+HAz+3d/93a/1rZ3kJCc5yUk+D+QUk3GSk5zkJCc5yUlOcpKTnORVlVNMxklOcpKTnOQkJznJSU5ykldVTiDjJCc5yUlOcpKTnOQkJznJqyonkHGSk5zkJCc5yUlOcpKTnORVlccO/P59/5+vwzmHc44QwlFFV9QRp8g0Rh4+OHD/4Y4Hlzs+8dJ9PnO142qa2MdEwHM+DJwNHRdnntu3NmyGwLAJ3Nl0nA+B8yHgyMSUGGPm6jLz0r1LHlzuufvgigf7yJggIbhu4Oz8nO3Zlqefus3rn3uGWxdn3Drb0ncezZmUM1OKKBkh4hjpORByxufElA5cTQeupsiLDw985GM7Xrp34N79PbvDJTFmUgLNoCqAlGfPj24sZ22jqtCGvIiAAKIg9ufRz5zDDnA4cSBSfiKknMk5g9p5LZQm40R46umneOOb3si3fPM3c+v8nOA90zQhIqSUmKaJaZrILhM18ZGPfJR/9A//ER/+Nx/h7osvQYasSqLca3tf9b0Currho5vX5bj6I1HwMPieLlg/v+4LzrhzZ8Odp874oje8gTu3bnF+tuXW2YbNZoP3Hu/s2VWVnDNxzOx2V4zjnsPuiqsHD9jvd+z3O6ZpAs1oVjRncrS/pbRTbdft2QX9ZkvXb9ienRP6AfEeguCw41HIdOyzMGlg1C0vMXCXDXcZuMcZ4jsQR8oRVUcu9+i9n/tFRHCakdKeOa/GipU+I+dMSolc+rY+b86ZVJ6JnEkxQlZySqQpcvdvft+j++HzXN74hi+c+0VEiDHO7eBFcM7hvUdK/8+i4JzgvSeErswdQVyZSOW3VURkbncp37V/t8c5547uKaVk49B7Uko45+bjYozzeydCTglVndfGem4Ru9eu6zgcDkfX894DzH0uIvPzegQUUrlO+5ukmYTiQrD5nDPOOcZxnI8JIczt0N67wDyvcs7ce/iAT37qk4zjyNl2w/MXFwx9Tx86vAid93jncc4x5TSvI7WtanvFssbmKSLOI6FD+h7pe/rO0XXWnzHGo2ety2AIYR73KSW6rlvmfYxzW927d4+PfvSjjIeRi+05Z9szhqFj6Ds0JVQjqOLFM04R5zybzeZo7q37p30/TRPiBBc8m9sXTFr6RpUPf+hfc7nf44Lj//X1X88L5xfcOT/nqWefwV3cIoSOIA6cIN6Bc6hY20zTyP7qio9+4tN87JOf4mOf/DT7NJJzRFQJbtlL2/Wjjo86RgC89+ScmaaJcYplmV1+W8dlSmn+rP29iOBEkKxIVn7sg//ys0/Yz0P52Q/+GLDM3XVfljcoHprv6/EhhHl+O+fAefAdIm6eQ+05Zyl7oCCIKBDRNDKOOz7ykX/N5YOHaFa2my1v/fKvoh82vJo8blZF0aIbwCPDaXOyvXDV93V8qartOymimtGc5vk5n6LZj8CulVSJMV67XLsetHtuux5XqX1Q31tbO5zz9P1Q+tMhOLwPOOdxTlC5vsa212vPf9P9tf/eOF5+BUnbXynZ2j6O47xu2N5pOjPofExdj+rYUFXe8ua3f9brPTbIqJsBMCtU9YY03zAhj0CIKUhTSuyzQoqIeoJXcgrkHNiQ6OmJojhRsipkEFWcgHdCCI7gHRkFFbyrG5YgCjmno02fOpickEmICk4Vh21IReUAcSiCsoAIex7BOQFVEkCuA/qG5109exnW8Ih14PpP2vayn8l8f/aM9VwzeMmK9J5bt+/wpjd9EU8//UxRSidSSrOilVJiv9/TDYGz7cBXvuMdfOaTLxKnyMMHD4njZAqtLtfnkY930xfr52yVuKK9i+K9I3hvr7LQO+/mhaUgMGvmMohzXhTvnGyDnWJsBj0GfhTIUhYoaa5dFdeAm68nVS993O6ZH0uWXkHL3+2iOf9b8dpKobXmUmvi1ebXLpj21saoFHAqn23cPSFSn7mCiZRS6flFEVxvHnWc+BAIfTePsJyzrRVFqrI1rwGr61Kusd5wWsVu3S/rv+drNQrsrLDU+y1gqX2e9pnrtY8UbxEEZ51fH7AMVO89KducP7qHRnGo91EVgzpHfJlzznsbe81zOBH6vj86lxEOMk/rVnFoFeJyB5WBMQW2tpP3+ODx3rGeZc65QqXIvJfUcdA+V30e7z3DMMzXn+cby/ru1CMoTjwu5mvH1uu2Y6FVzO161tZZFc3WDjlGpimBKsF7zs/O6LueIJ6ggiRwkhDJ1gy5ADmUnBNxHLl6eMnlg/sc9ntUM2U1n5W9ruuO26a0Ye3HCriWeRMITd9UsNmO7+M+avo2ZQOcT/gyciMIaL6DY07saI5d+91jKJztcC8/WR+9zMVfpMZt9p8jXeDavV7/rF0jjn73iM/X68qj9skbz/mIY1qg064jVUdQzXbrKiA2f0wctiwuv30ccPE43/1Kks+W4+naekHtl5fv188mryiFbYv+j1hBWStMxpiUW7GBnDJpyuymyHQQxoOQ04HtpuNi09HFDW6KuNTTe2MgsoKgBJTeKZsAcQj4lIlZkODpgid427Q8DqeCpgwpF+bT4V0gk0EjkoE0Ik4RlbLpWnOmZOw02MYl4hAB55WU86z4iWReRgsvSnrpgAJSjkWO/l2Ujro5yLUOv8aGF8kZ3vD6L+Rr/5+/gQcPHhKc4OSYJR2GgXEcISamh1cc2PENv/k38e981bv43j/3/+Xnf/4XSPt880qiq38fJa48jzpm9kZsARFnLHTXefq+ox8Ghr6n63u889dNOkVSMoZlvzswTSNTnGarTGXANWPgoi7sWdACFw1gGKAJIRCKlcQwQCrPdH0KOHG4BtSVh7EFvtmknBhj2S7GNy1oawBhGgbz8de+B1KaIbAtqijiFhb8SZa1Uuy9h74nTdN1cFGU9a7vZ+uBtGx63bgKOKjnr+de90drNajMWAtI1paFeg+thSUVImPo+xkAr6Vet1pFbhofrUV4vpaYshi6QKzMEmY3laJIVstIBer1vJXFrnO//i0ihH7AiZBUSdmsEqoKTo7vz5X1s7YVmJWwtEslLSogSNkIG4cRQeJAJdMNASETC+FR268FQfW56/lUlcPhcNRWFfRtNhtAiDExTZHNsPw2eE8XAgLEMbLZblBlVszXfd9eGxaLQZwm8v6ASxOUNonjREwRAXrncQqb0HHWDWxcxyYMuOAQF9ntD1ztrtgf9sSU2R32XO13fOb+fd7yZe8E/3E+/dJLdq6+N0tYPB479Xkr4177qQUdzl0fn0fWpQaQtIA254y6ykpfG7JPrNzISj9i3j+KDJXHARrXROf/clXKc0b1Zbwc/i1kIR1fBjRg5Ic2bHMrrXXDlPrr7HR73GcDGfXa6+s86rN23C5gw1Y407+C8SqFQfc+F2uTHK11n4vcBE5+JcrjgA07pgKNY9B5U9++nDw2yKgdXBXeZSNejrHPTFmWshBSJh5ZjekRM/tNUdkdIqB0wCF49iL0TgnDBnWF7c2JEJTN4BF/RkiOMSkxgfge6baE0NM5Y+nMVUZxCJ0z5lq7QNaMqkezoOOIE4+4TASIipJJ2dsmrDovFJVNB5BKyok2a1ijMZb3uSBy83iSirOo80nKocs5ig1Fc2EuS6dmu5dZVAtz33yWM+dn57z+da8nTgemcU9ME7BsPnWj0pggJ1wIPLz7Ep0X/t/f9I38xb/8l/jkJ14kj+21mkeaH02vPev8vh1zioE05whe6fuOzdCzPesZhoG+7whdhy9AMiUlZsWlTC7sZoyRKU7EKRZXjch4GNntdkzjWMBGBLoCaNU2ClfGQDH1eS+ETuh7j+8cIQjem/n1kThR5v87/riM7xloOJk3p3ZjbyfgTQtizte/P1rQ6++lVR7zzBA/ydK68LQsbPAev9qAgFnBlKL0pZRwLMYrRMziKdctSjcx79Wa0HXdvLlWF4n2t/V96zo1s/+FZEnZGPx6zrpGVgW8nn/tplPvJ6VE3/dHDF3OeQbJM/ApG25VXVqrMixALYTA4XCYr9daUtrhrAr7/X5W7HPOuKKka84FiMt8j+1GU59htgRga2HXd/jgyc4sAaIZ780NogUx7bOKyLI2NQpz7cuq6MRiuazdXZ95YUYzMRZiQYScdX6uaiW4aVNslc6u69iPE1f7PVf3XiK5cu6UGQ8jt862PHV2QTpMuAuhC4HeeQbxtv54hxt60mFPLM+fcgbv8U/d5sVP/Dz3PvMiaRyRrkOT8TEhhJXit/xbXVNqPxyPzUJy3EBA1bYRWdwR63m898U19MlVtrLMBj4j1KibqxYqyMwNRgUeK7St/lL3WPHVGoetJa5s1PP2tnhMGJe1MG9aLFY5JWJMZgGbgUY54aslCvNTVRCQKwholL+8gId2Y7Z9R7FDMmiaz9OOkfp321Zzg9dbacBI+ztrrmNLXGu5mEm1cl+O4iCSlRjBey1kq7lMzQSQK0+p2VwNizIlZa+ue/NNLlo3y8m6AUu/tYSb9R1HltI1EH0lQOOxQUa7IB/7xWnD7iq146sbycwgzJPd2PcETDERHMSQScncYVKyc6AymyVDcCAOFwRHx5ghJlDxqBvwriMUE7xmRVOqYQ/GDLqAipLVkZOioUdyQlzGZUUlkrIjJUize87aHFffLItbRQzCMdiigCmRAkyWZprbhqqwUtd7XRYyKODCFj9t9OEj1V7gbLth0/cE55lqXMJq06kblKvMZIpMoyLe84bXv44v/uI3oRk+9YnP2OAp18irQdROy4If54erfVX8gJZ+d0LXBfOfHnr6IRC6hYGtz28Mq2Idp8SUiTETYyLFeGTBqEqH1o2hbLiQcV5mDdR7hw8GMnwBF87bPYmTRVF9xFO2HNdMuKg97QywH7FWSdtR83Pqct5mIV5P1iMAL83cq3vpEyyPYhR19V1tm8qAqyzWnHlDnU+6MJGP2mRuYnZvuo81yGhZ4rUrlTSLbWs1acf22kLS9nX73fx9YUVFijsohTuZ19Fl4a+/baUq5yIyx2csXIaunmlRZv12e6PlR9vF5wZxYpbTLvhGL9P5Po1cOQbSte+yHm9a9d5uuoe6CbpiiWz7TtWIHVFFxM/rd1331seu+3/53gDSbn8gVjeBAjSGbuCp81uQs1lHu2Udcx7UObpAca81rkOy4oFNCFxejWiM1l7O24rZtM16f12Pi/VYXUC1AbVr/fJyytYjSJQnRY5Ye5HC+y3ETF03TdG/YY4dKUoZzRaXB6bCzyAE5jln527bLFPjGY6UsNwqXy+zQXxuT16APTN5exPDbPdV7q9pq1YvMJBxs9K4BhqqijzCBa89vgUTNx13NK+12IBUMOdCUBVyrnpRAUS2IiLYd7C4o908h2+W9dw5icl6jVl9eePYaH/3OPLYIKNlmCqTprMWNN/TcqNSfeHdvFnWDTMVgD9NmeDMNUQzZBVUnQXXYguH95nedXQ4Mh2bsCGqMCVhTErWHieOzpdNPybSOCFnFrQnqDFzIaAkUlQyG7MaaMbhSLvRzjdlpmhA5zhoCpwzcCQC3tdBfew/a4ua4GecDhU8tC5kZunx1ghaFPpcGF6ElHTeOL2DGBd91Xu7D+sTeO7ZZzjbbtjtrtjv96DG+MVV4GgIgeDAR3iwu8LT4QGy8O9+zVdz+/ycf3z5TziMxixmDARmXcBECXOZz2n3aYArUTpYWnBpvxk2HdvzgbPzLdvtwDD0xiRXQFnOlbwBDCUbyKivaeJw2HM47IkxMo7j3NYpRXzoDFwA3jGDzc2mM3DRCb5TvFecs3+RQBbH4gVe7r1hsMS5wqdYIL4tdNn4Mifkaprjur93RSRr1xBVxTfjpp3g83snBBeI04SqBezmorzwmBP781VaFr59n3PGcRzL0LLbY4xmMg/B2NkGZEijSD9Kqa9zoF6rVUCror0GIVW5rW57zjm6rpvXQAcz4G1ZoDbOQESOAr9bUFKtKWulCYp6UsdUzriGna5B3/U+21iG1gLQBko6EeI0GQASmV21YsocDgfC00/bZ9DEnhWiYQX87NlKf3pzVx1CYEyW7MBhAMnaLdP3/dyubZyBKnP7qup8XGXu2/b03lwtx0M4WndrzFyu67nANCVSsjiGaZpmt7K1QtKOjdonIXTEnIlqsT5SFsCL7TkvPPP8HKzeDQP9dkPoOvBKcmprulgyiMIPWQyNKIN3bLqOTdejXUfUNCeNWJ7lelBrBRA1IL5+7lQJnQUrA3N73bSe1DlRFeHPppB9vkvOeZ7z1U1yJm7KeDXvgVz2oGOioAXihd+zNV3XRAJQyFI7RwY8UBX8REqxvBIpVsvgYjFYM0212der+Lo3blrmb1L+5yD/Epu2gIfcxDQs7Xbt/Q1gZX2t+f4agFaPaY+t79dkSvt+BnkVRKiaV4Fagp2GqcSAnDMgoosVuR27rV66vm57zUeSW4+5n34u8+WznftR53y17ulR56nrOCxrwvo3pn/qjf24/vezySuKybgZDerMth4HSZbjtHmxTK4MJBVi9kxJUN/h+oFus6XfnhdTgUKKqNOSAWIgu56EJ+GYJphGIcVMjiN5jGSEHDzj/oCTvjDbxrghAdcPZKdQTJx5zCQ6Yg4cJmWaipkbmo3cXqFjVg6qO5VIbYvalIKQmOMROG6zZUMJq4lcJwmkmJm8kLP5Z3VdXbAoSmdpwwxXl/d5cP8z3L/3GbIqwVvbrzcTkZKhKiVC8MQ4Mk17/Cg8e/uCt7/lTeRx5P/+x/+EQ0yoCOfn3cw2ZlWChKNnyTnNC+qYzBKhOZI148Sy0wxDz8XFGbdvn3H79jkXF2dsz3q2235W2Oy5jhf46lueUuIwjux2e/a7HburK6ZxtGQA3hE6h4gpiF0nOGcxMwIMm0ToHF0HXZ/nPindVPqq/Cc6A77POgfExmbtr8eVm/zR6zlbd0RRIRbQqagpmeJQl9En3Jm6uofAMXsLHFnhjlx9gH4zWHalmMioYbvSFN6Zy8ps2i9S23X9WQU3reJcAcjaLaUvcRciwsXFBZeXl7OigljQtHNuBiFwfeHu+35WAitAaRX2doMMvmRWq20CswbSHl+DtVtQU6/Vgrerq6tZEQsFYMwuXBgYr8A9R3OfEGAInQWLO4eqWR1qO7XKrJdIGbmkaSIhaNeBpmKBDvPecLQ5FQWsuqOJyAz0aqB3zZrVWjGcVJfcZeykbODGiysZ6sx1pc0StCYB2rGhamtXN2wYnGf85CfQ6jIDSIYvePo5vvwtb+Pq/ou2NwWHDB0ToGKJQZxAdg68J6bMmBKaI51XOu8ZOse2D1wpoAb8QheOLBE3McHtPc9jVtXGfXGTq25Rdc2sfVTH5hHLjM573JMoygIuWnBfFWHmcVaZ72Nlqc7nSmyIW0g5I5OY3b1FFkBi87Qo5ERLsBKnOe4o5YTmBfDdZMmoGOhzeeoWCJjVpFpTKilZP0+opqPnbsmIVskUvb6frAFHbTOFo+xSj7KW3WTRuK6YGpkIftn3YbWGu+L6KHOOruX7Qn5kMRIuL/01S+G/a2KZmyy1vxLlJgsUHMfrPCoG+Kax8dnkFbtL3WTOXlw6msWQl2dLlGK5ANSVNHLl5bquMHfgNJnF0wckDGjYkCWQcYyjcrhKxMPEmC3eIGdzr0lTJAUbWGj11xeEgPjOrikOlQnVQFZHysyBhVOcZpcpEVuIvDfLTAiu+G1qs44si5yrvoJl0aqDfWHgzFe5Lgo5L1Ak13tFjqwI9TLzBANQjz1eIsZDAS7HfuitMuV0YQ9C8JjPYwKBZ5+6w5d92dv44L/8IFf7vW26nZC1RDco+JWylrMUtwRmP/nixFEsBsKwCWy3A2fbLWfnG4ZNb0HfBWDUrFJanp3CcKaUmWJkipE4TYzjyOFw4HA4kEsqTQN+Ge/MDSp0HucU5+xe+6F8HzK+S3YVmR9gbmcBCxxvmK2XmQjFpc0sKY8c47IoKfOYbzqzuly9vFJhm1oN+i1+AS9zc0+ASGXoGyuPWC+4pj3W7RKjpex0zkGqYK/8vDT1TW5KN95Co3SuTcVrhbhd76ZpmvutKsgQZkW1Mvxrlrxllquy3D7j+nsKIVAVwXpPmQT5+Nnqb64pIOXz6moGCxs+UaxIVGC3AOea/Uib/2r/VPKiriFQWHvyDELwHu/EEjp4m9tr8kCkxETpcarLlqQqK5U9UwYfgo2byrCUPq/tlrPFrPQ5z+dq266Cyzpe6ufVSpVzxvcdHYEjN5vy/10XON9uyXsDlVkgi1kzU4pMOuIQYs7m2uacpaFWZSOOzlmGL+8dOum8P7Tj4CY2tk200n4eSqxJbdsa29I+dwuoW8Vas/Lyi9znt6wV1natWOby4lZzzc1R5Njyo8UlRxw4JWWQ3Bw/94vFCiiZnCdQs2JUa2bORgJN00ROZT6U1Ku1zY/nLhQbytFWMavhzZxWdHHFmvWGXCx4zbGNm1Rriajt0LbhrEms1o31+3pP6xHzKEVz/fnNVg2LPcs5NcCgWl+WPqwugTFlnBaPAnesh2he+mjWt+Z9GsvCWZhukUCJBJmv83KM/y+VPMry095HS87V4z7bPa7HQPt5m5a2lfXfN1mvXom8IpDxqA0y69Kps3Lkbpg19ot54VaFjKC+ARneQEYNDPZiPkriA9L10J2jzkCGPyRcnhjVkaeRnLEsVjGRYyRHT06JcoPzAM3GOyHiQQ4o3uI1MkWxnQrIMHZKyss5hw9uDiaufrX1WZDiFjW3Azjn59+L+Ll9nAulkxc/xKxqTHUJALfOhRrYIWLxKSllVAXvOlPWvbkNtWlg1wOiLk6unLcPHc5BmhTJcOfWObeeusXzX/AUd+/dY384GOtZQEZWCG2fIvO9K9nYzAK2UHMp852w2XRstwPbsw1nZ1uGoaPrO7prLgyFMc1KxtIdz4CvgozxwH6/xwEBC4J3zuGCI3izVhjIUDov9BvwIeOC4l2kprSdwePcUuW5PlvqwdlqJcV1ripnN06Y5bzrvijfPHKRps43mTdKJ4K6utE9uZIpfus0Ln1qANzXDbhRAFXNHzimOFsB7BBZ+q7M7bWVpJX1glytStps8iKLa5zNvVzu1ebMfr9bFFsgV5crVxZmKeGKK4BTx8lNjPr8LLK4t1Dii+bMUDXoXM0tqFVG2+xVNykWs1VD1dyz1BwVqmtU1kxOWI0I59BsLkcFeZNJOMK8hi2B4Gq1aArAEF182F0hY3CW2OEmCxNi66e5b2GAw5e2B5LmkqochGz7Sc2qNM+t5ZzVTWSKsczjxVKxgIzF4rN4ouXifqZ0TujE0wU3r3m5AEfvHV0fONtscN6bJV7MzXWKkUM8IJgF0trBWFhUCc4yHFaQwRTnTaW1OLTgto7Zdd+2n5ubsYHCOE1zv87nKy6e6rNZWFiSEjzBGKMhJ6TEyFxPST0PquY3a6BR2X/JuegsZVzHxdzgnEOylPW3pCfOmZQnvMvHIKPElY7jNCtwNYhcKcCfJeh5BusioMcKr6KLF0FVBFVnQNHGgSznatloi0t6JMgo87fOoHbtuCmYe73PtfP55UBF+/cRKCxeBeYmDtR2qfsqlewBAxkJ7x1ZHE4XfQiELDKDQptHlaArgFJBJKO44rZOaW9/8729RvJyCvxNiv6azHrU71o3yVbmDJ2rc9d96HGsGo8jr9BdqjLPldkyJqcyQ+LaoLx2o9WjkjQtU5ZViWQIDt93hM2G4WxD128sJ35RDKUWzOm3ZAJRhZwPyNbjxZHjyKQTkhNpHMmbnpTNhGnXdHZ/DrzrAUVcRt0VuQzEcbLUjuZbabq+ZbS1oOGuM/ccH8x1qiofbVs7Z8p4bQfvWxeyWhjLwIDzkCKkZHqFJCWjeK0snq0r5uoFxmJnuq6CCXjhhed55pnbeJ85HC5R3RCC+Xr3fW+LYirsBgW/e29+4prxolxsttzfPeQTn3yR937Db+IDH/hxfvZnf5Z9nEgsyn8N7ixdWjJDyVxITTIluFzo+8Cw6bk433J+seXiYsvF+Rlnm0DoPF3n6VwghO5I8arm/nEcy+vA/rBjt99xdbXj8vKK881gTGIyHiiEULJHZbxLBA99LwwbSz8szvLYO7EJNI5VzW9tGZTFnmu0Tdl65jGvPM5CdH0CtgxELoBvWbx1Ziwt/KJkyan3Vws8pifXzaGKls3B96U+gJof85Qts1HnPb7rLMuboTm8GBs4HUaCVGawpEYOXRkD/Tx+2riLCk6qqb/Ox34woG3uKrbpeS8FXDhCGOY+yVlxmZklTCkybDeoZmKeiBo5257hveewP+C6MKejnS1RYkz3nAtCdVYKU85W7Gp/KM/l6HyY3TNTSrZGlLFXn60vVsHKyNcCdjNrXTYM5z0xJULXse06Ykr0oWOXlSlPqEA3DJxvz9g9vGebshMj/cSU2ZimGRTaepLABZzv2YYemUZUHE5CAWG25tSihsB8r77r8INjfzgs5E9Skpa+00xXnq3GVGSBSRPOeaImnBqh44On68/QnNnt9ni3uGhVi6kvlvGqSIJD1YqRga23Me4JvefXfNU7+fBHPsrd+w94uN8zXGxJPnKlV3zhCy+AmEvrbn9gi6dLiRxtEx+nCOMIKdM7wREI9GgqfSxK9kJUZ7GJhwOhjLFxHI/myboPK4iOMaKxJvOwPXc7bOZUwF3jahhzZtMPgI1z1/XF6nTsr/8kyZTTbNVX70l5cXGUQvYZYQC1eF6VFnQ6Z4GWCqjGss97siyEqgUbm9VKXAWf1n7ZlbpNU8l2GCdyVJyk0r6ZmohgTlTCMWBspVXsKslS+zvnPIMCgZJSv8ZgHCuIqVg4cplL8/kbi4lgrr41fqi17LTnqu/LDc7nWiui7edrJXituBpxxNwWtsRr8e6IxR3CkXOJKXN236YoL9Zi079y0ZOWdqvr+9qq54oF3buA9x2qi9XktQQXLyetzrCOu6rft+9bqW3Sxret43laN976mxborsfDTVauzyaPn8LWBYylbpmC+XEKw2cmKcQGg/Om1OOE3OhvbSNUxlCcFP/SDgkdftjQdX0pv+BwPlg6Qt+hCMnSQHDICSXTx44UBaIimkBHlK4kMs2WScp7fOdJ4kgVUKgjZctmNMXEFC2rUS7B1s5JKQQodEHpO2XoreWWBjdAglggpOSEFwi+5vUvoAPm96pFYRRtNj67Wy8J3NKhIRRmFaUWDgSxDCZqSkvvPeoyZLPk4DwJX1IHG5sm3QDaMe53pd0TWTP3rybGUdn4nltn5zx/+zb379zi/v6KF+9ekYDN2QA52j1Kput64iSQBU8AvBWgkoz3wqZ3bDees03Pphf6LtMFA0hd5wmhuAFIW/XY3C9iTkRNjHFiP4483D/kajwwxoyTDjJ41NLjBk/wgvfl/H3GeyW4RNd5XEiIt5S2SiTrhKgnpckWffXY2RyaBQhYSL4gZJwLkD0xQ/IOX8a5S4ksSxzFWqp7yXrBFZG5psgRXMiOrAlKzZfZjKYOfGEjUNLn51r42JJzntkqVwB4sWnTucWy1dZ7aAObq9RFcV1rot1c2grVNQ6hvp+miZSkbHbHwG2drrtebxj6o7628y0gZlYmMHCUuL7xLWP9eqrjzWYzA6G2BkZlotqNtN7fzJjesKnWY9v7q7/ZbDZFge/IOTJNkdxnQm9pphtnqVkRr2ChvZcQlhS13oeSsc2Kr4r3M7HS9k09x7r/5pgWVbxacK8WJas+Lw1bm3NiUptOTpbnXPYorvWjSC5bl1lw6rm8t8DenCBsA3fu3CErXO0Olkq83PPtW7f4zN27xGlkc35mlhOUII7xcEBjsuQRztGXwP59SoTtFsSx3x9I6tCS/loa74B2LNwk1zf24+JmrRK3xAVwNH8qMHHuyV1IWvJAU5qV3wo8ZkKvahuzgnoM0Fvrxrw2q84g41rhzJRKnZFs9WFgDvyOcbIUtkkXF7xUxnBxqcvrsdzIek1o50n915y1Cuipc7mCiIZ1TmVfb2Mma0PYdUqj1I/zMeNdZQ0YcO6oHdcWtvXz3GSBa06OoiU1u1mSZsJWBQNo5Vxq7pXrNa6Vm1j+tfW09rn3iS4osOw3j6zy/hrL2sLUkg5w/Tlv+v0aZFRpz9ee86br13to15VXHWTUUu+tGQooJvM0e8os/6iZrQoKXeHdo/c2EaqblUdcwPkOF/rCcplS2vW9DUaMWY8pYt5QgW7TMe08SsRlEC2bPXWAGnoWX8xkUYsp39LWWjYSy0qSM1SPRXGCD44uCH3vGHrHZvAkVxtdjFF3dXAzo6nZqF/NkloDj6X2oB1YLBcFklOvXv+Vcl7bY525CxSGxiwHimarSlszRYgTYrLsWmT7WxBUPIgHB6IOwRi0rEIfBnofeP6ZpznsXuBnPvxh863W4l6iJYAQy5jiZiZNceoNXDpz6eo6z9B5+j7QB6HzEEqchi9FEsXJzEJY9Wwlk4maiCkxpcg4jezGA+M4EVOm5H9CUILTAjDAO6XrMn1xmfKSCUFwneVBF7XFV3NGgmI5wq0dkQ7NzsypYtYzFUcQX9ifouzPlofidsZ6XLfz5fqX8+IslEW2HidWFybbB0UHsnnmDMjVtfcXq5jsL5XUdpsZxWLVdHJcbOkm8+1aGW0/a4+7aSOyzcUfAY6samy4O94QW8X3USxRPWe9nwqMjlk7rt1n+/f6s9Y1pt7DGojMytWKIWwZ2jW71bq51nusGZtMueZY8e86YpwM9GqxViPX7sc5N1di17QwlTM7xuIrfZO5Hhb3nqPnUCXVgS6LUjWz1/PYYHYfQ6wfffDU3NTXWTjqhlXaYlGqRGR2Y/Hec3HrgnGKBP+Z2cVUNbPZbuHuXXORKRYuL8xFDB2CF08m4X0AjDAJIaBO5rpHdU1vQcZ6o2//Xo+DXPeLG2Q9NlqRsr48nnrw+SmpJMWwmhYGRKEuzwW4Aa7xn2jbpDK37Vx5VFu1/0JxaS61GoznNJ1hZoVz/czmk4f5u5vIkvZa7dhulcoZ2LOsnbNy2Lg2zb/TJUbqGDRALeQIxbJR5spNbjNH/9rJr42rR4GM9rObiDatN4S5fs8JWXDz3DVDUzlejoHL44CB9fpagRtgddKK0notKcUNv32tpFXuXwnIWI+j9vP1d+3ae3QuPb6Hllx6XIABr6gY32KCvo4iq8tU6RBZOuYoDdZqdVO1QZSivUy5d4h0iASc6xg2G9s8itvA8tD1VbNCnKGHPWkUdDosyljdq9oq5GUQpxJIFWNmnCZ2u51ZAaSydhHvnbn+DI6zs47N4BmGwKRKihY3EMWsH6pq/s1iLPWUjN+nLmg15alYp8dYnj/lo/aIcXGVUoXFQ6ZReBHA0fcDmpWH9x8iYgXnXLDfjwczv3dOiVOeoYtznbk5CPTeccVDyA5PIE57vvzLvpQ3v/mL+Bf/6l9x59Y5EeEQJytkWFT8wyHipF8qaKs5FHnvGXrP0Hf0fc/Qd2a5KH7aM/CsTzSjKMg5zovxNFmg9+5w4PJy4rBP5CkRCihzxboUfKYPQt9D3yt9n/E+E1ymHwQXcrEcZPKYgZIOdBJqDZJ6E4Kn77YomSCO4AdeujKXsiE4dsXEjDh8Nxi4fAWT7UiWoWggXFlcojhe2HRGrIILT3YxvqHvj1LOGlNu7CEcBwKvFeT6/brqeV38KpNdj2kzodT4j9pflq7UzzFWbcG3Nu6jvoeFEa6LbnVNqptUfT+OI123pGNtwUO9dnvv9biaZaier3Xvqs9UswXVz733bLfb+Vxr1rreb3vvLbOFmL9zysa+jtPE4B2jGuni+2CKjC59U5+jHwZ86FGFeDggYjEJhxQZ7lyAW/qvKkZtMcY5MF2PU4abV4fMfeG9ZxzHGRhpNObT4g4syNw7Z66qQQi+I8XEfr9vlIZlwFnAaS7tXZ8Jc7vqzO1u2JyhCp/45CdxZUylnNmUYqJT8cU/Dxs8CnnCO0/f9Tjn2e/3hK5DvSNHIeLAd3T9hmg2Uutr5CihRu232v+PAqcppRn4tWOiuve1YLS1zFn/x5dVeD/fZZrnnZFHa/baqRqxyHULYsvKtu25VvLhJoVTySVOSTVR3YxyTiXDVCQnITqLJUwpEcq8rmmnbwIu60QO7RydlbviOqvN767NGyrISHNCgjVwyHkhYRyeygCvQdiNIEOOmfB1O7V9sFZsrx9vr6WWh5GFNSW16pIkAhZy7aY+W193rZ+2FqlWaW/nyLod23jRX2pZA4GqE72cm9KjgEZreVifu56//j3r9jc88qOu+zjyimIy6sXayQoNe1BQcvVFfrzzCSkLKWFmZPHgOpzvcb7Hh25JZ+l8/REiGd/1dMkaJTglbnqSZNSLudFsBkLfNZmMqn/msflnmsz/v+bfh+Lr3XdsNoFhCJydd5yfD2wGT9d7+uyMbZ8i+/1IzlMBC0LKnblKJOaA6IotpAAMzYmYYpOFYmHLao051NhWc+Mp4M3X+gwUU6NH1VxDttslY5OaqaIwxICauTZl0BQNuBXg0w8bNAs5RS7vXTHGPdM08iVvfTsf/9RnuH+5YzrYxK9ZV2KM9J1ZuMAqaTtnr82m4+xsy8XFOefnWzabgWEzzOk1WyWjshq2OHi0KDe7qwO7qz27ywOHvTBNAknwTksFb8ewcfRdshS1IRO6kdBFgjdXKu8POAfiPCmX2igZSOC0Q3yAEHAycEhWI2WMl/RdQEJAfObO+ZZp8uzGxCCZURwROIzRrDyfgzyKSZw3uRUDvmawn2hR5kQMUDYVsSBVmk11zc630ta46Lpufu+9KXdWU6G3SuFFIauuU3UtqZmimE32ci2lclX8W5ekqiR3XcfZ2dnRsa01IMYJWJSbapmo56vPBgtYgMU60q6ztTJ4/b5tH4BxHI/AWP13HEdzfSrP0dbvqNetxIsTIafEYX+g2w6zlTSlZJyILteucRK1L3JWy/pWXPzEG7us2dwn21oV62rl9d5UdT6nc55Q18OsxDSBQucDnQ9McZrvW3PGl5TiKSk5KcF1c5seDgera9F1hLC4CaUUickyzrni0lutljFGNtuBrrO9J2NgZ7vZlgQEfgY+dBu7x9EIJxGH88KkgHPErFxNmd3dezzY7VAHnevIJb2qWWZvzjRXx2nrWlbBbRfMfbkF4u0YrOfb7XZH53auDTx+MqW2SQte4ZiUsOfkCIhVaX9b50AlSCvHT86WkKYVgUQmYzUy1EOcRmIcGceJcZwsE5p4pnggppGQAjGOc5pbqYTWTMQ2116BIBsGi55VLW9S9wFtahmUY1POZFlqZqzdY2p7OedMJynm8RbUwHVLBhjAWZMYj9qP2jV7vV4BiCuB35pKfJ15sqjWdRPLGiUyF8+139uxdky1cur8ufdLvGq9fwsul0IcmydLCub9UMfKQtzY+lNJq1/qtLetBQsWC/PaTWkNBtft2+5J7bpyHXQeJ0oxMt5iV1o9eQ0yXkmbvOI6GTc9zPL5wlTPn107CdQk91otGUmZkv1rmZY8IgFxARGPczWQbWHNyVKqOdsOmDQxbAbL+BFL8GjfExqAsdyMbV6Lj3I+WpwrY9b1Qj+EYsnorWJ17wlBIJsff04CahlNNMvsgpULOyAK4gobnYsTlmJ+vjnNIKN1gWirjZsCPmudxaxR2HytSpYrIKP2gSe3PqnYYuu8g1Lp2lfLjmCMPlhmFFkW8be99W28eG9HvHvJYT9R608oFrDuBJyzye3ckoFlux2s6N6mp+vMJcM1i+i18YQtYNU6FafEYZzY7+01jRYc78pCatm9jLXsO6sjErqEcxHnIt5nfLDChTXgVjATqcOjk/UV3uPDgJOBYSt0PRhgsrSfh2wuWRunnHu4QklSWEjXUSfiK5k/dc68/Pclo5ocb5BrtuVJFOuHZixks9L4wsDCMYO4VpxvYlTW7FldXNcWiTVgg6rUHzOWaxLlxjHbjOX1/Vja7GOXrZZdbhft9TlucvVaW27Wlp72Gu3Gsb63tTIWQrCCbvvyvOU4A0iW7clq3rjFIrxa/40xXTZBEUvVWkxU1wDFTdL2cUoJpxbfkXNalKhs9+GdY5rPozNB4UQXdyoWYLf4wJtbRtZl4zS9pJ6rWjOZa5/MluO5zaS41C7BkqpmEY/ZUp/6rpAwqBFXqsgwcPczn+bqYIHxWvdFFcupo/VJjqXdW9ftVffDelxbK6VVLGocTd3fbB7cfL0nRdZWmCOXtzqvCpFRQYZvMhIt3W59nsvfMh9f99wSaFlFIEuag6odriiAlW2O5AwxTbO1SLWk1C/B2xRAs4CLJZEOUte3sgfAbHkDIyY1WyHGayCjaQuzttSAaIrT+HotKC7kZZ4ambkQGHU9WM/ZtVLKI465yTrTWtnIZm3Krb4jGef8AvRkuU4N8G51TREjPqs1xO5blrab702hJtspMbEpFZ1NHdqs1cseQBkHj7ZmPI6i/XKK+Xr9r+tS65o0g4xckwZQ+qvuIfZ36x0wn69YbFu3gbww2AuAoKzBRafMWhI1HwHeXwJLxpp9riJFOTzu/FXHvExf5KxMUyqvTIqKEAxkSAUZYbaSGFiwmIDgHF0qinxObLcbUnCkMViGja5ram642QRvE6spYpOXjcOyQVmxq36Q2T1qs9mUStWuVLiu7WDAKOeSHSXZZmPB5ItJG7FsK4AtHKkdUFaFWvUYXS5tX9lHiy9xZc8P4tlstgurRt2APFpqLEgZmCLGIuI8mqNlwKJYVMaDZaYpjGM8JLwEvuIdb+cnfvJDxCmzuzoYuJr7DZyr4Mg+80HYbHrOz8/Ynm3YbHq6/jgwt75uAqy5uGxMU+SwH9ntDux2I9OokCxA3jkl9JZCuOuh31jq2q5LhJBwfsJS2JaJ4wA8CcFJh6MnTpBVLMtEGOjCBu8HvOsswYEo4zQxXT7E54mNc9zu4UFUIpDFEfoO4mHOcvQouZntuW7LWAOQmbOR42JrT7r4xn2mKj/1Geuob9nIOkaOmfMV+yIyf1eZ8nUmqWGwDDt1/FmMkflTO7e0ewtO6lys1g84LhK4ZvXqc4g4qktj/bze92azObqPNRvVstLtHGmfuQKmlmmbponD4XC0frRuWnUcttcYhoGh73lYEi6IUNaSA6ELRdGPePGF3VqkniuvCJo5+Fpk5hzX7mLHm7kcucHWjdOX9a6ymmTFi2UZA1OcVAUqW1ddMQuLIyWl8eIqVMGnsdDLGlvX58XffbvdEpPOytm8R6sSSzahmCK3hsHOlxJRbW1AjMiJwL3dDvWe86dv8dJHHrKLkezcnPJXigKYy17UtomIzAUeW5ey2q85LcdXS9FNIHaz2XB1dTVb8+wWr68/T5Ksg6dvsmSIOLIrcUFiWaIyec7GJTXeDky5YhmT3hlBl2sF6kZ/yWJZoqwuSyDFTIy21085okkZo6UUzina2IiTgQzN81irp3TOXJa0Kn71ucrfrVS3qVz3lFZXKIeqarW1HBGUasYZAxYiiFQQxVHgt6oejff5/GJzrX6+BsDtGrOOG7iZFAJES0xteXZNJSHMYmGtrtVTTPNtuOIaWfWvOUOc1ttcK8QVaGSsdIGiGsEbyKgZxOrannKJ3811/76eNv7mff3xpR277T7QAoycc3FltfEmBSHbOlbnQLmfa897XZecyYwCvGrsji18pZK9SjmXHN3PGmj8oloy2vd1Qk/TdaRcH1KKK4Rt5PX5ayPYK6bMYbLA3qxWeMXSsFnJs+ottORvL6gtRssg5Ax5OT0jdR25jzhVpAuWKrHv5g1IMAAgVGbKAvjqBtP3w6wsbDYdmyHMIMOUcgEvoJ6cbIFJEeKkTJPFd6TsmFLmMFmKKpnRc4ZkLIsmpfrir8fquv9czdq1/j5mLs7vcH5+ixB6DocR8VuCM9/RLnT2zJpxWJ5oVRgPkclhZvoZYAnie4ZNzw4Y93s+8uGf43XPfwG73cSLn7nH4ZDMSpOh7x0xKt7bpr3ZnrHdDpyfb0tV74HNZqDrLKZlnb2hDuD5bwrAGCf2+wMPH+zZXY0cDpGcnPld+0zXJ7Znju2ZY7MVs2CEDEFtNAssxRsDqoGUAvsrT46Bw8Fx7+7I9uwWeEeclLPNFu96RHzJDHJAnfLUnVuEMbHJnm1yRAc6mZvFZRKbPDcuoGVFX03II1bjBqAxLzRq1YvXSscvC3cpjjeBqrzXebi2NFSpi2Xr8rQ+tuu6pXLvyn2kBS4hhNl9ykz0S9XpBSjY+8vLy6MNs7WowPE6WGMAjAn31Dz19Z5bMqC6Dl1dXR09T2sqXweg14W+jROBJZjbOTen8a1zqz7nMAyP8M9d/KDBque6vi8JO4obV2JJBV4+q2243x1IMTMUV0jxvpA6UoiaYVaY52DYFfhpN7AQwlH19hBs7UgpMQwDu7CblS11gGpJYVzW2FgZT+urzWYzpxkV11HdVb33JQSqKKSUTFkhsN/vQfzsxkGxSlxeXs0g0pUKwmmaiNPEPk7ghF0aiTHDEAgXW8ak3NvtccMWYW9stxbSBMtA2LKZ1R2vdS2rAOEaEVHWiL7vr4HJdrxVV7ta0NS5YtV+QmUO3nXHtT9aElRECEWBtzHrcNlTayh0GmaPi2uAHne0CZvhwcaXxmgAo7gr1DpOh8OBaRrnGI3Dfse439OHwLTfE5MlZqkub9WdKYTe4l2duT0bs2wgo7Vcrwm6VnmcLQ9l3qeSKtfSVtt7Wwuqm2kJfK8n0NWaDEWxPbacV0vjTWTBkQWk3efk2A1sPr48X0xtTIAyTXurj1baaQGNtSfq9RZwsdxfXSuru489XLU2He8ZVkOtJq7w3tekj1QgIg6cn+m+zzIqOXq+2ia1DW46tro+tjFys2KvBgJMJ85zKvf626lxGRa72NG518Blvr9QgFnOM7kBoE6RVPYyHCqOnBYL3JoQWxPhLyevqBhf+/7aQJo38frgrQ/do0VZfMdSTkv6tYrqZbGOqEjZQIr7iyuDScUC7IKfr+fNJ6jUxihMlVKCGJcJWRmB+ru6OYVggeZdF+i6gFA2xmzpTTVDTrXORXH1SqAZ4pwGtwn01jIxsi0gNeUter2F1kOyzShkrlfG9G03fdlMQsPaCaiUqspFMRLHfrcz/yHvcd6RUsQyNDk630O2AnNOEt53OJm4urziDa9/gTEmfuwD/5y2qVJUss947xiGzgDZxlzKuj5YsHdn4LL4BtizXFOSF/ZmyfWfimIQiVMiJ8W7hPdK12MxGB34AARBvRXkUTxIX1y/HOQe0QHNG3ZXgXGEcVSSdhwmJbtMdpkHlzu2g7l6IVJSb5Z83HFi6z3brSf2HZcPI1cxI1nAras9NxtWHUz1KdvJKWLZvbiZDam/WrNE7WdPqswbZNEEK4Nbi8G1QKD9zVFxz5mZMjc9+0TJqdSIKBtoTMn6UMTmjZa0pzGXRBYG3o2xXzaEyiDX2hvtfayfo/Xpbd2YlEIMCHMGJ9v4jW2x2KNoa0v1NxboS4xJjMk2OLXkGZTxWJ/Z3DFLUc4CUlwNdndi1XGdR7wtGBljtZeg36KIlvTYUhW2nHHe4s0UxfeB2QYs1V85zxZHEcvoNMeESMn4tCITanKQNoPY3LcC1b+66zpja0twr3duvre+64p7KEekixUkLHVJ5tSXVQmxLIfOOQ7TSNd3pnAiaDJbhapZmWNK+GLJSkkRVQMiWckxmc89WIbCwvhJSuQUGdPExdltDmkyAsl7Xrr/gIf7AwnPw8tLUm2/vKTnzCsAW8Fiq0j6kr69zTCT4rFi3SreLcCu7b0Gxzy5GOMIVMOxMtf6/6u0n3ucq0kHTG9oiYx27uaVt0b9XATIJbaxKHk2D6aj4G6UeZ7NTHCbbAFmvcNSXRud3ypxa0Vxrby3x1XrVb1OKsq35IXxhiWQen5W6n6+crnierap2s6fDWS099bea3vdOj6zHqcnVy1W2gYM1N/X5DgtkDzumyV+rf2c+oyr+1LVWfdcK+POKVajo1o9MSL7BlfWo/M17XKTrMmERd+JR79LxXqRqrsoprfWWJyWjJiffzVu6vvWCrFcw9bG2WUULE61OT/uuhVj/ayPS3i+IpDRvtpGOf5uiX+wzbaqkY+QBkVXX0ct1THn34lAYyYvZgcbjGppU+sgUO+tfgSCeI5S6EptmHlQNQOjcW0wZGuF4kLozMeYmoWAsogs4CIlAx92aikVxzMa6x1XP9EjPPNI/HVNDW8+cJiC4b0rG66fFSLzZ7Tc/ULxrTMMZgWc1NizvvNFsTfU70vRLZe1ZEnp8X4kxkte97rbPLi6YrPZsDuMxQJT2q5s4JtNXwBGRz9YNikfLACymubbCd2OnfqAqqVY1Tz5EnGyf9FSTC8UkNFbNXHvpcSYWNarpI5g+byIySFug+Qtadqy22X2e2GKQqYnZbEqodkyZQWfcV6hmpo1o1OGONG7QO8zBy9cdHB/yrjJ3Prqs1yfcNX3tn3MYzZnLcvmKDcCkHbuPali86C4LAVXijOXeScL0Ggz4ohU5rXO37IkSHlTmJmUU9mkCnpPi2K+NJstnl3XzUCwWi7WLE09ri6yrU9xe7zIEhC+bGxlwxKzmNpaY/O2KhwpJbq+BBYWEBI6Tw08tE9swRApfIU9DhZHZUkgvPNWqdxbrRVRS8/ovMdnN/uM930gxqUNvG+C/GRJwEABXUmtQnFlPcWZi6ExtpkUs1ncmuKjlTCwZ2qDT5e2WispNeajMvBKmr3hF/KqxJAEzzp5dK5Z4mwVL+PkuO28N5DhpLPnqPF9hfhRWTb+EAKa0zwmy0WsrpGalTEUdlWw4NUpj5apDKuTlBTuX11x98ElEcfVfk8oxQWN8Copx+tdz8yCm5UsG0cWG9MPPeNhRMSCy3NNS94ErFPGxpHVq7P4xkoA1nX7SU6F3QYp27PWfm70EI5BxgLeFre6Oe4Gc/2tx7bgY9Fxyt+6BOICs5JYX3XtqLE7R0CjUcSh7gdWm8X21GN2+CYFuFW82+/qvylVxVSRRkFs16ijfUV1duNuz32TYlmft5U1yFjfX33fXne+d44Z8Uf9vm3v2j/tWntkhWruY71f3gR+HtWOy+9kXmradf9xtuHrfb28HgUyKnBNyVL413UZTPdbA4e5Daig8eWBoa21DciYDzy+Z+F6EPrLjY+Xk1cEMtwKYVZpNw0zQx+njnvZmxGsRoDUCpWRmCYyEaWmXWwVbWletkEKOgdXK8yKpwQ3M6DVH1LU/C+pVg3KRlbMy1lNeR+GDcOwLa4+FsiYk6W3dV44HA6Mh8Q0WhxJTmK1FtQYVc3MPp+2kdXGah6D1WePIXVcpJTZXe0LSOjM+uCWwPg4TcRCmncOzi8uiApTVnb7A30XcM4WjUOarNJy6ECV4Adkozz1lHJ5+YCug6//+q/mH/7fP87V5d6KDqlytt1ycWvD+UXPrVvn9CU4ftj0+GBm2RDMBznGeOQ3vIwJRVkGc0yZcYzmdlayxQgTvhP6jXB2EdicOTYbq76OSKnCKmjJHBE00IeBnM7YX3kuHzheeknJeYPKFtdv2Q4X9Juefttz+9bTxKjsDyOH8Ypx2pHSSEwTz52fwSERD1eEfuSF86dx2w2f+fl7ZCcoS5rI47mRq7OpdbcssQUL8F6sH+1x3rmi9x0zQ78cQEZSRbwF8AIMQ2fjtVgC2nWjVf674ApQtUKQM5tYLAbOmWIZ04jT6m7SFHgCNtslrezsLoUcZT/KOc/uJ617UmutaDfWyg62WZPst8XtJVh9mZpCW1Wp6ZrMimAVrH1wBqzjaJulJqbR7rHGLIjkWaFe/JAd4xjL+hVQcmHrDaSlVDLleSFOB8vGJMpm06NpIsWDWVO8FYgzi6BDfI9oZpoKm+4MkEedyn1akHfva2Vpy8xQLdldAUK1svS8yRUyKCcLiB2223ld2O8PxNFS4VZwd+RTXM6jKREKONECsrwY0LL1oObCN/DiBHBCkMBEZspC78SKPxo9QXCeKUbG0WJQpHeWhts7S+vb9Zyf3SZEx5l05OA43/ZEEo49Ou65fPgZun7D4B2/8BkDF8l7DlNEgrcUud4znJ1xeXlZXOcKuEtLet+a4dD2o1z8+aum43BB2HTdvLdW65W5XyS7li6JPxQj4jrfgbN5lPKxQvskSUpNClpaEnMBBDNpSAVdbW0MsyweK6rHpGkrsxUDyHGa3aVqmuyaWa197fc79vs9wzAwjuO1rHKLxUkMYGjL6B8r6O19rI+5KbVpyul43jTnqMp6tSZX0mctNymRa0vB+vi1Yt+eo66ttd0qqdC68rQk3E1gqrZBu9c+CmzMllXatWdxta2fr4FFPVdrzQ5+mN02615wrMDV/ln/Ldf6qVopqnXXvHcW12q7dknjH81yiizWyhZktMDKu6XoKSxrJTAHcIuU/pfF1axt1xa0pGoVK68jS98KfHw2+ZwsGZXRq9Kyk6YdNRNT9dHMfWOosD9yVTkxVwCLzYg5U7vVeT/3Zk7JXvOkKgoKgquBLM2CKiIzwDBT+BI8GUraS0hzykOrcu7J2dBfHKdS9C5zeZhmf8xxjExTyRSltmHMRXIq4pwb8oameAV6o7Ao6DEu2S+qUmbBzuZXF4o7mWZT2gmB0HsbZNncAzQnBAt2SmNEUsIXAJezVTbdbnq+9O1v4x//6D/He1fap+fsfMt227M96+mHnq4Lc5pI69IaFGquSTZulknS9/3c99M0MR4OHMorTglzYxWCy4TO03VC18uSLleECZkXyZRBcyD5Ds0Du+R5cE95eC/hw3PkOODchu32Nhd3Low19sLDhzuk+KEdDiPVhSb0xtrmlJCsPNA9u4tIDhdcbAKXSeaiYeuF8IhdpPqQmnI4m4PhaGLX36oaC380SupC2rBsT6KsA7rX79cMlmsWzwpGj46pTH6Zx3UTq+lL6zWHYThixNr7aJmevu+P0uC269x2uz1ioYYSb1DPM1sLC+hoz79sYEsmIHs+P5+z3mN9vtkNatUubSKA2QUBIGU20iFJIJm/rStMvisKa+Y6E5VzKXSnSk5WRdvi4QojKh51Du85ev4KzATLTCemqc1tEYrrVwvUqk+673tcOa6222ypQuY1sV6rtkf9PSzTK6VEchHB7kcLs91anrwIG+0YxwhE+sHTd44sSiybvY/QOQfec5hGdjkx5szZ5ozX33qat996jvNPX3KGJw8dYxLuihKd45YM7O7vGJ7e4oe+uEcpvu/YhG4GtTlnHj58eKSsLYUR/bWUmWsm3J77eO7UeJsau6E5z3tb7Yt57Kc099GTKrWWVeuSXQyBZUzYs/kjxaglgtaJI44VxHU82HKsQrbA7zom21ijljWudTLaOZZzPkoqYWNAQLxRpQ2wuEmZP7aUHu83Rwx5XhTZ9rs1eJlBGMeun2vFvx0ry1w9Jr1uAhnz9QSo9cMaBl4xQNTee7suV+Im58yh1OGp515IlGMFeD1/6vpb274+X00xfhNAAXPbDD6QJCFYyn/VGhtyHZTZ59fjCOv9z9auZKULtDDnM3HSgIecbD2qAONR1pi2ndvK77k5prarUsd11U2vk/91rFQAWi0t6xio2WL2iwMyGrPhjJqaAYyxJkWLt+NmAzYcvwGzQtgG4JpjhdoBdfGog1WWjsFcdnJa/i1aHLVkXB0MWgIgbP2xeArU4aTEMzgDGV0IM0MnOCg1IFTFWK5DIqXJCj1NE1PJyDTFWvVzqbapzQCi4Cw5aoNXIO3x7YIoNIFDpSCik5IZoTKnpqjHlHEevDi60Ju1RYy9NNLRfIud86WNE7FkfvCdY7PdcPvWBZoN5VoGqZ5+MJcyH0IJYLP2SimTspJ1IpTrjBJLlXHBSSK5VCxQVjioTsRZsahuFpKLpQX6zoqnOS/gHFnMioEqLkPMXYnF2HL5MLO7FKYpMGw2dP0G5zdstmf4bgAHMWfGGHFl3Gq2bEMiQhBH1hHNEabI/jBxcBdMQw+clY6wDp1dxHVJgqBA5RPnsSxL1p3FMNksCs2/1cnEap7kI7z+pEoLKtaWGri+2KtWU3uen31tvr0JrLTXm7OGrBS7tU/3TWxaTQG6vl77LI96f9Or3bSPAFT5vK1lUcHJ+p5a4DGvw1ptu0u66Ey19szL8VG7ipQaAZS0wnWtTml2pzHXmmMlZQFIx24lMv/GMsXN1zhibpfc9H7VJ3P7NvfXAqtaZ2cZL1LW8zYwkWWdX7VbKGtTVkWniPpQiCuLUfPOEkzErMRyLq/Chet5Rgae1Q53eYBNQNSKAjJlfAKvgf00Mu0ncobdYU9SLcXTji2dbUY1WJSpmxT/di6slY31WKptW9egdm60fdGynE+iLP75tU3aMV2PknnTFanZm5q1RdKymJZ6UiLLejOf5ajtFdT2pbW7VN2zqvIVm5iMIwVyxZiXFEaAHI35lgSofX0TO1/fz9eN8fFBxuxrsTx3JWraaxwps2mxTK5BxlGsxErPyebaMZNv9biWnW+Lm67JlfV4b9fU9jlbYqEeV5Xiuge08wHkqE3b+1qeY8nytm77Vub1r1kjr4GMGK1UwOoc7XFHfb+6r5aEap977jMoQeL2R7VI1O9EFgK/XU9aEsM5N8cs19dN7m6vOsiokfulSeYJaYMEarI/JaEu2eTJSrBtjyVRh22F5dEQhMF5eufpxBEQfEWLWo5UZkuGNh2QciZHXfxqjfoumabS7JKiOSN4cB7EFWXP413PEAaGrptfh11CSkpaNa2dDFztDoyHqTDuI1GtOu40TvNAroOkKkTVCrls2I8hn+UgxQaQc4IPjqurKw6HPefbHsg4Z65jPmULflZz49prohcLZOz7AdcP8/lUI9N0YBqVbT8QDwcOKTOOYj69Gabdji9+4xv4xObT3Lt/j2eevUXoa+yFgTXnzZ88JojT0hYX2w1DEPI0EiTgzWeNOEYLMFIzDVaTsjFEUwl8SiiJ4ITeO86GDu/FCjP6rtStsPzYPgZgAOkhn/HpT30az5bBX+ClY3t+Qb85Zzi7IAHTGDmMI13wTHEkp0jvxTquWhKckASmnNhdTezCxE4zOw/ql451Io01D1LpylqhVaVkLHEYG5ZrXn+YlSVVUgGoafa2EnP/U1dcCh9nEH3+SrthXWPTRUqyBXMPqgu9956YEs5BCN286K0X/coE102lMt9146mL9czANxtRvZ/9fj/fzzRN873knOeid63Zvy64ixmdORtSlfZa9fd1E63ZsOoastlsZjeM/X5/bfGvG3kbQD2OI1ZXyJE0M3Qby7SVM/urq1KPR+e1owVQ3nuLTyibrReHJEsXa+WM9Ki4attv1m4ZxYB5DXR3TkxpL3O5FkysjOT5+TnAnDGpfl9T8M4xO027nZ2dkXM269G84TUW4vJumqY5mL21IFXGdvCBmBK7/YHsHaHrCH3HFKNlqep7rsY9IHQq3NLA63Tgub1w5/7E5f6KqdtYivK9sLmK6Kjo5Ok0cP/uA+7HicvdnsmVOLO4WNfq+FzA8AI+a5+3QHkNLKvUMVHHad/3y3j0nhSj1VVolNPaF2062ydRYjwG/WuyoH6XXQvMC6VZ55q2pEIi+MXVeE1WtAC6DfyufTZN09G/ANM4zX+3r7ouzeefY00XJblV4lrgUscPHBMicFy0LaY0uyjXMVHnQttuM8DIi1X0Jjerek8taKrStr1WhL8CAmglest5ZbmH9hkPh8O1tM1VbiJ61gBcROY1Zb22175awLY/mlNrQNMq++oXsqltx1ba8VLbqo4R1aXqey34rCtFr/Z3LUxa7ymt+qNV7uv1Yowzpl4DgXo+EcFrnilPOcpWejyPjLTS2e2uBTYtYH5c+ZyK8d38OYZQXd2MSu5pzL1JK+EgipkSsmXY8aakDv3AMAx0/YBzHc4FwJmul810byarqrkb4IhZ0aLRpVR8zTSDKx3pMNcpqdYOgFo0MCMu4oPS9cJwFugOAct0Yq5CSc2l6Gp3xX6/ZzqM7PY7DtNUrBaWhrBaL3J5tM9ZrjdvYwZZ/s4ZYoKrqx27/Z4pnc0V0W1C+9Jepc9ySa8b98ToLYBSLAvGfn+FD8LQ9zx4+JBU3MKee/55Hj54kRQP4JV/99d9NR/7+Y/z4Z/7CIij3/S44IgxE0pgbpoX2ZE4TfgucHW1Y/KO7VmP2wtTjkw54UtgvqoyHib2VxOHqwOH3Z4UJ0PgOTN0maEXNr2j78T8x70jiyfphjgqOYKLgYv+DikK9+6OKBd0/Tmb4RZ+s0VcIOZEOuxRLPhdfGfBss7RScDliK+pfwXEw5QjWSwFZM5Qzdsp5cVmVpniap+QGqjMsqC0LNvcsdeZfCdCcorThXUUVzemJxtlrF2g6uJclfkKAGKMDMMwM1vDpmQVai2nDcPXSt2M2024tRC0CnP7b72XGpPRujvUe6/SukO1z1Xfd8Vnvn7eMkKty8Q6HW27ubXnaxn81j+3yjynQmCnI4eYECeMLiNO6EIgxekacyli7jSWaMuUhFAy0FVLIWl57nV2maJBUDcuFUjZKh8PcjE/X2276qNeLcc19uIIEJRc5S0Aq65vM8A4Aj3LWDB3kYgrbp3z/YoYwBo6nAZcLxywTGMhR863W7MGOYX9nn5S7uTAO77wS/jdX/0bOIyXfPBjP8MB5fzsC+i4hUzgLi2blEog+56791/ik5cPOKTEfpysGJ/auKqpTlurWt9be7RgtUq1egDzeGr7oT1uDRpCWDIi1rnWWlBucgl6UmTtStTqJO37dUrsrNWmXFMYVyVYiSkW/XhxHaqK5aJ8ZVBz0a4xhjUmY7/fz9mlRIT79+9zcXHBxcUFV1dXXF1dzb8B5nVgGDaUDDVHVtP6LPV52ux1VRmtSn9LkqRkPv5r5XDNRlcXSTCQUeOi2rnY/u5RbX/TGlpY4tkVqo65GXBIo8gWwFvnaauYj+M4/66Ct7Zf6vXq2ri2dlRp3bPtHJ6qpNVr1v6oc67dp0Qi+0NmmkYO455aS60MneJu32G1zo4BzU1gMRUSeg0KcrbQgJlIb4BUS+7Utbv+HWO0dZHl+W9q05q2OwSH924GoRW4VpfOaslIk6WwreOi3mtdi9dFYh8lrwhk0Dh51A62GygIN5fGK6XqZS5Yt0TI07hSmUeSMfKh6+wVupJeslgdyh6WdUHc9TSq5uuec0VeOg9eqawdUtKFln1Ji0lVFOcz4hM+KCUmjuItBKLEXFLPpkRMFlQ3xsg0FpNXuY9Us2HVkfM4zfgouen36+N1Ma/uDwfGGFEcWcUya0lhT7E2dM6xH0v/ZGUaa1BTKVgVAmhiGkfEeVywnMlI2fQ0kvLI7dtnZH2e4IWrw97SYwpMk+UOj1NkGkcy0AdPcFJqPhhhM00Tw1CZtJGY6gYI435iOpiVaDzsSfFQFkJlCJkuKKEz1wZxASSQXQfTYIVUstD7DTn1xYriEekQ11uuWx/wXY/4QBRjkAQwxzgxi5gem1ndnPpYLRgrV4UGC6Cs79t+W5mJjxiLqhjVgxoL15rZEFncqgxkWFrSV8IgfD5Kq2C3rkze+yMWp60dYew2ljpUFpeTdhNsGal6/rXZvFU4blJM6uettaAFQmtXh/Z87ebbgpubrtNuHO2m2CqDLQhYWy7ae5tfZfxYhjRzn9S8+J+nPBU9+xhgzfeGfSdqmZgs9bdtpBbisCgnta2895bHW5iDsCuobsd0u0Gt28CA+zpTit3N2u3MOXekGJYTgSztbRac6agf6tps95UNOHmHU3Ox9DETJOFQOu95Fs/rb9/hael5Pvc8/OjHuLe7z/3xIS889Tz9izvC5Oifuc1+n7hKkQdkXtw/5KXdnqsYmbC4LrO+L/e3tsCt+7Z1VWnHdN/3R77/a5DQ/k6wYHcLcF6Yz5kdVn28ferzVFI6XgNbnfJoLgGURAR+cVidRV2tFWHFfd0N87ACXbtuREoyg0oGxBjnwO76WQWU9bPD4WDV35vMTLaeaNFzEsii5B7d42qMrAmWllWefeU1z+lhK7BY7xtrkFHPvXY3Wls21s/QtnlKqWSaW1zFFTPet25WtebOTBSXdmvdi2obtuCoBUhrYm69pq6fdfEyWbKMtYlo2rau79t/wVy+6tpsWd4s1ielRPYJqxm2XLMlPua4qFyzVzZttO7TOkebsdi+2v6Y+756QKSEWxFs7X3g5rCsIyC0Xk9STMTJiki27pzrve5x5BXEZFzPLKVF2T1GzbCYLdy8YdykV4uYYu+D0PfGaoW+w/kOcYWJsdDFhTCjNrxdPytzYZtaoEU0E5HZz9IwTRk8Ulg3Z4XknDOQEYLlR/ZeSMVdMyYtOdIzMakVCYwGNuYUgIpZSMr75eGafx8XfMwN+zLfiZnY6zjcHfZWZMd15OJi4ykuG+pxpYbGFEdzK6Ka5KxPvfcMfWYcdxzGPWdnZ4j3aEzkuCOEDtXIuN/Rd47nn3ua27fOufvgngUxFVblsD+w3+25yomEElxAEHaHvWXnQklp2fzNxFeD45VxbwBlGg9M4w7NoxUR9DB0St9D10lRgAK4HpUO8hay4PD04RbTbmSaIOcO5wP4juw8Ih7X9bjQkbKCWMAqCsG5YmKmpDyuE9zGXsoVZORiZq+WitpfWgBBO86PF4nl0LK4tOODY0WuXrse37L+N1kSnyRpXYlm3/zCprQgo24ArRLtcWUsmbRAol0E2813nYkErltkW0amdWVog8fb+62yVoBbRboFJGvrSfvZGri0yoMlRjiOS6h/t8HjpTWAjHeWLYlsaTS8GEBLSelCj/CI2iyyrNQisrhIFXZGOfbbXdjw8itv2ZkU5uKpraWu/q4yj/U5drvd3LbVmlVn0hr0VaVpDdwW0KEMw4CO17OfzJZm4yNQETocXjNhzAw503s4d8IXd2d8xTMv8Pzmgmfo+ft//W9ylQ+4854Xbr2e9NIe3Snebbi82vMwTfxCHvnEw5fYkzmI5UXs+h5kCW5vx3o7Zmt71OJ567aq8ShtkPyaRTxSsNQIjHaM1T5LxaX438ra/hrLdUtG+76MR7HxL1ksWUZR3qT5Ua41esTWF5Xj2KqqHEJlvCNkSzTTxkBUN5+qSFo7L+5R4zjOIKOe3+Z9Dfw20uuYPT8OBH+Uy9L6s7UlowULa8Awzxtd1qx1HZu1S2u1mB3HNVRQV3fBcm/z5xzd4xGZoMeuSfVcda1t76m1CrTHt26kN61tR20zW0yP48PW7X1MAtWnsX9rxrx6blubHN5VWvD42i3IyCmRpBAwRXc1cr783YATMCvoTeCproczMMMsdzFGOpE5o1S986p3SAZx2TxhGnDXurSKmCWkeqOs97AWMD6OvEJLxqNE55dldaqbTzaLAVqzNh6JF+iCMGwc27PA+XnP2fmGris1H5wvytZNbGDFMrm81IraYGktBUHFUUPKl5gSY/kg4bwSnKXH7LvA0AW8RJJCmjLFy8oCi3GgHgiIdIiOxZJRNzhZNtY6l9vx9ioxRwJFCbbX/Qf3mNLE2cU54kOpJpvpgtB3/exC1Q89KVrmAlP0IldX09wuzgfOzi+sSrc4JGfu352Ik7Vm1wfufeZTnJ2fcevinGeefgMZJabE1dUOzcLV5Y6X7t4tufrtFmNOHOKIarY88t4Yz6yWrjNnc28TEt5P9H3ibGtB7KqO4OH2HeXWWc/ZMOBdh/gt+B7cgHdbMxVmR57g3v0rssKwPccPG4btGcNmS0ywHyd0imRxON9Z1V6xomWb7RbRHhcnanCfxoQGA85ZYaypKDc9qQEaFVxLNZfNivGxQrtMem06s12+Whb8uJ7AmrV6UqUqUa1iXtmh7XZrWd0K4GjFAoltg6+bTqt8tWxNy/TfJGvFvpVpmthsNvO9tkoGcNSX1b++Kg+tUlzBVOvD227WrZ98u1lWqeeux7XnWm843nskR1xODEnnNTPlCFhK2uQdEhYXrpYZc86V+apYlVE1d1M9vu96HzWVY84Jh1kxfLBYh3WbCxC67sjVo03s0FYiX/dLCxjbmAYqaClAR6Ewt8Ulqx9IeWGh2362bISmiLtJGUblVhTe9cYv4Aufvs0Ld+7wpa97I3J14OGL9/nwxz/OV7zzy9hsN5xttjxz+2k+rRMfvv8Z/tbf/xsMt+8wnW24Ot8Szgf2OTLmhJNQCv6ZYlHH4zon/no8VgCytj7cu3fvkRY4YHbxq4pD6zuw2WyOlMhcgoOfVLHUv9flSBmqSmNTuf6IFJgDJm3MS46F9Dxm59cgw4ku67suvvbXGGdofncMAlrmfIrJtBWx4r8tyGhdh2r/tRarlpCor7Ulo9072mdbruPm+dSe68g6sQL6R/NpBVxwggRvRT2bNXENDEr4lrkGp8Wtqj1XOy+cc6u+SKzXsPX9VGmBvQF6N3/ePtu61kn9LOfFlbP9zVwYlGKRyZb0oe2XNTDKqpYqXHNDjh+3/dxHZR1vLWzt2n04HKyAqPdkoQT8JzSW9tMFFIpYgiXESN2oS2KCuh63c2S/25GmOAeAr4H3TdaPR8krsmRcp+eNNQjBjJHWSJTqvRbzoDqhapuRedfYb5RMH4Q+QBcim63QD0LnFe/NshAC9MGCX0RLcG31eVdj7swdIKI5IkRMw8848RjEyMUUWiPu1ZgDTUg2FyKPEsSu5cl4e2C0lHPXEhtAsZK4+XsaI6zO2mIhUxp3l+Z9bcVyTNVLc15at66NUPb7eqyAd8sVncC9e5/i3v3XsdtdIdsLhGzHD+Y6IM4f++JKzaQSiqI/ldSzHaFz7HY7dslcB84vzknxkhghTYm9XrLpO7zA4eqSbhjogyNcnNGFgfH8nFtnWxKZOEVyTLjgrbSWlADeOBHjyDgd2O+viCmSY2RyV3jv6YLHu8D5rTO8E4J3nG+U7fkZ3TBYgT02wIDIgPc9vQuoh3sv3gOsmrMPjm7o8KED6VBn1giEkhGrn821ppxkHFZYsVYIdt4zaWMe9oFJlTElspcZUCAy91c7X27QYe08rsZrHIOGI1aoYTCedGDRShvL0AYa1oWs3USBBTDYUfNm1G5Izi1VjWdrKuB9h6olpmjZlzUD1zWpVqsiXe+vDT5umcblPI7QVd9/AEsDm2owZfmsPofVSSk2L1HCXO/A1kazRGSmOBG6nlo4LItYLRitDGBGckY04jTjNBFIaByLy6llzEuaUQfJeR5OOxBfaiWU5UpYiroV1jHmhM/LOiXNwmaKmBBq0gMRMmpxXOWEDhv/wVnGOVUtvr3OCpuWNmnHRKtMWEfJEtBYGL66A0Vso3bi6MQsjfhMFmFyQLIiglvXWzpIVRJmxei8JRbpovKGszO+4LlbvPHiad50+2necHHOnb5HPn2XOEaCwHNf9EbG855P7S558cGn+eQnP8T+1parAJdvfp7oezR0aAjsNBHVWMmloKJQs+5Jab/q+1zHVFU814pw64e+2WyuuWC00q4Rzjlq5VelBobKnDJY882ZrJ4UidPNAGluuzpHUXMZLLGJzi1WjupGqKpITjgxYLYG8a1SnXMirPSq9XoyK5UxHinC9f7WFgjTIGwtaNe22v9rJbr9fUtaHLkEoddARqvIz0SILxbFfOxWulYqW+BjSSaur42UJyELGrUk6jjOgje3d1F2zTtlaZsjEOiWDFPQZtG87jbVBnvfpPi2e8qyhi+uiLWN1nF2N5EAa9KwvV5OFVwcA7/2pVqSunD9mHYsiYi5+SesJEHT/xUIHQ4HUiEO1Mu8pht4sULGh3Gk1i6K4hh8ibNb1cmo8S/1OuM4ziCjdc1tx8A6nvBR8viWjKL0LD69YGzr4ivLPIkURBEp7kguEwK2cZUGzApD79gMwnaAzUYYeqUL2awLXgkeQintbqjXzRlPAJwknCSyJNBobgKSkeJfWd2lnBgYsXFd1HxNSHk5ikXDQ/AGlJwKUZJVDZXyDD6jQcndkjZVq+FCZ4s9sh7n5btitQWWY+z+IOYFWEgBFjr/zp4Dh2VmakBHTjvieMU4Hthuzkw5dTZgfTA3oXmhrIimnkCX/qruCdNkSr8XuDg/m+uSxGgKTJxGNCamw4EQPC4M9H1H3/X0PtCJQ71l10hTpBt61DH7eMfpwDiNjOOeq6swg46Di3R94tArIUyIs4rEwTu64BiGDV034MMW789R15PFmJ+AL5Nuh3ed3Zc35c+HDvEd5mVjcTQWpFUYUTX/Q3Gl87KBtFppWJJBVRHBh8AIFvvjm4VoZciqylhrybrGhFfEWcfkamETlXmstPIkKwewuNm0i+Z64zxic6oPu4DqsdtYCwxEFsa/zhvvHckyR2DFuG6OhWgZvvb6a/eodUaqnLNlVPPBYqOL+c6y2TErPJmSplLEivPlmnZWcX4BRoLDuxrQmJd5j41Hssykg9OEFyWgDN5iKTTZ+ud1ImRbR43OMYtw5zzZlWxsMK8HFVxk7NwJtTpCM3FSxi417W0drtWv2PzknXfFfm1KfnWx1VTAobNMVb6mDKxkSaPEOFdcbNWAVU2+qCil7jjJCdnZwhnUQc7kAtyzZlyJTetw5HJHuZiXexHOu8AXbDa89ewp3nD7ad709PM81XU803dsFO4fLkmamYJj1zvuusTH8p6PTg/5Nw8/Te4ukPMt/tk7TBlEiwtrTnPsVKtQtlXLj9lgAdoaKosSdtPYa61Ea2W4/Z0W4gMxwBcrSeb9Qtg9Jgv5+Sg1u9Ra5vFTqqErlI20uhdfT01rG7jt7xVMr5ll67eibDZZqFpLZMtYA3OdjJsUzVbxryBDyUcKPRy7hd0ELtaApV5/DTJaK0fLyFewWUFGbb8WWLWWlxb4VnLmyLomlUFnDio+bsNmvS6apGueo+2XI6vQqm3rcW0/1c9u2h9bK3AFEpWYavcR4Ajo1/tYLO8yj6H23uyDCvYeYV2q96qWxCihR/02P4dYGvK537k5DqMN/LfjyqIslbjIJTtnjc2zddDjkSaF7fFYXABZjJFcrM1tELmIuVK9kuQRr8Bdqg6J+rCguU5ge9XJnNJEzgdcOLA5S2SnuFA7ZxkE2zM4P/c899zAU7cdF2fKZohsQyL4jHcJ4UDnLdVtVZTV4Jp1lR8RHZEwos6sDY7yWzHTmJeMF1Atm40COeFypGdk8CNTmNh2E7fOImNUkiYml8y8lTKbLnPolDgp0wg1AHgBXTa5isHjSEF0rgaV12fXo+9mPVXMWhNqwHxB+rZ5V5AQcYVmFAf9ZuDWhUPyniAKYm5mqoovKXvrJE9lEoBwOIyz68k4mvk8Zks13PU93gkPL3fmcuYs20+eDuwePORhzcIwRbzziAtM+wM5ZZxmNpszctehyRZl31mV65gy/cU5qomUIofDjhRHpmnHSy8JyC3Gcc/Dh1ti3JtFwQsSegY/MIQN55vbdMMtDgmuxgSMxOnAtB/RFOn6DaHv8H1HGLaEsCV0Z2y3W8AWpt1uN1cDluDZHw6msDhT/HIuloniJufE411Ht4GD76hpkD9Xdd+sfrbY1OoPj3OudjF80mXNxq6DYetG6L25ESixfOauuUs4F8xy6Rw1o475v+rRPGwzHbVKWutWs2bEqpleVY8UPecM+IoPlp44gXMJ0YxoYigWXh8CY4rW1wKaIqLVn16N7JAaA9GDHEAyvR8wEsfWTO97spjyHxyEnBhEuDMMvOn5Z3j48C6ffulTnJ0/xe7BJYfdnsMh4vtAFkfE8YVv+lIu95H7VwfGhCV5cJaFbppGi6DrOvNNl9mEgO3HNmZdIXHqvae62WKZklJK5GkyJS9lclEIgy8pfsWKpEm10KyULwDvPJ3zJG8+thml0H9GeATPwQtb5/DqISqqJdbAHej9Bqey5OZ3Di+CpMgddbz5/A6/9R3/Dm/qztmKIwCJxP7yIbsYOXvdMxyc8rEXP8Xf/8A/5VMSSbfPkdu3uPW2tzImY4u9BvOixSzOF5uzWamYpsk8abmuFG422/nvumHfBG6HYZiDX9tYDTvH5kjhWPutGzi3gPHLy0tz6YMZfHzuq9drL23wMRwTODOYKyBDC5BuizhWkTrGi3uscLNyuJALlsUQFkWyDfze7/ez28nV1SW73Y5xHOfsUylZwc3WTRSc1avS5Z5aIqN1E2wL/9XnXivh0zSZorlSHNtMVPP6WrNR5iXrXc2YVWXtDtX+XdvmKI5EIGlmbBTR1k0KSvKDQkx7Wb5fx8wdt/1yL+1aUdfvddu1UpXkahE0gLHcX+vKWIHIcRB+VagdItVdt8Z4xNIuRR/meG61ViRzl8rFqb8Ci2MXO7EHMWJi3hcWINDGAh1ZsqiXPnarq+O+klqHGNFkLmAL4GpS4Rap7qyoHiXnqNdtU7Z/NnmFIGP5V7UNPioDHlvsnc+ELrPZZm6Jst3CU7eK4l105QxstvbdnTuO2+dwsVXO+sQQJrybzPCuWhTxxcXAGApQIuoOOD/hmCCbOxOaCc6X33m8N6uKmU+t9kLOE4mRTX9JSpfAjpRGQshMMTOlxMGluXPylJjGZIHfE3gXCtCyZ1YVcqYo8WWALf2Oc0XJmeMpKmO5MJ6GoWzigZ07Z503eTCGWwoyUSeEsOGp24GhN+VGxdKP1WCz0PVsNht2hytwDvHKPk5l8AkxjvT9QNd5uqFU0ZwmDvuRabxk2xuA3B9Gwrhn7x3BeW7duoWOFt+ADzYxintZOuyt3bKSIpC1LCiKHhIiEEQJXU/yjtwHbp1tiXE0v8I08fDBPcZpNBZuM3DWX9BJjySPlw1TmsiHPX3oudyNjGNks7mgGy7otxdsbz3FbsoE3xHcwOWDqxlYOBy9CzgfEB/onFjBvRSRUhgwJbWK6YV9MM7JkQoLgZN/i+BJKXi9+MTWSdQOnObPa6bmJ1zWVoi6wa3dRY6f1dwXpyldO4ewLOatGX+aJjrnC7sTr7lBVZnZX5aNrG7QdcOp71sriM31BKJ0wROcw2vCifL8xZkFqYswTpaNbZymYk0Ns4tS1FiYzJJNL/SoDMSY2HQdqJJiwuXERjJCZNxdcefWOU9dXPDCc89weztwceec82fu8DMf+lnSlBDxFl819EgISNfz3LPPMn36Jab7DxFxlqZWKGlVfXGbDCUNdamPETzmWnK86S8bo7HmbUX11r+3dY0Dlkw2yQBAm21sVpRzZiqsXladUz6GYP7eGwn4Sa1adxBku8EV9zEejHR3NtAJe4FO4CLBbQJf9eYv5YtvP8Mz3Ybbo+eZswsADmnCnd/iLomfe/ET/PD/7x/innkK3W6Ib3yeO5uBSWACxjjNGWJiuS/nDEy2CmcdS3WsVJe8NXNa61a047CO5XYjr6xwbauWRa1zp/3Oe5tXrRuEagmMz5kcn1wXzJeLyVhAhjNw2lgv2zWlzbSlOZHSSF10Wya6ZcFzznQ1pjAv6UFrXEaN4bKEEUvGqcPhwG63m0FCazEVb+6TVa+yrJBS+r9afY/n3E1KdlU+x3E03YCqfC8AZK2MW/YzmVOmtrELrSWjVfKPLGhi1mJX1hKLoxXUuaOAYV0pqmDJVrz3dD4ckQzVai0ipJzw7hjE1Geu/64t0jeRcEcuTdnWsrYPcs5zPQoRsUxuTRs7189bstUAUqpFww4xK8c4VXeuOvcr+VwtFiV5jJTkE8y2YJJa/1h8m1kcnNh67MpeM8WJOFncyG6/m/sqxoR0vnDnizWrzpW6RwYf8NXS0aSmXVvwAdsDVC0mubG0rOt4PI48NsioCnPtwjI/j3SjaloXMb2zH4Qzb0G5krOlWJXCYJEYipvUrYvA2QaGPtOFjHMR0QlRgaymgJf/igcjxnAlnEwgE0hEfLZYDc34UnhOhGI0L6bJ4lqFjCAHujAy9BOqE+nCArvGqIwpM/ryTKpoEuIkpGguGF7MlUBzYatKvGTOeW6kGWQ4KwZkE8j8/2fLBAVYBDO52/0Wd4GCkGmqHXspNyUWRRBCz9ngcCTQXLIjlXzXOeEL6qzuQSh0XW+sjVqq17n7VAl9z1QASoqREUPNQlkAFHK0yZ+zMo0TqBRXCMGJt4rBZbKpKuoi6ry5iOWqmCidD2Z1sSmAcYpaAEvHYb/nECfyWUfntrgciGOyarspI9mz3+2YDpGcoO829P05IWyBgeAFJx2alDQl8EthMU0Z4xTMJOSd1Q3RXH0/rV9swbCiWuI6FDH2lutc4ONYN+rCUhdpm+DND28wVLSb5JNuyVgzIFXhbxmx+nkVMyMfM2EtAGldONcbESLUwkNrlnD+fbMZzub85vubFlPrDzd3V3UvcmJxUxZrVlapcaKXbJmUi/XAWL/MPmViFiPq8wTZoeJxalniDH5kggPRCRjxMvHs7S1P3b7gbDOw3W7xuSMHz/OvewPj5RX5MJJjout7Qt/Tbc84Ozun6x7Om3m1LqgqwfuSQKFurpXxrtagpQ2X51984Otn7cbfKn3XAjOl+sbLtb6g9oO3dlDF8scXommTHUMSvNpmLb3HZYEkSFIkKwFhGDY8t93yjHqelZ6vuPUsz99+ijPf0x2U7BwP93s+9fAeL7048qn4gJ+/fImfHR9y5s4Z+g3DWW/FS3PGZXMzcM52olSVHRZlrwXObSriVjFqx9p67LXja+0GUoHGWiFo14d2vFYluG3jEIKRVzzBgd/TdLR/mhJloN0s66U2TVFYrH3yEheDkaSU9xTGtu6zlpJf56w/WvZNVSWWWlwpRVzJ1hVTYorRCi8WJbbkCzKwo+ZiG1PGlfgYIx9NwcctNRfq9WKaLHS0/Ff+Z6RXznO9mJRKqtFsCQYO4zi3Syrj1YDQSE5N4CfWVnU/tODmJUW0K0RmSqnofUZ4erfUY1DVEkNpINs5QcVeRsAouawxcZrmxAyqSvFfLmn1lyDovu+MeCtLUMrZYq9CR/0YDIDM4KiQP+YSexy431q56t85p4oOyjok87+y+IKC1DT2lv1LSkHdCiIgljWsZuLTee3Kam73SnWp1xItXFLULoOXubYbtUheoZ28IxQf+pgiKRpoHaeJmJNlTxMbWz7ZmMslC2Y5OTkuFiyH9bMV6VysQrVd2leKcc4N235erT0taP1s8gosGZbOUxQbSGa7blD4krjMOQvc3mwdgwQEc2ECKZuZEHOk7y0u4/xs4GwrbHqlCxGRA2iYy6N7tWoGDllyCKuiZJyOwIRIsmtYOqiS9aQEfKtC8UQWEsqEcEDcnr4bUT3g3IjrIkOvjDEzxsQUXFPSwxEn86dOSSBb8R4rXxmKi5Ra+HBl66iFmGTxBy9KbQ3mrigtdLVLyxjPFveRkgW6afmi94MxKQo5O7puw3bj0HRAc7Lz+EBOcpSf3epdGBI6255b8XOxjBkPHz4k58g0RYazLTmrBQyRuby8JE07gvdsQ2FnESsiFScO08jV5Q5xmWHouTi/oFq55r7KvgAHy02fciJpYthYPZSsjnFKoCXGwnfIdiDInjCNTFvBRUeKyn4f6bySk8Op595nHpi5Vzz9cM7QXyB+Q5w82/MLUCwIPVu9Dkq6wpQSSSKJEe+srof3juxGW2jnRaAi/4QLHYorFquMUPOsV4BRwcexuXQt5peZq1Y8L5yzSGU4yp8ta3/E7j950qbKg2OQ0QKAVrFPJdbAOXOXqscsIrY+OLm2WNbNrpp4gSPlrf7dWilaf9NWSavKXT2uHwx0WlzPRKdYgU/NiE44Le4K4xWDd/g+MAwDQ+hAlClNPNhPHKbMmBNjSqRs7l+dQJ/Ba8YzsekCaTqQ0wE3wBu/4CkuLm4zHiY2my2SI8l7vvKr/h0evPgSD1+6x70XP4MPgX674eLOHbZnZ1YZOnicWGX1rrRJ13c4EaYp0jWuAjaF6wZ4feP2IZgysMp81bL2leRoXRsQ5jVx/bs6g8Q5gnOIqsWCYQbAs+Q4z97qxgjkXvB4QvYEcTjNXDjP82d3eNfrXs8Xdmd8gdvwlO+J0uFCx8XFBS9eXvGRB3f5lx/7CP/03/wM45lj3HgePHsL/8IzsN0S1dbRShZ1vpstLId5k7X7nyazEPd9f+RmZ2xjvLYWtNa81me+flctHO1xtf3X5zp2tToO9q33EErxQxTUP7mWjP1hvJHZtrWk8f93WvRDITUxMcDR+HSqJU7I2nFqUqoeuZtgc6EmC5ESdzFNkXGKVkdJmeuFife2Z4hYilFVKx6suSQ5CaVfLVYrxmTAIpfigE4KqUjxrW9AvNoaWtPn1vGz3++XhnLleabx+HMoro81hf1wxFDX526BcmX8l7XBFNFN39s6UtJPJ1WSYklTRrNubLdnjHuzZHjnrO0KiTc2NW3GcUTlzEA5WgI2jJh2zs/pXL23GiMp2T2Frq3mzTwWnHNMcZqtIbV/wfbrKMWtMARLTOQNLPngjeAo34m3WmK+FByuQC8nqz1kSY4cIt5KJIiat0wBjblcbwYa2fYyJ5VINqtBcOB9IZpF6XuzjlvNigPTdOAwTozTZO78qWaOcmiycWMpqssTKhYPlw1Qq2T2uytEmFPBr11VqytWTskSJ8kSh1O/q5kT1+6Hj5LHBxluyb3rnQdnCrP5lDkgWNwBI70LeAl0zqpChw5CBxBB6g0LXRjousB2M7HZ7Am9w3UCzpHZo5ivYhwNzTrxiJe5YLgSUfZmmVBDdpojWZP5/GmPwxMEVBNaLBpCxPmJ4Cf20x7fjfQ+4XvogrlKjTHhnFX/NtdeRTcLwvWUFJUxFRZiARaLx5TgXDB0KhX/mNJTJ4qhZ1CNR8qN5eLOVqW7Am8ROu/IqVxPHd53gGM6ZNzFFucHXDfgwgbFW6pV1Aa/IS+mNJoVASFptsVoiqRxx9XlA0A5O9+QJuUwaqmZkUhdZjMMXNw6x3UOTcqUJy4vLxk2Dt8ZczvGg2WrCoGcod9YNd3dbsd+b7EWIQRiX1wARDg72zCO06wYppTNhSP0sBc0KXmyybjbPbCJ4sBNpnq4EKDvGSXjJBN6eHh5D+c93ge6zQZNpsiNh4iqmXr7zkOG3X5vi0Y+MAw93gdwDh8TMibSpFzdusWVP2OvPTJhSQEKg4ZaMUhUrdZLsn5OWGo5ZKk6Kzic2qQvSU4Mq2pdwxbmrJXrLkRPnrQm+7Ozs/l9lZb9rguZzYmFQVozwwYimmwx0mQ/cZWYWsBJywiv76tV5Npj1/7H3ntShilG9ocDH/k3H6LTifMh8MbXPcNhc4sYjal83eueZbvZ0AVzjbl964LtduDsYsO//Fc/xe4wMU1w9/6e7eBLIUuQNOI0EkhsBwvgTnnDfpp45nzDZttzd5roQiCEgYFznAuwvaDXwK3tBb7r8F2g2wzkfqAvr5gdZ2dbzs7P2Ww2lu6aCsgzWXIB21WpPU57C7YpT3Ga37c1L3LOxGliPBxmBbmmHDZ3Ir3Wzl3Xsd/vEYXOh8IUm/9wX6w7Aow+cggRp4rslT4rd0LP0/2Wt73hi/iy517P02HgtgrPbM7pNz1+03HVCz/ywQ9yOU687Uu+lH/yU/+Sj9+/yy9cPmB3p0ccRFVeihNnCJ0P9OLpoycmYw81NUHFmOJQKOg5TqKyfK0lw2LCjmsvVFebCrzb9b/+bg1Ualuvg4Tb8ex93db1muvabrfDIQT/CvjFzzO5vLycrWfA0XhsnxVvcZBGTizW0muWpWxJEuasgmXtqW3fxgxYoPKxK1X7qn202+158OAh9+7d4+rq6iimpp636zrz0Y+mMLYVwTOJpMXiXsiKOKXZXaYqfPv9fnbRG8eR+/fvcxj3pNymmj4ueNfeZ+c7zs7OAY7G7TAMc5X5+vk4jjOV7Jyw6Qcr6FuUc80JFQHn6QeLfajeACm1CQ08fd/R9YExjkdjeLffz/e9u9rRDz1d6NjvR1tDnC9xI1Ox1JR9NhnBXLMJVpKipp9d3DbLHHNmhXbicHEidh0hBUIKZDUw5LwnpIRsvLliihgY1WpWasZftjgU1ZJEo1gyUs6MxTNitnTlVPakQrimJftnSmlO455T5mp3yTSOPLy8YnfYM8aJKUbwMqcMd97hNRSizc0gyPTTJSVvTqZTer+QEDVepeoW8/iYjESXZr2vJFHdg1/9mIyqAQkzWpsV1xKQB5XdMo63F8+w9XSdp++F3DDEBjI8wTv6LtGFiHcjOGO2VU1BzVrygzgDGQYFi0mdhHJANaKk0iCZrBG7sQ4kkFy1ZFR0UsCORLwfQRKSE6REP2RCFvpkFgkjQstmCwYWijkrxUR0ac6qYsOmZD2wP3DOcKyieCnuXgX9tsWBsirBK1KPV4rVxM2xGVkVH7QE5BSGKxXuvLgvWR9UBWth2DLmioGI+WKXJ3JOiHEi54RzQu+dmePiVPzy7N7Gw4H9w4ccDntijPRn27lvaoac6qJlg9ICpcw1y567BjNWE2POix9oCF2pHL5kkagWBFXHWH1cJ/PHHUdTYHwBGK7vzS9azP8+jyPDYNmxxFuGKOs1hwsgeIIXuiBIjqWA2MKIiQhjnCxjD4KEDoYzJhyTgnfH2Z/qW5VlJGjpo/LAszWqBtWqLhaLajFrLRjz1PtlAC5aWfv4rl/tcXPdAI3zZtGCA6lritxk4bAA5hr2snYdaZWTtZm9ft8qJa1iV8Hw1W7H/fv3uHx4n4veE856nn3qDpvzDX0IdF3Pm9/6lgXUp0RwQsoT9+7d46nbt5H7D7h/eMhT5z13zgY65xh3l7gQCQ76EAiSiOLI0nF+6xZoJo4jXoTDYYeO3tjSKTFe7Ukx0ocA3iHONjgpjLvmDDh8KdSpqiV7lc5sY53Pjrq0L644FWg455hGC4K+KZ1hbo5bu1m10priwZQDKetQLlk0nFp2wiBCOOsQr3Q5slXhy595gbc++zped3Gbp93Ac92Wi27D7c2WS5f4V5/5FB9+8GkeDMIvvPhpYsz8wocyH777CR5OI5c+cUDxaXF37cQxiLMMVSW4s+5xubwX74p7rkJeLA5ry1dlnNcWmwo+ZlDW+EnnnK/FcdTvbnK5uu4msip8Vo7pe0vdvexYT54cir9/3ZTNhVpwJY5lfuYGZLRBri2QA3Cq4CnEX1sM7TrRY25DSyaoVmlviyW2Ad8tsVLPWfvb0gurkbbNfGnrpVSwetiPjIelsF+N96hA43A48ODBA652l8QUZ6taXbvabFcW2GtJGB4+vAQ4epazs7PZOrHEfERSTGW/9hzCHu8d3q1SxzqH73pbV8ViGHKuY9DPICN0gZim4qJlcR3TNM11Ic7Pz4kl3XPOEEJH1wWzvMSJnGosibs274zgXTIAejCra3GHqgUaZ3e45vlre3tsvavJF4JPaLDsZVRtwlWHhFrvo1gttLjQt4Hdda2gzE+OLePVig5m5akkjfXxjsNkMasWQL6sr9Vd34sv8RtLRqiqSy2WzQxZkMQMTtcW0zoGTM3Xo7WnxhzdZE19lLwCkNH+U6BiUZjrpURsYvvy3gdhs3H0vbApIKOeI2dLT+ochJAJPuLcBFje85xtYKW50JVHnZmF6gVVE3CAEo47d14JxIYOlZJpaQZJCSFhJ0p4Hy2Zfc4oUwECoNmRplxS1bpSo8PAlR2RmMSqdnaNq5OKnXpeMMRcy1St6F9tgDo4a0elnC2GwLliVHPUYHLNQoqZlBUJuWTCsEmURooLli++pVU5c+UaVqU8S8Rlj2iJjaiTSzOaE5Atk5OAHpJN4hI4ZgHckfv37jGNxkzefvbpAmRcWdjjzDRDNcMpXdfPCpmIsN1sjyaXcwYwWuWtDvo62HP2TGMNrLOsENM08vDhQ3rprC5AKTxolqRMmiIXFwEXSkBtpmQa8XQlY1Rw0Dtma5QBJj9P9ClFiyVygnQddL3F5GBKmabjzBsVhFaASVVG6piqfU+dtJQCkjdMt3mxPP7sSZdW8VmsFMfuC/X7duMSFl/hNp1etXIUB5sjy4PO7b/MtZuU3LV71lqqYl0X2PocKSu7qyvu3b3HYbfj6bOnSqHKO4TBWPvzszOeef51ptRl8wdOceLy8j4v3bvPs8/cYRoP7B5m+uC4vfF0IjzYTwSv9MExDAFNBxxCcoHtrdvknJjGERHHfr8zBi3BdBiJBwPiw60LcnUP1EhoNztZAoYN7JW1a26fYh2S4r7UuCG0rHnWY6Ws7efiTT7P7bpRze4QHCvLbZYvpbV6gVcIGXqE8+3Anc3ArSQ8pZ7/x7Ov551vegsv3H4K2R3Il4fiJ+55cdzxL178Bf7JRz/E/UHwWXAqfGT/kKtpJHsHnWeMiVBcDjzQqdCp4LGgTC3jxPaARnGvwIJlLT9WdhaLxXqMV9KlPntth6oMtgrz2n2wBXvrcdy6uKwV6r7vS4HAJ9ddamxc7qoIZWxSLPcoEsEHcx+rFp21JUPqaVTIuXW5tPPanlatpYsV49iSsSjn02R75jTFWfFvMzu1lpGpkHkq5tLlREgiRzEKbczFfnfgsDdQYYTbxGE0V6hDUUYvLy+N/Y6L6x4UFrtZF7UowSLCbrefyYca2xFjnH9rY9NI2mmKc4KIAwZSqgVIqvIugsqVBa6LM32uFAl1pcBy1wWr45OXehr9MDCN09zGosxkaUo2dvuhn62kKZsLmfPN+lLXfJjXkRp1Os+gVTKAKtq0ef2uKtamVzqEMI8ZJ8fjxO57sWRUF3rB4nWrjlDXirp2tu67bUKSaZqsX/d7DuNoOllZV6M2Lk5JDTi4Y5DQFrRd1gMb9VHzNeBZzzdbMsq9rwFvPd+rDzK4gSWsC1+5cWOurbHFZ/oBtpvMdgNnWyGLo6YaVGwBF5ctfagcyBpJcU+cPFO0gJYcE6EL80DOqnO1SCSjaaRmeJnT/Yh5wmXM59+h9MFMXfYIEYioRrx4RBTvrC5HDczJGQJCVvuRx6EuYhXFDREGn8kJfMgWa1IGdZ5ysT6ASA0Ogq4zXzyTVAZl2Viy1ehwrgZYlXNlWwxSskDDKCNWN8Tj6aELHEbhMEa8VAYyzdeEDGkiZXNRcMBhP9J1Acjs9lfFuhDQfODnPvoRfOjoQkfXefa7iayJzWbLS01g471797i4uGAYhuL2MhFCNVUbg9v3A7dv3eHuZ+5yKG4Tt2/dmZk95wyc5ZTILHmsAa6uruasHbGwG33XWTD64cB+t2O/31ka3+2G4D37aYLiZ953Z7z00kv0m4HNdmuVwsXTdY7t9oxpinhVvGSEwNXukvGw56lb56Z4qUG9BEziGF3gYVJy6HBusDz91dmSRTmbF6+VRaJaNFI137IoKo+arGtW/3En9eezVEa3use0udbXaThbhWy72ZpiPY1st9uVT6i1bXUBWbJuRCuKJYuvLix+qO3i3vZf/ay+b11WlssJKUUuLy956aWX2O33vP1tb+FLvviNXGwcD1HGKXN57yHxp36G7bCh94GcMq//wtfTnd+h297FeeHZZ+5w+6znQz/10zwYHzJ0HV0Q+q2xgRIEJ2fs9pn9pLgpEvpSAyFGs0ROiTwlzsJAHEezLsgFOTg0eLL3xVrpLJ4qY64IXVd8cCtxUU3uhXSThRWvUpXf/X4/F/E7HA6zIl37tmY6qSxy3QC99yUbjfVRdcuoRepUlcM0EboAOSNZGXD4lHlGO756eJb3fPlX8YUXT/H8cM4WcJsO3wmbZ57hF+7e5Wc+8XH+0T/5l/zcuGOXlUPXcRgzfmspRCVO+L7Ha4Yp4jQxmUGCAejGhBxGooMwBIutK/uOlvEypqm4UJjLSKtAthaHGqNRFZY6BmFJr1lZzLoGroFXZaRr21a3iuoCdWjc0kSW81f3tNafOjephZ9EGeN0zeIrRbF0cZrnqRdwkynw68QSFZCJWCXk6aCzW1W7FrTWo+A9muKsnHVdzbhj2QinyeIzWkvGbrebs0y1ALKuOYfxQC71DKp7XFUQVa2q89XVlcVUlPig6na8zmo1r4lFQZpK8pba9212va7rLKGBc5DNBa0+p7nqJHKNEVIrVOud0G2Kkj8eLHtlifM5O7NYitAFQh+4vLzksD8AQtf1TGNND2tjd78rCn3Ms6Xp1sUtC1zHrEoP791ns9nQdT27w0jfW6bMW7duHT3TfnfL5o63bHiWgr+sY7IUQd2i5K7D54z3eQYI1VrR9n3VbW09ElRrWQCb605Mn/R+sU519FiSGEVjicuhklzNupDNKtQC1nqtmeCME4fdnnFXAGWKc0C3iu2jdV1JMVqmMJE5LqdaKVqdJKXE2XYAtWKJFTDU+4fGmtWAjNZFeZ3c4nHkFVT8Lk0m1c3B0L1zIN4XwsvRdSVA3EO/UUKf8SEiMuEkWWCkAHjQZK5HJTg7JRgnSNEToxJjNqSP1W2oTJKhSEDUUheWgO+c7L7Ea0mRGFAcKuYHb+GhIGJWDErOY6fm+lUDtHJxT0rZVHlzP4KaGQpJ5nWVBYtHUQy4mHR9YT1KMgcp3hxdrW8xu0tR0K5Zb0LZeFOZ1NWSQRaSd5bVKJiFB3U4hcMhg06kac/lwwdsfMB1PTlPaCymOcwSgavKbmJ/sMVNNXP37l1SPKBp5Omnn+Jqt2O3v8JpnMHdvkz+lNLsXzr79OXMdtsheHKuAZ1WCHAcJ4bNBnHC/QcPuNpbjQpxYpkjSiGrPCWcD+Q0MR4mA2ilzy4vH8wBvxarEksw2w6c4vsAzuM2fQmeHUE7nn76aQNqizPTPNH7rrdq8P9/8v7sWbYsS++FfrNbjbvv7nQRkV1lVmWVVJKuXbiGIcAA0wMPPPB4/0Me4BFMvGBghhkXjItdZFcCSaVqlV1ktOec3XizmtnwMOZca7qfnZkRUumSkazMHfts9+XLVzPnmKP5xvdFj8IIZt5pmsYBwiYVU2IiMSrDaCxHFJMyhCUTu26XWZEScIJkR7MCVr6G1cBdQneen3t/GE3fAH3fLllh54xAK3NVtDbwlws9sCyOdaZJHDJNDLIg1xATyNAbJVn5OoNcO3Jw7nTU9/oyOxxCQCcxsI8P95yOe2KYpbkxwlcPB372y3f8+19/yTSOWOB/8T//n/KjH1yx3Vzx9t1XfPnFW6Ha9oq3n32FVYFGw5/9yU8YjgfCPEsyIlcUYlRYp2mdMMR99dnnPHVPNF1Pv7nmcBzomobNrmceJnZ3Nxjj2A8nusbgrKHpWz778i3z8QE1H6Xx2zQ0zQbrtpLoMZqedhETlNyRlDhUTiSFEDBaGr6HccRagd9M47jcF6MtRjmskWwlsbDeFbsXYY65lpEwzpGAOUS0dRK7m4iaA5sIu2T4Ybvl5VXP7qXm6pMf88L19F1Pv+nxreGr057P3n7G/+u//gv2KfDkJ95NJw5JqsIouX8hehE0zN8tGdzEMM5CJ6or6lOjl+pnjFHotCl5hSwOqHROGCRi8DnzavBZryCxFD4Wh8xnlpg1EOFsbNaCXpIAUsu31mM7eC/8eAn6tl2yqcKEJ5+4hEKM45if7TdzEH4ft7nA13JFTmjAy1wujbMSPGhV5rBAckr1Q2u9MCtpLQGJ0Rpr3dn9hhKwJbwREpsUC3OjEex9SgvePoSQE0mr02itXQKCurkfxJk8DZIwu9TcsNYyTRPH41H6nSIrgiE7ifMsSbc1K55QhUgyreOo2K+yie3MDHMJ/Nwwz1NOOHj8NEKMGGux1tA4Q9damqZbAqiubSXDPnse7h/46ONPaDuLNqDpGAahoNcqQfQkJeyT2uqludjnpJNyjtR1kOdQYwzH41H0bVJiv98DMocOh/3SlzHPntPpCEpg4K7r2F1dLX0Ntb1XSnwOk5ObRcC12PfymeJEyzgxNI24yQoZI6QF5JzX8fU+S1I4ZSgTC6zJey+OfQ4yBG2zVhDqCts0TeJnjVK5CqEwl61Vh4IuifncMWuAUMOg6sqIJN5CdkPOdapqP0SOI/2vK+riXCfjd1X/6+1bVDLOs4Hy77z4L0FGFGdQCabWWjAGtBbGqeJgrxM4w3vQxCRNdTEUWrYgTc/RE3w2+tloa5WkxJhpahfoVmGQSqVQn5ZzhHKOCONUUQbP6thJdsnwyERQCDuFkh9TtCpywECApMuDKZFqvqlaTjTGshAVrnRZwKQElaFQWi1OqM3c5oKFkwEsJUglKqZ1kJHL/l4DKRKDR9uYMxAekqicJ1izEknUchWJaRLctrFa/h0mNIG+7xgnqZaE4LM6pNzLtusW56xupPMhCGRpaSbMDyrl0r7RaGMBxZQZWIwx+Ogx2Aw5UDjrFkyRMGmoZQGRgAiZcH4GIs4akpe+DR+8DOZqEU5Jxsk6ZteGYGusKL4jipiucQKl0PIdBVISUARtCEkzY/BKE4QCJAesqzNafq//FmMjflq1X8X6VZ/bBzPuYp8/hEqGsbrK3LDMyUsn6vInV8EreM9l1eEcDrUGDeT5R/7OlWWmhg7UrxfjW8MqathJ+dz+6VGgSiGgneX9w55p9ty/e8vPP/2SeRxpVeLwdCSGJAu60jzcPxLmEeYjxp9wvaXvOl69uONBJQmeIYvJZSy9bcRJtYmnxwNhnhiiJGZOk0dr2OqezfUOrRu8TzwdjqRGo53B6I7xtEfFic5C8gFtW3GqtJPAwmqs1SLil421kFZkuF9KmKz9EWOUf1PgpULPa5T8KG2wWVTPqMXwk4rOQIYTSlVP7LRRWqqLiJL3lTHcWcsLbflh0/Nms+PaOnZBqgoz8DSNfPr0yOenPZ8+vOdfffpLTjoSjIbGEdHiQOZMt8rPs1QjQg4eQlIYViYbMh1nlmrKAVIeH9kWFbpPhVqyfpIAExbFQCH6YLGhxbFZHdnnIXxlW5xjVpuRUlzFEhNr1raMGe8F5queT34onrc335WtMC0BsiRrSVLGnBjSKsOeqJJ8Si82oMB6luenhERkYT66uDcxFs0cSWgW51Brk4O6sDr5i304P+caMlc7/jFF9vsnnvZPi3NYYDJd14kmwunEcBoya6aiaZsF2iR9k3k8KJWd17TM10vMfw3hE6iRyuQ7HUYrRjgLhrTWONPgrF2y+ORejWkchX0oRaZRejhj0BijaNtG7tskFZAYPbKuW6xrSFEJ/XQJFqOsp0brs7kqNPryDKZJki8xBrquW6o4IXh51lrT9D1Ka9qmweaEUwkyFt8lU4hfkh/UlS557pFU+T/LI13ub/nzct1J6JQTFFGS5fK8ZayoVFEjs/olpdpZKl9+npnm6Qw+XpOhFI227ICuwYw/F22sr8n7mcJ2WldRyr2pYYBZpWFZB2u41LdBVnyrIKPcSCkRlSbCnC2MQIhYZ0BJc4/RhZ7SYoxDmyTsT1HwbZkZccmARwn7mKeZcRJeZY2RwavWikAqqrNKoYwsDioUTuPiFCiybJqIrqmqPKwSJjeEASs3staQAgkt6ty5WkHOHojDKH0E5cFKpkrL9ZQgQwHE3Ngti4lSSvoGclZEFQqzKCqQUmGwEqDJU8yZC0SZN1PzJmVAeQlwglDfSWOnZ7dpiSkyjwObTU/X9vggCtcxCrQsIk7+OAxM04BzEnz1XUvXWpyzuMbiGkeaI2E4EaPHOcOb16/F2Qd2ux3X19cYY3h4fGS72aGUYppWISrvS/ZXGuitazLLhDh90+RxTSMGXyf6foNznnGcOB7F0TLacLXbMo5Snp2nkdPpiDWGV69e8fRunys1ARUC7WaDsS3O9nz55Zf0mw3bqx3SSNnSNA1t22ccIygiMUgZl6SJ87BgcLXVkilICq8aZtXiC2NXChiVxYxS1bC1LFxr47cxongeUtZHqYT8aie2XoDKXKsxm38IWy1kFaMoqK7MH+vvWl1bHDtxpEtwu2aOYq5PnmtwrPATsk34UBhuMaZqhVOUrFapkhQIDwj9bg1N+Prrr2RuJaG9/Hd//TfLd8+zZIuVVhz2R4bjiXDt2W63fPqrv+Hh3Vumw3v+0R9/j1e3L/jBJ69krsxjTkCEMwXa3W6HdR0oy67f8vb+kfcPT/ziFz+j212BijRdw3//H/9j/u5vf8lnX3/BF2/fchdGQgr0m5bp9ETnwN1u+OLrI1gjdLoopnnA6BZnLcHPaCsaNipnCMvid3t7y+Fw4HA4cHNzwzBKM6g19uweKqVw2tIZhzOOoBReJYJK+IKajwmTEsHPmAg9GnOcaaNii+UnL1/z/d01r7qebprYOQcpcpwPbF++4sv3b/l3v/wZ//y//q/wXUNoHcfG8Xg6gIdOiV1RZnURrBHnMuRFeQqBYZ5p2x6jMvRp05DyPjppQhBIV9cJfK1u5i1sLlCp1ucKRKnySgUkZQjMhHOFee8cLlG2unJXcNR1E+40TbROKkhlfCxMVqVCodZKRj2PjDGC+Q/fXbhUSQAt10XBwefmVp1YosNnkjnPJYSsZql6LA5jyVrnY1grlQwqtWY5n9yHmOJa2bjAuxfYE7CsZcMgjdMPjw/cP6yQYsiJwYvsseh4SHC5OJIhCC11nnvH45HJ+1XtvhpLNcNVCAGnhfJ52/f0Xbec4/v37+W6Y0Qr6LoWrRLzOAoTl2vomobHhwc5tpLg7N2792y2Ldc3Hbe3t5TqcUowz6PAwI0IdypjUDYRrRVCmwo+G0LATxObrhOa/GnENW2+b6vNloqK9KPEKAlV07YAdH2/VLUlOeOWBJKzFmvcEmzUGfk6EKt/iwZH9tWSkAVEVfpeS9O2zcxNYJzIGkzeM/osxJcrGU3uzS20P6XKIpWGlTEM4DQOxBDRZmU8izGy2+3EnsSUA4QVZVLgkWs/SdW8HQTW3jRuCXzL+3UlJHifK55qsUP18cpr32T71j0ZH2RAFMvDgkSKLTE5wEFyElQE8LOo4abk8gJjhO0Ig08lyJBoTwanl0x8gpDEdAqsSdiGda6spCBkU0qDjiCl8QREojKZ6q40hJFdfgFdJSqHngxfKoI8CVEXTsJ/bIzLmQophxpls/1KubnpUgG9ZFtU5urWKN+QELhYgUrlypdUJ3ACH1LCaFSiZYVZsmlSkRGBHLSj7685HB2Tn9ntNkTbEVDcP7zlTke0trROMw4jfhK2pN1uC3EihZkpTHSdQ+vEPE/88pdf49qWtm0Y5pMEY04To5Qwl4CpagaapolhHGiblrZtOZ1GcBqtI9M0EyTRhG1aur5bcKxowzjOhFlw26eTTK7D4UTTdAIrSJ5t13I67AnTxKZtGA57TocTT/NM727Qam2CHIYB60Crlu9973uL8uv9+8fchC74077byLglMKWUMxYl65Mn2zyglCUZi48ds+2JppHschSBwpLe+KAyIU+euuy+vneeZSwLSZ0xKPf2D3Fr23YJFFalb6FmLlsdXK2B23l2DsT5mud67l3CrCqwXFnAK4NZSso1Vro4i8XQ1xmuphFM8uPjI6eTqK5eX1/z0Ucf0fc94zjy13/9N3IeORP2N3/3M168uOXm9pqr6w2ayG7T8ub7P+U//8d/Qu+0jEM/CmypbbBG8/Xbtxhj6NoG7SzGifDVi5c3YDWb6y1vvv8J//4Xv+Rp/8DxdOTVm09o+56PPvmEL96+xTQdIcH9+3vuv/6Sm5tbXtzcYYzj/X7GxCO9C9zfv8dvtlxfXS33qjhzMQgFc9u23N/fo5RasqzzOBG8VDViZhtURuFTynG0LFUBoYedUmTKSQZtQJ88m6S4xvCRbvjhqze8Mhs+1lt6LZBLvGZuG6Ztw/1pz7/66tf8t//V/5m9n5g0POxaBpUIBJqmpaX7oHm1XrdSbsocx4kIuKZBkmjClHdzd0fbtlLtNBoV4iKC1WYn5jIIVkotuG6lpF+lZNYTawBSnP7L8XrZkFxgEwUuVcP15P21Rl/GcTkvpVbNqjJ+6/H/baAOv4/b8XhcnOrSIA/n85uc4BOnCJyzzLPPucTCrlgKbJG5QmqUxusUV4V7bQydUqKBg3x89uszOQ0T0+SZZ3Ekp3nidDrx9PTE4+OjNGRn2FP5eXoSKvYQPD5I07gtmPx5Zv/4JPSk2mCNEWr07FwP44DQO0fRxtIabWCz7dDjRIyJpm15enqClGiso3UNs899HOPEgT3TNHI87gVeVhTGTZ6bRuzn7CchoMh9nNN4IsTEbrshJDieBg7HAxhFVB6lpf+zbTt2u21e208cDkeenp7Ybnf5vnlOxyNt16JJjKcjxlpCZs16uz/QdiImGpAEQYqew/5RUAxJkCspesnqI30o9+/fY/d7nHXLfNVaE+aZdH1NaFqMXXtnCgy39Cz1fb/YC0ky2bwey73XCBQPxDcs69I8TQvUfvIzfg7MITJ5j/drkDFFluq6MWZZZ0qQsfTazJNA5BXCcBfT2X4pptyr2mSFef+BfSnzYqm2UOzFajOKfTkej0sAUX4bbT44Rp0E/SbbtyPLVue/lVKLqIpSGW+nLSnmIIM2w20MMVoIRWkwkZKB/JOSkYpBEcBQAa0iSaelIXGBVKhM+aZqSNSKkatDCPlE1vNI5Vyl+TlGgeiglCiLK5HpE3ai0pehJcjQhhgbxLx4Eh5iMWwI5W5xfEoAkcjnkXtBlCbSLOcuFMBSUku5ipKUydGx4IhF+BBAGBbkPhhU8rlMbLBug7GSRQkpkIInolEq4v2EUp5xWjMqKQameeRw2DMMJ9q2EVgbAhXqNz19v8FYQ/In0MKZP/uB2Q+0TUPf98tkKJNynj0kRePE8U4Z7uXnKFmLjMkWqlqJtMnGW+WGt2mal8a5eiEo+NsYA8MgkXfIZeRWb9HOLQqo0uzFEvGrvCLsrnZAzmS4RiapSrjKcY0xEL3w8scQoAS9yqBMS1JO7r/6kALy3IlJCzykvHoWaqgSgHwYnDx3zD8EmFTZijNVHPeSxREDtuKYayN2Di1Zj7Vk6VRhrjt3+tb9gIvntY6xOohZs5i1Q1ZvJQhpmoaPPvqItm3ZbrdcXV3RNA2Hw0HwwkGaryPwtD+A0rRdh/cTMXoaZ3j96iVt12BUJHnPOE9iMTJcx7lGRKGMVBXIRzTGsNv19GlDMo6o4eHxwPEw8nQ4cHfb0286tNWZhz03rmqNVUJ2cLNtmebIttXcXvU8PD5itWHTdeJYcV5lK+NZKoJuqeoQ4+KgxCSsa8banARRJKtFiycK7r1XBhclSdQkeNHu+MHmmpe24WZOfLK94io5rr3DNQ2z1RxT4K8++xVzZ3kMI5/OI3/7+I6ZiO07JmvwJKLO1Qe9csVfBgLkbHPRtFnHivw22rDdbhdYGOQAQSmIK4b6ObjAcxny58ZP7QRcVivrgOD5QPvDzGu5zqVSV9YVzr+j7E/65g7C7+NWFMtTxsCvzbVpoYWPShGS0KcWKLNkwAtMc7XMKQVUFiy6hBjpBTZUqm9xgcQV5eYYI9PsmXzAe4FAFTbEcRzZ7/c8Pj4uvwsc6ng85r4Ig9WWpBNWCxw0zB6iaGkYl7UoMvqhcZYQLIrEnKtSIV9P2zQI/FwoW9u2zc3fCdfY4rAwMxF8htrEgLGWoikRQ1gqQMlZ/DxhsSgnujhRUO4YK43HdragBO8vZBuWeZoF/pyJBpx1NLkBfJqmirI9Yqw0jCcS01SqEln1fBL/SJz8tEC/Yw6w/Oxp2ybPa0E0hFkE6VIQOFnKz0v6KaDrO9quP6sgANTOc0mA6ZKkjkF82CQwULRG5yRx+bw47gXF4Zl9tr0XkDVhwFp7sepkYq2vs+D9EkvQixJY6TzPWG0x2pBCXPRTCtSqPmY9nhtnlvOD1d7UVbfFPuXf9TELVOs/TeN3XmcW07SU4jKsJxUD50iqATyaLt+hQFSRSCB3Oucqgjw0CUoETwjSS6ANosORRAVT594I9CwBRPlbkK/5nPITUdK/UBLNgsJSa5krO8GKPIAzfi5Qyp5CCyblUKF9DbGR8B5PSjMh2uxMJ/l8qpwglTUZFDnwEssWtQg+SZAREbLEssDZ9SabhFZGHI5cnVFkWftk0ckDsri7ZoexE1EJjzJKkZTBOoX3IyEkToMnJsnWQWSeR56eHnJz2Q2zl+DFGMvd7S19v0FpzTzsSQa8CsRJczxM9F3HZrNhygNa50zu48MDYQ7CtmWKsrLc08Y6UXlP8WxQK6WwTpggTuPTUvZchlievAU2QlobwEoFxTce262TRXCYhnmeOZ1O2EaclRd3LzgcjoTgubq6Zv90IKmEtblMGMNqwMqijSL4QLQKZRpSYStT6SzIuFywz6L8ZwMEGaf14l9ny2vn9zIr8V3falrOutFOjN6Kn60xpcIqJ45CcSaW8m+M8kx0IaS4DPZYMOiXDmf5rmI4y2fOnGvOn28JjLbbLT/5yU/oum7J6oNkvprGcRpGpJqq2A8D2jk22w3v331ODBNd2/DypUAKQhYKHcZRMPjZ0Wi7DcJ4I+MuJcEmK5PY7nq0bVCu4fbVS776+p7PP/+aYRgleG6kJC6LnUfrju2mwxqNip7rzRXj5LndtXz08pqvv37LoEd8CLSuyQ5cFGar/IwKdWppYD4cDoBaYLHl/cY54uRRVhOdZk4Rk5LoJhmHItL4yCbCH1+94s8//h6vuw3m6YmdcagpEcJEtIrZaZ7mmX/x7/+Wo1NMTjP3hq+SB6XYGM0cVW7QljFg1EoecDm/og9LxRwl/Q4Ci8n9GEa0K2JunE4piSKwMejKCXkOylg3WdZc8uli/NTz2hizQBAuKy8FulfGZ5k71uS1RwbsWeBTPleCjEvb5LPT9d0NMZBrDmmB3C3zm+wYKUnICStjcZzW+ygx4xpkxOhlPa4pRTNKgSrxMHu/sHIZY6SRWZdmXUmQ+Ty+xkon4/Hxkffv3y+/YV2/2lYgim3ToHKg6HMSjSRsRso6XEYRQKJrhZxhQqouZV8At9lgjFsoUzddzzgMHE8nVHIYpcFYrBbYXCGZsbmCEMK6DqaUoBW2Op8CmFaqASU5qMQ2uVyNDpkaudgK0RHzpBSwxtG4wGRnhtMgukFK+k2ts1hnUVplRiqpKEaiBDVAk8XpSgCUcnXRzzPbzQaFNFZHL8FnCgofI+MwUBaOkJ/fdrtld52WKmGZiwtUK9+HYudSUoQgUHJFm73mhI6CnlmDjLhUMiShe87Kt4zdFD8IMso5lH6YZS1LJfEtx7SZmW84DTS9k96vUv2oqiDlmLXwbEoJ1ThSWhPEsFYyavimzkEdKSwQ4XKcEnzV9u63bd+uklFZp9zuRoFLSbSJNCfpLSB4WMnKxczBPosmQ5LeAo1FJQtKVKuVFtybNaBNxEQIOiHiy+KYo2YE0x/RKmDwGQyVqp4Mcaal2iFMIlqzlgEVKwNANkir46dzVBzAWFAG0ISo0LqVjIeacxUmVyVWrpJ8c1zuMzALzaDOf9vM241K0vwUNSlqCTKSRM0C91mbqLWuFhXfQvIoFTA2YtwtTb9H24nTeKRtHdY4wnzi8bQnJY3RPfM0IQ1i4vS/uL0DEh9/8kZgH1bT9g1fvf2aECObfkPbtmgLkwrMR1HCPJ1OWGd5+dGbBVtc6GrLYDfGLmXq/mojpcIkd+f+/eMyEX74wx8yjgPTOAAsrBoPDw/c3t7KgA+R/dMTWglEo2a2sHd3tKZDIUGLQfChiUKNGWjcls12K2VjxNF4fHzkancNwTOd9jn7JDd4XcwTiob9HJl9YD8PhE3uI1Lp2eDhLCBQaiEIuNxqp/e3VSv+EOFSxTjVFIGQnTktY36aprMMT5k7y7zO2wofkYph/Xr5XYoYxeCWz9ROWVlc6u8rvR+lWRPO8e2C0e+Ac4rbAp/aH/bMITJHzcP+xNfv7/niq6+5//rX9F3DzW4jOOdp4DQPTNOIcg6d7c88TVmdW2gbjTH4eSTGGekBE+rH7W6Hdi1X13f84Ad/xL/7y79h//iWlOCnP/0B//5nv2IaElbf8vGbj0nRoxXcXm8wjaPrG4xV/M3Pfom1Rhoqx0kyp9mRKItWCIGrqyu89wu+XOWK41woMrWlSZo4RVxKOAN9gnYMtD6wjYGffvQDPrIdb0zLD168wswRpkBQLRjDfpv4cgv//P/yf+IxBGZrcR/dMSmpjJjWcsjOBKW/YfbCYtXYD6BC9UK+cL7lua60lipyWqEKpESYI8oId39d1anHWOnZKePsEkIlis5poZ58jr2ssA89Ny4LNK/svzATKZgn6RXS+XvKOZVrMNagrTmDRCxVwuwAfVe3EgCnlPWKYpR1G1nXSVE8grhCI4tmQLkHtd2tg4w6m1vel/svn52n6exZl8CvjP+iRXE4Hnn77h0hBH71q19xOByWXp7i+BUNjNS2i95KedZt0y4BpayxluPhwDSONG2zBPOkzKrXddK3ZS37wynrWbiluT2GIGrveQwKtfG4JH3bTIeaUlpod1OGnY3jBEHR4DHWoY1DGxH/LBW07W7LaZCej3masVozmXmZV8ZIJaNvI0/7PcE5Gucwbp1DTSNwLqUUVsnrMSV08PRXV4u/WcZy33Vs+o4UQxYQRXratMblROc0TFlsODIPI36YOPZ7xmFkmmeapsmQ27nyZ9yZzXCuzd9psmMuFZWAJINLsr2QNCgNTiF2evZMGb6WUhF3LvNvFWUswW1JtIYYiaRMwpMyW5petU5yIKCA4XTKRElhaYZ/ropboFnzLMFv13WLfbisVjTW5eqZXnteKjv0bRKf3zzISHqBfKyiKvmhR5Mdp0gyAhISWIlb+gpigJSpaiXjr4jJZOfASeaBBDpnolIimYQ1EWXWZmFUrCoZAa2mpT9jgVUUet1UHBDkM0kBMhgL1ErF7KAoFuYRlaTGkLQEP/JeCUZSDmpmCXqkdEH5pqgsRjdC42gbrG0ponWohLLyb6WNZP1RZDUeChVSUoqkC8WeCNpQrsQ1UJTLdSLpHdFoIiem0WNNwBqwpsOmXA3RDj+MAhxTSONyxjQehxN3L17kZtOZ8Xhibhq8Aj+eiPOJOM80Xc+P/+SnlKbd3dUNwzhwPA3sDwOusWjrcilb5SClZ/SB0+GE0prrm2vJQOmEbjR9uyH6SFCeaBqZLF76SIZpXmBL3aaXbI1SbHY7pnlm8p7TcMJe7UiZMSv6GTXNKAPKGIZpwo6DGA9tKWxVWsliEf3EOE1EbcqwxGpHYxUpSlk3aEVQlqgcRkszXcpQt0zyKY5sTHmM5HJ9GecyMSCtJAClxFa+UypZ8np5RikIvW8q2bQ8AuK3mNy/j9sHFLNVRtjZdfGtqwgFJ1zrypRNqcxExgp/KlvTNBmwlBkm8v4lgKgbK+vtEm51+fpz75dzstZyc3PDl19+js8Rjk/w+Vdf8Xc/+xk2PfHJy5fsupb79+/Y9aVtNS341xhF1Xi322GbBusaUOBUA0kWOW0sWkv2UHQ0NI3VfPL6Jb/+7FP2hz3bq2ucFprvcRi4u73LVNVC5NABvW/pNx3GWGIUh6Wx4ryEEIQKXJ9XfUq2r0BzFJqgkIUJBcPMLhleq4Y703NtO15d9VzphhvV8PH2lm1MbHxEjxPKWoIxPKrEv/zbv+SL+chbHXl71TACXhtsAynPXbPMg2KvA04jZBo581dGSN2roDNc4vx5SpDhpxniylpkrCTORACrTNPzCskSFMCS6ChbHXBcNknWkIxLkbhaHbpOWpQgeYFL5ZN6DrblmkYEyrQ6C4DrOae/YRby93GbRxFsA4EEybqb72mIi52g6tUrNmYhi7gMMogLHKpAWopdKc846rQEocaYpSdLKcHqT1UGeRwG7u/vOR4OvH37dm3Mz/MI1iy20LGvrHb181rPk3xu4h8tczHPQ5V38vPMOAx4v+qoFB2LkhgwxrDZbPCzaOeUiknZv1RGUhTRO1JEIYiMGIKsfVpjG5uTr5qu2zCMAsvysyc1DdFHYqb7RwkRhrOOFMS3A2jadhHWM9YKEqEkBlIh1lEZ4pYJhkhYK7BMmTuK4SRUrynGVc8mJcI85aqM+E/TOMpabC1jkMph0ZsQUhiBvwJLpcNX2iuKRGMzNXeeQitqYV3LvPfMk1DPip2EpDVWCTpieaYXwexSBcpBzOLQawleoo/L+CvB8zRN+MBCcVsfC9ZkpYx9teiflPFX7PlCMJD3DbDMh0uEwGUV97dt36KSUQZ7YWnJMKBEDhRSNsKlPGyQvozswFEyOOsRs+IFijX7pNSalYBE0h6ly+eKM0b+voDWLn+mGND8HqCiz+5/voKkUKmcT16kkjiHJKFSLJhOjSLp5vzyU6H/A9SJhR4rJVLSRDRRNVjVok2DNS3W9gJ30IZEEMYWrVHGZn0AVX0Byz2WibYqZC57KJevXa4hpg70hLJ9VkqXhdJYh9FIH4mqRM5yIGOspTQ4u7bBKBjHWQS+xoGBwDwOJD9BDChjePH6DfMkUbBrWo7DyDh7htPA7e2NCBJmaJhrW5qu53T/xDh7Wtdwtb0WiEVJJmaaWpTBmgZtPMZEXBNAa4KfCcHTt00+f3DFbcxZgaS10ACrLE4WgjCsaCMGz3vJCrsNpU9EG42fJ4Kf8MGDKc6HNHRZkxVX/Zz7ZQxoK+OtjBxVXAt1VtUooWhkpUau3dHSw7Rc0PJXKRGuAUm4HBdLle67u5VMWl2pqDN45W84d+oFDrU6Sb/p2OU4JWNZ+qOE7euc3hY+ZN85X9jTB8cv+9UsVPV70i+xw1nDpDUhClTz/uGBL778go/vHJu+o7GGw/4eSyNsbk4gOao4Q0nmsHVOmiFjlN4MxEkyxlYOr4S7Rinurq/4+isFYSRMJxojVdNxHND2ShY7IxjoRmnaLtBvROBqGCamaaJvuww5yCV3ZZaMe02PqLU+qwI7Y4UGeg58cvOa723veNVdsTMNH22uuWl67mzPtWnR80SapD9ljIlTgs/SxP/77Rd8fnri0SbaV3cELQGMR1YUk6GwqfArZvtbCAIVAldI1bgqz1KCzrofgmV6BR9W6vP8fCO5ChHT4vjUTv0CU9J6EUYs2/IdyxfxwXv1WL4MAi6Dh3rcrhWJ9MHcKWOx9KadVVfrY30we747W/QrxbjVmkhFDBHXYAL94RiokxgpB6rCmJhh3NlmL83fGeKrlJYePS/pxJRYmoaBxUkrNm3KsJdDShwOh+XZFUe+BJYlyTFVz/zsmVYOXUprBV2XcZerWaScXc+VrBDW6llJ7ByPR7EdWiCBwRliFvMsPQvWWhonlNYFOlX0u7RSwpQWNTpJL0lJ7rStCPulKBl1Un4WoaxxMkGtsTJuY1rW4jDlgCauKvflOcAaMBRnXVeaO84arHUMp2GBUmkltiIqJaJ4MS5Jgug9XkmwMfkZlysZpdesbduFhKXYOWubxWdMMaDaNn+PoGdSXscTakkcrs8rz7ecACEl0eK5cNCfC4ZD7h9LKSfAc2VJRbG1wXt8Hj8hInCyqhJXxn0JXsU3lOuoq/M1E1oJhEMMS//RpbbLZRDzu7ZvEWTU+GRdBQLrl4s/JgJ1CQuqzYaf1S+++JRaAhIlfRdFPKkEAdjcqlBF9MvFhbxvhGfMpuIiyEBnRis5oTKMY8pGCoVR+ZuTIi3BT9kfqTZEkH6StJSdU1QkDFG1KN1jTIu1HU5fiUaEMUCQLLvWKN1IJyQfLjqqeixnDTZKVQuW3B8/a1wzc309koI44z540iwOd5QUAq6x+Gkm5AyHtRIktq3j6y++giRUiZ989Ia3X3/J/buv2G5a2sYQiRyPAyFC021xbc/xNCFQLEeMQ1bl1rimpes2aO0IEeaUaLqeu9sX/ORP/pS/+qu/glwC/PkvP83UdZbdZsPN7R3DOHD/eM/uasMXX3zO2/0TjW0FE50ScRo5DSdc47i9uyPRELVFGUvbbxi94GMjkZev3qCSME4pHNMUJePbOOZ5kjKrFSG/pCJaJRoDad7jw8w4DRh3jcaRyA2slAqEDOjftVgv7xcjkV/8TY7y/z9stUNVwxhquFLtvEs2qWBC4xn9pxxPY4xdVJHLgl4bwgJJKds5FOucthZWh6Q+Z1gNbn3sGnJlreXqasd2K6ryx5MnoXjaH3h4fOQf/cmfkqIE5sfjgb5JtF1Dt9lkrLSmiREfPF3f0WSK5xQDPkinoUCZHNa2WNcRoyKphEnQt5ZPXr/AmcAvP/2UTbPFR8XT4wO/1pFd37LbyhxV3pO05vXrxH/xX/zn/Pznv+LTX33Ky7sXS19DYx0hrYtWwQxfwpCS0SgSOiaaYPkv/5f/Kz5xlo2feXz/gPaRJnmuCXTKMzkYOkvShr/78kt++XDPXzy+57OtZd7dYZVGd80CjvN+EhaZlAN8a0h+Zo5eMnwkdAKNwS+lB87OEaomaSMw2Jgk++u9l+p1XPH3ZCVifFiClhqGsASd1Rg4wzXrol1xTjJQ67CUfp7ymbqXoxyvHrNrBUUTkz8bx+Vz3nt0kkrG5Xxaxv43dBB+L7ecCCwcKjHbkOVtsiMUE6F6VkXkbLUbxZkVPa7LHpbyvJf7FzNVuhKbM01SUZFnd968X2hYC5692KTCpgdZ8yc7eB7YbDbrGMuOcYFUBS/wJaMF8lJXKcp4LNSnMQhMXSG6E6Xn4+H+fslWX+12kCLBzxyPh2pcqYX9z2eWp82mp3UK8NJIneT6rRHfwKLoWgk0/HhiGmekWVqWPOdyg3JSYOT1EFIWpktZdyZxGk5CuqCkthtygJcUAuEssMLZMydJBMdMUlF6QKwyOG2lGgsSCOWASWkjWjxaFLvnGAnDwOl0YhzHJbi4vr7m1atXbLdbttstL196ttsNfd/jrMZPAidtnPguRbB4u7vOa5HATqNLzD5wGscFehZjPEvM1DalroQudMw52IpRIICi5aMhRIapaJMEplmazGsl7zIuappaaxTGaKw1S8Ko/l3s1DzPSw9L2S7H7zf1Yb6F4veHGZfiQi2+r1IQbc7yRlKyCxRgzeyo7JxJdHcJm5Aoaw0EFoOQsxXnkYpHgE1hiRjPz9nnoGV5Zcnks56ZZL5LTKPWfYlVe+9SkiRfzybzzwbJnEVNxIDuSGlLSi2oHu1uhHPeSM9JUlLGVZjcP7AcNH+Nlsg5libytMCl1mgt5M9EdIR+E3nxMvL1Fw+EOJPmyOHkiUlzHAbu7x/40z/7ByTdCRxJGemRyNl7UUoWjONwEOq37WYLCMOFVoq2afj008/Y9D2b7QaQydo0HZsNS1VGKSUVERvonObVq48ZTyNzUvzl3/wdSls2uw7rLHcv33A6HRmHE+8fH7na7YhJHJivv/6aGBNX1zf4cb9MgNvbW56enjJOPPDm41eEpME4Xrz6hMfDwOQTPioe7t9lHOvEJx/9iO32CmM1T0+PKC2UeCKaVXQSAMKSSVbGEhF4WYhpKY9+oy2PpbLgfBsM42/dvuOxSfIejBUWIqUzFjnigyz0Sp9rZBTjK42skpCQhJXwxGmtcbY5ozGuA4RiY2pjXhyxSxrMsl+tw1E/t9q5rp3BMxiK1hjTcnP7miloTtN7kvfstj13t7f4gPQY4UEn+l1P2zc4a9C2wSoEp+09OkZUzib5ccSQsFrR2EYE7DKdpoiQapRRdG3PR/YTNldb5pA4HAbGcSaFyMvra4yV6mhSGm2ElvJu1/P9lx3jU8fxsSP6mca1NNrSacNMwkehnW7bRph0Zs88BTrnMEYxR0+cI7dXd/yDj3/Iq5sbblFsp5lNEzBx7a05pMC9VnxB5P/63/43DM4wGsVjjyQMckDucyXR5PutDXkEaNIcJEuaFK3tIIr6hta2Kgqutl4pRYgKYTIslSKB10Qvn1X5njRNQ/IzSXFeMZABuWSOfQhLP0SoHEOQ6V+yzRaW3p4SyJZxJY5qwfybBTIlNmPOjeAZF8/awxFjRKXCOpi/z1raoi7tPX4UTvyU6l4ztVSpvqvbmHu2lBLVCu/LPSysdUBhjMy82IUata42lOcpAnaVyBgrYxUxSrUciF7o6/WqAJzHUswN6GrBzit5oBhjFs2UwqwpPk52l6KIEKcgehfl/FaldxlbJRgpAnpNDJIQVYmrm2txNKeZw+FIVGCVBg1RlSZjRb/tOR6PzGHmcf8gGP8QGE4D2+2Wtu1wjeN4OFKq/rP3uRqsScrStk7gyUYzzSM+Bwx+8hl6LheWcjY/pihN3ar0w8HkwwIbF2av9dnOsydmCBQIy2eomslL5VZ6ToRJ6/27e+ZJiENIIUO6Q66wWOZpYBpP2ReU6oOKgcZoZj8vPQd90wrLlfe8e/s1D/fvscayf3zk9vaWm5sbrq627LY7VNsQkkKliEEIe4a5VLYUIUTmOeBDYPZBiHKCx0dBQ5QSe0qyn/TzSKAkjFTprNk6IMxhRms0Wipl3i92Z86ifYVNkBKchKpvUQupgGi6VQ36F5UMqIT/LiB8ZZM18O+bXeriC9atpIxKsGHICHkWle1CTUsBh6ilIak4zlqpRZ15xbhBpldagowzZy3p/PkqyFjeVpBZmJbds1Mthy7o+QwpyqZapRIElXMtR8vCPLlUStQZw1u68nP1JnWgetAdSm9Qdos2DmU02gqMRo5mQauFyq2+t8qUvgvJlmtVwH/iWNRBhlIB10T6jceHr+Xe68g4DhjboBBVa51CPq7h8fGJzabHOiNNWtaisnMDUoa0Vhpttc5fiRgTpU1u8pb3VDI0DmIQvKdzDT4oXNPSdj3jHDMrlwjTXG2Fh38OQZQ9tcE4B4NatEZSgmEYscbQtx1Ppye0NhijM550y+l0WoRntG0wWhZPZ4UKL86RKWcnUipMHh6dYVRaFVVWnSEpUkljEg5p7z0+CjuQOLR5AcoB8u+OGdI6hkoVLzsn51W8D2E5f8hbDBGt0zLjqErKi4P2jOMuzkIxMmXHUlU9h199uKWll6OuPpTtMjlRZ6rrcyn460s7dAm3Auj6DU1zyI3FcDpJsP9w06JaResUbSssFAX2YLQmhfMytfEejGTeSheQhty8m/fNkInCwuWaht3umtevX2P0PSc7YMy0KOlCpgZXCmctu17z+m7H6fiCcZy5fxhQkL9TAhtZ7EOm0s0U30mSNCEKIQTaMs4j4zxxGE+87Hco1/DwdOD26opoNE/TwF+/+5zH1nDfWn49nvDaEYwh5D4CFdJiJxXrOYuujSKGSGFVSEtPnRYNA2UwGkkKVdXvZailQmkeURULjNE5w5kz3ksvFQi7VoVNLmPVaL04+HkALPN8me95q1nV6jElqtEf9kzU4+zSPiyvqfM1CtZc2TqGzdnn5bhaOEa+o9scQhazVcIilJ1PhYiWQbYbiJBiuR9L8JaDwQI/WlgtEZMi1azKJpWqQiYISUmDiqQZFsg0yG+lReE6O3bSDGzkPKoqqzjADTH47FgGcejz3FdK0WW9BtEwOBGjUPIaJfZMKXEqm8YRo80+TSah0WQRykiiBD1IH2eIjH6kdW2ev0mCAMoarxd9sYSCJNdgnMuVREBnNtCsRh9jwGiV1/pVbyqlmMU80yJW6KOQQgA0rWMYTnjvadtuoRlWylJn1OpMv1LgfZSfOYjWVtYkk+U2s0WWhnBE3wy1nlOKAWclORLmEZlJTgKAFJmnkSkliOCWaognhCmrq0uwl7TouJmYUM5iso/pQ2CcplxdiExhZg4SdGRyqqWy4UNWAw9RelazjVJJSYYzFT9QkuExBXxYYatyXivxQAgicbAEeiXhlhLoEuSuibd6nzJPCjnE+nr2W7XGGP2sXfpN27djl+J8QU7FYVqw4rmRLjvki5Ol0hIslE2XaD8L560sM/WX5cZotX7vintNkMVQSiO0SqswipzDTLqg91mXLOmhWBayxXnJjZiqBDb5oSA9FcWKxwgpZL7mFAnRELVFI3ApbXqU3WDcNvNJW5QDVTIr2slkzQ5o/W/pcs2iPzrz5ku0hl4CNjFuwYy4RtNvYPQjkLDJMk0Du8ay7Ruce0kME41r0Nbxd3/71/z0p39M43ru799xfXOFnwf2jw9sNy1eg1KJvu2IYSKkADGx2VxxfXXLzfXtwkARY6RpNPunJ5oWNpst4xS5urplu7vhr//9z2hdS9u0bHY7trtrnvaPvHv/QJgj19c7mran8xNKK4LPE85HWtfQNg2PCbquy1m+yGazJSVRDP/qq6/YXd3Q9fD27Vd0/RUpKobTQJg9XdvidjtC8IyZxaptW2LOeMRkuNpsEBV7z2k4ME0z4zgxDBNxq3NlTq8LNEgWJg/YMmQviwyLg1QWfJVd6/y7TPQPgmfq2haLkZF/frcDkhCFzrRcxQIxMIZUSBnSyvlfMr9hluxMWaDPDGNMRLXiSeutLCrFbBU7UrLJKaUzxeRao2OBu2TsfWH7eQ73WjuOMUaatssib2CM5vMvvuDw8J7eeMybG8z1ht1OKosx5iw2inGemadpYbYC6WxrmgaCh0xmEaLQNdogfWnaGIw1jOMJ5xxN0/L9730foy2Hw5HTaWScJkzSaOWYppmmdbkp1PC9j17RNB3b3R3/z//mX1Nw+wL1kefgvUcbydKFDCOJSSoO9w/3hL7ny5QwPvGzL3/N7fd/jLMdf/HrX/Gnf/anRK35u/3X/PN/+f8g9B3ti1eomx0TgZmIUokGJEUVI1bZs4ymcRLgjOOENuK4+bAywy2Z5MVesgSfITd/Qk4wpXNu+KZpcJma8f7+nn63xTZCZOGMycmGVem2wKPmeZaVaFm/1gC1ZmTpum5xlEpVVmvJctfBccH5l3FfbGx9/FIVqYPb4jCM47g4Y4Vqshy/JlT4LtuRED3FHosfVhFCZEpRhcIpvWSDhRlqPJuvK24+VwVIC0RJUbGBsTq5EVmb195NCUisESIVlKCg52lYei+METHbGIWByDm7wISD94xxxGdmxaYRbZyYEjc3Nws1tAj95eAiCl1qIuH9JCKdOdDWxhEQCKEyFTTPGOYwSfCuIaSAFhpP6RM1htkHhjELQMYEOuTgQ47bbTZM87guYVqqNjGL4jljhfghmgU+llLEWMU8zrlaHZhDoInCOLrbbXn79mvGYeTm5jYLyilBlyddQeVTFlNUWOsIQYR+FeITyHPNMFkSs5/yPDMUTTXjpMoZCUQ/YhqFCjNxGlDWkrygcLR1qJQWUcD7e4FrDqcjh8OTjIUYUEZjljkIZtMsqUUfg0CwQiShmPzMXBLSqbjMpZIQl8rBOqelYhFyVVcbUWcvitzLOhQCwzAsrFOFDOCyop9SMYmriHKZB2WrbWXRgYnxvJIheiFmqYR8k+0bBxmXeOY6o1NgTilFSDJotdKV1yWBRLmQdQEvi3Q496qW7yphSmnMTTSuy45Idh4k9JTstK4zwwmtHIrzm7hWSTKdWDnP+j3yoFHnn115tBNaS3Chk0TpC5xDiVCLcg7b9fLjGsFfqgjB5wWqyVmwAlsq7EOysCsn1QWllZRTS9ATnQSjyMK66Ta0jad1G169esU8TszThJ8HxtGw6Te8vrvh/v4Be91wfX3Fn/3JHzONA18fnpjDjNWZEpjE57/+NX3fsO07rrYb9k+yiHZ9yzRPfPHFF3z11Vf84Ac/WJQq37x5g1Fzxidqbl/cCse/bfjjP/kz2raHlDidjvz6y7c453j18Q/Y9lu0TsTkaTvJFvjsYBljmKdRMKH9Fu9FHfTx8ZHdbodWQg+8bXvatsM6oWzcPz6hTMPt9Y2UgjNO9eb6KkMHIuN4YvYDfd9z1XaZyk0UW/f7PWEamWbPMAVOTWDUCZ9hbrmmJc8JJZwkMdY8U4DgRWXFilK6zuMypgR5vJS5VMbX8lspkg9LdS8UumW+2aT+fd6KUzXl51zj2kWPgcXxr0u3l9AlqBw7WGxGnRUWO4VUy8zap3HppBXqwuJIlPMyxgjbUmYfqRt7C2SqfFcNnwLw88Q0DkzjiLMarGTPf/XrL/je3VYEuIoTGaRKE3M2TuVgy2QGqZK8SVqTYmIKEZ2xwMKTX7DhmqbNhA4xgILZj8x+JKXAZtPjmgbrbL6vEWOgbXpe3L0kJMdphH/85/+Qzz/7kv3jHtu2THNg8uJYffnFF9impet6+u0GRWKaJ9pxw8c/+AF//IMf8ec/+SnHxvB//Nf/gnSY+Kf/k/8B//e//Wu+Ojxyrz3Tf/YTGu1wxnHwc25uzLCfJJWZpm2ZwyrM2TSNVEuApus4jAMpeNq+YQrCqGe0zpWu8wb+Mi7Kc6t/iq1pMhQhpcSXX37JT65/SuOa7BysAlR1cLuwlNWJhouqWI23luBP2GyKU3E6naoM7Xo+q4NqFsei9PyUOVSw1nXAnFKSpt4KBlEHy+M4iurSxXl+p7YEcc4VCn1O3EDxDYBg7AIngTWwgPW5pJy0K5j5ep/lmHmLMRJUFF2sHDCo7Gg3jWM8nZiDQO8aa7DG0jXSEG1zwDMcT/RNC7mXQhqrpYm6sBIV+GbXdSKmFwJffvnV0luAKucpjvfDwwObzY6mbbHO0Xcdxml8yMFsQQBsN2y2mwXC1doWkqJvepqmYRiGM42FsjlnadqWtu2WSoFSoIzGZ2ILQT6s/XXONWjNUh20xkBSxCRIiZQTCTpXUyc1Z3FCd9bv1TUtXd8u8yAEGcPz7Nf7FQSVoLVms+kZhtMyp5+enhY/pWTwSSnDi+QZJIRM4OgPKDVg21Z67KKwa8UYOez3HA4H4heJ9+/ec/vilu/94Ad88sknuEaSPPunA9ZYnLE404ra+DRzOo3S45Drs8lH0fPIQZdCUBzBe6n6hEhh8VQIE5xzjnH8MEj2VQWs/NQsUWXfPJrPEhL1PChQvbJ/uXY/z4v9KL+ttZVQ4e/evnGQUTdAnRnSUs0omyo+ey5fybOl4IJUiYIpZZtqv3y8+u91//K3VBcEV7Y6ZaJrkPcxebFO59WTUgIln47NL56Xp2U/nTMS9bVJ842IBUYdIItALY9Qi/JtoVaz1iyZDGMFDpGlAMgECTmrdn6v9Af3g4VeF1gEBCVAEuczIsJ28zjlhq2JTb+FJJRpOqmM2xxARWkaTB5rFPM8Yoycu3PCLuFcdvJSomkcu92OycPhcOR4PDIMJyDlASfXKJhiizGZVhDNZnslTzpG2s2W181GSnsxcHP3gnE8MQwHppCZm9S62E4xMU8eP4ec4Yg0TZsNkREIlRUGoXmaSB60blBGEYNnu+mXhaNpHDHE3CA1k1IQrY3s6CnNsoD70EjJUess5Mg6CHPFaSlpLcN+BS6o8x3PHNqSIZDk6zks6LIP4NJhqY/5Xd2E7UxnBzjQtHbhiC846EtDKAwqmqTWqk8NJ1my7vG8mqFUZvXQ5wmGSwG+4rwBSzXjkgWrOHP186kb4GpKXFBc7XbSP7Q/sH98ICbwKbE/DsxzyIkKoZLs+p62aZlnCTaS0pmP3uYfQ4hkWmyBEbimFUIJhLBBIcw3p3nIC4DCzzPOaKzWDGHENTIP+s0GbS2nYZDs5SAYd2s0jTNs+obtVhyPf/SP/gn/7q/+ktMw8OL1GzZXt0KskHHj3s90tufHtz/mdDrxd7/6BV9//TVb0xBOnk63tF9+xBfjnn2aOWlIfY9PMIRIMJCi2DNTKCrzwl90SMo97vueGBNTbsoWpyUxxyCOVO6pSHGFx5XMXMkS1uOmBA4l+JymiRAjwxDPMnhUY6GuWC0iodVWj916XJTzmKsm5RIUXMKklqz5RcWsZjK6bF4uAVDtYFyu1UtQnPhOBxlnWdpnMrGLI5Yhfik/izpTvAZlIFFLojRxX1aIlu+FDLUSSJHRImpnraFtG8I84X0iBhGiTKRMwlK+S2A6MgbkuTeuWWzN09PT8systQskeGnOzRAgFcXWOWvo+z4nIqTaN00jaEvCYp0RlAUBhZC+tF2bNTikGq+SVFZK4GuMXiDGZRyWMWqMzRVWgWlZ7WQtNkAyjGMgzgpSkB4zI8e21uS+CjApB+c5ER1jxLmGtpVAuusEIiYVwgyxinGhqg2BJRFUxrNAfKRXJka3fKbMe2lWXlnZjF7tehlDscxFpAdHVQmFeZqI+bUQI+/v3zPNk4h05kbx3fUVTdNClCoRfhJfLJNKlD6wDF7LfklcYKuZ9okYsmp8LOr00mNUw8VgZTOr2f5q/+GyklFvK1RzhQNfkqlczrPnbNRvhiefb98KLlU74+uL8p8qZ4RULaoop2hb1PtI2qr6TPmOswOvpbmzoIR84wUrSIZklcOJOriU8WojVH9B6d2Sa8lq5XpFpigtUK0c+MpZJqFHFQjWGmCIw5iPV5xfY86yUlpr6cvIA0ZFMjArnZ1iOV6OzCpDWHZISJFWLzn1mJTgKrVk1UqQkSKCvxxGjDKEeeZ4ehI2BzzaJIyxBD+hcmWg7zq61mXNgoBW0DSOm5sbfBQnd5oGxnGQ4MJqtCk9NnJOWluEjUnRdFvGcQQtTsnt9S2PT4+8v3/H9upGmGvGU25EP19MY4yEeW1KUkrTdT02M0c415BS4DROMjGBfreRhu0w0+boPESPtZphnpmnmWke0TpX5LTQ2bnWYnLGlNlhvEVpi4zctX9Hhk1aH0UJdM/eX5/f+tjSsm9aKnjngURtJGrutuJEXx7zu7iFtDKf+NnjlGjCxCDXXO7HB0GGXp/BZYn30mGqnUmB+rAY6nK8S3hTbdcu2a3KMylZxTJO6+pFCTgkeIGr62vmEDgNI09PTxmLnDgOM7MPxAgK6S/a9BuapsX7YcmqiDaG6OkY6zJUSYJqDVjXoJQWyuYsDhljYBiO9F0nwfMwYLXGGp17xwLWGjabnqbrmb3ghk+nAZBKsLMKZzV937K9avjTf/jn/OxXvyIoxes3r+k3V+z3e47HI03TsD88oYzmzScf82/+3V/w688+4+n+gd41XN2+4sXda/pPfy5BolEEbUQXwwdC9EL2p+QZGW1QOQtNvt/1wicJgMD+dMqQEtnXxyBo6nzvyoJcnLPLxbOGwtVjoGgdDKrCMVP1D+atZmCpg9PaKa3HRD2ei1NQB7L1eKudn0uHd3Wo1grPSsV6/h3nibPiJGZtq5TOE1nfsa1c52XGvQ4kUkokHc8Ci9phru9ZQWGcifxdBJRQrc0RksoCaVbWTeecNA2LAqAgEDKU0M8raw9IFj2lmCsKTR5DKgvGrs+6UN/WzmSIAQJ4H7BOggyhqNU5iJ1ISnLm1vWLE13GTa/6zIRXdG4ko9o0Du/nBaa5BEVpdcSLPzNNEpBrZ2gag9UWo+GwH6SxOKacZNWZWWptyNdKoGUra2DAOYv3jtNpXObTmPUshDXK56ktfVgxBvq+RURJs58QQ/aDwnLuxSkv8DQhP5C+LvL7y1xL0gsBipRJQQryYJ4mYk4cJ2C/30slPj83sQNOGPtSICWFD15U4H1uns6DRyq1We288mvluZOhUz4HX0KQoqoxX8ZjETQudq6M5cufSxtSbEdKaSGtqBEF9Ry7TJbUY/My6Plt2zcOMi6pHWvVzHP3KpHTUfnveOEXpfXvhev8MmhZ91Wk3KyCPCSVs8ZqLa+vVYBUHSOdOSZw7tCplBYvURehv/JRVaoJdfWlMCaIlYmxlO8QIRQUKmgymzskC9EhVLeOGDRGg6LJ7VRVRqX8L2fxiBeBR7l8Eiif74tkAoJPhCB0u+M0M4wz4zATfOTh/SMne8Iax4u7l+z3jwzvB16/fk3bCA2xUooxReGfxvLyxS0xeFLyaGC326AU7J8eSNrRtI43H72UBjEFWsd8ZmIwTqeB15/cMnqFnyNtt8W2PQmwRvHi9cco23KaA2iHbTdsSey2jl/9/GeQFFe3d+yfngCFdZbN5nrh6H///j3TNC1KyF999QVN23F9vcE2W1y7ZQ7wdDix3z8Rk2Rvh+HE6ST84cYKI9k8Tzw+PKBdw+Q1KgWe7u9hPjKHgHYtMUlAx2VpsAoESxVDSaybx9F51UFnaNUahKzbc84EF+wvah0xfJe3EKoeh7YnRplTSgnlcgmqyoJWtljdn7It9yo7TpfZFpZjSUbtcDgAaxNu/VOc0aJ8WsNVijGe55m+7wGWDGPZ/1I1vO8aXry4QxvLZ59/TphOjLOo0s8hEULKcCWHtQ3WNjibmOeANgIhnH1AG0tnHZvtTlh0YqTf9BxPQ4ZOVNoJSqqvw+mUFwHRiCFF2sby/v4d/WaDMZbNZgPK8LQ/8OWXX9E2QhHdWo0zQqv7eBz5X/9v/zf8m3/7F2it+OEPf4hKiT/60Y/48z//c9q24d/+xb/liy8+56//8i9prOXNmze8evUKZy0v/+gnXL/+iP1ppolgksJ4cMdI1OBzXwUx20OVFviAMpphGBZnpIhOAdI7oRTKGBor8FEVU4aOeVIUh3Icxw/HSjWGiuM1z3N2KmRsbFu7QAKU1qTs4F0ea9E6gMVBrR3/eoF+PhOYzhSGYe05LJWVovZeH68+/7KVCkmBlVw6DvU5k+/Vd3W7DDDq7G3976D8oh1Q36szhyrJ2CsVj8tMbr1pXdADLEGCc/n5IbBLo1ReN7fEjMsfxtMCuQQYpwEfBM7T9yKECYrdbscwDIzjyPF4PGO/m2ef58BMWbu22x5rX7DbXQGKaZoxVjFOIyEFbm6u1gx3ZgoqsDCtNH3ToJLi5AdK35q1hnmWeVZM7eynzKqlc7UgMvsZBoVtOpzRKFsqBVaqirn3pHGWGDzD6cg0B7yXtSx4z+l0pGkUwzDmxu+WpmmYponT6ZQrM3MOKhpCKPC2RNd1zLPndBo4Ho9sthustTn5aZnnicPhkFmzxFcoNtp76XvzfuY0yOeNc8JSqIV5cyi2IyWG40n0NFqBvSsEOfH1V1/x1ddf8eLlS96/f8/3v/dDdtutICS0wRiLs2ILjLZMQfpRxHYJw+g5bCn3sGSK2bZplqbuYhdKhWZcSG0uK3O/2T8o9q7WOSprbCHRWZrJ87pW4JZ1UqZOZnyT7VuzS9VZwvyOOFQXUVlp6Kbg986crhx8yIF5jhu0ZB4jHp3W79YpZ6xyoCE0GdlZ0FS49eLSrdt5ZkIWNaNWJgmVKxPlWBefJhFJSYR7hOlBE4LCe0BblHGARUWLShaF/CYKJzuhsG6J01lUS6UJKC4iNTE3dVFisFRdlZpyJJxIWegw5Ac+zyGX3zR9v8EahzGOxrWMwwg60baOcTphrV78ZuuEynE4HkhhxuisT6dUpgYVtirXC1vHPM/c3t4xzxNKJabpyOlwBGXQuhUWihAIETa7XWaNEuNwGgaatuV73/s+icLJnRhPA9urK6bTif1+T9f3JB9QMXJ93S0Njf0Z48ZxacYdjif8fkI7YbkJiAPTtC1t1zKcAolRqhqqzVWQxP5w4OrGZQMsjuZ4OhFSwDZbqQblapesLmdDYhnONVxqeaZnA3qdQ5IdlRFaxmSdMZeybT0XJMRYYvLv8GatW6/hYpItVZtnKhMlc1ucqKU6mAOMwitesKLFKJq8zziOz2ZrYO2LKd9xyQRUV1SKM1cyznJNdvnMkjXPDp1odwjrS1IRHyr7maBre4yWUnXTtAzjSEKhs+6HcZaYpHIBShacuMKAAGgaSjNqjCXrmYP/FCBFjFa8uLths+0xVktpXzm8T/g5sOkdzhlaZ2mcsOf44AkKkhadH+MarjYbfvXpp/zd3/0t/6N/+j9kHIYMx5QgInNDL9SthoRrHGryqATO6HVB1YnGWHzKzDsJtDWLoFpZAOsKFCicguvtjnkaMZL+E7rxmEhKArWU0uLYPQd/qasHKWUoXLa7sTFLFaSwf1E5oDVU6fKY5Xg1fK70ANX0x/Wx5ox7LgQEhaa2XENxNtcM87kzXYLhOhCp+ezLOa2Vl++2FZnHaTW96lxQc3G0EjlxlzP5OSCHSpm92JlCe1rNqctAbq2M5o+WrDQZFRGFbtpoRds2bPpe8Pw+SEN0hggpJFsdfWAIA33XA0Lu0nUdx+NRKmpZX6PoVbRtkwOMtDzLwzGi3qZlTfQ+0HUdakygFH4SCmSlJJGz6Xri7Dk87aVfABa8fxlbxREXh1SuRfKxpfFXknaoDeM85c8pQpA1WSklGhWxVFcjx+NRxr3W+CQsVCF6pikwz83SyxlzcqA4u0optJGxrFISnawkz9QowGiCNQxKRBkbK1ocWoPGoTbb5dlHH/BJgsPkY66kirM+TRObZhX8DVFYoKS3xGUCLaG6ttZgjejrjOOJmBIP7wWS+uLmJa1zWK2Zw0DXSgDZGM1EYQYUQUDyGm8ropHy9zr2zitrxSYV577YthoudflzWW2oqxDFVpTxVMZAgYj5SdTSS5JtuR95nft7DzLqk3zmVaBUA0owkRZP6zeCPOqY49n3LjM2pfpQfy6t/1T1Z9eDlzNSZOMAqMoLrLPLuWB24eSVf8UcaERiKt33IKwRBpQMcoFw6fMjJ6FCXf7OdGTL3crVCymuqLOBUi4lkUg6B28qEDNsi1QafiIhKlCGbrPDJFHYdE2TueYVKQcXWgv0LMaISkrEvuYZaxSutXmwryVTyYZ4jFbYrsNZwzwlvBeYQcgZIZ8xhcCSBW6W0rEHBU3b0JsNw3AiaqmGTJOjaTv8NDNmLDkKgbyxsh6UBbRE8ymXJ2MStimTlDCZGYfRwuUs2M91ITfG5ibwxDic2F1f5/svuM4QAyFj5sm9P5TncDZW1RIInrGD5b9VqncuiyBnQUm9iMlAS2fHWWPzXC35bvsH4rBdLNzr3DtndfqNx6gqEMASlJUAo84aL0F6Whtkayfx8rh1BWUJ+KrvqxMVdZb6cr9SYbDWyTUrmf81E47KDZKSHVNYl/fNd0Qwv6WxWOVjkDG7FbtVbpyuYULFSRfaZ4E0tn0nDZpJ4KSShZWAWynB6VujMUZYRObgiYBrWjabDW/efMw8nnh8eOTLLz7nT37yY07HozjGKGyBGyCj1USwIWGVXnqtklEy1/JzMUpJ71NMa1VArZn2y4qTjBfNbrPhlBIpeEhKRKqQfgO5/frs2ZzNs+q4wBKULvDVvHgnyGxVSvrgqoDiuTH53PEvg5p6nKS0JtMuKxWl2f2yP6hsl8FT+fsyCVgHPsvxUSs64Du4Be+h2A2lcuOv2ICYF9FETuTFAoVKOTEnay1QGeuidRE/CCAvtw9sU55/pQCyHjKTA2idG7vtEvgt0KfsNMpYXcdOWevKuRR616aZFuZDSDAljocj0zTnfoWAtZoQciCZ0pJkIQX6rlv6PFxGBigra6QEMAU6U/wUm5OAqzI55EqwVoyz9DCleUb85pRVww0+TAijFsx+xrpWkBdBGDBTjIQUFkIEaxE2xwJfCvX9Kz15wqwXc4+Dyu/LGp9hjdIgIqLHjcrihNLETCowOLm/hQb2zDHnvBfFWZuDpSDKAbjyhJfxMg4nHu7f8/7dO4iRqWuJYaZre9quo99sScoIFXIIqBQzDa6ct/hgEU0dYKzJkjXAi8uYqe3QJSzquWCjTmbW9qZsJbArxyh/UwU5dTKjHp+/a/sP0sm43FLmmF6d6grCJFe9xga1gS0v1f0bVZZFDKKl1rpYwoAEKYghUUoWl+cywMCiCV4HJGr5VlUdWS2By1JlUOTggMXhhggxkJInpEBUiLpqMUBG8MeeQFTzUi0pICyVHYaFNAtFEZwpi6zgBONiEPM7qGTQctWIDgiQIhqBJ/loiKZnd7Mh+QmrFX3bst30mdZtot80kLxkPUdhOElB2KUa27DbtvRdyzieOJ2OlIzaOAy8fvMRH735mE8//ZTj/oT3AaMamu01SWm80ry7f89me8PVdoMhst3uQCmOp9MCN0kp0bbXHI9HxiHRNFcocyKpAZLwVw/Tif3xgRiGxTDP88xut1sw1I+Pj+yurmm7nkZF2r4lJjgNJ25ubpl85PD4yMPjid3ulqbpUdaQkmccTpzGIykM4hSRaFvL6BoR6UL6a1RKIo5mY5X9UkgVTcbKHNNCFpBI2HRe21gCyPL8yzgsmYWYudu1lgC4CqDrUfodprcH1oxY7aCrvEAQw/J3bTQl83vuiBXHcPaSIW+cW+AGdTnYzzOoRNe1S5ZuHMcPHLHauaiZpsprpYpSZ4IkSyjHKKwsZX+T95fGR0v0ZlnchnHE+7DAA1zTYLVB0eR+FZXVbqXfbJ69BPJeBJigOEprMymonF0bl3vb9xukD2MSKlpTgvMhB+yi0vv69Wuenr4kpoBzBo1QYw7jwBzg6vaGP/rhj/hn/+yf8X/43//vlmrOv/k3/wZtRMPDaYNJLKJhrmuxc8RNEWMUWENUMJKgs6gQ0F5UyrU2CAOnxpOrScYskJG6SqRQWG24u7pF+cD+6ZFWa5qcLU4odGNlLqW14nMZZJT3SiLEey+N51qgHMbY7PwYVLVWXS7yl45+HUyUiluXe2SmaWIcxw8IA+qs4wrp8BkSMi/QvHqxLxnFkniBc078msa2fK7rOjnPi6rrd20LISwOI3D2rBe7oWSlLXj7eHGfgCoikMRdwQuc94LpM7YvYVHKDrUqUKYZjHRrxhg5HQ74acRZK0k+Z+naZmEwE6G2mWEcmUdR6Db2nGGsroqGEERTI26IMXJ//26xPfMcmCexcd5LpaNUBtq2Pes/225FX+p4PLLb7djvn2hcIwQxlKUtLfDPpnFLFUEBj4+PbHcblDKYKPYvxcAUA8PJLwGGMZrjaUQpgZXHFNn0O2KYOR4OUo0Nc0Z1KPp+AyiOx2G5t0KRLXTUcg9FqmCeAtM4Mk0jWku/R9e04v+FiG3K89E5SDAL5KhtW9pGWD2F5KH0bDhJ0hIoWJMyj4P3EL1A75MhhgafP9c0jtnPxOjZ7x/5t//6X3N9tWXTtTgtdu3m5pYf/eSPafodU4hMPtK2bqHLlmBiQqfcs6tLD05Rb1vHZBkLtYNfgr/Lal7d11Xbjnqtq/c5ZYhtGYPzNOUq3UpEUILk0+m0fOc32b51JeObbc+5QsWdrusGz2113eG5Yz3/2TpbtZxFZYjWtquLysWzGQuVU9HnwZIIUsmPjxM+BkKKBExmm6izqGT8ohf2HC3iQMvhiZULWaLo8r8VnxfTynMMCasta5UEYgxM08jhcMjZjp6YYDgd2fYd1gj0Cwu7bos1O8bhiRAm8DNEDz7Qdw03NzuO+yfG057oRzFaGatZcJmffvpLfv7zn5MitG2H1pbHx0fc1TXb3Y67F69Q2tJvt9y8uKVrWhrXgBYnqO/6zK3vM0REGs4eHo/EpNDWYqxjOD6RiDTOcXd3txjzw+HAu3fvFqfuxYsXgmnNMd7x8IQxlm2/4de//hTX9nT9jjdv3pCSVJuME5iIsZamtRyPT9xcX9E0jqeHt1mN2gones6Oim6JUDQDAiXDSPCaIgmpgiitSNFDemZMVcFFGZMpB7YppeUj6SLAqD/z3c0/rlsRw1JkYy6lNYy1CzPIHDzOupyFNzAXh070CVC5x8XkkFvrFeICi/Omc0Xu0hDXmXGtBf8v47FZFvkaE12XrMvxy3FqxxJyRcVIUKGSItlAIqBCoAuG73/vNR9/7wXWarwPHMMAIbLtt6QozC5z8MxEUohMxwHGgU2/YdN2uE7mU4iBaRiZhtwfEjxP+wNX19fYpidg0a6nMYGd67DK4mNiGqZM0QhKQ9O37OKOaRwZ1IRtJPhpnCU8PfFP/7N/yK5r+ct/8X9jl458tHNs4k56FVAErUTDwwq0ywNJWXxjCX2eL0EcFYeCWXoyYqs5+gmNJE5EuUij0uro1c+sOPdBa9qNQz1pxnkCJ7z2DUInWjvtJdgsjFvjKPhzY4V9R0g6RIQsxFnEsExOHmR2O+WT5BMyA50ykniwTmCWhS1OKRmbZTypfC6FelJrTd/3C889QKFdh6KhMVcNtlPeR5+N6UuIVd37UdN/luRQ+a6SRU/pu80uVbZ6zS+/lwAiJchChKl6LV5kcGWL2bX8MBAtfxfoozZCKCPB9EyMM0Er+ptrGtsSvOf+/p55FIr0ZufY9P1iV6SiKtUCrRX3D48YZ5eAoNA0w3lldp4F+nR1dVUlNwQ1sT8c6TpheooxkwJku3Q6nZaAo9hG59yS7NNK4/1MEQuMUShia6fy6fFRxOnGkd3VZqmQXl9f8/7hidNx4HSacbaTdTIkNn3H7IUW/ubmhq4VR94aTds4YoYk1VXj4sBOWdHdmEKd6wRZgehoaS0Mcj5I76lzLsPiIl23Yb/fL/Mt5ueecqAZo8BA53laq83OCbA/CBnFHCJN25JSZBhHWqMxVmBdkNj0PTElnp6ecn+nJLHH44ETER1m+psdw3jgqy+PvL9/y49+8g9o+i2u7Whsj7Nmea6lCt80jaiPh4DPULQQhaK2JCjqqkYJIArMaRnNVbB9WfGoKzfFhyqv1Um1mMcQ8BvXzr93CtvfVsn43fvWQcMlen1NDsPqSCzHUMDF/mexhFrDkufP5fxzJXv8XNn8mU8/+731gF040rMPKVCJ4kDlQCClRdK+nO1FPPRheYvEc0ZUjOaa6S6D5XQ65Yyv3N2+79A6YYymabI7qyJGaVprGHwkpoDVicYqnBF1X2cVfh7x0ygTKCW0kYl4fXvL6TRwOBxxrpWJ7gOH44ltt0Vrx3Z7TdddcX19y3a7yw6bXOOClU9rud9aR9t2dH3P/um9KJA7u+hCJBLDMCz3abPZcDqdlgxd37XMvrDICK7Wp0g4JmG3sMJyYY0mRr3Q3YY4o0i0OVsjcAnpbwkxrXmt5Tmdj+F896tgYsFpLIPuvK6WLodTrmil88H72wYzHxziO7fJdD7PJkOuJhRIGes8KlnKAo9YsjFVCVhgUSv2Hep5XapPHzbX11WTMp7qBrdL3H6dKa6P81yWfE0agDZ5zkdJEvT9Jqvb5upVhBgi8yzOZyJzlIeInz37w5FgDDFqQtRsXYNtGkmieDBBcTw98rh/QDthozLWkcjsVFrTac00jFKxM4Z5mknaLLjkrusx2hCTEqfINWilCPOEMx6rYZ733O4sVm3ZtJqH/Yk52z+twSipqJS5pIsqcxTVX52UMPPERCTgCWex+FLJJZF8+MAmrln/SNO1uMYJIF4Ly1YCWucW5qQaZiR2MpNmZFpjY1YWO6Ug5nMx2QGQ8SZsggLxquwxLFWEut+wDkhNDjTLuKnZpMr11r/rYEJrgbDU61PtMDwH3arHfg2LqDfnnCxk8bcYmd/zrdztemxQ/V22GDMSIBUIlZLfZ9cuVYysYPDBnK6fZdM0KF30MrIXk8R+y/658qoVwaflNYEbxdy4nBZhxtJsHXNlowSoJclRKmGlaqVyIq1tG3yeHzFKENu2LjdNB1LKFRitBdLDWtkqzd8xhAzxFkiyzcKAsxc1dXFupelaKVBGZ1rdowRPrWMa58X5HYYJ1TlJNqjIdnuNn0dClCpMiBJAS6AhNLI+gPR7SpN1md9AzujPeG8IVhODQKa0ElDjSgUfaZxlKsQHWhMqBrcCqyrzOWXGUZXX6XK/Uyy9w7mS0zSQK1NoSeYGL8mstm0Fip11ihaLoCKkACkI7NwIVOx0mPjVL39Gv71hs7tGpch2txX2KAXWWRQswY8EfOKB1H0Yde9FrWdyCX2qg4w6qLgMCuqqSI0SgA/XyGJPSsN5zWr1u7b/JEHGM5/mm368/h5VAoxnjOxzn7s8x9/292Wg8eGWncpnvlLKeSFDOKo39OqYqCq7WYSykk7f+D4+F4XCedNhee08yBCGnuurHdNwxGgpk/tpJIUZ0HSNYR5loddaYTtpJJ+HE33r2O/3jOPEdrcTOjqt6dqW733/+wzjyNPTHmsb3r19x/j4yOF0oJkCSlk2myvefPR9Ntsr2m6D0ibfo7Q4g/WgLQvq7e0tv/rF3zGPI9u2OctGvn//ftGwuL29XTJ5MQYaazgcj2LAsvjQ7D3H/YEXL19jXCec5VGwr0Tpw0gpYq2ia9sliySqmQkfEoFEspWTK3d9CRzkdS6e0Qej5+zvb7WsL0bxu+sMPLddYsnrsm+BKJb91tczK5dedQ2K8dRGKF1TTIzzeMbUUzD+l/DN2niCzKm2bT8IGMq51mxB9fnWi+KH51zUhCt628wc4lyLMo5p9sRY5rJiyFmslKGAPkSO48y7xwOTaxkmRTcmvGvZOqFwnKPCuY5hfsfbd+/54Y9+IBVN1zCH7PQYg20a9o9PNPm94/GI7Xpm7zkc9tx9/BqXlXSvr65o23doBX4eOZ3e05qWvovs2g1XV47jqSV9PjOOiRjEYQ8hEJKwXEW98OzhY8I2ORM5J2KSLOYcZxrnxHFI2QGEjHX+kJbRZQGzeRbWpaZtF00iP8tCbLUWbZEqWCyL9DQNNK1Ux2roQIFNKYmMsDlTrLT0tIWsKHyZBS+OYckql9eAxWGUhTucVVUuK1+1I7swVmXbVy/y9d9l3D4X4NZ/F6a0Mte2220WPV31Or5r2wcJuWd+FBBImalxdfjPKhvleFWQcRmYwnklQ14PhOAzNWnM9ifgc7W1cY4piYJ9ITwplYKUEtfXVwB4P+Nyf2GpYKxVN72QVXRdV9m8yGbTczicELrTyDhMpCuheJ6m01LFWMZZCELDWvWDSGDSUlamzaZlSFKdMUYRwkwIEuQ6Y2mso287Hh8fMdaIOO80MQ4Dp9PAOM5Y04madpppm5ccj5B8oGkc+8MpZ+l9JqTRKC89M6fTEVC0bZ/1LuS8T6cBpRTWKLxNNE0r2fUkPglJ4E1NYzNUTAKK4KWJ2St1RgRitBLoV/58okp8RlHVFpZMvyQeylYCl0iiDx3WWZq24TQMy3jTVphKjZZkLcmgiMzzwN/+7V/Rba65vnlJIvIqvWS72wpcNvfHDMOJYcwJVSXJljmz39V0tT5XNsp2BhOEs6DhsgJRr1HleDUFbv7qJVFUoFJlDSu0yv9JG7//u9rWSsZ59uaDwOG5z3zTY//2vT58KSlioZ+Mohie0ALBMRZrHca1WNcIxKP+6DPOYh1Z1qXwugHwctF4biuRrfdz5s0WnYgXL64hRcbxiLOartH0FoI/4XQCLWw0u37L/nDg67fv+fGPf8TrVy9JCZ6e9rhOoBOtdbx/uGez3fLqzWv+1b/8/3Bzc8OrN68xtmFz85oXLz/m409+SNtt5acR6lqVae2UCcs1qcoQFuO73W4JVtE7xWm3YzruOXhPmCaaZodSicfHe66urhgGxcPDA/vHI9Za+q5hu90wB8GyN23Hl1+9JQSPNg5tIcaZhKZxirbdCE3oPDD7kcNRshL744G721uSaXgYIkpZ+UmWGvKU01eUANoaKaUuz25tBFqH0x9WvPAfvNW9DWUBlUV1yIUg9cFcr2lAp2laMmsowZhro9DOLexTCw5VKwkuWR26Mv7KVi/ItcE967Ewq+5N/fl6npb3u65j9jPDNKHGhJ/mxXAfppHP397Tb3vurq/41WdfsmlbNo1jHk/E5Jnmiaf9Ix/98I84joEvH/Y8dZYwPxHjI9fv93z51ZcMwxEdI3/64z9i0xpu7l7y4uULbm7ucG3LOHnevn+P0g1X11cc93uUFmjhOI0kLf0OP/zRj9g2muNhj9bw6uUd/a9+jdWJq23DNNzjuw0vX97ihxPGgWsbXPuGNETi7JnHgdMUmKJiSppTTDQpYLzHanF0IpqkFMkarG6wOTNprUMlzTzOFJiE1m5x2AvcYxxHYqbSLLSR0zThtMlVxawOH2LGhwuUqNAzdl1LMbkppQWWsTgaJbu5OJSaw+FA71qMKuNoDQo2m01Fd7zClupAtGx1YHCZ7KptYA35K05tWehrTHaZE3AuzlczxlyuOdM0ZYdInYm7fte2FNZ+xctqxlK1SCxJizqYq52x/IEzNERtH8pPmddF1E0pS0oN8zRmpzVyPBwgyrhrW0fftmgjPWFWrz004zQSvLDgbfsN2jhikuTVPM8LbDPGyPv375dAtus6fBDR2Lu7O7R2jOOUq7cwnAbev3/POB2JPqCVhhDZbDbiH3hPmIUumph4vH9YNDaMW9n02rbNCuKbRWVaKUVMkXEYuLq6ZhxGPj8ecG2Tx2/pQfJSlk2eccgBgrOMo/SnNDnwblzDMI0oDW3XkrJfLUx84jzP84wPnsY5odtmzvNMYaxmnkdCiNk5F90uoYR+IqWiFTZmsUKpVhTI2DQJlX0kYbXGANvtlnn2jMO8zMPGOdrNhkZVCaaUOB6PtF3H7e0t81dfSZJCC0m90QmjI346YAy0LaAa1FczD++/5uHhEWO1EM5cXbHdbGiywrizohYu0NfAMAwMpxNjxTZWnPtpms4qo+W9y2D7crzX69Zlj0e9xkKBj8VFr6j0h8lz+ub24++pknH+hR84xooziFRtBJdqxbNf+k3P7ptvv+06PnxPVQ9LmKRSUhSNv5QEEmOsQ1tR561xsc+Vt8v11s4UnAuEXWao6oWpGKsyEcqgC0Ho6xonFGvaNhK5o9CdY54m5mlCh0jrFErQ1FgNKQXaxnJ7c8UwnGhboRqVhihhkAopoRMSZPnI9dUNoBkHzzR5Xm12bDZXtG3PZrtFa0tEHP68dp8FVfWiW+AqXdviCRgVpISoxPHve8kcWCf7TNOI0oq7u1vGrsmNSLOUeXOpMQZD8Blf7izjNIByKG1xtsFPJ0LMQn3OYYxCWcfdy1dAwocoiIKUQGmUMlU1IjOFqbqFuyxqZWFTZ+NX4pF67w/L/eW1ss8fWhUDVgetziKX7TLAOAs24gopUUqjrcmZJ0RTJEZ8Rcu3/LAGgvId6gNHr5xXeb/Ogi8wg2dKyedVmPWn6DtQsqYhM9ekSFSKX/zqC8ZhYLft+Qd//Ee8vLnCAMfDgUQkRBGfGkYR59td3/Hvf/EV42lGK8NPd9d88faB03HP1abj1ccf05pEmo+SQS9sLEkY0mII7Pd7Yd4JgcgMSaGMxULO3ItT3vcdaQx0jWPTNdzd3NC4iE6aFODm+o4YyarlTxCPRMAmTdc2eAxTMpyipXcKG2eMcQJhROaSwDTENimlSUGqG3K+8prWalEhLrZO7r3OkBGpQBbHRVAvmYI0QVSrEnapUkggIbO4hi/Vzx+VaWX9jA1ybGctkYQnLOMW1ioBqMUWX2Khi5N6WZl7brzV8yMlzuZICbjKNV2O2+cqGnWlGFi1GlJa2Hu+i9sHjEC/wY6mcD7Pn9svvyPEA5zP7/LsziueVqhoVaZ5D8IYNM2jEDCkRIwGl4POovZszI6maXHWsX96omlcJjAJmRFS2MR2u50kIw6HBYp0OBxoGpfpXA3TmPt2tGFOHtBM84w6JV68vObwdMBP4nxbKyQIfp5zM7WmbZrFibfWstluFlapGGsNBFEQb6xFsfapoRKENVPuvTiq0zTRGIUzWmhrjWjaDMMJpQyzn1EqLUQOKQjLXdM4YqyohfMzcNYtWXQdBQ5d5tc4jZBh9SsRg5yvc5YYnaifs64rOrNcoqQqWhq4Qwgwzwv866xnJx+3NGqHlJZzSlVl0jkHw4hWEZPZO9tWkmDWwd3tFe8fjuxPA19++TnHo2h43Nzccnt7S993dF2/zPeYx1IdLDxXsYA1yfDbgozaLjxXCa0raOt1I1pESwUvLQFcnYT7XdvfT5DxH+AMrcbx233XZRbym7733Hd8UBX5wCCBOJQ5QxZzsJHSQmGbIDs8Qo2qrTkLNH7Td12+XmdE1zL7+efKglT2K5O8DBbnXKasVJl6zaNIWKOZCVJGDJ6+aSkaJtKsLs1oG9MzzjPGZrwmGdOZRFXcaEtCESNsNjuGcSJEmchd1wuuO/P7y32K6NyUXd/fs2g5n3uBQ+nk0XFaJq82Upo1mXmhaR1DFtzp+w5NZBxPUrGwhhh8hlokYpgxqqV1JuObhQFKKzFSPvoFjyqqrQ1aW572T/gYRIivBAc6Z2FLQKHq3qIPIVMfDGtV3N3ndzwbHek8s3Y5Zr7L22WV4rcZqnqhj2SRtjIH9IUQWnWsS8cNzp2zOogo7z33vfVnf9O5XTp5JXPeZN51ncBkuuqUIGnFZ19+zel05PZqx8evXtE5izOK0zACkaTkOuZpImHoN1u+fPfXnA4TzjR8f0rsTzPz5Lm+crx4+RLLzOkpi7Cp9drFlmQGuRhzXwFoJRkzbXIGPAmlbuMafJzpm5Zt1zHOgcYGtDIED30rCYQQYRiRQD0FVBSYUdIOrxxt1GinZD4nXbpTRHMmJx3K/BHsfH1v13Ovy/rrfc/Uldrkxv78vJQ4ScSYtW1W4UX5TQ4yVjt7VmHQK6FGnd2TcSZN6XWwsAYZJQn1IZSVCudfPlczQl2Ot/UY5+Pzg+C5SkZdHqv+XUR0y/3UWpO+wwEG/AZdjPwMftM9K68VeNDZJtnCxQjrzDJWV7nq5EShhU4pkFQgkLU4YiJpgewUxjI/z5yCp+s7WtXStg2Pj48kItu0zecmFKnOWbquA1iagAsU+up6R2MEWljrroCwGEkgOrHbbfHjTPJrcFrGqlybJBdOpwEfJcgo65/NSZsYC4OaOLvFQddKIDQlyBrnCR9Cho5HZu+xyqCcYRhH+r7N/V8TKJOVu5WgGshzLp+/OqsWAIiYH0oCg1ItKfNjnmeMtksFsWzeezabfvEptC624RxWZK0h+SRrelpFOed8n8pz8d5jjSQ8mqZhzFozpRG9QNOctXg1ZB8jYazCuUwIZBVXVzuOw8zT4cT9/XuOxyN9v5Gqip/ZbDdsNpt8L1bGyRrSVAfX9divX7+sXJT7mdS6PpWxUwcYSqkzDYwUI8oYEZdUqrp35/Pvm2z/0XCpgtv6bYHGpVtUZzBXTub/+O23BQ3P/f273kvpHN+2RO6zCGItyWmtMc5hm1bYA0r5yzmUMsvAgaUi/+y51WXaejG7hGjUDtT9/T0FawugVTFyGj8F5nlkGk+0jYVK7Ebk7SVb0DYtp3Fivz/RbXZo64hJ87B/4np3S9t2WNuxvbrFWKluDHOg7Tb0mx39Zsfu6grXWHz0ktXJnoQzDc/d9ssFs2RxJqtI05HgPf2mx75+DXFmHE+Mo0dr6Hsp3+33Twz7B6ZxgBRonFma0B7Gh1zGTPStxbmelAw+JPanIynO+GniOA4oo3nz5g23t3d8/sXXucYjti6gKPWJVa9bAb+j6Umps7UsVa+XOSNOjM5B68XCr/hgLfxD2OqeiRJAFCMvL59nWpQSXHzbtMt+gocWzRVj7UL5v2TIUu3wgRLyqg8M4+V8K5WL2jm5DEjKv4tRro17ES0q2TCtFH3XcbO7Is2eU7YZv/j1W4aXiR/88I+5fzyiU2Qejhgl4wEtmjSaKD1E44nj4cThOKOV51effo5zLXe3V/zpT77PpnfgAyHT5eark6RDDjKKlkCICbQ0d5sM60whcJqkpymlyKbreHl3w8PjI2/fvaff3dI4wzwEjk+eu9tr7u5u6PsXPH79aw5P73h4/x6AtrHcbK94HDzKGtCRYdqjjcO4hk3TcBgntM4N6HOQRm2d1YQTstCnlRAA6qqB2LBjpuI8HU+43U6cPJCuKa0W6FRxNkqTdx1oPpfEMcbgCoRPifMwz17oxvVKS1v2XbOvHxIFFHhScZDqcVQ7rnUGtxy/NI3XwpB1w2V5znVAczlei10txy3n8x+SFPx92gR/L1udYU1pDVBTtqmF0VEpgfyUzPS6nScJtNYYK4F6CSjKd/h5xs+WjOYnZlam4ANGyzwyWrPdbPnoozecBoEwff31V5kO1vDRRx+hdB7Dw5EXL15yOAw87Q8STFxdsdtuefHiRe6NFEahN2/eCNuZn3n37h1du0FsJbmfLKC0IAdc05KSMK3FbDOHceTq6kogRrNnzMJ+WgnJxDSMpFwVnIYRYqJpGzabDW3X0miLUxn+5cS596dj7nfKFNqxEF3oHNQIXaw0aAcSQvSyPCvkmfgcCBnbMJwGxmkCBDY5DieIE5+8vmGeZVUuuh5No3GNEYVxBDJpjabtOqxbRV9j7p992u/z2FHool8kg0P6MXP/jDGaxll88Dw9PvLm9ibbAieweCc+07bf8Pj4IDlIBdbqnMiAxllBR2hhTdxtOx73Lc4ank4DIQegpMiXX34uSI6uk/udq7Sb7Y798cSU1befq0Aso7gknX1Y+l6X9wqUMkGq+o5qkoHy/aUSP8/zomF0PB5lPVXyTKZpPkva/a7tP76ScWE8f8OnPzjWZUbzue9LyzD55h7Xtwk0vsk5r0ZsfWex00oyqs42WNNgrMO5FpNhU/IADUoJxENdCvRdbHWjaf33c4tIHcGWfYfxSJOhEmEWTYwUJRLfdB3RQJphc7VjmATrd5gH0I4AaOckY6+NaETYjs2VBBkhwc9/8Ws+/vhjPv74Ez799Cu+fvsomGjn+OSPDCFFHp8eca0Vr05pXLQkXM6unmeHL5/FZrvF6sQYJ4yxnI4n7t9+TdfoReeg0NyVaBsSXetI0TJPI22zZi9u7m5JMXE8PDFMoHVLjKKhURabtnU4ZzkNJ9SToe177DiCF86RkuSS/2RRtbNgY7mifD2KVejx/P0FClFjiRcAVvlcHuvfssL3Xdlq7Kfwv4vyrDiRH9oGpaQBt2TilFa0rsn00ZVzkdZM5oKxZw0wngvsy1YcxstscsG6XjpydbNwfV1rptMsWTqD5u76htPhyPF4xJNoXcvkEz//5Wd89osT3//ojh9/7zU//sEbAqIIPE0zj+/fMvjE8HjkqmtxukEpi1Fwve346M0d/+Qf/pQ4HkQTx8h5+OCFSra6HylDhIx1WNfKuRkjWcy2JQyAUaQAj497huOecTgS/EjfS3CQ5hFNJPiJeRrZbjaEF69JrmHwcHi8xwC2sVxZJ02gBKQHUgvF7v3XtK7HNC3aWKH4zVBEH6VfICUFSS1BW33vZUEUOErbtvQ5a5mqCSNQhvMKSEomc+3nrGxVLa6JBMhOmwiOiZPWaEPU6WwMKaXo+77CQp+Pp5osoCY0KNewkAFcVCjKtZbKubQdreOywBrqSsZlM3mZK3UVqCSryuvfJhP5+7ZpUyMhQr735e96TQHUOQV8phbIdljYIZUCleSZdE2z6FAppelcI0QCSkFM7PdPGCt9F3e3t0zjyDgMGN3hrnZs+p5Xr15xOgol+9X1DSEmEpHjOHIaJ/rdFj/PHI4HlEpYA42Tvg2iJ4RI4wzX1zvGccL7wGeff8aL6xtJAFxfsz+csrZLxPsR21iMbfjsi7cQE9EHTscTr16/pDWGkBLvHx7RypCSZhgTmqxQbluij5ymk2jyDBPOODSaznVYNNFPHMcT/WbHGDwhRYbThJ9FCFRZi2taXGMxzuDnE8dhYPIzxml8JlQZZxEMNtqw7TY8vb+naWU8H05HVLKoKAQR6EjXWtpWo5InBS9idmR9CR9J40jI81ZrzUa3PDztpSfuNBBioHEN1llSTAyTzI3WuhUyqRWHxyfGURSutbWEMKES4lvgOBxnxilwe3tDYxs0itN+T6cNSoMhMluVLV5kd3PLPA1obWi6DZvZcHU1sj+eeHg6sD+e0NqIAnger/vHPd6L/ogwbArsU+f+Q+fcEoAUm1BIA0wJirWWJv/FJmZovpRySEqQKMUfsVajtYiydt0mV68S+IhRCpur4l4Jcmea/OL/xN/gx15u/z9r/F6zh2v24YN9ZEfOapl/D99b//7t+64BxSXObbkGY4XhxNrMmlDgUiW4qPHh59jwy/Oqz61epOqIsfz7uQZC55xkPzNdnmQqVFawzWVPZ1FGL+fsZ88cAgmFzdSYru3Q2tHNmoDGJ41rWjoFYDgNE43rgANg2PRXQiepYJwGDoc9yhq0tXTJAYWpoS5bnzuUIM3TXuuFHniaJobhRGO7hd2jiFrN8yx83kmEcrQRxeGYFMkI40TftUzjLGJFSRHDTEyiahyDF4w6LMcyzmFdv7gromF+/pzWv1X5f1nezp5rWi83X3O+7hI8XyzypaS7pOOqhfMPcasD5vXvD+fAEuTnwEtROfzUd+i8z2kNmIISgQABAABJREFU2OX1DEV/1tbU2efyd2n0LNCWMvfrfS+ri7XjppRaRNzu7u64f3jgaf/E5GfxkrQRCsfgGcdpaeSLSObJ+8Bh/8QcFQRP35psD3OvxN01H7+5Y7dtCYcHSJ4iuZCSMFmF0iBbnavRQlKR95SSv9ZEJZnI4APzNDKOI2Ge2fQdXeNoGgs6AoEQJrwf2dgdruuxIeL6J9TpCLly0rai15NSIBqLjxIIdhp0CqgUhOVFIQsfCqUiSmX9EeIHTvFqdzUhBow1bLdbxuMpQ6/kASulRIQmsHxegkAthAys46OuICdUPueEVkX3SEMqwK7zZM9lcFCPkzImyvP4YGz8lp9LSET5vrIW1PelbM/1u5WtXP+i7VLwat/RTS3j/DxRg7q0mLVlLv+qgoxscotzVpSlFzYiY2ibzDoHhCjsS0lpTJAsfMkMG2vpXLMILyYlWWybKwvjNEgVUSm6rme2hmEaFhiwVomUM+4xSRWyaZul58H7IMJwIeCMoXGWlCJDELiNMpKAGUcR5o0+rBlwLRc6zTNaJRQSaMiNzEnJEEUjJqb6NkkFNAojEynKfE4QovRTpKRywlVl6mypLKggAXpIIqAp0B8J6nwO/EV4NK+yCpw1pGCZlSSMjJGqiNGK6FfK1gV6iiAMfIygwJCYvM8aJnHRr6l/hDY8YXJlNCFyBGVcCaOcXiqpJkNz5bylguWcQ5HYPz3J+gIQ4/J5skNuXZt7Z2zu27B0nbwW/IAvDfJGErIklZvYpdl+nGe0swsRhUDEe6EQrnRXCgxQqTWNXYZ7CTQq/DVJr7CqGDVa176t/FAdp1Q/U8zjQ0np5tI3+k3b31+QcekP/Y7YYDWq8uHnHQBVBRprNuIs0atK9vh3n+Jvq5zI8T+8iPolEeOLi1Kk0gZtHK5pBCLVNjnbvjaAU3DkKuP7+e0VnDoLW8M5ymYKk0q1b1mYbm9vmY57/HTC+0TjDMqImvjxuKe1lq6xgp1sGjoSw2lknj3aOpq2p9tdsd1c07ge14y8fXdP4xPfu33Jj7//J7x7955f/PzXXF/dME0S9f7oRz9ms92gVGIcB7786oRtG7q+5+qmr8qj1b0GofmtssZKS3buNJyWQKLAJESBtFmyh/v9nrdvv+Z200pm0zm219ccDkd0UqKQGgTLKVoYjtMgInk3myuOpz1xmgjzLGKC+Rn6qJi99GqQg8QSCa+FdrXEvvWIWQOp9MF7MWUlUVie39kIKNmGEmjUS+MfWKyxQjnckmnWGS5T3q8reoKLtZCEOjpM02LoVE5U6OwIXjJkiOGHdeUUh0JeOa9OwHm2uG3bBT5V3qvPv3bsCnSm/nwMEULg+9/7Hg+PDzw+PTI9iZOiXcPVzS1bs+HqqhFtBm3QClTGUj89TmjjaG3HtrOoFFFoXr+45h/82R9xd9MTxiNpOqA14Jz0IuQ+6DlTtwrVZqrskqLgrUPWlgnBS3BxOjL7mXEQMoVPPv6Ivnc0TtPonuHwyBwG7Gww5g7TtNgA7e6KdjiSgkAzXl1fI/YzoE3D037EYLi623L/ILCFmKub2spCPkcyVEXmVyzQocyCJexSUhkYTgNGG+7uXvDF6deCVygLbp5GtdCdQCYUKuplrSgVp5SkH6XY99NpBCXMOEZb4uhXDZe0NlMXvHtRo6/HQBkn4gis46ueA/W/66ClDizK+7WOSx0g1fPlct91Xq0JK1mLFMb+3hJL/s6tTvjVwVh+t9ozZr9CPft+XVUSKmVZo4uiunOO7W67ahWMoqxdjvH09CQ2R2natsPlCtPpdMK5hpAbqFN1fk3bst1t8b5hnidc45jGCVLk8XFP07RZOypX07KqeGHhK70D11c7TsPA/vDE7ARFMHvPbrcTWJf3JBL7w/68qkZRuW5yJcOcjV9Jrjj53pA4Hk5Yo2mMou1EO4J8T9uuQ6knYhSNGWsFEqZN7ocwkvwzRihayb5eiEKsklLiarcjpBGtFbc31xwPiWneE0Ok66VPRGvFOIxETKa3FuiO0pmuOleoIonTaSDMfmGTWpJCGSkXo6whaprY5GcrzHPdMn+ttXkZlmdmjc2JKllj2qYlxpmnh0dub68BCMGjnGheGGvZH4589OoV1jrGyeOzLknfdWz6jsPTIffbHGm6Lt+7VZBvmiemeSaNepFDUErRti1d13F9fc1ms1mCD1t5EzW1+mLf8tgXRFhYiDHqRHZBiIzjSPKBvBjJPUuVXGVBpXzDRMV/vKVRKhPqXHhCJU1wwbLzzAGoIxIZFLF6Dyi4StQySUqUVlh8xA+01M6Equ7D7yoPP1dCLmXwlC/Dp4hHWgAVGq0bjOsxdot1wnTSGk1rnVDYao3CnH3HCok5P6960SmLRFlU6vd0yow3WWQozBMpeLRKPN5/TeMsrmvwfqLppMFbTXIPT8ORp4cHLBGjAjEGxmlku7umaTc4t2U8eN5PT7h24s2bj7l+eYtSGmfM0gDV9RtOPnHyaaFCPD4cGOaBw/GB7//oh+zv9zy9h11/RffmFtuXB7E+16QgZXXk3rXEecJoMay//uznzOHA9toxHR+ZO2Hm8B3cPz1hjOIH33vD07t7rHE0TYdSGtsIFjNNM8wTXdtitz0xWXZzZJxE3GyzbWg3HdtgmIOn7Swoj9IW60BHRfLkYCM3zOXzLxnzD4Z9ggLyuxzywtGtyLVKsizA8nGFwlLa8SHlsqvso/hQQfy7uTXNmkWvM8NKrUF12S6pOpOSwJTK2VocLl1h5C8zydk6SuZszfVYazBGMU3jmdOilFro+uoKhbCtxeXftW7BynCyNg0rpVBWGh43m60o5L5/z2QPvDt45l8G/mf/5Kd8/OqK7932DMOIahoCkp0bhyObvuNut+F//N/7EVMwhOR48fIFNj4xPB7QrcPohqjyuOsaZmWZ58j94UADRO8Zh5Hr6xcY5yRzphUqBZIfGA4jfhpE/CpFjlPAJ4N1PS9uX3Fzs6F1BqsUn+1H/BSZGTF+piMQ9cTJgOt6gpd+r9PTk0BHbUOMik3TUWzy3CQCM4nABIyTZkKRsESrkNgsIgoouTlULC6gmHwE3XH74g273S2/+uWvcVoIL7yfwRYHXxPnmVJRTnhSEF1x78E2ojXig+dw2guUI0E7Trz55CiU5MZTKB7Ks/6wb0emdc0bXzeq1wH0gp0OAWHWaTPkqsCxNNauzZ/lZ5qmhUqyhuaV/eqewbpXyHu/OI/L92rznQ4y4Hy9fnZt/w3rfblnBYoHovFSdE0UitnPhBQIKdD6dkl2RSJ932Os2J3D4SCUta5Bb/XS6D0MAy9fv8Hk+21yQ/UwDPzsZz/DuT+RTHWGWhWRuv1+T99F2h62bUff9YzDtCTe0jzRaLGF2loSibZrxcHNkJrtdsv+6Yk0CxXs8Xhks9lwc3PD6TQSfAmUrcBnMmxmns+V5ovidwiBx/tHutZwvW1IKWT6foVuxN9KSQRs5f7KWtn0GzKJHJGEsQkfhYwlhMA0zqQQcPaOq00HSgKElKwkP4InhnMdImsM0UqyT4IWocX3OSmYAIf0EACLcnkJ2Ar0tRCGbDdbZj8v86s48QWOqLXcj/E4Ya0EX66xoMo6Ieu0MRpjHe22pW0sjW3o257WtTjX4JziNASmKTI0nrvbW54en4Q5bP9EjBHrHNY5mqZfqbutkcpMtbYMw8DT0xP7/Z7dbrdUzjZth6lhwhdV0RJsGOtQ2sgaUM0JYKHJnaYJkyIhM2iGJFW8khgm9/Up/p57Mn739pwTpKrXP5z0zznYl8dSqjqGApIMEBG64azKsWaSl52XY1wapN8FlyolqLJFihhTyswlGq0dRjuMbTDGLWUx+TE54isPYg1+ntueg2SU1+u/C55fnWVkIylmhoGcL9dK5cxKghgkGg8zadJYJEglBqZxYrvTeB+Zp4F2s2UKnmkc8WHKfQ+KOCu++jKgtOP65pq39wc2my0mQz8OxyPjJBWI+3dvUdrQND1G2yXyVdVYUGQnXRUj5yHDGMhOWwwBTRR1YpRw/BvHZruDOGMIMPlMHyxMM8YYVINw53vp25Djj7nqpNFDyjRz0qxv/IhrHNaZnB1XWRW4qmCUkuRSolgDJXUxtCUYuQy6nxlz6xCtB54ISJU36pj7G5YnvwubZIbMeYP2Ut2U6yxViZjL4WX8XMJLamx6nd0tB16KQ6y2Qn5LkqIEDOUYl3SAtf24hMmUrTbkl5AvrTXb3Zbb21s+/fTTnB2KHE8n7h8eOWw0fmvwsIhEOetQQXDE4+lI12/Y7Xa0/RV93wrZQfTEIL082krGf5wmpnli9oGIwjYNUUmDddv1pGXRtwu1q0Cr5iWpcn//yDAIef3d7R1tozBGYbVAIlKQPoTj4YDuW5pGePznWYgmYm5oDDGS/IfaOF3nJMubo2yfAjoAMZBmA8pgkhYICUCSUCNPDaGRbOyyutimYTidiH4mqUTQDms1VoltQplcJRWWrIhiDokwe0JKorTrE9pK5lQpxfvcyP7y5cs1G/obE1XnlfR6TNZ/l38XzQtYVcMvtzqznNJKV16y6vYiSLiE+F2OyxrWp7T6Ldfy+7/V5/5ccnDZ52Lu1siAcwiyeMMFYigQJp2rgXPucVrx+1DR6OZnMs8TfpoX6M317d1Sgd9sNoTgGUgLMxSIU3c8nUTXIsOzfAiYol5tBHoEZLIZGc4LEYw2dN2Gh6cHjElopCFaqFg9MfrMgiXXWTL0MULwq8K5sQYdZI4kEtpkGFGKtK4jBr/0iVmnl8y2r7QbUJp5GpkwOAxGC0EMSo4jAZjPIqNSTWuatiJPiGe9UUaZpe8yxtw/ZVggnSFElImoIHYmxJATSRnGo8RW2KYhoZh9YJzn7DPKPZ3neXmuJRis1xJBSLQcHp9kfieBw3ddR/RGGDk3/YLAsFkrzVonfhEKpQyNtdJ/oYR2eLvZsOl7htPAaTgJ+xYS1EDpqwv4uGrBXNqT8towDEIxu4sL5e9lZbSeM/Ke9Hmci8mmJZj2fs6VIgkkErJGxJRI0ZfFGxX/u6pkyKl/q9cvHenf9bn6Rq3CWnL5anEiarz0+rnV1/hwofhdgUY+W1nkKsdDNoPSVoIL6+S3MdlAScN3Qp2d03M9KL/RQF7ekWpglb+Lk1AUcpWSTDokzIIpBpupHtPckOaGRiWIMymIQI8PkehnxmHidb/DT545zTw8vM2OvsJpyzi95fbFa25evAZEwKZpWjCW4/E98zySCLx7+47t7pq23eFMszB8rCGWeOYl7IpR+K1JccF7xlgWVk+cI2iLdg0Yy+76lhRG8CP2BqYgcIal10RpjIGTPyKaGcKs0vUGaxXOZYpCa9C2BRVxzmKcJWYe/uL0ljGwBp0rEnH5Vw5uVVrfi8U7+obbshBGyQyd1UPOgpE/nEDDWrtkbeDDIKMYzKJ8W/a5tB/PORHLfgWeqD9krYoZR9u27uw7hywkVW9nTloVBF1WP8o+5XdxHna73aKyO4eJlAQj/e7dOx63mtO1NBM2s+hcONugw0xKntPhRNMeubp9ze31lSyg80gKEINHGYUtkKJh5OkwMc2RtmtRtsEogwk+wwEDKfgVzqmQgCDEBTbx/v17fAi0Xcvd3S3eDyikEbBpGvwkjsPhcOCqlwpu13WEkJhGzawUah7FAUulCbk0xVva1kkfmJfkgYviKOiYwI+onLxRSnokRNe3ZNQEemisEbp+pXGN0IKejgesM0SVaFIDjaWw+yWlF3w4UQmULUpflo8BnxR9I+QSc34uSilev359lgCqx+k63qQCcblPvW9deSiBwCVTVD2ey37lvWmazoSzalKQejw659jv94ujcclEY61Fpd9d2f993soa+Bxs6my7cMrq7QwdUBEjzGGm7XbL+3MldFgEdmtGsJRW2upxGAg+oJViGkeanBW3dosPMzGFbMsMKYVF5dkoswQk8xwyWxMLjW6plHqEMUqVZHJmUgrv3xOdrBfjMEqP1ziDisv4KeNMa0X0iWkc0blpTGcCiAU6Y6QHIcSIaxzzJIro0+wxtq2ueVgqx8Yo5mlgwtIoS+NMvv+RkII0lGcIkJ9lrrVti9GaaRpIBFzTEYIwW1kj90j6KiI+JnTuCRBbVWxGqeAJVashoZbKt8LlSuE0z4xT0RcRGz6MwzI2LquQC+uSMcQYSDm5bYxAnlK0uMax2WwhU+IrpRZop8rQOzmGQ7EyOm26nl3fM3RHjkeBjmqtSblSXqhrvQ+oit2s2JCUhAGqVm63SvRPCjlO0fIoCY3VHpHJUBSNs/n+FhHQeWFvNMYQk8gbCPtlylTFQUAVOQj5Jtt/cJBxnm3nN5Ynn/vcb6KF/KbfeRZ0wFLK/jbb79pfHmZ+uCnliVVYplYnwjVNpq912KZBZxVicUzPHZ/ftV0uUJcUYao82JSy4zwwTaPQ1M6DqFc2ltZYooo8PDxAjGgSp+OJrpHIO04jw3Bk8p7N7pqvv35PjBalOn72i3/B7I9M04Gvvv6MN6/ecH11w+3dC5T5/5L3Z9+SZFeaH/Y7kw3ufqeIyMhMJFBAVaGq0exiN4cWm+KDHviqf1ePXHzRUotraUmUSKrVbKJZGHOK4Q4+2HAmPexzzO16RAJZRVCLCRlWIO/1627ubnaGvff37e/rUPpXNO2Gv/tP/hXTLE6iWQs1LGapdrSbjqykghhzyYJTFsrQKmDOlIGbPSjP4bTn/uE93377Bj8rDk8zfjry4voF/dVL2s0tp3HCFr1wpTS7F+KuPHvPYRpkY42JYRgE2nZOkolSmULB3c0NwzQhcKshNaVhrXA8c4LoI7OPQDF/M98PGqyHVuojIMXzBPeySr7c47wOUJAmfqX+LChTlVdcN+pq9LOWBr081n0Wz4sJct3WQdolyiEUCEne1q+pEqECoZ+Vd7z3zxJ5OPdpVA37M93l+fq1eGNcNIEbY7i5uUEpxd3dHW/ffosPAWMd+8OB03hFABprZb4E8Y3QaIzppMlPO8I0czrs6TYdjTUkJVzg65tb0ZTXiqfDiYfHA8dhBqWZX2X6xuFsR4hShdKFEuHaBjLMc0Brh58n9ocjT/s9f/d3f8ePvviC43EgeE0MnhQ8t7e3HJ4eOR0P54C3fNemaYSbVuibKEEfpnkuvGbpBYkxkHIAFWiMhQxOa7aNw8eMTzNzmFHGobUDbYgYrG0wgEmK2U8oIBLwKaAbR6O2KK0Yg8cnT8yitGKLp8o4Dqgs64ayms12i9KabDRtK5KV0zQxDAM3NzeLZGyVXVZKP1uT14FJHQOXAW8NYNZ7QH3dmsa0HpfrcTwMAzmfDcDqZ5nn+YP3Xgcdl2ja+rNoJUnpD/lYX7PvS5f6LoqV9x7TGFzruLq+4mxKF/FBqsxKKWKKnE4zVS2sqQFdGdubfiPnTonT6SSUnO2WpmnYbkRyVu7RCOQiZtLijEOsNu7lvqkiOTzNy7qYYhDzuJCJKtNkUXUKQcxklVIiixrD8rq2bUovh1ncr1OEeY4M7+5pncV7xX6/Z7vdMo4jx+MREFrOPM9st1ussWglTd+5EIJrcdA5i3UNVzc33N8/oRAxnEVVTUHbdZxOEylmtLZ4P2CUorWOnCJ+Gkk5Ym2LIqO1yMFqo0RGtZAH0uqfLj4VKUFWGpSY7Cn9vEI/ld7Oea6sDEnOur5nGE5L4l6psevehFgayKuypXO2uKRLr9YXX3whRdAkfmPTONFYJ0WMkEU5L0HwET97FILepDhxdbXDe8/T0yOhzNsQC0WJLMWcOAr1kQ/9pNZrTYyRb7/9Bmvk893c3CyO7et98MzGkJjZGA1R6G/ymMRophFEl4qgkEkplEJRDUWWDo0/evyjJWzXi6bKiXWF9YNJn2VYXtIZLgOHdbb2XRDy+rMopZ5VK/4x3+OP/a0mGiWVQTizCqOdLBBNW1AMJ01IJag5UzPyxfnOTVaX3+vyO14GobJJVNv7UHTPz7QO7z3jkCEUY7uEqMVEz3QaiBNMTqPDRAyBGDPTFJimAFpQmOPhSOsSrYLT/Xt++3SgbXtpqh4jXb/l9vYFr15/yu72Ne32Gp8ztmlpyWhjGOaJNiRSkbbLq4BbUWLlzMIHTSkRcmB/2HM4nKRpvd3h3EhOcPXiU5Ky+JTp+h6jMjnO5JDpnaVDKA/5KAFs1AYjSK2Y7o0F6rYNYhboSjbeopxDB3HzzSlgXbsY7IhlgQHEIVdZCfQX2tcfmmOKFT3suxG0j6F6gs6dETBVE4x/YCL9v8VjTZv5mGIOnK/PYiC1CtrX0qOXyfi6svssQc/PVdmeV3fzGfK/OMclelH9L/4gcvId96jypX/84x+z3z8x+2NRgKsau1pUUlKV1wSyFhTCtijlmOewOAGbwsHu+i0pK0KW/q/9YeLf/fJXfPvugZubG66ubthuN2y3G4ZpLBQMQ0wJk6WXRVqFiqKLMvzLf/kvub65KVSPzOkQIEc056qYMYZxGumDpylNsuMkdAThMR/Ew8QIrSAGX2iuWlRXcr22YFtLjJnDceCq2TCnzGEWoy8JOhrpp0gl0LdqoR+q0msmpmKOYZpwbS9BV9agrajrlV4OZ0SYQxnDOHusc7i2ISGoyRol2O/3/PKXv+Rv/uZvsFYaZCu3uz6v9ul4H555WogHiF+uVxWweCaXyzmpqGPsXCE/O+uuEex1T1Ad523bcjqd8MUobP3c+lgdn1rrUqD54a8l8McRmcu/V1GGdd+j+JEUqq0u/PM6xyluz0Z6wdani8UXA2Sturu5wVmhXppCXUkpMo7iI9G2rTRmB6EHrRv0jTFc7Xa8e39fKFuGzWZT6IKKN+/eEpMYRnbOiZfMahzWhl0RYFFLUdT7UNaKRuahyuhC72oboSrt93uurq7IOUuwu+pdSCmRTRFo0CJDHVMmxrzEHsZqdpuNUAyVxhjxlklF+fGq2dF1Pdo0NFGxfxpkH9WK0+lIyhGtgXyu1IcQ6EvPh/idKEJMgkhMM1lbtMrown7IpYIo1B5R1bTFELEWhGzTFOXKTPArhErrpYF6jf6lJEWoppHEomkdm21fRD3Eu6smUvXw3jP7maurHaCECaIsXdsKCpsU+4cnnDH0bYOzhjSH5VqKzLjFWCdmx7GyGnj22eoaXB8DQdJrQrXb7djtdlxfXz/br4w1S6JQGUApRulDKmuPreeNkYywZFIWFAOVL9gWf/z40yAZhQN3GSDXY0X8+OC1/5hjvZlfnumPLTofg06/+zOteSqqQF6USlhTJm5x+jbV5bvAWyXIvITQvyuoXH+mSw7tZQBUG6PqJiZIQUIhAyYoSkadyTEyjSJHmWLGByCMGOomFBFdek3KSgIGPZFTZOtkI55zBq15e3/CNXuG44kvf/crfuw6ms0WXeRwUypc63EiJqE4iON3QXbOd+l87xYoLnA8HTkNJ3yIdO2WuJlx1rG5uiWhmX2gtRpnNCkJfYLam6LPjblZKzCGFIpyTvBkY3FWsndtNA2OrCxYjdIOFaWx3xY4VcyYytjOUr2Rca4492TkZXAvo7FUC2pC8IeqbZcV+fWwU5yVzZ6Plx92cLCeC+vk4GNJxrrxe51YrJOU70zSVte23rv166GOSLUs8PX5l8+r8/NSOegyGflDn6MGpHd3d0UCsdxfLX1btedAC4OBmHIxqbOlWVug7dmLUknTtihjQVsmn9A5klXm7bsnfv/VW968e4/StlCLRGN9Hk7UHUYZtQBjWmtiEm561/e8+vRTURNJqailGHIWCsX6nsVVclb53nL60oMQBVqX+3eeG0oVLFj6z9FaYVBYlXC6BH3FDjMlX4KIBDoXF1pNrp4qxT3YFt5ziLmYbGVI0uCqqdQ5QS6rs7fwujMWMd/yKRBX97ZWc3/84x/T990zb4sasF8iZ+skY41gXHKk12NkjeyvaVDrhHZNlbh87SUP+7KnaJ04re/fD/W4LMpdFh+/6/n1GlVk9Fy4EFqMJBrFGwekLy9VX5Wy7hep0Zyl2uyWfV8tqlAgni9CKfJFcUnjtFt6apTKZb+ShEYZTd/3KPWID4FxFHnbtmnxXSieLaXoZCThhXN0Ir9HkZtVGqUMOZ97R+T+nwNZyIWOxeJ0HcuYiTFiSyN8pSIpDVFJcE6hL+acS+JVpWUlBhGJ6fJYMVu2tiHlUBK4ci+UIniPsbUIJOeinFdu5zn+ijEJtTvnZ0U4iYHkucKMqNdAl0RdYjazICznpL0el0au52Be1h6lxZ9HBBzyEnNl0qrgIf8zJfE31OKTGLNqZAylGDBG0TSWtmmYfS0mnBMIpUVVqhZiLwuTZjXuckGN6thaFyoqU0DGucZmu1zfnNL5tSGQUyoCN2WtzvK3lCUpBpFZlrhH/v59ju+dZFxO5PVN0nx8c/1YFf9jVdyPoRsfe+/1+ZefKx1itdh813EZ1H1swV+/p3AnK79euIooqYqZpsU0Ddo4rJPGb6WtbPxGC1SWP/z83xWIrJVqqqwanKkg9fs5Z5imUPicJ3wQ073gZ25urtBJJuk4jpAD0zyzf3qisY5U4NphfxCTIaThu2k3hGQJKfO3/+RvefP7f8vh3ZH/5O9+zuAzc7Z43UPzjvu37/jdb36Ls/8atKXZbPj0L3+On06M88g4e5RuycoRlUVbd67A5zpU5Z9BMUOhWQXe3z/w+PDINExc3dxxtduhcqLdbZjHgcP+yNPjPZ9+ckcMM8PpiD6BcQaUNOnN80ycPWn2WC3ShNZZZh+kctA00jhqBGGJObLZdFhv8Clh22r6FwtCVxfENdxYkqaVokZNOmStk0oK6tzw+X0rbs830DpGamDww04w6vFs/q6Co/Xf/lBgBizBwnouf+y5WskmV19TXxdjlEeVKj1U52BwvbZdrhWXyVClsazn7+V3qwFnzpndbifOscqQkPmRlMLHRGMMUetiGuXZOo1pGpp+A00LxpC1Yo4RqywRw2EUrnFIMM6R//t//+/46tt7Us70my192+KMJqdA14tyiY+Bq901sVYinWXOE5vNlt1uRyzrRC7khK5rCVozxCOb7ZbD/onj8ciu76kUotaJBHQqDYuNc0x+Zg5+qarVSqkURMSo0K5QqqvdhnEcSDHTWmisYRhH5uFASAbXbsTLx7TU26qV4uXdC6ZRkpEXL16wPzwVUy2NNVb6zrxnu+nl/iKBlS5eA8FPfP7ZJzw9IM3j+azMFELgq6++4vXr17x8+eJCclkXVZozolFfO03Ts+d2Xbecb50kN02D935JYKuC1DqhvRyLOZ/VcIClh6jOl6qzr5RazrdOVj5G5fwhHR9Lwurj9ajfP6W0LKTOuQXFOKOXmbZtaBqpVDvnmCeRR3bOkUypHsck1OiVx8znn34qPRDjSFPEI0KMXO12vH94ZBxHQgj85Cc/Li7fgdPpxDiOtK1ju93y7t07jHa0jVB4rq52PDw+8ctf/pK/+OlflODYFHGKtKwVrvQeyhh8KvfecTicUMqUZKcUwbKscfv9vsQWSahUbYsxGq/h3fv30m+w3eJjXGjg4zxjU8RQGStZfBraVqjSKTONE19//ZX4eNSgNotMrrWa4/GEtQ3jOPPtt2+QwqA0QRuVMEaU4LSCeRyJwdM4KwWIRUZe0MKchc2QlQOlSQp5vKivhGmUr21Aa+lrqL0JkpBIXUcbg8Uuzc6bzWaRzQcWmmTTNLx7854XL+64vt5yPB5wRqEV9JsN3o9S6S/9fddXO168uEUBu21PSnA4DpxOJ46nkdNpRJNojCa1DbfX1xyGgRSkv0QpCDGSY8RaV1Cc83oEMofXVKi6npHPBbnj8cg0TXjvJRl2jr7vS7IsRa6ZWeZMyuSYlvFELs31yS80KWe07D2zxzmhGqfvl2P8CRq/z8Xc/1WO70owliQmfxy0ked9+Jd1BeqPHTGKqZ2Y1HBGMtC4tqFpm/LfVjiCxZwmhLjSZX5egb0MRNYb2vqoFafKyazPE0v3SMqBqfRkaK3Y7rYyoKrCEuCnuEzK2+tr9ocnno5P3N7ciXxdyiTlaNororLMEd5+8zu2TvHyRy9RecbnxMNh5DffvuPf/Ltv+Nu//BH/u//4P+B//vf/H375P/53DN7z2c/+Btc4+u2WjCGPoTRUS1KWEDUKo87jRAGh/HDO3C3OdbidZT4+kgj4GHj8+huOT/eMw57p+Mi7600J7BO3m57r2xv67RZjZTEhJmIWx06pxIqmfYqBGKSaSakiO6PQRJrGYJU4nzvjaGzCuoAKShxUP5K11zGYSxIKK3uaVdAKfLAhfjhWV0n4klzUxEJUkH7I1cf18bGk4g8hEhUFuKSUXCpAfSzpgLP4wxqFqApwkr89TyouezIuP1N9Xl3o1++/Rj3WkPuaplFldCWhyYvyiVOK0yTKUN4Hum7DjGI/zRilsUnWLj97jvMTrmm5ur7lcT/y7mHPt28fefM4QbOhNZrj4cS2b9l1DTkFUkzFNLRQyZRemlG9jxidCEEaNTPn5mNTykgxNOR5XuD0xcSyaWh72ciCtUywcpxNhOBpGlvuSSZGL/xfpbC6cI61UDvb7QYTI+M044OYbXY6oZPHhIiiAQI5G7RtaE3Df/4v/yW//Pe/5ts3bxnHkU3XCXM8y+bplCUZzTiMosKXEjl6skZMPJXi/t07UvCL5OW6N+err77ieDzw8HDPX/3VX9H3PcDSF7Eee7UoVKVj1+OquvbWv9eG4TVto4oc1LG0LtZdBtQ1UVkn42s61lKVtmfVwxCCUPK+a3L+QI4/VlTMpacCzvdnTStarklBEMgQfUBlaIz4FXRdJ0lxFEqMtZbNTpSihkECx5xSURzqaawVx2XvORwOi4/K27dv6fsO62R/Op3E12azecn9+/uCtgesdUv/hjZC/4vxXHlXulIdIYwTpvguSOJT1tN8RrZiCjRNgzZG6EslGM45YayoaTltub65lrlRNp5+u4GMiEQEkYLVgNNVwSyCCgXpm0hA2zQ0zmK0WtADkN6WcRzQxnM8jYzjxKa/kqA/SX9WoyShmMaBuodWXxtBb2QdTzmRy33wqSh+Jpa9MedMCqLylJFkbJ49fW9R2hJTlOtafLWOxz1t23J9fc3T09NSCKpUxzqX21Z67bz3OGd5eHiAnOhaR9Ut0VrhrGG77bjZbbm7vWaeJmKIWKP49PUrePOO0+lE3zakECBbbm+ueHt/T0oTMQutLhdkxlrL5KdnxYY6ji9RVVNimjrH1wXrisjO84yf59J/KuIX2pQ1JkHbtQWtMaQoZg1KZTQQ/Ez0M+N4ZETo+iGcRVv+0PEnUZf6Y3CluvjbH0IQLs788fP9kQThHGB8N4Lwfc4DZ1SoThqtFEqLZnLlXdYEg1IhqrJj8roPaRhrXnn9W/3vevO4hO7IVWM9iRPnEpiV71rk4mIqfN4UwWiaviOkRKrfWQm0q7Sh7VtMsxV5PO/Zzyeym0GJulQw14w+8vtv73k6joSUaRvL9bZn//COr3//aw77e5p2g7EO1ypcCjRtR9N0QrsoiegqAgfWm4QiJYW1LV0XsW3mECZOfuR0OvH1V1+yv/+W8fDIeLjnrTMiUeksx9tbHh4f6LZbru5uSvNpqSbOE1kllG7YbbcoLf0VKoMyWrwqanJQoNkUk7i+VuSiju2PbcsVoFkQjtX4uxhjH0P2Lh9fflbP3y+tDDl+6HnGOtFej3X47iDqcp5+rPDwrHK5OqS35hxgXa5V6+RGKZb5VH++lANdJ42X51ijvGvubP0ca2pLzkCK9F2LNpo5hJJslIpdEmpQ1hpfCgKZhIqZ4zCilMVFhXYzT8eRt++f+Oqbd8Rs8GHGaJFfdYWDq7UiWKEKaV36QCpVA4X3s6jizK5wmGSdMEaLskup7I5lfGotylSLORYs17kWDawxxKwIfmaant9nrUQpR657MchTSYKiGBclk6Qg6yJXqeS6zFNijgbXJExn2HQ9r16+RGvLYTiwP+6JMUhqVOa5yuJRFMO56qjIuCJDKep8akEn1muwBI3HZXxdusDXtexswPo8Wb0cs9+VTNfxdplkfKxfaD0u/5BowuW4lHvz0dXsB3N8n2JL5ryOrteb9XpcEWpZr8XzSWVRNnLG4owB16Aa2a9SzrRNQ8Yt+2hKZxlbVQohuZxjTV2RcXPu1QnhTEeappEcMze3d4sJ4ORDoe0a2lZMZYXCKI7ZQltRRWWqBJhK46wDitt2TBKXZElqnWskmC2fSbwP8mIAV+MbnRI+StHTObcEQTEloWnqs/ANsCQLVRo5hkiKEZsNmZLYhrwopFW36nqknCAiyVxmSbrAlYq5QmVNiKUIkiBl8R7JuaofnU3nlBI6V6WUpXyONVJJvOf5rAS4LmCtx1hdx6uQgvdz8ZLwGA3GdgtFtN5joxXWGZSqBqCxIJszkGgaS4geX7zuGmfYbnpizhxHuT6V7WGUXsbveo9Zz+clZlTixbNOqNcFL5AkSZJitXyfM8UffOgX9S2heMmamVMkRUlScww4Z2isQ7XfL334EyQZUsm9DKY+rEz+46Kj75MIXD7veZX0w4DkY1XTj5wRsc6thjX1BotMqsD2IrUoxntnP4UzrfAMUVP+tp5c6w1pHWymdJaeq7/Xa5pLZVQ2OjEU8z7gw4xz4jIcYuR0OtG2lsZZ2saxfxCup9ZWON19S99t2G1fEFXD5ANqOJLzTPAnTuMTX375W3Y/+icMIfGbbx/wGE7jxNPjE1+8fsn/+3/+DW++/i3377/l1ac/QRuhGrU50m929Jsdfmmiy8tVrf+tKEDOCh+gcR12a2itJoeRp8d3vH//nr//5f/E/v1XTIcH/OmROHlsY+i3LQ8vPgVnafqOn/7Vz/js889prJhRDccjMTYoDZ+8/pTTMOJDbW7SAj2nCNilmSkGMGXziSGSclF7+UCubT22SgLAepHjnKBcLA7fF5FYB78/9OSiHpc89nWzbKWArHst1oFWfawGS2vK1AeBVL12pfpW6SxLcqBKMhATzp058eKKzbJgV7+INVpRj3WiUY+6qPvC6zalB6B+3qZpQJeqXPJcX+9wjWPyntZ7plk2UqsUuhQCIhIkpxhJMfG032PdhiZpMCceng68ff/IN2/ec/fyU8anJ6yCv/nrn0tVr/ZWmJpASRKQQ4QEVplFfcUYjetatDNoatAcUVrQWx9rte95A7GiJnRqSWK0dpgka5E0w1qagv6YNd2tBGzaGlxJMlIM5OKYrhJYpUBlQvSEYWKcIXURoy3ZKj559YoXL1/xdHji3/6P/4aTnwBoXCM0lpyWpl7pNRG0t2tabq6vOJ6O8jzvOR6PXF9fP+sFmueJp6dUxDbyxXw+I1vrvoh61N/rv8seivXzquJUDRRqArFWM1sHDhUFr0nJuqm8zq/6vGrop3/gC8oaxfhOdBhkTCn9bA1ZFzWWn1NGK0pfkDQKWWOw2mBag7MWFJyGKjAgKj7TODIUCtw0TWyKKzfAZruVHqp5pus6MmlBlULwZ7f4GBnGmRMDdy9eFoqRJ8aDzDnrlp5PP0vfhM1SXc6q9tvIWNZK6HHTLNL0wnpAJFFnz83NdaHmBSjV6JhkXlbauTFGZGYLs8JaoYCnGIje07Rteb4qKIkmJvHHaZqGHCNRSXzSJMCw9ArMsyclSTKsFkUoqXUEKqtNUXpZvGejmzLWEypTZHAT3meUrUVCSVJCipATVtUe0LJmF8p7KPMoxEgICRAzzHq/2rZdKIrrsRVCoGs35JyYppnD4UjrjCiKWvEWUUnG1+wnQNSx5nkSFb0kClX3798REvR9y3EeUCpJQqs1N9dXxAynYRZj2KVgXdZqnicZtWC2/rytdR/sreeemrNcdvDzkmTUva0+v7rKa62xRlE8W8VjjIzVSmh+vbiWbzfd95qvf4IkQ/hp9fhjMOaf+vguqtbHEoxnr/ujiYYqyIHQpeScpgQspeHbOale1GZCXV2gn79vzYrX77kkDfl5FWx9/dZBzVojPSZPiJJRz/NU1BlUUZ0xoMHHgMtmCQ5OxSTLAK9ef0LXtBjtAEXTdHQby9XNjt//O2hUprWG15++QN3e0KWZ/vaKn3/219y2icN+zz//67+m2e2Ydcfp6T3Ti9e4tkG7huv+mpubW66ur5eFaOkrqP+yVJlShGkKPD484VMi+MB4nLi6ueL/9f/8hv/mv/nXfPX3/54vPtnxo1e3/OjVTwmzNLAmNP/mf/oVd598gnOWN2/fsj8c2PYbXl7f0FhpcprGgafHB2YfUNpwfbMlq6JprR3KidSuzhrb9ozjAThXQD7eCpGX4aVq5bvce7l/oviwQN3fM1k+n7qe5xwY1nHz53DU77OuyFYJWHhOqVo3rn4M4VgHfJXCBCy9ElOa0dawvdpRFXeqlOcyd+VEgGb2XirtVpe+rLRsOOtAsDor14CyIiVL8qRXdDky3s/cPz4QM1insXnG6oA2PdgOZxpMmMlBgt/OimuuTzMxZ+ZxZB4ncqrSiIHj/sh0mohzQGWFHwbSNNJf9fyHf/d3pHAkkkAZphRxzuKMJYwTyUfCNLF/euD6qpGAjJmUFHgDyYJzaOeIeWYYJqm7GEg6QU6oHHAkGq2IRjEqyEk0+rOUHGlds2yWKkkwHpPn5Ed6ty1zR9FozXQ4AIpOORIBVXx2hnFEWUXTWj7bWO4fjwQmwvwk/h8kFIa7Fy/45//iX/D27Rt+9atf8dkXPxJ+eob/6Ze/pJ0D3guFwDpHTIrjYSRloXxs+o7Npufp6YlxnMp4k4CqbVv+/b//9/zVX/0Vt7e3z4pDQksYJCDUtclWzA3rZr8OYOp4jjE8S1ZsQZ5E8cgticM6OaljW15z/gyXifcadalBxDpJ+qEelyjRx58j/61ma8Ci5lQD6LZt6boWnRO7vhe6j9FUQz4DbDabotw147Rm//QI5RpfX11xtd2hleL+/XvuH+7RSrPpe15/9jlaax4fH/ntb3/L1dWOfhWUVVWnfrNhnj3H/ZHf/OY3aK0Z55nHx0ds49j0W9q2o207xvnIHLz4PxhDSJHj6YSfRM7ZGQv9+funlDiejlKNLupAxhiur684HE4cj8eFAlSvyfq/SxyiNY3tsP2GlMU7xBjpM9IoovfM40B7d4ezQjU7HqUqj8rFpDMKdcie12eNYrvZkpTEMH5ONM7SNBFrNV3TEdIolCrXIHR0af7uOgtaxCjUrEUCWLjXxVBX9ofGSk+SL67gIQSR0i8N3L4UFdZJfwhB5O+NYRgG/CQJ2tXVjhBm2qZfxlTXSaO/1pnp/kSMM8Nw5PHdt0X6V4Q9Pnn1osiLP5GCx2iFcwbjBRXo25bdbsvDcSqxpGGYPcZUsaEzolF7uyqlM+eMSnkp3KwLdevkRNgtvtZ0nqklCsI2LeOzbySJcsbQOkPXNbSNk/WxNXSNpXd/YiSjknJUiXuexTplk/i+AdDHKAvr39cnLiwWeR4CC50lFVYfDoosaSarlX/Gx75L2fBIHz6eOftbZLJo0StJHrJSssBYC9aijEYYOFFgvViyyHx+b4HsEqjSpV8qK1op1EoGTJHOlXB9dkHWuiYgEsgaDCCa9tMwllS+ala3Z233psO6FrRhmhPb7S0qR6yGtt3QtcLlDF6x2W4JKXEYxuJa3qBVJOeGnAwZhzUt+6cn7l52bK97svI4kwhh5P3vfsUnn/0VtjW4rqPd3NJtd9imw2BwymCBnIJcwxqQkwneMx0HHt4+yGdymeNw4OH9A8PxHU4P/LO//YJhHLkfRva/O/H62nK167nedvzsZ5/hsyHFxGbzoowhQWs6p4uTtyubq9xjP09Y5xbDodZ1oBSKJIZdqmh1G42Kz8fgClAVPn9FaVTloMv40eQl4agJyBI0r6hiuf7vg8T0DPeu50Vd3H6oR62sXiIWl+jF5ZpwWY1cP7Z+HjynL62T9Loor6VFL49YHs9kaRrUAM+b0NdVonXis/7clU5Uf67VvOoyW1HJubjQGusYxok5RMgK2whtQhvIMRML51D6wgR1CyHiw8ibb9+wfzqSY0CnxKu7O16/fsU0j0gzWYI5kZSRBEVlUgzM04lQTLm0rs2XhsnPGGOxqiiXxLNZUyrB85piWOmhSuml0b72hUlylRYOvFxNeV0s96JpjEgrIqjsunJkrFmojZOXTVFZxfX1jsMYOYwTTQqFsgqZRNM4Xrx4Qdu2bDab5f7/5V/+JV9//S2PD09LT0S9f9YZUgoICPNcIKDrumXz3u/37Pf75dyXyEHdwM/H856hOj4vj3XgfC40nZGJNX32knp12fuxRjnWcyGV/oGa8PxQj+8XZ8h8yZdzkrOMbc6iltRYLVV9jTATlCpmtor3794t1zGkKBQRc57PriSVm80GP83EIP0aNXC9ubnh3bu3PO2fmP3Ey5cvl/fe7/dUHn3TNOx2O0Ffit+BrA+yb6Uo8rXaCE0oJaGyVHSyfOPV2NUYbUo/GBijFrdxY+yCyACM88zVbidiMkWwINS+HjK2seI1g6hBScFQgtaYSkW9yPnWvqPzeigJi6hCCR0qxig+DFqxyKIW/5xpFndxV65R37Uo3TCOggjEEMvcle8veYUWKnTxtWgaaXQ/+9DMxDLml2tjJGZYizGs0YF1T6w1lhDEt2SzaVFIMeDm5grvW+Z5YhiO+HlkHE9Mo/SEgbBK5jlg25bZj0zTiLOGGOUeiuldwrmG29tbjvP7xYz4Y/vTGhFdrwfftaasm8Xr/rSmca3XkzXNyjlH3za0ztE4TdtYurbh+mpLYxVaZfw8ffCeHzu+f5KRV8E5Amv9Y2qq36eK8uzv+UytWf6WLxaa1aZUCEdkMgbRn3/2/hTFmbzybshneFUt6EKpuCvIGnKSyjlak6wBLZuf1pBzgKiWvgNTGjsXKTAlgWsmys/67IGts8CeSgkfFOpHTjUpxxpV+gQMWQNERqUI8yx3IRfjLmWZgjSOOtegjCNmCHOk7a9wJuOK26MpevE5K1zTkIKHrHCuwygPOZKyJUdNikBSPD3ck+5esbt6QcozGg8hc//V74njjLnRuKal2+xwbY+xDiLolMt1SotHBuUexNkzDSPHxwPXP7oikRlIfPPNb5nHB662ir/57FP++1/+ljcPR47HI5vujp1q6XrF5z+645u3R0Yf2W1fMIcAKhJiKtdaKjHe+2Xh8KVZPmtNVApFg8kKhSZRZPi0SHqqdDFW1arf4plWltzPqnJRH1snF9S/reG3kqQ8n03P02PFs19/0MfH6IJrCHgdwH8sifgYxeS71pP13y4bseuCu/4M688lMHdcguX6+Pr9P7a4L1Vl/byAUt97qT6V+x1TIpfAYhhG5qAk0S/BtbEapyGGgEKVylgSOD1nfEgcjyfmaZL1IyVef/KaL370OeM0IjmdcJaNsZIw5ID3E9NwJAUvfRsIp1tbSyyKSWv6Zo5xkTusY14vSrFlU5QLsNxDcirUUVn/lqSkVvlT1aEv97UYX56T87ruAVrhY00MEn2/wceJw+lETgFlHEqJDLXWmqurK16+fFk41BI8bDYbhtPEcBqXKn/9jh0NIciaW4OkGpCvUWbv/bMk4zKQ/xi6djnW1+jdZVJdRQLke3LW+C8u4WtE/HJO1M+yTqAv58a6p+j/L46cl0RjGZeIFwBAiIHGNqVRvPY+1WJR5vHhgbZri/eDx7XFMZ28JBoKRPIVhVeKcZw4nYRadXN9w/37d0VpSswsKzo6DANd26GVxlrHZtOLB0WSPomcRQwhp7lI0wr6DhXdlYq9XmIcoXOvk+QUJ6p8awihqOHVGMAsa1LX92JEOY34KDLZUJzFtaC9cm3OxzyfVdFSEaUwJbivPar1s9Ygn3LdsqmeMR6lRXo3psg0R2Jicfx2rsM5y+n0tATXldVhCrVNKZGHjUiyqFDPqvoV1VkzRoAlsaiB+FJcXq3psq4pQvCMk+bqaiNytsZydXVNjJ6n/SOHwxPzPDGOkkhsuwY4GzoGP4uhaQo0pem9FiSEamlpNx3vn44MkycvfVZQCzmV4rsWdpDPXeRoP8KEWRcu1PKd0uKfspooIt9vpSej61r6tqVvG6xRJclwbLoeqxOznxhOp+81Bf9BSMZzqdoaLf5pjo8tiuri75VfuVzE5TOoApXl8z8qYeX5oQsqoZbXyy+rtt3zY6pMHDRRyyZsnMU2ThwPc0KlRA4iuyiKKgmn3GIvb50lZYgF0qqykCKb+TxgMmVeKv28UqUUxfVX46eZME8lm7bs93u6ruPq+pp3799LJSJVN9DzZrbdSvUCDfePD+IA3vbc3L7i3cM7+s2Oz7/4Me+/+oK0/5pwiigtyYc/Hjm8eQOAUzfc3bYYG7FWoXLg/u0bhuOR3expk0Y7aT7zc+JhfkDHnm3v6DqHKNHLBba6ZRonjvsDKkNrLbZRmNst/9X/6f9KZyf+g7/9Efk485uv3/Gbbx/ZXl+xe/madqeZw4j3CT8PpNxxdf2S/eFECCeGcY9VM4fjiYwRN9ayyXS1n6XraLue6Gfhj2sjaNl5fSz3YNXQuoyRUkn5CApRswJVhmdtiFuep/IHU6e+nwSgoKia3OVYEpM/D7oUsGx6NWCqdKkaVNWf18dlcLQOttb3YU0jWVd+1kWOWumqwYe1lq7r2O/35FyCS6VKTqyeNSyuqz/rz1UryzGfN8N1FelwOMimYi2dMfSbDa7tyErz7nGPtT1ta5hCYPSBjW3p+w34wCmcyFlc6LebHUpbhtHzFz/5C969e+Dd2/dEP/If/fO/4z/85/+UpGZClrVCa4POhmmYCPOJ4+Mb/HSgdZa7208ZJ0l+dM70XSfS3FY8JlROWKPY9T2nB1ApL34eNWkIIeAL8uaaBn88oyjGQsphaVb1o9CuajJX59A8T7RtQ4oJP3mhVeVEImO15fr6mnmeOez3uKalby0vbrYc56PsDU6jtYV8DrSq3GPXdRyPJ16/fo3WhoeHh1UDtwR81kpSV6lJdUw8PT3RNM2iOPT2rahY3d3dLS7wNWFdV0LP6MPzOVuDO2CRQK7H/f398r7SuHtuCIdzklBVqGqgVH+uweUa8Vyr5lR52zU18c/yKBFcRYpDFtTQWUfbNkvhxmiFawxt34icawz42TNMUqVV1qCtxTUNm92OZBXGib9BziIVGoOoODWuAW2wriHOgcaIbOgXP/oRb9++5TScuH9/T9OKwpFWmq7pmQZRihynwDiJ2MnxeKLf9CWJkL3bhEio9IuUQRcKWJNK/2Aunq1nb48YwGhL322KhG1G68Q4zkxlzseY6doeUJjjsTRuS5I7DjNGWRSZ6CfatpM5EyKH/YHgJdbIaEKEEMR7a/HmVgXJ9ZEYIGdNDB7dOVxjGMajmOYoRcYxR09G4RontFbv0EoKnVpbtMkoRJI6JfEXySGRIxCFPWCtxVmH0ophPC0Nz+IZATlFjoeB3W6HVpkYZkIMq33ALUiCtQ4fzsn9ZrvDkHFNw4sXrxjHE/vDkcenI+PoORwH+n5ku90yjRNk2G6vAEXftugbxTSOnIaZaZ7wIYi5s2vp+h2fvXrF+4cn9qeTXNMUBfENnhiKKIQ1S8FJ2C8S66WUsSYtRa5nRYhzqUwK5jFjDegSL/et4/Z6Q9u0NNbRtR1WKYxWtE6x7XoaZ8jRE7Li4XHP77/68ntNxX9AkvE8Cahf7vm8/uPl1j/0nMsKJfky2P5QiUcVHp5CLRMsU5RPLsj08tyCIZRMuz62VIuzfDudMxovDZilWJ21RlsjDTHRgx9JOkMsm0uUiqFynXCZVcbYMuGVwhiRk9MFjVk3+J0rZko25BXEW/8m8pdKjO8QmDMD0zwTn55IOdO4FrSmbRrawhf0s0CcfvbELJW9oGEOmv1pz4tXn4OxPB2PfPv+ETMeMGGi6xzHOGDjiRc9/LN/+lO+eL3BH+8JtifGjI9wmiKPT3uup5FXXYMsLkIh2z89YLInpR7X3sj1V7IEhRhR2tC0Lf2mI4aZ4+mRL3/9S779/W94fed40V9jb27wOI4jKAvQlk0k0reOxs2EOXM6HUiIuR40HIYjXdvSNI639/f0XUfjmmJQ5nBaL14axhiMtcQAbePoOkTVI0kVIYaIiIVXZG01YJ5BDTUNqSmwmIBl0uKrsX52Lg7iSld1jRIYc4H4qT8PMOMMWRu6rjv3Ga2447UCs+agX1JOLqlK9bGaNNTjEvmov69VX1LZgCpP+sxHlsyunr9y3dcJ46VvQl2XjD4nL+um3P1+j0K0+a978dkJMXOaPHNUhBzIWjoMjscTRiv6TY9NWVROskL7gGtaYsycTgOuaWgaR+MsL17c0XaNNHQ6RQhS5VIhYY0jTCPTcESThHdrFPN4wphuWZt8SqQgtAWUWXC1lALTeGKeBoKfsLqhQr7GSmNqTokUxTyMnFFZFV+Attw7qe7lJKifLRRPSeTNMq9qw7xOiZATIUpzs3UO4xzDMKC1prWa/fFEygqVEnZzU8y41HnNLPe/7ztykkpz30vfxZIUxoA20gS/2WwWakl1065rtVSY84IsVF39Oj5cWUtq38868V0nBSBLWKVk1TFe5XG11mV+nA3S1knzmtpwSe+oDcZr9+/Lfff77NX/Wz3WVMU/8kR5jmTZ0muhc6EfBbq+oWsbutaRdSbkQCITclyCzcZ02KbBtR13t3fsT0diiszjXJqoU1FXmhmHWfZnY7i/l0Le1dUVt1e3TKNI4U7DiFE9Kkmy3jQttplRZmLyQZSTqNKtlIBfGopVlkKvJLayL52GE13bkQr1S1uLLmpN4uIsVethmFDKYkyDtQ7yCZIiBRhnz/7pQM4RUwpp1kiskZMi+IQ14JyVavyiTpVLrGWIMTFNEWsi1gSMysQwkSjJt5dkxlhLJhLTzBwzISaMkqLkHBNoqfL7GHh5d01KgcPhJOe2LS4qYhxwtXqfpfdL+r9EkUlnilQ1pBDQOZewIxW2iFA750l6WLfbK/b7vaA71rLb7lAqL+aKT49PhSKXGYaJTduilaOxHQd/Yjx59k8nHh5PtO0J5zZst4G26ZaGdUUixUgMnvuH9/gQ8DEy+5m+b1HaQo5c77akkDAoxhA5zTJuVFaorOjbnu12yzzPnIYTKSRSELqVKWhwzlGSLiWqgPPkF7RtnieUgrbtOJ2OvHp5w/VVj9OqxEeOrhFRIJL4Gb1+eYMudPCYAr/+3Ve8fXzk3cOfGMm4PD5WPfw+z/8Hv88feO2CfsgvVF9mQSYo0PuzkvQqoThDetXdGSXFN8H44wJnKQU6Z5IGVJLeghSJJHyWAP4ZlJ0SOQl3zzjhB2ptMNoW+cDC9V9VUOvGpbUSt+wLyGuRNCy8TK1Fpi5RAqUiD6e0xZTAyBa3bVVg1BwTKWRCDGTMUonXBpJWJAUBxewDJnhuNj3jYaK3iZ9+ds3PPt9xs3N0DpGS9JFxjkw+M5yGQn1wKCPhdQ1KxkZjLRxPjqYTKsLStFXkgJvGkVJgOO559+Ybbnc9uw6czky5mOS1PTEqFA5rNI2LRD+TQhBKFwlrGwnccwcxlveRiW5tkn4XHwkxo6Mkk0vgmMRgRhtdGq5kTJ0H2cWRFVXiQqnnWUBNcHPhBZeGoT862pXSC23uz/W4pJZ8rM/kMrmo/9a9G+tz1cfWajqX7/dd569H5bCen/u8ybxWqtcw9fpzPSuSrFCodeIzjuMyn7uicZ8y4uSdQOWEDqVRMsl6JsZVCasNyTpQFmcbYpw5HQeyEtlVNPzsL/+C3W7D2t03xQgxM/uBME+y8VZKgYIYPM715++pVEFDaxJVejj8vCAPSmWhQ63WqWUNLd9ZEo71Va9KhM9pCZWeaq2ReVOqn9qIx45K5b6Xda1pW/w4oJAEzqqIjxMpGBx5oY9c0uFqktB1HX3fL/di+fzIvaxeFnU8VQSrmnNVJKCqOl3SlS4T0fXf1uPl/N3PY3CN7F2ObTgnxev3/djcuUTw1udZF+t+qMfl975EKVVBIEvNUAJmzmNLaVuKSY00PkdfXJyl90LnQprKGhUi2kifQoppoQb6OZQKcizJYipjwzGOEymK4ef11RWta+ialv1xJoYotOykFzqSsY2IG6iziW+VoNU6F1ZEIiPKV7Vo4b2vtIxl7sm1kM9VzyfoQkXlTUleSyITE372aHPupdJKkbOSHggTJXlSVcnMLole3bNQWqhesYxPa0hInFTPlZf7kIg5EKIAMgqJ03xI+Bgh56JSp0il3zREoXov+Kl80cUmoI5nkfAV1a4QArE0etti9lf9rnRJOkEJglmKV0abZW4LzepMGY3l/ouFQEEosyKGhJ8D8xw5nEbaw4nbYcaaBg3Mc8SaXK6VjMuYEzGJVLfCSAKEjBdjNM6KObIur9FKk8s4qJ+v9kHnnBfvoqo2Vud/jL4k2qr0zp3Xuqvdju2mL83cDc5aQdhdS991wtSB0h/kCdEz+8jb9/c8HE6M/n8Fx+8/tDh9jJu8/EzZgL7j75fvsXpSaST8cDFePy9D0XXXnBssQOWzBvD5dbqoHZUkQ59pWChIvmTAi6V6KjQoJEhPgRgmGYCzwa8g8nrM3UTTdsS8RdlMo1uM1TStvC9JScfIiju5GHUp0YCu5zurkBTuY85Y50TqsU70kgmdxhGtJGiX89pSgbNst1uC10xD4Pg4o0yHaxu2257jcMC0O9rtjt3tHW+fviIMEz/78Wv2h9/zcuf44j/9axrrublpuLne8fA0cRo8+6NnmKSiGoOn6xpwjhSFizj5E+OkySowzSdefPKCrutwjUxqawRJcNaSoud4eOTtN7/nv/jP/mPy9JbT8S2/+fYtV7fXvJ4s79/s0aqh6xqut44vf/trToc9YxSlENxGxkNy9G7HNJwYT0esawqkm0GnUoGxaGUIMZGnGa0jgaYkoKVBKoumvzXnqXIehgrBenMd5ctzErKCZ8qmocQxE0A9o/wUzmRCxgYZrc89GpdB8A/9WAft0zQ9k+xcN6Jd9m6saUprfnUN/IHF1bQ2WF8Gd/X1lb5U36spc6k+T+RuIymdq9N1rq2r0/VzVkWrNS2loqpwrlaH0hQagqe1lrbtF2h+nDy+NjOGyOE08MnLq+IybNAhoZTB6IxzDU3TMQye9+8f2O+P+Ohpu4Z/9V/8ZzSNlY3cB5IPkoSHwHh6xGiwGpwylIUOooxeXdSwrNak2S8bbPAz0zhy3B+wRtE4i3du8ciojexardYzrQg+oFSm65pC/ZOwzzlLTEV2EgBZ5+W6C6KXUWijCUm0LZ1zTEHu6e5qx5MfIQZyDuw6w9Mc8GFC5YSzLVmpZ2Z59ajyo9fX16SUCodahCAEddZLMlGTzqo0U8dX27bFVO20jJ06PqtB4Xrc1fu/ThAqTWuN4NUxuJ4f9R7Uc9R/fd8vCfUaCawJ0vq56zlUC1o/5J6My1jg8m/ngk/pA8gIjWnZZw27za4o5li0RnoR/ExK5702RkELnGtxbuJ0GpfG5r7viXHgdBoWaeC1upxTmiFOzNPM9fU1Wls2mw2H4wE/e4KS+TacBpTSCw1vu90u56hrWNM0GNegtGOa/bP1ryrcgRQ2Zi/8f+n9iovHw1IELT0G4zhKAlUqAzmfG9DlOkryMY5Cr8tJipTz7Nls5DoGX7+voD6StBRviU1DjEDIpWhXBQfy4lURV/7DMcE4eXEHN5rtRooAtlDVUhL3ah+CxDtUf4zSP1voTV0r7I15njmdjgBsNl25DjAWg2JjDMFLr9Y8z8u8qIWFuoeM4ygBfwii3qkFpRzGgWEYqUlWzkK5PxwGMg9cX9/hjCsmgyNtJ4bNXd9zdX2Nf7gnTDMpJ4bDEWNb2l6xP4xFergUS9RZwGS9T172Z7niD+a9X5DYEALH45Hdbregmk3riCHgQ+Bf/PNfMA4HyIEXL25L0UljlRW6VC22aknQo08cDye+/uYdU0q4fvO95us/CMm4bMb8zgl+eaiPP+8D6tNF1ea7jmcJhkAdqyy+LjCGWDotjHIonSRjVgZjdXGYlkZfMtSwbs6iIx2CJ/pJGkBTZArVJKXQJGomXYMWJNDXWsE44LoeH2asleZwoxVW9RJIGoPSz7XSK8wuaIV5tvnUBlS5/oFxEjlJrR19L9DZOE1cXd0QQ1omvlTLxAp+moqrZBiZfOD9wxOHw4n7xwMvP/ucxjSY2fOzn/+COD/x5rcnfvv1eza7K7ZJGn1e3u6w1jAOnqej5xf/7D/hb9SO//r/8t/RtQ0GgScxgRg9ZM/d7RXzMHAYjyitCHHm+uaGm7sXNM2OnCLei1GN1ZCj5/D4nr8/vuNuk9j2ms8++4R//d/+jm+/ekMYEnGe8BMMxrPZXGHtkRwSIXpef/YC4xzTeKS3ie61xhr4+ps3YnqUMrZxhJRRswdj2W17cs4CYeaMch1VzUuQCBlrEgQASwJwmXB8ZNCvH17Gty6Uq8y5wTY/e+k6YflzSjS22+2zBKFuzDWgW1eB1xXfuqCuqSVwVoqpa0dVdamb9HqNOQd350Cu/q0+76yCVBVPzov5mqsfCg+7fr5xHJc5jLx6CepiFFftw+HA27dviT7gNkKL8TESy/f1OSNkzwxGM04z4zjj54BzAtHHRri3+/2B/f6Ac8IZ3l5f8frzT/j67de0TYPVCpU8202LUcL0azcWTRGTyBadbQnupWoWo+jWS+ACIZbPFby4u+aEUZJkpK7DFKBY6D/VBEo4hTlJRVIplgbDGmRXffkqf6GUoIeiVS/eJdHL5q9LkBWz0MVylkpz17ao6FE5YKLGIw2w2iiyVku1dT0G6jRLSVyfawAGME7DMo6maXrWs3B3dyfa/tYuso/ee06n09KTASzrdE18z6jEczW0c4B/Ht91rNfzy/yQ5tca+NSEeI2KrRvDc86LkWCteALP5tU6uf6zPsp9bqzMycY6rnY72tbROAcpYE3pudk/EUJEvLDEmyKEsKB3OQViFDQgxiC+FwUdr0HmOM5orUpw7sm60KLLPAahBjVNe17vFez3B4xzoLU4gjuLNYZXr17JvCgNgr/97W9xTY+2DYf9fkk+Xr54gS/BpC/9SnaFonrvnwWowzAUf4Tz2te1LYuohKIkKGWfUoqmaek7R9dq9vsDMSWGcaJpW4ZhIiO055Rhmj2khDYNc5hLI7YwOCgJjdF2oUOOp4GQFClLUSDlUgAEhnHC2bB81mmaCCkVeqisCdX3KpZixDiO7K62y1oU45nO6Jxbeq68j6BY1Krq2l2TdGBJQDZ9L3Mul3WjaZinmV//+tfs93u+/OpL3r17j/eyjhwOI+PJ07WG3XbDJ69e0DSOvm8x1rAfTmRl0MZxOO1JWRKeKQ1gHCHNjPPMcRhFyEYr2qYRdb8UmaeJ00l6gbSW6+mLo/fpdOLm5roU1jM599TYYrfbSrG7FFH2+z19a+i7HV3XsdtspWfZi6iAc7aYuWYe7x959+49v/r1b0EJHTiGPzGSsT6+TyLwDLrkH06vWs7zkd6P737OeSCrMsmV0jjjQMmkMdqgTUE8KHzKlIqVe2YuKgAhBFKYlyTD+1Ak2CQdUblUVFIm5ohRMmmMlgmD1rhmEqOZKBzkSqupkOVlhiowrqIagcFzqB1ALQ3jZzk7bRM25bMSRDl/SgpjFM41hRog8K9rOlRxBo+pNK/h6FRH1/Zc337CeHjk4dvfkHpFYzTGtqRsmLzAmscx8/7xBNawvboSPqAS1YpIIoSZMA+4PBF9WWw0jCf5TNpothuIYYJczLeMJviZw+FAt5kIrSIlwzQ80ejItskMY2AenhiOHVZlYsglcSyeII1DW8c8qdL8BTFHlDG4piVnUffKSkmANwx0rVQBEiIl6jlz/Y05Cx6knFD5THM449R1zF8mBs/RtkoLqVOg/vzBlMglweE5Ze7PITBYN0FfJgGXSQU8Ry4+RoG6fPxjVKr6eK0U19/Xx5pK8lwiEEEX4Nl5L3tDLoNFlRcsqhQKxANGigDnKuHxKHNVG4PbbMXsSiueDgdeXvfMfmacRhrE1TdnOA0D794+st8fCV7MtF69esXP/+av2V1tcVqoASYZ+sZBivgoQZUCadrOGYXQM7VtsI0R5TxAVxoEmeBn5nEUSpU15IK4GmuxWjPMgaw91mh8LMps9VrqWp0/38dKUdAKUlGSWt/HWu2kJB65oLQURDkpWeO6rifOEOdCX8sZcmQaT9jeLgn987Eh5+w3PT/5ix/z+999SUyxNNjm5T5fjo8atFtrOR6Pi4lVTSLXyeXlOF4Hcx8br+v1PYSz4V4qfiIfQ+MuE+WzVKeMxRoorSuzcDZFqwn+n8vxXbFFihlrJXgWtThPShqlrDSDhyDFyVqUU1WJSPZJEB5+ih7lY/HTkWLl4Abm0pNRkbhKFUqxiLsoRTKGcZxoGoc2FmMcoQS+FXEJMRB9IqW4BJLeT5hFfECCX2st2mjpvyoIpzhjy/hPtSBSULJauKkJiYwDmWPOOcZxhgzGSSEkJiUF0UJ1rPuZSMYajBF0L1Mk2pUqMvDi0QAybn2QeCkUsz9rG0EwUoIiglIrdyFGsk7luqcFnYgpoYEQZN6GEJi9lz3aNAv9pzZo18KQsRZ4XsCutDLnJPEWtGp8ZtRYx0+dI1Xiur4+FtglRkGHnJMg/e3bt9JQn5KMmSzchGnyxZAviTqZ1WynjrZtaNoOUcCUeG4eAyF6Yp7YbG+WmCBEobwJO0Uzz0JfstacKyblemGLVL46s1/kO0S22y2bzYbdbscwnBaPkMY52kZEDESAQqPRaCsJRkUx5mnk4WnP+4dHjsNIRqONRdlzQvaHjj+BGd93H0si8odzhO9MWNbJxeVz8vLfvARwFMnaapqnjEVrIzy9sulZrUWkNPsyKUNp4JIbOs+eWLh8OdYkQ9wuY5JmZmqSUfiCKQeyKc7fRpOUQQdLCPMqwZCJpSiUAm0WCHutclMD9TpQ1puLbA4ICmKsuFnGhDGOptVM40Tr2kKXqk2UGudapskjikWOrt2SwiSJlzUcTyeSanDNDtc6bu8+JfiZr7/8PfkU2TSK292GKUR8yIw+M3jLl9/cg53YbrfyfZTGaE3MCe8nxuFETCeSl4ZQdMaPIlGbY0BFiLNHpbA0g/rgOZ6OvOgzKStCjAyPD9x0itd3HU8p4scHxlOPsy0xKNAO1zbYpsG4qsokRmtzmJjnUTbl0jifszS0hhiJs+dqu5NroRXOGuYoVDlZ4BU6lcWjOMMqqodFHZOqVMGej97zGKWgXuX3EnSRRf5zPdZzPicXddw/r37+sI+1fGyFqdfzoAZO6wSkHutAbT0n1vNkvU6s0Yq1R8Ba8eljPR5S+a1SrXJP1olFDdwqHSWXKvv6M6lcnHZjRilDTrk4zco4icUJW6eIaxpc23J317O7uoYU+eZ3b5g+uSlJxgA0UplLiaenA2/fvON4HAhReLqvP/2EX/zib9juWnRKQhsiY5XQnaKfls1JJdkJldYoY1DO4dqWxBmGrztdmGemYUCR2PQt2TusbTDWo7XCnyYSM8Zo+X5JojRlQGdNUrrMlXwONAo3XmS9z/czFp37GsgY55aZoLKSqh5FMKPrmHPEz2Oha0FKkeF0YOP6BdVWZS2oMgxaa3a7LT//+V/x7bffEJOhbRvER2AqPScfd3MHoWEcj0dyzlxdXRXVqXY5d52na5GAOmZkLJ3peuvz1+Sq0hpyzs/oUOv5v36PioLX61eTjBoorel869f+kJOMjxVbLq9nXV+1UiV5iMzzhDGKtpVge/YzvlDwNIakUglAS6KbBaqbffVl0DinmZXneBxJOVL7eEQidpRG7XTu2zAmcTydsO6GxrliACl8f5QUF3xxDBdKjtCThmEoPVsarZ0gwNogwjU9u92OFCOPj6J8VvujFDWAP7MsKj2o6zq8D+TshaYZR1LKNE1RKAtKlI6MIcWabOVCUzJkJb1auhTpUj73YGhtych+FmIihCI5nROukdeJB5FekomcFTFlVIzSkVALOyVx0dQ+SYkLZu+LUMy5wCM+G6VPFYr3x3neVZqhIJcNnekwRuR314n5eq6uk4wzuhiXfalrW5q24fD0yP39PafTqSAdxdxVSS9JTAE1TuwPR3yY2W46ttsNN7d3pDxjTMTYhsmPDOPMPEdcsykqYRL7pJwk8NdFnleJkM15qOfls1mrl+RAYlnxPNlsem5vb7i+vubrrydi9Hgiff+CrrW0bVW4KwUSY+j7TpCeFBnGifcPj7x/fGT2kaws2jhc8/8zx+/z8bFFuWaYdcO+fM4fQkRUpfF+x5HhWQKTC3SpjcW6DuNEMahtO9lgoQw4Mc2JfmQaj0yj8P3mMJNKRSGmQEX4ZOJGYhzIKaFRJFXcfqux1uLwXDLiFMvkjLQxQ9LkVNWp7LPkom5I5Vsv161m1ms+Y+ZciZ9rk6pShcMs6iuNa5agKue8gvVbGZBhEu3tHEk5cHXzgsb1KB9QtuGzL37GJz/6Mbie3/7yf+TpuGc6lGo6Gm23fPGXfyXQXsw8PR1wzuCsobGG0zgyDgeOxwceDvdsGyfGXjmwa29J84mTH9m1PdNxZBomOqc4Hvd477m5fYHrT0x5hHnmrz99Sd9uGeZIazWHb7+kbzObdsuD92yuXuI2N3z2ox+x3W5w1nG32/Dumy/ZH48M48jN7ZX0jcRI20ig1Kgi0dZ2QCTmxPF4IDUdKSfGeSClbhmn0nAnFWVh7ayT4Es/lnTx+zIDnj0qylMXdKmPjfU/AxSjHjXQaQt/9rL6W4P+mnRUrvC6wXatb77u3zhXw899F+v3rao9a73xdQB4phdU91+/QE2XgYxSalFNWveMxBhJWZdKYE1ApYppjCMm8CHy/uEJdtdc37Rsmp4peOwcMErRbbacxiN9q7nadrTWcfKB/enE19+8JwUN0fJ0f4/aGJwzvLi5IoYTViusNvR9SxhHtLIYs0VzltUF0K4URqxBWYMzmk5pUoiMw0AMM3EaaGxpTjXio2G7jiZLkGacOMOm4ImzJxUueCg01KJPSaUGOWeY59KsqpE1y9rFCdg5t6DR6wDAILKNMSURwdYK7Tpsl5mYIEVUShgSioBWFm1EhY+K/uaMygmlZG189epFcfYeefHiVmin48i7d++4urpaaE/z7JlnX6hehUpWJCNFUMIv6PNl4lAT1DVSs6b9OeeWnp9Kw6vP8d5/NNmu46z+m4qBWm1sP63062sfUZ1P1UBwrYr1Qz8+jvorttstfdvStg2bbU/0EwJGhIImynWd53NiEGNiHGrvRcNmcyX3Pia0EcPGGDPH4+lZILvbOdq2w5jA6TSw2fSkKFKrD/dPbLc7rq+v6Puer7/+inmeSMmjtGa327G7uuLbb79dEsemadhsNssYvLm5QilNTnDIB26vdkzzzPu3b2i3Pal1RG9prCku1CIJDecks/b4yOcflqA/I2IwNsn+dkbNy3zMME0zD4+PnMaR7WaLaxqOJ6Fep5TQlgV1VBly+axCTQpFihqs0vgQmL1CK0vbdGTqOq0JKWNRWOcYjwecKxTG0uBurME1DfPsCVH2AG2k2TukxOFwoHGCOu52WzabnmE4MU2j9MNFL2t7afBeF7jWe5BcK6HHTuPI1dUVV7st9/f3XO92dF3L08P90qex216BTkUVLBPyjNIOVdagx/0eHz1zjDzuB06nER/iEqxPPuHDxPv7B7SRnrWnw4Htti+CGIlxHLBWiiLjOKz2TUUMsm/d3d2y2fQcjwdC8HRdxzgOPD5KESbMEzmLWhU507WNFI9SQGVBpxvXsNvu0I3BR8+/+bf/ljfv73ncn0gorO1oui39Zve95uefJMlYb9KXm/B3Pf+7KkXr4znh5OIcUIV9oA4OUzIs19B0Pdqasok5CcyzwPAhJOZpYh6P+EmMrHwQyCqHXJq9xTjOWoGMjFGYVD02qqvGc/WPRa5SGwkeE6QQiSERfBIZNyNyas59aOylVK1AnCtp641n/U8pkbLz84zSWuTJlPAna5LhrDhfT+Mk1CElEztnj9YWpQxKt2y3VxhlwEPbNHT9Du0cP/3533Fz9ZJ5OIGfpQKbhQ7Wtp0kUvNM8J6+6xaY3vsZRcJZg24tKkaqP8j+8R5lDMY6wjzQN47GWPY58fggHh/9bsdxekB10DpH2D9ggkf5mcfHPS93LV0vjubvHx/Y3n3C3SefcPvijtlHjvsBfzoKZUQbUIrjSXioxjZlEovGttGuVFaEFpdWtDZjDGlOxByJFAlb6t8scSl2f0gfVJxVQtaHVkr4KqmqoeWP5BfPaRtrqs+fC6LxXTSpdW/Eem4Mw7A8bx0od133LMioHPX6+7oP4/J91yjG+jXr5nQlDy7oRa0Krs3R1mvZco8WD5zn87w+XyPygkmV1n+l+OTVJ5A18zQyThMhtwQUAcXj/sAwe0bv+eT1p9x/+0jwiaZr2dxsaBrHNE2QPG3X0bjC0fczWolCyDSeoPROVBdrrTXKCE0qxShrYExiYudFSUZpGegpSYGjFjZqgHKutOfld2PUovxSm1NrL8P6Xi8VNCTgFrlHWc/W696CIhVqq9IK5cp1dA1ZT6QxMkdEkroRAQdtLbFIZcr9PKNon332GXd3dwzDwJdffrn0UXzxxRcASwX0cDgsPhnrdbmOAykCxQ/WgPod18Ig6zlcx2cdz5dUqsuxuj7/2tDvfB2fFyPWiFtNWmIx+fohIxnr+XY5t8/XVvZe0xucsaic6TpHLqo+4zhJ/1BWpb+xFI9KozdID4YtjUdaG9q2R6lShIzh2TWsnj9iqidBn1KKtutA5SI5OnBzc02/3ZBJnE6npf+nbUW4xJizP9B2uy2fQxLcvt/gijiMNkJt6ntpaO76FtdYQW+0IqZI21YFNIW1piTKhbKY697I0uQsKku1MByXBLmqtXnvS0+JJB2yttYxLl4dqtCmQyiJRZZexwXFL9FTKvdK62JyXGhG1jpQekEaKroJSHJQkO9qZ5pLtT2mtKwh6yT+6emJ6nAtRn+BxjU02x0pnZPvOp/r3FhTayWuyczeY5T0jijknsrrhYbaOIkrUvENslbWm2GcmMZBYrHZ46coxUqlSMxM01wEBhpO44CzDUpp2tbRFlpcimlhiyikiLRciywiHzVOmIvSKLA0sQ/DAIipa3WDd7baKWRSiLRXooDWWAdKrA8O44mn/REfM1lbFIZ+u6NpxA7g+xzfX12KEtiXCbyOixbSyGriL6/LJSBXfPC352dfn2l5MWt+HeoMfNf2i6zOEI+yDmtFeck1rRjplE10UUKJkRBm5nkUvfdpLIuvNHrVjbEG+7UaaYzGRF1QjcvPpZZ/Wgu3WSuNykok7wr9KoSAiQmz4s/Jt3/ed5Lz+ZqcqzOFiRBXigKLskRpOC/u3daIOo61dqme50xJfhRou4hxGWeE/oAixxpECBL06vUXXO9uSfMM0QO6UJgy43ASFGg4ME8DTdsVjqjHTwOkiDMKVCYnT5W+HOaT8M/bFj8N7K5adOs4HJ7wfiLnSNu1nEZNTIqQMn6e0Tmi80ycj3S3G6wxhJCZPLzY7Lh58ZKmaZjnE/M8ctw/sekbUpJAZZ4l+LLWgtKlFycXDX5JgpYKTo4L1L5UH8v/6l0SasRZBepj43gZ6s+YVfVvq2BgueeXc0IerBX4Oi5/yMdlcrH+t4asLyU+127gtbr7XYHSJZ3q8twfSyzWz6+CCeVsZa4+f+6l2tWHyd/z73YZ2K0Dx5SlCmeNwU9CzQwxEZIk9T7BdDogthWGT19/ymk/cTydME7z4uUNfd/i/YwuBlhKa6Fq5rP6y5TP79k0VdxAFPZyCsSciy5/XF5rrV3RRM/Xc/1d6v05V9cTYJa5saa0Lb+Tkda1cp/Jy3VX6kN/k3rNM1IptdaQNRglWMk4Z0Y/QyzBiDHkInGbckSlpSy0nPP6+npRj3r37t1yH6s6S/284zguyWoNLNq2XVRbPqDpPBuLK3pkOda0u5o0XyYHl3vpuudn/V6Xv9ckYn3+tXBBDYZ/yGZ8H6OgXR5CTFbim4BQBsUsT5OR3gelImRd+lQylGC3aZ1w830k62JkWSq8xkpF2Pv52bpVg7pKT9s/TaLU4xzGlGA4RrQRul7OkePpWO5NWo15QcVFZrlbkvcYE13XLupJIUaUyjRtg9KZzrU4Z6UXIgTwWeYICW30szl4ucZCdeWOpCT9R34+m2TKZZHv6Jy4o1flq7pOyvjKJBJJn9WsUs5ilrckGZQkgzOSotTymBQ/pWfNWiPF2bL/aWOW3g9hj1QaphQeavxVkweZW36Jn0IMpHQWYqgFjEtUsV6bRb2pzNFpmuiahmmeCh2pqtdpjCqJvsqoWDp3SqA8zZ5p9kJHTYl59LRtj9YWH88KXcYY4jihlUEXAQ5rRQggl74XXQpfSokEuTYGlSCpM6163U+ilHr+e85obTFaLZR9rRUGjWssrnEYZYghcpwGHvdPnMaJtBRoHU3X4Wz7vQsV3zvJSFTq0POYqYTbz5778URCPfuvqJA8O/sSlC1OyvLMZTBdtNJJYKwsGItxLaZpcW1L07bYpiUbyRalciUa8X6amIZH5uHAPEhAugymLEFx/WIKUCmjlHCM26Yjhsg8B5IWmdLKqReas0LZhkY7lJHegBwDPswYPzKHERMNJmlQTZFH1SgEcVmu2uoCJ6SRKylNzJDWE1Yprq7vZJHzntb2paldQdJCgbCGbVGbMLoR905nCHEgEzHOcRpnWtfSdT3DPBGOe5qY2N7ecXXzgr7tubm6YTpNCNla8/j4nod33/B0/y0pR5p+S0yZp4d7Dvdv2HSW1sL+9CQ0rBQhBwmCjCHGmfHwnhd3N7hGnMvDdELHmV5rupvXTMOeh6cTdnuNSZ7rbsPdzS3z0XN/GHk8zmxvPuHTH/2M15/+mMPTE9ZausYwGPj27TfSyB8j/fULmm4jHMhxwmjDHGaehgfurrZ0rcU4A7PHzyf8vBppqnBAYyJrWRjJlSJXE4HnBorrOVHniMydUoEsUsu5BqfLhCrIhqrJbE14z+/1Qz7WqB88DybrYl8XxnUQUalVKaVFXnSNiNafa1X30uRsXT1en7c+/wMkgkwImcY9r1aug4rLxGU51DmUrZ/LWkvbysKstJXg2Bi0k41m//TEL//tv5O+JqPpu545RIY5ME6Rt1+/5ZOXr/ns1Wv+9m/+Cd9+85Z392+JeeZv//Yvef3pC1IKaM1Ch8lZrpXRogmfssKYQs8xdkFpAFFmUppYEipjbemxUoSi318NC0VqVuRfq3zj4XDA2pZYmj6NpRiQmmdSsnXjlNlzblIOIRZJY0FYL68vlOBcayKc6ShaQUxoPS3Fr+p2G0IslFKzBIoU3f7NZrOgY9ZafvGLX/DVV1/x7t27hbYSo/TNrH0z7u/vub6+5tWrV/ziF794hrRcUvCqQlQNWOpjoqIVnzVi12ONeNT3rMelHO26d2ON8K0Tn3WytB7nlWr4Qz4+FmesiwBXmyuh50wzx/EJpa5ou4a2FcPY4EVRyhi7NGsbYwu9SJOSouv6FaXG0vWChnjvVoH2+XqqMrb2Tw9SlNKK27sbur6V+W8Un33+GZvthuPpSN+LIenT09NSbe77ns8//3xBoep967qOrut4+eolv//975mmAedkb9puN9ze3hJCYL9/4nA4LE71go5U8YyKvAqNXVSE3BnJianI3SdCmJjnuQgbgDayD4WYiEH8GFQJ7BdvGihoSdm5csYXF++spIhQE5IYMpGEMtLDcJ4zqvSiaIyVYkTk7J1TEZKUpHdjYR9QCnJK0ffSh6AUHA57Doc90zSSNBiti0HhwDRNTJOYc242m0IvGheqeQiBOUamqST02w2Pj4+lIDRKQ31RBCuahKvkJxep7nAuEmfoNz1du0WhYRxxm45pmvHhSNs0VIW+1jmRXTYW20qMBJWCJmOvBvC7nVCX1v2GxpiyRp/RmjDPaN1jbV8EBazQCavqGplxGhlGz7f37/jm3TtO04wyjnbT0W2uaFxXCqN/ap8MVSLfc/Ja/0J9r8sKzLrS//HE41zRPScYH7wz1UvgeXVQo6xFmRZtHa7raPpe3DkbqViI4YlUBsfxiJ8GwngizkdynBDYoqAj+uyFsK761GFjlCYraWSU6DAsm4g0VzeFV1xVpjTWlopS+Q6hULJMMEyT3OCcLTV1k8ulyoYv1zyTEXRTkoeUEKrXPEtvhy0QaTaEaSqIBbhGNsZUYHhjLdY0qGx4+/ZbrFPSABUC1zcdpnF02y0JuL17ydX1HdvrG0ncXEPfdjSNF0WqnNnmxJs3XxOV5Rf/7D/it1++4XA48P7tNzgTeHr3Fj8P3NxsGKLoMscwEseBxjn6bU8ME4/3b7HthpvbG958+SumYWAchHuY6PEJ/ue370nTAEGSldN+JqsG3ez49PNXvHjxCS/uXqHIvL9/x+l0ZJwH5rlA0dfXqGaDMk6alqwiTCOzD6XKMNN3ltZZ2ZQVNFaz6QytBxuUNMsqJbxTyQ6oCh4U6svagI2K4NV7WxOEBdkrJU51pkzVBlbK789T+efz64d8rL/DOvhfKErqOZ1SqTMN6nJ9qUopl69d05hqIHnZn7GWG10/73yOWDabc/KyTlg+Vm2vr63Sk3CuXNfXxRhJJckc/UxvDJ3WZB+4u3tB0zYcpwPGdkxT4ptv3vPJ3Wt++pOf8flnn3M6jYQkdE5l4fMvPuXu5gqjoW0lERirvKGzUnULovTio2cOnrbvliAgRVknczXvQhx/0VnMtHRVjjujQnUzq9x+pdTSvGqMIYSIUaI0Va/1+rXa6KVPbo30VONSpfUiGVvPmXPGaum509qgciJbS5oHrLN0XUeTxNAqp7K218pY+a4VnVxzrmtV/2c/+xmff/45T09PGGN4enri7//+7+m6TjjZV1e8fv2a7Xa70PTqtanHWsmpvOuSDKz3lbo3rnvnLhPWmswtFLsVQrFGP9Z0q6ZpPujjWM+NjyUvP8Tj8vOvr6cqSf48TeRosEZxtd3QNhalMvM0AFV1KIFKS2VYKUSuGUXTWFCZEDzzPMs6QE9KEqBqo+l7CUzJufTxGOZ5Yne1kcbyOKLdHZlETF4q/QS6TcMXP/kRwzCii5xzNYVr24a2lURHF7VJ6R8Qiq3QXEDM0qTSvu07XtzeiLmbqkUS+ZxCZZpRypQkQ1CblGQMaROZ50TKmpgMu922XNMz8hWTGMiJNJ30lqaUiRliliZtV8VrJCAhJxaDPqWKyleWx0KZH8lHbCP9a9V8MJVz+qWJnme0zliFenJhGNQ5Xq6VL1KushYLPUjMNweqsINzjpcvXzJNE+M4LklinUu1YBBjZNP3i4JcY8XIMEWR6JbCk1DUVIpoMkpnsAa0yICHOZCJKDRaJZxWDMfjQl1r+w1NY9mpDXqYCvIJZI2QyTKN1fh5pGssjTNcX4kUPFmc3VMKwhBpLE/7x0Kjz6XZfyYmKVb1bUfrxHhP/I/AqMS2dUK5QpFCZJpGHp8OvH3/yOQzCYM1DcY2Zd9IIlP+PY5/kBnfQnkqbPL6Jdd0n8tNV57/xxa1S6rQKum4qN4uGXFxydROkgzbtLimxTiLMuImnWIkxhk/DkzjiTANxHkgBU++aPq8pEDU4KMiG1proSsohVaGtFSkNc62S8VAa1tMqWTA140lpigTIq05nRKwVsdwpcyC1iwBQMnaY2nYEsWa0gSupCHKKrNAX8pItp8RmpFQfRCFqxLYiMyb8Bhl0xN3YbRm0/Xsrq64vr5ms7tCOWmgtMaR2hJsxwhGY5qWputp+y3W3hNj4LB/ou81vqBG8ySLrp8ngp+I44gi4YJlHAaM2+NCQqkekfALzD7w2ec/Zpw8h+Oe8HBk9IqQBrIHZTdsttdc373mxz/5C7abHTklMf8r5nvjOAAZY42YZ/VbadZHY4wiIDCns64E/rIIto34ffhc0Yd1Ynsxapff15SaEiAvj5eeHZ4jgMuwr8mEdMuhlKhunEfB+by1GvVDPtbz7WNBOnyc/rB+zhoxOvtaPJfH/UPnuKSZrD9PDfiqkpvWinixlj4roHzHd0Px7D1qU+5ms+F4koA/pMQcPNYbvDF0xqFSxiRwypKDImRRNHv96jW3xeDp73/3Wx4eH0kkXr1+ReMMxogXj0Diz79rSkmaLcuGiFL4EDA1ocoVLTsHxHWnO6+LH16zivhQVq1QuONCVToHe/Ve1ddcFp+sNeKdsUoia1K35kdL4qaXwF4t96sUioo7cl1Ttan71np/ke+1TkDr0bayjtekVeiXYrRW//V9v8iHnu/5h0j++dzqo+O6PnaZAKzH1hoR+a4xd74P5zF8mWCsP9Ofw/H8+vLsep2TDaH0OKOxxrLpxXRPCgZR9l5ZtNFaHJarN1LttxBEzRNCodKmzDwrqsRso1uMkWREKUXfdyVptaQsqnDeT1xdbUX1x2qUykLf09JHEWLAFpTE+7kgUzK2qu+GfM1qdskiJ904C1mEaGxp+PbBi2tz1/Ly5QvevbsXD5AE4yiBdE6rtXaZ9xnypfiAXK8Yo7A8dMIi+yawxCbPTPGkglZil4osSsGlohx1F8zL6+S5UnyQmDKmXOjrRSLcnVkpiwJdvd9KL+tM7eEw5qzA5pzc267r8MGXBv5I07gFXT4cDgtSfblHrfuvpDZYzl0QykrXsqbEpxmUMiQSNYTMWZgQwUeCCksvRI4Rq7X0F2eLs758d1n3JV4MxCiJZc4SQ95cX5UkWTzddBmH4n/xKDQ5LUIbISiUSiXesThniohNUerTGu9nnDFSTE+ZaRQvttMw44MgcilLkTVmUS88F///8PEn8cmoE+Efu5DVBkKWCaUKY0QQAHlIFx13XSS0LLrp0E2HcYJkWOdQViD1MM8EPxHmkfG4ZzztifNEClORTD03yshnOCcZ9TtKlU424BpkKiXVqrkmKVn4uW3TFVhS6ANCmTlz5LSXhas2PJ2REoVSRqp1GtAGncV/I3N2040hMfso2txZ0roMHA5HuqbjarNDlwVOK8VxHBiOEmi7tiHFTMiiEHN9fc1p2BfJxsw8eeY2EBNc3dxwdX3N7uqKfrMl1SqBUphGuIEpQMiJze5K9PGTp20ahuHI49MDMTZQFvKHh3v8JN4jMUzkSRQ+3Nzw9PREQNP2CeMEqg0p42Pmb//pv+A0TLx/eM/mTcObL3/Haf+AH05cX9/y+vXn/OSnf8nnP/4rhkl6MMZp4HQ8MgwnTocDfd+USdVwdXPLcZjxIWGsOLU3ztE1Bo0XSc+s2PYbIopAhHRakt56P9dpQnWTXy9Kl1V3tSQa8EGaUfp9SvqA1nWTLLhHBT+WV12m3D+8Y51Y1MW7HuuK7+U68rGERGupUFV30zXd6rIHYt0oW+d6DarXG0nt+ZDfHeSyMV8EiJUCU3//MFl6/nvTNOx2O16/fs1XX82cxpPwfOe5uG4nrpueOE6krNh0HWFKaKdxfctPv/gpu+2WaZr5H/77f8OXb75ic9XxT37xT8lpJkVRapFrZdDqHHjVzWicZpq2wRrLMM1simFdzMjmkqPo7mfIhe/grFn09de0H0ErAmdPnlSqvec+DqME8bu85zHGZXxXDnvTNEIfgFJtPXOS65iovOystVAVtcauKLFyj2qPnpZikPeSzEjWJ5TH1T1fc5grJ/vq6oqcpQp4d3e3PK/e74Ve+5G97pLvLmPFPEuu1qjaGrVbjyngmadFbehcv8c6yL5MrOv5Lp//h5LvH8rxXVzw9XfLORO8x/Q9XdOy27ZM8bj0F2mtMNaQMDgrCjsKGMeJsMz/jPeVticr9TCKvHWIgVY1GFNlQy2uEUrk9c01u+uGY9mLXn/6CZteGsDfv39PztLvYIwS1/G2o3Ht4sOyTjjhbB5pNz1Wa8bTib5t8X3H+5wgK6xRtI0lp4Cxmq5v+eSTT0hJGnhB88037ySwzZlc/J7ItRBB8eAQ5aIQa49VoeYYJZTx1X4lxdNS8MwssrTokiSU+Vh7FVLx5soIHejy3s0+4CrtKmVS6X1AKfpW1jaRyA3n5KacSelzc3qVnxcDvK4Uc0XqdRwHUs6MhZpZ53w1KfTes9vtnhWblguFeNkYrbFaaK21yTolQ9ue1yoTYQ4ZowQhSzGRYsaniE4Tu76X8ecDjdVyPUsfCiHKuqkE8ZExmHDOAol5nnj9+hPGceJ0OjEMp8WFfrvd8vXXX5cEou5pUnQR8QpXvrPFWkPf9/Sd43QUE0dnHCqLrcHxNDIOMyFLEqcyhAzEIIIb/2skGR+HWtW5gvaPqpSskhUkYdFLln3+f6nCa9AN2TZk12D7a0zjhArkHBgJwnKMTPNIGo7E6UScjuAnsh+J84RWcsPrRF5/9vXCLGoinsqjt6XaoRXSDFWq0AqHUg6tqz9FFFUF7zGqIc8zCdG+rtW7s2ytRqkSHBW5x6RUOYcoG82zwLqzj5xGabLeKsWYkiA5WeF9YBpF6almwDdX1/gQOOwP3N3dghaTqn57Rds5cTVPka7b4mzDMAUOpxnXjSg70BWJMqUKnaxVqKRQTvPJp6+5ub6CEOit4v/87X/FcDoyjidSMCg85AgkTscD5MSmb5hLwFPlGd98+wbjnvjxT/6a2xd3bLdb/uZv/ymf/fTnaNcSUub9lz/n7bdfMQ0HDJHr6500KFnL02HP6XhiHE4cjvsi25e42m7JZLQR/vkwjBwOI7OXRaJxDiLEeSTHSBhnvCqNgsbSWsftzQ27HDiMoHytUEsAmanIhtxPcdqVyWytk8BxGeFi4iSB1TrRqKWfmk2oVVH0nEjWn8+z5Id91PF/Wb2tTauVJnMZ/F8eOYvDdzWaWgdrH6OGfAw1WX8egGEYCh8/iO9DPicn66rzOoi7PJdaxsjzhKTve/7L//K/5P/x3/7f+N3vf8fvv/qKpKQBcppmvv36G/4P/8f/jL/9+c/ZTwPfPD4wjRP4RBg8diP9VE9PT7x89YrPvnjN3/yTn7NpPNZKZSzlVNZj2QT9MCBGUoq27RcVm6ZpOB5OoMQJNscJkI3bTzOta7BGPrfRgkyklGjbdknoarV/QSkKYmetJUwj1bu39tOcESJBW40TSdXKCbfGUVGRGsQopRbfh9UIou96pnHgNI5UoyylWNBQdBAFHqUKxVMoEJq89IpU2pJSpcrpPcMwLCpS9X5WatIlTe75GPtwjMt/P2y6XdPNgAUZ0VozjuOzAPOySl/nw5qmVq/px/awNWLzMaTjh3h8DMWA56IEWmm2ditKY0bLGHMdIXpGPzM/nQBH2zbstldsOhnX4zgx+1kkiosHlSvniDERp4Bzhu22J4TAmzff8vbtG168eIFUdq/YbHpevPwM72fGceD29prd1QZrDU1j2R+eICf6zYaHe2lCzwl+9KMfcX9/T4xioFbvcb33wXs8Z5TPaBEwabpOku2ciSHQte3SR7TZ9Oxj4vHhScRtFgucSs+WgF5boYs3TcPhsEdR54ioKlll2Ww6lNKEGBcJ51pEq59TvDMgq9L0TUZFCc5jzGVNrKp08gF8iPiU8THglBjtkXMxSc4IEKIWxEAQkaIGGSPGyHi3xrDt+xIDwPF4AgQZMkbTbzakLMWQeZ6JIS59Lre3t9zf3zMMA7vd7tlcqT1U4zBIglGoa1BRRFlrd5uGECKhxDfTMBBTpmtabHJL/+7NdiPeXUnx8u6WuUj8khOdUwStiEFj0ByHuBSt7+7u2O/3vHnzLZ99+ppcVLPE9VsRY+Dp6YlpErNQ6empdC6h4aWSZCulyCmKXxmWm5trWutIMTEOJ96+ecfD/ROnwbO7vcW2PcY6wBDzTM5hiVv/2PG/CMmo0LNS5oNJ/wzp+I7H5QEkeciFzgOlQSgvQZw8rxhH2QblWoxrUYUeVZ0JxS1T6EjD8YCaj+Ta8D2PRD+TQiCrAuXlDwOH5WPVQYamNp0YazA1q9Mloclnp89zJU24dJSqtFwD4QG7EhDVhi5WNIWkZVNe+LtFbi9Fqbb5OZRqvyjB2KYhE2Rti3B1fQ05rShZEVB0fU+mbHRFKz8jtKm+3dK1W4xtMM4Rs1x/UyqEyzXJhWuoJBZOWahIOSeOx1MxvCtZeTHXS8kzTUOZnNC1QiXLWbJxdTqRbYO2wiOexpl5nsgoXL/B9TsyhjTOuGYjxlthwqiIDzPDNPDw8MQ4DATvca6VhbSo6IhDqiVECMNIv9mwKahRmAdR/PKBJmdZGAr3NaMhFbm4SsUoI/F5UHEOfM9CBivp2rxcOupZ1mpUdbGvicqzv9VxgGKRPMjrZOOHeVwGRB+jdlR0Yf2cNUrxh879Xb8bo0reJ1dQAv+qmiRGR3L904r8CdXUsi7U8iHk/54phJWNU95CiYM0SpDIonVcmxl/+rOfsrvecX13y8PjA/NhIJwGvI+M08QwTYzjxHiSosR2t+X98ZHN9VYqpdc7/uKv/4LXn79i03Vo0tIwrpDKWf3nEbWlpjUkRN5VEnRD07rSVzGR/EQKgcrzjsGDFjqhMsIMTiW5qIo40zgIRdVI8YUcRRa6qtmkRCJjrSMk4TBrpVBa44psZ99u0NoWpFAvFcmMrDVJbokEVdaWACQtNIqM0FeVyqXaJoWNnGtTqAQswpVmoUWux1IN3C+bzesaslBel+/+vGIutQf9wdisVKqPoxsfb/Ze/7xOTi5FDC4Tl3re+m8tgnCpfKYqOv0DPZ7v0x+ijFI00EtvUPC+BOGKlKRI2DhLVg6lRUlqGAdC8IXfLtK1ummKfKoga6KAJjShcRqLwaYkqk9P4kvTNFK82+xeofWOFAO2MeyutksFORcZ3KZxRXL9xDgOaKPYXW3JSQqcxuryfoIq2pKIOmeLyhm0jdB9K9JmrZP9LAodWuaiKuuXXq5LSmezvZgSKplFMGLtom1MmXvOYrQtYgWxFBlEQW5tyhfLvXDmfG7vR1ISylRdQ2V8RnJMQkmLabXqUmIPjTayXoQowXtMaTHpFRU86RNRq3lgVvtIdbI2RuMaR/AtKYkXSsiixDVN0+JJsvbOqD1nS7JHGWtagV61eecMOS0KpaH4o4gCmSC1rBIzUTaTz2mMwaREjnIPGycxUtQJbSzjLDSn7abnNAxSICl7oy+KpX3X0xdFvKenx6WAZ40tSVih0gPkRPCeaRwhz2z7lq51WCNGg34Wn5en/VOh1DqUknu/ILIpkUmlT/uPH/9on4yPTezvWyG5XIxFwuyDZ8lNrYGuMeKD0TRo10iSYa2oMhWJNT8LLccHz3g6oP0JwkSYJqIXA77arCJx3/ME4+NJhixMIJu1ysJZU6YqJcA8+WWSS0G00mTK4l8qi2ujpctrdVnpOnMlBZKsWtbVUTPljHUNMQNRVCI2/ZZU5HhjDMzHExlRyCg7oWxAJWoy1rLZ7mjcButaTNNIkGDtsqE/S/TKxi+fV2T3Qorc398vSYa1Wky8YiAGz3AaiNGD0WVhkmvmfSCpkaaXREuqSCPTNKG0kR6bbgPKsr16QdvvCGFmGo+Mxwem8MQwBY6nkXmSJv7N5ooQZZPQStG0HUobQkzMybO76WjajuF4IsynJXDICqGTxcpDLSgXtXGfsps9uxIlaagBgXl+TxfX1fN4Xv3xPMbzh/Sa+oxzcn7hHv4DPtZJxscoHusg6pIOsn795Wsu5/Dznwu/uVankfkiqKcEiTH6UmWjFDzqlDFlHisphpSjVuSWQoI6FyMoKFdVBFt/H6Uyn332Gde3N1zd3vLr3/yat19+zf3hiI+Jw+nE437PaRo5Ho/0XUfXtbw/PHI73WA7yyefvOAvf/oTXry6wVlFipIQa1TZ/6SCb5TooSutaLuWrEqhpEDobSc6+tM4kuZZKlspluQgobLGNA1Ja+HgKlXoEVJBm6cJ54pJopbqJUoSOmMMMUsxxxkjyUsNHJRI6PbdltZJdRSUrKvqvHkrXdAZRP1KFeW8XGR2c6pIsJxTI1qESnTISxB1LhCo8/8tY2Rd/X7eZ3FOMtYiBJQKbE0u6kqwHovrc9Txux6X62RjKSitkpdLKtZlUrNOHtZJyGUCX4Osj9Gp+APJ+v/2j3rN6/fiWYFGDkmkYgrEqDAlYS1lQ5rGkpUlY/CzZ55FZr5SpG0j9MNxnMo75sWfJeWEn2WPEVnUxOl0ZDiJS3cInrZr2WzEsTumyHbT0bQNm+2GcZ7wfsY6wzR5huMovHolKlFKSfygvfR/GC99JUabpbdrniYUufQN+SVBliSkQelAGEeMsVhjqQh7tLkEurJ/p5zLunimDkIdp2uGh1CcxARVgmVdjGkrrSrGRPXedJTYKWfx58glWDVF4apU7nMU9amQao9v3VkludBlHQ8h4oM4r1eUM1W3cVjWbGutVPg/so9YIyZ9puzV3ofFgLOi2RXF1EajAgXRDkUGuOzDK1SwrgG1ST4Ev1yjEALaKjFgzpBUJhMIMWKtUDpzWatUliKJsxZjpEBiElg7obWm3/Qcj0e0hqaI+ojceKbvO7abnsNRFP9qn6IpqpjiqSG01+w9MQSG4URKhtNpoHUWo3t8TMzTzPE4cDgdiVFjbUNVD1uKZss69f1m65/U8fsfdajzjauL9UIrUYpsLNo2klG5bkExdHGGrYMgJs9w3OPnkXkcOY0HmEdUkEVD1Agqh+8s6VXVQD6WKMmmYxC1BqFx1ckmm6AuFSxN8J4QIkJTkAjFaIM2VuDLboOy7ZJlVr7xkmWWCSb0BF2qA7FAewXi80Ey6OL/4bISzYKssMoyjjOkCCkTEnTF3XWcJglWNj1t36F1XJrV5jkQIrjOsbm+5fbmhq5tUFp41Xbh9AGIeQ9WYXrDdDowjgd++7u/J4UZYmAYZ3L2+HEs2uSO7d0NWsE0Hml4voDN80xWQumIKdJvNnz66WcCUWsN2rLd3QjS4UemlJkOB5JuaPsdn7z+nGE4EURzFtduMUaLi6XSnIaJ4TSze/macQ4M854wj7Sdw6qMTgmrEt2mYbvp2OyuGGMszXRlUfIZXRaCXKBbqwyhBEYf4+ZLrKRKoHkOdqE2v7G85vl8kP/LeSFYLXPih55grI/1XPsYl7xuEOuejfr3Nd1qrdRTFUDqc6ZJKED1yLn0ymiN0mlJIbVG1poaIOrzIlq13D+ka5X16lkys+7pqnKjoC6C15yg63t+/JMf03cd/8Mw8rtf/Zoua05+5jhOHI9H6SGzhhRn3j++Y3fV4jrNv/rf/6dSc1GJ1jRg+qIeMgtXWGucNbTdht1uK5/UaHR7ToSbxuE9oDIxak6nmVx42MPxyO3tLZu+l2uonOTMlaoTAqfjkZzDkkjJtS2JhGZZ13JKTKX37Nw8KVU2XVCIpeEWIEcohcKMUL+01oSYi3KOwhrNNAoVQWlLjGcOdtfOUkVVEow0TQ/JF5+fjDLitRFXFb7aJ1J/Xo/Hc2EoLUFcpW9UylUtVqzHSA3u61hZIxHrSqmMUZa/reVn14FjVY1aq96IK7V4JdWm1bUiFTyXsNVan4tE/JCP8/cDloW1fk8fIz5G0hx5dXNDt2mJfoQwolPAxUhnDVEZfIYpTMRSnfcpstkUNSFraHWDMY6UMvf370neYKwgcVobtAmkGHGu5XA4Yozl9SefUvvFrq52bLdbQUpzwjVitHY8Htnv91jbsNluMdrSuIbtVhCPGCNff/01fppJIbK9ui5ImhjKhSBFAecUX3/1La9evaLvd/zmd7/j1Sef0GrNm2/f8eqTT7Da8vjwyOtPXrB/OvK0P3D//n0ZA9JY3DQbmqbF2QZnPXMKKJVxzvL4+EQG3NwKcqDKWpYEZzeqlMGyxD/a6mJ5UBBOHSQuUVLciSGXOW+IRCmaJilGuCKco5RCtxIT5QzBB6x2JCQ56FzHEAZ89NxsemIU6tNPfvZTfvPrX0vhJGeeng5SZFKKFDKn04kQAl23Yfb3pUcn87R/4LNPP6Pf9Lx9+5btdlvsAIRhY53BOCdxWApYbbm+u0bpgCJidGQOijkk5pAZgTEqDJnRC0KMSlgL7VYc2VNMPNzfQ5Rxsel7nJXieVKKp9ORppXEsu8tIZ4wNtN2onDWNg1aWbqu5/Z6R9daUph5ejowz+L5drW5EpVN2/DZ69c8vnvHNA7sxxMv/uInvH3znndv3vHTn/4URWYaR56enjjNM1m1tM7SOY0zoLWoiQVtSDET5z+1hO1Hqisfh4f/+HFJpXpWIcxSAaz64tpZTNtiXYNtGpQRx2ZlDIokhnp+IswDw/DEPI3M40DwIyolyRBNMS3RBqJZuLrmoup5iWQIZSiiUjrzfrXCaUdIM9pIIpGSGMAIjBQXaBClcAUZcM7huv5ZciFBkeWspb6SOFTn5sJ5nksWn9C2QSWBCI027NqO5CNhCjRdR/SzwL7R09kGZS1NgRvHaSKkSNMoTsMJrTVdtxGudrehaTps22EbJz0uagWzSRmozDmhU8zjwHjcc9i/JyUvrtlB0KQaJHZtS+sajFE4qzAxEmOBINPI5uqO7XZH3/W8evVq4VVe77boppVKUwhMXmQ7lXF0mx2N06TW8n6YQTtCjoynE8ZJhDIHMFZjbEvXl14ZkADGWuZ5gAyu2+BUAK2YQ+Q4DkSlyaqha1tUngrdomzgWRdOaElcQRCPNcQhI+WMQjybK+cqHFCCmtUL84o2VTfPOjEKmvJDPi7Rhstj3ZAL56Bsfax1wqs2fKWy1NdeJjB59X71786Jukj9fR0s5oJQ5LzmHK8/xfPPdfkZZUl7Xj1ey2tKBZDS9NzSth1mjtxc3/Dy7gXJy/zSKROmiau2ZzoOfPvN17x4ccft7RUKW2SxZ6EeZNkMKcjcPE9YI/1UOULHZkmmpiKDHUIgFaWpXEwqd9fXONeilKHrepI1hBiY/FwqiPFM91RquR+1WLLuYVijAEqpRb2pMZbGWoylcIsLelSKN9oYZu9F9kOJv0dVRFE5Y6NbUFtBHcuargU1MUqubZQzCoqjtQSf+bmQwLp3YY0KVNqRfHZRBlpTkep4uaQ/Pac3PUdG6vVZJ8ffNR/WlKi1GSXwzPywNq3Xz1+fux7b9fyqFPU+rPz/0I7zGlrXVEE0zr9LsBtIOWDthmmOaIX0X4xRzCejVJbFBfmsLlcVIYdxoG0FOdrtNjK3qgRrlCq0LvTiTb/h+uqKm+sbbnZX3Fxdc30jSo1VSTLEiLOO/X6PVobpNJL6RGsb+r5fmo6HYViKXPVeWysV5RQ8WiU0kRw8V5sNKXju37/laneFKya82+22NBNbXr58gfeRlAPBT/R9xzRPhYroCl0wMQwTwyCJbzWIc84uc6Zt2mUcT9NERScl3MmoEpSHdEZxZfjV9VziqJQE8oixIo7PDVKlt2rtDSXvQ6F7+xAgZ9qmZRonbq6v2Ww3HA57KTqGgDXiLdG2YmI4TzN+Eiq3smqRHq777NP+wOk00jZtmb+Zrm2Z5omsoVEKH6WHJoVA3xjGcaB1Gtt0DHNk8pE5JHExNxbTNPSbLX4eCDmSQiTmJAmChTlEQZq0kn5aGwV9tobGtRgjghyn07H4d1j63vDi5Qum6RuOx72IFaQj292Gv/iLH/ObX/2OYZgJPjFPnu1OCq/v3r3ls1evCN4zlCQXpEH82zdvmYP0qgynEyFmiiE8rbOFaipUsZwEM45cFt4+fvzDJGxXxx8KFP5hx4dUkTqgtLFo12LaHuMc1hWjklrpCZ55GvDTwDwemcYjfh7x80CKHl2gdFXoTZWrqYzQCmSzf061WA92rTUGgwzsUD+ZBEKUKqWm6FtrIsIzrMFgLvxfo0UyrBpjrftAnkHcq00jEYXbFwTSCz4SU3XmTKQsQbR1joSBpNCp1Ls12FK1k18TobyO6DFJnEGl2iJoi1RhZXNH6TK11QJDVvqQQjZ5UiIFT/ATfjqJzn7xjogxkqMs6G3ToAv82TQNeRqFF6tVgUhlMStvgwK0yjRGtLgzBt1ZptAQcmKYZ+kxsRB1xliHNg5lAj5mdOvAWFBWaG5KoEJtLEXTRlQdglRRrTWoCD554hxQzoJ1iztnTqJuViWCcyo9F4unBSU4Usu+t54quWQ252CjUmnWc2n9+5l+ITQctcpLzgviD/VYB3frOXdJeVo/r75uTftYVzIvH/+QjlgoFatg67t+vnxfpf/wQvpd658qiFR9zvrzLnd3VdU21qBjXpSyrndXBD+jVCaHSNc1kIUSWg21QumtqkowSsmckHUtMudItpJkKKNlPK+CVqmMx9JcKfQGlMa4ouKkwGgr7uHprIi3NpxT5Xt478/oxSrBW9/b+l1dNZmyGqWS0KxypZ0pzrLhNXAs62Rp8EzVvygLH1zmZSkMFYqVyiIBKRTIUgrQWiqqnBvQ1wnGZZHpObL9Ier27J5ejKNzcvUhjXg9Rv9Qj9J6fD2n3J2fW69tRU7Wzey1UHbZk7E+7w/zkIW2Xqq8/i5Z0ietFa51hdMPbevwY0n2lIYcRBK+UGQrsq6SUKAyiVzcwJtG+PGb7ab0BvjlmtqCzm02G65vbri9vePu9oZN37PZiNrPpu+LbDzM3hfnZs00Tjw2LbnPpCKfXHsCxJjSLP9qkmG0Yg6z0CJLUm6tIafIPI3sbvoFsdpsN8QgqkTS2PxQ1o5Y5G7nYtB5nrfeFzNNY0RMglJAyaJ4WT/P8yTjrL5JGXfrQsPzOVTXYlHFqtTD5c4uiXJcEvVyW8s+WeZ9rKimQZeE2jnH8XiUfo2UJYYqHjtemlsW9SmjNM7Y4tcj6OE4zouAizFyDa2xDHksMZnQOVMpEkzTxOwnDJboLGBLdUmyXV2YLMY6op+EXl3Wyq5ti2O3JhflqRATmBlXxoezUoQOfl6udUV9qwyz1qoUi0TC/ObqarmOz2mZQqVqmgZnLDlG9oc9SkFImnQ8MftpoY/lXOhq5lz0S7VYuqzv32+2/qPoUpeb//c5PsZVPf/x8vxauIS2wfZb3GYr0HBplE5BsslxPDIcnpjHE8OwJ/uRlGZSFNpQVg1ZaQmKVRZbemvPFbOcEcj/eaVn/bPRkmSkVNK6GghpRdXcNlYXLebaua+XYFCXRivrbGkq/uBqnqtjq0f9PDPOI6fxxOk0SAU9a+Y5MXqPMppN2xGiLCJ923F4esL1Da1q6XJmOJ3wIZCTQjcWo3JRnqHY1Vuca8mpOO7OYUEOUhSVihiTLGZKYbKWyZMzThlp8A4TOQl6kVNEFZWDMM8Yrdj0G4bpBDHT9a4snmJiNHrpzTidTjwd9rz55hu6xtE6S04eQ4t2ltZ1dNsN+8PA0/HI9uqKPBsmIt1miwCWCmUHrOtwbUPTtAzDQYIPbWjahnGeSTnjrMX2m8Lh1oz7uZgWzdiuRRnLFDyP+0dm71FKNoBF+FvK4mitioDAJap3lqB9Hqic77dSq4bPkkVIlfGsKVX7OmRefwCV/CCPSu9YU8zg+TWsnPPLoK/+Dc7rzn6/XwKwKqiwfk09xVp2dE2RWSslfYyete61+Ycgt6kk0GtqzNK8ngsVLmWhDQlfC9M4fvWrX+GU5r/4V/85beMYhyPzONLbhqZvaLcd17fX+DAThpmmdaWRUJLmKQWiVRid8NkzELHW0HYdGIvUB850k1zGMkoJ8qfN4rNR+dranL/n6XQSFPLZOpgZx5Hr6+slwKjHsql23ULvsdbirF7Uq7SWoS5NtqqghJmu7wjF1be6eKeUmIp5lqh/CS99mgMqZRprCDlC9IR5xictlA4tBqWpIMbrJKIiAesEqY7T2vQpja3PUYs14rHuldBaL+po8rfLa54X5EH6+M4Uv0qJWp+vXtN1srCuuNfAtD6nVr+997Rt++x7iveToqrj/BCPWjnPxUwXWNZbci1UKXa7DZ1VdJ1ju90QphY/Cyfdz545ZOa4LjAoUUTLUjASCXnxbmhbkaA+Hk/MRWjGak3XdfRdz931LZ9++imvX7/mxz/+Mbvdju1my/XVlcgzl7XCaM2m62icI3jP+3fvaJr2WaBcx0I1ipSEFRrrcE4Tp6HIjcq/VJBMSTykOd1Yy4sXd7x7+75IMb9gv9+XxFxcvU+n04JIVgW3uh5W6mlF6lKMhEJJuizinIsz5yT4UiShIh71qDTjGJ+rplUUsMph1+sma8N5HV8H0FdXV6Jgl+Hh4WFZw70POCsGu/M0i2ppTELnjJrNVu7dZrNht9vx8PDA09Oe9+/ecXd3Kw3bJQbUWrzIbNcQZo0mFbfwkeQVOQZu7j5D6YTSEX8alj6IcpXK9TGcjke2fY9pRPXqeByWNXP0iS5G2j6zubqibTpSzAzDiaurXSnier788ndY23F9swO15+72iuvrHdYZ7u/vIWuca8t9PpJSwFrD5Gfp1XMOpQ3H05EQArvdVnqNQmKaAlo3uKZd1g9fDBCXhOMjhYvvOv5BScbHgvD/pYcCDAJhZyXQgLYtum1RbYNueqFKGYMxSpAKPzJPI8PxieFwzzyemMYRrYpBSBa1GK2TcK8LkqC0XjZQrcFoiM9itjW8X4NBaZpSGBR1EyqBt9SvpVLfWFIS923rHClDSBnnmuIG3tK4nlAC8fO3l2PpGc0ZHyZOw148MaJ0+GscCYtDM+UTISWGcSaGRNO0pE6zu7nF+4ngZ0JKaOdw5v/L3Z/92pJt6X3Yb3bRrG5355zMvHkbVt1LsorFIlWWwAeKbgT4RbAA/41+9JNfLAMmbL0YEihIJGVSIimRdYu3yfZ0u1lNRMzOD2POWLHXOXkrLwnBlQxgZ+6z9mpiRcxmjG984/sM1jken57E80JrNBbjDNo6sjK4vmW13bDZXXMaBlpn0c5xnDxWm0Itg2RlgfJ+4u2br/n2q9/y/u1rjHVk64g5E1Lm/dMTfdOw6tesdzvMaAuH1NO0LX3X0a9WfP36/TyGvPesVlIePI4n9vtHNlrTaoXSEgCs1h0/+fHnHA+PeCWLk+32qHFCGcP1zQ0g1Yfj8ch2uwWliSlzfNqjrMEVeVofxRNgjB7jpAFekTCuZbXZsbYd3XXL/Rf3HJ8802FAO0tl8qOkvyfLAC4IWp4VafViUU0pPatAKFWfHxdjoBIYqkaRjLM6Tmpf0PdFD/6qHksOeg2+/7K15OzJcEZn6yZzXsSfo89n5LdotKezBOpyk1yiwGfxhqUx3HlDW256HzvfZ48tEpy6gcxUMB/QaJwTNaW267CtIw6eX33xW7TW/P1/8J/SbVbEHBmnkd31Fd2ux/WW43Ck61ratmG16mkayzgOnE4nMVTSRf2vOBXHqEFrlG0FnVokUzOSrxXOWBrnUBmmYSSGgDLMTYz1+qSU5+qHBOFxRi5Bxvs0TXMjZVOUpCpiWIMJ70VecYnYVuEH8c0owbAClPC8Kxgj90z43PIaOfeUE61ricrhUWBsUdoJHE9HJI/Rc1KxvBbLHoglnanczmcB1CWwUMfIMplcHh+r6oAkbev1ejYCXNK2ahJSH1tW8+q1zDkLxeF0mq9tnTP1M+pjNfFQSiq8P9xDz1XvTIIizFKXTK01Vlk0gaZpaRpDiB6lNU3X4VwLXWKdFFMWqMkaESyo60nTtLjG8c3X3+C90Arv379jvVmz6rfSJ+MaNqsV282Gz3/0OXe3d0J3vL3lk1d3bHZrqSYsktHlGrXdbun7nhikiXyZeMLZwNMYI67PTuOMgr5BhYEcGq52G96/f48hYXQmB4/VYswWoqgzpSgOztvthhcvbnHOsl5vOBz35EP6gIq3rK6dk9uzYtdyDC5V/85rqi4UKFGwEolX+2ydr5LYl1XkOkbPXkXm2XWr5xZCmP11QOZR3UErTdAr6VHz3hOiePp0fS+9W/3Zg2c4DnSuo7ENN7trbq9v+Pqrrznuj1hnwep5Tev6FdYYcpIkZtVvMAUY3D8dsG1P4xqci/Tr7lxJzOJFpLTBR1j1HddXV9i7O37zb3+D0ZrtdsfT8YRpHE3bsNttefvunnEU1aeXr27pexECMcYSIxyPA99++zU+iB/IdrvhH/yDf8C//tf/hi+++IrtblPWCkvftzw97aWaYR3v7h9oGkfTduwPJ9bbDat1y2q1Ybu9pu3XuLYnpcThcJjd0T+s8v7u43snGd8VBMgHnR3AL593mfEuH5Nyey7l7cJF1wplnfwYybYoSFDMFD7/yDgWF28/EMMkqHqpUEiJulBU6mdR/5ZKpzyFKlXPLc8lOXlsiZhWfm55J8VMAVIlGalunFqZmaakkM07ay0VFWML/eB8Rs+uVSrSs4UiNU4jY/AYtyHjIIvSiTYOo1KhCEjyA/IZKVeLBqE+aK3RVtE0xVhQQcaQlCGhi2StUC6G8US3Wi3eR+GTXBtdaFgpBiY/8vj4IM1VKaGUlczYGFzTMU6exkofBLnwpRGliSrhq6hVHo1W4IeBpnEoBZMfOI1H9EkkdfvVNWjZaNernnE6yYD3GR8TWSlx8czjuTcmRg6HI00n/TwpRWwujuoxi+kMmozHKYV2RnjcbQ8YYkSqQEVFyxaFHFlglci3KTUjaHNeX1zVpYFFfZAV1MA1lyTpPARqalETjEu6z3PKzw/9WAZN9d+XVY3LzeW7Ko4fo5hcViSWBmh1o1oeH1Ks6vr0oQngZbBw+ZqZ9sMZpVs+Ty9ADGM011dXfPbZZ3zxF79mCJ5v79/zj/7Jf8/1dkuOAT8NmK6lW3U0veN4OjD5SeaPlbnXlI3OqjwjmsppUgxlnjkyuYhXfEhFU1l091WpZGhrZ8Mr1Pma5kxZ64sfRhRZ7KVfRg2UlkFuDRhq0qGyzNFabRIVKCVSiRXBLW7G5FIxLIIJ1lrIpcJRA/J6/cmlWVx6MVISSkXWClQszrrnxO+SLlV/lsG+3MPaN3fuMVkGY8vEoH7nj1W+6nsvk40a5C3P5xKtrX/72L8vj0sq4BJ1rNfuh4xWKHQRxVClwqtKDEGhSolJoyLTWEnmxU+gSCArTds2GCydtrimo+8sTWvpu372M8gpYZSaA9/94YB1FudsCSQdq65js9qw2264vtpxdbVjt9uwXq/mCkZNpM9JolBwrSngZ6Frta2Y+1VgQ5y/HSlZNBlrMlpnGmcZtZLqnNGs+w6jwU8D2+0V1sprrRNvi3EQCqZ1ls12Q62u2aLOmXx4tv5djhsZ97H4Y4Rnie/lunkevwU4zRQolnKfSi6Yziqa5z9LQrQEe+raU5O/ywpfPY+KtC+rkn3boRFgK/hA66TPsnFyr1MS6psv1CxnHc5YxgKQVAUr44qSW3leTglV6EPOtbLmZvExQwfQmWmchBWCVM5IHoOszX0nXkVt48gps96syVHWs7ouSFykmLzH+0DOFLO9FV3XcjwehTJvFC9e3M5iBUoppmlEK03XtWUdlvXQWss4jvK9msxmu52vfaM1OSt8FCpaFxLaB7KaFtTaNCeZv0+B4d9fXaoMlH/3qkaWRuZF86yekww7L+x18Ho/Mg4Dw+nI6XQAXxSVKkd+Pg9zDspyTWQKhaFsyHlOMp6f/zLJOJcANUX/RM5RL9MMaUhSSmGNIxtxxtaJWZ43o0DbwiHMaOLzzUJBTFGcsb1nHEdO44nTNLG7ucIoC9kS44ixVhpCQ8LZBmsdShl8qCaDoLUlJdBG4axjtRa+ruhKi0JWQgsdISfGacTHzHq7AxQxI+7qpc8jZ6kKpeCZppH90+MZodEG2zQYbXBatMlrL0OYJnEPTrIJNM4JVzp46WWxIrHpp5H1ekMmcxpPHE8HMorJR1y3LQmhpi0mfDHDYfAMk1A3tDGCOEVRctDA+/v3bHdXbHeuVJwkWYoh0HUdxia0lRqRM7VfxxESTJPncBoK8icmSkyC4CaKz4o6y0M+S7B1HXd1hPN8U1fnBfaDOoZaLvaXwe9l8vHDO5ZB2RIVWx7LxGIZtH1XQHj5+qVzt2zoz6sfl026l489cw5flPiXic0lj/5jlLj6t+UalnPGVFfbLPzwu7s7fv7zn/PVb74gZHj9eM9/+V/9Q/7sT/8Om76n0YqgErqxNG3DYdhzHE4SMCtFxkjF1Gp08nO/mNU9wXtQgszG/Dy5q99BF75y+XZlPll0hlA2rMpdnsemLiZ5UehEXdc9S6aWKGX9HGMMXdcJtSEmso6IR4kvgZ3GOSVa/00jDtclIYs+UU2kmqaRKku4CHQUSNN3LtQXjU+UKrYjZY/OFO1+UV2qlLlK5Vqe6+X3UOrccL1EVS/v9XJsSzB1Thpqtaa+R6U2VY+CJR3hsmq2vJ5LysJlQn1JPayypFqLSlWKkegDP9hjljmuhwBZNQ4xSqhMmkzTWJGrzVHEDbIktF3bk22Lti3r7Y7r6xXrdc92uyWEyPF4nKvhEsxGHh4fOQ3HovbTC8XJNfRdz3rds9ttuLracnW1Fadpq4VCDNgCCPhxEtf54jpurQBxRmtWfV9Q74yzBmetABJKlb3LowjYxs79GFrDbrNGac14EjlSa01JMppy/gceHp4wRrPdbGhcw/39vTSSF5rdsz4rpT4cf4p5jNY5UymF810o4136XCooxnzNJY44JyK1KnlOQsSDpMqkqjq3FEVg5xwH1gpGBTOqW3dWQp/s2hZnHTlGhmEgeM+q62mbpihmIs7meHJKxBBpezECfHh4nBvcJz+V65HL9w/kGNAknJKejcYodM6Mk8dPEyHDYX/A+UiMieF0ojHSQN21jt22o+9aXGM5HQY2my3DMLA/iNN6g3x2ipFpnJgmMVvtuxV9v8I5w/v7d4CsHz/56Y+ARNM2pJR5/fpbYopsNhvEjO9cpZq89CJlFC9evpIKxTTSdj3H04gvRoXKNDQ+YO0wr0/AXG39fcDOf3+fDFUqEB/5zN9V/Zg3h/JYEtyfrMS/YV7AYVYsCn5iPD0xDEfGQUz2CKHW5D4I+C4Ru3pOM9o4P7YMZmpQ8fHm0Po5RpuZLEWuHFdBSbLSZJ3BKEJIs1FNnRzWaoxKz+QKlcqEIGXv4/6J/X5PItM2PUZbSYuybCjD6SglVm2Lm6UtPOAR51q6bvVMzpOcacehLG656HvLwjJOE8MYWLue1WbL/f39jDaeNzGRh0yRYhjmsbZhyCdilISmU1mcs49HWqXQMRJPJ4b79xgnSmBhGjgd9ygtScFud80UBRX45NNPyUqMEvt1x/t37xhXnn4V8VFKiU3bEY2oSmgtTe/dasXj48ToA8Y2TFXn3Fi2mx0Aj0VFQRtTElppwGu7htX2Gh190deXysj2akefDfFxZOMdT/sAXuT5cq0qICZJeRFQPh/kH86V7w5K//Lj3+U1fxWPWlFYBj+XCUNFTJZ89+Vzlu/xsSpHfQ+R85RGX3gefNV/16O+biltqpRIFJ+XuufnGWck/hyUPqfFnClh9fXGiJQEOeNLknl7e8t2u+XNN6/5X/7il7y7v0edEv+f//4f0bmGddvyb371S/7e3/u7/Mkf/3VWq54QPPt94Msvv+THP/6pVDbjRN+Inw85czyciFG+73AK+DzN12uz2QBnxL1WX8m5rGuqXLayHuZK+2N2zDbKMIVaAVZzL8LxeJxVpKqS3na7nfsypmlCo9HZFBDD4axmvdrKOpgCPkw0bcvoPbFsjNrKueoMYxBPndojYrLCGMuq78AofAr4MNC014XGmQqae6ZJVEndGizVIGpZhajjQNRuzmNjOZaW46KOgTq2pVk+zgmGMaZImsY5kGvbdt7vDofDfF8uPS5qYHUZDNbn1/O9FD+4HOdGG/T//8Xr/z2O8x59riHnmRtgdZFwdgrnNNZKVdlYR9t2rDY7rm9/RLfe0a023L68wzmRa+26DqWECjOOI/u9SKDWe+tT6X/Siv3jE9YYurbjs09/xKsXd2zW0osxxYEUJTF3TUNMiTgMkjBoReMcm/Wa692Osbi8395cS99Eiqz6rsg0C1inVCaFBMXBOROJcWI4HrBGY1tL11kykeNxj4+R27uO29trnBPn56enA9vths0GHh8fJH/P6RnfvsrnLtdCkBipzul6LZZjGEryUAzyUszP18L4HBCIUYRolNYlfkwzURglQhXV8DilVLy34oyqW2vZbDZst9tnYMFqs+JHP/oRMUbevn7DZrWS++YDqckMp2H2iRCTwNLrERPHw2EO7nfbLTFFjqcTRz+U882cjgPj6QgpsukbVq3F9h191+GD5uFpz9PxxMPjgayeyliBk5dKhrMaba/YbP46L+/ueMN7HsMRVTw8XGPZbHq6vjtXWrwHNLd3t2idGacTL1684Pb2jsY1vH//XnqEivrei5d3xPia0+lIzrBarQnB8+vf/JrPf/xjViuhZ6aYiTkz+cDj03FOJESyGcaS4NQj5zz3yvw+x7+XutTHNu1lQP7sbxSgKef5d6VUQSAMIpdqQJfAuwTHOUZCmPDTyDicGE57pnEg+BGS8O/5oMHoOcp0qcohnysLT0qXVI3zhgkfKojU76kpKldZkQqiKL9XKoSoWKEUqn63Uj+syOr5uma8nwoXceI4nDgNA0obOtdJVQJJanLIuEJFSjHPA9BUoxljUdoglkPCFkRl2m6DmmkOjmEcJGPVtvhJDIw+8OLFi3nzulRBcY0hpowPkcNxmBcJ6xrwiRA90ziKsZeCZC3hdERHoUGpEDG6llITcRR1C5010zhiGiXmNUXdIUVp8ozpiRwTTdfR9b2kdqo6rxv6foW1Ft92aGuIIaDJtG1DSHGW/xWE1rBaraSpFU3wCUKQSkapylB4usbZ2QHVGIOKGq0zJpfG7az5PtPtgySk3PNLGs33eZ8feqJxGfxcztHLqtBlMLWc30tQ4fK9oTbmlrkoTyjJem3Cq5Wh8/s0TfPsPafJz/+uTXD1PHRRl5Pzrh4cCpUVMVI+S8reFZ2LkRmdJGdI4pLduI4/+uO/xac//gmnYi5pFBilUCnzj//xf8cvf/UbVquWn3z2Gbos3fv3T4x3e/re0jiN0YXeMQX2hyP9ai2oOhmt3LwZv37zvlA6xKW4aWqDsPRcpaKwY50BA8kLWDJOngQY2xTL4AkSON0QfGYcPeM0sd1uUERIibbbiNNxhsNxZPKBxjZ0jWW724nxVYkXc5kXjTFCSfQRqfiU+YmSPWEcCeNA9GOhmQZR+nMdynXkaEQpKEtwEFMUxbicMMo8A1Hq/awBVEV2nyeQSzUo2czPCjh5vp11qqeUC03BSO/NIjldIrk18ajjv23bebwZY4rSS/7gfOv+VgOsywpS/Yyc82zONX/+79m4+VftUIWaDBkfMrqa3ioxHuvahnXfYW2eYwTbtrx8+Snb7RXb3TXb3Utct6bpVmx2a4xLWKNK/2RR6oqRq9OOs6KPmPspLdWx0/GIs462abjaXkl/lLPAQgmsBNAGyFrinUQGLX4v61WP0YoURW7fGqlgxBDou06CeGRejHnCh0yOfo6fANqulSbdppG9zRhs42i7pjRYr8TsT2uaRoReuq4pFQ9L27Z470UJa7XidDo9Hy/5XEFfNmjXuVLHGtT1+fn9Wva8QalKI+IXStcqs5FELJVKRvl7TtWkTgzo6nivR0qimlTnq7WWN2/ekKJUo4bjcfYfyTlz2O8ZhoHTaSATZoaBCOhUYJbKdZHKRaqS9ZmUA6vVmq5x7NYtyQ+lupm4u7vlNE7k/YGmESYJZd2KKdI6S986/DTx+ptvSjK5Y38QdkrTtgzDcXZzn4JcHwGmldxDU6XQwVpD17fs0o7Hx3sOx5Hgnzgej8JM8b5UjkQc6Pb2ht12yzhNfPPNe5pGmvidc3gvXkYpJvwUcE5knS/31uUe+33XkH9vPEM+8Kzt/10ICjwvdswJCUi/gpbmRC6oDDEG8X6YRqbhJBUMPxKDR+ckDt4XX/ZjScblUSdD5XTW5GL5+nPZ73ngI99Ll8mvzt9NKVlItDSKa3Th8prijpnnbOtZ9p9jaS4Tj4txHAU1c5J8zYFvZeNU59uiL1/L8fLG8ppYeo0l51EliJDL61wjfQzaoJQlJSmHTaUp8GMDK4RItHrmaY+jl/YDbbDWkfxEDpHxdCJ5Lxxo7/GnEyYXVasY0U7oRhEYj0eycaAEabHY0utSzHNSYBpHYpTvKk2sEePEzIayEbumRWtBRV3Toor7smtb0jSSQ5A+FSVVsrbrSr9FEYyKubgjV5M3XW9ScUN9LgenVJFATs9pDB+ML54nBefreh5nlwi8oiasH3vdvw8t8a/GcXk9LiuOl8lFPZY0qY9VGL/rupyrlDJnKeX72kuFeh641WbGM+J2btp+fm6ckwoFMZQehPnWFSAjS2JLKolGgmTUOQAhQ5aN+7Mf/YhPkIdSrup3gjT+03/2z3j7/oFf//a3fHJ7R2stOSfG4cg0HmlcR9aWEGCcBIHyKbFtu9IkGMRkUHlizBxPAmLEsnwq7WSOZggpzuOvAiXS3yCbMcjGGWKar2POCh+CUDZTRhl5L6Vy4ZZTkpRAzAqnDNq1tOuNSHDmxHA8lh4Yyd5ESlROxRQpRZKgpWGciN5LX0clpCrmHhWBGRIxp7NAw0JRaUnVq/d1WaW4FCQ4B7bnqrVSz/eHmoRcjr1LIG6ZFCwBsDr+Prahn5vsn1dOaqBXP/+STljPaVlRO4eMP8xDrnGmUnCA0pUIjTO0jaNrG6wN4n2hDc61vHj5kpubO652N/SbG2zTY1xD0zm0TRgtY6Btu3nNmNb9oqqZiCnMIJjfrGlcETZwTipExctBl723ght1P5BzVYUCpOjaFs0ZEHHWklMieE87Ax4lTgiO6DXeV0M8QAlV0boW5xpRfzIG0za0rZgIZjIxbshZ9v4YE13fYp2dK2a1krFMciuV6jwW5frXv10m6Zex0vJ9Qliq/mm0TuisobAatNYzVar2gc2fy/P5WmO7VGiPp9NpHvcpJe7v78lJaNE5RvRWqjDTMHI4HBmGE5MPaCObQY0DfK1UGqGRCyiehMJcvTwQ2tJ2s+L2as39u29n4GG7XdP3AtpE1Px8Yww4xaprWfUtqIHT6cjT4xN9L3Q810iCM00DMQamKTN6SSacs7SdO4+DFEt/m0gnO9dIcjJOJeEKz0QelIKmbXDNFdYa9vuJx8dHdjtwpilgSFn34nP54KpCdxnXXwJ6v+v4vZKMj27oGRLnzeY71WIUnGsYi38rDdoVuSdRgMplc00pk+LEdDqeTfaGgRhGUvQkEkThPF4qEZwH9POqwbwA6xIGaOERSgC+nDiLJGBB31hcDBZio2VF0WhrQTcY7bDW4VxHU6TpKhdQcZ6wYkPvGcYDw3iSCoMfsW1D065o29VsKIWSyeZHQdeFjiBaygD7/Z5VvxG0oiQGVZ6ufseUMiEM9H1P363Y7/fnTU/lWXqxytct0b3DKaEyWNMgLZmi3uNcy7Dfs3868vUX3xDHCds2OKU4PT6hQyyKDJGma8g5MAXPo3+i316xMa0gTw6SEtRR/AACMGGUx48n0Ia3795zdXNHQmGdo+lWTE+PHE8D79+9J0wjShUDGWOJaWQYpmJs1GBtI70sTpDbVO6dswpnDda2mK4nTZFp3NN2HU2W/poQpqKAJk3sqSjVXC64ddzNm4o+qxPNQ2uWp70MmikVJ/XB+y3RoB/ysZyjl5z2etSg6BIlq0FafQ/n3LP3XfLV699qef5jQZ9CY90ZFa6ce1EJSgXtcwvawBKpO+vDG3tG/lKOGOOoTuFLJC+UhLeErjPVUV6r53uv1ZkC07Y9/6f/4v/MP/8n/4h/9s/+Jf/Z3//fkaaR4XRiv3/PMHxCThNPORV+ccJax4tPP8UVtIqUxaBUadq24+ZaJC1PR1kLJj/NNMm+7UgxkIr3TYxBnHGR3o4cRa56GAbargU0j/sn+V5asdrt8Cmwbjv6tkW5lsfDSMZgXcfd3Uv6rpNGV+dmecygFF3XQoxM40mQ4yhqTZUqJGvDwHA8Cv3UOpIKuK6laTu6tgPjGHxi8mJqqp3DmoacJ1EiyufeijrWljLDtaIFz5Wy6po4TX7eVy7pcMu+n6UCVB2HdYwtQbAlwlsbLFMS1ayu6+bPXQZySzT3uYEkM0VtybevvGoJQjMh/IDBCq2EJVVEOYzRpeqX6TtH1xoap2mbhu12JwZ5V1d88smn3Ny+YHd1TdftxF9JG2IOaCdSykYb2sbOAfhS1Y4s3gtZ4GFi42hcQ1tQ9hlElG5GoFa26rpW9/0zlXK1XkkykYQ+3ZZeJGNEFl/GRh2nEWszD36g7BJkYLPbynpjZf52mzVN39H1HTFKJatxbq4mjqOf6YvG7gkhiHFfEhWhS8pgjMWVOyN9UshYrkFsrYaclYekSnze9+qNKwyFJLEdFfVUM9xypkvVx4SIMTecy3UwM2V2v9/z8PAgPTJa8/j4KBVnIKfMdrPheDzy8PAAMbN/2pNzZrXqCo2tzo3E6D15mua71TSOvu/OAhgo+r6n7TrW6w2ffvopfWuwKrNqHEplPnn1gvV6xW+++gatzRx/3eyk+tG1jqvrtsjFRn7729/Sr3Zsdlv6fo1SiXE8EoLHaEuKAWs1n336iuubG47HJ06nJ7bbLbe3L3j16hOapmWzWfH27Vu+/vpbXNPz7u39TFtdr9dstmti9Hz99deM40TnHNfbLYfDiWmcSjKcSDEIRWuawDmw59605fH7MCp+70rGx9DUOnFkfDxHbeQveWZO6sUAmtNxbdCFJpWR0pIoTmbwA34q9KjoIQfIsdCk/GyStiw518+uQUoNNp4hPKkyAPUiVTAz1jAnQ+W4RFxNMQXMGUIWCpK2Fts06GYtTcFK0/fb4qotEo6ta6TZWUmVxvuJw/GJ4/Ewm6HEnOhdg7ENMWtMVvPka7qWlM+mXbKIZKylNGIG0gR9d1YbyDlLn4sRZJGsJEHLGds4dBLJ3xjiMyR3s9nMyIZwnxNWK4xt+OnPfsb+4Z7huOewf+I0JYZRHC+1bph8YhgnfvrpCzG904a+bZimEylKE/Y0nNhciVLHNI2MPoCSEqG2GaF7abwfmYK4fa93NxyPR0zTYqzlm9dvOZ0OeD+RCzpKigw+Mr57EHdOFK5pmXwg5RMhZW5Xa6F5KcW4j8V4xtK2PbZfo1zmKmTMwxtimvA+cnN9zWHyDN4zjgO26YmLIOSD5DovKnYfQfBTeo7IL5/zXUjBD72SAR+vYPyuY9nYeoniAh9ctxoALhGX+lh9zbxoqnNDY33/emilMK4Rat6MaC+SjMXnL/nLWuv53tfE4mMAzeU1yDnPjeY1CK3nenV1xe7qjsPDI//jv/gX/OwnL1hvGtp+y5vX3wodE8W7t29ou57t7orN3SumNMlqlqWCVpVfjHGsVhsBhbTMD2stGi1mVuUnTBOTHzkdTzzc38s8SxGVE9vtltM44P1IUqqo2slndU2Lciui6cg4dOewrqXvt7h+Q9IwlgDKlQBIOy0N3Rpc2/Dm9WtAJCnrHAveS7NiEKAla41tGum1cEI5iNlgnaZrQfVFLY9MyuKRUZOJyyRgWdGo96PuH+c5+yF6+13jsfZlLMfbZeWjAlgpJU6n0wfnsvy8Ze/Ikgtfk51l8nFOlM+yvLVHpiYsP9QjZZEkTjlinfTZaa3o2obddl2qCiI6Yo1j1a9ZrTa0/Yqm7bC2EWTXNSijGUfp1TH2bBZpjClVEAmChRCgSPhzkhHVLK2fi6zznFDoZRXsfO5qUaRWChpnSVpeX6snOTvaVhKPaiRpjELhSXHCuAZjHcposoK2W5Xv1uO6Amo2ToxmVUJrV85T5JydG0uD+o7D4cS7dw/Ac1GDOpbOfheJnNWcIC/H+rK6AMu9rY7hcy+TMeJmnpiRFqna8tzLSOmzOuPHwtna8N00TXFUl8/vbDcnJDln3r19K5+rNVYbmsYBGWUMuRjuUdfpUiVNWRrxTYasNdvVmpu7W65vbtlst5wOe4wSal3TtNzutvz4s09wzvCwP/Du/T3vHu5p+56maVn1PZtVh1Vim7BaNZIwnEb+zX/z39P2B+5evGS13nJ9e8dxb8QfKUSMyUQSPkxM08DxKE7dP/nJz2YJ35/99Ges1x3TNPFP/sk/5eWLzzBWgImHhydCFI+Mvm8IfsRo2Ox6Tqc9KYpokh+99NGkhFUKW6r+l+vWktHxfY/fuyfjg419/qzLxGOx8atlLn/+/3n4FKS+/EizU4acyNNE8GezN7JwFzVZslylniUZlwFHPedLukPOhe/3gWfFQjXqYvNY/i5JhuAVMaW5TG+bBtN2ZCVu1U3b0TQt1rl58dJK6GU5F9Tee8bxJAZbIQhP0TYY4wDxeRCdu1qF+fCcZo5uoRtk0lwtijnig8fMi5VcY5BCUk5nqbrley15v9ZacfUun7/ZbIneiwLCNGFci3YNyji0bYqCSxCJvCmTdAKLlON8QQMxTFPgeDzR7p+kJ8PIj0GoLDlrwjAx+gjGYZoWZVuyNhhVdMIKvcI1HTGMxFCaOIcBbUStRpdeFVWpeUqukzaizKPrOFRCC0m5JGMpzbJ6dXM21tLkhqQVKZ/H/bMk43ck+qWG8WwsLmbO/PhyDP9ltKAfynGZJHwsUfjYv5ev/Ri96mPPXf6+DNqfPY/nCd2ywkKpdtbzef659dW/+1hSWD72Xf6yx2qS4pzj7u4VYZz44uuvefWqY73e0nSa0xBFYCLBaZwYQyZriw8JVdRtVDGoq59TDaZylt4C74NUdp0ix6KiloSXPo4j0zSeA44kSG3bdZymkZgzWRtSFnEF7cQtPGlHNh2uXzOFSNYNTb9BmYZMIhDRKaMNRQ3IAtLgeikKUOefH8dZRz+XxNE5h2scrpHgMSSDSwlrhZYZUyRm8VDKH7nWdXx8LNGvY+EZQLUIxC7H8jIp+K4xvUx2L+95RWiXicTlZ9bXLcfNcvNfGvf9rvP5oR4pxSK6kbFGzcH6Zi0KUVYLFTH6TAyyD03jJKqHyH4g46WqV4rcq7XmmcKYUqJUBYCqUs9ngFQhSpFiClgoe4XGW3+UKqtE+U+9P/O6QLmX9WMWrxHH++LlYjW2cTjf4JpGRBB07bkUkKBbC3AmqkxyCkIzzCQt+54J4tmwXq9KE/h+BhKXCemHlJgP1+llBT/nfKEWqGbwOWdmVF/em2dLZ33NrDa1GM8Vpr6cJ/XzlkaUz8590fMkLBIr5omt9LmMUQyNJbtRc1yj0GgkobdOqtGUpMn7wOFw4HQ4YhSsWsv+aY8l89B3XF2vUSScM2y2azbb3VkyGulfdU6z6rtifqcYh5HRg2s6rq4OdI3FNY4YLCEGXGNxWtP1DZBp25bb21tevXrF3d0Lrq9vWK02rIc9TeNm8NkaQ9e1pRpvZ8qqsxJ/dm1D4zoen/b46USOUSwRclqMwfONuoxDfp/j36nx+9lCdzFiPjiJOcEoJ7t4nnDPQWgC8hyFZPWiRxyJoxjv5RhEWSFLAmIUoM6253XhXiJF9RyVOtMqZu5eLs15NbkpIIQ8/7mM4eWCrpRI1Yoygjhc1wTDdS2m6YQCpixt29G0Z0OqyiedN5IYSSkwjEdCmKTJ2PaykBhHwhB8QluFKFAVVLRMRGkKcoLKKCUZOorJjxDOSMLkPa4xNI1ZfC+Z/D5OqCzfCZidRuumqbXI68U8FPd0RdP0dN3qLFU7eoZhpNu+ZzruSdOJ0QeGyRMPEZMVaYwkFTgMJ55OR9zuiqenI/thIiq4vt3hGgMBbHG5S1kxng74CCgvVaNmLfzzBJvtFqUV02Sx2rB/ui8JVGCYJlarnn61ksSgaWick0UV4WEaNF2/lp6SFPEx4YeJoTiR1z6QlDPv7+9xq5U02fUd9/sjcEYYP3Z8rErxu+bXMgiqx6WL9Q/9+FgVYxlMwfM15nJju0RTLuVGL5OXOv+X73OJ5l6KQ9R/T+OHVBh1sUEun183S31hdlbft1Y8LpOrjyVdleYyjiObzYaf/PQPuL2+4x/9N/8lv/jDG652hsa1tO0W7wWN6vo1T/sD+ekgzXwGWUfDBH7EzWpKiRBF+WgcR2JOdF1DpsNoNTfMhpQYhhEfAk3TcDoiqCbCBeewJypVEhaNdg1t3zGFE0Y1OLdmc/sp33zzLSlqTLMSQzwdURp8Al2ugTWGxmqGo8y9pm3nBD/nzOFwYBrH4ukzYJumaN43AuZ0QhFJ2eGzmLEO3jOGQIgR68CqMw+9BkhLVZ16zZf397sS2xrELO/bUn52mdQu1wChr6Y5UFo+v2ma0pMXZtS4ytw+l9N9Loaw9A2o8ryXe2Ede99nPfqrfHg/CdhIRhdZ+NWq4fb2mu26k/E+TYxBM5xOPNxrxtHz4/2Bq+tI07bS+OwsWitSksDOOTsLP5zBgTl/wKg6HiR4TzkXJaUiDkFJPbR+xtyAc4RktFTrUpWDTTVBkWP52XCmgWutsK7BdR1t38+OzblUHrW19KsNrmnISoBPbeqaCjlVGl1EKdjuNtzeXnM8Dmy376WPoYCJy/X0PDbPSHEdq7a4adfnimt4pROKt0Z9vTHn961XQ8bl2TfmEhS+FDpYPq+u6avVajaJq3NmXjt94NNXrwTc1dLPtdts8THw5etvQZ+b8FHSz2VLX2alX+WUGYeBr7/+mi+/+pphHGdvEj+84N23X/O1znzxq3/Lz3/xE5q2IyvNzc0VL16+EpGNb7/Bj55N37Lq1mw3a/qu4XQSz4r98YmsDE3T8ePPPyk9RJbTkFitW1zb8eLFDcYoXr16wdXVNX/jb/xNPv3kR2y3V5A1WlUfopbDYY+xhpvba4w1rNcrrHUcDk9sNmsUmcY5/uAP/hp//ue/5LDfo0R1A3IurWvPmhuejc3f9/h3oks9+/0iCFiiLvKcyrP78D3qhEXpUgKUTDekQPSy2OcUiV7colXOKKRBqzYcowSdXja3zYjzRxCjOlC1lopFCLEE2/I84V+XQEalZwv0swAvF+M9awTtUFKNMdYJxcK0KCOeDrWR+Dx5K69WHL1lcxPqVEqZxvZl3dFo5cA6aZaOkVAmnvhtVA6vDAcfI65xaCMTPCaReuu7DmsMMXtinJi80BTqppayJ0yRIZy4u7s7u4xqXZw0wbqG4TTROIs1mnfv3tE2ht3VNbvNlh99/lPe//gNV9fX/Mt/Enh8/RX392/57/7p/5e/9uonbNo1w3GgXTfcv9/z5etvaG8HAop+s+EPf/FzuqYl5sBpONKWZtScFU8P92QM2ThUSNjukS4kmtWarDTdakPT9UynI10v8r2p7cStk0SIkX61OnPOy+/aWLRuUDHTr9ZYrcUjI4tGd9M0hBDEEGfKGN3iJ8/gAyFFNte3hCi80A8nynk+fJ8+inneSMfOswX1P5QqBpyDto+hsssAe8lZBz4wLFuuM0sfgMv+l+VnLf0vqmIQKpferOd+GHUDXDqKn8+xNiR+GPTV907xw4qUUmf1oN+1YC8fd6UCClIRnlLkl7/6LX/2d3/O5zRsdy/ommtiUrP79ZdffU3MWfj3ShE8BF8oAePIaRznpCtnoQ5MxRV3HCf6tpkZ3wotSfqgZTNScLW7YrtZy5KuLT7pkuDswHZk3XFz9wLTrlCm4/5poN9co5Xmfn8k+YhtDe3Ksu07nDM4DZbEeHwkTEVqV4k5V6WzVWfr/dMjXd9j2xbXSF+HcRZtDSlnTqcT4xjl/iDzuFEQwvDsPi6T1SUVAM5gVNM0MzoIsF6vZ+DhY0lxpS4tteUvqbznhswPKx+V817lQpc9R8uxu9zLgNl7o86Byyb2eq/r+/+Qj0xVjVN4P/Hikxfc7Lbc3GyJ00gKnpwCzliGk1S2fRBzWVP9UAxAkUbWmZQ83keqSlytOiyBBV1UpaDEpVajVCLGTA6p9BDUVOM5GLE86niuxmhaCZ2nfl79WbrSp5xo2hY0PD7c06+2jFNkfRxIQAgCGqAtxmacM7MPRs5KhC2pa6HQL29ujhyPI7vdW96/f/+MCnUJ7tSKy3I9G8dx/v10OpXkWWI+W+g6ywpwzgKSGmOkSqwVIceZWrpcS2syvPzs+lnLORdj5HQ6naWolVC7N5sNm/WmxIwyn/048c3xJHSoSpdKxeRZVVVLg2laklLEEAiT0E2bphM2ShKDxpzheCymwHFiOu35yU/u2GzX2Kbl9ft3KJ0wFpTJHJ/2OJ0I3rF/euL65prVqmO9XrMfH3n77h3v7x+4vd6yWzt26xte3N3SvHlX6PiaprF8+ukn/OEf/pyf/OQP6NoNWluGYaTpGm5ub/jZz37Cl198wzgOnI5HtFY4J/T8p6dHNJkwTRxOJ/xwQuVMYww0Cu8DIWRylD48XSo78xi4uC/fN+H4PZIMyRYUQq+prrWUfGf+uMvEoxYJ5n+qEnQzU3u0ET68ccIjzFMuaEVEZUH6c4yzOIjWIgtprDtTYKgVyjPV6WMT5hyoSUmouspWlalKRVIKodWU51qrz+ePmtVKlDYoncUbQ2mUdtJUXLwtRDnBopVQE6p8m58C4zgIDSH4wumU8mjKtqDsYqanrSAjGS0GWUl0qFVOZARt8CFIX4HW2EUzKVmatbK1KC2cb6XFJyOlTI5i6hdCJE6Rx8dH1uv13HCYS4OWVoqmddjyvsY1aGfEZKj8exsTLz/9nG9efUZnDcOq59tf/1KUGcqCczyNjCGStPRPrLqO7fUV690WVCSVEnc0Ca0jKcHxNBKzQtlIa1pxO/YTeCmDDiHgJw950UhrGyglP6Nh1a9kkbDCS9bFKT0D1jaFVgbGGhwQURhraNuGdsy4KeJyUQsrSeVwGktVpz03DOe6xXAx3p7NpHOT23mayGIoKy66oGaJs0SjZOw/XASyHnWxWgb9lxWEZRm+Pr78+/K9lq+tj13+/WML4jm5+S5jvYxS0uvw4ZHLOvZxOkoFFi7v/8cQuw9f+5wCqXV1hTasNit+/os/4u3bA7/+9bfcXb+gb8UPwFhN4wx91zCMI0+P92x3V6Kjbyxei2FlDJGUa2+JbK4+RKFxZlGCc8ZIQ62G4SAGTSlFttstq66jaRqenp6YfCIkTVYGpTtQLQkHuiUrB0oQX61k3QtTwFmLNRajHdq42Vgspzgbd5qLgL+qpdQm5369wjYttmlpuw7tpLIcS5+HJCmyT1QqhLUWJQ6Gz8bFMgGtQdElMFDvU0VuL6l3HwRli3F5OQYug7Ulzfe7AIXLqsiSSnXZ87NEoi8rZJfz6od4KFTp7YQQM33X0TROnI5zEvnWthGDSWUktrCGUFR3MglpcgXIc1Ui50yIQTywSkAhIGmGXOg/BeWdG7JVLnEH89o8K5kpNS8dIhNThSESS9O5Sp2u1G2lihdQrY4oRYwlGVGiNNm00nx82p3Qxkoj8TShEBlckS0uVTYQ1UuliFHNdJmuF+fppnFzQpSLupMuWZUqqo3Lzog6dmpfUx2/UpWRb6sLZQ1kPcnFLDkWn495jXtGypFDz+tiZbos7n2JO2t/kVKqJDu5eOBoQetVEat5eoIyXrRaVKx1SdJThpTRaHIUQNKogJ8mATiCGHhq42j7jl23YzgdSzO4gAF+DEx+5PW7e9xqQ49iv9+XZn7DetUzPD0QY2A4DTztDxyPAxnNjz7/Ea/fP+KsZrfbYgw8PDwQw8hqs+Zqu8E2Lf2qo+la+r5ntVqx2WzIScAsayxh9IyngeE0MI0jfhpJMXC129E1Dc4YnNHkrFHOgjFiNxCirIdIMvqM5l3G6nL8LteP+re/7PjeSYZa/j8nFAZxLpYBfP5jQfrqb3nxWKEXkWUDELJSQXnmngZLiBOoRCagciwBqjRAiaJR2YBN4dojg1gtVK7mOf4dSYZSgjrMtC2Y+YA1MdLl+8h7GGmSQX7PkoUI/7F4TWRlQImKkVKi+2y0nfnPKVG4cYkQA9M44KeR6IOYlmcDlPfLhbtImiddVpJX5oK4kCSYSRlyCLRdh6mKBsqSoaihTFCyYWsNyqhzvJoQS/ui4rLfP3G2oRe0UyuNRtG2rtz/TNN1oqNsyr2wjm695fbVp9x98iN2fcewWfP0+rUEz0UF7DQGQgbT9rjVmu31NTd3N/SbNcfjEzGJalPwUfTDM4whMk4if2vXGR8CJgRsjDRtB+lE9B6jdHE/L5uQVlitcEY4jZKAmKLyVb1EFNo6UStLic5aGqVFvcoa+r6lnzK99xyDIRpLUJqcEvthRBtLv+oBQZJTTcA/toeXCZEp0rksF1dZkFWW/2s0SUmDfKa+Ls39Mz/UY5n8LwOnulFVJLgis8vXXQZMf9njH6uaLP8uwSjPdrhl4MnzP31wVM70kqb1rIKySDIug9r62FJFa3m+9frU6wGSgK7Uij/+kz/lt//6X0L4ll/8wS/YrCNOK5xR6May6hwxTDzcv2W96mWsJ/GLCCELYkuYK7YKLRrwSgyxjJZAy2qN0mJcOfmJnGG329E4iyropY+ZrCy2kapFVpaQLDE5Uixpc0wS8ORM8p5Vab412qGVRZHIWSgkOZSeu8KzrpSNWhnIWRqxu67Dti2maem6jqQrd/p530WFhSigAUnNeeEy0F9WBZZKgsuxKsi5nxO/y2rZJb3ju8fNh4llPSo9tY6VZT/PsnqxpGpdnsfyO10m5Usk8od66BI/lCmMsxajFafTiVUn1a3WibO5gGoGXTyPhC0ghnEoqCpIQpzJsy+Drp4WFQlSqgT9StbiXE0+M0pJsjGjsCXuyGW9F7AvixRqrrTORUOtOgfx9c4Ya9ElAZHoHFSuyLKma3vIkvRWlangJzQJY5ywQiqYq4rEbwENtIamsfRdSTJaizGKmLL0aAbpd6UkGsIfqdvXuQobU6IpDfJ+kehSq6AKtMqFJVLUQlOYQWKl5LLVJfhyrVQlVpTPq3e/0N+bRvo9s1RvtdECihhTfD8ix/2Jh8dHSdqMpe8aSagqkDX3mEnFNoZEzpGgJGlIMZBywqDpk4Ab6/VagvMUyGRR18uekx94/fY96901idLcHqNc57ahKdLEwzBwODQ8PBzo+hU/+cmP+Rf/6l/TGM3Llzc4p7l/+8jDwz136Y6f/uyWzW6HaxvQmq6THt+u6xmOkyQy2jAcBw5PB477A2GaSEEMhm9vrll1rVyXpim9sWK8ejqdmCZfrBoUtbWo7ok17qgDM5GkJ6nc///VkozzISGSxOFzRH+uWmQWiz3iKIsqBmYasacxaGVBg2kaTNuiG0s+PZVNZyL7QSZ0zqA1xhRpQZBAHFWSBVUit8opO5uWXAY1ywDCWOGzoSBEjw4y+HNOdG0zZ9RKGXKum78ha4NuGpp+RRwDURmUsYhCVeHIWYPKiuqTkROMPghNKnlCKFrvIWJpiTmCdvT9NW3bE3Pm6fCE9Z6u63FNiw8w+UQqCUa/Wgulp1AJcs60uaVtW7q2BaBxTUkWVLEFyFxvb9Fal9dorA5E69lsemL0PDzco5RhvdpgDIRwQrviYOos66vdLP02pEibFbZfc9ev+evHkW9/9ee8ngKr9Y44TZwmj1aa2Dra7Zbbu1ty1/Ly8894+clLbNdyfP+OaUoo3bJ/OtI00ny1vrphfH9PBFGJmkbW2w3X1zvGMXK13bJdbzgeDrRdN6MY6/UGpxXWiHReCLJh930nSgpKgTFknbG2K/05ibZtcW2Daiw3TwPHbDgxknzL/RAYvfgBtE1HSInHxyc2mytRGcni3K6K0U/KWSpdQNXjS3XzKJUzckFUsjQRzutpqstvmUxnNcMf7FE5zyEE+r6fefDjOD5DxSpvvR7flUjAh/0Uy+MygP/wuWcE+RJ5ltXt48FiTeA/lrxI0PKcqvmxwK4i6PVnSaupdIplc2NIgUTkr/3BL3j/9RtOxz3/0z//C9arlt2up3WSLN9eb+kay5dff4FVUj389W+/Yru7YrfbsVqt8N7TNOu5N0FbkUv0PmBUaRAMEIpUtrOiELfbrojeM5yOnI4nrOvYrTe8uP0Rr18/MkyeMHg224bhMDBOJ4bjge1qLRUMpVi3rajaKVkfxewqkYeJME5zcLzf70vT+cQ4jiilCpWz8NBTotGCXPosFdlxGDgdPYdj4OkpkJqNSKNnjdVi4ok+37tlpWz571rJrbSVSpmqa8tS2vQyMaz3fan49F3js46DWd64fPf62VXSdslJh3ODeP39Y9RD6ZNJz7xevksA4Yd0KBQqZoyB623H6bQn+hPkxM3VNSjFcZg4HvZ0ncjHmxTYP95zOjwRg+d4qA2xAjxprUtFQWjGKIPGEKMEsKqoXhrMHO7knEiEImGQJZHWVioApvpqJAFXF/M/5QgKrDOE8n1ySWISuZj2aVRdH+p9jxnlFet2S2oT/WrL9uqG4/FALga0nUo4pbCFRp5Jpb9KonmjobFiuna1W3G83bLdrdCNRmNou47x/Z4Q05z4RF2BYTnPWOZJ07ZQ/o0S1oYii1mmH0SG21mcFQf2mJI04/uJrIVRUVRWJEczSkBZDEQBP0NxD49NJqbSS5tFmOVwlB6t0ziwvdqw2nR0neF4PDEME8Pgabv+TCFsNCd/Al/MLYMix0iKIkhDEkWlaZhI2QMZq2G9kV6XEAJv373D+wlN5nDc8/LmCmcFdPzq9ROuf8+dV6zWW2IMHJ8m3r99w6rryx4PMTh++edfsNlt+bP/+D/in/9P/wPTNLJZKZpesbvb0a5arq92rJxhZTWb7YZsHLvtjtVqQ/CB4MV01RrLV7/5kvffvqNRssbebLfcbLf86R//TbbbLd57hsOevrtimiYOxxO/+osvePv2idMQ6FdbQpB7rozCuKLINyMysk5devV8n+N7JxkS1C7KrmgZGKpkP2VIzm625JluJGh/Kccgm8o0eZQBqzQuF1USXY3Q6iKYmUoTGzA7TNcvCQsFAyBHKYOSM9qUUttc2mR+3TnJEPOb+liMCT954eZZ/UxbP/hYNpBaYZAKQkxZZGsxKOOEevORkndd9EMUB+ppmuYSbcoZ4yyrbo1xLf1qTdO25KywbcdpmEqGqXHOgDZzX0edQDVAq/9fNg12ncibKc4SwlXTuivUh4rKNI0t31GVvE6RUsSHRGf6kvV6MQQqtARrGlCGhKgwXN+9JJz2+OMTAc0QIip40aT2Fr3qaJzj7u4F1jWEIOo4TdNhtIUMj/cPJWFV5Bi4vtqAMoRpIKvAeOqZxiPGrQhBSrxt32GsEyRJi854Ls1gQm2Te+1j9bjIKCJWF+NFJOmshwZudlsex4w7BMb9iPe5VKQcQ/TELOXgMJyE9qc0DgoqLIGMsVXxQv5tC/JUHU2lDH92QS34WNl4FDmVREOb57XjH+CxpHAMwzAHZU3TzMH25XGJ1i55vvWxetTKQA3MLlHeZTVBeN1mgSrKe+iFhOmMRF6eU0XIy3pnCvIOwttO6UNaCzyney0bK6vYQluAAUkCmmd0KWMSTaNoGsdf/9M/5psvf8t/9z/9D/zp3/0ZV9sWqzPeQ9etcM2KpBzBR8YxAIb/9h//j1DQuD/707+N0Y6uzRgyvXWoxgoqmxMqJ5IPqJhIIRffDoUfB2kWnyJPJ4/qVuLe3bWsVp2oSo0DT4f3KGtBG4YxYM1EVoqm76FwstFRnp8DJE+MHl/+L/r14oeUU4AUZqUsg8Jpi1WiBFMrJUYrjII47knjCRMm0B5Yk1kxDIbWFU8Fg4BX5f75EMX5Z0GLqgH+8t5dJqPL4LEmFN+VUH4XTW5ZtXpGR1hUImpVZ05AagVbbteMXEtlOxZ1sApGlUpYFIMy1LkH8Yd4KJQY0ZIx1jGOAzlZ1n3P/nAkFyWgh/u3IvzRdazWK969e8f19TXv37/HGlMcrnu0UYx+KAIfUdBuACW9DcaawkaQcSIu1Uoqy6V6nYucskg/T7gCWRl9dnyuiWRtWicnoWEXDElUqsTIz7XCIkhRaKVGa1SEZBKbsMEnT0geHUpVICdRj9R6Fs4hhvL5Zt7XYhTvm5wTxmq6ruXq6mr20rLaYJ0jphIPeT+b1HWNm9eiEEQ2WLj7mrYAslUYxvvSV1XMSlMS2wGJJ8q0A/w00RTH8q7rmbyfWRVyrrmAAnlOwmtFT/w7pHeg9i95P7LfPzGcPNMYJaYoClN97+hXomxHVjw+HAlepPtz1s8kiKXKrGlbEQTwXozuTsPE559/xmbVkcOIMYpUejmsMRwOBxQZYxLHw47Nquflq1ccng6Mgyjjne4fsM6BMfz5n/+S/82f/Rnfvv6GP//zf8MXX3xFKDHvbr1h/Xf/LtfX12w3G4aQaBuhTKVUgQs47J94eLjnsH8ipcB/9n/43/PFF1/w9u1bfvLjz3n3/h3D6SgVaGStdNaxWq3ZHwKTP/K0fxKxn0IjiylKf7EWlStynpMkOZa//+7j+6tLzaheQfpn0U9KaeVc1aj/nzfUUnZTxQgp5UxICaNT2dhLQlC/SHnnnCWxkAkoX0pVtQPOZeH6/1pBkZV3QURZbPaXKI41lsqJzBmC91KJYKmzL83aqpRBi3aulBGzNE4abdFGzPEqJ19dXgNEsjYGQcVSTLPJizIG17bYdiWSt1ZcuVWWpjXRwS+DX1efjfjsc2qjGDBPwqWjZ00y4Kzhvgy8nqNxJdBKag62chZnY58TOXmMLdQjJU7ASilUVriuZ729YnN1I03rBSWaYsTnTJtatHGsNxtxC8/gfZCm+xJId/1KaFpao1WgW/UoZThNEWWEyemnEWcksFE1waoBoinoXy7QR2mUV7UwrmRUixa5mpPkOl6UAmc0fdvSNQ2NdSgliaZBCToVRYxAKyVBENJvZJQmqdJ4qtPMSU2lZFyGMjFnYhmnGaHDyRAu406dS9X1+J7gwV/5owZky0D6mbTjR6oWH5TTFwnDxyocl+N6SSUpz0TWmXN/wmIlg8WoeJ5olFI/H54PCFqeeB5Yftd51X9fIsyyyV0o5uUi3U1md3fD/rTn6MW99XrTsm6lOmCswyjDbqd5//4eEBrh6BOjHzmNkW/f3DOeTqw7x3bd0/Y91mmMU5CiONSogp7ONZ1MmAKTj0xTICRwShLrlJIgYFZjo5hxOetmmemQMjFJ9TAXGpbSghynHCFFYjFYTaSSZJSEI/jZvVfWfllzKhyVYoSScKicIXp0mmgYGIIGZUF1gBUMSleaC0VevVQW1XOaUv1ZKkh9bEwu7/NlUntJo7t8znclwctEuR5zJaL2+5Txl3Ils5x/ZhhNLXo5yFS51UW99Id35DPdV9bvM1NhmkSqdhrFT8UUGo3z0kP07t07vv7qK6y1XF/f4P2Wtms4DkcZYyRWq36uKq82AogZa3GlT0KoVIbaD5lnsLdQrFIWLn+VSy/XPCeRQxePL/nRpUeTVOkn+bxPKyFHKSmAgxaz2qZthdIU5DW6aTCAVeqZPL58rmHp6Hxe2YqqWuPYbjd0bSuS81oo1bkAdxXMJD9fp4x5TjFsm6bstYueqPm55tlz4RzEV5fzdgZYFBOeEKdzzMUZBM45Y61+NkfatsVY6Xkdx4lpnApIkESevnwnqUYM5XakGdSqNPjzyVXDP40xUjH0PjBNnrFWWo2haXogFp8hJyBLjBwPe5SO7J8eaZzhbnvH6TiKMfDoGaZE12eSgi++/JK/8Tf/kO16Q9e0HPYDfgrEGHhzFNWslIRGrCIzHV4AcDndw/6Jw2FPCJ6ubVmteozWBO+5v3/P/unp7ATuJxG1aSWpa9xRYiZffIO0IuUw+88prSmkDAHcnu2d328N+f6VDEwJ7JcNjeJpQOUkKpkRxtRJXzZJpYrvgCQNMRZ5NmVKqdLgvXgwmBTnjKmKwoUkE1QpRfKp8JQhIvzMmqAsDTliTGh7ph8sFaegXp88N1jV3oPoPYpy7tSFTBKB+XfDvNDLuiA0LmlCXEGhS4msWG3AgpgCIY74OAlq56eSpFiICmVs0fBuJcFQGqsMV1ctoZRehYOp598vj6XpzTJga5pGEA+EKlDVZcZxFGnIaSRGz+3tDW3hTFvryus1bddD1ozTJMhRhrZtsNYyTQmMnheLmKFZb7m6+4Rmc0VO4uYbpTSC7XpW2y1tt8K6FpThcBjoukbKzDHz81/8DcbTIJrUpwe6vpdErEmsdzdo6/DjyBj3tOs1bd/hrBXHdYAkqk/WGLqmRTuLM2UhCh6ntCR7k9DFtJbkoJYFjTFsmh73NNI1ju1qxXayqKA4+sTj8YgzshGpDJ2x4oQcIk47jPMoUxIQvCQPWsx+fMqEJOynoCwRjS+SvTXoOfvBQGUCwg++kPEMra39BjURvnRhvuxdgPO9qcdyjC/f+2ONuZe/f5g4qDmZl78/R52fUawKolE3z9qQfPk5l0aC9ZyX51iDy0p7XFYoK/pprSUnCZ7iGIlK063W/N3/6M/45V/8CkvkZruhcS2JVOZnx3qzJWbNKUT+t//p32d/Gnl4euKf/4t/yeP7N6zahr/zJ3/MendF2znaztK3hrvtlk3XSiOttWiSSDz7keMwcThNoslvLCEm3r59j4+yZnf9ilef3KFdhw+Zx/sHtChIipqfFrEPo5SIXuQA0eP9iNVK5H8L19pPE37yjMMJUsZaQ9c2xBDQ1gkIM03Ysh9FH0RX3gkdd9wfyYjaX3Uyjz4Sc6TtHDlLZdk2newl6Zz8LavEyyrbpbzosqejVpKX4/OysnHpY1ETkeUYX76+flZVOqtAnCkUZO+9iGVwroLIuT9367W2VEjzuSfgh3ikVHn+meNx5Prqir5rUUrug598Cc4qJUrkiZ+e9vzqV7/m/v4B5xyvXr3i9vaWrm+ZpgGhaVrW6xUgqdrt3XXpW2ikD8g2aKMKkgwVlFBorGmEVpUTw3EowJ8lFQAlpkpdO/dA1gC6GrNqCgCzUCCzSmEbi58SSUWMsxCLSaDS0mupwJalR5VkwyxUq+rj59c4rFe0TcvN9TU3V1ccjidikmtQeNVopXDGihBDSeoa16Aaxf6wn8da3/dlHJY+hrKmVzfwsfjb1PNwTprzpYFb/MNiiDStJCvDIPejBrtQwb8yx5QqCWbmxYsXaKU4nY7s93tJTkpVcjYYLHP1m28eGEdRwgo+izIYNfmSe2CN0MZkzQocDsdCWRO67zdff81wPPC3/ujnHO7fopRit92w2+3YH544HPcc9vd85cSu4O7uBSjNMHnuHw8CqsbI4XTk9TvP8fjIixd3/Cf/yd/Dj543r9/y+vUb/vzf/BuOx4HD8SRyt0VEI8dMJGC1g5R48+YNjw/3GKP4/Mef8V/9V/8vfv3r3/LtN6/5r//r/4Y/+ZM/5upqxzCMPD2+5+7FSz777HOeHiase8Raw82NjHMQXzXXdYQgruQ1QX6WJP4e8/X3SDJKk2yhcZhCHcIYtKsmNGdlgCoHhioViZgZ/YgPkRAy1nV0fV+cZp3cRB+ISRcpLWnOEurOWYFBKyOIGAntxXpdlcDQKiWIcFogAguUdLmg16xMl9+loCIOnkopcb9uBPlKCqpxlTSJa5KydE1Pv14zBukVsE0HSvwa6m0wRig6KSWmacSP4mA+jSMxiaqTDxHX73Btj2k6EkhDeyl/T1OQps0kyLfW54ClBmlLagicJXenaeL+/p62bWmcK1SO5wOmK03cw5D59a9/zW53xXa7o+tW+ClgjGW12hLKot00V+z3T7JQlUQkle+iVcAAzWrN1ctX/OEf/22+/eW/4vjwDt11tNsVV3d33Lx8hWs7MlIFSSrj9wOKjM5S2tdKSYO5DWQMyhi61Yq26wgZphDEBNEID3b0nlUjDX+H04luvcZpoRFM04SPUShJWVw0rbP07YZhPKGVNHq31lDLvNZornYbDsmwD5Y30xPj4wkdRhyexkjZW6VMq0Ra2ThNa6GzBms+VEPy3jOExBQzxymxHwd8VhgaxhTP/vPRF56wjD9f79kPPMm45KzXebmU+6yB2/K6LT0BavC95KRfViqWCPTys5e/n2lTz6VMl3OjftaHicnzZXb52dM0oU0zf9fl6+t3qee7pMTU35cJRj2XlKqohcNqUUlbd2s+u7nh//5//b9ASPz0s8+5vW2EDqQ0OMOpcaK24xruH55obMPLF3dstjtyCrOr9y+/fCM9YTnw21/+K/7e3/nb/NEv/oDPX95JhUkl5ibZAlb0/Yr700gaM7e3G3ms7djstuyut3z9+h3v3j9inGMcTvhJqhLX19c0jSY7aLRmGkZJ9kNEWUUOkeFU6SulquiEgGK0uHaP08gYAoP3rFKmy0IDSN5jAFdAjd4kDsM9p9OBzW2kazegHVNQjJPHGE3XrSSR8JGYzuMQPnSDv2zUv1xLl3+7XJOXY2XpwVQreJXiukws5kBz0YMhfVx1Hqln/Ut13NT3Xo7Let9Qivx7hQl/tY6cwagisX46sdtdseob9k8PkpBOYh7ZdT2rlSglnk4nCRaj+DjknPn229cyrpSos3Vty3a3Zb3qyz2M3Nxes9lsWK161pu1SJkaoR9ttytRXKw9MdGTsyhHusaVikci+DCvV77SpMual4ydmSeVZVATgWcwSSqVqFK1r+IsUlkHqyUZySFCjGStSMEI9muAIlaisiTxRoOxErA3ztJ1jazDGaYpSIWxgMGmfF5OCV28tBSwWa3nvjFVkt0UI6SzCV79OZ1O87onFYvMNI7knGjbTqoRrmUYB2JRkkspoJQl51qdkUA/pcQwjkW9yRZWhsj2Bx9FKbMkbeIjJoDx48MTV7stMa1EtGKq4iK1ki3zp+0acccOnuF4EkUsbbDGglIlCYP379+Tp4FN33G13TCejqi+o7GK1tX+nihN28aCsWRrOZ0GjsHTto5PP3nJ4bRn+vJr7t8/8JPPfsyPP/sJP3r1OQ/vHhiGkffv79ne3HDz8hOMsfKe2hVaoOf+/XtCDKSixPqLX/ycECZOxz2nYeT29pr1ZsXT0wOr1arIF9/w5Rff0rZy72NK7PdPhUGR6VIiZQH4L31Mft/j+zd+n+WaiqLQuZxirKISPeSxkkkX5CXETMrVlVZK5tY12EZ+jLGkSo+KqZTFZChXtfaZLqdEk6o2AAnaW9CAmScm0pKVZrVEI8+I45nuoLWWEnJBSXOxl4ezlrwxRW1EVeM/kcazriHkVJD/pkjampmudV7kRXtYXL1lMgpyKZxH2ylQpXGsbg61AqR18eIw+Co9u9jElo198NzltSJgywBqqVByNq8J5Cw68LXKMU2TuEAqqZqMPhXeeJWKPVeKRF9c7lEkE3ImG83tq5e8++pXqKFl1fWsr3esd9e0/YqESPOlmHBWzdc9TqJZbpTQLqI/0K3WaK3xp4GQ5Top6woXVBLFJV3MWUtjHeQ882FVbcQMoZKyIZ4pcXNFrI75nOnbhq4JNFaho8clT5MDSUWsFq66tQqXI6agTo1RrG2mMSJ9vAxoozacnGaMiaNVOAJDhCEHbNQzDZEcJLFVipjEHyGyVNn4YR7L6sTy/8vfLxOMjz1/GfB9rJH149WKjx+XNKVL+dKPU62ef5fle1RwRV381NfU514GhEtazvJzzlWdil6aAvdIJblfX4Fy7A8jV1tftNklwKmccOFtR6mQKUW/3sjnxMgwDqxzCWJzYLO94+HpyBdffs2r2yuUykAiKqlmpBIUG2PwUXoXphCwzQrXthjneHh84nga8CGIRKSW6kSMCaWLQIIPZ2lwVXaQVI20/ByY1cbXWNa6cRJJXbRGD0OhpiWcs4RpIE5FUMMHsh9RUWGyxx/eiTSvk3npk0bkdM7qd5dJxOVYWq6xHxsLHxtHyzFYr9vyPl9WnevzlmNnuYbUXqBlAjpfw5yf/Xxsbsx0mh/occZa1FxtzKVKNgwDviQR1rZU9cUQI8qHAtzJ9T4cjyWQzmxWHX3X4SfPg9Wl0pPZHw7sthtW6xWb9Zq+X+MaR9M4YvTSWN44yKU3EUUM5d5poCQZ9X5VhL4u5GnR94le9PxkhGI+y5eXe8uSWlfU4RYJZIiB7KUSHlPCOkfjGgEX53t+ptNVcG29XqGUJsTMOHqgqg5llEqQhfYljBIAjTWaWFyzUwylH0XWGGGz1HkQpSejPN40Ja5KQh82sqwhssJxfv7yZlehlLl6HKqoT2WpyHMrMKu1zJO2bZ+BUK5xqBAI4TBXj+T7pNJro4sRcQH4klSZTJnCMUa6rkUpxePjIyZ7dusVNzfXPOlE0xpWsWGzbbl/eOB4OvH27Vv6fsV2t8OHTFIG70eyUpyGQRLDDNM48e03r+mbFet+jTUO7wPDMDEVsFfWAbkswU8MpxPHw+FZRf3t27dorXn1yUu8D/SrDrKoSX3+o89ZrdbEmBjHSWj7OVJFAlKWYkEIYY7J67WV+L6yhc708r/s+P5JhqnlNi3eDc4Wfihlo5CTWC6gZs7wAyEmvI+kpGZOmHWtuFg6h4+SFsgAqwNKl0RBlZ/Ss6EF7a4Xu06YGKPwdMuNqFdhuUjPSh/l8VwRT60hRNEcRpqByKqciwxeXQIBax1ZabS2aOswKc/fBW2pMrv1qAt+KBQpkdETVGMcxRyv2SBa8+asb10by5UxpclRMfjTvKk45xiGYf6MruuecXkrArZer585c9bkoroJ58UA+vTTT0vDlyB41Unc+4nTcSLGABQKRWnq0trMm7RSlCrURA6B6xd36LZFNy2b7ZrtzS3dSjTuT97jQ2lCK6i9D5HT4cgwFKOfFPHDA68+a7BoHp4OmNbTr0UVo+t6QumA7LtOUB6lZgNCP3n85IW7mvWMGErJOjKGiaaVvpxU/ibIlFzT1jV01uBUJo9HXJzoCVgdaI2isYrGalTIWCVqFFYndkbTWUPbSNKdSyNwdoZTzgxJc4qZXkcOPrKfIqM+SxkqAtpCVhofYMhRKlk/8FLGMpBaIvrLoKv2asB57lxSpOo6szTpu0yuL5OAy6DwY9Ss+vzle3wsyVCqBgjnILAexhhiOgfPy3J/fd/L5APOKkHLc3tG96S+TpTqQulj+PFPf85q7Xh/v+fl9Zq2FY8dUija8AqlxFcnJUnqjRMww9iGbb+hv/5EzpXE9XrFV3/xv/Dnv/wVf/I3/hBrFVklcgrEWDcmkcqMKTOGwGGYuFvfYFxDSPDV198QoirUzoAr4hI5BFBC9xyniM4Gg5YNFU1MArr4UJKMeE5q/DQRyrrkgy8ATOmxSkGompNnOh1JwZOiJ45HjDY0ynJ8/BbnOrQ22HYl+xNiZKZI0kNSxsLSD2NZdfhYdeJjiWxNMmqgv0wcl702y78tm74vkcPLsVK5/8vPmIGMRdV+bhSvY5AP3/uHdsj5S6DsnC7VJvGD2h+O5Czoe21gxkujsujABrSRitHhcOJ0PEogH3cEL1WO4+mIxDKK7m3H1dWO1XrFqu/ZbK5o25a+bxnHI10vwikKRdP0GOMgy5gX+laY9xSlFMfD4dl9oVCzl5UzUAg+W8GWwrZY3jdVXLgxqBjJWeKnWKsmIYAecU2DgoUJKIDI1UqfhQT9V7sdzjb4IP0HMMzULumNEFJRTgUMLZTx6g7tp5EcwyxuoqqkL6kAx7Lniqt6MRdNET+lOcGQXtUKwi6rv8tkv1Q0IkLVpzaB1+tlJMFQoIw0ttexLz2fjkBiHM8mxjL/xG7AOkPXtRKjxXxO7moMt7iX9/f3dAb0q5e8uLvDICadmYxpNIfjkcPhwK9/8xv+9E//Y4xt0bYhGcvpJBT19+/v2a47GivA9a9+9Wuu1td0r3pUVkxTZJy8qP4ZO6/9KSeG04n905OMqQKkjuPI//w//89cXV3x+eefo7UkTYfDgePpyMuXr2jbnsPhyPF4YBhOBD/hWqGH1SAuBC++b4VyF2ulZwYyzqnqX3Z8fzM+ldC2ahErmsbO2WrjzpSlOnFqEF+rF8M4MvoJpSzOOtq+p207uXBorFHEXJuo1NwnAQptrNCUUpzpR2hpKFTKLAZfUX7QRpoJOTeF1kW/yg/aYqqWYy5O44pELPbzYqxXByBA8GFuyG7bjlR6CcKU6fs11skA0saRF82SkgnKZMv5bCo1TRPjNBFzRruGpu3RrgXjMNbNakdKG7RtZg7nUq4w58xqtZrpFfX6i9pDO3/n/X7P6XTCaE3bNNzc3Mxyty9fviyJhmhE39/fl0XPYoyb0b31egPqQIiBw/GRVLibzoovSC6lfl9MscbjnvH4xOl4wKw6+nxFu14zxAghonImo2n7ldCUWoOfJtqm52p7w/7pYU4UbZMZYyT4QNtvaPo13WqN61pOx6PcF9eQp8BpGgWdSlJabruWzbpnGIeCjkasFbULRZqv17Ihvmma4qUB0+mEJXG76bnrNdpPtHHENIpdY2mdomkUBIXSCa0zViuujKazirZVjMM4I1DWWoaUGRP4rLmyiuMEh0kRs54rdk02KNeQlWYoSj7HYeJ4OrsW/4dwXCYZlwHbcmwvx/2y2vGxoK9W8C4R53pUqtay2Xz5eR977+dUFqEu1XUOaoAgh3WuoKthnpfLnpHley6/Uz3/5XetFANhItTzSUUq0vNHf/J3+Oo3v+Qf/eN/xovrv8+6n2hbSxs9WjuciTinedo/4daGblVMTIV3SUa8MBQaqzXb65f809f/LQ+vv+C/+M//j8QUyMh6ekb4EtZprm/vsJPi/vHA4F+Lvr/VGCdCBgpVKryF3920/Os//wuuNj231xvU1QYVAyp6NJoYFCEKNVTQaOF1j+mEL1/dWAtaqKB+msh+4tuvvyClwLpfk2MSgZCc0CkL4JEGCIl42hGsxTXiH1Krwo0t9IMoKPjssl7OYXkv6j1bmt4t6X5wFtaof7+sli33pGVluVa06hj0C3XF5fjMqQI8z8ddXWOWY3I5p1I8y7r/UA9JAgMpZtrOlaDUMwwjOYtke9t2WNfw+LQn51QqDqJg9+79e5qmEYVHMo1tUCVhfnza8/rNa0D6f66vrzDWkYGnpwO//eJbuWc5olTAOTuPj5cvPqXv1yhlS5IQQcke25eewYwE/E3b0ncd43hWgWybdk5uu84UCpUU21IWoZCUxTCw3meAw/0DKkYsmdY6JgTZb7uejPR37Pd7AW5KNSRnoQ0brVmtVnz66ac8Pj5xOBwx1tI97jHG8O7dezHuzaJUFqN4fRmjiVFkXuWepOLyXZgVs/eHIOOiKiWMFu+nmaZ+Oh7JiKN22/UCKMQ0V3pqtYIsSVXOzymvzjVst1v2+yfGuYol87BpzhLSqfSwDkORhS7eYMs9Z7Xq6fsegP3+UAxIRVQhpQRKnNIFiJA51/Ud4zjym9/+lutNS9uK6/joR372s58whcA4yZgztqHtO1CZtuvkuaHl1YsbcggcnvY0ruXXv/4N33z1La3rSFmR0Nimx5lG/OVSxKfE/cMDb9+84f7+XmhT9+/48qsv+fbbb9nv9zw+PrDdbvn1r3+NtY6f//znaGV5++Y9X3/7rSRWVmEshDDKmlNi7xAjWi/Wiarsp+2sgJk+3FY/enzvJEM7STC0EVMjbZXQorT8uy5juvDzMvlMCfKeyQcpO1k9y9XqGWGR0p9KMNu+lEkgBjEKo4wYLlE5iUY2tKozVbiKz2kS5426HnPwkBJJCZeRlMjlnWKSZixBmwoXMZ9pVuIT0aC6HqVtKS/VsxYaUcqp1GEUmcrHFEm2GP1c0ZAmKQW6NH8XJZYYpcwJpVkaMfbJ6qxWtZw8NXCpFYsQAqfTafYk8N4LR9Lamb9bpTJBBlIIguIMg0hUgmK7vaJtWpSS90MVaWB1VobIJGLyqCTeEcNwkmQxTMRCa4g5E5UiliDtNE1MMbHdXZ83jBSkmpEzwzSxWm/xo1ynfrWRoMhYTNOz2V1jnJMJ6ANTVqSQUG1GJWncso2V4ChFhuFISr706IgE5hB8SUQKEm0MzliUUXOVJqUopfGQac3EutGodcvkwI8Hroyi1VLBUC6idBJXdQ2tBWcyWmcyJ5QqyhA20UaRDfVJkV2iU7AyspjUYLPJGt0IVXBwho1tGFo4dd93xv7VPJ5VOhfViUvU95I6UpE/Y8wzY7balHuZeMxykeW4pLws583lsdx4Lqss9RDayofPrc+ZpokKUiwTicsejOU5LZvHL6sndbNTBTlUWcaaaR1jSgwhMUbFacqsey3rWpwgiZ+EsyIuYJXQOVPOEoiDbHrmXP012rFabwmnHYMPOOUxJLISNFghVRdjLTo5jNP0a0vGzr17BWaCsibmFAkxMg0Dx9OAs4Z+irSDx6qMzorsMypmYjpXEKrktu6hdQ3T5NkfDmgjplvCdI1EP+HDhNWmyJKXhCxDjkLzImem4QC2x21fCEhVpG9zmmaK2/JePqt+LysJiwrWx2Rrl1Ww5fgDnlXfLvemJR2rGv8tx8o8FvKZNvGxz6jPXc6x+Tnqe0YHf0UPoTdXcEDQ5hnxRxKpEAIbt2YYT6QYMGaFdbJWDMNALJKqSmlW67WgtzEx+SCIfc6krHjx8hXee969fyCTsUYSgePpgNJREOTiHn7/cKRtOlLSxDiwWnVcXW8ZJ1/6OlasN2tCyjw87Tkcjuy2VzMNRvoXmuIPlZjKONFGs1lvQQUyARVrH0/CGkGaNWByYjwNrG+2dJsV/XpTuPq5JCmSDNS1pEq2OmPYrNeFGq1R2jGNgcadinkwqCxS7XVvPCfcdeyVNVHLGmOdpWlsAUUlKYspoZNCuWrqK/2gVkuklFOSmCidZb1t06C1YRxCGe8iIZ9yLJWMPMc8IYYZNKiN586JOW/trToeT2VfUPN1t1YX/53z3lITDOccOcj10lqx3W6lCjEOhHEgr1usE5uA9/dv6Vc9/apld7VjpxTHYeTN2weG4cg4PjKFxB/+4V/j3/7bX/Fw/4hKgYd7Tds4Vv2Kd9++pzEtVie++vprVrc73LqX+KusDSEEVJbMUyMUbVUeP50Grq+vub294erqClC8ePESZx1N0/DmzdviOH7k4fFBTFYlWp8FJTIKoyW+l/uUmKPpuujkpdLU7z6+d5JhnaU6xOqSbOhyIsuFTHoXVEHtMz74WXNcBqFGl5tblaXImfRsgS9vlkWiTRVun8ki4KhK34dSGumEKpdGV2HbuvgyD8wPkNDKby9cRb1YxIHieaDmkxE1CVGLsq7Btr30FOTSN1I2aG3EVbY2lcd0DnhkAAeZSDEQYgRl5wmxDEa0Fl53Srlohsgiukwy6oZTf19Swqp8bb2mYqhlZzS19i9UpLVSp6ZpYhhGYsw0TStoX85Mk8d1pemrJBkVEslFwz56z2mYCCkK/zvKd/YxETJEJU6tMQp17NqKBnOKkZASfduK8kIIrFcrceD0YJuuUCOkqtO0HWhNKOZ00UdyFI1vpTUaXRr4EyH6og1fuK+Vx0t1fC2c9fJjS3AjVagok9MlGqNYOYXNFq8jQ4SNjjidMSqiTQYdQdcFUqF1BiJZjYVHbVAabAJTzkGZRKugM8CCVtWgMI2ILAyTYuUco1cM7Q8XgYQz/adeb+DZvKxB+BLVr6+rm8Zy3F82SC/f87sUn+q4Xz52mVQsf5efGVx79rr6WZeviyHONIhL1Pi7qjXLpGdJzZl/kKRYFvgkY8loTsNINhbbr3l7v2fTKnrXogikrCFK9RktvhVKmzlJki0lYwtdMWYAzXqzBX/DFGIJbpKM7RzLJnTmkWtjaTvDFFQBe1RxOy7JhtYz/9p7CXqmmDiOHq0HOqswKkFIqCK7ppQWUYdSZXTaFHWpicl7AQWcwVnNfv8olfCoCHHCWk1SEkTNP1FEGqbxRHZH1rKTFJlsQw4jlP3su8bk5T28/LmsOFz2SsxjY1F5+FiFY0nNqLTBy6SbLJSh5699PkYvE1UZpxpRDvrhJhpaG0kcc5E15bxP1+5Q8rm/JsQk5QAlbInJl4RSK5wRF+XgC33YSwCqi1/EarXm7ft3HI4njFY4ZxhLootKAhqGABmpSihLCJmUJ65vrgQczIrJRzHiRQDOw+HI23dv+dFnP6ZxTUmoDav1iq5tmSZJIqrfU+N6QqFehRIwi0mxhHBKyVwL3tM6x269Zr3bMQUvyb0PHEdpOk8xLWhAUilYdR2psCdSEi8eqSIaScZQOGvOMUUu8rt13VV1X5We3UqLMsbOfjOC/ltqDyVA3/WLZLz4zCTx02iapvT1fgjwCIVSvrvIFtcEQ800MAGl9JyIi/iOSBzXPhhjZF/p+26uSHpfn7PsadU0Tcuq7zkeD7Nnh3MNbdPSNI73w4ixhqZzRVZXBGm6gzSzn05HSTjXK8iRaRpxGvm/NbjOzfM1xMjD4xO5dwzjJF4l1orfXBLKmFYiVCQeTamIKkVevXrBq5efcHV9xfF4YrvZorVmGE68e/c1h+NJPD9OJ7IS/6MUUqlWV3aQLr47oghLwSZmZbr/NehSTeueB2POzL/LQikbny5ZUcqCxByOR47HkXGcQBk6Y3GuRWmHNqZkk0KryimiifJlBSYkzVw7hdUK0zRigBMiJz/QukY2PMGlyKXhKcWIsVJNCEGqCEqJ+7MM1GKYpi0hh0LTSrWI8syYBUAZLf0WtqXpNrjNpjSUJUJKuJxL0KrF+CZnqZDkjPcT43SSfoxxJHoPUSZz2/dsr25Zb7dgxT+itU1BVJAG5XoOSho9a/9D2zRYo+fF9ovf/lbcqktjmlKC6nddWxqycmmosqX3RQbM6XTkVPiDKZ2TlNPpAFmagU6ngdV2R9M0c8JCzmXxseQYSH7CD6dSoh2Js/ykZxoD6zV0/YqmFUdyo50kMc6Jw2alemnN+8O+qNEE4pBK5Qvy5Hn/7j3das16s8XaTsq5JRmLIaCqOkX0tF0jCUtpUI1R5Cu7IulrtKJvW0Ev0khbUC1xbHeySNjAptFsXeY4DTRm4vpmhZ5OoqY1i4mVxlpd9col0Vb6rIqRcgm0M6joaa2hQdFnUPpcJnbKYBsDWjN1MAVdFHG+74z9q3ssE+F6LAOiqgy1rF5UJCqlNJv4VepgpbZ8DCH+Lu75klp4Gegt/19FIupr5ufO3gT1/QUEEEBVzKmW4EF9v4pOV+BhWbnoum7evD5afc2ytkJGa/m/DxljLT/6yU959cmn/MP/x/+N/+Rv/Yyf//QVL256PIpke0yzo99ssW0Hyszop1YZTYQ0AQajHDFkrq9vWXcysFOI4mmsxD8jxIxPmRwVyYjYBUnRuELDsgqIkklTAhKtMU1D2zVcqR3DMPD6zTveKbAaOqu5u1oTpxGnI51zNG2mKXSpOHke7+9JGT799FOsMwzDidPxwM3NDVe7LeM08M2b10zRiz60T+Ia7CMhJrSGoz/gVcs2BJTumAMYJZXLXKootXpxKV8L52pcDVrqPfpYYlx/6vPgee/N8risXHXduWz5gWeKqgRqOS6rcpf0O6AAT7pU/H+4SQao4j9hiIXelmJmGj0ozWq1ZrPZkFIWTxfvxYk+HQRIC4n1tqNWU5Wx+GHiNE48Pe6BxPXNFXd3t/zb3/yWpnH0K1Ege/duzzgOTD5xGg6sVj3b3YauW/H627ccD3tCyPzkJ5/Qdj0+ZrIyDKPnNN7zy7/4NW/evCbnzGaz4elpYLvdsV6viaHQeibP/f09r169ZFXUFLuuo+tbXOuk1yRMMq9AACnAIn2JufR7QqIxVig2KPJpInip1ihVqIJJaJdd34IScDX4iCvqiI2zxaBYqNYzvY/iJXGxhuYsFU/nLH3fl2t2QtYs6f9wzhaVrcjV7lpinSymxtJwn3BGs151TD6URvQ6jtWsOlfH+ExryoK8t11H0zY4ZzkNJ8ZxYBwmxtHPQLGfIjkHxGNFhG9sAWHls454H/D+yKtPb7m6ui6UcSXiOFajc89f/8Uv6FvL4XDkRz/+MVMYmULg7bv3xBgwzvHi7pb9/sR61RNi5v/9D/+fuNaxWbXc3lzx4u4WP0zs7x/5kz/5E7756lvevn3Py08/BaewxrHZbLm7e8VmvZZe03GiK5Q7pRRPj3sO+xMKwx//0d/m6uqKpmk5nU58+eWXPD4+cjqdeP/+gaf9nsPxwGazouka0IrHx6ey5knckxJnECOdG75jOldt1WL9+V3H904ylglGLWPPPzK6JOhUZ9Wk02nkcDwxjrJxNm1XyoFtQYsNRRlaslwVUSphlSJWF0Vr8X6EnKR/IRqpGBRn05grspMwqmbUwhfMsZrZCIqmlchyaS1N1VkpMKX/gxqA1zKRYCIyoRS2bYlKE5QB14NtCv0my8ZUS/tJUJOCYZceEE/wE3Ea8dPINAylH0OkgWNxD7eqyu3CbIaXgaIprwGnDaFMSglWpLyXYmDVdzjnZvqaoOVZKBOKYq4jwcnDwz3TJJzKihDvtluOpyONc1SFB+9PaK1ZrZviJpoIfuJ0PBaHUcWkLZ3NpOgheZKfiD4QxomH9/cQQWfDaT+wWV/hbINrWlarFSknQgw8HR7pu+J1oTXq6QkXpDlr3bW0bYfSqkj+Bvw4cEiRq+tXgvYZI9cJyDGSRo+1TniY41AQC4d1Vr5DEM6h1eLSWqWXq5JNUpqki3qayqxay7bTOGSBGqcTaE9WiYTICgu6mJBWVo1CE1IQ46QsyGmTCs2h8FUFPajFuDjTQ4w2KAJkLdKEOqFdpjE/7EoGLKqFlf5YNvvvQnvr40vuej1qAlLf7zKw+liF4hIVjkX9RSqnuSB0QoPQC7no8olS4dSKEBTWCG1IGrPr+cm6UGk0bdvOCVJNiJaUx8vzuqTm1PPUStB4rXLhw5Z+Na0BjVaOH/21XzBGz9dfv0bHHapdk5wluIHd1TUJJyivtYizdgZraIzFGos2loPP2L6DPNAqD0bWuCka2iCSjjElRtOTMAUVTCgdRWnNOUJcyLxmmWuUsn4CGmtpug6fFdo6olJ8eT/ANKHxaDURhycanWmNYl1QTa0z43hg3e3QrYXccDiNKOPIpsfqjjRNEuyQwYAfA+MwCFW3baRfxjihgOUoHhNJSdXSStK39Gw5V8tS6QlkrjToReXDOVsUec4J6FnB5nkDaU0uLxPjy+TjY+M4l3WmPk3GS/m3EnqtVGyfSzPXOZYjC7rAD++oAi8F/Jb5X5fFXKtXlKbsFqV1UdQJMy0pFaoUJN69vxe6SRLAUBtNTPLvH33+Yw5HSSyGk1CB0QbtHEyi9jj6wO66Y73dkbLhzZv3fPP6LVOMaOe4f9zz8tVLNusNru0JGR7u7/ntV9/wH3/2U4xr2B9H/uKXf8HxIL0A3nu+ef22BMwt2/WKrm/oVx0vXr7ANWJIqVKi0wYdEyYn7OaK4+GAMnB9e804BaYg5yj+IhK/DWMVNlClqpFKXKUWio3FKM9V7ynpAZtpgn6i2hjYkoSM08g4TTO4UulKotikiteIRZU9VmtN33VoI5WC7XrN6MRXyjnLMIzSw6EbquKUCPUIoFu/k9aapDM5iRmpzNnMMB4lQepavI/SIJ6lTwykJ8FaU3prCmtjP2KMpW07NusN1zcbXEmwvn39mv3+CWc0P/7RS9brFVfbNX3jOA1PhGngNIwc373j009fsdtuub6+5fqqGgM6tpsVb96+JcTA3d0Nt1c7HtkJ4JMAAQAASURBVB4eeP92IiTP+moDxvCbL77k6uqGm9s7Xr78RNg1WlgascQIxghYdDoOHA8nxmHCuY63b+95ehQTvqn6lyTwPqGVZb1a0/cdty9uaFqHc4bHxwMhPrd4yIjfSipUHYm707wGfZ/j+/dkLJKMDygIi+edpVrFWGryhRZUOHD1Z95I1dlVVyoWZ2ftatqkYqGRcLER63Pj4rn8L4F1zkXSNtVmoaqskEvVQhbjWN7vrOsjj0vAUhZ+JegTRpfeACe0A6UwClIpsUL9TszvJX0laU4EckECaplXKaEb1O9Qvyfq3GtSvyO5en+oUhpMZ+azkhKnLpSxc6n+eZCUs8jo1YWsliqtkSZuQJKiODEMgXEcUFrR0KKUg2wgcV5glCJmj7LSYBZGQQ7iFPDjxDgMNNYJxy+Dn/ysxqG0uPcaJcoPSgtyjza0fY/2JXgzFlsWK+/DTNXIuRhxVQpflVkGjBH5zljK4KkE95ecd7lWlVpW+NBlQqksvHWQBrzWGVIQ1HaapBGsqrWUUTeP4/o/pQpto1S6WND36nw53xwKhcNQG/Fr0DA71egfbnBweVwmAB+jHS2Py56GZUJxSVe5fP3le9V7XyM1mWsFgVaKNE/ii/dkieIsqJJzUPc8SFwGqhX9rt9jGXjCuYJTX/exc9YqV3ZondwLaUpEbSklacAMgaaXPolpimjbAlrWwyy0E1X6rHKS6rMS2RZRXrIGnaOY+yEc9RQT0Xt8jExNJBtm6slZ4EIqerWkrhdr0DN6hbWkpMjKiFxi0cRPufjcZ+mriAjt0TonSHwKSGMpIu8cJYBOSuOjKmwgWdGNFbQ1GIvMrnIuuaQ7WSrw6AbU8wR0eb6qgFc1wZBE4Tm9Kedz9VukNWsikJ49Z+lrdJlUXo7p7zqX8sj8HhV0VNRzqt+Ri9f8B3DUJbHs+MEHUu0T0Hqex5cSwtPkC4VSzH9rg3wIotyTkUumjcE0YoprnEMZQ8yZp/2BlEpVNUTQWnwlgsjzh1JNN9YRC8vBh4SPidMwocwoe5c2xKwYp1AoLiOnYWR/OEmgOIoC5RQElGjahvH6mn7lWE89q80aPUlepXNiygodIyZnOm0JeBKRp8dH9sdBPiNldNMLaKYN43ig2g7UxEziL11AStmsjDZ0XSc9TVXmuYDLUzEuNimRrcEoA5zBlZqMwNn/qCYdGCN9JCW5sFYAjqY4h8t2eZ4TWj0fy1ZLrBJjkDUkV7EdxdkN+yzIUNegKpog71vfT+65a9wcI2glIGFd22RNDez3wrBoVh3r9RpVAIgYI8PkafsVrm04no4LMCCx3a5pmw5rHApxLR/Hkc1mPd8D66SfVxuNaxv5aUTEYLPZnq0IqMCcxlnHarWSdbPQxU6nkafHPff3D8Vzzgu7J0W00jSuAdNwc3PF9fUVrrX4GBinQD6NYpOQQS1tGAqoUffN36cO+v0rGYuymKkeA2UAVLfvDDM3bPSe4zAWFQhQ2uBcUzYK88H7S2xeQ+aaZEhDrjZGqE1AzAmjDWiFUVIKVBkiMrBjOjf5qRL8nRMTUGqBAimKJNmZCycbvSQwKUpzuFpUVcyipGa0GMSFUNu+S1NpHcFKzaY7tTdlLs0rkYMzpYGRcu1SDtIIVWR1deE3xxhLD0dpwsnnyVzPjcXjlc+7VNmpZf/Hx8dnPPAYI85K81Lf9+z3TxyOkjgdDoe5lLjbZTH0sxaTowgMp8x4GvAEopek4rA/FLnJQA6RzWaFUjCMA09PDyidi8vqJEIBSrFeb0rDVSBnz3q9Rmt5v6EoYwE8PT1xe3s7L1b7/R4XI03q6Z2dFyTXNGQSOp5VWk6nEwCr1Yqu66S6k5477p43/7O0aS5SkbWcWvmcc0pRY4tcE+ESDKvnvPp6fz5GlahjT54vlL9SfiImQcfnifIDPi4Dq3otLisXy/Vm2ahdRQuWqjyVt15R4Q+DMZ79+zKA11rNG9rcM5IVqaxr9amXAZ8xzx25P5Ys1fvf9z1KKd68eTP/vVY1lu+9XIfqnK6Pay1rR0xpjh9Tiky+6JyHwNvXX3Pzas26W9M4kaY8Zcv+aZIE3Vqs0Uwx0fcNxkpFeNjvySWIyN1WNrrilFyDZJH0rp45E4OdsCaimzPaX3vPlvf4svcGICklQIo2TEHQ0ZurLZOeyFFos/16J8IKRJIfcQacNTROjEEPg+fhMDEmi81i6Po0JFZGXETIEqSZtaFxQh0IiKJgrehqZLM2riVMJ0IQWtNSoOA8Lng2VpumeVbxqI/PSO+s+Z+ejcml8t9lYv1da0MdE8sxdfncas6Wc83xLhK7BTj4XZ/xQzgk/kglkYRhmNBapNP7XmiKmTyb71WK5cPDAxVVH4ZhRtWtc4iEUwKtabqWzWbL7vqG/fFASBKkv3n3jq7dEGNiGAe6viGRGH3g/umJ9w+PBB/Z7ra4xmBsiw8ZZRrevLuHd/dc31zzdDjhY8K1PW/e3RN8YDiNWNey2hismwTZvn9CaQpFuSHRYKzsZcdHma+NVuRxQkdhgOiQaNeO7tjig+f+cU/IoK3j0x//DNd0aO3Y7/cYVXsS9EynNgUpB+TfxrBarYjBc3x6ElGVUqXY78XxW5gQFu3EdyeV6uxy7a4xSlMqAqrEQcYYNps11jWM4zS//8y6ULXP9/n910YRY5il7mtPS0ZxOg1oA40zWFdNAhNKWRrXkhIlkfM4NLZUM/q+R2vN6TgxDA8Ckr+b6FYSi4kPyyhN2usVm+1WVJ3GgeQnJgJ//Md/k9vbayY/CUPj6QkFvLy7pXUtWhn01Y6udYyTiFV89dWXDOPAZrsWZkeKJCI3d7cYJ2qj682Wru2FzVEFIaxQ0j559QpbqiTWNnzz9WvGcSzzQvH4uJ+tCjarncSzVvMHf/AzbGtAZbq+43A4SovD6YDCzYaXMhZkPMzres7fO9H4/pUMxUyPmjOZGiAUnnDOCR894zgxDp5ximQ0tnF07Yp+JY6Z2pxVmYS/rsUNMUdRmNKiQGWiQVmDRQZmTolYGsFNQfGsLY6ZOUJRjIgxLujAecFFlYYuaeKu5baaD2hB24tOVIoZRQ1yLDFD3zQleFVozpzYtu1KybH4aiyzZsToKfggFKmiaW20wbYdtm2hnIdtjMjGJlXQhdLUpiXpMYDOZ5rJpcneoZiy1I2sBslzk0/ZWFxJFOr7nCVbZeFQStH3HYfDE03TMo6Jx8cHptNR6CFaF5nITAyR/WGPypP0oMRM1zYYpemdoV8X3jPQuDWncWAaTnz91Rfsrq7YFu6g95FXr15hrJFF9HAkTJEwSfPu4XBAKcVqteJ4PNJ1kt2/fHlLUIoIjOM4e4qgjNBgOCdhl6ixVD6Ym+DrPatcU2tkemijSFloadIcP8pmrQwgTshKGaE+FRQmhkjWZ5WcGlDUQGSZdNSJK/eroLZa9PvRYh4l4KvizAv4YR5LWlTdoCr1ZHmcEzqRKq0Uk9r4DeeAfPnaGpg/D/Q+7HF4hqhzDvLqedVqo3X6g9dVxNq6c7JT/34ZBFbt8mma5gDn8qjPre+//J7PAlCqCWmagZ4YAl3rCOPAND7xR3/4OVs9YQ3CsyaWVrMoYIZyKGVprRG0jUTbOrq2lbUzRSZkTay+Mc4KrdAozfB4lP427Wj7NdnYZ+vK8jtdXtM6/q21ZOPACAW006BzhPGJcLxH5xHnItPhgG6MqBmCKNaR8drw+v0T7x8P3O9P3Hz2E6JZkTR0N5/hn14Thif8uKdpLVrZQrv1KNOVHj6wxgnCiSIZg24asjkne5cVx5yZgZuPzd+lAlQdi/KdBTzw3s8OycvAv44T+NBH5vKoidxlIvthxePDa/9dFb8f3nGu5AAcT0c0YiJ3c31D3/c0ruH903vWm42MH6Xo+35WD7q+2sk+6BxN14vp6SFxOA5sdlvG4Ll/fMAYVbyqNNvdluClIt80DY+PT7RtI4BZkL06K80YI9NpYr3dcPfyFeRMU+i+1VSt7VYobZm8Z7u74u5Fx7/8V/8KrS1ZG1zXocapAKeKd/eP9KsXuMKzN8qgnC7BuuHN27e8+/Y1X623vPrRC3bXG94+POJ9wqdESOCz4ermDuda7h+fOD49Qc6suhZtqz+X7JurVc/19bU0HU8TClGCqvTOpeS3c65QnzOuaehyZLfb0fc9xmhpbHZinFsBomwtmsy67yEj5pkF3Kt94WNhSzjXMIyhxGwyfoOXKn+d15W5oqjJtNA0h8EXgE6oX2KGKHFg17a0nWW97ri5uhYGzjjNfZpeS/O997XvSvM3/+YvePXyBZv1ir4xXG97rEKU+vqOze6Gpu3547/1J1gjlHWjYL1a0dgGo0syY4Si9nD/lru7G7wP4l1xCow+EhX06579/sQ0TkLlSuLdRhbJ7RAj1hlu717w9LTn6WmPUpr9/oBzjq7refP2NZMPxBIHK625ut5xe3vN3d0LUhH12BpDjPD6zTu++OIrHh8O1B6XSkm73EO/L+D5eyQZqizIFWCtJS2EJpJlg6pKBtVAJGeF0Y62K0lG22FK5SCXREAoPpmUivmHMaSkSdYUKVcxX0mlCVkVqMaqs0qKVD40KWtUEo58znnOiLWGnDRZ1cVdHLsrzUErXXhHNUBAkiBUCe5Aa5mIuVIlpMpVgnV5j5REESKXfo5UzFlQzJK+kmjUnhZR2FLGotWZssPiJhoxdpAy4WLzWE52YOaaLn+vG/tyUViixFWHfrmpVr6jBDppbjIzZHKYmGIk+iBqA0nkahVCBSNlGtsVHxKDViIPXDfDTrX4QqcbxwEeM8Y2KGVFJ7oV85ynxyeOxyPej6xX7axsVr93lSJsmo08rhWhOIZGlQlU989yDRdVitqEmVIiLrwyltfiWal3vmZSDp4DyzL2zupi5zERSzP6UrN+SZOpx4d0mkrrg5q4Z0STWhqxfugBwvPjEuWt/196Svwuqkcd38ukor5mOTcuFYLm91SqqGicA8UqZAFmRq/rZ9XX/q6KyeVz63g5J5LPF+vnVRX9wYJeA8SQ0ixprbJ4wxsFhIk4HvCnJ262PRvjWNnyDYzBaiteLkZoGilHUizr1uJ7V152vfbee6Zxkh6jYnrnoxe9fjRPh4F+K5Xfy4B4+Z2qytfldU9Zl460iFWJTWexvcOPI344oPwIxhVnQelb81NkOO65349E3bK9vcJ2O5JpIUOzCdzfv8UHqVJ4HzCIWdfkPbopa2IIGIz4ISlR3FH5PA+X91zO/Tkt6vL+XN7P8+ufVyBcqeQvK3EfG0PL9edjn7GkDddx8+zv+cNE7z+Uo5qbyj2RPj2rJYg0WhP8KD8xopLIfbZtQ9d1ohzkPeMwoBXi82QMPkrfJll6DnMKaJXJQeTVVQ6s+5Zoizpi8BwPTzjj6FwHKROmUGhYYA1FoCawWq+oTArxh2hRJPwYRSI2iwxrTpmYhNoSguwf54qgxBgqaxSG8XRCDOQUj28feHg48nQKBH+C7okxwbVq2B8OnMaJ0+g5esVm+x7XtHz57Wv2Tw+kEHDWlKqOw7qGVb8uDItGkiyjIEvPF15AYDEgtrRtS9d1tF1blCQ9Wiv6vqVpJLxMKaC1NGJ3nSTpcfLkEGgbR105ZG5YUJGYpZckxkwsMUnwcX6epsZrksyHEEs/nUj6phzxYaLvekKMxCjMgKzOvQTbTV8U6gyxVGDD5Ineo8h0raVpG4bhUKowjtP+kXHT0zkNrud4PAldG/j22ze8fvOG9brjarvik1d3aK0YxxPWNAXUEOZN1/XEJH3KqIzSGesaei3XQ1mPcx3GObq+4Xh4YjpuaZ0TJcAQBSDHYJuO4BMpZrqumdefmCKjn4TRYTWuNaw2Iqt89/KOq+trpjASokdpw8sXr4gBvvn6TbFfqCGoJH+oSklUcwLyfY7vn2SUnznTnIuxwIz8CVdxLEZz0xQwuhUTkm5Fv9qIMVMNIMogqQmCcOFElislS0pBguVCzQmRuXKSM+KdkURerTZ8kzVZi2RjCLJopEI3kQKBfGh17o45zzKGgDQkJaFdiRSjmpMYbUT+sSIpsu7nEqSYUhlJpWeiBLxRLOPrxlAlXROlMqHF7VYXn4waQ86ZojqX7qMSKcfl5rTc8NqiklQR4nEcZ/oCnBOMGvguG7PqPZTN6lwNyTnhncVZQ+tE1WCaRsI0yXUDmspNVjIwu8YK0oIiRUEgqEmNazFBNvYYPU+PIyhF22x5r97R9yv6Vc/jwwOn05EQAl1rZMKVcVP/fzqdWK3CnADoLNJvIQVUUnStQ6Uz5aaiwxX5yMhErN+7oucVCZyD3vn1ltpsFkLAqPM9mGOsMr6EF/qhTv4y2K2BxjIAOwcORWYyi6KD0MyXfR//YRzLpu36/zo2l0Z2S6T/Y0la/X2ZZMDZHO1jiUw9lgHdsqokPjCRy4BTzlETi1DE5blc0mCWCfxzdPx5Err8/jVxWj4/pEzICaOKxr3KGJUJ40Acj+TxwO52za7taYvhpDYWpxxdZwkYYpD1LaQsCoFGeilknUqLa5ZLMDbitPRCRKUI0ZOyImrD49MRt4oiTLBAy5cB8DKxrtdVKel5EQfhiMoBZzLbvqVLKw75xPv9gFMJsi3BlwBMQ/C8eTgwZcPm6oaru08YlSNkGSPNRjMkCQQ7bQjTREQRY2byAZcSJiWCDxhlQUlvRYpBGusXaOlzAOA51fESLKhjZ16rFxXLZZJRgYx6f6Uf4Cw1vrxWlzSzZT/SkpJWz/H8WQW0mxOk89j62Lz5wR0F6ayUsBil76dxFqVhmgahhzhHmkT2eWPX0tCsIMfI8bDHGQ1NiwZSiCQJMAiT+Ms4A+M0QQronNj0DblxxJgZR8OTbVi1HetuzXE4Sf/f5NFKqm85BKbTwM3V9nyfFLhVi0qBp+hpnSEnacw25v/H3X99WbZl553Yb7ltjonIiDTX1C0UwSJAgWCzJY2W2K0ekp70pAf926KkHt0ParLFBkGgqlB1Td7MMMdss4we5lp7r3MybuFiDDwwsXPEiMhjtll2mm9+n2LKwdlpEsXpVYjOQjKkqLGm4Xl4IniPdY4ffnzkfBwZvWaeI+ZpJJgGt418eDzzdDjy+Hzg/ccTbdfnQvMzx+Mz3s8QA5vNJuP/W/7kmz/JxCgKoxM2aziFqNAFro4Ijm52W/q+p+1a1KSwXiA6m76jcVbW8ChsVW3j6HI2YzoPzONI17aM3gvxjXNoa0HN+JjXu+z8GaMZx7xXmDbbZOJwOtdwPp9IPmQbR5G8UBe33RamiZimLEBagoOB3baTNT5FpmEkRkGcSOYmCtx0v+X59z9idYdRhueHR7a9w5nIrnOcpoDJUgx/9Z//BqMTm77jn/+zX/Hq1R04y/E4orXAnnQG5rZKYK9t13E6n3K2zNA3FpTCtZ6m6dnuFdv9huenB6bbW5p+g2laUVYPkJJG2SYruKuFVCkR8bl2TVvRWmm7hv3thrvXt7x99yZT3J4YpxHQ9Hc7zqdpUXKPlProsvcKmZFSK7z45xw/XyfDrgXfSi1ZG0CgSj54xnnkcDxyPA+cR09Iir7b0vU7unaLNS4zhBhmLWIqisoA0EowwyrlzT3g51E0DxARtUnrzJEsUYFSVGty2luweaBJOCdF38HPa3YiD87CYV/OlQS9hbUlGxBykbdGW0vTbXCulbqSRthTCkwmRuEa1trgXEtInpSEBSlUOGWpLVH4KPohzcZgXEvT94L7nGe0TmxdS0Lo5KxzDNMkkydP7rqWot6ISkRe6GfPF8ZO13XL+yXlXxY+qYWYGc5n+r4nIUVCfd8TgmfTb+hbx/DwEY8oWu9ub8TQSQlCxPuz1EJkA8UYhdUGr2RzJwn9rjGWRhu0adFGM44zs49M05kffzzRNI0wgfhhWZhSSguedr/fL8aZy+JKhLCIc5mcZfHTyJAibSeMHOX7ogQqIoVaKRrXLvCxi+h5rsNZhN4QdfW2bTifDfNRaD21kn6SaI0IVpKhJiqtMIjSD9fwiJJlWqPoWXcmiiNdsPcp/dPJYVxDNl4y1mpn4SVISP3Z2kir6xjKPKmdA6jWm+ra13S65e4UedNKa9Hu9fXLnFoVYi+fqTj/5b1aKbq+n2J81lmB2pBsrMOiCXHG4FFhIowHTJx5u2/Zvv6K6fjAZr9j03dMkwhVBjRN2xDPCciRvnz9EIUysrMWkzePU/BsdztaZo7H95gsuJeMIsYZbTsa19HZfc4Gr2197bxd/6yGrhKnJsx0TtGbxHx+Yr/rad091gS2rWU4DxxPJ757/8QYDFMyDFj+5V/+a7R1zCERsShjcUqjXYvudvjpSPAj0zQIVjsKcxzzjPZ+gX2awpevCq3rGoSox2JKn9ZuFVz/tXNb1xApxYXwKay1Q7WGSlnPr/t8GY9XDul1FuQSbljuc3Xca4epHnuf4xHiKHu4gdb1xHnkPASGFHn9+pWQxWjFeTijcz3ic2Y08plW/dXtrWQ9JmFAHGbP6XxmnrywCUTZ1+bxLBoGWTer6XcMw8R4OvOrb37JdivMQ7/7/e+5vbklxIS1jr6Refb48QPTcGS329G0jmka+fWv/5TWGj7++AOKSNu4DL38im+//ZZhWIODZV+w2jLfTBDgZnuDQYvSeUx89QvDhx8f+PH9Aylqdvfv2N3uOE2wu3vHzAM/fDzyh9/8TlAk2jKOkwgPK7Htnk/FyJ75H/+H/5HXr1+z3+9oG8t+t2UYRn78+CDU7jkAY6xZtDSUVvSbXrR7nOKLL97x8PDA4+Mjfd/z+vU9XddlZ132ua5x3N3fcjidGMY5Fx+PTF5UuzfbPUMOlHaNIcQ5r+VwPB4XVsx5PtF1LZuNJQSBh6Og7zccjkexHZcgp0E7Q+8sMcxMwyy1obe3Ug/hPX4eaZuWGCZ++OE7Xr96JWQ448Avf/EF96/vuLm5EdjR3VuUkrpcvd0wT5NIMVjL6exJUdG0Oyaf2GxbbvY7mqbhb3/7Gx4eH3n4+MjT8UBCtOi09vR9x+2rW5I27LZ3dK7h+PxEHEd00+KURilLMpFZR1BOIJnWcHO7A0Thft/tePflGx6fHjiPZ6Zp5KtffMmf/PJP+OabbxiGgWEcIauoN22Ls03WI7JLIqBpHN4LDTih7G0/VyXjHwiXKlkMpSVNmZRU9M9eCpuFtvbMeRiZ54QxPa7paJoO2wifeinktmllhyIJlCjFFfokEX5DY0UtVicIWnQtQi5AJMN1QPDqwo5SYEES4agjoLJRrCwvEm2WQrkQigGgKLS61lq0NShrpQ7DOrRt0NpiCmUghUtdaHidU/m+cuQrrgxE0zji50w5m0T4apo952Ggv7lb6CC11plhJUf/tJE9mZRFYi6jtLUzUQ7n3AXnfr3JX2+Kpch0t9tdGMAl+h+D5zyeliyCbldvmRyBsB5CEGX3LmdbAtLHbZsFpTL0SmmFsxIN1n1LG2GaMvYxO5Zag7NOsg8q5QXq2uB8uWDSGINtJSXtvSdEz+3t7ScGnEQWzYWRukSqyTUepa0Lm5ixSzRSI0XaMYjqubWGlMwSHVGs9QLl/q43/Lq95T4sRkvbSqJModAEv2rHfM7HdSahjq6W14ujvAY11j6uv3ed2biGRNXtXUOWqost75UxsNTPEJcNrYyzTzKIUYFOC7SoNjCvn6sc16/Xzue1I3KdfQkhEAiA5/npA51JfHm/pzeJ1ilao3jWHmMbojIkq/nwdGQMB+bkUJt7ycQmwZWX9XdhVStrqjbc7G+gUUy//45ximgPQUUs2WFzjpvuTrRkqvu9zMaxvHf9Ggjl+LZvMPMRQ+B2v2McB3yM2K5n8BPffnjk/fsPHMbE/vWXbLevuN28YghaKL+Nzkm/HJRKilev33Fg4un332PNhDUOlMlG44QZp0y9LpGylJLQ9KaCUl3HaOlPEOrzkg0GsuL4pYhiDYN6KWtWz/d6HJex9xJ1cz1O6nXuJUdkdeAv50SZB2U9eslh/1yObd8KPp2EaxweT/CJEBLH85ngPdM4ErVaVInF0DTEjEToul70I2LiNI6ch4lpEtrzmMiZac2r2zuOxwPDecI5S/QD8ywByKYRFqHx8SEzac4EH4XFahJNiK5reXX7ClDMk9Alf/jwgAJe3d6RUtF9mDifh4UCWTSdhHylZN/F0AucTieenh4JIdI0DX3XcbO/IUXN6TgyTTPH05mbVzech4FxFjhM0/ZZCNngQ8rMm1HgSloRfGScZk7DhHp4kGLk7YZXr26FcMdoXr16hUIE2u5f33H36tVCZCAF2ztSitze3nI8HjHG8Mtf/pLtdrs4yZvNBqsURgldrtIa10w8PB0kcIvAhxJCfS1BniCaYCS0FnYma5QUrcdEjBLYTVGCF8WxaFyDD54QBFrmKRDyxHnIpA0aksponCj77Bz9gjxRWuxJ5yzaWo6nE+M8czwNfP/DR/wchB1sHjFaYYzUdDRW0ThDCjM3+x3OWlyGpJV5/urVK3yMfPj4gb/7/Y98/fXXizp8UoZvfvELOtcyPD/jp5lpGHHaYlwndP7zzDCcsVbTtY7NRoLJKLE3wyCQvLvNK3a7Lf/i1/+CV69eLUX4UiMjGjPTNNG2Lf/8n/9z/sN/+A8SbCGvQyqvf/HT9f3vO362k6FUcTSy0FgV7YtRtA6ksE1YTELUtK3LjFINxriS38qqzIX2MDO55LW1LI/LwquNwAOQ4EK5tlKygBRGckCyGpKEr7IsxcCTyRR1KeyOBBUwrrnIZJQioeIMGZtTeFovr6EK7k8oZ8VRCZXC7LqZhJBZnXxYlCmFvlYvzxuTCGqtuiGrAZCS4AyXzl76Y8V3X7/+kgF2neqvN6pyLqNFNCpdXKOCEKlsJGm9OE9yPUMsjB9KHKiI1PCkmHBWsO0+SGE+WXk7pSDMXs6gdSLGGbF+xLizTuOccJFfs5sVNc9lsGfHKSbBYtvsnPogzBKlCLPGxhu9MmBcGxYpiaroJ1jy2n9XktKTRavGSOc0n1odwNLeJTMCl1CesujIAlGgf+TRLc4MSX32FLYvRbp/Kqvx0mL2U4bs9XfLZ9dal8uM0vKZ6ru1wZdSoab91EiU31AMAOAC9nJtXF7P0XIUx6J856Vo+OU1ZaEyJkEQp/b+dsfGpFxkmCDthZhBSZDlNM6cJs8UJ24398v4FPpViVQpoVlbyDxIYK1BR8ess0hdEpiqM3nd1prNZofPwN2XouXleJFNMAlN7X7TEU5nbAo0jeN4OhEiOUsROQwTH55PmP4W29/Q7e9o92+YJimCdMqgCuECiZQMm/0t8+kBHxJTlGii0hKQit7LvC73mcgBAbVsJHVW5o+Nz/q5rh2AdZx9Wmj90v/ra/3UmK/X7/q69U/Zx0ifjm1gqUd7qU8+l6NtM/VxSlinUVhQAg85DyMpBWFgQ6NyjZus81lcMoFSmU4VOJyHrKGQMNoSE0zjzPk08ub1rbDueKEsR6+BgJgi52EQFqsk7FaL8nTItZbKZHGzJEE5NMMgLEquaTmPM3GaQYVFLLZkteJCKytrwzRPnM9nnp6eeHp6lsZQSkQxsw2hzSwCwSFKFmcQW6Lte/R5QGkjtpvKcEUy9HIFxGOsyxkE0dEyttQsChNUub+ua7m7u1sYo8TZkPHX9z193zNNE7e3t8v+XZyMxhqc1hACxlmMc4zzTNs2jBl2FoJHEdEq4acxOyBQxPqEMTzQtk0WMgyQ2aIE1aKkLmQSxy1GnyGhEsKbfFqQA0VAOiE1B7Ofl0zv7D3WWaxSKKOF7XGaifHE+/cPYuyHyBhjdnwUR2t5/WqPcxusbWQMIMrv8zzTNO0iGNm0UkcxjRMkodMVB2DDm9evaUzDgw/ZeZ5ojCMh2RM/SX2R0Yqua9hse6F0lqICgvfstjv2NzvevXvL/f29OHm5YL5tW0gKPwfmWUg53r59y1/91V8tYzEmkZbQqhAu5TXmZzoa/wCdjMsoch09DFFUNU/DmWEaiVEYmfp+Q9f1NK7NUJ81Va61dJhWGouGJNS3hHRhUGtULjBOufGSFOgVoaEKHbZKngujSp6DC0tK1ApNoZ5UmACbpq8MbmEAsc4JY5Q22EacJGUbEavKSqvGSA1A0iVSIo7ANAmBdYiy4IzjwOl05nQ8cjqd8DERktRXGGPp2o7d7iZH7J20kfdSl4IUKTdZ8j4iapbAxYZTOxyl5qLGBKeULnQxSuShrkMoxa8lmgksKbMUxeNlGrITFTmdz2L+ammPol7cb/eMw4AzBuMcx+NJHAaraRqLjzKZ/ewZ5pHdbk/XOJrWMU5HQDYR7wMgxVuoFafvnMusFZXSqFo1M3yMWKWxVgSFZEImHh4eLoq6t9ut9FiYL5i21vGu0TaPrGpTH8dRcIzjiFn8G8mIxZjyRM0K9Mv7n1LYlj4rR80uI5/N7GVFN0Bd3t/nfFwb4mXc1U5XDW26jgrXhlZtYNVwt+vrLY5yeuE9u7KPTdO0stBkhrB1LS19kNemq3qPGvZUG6l1hiJUDnNtwF5nP65ZyNbn0Gwbw82be15tGn757g0qTcQwE2Ngt98w5Wjkw+mJgMUDY0i5nkwyovK8AnVNIWTHVtZkBRyPBxie2Gy3WH+GFDEmYfLCmkhsdxtOwywFtpUh+1I/l2MJdgSpxXh3/zWDC8TpLG0OJCX7x/amQzcbktvwz/7sX9Ns79CuJ2iH6wTWOvmAJWfY0WAMzXbHtNlhXM9wOhANGC1RSYyEsZSRtUSy6MLzL1zylwb/SlErxup1EX9db1H68aWsQ32sqsJynWmaFhjnsuZejanLe/k0I1jGt8wjS4wQw/rZAuk7Ho/585/vetI2CqWkljCmSONahkkxTBOPR4HOtL0U5abksdpiTZO1FjTz5Dmezuze7dlutzwcziQ1EhG4dozw/sMDHx8eub39r0lk1qUAm74nqZn5cOTjx0emrBkDeqHvD1HqNK1rubm9z0XlMp/7vqfpNsQoOhbjNJMYEM0smOeJcfwUdhlT5OHxEe8nTsNJos5dg3aW3/zt3xFCgmQhKTb713T9FmMbtvsbmn5Lv7vl99+/JwQpMD+PgzRmztx1SkvhsTLcv77n22//wPPhAMCHjw/s9zu+/upLttvtMq632y03NzcLq5wgIVY2pnfv3vH69Ws2m83yLOWzVguk/fDwQLfZsDeWfrfh6XhC//Ce79//yJAhUSR4enpYKIdTgK5zjOPIOIx8+cVbDodDZvAzNE0PsMxb56QNHx+faBqHsRplFH72KGUxVjP5SRZ6A8nA8Sjt0zQO0wgBzuw9Smtu9jeZWAf+89/+z/T9lnfvvuTh8Mg4DhyOA4enR/77//b/wF/8yz/nl7/4mm3fMQ5nzqcTD49P/Mmf/AofAv/u3/07jHHc3b9hs91LUXuu7/3lN7/kzf0bNIp4HpifDoxJYZPC+MScxDE5PD2hNex2G969e8NvfvMb2q5l17fMYeKLr77g/v6OL7/8klIov9vteHx8ZLfbsdsqxnFimo5orbm5uaFpmkVANoWQ7X9QtkKQ/GM7GcVql0iJzsHatDgYomcwMI0e125p2212MjpcI0JrC149RNGCSGoRGHNNmyPDQJgJyhOSXxf+BFaXgvGU09zVYkvKtFdyjzGlxWsthYykxDgHGkCnOT+PB7QYssbiZ49OGmUcPoEzDtv2uHaDbRq01WBEOVLn7IZSGtfI5ebZo1QkzBN+HDmfj0zjeRFEOZ7OJG3Y7O9xncDIUIrxPNN0dln8E3L+1lqm8yibv9acjke6tkNrvThdSwpfKQp2WBuDq6PzCWa1RgdUKapJQtcrKWKJWoRJUoXb7SbDQDR9t8WhGc4nzsOJoITpKiVZ3FOK2KQllekakhIufh8jc1SQNK2xKB1RMaJVxGZlXDGwAsZIBN9aEQ/zfiRG6De34mA0DZvtFqNFr8Q6h3FdFvJSbDLDRUoJlRQxStSyiO2Voyx0UufiFses3qgVCExPm8ykliCJ89I0Xc5OzQuUwijLwomPJqoCe5AslyrZCaWy+qbgUlPG/8YUIUaCNgSt0UgBWMpzrjjVn5osn9dxDWu7hodcOx+wRpbLcZ3J+DQLUVEV5wxTyvjSEpIw2iybkG0c8zRnQ0AxZspcFMQkejYqR3DKpqxVpqvm0wzK9WvXUeo6c/VJnUiV/aiNV6UUHs3sPX/z13/Nf/dv/pyvX99iSEzRkYxFOamNsm3Htum5N1v+4x/+V5Lu+epPfinjNWd1VRlzSeKZUqeh8Wihk40zCY9uOzYbh9UKtCWcP+ATxDCj0pANb3J/6iUYVaKwL0GHQgioGDEJhuMRoQo3HM4DpnF0xtG7yH/+/Q90d+/45uYb7P4tjRHDUjOTlCEZEZ8iOway6QVS8LT9ji/+9C95/7f/AT884YcTcT5gtnt0Z1GtYowKg8EahSfkSHN5lnUtWGsswuIA1wGeOuBWj8fy7IVlrh7ntWBZTTVeAj86Z5Wvnev6HPVRXzsE0aZKSV1QQY/jSNOK0vHPtA/+izxe7TdZnBUen5+xznJzu+MX3/yCHz984HA88nw60tpGxnkQ+FEdiIsRDscT4zjz+PTMlIXxzvPM3a1AW4zR/O53f8gMRB193y1ruG0azsMgqIwED4/PCy2/MYZpFkfm4fGJt2/f0LYdxgh5SIwQo6JpeoxrOZ3OHA5Hvv32W0KIS8AlT08JoGXGTmcNISZev3m91FZ++eUXPD0feXo8cDicaHrLFCa++/A9CbFJTsOI0sJsFJG6ER89wQsCpcDMUww8PT8RI+y2e/Y3O/7Nv/mvePP6Nbc3u9x+GmMs2+0m76sy5grF7TyNC5uX1obT6SRrgzE4a5mmGa0ShsTrV7dCEuQ9aMU/+9U33Nzsub29ISRonET5P3z4AaMN0zTx8eNHZj/zzS++4O3bd8QQGMdbUIqbm1fstlu6vqPvN3z48IFxHBjHiaenZw6HZ87nM4fTcRG+U9bQb7fEKGiTaZowVvqx71qU0mw2G/pNB0ozzBOnceD56cD+5hatBUIVQuCrL79iu93w9PTIX//nv+UPf/iWbd/ROkOboW2/+OIN79//iDaa3W6Ptpbnw4EPHz9yOBzQxrDd7fj661/grGM4nDg8HeiVWmrIop8BQ/Qzz8+P9H3DOA389re/4f2P34mTsd/x1S9+wS++/pr71/fs93vOz+eFUCellIMOivv7e7wPGOMXZ9Ba4TJVjatsGxYI4s81Rn4+XColKDjxnAIWSlmJSkuqMAj7gW5oXJMjMyYrNOcTZeNfJyPIGCVeutYOrR1Gy6KMElhSiBJ5SnkTSTmTke+CUvkum4wmqkRUKQvyUUXbjUCkgicIIgeIwn6kC32skRoM0xAwaGdBOyJSoC3vlbS6WqJ/KDECo0rgRc8jxYioJHrEQZO2SyhRtux7tDGkJPUgCjH4NYpUIqQ5xVrYbASdn/HUKWUHTS8brNRySBurDEsrbS6LlhdfK3i5j6TEMUM2a9n0zNJe4rxYrG1EkM7MoAwh5nvOKt4xBNEYKVHpEmnWGts0GCeihTEraMaUmH1EKZfr61LxG4GyAYsza8yK6dZ5AVfaoq3DNi22afF58NvCXBPCKliTNCqtUeKyiV8bs7XRAOL4WmPzPWmScbRNLxGx7OzGbIiq4hxnvzakKLSbigzjIGPghbyAMv6yM4Mip/UTMQq0TlmX27GIEmWYy+dsHbxwXBvj5fd1pPYlx+IlA6w21j95jaoAWeU1pUTWKTgTidKX/9e2XO3syLU/XWWv7/v63q8dpj/WLtfZnBJN+/Dhg2DOYwRtc1GzF2eazHwVEg+PB6zrUK4DYyH4CygqsQRocvBISwbBoJhUVoi1Gm0yfMq1zLMT8VNjmecRUpNhIStUsBhGL7VPMdKdcXQmMc8DTkvd1IePP3L75h7jGow1PD2fCe6GbneDtqUmK0mmOlUZBF23kewXru3Z373hu980pJTZ7rQlJGHWouo+0R+5dPpe6gulLq9zbehfO5vrWKgi0ldQ1XLNl7IX1+OnODe1w1qOizG1BN/Wa5Zz2AV6+/kWfnetzUWyGqX37G9uaDdCkd9ve37/7bcM3w0ZsRAIwXM8HumaLu9bUoc5z0ID6n1coE6zl0BD0bw6DxPQYjSkpBlnqd2I2RnwOXsh2H2z7MWiBJ2YJi/XyOrvxqxr+jx7NtstIUTOwyiQqrQydcYq8yrbRSZqUIqu79n0PdYanJsE3hRmfPRM84wNohQuNoFCKSGPCZmVThuDSiGvcYk5BBFYy470zc0Nu92WN6/v+eqrr7l7dct2IxodAuVpsLkeS5zmgorQWK3o+o5N32ein5WtryAmNFIj0TUOOw6YcZI6j/s7+s2GV/evcE2Ls44UE999f4tzjmma+PHHH/HzxP39a969fQsojscDIUR2uz3b3Zau69lsNnz5xRsOxyOn44nnZ3EyjscTHx4eORyPEsDTmjYTd4iCuEA3N33P7e0rcQaNwK9srnWd51na2TZsNjv2+z1zmLm9vWW73fDu3Vu6xkEKjMN5gdsXcb1imwlELko9stK8fv2G3X7Lfn8jUPVcQzePE9u+F5h5jAQfCNowTyPH52farsHHkcPxiXme2Ox6Npueu7tX7G/2C0RKMjBpYR6V4aRwVgQfi22/3++zTMBJbDwt143iIcv+yM9bQ/4BmYxVhCqhCBn3GFJkmj3zFIgeFBZnGlrb0TqHy5uU1ilvDHqh8dIyQiVjoBVKO4wVZ0DpGdRMSGQu84wzjjFjw7jYaEqkWgxgmdR5t8vRIktKXsz9lBcCEnGeME4UxJUyNF0P2uDRbLoNaENIOrMhWTHqNZA3c7WIh2RolyGrZ0aMLgxU8huVi6Tbnm63l3PHxDwFGqFLFiMyR3hjjEQfFwYTkmQJVF51bK4ViUUh2hq0ymwvSrJEKQgub2U+UgsuF62JCrQValYjwGXh7sYQY1oGXkyRadCE3Ma+MHwBKUZa1y7G+6JEDnR9v2QOQt4I5+A5DbMoiQYFKmId2eEKKDUBSni7S5G1LrgVyTIZ1+KaDtd3qIxlhYQ1mjkK25lEUiBVdQw1hW9Zwcs9e++XAnNjDF0ri5qKQlG82exxrkMhUcZCf2mMIXrRPkkRfPSL7krZzFV2JGJUq7FbDAZW9110PgLakbnS4wXEpmQ0PvejNpquX7+G2fyx18pRNuc6A7AYeYnFgSh9uxjwrGw/Lzk813Cla5hW+cz1/+tz1H9fM0tdv1/fY/1cAiUSNpwfP3zkhx8/cLtt2W7ekDRMY2CaRvbblhA1x9OJv/6bv2X/5hco1zGOZ1yV7VkNW0mHyzMIw4nVhjMKH3OaPN+Tc47kxGBPpuXxfAbrLqA3K4yzCJ7W9QLynrWWbWfYdYppeEQrmPyZ7374PZu7HUk1BGX5+HymvdmzsS1oIyQoeR2MKcoal4MGUhib4UTG4rTAM+ekQVm06TAOTkFhZp+NC3H4Y5SCeqPN4sTXRr/0m2DWa1hjGTfleAnudt3n1+OnDn4sQZoXauaUUp8IitaOS92+KlOyKwT+W87fti2JgvX/fIMVXWNED8Fa7u/v+OqX37DZ7rBNy92be5JKPDw+YNFMiEH4+PEjYXeb21ICZaUOI0RhQJy9F+gcEkQLPhI6gcBq5bHWcz6fmecpY/YFXjmMUy4sNnmhB2tsdvYD8+yZZ9F6IM8x7wOn05m7+9fElJjmeRGaFRrbmUKHvgYbyEahCNRtths2m57D4ciPHz4KtBgIUWjj7+9f45zjPAxoYzmeB8jPJw6RvnCISuqkb1u++uorvvjyC775+ivubm/p+5autXg/s9ms9RYlQKm1OBgKLexNfSdQI2NQ2w3WmNyu4vRpZXBG0fWtrDluZBhHdjc3uKaVmoWbm6x74vnNb+/Y7XYE73l4eCAlIYPZbLbc3d3x/v0POWNihY7XOZqm4e7ubmG5Ojw/M04z5/PA+w8feHh6Xtp6nmcOh2d8mNBGsdttuL+/5xdff8Nud8vxeOB4esY5w+FwyFF/Ke5/8+aeX/3qnxGJeD9jjeHXv/417969YRoHfv/b39J1jsZaocXd9oISmSZ++P494yxOIsCvf/1r+s2GzWaDnz2dldqe4ANiOUMKkXEYicYwnE88PT7S9x2TP/Pw+AAqsdttefvuLW/fvmG33dJkG6zrOsZRSAamaUJn+l2pExGCnnEcefv2LSlFQpiJPmCV1IX6aSbqssf9ozsZlJCMQGtCYvaBYfTMU8R7RUqWrpWIr3Md1vWgLCWqrk3JaqhVVE9MfVmwkXS7wFjMYmD6FCAZFE3mMxcnw89hEUoDicQZlVl7iNnYlwW5GKqX0Z/KiMgvO2sxTYtpGlwj6TGhadTEqDFYrOnyaS83ihKlC5QsjzgVcUhMXvjlu82GdiNY0Mb1NE1L07jVEA8BpS4x6SVlr7SmcWbZOIy1zLlArGze4jzlotJZFhvnHI1zRO/wflxwvzFGpmnicDjQth27/Q0YswgG1kZgSTP3fS9aJiry/PTIFDyv9jc0WQipGCPH4zGL5TUL845Siufn54X1ahiG/LzgfVYGTzAMI7vdLjM/WbpevHCbU3jddrNkE3wu5IxBUt2lDed5xs8zzloaWwrF1zoOEfRJqLhqMZTxUQyw4/FI27ZZgfzMMAwSLbaG29tbTucjIYoWip+mgtNbouNl4y/GSLl2Y60g+4IXyFSJViWB93hmTFwdjFLv8lMY78/tqOfMP+Q75ajrNGrmnE/Yo37iHCHr11yvB+UzP+U8ABcaM9fMbX/s2i9lWuCSXvTaYC1K50qJZo22Dm0Ux+ORb79/T9802Kbl6fnI7atb3rz7mmE48Lvf/Z6Pjwdevf0SbEOEHBC6VKcuQaNyVT97wnyU+oVpQMfArt+xsWJkK63Zbnb4EBmjzrUYQk+dsh6RrN+Gpinq31dBoOzQjPNMjJ7OWJIRatCvfvmnfHw88fg80TQdu7uvUM2OmAw+QZhFL8np1aD33gtlpTQgxlhRtwVIlv/tv/2/8J/+/f/E3/7Hf49Lgdff3HN79zZnSpPUZSlwjSOFlQGudvKcc4Tgl3Xr2mGsx0NZO2vGunp9KX1d2uG6/8tcr9nG6vMXB7SM4dKPNRw0hJxFz+1TxlCMEVVqCD9fHwNIzPOIayz/x3/739C04oRGFL/81S/o+waj4T/8T/8zxJgDYYnHp48YY2lcyzhNPD5JBmMYR5SzuMYQg+JwOmONrNMmExCEcUJrUYyOSbL00zxyHiehnI1SEyhwXyuwp4Dos0y/4+27N+z3W4ZhwHufcfG3/Mf/+L9yHk4M48D79x/WwIgSZMaSyUiJcRgJwfPhxw8MwwmInM8ndrs93kcRFtw2QGIYzzw+fRAtsCCIiuPxmOddzDTuEaM1ru/x0ySG/XbL/+m//2+5eyWwo9v9LrNDBoIfaVtHSoFxPC8R777fsN/vOB6PzNPEPI48Pz7inFuM/ZjtEoXUtcQw4/3M09MzzjUYY7m9vRUb0WRa3BRpXUPnLPe3N2LjOMu7N69z4XmXafZnbvc79ln0EER48/nxI1++e4MzCqPh3ds3HI8Hzl1D27d888tf5uytzK9vv/2Wp6dHQPHq1S1d19N1G5xpeXx65HB8Yr/fcHt7Q4yJb7/9lrdvvqDIGLx+fbfUu33z1ZfM04SOgdev79huNtkuyIiWrKL96tUrTuOAHQb02fD73/+ev/zXf8mf/OpX9O0Op1s2feSrr77m4x/+AJsN3X7H49MjU0w8Hg48PP6IUoEYZ56ePmJtwziK41JQMDEmxvOZ8TxlRE/I9kwCNM46TqdhCUb8xV/8BRo4Pj3RbjY8PDwwTaMID6qyvvw8W+RnOxkhZmhNEjYCH8B7mOcIqsnFNQ3adDTtFus6JPSUGQzyglrgPSWCC5cMSCHjnMtC37YtMcygpZjWWocpLANLwW1m8Amr9HxZjMu1yzkbJzUQKgVUVhAXh4eMZzFYJ5X9KItrW8H+GyfPEwVbXy8Gpso8pHy+AhkS2EUR70rClmUsJquHi9Mm2QNrzcVGo5SiaVa6szrqVc6vWDmg62iYyhkRcltF7wUClI2kshmWQynFNI24tgWE3UlrWRaMUbSNwyRhj0gxcFIqYzBFOEinRMqGfHGKiuNU2mocR87nMyAbdB1BLilrcmG+XNfSNO2yWJmc2UgxERGMfcyGWIqrU1naBbiAhxS13WtjrrBjXGDH5cYlherDcv/zPBMydVxhoFCJ5ZqqcvIKlCplCFuhIDZZrTSEwuizmnqRktG5pBGu+/dzPn4q4l9Hu8v4qR2qemxfM+MsWiZppaNd2urqHPV1l9oQuxqANV6+/k75fO08Xmc5rh3y+ijnv9ZCeAlnXzJrdRvEGNEp0jrHX/yrv6TtWx4OJ6a//lvGydP9+JHff/s9Wicenp6ZfeL29R0eMVQMLFCFqx5BLUBOOZzV9J2s5ZvW0TdGSC9sgw1wGkamwYvRb8SIEyd+PWf9uwQ0itOcUmJMAUVgNInN23uUCnz/w29ot3sOxyPff/9bvvnTP8e4HozLASgpFk1ZNO/aOVvaU4sqsjIWrSJvv/4TUkr81b////JFv6fb3sq6Gz0FHlpYZVSuYyj3vRQ/1v1wtc6WcVfuYSGkqI5rprDa2SvvvzTu6mvUY6gOiBRHotyHtY4Y1rFWO8aJuGj7fK7HNAz02w03+z27TS97llKElNi0jq+/eEf4i39JPI+Mp5HhPPDh4wPH00QIc2YCNJLFSlKPqKX0mpThukqJY+5nn7NmMBoRypO9R+FLgC9/rzjtIYiuRUiRcRLD/Hg84jMjXN93nIczh+cDs58YxjPDOOD9jDGWAlnROSsCZJtAoYNmmj1qGEhJAnUJycrMc6DrNgK5jpFpGjgdT/gQ5DuIxlXM0D9jRHMs+Jm7Vzfc39/xxbt3/OKrr+h7QaJIbYUUnM56dZbLj4wtGddNk1EWQehm6yAb2fjumobD8SCQ8lQo+YMEiIsgMoKQmKdJSCkywkNMNLEhx3GkbVt22x1PT4+5dgPEwRoxWtP3Hc/Pz0BajPw+Q7iUMVmcT5hCjbUY9SVvXt+hlwC3o2lazqeJV6/23N5uBL6tNVFH3r6+p2vEQdLGEv0s9SpExvMJ72fmaaRQ6qYkjJVzDByCtImQ//QY6+j6ju12x2azhSTjTycZq9vdjlPf4WPg8fkZFEzzSCTyp3/6p/yn3/wHrHXc3r4iRsnyNE3LPHseHh5zYBn8NGctkJXK2hjDbrdDyAuExSrFyM3Nnq+++orHh480jUNRSJWUmPY/E3H5s52MmBIq5sLVmMgaaHgP2jQ0rcNaMLaj6TbYDLMpjCzxKgK7brCZEhHBQKaCH81OhnOOUetckyE0appCvmaXgmXBMM4LLEgpBdpkA1CgPUYblEWi4GEmBVGajBn2Q2Y1Mbm4NyZN03Q0bYsQo+YrJxHoKkeJOpWjOBohrVoaKPmu0S4zH4mTUSaGNiqLE64GWHG06s1niZzmvymbmtEXTlyKEqWQYgcZD0plscOc1amN/BAj0zxhGkthRtIl9GA0GofOReUxeJmYXUfwntPhwAS4fI8lc1EUtkEMwfP5zLh416vAlNamKngTBXSpx8gUyPmejV2dGIUsODGE7HCmZeEiZb2VCoNfJlOBHNTj0Fq7RCnLa+Tvz/Oc2Z2ytkrB7hZ4RqyE9JS+gJcsjnQSkGGMCULAk0g6j/eLaECmTi3zoDJWaqPjcz5+KupfR2vLT22Q1X/XGhLXn702AiEHA9NlMKN+z+i1fulaW6aed9dzsP772mEox4XjWqLJV/+v26B8p3aW1meMWKv59a9/zXR8ZBpOPP3wQcyjx2e0hm3f41GYpkXbVoQqiwF9BbUTJ0xaIanM2gdYozMpRaJzlraRDdc2LTZE5hBh8PgQcCkuBgu50OG6Ga6dDMGWy4b7PJ252d3hlObHD2e+3L7jNJz47d+955f/4r/C2AZUESE1eaMrF/jUEcwzWDSZtCJFz6s3X9A0Df/5r/+WdnND221RWSMBIspkClA+FX0s/f5TfftSEfj1OerM0bUTUTuT1+Kq1/NkWYMq+GTtuBaDrmmaXPgdlz2knPeaDetzPOZ54r675+72hsY5MYC0rLWtNby5u8VpmE8Dh6cDT49PoMD7B8ZZIuioqtaxtHkOeMYUibHsiXNe48HokXGelmj0PGe62mVoFIczgUkLxX0CjichTGnbBpQU+X/37Xf0m45pnhjHIY8PobmFkm0qRBEesr0zz150JJLoZpyHYamJtbbBNRYydOd0Gpi9x4diD1AqzhCTStSg3717w1dffsUvvv6Ku9ubpfDdOUvrJHsBkpUoY7Ls7ymJjoe1lmQM0ax1j4pECDOQ4Y2tBDOLEyU1MQGtkwRdyWGPmPB+YqrmTNnPjRZhRKM1Ltsy1tis3xZR0yRBW9NkDQmbxUlHjGmznkdaJBG01gLZytkSrQVmqLTG2YZpmMRod5aYPOfTAVLkZrclRtHPaNuO4+FJCFsMDOdjthfmpT43ZtRDDB4/x8VGUtbiaEDB27dv6fvNuuZrgbZ1/Yau7znluhJjHWhou5ZfvXvDH374DafzkZubG1KC/W5P3/WEkDg8n0TY2ToRKs7wsL7vUUrabrPZEGNiGCQQPPuZ7XbLl19+yTCcmacRRcDPYm8JCvwfOZORsqGUUslgJLxXoBybfodWFqUsSRthftCGGMgTWBbHuUoFN8XQVAU2IDoLMRRMqRhcpSNIiTmzORQMsSgjZw2MVOgH03I9nUAhEC1r3LLgOufws8YLLTEhRcHHG0vT9bhGBGJ2/a1sVsrSbzayuSpNDFJj8lPR0wGIuWalcFaHqGjanpubO/rtXpyXDMlqmgaf8ZTWWrbb7aL4OQzDRV1CmIWP32pNSMKFLUxLVlTYWX8kkp5rYJyTqF0WnSkZktPphFLCCz17n5Wmc8Q2uzxWaVRjmIYzjXO0zS0qeobziWE446eJ4XhkznCqjx8/st1u2W6FU/t8PnM+n3n//v3an3mRKs81DAP39/d5EWNJazeulWzWEkVeaWu1UvRtt8AU5mnOi5EwkUkGYIVrlKhk3/c5AyGbxziOFw6ILIDk1K3Bz4EUpajr2+/+jmmeFqciZKifqYwLKfxXoDUU5wL5b/CRMQizlDWK6NfIdsknlyzKMkntqqr8OfPb/31H7RyUcV9HzYBlQ6uNrxrzXnCl6/sqj6eVLag4tyUYMM2FJYzluyXj9ZJxWRt/dUT5p4zT2tG4/n75bHm9nKe+n7KZh+DxweOsZfPmi1xzVaJlOQxiLLbboKzDJ4FeKlWitJeF7LVTY7WogJsEpJnbmy0729HF0wKDBMUwjkvh6zxPuD6R5QeyISJ/S/2VBGZKO5XIJ0CImmEI/Lv/5/+Hv/nr33Gz3eLMnn73jq/6e9rtK5R2OYoJEDMgPRtHeW0rbVei+cYYfBB+f2VaojIo17N9Zfm//d//H5ynQNQietlae0FKHLIjV59rs9nktmdZu+qARK1zch2kuB5Py9qiVyhUcYoLnLMeO9fnqcfTNWyrvudpnLC2WWr5Fic8G5ghRuIc+FwPay3v3r7lT375SxpjIAaapuH29gYAHSdS7/i//p//Ox4fnzkeTjw/H/h//b//B7797nve//iRh8cjYLFW0e9aZi/CY7Zx+LEUAEcpDo5iWHnvOZ4O2eAHH0oWQ0lkHBbkxDAOea9sOZ5PCDtPIMSZ5ke3ZM8+fPzAWoS/6pwIzDgsgTNrHSnB7COn88jkydA3KTzfbDbcvtrw8cMjXWeFNRGhiiUHL1Nvc0BW9D38NLHf7fizX/9L/vVf/iV936GV4nx8pskwqH7Ty74VEj5cCjqWdanUNGw2GyGXUSkL02YHZJoIWjMOA4+PDxXUL7Hf3+aoeqTrjRR6JxGSG8fxItgcYxAmTB9oXMPx+cDz4xOvXwt8KswBpWG3WSlsnWuWbFCbIZyCTvAcDkei1mhr8dPE6XhkHEdxwZLMq6Zp2fYbyUoMI+/eveFJiWaJ0RbnuqVAezbgDDgNJJ9D0hFFzIxvgrYwkLMkDTc3NxxOJ+bgSSRevbrLrGGW7XaHoYWQCFrRdj3vv/+e3//ud+zu7vj1n/85r17f83Q68Wd//uc0v3H8p7/+T/zX/+Z/R9tLoN9ZkTww1tL1PYfp49Ke+/2e83nAZ2KE8vowDAJ1b1t22w1d1/BX/7//hR9/OOODaI2oGPhHr8mIGS8eksJ7iEmjtMG6lr7bo7Xw+0alLoxcHwMK4Xcvkf2UICBGmtIlqpKWSLsw75icMZBUfTSBYKQIqHiGpoI4pEyZWMMtMtUSoC4MPaW0VPirUsAsNK7zko2QDdVlpW8ZpEKtWpyieoMu8CbIaXFFNl4mjucTwzhl1gpNqkRvSiYjxkhrDUqlTzae5VlYU5IFhlWgPiWKM3ufKXWz7oDSC3BBZ+9fitDXlH6tmWG0wU/zEvkdc02F1gYVEq5pSHmBMJmpgBRROynyLrUQXdctGZhSZC4T3i3Kn8UpKxCmtm3F6coYTpOxmSXj0rRtnpiOqO0SlS3aH6Vt6khhcViUWiEDxXBU2UkhG5x1tqOOuspmsNKtSkQrG7W54L6wYWEEGpdiRItXjsqc12VcybhZYXQ+Oxna5P6RwbWOJdZsyz9FJ6OMvRqiUjDLF0ZwdgpeghG95IQtRvqKOPjEeShZL9QlROYaDqWq/qidi3KU+/pjjslLz33tbFxDwso9FKG/QtwgpqJeCA1sI0611YbZJ5JyxGQICbSKsuoomMPLxcdLeynJdszzwObVnptO8/F3f8AHCcC0/ZZOSTG4dXa5J3HkizOtKHVGRZT0JadKW023tfw3//Z/T2cMzkgwxzhD1LDZStGnVTozDq5sO8qaHJjxy/zPXQ0xYHPEVqJciqRkr2q6LTQZLuIsNkkaO6SUBQkvsxYhBMbM4lWCEPUYqDNb1/33xwr7a/jrRcYtXcLsyri6hlhd7DVXR0oJHwIog1NmMQiBnGmVvfbnRiH/Szz2uxvu7u65u7una1qUQcZP8AznM2kcsCkyDUe2fcNu0/Pu3VumeeL9hwc+fHzkb/7mdzw8PnI4nfDRk5A1PMSEtmppq3keF8jUME2QQjZC1UUrFlQBy2tK6P39mLNmQaLsBiHNCZ6UKeNJOjufRcBP2K9qyK0xUiwek8gGRB9RSlgrjbWM00hMkc22RxGZxzMxTIQgTsB5nLi5veXmRtiG7u5e4+eJ1jnevn7N2zdvBCWixEgvjKDTIEHIkCJzEMrbkvGZvZUsUlScTkfmeRKXKwbmaV7Wae892+12mRdarzD6efRst7u8/saF7ISQFiZNohQcp8wKZ5TBGIXSlkjk+HRYNcD6hiJZkFLCWSd9qRTGiQNulOF2vydWkORpmgRi1TT0mw1t2zJNE49PT4zAZiuUuDGMGA2tywxnSmcK3REVPXEORCLdtsskRQarOgkC20SwhuTjEjiOMWdog2Senp+P7HYKlOH9jx/o233WyTiDUhjnaPuOt+/eoIziNJwZ54nHxydSUnz99Tc41yzK4mX3K8gQ61pxmnNw1TlH25gL57HveyDhjEGR+PD+e0yB2qeEJmYhxJ+HqvgH1GSk7M2CD8IEpbXFmlbk6jMNbEQM95CExjWmJKJ1+V/M+cOYhG1h2WxzqhqFcDYrDcmIp1mgQEpfGAd1CjonANcN3+qMaVwjmlCKvUujW/Ezo87FkaWImgWqEkHUMVNcKOokqp7PqlY2pTKJYkw5ixGyCJ4nhIS1TVZ/bJbFpFjBYqSsKfFihNep7nK98jxr9FRdvZfbtXpu+WxcUo5lASjGm85GdwheoEcInCF6D0a0IMQ8zg6DtcScYSImopc0XDGIruE9RQBmv98vrxXjuXjQzomT0bbdUp+SP3gRzVZcqd9K12ONpTirWksxk3Dfr4bOxX2lS9aberMvY0w2+PW7NYSlrsMJGcKFRpToY0Kr8t3LtkgS9s2QujyQYp4PXBbm1m31T9HJgE8jtHBphP99tSglOnw9/vObL36mvk5avvOp4f1SBqL+qe/750BQrg3uy/Ouy5WMsZDvQ7K1Kt/jYmTmSI7K7HtKW4wVPY0QZa6anMnRCpS6hH5dwIwytacRor1c5yWG0jDOKO1BG5wT59g6LXjkbLQWhXSl8vpZtev6nBXSiYS2ibv7V+BndEL0Z8iRWyfaHMVfKPrEsFIpvgQ/ElpOOX/MNXtKJ5SyaJXXLa2IOgnTjirn0Ev71I5imedKCTx4DVbpi/lZvnfdr6W9r52Jel5fO6UvZTCus2fl9focKY8Hrc1Sp1cHVWRPMHlN/HwpbHe7PZvNlr7rc3BMao6S9/hxAD9jiAzTwHZ3I4E07fjqqy/Y7W94/faMdS3f/fADHz8+8HQ4MIwCKwo+s6Jp2Q/97AnZQYB1flYIKYrdsYYzSj0jy74uatIiFCvnUSijaHNgLC4UtyJaXJz0ss+bTD6TEIiMdQlrNa4RvQqhuNfc3NyS5oEUsiZWa+liS98H3rx9y6u7e25fveLdF18SphmrNbvthk3Xo3OBdOMsRIH3zOMg0CIgqHQxVoVBrkFrmSeTnzBKVKGv185riJ8xFqUNfkpY47LB7QlhIoVYpnBu98wOWuYnhfZfcqVzZohSClJ0QkedLx19IKlIzE5jmFfSjzYjKkSMOFfkpCQOSBLI9X67RQxuoeYFUfVW1opo6wxz8kSVaJzUv2kSRisZSykJ0UvOXGml8LHMYbH7UEpQEylxOp5IIDU02hGDwaCJ48AcAtoYuk3OMBmNj55hlMyDQnF78wrnGoq6fXFYSQqF2A8qB4aWLKwWeJrUgWaYe+wkA5MD6F3b0Xcd50Mlo/DzfIyf72RM08zsEz4kfDC0fU/b9Gz6PY3rKBHbRAI/k7xgzyRqq0jopS4jRYkAa2NAlQiLZSG3jQkVLYpAChZfsVItR5KioZKeVDmPLiwnUZwMIxzNYgCs7CYhRNlMtcGiEcRgllYPItanjK6ioInZTzjdVtdYC6BKnQFISnWap8x/XLD7EiXZ7W7Ybm9EjbPp8oCUZzudTpn2TV9MyLp4WrFGyHQemMF7lBF9D2etbB05a5BKlFxpkYPP79WY9iLoE63Be02MPjtKwuglhXKl2Jycvo2ycJOYVQZExEjMC2ZhREopZZpamdR9319EIGGNPjvX0PebipHCLWlVZQqEJDDPgFFLBqF1Tc7SSFbMaCO/c/uFGLKGQLzIWNRteq2kq7OBtYy5vK7K/bcCSciiPUs0PER8hKRzwV6QcS/PuLLQ1PCFafJLTUaKSXRLjERdixBX4bb+p+JkXBtmpT1quEeBf5T5VdLyJQpfG/g1Jr7AUF4y5GujupzHGIPO8JoYS8RXLQt0IT6AyyxI6Yc1qBA/qcm6dkTKOeR3WhyaklkVauJMQpGdAirmsZBJLYxWtO0mqwjHrJwtTDYxKLrtjikX9ympIc31GKAz9/9Lhm2YA1pHtLLs+54YA8MQME1HOM+kENHeM+qEMQ1t0/LabDkng896PkvdEaV+ou6HYoRl5z0KnXjyA+fDAQW8vn/DNI3ETK7RdY1EgDMLm0ICPCEExsNhGSslWGKM1NqJ2GWAHH2TfSXhJ4+xToIpyRNSEBKJlHPL2lBcoxLVK2Nqnuc8Jy+JGOrMWVn76rqglA2l2mmpnYQ6G1GCF+WoC7avx5OMvRIMWfvTGEvX9Vn3SVHw5eX8cl0lRC6f6XF395rtZitBpRhyFkoR5ogfz4gwLIznMze3N9hGItX3r++4e/0atOXdl1/z448f+PDhI3/9t3/D+w/veXp+5unxKStBJ1BCMKKNQithPJrnHFAkB4vIRd/UWWiFdYoUQ66RcaDCMvcKyUvjHNvtTvbLWaDRKpPEaG0ZmSSjoRRN29K0Ymy/eXvHdtuw2294/eaer776EqHcDbx+/ZbH999xePrIw8NH2q6naSUKf3t3R9NKjelutyfMMwoW2KC1Us96PDxlOvvEMBwZpwm0wfbdRU1GnWUz2jD4AfS6Ti5ZWWs5ZvXuzWbD4XDAuZam6WhbYeosGf15FKij0VIzJY6MYrdpl6BCCIGxEq4sc6rYASH4ZW4KI5fMqU3oOZ9XRktnzWJvGCOigTFE7u7u+O1vf4trHP/iT/+Uw/GJ0+nAcD6wv9misDgr1LUfPz5jtRIkClYyLkkCjPM4kiDXPmQUDwmT0Q6h5LysCPV1XSd0u0+PaGO5f/MF8wwaDfNIOJ9QVnNzdyv6I1Z0fx6fRHneGMPNzY0wbkUJHDWNyxotop1kjcU5Q9s2HI9HGTdBMi5SGyPrm2ucsFENA9vNltev71DJ8/z4Hh2BFEWL7mccP9vJeH5+JiZNTAZjRJTMWaGq1QW+osoiKsRG1q2LWagW3nKUAt6AouhISFrLiaMSK9akaqFNZFaIIOwgiWIErw89DAONbmiME0x/ZQxIam0tEFdZJMYYwzBOuHZmkxLTNCxK23GOC3VdAhzuog6jNiCLSGGISeBiWtE2Lfev39L2O1zTYrMCaMgY4M1mI3L3quQM1jYqm5pSSjDTVAnvynlISqJ8lPaAzJol9QUlOlAMs9oYKowTm00v6uQhYK1Z4AJKiRNWoGnn6YxSOd0bHTqt6rXjOF4YVsVgLNCstpU6i/K+1oaukxRlTTUbQsrGX8F6i6OBZRFPcsZic43K2heaYi5ordHGXUDQFrhNFQm97kuQgjWTWShMHlNd23L76pZxOvLxMeJzmrboe0Fmn8iO9LXBmbtKjKW8ARVjBCWsOBKX88siWmiAa6jL53zUMJNlI8rGYmmjMg7q8QOXEJOyNtSQmfoa9Rg01mS4ZsazG40QLwVQa7ZL1oRE8R2FRuMSEgMshY71a9cZkE8c2uKgaHEkBGIBMpOFWU0EqwCi4JtROKtRqtSarBDBfIOYrJ0TgeNwICUkC1BIN3JWo0ARijNX35/RBoXHxIm/+PO/4OH97zkcjuzefIlyO0gB10rQQdkGpRv890+Y/h5lWkI2Bpb2TSrDM3NNjLWkGBlHodB2eb7NEexOMqIhKEnV5wBSiLIOpTx3y3pnrL6AqSilloAESiEAMQkFx+DXmL2GKLsNVmu8FsFXoZMWBiEpHk04Z6s+tXk8rE6EUmYhjCgO1MocprNBuepTlPv7qazX9b64tGO1t1xSYTusMQvLYOM2FPrgMmeuHZ4VasjnjJYiRhhHKZZum072TYSCWTZGMfs3fbtEjJ2zoosRA8lH3txt+erdPTHBL//kS8Z54ng68eP79/z2N7/jeDxzPg08PT0yj4LhDyFnGnKmLiqWWkFBW0hQE63RKdL1GzZ9x+xHlGlxjePNmzd8/fXXbLdbuq7jf/Pn/5KURPfgw4cPUtStFH2/4bvvvmOaRC/j3Rdf4r0EITbblhAmtruer7/+kuPxxDSNwi7VOPov3mG+estus110zIZpXBwjCd5OaCVZi/1mx+H5kRgTxohjLnULAlG6ubklKcWUpJ6x1D/Ofkbn6HhjG2IbIYv55eD5Yp7cvLrFWZeZnTTT5DkPA9NwoGkF4qSQ9TDFxDyNzKXW0RiejwdhgMp7uLGWm5s9Nze3PD8/L8Hkp+dHmlzDOU1SsD2NI94H0eBoE0wT43BmsxXGqWkcabuOgqSZ5ol+t8lF2Zq7+3u2uw3DcOLDxx/ouhalRYvI51oebTRhCkuwo7UNYxbUVYCzTurUUsS1NhfcC0x89rOgf+aRTd9yOp8ZhiO/+Zu/xtkNjXX0TYOaM1OVgsP5zI/Pz5yGM9+9f89+v8c6S7vZkIzJYokC93dtI/Y5CaUNIaRci5Ho2m6p9+mR7Ms4joCQ8HR9x+2rHT/88HsOp+eSVmZhTPoZx892MoapLKDihcuEWrHmWTdmwSPKhm1JZHo9VRg8JN2eStSuRHZ1ECM5RwbIOFqtHUrbhW5sNaqFmaBArozRUrQcyVF4RPkZTUtexCsPvPy31DBIfYksElL8NzMrjY4m051J9FwlyXLUG0CNny7RxeC98CQrQ9M1tN2Gpuux1uUMi9CmqQIhQ4z3kFLmIV4NJLFDFlCHbDS5rZVZVUYLgxSA1YWRK7dPhjVUeIULA0iMupbCSBJCFDxqCKgcCbA2p+VjhGCIeUFBGxEqzOdyTUuRoUcpGi0Zq1LLYXJbG22k4C6ttLzkjdHkCEUiK3nrktkxxEI/mCFpzjq0KZmclJknjAjcZbHExVm9igZqtfbl0t6qgiWkNfs1zzPn4cxwloiT0YZkYsaKXkLRilp32dh1ZvcRJ3mlOUZnGGAUaAc6Z2SUE97zzLm+OEefv49xYVDVxnhda3H9mRpSdZmy/9Rge8nhKM7Zp9CUFcZzmQHJllgOvv8xp6GOFsOqUH/9vGuQZGVC03pVkoZ8uSTMMeX+ZKyWZ79sx+trxZzJKc9QAha1Q1e3c1lPlFbZ14pEP6Nyyn8R50ziLCRlSNoBltMwYZzAQayxKwSt/MsORlkz6sxTynO7LnYuz68rSGJKsiZeb2dlLpf2X4ubZfOu+/6iz1MkVZH/sifofK/190obr0GZTzNw6/k/ZaB6KeJb90Hpvxq6d+2gfhqgSLImeS/rCWv9AFzWFNX3UNrsp4rTP6fj48MTux9/xDUK6+6YvewlRll8FBHXxq0U6eTxZq1C+YgPHmscfSNj5c2rLXPcMN/ueHN3w7vXr3l6eubp6ZlxGjkfz0zjhA+R46NEu5USGs8YwxIodE2DdaK03duWbdez226wjRKBVq24v7/j7bt3tF2PMY77V7coJaQO+10nLFNR9CD22yYHBuDu7o5xEkXyprFYq2nbhm3XQQw4o/DW0ziD6/psHwjqoGksfd+tzHlITUEIQca9TqITkzLsV0uGNyGwxYTYR51pUEktP8lHko3ZVtOopPAxEfwsNQiITYKWfS0pFjKcwqw4hwnlhdFLgtOC19TasmlbSGIf+RjQSd6zzhJzjcjhdGDKpDklwDv7iRhLbVIONhrD8+EgTrg2NH0vJEJR9uHZB1lnEviMfFFatIBMJraQvVk0MQQCfxKhRm1x1jAFcF1D2zSI4KNkYkywJFtgr4mmtfjgJYiUBMZpFKQMW9JJajr7xpFSJIaZ4Txj1Wq/qWHkNAwM04BGYbs2Q83bHJCXDKqQMK1ryDyXUyiaRuQZbBaZ9rPHEwkxyD1lpk+UwEqjkoy17Bf6H9/JOI/i2TgLou4onRBTpN7iRd5IBp42Cp21KCibqzxfdihYIkQyIQJRITUZEn5HGYc2Dm3mDGFSyzViLJuDGHEoiewkghTLJBloIYYlwkN2diQqDMoK1lFlVixRuxZGBJPEiNfG0nQSDVdaodOl0VM2iiWTEQJhnpnGEWMcm82OzXaPa1pJ15eJlEXZhPHDLwwmiUCygpGuHYwSySsRwrKhluxOjqNKtE9pQjaS1xqJy+h9fRhrsMYJvR8lFR+xIRKU1Nc0xZkKEUXLlIWJlLHZs5XFwzonsKaYREAwM0achzPaCPOYtY6ubYknKViPMRHnOWMDA10uPpL0soNcQ9P3HbNPi/J1DEGAGnnxKYJjVht8ymw0L0Dli/Nm9Oog1gZFSfP6WZghxnFinicOz888Pz9LZi5v8EknyQQlKOluMWZq7Lim0PRJ9CsSyX2sV0NPKPUMjXU4lzM6PtK2DUvG4zM+aqOphjYtzlkFiaqzB7VBdw05qYu2r/Hr5TPX7FHyG8qsedGYK+/WTmc+inG7sL7V0IGqALymJV2cjLiOjessSLl2De+6NmhrA9s59wnbVn2+eq7X43ue52VNWHR/lGxyh8MTKRsuYRoEY42S7IIykCxJWU5TpA+yIRbYQmmb636ur1/rmiwsX1Wfy5xfaaVfKqK+5usXCvNLxwHWIut1vYbCIFVgiD/llNbOYTnE6Q9L39bnrtu7NvovMmoV5K6+9xpOVQevyvdq4oMYBSttjBVse/58TVZRt3fdL8Xw/pxhl+/ff8C6RGJgd6Ow2tG4jm23xydF4xraTcP5eFroaWPwNMbgkeyWVD5MWCy7XpwTbXqa9g3qT/+U56dnHh4eMY3j+ek5w2wiP/zde+ZJYEYYqeP0QVin2q6l7Vp2+y13/Wu23YbddsPd2z3DcMKHmd1uw2Z7g9KWEBVGSfbANI5df8t5cDlTGXn7+oscTBX482kYmSaPMZr9fi+w0nlm0zY0WjFbIWJoGkeKkYeHjwBs+g03+50wVubx46xlnMj1DZ62E9HZeZowxmJxC9396XTGoth0wrKkk8qQH1ZIRf4JPjDOM65rF/tOGylwnpFI/nkcl0xaJJJUXCQKSkDQWsN2u2OeBZY8nM9S76gVxllMigzjwPPxkNeeUhebGKchIwmkdqPrOpy1PD4+sd3uaNtWnK55IqooOWTvl/UjRIn4JxTTPKG0OAUhRqxrJXg4B0KYQGmaRuocQgRjGlzTZwhwhiLpiNI5ixwTrrHMpzEHLzM9t5K6jzAJ5XhjDbvdnmmUIvrz+Yxqq/od4DwMzH6ma1uwCttYXCsZb+9lXHa9sEspDc5p/JwywsMsUHmVs63zPOf6o0BIAiezWjOMB5Q1GCeF9lprgaD+zCXkH1CTYbOX1OHaPjMRRFKciMahyKrYyROTFFOTIlYLL3RhQ1p+UAvHsc7hwogUWCU0ISVi0iRakvFgAto0aGNJurgrZhFzCUHhtMJpR9NahvNJWEWMwIZmL5uq61rRIUAGl9UWhUbbzJJigTQzT4HeJeZRDETX9DRdT1KGaZaiK1gLSC9gN5JGIXmPM6J8bpse5Ry2azFOshkxlUhq8QolAmhgYcbSgDPrRuyTx7QtypiMg5Boq0S05HdKkjpOYd2wstsmhvVV5mVxQpSmbTcCR1siGk2m8wsoVsiZa0QNtdSP+NMgBn+UiH/CoK2mbbtlk965TKmIZMZso4VqLYjy+DAMPD4+8t133/Hnf/ZnvLq7Y7+Xwr3VENA0TsQBb/Y7YlIcjgeeD8/CLpUzGcoZWtNIpCn4DP+yF5sxCkJaGVyUUpkqrxSbNUQ9iUfvFD5MEimZPR8+fkCrVfxvNZiT9A1F0JDFoIwRnENYb2LO2QWB7onDIwtB01galxeHfE/FkH7JQfzcjtr4ecmwh5W2t3y+5mS/NqivDemXDO76GqtBB0UB+RIqt2ZPtK6E/RD6wwKBARa9lDo6Lee+NC7ra+vskL50b9dZmfp4CZt/Pp8vcNJL9PbquM4ElfYtn9W2wU8z03jm8fERGwdUHMFPNK4jhMThNDLbBtsqdNvy6qtfYkxDQuUUO5/c30vwvvp5i4NUnrvUc9V9UPq/nqeljQvRRDm892t6ik/XupSzUl3XLQ5MbeADSx1UuR9ZE1ZHr6ZDLv1SXq9hUS9lNurMTXnOa7KDJVgV4wIhvRwrAhmDla2nrD9NVRdX5lftyH3OzkU5nh8fSOFAmB/5V//qT+ibnPU1YnPM48gpToR5wrLDqsh5ONHt91ht0MlKFUWcxWgicbPdkxI8Hw5sNze8fnXHF2+/oN9seHx6ZpqENTEOQRASwTNOAwlhE/IxcjodCNFjnSEcFa1t2PQdfet48/pLXFNYoARa5VzH6XTIVKdyiGEndRsxs0851zKMA60ztM7Sda1kGqJcXediZGMcu92OmMff/ptvljkyDmfu7u8FYTHPTPOMy2ydH3/8kS+++ALTNNi8tpXx+fz8TNtkUhZraBuHL2K080yMAe8TzoHK1LVKtzTWLdnd+/t7Pn78yDyIczbmuoiUpF7h9evXi5FboLHOOaGaP0ZsjHzxxRei3zDPfPjwgdevXxODqLXf3t4CklUaxhPDeM5wRQ0qQobiSzA3CHpiiDkAIo4AFUpmHKe8piaG84jWYrSHkNDa0m16lFKLsLBWiuAjXSdaE+fzkJ+hIaWJ83ngeDxhraXNjkKp+0sJxlHo2ruuZxonbm9fSf3PFCHq3J9xRd042O33uLaR8RQjc5ohCWPU4+Mj2+2W/X7PdrfhfD6v62jTLFpf0zQt2Y/dbress845DoeDZHZiYPKBL7/+Gms13/3h7wQ+bhT2Z3oPP9vJEKn3IiR3uRFKbUWsVERL6jkzdoj9+kmERT65RgXLe4l6U1iNgIJ3w0QwSRQNvRRthhCwyuRNRDic5xL9A7qMuSuRNYl8CURFIEwS1TJqTTWdhxNgUNpyOj5jXItxRjxX9enGXdd9pJTEkVAK1zi6rpdaDOvyANOYhUs6LvedkjBRFIVPud+qm3JaDa1QaLFMIeNQWRwO6bMVSqGUFBAVmtx6o6+ZrOpocIxFT0NSz0avolo1day1jqAMMeOAlVJLVKA4koUCsiwkK42jUNUWQzqllLmqWcbDYmDn50SpBZt5GEYprCpZtQKfSCWzUrEIXUXCpRnTJ6KB5ajZowCmaWSaJtEqcA4/eULwS8S1PKcYPi/DZZZOVLL2lUW1RMSvI/h1P9Xz5nM9aiOqjtRfw0nqozbI4JJdp147rg3aa4ek/rvQHJZsWe0k/JRzUM6XUspFmisLWO0U1QbodaRcKYV5QRjv+v5eeq9umzr6XStAXxuRdQakfs61bcp5NSlawmz47W//jnevb7jZSgGhbXuSj8Qh8JvffY9pj7TbG7Y3d6Tw6XO+ZFzXf9f9d/1sZX2pawmun/el38v8Lq/n10rGpszNks2o7+XaGaqDBrUBX68h185a+V5Z5+r7rZ/9eixcv379mWLM1Q6WEBJoUspBqcpxKfdaO7T1uVfo12ccrEiRN6/v+We/+po393e5sF8c975xgIc00znFPByYzonz8ciub/AhcDoc6DcbtGoQhWaIsyclhdOC+08+MnmBohBEc8sPE1ZJQFIoZaXg2xnLtrFsNxLUigTspsFqm+tmJqKfiTpl4pNCF50wSuGsobGG2U9o5xabyIcoe3yMuKxej5IAW7FjvALTNBRyAaME1h2r8bmskTFm+n8JXqq879ssvFcKpItjXTIKMk6FbVK0I1wO2KWqhqTHWZuRI15gznlunE8nEffTwphXgiJaaZocrClrmMkkP6UupDDJvX//Hq0Fgl8M4jLXhFkJyDVt1rqsMxawxgoMaBbHyGgJhjhr8ZlpKoSAzUiVRJIaz1xD5mPgfB6WoaeUFYgVCZKi7TpR8Z4m+qZFZcf/dDp9kvGEbN+FhPeCeCFLGsQo5ErOrYgFcbxETHC/34uOiV4JgVLKQQMFh+EgFMMhcLPfY/IadDgclrra4TxgzGrrLPtqShwPB6kvzf221MjkTLdzLbv9Lb/81T/j8fv3KC9Qu59z/Gwno1CMWitqzClbtCpj2jWRqC4jkyDpLXXlZEBlQF1FD19ayOXN8h290MtKMWAkBKHXLQ0XM0WYSiU9vrKPlOuUz4HCGotx2cgjQyRSZJpmjBE2ktmP+DCJ+J3TK4TpyslYHRipQynS9G3bVoak6GVoZQTrFuQ+Us4vxiSZmaIsnlLIRolg4QqXi1IlUp4HcAZNifiWvlAQl74QR6NsROX+y+Re2rQyAstiA2B0hvlUxntKwlAVURLh8ZJWLPCtUsBrjDAolGt47xehHZ0ndekfSUuuDC46RxlSyvUgSmWYkdyry21bGJnqfqnHW3m9bLaS+YkXG28xFCQjdNm3hbVH6AZXFq1rzPVPFXaW96giVzVnfq0NURbRa6Pjcz+unaZrR6B8pjaKgT9qtL907mvD+nqNqT9b6pZeus/lM1f3fO3QvOT8veQwyWsl2P6pnsLfd/yUAV+P6+vP1G1Rf6eOjAs6VfSDHj4e2fRSEBimRNtrIoo5aj4+nnAbzd729CgRMeXT9rvuv5+6x/pe69eu++8lyNRLz3h91OOmdjKuaxNKO9Tz/fJeP92bylH2siV48YLj8lI7XD/PS05HWWtrtrX1vural0t43vU1Xur/z/XQKvHq9oYv3r1lt+0JPpACpJDoGoP3Mz56mtYyjydm70nzRPKTwJiHM9vtRjLU1mCVJswzMSohMIkxZ7gjQVuBA6pc/yVcAfk+5LdS4Kxes0gx0LadcJqlxDSlBT5rtSbqXIOZgrA6aZON3gmXYd0KhVoyZgGbNbVQULRpSrZcsh5CN13sF5Wh0UbrHNRgyerHEDBaE6JoaTVObJyoWLSadH7Aossl+2Fc5pFzCmO2DOcBlGKbtTV88PgwZ10wuYeQg3JAJpUR0hxr3DInQ9FGIjvDwJAzIcLmKJpdTePo+25xrpss0idBBbBOZ9G9QpRAZptL2TbzxCBERTF4gheCFqXM6qi5VY4hZVRIsVOMUVL3m6Tm0hqLT7Kji00h87NmrIR1fxDioUDwJZAipQUp13m0bZOZwiK2lYC3KK93i2aZrAES+JeezsG2qIgJ9jf7xRad5zmTFki2Q7Rq6/UlMCfJiJc1JiWpxyjwLtBY17Dd7fnyq284Px4ITMv4//uOn+1kdN1mofCUDlGQFEZbQkAKWcLKhLRsKAaZUOrSMKhT/y/hkqUpStpbrUYfa5RKDGOVjXIPwYtku/c5fWjQKKZpWpiNive7Rr4kheSaFm0dEAWBlBJ+HsRB0Ya2MQzjCR8jvdovk6E2gkqnzlEYHcZh5Iuv3rLd7ui6DeRBAYK7TynT6DaOaQrCVBAjTqsli2FzPYNSmXkmFw0RvRRRL5grkDrVDNuyn0Y1VVlArjJKtSNxDWOpnYQY5nwvEa0DhbbYOSnMT7kNFnXuvEiViQfQbTa4EKRg27mFz90Yk4Vmem7v7hjHka7rsE0jdRblIUrUDpnofd8vHnndr+uzpNzORfBIL6q9KYZcdH8ZYQVxjhvrCMEze8FEDsN5OffhcCDMAyldGitQojIs40JuWxaH4giVj8cYcxq1XdSqy70XzPhClcs/DbhUbZTVR3n+OntUPl/DxRYn8SeyOteOx0/9X64vkb1AuDhnie4X/vr6Pl6Krl+vXZfn+dQgLr8LXOhTSMzLny9/1/UENV7/ped/KfN8eaw1Gu12T3O+43fvn/jb3/+As4Zf/UIixR8eB1x7w+vXX/Dmiy8Y5zE75HwSuKivX993+UzNHFbasgh51pmA0uZ19rReq2RDNMvnTb0+VPCg1WFZHYA6yyNtqBdDo7RpWVd+6ihwrUKDWb5TB2KuKT3nef5kbl87ALUjVjPulX2m79rsLKULJqna0fiEFOAKGfC5Hq013O433N3uMSoQ4kSKgkLoOsvpFJnGM23bM08H8IGbrifNJ+IU0CnQt46+k6Cp7zxPHw+M0ywwm5jFZq2jdwaUzSK8iuRHlJK9LXZGjOrkmQaPtkJA02gRBgyzQJOaxsi1GpcLmLOIa6aQ1QSIMA/jaj8R6fsN8zwzTBO6UaBTprX2CLtYYZ6LhDgTZw/Wil4DEsx0thAtBKbxzDhOxBh59eoVz0/PhBBRTUvSBquk3qHruswuFbjZ7TIkp8C5RdjTGkPXtplQBna7nexv88Q8K25uWsZxXCBTBS0wjkBKGRXjCH4V7BXYkZf1RGv8NLHdboXSPsPTxTmReeCcwdp+mVMpBVxj2Gw6zueB6IMIDHtBHFitJUtiROB5SFOuK8lMfFFB0ljTkIIihESKYKyjsRlpAczTTJgnpsHjWwkAd67D+8B20y7ZlXoelr1/HEeOx9OyFqksmFnmZeMU81Qos8PFvJc1eg0ilLVgmiYUQr5hjeXN6zeM47jAuQp07XQSStqy5m02G9nbUmSaxmX/8EUrLSXRx4uiTbPb3bDdbPn+d39g4ID+x1b8NtrirPCjS0S+iMYIPdw0hwUPfBEpjKCMWjyjcqzvywZfXqsX2wK/SsmQolkGyMS8LKoCbs5p4biqaBf6taRWWtWCcZVJrAkKNl2fC5wMzhmmTIOnlBiaPsyEETANm32TMwcrtrcYJmVxKPRuIUSMbUBr5hAYpom+7XGuRSlNiFJ0GUJkHIVhyRgLOhLmSTzMWVhrCi5XG02IXujWTFbTjEVQpTAYqSWCUgyYGn9djPpraFe96dYTo47IJZHwxShD2636JMZakh+FatKYpfio8Htbs2qo+HlGW4NNa7GoUkKzpnMWKPhAvxEIlFYKuzgFiSJypLRGW4NRZqF3vaZBhbJB64vnW4sjE8n7JQKVUqUanqo6Gy2b/PPz8wIhu7m54fnRL3S/dVtJGxbl47Vtiz6IjBvQRjCQXddllU0WJdCiel6+X6ukf85HHSWGyzm/bDZ6hS1dQ2dqg/wlh+s6S/HHorYleq3NZS1F6cMYE0a7JXpUt3+5pzJuSl+V69aZs2tiCDJz01r/82kb/dT9lmvWEJ5iqNYG5HVkvbxen3/tA0C5zDSjabY3nGc4T/D+4YB2D+w2W7rdHd/svwAtCr9NZ3IR++V96mqNqQ3lcu3rOow6kFE/g0Ae/DK3S1R1LVpfU/5lgzR6pbe9bveic1H673IcyPp2nTFboQ7qk+/VcK76mcq9X0Oprms6UkoXtSbAxR5aO9ble4tzMk5M2SgubVvasHzn2pEq///cMxmKiIqB5GfOh4P0UVSENGPajuBH5unEdJ6wRKzVNBasjphW4+wGTSD6ER8DpJnWJVprsRmt4WPCh4HzwWe2TmnDtnUYI0GivlMkLDEaTsOQ12iFMaCSR5mYa081WkVUChgFPkVUSqJm7zSNMzTWsumE7cdkWvZhPBP9LDUXGgmwKQUIA1yKUk8SvIcQUDES/bRoRSmkmDilhEqavtsyNWJwhnmk71q0NrRNu8yblBJGg24F+jWOI5tW6q6CD1iXiQaiZI+cKTW2CYJkZpxzOGPwWoExbLcbpnkm+ECTGTWda2hcmzMea7AN1nWq1Ac4a4l+xlkHMTAcj1hnFwRKDCGTAmk2fSuQLWNonWS1VAKjNLMfGWMk+oBKis1mT7A+O1RClyusSTFnMxw6KZ6eH5jNhHVOlLStRTea6BPEHEC0jsPzA3Pew0IIS2A7hEDXdQvyIcYimGlo2kayQfm5z+eR7XbLzY3LEDGxX8q+V+yItm0Xm1ZrjYkGaxTWGD7++IG+77nd7RkncSqdNhilaZuO8/nM4XBAJzIySTFOYyldAS8ETNY6nNM8Pj3jY5SMWIq0m62sKZnV6+87/kE1GUX2vi6GlAF8CXWqj5jEAYdPF7aU0ksvX26GOQpdNsA6ZSzGnQIlKUWdnQNyTUiqzlenq1JKxFwoInRfVUElKy2d7Edyg8XIXQ5VPUP9vDHKhMq0o9Y1Ui+QwUwxZTykEnhTTCJ8p1Sq7ldSnymswoISPbGoDLEq3wUWsam1MdPF7xgDZnHYLqObtaEPl3CSOqsh92VyJkl4+GMxMIpXroUtoqRG8wkXBqUFqlVBEerr1XUJpogQ1uMl96kumRs+NZjqCPL6XnWOOqqaP39di1IyZiUDUq4l0c2YC+ELrvYyql5v6CmtGa7L6wuNpnUup4Cbpc1qB6MYI6UQ9Z+Ck1EM+/L3+v8/DumpDaO6D6GMhzw41Hqd2mD8JEu6XDezgS1zJUlwIrFOo4xNLX1X7qHAAcoHlcqOTf6OfH6l1CZDHJdZWo3dnzL8XlpXr7MDPwXLuW7Hpb3qjJ0qbUhJstK0PZsdKNOgTINpGpRtME2HdV0WuMw1Wbmtlr2g6q+XrllnCV561peeJaaElot88uzXbbP8fXU/q2P20+1bnuNy7F3Czy7b7vJkNdsUrLUf1+P1pX2yPv91Jqp+5tI+Ia4Ux/L5IvDIT7bNS/3yOR7RCyxIK5jHUZ4nqTwWHUolrFFoIs7pbKgpnDMkZXBJiZJK8JIlTzNWyzmdFUIQTUQlzzyeBZOM2BvJdcQcxFNxDWZEPxJVgCTBzgYnejhERJdCEZVE8MdC/CEkk6gsbFZqNIwSlkGiMHc6ayAGjMt1nIheVEwRUhCqaa3AKOZpRLctGqmZSMWBjZEwCbMWuRa1QI+NluLiImYrdSSikp2Ko5yppLTKznieT3YpuM/1EFUwkSifJ5t5xmiMaXI9pc2wL8M0jcvcs3at0VSKbGCznB/Ax4DRuZ4m24YlaCjrdw5cOodWUtjtU1zW5RgC0ziy392iCiteWuudhMxGL/u3VgJlDz5kkUvRqnDWYXSxi1WuaVmzl8DiHKxZRcmQqLzvSJDAsgh2pqLZZvO+b5dzl2krc3idzyI4WtVhKbXUspDKHsUqY4DYmAU5UILFJTCqtWFYMhtxuU/yOhyTsHb5irb9jx3/oJqMGg+6OhnkApZPIy/FaEcpKfKvFr3lM1fXuTz3auitPyLEEo2klMh0ofM04YxezrdAhdSaaVBKrZEiYxfmqYuNBZmYfp5oemGzQlmKVkLMtR9arRHF2sOUlNjEHKSuoOs3GCcQsxgTs/donbDGZYMlkIgoHUlBOtI6Q5oz9Ch47CyDWGNoWpcN3bi2n2GVeU+CD1xofamcjLQ6MqWNSmqvRMlqZpRrbK+2KxRBk0XBYiTmyGyKYkG1mcErxrwYZeynCKApiCxGujFG8KAp0TaNnDu3Z+mXmFJtPy73E2KCtEZ0SzSkjmQvxuDVd2OMGLXCTmpoWQgZ46nNhXF0c3PDw8NHTqczp9NpEQmrI8flvkvEukRjSzuK47A6WX3f0/f9Mneapslq6ivDjVJqpZv7zA2EEkmuIzP1/+u5WLctrP15DVMqQpMxBzzks1lgzfx0my3F10mig2W9EcdjXcxrKuIQLg27POFyn65jTZJ+ZdNb1xhTGan1uKifcb2/lx2s67qLa0fiGqpVn7v8fZ0NSoTcaIm+39D3wrbj/YRJU3bIHUprnFU4NHMY8xxcWZzq+3zJWAYZ4z5H9VKOElOM6Mogv8gOcVnEfu3Q1K/nTrsYQ+u4KcxxnxbIqxygEvjVyjQV45rNqCFI633I843juOCaxUa8zCyVMf7H2KdqFrWSDSn9WZNmGGNwjc3GIlmINhLjZQarnl9/DGL4OR1hnrIBapjnkcY5FGIUpuglc9C3NMrTNS3GWEKETS+woDnAHCIxzqQ4k8KM1ROQIHqpmIugSQzjSTQtrCEFn/euDO8Lefxm0d0wG5TJ2cB+Lw6ESpkdyGOipXUOQp73OkFURB/xURP9DNZBigSfSEFYo1zTcjw902q3UJmfzwMxBVIMdG1LMJp5hufnE03jZO9PiWmUKHlKkePhKA67Vmy3W4bxjNaGTddxPp9onKPrexonBC1KK9rdhsfHZ3FqVc7cJLFN/OxxbpcN8ojL+hUpJT5+/LgE8ESdW+zDru0EeZDnetM0HE+FWlkgP13XsdlseHiMgs7Ia2rZIwvc8JoOOsbI4fhEobNt2xZaxTBMxDhl20DmomQ101KXs85bJdmP7KxP00zbdgtypha4LJmWoq221qzoJUt9HVQpjlTw67mEDMAzTWNeb4TNarPZ0LYu38eUjf61XkLr4pQZ0I5pmjidTtzf3+O953g85r5f15rT6Yj3sn5sNhuGYWCapgXxUYKc52FgmgdCTKszEkWzY55FSHE4HX7WfP3ZToa1bik0AUVK1QLP5cJ14UxE4UCuP18GRvGg6k3yOvqEgRAuv2u0eNglyk8ehkVcRqIWDWhDUupiUS8LvW06TNPhmpaQYBhn0vmMUdkTJhIDOGMwrsHpjhAU8xxpkxRJFoOyOBeFgtUYQ9t1bHdbTM4+qCwCo7OReTo9SUYiRwO1Xlm1xtHnCSqOwjxPeZP0+BRouw5jjTBJkIQuN0awdqGqlUmw4opTiqSK0aY23moISKlXuMAzZ/yYdc2y2YcQ5Jmy6a9VWjINLvN0l/Sg1rlYPxdPSXbgylnNkDKly+vVZh7j4uAAosuRoxtElnv4+45PDNZyiso5KTjS4IUxwlpDTGGpm9jttozjwDgNnMajOIVXjk0ZE3BpRBTIQ9N0WGdpGstms2G73bLZbPI8ExY3ZxsZw6wwouIUfs7HGi2WeftTGc46+lw7u7VDWCK7xSAUR2NdS0TEMbPF5XNfG77l0PpSa6NEhrWhWrMus2NFGFFUuqvXKY7Ip3UZ5V7LUdOLXjuR1/Cmun3qo4bfvPT+9VHmb2nbruswSdbTGCIpjksfOa1IqQRRJrReWb5EDyZcnHvtk1B97jKrNI4j2TfJBsoSPkBpI0ZWzngmZP7PhdaWMvXTJ21VnJRaC6JcO6WyWVbR5yvoUzlKAKe8Xmc6r4+2FeHRaZpoMutPaWNV1SEWZr1xHBcYRWmPeu1YN3wxAsp6VNbjmoVPjKm1P8iOr0S4rRT1ZgOmdk5fcnA+r0Mi5fM0cfdqI30XFT5EpvmM1gHXaKbjKPWNef8az0ciiikkgtL4MgZCYNOKMTtMQtncNU6w+K6h7eTvlBr85PPe1TJNCp+djeN5orEtrmlo2o7jw3uCF8e96zZY15FUYjydaKzOAnMzk58wXYezHdGAioLxN8aw7VsSgYRHpRlFxBhomyZTyc4Mw8A4zmiVaBtD9+ae3XaHUoaHhweKiOw4Dpk+dZlBDMOZxgnN7jQOOCe1pxDROqGSwhpF11nA4dqWYRjFebLCMhXizOks9snbt++IQViMtFJE74nZUe63W6k7zHUcIQR8ENHj3XYDW9n/xPAOUiPgZ5KV4GQZs8YYuq5b5kqMkf1+v6zPXdcszsEwjGLwWwvt6qQYY+m6DUqRIcyixVEyB6LG3i57+O3tXnQnvMdaxzAMy3rt/ZzrJyb2N/s1WPICxLesN9a2jGnKaBfJ/KjsMEAihJlEzPu+iKF2XZupcA+cTidev35N2aMgLXuRtWJTeO8Zx5Eff/yRu7s7jDGcTqcc2BRb/nB4ynai3FvXCXXxMJx58/qOcfZMszjd8xwYzgMfHh75i3/1l3z3+9/yV//x3/+s2fqzLZaa17cEiygFzChUeoHvu8AMqlTOT0cVX4jmld2aOhKjCNSY6NVTK/8kmlO+u3q5dXrJ5B+tJa1YemkaRylu0sJeHZNCR03bdShTHC25bjGSp2lafuZ5RhtD07b0m61QzRotTolYtKQMN4hpjZCpJIa30iyKteV+SwQuhID2njDPcr8Z7kVuZVJaMkcrhKOiLRQ97CtDq9qgK8hQ7SgqpVBa5axRySmUbImk4BQZXqb14pRoY3BLBipH8XNKE4qHT/6+XgdWFqVbDALSQpdWXX4hBijvvWQIlCjjdbRTIHgs7VpHKIsRG4PJC1lg9rlvs4hNYaAqUR2ZI7VBso7r2mCRSb5hs+mwziwORlk4F4O2iuoXo+KfQiSyNpwv6xFKCvhyLYCrTOPVGlG/rq++p/NYTHkdeem8cCniV19PftZIdbnu8jn5cD5bnVng4h5fMujK+nF9XK+PpZ1eaoNyvFTX8cfasBxlzNeZoU/H2FqXcB3Fv77eS45g3cbl0FqXBFBuh2sYlFoCEQpEtLS8V67B5byu76POiNV7kvxdOaFV5r1eO146Z11jUrejFLa+nF2S86/PVcMdf2ofrB2jIRdpLm121d7X9wfruLp0dv5pwKTKESMM48h5GDDuVqBAKQqr0ewxNmJ0IPoJ7yUTlLSB4CGrMxstdYGyJys6KZ+kaTUpalxjcI3LReUTPkOglQBLIAn5idOZ8lN3UgwePafnB8IstKoCP1KQAsGLUUweS7OfmYYjfjwxNg3RKzSOpum5u7/P+45nmk6cT0/Y1uHmRva7JLUY3s8M5+MCqZ2mkRNIAFAlvJesz3bTS43p7DN8M9BYqXOdp4nGWawWmI1zdi0+HlnUu/08CzQr77synCySsQ88PT6IHRhEwVobnWlqG0iRaRyYhgFUqXFBhHtjEJVza4URNHjOp5kUg6DAtBjZC51uEocwxkDwHq1L4MRLzafWS4G60RrTWdqm4fn5mOeXEb0QNUESZjBjpFbWWkvfNRgrwQ/puwyTTRFrNJusnn4+n3Og27DbbejaZrEnCsFLCZRd2iYiyGcjeX+SgIRzZslWpCSZipgCISZMkpoSbRSbTS9ZrJRASW1nGZtaaU7HIymJw9Y1LX6a8Upqja3N9YUakjVSo6wUT09PpCQQqMPhwN2rW0gJP08oZRkyS1XbNMIsZoW99Occ/wAnI2cMspMh7ZWx+OSwnoIUi3elqo2kQApSNgxf3qTWReQSu1zeL7Ug5ZzFC0ypUMKlZfAqldAolLmkTFQ6M8TkKKdseGvUbZ4ntFKZr9iQomRhnGsFn2zFyShtUjaEefZMkxQBN9ljb9oOT6HcXaNhKYXMiDXLopVx/yWVZzK0SuXXyvPFGAizxysFURidjKsgalq8/mIciadbcIZxcfle6tsSfayNg2WDLps+ZcIBSV0YCyoJltVoLrjpr715E6NEKHP2INTFiLVxVxmjicqgiDG7rWWA1E5RbQguI+eT512dDInWlMxNeeYls2MM53PAh4lpGpdNfymKpxhP0qYlyihFoGvU/nIMazabDTc3e6zTbLdb2qbNRa1lMeMCVvNSQfvnetTGGnxq0NdQyfL+3/s7kTOYl8XXteF6HcS4vk55vRxl3qA+Fci7Pl99vOQk1L9fimC/9Fy1Q/xTDtBLUel6vr10XDthcBkcquFF5afMjevMwDJnr+7rJYO4/o4YAVKvV/fF+hko87Z2emrs9PqJqs2k4S4yXXXbXY+Fmljhuu8vnZ5PHZry90quYT45R3FiSmakrBuFJet6/MFarF7Ytq71c67vp+630kbLngwXAZTPO3uxHgk4DyOH01Gg096TCFIr5EUwNRkJ6BVYjs7Pr5UYzSihZS5B0MYEKeg2DdPkcU7jnEKEfsXB8CHS2sykiBGdJS1qz23TMXvPOE2M5wNWC/THWWF48kGQCCqKGG1RCh/HE2FWzKNB0UISMgVn3jAnETuepyPTeMRPOzH6cuAkZFj3PA0Y3WN0wzicxRkwQhEbw5wj9xKlFqKGrCrdOBSK4XQU7QogeY9qGtGIyBH621e3QGIaR9quu+gLWxAGKfH89IhC4YzD6lwrYYS6fp5n5kx8Ulia0Jpt1+FzIE/lNvUhMo2jzH0EudK1DQX+vRR6FIgSCFNkpuct9L2Z9F/YL5XidDxhJTUtCIucMXJWEBYkCfA2mQI3FfX07GCAFMUXjZCnJ0EYtK1jv9uKU1BliQs0smQi6xFc2m2eV20xqbdJGc0BFHHrmAhRnENrDa7vsuBxQQJJcyhkHzwdT8u62XUd4zAQU8JZu9THKgWNs/RtA0ot7ee9UDxbI/YR3qOdE4rnIBCuMB+I0VNnav/Y8Q/CXhRWpZRi9pSRAWssSQkGujAxyBeURM9TYaLKJm7MDkiqNydJFRXM7LIXpiRYf7QI5mmDsQbdGJilFkArTcjolJS9znnyGAc6JeaUsgCMiJ7MPqKVRyuDtR6VBGgZ/QRFOVBZ+nYreqBK4+dI30raNPsEMu6yQwKn7Bgo9q/uaNuOpKTQyTqp7Rhn4ZAmRaGty0U1VgnEy6iifq5os1My+ZlN1+SIeWQajwQv/NBusyVMUshFTKTosG2LMQ0oxPPVuYhIa8F+5tS5KRAmXXDniRpCodRavyLDXVgXUggQA8s2piSyBCJ3H0IUUTxlpZ6FVdgKyMXsgRAjHQofhe2BfC6lFAapw/CzlyI/o5dJtFRnaKnvmIbzYtwXbORysvxbrr0aEs6ZZSxKylMgB1prxlFoOVOUNLPAOWRBeP/DD/gwM02CvfZZ8VSpSyIE2dRrVq7VsGnblpubG+7v77BOY4yIL83zTNf2i6O5TKEr4/SlqPXndNQ0q9dR3WJwOueW1G45ro3D0t4hhAxvlHPUfSl1P+Kol+tcG2lar5CS2thcIDxpjQbXBu9irFf39dJPjRe+hhFdR7+va9rKZz6lYV0N3pci1T/XGX3Jca3vsbznnGzwLzkPTUXyUFTQY547JUNS1xOVNpFk5lr3IPj6IvCZG77qp/K5lFKuAeSijZRSqCT1X/V75X7K98tYCCFwOp0unqfONNTZ3XK8ZOwXMoiairYOrsj6s9LsFpXdOohTOwh1XVdpz59yKst4qWtV1ntSC4SinhOiiM4SxPkcD6UdD4/PfP/9e4z5V1UhsSOGBqU8Rgfa7YauabDGijOsxbiNBEhxCVRpEuM4CRzJStT+MB6Ehn6u9EkA0oxKAassSjuUTsIcZQ3OOrrWst20tJZclwhgCUEYLdu25+HxEVSk6R277laCXQqIDmt62nZDYxUfPz4wTUdCHNhtW5yTjMg8hTxHFa0zpL5js+npuo4ff/iebddhjOXjw0NmNZr5+ON7vvr6K3F4vNQSWGMZziPfffsH9vs9XSt6XvM00bQN203PNA48ffwojhGKtm2YJoEIbbcbgTSVOZkiMSbmEJfsvNZaFKdjoHGW3XbDOI2M04zPDkepPRxHEcrTWoJv4zgujhFptRNURk9YI3Sz43DGGhE01EqcoImJKUr2JMwerQ191zFNEti92fcZxSJz1PvimCVSlL93257X9684HA7EIDUWMSXG4SSsn85ye3uT1dcjY9bTqAMyBb5UnqvYGFJ7kTgeD2IzWEOjGjbbDmsydHsamee11vfm5max08r6EYIwgJWC8bZpOB6PtG0rQshKQa51tdZyPB5wTpA2CdEASUnqYcezCMy+ef2Gw9Mjh8OB8+nM/ZstrRMxxd1uy//y7/8zHz/8iJ9XkcI/dvz8TEZJjWhQhgy9IftS8pccMviVUvk7mZkhimGLKmwuOfWlJIuJSSLKZtZNSwzBkJmG8kDOlAwS9ZTBp1LEGQjkAs2YBVa0z5F2kX1P1mCsQ2knLAfGoRCDP6VA8DPKWLRt0G3HMAfarqVt++xcaLROwIxRfYbLwHieCD6itGW7u8U2G3Tbyn3nzcH7GYJHxbi0mgri6RtlcLpZ2KucFXYLrUE7g1aC3WucoXNCxxvmkePBLxuW1hqdFDFo0gRE0aEo6cei6ql0joCEgI4KZUudTSlcEidSBvCMXZ47t2EMgrWs6GQlQwUpKmIQfLtWBp20CCHlZw4ppzIj6AjD+cw8S71I27TiZafVUbBKg1WEFCHEnCkx2fBPhFn0KFL0F4I5KUqE0TUNSkUBc4WQFyeVowLyevFma77+AssgZacqCd3gq9tX/OHb3/P0+EiYJ5wT1ddSoJlSuHAOSr/Uhu3r16/p+36JNKmsMK+0Q8pqimp4WGsNlNTnyHl/7oz9L/eonYpiPIkhpRdHt/4MXBpi146X9NUlNGQxiFV2oqtzXWc4anjNahzm9/WnUePlqIz02iitn+n6erWxXX9O1gh/4QjVzk19D0Wb4aX2rJ2g+l4Lpr+cu3YkCsPcT0W6yzxfaMOpnMQ89xeH78rwBxZCCVgj9aXdC3b4j42RFRqbLp7xejIs8636fmnTEtUbhnEJtBQjvmaFqttpcYiunvnTDInCOfXJ51b++8u2qYM3LzkPL82Pa2eyniOXc6i8J7Th1/BErTULLP8zPXwIPD4+8v59A2jJTNiE1gaSRTEDMyZBQBODQIW1kjk2ztMS4ESBVVAg0jYqzsMk9ZPWLurWBYLjTBCqUGvymi1sO8pAYxwgdRoqTWAEWqV1wzwrvE+M5zNtYxc7Jvgp611YGrchRYFDnU4H5vmMUoG+tUQVmIYT4xh4/foND4cDSilubm4YSQzDiXkaeXW7Z55mhvNADIHz8chms+HNV1/SNg3BGEKe7+MskKRt3wt9KzJOjodnbvQNTdPQty2H4xHXNNzd3fH0JDj+Jhc2h2wAPz8/Y6ylbzs2/SZn71Z44vl8WuuKmoa2bdi4hikH9cp6UWvidF2HVgrvJ0LwWJOZp6rap5QSp+ORkBEqm02/2ByzFQKHrm1xrmEYRjabjcwR74GI0SIN4GzD7GcRyQsORUKQkIlxGPKcVkyjEA1YI2J+h+MTbSsU9OdhXoKM1xnLEryUe+w4nc7MfsZme46QCEH2+aYVu+B0Pl4EOWoK6w8fPkiQJxPFDKdBbIa8NzTO0bXt4pSUddb7ma5t2G62vP/xfW53CRlvN5uFQv8Pf/gdKiW6xmI09G3LeRj47ttv+fD+Pefj4R9fjC8tsJSyCKaMvZd3FZl6Va0Lpc74vZSUQEEyhKT8rOxHKWcHikhdTmGToTiFalabBXqkjXBBJy/pP5ZP17UZSRwgY7LAHuTlZHF2UpJIaIohZ2gcylq0ayBptHVYJ0W4Jc1U7hUEvuN9XKLirimZCwfaoJKkRmMUbuzCf6WVIimDVvl5RDM9311pQzB5Mplc06CMWQQHY/D4ggfWGmMzFR2i3om1kgnKDV5E8Ur0N6oVHqTy9S4pOlnaVKm181J25ErBf5IVWxZuCmY1v55VaSWqExY8qTiCZAdEjtI2hZWlfj1lXJYokqrlmYzWi1Mk91k2VEn/iVdcvr8agMWILHW4n8BDYBnTZax2bUuKUhAeM32yQNHW666ZlEujxTnHZrNhv99n3ROb63tYDK7a+KrPWQzwct+f8/H3Rds/MSR/4jNQORWwjLfauF0M7atL1df+KQhKfpe/zxqrDcH6XNfnvTbgP3GUqu/83Da6dlZeuq/6Wtf39+nzfnpc31957aXXr2vyrn8u72Htl+LgrM7Umn26fubl/PLHp8/M5QypHbSSJXipX2rnoX7uOuPwU47AT7XJeq0XCE1+Rntfv/7JuOblsRVjzJnqla1qMVaUIuvofrZHTInzeeBwPOJDRNuSVy9BQA1o0eCS6AKkRMRn4zfvc8XR0CpD9yR4StJoLeQbEaGNLfBap0eMFtiMKkihIDuhNZW9E2KGr2is1iQNSStmFXHWZvvEgxFojNKi5xGDsHWez0dS9CgtwcaYbZSIx09Txspr/DxlNiRFMmV/ywZ+ioQcDNz0/UKMg9Z5/84QIGuyoK4iBk9C6huK0auUEDS0jWMaR2GgynobpfB5ztpefc6GDOfzEoBwTuwQsTsks2mtOAvH00Cjm0yfK87W7EUMzloj/Zb348KAVLS+igFd2KTK2sEyJzXGlLpJn1m3cqbS2aX+gSRB3BBKrUimnw8wp1IfUfYVqZUwxtC2jtPpTLQzivZiDyiZWbmPy6CWMFIN2ZaUFau0cQlQ6GzXFHtbgkqLRQysRDDWiB2pEIpue5WRXQJoZNrdfK4lk5rvo/7x84SzUk80T2NmlgqczyeOx4PULv9MU+RnOxnXxbHXR/GICpvQBdQhN0ztlV0vjLVxUN6PGQcnvsyqDI1rBAZ1PjGnjJf08/K9cuqUJN/irEEhheuhFPqGSDRCY2fzhCyblMnFva3tsa7BaKFVQythATCWOItjIfSqaXEAmralbUQbI/hAgoxnixmyxYL2KZ57XdgrhuXKP3y9UWul6Pt+8fZLsXkiYRtH8sJPXbMZ6OxYoFgcjdLWi5ORIwGFZaG0dW0A1P1W91c9gcrnStSzFEgXZ2zpl3zdIo5YaOnqjbxc+7rgtEQFpf1cXhBXuFd5vnEcRWjR2QWuUM5nrYUQSX5NPZb2Kouay7ze8wwhzAvTUJmgdVssxeI5hVkioPM8s9vtePXqFa9fv16cjKKNUUfTp2la5k4NnSnj4I9Fmz+X46cMJYAY/dI39Tio15KXIsDXR2mnAtNBSfTzeo2pP1+fGz5dn166Ton8XTsYL62TtRp9/VPTFNfPeG3E1vdZR/6uDeafgtOltKp6l3la7un6Oy/1UQk0XDN7FQMOXi5OLkGN8p2SMSyc29fzu3xP68u+KOuJQuAS6YXr1J8vR6GSDCHw8PCA6D1las0MxyhtWguq1pmzeu0TBedmmd8y1i6dl2tHbn0m/ZP99JLDd52tqq9Rv1dDPtNVf3Rdd4ETDylmJ+Pz9TIScB5nng9nzsNAiHmPCQmlAkrNKKmGxGAybl1JrYV13Gy3QkeL+KlaaYZhZvaBaQjc3b3GNQXiLEK5EnACrSZRzw4eayVIFZMSaHA2Tr2fiD7TPiuPwoGyGKvZugznmUX9ebN1hJDrKlRHigHvxYnSJoISZrVhPNN29xjb8eP7H5a2+PDjyLzQnTb84Q9/4O7uNZtNxzSNUmcC+DBzPg2YLJ4XUxQ9DBOY55HN9kbUxYcz+/2W2U9Mx2Expq0z+Z7P7PZbdrsNP/zwA/M8AYH9bsPDw0fidkPfdcR5Fs0Prem2O8bzsBjdfdcLhC1EUvSZFlyRMg2zViXonDJ64VO6WBDWzWEYlrkoxdhDFsiNi3318PDAOEz82Z/9S7777jtA8dVXX3A8HrOTFOi6djGwlSoaVxKsbNu8j+Q6FnE0DPf3dwvdbQh+QRsAtG1zAdOEKhOhNZttTzPbfP/QNJbdbkNKAaUydW82/gtN7TgOjKPUhVqr6XuxnQ7PzwS/Xss5aY/z+Uzf9xRIsKxbinkeeXx8XNjwit05jiPjJH3ebzpMjt59/PAjc1B4HzEohuHMOI7/+IrfZRErG03dsdbJRp4SF4ZTOUokthz1Imy0xrh1s6vhBuv3s9NirOhLaE9QiqgUmdeIkErau0C1RLbeWoe2gtckf86HgE6ilqlAhGe853Q6sb3pFkOn6zqc22Bsi9aWiEQ/Cg5fGCI8SUG32WAyzWlCuMtVBFLCKQPWoBGcXUoJ3ayb2kU7cWk4FWOptInKG2TZvAvkYBgGUArTdBjXyKYcAtY5rDHS0YU1FD7ZOMsmVxaCYvwsRUlmhSnV97b0Zfl/6T+QOpcoi0bKNI+1E7BkDXLfH4/HZdxct0251qrWXQydhM6Y577vl3NN0yQbbBLoXHFiZLMR/LRGLQWBa5FmhpFAZrRZJ1KfIzhKKYbxRBHe0VovfeGc4/b2dsGatm27ZDBubm4WI6XUkZQxX1Q8i4PXNPYizXnhHH3mx0tRWdkQmgsn7aeOGoKmtV4yYNcG62IEwk8mJMoiW1LbUGoERL1X6AR/2rG7Nvbrc5bj2qCso+b1fCjfrZ3sl9rq2uGvr1nDoMprZZ7VTvxPOTL1+dbrrpmF+lmuHb3rdf+l8y3rfM481cKd67O/3N6lrSVwsR4vGezXbbiKWa5F0Ne1NgXeVDsW5brlOWvn4qX7K/dYij2lTV4u3C5tVkcbr/u0doBr57SeA3BJY6wzTGQ+n5fapnKNRRT28/UxgNx+CcbThB8CKczM44AxiaY1NK3BaUPTb7HGCZzZuUzF3xG00KQKY1ICbWi7hl3TA0agMlPIWfVIUfo9zzMxw221DqSMPVBTECy9FqvCIgJ6Pnjm6RljG9CWOUSapgUdQHuMbdDakoyi6S3T4NEpsu01TdsSU2CeB/AJHWYMZ758tSVpEUjzPnIeR1L0DIdnWmtoDVgTsXoGFOP4xPffDyhl2Wy3tK4jxcTkz4Q40zUKY6ReNDETlafdOBKK8/mcyWRAhcC229DZBoOIBv7h97/F+5FvvvmK+/ue3caQwhmtBUIsvDSBvu9wrdhgSlnRGFGB/W2baXYDk5/wQeonrLPMYSJlyHKYzrStxlpZL6Zp5PHhgcfHJ7788gvmSZzBvt8yzTNKa9pe6ke0sWgT+Pj4AW3E8ZhD4Icf3nN7s+fLd2+Zp5FxnCTTYh02q5GfhjO3m23OJCXu7l9nuHggpsRm06MAazRto5lGeYbtphO2rvzeeD6JLQok63C6FdICm2j2ObOTA41Pjw8oBW/fvubbP/yBcZjpul6E+TKqx1nL8XRiHAbGaaK14kR0fcfh+SjtFhOPTw+C2kExjCP7/Q0JC7phnka6Xpyrp6eHRedkOB8JMXCeBsI8EbVjs78jhMTj4ZH9/oZGK8J0/llz9R9Y+J2W6Gwp1gMyY4GkYa83xXWjrNiCLiKQn26uy0KMfE8ZlbPrEWMcQU/rOTPsyRiH1jZ/Lm+wmQkCCiWoRDVMvnelhMlJVYZkCPFi85H7qSFBSbzktIqpLJHFHDUtJPBalqcFjiQGtwaNFJhVhtIaGYzYyr66MFiu9t7rjeZ0OmFDwoWI7nvB/iKZDLm2yc7gpTGw9FG1mdab9JK+41PDohodpGzQ1xuewLdEadTnjbcYCnXh4jXUooYoXBsutZGVos/3tT5HnXmpDa3rqG8i5ciTX/pw2fBJqBgJoRg9q4PjnM3jf72v+/v7xXm4ubm5EAvquo6u6y6UvK+x+Rf3lQ0tnSM4wIu49c/9qA1hefaV+rcEC6pPZ2NXXfw/JYQYAEhRsnXFKXjJVH1pfF2PvfJayvCJnzKcc8FGfYsLbEP+ozIkg+U1pS4zNNdOQT1Gr53sl5yC2khFsRRFKiTruqyy6pKGtWYcun6+6//L5S5rjJbv5XXj+nsvOUL1/1VuK2vMRb+XsV/msly5eoZP7u3SKE+ASpfQpJQfoh5jKZVswAo/WMaTuhx75e+XMjXFSdSZCGWdywW6I7z81+1Qj7M/dlyOx+s1jOX8MRaaTFnnk44LRKXck2Sz8z79R6/6X/aRVLETIM4RYxM6gTMKlMCK/ByZ/ZmHDx+ZJ88wzGx3d/T9ju1ujzJGhMjmCWMUjTM0TmGSYp78UjRvtEYb0FlRHN2glMUYhNa9wKYz1FvnugHlB8CQVCQiuH+0QltHNgEkoGQ02jYSXIwBazPFfpIsfYxe6jOjOKtWQ2NAW4FbxygwrRATIUVi9JyOT0CicZqmafEhch6OtN2GeR4I0XM8nXFGYQ3EeST6kRRmSDMKUS6XI1JqAhvXQILzSRisnp+e2PQ92rRYp9lsWlpnSUkyM9ZootGZhjU7bFoJw1MKhOh5eHgUuw2h+J9G0YlpGic1vSmiVMQ6IyKLWvbrTd+Rwl6C1FoTQ2T2gaenZ7qM9DifBnb7LfMkzsput+FwODD7mQ8ff1xEcKdxpLGGoBU+kwBNk2j5OOeWgEGMCTNoTKbcJkWpZVGyjqEU8zRfrLEpQ7VK0DSlyDgMWUAyJ3S1Zp5GTsdneQGBb02D6I0YLYXlbdPmNSqvB1FCBlpJzbQIP3qMFgmHkMTJtVbgaFpphnEU5zSkXJMqe1iMslFpI4yl0zzIPDPkNUNgifvbPbe3t5w0jMefN1//gRS2n7KPGGMIOVoYSRfK4Osmtuo5XC+W8KnxVw45v0URpQFUFHhMdhyKYSyeqv1kU17hESqzUjlcxsKrXNMhm5wnqrUQcS3+LY2fJ4gRoyGGBFHwnSEXWMd8zTlGdK5DUEpJHUZuC++9LFo2d2TFSAK56DgGrK43q8o4uMpy1Ia0tZbH5ydsSISQaJtWZN+r7EcxFEr7lO8uTtWVo/dJ5K0a4NeFiIUqMMSAztTCkcgcZvH8gyf6ldq2zmBcR3SXaGd1nTpCXRsBIdfjlOxFaZelyFV9yt6yOnWJFGJlKFw5GaRcfC1PIwwUwrDRdR19vxZW/fKXvxRGB+e4u7tbYBrn83mZEyVtucDY8n3U9ydtL/OiwDKaplnG5EtR58/5qB2NcZwr4/qliH0ZuyzzWvozj4VYZdTSZV1HPbbqOVBHrstPgZbEGLDuZUdwvR+VF2v5C8g1X9kAUflzKn8OgUMWg7TOKrzkZLxkiF47BsvcpDZ8kGtGcaav15Ofgja9dEg7ldT9mn0DgZoUmt/r9qzv+zpooOT2MhY6Uay6kslNMS5BD1iTsAoJalE55EtbgVBwKnWx5hZHw2iNDxKBVOq6XqHAwdSLYwc+ZXxbncSVwrae2/Jb2AcXmBiX57h2GF/6TO0UVz22/GWNI6j/P3f/tmNJkqVpYp+cVHUfzMzdIyIjMiMzq7t6uquH6AaH/Qh8APJZ52KAITAAeUESIEiQIIaDmSaGXdVV1VURmRnh7mb7oKpy4sUSUZWttj3TiygC7aUBDzPbB1VRUTn8a61//UsBArCVkvoHWq21dXIuwgK6OO6+YDMjayBncoIYMr1Rwh/vB0KciIi06+X5mb/+67/l558/cjqN/Pq3/wVv3n7Fm7df0Q2SfDtOE1rDw7FnN+wI0TCOZb/PisPQ0/Ua65QENNy+YI6qA1mjphFrROWqcx3+kkV5SquiUCkAu+sHxnlClKYGtBKvtDGK88tZPNZWlHykGngxSJTkfUhOoseZUqdAi0yusDnE6fb3P/yO4D2//s2veXw4cB5HTpcXtN4xTRfmOfDx+Znvv/sFzipO1yvBd0XYRahmNdqolIB8XfJ7Uox8/PCRED3ny4lf/fo79vsOH688PO5RWZMmz3g9SU0GY5hDYvZezqcN1g2QhIL8w9//LcfjI123x5qeabyilSbFjv1hJ2uqRpK3OwspMwXP49uvOe4PvH3yfPz4ERL4ceZ8Hvntn/0zvJ95fn7mm198zTxP5Bx59+4N03zlcjnx8fnMX/yLvyDHwMvHj3z7i68wSujvMUau0xXjHPvDkfPlUvBgxk8Th4M8I3IqhYKLw13LMxEKXRZhmBiZppHdbljWzevljNofxDjKCZ3gcjnx888/cTiUKt+d5eX5wxJ9TSk1RQinld2gDcpJzm5OiWkaMdYRUiyU/lyiN8Kc+PjxXNZyXeqxqeJMk3/GaAY7cDo/o4zG2g4fNSF6jO346ut3XJ/fYxWc/oSDpB6fbWRUD2xd8G4KNGkFulhcGyOhAga4XZzr3ylltLlVAbn18op+cc5SgVuSfqTjoUjXVbC9AMRS/VuX6IUSQ4RSZXjhtkbQnYK4SgZOITOOI+r5xOP+HUrpBRykmNbdTpengsI4USNYnbBinKSm7kSV9Q1REpLjdGEYhtXbVjc2rUhpvsvJr/3dbmSVIhRC4OnhkTmK4sPzx48cDgepcpuht46YAzGkhTZUz9/ylisfvq2au1AJ4i2Fo6qzXC4XoirKxFqqkMeqQpUz0zxJXkrwCwBXSkKx0zQRY2S32y3jJucsYdoGfK1RBLdwy2XsrUX1rtcrXdct/WmtrS5TYoxLVGDRrU4ZnfPSh+uYlIiSzpJ0R6k5stv1DEPH8eHA49MDb948LhW7d7vdct0asQAWedQWTFcu/BZIriAt4n1c7qFSwT7H8/klHXWcwS3IFS/zbc7Pfe+6zAEfxND8lDHafrcFpjce3uY9GVuigKfNLS2wnlcMHXP3GrKZ1GQ6/er7srCva2H7/TZvpJ379+6hzoeaUFmNjO19iYe/VoLm5tz12Mrnbu+3HtM03bRHkgzl97GosFRnTWvMtOdtn+d4vS7X2BbEvEeX/FREYJEGznfqo5TPaWNwZjUG2jytrdOknvve82uvWd9vC3Jujdhpmpb1qqVlbY2ZTx2vHAuZwsGuuWezOFOUpu/dTa5J2+abnLcv2FmhFIuEeoiRTKkZZRSuH4gpMgfDRZ95eHrCuIF3X2su48Tf/O3f8B/+6q/ISvPD737PTz994OUUeHjoOT4c+erdN/TdE1r3aN2x7yNff/PIu3cPfPvdL3h68wZnOnLJDcgxSNG4nPA+4XPkms/yvFWRiNeaUDT2tVLEWaOV5TA4Prz/A9pknNV01jGPI3NK4vCrBda0IsaZOYoSY9c5Ih6QquUxZZS2aGMYdpp/9tvvS8qT4XJ6ARTfvHuL1o7n04k4T3z99o0YLjlxGDr89QJKM1hNGC8YKxK3u8Hx4fnEh/OZ9+8/8PH0TE4KZTRvv/6KcZoIyfP4uOf0MkrkNipezids36OdEzqZUbKNKriOZ6bxzDSd+Oard/TdHmcHOrcjh8w4TlxfXojTFW0UXef46uErjJIE+n2348e/+wHnOoZ+z69/9VvOL1fO6cKbpwPj5SNaa75++8Bf/c//E6kkdv/wd3+NAt48HXn39i1dr7mePbO/cnr5IE7HLLjNh5mYPEpl/DSLXO6SZC1qXj/++CMpJXa7HY+PjyRtQSv63cCbt29KQrwHLcXujDHYzrHTmf3eohRM0yxGZ545PvR8991XxVGUmadEKupoIWXmINHK2UeyUlynmRACx8OeD+/fY7RI/7peY5LFZlApiwS5MWTAdSLjbY0lJql2HqMYlR8+fMBaw36/53od2Q3iTJ3PMy+nM1pPvHvzlpQzPgQu4z+yhC3c97R478Xbh3i0Wm/cspksnqDXhZEy+caT3C7eVIoEaxGmamBoLRn1uYlq5EwpZKJFIUpY9xJFqXQmbZi8FwBgtFQILSGyEALDcJS8BmOZfRAlBG1RylBK/4ESKx+lUEU2Vam8JoJnSThPqobuWSI9VdVDtcYObS6AXKP1brcewlYWrW7iVblIa804eWYf8D4wjSM5St/5rkcXmeBWUrKeZ+tVbV/LWcKYYtitHryFniQNXyziGKVSqZ9nxmki+5kUAtHPvH//fjFY6/0BS8J5HRv3wNYWjANSMGZj9LTH0vcNOK/gXedKtb2t2TDPMzEEcphLMRwxFo/HI3/2z/4Z3k9Ftlb6sq3WXftnAWGNDng9/9ZwrN9tgVQIa4SnzVH4lLf5Szm2oGrLfd9Guuqxve9P/b0FslvQuL12S0m7PcSwrM2rkbJqILaJycs37qyP25oT8ju06+G99t2LbGzPXc+/nEffzpetcaJYo5EtwG37+1PXq6+1xeHqXAxhFVSo179Hl6qGRPuMatSjvXZ7f/f6Y5sX0h5bo61dL2S/Wc99N/LJrXHR1g1q21Z/btvVvlePrXDFp6hkf+q4fZ56obQsuvkq3fnc2kfW2hsp3S/1yFmcj0vyuypUImvJKqANWEQ7ycfAHHypUyEVprthh0+Rw2HHNE8kNaKscNZ/+N3v8P4PaCOCL9M40nU9w9Dz+ObI0O/Lfo9gkpzpneG//Jd/xp/99tc8HA4SlVOGEAWwaqvRqsMYTcoDfg6Ca5QiJytqttpgXU+eJ8n0y0J/MVrUrZTOxUea6Ieu1PxQEIUqVnXVrBOso7MqeWWmMC7W/IHeOfp+YL6eyDkyOMNllgRqox3RT6JkZSUP1ZDEeaiSeNnFm1H2P5GJf3l+4c3bR8brlef3HwnBS45HjnRdx1hqOXS9Y/ZCobYa3j48ME2BOI9kZaT4W45YlSV5PisikecP74VZkjMxJIZuz3ydGM8TyWd23Y6v3yqyCczzVaKuzjKUPA5jDH46lwTynn7XoVUipRnvR3LuuV6vhBDYPTzQ9+Kg1ipx/viTVALf7/j617/lxx9/JMTIb//stzy/vCCUfit5EucT8+x5eDguWM1asySGO2uk7loYyTmidKDrpG7QNHlS8piSw7Xf95wuQnGsTtg1iqxKzqZn9n5NTldwOp3Eoa4MxmpiivhStiD4hDV2ya+Vta/DOcPHZ6lhNk0jx8OxlDtAcoiUJYbETz//zOV6ZY7+s/O6Pl/CtvH2tK+FEISqpNTiHamL2JpAp17x+Zd/Ki9OlfZ7LJ+HNZawAusq/SrF/sRjkJJUS6yFAlUxM1Thy9VIRiz8M5WLZz6LvGxKCdd1uL7Hdp3QonIxoLJwM7OqqXOAKhxhJZNOFaMiRhYFj2VTa38qdTdcLfefufOWfDcl4h3KU6sGJSS6meADfprJUbwiYRDd8Aq464bYbqCtoVH/Bhag61iVaepzqp5CiTatVKp5npnnmcvlgopSwC8Fv3g4a5J0qyn9x9qwHTdybVBlsijFK1pRrlZPAzjqoXWpJppfg7KaiJ38TK6ycNZg7Y6HxwMA8zw21X7tjXJPe9T3a5vrRt/OpS11rH0uLajaArEv8fhjXvpPGRl/CoSvr98m5rZg7h6Yr6+1ala3a1ytvHpr4Gr9mm6yBcT3Xrtt7+393zMitkZo2+6tB1482WothMprg6500SeNtz9mYNSjrSlS16Ta31snwdZQ2J57TYy+Naja99v+afeP7Tm3bW8Nhdqm7feqAVGdHvcSuld65f3++JTxs3U6tG3brp+fc7weI0acOo3c93b83jPA/ilEQnPOC+2r5j/KcfvstTXEnPExkJJFG4c2DmM7wnil33U8pAPaaWLU+JAZp5nzWeRhlTK8//lEiEJ1tK44LQugz1l22/3Q46eZEA3v3r4R40Pbsm8GdruBYSi1IZJhukrkdfaITKzVAuKiIiu70AQVFEVLjc6ajBHsYIrDNCt0Tqgiep8oTlbk89YKbc6HiA9SDI/9QOfEQIlX6bHBWfwk0WNrDeM4iRM2QfKZ5CcBrJ2j7y2CcRVGZTpnSTlyvczC0Age70eMLXkXccblDnJAobFa4YlYLQbRrrP4ccKHRDIOlTxOJVyn8UHo3ikETi++MGXA+8RhOJJ8YLpOPEfo+p7ucGSOL0zXiZQUymYOu06MNKW4Xs7SSVljdCbnQEqBFCVikZNHqrvP9LsjoAjzRJjOpGAwOuOcxgfJa3h8eiSkWKKKYuSmKIICovwpUV9R0AQQEG8UhDAWiX2RLrZeAYkQZpSyYghYQ0qelFiirnXNXH8KBt/1kq+RquPGrFG02UdCiMwhQMyldIGUb6AY69Y6LlfLOHoul5Hj8UDN89JK45wmhomff/6Z8/XCHPxny2B/tpHxCqBtOLhZVb3dW365gCVz42W7B5RuzpWrJ1LDoh2zHrokenddR0xmAf3tpizVmgGjMVaK32RED9vZDlWqbCqlIcuG7ZxDl0Hx8PQEyS3nStmw6/agMz5My0aqSwKZ7UTFClU3T8AospKFPaZYyhdSjLG8GAewepkomsytl20xCqDwN80S1aibTwWlrnNQpIQ/fvy4vL/b7bBZFJNgVW8KISyJz9Zaqc6ZVwnce8CjTpyWNhdTLBJ4I+M4Lued55k0z5AjprmfGOMiINB6Erc0iXZ8tD9rNyqED1v7sOWMe+/RpiTdNYdSov6iS+JTC/BBKCHBzxADxtbzmmJwCHgYhkdOp9PS5lZSsjUUKiirFaWHYSj64itHu95v/UxKqxJQbW+lXNz3un/5R0vFrApcW2OgPW7fq2NjNTTvGSStp73+rOOwHrXvRQtdaFP1uVTqmlKqATa8uk41mtt5eeu9ziyZpbwGg/Vovc5bQ2P73ZxZql1vo5D1HNVD1vZ5PXdryN67r/b3qnqWc8ZuDMNKB/xjxzZi0OZe3bvevXHQUtzgdr+p61l1ZFQnCcXJQ2NcSpJpt6y5dR2Y53n5TC2k1da1ef1MuZnvrdNh2/5tNHb73uccRmtCoU/U/m6v1T7PNu+ttvdLNjZSTOLAy1LgLqdMikIjgYC2sue/efuO3//0HvSIsx3Hh3eM08z79x/48Xc/LlWtHx4fCVHqJHifSEkxT55xnOh7yzhNjJPn5WUmeMnJlJoKsv98eL7y3/x3/2f+6//2/wRZ8ImPCqUzXaf4V//yz/n222/46t0bfvntL3j75gENzJPn+19/xV47otI8P3/gm6+/Yhg65ulKKsXyCL7kKklNsOt8xdq+iNqA6wzaWGzh7ne9w6AJcyhVoC19p5iuI33f07uev//hB759945dbyHO7HfDwhD5wx9+Yn+QiM2Hjy/84Ye/w/YDX33/a3RHiaBJTY00X7FW89WbR/72r/6Kh8Oef/6b78kZxnFiOj8znl/oukEKIecRwpXDoBm6A9PlGaJHZwgTOB3odx2H457n5w8i2zpPXMeJX/ziO4x2nE9XHg49cejoO8uH9y8oleg6y67XXLQIIJis+Pqrd5zOL5wvZ/ZDxzxfheGhEs4OpHBFEdgNhv3uLfPs+fH3f+Crr2Ss/PjT3/GwE1bLdHnmh7/5S7559xaU5q//+i+JKLQWtsLODDw8HNnteva7jhRlPQl+4nDY8/L8wvuff+IXXz0R/FQYEpK0bq3h4XhkvF6x5oh2hsv5wuUySo5HWVsrPqqqcX3fAbDbDYQQOJ1PfP/9bxinics4CRZMSYQRlAUj42j2VRnKkLNZ6oVN08iPP/7Ar371K3bDjs71vP/wEW0d1+uVv/u7/4Sfr5DiZ2d1/QP1MOtiKprGslBCzsIdXBdN2Uil8E2mVKRbFukbQ6R4JYQiL0nTVQUJMlapMsHKWUuoTptSvTs3lJ6yMVQwJmEyAbExZSTMqugGJ5M3J5zRkiBTCIMZRZWG23VOlB+0w8fEHMTCV0oVfrPw55UxouwQRDptDoGsRLlKIpqiuhRzU+RNrSAihLBIrBqtGOeZzjlcU0OjPSrHf9f1YlGWzkmIskhnNfvdACnjg2eerlzOHa6PuL5/5QGuAL9Niq6bZAW73nt5LmmlG9XzXC4XxhjwxagYx+sKHCj8+rwqatxa4q+jYy1wSCkJF7MYshFR5pLhIXxna40oWYQoxmxehioxiBUvEa/bhM+SEovRWp5PDMyTKFE4Z3D9gLGFsqdYlLNk/K8Vg5VaZXEXAJWlqFIMIt+nC59svFxL8SO33N8aWWI5X/XKQyYlljZ86cfWWfGnXq9HC7K37yu1AtP6HNpIhnzm01SgbTSliiTEmPBhVfVqnQIoyKmtEL4eWwneLWhuvc/1tXvc/vrzXrRjWyehEDlvrlu9XyAe7xDD0gfbiMS9/Idtv7VGy9ImvQpG1HPcULjuDNp6r21EphqB9xxQ9XNbgYb6XhuFqM4iYHFiLO1v7g+4Ad/bdrbqWzWHrDWK6jnanKJ67tag3fZbe3/1XH2pzFsN03q+bTSuvl7HkFCE9Kvrb0U0ap5a3Wfq/X2pR0oZHxLzLM6ajFRI1mTQtqyTim4YJBdTixf+dDlzPl95OZ3ohwHrJFHXIF5thcI4RfAZt3PsB0fXCXaIIXG9TIxXzzR5rlfPZQoEgTa8hMzD4xuG3Z7d/sg0B6nX4Gf+/uPEj89/g1J/jVaJvjPkCGGG/83/9n8NOXC9XlA68/z8/xBqMpmhixyOA2/fPvJnv/2ex8Oe3bDHWiP8/9IXJAdpzRMLc0BnMOjFGx1CZPKe3T7jOofWhtP5wjxpBqfLPuronNQJm6YZpTVDP/Cb73+FHTp2bw5czzOheMZDiOQajUmWX339DqMhjGestfQm01uDcz3aWGJMXK/P5GkkRPDJ8PCw43p5ZrrO7HZHht7gXEIxodVI10VRrmLHy8tP5AhgOJ9/lgrqowcS59PIx+i5jD/z5s0jzhnAk5PneOjZ7xzTPLLrd8J0cQMfP57w8xWjI8ZQFMY03j9wvbwQU+LtmwcORuG6Hms7xjkyXl6IiBNKY/AxcD6PHHc7YpyZxis//vj3HA8HjIZpujLPM84qnh4fANjv9pJTFMQxa53l+HTk+fkjOUrCP2ienp6YfeR8PnM8Hhecu9+LUlaMiYfjgdPphev1wsv5hW+/+7Y4RBMhBuZ5lDXBGKzWjNPI9XpmGAauV1m/dsNOFLvSA+fTM9M4opWm6yDMMyrGUp1e45VCWYv5zJLfn21kOKsXYKa1OOLWcEn9Q0nl7MIGyCkKGC8ys+hawrwwjDKSkJhSoSSJYoSyWihMqtIK8ppYrQyiKWfQ1kn4p4Z1lo2yFDCxImsrm3AxCrJUlczZiBIHEjJCVaqVXmhVlArjotySiDmQspY619VTWGTZUrGAVM7FmCibQ2l3RkJZWsmmXI0VGsAtnrZKv1r7PpeEJAVFLrjmutRK3WXjKWAra0WXLTn1mFkxTlGK5mh5BnWD2VJyFkpbYwCw9GgFBHKfWotSSzUsphDwUcraS3XIkjytSni3BJp15WRLF64gqt5wbUtB1vIeBcgAMYNKci8KSFmS3JakkPXzEjoUta2awJuQypW+FAvK2hK19HnOGVIoXmyFc4YqQ1n7vLY3xlqwqxohVQmgAFylUKlw5oNUWCeLxJycg2VTqPdY5QIhY5aE49bAyEvU5ks9WuN2C8xaINdG0lqgW793C7rk9ZYOsqUBfioqsgXDa5T2ljqzPQd1nm7as23n9j7LO0ubW6C//c7293vnXg9xxmzbspxDK+Idg/5Tz+WekdF+Z/lss1C9vs9PH21/f8qw2Ea37x33DKJ73811In3iGvXv7fj4lKH0qc/ec5x8qk9qW7cR40+N1fa1tNzn6/PXPt3m2dTv1898uYfcU/CB9+9/5vHhF/RdR8oZo3RZZxNJg3UdrusIMTJeJ3FCkOmck+Kq4lYU2lGGrHTZR4uqTyf1ImLKOK0YjGbqDENn6XxmijAnhcPx+NU37I4P9Lsj9jpCcSp2VjGNF8bxwvuPP8NJivOmoPj3//E/Ebzncr5gnebjh49M4whE+i6x33U8PBz53Yczb457UbtaEvhFcn+/37Pb7dgfDrx988TOWYxSUjkbkPICBmVg8hEfM12/ByIJiFnoWhlNzApjO6kJhqgSPfUdymmUzvROYdAYBTrKPq1ywuQk8rVEcvJoNNZKDq21mpQCisxgIaqEIQsNXkWcgdQpkRA2CmszRke6TjGOUpek73fkBEkLRfPl5Wcu55HT6YIxPZ3rUSpDDgy9w7nKcIkYbURFNBVRIW3AaKbpQkqBzhnJ+01SEf3hYc95lDxScsRZx753uH4gMco4CZnLeCEmXZQ14Xo9Ef1Eip7LNLLr5TmdXj6utExrICe8l3yb/f5QBHccXbfD2hFne6zp8NFL1XM0se8kclQwp7OWvpMaaEPf8+HykRBmocb7CR+kZEBIMr6N0bjOMl2uBD8Sw0xOZomo5xQwpqfvLMfDHq0NRgsR73DYUbH9buhE3hZeMUQ+dXy2kbHbuRKZWASkZbor0dAFJUk6cV42nrQkPdYiKlESoSnKLcVDHdN8Q48QQTYKZqubUOUoOtCRbALaDdRiLSHExSMklIcOpaUAjqgMBSRckuhcJwMlZXwYydqSlUJbg9LVMLGkAvgUkawjsYBYCYl2iAay8PFQYgbFJIYSDTjdbmS6SOe6Qu0JIeBKZICcsaUqZCITi3KOLuBZKkLKteY433KKsxg8As6F8mHL4jDPM3kWjN7WOKnGWYwRGjWsGilIi2dVMc9+9QaqUiFympj8zDhHkTJOpR4HMvG0ropgomiQCngzWhWZRS1GFwpSXihlUUtbtBGjThXlshQjycuJJVFNRpOqntQKGrUmxLwmO5UoVoyRl5ePQskxmp3tyDlKHYu+wzmJzEmVUUPKhdaUQWVZNKXfJPJVAWeN0oH0i1EItzZG/DSRckKlIstZ7jPGjDEOoyGqSPYeqcsghrxQUoSzKWyPWrfjyz8qWGq9rnUc13/TNC3jcwuAtwB+C9o/BdY/1Zb6sxoZtT5Km6+xncMx3YLACuq2CnDtIUUbX+eftF76LQDfRhK2Fb8XY6h1TORVQWnx+jf9Ub+zNUi29K4tiG5/SntS8aq/rqHxKYDe9uNNTZ2G4lPvrUY6WkW2Om7aiMSWIlav01LhrBGOfu2HbWSh/t3mBK2AXe61HX/bqGz7r9LGtn29/azWeqmBU2lP2zHzuo1Aje43Rkbtz0rXqxHv1ljeUga/xMMYg84SqfrLv/xLvvnqyK63BBLWdaQsUfUxB7rdwG7e8+MPf2AcRYWt6zo6awvf3aNSxKRU2BQIrVhZtHIMViRoU87oaBiwpMEStWFUPRcP12Swh694+Po77O5I0h3m5YX9buDN0yNvHvecX575+OE9/+F//vdcLx9JKWCU4v/2P/0H4hwJPoLKWJXJBOb5TIp+iYY7+9+zd5qdNThn8dMstLEM79695be//Q1//ud/zr/9N/+G737xlsEZPpzODH0vBXk7y95YPnz8yDRd+P5Xv4IUUDmSc8QOgokSYPo9ps5RrTnsByKe8/RCZzqcdmQLczYEP6PIdFaTk+xfWSWcTiXnUpNiYB6vWGv56ukRFSYwGeMUfrpyOPQcDjus6UgpCmYwmYdjx+Xynsv5hf3O8fW7R3KG8/nK3//93/HD3/+O3/34E0+P7/jNb37Lm7dveHp6x5uHA9ZZUGX9iOJA7p2IBKE1WWfGywnnDPvDA6TAHD1aGx6fHhm953qdOJ9OPLk3kANaBYbBceh6TpeRv/27/8TkE10/sD8ceP/z70XpNGfG8cQ4dnjv+cMffuTd23coHKqYVy8vZ5zr+OUvf1XmsMKajr7bsxsOOOe4jB/IKdE5y2H/jh9++AEo+E3Dw/GA1gpnHT/93qMVvHl6EOWu2TPOnoxgb+c6doc9f/27H/F+EpiYI0NXk8AjKns6p3j35gmjbakZl/nVd78gxcTzS8f790cu44WQiqP3M47PNjKUzlitAAmT+BBw1vHweGSaJXM9pUQom6V4qwMxRIwqesClME1VfMp6Vd2o8qktn1cptdCKKn1EK43JFpss3hiy0dhsF2pPC1iSchIqtZZIxmSNVeLxl8I5MM2peIU0zvUlYUtoOKY7SNVnSuhdC18nhMDQN+AjpaI4Ifxw5xyoW6lfYNl4NK/rhWzpCqUHxMMeq+f/tcRvW5fEOsc4ixVbucZ1oxmGQfSqQ+Tl5YUQinJWMTiWnA7nbmuFlLaO48gw7JfIxel04nw+L/x5ARuRlALJhyUSkHMmlwiItqLprpQYTO012vuq11wAkYK8qc2ybqaTVMIsnOqWxpWLx9gYqbT+/v1PjKNwEfu+wyoxbPf7g/DvtcK6nhBqHQPRoa5UjZZ+cs8bXg9jDDlKIcQldyVFFIqhH/A1wpFvwVzOWaTzYqDrbKNOYZf6Gl8yOIDXSbDbCt33xsT2c9tDxskW/L6uf7F9TttzVIO91shQNSJ7x8ss4/N2raqAWZTH7HLOFniL1rxfqKRbYN1SSbcguL2HbdRAPHSiJNIaCzfrzx8B/vfoM/fGWqVR3khsN9GDOlfq/W/7+FPnrf1XkxtrH7bGRfuc2terIdE+3xZ0t9+rstr32nFD4y3vr/kdErW01i7r4ziON7SqrXHWPsN76339TFWna3Mm2r7bRvYAQqrnul2Hav/BarRsI3L/FA6RRvf8zd/8J/7tv/lXsnYEiVAL0FUMw4F5+gMvH8+8fDxxPD6hEIea0aWfaz5nMTQUmZRUKejn5XcMOSlyjBhXAugp0w8d+rBjsHvs03d0D1+RTM/ZJ4KbeQmZ6fmM3u/pn97x7vjI7Cwf3/8MOdL3jt4N+CkRZqmzEcPMNF348OEPXC8nYvCkGMhxJmmN10pqeu0NusyTHz7O/Pj/+iv+7//jX/Pf/Hf/F5yOkAJ+nvjF1295enrk3Vfv+M33vyx7UcL9D/8fwuhxRvHmacfXX3/D8XDgsN/z+HgUnKIUpMjZZ7LSKNMxCztJGAPaCaugMDdcN1DSaJnmqTh+JEH/cHwgx8T55Uzf9WAymIyylbYhXAdrh4Xi4zrL8fGI68yCc4wxklfS9/zFX/wrhmHPH373swj2FInZ0+lEFzsenx6Yp0nYJElq4ciCDikr/uW/+HMRcJlGjM6FfZGZx5Hx8sL59MLzx498/9UTKQem+cocMp3K7HrLv/6Xf85lmhiniet1FIZP9uSYsEQ+/vw7lFK8fZDcj8t4EsnlpHl8fGIYen784UeGXqqeP1+ei7JlBKU5n888vXuDJnM9n3jz+MD1ehUVLLfO7Z+vF5wVQ0+rxHh5FuOiOIJj8sRw5XL+gFYzmhk/ezyR4eGI046X04mdK88ieXIORO8JIXJ5EeOLNPN0HPjpZ0MOMiY+5/h8I0M1IVddwv1KeOxKS0JxyrEUABJvulaGXArYaRIqxzKpNSQNZTFQJcQpFIWqdy6DN2nKhl82j6YNWmtSoWLpQlkySkkSlLXCW1Rm2Rhu1D8oEYdSB6MaSMMgeRwpZ0LhyNYEwlzoXUqVIk+VxJVb2oVeihNKv92G7mMUOpluAEZNVhQwJPrYSSmURoKKWUL91QPXVqfeevhasNRuyACJKFUgS19U72mbKFkTOmHdtJaNrQCImtBdzxNCKM8vk2MSzqcSVTDx/onKhTWr/GW971w8i6bSnxpQR0nO33p0t0Aic+tpzlkiGPK7nHTlpgbG8YrWD/RWIi4CIHIZy2YZHyGGG0/rOhdWY+we8K/jQCmk4I2q0aX0irJRvZm391W9s+J52fL0v+TjdQRidQpU0FXHXN1YtnUsWkfEaozenv8eGL8X0diCrpX7LxHYnFmoj5XqKRtifab3KUZCIS21dcjLZ7Uu62IuG17TB7Wd9WjH8zYHob3eFhy331/uL69rJ8j6GaMotNX6Rm0EYTvXtn3aXruui7JOaYxVN/TQbR9v59L2edS1rfW6L3N9Y0ACN9EmynWXZ9OcP1YKJnWtXFq0rIHyzCsgkee1nns1aNo19t4asL3HtibH9p7b/LQ2V0apmv9RYJguUumpRPWbMb81VttnV/vthpbFl3zImAsh8v79meDXKu4554WurZTifDrzcjoxDLuFUitCP6mQDao2U3niWbCO5JwmUtbkrMTYUApfKVW2w+2OGHcguQPs9kQUIWZh9LqOnCI+ZaaY0UmhtGV4eMPog0jbOkO/f6TbCf2m6ywxeKbxStKWfndBKLRgtcLmjIpCfTZaE7znfDpxub4vSkWByzzidEYj1OX59x/56TTxu48X/vDxDGkVXYk+4Zzl6XHHw/FBisz2He/ePC0UbaPg4WHP05s9v/j2kYfjGzS6LCYZdEcm4Zt1MqXEFBXKCmNFZYWOCrJGWcEZWUWyShgnilEpS0K9j4AyuH7H7K9YN2CMAyzWdZJnqw0gydbV0W2MFRrV86lEeGTB67qenIsqU+nLrKROiTEOqyFohVGU6IcYVr1zPBz2OGtwnRHjKQvtWquE0gnnoI8KjcWaAYtU/A4hMHSrc8MYQ4ih5LEEcjbshh7njNQ/mTOz91wuV3LKzJOsnyEEVIpYZ7BDJ06NEjUySoofpzBzfvnAuzcDWoMPsRSYNIJtoydkTzWntUp0VuG0wZgMaSbMnuRHNEfZJ8JMqIUGSeSQiUocp0YhqQwIzv6c4x+Q+F03HQr4EwAZgkcZDUTIsSg/lY3PisRcTlmScknLuVSJAKAUWRuZyLFQk7IqxW50SexOZWERw2TdAEr+hKoJsmLgSJTCorRdIhk1BJ5K1CGXCEXWxcgAfAhYJ0ZGLn9XdSJrLT6uBQhDKDQPXZaoLOFrrbXIseU1pF69SzHGZXNow+WUASXgSZFVlEWp9Hf9Ti022FKk2k1Jno9G67yA4NoGAJeFc1k9cdtNqP253TzbEHxdpOo9SMEZI8M4S6VLTYZibGmEGtVGTOpRN3ut2s22GWvcKl3dGIobD2p7L7HyUZFNohpPKUkS1eG4KwajJKaH6CVU29gBtY9asFevUfu3XrsFOjIu1DI+FMWLrHXxotZckzu0H2rf5+XZtoIG/xQ8kZ8CllugXqNsr2SJuW9MbA2JLdC793t7tEBMFefFer26iebyjG4Tu7fAW9ax2j6W72ilF4nKFhi2PPp7YL7ts3vJwEvfVJtic++LEbC+WF4r1WLjGjncJli34/p1rkvhwDftNsYujoeUV8rZtl337qU1prZJ1m2OQWtovKr/0D5ftcqny30VacfNGEjJY8x6zWWOKv2qtkRdx7bGTdu2djy291jX/PbZtuIPt0ZGPR+yrhoBZBV41j156whp763d926MEb7cQ/pFChKepiiU5WpgpEzWYmjEEESU5Dry9PiW6MsYFetfKLawzGo5t1xD8IFENVI1NpRhRoG2mH5Pt38kdweS2xO6jjkkfPJkDNpaYpA2+JDQJmKtxu32dLsHkWfVYIcDJgsQH/pOotjTSMgQ9hNKg7GGw36HCpHkPafzCaM003Rlyn8gnUYSHshk26GcOLSUnznNMxc/8vES+MOHMzkKV//l9AII9ep4kKLAWimsUbx9fGSeJKLeO8u3337D99//gn/9r/+MX/+6R2cDURgKRWcKrRKHXQdaEVVm9uIg7oDKQzOLw9OhlAGVpN5HVhAzMYmkrHWGrus5XS4422GcIfqMMT1S+8PSI1TzeZ5xXYc1hnn2PL+cOe53UjU8ZYahJ8ZAjEHwpHCvScpKgT3l6LQixQlnJQc3hMRuN+A6xzEdsZ0pGW+lwrbOgDjMrU6YzjAMFocpypriUF0dHRB8KO1I5GIgoUSha5o90zQxjleMNqSEOBK0IscZjTAZTh9HcgxYzZJHlKNnvl7ovt4LxdpPUufElJyi6MmR4sxXGCLGKTHcstx3iFFqkqRCh4+zYCFV4HUWYQSS1DAhS+6o0f/IRoZeounigbOuJtFUq1/kPY0tObm1/oVOaAWdtVjjCCEthcZyEhWmYgATo6hGLBuc0mSbxHJViZhUoxUsvEmyKFPJwiCyduJxikSVUSZjrUMZKUkfQqS3TpSfcmacRlzXiQsD0M5KhUTlGOcafgXXqyWKobWWRPhCZ6oVrnMsm2q3Wzij8zzfeLB0AZ1VNrdVTZF7A3QxALKUhO+7HluSl1yrcEPleK85GUZrlBaAVpV2qpJRpwzKiPLKy8sLOWfevHmzGDghBB4eHpZFFihSwFJx+uPzy7JJ1graWmuen585HI8YZ4kaSW5WElWytit5Ghpn7A2lrR6qRD2WKIpZ7y16z5z1cq22bQvlIAZiXD3fVT4XIJZn/vLhPS/PHxmnEasVj4cDx/2evusFMGBIunqJwVrNsOsXGeAqjQssEZEtOGh/r4nD9TtLrRHniFmRClWq60SCrra3KqKlLDrbLc//n+KxeJmrzCirgVGjZi39phpddT7VsQ23Skz3PMaf05YWyLeAez1PDe+/BswrMC+RjppfFNe5vgX/lX60BdfVkZDzOi9qG67X6w0QXRwGd2711iBYPdotSI5RkhttAc9bZaT299qm1ghox3btN2MMfp6lGvImUrc1lv7Yc2g/X4F0q95VgUYqDqtKR82sBui6xt6uHy0ls7Z9a9TV9a4F8fWZVON/2+6tY6JdB9q+bed1Pc9aL0hjTYdu5N/HcRIPYjNe6lHXn+08aulTy3Xv9vqXc2htQXuhDZl1HAmHXJLifQz89OMH9rsD335jGK8zBolGkMF7AbTkyjrQIjdPkkK6OhOyYs4QkwYspjuid4/Y3YH94ZHdwxNzVMwRfMjgPSYrjDZc50AuTrl5HLFaKoArLMfHt/gQmOYZbXuJnkSp6Cz+VMfx4R2hnwr4HBl6x+HpLf3Qc/ATnXUEP/Pmwwe+/e0/Fxpgkmc/Xs94PxH9zHi9oJXCWcP59EzMnohm1l4Sma3jimOepyXK88P734tykgJy4q//8Mz/9X/4fxP/d/97OtuV+9DkOWB05rDr+eW3X/HP//lveHr7loc3b6ToobNoFNfryNB1QhOPkaenR54ejzwc9xgdcK6TnMYsebQ+RE7nGR96plkM6sENnE5gTGIYwAfJD5Y8RaF+pwzDbs/jm7eiwJVhnCR5uwStUEV+F1VrpBXzMiXmaURrw/74iB3gch358PzMYecWh+QwOKbZi4iG1jw97uVcMTOfrzwdO7QemMaRcZqIQfKArDU4q8BpolLEdCVn2O0sl/OVzia6x56u68XIKFHw88tHXj6+RynFzz//LGu30hwejux3Ozpr+dW335CjjJUwTuw6oc3GGCDO7HZ7ElKkb7CZwTl2Q4+PifPLSBgnDJr3P/2IMYLT3717kELE0dO5jhAyp3PEjyeJAhbz8nOOf1CdjBUQ+JsFNRUNckVeyq8rpYRe44t3Syu0AaeE3zqNE2jJjbCdRRLrxOutlOjTi+fFN9fTi3cw50RIEdd3WGdJKcpmA/gYJVykRUkgldCOzhmdUjFsRPFIdNTFcOr6Hqsd1nRY2zEHKZuea26FklC8aK6bGyOjhh201tIfpQJpTeqrC77pe6wxkPQSaajvC1CQUH/1/K/9fP+ZtLKaOWcp3MOtwsnqDVyv1dbaqEAt53wjxdpyncdxXF6rwKhuXofDYdn4OmuRJCkxMsgZ4xxWGzrnMMU7bYwRxagSyDNGieJGjVhk4djWvm69hy19RqhOkvPT0pfaxOEUC9c2BoxWfPP1N+yGgb5zdJ1DaXDGluhD8ajkdAMicvHItvkq9VrV6Gq9mMIhVEufSf9rQkxFZlG8iuM43oCSWsBJjHoBtKZ4MKVuwz9Qdfo/s2MbbWhf3yYdt8CszbXZ5m1sk2nrcQ/Efo7R0T7ze6/fi5y0r2/v91O5Rq1B0QLx7byt87W+XvN8al8YY5bI2dab3Z5v297alr4vQKd8v63hsj1X2/5ay6cahdu+MFrEK/4UzW8bxWivde+z23HTGpSpbP7bdq/5NmtE9F4Rxu2/e/2wHRd1fNY+bZ/bvTZ/qm9vx8BaAHCJRLA+4zbXpo6x2oftGKgG5Y3xJF+6254v4VAIbjDO0i9GRjHSgpcIHZmh7xm6megT/hoIOS5KhLkoI0FCtDScUPyUIpLwKRNSBjtgVI82A93+Der4Larbk9zAhCPkSEwBQ2JXFDhTDGRdsVLg/PFFqFlpACVFAp3RZFfYCmS0yiJ5GySPNfqIQmOUwShDjJk5CgUI67gUOeIxZ9zxgKkYS4mKXIqJ6H2RIgVrNH//n/6G8XJhmkbmqDC7Hdb1mG5AnU+E4PEhoDoHSsRJcozkasTlSFISdZH1wmJywk8w/fCeP7xcMZ1DWVH0UgWHTNeZ3sk9O2t49/Ytbx8feXo40mmDNe5m7g+7joenPbud45tvvuLt0xO960suTGSaZrQRGlSMnhATHRZrNYfDg9R8CBltapHfEr1SVWBTsMf5dMIaSQgfr1fBGDZzOp9IaMZxZp4mYuqFqQLYGMSpniRZf1Kp0MANKkfCXOZlkshOSknau/imlGgXpUyIiXkemcMVZx27/QFdlE1zzowXyf31c+ByOXMYeqHuW4t1DnIizmPJ2RmlqGCOkCCFIPT/zqFyJIVA9COu7zAqQfQQIp1RmKETwx1dsLchTFcygZSFYp+SIvmJ6XqWYoJJ1N0+5/hsxBJjwhoJJ6UUsdYUZnKzaGVR8LCFh56SCKGRZcCqEmZRCrLK5YbEyg4+LGSqWghLKUVIqydmKc5XHpZ4rhwgqkOxtAEldBUxMiqdqtAVCjUrl7+VlvwQpcDZAoKtxViHtdKJKWdyCGhryJRE9KwWwyKXn3UbSTmXkNJrCkeqmyKvPfLLZ6hJr6bkKqib87fH9rtSJkLdbDyLMZNvuet1E2o32ur52obYvZdk1epdpmm/c64UY9RYyajDSJeQYsRZWUhMGRs1x0XaV4wMDcmu7UgpEU3JAfFre1uv4rpx6oVu1d5PWyFTay2VNxW8efMk8m9W5PWW8aYVkMhZQuTe36/gu/VObgHECghkXKXsS9+LFKJWK52iPpv6d6VHyK3dFvOqi8A/hWMLFLfgbkvRqZ9rPcv1NZnbNH9/+lr3/m6PP2U43Pt9+1OeX6V1vs4ZaM95D9Buowe39ypHNa5q/yhdU1g/fR/bMVxf11qjuaUhfaoP2u+352ujSG0btb6ds/f6a9ufr+f3fUWx+lo7fip1leazW5C9jSZtE6M/ZWBsx9bWKNqetx3H99et1+NwNTglQt+u+u31tgZ1Oxa2Rsan2velHjkXKXhjsTYX+pvs8zEKDQmlcL3D2OKRr0lJWWjauTie6h4eszAhEhDQhJzxgOn2GLvDuD3d4S3x8DXR9PjCmkh4wTIZbKFyR6QQnMjiZvw44nuh9GjnMMpJDoBVi3MWxCMfg+Rr5LSqyNXCiz5EiAlnNWMIeB/wKXHY9wV3aZFqzUXaOGXmaYIk93p8uoDpyPpMzJr98Ug/7OiGA5fdM/M0SqJ0LEqcBZxqawTjpCwYrVDgtY4kpP6XH2eex4+kDAERoYkxkIJUxO6dtM8ZzZv3Zx52O45DT6dWI0MpSag/HHe8/eqRw6Hn4/PIu7cXdm4gRqk9Mk4XnDNYqwrjoAMkIdx1O1KKhISA8Bhlf68MEhHOXffYrIqKq16o1TEmYpac3Hmapah8FmezsCREGCSGKP3lEp115OIYTSVnwRpRzjRa3eRRKZXIuRgr2aN0RFtL10lhPqWKLG7yaNVhC0a2xi6107TWTPNUKPgyzoxWaCdO9RgFZwy9IyaptWW1onMWV6JUmkxnDdlajG4quRtDCDMpe1KO+BhISeHnkWmalhVJKp3/6eOzjQw/R+yuxxpHTtC5QTxoZHktJnwI9K5f+cVEIqzA1OgSZtFkLWFFY4yoNhnhoaeU0SRcrW+Rs1jVKZOLcVMTYp0zSNWSDA6sWz18Mp4c2ji0kgSbGDIKU2p8iHEQYlq8C7bvsF2HcVKsZhiGJcE5xoBTnRgVUhRj2UiMkaTlRAH0Ri8AsvWQdV3HeL0y5kzv7I1s75rkKJKQ2ghfsrcOMguXu90cWu9hziUPI0ZCSZRvqSQAOUphQLjlQreJxfXvlpcNhfo1eVFHyHmhUVVwYQvNSLSvZRArMtpqnLPYwqVs80mqgoXkctxaxW07Jr1GDe4VzpKAkloUmGrl8WmaSl0Sza4fePv0iOtcKdQjMrqovBSrgoQ2kguUQrrx6LYeXqVuJTS33mJRL3HLfU6zXz7nvS/89zXXpKVU1X6RtpuyKInRnHPGz5/nPfjP9fhjYK8e21yg6jWvrw3DsHxWEnZ1WRNWMF7B8j0KzL221J9tVKEF2/eMi0956MUwFnUVY2QdmaZpKQ5Xv98mL9dI2TYHYWvQ1vFVq1RX5bGcc0lshphuFdDqOerv2zXHe89ht1/mTmvQb59TjdqlJKpI9/JK6npirFkSv+t8aT3uW+DdGlPt59tn0joQ1vV3zUkwTX6GUrcys2LQ3z7fes1tfts9w659LvW61TFTnQW1z2rl+RoxqRHYVlK3fS61LbWQoLTDFM/mLc2qHd85yzpyr8je1rhZHC5lvf5Sj5wCShfZcK1QFDBuDeMoSkemOI8ygZAnUha1P/HwB6my7ESkwKC4eKSwXlbMKDyKoCzHwzuG3RNueKDbf8Vsv8IHiey7nDHKoq0iz+JJphT5DZPURzI5EWIizDOh0FR0cal3xkqZ64Jt4jxBVqW2VJFBNobkHM+nE7EzDJ1B2R2XacYX5STbDYjwjVC8vI+QYbfbY5VmvI5cz2fefP0dutth+xNvvvqWr7/5huPjE8fHJ8bLmcvlzPn0wh9+9ztRtQqBWHJuQ0pcvSf6IP3nJdHcaalm4PRAiLMYI1oTUPg0k01i2PUMfUeOies4Ek4zP/z0TBxHTKSoXLpFeMYahesMIU6kGFFZcRyOfHx+j/czYgomvvvuK/7st9/z7/7dv+VXv/oVX331jm++/oakhdUiVLHMbhiwzgkWsEJlnn3g7btvidGLjO7xHSkJrUo7y+QjIY2cryNZyjUScuY6iepYTgmjFGOciSGRXCZHoeFV4ZDKhDDG4KdZ8JIxzDlyna6knOm6gcNhV7C0sBgUkk8yThecSgzdwNvvvm0ix/IvZ01QGm0thoQu+TvTJH3oQ+ThsCOkhA8WqxUPhwGjlRglam7Wess4zmht6FzPlcjsRdlsHKV44stp4nS+ktlDUkXU5E8fn21kVOtYch4M1nZlQUv4cSQG8cB6H9G6bgRiQWVUqUSvwBhU1lxOZ9487cULThRFEi8KVc7KeSV5GqBYadbhXL9YoVo7qY6YRAlit9sh1boLHx8t1CgFxlmpg0Gt1g2JzG6/x4cZyMQE4+QBixncAviqBFqMUSZyCFgDKhvh9EmQoAwAJeduPOh1gR/HEVe8+Z2zr6rFVo/kMAwSmdEa1fXieeE2Ufwe+DFGKo+r3FAHlNAhpmlaBvxKHYg8Pz/z7t07gIVe1Hop2wrK4zQvm3QFxFrXfAmJomgFVmvhQeaIyprOOoyWkKK1Vqq1K6kmao1GkQlhutn0671pXZOl102+VXjJOS55FHXDB1m4vPcl8W4WpSirMHZNqs7UWhRdmbQUepsYkdsoUQt8a39XYFaBUAUTuoTLKx2tHpVPvvKIVzGBKmVZwWcdH39MyepLPLae6Bu63yfAbQueqhLbH/M612Pr0W9f34LnFvzfO1f73Qoe6/WXKvL1HkodnZwz1+t1uYf6XCsA3nqa70VyqkGxTQ6ufy/RMK0Xo7QFzdVAbmVnt/9eXl6WdrSgvaVFbqMWn4oIbCNNn3pG1fi417dt/1bw3eYatOvgEqmtxtMrw2KlLVZHR71We9R1pXoKt1GdbURley/tUWmQ9fVW3bAaBrXtbTvqeqGUFvDCbZ/ei4bUtRjWNbAdz6+iJ3fG9Jd0KBXJGLyH8+gZQ2JKnjS+EMKFTjksHTMj+wdDSB0f/vAeEwdyyKSQGPqBhCdlyQs1ktwBGEiWfvfAYf8Gc/iGMVrO2dHTk4hYo9j1huv1REA8/hV4kiWy6nY9KgSYgZCY/Ui8JMxgGcMs1ZddR5onTM6YnHFdzzhKdWarDWgpXDfFmaQSxITykWw8+ET2meAjMSiUsxilJaEcgMj59F5oMCqhreZ8vRAzmE4SoyOihKmRMb/b7bHWcTg8MI5XQvAYbeh6J23JkRQTYfYEPxOmGT+OhHlmnkZC8ITo8VH2LWMHYhJa+5RF7SjYgQhgd6TBcblc2LthYTZMSdgwnXX4pFCdQSuDZyDuHLmPKJ0I05mfLorrf/wDf/n3/4elMF3SRuZMkdTP3jN0Hfth4Ks3T/zyl9/y5umJd2/fYo1FlKckt0RAuqbfdRhr2B8O/Nm/+Av6YS9dWhw5ynhYnEKyJgVA24RWPTrL2kXBmeKQlqiAVI8v+cwZyBpixvvIFEf6ri8YM0FSZJWY/QxXcR4JC1thneEarsQQeDw+wlxkl+eENZrjYc/C3lEKqzWDFWMuJ1FxHQ4DWviDpBQ5OMm1MdqizZ4udMwx4PoLWVmiuRD4CZ8sOVvsP7aEbYxiNFiT0dpKGLcYHVrrotgE8+Qb0FcVT8SClMrfQqVyXbcoM9Ulz1hRclpCxOUBGSM3X9VetDYoxHMZF7NOCS1KrZWidTEylNJ0XQF6WRFioa8UyhWq0huKxzpKUlYKay6DUoXrmDMql4qrhRZDZDkPSpFzEJULkiSn10OpxaKe5/nGo1aBpXj+kO+nssllJIpxh5Jws4lnUb5Z9PD1KpWplS4Rg1Qqesu/lQoVbzbVuqGuORKZefaL4eVcpRsZnDUYs9LmjCkTCIXOSPV1Lc+v1rSoVDBV7tdYA8VQXQ8BTdZWWlc1gOqzgqoUo5XIxVbaXAiB4+FADDXEemUYeoahR6qKGjEcQ/EeFGO29hc0Ersb4Ff7ZVvYavGmFlphQXxFFrecW1fKk4IS9ZGh0Sb+GpyjhGXTMuZlHn7ZFb/hlmqzBW6tkfXHPr+NQtT+bQHhdq58yij5Y8enjIwtUN3mhSitUFnfaeetglJ733/saA3M9nvLPRUHResZb6+1jQZsOf2K+3S0V0nDd/pjazTW1/LiJLqlD20jCff6YNu/26T5tu3180qpG4fEdpy0eS33ztWuedtx8yljtX0WN1HjfCu5W9u3TfTe9mE7nrcRle0YaPvqnlG3He/VKbI1EL+8o9BMs+b48ABa40PA+yvOrmNO1CaFZpKSVJmuW35q/lPakpOA7pAVyg644Uh/eEN0B0JO+GRQSeGEdIGymvURiHctU+RYU5IMDwXaaMn/yAlVqN9RSTKzzuI8rPtNKiA25Sx4qW4TSqGXonazFPH1JaHYOBRaPMsachIcIPkKVXAiiUIWwuBQZf8VrLKWCGjHibUObQz73R7rDKgsvJSUlwKBKQTCNOHnmevlKvSonMg5lv4Xg/dyvYjhjMzjcRwJsyfrGR0TehgwzgEKqwsGLGwSstCYQu4RB3cCLRhgVpnsMy/Xa60NzZQgq1U1jBBwxtA7y4fnK+9fRg77PYf9nqoWmJU4xrvOYp1Ba8X+0HM8Hnj79q3QuRpngZ8DooBp2e0Mb54e+frrr3k47tFa1lJtNLHUbIFM1oK/tBamji1PXoazKLNmAjFrnLUYA+PVC+ZRgYQiIdETjOJ8PRPTDEahTJI6JgUL64KrM0XgIK841ociDhECHRpyQKR9BYdVRC75xgatM67vSRi0nUvgoFJzP28f/XwjI8SlwqSEoFcjwliR41IExquoNWldpQ1BWy1VrJWWojYZjsejnDdLyfMckyicOMt4kbChUCgzzsoATKl6EDuc7Zj9tE7R0rEp55KWURfYUmSt6yXhK2VmXyQqEU+41jUaItSsOpBiqFUrK8AriajaEClgN8kk1abmfxRqAEgoV60AEq3kgQXPy+nE09PTzWSsHjRVKqjnXD3fIrdmrF0GkbRnBQrLxpERg6xwAqsX0yhDJECMpFrgpyiCjeMFXehp1ZOmjV51nZMYbm2xu2EYJBFZS2VsZ0StK8Uo1byVKVVTq2dQijB23apAcxuFKSphzd6nlRiOOWtCyMQofR2jUORS0ux2PZQcB2eKrGwSruQvvv6anBPeT5xOmsfHoyS5Kkmi9n5mjFcJwZZJVmlJtU+3CaEVoLWbdd3YK72r67oix1YSOJMYdgmKIayW8VwTuXXh3a7SxJbrdSKlvChnUbiWX/LRgrzWiNsaatWIaz3p8DqxtR71uVQwfQ+It97d+noLtv6UkdJ+ZgvsWkln8bzfNyC2Xvh7kYJ2TAE3420bwbkBz0oxp/kGjLbFNtv7ammHKcnau6X+1M/d68/2ebT3eGukrE6Dewb7vZym9vvtc5/n+SYysz3qPU7zev9bKldfil61r98zHFaFp9t7vjfuPmVktNGe2oe1jff6qvbNGpEQgNzOh5bW2hrh1q6FO9vxX9vUjptFoGJjPH5Jh8y3iNGW7375NdpoZu8Zp5GhHzCm3HvQKBxauYInMkpnlIGQAlFJZTmrHUEZfNLMUeF2e9zugX7/xCX3xNkTMpgEjurY0uKoKvmdRmVUUsSoyNnjvUg4Gy2iJFLjBLhxq7I4/1QxnBaVwUp1LgaGtVbyVtOFXd8TvIecGHY7UXvKkILQpFKMq4c9rPUZqiMiJ9DWyt7KKvASY1yZC8WxtT8cEFZJcahmSVxWBaKTJQH4fD5DTsVAEUoSKEIM/PTzTws1PMXIzz+/53I6cb2cUVozHA6F0QI963y1aRBQGxUJR/YiDa4MGJ0hR2JpW1KC+2YKbVuJ8IwxiZAzKUI6eX5++VHuc5rIWaNURumE0pnjcY9zlmmaeXqzwzkr+EbZxQE8e4+fA94n5snwq1898i//1b/gv/pf/lf8Wf+AKxTREBLjOJf5B6RiQFlN1mtuckpJ6H9EtHKEmBiGHV3nuFxH5vlMVhFlFBBRVs7x/NNPuM7Rdz1ZR1AWZRRGW7LKxBAJwTNNc8HRRQBHSw2xEDw+KYK/klPAdYXerQ1WR8iWWPG9s4LbUYLDioFUo6x/6vhsI2O3H9gfdpJXMI5oI1x3rTW2c5gsN3+6nlBZY7GEVMJmShfQKeXcpW6Gl8lmNNk45hjJ2qDRhFz05JUkJFrbU5MI51moEiXWVAyeVd2nLtTrYi6Tw1BoTRp6Z/FePNySE2IXxR9SBiVgL2UlIcKQyCWshVJSZEYXL0BeNy1iwgcvURoldT+u8wzayCJjLfF6QeWM67qmYJxY3jEldMoMdsecZlAGpR3GdWhr0daiCnVKsSaU1g0oxojGFh5vJgXxpjjVEVJksI7Oak6nD5A8YR45Xz4SkhS8MVaMw0hER9nExnksOSkJZ/pCjzJYEp2RxGlnwNZEZ6skqlFAeyayG2zJpRHFFFEgq/QXeY7VOEwNwEQpweRkXKlmKSBejMOcA2FOHPYS5j2dTpxfnkkpcdwNWF3qYGiD0QesUaicJJk+lWQpc2tIkER9QhbfVV2qBap1nFWanrUaSRgXilhKgRQyRlv2+z2n85kUZHwaFClIjpEYO2uBQmUMMQVCmJZoUUux+acQxYC1/siWJrWojhXaWSsT3IKmFmDJeSib/lqPob63BbDt7/dA43rO13U7gIX6ds+zfuM9L6CmpU3W+1q87o0xkPOqXrb1zree9K1BVj8n8ybe0LbqUcFLPZ/WuvCgV5WzHFdZ2zYvY9uHnwL528+K+MF6/fZ+7h33wHwb8bher+z3+8Ubv+2bOk4qMKv32dLMWnrqvbbUfmuLPW77fnu0kYrWkGupcLVP23yMOs5bY692a23vPE3iUda62c9ej+uaHwer42lLrWzzer5sspTc/8PDAWc7Pnz4wMcPHxn6I8NuEEYFihgyOg2YlNEpQlRkVfI3dcTnQEgic2+SYlID2Q10h4Hj2+/Q3ZGkHSmt0razD/T9uhZJzseqbCUiB7IvzH4sDjjx4CskQr0bBmLJyTBWiv7qGCGuRXLrs65rQc27Op+v61xSoK3j8fERKOMwibJVdZgqJca5YB1R3AwhibPUybi+XkdOzy9l7sv6ez6fcaXwndxbEWvRXckLyKQMse6DWqOsWxx4OZd8x5whWob9kXdfvUNryQ8x3cD1chZFJwWPT28YhmERE6oDVBgfHu8jQVn8PEFOwmzwY5Gu98zThXkapR5J1EU2NonKJyDeyUggk1KQRHUMxpmi2KhQKhN3D+yOe756c+T3v/+B04cXzqcT7/ZPJbKjmaeJ8+lMTJG+H3j+jxP/41/9yH/93/4feTzuJd8BJGl8vBJTQOVE3/ccdjuOxyPf//Nf8vartzw8PPDuzVuOhz1DP9D3PeMl8He//x0xBjqXCOEZa+Gg9oUhYXF9zy9/+xvmeZLIl4J+eEOOMM0eP0/krFC6YzjupVSEaIUxjZGnhyeOD0eeTz+R4o4YZqkun0JJIo/4+VzGYyDbxBwUHz4WtdVMEXr+R6ZLbb1X1asUYxR+YMnk7/sBUEtSiy41G/quX6g5MpFM2RzWJD/ZCGLZEEU9QM6xqm20C61s2FDDp1tN+zUcv95DXQQqqKnJwstELRuGMVqqUKZqxa8ex5AVMZW4K7kkJ8k1ko9E7amaZVqZkk9RNZkl0Tk116qJgXKfci/CwxaKli1tiynhtBauIbdgqj4XSiEXrbVYv+UejDbEHIi5est1qfobuV6vaOMxJiyeT5mbq+a6tZbdfqB3HZ1zUgnTynlEqaBGdquRJwZCCVquQFK/LoaVK7VKG5SSSpTtc+66YjQl8VLEJItLjAGnBVTN8yw60d6jtNCyRAVNfvd+LtdKpNTIQqqVT1/buQCTKMolCQk/a6XJSSJFKUthRdUAIVgLY0k9k7UoWfsZpTW2oU+s4xVJ9tbSjjaxvnpDv2yawy2Y3HqU2yhR/Vefx6fOA7V78838/RSA3ALYT7VxG2Voz7P8VCvVgQxKldfSLeVu601uPe1tf0jOl2wG2rR1iClidsVLknOZ/0KNTJElZ0vmnCpkvEqFEi+a0C1L32Xwsxev3wawb2thtGOuXWMXR0KWWjTWmvK3zLPqs12MyXKf+RNRgbZv0+b3ru/XwqdKLRFsVYFOfb6wUBvujwGKcX9bTXwL4LeGWjs2toYsrBGD+r02f0RhMFpyAXMSLyZZovqKKu5QH3Wh8aKK173QhKEkOctntgIY91XqbmmGSyTjTt98SYdEMoRpcE1hYRiIFz8XOVeHzQ5FwjJjtQMlOZUxJ5Gq1YaIIukdpn+Ddkfcbo/ZPYHpSbovzjeFSlLzKuUdhhUDpaIit8qqL60EVpySF0MyL3VPUowChFNCNfTGds2/obfJsBC6t5K9yZjqYJV2hOARulItJCsOGK1X+i257lNVkj/RdV3Zi2Qnr06uOn5yQoq2VUerUlCqTocMU0ykIPm0zlgxwHJGozgcH3BdX+7diBiPcRgb6TqL63e4vl+KEVMcwtZalPXoIA7See6AjDWKGHcSAcqZmHzJB8n4JJKvkrQeBC/FSC6GxjRemWfPdZTIqLGmUKTADh2ps7zMinNyRPfA7u0Dxu4WNkayE4M5liKjpVBsUd28RkP2RXnKQ84dWnVoI+t29hZ/iaQfPvC7jxecs3SuW9YwheJyEtlcZzX/7n/1X/JXf/XvCX7k8fHA4bhnv9+xP+wKE0MUxsZroEtHwX45cjjsGAaR57dO0Q+OYeh4eDhweBQH+Dh7um5HSoZozeqEQqGzxmi/UPnmNGKC5notK3rFuvnznJ7/gMTvlgrgFq+heGcUtRCMta4MepZkHhmwHdM0lQ1IvMWr10UWfzFCaoJc8Xo3yYpbz5+A5WV1Xib1Laf4FqTc0gZo2ttu/CVnwNTryoRu25HazTEmYhIqWZU5U1q4j8YYYeWVCdcu7atB0yiblA1kGIZloVFlU00pleS015tie87aHbUOxbKwRVlQ1sWk9GlK6ASpVBmv/dwmQhpjGPpenr0xOCtqHkYrdDHktFr7X8qUrB6e1RAyrwGeEuBeP6+UWr2OqMLXTKQiNRyiIgTZmDvXkWLC+3kpXueKRG4uiKIueOuYqNSDtf9bWsK6WZdNQyK/JNWEugXNlPbyysCtfbytOQCUXBSzGBm1TQsQhZIncuu5rn3zpR9bYLZ6ctdntKWG/CnjqgLb7TXqeev17hkZ97z17ffao54jxog2dQ5WAC0DRunVqN7+q9+tY+0VqChgQulCs2va0YwCqtKEWsb2ajwsSCfnxfCnUU6q78WlAKR9tUZ+qr8/ZRxI36/zaPm+qgiaZR2j+cyWbtU8hPX14ghY+qCcszUqahS0XqedN9soSfv6vXnffrf9eW/u3btOm2OnSoTXGA0xkVQtJFjPpcpn5KWUJE5d5dWVUsszbnePGGOJ9t/OpW3Ox3af2BrNX+IhNZQ8ZMgpgKJUeJb+A43WFpM6MgGNLftw8XCTSFqTkiEpg7ZH7O4Ndnik3x1QdkdUloRF6Q5tEypIsbZKM5P+FAdbXuTqWd6TMSrj1Vorym91Ly5UaMm7LM6uO0bGFu/U04biMNOlrhMlvzKnSIiB4mksvVXxkNQcy6lGjQuuqpSYRhBBHLwOY9yyruScRYgggTaFBkypZ5UVPuWiWCQCPVor6Stt2DkphpxCLLkFiqw0aIt1g1C3CptEWlxwhBHlLqsSdugkTwVhH8TYCS1bG7JKxWCCkBx+9gQvlc0HZyQnJiRSCpxeXpjGETWJCIR1VmhRRhWGc2LyE3QPdL1i1w/0WfJ6jNYY7+kOYqgbLbXgcnlOhsw8T/J8nMdZK0ZXZ1GZRRjnGhLn55FUWDLj5SIUfe95+TgxXkd2veO7X/+a/+d//5e8PH/g8fHAm7eP7HY9u12Ps1J80PvAh/dnTOjQKIzJfPP1W44Pe3a7Dq0zx8c9Dw97vvn6LcPuiA+eeZo47B3GJCDiQ5BnLl4nlNZ0zsq6NUuOkHNhwerVcf45xz+oslcNy759+3apstp1HX3fc7mcl0q0wA14qqHqWtANVrnOlZbgCUGKqzg7LJaj936VaCze3NYLnVL1/pcCfNDw1iUUttvtSntz4SrWc4BzHTGOSJRdN+2pNIyV91w3Oq0tU5bwdwWRYkBl9vs9cV6l3LpOgRbpst65UgU3leSetaKvUqICZa3FaJYcjd1ud7P5+RCk4Aqr1/wGPC2yh8IfVEphnWWaPLEknmmtmf28FAp8fHxkLcZy6wmruszOOYlCyBhEIbUtjNEYBQZbwIPofQsHVTbPthJwNSTWo/59S0lYCt+liFaVBlNVocRT4pylM90SZq4qT33f8/DwgNZibYvM6crnXvtTL/zdlv5Sf1ZVp/rsbykytwCFAgzq/Yh3bZXhlXFTVKmsRSvTjOHUgATR8b5eLwvYq/e1XuvLPbZSn+3P7dEqobWUm3uHrI2vE3u3xkNrtLR/t57tbRSljpuVclPmWqJ475vaPcgCfM9QqWO0NWpbdbF6HzRjor3nlIS73c4TAVWUZE5FCPPN+/X727EPt3TLNqekjnel1ork976zUrDkOi0dqHUOee+lRk2hB83zvBhAkmN3a+QYY4Q62Bjubc2beh+tylb7Wvu84ZbiVp/dNl+j7iv1PNt5tjpJ9M16e8+gqW0QI6NIthfnnNb9jaG52nzt+Fo94PW92nftGqC0UJa3z3XbrnaMtTkgX+5R6KYoDoc9h/2Rvh8I8YqI0kjCsDWOMAtVxFjhyUt6rcLTgR2w9kD3+Cvs4Rfobke2joQlZGEsgCErUSL0XorVLXsJFfhr+r7D+9rniWBlP0wxstvtuI5jcYZ5BlPUw+o+WyMazdGO64VWhySdX84naUMWady6x4hXPaBKfkJVU5O9qUjja8n3EwXLQExCn/I+LPNgt9uXKtx1baveazGWtan10pIYbhq6/ZHD4cDgLJ3Vy/yWpyVMAx8Dc0hcpxkfEgmF6XpiVkw+UMsu1DnkU3U4Z3qloRai1YqUi3ZuoU9a53DaYqJGGY+2HuMCh0GK+JGFwpS1oztEnmxHtztI/QlncJ1hmkZiDBizUr5JoH3CanE8+zI/jTEcj1J1G0qUMkrRvHG8MI8j+/2O3dBz2B/oOkuOgm+n+YVpvJAKxpvHSZLoQ+CHH/6e3//u9wQf8Bx4Pjl+/H3kh98/c9jPxBgkN1ZJhMhaw+n0Qhi9RMQA14lwjDEUNofCdZr9XjF7qS3SdQZrIr/87ivevXvizeORw2HHrh/Y7w5YpXnz5onHx6OM0WLA+9lLbRhtloKTf+r4bCPjsD+UAaeZJ0lsqhb85XJlmiTzvOr/56wk6SRnrJUCZ6DoOqlaeL1eMaYmN9fS8pkUhWZlShXFLc8VbuVhQ1jlTCuAttZyuVwWD3yVB12UDRY6liUGoUJVVacWbLiuK96JSN/3y+tKaRxi2aauIxbgVMOfXSfaAT5G/DyXEKHhmk7EWLjKRt/Uyajgo0Yz6u/bZEGjdUnAX+UZ61G94HVi1/a2m0ynYA6e/V508V/O52LIGfq+u/HYtUBst9uJvFvnGDpHTlGMDiR6o3QNAxuMlRomNZR7k7jadQudYT1aTzbNcxWPi0QeBNyZks8RoxiW0zTy/PyRaZr4+ut3S+J114khEiKEkJbIEKyJtOI9iDfjpK1iXMegfEc8ZELTuq2RIYVs8s1CXPuu6zpOpxOVBy+AR4sXrnk2dSNJxZjagoQqQfylRzLqmL6XBNtGc1pgXPXG74HB9rwtvamuDy2Y2uaAbD3P7WfqObcee8ljKO/p15GYxUiHReWtrZfTyhHX67WgU1Dn6xoPUCKFG0b9SkWSOdIaRm27tt77bV5De89wG0mq52j7ZK0pwdKH9wyr+tmWzlP/adVEKJr7jCmRioOkPvM2Ab2NTLU/t+2sv1due3VsVeDU5ga19KZ7ALztw9bIaMfbXcMyp6Vo1bb927ncGiiyCtxS6mqeh15A37qG1OfU0irrWDgcDiiluF6vizH5Ja8jWitsL4pQz88X/uZv/wZrfsEvf/VQsAaE4LE2kPJMTDOJQKQU2lOGmI/Y7i12eIPbfYvXAzlZVDQiZKMVJiuSMgJgg+wrtnGMGm0WHY8qMLIKyEgdgZQD/V7GXM6BeRSZUmVWZ2zNQ7yZA80es0YYZH/300zXCNKQc1FKFJEW40peSpyoy1kVGRHc00meotLkIPlO1+uVw+HA4+PjK5xV625QIjDeR2IWOk2kRBC1IiuIiNgPOS8FQmNIhCR4aJpnKQ6HEuNNO2IW6WCjXelPteTBpEr9jLEQr4W6lSPUpPuclNQ3s1IOwUaFMhqdRZ2yRozq3u6cxQ07iYwYUSDVxrE/WCCDyvz880+QM0PXS5SsRK2iUuIkdA7VdVyT5H6EUsDQ50y2Hbungae3T5KHcTjQdzJ3U4yEcJUiidUp7b1gxxD483/5v+Dl5cQ8TXz15it2D99ifp4Zxyvj5IAOpQameUZdhDEyTbbUgMtYq/BJ6rQolXAWXC+qWcZZjr3j8emRr94+sdtpfvWrb/jq7SOH/UDnjBRlTaCz7EPn04nzdOFyTfz080XGgopkQ8H0f/r4bCPD2lKwLMM4TtRQiVJSATzFChbKIFBiMKSc0CotylSmhOK0mijkc/GeaYtS0lHV2q65Cu0m3W7kdfLIwDHFIFAFqMrE1sUCle/LRAtBQs1Gm+WzNWqxghjhLlbv+/peLuFZhUYm+ZwTPY5kajEZ4WpWrqhk9tdk3xoKvQ3FL57qGEmNnGn9uSxAppFD3RxryL8uVpnqcZeeUQt4GQbRsO77fgG2pvZTsVBt8RxIBGOtXiltjeVvjcqt6g3LwraNDIBM+KTuABJV+KNUwLGqeMQlka0mhavlvryf8EHyfPq+K++bxZvcgqK2HdUj3W7SC0DMtd8aSsMynwqvYSGvqJv3VwPYLGD0FRDJavn2Td+UzaLUVb0Bv9vPfulHGy277ffX93nPU/unzvu5bWh/fgpgtkeV55Yv3H725vt5zZraGirta+0YLS8I1fLevRYHxNZoUEotnqZ6ja3h0Pbz9txb1abt+dujBb01h+xT91SPbfRZHCnb9fZ2HrQJsPeiCn9qrGzH1Xrff3oM/bFo4fZ67Wfb662/r5Tde8Ze+93WsZBzXhJr6/vLz43x2H6vfX3bR596pl/aUfexSi97/vjC6XzA2ncoFWR9zZBVlHCjTiSdSEoAZVIWzBG3+4r+8DXZPDCnREygU6YrojZVhlyVOan12vfrWJaXUlpzGAUnCfapBctql/sSeVDKiJe8WCk1Z6ONtLbPVnIp1si50VrUipRUK68AlsyNo8oYoZEphAZujNCD6n3BqipljBFnYsOQqNTinEFl2dxDjFLw06hFFnd1ztR7KWtSzlKMMMSi7CZ5GSiJgizTR4GBBUtoI9EoTRQqWc4lKohgtqykPVH2U5JEHVSWxGWtipGTJBc2J5FtTUkYL1KIF9SSV1fFG2Rvr7krqvRfVkJjjKok/BtNNiKdHFMgxCC0LEBZg9sP7B6ODDvJNzFW0GJKmXzNolilNPuHoyh9xlKFXkG/f2QaJwya3fEN/f4D1ykwh4LFSn7t5BMmaZTuxKmscikyHWWO6EQ3WPaHnmFw7HYWax3H45GHxyd2O8XD8YHD4cjQGawRXVKNLpG1TCxpEDHV8ZChiDe1ecF/7PhsI6MC9ZQS5/OlCXGnJbSk1Sq/l3MSNZ+SWyEVu2U0VUNjXRil4+R5C/VEa1FmeHh44OPHj4v3eW2PXm5a6A7iIU4l/LffH5ZJqrVlnqUg1n5/KEaGuaFK1N9bdZfZVwmyW08XEpBdwECOUnURJCKhjSImyMZgjGOKER+kEmjX98IhzmvRQICHhwehLYRQqEssn6leNzFAFEv9EW4VWLz3kkikJExmFoOEAtAjMSU6J8VmjDFcp5H3Hz6U56JvcjKcXSt05yRFe0i5JFHlUlTQYTSkuG6UKfsSichLfZIK9GOSCaC1RmlTclnEQ6xVyZfwSRaO8q8CDpn8sRhBcv/jeMEYhXM9SlMqjwttRGtJFNt6EKvai6hm6Bv1nRZELRLNRqrMV+MhZxGsqAtUbV/dZEII7PeHZXPYUgfl4b5OMJWFPRZam/xe29P3/bLgf8lH632uILP92RrUdf62FBi4zRmQZ7Ju/FuVufqZLbBqwWv97GtDc821qdet0YUQZjKJNo/o3r3WsV3fb+li7T0vwLgAmbYNiyezkLy3gLz+lLF6K2/dXrv9Tsvdb9e+qizVHq1DYNv+1sioY32bVL3tk3rOOj/q2r4knENz/tUJ095v27a2fa0Hf/sZpWqe1X2BgPqZNjKwvdY9UN+2oT1fpVG299Kep41mLetju8/l2+ezOCvKvdZ++mPjO+fM8/Pzct2qzvVPgXZJgv2u43w+cz5dxDOfi+qlMiQ8ugPTa5JWYCxZWTI9tv+a45vfsn/4BT+dZq7TR3zyWJPBJvH8asmLSktNKcndrGuMNpS8GEq02eP9LMA+52UvSCkW8KYYryOHg0dlDUqjjfzMZQxUXFWfd12XvPcFH4kBY40Vzr+x+DyTgtSuUEoJLYhcDIpuqblVo/bOdVQnXW3nPM9cLhdqHawWF4UgFdJzkqLGMUkOqlZmwUDaWsk5VSK5S1ILnTylVFSiAqgiJZ1ErWuqTllABRG0cTis60RWOwSIHhVjyZFVRB+xSqOyRiWJZMQxkE0E5SFOJT/BLIIv5EyKM2GWqtZqL2qQOgvdO8W51DSTeeSM3Fvfd1ymSTAViWREBlnrTNSZKRa6WhZ8Zoym6yz9cc/u4UDfdSQyUxTmh9KK8+TRpWaYMp2gSZ1RJjNdR+YIc4LsPU/v3vL25YWPp49M84RTjk5ZiRgFj8PyeDxyKknfWWWMtTgLfaf56qsDT0+SCD70kmOz3w9YZ8lZ8OY0jUSf0WR2fc+bxycuF48qhpqzlsO+YxwV5GJ0Fengzzk+28jo+2FRfup7iWCIF1ikYKWgW1jk1uokaeX1Ws32lgMsvPtVevHp8QFnHVpZpnEu15d8hZ9//nmhnVyvV5zrsUZCbdfLJKFU2xFDoRcZ8UZIyFoVKVQDpbjfMOyW8OA0TWViinTbOI+yOWSYpkpFMJLHwSxeDAlSLW23zpTEaEfXdUw+cDpfuERJrrmePbpU16x8/0rTqQXu6mbTblzVkzHPs1TJLq/ViRxjFDm75Znc5iFA8TgoRdaiIGCd5eHhgdP5DCkxj5NsWmUTmqaJp6cnMUq0Zjf0SzLTvj8UL454CUAXVSepD1HrWYxTfUblXpachUgOMiG01szzvIybujjXceOcI6VaAEeO6/XKx4/vsYvXp24CqwdIF/WsEMIiVtB6TmVDjwuFRcZ2X8Kqomx2uVyAdTOv/wQk11C5SCs75+i6QaTlYiJGSUTf7/fLcxCPkVtyMiqg6XvhavswQ0liXzazYnBvPb5f6tGCoi1Aq/+2MqItGN1+vjoGWlBe51Xbh9ujVfaC1/K49Rrba4mXUJNSAG5rebTPpwWxtY2tMbPtE3m+63e3nueYUlGuuqXeiGHAEoGsIOXeOdoxXA2RSiNanAtNhfo2ggzcvFffb426CtK316pUhRqdplz/+fmZ/X6/CDVU9aNqaH3KuNger411eZZd1y1r5D2J4/b3eq02/6qOvdWIWxPo742r9vyLkaHuJ2PXcdOO367rls/WKH47duo/P8+sUfHbAqr3DqVW6qZS6tVz/JIOpSEHAb1dP3A5X7hcLmSlcKYjB6mYHHUgG0VyljkbrtGR1AE7vOXx2/8C3b1lSgP7hwdGlWAWidhp9KSYBQRqqeGVSoJvDFGoRsaUiH0uNOwr8yx5mbvdACEWakwoYisCYKdp4no6k3dwOBxR3DfC68/bHB2DAkkujh4fDCZoLtciN5qF3jNdZ2IS8ZicYZ4D5/N1YQYYbTHGcTm/ME+ezvXEIPWYnj+eSHFdQyWXSsZi10t+g7UWK+AHXaTpldZoI1XHc0yM47jMuyrf3N5b3dPIUrdhmiZ+/N3vFhxwPB6F4pwSVsG3T4/4UqsthEg3DBINzQl8KX5sFJiZNAu1GGtRKZSaEYF5FMlcay3WZHycQFsMrpQnyGKwRLmmVB63vFxOQHX2KFSt8h5mfJgXQ3IYBsFHpc7YHAPZZ3TORV1OnDKjnzjsjtiuByvAPxUH5RgCU4j4mFAEfvnbtyh35sP5bzm9jGg8RgXSeMYZRb8b+Pb7I/wQiCnTOcvx0NE7TddpHg+Wobc4pwrV3C20y8iMVtA5y9BpHg97coi8fPhZ1sCU8D5ynWb6foe1HSlloiprrflHV5di6ejD4cg4jgUIl3oWWpOSXjy9udCQjKkLdZWrleiDMbYMPEngEs69Lpt3DdMVD3GIJVy5ej0rGFUIX271sK1KTXVzmCcBjfU1XQql3f5b7zNnAY+rV07h/ep5tdaicpGbTFIsUECuVMWs+R3yAEXu1WoFzpHmGXK62dTq/W49catHvbyXEiElFLWi+qpiUkFZTZrcnldCvlqUA5QilxwCay3H45HgIwSE19kA9Rr6tcaIkkaKwsm0RTElI4twrqo6YmBIBKF4Zu54eWv7WPJKVnWOhdKmJYKQYkA8gooYWYzdECL7Y0+ls7Ue2jbUW38IFGwtAAEAAElEQVT3Dc9bjtvQd6vBL4ZSKiHaQgHMlPwdCT9XRbL1qGNJU4shtR71lCTJNca01EhZx92t7GXrMd1697/kYxu92L7XHvc8xfX1289W2sLriMgW9G/PsQVmW1B+L0JBocu1oHFr/Gj1x++tfe3m+qmE3O9cXyuhK7TjYHlf1d9vIxttP2zHTsv1bteKlj64bce2v7aRhHa9acF0uz61363SmfX7y/k+MRa2fXL/+dxGJep6mjM3z7ztm3vj695nt+251x9t39Zr3js+Nb7r0ebF3OvzjHio4ZbGdu+oTqP63S87klH6ojG+Y/G0K6OKOpeSAm1aE7UjqwHMgDYPuOEJ4/YkbUUlUiHiMkTGJMnUqqgYOVOFDTLBzzdRt5TSkgs1FxpUNWzj7BscIgV1jdZYY/Czx5oZtS93UwzNNh/jer0uc7JK2lfaj9JVuVHUjOZpEo+zk5yCZUlQagHYMUas6UkxM8+eGDPjdcTPXtpmbHHS1b1TsFrdU0OQvIMlwmEkGd46izZC27IpS1K2rjiiip8EYmzz0BTWCE703oNiKR43DH1xBiT8PKNVBqW5lvzenDI5ZmxOqFT27xhQJaKa4rzQyoL3ktReDB0AbWxRzjLMUQoakiUqk1Mi5lzEdWSVTzEusvjkMq+zsAyC96icBe9pKUxsjCl5O0YS+kGMMWWWPqgGVtdJJfGARIjnUj09pSTfMYp+bzk+7fnu+2/4u78ZJbFba1JwWK3Y7zqOx57Tw0AIGWcN/WDprMLZsi/qAmjJN1RcrbTULDMGZxSkhCaLQFEMJPIC/GvdulTo7sIk/0eOZLRexN1ut6gpVRAlizVLQ1aqTAVIq5EhmupOwmfURN9YsvpXg6EOyBDCYge0C3JKiahEgqtO/Oopq5SYEGQBqJtmBXqpPP3aLhCAvIJ8tUwouUcBmwvNAUMImZAiXfFCCyilWLriWbe2x5YBqIxZJH8rIKqbeq3wmZIipdsQewsSQpQq3ZVylZIofA3DjkqRMlrk5eZpWhSlJL+iKD6oQhtAjIyH45FpnLmexhs6Thta10aqeMpinpi0ou+KVF0UaTqVIGcB2HUh7Gwni79qNttcN+c1ed26npX6ZjAmYowtXrsJY6oxm5nmqXj30hLhUoqlWnn1OLeGW0s1ql682pxW6SyEiHO2eIBKUbJC+avjW8aGjOM19+O2XkYFBfW89XXnOrwXre42+XkttreChhaMb+/hSz3q/N1She6B6i215lOeWl1r0mxoKS0Y/5RR8f9L+1dwWAzQBsDXsbAFsKtD4TM88s21ZPzVvin1FTbXk76s4/nWk17BfUvNvNf/raexev1b2kZ7D61R1T67Cui3oH3xWkKhMPiF6lPV89r7pWza96JDn3om7c/2+m1hwdZ504LsOtfqdepectcIbMbTvShR27/LnnhnjGwNjPqdZc1iTeKubW7nvlJ6kc5s27Pty3b9q0qN9Vl9qUdK1WlW+r3s4eIIqn0JWSsCioAjmT0qH9DdI65/AtORtBavLIHOGRSOFDzncSSqTLSKztniVJJk8jYhW4Q6JGJf509VZvMNBTvGJOfQGmedUIfMXARTIMW1mG4dmzXyVyNZx+OR6EWVqRorCpjHEe9nhmGgL1E7tVCfVSnEt7IwJDdiRCnN5Xolp0hfovwhyJ5cWSoyZoRBEEJgnGU8uuINl/oarhgZmq4LUtfFCDiX3GFJSA/Blxoxqoj8yDWqImnFTm+enpr9W5zLWWXO01hS4GQ97HKSnBbE8RmRKG9gRiqOZ4IXo2H2nuAjShuMlQRxpVQxRsocUpRK6UlUOZH9PvqAr3u1k7Upp0SOioBfDIyMOJasNhgt+RYpJEQvRqNKnRLvPda4RgSm5MT4met4wZdih1qXmmJOcXjo+f7Xv+T5wx9QOdNZi2ZGoxj6gd2+Y38cCEHou85pTKFfSS0LqWyec5U0F0NUJIDln9WK6CeM0uw6x/XlukjZikS4KvNM0vGzyuR/7DoZp9NpUUP627/928XCFU/UrQpKnYQyEG+r+07TJB3d0KqstTw/Py+bwMqtTozTqhJVF9BpmpimSTYoVovYFCu17yVM2HUGayOXy6V4xgWo9v3QRFVuVZoqDQYUk59u5BVtoQKJRKt8rspGSnVmi2hU6wJAdPHCixfycr2UTYd14YiSEKWNJaOpe1+lk1lrmSahMRldksSoUELT9w4yjNcJ6zS1siPUBGLhHqJWKcVpHLHO0mlXBrhnHKVPbck9QCk6J+dOIRD8zMt4oesdw9CjEYqTImNL4TCpJhp4eDhQcwvyMsgXbQhpXcp0nV02DNd1wnPPokQWY1gMPckHkn50znK+rGHoEDz90NN3Pc75ZbxV9az6rwVC5/N52bitdVyvIyGsBRoLM614dXKZlLfRBckvUYt3o+/7DZ2nAo/VODFGc71eySnfGMPzPPPx48dybdlspnmk77sFJApdKi9iAl/qUfuopTS1gLRu4hXotnKgcB9w1vVlm1tQ16sWaN0Dottzfeo6ldYn48auIU+KYSFnoCZfVsP61sh4XTeljcRUy3cbCQGKpv3t86+GRJ3zi/59aX9LS60Sv+1ti5MllKhxdRit526Bb72H+gy31cVbp0Tb721/17lTZ0hLS2qNjMzahi14/pxj6wCT767v1Z/3JKbrde+NhbYdW0OrpT2t9DOF0bdGSb3Oso7E2yrdyz0312n/tf1d7+FVZKtpb5vz0e7TX+ohz9aI97lsqDLeKIDegDKc58R5DrxcEoFHsj6S1QNB74k+oncR3WmyT7gade87/HhlGkeulzPh8QFtNLYMjZaKvFa/DgVHxGUcaLMW2Q0hlDxEcQD6eYasuF4u9ENHpfm2dKKcMy8vLzgniboowT3zeJXIgvfEEJimif1ux36/Z7fb8eOPP4pDUTlCiJxOZ0KQ8VV/j1Gcc2TZu8WZV6MYisPheNPfzlmJ2ORSSLlgoJePz0UAR8Z/33UYZ9GdQZnVgXo+nzmdTmKEFeaE1lLs2M/Tshc8HA/FcamXAnFC68mcwowpeRbOOubkBdCjyDoXrFMjXGLYTT4SciIEcd4Oux1KGeaYuX78iLKawTmwlvN1wliLUlqkdW1HzJmXy0iYIrozkmuC0KgMBmJxWCoZkzoZVDKopCGCD4GsNbpzZK2IPhOmxOFhT86JabwSguf540cRBCjqYFoLrT2mxPUyAZbvv/8tv/vhd8R5xijFzu2I3mO0ws8izIyKoBShKQaLsSJha4SqVR3g5ITKUvtluhr2bk8Ogcs08tPphX5/wLodpusJGT4+P/PTzydizAQk9wP+kY2Mlm4CK+9X/tbF0GDhs8s6KptvTJI53/Wd3GaWsFVKCaXNwsGrHHkAq6SgTkYtlWRTqrK51YuYK3NB+tMI19AYxzTOsnmmcJMXopSE6AWMVm83pc1yL/WEFcBTpMF0rcqmM9Y4ss5EnYQ/HzLWwmF/FFlcJX00+RnXdRyNYTgcOJ8vzCHgZ6lOXadGSEkUD7IixMSwK5MtZjFAsqg0WK1LIRuNNZZV5UsRYxZqmV3lfNsNUgp9Cec6k0XNIIPTBl8ASKibvlagxQjUJU9EGQEAPgRmHUpxGUXShpxn2RSNXkOlxZOnTZHwqyG24mkKcSrJY4acJfpRLW3XGRSZmObFCs9kYgqkomW93w9r+DKvydctwKoLd02AbaNTMoYtOa9VUxd1tMxSuKiOfyigiIy1moxbQEqVDxUpQy/jKCtCSmgtQnySZAc16bvSwlJikXaW3KaM0Q6yIUWKakgkhAz5fp2IL+WokaY2p6Aahi3Y2yYsbx0YbZSnOgVyFm9RzmI8rqpyNdrBzWa+evPbRPIWzCpqSLi25TYJXao2o0Ch1+8UT7R4t4qMYyl0KQIVCM0wK1C5eLrVMv6BwuOX+UOmJISztKX23QJI9X0ALn0q9AQwi6wusFbJzqVoHHpVuymh8lpzaGs0LEC5/lc8fCJyIn2wgOTCZ89KEarBo+paq1ii8qo+3yyCMUlebPecdgzcHoUOoNrk7uqVXfvt1bfUbYSm/r0di58T/WqNklWyd6WktX3XesPb798aAALg0OJFNNoUCkda1urWAGyN7O1zqmOl/t3WNPnSjhsvNCWHL8o6GmUIklLm+er5eI1cpkTWR3zsyR7yeWTf78lzhKzZdT02G3LWBK1xVjPPCT+PXC+K/WGPtYb9sNY4uZl31Ch7u1eowqyQyEXwAa1qFEKoUzGICEp1EkzTtOwn1ZnRdR273a7ZZxK73X6hU8Eqi30+nxnHCZQXTBET1+uIVqbk45yL80Mcd1L7QS30nMzt2oii0PEED1hjS1G7SA4Ja7VU91aKHCXvIOfEPEdQuVQIl7l/OOyLE8PirCNEoV9VI0eb4kQt899oSYbPORFTJipZiWNOpOSJU6Azhs5YQWxZ8jV88uTJi9On5N7KBpDBOKnHEQJzuDLsBoyNuCgmiqnOIm3RxhK853oVlSerDEYZYoggtYEhZ7St1EXQykHWsmfPGR89HvCTJ0wSmUlJjIvxepF+zZnpelkiOUZVNU9FChnnHkR9Kim+fvdrXj5+5Ho64WyHSjOkxHgtz4SIsOCrU03GQAyWZBRd3btyFqUesjBuYuB6PtMZhdXwcNxjXEcgM/uRlOH9z+/56acXGfelNkpOn+es+AcYGRmlVi/tChKq5S2WeopFOiyLTKssk+JfF95f3aiKB7BMxmEYmOeZaZoLKBDnuy5evtVjk5YJnVJcCs+1Rd5SyqK1XgZyXVxb72ldDCoIqZ7E6nkGFknXpcpnBTYleUruQxLBtBL9CKMtyq4TNc+zeDSco9eKEAPxmpiDF46s1qRKxyl9Uo2ejCKmiNVrYnmmGBlK1JlyLF5AqrqOSPXW/tXSiSyedUqtjTpAcsYoXaTRNCFJATy11UBWjees9K9Smrw86yQtVlL0ZvWYrh7earzUvT6FWs1cIjBKra2UZ14KCC0AJxFJpCzfq4A1Z5H+bb2LbS7G1vO3gg3ZHJztUIRlrNSqlhV8tl7wSmlSpQ6IUMhudc5rLkcFO1Unf1VYWzu18l6r2hpI/olza10WeVaRWs32Sz+2xkMbwdzmArTPa/XIb/MFVv57jYzVvCsBVZ+SM11adK+VjaHBcv3bPJIt736dY+UMMqfLCxI5r7Ldt58R4CQfkvncnk/kG6vp0hpo6zxGjINqlTRtXg2pek61fifLGo3K1OjrAuJUXiKKdQ3ePj9VDCkBt2lR9c2ZxfCpfiBR6inGnJJrkpvzNv33xyD91lhY8X8F9XF5/V7gYxuZ2EYsWiPgHsWpHi0NcnvOhXK1rOebfmueX2t037QrrwOnzWur19pGae/1TdvG9n4/NyL0n+dRo/nimQ2pqDlqS0ipJO/CeVRcJs3kDbielDQ+ivfc+FnmI5pd72R+qVzmAXL2Qlsahh5jLV1VViqOLFHzbCNvMrdSoWLXXFVZlwR4CyNBxkWKodxDS69bizLWIrhCsT0vRrdzHZfrpVDMjYD5JvqYkbHviyqUOAltcZApjFWLuqQCUvANLis9XJwaOYkCldC9FMoUp55a6elaaZFN1dKHKRfwmoSupLXG9SIeo41Go/HFYBJ6t2kcSyyGtdZaogIqC6hF5HETmdkHcoxkExdV0pwzPkmtKWucFEicw/q9DL5Qlmbvca4TqlrFgFooeFWyP6XMOM10umqDIeqaxWFSc07EkCmOoSzWUIpJCkHmjFcsjmelgEmSxnMSo1McEsVxXxgPWmlSzFg7EImkGDg+vMVPietZ1K60gpQDs68Uy1wwWMnXQpxEMRUcZQWvpIJxdYP7YoxkJUUWrdUoK+Mq+khOltPpxMvLs8gOU9Ij/rGNjJwoScN6LeeeM9fLCKxJ0rnoF+eE8OBUAfYWdrvDQpeaplL5tsjfDsMAiGfneDzIQFciP1vDZtU7VK81jiNi9dqiIhKI8SI5GMounro2TC+KC/JapXPVitRtPQ5dPA0gHsd5njkej1KQx9qFX5dS4nh8WDaW6/X6it5VeXshC7XBdY5xDrx//x7X9wxF7lTuS+THqiejLhwLt78BSjGKNB4VoEDxmiDej5BkGa0qJEq235brmwo3SKtV0WeeRTGh9lWMEVu0n1cPJrJgKC1J+1m8ITEmrpcrrnOLWlbKGWKUAjkNSFupGJHKPhErfOWkKqWWqFcIgcxaBbj2g3j/5VlV7nmMUjypUmfGcbyhz4jBEPCz3KfWGhUVwQcCEvno+57z+XwDbFveeuVz1tfbpEA/x8ULXCdxTeCrba3Jgi3doo7Bp6enpXAkqMXzuJVz/dKO8/m8zN+qcgECnOprLa2jjT7VMfDayLgFbG2uS/3MveJW7fdXOlMLyEBA99r+FnS2YLSOgXs0rLyZs9YYKM6ZaijXz62/316vtk0MUvvqXsTQFnpk2z5XKI/V+JDbu72He22VvDNFZHXArLl3DdhuAPSWWlXtrq0Qx3pft0bf4vzJmbihhbURr3YOtIbW1lj41FzZfm4bFdqOr5Zy1kZVKl2sgv32/Mt+mHhFcWzP3Sa9b++j7k9b47Ydq/Vadf2p+1nbppV+vPbhl6wulbMu8pkCmKZk8Mqh+jecXq7MPjH5zPN0xOOgFyn5bK7M48h5HJlf3rPb79mpgTAnlBYWxRxFVjUrofD6FIT2Upyh1+tEVoo+KULQGCNjKARR91EaYpR9MVMi41nEixJZKmtpAYE+COUpI7mdMebl89Pk+eqrdwzDHlX4/eKQFZWnhGaOM8RIyBLlstpIRFwXFaBwZnCDYA7jsLYDrTDO4oYeo6RgYKjqT1lqZGkj/wSsJkIK6KSwWUAoRrz+tqd6ElAlETwr4forpTAboxylKoEbH0TWVu5P+vawPy6GRs6ZrDPJAKXmlLWmFKJMTPOVMM2cgxQ4dLYI7PQWYy3GOrq+5+Pzqcw3w+Vyxs9BmAEJSKUumff0ncU5YVyEsq9HH7ieL5jjkZAjOiBjLs4SsciJkBzaFAdNUe/KKGJO+FTrpiSu81iczQaXFCF6ck4lkmVwhV5nVHWeijPZp0xSgaxg//jANE9cxzPz+URWCXQiprnUJqnGjirR5FSCFWL4xpjluhishc51HHY7HvZHNBGrMjEEzuPEThtSCCQfyGheXk58fHkhZCuFFMn/+BK26wTPC7iui+GSvFuKvFWQCjAMQ+lcu6hbdF3HNE1ipVuH1rYsxBprOy6XUeTAnEGSjirtRZVkcQmF7XYH5knem6aJ63Wm7/tlAZV2zEsyVgXRdUGvi7L3/saTVDcbY1at6ErfaDfEuknV89bNo4LzaZqW61HBwULF6gkhEXzgermw2+8Rz7ZIuz49PS0gbBzHRd96nq7Fmhcvw1AraGfJiSAnkpJ73wKgUq/mxnNmrWUcR2YvOtnViGo3WHmWQufqivHQbo7GWNGzLoMuKwXF0JynIIuE1qicKbRGMhlne2qhn602fQsQVq5zYponpumKtVKhfFuHo0pWnk6nInHsFt7z9jnLOMicz+fl7wrgcs6M4/hKzrN+LvgI6rbybwXDNV8kZ5b+rd+tIgRbysRNCF6pxcBQSnE4HJacpS/dyGg12Ovcgtce5Zar3s6lGk1qjfjWUKvzsq4/LU2qHfet57DaBFtPtVzv0/fSgtMtMK1HC8oXSovIsN18dusJv9ee2lc1N6Rdg7WplefDK1qRqtfkNaC9d6wGW2uIrAD1ps255p/cMbLKjzq3b40DFmWk2o/VsSJAxyz31zoUtv27XYtbhbb2M/W72zWxfb99hhWU15ypev123av74HYMVDBf1Rdrv7dHa3C1hnQ1aNq2b/ugtuNG0rY4IZRSN2t/OzfqfX3pORnadPg4k3Lk4enAx5cLv/vo+emUOF01PigmDz8/J3Aa5SzGaGaViU5ogR9Pz6JaqiyPx47JSwL1NE9MXiRgU3WaXUeMDSggRg9eM02eGKszIEnFZ4VQbfSOnGZhKCgtFcSR6VDzNkDqcIkHWjzf4iUXALzrBw47kYk/vbzw4cMHoSZpw9//+HtCithuoB8GcVqkDFFqWY3XieAjOQpVOcbE6UXAdnUUo0rWZi6KSjEuNRG0sygj0cvOdVwuZ2KkUVCyYBW270uydMkVy1IyQFmR6xWv+eoIJGWU1syTJyShgQ/DrtSyUFSZXwp7RewZhcoJ64RmValEDitqX7NHK1sqoGuSCkyzZ549l8uZaZqx1uGs0L2Us2RrIFuckZwOUmS8TszTBa0NznayPqeIESgjcq4x02mpUaKNUPPQiaQiiQTRF0aLYg6ReZ4AmauTn+l0hqywSqTuQdaRoe9w1uCMKcnxQEGKykl/W6dxNuP9ER9GntPIeB6J0eN6S5jFyI0xko2oVgmbQujDEgpSRcCnyp7vqUWv4xw4j1d5htYxezGCrNakZBYZbu9HYsn92Baj/dTx2UaGDwGUhJJilIvIhlAqY8qOJEoDBSDEEh5PuSZYS7GS1oNY3V1tKD8l8coFlQoNRrxiKdbkJAGHIvgkg7ldnGVzuK0RUY/WkNjquW83rFo1vPWe3Xj6NsAGVjWhrZJRRgaqs5aUJcwlycN56RutbVnIVp7u6nWPN0opFMOiLlKq9FslHFQPuLTvdTj9VSJh6aYK6OsmLElu+saQMg0w1A2lqLZXaETynLRWC6BQ1KrnLdiriabrBnrj7SyAsSpbSfRqPdYEy5L/UTZr57pyH7dKP1uvYOuZbPtl6w1tjQkZO1KMqZ5DEmd5ddT2VFB7E5XaXKsF0jU6Uz/Xgpcv+bjN5XotaQotyH09brcgs56zHu1zVmrdsG7zcFoKyX1J1tVgWA3LLcBun199/57h0LZd/kGdm+17t17++9+H1wB12+729UrZkYDlbRTinmFz+/N+cvztd/PiJGiNAjmHfKIF/kuEqf1Ac876zD7V1u19t+2/9/lt/3wuwG77up5vu/Zv++/WcG0MxY1zoH2vNdzae677SqsK1n6mbUO7NsHt/tHOo9a4/NRz/RKOjOQkkjNzjHS7PaYfOE2Ri8/4AHOAOSqM1dgC9G3fkQqj5YKn5gLlJLKl9Z9glrVf61rc9SuFNcaI0R1KpUJVqqFHtZ43Q92RySwORmuF5uy95Grksl/72QutKksxOKsNIQbmcSLHJLSZlJmDx/Ud1rmSrCzrlMoagygfKg2VFyP1DjzGirx9TWDODTZLOWEo7zVDo+ZmgGCMBfOp1cGcchMB1KbQ4iVfphLbdDFs1gizFFCWebnmE9VjMbwRYJ4BVdaNWo1da0M24DokB88oqdNB2acz2BoVoNKlyzzJqhQpLHlk5TqSo7BSrSvdLVPXd0qEqjaU4tUv51UKpaRf60dqwcOY9HIecbapEtku9eOMZP1W6ldCjLKyIqKMwXWO3W7A7/dM1zMxR5wqDrcylheHmqpGcKHhwXIPqHXNrLkzVflQpVwUuiTPTrGuOyklshaH/+euIZ9tZIyThGSsMUR5UoVfKEVYRMarLI7WglIlhJikMM1SlnxNtqxGhVDb5GeKwj8WpSLxoouKVBLvcW685LMswDlnrteR3e6wAAjnHHY2hIbmUidCpa60oL12eBsCr17tlQtfN9RE163e/pp4lbMUU2o9l/1uEAMhRqbxSj8MGJdIecS5GUIilsna94MYHsVLWb1h1VM1zxOH/W6hKVEtVyXWfQgRU9Zf79fKvCvYUtREryqZulDE9BrVqG2Xa4o83uFwEJqcMRhrSSGK10OVwoqLF5OmsFaRC85lvUvra1rbMolrAa9bBRVYwdSqOOQ5n888Ph5RZXzJeWpkrdIHpMhgzZ9owWDtkzaxs1U5qsX36udqYa4K+FvwoXQ1jNe8pLav6zla2ll7/i2F53K5LKprdWPbAuMt6PjSjna+1Xm65Y3Xvmo3nnUu3oKmGmWE1UCGNqlbxnythF2fdx3nLVBrr1e//ynlnmXBvQPUtyDzVZQjvwb1r4Dp5mjf33qnb8Zk00atdakUn5mmeVGZqQC2VXbaPhu5ZrMpNbzx23bJ/1rwujVUWhrhEmXZ9Fn9njFCr/RxdXZsN7M/9vq2/9r+r39X8LA933aNyHlN4K79W9eJe4ZfNQra8+e8tqF9Lttn3Y6nOg7rM7pnGLWvVQdbSyluP9NGST8VcfuSjpgFcJHhdL3y/W/+jKd3bzldPVPQ+JCZg4A7W8ZU13fgwHqHNpa+91LjQStC8AtlqK6vrUNnnmdQCuuqhxhyrupqQSIGWoRXWJ5jqghP2lzCHpVVEYmM1yvzNAntJgSmksxtjOFwOJR8icg8ibRoDJGUPWhRSpK9daVNa60xStP3Gq1F3XHBOiGwH3rJxSjc5JTSIp+bkojbWFMj+Wt/VwOhHft1baw4YlEBVKvYhdT1SELFNmaZ36NSKGuFjtlQIFuHWn0NJZGMOQZiDhINMTUfQKGtRplO8jpKsTntTMET1WEnuSmqRHzWCuhh2ReMsQvFM/hAjOIUNsYKjUyVXN4suSSpWcMXcK+E4gU0a8DKmknRSIREK2znsAWHVGEcikR/SunWWNCSS6GM4JHdMKCennj++H65T8mmW50a9XvE6ogWo8XW/bBQ2iR1YUKXCHhd847HB0L0xNkvRltlZ+Tl3j8vP/TzczIoEQSt6AepVh1iYvZFBUE5dLEOlTJYZ7EledUYx9APKKVKTsZMSpm+E6OirQiZc16AVh3I0zQtD6r14FQpOZkUqRQ4keJOl4soKfR9Xzbala5SP1PzDio9qAVxWmu6rqd61aZpxNoOW5KoTHng9XuVS14pObWdlWfuAG2NbJ5E+r5nHGdimpeNIcbInDOpAMx6P9frlV1dVOK6oaQYcX2/0C/GcaTvHU5ZYhTALwBbJpPWdjEe6kK6eObDanDUhUMpqYlijObDhw989+03y8A0WQroJJWK9C1lcmV0SVSXyMMs40C/pk2s0aSaOBpuJlZdxOpnAfb7fQHgwmWcS26PNaZUbL9VWhEhLi0FBzfnl3yVNQrVbiz1udZxWcdaNTxaD3bONbGr1tDQOLeq2tSxWg2HSifcejHbaEq9Rh2LNV+j5qp8yUdrLNT7yfm2mvKW8tMC6210qJUOvQei2nHennM9x21VZ1ilrLeUnTYiBXzyeltv942HW7321C8AewMo2++14LQ9t7RXOOXWrv1mjOF0OpVxqKjKVu0mftfzXj+jJeROk4r92jhaDa2tES45InkxAmGl1raJ7dvnnFk9nq2xtz3adrfH1nCp7WnbeM+Qaw2N+nd1mNS/W4N4ayBUgOica5QYb9ufc17UDrdRvbr3bQ3P1uD4lGFV27eNqrfnqPvU9ntf2jHFLA7PbuC7X/yGf/4Xf8Hj26+YdceIYkqJ0QfJvUiRLs4kk0g6kZSIbBwfjhgl6ozn85nMa2dCdTrWtXe8Xpn9jNYZrWaOO42PQnlWGXKMRLzIsqqiqFYYCDEEVFYMXS+0pyxjaxpHcdQCsUj7H3d7fvP9r7lcr5znmelylXOkhHGW7379veRwJElaNsW4MBnGq6gBzbPn+fkD2kpU//HxSMxJ+P+dE8eBUlKMkBr9cmXNOEutBSMyvaZW9d4Y6nVvrM4MU/Iyan/Vox1/tb6aLeP/9HJiv9+/yhFq1/q6lkgSuuSg1PWJrKVOl4ZEYrxOQpnvBT9+/PBREvSVISvJHTElsZwcGeeJcb6y3w/EUm5gtzsy7PYkRvzLSST7m/2osmisdVjjSEgy+jiKkpes8SLA02KcDJJMXSIpSss4AErCtaWzfcEKMyFK0T/IErGKBRv3PQ/77zidToQQGS8XdE7orErRwCaUVnJcU5a8ohAlCOA6VzBIKNi5I5f1xVrLdbyKkZrEqB8noaBp06O0FUr8ZzoqPtvImLxfsvT7YZDEvFykBnMixARaklxqleec82LVVi//yj9fPelGr9K3xlRwn4vnTZV8DdF5r2GmWmm8VlEUo2EF+KKEm5d9rG5alfdbgUlfCum1wGEFmy3YqVSPYjS4NUejbhpbcLRERgBVgGNIa+LdbrcjpsTkPdfrFa0NOLeoWtTk43XTrOCCxUtSQ5210E0tnNN6xJaQXxl4LZBaQLVegX316CileHh4oO/7Jfeh3pfRoj5Q21Gt23qtlNZxLv3aqC1FkXWV79wq5bSG5rJxKy2VTeepGCq3AKI+ZKX0EsERjXIDSeqFtECxbrytUdH2Vds3tU/qolrPI1xtv4yRGDPieJEInYC+vHynnq8FMvXv+ns1WluDt47ZVtrwn9KxBfFbI6MerQdtu9nVvysYu9mcUuUM31JS2jF3K1vbeqdv6zesRmV+1aa62bZtb7/X/i0NeX1v2/bda9OnXqvRs/a7S3Rh8716nVdt2hyVHgFxiVJv25DEpffq3EoJdaGG5V9FOvLahntH+4zq97YgsL2Pm3a/MoRWY+DeM6lH6/nfgqrtc90aONsxstCjcilk1Vy7zfu6Z6jUa7cGz7Yf7l1/2xf3DJIvPRIKkJRhd9jz8PjI97/9Z+we3oHdcfWZMSrmpPCYJRm5UoIogjXaaFKXi1aJeHZ9WJkDbSHX1nBbosvIviLdmxdDO5d9WE6cl72xnkNlRGGtCAG4UkODnIuRkkBLpeqff/6Z0+nEeL0SfcBos8yzcRyZgwct1cWlGjjkKkaT1wKzw7ATh6+1xGlagCcNhlgPBQqmaQTcev+2g4yoTm7mXptjJ1ikiku8OrM8u7rnwYJV6ryo2KydexVE6Cw5JDmLuqUuIjIpS/K2VgplFEY5VNkDMhR1K5EStl2HCpGoIslLkrP3Hh+mhlKueHk5Q5ZoSK29llJimmd6DSVTRJwHIRIy+JiIUQwdpTTWrXRoEc7RC4YILuKLgInIGYO1r52vggHEyNBGE2KSosfGsdvvefvua1LK/PT73xGuZxmTrDLASimJrpCWMboqBa5jpHOd1PIpb9TIF8U5JeuXYLoFb+r/PxgZs5ecDGXW/ItcDQhEv5gYBIybFcxWnfK6eLbem9qZIWhqsTyhP7gFUNZIArDkBrSgolqf1dNT/5F1nTML4K6ArQLHagTUxaMCli29ZpkoZQIYbXBWvCDVy1zfbzcBKAtJmXyqPt1cIyUOM671RfpelGfqZrBNYqwyc7lBKClncoyEUj1dlBPqhrgCtmVT29BStpv/+kzCEoWRaNCqzESWcLUUj1nBQDX8tjLFKWcJU1KNjhVg13yb2v/L86N4NZOEIEXeeAKVMcY1HsnVwBGj05exIaIBuRQjbDfgFcBwA/TbcSL9vU72VAy/umHIoiqjXyhbGV2kguW8t1Vct+dvPefVoKjVeNvXq2Gh1Bqe/pKPLYC+B/a2QLB9/WYs51ta1XZ9uXUevAaX63O+jaLcPq/Xhk3blva+2nZujxsDKcONlXHnHH/suAcehdFUqU2U+yoGWLmmKrSn2idtFGZrPH3u9ZUq3jO4OccCFD5xqj9+p7dz5d46vL3ep95fzvgZfbvth827mz319m+53xr1ael9QLodd9U73jq1tpG2TxlI275o27197d59fe4Y+8/5UNZxeHzDu29+wTfffY/pd0Q01zkxxYxPilCMDBpvsilsA+McXSfiHTnlIrmfb/a+9llUAD2OI5lM1vVZrRG+ZSOq47Vp77IXI0aGGCrF8ZmkDkQueahJJ6Zx4g+///1SC0MhQjE+BmLOXC4XfAxY5xYmRg7i4a9GRs5CW+6HNcKgq1jGggVoaM7r2jTPc2E+NA5AEjGsa0btm1ZJs9Ku5O7r/l+ohFovWEwhqlZ1zNdrb+uZLW2tfGu5KjknKDg0Q2HQl9ICxpbnWfbglDDGLYpTtbRCRp6xD0EqsPuAcwKHx3Gkc71EQMqzizGRgiRZlwbC/5e9/461Zcvu+tHPDFW11g7nnJu6235O3W3jDE8E80RqTHCT1RIg8RdgsCwwSbLhvUd02xjQQyJIgDDIJAE/hGwJ84gmiWAJgS3jAPbjZ7Bp25379j1h77VWVc05x/tjzDlrrrXXuX26fe324Vfjat+z9wpVs2Yc3zG+YwzUazMnYY4Jk3zW84R+8MdgNdPU5ykRBgUZzlr6rtdsXnn/iClkT8byXTJNP0StIG6soxsG7j94AYD9bs/NYV+quFXQqiADSoFmyWBFPdTalwWAGQlaTqGl0Gd9TpLJMSdaq01sjml5o0EGAinCPEWePLldJloyuSHkwmOWMKuryBhDt/G52JphtztU4OB9D1hiECbRVGYhhJy1ITFNqmRvNhsOB51YSgFyzaYcanl2zQS0qQdT6cQCcE6tR0VJKBSUlspTJniYkxacsxZrPAZNSTiOsxaLM0tGo+IibLOSbLdbPYBjJIbAk5snTEGfb44wzxno9F1dmGVTKZvH4XCoAEpL0mveaGctnfd03jPFVIHSHJUDqXEsFoPTwm6gCF6WKr5lA4gxMo1TTddalOjNZsN2u2UYBraboVYvjTFico7p2rd5mrRu/fJTXJXKhVTXYkR0UUtOrdakby1gsIxVyLEhGnzXabVStFLxOE70/UJ9KYo6aHVW3ylQevjwYVUK53lu4kaOU9+21I7CVyxg63A4HPFQwd5paxn/1lvRKnPX19ccDocjemBRqEp8QrFWbbdb5nlmt9txcXFx5Gl5XqXMu9NA2MrpbZ7xFIy0QLTl95/SyloAsBxky3VbCxzo/Gvb0q6PVlkr9IHye2ttPksJahT4I0s4d70gp/SC9rmfpkiXPincZZqYIP3MUmgUowdlucY0TTXjXmlD2/9HSmm977FVvfZDM7btTz7xjtZAPXQptUyo1yzApwSInnqFPxb4KVLa31KszgHFU1EarH6mGAlA9+IYF89ivmLtFp1bRbFTSu08a30R73UPLhnmRITtdnus2DVtbqmY56hd5wBF23/FOHT6nMaYWnehUDefV7l+8SU+5TM+kzd/yqfiL66ZxTLOiSdTYEwg6HljEU3DmcCOnsFZrIcOx3Z7wWgOtWp3238lxsVamxVu16xvpSnP00QKM1a0mG3faZyi6kkJ13eIJOxsNI5AFoNnmUcx6x5h1JiQaRyZ81kSQqh06e12y/W9az766BG3u1v2YcrVq02lcYVpZj6Maoizyu93ne5xIUYO48jLL7+8xGjMc2MIK3Rqs3h9WNI0z3PIe9ZCaS4/xctTjIAiJWHOMXArjAxrtBbXbreraeXLXlqeuwXcpoCMmHJmrGzUDoFk1IApxhBFPRoS50wFiux3e9XVuqGuicM4Mo+a+jfFhDW2ZtTcbDY45+k61VHnOTAeJg7TjLXgLURvs0FX129AFf+QhMH32ehqc2xuU8ldtH5YiBrvMM7KgthsEiZqqnBB2N3c1MyBw9Dh6JUpNM/s9wdMSnhnmELi+v4LDNsL5hCZbp5wCFqomCSY3uYAfB2TJGrk7byn7zuGvuPqSg3H4zTSGS2YXeb90G2x1iFYnjwOjFPgMAemhKbqte4oodDrybMX46uVtg37ww5r9JB33uJdf+cgKJt8yIjNeU8IsxY7MV4frOtwXvmIVekwpnZye1BIY/1ThXSusRYlHkO/rpupAoTlINjtdkebbkltOo5jXThlsnedKrKHfWCcxloI6dRK2FqWixLRKkynHg5rLN4q3avfeG5v98SU6FNiP065rwyb7jjIdVFaFasqPzFhcqE65e3lDNSSSGKOQFM9rM1xxgLdHALjPHJze8ujR4+4d+9eXXSXl5d1EwkxkUoqVlk8LdVDBUq5yhsRxuQgOYMQc7DdoJtqjJisiIWYrxMjc8gBds4zhzlbPwxPbm50zPqezWYgpRIsptzBcjgXcFTmn0guvDMt3pGi6BQlcxg8jx8/brwTi4uzjLOIpgdeajSod05T7y0ApwUNrXWyHFIlHWYbj1Fy4bexH2Xs2usot/75t0KepgRevHR3awm0ynmrlJexO/IONNcr+4YxhWqpcWFl/eh6sHfc+hXUNspkzG5jYw3Wd2olyvBdcjY3gyoSZYPQNIYsdCPTKP/5c5IVm2IJPJdJqPRD+bd91rt1U0x9JmNKcGpb4M1QqEtlHFpl/GkKfLHOS6FYcGxdT+iBeyR2ocoaDGLJFcdNNhblFIj5eyU7jWTLmjR7XpEWlLZW5nN9U/a7tk/LuLapj4vUsY6aWMS7oX2XFA2IGpraPjy6hvK/mOdImBfaU1aJ6jyWbG1Wj72v7S1z9xjIcLSflOcqnvgWpLaArO/7I7DX7kX7/f7MKD9f8ulvexvXL7wI3cAUIYohigXbqUKFzYlGAmEasQbcpsenhIwTcwhcbi9wzqmX3vc1VqAdp9YAsHiSdL7GOC9nRYqEMDOXeA2NwNUMmSHQOV+V5XmedXxi5DBrhqvdbsfu9pZXXnmlVv221vLiiy/WOTKOU02wsrm81CxQxYiV503xeBdD4sXVRaZhW66vL7HOEEMixZkYZg12NuqFL7pd2ZNijNWotsmVzmuQcJ67xaDX0vpsTkJTKGFGtLjePGYqlLOEaWbcH9gf9lxfX9c+LmflkZGlAI6kOk/KdnnXd2VXqtb54j0ZDyMlSPnBgwd43wGG/V5f1/3XEMnB1LYHa0moztJvNqQIXgxdl4hG2PSeoXdIOOT91aqR2AK5PwxG4y2IOc64xDtovbAQZlJM3N7uuL66QrwwzoHOWS0IOAvjpPu6Mkg2YDUjlcTIk0ePctphQ8hgNmF58ZU38/D9HyDNgd3NzOW9K4TA/jDTdY4oiZhroGBULz1IxN3fst/vkTjxwvWFerryGgspZK+U1Bp04zjhhg0hj6mxzwYfnj3wOxdbM6YE5wmCxYqneMfU6kUecJBsofY525TkiYPRyP1kRNltOdGUsQYrJgecLChwKUCnFiYtSZ8YsutfILvsC99MU7jZjM71fjmlrO+qdc4Yo9wzjt37hQIg5GCjWk1cKFVqi2VL+XaL0lMsi0LJSkWzAJdqktZ3eDfhnce7RIr7XD5ea4AsCqo9OsIrmBPRonEpVndYGR+RnBmhOaBM5dBZBSXGIMYSUmJ/GBmniZg0wMg7j/OOru/VhZZpRVrNM+YsUbHStkIIeOtIqabrVsueUTdbLo2ai2Hq5isIbnZakCiqBWjOlgVr0MJGRrt7v9+rx6rUCplK/RHNMtYqPYV+VS24UpSS4/SVJbYD9NBwxlGqyGvq5aRcRBagkaQojra+VywrmExnS0tWEcmATnLb2nSBkr1sXX6fMFcuZIyBvuvrmDrvqnLwvHsyzlmkn2aZfZqcAxhFzln/F4/CXerT6eegiWUwptZyIPNRlziFYyU3v3CnTcUxXf7lzLO3FIRTb8W531uawZ373FGAz1+jVdpPreptv+THOrpO03pEqPtAq+jW/R6Ti4EWTwYYkykAJ+CkAI3zz3E8tnf6ufm9VRZbo0PbZ+e+q4GlBVgdtwtMfYbj12tXNNcoXmLJe9FxLEgBBcX40Hq+Tud9CzIWRfduH7Rz8Zzn4/T6z+oV+qko9196iWG4wDiPYAlJcs2CHIMnynwobIcE9YxRD0IpkqbAMCWNJb077+/2uX4nkXKguH5PY780JtSAHBs4bd5H6jWywhxDZG6MnGVOOOe4uLioCvg0TUpNzuvq1MNXjJ0hhqUyvFV9KpGW7Fqo4a3EjehHT2LdynaX9H1NUdshSY6MY3B8FlVjUP2P2r+lqrWuomzRDzMpasHc0zOtNTBIMajqTVT3ShFPbqoUfSxmmpCQou5L1irLxBqnoCInzZHyXSwaBqsZtwTVV7yzCo6s1bS/RlPhem+ZpvIUmVZP1gnskonQmMUIbQzZkKSfEZZ+jEl1WWtKtmGlb/kKtEymNum9NpstYdZK4VhHjNqnXb9he6UMicN4QIwam1JK+KwLpliMDaq5JEzOqJWL953sB9XrbZaMfykJTkzWg7hzlj1NPg6QEYEIRt0kC1c9B1ZlJcpBzd0cYmQKMzY4giRMLkaXUiIiTCEiBjbOZUU5IUaIEglJ+f7e98QoGZkq0tPf9fqlIEhB1zFGxnnUgCe/cAULH3MYBuU6IiTx1fLT0h9CipAixoh6WqzVIN+cItXYpUhdzAulfFeVcZ3guuflzS5GnFE3k6AZbfquzzy3QJxHUudIyZLEEeKEjeB8U6MjV27U8RVM7qdEBJtwGESsKkRZkY2SmGPA4UjeIsZkF6JHnFKtHj7WLAUXV1f0m61uLDEhuepkAuaUGHpLnJSaNfhC7dFCacn3iLGarliU1mZcqbqeiDEQRrVuRnQxJcggI9G5jhAFTNJUdVhiMqQYub29oe9foMvZHIJRF2+YA0M/ZHdoqY5bqkQbjPEYY/FG4ydKljIthBhJaa5go+/VMrPb7fTQUc4GMWdMS0lImiiQAl76zbBYuiBXbVUwW+aT7xXUHuaJeIhst1s99ES0/duNAncR9vtdPThCpgL63rOxG57cPkFEcGcKez1PUni3p6lAWzlVAFtFqli7yt9lfQNH8VrleyWYvvVUttc69ZYcixxZd4oBoaz1U8B01sLdKC1FiWjjv1rFply/5SWfXnc5vI4BQXmGknK5VahfD7CV7522+fS7p2BsAfQl1mqhTlTvc8qe05N+UUtxOgsoQlBusHV3j6bTfittb40HLZ3OGFNTipf2nXoKSn+LiNZlSst1ntZPreW2HYPTWKAji+yJAlv64fr6mg9/+MN3aJWnY3+keJ25VkvTbANoT+fDkbL8nMr1gxd1f8Zi3cA47gkRrPdYE/M+HPAsz6nedYsxHms0pTOSkBS5nZbMf20MXvluMSLq66rMCqlouZDPt3mesEYt/lcXWzrnNcayoTOD1kNKQSnUH331o3Sd5/redfUSXF1f89a3vpXDfs/NzQ03DY25E/WG+y6XDRA5Sr/bW18t++M01sBw56xSx/IZ6TK/L2WQtazB4m1ZPM7Fy6Npbn3tj9M9wXuf4yc4WmsFSJc+3e/3hKA6mSaV6esYlb21Zq4yapj1ztP1vdb8OIRa3FdSyjQkNXr2mSLmba6jkQQc6ns2OYYzB60oNcoxbDq1+KcSQxlBHBiLdY6uU5Cge8tS/0IkF1e0CjTimLTwX6Zih5AzX3YKiQpwAMMcIm5S2rZVVJLpczNmMHgch2nCi8/MkZkXX3qJw616vbp+wzQeNEYiJq5feIkETDFwc/MazgreW+agRfWs0bjdEGasdxjf0fcd968v2PYeK4E4z3WP0fWihmFxDms9xjhiFJIxmHRMM349eWaQEUWj6wW4vnfNPM3MYeZ2v8P5Tf1cmUQppepuK4p4yRgUYyTEiJdESoZ5PrbMVVpKKeQmS6akkq2nWIFK5HzxKCzc/KW+QatstC65dhNp35+mSTnxuW6FiDBNI9vtEvOhxUoWOkxpf9/3ylnLz/LkyZM6cM5pnuaQlMPocgyBGLh3fc0cNMuUIR1x8MsBUhZIsRhAATBSim2r10gWpap1/ZbV0VnHPE5aA6Pvec//eg9gePnlV7h//37dDJZFr66qeSrZCDaIddVS2Xeai7+k1Jum6aigkes7tWAUL09GyHMMWKcpgbXuSU772FE3pRiWvO/zPNdYhe1W096N+/0R93qZh0YVoGptkiMwWPrGGMN+v69zdQnM1s1zmmYMOt+KF6y6gr3XzdopLcLgMOhCnqcy70qcT9kQNRDNdp4w33J7ox4KYxwX20sNQgszw7Bs5GWjLnVLnmdpM2h9LDlV1k4t0+XfNisHUA+8siZbpfRUTi3TLa3OGqtWrWb+tTTOcpiU/emcnAKEJbUpzVw7jlMp7W6VyvZQt9ZycXEBUD1c5TrV0NHsmaUdp8pxGYuWpnVOOW77vr3GqZJxbh0WaamjkK1raTHQtJ6G03HS/Xeq7TilJp7zAJS+qFXEzZIEo6XAtFQYZzus9UdUpNN++ETk9NnKmBwOB63knOdRySjY9m25f5nPp2uiSEsROwWrLR2lTdH+vMohBzdjLBd+i8ViyNZ5idg0Y+MEmcqnNLEDF1PAdcpPTxYMejbM80gIS5KPdi0VS7uupxywHBOIRVJAPQORGJTKZLxWzZ6miXmeiHNogpZhPByI1nI4jDx87TWcdWwvLri6ulK9ZRgY+p6bmxvGaSRKYnu5BQyzJKaoZ4BxqmSnlJgzBRnJyr1Rb/kcJi62F9RaIJmSnVJURoXVWlslpkhjQDrCIw2CLnNkmqYaQ1X0uNZQBMscKyCjfK+l8pX9bxxHvHcMm83RmVykrJESY+m9Z54mfN9pLMU+1TWjXiJlxZSQcy1up208HCZSClijcTHEhETJZ7rHeY91rjJayN6M3JAM1HtSUCA3T5EYomYpMw5SzIr+RJphGDZ0nT8qDq1silhTem82m2qEHyfVw1IIzNOIZD22TaZhrKHrB4073m54y4MHXF9d5fZMHPYHLi8uuHrwgO3VFT/2I/+TMO2RqDVYTC4qnZKm8jVWDWe73Y7t4OicYFMO9kbn0GAtIcEc4COvfZQ5JxaKKYHrESzxTBaxc/Lsgd8UB7eUsajSZtBpD7qyaYpI7fSy2ZXXS6YFrNHNwhjN52x18L31lX/cpjWtmZ2qi+o4S0ob2NZab8rAt5tI+b0g7qLUtUp6exi214QlH3k52EOKR++V+1mryDKGxWJWsjtsNhvCbQ4eT4lxmrF5sSRJlQ5R0KMxJtORMg1HEs5qajWM1XRm1lQeHkajI4wIzljGmEgh4q3januBYI6CpluFa7HQaUCUs8u+qZn6TK38Xjb/mBKSOdBziBiXC9tkr4CIPoPyFgVvl7EtICCEwDSOeN9Vl3ABmDZbYkqwb6l/0ipW0zTlzA1ax0J5rOR7F2CQefpGa2bo/QURUyl11iyKTTmEdF4sClYI8UgZ8H6xahpjM2VkiZXRsVwqh4qoxaX0t8iSTUwPAYcxMY/B8yunylP7entgnQZ/t56Pdu2d8ya0NQjOKcXt7+cUtvrayf3OeTBa5b9Vuk+fr0gL+lvw0O5h59rY9kGrLJ62+zT95jmPyWm7zwW6t58/5+WpY6GEwjvPr/enUlTuKO2ZtPA0y/qpYt9+v21XWf+n3y99cdTWZu8vRqn2WZ86D54yHqf9efra682xspeUZ2jB5rn7t3P5dIzOtask0ij7eHs+nevv50lKXiekFCJMqkRa8CaSCIgJWgrBWUK2HIcQc1C0nokiehjUM/JESh+1dCaTz9GUK0PHFIghEIoVOCldNsVInPX1GGIdh/1+j0PjTsM8M1xttHJ3p6lSjTWEFLnZ3TJOY6VrhuwpKclWStvLWDpr8cNA5ztSmpWK7j3YUrNGPSeV0kM52wroLUYJd+f52845nW/lp3pY0TTBJagak2MH8v3HcQTRGhNF2S7fb/892kNV89Vq5Sz6VllDJE1xizF0rlPqMwaSFtYzWKzN7cmTR6+7FCpuDY/tM5f4upSUfSGo98K6SN97rW8SdW51rs/XcMyHXTWE61HS1HfyqqcphUu9aWqYnPL1SpKjpGl5cTU7VtcPDJstxjqGjcd3PZKU4tX1PdY79odbHn30w9w+mbPemHWRVCjdZfxK8URbAUY15InyNkQSjx/fMAdld8QM7M7TZ8/LM4OMqmiybJDl9dZ93wbMhhBqVoFiBSxg4/79+5lulK+T080Z1NKANVifF97hUBW4YvE5DsxNRwdw8WCU4EY4zviyfE/rZLRBuMXyVShUZaJvt9s7VsGqcDqLiYu1rE0/e3l5eWTlUz5oUi5pCIQUK9gxu3JdDfTSKpNLcKBmd8hKpi1WMe2vKBrfQjnMSgxGUZas0QwXeUMiu9mcsbz80svElBg226MxbwO7nXOaAzoJNiV8TlVXuJe9b6q+O6dejaAB33MImGSzlbAACcE5paHFGNkOy9jN81yL543jyNWmq/NJM0DkwPoYMdZmq9Fc21nGWDPoeIx3VaGvm1et4K5BXM51OOeZ5wOpuAEtCtwaSygsluXyO+hh11p4Nhv17pXAuzZmp9B6zoHzAmpiNRMUpdljjAZjPc/SWnTLYXGqABaFqqWPtIpu621o5RRgGGOOrGnnFMD271NltEhZB20cwym15dQSd/reqSX99RT8U8W2zLcyv2o6ZxYjRvlcCz7OeQbK34VaWowrZS62Cq/IMcWsvU/9LHfrjNT+MzUS5Q5QcVZjp1rrfAUpHFOMTp+hPFc5xFurYatEt/3cAvyi8LWGo/Y+5+bA0XM1fXnavnNK/znwUsa8nI9lHE4/d7r3nLbj9H5lH2kzHbZz72mA5nkSpeBZEMNhHHONKIu3hkDEE4BMY+k8mMQ4zpnaokqeNXmeoKyEMB+vXzheUxUQkgFy0uxQMQUFE9OMxKjpbUNkTmpknXLANmh6+cPhAElqJqphM+D7Tmk5fZe91SMpCYcmDu9wODCHkIu5xRpXUMbRe0/nPJ2xhJDAJHzfZT6/Wt9TLPEYgnHLOtM5Ec8+u7V2ifPguCgq3M0o5zNdS2LK8adKeQ5zYM4B3wboc/rdshbLXG2zA4pkuqWIlk7IxUF9tzAKYtBnsigg6F1OA580diOMucSBdVp/rXRcVo2Esm604rnNmVDJuk1J8hJD1IxxkDPHWYZhi3dGU8vGxLb39Wyf55mLi83iubdLDJZ1LjNPcthB1JS10xzwTs/+GDQHp/UanmCMoR829P2A6zpCTDkkAMb9xHCxpd9u6bYD47Rnnkdubx6RJMfDoRlgY4iIszWOxFnVV+Ik1ZiqZ1LuHxGePHlMCDF7L9RIrXvfs63XZ/dkWK8FR2RmCIn9YcIAw2aLt/5oQZbsTOUAKBQB23T0fr+vSrIY6K2phf3EgHEadAPgO0+K6SidqHOOJ0+e0A9dVSbaA7blBN7e3nJxcVH5hK3SUhZpAUEtnapYyVoaQHkvljLv3jGWqsVGvT3l2YZhYLfbVYX05uZGeX7WkmpxMKpbX8G44fZ2zzBs0WI1bcpOw76kfbMWi7C1Q0aoIJ1VOpUxXFxc1OcpGX20MqjDGsPc98QQePTkCYP3TCEwTxNYc5Rx6+rqipQSh3Fkc3EB1iPGsRtnNkOv1UttjrMolcoHTeNojSWIYHPg/2Gejg69aRrVgtN5whyq8uC95/b2tsZQAEdjd5TNKYPJNs3gPM/c3NxwfX1NjOqevby8rIcFHCuqJQXx8RyyJI4ztcBxutQCBPSZFACGUCykxVLtOBzGalnU9ukmtdlsG8uNPdpw5xykVp53t9e0t+EZeZA/leVpVtQWcJxTuIvy1CpMp4diMRIAR/Seli//erSc8r3Fi5mO9rbSpnMW4VaZa9t8Sk05BUyn32lloX8umVxKyuSWwnT6LG1/nt7bOXcnlXLb/tPMReX9AjpKOzTAOReLavq39hGmAolTEJZysGwr58BM+b3tx/J6C7ZaZbys2ZptpzEolfmz3W6PPCAiGhtHU7jzHDA8BQ7nqHqnc/ictOCmKKEFSLbGndK2dkyexQvxNM/K0wD68yQPnzxi6Ld0roekHmhIhMOesL8lpRkjAUynSpk37OaYg1/LmBmMVXCSQgmCVmnPoXIG6dzX/QC0FkJKS12uruuYRj1DHj56jUcPHxHmGZGYqbZKP9r0vdJuU2KeZu7fv69gwDvmFBnzGdl1vcbthXCcMKTMwWZcp2lSjr3Xc36z3SDOYJ3TOIwy7vk6RpY4yShlT5TKKig1I0TKeetzspeFdtd65GHZEwEFUFnK/D4cDoyjptjdbDb0XUffZLg72jfyHlXoV8kKycDusNeA7GxsNoAzmsDGCjijWS4B5hDY7w8cdjv6fqAbPBJjzoKpuqU0da2cz6UWqH7ZygDR51WanHcm67NwSTFWatymcy7HxpTMf74GTccYMkU0ZXZGMXAUz4XGNdu8/47TCCQuri4Aw+NHT3jzm9+c93thHiec6zBWWSnjrEmKxA+8+OZPIcwjhshH3vseUhSiEXC2Ml8EBRUhKnjq+0FBcp5z4xyIYpmjVkVPItkrpSwUxdnPpos8M8jQtKfqybjZ7arLaZoDflgCLou3olUETtOSlc/ZTK8p+Xnbg03TtcHGL4VbTg/jYRgyHcbU/OLlHq0iUIL/WsTdAo02w0GrhM5yHGzYLgDJaWI1y1J+rhMFpr2HbhydTmRjcWIrNUpEanCVdS6DLY1xmHMgZBKNu7DGqaVdNMA8hKibBiWzlcda9SQUCpOxSl9SS4xeW2MruiPu+tAPTVCT8OTJk8pJNNYwhUhiJibhcnuBKuIKpiSFWgtjClERb7EqUyYljYU+91kOworZGlk2dA3ATtXa0nJAS/BwOfwLuKiZvRolxFqDpi+l/qg3oKQz1SrpOl5aSNBmj0xrAT/1OqjCWaqYpxx4XrxbZA6jwVr1jpTNuet6BYQ5nWqpJqrKXs4xbi27aZ/dmgLBMM5qkS+Z255XaQ+Tc4rY0zwMRSEsoLn9fqsEt/vMqUJ4CgrKe3eU46qgpUpnLO+1tK12v3kWy3f7Wguo2jY+Tfkbx/EOeIImfq15xtPna9tY1tft7W2t3dACtgJoloJMx3EZp896CtbadqRiNT3T/5Ipnu196+eaz5bXTj1RsHhB2jOhKDXls63RqNB32/l01FfZ4nXa3lNP0zlw2z7/uXnWyikIPZcBq6Xgnv6093m9e7RnWtufzwJSfipLiug4WaeKlkCKmpXPIPSdng1Pnoy4TQfGgiRCDLgYSNETReg6zT45ntQMaQF8OWuMMVqboRaa1R9NYLBQrafpwDwJ0zRr0HIpIJyZBb7rQKAfBl544UVuDjtsDLiscLuuR1LiZrdjClpXIeQ02t4YnDVI9oLYfH4YoxQdLRLcIZ0hGZjChORaGClqUp7MYNTnMMqosEZTyxpJxDkSpwkZtMq3tTYr28dA/nTfWn4XJEW6biCUoGNraj85Z+l6NQparBo+rSUaq5SzrGwbHQjV7ZwnOe1/6yxDP5BCIJocTzVrEWj1bASs70iie+M0TwybTTVkGpv3uKFjijNJInMQSiETY9XLoIljLMaZjDek0okKGyWEgFiLSQmHAomUkxF553IWMaHrPRpcD6UzjVG9LMwz0zwT5ok5TGw6r4weo7rAbn8AFk+Kxt+WuFfVZx4/eYIfPDEEDvsdh8cPGedEN1xgXYeIpkrunK+ZzRRYucp8sdbqfDkyWOkNxnFGkgFxxFDif7VA47PIs2eXYuHgTjkqHrQS+KbTyVCkWEuKMtBOwtNNu9CjYop1Iqd8UKQk2HTMRW0neNd1CDqJSw2Get0GZLQFjlqQce6gb5VIMcdc4+ZBaoxEQpBM2ynPboqbsPEiiEg+4BRk2FxUENMETeWJjDGEpOnNOhF87hPJOfY1xSp4q5w+awCjQMShHqGYkqJ8Freq5GsXVFosZ+XZnXMkswQP7nY7drsdwxAZNludnEHjMkzJZ19+JyFJM1GlnIFBjMFbi0SpY1voXkWpFw3qqIpBsZIcDgcFOE0u+QIs2liRVolo6QHFC6WZIYpFe/EcKZjQbFxy5FVaZnwBH7AoA8v80KxU5XpqPS1Krx4+ZR4WD4daUwtdoXgpPGoNDkhVuhQULmkWG8+Lfb6zSz1N0Xk9Re2U9tKOyamy1+4T5fPtNc+1p1Vgj69HkxJTvVKntJ9z4ODcfZZnqvv6kUHi9SzfRXFulfHynZaqego0nta2YtQoa67NynV6nbLGTvtURC1hJlsQynMtz66KBWee61RZbvdrJKe5PvF8GDQdZwvSjt5v7nF6XpSfQmk0xqpCeqd/sjbVyKnh6rRfTxX40+c87f9TUQv54g05d86d9tmdazS/n/YFxmTLdfvJ5xtoaKYglw0yDgkxU+3VSOe9YHPWSbXagnNWgUgIpBCx3pDTQFbgcASMWeZzNW4Vr1l+D5Oq8qmp4RNhDsSw1/WQqTHGahyIMUbjJJLgfUc/DExPHmMEvHF4h1alNmgWzZTqj1rglYVg6hmndGprHMZocK/3HcGCiNZrkRTViBtTrj+DrrGkekKZEwb9TgwBiQEkZZPy4jRp5+SyJ554zCSPg11As5BIoh5PYw3eu8YAmeerSYuRtgH6zigIUQqWZuj0zjG3SSbyOCV07yiVfUKK1dpe0vmWIHeb09QWfcNYIIITHUtK/LFOgtpHFkMyJiv6B3zXY1PEK8oh5P1iu+mrVbPEdVB06LwWy/495yJ9utcI5LTIxnjGMTNcsFqnwmrCoVKlPMbEfr/Dp44wz+xubtjf7hUodRt8t8HOCUPEZKNZSlrbpRigMRkEZiBYHAhGTNbNEilZEFfni66RZ9tDnj27VFisvQZwtmTEGJm6Sa3ibgneBaqiVybgxcVFjae4vLxUCziJwxwY5xmbD8w55AM1RkIMbIbNES+wneD6WafuyuweL9SaMslbAAJUq0M5uFuLmLW2uvcuNtujysBlQgrCXBZnduu5PIFiodjkydPSbRRAZQu6s7UNJZ4gzBMhJSKWwzhinWNrLcY55hx34IyiYmvA9h3THOg6rThKkszZzJaVFLFRaT8AEqTOkZQzfGEtru+J88w4T1zfu1f7b7/f8+qrr9L1PS++9DK963KAvno1+q7DGMs4qwUpxMSUA6Cts2AcIQohaGq+i4sLdrtHtbrmfr+n7zwG4ZDjbgrgKkq9dUscTNd13Lt3j8ePHy9j0Ry+rUK02WzY7XZ5syoKnkHEZE9CqbiucUOFOqLjHCsga6/dbqjqyVgUjHaelFSERZkrNCwRqVnDynXaYLMnT57ohmL16BqnkmJX66qIyDO7KJ8HOVUUW2mVzNPMce17bYXjc9dpXysKXGslflq7quIIdS607yt9QTOWtAYNfS8eeTxOFde2jYXCU2g8p+1qFc/yvMVw8jQaz9NADixWdGOyB7IBMOV+rfW2vXd73SV7kR5MJeap/MCS4rZct+zNalAxywFsj/u2trn+GDWKYGtXqmdWKZlApZIYw1HWr3K/QtXwvqfrNMYpa0Q5CDZ7JU/mwemcKGNw7vUWBJ7OsVMDVvlsMeiU75S+ajMjlu+fghpp2lhbapqjPysxqfEeF6XpeQYZm/6SrttgMoV7Px5ARCsZ244YDszTyOXVFYdR6YAPrq+42e8JYyI4w3Zzj5QgBCFMOVYyzMzTmPWWmcNhr4X88vw8HA5cbgaMy+uCgLPKUZ8PESOevlNmxO04gXOIdUwhMvS91lroejbDwDSOvOfH3ovre3rX4TqlQ+72Y/bOdznWwNJZj7OZwCuRvvMMvqf3Pd50ONdnzr2Cr8Nh5JCLwTHPEGNWgAUNAraIB+tUuQxhVIZDmAnTxGAMvTG5XlUggs6ZcAy4U0y4je4TIWrae2c0mHy3v626jeo5U93nrDW16nSJqQghEMY5n38WYk6+g8GKQIh1fUy7HXMKCwXZq7HVGOi8I6Jp8JNJDNueZCKHaa9ghAQSmZPo85GIKVCIViIlyY8o6IqC4iM19pZ2RYl8+CMf4k0vvECHoUsKpEqKYxM91kZMjEjuG7BawC7TnQSldd2OOs82Xac6oDNaByQmJixYx9B5Hj65wVmDMyYHm8+1ajy7Es8a8d0FEUuKcHHvBeRJws47pt0Nve2ZTWJnohYfdA6s5WZ/S9+Zmq3LJAWaOu6eMHtSgqH3OGsUxD/jFvLMIOOQC6A5aytPH2PYXGzZ7ZUOsumHIyvMOI5H3ozC/20PTO1DV2lHLh+CvuuwGMI4M5vpzgGsNBc9aESEx48fHwXfFj5lORA2m009AIqSWhTXVtErrw3DUBWI9nlKUG+U43R3R9YoSz1Qi8JZ3uu6gShwu9vl59CDpu+1fHycAxJhPMxYM9J3I+bSgZhcVKZ4JmCeAlG9sHReq2TnkoR3Di7n1DUmBqUmAckIeMsUAxFhyDE05Rn7vue1117TeIztBe7iGm8d1nfEhE5SLCEK+/0TYphJonEcxlqi5ANV1yj78aDxK7VAYmJ3OECKNXVb6aftdqsHsVnoFCJKoypKRPEglMxT+/2eruuqAtZy6FtA0sZmtPOyXFM9ZDBl0FG+V+aJKhBkF6KqofNUKgsrIE8mqjUrp6YtvNgnj29qWj4wBKvWixQ1Be48BaJEhn7Dfn8gRmmUycWq9DzLKcf/1DsAxxbu08xSLd3xaZ6FUy9B+96pt+Np7y2fWTKO5LJQ1X5pchsK3xZyRhJT9gP1auk9yPvVQokpgemFtnSa3a6lRrWA99R6fs7SfipPAyAtoGj3snP9Ub1rkI0ji3WuGKD0gAZMWKyAuU3VC2ks5CJ9MaiVsyS5qJuciBYVoz3QDBiPMWUkMs0xKOjruuM0uylpKvVpmnjhhRcwuGY8JVtBc8aYTJE4pWY9zRPTeiGKkerUo9L2e+nDMsbtd8q+1H6/PZdO96Bx1r2WJPUsNsXEnhoQYSy+L/tqBhxlfJ5TGfcHMJZOYAopx11Yeu/obGQ6aO2E3e2ekHQP7g2LhTjlczYDMu87UlRKSQyBZGyllXRdR5w1LmIzDHTOkUJUenPUYOoU1YNRvNB9PxBZirBuNhtefuklLrORdX+7Yw4h1+5SejPGkmLM80+rzHe+U0UP9cxYo2yBw6SsBxEqHdlaremQYQTOGJJxugatWqUlG4kx9mgOa2XyAkZKliWlM8WYCClhROMfCktBcb8hTJPSuUtK6HzNwkQo8x3IelkJ+E45dlUZGCXzlXo1lCdiTWaMZKOFNbbqiGJ8NbopAyQHMxuNKT1k454CBgClNBcGhzUmU9g0Q1R5HmP0StZkQrWh0qAkJZI1CkhFlfTd/sDGe7ZOPVCFVdI3hg7dNxdD88XFRTVqzvNITJGEMCFcXF7irEdEjZWz8RivyXrmeVIAI4UClzMJppQ5hOrd6oYNySkQuLi6x5Ob10gpsfFWA+gNtaDyOE05riSLgKZ1npDUkaLWVYtRK42rDiLKIJLGePE68uyejJzjtw5s9iQV60pR9FpOfHm9HJgtnaW6qTCYHKFPpielYnG0jmi0kmWZAEm0w5cK30pPCWEJ3I7Zml/aVOkAJwddifhvD4fWwiSl6mHjXl6oVG3fLM+1WEDvuu+Xn8UaCktKNqVjJIg5HmMOjNNEVwtKZUNeTr8asydC+YGRaZrxzinHMUa8c2otzIdQifUoik+MkTnzFpOoC7edEDUAK0YePXrM9ctvwVpfF0HUgBpiiOz3B+WmOk+ISa0PmKVyd1SLye5wAGMY+o2mH04aU+KtrQGtrYt6SbG39OVRRp20UKxSTIgvlDjJC2b5THludYnnC5YNIOr7xappWGIBTpWDMk/qJfJ3Sv2XGGMt4iZJ1PtjNY3taMa8lqLGucwTCPV7mkEkYLolRW67Zs6lLn2epFWMy9+nCjNw5/dTEFB+b197mnL9tDacs9Cfv//dzFTFu1HjnlqFv5mv7bXOte/U2v16nphz1ztVbNtnO23z057/lPLwNMB3Tspedvw9Bd6SgcKpolzu2YKX0rzyry3rSzJx4aTNy/7aAELK/p7q2VTWbzE8SLobU2Jtyf53Nx7jdF6ejsFxXyz9cOrRLyDy9LPt30/zGrUArd37jrAXRReT+pqw7B+S9/3UPNfzKvM847OS3nmP7TT5iFSfva7LEDVTo3WWmgac4onSvV6QJetSOReaWKxCz5WYlLqbExakGIFF34AMso0aTfteqbBd1zPkTINt3bCiHJbqziX+UCuGO8QmDSURq0Y4NAWrmGXPKxSXGDUVvTEoPaq0XbtC14LVtgkKNqJILcxXan9I0PPYObusL1GcUz2KWakvdPwUo4K2JptZkTJvNTbSZfWrUBc1o9Jm2B6tlTbpxrLWqWd5fvgMQiw+U7xNA+jr9SooL/sllcpeQAzWQtaTyhiWCtgWwMLUVIQvZUBUvTBMMeKMxSv36ui5i51EpATeL9m6JPd/+XwFOMUYnA2KCcGmkiAiILlQtOo1sba7xpBYnz0tCYkd3bDBek+yOqdSEpx3SwhBSiAW7x0pey90LMrE0fGLJe0tiwf1DY/JqJZf0SxPne8wUrwJiyWmSDkAS2Biod+06FZEcCgCL4q4c1JrDihdxhFmDaLqch5p5x3e+RrQLBnxiKjlMMTIOE6M40Qp+JREkGzBbr0prTW0XKe0XV2Ly/OXyXoYJ9ymZEaAabql74f6findXq7fur7nMCPYmi5XZAnktM7iosXYRJojUwjsxwOu6/ImYdSTYLUORoiCdarsj9PM4TBpwUBnNGA8H0izLBb8EINWzZ5n5mlmt9txu99jAO86LfIlSxaSq8tLbm53fPCDH+TTPvtzq/VFA6sScwqM+wP7wwHvHb7bsDuMudiPK/OUFCPjPPPo0RNiSHjfM42zuv9y4H4pXLjZDMASfKfpW5dDvWxmKQlTmGulztL3KaN0PVQyDSJREwhUZcLoppmiKFKPCrTUYyQYo67I4hkrRQbJgFBMOao0A9pcMlTFmY3fKoCZE3Ge6XLBx+12yzhNjPOEL5Zs0cVfaFUhBsK0VA5PKR3RPp53WdaXyqmSfc463x5eRWkriltRzk5TgJbvtdc7p2Cdu//TlepTBXWpx9GmvC65yNt9pngCdNrdDSguynDrcSvfbe/5tL2rrIvWE/F67W/l9Z75HOArP62C0IK+8q85+X4LMlqDVGukKf1a+qils6qesxh/Spucc1hp41Soa7bvB4ahV2XHaFxcuWdpRxubVt67Ayzl7piegv4yVmXPh8WI1NKfzoGXMp/bPi39XO5V6JM1jqDp52oAbLy0ZR613h1Jx5953iRGjR0gCVf3Lgk5qHsaJy3KlvL+LBxRGnvfEWLkMB64Zx5gnHosDocDKWZqajsmkrP95H7rnGc+7LVyctSaCYVTr/NIDZ/WWjZdz+XVNQ/uP8A5z3t/9Ed5+PAhFxdbOpeTfUwT1/fvk1DgM3QeXwB5SnoOZSt3iFEBRtH9M9gpWRGdNSA9KYgWBowh+1JyLQQHVkByspYUijFWr0GhLE0z2+0mGwhMjgcgxyOogi251oIAcVYQH0qh2KzIFyaCxleO3L9/v1LRleakcYpayHcB44VZcuxNBQ2gWOa7ULw3FrFN/aJFs9f99CTezJr2fNGYD8Nx1shi3CR7JiSp0VoodmrtjSQQkjCGBBLoOl2bJrdHnTBSqU1ln4pRa6iklFSXjR5rlOplrK3ZrdR4pZ6clJLqjlHHyntf54Ixhr4fMMaSjMV5j0jEJk+/GfCbDSHuNfXxHOg3i56nbbIM3rHfHXRdUSinHkzkMI6kzNpIOWW5mAI3PrY8e+D3rBNbrCFOkd4pl54UeXD/BQ77Q6araN0J8iYvJhFF6Vb9dpMnjbCflErVmY4NHVcX14zjmCteW6ZDgM7gMnUlpcQ4T7ihVyu5JKb9PlsTNYNQjJDEqNI4a65qSJjea57oJCQjpOzid9aCdwRJmKQTbI7qjfFWM40UC3NR4IvnxInFmg7rLN73hJCRJS5XqSZvOqdWMWGOM092atWQPJmNMfRdB8YQ4oEnuxus9Vgs1/deVISLYQwB73TAQwKXfLZwWLr+Er+5wPUdEjTvshFDZzz4jiklpikQDloQaNzvec//eg8hBC6uLrm6vKTLbXYGLrcbNp1n6HuiaAYF4kw0EGelqk3jzPve935eedMLOL9ByIAxAUazSUQRDuPIR159lTBFjAv4Jwc22yEXMgrMux1aaFCY5pGLyw197+l8h3UdISo/1ORr2pzfueQUB8uwvWIcNa5lMIDz6oqcZ3zfabVK0GqpgIghogGhYjR/umCISalch4NSuwQIKWncUN6EkiSM12DveZ5Is9FKq94wBUHmKdehzd4dEinObC4vEGcZ54k5Rm72t9Wj13Kxp3GsaQ8djjhF5nGueb+fZzlVsItyeQr+2/o1JQtaC9hbgNHy28/dr0gbW3P6fmtNfhrYaamP5V8RqakZaxvMYmtvn0s9u0vtnqLolgO53A+Oa2CcUnja9rbtGYbhSKE893m1is1Hz1LqNZzzZrTXa5Xk8lzVSNJ4LJbvnAdbp17u0jflu22szSlITDmbW7nXouibbL1Uy7a1jsvL6/yZRN9vCs249m/5/imoaNt5+l47H0piD6BmCGznY9vn5flKvGB7vRYstnO0rdTdAhjJ+0XxTJRreOeYGmpo+14FPouu+lyKt2q0ijFwfXXFRx8+1DoVqBIYgiq21lqlP4nSXfquAwxzGJnmEZ8062CMgfkwalakXPzWYkhWswPZ7KkG0IDohHeWcbcnJOXiP7m55fr6Xq7efc0YZp48ecL73/c+7l9fY63jhRfuIzlRSzQCJrHf7ei3WzabjSqOIkqDiXM1gknWd0pWxL7v8Xn+T+NEmCeSd0rdMpDmAykGnDWkea+eDUQpzgJRICQFTzEKcwhKd4oJMRaxHTEa5jkxiz6fswbvQOZYg4clJeKohrcQo1KnvMN1Pnsv1Jj6yiuv1NjUYgSZ53BUy6Xdg8teVoxq1hqczwYVu6Tt1hoSHuddVuQz/ac5M2DZP8oedc7Y1BpqqmepnkvqSRIj2j+U18H3W8TAPiZkzPQsDLvdjs12i8177TwplR8n7G5utFwAgrOaTcz1HdvLS+IcwaRM5/I5tnXZBwq1XjN6agxIAV0hRuYwEUUwErHOcvniC9j0Fm5fc7z2/h/hhasLXF4Hb37Tmxm84IjM4x6Lw3gFyr5zTDPMceLJzQ0xXUCmhGk/KO57pvX6rAvb5Ch/kzlp+/2BrvdcbDd6jFhT069iLYIwx8JTVw6XyZPuDnc1CtGohdlZn60DipA33aCKYpl42WVsnCXkzcDK4g5V5JgATQ9rjNQaFCJKQ3Kd10rVKMffe493ji57PEiJKcxs3DYvAj28YVGGtDKmek8Ujet9nXNEE3P6OlcP4bJoCvqrB0Y+NPUgcFijFg5NvarWkXmacF69GdM8AV2mEalrLSZBkqZ3m+dAzMiXbMERTF2Ah8OIjUKYA7e3t9zc3LC9umQzDDnAvlDVLJthYETBkreWmAPDSII1HYf9nmmauLjYYq16N6Z5SdVmMtq1Tut37G5uSUGzHHig6xzjfk+YDphYNiWH945h0GKIJrsBy/h3nc2brdKw1GBsav9JtmRoVfUlGDRlZ3oyKK82Z56QlK1d2T2omc4k3yNvTiKYdBwHkPLCTtldHWyobvBWSfWmSUKQ506UlPNVZ4UDFutYWqrJ0tR0GceRGOLRunke5ZQ20m74rTLdBseeHkTle620Fls4DnAuh0Z7v9ez2p9am8u/bXzEqcW7BUoiqpiU99tr6V6w7AGtEth+/tzf58DDqfLfWv5br8Zp37WWwtajcHrdcu9Tj9Kplf8UNNY2NZdtAWXb3vbabbzJKWip1xabved3PTPGGJzJVr5SVMvkeIVaNPC4zW3/nf5e7n8OdLXr3Fp7pEidm6vledrkBU9rx+l6OAXPdT41wEQkF9uqXo67WoCeB8KZt54fSYkwjxz2hiePH7Pf7YiZ5uP7jlisxtYxS6y0O5NB2ND3GDTlKALD0BMOeo1Mcsl7t1VFLuq53fnsmbcGmwyHwx6yx/7evXtcXF5hnefmdqf0FXJWq0y3AZCQlfMYNH2rs3Sdp++6HN8RWVKhasNbQ4Kmgc3xXoWam8FIDDMxzoTxQJKI9w5CDuBFmKeJkFQ5TsaRMISo2ULL2eKsrzoFmalgrGBSVmKnhZZewEYBukimJsekVLauo/OdBrFnlokxlnlST0bK6XXb/aIF2GUNKPOpGJYcyee9pjBocsyMVn4vsSwQu5izMTXGjuYn3yR7rKyOv2j7i9e0ilHjJM5CiBiBznZoAglINtPUchavEitS1neKkZQ9HJ01eGerN6brtI+c80hIlVI1h6gsDqv7XZfpgUOvcacpzIjkuD008Y6Z5lwfRZNxzCnihw3DxRXdVr1+hzHgzD6DsFnnWwh476q+GKPGnIgxTCEQTUKsZApVpqeYY2Pd0+TZQQZZabaK/MM4AT328mJxJbns6rF6uEwhLPw2WSZRrYLYbKhlEy3FiNQlahEvNajSGM1i4JLDpFIRMs8FoxmNKt+xKu9qRS+KXq2lkJMM7/d7raORsz/AkmFl47bV6rXkji+BRkvbve9q0Z4S0EtrncqfIx+61b1vNS1bzLEf1llsNNmKp4vUO6eWclFu6Xg4qGvNlWxGWtEzxMBgcxatbPWytljs1ZI3TTPjONEZy7jbcXtzyzRN3OseMAwb9VjExVqvmW9i/XseRw3YTImh9+xubpimiet79zHWKV+xgECT12/KlMcYOexutFBPmLApcbEd2O9umMcDjpSD8z1939fiYzq0mhGqbP4px1gY1HWrc8mWmbBYvGtaZKpSnwCxJls0dQNr52KZZynP6eySqW2pIKO1umbLdUqabrC6MTOoLlSnNM/MYQEjoAkOkkgNAM4PfKQ8ChzVVHme5UhZ5K4C1wKO9u/TFK6tFMW19QycU77bv89RkNp2te05taSfa3NL76lr/YwoUDlPgyrXau/VvncqpyDo9Szvp9c6p1Q/DXy1/XKumNtp/MHR+HL+PuWzrZJdQNG5Pl7aoZZEjZM5R/k5iatI5+t7tP1xCkRbEHD6/FVpODE6wPHZdQpEynVb8HsOsJ16rE77qPZj0nScBTQ4o4k2Uiw87fMAI/fQ06bn8yGlnkNMPHz4mnrsrcW7HudzaltjcbZU9gbIFBjn6IpSngue9n3HzqBKsyyxAeoJiRmMCKbvF9qQgWka8f1A13dsLi7o+g0hJG5un7DZ6Gc3Qw+ZMiMl9q9QxY2hywqj955DLuSWwqxABDCUtKaSDWOqwJe/p6l4uIQQJsJBqz2LREQ6JGrRZGcMu3HPHJLSv5xH8MSkSnqMCWd9Be8hJiKBOQW8z4d5irXgblmjbTxqpauKofM9Qz/UeNgU1StkMIy5CrrqWarcnsZo1aEWjT0p09lYDTh2zmFSwsaFyqRmQVXgdXy7Gp8ao1KTTP2PrKDoFzXFccxLRxZ3J3n9Z8O5tZZIxGLY+AGLGtY1BW4BGqYWZi4gsQKQmLDO44uuDHX8NSi/GJsNIcz0Pdkra7G5gOEwaDHmUvd9GAaSURBo8hhMJEIsWUAHhotLNlf3mfevkeKMFT2DUooViJbifklgmmZEU5Cpt87l9LZLqXiOAsZfR5694jdapl0LwHhKIbJHjx6x2V6SECIJEzUgSwyMhwlrMlrH1mJIxZtxmj2jbN4lSA9gv99XqkTh8xWlo/D+WgWjTHatFplIKOeyFNyrVtI8IUs7Wte8uqejUpZy0OejJ4/rZ/u+J8SYg5s5qkxd8x4bIcSZBw8eINNEzEp7jErNqlW4JeGiuhdJSgO4vrrH7WFfD1JJkWncMc+Bj7z6Ud70pjdxeXGBwxCN0c1rTlxc9DzZPSHEwEsvvVSV7dInBgWI+9s9H3rv+9nvdmw2G7bbC7rcx5vNUincuY7NZluzLL36kQ9zfXXN9fU18zjz3h/7EQ6HA2/9rLdz+cKLlNiJvqFseO/Z377Gk0cf5fbRRznsDmw3G+K4Z97f4p2l7zybqyulTmQLyMJNlpzf2tS+buklYZ4ZhqHSVErb52zVMVYTC4gaQCHBOE1L8FWSo2rKJW6ocCnHSUHoZrOpcxAyaDHZTRxCTcFb5kDyiT5nuiqb8Zx5qzU80SzW75KgoKyN6TBqxddc1dgYrY9yu99/PEv2p6S0Cn9bqLO8l1LixRdfVO9NY3wo34EFfLTehaLEnVreW4X1lMbyLNIqoa034fRgbO/V7mtlDZbPHCUuaD5/DryUfwvIej2L+zkw1F7nYz3j06T1Nrzed0+VeWObPPgnn2uV/JLWvCgkp/13HPOhqkSMIesCp31G9kKS972+9sWSQeq4r84Bz9K+NpNdO+6nMSOF+lGkranTPnObqriVtj9ab06rxNXPFXtViDVJSrLaN85oLYaE1HpT7RytfZ+eX2NFZ7W43hwjr37ow1w9eKAVpPsNKZaMbgZnO5xTI1Hf95TienGemRCl1sbE/XuXOTVoLnoJ2L7Hdr2yKIpugRrLJEUMogrfZoPvN4xTQIwWaL26vmY6aDFZa4yyBTYbnHcc9ns659TSHmaur67AaqE4TVM/Qsq1r4olPN9zjhmceAhhZg6J/WHi+mILKTDtDtw+fkSYDogERmfoPFxtN1xfXXPzeCSMmt424XDdBuO6nIFpQ0nxfrPb4XKwNlaQzmEkkuaplgkoc6mNO/Le02829JstghYKLF54pY5r1r2bmyeAxs3M84S1Cka0HXf3LkmC6zxznElzQGZq+m2JiSmGGrNKWtaegVqg73h/yXpyXgLWKiBNrinSXOM2qTE9WM3O1DtP5wwX/YZ90AyfSmvOKV9FlJKUHbl1j0kaFyzeVyZFjAE/9LkvlY1SC1+L4Dutp+KsIQbN5idJ576kvJ9Zq/PXdwxbTZE/Twemcc/0xNCZgb7XsIMf/v99kMFGri8uubnZsfWRzsJ2u2XOqXaTscSkcaabjcM61TOxBuuN6lGGNx5kaHpYR8m0EmMAIySxuBycpFYBm4vBiXL+JOC8KmklSGme54re6kTKh2/f9+z3e51kVqtDltgF33fZgq05jkuGp2Ktb70Veiio60cShDnhvQZWTuPcpIcUCmCaprla7jvvccbXYNwCfiofsDkAWoCz8P4KrzxlUKyULue0cF0Kc3Vx1zbnhTEMA1PQSpA3N4955ZW3KId/3PP44Ue5utjSWct2s+VwOOCMeod2h3091G5vb7UiurWVH2mtBgU9fvyY/WGPMYY3velNdEOPiKbN7XyvYMEJ42HS1KpiGboN8zTy5HHkcNgz9FvCPOlmP42M04EOoe96MFp0ByEHMY/EMGKN8ML9a00PFyZM6uiHDZth4OrqKo+hO1JCbKMMtId9UWgKAD0NwKzZotQ4kFOyKXXK5RoiKQopqPepAIByKAtCiBqYH2Nkmqbajy5T6/ZzPFKCW+ul3m+pTl2uH0KgH3pc3vDKPcs6qAXSulzLpeGlzjHkHHnPv5QxbC3CrRJXFM9T+ll5/9Qqfc4bcqoY3/E2NO1ov9eCh/Jay9Et12ql5fsallSvrWdsaZ+hWDfL98pnX4+adM7T8rRnbtv/rHJ63/bZPtb9T8FW0zJoaKbF8FH237a/T5/nFDQdg9G7dKTjZ7gLzjQxhyBy/KylvdW72MRMfKxsbosxJC2W3KYt5bnb8698r33O0p5yv9PXSzuL0lUUoBIUWueXCDEDjChL5qMjUC3Lvvo8SqldoQHTSl0pxswQ53rmzuNMnGOOwTP1mUvqzhBD7sMtJhef8zbXbRHRmgXzhDNGWRrzzNB7UtKEM1jHzc0NY3jE5dV9zfBkDdZ5DtOEt4ah7+kyHbsU8+y6rgbfpzCTTCIIeG8JU8kaaVAHRUOVSqJnqzGZcqRtHvqOOI9M00iYJuK0BwnQOzbDhstNz4v3r/iMT/+/84EPfZgPfuRVbnYjUwSspd9uiMmRROMRrZhK0fG9Q9JcPXRlvbb1XYr+ogY0jRX1XU8pvCsiTJN6JFLSmKkC9GOMR0bads0sVNlc6DcunqY2jqoNgi5ePSwkq6BSoqbgTSGSjAIFkz021prKzrBlS0klDkN1hxACplMDqBXosQxiuEggMTFbYUa9RS04mUNErMXbXiuxZ6OodDk1sdH7l2QO3nfM+z2z1YD0ru9zX5lsOA1Y02E6yzyODENP53NmLKNB8NZ5JCacdWz6gcuXXma8fcQkCTdc4LoBS1AASemTCF6D8rGOfrvVtRWF3eGgzB2LeuzuXTFNu+zRe4NBhqblNDga920ufx5SnkyQq0rmA88dKxHt5Di19MBxvvZ64DvHHHQzcM4T5xwQZU2uhGmOqAmnFsqapi6VH33VGg0aSkkrixcOPxRrp4dKqcmKTqsAZBdda90sk8HkiWutq2n0tG2Lh660tfxVnxno+h4/dkzzrMXcxgPTNDIedkyHvf49DnReARi+w2dFtvBw9/v9kYemHDbWLDU0Ou+5vLwkHVlqBeeKQ1F/rHNaQOh2ZDzMjIeRuFG3LkmYDjvktqPXyHucz0gc9ZyMhz1hmuic5frqQl3Bc6D3Tq1BfVeV9Fpcq2w6mDtzogWlhXPZbnhVkawKjroSq9WYQp9axq6kO26VSd1QdbxbN3GZA6nZeNs6KdbamjCg1FYphYPmeVaXfgarrQW0tLsEDpfaGiEGTDpWVJ9XaekicKxIi0jNja6JGpZ11SrapwBD/817rVn+PZIjBTXVfaHQHp/m+ThtY/lsfV/q/5p7LfUxyqHcHpyn87jEGC3PdWyZX9pn6nv19ifP2irQ56W8dxd86P3vfvdoP33Kte1Rn9Qd7s51Wu9qG6NQ+qEFCbr2VJMuv8uZ9t0FKDkeTNoxa+bGSS8U78Dpcy5jU77/tH4tY2LrPRYqVwuQTf7bNuN30rfNOWBox3YBCIJo1pl865KiG3QcUtK4ryiNByiDk5KZS55RQfipKF0x1IlSZktKWS2ot2TSKhWRvbHab5kirUr6RIkXJO873lqSzWe6yXtEaovCasB3sgYC3B727Pcj45zYbK+QOeK8zcbQiHEaa9F5n6s+S6W+6DjkuhxWSHknqvtP3ZkAJKcaXXSOQt3WlPWqC8UwkeKMBqbD5abjattzMXQMveXtb/0Mrq8vubzc8j9++EewAcR6fOcw0ZJwWBzgwGhbh6HjsA+5ZoQ5SjFbPbTWHmUra70c5WwsZ2vK/VlA/ylIoemDNtOeJAUKVjXzul5TSmQOivZfMSgY/btkSzLGqEfIuUrn13Vms7Fc6j6QagzwMiYaY2thinQCg0A/R+YQlUGU4yh0A8hjNE/690Zre4QQ8rmWadx5b6hGgRAZpxlxgniPzQCjPH8IQb1geQ64TMdeKLLUWaNeGsNmsyUFNXjKNtH1W1w65GcrRpekcUdJMkh2iNHkNLe3OwRwnafrO/qhI+ExYnDm6VkMW/m4QIaXko2jWN0ba08e2JL7F2PY5Gq2Jk+4UgehbNanyLhNtVeCpKMkrVxtlVZjU8TmVF/jNOIz97IUtjp2zRcKgnZ4CIkQDnjf0XUDnfeEOTGNMxNqQd5sNhmAdBzmA1iLz2687J6oSmSrkLQKaNd1GOe0GniUxpuRN4cGkEDL/9S0eL4fGDaT1q+Ikfe/98fUIxADRgJhPHDY6+Tq+w3GOMwUCClq5im0OKG1thbVq5YItDChuXefzjmNCUAPp1IIsTxHpRFJ4t69K/b7x+wOI+M0Me8PWtsEw8OPfgT2ezabLVeXV4RwjXdeeYUp8PDhRxlvb9gOPS88uIcRXfxD1zNst/T9AGQFNFsOSvYbayzWLxtWmW+VB20XsNpaS0MIuE4PkKIoSEpgTKXLlXnSgoviqTLW0LuhxiAVDmmZt1roMeafUMewWriTzuGbmxsuLi4qmBjHUZMnZOrVaVDz6WZb5lZrMX2epcYi5TXeWnSLxlyAMFAtkMeUmUXRL3FJJvumUxRqzvA8yjkLIJglJSNQCz2W67XXb0HAOUqNMeWiurlbzBE1SIwqnSXDXMqcbOMo8cgYc5yq0RiHSNkbU/198ZqUonc0TyENEDn3ufLeqSHmrvdhAdaFclY8BsucuxOrkFtS6sJoi4p3mWr0KGPVgngFFRoIbww4Z3J67ESYI65TWomByq2WbAg59W4dy5LwoWTyKn20OAKL0m6axyt9r3F25zykrVSjhTUYU7wfC0ha/jXsdvu6v/hsHJIUsTSGuQaEwvJjjGgWQjQWgJQBcplr+ZzUPje1RlTh73uve+Q0zXUvMc+xR/T68pLb/QFJM86Ipq6VQusr8XjqiVfaFEgUpqhxb533quRbBRakxNB1OEnEeeKw32XLshZq65yt1nLngaDxfj/yIz9KP2zZXl7r+RASXSf02wu8tQxdx3a7YTocNPA3RErkoGTgMIcZjbXO53+mYjmXjWGYnDBkKcC33+8Zx4D3HZeXF5DP03k8kMLE5eC4d3nB/+1TXmHwHmsECSNv+4xP47Pf9lY++ugRP/Jj/webiy3ROPazZiLqfIfvL7C+R4OoYbvpeHXeQbIYOxztFSZ7JFua6mZ7wcXlPYyzle7add0SZxtjpa6Vyt8FZNze3tb52Xo5y/7vrJY7cJ1f6r0kTZTjs1Lu/KKEp5RqQb6iH7bZ4Fojd+txLkV9rc1FkHE4q6n7w7ynj55tEoZ5IqSJbvCkfiDgCAYNrj5MzKLxIheXFxnkJMI4kbYDrnO5GKDFOGU+3N7eMh0mLrcXbI3DWzXg2wwCwhyINR6n8S5bSwhaDd5ZhzMarD3PM5cXWy6vrtlutsSLe3zg3gvE3UcJadbEQuIwaWbc77Guq1n7ppB49PiGj7z6UcTAxeWWbntBMjBsBrztGPzwTOv144rJKFUCYwwICZupKG5WkJFsrgBpbK5n0WnAd1qseKVjCkWktbaXyVas8Ef3loVeULwhfd/r9VnQcAtYloNUaUvWWvq+w+RgsJTKz/LZeY44p5H5CckKQR7IpJuLtVq7o1V0ygEaQsA6r9Fhkt3paECwtabZNLKlFhCrtB+t97Dw/vuu4+rigldf/QjzNDKHGZLSk6ZRgVKKiZlATBbfa2B+Qb0//MM/zNXVFW9961tzhckD07TXeJbNJmfZgH7QtGtGYJ7VQlKoXNY6Ot+xGba8+OIDDdbej9ze7OicKjPjYU+YJw67J4y3jwnhgaaeNUarfOfxvP/CfYbNFhIkH9kOA13fV6u+LuxsqCgLySzerzJfWlepArHjYNeqkKacpx9B5qCbuEByymUkGYzYmnqyVWAxxXJjSEkP5MKnjjHiUmI/qmtewV5fN7btdsucN+NSdb7MjXmec6GoWOM0Wm9YoU9d3bunm2yY6YJ6j0IMOQPK8yuFvgKLklZ+nF0OCGgCZRuDeKsIn1cwl0JGBQcsXnBZ6Hc0NntzbFE+mgfn7nDy+tHf2cdelUCTlXA07fE8z/hMoXva9c5f+9i70X7nCKg1UhTc5mrtuyy9ULxDJiv7S4V1SFjra7+39LWjqzYWeI7W0nFsxQLoS+XtUoivgOyk4QLG5L25gJ/zhb7Ka68X3L08bz6zmjnStrHiRqi1mrzv6veNWQxjrZQq4Xo+lfYcx9204KzEbxnI6cjLXGlTZ2aAVhS6atIrY6Z+uOLusE2cUZJ0XDsoLnO+892d9jxvYoAUNIYhJpj2e7qUcmyeZuCRrufxR5T7r1blABasd2z7jv1+IKZAjGoEY56xeV+5uLhQUJCNUmWsYgjc3N6y2+959PhGE8YAh/GA7Tf4YYvxFtf56oFOSbMtauG3kiHIEU2OM0slp7Iw5mJ9sNCnU4r53BKNCchzo+u8prEV4fb2CePtDdM4Yg2YpMlVZBq5vNpwdbHl6vqKw+4Jj29u+eijR3zh538uP/qBD/LoZq9ZI6XXGEAMLgmaGSUxHp5wGPcaF+E7tc6jOs/F1RXeK5tAlXuD73pNUDPNdU8JIeK96l3G2Pw72QigKmiJRYTFIFHOZVJiF+biTsQ6y7Dd5EREtlpT1FDVpKMWqYYkg549F9ttXu/ZO1T0tmzwK8a/ohvFoPqeiCjVaZoxc8DOQn+YETORpCf1hkd0mC4X/xP1HM7zzH63Y7Ad3jqSMUzTgc70aoQOMwFhmgPjNLPdXtAPmkxgvx+zZwal7VkNTh9HLf9Qzi1nNVjbWUvnPCZFLrdbZDPgsCQ0Fa7ddnzqp34aN69apicfJswBh9ZT6awjAPMU2Icd4zgzz5E5JoII+/FA8j1X1/expiMFqbG6H0s+Lk9GiOpmjTHgvAYJhRAgB/waMYQ5qPXZWRJWI+o5TvtXrJjtodC6zmHJEDTPswZZN96DstFvNhu67Ao93fzVq+FynEcb1C1Ymwu2Ec9yq0vO5TaTSnX/QU6XdmyhKyhYswBFJOgEKMi5gB29d1o42yxKg7UOJyhv0CxB6UPX4Q30nWN0kRhmpvHAZntJ1+e4k8bqHcPMPM+89tprjOPIiy++iIgwh5G5gIyLvsaYdN4vluCGsrA8n6Preq4uLjLFqc9FeCwpaYB/lEgKiYnE/tYRsot4mme8tXS9x3U91nd6qFpLN2zq5pJKHziL941FmOMD8VS5bC2w5e/T94hLdodiAXHWYsSqVyXeVdyLFbwU8Gu9CCVTlaQ2BmOuvysdZ5lPZbzroS+p0p9agFGAeNf31fquio5nz0EtlM85yGipMq2imNJS7LId36J0Yc9z/lsF7HRepASFFdLahq1Z1rxpPv/xSGu1/1iiz0DNiFK/aLiz1to7lD8LYDon57wtR+2slsdTz8Z5kNb273Lt5TnauBHte44O+XP92L62WD1dbcPxmJbAzBLPtuyzrzdGpx6Wc6J7CVijnV88RfXzJ18rbdNrH8fyHH9mAcznpB2btm/PedHa5yxQAsoep5tCUTTLu8baOq8+1nw83S+fS8npSrXisc10qZSNYuo9NE6BXoqqxJf08kqb0lpLxmhGxDDPmJRq38Ww1HAoICNayzxPhOnAeDgwjgd8f0EsWQ2NUW9KXms1qY2IjpJp16ium7LfFZARYwkwL8lppNZC0MfW9KiCVaaAVQv4Yb8nTCMpRTpr6Xz2vhjD/asrXnhwj/sP7vPRVz/Ma48f8/h2R9977t+7xvoOd5g4jJZAl9PahkzrAlLi3r1rrT0yTsrqQPePYTMovcbaWrfD+VwkORt1vTcVfOv8thS6oDkptNB6RGymFxVaulhbz9yQEtbPeS9yVR9z1hFjTt1vF3BIPl8kNhSobDA3eT8rBsB2zIF83jotbRATNiZ6PJfOcr8zzM4i25643fDoZgKf2RfWFlYW+8OBfpM9thgkxnwY6TjPST1vxhhlngw91jr2hz3WO6xRffby8gJBz1AtqcBCP0MNWc5YYgr0fUeXa6dMKVEy8t1/4SXMfMPN+Ig25EEnGIgRouieomUpLC+88IDLF9/E9t4L3HvxAdvtoIW4w7N5Q58ZZIRcYE7EEsKM85qaTS33qnBasQTJNJeoCpwesP7O5tbSHwrFqOX7paSpQQ+HQ/YCLIdiSqosAnRdXweLPADFTVaCZtpYj0p5YSnz3vLpC4gpHPrWU3Fuc26vn1JaXNVpsbgubvWlmFK5dkID5MvzY4wmSMvPa6zh4mKDoYck3I4zT253pMOeq5gtLdZkd7olhJFpHBnHkYcPH7Lb7Xjw4AHb7ZYQxuzNmDCX15rHuk2fltSSeCrWQueFzl+wHXq2w8xht8c5zX9tBOJ80Oqhc+BwC3Pjobq4vke/2WCtw/oOkwQh0Q+bo7GBjMa74sXK1s2kxepaS4cxOZDvxKq7KCVUa4KQKm+5uFiNc6qapkVJa69dDvaYlgOnKjIpEa1FWOhRJfaipLFs21PGu7iKC2fzdC6llNTKbTUdpYh60rRIYLFQPr8WSOBo/Z8mfggxaNrJM1Zp2yikp3vBUTzAyb2MmKKtsWj2T2/X63opPkGJUYt8eadBeqEBp88q5z5/uqd+rOudfu4cwDndJ/U1kJMg4rp/m4W3fGod16XR0rlMk77cAnc5vcaY6g1pqUrn6n200hoBzlV+Xz6nhqLiaaChuLXzogUGem0NQG338WV/b38/D0bKmfaxxn2Z9wUILYC5WIZPJ3CbCKEFnOcSGDz3AIM871N5jpzgRYonTil3zmbPaJS633qjFul5DhWMiDgkBoxLmNwvh8PhKFYuZSPnNI2QNBg8xpnB6RyWrENozSTVTbq+11SqlDgYpepZU9btkkEqP1VmYuhmVSm9SWkwhmwAFTAW+l7n+DiO7G9vkTBh8vkxdI5N7xk6x4sP7vOmN73ECy884Du/67t47ckT9vPMxb0HvPjCfS7v3WOzO/D4SWA/wX7SBDC96zJYc7zp5Zc4HEbe/4EPsdlsFp1tUDp10YFA0+xb6/L+3ucA8cWouszLZQ6WdVEoam3MRyp0E6dAIMRIyHpGigljlV2S8vfnXKy2ZKvS8Ut1vrTGvxqnmkFGSTayZLkqeqrL19CEP1vvuUfHS94gXUKuB8K9DT/06EMY6SBX3faZwbLb7bjqh6yrgERNXGSMZoyaQlRaftdzeXnJkBkqu91Ok8RYmxMvaYbQEEKOV2kSowiVWjzFQN9tubzYst/vmeaQu9Dw4IUX4fCI8OQjCrp82d+zImcAY+k6jUv2Xcdb3vJmXv60t3L9witcPbjHyy+/QOd6LAv17PXEyPO+46yyyiqrrLLKKqusssoqP6Xk+U0xscoqq6yyyiqrrLLKKqv8lJQVZKyyyiqrrLLKKqusssoqb6isIGOVVVZZZZVVVllllVVWeUNlBRmrrLLKKqusssoqq6yyyhsqK8hYZZVVVllllVVWWWWVVd5QWUHGKqusssoqq6yyyiqrrPKGygoyVllllVVWWWWVVVZZZZU3VFaQscoqq6yyyiqrrLLKKqu8obKCjFVWWWWVVVZZZZVVVlnlDZUVZKyyyiqrrLLKKqusssoqb6isIGOVVVZZZZVVVllllVVWeUNlBRmrrLLKKqusssoqq6yyyhsqK8hYZZVVVllllVVWWWWVVd5QWUHGKqusssoqq6yyyiqrrPKGygoyVllllVVWWWWVVVZZZZU3VFaQscoqq6yyyiqrrLLKKqu8obKCjFVWWWWVVVZZZZVVVlnlDZUVZKyyyiqrrLLKKqusssoqb6isIGOVVVZZZZVVVllllVVWeUNlBRmrrLLKKqusssoqq6yyyhsqK8hYZZVVVllllVVWWWWVVd5QWUHGKqusssoqq6yyyiqrrPKGygoyVllllVVWWWWVVVZZZZU3VFaQscoqq6yyyiqrrLLKJyTvfve7McZ8spuxyk9BWUHG/0Xlfe97H+9+97v57u/+7k92U1ZZZZXnUNY9ZJVVVlllldeTFWT8X1Te97738XVf93WrgrDKKqt8QrLuIausssoqq7yerCBjlVVWWWWVVVZZZZVVVnlDZQUZz6G8973v5bf/9t/Op37qpzIMA29961v5nb/zdzJNEx/96Ef5/b//9/PFX/zFXF1dce/ePX7lr/yVfM/3fE/9/r/9t/+Wn/Nzfg4AX/7lX44xBmMMf/Nv/k0AfvAHf5Bf/+t/PW95y1vYbDZ82qd9Gr/pN/0mHj169Ml43FVWWeUNlnUPWWWVVT4R+fZv/3Z+zs/5OWw2G97+9rfzV/7KX7nzmRACf/yP/3He/va3MwwDn/VZn8Uf+kN/iHEcjz6XUuLd7343n/qpn8rFxQVf+qVfyvd///fzWZ/1WfzW3/pb6+fmeebrvu7r+JzP+Rw2mw0vvfQSv+AX/AL+5b/8lz/Rj7vKj1P8J7sBq3x88r73vY8v+ZIv4eHDh3zlV34ln/d5n8d73/tevuVbvoXdbscP/dAP8a3f+q38xt/4G3nrW9/KBz/4Qf7KX/krvOMd7+D7v//7+dRP/VQ+//M/n6//+q/nj/2xP8ZXfuVX8gt/4S8E4Of9vJ/HNE28853vZBxHfs/v+T285S1v4b3vfS//+B//Yx4+fMj9+/c/yT2wyiqr/Hhk3UNWWWWVT0S+7/u+jy/7si/jlVde4d3vfjchBL72a7+WN7/5zUef+4qv+Ar+1t/6W/yG3/Ab+Jqv+Rr+03/6T/ypP/Wn+IEf+AH+wT/4B/Vzf/AP/kH+9J/+0/zaX/treec738n3fM/38M53vpPD4XB0vXe/+938qT/1p/iKr/gKvuRLvoTHjx/znd/5nXzXd30Xv/yX//KflGdf5RMUWeW5kt/8m3+zWGvlO77jO+68l1KSw+EgMcaj13/4h39YhmGQr//6r6+vfcd3fIcA8jf+xt84+ux/+S//RQD55m/+5p+Q9q+yyiqfXFn3kFVWWeUTkXe9612y2WzkPe95T33t+7//+8U5J0Wd/O7v/m4B5Cu+4iuOvvv7f//vF0D+zb/5NyIi8oEPfEC89/Kud73r6HPvfve7BZDf8lt+S33tZ/yMnyG/+lf/6p+gp1rlJ1JWutRzJCklvvVbv5Vf+2t/LT/7Z//sO+8bYxiGAWt1WGOMvPrqq1xdXfG5n/u5fNd3fdfHvEexMn7bt30bu93ujX2AVVZZ5ZMq6x6yyiqrfCISY+Tbvu3beNe73sVnfMZn1Nc///M/n3e+853173/6T/8pAF/91V999P2v+ZqvAeCf/JN/AsC//tf/mhACX/VVX3X0ud/ze37PnXs/ePCA//bf/hs/+IM/+MY8zCo/abKCjOdIPvzhD/P48WO+6Iu+6KmfSSnx5/7cn+NzPudzGIaBl19+mVdeeYXv/d7vfSY+9Fvf+la++qu/mm/6pm/i5Zdf5p3vfCd/6S/9pZVLvcoq/xvIuoesssoqn4h8+MMfZr/f8zmf8zl33vvcz/3c+vt73vMerLV89md/9tFn3vKWt/DgwQPe85731M8Bdz734osv8sILLxy99vVf//U8fPiQn/bTfhpf/MVfzB/4A3+A7/3e731DnmuVn1hZQcb/ZvIn/+Sf5Ku/+qv5Rb/oF/F3/s7f4du+7dv4l//yX/KFX/iFpJSe6Rp/5s/8Gb73e7+XP/SH/hD7/Z7f+3t/L1/4hV/Ij/3Yj/0Et36VVVb5ZMu6h6yyyio/Xnkji/P9ol/0i/if//N/8tf/+l/ni77oi/imb/omfubP/Jl80zd90xt2j1V+YmQFGc+RvPLKK9y7d4//+l//61M/8y3f8i186Zd+KX/tr/01ftNv+k182Zd9Gb/sl/0yHj58ePS5j7UBfPEXfzF/5I/8Ef79v//3/If/8B9473vfyzd+4ze+EY+xyiqrfJJk3UNWWWWVT0ReeeUVttvtWcrSf//v/73+/pmf+ZmklO587oMf/CAPHz7kMz/zM+vnAP7H//gfR5979dVXee211+7c48UXX+TLv/zL+Xt/7+/xoz/6o/z0n/7Tefe73/3jfaxVfoJlBRnPkVhrede73sU/+kf/iO/8zu+8876I4JxDRI5e/+Zv/mbe+973Hr12eXkJcEdxePz4MSGEo9e++Iu/GGvtnfRzq6yyyvMl6x6yyiqrfCLinOOd73wn3/qt38qP/MiP1Nd/4Ad+gG/7tm+rf/+qX/WrAPjzf/7PH33/z/7ZPwvAr/7VvxqAX/pLfynee/7yX/7LR5/7i3/xL96596uvvnr099XVFZ/92Z+97ifPgawpbJ8z+ZN/8k/yL/7Fv+Ad73gHX/mVX8nnf/7n8/73v59v/uZv5tu//dv5Nb/m1/D1X//1fPmXfzk/7+f9PL7v+76Pv/t3/y5ve9vbjq7z9re/nQcPHvCN3/iNXF9fc3l5yc/9uT+X7/me7+F3/+7fzW/8jb+Rn/bTfhohBP723/7bOOf49b/+13+SnnqVVVZ5o2TdQ1ZZZZVPRL7u676Of/7P/zm/8Bf+Qr7qq76KEAJ/4S/8Bb7wC7+wxkj8jJ/xM/gtv+W38Ff/6l/l4cOHvOMd7+A//+f/zN/6W3+Ld73rXXzpl34pAG9+85v5fb/v9/Fn/syf4df9ul/Hr/gVv4Lv+Z7v4Z/9s3/Gyy+/fOQp/YIv+AJ+8S/+xfysn/WzePHFF/nO7/xOvuVbvoXf/bt/9yelH1b5OOSTm9xqlU9E3vOe98hv/s2/WV555RUZhkHe9ra3ye/6Xb9LxnGUw+EgX/M1XyOf8imfItvtVn7+z//58h//43+Ud7zjHfKOd7zj6Dr/8B/+Q/mCL/gC8d7XVJQ/9EM/JL/tt/02efvb3y6bzUZefPFF+dIv/VL5V//qX31yHnaVVVZ5w2XdQ1ZZZZVPRP7dv/t38rN+1s+Svu/lbW97m3zjN36jfO3Xfq206uQ8z/J1X/d18ta3vlW6rpNP//RPlz/4B/+gHA6Ho2uFEOSP/tE/Km95y1tku93KL/klv0R+4Ad+QF566SX5Hb/jd9TPfcM3fIN8yZd8iTx48EC226183ud9nvyJP/EnZJqmn7TnXuUTEyNy4hdfZZVVVllllVVWWWWVn2R5+PAhL7zwAt/wDd/AH/7Df/iT3ZxVfpyyxmSsssoqq6yyyiqrrPKTKvv9/s5rJZbjF//iX/yT25hVfkJkjclYZZVVVllllVVWWeUnVf7+3//7/M2/+Tf5Vb/qV3F1dcW3f/u38/f+3t/jy77sy/j5P//nf7Kbt8obICvIWGWVVVZZZZVVVlnlJ1V++k//6Xjv+dN/+k/z+PHjGgz+Dd/wDZ/spq3yBskak7HKKqusssoqq6yyyiqrvKGyxmSsssoqq6yyyiqrrLLKKm+orCBjlVVWWWWVVVZZZZVVVnlDZQUZq6yyyiqrrLLKKqusssobKs8c+P35X/b/4AP/60d4/KFXuXIDXdcjxjCZxGE/0nU9fdcx7/ZImEEEaw3dMGCsxTrPp33aZ/C+D3yAj370Ne49eECSBCSMSVhrIIeHmCQYYxARDrs9cQ5Ya/H9hhc/7fPY7SZ2uwPRDpirB7jtPfr7L7OLDjEeXEfAkZIgIhgEEwMmRkwIyLgnjSNpHrEpsu0d3owwv48xCGJ68Jdw7y0kM5DEI+IQSVhj8N4xxgnihAkj3D5GYsBg8MOWTWeI42PGRx/EygH/0mdi730KEz0JjxgLxuJIEEeYD5jxCXG8RcKMM4b+/kvEac/02gd40xXQXzD5e7zWfzoiHTYlNtMNxmyYzS0TH4UnT9jELd4MhCvL+Oh/YaYdfQT7prch3YZoOwj3MCRE9qT4AeK0wzPQ2yuGzjGOHyGExzgG7PYlxF8S3QUGC2GE6YCTHcZZnQMpEV57H95GNtuO7dbhbMKahEO4GDakKDx++IQwJ0Cf33ee63tXXFxs2W4Hbm4esz/s2O1uEUmkFEkxEaeEiI5ljBFrLSJCSqnOTxFBgOQtFnApYVNEsCQsyfRYB0NneOW6561vuWY7eJx1hBCY55kYY51350Tick9rLTFGnV/GHLUFBGcMxoAxMMeAGIMxhmma2F5eMmw3dH1X72WtxeTPAPWaMUZCCHjv6/P/f//dDz3rsv0pJ//vv/21hHkkpJnJJTZmw5s29/mCFz6Dt1zB7ITHMvGff+j/ZERIBkwy7G3CbC3unmO8mZg/MsJt4uVXHpDcTELqHDk3fs45rFWbShkz0H52uOaTpvldSIjuS0kwIoTDDmKAFBHnsPm6FoO1BmMs1lnwFmNsvo/D5DVvjQMikEBS3p8Ao9+PGJ2zxuCSZWs6XvQXfMlbPw9DYjft+K73/SA7m0iAF4MAxgqQMLeG//F9/ycfef8HsWbk3itv4ur+S9x/8c3YsOe1D76fJx/5CJebDWMCsZ7+4oo3X9/j3mbg/rZng8Eai0HbLqad26dijvqsrdKbREiAsebo9ePvifZzSoQwMU0T8zQxHfbc7h9yCDumcGCOM3MUUhKMgLEWSIjo90QSIHjr2Az3ubp8gZde+hSu772C8x3W6RiHJMQozHNgniIhRGJMzPPMHPTvEAJjDCRJpDyXBIMYQ0KIIsQ8djFF/TsJKUUwgrXQdZ5h6Bn6nsvtJcPVBd3Q43s9Jzvr8MbSoZY+k3SOyRxJIZBChDghEhHKOWbqvpfytCx7grZRkCTMKSG5f1NKpJSO1obk7/4//1//n9cZ15+6Ms07QgjEGE/23UVO59vT9oay535Coanijv68M8eNYIw8cxvb12p7JK/Bk7Yv+xcYe3z9u89pQF7PnixgdB0Wcc7h8popc67Ms/Y+H+t5zrX5473GqXysz3wiY9nOgfZ8+PG048crIoLl/D3qfMYARXco7zVtROfg6XeX91VJMca1H+Bo9liyrq6vOufw3uOco/Pbj/kczwwyNpsNznnA6KFqDBEIQRUzY42CCWNIRg+A3OLmwSR/Vie8tdpBqlAmjDFYowePiCD5NZ3keXO0HuMF4xNzsnTWg+8w1qsSbBzGeVUcnNFWpKLYRsChO7R2saRA8oYkASuC954klpgizto8iJDyd8QYsA5SUSJU0dbhzJt+3siNsYgYbTfNj6DrHvImogdYORjKgVi6zzlLPJ3QeSLoRJN8Xkv9uyovCClGTGo3nvy7LN9PopuI+DweMeFeZ18SaVSLPLY68RMxGpAEJmGNKgQOwTlHito3WLi42HJ5ecEwDMQY2O1uORwOGUjos7fTvd0EdP4cK43pRHnEGMp/ta9EF2Ppo3IAlMOm3WyOrgWEEI428PbzbVvaf43J49mMnzbNVLBUnuXcwdjep33m51VqfwO2bIzG5Mmkf1t0HynKd7JlAzV1A22PRF1Py5zW144Pt3bcjsZXALusizv6QF5XiCAxEMOMhKDzu7RDBPJaNzavR8UUGCzW5NdEEBLGZJCB6PLH6EFg0P0CqXNfEGJWbF3uq6O9pKwQKbtHBghlHsvSfpPXA2fmmciyJk7fbz93VwpQOD6olzFaxuTc9Uzum5QiIcyM0555HpnnA4dxx2HeMcUDMQVCzPujcRnEL2cJ6HkxhYi3MzGDhHoYp6T9m+4qnMcK+HmQqn2zjEn9Xu1eqXti+fupD3501eZTef8s++jpft62NUnT7ty2dg8W7NHn7z7zx2jaT3Epe/c8z08FDu1nf2JAxjHAviNmORfb+z3tfGl/X9pqK0A433aw7vj1AiqbT+a2Hn/3+IW7QCU1+lcxdrXvn33kk37/eN9vP/M0gPLjARmnfX/unk/7zNPa+UbKHbCTTT2tLOu+nH0FXeg/rY6gR8bTQYaePQZri85ZjBBN39tjPay007ljkP00eWaQcX11j74bwFiMcVjriKlYWbtqKfTeM8e4bGIZgDjnCEGRcOmEZWDL4+ZOJi+UfOLXyZ7g8ZNb/OaSzYMtu488ghgxcYY0M9ieIIFpDqh9yC8LNCXAYDuHMR0iAWJAjCU5i4gFEdShIhiJDJ3Du55IxxysWtIwzFiwAXAgDmOteidESCJEyYCr65AwkzCkmAhEKkNNIFnyJFJwpAeD9sk0HtQ7MvRYD3KkxEoDUtIxyEiCWMF5T+w6JDowEVuAypESsBxxenAtm4qk9HQynVELr8kHG7JMQUmQYgRRq17XdUjSxdIPPUO/UeuhCC+99CIpBW5uHvOhD32AcTxUxOycqZqUwR5N+lNLQwEUrsw3dByxqpQaMSSJIMsCrpYZK3nBHD+sNMh9sf4db0Btm6y1WYGW2reqP1qcUbBb7pmSKhAtsDhVIlqrkXPu7IH0XIqoZ9EZBdbOWow1RGuwWDzQIXgc1ggxn4+2eBsSutaswzhDMwVbzfvklqr0056jUsCeAmpjzh1OesCblDApkOaJMB6IIRb7kd7LCWISxlqMGJyBGPRvax3OGWwBEoCuntRs3AoMjkFTXpPZABBIeZ5TAbVexdYvGaNzzlmLd44YUINK9sIYY7WN5T4pkSTWOSlJ96/X05vODCjlC6eHc6uMt6/Dogg5Z0gpEOLE/nDDfn/LNB2YDrfc3j5kigeCzAqujMXajs57NXgZgERKnhCERGKcJjo/EWPI+3HESjYWSe6Os9b9U0X0PNAoz3P02eY7FSC+DmBpe07QaWnyJE55Hy7XTQVwlBbk93VY8/vtHk7xvpxp//8mAKPsmx8LaDwNXJwab+56ou8quE8H2ObOK/UazWZU2nwXACzrwlp7ZKzScxhSOr8gC8hw/unKu/aR6gX5Sxig7/t6bpZ10n4vpXSkrIYQmKbpqG1Pa9OpIex0LO4+w10F//Rzpzpj+/3Tz59+pvR5O85PA3gtuHraWVvu9eMx+H1ML9bRYfA0IJo/ZszRGvDOq9GfujOfnf/lWjpm/uznWnBhnaXv+48bkD8zyBiGLc51WGx5MoplcbPdqgciFYuu5EmqD2qtxTnHfr8nzKF1rgOSLbr5kC4Ko3OqWAsE5/K9IuPjjxAON1jf4+JMejwy7x/CeEN3cU3vOjrj6C+umNJMTHp4G5tpU5KIac+Y9kjaY1KkM57OzPjOEyV7UpLgSNkFbrG+x1oQMbldCZcMzkLsB0R0sfp+wHcGkYmYwYXDqKfFqPoEqiSlFDAoaAM9CI0IKQSwEVOVUZc9GXnTSkq1gOyUKR1qDWIWikedDNblw2qxqLbamDG6udkMyEz93znJUzcl1NVhkKQgZrHGaj8lhGmaudxe4J2j6wI3j3f0w8D15RXOGp48vuH29kbnWN8rbSIrCDYDVJIhGd0oivX/dDMoVu/FAgxGtHMEwVmP6qYW7x3W6LOmFOm6rj5XSlLHOSU5UkZg2VgKXaq8vxwOAErbaA0MkhUbBQzHB0nr1TinkJ3SqJ5nMUnw2KogmqyQxRTBeqW6icUlg7cKRKI1uFgoNTEfmApKHA4rSg8Ryf1cLLpp6UtXLELVc2BVsTOohwAKLKxStlKXBJMSKcwwzRDVUiwEkkuIy15NZ8BaJAnR5bniUCU32w9Mfq0sZ6nUpPyTl2Us3leKorm00EBd3+UZjFHDafVmCGCMQhAR3YdcOejz8zV7hzSKbXkP8vsf41B5vQP+aZ9rvdfzPDFNe3a7J4zTjnHcc9g9YTc+IUrIAM5hfV895iZ3oJA9pCmSovZRShGRmDs4AzqJFIvuKaBvwcLT2653i3V+5e+nhVJVP2iOr12MCueUrNO2KAAqHo3Wm0H9PWXFMeXXU0rZWyvLPi8ZupzcdzGYvO6Q/pSW033SOUeMsSpap4q8iBBCOFIKW0PVOaW0vP76lvdlHhSq5IkdD6DScM+Bla5bDLRFiS8gWOeNhcbIdtpmY6Drj73gLWDSvlBDiu+UHuy8w1jU25f7KoRwBLpapdwYQwiBw+Fw1A/nlM0ClFpgcUqzauX1+veUDn1KKX7a98+doefu0fbl6To8ZSacPlM7f861pf379Jw/x1g41S8k79mI1DneXjPlfccYw7AZCGHKYwUh6DwqRvtCs4wxVoNlO87Lvc3RfK7hBtkQ6MWr0fh1+vecPDPIsNZjjSpIRYksR1o/DEhMhDgtFIjGwmVY+OiVFmWtnorlWDRL5xvV8mpn6y+JFGcYb5A0ge/pMcyHiMw7fAdhvkU5Co5wuCThSeIQuxy2kDBxxo4H7DRiJIH1YCIpBozrsjqSMBKxJmFRiyqZGiWZLqXaaOFFLG231hJrP2WFyDoMTq+BU8oVGfjgwXmM1detFUznkZhIU57gxeXZKAFHHtA8HJI9QdKgd2NtPo7LYbVgCGkVk4a+c9dJt9wGFNwUqfep405WoCChFLTOe8I8IxJx1jBsOqbpwOGwZxwPGKPeF1UQ8gZb58bdw+DcYZ0xBsWSSAVVVAtOeU41bEoGa6rZKe0g1gdV0KTvGRGMdU89nE8XnM089CTpzGc5WuStNe10Azu19Dzv0lmHx2JROp2zjs7mjS+DD4uhN55kMpizCmqDRCSlrI5brAFv3QKaDaTM0xcjue+zpQab56fRe5jMx1t8AXckjzweBUdzBhkSE2K8mkiiVbBdvKFWsnu5HB6GJFbtClb3FVvWqhjA4oxXT404kKBrlzxXTWFzCUYW65ROTZ2XGFO3IO2bvOeW1SrHc6exfdOu17q30P4uLB9Y5NQLfe7QvdOfJ4pfUQjneWScDkzhwDjtOYw7dvtbpmnU/nRgjRoGrLE4W+JrlueIUZGWyaBIpF3TgkaH2Gb95vdb5eJ8o4+MisVQU5WNk+ehgMc7z3pGsRdYenn5L0nK9NwCksr3l/2heDIEsrJBBSALKGEBOU0bn3eQcU6Kotx6qdr3nhZP0HoRirTK7etZtMtZJaKUZr1GUVglr++ng4yy5xfFr9CRjjzeWEyOyThnbFLbbtnbzrUx74eSsM5kRdISY2AcxxxXmAhhMdh57488GQXAjeN4pCOcO49OPRml759FMT3dQ069S6dn4amyfNqmU33hWfcnEaljUtZPea6nxdece7bTc/scyHgauKGs93S+3THGyjyxzhDCnOejru9y1hX67CnIaD1rKSUwatRV3VGO9lfvPNb4I0By7nmfJs8OMozHWo/BZd6yHpDGGLbbLePhwHRQLv3RZMhNFRGmadTJm4OKUlbo1JKuCrQkwVijB21dbBGJCQj0JuCix3eei2HLw8MtxjouLwwf/NAjwhxUbzQO6TbgOoz3OJdpNEnoBo9JAVcC5ibLDBATm6sHmOzBMDLjTI9YYZaoLGrjFVwkQ1GDpRzQeXM32gnqBRHlnltrccYScWAUbBjX48Rik0WYkTCBBe/BX14RDzum3SO8tQSxx4egOf0p5kzt9JB0ElrUel/iRKhAoFEe8iGli2ixdLZSlPh6r/L9css63zKv3RZWsGG72dJ1nvFwwFhw3tB5x4c//BF2+xvmMNP3fd6o9ULFqgOo9TItm2vZAI8sBejcSdl7JjXupoCJfLjW38tPpNJXJBJTWK5tsy1ZtG+d8Xk+HlsdSnuWRZhBpSHP2ww+WUBnAaPtQm0DGVvLxcfa3J4nuegGegRrhM5ErBvYdgOd89W75LBcuAHvDMFaZm8wEpnMDBJ1rRpdhls3KHhHjoLxESE2AZG20ITy3qT0JD18zRn1skBtjOAkqodxmmC/JwZBbIeNXr2aziFeg72xFlwCUXpPykqycaL2iGSwZS0Bzni8HfBWvaFR9iSZqxXKY/HGYsVgBGxCX1N8lGlQ2Upmlng5W25Q1kZj9KlijkF8ffaUsjGECuCefp6c3y+0955uSSxrZZ4nDocd+8NNjsO4Zbd7wpMnjxATcZ3DO5+tvR7vOrquq0YqkcQ8p3qG2MagUt7XAPsSKL5Y6OSkTe00WAAFR+2tfXryc/75GsX+BNQgghjQ1BT6d6FJKeU25VjC4tU4vWehSzV04hZQpNN9rgVUzzfIOFU2S7zAPM/M81w/d6p4tpSS0mfleu1erPu73LnXXY9HzD9pmZMUqre0uP3YQt0oracKeKvYPw1kLD/52vPxYLb02gJ41G67eLnG8cDNzU01/BZAZIxhs9nQ970aB7uO3W7HNE2M48Qw9PUZXs/odY5u1fbD6Rid9nXpg/wGQ98zh1Ap9Kd91s7xU3pxUaTb/j1eD3fXb9d19RolFrO8//HQpMo1TtvUtrdSwXK/SXkuY6rCfwoKanyMEeYw1XUwz3PTjwoynHMgS38Wz1mZfzFpjKDJVtqUknq7TLmvxZ4Z62c1ej4zyLh37wGbzQW+G/DJ4F2HpIAV2G42xHnS+Ay3IJ460VPpAH3ILkenhyAVaIjkOHlnIS5ApPc9NwLzNBND0EMjqfJ87/qS/W7HYR55/Pg14njIAMOooyDeIgFkn3K2F4MYGPfFOqTZreakVuphc59N5xjHyO3ulsNrH2Lz4M1sLnr2hz22uyQZ0YkuSRUBa7GdIyUHURf0OB5I80RC2Gw2GvgrWRHFZJW24AGTDwo0KDEKhzDhXU+aJlIK+P4aLx6XPLbrSdJhUsJNE2I84jui72HvsclhxeG9Y3YKYJwx4D3RFsS/uMXyrM9jkJ0ylFOoAEVZJn9MmPx7iBFN/2NJccYQEOdJosqUxkQkxkkzNx0OBzabDSLCo0cPub19gjWG7WZD1/dshh5EDwNrjFJjRLDG0m+VSrXb7e5YL8riEEqcCBn8LIHCSUQtwvkQNyiQDWE+UuhPr9uCAoQMHpb5XRZs+7cxVE6ktbZ60iTfp+86XF7g3vs6/89Z4Np11HJ2n1e5v7mgBxzCZALJ9Vx2A4P1WK9goUuOly6vOYgwA8EaTJe4lT1THOlFNz2P5d7mConqCfPeE0OxLgoxu5t1/JbgcT1sTDUO2DO+jGJhjjLTETFJ5+Rrh5k0BgKBbjuAd+ATEgzJWYxT0GE7B9ZirGA7qxQwJ3hr2EqHNw6HxfkNvd/QdRtiECYxBDMyi8aV9cYzWI/H0AkYLBeuYyIRTaJDXdkYQazQ+Z7OdzhnlT6UBJMEK0YNQE/xULZSXOx5J8jz77wlslBEWqXtY0k7xw/jgd1+x+Fwy2Hc8fjJa0yHgypuQ0fX9/iuw7se5zc410M9/NANi0iM6gXVlqrBQHnmkSQ2e4MsSZa97+5Pqh7gUyWk/amxEI3CvwCIM+DlzPPXd4zuTQUQKA0ig41UspDdbWuUxZOh+172amRji2KsBXjcVaie732kHZ9Ti3aKEcnKu8977jhNCjKy8VKMJUb1GKk12Na1oXuuAmvjMtjO3ueQJHtCDTYsAPDAmPeUQj2y1QDnvK9GA4FqAFhA/PFzJRHiUZC1rrOyBruuX6jC1hIlVgODrl1d51b0aBcgkkhBcJkqXM7jEAIxRfUN55jaTT8oXT0JN4+f8OEPf4g5RKzzjIfF+GdL3+e5GBuvfUoJ730F/dvNlpQS+9vdYgzJRs18eCNG9QrJ5+s0T9V4envIzyYGW2JUTLF5lr7R6x7CWOdFYS0YIMaEL3pgZks06kLt/xgjYzHWFABT5kX5XP67zcBVAaMxOJcTEXG8f4DGw1Bi8vI1ul4z0d3s90efLaEGZX8JISwerwIavCemRBSlmk/znM8eQ2c9g+sxmAwyln5SSlQgpUBMc47L0Njnruvpuh7bZ7DRZBv7eOWZQcYrr7yZ7faSwg/UIEd1Pw/DwDj2qmCdfK9QpQoKM0Y7rXaisUovkFStjPVfKdYd9DXnNPOT6xC/wW2ucdsD1ozMeOzgMse73D1v3oXnaspmnuM/bI6FMGrpCklw1mGYidOew8NXiWLwc2S4fJkkQRG/ddVyXy2JOg00I5aTem/nVLkRURZ3rI0rnNncS0avi2ks4taC73Bdh4mmKvR5x6Mov8ZmC2pxNZgM1rI13qSCzD1R1JOSokBqqFWokpIS2DzpSYvb/Q5tpyjAtEpIPvIylVSSwbrMA3UW5yxihBBGdrtJgZfzeGdwxrAZNqocpWLtmfNme8wdPHU7L79npeiMZTq/nT9PtoTbrOQvgKp1BwN1ri73v+vqPLpF7gtpNrB6wOfrl5SeRwfjiZJ2+qytJet5Fm8cnQFfrc2O3jp8tpiQQeVFN0DQjG+WHCSeLCYW1AiIoXeeGPVA9eg8imIqkCwAutCIyqFlGiXLnChcVdlA8CbRW4dxltlaTJhJ40SQQLQGk7xyBzu30JiwWCs4wFtLj8Mb/emNpzcOh8Pbjs4M9HZDZzdEm3B+JiSwUS2qHvVmWNGAbqyjdx2DRAIJj1KlxOj+5p0aFWzZkY7WDXn61l9Y1m3z/FYD2FWNsCiuPQ8y2vVQ35Ozb9c/ygEfY2C/3zNNI/M8aSzGfkcMMR+uXkG9VQpsodSW7Fm6FZqcbjNnJDMa11YVlztAYMlWWG0pZOv+UdOXN+7sNdL+Lsv3RfL22wIOubMbqdIilFODZn+QZszK5yoAqR4NluxSpR2tJ6MBGOeMFsW89TxLu3ee7pUxBMI8E+bFgDTNxUhZgFnLP7cZ0BVjzwIyfNfVURQ0Vqr0nKt5Po6NQarM6blvrVWjWcPpb9tf9KI6dhwDqDJ85fvWWkKYq3XdWGVUWGt1f0DPcyOZSorqAq7zGYAlEmqsK2mAQwhHlK3DYZ/jXBKPHz9SWlVKmBhJztctxOVdxoCmTpZ4PHcl5TVsNC19UgBonWOeJmKmipUHFcnxTkb7NMSY9+tMCdRexePunIXH85za9zEeB91PU1G0jyl07fiEEHClP507yqpVE2dkwLh4go5BfDAzxtxtJ8DhsC/HUDP/1JjQZrAs3qDyfoyx/pR7GcCLYIvuLTCOI857nPfMcSLNESMKskqCm9JHmowkMc0HnOvyGazhC953WX+3dc/9ROSZQcabXnlLBhkZLFA8A4Zu6Om6Du8dxFM+I0eLyXuHa+gfxfobY0mxSFUMkiw8S0SV30CP7QZSd4EZrrHbCcOBiMVbX0FFnALYTIMx2YUugNEgTuMc1uvnyfz/lO9hENK0ZxonppDwc+TF+y+rRd6AsZ0OUlWy9WBJubaD72wOmEw466vXpPgxNGuNBo+WA7ECBeuaUBWD8WrhPcowVwY79+0CMKiboTlRZr33YDtMsoAnStIsWHk8JbsAUkpY77G+J+ybU7jcyxQUr88vdYyXMadu1AbXaSYY5/I4S2SeJ3a7Gzb9Bpe56t45hr7XrBfWMuYgsylfq7gJTwOwiiy4cgFGreSmV8UD8ubrOu21/KUl+Em/Vxa4zvlzB3Y715d2JdEFXPpKmv6xOcvPKQ/4aa75U6DxPIu3Fm+MgoxMa+yNo7Maxq35kixD1zEnIYWUV43BiMWErDxHkAQu13OwJHoDMYd6hRY4As6YnAJWx6IJodaEB3WCUNea5HU5OKXrHYxotrhpJEb1XKQkuDwuFoPxaEKIhCY7MB0b6zUWxVl663AYnLF4OjZ2Q2cHOjMQbcLbSBAwKRIk0onVTFtiNXjdWDa2Y28jRsmXOW2u1s1wZkn/WxTWsiDq/KonHEVDyA+uPWms0/gPKRmdFmoGp/MvK73OFQDRHvgL+G8V82KlD2HisNtpNql5ZNzvGMcRA3T9NnsNMzzMxpVTygjWYCTHa1i7eDJFn7+Gz0v7YyrYKG2uE2N5rGWNy7KOlw8s/ywgpjEolNfk6LLHXccCWFpAUq8JS3YpofGeNIDopF+XdungSvOetPf930DuetUWJX+eJg6Hw5ERp9U5kizrXWtgaY+qMqd7/RJXl1O857opKV8vq2D1ni4nQilxEIVuUuIuyu9lHy8KdqtAlvYdedEzuGg/P03TAkKzQlypViFgknrMAbq+oxv6o3vtdrsj6k3xqGOgv/V43xFj5LXXXquhoEkC0qW6VWp0nNLQtT5LzDpQmw1NFdv9/qDr2ndYY5jmiWkc6fuhbikx5powZZ/WzkAMzCEng8GQcnbTol9W+mPeVxTY2GywXBT1xaun7WvBQ1tHKcyzsg4y8CoUvDIuNht2jdVg/TJ2rVejeDnKHlbmEsA0zZnaucRkFnpcofSdejOKB2N5huU9k+dGmY2VFigQJTGFTN8TanaoEr/hO4c1hZ4nGOOwxh1Rt9Wg84kbOJ8ZZLz00sv0/UCMQseCvk3hdYVADCG7mBruW/5+6ch+2NANA6GgdjKtgWJk0xk8jSNhDnVnN9bq5Nq+iB0uMJsLps1LTG4mba64evlNdL2m2E0C4zhh0ghJLRhVmQcG39WUbLvbG4auw1mQeY/vOqwRiBMYB+Mj5IkQd6/h3BWCEGJWrCVhCKBJakEicU50l1usgynO9L4nGEFkRiSgeW4EDfJUd77JGpOpyq8GXhmJeOD29obZ9GC2y/GQD1iKtTZb0NX1HpF5xliH73sG42qsgsl9iXcY44l4SB0O9ThIXizWdsSDLq4y4aNEiBFJ2l6Hq7oK1cKIIuH8vcPhoO47SrDZnhQDvXc4q94dbw1Xl1u800DXznve9MorvPbaQx49fMQkS5DaadaHU2mO1nrQ6twqapduSjFG6Bxd5+pmW2ItygLUTcUiotxba46XSwnoO8pLbRaKVjtUrXJmndLZnPfM81zXUpv54fVS7T3PMvQbOqsKs58TG9+x7TZcDgNOHCnDg2hUyQ4C2A3SGSxCN4+4aWacJ0IESYEHvaO3BtvBbZyYgwaxzVOPGME54X4vXBiIRtgBt5PT3FQGLAe6TY9xCuYlCCkIaRZstGy6QLQ3PHztxxhvHxJ2ar2KVvBpi5UBmwzDxtPbno3Z4gZP110w+Cu2Q8K7gMvejdGqlbQTz4v9SzjXY6zDXVrmuGUeb+mf3GocnBnw5oKNHfCSiEl44K+YpsRBZvBgfdI2z4keS8rZmoSk2a6MUTqmqNKdsBjTgURsFDrRlN3OOLr+QjOxVYPC6eEiCzjBQI5XqbaI7GGQVPbHBGj2NuWqjySEECbm8YZ5umF/84j94YbDfqeKm1XvtlogHJKz71lvsd5gva4hfc9qVkPjc6xKyd+XLf9GAWqpV5RkqTMSxRCTKpzl9SL6+FlBlWO1/NjSLCfA6uT3BrsYASc5kN/m16XsTcUQpr9rLaZscFITFiX2qJyqiz+ioA6pw0JWDEkgDTVQivL6lP3zeZFzFuJTL7Qxhv1+r3pH3x8pldZ7DvsD0zThvWcYhgoCQtZjnLXsQ6hgb5wnpUOiYxxk8T633oDytzG2rqXSrpKdp+hDpU1lThVFss3iA8dJWcqzFA9WSPHIkzGNI0YMD+7dU8pSbtfNzQ3jOFbFuI2TmOZDvb4xwna7Redd5PZ2lz04ht53Nb5NYuHxF/1g6fuu6zSNNNRzW/fk8chYdnP7uD7baYYr6xyxGG8lZ5ZMwn4OFRQU70v5XbOY7o7mSCks2N63gK0irdLunNM+zGf7drut86IADu89m4uLo6KQpaCviFJ3Tw0iBYxoqECo/VQYFYXCVtrQdV0Fk5pBLx0Bw3Kf7XbLfr+H7L2xArePnzBNE71f5pvPsckFpJZ6ZJvtwGd8xqfz/vd/EBGtiWet9tc0TQybHnPnHHh2eWaQcXl5hXPZgm8VoTmg7xQhG2gAhsPaHLQdI8m6HOxo6LpOF8nhwOIKThV1ppSYD2MdzO2wIRgdvBATYnaQ1BV4uR2wBlKcOex3TFOolKMkoh6KJGBs43GAQ0iEORLmREoO6zf4zmJ7x+X2gjQd2FxsSFHTU2Ijh1c/QLr/ZsxwTec6QkyQAhIDDg1kdTZbm0XrRBgr+N7l+n96vKecllKMZO5szv4QIhIDEmcSQbNNYbCdp+sHQrRIPLJ1KRe7mrMWi6VkqxdJ40a894wsG5kpp5MsLlpEPUA1GChMiGSaSUHvOHABiU7pK85jvSUZNPtWtpaSax6oBVkt1jEoPWKa5nwfQ4hz5ZNbq1VyN5stFxeXxBBJUcHAa48eVSvBqYuzyGIQjAX1qIXlqTO6WK2kYrSyESyWo8US0nUGk0p2miUdXWnH0paiQSzAuVT7hpIxQ6oFrACMsrGcejfKe+fS9z2PYpqgymJatmRaGjpPQgjMk3B7M3OYErbvMH0eC2NybYeJOEcO+yc8uDAZoDqmUbgdA/sxMo4H+sGwHSzddsAbQ0yJwxz46JM9VhydcVxtAxdO6LxDUuLRGNlPwjgJ112HiT1h2vDokWGeHCKaHStOIzOqTPfGYmKHTQGL1oEhjUqnihEjE8YIzghTMhgTGUzHA5NTSc4Tl8NWq4nHEeYdvuvoXM9m4+isxl8449laz5aIM5FhuyElmKJnZGaaErGhVS67hVAS+S4eDX2zUvuMwVmNlytUM8kFU49EGmt40tTibbpgg6l1dEpqb9V3U/ZKBqZxz+3tk/xzwzjuiHHGOlurqOtcP/FeWDVE1PY3INzaXHel8dgUD7ap7uGTBzFP2SEa4FC9AOY4YLMt9ldAlEbjH13kYy+KE5BSxJT2GcnjtKQsrkF9oGjFFCVpMXIYkz+WOexHqXaf422kpZOcWny998SmZlff9zUz0m63qwobbjGUjlNgmsdl3ohAFCQm5hjxnVcjJzmJSlbyhi6f5VJoUUsQd8g0X4M7AgytRbqAj2odN0tg75L45JhSW86DZQ4KZCZAqcIc8hn72muRl156SS3aMXJ7e3t0/XIWiQgxzUA5a64zV18IYWaeM13KOvbFqo/qYGW9KYDN4wNKS8qvx6yHAJCEYRjydUOlOmrfRLxxNUV19RrltYZ3ee9J7PeHbKzzVXG3xtQg6DJPCj3LWkuKMdfX0dICBRC0Gb7quX4CxEWWBAMlZfLtfn80B8t3rbUcxoPagfM81Dpxk9L2ki8jyzRJBUqlHaDjtd/v9XNZb67eq9yWsh9O88Rhr8wP5yyXmy1pDoTDyDyOuM7l0IDEbn+rTJ+U1CngNAHKhz70IU2+Y10eE0/rfYspanyvO08Bez15ZpBxcXFZI+7bg8q6JTCmWHFbd19x8dYbdh39MHCbkdfRIKbEPE2MOfCvoLRxd1A+X4qYWTuT3rHxYNNEmnbMewd0CjIy0DASgIjNynhR+OIciCFmt2IGIkpspM8BOMPQE+cJvEM8hP0TzOUDbL9RAJE9F6SIpqFdDgBJyvvTRWBJRoGHZMueQQ/KmAGGkeVatbheORNtDkpLxQJViaCUAlNS9bZyuuj3yIDCe6cgY/nEckgmDaRPkohEXKeLMcaAiFK9MIvyUHJlCgugPD2oi8/EGIPz2TokqW6whoTPoSXOaeEway19P7Ddbrm8vGQaZy62I4fDBY9vbvDeV2sHnLdkAcolN8vvev6a2p3LB4uSv7g5TQOUCugobvSS3s1UU+HShuN2qPejDkrpt9z3KVPzMOZoXbRAolx7aWqrSD3fAZvOaJa1Upyu8Og1GFI3v2kOjGPisA8cJqET6Gyx3pagPQXkIRxwpqNzHuMsKTqmKXC7ixymmUtr2fReA4eNfncKE493I5aOjevYbgydTWw8xBSY0swuCLvZaBBk6pjDhmneYswFziqwICUkBCKGaB3BWSxaCHI2YNzE6ANdiGAzyLCRAwZrBy6dZ5YIMRHnwDYNSJyQ+UCa91gPnUlsOoM3AZe8xldJZJARZwMXtmcODkmGMVrGKSoVxDpV8E0DMsp8hfpvrSmS17bNB0z1kFqLtCCjAIxysNpiRV8ywZDHssTNqAdFjUkiiRhnzSR12LHf7xjHQ86KIhpb4ZaigWUZ1PPGtCBC96JlHTZryLQUr6X5x9Vv5eSnfWdRVOpr9SzL1KYKOKh/03xP5PSqZ6QotfXPhn5afqQ8i1TQpltMAYrlRotvozx42cfgGIA8zRP8vEgLLlr6yJElvNlTY4xVsbYu17QhA7EkVeE22SApIZHmyBxj5rc79XTafK15xsiiPpW0ryXeKISYx+049ae1lnFcrPmnBqbWo7HIUuegfL58V+sL2SOQIVFBfwqqqBprsH65L2gsgcnWxpQiSdpA80gIpV+V3qwgw2dqubYJ55CSRVHk/8/dfz3bkuX5fdhnuczc5pxz761brt3MAAhQAAFCECVID5LICDzoiTL/lCKkv0ihB1EGAgMUBAxFjiBiDLq7qrurq645ZpvM5X56+K2Ve59b1T01DCkC1Vlx6h6zTe7MZX7ma1pBwlzdn+dck9YSwhgh59KSLRXNMaZ1PIzRvLrFL2pGql+a0Og9SznhRIURLvdOoUKu+aoBLHGhe5iI1BW+hFwgSh3q1BW1eiejXnUl+uO6kpiIcF6WZ92r62Kj3q/cYiSFk2pxLOFcT6IqNZdnyWZ/nWuY1oeKY9fJZimFuXWnpF2jzTipl1NW5SjrtVBUaiEt5/U+a5KnfKSHhwdevfpIO8QfzKPr+fZdcclfd3zvJOPli5dsNlu8C9Sk+C1pAVfJLTB2hjTHVWZsPRl7Ud3ZTBP7/Z6vv/lG8WAtUNUqd2Q+n4nnGecdm82Gzz77jMf3D9SasQgbOUGe8fPCvjxgT99QHh+R5YHcjGu4cgRW8yYDpalX9ZCvsspA1qfI4izFG5wPjOPIFDwmgBtGxA28OSW8JKQs5MVhXICa1btDcvtSzomUjLWw2U54a0hSkZKhNHm97ppVu6TUJXGAVvluZigxJUwdQAy1GuW8XBE06mradJn8vUVYRQOeMAzr/tOHRa1VE624QO6Ljyf4SQdzSiAtKK4Vse1irZuTLsjO2hbAoAusCNSilFGrEzfGSC0L5/OZlBatRDrLzc2eadowDhNDCNze3HJzc8t+f8P9+3s2mw03OfPu4X5dZOF5Evv86B0XwYnyhmyDQvTra1pi45ofSb8WwDqJ+s8XnKwGN3qv2uZ0dR4fYm0vRjYXRBtXE7JXXHNrI18nDx+2+6+//6F3MQB2w6heB8aAF4Kx6uDcqs4pZ86nyNPjzHys5OIIYcABzqQWc4nig2vCmcw0BrYbh7UjwQVKNhzPiSiZDVop24wWLwZyZY4L909HnJ0ok+Uzt2XrHVsvxFKItXAo8FQcr8OW82KJsTBOP2O3mwjLe1L6pvEWKjUtnNPCcj5imkpWDAVcwNoJhowbBRcs3m65zxbntny0zXz6esYVS02ZUjak+UA83ZPPD7gBRrNlH4QgM64ESqq48z2b8oCQ2eTC6TRxXoS0FI5nUTUlPyL5oHG+uoc82ziMueD1QYe2MQ7rBjW960Q/a1qScSFMy1oBrWpyqtlzD711aTOyfok03HTNSI3E5ch8PnA6PfH4dK8Jo2gxKLigKmP2UtHsq1bfxN3q+G2pxlKNWTlOzmuA0ZNXxao3ronRetLqeLh+XTDk6yG9EPM8yYALBrz2zyyyErFZ18LnHInvOnpCAT15RmWQpXH1gmsF1R5U9E5KP59LZ6WU0pINs3aQ+nPMKibSCyvyHWvnD+j44NT757+Gq3wIi+lFy5QScYmEyT3D0q+P653yAmTAGg04QceW1WAtpkiKdjXTi5G1wn0+zy0h9hhTngX3/RzgOSn8mnNxfU970bb/Hi4Gfv3z5ZyJV/czOE9wHnGO3/z619zc3fLp558xt+Jt72Ro0RhqzatruLUKz1YFJB17S5yJMYGxTA1WZowhpryaqaacMe755+hQopLVrNca5a3N84lxHJtg0HJ5fMqqxNdk/qVeeDACmMFjXd8HlTvT+RUxLusYGMcR7z3ee+b5tO7nnY+gcYt+vt6dWJaFqcWmNzc3/ObXvya1ROx8Pj9TdRqGAQHmZWGz2awqWv1+GGOYpoHDYaFWLZx479YiyzgGSqmklDmdzqv7unOOL7/8kru7O/b7PeM4Kty88Yv2+z3zPHM66fUThBI1yVj9okrl/HhgOc/EuCBW8JOnVj3/w+FA74zM87wmVjEuDMPENFW8Cy0ZqxijRdHOeft98/B3Hd87yRj8yKcff8ZP/+iPOLz5LcZkQNi5AVPUndoCYRq085BBlUlU29z7AALjGNhuR1JeCGHbnMLLqgZRcsZ5hzOOzbjh7/ydv8OXv/yCuOgEIReEBsFKR6ws2Doj56SLaa/AtYqnIBjvW6vZUI3qztdSqKVijVYAcE4lXstCyZGUI6/ublhyZolnNibw0d0Ag+fhfCIVoeaoCU9ZqGnGVGHwE5O1eFfwYSA4IZaEqzMlg1HhSowNmNb+tqiSUnYqJyc549ENXJxhvLnjfFiQJWMkrptMlQo1gWlVCOna8QWJM9Z7xYbvb1ieZpIEhBFvMmpyZcGPbXNyLalIgMHYQC2NACSRujypuhUVIxmJAl7QELxBEkSrIEoyKlAdIoFlidSSEIHgB+VhGE1ClB+hal9iFPeaH+61+9SqLJthJC1RMc3G4oNWFvKqstAG6VWX4YIp4AIaMZdY31h9f2evDGmkNbitbjopJ51sHdpUcqt0taSlkfsM0rpQmoMonFAfowVXFUjAGEqxa5s55yuymDLF1y6WkrC6JGFLfIw8S1Z+iMdHty+0IoVBsm5SfsXLQq6VJRXSIjgz4oaR/eaGzaZia+EwaxfNhQFvA69ffMzru4mbacL4Gw4RYn7kHAMy7PnozvDRbeDV7S1eLMafeRctu61jGu64297x0d0LXt0Iu7FSyXx1nskOGBzjsKPUkTqOvHg1MA0j8zFweDqQznENbrO0ELsm8hKpywLGY2zi5vWWm+2GaTeScuDt+yOxZNIEuWhnE2tIVdvptQjbacOL2x3bbWA0iaHOuHKm5oVdfYcPR2ww7DbwbhZSNDyJKr9sxlt2m5nl6T0XuE1djSG743zvSHc8dZU2vpowgTGmkTAbTKGRX3tyUpFLt6Ktt73KX0rW16zS6iiVWiI5nljOB56e3vPu/RtSWrSj1Tq2nZBvjcF5D8atRar+ZVoxQdpcvA7WpV4qKcY67cy06uUzaKTtXY2WGJneZbkQcPUaPd9LewDbiwwXydvn4/waknYNsXpeROiaHaZxJfR6O2sQbzCtsNT5JP1LK++0NaavB+1a92KTAHSBFXNJ9ORbzZMf4GHbfqVfGsy3JFac7qgG5pzw44DxnpgzviUgUitxjqSYmvfCJTnu3TAdjwpjyVWhLEtUBczO13Cp7YVWSKVQgCJCzIkqhmCFwek9Dy0QzTGuFfIsQspLM6sNFMnkrMW9EAaOxyfAqrrkWowyOHF4sdSciYcTxV26Nj44pGZijpxLxlvL4SFR8ont5oan44nT6Yx1lnN9wnvLbjcxn2e884QwELu/lrUs54WaFNmQpKhtQSuSbccNKUZyUj6ucV6hT87hw6DsUzFqXVBV4rbUpOiU5cx5PuLd2MZ35fB0oI5tT/SW0s7BGcvoPV6EEjOPp8OaXHWoVE8kjYEUZ3LUMR6XyDhM+DBwPs7aMXJCdWeNyXMhl4JUw+PjI8uycDgc+ebt+6YyZZDaeKi1Mg4eKXHtFB+fnhQCLCjqxDusd/jgkaKd+rxkBjdgcXg78Pab9wSvRXdHwohhPkeeDplhdJzPD8TlibuPXnJ/eqKkQsAzH46XsWorKWdq6dzYyxgoWaHCymPNxKYqVarGZqVW0pzZ7rYMIRCCZ5zGVcHw5vaG0uMPZwlhwBjf5ptBqkGqBb6fpO33TjKkeHb7W168esnju19jaEY0OZOWecUBGu+4eD+o5m4nHQpCGAKbzQQoDt9aKEnhAjWXNdDz3uOs5XQ8aUZvupZ1w8U7B27AWI9xXv056EFaa9W1DNZZ1uDNmKoQpwZNqjVR8Iq3dxZLBrLenJbhplLZ7TbI/EBdjjAnjAi2ZCQnpER8yVjr2I+e0avajZHKGDwl07gpiTnN2hBojuBGxyaWSpWISISy4Iti6GrNmtU3qIerS2vlt/YfFS8FWw1JemAteHGUqkHMaVnaBuWoBrIkjCmNgejANHgEpXVBHcJAqaouY4wmQpe6nwE8tXpKdahib0/sNKCRBlEqOYGRltQ13o6xOGt00rkBPwwM46QBmzP44AnWs8kbUkqcpiOn47HpcqNwAaPJQOlVVQ092mBtRDGp61hk7QRcIA36WD3vTvLkAvbS12tGfB1p3i0RG9p77W7YbiDZAi9jekDXqpttHXLOPoM42CYJXWrVgKNDsXr3xFzOp5/VD/kYmumebVVlw4WwWRFK1XXDGDVhs35gDJ4xCCn7VplWYQKPYTPumcKWKWyw/oabreF2C0+nhJ0KN1vDdvSMfsdgHEsJ7KfKbjTsNy94uX/FfrphDJXRK/znZjOztIBsN23IBLwMmJeBYE84DqRlQ1lk5RBQC0WKVt5qE3PAYGxhPwzcbbZsthPzbHGcVcmuFUNWSEfNSnQ3nmmzZzNuGH3AS8WmBRsXTDwz1ZkhKCdqtIHZDUzeMnrLFKz6brgBS1Nbkg7n/BDed8nOe9G9jdY12G8hKj0c1/9fuhaldTZKvawOmKqfpfYkw0DJ1JzIOXI+P3E6HTifj0BTf3HXEonPeSPXfIzrf/tnkPWjyFq970TYa3hVezm6PCmwJh0fsrc+jME/rPw/e/zlBL59fMevnyUa7Xza5daChGt3S2xLGi7JoD73uYJjr3ZbK2tC0pObq0u6dvCNed4l/eEd14UkDWTX/afzi6wmyj0hvnTshJwyc+8uCM8q4lDX62OMBqHdsOxaJcpaQ8yCWTRBLAYaiJpci65jpoJruP+Gob9Au/Qm5RSReumg9K7VsizEZcZY1/N4/cTGkF0hG4uU2pSQvKI1rBJ1NegSpBSKBaFgbGUaNyrvG5POYcnI4KgbT4oL1RWMAe+3DV6WeHx4JKdMbetbLLr7O2sZrFcp2pw1iS0Luc27Uurqj5ZzwoujUkk54n3rIuXKMJh2/UWDY1GuhQmO7c2eZYmksjC6HaenA6lkljwDF+K8NM6AgYacmFvyf+FegH6eadK4K8dI30+dtSwpK0y/FEqpLMui8a21SM0qYiFCLUJscUUWq6qBxrYgvjaZ3ko2aiBtgFIMoDClUqpez/V+F1JZKK1z5b1DEHLNnM5HUpqpWWH2EmVVDT0eF5X1bUXXThgfx5FXH73i8fFRk7pZuTh9LeiEbhC2261eA2MZGgRMahczkFW16pofR+tqX77++uN7JxklBzabW27vXrCUM94qBGg5LcyHjQ7SnCH0tvql6lLKhQ0/DgPb7VZVXbo0YhVKynpTmvTpMAQw8Itf/JLzvGhY7XXwGTEwTjDukbDBDpFpswUpLetUQraIts6HYbhMboHUSVVG5cpyKQp9wOJMUVJnLRyOR5ZlAQyffzrx7u2vWWJUrWnXLrMItSSC90zTyEebrSYMtVBLYjsExFbIGTFQ5yMx5UtVyXZ3aIPNet4mRXxsXZhaWuVKCZPeHBEyoFUcR1JJXjr6SjkPIyPHXJhL4oFHGDdgguIbWXCmagdEekZaEZOxRrkkuA1LLViv2awRQ9FYilIsuIFKwDQFFMU5XiADtoUqKS3grC4EuarkpHM467EEhmFis9kybrfY4PHDwM3NDd40nKlznI8HHu7tGvrUooGJt755l7TA31qN+VuCUVqSWamNYN4qi33nb5XB1TQHXSRMgxg4q3jaHpw5GvypjR3tjmko5qxtKjbKrzHXc1CKnrnoYqT3qr0urc/SIe2duGov1eaeQhkU5vVDPmwVFQ3S6PE5hrVWhZ1gm+KSdkHHwTH4SqAlHtarsZ1xTGHP4G4Z3Rbn9txu4LgTznPGbQz7jWU3WLzxTD6wGyZuJ8eLyXG3e8VHt6+5mTYMruAshOB4sVmoJWNr4Xa7JfszaVhU4YlHqI+cjzvifBUg17QWVEytl+C+CjfTlhebHZtp4pgLAUfF4o12vJz3OIQikSQGZ0fGjWecJgbncLViliNmOWCWI1Od8cZjzQZbJ3Zuxy54duKI1vMQ3uONx4nFVsHWplx3FbBDSygEaB3gKkZN3tq90qVZBYQ7h0vlt5o0uCgmvHO4MBWMbug5R0rRpJFqlGuSIznPHA/3HI8PzPORYRywzrSq/OW44NUvUCi7Vpnt8/PvXaRWXOpVPa1a2nVtsrYltr1h0wN7o6/2PNH4dnawdiPa365/ftZNle9+7HcejSPSEw3jeueiJxkGEbt2Hy6qc/2caJ2gNvbWx8nz14fna9IP+nj+QTqMTwPPC17de09c1IOl80a7gs/pfCaE0CBDKgByrd7Tk7kOi+tf0zSt3IucE6VUighuHFboXm2JSzaG0ruG7YZdi4U4Z1eX8j7eO/7/6elJC61hUBW0tp+JiHbCq6gUtrWtc65b+eHxoMGkMSp0kTOlepxDE5qmaHk+n7BOwIRGSI7YFvjudjeklDifzrx9+5YwhmaQp0mGtHjDoZ0ZaTyFpcVpxhi8v5CUNYEbEKkrVKwbIdbaeJ3o2D6ns6pilsDrTz/lfD5zPBzYhZF3796RS8aOGtfVWrUrVBsqxVn8ZuKwRErjOhhjWZaINYUUE9M4IiLEZcYaheKOQ+B0OGtSljMpZXInkFflDnbz5VIKOSZyFZYsvLy9YxgHNuPEOc6UXooRITWehDFG1U6voKrLElVh1TSxGWuUj+YV/YOpPD096rWrqAlkNitk7+H+Xg38xgm/uSQZIQR+9rOf8dvf/nYlkz+8eUOMceWd9LUx50JoksSqBnbFJ2pFfe8DqzcbXDgtf4PjeycZmynwxS9/wZ/+63/N0+EJj0oXUuDp6UlbP84zz0vLhp22cqwqMKSUKTmxzDPn04laVCFgCJ5pHFVqrmHexnEkp8z7d/e8+eYtm81ECAPn85mwVe3nKoZ5ScrX9p4wDkjvUFQH1aqSUwtWrxckP6iEbWpul5ceugaRtSqOsmdw3nuGMajyU1rAGGrMK3HaUvFmIM2FX3/5S0paGvm74sOIDVtM2GCs4267pzh4++6BWhSOI9YRS6XEpJCcVCGHxicBW8+U8z3x8R78FuMmjAnagagLpnVN7PKElII14OKMLzPGCi4X7KCVcW/VtdSJABlcQuqCoeBNhR7gGYuZVSlHA91KcI6M6KSuCYtTud+qnR2ju1u7zqrbL+K1i9Fw18F1cpW26BQSoYO2KxtYa0kxIVIJzhJCMwDqBlp0iNVzLXHom2/DYDeiozWGawBE74ZIbyWhi15XbJBmRmPWAKBhvK9IXusmvmYqDYvdooxnQZNp6ZEYliYdF9p5aTJDWzgvQeCHknXWfe+p+u/1YYooabpBTXLfDKxlSYVSDS6MbLeBlGu7n2eVlC1a9dN7GnB2JM+OdNqT6g4JIxtvuBlmztOG7eaGEAxBKqfHhXEaGRh5vZm43w282L3k1faOm7GAsWSxODPyahxwy0wwM3f+hjJYcjEcWEhHz3Ia8H7DOLWhaw01LdjqcDVTjSHWRMkGKZlv3r8nysw0BeIJyinifVC1KGlqSRYIluy25DKwkCnVUUQwJVHzAbs8arIRK+U0UsIEmz3Z3jC4DS/2ExIr74dvOLiJAY9rjt/dxHDtVnTsDeh6JoZSacFWu1m2h9oq060VNu1g98JRzRdfAIzOcSE3jLQGEd45cloo8Uyej7x981uOpyfl2dlhPSvtUD3X/O8dy57MdSlMo5OtzY9OiGydDKfVvWEYCT6gXd8mdWlAmka9dWriWE2/MpfjWfX7A7jTt/+2PqtXLZ4971qB5rt4ZNChCZoTiGvJSTWt09n5XpfkvJa+NnVo5SXR+H0JUi/+/SEd/Rp3f4AqWiT03isfAtjv9xyfnighsNlsmveDrDj1lNKKfVc5W9MStouaU0qp4fK14mtrbUUrkBQvgjPWUbJyZBY0noEWRJ/P6+vrWLgYq1lrV/+KLucqJGw1LCmSmrT6OAxaPEDn1vH+2JJ9DUhLLnjruLu5I6fEsZ55eLxnmLYUCvjM4+me/c0OycKvv/ot+/0GBOZ55vHxkd/+9mtOpxM3+7uVwLwNA8bD+XxmmRful/eKMqmq+pdrm6/OMgw9yG+Bqa3UklcZWNv2+lIK+/0eMHz926+R0nwijMrbdp7NcjiqW7kzSLpIsHZCOKhR4tdffYVtJp7OOeZ5WZWSjDHk0vkymlh2mNV+94I4L2tcGEbX3k+l5qsIsWQOp5lcRHmzfuDd/XvSLikfxatQjnGWu9tbvvjFL0kxMk0T2+2WGCPn5uhdG5LGULgdA8FbhgC7beB0PnKaz5SSlO8shiKB8zlhfVCbBYHDwxNP8sjp6byOsYeHB/70T/90HUPzPDNNE845jscjxpiVd5JS4vZmz+3NLZ9++ikhDJQKS1LI/FpEWjm5evxN+aF/A3WpiWEcNCiskEXJvQ7XsjTACkuaceJaBlhZlhmTtaIEhm/evOHc7OyrCCVFkrWkVVKNFadum+pDjAlB8L5h3ZvaRlzUPv5DQorRX64BaZUm99r/WBsGVvt+itltk77j/NZFuf3u4eEBEVn1lp1VPWJd0xtJq1UCau5ycBCXGVcE225cLAljLbsATnrHQ10bqRlKxiDYHsSK4CRiygmJT0oet2fEeAyOXBdsV6haZq2iGshi8VYYw8DdduQpzRQqQryU86g4WRAi1kKwBmdqI0o6DBlLXnmS1qhxHaaQSFgTFD4kcb0v/RLrRFZ8cckJqQV/FTjYVsUZNxuGIbDf79luFSNYS2nqE2mtfIRhIAwDy6q60QmorJt6HwtGwIrFim15SUsyWpdlJY3LpXb5YQDwYTBQRdq1vbzZdSKxKkSs0IYLpKGjKa5fsbfkBdEumrnIFF7PgX4u12ZCP+SjdjU2SwsOuSSOUrBGGLyhBIvztlVUDNaBE0Nw2totVpBsqTmQF0/E6WuNSlP2oO7azuOtIgOtHfX3zrENI6PzBGsYQg/0DaWK/s7AIIXJB6ofSTVztBXrlQDq/YDzqhgnXba0JUsORxWLOAPWcX94ItWl4XkDroyqVlOKQiKoOG8wTpOsnITfHk6Ys2FnCxuT2YeIyRWfHTUGMjvKvCHNgXn0lM2I9xsCZ4JR6WiLXlsaR6orySnL+3JP+jjsFeF1LjTIh2nuGt1stJRMLQopLVkDXmlM2Uqm1khMM6V0KIvKN6a4MM8nTqeTeudY7eJdZGt1Uzfq0LnOFw1ULlh5dQA3a/DdIZpaea4NM+/afgEdUmONQYysc+9ikPW7N8zvTg50HekFDuQCgWlIA+1iXU3670owesJn1kRDX6uvUx36ev2Mb8G6vpXE1A+SiEvypY+DC+zhh3l8V7J3DYnrj6lN5bHDlHoA7IMnlLCSea+dlLtvUa87Xot61FrZ7/daADKGUlMrRjUCtxOMcRgL5+MRuOab6Yldy9fqe1zu3TV5uKs/mVRAEkvJZClUtJo+OBXLyDVjg2mSpEk5FAWFCVZNrDej58XtjjnOiBSKJKbNQGoBNVzGhkjh17/+tXpj5MIQFlUgKpWYNRHr1wxjVqndIQRiLO0aG3JODIPHB4+zmrzkXFeZ31qbRL7xWjA0hiXOIOXiUXI8rgWExxQZhubRYZ5L2UvjVSqZWpMya7VgIsI6N52zxKSqUabWK05o4Sk/tDagFkhL0rgsG4Vv925LroIbAmIMMWnHljbWUs6M2y1hHDgcj8yzwrbOTeq2J7LqZVGZBsfnr1/haySYgrcV8iNSZoxERm9ZMMyx8HQ4aUeqze20JNISdf3YmXXc5Jw5Ho/PPDk6zG+73a5JVR9vOWfOLbEMQf2asI4w+LWY87viot/Znf3g+N5Jhg/avh/HDVKUhNrBItpeAUxV5YaOBzaGlBOU3Ah4lof7Bx6fni6tGSCKKh31ak2vUnE1yYGLtGELyub5DCIN2wxcLcG29Y11j1UX4d4v7hBOXW9V3s02BY7cqhUrBrZWsgiPj49rG15NTFobu13s2rJqAy2zVwhRyRnqghgNlqNkvB+YhgGckGpWlSFAaqbjZoyAqYJYTTJsXTD5jKkZTGiAJAt1aQRwgZhWQ79a1W17nDy7KXA4PSF1QfBrpcDQPD1qUiKb9RgqVoyKdJGx0l5TNFATBEclm4SViBVHJeEcSNWAo7drbVtIa9UAx/dOQFvAc1HViXFUVQc1gbHr9Sz5goOdxpFlGjXDr716eDXg2+a+bjbrf727cHn0BS6ig+x6w7o2PfrWv1dJxndl89fdlHp1ftenenleh1Zp5bNzLb5rA70+fvBJRqveaPG4UosqcRUpVKu/9w4Gj0INjJqv0YmN1jJYQzSAWEp25GhJaCJovXbTuiZSsCojbSQpfwtwIgzW4a3i2IM3CvWhUtsmZ42O8+A9DCOmZNQjrQUqPuBcolSt8oNcKYk1I7V2X0/zQimJwXucm3B+IgCSE/NyAlPxOJyt1OxIsXJ8HzEnYe8Ktz7y8R6Fz9SBJQVS3ZPYM88jqXpM8DgCjhPOFJwtTcW6S8iWRjjVz4mpz0PWthlLF0Fo0bL+1yBSTTq4Vk0wlGPRq+cFkUyVRKkLMc7U2gm6hZwWYjxzOh85zwuVihu8CiJYh7UqQawJxKU9f2nTd3+Mfo3baa+S311hr8OlFJK5dvarXHU0ZZ2D5oP30dd8vpFeoE/fsbFeWkNcMgrWNfPygOevrftPg8ya9XK3a17XteH5WnBJboRLkeTbXRbW97wkHrJeK2kwrD+Uo6+p1xLgIl1xSx/zzP/oqorej+vrpx0RvQchhGeJQXtHALLoXmnRQqTHtm6SEBs8RvzFaBUualc9zlnFB+Tih9TPwTnXoIZCqpVCpZpW8ApQm8zrSGjw5N5dFIxYTvWsfAi3IwwDFZVQzTURRs+yJKoogqCPw1orb968AcBaheFM46Cw8JRYlrkprmk1v6tjDfs95/lA75aBkpOt0/EY46w+Z9Kl6NUnwxqF6WhclQDtwjgDJS5NWUpIqZJrblzOtgS061Wl+49oEUTHeG2fqSeeWlhNKVJSglIZwqjzp1Tm5YTzvsGBoObcIGKQi1Uiu/NURJ3UjWWOir6pRa0XznHhrlbGMnE4Hhmtw3DxRun3vpviTUPgkxd3yPkBKwtetPMgqNpXDZ7BWygLb88nTNhiqoWsiq616Dp9HZOAyhP3DtA0TXQ0TgiB0+m0zocQgkrGLwuHw4EQBnwYGaYNw9XrruvN1Tz5mxzfO8l4fIwEv+H29o6fLzPDqAGjeqQMCJUqWbM+MU0FyCEpQfuQ47hhiQvLPFOA4AJS9QbZNhBKEc38GnHIec9utyWXzOFwZAwDGCXHvHv/fq10A83crlWQMGCuNJYVQKOTxzsouS3niqk0FrzzPD0+spzPF93rNjDu7+/Z7XYNxtI367ZB2IsNuwGoVWUVS4N71NSSIYfMheoXqoxs/IAXiA02UkpsFQJL99MwArYmBjKTbbCFVgUQgeA1iy61YEozujOW7bBliUckGjwvON+/JQpU67Td3jY2TZIq4hyCDrpg1VzQEJEsawu41lm97krFSqamDEW5Et7rGZfcfECcwdlLZU6DR79WD4sI23Hk9sULXr3+iP1+rwmFVUnTfJoVV+ocd3d3SAXrPE/HIzWm54FAqxgKQqlK0Da1UBv5tirYeY0jLq1qs044uHQPvlVxXCu79api9nwS9qMHQT1p7QGNaKuPYC6GNr/ruK5O6vn+YXQxAMQn8IqRpRpK8uQCxWYoB63qizAGx1IDxQxUs6O2xX80FZdOWPEYMzCfDNlqklJqAksLEjK5HjFGmihEZTGzzhsqJR8oeMRP2p3lqHO6bMlsqMaTvUecYMPUtPVHrHe4YNcqnWlEUzHSNjlNavcmKAG0KH+qLoZlge3WMlowMXF+eM/j4S2ZPRMjLhXywZKOlvP5lq+PcDAnZjfzKnsGE7ASSOUG7Gdku2UxAclCSJ4xWwa74P0jzj/QqAgtaU+UHBVyJgmD16SgGnKuiNX5vMIZatVuQus40bhGJaliSSmZvMzkLGtxpUii1EjOC/P8ADICnuqykr0PT7x985Y5Cn4cCGFUKXAbEKuCIamCM+CtuRhCedf4hqIbP2sorokfTee/CVp4r9ydYAes0+KNGml7ctXKLfS8xID0ZOi759clwG+JljTkpnRRE1pVQdrcNz2mUcUWkdWw1VrtDllT1cl8zUVUkEQ5LRmhILUZnxm4dEYvHY7uQaWdtJ5EaCKhhPvrgOASeCnM9w8nyYDrTsaF7L8azsklIevH9RrbpVS7B0J/boxpDca6TOkKd5FCkbzGKd2UuFYhxYUxDK3zp3vG6tDdzlWrzoog8N6tr792CdB9yeFUntQ5ClVNb62avVljGAdPPGugvwkDmxcT8ylSojrE59bdeDg88uM/+ru8e/+Gp/caaO5ub7A2UJIQBrsmG6fTiWna4JxR4Zu4EIxlspbb7Y5UMjElTotW6nc3N/z9f/AP+Jf/4l8xz+pjZp2ajC5LaRAlhT1bq9CdZVlYlsgQNqSk0HMXAktMlJTJ0RCa4XMFCpklJyywcY5hHNdCsLMOMVW5l9AWvS67fVGNOxwftYshMFjfipLabRqHUSFYKeEHp3PP6Lo2zxVfCq4lJeqXol1X8Z6cMkuM+CGwpEgxgvP6mjWXFsBfnL3HceT1Rx+x3245ZcMmbJAsxGVhGDaEjac6D27AO8+7hye+eXtPdRdn9MErJ09gHbfdZfzh4WElxX/11Ve8fv16dS2/lhcehmH1VwGeebVoIqxx36XLXf87xSDfO8mYRsvNfsft7R1u3ABFVZLEEGOiilaycNp6r1JInZjTPlTJtZE7K855JXuLZrGG54vi2tU1wqnZxA/DoNXkBoU6Ho/aKehBmCikpa5VxUsQqBdMI2tpWMqmQ9GUGfSxT09PxJad13rRaL6ukoBZYVPSWqvOqva/M5YQtGvjnNGKfCPFS71sGDklQPkiYRd4fDxgncWJsLTFRROY66p76+isVbAW9Kp4Hl01xSKq6oRWKcYwYrEEtQ3TDku71qVhmrN1Kg8swnbaMjhHjWeynJSI5YMGI62LIFnIDRrkrMF4D+19rW1qWEaIcV5VXjDCOIzq+j4Gdvu9tkCNwTjL4D2IigDM84w3zViGy6bQv6ePDx0imkzWCl6rBxhzZcK3lj0vA7p3smDVSr9uV+tLPG8VdqOa33+sPYl2fppgmPaGxnXXZdr96Ysh65j6sFvSN6kftiKMHpYjTpK6YhdLzJZUoLpKsLMGYkarVKVBcIpUqBNGEk66OpyDCsuciH4m1YItVaUPUyQnlafMNeOlIvVErFrBLWJIUfXyY4xgfavgZ2pZqOI1YJZIkQL0jkrAOo/zAT+MDEOm1MZTaB49XdChiHLRtLPZoZdZ+WgzWB8ZtpXleMAZMDUxWKEmhxPPPhhGKQwm4xx8EytWHNY4NrsXuHALdkMxnhoybrCIT2xHwYcExLYu6LraK189YJYWhHZX3+rL2qHIWT2JTFMqqqUlGTU3ucpELklVBRsfQ6RS6kIummQcD48YM2JswJrEMh85nZ84HO6bjZFtohdX6+rV+Dbm4mLsnaqK6Xqr3d3a8Ok0LkYnnxtU/nMYRmzbPFt60BLM667C8wq2/u7bncReyeubbS/wSA9erx7XX7e9w7Ng9rtgV88aHqAQNdExU1uHpBu89fe48E9YJSlp+99qLNebKh98xkvM/TerRv57dRhNqnoXQLtyugeun7Ua5RbSUAm1UpdElYyxFTcMmJKpSTgvR2I+k2tGqiGnDA7CdqLmorKkzjK07kctmRQjc04Mw8Q4TWy2k47RqvPced+SWL3O3uve0jlomo2CDYEKLFmFYrxXXket2rmstCTfO0qu5KpFyFIyYxjYjDvOy1H3GAfBO4K1GK+dvXF0bMeRbdiQ55kpGF7eTZQsjGHEuwk3jbz8+IYvvvyCP/+3f9GSIF0z9FQtkUJkwSyzJsb9786zLJm/+Ld/hZRCcM0wj6qcEeuYQkCAWAqH0xNjmHQdm7aklAnerN0OijRxrEpBoakqnFVxJeMweOM4N8UkjGHcbFteYUhzYQxgRTDV8PLVS8RoQnc4n/AhYFD+WYdOAlRTYHBYUfVHZ0ekFnLWLrMVB0U/c7RahN54x1IytsWDYQhUCjFVgg9M25GSEodDIljPdrdl2u0pYhA3sjRJ2KdT0u66mQjes+SijunMGDGc58Sw2eOGDed5UW+NMCgFwVjmODPVkTQvnOdZ1wYqWJi2WiDrELxrT5ibmxsFwOSCTxUX1DbBoZ2cgi7JJXstTju/Jkp/XaH0+vjeSUatFR8C07TFhxFTFkwVLJaf/OwnPDzc8/bdN0rSg6a6dDFP6xmSqol4TUy6jFftLcPrpvVlMezVAH2NSxinBjEf4MY6VGaFz7SNpQWVvSu91rGvK+KipjK11rWq0Dsh4UPeh7nAbKxcAsLgA9M44JpiSsmJVKvKOdLb2/qZTa2YLonnnbqP2/aZjV0/Q67SVF8UMqAXQb/6a64Qgj5p0BDHOs+02WKt1w4EvZXfKmFNxx4qNbckBvUS6R0YhUGUVrVpl6zI2ucXLNb4FbKkkIVrl+zuDq7tzTB4ps3E/nbPbrdn2myAFmTXSioqi+f98MwE5sNN+gKHQq+HXG6y6dek7eCXvkW/2e35V2OnV5j6e/XfXT/pd02s63Mz7br0R1aRdfwqHEQfvzq36i++83X76/1NyVb/vh6mRISMmEIpjpwhVUX9h1X2FwwFR2MDSATxGFHltx4pKawgU2JqMJiKyU5lGouKOmjxQ6gSydUAjlKd4pFTJsXcgmRVXVGneyUvF0nkkjHVUY1oguis6sF71RcnqSZ+Fwfo64wqeGgEWVF5Ymrzj8izdjmd4Xx6xNmCY4P1YIrOveBnJlMIJhHcwlMB6k7hVsNECEGTI+OoriC+YIOw3cEwVKztSnuybiq143HrFYSmYZJ7cpFzojitDKq6EdRcm068Jhk5R0qOxLhQpQlgkMl5oZRITAvzfMTYjHUDRiIxnljimWU5N2LmZW59a16bi5len+Pr2NfF86pS37sLdf2sypcJWtcUrXBq5+EKNnS1LrQXfp4IyIfndZ1IXMMIePZYXU/6zzyf198xxZ8lGWLW39Wr569eQqbztq47FShsop9P+33fDDQPe54YSX1ePPmhHaYnGNeJRrt/mLp+1t7ZUFOxi5qlihQ0eXBrGEZPTFokq6YlGcYoP8iooo93ygdSryTBeYupDb7dvpxziK240BTnxGi3tiiP8HkCqx3/siZF6tCtBVdd4rq4iEhFcicLtwJqj4IEFWBp75ViWrkoWME7TXB8q9x76zHDhHjwZsBaj7Oeh6dHDscjMSXtnNAS3VowjksXMRd9L7Qzb41y4Q6HkyZI0gSvjSF4T2hFgiqqHNpjMRV50LXa9oKfZLwN+l61aKKRytqdQ2rrVGnxtgLG2Ma5ta1zq5u+Fn67n44WNcZpZO0cViWKK+rCPoujbC/8obwb9eZROXuLpeaikt2KcV/NhY1VbkofN7ruJi34DiMdwuuGET+M6t8iiZgqDiE7yyCWcymk3KDbuZIqDNNGJXgaAkVFMwKYSi5aKOoD4nKNe0wlZMmrMEKHT/UxWXtBowVOfb01LQC9Nte+Lgr9/zzJeHqaAcc0bQnDpP5vtWKq5X/5n/2v+NP/6k/5v/7f/i+EYHHtxGpVfLMfAuO4IaXCq9ev2Wx3/PwXX+Cto2bF+fWEYFUMahW3kgthCHSc4uCG9QLUWgnjoG2rHsgZi2sX2xitxjnjni2q62Ot1WClVqQtOoJWUb33qvRwlShdV7h7glJrxTdTqK5TPG1GNXFpE6u4gnEVa0WVCfT0WjWgYCv4YSQ201aspTivEy1nTrkSa8Oo03GclWq7BwTgNBDqeB1xgZIF6ydubj/C+BFT1NAMUPiYgMFplwGDEdf+5nHGYaTi2+coeV4XNWmVtDCE5hFQ8U4rL72S4a1+jw3Q1CfGEJTYGzz7/Z7Xr1/zyaefsNntOBwP2GGkNPKSkQt+9TKgexvvg8FtwDSvig+pku2UdWP5gDBqzKV70L+6q2cfLyGE9eeefK6+Blc432cGXlZ9QHSTF2rOOK9jyji7TmzvgyrbyPOk9boleWldmmfdlh/qUeYMIVFNJSUhJkusCmnbeuUEqUqZVqN0LSlYm7FScNQWPNeVTJdTbGO/YnLQxL5JU4tkwFBlRqoF8VQJ5JSIS2JZYuv6ddWkhJCool8pL1AsOIXvaCfDq9Gmd9RiKFl0zemJfzV4q500bDOM84JUq0lRmakSiefI4/0AZY8pW8xg2YbK6CqjN9wEwXlBfOXX7wWRTwlmx34M4MHYBo1hAVfxoXL7QthsKsEXaolUM0LSymuKg/oRNSNS1uBGP2dKM8tyZnJWK3fOqgfAcpEGL3kmJ/1a5jOFBaFxMcqyymGejo/YMGJdQEpLSpYzKS/sprBCFnsB6cM53ddmjbZUSce0RKEWmja/FkhKyXQ+RimVYZxwYdSqsb1U/ms1LaGSRgqVNVn9sLrf0491bfjW767/9rs7IdcpivD8Pdb3evYgs3aYpOizvp1k1MtjRP/Wg+xLkUSvZ7163GqM2ILcH/bRruh1ktEECvRaXBAAHeUwDKN6GJRzM59UVMTrTz4mDIH5PBPPhVqEYoRqIIwqceqsRdRNV4ut2y12buI1jTAegnYavWhYZXF444mRFZOva0zrwhnDPC8rvAtU5ZC296WUV3rSMp8brt4zDJ5SdK8+n45sNztogee7d28VSeFUOMM08UZjLUOYKMVixBPGAMVRq/Jm/4v/8p8zDCOvP/6Yx/cPGLQrk+aMBMEOBh8s6yVGO41i1bfIeU8YPdTaFDthHAdC0FKR1IJ3hnGCadxCVQ+LEAJStCNsgN1212K9hdP5yPH4REqR7XbTTPpaQacF/ta55onicQZC0G6mtYZhCpzOihAx3vDq1UueDgdyUsNnTYy8xqFVLk7s467dg6LcMaccDIvFBb1PKSbO84FhVIVM5xVG//LmFbv9nvMyc3x8Yj4dmecz+2nifDqQYub1j37GdrfHOsv7+zekqntelIoXLUoXMWynLfk0I84w7Txv376lSmXaqBqrKYBo9zwmVbG6e3HHw8MDvdpVSiKmCKJcjWVZ2O/33N7eNrECh6dDpS7ytNcQQU1sLkXiv2mB4nsnGd988yXbjefzz1+zzBFnKg4I1jPPqkvs1mC7TRjbssFSmjQbLPOCsb5VX6S5zMIwhjV4qw3O1Ffo1c2y3UznXYPwGHb7PaZhJVuJWKs5zYvatMShOyXqAInkVrnjakPAPCeIee9J7W/e+2eBZk5KrBxDAKmNTKZVCNdkFvvNcD6AccSkWNvaOje1VExt1ZRpQmyhUtRR0g+tyxEo4snVkbNipJ8Tl3XCA6SGSVSTu6Bt3Sw8nWcKFoxrfiCtAqYXBinNG8Ip5MMai1PxRNUgsRdvx77G5KoVDVuqVnJbRu+cI3iFiuSSmULQAWw0C9/f7Lm9u+Pm9pZcK2/fvSMcnhjGkVM9kmPi9HTgfDpzs9sTnOfdwz3H5lmisnQnMFav6/c8tL33/GdQGNJ16y80Uxq4JKPQEsveefig8trH6PVxUTNxDNbinLq6ir1UCPqdM1Yld/t79ve7/vm6m/dDPpZ5xGUPtjLPhlwGcjVkqSx4ChVPxbtWKcNAtavkJEAuiVgsNS/EMBPryFwKZslM7FrXrVfdVbFJ5AL1K9WQUsal2Cp/PXjNrbLcIIRF4RUpNW6SaLfMiFbwgnUUa8gGpKRWqdK6m0WlVIOzLDGt8MGawdkTRTIpGeKpEt2WaDe4ZNgFSzAGGwtmFIw31GA4H5Qub33Fv/Hsd68Yhw0hDIicyUvhPBeO50KVE9ZqNbNUNQy1yVNigio41MirpEwpgnWBnLLi0JeZ6IPqsReruu+padHXyHx8oJSZUheW+YSgHI8qiyZlKTLPC6fDkWFTtHiyHMkpsswzIrWR5v3qBQOXZNo5p3w+o/f+GurYydTdgVcrcAJV1a5q47P5MOH9gGDVR4dLIK+w2arQh6IVyYsT+u/vFvYkYa2BrT8/Xwuuq4Bw7RB++dt6Tr3yK0AValY/oZorksvK/+t7Rn9sr3Q/71KArmmKYu9Fjm/Dwa4Smz/Aw1hwTohRFQpLysQlkeLCcp6Z50h1flUxeni417nqA4eowbyURE5Jg98QGMPA/uULheQZsMbx22/eA7r2T5sWUBvlWCzLou/bpFY716IHaVpo1LFRaiH4wD/6R/+It9+84fHxkaec9bFkSk1YV4lxZl6EaZqa30Hbw0onU+emXjQqn8kGqhTmZea333zFT3/6R5TFcD4V7svM7d0tT8dH/uz//V8zbbYEP1ByWTmQUmEzFGxwrZNRQIwKshQNwHOBUiJP8wlvLeM4sNkoRMeOI34aGIcBHxy5FI7nc+u4ZBXNaN2hChgXmJMWKc7zidPxyP7mhttp5HB4AlHFrKV0pIeSvtMcGQZdk63xmnQ4FfT57EefYb3Che4f3jFOg0rii0LSnPOMw0TwWpRIuTDPEXxQ4RzvefvuLep9pTAyhcMbhnHPZrdrAbnjNJ95+8173r994PPPPqf4ienFhp/86Mc4oyaQORXS+cDRgvGBDIgPpCUTzzP73Q7rA8F5wrDhfDyzxIV5WSgIxisUfzQwL4r4GMaJ8/m8qletcYtRfmItGmsej0devnyJiHA6nfj000/bfLkkD+se2+DZ6r0xrAmHDttvr3m/7/j+cKkiIAqLcc5RU1TIj8m8f3+vkmelYmuHFGhgpDovWjlxLqj5ydgMbWqTfZXnJ35dqUEgp7w6wkotlGy0YtiKxyJKFu+bvGuhsBjbCLfaftb1WeVnvXUYD3YY8UNQom69bHT9on8IVVn/pRXaGl45NPb+OIxspo22AGvBWUuMiZhURcpVC6ZSrzYp2ud1VjkasVzaVh2fKY3/UqW1i+nWdHR8CZgWjBltwypx06yQL31RTQB0s7pc7w41Mk7b77XBKy7Bb1NWkta2vOo2mdbKhIuEoy7EmnAZBO8cu80Gaw25KOfCBEcYB+iJZc9kRJrJjlZbn/NhrrkRfbE268/f7mO0S6RN6HWT7RlHTxr763842dZ7JDzL4j+Ed3wIq/pwEl6CqNABINoBkYafNs/nwHdXPOVZx+SHeJySOnUbU1myoVTFJBcpLFFQwVQDQ6uio0mBU+YuYhxZ1H22kol1YZHIUCuGjK1j40jIuoaUYqgZyLoO5VZNXL1ymhGXNMxtN5wzovAAcZlqRD1oRE2ovNEEwxra+F9nY1N405tqGnmwz1HlMIkaj5ZCmg8sLjOwYAMsfoslwFyoG4v1UD3Eoydzwrj3PFmHkYW62SGy0Q5CTaQaqWbhdHxqCVNFSqG6smrUS+tglFyaMop2WpMo/GmJC3EYcKJJQJbSkoxMLZF5fqLUhVoXlkWNQYVClZlaF2JKGsTVi+xnjCpfm3JuMAnfKmbfhgF+ONd797QXg0yDndbc3dVlTTqQnoh7jPGAaQZmDeZZO6zqYrj2ITTqW/Oe9t7mustx3ZW4dEP6bX42da87JB/8vis0mv7+9QKFqqWjAVpBqMr62mtXoi3BF1jN5e/XyUv7iBc+XV8D/8COy7gRekeD1rFQ47Y+XlC+Vyss9gBdfTASyAWWfQ3dK6Xggte9V4Sbmxt9X2vYbMZm+lcZx1GDO3Mllw5r4XIlfveuvGhx8+HhQX09amUYBpxivPDYVToWqVddQIUMBbmsZ8MQMMZeEs7UIaCVw8M9zlgGZ7SwUJIGsCkybjZaEY/l2T4MVYX3jBZunVF5aSOQal25rFKFXComZjALIfhG9LaUXBinYeUM0cQmYsrkGClZzU+rqP+WJktpFVcwxrHf3em1RhosWxSCXrQb1Y1+beOPWqcwrseng6JdbCuyGtf2fksYNirGYzynOTPPqngl1eCE1ch02Nw2ZT4tdBRRj40lFeY8M07Cbrdh3NwgnCm1cJoTpSp14JyqepAJGO8wVq0bpBY1b2zXcRiG5slh0IZkMx3ssUPw623pRn5rQb9BYXPOq3hBl+eNswoFhV7wbcnCipBoa+51kf93F04ux/dNNL53kiFiqFW/vA/M8wlpzoBff/2Gx8cDuVRcNRij5NZSSksy2k0Nls1mw35/o5M+ZVXUaASp2uQH13Zii11V7aTZ1Rvb2siFitMNs1ZOx6Ni0IzeGmubekcLqmvD79Yq7Pc71WU3FjfaZtgEy7KsGVwIYW09X7t0rhcdQ9dwNkY1mIcwsNls2G22TcquMITA2Z41WcpdFcnoGrgGlr2daBE8S9Eugj7AtHNvQVbf2Aza0ryckMKB0LC/1AJO4TkaxJc2QVuSISqHJ+ZKc9op1EwJoK4pMVwWYmuVQCd9EEpdA6cOPdBFs15ceq2FqonbbrcjJlWrOFnLuNMWaFfy6i6o1jx/n3VyNMUmhTj1zVzWqqD06/Bd47f9r2/Q/ZmKNLvA6b5rIq0YWvOcGH59XD9vrUxymYiaOGfcEJ61H8s1GfcqwbhOfn4XlOqHeByTJ2BwtpCKEqSLQDGFpRqKWIJRDK1YVUErbWOq2vcn10qmUE1hLjNzXQgUkIKriSRZybBVqFkoSSgRJRVKvchGZ+VkpNQCulIoCYxr3UZRqJvY3oUo2GqUM2E9ueG0e46/Jr30xPESePbpbK3BazuSLEKazywkXJkxXjhaQxZIZ8N5D8YJ1Rbmk6VwQlxEZMEQKWWPcKOB0bLAfObpfODw9EhOeQ2qTUsocoq6LoioE3DOlALGZWKtLNGzLGfiELDlkmSQM1ISJS+c5ydqXUA04dAlSpOMUs7EJTPPGZGgAbAob2ZZIrUUrPVYo215gWdjnKufVy+fNZAHWje6Nu5MaYEaLYhCpEmnOzAOEdOELbSIQzV0YvQlyfj2hvqdkKc1cZTLPy1Y7wnH9dLxrdfk8rgLxKrzN3TI9OSiFt3TpNSreS8frAPfTjL6aT5LNNY15dL9WP/+B3Q8LwYKmEJ3qu/Fw/7ZwVJLvpqflrjMLHFpogcOEBVy6aIlCDFGVQJCSKVwc3ujb2UM02bg8fGenOuqJGStqMgRl9ihk2Zzl7xv+2sp6k9h0aRmCEG3dAfWB3Iu6udlOp6+j+XOp9KuzTiOdHJ/rZBSUThpXnh49zUvb2/YbjdICDzOMzEtGOepVdEJRgrVqPmeNa1gIhrjYCrWhrUDKVK0u48BCpJ1rtdSkHFQ+W+BlCJT2qgPkQhSHUvKzEtUL4ySEFHifi4NrlYFJbgLJQs3N3cab0kmF63Wl6ziHsEPGjNWVaC0ziNimJfM8u6BaTMxTIPyRsU1BKbBhxHEkgu8ef/AMmvRJYQBV6tKw5nCi5cvqFmTOGMNcYmklIlRWJYT01RI4vj001tsNuS48PC0NN8J4ZQWBl8Zg2MIHjEKB6vZUIIiTpxBzYmdI6dCTTpeVShJ1yDfPMRSS4hdMx3s68q1SmaPFboBpLWOFy9erDCorvB13aFYOaJXa4Mxhg9Com+hLP664/tzMh6fcLaw3ThOxzOSS5ujhi+/+JKHh8cVRjSTcS3wdsaRSyWnggzC69ev+ezzH/Ov/tW/amBBnWS6WawF5mcZv3NuDUbznHDB44cBYwIvX74klcJXv/lN29SUGJprxliFVWlLslczCodGlOsVxuTiGhTnnBWn5/3Kx6iorNtms8GaZs7TsOMGwzSNeOu0Wr/bMU0jxkAtmTEEvDUEC6YmsoVcIGVNwPqmVxbF9w2jBRwxZxRR5pAlYkslGOUcmB4x9+Cm7WCrfrQBZ7WNaSlstx4fDLlWEgWLQZpOPqaqEgWCsaKmpSahHiBacdcuh07iWlSq06zwFVmvSQiecdwpDyVnrTCKXvNlnnn37g277Y7t3Y4XH3/Mx598rNhYNJHYbrcsxzPvm/Sg957NNPGbt98QQlgJ4utmuyYYPV343YfIpbIFaJekJ0H9NVpF6zrh6D+LNMLd75hXvev1HIWtN0N9XPQ6dvK3bUTBVPL6Gh/yLla43ZW07g89ODhgGaWoT4SBWBdSySxlBjuQTSXbymgHlaUtRSGLNVCdR9xArIVkMsVGjvmBpxKQMipHoQzMJZFrZlkW5qOH7EiprHKzRUwj5OlifTwspHik5BmpHhc859NMWiLxcILgqBYkJzUENJ7qBmJLMtQgrsehTa7Za6AiFZwxTQpW+4LO7LB2AqteMPEpU59OLCbzRCT4LcPuU+IxksuZnB8J2WFdwPnAKW45LUc2mz37+SVLKjifGYaE9/eczzPnc6QmIcuCiHYzpFYkRSRnPDSCPOAyuRY8cHBWMbpBYQdVKq4mpCRiPPH48FuMKThXifGIkkOEImdynlmWxPmUGf2o3RIAmkO1OMZhg7OjLlbuYm66zp81SuZCYm4Jn9Tu7aFBT+eslZSRBn31YcC4gBhLlqvikujzLvyMy/elftDZgGf/9kRDE4OrIB4+eM7lbxrktc7Jh0nLVaJBSxKkatdJWtEs5wKlq2hdpFCfJw2XwsP1OZWsGe13waRK6UWK379e/pCO6wRDv/q9bgF4SRqEN4M1i6fUyBXBoPn3dAVLgxPldG6mrfJEgXEzqfN2Siwx4exA8Fo0OhwOa8Fonmec84jVUugwdHlb7eqFEJr6pBpyDk3xKMbI4L3KhppGQE8C1pCiEMJWeRk+aHeCCljO82lNPMuiiTxiOB7O7LYbfNCNa77/guHuE17evOC4qOJR8MIwbJBqG9qjq3/a5kLdlISo2j1Ml1hpGDznkplT4ulw4tbtGXxgsJ7JD+yGDd45Ht+8V9irsyxU4lyJSyIvcQ2ia1GSdC4ZjEKfVNLacFwyT+dvNK7xlnHjCcOIGKf+Y2IoqZJFbRSW+5mHpyfevH3LP/2n/ynGqypYMcJxFk5z4nhaePXRp6RUeHo88V//v/6Cv//3/iGvXn/Mz3/xC07zN4xj4MXLF/z2L3+Bs0pit85xc3tHuHlB8CPDMnP/7g0///98wcdvHjkdn8gp8erFKz7+9EdsthN+mlh84rycqYdHboZIbNDR8WZi40zbLxzHw4EqloLhi4f3nE5PhCHw+vVr3r9/zxJVEdE1A+NxUKWud+/eMU3T+rjuk2GxSNEuxkcffbQmFd0npifEwArn896vXY4Qwlrc7Wvm31SE5nsnGadTJCZ16HXeU7KFtoAejydqFaZpy3l+wAzqelmKNHUXzZJSyvgWTEq+GOVgVQHiesEouRETYW371Fr5x//4H/ObX3/Fr3/zFTZMfPbppwjw3/43/w0mtO6EN4043II/WP1NBd1c9b1YISvGWMS7tcI8DIPeiL75tFaUbzJeQQXY1yqJsZYQArvtls1mVHBOzQzBEwfH7EHSwhKFlAQjqq1MaRuoqNmOdZbBCmIqrm0UpIhtQUCW2gholw4DtMSj5FYxVQOfwXtu9iOffPwSS5fkRFueLUnBVkxTwcHWptCQEdyqAKELZEN8GMHabrhnMTTFqObGXmtl8F5lLnPilBObYWiLo2ccB6bNxLSZePf+PeNmw2azUaxgKsS4rK6YviWXxujiP00jwzBQl7hWLi/HXxN8i7a1TSMyPXvm1ev0YOO7svVaZW2dX//tWxAnc5Xttwun6WhTIIG1gqpmQj35+W7/jet2+w+dk1GyUEzBohwGKYbSYAo5OLAZa/IloOsqK74n0BYjgmvXLNbMQmbAYasmid10LueFuFiolpwXhSWKotVLSZQSyXnmdD4TF1VGkloIeWZZIqmNR1O9tuJpSiItQDbIiutWCIXCrKwRFZsAqqnk1saw9AQZkEaoE6GKIRZDrsKZGZsKHs9iMlUWpB4ZsdgasGUg1MwxZobziUNaECwhCONQGIaZ83nmdI4UlGxKFmo05GKglBbMKgy1FHUpllqIxjJ7z9k5XNZORqkFUyO1LCzLicPpqIFJMMr3aOO41MKSMsuSWWImBJCcFW4mIKL8CucdWFWDwSscRK7EHUQaHIGq17BVUa6D/QIt+ahQEpQIRfHiw7hpcBFBapdWbzCZUtTnZ1VmagOMFY+6QpdWPvF6XEGNYN10e0K0rkWt8NZnvH53KchcXq53ZWqruK/ag620cwX1kr5HfHAObX9TZNDVWiG9+6IP6qd36UBzVQz54R/XyZTCmxzO+LYO65rhvGvjr+KDYzmdKa1oVsWwLJm4aPfPGfuMzEvR4tGyLMTcvDcQ4ulE8a4JQXi6ypmxqhbpxDBgmM+zvrdTJEdp+/TgPS6MraNYME7h0FLKKkssotDKEIa2L+iXiCpnKfqhtgQHcqxg8trxkKaI5PzAOHlubydevdxiDieS9xxjxnuDF+gGMMGp0haNAJ+z+pgFa1W4BJ16uVfOxTK6oJLTzegwOCVUB++5vblRywIqpMxgvXaoEVxTjyxYajVsN5v2+SA34YNuigiAhZgrQ2iuZ6Ky+JJVzCHnwrDdcTdMjLs99wc12RMjPB0OurZUKCbw9dtHps2em1ef8t/7j7Y4P3BMic9+9lPev/8t1hi22z3baUs3j061MG13bHY32GHLNAy8/OgTPnr9OeNgOZ6eiMsZZy2b3R5j4fHxkSEIJUZqTJgRxuAYx5HNZsTXrPFpLSzzUeXQrWMzbSh5AAPLPOs1EIXVh6DKm7mpIfoG45tPZ0wRpmFABL56/0BwjjH4JtyhnTHjNIEIIRCGwDRNhCFonDVOyikqpcHWrAp4yKWoce258dcd3zvJOC+JnGrjBNiGBdNFNOfEEAL+7o5leUQhc2ZdfA0a3InA4Ac208SzorC5JBcr7n3Fn1aVGxMBMtvtButsc4ss7Ha7q+fqlzMXJZK+IBtaYGxNc0qEVXNV0MpHoWmyO60uGKttwqvqE0a7LNag7feG7fTOMYaBaRyZxhEQSrFM44CtGUpkHELjGVRyNa0T0tv8ghS9oX4IVGMoBpVWGl9VXwABAABJREFUa07g6tDdK2D1eeW8XWv9W1uErOC9ZTMN0FV5WgXLdSxlC74R6ap+a+VMk4wO0TJtEbdq1GcvQe9KejdGW64tyRURVfhZIUJt8XaKyc6psNkYgvOMYeA0H9YgMQSv6himJ4OsGfiF+N5HkVyNJ1ldz583HlqY38bJBb4rq0SbQYM+6Tv05YO0oEN/911Z/Ictxv7utXVMdOgoBKpXIC8+J22ct+d2zG//AOv5/Q0rCP9eHk0KFateDFSrwX8uiKtgi3bSMBg8oIomneegmukX2HCmavcDlQHsCYZBKHkhRpDqVGmpqIdOkaYcUhUCdDodiHGmlIgRRy5nlqjE8ZSjGqlZi7GaWBgrYC/3xDYDsCoZ0+Wb+xkaTS6EhpA0q/7NOrYrur/nAiIFMYI1T0RTEJLyLwxYkzE244oAEb/MLDXjXGAIEAcYx8Q8L5yXpBK+pbVYotGL1qrmpQollaZapNcmYlis5WStblptE1No1sI8H1SHfdTig2KstfhTSiVlIWVpktulcWDaGtbnjjVUU9p8dgonqW39uYIDFal6DQ1Ixy0bDdir9ItWMDVhSlJsdiN9YzTwouZLMlEFiprQrfWJlh/0Hy5cmh7KfVjv72vtdQeV9YVMW3uRtQb0ncdlT0LljVdNPGnV6cv7PP/ig9/3asnVh7n+YP1v7d/VRRy48Nj+MI5vJRot2HXO433jGZpKtQWM4FtAr3wwQymtiIT6TPX9JuXU5m7FREglAdpxLjmiIVTF+cY9BV2ytMmwSpaDenU55xSqReNouEDSD9AKk3UtOl2KTUpQvnzWtuO1ImmtOsdrqY30L8pNGFuybQzGBvY3t2ybZPywZPZ+wyEalduvl4Dfd7RGz+Or4Cwqa89Fork2xTNvLJMP+nzv8CGoH4VVKd/9zV470iURjBZjHF0cwzWJd4HqCc4jqGJa8H6Vnvb+AjGjwQx74cYaS6a2vpTFh5FxtAzbHcclYVKmVuHt+0fGacQ6TxXHEgvDxjFubvnsxy95eLgn5czdy1tS1UThxf6WNC8cj0ftIATf9hBV3py2O4Zxy3ZzQ84LftoQ40wtERca72XJIJayCDkWFUxqypzWdHkL5QTSOmrGODV8XbTjkGJUmJxXX7FhGNYObKnqDeQwlBhxxuBdAFTadtoEvLfUJjDQOcnDoJ244L3KHHuH926lChhj167vWkO5mmff9/jeScbxqMokuRhKFfzgcVSCcXgvfPrpR7x8dcfT4RtK1Eqz811O1mKMx9gN+92em90tIYyqsV5VScN4u+LFOmQJYD7POH/BmP2f/s//uW6q06TmJEvCWBh3I96DqYJpduvOqRxgzmmViXNepd16tVpZ+M1JMarBzeA9YzP+cy3QLiZpNX4YGDcb0jyv4a23lt1mx81uxxQCu82GWgvzsqo2U3C4YcIW9dXwFYZR4Ti2qgfJskRKqXhRbWlEMYri0IoCFZzB1k6abMGp0URhNRdswdgcE8fTmcenQwtyNds1As5o4J9qxKDGWM5ZrDct4Ck4Ta8vFb8e7DduwnBFJPItaaki5ObgPo7aJs61ck4JGwLFWJYlc3w48/nnn7Pdbgjecbx/IqeIZOWm3O13DKOnSiZ4y+HpzPl8UO1sebYVr8lEh44pLFcTA9seUXqnAO3keOt0bLbqzZqoOh1/6h5fsR3HXCu0BKcHQ7+zqyCNR9BCZWj3SfQMbMO1VcmayHIJVnr6dB1olFKUEFZVbeaHfLgS8T4SJOOALF43sWqxFV1TXMYaQUzA2YBDiXgYoTrBW8NQtKWMrQr9Mw3amJNygIxQ0ol5XsjWYlEzqFyqQhVFpWTjUvnmjeKCQXA+YOdCzkJOlZRnjBEc6u0gpoKtVKfJtDNWv3CNbN49MbSy3onimpK0++sq3dnZUKEWqqmqxpcDUqDmBRCqUVhlBKxLWJMQOSPF4/1AjGc1tPSq9z6MjiLNubskSnaIeEwqiGueIY1crMo3VaGNRShLJC8LMS4NroomWR5KWTieHpAaMX4k4KlYSlW/oyUVUrbkqlXKY1RpzlZvVL6eM2Ahy4JnxFqvo9wZugQ4tDWkVlxLMLSj0itnV74ykjESMTkiGXABN+5VeheFGzmhcQlpCXu7NdedjI45bwG5NWalhOh68rz1uQZZq3oHl8KGCFbM6vZ9gbBeUpbrwscK2WkGcyuMCllhYt+dYFy+1+Xu8lhraPCwq/WkfdZWT2o6hH8YRw/Gu0wsGKzxTOOO4FVe9kmeSCmRSmLJEdcKBrVWUgbnR4xYSDPkRIqVJSasV/MyKg2doY7yg3eECt5pdf94PCBOSaHVwJwXJBZIgg9eoUYlN8PIZjjabkFoZpMxZ10DWpItqIpVaPvtmnSYS5ECCxTIubLMjWOFqlDmNt/Fevww8dM//ods94ElqS/CJ5/8GAmP+H/zc0xJ7LZ7brc3HN4/UIxVArLxVKteFSlrp/jCm0LXYufZDSPHKNghMO23TPstYoRs4OUnH3F4eiJEx3bwfP3NW4gRj6gIEA6RQA6B8+lATIlcKi9efaQO4EWh0w9PT4gx3NzdscSMbbyKZc6cTuqD5Ld7zrVDjz0pR06PJ47HE4fDgVcfBcZRi353d68Zxh05w7ANTDdbfI5kIpubHS/vXvAnP/kZ/8//4l/w61/9infv3vF3/8O/x29+/SvEWl599JrD8cB+d8duf8vpYcGEiWkc2ew8T/dvSXnBTxPeeZYlcYxCNRmWSKISU2I/OJwRrFRubu6wfsBYpx3wqlzALG2ctHjVdwQEgvOe3TBhRTR+GtWzLKbE0CSPg9Mu9ovbG4JXf5RhGHDB44JrsfjFCuLm5pZeZvFh+BuZ7314fO8k4937yM1e8IOjSiWlM7kmYtOE/8Uvnvj5zytpnvF2VJJPnbXq1xbpZU7883/2L/iv/vWfaWYqrRVZ4doTQUSYzwsA06Stm76gu6CvVas6Ok6bLcZKq7iV1enR4tZNRGjKA862KnqrGJS6aulbDNMwIqUwDgOfvP6Ytx+/pcsNPh0Pa3C5LEvD/lYoBW+02lxSRlLpDDukFN493msFzg2MuxuWohXE45Jx1lOtchyahhvWeWBgOZ+xQ+DF64+Ybvacc0bmU8t6vW5mBu2kGGlSTr0CbgmbSc1X2qI3DCM1WyjKzbDGY522XKPMWiG2liVGfHN+7GPKOSXze+/UwCyrIdEwDIQQVDptiY0sZhiar0kphePhoI+bJm5evuSjjz/m7vYlN7sXlJhJJPAVZ4XjwyPLcsZby2Yz4ZwhlYXHh3vO5xM5p9b6jIhRBTNVAbrwLSqsG3IP8HvyQYdJlG5AI0oarbJWnJQYe5Ww6IB8lpT2cfD7CFC9I2GMXX1c+smYK110enXeXvmwoJuIRTcUTew0Ufmhq0s588jgClMQqJbZCGqWlZksTD4yhoyjkiRqWx7LYLx2CAw4D6bNW/XiydpNE0Hq0kz7ErHM1CwkwBnPUrJCKAErFcmRpWbiUhHp+uq64XWjqZIWshSM91qpa3yz4B2Lc9hWLXXGqFIIvRtWtZuL0a6htMBAmix0b8/1cQX0TpmKMTSHd9MqdU0hqRhhmSNGCq4Uqq1s7aiFB2NIdWgJhsKXkBHonh3NNTgXUiqkpnhXcsWgggvzPBNbZ9paQ0oLw+TVxft4JnghZ0/O6rVh6JVaNTQ0xmCsivOXUhX2AZdCiHSTTrlKHNoD4PduZGs3o8loSunkaNOCLoWjIKgstxFFUVXRiqxUalMOkvUedUjuB7AkLvN65YLIh/wH0XvcO51XHVz0r2vl7/pLO6b9U8u3PmOvZne4VD+n/tr6dblO334Prj6jPDsnPX+jydUfyNFx5NM0Mc/q57XyUxrMunsZ6c86/r3z7DaBkiphM1HHADmQ46L7XOrqOw4xjWvhtUMyThOjUX8FQXj56hUFHe9LTizn1rkIlrjEZ3tEF41JOTNsg5rcVTXNs6IjwovurwYtlC7Lsj4/pXTBxrdsxTnHMBhAzfWstbpOGkPwA9O043hWHkcIlVQN8c0T9/cHpBhy0nWhiEBQd2u13RJM1vPLxRKjYH3Be4MLVmMDC9YZbvd3bDYbttstIGx3G8ZxoEglSmVeZk73T6q22daoVEX5FQLH40LwI6Mb8LXy8Kg8l1KE+4dfcTyfMc5xSoXPXn2EdwFrHOcSef+0EMYt/9P/+D/hize/4Xg+aSzjBs7vjywZ/tN/+r/gq69+w/F4JDWz1mU5scSFMU0scSamyJuvT0zjwOO7e37+539JOs8YZ5l2W/7tf/tv2d3esL+7wXgtFLrBcPtyz4vXd6SciXnhcHpg2N8gZ8/xcOTh4QHJEXGOOUfK0wmRLX/0J3/C4/03DYpv2W9uKEVIuTLHhf3+BmNYxZD6GJ7nWTu8Aks6sQsDpVTOxyMhBM7LzJIidy9f8vLlHbvtjt3uhnEYm8AE3Nzdru1a680qsKMqmEVNTV3ncHzbI+P7Jh3fO8l4+/adEpy9XQMebcvZddCXnOmSp2ugd9XyExGeng7M52VdbK01mEY0qT0CMBci1uoP0LL3nrCIaDbuvMeYpmvfsG1WnhODVfq2q1eVViTqZL+20TTmZggDN/sbPvnkE/7Nv/k3pJzXTWg1J2kTu+8r1nQYTiPNZM38rVUMstDbjAEfBvyQCYNeA1srxrVzaZdNqjRXXMV1v3r1ESkXjs0c0LSAmVbN6M9Z5XWvyiTWWMaWiTpbEDH43sERJRV7py1fWpu5B9LXqkvWdmO6Tj7URXAcleSuBGlw7jlJyHnPOE2K+QuBXAopZnJIq4rGdhqZpkDJC8E70rAwhIBQFavfpEZzvqiOtcEFLe1qrZpnY087yi3A6kffiKsgti+kVzCk9WWeO4FfQzkuL/W7J9yq799e8/q1aMHjRbHKXD3vcp6s0C7Xulbff2L/+3o4O+NbN0LEt8S04mxl8IXBC4MTGnge/U8Qc6nc2f5VRWUirSapTkAR+wqltKZBBAVVWWsO2CIGavN3qer0DXlNAKUUvBuwg8MalcbVYM9hjHZJnL2YMq6QqT5ypMM7WSvjHQizBpVXlecuB62NtTZO7FUQiQpEmJasxKhdFA+EailiGmRCK/9d732JCecC1lSs06A610zMiRhz62IU5iWq9LhB5RVrJY2hQRQSYhspM+UGYVAYpHYAV5AI0rsMRteKLOkS5LWOZykFH8K6ptq+ZpnLPPsQFnit8tcvW5cc1kXYtiTG4d3QNmMlr66ysHLpXlwC8Odjs6UNV/P8ar7L9eOeB/S9k9DnKFy9/lXHob9I/2TXycb62t+RlHxXknF5PPyuNel3/074Q4NL9aMnj13OU2Vp80WxEp3j1ro1lnBGMM5QTOMtOYcpuq70QF6M4FAcfecHpJJXsrdNSfH+UpW8XBtMvMc/tX4L9uqcWweAauBcihF0P6uqPIMY44oaWBUGTRt3tr1WcISwwVnlo5QSFf4yeIaNZykRouCL+u9QE84KL+/23Kes64wIVVu0WrSrVaE2BVJW6C895mjXzVr1pKgGjFNZ+iqFzW7LZho5nxVqdJ4jy5IwzuGkUo0W+lTev3KaEze7CUH5GMfjTJvYOBdwoVAF4pIJYcLgiEvh8bhQ7YAbtsxRWGLmeJp5enpSJVGrXd95SZzOCylXtvs9yzlijBLl5axdhVor++0NzmrXZimRMA4MpZB7ASBnUlPLMxRiPHH/8Jbd/o5cKzEVljlzPs7EeSaeIyW29VJUAcsZA9VwOp71swwVayo4T04qpUtFkTSNP7EsyxpjXtaDSomJOC/UlnwsUeG1zgd2+z0+qO9RH7siRsUNGloIC86b1c8MWGFSyr9tmQiX+OP/L8TvX//6Cz5+/SO2G4dzkK12C0Y/klMjzRmH81ZlI2ursEvbfKT7HWjFTavH0jLuUYkmuZBqbhV2/WBxSfjgwTZn17ZZw0Xm0xqar0Nu6i0GKSqDqU69TgPbUrBFb97KZWibm4gOqtvbWz766CN++tOfcjweOc2zJjrW4Pd7DcqHQLrqWOBUgSGEwDiN5BzBqIHf7e0tqVUOq8A4Tet+dTwe2zkY7da0jamUwjRNVGA5nfnJT35CrZWnp0fOp1Pbq4Ra87rBSa0KY+qbdQtagvfc7PZKTm3g8HFVpxCV75UGxZHCNI2r4kCXloVmODRNOJfoOt2bzYZpmjAGDoen1Xm2KxvUWtlsNtze3rbnOh4eH0lLIc+Zzz75hNubHS/u7ri727OZAofjE8fjEw6Y59NqLpOTbhjr5ns1Nq+KiN99mE5SbyOnJZlw0YZeH3oV4FyTwPvi/uHf+9/6c9dq5VWXo1Yl8gkt4DQ0PHvFf6Ak9ey0rzaja9fvH/Ix+AVvWzJaLc4YrK04J4yDMA1C8FrJEZRfUegYXFi5V84o66HhhZ0D7T8UfZ4pBLfm4gSLGh+JkFbp6VYsqOr4Lb0cXSrGecbgCB6MKRiymvDZAlbwVyphxl7GkcFgRRXT+sC07fxty2BNXzfaptMhexajMImW/Cv9udMJZH2dmAq2YXGqOIRmKFgNFUfKlZQK53NiHFVfPRgNCkrNzewqgmjQfz7PSHIK43AQl7Sai+m1HBDRQKBjqGNWTo3tEB9zSTJEhGkzMbe1rDQFHVVTK0y2kUdbV842SFQ/OvcKeDbnSjPbQxpZfIWxuMbHCzinFT1MwRh/SSq6QpVIW7Yva8ElkbgkIOv3dPDStxMOaeuwFszkWRHgWXIgVwlFu+fX9ZDrteuSnFyS0O/qSOi/v7uT+mES9YyzIN/9nB/q0Ytafax1v4vT6cSyLKtJGXCRTA/qZVFywlaVtSwIS4rQupIdYt3X+DB49jfKAU05cz4c133oHJc1+K5GkwqVmJeGnCiqFgXYXvTzntJ4kL3CaDtfyEDOUf0klsz5fGZoAiq94NnHmjUWvEKrbm9vMUYJ68djxnvHODqmrWWRs5om18roBgY7sts5fvbjj1meZqxx5Cpko1BzI4IsiWnYkI0Qoyp7KidNqGSFMzrlXswpMRbtTnrj2G63bLcbcoqczjPH05laYLsZsMHjSmJJheNpYW6QJ0VBVOZl4elwwjrPME7qyn6emZfEPCc2mztiTJyXR3775p7Xn/yEaf+Cv/j5Fzyc3nH/8J43b97wJ3/8xwzjBusCf/Zn/4Z5PrPdbfn8xz/my6cvcc4xDZ7z6USKhSGM/NFP/4TD4T0lR+TuToul9w9gDC9v7/j6zdfMhwPpfIZp4vH+DV9/8xWvP/kxYgK1qkP705v3CqtvRtUULXhuwsh2CHjgyy9/zd/9D/6WwlxLIouwxMQyLwxDoNSCdX71Xulk7V54lapWEIfDgZoL8/lMLJkXH73k7uUL9vs9aVmUwN3iZe1QhKvYRtEn3SZgFeAoaujpfVirJ/9dYFPfO8l4uP8tpbzS6laakcYXOM6Fl3evSS3bzkuhpNSw4xnre6VdFQ6WeWYGwmhb4CurU7Q03edalHilsviXgK5WwfoezOnM3G42qiXdCFXSsn+131AzOXUJ14qxc92b4Lm0oDGqKHU8qg28MYZXr17B+/ecl1lxwaUgMZJKxns1kevV+M1myzRNlFJ48eKOMASctywpkktdCVSHw4GnpydizHz66S0xRk6nE/f379vmYhCx5KIZ/2Y74hDG4NlvN0hOFJOpWZW+ujxqNx3scr/WWm5ubnj9+jWf/+hzQvB4ZzDO8dHrVxwOB3JOhOA4S1T5YAxhcGy2E+Mw4LBrslDrcym+WmuDselmPQ6jKu14dV/XRVYDicPTE8s8M00TP/r8x3z86mM+e/0pf/zHf4KzBmuEnBLv39/z8PCOw+M9283E+XzieDoqRrq9zzRNPB7OTYJWK9Kqcnap7nzX0YNAazuZvHWejFk3KRFZF/FnnYf277VHxXVC0RPo698/m4zWYNo168GUWeU0L/4bH1Yk+6LQr/n1+/xQD29aYoFFmjurdQZvCsPk8YO69S4pqQqIVIxVXLRpxi4dhqbXOjc1J+U1uwYdDM5TKBSLQmcQvO3V7Ctoj9H3X9HrAm7wTINnGhwO7YjYBtA3xWAqeKOY1pJUKMI1wmQxCv+00BINaTLauqArd0nHRseQ9+Sx1q70JmAa3MKoetWSC7n2Bo/BOA9imweFBt+CxZRMqVqRjRmwiWAsLjisNFldqc30y5KzsMxVzQrR6u0oQqHgk6ETm6wF45Q/U6pgq1Fi6/W9QOGnS0rEWDSp9g5y0sK51Q1LvXu6RDbrdS+14q803rVL+rwA0B7dwrcW1FUwbsD5qV06ixGjhod0zyGUw3N1fNg9WU+EZ42LFuxfdRl+z/j+EMoEegn7l9LcNKl8Bq/qhSJ7oYGb3rrj+Xr0XV2Naxhl5yU8P6er5yONmfyHcVxgUL0opJ9zmqZn1yeltN7rlLUTZoogJXE8nzkvkcMcEe8JwHgtDGOEGovyOYHYZNb7fjtOE3FZkCoEY5lTJEkB0ar34NWoF8CKmmHOcWHc3lBrQRphWwVUrPJ57EDKFUNSRc42L5ZlWdUvdS5knBtwdiDGxHarnhApDUybAePgHGf+9n/wP+Ld2695//4Nox05HRekVAbjMOIQHGIdr15/hHFqfLwcTzzd3yNi2d3uSGkhNRnfUjPH4xnT4M1+2DM/PvHb0xk/eN5//bVK4QZHwDH6iYd8ZMgFPzqmaUM+nJg2ezCF81n4y7/8Bc5bttsduVpSjMxJ+ATH3d1HTDHz7v0Dw+aGF682fPzx5/zmzQOf/ewz9rcv+fKrr/BGtOBUCi9u9hwOB84nhSz9x//kn1AN/PP/8v/B/+Z//Z/xd/723+b1Ry/53/1v//ecDxHEcXo6EtOBm7sbfvKzn/LjH33OfD7z7pu3/Of/h/8jtUGbltMT908PbPY7Xn36GZ99+iNsCFg78tGL1+QXL6g5QxF+86svGYJlGhyP918Tm8fc7c2OJS/MtbCkE+eHJzwBK4aHr9+T68K0Gfnkk08UCorC5b7++usm2mHYbXdYDG4YuLu54cd//EdUgxbTqLr2G8tcEjZ7xPlWKNaGpnWW7XbL6XQmS8U7GIaLbP4SI9Z5vPl2Ufb7HN87yTgc3rEsZ0rZgGR8wyNb51li4dXLl9zc3fKXf/Hn4Jpxm9SVkyHWIlIJw6SZkVXXXmmMvFIU99ohAc9aitKkQ73HuEoW3cAdhnlesO6q5djWTueU/EQLDtcAcQ0oYd1KtMO/BnUpJcXttfZZP77Vvr5avK9xoW7tbHg2uy25CDEVng4HQhjYbne8/ljf/nA4cDrPrPLlPTAxev1SjPzln/8F5+W8EtGrKZcODNr+dU5xyt75FdbV27rn81kXKGneHkYYR69ETJTQ7ZzVqsEQePnyBdvNji8PX6huuMjaru0ayv1aXIhgbdOWXsVpSl8tABtC4O72lo9ff8Td/kZ1oaWwzOoGvCxnvv76N5xPR6QW2EzrgD4cDoq9d5Zgw/My4H+HY8XAcwnenxt0ybce3xOQ687G9YZ//bj+umvwIh9u9KwBVodlfAtS9eGYu/r5h3zkZIkWqBaD13DRNjK1DWSUFxOrpVSVNawozE8ntOqJmwYm7aZ5PRxrosoqi20zxmrRwehbIhbE6aON7W6+qkbUrn4TfvAM3ul8aTKjFDQ4FiWWus7JsE4lra3DNDK02AsjSNWmaKof6j0haKXUGYtYqxVua3AIUtXNWqP41m2RBvkUVcPxKl1DKZCKwpzozy2G1CQdUy5YXxpcq6zws9TMq9R5tyC5vZUFH1rwpR+XlEvjZSmBWmVvq8INfYOKOqtdI6O8twrQA3h7MeZck++rFrwG7s18s+F+r5Ps626hLrtdREGvr4gWT6zT8aTwSdOXNv17C/JbJWdtFPRFZA3cr8Zq70Lo+X1XJ0Haa1+6Bsb8/jnaP/XK4bie2+3/0j6owLNr8bw72s/j960Rz917n/37w15Gnh3X1+X6WnSYVHfDvv75AhdrXedWqFJ3bHDWIsZeIHZNUbE1wLHGkhrUUo0SY1NnUrihMSBN7WnabNTPpShSIJ1nai04Y0gxrtBtK32umFb0nBASxhSVbq/SyOOFqSXgMS4r7KXUwna3089eMhUh5sI0TNzsb/nzf/tLxuDYb16x324YnKOWyul4WlEiusxaTscjKS6QMzEuWOsJJrPbbTidpMGYdQ0xVTifI0M6c8wHUoqaFKGSvqVExmFDTpXHxzNLMojpZPLKMNxiCGw2E7d3N8RlaXHRgrGeYYSH+yeGEDHWs9vc8ubNOz755GPu7u7ItWlLWe1+n84Hak3c3u5589uvmOeZlBKffPSKx/fvWUrBWc8Xv/yCx4f3BOcoJbPfb7HieXp8YrcPBKdeaY+PjyqOIZXb21u248h2M3H38oZf/vpL/Diw32z51S+/wIU9m/0df+/v/X3Mix3LfOb9m7ckDYxwOF5+8in3b75iOZ4YXGGJG8aNZ7fbMhhLPC7Ec2QIXlW7vOV0PHE8HJoEv2meYRpfTWFCSl0RE8sSWUoiS+XTTz/h/bt3VMns92rqCBGR7sllqEUhts75FSbV11znVBHUNpMw9e3p3kaVi87j7z6+d5Ixz0/qUlhHDCop5oxi3c7HzO3dS/7kT/6Yf/fvfq7VdbFKXnTSNhRLTs3vYLPFB+HxoHjJekVo7Tbp14Fcr0jEFNd9tz/mcHhqiQwdmquqB84p5g+tkD0L6nqFQld5OsGyX9wUE4fDYa1W9KSnP79DlIxcOB8dLrXZbFaSjLpcb0lZMHPi6XBcOQq+YezmhrNTubCGHxfpuxU5Jn75i1+suDp7FSBrQmbWoLmgZiqhJRneeWqpPD0+No30TlosDINirmOKq/xsaEoE2+2W/W6HtWatoOi9eR4o9MDcNpgItKC9SsPa67kEH5jGibu7O+7ubhldoOTEPB+Zz2fm84mnwyPv3r6h5Mx2M13ez1iOxyNiVP8c14IIs96+Phi4tsK7HHqfvxXMX3Uw+nn/dR2MZ3hYOkb8u124nyUf8rz6qJ/reZLxPOn47tf6ofMxAOICiKEGlYvO1WrY6yrZhDZODUs21GKpYqnENmc1ydDK+UVOca0UG9MqgM2t1jqMqVSr899bg7gOYWgVQ6szp9HsMajJ1BCcQqKkS5sqNEfa+zr8WsV0TgsM2lK1WiQ2XSig3V/D6qmhemIgRjuQmmiIVjiNVW+N1qqGC/a/dsw0eh7SFK1KEYyo2pxWbA25JRnGVUpVKFhpSYZAIxVbShViqpii3kYODVxrk1eyqF+DaWN2fT8AD646jDOtk6IFD98TDtBu70qQdysMyrS/Xcjcz4s4wLPA+lmnoXVJG4UaEYWK2KY+1RX0+qHwIHMVuMMlufjuBOOSjLTfyuX3Hwb2PSm4TM/vnqemPfj3zmLp73H5ul6X9K2u4VPX0K9vJxrf1fX4Q0ow4Hk3ar1uV545PcnoRcOqagB0NIOx7fnSYW8V5CJJW6UX4tzKfVTyNhpIVwES46Au3SXndZ+pVY1ml6RdyyF44km7785ZTile5ZlePWCaaau1Q0N0KLeqe4k5X9RNG4iinjy5Clkyt9uReI4tyYA5ZwYsw7Djr/7iC37648+5+/wTpmHDZhqonVdCKxw2xMj5vDCfjgy2zUOrsuDeu7bOZObzshZ7BFhMYj7PHE5H9vsbMAqbP50P3N7eIdVwOi6Yo5BrJJeItYGbG8MwbLHWsd9vOVA4HLX74MMIWB7ePRDCyGa748VHtzw8Hbh78QIX+p6haxumMs8njBHu7m74+quvqE2d6nb/Offv3nNaNCH8d3/5l6Q4M89HghvYb/Y4E3j39h0fvdwxDgO1Vo6HA1IrKSX2N3vudnv2+x0vX79kKRkxFj9NvPn6LWGKvBCnUrlB1BQ2J2ItFAHjLK9ef8T7d29YUuF0WohLZJw822miWMfDOVJzJoSBaaOwpnk+cT6fMc7iQ2Cz3+OtkvwnNxKTwgJzjRwOR+acEAvjuAExqwnnsiRy1nE5TROIpRpDjKkVpw05dedwNQn0wa1JxmpqvH799cf3TjK8r3gveCfNeE2r34MdmWe4vXvFj370M6btjpoWpCRgUdMqYzDG4/2WcZy4vbvjn/yT/z7/4l/+c7755ivyMoMoxCQMWn1fK+Ul8z/7T/7nPNw/8H//Z/+sGVopLs1Yy1/85V+iUpCqzmAETDVsxi3nZSbnBMBuv1slcjtnQM1GNJHo5GAR4Xg68c0336wL2DVE5YKL1wvsGldhv99xe3PD7c0tpSYwGrQ+Pj5yOifmqE6WPgyUKhyfDlhrGcaJ/Y3yNh4fH5nnGW/M6r4YfCAvOuisd81vRDc07x0515V0Htv5DMPQTH8Uo/flF19ijXYT1PSpcHNzi/ee0+nE7e1eXUwXxQG+e/eOd2/fISLsdrtnkJ1rPOhl4xK8dW0iRg0AakWMmutM08Tt7S2vXrzkdDjyGO9JS+RwuNduighLu1cWCMFzPivJvWQlM7kwIgaW5ahVa9MgLlYJr+ZaLeXDsS+q22+NVoF7hbAK0FrePWG4wOee3/f+2XtbvneLftdxnSQbp1XzS7JgucRMz5Of627I9cZ5fX4/5OPhEbzL6t+ygZMKzCEjHLJ62OSYKOfMEJp8aRGKM9hiMdVhTWgbvW2+B4p1dUY1202Dg5jmWm+NUbli71pAoWJu1nYDyeuM1TINqiWucJsOeYNubKa+GEqkq3lE8gjzgB0GqJnESSugBoXHdRKoFUxpEMemLGW9v1S3jVGIWGU1qKtFWqVOX8u2fk2tFpHLemDRl8xZtHOaFRGTi+BF6+M5J6poe1wVz1wz1zKaODTdjXIF5/HBYb3DOot3AhZSiaRcuB02yiMrF/6d9R7nvSrQoXNuGAdsk/r0Q9CkAlYibBfOWINqEUytz+Qy1yJP8y3q8q6mJSjqh6ABiXT9EKufW2q74foKXKCy6Pc9iP+gq3CdTAjSOlDPHrY+T0m6rLDVfvTUeE2Er37f3+f66O91Cfiew3rXx8jz83v2fLkurHxHgvHDXkKuqqzu2fjov09REQDOaKGt2EJJucnIasKxnA+tqCfqVCIWYxyTD4zDsD4u+IAVfY/BDcyHM6AFpsCwyogK8P7xgVqzmgFj8H5kM+24f3vPNAa2m4n9dkNtAaFUIS8JrMfagB83LHMmJ+2oFOcwZsINllRRr48KYIlRhVOC9VAglcIs6hnUJUwPceapZI7v3/P+/omtMSxPR47DPSaeOGyg2sqcz2z3lhirXhcxjGHDeLuBPLPf7nDGYYzji59/wfF45Hg88qtf/epZAVKqRUTXp6/sPdv9ls12YrPf86vf/pY4L5SlKIG5+WkYZ/nyi68w1nD34o7tGJimkZ/+5FPu3z/y7t0Dx/u3mGjYbPbYYjAvEp/90U+Ybu44x8J+2LGxE6PxeOcwg2Ezbfjk9Sf86ldfENxA8AN/8Rd/xYsXr5CU+eaLL/hKZkpRE9bNZsOb4VeEMLId9ngLwTmGMLC72WvSEx/4+t0bfvHlFwgw7rb8g3/4H5Gr8O7pyGc//RmffPIpt3d3vHv3FV/+4ufE8xlnDfPDe6ZhpJTKL//8F3zy+mPci9f89ld/xXxKDPZMqJn3b96SY1ZJbms4PJ6BSvCGj168YEmJOWVSFeZlwZvCzcsblpQZpoGbF6/45s0b/BAYxpHffPEVtzd35Jz5xV99CcDNzQ2vXr1aPTpqEQ5PpzU+HoZBi2LWEoJv6mH65bxt37fC2/c4vneS4Vwh55llCVQjbeMUtBFvOM8L909PxBgxtbZqfA821dG7lEgImhC8evVKEwVjV+a8ICvBdX1f61iWmSXOqg4l6mTp3Ijg1+qUc54GLKbjTm0jZJZSVm+H3Ny++1EbBMkYA1n//v79e/7qr/5qDe5M1cqiabCAjpU1Ritq/ZxNg1rFNINR9+6buxuq8ZigRni1Vja7LXcvXvD4+KiuoiKczieGZaTUSknlQnwsmWlQ10cxCkEieAQNMJazbkZUYbfZ4J3HiGoql5RZzmfefvOmqeEovGQch3VxePXqFefzGe8VZpVTZhz1dfKcNSBrWXw/Op58JQ2FEcmJ1AKD63t4OBxWeJVzjmkc2W833N7u8E2ZotZKWmYQJZZ6r/yaZZlVf1yEaRoxzpOOZ+3gVK3GaojUOkodQNG6HqY26cn+V9NUgKzygZxl1bfvXZpV5YznXYz+eXo19rrC+qzLZS7k7P59LqWNxw75uJjbcPU6PRi4lorric0PnfDdj1gCSRwOgxWnih0GTPHkYkgRlrNQI2CzqnCgkrPKdbZ4HMGCOK2hdUM4bFAGeEva6FAkIwpzah0j26SPVaXKYAhgFIbXO4DGCAYNAASDEYVpWeOw2AZ1mvAuE3yhDDM5RXAJfE/mobdYS1V5y9Kd4FogX7sJYyNDdxhR54jkWpTo7RSKVRFNDGylmiY52dZYb7phVRtTXZkMjyWQ89w6Ok0sIwuUihWtLBpjVP7bTHQOiTWqPudDUxU0aiRaS8X4EanaiUbqSoD3xhNT1HlqDcHrNew1MOvsyshXuFrvbCjkQ+jJg+mNizWorlVaEQegaflr/bd1ClxbEVgDQDDrOtBlhQFNBBXX1ebjdWuUhlTrkMeeLuia06VlzZVi1Yctip4sFGkKacjqn1dppH+u4FY9GajyLBGQ9b2v3ouVZr8mP8DVa1nWN5O2NnZvkHVN/GEeq8zvVRJ2nWT0NTqltKpLdc6TJhaVMARKNs+4LB2l0GOEvl739V7kApkVUbi2d7qvjuOALUJKKvpirXKkUirYMFLEMCfhMCdSdWQRUs24ca/3t8LjYWa73TNMgZyKeoA5hwub5negxd3z6RFq0jHoLcthhhDYbEawgcPhSFoiftjyyYsbfa3HI3YIRDE8zQt+4yBCtULF8erVJ7x9d698h2K4vb1jHEdIlndv3zCfz5yXhd/85qtGpo9YF5ibMzSAtw7TndZFOJ9OzMuZpwOczkekCBblkZmiEr6lFxYQzr/5mpvtXqH2qAqoyggL8/LEkmaSyYyvbvgPf/Y/5K/+7V/yp//yX5MfT/z0pz9huxl5eveOmzCSl8gv/vwv8NYSc2TOkXHccMrqAyQk/tbf+iNqzZxOB969e8urVwoTf//uideffczt3UvEW5aSOadEtZb/wf/kf8wv/90viDHy6WefEYaBm2nD55//iMenA/PxADVTaybPB0bvePnyBaene6wx+GC4e/UKoTDHszL9jeCCZ7Pd8GA9+/0ebwMPD+q9EoJntx0Zg2drLdVYsrE83j+RlsTT0xMvXr3CBUcRYbvbtZjYcffiTotZ1vLy5UuOx+M6nnshusc4PcnoqqK9izoOw0qP6Cgdsy7af/3xvZOMnBZyipSSwAg1q1Sbqar4My8zDw8P5JKwtarKS5OYpEl11lLIDVM4NhKxSIPbmAvc5sPq1bu37zgcD/r4qlAH7z2ltuouva1+tUlcFaauN4Bv4e6lbcaNSlhrZT6fFcfWWvk9qG1b91o9M22D7KT03nrtEnpVassGHWIcpbagpp3r4XhcXTGtc4RWQTnGIx2AtJrC2WaWgKgCg9FFsTinW2wVhlWq1jb+hl3hUr7BqFKpa5fEezX90+8D1npqOTOEkSEMHP1Tw+k9X8j7Aq7Xz7R7UYFEyaXjB6C38lvFLcXENI7KrQiOnCNStWI0n88E7xnHgRA8qWirO6W4QtE0OoQPR7esYcUFRbX+IP3bK4yhtesDrzsF/bjGgX/Iyfmwe/EMFtUD4qskYSVaXv39Q9hTb79/2E25hkFcQ0d+yEcxnn7HslhKI7WaoprfKQtLAsnCINLC6raGoLAgbxzBCjjBY9acos9VDTbbfLHa6ZAOLZRGvhVWo00xdjV9s64VEnrFG+jE/Ku6dBsfI94XQsikMGJ9wDiPca5JzLT7b0xzFu5wIC4BZe+amaYs1QamNbapamnhZWiBuq5XFix0HolyrdQktfYAta1NtIKIBp0NTNQ4IqVV8dtKswbhK2epBagdEsYKtWrdFqOEdp3f+RnHpZYWFhuDNOq1rPepXc4+n+QSfCsM9TLOL9X6/m+9rPdtHTXdyA7ae7XVQHrroL++tMSlf113BL7f+NVr08di23u+47nra3MxDu0f65oXvq4mPR9aT6Z3IXj2ff/qQgSCcoYwZh1TKzzzysNDrt6jX8cf8vG7urrXHeTro3MJ+1x2VgsQH4p59DX4+vtegOrfr/Ls1qx/89bhrUdcG4XWojm8YKxylLIYjkumlCbMkIQclEUGMMdIGC/zO6faoJgjfpq0Q2KFQQqnk0KgvXVksYQwMmz3YIOa5hXD/uaWGgZijmQcm5tb8BBLbp+9d1sHXrx4xeG4EOMbijljjGX2M6TMmzfvOByPnM4n7h8fyUkLC4MPlCpNdc6qSEcT1EAKpQqSKstSyCmyekbV7mdVyU3ZS0RIKeOJCL0g3TtVllwXpGTs7Hk43DPPJ96+e8MXv/w5N3YkLzNSEnlZ2GwHSi6cDwdevLjj/umJ47xws510Dayw3Q7KC8VQa+fRahcWI8S4cJpPZMCOnnNciKXwySefcjovzKczzqsqlbOO/W7PdpqIy4nz6Ym4nClpZgiB4A0vbm+azL8wjAMlLQ2Cp+JAS/SkPGC9x4cBi2fJSY1Wg+4pCpUasGGgGMvx6aQ+Y7DyX63Rsd6LV8uy0LGrIYRV6bMLB1zPo+sEfY1zzGWMX4vbXP/71x3fO8m4f/eGOJ8Q2QGqBkTRtg2MPDw+8pvf/oaS1UXWiJplYXuEnxEJqhYwz4hcZEkdslYaekDlvVcTqlL4sz/7M5XERataPUCmtMqztGpES656673WcmXwd1mYrpUo+oZnWoAiIixxwRzbJmatkq1tXXkRelwWItWxXsg5s91syTmS8rIOKmuaXF2M7HZ7QCv85/OZee7yYtLkYA0Pjw/UWBrMw7CcT2r+M03Ektnt1dX2cDyo3Kyx5JxXczxjTINB3VLr/5e7/3q2LbvSO7HfdMtse8y1edMACaBQKBTK0FSRapLdUktid4daEkMmQuo/ThEK6kFP6mCwQ3pRkyJZLG9RBZNIn9ebY7ZdZho9jLnW3udmAkhUUaHKWhkn7znbLjPXnGN84xvfF7m+vmYyqVFGYbzh+nrF2dk5s9mc9WpD8AmtLVVdEHyirieURcHKOZHSjTE3nsVxYA40syFj1tbStwrf92OzuAImVc1sOqWu5d9bt84prCZFz/X1JdvNmi7fCG+88QbTSU3hHFsvfI/oA1VZ4awbpUzlug0mZ5FDj80wCG5GDUoJ7905R+Ec1slEd7xEHfdmDNn8cTJ1qELc/Nzjm/R1itXrrx/3JdPN2rYdA6HhBh/K9MO+KKVuNNt/1RONaAupxhlNp5RQpSLQS6LufaJtxd+iThFLRptVRBEw0VBpg9GJXicxxEMLGqjVyK+W6FtluWqIRuXGZFFZ0lhspj2BISrppzBWo1NHSiEHYjlIVprc/i3XXRucqiAZSNA1G7TbogsLzqC9PoAbCVIK0s+QDrxnAUgYG6Nj8NJcjvjVyGvIjaVyjBFR0lOjpXResIfPjIBWaNRIrZCF9GBQqlLEaOiiCG8IcKBzOBxvjOvhfrBW04cuI/OJkCTJ0Nk5uR8AYTU0iKec9Ok8B2uGYtyBYnTz7zTcYxxQoeM5ewyOVZLKT6a5aS2Ph+F6pUy5Gs/9EPC/NhbHhP5oP4624zXjcwFtSpDC2Jd3lC4cv+gwDR2KCkf78fkgeZyXxqcOvQOH98QxIVEp0z5zYpKGZpg47OPRcQ1JxpCMfkW3YwBy+HvYjqvJY5yQH5eKxhAs6aP12994z7EfwVAFGWjWw2eFEMSMTgsF03ceosIqJ6yKXO3vQy+UQ2OISrHe+xxQR/Z7j1dQVTWFK/Cx5Xq9xxpZQ7WxGFugiwnVbM5+v6VvGibVlM3FFTEE5lUBpqSoF8yWp/R9ICmHcY7b99/kR599wma7I/aJO/cf0G0v6dsNZV2Lb4ZSuKJkfvec1WpHDJ/SbNc8eviI/XYPPnF9fU3XdYR0qKgrpSjLaqzQllVF27djUhuDlx5SDaQ+mwcrjHGgOsZejjigtxpnK4Inx3Hm6N7J95pO9P2O588e8Qd/+Lu8evYSa6DZrvFtg/I9TiVSL2yauqr49ne+zYeffEz/9Bkn50t83xO9YzF1PH78mJRU7hmdst+19F2gLBw//tEPUMZiqpJ777zNvu1oe89633L/rbfZrtf82R//EdEHJpMJZ2dn/NZv/UPee+89PvvsU7abFZPCEaPQw/7Fv/jfsd7sePnyFW3rqasKazXt/pqLq1e07Qbv98zrmSRIbcdmt+XOyW1MYdm1DUqVKCvr1mQ648peE2zg5OSEzWYrdKnFIq8lkb7ref8n77OYz6nrmul0yje+8Y0x1n79fjoGkcef12iJN+4x/eXYFV86yQihx1lLXZT4xkNWNwHRrG+aHa8uX+JTdt0+nthy8D+YOMmNa8dFzGg13tBDgNW2XUbR9ChjO8wlR0AYZVlmyUaPHjm+5IbyNL7vODR7HSkOIWSzHaEMoRR932OdE1WI3GtAStiiwOXmTqUUISW6EMRTY7vNN19J70UhYbqdomxF0gXGOpq2o21bLi4u6Lqeoiipqprtdpd7MlqWyyXtvhG9/ryfKQivdNTkzxe9KiuiDWNpWJReDG3bCk0hJXaI43ehSkpqKRcm8SAJIdF3IVPEPSHIDa6UHc1pBo+MITEbrpO1dnSJ3O9EocJosSRTGVnbbjYSAIVAXVVs1xsaHVBRVKX2uw1913N2ekpZCD+9aRqapsljQVCh3X5PH6KoXOnMI09JaHuDoV06NFAP13n8nUw9iqIGIlQ6QTWOneaP+y6GReVGQ2FKN27I4fnjf2OmjUE2MFSH6kjwXpDy3DvTDYonfRglggfU4DjpPpT7v9oIpCmKbPyj0VYqBz70tF1P6A2+E7NGYsxyUEaUPYgkFUBFpoURZNAneqVxSNIg05mRVEAnjIqiQ58noJTVYWJSKCwxO+OSFMo4oeo5S/IJolCHkrIZjRcd/ZQRfK0KwKFUQOlSkhczNB+ncYymlGh9f4PaIc3bSZIihp4dTQzDvJTH7TFdZ9xS7i8fHpfkJOaAUpH9O4zBKjnfzmX6l4bow3jvQieBdjYOBYPSKSvWDMCLxRXS/Ecf2e6ajOgatLYYZSAZ+ly6EAdaT8w9MmrAAfQBhfd9GKV5h3n/86h0Dqbzv0plY1CV5P6JuVKlpL4SjwJ28RSR6vlQdZbzfiwNkUbk/4uSiOPHXu9tuDGvDBWDv8mWk6ehN+SwPnliTnbHPo3x+7MxYUQaSsejOm6i5zCW8rhLOfH5as8iN7fXr8tx5f14znbOjdr/IcTRP2OY/4fXK6XGNWAymTCfz1FK8fz58xuv6aLHatAYAUxHoAoZm8bhMt3SFCXWOSotbAIXAnbqefL0JZtmh1INt87PKcsS6yQOefbsGbb3JBW5uniBQoC1jdL41lIWE5bLW+y4ZDo/ZTY/5+Gjx/hk8N7z3gef0GmwRY3SkR/86K9YVoqzeYnVkRBgu9vz+OETvv/Hf8HFxSvW2xVYxXa7p2s9qRVqZCQRVQTjRiB3ABqiiuw6EZAhqQwK6XzriniE1qL81uw7AQfkQ6iqyTgmUx6YY8UyieqRJIMFKUg/WOevuX75gr7ZUZWG0kyxpaZLHa9WL1nWE4qy4OR0zu//3n+UfoW65nvf/S7vv/8ez54+5cXjx1xf7bh79z5vvfUOu+2erheVy1fPn1EYI8amWqRhv/2dX+Wtr32dJ4+fsVlt8F3Pd3/lV7m+uqRtG3bbNb/7H/49s9mEe7dO+Xh9Se3EU8Xi+Lf/47/n/PZdTk7O+eijh/yj3/4tFvOaq1cvqKoF2gSatqVtdiSfxMahAF1ZqtmUqVuwXa8yMN3BYAwNvHz5kqQV1+trHj1+jHWOW3duszw54c6d21xdXY09txcXF0wmE4qiGKnsSimm0+kY2w3jvm1buq6jnky+MN75stuXp0t5MYTZbXdDZVYuvpFMPqZA7zswwpvWaaAp5NcpgzZilzWiBmYowxxu3GHSkKNhlJ8cELJhspVgUEpD5ggt0plqMCDp48n5GedFFqAoUpXqwOeNMY6BQwg+/z4gIWlEk8hJTdf37Ju9sJqQiSr4gHXi/B2jGNoMwWvM2T1KURSlHIsV3rdvpSKUMnc79AFUh6srxINkkN7Lh67UoYERxgn1uPRblAXKaFZR6FJDmRIlSVPfBxSGGAUFHTJVpRRFUYw648aYQ5Umo4993xOH3oGUxuulMxJflSWz2YyycNLw1gc2mzW+73ISU2bFJVn8BzWQQRFkQCKrqqIPSfgacVg0s5NzjCOgmOAgE5nHxpBAiKlXbh5WX7zcDmjVMRL2+mL2+QCQG4vasB/HY2xIdnQ+jyr3axwnvcPrh3M7NMAOj3+VN+N0TvBU5t6q3F8TiHm8p5C5+kl+pIlalENAURrhO4cElbKY3AyNMoyOkxm1VZnPnhh6M8hohUUpi1LiuivlaCP0qkyLUgqhUamDWMCQxiaVOe+DcO6A+JistjS49742ZlIO9BjnpUzpgsM4z+MfY8cxNn7GmLAeJ7XD8QpHXChamkHG2jqLMZLEjHKZWip+KQWR7Yw6UzNM5pXrsYIx/Ou9ynOPyuIPOve3SHUlkQheaA/D/DIc88CTUiqrDirhg4/3RUriVJzPjZyj/COfzKBsonLFaqBFhRhxSjEqXOVkZrj7DteAGwHNz7+VfnaicWMu+OvdDkdJz3A8MnbG8ZaTg2Ffxh+G1o2D3j0M7+NwjMM54PD3UOT4u7iNINARlem4wjz8HsiKb3q4h2U7poYMQI/3vfQT1hVdK9U8pRU+BlIAFVPulbIMc41zAhiJA3gkJkXnE51v6HpRdPLBi/cNIoNtXUnTdKSmFfGTRvoU22bHbrNjNp1TVbXMl31Apch+51HaobUjobm4uEYHqWht9hsefPNdurbhxePH7Lcv8RNNakue1JZPP3vE9XrLvun57NOHNM2ePvZgxWU8jfesEdNNjSTuciLRxqGtE1D5gPNJBT7f61pr9NG9E4cYK9/D2uijUCoSox/BlYHWLVVcAVA0kIJnt7omhkRZOJxRXG+uafHsuz3J90zChPlcAKrT0xNu37vH6XJBXVa43JPwnV/+Lg8evM2bD96h6Xqa/Zaua4j9ng9//EPWmw1NjKwvrnj86WekqDi/dZfkI8E4qtJBiqxW0DV7NusVGvH6Cb0nhiiWBbUTamnuMVPaslptUSkxn5+y3fVo3ZHwWKMo6wpnHF2U85NIFGXJfqPAWqyR3onlcsG0mqAjbPe7kSJVlCVFUWKM4WK9Fgq7XIGsPtiRSCPYdFzZGOl/R2aPYoIsc/zQ12t+uubN57YvX8noPZvVhuurWjiDIY4B5IAQJaIYa2mLSYngDUkFlDYYbdGmZDhepSXIskZM4gbkd5hEjREt/BhiZsBI30TMtIMhCHSuAGXyoD4MbB8lINHDIj6iQ/HG9xx+B+KhHJiSoNFVdtn0Xiobx6pCKsZc7hOZx67r2Gw2zGaTMTDwIeCUxhpH49usbCWDb7h5UoJ6MqHJze8phtwImsS6Pgk9LaZIOanlXOUgLfrXj0MCtLqqRofsQb2lLAqKqmS73UrSN1SilPRU+E5MBlOCkJ07ZT45oEBD0D0odA0D0ee/TS4/H8vd1nUtiganp2gNfQuh37PZrNFKU1cFdV3l+FCWWu89fdfTtVlG2Eh5bjqtaLsAykvylWI2Vxz6FgaaxMBXPlBohsR0QLO+KCMfgrpRnlcflLVeR8YOY+XzMrZjXxGHKsqxgllKaRxLKSv5vJ5kDNS3w2R705fjq7iJ30KuLmZPnITov8fgSEEaagWlUaNLclKiigaKQmsppxtFZQRNV4iyyRCoqYiAHBlCV8qQuUiI4pRBK4vW+fGj63XYMl86B7pxnFMgaQPh0Mw8OPgaY0bDxTEgPEKoY6YHKJB7PCcYIcUj+k5eAI6SjBjjqFx0qKTlykw47K0SB1NB0KzDFZJkaKtJXW6Sz/0TSmWaUeghGXm902y2LcbKvGqtwRWDp84wLww9XCJ7CwljrQAzqafrPdbUB++O3GsyNF2nlEEchOIU8vkpTG7AVmT39VzNyPLeg5ToKJmdz0dIUeZDk3s/hqgl332HoJt8XW4G2V9UxRi3A47zudfdoOkw0L9+gXRj2MeUfxgSUyAJvW+gzDH0kCCnJKpDX0lMeiCXCYqeRvGto+NMY/VCzv/fsPryt3nL4OdQJTtepxTSjxGyOibJ5rn9kIBYI8pHzjm22w1Ns8c5x2RSC0CYQMQcRHhBqYhSNsvMCphoCjGG1NGj6PFRmsKvrle0XS8CDTGSosW5QsxstWG1WtO2DWVV0uz39F2D71uaXQO3RK42+ITvI75P6LRiuSzwMdG2PS9evGI5mWGMZbtveOPBm1xfvOTjH/0VzeUL+iKxv9b0uw2/9/t/yNX1mun8hH4fcnUhEXuPsQ5nDMkqUY1Sh94UMsBsrMNalxXryCIQ2awzJydGG4wSpsmYAJqcrJgjevEwXrM5s9aWpuklwdGa4MHqrBKoYXe9pihLOW8x8fLqFWpzTds1NJ3Hhx5XOKq64s03H/D2175G6QqcNjjjKIqKf/APf4u3HnydW7ffAG3YbcVf4+xkyv/j//5/4/Gjh2zbloura95b/5DHj57yv/kX/wfibEEMnrLQ9L1cn+1aEtdmt4eUCF3Ad4HCaqazGa6sKaqKmBJVNeH5i5dstxW3z87o+msUAWOhLOD0ZMl0OmPfRTb7ZuyvNUb2vaomFM4xORPVr+QDT54+zcZ6hmVu2o8x8ezZc2bTafZv02gt8sMhBpQSJpBzTtoW8j1jjBl7NpRSUu2LYEyU/uI8D6Usm/7zti+dZKgQ8F2bTdkcSoHVjtLV7LtAVVfM5hO2W0eBQydom44EaGNxtqCspqzXO7q2Yb1e4zO9pygqQtgdULuYiEFUn4qiwPeegZueokgiVnVF7zvquiQlMUqJKUqDJ1nuLcnEqjmUUI/VJKSBfJBABZUGikrM6FFgu14zTNDOOaLWhNjibJElVj2ucGOT8m63paoKtBJ/j7ZtQW/pfQJlmE6mJAVd37E8WdL3nq7rePPNN3nx4gUvXz7n448+GOkNA086xkT0ou/tfSdBkZEGZp8TnIFuE0JgNpvRdd0YrK7XawksjAS1bdNKL4YygCd4T9f1zKZzsafP793tdiMlaqgupCT9I8dVBjItwYdMpTpS5JhMJkwmE+G77ncoFZlMat56603apsVow3I+l0pP27HdbLi8uKDteoxznC2WbPcNIYFxjpiEvtZ2XqKs3JWvMxKtBsQzpRyIqKPJcUgaAlHpG1YyX4R4DcnvF1Ut4FDxGCdQdVA4GV9/VKkb1akGLjAqB7rHxoY3kxGQBq6ftg9fpS3RonM1MwQRkoihw+pADB1aQ1W6jMiTkfNI61t0L8mWzj4NMcg9a2wB2rHvAkYV4kyKJrSeGARRd9ZhVEtQgUCi0A5rRKo2Ri+LIAZjHEZJM3XwAWsLnDWgI9v9DrAk5bL0a0ClgLERVxaE6NCdzcGhJL/St3RAlCEvsFqC5MOzOWHOjwwJz/F4ijBy7gdOs/Q6aNIgxxmVpFlGEt2qLjIwEMdKoYxXASmsMxlAkElQlMzUmKxbaygKoVslQqZsOApXUZUTgt/nqqfD60BMUnlL0UNSKCuJj1QpxDxVZaqEdGokMAffGB8jRol85DESfTSA5J6Ti4+y0hBprEVbUdcyo88ApDGxH97++SR9XHduXKP8GRGMlkBfpwPYcEwdSEM+9NcuZ+QELANpIJQTkWc+bk42h8pJ0rm3Yji2IViLR8d69BXjY8NxfrXBiuNtTA5ygDSg795EkV8OhtR1xNChUo/TEe0AH0ipp7AFszt36PvA9dWKRCQGaHWkriuInq7ZcnXVoFxJMiJ5W2mLT+ATtAn6roGkcKrg8vIluiwx0wnWTmibPdvNnudPn6OTF9NM3+O1ZT47pTSG3WpLaHt0iNQWgvFoHbDA+d07xJTYbC6xVcmjF0/x3lNXNbfPb1O9eIHVBlrPVu1wVcnte7c5P52yevIxT37w55yenvLyas/jruFD94xtq5id3ObtN9/io/c+JniPweB0gVMGFLS0xNhijGVia7qURA1QaaIymGpKWYF1lu2rK1SC0lmcK4V6owxvf+0tnj75jKbZo5KnTYFyUlLWlciVt50E0kozXZ5Kr4sBkN7Ptm3ZrPc4W+Oco3Ql272oZ82nC6r5jF27o2k2qNBzPjvBWUe/a7l7+w7b9Ya//P5f8Vc//DGffPIJ7X7PtKp5/4P3afpEh+H+W++Kwtf1Fb/77/6A6s47vFGfcvX8CbF9yGy+oJ7O+Zf/l/8r/4t//s+5deecR48/BBKL5ZyTkzntpsHqAt8H+vYjejy9UthZSTl1WJtANWzbV1ytPXVVUE0eYE1iPp1z62zCxx/+hP22Q+lXXK+2fO+736N0jqcfP+H8RGwHVIqsN9csFksiisdPntG2LXU94f7ZA87Ozul7T9O0fO3tr0t1pHQsT6ZYK3NIDFAUE+m/LUu5T46A4SGmsdYymcyQyr5YKmjtGHpm/pMmGdZkVDZEkle5pK3BKKxVWPFJE0RG50U1K7vI5KlIqReur4XPnjyk8x60zU2XFqW9aPeqYSFNWJ3RBiBGRVnV9L0nxg137tzl9q1T2raRZqMu4XUEE+h9GM2uYhCaksr0KwbUME/kWg1qVtn1Mkk1Yay4K4V1VorRefGMSGKDAh8Cnff0QQxh2q4BEmVRsN1JYKKwaFvQxEbEXnLwa53FOkfygbqqWS6W3L59h/V6zXa95qq7ypK24si9bxrq6USMwpQm6kSfpKQ7mdRHqgFx5JKG4Nlut3RthzZ78d7oelSC2XzB09WzsZ+jsEKJCKkfm7y1Ftt57z2bzWbk8o2NdQqq6YSkFM16jbY2G4dJ4D+bzSgKx8sXzzFaURUWVzo0luW8whpDs9+z3e1ompb9fk9QCjeZ4LRhvd8TlTSRmmwGNHCWD2M81wxiz6Bno1Gi9mMLOnQ2JdPYsgJtSOrzlIljtPI44Ri5uLyGYKY00sRiRq0FefZ5lwQ1P6bCpMw7lYqUyfz6m8png5zugH4P0onHSfJXcTNRKHeCtgZi6KWCqAIxdigVsFbhjEYpoQUanQPkRKbaRTSREDRRyfwRUaSQ8B6pWiRN6CwkoXNaSkKm3IQYcE7jjMZoRRukaVMRsU4Tkjj56uQxKmF1EqnB2GGswVlFUVi6rkElj06Rsnb0/UCntEA/9vUMqlLH1MUh+R3mmRHdj+kGIDI0MCulxCwsA/hSzpaJvu+HSoGE7WSjQaFJGXSmb4lp6cE0TmXqlXMO6KVHSamxD04pLdKcWmWalSjBuCwIYY0DFSBADAm8kaqyNriixOiEzmCJfIf0e1hnxuMdUWal8ANSP95ew3nLoIGSJMHHiEom0za4kdDHLK0+NIIIFTfXRFIaBJfyfX4Itr+IAnWofHyeInXjtenmfPDlq41DBSPmgz6mS0kVLiUJmlMeJCnvWFLiHB/hqJIBo5LXjVQiMVDLpPKh+NK7+BXYjhNxPfRC5bqNtU4YF8ZA7OkyAyC4SOs9sfdEDVELtTvqhM/3kR5BR0lWjS2JyuGKirKeE3f9qK+clCLEFt97dv1OqJ+t9CI2+x0KQZBJQ7VJoU3BbDanKEoSia7f45xGOQcpiFGe9/S+Z71eobNyXR8Di9mUvu/Z71u22zVtsxcFSVcwmdSYwrHdrunbhq7Zs91uKcsS73v63rPZ7tFa0feex0+fUlQlvtd4LyAiIcg+x5Blt6Xq2PeeoipxRcl2s6XP56fvDNpILGNNSYxQWpfVkRzT5RJdWPa7LQUIUI3MlTEb/UkAW3C6POXO3Vv84Iffp2tlni/chBgVvY9SPdWa7X6HR/Gffe97fPjJh2x3W6x1+Cgy085YVqsNTdfRh8B0uaRpWvre44pE03u2u4bVasPk8lKkeduG+7fuMitKgu/YvPkWb3z9a2w2a7abLW8+uMvHP/kx+/Ud/tF/9lv86//hX8kxFRarLedntzGFo/F7bt29zfJ0wen5Cc+ePclsj0SKYgyrYuLy5SUT52lUz0XcE/tAWdRUZU1hJ+y3DbFInJzeYrGYS/9i34lRYJB5fzqdjLHC0Echfa0ts/mMuiwoS8tkUtL1jYiAaMTcL8c1ZV3dYG3AIRYyfY82TsCsPJmmmxP1z9y+dJIBSZqgey/mVzovZlqhTcJakUglJpJOgnypA5IkBxPQJqF04sWrF/TegxblFvLnkWkAJMaAzmhRA/IhUdmCru8JoaWuHXVVQJLkJESRcSQJojbwVEli6qcgc7wHd0uIQaGslqbI5Bkalo8XCkXmOpMgZrdZ6SiV4DDroAv/MtD1PdZI2bVrGpypiNZL8KEyhSNXFYwWFK/zQUpgtSgVCHc5olZrkvf5HCm6vqMKFdqK8VgT/Q1qT5HpXX0vSceglrHdbqWnotGURSEa1UHhrJHgJAW0tpSlpW1bYicJ1xDwOOdGjmrbtoyUtjxIjStQtsOnhMuoWlIKlzWWUwhcX10xm06xWhGHqpQtKZxhtxODn32+ObQtKaoKZR2v1hsSaTQdlLE9VDAOVIM00CuyxKRQK7RUCqIMKqUsrigyzWMgu3zxNtBUht+H1H2kLeWfsYqRMn86HWgxQq853LzHXPAQkiTvSuUSsb5RFTlu9D5uBP8qb2bogUkJFXpU9FntSBRztE5op3FaVIOUChgzJHaKGCD0gvgLTVPkoRPZiyKIkpiOitALjdJYjaUkpRadelSMWK3GJKOLQfZHRTTZ4yJJBcUoQbLRCa0C1oBzhsIZfAxo5D5x1rHfSYAtTY7dQUSAA4Ku1DB3DvSXNNKkRu3/o79TOiS1Ut0Q0QJjhOoVAmgdJMgfldZUTh4sQz4jP5mHrvLtoCTgcs4Sc5+W1qCTzveayvc9BC8GYTrTsMqiksZv7UBFfOwZJkRlDLZw6CS8ca3lPcK5bg7UiJQIWdRAgrAwJvSHPD4xSIKL3LBQvqQCm/L50MM0f0gyjpzWj/sYhkB77NFIh7+58VwO1V+7315/Hfkzx0zmr1XOUIefw7TCoVv+5pokx6KyY0ccq/XDvsQbxzV8fsqPyzwZ/9pll7+d23EVOaa8Rud51FiL0YbGidqPNNm7MWiPShGIeCJRJZRVIzVRxhSkJCBfSBZlKopqTtc36BDQKaJiALosBNOPlO22admsViJ3q0AnlalqNvd4upygBLmiRu7jvju4lXe+J7ZdVre0GOOp6gka2G/3+K7DlCobbAYGURPfdmzXK3bbzdj4O9xLXddRlgXee66vr1lOT+Rc+C7HOTL+ZTUVRTqf5eZdEsZE27bjOAo+ULlS5O+LmrYVkNKVjgCUkwlRIeyE3NsqGnhgTAEGXFGilcW5itl0ge8TIQDRjOh6iJE+RExR03Yev9sxmy8w2kqztLZ0wYM3mBK2ux27pqEPAZvdr7Vx2KIiZVPDzXrLZr3J1RTF/Vt3OZnOiEQ2/ZaT5jbPnj7mxbOnKODZo6c4DafLU5IPrFfX+L5lNlswmUyoqwmutOjSoKwmIknVbiO9NfP5QpgewGa1oVhYOmm0gYRItLsis3gihshsOcUVNf0+0rY9tZPjRYmH2Ha7zWNeaP5d19H3HfPZLCffEqt5L9VopSwx9hl817iyGKvGQ5xx/PcXCUl92VjkSycZfbNns1pTlQUxkZVBjHga+JZ6UnF+fsoH73usVeNcK1Nn5tDmaT6EnouLC9quE7whJxgJsm47o3wrKdMLyNSDCNZYEvDkyWMe3L8HCZx1RBsy/xmMFWOSmDJfOPo8uSRSyJx5rSCANU6yet+P1IVhkbPW5N4RnRu65cQemr8lmHWFNG1vdluKwmC0uNz6vsd3HbHoMWXJ6fk5WMNmv6POHfz77RatE85oJlWFvX03JxmB1eoao8Xkr+36rOTVoICqXLBeXSAGeyXAyKc7puwMg2Xoo5hNpxL8hMB2s2Yxn+ZB2XNysuDVq1d0nVDaBgrWbDYTipv3lGU5JhohhGzO4+n6gM/obekcZVlyfn7OxcWFyHZ6z2I+w/vA9WpD37YooHBivjeoZvmUmFY1RVWjtFQIeu/ROmGdz27IKTftqXHsKDSk7NMxuPpGkcGNSNBVVaK2o7ORolI3vS+OqRDHqlNi6Khu/H0sMXsIjjJSlmktReEoikJcq0Mcb4qBM29dkZNWP16/L6JE/V1IMABqdxBvCCqN5wm0VL6UyOYByDSSQIsOvULlJNfnpD7Ro8FYMIbUeWKU6kaKhtCVWabW4ighbaVyGSOl0ZQmm1ulXoQEsOLvgwdk0XcqUWiFsjCp5VpWdcGkLugJYBLJKipTsd0WQtsxVho7swqb0nqk3ItYhoxXHwSUgKyQNCQZQaobIYiKn1JmpNrZ3F8k/TpS1QseFGEMTgUhNNR1JYowpCx7K42u2ihUkBlZa0VZ2Ww2ijh7K6l+GKOo6hJIeC/omLUVdV1TT6aSsNuENomm3UuCnY/PWpcVuqS3xFlHIuKcG4N9qdr4sbdpmFsGbrDKjeneD/13LleOPYV1gByv1uKm4mNAhQDJSEFHHdSVjqsZQ8Vo2I6D9+PHBPX/YsftG+/NgfyhQvLX34bEUz5TKGZH2RAjKJJy8jXQwfKCe+xKnsb9Skd/H/79qm9DJX2Yi4ckNeX1woeQ+41EVnUEcFB0fUSZgrKWdb/JEvQYmC9ndJ2nbT3GFFmOPoKxeFUTfQF7hbU1SQWi71hdr2l76al0VY2rStou0u56ptMZu/U1bdPgjAVVgDYo43jy9BVVXTCf1dw6OWG7XkkD8m7LZDIhBs9+vwVg38i9PZlM6dsWEBGMwhreefCAN+7f53/8N/+G3X7LZDHj5M5t3vvJT3j26BFlWYpRsiCt1HXNoDFmrWWz3TKMraFiCEnU9oiiGud7uuDpNxv0boc2BWVZgBLJVGsLiqqirqdgepKCaOByt2EyqTBpgqt6qqqSdTlEQmyoMgOjKEqaTcuL5xc8ffoUa0oUMpcGL4bLSQV6Ws7OztnvO3b7jo8++oTVao2oMGq2+5ami/RJSaVFSazqO89yeUpZ15zfuYfTFX2IvHx1wenpLc7PTlnM5iznc86Wp+z6jkeXr1BpyvL2bd782jv89//yX3J2tqAoDP/6X/0r/vFv/2Pee++H/Pv/8G/QJJ489MxmC379N36V3/uTP+LHP9kyn8747/5P/2c+/ehjfvzDHzEpChQCGu63e7qipHYF03oua1hIdPsOH3ru3nkDrRRPnz4Hrbm6vODFi+ecn59yenpCWZX46FEqUlYly5OFQAhKeo66ruH5s0sgcXo2x/uOqpowm845OTnJlR1hF5RlyUCRH4Bl6b07CCH8tPjkZ21fOsnQSha9vu8F+fKeHuido+87yrLk9PRMXpwk5IObFAA1ILQp8eLFC7q+P+jak3nGObHQWududkPbexKCinfeE/qOGDy+KIXqpNXYHzDMoClGjLFYLU3ZKnPyRVlOZSRM0yU/7ueheW9IJNSNbG7Q01ZKQQyjieDBkEq8P4Z9UEoxn81QgO/2GD3Fdw2Fqbh9dspsPuPy8pLd6oqri0t26y27/Z6r9Zr7b7zBrVu3WK9XrFmNyCYJeu8xfU/btYCUNH3rmU6n7HY7uq5jOp3KcyHQNA19Lzd3XU9omoa2bTHG5BKqHwfPfr8fUcOhnDagIMeKT6/ri+/2TeZzi+Snyfb0d+7c5cWzpwDcu3ePq8srjNFCN2kbUgpUhaOwwkUOPrDb7gDH1dWK1vfsdnt8CGhtMMbmRtHD2BwaSxlHnUyfOgl3OyVPF0XVxqjAZmPRtqe2mtrZGwjqjQpWTiCOvuhAmxqqKuNTRxWNAa3OgWPvPYOHwcHoRtBaSV64gbwNVYthH14Pcr7K27QqOJhVamJyEjCRiNpmaWaAgE4Bjs4fSZFUovc9PnpC9JBqIoGEw8aSuq9xWqNVwiUolKPEUWAx2o5UNq16GU8abNhRqh5jLLVxrP2WFHq0ilhKnC7RGgyesoiUhacoWgrfo7XI7ZZGy+/KowxE3xJ9L87YaAbPZ2NF0Uz6NmQOCVGSjRATPkJIkoTozC9PCpG5Nbm/wRQoIwuVShHtOlG48VEqiTm4VBhMSqgkan8Ki2Kg20Wgl+oHnkLn78mwkDYK7TS2zOZZPYROYScFrqiZTCeZhgX0EYUhBkhhiGYloNFW+j4G7aTCWdLQ50RGnXPRT+XipMiypux/ktHkAfdMEIOhJ5CiJ/gOpUpUcCglGsXJZKhoxLpyVQJBkWNWLItHPQ3j0nEjgTiMW5WG/RuSj0QgO7YnLSaPJqucDSIE0UhfRcg6s8M9nFFiOZyheiEVbqVcBkgiMfmD3LGcMA4znJw/w5C0D0c4GIEKqDdIgYKAdQJWZJnRr+h2DJyN/Up5fR6AJZB1oSgKUoxs19nMNyVxAW89oRdFO0KiMBYVE10MrNarjKIrYlHifSImi6akqJbMluec37nH82cf8/LJSy5evpJrrDXlpGZ5fpdkDHNbcMdYHr7/Ht1WExU4bdj3UNcz7r35Dr92Z8lue83q+hVPHn6IIeK04vRkzn63l/FthAoqQCl0rcZgGIRu1t7zwx/+gE8++pDf/q1/yE8+/ID9dsfbsxkff/oRVy9fjiCkVLTCUcV8SIzNCIL4OFRDZB3Tzsm9Ehgr+SM9TeVKvRWq1nx+wtn5HT769DNs6bILdc/1bg8xYssapS0pSvJ3fn6HXdfQp4RVlhh3KCWGwzEp6DIgoIQtM1SdMAZlpSJyfbViv28JHqbTKYuT20wmMxaLBe+99z7LkwWLxZKqnLA8OQEMl6st6+s9s6njZDHh3W9+k6bZsml39Mqja4dxBbdundGGBR+8/x4ffvAJ9976Gm27p/GBZrPl9/7o95lUjn/2T/8J/+//1/+TxWxJPN1zOan5X/3z/4rNfs+f/ulf8P5PPoKUeOOtt7m6fEHoezSKxXzJ6uoFoVEoX7OcTelDot13xAiXL5+jjcGnwPOXTwVgtoqT5ZyUApvNNdfrFXU9oetaPv74A87ObksfrdU8evSYqhTjwc1mw3w+zZLm0tA9mYjcr8tCBwM1+9A/qm/EOX+d7csnGTmoHBpQj4OeYwQ3pQNH8RAcxRuvBWibhpi9KYAxYNeDu7ZSGZGTAyzKgtn8hJdXL0ErrBblHZ+zsOP9NFoTsrmdsZbtdoPSsmATkyB5OSkwWo/7DD8d7Xk9iIwxZXaXfLcPnrZt2JLwJwuii6SUdeBbTxcaiIEUeqI3hK7h+rJlfXXNfrthv9nQ7Hc0+4b9bsd2s8F7z3QyYbfZjpPqgRMnMnM+HAwHj/W+h4RgSDJSTvaOXzMEs0MpMsbIdrsdk5IBWRXZs8N5PlZdOgTGhtFN1RjKUhIaMvpMVuYJITfoq0HpRgKKfdPIz76h63qMbWn7nn3X0bRdplXYMbE5riqMYCLD0nqM4kFE3kuuhsUYchXjp4/3Iam7kUjEn+66/Tq6mclZ46KnEGf31xMZCbAZA5DXqyrH/77++1dxc1aM4ZIeXKD1GCB5bUcKIjkYk2Ar02B0Gq/tgQIjhJGUEjoaCmWxSqF0RMckHjzKYHPwZ5KCGIWWpSNaJXRqsarD4DB0JN/l/pCIUl5UqJTGqIRWUd5nAkoFtIqgY6aBHqhJKfcwiJFedi1XN7X7B5GJkE1DpVFces9Syov3WKw7+OOYZMZGavl8gIGFf3jtcQ15KLqOJZWjUnOKUZqkOdxTZHdeY7R4AHSe4CNaDSpUDmWiUBSCKIENvUYpH9dAuSoKl5XEFDYbmw5IqVZ63MtBTewYKBhBfaUG49oxWBb6RBB1vCBUMojSe5KGoz+eyIcGa8bAG477stJYZbuJYoyn6vDcOP4Ozx0VGY7err7g+TQCbgzXJM9jss8akj7+6hsJxpBEDHOdjKk45FL5qF+fEb/a88bP215vxlf5X60UcVi3gqDncv6VJGhJPLmss2Ks6D0EQZNDEKPdECRF1tqBcvio2beB1ne0fUvTtVSuxLiSup5xenabXdfThyBrl/c4a3F1Tekq/DagtCXErIQ3yORH6QGTRDXhu35cn7u+zR5UEvNYpzFKYp0yc/L7vssgYSBF6QXpu46UYkalbe7JONABD/PAkI6nTONS4/2bhddJkSwfrXNCL3O0MkkolGUp8qlliTKG2WJJNam43lyBVxAiJigqV6BiCSnhihKP9FklJT2q4hfkGXxiQCoUxgxKf5qiqsSjI8k8NZjPtW1HvTihmk6YzhcsTk5EzlVbyrLi+mol1aBqzj71+D7Q7Buurq9ou4aub4mbSLBQFTUGQ9P0tJsWkyxvvPN1Lq5e0bcthbZ89vF7aBWZT0oWsxk6BParay6ePeX6wQOUKbhzfs6zZ8+Zz2fUk5rWi+ecM06kagdgR2UxBx9IEWbTGc5lpbNqxq7bYZyitiVV5djtdrTNnt53FKHA+0Db7PG+G2ObGEURtCydWCnkWG+329G2K05Oz0ZfJal0HaSfj6sWh/XqFwc6v7y6lDG0fctuvyGlOGocDzK0KUXatpFSf8p658PODSj8eOND72M2uWIMrowxRG1IemiEOwTDy8WSr3/jG7z8wxeUVUVV18I5zKWd4cQ4aymLgqbtWCyWFFVFs9+jLUAk5t4MoSWAUibvcxJ9e3JjVt6+KJmSaowgsSpJFUQC+cBus+bOrTOKwgoaoBR93+H7QOw78CX9fsv15SuevnhO34m/RLvbCxITpHH5s08+wRUFi8WCV/rVa4mUVGF6H8dkQGs9ZqYmm/ENycZQ/mpbSR6m0+k46bRtO2aubdtyfX09VjoOCVWkaRqcczRNc0MScNhcKVWmGBPOWWazGcvlks1mQ+89KUauVqvsFxJouw5nNNY5tFFcXK5YXV/T9T29T6i2pQ8B3/fstlsSSCWr60Y/AvphfDFen9yaLZzaYR8V1FWF9y1Gi0BBXVeUIjv2uQVquKEOLsMHdOz16sXw7/FnxBiPJEJluR9kEY97NcSjYRhzn4cWjz/zcO3/ZqjC/783ZSTwl1NnbpyzY554zO0yIUpTcdLDjJInQSAiUtohBqKKuGixylBkmVwdIyaJPZ9T4v9CSKQQMUahdYQUULQYOgwRQgehJ3rRLVcz6e9RA71O8HCpXuIhZSM5LTKvxgyVmIx25+qjyjYeqGHClmvuowAFfS+mn6NkqXzE6AkxVHaVNjglvRCCwMejxDonB9qMFKRhG4Ce43ZguUUEKdeDV0eusIgkp8FYzXbbsd81WTjiIGuLFqWuoA9a9qOTeQaatNbUk4roPTHIfSD9NIdEZBgDo+yzcDoYXMMPdCQx3tTaEkIr92hMwqPvQ9by9WgTc0I6BOPHidUwxl7/95AcHCcP5AT4OPFIR48dh+8/vdp4SDTUz1qj0/iqfH1uKmv9zSuZh8TqZ+/I3+7t+Dy/7lx8g9qhTa4gC/Vj4/tR0c8pI71WKtJsdtTTSiRY+55Ci6CKDwOQJ3RHox0+KNr1lov1nhCu6EOPKyyz6YKynrI4OePe3bd4/OoVl08f8/Czj1H7LcuyZDKfU7oar/a0UfPy5SWvti9xNmJVoJ5U0Lek4Gl2HV3Tkowk6bvNlmk9obAF11fXFJMppZPg+cGbb0oMst/z53/+p1STCUVV8PTxQwprmNQ1sSiYTqfs93tSijTtQVDC2pzw5HNalBWCUeTEN0nvYzKgos7iFrnCGQJG5Ybz6VSCf62wznHn7j2WZyf4zz4gURP7QNx2zOspVVHijOXy+oq61vgU8aGnqku6NrLd7uj73VjBtrbCuNyHlQzTxZyiC1jbMl8seP78qUj+hp7p6RlJa4wrePDW21xfXLHZbKmrKX/4e7+PsyX/9T//X7NbNXRdx4sXL/jjP/ljposp2mouNxdc7q+pXIXrDbuLHbZw3D2/z/LNUybPH+P7jtvLEy4unrJdX9HtNnz3O9/h8UefcPHiFbvNjk8ePeb+m2/zD377f8J//IM/JqRIManYtg13b99mVtXoXaCqKiZTw2QyYb/bSK+mLXjj3j1QgbIuObl9iw8/+5gYPFaL8MjquqPd79Fa0zQNcCyw0RBDYjqdMJnU1HXFbFbTdnt2u4bNeseLFxfcv99wfusWy5MlKSWKohC1qSNlP2HQBP6608+XTjJi7On7jr4vsFrjc9ltu1ujtWK7XvPi2VOMNdlO/uiGV0NmpAnZ5OX8/BZX6+tRI12kuRwqlfQpknykj4kQ9yhjOT094Tvf+Q4/fP/HrK6v2G+31JMpz58/h3RolB1M4QZlI2udmOH4npTpF+O0nSCzdCQoUTpnzhLkaH2YxI6R+2OfjhgSzgrap3NGvtluKApHXVW4SY1OiXbf8PzpI8rrmu1+x4cffZS13YWDLn4govbw7OUFJ6dndM2Oh1eX3Do/H8tbIUY67yXrL4qRzjMkDFpLuXwymYw9FIOL44GfnBhUZZbL5dh3MSQgx/4Pg3EgMDYUDcc+cKf73o/Ip3aOCExmM+bLBR9+8CEnyyXGOi6uLpnWdU5QDW+98zab1RWb7UYa4FB0XWC731NWU7quZ7vdUxRFVtkROlfXhxHhSUl8RA5x2SEUlKKYwhrLW2+9hfctxBbSFu87rNG4G4GNbIOq1nBeR74vh0DomP8LNwOkmDWoVR7/1jmcLbI3yoCtZrTZaEF+CTeoWT+NivVV34aqw8B3ByBlyVglJpCiINUTvVCAuo4R0FA6iYqJFfWXdg9d22CUouo12gxKVIHQdPjgCBhS54hdwDeBrukzahMwqkepBmilCb3foYLP8paSXIa+yxSbHt93hL4ghj579njp80qivmGd9AN0vqfzPT7I/grZR+WegIjPCUbfezrvxaAr+6WorNJnrEgyo4SPrJRFKyvqaElnfxiZq2IQOoMu9Fj6Hs94rix43x0F9nGcn8Vo1MpnBWmMNVbjCvHBaNqGtmtQOlFXBa6wOfkxxKwABuS+Lk8IUikwxmGLIivJSLIUcwKmkvh0H/ZT5muX1fF0VsiTJ46piQowdH0ckzKXvZr6ENFWkk6dNAmDSoNQxJe8d45K2cdO22PlIh1VO+DGcwdkOH3Bzy+4jQDzX9cbZ0hWDoCdbBrxi/nqJhmvz9ejwELuZ4q+h75DZTn1EAKh95KYO1FbjPWO7XZP4zvcdEafBCCzzrLarVi3PdsuUdT3sPUZpljA5ITZxBFCy2Z7yZ/9+V8xmcw5P7vDu9/5tRHwe/jwU16+eoGJka/fuc9H7+9I5YSgSq62DXfPzjk/O+ONB2/w5PoxF1eXXF5f0LQRHS06aGLT4eyEZISKtFjeyv4wmtPze4JIK03Shquup65rypMSffWKyXxKWThC37Fbr4htiysqtts9d+/eYTqp+f73/1zue60obYFy0gTddT2z2Yx909H3AZQmJgFQikKT6MicTqmwhIhXgT5GNBVlvWB++zaz1TUvnz7m+Wefcrm9Znp6SmlLalvTegPVlFAWXPSvePPBPQpnePz4U7wW6muZapqLNTaDz4lEzKZwRVRcvVzRxUgbPLNmDzFQKEWRvY32Tcvzi5fMplPQka5Z88H3P+G0BGsTf/WX/xFdVBiX6Z/Gk1bXrDc7Pvzxj2neuc/J6TmnZ3eYnZ7z/OIVjz97j+//q+/zvV/5FmeLBa8++Ij/9n/7f2Tbtjx68gi922DKObb4CZ+8/0P6reKTdsXV+oI3vv5LLG+dUM1nfO2XvoWNIk08rQuuLw0UmuAMpqqorEMrw4effkw5ccwXc2xd4bBgHEZbLq5blJlSTxyry0uM09R1xWIxZ7/fjN5MEWh7jU8dm/2G6XSKLWoWJzXL01t4H9jt9xR1RVJKgN3cE1iWpfRpqHjDH264B7/s9uUrGUoaSZwVmbLQHppvjdF0fctqtc5o2mEnhpKblDCz4yEwn89Zbdaidy7fwGCkN0yNKaObajDhKoqxDAqKrm1Zr9djwNzum8NCkIbGwjzx5zJyzhzkc/QgdafGevYwnw9o5ICgDei2lLiPETbhuA4c89JZ1us1zlomdUVdiKeIItHsJLgNMXJ2shCUM5+n9XpNCJHeB6wxbDdrYkz0ITBpW5TWVHUl5dc8CAofMoJ4oPYME+5xcBxCyH4PB4rUkDy1bUtVVeN1bhrJ7gd+67FPRN/3RwmL8F2dc6ghSUpIIJ1dPUNMdH3Pbr+ndE4UE8pSgu7CHmR/0+A0KU3rykifBEmCq7YXBHUY1kVRoHyf3UNfozApoWWgDsFFSnB5eYnWEWcidanGRv7Bd2A4RjiUBoef44Di9Z/j6taBNnhQHhuSvgH1HCUWj4z54PMJxE9LKr7qica+bXNyHnO/zFApSnQqI/wh4btA7IWO432kKOc5kRuwePkvRKl2eWVJQfq+IJJCT/CeqALJR1RIqKizi7iW51xCG4/CQ27+jt0e+h68yFGnEAneC70FGIJG8aAbEiYJ4odLk1LAx2y2hSS+ecqSezKpsXrR+0yTSofX6TxuB6nbDHPITxITTXmtfPrARpRbWtT4RH1KZUBEDPcOgMmAlA/7K/N4HJIcdWgQB/J9L4lzUVqcM3neNwTVj58x9DiQhBKntEFbS4hJKBbJkJDAReZxjbFDT05OH4wIaGhjcuP7gFCb8XWkQ6/fgUIURzfz4XoMa1EaKWI/bzsGK46qGq/95FLGUYIha4BQwoYeiEG57njueO3b0hft1XGlSfZ7JH2Nx58TmaHCEw+/jx88fpfi6I+bydFXdPuiuRLyvZWba+RuUdnbJOW5QYlJZwb0tJZx1qYuOzQHYlL4pOl6JWh/oZlOFhT1gvV2R0Tj/Z7dbsXJcolzNVppLl5d5qqAoapKrBG1uxgiy+WS6aQW9U0VaP2Oi+uATw2rZsd6t6VvI7/0zW/z6NOP2VxfY1WkafcY57BuIqBLjBhtuX37rtwDUeKFoqxwZYW1huXpufTLhsTy5Iy264kRCi09DLu2oe0byqqiacU4LpLQiSwRb6Vpvvf4PqCNUEVFiEcTjVSHCAltDcrn+ThG1usVk5MF2gh7I+5bkvc467C5fyMSUdbhypJ6OmV+cgvjJqChnizouy3JWpKztLu1MAhiwns5DmUsRVFzfblifnbG+Z17+K4XRapZoq4nnN26y+mtW5zdOmNzecnWXELoaTZrCucwJtGHFps0fefZtXs+/VTRNz0pRM5vnXJ2dgtXVmy2G3yC/fYafMvppED1HaFtKJzj2bPnlJMJ9+69Qdpc8vyjAjTcOl3y9OKCbrthd3nBM/MR68tX1LM5s9kEgqdylsWdW0wmNaUTxcBiaok+EPxN81+J5TxKWazRTCb12CpgrGU6ncm4c46wlVjQZYPYoiqzL5eA8EY7tLZsNhsmkyl1XTMoWx77oA0qZFVlj+Lum/fcl9l+AQlbUZQy1mTUPC+2uUGo67uRXnI8ERwHXwM1RCnNbDbDaE03BFN5kR4VgxgW0Bw05AVySEqUVvRdd8Ms7njqOaCloiYxyIiSXW6HpGeY6W/yWIcF+OZJHZMMQJlh0ctVjXiQel2v11hjWMxnFEaPn5eip933aGs4P1nS5/MVYqTZb/BBFseicKzWa3yIKKXZbregtahRdb1QBFKkz14VQzIhLo83VTaOEw19pEM2PN7moG8Iaod+jOGx4x6OrutGxCglQTKGc9900pRmrcNmumbbdoQoVDKNYj6dUddTiqrAFpbNbof32Y9ESXWjLEsmtuB6s0OhscaybXa4oyy6KApQ0OUqy5D3AeNnkYa1WIKni4tXOKeZVoazuhazL6RidpxcDBWx4RhfpzG97sp93IR4GDtqTLTH65Bi5r5rUlKjtP6Q5Aw3+Q3K1euf+Xdg2zZ7fOczDcFnjrSc6w5R4Ioh4dtA9JkqlRSLpRelNz0EgINktBfJaOWkyTpLVEaVP1vH3HhLboA2Wf/eZ7GHiHg99IAnpQaCvCepXMkIg4/4UCM7qM8dgs9IdvQ8JKiDuGieSyT0TKIq5QPei5+PUIwkMZakGcTjYZC6lfeTRIVP7vlDOHwI8FMOds2BT5sSKQVBb6Po/w+iBDcYheroJwNHJjfhyz0fUFpRlrmKpFX2rHk9MZcbLwZxWTfGEVISpcDDF4z3iLWOg1QvGOvGhsNjiq1SWubndLj+wzYkqVoN4hhxPC+HZH0AheSc/dztxoTy+aeOk5Eh0RBrwdcqGDdoSTfBCvUFlKUhhxl3YXQCP4BlN9b3lA5JVBomvaPzcrSjiaPP/Tu0fS74SVmdUoiNcgmiABApVzvIlB+jjcwhXU/M81EfND4Yeq+pdUE9mVFUE56/epVV4xr2zYaz0zNp7E9w8eoVdVVTT2pm0wnOOkIvc9N8MaMsxeTTR812s2azv+Zy/ZI+FYQYsVbzzlvv8OLJY+m5MNC0W2yqMFWF76UiQ6GYzWajeh29R+V+SK0ti8UJlxcX9BHmJ+dcXq9FXUlHlNFs1iua/Y6yLDChl/4Ncv+T0mij6PrMfgjZfNOqnGhokha7gURCW8ugIJBiFL+Odo9KkWa/I+47dIJyNhGfEqCPPXUxpZpUTOdLbmsxxNVEbt95wHbzCt/u6JstZVXhu06OPXq8jxg02hTsdy2379Xcv/MGH33wAYWrKE1BPZuyPLvFnXtv8OCNe7y3XqNTJPle+iiMkeKwNWLe2Qf2bcf28Wf4LlAXFd/7tbc5v3OXPgRevHjBdrfF+xaL597ZAh16QtuyOFny2Sefcuf+fd795rt0qcFajTWKO3dusd5taXuP7luefvwByjhcWfHWW29itGI+m5JuLanLAmcliaurkmbfEINUpzByfgdhA6MVyUoS0CLsEuscs/mconCgpKfGOkvhCmG7OJeBTRHtwekxyZjN59STOq8JBwW26XQ6rmMDBn0cz/x0aujnty+dZHRNQ9s0dHWdjcdCpgnIghmjoE7BZ/qAPl4EOELPFdpaFouF0AHyzqd43PtwVCjIA1gaq1vathPKTjaGGtD21+VGjXWCVGRzKFkElDRqZgWOG2HbaydsMEgbPvNG2VqJYsih2V0ybW8UZVFy+eoFKQTqsqBvdpzM55ydnXJ2uuTRo0dcXl7y6Ucf8dbbb4t5jYL7b9xns92y3TVcXO+Ypxld72nbnpcvX3L7zh1OTk54+PAJZVmhjWHfdNw+P8H3HdvtdjTIizGy2WxuLNJ1XY8OxENfw3Bs+/1+TCyGysUxPey4sfz1JFJrzWw65Wq1w8dIURbcv3uPdr/n2fMX+BCY1jV1XbNcLjk9O6P1HavdmpcvnjErKwojnMKqnmQU1tH1iRQbOu8pXCEyoEkoGa6oDtS4ONABDpxylcSd14ecoI5jeI9LhtLNc3Xs88Hi8U10fO31UUT2OkVqCLAOjyuMO5gGcrQIjsn2kSGWOnrumI71eqLxVUYfh+3Z82x6lJsaQ4xjaTcMVbYQ8V3AIPQgaXwMlCWgrPT/9GKk5VNP3+5JKOZxQpcajE5E048TZwqRZi2qHHhN9CnD/tl3AUihkzlAt2L0lmJuUPBIuJKrnSmObr3HwWQiCQ0wXztR6oC+zwmlziUKJehj2wtFqs/7gZamP6NFLU+GTQJtsFkJT2ubaVMGY+R7jZGmZ+/B+0Tf+7Ei6AoNPXgfaNo9PnRoZeV4crFPD21B2TTPoFB+cPp2WV0EjJGmTFcqXJFpYeg8V8s94vuE7yUYbpvI8sRSlRWQ6PsuA0lGelOQ+0LbQtpc89gu62nuDxGPDbkP8g2NVHVCCCgjC2oMiS5IZdoosCmREDPFGAMM7t/qJqIPX1Sl+EVG8s2KgIBNQ3/XUGfLIihHn//zFmepfg2VkiPVKxBwYqigMPw+7IskjlIxPQiEHFc4Uoxijov+/Bd/xbbXK8cjXTVXAI11RBvp2lYqnX1Pn2Xau64nmITvpEoaY2C12bDZbFmtNpRFRbJTZicLvvaNXybqgjb0FJXFGhEe8V7RbBtSEFrg/QdvSlCoYLte0+33RO/RGnb7PT71oBLXmys0sDidc//BGzx/3jGfzphUBX/yB3/C6uIaUqLtO3zyxL5FbbYsZ3OqST32W6w3G4pJxVv33uDf/c7vMptOuX3rNs5ZAfKKEmNrqskCNZ1QV5qPP/yALnr6FKHvmC/mKITN4JVGxYgO4rXjnBPp/LbNfSelKD5FjcJAMpiqxJJBzL5nOptSOIXv91y+fAGtxyoL2hCd+IH4tufkwVssbt/hzr0HfHO+ZLteM5/U/OPf/gd8/89/lx/8xZ/yJ3/we/gAxokseNN7iroiJs3Vas13vvcbTOdL9uuGV09fMpuKG/jVast5G3j85BmfffQBTz55n/31Fd1mjdGa3a5DFQse3P0Wy/NbJKDtPc+ePOedB2+zmC+4unwlkJICbSIvXzxCK5E0X718hnUl3eyE6fQMfCI0LduLSz7+0Q+ZVJZf+vbX6dZXfO3rX2O/b3j67Bl/9v3vy2Tb13z2wwu+/o2vU84LLp8/YrGco6KlCZpCa87OzpjPZ0xmEx4+/oy2bXj16hUpQYiRtmtZrVbsdjv6vkNbw/LkBGM1bbvnrXfeHuPAi4vLDEaLGE/TtCPz59atWxhjaZoWYw3L5XI0/R1AZJMryskWn7sH/5MnGUprOt/RtDuUGXjrMQfjYgqUYhS5QsU4Mw6o09j8ncRUzVlRR0lHk/WI2DFINQJKJEu32x0ff/KJ+ECUhdCDlJZKRUpM6lq6RJNUSlAHwypjLBJSBzKkyVjqHpIbdThpXxTYDQHfiIrpNNIahkA8eAkMp7Mpk7pGG8PJySnOaNHDj4GiKJhMJnRtK+fLGFxVcL3dSNNzL7xvaRb3coFjZLVa0YfAN7/1LV6+umDftjf28fXekeOka+irsNaOMmVDkH48ULTWo4rUgOh/UbJx3P/inKMoS5ISZNkAs/mcZr8TgxilKauKejqlnk3pg2e737PebIkJ9m1DB8S+x+SKk9aHcwmKoiyEMw7Z7f3QX5J3KI+FY3KBRqUw4s/DeBSUVhJIo6T5elDdGg2/XjsnYwZ/lEgM52RY5G4mBEOQkHKJW49/Hycdaohb08E1fPjc4/14vWz6Vd6SsvSho+0P6ktDUCVOxCYj9qCUyP1aa0TeNUijr9YGlM8qZRCSp489XegJiBpJSP4A6iYpVlhnscoKXz83hCYUUZeiQJOyhqrSRJXpXAyVUIVREp4N1QxjFCGAjxLUKkQBS+tEURVilqYSISGKdhq6GOh9LwDC2MukUcaik8KYOKrWjWNXaaEfYdDKSZKgozymVDYVTfS9UK9k7hQedUqGrk/0veihOzs4eksikVLCWI/NNIhIGj0yTBbCkLnU4ApDWTqKwuY+CD1WnlMigxQyR5TzirKscWVF37VjJWIoEA8VEzv0ZOSxPohQCPtS5cBaxB2G+yDEOD4Xshysyq7E0Wb51zzHKZ0D77Ey/eUWxmHdGhu8j384JAzDvot5o6yJx3Sp9CW/7/Pfe4x7Hc7DAfw4fk7emV6jUcGwH+ro+azipb76icawHapoMUsKy1oUNCRrwFlS8CRrSMETcyUPpMq92W7Zty1N52l72DUNTejp1Z7F7TeI2tK0LQ8ffsab929ROENVTEndjmgUWjm22y1d2xJjYLvbYAwZfe/RFvooldvNvuM3f/M3WSyXKAVnscW3HderK7qmw3ee5MHYknqyRCHqeH3XobQAGOvNlno2I3YdH370IWfTiqK00Lf0vmMynUIM/OTHP0ZbDfRsNo30NlY1KkbCvmG/3sq5CgHqKQlBHJy19F0LKWL1IJLjBRjSUExqjLV0bYstHC45SDCpC4g911cXNO2OZTmjdhXb9Ya6LFien/PgW+8wWZ5zevse0+UpL169ZDGbYeqSDz79hIRhvjjh7t379IsJL5494frqAm2NeGWZgsXpQuhofUvX7rFa0XUNISgwhpdPH2OtRoUGEz2zqsIrzePrhne+/svcuvcm5/e/zrZrmMxm3D874+/9vX9EaR1WG5yFjz/5CZvNJbHfsd9dUhWWwlr2mw2dX9O0kbtvBk5PzpiUFd1ux6cffcCsjEwrzdmdM7R1VP2Ucub4zq9+k6vLK16+umS12XLrfM7JsubsfIFWhrIoqeuaFAOr9Zrdfku1LlmvVljnOD09zXSmQAgpGzYrtlto2x0+q8sFErumwXtJpveZLSJzuKOua5qmYbvZ5xhDlFGttaPtwRB/CP3P5YTVjuJMx0n9l9l+oSRjKNnAAZwdMh6h5HipTigJ8w79CxLQj4HwGLDFGxWMG9+XAztjHXhP0zQ8efxYHGcHPV9t8F2Hzkh9u2/kxBhD78N4MoAxgBuUf1LKMcWYXPzsxeCAWGXMPB3QJkGc0shpm1Q11jnath1PVETkGouypPaeNmeU2oi744iSZ0QsBS/l2+hJiHJXQnF26w5VPSGishKTvxEcDz9DT8Vx/8UQEN/w+4CxsjEg6F80gL6IyytN5UGCaDUEGgOtTVDquiypJ1OqusZYx36/Y7vbivlPiqQQ0ETc0FuSF2wfpBFPoaiqGrTKFK+D/OVIXTuuSY37rW48c1yRkNLvYYxxlLC8TlE6Pk9fhEIeVzG+qGwPGUHU6ej9w7lUY/4z6FP/rETi70KSoW0BqiWmzFkeAqKEJBjIJZQhpcfegJBVmEI0Ejwj0rXZGiGb84ljhoqJZOJBkSplfvbRf+RATuD7ApQR5FkBOn96iiNNSiuya+/Qwn1IHBQw0j2VGoNnG+R+Slk2OylpZO9zMB5CRFsDo2SgQpuAOJ2rLHE5jLsBfDGHcZyrrcP8M/wImitGgwfZZEnqZJzK2BZKksHoQRUrEZLcz9oMFZWYXyuKUs7pbFCqIQ4J+OvfnyjLiqIoszBEJ1WlISFAkhxjhAM+bAqEgpFfo7Uh6jQsH2PJT+wqMnCVMlSV8nUf/htcwtWQEOTZ4MuqKh0lGHkI5bE0VAhenwsOCcjw6uM54Gd80ee+d1hXDonC63PO6/+mm28/ql7c/Fd9weNfve3nBTcxzw1RQ9KKZDRRhivR5IpirgrFGNk3e/ZtS9v1dD7StJFkLaYs2O63tD7SdL1AV9qJsV8n18lZh7Ul0XvavBYTQTsZ267U9CGyb1p6H1ksz8XHYTqlaVpOzipePn3G9fUlKSYWsyWKOcZortdXRO9RIRJyMiCNvJ7pYoF4WTVYlbApkHxL5wOlsyht2G83Eiullt5vqYtiBNdiTATf5dK/JsQsrpFFexQyD1tr6I69v7TGlkVWk+zHtVMn+bztds0u9iITnueNwon/FRim8zNsOUXbkqg0+67j9qSimtZcra6hD2jtmM7mNKoHLQCtyUac2opaXdvupGdLibt5SoGQwGpNu1vjFejY4vBjgG3LGXfuv8XtN96iWs7x68R8Oef23Vvcu3OXzfWKvmlAKa4unvHq4jn73QrfbWmjxWsjKk6mJCXYbnecn98h9D2XW6GhTYtCKr6TAuVKdIy4SvHNd97ixfOXTB5XrLd7qnrCZFIxm5T0XRyb+o01eN+y71sSgS73o44GpXh6pFI+nUrVV6rjPT4iksWIM3oInj5TAVMCayPOFaQI3sesKhbQwRBUGGM/ODCPYgw3korjGPM/eZKhrSwmQ2PlwNPVRuMKS+jEj6GqyhGdhXE+BrLxmBFlku16jW/b7N4s21AkUHmEG60pywJlNLvdjvfff59qNqFwwsk3SpOCnKz5YsHlxSVGa6q6pl9vjtRTwqigFGObURzhXDPu5c/fBopVUmo8RkH4AS1B92q94tbZ2wTf8/TpU5bzGcvFnNlkQlkUGCP6yL4LWOey3r1mMp3RhUjnA4WztFoWlxCCBN6Z5vTo0WNu377LYnHC0+fPWK/WOCvyZ7vdbqww9H0/mhQBR70bQjcrsjLVZDJhv98D3KhyvK7g8fp5OHxeTli0JSIc1FcXl3Sdpygrzs/PuXX7DpO6IoTAxasLLlZXXG5WzKcVKnicVsyXJyQvARmR3HyeUEbKh03XZrrccTOoRusDqhhjEjUOpaTJL8tqDonHMOk5K4peGm6YUg2Z+nEwf9wjEY7G6vHNOPRSHKoeWQY0l+7FTTlg7eFzpXE3Y+LpkAgeJ4V/F7fJZE7bBLoukVQnJmWAUGGkr2oIjnWUoD+pkJXtLN4rMbvLwaRzg0eCJnnG6gZao4wheYSGpLQUKZLG6IyeZ3Uv42pSW6CG866TJARpEIhIuQJmx34Bo8UQSw9OiuTxY/OC4BzGgzJZ8lbLnBNCEDWp4AkpSnOeEX6wUQljkCQjG9H5iIwfBmGMnGRohU6DHHIaQZOYz6ckRYjM9lCJS0OCnnvfjMqVDFnAfAiooHCFG9VEghfHblVAUdicYGT9/HhTbS0OwbxSzOYLyqpCW5vPnSEpRQw9kOXPC4vJxlBDImNykpEy9UnlOazv++x5AAmNzyBGzMeuYmJw8zuu+sVM52JIUr5sjgFjIjFUvYeF7PPVjIF6K6hV4gA8/PxKxljfGf9Khyzj5uuOKinjo8d/H1VXUjqo2N38pBxcpy8XIPxt3F4HeoZ5GwRMDDEIJchoglF4lWiDpycRtQJnoJFKpveezWbDZrNnt/fsdtKT8c7bb/DuL3+bjz57yLPnr0hofv3Xf4NSGa4vL3j27IK6gLPTKfP5kq4VmffCWe7fvcOu2TBZVMxPZzx69IzVZ4+JEf6L/+K/5OJyw/bVHqMN3/zGfV4+e8yTxw+ZupJf++5vcHZ6yr5r+eM/+2PWVxeEZou1DmUsUWu0SUymU+rJlNOzM378R79HKAqmsxmrqzV9s2cymXL/zm0++fRT2m4HukeXgW7X0DWt9EFESbytK7kKgdJaqqoitPsRrK3Lkni9QWkljAWjcGWBq0omMbG6vCQ0HQ7FZrPCG0Wwlqqo6duOLhne/da3+ejZM1bXO54+v2Z+ZohmRRMT5aTm/M4Z8+mEF08bLp5v2O1a0IbVSoSBbCHzdTmppMm9Mjx6/CmL+ZKTxVLWVqfRVqMtFCpgSOA7INK0nq6HW/ff4f4773J6+xZN2nNvueT0fMHZ7ZpX15/xwU9+wtOHj3j19CkXzx6zXV+x261455232a4aNpsdTZv45re+wWS25OFnj7hzfpft+pqHDz/m/HTJ6cJR14o27rFFnZk3kWgDs9Oat8r7lPWS1WpF6HsKA0FB27Tsti1ff/cd2s7Q9w1F5dB7YZdcX1+zXJ7k+ERUNs/PzzH2Dq8uXvLq1Su6viWlgLWaxWLBfD6naVtS6kiJTI1qcK4YzRmdtRTOoYwe56xh7h9Efib1jMKpTBP0ucJxU23qZ21fPskAqrJkvpgzV3N26zVtG0Y6g88LVT2Z4DtPzBUPYETOBuQe4MXLF/TeHyHP46tzaV2ysa7r0NahYqBvO6ZaPCoEBZXkocwJhMmL4m63Q2uDNQ5riuwcewhm0g3lj1+snH18TAlB7q3JZnRamqNX6xUmXwjxnkjstlvqssRqAxHm84Vw072n3XqevHxO04u0Zrvfj4FR4Vymfsji1TaiC13VNb33XL3sqKqC+Xw+unUrpcakSvZVBscQoAyB7OuStENFZGgUh0NCMZTJhvM4JDBKi0RrSonZbMbtW7dottvssi7GAIOHx4tnz8SrI3iUVux2eypnMMpwfb0SOVkURDDaUs0r6umE81u3ePT4MU3T0rYNlbEMPgOitDVQJyIJnStNEWLI5y2SMCh7QHFBEoGBQ36coQ/n7Ljf4osC/2Nxg4HmoXMpPnKglmUYdaRcDTyp40Dg+KZ+nS4l+3oz6fmqblMHjU102uPbXhq7c/OktlmFiEwByvQ5pR1dbLARCpUorBN0R1mKaIgpUSbNLMCUgFeJve1JQZCwpMA7hbU9knVorCoxyUhwqi3GlOgkWvhWeYz2KNOgdYvYUVlSrMR520aSWVOEREwGsBTG0+kOqwOVm7CxgaQDAQ+K8Z7qW4/vOmKIkkg5JX0RGlx2+JZRYTLwLFUVpa0ozdQF1mYaTJdQqhDn9KCIYRh/EQhoFE5lT4BocDh0HCp3MZtbgas0xCCcbC101tJqSmNwxlCUDh+0VF2SyVSzHqMVSok0eOghBamKlGVBNQm4ImJNoixcdlBOQiFLiaQNCUNCpM2tMRTG5OMF7SwxesR4D1KSOSR4kQ33eUGFBFGqwtYINSSELGSpLSmZfJ8NzeBfXJF8fRuazaXf5NAkL4UuJdz0GEkxzzcKSJoUNSlT29TQ+zBYmSvZB6lGDY35OTEii5QYCzoRdcxzyLHc7OH3NNTUxzIP8rtKxCSuyJGBjixJVhb+Gis9f1e2Ya621mKtxXQK3Ua2ux2h35N8h1GR6Fv22y3r9YZ2G2naHdvdmuvrNU3j6ZrIfgPL5X3afeSzRw8JEe6/+RZlNUGbgmfPnqFS4Gvvvkv0G6Ev7S4pippb904JIfLwyUNOz05p9nt2+yu21x2lnZCwfPyTzyirkqqumE1LfvSnf87DTx4T9JT/5n//36FT5PLlM/78936f7cVzzm+f8ua7v8ar5xdcX69Zr7fs1js++fAxs+WC2/fv8su/9ffYXF5x/fyCbrdjVk/QKXG9vuLOgzts1itePn5MT6BwNVUxIfQtlxcX+L7Dqo7pYoItlHjMTCpU4VBJUVc12s6JWqOqgmq6QBlNioGuXxHpSK4VL4BkqUyB0xXttseVFRQVHz55xj/6Z/+UyWLJpmswztG1W7qXDb/xa99l8+I5n/3oGX/6R7+LS57N9TUXz14SO6nMoCZgDbYsUCj2V3tuzeZYa+ibLddXV2ALqumcN956wPxsTr/fcPVsw+rFU+nrszXBbPj//M6/xVhHUTmqSY3JIhap97SbDe1ux+7qikiHVTCbzammM7b7hqZtWEzndLtXdPsrLlZbTPn3OJueYaeRdvuIqHpirzmZnBCixIV1PeXZ860IDqAxpaIoano06+2G6+2OQMKWBaf3lqwuE+urhm63560HD0gkLi8vsZos426IUfP06RofE0lpVpsrur4hxkBRVPgQscaxuW4olEUpjW88k+mU0lWUVcWu2eNjwKTApCgZzLS973FOqPXOuuwQL/F8Sok692X/p69kKOj7jrZpKCeT7Aop/Rcxy43qbMzn8aOvQZ4GbiC9KZF7CgTRGpCi40r2cS+EzRK48j2Z9sLgVSCvq6oKfaRIovP3GaMPjyvhK5NpA58veX/xBPaFj2cEeugl0UrjrGMxn9I2rXgwOMtmu8V7T1kUYgqks1PnQGEICZ8SzhU0XU+MiaIo6f2wKEkGKnx12ZeLiwvmiyV3791jt7nMJU5zBLYdkLQ4oMFJHLaPy+QpJbquG38fkoyhkf64PPZ60D1eo5QDQwVlUXB6esInV5dCq0uJonA0zZ4QJPlr2j2tlyZzbaVM64mQAtqJRHEMEZ0dRKuqJiWyJn4cx8Fxo7UaqgJaExgoVEhFIx+rNBgfoWCZljC8bqjM/Kwy4E/L3I+TjQFxHM7J8L5R3YwD8n2sQgXmRiJzTE87Doq+6mZ8demoCsveGhrIVJhMBxpQ4dcpbyobP8UglUtjcbYgWYWJIkldJIMjoXLgmVSQCkQOvAI9RgWZA7TK/ThiqmesIhqDjlqeN1JRcGlQaZL9VFmNRqhcAaPBGQ3GYLUE6KInX9zoZRr60ULw4hMUJdi0VgAaNVTAjEjsglDFRMQgZZTfjg7cOivWDZzaIQYdAmEZg0JPONC71BBhkuLQG5EyNW0YqJkCpsTIbFCXsoUDP4znQ/OxOqoEi4+MBPplWVAWBmu0OK5bTQg6m+UN0I7s7OsNvDLnyf4MioEKJMgZR5GACFplVbaUK0CGMZBPhy/i8Mdh+7nz/vi/wyNq/P/x5x6eSzfe/doc8tNoWjfoWGm4RIzN2+Ozn/vSfPMcfdVr1ZqbVY9087+vsBnf8XYMmo3Vo1xSk0b3NCpKhb4XV+imZb8Pmbq7w/eetu1o24jvJVnZbXesH2/42jd+iagcKcLF5RWvLi4onWVSlThXoVQ/KiRqIzSkfbtDrzRlKfTCrhXxiMEvZjqdoFTi8uIlH//kY9COd976OkUxJcaOajLjzXfeoW9X+Jh4dXXNy8srTpdn3L7zBidXK4rpDG0tSWluP7jPZLrE6Ir9pkFpIxLZ0RONMBTu3XuD66srYsr3mnWUtagK+eCpygmuFPn4ZBShF01sMbvU2KJgslzS9ZJka2UxysgQlHYAqfRqkbxFKZQxmLKgXp6A1rTdntXVBTGtWJ7e4vTkhIvnT3nx5BMuXj1le32JJbFZr9ls1gKOOJHJd/WEzveoGCVoVdl/yjnKoqTLKpIhKabTOZ2GbVkxmc3oWk/ne2zo6bzHFgXV5BStoNnv2e+26BCIbYdvGrara7SLYs5sNOvrawF+g4hR7DYrvI9cr7Z07Y6qXnB2vuR5+xhLrtqGRD2pRwW+4AcFPUWzb2h20sPTNXu6vsMUjrJwxBTRWnrTfJbids5x6/w899YKHTUGz36/J8TEdL7AOUuMBp/EvqDvehrfst3soKwoXUFZV6PtwNDUPfwU2Z/oOJbRmTZ73Cs6PPezmC6vb7+AT4Ziv9sRU+LUOjAWbcUILfQeaRIymYrQjNSiYbI+LCISTLRdhzIam5vk1GsTaMoHZZVwd7UPpOiBhNEGlRQ+iUJL4Yqs9WuEnqA1OslNr4ckI3UoBqR+CGw4+s7jE/ZFjx0//fkKiFKiLHX7zh2ePX5ENIa6qrherQlTGWDEiEdhtaa0lhiFl+1TZD6d07QdXeeZzCY0nUd5UZ4R/nPKmbHm4aefcXa+55/85/+MZ08+JXpPSGnU2gdGl20A9LEC0iEoHpIMm6sSPqviDM8lJIEcrt1gFneM7A8N2EpBUTrm8zlt19D5DmcMVV2yXq9om4am2bPZbPApEDSU5VTcmvMkLWaVSTiYRYkrS6x1wmftpEdD3H5DVrriaLAPLd8aldIYWKl8uUKIIn+ae4AiEZ2yg/BQlXmNc/h6IHKsvHCcjNzs2YCUJBAeOO3GWgkMh6RiOGHje1VeoOIXfN4h2fhFbuy/rdukrqnKksK53BuTstTwzYRR5JbToa8qKVJQpJAoTIF2ChsNATApYtFYRQ6uIwoBIJSWJMOnHqcS6Ii2ohqiTUKZIIpKVotxW/Iom3BokilxthgnMWMs1mS60JBkWI3Coo0XN3mjKMuSobFWrqEkGEPyHrMhnrU2a+dn34tM4ZMhYQ59B8i9N6Bu0pCt8Xl8pZiRdq2zt0W+16Mae49kZzgEX8eP54l6MMnUOgn1II9Z55xUl1Mcg+zDeMwV3RikWTz7BBRlIc2XI63xICYxbOrIy0b+VuNjSimcMUQFIQiwYLQ05Cct79Fa4ZyF5DOFbVAElErNzR6oQ//Kf9rt85X4n7puvL590b6k8TK9tj59/sXHzygYATyGROW1Oex1mtXfle1Ypt37Pss1k5NqofX1faDr/Gg413U9u90uqzJG2qajaQKdV1iruNysuHhxzd//rX/M5fWWq+stV5dXbK+vmNU1i2nNfDbJFWxJbEOM+Ojxoeflq+cs5kvOTs/puy1KCwg5mdacnZ2wXl/z8NNP+fAnn/Ld7/06v/bdX2e/22NMYjKb8Zu//VtcXD3n6YtnPHzvfVaX1/yzf/I1fuU7v8pmt6deLFltd7z/8Uec3n2b2eIWdbVkc70j9B199HShZ9PsOD894613v8lf/sVf4PsOHwJV6ZjOFjjXsFqtqasFrizAaKKB6CQp26+3+Ogpixmnp7d4+OljdCGGnIVxqGQgGhQWpyuUMjL4tEY5QzmpefOdt7m8vmLf7Li8eEHvDb/+mye8cecWf/qHv8f77/0l++0Vd26d4PtA34m0dzmdUNbyMz894+LyFaHvqbShb/dMbMFsvmC2WLHZt9Kv0rVU9QRnYDOdMy0LXr54yX61RiWh61dVwdnpElsWXF9HNmtPCh5CT/Qdu90Ga6WPDmd5+uRxlkCG2HdZKKDjcr1ju75muZywWEy40FBYS6EtXdtxPrmNtobtdovRZrwf16s111eXtM0eTcJWBaVzzCZTmt2OGCLWOrQWGpVzjnfeeYfPPvtsZJiMLBQUVVkxm0wxGvZNoi5LNpsd682W3XaPTQpnpYejqMoxmXBZCMg5AXSHZAJuAqfOuQyqpxuv+bLbl3f87ht6rcGWbPvEvumJXYerLBqRSQxJMT+9S+fFaIpsR0+m4wxfFlOia1rKohBUkCEYUCQlPGkx3la40hGDRxGoK8tsOmW/b+j2DVVZsut3dF3HZr2mDz7zqBVd8ExmJfN5zW53xWw+QSmD7/uM+muSitnhe0DFD7K1MUoArVTii8Dj0He5nK4Oi3cSM6pbd+7RNnsurq6ZTafiRusD7X7Poq6whUOj8W3DerNhtdkQlGV2csr0fMGuDUS2aGdYzAqev3gpSK9StK008ez3e37y3nuc3rnHar3i1ctX3Lr3gM36mma3A1IOcnMjeMzIX0b3Q98TvRd5UO8liciSdURx045KXIVVAgfE4KWHJgVcIQ6RUWteXl6RdMDHhsvr5+yaNVVRslzMODs/5cfPn3J1cUnyOWExRjS7t3vheCtNn8C3QRJVU1DUNdfNnudXl/TeiwxgVmCSY1A5UHNHgZtobisl5kK5jZiklASA6pj9nN2XBzPIo+D9uPfiOPD34agClsfxeDxHCcBY5YryudIfY8c+mJSEseK9R9nB3yXdqFIc94BI86wogX3VKxnTak5d7amKFqNbkhbjLKsVrpRJz2aePkgTtXOOyhUU1lAZy7xc4FVLnxpCbKmVRaOwLqEJmCJQuJ6yqCiiw6LBNujaYJOisgZTeZTtULrHaUWqHcoGVOook8FRMaNiOp3iU0tQEVdoSpfQqif4HdEbNBZnNX0QKpZKAVLMRnuRGCGEhPcS5PR9vgdsHg/OAVnPXxtsrh7EqPBKAneVNf31kb8E5JxVD9UITVGI7KwMkSE5BVA3AAKUIHRDAK41WdVN5gylhKdtXDG+V5S+ciCbRS60HmZ0CepdoSkKx2RaYm1BSuogf+3DSAc8rlx8TuVIDRWZhHMG7wUqNRoKJxr3bZcoCqnqOJf3TRmMQhQJCaTk5QeTgZe/PfdNilHUzLT63F7dADjSQVVKtkEVaUgXBrplHPthUhI1s9cBii/6/e/KdnxMg7qZ1jIuvI80Tcdms6PrRBJ+v2/ZNw3rzZrr62u22z2993R9x2bT0nYrZpOC6fweTz55yGRxyslsxtXFFd/73vconAjO2GIq8YQK3Lp9xm6/ofUeVxcsz06IveLViw1aF5zfvkU9nbBeX3MnCCq9Xm/57q/8Bt/+pV/hnbe+xq379/iTP/sDPvroPT768IcQW7xWYA1333jAH/7Jn/CHf/Qn/Npv/H1erlYEFNV8zidPLwWJ94a3f+k7lEazXV/x+3/wO7zzzjtobfno04d853u/zqPPPuXl8+dUkwX7/ZZJVfPG21/nyeOXpF3Alg5cZoYUBRSB2bxmtlhSlHM2mx2xDOhQsVk1xChN2u9+412uXl6IGE2IbNsd73zjW9x78CZXmw0vnr+k2W/x3Z56csr7P/gBn/zkQ0oHJ9OKmV3QrFZU9YL5fElVz/iv/pv/lj/98+/zyaef8eDsLncefI31asWHP/4Rd26/QegaHj17QVI6z5+W6XTOw0ePMTrhJjNePFkzP7/Lrftv8eLqiu2u5eLVcx59+hExRebzGScnS1QKhNABgZPljN12BTHhlOLFy1dUZcmkqqXBf7ej7zoKFaDd8vLRx3z6wRXnS0fpHKWrmE9rTs/O6H3PxcUFy+WStmnYbLe8fPlSwKiqQqnEm2+9SUyJ3W7H5eUlbdNAgm9/+1ss5zNSSlxdXfHgwQPatmWz2XB1dZWp15q2bTk7P+N6pbm6voS4YbPd0bYd5+fnnC6WOCv9GNoKeKVTYjqbfW4+GKoao/ec0gQfsLkdQgC0Xwzo/PKVDA6BT8yKBIMOvXD987Q30HZiHGkBw6qolWjGhxhpmj2T6QTxrPAMCiE3J1k+Nzk6Y2k4PB5jpO86rq+v6dpWFB3yCSor0XaWPCeNaI+QU9PnwKER8PsSc3A6emGKiRiO6DxRTMVCCFR1TVVXOGtog88KVOBywB+CNMxPFmejHKytHEkbNtsNl1dXoiYVEyEmUi89CD54njx5wq///d8kKcXLF6/Q1qKtE5fdvgMGlFgugQS3Wfr3qNH4c3So/JOMHq9dSlI6JQkC2XYdRSnVo67zLJdLjDVcr1ZU9YTZZEJVVTx8+Ij9vhmRuUEHPhKJKdH3iWQMi9mc0PdCfdCa3nuaVhaD4/28UXE48mNR5CbUwf12iOTlojM2yyoxCktqMFVTN67lF1GW4LhichM5PD5vYzlRH9EqjsdXHitJHdDOoUdjkCe8gTwejf1jw8Sv8uaMo7Cl8EJdRVEMfgsaWxjhghYOow8eOsYYrBYzK6MSBqHzWGdEgSnTjcwkYojoIqKKJEFoUmgSUfVQSmV0UhS4ao9yAYxHUaDKCiwE34mUrHIYPUEXYtSniGjTo3Qk0eH9juDF7VdhxgSiz8H04OQdknQDiASv9JkN1bOhz0kpoVAqY18LOjO9KCaSOjhZDz4/x+PNGLI6VR5/Ssb+UOUw+qZxHnk+TPkcS6wvQIO4bjtQmt7HrFSlcvJyxPOXb8/vF9qZK2xOdHReB4a5MBFFxTtXYtSBppX3aZB7VkoAgkQSezslqjHJiCpYtAbKEmVEFSslL6i1ItOSJLmIyWMEHuEgLfv5NeXwWBrBoqGIcEzR+qnBeZ4vjb55XcZKw7iepS9adm5+1NGzkaP3HL0vcTBoFLDjuAJ7XAW5OYf9XUo0jtf/Q7VM5oG+9/R9x263p+v60fhyu92x3e7Y7/dst1vathGFxD7Qdz3Be5SOXF29wBYVppjgtGa/2ZKU4e0332TfNHQdVJnaUlYl1o5mM2gtjtRKGSb1hGqx4OT0hPVuRdc23L17h0ePnnB9vcKYkne//W2wmh//5Ef82Q/+lKdPP2O1fgU64PsOrRPTuoQQsUakcD/+5CPefvddTFFytd3y/Mkjkg/oGPjmWw9otmt8SpzfukOMYF3B2fmckBT1dMHiNHC5uqaqSmaLOffeeINXL1cUdc3s9ITnFy+pZyc4V7De9ZhqxvTknDtvvo36y7/CFCVFPWG+OOGkvEtZ19j6hDZcoFzJbFGz6kRMvOt7oRr1PVZp6tmcb337VwhRsd+3vHz2GIL450wmU4KP1PWUOydnXG33mHLC2d03uPPGO5nm5nGTOV/7xi+x21zz4tlTNo+fUJQVxhUi0z2t2O02vHz+hFunJ0zmU+qqYnJ2Qtf29G1Pm6lyCjGUbts9m/UV3W5PYUTpz5UFk8WcbbuT+UwlfOhJCKWp1Jarl8+oJwVJtey0wiawylGXjs16Q9c1+K6ncgXJB6zSFMZiCovSEHyPNVbmPhSFsdjJVPp7+46r62sBhUPg+vp6jAFEtEdsILp9Q/QNu82GvmnxbUCjmdUT6kokxIP3uLKQRCMLbLiyGKsTg7LU4KEx/G6MFul3Y2/0nf4iccgvQJdiLLUf4CY9omhKazKEMnIhx5nxc/sjNJ3JVE5m6GNeXA8TfMr/G30G8nPO2VEBaJhsQgi0TTN6DQwXwVmLdVaSmyTBndaaGA540PHk/IvEb8eLjyQAQ58A2bU4ZHrPwHuzIxquSYJQjPsfcUU2nAOMtSxOlqAV682Gujb0vafrPMHIYhpT5OrqEuvcaFYnwapci5AyZ3qIs/PxkhONIWg9HjDD34M0JJrDO1MaDQgFzZRBabQhAbPpjD54NtsNk8lEGqac48lnj+k7UZQZ0P8UkyB5OclSCFrdd50EAwjdq/de/EU4BEPD4D+WVIObScAhUBhW5nRjnA7Pjb0cw5VMBxrUjSDuNZrS67zFz9FAMifqmKUybHEwJBvG4nFQ8TOka38aheurtom6WpETjRLjKnGs1QbnRNmocE6C3Dx5DPJ+xIhOvXCCB65/TDmoBiYKqyLJBrSLGKewSQLVPvbghEpZKItxgWQ8aI+ixLiSZCJBgQoKYwqcrYlGEPGYAkmLnHSMHX3Y432J1VIJ6LpA1we6PtL7eFA/ShIUhiQggXhm6AMfVmsRSFAGZcxoTHcYh9kTRg3yzhIspyjqfgeqlPQkiPxtbjQe8e7DfROPg86j/6MTGmlssFYMsJQSN2Rnh0XnpwExUgE2RmPtUF0QmkqIaawKx/y7SGQeeTWM1eOIVTr3keS+OiWVSGsGDxUBqbQpxntMOPfD/Zml/m40TUulJSX9MwGkYbkaEoLXn2N47vX35UP4XED/2v16Mzn7gg/J/x6+KycUHCcn6ui54S0qj41DNeP4W35aovFV375ofpaevUjX9rStmO8FH0Ywr23FL6btGnkuRg4+SQGlIpvNFcZWlJWMx+1uT1SWu/fe4LOHn2A0TOoS7zusMxhrRgESlZOMGCJFUXG6POHO3TvsP93QtD3n5+d88MEnrDc76nrJ/bff5ur6gidPPuO9935A329BBcpK0/sWUsJqTdd2WAMpwtXlS747+y6uqrleX7G9akgxiF+E79i3DX0MnJ3fYr/bo41lOl/gfU81mZJQXK/XaONwRcVktsA6S1mVzGYzXq5WTOcnFEVF99lTTDGjmp2yuHULV9WUkwnT+ZwQE+f338CVtfTY2gJbOKr5ArfaEBX0weO0weaK6GQ24/79B7Sd5+pqxfr6itAGVNJMqymrqy2Tesade/e5Wm+JxjFbnnN6fo+LVxe4qmNxepuT89sopbi+us6KpQZXllRVRVFU7PZ7mjawPL9NWViMgcoZ6ioSfaBvKqrSiXzxfjcarAbfkZQDI4a6RV1S1IWAyESR+tXgnKHQlt3qCpVKykoRvDTESyXYiYF120CMVGUJKQkQrkWdEA1ei7yvSgmnhBbvCodxRpJh79FK+vwGVdCBESG9irDZ7IQOuG+IXrpSi0L6MKwxdE2L1pGiKrOcvsRAg1LUIPZzU7zmQF/9RX0xXt++dJJhtCFldaiyKqXxOqNqAw82pkjftsKxT/FzvW5t12GLYlxcyrLEWsWm2Y0Hfhz4k5FvnYO4lCKL5Qlt17PebGS/sn7wYrlks9vhR3UpWVClG/+AMA2LwU0U669z6g4RZOKgdCQKKNnjQSkuLi7o+xn1pCKGIM1DxuBz9qi0YTKd4cqS7X5Pt97QeKgmE+q65tu//Ms8fPiYq+trOX/WoowePTk+/PBDAObz+YgG+hhHk0L1Oic7/zP0VYQQxAQmHbw1hqSLACqrNcUQIVcAtDEs5ku0LXCuZD5foq2i6z3dvufe3bucLJY4Y3j0ySNSEjpITEIJUQaUkYRIGszFdbRpGqmY5cQiZtrWdrsde0ImkwllWdJ13RjcH4JzBYOPxnGgBlhtxpKf0MDV4T3pUCkZxhRw4yZUSt2gUcFNo76fmvAc86CBFAJW28x9N7moFsek7XWEbvicoR/kq75pHIUpqYqa2aSnrudoW6C0oSj1QdXCFTeSLh8Doe8I2YPSGjAmEZXHqIguRNfe0RPzjylk4VUpELsdvdGSPBQ1iZYYdqTYY+0cZUtSFCdfjMW5GlcuafxjuiCqbZieaCw+9OyaPTHNsRaMTqy2nvWmZ7vxbPfQ+YhPR8l0gj7TZMrCHRYLZyXByFmCHsoLRLQWKqcPAaeTLITRQ4iEvqPrxHxLkIREQnx1YjYHTCmglcx/A9hBDJ8Lc6X3YqCGalzhcEWJK0pC44/kCvP1SMdBqoxPY8EV4AqFsdlTKYii1JhwhAHMGdSVdAZAVL4NBZSxVuM0qF4onkErYlaOUihiAlMM4Ifsk/dSJYlJ5oWkDEl5oeGOa0rIa8/NxfKnJQ6fe+y1CsXP29Lrr0w/5buO1r0YD43rMR/r6PT92lwSj/Zp1Ev8KdWKn/b734XteO72GZgKIRF8pGuFItV3wvUPPjJ01yulhWZnHEq1JBIhdDRdQrWevlUSkLYdXey4uLjAGMOklmD8s88+gStprD49PUe8XQpms4r1akNMhph6nj59SO9bJpOa5fKU7bZDUfLNb/0qpw/ucPrGKef3l/zovT+m7zcE39Dserp2L8mLj5IvR4XRltP5ktXFM7QrSP2OZeGYTqYYa/gf/vV/z5sP3uTW2Tmn57dBXZHQrLZ7bt86J9ae6XzB/QcP+MmPf8TVas3TZ8/xoWO9uaaNnuXpOffeeIeE4eHj3+XNd36Fcn6LVhsWd27zxvk5d05P+fDDT/iH//ifYaqaf/cffoe3v/VLYtjcdZzdvUc9mTKtJvzqO9/iL//i++x9z+TkjIurDdud9Fn+l//L/5oPfvx9NtevOFtMeG5esDg75/bd+/zok8/Y+4gxJdP5CT4o6tmcN7/2Ng8/eI/nTx9x8fIFD95+h4ePn6CN43/6P/uf84P3f8zJ+Rl//7d+i+VyxmeffMSnH3/IBz/5AaUzECLtekdRlfRejI8f3LrNO28/gBB59fwZV/s1m26H30CfvICSGfSYLqbSe2EdBo+OikJb3rx/l6o6oSyF8hX8FqMVwXvu3b1LiJHFYsFHH35IF3rQYJzh2bOnzOoJy9mcZ0+fMlnMKSc1+2aHCkHoxHkOns1mI4iekoDWfddRVrJuTicTptM5+70ocRrlcNaOaqB37t0Vim4GsCUpK0aAOaU0mizLfBRomxZKAWhijLlH7/8HlQxtNDEHXPP5jGcKfBR0aHBgjiGyydx54VOTeysOFQcTE5gkqOQRCqw+13RyQNDHx5Qg3jpXMkaeuhJNZ3ISYYxhOp0SvGe73Y6lTNLnpv2/0Sb9GDeR6K7rpDzVd2PgfnV9zWq9YloUVMZgUqLrNF3fERGt6GpSMy0rAvDycs3FxSUvXrwgKXj33W+yPD1ls9ny6PGzsTRhjOHJ48c8ePNNfuVXfoX3fvxjbG7i6Zo9g/pIErvc7HFyMwg+VuUYZGwTCDSKHgMeEpkTLkFBjIlZPWU6nVPYglv3brFvsnSwdez3DZtekq2UJFmxrshN3rIfu+1OfFZe6zkYpAiHJMjn3pGiKFgsFmPG3TTN5xOjL7rACtAHHrix4q6skjgHHy9SwFjl8d6P+wE3F+cvasIejR91NnYbXpefM1qT9PC+NNJpII4qQsf+G8NxvZ7MfJU3lRTOFUzqKd5rJtMF1okZnqsU1gplylp343w3vqHZRfou4WNPYQNGR1K/IyWFsiXFvCD6juT3pNBCUYukROzp1SUxlTg1wdlShARCR0wd0SWC0YSoaXrwfU/XB3qf2PQ9bdcTA9RNQmlxXd3sPYEtxni0Mqy2W/b7hrYJtN7ivaD2MEhCS7BojMPZYqwODD09xljQhhTCWBU9BEwBYwaq1BDoRm5IcacgSUjoxkQjhIg2ovZicrk7eWnSlg+RHgxrpaIm+zIkGQ7rHKqzGGtzNfngAwGHe8BkRakYI8ZKNcN7L67dSY330M1qX/5Xq7EPJKU4UhoVCa2EMpRroCLcoEXp0Bqbq0pS3VaI262AO1F+OFDMBjPDv30B9lBxPQBfMTMBDhTRz5twDqxQAUhuVuRfr2J8nhb21d8+V72IB6PgDPvl8eEJoScEkVqOgyklgZh/ElnEQWuCMZL0poBJPSYGfNPQdJ79est0NsWgubrYEI3FJUURLaaNzM+WJKO5Wq1p9msmJRTVjEcPH/L4yVO6PmC04dbtU6rJnNmy5uGjj7i+esXLZ0+4vLpiuZiwXJxz5/Y5P/zBX7LfbUk6MtEG3wiA60JHs7mmnM05PV1SGMPJyQnTyZR333qbFBOrVxesX10yncxBw77Z4Yp7TM9OcM7RdT2T5y/Y73b0ylFVAnRWswX7qElo0BpTGu69eZfFyZz15QpeNVAkzOmEt37zN3nwS99gfXHFx3/xA779G79EaStC6rh1+y63Ts9YzGbsg8ZUM25NJ3zju99lXzremlQUWvGXv/NHvPvu25i33+Kv3v8Bv/lP/ylPnz3n3/7Of+D+3Tc4cw6rFU8+/BHn9+9C8nzwk/f47IOPWfx/ufuzZtnS9L4P+73TGnLY4xlr6hENNABCIEiREBVyULJlOWSHHWFbvrB958/ha1/4A+hTOKTwlUU7QgNJgSLRYgNoNHqs7uquqjPteWfmGt7JF8+7VuYZulFNMoIorYpdZ+/cuVeuXPkOz/AfVku++fXf5ac//xiP5vT8lK98+xt8fnfF1cuX/OJHP2S8ueD28hWbuxuaoSd1RSSgG+iGjqlX2O22jEoTY+Bm6Dh/+h4pZ+5u79BJxGRUApUTQxyojyq+8vWvyRpOllGUFqTsyECIHbvdPd4L73A3iMjA5cUF2qqyTmlqI1A4pS1V27J2lkRi7DoWdSNWBtbQNi1KwfmDc87PHvDzn/+M5XJJ0yh22534YSRYLo85OjrG2o7e9VLMdZqsFJ6Az55QuIK2crOyoXNS+KrrmrquD4qc+q015Dc9fgNOhpr/retG/C6miS4lFDJZAue8Vx55DYqj1JQ7AGp2js3wVvB0GL+/qY4yPTYtvKZUuE2BG00Z2a7b4ePerXK6jglHPEF43sgV/pWO6f6M40ia8NgF5xZGUcVqjEU5C0rhCz47ZSms9EMvair6QMpUiyFh34ssXdO2LJYL+qGXjLKqCEWWb6qy17W4et7d3pROUt6/t4N7l9/c1A5+ngbe/u8oreDCayg48rqS9qSQxg21a1gt17R1w+Zuw2azRSlDSkGSlKKDb60sXjHFAmsT869UsIB7rPq+ij8lH1VVvdY52F/79EGIEhFK7WFLFJjWYXcjvb6x78fd6+c9HL+vJbwHx+uKOQdjVe3H2rwpTnNg/kimIDG/dY53QbS+9EdWGG1w1tE0maZpMLYCNLZi7jZZa0sQJffdYEArYpYgXNy5IzEPhc9gcK2i7wMxjYTQkXKPBlIaGPw9Pg3YGMnK4fsd0e9IaUCbHdpkQurZjlvGHirTUFdrbsd7Rj+QoqK1HTFmRt+JxrjKaC3KS0PYFOwr5NjORNwpyZ/WHVvwsNOYPmxHo/WcAMwd3bSvxE9SuDqpedxorfbPRSpPqXQyD8frNH9iStKBznlev3XhOqgy98SMzxXzQStytoVHsYdL7Xlck1eSCEvIEI8xzYZvh4WMGe5ThoM6mB8kDubK3ptCVh+BWWkzOZ1PX6XCFin8rDRPMcnXJ9vGci94u8r/rzmgD97Nr3vOux/eJxjloYM1KZcx9K7rzVOHgxJSH463+Zre7ma8KxH5n8IxFcn273HqCAnCYvrK078H94i5IFTGo0wNNInddoMmU1lLDB6NwLGGoef0wTn+bkPY9uhFZhh6shE3+8oZnNNok9hsbwl+IIbEyxfPaBYn6Oy5uXzO9e6S7f0tm7tb4WM6JxK0Xrpu2jgZ1/MAiaQ4sttuwBja1QqDYth1xDHwwdMPePniBbvtFmerUmgwOOfo+h5bVWht8CFxfHpOu1hjteb80RO0cei6xWSNdTUJWC5bjk9WOAOvPn9J2g3EYST4iF0s2Qw9m+0Om8XPSBmLrSynZw9ZrtZi4Jc8SRvqxYqn73/A58OW5WpBazXBexbtknrZ4KoFi/UJi91Au1xDyqgYSN5z+eoZ6wdrQhzZbm65u7tl2S5YrY44Oj6jJXBy9gCfEuTE0G25ePYZ4+UL+s0dY9+JievEK44e8h7un3OmLxA6tBEIXYiE0RdqnER4At9XKGNxdSvqdshrpqgk7ksBbSCkII7aWnF9c03fd/RDT9026OLCrdGEAokNceLzCe9DAa6qqeuGk9NT7u/vUKrwKSpxHffes9luJEFoWtq2xVrhRUtjQP7NUK4tFqXSjHMimhOUfmON3qM03ixO/KskHF84yYB9dbVpGoxz6GJBL4ckG+PopbWkRVIwxwRp4lOIbGUqb6JpGmZY7kFgtQ/I3qy8l+5FybKAGa929uAB1S9+Ad5jrZWs8fISW1ysJadQAlfSSgJRJn+EtxfkL3JM8KspkEwp0XUdzprS1fCAtHAzGZTG1Q1GK8I4kpGgoguey81zTLtAGcc4RNpFy9liwWp9xJ//+V9wdHzCyekZDx894vNnn+NDYLlYEFJic3/Pj3/4Q2nlLlc0beDly+dMkDMFgsWbr/f1QeO9fy3xmFyIY+Y1R2xrrMgJF3LolPWiDNtNh9aKo+UxZycnbO+23N1ucLamj32BPski1Cwa1sdLlqulSHMaQw4RXwn28c2Ae5LVPXRwnzoc07UzJUVK5DJ13uO+MwW+ETIxFEPCnFFpD7c4DJreDM7e7HQcfj8tWofdhikgJOcSnJUxrOXaOBzrWpGTmoPDubr9xiSfXuvLXonMCbSyWJtpG0NT1yhtiUlhTC4kY4H4TAFTzlEcuIn44AnJSAVSBQbf0ziHMhWuhZ33jLmjHzdAIxyH2LPbXrHtFFovaZuA7y4J/o4YB3KuQbX43HM3vGDYJioTaJzisn/G6AM5GRqr6TvP6Ae83+B1ZBLAqBqpnlttad1iTgKkmrpPWKeK0SQdiDZ7TlsJmtXkFXHwUWeViSngg0LoKRKwG2vmAk/OuRQuXu/sSbdBXMhjisQcp7BKzmFs6Ry4kvy1s3hGVVXiYl5wXG8Vg8q1myI5TAnuYoighK8l2PhAjBnr7MH0Lmuw0ujp7Spd1ufX9wRRlZO/si6DkqKVGFMJ8V2CAOHv6JlvVfgpuWi9/xscy7IlTYHq4X05TDx+/StOicT0vOmzS3kvEb5/zusvkYqqFKVuPwXOc32jPG86fU5q/n16AzL2ZToOi2KwX48PO85vPudNL403j4n7lJLcGatFyvnF8885ffQ+R8s1uzEQwigk8m7L3/ntv8PH3/8Bn37+nIdnZzx79jnZKB4+fsz52QnLRYVSifvNLcfHK5ytub54xdkpbK8vubi84pMXv8RVluWi5f33n9LtNtze3PLpJz8XDpS1KK3pNveihJkjaejobyCkTLNYgm357Befc3t7x3/6n/5v2N7v6HYjZ+cPubvf0mjH6dlDXjy/5O52R9M05Jz54IMPsdZyc33N+sOvMvrAbhypl2uW6yV93/HowRknq5Zue89nH/+I0G/odxs2m1vyfcOf//lfEjYDX/naN9C6JmtDszA8fvq+IB9yxiVDzApd1Tx88h7Pf/FzRp/QER4/eY/KNlgcT8/f5/a24/jkIf/R//w/4U//+/+ebrPBDz199qyfnJQ68ygy+TGgjOUP//Dv0qcR5RQf/+Tn3F1dcHf5gpeffUKbRuLYkaMYeUYoUsMJZ/Z7rbOW7WbDMAycHJ9w+fxl8foSoQ5jhS4QcpL4t2rohsD66ITKapQWXu449lgLbW25Rcoj1lo++eSTuUh6enrKdrPDj54UEzEEhmHg/n7DZnMnCYaC7WbLw0ePaZqG9957j+9974pNgTidnp5ydXnFxcUFv/zlL/n2t7/Nw4cPOT095eXLl7StoV200mHJEi+Ngy+JuPizkTMBRTB+juumubFarebYxho3z6nD+fZFjy/OybCGYYizQ3SKkTgGRqBeLKQCOUGS8lR50mUDPKggASiFrZyQndWE2ZXEwRyw2qf4diIrKqVm9ZYUo2yaSizWf/azn9EV+Mw4jrRtK+7Zg4C4nXOQM733InNaruONIv98TN2NX1VAzmX1FlURCsRBAtimrhmKNv5iccx2u2MYhXCmlVQUQ4q8urhgCIExZfqUqbLCOJE+He5Hdl0nZn4x8urVK65vbvnmt36bDz78kO1uy2effibZaAgM/cDv/cHf4uWrF1xcXJEQB2GdM6ooX02fxZvHIf7fGDHyCTFJFUIpQGMUNLV0EdBwtF4LQVdrMfHJULma5WLBq5cv8aNnuVjQlG5Ht9txc3vL7//e74JKdMOWYRwkyRlHri4u6bsOa0SVYxiGOTAzxogqQgm8p25G27avwaV8CCStS/ChxXPXWLQ2RB8Yh4HBFb8P4aIXpa09p+aQ+zDxMA5hTLCvmk3V6JzzLDiglFQXXGXnjoyfKmwpYVw1O6GnJCoQWUPOe+jgxEVhmkPleNMF/Mt4xJwISWALgsjLKCOYfqtkLPbei9eJkYp2ZiRkLxUfrRmTGA2FuOPlVcfxMpGVYb27w9/dc3V5x8vLWzodiUMiDiN5d0+/7YlRk/MLEokh7ghpoLIJUx+RlWJMDaFL1DbTVvdsh4ynJZuaeqnYeQhDTRgWtItMZCTlgLaa2iRMzoR+A3gmjkQmYK3gtauqxmnpDig0VlvAoLIuynyRlBRkTc4ieKG1QlvICInV0JCiJXtD9p0kCBgMNS7XMFpSb8haGvnEyKTlr4w8LwVhMGpnqaulVDxL8cBMHUulZvjplGTkg6RFKUVSwtNSSlFR41SNxTHGEWVaMpau2zD4EtwZQBtCNsSsgUoEQ1RGWQtWo6yh0o6hz8JLyQmjJKjKRCqdxDQsi9S4UxZjM0lnvJ+q1JGcR6C4fiuD4nWN98Ogc+JC/PqjEOhTIhWTR61LFD8HvCL4kWeoVn7ja588pdLZieX7mDIZU2A8+1TlsKMK+01ePFWmc+77NVPHSMShBeo6JTJ7SYAv9zpyeE+nDoZzjmEY9rDf/HYn+k3Y3uH5Jti3UgnvB/ww8vHHP+YjrTlKgbvdwOBF7TBGzy9+/jHbzT3aKn75/FPe/+bXsFXF5cUFR1XN5cUtP/3pK7773T/jj//+P+DR48fs7j/ms5/9CAOsli1Pzo+pm4a6rtneXHN9fcUwdCiVcVXFcrlmfXbGxWe/YMjCz4o+YJWnv7/j5S8T1i3Q2nC0WvGdP/0O73/wIY8evc+f/A//gt/59rdZH59QLZacHD9gGAbhco0D3/vun6O1kutKsFgdcXL+mEePH5H8wObumq999AHf/+53GLoNOuwwLdzurrj92Y6Lj3/Ak8cfcH50zvtf/zpuveLo7ISzBw8Y/Mj2/p5+u+Xm/o7/3f/+f4uylu9+73v84z/5Z3zj61/jW9/4Jq5dYmyNxdLmhvubjnqlaNcLPvnlZzw8PuH04SMutjf87LNPRTXs9pazRw/443//7/If/sP/gP/q//vP6bcjw23P1YuXvPr0B2xvr2id4Vtf+QbdRnwpPvnlJyhbz/v6DGHOcHt1TQoBFTMXz59LjFiKhappCMVxcHlyQtKObGvW64fkbGnbJWenK3IauL56ycu7K4ie7W4kZUFiDH0gOVAYlos169UJVovk+PX1Nd6P5Bx5/PgxmcQ4DnzyyS9IGW7v7vj5z39O0zSzzK3WmqurK8iZv//3/z7ee7quI+fM2dkZm82G7XYraJ4UqJuGDz74AO9FTS2EPZz70Gxvmje3t7fzflC5ev7dYTH6ix5fOMmYA69SZTLGoq1hronM8JSpHV4m+AyPmqrpSSrLUW7kVA2aqxLzK76hFlR+d3V5ya6YAh5eW9d1QqxOqQTGEuxN1eGpojPhfXNpf/06GMoXRahIpSnPCha1s6QkgWfbtpIYxTgrJhmlZjnLkDIxZ7JSdOOACpHa1iXQj/goLbeYMsl7Pv/8c56+/x6r9ZrlasXQdQKjMIZhGDg+PqaqK/qhp99uyMUDw6AKHjW9llTs3+v+Z12gZDGG2RxMK6n2TFAPcqKuHYuFwF3GGLBGs1wu+GwcJIDWmqZt0EZhncE6y+hHQvT0Y49SSnDnJVFYr9ezB8Ykq3aogmWMIYQwQ7TebN0ZM2niH1S2SlV4SoZc5STZSwl1YC423YPDe3FY9TpMhA+Tjje7H1NFUx2MXzV9TYtb6bhMbf13BRHvrrb9m4R5/Ns5BMqT9vNXUdShNCl7fIyMMaOqZobg5JQJXmRQY1KEkER5LA1cXV3SVmfk7IixZ/RbhmFLN2zpgO4+EruI84pxJ86rKQzYpiInK0PF1FRuLRLQ0ZFVpnYL2mpN1gOehmxqqkVDSj2jAqMcTaMIeiDqgXoBLnt0HIn9MPvvTB/r5DI+OXZP4/y1Fa8kqYpMjokYZWMztggRxABR4F9W1eTymNKqJAa6YISKjHaaOhtyHdoYZMUOhFhMS7Uk4ZPimZlcxdUBLOlwLSYXT419527uzGldoIlSYNFFRnf0kTEECYZNwlip8OXytynnOSRW5V4pIx0NY4QbpqdkKytM2WdEtVbv+Rtq6gJId1DMAyll/QmS9Hrb/7Xvv8DUmu+DOuxW7GFd0z36ovP07aft4Uz5oIXxFuyJqcv3Bnyh/M1ervf118hF0zwfrDdf5uPdcLC3ocDTMSd46c0E8M3zplIA23F3fwPOYeslKXmMMTRNxcXLl4ybnSQ4dcVmt8VFz2LR0t9tuL665MXL5zT1kl03cnl9S+c9rjYkP3J3e8GQIQwdoa45Olpjzs9QChaLll98+iljP+K7ga9/9etcPP+cm4tXdPf3pOgJHnwv0CpthMdmrKXrtijtWK1X+CBzzwEvX72irSu0Vrx68YwwjhhruL+74u5GcXruqduGSfJZAU0l0qvHq4ecfOMrfPyDjxljpo+Z3YtX2MdSVLV1zYPzh2hnuL+7xVaGfifB/c3FBZ999hlZKz79/BkuBfx2w+3VBUenx2SjGIMXQYuUUFpTtwuevPchOgaGkFgen3H89JzgRy7Up7TNEevTBwzJoK3l5OSEGEY2d5dSVPIeoxXb3ZbNdsN914mCoLaoUhQU9TpJNOLoIZeAWBvIYebvKDLGOIxzWFfTNEsWqyOqpmG1atFGFMgqk9Dowtm5wVQtKI33nuVySUoZ7wM3N7c0TUNd1WgtxdKqcqQU+drXvsp2e8f95p6qrqmblpyh73u22y193wvE3DlOTk5om2bmqB7GLJMgklKKZRHLiT4QfUAhRnxGG6q6pqoqmraZ45pDwRtrjcT85XiXsudfd3xxM7406fkLXEW0dh0a/9rzpg7yXlnqIOjLoniUmALyAa2nwCO/oRH/buzX5eXlawnG9GanhGIK2HLOBO/nivO8kRmDmnDP/zoBW57+fr8JTElGU1VAKotRw1AcRgXeI0lGShmMETJ2zkKW9oEYPM5UgBCQx/K+UFL5/uzTTzl/+IDVes3J6QmXoy8QiMT9ZsPT959y9vCc27trXvpBJHO1wipFTJGAJF8zDvzNt5UnorGeXbu1KhXlHNHKUjkxSKycpW0btLGEXUBrhbOGED2Qsc7QtgKJs86yXC65vbvFh4GYPHVdzZAnYwynp6eQM9vNdpZsmzoMzglvI06GfCXJODTLM9YSI/OuKr8TNR1lHJWTysE4jlRFSlg48fqdScO7uBdT1n+Y/U+/OzxHiW6mQToHYpNTOaoQOkuZ8V1b/rsCoS97khFjPOAZyGOqBLQxJkbv6YaAzpYqFQnTmPEpE4K4P8eQ8T5CHLi9u+bJoyWohpQHQuyIqSOnnpw1Yx/wOzC5RoWE8hHGTN1UGGWKyd4Rx6tzTF3R+RqdFI1b0tYrzCbgc03WNdW6RrFjtJlgLO3SEHRPMI5mGdA+kYZMTAPiPJ5LoE6BlQoPTU9SsHniCOX5Hky8tVg8dbLSWGOlk1MI3T50LCtLyuIwrLXgbrVJBTYocBspTkwrlPBBElMFPYriVEnep6LOJK17yBd585g7Ga9BBEv3VwkvJBZstFTlxGk5K9DG4qoSRJf3mlPeq+EBGjXzL6Sbo9Gl86WzdFWzku4fRiHVejVDrmKEiPCuZnlj4DD4f/PfvynHnOvk1zsTbwbT0x4oPJx9ZX6CWc3JSn77vU7n/7IfeZ4/+27Fm78/7FwcQrHfhFJBPpinMo4zkZQ9m80tyjkeHx2Rs+w/i0XN5atXqJiotGWxXnK3vcd6x/sPH/PZLz/j8uUFVy+vePL4A0JUvLq6Y0iJk/WCcRt5dXXDLmRQmqqqeHB2zHp9StM0nJyc8OmnnzFsOnbZ8oe//dswDoy7LUO3JY2ekBJWS8KCFpWsqm24u7/FuJrT8xN8CvTjQBVGnn3+GU+ePOZoteDy5TNOjo+xSnF/e8lFP6J05vh4Rbc7IQePHweRpTY17733hN//g9/ldjuw2fWY3Yh7eSUmqc4RcuJkfczd9o4XLz7n0ZMztptrbq5fcvniBT/8viUbzeX9LSd1gxoH7q4u+cbvfpvUj/h+hJxEWa6ytIuGr3z9m7z6/HN22y0PHjzho298k+hH9ADnD5/SrM64vB1QRnFycowmkYb7UkDMGK24vr1lu93S9SO2WUq3MEWMFdVSU6CeIYyCfNCKqqkZhljiLhkX1jqqqkFrK9yHxQJbWZZHKzFVvrtl3TqMsjhdcXt7z/F5izLgfeD09JRhGNluR+7u7litVoRWurRtO3E7Mh999CGvXr3AWMMHH34IaPph4OLigtvb29eQHA8fPOBoveb66no2yZtUR3MWwri1ltViibWGfrcT6JcRqG7lHMv1mqZtaRctfd/PhV1Rfi3cQbWPa96EhX+R4zfjZATPuNtxeXXJ6AcgF8+KMsGlXAt5jyk9DJ727XiNNbrIkB7gJ9lXjF+vvpTNp1QCOVg8pgVmCkinDTClxDAOpJRYL1eM4+H1/mps+2HFDn5VN+P1CuT0/qdzDuMAOZGCtLBikkw4ZUkGlNGsFkeYpqb3niFG2tNzdFWTMmyubjlar9nudnz+/BlKa/quZxg97XLND37wA46Oj/n2t7/NR0/f59nzZ3z885+z63a8ePWCpm14/4MP8H3PVt+R+pHQ9wJTM2aGvB1yDqbPZwqkrTWMfpTPIU9V14RWGaMzVVszDh3d5p6j01OOj9f0w8CPfvQDyInz8zOWywXHR8d87y+/x93dncDEopfkw0kSMXEyPHvuRdsmttsti8UCrTXX19ciDRwjVVUxGca0bcswDKJkE5PwbZToR6u8V2WaxkccA4YKpY4keEqxBHpJqtgli5/G3LuC+l+1qU0b2rxJ5Tx3cyS8lERDVHr2Ygfq4G+n8TdBUQ6v40353C/r4b3g1JTSDH1H1bRok5jco/04stn2VLkiBIVWRqr3aFIw5GiIUThO1ikePlqzPrbUi0jWO1wzcnxmsYs1MS+5NJ6u1izyKWk3kMaROPYcH6/wKePRtA/e4+TRe5ja0oUbFFDblqZasrgzjLEi6opm3bJoduw2nvubwOJ4QXId0WypmnuGuw2h74mpQ6uMNcI1iCHM0aOZx4ckmznKY2o2vJPfS/I9YFxVEuOBXBIHP+4wWHKKDH4Eo1FWY6JGG6noh5QIIWGMliRGa6xz5JLhmFFcXE1xAp82qYk3IonGoQpdZurMCFdDZAyttmg0KXiU+CoScsIjFbwYI5vtjr4fJAFKmqquhRSZAyEHVPTonIqXUPH7MApnRWI0adl7pkRNY4tNoaxLKZZCwtRxNfKDynL/pzRpKgrti/6vV73/JtT2M1MnIs+FrLcKDb8m+Sgneas6/3qikfkb8Wb/NY9p/3o9Md4nEr9O2/+v1f5XGW0kUO2GLWwsp/4hVdWASoQwcHXxiuPVmpOzNWcPzqjTyOg9L1694Pt/8RfEIXC0Oub/+n/5v/H86ppXN1fcb66I4y3VqqZaGr7/P/4Vpoi9/Nl3voNrGpmTWpNDIg2R/sU9//Tuv6FdWhZVRfXwIc8+E/+p2lnQwjkKyfPZ5z/jm+sFi3ZJ50c+/Mp7dMPIZ59/wsNHJzQ15NTx/vsPOD0+JowDn376Cz54+oTVypD7W/78O/9MSNcZKgM/+vhjbNvy0e/8LsM/+RfYes2TJy3f+Prv8pMf/4Sf/vCHLI5PWVQNXbfh4vI558eazdVz7i6eQRjZ3V8yBs/l5Ssef/RNjmvDal3TPlhy8ek9PvY8eHxGe35M1Jo+DDx89IjT43OMqfjot3+bX7x6zu7uiuXiMb/97T/EOkvf9dxu72nqTOx3fPc7/4wjV2PXp2y7e8bc8eFvfYvV+pgffP+H9MNI6nfEvhMemSpFvigxp7aG09URnw33YBVHi2PWx6d0faTvRkJQdNvnjH3HkyfnhLjCWst6taZShvuNp99l2mrF3d2GhMQhL15clHXVcXJyxnq1kmSBxPX1NdYaFouW73znO8TooSQ26+OTOVb4yle+shdFyZm7+3turq8JPnB+fj5z/S4vL+ei+9HxEbe3t6LQqS3f/OZvAZphGNFaU7uKpqpmWoEpIgHTfiDL0H69OOwQToXWv+74Dcz4FMoYVAkKFVM1QNrxvLHY7RVV9o+lWLDY5YpjENWliS/wroj+tSBPKXzwElCmhFsu36rSTAop+za/BKQhjKWCWk5VzndwaqZq3puB5bsWopzV/Dda7TeEmQjMQdCuhUAZfc9u1xG9p3eOMQWGGOlT5D4mXLtAG0vynquba0LxsFgfHZOEP09CcXl5yXaz4eOPP+bx6Tm1q/jmN77Os4tX1MuGk7bl/PSEm4sLCIHdGKgXS8HDxyDXEuNr1fdDkzvnpO1qQyjhsGxqRjusUTinWa1amqbCVZamqYg5E4LCGYVqaparlrqpubm7QhuoG3Fxbhc1KUVC8CXglPu7WCzmyTNtGsDcxaiq6rUOxiQcsFgsZoOlEAQPraZteEp8C/9hsWhom5qJ7C3eBGpOEqfPbnqdQwziYfJ6eN/emiNKgjrKJp9K+3dqbhhrSzVlP25TmhKkd1cKDrtzvw7e92U4UkqT7M8sz2rL5xnSHjQzBqkiGZ1FBlsLR0FhCn8Amsbw6Oma9ZGlWUDVJhqvMXXFMlbE0KB6xU6B81bUNrwijiNHK0PCEU1Ffbbi+HSBaSx9HIkxULuK2jXACZtBEbKhaVrCCGkc2Kmeqm6JJoHuickT40AMAyn4uTulVanQTyXqJJyrpLSsEcW1WtYsBMufYlmvpnGaoczdMQRicAxjhCRkalGWFYiRtlq6A0zmfWVN1Fq4IynNHQpVPodD3tGhrPgepriXVd4nHgdwnCTnQAsZeYyemA0+jIxjYtf3jGOBbdpAN/TYWlFHyzD06BSxqhj1KWaoltaKXDwNeM1xXBILlEJhRNq2rI8TxhrULHcrSnLi6ST383XzzOmxvdzt6+Trw/1gLgYwQckKu+ELNwYOkpqDuZzLvTw8z5twqX+VTuabe/CENPhydzIUQmSTNUG0BhRa2TIeimKhNlhjxK3YlMfmznzJiOdusyTRk0yzfLIFrhlGsu/JfiRiMBiyNZwuj2iaBrRi12/Z9Bt2mw03L16g8kDtapxtePbLXzKQsCpgVGDX79jc3nL96gUmZ4zKqBywKpL8jhTEV+rB+SOqI4v2cHN/QYiiWBWip6kWZCfdvJQCKQZi6hlD4uc//QGuWpCVY7fZEFNm1/csPvpIjEAri2kq7na3tE3F3/l7f8jVridmRb/bEgfxo1E5s+tGqsqRM1y8uuHRk6+yPjri9OQEBs+Dp4+5vb7m888+Y7u7R2s4Oz/lk5/9jJurSwzwzd/+Fi+ev6C7v0eFiK0MPo7c3Vzxs7/6K9qqpV44QobLm2uubm55cXHB+08/ZL06ZrVaY3JAjwON0Rx/+JSf/OwnqLJ2np4ds14t8UqzaNYsFy19v2E79vzD/9k/4MWL53z22WfsthvxMAsjxshcSCkTUgStUSS0BW0zTVUxBo8feq6vrskIr0unyMNHD3n89DGPHz+iXq2x2mBQtEahrMJtDKSRNMjwquua7XZLSgHnpEh6tF6zXCzod1s2dzf4IdCRcG5NiJIgdEPH5tmWcfRst1uOjo/FJNVYqqrGhkj0kZwHEUMZIiEO+JDxUSSdX7y4FF8LLH2IXFxe07YtdV2zWC7oho5ttwWlWRUhHq20iCuVuEXi8whGSOzT8W+8k5GLrq+2pcpaFsBJ0xsKKuSg2vLWOeYlQjapqU2Zyx+/O5g/SAyUek0/XGstVaySoEzPnAPAEtjpKWg7PH95D3suQmZacF6vVL99XfJybyYoef+3JbhVSkkgrUqVPBeeSIyMw8CYIj4nRjLj6Kl8EFxlAB88SqtZ3lVbh9aWjJoNBy8uLmiU5ezslIfnD7i6vwNkw7fOsVgu8N2StBuwKMapAnzg/XD4fqfvJ2y4MeKyPAklqtmwC+razV/OGZL3ol9vDXVd4ayQWLtui7WGphHy0GK5IHhP1+0zYq0UtmnLvZNrmK4x50zbtnPwM7XzpqDfFo+NCRsuyUWa8crkyZRQFSlOMwdeOgt2+XWd+XxwD14fD2/yQN5938rYYR8gTNCTw7E2d7/S28HDryJ4v8mj+TIeOecZSjkTb6d7gJIERGm8D2gtgWHOpeBUCBwpZbSBptE09YLl0tLUmqpRtNHQZAMY0lDhbwN2zOhO4bT4tASnWDYKTAVugV1WrJYOUxtsrvA+46ylcZaxb/E5oZK0qSsXsEYgj85VKDOQssJHT44eYkClJKpWSq5Z/B4oiUcJ/PNeonUKqFXB+U9Qp5mJpjK5mPKNXngZ4yhKMzHO7DJJMgqXIU+QIgAO+BVag0qvdcv2cJG34SR7/pEkAa9XjPdd3Jgi2hSJ4RAIWjOGQD94un7A+zQXD8ZxxAdX1LIyJkVRnk4ChTJq4suVtVXBLGkrlyLXm2FSmUpTx0LBpPi5nypSDDtotL815+aq3eHv3rGPzX9zuJX8K8yBw9fd74wHCQW8tta81bFQ7z7f1AHZJ4FvrCOHicaX9FB79g5kSUSFazJB/AQGqNQecz99iZLZ64aMe54NzJ+FOuBM5UgKI+Nui1lW4EBjWLVLdGXICra7DUO/pdvccnPxHJIXV3oUzz//FN06kk7021v63ZZuJ74JUlbJKFWECsp7SUlBCugihTuOPSkpgtfknHC2QSktBpexcPtIqBTZ3t2A2mLcApLCukq6mMmTEM6qqRzbu3vqxvLw8SO2z14U4RrH0EW5RzkzpITVmu1my49++BOauuX45JyTszM2tzc8aisWy4a7m0sxl7MGZ2o++/SKsRflv/PTUz7/9FPGoUelRD+ORKPRKTA8SxyfnLJYLNFNy83dHReXF7x68YInj56gVCIT2d5dM2zuCMELAmTcYZ3FuJqTs2NaW6Fj4uzsIYumRu0cTRw4f/SY5y9fcHNzQxgHUgjkXPhiZV7FqUpQrMES0uVNOeFDYux7lHEYK/yF1WrJarnEWkdIIqZhq0qKYnVFHWtIMFJoALNoxuR1VCC0KpNCEFaZKh5vVmOSKPVJkSYQQ5r5FRkxNXZVjVYRRcQ5BYhgzziGOYFOKdMPHmtqlNakFOmHEescTVtLJ2gYBFFiXCnGyDxIMYk6WLk1czzFbx6HfOEkI8SI0hXGWIIPYrMeo7S9tSGrAm2YSlsHXYMpfJ+gMUrrYr43SQzup7x6Y8nOh5NeyYRBC1HYWktf2kL2Vynv5Ews5GdyluqgkiwdpQ42y7dv2rzJvbHRTAGtKoNFFm7ZROu6ls2ukIbu7+9xVYMxokmMEUndvu/Y9B3ZaHCWHbAdR7Q2uCTJlDEGV1e8fHWBrWqadsHZ+UN+7/d/n67r+JN/8k+4vb1lsVjwsG7443/w7/GzX/yczz7/HKURKcrzB6xszd3lFXi5n6FU63MWw7lDuNRErk45CbRHTThp4WSkJLyRyhlWq5Z2tcA6w7bfkXKkqh3n5+dcXV1xdXFBBlarBSFGdrsdx8fHM+ZvGAa22y2D9zgjhCZd7m/TNHMnYZJT6/ue6+truq6bg52JOB6KyzqTO24WozsJ+CRA9MHT9xmtl1TOQUpFj1zNnR0ZMgcJI/tJdbjZT4ns4c/7DkipspbxY7RI4GljyEnmTZSVDXFnzq/zOdhXl6fXOIQAfJmPfBBoAyKE4D3GOqkhaoNxjrtNjzK2BJGCo02xmEamgHOK9VHFarmmtmBNRtuMbVoMGqMseWdI94JHjjmwWCxIITIMUFdgqhpTraBJLOqMaRUaQ9crnAZnFXXtqHwgR6itoTcaq0WKuK4atO5JEYFjhoCOCZMUWD1Xp72WAkfWJTQqykRKTx1E4R8Akk0p0VoXPoFsTuRM8JGxDyikC5yTbEATcdtYEVdQRpcunZ6DL6YuWelGWGvJaj+WYhQJ3sNuIcAkJ6xK29+5aoZTSQolbt4+ekkEdSTpRHaOYRzZ7Xbc3GyIQdbrnMA6qINlTA6rMsEPJDKrauKIqOK3Ma3Jh+X9kizMwXQs/YlcjPukQzl5+kiikMhZTNdKm+dXVOHeIFD/6lF88L3izf3hix7v6ppP+91hF/PNrsu7OidvdvTJr8PC3vzdl3sVOUgymD6q/fo4eTkdrteHnboJwnr4+HzM+32ZN1n2PT/2PP/8l3z1a0tqe8SiacApgoqEHHh18ZzGafLYs726woaMtppR3fPTH/8lutJEIrd3VyyXDTlGFq5mk+9LwAnb7TWL1boYkSZ+8Yuf4bSlsTUZEX8xUUlHNcRS8LN4H7CVYVE3uCqgTQ04fFCsmprzRw948t4Tnr18JX4RWlPXS3bqnnFMXF7fMfrI+0/f56MPv8qf/ot/idUWlWGz0dxeX/HD732fP/+zH/Af/qf/a9q6JqfEz372U56cnaBzZnV0wunpA/p+x831K8ZxoK4rlm3LMPQCa/YeRebnv/yEk9NTjs/OqDL8+NkLqrrm9/7gb3F5dUHfd6zXSypnubu75uLyBX03st103G83XFxf8X/8P/+fODk/xlaG3d2W7uaOnDK/90d/RNd1bHcblg9P+Zff+ys+/fkvuLu7AxI5eHISadqUA2DIWROCp6qEL9d5T1ZalCCdIvtISFLIePT0CcY6truOzz57RjI1q6NjTs/OuB92aN+jVaZtatbWsuu6OUbbo0YUFxevuMww7nasjpa0bcNi0VItalarJTknbjcbHpw/EJsANM+Laqdxqnik9eRE8ZrShCDr9WLRst1CCJHj40Xp+GWcq1guV9R1RQaGoRPPMtPOMrWT0M5UxJ3h3mrvtfRm8fWvO75wktE0NWMElSMqBfnAEPXBmKeLUFiV6XOaW/1Flkj8N1MgRS3E6+iJXnBgKskGNhFMjDHS1iKLKhL7ilKM43wjfOGFCGESeWaKxCiSkTlFkZi1mhBl8cjk0m3ZrypKGRQFaiPtGPnVvrnx1qHV4SovVxhTpOt7UXpRoLQieo92NdYqdHToqpZKewzolBlzFv+GDM5onLZYrQg+FBJsT/SZcYx0u4HN3Y4weBbLJb//+3+IK9CHq+sbHr7/Hu+/9z6np6c4q3E1BGvBB26uEuiEcWAjosCCIqSi3VKqeNZWNE0rXiPdBqONQD7QZKXJWqOtlYFtRM6R6El+QKWE1YrriwuGbsDhOD49EXhUCiyahrapGLqePkV832OVELbHYaA+OxPlKKW4ubkVp2Fj6MeB7WZHTpnTswdUlSu6z0O5boEpWaOK70pGJUWOshllpVApcv7ghJMjue5u6ArwQty5E4qkxFTwNfjfQTU3lSqTBHCWqcSeMyhrSFrOmDVoE+cqrK4Myipxus8SDqESRpn5+skl4c2KHPIsXqMAq/edpzeT8C/bIUGT3FtjxIypVwLFlC6pQRvLGO5xyWEQXLQfR0IcSTEQ8oA2mXoB6xNFpWRzQGdirtEZbNLkoFjVEKvMlkhb1SSTSMliqpa6WWGrFUMeUal0K2zDkBJK1ShVYdQWiFLoMhlUROmEtVBZgEyICRU8JmVU0mgquslRuPgcTFyLqWihyHNwMXFzEmlfXYuhJA9CAhfCd2TwGWdEEjHGkZwDVkNVWarKYZzGWI22EiRFFCpTSI0THEqjdfELn8b2gQrP5EUzFXKmAo3W4uw9YX+9H0lRPDG8DygTiRiCilRuzRgDwzgCCmMrjBOFlvXxEcvVgqquiX5ke3eLSYnzoxVWa4yS4tNMXo+BFHxJyJOsRTPnbwo4y4SZg03p7EQ/QXoVOYUyf/YFgtf5Dsz3/99aof+wi/JGB0N+vW/THFYX59/BQRKl3vrdbwq3+jIdhwnDNH4P+RqHcMAYX1eXevcJM5NRX0qZ0e+4uXmFtYbjoxWfX3w2dxxD9nx68Qq/22FShuBRekClLZcvb0k6EXNkGHdsLxU5JVE0UhDGAXwEAn13j9IGpSxWS/Tj/UiIA85Jhfp+M7Jo15A1XdehrSGEjA8dIYw4FzGmxqgKwsj9zQX9eI2t15yffcCDh0+5uLiiVpa72xv+5B//Kd/+w9/nZx//jO9+57ucnz7kbhhQWfHowTm7kzPWi5GM4i+/88+4vfoGD997n2e/+AVh+wCrDfc3tzx9+oSXLy757v/4L0ix473HjwnjwH/5X/4XVK7CVRXNsuXJk0cobei2W7a7LSllXFPTWMvFi8/ExBfNP794JXug1qxXa4bBszo65j/44z/m6uIVWUXOHp5inMW1NdYZHj99xPXdDlTGOfgf/uS/xjx7RhJNOhZtg8qJOA6y75ai924QeG4ARkC7SmB2rkYPnpAyxlU8/eADuT5jWa+OOX74hLpd4qqa692W7BP4kfvbDa5yszQ4MMO7vfdELy70EOg6gVKlHOlvLzFGijlnDx6w2Wzo+56joxNRK122LFdHYrqnLb7yDF2PLsKC036hDbhKCO1kGe8+DNzdV4y+pWlqvBcFDqU0db23kshZvPD2iYXDmErMlNkL4PwbTzKMMeic0ApWrSgK+MEIfEkVyUPEJVOV6Ehrqealshjmg0mryUgtLAskp5Rn9qoZJSCZvy+eFGWD3m/UspgetqQm/O0EN7DO0vWdyKPNG8geDjAXxUobWpUFZn8l6rXK1r67MeFxy0JEFplJJVc5te0HPxYVIYWNSSQaXS1OkkV2V2IkjUoKW1lpV6VUWnmUCrjg0+9u70ghsV4fcXJyJslMjtze3NIuGhZNw83NJcoInrpuKmxliSqgY8Q4jYqg4qS+Iq21nOR7ayuqumLwA0ZLv4kkcJaUIMRMiBPUJxKDl+SuELCdrlhUDarWmCTBO0rjUeRUdO/JtLWQv0MQXfhZfs1a6jLIldKgPNZVpCQmOjpmQphag7oEY0kMwEqSIWnfnnStUpIENWhyroiIio3RGpIkJ2ques2YjLKfFyhWqZjNX5OcjcokpWb4xvSHeRqjusA8SKRESW4yIYxY62TWFF63KudNXv5enHyL+6tSJaj68h4zsbUEvTElVIjEkMjGkkvVXUzsAjEposrE5Ek5kkjEHOS2K6gq8dfQSoPR5BAwpVKbAWc1lTX0RmGtIxJQyqJthTIVSjtIo/A+oiJrTYpafBXyVK1PBWeTSiW9uL7mVIousUDvJOgVOVjmNY2SULxW9VZTV2NaT4qxY5pMJsM8rycDvRAj3keMygyjdBQzkagLtLG8jjJqxtOW2z3f7xkSxb4apScjvflnPctKz1Vfxcwd0WZPmA0h4kePDyMG0XILaNw0R5TCOgtZMPFVVbFcr2jaCm012e8NVivnsMaWhF42XelgSQc1FaEGuXcCdcwH842M+K6oMo9maOLBF1Mn7TC5mH7+t5hclEPexrRzvZ0YvJYYHaxRU441f//Gc9/8+cterPj1x+vk70ny8zDJOJTlhH1V9lCmXDFBsGUNyNGzvb+hqSp2R2u63R3DOJQuemB3d0caR2oloiLD2BFywtSVrHkp4IeeEGQcq5TJ1hTopDhzpxILOedECVPKAwioSiCTUxFCKVM6u4XbpQ0R4Sup7DHW4oeehMejOa6XpBjxXozpjLacHJ1ysjrCGcdNd8P19RUGJY7exuHXRwQfMUqzXCzZXV1w9fIZw7Bj6Aduspj0Bu+5ub7g/u6Kod9ilBQGQs502w16uRZDuwLrGrqBrh9olysy0O+2/PynP+Hu+oJx9FjjGH3hjSpNDiOLxQqnwQ89Z8tz2rpGAX2/wxn53G+ur8AtMVaDTrSLIx4+ek8Sv27L/eUF425LQs/78sTtyGUcpCRFmZzFuE+XTq7IrDN3c3NSGC37t/cRW7dkIllFxn4DIc5w/qlLMCl7+lIwWa6WeO+Fa7wJjEW5tWnkdUSkB1CK8/NztHViGTAKx1hrhXN2LkSF4BmG3Sy/G2OkbRa4ykAf8H5k4p/FGIscuSlfeiaWTxzYuQP4hlnfb3J8ceJ3qc5bozk9XtE2NUPf40Mma1P2k4xBpEHzAW5rwuzuNzIxsHOm4OHjvoqWCmxlkrUlpTlRkc7GhGWeiNfyszFFF10BCDF0SnbqpuL2LhJTwGqz33jfsRhPcpKS4U2X/OaN3a/kc8dm/o1UzSi4T0Wm6zt2fU/lajHJqypc1ZB9BgKKiC0JhkoyaZPdqw0NKZBmcpum2+xIPpFj5qsffY2mbYg58YtPP+G3vvVNTk6OuHjxObayaJVp2oq6rUkqkL3HoRlHqcJPyjMa8etAGYytqKqGphnLPUhEL3yOkGDwgWEYBbIRHSENQCKEkW7T8+jsMcvFCmcdL19doqx8NqLLDTkFrFacHq25ubkl+SALoh/nQKZdLAghFrnkitW6wYfA1dUVTSWTdeh6jBJiXwyJIQyicKMgJpA0QqBxJkd29/fYPHC6OpOFSyIylBYxAlM6cFrtidqJQootuO8pz1AKgZuU8RYnGJ6M4uJKnwr8pXQ8yLNngQLGvqM9Flm8EYGsaCMEZe+lCp6SVInrpkHa9/8TSDJAEm5rZ5npFDLZGSJZnHe0IqZACEkSxFScS3NEZUk+RAVayOFaK9AVIQpXYdJ6t8ZSVSKnbJwj5wBYtK5QWiBDU/KeIkSliFFjlCZnUR9ROqNiJsUAk266hpxK6z0kTIElpQJTmsjRU2dUHYyN6Zja0HI/5HpDKGN7GDCVIkeDjqH47ETGEHEmMowjfhxReIIOWKdYYKGMVVOSg4PSyJyo6ulnJCkyZr8NqDfWbSnepALNKNXgA/jgOIyifDeMOKVJykpf8CDAaxqIUaSv66ZhfXyEaxRoT0DwvxmBd1bOoTXSgYiRFEOBaAZyinNiVpb2fWDNVLdXcxKCzkwQqZwnQvgUjR+MyYPClpq/e3vkvnlM/LvXewb/Bo7SiZj+mxKlOWk6uP7MXOMqD+whRL+uSv9vP5361z8OeXH7ZFFGthSe9ry9uq5fq74efv/mOeQx5kLAJH5C8mzvrrAKlk3FsL1ns71nu9uRRo8rc8OngMqZMAz43T1PP3hfTDCTYnsv+6DKYpY7hoC2CmsECh5GD1nhjMVoh1bS3bUWRt8TYyiQZo/WsneHGIt/Q1WKkSIkonVk2G0xyVLZGpUz282GnA3dbkTHzJPHj/n3/8G/xz/6b/4RKSasUrx8+QxnKpq65e7uju1mS9M0rJYrjvod169e8uzTX/D46XtcbzuMtiwWSz795c+4vb2kqhVpFENDlSJHq8UcqMcU2W7v2W62bLc9Hy5XhBC43W75+ccfk1UQSE7VlFvu8TER/cCDszOshk9//nP+nX/3D6mWDWMcub265NHxmuQ9P/jL7/Pht76NNoZut6Wpj/jqV7/FR08/INzf8Bf/47/gsuuLdP1UsJai0ZR1pFjKQTGSfETZShgAKXN/u2F9tKZtWoZupOtGdICkFOvFGpwiDgo/bIljX5QvJdHoe4GNnZycyOcHnJ2dcHt7y7bruL/foQoH12iL1vZA5Snz3gfvM/rI/WbH7e0tzoiQgXNWzCODOKHf3l6XboggJc7PT3HO4ZxwHYdhf13GWPG802aeC4vFgsVi8doe9pt6Yxwev5EZ3zAMIof22WdcX1zQ9QPaTUYgeb6Rb5KKZ7hJmtQ7ZJtbLBaklLi7u3vteYcY9GlBmP7eWss4jLPUKHIbcNZJoDDL05bzAZWdNPFjqWJARu9Vrco5DjXV5Vr21T2YcPiHhMdUFFBeJwEfypHur5GZ/zCMI8YKiTsVInPl3Pza3vtZ61jY/FIdNdqwXK45OT7FVRUxRH70w++zOjri/NEDvvrVj/Bjx8XLHU+fPGJzd0sKHudE1SnjQUmAMgUMck9VwXHL6+92W3KOvPfeexij6buOly9eCBGtBA6TmU1OonrjjKVarTlZH1OZitvbC7abLQnpzBhnOTlas1qv2NzfcbXdlaRCeCy+cHymzH2xXM9jYbVaSVtYax48eED0XjJubRi6nhgla3eVk/Z1fj3xU0pRVzXOUeTZGnRWIqhfSOOqqKRF7wVCYnRRWtiXCA17noXKkRhFVtMYg89BkhOtCSnhjEh8xhRRsYLgSNrirGBoc47UzQmbnSTfylakbEhjEuKZa0uzRLEon5Mv6ldf5iOSmNpztnLETsZIdg270dL5wK6PJCx9PxJGWNUVQ8yS3KYepxI779h1mmGbUetREsa0RIUH5NgR0z3QY2qwKw+dJ5oRcqZWKyCTTEeuM2kXGOKICQZlQJlAVj3eC0RQCMqe+ztIPmMyOBsYhy0pR0xyVLllUDuihVCPUJIjknQe9mMykaOZkxuVhTeEjqgcRampJFBN7TBOEqGcDJIcga01PvT0fQc50DaSGFvXoDWYHMUUMGSqxQpjBRJAiqis0NlAShjtUBhyANuIZG0q8CRVOhfShi9lnpyxTqpaIGtgv93SbbbkpEE1WFfhXE1tFcFZgrV0qhdH99rgGtBW46zG6My9Txwtj1nWDUdHpygrpowxjOQYIAWZpymSUyieGhGlrcBKtKUfBcqRS2FnqpZmFUFZwKKwKFreDK8Lsw5x1mDujCiVy14ifA55rCRXTERjeHdCwnx/Jk7FryJxv3WUQkbOwh8Uou5kjqZKDpEBQ06HidPUaX0t43j79FrgxzH95sHC39TjMKEVLyWDCeI9kVKa5TwnVcC6rrE7+xav7vCQpE5wFFOSkVLEGk2/veGXH3coJdLUTcr0YQRjBG4T/FwsMtZxfX8nUKG25ff/nb/NL378U+5v7tjuOvSqRaGIGbIPKGTf8F0im4Q2oExE6Uzb1hjTslgs2e0G/BgJ0dMujqkqgVkbJcGlKnwSV1Raw5i4v91QVWsqt+BoveIHf/E9fvCXf8Gf/NP/luQsJ8dHfPUrX2Fzf4NWlto1PDg55fz4kcBZneFoHLi/v2Hc3HD7IlFVLdbV7PyWRXPEsnU8fnDGzz/+MZs7TWUEkhOCJxuwVLx8+QJrxMh33dZ8+ukld3f3ZBKYiI8DYdhhjGUchf9r2iUvnv2So+MzHj/9Cn/6P/wzYhZT1krBP//xT+juNjx98oRP4l8wpsxms2McPA9PT2ndgn/xp/+EcefJpiHojqYxpBTwoYfEXFzMIZY5khhjpGoU1tWYbPjsk1/ye7/3+6io+f6Pf8T2z3/Eb/3u7/L3/viPuXz1KaHfkn2HqRqaypGCF++0ppnjutvbW8LYk6Pnpz+94YOPvkLdNlRVxd2mo22XHB0fY62I6nTdjl988gmfPfu8rHuWtm1pVhUxBn7yk58yDD3GaBbLlm9967fmzsZ6vabvt4ToWSwb7u+3UlA9EPDQRYG1aRqcc68J60hXeZo7/2rCM7+RT8aEGe/7Hm0sxgrn4bAS4IOfqy5vmuAceltMi0I86FxMmdKblYVpkZ6wYG/pYZeA0ErPbE+iLdc9jIMs1uUcHHROcnldkYB5FwZ2qphwcI0HG84bCcYhaaZpmj0puZjizbi3EDC2kpZcjGS7N8E7fA8SaEfapqZpWoZhxAeRlTs6WnNzfcXY77i5fEX0HSenRzSLVvDHKaGzYNpXbUv0A323I8VcKoFFP6MoCUwY8BQDIYhZ3nK5wGhRtDJKEqVxHEsSVAjPSCKUsuCzn7/6XLpcvrRsg3Qmzk5PaFxNp/QB+Vs8O5bLJVVdk0qial09J0LTvZzGQSiPWWWIPuCckOm7flcaSFqcjeO+IyH4XDvL0JIThEAOpbtFLg7gxb2s4Ounz55cKlpqigKSVLGRyrUt0ECSoD9zVChtaFyDokbrBmvb2SAtJsUweqqqIaHoQ8ZVNYvjJXXTcHN7y+gFz942LVVVzcndl/0QzovCaUvOAovy3jMqgRaOIaCNIYSBFCJ9hlAgAjlGIolxCPS9outGbKNwCsiGFFtUVEUqNmBtpq7B1cKDylk6EcQo8Jtp/YkJFYWXIYFsImapsGdVOqkxkpWBMo9jCgiKV0iYymSUTeAihNfXrnm9ibFUy3JRSkvSSctaKnflNZ2TMa+MJSLdickJ21hJ2rWzkMBWWYo9hTweY0JFRBFwrkSpg/jzQDVqKpwcVMz3Es+Uf9W8Ls0cDSD4QNcNdP2IUhZjKqytsVWNygqjKJLXFjA4a7BWy5cR/pMzFlc3s+stTJ1v6Q7GmEnF/VzmLQJXK5XmabU+hBml6Y0Wpv3cLHprbX8dNjUdag7kee33++fsO9m/6pjgV/9GjtI+zZTq1gRF21/xa5X8N6/7zVPNp/jSHpPU7F5VaSL360nqWEkyK4G+iCJUxfx1LJARpUQSWzK36WdNsZInkwtEVQRtBDIlbvaJjNJh/ohFZTqL4WRRZkoIvJNxFMiTyzjjODo9JStFIKKslbgAhI9XPhytHVVd4yqLqzSj78unnum2W8IYyEnhlCF7zxg9YzF4VUYKe8dHJ6AUg/dshh6rt9zwimHb0zQti2VNouXFq5c8ePiYru8ZX3nW6zXj6Ik+El3Nhx9+FeMcw9izOq7JaiDGjqHvUVWNIgt06voG2Z4Sxhp88KSQMM5issQXOUkxLylISXFze8X95oZxHDk5Pebu9hUAxjo23U4QHCjQmrU6xjpNVWlefPYLiR1zpLu94fbVJXEYyOMOuzlGuxZjGtrlMa5Z0C5a/qP/5H/F9777HZ599gnb/g5fOJYR4YFJp9eAkYRyGhOuqlksV1R1y+3dPVevXlI3LSpHtpsN3e5e+II50TQNtjGEPhO6DQBN2+KDJ0SJl9GaZrHEqIQKI3e39yyXK54+fZ8TH6TIaS1jEq+1MWSqesGu62jbitViQYye3faelBLtosE1FqUVtnJko6mrFqOlgBtKV8tVFd2ucOSMdErapqGua5qmpmmbGa4qJtYOax3DUAyhp17xQUPgixy/UZIhAS/40aOtwURLnCZsWeInR2N9WMV/IwifAvFDI7i3HJMPnn+4Ub8pn7WvLmW00fNCmw5cvbuu2yczWeBZ0zJ9uBkcLtJybt7xc2YilP3KVnT5fdM09H0/qzVN8r6U67C2VMUPEiZVApgpmJwed05aZ7vdjmHoxQq+rqiLB8ju/o6cRo7WLc4sGcdYguaMUYq2qthOULE0JRklvEgJjC6LXdmskihQLZdLIeGnhLFyfyeXbsil7SwtxhgDYz9ydX0lwZwCg0UrQxUczlh0lsVUa01tLdZ2hCiul9Y5Rj/SdZKYCY7WzNUnkITMaI0LAa8NfddJ9p0iuctzNSJlqdrtP+cioVmk6abqKDHMbXGVJxZHnhf08snv9+Q8n3APa8h5n/HnjNJGKs/ZYnSDNjXKNGjbMg49WVuwiRwUtl2RUOIj0LYsTx9wdHxElxWUuVUvlyyWC+qmEV32L/Ehw784NJcuoCQZI6PK+CDQIGMNY8pkHxizcF5yioUblEQMYYC+H2m9xZgsAgahgqRRGVLaYFyiajJVFWAXyTlIsJAlYSGKb0UuUpCy+01hTJ6MGyTRyBMsSwwYREWsQLNUkiTDZLAFGjdJ9L5ZwdZJOmelM6WMnhPanKWFL/O9Am0ZYyxqSdJZED8Mi3GucLhAOzPxmcsaXBIX2EO1Slcu8/qaM/Ma5kTjwEdGTa7lRd3vIMnwQeRp+8FjjMMaV/DKNbkkRtZq6sqR0VTOUFkj0BCjsErjjEHXQii3VtTEUi5fafoeYs6zVPqsDVQSiynxFzjiYTKQDmfur12v9x2BXzd2/5ouxFvP/9Wv+cVPAhy8378uO3iTg/HWY/x17/JLcEzd5ZJSzrM1C6xPFTW/qSA5GYxVVYX3HjtaCSgxaDQqa1RWxbxxv69POPzpjkvnflq/MhCYNgRjrAhqZhFSSSmJa7jKhAxaGRFzGb2QnFctbqwhT5DeIsU7+XRog6sqqtriKkWI46yw1/ed4PGVzKVYiqgJ2aOVkWJEvWrJQOwzasyk4Nne3dJtdlT1ggdPH7I0K/LVK2zl8CGy7XqOzx8Rg+i2DUqzPDulaReMfsCkFbvdDbc3F1wMnWyFKTGGQLofqGtDXQmEJ4ZISLGgMUo3tWS5KXqCT9zcXNHtNuQMlbOFkC37b7/borQtQiAjtrJYpxmGDa+efybE6Zy4+vxZ4cXBZb/Bho7l8RknZ0uWqzXtas36eM1XP/gWry5ecL+743ZzKQ7hwaOyxhqJjVRW0s3WYmxqlMLVDaujI5aLJbe3t1xdXLBcLjk9O+PzqyvGscOPPYpM2zbUuuKuv5uT1KquGYOf1zVjDcvlgsoY8INwaZsl6/UxK6vZjgNjCIwpFiVXsK4hbwdJHFxFFwd2u534iNWGtl7Me1QCKdzULSonnK3BZOqmoa47QGFNNcdV0sGwWCu+MkpN3IuCLEK9tpb9puvgF04yxLxJQcj4cSyT/aCyokpdPGdskeucjmkznQLFKSgbenHpnnBncko1dzjexExaa8V4LfiC7dvOvx+GYd7UQwjQ79fkq6ur2RFc1qNp4+Q1jw8tBdD5EMiAKrABPb+XQyWW1ytg+wxPXHGrOVnoun7++2l5rBvBIS9WK4wuai05YY0TJSJko10uWmKMbDf3rFcrttsNfbcjx8Dp0RKlLCkn2mXL0G+5vfYcH63wRhFTJnkvAdV03eUCFILdTpHZ4yKnwtHQolzRNPLadVVhtDxnUnea3mdKgbH3givc3NGulsh6kum7bv58L16+IseMcYaHDx6x63dUVU2IiRAzMSccjuVySV1XssCXDpKoWRViXNsW+dnA9n4zYx5XyxX9KAllnHdT4VKoItvpbHVQ3RXfFzNhoGDGJkrxRBfspnTOwkESqpUmF2Man0X6NKPJKmN0hXELUjLc7jxPTk9RVcWIQS0a2rrBVTWroyN2fY+tKlZHJ9zd37M6WrM+PuLJb/025w8foozm1eUl2sicMvbL38mIsVSkFRgjQfGuvyeaI+HPHEIPc2L0kdpaTNnMFbYohETu7zpW6xZnMqhMDDU6t6hck9IVTSWSqc3G0Hce8BgrkLTMpFYkhHqFRqNFvhGLUhZrFMaOmCqhsRjEcTxmD1EX6CWQpYqZtUCsUt4T/d5KNLKo2Skt6lpKq3m9FKlYRVVXtE0ryX/wdIPGWYOzUhSwzlKlCqUM1VKhrSKkKLnzKOpqtauZA7GcOTQcm1y1lYKkMnsfl33BZ1K4nTohU9AG8py+69lsdnS9Z7leioJM+cpZoyqHRVTUQGMrx7KtqaymtgarFL1WWG2oncMYgS1NsuZZyQYnxcwCh8qZRHk8iUy1vKsiksCURjF3nPeB+dsl/P2Gmb9Q9C2f369+4vT6h3vEv/rx66/9zet6M8F4NwyonOtL3ckoY1kllAbnbBm3kTRG6rqibWtSSozjiA6apm1mGXFjLM7WGNOX9V6Rk4KiHChqlcL1mkpNWUFSEsBnLXDGHPM0yERhc44lVDGSFo+HlDMhaO6HxF9tv4+tLdppqlVD2PSy9igFSmOtBLsxeqxTDOOOi+tbchRbAAUYpSElIpHkR7LIGYLW9BEqrYnDyP0vP6VdtqzXaz762lfxu8T9bUc/BNp1y9V9R7Wo+YO/+/d49eKC1WrB0dEpy6NTjh5oQsxcbnf86V/+kA8+eJ/f+1vf5qjOfPr5L4la8fDxY+7vJdgdx8hJvSQnxTgkmrqlC1JgtRiBNhYPnxRCKb4OWCtQabLi5YsX5BAJMdD3nZCcjUI7g3aaR08eMg4j/9X/5/9NW1XiN7Ld0LiKRV3RVA5Xt1ROc3J8zNe+/lUCNV/7xld5+OCEf/ZP/zG2bfjoG9/g5PyEFDx3N9fcXF2xbpfc3VzTdx0GOD1es1qvWZ+c8PnLVzx6+oTz83NevnjJq5cvqD/4gP/sP/s/8Iv//D8nxI6+u8GokWVV44BfvHrBo0fnVJWgLKrqhM1mQ7fraJuaRw8esF6usMDz58/ZdR0/+vGPOX30gFxZMBoVPHVVM+aR66sbjtbHeD/w+Wef8/77D7m9vuT27paQMr/7B3+AcdL9sa5muTrmaLVic3PPcmHnhKJy7Ywiur29RWtFiB6lE12XRF20brF2sloYxcxPfbGuxbuO36iTkZNU6Fxd4ZIw7/2wXwqnCtmU9Rx2LIwxc+Jw2MWYOgx938/JxOHGrLWm7/t5wdRazzAAP/qiEqHwYxDpRiWKNSmLfaxCCRGq7EBaNCMLeZFCSOedG4xSr/sfvGshl3/nRxCsruBAt9vtbCQncp1phnZNRF5rLXXb4GxNSsUbYpKtC5HgPXWBEZEzi7bh5GRNXdUsl0tWjRM5vBSo21qqnAqCH/FDBylTuwqqispVGGWxxpBCIbAqDTpLd8AYhuCLoztcX12x2+0IXuAr49ChVIVSFV3X0XUd1hi6rmfoBAZUN0vWZ2sG39MNHXkc2Q49wxjIIdNWDeQ8d0fquqZGcbfZybVYB0xSagJPM0qz2+1e66zEAtsSKU0/Q9fkg3vz88zzuPKjBqqphcSkGJHzRODUKCPknIgi5kltxBBNJUIFUHDpco6sBdGtC2k9KU1WDScn5/zO7/wun3z6GR999av8/h/8LXZ+FP4JULWt+L4oca198fIFzWLBarVifXoilXSj+frj97i+uSbBlx4uJdKRSLAoUlvCeei3uMUSq2Vu60pj2opoMip6KjspYiTBqhoxvxt7z9BZjB6wdocxGbwiBiPBqEooFWmXhuHSk7LHEGVjjtLJMrrBaIHwyPwpAQdZ5Ii1EL1R0iywVlE7xTBmQcspjaZB5wadAwqPVkN5v69zaEII6NINmIJ5Cej30LwpoDdWAhqVVKnGWpwPBN+jlXCpQAmkogbrpMgz+oAKULt2H0BrRRwnL5iE1o6co3TfyFilSgVYkbKo3xxuK1N39bCTLBLbA/0wsjpaYK1AopzRxATKagyFu6WM6LS3jsZprMqoGMkxYFyNnbvQJSErineybCuEl7bnU8QUSVmMqUJO5PI9ShUpYGQtfi3B20OnAH5VsQimgmsund/EZNgpz93vb9O6PEtQw7y/HcJ+50ST1zv1bx1pOt+0r2ik1Ta5gTBvOIfXMX1Gh99Prz09Pr3+BCv7sh6/KqGavoZhIATPOI5z0XLaa7z3dJ2ZTWS1UWQihxKgYpAn6o4oPSeyWUoDU7MTw+uf5aHf1DTYhPAta7Yo5mU2245m0XJ2fEawPbvNhm63o66dcAJTQmXF9fVVGa+KqqrFm6wUKZUWCFfKInKzn8syTxfNkuPTc4yzxAzXdwMpaNrTh5wtjjg6O+fo7AQfA5+/eE6kYnX8gA8++opwo7QTzyLjiCmxPj7CVi3VwrE8Oefo9CG3Fy/puh0KzQdPn3CzuYRsaJsaYyqcE7lpKGp1PpMDMo+TiKP0fVe06DR91zN2W5QC66w4X2eRyM9Dx8c/+oEUFP2Az2Xt0KqIBUVCUMRdh2oH7m+v+fwXP2PbR5798mPq2jH0W5aLiqZd0g9SeP13f+cP+PpXv8J//f/7R1RNy+31Fc8//Yy6EnL91d0Nuq7Y7u6BzOgHXF2hXcXl7Ya//Yd/m6QS16+e01p4tb1m4TS/882vcXd3w1AgUzkllrXleHnKer1C5UDfb7DGsjxasVovUUoxkun8iB+lEOSTjO/lUtbXtllT2WNJhI3l6OiY3/7db6ON4367pdvsCLuAzmKfEIeAMQJ/GoZBvIrKPGmaRtbsyrJeL9luO4yxM38EinpniFRVJXC3/Lan1193/GZJRt5DhcSgacIAx+JYmOfGRs57rerDSThtukopkZUtxOfD10ixJAlvvO70veLAkXbCT2ZQ6XV805T87KEBhdyTmX/Oelo+ZHNX8+Kei1HJnv/xrgRjfq037vfU8Zje61Q6er11vd8QBIZQAZkw9IRxlOShGOfZ4odhtMIWpYZx6OmztAxjihinEIN7Q/BSIRQFBSWYZ1eJ78UcPqgycPayfZPnCCSGYWAYemIh2U+Danpv3stCPo4jKRtZUK0joBkCdD6RlCOmkZgCOnUkH7C1Q9d23nxh4qrIZyEtOs0ks5YI82tPiWrOYkg2cVyE6LTfyF/7bErWMQV0cwZS1KEEgFOCEG0KTEQ+s6gmXwFLrloKLJyspapurEU7QyzdlrppqOqGxeKYs/OHfOV3vk1oFjz58EPOP/yIpu/xqaDGjSSbWmmSjww5UzUN7WJBs1rR+QGlNe3REbsQCCm9Nc6+bIcUFcq9TUJoVGR8GKiJooxkNdZpbBKXXELGavl8QummGSVePSlKR0s8c3bUeiyVxizdAZ2ASFUplI4oFVFKpGfJkZzFzK3UHorfDogJpWySWmWMygJzImF0wppMLHLdEoA7krJELCpZUsrz2nZIMH173SgdNaXEPLJAJqcuA2of4FsjXjDBR6myFiW1qtJUlcJVCh0ET5xCPghCRflM5obMMWMUPhRy8xwcM1eEjZnWzBIsHXwBc8d49F5ku7WaDfCsmVzOFVaJwV5WFlc5mtpii/LfJN1tdYErMGHsC+S1fElDUiq9E4Rx6lyI6pgkGSU9nf9+gmYcBqDv2hjfxdUoN++d68mUgOT5OYeNgYnp9vaR5/+9+3X35572hgOkwP6PXitq/cZHLh23f+0uy7/dQ71jTO4Tqz3JW6qwaobfipxtgYZYi3NG9vgy8ZWaoLKyFlASiik+CKkUSUr88K6PYIbflQSBEq9Ma0XlGlarYx4/ep9x7HiRn7HZbYt6XoCUMQVepbVCW03bitTpbJ5b9pCUmJPvTCan4nGTMpWradqW3ge22y05Kc7WJzx8/B7njx+zWK/YdTuu7jfkqItMvPArYhpQyrBarukH8WG4vWkIvSFmWKzW3F5dzrYCtTNEP0oX3xgqV5MjaOULt0rgY2pOxtU82I0R1URfPNCUBp20AMBSkmKEVtxdX8pe7weIk6R1EWyJlmgyrsjP992OV8+fse0GUMJjW60aYlgA0PVBFDWTAmXwIVI3Lav1EcY+l7U7BYYQOTo/Zbu5p9/15CzJalXXhJA4PTlm9B05ihJnjJGI5Wj1gO32hhglXo4k6spS1w2Vsygt8PJ+GGibwoVAcX93i08B8XMt66KBnMXyoHKORduQ8VhjQYHRhnEcid5jMkQfCKMneEkw7IS4KPK5h1xXa3URw6kZx8C+wMvc1Zu4g4cx7G8CmfrNk4zSEsyFV4BS9EOPM0L0izEK3CFnxglWVf52miBT9+Lu7n4OxK01UrlKqcgvCs9iCrKnc0yB6LTszoG8VvhClNVl4+YAJpOV7FamtNynhcQaCbJBqpQTr0MqH9VrN3MPe4BpdZmSFbk+5scm6bzpumFfUfJeJl5VNUQrmvh1lVksFhij2cTALiep9heoUtOI+sA4jlxfX+LHkXH0LGszByPnjx6yXEeNZhIAAQAASURBVK1o2wYNHK3XkDLDruP46ITbza7IVerSHtY4Z8l5nK9zJl+W+7rb7YhBPq+2bclZkgvnHCHIJEk50y6XZG3xWfHZyyvud+LkfbJek7UmhoF+c0fqe9r1gvXpCa6u2Gw2xJipmpa+4DG1NvN79T4Qw0DbtpKYdh3r5ZKgFSGKp0Df92y3u1L5kM9Z1veymJXgSaTZ6vIZadAQC4N0qhBpVxWzeg3azlXVbCxqeVoSXME+1ssFTduyXC7xwXN8esrZ+RlPn7zHV772dRbLFWNIfPi3/oAxBK77gV3MVG2LsY7BewKKShvaZcPq7BxXV1R1TTeORCTB6UPANi25iAh8mQ/vPTFIVTrG4u5sRP7YJI91Dm0NzmmSdmQHBIVSvmwmUk23JgPFQMmP+EFBvqFZ3JHNEoxgV6Xw4XG1E5UWJSpOQtQU9SJVEhapYGa0SpCjeP6ojFMJp0T5hJSJymN1QNmE1gFjizpYsvLeIoSiJBJCeNu4SO2Ti9dUPl7bAASfPakYGaNxBiqdMCaSTSKpDEbRLixto6krRR4ym7jFjwHvZX7YqIrM6YRZn9ywC3+umFjKJQpHRimLtRN0ZF+Vn5L6EIJAV2MgkNAWlMlok7CumFwGSzbShUCJV0HbVmgVxSMgRpzWNJWjrhwoSZBiCoXfNMmXT+coCQ+SZMScCWUfKumelBNy2SSLW8rhvvGrEg14O3E4TCZe31S/aID+12/E7z7/u5735vdvC4688728+RrlBF/uXoYchwiJab895DNOEJFxHBmGYQ6mpgpu01R439A0NcPQS0JdPHGMLsIUSkkgiwJj8eNQEnLhR+WDDtf0ulNMkjPkCJHio6Mkznnw6D2evv8R3/rd32M7bMj6z7i+uybEyVwYnLaoLEGkQnF2ek7Xdey6jmEcREK+xFHkXPYzTQqJbteRs2a52nByfAo6ojtP1I6j8we8/7Wv8dVv/Ba7bstmsyGhuLm4pNtu+dnHPyWOgbu7e0KInJ+c0fuRo5MjPvjah6Q4olVkfXTCZdXirCOFwG57xzj0OGepbEXtpJsxjgPD2MlcTgaDFQ+cJHLf0v2spYDkx9LRTSIgBGRpfWCdIQw7og8MO+kATIfKEGLAUrFcrTDO0O82vHr+Ah8iVSVJQQprXrx8TgyZlAxNZXn14hV/8k/+MZvbS95/7ylnZ6dsHp4R+i3eB0IMpJy5vLqk63pW9ZK6bVmvVzR1RRo7Kp1YrReouKPSFY2T7o9zVZHwbhiGcQ74U8pUlSWEwKvLVzx5/JiUNMEHXr54hmtrFqsVy6ZmsViREmzuO7Z3O0BhbQUYXNXQ3d/w3e9+l+PVMU3TcLJYsduNovbpHIvFUorSJfYci7Lo4bwxRrrqEtNFdrsdTdNKp6/wsKeGwdSB/03goF84yRiGQTTolcZZh9Yy2VIUM6g4BmlfKYqiw56lPi1wkyzr1LmQzbVgtJlalXLIoJTFXut9FXruEGRYLBdMAeIw9MVcRGGsoWlbYgw0Tcsf/Z0/4l9+51+y2W6oXEU4SH44WIhjFjnWaWBYa2bo1mHLWak3F/3Xb/aE6/fes1gsZjMgZ/eQq6lqOW1kTdNIYlRKd229EOKOhspVkmjUNUfrJa9eCXl1sWhI41CCkczPf/5zFssly+WCk6MjNosVbV2zbBrIqngBZIKPhAKdaJoKrLT9gx9x1ol6Tfn8rq+usdbw6NEjxr4j54gxmuPjY1E8MnKvxyRa0cnWbLwlulOaRc3Tr3zEk7M1rcnQ3xK2t9K1cZZffPqpyNT5wGazAS2dFWMMwzCgtaZpanb9MI8XYwzPnj8njL6Y/8U5Abm8unjn2FWlW7HddtRW8fjROcPuTnw4lAJjqOoGYx27vufv/bt/jI+Jf/6d77BaHwsvwxj+6B/+xyxXxyzXa548fcL19Y3AB6uKlBProyOWyyVj8IxK4WNCWc39diOShm1DUJlmuaRdLDhuGsbRo3LG5kwVZWEdUyJpVYwNFYvFkrv7DcYYjo+Ov+iU/Rt5xJiIQQK+GAvfySh8GMh+R92uWS4bqsaQPOSgSV6aTikrfIKYDM4KpME5xTiKNLMyiaRfYVzA6CWaRPAjKfaAwpmMMglFwCiRqE5GzP6MjhgtEs3OSrhqjcHWhhgdWkd8kiDaASZacr1Dm4Ay4nbtR48fRqDnUEb5TeiKnbXJ91yvaV3QRd/cBQmYUMILc85RWU0wBa5XCTxIWVgvLFWlMVaWD114VsPgGUaPrUB6B6LIo1RJLIxGRYFaKlW9VeV6zbysvIdJX30YBqlwGkVVFRu+PAIao6Lw8mwhtKtiXGUtzkrBQWe5otpVtE1DU4vG/xjHovfuxYwrxOKPMSlLyVggy786a2IM+CC+MlpbJoNWpSgCACJxreb2xq9p9eeDqvA7gvRp7/l1x/S3X3QTfneSMdfTyzVPakqHv3/7PIfne9e5527Wl7wjejgmD0VYhNzNDMGeEmKl1AxdttbS77rStUsFnqiZ3MHrupKqc2XkzmdZt/ph5OHpGaDwIbC760nqQLXy4Ji6b0ordJ4UChObzRb0DSFWhNzyH/wv/kP+9t/5Y1LY8f/8f/zfub+5IsXMerlg7AQCXjnL1dUNIYoxJ9qiXSYbLbLvccAZg3M1J4sGo4V3Mnb3fPbpz/BJ0QXF3/0H/zPWpw/ox4G/+N6fc356xtF6xb/ze7/H7v6CH3z/+/zZv/wxtzdXrBZLVk2LTXd0Vy/YXSXunv2A5ckJxjm00dRNzePHT/F9T7e5Iww9ozHsNjuGIRCRtWXb3WOdpalqVtWKrtvQ7yL9bkfOikWr0MZJAZhJedQgHlGjELyj4nJzBxmsMrSukhhFGcYgoi7Bez7//DkjicViwdnpKZu7nrEbCN7y6MkD/uiP/ojV6hjfJ16+fMbzz3/Js19eUmnFq2efoohUVvH+Vz4kK9j2A+dPHvH5s+c8f/acYdyhgauXz/iT//YfMfoND85PeHj0Pl/52jd5/uIlu12Hci2r4wfEKKpS69P1Pi4cPWPMhJRxTYU2qvB2PCcnxyyP1izXa9arJZ8/e8Y4Bion3hUhBF68eE6Mgbv7O7bdlt1ug0Xj+4Ed97SrNff3d3R9x9n5OXc3N6SYWC6XHB0dobUWAQRrRWinDzx//owPP/yI9WpFzoq+H8pan6hqEZs57AZ/UagU/AZJxiTDioJxHOfAeWql5+lFFcQwVcj0PuPJry/sU3U/5z1caP59yUxTTLPj4p5knObX2dubMy8207lDkdI1xnB2eoZ1UpX2wYtcZakmlvrcDPWaKiKmaME754r5TTjgZjCff9/ZYD7ntEG8CS/IqXBUjKFyjuXqaJajtNbO8KgpGUspkoPIywbv8UbjKsNi0RSjlYyurOARY2CIgZgiu10n9yFm/OgJY8CZmnH00olKeYZo2JLRTthlY4Rgqo0hJIFhNbbh+OiI68tXhCCqUtO9F4JQpl60ZNvgaTDNyBhgwPLq1nO81jSVZbFao5tSicxiSqiNw7pAP3gSecajx4M1e1KYMsaIt0oI0skZRjbhfn6e/F2YhhCTFOG0waxWS+qmYrfboVIiayPeFXXL+uyc1dERoPnoW98m5sz1GHny9P1ClVV89Vu/Q9W01E3L8ekJ7fGJKG2FILya0o6vQBQqlHA+7rcblLFYV+Gl7y5OsCnjS+evcZZmuRCpzhgxWJT34kieM0fLlcjfjv6LTtm/kUeMkRABNDEY8V1APBwk+FxQGU1jrZhHGiXJq1JEYV+iQkbrhNIRbTI5xSJFHcn0KDNi9II0jsQ0kqJHJYvWEa2zrFXGinykE3iNMRGtBDpljFT6nVW4SlMHTcwKFYpPjMrohSJpLzKWWiB9WgVU9ijGgjmeqseHWH2Z/6rAMBPilUGp2h/Cp2RxzDOUSWuRhE1krJHzmkpTO+n8GAPey3liSviQSqvbFKJ73seuZIE0KQrHTb4mw1VBj+RJXIvJtCqnSCwdtRzybPyHEiiqKT87Z9DZiGoORmAdEwSsrJdaKbJRAs0ycs3CQ4vEIF85Tp9tntEneV5fS/clx9mEjDwp9Ml7ZE4OZvGt/QW8deS56DM95d2Jwr6TPnF3mOBN5IO/y6WcffBFfu35vz4ReR2PM59ifvW38TqH+9GbiYtAdqa18cvbyXhXkDMhJabAaAr807yv7dWmIFO3NW1oGMNAu2joh17MP6OlqiuaRcWirbHOEUPC+4jrOtpmKQlH1+OtLyKFaeZUlRS2FEyncSou3ihRK/LjQNft2G03/PCHP+HsdImzkaOjU7r7DTGOGOegj4SYSMNAP3qRrTaiYij7msZoSMGiMGgMVVXPMYsqr5WUw7mWi5cvudt0VO2KB48e8fLZ51y91LxqazZ3r3j18gWagIojcYQ+9nT3l+w2GxF9iRUpjbh2QdMuefDgEa+6F/RjTzcMLBYLUIrb2zu0djSLhkpX7PqtKGtFhc+j8JtSnkV2VBbkZ1aqxF1phkUWnBqTzLgUkd2MUlBG01YS24zeS8HJamLwhHHElYKzcTWvLi45fvGCk37AUmG1KgahNcu65f72iqEfZsysUtKF6rod1hpOT06xGJENL8USqzLEwLjbcX11BUyStXHuwkYyfQzoMi53my2nZye0ixZjhDNstGK5XAh6xwfu7+4KFF3MGbVS+GEg+EAYRsaxRytN4xp2eUv0kawS1jmauiGWe2esxVpHJMyx82x2nYpZcBZ5f+9DKbSZN4pLb6N5fpPjCycZE84PEl3XUTVLXOX2uEjZASFFQhD9eWPNnoOBdBim5+/5GrLwTUY6MyHSC1mIsrG/6Y8BvAUdmSoaKSXGYZwVW4wxJSkRIrVKFBjAgdZvSQ6qyr0m0zhhOjebjSRVwOTEnAohcH9MTqN7+MP0wcj92yu0tG3LyfExyhppz5YEKhYI0FSBCUG6LlorIWWmirZtqeuKYRhoaifVDO/RVVWUHkY2253gOkfPsOux2tF1g3hkAO6gtayn3VqpglUVzs1QAtq6qXn48CHd9p5xnAy7RJrOVY6uHzg+PiLZBbtgcctEt0v0Y+KT53ccLRcY3dKsDItVSw6RofczmSjExK4bGMZxVtoxaT8ZDmUIl8slTVUxDgO77Y6hExfNlMWoUSqfE/RDxp1S4mK5Xq9oK8X93RWL1oKzYFvq41PO3/+AR4+fsj465v1v/jZog1qf8LWv/5ZomsdEfXwuEpkKMJazk1NGP3J7d8fR6YnoYMfIom2pWlc6UxBLQKmNtN9jzngfgJFhHKmtRS8aat3OHRqjTYkFZdE5Xq/ZbXfcXF9/0Sn7N/KIIRJihqwIwVFZi0GjSITQk3PAKU1lDVlPpHoISWQeVeFbKB1ROqCNyNEK6TeScg86YDSyKCcvLrmlza9NJlgDtkFVFaqS4oOxgnGVDobwQlxFSTIKqZiIMZlsElZlEh6KFv4QPSqPkD0KDyXxyRlSnmBHoEvxRRVZ3JhLkpFScQqX4Fu4YxI0S4FGeBTWaiJKCO4KqspQOVPM7RDZzJQKlFCCdtGTnwQD8jyupgSCnGdeilbFhE8J2MhoVbScQHwCpNgkCYAogRmjiy+GKU61pVCDwF4n7sSkFgdKTAgRdTFtpCsRi2SjL0lGirEkDiUJ0iVwKypAJf5AZT1Li+YcxLdnaovnNAc1wgv/IsG93Kf9/5mTMEV+TUFVZTV9sw/c8/Q65YeDBEN+ngixed7EXw/651B1/8hb16vemSfkvA8K3skBApFSJ739x1/C4zD4mTiCU4I/4f735G+RVQ8x4BpLEyt8bFiul/RjR8rSKWgXDctVy3K9YLlY4oeAHz1DXVPZhnEYyT5SO8OYIyGJbPlUeFTKSNlyGutypbLfWkMMI2Hs8MOO7/zpd3AO6ipzdHTC1csXxDHIGmEkTgo+Mo6exWpBbRpCDDIOS9ICdk7ojTG4qribk+mHUZAdiwWf/OxnaNuyXB/z6PwBn3/2S7abe2Loubl+RWUNbe2oTCYMWwY/cn93J3L8lSPpls040JTi13q14DM/sNlt8MHz4OyI3a7j+uaGo6NTqqqmrmu6oeP+7oYhjZjYgUpSeNFW5rACQwbNLJOvynxWJeAVLy+RqBd/Mam6WGfFP2wcGccB7wNN1UCO9P2Oum7F2K5u+auf/BSU4eTomJP1UelswWLZcrRq8P1WvoZBeKYa+n5HIuNczfn5GbVp2W42GK2oaoNVNUYp+t2Ozz9/xsnZOYvlSoyqtXQNEzCOQ4HPZe7vNzx69JiToyMWTcWr588wJbbp+4H77ZZ+GElKsTo+om5adBG/ySGSY8L3Pe1yQWUd95t7iKIoaE1FUzeMKRJVxlWOdtES/Z6/CrLWSrNAFCvbdlFMgnsqV5VEQ4pi0lzYKxD+Jl1a+A2SDPFJkN3g7u6OFYYQQ1HeUFTW4oxje3dftJolwK6q6rXEYDIUm1rur0OnDqr+B2/i8OemaeY3OvlfTOefgvMcM1Vbi/lI3/Nf/L/+C8Yoiw8JYkjzDbRK7Umfds/HUEqxXr/uOl3XNTFGNpsNIUwt2qn9LomAc7YQzixVVc3vzbmKumoKoUhczrWxtIslzaIFYNG20DTEceD29hbIRRFj5MHDMx4/foRzhouLV4zjgHOC61utVrx3esroAzd3d3Rdh1KKcTcQopjI/fLTz/BBDGbqSqQtcxaYlCvcEX1AyAQ1y8Y2dc2jR4/45Gc/xTnHYnHEyfGxeFtYi7aWr37rG1zcj/zkLz9hmxqqozOsavj4xz/kk+cbQhhZNgvOT2q6+y3b3Y7lconWhhgzo49c34opT7fb4apm7pSNG3nuarWiaRo24whKUdc1jx8/Ln4aela6kNrBVOaUj+ju9g4VdqyXFQ/Pl4TQU9Utx48/4Ovf+h0+/MrXePTkKccnpyhXY2zF733wNawpSV1T89mrF/TbLSEE2gKDs06I32MMuNphTMsw9vSbjhAC3a7nwyfvg9YMpTsHiA66q1hWFaiMj57N3T3jMJBT4unjJ2xubxh2HaOxbJVi6Ae63e4LT+6/mYcixSALVQBDhdMBZxW7oWMYAilojI9gBrLpiSRsFpUloqZWGm0y2gRS7tE6kpSm9yMuRJxNaJvRZsCHgXEYqDJoEzFNQzw6xq0eoSqLcooUOyo7YE1CaYutWpQzaAdGW9rWYa2nckCWRChaIdaFmPEx02083W6k7wd8jOicsEpjTY0yNbPhVgpSwVMSmKaUCElMxIzaB4FTIiCGmgqnDVUt/hND74U8rTRVbaispTIiCRviCCVY2nUZ23l0Ba1HXO6ZoBvSvTRkWquwiGq2RaFCxBiLVfJ4xksQnDR+BD9EfDcydBGrHY1TaCwkB9micBjlSuVV1nqdc+HxRVQuHe4YqJsKnCKqRA6eoY9EH0hhJPtx9luSDRrQAsvUxlK4+6J1HxQ6lvtalMByppgeCr9D/FH2ne+/bpzOPROlSoIiRPU4X5B4dsizijt4kuBHkrKSPCQxgRSVKCHtqgKhmUtw0x6pmLvY++/fht7NlzA7j089Clm75XfvCgTkPqgvcZIx3ZOpIDeO4wyJqqqK4GVgNHUjv4uhwJAjWiWcVfS+Y4gjSWWOTpYYqxhORvwwiIR6U1E1lRi+NoLMcNqw23Rs77eEfsRXjhwDwY/kHItipS53Vh2Ms1JdUMIPS9Hje83m5iWL08eSaOfIbrstnc7M3eYCayvee/qU9977iP/uv/tvCxoiiTO4nsZXojHCEQxD4u52Q7oVGdPTszNWx6e4ZoFtV2x3L8WrKkT+6jvfYbmqWFcGu1wS+5Ht/S2vLq+wyhP8UBAViRih7xN+9LSrNVcXl7x48YoXL56zXB+xPFkLPG0Y6YaR0Xsg0Xc7mqrmP/6H/0v+6T/+p9zcXJOVYjt0tEdHnDx+xO3lK9IwMvqRyjkqV5FDhCGw3XnMakmzWHKyOubq8xeE0QOOTOLJ0/f58KP3+N73vscw9PhQeA9k0jhyM4z06YaTIXB0csZHH31EW9c0tcZaz5997/u4qmK9XPGDH/2YB0drnj79AJ0jt/2WMYyEFHl4ckROGT9Gbu9uuLvbYJ3l6OEZJ80Rq/UxD87Pcc5wv9twc/OCfuj44L2nrE9WnBydcLe7Z+h6QvI8fvCARjviduTu6hodFT70PN9uuLi8pmkXLNolISv8mPHjjvtwz6JuqKwREntdobQonz0+e4wqAigXL18RgT56AhmMJvQjTV3z3nvv8erVK6wVx/AMVHUjlhEhlOVpojbsKQUhJKoiazvxjH+T4wv/hXNVUfKQn4Uhr0qbfMI0FjfXqkJpxTiMRAonIxWzvJSIBzKcUxtzanXOi0ghNeU0af/IROq7fl6M54Ct1Ap0UQtKKs3dkhRjkXkTR+aUEtaZuYuhDwLRnEUeE/at1ynJmEicE5xp6lTsSYVTdyVSVbrwRIa5W7BcLsSFscCxmsUCXeThYojoVpiXU0IllRdJhFarJXVVE2Pg/v5WEivAjyPWOUJMbLue2/stu64nxMhyuSDErmhrS0CrTRb5T2vYdTt5fwivRqnik5HFCMy6imwcVXHTvrm+Ls7ae4d2GQfiYKqtQIAC8PDph6yOn4JueP78ks7fc9+NjLEh5mIbNJuRiauv1rrwV0SS9lBAc7laiZdCMZ8RqNRAt+vod524bnadZNxSumIqJE5ghnH0sKow1mFdxbd+51ucv/8VTr/yLc4eP6FpV7TtkpOHT/EZYoaQISuD70foB6zRnJ2KfFzO0A0bURHKiWbRztA9XVUkDMFo4Y3kgM4GAxK4GQm+NDD6QFIJHKyPVgydYegHbm+u8UMvBnRKxlNjLcvTky86Zf9GHuJ4Ll3RCVYpc0Sx6zPjmASSlwOGAQigBDqlEUJ2zhIw66TIIWObGqPAj4EQNoR4QwiacdzixwFfWs45i7eJWaxwq2OwlqwzOipQA0mlAqmyZCyxdE/AStCcMykMkEZM9sTkySELnKIfiD6Ro4JUJP60dAUmrtGk2iawI1nVfBgxygqXrQx5gWqJRGWeOg+KIrNriCaiStdU/Gt0cSYu1b9S+wghEEYIoyJGi0LPPDelpZMxA3c0+/VcSyVeHZTshUsXUGhG74UDl4Lo+mtQCUmKculaz9eU52Aol45NLoUMrfad4mld9d6TQiCHUDgW7wqsi4CHmsjx74IGyXqe4tRRyvy12UVm7ii8ycmgwJAmou0ES8r7pX+6kwffH/775vd/zfHGU991D/bX9xucdr5PX3641F4Rcd/pFmiUfAoxmoIQiIxREufJlG/RLFFZY5SRJN44xmFgHEZWywVNW1O3NWEM0lUU277CR9Wi5kNEG4Vxhq4fSIliBiljb0oepyPnxOgHrGlAgfcDNkpBEB0lmS9yus4JwWq73fD8+TNOTo4BCopggrSIgR8qluKaJK7OVlT1knZxxtmDx2A0XRhZrBaIq3XG+x2XF9dQDPw2dzt83xPGjhD7otYYSKEI/LiKelnTdR3GWpraCbc1JaxAUdjc35NTwFnNMHRUztLtNvz5n/1LdrutVMKNpV2sGMaebbfjvaePuHr1kqHrSFbR1CvxNzWBTRdpqgV13RIGL13gnEhevJF299d88vGOfrMlh4hOCq0M0WuyNkRlWB+dsFwd0zQL2tpS2Uz0HS+eX6JTJI8jXbon+oHNfcJ3G1IO7LynaipOT04Zuq18RhliHsAGooKbu1vG3cDt3YYXF1c8efxE+Cp2xdItUVVL1g6lLOvlCodiyJlGKbrtHZsQubq6IsSR5WrB2fkZVbNAsNYGHzNjDEQf8IUAr62hso62bqjqSj6bG3F+H8eRzWaDtpra1lRKocs64b3n9vaW09PTea2tqmoWOuq6jpzz3BTYF/336JvDRsBvcnzhJMMWFQFVAsIJmiQ+Fft2r8isajGviUmAEGmqxhT3y1TwLDnPRKyu6/ZKUUqVDklRaUj7xd7HMGNus+xd0sphwtGpOcjMMRacs8ZMfgjkGQ7w2iIwVaZmoC9zxySV6xzHA0WHg0OqXcznkUVp/x6cc0XZosU5R9M0HJ9I50Eccwe0seLvUVpTzkmFP6VE29RYKySvfrdDKdnsxnEoAYIhYri978TYRmkaLElbco5EMpUR3HatwHtLmBzRyVIFLK1cUT6oqOqGWNQfck5stwIXS3GPLwewznF+fg5aNnxtNCcn55w/foxxC6rmiLHf0I2BkLJojOdEjB6FaO2HIJKZi9IZ2e3Ah6kymDFFrSGV+x9DYOg6ttst/XYnknvelyKmqNCkfKi+kgkpCi+ibnHtiq9983d4/LVvcvqVb1IvjwQzrgy2WRTtzIgfg0B1QiAGz3LhWLQ1xmjGwbMbOmJRpaqcnfHc1hgmHH5T1cXtXbYBp8VVc/J7oVR4s05YV83jZtttyZO7ubOk0Red7C+347ckqZEcpUIywRmM1oxjZhg93vfkPEDeoYjYvCAQSDmI9GySOQLSftbZisJI8MS4I4Q7vFIMwxY/jgQfytMbIRi6BaZZgTHFJ3ckZnHN1Tlg0aSkCPH/z91/P9mWZfd94Ge7Y65L+2y5ru6udmiAAAFCAVEYaSTNSKEIjTQSRzGjiPnrxv42TqMJihQpGokOhGmYJtr3q6pn0153zHbzw9rnZr5CN9klEgwUT0S+l+9l5s17zz1n77XW10HWMr1WZd0KQ0eKe3Iaik0ghJBJPhwSw1WWAlgV2+msJ7pUaXQOKGIqNsyTPuGOQmO0Jpb1Spa2fNBQhUKlm7IzpgYj50wKknGhUEKXGgMhaBnIaHVY54TWkcsAvIjBy4fSd5a+09o+mUtEhDoia2EQJ8BC+VGl+j3QrErTIvN1sQROOaGSWOPqMoCZ8k+894fB0CE+mbfX6cIeQylzIDRJvup0z3PQHKQ02aFnJgTnn7dHHlqqe/SmfPgt9/6813xMv+t/xt77L3Hcb6Y+r8D83mv8gh4/q8mYdBeHAgmF1p4prX5iJ0h9YmibGQqNM47G1VitDvtI2zZUtcPVjtF4nHHFTEHOX4yRrp+DSkI3cZaYZDAZ09SQ/yw3ssKSsKXhGAes71FKpu9KZawz5CiaipQzw9AT4jV1XeGDDDrzBOkhBg6yRNyhn85U1HVL266YzY9JOhOGLfPlXFDkGAmDZ7ddE8KI1oqxD+ToUclLVke8x+GPkWQEiZvciMTON+KHQVKxq4rgB1L0aJXwY884OBSZze0twxgkvdsKLWjfWYZhT922oqHQkIzCaGHEVFZhb7dikKEMKXiMkoySEAcqO6Pfb7m9ucR7oVdZbdE4Urbk7FCmpW5PMbYhZ8M49OQgZiC3NxucrWQYMwzUTobLY/BiPJESFQ2zdsbt+uIwMHKVJnWBGCL7fs/AiFHlOlqsWK2OmbUzmqbG1pXsMRmcMXilUDlhDAQ/MI4e76OsjdpQNY3ksAgfm1nd0Pc94zjQK1U0nw7nKpr5DGctMUVcVdFUNaZyJKQmM2WoYpUmFWr8MAycnp4KW6TrqKpKhl1lADQN1e2B2aJLrf22TOHzHr9wk2GsQ8dMIlJXtthARmqjCWFgiCNhCjGbNAU+UCuL1fogDFc5k2M++MdrJxvx/eJ9spmdZtkxygJhdUlgzmLtiRK4+m7NlcmjzhDHKO4mRm5AU5AMlXOZAMgmErNs1hqxpIsl/K5dziWRuevw3rM8PuZ2fcswjLKhiYWFIAVZJnnGihtS09R3PtxVLTCTc9RNi1JGwqeqBp8HmpmlmS9RRrPdbPB9R1VpdFYMKTGOHaQFxIhKSSLl91JY7/sdyaxx9ZyqOWbdGUy1xLiKjYd6eQZpxI9SrK3ahmXbSrihyvS9NHemWJVZ51BaM18KLanvPUbLjeGHnllbk7NQwKqqQmmDdRWPnzzhlpG20izbShItH65ol0t05Ri7zBgzXmlM0xLWa/b7NUerE9bra/b9wMnJKU27oO8HxqEnxlx45ZFhHIWeZCzDOLC9XdN3gmLEQd4HCRxMjFFs58Yc3lqYUQbVzKlWZxw//YAv/fK/xfGjxzBfoF1NW9Vobbjd7WS6WsSrKSd5P5qWyll8cRkZhoHl0VG5dhMacWzwQdzJUBmtLMv5kYhrkUKyaupD45pJaKeJPtBvOq72l/RFY+K0YTGfM2tnHB0dsbtdC5rzBbewlelyIpUmIzO5iWiGcWC3X7PZJU6PPDltpGBNJ4Ts8TEyhsDoe6wNKJsJOZNcmTIrRfBbeuWJYc1u19N3PXGMRAKVnmGqhqo+gnpF1gZyxPebkrUQIfdUjISgGL2ntoa2yljtcdmzWb+h210y9LeEwZFVTVIVRI3OutCGLM7Y0iQXDcU0eRQJnkz0YyTqcCh+YoyYLLQpaxQxFE1HQeOsVhhnSV6mpMYYamcxqggpQ2IcvGiSsiJ4z9Arxl4RfMBVpcEhy/o9NSckTMkCMToj+dxi56uyDIfIRfQdI+PQM3R74jhQ2RImSUTlVCyAM64UIpT1I0zT3RRQBc2tnQVENzKlM0/ufUqb0oTfNWtQrGtBhBwGsp4QBinstBI3Hyno8mFf+YWK6nwfvbhDC+6QjLdRjgMg8K+1wbj/dD+/g1X5x5/js/rXe9wvfO6aCeHqQ8L74WBSMhRL9JQSy8URs3pGipGqMlxcNIxDjy0DTB9GvB9ZzmdYW6GUDBmHcaRdzHhYOcbdgu1ux3q7IyvYbLZkH7ATWa4MEqb2VaGwTpNywPseHwLMalJyVM5QV4bj42P8MNLvO4yAmYQg7oopCbqgVJK/tQwZUKbQBiGNI27umLdLlkdnBAyucjw4Woimst8x9nu2aQeMpNATYiKmcs/rjHGGmGNBJB0oue9vN7f88l/6VW6ub7i6usY4x8XLF1jrePDwAWHsC81K9qjrsaeuG957931evHoNKVHVR3z4wYecnR1T14a/+bf/Bvt+xGcJPN1u9pyvTnj46DFvrq8JQQarc1dhmpohe27HAWOg63purm+xekZdLbB1A7qiTxpVzanmZ0S15Gbb4a83dOtn6LzHGUXbLPnS+w+IY6Db7XnywYegxQ1ru9vSD4Gmdhit6bdij2+d4yvf/AbPXv4um/2O9qhl7yN13WLnNaMJmJlhfjzj5PgEbYHsGfuOMXZsbq/ZbzdUp+e4usY1DXW7oG4tMQWub255/vI18/mSk9MzvvXR19jtd3R9x367k+FLGcrp2nG7Xh+Cqk3lcG1Ds5gTxpG+64gh0riaxWIpGsCCWAxFcwLSSFhjWC6XJYU9HPKdnHNYpbmv3/p5Wq9/3vELNxn7/XCHRnhPjMVCdBzveazD6EdqW8mkTcuESRXdRIyxTPjUoeuenDzE8XHyby+LRtlInZXPlVKE8n1kcblKSsSgpogNEwmfcpmQRVIoE4x7J2gchRedyyBPa7G0rIymKXZdQz9gq/7A8wRE3K6UTK+nTeb+UTajoe8JxlDXNWdn58UNQYtlmZVE8uubW9rZjKoSkeJ6uxVIr6nZ375ksZwzX7R4PxdxV4qkErIy7HtSipwsjzl95wxTLwlqzv7ZTm6u2ZxHT05478mKsbvh2Q/+hGF9g7ay+LpkhTLmpVGbdDJVJfoDV4mdZV2LM4ECdrvNW1DaNMXTxtC2LUNI1AaMCnz84z/l1ZtrspnjhzUp9GilmLXNYdpY147T4yOGYSCT6ft94fxpTk9PePHiVUHKNG0lvMEJIZrNZigUKSR2/XiYfmotoXaTWHzi6dqqwlSOar7k0Xsf8l/+1/9HFqslqm7IusZUNSFD6HveXFzw7nvvYoxhd3sLwHw+ZzlfMAT5HaqCWbs4oHUpJHo/4FxF2y4wRoImU0qYSibNMUTGIIK50Y8S3lfXJSckYpRm2Ml5Ws4XLBdLoRbmxOX1Nd1uj7FyTX2RjxDGUvRpctZoJcpfSZreMfrAvh8JCQZ/CSlSqczeJwaf6IeI9z2u6miakfbEEJOXzD0jk0I/7gh5w34XSaNswEMeSCoIIqIjKXl86MVAYH2LrXzhOQfS9Wu6/Z7dbs3JqmK1aJhVCh1v6Tev6bZv2G8uMOYYbecoM6PSc5xSWDQaEUAbk+TeVZ/JyUipOGIFcizTuSLsVqqIz7XGq8lYogSQloewVgPStDDN2kuTEYJQmoyxAu+HJGYIUdbtaR1NCNVJ62JlyxQ+mArVKQNF9EAsrlKeGDN+6MW1JgS0rTD2jh42cbVioWCqDIREGkUwrjI4q9G5GHHEO3796AdJT1fy/HOiwPTSaOQsDUw6bBEKhSEkCDETUz4MnaQRuHMXkgn0XSLzVJBOlq4xFarlzzlk+j8hABNq/rPTJt5COt7aJO60EilLA/eWULvYl09rbIp3IahvUbfu/f3znq1S0+/7M5vUP+fnvhjHfQTjvrU9yF4WfGAYAs4ZZrM5VVUJfXnc03V7NhtD06xQSu6Jl88/oXEVjTUoIvv9lspo2mpOTJnZXGi8u75HO8c4ivbqqu+wztA0sm/N5zOcD3TDKJbcJeFlyvORt0KaGG0U1lWcnJyIQDgFxrHn7OQBKmVefPKSrMUlcxiFvmRKOHAhK6CKpsvUNdZZTLIQHcPgef3qNa/XPd/+jV+nbWqh0LSO9e2G25s3NE6sunEKrKVPdw5tRiXcrEYpTUya85MTun7P69fP+cEPvocxFmMUxIDv90RtGPcz+v2a2XzG44dnPH/+ksoZKmvo9xuG/Vao9jny3f0ty/mMxXzOl55+QFPPuN1suO12zJdzFqsF9aym6zbgNE47ckrc3l6QiRydnfLq8hrvIx7Let3x1/7L/y1PnnzAf/+3/i6//mu/RrQzLtaJi7WncgqrPTcvHJXa8+UP3+G/+Gv/Of/T//CP+PinH7PZDiRdUc0cWkX6/Y4xR4ZNz+bqEh0yKAe6IviKb33rr6Ct4/jsAY+ePkYbTQiR6zdXbPcjOd0U1scenQO1yTw8O+FkKXv6th8x2hJDot/eiqSAxBgSXd+TMSjj+OSTT+mHDsjUVY2rK4ZhZBh6QXS1xtY15My229M0DcvVkh9+71MqbWms4/mzj5kdr1isljx8+PCt9eD8/Fx0rzmzvl2zWq0OrrGS+C1rdFU15fN0QAv/3Cxspxt8KuqmdFZSQmZYIqgWesgd7UlNZGMm8PvOCUohE15V6ATGGCiOIkxNgLrzkpe1844Go8uLTjkJlaAU+ikmgfgp+gzKQ6Z7PuelUC7GLpDFdQnFQVSmyoY00WKEP66ZBsqFLHZ4SiEEyY8oblkpp8Nkreu64o8vegoRbopNXkYSILXKzGZzDHeC9/sJ5ZVztG2NMZYHDx/QnMwJqmY31mST0NUSXc1JpsG2c5pa8977H/DpD3vqylFVoquQYL3Mbrc7NBnaiLi0qqpDVsWk0xiG8V5iqoQa3WlSEk5raueY144Xl7dsu4TPDXHc0DaKxawSx6AYMVrR1DXGTDkJmhCKdWtJoKzqmpSlkMkpkWMiaYFFpckTG7+EZJvE0uVPb2QMgdq5QqNIZK14+OQJ7334JU7PH+KaGg90KaNjcYHI+eCAprU+NJfOinWgilOBIVzzlKcCKYlQ1lqskalEmrjnUNx+AmPJIUkFUh9GEckF71HFulYbc2iu04GrPoptqda48py+qEcswuectAigczFgsBpUIATFMGhCrOi6nnHoISr2Q2bwmXEUUWw768l5JB2JxgGAlAU5SIEcR1IU2FnEmAqfIyl4YuoY4y19JyYD6+tL5kuNq6SRHXYbdpsrdtsLXJ5RscS2FTZ3pLAjhT2kDmNaNBIuFxUYBQYliIYRO1ebJc2WSR00DVgO9Iap4RDXtqx1KbQn/fJE3ZlWToqIfKJ+iDNXLrS7FEvutdJS4E+6tpRJoWgcdEEVEA6z0QpdNBgH2gXibJVLKvpEcwshHuiDKcUDD3yy5zXlQytBjUXfLlOkifI1Pf5EPZnuoZQiysA0RBKYXt9rCg53FHkq2JkG8/rw/VPjMN1nP+vjrU3yF6677+kZ7jNhfsZ++9kG4x4zf/oGeZj7FKb7j/uZJ/a23mQqWO8ajrcbkV/09Xxxj/t0qenfky4jxUTIgZyN5M4ocYUMcSzXB3gfBG1TQg+R4WJk6HfiloZQ/pyrCs1RqMCzWUtVVTjnGDebQs/LtG0DSJhsN3AHhR0O+Vz2TLlftVYslysg48eOdbdnvxsgJoZe9gqmhOxCaxSbd12yMCSPzNU1JjtMsmhbcTQ7Bteyy+LO56PQfnO5Z1OK4pBVErNjSPjkyVFcQa3KVE6yspxrmC2XZA3aWtbrNU0JNNSYg4Ne9B6txNSj2+9JMRDKvb7dKnIOhcLZ0e08eRwYu46js3OIgpgY7Q4o0na7KSYRmZw1SllA9LU+ZUJCLM214/zBQx4//YAPP/wav7HzfPRr3+R6nxl/cMUeL9Qr5YmrN9i8ZrY4YbE8Ybk84uh4x+gjGEfIMmap2hnDviN4Tx5GKsQ9NUbF9dWW1dk5i9UJx8dP0GaOsQZTKZpZRsdITJqhG8lxj1VRco+MDE5iSvS3O2Rwc0f1tM4ybyqOT06o6xntbEFICaMNlIGJtVUZxkgQsXVit6wyhBwxVgbWTdtSa4tTmq7vD2tuKCHKVVVhtMQoOCs6ponGP9kf30d/1b1m/s9VkzFNhzPFraMUekpDGBOohDaKuqkIQygIwt1iO+k4poXBOYcPoq8wduL5SYGZwyT6linctIDGGMlKGhSldQmCkpfQ9+K2BIlhEEvXUg8eNAwgz8dai85ZBLflmDaoqq4OwpjpOUw/R1kYnHPEwf+ZBiOlzDh6FotFsZmtC/dNOHfr9S1tOyvZEon1+pambZktFjhn2W626Jz44J0HbG9vGQexnLXGHEK66nrBYt4yX8z58le+wpvdLdfbyH5MBNNg6yXUc273gfVu4PHpnL/0K3+J3ZsX1EZcBWKMHB0d4Zzj8vLyIL6czv/kGjXloUx2usDBRnaxWBw41F3XYReORdtydrTkx5++xvcj+1GTh1vOH895eDqnNoo0BowyzOYzQpBGddpsU0qolEAb5vM5MSUpxPteboxSQHT7vfzunIhZxFHee7JCHHhCoBt6jmYn+BhIfgSt+Pq3vsm3f+VXGKLn5OgBnQ9sbm/JI4V7qDg5OSnXg2K1Wh2694nXPRUu0/0wnZvV0VHhMma6TtAV0StxsFYcxxGyWJjqrNntdox+ZOh6uu2O2lUH2sjEj5yu/WkRmM1mn/sm/4t0COSvhTIZMimLoNlVDmMSMXi6vSaEOTdrz3p9y2Z9Q9dlfNCEJBSBk2NJ6vbB02opdFNQxNBC9tKwqoqsLVlpNOIOMvqOHG7YbEY2tzu2t2suXr/h/MmpGA/ozO72BbvNc/a7T1jYI2bmnDoLB5u4w6gBZyO1CRgXUVaKPqOKLTYi7seAQpAUDnShO5varFXR48jfMQSy1eRi1ao1B1cmOQrXvBQa2ugDvSORRauSpryKie9DaTAi4mI7DWwCGoNWWWhY+k6TIQQtJU1GoUjFJI1F9JHoR2Lw5XnJeMmYEl44fVhTQI2SvzG9Aq0O2o37OQZT8S6DKyVthCqCeT0ZhRQdWUG+JfJHqnxtjLw/ShXxbXrrXuVeOOLnhfsPv/Tep/eF4f8qjwMV614D8WdF7XfNxD/va/f//W/ScSh+1Nt6i2nwlZIkRk+J8ao046L7CYyjZ7u5pW0qKmdYrY5YLlpiHLm6HKnr5nB9z5dzukF48RjLbDYjA81Yo/woNv5ase9WpHQrNY08yVIcTG/E5DaliFP6vFKsjo5RQN/VXL654MXz1/hhJAwDq/kCpcWQxWhKxlfEGYuzDldZbF1RzRYQNSpoarPgw4++zvLkjMu+x2vFbthB8qgo1BpnLZvrG7IXc5t9t6eLnhwTKmUq40A7dGVYHR1Rz+fEnJjNlrx5/fIwMGiqZjJyI4ZY6p09F28uyjR8pGfPdr8vg1eNwmOVIfiRzRi4Xe9RVQVGM6taQuhZ397Q3wjzQhaOhNJCNe6HgdvNlrpuxeAnab79K7/O8ekDTh8+5r/6P/waR+/V/OlP3vDTy+9zhIYYUKFjdfSIPGpC0Pzwx89xdcPDR4+Yzxe8vLyg83tijhwdn7K5vCKljNWG5AMqGxLw7NlzvlQdMV80NNUZn3z6hrptODk9Znn0hDz04Af2mw6retkbdAVZULNu8FxdXRdTH8Ny1krWx3zG6nhFO19QVy3O1aScaSpHjJ71ek3lDFCRc2IYRurZjLYWB1BbVwxehN+Pnz5FhUjyHh8Di/kc5xzr9ZrT01PqqsK2omOc3F1ns9mdW6jW9H3/VmMh4m/z599kTBB405YpdpmcudodCm1fIHlr71yjpsVgCsu7/5jZy4Tfjx6UKhkbUsCpnA98XaVKHNQ03S+Li/dD2YzE0965Gut0SfssvyjfxaILH1mm3XrazBAdSF1XbLd76rqSAlMdflw0JMagYmIc+8MCNh1ZhpTUdXWw1o1RusuUwFU1jx4+pG0qmrZmuTwiIfkLMuUOtHVN9J5XL9/QVI6qqqmqmhQ9y+WSk6MjHj1+wJQ50rQtV8PAtr/l09cbqD5Az09xqyOOTwzRdGTlOFod8d7jx9ze3LDZbDg6OmISyh0dHR2i5uu6PiAw1toDoqG1Zj6fv+UqNZ/Pi1UuXF9dcWpOOJnP+PbXvsztNvLTF5dc3txy/MjxwaMZD09alpXm5tUbVApYrenDQAgyxdzt9iyXx1RVDdqy213Q73v8MNINgdH0QuPQmv1QqHtaMz9akZ0h9R19N7BczGi1xs4bTh894ld+5Vf4xre+yas3r/nLf+U3ePLuu5im4uOXz8lao2xF3dSHiWpdkBxAfKlzEcJXFftux/HqiMo51rstTVOhqJi3TUEsQhFxKbmRjWXWztijqKwjNaKHIcmCc315VWhgQgE7Wq3YrDfs9juqSnJQgAOMGUNgc7uG9z7XPf4X6ojRi/1zlImiWGMLfc6aijDC9tZwfbHg2bPEpy9u+PGzjyEZlKowpuHk9AhbzTk+dez9yMpElAXfadywQOsKozPtckkYDd4n+hjwMTAOHX5/w82bNdcXN1xdXPPpJ2/Y7xOLxRFWW1R6DekNlbrAsUN5TxxXuKpCqRFjE3WrWbiMtpmkRX8GIymNoGIRRGu0cpIKnDI5KWJpRMQoQVLdZR0NBA8+QTYGPcV3Zw62qTJ5RNAflTFFmG21IlAKy5zlm5OgHZWtMVrjfcCWiawqIrKcZUMxtjQ0WjjZQgNKB5Qg5SAoS6EfiTOcmDUIWiFrqVUKZ4xMQZnoRCWPY6IvhUjWSsAnnQ/Of3dZBpPFszr0BVOjEEIg5kQwkiGSsiDU2lpUsmUPkkY15UROBYEvyHo2/3KNwX0h79vF/L1wvn/J4/7j3kdi7n/9rrm4//2f/Z6CuPwbeNxvMkAoUpMlvlKKZtbSzFvRT5bwyG63hywT86Zuqa3UAJMz5Ha3Zxx79r3HuDlKBYL3rDcd88WSxbIipigZBv3Avu/Yba64Xd+y3uwkmbuqaXxicIFkowipc5B9Pit8yHRjT7s4ppnNmS2W/M2/8Tf45rd+ia99/ets9z0Ez9G85Zc++pC/8df/W/bdHucaTK6Y2xaVM6P3GOWw2lG5hsePHxBCxo+K9979Jn/0pz9i/MnH/Dv/wX/I65sLuttL9tcvOV8e0d1suL64KXovCTtOwFGlydGQvCarhhQcIdZU8yOCrXjvo2/x7/9H/xm//zt/j1ef/oSbi1eoFFApij42W4Z+pK7mHD85Yn19yX7oGUJAu8h+3IOSYcBf+Y3fQmHpdj3f+c4fogy0TcXjh+d4nwgpMeTM8dkZu66TkD0Mjz78KmEcefHpC+bNgqZZsFgc8f77X+EPv/sjvvOnn/DOh1/iP/xPfovoDTPd8vT4jO3NG7brG7aXr9HcUD2c80tf+4j/35/8Ls+ePePi5oZf+Su/zX67JfqR89Wc3as33IZEGjreXL5huTxiOW+w2nF18QlvLl7wj37nH/If/Mf/GY+fvsvy+Jjv//EfsqwUKvb8zj/9B3z9q+/z8MExTbvg+uaGGAMxBE5ay+ATWWvcvKaqLFHB7WaDD2JQg7GCfJTCsp05jMksnGPROD79+BW3FzdsnePo5ITUS02acqaaCz3OaM3R03O62z0qw3K5YFNo+kerVRleS00+hEA3DKhxPFDMU5Lrw6q7bIwJKPg8x+ewsBVeHAVJqOuasWxaOYm1lnOW+aKl3/VEH++4+3lyXIiHx5soV6q47Cju0AqVpg11mkTBtGAKXCismKoSbmAuk6txHJgSPSdXCSEy/1nfcIVCHVhc+TDJnnjOKSUo9l4p35suldc/yW8Prifl8UOIOCc0l3Ec0SEQQsSHiLNWmjCtsXbP4EMJm5HQvGlXHceAQZOMFCRVVVFXUvzGGEpHY9G6FQvUrHH1jH02HD845el7T3n8sOHVT75LPwzEEPjwSx/wkx8nPt0+p65r9gUNgDuu3TQtn7rZ2Wx2mKRPDePklDXRiZSiNC4LrDI4BU8fLDE2cXbS4KzlaFaxqBU6yoRG5UQ2mv1uz2azE/2LdWhlyEl0PROyBKqEckWSNri6kvMYA8M4stntCDGgK8eH773LR1/9iKZpGP1A0844OjlhiIHH777L8fkZ7WpRtBuStTHRwqZrc8oGAQ4N1vTvWdMW9CbQVjUhFnGciI8OTmvejzhXEuwLr3xq0LpiJJBT5uT4hH23P9CkrLUFKYyHgmtqqI0xh8T4L/IhzUUmEWQ6nhIOcNZQa02fIATNvocQHVCTY4VUzpGUAsHvgcILVjJLVykTcyalgHNyz7R2xqg1WiXiOOCcoFpj3LO5Hdlu1uz3W7p9x37TY2iYzzRWRTIRRSDnLYoZBge5YspM1mo80B6UEsRCI5xecl9oSQLzaxVJSnIPdDbluhYUWO7lsralRFTxgJCmsl5NMjWVVXFXUhKCpwQFMgqhEqpQzm0mK9Am4ZyVkL6JPnpAZOGOwnFn532nzSii8MmhKUZiTCISLY5NWSGJNDkdnjPlYaXweDt5eUKGzYSmqOl6nuhfoqNTqpwjNdEYZRDjQ5DBj5aU3Jw4rP3T9+UcD24pqaz9ctIyxTVEhl7pvm/URFYqv4/7+wR3U+lpD8mFvDYNrQrNaaIlCNp0n+B2d27u8jB+FscK1J/5iZ95F/2Zv6dm5+1GKJXXNX3rtI9Rzs0X+/gsyjPp8KYMS7HMlzW6qip25SXLmq4K9c+X9V9cm1zV0O33stZmCZLc7Tr2/YCxBucaXNUwXyypTCreL4pxTAy9ZxjGQ9jmwQotqwP9qq7qcl+J+cPTh+d88M5TPnz/fZy1jENPCp5PXl1wsxNb9mWtigudFHjGWmbzOcZZsoLt7ZoQIHrN7dUVjx88oJ4vWdQ19aNHXOrExzev2O93ZfBpyGgGLxk9SQllHCnv5H5PniF3XL+5pFktWC5W+Jx4+Pgxw35Dv93Qb3ekkqkzq2rxYtAlvTtInkcOnphkCOLqmuVywcXFBavVCfPFnEePH7He3GKsZrlc8WrzmtF7olY0VcXR6hSlFN12x2a9J4WAMWJD37QN88VcRP460g09P/zRx7zzRx/ho0Mlh857FFtgTQhbrPaihegCt9drUsqslkesNztev3jJ2O2x7zwiBqHshxgPNYLabnnn/S8xhCw0rdNjag2x37G7Hnnx8Q9YV9CYxPHRjF2/Z9s3PK4folQgxsAYA5WrsBooWVlt26B0JkbP9uYW52rmzuJcRRgHQhgJ3pPqSrR3UWjds1oQD6BQ+1WpESMxeoacCINHBdli+nHEFhfMmDM5BnQWOcN9ltFUY9xHMu6jhp93UPO5moxJ+H2YOsUJvi72itayWCzIPjOkCWHQBxTkPhdWRHi5JFZOkyuhBiiKkKtQKe4WE7i/Nk5UKUE6AuM43DtZcnMXNeK94kwdCoNpC1DqzqN++vkQI9a83SRNm9chJfytQyYi0mRIivCEEOiYiCkz1DW5vFEpJvrRy/SjaQWeLY80BUgpBC6cOKDa6JJoGsk4lMqMPpDRuLolj5b5asHpoxPOz1te/gQGLxDrO48fc/XmDR+Xm+YOmVJvLdJ1XR/OQdM0b4UlikbDHn5+Kr632y1jN8gGaQwPz+a0rWY/zERPEzw6BsIwkkIQDU9UrNcbum4gpETbSjBfBpkKZ/EAz1kKpJQSyWQRUhstaJRWEtTWVCyWS77+7W/xq7/8K8znc9k4sgiiej/yzsMPaOYzdHlvtDUobQ4LSD40CXeFwMRPnN7euqrY9x05JJplw9h30nTqarq0SvDvlN/CIX12ajr7XsTGSmseP3jE6Ed8knCu6XdPN/fdPTdtjJNryhf4SEYEzzkS86SlUTirqbRmzJkQoOsjSjtc1dJWCyLd3WPkHqObQwGdsikFYCQT0MZSNRW1qyFZSAEXNZXzRDNC7tlvt3T7HWPfiRvHvqdyI4uZpMDmA9VmQOUenT2TWJ0MKnu5R40U/ypXaBJaYAShQymD0g5xpo2Sxo1GhAfFR1/fUTonZCeCNE9lyjohrrmsZVkJvckUGogujZRSZa1S8qFtwjpVmoxIznf8XqUnpyk5jNKFjAUUdEKVgjqXxkJQx1xE1gg1iUxA3NWmmkqevlgxpjStZ2VqnHN56ZnDq1OyTislGeHTupwnYXXOortKgaxE8zJxwbnn3jM1GpTBVComIXfNTyrv1XSvTT95V4zfK9EPzcX9hO/pq7IPlvNE0cEcPpiyFj/TK3x2c56aA/nSNMT6WcfPF3Dnn/H5/cYp3X2lNEXysn7WHvbFOe43F9Pfh4FRTiQkyDaV1+ycKzoGSTiuHTBIETn6oWgkFXVd0fdjycSwKKXZ9wMxJeqm4ex8eYf461gMZBRdN7LfdYeEbW2KZX6UZpwsNU5lHTFlUghE73n88DGPH5zx8OyUEBP7vmN9e8tPfvh9tmPEKg7aP1vCLcmatm1R1ghFZr0hBgXRcntxyftf/hrH5w/BjxytFsTFgqvZnGG3x1WOxWpOCI60zSStIBhUiQYAuWeJiZQHbi+viMB6ccub6zfYqqKuG6qqweuh6EPkXCVd3Oii7PEqJXRMhDiQlcbUNbO25c3rV2hlmLWSDSG0dsV8eUwIL0UjYQ05a9p2jrOO3c2O9W4DWXLOrLO4yuJqS1aZdt4QdeT5q2u++8cvaGcrcTVli1ZrYI3YooP3kcuLG9abHaBZLpfcXN/y5vUl/X7HUVvdY8tIveS9J+WO45NjNtsBYyqePHxM6vesLwZCDrz85Ic0LrFsHU8ePaAfBzbdniEGZq1DRQ/RoJ0TFLhcj3Vdo1TGB+j7rpjYyNCx32/xfiz7kVDtYohUdc1iucC5ml3X473HOUtdVey6LSF4fPBs11vaRuow7wMnx8dkLcOhmKJQXYG6cm9pLib2kJwD3vr/z3v8whXLwUIwCQd/yrWoahEDizi459NPPxUf9Px2WN19TUQZpsnmWFKTTTBiZpIyRmlsZTHa4Kw9BOP54N9CH2IUlACkEPc+HKbzMnHSgBakIIRy4ehCGZi6s7fFLE3JIfA+HGx2hW7gGXqxnZMQsZ/VzUkGxySOjzEekAHnLJvNmlmKDMYS4y1HxyfkFOm6PZOAJJfCoqpqmrqinTWsFjOsyXg/0DRzEY8q8H4sBb9n6D3HZ8c8f3nDpxdbwnDFO8uRkydLVssFql8Tg5yfzWZTAgLnJcperMtEmG5KKJ7Y204F78R39d5zdXXFOI6sVis578PAi+fPmS9mzI9WPH74gOVM0w3iz9/vAtubjk+ffcyibhlDZN91gKKdFVtfWwmKYCvqZsZPn33Cft8xjuNB+6GMBqPYDz2r42M+/OA93v3S+6yOjzg6PubLX/kKOiPuXtfXGKV4en7KYrXk6Tvvst5t2b56xeJoSds2aGVRGM5OzqirCm0M663YwllraZsWozRj8PRjz/X6hpOjYypXcbtd0zSNXPd+wCrDOIqO553HT9ntBWEZwshmsznYxuWUODo6whjL5ZXQpZSDbrdjHEfOzs54/PgxwzAcmksyB8FW07af4/b+C3hEfTd5pgjks8EZQ+sUPWJZvNtvqJuK8/Mz8qAZwi0+ylSnrm5ZzGsWC0tbGxQNZE1Ve4zJGJuxTmOcw1gnZgLWkGMg6ozKDk2SzI0smQxj3xPqDqfnNE2FHx19L1Sr5BM5AHZOClty3GEzxKxLEzFH5xOM3iEu3vK+omsSLZXTRC0alGw0migoRUxoI83GNP+eEIwco6ybU02uJOgxl2m5ViKwropwTzQuRcAJKAuqSlQOrCk00xQLmpHIHmKwJGdLsa4KnjA1AmIjnskELyjC4INMTKM8L2U1WLkny5OSKVmhQPqYCSETvKAgOYteRGsterhi3pCzTH0TCkr+xfgZtyefI7GI0YWmLc9TkVBaUCGdFTHeoQ1S3U0bhoxq1ZQcbyb8RCpApYs25F6RP4np5fdwaCAidzqTrAT1MeWR7jcXUwzJz8MM8mf+dSiaSyPwM8GOt+hTn20w7j1Wcax5+7dNKNc/71n9xT9EL3TXXEx1xmQDPQbR6ymlRN82ihPmyckJi8WC7W5LZQPb7Q6tYRx7yIb9vuPVq1c4VwmyjmYxX4KtSkBsZr48omlqcko8efd9tKvBVKzXaxIKW9eMMTCEnqEbCTEj9iTSdFAQuNCPbP0t/XZP28xISfHi8pp6PsfVji9/45vc7rbcXr7idnvLg+NTjpYrmqpivdkQc5Yi3mpMdkLNtI5Ka3743X/GGL8LtaNdznj63lN+8zf/Ld58+qnQyq2haWZ88uoNN7dbbm92GB/J3pPGgX6/AaQBu9msYRh58fEzfvTsRzQkbIpUSvH++19mt9vT9wM366sSPJcwORR9mxJb8r5HK0jjwNXrC7p+YOh73rx5xRjgl3/51zg7e0DfD0Rl0K5itpyjrOX1qzd0ux3JSz6SqSzVvMG1FWglbIZuw6/82m/SLo75x//0D/m9P/jvePzkIb/1V3+dfrjB71+xThfMmgana3abwN/6239TaO8pMt5EtrHiwcMHVOYRYyfahbapuIye7WaNsYbFYsY777zDp5++Zrve8cmPfsjVH/wu+37HftiKrXoecFax3T7m0TsfcnFzy1//7/82/9H/+t/j+OSUM+e4vbomBVnft9sN83mNc1NQZE1Kib7fE6PndnODqyxPn76LuocqH51YhjEwjAMhRW6ub5jPZ5wcH3O96xjHgZDCoXat6obzhw+kDomRVsl9U9UNlXNYfYdkaK3Z7/eH+21abv7cczLu4G6ZEAi1KZTNwx+egAyuo7icqEIt0OrQiEyL2yQit4Wmo0pBq3SZBmmxV50KzJwzRpt7NokFQdETHUooABNtKaVpwiTuCbl0ZkZPKIE0GLYklWslFC5jpmZK0c5m9FNxWFb9u8n/WwSBt87TAcEoi9/Qd3g/Ml/M5bmVBuT66gptDMZY6mbGZFdZaVO6WQmoq+qKHD2pCJz92B9EwLN2YNZm2npk290S/EBU0O8veH95jFUJP3TMrSquGXf6GGvtwVEAOLhiTed7NpsdNrUYI5vN5qCxqarqcF7GoefFcykKl8cLhtCRVGIMnuvra4gQBo8rlIxxHNls1hJp72q0sfJOpUQcR7p+PHT4Whv2fU8IIkpzwHy55Mm77/D1X/omDx8/pp631E1DJGOdI3aZq+trHr/zlKOTE05OT6hnDS2Ss+BDwMWENVmccIyWcMIU3tINHa7B4Bn6gePjY7Qx+CQN62azoa5qFrM56+364H7z+uIN1hqCD9ze3h6mIpVzhfqViHFgv98frrfp/ZjO9TRV0FpTOTnX2twF5XxRj5Tuu+ncCXetEQ2LUp6UgzSxR3PapiYPjpAXjOOWbrjGumsWq0A7k4mPUaa4zGmcK6LqkAkqkpJloop4Hxj6yLDtBNnIGlfKwzCOhDBgHdSVJUeLypo0auJoSVWFMXNMOkLFEfItZI2Kc0w8w/GQWl1S6VHoQLoG06J0i06ZiJepp1GoXDI1ojqYXB4oN4gwPJVJfUqZkKbsCHVA2+4POd6iI2WFMmCdYqZrqtpiTSbnSIiCsgj9cSo0y7SqCKVVKutahqQE9YgxyuR1FOrDlKJttT2siRPtKWWEUz14fEqSdeODiErJoBXhnthbQ4FyRDyqtT2gxhM6LAMlQVKUUugYEVLG3XmYBka5TJYP6HMKkAMHK94Jd/hsFf+Zpfx+Mf/zKQKfjzbwmV/AtG/9mf/Pd8/hreYj//zP354wvv0Y95sXpsfk808k/6Icwj2/u+anPTmEIK5HwYjhR5oC+BShMAsA2rZl7DeoYpUsbIsARJrWUFVWhmPDnl23EUqz0di6oht2xOxRWpGKQ+RqtSKmxOgDgx9p2prZvCXnIM6AqbhnZnHUmwJ/FQrtZmBqbDPnf/Uf/xYPHj8gpsD3vvtdrEn86E+/y5985/fY7neiGawqtDbsuj3KGqqmIocodBo/EIIjK4e2VoTC0fPm1Qt2+1u++qX3+OlPfsrzT1+CarjdZVKuaGfHfOW9Dxn2a9bXr2kWNV/9ygc4p/gf/s7fOgRr5qy5fvWG1lraquZ1uiTEIFdS7XDVHGIg+Y66kkDD2g/sX3dYLYYMQ9exXC2JKbHZ3pJVzfd+8H2e7Hp++7f/XV48f8Yw9tRty6s3r0vOSWDsOgkl1lrWxBjQVtPMGrSBf/w7/4hsKs4fPeHf/nd+Ce97fvC932HWVnTbS+KwI40DzdGCpnXk7IlxwAdP1oZ2MWO5aHFKcdtds+96uv1OBNBKasHFcsXzT59jTcXDB2cczVbcbG749MUn/PTZFU8fP2XwnVDabU2KmVnTcP7OEX/9v/3r9N2enCIffPAlHj9+wtHxMccnJ6iCMoy+Z7FYMJ/PqeuGlAKzxQxtDP0wUhkngyTvCXHAaBH/oyzn52fCNul7QaF8EKpVSswXKxyaYd+RQmRIe9YhcXp2JongKbHvhz/TREzU+JTuHF7vH79o0/G5kIwU4wFgnxJf4W4hU0qGU4fZymGRnDazu81Aa1UceqaGokyClBIryrJQxoJATEc+/HEH3Sh1R796WyxXFtdDw8FdW8YEdd/xj+Xn7xAXSQ69W8QP7OH7J1dN9KtJ93H3vO5rUpSSQpIk2QchTnkOEmhXNy0SBiZUnoPIMhVBW44oUhG7B6yTsJS6crS1p60C6/2G4DsJKPO3tO6YxilSGhmjLzkl09O+o+VM2oNpWv5Z9GJykLpDs+4WeHHiCoShI8SRrCLaadACx/XbrWgtgrwfwzgUdCJgbSaZyZnMIMPdeAiYKc9UrPQAbWUxODo55cGjh5yen3FyfopxDlUaBZuMIAjFbUoZdfiathZnZJGKRbCmlUXpO+TpPh3u/vmy1lLX1cFZbdL8CNVOYNVUGtxxHGmqmhACfdeJ9e9k/1sE3DFGnBUYdjrX913UJtrapJXxwR+awy/yMWkChFemDnQDo+X8aAOZQPARa+bUtSYfaWJq6EeN2e/RVaZpE1Ud0crea+jBGBFFTxQ10U2U63T0DPvMfg06zLHZYIvFbU6RnAPOaZzVBCtZFykYkrckX4GdYfIIdBBbwKJTi0nHWHWMMz1Wb6RRMBXYGnSNSYGQxIoXndFZkVO5fvJUV8onudCJYrwTXstHOqxV03m8K6QnYXm5r5XCGoV1tjjTRFIqTlZT8V4sxMm5/GwkKYVOwvnLWR0oNilG4lTIZCN6iCyIs9IKZVShWMp7nHLGh4BPgmjEAxqQi6NJIuvSHOiJKnbHtcpMVDEKBUwoV7KuKnTMaJ0OAyX5vnvrcoaDxW1OkCOKCGpKSpZ1+W4Vnxque/tMvr+P/Ku/B6ay/8987d5nE+p///lMn3/2ed7/d8FCfmZTovj5v/uLdHz2dU/vv7WWmJPYthanJ132t2ltt9oyZoVSFmsr6rqWWkYlYhpoZxXeR2Ln2XadUISxqKjY7TeMQZAOi8JYR900WOvKWm2ZL2bs9luGwUl45liofQiTAgpuqTTzxRGunqG05fz8AZWr2HcjMXqOVkvmizlKa9Eklb2ibZ04HqVILHtRpjT3fpTBgtVYq/DJs98N7LoND05XXF5e8erVG2KeY6ozmtmK2eIp9fwJxi5QynE893z1a1/Gmswf/OHvgc4YZ1lVjs2rN6iCPIaUsU1NArpxkAYvJ7LXhP5GcNmijRGWRsIPQtGJJFIOQEU/jGJ8M5tLc6YK5VTLMMRZTba6mAlNQzl7GI5kEte314RsOHv0kOVyye11x+uXLzk/Ocb3A5pcXDkrbGUIsUfsuQMhRnIsDRqZfbfFe0/fiW5VKcX5+TmPn77Der1msVhhjcWHEWcVs7ZitVyIhnXUcu0ljVEGqw06Kz5+9gm3N1eEcSSFfAiUPj45kdq63OsyRLzTwVpVksjHkThZjBemjNS6mpSKK2vODL1Q/1KQwU6OCT1ttyHKUCdGYgmTlniAO4e26bDWHuIbPttL/LnlZEgEeSJ6KXqHYSibmSWX4jcUCKi2DmOlGBJB1V3hbUugjOQIlA005YN2Y9rUDnqPeG/iooDInRD73jo5oSZv/V9O5WYu0wMQsQsTVB4lrCpKwV27ir7rBWxOkSbMikjbiisQd5NEJk3HocG4v5jfNSYpJapKuHKVdYzel641oK0tCyA0dVUoXQljJXNkGHquriPBD8yamvmspZ01xJhlMIemqSyLxnI007y8vEASlGFZeR4dV5yuHArPxdUlu/0OuLMjns75pD2o65rFYnFoLiZdwlR8n52dsd1u2e/3h0I85yxwXFWhNQzDyKsXL/FBhLFnZ2cYY8VBaxzZbLaEEFHayHkIEW0sy1WNUoYYvdCkBk/XS3po3bTMa0szm3H28AFf/uirzJYLtHO0C7G6jTESUiSOnn4YsM7S7TvW6zVZKdpxYLZcHNCRXbcjpYzGHvQmfd8TY2Qxn0t33+1Fm1I3HC1XjHEUmoSCqnIs5nMABj/IdRHFg1zrTN9L4qY1QvlzJV/Eas3l5SXDMPDkyRNev36NMYbVanVAhrTWBwH6FDLZNq1skF94JCMdyhygUOoVxjjqpsW6PVkFhsGjVcusaZm5lsF37LuMMdfoJrNYBtpZQPlG7FKVJvqI1VZ0ETkRR0/OTu6lsWe/61jfBC5e7nHDApMcla4l1VZnjMnM5lYmmalmrFri2BP6mmhn4I5wSh4/xAtQBp1XmPwApc9xdo9ztxjjMNUM5WagZ8SUCLlDJyPBTjmSJy1CWSuEJnlHEfIhIBRKjdKGGDOTS9J0HqcsH3F8AhnkGIyRjd3VNdbkksJtDvktkMHqg21u8L6kfEsbI42erKcp3n3POI4oVR2aGqM1xlmMs9SuKui0rM+9D4Ummw+DdVXoIiEnlFFoqyfX2UOjcZgNTUT2ssbGKIg0SqFjQqk7PSDc3/juPQbSsCoM4EFFspIsc3VASRQTrXbC1/5s0f7ncOTp93/mv39Oc/CzEIx//uP//C+pQ4b8F/P47IBs0hZOtusyiPOMw0A7IfXid3z4ebKVUEgtheXx6Yr9fsMnn/ScnC4YfcLthoJciH4iZY+/GHF1TdvOeOfhO4RS34iWQbILHj1+xPXNNa52tGGG99tiVDCZhFCGU5onT99juTohJPj40+f8/h/8Uy4uXtFWiqNFwzh01HWDSglbOaq6wlUV2ajDsHKxaDEmFdMJRVU7qqYCA0M3gAatDH/wB9+h341Y02LVER99469w+uBLzI+fsllvOV4+4Ktf+Sq/+q0VR0cN+90t3/rlX+L582fM2pb3nr5H2HaM/Qgojk5XnD46pRs7/uCP/pDTxzNmTY3NkT/9w08IvocUqJqG0UvTN/SezXpN3bbM2hYfLY8fP+Xho8dcXV+DToy+Y7vbcXy0pLeGsTfo2UyGc0BUisVySU6Z29tbmsWKo6MlmIrtdsf+ZmB9c83ly55WJXI0zOsZT750TlSZru949WaNMtMg23Nz+YrNzQXEyPWrF8WERopxpRTf/vYv8et/5Tf5P/2f/+8MYyCGN6yvrzk+XrJYLvjoa1/jZrvBuBZMYr8TGhwJnv3kGQaY1S1eGT75yTNI4EfP+cMHPHr8AK3l2ri8vGK33RK85+Hjh4w70Vv4mOi6NavFgpOjJaNP3Fzf0nUDOVuaWmxyY/Csb9dYIywdlRU5RLIJONcUe3FxD80+ELUHB1VVH2qPydgnZwk4zXHKQrpvZ/uLa7p+4Yql7/tD0dn3gmCELPwwdHHs0KCNTKONNpycnBQNR3/gP06T2skSdipSx2E8NBk55sNsSdCNu+dxx5ktM717ndZ9BNxouUhUaQKmxM1YgvdKS1IENWBMJlvZ5GMUXvj96b33HlWE4NPv/+xKPok3D8hH6TiHIRG8J0ShA0xP0llTwrRgu9lIfoLSjNFjmxpjLW1Tc9PvGAZxpyCfsFoeo43mxz/6CedPHwJtCa1bsun2ZJX44EtP+OBhw8lMYVSgLymRVV0f3suJ2uW9p65rjo+P3ypiJ+HxRJ26bxM4nZNJGG7ritmsZbla4IdBvL69J3vNZrNju9vz5vKyJFbfcYKtFacIpTSXFxf0w8h+36O0WPRWrULVmnYxZ3V8xPtf+hIffPnLuLoiK2lq6rahnc1wzvHxj35Ct+9YLBacPziXSVJKNG0rwuthkMK9slSupq5qhmE4oDjjOLJYLMk5s9luaJqG/X7Pzc0N81UrrlE6s9/uePX6JU1Vc3J8Ajnh/Yj3sgCHIUAWaD6HxND1hwYthHBw63r33XcPN/X19fXBLncYZDKklGJXoHKtNTZaWPyid+1fxEPuuVTQR0E5DZJSbdA6AyPj6Bl6RWgrZo3kOaRY0Q+aulFULmK0x1hQRHFhqy3WKEEzTIYQCaHD+0DOgRg13mv6XmPSnKqyzHVA2z3ZBLJNqApcY/G+QqmaoatIixVan1PZR2i1wxPIcUlGYcwRzp6T6xV1rKm8Q3EXbokxuGQZy8KsdYIoouiJw68R16ip/s/TAKOIxLW2xHhPawZvmTaEEAhjPGTqZJVBadqZxcQASWhMuhTs6RAyUf6Oiah80RIUbyQFYIhB7Ja9H/HjKKidCB9w1tLUNbZyJXA1l43IMgZxb1NaQ8ylV0iCIHJvuDQ1WEqK7hAEvU3JHwYdB7SmIC8h3H1tOidvr8umIFhCj0IJiqFNRCUDFIQrTT5S6m0k5V7jch+N/oWOt0BudUDCyXfaxDuHqfJ+5zv62Nuv4+3H+kWfw7/4+3421feLcny26ZqMSCZjjTB6VIK2aqicmHL0MVE5B0qcySZTmKgir25vePzkAW11ynkIxGHAoFjOWuZf+oBh9Axehl/WiU7OWcf15qqs+YF23mI3NaHrub6+IUQkcDSCURa0iNFjjMU5MxCC58ff+af8yFSoquLsvfc4e/iAk5NTHj44paks6/WeIWaWVU2KgbHf0bgywE2Z/eCJfSRHRQ6KpnY0Tcv8aIVdOJowhwROOf6T/+Q/5R/8vX/C7/6TP8SPNfPjM5qH54yLBc41fPjekr/8tWPee6j5J7/7+/zhH3+XHz57xbxdUs8WZFdz/vTLJAx1M+OXvv11/t7f/Rvc3LzhV7/9K3z88SvMcsXJo4d85Wu/zNXFa/abDTlG/tJf+ibrzZbf+Z3fZdwpfulr3+Sbv/Rt/uT7P2LddVxevOKrH31Zsj5Ug2ksjOBUjbKazndoU9NWjvliCb3khdTG8MmPf4Kdt8xXRzx4eILfDpwcVSzn79H3O2aLlqatCcbw5vUr9tstYz+wXnvRNMTA6fk5+/1ecs5WJ6ixYxwC++RZrZZ89599l0+fv8Aay4OHj/Cj582Ll1y8Htlu9syXC/rgOXpwxvHJMV87PaNfb9ist+y7QD9qlK5pGsd+t+H5i+fs+j26rXj89CmztiUFhdOOpm7EZGa9g6xp3Jz50RyjNClExm7g5mZDRobT2kDbVsWdTzFbzIpDmKytzlqsM1S1xjlBTVKM7IYeGxLWBtpWMuKMFsH9rvdMBjbOWIy68737vA5Tv3CT4b0vYR013o+HzULs0O5oT9ZpKi386imtWILcSpEfIxT+PXCXBn4o0Ck6Cwqd6X4TUXbgSf9xD7YRNPJtnqkuzYUqlK1JtyHaD+GZTcjDRNk6gOgFfblLdRaYb/r3oY97iy6V71Fo7qy/bIFRpWiXTqiq3EEEKdOYQEzFQ9+C0oImaCMbwoQExBjRdQVZsdvuOBo6Kmt4cDoHNGfBYJzi6aMlc5dQsWPXBa6vrwsaw6Goni6UiZZji8XudEy/bzrX98Oz7l9oMjWtpNhv51jlcNoTbKAfB4LPDGOg63pSzjjrqIws/lUlVLG6aclJ4YNAy8MwynuqFdkaXE4SxOgsTAGO1mJqd6B0TfSkGCOz+UyaXPKBA65QEvxWrHqNdnfXyj2K2DjK9T1584cYSDnigycEX64ZqQh98Gz3W27Xt+V8qJLQLu+rNeKC0Q89496LgLAUaLNW0InJ2GC6xqdzOz2nKZjv80wP/qIeByQjT8XjdNvqkiiv0abQbcZM8Bq7kM1alVTqpq6wzmDMZJ8q1DdrdIHY5T4PaSyGEYGUAlpbtHZo7TDmGG0dyXqUc2QTwYFtNK6tcKHGVC2RlpxnwBxjlmAUmTney+QHXaNMhXIK7UBZBcpJs2MVaI2HkoRtDqJbXWpMSn2tDvSeMuQudKUJ7p0G3+oz5/KQH1E2FWMsWSXQCmsnOtZUSpcjF2F5gdNTnETV8mWt7AEZFqlSOKAZAD4mUhJHmbpy2NoBwrnWWpcU2wmhUGIFHu4KaRn8lHW+9DqqqKWnjXH6+Xxv/Y0F1c4qHppueTn3p/z3XOnyFOinSqaIWBOTjfy+A5iguLM6f5uCc/icz1GWq59f6E/PK9+fiL31DdPPfj7kYtp/7r735/+MKpP3fxOO6foIITAMwyFEV4aTd43jfdtgbTS6EkMIlSzaWPpuwGioXU3TzAhB2AbDMBZNhsV70YCJPbM67AWQubm9KQ2PPRg2yFtckLU/+8zJObHvOqIa0aHlS4sl77z7PmfnZ8xnDXVteafr+Ojyko+/9z1i8mA1ZqWotDjUeZMJUfLKim+v0I7aGbtB8seMdtSzGR999GWe/ein/Oj7c9Y3kcoZFJntbk8eNC/e3PDH3PDi+cj3fvKci23P6dP3uH79HHYd8+VIPV9gbEMzW9DMlyQM+27g5SvJ9gp+5OWLF5wcH7OrZwzdSCJwe7ujaWf8O7/97/KP/9E/RmuLsxXr21u++s1vcHR6ypvXL6lcRa8N224rWWXFMMIYS07i2jerHX4M+CjBnUqLJa+Pmc12T20atK6w1jBvbAmaq0HBYhzIShF8wLqamMUSIvhJ7zpKeN8wSPBhqYm22w0xZZybs9vvhLrmROPqg2e72WCbShCvEDg5OuK6H9mv11zfXDN6T44eTcJVFYvVkradcX1xw+uXrzk/O6NtG5arFbO2xVUV+92O2siwWWtNvxfnqRwTs9mcTCTnSCIWKp2kgqeU8YVVVLmKqi7C8koGcSEEPJF5OyNGaXzX6xuWqyUmSujgWAZJSilca96qtaf77hc9fuEmI3iPWy5p2pZ9tyX7DBqckwJ5KpbrpmJWz1BZsdls2O/3pVAtBcVnGwEjDiOChChI08S+FGxwmHyVnzg0GodNTO5ZEZHmMjVLws82BbYIngL1CHVAFTGT6EhkwTfCEwDKBCtJovQU1Ja440Br7kTgbzUYuri/aH3gtLmqom1qyaeYXJXqGu/jYVoWC+9ZKXDWiV2p1ehiuB5DZMgjwzAIdUaBHwP73Yb5YsH58QKHwlYL6sayOqlRDIydZ7vuePXmNfvdeECO7heud9kX6oBUTM4c0+RtaoTuazHgzmO/qmvqpqWqGzSOyiSCDQzDNSEqvBdhXEiReTunqVoUQkWazRfUzQytDSnBWu2lWSCD1mRl0WNFGzwhC+/U1RW1s8wXC/pC39vv9/RDj1Gatmk5PpbE767vxJ+/NCZN2zJr56SYGQcvE65yVFXFzc3NAW0Q1Ec2Jj96Ri80sPsi+ZvbGy4uLmjbVhynYmbWzHFGGqD5fA5a0fX9HSJhLcvZgpvNmn7o6fueuq7vuaDdUQImKsD/XHeHv0jHoclQErY2CXVBU1WOqjZYC10fGPqEH8FoV4pQmbw39Qxnp8GAJH9LM+8wOmN0QuvEGEcJuPOelEfxV7cV1s2p3DnKWlIc0HVNVh5da6q5pW5rQmxw7YygB7KagZqh7QKlM4kWNYjDDNqBsSibUFVCOVCmpnYa4yTVe0gZpzXJWLIWyo4qzeh9CofKokVIcBhGkO/Q1kmsfL+4nprrGPNhM0ZHmJqcYuV62BTKEik22vGAKh8aGQrSqxDhe5TBUPSBMHpCCkXIaqlcRVNVuMqS0IQCE4ttaFm9lWjwUp4aCLFr1hKDcSi6pyeXohRfmakmFKqU9/Gg09CAtXfDj+lc5ELPSvEu20hrdUC3MgGyhTxdg5k796l/XfdWQSzgQH37zFeZ3KUOZ+VzbOj/4qMU3umLu5a8NVws+5n3kncxDWvuI2D3EalpmKgboR5VOdE2Dd1uhyYzrxwPTk7px5H1VoL3jLFUylBVo1g3U+z2ETOarDNvXr+maecHi3d173l+ltotb4FUNmNMYCxV3fDR177BV77+dRarFcPQ07QOrQ1Oa374nT+CMKIri0WL+5XJxAy7cSwp4pCMoZ0taJo5F8+v2HZ7mmaJWbQ8eHjCoyfHPHi0YOyvsXji0LPZ90Rfs359xff+8CVO3xJNom5rPvzGt/jpJz9h2+1ZzBe0c9GQ1O2M3nu0tYw+8r3v/4Bf/9VfY7te8+zZC37j139DXEOdTNh/8vEnfPWjj/jP/zf/KX/wB99hDIHNbsenn37C/+6//t/z9L13+b/83/6vHDftgZ5+fn5+yLDSWhNzwmhF4zTjEOl7zxgyp++8S3KVuHztRh6cHUnNNI6cnJ4zm7Ul00vOta1quu2Odj5HW4MeNP3QEYJoYYb9Dj0OWCPT/f1+j6sbGsQE5ur6ipAS1bKhwjIOA/t+x0lbM3Z7uo2lMoraSczDxeUbyLGkyEfOzo548OARbTNjfbvl059+ilWGow8/YLZoS/aHI6SANe4w4L28usSgaeqaBw8eMPqBEEdG33N7u0ErQ9Mouq4X9L40Gc45qtphrKKuG7T2kEeOjo7Z7/fs9jvWmxtcpTHW4GM8LA9a62Lrrn6m+PsXOT4XwXso3d2w72lasWZVRh1ciGKK7LZ7CTmJ6ZCsPY3ndOF1TZkaPniBf4Zwb5Ik1odG3ekopsVEFlvxqZ8E5hLeJIiKOizQskKfHK04OVpwdnZCPwxCWQoFBioPLfaMXpxVcGx2kkxZ19XBjSJTRNtlQpWNbN4/b1gk5dBkc5jZd3u6bn8Q8Wpt2KyjhIgNEvIzm81kql9XnJ+tOF4tD4W+0ZpsZdr28cefspyvWJ0cM5vNuLn5lN3NNVXV8O6771NVBusUjsSrN6+4ulnz+vUNN9cD1kiCOFkyH5TWOCdUDKVyaTwU4yjhPzlF2lbe277rMNpIcEzhsM0Xsqhe39yQlCofhna+oNv1jP2ezTaw2Y70Q8I1C4ZxxxgiPgTOzx5wcnpGO1+A0txudgzSDdLOZoxBmhJ/j0qQc8mz0BPFRGDwCRnAB/quZ7Pdcn17U6bjjuVyxRjECSOGhFZaJllZcXV1RV3XNE3DfD6nbdtD8XZ5eUk7a1ku51xfXzGfz1FacX19XdLtS7ZKhso5FrM5ZDDKkWJisxbr4GEQ2z5S5uHDB6yWKy4uL/FBpsOTdTLIa7LWHhq+aeOc6GqcPvo8t+1fqCMmL/alSgrpWCwdtXKFKmZxlSYnxX43sqt7eCxuICl6Qoi0zYraBTSR0e9BZYHVC2VT6YjSorfyYySMgrrGpEjU6OqYevEU4xw27ZkfHbMPHt0Y9MxgWoXxLaadkbUnqRlRtWDmmCqgVUXeK7GoNYaoE1ltwA24mWZ19oCT04jSFT4axqjRTUOlNS54tnEkTMV1ngYXmZSUWF1ShuxlCprKpFIB+hBgdwdbS7CpIiVF5WqiCqATxiqSB6a1SBnQJZ9IyzoaY8B7TVQBbeQxdEn/BkNMMmDyo2fsB7RtqayjqkUv0zY1ppLhgCpFT8yZmKW5oIjq+2EkxVB4wgmioE6COqQDCC2W5DIdvo9idN0A5ZyYdKdNmjJ9ci6ZB8Moj6Vy4TkrnNNYY0g+Hx777cVb3fv48z/ukIwDlHL/iwXJurs2/tX+ciCXQd0X9JiahokbPg2+PhsoNg2BfNETTXXKMA7c9nuqOKIVzGczhhyJ40C33fF7H38iAWW2wlYVwQdShsVixW7XobSmrhv6bs0QhDP/8PyccQzEwZPHwMnyCIsmjl6MO7ygjVqrQ9BbVgpVW5rZgtPTM85PH/DTH3/CECO2cYxjjyGiQ6SZLVFjj8mR558+54MvfwVjFFfX1+i6xjiHVo5uDNxsdyRlqNyMWVC09YLGLfkH//D36Iae9z94xOWL1/zwu/+U+ugFDz/8NtvuNam7IXeXXN6+YJ9G6nnNk/OamQtkJTlPv/obX2PwgZv1Lf/TP/g7dN2WBw/OePfpAy5ev2IcB5wz/P3/8e/z3rsf8Piddzg7PeeP/+RP2I+e737/h6iqYoiRm/UttrI8fnLKR1/7gN/8zd/g7//Nv82D83N++7d/m7/1t/4WIPf4s2fP+ObXv87J8YraKfJ2T9QK01b88q/9BvVsyer4hG98+5f5vT/4AzbbjTAaZg2ojE9iWrTZ92z2AyEpbm63tI3j/OyM3faWh2cSKfDsRz/EWEMMnv1+z3K55Jvf/CZP332P/+f/4//Lb/7Wb3H64Izr9TVnRyfcXF7x6bNnbLc7trst15eX3FxdMJZMrJxlsHh8ekrT1jx/8RxtLzhZnXB+fM5yvqJyDTEkbre3bLod8+Wcr37ja/zgn32f3XaHc45xGJm1LW3bHobEJltiEPQ5xsRu10uOiePABBmCx6dAipGmFQSlnYFPAeMMR0crHj16KLWx3GD0fiQzSQ2KtlqZt+6xX/T4xcP4bEX0BappWp48eUJMidcXryU8bRqQTLIybahdfVCxmwxGicOAxJUX16iUGAdPzNxBXzlKh6mUJBx62XisVszni9LdaWLwaANNU/HgwRnzxQwQpxTIVEZs3DVQ6YC3kXGUYu0wJTIKP2qEpmnwwUroVAiySKU7+srEnZVg5zt6gVIUlGOaXuiJ5YCP+WCTa4wVGLUgJNJwmeIKk4VzOSRuroTGUFcVzllmTVs4dhE/jrx48QnbzS0PHpzTuJYUI2GIPP/kueg8rEbZzO16jQ+Reb3EnS6RIDGNK/kjOSeMEm2IOEBk6saVrhV0slgthY41mpgC1hqaWcMwjsQc0Yi+QRxbDBlDPyR2nWfbe7A17eKEbBydD7SNkcwCZRh8YNt3hPK+j97TjyO32w37EmrUtC2zheP07JTTs1MWC3GgWK4WLJYLuq5DZUGsZrMZ4fSM3b6TgEAfsVWNqxu0cbiSQ2CtJY4i0LbacHx0dIfe9IMgXEauv6PVSnjoIdK4Glve3+Vszu3trUyRQ2DezpjVDXUJfQpeQnNSSux2u8O07fT0FKNLACD5gGw45+gmJ6pSQOV8V2hNLheiafniHiEF8UjKgmomAoGIR2NchXU11jhSGvBxzxBqutDgI4SQCGGkchajs7ir+E5QSZNJShFVqd1imVHHQAqepEbCCDFkVK5xsxW20hAjlYUhBZSyokcwGqwimwxOE2wm2ADWQyUJ476pIFXEKhDcLcq1GFPT2CVHaJZL0ZH4GAhBMww1fTaMwvZDkyV1+mDpW5KmFSh00Ue8Td2RIDkpS8XNTJqTECW7IieFsbKmKKUxuVBAtTRfBrGhzDlhjBQlCiMNCmBSRicl6eQFLQkx48fEOEaGEJm1GttU1G2Nq2XdkEBAVazCBVFWCbHpxYi7FEKrjRmxvtVq4lPBRIlNmRREL6EUpCAWtCEEkh9K46BBOXKIUBDplCD4TPAyoLLaFjqUGAE4ZbBK4Q8p39NJLegYWWhUTEOsA/uYn92U3HuIwx9vH3dokyB1xWDr3u+995iFcjMhN6pAfGK/e8+ucdIhUtzQpse4f50wvcY7hJ87XthnnvgX87hf5Eyf32Vy3dF4pwDUiUK12WwOKNJiPpdCPwSs0rSrI6If2GxuMY1j1i5YLY7Y7Pb4fUfKmVnVEAuyF3zAWSs0nCwC6yGOIk4u1EIF1HVN393pTdO9t1MB9czhLISx449///cY0SjrmB0tWZys6AbP9uaGxekp+6tLhm5LWxmubq/BmML+iOLO5xyL5TG6rsjWsjw+Rek1MSZevv6Uv/N31rz/7iPOzx/jzHfR2qP8NZuLPyXu9pjQY2OH8nvGbg+5wREZt7d0u47YRf7JP/wfCUmseqMfubp4xbDfMasrnj6V4dc4jtzcbvEp8ubqCtfMsE0D1nJ5u+bpu++xmM0IMfLg4QMJUew6rq4umM/nGGO4ubnh4cOHPHv2jPV6zWq1Yt91pJxwzjCiWJ2dcfrwMd/45lf5k+/+kFcvX+H7keXRknlT0Q89s7Zls12z3mx49eolt1c3kBLnDx8zm7WMY884yBC4qSXc1WqNH8WlKYSAqxwpRcZh4OHDhzx88JDFcsnl5TXPn71gv90x9IEXL96wOFqyODri9OyM28s3BC9umvPlgpAT3TgyXx2BsewHz5vLGzbbnpPei7lHylTGolPmO7//++y3HeMg13COic1mS7fbU9c1rnJoI7rfR48eE2Niu9kVBFzqlKoR4xOlNe18RcYSxf+QfthLvWJMGbwa0KKja60TmnhMOOtKpJH63A0GfJ4mw1jZ2GKmaSqWiyWjH6WQKlOZSTuXtdABtLXFH11hUsagD8V4yPFu+Y6pVATSNWmjaOctTSVF3bAfICeshvOzM5wTgYr3PVrDbNby5MlDjk+WoCSePcVAGAbiONB3e1SS8JqkPTqHw22utEEl2UyzUVRVEaOHiC285AMUn5NsdBNftvB6haOZ3w5yKiKTnHMp4IU+FScSulKFMiBUESkcCu0heJx1qKxwtngV60iMIrpc394wDj1tWzNvK7RSxOTZ3G4kbVQb0JlukCnK6uhYOIvjhBpJPkQqbhcmG4ShlkqRoop88hA8ckCVtNE4o+iHXmxhc7kJM4XfJ+FdvY+MIWGqmlprYgZj1hhTSQKyUsRMsZoVSHr0gX4Y2XWd8B+N8AmbWcvxasXRakXbNsznM2bzGW3bSrEehBNSWYGdfcpYL42r0gZX1dLQFbRPIxkW1lhsZWjr5uC7HkMUWo3WYK1YDidxO6ucKzSXXD6nJHonZosFzlg0MkELXoL3Yiqi/+IC1M5mpBQZxoEpK2aiCwIHKtVE0bu/gU66mS/yEXMkZ40uhVUikEhEFNq4YgVpSWlHiD1j6AXdyqpcYwFra8zkLpRGcnakrEmYogeQRHhdkNGUAtmII5LKoLXD1g22hhQslVY4rbBaYtUK3xFlteifakWuEphBBOJOk5salWqyjUS7LXo0R1MtWTnDvKlRucf7NXsHORiiUig1SG0t/M67JkOpQiWdeETqLSHAZGpXLhdiGXikw4ecH6NkTdMKKfSVJhfnEg0SlJo0RougXCuhiE7a65QzSSWyntAmCD4RQsanhK4srq1p5g22loGGNpqMwiSxlJy0dFqJkUVE7BolZTyhjEXpn126pySDLKWQNTx5YvDEMEpGUtbiEBUiWYsVbi6IWIiJmGTyWXyusNpgtcagShb7hBKV06kKLD5pUmSUd++Z/fwGY6L9/dkt947KM/07v/UwgiwdHrussQWfuvd/b8Plqvzk3bO7G3zdFd3lx5n2lqnPyOI0M11APw+G/wIfU5MBd3SpSe82CcMzssbOjSV6TwgJg6atK6LT9L6jXa2YN3Nm7YLdvi9CWbk3rRX9kfde9s6i0ahcxZ5e9tZiaDOhKUJ51Sh1z0K6NNbOKYzKxDDw6tNPMM2cerFkebxiPpux15A2ltMHj4hDTxh7bF0xeI/KUXKhRi+2rzkLBcg5MIa6nRFCpNvv2e7WXP7wNcv5nNXTFU3VknQmsqNffwzdiCJhVcLqjNWyfvphlCyFENhvbvnpj7sS+Jk4Pz8n9DvGbkelMsvlHKUU+33PYnnMxdUNXT9ys92inSNrw+12x/nDhxBF43h2dkbwgfXtLd1+x3K5QCvN1dUVq9XqwOY4Oztj9AEfI65paFcrjs4f8vS995nNZ2xvb/j0p58ybHd89K1vYpzFDz04Sxx6+s2GN8+fE3wQYXXTUleW9fqartuWcFONNZMG+A4trpy4gooRTC31lo/sb/fs1htSTFjboLWjahfMlkfM5gt2t1dS1+Uow5ByHTXzOUpZQs7sup7b9ZarmzXtvMXVJfQzw8vnzzHaEUJku91yenxMCoLqhhDQvdCbpCZalGFklEFZcS90tWEIA1ob6rolo0lJgYbR+zIgksVYlywXhQyCQRGzJJ4nKLXuL25AMR2/cMVirWZKnQXFZaF6xJRYrpYMYaQf+sNoJ2eB2cXiNuLjSFZJkNqy2cTigmK0+K3HFIk5MZu1fOMbH/HBe+/yzqNHvHnxgrHvIEUeP3wsBSAw+pEQRkL0jGPP7vYlox8YvHShOmV0Fm2GH3b4sSf4rnDwpSNzzjB2PTlmsJI7kVJmLBOJCbo+QNxl2DUZsEhBrjFKdmQfImqiNJTKIASBqkIMbxWTE9w7LUree8iZZiY0JPG5t4xDJzeBMbSzlhQrYoz85Cc/5uzsjMV8wWI+Z3F0IkL60uzNU6RuGo6Pj0kZbm/W3NzcwlCQFw112xJ2Mj30fmDoO5yVBMjgBTlJORFSKhuYhDCOw4Axmpwa2vmccfSQd7IQmxlKK6oydc/7vWghmhYfepQWD//ZfIE2VhbpumG7f8lmu2McPavjI4H96pq2aZjN5sxnM5q24fT0DFs5xuB5ePqQm5srum7PMIy8ubhgDJGmbbHO4SqhiE02vDllxtiVxg+qbNltt0WXUtG2TWl0NVVVsd/uUAoqVzGMkoweC6LUdR0AbdNI8nkI+O2WRTkfQ5mi7Xa7g0XwerM+NAreexaLBUopuq6jbdtDyveUEK61hD39m3LEVHjxOpNzIOVAEvVNaaIqofSphPcd/VDRj0sWBeFRegpQlMRrYwEVyXhigpiNZGdMhZ3KaKNwdYNvK4ZZQzuvMVVCu4xRmdo5lnbFcjbDuRaVPFY3tO2C6mzG6njObKmJ9gaUOFDNjx9IennUxLwhJk01X9HUS+bmFJcC43BDDDcSpBkg+pLPIiW4DC7ClEVdnI7uU2g+s5aL3qsUkxT0o3ilo2QCpbTGmmnpEQc/hUWRZOKZxMnLWmnopvUi+QApoGIkKofSgYwmYggBfISYNM1swepoxWq5YDGfyX2k7wxRcxZ6o7O2eNlrlBIEVEVAJayz5dmXBqvYi4r/fiLGov+IQzEO8cRUijpj0Eqc2VQRrIUktNcYCueq0DkN5uCtb1FEmyWvZ6IqTef6X1h0/7yvKSbf+kORz89qOn7mj977Pmk2Prt5H4CeqWs4NBh5kut89iFLA6XKj+TD50w/dw/r+DfluC/8npwTtTZUVXXQHKWUDihwSon11TVhGMkx0Dor+5yK1Is5Z+89ZXOx5uXzV4xeglh9iKA2uKoWi2rj6PZXvH79iq7r+PBLX6bvB4ah5uzs7C2L6bu8nkL3BZgC7nyPMlDZiifnJ9hmzumjx/zl3/63iU4TgTFEfvwn3+FHbcXrTyoqHWlmjeRnpMSrZy/o9568D7RHD2mVIWpHFxPtakU7r1muDK9uDJ88e8XNqy2Pz99l21/RhT3buGe7HzFJURnL8vQpx4tTsrH86Q9f8d6H3yQNO7ZXl+DgdnPDttuT/Y53Hp9R20ecn5+zG/ZcXl5zebnmv/hr/xUXVze8fPWGP/3+D1kdnRCz4vLqhq9+6QOuL95wc3PNVz/6Ms8+/pg3lxeslktWzZLbm1suLi54+vTpwVb/6dOnvL64xMeMbpd8+Zu/xMPHjzk6Pubv/g9/n+c//Sm76xt2l2/4B3//74BSzOYzvv71r1JVjpgimzev+MpHX8O6mk+ev+DB2dGBSfDRRx/ROM3Q7Ug5cn5+xjAMXFy+YbFYsN/tub5Z88MfPGMcE85UvPzkFV//+jc4OT1leXzEr/3mb3G5ueVme8vF7SU361uGsaNuKkY/0tgZTTsDDcZVOF1Rm4YfPvspH7/4hPkfV/z2X/0NZpWl1ks+fPd9Xr65oO+lqXj69CmVdSIxGEc++fQT9l3HkydPub6+QaFwtuL09BxQJfBQ/j+lTN8PzGeNUManYOdhxBnHo/OndF1HJmErXQYUrrCGHEa/3bz/uQi/x1E8p9tZy8nJCcM4kIbEbDbDh8Dp6SnL4xWffPop3a4XalWW1FilFboSDUbMRUCtIJvispIpwS3lBkyRxaxlOW/Y3F5wtKhItWLs9/TbF/hxPGw+3kujk8rmlMp27ayTqUESPnNda5qmBVUTCg8+Jei6HRBJObHbrInRMPqIHwPG6hImNQHQSpqjGHFGOr3p/ykiw7quijNkQT4yYsPOnTj8rTTwsjBOi6Cz4k4x+kATM1VVc3J8xDgKp38sQXXWGJr5nH030A+e9WbHfDFnvlhQ1TUxJZp5i3EVY8xUVcVssQRtwSgJ1yruGOPosdbQNmI3GZInJA8hl+ljEdVrVTIpJK6+djWzuqGpavrRiz+/VixXc3KCcQy8fPmKlDySARDp+z2VszhrUFqmoErpkp1RpsGlaK+bWoKOnKOua9rZjKOjY6qmxlUVFTD0I7P5nHbW4sfAcrUkxIQ29qBzUUrhjBNoWcnEy2hzoO8ppuA9LwF5o1xT6/WarrhVARydLMUiMUT6YSClXJyqWna7feGAG/ZdT4oy0To6PqJtW5QW++fj4+PDDTo1mFOBIjkERUhfVQdrxu12y9HREcBb7l9fxCNFQQOVdAB3egTE6tFZea+dExvSEDzD4FnWutjwOVytcU7hKkU7sww+kEImhERNw6So9fdE9GiFqxrqtqKZgzFb0QfowMnJMVRz5kcVGkX0AZUNs+aI2ZMZy1lFXcEYX6GyCC7b9pQ4DoXSE6mbjJ1ZcC2GChVuIEe8l/t732W6PhHigFSY+oD+CZhZps5JiFMTuplVJuaM1rYEOE30IkFAmZz9VLHLdRatxYUrp4hRmqyFBpCCLyJsqCd3tYKgxKTJQRFiElQ3ShOQFOx7EbwuV8fMF8LprepadHDT81aTkYas4XfcXQ7CzTL7f4vXa7QmFYeUEEZCcSOMKRaKoazzKUdku1LgA1p7MkJDimhCjIWWdTfR11qJq4p2GCSrR25lQTkOsNDnrLkna1pVXvcEi9wFV/2idIJcQItcwJQiBz70Pxmly/ekO5RiIkXdz7pQ91Tkcs3nz3z+9r+/yG1GiuqgQQKDsw05a1JURAsKmcaqrGmcpqkyxkDXbxnHHh8GKtMUcW3m5vJG1l2rcW3NLg9oXXHy5JyPnz2j9wPDIPbn82YueTIxEhnRaCrnuF1fM4wdwziw2e5AWZLSjCkKMu0DKgqNUNyqDKaqOH3whOVqRV03fO/T77E6OmMbd6R/mPn01SXNYsH5k8c8OTvmWaXY92u2fcdJOKOyNTlpTh+d0/tEP8LN5RXjEMuk3gllMwz0w44cFWqVMFVCuZrqdIkKDd11xtUJqxy1bbBGoeMOpQxnpzOU9qJJW5xgTGJhLK5p6YcRP0Ruw8jzy5/w0Udf4vGTOSfHPX/9//P/llBgJcxLV0Ug0O0C7fExQcKmePr4fS4vNlTtyNd/+Vf503/2fW5fXfDxqwtu1nv2+x5bzdjuR84ePsFUFcpVvPPoXY5XJ1TGcfPmgv3ulmHciI5UiyvmuNny/T+6lcojg8Lw4PQBq5Nzomrx/YbNZseb1xdcv3nBvHUYlbFWMYYtIQwYHXhwdsT19S2bi9eE/TXD7RzdzjlaGtbjjnn9kNk77/Di5Quq+Zx3VnPckzN+f31J9CMYR1JZDF6GjqePnrC+vsWHSDs/4vT8VKj1+5GXF2vGCCfbji998AEPHlhmiz2b9S0vXrxEFevtoe8EuSpumFJLWFCZcRzEGECJ0LsfB2IKVHpkv35DHEf80GM1zJcrGucYxz0xiV459ZJDcrAJn7Jg7lET/1xyMjSymUook8SxxyjIQyZjnWO5XHJ6ekpaZvwwcn15dUiZzTkTVT7YGzLtkVCSB2Xh1zkTfWS33XB7c0WtItVshpAhIjnsSKEnhRENOAsWBcoIZaI0Mc41wtuNGaVEBJmzbGQosUXTqQjGTQRfpmExC7f4LRes4iKBKvbyb6cjvnWeihDtrSNLsXDfdhE4OAkBh2lLTPLcdvu96AwKPUhroUGN3ss5VYrRe7rC94Q9Q4go48AIn65KiozYuylj0TaJ2LWqyIwQo0z8jMEWDUKOYtsrFZDCuFLQ5ClYKx/oVBqhY1ht0Mpzt3mXNO2S2OlV8azPSXImSlMxhfKhEmPfC1LTNmTAlSJ7cmeaLxYsFktWqyNSziIQLcWjZKIkNustTdMSk1igTq4Mkq4toUsT5EeefFwUVbEWzlEQioxcpDFIzkr0gTF4qsYeoHexXLUlpfq+IEr+Fs9pi6uchBcqjS02xvfFidM1Y7Qpt4LcK5M2Y+IVT9fNvwk2toVlcnj9kwBaIFuNczKBDiGV1+/JuTpoV2SiLaLeqrZC20yZFO8c53JWh6JTl3NrbIWrHc1Mo41oOUweWa5a3GxGszBoEyF6jFIY17Kan9JWCaMiY7dB6znKVrhqXtY2j1IJW2URMgM5GVkrowRv+jGIRifemV+IZW1xqdGqFEal9BV+ixSxxer3YN09/WyZak9TWzAoZTFGaBlME3ZdNGJZk40uUPzkViaDklQKn6wktT5ECffLZLLWjD6CNcwXC9q5NBjWWhGP32sy7tXbh09yvgtivd8gHSy+S7k+CdhjFNQ3pbenvxRb2pQzKqaSExIATcx3E2PZ0uQCmwKujNboXO45jaDW9wrvX/ii/cxHeTmH9+Hu9X2eh82lJy6DrInNhJzaMt+6229Ko1Hcfyngz71m6R7KoaZriANa8/a/v5iHXFP54E6nlMZoizFiMZunwF4f0UYGGmP0b6EK4yg0IKXUIcFeJ6kFlEloC0oSKkk5EKMnq4QfO8iQQgRbkCOtGMehWL6H0jwbjLEYa6nrLPS+KAM64DC4S0n2Mm3k8ff9lnwD2jgur7c0XQdGU7MipkjV1Gy2G0iKytbMZ0tebp6jUTTO0fmRMA7UdcXJ2UMxsPED292GoRtQzjBET+gjR9URWRuUtsWtsWFWLzG6JiH7/Gp5xBB7UnaYRqEYUNGjrScP/qA5ygk26y3OWgiR9c0abQ3KGbIzdN0ObVp01bI4OyM5y5gy6/3Atu9oUIwYxpjxCWLWbLuB5eqYpmnph56HT9+lahq2Xcdu1xFGOafXl1cMfVdo8iMkD8mTc2S72RNSJqFwbsbHz37K0XaHH0UUvq1cQU8ju11AZbHKVlbcPdumZrNeM/Q9KosuOKVAiCORxBBGhuiJwKPHjwn9ljDs8Nte3AcR1F2ILokUE2GQ92gcI5END588oq5rlMq8ubrGWs2saYghUrmKnDK+EiqeHwfGMAo67yrq+i6kd6LtpxQZS8p8zPEOKVYQxqEMx0bqWUvtJCg4psB9NyM/DgentEwCZe5QdPX23/+i4xduMpraMfqR9bBns72lKUnLXbenamoyIsp7//33Wc1X9Pue3/2df8p2sykbR5Kb8v66roApFCnnwybl+8QnP/0Jw/aK9x+fYWOP00o4iPRgRqxKNO0MV7do41DGgDL4EBjGgDaWqaORuizS9Xuury9lISoaivl8Tj8mshLKRizZGNNmeHCysNIlxiSBUVoVVm2+Y8nmfMcLPcyKpvchC294okZNYt7JcQo4iNS0smy7HV23JwRP00iqcVaK/b4rNKXMze2ajGUcPePo2Y8e28xQrsaHgG0iymUa7UA7kgqEnDCuIsSMMjJhnM9mUlSh8YM/FHwKmahPaEbwHmMNzlZ0+z05RnJBdbSW0idGz9DvxCknZWazmmHYkcpNf7Q6YhzFirfrBlAGnWCz3WKsZblasVgd0fUitkskzs7OOT075+zsnPOzc7ZDR8oy9V8ul+XmC1xdXfP4vffJaK5vrokFVsw5Yxf2IACc7ImdsTRVxaJd0A89wziw3+2ZzWayWOZMso6+H+j3HWMYqEuBJYvCVCxpFotlsdjM1HXNbLY4UJ9AmjFn3SH40BgjYi7AZrBlii9OZ4JqTdfJ9Dvvc6+/yMc07X3bd3vasHVJJNXEkEtK7ECMYuFbuQprKY2GxhrHdtuXzAdT6DlCo/Fx0j4ZyArtGuq2Znkkmg+lEkoFTs4b2mWDazLG7YhpKPfljKOTB1i9I8ct/bBBW4tyNdYu8boH7YGEcZmYvFA3fUWKPUMvE1DvE+JFIcV9GmXSStakYompjZETk+JbXP5DTYsqzUnxtJ6K0oPjhxWamDl8CW0mgo0iaYVOCmVkPDA1GSmL6FsbK9kZaHHJyYqUJV11CIm6qlken7BYLmVjKsW7MkVcrhTeh7s3+ACpTzain134C2Us39t8QygWuVMjf9csHaZqpcBMMRKVJuPxMTMWRNtYQXcUGq3kOtHltYt7aSpN2KTDuG9h+/ObjoPIuiAI6h7y/laexudqMKZeRwrhtzI6OGBZ09t/+JmsSlehRNOV1WSLe4dQlIe9u4QmytTEnvqcvOq/aMd95zF4GxUOSRr7lCKukqLw9vZGcmO0DIJub2+Z1Q1V0TxOw6NhGKhmDTEODH5LZTVaJSDgnMWH7mCTrJUrtQIHulYIgVnbklNHVTnaWQumliY3K/y4k2yGmPBp4Obmms12g3OWR08fc3l1S9ddEYJiNjtCpcz15SUXL35MZSKnDx6yvrrFVI7V8TEfvv9lvv83/wRbtSxWM7wPGK1YLhf86q//ZU4enOHHkauraz7+6U+5vrpis17T7TYoUwv33jiqGSxmK44WJ4ydEmaCdpyePGW736HVjhAN43CLT5ohgDEOLNQW2rrhk59+TApRzFSOT0BrIonb3Y6L/QXN4oRHHzzl7N13UZctm37guz/5KbPVkkVV8YPnL9lsenK2zJbHhHHkg69+nYePHvF7f/QdPvzmt6jqih/98Ed8/4c/pNvu6Pc7NjcXGJNQOeKHnhB6QT51JmVxYVIoxmHH3/jv/hvaxZKvf+vb/Na/9Zukccvl64q2WrC5vaHbd/TdyNF8ha0bKtfwve//gPl8KfkjiyXaVXjgZr/naDmy323ZXF/yH/77/0t+8M/+mB9//yU//t532W13wpTQJYjVabKO3FxfFyF1Ynt7y6xpWR0fYazh+YvnHC1naK3YrG+ZzxZYNDrDu++9x3a34er6iroRyr81ruTXibuUHwWN2O97+pKHlkIskQgW3/coo6lNw+r4mKppUcbSlbV7Qik2m01xOxV6oKvsoXb9vMcv3GS8++icYRzZ9wMvLi7pr29EiW4NMQc2mzXmteGDDz7g5euXkOGv/i/+Kr/zj/8x65ubkgA9YsvkJ2dInUz2rBZR7rRIzmponGVW1Tw8O4Ew4IyirWesVscoM2UztBhbgzJEICSBUItInzAExmFku1mz6zYMgyaZJX23O6Q/X16s6QehEOiyzxsjNJ5YIBetRNA4oRvWyoYMssFYY1HGFFF7gfALgqPuFVO5iIunN7NpmsNiOY5jocjYws7WhCiWa/uuPwizHz55gh8G+q5js9sxjAFjLO1iyXy+IibFvh+xzrHbd2jrOD6tGcZAP3rGEOXzvhf61RggJqFRkEg+SAeuwNUtodiixBjxo5dm0UFbtZAUKSRqW9E+XBw2PbFXE/1OiD3OaRaLGVUlhbVY39Zo7Ug5MXrPdtcxei/n2xpCFJjZOMdms+E8eKG81BWMPbPZjOXRimHfSVOnZDL0ySefsFwd8eH7X2Lwg+gySqHfNA0pJW5vbzk7PkED0Qe8FXg1hcjYD/RdfyiSur6nco4H5w/owsCDBw+ZzeakGHh18YacM3VdARP1SjGbL8gpMQ5C/ZgVUVaMQYrJIurR1hJDkOA0Z9lv91hrxc42c/BbTzmX4utuU/2iHnfF2t2EW+xHA62rcE4c1bQBdCbmyH7XkeIcUxZURV8af4Muk4scEyqDHwLZWnRWaN0yxIHgE8o25FihbcXy1LG9WUOOaJ1YPJwxWy4wLuLTGp89JhsJFXVzkg94v2fMHj92jKnCR892u8ePMkHb7GEIW8bg6IaaptqQ4xY/AqkqiJeWa20YpSFQFqMrsi64YAYpLWXdmULpYspYe1eQG6xkhxR9lLFV+TlVaEKm8HAjVlwWSDqTjCoaDoVy0uSQZDhAorh0WcahJ0YtVrREtK2pZwvmqyMq11BVhtqKnu2ATJf3ceKcm6J7u0N9p6boHqWoIDkppkJl8pAlME+8tlJ5PRM8L68lk2V9jRGdKXa5qmj7SsFphVI3ZSGhUvnaRE+6axpyLs3YZxqEO1fBXNaDiWJVPu4lmec8odhTj3VnTXz4vKz/KSV0KT4OqCa6OCEqjNJYrYlKTFBEt3LXAk0NuXQc5bwytT+ZA1Ax8acPr5TD934Ga/9CHZ91uJkQikl3J3s4ZZA1lmsrMo6Tgxhst1vOjk84PT7mexeXPHzwALTi4vqKFEVDGsLAO+88whnNdrvDuYpnzz7BhyiW5/OWYegZBk8KhXJcNzhdY5SjqmtmixnPf/TsEOoKlEZH9JxPHz2inbW42qGM5ionhr7nakyYhxXzumIxa3n85Xfxfs/11Rtudt8hx9dcX2/49JPnhDHghy3DrifZBm01203N977/PV78wzc0zYyHZ+f84Mc/Fa2q0jx8/I6kRWuNrRs26zc8f/Gc769/wPvvfJnV6oyjozPOVg+5fPMDUlScnp7xve+/xnvIusFYi8WTx5Hbqxsq07AfOq7XW4IynJ6ecnx0xIcfHfP9H/yQwSe2F9d89/f/SIZuueIrH3yNdz54H+0cf/rsJ/R9xLUL3v3SiqePn1DPZ2StOHvvA9Jsxrrvef76gmax4uHjxzTW8N/9N/8vFgtx6fJ4Eh4fhRLUNDUxZEiKtprR1EuUsVy++DH/8O9v2O/23N6seXB2jkbTVC3zuuH1609JUTTFdWFH7Pqek4ePcFUFWmNmc2arObvNFd/5nf+JH37nd9hcXbK7vWGzvkJbja0c9XyGnuILKsWbFy8LnR/C2NPv9gQf6caBr3zpXXzwfPrqU46X/3/2/uzJtuzO78M+a9rTGfJk5h3r3lsjgKoC0ACaPbFJtppSiLI10CRfFGFLDw79HbYeHH7yi/XicIQi7LAfbIftsEMUGaRNSS2RotktshsgG0MBqEKNd875THtagx9+65zMKjTJatKMaLS8EYm6N2/mGfbZe63f7/edagxTnCvwkynDOFBWFXfu3+X52UvqosQ6u19jr6nvYvhTFBLC1/Ytu4yY+cEB282a9WrJum9xKaK1ZQxpb6Pvs7PqjklSVlVGveX4Vyb8Xl8thXcL3Do+ZLnd7HMMko9sNuu8qRmUkZC0yXzKnbt3IEXOXrxkWlY0RYHVmuVymcPzZCG1hZUpeeFYLBru373N7eMFh4sDTAo4ayT4qbIyTdSamBSuqCE7RKmk0dqSlOHTTz/j7OSc1XJN37d03Ya261hvJHQlpUCKnuUq5I1I5QAnMlUg7qeMoCRtVnM9xdotdllbsZu4GSMdZUoyaWI3oYV9J5jyiOmLtntSdHl8AGsM4+hZr9c8ffaM+WzKZCI+38M4MniPcwVV3QiFKyW0dZRVTV1PRQNQiEBtGL1sPcrgnNhudtstO8eioR+IRIgak6csMSVx38kQfIhiuRtTYhw9CpXDuKosIDVoK1PVtuul8VKa7VZl0wDJACEh3vtBiqdx3NFhEq4oMhVqtxhLs2ecOCxsty2Xl1ckrfAh0LYdRVHQtx0xJmazOV32jx78mJMu3T5zYhzH/Ua03qz3Lg5WG0nkztqUMAwopSV50+X8hqpEDQ7jLEnBGMTZA8A6Cd2LIeZAsLgPqHQu5zdEhTJaINcc0qeSTNa0EprfLnl95/awC3ZMMWKNxXOdDP6LeuyK0Ju5JyIAToBQAq21OGdo2ygOQ2MQvYUxlGVDSsN+gk/MTf2YGHpPMcoNJy5LDogy1fIWrSuMLVFWURQjKeTwy8JSuBL0KPqOXLyCZduOjN1I341cLbcYlylCybBcn4ruAc2kqVm3W7ohsh0Ut44KrDJYU1GV4IPBJ6H3KWVBaUFYlN7T7HYF0vWKoW/MptWNgcXn08FT2q1Fe8KVTNnVjhAoujijDTrKCiZrj84smmsqFkozjqLL8DHhI9imoqwbqmqCdQXWakwOQ5Tnvm4Yd8fu30DldU/elzYqT5wNCkMIo+jest3zdUksBeE++0SJ8YhM5cP+WpJ7TWi45P2J/dtRN8JRVf66LtJ3qcyyRu84RrsL9fp63X9DXWsdyO977yj4hV/9suJIdfMrZWeZPe850+kUuRHNjRkqN2Fqv7+k/H/pRlL87r8xf196kp3i5xf3+DwCmvaN2w7pTSkwegkq29HudsyBHdpcFAWb7ZboA1qJg9EOhtqhEm27YbPc0rY94ygMCZTQOYuypGwaZgczjBa96Et9wna1ZWgDcRjpu5bVdsWwcxcM18Xgrlk+Ozuh6cTQJCJ0mBS81CtbCYyrXEFV1djSMobA0d37dBdX9OPI4YHl1p07dG1H3/bUk5pm2jCpK5wx1HVDDJHTkxPm0wnOLbDaMHQ9JEcKgWHoaMqS1iiGbsP5yRM2V1dcnLzg6uKcddcxP5xx/84DlHqbtm8Zho409gzrFf16jUqK2HZoF1BuJFnHZhwZrq44W66wVvb/sijRIXB4eEhTNTz92aeoqCAqNqstBwdz6rKkLiv8MLJttyhreO3111it14TR89qbb9JvW6ZVxaQs+HN//s8R/IZ2c8XHP9tQlQcINb5nGHoKIwiwUk6GsioyrQuuzk8JPuA0tJt1pmlGfAwcLQ73tMMxJowVmnlZN7RdRxg92jjqwtFutyyX52z6gW6zZuhavB8xyqKjgZQwShO8Z/Ce0hXCkiBrKvoRbUrqcgJKSWNSVxR1yXK9kppCRVTXSU3nDE4ZzH6wpDL1PuIKt69HUxJkjpQNijJVKCQxNlpuNkxQlKWY0tx0s9zdZ7KuXw9j/pUiGeurJcY5XFlydHyATyOxFXgm+kQXIkPfM3QDR3fuUDUNPgUOjw8Zu47NxSW3p3MWTUOpLSdjEotPEt4qymlFURZUTcUr929x7/4xhwczZk1JaTSFNZSuYEgypkhKM/YDUTckFJuuIyaFdQZtLE9fXPLpx0+4OLvMsesdbduzXIojkHPiUOq9oq6yADFP7XdFe8yTRfJmvVu1ExEjn8I1pzNP5/Z2dVpKhBDiNcd2x0POBYYx5gsLpfDpRh/3Tc84DLw8OcEY0SZ4L5P/EIRG00wX9KNnu+3QRkKyqrohxCDWrdrQ9aO8HiU8Pj8OOY1cXGa6KLBeCorauf1rAfW5jYqdxiF5nHE4V1JVUohHBSYLlsdxpChc5gqKLZzW0uAUrqLtBlbrFh/8njoVE9RlSYgidDX6WsNQVqLT6IeRq+WKZj4ljR4fNty6dYyEuiVm8wNU26KNNA27wMgdNWlHlwJYbzYYpSmdw42Cao3jSFHN0EE0KlVTU9NIo+IcwRmU0eIT7oe9vkIoZJbgs5NJduMyWQieSGLnidCmdraHJIVOJl9z8Xp6kBEhpa6dYP600KWEppiu/7wfsSY5H/lzt86i6MUCOATGIVIWhrJogCVKSUMSglAXvI+EdqSaCH1Rru8SVICkiNFiTIU2BUYprBVXqz1VCUEnx35k6MSi0VhFd7Wh28oGvlxtcbWgmkMfuVqf4rSjKhqcMbTbjk3fsx0Gjhf30K7AWKhKyxgMOgoysyuwdxay8opNRj5hJ1xPqH0qtNrRpbKj0s6+FmTKLbxfdX1+d5qyJMWxVmJtS6ZLaWOIMbNsU8wFuWzGPkSGMWdkhMh8saCqJ5RVjSuErmZ1ygX7Fy0NM8VUCQ1LBi9G1hMlLoXiOmUgGQJj1qJlhG5fLGeqlBYNiSLfM6Rra9b8cyHT4uQzzw+iVDaVyA1HFBRDadC7JiPsNk+VkY1/7tXLDvAQmtTNt31DM/HHOXbAyI2H0UrQDK20GKfs0ImsNRKE4hrN2N9HXH8eu6YuJSAq2cOyrkWlxBdlg7/Ix82GTimVTQN6QcbkJ4hRhmO7ZqSqKzabNavLK0ojCdPcoECP/cj6cs3F1RXWlWhjiSlR1Q3GiIbBlQWHhwfMJhPazYqxG0ljpF1eSQr0ZsPV8mpPowr5uW8iTCcvX9BkS3ZpfGUgRVJ03RbfD+icEYQ1lPWEew9f5ZPVe4SUKKqSqplhlktSjMyakrouqQuHTonbR7dYLq94+fwpd2/f5WA+x1nLp598gh+l4+62axbzmkKDZmR58ZwwQkqaTz/6kMXxHZrqEZPC8vqrj9gOI23m9i9PT9gUFwSf6MMFLiYqY5geHRFTpB1Hrk5PefTgEdN6gtMFVsGtwwW3b93lJ9/7IX0/YrWhH0fmR/c5mM1oipKf/OjHGGeZzKe8+vAhP/rpTwDF62+9xemLF9gEpdb80rd/icvTp7x88YTHnxom9RStIcaRy/MzjHYYbRm7RO8HtE5MypLV5eV+WNptV+xubp0ih4vbOGcZfODiaoUtS4q6pmxqlpst4zDS1I5CK8YUSUPLdrWi71tCzrRKUYyHiJLH1Y0jfddRVxV916JSoq4qxmGkqhVNPUMbS900zA9mFE3B6eU5fgiUdYHJTnnGaErrZJCWZHg95MFoURTEcH0/jOOItTozS6SmDDEwBs+m22KLkqKsqKpK3KXy4Hl3L4HQUyWc9VqL8cfJy/jSTcbtac1y27O9WjKEnkDEGQ2VBMwRFSRNHEaePX3K0xfP+MlPfsTrrzzizq1bfPtr73B3MsMMniLCo+M7aAUbP/K0W1IfNJLuHEamBw3g0QqqwqGiaCxMUdN3isvzDZvthslsynDV8uzZc37nv/mv2Ww6QGGcpSonEmLSj/RDx+hHjFYUpaPrR5IXcVHTyMZpVCKENgueZXK/S2rUxlA6xzCKSj/uTIOjz1C2pE+LhaSIVlXUe5iWzBNPCWazWaZFCfw/nU6YTBrOzs7YbFqGYdy7CxXOUThH3VQ0zTRPO+Hw8IgYI5vVmuVqhbUli4UIpIZhED5dVXJ5coIrCg6PDmnbLWXpKAvLerWmLCoqV+KHnn7bSjrlMFKIRRRKg4+R0oqjS/RehNrI+wz53JRFycFswdq3xBToO0mFH8chc+gt61X+3aQhDPTdQN+NbNqWi8tL2raVG6gQOszi6FCE00ZsCF955QFHd28zmc2oJg2r9YaqrpjN57x4cUIYPcRIXdeYUabDMUZevnyZp+JuLxqOMXJ5ecni4EDE7iiKuhIXjMGSgMXhITEELq4uaeoGZTRGWaqyRFuzvxGbpsk3oUzJtNYU2XpYZcewbdd+Tvg6n87xwZPwVK6S8iFnuJgb9AnhcqpcL8nNbKyhUtUXb81fuOMmirErkqSHT9nqt6Bw0oR7n7INcEdRwGRa4VwtWSvJ0/cjKYAfIu2wYbo4oigc1jYEDFoLBZFQobV4mSutGMcVQ+eJQRM4ZLPcMHqZPHarSwoFhal5sXxC33qi71Gu5eBIHJm228C27Zg1DYU9pKnv0I0nBJUwdWDSTHFaQegZixLlNfjAdtiQoiAXRVFTltKQxj06mpv7jALI/8v3lNKYXGjvzpnWghjqvPnsHOOUIps5XFOOVBYH7sL6YiSjAIkQDFpHktHEXMTGCKNPzA4OOVgcYosC6xzWJIyKqByad9O0dT+FN2bPo5JNS9z3isLinIVkSFETsn35rimJyROSTOWkQZB1MgYpoOU87CtqcSXLyLbKz2utxllD4Yr9udrZ5eqMCCSlPpdTgvzkP+fCvf7j5zZZpWRt++L3v+SRyXLodE2XCkrMDVRGhFLcmT4o2W92L+lGgf05dPDGl1I37zeV968/RV0GuTEYR9q2pe97QqbbXg+WpEHLc0TZm30gek83+qwDs9SF5dbdO2yWlzz97IUg2CSKsuS119/k1p07+BC5WF7y4/ffIxGIKbC9utp/DlcXl7TtwND3hODz5HskxvDFFy3DzeDp+5ayrEghUldT3n79a3z22VNePHvCyckp+scVzcGU+eGcr3/zl+iuVpy/eM4HH/6MYlZROUdVaF48f0y1XKLcC370kw/5a//j/4B5VXH69BP+yXd/n8V8xuLggMXBAU+ffMo4jMwmDe99+lOcgoOJQw0d23FL1490mzOWYcX3Tz7i93/vd7j95le58/BVju4+YDqdUcwiPlmKradJcPRA9uo//2/8RabTKSlFPvvwY/7R7/4e5+dnrMYVenXK69N3OH79Ls+3l7xmI4vFhDtvPuTw9iFxHHjy4jF//x/8Xf4n//6/z2//9m/x7MUp777xJttRtKfvvPtVPv3wY374T/6Q3/u7/wX4Dc5EDuczLi8vCTm8+NbhkewPvWe9XjGthOXx4vFzbt06YhwHNtsNMQzZeKbmrTfe5KP3PyDGyPTggLbvGLZbuFpy78ErYmecFLOyZnV+DtFzdDChdInzi5FN7OUeC0g4Y85UqVyBSVBaJ1a5fhQqlo903YC2HX/2nV/lzt0Js6lh029wkxpTJlIKHB4fk6Jn7HuOZwd7C/35fM6LFy8wRkka+JiHZ9pweCi1X8x5F6MfpFQ3CldJPaOMYTKZ7Bvw3UBzZ+ufbqzv/0rD+H75m99g0/dcrje898nH7BxMpFMTqpIi3zQK4fOOnpfPn9NeXbE+PUM/fJWZKUA71ssrCutQRrFopmAMhXUkXcnmoBPb7Ybf/8EP6bsWk7u0l8uRq+WGzbbFFUWehHeMo0wzSYIepABhkIVEp0BdyOYcBs/OfFaTKK2mdCIS9NoQRrHDVTGJLSSQonDGQxRHo7IsIMNTCYRbn8SRRaYlmYNL2m8MKAQuLEsODg64e/cOT548ZWdju16vMdbRTBpAprnGiNWd94G26zDW8PD+fbRRDH3PVQ46DN6z3WxYr9fiAFPXVGMlPEBrccai6oYc6s20mTIOg3TcKJqmQQNtjAw7Ok6GzLosCBqyla9WCpNhsz4ndMeUKKzw1IdxyFP7TO9IicKKjWTTTOh6L1QX64hhi7UFBwclr7/5Bs1UinYfPPfuC/exrCoevv4G9XSKdobOjxjnMNaitWE+nYurR+YRNvVEiAQ7UXg+RDwvbk1VVQlsm99jVGrXI6Odw6dIVOCqkrKpsWUhn/EwkLITSQhx7/q0myDspgVt2+6D83Yo1U6YGGLYNxMhSnaKVorSiMvFvsnIFJSYf7/z3f4m/0U+UpRrWqa1EvhokKY8KYU2BYVtKF2J0S0pjXSDfO590PgEkh83EnxPvxkZ2hHfB6LXxCCFtHFIQFUmhoQ0YNKGoevZrCPPXy7pt540Ku7cumS9OmHbbVhvz4lhYFJ3TCcbzvMkSavEvJpTFgu0tlL1pQWzpuFgarDVSDFaMDUqGiojuogxWEGvTEKnRAwai6NQBYOOGBsg+hxSOObQo51LFTJZy02zdUIVTSqhklC9jFKg84TLavGR11ksndO/jVbZrlf+TqYdAWKzjUIrRyCR0ij21lEREJvNqiqoy4LaWkoFVkkouoa9W0/GBvaUIgX7bCChR0mRbE2R2WBatHVWtDUhiFFH3A1tot43GfviUMn9IU5sChBXLXYJ4looUkYlrEo4BVZdO1hpqzOKkXITE7NFbG5cws2i/fMNh0JhlLjYaXYo0o57JViDCEzJv3uTR3UtYgf26FXcUa60urYxzkiJUfJ8Gi3I1A02V8rOWDdf5TVCeE0dE2OBuKdWJQQx1Rm1+kU9bjZQN6nGuy+hx+m9TmMn6k4pELLjm7KShxSNYrvdMqw9hbMURcHJC8/l5TmDHzmY3OKVR4+omwnPT15i6oIQPGdnp+hNYNAtGzTltGJ79pxVXJMmUrt0/Ra/7QlhIBBIJu81CNU7JYVxYAuxap8fHPDo1deo6obzyyumiwrrKprpAUMUFKV2Ne3lhsVkTphseHp2TiLgJg16OmV+eCQ283GgUIHf+6/+JqYosEoxbyq01my7jvV2TV07ylKx3VzQb5f0MdIq6LcbTHZJVAYiHaCxWjG10F+e8WS55GS54c6DB7iypKsb7iwWVJmN8tFPP+KV1x5xdPsWr33j6yzHxNnLEzZn5yy7NecvXvK4bhgZqKYTJtMZvvP06w6rFXU95ZXXXmcTI5++OGE6aXj+s4/ohpHDW3f4z/8ff4umLLm1uMNX3nyb1eVzYmhZzCecnV2gdMKWJc8uLnDWYpWBSnRzQl0X/c0YA2MILA7mrC8uaNdraq1Yby5JwJhNBJwtsarg4skp2hpcXZEmlquXV3SrNd1qA2lk9D2GuK+PE5pBB5Q1+G6gXbdsQktUluQcXVCsN2u2Xcvy6pTDyb9BrYB+xGJkOK4009kB4zBgEA3z1dUVXbbK77aiwRjGwPPNMw4WC7q+p+06hr6TOrcsODw84ujoiKqsaMqaspQMMescXd+RlOj5rHNYJ7VSP/SAlnyYTO+/ee99GbfLL91kPLp3jyFFLtYrPvjsE3wCnTLfN8m0TZOE08+OS57YbjbErie0LUdlRWtLprbABs+krCkmNc3sgGg1m65l1W4YL8QZYLVZ8/7PPmHoxVtea8P52rPetnRtj9LSKWoNVVmidqLqFAhDj0oRp9NeCKgzYbeqiwzpQ12XmToQaTtFvFHE7fjPssDnSSN5/d4v7yovaNc8OIHvM7KhxJxS0ImS2WzKdDrZc/3HcaTruuw0tWsspIDW2blll8tgjBHtxX6ipyAJ5zzGQIhpH5JXlCJ4Fh/6iDUGUsgQXc02Q3kqWqFQuXGPUOx84ENKjFm8jlJ52pqnqwlJ6B4GSY4sHVpZSOJOlaL8tPd+L4w32mb0q8AUDWU9wXtPUTre+MqbjH6U7BM/cnR8JLzXsmSxOMSWBVHBmBI6i2iV0lxcXOZcBUErynyOQgjUVY33Xm7U7Dyitaau62sxqc50GbGeQVst5YACWxQoq0kKaTwyurC7EuQzB+eu8wv200OtswOZFC8q0zd2NCilVPb239n4XqMWGs2YwvW0WglF619kivAn77huunMuqdBfotoX1Fo7nLUZog34EBhCEGvD/IuJQAgDQ+sJQyR6SHE38QalUy6qwEcYvEeZnrbrOb/seHm+ot8EVNDMqi2X51esNxtW2y3aQEojthjoh54UEtYaimJKUUxlMq9GUhSL6aZ2GJtwhQVKXBC+bIwQfA7KUwmlAkRxcbPK4kyBswEVNcSBFG4IdXMxTJLrZle47sLzxJIVUlYzKyPaBVmMsxZBG3QWQlsrNDyVqXo+yvnRSdYpjUHKZ7Uvi1PmBxeFk2wbo7FKYVTMHF9y050F/Pl/mYO1FzrbPBCQe87sf37HO1IZzSAXwnsUJ+sP2BXaXOdkX+tIhOq2fyx2ZiLyZXZ8qSRWkjrGXV+wR0Q+73xFfi+fP1R+DHlrUsiqxPVr3f3MH4GG/HzTIo+1exuJ3GTs95udMDi7RyU5pzHtENEbbUxuPvZfZEZcDmiUhlXvPhlA5Sbkn4Pa/AIe1w6VN6iDX2hG5M+BoR9yIx/o/cDge2E6WMN6bVitl4zJY53DaEeMsLxacrBaEqOn264xUaOCIo6R0Y9s+i3t2KFLTUCGkilk6p9K+89YI4GhKAtBuP3GFriipp7OKKsSrq6whRWtqrNMrMPZApXg7OUJKQSxkCbhjBHTi2Gkmk4ZW9EEKK158vEH1JMpi1u3qSsne/o4EFLAWSR3gYC1hujFUGHT9UzqRqzdg9j5amNw2qL8SLu8pB0Dq85z59EjyukMVdXcbqaU1qB14uL8nGY2R7uCYjqhmh0wHxPWQzf0XJyeEYPHWEMMnrEfSENARaEG68bx+ltvYVzBy7NzXr54yZPPHhOi2PuurtZMbtcsDhbcu/sKhJ52K4MHbSwYgyktY4q5BuixJuUE84TRBV0/EpRC2Ty8SeCHkavzc8kJU5px7CFr11RKdJuOejZBKxiTZ9u1bNYbtlcroZCagNYJsx8KJHwKdKM4h/ox0PWe4/v3qJqGbhixRcE49HTdms3yisrNsI2TAGAlmWRVWeKHgZ3Gru86/DhKHlnfo5WiG3quViuKsqAberbtlr7dUpdCcW3bLXBEYR111VCVtQyuzLUmVOe12FrLLlLB7IcnP4+WfpnjSzcZh5MJ9cGMW33P7333u8QsUAohw9opScJ2jJTakpQiBE9Ski64aSM/+fAD9Bgotead197k1uKQY27z+v272Krk448/43f/4B/x2bNneCUZHEMIVKXDe+i6gCkbgbhjIvqRwsoJaNcrCgMu+xv3fc+kMlSloygaRh+YTgteeTDj0asPUUoTfGC1XLNat6zWW56PG0auFyVUxDmhW/gUZCOOnna7FZHernDMRW2ISaxukQmctZbgB4xRlIVjOp3z4MFDIPHBBx9weHjIOA5cXl5masiY+aLT/VQ8QdZgBIIPPH/+XJAHrSmqks1mBUkoA5PpRCaDKjFtatCaFLycm6KUEkIrpgcNKkYGbUgZDUIbERdGsaVURovdbaZdFIVjCJ6QEinDvu3QYbaWy+WSxdGxIBTa0XcdMErK5mrFdHKA1pa+H5jNj6kmM+rZAW+++RZFWQgy43u++4+/RyRx/85toZMlWfS6roOxl9dnjOzDRmx1//bf+X/xZ375l/nqW18RelVZyjkbBkrrCF7E0sMwAFJwHRwcsN1uMwJTUjU1Q/CMMaBuhIgpFEMWa8mHarFa8gFcIfC80oairNlut3gvmSVNU4sNZ6b/5IpB0peV2PqRxMN6RxoXWl3a4T8Mw4A1ll2Gxk6f8Yufk/GFJinlekcI/FJgZZ6s0H1gjIF+CAyjlk1GQ4gj/djRbgcJtEtCQfI+CkTtPSlq2iGwaQObzlOFnvXK8+zlFU+eXTB2AYfjlcVttuslm7WIPLWxlC7hpwlnCpRVVGXB4eIWTSUNauECRgdms4LJtMRriys0WhWUMeC9YRgCbQcycU/sHDq0Eke6stB45NpXHlLopHHds4GkMMklbL4mxWhgP8HWKg8G8tnVO83XTveVsyJcgWXXUBtMgtEHlAriI5+DN0GJW5WXe7yqa6q6oigd1ihpVnaOTaTPF7jpWkuR0nU+0s0Ap52uYPezPmuY5P2SaXNy76XchqI01kJUYt0tnu5yPpXJBcAOr1AisjRaY42RDVIZEgaRPwmVIGWdwr5S/1LX7Rc2VXWTKKb23/u5C3xf4F/Tmsjc/J975l3vpFS+Xq5F7jcHDHrvVfxFetSNB8quW7sMJpXf6+d/7k/HsbvGrLWkGAjh+u/A3pVv93PL5XIf+miNYug7+r6lXa+pqpJ2aBmjXJs/fu89+n6krBzr03OMVugh0ExrpvMpZeP48PGHnL08p2s7SlteB+7tqHxJaqQUk4TMlhOqcsLZ+Rm7jK8xJH784/exhePo+AgfYXm5oj9Z8fa7X8eHyHa54sP3f0RjgTBQTR0PXnmF5XLJ2dkZZVmy2Yh7prWS0zEMW85OnnDnwSO2/UgIcP/+K7z/4x+TYuDVVx8wm0zxoxekd9tTzxdUZcV2vaGezCUbpyg4OzulGyPJFvzyr/5ZXv3au8yOjrF1jRsGDAmi5+qHV7x49pwnT57yyZPn3L//CpV1KJ84Xhzx+NMnfPf3v8vD19/k5ZNnXJ1ewjAwO5hTVrKH/9a/9q+xvLjk8Sef8n/63/8fuHfvHpP5nM+efcZf+6t/lUIb2vWGq8s7nJ68oO8uWV5dMj+YYqzoz975xjd4/yc/4bNPPmFW1vgYhJocBE2fTGc08znb1Yq6bqispevWmLoQDbIrSVExDJ6+HdDWEaKn61r684HNcknXbvGhJwRwCHpaWIeKipAUfTfy4vlLnLJY6+iHwDf/zK/wysOHPPn0Gd4Hzs5OePbkMX/v7/0ev/4b3+Gdd75C05T4AcijFh88fhgIo9QZRSEOZsfHt3ny5DEnZ6e8ODnBOo0rHM4ZJscLjg+PiCHy/PkLrHGZvqooi0r2E22wRbm/T0RTK4N4awxVVd9Y3z/fsH+Z40s3GYwD7XLJatuSRk+/GRhiIOhcGCWVqUqj2Adlnq0uDWhFUonl2GGVoleK7z/5kOpFxcGnEz769BPe+eY3OF4s+Nd/67f5h9//Qz787BPOLi9JWFZb2RiUNUQ/5vCcyHziGIcRUmRSKN587ZhpU1NVJaVTNJWjKixl5fKQKJAYMeEChZLYpqLH6w2jGZg0DSn1oIQzj3Jy0r2XhGnnSEnjNaQxCJc4F32iw0iMPmQObWAchYd8sFgwm06JMfHs2TOapub1119ntVoB7F2FRP2v6YaRIn/AJk/ex3GkG3our5aScF3XxFgydpG+Gxj9KDdNPclCssnn0qqdlQuyLhxjP1AYceoax4GqquiydmDbtrhCnBSwFluKpWiKCW1NplJIKKM4wiROz85wRUVVV5RFBUiauPee6WTGfDbn8PAWr7/+VcYx8eLsgicvXvLxx5/S9i1t13K1vGAMI82k4c7d23z1q29R1TX1ZJI3bhGMVtOGTd9JMRkDv/Krv8a9u3exrsAPA0WlhCLmnFj/WsNisZDNJgkFabvdCnLkLFFB1/cEIT0z+JGykIyKTdcyaRr5bLWmb3PORm4gd5ay6/X6BlKi8vXg8pQx7m9YgOV6KSiWK2hcw/nynAGY1DXOWEIMhJSDGVXYXx/Wfflb9RfquLFwKVWQMtGuaWqqsmBje9o+Mg4GP9q82GlGLw4ym+3I6KUQNdqJNXUrFrfLFZyejSyXiXbQzBpP30Z8C9onKm2pbEEKkdI5fFHSt4G+jWztSFWMTMsZ6ERROppmhkIsiJ3VVLUgoUXhuLzasB0RhzZgu5JApH5MFAVop7K2R6GMwxQKqzRea+KQ8HgY7H6dgryQ57V1h0CorC0KIUgDYmRNhOy05BPa3uTpg2RGaKxzGTWToidiiHjMGPHGk5QhJsswRkJUYCxlvv6N0ShrMKZAKXGrCz6QUhZjK7HH3aFxN4W4EqB4nWwfQtgjEiI+1/t/ux76f6H8Nlb2GQ0Kk3UFmTaVewWtwRqwzmDsjm6V9qYXCU3QiJj6XwIQ3LUGkpWh9gX7DgH+uTZjf41/YQL4hcZh99g7xxiV173Payp2R9yjHLsG5NoNZvdg0szobPkuyJVCJ7Er/9Ny3EQuvN8lv8u62XUdIYS9fs57z2a7pR8G0X5px/nZKRJAXXBw/z6Fc/jkGaOHJAOf6AO3Dm5DN9KNgzhPRbjcXgpN0QcW0yOGYqDdbrl39x4XxRUhnuG2jn7oCT4wjpGySCQf8GrknXe+weVyyWq95vj2HaazGcZa+nGkGgL1rKSsD6iaKevNmmQ1r731BldnT+k3PdrCs+fP2NGej46Ocihgzg9RUFhNPbEsZjUptfSrLT/7yfvcObqNs4Z23TOZ19RFRVlPMM9fsO0GmfSPgaoR+nhKEW0ttTVoW3F5es47Xy+4e3BEOZ9y69aEq4sLnnz6GKXg2ePHtNuO+6+8ykFRY1AE7WnqBa+9WnD/wSO++c1v8dGHH3N58gKlFV9753XGEPnoo8d8+vEnfP+73+NnP32fg2bCX/vLf5m33v0a09sHXJ4vacqao1tH/Gf/2f8TqwteeeNd7tw5xrjAk8ef8If/+B/T9yPBR24d3SGNA8l7oh8Z/EAXEg9ffY23332Xv/03/yZNWVCXJfP5hNPlOX4c0Vb27pAiYxgk/VoHCIphOcAwUBpNOZlgjMInoSdGpfHjSNSRZB1D5xlTxJjI4u5dluNIPDnj2fNTFgcLbt95wMMHr/P0yUf84Q8/YN0O/IU//2v0w0jwA8GPEuSYGShd12GdZYwjq8+WLJdLhrGjrh0wMp3OaJqG05MTPr66wmjDZDJjGAYmkynz+ZyyrOm6jm3bYp3oX3f3yHK53Nel23YraI5Se8r5TuP6ZY4vXbm0yyXRGnlBCRFHh0Q0YI2kBpbGYiKMIYpGgUT0kaQzemuMRM3HhPcD/SiOD2HwxMJxcHhIMxekYdlu6P3IarUR5q2R7kx2F40zhvt3j4SKqxLOJO7fmVGXBWXhKAtFVTgKZyhKi1IiBPJB6EfC3wxYnVCMwkWOWuwUdzCRuR6tXVvkJcmyiHkqonLGhjbZsVbsNlOeWiwODoSeYyzb7ZqqKvICqEkxoBWUpSP6mKcehoCIOHe2Y/sPf0x0fc9ms0EpRV3VzA/mdEXPdrvNbkw5VTqJTd+uM40hopGuNcWQYbHsRhAF7u1zoFWhNa4ocNMZVS3BMOM4UjcTQVRGT4wbEmKH1vtdyqmIFZ2V5sX7EZd9nMfsrLDedKzXK9p2y8npS7qhE71LiiwOD5nPZxweHVGUVS6KNF3fSYFDRA1GKEtRkonv3LuLcwWD9+IZnRI+BBKJbd8KgmMNPkqSp6Slgylc1r1YfAxCBcvX6BhE0K+NFlEsSUpLmzUcu8lktpiUxiASsz3unliXX4vJCAZKmo+9FbAfs9Vv/nm0PFbwuc6S0bUPIdNJ/nQeN0WpmT+Dc8VelyRNa2IcYRwVo89Fsk8MA/ig982J7z2DGzF6oOsUy6uWy/OA9xVuDMRRYYOjQYwFSlcSQ8RaR1EknPUMY0AlB9FRlhWoiLWSKzH67MNvTa5vDTEauj4xBHH7CBr6AUavCMkwJo0jieZEa4yzWKMxyuBCYIwO4x0qaz1UnnSnPYyRXenydN5aMSjYuUsproXAO/c6ld2JdHay08ZicmipUoYQIaZASAptQg4z1cSk8QFSbupdUWILJ5kkmda3pzAlMt8no2vXIMz+vzsEQ8L/1L6hDFEoldIgyP/S/vevXZTY0UKv+VCZcqIAm99LusY91LXD344StLu9Po86XP8t3XzBX+bYgRYZFbh+fTd+ZFf4fuFXbzYYf1Sns7OZ/Pz7/vljRxkTRtQNhOTnHu/GH9I1RvSniS21D2rMfxZXLnVthZ7/vMvTUEoxmUyy+YrkA4yDiMX7vs8hk1JQWV1y7949rLHcWiwgikh7R79er9eslxtxWdQFySh6NeCKtN+/VNZDiZ2yJnpPYMTogtt37lE2U8rLS4wpxN59EEo4iCNjVZWsV2uGsYckr3frHN4YRkUO8JV7cLVasRPtwjVqpoGriwv6QTJarFYcLQ4wRnNy8pLl8oodzVnvzl1KQpHSEnDYbnpK14jJQUqMbcfJ0+cY47irH7JtDMvlmrOzc9rtVox3hoF2s8l23gaTIpO6oZ7P0c6iraGuS7YbzcnLl5yfnuOKitIVlAeOhw8fonzk/NkLmrohhcj5xaVYukfPOIwc3r7FweyA+WzO0dEhZ2dPuPvKI/7CbM5Pf/RDUkgYbfGIZtSPQ7aUTZLcHiLHR0cEP8q+HDLNjcjYi4jbe58ZHJoUtIi6u544DnJ+laxHB4sFRVnRty2hHIlaQ1mQksGZgqKocIsDtCvoQ2C5WROARTqgqhum8wUhKq5WW7ZbsVXehUe3263o67Rms9mwOFzgioJt11I1jVjfDpIUvl1vGPuBy4srZrM5VVVTVRUKvafnTyYz0R8rMUTyuY7bDc6lafcEL6jxzfvsj2Nl+6WbjNXZGUFrtuNAoWUzTVHA3MI6JtWERTOhMZr1dsu2H9gOPd3o8SoSDdTTCX4YJY06aVCRMAxstx3PLs+5dfc2rzx6xDvf+joX60v6sWO72Yp9bemo64oUBpxTNHXB175yn/m0pnBSiBh8FjkqjEYEP9ZgnSZGT0oKl5TAgjnWXWwYZfLe9dAPnnEMeYHKrHGl8GMgRI82mqoqRDCopLAhK/d3PvMxysWqlObWrduAwG1t23F0fIixRiz24oC1iqauGLuBoiwlEwK934BBhOZaQ68SXddzfnnJGAJFUXF0fETX9dgrC1qmlcYYYohUVSkIyLaV8MDMWQ0xoFDZ0tYxDD1d19F1XZ48FjTNhOnhEUVR5sI3Uc/lJt+hGClGlJEmawfPQZQgKe/pu45mMqXvJdk0xY+5Wq7Zjp529KzbvCAWlnt37vLg4UMWiwPmB3NQYg2bUGy3a2xRoP1IF0amiwOSBp8Ct27dYrNesx06DheHop3wguysu5YaUFaaBT+IpWFd19mBSL66sSMkaT5s6dhutvJzVU0g7oOwdhkZIXPN99PYlPB+3G9gVeYxppQYhxHTiCNRBMk1CYEYIttxS13WMmXNRaX3Ir7fceqTUgx+FOHurmIw/Ok8ci6Nyk2GZJwYlPJyXobE0Cv6XhO0Io6KcTSEkKcYWjH0HmMGQNO2jquzDecvRwoM/eCxqqCONQemw1qHK0pCiNnH3VCWQs0yusLqmrpsCMmjrSIEoRihFDYqsOCDYhih7SIjBqMUQcHowUcNyuAVaJWF2kZL8FYCryyFHxlDwWA9yjpUDFIEqoSooLLvKgqjLdYWe20WMexO2X66rrVBZ3tfY5wItLU009oUQtnTBp2UoBhJo21A6ZGkDD4qRkmBExF+VYn7nnOy2aksaMiJ4CnpPV0KbgqfBcVN2ZZ4x/fdU1FJ1y67ZF1CykVYpmEphP6V1C6Eb3d9KJQx+0DDNI473bekfOtrRJH9Xbrj5O3VDJ87rjULu8Lsn7eRCn3qGom42XDwcwjF554rXfu1/FFPsUNEP4fu3HjMjG+xo6vtzuvPvaPcPe36iz2lbkdR/AU+btpo3ix8xGxD6FLe+3021Waz2aMazloWR4cMoxTBh4eHnJ+d0rYb2s0GUsQ4gy4Ms8mC+/ceMp/OSXGEGOj6LVfLS3qn+PjDT9icnFEXU1RU6JgwOIKO4gxmdG7wvdC8TZR9KGqsqTk8vs304IjZfMHVaslqJSjLarMWBN5YjIKz0xfilFg4tFWUpsCbgi7uhlmecRx59uwZVVVlB0tDu93I8MsHnnz6Ga6cUFYTDmczDg9mkCIXp5GnL16IG5YPNFVF8l725qbAaBj8wOVmzZ3jibwP7wnDyIfvv8/FxRKiZt1OuTg75eWz5/TbLme+aE5fnrDdtNRVybRpuNNMODg+op40PH/+lMmkZmhrfvT8Ce/94U+49+AVjm8dM53NuHN4zOorb/MHv/t7tF3Lhx9+xJPlBX/+z/0Gq82K89Mz3vnmNzlaHNE0U5xzvDh/waPX3+JXv/1L/C//4/8Z/TAIVQ1o+55xGGjKzFZYrzk/OeO1R6/y4sVzVstLhnEk5UFx79u9wYvZmfj4jJ4OI3HogUTSYh5zfOs2R7du8/LFKSF6klIk55hUU6b1jKpqWKtE0TQM40g7dmwvegbv0c5x/8FDQhhoe89ytaF24panSGy3WwpnUUXBarXi+NYtJpMZPompUIqRcRhYnl9xeXbBOI6s1htx5zw6AjTjELi8vOLi4oKjo1vM5jOm08meZqeUOFQpJYPlYZBsGWMcJpnPrXFf9vjSTYa/vKRZzHGFo9aGyip6NGNyKDXh3a9+i9/8zrc4dHCxWfPy4px/8t6P+Oz5czZ9R+tH1mcrKR5MgYpSUI0kkgFlE6vzl3x8+ZL3Hr/PvKk5Pmp48+EvY1KkKQsWBxMil6TogYgxYO2AtjLda5qFUH2cI4bEfD6nqiqGYWSzWTOOA2kc6fo1yjY4KwjN6fKCl+cjq21iGKOkWucJ0Y4CP/bDPol5s+woa7dHA7SWyfROq2CNomkmHB0d48eBzXbAB8Xb734drcVF5mp5Lv75KkAMLG4dMA6eYRThszYGYyyFK5hOG66uRoFBY2T0GS1Rii54klGU05qLiwsWRwtm8ykKzcXZOePoRTg8jIxjzxjkDdW12Lk+ff6E1XpJjIFJ04j+AREdzmcLfIgQIlVtiWMv1o9GEtabyYS6qqgnDVp52m3HanXFwcEhhXOo2ZzpdErbZg9yPVLPLLGPDG3k4LChH0SgVlYOVznKpmZ6cEAIcS+MPjiYY0pxv1l1Het2K25QVkHpMLEm9IbzzWqfYhqdRVeO6DSjAqU13gqlI4YRO0RcDBQESTrXEqSnlGYym+KDZ9tvOawPGcLItu+wxl3fYEoEV2TEYzqf0XWt6DSUyuGFiqpsuFpvRNeslTReZUVlC0plBcXTBqUtV9vNnoix2i5ZzOdorbhcXdHUFc5JYOUv8rEvCOI1S31XePoQxcJTW8rs3V1UDrXp6f2GbRdYrmq6zQzDjOjXpBBIQZx6UkiobYAwMvaJy/PA8rSjOw8czErsRmxNC1tSlF70Pc6Bm2MKg3Ye1wZ057HlhLKeg7ZoNaJMYgS6aEBZbHRYPEMEG2AIRpLGtSKpiHElKSmCUSiXUEYC/ipXUe+cp7Tlqh8YQsCGgCuaPWKqI/mxVEYk7N4YAtibFigSaKHJpN1mYETHY20BKWRkQ0JKtZGATh8TRrLDMT6i7EhkYAwwxmxB6yzVpEbnfBhumB5EhEcekyZFESVrJRqagNBZr1O6+VwxKE1SECQ0RKG4jNLJO1tAGhn8mGm4IkqHTBnLBg3krBGFwPbWJKxNWAfGaoxV2QI25S9h8Qql6YuoQ87MuJH5EbOe5MtBHD//ePv3vGs+8r99jlp1Y7NW6maO0j8dwfji895EMm7S1OTv6cbz5cZNiTD+yz3+n8zjiw2GFENZWOs9pLA/l/vvAWU2EhHnNRExK61oygbv58ymE8rC0W23+Cgi3fVyxak7pRtH5vMp7dgKtXFWcXH6gulixhvVhPOnF8RRTF80lu12ibGOO/fuEsLA8vKSGFu0AaOFuttutvzs/Y9YHB/JMC5EUtsxhoQP8ODha2iVWK+umJSW7bajX28wTUMaFSY6St2wicv95973Pc455vM577zzDh9/+BGr5RWXp2uGAJv1JegVDx9pfvCH/4ih72SIV1YsDg9omobnz54xqRxaaYLvOT95STGdcOfefbbLFpUMha05Xhxiywnr8wv+7/+X/zO/8a/9Jq+/9oh/47d+m3u3F/wX/8Xv8P0f/BCfNJ989ikouH18zCvvvk2X6Zb14oCPfvQDLl8+59Er9/jR9/4xjVX8hV//Ov+r//V/ynK5onSOP/8bv8nF+SVF0/Dtb/0aF5cbPnj/x3zy8c/4K3/lr9K1Mrx2puCtt9/lg5+8x//8P/5f8OKjx5ROM21K7ty/w4MHrxDDyOryksuLJRenZ/zDFyc8evSQrhOHpcI5Uj/ic7ZWYTU224eHFElDR4qIHW02FbKlZdQF600Lds3h/Vf4+NOPWbdbEvDbv/FL4BN9OzCd1FyeX6KM5i/8xT/PYn7Eez96j9/5r/8r/tpf+ctsN0uxE9c7SmkkxcArDx4w9j19u+X+/ftobRmGwGy24IMPPpBhszZ86xvf4PL8gouLCybNAU3OdkkJmqbc7zGLxYLJdCIIR6ZC7fTFRVHQ972EZkeoqobCiTvqH/f40k2GUjB0LR2inFcajLGUboLSlqKumS8WLAqNqQvqacXB4Ywff/ABL05PeXF6ysVyBSRU9KQgjlBoxUCQIi/zkFerFb7vWK8cl/qSe8eHFFYCnerpjKKU/AhXFLhsHQqKsqoBslLeEULkajXSth0hKNpt4Pz8ko8++pRhiPiAdH6rFd0YUNpirSbqzHPFZB4tzOcz/Cg0nLqu8XHYQ01lWe7TpFXm6GotYukXL05wxYTD+QGz2YymdqQ0stlcUljNOAw466QQv0ERGPqRolCYStKuy7JisTAMw0hVVhhjubpaYazAoj5PHnaCtqqs9uEtMuGRLnQYBgkszI4zk8lkHyq3S8OOITKOntVqS7ixaQXv8eMoYX5I+J7RipQiw9ALJ9q6Pb2nyJkEZVVRNxNeefBQtBPAkCTkZbXZZqFRyeL4mMl0ynQ6Z7PZ7JuM0ffEQWhLIXgqKw41fhzZbrdyHdYVfd/ThyDTYK0xRSlIQAgUtsSVkjGRkjQdAej6QQr37MQzBs/ovXy22nC2uhQNRVkKNSqfI2MNZVkRk+gyNtvNPrH4cnVFUVRitanAlZU0h9FT1g0kSQxXCsqiJCYR9ysrLjlKQZUaohE76KKpiCjGlEQ78gt+7Dnqe1pQtqAMcZ/ubIwW6p91oBI+tQweur5gaKcYNSeFDTEO7AumFCGOEDTRG7w3pGQx2lBXNcaUGFNiXYWparGT1JaE2PNpp7FVibKiKUtak5Qh6UjSkSGBV9JkgMUqL4W+kmkl1qFNpkVZaQ7E5kimyToZcfUIXYbYxdnNeo+1Hm0d1pUyRY+DuMZlapLdO8/pzK+Xd22MQmeKZwwRm1IOgcyUoZRQ6P0wXzQUBqWTuNwkjTYjgptARBOiwmgRPYoxg1D9Qm5+2FGegqAREmanpYHfU3diLmrVXrv0xUn/ntqF0LB2a+3uJojyyuX3MgKzazLUzqUMcZASUToUTuFc1pBo9XMF6XXTkIX0u0snfQHJ2P/5y13T/yKubzdAEHbUSJVRmJSHVzs04qYmQ17rNUKxe34Ziu1QjZ+fOO4QJ5Wf5xf2UDtL4F3NEEBFSZNPmtGPjNGjnaUwCjUoNu2GuqwzRUrRD12mLIolbV1VeD+wbbekFNDKUBkreiixiWP0MuQLITGEgEuWFAZiTMwPpqJXHEc2baQeSrHPHUZ0VJiosVHnvAJBo3wYePzkZ1ytzpnM5hhXobShLBuObxmuVlek4Bm6TWYjKKwyxJCoyikaTd8PFL7fi/v9ODL0A+vlik8++piry0v6vmeMcu+bnJGzXW3xvsX7npBGCjvJxn+R41sL2u1WHJ+AsihQKbG9vEDHQpwASdT1hHI6p0iJ+wbmBwf0PvLRk2e8/8nHXHY99cEBp89fsJg3OOuYTiZ89NOf8vVvfYNXH97hH/x/foDWUE8mPH5xwv37b7BpB/7eP/h9fuPXf4WfvvdTXj5/yePHTxiBaWHxqWO73TD2HoJh2Az89L33OH35Emctk6phfXXJYjZnvHUb0og24mUxLWpSLFjbNT55kpFhdTe2dF2bDVcMQy+hqXVTEmJPSuQwxSyLCDLslc8DxjYQzMjy/JztVjSm0Y9MnFBOz09eyhB200JT4yY1k6zTPT8/RRF5/fWHjGNHSkLX+tkHH/GVNx4yrUtSbJnXNZtMa49jpLQOpy0XpxccNDMaV+e8LtHSTXxgvVnz/MUZ9aplsTjAmoA2moPFjMhA2yW876lC8zmqVN/39H3PMAwY7fasmh3TYPf1ZY4v3WTE6Ik+4Ul7y06txT83RY3JketVoUgm0kxLHj56Bec0R0+nNIXBKWi7nmH09GnE2RqsJMySWbVJSaK1H0bhJvtI5cRlxzqLm0yYVDOm0yl1M6EoSpSWDS5E6Luetm2pKsvyaimcyc0WrQ3b7ZYXz8/46QdPadvAmANBtQVbaIqJxuod/J9IURGjTEGqqmIb2j3f0fcSrpMyR1I2UvEg301RvA90XU9VHzBpJhhjmUwmaBUxOmI0+GLE2YL1epNt7aSoCGEkRrL+I1EUFVXV0PeD+PQD221L3fTZ4SpSVjUJ9k5Kk1qSiJVCGgmtiCmgtUPnNOqmyYnW1u43KD96uq5nuVoLJUwrjFaMXUcMIzF4CufyRExCuXzwOCT/QvQsJnMJxfmqrCoWiwWurEjGEPO107Y9Q/4gpgcHFGVFUVRCNfKewY90Q0saA560F7TtOu623VLXDc4JgtH3IygonBR+MUZxyUpJ0JXMN01KFvzoPWV+rUplN6lhkMcoClbtiqlqqOpabIJzLoAxBmONOEjs/KRzIdD3Az6m7OQDTTMTulaeEMSdNiRFirLEp8Sm7yjrWhA0EkVVEVQkqYSrSsZh3JFnfqGPnc3kXrTKzWmNuCntdATWOpyzaMCnHh8MfR8Y+5qkJqQ4IYaloGtSmYtAMWpSMPhRk5I0j+KuZsFYsAUqN40ifrY4LUJhWxZgxMksgiwORqZKPkJQgjpF7UD3O06PuMpZizEJlRLKgtFCuUj5ezoaiqKiGHc+u2ZP2bPWYV1BCl540V6onGLjKo9v9jawen/exLEsokLEp4DRKVOk8pWyoxplX/6btrDaSJo22uSSTaZHKYkewxaF0DNM1iLFiE9Akus3hrQLtJXNd1cIq10DuaP07ChSN15X1mJkX092DcOuyVBKs5v/p93GlrUWKU/iM6tJ1icjCLKzJgvV1Y0i/safuX66z/OLdxSpa7rU565brtGIf8qV/YUn+DKH2utFdvf9rhna7SNyPiLXjly7+0ez0wjebECk2dgNIlKmjWV9z641VWKp/It7iPPjrtlQOuukjDSfIWlSAFc6UjT78+oKmzNWoOsjzkrOStuOlKUjIeu4cw6LwWFyWHokhpGh73Ouwkg/jNhkGAOkEJjOGsZhoOsSmy6ileTEDF1P9AkdtVATs5WyhPcmLi5e0nYtzXrN4vAuRS3c+vn8gG23hhjQyEDOqN2eqlDaorQD7dB5OEUARnnerm158eyZDG9QKGMpXYlzpYSyjd0++0tspxWRiA8jzaSi77fZxU0csmJKdOsN06qQe95LVpRxlmldUh40TKczInC+3vDZY0EQqumUojhjUjmqqmY+P+Kz589YPryL726zujhjPp1grWW53vD24ojBw4/f/5h/79/+SyxPzrl4fsKL5y9ojg5pVCIxsry6pN20hDFxcXLJyydPefr4U8I4cPvoDs5Zjo6OKEtL320Yh44UA0pZ0Hmt02ALg7OGYexERzp4klWEJLpfV5akIRC8lyEYObcHhUcywIhSM0UfGP2GuN2Slhcc37pNXZZURcXVxRnL9ZblekssC47v3qEqCmGOhIi1mrt3jum7reRxpcDPPviQW0cLCuuojKOyluAcnSvoh4Az0mQM247DoyN88CxXa4kNsI56MmHb90LB6z1VVUtQqbOUVUHbbfHdyGgs2ti9jifGSN8Lhd57jykKRDbw819f5vjSTcbF5Rl3Hr7C7GDGWYioqxYf0n5zUq6gaCaE2GKdiO6cCvyZd9/m66+/xsXFu7z30w/48NNP+Oz5M56+PGWMLXhN9HEfRCSfvRHxTUw4NJ88ec6Lk3NmsymvDg95qBpMU+PMHO93k0/LD3/0I549e8HJixPquuTicsXVcsXV1eX1Jqc0/RCE82oV3ifwiaAUpbJUlXC0+27cozU7R6KilAKx61rqSU3IPEhBCPze+uvoaE4IgU8++Uw0GEaxXq/hRUApz2RSUeVwPDeTsK6+H2nbnn4YSXjKqqEsSpQSi9Qdx9K6iq4VbqnSlouLFWVZMJk0fOuXfonZbIrWimdPn7BZLVGF4d7du/hRKGbaKI6OjvbBRVVVUZYls9mMuq754IMPOL84R63WLHSJNjZz/Tra1ZL5bMKtwwW3bx9xdXHOsN1wOG0oiwJSous6iqKQwoJEHD1jkPc1jJ7VesPVesPlZs3oA3fv3efWrds8evSI2cECkC56sVhweXXFZrvBWkPvx5zS6rm4uMhpYIr1esV20+ak6Gr/GUyaGZdXV0IdMZbtpoVGGqu27QUeNJrC2WzDLDfMdtvhnNgOeh8xxjL4wHK9osg2w0TQJnG1vkArST1vqprT01OWyysOD49YbVd7FOjs8kJQmBzicPvgiKasWW3XKKvo+5EXpxfcvXdPzllKHNQ17dARSNRVxWDBZU7+L/Zx0/Z0lwkh5yYmCefTuYGr6oq6qXHOEONATCN9N9JuSwozQacpfjAEJSWgTmCVRXlFjJrtxjP4SFAGrKbzCaOSOAxVNWOIeC/Ft0saZRzlpEbZDZ5IHz2mrISOpDweMGWJ1hXWlGi9JqlEUAHjCrR1aB0ggGukmcE5GfyNCT0GrHHYaDPNyVGVJUMu3pVVbAmQggQvGQ0xETLXfGeBvBfm5Qm4NRKup2LOuNHXbjtEcToR7ZCSfIwQpHlSGqWEGhpCRh60wbiCsq5liFNVezro6D1jiOzSKlKWOezoUjfTs+XBdn+8RgB3QwKfJ4Fizb2zQjckNUoRbKyQpJTJlFRz/b7ZNany2E6rTA8z2fiiwGrQ0efrK4rz1RcOtUczPn9N5qv0j7py/6nX9L8U/SgjKmIkIhQ5pQSNksZNS6ZRRsljSvvXvnvNN92lRPQu+pN9lodKENX1e/0Xf7V/Io5ry1qzd+9LKYKzuLpgwlSGUJsNKSWOjo6kDvfSSBROzAxUbriGoUcrTVVVNE1DGiOxFzORYRwZV2vYbui9F/1D8MzLBo3Ozj0N533Har3i6dOnrNZr2nZgu+1l70lgXUFIoHJuVGEMKciA0G+3rPUFrJYUVc2de3c4Plgwnc+YLRZ8+vFjtqs1Q9dDCDx/8Zih25DiSL/dyLkwBlcUNJMJhbWE0VM3jeRK2YJ79+5z7+596qbhn/yT73F+8ZKuD6Acm3abKY+w2SwZ+kG0USHQ9wPKFFg3wbiaOEI3jHz3e7/PV7/xLg9fe8jb77zJajNydOsO7z54iKtrrs5PicPAb//Ff50ffO97TJsJ3/nlX2X7u3+fv/c7f5e/+Z//Df6j/+h/ys9++lNePn2O70Qjc3x0h1eOHvCzDz/m9PRcXssItx9OuH244P7BnN/5G3+Hk+endNue3x3/Pm+//RW+9rW3+OijD+h8EAZBYfl3/r1/k2695OLkJT/47h8wDgN92zJ0I8eHt7Ba7v8Xz1+ioqIqSqwrMc0c7wc27ZqqlBrBR58ZHGIao8uCg8mccRjZbDaMo5chDYp+TBzevkfhCi7PL3A6Yo1iOinZDj3L0+f02yXEkf/hv/Vv8uTTT/mvf/wD+umUzWpJu93wobKkoeebX3+b3/rNX6Pv1xwc3+b+o9f48fvvo4oC7RwPHj3k8HDBtm2JKfLi+TNm0xmTyYTmlYest1t8ENvdoijwfqRt4/4+UspQVRWr1WpPO2zbNq8rmunE7TVuN/V1X/b40k3G5GCKLkwWyKrsmpAdeJSh956r7ZayMRzMF1SFRseI8oHUDZgx8ODwkFtHh3xjfJfvvf9jPnn6jOVyQxhGyA4MQlPILjwodBLuXjtG/HLL5Xsf8sFnL2kmNQoRZJPEd361XNO3PX2XxTjZ+WkIYg0KsrEkXeZJG2CULDgG2nZAZZ5wPwx7ju5uY99N6awTj/Kdc1MIIfvRF5/jgaYUsMZk3+oloz9gNqtx1uBsRVXX+HFgvWmpJ1PKegJo7tmSu3fv5s7TopTdUw9mszllUWbkwXLnzl3m85l8zabi2tW3vProIdH3dF3L1dUVCuj6jiG7U5WlPEZd10ynU0CK+1dffTWH7AWevDwRhxlrqQtLXVXMJhNm0wm+7yiswZaOg9l0X+iUZclkMhU3Jy9BamVZo5SkVN66c5dyMqXczHj1tVcxRjQ0ZVkK0pKLj5OTEzZtK2J0HamnDcZZuvUaYsRYgy1LsYrNE1GVKVibTct609I0jQQPhUBV1Qz9iFJiMTz0A8EaVJLEVwUooymLQlLfowQNVlXJOHjWyw3desnB/ADnHGcvT6ibmqZucNbSdh3TyYTZZIJzBWMKtMPAxdUlBxOxJUwazs/PuLq6pHMbJlXNZ59+SozgXMXV+Tm2Ejefk8tzikqEutuuJ6oATuH+BWgZf6IO5UGJ05Boe8SqN5ooE3GlSNpCputUrqJxJaHrEPmSousSlBWaA1abQ/qxJSWP0ZGDaSNCOaUY2yVqFM2E8g0xTlA4VAEmWsYg6KeygbqosApSP6BiJKlIslBWRgozPIPRGDXgUqLxI0UEV4woHbDFASpVqDSi1BnJZipWakjJYxlx2lOQKFQh2unCUUwaKqOIVmG6QOhL/OBB9Rib8twlZQ0DoDRSp+/oQnpPO9NKSTEpCXwSPWIs0RhCkgBAlCElLSF6SMFqjMPqWvRiusMU4EpNURgKa0Xz4rNsOl7TfEKIUsQi6EiSETsKhdWGmNEHW7hsbiCmEykKJZPMDQ5ZRK5tLVSMNKLJmoz8ngwBQrp+rkz7MVqhnRFKmoHCluiYMySUyqGMMv2NQRrKmBI+jpK6q2SiKelZn79Ur2l90kklstCe7If1OVrVeIOSpfcUtT1Gk/JHgzhgkSDthhvyQaATOTYvkAhI9GSU609Fdu2P2mWR7G6pG4jMfnlIipQMe9cK8vvLVKv0C7yM7KhBO245kJuyXRCrNAF938twMYkDE5nuGkOkqkt2OS5VVWX9DvgwMp1MCGPE25GEWJxv+46Lq0tcWVJVFZPpVKhJwyA2oNstV1ciqD09PWUYBvoh0g+RomwY1UBiBBMZxojyCWMBH7BWUJhudUFShr7dEMaWxa1jlpsN5vKKxWzBZCJBe5/87Kd07Yqh30AKuKokjKLnPD46YjqZit7y8WOqYZB9VSlW6yWffPIRxhj6vqft1qQUcWUB2uJ9ZLlc4cdeDBSUoaonhKhwZcPk8C7f+sa38T7SdT39MPDi9DknZ0/46U+/z5gqmvmC2/fv8+/+tX+HkxfnnL6U/Ier1ZoXz0/45NOn/Lt/9X/EdDbjD7//hzx/8pzVxRKH4dvf+Cb9dkNhNV995yv8wX/3+yhjuXXnLrP5AafnZ5y/fM5Pvvs9Ht66w6/90i9z+85dfvzjH/LBB+9ztbzEOMs73/oGKUXOzk/5B3//v6VdLelWK4arJZdnp4x9h9aK5fkKZw1FYQUF2mWEWo2xTtwkdaTvNpmRUaDy+pGirEXL7Za6mXD3+Bauajg5O6cbR7725lsc37svNWLULE9fintV9BBabt+5z3Q+x+rE8yePWS8vWcwmLKZTTBhQfqBvB37wj/+QYbvl9UePKJzictuh7SVdDDSl7B+F0Tx9/pz1csV6uWTaTDg/ecnTTzuKukYXBcZZisJRVeXeUlxiBgLD4Fkt1zx//pJtu80UKUNRFpRFyWbTYowT+r7542tCv3STYQsn/PihzwFKeclTMv1CazCasmmop47SKnzbMWx6wuAxSTGfTLHThlgYQm2xTcPLl2dcnlyw2m6EVxyF0ywwsmxcSUVCghQS7aZl1Q+YS5vtVK+bjOgTMWSr0iDTRaUliOkmk10plYV9knmQtBGLXeR3Y5RJ0Y6Dt7O/vcnfvQn/Czxl9x3eMIhvvXNOpn/jgPcxOxRYnCuZTGaUhROHFT1gXbG3mrSu4e7de7nr9KSkhTpiCyaTqUw0EXFxXTeUVY11BavVmu12Tddt2GzWVIXN5zDJRN/rvV/9jiftnKOqKrz3xBip65qqVpQ+ctZFhmGQZEkrtCt200gfKJ2jrkqqGzkQzklhTIzZTlaoH8rIuarrGlOWuLrm9u3b+0mlc040D0mcvTabDVerFZvtBq0Sgx/QzhJDQFuXwxgDZDpZSoDO6dgp0vU9zhWZ6x8ggfeycQOMoydGMT7t214gda1z+vR1ceFH2ZRyNK8EE1ppvKqiFIRJG4zSVIXcwN6PObTPEL1nWjVZ9wG+mUBMWG1oyoqtsQQi1uh8PY+kFBnHAZBsEkkft2j0PrjsF/UQ16TrI6ns65P/K25KCAXJSGp9YR0KkxO9Ff2ACJxVzbYt2XaCJlqr0VicFde37Trh+4QJSkImVeb1G4VWRsrVFDE6UWiN1YpCWa55OGCNFl1ALsyMSpQp0iSPiRqdCz6tLCCuUfIcsKOAKq2xaKFg2IhVOUOlKClTJBiNMgaDlymbG7DW5c96Ryu7EbYWcyOxKxzzGZVvy3tPZI6/Eg3GPtgu06VCDDcoOpIxIjbcCle67BYnwZNEiCHX/5k2pHY16/6TlNezs441WiZkaDGwEDbSjhabMrd5F8KX/ZK0OGDJdRLZdRI7lHGn80i5sRLdxb6nEoqR2idN5PcvVKGEyvqRHbVrb0S9uzDZWS59Ptxuh84I/19Otd6/8UxGunEm1P76uWZrqf3P7q/99Hn0Y/c4N4hjghip/NjXv3hDi/EFGhgIlYZrbGV/t6UvPOcvcJMBNxCnL1DFcoDKDVQnh1EaI5PoLHC1xggTI4qJSgjSjOxTj500isMoNNWYs6GMMQTvGfsek4NsN5sN3nvW6zVt20oB33Z4rwhRKE4RTUA0XmJlqyBpVArZJW6QHAZt0SnQtYrNukSPI6rrcdriUIRxRGvFdNoQKg3ZMn/I52IcBfFPGQEdRmkyyFqfrtsQg4QMe++z5a+TgWz0ooMUhwSUSgQdsK6hrBqaZsqm7anqmtmipuhbrjbn9MstpycvuPfgKzir6bqWs9MzfIgURYl1hWgx05bVcsVsfsCrr71O2/e8eP6ScfDMJjPe/upXee/9D4kp0DSi8d0uN4ydoLrr5RUpRg5u3+b48Ij5bEpRiP5qGAa225ayqgij6A5KW1LYkloZBuN4dr4kjoHoI7qwmWIfiVGG2mGUtSLEhMrmP0rLYEZlR1Wxl7xeO3yKeKVIrqCYzrhV1CStuffwNaIxxKGnzGhSyiYcekxUhaUqC3xMQv3abrHGUlUVrZOhTAg+mxa1nF5cMZ3W2NGgbV7Dk2SFDcmzXq8Yhp66rqirim6zoe9bhjBiKnEtHceCqqr2qHJRlDnOATYbuW6HXhylnANjIsHEfUO/+/rjHl8+4cvAptvShUjb9dmyU6A+bQ2uqqinU47u3KaygeR7+mHN+dkFoR1wSpxKivmM4mDCq19/h4df+Ygnj5/y4Y8+4Ac/eo/VZkM3DJIWnrF4ay0x2yAqK0m3Q4qknaAie8EHtHDtkiIlD1rSdFUS3rJwjfP0DE1IiRiAJGhLoYzYgO18g4uCrhsy1C4UqaoS4bD3I6SwRwJ23tQ7+6+LiyVF4Tg4mLNarUlIauLx8TGLxYKjwyPu3b/LdrvJG6ZmHKN0mNahtaOuJ6SUWK+XWFswnc5ZHBzS9wOnJ2es1muWyyWPnzwTtEMnzl6+oG3X+LHHWMX9e3eYThuapqIqin2RX9eSUD0MAymJkH23WLdtSzOZcFDWqOaQzz77jL7rhDIVetZrhU6BaV1ydHDMwVyaJZ+iCI4K8VveUSt8iHSrNWVZcfvObYFzy4qjosBay3QqaaIhBHrvCVHyV0IIXF5e8uLlSwgDpnSUk4bje/eoS2mKumEghMiQG4ambiiqBqUMfgy0227v0S+uUiGjUYpx8ATlhc7Vi+UwCsIQGMZBbA7nB6yXG8qqZDabczyd0tQ1ZeG4c3hLGgCk4ZzWjaBDxnJ+eU5VVMzrhvsHR5JTAqDgqJkIdS2JZuawnrBte87XayIiAO+7HCbXXaKMZjKdcjCZyjXt/S+0he1NMWq6UZfJ3yP7UkxJhktVVqKlSZJH4QdN1yqcKYkmsFpZlmuZYFalZth4CiPN5tnJQNgmaosgkAasVTgjeiKnR4KCUoMzCqcNZW52QYwNCi3uRjFJoV4kTYWiTpqEkclwtl5NZOG+qUW8SyQlT+E0BZoiauHRRmlodVkzKxyFD/TNyIpE1w6MPlA30uCrEEgp5Am8IHVaS5UpZ2qnl0gEH3MOC3mQf7Pwv0E12k2B1a4YlSRvKb4szaSRYUP2VY8R0XwgtbjeecVm4pTadR050VxpaY4Vkv1hjYQHSsC2IC4+r6s3rwetJRcgGkFOfBj2GpQYEE1UHkSgVLaqNftsDPnaUY92r+u6GfscTe+LfKH9oD8XrZ/79+tC9gu/sj+n/8xr/gt/3yHiN1qAz//sjjqVA/RSAmV2GSM7ipfa9w07atznhPXpuoHcpbD/M1/UL9Bx068f+FzxE7LpyG7oZ7QmGUPtA11q901GTIHkJQdgu92IvhIZBPoQxPigdLR9j85U3MPFIdpo/Oi5PDvnlVdeoW1bzs7O9sF/wyBpzKvVGnBYOxU2RYQxKTCOsrDSAPqAsooYgwwiU0KrIn++Fdv1Cj106L7g07NzuU+NZjGfcOf2XPRfeD768BO00QzG8PzkhLbvKYuCoiyEdqk0pStZLGZs2zVd15Lwe6qMwubnlEGMNQXRB4YQaDcrHj46ZjaZUbuSv/v3/lve/OpXePOttxgJPHztNY7bYz7+6Gf8W3/pX8dUDWfLDX/9r/9tXn/tDe7fu8vDV19jdXmFK2oGH7hcb3jza2/z1ttv87/5T/4THty9y737r/Crv/JrfPDRpwxdR9/3fPM736bf9Jw+P2E4O+Xi/JyHDx/yl//KX+XTTz/hydPP+O4f/iPAcDA/oCwqlssVzz95xnQ65ej4kL/w536DWV3QLpf8H/+3/ylx5umGliENNLO5mNVohSsruu3A0EueSheEUu+soqhqCYH2AZUDTFUSWDI5Rx8T59stNHO+9s7XuXP3Pv3o+fjxJ/R9L46Z8xljb/FjT+/bnEukGEPk6mopuRoxUVaVDFGVYgyee/cfMV0c8eL8ilFpqrqgwuKsom87Qt/T9zJUnk0mPHzlQc4x84TouVyvaDc9McleURQFbduxWq14/fU38aNQVYc+AKIZ1HqXsSKoudYmuwD6/TD6ZnP/zzu+dJNxcnFJ70daHzhtE8F7tC7Z7Wir5RWPHz9makZSGFAxUGFopkeoUibfxjooZPMpXM07X/06rz14g3cffZVvfeNbfPTpJ7z/0Ud8+PhTaWRC3PMok0kifsxprRFR+JPdjTzCFU47FkEOmyIFwKIsGeoS7qIKEIJMt4cwyBQwaSbNJC9cIadqC+LhvQi9ZZEDH+Peh9taS1mWaK1ZrVbiUBU9FxfnTKcz7tx5hVu37nLv3j188JyeX/L0+UtmMxE8WWt4/Y23SMh7XCyOGH3g/OKCTx9/xvHRLVabLTF+wvNnL1iuVtlFQOPsp0xnUw4PFzRNyWv33qCuHJcXZ2idGINcGN7oTCmSDWk6FUh1vV6zc8ja2wGOnvZqyXozEoYhjzHZQ/pGaWbTKYuDBfPZDK1lwuJjYGg9/TDIlCiBKwqmzYSiFH3Hs6fPODg64s4rr/DgwQOsKwBF3/cwDAyDx/uBoih4/bXXePjwIeenL+jGjt57Tl6+pO46bFGgnOHs/BxrCwpXoFBstr00nlqoT33fs1qv6YqCzUa4q/fv3RN0JoqFctd2uSiTjeu1116jrmsRe8XEwXzO8eEhvt/ijJUpQ/QQMkyvNUWZecFE6qqiMg6HFps7WwixRYk7SDKwm0h6p5nYioPpDK0NPgRxuEqR3/2H/5Cziwtu3bnDs+IJk+mU+fwAHh182dv2T+jxR5dnUkwbuU7ROFdSVtXeaCKFxDhE2m1iUkvj7Nw9oqqIRLQp8f2SmDwpjqyvFDpoXG3QFupS40orCF+A0YxE5TlwleSpJMQUNdsVOm3QEQqtQYn1cqERylPy+FJQuKg0RkeSDqLjsrW8Zl2CrrAOHAGXFG5UlAQJ3XQVMST6QfRY7dWaomgoy0CIihjXJDwpWbFl1VYmaTnBWwK+DGiFzQV0kZt80SDofeGglIFkSEFEpzKxY59JoXMz4FzBpFFUZS16tCBmHzFqTEyo7OKjtSJmPYZCZatvvf9cBT24nrjLtDjkxkKeHzRaC+3zekAmqIotLIw6b24Z8cjohDRYCa0TVpMDQCWFHeSevDbbzehNXvdCkMyfaxzmZtN73XykG43FHyd46sscuyZGfQ6huD52DcYuDT2p69ciXOiMsLP7LK8n+Xu73M+J2v90Hbvzcy2S1/vCx/vs+GZEX+GHAe+F1mydkzV/HLPQd9zTaZUi31PQdR1ajxhbcHTrmPVqxXa7xXvPZDLZJ2qfnJxgreXu3bs8fvwY5wR53W63IqJNBUoZTFHgmoaYJOsgDiMpiOWzq4xQPZPGqEhAoUwiWfDRE642+G5LXU/R2hK04bTdghGxcFUXEmI8DvTbjna7pe06ur6nLoprCjqB9eYy2/kGQOFcicISfKL3MswgJQpnaKpK3Ku6wNXFkqvLDUk95Y3X36AoLCfnZ9x+5S5lYRlVwmN48tkT5sfH1LM5/+F/+B/w6aePuby8Yj5p+Ev/9v+AMQQ+e37C3/qd/5L79+/y6qOH/OZv/xbf/e/+EU9/9/fw/UjXtVxcXvIH3/s+3ZC4Mzvg13/9z/JPvvsP+eU/8x36EPjf/d/+r/z6r30bOy2ZLmZsV9tcw9S8+ugO1WLOtm/54NlLPv2bf4tvvvsu9+/eYfLmG3z19q8Sxo4P3/8RKXkuzk85efkcP4S8Nub7JoJ1lmZas1lf4oqSonGkKMOVEDzbdsuoLV/9+tf59d/6bV6eXnJ1ueb9Dz8hkfjoo5+xXS/RMfDmaw/p+paL5ZqvvP02vY+cr1qGAeYHRwxJs+4GPn7yDBUjs8Uxr7z6BmeXl3z49AkvVmu++Uvf5GBSUxeacXPJ6w/vMp/UbFYX9NsN3WbF1eUFv/prv4apLNOjOa8q6HpxHGvbnvPsfjUMIx9/9HHeG4QpczO88vDwcK/XvWm3vbvP/jiIxpduMvoxINJhOcEKcTFBaUKMbLdrzs9PWB3WYqEoHxUajdV2n64clSJFxfZqw+zWIfWsoLwtXUNZ1SyOjpktFrw4ecnVUm7uMfVE7/EKcGITq3cbW9oBVwkRuwEoko6YXVLuzklDgU47dyyBvFQOhiI72sSYaU3G5t9LmQMtm5ksZDuXgbS3rQVubARqPzETTQWE4Ok6cQEQYbT4ufvgxXIvBHaAeT8OpARlVXL33l2cKei6nm3bSRiWEuejg8UBB/OFWMRWJUfHC+aziWy2KTCbS6ppDJ6h77Da4Iz9HKcV2MNn1mb3q7YjpgGrBurSMRDwQ8/BdMLBfMbR4QGz2RylTBY7wSAKfLS19IPf53yM3hPpMdbRTCZMZjPmh4ccHCz21rmJzPXbTxlT5rm2dEOPTpnDDdSVJFoqEyjLQuyERy+ZFfIpoYyRxybR55DB4EU0npRieXVJCJHSOSZVjc0wuYQdFcwmDXVVoVE4o6mrCqs1tij341C5/oRCJo5IOztOJANDa4wSJ3+jhHKjlMLuCiUkas1kK10nrHNJt9cKBzy8ew+N4unjJ5jCMZlM2Bys4dHrX/a2/RN3SG4AN2CM6wnynhqCTE+MsfKZOIvSWTiceoaxw0dLUhbrKrStSCGgVIGmQqUhJ7EnZOqQjShconDglCYZhVXgVaRQmQufdggGaBXFRtb3JOPRRKyS37GA1YlUBJQVl6ay9ETtUUZhnKMsHMZUKN1gbRTCUtLYYDBBBIKYAjdCCAZrEloJimlMgbUeawqhVyRBL3bIhHzpa60Y4mSVrJPvY1DE/c/tNQLofeGf0vWUPCYpsHb3gIQhOowWLViK18VsStdrXYy7jzFhUEJpTaBiLvGVNAPeJ3GiCkKfFCpLXreVUMV0StIYqQhK0AmTIjGJm11KWZOQ13OjFSYLpU2mSe2wmpSDNdWearZz1voj4At1Ta35oyCJdIOeuGtC9i3y/uf/6GYh5bXi5n/3iAOJ66bs8y9p92A7tOLmAGT3ffm2uvFa0ueKgZvv9eb+9OWzP/7kHzebjF3TsUd/cjOxQ68l88FnOrVHm0gcRmKMzGcLNtt1rmvkcft+xG8GSlsQJVkTnRLjKNbSrrRsu47ohVKrkCwbjSF6hcJRT+bMDu5wcHyL3nvaYeBqecXq7BRCoHYWpUa8H2AcGMddvWCIQZgStnDUVCSShAxbTVBgSxmsnC83zBpLyu8thSA0YqBLgihqIIWEH2VN0DtNXIqAaKSCH2Ryb7SsHl7ut72bndJErVitLuiGDtduaLs1h4cHJIS2/f5PP6Con1HP5xwe3kWHRKksm4s1l65iJLIeOoqyYjKZMZvMuTw5paoLNCNnq1NCHOi2G86ePWe5bolHt5g3DZP5nNniAOtHTL/l/Q9/JiLwVx7ykx/8mNlshrUlEUOzmFMxo5nPWF5ecnm5ZhwDupmgJg1+PXK12bJcXQq9PCru3n9At+kY2gE/elbbNeMworvEZrtlMmkost18XTdooynmU6rZgsPjO8SoSEmcUofg0cDhwYJpVYEfUUlTuILJZEK3aWmHURwobcXQb9EqMp9PGbqWse9JMWCcZrNZMfjEuvPcenGOe+Ue08mUT5/9GBUHjhZTZpMqG144prMpy6tL0RFtt5xdXPDg4QOqaiYhysFnl8zI1WqJK0qscdD34jiqTc4dMlk7LFoOnWn2u6yk/Z79JY4v3WQM2a7MagWMufOXm1xcHNZcnJ2wubOgrhowlpHIiEx6tRF9gEYRfGR9dsXh4pCqrijmmnHwzBcLXnv9deaHB3z48cc8ffaMzz77jGErIWeh70GJF/jezhAy7C+BajfOgDxvJrDGzGtWCG0iJQlgCmrHqd41GRLAZ63JXZtYlqaUxCo25i4uC2B2hfoO+t+p7ncLoNGGYehZrZZobXjw6BG3bt2mKmvarmW5XrFcXbFp27zJR/R2Q13VTKcTDg8XrFcbsZDreybTSeZLF9y/d59bt25lnQXcvn0LrSFFj1aJ+/fvokhcXl1w8nIH+5b0ff853/qb+pLJZAIINaNyI7EpaQksuw2zScPh4oDjoyOaqiTGRJtF9kMIYnlZWrFqzbZoQ99BhmYXhwtmswMm8xmT+Zxrt5RrmNp7TwiB9XrNyckpy9WKe3eOhNqlFfVkwrLr0TlVu55MWC/XtNuW7eiFbmYs0XuGrqcfxOs5FTHzT2GzXlMVJVXTcDibURpLWRTStDQNRVFQOMekrLBaScPELgNEFnOjzV4ElVJE5dJOK4VxBUVK0jDc+L5O4oC0qxMjkhIqOenQBxGl2/zzb7z6GsZYvv/9H6KdZdNs9mnkv7BHJvN/AcPgmte+myYbSbg2ThY5FUiMxGjpxy0+lkQl4n/jCpIaUdpglUOphE+i00gKUp7kORtxNkmTgZa8H6KU3imyExQbo9AqQOiJY0dMHqUizpRYrXFKYVUklRFVKHCJughE4yVN2xU0ZY21DcY0GL0r+B3aG/CjFO+qwMSUi2R/3WCYAmu8TBpjIOzOyY1wNTmVsr6EvGaZtLMvvaYIKTQqydfOLvZ6g8i+71mAvE8JN+yTxUFQhxSRKZ8SapZK0sTt8IKENCsx19s7Wo9O4EdpSEKQP4vGTZBO0WIYlJHXIw+gRMthFSFJ8xL8IA0GKTvpqP36bnNDr/LnCTfWFfQNLYa8f6XSfu3ZX4F5WCV0MJ2lWzfRjOu6PZG4tufN1/IXmoxrl6obj3/jK582ft6x6vPNRErXgXvXYXs7Lcbnw/f++3jsBd97/UU2p0kRn63ciVILjN7viyxXJECm99PpnLbtJbsoCZXRjwObdcesrImjl/0mJfpuC0bhKkvoE23f0W96SJo4RHyfpMnQjul0wSsPX+X4zitcrjcsNxuUqxnaDoJnOikZhzW0iTBG0ugz3dHhQ0KXmspVVFXBtu3FgrdwDAma2ZS2H7g8PZesmxiJgyeN0mgkEm3w1LYhqRyY6cFYk52ColDGkmha09ChncPZEo1iHD0pgXOloIrWEqxjuTynKCrstuDJ4y2vvv46s4MDFocLPv3pY/rBY8uKB/depSwbdFKcX12yWbcECxs1cHR0xPHimGk9ZX21ZH4wIU4tXdgy+pG4EbOfs8srxtWKg4M5R8e3cGVJLC2Htxe8/4c/oH77Xb7y2pv8cPwh06MpzWTGuuuo5xOquqayJU8/+YzV8oqLi0tMVdIGz7LdcnZ+zuPnT0gpUZYlh3fucXV6SUorYurogjA4lA5st2vKusIUDt8HbF1S1Q2zpuT49itUzZzzsyvGMaKNpShLVErcu30XQiAMA6urcwpXMp/NWZ5fMUaPMobJ3NFtV5SFYz6tOetW9N2Gvu/woWO76SRAeVCcnC25desurpxwcnqOH7e02wO++pU3KMqK2WzC8dEhpycn9F3Pdtvy0599wO3btyjLgnHo8OOQayzPph+oU8K5SBhGqqpCFzqvqzkHzeSBk9E5kPXaPv3LYhlfusnYDIHbi2PmTc15N6L7nuRlGlCWFWnoWF+c0a5u4yLUkxn379ymXS4hREL0jF2XFfsKNfaEswvSfE5VTZg1E/rgGYLnrTfe4NWHD9hs1nzwwQd89w9+n9PTE1ZXS7pxRBnxxm57T1lZlFGM2U86KXFSkBU8KxZ3Q9J8bDfL/WK/m35F79mMW+7euYVoE7psnRn2EFEIAicZq8RiN0+2qmzzCLIZbLcdReGYTickIicnJ4zjc27fvsfB4ojl1YYQoZ408txJMYyBu3ePODiYUVVl1n9IA1fVNfcfvALARx9+zLe//R0ODg5Yrzf8g9/9XW7fvs3Xv/4uzhpOT14yDD1vfeWrnLx8Tte1EqLns4gn31S7DSvGyHQ6pc+dL4AxmqosuHts2WwMbemoreZgPsNZK84Se4szhXUWHwNFFVDZ87/relI38ODRQ95++x1u377D4fERShnxTsmNm9IaFaFtW64uL1mtN6w3W05OTuiHAWMMp6enwo8dBr7/3o+5++ghVdPQ9T2LoyMOF4ccLY547733OF4cM/YtT09O9p+bNYbXXn9NxGTzOW+98Sar1RKiTKfvPriPNSL4Pb+6xCKi7y5FGEdKrWmMZUwBlCbqHPiocqKvEhc0KXKUTLyJ2S1GmgbD9dxyN6yUOZLK14AUNymHql2u15RNw61bt/j2d77D+dUl2hiqpv6yt+yf2GPHKZc/X6cipxSJKWbbzl1BqClLhysS4xjwcWD0W/qxZPBQTkvqVuH7REVgUjhiCPRJg06CvKpEYETrAUOBiomIuAUlRrquE6chbfFE6kqjXcKZAc2A0YJ+2qamsAWVTpRKYw9KdGlQzjIpKsnfMAXaVlgKtKrQaoKyIwGXs4YcIY4iUA0KvEebtM9dqaoqvy65JoZd+FLMwmOSLGtKEAMwhDDkAtkwDOFzdq1yTWpiFFpX2k3HBUfbV8gpeYwpqOsJIQS0tuw4udZmNAhyg5iL5Zg75v2k3Oz/XT5XCS1MCWLUeyTEexFVJqUJRJQRG++QJBSQ/POi8RJEa73eNfeKqrCUzuVJm/DURfS9e9fXgnIfRNgYQ8L7nTNR2iPRN5uHLx7/v6zf/5nTvzwU+3mk4Z8tnNgNsna2wP99P1KS+2hH7S2LUqhNOetKGASyzg9phUIYBh988FOUEvvjuirp+y1NXTOrZ6TgOVwsMEZzcvqS9dUZRE1ZNmy3InBenS9xyvH4k8dcXa1oe8+tu+KIdHAw42/8zb9OUJaiqrl/7y63b93JMvDAs5dLfExEbTCuRGuLsyWL+YKzy4t9PMBscSg6UpUonRN3RD8yn01o12fgBW2pqoq26xhDZhaYbH0ds54rqsw+CTmLK+/DIaCM7D9jjHsaTQiBNA54P9LR8yvf/g4qwnq94ZM/+AO+/s1v8tZbb/Hq629w8dY5H7z/Id9/7z3+m//y7+BDAq05PL5NNWm4++Ae737nG7x/teEHf/AH/O7FJX/xt36TZy8Tbbeiriw//uSnGGWYLxZUKhG6NRs8deF4efIMT0AXmq+9+jqrkzP+33/jb1O6kqdPn1JPJnz1q18lpsCwXLLqR7TRTGdSU62uLvjw4x+zvniBGXqOmwmnF+c8ef6Ui5cv0VGCPSfNhKYqsFZTWEXvNA9ffcDXvvY2z16c8eT5SzZpzVuPHrDcdFxuRozd8ht/9jeZzKYopXj+5DE//cH3WV1e4see5eUFKXrhL4RAoQ0Gg+k86+UJp92W7UZyUaw1WK1pu4Gj2/eopoeU81vMDm6zWvf89INPuXvvAdPG4grFp0+e8s67XyWmxMcff8R6tRXNqQ/cunWL733ve6zXa06fn2BsKU2nNkwPj1m3LbobaErJm0uIWcBqtcrUUgk2LusanYOftTVoa760rutLNxk+ycxPa0dVNRgtSZZKaXRMhKFn2G6IfQu2xEd4tm0xQGENlbOoGBg3A9ELnJQuryQtfHrAdDLF+YE+DJhCsVwvSb7g1Qf3UP6XePH8OY8/+YST8wv6YWDwo0A3YyD6PCA1UrCYHcoR055ruXNdQQnnEq45rMFLI2KVldAuLcE9MUacM+KqNQ6EIKnaWhusypzkG2iAuDsEoRxpCcVbr7fMZwfcurXgzp37IrgeA9ZVTOcHlFWBLQxVUzCfT2iaiklTMJtljr4PtNuWsqwoipLbt24xmx1k33zNt7/zLfFstoqqLokxsF6tePL0CacvT1DAbDbFWcn/WK83KNKeMrUTfnt/nfkRYyD4gXa1QafIfFJx7/YxriiIUfzy+2EQqM0aIoaidMSUuLy85PDoSAqEqubtt9/m3v1XmMymOFdgrPycv2HJqZRsDnVdM4ZA1w97h6m+71nMJ4QgJgCPHj0iZDH3pGlo25ahHwk+sF2vqQuZxDRlwSsPHlBVIhy21jKfz5lOJjitmE0mJKk6cHlyFWLkeHG47+CtcSL8VUJr83HH3RWOlNoNXfee0QlJB1GE3NnK7FW+tz8U+7+nPJ2OJIbs6+9VYowBQ8JWFQ8fPaRHrKOr+he7ydjxxW+KVa+nvuIjKPdkFIKP1lR1RVk09F3P2Bu8TwxDYBwjVV1RGcMI2OCxQROjIeBQtkAlD8YRCYTYEbxB+YpkRHxpnSEZRzIOZS1loTi+NUcbRVVZijJRVpqidJhZJbxrnShMJE0P0NahjCaqhDIFSpdoNcNqh6IAiv3nC5pIiU95kx89wZOTsxPGQJEd0cYhUriUC33FGAfJEole1qccHqm02InHIPTHcfS7s5xpORplElFnVEdl6hP6RrOQaU43qCc74ez+MfbuUVIEi62vpIAn8jwnAxG7S13S29V1w4gkl3ufDRg0mQKW12ltgZChaXF5iRFCFGrizt1JKaGNWKNxRmOtIBkaoU6RNQy7gMcYIPjEMGQ3mR30cKPJ2KWB/8sIvL/s8TlUYwfr7e+BG5Qq9U95UnX9OP//43oPttbug2hJKYc0ZjMCFD4JYuDHEU/MyH7BdtujlGT1tG1LWUr46bZbQ0r4MBJT5HJ5xdVqxRg88fyMFy9ecvbynOXFEobEZi1ZE2Vd0/uR5y+fs+47prMGZSS/xaTs0DkOjOPA7Og2yQfGfuD85JxqMsNow9X5JYW1WG1IyhCVo2zEJSgkL/SpURF9hysrvBrwacQ4i/GC5gzBM3QduiipympfNHo/kAjZel+0KyMj2kg+lLhxudxkZAaLcZSu5OpqRUzgQ+Dr3/oOX3n7Xe7cucdm3fGj997j4vycSV1weDDj9v37zBYLknOMYSTGkR/+wT9Cj4mSSLDw0fs/5mp1wTC2oq0yMkkPY49zJZpA6FuefvYRXd+jtKJqKvp1zh7Rjtt37jBdLLCF4+LshA/f/xk+QXFwwDd+5VdErxkj29Oa048/YlyPNJNDbD3j3W9+hzfQG830AAEAAElEQVS+8hav3L/H06dPefzZp/zD3/s9lB9I/cDQBd792tcgRX78kx+zans6HzmY3eLBw9f44Q9+TN9HrPO8ePaczYfSLKyXF1y9fMnQbRnHntPTF0KDtoahb6U2RWFNwe1bx8yz9f/pyUsxBTEGy/+Xuz/7tSzL8/uwzxr2eKY7xRyRc2YNXVU9kWyKIikRgkVBskDoXU+GYcN/hQ341a+GXwTYL4YJCBYE23qgZJItNimym9VzVVdXzhkZ8x3PuKc1+OG39rk3sobOggi4qjcQGTdu3nuGffZe6/f7fSdFWUypqhlFNWU2m0NwbLc7ygDNbiC3JR988z2yPJPrKkSmsxmb9Y6m2fDkxTO2zVYsls8vsbakmkyZzg+wJml2IrTtgLVeHB2Liqqe7U2XrM3Ji4K8yBOdb1zgv16X8bWbDPEyly54OplhzAYVEjAfA9ENDF1Du9uwbh27qGmblqosqIqCSVUwzQv6ZodrWrQLzLTGKo1eHGJyS6YsUQVsrnFDR/QDKsxRD+5RWYN2AyYq1pst26alHXraQW44bSBEvX/jySQOhbjJjNatxIjTbr9ZxRCT8YqiyCRELsty6knNZrMiRoVNhJaxybgWnrGfGsqmJlB+nmep4ehRSpEXOXVVkWUZXdcxDIFqYrnJr57O5kznEyZ1yaTOmM9momGJktad5zlFUVJXk2SzG7CZ5c233kjFh0CfxkpC98tXp/hhILMpbA5NcA4fxAKvaZq0yLxuaTuK59wwEIaWuq6ZzebcuXtPtDdNx3bXMPgg9KhMLFzzUkTLXd8znx9QlhX1ZMLdu/eYL8RBSmsr6aGAiialjcpOaq3Yt3X9sC9y8lzsLPM8F/TLGmZVyXZwZCnngyTAH/pBCiOlyKylyGY8uHd3n2je7HYcHiwEIYqRUjzawDkyLW5jKkbqskjXjxjojGmnfm8nKveDuZF2qb5yswUiWsncWe8pFSnllT0pKAVZSmntiLjEO3dE+uCxIaCMYXawwLzKiUBWFF/3lv3lPBLas+flx5FwAzeLPKE/yL2W5zm5LTBazqV30A+BfvBMZhnZSMX0Dh1Ek2B1jrU5CrnmtAHCQPQDITpQYn1o8wxtC3QhYXrWKg7VDJQXZ5FCkReWvMwwdY7NxdkjMwHqGUpnaDTOdyiVoVSBURVaGSJWEoeD0LPE0lnjgsGPk/UwIgIRYwWaDiFibY+14qaknQg1xXLRE41odvbuUVoLOhO8NGf6OqE7aJl+hgBRX0/UbzYi17Wq2gvKjbHsA/Bu6I3G4leK81TMJwrPiE5y4zMd0T2FrJdKk5LdhXIkziXy/vZZRAJzCPKTXp82hohHp3Q5o7WI4RP9Q6ux4Vf7Vl+aDKFueS/NXIhhv+ZEOQHpPZn9mbku3l+/r39Wzf+LHnv3qjhSr/b/Q74Xx9fwsyCW/Su98bN/9fHv6vX/Mh03G7abYnClNTp9L4ZIUDds8ZFr0GgDmcJmRqzsoxjBTCc5fnA4J5PwdugY3MCua2m7nraTjIjl1ZL1asVqtcLtBhQabcT+GSXaSnYbJpMCUj3StZuUBeVou4H57VvkWQYh0jso85LgHF23ZFHMsVkmxgjaorMSW+QwtDjXQnCoMOxVV0qJ4F0Zgw4e5RXeeYL2xPx6XQ3BM4Y1yilJv5duImstOmmzUGFvMKGNpWk6MAZjM+7cfYDNKjoX6JqO5XpF14tpy8HBnMOjBbPDA2JmGfzAZrXi7MlLKpujQo/Fc/byOb3vZIjnHXUhuVNaCUKplJbB6XIpZjdKQ9+yXa7JbI6eTJH8bc8weF6+fMbpkyd4bZgER+96JtOJDB83WyblhLaao3LFncWUD77xDb7769/j6OSQxcnn5PWEDz/+hPb8FHxPZjIW8xlXq5XQt9DovNzXjtIsCCPm4uwVZ2dnLFdXRNcxbLcoArnVFLnYlmutsEWe1nyN0jnlTBgiwTm2bYtOg8y+dymIWTJdvHdEP+D6HhMDhdVkecGt27dZrS7pB4cLkTyzRJSEH6+2LDdLdrsdu/UOmwV5zirgXcRksuajFcZYjM3JihKbZWl/EWdCnejhN3Myvlr3/KzjazcZg4PBiSjv4aM3+Pj5JbFriN6hUYS+p9tGXjz5kvXzUzaXK1brNVVVUdcl8+mUb739Dm63pV2tWb54xXe/8z0OH72J2XU8fPcddC4bUV1W5FbT1iUvfY+vSvI7tzieTjmZHnJ1teJqueaL509ZNzuhWYFwC8NNPq6ciEyLNeN4k9VFtZ/k++iJiNjl4OCQq6tLbt+5zcOHj/jLv/yBcNGUwflBEngRWofSySqSuJ8QaK1ZLOZpmghFUfHeew9ompbl8orlasWtWw+YziuKomS3a7haLRlchy0MR8cHLA4W1JWVKUxmmJQVZVUKxK8UWZlR2ev49zzLxRIyOP7k+3/I4kBCe/7l7/0r/sZv/zZWG54/f07TNBg8mREnqc1mwzAM1HUtdJEbrgFt09K3LUVueePBfe7cvcuDR2/iAqzWG66WK84ul5i8kM0/RFAC8+VFzptvvi2cyKpkNptRFBU2ExrVyBi3Cnrvkie3BCINLtB2Mom6e/cuRVlireXVi6fkhTQarffceXSbbduwXK1469138YOn7weOD4+octFX1FXNyfGRWBjGiK1r5vWELMtYb9aUkyl5XpArhY+OzMr7iG6QzJUY2PU7JkWFTdNdg6HpOkIMTKqawQ3XxIYbokvhK1771QuFLxVd1/UFLtHGeiJtDAwEAuJcth1a9JBhVUHMLZ13KGMhy77uLftLe0iTfl3yjHz4fYGaEpqNEcFzXuTkWY1NeiPnFG3j2ZaeY1NQZLnkkDQ9KqRQzNxSl3O0jUxroSEpNUB0KBwqqyjyikzlZNmMvKwxeYbNDFOniKGF2FHnGUVZkJUlZlZiy4wi0xQWyI5RMZPU63YNyqApMNSE6KW4dQGHZ4hCQ+idwyOUOO+CBMylIjEvMkYnqLbrCFGKYjOI7ik40SzpzKCVEUqTEne64Du8618rOGVNMiJiH6f2I6r2lf1BKyNGHlauY2sEychsngpwkLVOWmNI2QEJkZRC3u3do0JQYOTe3vvMo8TVy8n3tdV7xBjYNxljftzNiX6WWbQOEEerUYW1GXlh0QQkuTx1MQRiSH/2uoUkCEcuMR/i/pxIgrbhdSQj6Vf2DcD+ck3//J9XrkdGHdIelrjRoMWv/OxPP8Ym/Wc5vXy1BIg3vvif+/r//33skaobf4+NhtYSPOkGh3MeHzxd16EQnrkuSlwnOURKBxYLCcF1g6dpOsqyEtpQ10jQHRHVG8JG7vEYFK5zdLsdQ9sRBqFcFkWFNhplDdP5jKNbxxzfvsWrF8/ZrXfstjtOzy649+BN8iwnotCq4P6DN7lz9y5Htz/j7MULlpeX2KqkqCWfIitqtr2jVxkhKJwPXJ6+pG/WhGGHH25cnkZj8kwyfbQIyH1iBQjaY7A2QyxsTbLbXUtxOTrV5ZmUzUpjC4vzkaHrGXY92e2a6XxOPV+gs4p//W//mCzL+dY3v839t9/l6vyC5cUF9+8+4MXLV3zx+DGPPniHo1snzCcldyYVP/qzP2O7XtG3LTFGiqrCGEOz6jGzgrysKPMckDypGAIbtURbySjZXp4TnDAqond89vGHnK+XIsT3njdv3cOWFZ2GP/qD3+c73/113nr0BhdXV7z7rW9zv3uPJ5dX/Cf/8D+CGHl+ccHv/pt/Jg7cUfEbf/Pf59M//p8odODhg3t8/PGP6YYBoyLaWrCazXrJv/6X/4J7dx4yOZxT5jXPn33JenWF61umkwoXemazKR988D6RyNVyyXqzlkT2qkJlGU5lKAJd07DdbHjj5BDnBrqm5cnjJ1RTGTY/f/WSs8srplXJrC5QruXhvQfcvXuXPC9ZLle0zZYYIn2zZrlcs2tbpvMF55eXtE2PlPuGrvOslltitqSe1kymE27dusXhYiFBz8bQ9j1FlpNlGf3QU/rytXVGhrD/jpuM1nmcsdjZgje+/T30X3xGv+vlZUfP0A1s+h0/Xi8J2x2xF3H4er2h3e3YLZd0VysYBrTzzPOCH/34Q4qXp1RnF2yWl2S5xLW/98H7TGY1s+kRk6ziR82PccFQZzX3ThzzYsKt+QEfvPMuf/HZZzy/OOP56pLOj4J0iIMTbYaRM6KtSeFqbj+mVomqk1n5ocvlJcYatrstn3z6CTbPkje7l/JPQAdigKHv0+REMwyOLBMnnBgjx8dHOOfZbjd88cUXxBDR2nJ8cpt3PniHew8ecnTrNuM2oLTi3r27zGcTirykrEpsZhNnNKB1Rl0XFEWBUea1gpbkH28C/No3v83V1RVt2/Bf/KP/DGMU6/WazSZnMS/ZrTc02x2ZzcmsWMdam7HbNVIcpInjdDIlmy944/YJb731JodHx8wPD4nK0PYDTdex3jZS9CrF4LwkcFsRPR0cLCjKirwoqKsaYy2SU3KDNBQipSkIRiahPgT6wlNXFQcHcz757HPOry4EVWl3Iryykl5MjOQ2E4vhwWHQ1FnB9KSkKnJs8kcnBrJkb+uGgRA93sPBbEbTd3g/4LShzgtCGJINskDsCoONgDG4Mbgwhe3FEKSxDteUKGt0mtYm97U0wUVBSKjHmHOA5JuJ5W+M9EQaSNqOVFy1LbaqqZXioKg4rmvWzY7VxenXvWV/aQ81aqZu/FsB+IhXHhWd3MMIc8ZkGbnRZNpjVEOIOd5bsbZ2PVoHGVBMJfJupNE8UHNspqkqw+KgJKfFqEwKkUUtAZNGk5mCrJCMGmtyCVvygegblG/J6wOy6gB0RpGVFHmByWoGnRGjiCp9NoGg8FHj/I6dC4nuE/FBim9pGgZUiHsNj9cRZRTKWvJyjtYeaMl2LT46nFdY41G0ZMqhk3uVyXNUnoOxdO2AgB0K7zqIwqcmiuW0ioD3BDWk1xD3LiEhDUq0TjYFaV0Rh73UXKgxuE/oUuM0NJICmqInxAEfeojive+dwmdCG1ROpmVRRYIKRD3O4WV9E7qS0DR8ctnTOp2rZE2u0RiVJZpXnxCaII9vs5SJkATRPqAxRKNwThG1JlpNFHYkEY2yluDYo4shiGOi9ChK0KdkWR6jS/bG+vr8IQ5W+2031ewj0n19yM/u/6j075vNRIJ8vrpnf7UNCHF05JL/eU1dk5++dq1Kvx1l0qoZmzZSTtT4Hv56HGOjMSLzPvhk4yyKtxEZVyPqETwgNDtUZLtdkedl+nqLipbJpODO3VucXy05X16yXK+5uFxyeXbFerni6uKSvtvQbVtcP4h7YeZFgB0DRVWyWq94dfGC0hi26zXdrqXMFJdnryiqKfODExblgn7nePHsFR6NnUyplcJrhRs8RmmqsuZv/tb32HWtUF+WrwjNFVvfsm06CHlCGxTRaLKyEDRl8GxWa2n+vSdPobnGiCX3aGgzNmdZlpGXBbu2xdpczHqMBBcrZShsTj847j54wAe/9l0mi2OWl2v6Xs57OV9QHxyzOLzkT//sL8hzS1EVXL48x/UDQ7vj7MsvuDx7SZFbyirHucDJ3VuUkxl3XUSbEqMNViuKPGO9vGKzXqKzgsWsxhhFCD06KAlF7B27tuedt98Eo/n08894tT0n60sms0PefPgmL794zBcff0JZFvzad7/Dm0dHfEtbfNfx2Ycf8hd/9icsL87ohzYxPQI+DCgiL1+9ZEwjVSFysJhyuVpT1Bnf+8b7fPbJY149fkzfDUTvODlacDSvePr8Kc4HrlzLD38on5uAF4Ke373/kHo6xwXFdivC75Pj27x6+Yw8y6nLKYvZgvVqSVaULA4mBAVDv+X07IyjomC1XnFxkfP0ecb84JDbt29TFTkfffQpzgfWmx2ffPIZF5cXwvTAEmNOXhiyvOLk+DYqoedZVjCZLlDAdrvBoNE6okOkiEL932sGY7wm4XyN42s3GVElv3SjmZ3cImSWATBKitwQPS442ugJ/YAOgbrIyEwmwSXB0W53xOTUUFkLXUtzdcnZJx/h+5bZfM58Pue0qDi6fYtqNkFbTV3N8FHTdR2TokQNjlwbZodHbJ1HVyUbFQhdI8Wkc2RWi6AqBrGETSutC35vcxeS0HQ0AoyJ7jQMA7vdlqJMBYlWOC/TuHFXGikDIHqCopAC1Fr7GjLQdR1ERZ4p8jKnnlZM5xNmiwl5Ucq0ZRiwxiR/foOxwqEUK1zZDMbCeewg9xMbYxicow+BuqqIwVNXJdNZxWazZrcTVlBV5eBLoh9pUTBO6qqy2getTKZTMmupi4I3Hj3g9q07TGZTyqrGo4RSkucU1UQKHS22baMNbZ7n1PVE+HvpfIyJveL7MnLxb1La5FyO9mlFUWAzw671tF2DiZJk6tOkb5uC66L3tLuGqqzJs0ymm9qQWXEkKktZsGIUPYfRZi9uiqQCUKm9EGrckFwyCxg57EqPKcqpgEgOC+N1BFIsyaYvacq5Mfv0YaGSXFNLRraEA5lwA4PSeOcxURLSZ0XJxGaUSlKltffYiFDEfoUPpcb75yvuPowgRkyZFyn5G3H3snYsIoM0h24QbrUbMDbDlCXKKAqtyAxooziyU/IioyoNk6nGxogmQ+kcO6mImQUjeRgmk2Rek1Kqg5YCOQRwaFQw4DXWVFhbga4lxTdEghPqU5QuEoKn90GEmqMbHTe49vHGdZ80FdoYbCwgOLwN0vD4LE0eJWROqEAKYy3KmL0H/pDsK4mB4FxKHY9ED9GEffie934vrCdRS5P8Yf+ZjFSr1wLP4vXcewwnHYXo47+lkZLiTahwCpWec0hJyfL78bXN6TVNTmo2GNO+U1GuEHqiGDopogrSFCmVUAh147XHvcvVyLxKF56gHDfoetdX3ut/7wG18fUlgtU+vXBE3r6y0f4s2tJNhGKvueArF//POlJDcfNHRv0IaS293otuPNi+h0knYX+DsX8Nfx2PseEIXgaKNwdbgrqHFPSb9KRG1tSu6xh6L0nYPtK1YiO/axq6VhwKBzfQdV3609M2DUM/JBt7oVsFsUwTBCU6gvO0vehQIaIi2DxLHPekoVytcKtAtEqcEIFyMsH3A0VRUVSSIp1XNdFoNldn5EWFKyuatcUoK1orralm033TAz1ZZnCDDPEG52QYiEn3gE5Ompnsnwp8sjlVShpqPzjqaoqxJcZUnDx8wGQ2Z3Ce1XpDOZlST63oTKc1k+mMg9mC8xcvxJjBZOgAm4slbbuhaXeUZUFuRWg/nU7EqtxkHJ+c0LSBvuvpupa+3bLdNvSDp65rJpOpGP60Ed90dG1L17aU9QSdNGezxYymabEmJ89zdIxE53BdT6Miz1+9ZNc2TMqSzcUFZy+f0e/WTHJN6Hpcu6OPA3muycuMoio4v/D4IJRzBk9oO9oAZy9fcHVxih88CkW327CzHl9kDM2G3kfoNF3XMLgBRhF+b7m6vKRre3FL7Ft8WZKhaXctulIoKw6iJs+xeY4tcskfG3ra7Yaz9RKjHCF03HlwxHRao7Ri1zTsdk0Ka17T7Bq6rhfdsTHMJ1Pmh8ec3LpDUVYSpJ1bjBGzHog4J/a5JpP8t7IsJVsOILKvVdXNxe/nHF+7YlEZDDg6PPXhAqc1A4HKKMIwpEYjSKeZ+H1lWXA4W6RicIv17G/8wXtsrujahucvnnP+7Bn37t3j4cNHqKanfWPD4tYxxcGCWb0AZemGC3JrCDYji5rjg0PeLUrKowOWymHXS9brNbvliklh2fUDnXPs2h296/cbp1EmFXwSyz5OnzKT44OXkDWvUANUVSni7zjQDx1qtCs115xyKawl8TmEwMuXLxnTv2Hc3zRFWWKsAhPBRA6O52zXW64uGprdjiovUFFhdE5RTsjzPPHNA33XMvQ9KnpJiwSsNtT5hL7r5EaKgaPDQ7RWtN2WGCSUTOtAUVj0fII1luXVMmk45PUfHBzS9x2bzYa7d++Ks0Zd8/Ybb1BWInY1maUbvIhTtaKY5JT1BJvlRCJNK97/WSbFvbX2hiBaDpOuyeCFD6FGuD+KrkISNkWLMZ1OabuWphFNivMeH3oUcHF2jk4e4pv1mjIXfYZ4hQd0pqjLmulMHqNtWyZlLQIwBU3XMn4wISq8UmAM2kgIW9MKsmOMISjhjVsNLl5reTwBk5CrGGUB3xeRgDJW0JQ0W3QhSvOCIGGjHmPwnkFpnFW0/YD1jjwGbi8OqHMJeGyGntC05FpRTyZf95b9pTzUvvEaG/WbRWZMiFpqMtIPWWPJ0rRaFsGeoe/TZjRQWUH+bLQUtsUaCWkr53OqqqYsDHXRoVyEmIGuKKZTohGnMKtVEpeNSJJco4P3BK+JfaQX2wuO7RxrawgZwQ9pSBAY2p7ok1Wk9wzcKOZi/EodmaYUSXNitCZqi8pARYX3gSzL8SHHuhxr5foOPu6bjOsmQDH0fdKveZwbGM0pxBnKooOI4V10N6y8YbRjkpyMmJDdayTjOl8BxiZppIaOg6UAqYEJ+59DBWLQQvEc8wqSxehNFPYn8xuuG/ewN+2QPCTNqAsRRHkcXsQQIaYCIFXWYWzu9nSktPBosZG+Tmz9KbSk+HqzcE21GvuE8bO82cH8nGNf89+4FsZi/0azoeLPeYx03Dxf++A99bqN7Wtfjc3QjVcc9+/lr1+TMWoLgw9yD3a99FdBrtvMSk7XmJ0BYgpTFBUXFy/wLjKfHdN3YpDSnq3ovAi0VRTNXhjdyZSiaVvC4CW4zY6ZMqDQNLuGvMyY1FPOX70Q6+ssp+96jg8OqacL8rJm125pmpama7FlDjq5O1YllBVlWVPXNa/OTlkcHYurVTuQlROKocPmlxhtcEEQ88PjW2zWkiAdQqAsczodca2nGzpMprFB9GhGmzS8sFRFKQ5Suw3YjOAGYvS0nef46C7lZI4pJ3z713+dpnN8+eVTlrueb//ar3NwMKOwGlsZCqvJY+D86Zf0bQMxUNucF6cv6YcdWWE5OjnE9z3Bee7evsvVekvftNx5/xZn52sump7V5ZrlxTlKifnO4a1DJpOKwQ0sl2tW51dsVku6tuE73/sOq92GPkYWR0dMnNA/rc5om4bc5mSzkovtih/86Z+hYmBe57jtDhU8kzLj1uEhZ688V1c9V6s1mZ1QT6ccnRzz0aefonykMJpuu8O3Pbv1lj/6/vchwGI24/jokKcXzzl9uRLzCa1puwEfQVlJjAdp9uLgOHvxAmMyrM7Q2tDnOf12R9+1MlDJQZmMeiZ61qig3TWErqdvG169es7F+Qs220t+47e/g1Ka3W7L82dPOD+/4OzsnLOzM9HkOI/zAW0V8+MT7j58xL37D9m1LUVZUBQZ1mRcXV6hUJRljk6GANPZjPl8BsEl8yTIbUZmDCrE66Lu5xxfu8n44NuP2PWe1fqML778EB8agRTvHLM5P2NiChZlwaOTI3bn5/TbHco5Xp2eUWaWw7oidj1VJd1laTR0LZnS3D1YsFqt2Z2fcWUM86Lgwz85I6trPviN77ElMMRAFnyaXMmC2XY9eZHzxhtv8tavf4fLRhIPL89OOXv8hC9fvOL86krC2G7kQowBeiMlYC82RCBy5z2+9bQdrLdbqQcSzK21Ic8ztut2/3vWWpqmYbvd0jTdXrux2+0IPpDbgiwFZT358hm7tmdwkflMMkXKuzXLiyu6VDRNUgMQvGcIkbLIyTPx6I/Jjs9oTVEUtE1LDCEJrQ9Zr1fsdhs2W+lkB+eZLxYUec6kylDzlIZdSkNUFAW3bt0ChObz3e9+l6Hv8c5RTKRJ8kiOSF7nlFmWcgmkkI5A3w1kKbAls/l+2h6Taf5XBUImQbtiwxmIXgoV551kh1wtuXf/nvC4leLu8TFPnz9n1zaCSBQlZV0xnc04WBymxT1w6+iYqCJZZimLgsENZDajmOZpmBcIIRUs1mCNJbfXQuoYxfUqzwvS0JRIZAijq9i1oNY7J02LFh2QSzaSSilsym/xgIqRtu9o+55u6Cmqkn4Y8FGalG4YCNagdEWmIoaIiTCpKuHIoqhNxqNHb/HJl4/5wz/8Y/6L7/zG171tfymP1+h+XBdgYRw/x0CW6b3fu9IizswygzHS4EUcg+tZrTZMbx0zrTRFVlDmp2TWkVmF4oCqqskyRXBnRFeiVUWWHWGmM/oUnBSCZ3AyrQpDhKGnbRu22zVXqy0mUxQ13Lk3x/kZ3teEQdO0V/S9uLKFXqb64wTZJYoR3BymS3Mx0ujke2afywOBEDpMBvV0xuB7lM3RWYbJC2w0aB8wVgwRQvDJQU/QHd93KYAsonUgRhF+in7Dpwl/ajJiFLGnUpBoSlqzXw9H/q3a03jkM3JuuA7zjJ6INBPORbwfkFwHjdGloClGirnR9ccYs9evxSgocJZlkrXUNGRZJlkzVpHFFLCmFOxfn8aYnFxbRhqD95GgpbDYK8CVTsg1101HkE9jP+DfwzhASjveF+T7xmdsyhICy/jLX//Y62Hi9ePuH39EKmKCX77GvTM+5s8TXn71dY7orY9/vahScI3ujhlLwft9Y3GdMq/Y7nb0fZ/QgoG+bwlB9pzx81kuVxwsTgjBs2sbjIZ2t2S1XrHbrtnttuyanQh0sxzRCEVwiugjOlNMqwllNSUQGNoBHQ0aMVQoJhk+RurplPe+8W3+4A//iFt3Trh9fMKTzz9n8APOD2yXV6zWK+bzBcU9sLni9OlT+sFhdE43aLwumRzfw7mGqDQow9VyQ55lzGaWmFuG0tA0LZgdLtmR+uApcjFs8d7TNg1ts0vhtiUmy+h7D1FzeOsWGRlD79n4hn/1e/8a5yMBzZ0Hj/CDQ6lIXmpC3/Hq5RlnL56y3V1S5WLEcnn+grqwVGWND4rgPEVeYUrDx598zrbrcCHwl598zNHhfep6ynw+5/btE2IY8K5nu7tk82rJ0HX0u5Z+u8E3O2Lfsby6ojo8pMoL1r3j8OBExPIhcnhwhDEZwUeGfuDw1pTtds2nH3/Iq1ev6LqGGDzf+/b7dNsrNqsVXz7+gqquKKqCsq7IiorQO/reYbTj+PAIH+Fsu8G7nl23w5/16Nyk21mGCEqJCLusJ2y3DdpajBXBeDWRJmY2O6B3A/3gaIeGt959h13bst01OAVfPP0SrWRoejCZcOvgkNuLKU9Ch9KRwfV8//f/gNt3Tgjesby65NmT55ydnrO8XNI1PShNWdYcnNylnCxoh8iL0/Pk0GdQWYZGkduCsiw4Pj5Em8h0OqEscy4vL1jMpnLNKBlqESMqv3Zv+7n359e9kQ+PZ6iNvPG226B1IM81VZWz1cKbriZT7ty7x2XwbGJgt1zLTegirldM8pzQ9zD4JCoUmE+FwNRqiugxfcc8s7hmR3vZ8uVHH3Fw7y7aGqLriUEEfjpRc7w12LKkWizIZjWLxZw7J8dsj29x7+yC08tLnjx5wunpKU3T7KdqcM07FmoTSYwqtJiY+PakfUCG0jFtonHvyiTuByFxQGU+7VxqYsZEXqUYXOD87BybS3jY7HLJ5fkVx8cnHB4cUBeTlFosgXijQ0aRF3R9K1M9fWNTVGrvthC13vMrr73TA3VdYzPDMGRkNsMPPom9S4pCOujJZMLiYCEFdIR6UuFyS/SBsqr2nGOvBDkxVtLbgxLqRoyRqCQrw2jRZWilb9xoP7kRxhsb67iRhyAwaQiRsip5+vQZTbPDKMXV1RV91+EGxxB3HNYTqqpiNpsxmU5TQGJks91S1gUZ2fWgMg0yQ4yYcYNWkp2hkl/43jEs0bqck0ZOpYmEnO7r6eteoMpIfVH7jU6eTtHvLW8Vq92Wfuhx3lNOJxAc0YMyGhstwWhxVTOaTGXiHLQ/dxoXAvP5gul0hrHl171lfymP16+HdP2EKCLdeB3+prVYt4YI0Ucym5FlaZH2Hud7hsHQ9wNKWWxeUNaKMrNYA5mBPJtQlRO0iqzXGh8VGg3RMPSOrne0fU/fOdq+IwSFURW4nr7z7JrAy7MNVX3AXHm0qUQP4jJcj7y+II83clqkWAyCWKqb7/T6vzeLP5WQMpVSyZUSQaYxwokW0bVkRqiU5ChuWdLgj1NWonDNdVqPxiyIkSYjFrdx7yATQhDdi9Yw6rFuWL9eD1/Gl3xNMRR6lE9UqbhvukcaZoygbCZCSv86UnHz/rkp2L3Jq49azH51CtvTSqbDMnWVsERrrewtPqQVO+WDjEyrhMqoECAmG12l0meV7Mf3n0m8RmG4nvIrRlqfeq2v2H+KX0Govorc7k/d/nfk53Uasojb4es/9xNUsp/2eF9tVH7W/+c6LHakau5pW3+NGo2xkRjRtyje8kKN9Q6frisfZJDgvEsZEW7/e0M/SCq0imy2azabNVdXV6Bkz4wh0DQNMF4TERjve5/uGaEHF0UuTkA3KIghiONgngvK75zj8vKKb3/v1/fCcW0M7fqKYejJy4xZkWODY3txzuK4QA0RBk/fNhwfn6DVEe1uhXcb2q6jaTuGzZahc2AU06rGD70g8VlGPwwoSOh8auCNkX1eOeHmFzlVVUNscH3AtR3e9ORZzWxxwuLwGA/4CHlVc3X+ivPTFzx/8YJpUdJuV2yuzllMCoZGbjnnPH4IBO/wriEM6d7WFmUzfvt3/hbTgwXPT0/58vFLujAwKzOi0dy+e4+jwznzmeV3f/efcbq5RMcBjcNauZ/Pzy64N10wqSuiRtZ8bfA+0PcO7zv6fkiaCxkuvv32+/ytv/N3KQqN1o7HH3/Gk82K3nkePXoTlOjOnBPHJh1isrL3bLYbgtaY3FJNyrQ+QexJ9alQiuq8SJixYjKdoo3o/oy1qBRP0A0d1mZkSD3lvehwyjxHK+iaDa4faP3AamjFXS8InT/PDUNn2G52bOsNfddydnrKZrWm2exotg1975jND5hMZsxnIux2zrFcrjg8mAsyJ0K1PQVfHB0zQgg0bbvfs8c6d3T9/HfuLjWZ13REWg+D69BafN1JfunaWvKq5uTOXcJ2Q+xaus1WLDyDxw29ODUooYmo6Mm0lQIwBExmqK2m0lBrzTZGurbl9PFj5os5psgJfZsWTSnAsyxnMJpoM2yWMSsr5nGGOjoiHJ1w+8GW86slVVVhreXy8pLVarXXTIyIxmihuA8+iJExo3ecxo983Kgiykd04qVprel7yXX4CaTEihg4RkSIs1oznW+pp1O6pmOz2jCtZ7BQEq63XhOJ2OQepZDJ3+BEs2Gs8JDHCyGEgNV2PwWW50WKFqUpy4o8z+iHRBPyDSFKtoBSiizLmC/m1FWNtTb9SYmgMUrCZiosBu+JqehWxqTJHjK9VSoJL2/QONK5+mkXY4xyDXx1ouacgxjJi4LLy0tGl5vVaknXdRKsFSPGClJR1zVFWSD2vJ7V5RVFKaiFQjIEYJxkJmvPPXMiWRAnTrlJuQMoJZBmjNjkvqH0tX3nfiO78drHpNn9+0tUG5BGZbPb4rxL5074/RpSkrhKfUxEG0WuDbnS6DQ9DalBKssyuXTlX/eW/ZU49gXmSCFJ39+Lw6PQEq212ExSoGM34INmcNIsBDTKZORlxBqL1RGrNXVZk+cVIThxSPEyFQ9K4cKQNuae3WZg2+wIUVOXGTpEhl7Rtoqr1Y5AT1FHtCmI3uDQuCESk11uumwQLYHok/QeAfjJI9x4j3srxD07zCBuTBalrpsMsTuUZkQCtiw+egkITTqQ4D0alQLoxGyCsYlTAe9BI/qPEIKYX8RADOm8hNfzS/af0Z56M4q+xz9CFfFeCojgPd4HvI8YlUtYYFCvDXXGqfJIvboZYjquaSDojGx615QpSftWKcfGQJAgU50KPWl62Dv/SZq4UND26EZqvAR1GtewVHvfuCZvXIk/rTVkT1C+8dpf//2vHDceZE8b+yl0q70+cP8YX/ksfkpz8ZP/fw+oiXYtvcFROP6zmpNf1WN8L+PAECVoldJqj0b74BOKE8TRr3fEKK5kxl4PCrVSrNdLNpsN2+0WbVIzjKBxQpEenzNdP+FaPG2sRhtFN3QoLXu2NDsyzLJGBnHeey4vr/itb3+bl8+fc3b6ipACi53rmVQ5eVkIwrdeMakXMoRxAd93HCweUpY5TTuj212wWi0ZnIcQCMHhg4KixAvlQAxLxnsunZ8YI1oJrXsguWdqvR8YuiBJ0CFzmKCYFBPu3rmPshmeyHKzZrO65PLykh/9xV9wWE/xfcvQbijfeggqSA1gDF3Xi162a3F9T4igtOH47j1+7Xvf4cFbb/Kjjz9mtesxOmNyOEMHuH3vDm88usf9ewv+p3/9L+j7htwPRCTEVAdYrlacdB4dRZxujdB9tI4SHNwlhDc4vHOUZcmjR2/yt//+v898UQIt/89//N/y7OljIobjo0MG19J1DdvNVmjqSvKyfAg0XUvUimIxl/pDqYSGD2mdAVsUZFGn2slRT2b7dbuqJ2y2W5z3NF3HJNV2hTb0XYdSkieUZYbVZcSHgehhtxvwQ48bWrqhQ6ss0aHEQni323J1ecV2vREtRtszuECel9STKWU1QSmNc14QMaWx2uyvyZvDpfFe6vueMs/SIDfs69xf5PjaTUZW1xQeohNeGUSaXcPjx19ioiJogy5K7jx6G+N6qsyQG80n652IiYyi63ZU1mJtwbBtWG535HnG0dEBmoKT41vcuXWH/uqSiQJT5Jxut3Tn55iqJBJxSorREJMvOxIYs93uuHPyMDlLdWTVhJO793kH+OCDD3jx4gUvXrzgk08+4Uc/+hFXV1dst1ucc/sNwgcJ6BmrAwm5Ep6/Uma/EUWizDCUNCpd1+3Dq7z3FEWxn8yFxMO30bA4ORB3Kw/379yjzEtePH3Opx99wtvvvLMXkD99+pTbd25DhL67oq7LxKFU5FVxXdCGiGtdmrgJfWCkK0ynU3a7HVmWc3R0wsuXL8SyNcsYBqF4jHtc23fMipzF4cH+PMQQ6YIXv2QjTZ0jolGIaSS4mOhrxqTGRpqLEAM/Zf/8iWOc3O154KnIaJuGd956G+ccfd/RNzsuu46gFPcfPBBheZ60IsZQmhxbaApjsEUmPttGUxSlCPaGPr2vVPijcP0gE2Fr0VqlCdd1Y2BGFIrr4kJoPUGaS2P2Iu5xSj0aCQxuoLAZCmiHnvP1kjzPmc/n9N6hkmBfaxHX6fF68h6rFbnWFDZn8IGAosgyXq6WLFcbrq7WX/eW/SU9bhZRrxdHfnTrUskClZFWpQVBsxZrFODwTjGgaVuZ4PW+QJuSvrdoa7BFgdUzuibQtD3nFx1gkm2qYtttaDsRDrZt5Gq1RuuM8vYxdXmAVoG+3xJjjg+a4AUF6ZoWTETFDK2z1PQHgtIEJ1QlF/mpDcYeDUv/0fucC+kTZH2xoDxoCyYDY0FnRCzapsm+zaWQCskQwfX0bUu720GEoevxPlAUopfzUQSpPoCOkh/AWPDHRJcKfo9K7KecI2IXffp8ZKrrvUuTYUf0EhDofceQkoH73mOVQmcanZn9Y95sLMavu67DpHshz3MZlCAOUxKmJkF7KkqTYbQiM1YUGHv0cUjN1Hj+1F5vYrQhpgLBIMF+Mf1sSHbnUvgbRn3VL3L84sX6DRTi6wgxfsrzjc85IkE/7bVE2AvT91avaX0am8Rf5WOvf0vDsvFYrVY47whK7MGV1pJQHAN9O8iAM6GkRsug0LuB2XxK3g1s1jvOzs6IAcqy5PjkgLPzV+zaLQrYbDas11u226084eDBxT3q5Z3j6uqCPkgoX51NUjiwFPZt23J8p5LAv6HjD//w91men7M6O0cPjtlkQjGdoAiy/kdhETx58gU2K8mykrqssFYxmU25/eAuP/iT32fXdDTbht12zeHiAK0Un33+BdZassxS1zXr9XpPhe6KEoWcu2lV0XU9fdOwdY7ddosfIjpaqnoq73u95PKTD9FFye37D6nmCx7/+EPeenSf9999h/fefMSTT75gs7qi2eUMQ0s1KUErXpyfoYwhDg6/3YnluBGDjcvzc0LoqCvL0dER/+v/zf+KGBTtrmeS5+jocN2OP/r9P+Tlk2dcnZ2hhgaFousG2s6h8hlnF0s6bykmC7C50LeTic90OqUsxbb/6uKCkPLO+mHgo8/O+OLJF+R1xb1797B+4MO//AuKUoxGrNKYqPDDwBACNstAKwnPbbb07Q6VsoXatqUoSxH0K5MQbct8OmO6WOASmnz7zh3cixestxu6oadf9kwnM46OjlkuV3gXsMby6NE9zozClDl37txjs9lycX7Gernj7t27+KHH5iXzg2N2zZqr5ZrlcsOzp89pm55hEGptPp2TT+d0PrA6O2c+n3Ny+xYHBwc8uHeHw8MDiqJI9fBA3/dUId/XV8E5BjekYdrrurqvc3ztJuP7f/wjDo9PmB8eMQySYj8MgeAH5tMDBm+42vSsGk82mTE/OabrW07urei3O2LXQUrGdSHQDQPHhwumExEZ5ybjeDFjXhX8+Q/+kmI6Ja8mnMxm5ArZLJ2Hqkirp8Bt0/kcPa3JjhcyUbeimZiYDGWMOEmkbv327ds8fPiQN954g8ePH/PkyROePn1K27bJDcKj0fsFWZGKZy3OUtHLYu2c8DBtCie5uciVZfnaIh4VZLZgMpnz3nvvcfvOXRYHB5hUPE6rGn1ygusHyllJWZY453n+/Dl1XXN8eLS34MtScrpP7kc2M+Q6T7WazK1U4nerXZqsJAHPweJQXA76bl+whRjp3YAOnl2zwyzNHtHIbCY0nmTTa7Rm17QEOjGVTJNapTR5lmPU9aV0c0L306Z13ntxxEo3uw+B7XbL5eUly/WK88tLbt2+TdQajWI6mRBu3WLb7Hj8+DG//lu3mM4kAbMsKqGCRBGwqzGPMcJytSTPMsqigAguFRBlVtGmhG/v3GsplgqFS9ofo5KjVJpMG2XSJEyQL+cdkjBvcCmtGwRJWu+29H1H07ast1uO8px6OqVPOhGrTToXYtdaaHEMsirZhMaQKEORq/WWwYvjUF3Pvu4t+0t5GGNSwvTrxdF4z4zi3jBGRyu5/ooioygzstwQcWlameFDZNts2Wwt7cGcdgmxLCjNnKG3rNc71uuWq0sPVmEyT16IBgOlycsc5xtsHskyw/xgwrRU7LZbdq2SnIggm0y727HTipjXTMq55FNEiCkM09vkRKbGyvXmO7++XxQ+3T9qj3QKrSCmwndssCSjR2lDVJL/YaxFWYuLg2RWpMI4BMcw9Fht5bV4gfoH5+QKDpGAIkSNSmhg8E5eh9FkWQGp8N8L8MeNRMlzyGMO+8fuh44YBsku8S3eDTjvcS7QdlvIjOiubtCIYoz7qWqM4r43rm+T0dQgCjIhhZsAEKOXiSAZYmOtUVK8MCSyQaICcY2W+iC5My6A9yOVLAXzhbg/1/vZ/x4p+NnX8DgFRt2gVv0Cm+4enbjmUf3VvxFfp3LdpJr9tK/HiftIJYpf+Wx/lZGMsQEeA1vbtmUYhr3uRxuDVckmvBHOzmQ24+T2bbabDa9evcJoR9ts8GHg8GjGdrelbRuc7yWjNUb6oef09JQuMSi6rqNpdkJT1ho3jDVCRAUYXE8gEFQgpObGu5K2a0W7gKKaLdhuNzSdA20o3ArjPYtpSWUkpK1tO05Pz3nnG9/g8PYJs6NDnjz+gvXlkr7ryLXl8vKUq/UFvXMczg85mB/gh45PfvxDiCHRome89/77ONdxfvqc6XRK33WERO32g5P3tNthsmScECNuGDCmIM9KqtmEtvNsmxWXl6/48vKC3/l7/4DfePSIv/Mf/AMOZzUmBtaX5yyvNpgio+pqjBqYTGu00TQ+0jQNXS/T/kwbdAClIkVR8c//u3/KH//+n1BMp3x69AlVWZOZjD/5g38LYQDfszx/yerqAu1gvfV85ze+xwff+CYPHr7B//0f/zccHN9mNj+iqud0zlEUluPjIx4//oKua4lRjCoODw/wg+P02Zd89OMZV9s1T1885fzJ52xePmd3eY4OXqwfEw3dqMRIMQqbZQzBkWk4mE7ZNq2YXgTPfDLDJoMSjcUUBpRm8IEXL15xfOsWR7du8fT5S4bgmc7n3L1/H2sM03rKYr7gz//sBzgcWml22x2Lg0NQClvWqM4xO7pFOTvAhx7nA5u+56PPP0XrwHq55PnZKU4rgpUcpdv3H7H1gWG9Yapz7j98xMFiznw+RWWG5W5D53oybWiahhA91mpm88keAc2yjFGTBtdrytc9vnaT8eTZOV4VKFtjckdMXGTvFFoXoAuCyjHllMIMFBm0Xct8s6HJM9xmi1EyrQ2DQ2WGrMzIi5wsM9RVSVWVFFlGSBQAoxVVVaMTrG21ZufS9FxL96h1stqqKvooRUpZlNS5hOgMiUNWlmWyQZtQliWTyYS6rjHG7FGNzW6XXFIixEDw7LmzNwdc48Qrps1zhJhu0mbGf8vfKenRWopchI3bzRqtNdPpjHoyoWlE6d8Phu6qoyhysrH4Vdf6EbFkjdffUyPdQGgaWcxSI1Smbl6et64nGKPpE1Q7Ury8d5C4gG3Xod1AkRey/w2DJH1qmYQ674naobzbJ0IqLS4VP8/O7KthST4GXJDGYBTibbdbmralTXaBm82GkF5n27RCzQCcG0QIbKwEEWq1F3QaM/LWSfSAsOdAE0GH689Ie1lAJJ1b4eO1W8v4Vm6KQIU+N1IOxoKEfaEREvQszlPQu4G272i6NonIJHDIebd/7FEALKQbnTjoY6ZGgGTb6RPNQRtDWf5qJ36PE71rMezr/HKhUsZEZRibVLVvskUgPfJbRGvQdh1N19F1jt0ukimDG3KCtbheMQyKEHJUzEVTEaR4z3OLsRnD0GCzQJZHyspSlophMNhMi4sGUZzL+o6hUWQoQlYKpqe0JGlrQTqUSi4045Bh/77ZN6tElT59qaD35yFcaxriqCNA39BlGEzKphEdi0+UpeT25D0BvW/YvBN6ABGUCQQMSgdUojj6xB9WWKxJ0uAbE+JrWmCimXi3byS8d/RdB3EghAHvJXfGpyK+71t0X4DJyPJcmkbFHna/WSzvN6z9PWQSNWrUcaukzRAkYwxyHHVU0m6kx0j3o7QcY9N24zoLX73uSOeZ/ed1E2UTmqTaX3P70vxGg/GLHnG/fFwLzX/m6vkTNK6fvGdiouyMAveRNrZv3uOoeXo9wO5X9RivT/2V5vW6+Imv0YpVumasFQtRSBNZrSEo+n6QSX7fJ3H0qE8KdL2g6cMwCFVkb04hRgImwfERcVgLREKHOAolpzf5DJIDWoQ8L7B5SUAT3YbgnOjOylqscxG9gy0rsnpKMZvThwhWk6uc2XxKVIGu7Vit10yqmroQ6/c8y/FuIJrIbDbn8PiEZrvm7NXztGcndy2XjClCxHtHlkluVgCGwTObT6nrGV3vKKdTQt6z8h2xsAzB0w49Dx+9hQkDvm1AGzCGrKooqhzXb8mKEm00VTkRGmXX0470hZFCGQLPvnjMqxcvWRwfUUxfUVU1VV7y8V/8EBUcOjra3YoizzDaUtYL3v/mr3Hv4UOKeoLOcvKqpKgrTGaxXlGWNfP5AXnxghCc6FFUZDabkWmDn0/ZrMWdKreGe/fvsFaelY7060sJbQSIkolltIQszg4P0RuThoMKnWoDImTaypoeIBBQUWo1HyPaSJBi3ztCSpsXi/9E+wziiFbmBT3imtf1A1leEJWi7R2Dj1STGUd1xeXluTAhXM+27dAqsOs7OiePjxH3TVNWBG0IxlJMJuRlRVHVlFWNGxp2bUPfdWTaJL2Fpa5qskxqTx8CmTHXNPOv6Om+zvG1m4yXFy2tf8XVeuBdNUPFjMyU9AMYU5KXM+rFCXfffJfCXzJsD9B5Ruscu+kUv92gdi3DdktQLVVmcRpaP1BGQ1EV5EWOySy3bt/CFhW2nFBWE4YIVlvyuubi4gy0Ja9kw+26Ht12lBGc91SFoBaTsmKz2+7heXMDdTg8POTk5ISHDx/y6NEjvvzyS168fMHnX3zG6em5NDkIfcMY0RkEL3w1ra79/W+e7HEaftOVBWQTHdzArtnx/PlTdrvt3vN5cIGDg0OOb90iKwp8dNhtxnq74lvf+hZZlu8XUgX7AtQauy9ORcga00QVjLHkuWIM3RkX37oWlMUHoUo1TbOfzIjnvJZY+sbRGBEjVfXAYi7C1D7RLvBS2BV1kV6Vuv7vVzfetJGOYvsQJK/Cp2LSWstqtWK5WrFer3HeYbSmKko++fjjvWXayxfPiVphi5zj4+N9oaJQtH23L9K7rsVYsefLjEDEwF4fMQqbPBGbWXTamI0y+BiEJqaEYgEJMBuLoRhxvmPvsa8U1lwnr0sBKZSxwbcERBCPUrz73nvSYDgR10WivFdjyIzFKkWmNVplaWEbNStClyqrAt17rLWU5a+68PuadjZOj8emTbQDMuUXfmj6BYSjKpTEVFhEafydczRdx2bXsN7WbDYBqxTz2jIpCrQeyDLHZHILlRUok6FNjjGR6TQjzyPtcEHeOvJ8oCg8Wa7JiogtFEVm5MZyPaZrQUU8is4U6LzCpNfkjXz+RLkWBzfc0BxJ0TMWyyqaVDwagdVTgyHahkj0Sv6kKbtOLmNKmyT4TtkX3gsV1Tnh5nqf3FucQNwx0HcmhWEKPQEtj0M6xxGFjhqnU/Mbo6QWc71+yd+ewfVE3+G8Y/COrt0RQ7+nS4WE8IGmbRqUyUHbfZMR08c5atbkelCpeYHgfILo5fMWN7+IUhGjJO/HqGRWO2ajammSRrRFzCiuE87Tm0oWsdeJ37JuX2sy0o+lr+P1n5jWthsNxjVe8vox/v5fBWrEeKOhS+3mz9qurxvyn/18e11MEuLfLGzHf4+DkJH25tOa+Kt43ERt+v465X7faCQ0QfKRxMq561u6vqXZtUKRBqaTKSF6nr94Qts3aegW0r0ijbmOiqZr2GzWhBDI8wzXe3Zdk6zIR/pnysJxMkBTTlOVFSZRtrK8QCnN0A08uv+Qen5A6zxnLz7hYrVms9qQm5y2HbB5yXd+45tse8dys2PjPR999gV3T464d+cub735BlejvrRpeP7iJZkGi2e73ZFbQ56XTBbH2KzAhzXd4IhKk9cVWmu2qxWZNRilsEqR24zBOdqhp+lb7j54yOLgiN/7vd/n7/79b6GMoX71gre/9zt00fLl06e89fZ7nD59wXa1xLU7Vk1DVeQczI9YXcRE4YY8r5hGUIOnUWaf4k3whKEjDh39bsPq8gyfZRilyZRBDwNGBXQMlEYE/WU95c7dR/yDf/C/4I//9E/4b/5f/x82uw23lRhCdH3HweERx8fHHJ2ccHx5wuXVJbvdjrrIOTw45I2H9/jedz/g//Ff/78xkwlvvPUmf//v/hbPPv6Qj/78z/iv/2//V5QRqrzvOjGayDLKesL7733Ay9NXXF1dcnV5Kk0pMmgNzhOjMBqUldTsqA3KZLzzzjtcLVd8/tlj3nnnbbq+YXA9X375mO1qTZGVHMwPOT48pjMDbd/TDj15aRiGgfPzJTEqjo5v8dbbb5I9LejbHUPf4po12+0StKUoay4ur6jrKdVkzrZ3zI+OODy+zaM33qFpGryPZFnBenWJESIuucmo6pKj4xM+eO9dnO9pmh1931FklpG6PO6/cv95xPzg5x9fu8kIKK6WDZvNwOVlz2bb41wEDOttQ+sgmJx8foBFkc1z3jg+oDo+Ynl6xuWLF9imYXN+zubiguWrMwbnaLyj6Xf0MbLpehbTjtnJCe0Q6NOGsmo6LJrJ1JAVJVlRUlYT+n7AW4MfHBcXl9x9+yGzekJW5Gw2G4YkJJYLPSckh4i+76nrmrfeeot33nmH7XbDxcUFf/njv+CHP/gBT58949nT58QgxWDwA1oZgk/6hxse8mOTMUKoYzMzpn+7RFcwFsoqoywtZZFR5jlloanKnCK3/Obf+A1Qms4NnJ7b/evdbiUU0I+OLuaa1gMQ0zKnhVOwn/CMDgDjBVFVNc71OJf42nlJ1/XkWSmT0RjwzifrOqFehSBhRNZYEVtnOUVeUJQlVtlURP10AePNI89yORfesV6vaQfJLxkh7rERVEE4lMurK3w/UE4kK6TrOrKyoMgLbt++zaNHD6knE7z3VHlBbuVcPX/xnMmklml/EreP1DcAqxIHV2IFZWJFZNPthEoQInmRX78nJY3ruIkVeSGfQbKmaV27/yx89OJQ5ANKK/KiICtypvOZoE/JQWkM9tNKk+scrSOEQO88RSaOQTLoESqLBzonSc9lkTOf/WrnZATCvthBJV66kqYzIjRE0bW0GFOglSEGg8my/X1vVYGPMoWMRIbe03WeXRchr4hZwaAsjffEwlLkc04OjzF2SowDzq8YdudYwEZLaQyFduDWrC+/ZKgr2m5NVJ75JGKDYpprjiLo3qN0wDtwXY+JEZNZdF6Kb7gPhDCQZ5kgdtEREvVHIwuudVpsj4GVa/ZuLbttB2gMVgTaGIzOsLagKCd7UakPAeUCynm0D4ShR8WAzYxQB5UnIM85hIahE9pdnhckWbXQnKIFbbEYetXup1XKp2FJFIML5aXJ8K7Dh46u29F2u7SWCOVR0NzRHlYsdXVnMZnB6gO2nRQ5ZVHgfL+nNu2RCiK+byk0WJ2Rk6G0CMCV8qBEr6RTVp+xmhj9PlhNqyyJvBHNWJTCLwyOGKQhjQ5JInfqmo4XxmY16dnQgE+qs5ByQF4PjhxXu/jad244Sykl1zY+gZ3XaFUYbWr390BqTPY9zRiSFvfOdzebjH3zJEs0Y6+eluzk6nuNHBPiPhdi3KdCutt+1Y+b9I3xGsyyTFyE+k4QdgNDjLS7Zi8AVtGjouP87Ipds2N+sEC3OU3bsF2tqOqa3CiMgcmkgC8DMUrgWrN6LinIJiMYsbsPPiT6oTSlMSgykxFaT7Nc0oeByWzBbDrnzsFdPv/8KV69xE6m7M5XFOWUOw9OyAvLqrui7RvOLi/oetFEVnXFf/6f/KccHB5SVSV91/P8y1NCp3h0+w2Y5pyfveLy7BXf/PVf5+Lykr4fmM4PefLqDNzAm2+8z+xojguOrm949uUXvHr6hG3TkCmDD5q8qpgujvkP/5d/l8dfPuHLV2f8p//oH/H9P/i3tF3PZHbIj//0B3zju7/Bu+++zer8FXmmWdy/w8N7tzn46ITPPvmEv/jLH/N3/sbfFGplcNy6dZ+LyzNW1RRLxt27dyiKjLLIePToPv/y936Xx198gfeeia4kxE9BUA3jPRgteGVpwpb+4jH/5//L/4nz01POTs/4te/+JlWlQQ3MFgcQAhcXFyy3a5TNuHv/DbRSvPjyCZ9++pgPP/qIf/JP/wl/+zf/Hi7AxXLFf/Vf/WO+/e4bzI7ucvvBmzS7FUPf0mvF5cUpzokS93S5Jq8qMfUpa7IgoVcaKIuSPMuwxqKMpomRoC3aVnQeysmcvJxwdXGJGzoZrgTPrJqgomJ7uWToBsrZFHLL889f8OjeXabVhMm9CZ8/fszZq5c4N3B5cUleZJRFzvGtB0wnc9p2x3x2zHr7l9y+9yb37j8ikPE7f/vvUldTPv/8MdNsCn1keXpJnUvGWV3VfO87v85qecUwdHz4yacUuaYqC4oiZ+h7bJkLjTt4YAwe/nrH148P1tLNhKjYNS3DIB7pxspmGv1A07dcrJdMp5K/UNUl8wAqLwhKsX35kiJElLVsdy19s8NHjzWanXdkbsC6gaoosZMaa3J8SrTWxmLLiuHynKB60JZKKXY7eYzJfEKMwr/tB4dOyIb3nipRVYA9j3MMixPK0oTppCaEliLT3L51zMF8xtMnz9hst3StcPr2U60Q9tNWeB21GJuOfSK3tdgsl0yLtmFa13Rtw26z5fadOxA9w9CyWi+JSDJ0WZbsdjvyLOdwsbh2PorXFJ2bi+z4jZvTwZvTMYVMJ2OaxhlLcr7I0VoEzN573ODE9SFRioqiJMusWKxlOZnNX9MTyITv+nm/etnFRGe5mYw9Oj4553j58uXey3wMwOu6Du8cMVyHeDnn6LcOldAipTTGWIpMhLchPbaE8hn2jj3p+3tXm9QOjXSImBADawTmDCowOuiMZ24U9KGUNIw3xE8xgHcen5JUx/cnDkfy/l0SWo6NoEkUNzl3NykLCh8TepJeeRDQNYX6RfLcslhMv/Yt+8t47IsmuZnS91KzriKSZSJuHSEGDGmKr4QuZI29cb2FNJUNeBfxDspiQlZMMHlJVtUYBJ2KpiQvJgTf0HYN3bahHxwhaGJosLqXNsetaZoO71us8kyrDO0zKmuprRWKA6mADTKFDwoJA1TSuGIC4mLkCRJajY5ig4gPKKdQAaEsdQNOaRGORyWp5vK/ktmDRmsl8LURXUfwstgHJ1Sp8X4RKlp47fz6JMweeqFFjrWo0poQepTJwChuMIZQSonuLAZsZsWG1nsG3xNCJ1Phrkk2oLIgXSMA8nk658UWtOv29qGkTSoGjxDGUgai0UmnHdI6a1CjzbS+MUzRaq/RkPVQS8OPGvloiSSVXkoUIa6PQql0PuK9IfjE1oiSBbCnS+0XsHF9uKbG/OSFzMilStDFjUYkvYDrdSampuLGOUKui702I0Es1w3F9f3x0558/LXxnmL/Um88Rox7VOc6dT5dH+pXly71s/Qv++wrpbFK0EIVFDoorDJ4tOSmDLKOhxSi2rQtfT8QI8ymM4qqRK7FQagk1lKUJZcXVwiimEJ9R13dV15HTHXCuFfV0yn1pCbLMlarJa5XOB3odhsyOxq5KNCWejphcIHNdsfB4QnT6YT5fIofHJOqZjKd8G9/+Ae4QRwnAW4dH1MVGZMy5/mLF8kiWbPabIRyoyDLcpptg/MSKhxdoCprDArXiU6zqifM5nOeP3/O5eUlbdvx8Uc/xrkeoyGEntA1XD57xlOV8eDNd5gczrBlzqvNhsnhAbfu36Pve2xZogaNcoZIoEqFtMEwRI9FoWxGQIn9+GSCUaB9h03/PxqhdAWiIEwkp8gu8PLZlq4fyIsCkxcUaXKfVxOaTUe/29GtB6rJhDwvKItSbGNDoG17mu2Gsxen+Ki42u4IfeTFs1N5/qzElANegQ6OyXzOOEjoXU/XSsYQVmNHO2rSfZjWoaHvOTw+oaimZNUUTHGNgPopm/WKvushRBazOTFG+q7DFKI71FZz+/aJ3MPeM5vNU7aJUO4ODg5ZrdfsQs/de/ek3rQZEcODh29x68495ocntF3g8nJJ33nm8znNdksIkWFwWHtN9T+/OMfoZI8ewbse5zTGpBU1Zvv76/rPXwHZpuPrJ35rEUFrpVPqpZNC1SixeVOOxjW8OH/JsZ0yywryekKlLWQZPsJquaLIMspJzXK94erVgB8iPrN0wC4EbCrwFtMZtqhYNj3BRigKbFUL7Dc4Bh84ILLabPBDT3H7mH4Y5ENwjlrbPUdzMpkk+7lAlmVMJpO9o4lM0RVlkaHiI44PFty/e4dbxwf8q65DEYje0fdD4lOPBdGeBbw/6fD6VMVaoQrUdZUahw3tpKbvWi7PLjk4mFOUOV2748mTL5INZ8mdu/dYr9fSFd9I9/1pveO4ZY2NxTWqcC3UGYtiYyyRmLjdGVnmxQZ4cFIU2EFs1kbBeFUJdcFmFHmREkJNooWwT6lV8FNfG1w7OoHchNZYtJHp58tXr/BexKnr1WrPsVZaGrhm1xCCONA0fUdQYiM4uAGFoihKWtfh05RpPpsJmqPVfkp47Z1+XQHsNTcIX7KwBV5JIRQI+2RuhcJEvc8WaPt2z+vVaaNz3tF1LZUWGNpog9XibhWQKXNI+QVWy+9ZbdEKhsHtPzfQ+ABBxz0PRCgPIwc9UBQZR4eLr3vL/lIe+wI4Xl+XIChPUGFPK7qp4xkF0lrpPWVRPkfRBgQfCC7iByimU4pqgi1rytmCkZASdUFV13hvYHvJedgROmkZvNtgrIhGY9jSNTu08mTKM6sLYp9R6owqyxlCxCsJBPRB453fF/jWJp1YSiaPUUkgagTtvGQ29B41jLWpwvcOrw3BCM6hdBzDx8WGMQXmZVmiBKVCMbj03lOTMVp7j4dKzXBIzXrX9TJRR0wbQDH4gDYWk4kgfPx8tFIM6TFDyBI6IzbkgZ6+a+g6uTcl30NfrzXpyb3zuL6nt5LOPuYOOe8wITDShZQiNd7JilZwHUCMDuSlRmLU+5w9nTZ1gnptgDG2GDdqdhk0JScp5+P+a7/v6CPqBuR/s0Dfow3w+nBnfI40tLm51e57hhuDjPHXr5uw1Aio+PrP7eGIG6/hxut6/fWNQR/SmF83RuPXNzNIRv709d+vDzh+tY6vUsdu7nNEob8qnTMMPdFF8JApSzQ5Q3T4wUuLmy6ozWaD94IaHC4OMJllGDq61rFcr1IquCDq2ojTnTKDXIdpvRqGkSrIfs0aC7/5YkFVVRDg+ZNnLI7uYpSh61rm0ylKx70Gbzqb41zg/HzFfHHA3bu3uX1yxJ//4Afcv3sXypIf/tmf8dbDN6iqkhA888mU+aRmVhb8/r/8F9x/+JDJZMZytQStJQg4Kk5fnBKiWLn2TcesnuKynMvhQrK7ZjMODw74wZ//OcZavA989uGHfPDBBxRlRR86CmrOHn/B8vkZRwe3OLh1iNeaT5+/4NH9e9x+9JDpbIbf7iBYVIz03UBeVuR5wWQy5eNPPhKTHaN4dXZGRDOdzqlyy+78GTo6MqXBQlBjE5egyBAIvccFRVZUzBZzoiko6jn1/BCTlaxWojXY7hq6fmBaT6iLChQYm5FlBV4XfPHpF0Sl8VozO55x+uIlu9UFma2EpqWlyTioCnJr0Urx8uUZTd/iB7BZji1LtBYarAsek+q/3XbLg4dvcnB0TDWb07iIS/d8Pak5Pzuj2TaYqJnNZgTv6LoGlSVSp4o8vH+Hl0+e04XA0dGRRDHkBVmWcXxyi9VHH7NtG7KilmFnhNwF3n3/m5STGTYvGULLJ59+xnw253vf/R5d20pOF5HeOUpj8MHz+Refc//eXSZ1JanyG0FahoG9U984NN9rnf4qXmg6vnaTMcSA8iElA1ryQicLxS23H91lud2y2V1y1V3x7LOXRAN3j4+4d3DItKw5fvsdtk1Lv1ritlseffvb2MmEzeUZV1dnkBe4oafbbjh5+DbF4hBlC4gbTu7cIxrDxa5FWUMYPF038OWXT9lZjes7Vp98Qnk45WA+h7JARUdV12S5CKHHkzM2GmMTMJ1Oubg4I3jHbFZxdXnKydGcW8e/xWa95snjp7x6dcqrV6f0vYi/ut5BNLK8x+skaKUURVHsk0djFBvGzXZN0+2YTaa8ePYEqy3Tesof/9H3eff99/m1732PTz75iLfeeZfj2RFlWXB2doobHEYbvvmtD6irErJMXAPUNTS/10O8diQut1I3FmSFUhZrk7jYKMigqoTSNf4ZhmH/XsZ4eaNvCM5T86LiKFxW+2eE15sNhSJPuQ7OiZPFerORlGUis8Wcp0+e8OLFCz7++GMyY6mqivlijhscbduy3W358tmX3L57F+c8P/rRj3jnnfdxs4HO95S2EI55hIEU1jUW+gnlCGkiq9OrNFo4zM57WjcAShqMKNZxKoUyWjSXmytMQr+kuTBEH7naLaVxTdSEMi/3Qv1t16SwP4U1htzmSUfiUUFEhUKHQVANZcDqJPCWIkADQTn6MLDrenz0zCYld44Pv+4t+0t5jMGXN9enPYdchWRLqn4iYEtpK42xzZMg+Jpj7vqBvu3pmp7s9glZMcWUU+Ynd/B+YBgczS6QZYJg+qBQrGl3awmrMgOTyslEKm7JvKYwljLPGDDsugDDgEGQUGc0TZCJO6nW6wah/VmtKbRF20wKOW/QwYHrYXQtSXkW1lqM1qLLQFAaYwYpXHXAWoW1CmOkoQ5e6I7Bebpkvxuc+P1rLcYAw9Az2rBmmaXrOmlE/ECz20j+hjYMgwQQihsfKJUQzST06xOKGIuCYejxfsD5Doi0rdClbGYwOocQGdIQZ1xX/eBw2jD0HavlJfX8UBr17ZaD2UTE6m4AhDJlDORWYXSA2OMGR10ZoYgpER76MKQBv0pSHSVZJVHtr6cQhVfvQ2TwUYZSaCKCxMdAEkGzR0G0+koBP379le/dPH4u3Si+/o+b6MJPCiZvwB+jrmTfFMSvPthrSOBIMhRXQZG6y7osnY6WmZgQuZQ0MsmYa9Td/kofXw0JcwmViM5DckAb6dFjmjwRMptztrwiAGVdJa2FTIljjGyWK5zrcL7DaiuuiiFw/+EDJtMdm/WOq8sVm9WSvhezBslgEh2V1mLW0fmAGTy1zbF5QXCe3XZDWW4pZ5bjxQKjNCe3j5kfzPn44w+pJlPq6ZSjWw94+eKU6azmm996j6Fr+Gf/w39Pu9tRW8sbD+9zdHSE0Yb/4b/97zh79ZLddsXtowXb52eESctv/ebf4Ecff0ToBzoj+0yV5yg8V6en2EmJR+EiXJydc3TrNrfv3OH47BXD0BOcY3LvLrvVBdu1Apvx7gdv0jWRXTPwb//V7/Fu8z0O799lfnjA+eUVpc2YzA94dn4J3pNZw6O332a9vkT5nlI7Xj2LNNtLnl884Y+ffCF21wo2wVPnFp3JsKbrB0GctEJnluAUVhVk2QEntx5Qzg4opgvqg9sMXrG8iiwOMoieo4Mp77z5gD/70z9lU2XY0PP86Rfcf/SQg+M53fGcj37wY27duc0b77zFp8++4Du/+U1uHyx49fgxH3/5MZcXp6zPNVenz7lqxJmTKDu3tRIGPZ9OxcAm6VzbTnSbWhu+//3vg1IUVQ1GM10smB4c4LVlPjugKmvqsmK5XopV/9Chlefs9CWr5ZIyz4mDXF+fffYZb3/wDXoXOLu45K33v8mjtwIX5xf80R/9Ka5rUESKLOM//of/kI8/+5yPPv6Uqp4xqUQQf7G8YraYk1mN1ZHzi6cUZcRkhiov2O02NM0a8CwmNUHLQKZMdfQYOPxVCudfdfwCSAZ7+NV7EeApI8XYbreiqgoWtxZ89vlHxLLElgXOB/qmY1FVHFUl0+MTuiyjzwqaGJncOkFlGqNTDoWyBGvZuoHYNZgQiZklGovXGh/EgaEoFdpYssmUrMjoM02Ta37wwx+itaIwmrvzQx48uM/xyYkEziXBrEsWoqNe4smTL7m8OKdrt+goXvN93zP0joPZjO7kEIXHu57lck3fyUS6cUESutP5GTeQr4YyDYPw7ozXbGMAH8mMQRMpi5yhb3n18hnFdMp2s+Llc9juZMPOa3HF6vteNozgKTKDxe6nKHFsMWKasEWZ54kjDde6hDBOe8Sb/7rKUxhtUdmIbhSMG5s1KkGBqbEg+for0tfy+zGxQ+RfN7fNuIfwfbiGpi9XS06vLnnx4iXOeyb1hPlsjlZKCnUUB4sFXSGF+2qz2jtiHdf1PqAuhkjQgeikaBin4DFGBj/sC9TxvQ5eRFlaa/qhJwD5DfvhEALbdotO4qZudGzpRVxbFiXaCi3COUdVVhAFyjUp8yISyBL9SkUwOkse/3LujRIBWyCSmxSkGEf6g9oXDs47SAw55wbKssRoS/gJcP5X6whBwt8kD0PvF6tw8/75aROSqNHKihmCVcRBhPo2xmtL1d4J1SqK5gEShQLwXYdrNFp32ODQocOEQaZmmcEW8iF5FzDeUlpLneW0QdEqJOgualRMRS1IMWMlJC+E5JimNMpCbm1yXlPQiyAZZBKU/LEkgE8DKoDyon/QKeQuOkAoRlrLehvGAjl4YnDyx3txi0oDDzcW7olaFJLzlCLi3QAqEDHJnnFA9BMtwet94x2zXO6PEFAh4HyPD0PKFJJ1M/iAi0J9BQhutOyO4zCe4J1wj52TNSm5RXnv9mGUBC8ohgKlI8ZEmSIqIA7S6itBKJK5cbpH0jqT3OWuNWpanLCCrDmjE6G42qX9K0S8j2hlUYxryXVjwfj5/JxNdNRsjVeqNMSyH3Jj3Ruvwf1vqeswzxhjcqEhNU/JES8mccXPa2Ree9zX/33z+/Ka9I3XOFJH/xp0GbCn9o7NW57nODXgIgK1azE8yMoSN0h6sw9RrNmthKKKHi+gjKEqCtwwUOQGo2tenr7g6PgIpRRn5xesN51YPhf5T7wOGDWZYsdcVlPq6YysKNjtGrqmpapKvBvomh3BGKp6Stv1mO2OXddz79Ex0+mc5XLHrdu3QSk++eRjXjx/RrvdEZ2nriq6ruHlqxd8+eWXLK+uktMbzBcHbJsdLgY++vxTHr31FqvNis+/+JxCa5q+wyj49ne+y4tXL2j6hrtvvMF8uaXre/78Bz9gu10zqSuMKbi4usJoRVnVTOcHfPbF52TFlMXBLf7j/+w/4keffcbjD3/E7QcPKOtDqBVGZUKLCp7eeTZty7rtwHV0ynHn4Rtcnp+xvrrgt/7mv8er50/ZLCVwt9dKBgRDwDmDNlLjbHc99fSAPJuQ2xnFdE7QGbvOcZAX+LbDDw3NyrFbn7P1A6vTZxQ4NucvadcXHB9OcN2K8/Up56evyK1nu37Bh395xtVuxb9+8SlZiOh+4PTqjK7bEYeW3WqdEDKLtjkRYXdMJxMZsAx9SmzX2CxLSLZh1/UQI0pHDhczXPRcnr6ic5GDby7Ic8vZxSux+baKMq9pdxvyvGZaBVzXCh1LKYLSrJZXRJ2jTM5qvSH4SJEXnBwecXH2Aj/0hKHjX/6P/yPrXcsQIu9/8E1undzCGMN6vU35XDJoXRwe7gcsVVUyn82I0dM0G1ABpcXNMcvEpXQ0VvhFj6/dZOSZlcTGkODZlJisVaRtNkwLQ24VX37+MZNbd6jmCymyXCB0AzbAyXS27/IGP1BFD5lsdqHtiRG8MmxdS+hybARlS4bEbfYKdF6SZ5Y8L5keHdIXGZ1VZCbyg49/RN+1WGAzv2IIgXYY8AhMZowkNiovgnDnBq4uL2h2G9zQYVWfNsdA33fUVcFsVjEMNbvthKHvBRYbIo4O1A1hcIx77/uQpvyyyUsBHLxPE8yAyjJCyKnrKTH0XF2ccWgNy4vAZr3latVy7+69tHiKx7RK9o3eO4xWxJiC3JRNkP2I5Y8bpVT+iRmR4u6lYRCb0HGTFLcZg4g82W+OEa1ExxCBGOLe737ELkZK8s2B22sND1wXkESigrbr2Ox2rFZrTk/PxB4tRCZ1naxLI0PXEYsCBWTGMptM6EYamrUMfpAiPP28v5G4GtNzh+gxKlnKRXnfEt4oNAmfzsfeRyc1Lc45KSbTe5NchyBF1eBeQ5HyROcYbzzhw9+wNCYhFdcnDaO05K0Q0QmSjkhwVPoAiTEwhDENOWK0phjtB7/e8OCX9hhdfeA6Jflmo5Hc2n9y2ht1QuLkPr6e+gpC5LxLQXGR4MSlSdKwHcH1DM2WwQSM3kJoMc7tqZlVlmFyKZA7Lxa4pbJUNk8aJbFwFv4+pBhhgg8pNfv6mgoqYlCYLKTUWQ3aiN21UqjREjfGMe4HAcgl7CjiiAyEOOxpMLLOSsd5nbQdRBuWJtfj+QrBJ1GenOMQPCSkw6f8l4isVdr6dP12uF6SYH1qWlxCMlQM+DAIGhKk+BUnK1kTDLKJ7hvEcf2I4hbl9JDEgvLZagXeDahkkBEJN6xqI0ZHTEKqYnRpXTGpSZd35b863Wcs7iFGhQ+kJkM+vNHufK9XGadw6vVrTdhHP/0Gk3Uj0aPGNXV/lsfHGF/D69fvdfH/UxC8KM3TCC9coxQ/GytR43OnhWX8e08tVNfJ6aPl5Ph9rWU9/LlIzK/gcU0JTg2H9gQFUWlUogAPbU/vPC6kANkYCFpQEJs0dVppCJEss5SlrDV1VWPzjF3TpnBaadL3z801LW4MB6yqirIqyYuSiBKL7aYRQxfvcEOPcoNkeYTA4DyT6YzZbE5VT1muGqzN2Gy3XF68oGl24P1+SLVaLuncwBePPxcEMbNoqyinE5yBODi2XcvkYE6vAk7BpMxxrax5t+/e49XVBSo4ZocLlNcsV0tenZ8xX0z39MXgerIsEwcibelVQGUGO8mZH07pfrhidbWk0hp9OycLis7JGuhTLbTrO4LSRG1pQ2R+6y7YHFtU3Dk8oGkHXNBE2zAk7ZZSMjzEGEwysplMDiiKGqNrdJHhohiuRBzRN7i+ZdM6XL+la7b024Y6L9luJYTx+O4dmm5gu1lz+fIJR7MZu6Zn220JBp6+OKVbb1kUFbteROdWQ9+0ouPNM0xWEtHyGZe1DDN9okNnObbIMNYSMSyOjojB7wfKu6ZlaBqazuH7Du96ds0GU+RkRn439xWzqaIwBd1qifednA+b0/cDJjNkuWG3awWl9o6qKMj0aN7jePLlY8p6yuLomIP5nNl8RgiRy6sVu92WwWqG3HB0PCF6kQHYLKMocmL0BJ+TmUieZ2S5fW1d/7roxc3jazcZh7Mpq9WGpm/RWdwXVKhI36w52y559eQLMIZ3vvM97jx8hNUZMVr6aNnZAT/LyRZH5Is55mCKvpxjlgt0VbB69QrXtgQ3cNle0itHGSdkzBg2HmULVFbiypq8rqkPDvjm977DBkdnIkOl+fjyCTQSaPbZ82d89uI5RVby6MFDvvNr32JaVxA9dZEzrSvKsqDINAf3bmOthuB4/uwFXdfiXMeuXZJXgWoauX13SoiO9apjsx6otWJwIyTbysaXdBNdN2Csoaoq0bAMPcE7stwSlcOWhpOTCfN5QYyO7fKMZ0+eUNcL8nJKLObcu/UA30eePH4K0aFvHVGVOR4njOUQ8X6gtlOh8JBQCgUxiY1Nsr6ULVI4owHZgI0WB5txsxn1HFFdb+Zj3rVCCb3q5qK+/1um0sl6P0HG4iEeEIGU8w6vNcV0yrL5DGUzbt+5y/e//4dsl2sIkTvHJ2RWs1mvePrsCZ8OA1mWkZcFs/mcSZWjiozlds3Z5SX1ZMLhYoEKsqAFrUBD53oJG0PCkAY3iKOI1Uk0rBmiGBMM/UCz3jKdz/f+57N6StM2oKCeVHuXMO895+dnoCScpswz0Vpohc0MLgwpx0SEh8FLgWQ0ZGpMaJcF3nHjhk2Lg3Pdvlkcm7hhcGitOZod4uPNUupX+0j1XTqum+PRUCHqa+tllSo6oSFkklpfWEwL/SABcd5Ik9H2De22ocssQ2ZpViuU7xjaHdvzc9hWWL1DhVOyxmFSxs+0mmOqHucHhs1A5nPKWDPVNaEOaCOboA/SZDglYW6RiDKJsqOTqDoGOjcQ2lau32TLrUImsHrXC4IFhOiJg2gqXLpfYxhwrmNwLUoFtIkJRSZxZCVZW1DUlBvBiBoKbSaOtrPRE/EoLaYBw65LovGAJ1Lnko8x9FuGVuNdcrBz3bXd6dDuZ957ZNZ7aRSVkilciASXmiGkB9MYnOsIURo9ghf02Rj80GHIkx2vNBTGQGYU1giCao0mhgHvJPBM3PYUPqh9kxEYe4KEzhIJUQki4wKDE11HVMn5Ksi6OeqzBOG58fs/ZQN9jUJ141KN4znn9Qbj613/yVI3QRghIte+D5Bc6MZVeX+XqOsmIka1152p1IRKMxpv1r6kOcpPvC1ZY76+58sv++GSfijPc7G0VYpoFM3Qy2dmDcEp1o2E9sUYsCZLLoEDTbujKHN88Fytl1xeXjKf1RT5nMODo0TD6lAY5vM5XTdwfnZB9AEV0mcZZC0iRHQ5IQRo2462G8BX9F2LD4Eq03S9JwfqSY22BpvlzBYH/Pbv/C3Ozy/ZbndMJhN+8Oc/ZHl1St8s+bX3v4FV4h63XC758V9+CFpRT2aouWG0FvPzimySUxc59994k1dnF4To+davfRv6nm67xQ89m7ah9QN99Awx8uLVC9pdAyry5ptvcHl2ynq1pCoy6rzCDY4XT1/yX/5v/3dc7RoeP3/O//7/+H/gO+99wOF0xuVnn4LL2VhhBty+d1cyGlTEDY7b9x+ANmy2DRjNowfvURjN7/73/wTyQ+rbU/K+w4WWqsxY1AWff/IRWWryHj56i4joHjrXsR0asqpiUpZcXX1Jv9vQNztWFxfcuXcHZWHdLDl/+QSbjHM+/fRH3Ll7h9xoimbDxelzvPJEGymnU4p2Q2g2DE1L1IIodiGgI2QmpyxqsDVojc0sWVVRZ3MWyFqy2W2TfbICY/ntv/23CT7w2Y9/zNnzZ1ibsZjOsbrj1dOnrK4umd85YNM0RCXX76OHb+I6h+961NDz6cc/pO1bpvM5Kq9AZyhr6fqWs9OXNJsNB0UuSH3fMfQdH7z/Hm+/9z63797ny2cv+PDDM7Q2HC4O+OKLzwhuoCgy/t6936HIa6ySSu/07BRrFHVdcP/eHcYhlet6Bi3MkKIofuFm42uvNJvVmmk94fBgQdt07HY7mSb7QbzildpPIZ99+hkXr845v/eKg8Uxs8mMxXzO08ePOTycMV9MWCxqqEoKtaDMxKK1XS9x2w2bocN3mi4GShT1vAKrGPBErem8QHDt0JPPKxyO55endEMPxjCZTXlw+x6WjFznzCZTzi8uiHHBB++9S5VZoRhETzadADH51HtObt+hbRvW6ytu3b7F4Ld0w5bl8goXxJINZFqtjSbLjSwuqchwPqaOELquI88LNEmsGiLVtKKqK5QGHxzeQ987ms2O7aoFfYmZHvK7//yfcXB4wNHRIUPfEH2kyCqm5QyMwFfa5KjkvhMjKfAHZLolUwTijZnYftpD0ieMIXKacdx+va29XvJeHzdHcezRkJHzK4gHCV6DPulTXBRB9eHxMaenp5y+OOX9dz/g5bNnXF1c8OLZM3GdUTCbzbBty3qz5uLyghcvXkCRMbt1xLd+6zeZzmZixxkkpdmntxeMIgz9fnddbVYp3dzQDpKnEWNkud0wnU7QWtLQxxRvEXHLZ2atkbyD4TpQqSxK4c2n6RgI9SrPxAru5rkyxormAr0XiSs9ok9qbxwwpKRwaySrIybaTde1FHm+dxAJwe3FhL/Kh/dJy6DH6WP6fgh4rdCpkgtp0x6nk96J+CHLcpmsWYMxMiFHi/FENzQ0uw2FUWQEzujQfsvQbDh98oqmnlBkntKusbsI0aBtTq4naG2IQRMHR2w1URkoM3QxEJUhYHBewhEHBb0LuOAAi1IRZfIR4BD3jm4Q9Ct48lyMAHSZo6yYTYSY9CdBY4ZIGBx+aOiHjn7oxS5WCRoTiXuRd4wBgsNYRQwGhaMTm6IkPrc3pvUp8EprMiMDBaFPSYCpsQqtPcEPEIrU6HkG5/aoZT8MRKUTcm1EMM2oC7s5vRdDiRAifT+IK53SoCNd24qJQyk6kcRNkvvDWkQJn7JmtNi3Kn2NOEg6txG6oTFYQsoFShqHhI6NTQRKSeozJjlKSVBa349IvCAecY8eIoOaPXUxFfqpWbupj3gNuFW/eIMhh9CiVEi4cojgY2oywr57ijcE6TcpUOPXY2ZT6s/FhEVLwxQC6bOC6wR5oWtFopgQ/Iof4/Ux2r0PwyDrhYJcK+oiI0axK+5wLCZzoeR0AyH2GONQVlPkivX2QhD3CINyrNvA8Kpl2zlMloFW9A5C7ymU5tZ8gru6EmqmEmpezDKizvB9YLlsCLEjhpaJfoQuCiaHc96+f5fz0xXaVsyO71EUmulkymwy4ersii8++ZSryytZ6/sdtyYV9dGEtt2R1xOyScXRfM7h/Bg/OM5enTI9mvLuN97njXfe5J/+3j8n04pJkXNvNueLP/5z1ustaI33juOTYw4Pj7CZ5vj4ltj5VyVvPLiPGwZ8DJy+fEm72+L7Ae0D6+2G+eKYN959h9/73f8vp5dXrLZb3r53Hz10XLzc8OrlKw43S5TNwVqmR/8el6s1EcXf+lu/Q11NOT+/4Msffsj73/6AzWrFxdBxfPsW1gXUMNBu1ujc0Xc7NpsV9x7cZ3W1Yr1r+eLzx5JvZA0mz6QO7B3teo1ygTh4gnPYAO1mTds1tMOOLjTcvv+Ag8Wcy3/zhOWLDhUibtdRlCYZfwTOnz+n72UYGpVK4XkeFwYiGpXnkjFireQjFRWxXnB4csx2veLs5XNcUPTeS42oFH/0/T+mKGsmkwOmdzJxGPSevn2BDh3bdcsXrx5z59ZdCjvgVz3dVU9R1mR5jo6Ren6EarZsmhblHVlekOuCq9Mn3Ds+xp4c8vTTzwDP4nDO4ckhRT3lhx/+Bb/3+/+G+WyBRjGpKybW8d1vPKTZ7lheXfHlRx+T5zlZZimqXETfeYbWcHZ2mahShjvHx+RZlpwOfzHRN/wiwu/B7cPE6roSq1Hv5Mb0NxZrDX3T4JxsGkMz0Ey2tNstyiiWV3MWh3OOj+cUZUamNDYvqQ8O0RpaIv1ySesHfK8gq5hkGptnaJ3TdY4QA84PtF1LGUu6vuPxl4/p+p5bt2/xwTvvYQZPRoZVltxkbNZKxLuJtpDZDGtyCB6f/JyVBucESjVWYC8fAm3X0jQ7mmZH2zqGQeOiE+tFI9CZTxuUUiJ+DKnoHwaHjTI3kjRxoVm0bSv0MA9DL/SEfoh4BgiK4YuBq6sFze4OeW4p8orZZMHh4kQctKwR2tSIMOy5S+p6z9vTlqQJuImQx7/yGvkaF9F+snfTHYUE13uc82x3W0wmAXzbdodzA4OTBM4YowTm+YCJkc1qRUzOTsaYfbCec55hEDGoMTLVNFaE9847koEIUYvNqQ+Rpm9x3lGMtJyIWOLG8NqkdxgcZSYFjNaaLvRkSgqVkJowRXJWMGavhcm0JXAt+h9pVHvrQl77GFIPp/aOXFLQJDpaDNcaDEZaRSq4RhpEemzNr3aTsR+AxBExu0FXSxSiMFLsEqfeJIQQLVzYzNq96xLJKjgkzU/Xt/S9ZegizXqLCVtcu8Vtr+jx6DyQ5Q1mkGJZaYOOOZLHEFDBEH36EyxaB7RyqJg4/koJr9vLBoQG7RU6WfBC3N8P3kfCIB62WaJYGJulGlKQAJM0VopA73u5PwZJHo6j5WuCwaWglgJYIUVmUCPPX6rN0elu5KjfpJGMTl4QkwGEQkUl9L2xWk2fg4iFk6YDUmqyfFOr0ZnvpqOVSlNzaW60zoRehljZ9l2HtpY8t+lzjxCDON4Fd712JUoS6ZofzTVCkNDDa10TqNGGVY3owqhoknOrtUJHUEnHEsLYRKRGNj3H2CzsL814o5m4MbF7bXaXnk/tfzbuf3ekL331mr/59+gzH/cUztQUhnCji5Hze9MxEJIV981lX41DnmvqFEpJc4gMNQRlv/H9X/FhxVfpaK81YTGgoif6ZNu8z5Lx+//n+1YCJF2P0ZHpZEI39Lw6PaMqa7JkuKC6SFWV2EyoS9NJhcFjlWNzWdNut/StF0RTy57hoksGAwMRj7U5WVFT11OOT26z2Xh8tIBJ1KcrVldXHB8esVmtaDbrlP6cCbpnFTHLKKczimoi9v2zOfiID4pimlNUNcpkGJvhho7ddsfZ8JLQ94Shp3eRqpYch6KUeAH/xAsVO16vHTHCdrmR86QVrnOihXIe13UsV0u2mzVD36N8R9v0DN1A77YsL19RTKbU8wXnZ89Zb3dok7FdXrK5XHJ1uaTfbmg3G6KBPplYjCYY+WSKyTyXXctmuabIM/q2x3WObbfDWCcD7cJR1CWD6+j7jugcDA5CxGrFbr2k7VuGrqNvG5ZXF7huR9dsGHZpzQuShkOyTe+blhAVShlsZhMKDGidGCIpOcd7Qt+Jg1mt2XUDvY+SOp5bhq2s14eHB1xdbvA+UpYTFofH5NqggqfdrlNWV6CuJxzOD5mUE3JbcnZ2Rd87tLVMq2IfXNwNvaC8SpoA53qKTJFrQ4i9mBRkNUfHh3z82WN2bS+vO8haG/qB3XrJMLEE16Fjz3Z5QWctWZYR3JTSKIKOeKdodluKIkfrYo+a/jTd8dc5vnaT4X1kvd7R946HD++x2awZBrWH0MejtAatILiesxfP6Zue7WTKZjWlGzrqSc1kUjFf1Lz3wbsczGcUSjE7vkVeZFijOW92NN1A5yO6HFC5oZhWZOWEzatzxH9+YLfbYPqK5fKKP/nTPyWWGQ/uP+Tv/73/gI9+8EMyMqGqBM/BfIo1irZr8L2iPFgIV23ok3uKx+M5PT1LrgaawXvWmy0XF1dcLpdcXV3RNoHoC3o/kBc5uRZLsehkSqZTITTSJ64ul5AcXTyevnfCg44eaxvhxwaFcxrnIkMQ15fL5TnL5Yy2adist2hyqmLOreNHBJ9T5Jq8sEkUKpvNyBWWRXj8OhUP4xYcA3vMSfELXzA/6xgD71TiWnnvabuW84tzFgeHhCgBOav1mt12RwyB87MzZnXN/O4d7pwc8fizz1lv1jTtDrTApHme0XcD2zBIqjqKPDkdRGDXtnK7atk8p7bC+8ByuxYUIG3YRmmxnguePMvJjWXXtlyul9wpS6G0GBHG+RBQQTi9QHLMSWGMWqgKuc1fo0uM9rtjExCTRDV9Gkn7cY0wueBRATKd4X2gaZs0obdSEBbFPh8lhiDRbEpjv0bC5i/zEUbRNNeNmAjjRyGsFGCCLknaq0yNRTtks4w8F6600iT0IIkFnWPXNVSFYugHOr/D0hK6Bt2todBiCOVa8iHglSEagwoWpTKU8iIGjoYYLT5ajPEYFdHIkMUbjQsB7zV9aNFaCvboZUgB1whCCJ44SMNNVkD2/+PuT3sty9L7Tuy3hj2d8Q5xY8zIjMjMmqvI4iS21FJ3C1JLlNVqdBuQ1YYNw2jDBgwP8Gew/cJfo9s2/KIB23JbbbVEUSKpmaLIGlhVmZWVmZEx3/mMe1qDXzxrn3OjWEUWBRqt9CaCdTPi3nPP2cNaz/N//kOG0RmYCCl3x5pcEGlrwIsOout7XAgyofEhufiJ2wtBqJADlB7RaC0W4UTHEAgqvz/s70udpUlmQGkoc0kgEXqO3qP4pIbCDBMl2eQUQv0T+2txmwuh3xXAgnBJ0ey9kxo2KEJQNHWDrVpMnqP0SF5bBWJ0WJvj+1Q0phpbJyqa1qkIj+B8L85YStymTKIzaB3S2iM/I3jXkFmjsUp0bMkYMoX0xd33DPPaXcn6R1AB3sifSqDNTWxnWAduHnEYedyY+LxBtlJCsYkD+DFQqYJK63N63neo0N5yY3jT+99xc6qiEldKEVXKUInSjEat0J9jutTN6zPY0O+pZOn58z19uwXEzKHZ1vi+Fepe7Gm3C1wQQ4PceL74+CGbesvzJx9z+/CAyWhEkeWg19y9e4uiGnF6esqk0LT1mPWqxLUtZ6enXF850ZYimrnoO3FJA5Qumc8OMUXFeDRlPjtBcU7XOdjUNKrl1cvnXF5c8M1vfIO+bSB6Nqslbz98hCeyabfcuXWP6cEBeVlR1y19VGR5zp2H7+BCzdXVksvrBfjI1cUl2+WCsN4wLSuKsqBZ1dy5c5fRpMIay9HREYvFgtevX4n7UNfuQK7NesN0OsLanO31gmk5pq9rXn7yhGoyZmIMeWlZXL7EpJyIYqTYrBdUo5LjgzFPPv4AlRKoP/zet1her4lRURRjFmevsWVO1LC6uMRnOeOi4Hg2g9hx5c65PlvQ95JRYnVGCI5goNM9fltzbA1ts2W1WuL6Gp+0uMeHh6wWa9q+F8en1Yofnr6mb1tM8AJOGENWlaxXLRoxmdCipMMYxagoWG5XktNkjdA6laLte5wLbN0aU7Tcmhzx/PUryswyns3Jck0XHNF1PH7/C/zoBz+kqVua7YoHDx4ym86w2nB1taBu1mSZ5tGDe9y5dZvD2SGz6Yx/8Ov/kIurCzrnyB7coem21F1N07eMyizpUzIMkRg7et8SVUfTrVF6xnw25vd+93f58ld+jq9/9etslhtC1xJ9z+Lyim5zhbUaazRaRZwyeJtTaghlRjSAVdSxR5sRRTS0XUMfJRdmoEv9/2SSMbiV9H3HRx99St+7pAuALBNgZBCZ4R06KrIIm6tzmvWSVVFRjSf0Xcdms2azrdhsamazKSe3b/Hw7m2UyYijCeOTO/R1CzFiR2MW3ZZ6E8l9i7YR7zx9H1gur6hO5mnBj7Rtzz/75/+Cb//+d7Au8uVH7/LWvXvcOr5FlgvyT4xstht837JcXqMV1JsNvevxSvi/l1dXvHj+jLq5BKM5OD4ixMhq5Ym0uN5gyQRJdw6jM8bjiQTeoTEmo2lblqsl08kUXBqFx8Bm21K3LXlrKPIc0LL4UxCjhPG50GOynLbd8uz5M87Prnj18oLf/Z3v8K9//nv8yi//Gd555x0ePryLORAOpEoIsE4UFB/2iLgszLJhGW13aCggoTJ/4nH/Hz5kerEPsjNGNCkH8wPOzs9YrJZcXl2x2W65uLzi4vyCwmbimrGtsUrx6sVzsXEzhnJcoq3BYHn29BPe+dL73H/4kDt37jCbz8mLQlBuazFZhteKjWvYuAZUYDyZsl6tpcuPgSovBC1RGYXJiM6T24zj42N0JoGPvevR1kpGRYw7ipJCoyJU1UgE/OkYxNpa7eTjIkSLcbfHCy1NpwIn0nc9IW30vetZuxqFJNL/uBB6uCzDawakSIY3nU0+T4eg1GpXoKmEzOoYJaNaiVLIpz/D1+hBSG8o84rM5CjV4pG0ZmLAaNi0NeMeXPTEsCTEhugbTL/BB3AogvWo0BOVFfFgF1EBohJPeaXFza7VYGLAqh6jHE2/xJETjCEoWK7PqdQMW1oUybJWhV1aNChU1MQu0HmhRMWsFHe5oVhWHXmWY61hOjmkCwbHJd1mCVGlSbFPQIjY1RKFl++DTF5tUeLaKGLSRJkyxtB1nTSs6R4MQUTQuZGNChVEJO0MIQ5IRZrIJVtouW8DhiBOL4nCJsF44tQ07DeD6DzLtfjx+16mtyYTihiSju69NJE75ysl0xFANCNDER6l0SJRS5XzGGPFUhstmSJamjJPn7KBQZs80WTYn68A3kUJGQwKq5FNKw5uewP9a7hRf3Kj8VNuaAYHv73ofjhUcjq7+WwHhlab3Z0urlk4SZAmgMmK9FOiKXmjyYm78Q3p8dhNc4ikAEihRukoAV6BgI5GiuHPsUvdbnqcBMFdJyBhlmXkWYYKJSZOuHNyImYH3tP3vbg0GkORF+Rlxnq9YLtZ0rQrppMpmbX8wte+yunpGb3zgGZ+dItyPMXYjK7rOT6cSdBq39L2cH5xyeXFJVfXVyyXSy4vL/j4ox/yg+9/QNsFlBlxcHBMNAXOe37rt/4x3kE1njGZjHj22QustTx46x55qeldpCgt49Fdeu8pZlPuv/2QcTXFecdm21GWIz755AkxRu7cucM3v/F1zi/OePL0Cc+fPafZrOjqDe16wf27d5kqQzlr+Po3v8FHH/2QDz74gMvLc+6d3GFclLx6+YLtdsugERxPxhwfHVFYi3EeXMREjY2B5cUZOtfYXFa5XkU8gc47CjXj7OUTnj//hGIypiorJuMpKxv47JMnjMczvvKVn+fis4+wZU6W52wuzvns7IyqKPmzf/bP8u0P/4C+b7nz/jv8J//xX+f3f/9bfPiDD/Ed9K2EezbrBf20wCrPeGS4PF2hg6yN56crXJssZfsW53pm4xHZfM7p85cSqBsCPjecHB/hXUe73aCixirJ9Tg/PWM8K7HG0DrPZHogdFkU0+NbzLIctMX3Le8+fkyZ52givXfk44nUBVnF24/eo95suLq65tWLZ9TzIyazA04evM3de3fRWvHpxx+yuFhRmYrj+REf/fBD7ty/y8N3HpLlmqI8pO3GlHWD8xFNRvTg2o7nz57QtTWX15coo1mtVnz88cf8r/6X/2sODk8YjaZsljXPPv2U5eKCtr7G91tymzGuxOp3Pj1kVI4gajKtMUi1Yo3Yhyur6LqW3OQ70PMnudj9UcfPbmGrhswFGUMbo3Zj3/2k/QYvn4jVmj5Gone4tmHZ94wmE5SqqLeNcHwjeKNpu45cBWxwTDL5QBoI1tKEDu81xIzeOwkeUeIW0vUtbSepso8fv8dmU3N1fskXHz7i8PCA6XRCZg3WCCLcdZ0UdFoSnOvtViwhiXgTRcAVIwHFar1lW7d0nXTFSimh6QTxmTfWSDAPhrKSRMnNtubwcMY4ePIiZ7uuU7ZUpO8bXBJXdp3De7GaVQgyiDLERG0wOkVTOUcbG5aLK/rOoaLm+uqKBw/e4utf/ypf/MrbHBzOmEzG5LllU4vrwHZbS9q4tZK+XsmGNXjZ7+xo3xjF3+CyvPH3P8sNkhqdEGnqTqgWSNJ4CEFE1tuaq8srXN8zGo24Oj+naRr6rqPte8qqpByVcl4zTdf39ATefvtt5gcHTCYTjm4dUzcNxhjGZYU2Rvx4vKdzjs41GKUps5yghM4wVLRVVpBpMRDV2kAM9MlOVqfQot5JoKNWmqBC4owrKYpS8T8I5G0S3P/4RCiEIJqDqAgaYvQysncSLKiMFvvnRInaaS1iokQpjTaCHCgUJH76LvX9c3yENJUBdp93oEuFGIEhufoGbSqGFFAndrFFCiTSOgWDRp/EvQHn/I6XP9BiFBGrpKBTiXISozhBxSiiZROEfmS0IahIwOFjj9Vgc4UtwKtGLJOVaDO0deLQZKRQHAq+5Pe0K0CVEs2XiwAtMYpOyFpLXo4k8NJoQvRU4zGT0KOMYluvk7xIJh+Dm9ZN69+YNgStB8rfYLwQ3rivfJDkc2OFDmAykxyz3rw+N0EJGECD5CSoZTIxvL6xWgTwiSKkU7iZUoMtKOl3O7x3Qkt1PUMInhhUOLSSBtL75IJFwKHShFaumA8epXpQGhUk82J4v8NVTvyGRB+TpkHAsMEWdi/8jjp9cDXcIbtb8idPMnYTCHb0rKG52F3vXXMk6+eOgvYTjmGiEVPwoPAaAqhh6pImTEOq7u7Xxxsrsvxe+QjDWVA7GuawpA+FgbrhKvWnNcH+7+IY7uthTdxNf1HEPEDwqCCMgTg0gNGJlbLSku9iDSiPyRTTOBKzAW0StalMLn6aqpqAyeS+U6LzMBqoSspgyIoRs4Njbtcb2q6h2W74ypfeo+82nJ5es2kUxipa52jbnqZpGI8maAvrzYJyPEbh0TqwqpcS+Goyjk6Oefb8NZmec3z3Ht22od1u6dqW3GbkmeTaOO/45NNnyR0zo8xL7h4dogmcvnyKJzCqRhzeus2TJ0+4uLigbVuWiyVtW0vKdALJbGbJCrEI997TJMe+UVGioqLvHFEHCRnOMhrfYTIpS7UPGOUTRhFQrib2gX7rOX/h0L4mdnD++lMuLq+S4D2TGsiLIcXr18+4f+920nRGnj17QvAd8/mE89dXVFWGVY5m1bK4OsWHnt61bNdLlO9RIaCDGPL4IM2P2dE8YH50iMBakT763dRSac10MqetRa/jlVBc81yCo4W2nWOykvnREdoWaJNhbEG9XNMbQ55nFFVJlpVkWjE/OKbWOVlRUVYTVsslru/YrJbUbc/19YLMZhT5iO1qzSv/mmazZTabAIHNesFoUrFarSRkLx8zysTSP9OK1q9pm57g4fadt3h9+hrJg8w4fX3GZtNRlmNwCh+kVlXWsN22lKOC8fQAYmB+eItRNaauW2xZYoucvKjIq5w8yzFqMA+S4w366M9Yi/zMTcbNF8yyQVzo38hfMMZQlRVt04mvvEp86hgJrmfbbnZhTc4LV1GZDrdcc71YUlrFODPcP5qRW4PVSrhrAXzQqNDhnTQZJlkS1nUt9m7Ao0ePOD+7YHW15Pat29w6OmY+mwrSowR57ruO8WwKUdCN9SZxz6wUDuKtLkv5al1TNx1dL4JgoRGYvbOHEj1GDCpRpKR4Go0qlDZkeU5wF+Ktj6KtFXXj8b7DJ4GlVhFtwGihGCgtkfJq2DRjlDTIZkvf99SbmmfPPuPWrROurs/o/C/y4K373Lt3l/l8wtXVNYvFiuvra3FBKktmsxlHh3OMkSJkPB69wdNNW37axNKEY/j/P7YX/dQbSw0AdaRpJYU7RLFmHUS8IgDdYm3GuKp4sligguyefd8xGo+wmZxfF4T60vUd9+7dJ5+NGU0mHB4dSkOa54xHY5QxON/TeifOE82WzFgR3zNMFCTgrbQZmbE479DGkIZLkmOiUqOHFJtaK0IaEe5seAeaSvqcZkBff6xSE93HIMyUQtj1vYTGdZ2IbrEoa3ZcebGxlLBLKXbtjkMfGVzD/s0s5P5tOqT4jbviZzj2GhVNvCH6DYkepJVBKUmHLopiF6gZ+oQCa7mPvPfJ0lgRtYEo7XSmhIplooheB/Z+QChJNkpzZ7QWZxHl8Qg9zhQGW0aCadO/yfvOsoCxgqb7KMinfJahYZc/6obdbu8STq8UJsvIinKHGjnXU43GBDzGanrX4L1GAsTFijZyoxFgv/aKFkPJNDXuC0ljxJHGOQ8KtDVkeYbODMF5qW0T52fg8+/AoqFGTpfp5qQtBI+1GSHsaaJ6KIiVOGGpodgOnuh7gutl2iIvxiBEH0zwgpf9RBFxUaasBgNKgAoXerEJDxaNSVqEN6cGSglNiri3EPdh2KfS8xNvnLsbPz0UpD/pGZP6Pu6/vnH+E9q2P2/s18mf9LTum4+Uk5EaDIXcdxGXGjCdJnvDO90Zit944+oPPUd77c3+ug0mC4Nb25/G9Pq/y+PmZ96toWkKF4Mj+GQwoBWoiCLR0hSJ+RDQmSWnwJoC1zW7M3ZweIS2GVpbVNR0vVylLLPgOnyMu/yRcjQmr8bMwhHGiO27CR0/+P7vo80Tnr9aEKPDe51ohJqyysHApl4xnx8ADu8btvUVresYGc1oNqZ94ohaMZ5NaeuGpq5pNluOD+ZMJxUBRV5kPHvxilGRMypzRvmIe3fuMiozylxzfXWBtoaj42N+91/9S7abDT4ENpsNXdvQ9x1WS7hclueUVUVEMql819L1/T5wzjWoTIBWay3K9UIvVeBVwCgJ8sy1pfM9ykVc6LjaLBiXI2IfOX/1CYvFKoGpltF4KntfiFxcvOTL975OXmQ41/LDH/yBUHSsIvQNZZVjgkLTs1lt6FxH37e4piG6HhUiFk3newIKjGU0nWJMhtGWw5NbaGSdXa3XBO8SICiBc03n6GlRVvZbaw3VeETjwWSWvCrJywpjC7KsYFSM+OyTJyhgPB4znc5xvVRQNqtQWU+uMyaTGdE7uq6n2a5pGseFh6IoGJcVG7fk+vKaxeUFs8kYFx2b9VIa0W2N0hnH0zHj0aH4gboeoyzWFJh8xL23HrFcNWRZQZ6PePr0GVV5TVWNyW2BtUq2JmvAWPJyzHQuxgGj6SGjaoRTa/JRRZbnmDwnz0usNWnfHYCbf7M142duMpzzu42kl5Yp8X9lIzk8POLu3dt8+ctf4g++/S1evnhB3bbYLE8CxoC1mvVqwXq9IitKDueHjKoxqqi4vjpn4x1X0fHJpx8zLguqImc0rnjrwQNyrVgtLqnIUQEslvV2w8WzLddtzXQy5ejgiGk1ZWxLzk9PeffBXcZVyWq1FIFQjBij2G43tE2dnIQySQVXsG22RAyL9YZnL16xWKzJc8t4PGN5fU1RFgTX4ZpOLkBCU5zzXF1dkeU5d+/e5erqWpDxImc2n1FkFZnNaOoN6/WSppXGqG1bYhRqU+86vBexTjUZE2MvnGJrUUoKqeB7onG03YoXry44//Uf8bu/94+5f/8Bjx8/5stf/gqnp6+5vLxkvd4AciPPZjOOjg65ffuEu3fv8pUvf4miEFcBm+1vgWHT33mq/xT+/0/i5AUvZIWoBUk7P7/genEtAnelaBpBTd5++JD1esP5+Tmb9YpxVVGVBbPJCO8ddbPlcnHNul6z3qxp2o560/DVX/4FDm8dMZnPMFlBkRdYK5S1tuuo+w6dW3onC6RzYlVYWAk0rPIKF4MI/ZJ4tDBib3m1vt4FduVZjgsiGgwxUGi7L6ryIlFWkusN+2wA553wU9NGF7wIZqMKhK7H9Q7f90wmExE3I/7oNstkkUeDGZDbAb3cuwSpBJ/GGP8ET+3n4Nh/VGkyEs0D2DUYA3Vs0BYUZbnTZYTYEtmj/L33NF3PpumZTXJM7MjQBB8wQWGCwnqH8QkHHiYlSfOR2YxYaHRp0JXBZ5BNCkGMrQPtZLKkA9ODMSY3GBvF+nXfaTMUgqJRCDtBNkDnOwmqCo5qVJGVI6rRGO8l4T1qcMExmYwxJhKDiFaJHsLArxd4QJzN/N7lLDlS7RyItCYEQTy1FQONrMhJWka0VZhgiH1C+YcCW+owYgCTqaSPENR9KKa1zhDbVNFPWJsJeJI0blnKCVEhooMn9C3b9Yr5fCZheyHgg5MATqVwvheXrxgIyqNisROZEyOdcygfCUGh1T6vIKRmZphesGuSpOkMfkjRTq53P63ATqDOH3fESBL5s5tk7L6Ow+//6ZOMwXp2d56jEJjQjhBafOjEAEMhwnKV3ZhM7OCfH2uw9myDPetgaBwH+l6aiv1sH/Pf2mMAH4bPOlB0h8/tvWS5DPkukvHSk9lk3GEUzovhS9/1XFy84vL8nOg9s/GUo8NbVNWYohyJ2UzniAiNqG1qsaTvO0w5AZuJ06A1jGwmwcKx42/89/4a//xf/mv+3j/8Z7xeXDGanXA8PeLkcETft3Q+kGnF7OiQEDt6l5FNIourBZ1zvDw75ejOCVHDBz/4HoUyLK4vCF3Pwwe/RB9EJ3Jy5w7f/e4T2s2Wvt3i+sCPPvqE+WzEn/nVX+J3//W/5PJywfOXv8v7773H61evOHv9mtV6ycnxETEETl+1zA8OZf+PQqO7vrqiaxrm4wkuRPro2KqecV7QuJ62F6cjYiY9NrJOGSMGO8Y5XN/gQ6SwGdvFpYTVlQUWyTxSONbLmuWmphyNeeutO/y//2//V6aTCe8+eofT02ds11tc55iMpsTQQ+yxtmM8HREZ0feOF589EzqPkSY8KEfne7rQ8+/+8l9AmwLvoak7Tl++Eh1n06LzPeXw4uoCF0AXOVml8b5l22zovKcNmnKs6DE8++53mU7m5DbHuIhG1tfNas1f/It/iW9/77v86MmnfPTJM8rRmCLLmBaa9x8+ZLlYcHF+gbca17U0zqOD4Qtf/Apds+H09Qs++ewjjk4OmR9Mab3j1q3blNWM2fw2wWmauqbrem6f3OfO3XvMD46oJoe89/5X2a6XLBdXbK7bxIKAq+U1NtMYC5k1/MW/9FcYjwRkfvn8Nava08aOajbj5N5dQvBcX17ifc1kPBZdUpRrmidgb2DI/KxOl38C4ffgIJVcO1J8qzGaLLN479hua77+9W9wfXnJZrtl+/qM3oc0ttTSUSXGclvXXF1eErXmcDzma1/7Obpmy/L6kvPXnk1bs2kbirbher1mPj/g3v17YsvnApkyNK7jcrlh0dR0Xcv569eUecF8MubRrRPKPGO9XkKUPAPvPHXTUpUFeZFTlAV5luGCWErmVcWv//1/yOmrMzarDQ/uHjKf5WQ2YGIgupcov8Y1gW7doZQnpHToLMvIMkvf96xWK6HzqAmu92Q2RylxlZnO54zCmHorTca2rtlutmhtKMsCpQzbpqfIc6GVRKF5SB6Dpigdg7+6c1tWi4xP24bXr17y7d//fQ4PDxmNRwx2kMH39G3Ds6dPMMYymU7p2o6vfe1LHB8fQRQuISTdjVZvFrp/xDEs7ijFpqmTj3IpU4u2YbFY8OzZM84uLsiLnPfff5/lcsmoKvnC++9x9vIly8U1F+s1uTU4JzSRyWSMziSh18eIV4A16CzDmCw1MqKHWW829DEmlyE4GE9ZXF/zw08+5K37D6iynAjUTU2RZWTGoLTGeU8fA12QBNWhKPODR30ElKXtW6zJKPNCPnMUjrz3niL9nXPietUnB6CmbWRioTWzyUQSwAOCtBgZ7Uel6IJDGzuAbVLoJmRycJSKSrjYQpEJ+3P+OT3eIOgptUttT2B6kldJBXSzyQgBglIS1pYcxkTTJBqcGD3O9XhX0PWBtg2oWYENHbnKsVhi0JioySgoCgO2IOY5WEEqlQKT5ZSTEooMigydWcpZSZaD9prgOim2VSDP5yhriCrSNK2ECysDUVxLBDkeGvKQOPtenNAQ60Q6je0ybJ5T5CVlNcZHl7z7K0JwdF2etFYDah0TwCNrj+TeyCS5992u2LUpjds5R9u1icMuUz5USI2DIssMfdftivCiqOg7EboD5HmGTnk3SqepmxIcfqh9tRGBe/BhR8PaWafiCa4h9hpClSrkgS4FMWkHvHcoHbGA6NSVdEJIaF+MkoTe9y2yJhqUtUJXisn1TcQWuERN7PtuFzIoEzENQ0hiFL2V6FXkswz0xWEaEZIY+6c1C3JPs5sw7ev+eON6kQT2+8DJ/YsoEXmHYTrlCVEAJzmfPVoXQtHBsnOWSuDGTx0sp2GF94PeQx6uODTtn+NDK4vSe/qauIztJ1Vaa7LMiL1sosUoqvQsynVro0NHC2WB9Y5ZJkXq9OAAE0OiZnqyXIKIY1RkOpJXY2I5kmmJrsUEAk9h55BS5i2Gg+Pb/MIv/QLT42P+y//qn1KUJeVkjM0Kmk2N2jrCKnD98oLZfMxsNOVHz54TfGQymfPuoy/w/MVLQoiYruPqes2D+29x7+497r39Dv/gN36d1WbN7Tsn3Dl4yLw8JIY50Xvu3LnFeJxzuVzRuYjrHP1yxe/9i98RkwStuXVyR+y4Y4+dztDKEZ1D+8jJ4SG0kXVcUY5kihG9Ig8FRltcEHvuclyxrtc479HGcDjPGFUFRZmzWbfooiC6yOp6SwxizuKCp3eBcjQhLyqWF9e0fcDVgQ+/9T267ZYaz+mLz2jbNZvlJV1bk+s5R4+mzI9u8eXqLX797/4GrvVYkzHNLHW9Zn58yN/8W/8p//Xf/r+zXK8YzWfcORpxtahZrDZsauhdhKiFhaBKjHJoOvLQ46MSjV9UjA8OMUrhuoDymkIZcjR6MqP3PW3XoL0nKyvyUUU1Lvmtf/6bbLc1KgYqrShVwNcrXr6+4vTpx0wnMybjOdPpDJMXRG3pfWDpHKttzYvFikbiv7Emp21brrcXxKtrLs7OOLn1QJgnmeXk0buMD45Qec71tiUzJZntMWrN3Xv36FIW0uF0gvIO5Xuia/jRd79LVZWMRpUwdPIMW1vapsQ3m0SJDZTHx/jo6VzP8a3DBKqLPEBnlqglr+hnsaH52THROGSJDZun0Dow8rX3gbbtWCxWKGMZjSdU4y1N0wjSpAIm5TGoRA3ZrFaYLKc6OOBwfkBXlhACfV+LeKmtabqGTVPTA8V4zDQboQP0SnO1uOb0+pp119ISOHv9iqODQ44mcyZVRfA99UYmAioGQS98T4yCPlhjcN6zqbd0rqcLns8++4zVYkOVV9w6PmEyNmjVs5lcMa4q2k3H1jTJ3UaQa2sl+M0Yu0f51eC81eNcj0sb/mQ62eUzdF1PvlljjKVre2wmvt6xlg0/hGTIqDxKK0LUgromFxt0oOtr+q5ntVzgfeDu3TscHhwKpSTPktYDri6v6Z2nKCu+9tWv8fjxOxwdsdPUDHuhYo+CDSLQn3g7/BitYKAU+aRvGTbp5XLJ1dUVRVGwWa+5vrpiPB6jlaIqS5bXka5t6RopIrIiIysySaAsC1wMMqYcVZg8o0vprD4GOtfTu17SRFG0TY3pPfVmw2q5RN17kO7bsHPwHTDEge+vQJyqUgFglBIBcsInXfoeoT6FVGAJEhai0KcEgZeC2adCa0BINErCAZVCWRGtWmNAKdGM6JQIHgdryhvNnRocmORZi2j42cCDf2uP4dm4WTBLAuRAL9lTVm4ilgPIHCM7JMVmVhD5GJEiXlKpnQtCcYgGlEVrS24zgpbzn2WQlzmtzdBZTrSRoKVQt3kOWUXILDE3RJ1hS3FWij3020YsV5GCNaRJZtcFbGaxw/VUg06B/eccPlvSVPgQ6LuWprEYY7Emw2Y5RTmmKEZ0bU1vGxE6633eyk06FMOpe4MKs6dKyddaKIFG9Bg2k3UvpvepU7My6CqyLKPvh6ZIfgYFruveQLBiFOrbUGAPQX8ifxDNV4zCWIneEV0PQRqVAcGPUehMcr5EuxJMai6GBiMOcsSUiYGTJF2TSXOujeSaKI3Wdve6zjmxXvcen5ofrcweREkUADU0GT9+/JTmIvGtdtci3nxmfxycuUFtize6gv3ASKeR0fCXgRAFeRddhsJoUMbupxeJqvPTaU9x3/nsCvFhTd+/98/vofefB3aRsjefC2mGEw9vdx33Dl5aiWZUK8ukrCiSsUFVFjT1Ch/EFMAQxcY0Jg2qsclW3KKQgD1SMKbcVfJzeVZyeHTE29EzG48EjFRRrFd7T9YbYi4CfKsslozQRaazOYcHRxRFges6+q7DtYpxMaJKGTMvnj/l9PVLFstrNqsriscZVmfiotXUdF0HyvPi5VPWmy3ee4yC9XJJOaoYlSXWWsnj8dJQuQjWZOSZZVRNqKoJfRdQOpfGzWgKqwABWNAJANMKFSIx9EJ/GmUcHs14+OAIFRS+85y9uiJGjTaGLLd8+NHH+K7GKYVra2kafc/y6kJA0SawXAROTg7IjABHD9+6y3vvPeDWnRPGh0f809/8LdrgqTLL0f3bnJ6/ZHZQcu/BLb7xc19ivd2QlSUP7h7T9a+4vOrITE7fNfRdKzlnuYA40YFxXbKpz8iKEdV4BCESvGhkrDYQInlmQSWrhuCYHc4YT2dUkwlnpxdUecXRbM5oNEEbQ9e35Dry+vULRqMJeZ7TtJ1Ya2uHU5q6bXERivGU6cERo/GULCvouguajcRBbOOCyoouRGcVdddj2g7jI9v1mqmRGpyomMzm9ET6mJLtux76FtcEtptrXFfjuhqb5wQcMVoyq+ga0ZZkyYhkAFyMEf2ew5OZXGpbSBPkP/74ExAvNMEnV6KoUFbQIKMUTd1SVSVt0/Ff/Bf/JXfu3WU8P+BBWfD0s09v0IKc8BwxlLlls1oItSVEvv7Vr2KtYT6dC8KOZ7Nd8b3vfYemrVlsaq4++JAvvvMulZWR2/kPvs/Z9TW9gvHxIT/64AeEt9/h5L0xV6evKUvZUP3O8UiT5RkB0Qq43vP69WsWywWr9YqziwuWixWT0Yx333nMV7/yDdrmitXiDKMM47KkKWquEA6ePGSaIq/EUSBdkOPjIylRFaxXG5q2ISpBYI+Oj6mqKp2TSNu2bDYbPvvsMzabmr7vyLIc7z29E+TOWHAhYlyk6yNFYckyKyFEfZ+ujkYbeP3yGa9fPqOqKqbTKUVRUBQ56/UWHzRd53n18pTVqqbrAlluEuI5OKNAjJJ/Ys1Pvj324/jhv6EajcRCtK6JsPv91lqODw/ZbDb89m/+FkVRMKCYh4eH5JnFasV6tSUrMnrnWG3W6NxSjirKyYjRdM7R7VsUkxFnywtOirsEF2n6nlFR0CbU8uz6nKvTM/q2pcwKxuUIrSRQbzSepoZL0aekX6MNmSnog+R2+CAOJYP+wqcUWQW4dJ5zayFafKjx3qOVJtOW3jsUCqMMRZYzLkspDpWmabdYY6iKAqsUJhUHOoIZWNaJo36zebs5Tfq8TzCGY2+pekOgqwbaCQyUsJu2lN6LzWBQEIOiTLaMWZ6JsM8PmgdwAbre07SOrlc4a4g2x45HhGqEGVmyiRExtzEyXc1botWQWXI9JjDBGYPPFT5maCvPFpkntCuhFMaId9AFR+MCTQ1lzFHZgO2I1mCg8OyFwSH1U+I61Pke3/c02y0qBKrpmGo0YzLt6dqarqnRUZPbAtcHoU7unj21mwClnhZjxK0O9lz1rusAyKuCvMyxeUbfdqKXisIvN5lOFHZLZguILd4HsiyXdSZ62naPzst1cchUZWh+9lQqlRp/0S6BCm6nyzBGbMWDFkemvu8IWjjQITh5/0qjVEaMlhBtqqUDPvZ410mtoz3aBowWTZ1KORqDVrDvJXOk7zzOBYKHzO6bNXFM1Pui+yZw8kdsoHKu443nNRD1EIx3kz7FG+vk/uflZwQAscKXDaCGVNFkZxtiJ79DB1TMUEiTZIwRU6xBrXGz+dyBRXu61LCuy/eSTCk+v2jFTjQ/nMcb+TQQ8WmSphU7+l3XbuWe817uW+PT/QK5kXBU3/Wszs64Wi0JdgTFnJFzGG3R2pBZg/JDa6cwKkv3WADVMR6PRUfaeYKLtNua9XLJ/XvHvLzcUm9WHB4+IIYGm1mmt6dUoxLnO9p2y3x+yFe/+hVGI+HVn716yXazQMeOv/W3/sd873sf8Hv/8p/w5LMnPHjrLsYoXpw95fLjJ6xWG1brLccnd/hdJVkd22bN7TvHzMYjZsczdGGZz2YUecHTzz4DxFjGbTY00TOfHzA/PKaPYKsxuQs0nRiyFEZhYuDq8hKVleTW0IfIbDYn+J6ry3OcrxlPj/nilx7x137tL9O1Ka/j7ALXecp8xHx2zP/hf/9/5PL6ms32ShK9xxKuGqJjvWlp6prgt/yVv/LvUZUZk3HFL/7iz3F8+5DxbEw5GfMv/ulvs7leMSoqfuXP/Arf+YNvcXF1zre+86/4n/4v/nO0MTx7/oyqmhKiZ7O6pqzmfPbhd1lcrTg5vst4PqfvGpqto68dxbiknM44uPMWzreig6Gnmk7pe0/TdSgU04M5Whu2my0/981fYjY/wNqcD9UHHM8OuHV0zDuP3+Nis0YZxXQy4p/89m+SG0NmLN//J/+Ctm0xWc7tt94ihgMOj27x/vvv8/L5HYxy9O2WxUcfQtcQk5vqi21DNZlTTWb83ulzDk/uMp7OyLKCJs9QQQKFp9WYo8MjbFXx9PlzigJ06HG1YTzNcJ0wf3KbiYZIwbgacXx8zGg0okrMjjyXtb/ve7pWzHZGo5EE6sIOxPrjjj8Ru/umeG7vSR0pioy+72iamvnBAU+fvyQrCx4+fsg7X/gCi+srXr98RfBJd5BCTwwa1zS8evqMv/P/+H8xno6YH875D3/tr/L02RPOzq8YTw+EDmMcVsGTV6949OBt7hwd8PLVay4XC7Kq4O3jA375l3+F24fHHI4mqG1LNDGFSCgR33rPdrtlu90ym82YTqccHR1zcXHJxfkln37yKf/Z/+A/4+jwFpnKyLVnRYerV+TKSIGoQMdAU9coI/apxJZyNCLLM5ROtB8trhcnJyf4KJOIo8NjNvWW3jtmsyn37z/g4uKCly9f8hf+g79A3zlWqzUffO8jFtfXyZovoIgYDEaUjGxXPVp7yhJG5UhGnamGKTIpLHxfs7hqbiCaUjBlhWe92VDXNW3bkWVVAtKkANJGifPSz3DsEE25K1it1zx7+QLfO148f86LFy94+vTp7uadjidstluWywWL5TUf/uADZtMJRS42vGVZoKzB4dlu13TBY/Kcr/zCL3J0+4TJwZzRwZzlZk1lc6b5CJzHREVpcw7Hc8rbBhUDeZ7h+k54uJmlaRsgUTu0ZpLGwG1TMyorssKIuDQ6+mQscDCeU/eNbChovAopcFHQXjVQmQIsFgum4ynj0ZiWiEFhlWaU5ZRTkzalgSyU/NSdJw5o6g7Z3GOT+se43ruC5fMdlZGC3XQKV7vxD6l4G2hSA986xiBWy0qmRtI4F+R5JkVUFM650G8ibe/Y1C1N5+kKgy8q1C0FZUUcGfxEQ8zTzeDQ1AQj0wxtK9AjUBqnI9GJrWEMnr5pWK439I2k4Yasou4VjVMU42OM9UKHCj1Kie3jjvGTUH+lEG6x0hhtBQ2KPa4PXF6ck9U1NssxOqMsJ3R1jdE5VuUYelRMtrDpPtRGwz6maKf9uInqCoKYU40qTGaJKqTPLveWC2FHMwIjQYO9x7tAlmVwo2B1rkvOXkKRtSkwM8YUjOkC3kUxB0n/J5M8IcpGLzQszRByCYNeIEtuM0LzCYSgksuPNJguyDRPKbF1Dn0g9IE8Q9ZHjFjadl2iSvW0bUfX9klHaNDKoq0E+4nRgyDPQpFSP7UxePMYmsbdbZuez5s6DKHI/dRmZZisBkXwGrwGH5PmRExVvHcQHFoFVJbLedQGokVnwyTwJ00ygIFWxd5afj8d/CN7qH/rj0EjJ4YiLtH+Ij44nOuwViaCvfeE0KEUFHlJ9J6gXaJ6d3RNw7ZpCW1DZjRZUTCZHzM6OiLEjEguhi7GoJSRCYYyacIsFKIsz0GZ1LBsxakwd4R6S1VlwiyY/ZBbtx8RzZhXF1veffRFmqbh9evXNKukCy1HzGdHLJdr1qs17XbD3TsHNBvNdnnFP/z7/w3X10u88/zFP/crPHv+GXW9ZkykLDQ6ZFiVoeKGe3fvc/fePb7+89/g97/1LRaLSxbbJaevXrFajSnzgtMXzymzHIXC9Y757duMihE+RLZtg9MGXVWoCFlRQQx0bc3Jg0cCCinITaSr1xzMRvz1v/ZX+au/9hc5OpxT5BlFlUMU57/3XYdzjuA8fd3yN/7Tv87Lly85v7jg+dNn/PzPf5O79+5RliX/5//Lf8V22zGdVvzO7/wz/ubf+pv8+T//7+JchzLQO08eO/7z/9n/iA+//30+/vCHHN0q+I/+47+cQMkxRyf3UEoxPz4gs4Yf/egDCtPz7lu3+O48wzWQlxlBew5vHTId3eXD31/hIjgfGY+nnJ5tsXnFe196i08/e0rnPFHBtCpREYy2nNy+x0cffUzbttR1TWh6Pmp7MmN55/Fj8oMDbKLm33nwFtE5tus1SsGdk1uMxmOq8Zi79+/jgVevXlCUBUUxgTDmwf2HrE6f02039CGwWl3T1Vvq9YL5nTvkqiNXPUWWc3r6FGsMs9mMJ08/pfn4Y5peWDrHBxOqwpJbx+GkYDqZMyozRkUudvA2RynDdDQmxsjV+TnVaISOkUwbFpfXjKqCPLdisY0Sq9s/7SbjJsAj+RgDt1MlrYUsmj4EOu/p247zyysm44Iszzk4OmC1uMJ3YuepBoQLWbKXl5c0tVi0PX/6nOVK0hJNVlCOxvROEp+3mzVXyyUazaZp6PqeoODy4hJCkOj24MmtJliVbNA1tiyJSGDXYrlkuxW3prIccXR0hDGGyWTCnTt3GBVjfBfYLi/Yrjds1xu6VjrbPo26jNYyDXE9eSbovFAFhJefWUNZynRHJvMyGu26jkBgHCc0bUNWZJzcuUVZFSgFZZ9z+/YxVZlT1zXb7SZ5WENwUrFEr/AeOjSWRtyQhmZCyzVRaRcTdLeXDVvOAK9evubZ0+dMJhPu378tIlqrEiI5oOh/9CJ/82sfEhUtCWjXdc1ms2G1WrHZbKTwUZoujX8hkmWZpGx6j/dKkNKuIzrofE/jWrKyoBqNyMqCcjKiHI/IslymO8bu+IMxjcRjDBR5hlGKPMvIs1wKolSsKj0UqkJrEvaA0LWGzxIGpDkhrLugOFKS+46+I5MpQSO9iN2MSWwGhVUGqzUxRIyS5G6z46TJ+x1KhP1Z35Fd9pQOEhVlJzL/HFcHJOoXSdelATWUa8MCo3ZrjFJRXOF8INrBvUmhtSUzKfk77oW8kQDREbyid5rWBQKWaDVhHKEsUFWGqgpc1ETVoXHE1uGcBTTOWgIah/B3xWra4fuOerNieb2mrbf0bUPPKU2v6aPlxB4wGkWhXgWp+pWGEDXqxhDK2EGcTFpM91MOFxuCkvyUzBpiEDBGGwkiGiY9Cna6gT1mPXyd7qg0QRFgSO0oZoMORiiAmpioVCoV3AqN871ks6go2RgokQ5H4buLqW2UaYMWmhJREVKon/z6uP+c4j+cxuwB33eJJvhmOy1Tn4E+qHf3gOgUUmkvYz+4MW3stSH6DBLK75y4afW9E21J75Pb4TC1UG+4phBvvhd2d+P+vA6c/0GDtr9d31wp93fyMNG5+Vq88b8J1hl0VjEkffZ+fQlxMJlQeN+m5z8Xt8IQJTtGCc1yQPE1g01tmtYovaN1yrtVQl/7oxb4z8GxMyfRek8fVgZFljJeBjqcrCEKDTqiowETxZ7aZuhSE7XY0trMokyJVUN+lQBWgsLF3TNFTPdxyn6J2qPwcr2CI/Qd9WZJ7xx13bK4fIXOW8jm9E3J/MEhRdlwfn3O66enHB0dMR5PYDJns17ifUemQUVBpuuuo3UrlNZUVUHX9TIJRlE3Dc6LHez86CA5Uzo26wXPPv2UzWLBdrViXV/jfUfXGaLr6dotk0K0Xn3ruHfrhNYJ7TqvSrTVZCqnKEtxCE3Pjy1HlKMReZHTbhZE32GTrnA+O+bw8Ji8KIQ2nYwiUEl873r6rOYX/8yvcnV1mcDnF7z77rscHR1RFDmvX5/y5MlnnJ6d8ZWvfpEHb91nfnRI29REAtoK5Hdy+y6+7xlVBbdvHTE/PKQcj7CFWOATFToX2s87bz+kb3reefs9/tk/+edcX69xvqPKc7q+4+x8hbGSg+F9pGl6bp/cw+ZZOq/HNF2HdwJwhRDp25bgIjoTUDn4HmPARbEpfvH8M7LVFbYsycqKw+NbnNw65tadexzeOiEzhqwomcznOB/Yti3XiwXjMsf1FkJP29Q0TYPr0/SXKHVwEzkwEWMlq2izWlLXaxQR7xoWyzVdH2T60jaYdko/KZkfjDDZiKKSxPdci8ZVK9GpLhcLaaBTXR68uLHmmUnDwoh34pDGMED8GY4/wSRj/4pCQ/Ti8pEsPgfE3DlPSMLap8+ec+fOEZNxya3bxwTfUa+3uKbfoVhWaXKdU3c9jXO4ruU73/o24/mUvMwxWcZ4OqNtW9arNX2InF1esVqucU1LBNqu5dnTp1xdnDO1GWNglJdEo4lWFpuBuhMREfD19YK6aXjr4dvcvXePdx49IsszXAt942i2HcvrJYvrBcvFkqauqTdbuqZFpSLZ98L5zWZZSuXtiWhCECpOWZbUdSOZB1bTuzbxlqVYvby6Yj6f8eCtB7x+/Ypts8GFnvsP7tCdHLFZiQvT69fn9L3kahAGDDDStRH8FquFJlFVJT65gEk69oD6iNtGQBNVz6effsr3v/8DxGNcc3AwpaoKyqogpoyBPzSC322YN1C8mALm+p7W9cQgD+GAJA7/W2/FYlioSx1aaaaTCTpGjJYpU4zCJ+2Dp+lbejy3phMODg7ReUYxksVNGcuoyrGpGBXKhzwQvu8pjGgeMmOZTWdA3GVcDOmkIUT64CXjUymaepsoHoIMKyCGwLbeUpYlgwNRYTLR13i/R4xTIvJkMkl2t8LVz4zFpOZmaAIHmsZw6FRwizT2JqVB7bMkVCLFJF7MYJP8eT1UTEF0WqEM4tKTqDBxUO8PtJMgCLb3QcLdsAganWFtRm4zCbtjKLgDRNEzOT80GQVYhc8DpspRZQXVhD46YnRo39PXLb61eKfRucarSBeCuKg0YmLQtg2bxRXLqyVts6VtGhrf0zkLVEwP3hbrXCJe+URdVpioUEHWzKgQVHTI1Ej0U9FWiJWu7wDX4YxGJ1tcY/IB8k/3F6jdtEKlpAWJNZTsuVTQx7RORxGBixYoTaSjFNpi2x1BmxSIp2i7Tix5VURbyYQJAbHuVCm/J0YwBlKTEaLCB2lAlIkp1ZxdUR+1JmgBOlzboPMCndZjlUCYyDBNkfsk+IDSXiYXPuxC+tQuq0ME3dFbYt8BGm0y+qTJ6TppMrwT+1Jt5b2I5e+QLWLSJEOnScS+gds7u0XYBeap3Ua8q9R/6mYr5273h/23D68fouSxEJJvf1pPxIFOLALEia7eidV1NJgYkeyUwVoyJoaASnQzaXKMMvspaGR3/T7P2i5pMAbLZINY1EZstECODzHtwQqG9TwK8JYGEfhekZcjMm3BQ/AuNX2aaNQw6CN2Ir6Xk5nt98IY6Z3HRS8AkEHcrPqOfrtlu1rSdY71pubi7Bnb7oyoD5gcfoXJ5IDM19jCcHpxTjUaUxQVZVFwfvaKZrvizslctKltw6Z3jEcV0+mM3Oa8Pr8U1zWT0faere84qsYcHB9isyiGK08v+MH3vif2pKFj2y7JbUYMEjrrfUdRiNagrjfcP7nFi9ev+fTslLfefYeIwmYZh7MDtqs1zgeyYow3GdPDEw4PD3j26Q/JixKInJ+dslwsmUwPyKtK6K1Bnhl0QFuPtg5rK37hV/8cvu9wbc1mcy36USsA3Z07t/mdf/k7/Prf/wf82q/9h7zz+BHaGEbT2dCWA44sUzx85zEPH96n2a6xWYa2GcpmoqVITU4Mii9+4Uu889ZjDg5u8bf/n/8NTz57RdO33CpzLs4vePH0CfcPJ6igcD6yWKz5wvtfRBnD64szju/epW0a2qYlOs92vaFtWpptx8m92xSZIc9GWKWoTaDZbrm6fk1YXaCzAjuacLXeMj+6xd2Hj3jw6DGr62u0NswOb3F5vWC5XrFYLqnXgdwAoePq6pz1eoWOkelkismtTOfwZFVOUUmmyfXZOV23xfcdy+tTllcLdJTqom0als2S2EyYVnex9jg1TzkqWpyTTKg8zzi9OCXLMk5u3cJoIxltITAqZ3Lb+4DrnQTWsmda/HHHv7EZpgTJgVKB7bYhz2Xj36xrfJY4oypy+uqUK6soC8uv/tIv8/LZC169eEmzbWR8GQMx9oyrEV3vaNZrvv/736KYjpkfH/KVr3+DIq8oszGjcsa9O2/RbDZ025piOoMU6NS5mm//7u+wevAW8d33yG7fxsQSS0FZVWRW0fuGy+trur5GZ2Ci4cNPPuL2yW0ODw44OTgiMznXmwVPn7zgvUdvMZ3kLMclF6fPOTw4AB9ZXi/ZrFtMXjAZjdhut1SjEWVZMZ7OZHPre87PzijKCpNpbG6ZHxzy9a99g/F4zHolrgxKgfOBy6trsswym814cOcefefYbLac3D7mV3/1z/Li+WuePn3Jk0+f74owYsBFjcNB7ER8akV3Mp9n+80nQGEMIRhi9FyenfJ3/vbf5h//5j/ia1//Kr/67/wqD99+KKjBwZyiEATg5j30k3C+EERcud2u8UpxeXHOBx98QFEU9H1LjJ57d27z4YcfstlsEgoQWC4WrJYLvvaVr0hGgDFUt0/YNA2beotbR9puS56LeO7LX/061WhC13Z0dSP3Sufwdctbd+5zeXlFs605mswJQbr+sizxnUMbcd0J0SWBtkwzcltghZdBmcu0zRpD7x1NmmzkuSRrD3qB4ANFVlLk7NBBo2TMrtAiRO97KpsJHST9e2lM2sCkKByaFjmvb55ZlTQbBuiSiH6YoOycZT7PR4Qh10GA5QElRgqmNIv3XgoHpURIHGIvRaCyaCy5zSmLnNxYXGq8tZaaNyqPiz3bpsPHESoroHLELCPYHEVFR5MSsz3LbUfXFcTYYbMN2/aaumtY1zVXS7G77ttWhNhtS/TSJDg83ucYrajrRtJkScLAGFEpn6JNTakxGu8Q2lwaOAz2rLvLGpxQQZwUPm3bikYIQa6HwYGO7MwKXAi4ENJaOth5Cq2o9d0fstAlIbtGZxAVPQ6jsx3Htus2ojvRUpQFktBRkVxFSLRBiFrjg2LbOroUppdlGpMrlBdRaOd7dJqYbOuasqrJbIa1OTHIM6rNMI1KqLwPxK5HW9ljdvlFMUo6vN8nhvtewlr7PrJtepqukyawaQk+2f5GdhSt4ZBcBfVjAkbZPgfwWmCVZN27n+HsXmnnaxT3trncmCT82K2f/qR1YGhe1JCTIeCG9w4fOowFYnJO8w3Kp3OjNCYadDCIs5KAHXLNE+iHNBxBhR3qv//7n/j2Pr/HG6dbgE+ZlMnVkal+3OmjUIEyy3bfjx1IrIDMNncNrzIyCQFSpskwDdJknZEpGz2bZkk1SgHCZcvd2xZih+s3zOYj/um/+D4/+vQanY/QKmO7veLZy6d84ctfpMwrtm3H1770ZRZXlzxZXPNP/vFv881vfpWvfOPrzG6/xevnp6yXG5qmYZaN+OGHH3Dnzgn/8//h/4SrBn708Yd8/NEPqHpH2zX0XUO7XjEyBt/XNOtrHn7hC7i2Y7vZEqKj9Q0eQ4g9v/n3/64EBgbP4mrEZDoltxnLq3N854jKEq1h23dk5YjDW3f49NMfkRclmo7Ly1Oa7pLezfAhR+uRgEgp40lG/BbMiD50GJtRZCPyqpJ9IHh8u+HW7SP+6q/9Zf7SX/r36YOh7R1nr18ymkxRyso9rjW+bVGhgSBMEdc7fHT0biW6SYStUBQjimLCaHTIeuN5fX7N9WrDvYfvcLW4Yr1do5IRDx5aBy9enfKb/+i3MXlGzDSdCozHI7Is49MPP8SGpKf0ik9Xl9gyYzSr+OYv/SIvntVsu45btyf4PhCUIRSWv/xrv8ZyueF3fv87/IW/9GtcXVyyXq1YbrY0/hpblNy+XfLPf+vX8e0ajRNK0+EhxlhCiNw+vkU1mTA/OuIv/0d/jXrbcnVxRd86rq8aetXigqO+fgWdw0bF0cEx01xjY8/1q6dUlaJrjuhmB/Q1mBiwSjEZFcQQyG1GVVbUm62ExeYZzkkTopOD4SAI/1mPn7nJGGj6YYc0ytMt9BFwLkAULvvw6xUKPETvaTrPkx89Q8XIfHZE9Ne0dQsxkFsIrkUTKTJFHx2+rtlcaD774GO++nPf4O3Hj3jv/fe5Xl6xuL5mu15iY0io4obl8oLpqKDMLav1go/rjdiLVRWz+YzxakEgsG1rPB6TawpbUBM4XV6yqrdkUZPbCqXg5PYt7j98C98dsTk6oO02PPnRDwjBc35xStlpsqKkLEcERJzaJFpT10vQXtf3tJ24W2lrcb3iww9+hDWW5XKVCi2hjkwnB5Sl8MzrWoSaWZ5xeHTI4cExB0cHvPv+Y16+POXs9IzLqytevXiF70vZbKOncxEfwUWPu1qJqDsz5Lk4whgC+A76gHOa5WXPD777B2zWNffuP+DhO4/44pe/zO07JxwczigqnbjLiT8f9rQBjSBtUrw7Ls6vOH/9iuvLC8qqRKvIfDZBx8Ct40OqIifEQN/3MB2TG8Xrly+k2MgklRxtcDFiTU5RKLxXLBdbnj95xuz4iGo8lmmG9ri6YbtaU89qSXIlprBB4en7EKiKKvniQ0juEQqSha3w4jOEWhWJ4jDWd0nED63vyfOCEETPo0PEGlBRyQJmkrVo2pJKY4hKk2kjVMC0qXv2sl9UZAha1trs9kehcuyxXA1kSnxTYhQKVgD64AVB/hwfQ2gcsNNRiKYiOeYoEtdaJj0hOGJIxXhC4CUttaQqR6gyTyGWirwqMTpdA2uJSuFioI0BfI8KHbGv2fYbun5D325YnrdstoHeNURaNm1H07XUbUPd9pJZEIVyE1xkoOuQEHhtFG1XpwwVQKl9YRKCiPySv7hSEvan1V44t1+w98SaHe/8RuMwTBgH1lxM2HpMupWQ7jdB6FUS6Anqa5J18v4aDCJrkMJsyJmQ6YdM9cSZS6gPYJMDllAfAllm02Q2CmUgDPkcaSNK8P3OhjhGAZaSTbS4Qg0C7JvUISBZjgu1Tta1kBBkySYKOB/ogyf6Lk2DPCEamrbF9b00GCo54EQESBj0GCYFbt5oJobjzUkGibI1tAepmRiuVtx/767S/RloBHuS4P6aw971Thx9pKSVwNBEBaTdTY2isrsckbjjP+l0vwyARExaoL19a7qVPrfH4Cw1uHX1rpcJPGkKv7vnxREwkvJC4v7nXO9SwyZOU1rbHX3O9z4Vs0amIWnPMzLykPegNRhLCI4QeoocycggQobkvGBRakLbdijXY11LW59x8ewJi3aJCYG+rSmzHG0in718wrrbUh7M+aU/++8xnYzxquLiuqHtFUoX5Lkh2sBXf+FXODg6pMsqluevKbKM+3fucfrsU/omYsi5/+AtWSFaKOMBAUMfoY8BZS1N52Q/y8QiWWc5pbbMiiPwms4FmrZnOp0QUbSt43g8o1+tOf3sObeP7uD6EYoOm8MnT85ZLHrG4+fcOj7GZhZjLVmZo5RkFbm2Fxt3K6G7bbdJEIYj+I4i00Lni5G6WZHnObbIaPulTCuURkWNV6LR0FZoyjHKM27yiFY9ioCNhrzIBHgKPfXimllZcTw5IHMF0cDBdMxkUhBshomGMhpKU2BsJC9yRuMRq+UKuo6+rpkVFb7vJcgPxxe/8CU651ks17x8dk7UIybH96m3S/LcoJAYgR9+99u4AE3n+Hu/8d8KVBE8rq7ptlu6ZkuzXmOaJVYFlA5sVgtWqyXz+RHvv/8lLhdrJpMT3n77i2yuNVdXNZcXK5bX12xXa5rtmna9kLiDIsdiqJ1Dtx05GoNlcbYgQ0Ib1+s149GILC8JKjKZzSjLgta1BAJ5ZslKi49O9HbeJIv/wUk0/Ola2CoVxVUwJcQO9ebA+R0srowxmITiCnqiRA/gA6+enzKfz6iqkqKoxPHD9SiddBpKxLIR8L2jDVsuXp3RPKoZ2RFffPwltu2G1XrJdrMidA31dkW9WXJ5PqG0CmvAeU+93WDrhmyzpW22LK4zohbXhXxcofMCZTPyquDy1Skrt2JuCmazQ/Ks4uD4gIPjY7wbU1Q591bvcHH+kuLqnLzKqBolN3iyl/RtKxxgt6LrpSh13tO2nXBFtcH3iq6RTXa5XFKWJZIabvm5n/u5PbLYe5QWJH1+eMhkPGE2m1GWFW9fXvP0s8948eIlSgUuz9e0TZcC6BoZs7tI3dWU3pAHC7ogt4J+6phGjtHgWs/rly3LVc2Ll6e8eHXGpna88+ht7t6/za27M8ajijzPKFSOCiGhyzHRG5CgxRhZLK5ZXF+x3azFStZaijynNpr5fIZScH5+Tte2WK2YTSacvnpFq6UA2mYZeVGirAVriVHj+kBTt1xdXmNsjo5aCvs8EDtH10gxoZQ400hei1CvfPCCkGq929DlPhbUKqRE8oAmMxk+enzwdH2XinjZoEjhXSHx2H0I6efjngI1NAfKoKxMIZSKu8yHtM3trC532L3SO962UoPd7ZCXATaJUV2MyfYzvEGr+jweO6pDaqpCHBqMVEwrQSAFpRanJElQj4kHKiiiNZYiy6mqEZmtMMaiDNiiELqg1mIJrTV9BO0D3rf4EHEusqhXtM2CtlmyvqxZbxq6fovzNXXXS8PpekIU2oXozocGgx1SrJU0GX3fEBLlZUdqRa5/13W7aZQxWnj3es8p39lep+8nFYdxd17icAcNL8o+FC8VpWEoHvWNJiPs/htIFtvyc8PvDYOyeoflDoFuco0GtyaiEkGttXRdSM5TQg11zt/gYAuarhPxf1f8yUfa5VUAoFXKPABUwPuI8wnRR3I3NAJwBUwqKuXcD9/rfCAku1eiJWBp6q3oTFLzoNLEKMtybGbEctzcNFz4Cc+UjCV2vxNiYkftm4ldc7K7LHE39fyjjr2m7Q9/597gYe/iFZVKgYJyPzoPRlmMjmkKIlkhwyxoaDL2v2u4N1KRvQMJP6/HIHJK2pWwzw9SqcnQKkKirw7fv78yMeV+JcMILfutIlHLvIMUZkYybSB6Eq9Kms5ES/RRmussy6WJI4KRqZtSOSDWsjp6LB3b+orzF09ocFQmY7lckmlDUWRsmxVBw+zoiHcePGS9WFE7T9MFjC0xZETrcc5z7+23KKdj1p2n60WvUxUVmgyCsANu37nD5fKSPnoKH0Rj5jwuBJSxYvMdIpktKLJEPdM5ZTam9eLi5j2YPCeGSGw6plVJbFrW3RWHJ8e0mSIqh87g7GJL3wam45oysxRFRlZYUGOUMnjn6euGmI3w1oJWbDtHpGeYFqIGu3boQ6CwhqzI6LoWsfaS71GW1GBbtMnSFDxZzYcNQiUMaGsgCM1nu1pSmoxRPkJ5S2YixajCVDnrpic3pYCU2qKtJ8skU6jdaNp2S9+0VDajJ+C0ZGwdHx9T1x2bdc/15Zr57WNGkxl116J1JPSBvm549dkTbF4SteHjs1dUZU6mNbprGRlDs16xuDjHugaTC4tk3dU0dU9hczJjaeseo3Nmk2OuzjZcXa25ulyyur6m2W5pthu2q5UYFJkMo2QSZDpH1I7SGvq6p6tburqhbTdUZb6zI87LApNZOtfJPqVJ+iVZ34cGY9jf/viVTo4/sfD7JyMggrqRljqVNkqNbFTGaDBQ1w2bzZYsMzx8+JCyKKjrLZcX54xGBV3vqduW8XhM30g+e24tv/Hf/j2efvKE0Dv+xn//P+GL73+BLLOcvnpOZsG7luuLUxaXp9T1hrbekmtFs23Yrjc8/fhT6nZD27fUXc3Dd98RP+LZnHJygNvWLK4WLF6c8gu/+MucnFSM5hNUmeO2HQ3gbUYdAk0MUOTMj6Zs1g3LxTU2LyiqEhMNZ+eXbOpmF+o2PARKW+q6Zb3e4Jzj4uKCo6OjnX7i+nrBer1Ga83Xv/4VmnbL/PCIn//5n+f8/Jzbt084Pj5mu93ytW98VWxvnzzlN/7eP+XpZ895/eoVy1VNpi3GKlzX0fXCv6zrLUVRUNmCyhQUeQUmaRX6QF1fsf5swSeffsTv/f7vcnL7Dg/eeou//Nf+Iu8+fszR0REH8ykgFpC5zYRuYcSCsXcbVpst67qmc47TFy+YTqdUVcW2banGYy4ur/hHv/lbeO94eP8+7z9+zNtvv81qtaJpxPmprhuC1gRjeH15hs4ybt+/z+HhEQfzA4qioN3WqMk0NXeGyWhCWZSEGBhPxqzWKzonWRWd68izPGUjZG+M+bQSb/y679AjSQ42SjjiNk2ejDHSRGiNytJD2woFo0huL5AKTgaNxcBVHB6YNzf0iOhIBgR5+MdBRCVIjRQHKqFoPkh6eLihlfm8HsaY5CqlkrW0tFwD/Q8gRr1zLto1G2liKi5dmtzmjKoRxwfHlOUYYy1BBUj0OGstpbYEa2kJtM6zWm3YbAKrFVxcXbPdXtLUC1zb0vcZPhhCFAGxNmrnaKWVTERidDKVJNljpgmBNZq+b1KRTfoMPiHzjrreACSr6EBu9c6HHNgVk/JzQTQSDO59QyDhng41OA+FmFQKwaUmRKViWqggfd/v7nvvPdbmONfL5qstztU450WXwF40MJgqaC1IHFEaQ2sziqJMdFBHVRn6TtzYFAFtwFiFsYost/gm4ONACWNPOwwhZScpsqyA2IujlXP0XbLk1kLF1CZgskhWGAZRuwL6AL0L9M7RNo7gNRERU27WSyLsAjTRCm01xSjHGhE7Do57cl95BhvU3fXb/dfQ4PET/u3NY699+OM33/3048f+Pml0RHsVZBIbFdp4Ot8QfQtRcn0yU2J0DqpAYXabszizpfe+a1rkj2Ain+9AvvjG52IXirqnoO5pqDJRVG88m6AoijI1XQEf2p3pSQykiaNQrkIqtiWB3ZNZncCGQNNfimtSAJtNGfKKtTYYXRDJcD7n1r07zJ5+THXZU3fXfPrRKcXogHfeecTf/b2/x1lZcnB8i7fefZd3335EVY5YLTdsakc5mXDn7h3GNmezWrNdr9muNozzitB6Lk8veOfxI7733e/w/Q8+5MuPH/P65XNCcNy6c5fL1YIQZE9ar1Z41xJ6j9UG3/eoqBhVFVmei6FPgD60aKUoMosip9vUYnLjA9paylzs2S8vTqnmI0xm6NoGbQvuvfWIr331CxwezpL5w+7OQ0iaiY6Y1gLZ49yuyVDBpr1Q9gWZtgYmlUrf41HaMYiKYgy4XjSyJoEp3kX6rqFrGvq+A6/pG8f19Yb1tqdpPbkCbQpsVpKXFX3sOTy4hbUZL1685PbhLbq24fmT5wTX4bqW4DoMiLuhqShiwZMnn2JMQVWVBK0p85xRVTG6+xC3WHG1uuL86RkPb72DjgrXdrwznbLaLKmbLdvtBl9WuKamb7cQe1zbEglU1lDNC3xX809++zewxYSD+ZSr17dZbXq6rqFeXrM4PyO6Gtc34HpZYxV4JWYSPrb0PhK7nsd33kFpw+vX54xGI/o20OqeUVHSNA19L7lvRZHTtA0hOA7mBwA7C9uyLP9ElKmfucnIMoP3gjYNYNuPL1MD19wmPrC/IZA1xlAUmr4X96Xz83NG1Yg8L7h3/z7L5RJjDSMtCc1lWRCjZnF9QZ5Zzs9e8//5O/81267lV37lV/jqV77MfHpA225x0WGygmI0Q2cFRTWm3W6wfWRUBu7ducPZxSlZayiLjO1iTbvpsGdXlNM5/XKFcZ6oLa/PT8VlwFhudw8IWqPyHG8sxfyQ+Z37OAyf/OAF2mqm8xmbrWQm+CB0oK7rdk2GUh6UQ5uMeVnR9z1KKe7cucP9+/cpiiIJ5h1HR0dUVYWPmvnBCRHLBz/8mNsnt/ABut5x7/4DtFE457h77x73br/D86fP+eSTT/j2d77Fy5fPuV5cpqU0eYT3DqU8sa/pdEPle2yRo41MDUgFU640wa+4uuypt5dcXL7i0ePH3Lt3j8ePHvHee+8xGY+pypLJZASQAq80zkWqasz9Bw/4gz/4Hqv1hvF4JPkTXjymH7/3HsvFNTHC82fPqUqhttgsYzyZcr1as91uWdZbRgczDg+PODo+Fo1FIU5T3vs0AVL0fU/d1KQPy3azRaHIbfbGPRmjWMre5CYbZdDGolSW3HU0KMVkPBGBrlK7RUujU4Ca8BcxlsJkcp8jm14yw9w1HNx8Pn6s0dBKy3QjhdCp9LM2FbC7ZyuBpFZpglKf+ynG/khhWUqIZlI0+9SiCTI5LGRSNIszkjhK5RhtKfKSkR8zm/WMyjHaGHxwxJSXYIyhMBY0tM4Ro+HF6SVXlxsuL1q2dUfwDSH0EMVhSJqLxOdOOR4mN8l6GLTOMFqoUEapRB/KsVlOlmtCdDjfC2VUCPaJ/uIIQTbMzTbi85w8Ff9DuF0I4UbTkZrMXWp4APxuihgTnS94T+/6gWEm5gbGJj1BJHiZvGhl0NYkBDtNGKLo6rwPqZk2u2wJnyhQSoExmRgrxAh4mqbZretKyRTD9R5tVNLlKYxFaCSpsTBGghMHy9whK0WlRn+YbsQo9sMKyCx0zmFQBKXAegFslDynPok0+y7Qdb0YYkRP3/Yi9AY61VFVpRR9Njnv6RtTprCfoAk1LabrJByqgaO/R87TceNhHuhSP/VI52CgeYUQ0AkxB2nAgto7pA2TVgGozG4jl6ByhSckK/jtrthVCqzJCVGB3/sZD7S64f6IkdSo7jVhn8djMMJQqDc+xz6/SaUPL5P3eOPfgf33AKhkrMDeDUzrbNcMS2Mmrxdi5Pz0jL5vCbEH21MUwspomkDwibURAt7XZIUmH2Uc3Drhl3/1F3nv/Yd88sOX/Kvf+Yy+z6iiQbUth8fHvH3/PlobnnzyKdrkHB/fIctKzs8u+P6Pfsgv/tw3WV5es7q+pts2vH72XO5RBW23pt5sOD44pNnWGK2IPvLZp08IzpFnFqNKmnpD3/Y411FVFVU+kvXUWDrfy6TOKF6fPqfICoq8YDqdypqYWWZlDsqzWl/Rdz3aaDwto8mY23du88OPnyTmhuIXv/n1RFWS5zckgEjCSvd6z30Ln1wHVWogQ0AZJZMIDKJNStMWsv31Bpp6gXUKayHPcrSSutLaiVC8oyLLAvOjHpMXYAy6yEX4n5doXdDUW65ZoFAsr69xbUOeWeaTKXW9xKmAU57ryzPaLqcajTi6dQfXgY8OgsLanKvzU9bLnEePHhHzMYcnD/ji13+ByXjMs6ef8fr8Je+9+5CuX7NZd2yXK7IY5bk1WgblzksenYoCiFiDMZHpbIyl4/r8Oa9PL+k7iY2IbUMIHToGyjwnOo934kyWVxUm11TjgqPjW2zqmtFowsHsAKKizCrKvJTARiMT6GF9N8kcQycabUj17ZCj8afeZAjvLTkGxDcnGm8gtcNCqtUf+ruB+xuComlaQFGWOaNRxWQ2p2la6qa5Mc4XNE5rRb1d8fSzht//V/8a3zlWiyX/zq/+ckLUc/JiJJts19C1Fm0sNiocoJWo87M8w/mOxWqF6wKuE/cBek90jmWzpjivwBjy0ZjT8zOm0zHKGK7XG8YHR9Rdy6vXZ6y3NRpDnhcp2bEXB6gQdudjoIYMRIfhc91EMI0x5LlYrYr/f4lShq7zaBOo0DgfCSiUFr/7osxRqSAeZTOOj484uX1MUWV8+OGUp0+f8OmTH4GKyYc9OcjgpUlUkOGxNsPYHGvFDUssN+W8rF3DdttQbza8fvGSs1evWS3X3Lp1i+OjY+7eu7NLOO/6IHkPxmBsRjka4YNntRb73bZt6Lqew6MjKYySxa3re/nMIWLzlp27k1KUZUmWxEZaS6Ce6TryPN89BFVV7VCtAV7UyaZWa51oJELBsSmIL6YdfBj7KaMJDLkD6T5PlAipE/f4qQ8Rq8Uv3SoJ9VIDb5u99dvNBvzNAmTPk97hbelnZIHdCxAV7ChaOm1ycVfsfb6PgWYEQBxyAUT8KmFjOhWsFmuN/DGSim3UkDmiyWzGeDRmXI3RWuOCI1gtyLXW5FqEsSFCDDlN69lsG1brrWjISGtSSgUfaD7a7KlMmbVJNAzGKKwRRzKTgBNjU5ORSUPvvUPtipYh74Mdr9+5nh65vlmWpXX15jX9MZz8JsK+c+Ji9/rOuf1aHIVCIO9joMzsm+sQxMFKzje7ryXnQhycuk50GuIyF25MD+T+c24/hRuszEOI2EwQMJuJY93umWQfCqgUO8qgrIdqp0GQ9xR3dEQz0MB8ICqPck7sfwf6YgTvSVa1PXhNDArnQ3IvNZDWW2N1ajIG6+T0XhKRcT9Ju/H1H3O8QYsSNOknfddP+Go/wdj/nXrj7/fHTchBiRA/ynXxsUd5u5syCaCkQfvdWia/QxomeeXUVDFQqj7HR9yfL6Hqpa+9363FQ6Em529vMDHsywN9bBdCC9KYD9/7xrPHbn8xxqBiRNuczFZYU6IwyQo0PSspXd4o0PmY45M7TMYVKho+/fiSy/Oe9dUVBwdzDg4PGU8mrJI1bWYtmbX0bUfX1Cwvzrk4e01bN7RtTVNvCG0vuj1rWV5f0ta15HdtV/RtTd+1dO0GdCR4R992ycZZwKzcWsqiwGiLdyGZVsh91rZ1cjsLopkscvLcUpQlvutp+4a2acgyi4vyc8uyZHF+ybQqWS5W1NsabRRZath255dwIwhyWCN7YvQSDCdIBDEGYUalOjL4fgeQMPy8Ghp1mex553HKpSbUpMZQksh1jNRNI/lleYYpregWigKdicHLdruFlBkUXE9QEZXllHlBFz0xaMpRuVs/vOtxQdaWvMgZjyas1ytc07Bdr3FeY23OeJyxqrdEo5gezBjNJ0zqqQDypqAqJYkcDXWzSU5/ia6d1m8xyFF0bc311Tnr5ZVMf7sO71pi7Bg8BlHJpj9GCmM4PDxkNBlLU+ilgdnd2qk2l+HBYI7Aru4atJODTbb3fq/Z+xmdLv8ETYYo3HXyP0/vT26VNybEISFhaqdIvyl+lDcnabHL5ZK6yQlK8fjRIy4vL9m+eJF4wFL4ZZnGuZbON4QA3/pX/5rv/8H3uXv/Po/e+T9xfGtOnpcoBXlZstmu8SgODm/RZDm1tRADx8fHdE46v8vrJUoFtAq4usEoTegaSSfve/oQyIqKECJf/NIXmUzGfPrsOe+/+5DeB15d/gvOr64pbM5kEsnzkuvFgm0tY0VjNBpBRI22Yi2pxE95PJ7sNBlFUTAej5lOp5ycnKCUTk4wGadnZ5yc3OILX7zPcrUgosmKis45SlNSFgX5RBwajm8d8d57j3j87jt857vf4Tvf+TbPXzxNYswUauUhqAg42qbHuo7MZBRFzmw6T+nEYWcPGb3GO8OTH/2ITz/6mO8W3+GDD37I48ePee+99/naN36eyWSyC+tS2hIibJuGtx894vT0lLOzM16+esVqtSLLMh48eMC2bvC9o15vIN20bduybVumB+IXrvOcajwGBU3XoJVmuVzSdh0nJyc7p6rZbLabaBCFHtFHtwtCbJpGEFIdKGwuKCART+KQawm3Gh4gmXCk9kI6aoY0MJWESLnJ5IFXNw0O9iP6gTLl0z/snos9G2U37YhplC+WtUOzMZQcYvcpG5va+d//bNjBv73HsHipG+jIEKxljBSreZ5RVUVCcMzOuc5qm8LIZDO02jKbzBiPxhit6UOPN4NtqLh0eecIQQEjQjSEuNccyFpkMTrf2RtDEBFkKkZzY5L4WKib1ia9hzVErTFG7ABtYYm4FBolidYxfa5daGVa0LuuI0axld2FOiq1u1f3hU2ikiWaC6lBFTmLOC455zB5lu61iNaGtvUJmbIyqUHuX5+yI5wTtNv7QPARlaldrkTXSQt0s+DVOp23IdMjiu7C9ZKiLUihxWayXmeZTb9DGnnJk4mgtJgsJCQ9JPQ4JJes4P1O4+dCakJCxPeeoBy5ssREuAhRGoq27SQYNRiih8558kImSzYBFsYaASyM2oXwDdk5g+H7Xky8n37u+6Q3i/+BfbQXgf+4R9zNn//DDcvQoOyK/fSCYfd7B9DE7AoBOecS6IgKBN/j0On5gWA11ijRtKXXkunFnho1FOM3dRqfx2MwCBg+V9/3u//uum63Fu+aCyUO0D65OZpUsCliesb8TjwcAri+QRuNzYaJJOlWVhweHu6fRVXsqIYhkExHhDArTbpHGYcPJbo4pMzFgfJ733nK9eUzfvTRhzz6wheZHR1RjCpeLZc8evQus+kc72C9uEb5jiJ6nn7yEePxWJqPfsO4LBPgBc1mSbPZUK9WqL5lu1nhXIexUlC3bcdyvaUsMjKbkZUFRhmsNsQATd3QdkLRiUqeCRcUvvWs6obpbM7EGnKlJKchdPjY4psOOstmveX1q1PGVnP76IC+7VgtFuSZIc/sjnIcY8B5h0ZoPHIvelxfE1OAaZbdAOJC0gET6fqWGDQxWgjJ9REBcKrRiLatca5PAKRNF82LmLy0+Bh59vQpkUg5KTGVJR+VZGWJznKyPGNxdUVwjnt3Twhdj3c93XbDweGMTezxznDv/n3J++p7rq8vMdmYWVlxcDjn5Og2Z681i+srnn36hHUnwXXaWMq84MFb93j/q1/B5JFbWnF06zaVHdN7sat9/vwzrhcLrMmwCnrn8KlhMlZcnpbLa9q2vqHz87TtVhgzSWOktcUrhIWTZbz9+D2KsuTjj3/EfFLgnaPebijzUpobFVA6T8+QUIAHwHcAXYc9yjmXgK2fvRL5mZuMvg8oJZZWCglW27mGDEK+Gz1rCBJqMrh4mGRVOixySglv1xhN03b88EcfM5lMePz4XVbrFYvrhQSJaIM1kBkpTJq+I4TIi8+e8b/73/xv+cVf/kXeefw27zx6m4CnGlfM5zNMOWZ6HBlPRowPp6w3KzbbDW5xzWg64/p6weXVNX3XMR6PyasRX//qV/nkyROeth31pubxu1/g+uJC6F2nl3zw/e9xdXnBxcWSyWxGDIGm72h6R++9CPQSpzb4QNe2xKgwWS7OJrrk/Ow13nmsNVycvebiTBCXD3/wPUbjCdPpAfcfPubRo0fM5oeAZj47BGC9XnN8fEDfOznVBYxGReLxK4oyw4cO5zpu3brNxcW5iOuDAjJQWt5jdEQf8dHhY6TrL7BGFoRROcIai1JQNytMKti82/LJj37Aq5fP+O53v823vvMt7t1/wNHxMbdunbBcnbLdrlitVrRtQ1FUPHjwkMPDI87Oztls1lxeXqGVlsDDtx+yWa9QUQrN5WbL1eIaZS22LLl37x5vv/uYh4/e4c7dO5zcOiHPMzZ1veOZA7Rty3g0xlrL+dUFh4eHQkVBU0cJwstMRtTs0FJrZQITfCD6gLEW78RtJC+kgQBpgPZZFpLyOUwvJPjGJVqV3jUXNx+9mwjOzT/7aUSK+Ytijhlc2Gk6jB6Cw6KgDEbt5h+f50MK630wnDEGbYQDWlVj8rxIX1e7dcJasazNdJaQeo/VFp3nRGXJtN0VZjFEYqLECMCcobVQqXJbUeQVRS7OQzJhUFhboHXE6Ig1QmGSUbElsyNZv7SizG2iSyXBdiauKVobdG5wfU+jGgIaFftdh3kzcXkIpry5YMOeyvHmRZbi1xhB4wcEbeDVQ8Rmht71yMBO7+7xGKU58L6V5tmIzmUQyd4UysYb96PWBudaueuTI4y2yXUnCrqpteQ0NE1LRO2sDvMsYDIwNtJ1id6QJhIqipFBURRpAuNpO4cxqRH0kmcxWNh2vTi7Oe9xweO7DrEplunzarOlbWSzdX0vtIigsSgJ11RQjApC9GhTkBU5eV6QJcqVPK2GwWQA+kTTiLvrsHN+ivEPPXj7Z/sGivBj/5Ze5A8fEaLa06eGejgOQXw71G6AHQZ0fXBNCngPbbMlOIUxHVWliZlGq2w/OVP7JmPQ93yetRjDMawbw3ETUR1VoxvfeXOCsac+Sahhlq6dNBl7sb2FQhMJhOhRSnIJYvJ08Ila51xHoEv6C1nTQvom7x1919J3Da6pGVV3QRlCNNRty8ndY64XDS9P19jZnDuP3+Ph2+9w5+KMxXLJ2dUZr569YHO9ANdxVFiMjRhagu8IquV6tQIf0BEW2ytC1xO7nnp1jYoeo8GUGetNT+eg76Cvtzx65yHHx4d8+vGnrK7WKBR5VkohqKUZaF0rOTjKoqxBFTleKTbbLTo4iipnPMoIvafpIt6BNRm5dlxfnPIH3/49/oM/9wsUVhH7jqj1Dj2TaQU3xv0BrSJBScOR6ckuAyjEwBDaqk0lUzuZ36SfFz2VNqB1QYx5oralZ4BAjJ3UjaGlmmRE3dO6LaozrC4bJrNDZvMjbGaYTEtc33J19ZpCyV7inOc6dqw3GzbbLdeLFcdHh8wmc44PNSobM54dMJ8f8ur1Ky5ev2a7XFIYi+0DNiuYzsds646rF2dsr1ecX70EhF41mx5TTiqcj1QHt/gLf+lLPP/0E05fvIC+4979e7gQePHiBVF5slJjsoy+3mILCZH0OIpCqL4ohesDB0fHzGaHzA9v8dnz16JvA2mCY8D7Lk2xc4p8yHSr6XtDVRVp4pGaDW12JjrAGw3+z3L87O5SQ2yYEhx2eMhvInXAboMbvpYxzIAeqt00Y9AmRGTk3bTtbpTz9tsPOTm5xXq15tmzZ7J8qyEBWBZ+7zrOTk/59re/xevTV5xfnFOMSmazKccnxxzf+gVsNcLhuXj9ku99/3tcXV+xbbYsr69pmwbf98zGY1Rm0VZjlcKiaDdbzp4/58Ht+6jegVJMyoqlErpGnhV0qha6jVLUTSvdXhrt7UexqSAInr7raE2dPN0lGXwgDgzCThFuWrquY1vXbDdb6rrh8HBO8IHNZsNmsxW9Si7hcjpRnYySkd10NmV+MMdYm9xXYkrltYKwKovva0FeArIoOo83kegCOqYxmTKQCjThZDu892xrT+9aogqcX54xmUw4PD4mz4Ho/1DR5JwIt4ZE9dFJhW8b2s1Gpg11TV03rNcbbFGIKFhrDo+OeHDvPm8/fHtXcLrEGyzyYneuvfe7jntUVvRdhyR/F1RFmWg2ZpdGLiPxZG3JvqYb8goGByCtlNC/dnOF4TnYU5reoDep4d+Hm1/txrnyLMioeKCGDAXdzefG6H1DMxQfQ1MSUkjX55zkIPZ6VqYTw6RTKRmLF5VQ5CSt3e6mSFZpMhAEjD4J4cPOrjk4OX+d73BIUnVQcj9Hn66IEuQnswZjwGAZ8jpMZoUGZSAzKuklhI9qTbGzcbbW7JoMpRXBmnT9Iyol2jplJBQqOG5y+bUeqBYaoxC3KhVwwQvVhyA2vIlKphQQFDrKHWeVQUWxM929b63wap+zIcWTTFBi8CJcj5EYJDRMDnnHu3U5aRuMDaBBW502d6EmueCxKqWzE+k60Z4Neg6lNSYjZV3oNOaPoJx8rSXvw9hBMB8xZkAZHVbnu+YwOC+JyVFmdrkuUdGgArg+4FUkKGlQmm1N3/UyiYkK0SZEsS0GlJYAR2srAbpUsso1Q8q3EXt1bli77hq4uKdVps1MxWG1Hp74/Rhfhg0hpaOn5iHuJxNS3ya6Y7pOu/UkivhcEPdU0KZVKe4uVwSdpj5KEYLBBZmW+iipvMb2QI+iF6vP9FwNJgKoPTmM4V75nB4/XuDcFIEPjaLsp+ws4q2RUmeYPrGjlEkTp9TuSd5NeqRQTQ2pJlE1vTS0ykAsxAhCs9PxRRRoi84UubJYOyLLRkR6+b12ynR2wGy+YX54yMGj94hZwcvzM5p2y2qzom5byUOYH6K8g77Fljnr7Zrtdo01YAqN63rqzYa+XhD7Xp4f36ZrrOldIEahgGaZPOubrWh5tFJYE9P92xG12jlzR51RVFPyckxZzbn/8B1MkdOGnosXn1EaWSd83xP6gDU5h4dHbK/P8V1Pt9rK5EcW1ARYKJkaKdAYeRB0JMYepToUDc63+GjQpPU3DZpiUGgyAVZURNk0bVXSdESiLLDIc3uTdKxUASESXMd6WRODOMrVmxoXO6KD0IlxxUCh7PqGqqjIiwIzzthut2RZwWQi7pVtH3ChBgIm6+k9EDUX52ccHMx56/59Rrbk4vyaznm8NdKYzSaMxiO8lsYny0tmB7c4PDrEuY7NZs1sPGa93tD2nqauKcdTnHdMJmNcLxOnQGQ0O6AoxV5/ejjHdRsiYo0+Go3wPrBYbrD5lF7eYLLuZpe1VE7GZGWOySxGpZpEig/JggqSsSasjaG2VTvR95+6JkMpw8Afv/nLbtovDujcEAI32CMKfYqEwrzpqjIgxm3X03c9fdfxzV/4eaqyZLNe8/r1K9qdNWTYWUnGEHDB8eknH3N6+prFcsHRyTHzgwMWyyU//81vgg5suo7PXr3iX37725xfnBNiIDOazBpxApjPKVP8PDFQZBntdsXl9ZJusyZD/NXnozHbyQzXdmyKFSuudye66/s3CsZdwZm6QBHMBxoErSIG+s4nnUD6XkTv4tPIb7G4Js8zptMJ08kI54W3uDiYEeNUUNGEqlttCMaijaIoS8rRiKiUJJL6IKhx6kbRkdgLlWHgNQs9KoCOKLq0AGtG43Fq7uR9a6Qh6X1Ld9ry+uwlxlrGkwl3bh9TVSV5lgmFKhUbdV2L/RyRqqq4fXLC5fkZl2enWK3ZbLes1ms2m5qptQnlkLH0nbt3uX/vHlsn1rLKi3POQDEJMewQcaUV49GY1WaFD57MWqpCBOJRge99SrsVX3VrrbzHRHYwSstGLFYcUjwZJLCPm8XG/noN0wY1dCpqYDfEHRVqj3UO1JCUC6GUUOrSNSS93tD6eBfeEKn6EN4oEj6vhzFqZw1YFAXWZgklUZhSpgiZzUQL4WWsbhCOvk4uSj4V5y5GOu/QMbmJ+RYXO0L0+Ojo6o7gpXI0uQIljUJmZcKhlEUbgylkPbBaKCdlniWNkkbrfDeFleY7bWJapVTriIoBvMdH0Zlpm6PiML6OaVozFDvSZEhqtziHRTQ+aLQ1kvaKJL7HlNqqlRKjgsHpCZ1sdYX6s3MmQ+0aDMKQAR6EthU9xu4DyLxPeq0I0aWTrBChJgGlY6rDPVazE+r7xu2E4SFAlqUgZC20AKWHZ6WXvwuRzgd5dwOSaTQqNRkqKyAoopfmPwaxngzDs6kUShl871L57Wm7lrZu5OejGDOgkgA6S+tuamRsJudKDUWjnHhiNOwyxBNqumvU3jj2oyURnt4o/mPcNRVDWr2KUcqegS51YxiS4iXZFUBENBofHYPValR+t3YI/Tz9DhUkDBFNQOODk6urIl3vMH1HxAIZKssYyuOQhOGkibQMR4cJyefz+ElNRrgxBQrep0mlkufbmLS/y4UIyb52bwSiUnif2k0iSNOgfa6R8OJJaepGZ+hQpEsZCDgGb6uojNjb5yY1JolCBWRxymg8YzLbMD9ac3L/ARdXl7x68ZyqFIpvjDA/OOb4+DbR9bT1kiwzuBfP2GyWGCUUx+ACbbcidGtC7wg+oJRQXsRaGpS1CYw0BK9Zrzds12vGVUmeS80ToqM3mhCVmAeYgnJ8wGR6yOzwNg/efhes5mqz4MWTj1E+YqMB7/Bdjy0N8/mEbn0N3tPXLb6X+1hZsUTRiW4WVURFCWKVc+1BdUTV4MMGF3KsLtAqg2gITpojhSYEjzJepplYmTqpvetcVBBUQMfkcopCx/QZXWS13ICXqWq73RKCIXSevmmZHc4g7bC9c+SjnFExoqhKNptajEaspek6NvWWru9wrsfahrZxdE3P1cU5b927z6O3H1HZEm1esaq3bGPPaF4xO5gxmYwwuTydWVYyOzrh1vExfdeyuL5Gx8jk4AgXFev1mqIqMH3LdDpltRQ6a9s7ju88IC8KQnRM+y3XFzUxTSuKPGO56qjbjtH4iLLMsEahcWkqpDC5pRiPMVkm6zRRwFqd2omQYiiiGODcNE0Ynps/dU1GVVVpvN8nG8SbArkBRRCsNdXR3FwLYoS+l8XUWglf88nRQ6vItCpx3tF1Lb/xD36DP//n/xx3797hq1/7Eh9++KF0d13EGunKJKDIoY2h2a756IPv81b3mK7rsMbw0Yc/5JNPfsBnn33MJ8+e0EePnR6QFRlfeO89jg/mzKdj5lVJu93S1jXb5YrD+Zx2W3O2OuPVs8948OAtysNDnAvcvXWLIjNsVkuuy0K4jG0rCZRBsj5g4IjuJzcCVMn71mrYsA198rfWWuOcYjweU+SW9eqKxeKcDz/4A379v93wtW98nePjY05u3yIzhuV0wmQy4dbRMWFSCPKby2bYtC11U7PdblMBE+hdT16UWJsn2kBFJhYwbNYreW9BrDP7XqWN0ePCNcZKIaaNpe/EOQKl0VqQzLaJbNaXXJw9pyxKJpPJbvIw0DKqqqTvez750Q/5bDyhbWq2q5XE1DuXMi0MPkZ67zHBc/vuHapxRe89CrBZLgKrPBdep0oc+iALSoyRum2Yz+coJddgh26FVAwqcbUZGqEYojgwaItLVBIp5vbN9M3JweCatjtSIyVc9ZtPwrBcpelDZDfN48b+PhQ4A+UqwF6QZffiOPmlej8l+Rwfs4ND5gcHTCaTFIy2TxDNilQ4Ky1BhN4JQh2FTx5UIKqePnix6CPSOhEEeu/F9SU09H1L1zasFit80KA02Sgntw5lDOWowoYKrTO0ychHlixNBrQW60adJrbK2N37G6iQQGooIzH0ROfBQ+ca0A0TNKMs34MvOpJbCcWUSUbicUdASyHofEd0HqUzRIAuoIyUikZ4umkqJwZLoi/IULhgdgYF3ktDj4o7UbhKo//BxUl4vC1t2+8KKocIGJXSQpFI9r1vJohr+l6884karS1lackLsYgeSmdjFdttxCJrm07fu5sOWcnr6NqGqhhJQJ8TSkpaLFGI3aNSBhU0BkXfdPjgaV0j1JS0ntoiTw2XQmeaYOS8ihUvRDw+9GJaosRAAy9ToR3qrX4WxdOfDvp/E5jbv7K0IEbrpH9JUzoPgq8GmcIkhk9M+SUi2gzUdU1wSprn1kqIWXIOjDC4Q///xWFuAHrDfw/N3m4+nfaf4TwPjmM36do396ikottR9WQTFMpU27YpHHSwyU2TDu9QafpXjSpcCDgXaVtPVU13E1nF/5e6/2q2LE3vO7Hf65bZ9ti0lWW62qExAJoDggD9kEPOTASDI+lWETL3utWFbvQB9AkkXUuhGylGitCEOKQ45IyGGgQpgGiPNmWzKn0eu90yr9HF8661d1Y1wG6KDKFWxsnMs/1e6zWP+RuLMQGtZe7Vk4Ll0ZSz8wUf/uRP8ClRFAW//Z3fZrft2K53vHxxw6vnl0Q6lOlg67le3bBarQjNmub2hq7d0TdbuvVOBBKSoq7qUYzBty10HldXTOZTulYSjxg8m82GuiopipJJWdImS9v3dH1PVU+pqopqUlBNDB9//HOmszl3793n/tk92u0tKXY8evc9PvzwQ4F3XbziL/3Gt2hvb3j67FO2u1vMzmBVJyI8Skw1tfbSvcgytk2zBi1oEVs6kmrpfEsboNl2KIRrtVntpCjlLLYu0LrAWpGgtYX0uUVtTRzYJYFXBKQ76tMtmBWBG7y/pt91TGcn2EKgsKurW4q6onY1oehYHp/S7Ro++OAjUIp6UkuypqBrGkIMnJwckSKsbm/57NNPqaoJ3//+n/DjH/+I25tbjk5Oee8b3+A/+vt/l/p0yXa34+ryih9+/we02w6jLGfHa36y/TGQsMYwqWvOjk/5xjv36KNntV1ze33F7dWG+dQR6khIiVevNrz1aMm0Mrx+/oTCVKAsOkVePnuN7zV1veCv/pW/gk+e3XbN6xdPaNuGelJzcnrKrmnpul6EBvSE0liKrCimlKYoa6p6Qlm+KVn77w0u1TStVNqDTJTDlsmw4A+HFvAXe6Mn8odL9L1oxzvnIMnQUErRd12uJsli++Mf/4SPP/lE/B0mEyKwXm3puu2IgyxsxgnHSELz/PPH7DZrUVpQkdv1FZvdCm1KjErcf+shv/t7f5mnTz9n07dsXr7m8XbD/bvnTOqSMka4vpHWIYGLy1fM5xOqyuFciTKaxXzKt771dbzvef3qNVdXV6g+yMappbpnkgIfsjHcoFo0LH+DLKVUUIYqS4yJzXpF17V0wbNZb9DGMJ3UPPv8MdcXr3n25HNuLq742te+xvn5OavzW6qpYzKZMJ/Nmc6mrDcbdtudLJ7ZlG5ol2utKMuC8/OH3Du/Q+EKbq4v+eiDD9iu1/kakD93EJ3lEHJV31C4Ki/EQaArKqIyLMAqQ+hbri8bEYLL3QVnHZsbSawmZUm722ZIU6JpmzEhM7bgqKqoZzMmc4F8FWVJJOEKaUtbaylcQdM0GKepi4quaSU5SIZJVUl1ccC+Q05iIlVRZUWjlDH2loR8fpMTp6gyETy3BwdQxNjF4MuVzpTSSNAeHkO+zjEdGPGREwwGZaWhPS0VA6/GYjKDZKLKXRZJeqLwNr7i0cLp6emotX3YlVJ5E1LkCkoUCdboo8xvLfA1pTTaGXwI9CGIaVQQab222aJii+9burZlu9oStEFZB6WoH2ldUJY1papRyqK0pSgLbOZdGK2xenDsHnDtQzA3tK1y0YSO6HuS90Sf8F5hXC2JkTKZTC4cBWv1KO9qsuBxTIqkLCoJPKrtPKJIG8EObyVVVm0dtnA4Z9GNdBWzzpJUzvPA2+PvJckYiPbJi4TuINEaghf4qc5jbfAJSDFDuwRelJLOXgAp/56rhFoIgkVRUBSD63T2vzgwBsQojLKCs1a5WooiBZFiHXw7hqqmQHEt2lnZZ4YgMfYC1Qqe3re47GOiAaPIMDiNMopkELfm3BEz+WdUTNEqCwBEYoijM/rh+fvyoTic3f+/HimraH3xENimJrE3S1QZZjJ0rAa6htJavEkchODpfIvpdlmGGci8j/0bjTgEfo0Y4S/e8ctOXK6UH16aIUaRmlk46Fx8OcmD/dp+yPcIwVOWFQN8Ko2xToK0yp1+Sax9FBPZaV2AFv6W1cOYCmOBtqpLjIX17SWlnjGvp6A1/6f/w/8RcBwtz/jub/8VTk/u0vRrbpsL+u2aqiqoq4LV2kPwxLajXW0wGKwrsc7h6opm29C1HcEHtJJkY6OG5ErmpY9SEU9KY1xFUU6ZTB3aWjbNjtvbG243K1a7NcvFEb7V3Lx4we3lNW2zIaWe0l2wbYT/VE9K2q5hvV6xur2hqgvKyqELQQyYlOHFSrptoDNE9gToAZH6T2pfRC6cmHuSFJPp3lxXGYPCSUFGO9mpVe7zJ1Ahi3oYRfQ7lDKUVc2773+Nf/7f/r9omi2zyTRX98EZw/tf/wZoTdd3PIuK9WpD2zagRIik73vaXBQujCEq2N6u6DqJX2bTKWVZMZnWFE462c36ks8/+in/8r9NRGvZbHfc3q54/ew1i9kc4wpuXj1mu9uR8vlZuZKb188pihJTOvpceA/JU1QF9D3Be+azmjt3TykKy2efOqaTZe6oe5otbENHCoHNasVsOYd6gnMlzXbFbit+dZPpQuJPI522+/cforVmvV6zWCxwrhASvRp4YW/GP79qovFrEL8zppA3JVohwwfkbXOlV2U4yJsfZMC7Dtrow23kDHREmBB5/foV+spydn5GUkomUOHwfTNiXp0upMWegGTZrm7HoDHFnqJ2uKrg+PgInOX+/Ue8/e77bJuG64tX0h3Zblnstgh8KAjB1iqiTuzaLdtmzXY3oSIS+wRaMZ1NODo6Etla7yFpYpb2ohUZuqjiWOUeJrZ8/8OWEwcJR6DrWtG917BZb3BFQV1Yrq8uWN3eUBYVJglO+/b6hquLK47OFiwWc5ZHR5z6U25ubllv1m8uxGog/YnW/snJMW+/8zbz6ZTbm1O6tuHq8pLbm1vapiF20lIOGaSpkpgtOssIEYhDApUSKgpkJAVpNQrnQfwggnOjBvNsPqNvG7wPYwVpbHFn7f+yLDk+Pn7DPM9mRRqVK6OikpINw0Z5TIWz0pEAsINjaw6cBIokbW+t0igLq7NCh1Q49RtdDCDjwxkTji/uzkPjYVRzUTk5GaAU8gnYQySGQT84gIuMZ5+ldnWeN2/EMSpDLVLKCmFf3WM+n+MOJJttVrKABNFnPGgeGzGNPxDH+ZLQ+BTpgqfznq7v6LqW3W6DiS2h62jbRpJt69BFwoWChJC5i6Kk1AUKAahaazNPYiDxw9DDSikINGWU+Rtuh56G6D3Je1KAEDTKWAYohkjcKmxOMkzmfegkpGOSQCv211qgkkqLFK3OCaoEk3vYx+CfocleGm+O0HFNDcFjBiz64NkRB8ielwBplOvNfIIDh+4xKIspcwny7bnj45x8niEoG8n3KQd4KHQSeM845jN0JCbRl/c+V42H4C/LD1tjafoOMtQphJ4Q+pzw9JTOjZwok9XkxKVWoaxAt6T7KQmGHZOMDPMNe0now478WFT4ZRto+ncDV0zDWvHF98iJg4pyvkbieb4W42/5PA97hzZa/EpCT9c3oqQVJHEcOJT7Nxhf5N/BN/n/3/FnBTijctbB/ekLj/8Sh+Mg6TjEnJO5T0rv59RhkqFSmx3Xhd9ktQHEkyKkPNpV7mIPyA6lKAs3GngaW9BtIpum46c/+VNOzh5QlgtcIT4Vrd+w223BdyLcEARmGPqe6EXwQCtH4Sqq6QRVWHof0SGi+16KNb4ndJGBy6VykpmScHbazjOtpNtotMVaRxdEKW+9vmVaV/TKsOukOxCDeG/5sIepWa2oq5KuELXJoSssCX2StW70uTCy9iotbt2USPcygO7l/OqEMjEX2xRlmc8/ebmgQKBSw9oj98tlEkVAUfwOKBWxNnF0cifLXkdOF3MiDmNr6smcu3fuoq1j17RcX16zXd/Q5VgOpfC9p/edFC0EMZfN63pMNimdL2Zj3DKbTeg2N2yvL3j8i5/hE+yajmbXCg/EaELs2PYNXe/HsdFgaIpKRComJbYqUTZR1oUUTYN0ZquJQzuFMgrjShyFwMRipLAtvZUF4uryElsK//H8/A6ffbqm6z1N0zKbG8qyFGiygrIS/4u03khicWC/QC4cH4o3/arHr55kdCErnLwJGdF6qLWO4RYxL+CJIYAeoEPk7kZit2sy8RPwntI5Ykr4FOh9hzFiyvfZk6fMplNc4ZguF6gUaZuOvu9Qyo9cD6Vl+Pqm4fbiAqLn27/5HR69+w6nd+8xPTnGVhXXlxu+8Y3f4LOi4okP3Ds94cWzz3myeyKSZlZBaUiFRjnFpt3w+uY1bnvD7XoNWjOdLZjMp9x3juXRES+fv+L68orNai0BtbIjvEKngLEWZfYKM8MFGgLtwfdBAqvAdnOLMZBix/XVBSBV/Ek9pX7/G/z8pz+TNldR8N3f+x1Ozk5ZLpc8eLDhxYsXPHv2IgcAmhB01kfuaBrBM05rx927J5yfneH7O9y5e8qzp8/55OOPefz4MevVit2uEUKoHpSWPD6o7AuRaEKzr0ADfWzENM8J2avPyjnNrhvb1n3XjBt7jEgAYAwJ6EPkdnXL0dkZX/v610fTr6HaLQaH++6QD4Gm7yhLgYsZK+wJnaL4WGTpYq2kgtzH/gtZeMx+BzbDpDRKiyRc2k8rQg4qNQqfvlx9lGKzYu9KMMwCDroXbz5BZA7V+FwfA6HvUEWJVVlQIXt3DK8dgKASPv7qk/sv4jGZzQUy46x0KMOQaEZ8syN6L0pfIYhxU3Y87lNOOlIQSILvaPueTduwa7a07Y7d6gaXenzb0e461uuW5EpcjLh+wiRarHaUpaE2Uk1LKGK+cIO/xKA6I4TpLge2uSuYiwRRJRJeOn1R/D2U0VgDIJ+9cJaitLgCjEkj6S4GTUrCNVBaI4qOEWM1IQlhHbyYaiEqUQMvRHw6wKhEVGBIojASJYkQefBBKrfFOeF9DMl3zEUe7/sMYdJoI200UXzqGJSrlJJkofcqEzVV5kCJopaxex116YyQ3eoRw8yQIIjxpcqblhjMOeEYBE/XNVg9JJp7kz6lFD6v8QpN6NusACd6+mVRShcmb36D54jSYuBlnaOsalAaW4iXiVYG/QV88dAtkN8PO0Hs4/B0WCgYb2DkYyT1y6vrf8YxKBmNbwryPZDEIOUxfyiMq7Um+CFZzAphSTprxmpS29F76fRYZyXB0DLGJAkc+F5DP/2rvY7An911SjFmMv3+cUNRExhlpIdjgG0e7g/WFThr0UaCZpHm7/PzEyl5OaNaIk6fItpk9TuV0MpKZZmQx70YeRoCoUgUrsAZTbtZ86OffcCffvQJ0/O3+Jt/5+/w9jtfw7eBq5fP+PzJR3z4yU+4f37C9etXrK8vMaFnt9sQQ89kOqHdRIpqyuL4lCb2FAkwIj7T70SaliBojz5J4cK4AlvWpARXN7eYYs7N7Zpds+Otdx+xOF6QNFzeXrPdbkhdQLnAo0dv8/TZEy6vLrh3/yG3lxd06xWexLe++S0ul0ts6Ok6j2vF40wM5gZuSoFSUpzQRtP1In+fLxzW1tkpXPwz1MBLHOS8M2/VHPjlqCxSQeZ7GEqEiJnQpgQ8SjsKe0TbOUKquXP3EdtdYDo74fjkLlU95+zOXWIMfPL4MTe3t/gE2liatiH4nhQ92krHlujBd1SFQ2mD1YqHDx/w+uKSzXbD+dERaT2hbxq6ywusKZgpzcxa+uTpbl+zU4Fed4KS0SKhvOkCk8VdlscVWMO9t+7hrGO73vL0s2cE5Yn02DLx/PUTUlKUiyPCZocBKmvRZk1ZSZHiw48+Ytt1vPvuO/yNv/G3+L++eEbX9zRNj/eR6XTBdDpht11xu9ngnKOezehCQHuPdo4QIrawI83Be/+l+fLnHb+WGd8gvSjZfMZnpUGbd2hFZhnFceFOX3idvQxW8B5loDAI7IDspFtXgMYPwbiGxnfcbFecTEqMSfSdBL5l4UiIzrszGqvBEplXFU8//oynj59jqpJWK6LR6NLxD/8H/4BZPeWb73+LdnPJ+ckxt5tbvvezH7HdrNA68ejr73I6mxO9Z9WsidvI5fUlyhiOU0+3g+XymLfefpujoxM++PkvMuYZmk2DQoxyDkH9h9KR4mTsxs6O9z6f0kTXdFSVIcSeXSetOAK0ux1/+sMfs902KG04PjklRMRgbLPjBz/+CdNJTdPsaPueclJiSkMMgabZ0YcEtGw3V6xXFyzmJSfHJ1S14/h4ycNHD3j/2ft8/vkTnj19wSefPKNrOwm8k4UmisSnKSCGAwBBoqoLlCJXSKFyBl062RAznGW73WCsI8SEj1DXE9pWJDaXyyWL4xOWyyWQmOd2XYyJqqooi1JI523LbDLFOfFOuLy+JFFTZShEaZ2IAvi9P4BRmsHVQkjeZnTr1rnKsk+SpWuHEthGFz0DMdyoN7HA46GGjfvgV9gHKbmzp5KiD2KipLThEEaljCbk66/zvBoC3qSgTQIP8sHDrP7zJ+tf4KOup5lQrcZKWhyDAoF5GKcxTuV1RILRaKCPga7zbNot27bJPy1Ns8b3DbHdobqO2Ht8H2lTAqR40XhPF0qRxLZZYYw4lIMlcY1BAtuBfJxE5GCA86gDiKhGoQxiFKgcVlmichhXUpea2aygLEqc1RSlkY1TRULsEWrw3gMhDl1GlQjZ4C4hbXzpfBkhkxqNy9rzPhhxGPdhrGyTZP6JfnwUc83Yj0TXnEnl+4XTobO8ZEwB8Svx+fZ90kXaw6OAg+fmoDfmrkAMhJjQWvYL5xym0OyaLca6zLuCNJDVlafvW2x54GyNIfrIrt/gu5aBbK1ImbAv7t2FzWp+SroWzokzrjVWzLaMBIgpV6a1Gsw79aiMNcIglcrFCw6C/hyIj2vDmxvqkGC80fHI1dRxz3vDPPGXHMPDhoVUDyTXfC2zeMCwtw4KZYKoCuOKlVICk4MwBU2/QVmBlWgDxFyNRyHmsBFS+KUf6at07OVov3CHURmzvT+sc29cq6Io9s//0usOPj4KsiM8JGxOOJKJxKjRqULp7C0RPXuXowyHzIlJuw3i4px60DshH+fk7wff+9cUi2P+1t/6O5x//Te48/ARqrBsN9fYCbz/9bf55rt3efrkMX51S2cNKI8uDVEF+pjofOJytWFNYnIyI5ZSvHUp4owhBE9InnoyY7NraLsO55ysuwhS4Ob2iqIsOToWCM1ieSRqf1XNpJpQlxWTouKzJ89RxnJ0dMqf/ugnlMCymrC+ueRP/vj7/MHv/z7/0//J/5zjkwmqMmA1UYlyp3iHGchQ66RBOb8vuqXhuqV8fyfrYgqgQuZWGrSq0MrmLsbQZhrWuARqI93XmEhBOg4vX77gf/u//99xdHzGd6YnbHeK+dFd2j7y0WfP+fGHn0oCoRJts5WOUz3BGcPV5UvquqIuHYv5hMvXr9k0DSpEEj1YCErxx3/0RyhjcGVJVZXsNLREttsNk7IY57GrCqzWOFMwK09Q2uKKiqKaslrveOvRe5yc3eHi+pL1WqSqr15dcff0XR7er3Gl5XZ3QzmrUUZTzbZMTUloGjaX10L2J+W91NJ2PTc3t3z+2efstg2L5ZK3H72NtgUoTYiS6BnjsLY4mBOKvvOEai+ScJhg/DuHSwkxLua2X8wTiaF3NVZnZEFPpEO3zC+91h4bGWOW5ctVW6WkHZeyqsNg3JdSIvlA3wmhV2dlH/K0VipXMJTwCVSMrDe3NF0PztGmRFCQjOaHf/wnvPvOW9y/e4bTpThxWsdktmSza0gpol3BdLmkbxva3Zb16pbdbouxlhh6rHEYnVAqMKkLzs5OMFpze3XLS/+SQZO8j1JB1ImRDD5U38htc6P0yEfJNdQcGCipUmb3yRAi1zdXhBBxrsCHlufPnlJNanEd71q6Zst2u6Xv2kx8VPi8ECckiOm6lu12Q9u2TOqayWTKbDJlNptl6IFhMpmglOPq8prddstutxNZs2yQpTms3ie6VhJGBWKClf+YDMXAaKoi+xloROkkiQMpOeB3VqTr+t7Ttj1t56l6L+TUBCkFUQfLVUtSGonCCuFfWJthVrmjweEeNMYKWbnmC8Nz+DWEMHYZBribcGn22jD715OgwOd5MECb8kDPN+n8cHUQmAzBiEC3TDZ9U4efZNDSR4x5+uDx4asdHAwKR4mED2IolzIMxRozbjJaKVTGy4cQ8NHT+Z5d37Hebdnsdmy7hl3b0jZrku8woSfuthJERvDa5up6ouuDKKcoSXBC30MWRggoVO4iBt+PSYaMNwn+RT1pH5jLj/hqFFpTmIKkS4ytqEpHWRiKQlSrJKDJkMWYBCKVBXlRYrIGsobFJA7lioQZzNeQzXeQrbU2w67y/qqVxMIS+GY4hxo4FbJuy1vl8RgV1glMTCsJhiJ73xCVA7TBcXb4GdavvWt2TgKRIN3YXHiKIRcB9oUpZSTAiBk2McAbfF7bxYBV3jvFSOh9/gzSPdImq1NpMrdmL0mrjcE4g7Vu7HxqbTKcQjpBOktjpyjr7pDYvgGj4aB5kX/JH3MsHIxwnMNkIt8+5ChDR+TwPg662MPaf7g/qjcWFpX3s8NC3WEwrPZ7qM4fUklQoTWE1NP7Dm0cQsfPPj4qJ63pq93JOGhSyJHS3mMk5gQbchdUrnXf9yMXDiUcSeG9SJI6HmPVfPjl4FypYX3OnjVDC3SUaJXn7AUENIoCYwNRaVJyKOZo46nqmulMuhuFtVRFgW87VtcrbNmRosfqROw87a5hs92CMZR1TbNp83wSlTFtJQmPfU+z3sq8D5E+JzPRyBpXzCYsz8+wtqTrA7tdl+e0ZrvdUBYFVVnRNh3b1RbvA92uJfmISbCYTGVP1DLfTs7u0q8u6XyP1ZaLF69pNjumtfhWDVqpA6RP5XEt51LO68DBVYoMNR7mVj5/aiDzZ4xSFsIYXkhlbPHASVPDX1plaWvPzdUrPvvkQz775FOqyRHOTaknc4pyQtOt2e423G43KAOusJyeHtNn9boUeybziuA7Gt+hdyrHinMmkymb3VYkvX1H34qHV9KwXd/SR49XUWSm+35cNzFgi3LPUVEW40qqyQzjJijtaJqOENRYXJrNT3DVDFfVlFWBDT1VOckFlZLTxRG7lfAtZsdHdO2O4DtInma7YbNe07QtRT2hnk2pJhOaTmIKlwoWyyXa2lxM0tgMi0JltTXKEZ3zBjz2Vzh+5SRD5D1DrsTLxT6IqsYlS1rwYRwoe9w9HC6qAzwoROiUBGJKaTSatvX55RXOKkLXyodVis1mh7N2xAKHkGUitcL3oqNOrmRvNyvWuy3aWmLO2PoQ+O//6X/N7i99l+K7v83p6RJnJ0ymjrM7D1lvdviuJSqYLpaErsRazc3tFX3fQiY9TycFVgW63QpnSx4+uMvZyTEvnr9is9kwbO2xDwy1sJgy1lpL8B36PuOPc1U7ZY1/I7hBYzRVJQNO4VFa03svDsNKE1PLz3/2E+rJhPl8zr17d7m+eM3FxQXdrqGc1BmOobKJmUzctu1Zr7c0u4ZJVVPXE0KM7JqGGHpmswl3797heHnE408+4/XrC16+eMVu14inho+g9x4BoGk3zWiqZsxgChawOcgrjKaa1GybHQaNVYau77PpmSF0PSSBemy3Hdc3a1w9w5UTps1uXOqVFilByaoDVVFSWIdBs2sbyhxQWGMwaFkAUhzHaELUzHwa02QxxspL1FDVHKAn+5w++7TAiPdkfBYZViUbjdSHRhG94QVywJIDjShdCp0TMafdm/czVNTkmw/GbULk/+oe2hiB9kT5TkN1UWmFcU7OlhKau46R0Cv6vhFn565j1zSsNhvWzZZd27LrWnyzwUTPREPX7AgRojaEohgJzW3v5apkKe7ee6JvCbEXtaQoRnOKKDr4Q/fCqlEBazAR3EvaJpzRFMZQuQpt5ceVFWWpKJzCWk1ZSGIVsvpMUpZhrMhmqEHJdR2ghIFESOMymGFNsgG4IcjOiYTRQ4CrRvWbwY+k7/v8OyNGH6SS63LVykdPCD1KkZMok718RHoWpJUfDsizAlXaKwl67ynLCQnxsRiVw3JmoHOSkVCIBLuM85C8+HIoEb/QyhIQTx6jMx8kxSzIIEGFs0qqdEbcvLU14nViHUWGT6JExjOpLGOq90WxQdzikBMGX246vJlQ7G877CCMzQ+VvpRcfPG1DnkAkBsdQ2B6kGVIsrdXlzt8r/39mdOHki5ZTjiNzc7uvs3XTrpmJkkyaUwuY3wpUv/qHAe0IRR76eMQPMH3IpOsRJIzxUjvPev1K1tf4AABAABJREFUej8elaKelrLnKoOlFoTFkLSR0EmjYoIvFEv31yBLcSQgqfF6pQxvhYTGYJTDTHbEZIlJo0KN0S3T+QXHp47TkyVBO9rNjqtPPmW+apktlpwczdEkrm5u+Oyzz9isrymMop7P2WyuJckwmhSgrATyqIhsr26wrgA0Tesx1hCVJhqFnda89/VvcvfuA54+ecnrl5f4rqcoS64uX2BtSVlNeHV5g/eXGGvoQyuS4KcnnC4XFFVJbAUC9u1vfYsPfvjHdLstk8mE9dU1r58+5/mTJ7z/7Xcx2uY4IVdCSAelSTmZQ7NvEAAax2UClUyOJ/czU2LKPF8UY/HmcO4mZXPBWqNT4OXTz/j5j77H6uqGq5vAfKn41jffE44dgd7vSHRYWzCdVjx69BY3l1ds1rfcrnYsTmZcXV5yfXXL9VpzfnrO4nhCXRiePnkiXiVNS+0ESaN8z+b6AiqX5xx43wtX2Gj6GKiUlTkbcpFeG2xVMj+asdt0rF6+RhnLZF4znU65c75gs9kRlMFHhbUVzpYUrqBwFXfvP+S6vuLlxSWnDx+wub5ku7qha3bstrdstyV99CxOjpksFpiioGt2tL6jouLszrmgShRoq6jKQuL9IN3tYeTHf4t149foZMiVF0US/UarGfKeDBkDL1nQ4Aq+f5z6wmvmChlCxhzeY1rajMEXIqgbF1XFroGm92iVmM2moPe8huVyTl3XTCYTUVrq1piQULHHxkxccYa42fL9P/yX/PT7P+Jv/t2/y+/85e8yP1pwMr/DRX3F5KTkwd1zChNp17ekkJhP55i7sqOaFIh+SxcbfG/xtqKqJFF569F9zu/e4ZNPP+NP/uQHnNw9pWs62kZalGZQcck4b2sMzhh86HP7UiAcWlJ7fB9x1og8XuzReIJviTSomx5uFEVRsaon3F6+5urqmtV6DVE6P8pYClNSFVOadkffJYyZsFm1XL264er1DfNHcyZVxaSsWF1fURaWxazmeGZ5dG/JxeUNn33+jFcvr7l4dcXFxTV+3KSHBVegTaEVBbLSWQpnMKXJkKRADD2FUUStSNZgNRJ0pQBY1rcrbFEzXax59uw1N5uW2etLvqnfYT4Xadx6MqHvOkmejM5VUQXKMHGVqDmFIJCjKKZ7g5lMHzwJKMoCyEZWKRC9z8mOzp0YCUissThtyG0UyElBDruGgvFYSY45wYgITnuo3AypSsjJgh3gVTFmeT+NfCI1Nn17xP8koTAkQl3nOfOraVP/RT067zOBUeZtUex9KBwhJ+OJ0Eearme72/Lq4oLdZk3ft7Rdx+1uQ+t7gY+lKOZ+CRyR3ZDsaYWpCnwy+w5VVLS9qLI0t9d43xBTj6o0hRU1GKXI3gqyudlMUrdOIDnWmJGEXVipQpbOUboSY2uUKUBX1EUhYyqvh6DRURHMwXhKiaSVBIBak2IQgQIlZphDYC2aAPKeyYnCWqENwWiC08Rs2hcSbHaDqs6+kHMIyRvM/BYLN0KRKl3Rr1usku6GcDoCIYtxKKWzMmAYydMg67sasblJVPKSIoTckU4yF7Q1Q2SMUjY7hQeU8hhdSOci+TH5jEGgtK6wkLsz1g58EOluVKXIamvr0K7AFiXOlVRlleeqqIlFpFIt1WqZfwK1jQek7zR+h+E4SCW+lDgk3kwYBFY1ADJ/SYfjIEHYy6fKY+X8wlCwE+UciyIS4lCsGTp6KkO98unUudiRUjYCBGW1CGD0URJuNGUS/xfh16m8ynx1OxlGy7Uczp9AsPP1ioGQIAxJfBIto6PZ2dhBEn+lRIw6dzctwYgMbkw9gR4dWnS4FWLvwA3rDj5EUsTWDP8lAlVdY7JsMEihMPmIp0EpITxHr9BpR9t0xKiY2AJdTamPT5jde4e777yLKQqeP3/Ci5cvuL66ous6vva197l8/YKry1egNNumRQMnp2eYDP/rfaBUgb5rUUpzdrxktV7Thp7Ot3zw8w948ukTqrJmUi84Wp5QlRVWKf7g9/+AsqpJyvL48xdi/LfbcbPyPLh/H2csTx4/pz65w/ndEybTBet2zenDRxydHuO3Nzz94FOKqsCWRTaskb1q6E/s47+DhJqE7yWQDSHbAIwQR0VRZIWjw0Mn6YBHmVuHamBDNS8CPkUqBT/84Q/4J//oH+G9pVzWlJOanpbVdkOvPLOjBVO15O79+zhX8KMf/ozvvP9tTCh4+vlLbm89RTHnzr1TYtIsF3OIHU+ffcTV9TUqJvF3gkz+h13oaTYbiqLg/OycF58/IaJwyZKsJviAMQFVAhq6ruX66oqz9++wmC6IAZq2Q5clRVkwmQoEy4dBpazlgw8+o+s6Tk/POFocUZc1X//6N7i9esknuw2bVw2Tuuadr73Pcrnk+vaGoqpAKVabDYUrmE6mTCYTOu9ZrVZorZjNpkzKvTqbc4N4SHrDM+pXPX71TgaDhKHO3g/xjYV2lLONe/zWoSv4QK6TeX64wMmACyFgncFlOMXQfYxRCI5Dq9w5h/eS0QxGbDrLm85mMwDZ/LabLLUrBlWDpKTThm3X47My1A9/8H188pzdu4OdFtRlxfHyiDt37mKSZ1cWFM6yvr1htxUVqrKejATHiASXne9RIRKDRhnN8mjO+++/w831DURPDIoYZFIJxCCKpjuRpm9zy1tauCGmA0JlRNu94YxMIoEutF2fHYI1nbFcXlzQHCR2AvtRWelB44oCbZQkcD7QdR0XFxe89eCBkEq15d7de2yaDV3bMKsLZrMFp+d3uHf/LW6uNlxcXPPq5Ws+/PgTrq+v2O12YhQ49BpSogsJHz1Nr+iCxWWyqtYKXJHJcuJW7pTgkCPQ7rZCdDcWXZec3b1HCHd4+XRBOnewKLAkZlVJSpG+6WnbHmfdCDWxUTb7QUpTyLISCEUvHTbH/toFpVA5wdB503ZWpsWgNDRCJw4gfRIZxOyDIUFESKJhnXKCmPb73BhXDio3ZE7C4KcxLMj7aITxnEYSbsCijf3mr+bRqR4xHRtMEM2Y4MUYiSHgY6DtW9bbNZvthm2zoeuFfBeSF8lSI5rlThkcGhMDJnQYYyWps5aQ8edKiSwr0RN8JPkVKTQYJapjrlCUhaxrRiF+Flo+V1kUWCfyqKawOFdhjMNoR2GFd1DYgsIWaFuitZj8WaVRSTOIEKdcalbGoFKXE28ZO5qIy4pHlkQgyXxBiI4x7Ds+IIu/zT8GgadKYhuxRuV1JGOSFQw4GqXFLE8nchc4e01YjdvZ0YlFpUBQKkMQBLIVc6FAzAElsbZGi5mnSrhigDMEkgooq/BBFPkG2VytxOCy73sSIXeC7Ij7Eo+LmCEvKRv3DYqFPp93SdhMThyEFF9QmAJrC4xxB3BHkaQe+RlRS8YWcydxVDDTkJyceRVycjQcw7ori4DISI8gDwY6jEDeNCP3ZaiAH+rOHuyXgzKWSkNZIY7vhtZoDL3PsCkUMUNzJLmI4JN03pIoGLnR6XwAXQZi7Am9ImidR6AofQ0qYV/Z4818EPLVSHnNH+TTD1UcRWghB7bZIV4PMKehs6wGtpRCUQIlysaxSKTNwdqbElQ+jzOZNzZD+oaPZrQhWY3Rk/EpSSWuXl/x9PMn/OmPfsHqdkW/6lHrlkkHLTCZzwixp+22WKs4Xi75/PFjNJHSlayUYb44lhFoNbtuLWPJalBSOU8pslvf4Ixc876Tcxa9p6elTRuuej9Ktvf9lno6p6ymNL3CupKjesLZ/fvE6FERrIXew3azow9Q1pZiOsPMampzxsXTlzR9x8uL1zz6xiOBSo5nb7hob/QcUFmYZQhgx6GZr5XWX9B7zPvGoJqW1JfliEOM0sFUmm2Geu/alqbxLO/X1POaNrXsfMOm2bFtWt55+2uUxYSEYjE74sXTZ+x2W1JI1LOJcHo0XF1ec319gYodqt/K2Mnxle/38VgKMjcJSfjCVSX7ndZ03mfYv0aZDhWla43WvHz5fFwOYlJE41gcHXN2ds6TJ8/o+y7DURXEgG8bbi4uePbkc5xztG1Du7mlbUX16u79B7iqog2B1XbHYj7H2gKrLEeLhZDOs8GrQFYTfSdqV0NMVFX12An+ogrbr3L8yknGkBgMeOQvtZrVHmoyJBf7DFPllsuXE4yh9RuCF0UkJ10QrSWRIfs9qIzHc7aAJLrtNksTFkXBfD6nqio2mw2bzWZUN1IIudTZ7I6r1Qj7Cm3g8SefkFTi/OIuD957C2M003rCydEp0TfiiZYS9XSOur6GFDBFBWFQ+JAx0XlPSh7ikCQkTk4W7DYrfKEh2ZyxR9mYY0IlNaq9gBor6SJolNGJSQabnOOMb8za0SGIf4APgb7v6bouEx1FdUGcpbNLusoKLIXJcsQRHwKXl5fsdjvKqqSsChbLBcooGmtwZsYyZvWUaAXGdHXDy5evSRqePLFcX11xu7qhyVr6KUWRY82wDR89RVa6ck4k8gbCpkh15u/iE23fEdYrIYcWBt+L1rPTE3SoSL3FUlNbGUehCyKHm6uJIQVcyhJ9MSe/KNk0MvmMJIN+kJwFtSf05pqLzS1ecVQf65n72ll+nahUhnyIQ7G4UMfMO8jtxfzvkDAYY7MPCyStMixGoBaHS2Vu6o1VUzvi5L/aAYLHS5Caz68Q6vcJtQ+e3vc0XTaVbLZ0GdYUESKsNUJkTRjQCqcUKnpSAzaTfZVz9ErJ+VcRqxWkQAo9MWzRWjZYayxFCWVZCARTK8rKYbKc46So0IbskqopygnWlBgt8rvOCezImkKCXmUEkuVjloslJ5Di+Cs4J6m4ShyavSG0koQhjzKjZAWIKWWS+rDGConZaINVBpNVqISgnWTDJjt5Z+BeZv3mBEjmnbUW1bcyJq2WMT8EzDrhc3dOhnrMm3vMwbHMHWcNwaeDgk8OrDVoK9yqvvd5/Q5oJQlK8P0+WMiVR7QSlSQVSDpirHA+rIFkhv9LMQmk26i0/LicYDgj5oo+r0MpCYzWGCE1+ijnfUg0SAOkV0GSDlMi5nMH+x4kcl/mxwyckr284wBpGs53jhLUmx2DXzZz0wDRy/hn6YxqUu6CRWHXE+NQ3EiZMyPy4aQk3TJj85oy8E4CKUMBQ7BZGruQLslQI/mKHl+SqU1yvUnCq0pDVyovqinl/TbPAzVwN4h5r5DHKRIokTwlWaDAZlVIlRj353FxVs1BAJ1vO9QZ1IDWJF1KApsiSXlWt1e8ePaMTz/8jN3a0ISGfrXjdLpEv3pB3WyoKkPXblFJUxUlr1684PhoSV0VpKiYTOZApO9a2hCoioKyKGjancBygnA0ClfgksIqQzQytlRKRO/Z7HZj93DXbpjOlkznR9TzU2bLJdP5nMXpMa9evSB1gcI6ttuWqDqi0rhSY5zDuoKytFSzCbuu5bMnn/Pd+DuYlM+1YqzUHXYBD4VwhqBV4oF992/g1IzHAJPKnapfRtwfEj+tNV3XUVYly+MjXj++wBaWoi4xhUFZsRrw0eOKUuZ9SNT1hOeffkzbNCgDdVVjCktIgV27YX1zBaHnaJKFMPL1DzFiYpZaT4hUeQTfB1xRjXNO53Un+IDPcFanFSkWXFy8YnDbtq4kmoKiKtAqcXX1mr7vMEZzdnaCRuSJ103H7bUQ90MI7NbbTNC2nJ6ds+46fLclhcixddgsmjObzFFGCjYpKUwWzRniT6XEQ8O5QsS7DhKMf29JxqEawxf1pYc3B0ZJ1sF1VLC8ZCnI/dogeu8pQwIkIyyKgrqu2O12kpW1DV3fSusxBarZREh9wHQqKkPz+Zx33nmHzWZD0zSs12uZ7koSFN8HpvVUKv5dj7Ya+ggx4Jzh848/4snjT/ngo4/41re/wb2zO5wcnfLi+RNCNBhbcXx+j5v1lqbZsguwnC/oux7ftHTZ92G4QE8/f8LV5SWXF5fM6inz+ZTidC6YupBo25brm47dVgxW6rrm5madgy+Ndk7OBypLpsmyNagTDFKNJMGjeuXRqh+rATqrikiQMLS8HFHFUefYWkcMgU8++YSjxYKHbz3kwcP7bJst2hqm0xmL6ZTZbE5RVDhXEkNitdpwdXXN2+/c55NPPuazzx/zve9/j8+evmCz29H1XtSccpepC57eB1SI6F4Wi7Kw1M4BAjfRyqBVFOibSvh2y5OPfs5nH32ALSZ8+zf+Fl/72hVvvfUW3/6Nb7K+umYymzBfzCkKCY5E3lKqR0YZklbE0KMT4sisIqWxgvnPsqNKTqrUHzP8iwSVE/WHAQ+fH8gOT1TgET5HVEpcyqN0MBrf4WOg1ja7g0qQG0bJyYgxlj4It8JoTRvEgMjZLN+Z59EoZZsryEYZGctfcTO+FDwGizMi3OByEt93ge1uS9d39L5j22zZtTtCFFxxigYVs/eE2xc2rLUU1hB9zy4lJrOZJLDWsYHRf8UpMCnidKQoJKlwNgentaauK0mCjaGqqswpsFR2gtYJpRPGWcpyjrElWpdSWTdS6FDY3NYXSFJUO+HQpJiDQo2KoLTwrlLuPoTcZVVKHLctUhQZ4pi8Y6K1IZkBGlTgXCHd397jxkRYIEIpQ6eU6kcfJZUU1u35JMJnGJQCGYP3lBKmKPDej+tJCIPXz6EnRqAoSoIXVZ26qpDmq6VQiqIoabeerhOVtxA6gaLZCaHvs2eIw3cdwYjyjwZSkHlRTqf03Q5tnBiZKk1VV1nhR5IYCQsNVTaaMtahrBOH5hSEBB0ChRNTUEWiVX6UQlZ62LOGpOSACH7QUfwlo3j8ew+3GuKoNMa3Kf7y50sANYQm+wdJADvI+ErxDC9y3TGlzD/MHY38DCF/Z5UwIaqw3eykiKIghJ6+b0lJk6Kj4Msy9F/FY3BqJyV8345Jg1ike1TySHFT1l4f+qwOmL+4kurgcI36viHGjhhbUAFdV9jpVGCTuUNBlP1lkPNIPpuDqsx5zMa3Wht5YWVIyhK9cK6S6vHpltevP+Xi9XN2W8+q83QUFPWMv/0f/W2evX7Fq9ev+PBPP6JygxmmoirEzyAlUZNUsxlKado+UpZT7t29x907d/jpT3/MbrNGK8X9u3d5/OmnkBSL5ZHAFKPwF8rasUs99BFlFNNJTVUUItUeI/V0TjVbcHGz4mbbEpoO3Xq2bcN73/g6D956wIcf/YJ6UnHTNXz/s095/+5dbjcr/qt/+k/4+//g7wkhPQ5QNvK/IkHfdR1d19E0zRvXta4EFjz4cA1CDoOikZDIc/E6x0vyygdlAaVGbowtC/7O3/t7vP3oLf5X/+v/Ddum4dRavvMf/BZPnzzn9nrFzfWKH//gB9y794DpZMrNzUt2/gpMpKon1FPDdFbjCsN2V1MXLd2uIbWyRna+o20E+u57T1SKSVGz63pUEpicK+0o1358vCT4IPByEr7vqScTjpdzLi4ucMZRuJKydsyOjqmqkhfPPuf5k88oq5KTk2Pq0mBUIHQ7tquG06Mj7ty9S1VN+MH3vofRDq0t1WTKH/3wRyQFf/2v/TXKoqQoK4qqxis4Oz6hripu17fMZ4sM1wVjC5wVqeHgI8btFQCrqvoCRO3PP37tTsaQVX4Jp5rSSAwcMFsxxhHK5Jxjt9tlbGl843W892ijaZomY8yOAXCuGF+/Vx7f92x3u/E9et+PkCmlxalwu5VARar8Ep1rlXHUShNMgODFSt0p+mYnbrDGEHYdly9e88mHH7OczVkcSWtJTw19CJiyxjct201DVGL+psuS7XrN1cUFq5tbbq5uaJuGFAJFYXCFIsSGtvcslhPKqiYmON6ecHu75Xa14fZ2TbJIy0xBaQppt+UJFUPW55cTNraFpUVrcldDFF3G1q21ghVNjIThQBwD3mfPn3FzXXE0n/Pq1SuatuHZ86fcf3hPyJNlQeEcJ2XFbDrHuYoQIkVZMptNKArF8fGUR4/ucvfuMT/7+ce8ePmK5y9ecnF5SdcLJC2S29M6k7u0ovfCk3HG4okC5zLZSTMhHQljSEqTUuDTX/ycqxcv+eTsjIuXTzk+W3Jyfsyde+dMFyLpZgvLdDpDJ4s1sthUzkoGThK5ZKVF1SqIwZpASMQfQ/YQNZ7foeU6tnsFx5DhErn7QA40jKiDidWwkuoV4m0hdeBIyHXlsSeSF0JrBaYSUmQ0gMpvl3LgZZUe4TUmpF8L5PgX7XBJ41DkcJzU9/iY2PWepmvp+o62a9k0O3rfE1KiyAlACgJvCTFgjcVYgcIYlQh9B10PvpN5Yw2+D+go0qQ6BYwKVKViMZkwKzSFFRy/K8vcyZCkQZxOhRdRl3MGdqI2jqKcSJJhCpQqJKHP1XSVr3sMiB696olq34UYydpqQMULPlwdQDlEFSmxt/BWkLRINmqH1gXoAoxFGVFUajNpW2sonBOBiZjEeyhIByJGEUywWTRDCoLSbfGhx+ZAPqVE6APOyPsCAmPKTYBBcUprUbhyTlSciqIg6YBOAgmIwZCiVNUTEZ9VAeu6O1DnkmAsxD7DlyThNkbjXEnwHcZk0z/jUFmyciB7y6Ji8jkbLAml0q+TEPNDCLRtO3qT9H2XCxJJIALDnEx74vavQm78oudRilmxKKmsfrQ3PPszXkBWhCQkZSl9SpNrOLTWo48QKY3dfFAka8fCyGGyQ+7qaiVdDWM0Sidi7Oljs/cK+WpTu6SQkKFfrijH6yhJxgA/U2PiaLMh63BdvGjKCcEbKFOfOz87UmzBKZSLaJ3V5RBJYZULnNKVtMKFCJHoBdaYQiT4gHMWpR2ogt47ku5Bt6CuWCwtR8eTrDpnuHvnAWf3H/Hq6pIPP/iA9e01Z7M5vlkRAFcW3D1/lxgDbddycnI2Fhwn9ZTm+opm3fIyvKZwNZ319H3H05ev0HVNqcX0LiiBiamUCASijignUtmb7Zq2C7jCo1qw9YwT67j76BFf++Y3iW3D5vUFP/jB93n++cdcvX7KenXLw4cPmFUV79x/QGES9aTkrclD4drZDF1Ng/jJvjg0SPiX4rI3HoUTMYqUx7XJKIM3Dj2m2IyqXmPhWuE74bsqa3CF4/zeXULwPHr7bYLS3FyvePLZCz74+Yfc3tzS7BreffgQ5xx9u+Xq8hXTk1Mmkwnz6QIVFdNqirOK9esNu/WG6HucE9+IwjoK52h2O0LvUQmqsgREAtA6RxO8qDpVFZvVmrKq0MrQ+8jdh/fZtg2PHz/m9PQU33ZsN6vcvT1FG0XTbHj/a++x223Z7Ta8eP6U+XTC+be+yb2ze7y8vObxrmE6E8EAksL7SN/2TMpaOhf1XNY949BFSZugSwnlPa9eXXB2ekKVO/qFLQjB0/Qds5M5MXr6PryBaPpVj18rXDnsXhzCpA4X2y9mOIfPGaplw+35BYYbsvqKZ7drcM6+sRlpJY6V3oesGANt22Ktpe97drsdt+sVu6ZhIOMlkXMaVSaCGjTpU5Y0NGKClpI4Y/aeZrPjxdPn/EQb3n3/XY5PjqjqEqUdyhQkbfFJ0fQen6sC17e3XN7csL65Zb26lcDQiBmXNgljFNZppvOaqp6gjWV2dMR0saW8vAFjWG1WuapygN3Oc0cNbVqkxZZPlyygRhRlkpesH2TOOedAZ1x06PPEzWRjLQkdIbCYTmmaBq0VPvTcuXcOSgmMpChxToIvqdYGtC5x1hDDCUWhmM9rylKCrNOjY+bTKc4Yrm9uWG02dD7rz0eV1XKSnDclcLEUE8ZEXHZ+FrhAwuih1R1pdrdcdjva3QptPCenx5xdnrFe33L34R1cKc7uvY8w1yKFqxTO1eP5QOcEYxh/wzmMCaslPNHsu3EJMl6eER6lsnvp2PJVOVCE0TFcKcYERI2PyR8iw+Nyvxcfg2DS0WMSOV7zgzk04Lf1nxe0fEUOm4ShINAbaff6EOnant73dH3+6ToCUm2WIoCVxDpDHdygXiTudngUviwJXSUQf2soUovKNhI6w1IKa5nPJswrQ+FEocO6ClcUWGPRehjrglEt3ETGilIYW2BdjTGFJBlGDN6U1pis1JQApSLBilKWRb0x7pTaJ6cxpQzby8AbJWNMZ4fgIViV7VSDsplX4UYysx4ccnM13RpNiABROBtZqlMgNVl1zQzBtXAIVEg4Z9DZxI8gMrEM/LAhaVbCd9MZtqVIOYgVRTdR25GxHDwC20HgDyFIR7nv/UgoHDoKMfoDLw/GIpK4dcv/rXNjlXIg3qMMaJFdTNmddqjg65wISSVbyJIp6qwcF9jLTA9b0BeKZrwRu4ydpbHQwxcKbQkGIv0QyI53vfH/nJSowzmeE4h08FlyB244H5JE7hMXnaV+f6nPQy7mSCKYq/BJEo2QlWIUX37eV+UYJIGHUHM0ZZSWHelA4nQ4YQbGuEGmWmBQ/5NR6kjJo6KFWJF0AJ3yOB9gIhGFHuE/g7S1Svl8J5PN4ZIkI2oYo1kBLMsMT6c1y+Wco5MlbWs4Oj3l+PSE29UVq5vXNJsNdj6lDaCMoSxr5vMlXd+BMszmS5wVeF8MHtd7fN9ye32Dj5lv2ve0XWS2nAsMBoUtqj1UFUQ+OnjZz/0QW7SQ1txeXaCMZn56Qj2doqzDlgXLoyUxiNv4ZnWDineZFI55fUxoVkwmJednJ4xrklb7CZDbe1oJkV4j8NTDoWhNHvt6gIp2IltflPIySmcJ8PFCyrUf9tlh7iRIXopSm82Wm9WaalLToNltt3z4i4+4fHVJl7s7zmiC7+i6Bu0sVUZwEASKGiKYqEkedBC+3RCbSjfb4WyQ7lguogv3cnA2z5w/o0khoIyINThTUFdTTFHSJ0ZfqOB7tps1fdtjrXDhppOKFHraXaTZrJksj1hMpxwfHfPJZ0/R1rFYHgnfI0aIcHt9Q2kcVV2jEBNGM3R9x1hHrlXbNGgFhaulGCO4fvlMMQ653Xj8OzfjO0wkDo+h6jOQuwdC4aGebggB7/0bBjj75ENIiSK1KAvparWmrkucyxji0Sk2SE04JvqUWK3XUrUyhhcvX/Dq1St2ux0qkyIHt2ZnRa1qqFLt/QkSpbP4EEQ5Qjl82/HZx5/yi5/+jN+6+C2+8x/8Jg8fPqTrE+gC7WpMTLS+YbXZ0uy2PH/6lHa7JfqeorKUVhSjnLXE0DGZlcxmcxbLubShyorZ4pi2i6w3Oy6ub/mTP/kevg8kD76LWCWwpuC9eEFYmyuEbxLuZSBIIO+cGF5ZY6jrGm0tvfekuEUFLa+fRNEn9CKVYYwR7wWlqOsa5wrmsznLoyV37tyjLEWNIGTvAK3AFI6TkyWzmeP0ZM7x0ZTT+QkXry958vQZP5gv+eiTT3jy7BkXV+KcKTDoKItZ/hNdhoQpRVUVAjHSYjhmiAwWAabw7LqW2+sVP/nhcyazKcdnZ9x/+JBv/9ZvUs8mlHXN7e2a/kGiqmu0Vri6wGpZUKfOisEdYLWYJI7Ox1lsQLpeQwM2j3uyfGWunEWCdINS7kbkarTWBmUUOkX6GLJ4ZOacDHNR74URNLBtW3SlsVrwj8NmNgShgyD84AkjnaBfvU35F/FwGFQMeZOHzovBXrPraOmlk9G3tH2HtsLXMEYEIcwATUCNpGcQIrFOilBWECYoLUWEJkSMV1LNDwqdEoWzHB/NmE8NzlRYXaFMnf1VTFauya7TaJSZ5IhQo02NNpVAeGyBsSV7HfisfITIImpXiFrVwXpIJvkmJV0un4UCxiSDoTp3GPLK2EjJoJQFU2JchbEV1niUbjLkKWIU8nlyJcsYjTNGSO/IORTp7wwRysGwUVAVjhCUrMNW3tNoObfGZelZ72kbD2ZQmIq5myRdDUkqZNh2HYQgaZbAVmQf6PsOayXw6LsepRKhB5VMTmwyNttYXFEKH8YK9jsGyQisc1nTXSQuB+J4REGIB3uG3CWKVT5/hlzlRII0Bftq6Hj+DwjdB9dhmJljeDtipHjzkWN2osbbv7RzDp0rlR+TTf+UVpmHKNd0qMQPiYaoS8l6PRRlvjBgJAHJ3B9j9wmdDz0pdcRkUfErvI7EoUDJOOeGDo7cbrJMNLlQJf8dC0xafpOZOhSSnDQsTZ2vWPxCvKOy5PlwziNabcAkVAEMK/7QgUSRsEQsNQHYQWpROMJOc3Znw9e++R7mKjE7Pqea1Lz47BP87grVd3R9w7qDelpyNF9SVDO09ShdcRwVx8cLgm+5ePWcs/oOL54/5fXLZ/Tdjt53gmYoK+pigjKWNkSKqhDZU1tQFQbCY7p2i9MGn0oUGh08Md1w9XzDzfUrVm3Lyd0HVIWjUpH3vvEtiJ7d+pbHjz/GGMVsWjOb1qyvWo6P5jx8eAfvO1zMctjpgMuVvbZUEoVGneeunNSIYgPRi/pmCKzXa3zwnN25g9IFUJCoRk6lyldmuPYpJYGcBk9oO/rQ8ZMf/ZTvfe97hARlablZrfnjP/oBb927z2wyZTKdcnNzRRd6oobTB/copwv6dcOLp88oJxVJQ1lXlMUU20di7KAEoqL3kRg6nCmIWubZZruTpC7zLovCEaOn2XhU19H3ieQS5fyEtoncffAWf+l3/yr/5X/5X0Dq0Dpyefma2fwOmpKj5RLfdtgYmBjDdrtFTTyh6Xn96oKr62vO797l0dtv84uf/lTiRgWfffgh82NJRtqm5eTOMWVVYZ2l0OC0pjCao+Wc9eoWReBkOeP6+hJrxPh1t9niCpEJP3T6/veSZPx5LzrAAbquGxV0vPdjVcpaO+IjB6yv956Ygihf6H27OoRI3+9lcvveo5Rou3d9P+q9N11L2Xe4vqPpWkKK+Bjogxdi4H5JyGZVw9qfdeRNlo1URpaaGNhcXou0aQx874++x4vnL3n49iN+9/f/Mmen96gnc66vL9nsLul6Txcj5WTC8fEx07ri/Hgpm32KpOAJvUAZUEIC9l6IWrve0/tERFHXBf/hX/4Pubm+Zbve0q1a1jcrUohUxlBYi+/9CDlQSgJzawuUUeM5a9sWWwiEY9CyL4oCs7Bc31yLHJwR18b5dIrVmhcvXuC7jvM751R1OcpTKqWZLZZZfUI2QSkg7Mvp1lrqqiQt5kweldw/OuHR2R3uHZ/y+L33+ezpM374kz/l1dUVq/WWm/Vq9AoxWtN3Hlc4ULDZboVkZC2kAswAu4tE9ZrCZcyxNsTgefnshqdPP+LDD3/Oydk5y5MT7j54wNd+Y81sORcVsthT1xVVURAm1biW6ZRkfBgthkcwcihSyiaQ7KuFo29G4caqNkoRiJm4nyDticQ++JHYrJUak12FJGs+eCKJsiyJMdLnQE8gZXt38pQ/T/BD9Zd9he4rehggpUCKnj4GNtuOXRfYtpHkMnk+BpSVpE0CSPYVLK1xxgmEDKkaeRUl4HQFxaTGaIGubJsWgseP4YXGFRNmyztMa4PVFUaVJGVxWZnI2nKwyACEtBmCYP+DqtBUgCFGg1blKGJAhjlJqGvBuHyzgb4neQ9R9Py97+l7L92aEOQ5aj9GyJCbFIc1UJOiJiZLwoEp0LZAWZers/Ia++qtVKBkDKuRtFpa6ThI4B0x+YtGBWVh6DpR3ypLS99FIBACAp1SiqA0s0nJwCjQRDDCGwOR7Gy7QNsmYtrR7XZE31PVLkPQEn3vca6g73q6RhIOqxNGO6ypGIjtISW0czmB0WBcNq20GCdcPyF+21zZFC8P6VQz8i1GWFOMooufhMQuXYnccVT7oHXMFXK1erwmX0gTfukszN0M6Wjo3NVRwx3jZxkJxLBPFHICOng+pBT2BY7c/fQ+ZDJ9hpOmMbTChyx/njs3+0JUyIFcpA8CGTWmwOjii5/+K3MMCddwTYTQPfYH86P2qlDyyDe7Tkrt/YbevL4D48IdJG/7RPHwFfsxt5PrrUagqwIOh5IktUq53AEpWS5P+Pa3v8FP/h9/KONFJa5evqB0lqgUry6uePfbfxmFotttuHvvEZ3v2WzXbJoNr16+pGs27Da3XKyvabdrrI7Y0mKE/MV8ccT1xRW6qKjmC7o+cnJyxvHxCevr13QdtE3ETS2TxYxut6PZrJhOSxGeUD10O25ev6C6c493vvF1VrdXfPLppzz9/DF37tzhRz/+IR988FN+41tf5+uPTnnw4IhHb53jXCSlHb0XQRatIPaBfteM+brstblAl6+poafvOtqmpSidFEG04fLVazFvDYney3P7vqPvelE/GniqGqra0TYt1xc3fPDzj/ns89dcvG54+8F3uFptidWar7/3NrvbLW8/fMDv/M53+T//3/4LZqfHzI6OmB0fiRmoUczqkjZ5rq4viLewOFrQG4ihQ9WgKOhbT7trMa7AzcRf4ub6SpA5fSfcUG/GwqPQByqKesb85Jzp8SnV7ARbLvnWd36XZ08/YXV9waNH9wlBcXuzQqPYrK4EDhgC7XrNSit813K73qJSotlu+ezTT3j08AGvC83lqxe8fPmc3/xL3+Xszj02bYf3kTIpCueYWMPN1RV91+J9j7OD+XMLsZN5FQNNA9pMR87ir3v82pwMGCa5Gm//omfGcPvQzRh8LAYs3uFzw7ggvrmI+6xWpLUWGVctCiyucFkRIWbHy0jX97RdJwZbSTC5EcZuWgx73GrMWfV0WrOYL/BdS9/Jwt20Ibdhpb3aty0Xr17jQ6CoKu699ZCqqjk/vcPVRy9pu44YYbE84nixYFKXlNaQgsf3HV3eFGL0xCgKUCGC0pairDG2xDohcc7mCxaLBX3r6VYtL5+9oNnt6Pse33akwYEhxb2rtZxF2fQPYWch0jQNtZlgXUHhSlbrlVR0tcDWjBXFkcENtW0aNpsNXddRVZWoTOmh7ZyZCUrnzRCBokW5pzAWVyiKmaWyBdY4JvWExXwBCZ6+eMHryyuePH/OtmnofY/30kmRAD4HAyEMoi+EbCZmjYEyCL5TSSDnYyKGhO8Tq5tLurbh+uqS29sVu9BxdHbCyekJk7qiLArKwqHv3sEV2dgnwtTYbMyUcswhPIsYBGYi8AtGh22dO2NKIUaKgMjU5u1r6GrEJATDKKj7ISEcNp+kNTEZqXOpgcshdw+z4PA1QSSSxx3rK46XGo3QQkeKPZ3v6AME9ChfqLU4aEtOqeTaZ6lFVJYvReKKGEOG3QjhUjnh5BilpAWuNVGlLFXsMLaiKOe4wmJUiVZOwhFbCFbV1gLrTklU3YwjJEUImugN0RgMVrxXfBqr5dqo3E7WoCMYI4lDVCjtxyAo5S5YTOJ2HsbOVg5MZABkxaMBdiNBTFKaqEyGTMn5GMbXoFgWD8IeY0B7kaIVlaXs1K1z0SjHZjKmwRpFMFk1JApfItqQOx8q8w70iAcXiVyBjaQkJny+D3RdxHtFs2nwvsXYqcRruUMQYxDDuL7PJnxCHrcmC63mLpIxCm0HyI9CW5dhUmpUlkoq4+zJc+dL0KQsGT7CzwZ34QM+BUjyMQatGQ6cxnvH+75YFZdrOuyHakw03sxYvnyMe152TR+VkbzPXT6BS42V3iRQ4S++xhvFv4MkJmUTzwG2IclPjw+SjCXzZ3+2r8IxXts0AFYPk4shwXizDzU+F4BsLInAXAcInDxW5bXIvjkG0v7ZAMnoAxPFnFiqkcVHIjKIWCt0JgE7qnrOyZlGKUep/gX9bsXm1mGNI7oITjEpFhRVTeil83azugWl8EFUOqXjrkg+0PU9KEVZVWw3txIbGJtjIUNMiaZpqeolSQmc8r33v8nq6pL1rWE6LelQuEmBK+a0u42YsvmObn3DrChIvmWzWqGSQE7LwrHbbpjWFYv5lNmkJvgeZy0nx8citKCHHC13V63GVcPVyNLvA+RvSDJSidIRbYWnK0gAUR+1MUqMkCWqQwyEGDPMNc9BnbAuFyaS4t133+PFy1turle46gyN2BjMqoJFNcEYzctXL0lKy95QTKirGTeb1/RdR1BkuVlJYNabNdOyxJiSLnUsFic024YQbjBFiTEQo0dbQwwSpwhdU8RwnHOUtsC6ElNUBKNJpiBoRx8Nxs05O3vEfHrMzc0Vi0X2fqsrdhvpSCqdmE4rxI27F1+5dkfXOJL3kjA4y3Q+o1xNWG8bys2Wqp5gtcL3LevblmIxp2tb+rbBGY3TFpflrmezKs+lRFI5/s7Ngl+1gzEcvzYnY/h3UCn6ZcnHsEgPKlNDB+PQLRcGH4dEwh8EUfKPdC/EOTZlxcGgImVZknwvcmHZPbj3nqZt6Xq5XWlNDEEw7Pl9SNmRQCWMFk+NO+dndNst6/WG7bahb3rhcAwV6BBY367ZbnfcrDb81bLm/oP7LOfH7HYNTSNJxvz4iMXRktJZ2u2avvO0Tct2s6FrW0LoCb6n2TXEBMY6JpOe2WyJcwVlWXByfERRVhhl6DY9k7ri5vqG25sbXr98RdZEAyU4aKO1EBjjvpoyYqdzm9FVJUWpqapKFp4crVprs4JJlp7MyVrbtoQQmUwmHB8d58A5JxljgqFRxJxkZKk1bVFWU2hJLibTGfVkwmKxpCgKTp+c8uzFC7RSvHz9mtVmzTr0KHQ21UEw3TGOC4dH4ayhcJqiEPy+0hLkh4wPtEoRux3Xmw3xtRgRXm1vOb17ztvvPGJSVhSFENjryYTJpMY6iwLKXAXWQ5cp4+NjDNnHQwajz+PMWE2f0thnkJAkDgMfpbQs6ingjBO51UjGnh4EIVrcSCMJo3TGZh8k7aSsw78PHqKWoIi0DyK/qscwX73vIHViqhc1kTJzWAbMvRL4mVGZqGwYVNeNNeiYBPsaAjHIudGCrZFOhhJCY681QSdC1GhTYGyNLWZYV6CVA6wo0ehSOBa2EjSGKBZkgq2iT9B3iqg1BoVV4r+jtQTethC1tEOZ0ZQEspJG3HFkkLKUJCMI8Zuh+o24DCdRlRFcxxDAGFISzXu0Q/De+oBzticvg6zFJuPyJQHTORGSz6IUY3KiNaMbbciu4ilqxo6NEYU7rcCODugiURtUln2NkmD0XaBrA12X2Gx2+L4RMqEDlxXxvJduTvCeaMk+FVHM88KgrmSEj2H3XIRB8QulR6+dlIY16qAWnfFKw/mIKY4mdnL/fu7ut690+MtYaX2z+DV024efdPCUA6L3mBj+2YmGvLYoJkpnL7tW+w6rEwOvUhtJvlPc762DGe5+/93X4lNKosYWopiDxkBMWRg5ZW6K3o+3r+Kx/94xFw79wbUS2KD5AoQM/ebv4p+TuUUZajV6NKRESubg8XHshqH2ouRxVKuSMajUwHWRCZZlQvIt+wpwPZlTV1MWiyNqG7lttmyVYzKZ0bcit3x8/oCkwEeRgL64vMQWTsatyr4o2kCIhCjS6M5abq6vxoqzD5GiqghJVB6Pp1NCEojq177+LV4+e8plWVKVmpc3l5RlSe2mfP7pDVortO9hfc3R0RGp3XJ18YrFfMq0rjg9WvLxh8/45vvvcf/uHe6en6H8hqKoWC6PMabY7195tzSSY8l6N/zZt43lMlGM+2GIIUuCKyHd5/1VpT4/WCo8KYaDWRYJCOJjMVc8vPceP/3pp2zWa6Z6gQZKZ1F1yfHxGa33/OKjD3BlRVHWFMWEwpR0u4amaaQ4HLKfSILrmxvmD+5T1hXddsXx6TnrYsN212MLi1KRFKSDLXGnrOei7ldQ1hPqus5FrSInGQ6Poe0hJMfx6QMMgZcv/yWL5YLFfIYxiZsrg489KsJiMaNpGxKBui6IviX2HRox4XTOsjxacrNas9psceWK5WKJIdJtG7quYV5YfNsSvcfZisIY+XGaxbKm71u6rsXkwvSg9PXvLcn44sJ2aLo3dCeGfweexmEiMnhoDMcA5zEMhGDekLcdFvE46PYqTfIBFxPz2RzrLK9fv864ek+TCd/y3P3iCwNvRAkBa8iYdYYBWIMKHhU9k6oALWoenkTvxQQr9onr15d871/9MR8uF8yWc3p6NBofE8+ePufxp4+zukRAD9WpGCQgIqJS3LfSA7Rtx2QSqcuSOycn3Lt3TlHVWFdgcHzt/Xdpmobbmxt+8v0f8OLZCy5fv2aTDYNS7EnJk8hGfWnfSQohsGtaXFkACpsNqnzwDEpU2+2GwlqOjo64d+cOd+7e4dGjt/jOd77D6dnZXibujY1ytOvCmFKWT68kQCgdROmi6KQ5vXPC8nTJyZ0THr1+xItXr7j38A5/8r3v8/ryiuvVmpvbW7btjj56MEb6Rxmu1APRi89GS4e1PdY6CqdE3cdqnFZ432MLQwS2t694+tGK559/zM9/9AM++PGPuXP3Pnfu3mO32XJ0dMJsPuf4+IQrVtSlZT4VZZK6qCictLObrkUrTVmWmCIb/SkxfpPcSlpkIQo0Q+fwNxcmSSlRWneQkEjlWgJK8mKZUAZK48aq/HDEISFm2DYPuB1f8U5G27a0bYP3DQpP23u6KBX60HVZfikHS0q4ESA4fDkZCZLOBDnoOo8PwpMh4+9TEpNEgUQaQlS5SlRj3RRnpyhdgpJgXdPvFaNMjVHk6wqeSNSZ9Byhbz10gpefFyID65yhqCxGDd0MqW7HKFC3GDwDTGfojomvTZurqUPApBhMGoagJKUhYA6IFYZURcWPQea8LSxk4qYGrJZOW0JMMJMiEw4jmLEvKUlGhusIrFVTFA6RuN4LMSSE/BgVlE6UAwfi5raPBN+jjKbvuwyXirRtoO88vg+s11uqWqFNSVlO2GxuSF78PYzOHRWVoV1KjPOcszhnxHgO6ZKUpQRgCUkoUxZM6PsOpaTTqdR+rxr2mxhTlkAfKbzjeBwC8z306I173vgZmhujEhX7whsMjcc/v4Px5vtGUUEMPpNpOwielMnGA1dOuDP7LoW1Gt+1xJiDGPamcilJES1qGQExCe9MobHO0DVeFL8GxZ+v4CHKNvv9XXC8g2KlmDgqpAiWDnwY0gFsVeekMGT4Cdm8L/rAdrNBRn2OPxBxgrbdZU6oIAom9Tx7KckMNhlhQFQU07kowGmBeMq6IDyg4OM451RoqYsF9dEpbnZO7FuqwnH/wUP+8T//F3gfOV4uKeqKTdvQ+47TszOe/uIXbK5uiK0IZ/QxQPQoK8pz2hXUswWTxYLJfMl0cczjJ6+oJnP5/7PX/O4f/A3aZs3Pf/pDrnZrYop0IVHPBCatlSUmuH71FKJnsVxy8fIJk7LgwZ1TNpdHvHX/nPe/9g7f/e3f4t1336coylyQlDP9xRbS2KXPV++QDyWP8Vm2XQj8cdhbcaKWqXNn//A4QPCoJEUgHSPojm635vh4zttvn3G7vuHk7IRqckJRvs/PPviYq9Ut613Dg7ceUlZTlA989vMPWN1c0voOnyL3z89oNhs2tzf0wbP2Pd47MDWndx5i3DUXV2vKumC7vWHXNnQETGllbCQoi4rS1RSuRrsJ8+URxWSKKie4oiZp2Oy27LZbNtdb+mZN02xYr29IdCgiq/UVoe/QKVIUM7SSwsSr55/y7a+/i1KW1cUrZtOKk/NTXFny8vqK3/u932Uxn/P5Jx9x/eIxWiWB4M8LdJRum6bDKsXR8phvfOM9gfV3DX3f4WyN0QXOOUmQ/n0nGQOnIr4xedPYsRikrQY1qWGhH/0d8uPlsVlKLw7tzpThMkMlZ1CxkgU0xkjbdhRFgSvkCw+fZ+B/7MnQA3J4HH7DqCYRub6+IvYdE+sorEXVFVfXa9zQAk2KyorsW1QK5QqSDzTrHdEHvNsKLEIhREQt3YXZbIr3fYZxyAIfupbQdXjfQsrqJ9pycnTMcr6gLguBd2hFYbS0SX1gMq05PTliXldcvHrNqxcv+cGffJ/17S1d245Ok4O85KEyEsCuaaTamfYJnsmk8NB1+BC4ubnheLkcoW2L+Vz02fPrjBtnkoV9UKhSSSKvGBTeS7Clnbgii1Snxio4dgZTO+rFFFM5rtfX1M9r6tfXTGczLm+v2ex29CnQtR0hd0jE4VqRAoTG0mswOtK7nqLck4+Kwo0SmNNC0UVP6kBFePHpY65fXvD5x5+yuVpx594Djo5POD494+z8lH5a4H0jcJC5wjgLRmO1EMHDKHuY9/IonY2oQFmp5voQ6UPAKYvTBkM2gMsKPypXvoeRqDNGJWTVhqQSqD0PI+ZAIWSMvSS8cQwgQgzSDfmKHiGrhQggxBD10A3qaNtdFnKQCpUalHEC6BBkwQ5735EQI43OEpJJOhs2qxmlFASDz97tXmmHigbda7Qjq8NqXKzQWPlR8r5DrKijrCfJRzqVMfMZFuH7TGIcoBQDqiJFCEYgRyginoDHp0gfE31U9BFC9FiSQH6SJuIIUarzUnjNa2dOQ1LKkItkpBiiDVFblC3QSRGTQmWvF5JAkpzJwTgCk0INUqjSKVZKnLdFgyqhdSQEj/A8EoV1MuZSImqR/pblWJJmgZ1orDL0XcT3Itjg+13W5JfCgVEai0LHhElipqi1p8h67MY44ZwoUWspikoU5hA+lFEKlSR41KaQ85QDxTg4l6uAsSI9HBNEHySYzh4KUqzKcKGY3vCxGOFRwx73ywbvENtmIYYUw0GAFMcHHHpuSIF9TwqWt5H5rMaOh8jxxkgOSvaVeh+yc/tIWh+6JzHz53IRY4CEIdyNkAPh4COmyAkYKp9PT/T/Zpnev6jH0KkaTr7AiId7B2K+dBTTIImjde7+5ddgCITzuc4JtVFQz2wubg5zRRKNajaDzJUhpVFulQyPU0jHL8aEs0JGTrHPBQ3hiIaQQEkXs21abFHicfig2K4alnXBbtvw3/2zf8rudoW2JdutwxSOs+Uc6wyVSrz48COs0kynC1RlaJudwJxSympHBWJorNhstqx3LZPJAmMF/llPF2yy4Aa6oLY1fdeRAjx65xu8ePGCzXrDbDbFGEvXNbx49oQHd89RMRCC5zd/45vUhUOnyP27dyhcQis/7ltpJMLrsWSmvlAk+6IU6qFJrj5MQMZ59st00dRwueW9Je9GKREFqsoJ08mC65uG25sNt+uWZNeYsubovGIeZZ3brVdsVxtePHnKnft3WRwtCE7z/rvv8vjnH3Dz/CVvPXxIsZhTVDWTYsZq3bBrPWU1wZWWMnbE5Nm0G2xRYrXBYOh2Pb71aOXRJohfW+GpJ5q+2xFDoG933Fw/I/Vb8A11BdaBdcJVrScFOonHVAo9s/mEsiwlzu57nNbMZnN0JeMypMC9+3d59ewJF08jm+sLZpWlrgqmVUFJR1ABU1gePTyhqEqOTwT233uDKwpijJTFhBiFG3MY3/+qx68crRwyyr8Mk8qLtOKN5OPP+iBDkiEwCKG6jou8Tm9IN36xix28OAJbLyZYfddlo6IwLgwxS8uOehO5ezG04WKMbLdbqZxOZyymM5wRbLBSGfaAOMwabVDGUs5moAyx9+x8jy+2aKexzoqSU1FSFAVHJ0d0TZs34MRut8XvdnjdjG6Wzlomkwmz6UyMTbS0bHXeTK2T72aNpSpKjuZz7t+7x/X9C9rtls8+fczN9TWbzZaQFPiUW5JvHn0n5B2tcutOZ7x7UUjnIGOA64m08MrsjzFayH9hOiuyk3DMwTICqVDKCsbXZCm/gTQHlKZi7hSmciQL7758G+scxpYs2h77uuR6vaILnvV6LVKmXU+MAyES8NImDlqqw+Bz1TNRljq3UqMEVF58RVSE9e6Ktb7lurjC4VjfbFienHJ8ek3wgfmyZjozFKWT6osS7xOX+RqRQflHRlP0QVLhLMs36LSP8WUeqOpgHkDW+s5jSiMu15JoHESmw2I7dAqlNYWEcTKWYxJS9Ff5CNFnGWAtYawKkqwn8S4RqdZcxc+Yf+kEicx0CgmfYUZ99HREfNq33c0g8xmTbOhJAooBFqgAFeLeiVYpjHYShGmRox1w8EpJUOx9wltxn+79cM0MKXrB3OqDinZCJsgQwObAdeCDhZhGTpmQe70kDRhisnJf0hgzdIBB4BhD6JRhWIgrdNIGbcQbQ2VC0wDNk8KBlfQh5TVQ9vwMwUkj3EtF4Y1oJa4uKsNJBIIZMTERdcTaYf3OyRTDeJSkK/QxS8WK4IUIcGS3bgOD07lRCWeEN2KNyY7VklwKXM5hdMhr+WBUmUMXZQbhNfksg/yt1pgkxogqE69lGR4CwdwtGoL9w2vGl/775qEGeWJyR5EMqSPvUYfwpTwe86ul8ZPvOxj7clAmDOfP9CYJOWU+YySGYY9L+fuk7HWhxvcfnMpHY9h8u/B2tBTLVDYGjf2/aar+hT0O11m5YbhHLs6hPPF4DdQXhTP0yMV749lKCdw1yjkXmG6+2DqM0CpIUoBSjIE0Ma87MaKNISXhDwzcjzGhVHGs0k/nc/rG4n0kGjEl3a02PP74Q6r5FAViStzsKGoJKHXylGVBKEtcDEyqGZDou4aiKimqElcUaCOGbCFC51tOlsIDNVbWmd12Q980FEXNpJrRqZaYAmVVY2wBuiGmRF1WGGNpdzsKI5xTSDx8cA+r4Xi5pCodMbYkeoEOo/bIFGVIGTamB8nI4ThIMt7sDKqc4B1AAfPt6fD5fCFRUWTEgFToBY6YcjHI0mw7utjR6YZqNsMVFbVz+LbFdw3dbo3yPZOypJhOiZXj+OiIl2WJQrFcnmDmE1xZM6sW7HYNPiTKeoLSAVsU2FiinCNZjSkK5vWcy/ZCYlMfRdxFiZJhXVdcXa3oWkFPNLtrUrdB0zOdVFgrxWtnDZpE4QyzusC5CbPphKquqKua0EncZUxFn6E6IUUmVcn1xUt08Cwmjgd3T5hPBTo+nS/wSQypz8+XFFXNdDqTNVtrbJSuceHqvMb+2x2/cpIRQrZLz231MCYTwyMS+83wTU4GMP4+4vSG1qbZY0wHxLlRMkBlYZUNfSBYomC33dG2LWVZiERrXtzbIbjPFaSQ9dD1gOfO7+29R0WNionWtDS5BT/IG4YU6X0AY6nLgmoy5fzeA65vVmy2W27Xazq7RVlFURacLE+YzGdUdS2utK4dg/nV6hble5QIx2c4g6GuKuq6QgMhq8+omMSMKQbq6YzCOQpXcHTnnElVY7Xhu7/zO/w3/+yf8bOf/YwPP/yQq6s1beqyxnUmmWV4hLj27iTQ0gI9GbxH7t27x2w6wSr4rd/8TY6Pl8wX832X6WCyj4fKuPeM5zXZBbmoKoJqiSpjL+0entWFHltZZuWcYlJi3B9w96PP+OiDTzGu4NOnT7i8uUEXJS9evODq+obXry7Y3KxIPmYSbna/zlXsNgaUiigdMSbsq7NeUURNjIned4QuYIsSnTS/+NGPePzxp1STGcvjEz5//HXO755wfv+Y5fGSy+U1s9mMxWzG0XJJXVdMqhqfMfMqQds0lFWJ0YbW+9z1kCp57z27vieFyKyqCFmS2VmLKQpJeJOYIJnc9Rp8YUYHriGBZx+josjkQtko33Dr+goebQy5gyDBkTJGzBpDGMeoUmasFA+clUGmOfhER08fenzo8fSZHzQ4/uYzlwaCOaBkLloXULYhsSbFGSpJB9JZC0OC4bQQwPM8EeNGiEkRgkL3iZE/MSYBMSc5Of4jIdwL+ZEqtTw/eIhZSlTTE2OPIhtnkt8rghokOBkygzSU6oYQJ0OLLC7jmIfibso5q1I+wx7FmV5lVT2lQFlLCJIsiDhHD1pM3FQU6VMdVX6nXGTKPIkYh2Ba1t6QhFja7kSaMSYR+yhKcWNXylPXlqLQeN+QUoexonynjM3mn6V0urMohbF5DNBL0HBYsMrfc+D6Dd3slLL2PEO3eNC4FwNYBbnDsA9KYhwUblT2F/kV5lcufO07Ffs9781k4/A5+bbhOUPINOQ/+TFjcqsRz4bUjZ16kWHfJ1w2cwoijEFxyJy5mN9f0AP7dV+SRP8GdPmreRwmY3ktUUPVPK+VKY3eGAehq/ye+EKwmkZlXOn6WdxoLD2kFQJ51HkuDkHvGAQZBXqP3tEEjA0Mymcgnj/DnCtcwbvf+DoffPqal1dbHr71Ho8//oDri+fMpyXaehINvl3z4c9+TDWZUVY187rk5OyUSen4/OMPmZwc0fkW5Qz3zx/IOUiGlCqms2NM6QRlUM6Yzpe4ouTx44/w2y114bh/5xwTRXggxp7v//B7LBYLzs/P+PzZc+49+hr1ZE4KGqMSRVVQlROWR8f8wV/5PU6O5lxdvcDV4q8jnFvNZruj7b34oyVBwjqb062syjeY7Q3nUik7Fg5kXsq4lSBX5plReyRDSomiLMfuVlKJPonfgzOW9XbF64vnvHr5kkmxZLe+pes6tjqxaT3VpKaeTIhdBykyn0147+FDAoagpPPktzsK61gcn6CKmpPzB1STCbH1bDYbTGFYTpZcX75CaYMrKqwrWe+2uGrCw3ffZbfekXrhCc6mSxZH58xPjjl/cJ8Xz/81u81G5q3f0ncrtAq8df4AWxQyVrvA5uI1ZloxX9zhP/5P/zbr9YqUIg/v3+fr73+Hm+sNf/rjn3NxvaGLiW3b0ly85PbyFecnx/ydv/k3+P2/+vtU0zoH01JtitGzXt0ymy+k+5WETI/JsFwSgxfNv83xKycZ1hZk2zGUitnUTWXsbEHXBdouSJUWqZ4YLeZHhwoYhwuwzhXelJJg6bTBWUXwUVSZcnVeZ7k56U6L8oryihR7jBaIQ/QeYhLSdrZ3V0qUI6yzKKUFatGHMbtvI1z4lttdyIocDkImp/YefOLodMbZ+TmTumZ1e0sKPaFtSU3AE+hNx810xZ27Dzg6O6EJHdOTI+q6YporEbRbUtvQtTvatiEGP3Yu0F74BOtbYlaSOjYVi7M5RVWRlGG+PBOPgBS59+At/pN/+A/43b/xB3z0+GP+1T//Q548/pznT5+z3mxFv19r2rYlz1tS7IlRyJzKGKq65je+823ee+dt7pwfUxXFuE66wmJc3pTGxiVAZt+jZBXNRofDDqltSVLSVtZKkejRJGyyohKmNLPpgnt3DdbUzBcnXFxfMz1asNnt2LYtpydH3N7ecnl5yauXr7h4fcH15TWxkwAupkgfegEXaBn+ftNLYKREkrjSHUYZSivqOImG1LU4bUhtT+Nv6HcvWV1/xmR2zOL4Pu++9x7nd844Pj3i/M4p3f3IfDGjnUt1tyxKqqKkMwGSxwTxhEGbsYpYGiNNde1p+t0o49wTCaEbq8gJSXJJMnELawgpselbXFFmbLBUNXsvUrfmwNVYfcVVYchYf4MkEdZYVAgk5SlLIFddU1YxEZKx8AlCENJ4SDGbBfXgElZlnkCSivlQ4DW6yFoFYuZmXY8xWxK3pGBQrhRZVGcGxEPme2deR0woPNpCkXkQxsZRpUgHnc0CBcoz6L/L8tbnn5gr6kJqDkEkZJ0BW1r6rBwHovIWo4JhDdX7kvkgBKBQ0r3EAgVKVzlZU5ghQcnNIOkYiiABgykmmUyccexDt6ILu1zJlQAhRYHvtK3PCYt8LmOBwNiJUUnW1XaAggJKJQqrqSuTeRQwnRmsga5tKStLWQjBMKFkDTdWEoyiQFtHStKh7IMoExZliTKSDAYi5ETGez/uMaI4CN54YN+tkO52EB7H0FWKA4k7HvALf7UEPh3+PXTgSftAZ2iQvJF0MCYYKhccpEmlx1eLJFSKInISD7iEaLS2WCvFPu8jKgWBFOpEH0Qa2A8NtNhDhuseHgPRefzcX9Fjn3AO53vP0RiaFSrPKn3wuDFIyvn6ENpCGq/jXh43HvSfRlzF4acYE5Y/+9gLNxzmyCbDXROB3/rud+njj9msPmL18iP6zWtS2GIttO0WZSK2rLi7PMa4GrSl2baYEMX34Ugq0HpXgDUc37nDZtPStAHfW9oANY5JPWNxekJZFmitiPOCy+0Vt5eXXDz9hL/19/9jXr96xUcf/Jz333uHruvZtS2z2VwMdXctMSj+6Of/H37zN77Oe3/pt/jrf/OvcbQ8wlnNmbtP0iLgM0QNrpzLWdCaEAV+abO/zpj0DZsiEkroMU7kjWuWhrmgNBpzMNe+0BlR0vHWSkyQ62nJO+89ZHV7y7/8w+9RuAmTSuReJ7MzirKiKCpsPWFnxJw5VSWvnr2iLEvu3jvn5z/9Gb2PTE/PWJ7dw7kJKWq6vqOaiGCJVomTk2O6tqHvWpwtuLy+xljL5eqW6XJJv+1JASbHC8ykoo2Rzx8/w7cibx5CS4qiDGWNY7PZMbcTtDGUSvPo7Iz5rOTe6RFfe+cRykTQ4vX2/OVHPH3ygseff8zZ6X1MH8A3vP/whJem5fR0ydtvPyCqRNv32SBWj+O9mi5JGMK4Zg4UhiHGk7F8qA77qx6/voRtnm2y5yhcYTm/c87N7Yb+8pZh8h26A/4y6NSotpO/xGw2J0aRY+szJEQrRVRpnKDSCs5VawW+j0KuUWp0WRySFnIrdO/QnKFUIY0LbUiCAfQxoE3COnsQzESp5mXZLhBFLWuMdFo8pKxn32ybXJ1wlIVDaTH5GYjjpZKOR1kZisYSfC943t6jE5iUBD6goFBQKYWNYKICa0hBzrVRFlNYTs/OqedTinlFXHWcn5zy8XzBJ58+pveBzks7UypeglmOKYK1JBRlWXFyesr9B/d5eO8c33f4IARaY23myrxZ5RmvPbKTxSgQpWFzVZmYPBIoc1QtuFBxVzXaUldTlkcQMCRrKOqKadOwbRqMNbIIGi2diCju7t1W1Lp830sbdqgiJUR1ZRgrMWGMz5JrAsEhd7CM4EMgamLfsb1taLYd61uBVq2ubzg6OWKzXtN2LcenS07OjinKAl9LwOljQGcCf0wBO5BzYxRHajVIiWoCKVcETFadklMiyjl5QxvSt5To417ucOhkoFR+3j7Z+yKm9St35FasAnTYw9xNAmOz/4JWkPkwRgl5uQvCMfBB3KGD96QUcDkVljEwSDtCUgltLAZFUqJK5AowLoHqpJOQRB0qqSEy33/MYZNTwOCcXBaZDDpUpFFoA8ZqhMaRr2vKKlIMgax0MmKQBNJoBUZI1zEIMT3GSOc9g4pWIo3T7s3qukJsrCxiO2VBiarJ6DCcpX6VGSSoM8RDFhIG0Y29GuB+45AOgMmb0L4YJKVIGbtD8DUGygl83+fzJAGctQprwdqIdRpbiCdN8FLIcNaIClLGTassGS0u5jJnBqU5qW2o0Tk9hihE9jTAifYy02I6F3IxSjoAIe55gRLr7wP/w+m07058eY4JHHhIFg6fl7tL42vug58vvc5Boe2N1fWgKxKzoEFgEJiQYh1mgKf6vH9Ip54APqqx6x8SJA0qS7nqg3V8CCj2gfRX+zgUoRkKmWOyqPJ+P94m+/Vw4YZxm1+IYa7vvS6GJIM31oX9kZOHL96pvvyYX/7cBGjunN/n0cMrbq5u+MXPPyaGHVa1hNhT2YKopEhXyuJFxAAeW9S4opA4qOuIUeGDQmkHJqCtpnQ1y6Nj8dPCsJgtaJot280GZxOx3xH7LdYkrq4u2W7XaK04Xh5xfX1DiJEH9+6JAIoV2e4wddy7e8y7bz/g6GiJy1L4uigIuDe+pT0kZGdlSJ3Xj7yCMIh375OO/ZxJh3+ZfP1QGap98KgvTLOMe4CUsA7u3X+A7xNN47l4dcX17S3rXWDiNNaprJpnmc7mxBBkPTGGQKJpO3ZdhylKqsmU2WKBtsIzK4sCggdkr5pNJjTbDbvdluAT02pG0tB3gdliQWda+jaA1ShnSUqxuV3hrEZFQx8TVeFIUeLB0hl8u6Ga1fz2d75D/8596sqxPJ6zODpFO0BFiJ6yjSyOj7j/6AFHyxNiEhW/8/MjHty/w3K55PjsTARUDq0J8vywZhAakWuwl8VmfOzh43+d41dOMnzn0VZL8VYYdChtsEXBW28/wj5/yXqzFaJZnnqHOK7DbsaXP6jm7Oyc3W7L1dUVfe/32vNv7AL7xV2REw7UqJISfMx7oSQmgYiKCe9VXjyGLG2/pDB0RhCJXJNCdigP1K6QJCQEaFusNZSFw1lD7LJOtRI9+Gbb4PvAbHHE9e0lTduyWq3pmobTWcXxrGI2n+CcySpUHtqe1HuUD0ydZV4VTMuSmXGopiMpg1WGdrPDlpUoT2lIxjCbTamX7/Bwfs7nn37Gn/7kT/nDP/yXPHv+gour6xFrDYrggyiHa5ECLesJy+URJyennJycstutpBIWwigTqZQhIvjBoRKjFKQg7bXgB71uhVXikiwbuB8TjaFKKmQ5WSTKsmKKIRkH1lCuVux2Oxbei4eHs4QUWW3W2MJJ4H+94fLiks1mA82efyOVyyxxByTv0cETVJa9BFH30paRKJnJ+j4E2vaW9a2n2a55Pp8xm8959eoBF5evOL97zqN33+bk9Jh22tNMejEz05KohRgp8gYyAg9ywFYUjm27E1UfV0hHJRParTUSMGR95ZjhJkPdgHH5TXvVtiGsG0CuX2GzXmVNTrQUOmX0V67EB5PHjCInXCmzfiD0Hb7PPgy9VK61hoJCYEv58UbJ1i+654UkNNpiraOqoCg0WvfE0GDpMSoSk0erQU0pV8aGvUvp3DVTFAY0QycD+iTeE85JkgHkiHEvZCFdAbKHknxZq3O3JmgoHF2f6EOk7XucUagvqPIN8294aa0cCUdKDpLdJxdaEoyU/WSUToyyfWpIXc2YNIWwVwzUSojjkqibjKfOHWmbu2gxSPfogHAyXK/gW6zOhpa5CmVMQOkoSYWT5CoGQ10XOYHUQlo3DrJ+v8mKPD4MCcJA6s1qQCHhgyRjX1Q6TLmgJGuTPL7rumztc7jnyP4Q0/47pDRwGIbuxC9LNIZnpzdvS3u4lAzyw+cM3Z181xeK6sNjhvcMPuP+E6RcpBFj0gHj3tF3AgP2vcibRqxwfYLAfL1CDA7NsAccvDeClLD2q51lHArQDJ2swbB0gNIOCaGM0Zzg5WtnxiBqGD9DVT1Lnam0v87DPwcxzJBg/Folny/V7RQnx/f4+vsdGs8f/at/hisKSqdpNw3LxR3aZFn5DCNShohB25rZ8ozCKfp2zrPHj/E9+B66Xtw5dGGZzRY8ePSQvo1cv75mMV1w/foVL58/4cG9E3y3QuueB/fu8pMffI+yKFnMZ8znwjVAKR69/S6bXYMiURWGtxdf47u//S1+8ze/IZK0B7CxpIo3v+RQdIxxFDyJxP0jFAxxw3BK3phbcqUBKR6lnIDENFxJKTZrNSSGw/U2DMIU1lY8fFRz7/4jvvOd3+L/+Y//Mb/4+S/YbW9YVIpkIj51WF1QHx2R0Lx48ZJqNsV7z+vra3RVUtZTpvMZy6M5TdOSYqAqprxutoDG2oLT03M25Qpjbrm5XDGppiQlyl/HJ6e0Vct2vaNTkdoJb6zZrphUjqADu9hSzia0u0hKPct5zdXFJUfT+/zDf/ifSlFaa5Q1JKsEOZIC3jfceXDM6d1HvPeNjl3TUBQlzlp26x3TekLhSmxV531NgdZvjN2R3jV0XTlYqxgKHOpLRP1f5fg1ZGqSYPaARJRkI/Ssblb89//dHx4E7QN5Yq/49GcdwtkQsvDPfvYhZWmpqoK6LnMbfM/7OPziEkArnC2YzWZordlsNqKzPiQeeqguDVUODl4rvbHhkCuOh8FrSuLIvNvtePnypUBcQIzr2lZaZEaDNjSbLa+fv0AZwz1jOF6c4H3PZrfhwVv3OZqWTCuLIuB7kSnUybM8rjExoLqe7npFWq9p1w1dq6iSQnUdoWmZnVeY3Q6/2WInhVQFTEJZxXKxpHq/4s75XX7rt7/LP/2v/xv+6I//NRcX16gxcMp/tBj+zGYLFvMj5tMFxjiqakpRBEI2NQshiqu61geTXo0dCsHRjw4awt5U46mUronaB8nOqbEy7Kxjoh3altiywhUVTdvgypKkDV2I9M9f8Najt5lMaqqiot923N7ccHFxwQcffMDLly/ZbDbsdju6rtsH4wrCkOBkucoYQfs4OoJqzCgsq22iKFpS6lhdX3J7o3n56hOePL7L+d17XL64YLpY8uDBAx6+9RZlBcdHRxRlwW63w54IQR8lInCC25LkzLpyPG9t243Y/5ADOummRen2KIVTjNKIw4Y5VjgPFB3UV1jfHhh1z0Eor4W2iAxzoMtQMOEFeEk0YiJGUWjzPtD7SNfnBFcrqqizOZ7KGj35UGLiZ5JFKYvW4updWkehHDF2hH5N11hqtZBWSkqgRXKa/Hcc9fVlvNv8JlqJ/LYEJ4kYui8swBqy1r7vW/o+4L0fhIlQURKhZCSgThj6LDVKUqLMlD17BjM6FBnWlVCqRJuAcW0eNwkVJWEC8ZGwtiAlL9t6NgM0Vo0B5uBX5H1C60LMo2KgKIrMhZJkyRrpzsYIhStpmhbvBd6nk8jMbhWU1YDhhTI5TKGwTkkHtzDi20HFdDqT4NAHiqrEuBKlLQEy4VuEHjY72T+MsUQUfUhAyAnbUAzy+bzKnhO8wqcwdmgGrkKKUqVWyomjOEmUwlKGc4Q4rlH/xuMgB/kyXOqLL/FnVbPffMgQ5CaVYVLifEhhSzFUy6R+nWWdBT1ixsr7aPwFIpFqZY9kKOip4XNHBnL6V/kY5poxBucOK+iJhCcl/0ufN3JnYg+HyV0Y4oDcGZEgY0wA+77n5uZmhMEqZShcTVVVlGUpkO0Uv/ReQ+C2J3/vPyUJtC249/Ah9czyjW+/jdWGdtfzaf8CFT11WTJZznj5/DOK6TFFvaCcTHn77bexVvHs6adMSsWjB+c8eHBKT2ReTggxsV6vubm9RiWBi7/4/HP69YbaaIrkccZTTRzf+OYjXjx/zje/9h6/93t/hf/qn/wT7t8/wznHq5fP+Rt//a/x5POP+Uf/9/8L/8v/xf+Me+c129sXFLMlITm0MthMrP/iqFJDvJDPyCHqWuWC0ABdPPT7AcTok0GRdDypB+f3i4nJQBIX5Inw1KJwcq1heWz5z/+H/4DdZsPFq1f8i//3v+LHP/sFnz5+wj/8H/2P+eTzF1zfrDm7c86Tz3a024627/lP/rP/jJgiu92W7XbNzeUFzXZH/P+y96fBlmRnfTf6W0Nm7umMVdVVPam7JbXmwSAkMBiEsEE2GL96LyaC98MFYxNcG4N9L+AP4AFJ5oUIIrAdYTsMDmxD2A7CARHG4VHGdnjA19eAQRKgRkhqqYfqrrnOtIfMXMP98KyVO/ep090lqTQ0zr9Ufc7ZO3fuzJVrPesZ/48L7OzspEbBiuP5kqIcM9uxKHOd1WJJOS657+I+1XhMvWppoxcHBx6rYTauaFYnlFaxfW6Xpz91FedWgOfKs0/yB7/iK3jTG99ECDXlZCIGFHqtE0RFUW7LmrCRooqMZ3nsI+OJQ/eHrYtaJ109v5f14zQ771g16tM3LjLunsJWQVWW2ELYEZxvcMHjXFyHV5SE/XO/zb4y36e3pfdejEgthZbF3TTtBjPPhgcoITt0rZHW8qCSQZO9EYn/OnusErNSt8hz6kzMMz1uhNKzB15rLV26vadpmh6DVUB5h8Z0Ho+Dm4cobZlOtzi3s8+5c+eYzmZMJiMK7dHK0TYrVNGKkeFadqsK6prGNdy6cpX6eA4u4raOsC4w2t7BTCactFHILQA3m1BtT6gmFXYkSnphCoqyxJYjHn/8NZycLPj4x5/EO1nNyhoa55ICYKjKEUVRoU2BNOoSIaS1dNOWDRlsv2i/E5TyMLS1iYJRirGztz1LmixgFQprNZnVJfeZCEBZjqhGY9CG0XjEhQv3UZQVWzu7yaOavJ1t4PDggPvuu4/9/X2efPJJbt68yc2bNzk4OEi57JLS1EZp1KejpH0EJwaP8ZEiKkwEZawYonigAXRK19DEFg5uXqNeLjk+PGbv3EWuP3edK89c4fzFLSmY35oJy1MkKUkFs5lJRWyaNnWYlyiETqxFipwSIin9YU2EoBSFscI+FCXiYXT23KhOdMo5P/PF/sUAFdK8iOn31NAxdP0f0iYThE1LBamDiT51RE5j1GWBxIDSiZVNGzmWFPDRqUu8NihjKO2U0hQUxtKEJdHXBLcAP5bNDKl7yq2iiCrxtKcYU2qapvJ7UYwCjaZNBY5ZgEszO8TIcDGxokWMDeClL0jUFhOVnD+l4Xkfid7TBGleaq3qlBrRSiJgMaYkeIfWJR6JZOT0Tcm1Nan7bEhNOHvdyRMDV3etESQfwRCDxuhSotAxYI3w3msVUSYrp44YE2NXFPavqtJCSZwMY20tymiMNUwmQjmukWddliVt09Li0LneSGsxbIT/muihbT3GijPHh4hQvypioKvFyM6ffr3Bev+Qmo0cyYjEjnUpPw/IjHXrKMZL1SvEdHDHJCWaZPfZl/j46TOlSIc8Z5/SsmRvzGlzsbsHkuTqIiTIMxdjK+Axkr6SolW5sFYuOXaF7qcV4pcTXthxmbTXuGao617uh49UlqaZolYUskhqthpT+mRy9IBED7e3kqqspE9MYSvpbK3WhDdnXtLp3ztbNOJii9KR0XTG137dH0WFQLNquPr4Da48d5OjkyUHixrvGnRYElrF8dGCJz/xBETPzRvPcWEcsTPZR68dHFI7R1mOeNMbXs18UXNyPOfo8IhKNzTLY3ANpdZMRiOUChwc3OKVj17ita9+mEcfuR9bRIpKMR4Z9rYrHrx/l0Kd55WvOI8JcwrVMCoiWnuiys3zQOHOHoN82/0IBCkVGNZ9EoPraGvFdg+dg1SGLekWvQBTpq2VLTKR/pCopRNlsTgcDURPOa4whcaWlrd/xZdRu4ZnnnmaT/7eR7h1tKR2sDWbUdmSMJ5QlJHtrR186oF27blnObxxnRjg0qUHE7lIwChD3bREZYjRMN3epShHYGDlAg9s77CaLwk+cH5/X4hPvGNcWNxKaL81iuhFP5yMK77qq/4gb/kDf4AHH3wIbYseeUffaOhNqLUpl/4Tu3GJ3fxPWT1qnd3Tl0NZb+kma+/8n26aVMZdGxlGQWkto1GFsYr5MhIbcMFjCrGVJJwfCSq8yFRbQ2j3IjH6zhvhnD8z+tB9BpKXLRLLmBg3EmOUkqLKmJipVDIsYuI97wpd0oYu75rOywfrnh+5p4dL7FXL5ZK2bVFKURYFOnjpl5AU8vnRCaDZ2bmNu/9htu7b4tGHX4kxitYtcO2C1pbYGNDeoesVW4WhbRx+1XJy9TqL2wfExuPHx8zKEWG5ws5mNDePUFHUmWZ7i70HLlDqXabbO0Qj6U3GFPigePihhzk8OGIymrJY5loRS2x98oIrymIkPNrGAsK+FVMDHedbKfcJPa8PEp3QqOSFl2vJG6v3PhPfJG9hyvlNKQwm5RML3X5MtTAKWxbYokwdSwtmW9uUozG7587hfOiaG5ZRcbSzw2Kx4OLFi4xGI65cudJFsU5OTlitVri2lbSBmOtc0jyJgaAj4l0GFdPGqz2KOuXx5zx3zerkiMXxnBvXbrJ/7oibV65z5dnneOiR+5gfn7C7t0c5qgDFeDKhGo8pqjFVSglpQ0rdScJAG52EZ1LqkHkvnUQ1WhustrQxdIXDcqReR/HSmL68/Y+k3glJaMWYU2dRWeeJdMogqUkmXUdkMfA7tqGU5iJjLYX/3veJJYzk+xtDMJrCTihsiTEa7Rb42BL8EpwDJSwwSueLkahRSPNYinVJ8yml/wVH17wzOTm0lvqC3LU7QvKSJ8YjE4mpuDsqQ9QKpYJ4X9H4RDzh2payTPKpUChsuq4oLFjKonUhqVMqx3A0Icu1LAvjei0aE7vIcXDrTUeU7LWRoVUhxlok8e1L6pVGrWmGoxEFK7ZEAmUpMkSKlgPlSCJU2him0ymFRRjAIhS2wKUoghR9GxkL5zuFoUtT1QoTE+1vlFoLgu4MjD6xSN+hlQ0H50Tx0TmtMhWB9ylwY3/udQrpi03i2DmkujnRycqzogTxzjPmRR6zkqvIKV/psaxZF3P6VHLedM3OsrKaUqW8DxINKmy3h+UUou5eez08fr/gznvJClTfPZv2d2S7D8p38lRkSaJK7qjEs7dX1o81kbIscS5nV0iTW5WUsJii0n29Z2MuRbp0n3xUJEoHZxWx5YgvffsfQrmWtq45Pjzkdz/yuzz//DUuP3+N5eoWihUEWK1aPvXkId43LE9u88YvfyPT6ZSA5eDwgMVqRWlLXvXoY/zu732Mtl5xfHyLaeEpCIwKYc28eP4Cra9ZLZe89vFHeOyxB9g/N2M6q9iaVUwnY0Z6iwvnZ1TmHG9+/WOU1lNYT1UqtIpSM5tHPTo25/4pLTDKSK1TUhVB6P/SeEn6s5wrGdv0Nz3ROSTqlB+TRKyzAROCJ6jkeIhW9vr85JP3VBeWyfaM17/xtVx+9hn+17TimSc/hlMFtppCW1NZixqNCSkVSitNqQuWh0fMDw6oqopzu3tcuX4No4UpbL6qQUlK9WS2TTWZ0PqGlVuyvb3Nye1DrNbszrY4Xi5ofStsW9FLLXDr0UTG4xEXLpzjD37FV/DQo48xnW0JG6AL6KQH5kySSOzYJzfHem149J5Q9093Bsadn72jmJ5NHfzTxacRyYgYHSm0YjqbQhSl1bta+OsjqSDTo6zGGN0ZDpvpSaeQldggKS05HzinLYlHZu2VcMHlj5Gb84EIZPm+7OnSSEfsIBt34lLPTQM7RUcFCfnHKMpIirhYa1mtVuS+Gk3T0DQNRuvUPyPljitFZQqCh9XRnE888XH8ylMf15ybnePCfRdQeoQdGe6/cImx1hQxYJoaDm9x8/YJt28c0N64hT45IdQNh1ducdl5ytkMypLF0mGVpTAl061tXvH4K7n/0Uc4t7NPrR0+SpG5jortrW0uXLjAbGtG66IU0ruAd8JWE6OhqqZYUwoVXG4VlxSRojBdyhHEUxvSmm+jK/7sjhSPg1ZI3UP3flLYkOfoU6MxY6RGpHWBk8WKg6MTjk+OWa5WLOuaV776VVRFSWEME6N54P4HutS1/f195vM5BwcHPPHEEzzzzDNcvXqVZ555hrqpO6+e9UG8elHhPATvcE2gsFGKUQsvBXC+RYrEZeMxUTzaoLj27Ke4daWkqsZ86skxFy7ex/6F8zz08MM88srH2NrZYbazzWgyxVWV8Il7h6bFGtXVuEDm1Mge+0AbAs6H1C/ASm2LgoijbdvkJdOdN/P3A9qmlgZF3WYeupoKMSCEYYfgCW0jDHIEnJNIoneB1kWCFQW9aTzTUZ57Uu5KjMRUAauNRad+PIUZY80o9cI4JChPCCvaeiHGuI3S4T2IWA6piBctip9OSnQMUu8lXadFPrRtmxRZQ6ZJzUqd82IU2SJFBrUi98WQ9CknTSiVxrWR0ASa2hN9i1aG0Sgmxi2Sl06ij0YXWFuhfIXXjqjq1F9FrFvXpbeK8mSsGLSQVmduaiiWTYoWaKKyOC9yYzSaoE2mjI64ZQBlKYqIMWNwC0KMjMYlMaeYxch4XNEGUNqyv78LQYyCZtVgyxHGB7RpE+tXSUCzrH0ilUhsSSnd1iktbIFIUXhZlBvpUut8fDHeWtcKSYBzNI2jsJWQclQVdZ28+EoiOiEEnHfp2YUesUJPkTlrIr/IeuzMDAWduzb/I7/R2/pVNjI0xhagHGioRhXOJ3pkJakkct3SKDQ7JMQWs8TYUjc1JnVOt6YQOasy01Yy1FTE2pd3RPTFkXPIXwAqJodScqSxPjxsHiY/c4+NqCmLZMjeoYid9X39/fHsSEfQSINNLEU5RZeRahKY7V3g/lc8hHOO48M5f+H7vp/9Cw+ysz0lUnPz5jWCd0wnFf/ne/4Yuzt7HJ8seeKJ3+XwxnXmR3OObx1wfPuIxdER7fKY49uBt731zTz+6kfx7YJv+Yr/gxA9v/6//idf85VvA+Dg9jXe9gfewCseeYTZZMLlp55kb2+Li+enPHjfe9gqlTQBtcJS1foGcBhdEPyKjXWTDejuBZWcSpGctn5yMu9qqkajijZRv+dMkn4dL0DTtJycLNbPSCl2dnYoyxJjpe6jbRfilHDC6EcybAqjMKU4/YzSxLbmvnM7vO3Nb+A3PvgEVVlQjjWGmrGJGDQOw41r15mMRxTGQNtgY6BUmqoqaOoVF3Z2eOyVr+K//Pf/zmTaMB5PsGPL/s65RA97wIXz+9A2RNdycvsWbXLO+qZmuZjjmyXHoWV/e4uv+Zqv4m1f9iU88qpX4U2uxQFPjqLnUY0IQUGqQSNHfTqzCqloVGf8+/zhro2M6UiawLh2RWhLpqOx9ADQhqOjOdpoyspKYTIyScrUMbDPAJHRTUAlXl7ZNALgJJcUNtKW8iSrW5dC/XKe7HnIdIZKpeZGqscRrnyvgJCkBKj0eYUPQqHbhbxTFKNpmu6682bmvWe1qgnp/NK+PqCLEoWmna945smnqE9qTm6f8FVf/ZU8+OiDXLx0PzuzCaZp0W2DVQVLfwC1g2XDFEWdNle/bFnevMnRrVsc1SuKctIZGVy4xM1RBUEawEwefRBVFiIcg8a3NW1dSxMgSN6CgDaFpO2gRWGBZMzJGORIRH6ve1K9P1TPU9P3zWmTc/tUGv/smWD9U0nHyBDE44xRLJpGlMam5eq1a8KgVRScOzdjPBpT2gJrNEX63pwPO5lMmM/nTCYTYozs7e1x48YN9s/t89zzVzg6Oubk+IS2aeXytYIQ8SkFx4dARSFeD++w1giFZiqctaUhRIXzLbOxJiKUkKt5y5XLDbdv3eTmjRtcvXaVrZ0dtvf2WNUNW9tbjMZjymrE1laFLg2L+RyykmdkbhbGdGMlG7/wgq8jd1qMpa6RE90aUEq9rAu/vWvQNhUrp6ineIBDImoNKYwmv8fE1GRUoEAiGZmqtfUkr7bCmxR1wBO9w7WB1hkwFaUpMErq7aM2tLpAlSNMqFHR0fpjMJIe1EaLjaUo6uguxUd6DwRR3L04L5QquxQb6WshAl0CNB4fPS2BNtZYHYReNxraYHAkqlJX4L3k1E+qlqXzuBhpG401CkLAGodVLjmnUiQxSPSNUNDGCq9bSl1SGosPrShBgXVna2XRZkRA03rJHw9Kg4nowrJyK6LWKFMhJrLCa6A0iUpc6HpbZaCoMFrGSFNh0BRlizIGHwPOe6rJGOVcFwUVI8pQTKYoW0i+u1GSo5x6oOAg1CLf3arGKkVshS3P2jS2WtHisdakKI1Q8eZxj0neueDwsV0TbhkpLA+KlM+siC4nEUTpkRHFTFIkr3N2tuQi4Limvu0jZo+4ljkYVCRqut9ddBgvz4OQCA90RKW5HhHlP+BTQaaQXzQ+Kw8RHyTd1ePwykuTyigMiU0LjQPnFNGv0yGCoqvhijHgoiOoNmUCfX4Vjc8v1q6wtTKWTYqMTYL2zqLoHbXxPvRSVWMqJA+9o/L3bJ7zRdOHlKbUU7ITDlTXZ4dYoHRBYIkyNf/X//P/4iNPfJTLz11hpEvOb03Y3trh1a96DZPZBWxZUhQtO1sl+zsly7rlo7/zQQ6PV2yNRjz6hjfR1jVlVYJWvP0Pfjk7u1uE6PjSt30p5WQLpTQXxluUownjyQRrLVvTGeV4jCIy3hslxjqdHJRjSiNRW6m9sBvG9+k7l3vc3LxmpkzRO8kCKPtpfErkF9AxEtpRpJxMNr7D2mLNlgdUxUSeREmn56n8jLUnxJZVe8zy9jFXnn+eK889x9d//ddx7v77MaMxz125gqtb6jayaOD2wbPUyxGl0WxNDW5lqds5H/7NX+W+Sxeplwf81of/J219m7k/wTUjzt93ievPP00MnmllsKHmlQ9f4qGL+/zrD/x77Fh6VSzmcx55+AFObt3kyjNP8Z1//v/NAw9dYmd3G2UthbLdvDNd5Kw/oqYb0zvmKwC5eet6nq5rMs56UvfemXnXRkZhEEHoI65ZUVYjqqJAzzTzk4WkAqSNvOPajTm3tDfx7ohoSKgS1uHcTKl4VvQjp4+c5Ujy3kt0IU04nQo0hf6sF8iOayMnh6NDthB7lnM2KnItRr5c7x1OiTdDR+FI1samiE7gJDeSaz0XL95HOS6Y7Uy5sLuHDgodQONwqxa/EoapUmkRMCEwX65YHR+zCp7D+ZyyHDMqRoxHU/xsQX0yZ3l4xMmtW6j9LWJhcTESomZ+dMTi5ATvhHmk437QfeVfFI+QxzFHL+P63iF2+fK9J7U+x9rykDHOYf5c35CFRcxCUzbuvsGhIEWGLNZIG/tqPGK2tUVVVkIXrBUqhC5NazqdEmOkKAqKosA5yYWfTCYorSirMbcPpEj84PZt2rolOIcPLjEoqI7eTdJvgCg9BrSVdBalEs92ykMPQZSQ4DRL56hXS5qmpq5rJrMZs51tirLk3LnzbO9sMxqPcfftMZmOKKzB2kJYrow0FRqVFdZYMapjxCPKq9Y61TkJ7WZkvX5KXW6O+8sUIaW+xLSB5P/JXIV+vtg64psLrBMXSUqzVMkTn1JxO7UCZI633lMEUcYsdDJF0nhKtHLgPS6sUMEQvUaFEVpJSlDm9RJjfW30BES2mZ58ktqCLMwl3JGVR0/AalmDOqQeNDF3FrdyTg9lYahNNjazcSlNL5XyabNJW7VWxEQmEGOJN2XyXBtCdF36mUR0clqoMKPFlN4jhWoRpU1Xc2WsxYXUn1cbYXvzci9iMMjrJjVnksadUnRorUUFSSUz1mLSOIUke3Mxeo5zquTgyfURMUZc64SGtm2lBi314zBay3rVvtsfskyWqHby6qk+W03ccFKFnNZE9m2ulcJ+MXSnLsqD757xi649tTY27vy3rtXI8zRPVqW6I1LqcP4uYbATlryYagyTcZjWT4hSjO+DRDNyN3CVisNBdUw8IXWi7hTjl3lt14shpvW3aSD0pYNK0VPVGRenve6Ks3QVurW5ni/5vHfODbX+wJ1ICrFRZ3mMlMwnFKgWbQve/JY3c3h0yO3bt2hqz97ONg/c/wBvfMPrKapRcqpqHn7oEoeHh7TuiPnxbYwqubC/wxte8xqapmZnd8b+uT32z59H60iMhvMX7gOSY1hptK1SDaFiPJp2LGzGTCA5EVNCcJeCLaqT7Rlr/fFe35fqGRkRMKXpvZtfzaZ/nyEsOY4B05GqsF6oar2+dOpD0tl6PZ0l4olBEVmBssy2d3nwkcd4w5veyN7F+1BFgR1pwmolvdS85Xc+/hTBLXGNZza1uLqEk5abt69y8eIevomcnBxT6khwNe3SUy+OObh5naqwXNq9xPndLfb2doUitzkB7UAZ2tUcq8+zv7vNVvUqXvf6NzCejVFGpUa0prv6zjhQ/Xunt1GeOdE6A/YLhbtvxqcT+1BwLI6PIEbGkyl753c5vH1E0zb4tunijVFF6rrGWtsp67Dpkc3UgT6lKCnVYxbIUYW47hQuTCM5r5Zuoef3nPM9bx8opJg5N2HKTCPpCtMEDqlYUoS0TqlZJvXHaNu2KyyWwk5JW2iCQ4eA8QGFT4XUqTi7bTk5OGR5suC/Rs/B8QEnizn37ewzQhOdpl05jm4fsTxeEFqHlYRtPHB8cCytvFSkrZcc3Tri/N45tkZjdHCY4NE+EJuG4xvXWHrPyXKFC4rrtw64efUq7WqFbx3rpnHJCkToW33wXaqE0ZsLX/YlBYkJQadwcX+a6tin78teBHlFp7QJ8dJl6k5PCNJVV6j8LeOqoh6NiDEwnoywtsCWBdUopbQo2QyCW0IykrTWTKdTRqNRF8koioLJdEJZlTz8yCs5PD7h8uXLfOJjH+PG9RvcvnmLpl0xSl2FiZGmFfYiecbSX8OaQDkCpV2u+0vzS4rJla5wPuLbluPDFSfzI7QpsGXJjevXeejhh7lw30WUUTz2ykc4d26P3d0d9vfPiYFBZLFYsLW1RVWNaF0r0R2jQYNRlmW9ZLlcMhqNOvrJ4INwc0NSFF6+8EpqpAjrrsTAutlSXM8zpYS9zRhLG9vOkZEbCUSEdCDGETFKmqVJHcNVcga0rkU73TXt7DYrOyJ4JxEHVxNaMDGgVYkuRzL3ckViL9dfrit70LPxk50aotA6l4vP+xHcNJ+RGihjovTycCYV7gbG45KiCLgiUhQBW+ReE0lJygpR8u5poymoUKqF2OJ9jTEW51oiopRLCpRsvELd3aPF1dmmc4Qg6YxGFzR1C0jK6Gg0oWnWbE7eB4w2XZF78BIZNMEKB3uQ5n9KG+zG7iK0vdYUEgmOUVijuvGRWpemqSUNtqnTMxTaXGsLgnfgc8RrvU9kJ5DS6btTh2vlpYldl4abnV9kR9V6j5GT3d0c3jQcksH2Ge7hqidYpbZC8tpVcvr41PgzOyRcK/TqIGm/PhkWkl4s42xMz7DKmQRRUpnFs6kI/vePkbHhMASEtW+zo/npOncxIuieudr4PJBYfDrDMx28PiSnAr/YpOl7Sl7g/V5juv6r+TuMMYxHEyaTCa997evwPvChD/42Dzxwide+9jW8/R1fitINhIai1Pyhr/5yrl2/wuHRLWZTw3i6zete9yhf966vYmt7Si7+lzoxkWOaClJanZRnpZ8RuuJpcioo3frxSSTlsVQqe9rjC9wN+BfymmdHb0+mkpvuxTxKuvdv8wz5SbkQ0h6w/urNb4ygKoqiojy3z5d/zSN85de+W1KpVcTjed34tYTlEWU5Yry1z2ha8qlPfpJrV57n/LkxpZlSloFFM2d5coOiqNidlKAt85MVq1XN1U89za1bt7n/0n288uGH+JK3vonRqODw6IDZRFE3c+lL1jquX3mWL3nLW/mGr/96RuMx6JKgU5pTJx/z3pMdCNmBHO9K9Hw6RdufaYH3C+HTiGQ44TmPCu8dq/kJ0Xus1jxw6TwHh0ccHBxRVpraS/Fr0zQdveDpjTgX7L1QAdppwZGjIpIykwr74pqGMRsxIUbwnmpUUhQKafwsDVC8E4rTECKmsFgj1JZ1XdN6L1SB6ftyXUZRFIQQpLA43YsoqogHUkV00DT1SlIbbCGE1Uqaxj315Cc4OL7NRz/6BDcuP8+XvuFN7I7G1LducHT5GsvbR6xWLUppThZLDo/nNICvG1YhcLRy7O/PGE9LjIGqtATXMj864Jknn6S5YtFViR2NUWVFOz+mmZ9QLxbULkgWn7Z4ZbC6wBidUg9IrFmBtpHGg9YaTFGK7axAB00vQrxuapU6eJKUJtXL884ehdBFsgxCOxlwocF7wAR0kCQMo6QBzdhUKVdemGx8LkBPX++d7xSKfpRsNBpx/vx5dnd3uf/++zk4mnNyMue+C+d59BUPc+P6Da5dvcbHfu/3OD46YrlYslgsEpGtkn4nyaPaOhEcZSmdjZUOWCuRMW0Mzs3TRq5TXniDb2tW88jy5ITDGzfY3d1jNBlxcP0K++fOcen++6lGFds72+zu7QGiCEcv6X2tc5JqOKkoy5LVakXbNMxm29RNLVGMqqJuG1HuzKfBOv1FiIg01sssbRtQdr3xx1RYacRgMGEltRJWYZQUBEcdib7F+VZ64STD1BhLWRqK1hFCS9uQZJeoBS6ACZJKZXSAtiaEBbQOpzRGV2BIRoHprjwXfKvU5FJnOYAIZt2rHaNXy2WNpSgMhRXPZFSR3P+vacWIsqagsJrxGImkBMdkYhiNZS5qfPJcJ4UyefC0NlTVCKU8Ec+qXnSKZeuc9A5K0V0pWpWNvCgsXS1WYkCTInlLu1phtKEoSmxR0jpH9E0ycC3KWExhUYAtpBYjKoUtCjTiaczNKUEKNeVRi+yt6yZRjRfCIKV98n8E6tUSH6SjuzGxZ9hlo81LzVhcRylyHrdS0jtCG9V5+cvSYmzR1aLIz4jzOayw9oB+WvP40zz+LHQGajphTNG82EXpdGc8eBdxTlgO67pJrFpa6DkTyb044aQ2MRtoQlaik+zMUQ51T67/iwX9bAnp7L4mjQFEge1ZGTFGFvP5hvqb/e453deFiEsp2NPJVBrfnVKKnW829JeyLLuaz5iMXWF5M91xmwybybsZRZ/pyEGS1p4qGVGmQuvAq1/9OBcvXuJtX/p2Llx4gOlkRsTjQwOhpWmX/PZv/SbTseX1r3mUc/c9zM7uRR56+CGms0Ko7yNpnhQbhnaORgCJCAb6URqJ0vluXJWSsUZnbV5jlOUMlb77ffMn3bFSR5bjxhtVMdmVkH5KJG5DBU5/ZJNSmc0zAKxzONJfSmO01L/k5HBlPEZFdAyUdoQa7SWnlOXL3vIO3vzat9LWNcrXaCvX2fiGW7cOuHLlGs8+fZnDwwX6PkvTeD71qadpK7h0bou3vun1qdM6TKcj/l/f9Z188EMf5Pq16xhV8bGPfpzrN6/ziaeeYv+BB5NukvYYbbpr31yzqWVrR1p0xqB0f31hHQp3rbGUpcI5pH4BRVM7mtWKZXHCeDJmPCrwszEnyyUxVfTnxZWLqfsLrB/u7qNPt3enhwIgby7CB969GrNgEfq+oiiwJqJ1wIecNiX2bowerRL7xkbKgxa6297fmYfbOWlA17GZpFSs3J3XuTbdsyZ3miZGWuc5vH0L5x2/+b9+E710XNjZYRQc/uAQN1/impamdczrhvmqpg5Qak00wnm0cp4meGHt0tD6hlgviYuC1itMXeHblmIyxdc1oWnE2xsCEU1QotDH1L/CWJO490VQSAM9RcSm44BI6t+5pvSV39PkTyHT0xGO7pmF2EVLXOuliZaTDVNpoSZVWgslaAypH4IwduGUdPvOob4Qu06c2ZjsGxpSXG0k31SlhomF/KzKkvFoRIyeGzdudv026rohtJHQyj3KzBEKUVwQKlPtCcmQldtvU+OfKL8n5cTECA5ODm7RLhbMtmcE33J8eMRivmBnZ5uTox1Ojk9SUWvL7u4eSitO5nNsZdkudnBBOll7IovVkqZtpEFhWeKCx0KnLL1cEWP22KaC47j25hqVKX2zN1qaKJJYR5QGYwKV8dTZ66ZI0VCPdhAMie1DU9iYOq+v12yaTgQsCkukQBkNwUFoiW5JLFZIO9UiRfW6q19vskgvCnLyQFYQQDbesPZ26+xZ1lmp1HRsNkooXI2xGGsoikjwUJTSME0bJRHekI3r7PaWdVdYYZ2KscKHFmtLrGnwxtO2NV3ueUw9hHKEJnkE5b1MYy3eM+eFEU6b3MPEpEiRhPjlWRhRAZQm16/kztxibOWao16aUBLXmXZWa0VwsqYzQ4pz7ak6vtCt9bW3ftP51I8wxagkdVXpbly73hIpd1zmTJLzSnUpS3eLfvLBOn0371frc3X7Vm9urJXZfKbYeYezoZC/Qc6rujHs1zUKecm6l46QmsQUtVFdFBYyuxlknXbtBf39gb7O0BUKdyNNYqrvKVpKjOP+M8+f6qJ8MaJDwBojNXt6M+0bpdBxU31aRzflufYzNvL13VGX2oXVUtQx9iMnKkUjpe+H1oad7W2mkxmTyQxjinQPIouMtVy6eJFRUdG2nvF0j9n2eXa3t6ReKDM5RUmxyzJLpY6o3XRlPb+7MYqRfsAuK7gdBTDigNjE2svepW2fMe/0xntrPU6R6/VOq82bz00lHYy8Frtr3ng46++L6Tkhe02+Tq3SWCorkZ30DePKUpUjwtRDaFFGxiwqz2g8YzrbYX/vPPPjJVevXuf6tRuMSs3uzoTz+9ucv7AvDUd1wNiKSw88yBsax/GDxxR2zIULl9je2eXipUsirzbqpeJZtyDv5Mj2mZEH1ftvGqPTc+8lcK8iGndtZIxGltXKE1vxetfLQNs0LE6OKArNqDQUu1MOT+aJ/U0iAblg+jTD1AvVaZx187E3+0MQZgytddq0sgBOynDyZFZlhcYRY7s2CshpVaeKizovg1pTaZItfjGUqqpi6X2XHqAKAylvES3sNyoGKC1El56uhLWaekF7y/E7H/4t/PGS+/fP8cDeLlO/RC+XxLpluVpxsqo5aVpWEfG+FYqyUpycrJh4hyeAAR9aYluj2hqikvqLtpFlWa+IriV3ZJCgbipGjUIPbI1JdSvJyAhSeBlVoooMMaVkKGJqzFeUhXgnjQhGndJOsqeB7jtSb5KUitWk4u7OyPBK0pFciy0Lok89EDy0ISdCRKlR6ArMVNevJCsoffSJAba3DKNRSVFYrFGUZcFkOmY0qbh27To3b92kHJdcv3mLet7QLKT7ekgbkY/pnmPicwhCX2gNWNMmpigxenS6tqwI1vNjVkeHRCe0gAe3bnN4cMj999/P4cER4+s3JFXNe9rGMR6PuX10m3IyopyOiKrpak8O50f41IG9Go064gKtTLb+Xp5IRdvBSf492VDV6xC31tJlWli4EsWqkjmLjlRW5nLLuvdONlxC1NjKSCFk2RJcYudB2NVQqWZMFUmB9WhTEFqHio7oV/LPpI7aSZGTa0wECdn81ZlvnKSsJkGe1hZJAcxUoqLbi0zIBXhKmy6lx5oCbwLeRqxFKGdzYXAAYaxK/5C5kBn8ZEN2WFtS2CqRaORu9xEQI0GnhpQxSvoSUYwuIYYQdi7nI5UyKF2k7zOEKIXTKvW1UNqQ895juqPgI8qoREkrCnKnhIe8GSphINRi2MQoXa5jkqWtq8VwN6Zz6JDlSTIyRElfK259I0PGWfJWxa+UCB1Q5JRRxZoGc20cvvi+kxX9TgFSa0Uw7+Tr9Cs2HGi5bwUb3mH5zhA21X2d2eR6x+SLWF9DGmsdujmGkga5RWkwtq84SkQnpGhSSHUZd/p7X/6Q56FRSogK+qrppo2hqMa6p7zmNQzr9CaZ1b13E9vcGsZseu7P0mPWnv/N9zqdIx8b1460vqEh0ShH62rG4zI1Ky5wTlLrjCnQKQJcliNe+5rXcnJ8Io3fWsVovM1kOpV13qsrxYfkaFxTHK+Z1dYjtfF7nv9JubU947xT1ftjpNZGRafs9mtlUrfwXIIv9bh0MrbjN09Roe5CTzmnVd4DWDt2Tt/F+t7kvF3fod5RXaPbqEDp3B1JnKBKo62C3E081X9t7eyxs3OORx55JaHx/Oqv/iqHh7eZTQu2t85x/wMX2NnbAWOFQMMoJrNdXvu6LTTSTuCNb3oL2liq8VjmlMo9fZLh1L9OtflUZITzda9fzXNbJD8bH/p8GhjwaRgZly6d4/atY46OljgXGI2gdVCvHIcHB0xnEyaTMQ8/sM/zN+ecLNuecF7nJueIRk5HQpE8buub6xskGwPSeXNM58GW+ox1saQtCqpytG741Laslg3GivGRaUFd61ktl91z0UoU2SyNsnKw9rppUfa8F0XRNTivCDokdiXhkJ/Pj9DWpPxm8ZWKAhsJ3vHxj32MZ80n2R+NeMsrH2anhCpGPvXc84R6AaVhVM2odrdYtCtu3D5ke2tEtT1mtDNl7759bDkhGkurILYtyolir5qWWNfEusbIfpqXLyEVoTrvaN2Kul5S1ytKE7EmNfwy4hHRRjSx9njOYi7pF9pqiqLElFI3UZRlt7h9DPigJZXBt2gTca6hdQ1t22JNiVKm67zpvaOtV53nQkfJxxwVssBCDDQd5bYslxytqKqqUyxPzxGhNK4py5LtrS22t7dY1TWresX5gws8ePQQR8dHXLn2CM8+c5nbN25z48oNrjz3PE1Tpw70aTPxGjD4oGgVaB0o9BFFUYi3AYOxUjsSoya4mrHRKGthtWDROE6O59y8doPnLz/HZDpltrXFfRcvcnRwRDUesbOzzX2XLmLGBZdvXuPS/ZeoqkqicFby1bVrabxjb3efpWs4WBzzutH0bpftFx10BO0DynloE6lC2khcIYZElg2dARFBU3bEEmNjUTrgdKTAU5gSqyUqaW2BtQVFYamqEhdq6ajtkoxQUhfkYyHrVllMaNHai3HRzHH6CIkBSnMubXKXctNTLFRX4xSToRFTk7vo13NTqLnzJpi3A1GGtJaO8dYErBGD0nmPcRHwOBdk3rWe4FRXHK8waFUk41ZRFCNJdTSG6eSE3PRSLxcYLaxY0kl3baR4B7oQz7/3CqWtkA7UDSiLMgXalphiRFxJStqqkSioFJ+JbGyTPIwxsmprbFEwKnK0TQxE71yXYippP0L/a7SCqBMNuXRMXy7nIqeLGYtFjbGS2mWtpW1asoe4X4sh9ME69QsSmtukWQiVNUi0KinqIabnoLWk4J2xn673HZmbnyn6dR8qzfOo+q8HvF9HyJ1rO6NYJ5kakq6VezfEIPJQjE8HShqjKQW2UEBNjML6433EtQHnIk3t8cFhraIo750S8cWCddRgXUsBbOwj+bd1osymKQe5NN5hNhJ2+/MkG4DlHbZpp0yrbKTIObJhHFIH6rXRI9kJOmqKsugMjuy0IKYi6+h654tUVUkXPUzfrLViun2e6dZ+MqjHwr4XlaQpI86wLnVdyffn4VG98bljdkQF0XSOIDkuOxqSQ7NXN7Yei/6Z8vXnc4qHo3MSGAPBdaltIfacMSZ1t4+GEMrNUyR5opQiBo93TgyT9G0iF3p534AyfbKh3hpPhkYwHghoAlG14qBNLHtRyTPxQRw1BmGMCzpy36ULRByXLu3xJV/yVrZ296hdTWcMRCiUTT3KoPWR8db2WpcJbTe7uoLtjYehXuD3O3Hmc/wC4K6NjO3tLZSylNWIo8MTVisninOINI2jalriqGQymbDrNLqoOTyaY0zOK00Wb8/ztEZa5sntddrq150yKR4Zp1zK51535Myf0Sn6kLmXtTI4F4RRwDhUkSZGSp0KISYucqkfyClUOS0nRzPquqawwoJEU4snNIf1iVitOiaQZd2gnaIIWpq5FBqrgeCom4bWB5YHt5lox/27My5sj9i5dD9udULTtDQLxdWTBQHPdHuHSxf22Z9MGY8nNE2NKithszEKS7J8lca3LVZrqjJ5abMEVNnLp9AGnKtp2xXOSdMelVI5cuhWJ8+e8x7fOuGRdxrfOnRtpJnNdIopLKT6jDZ5yUJwFKlATKMpbEFZVChlutxsawsqJbRzwviSummkVpYqFXx1wk/bF9zn+5u4pLu5FLnSTMYjyqpg4scUo5Kt7S12F7vMdrbY2t7i6PYhtx+4ze7ejNu3Dzg+PuLg8IjgfBL0GuLaU65piE2LVl68zl48pSZR7RKz10HSraKPuBhZngSa1YLjw9ssFseMJ1PGkwmHO9scHR9CaWm05+jwkJ2dHabTKUorqqqiGo3Y2dmRppPc4cR52cHXDt96QusJbcC1LskDMcKVkfXpC98pjLJWrRgRRlMVEnp2JmDwUuiXxKnWpvPQ20JjnUEICNaba1TSLyZGMXyNnYBdEaNP/2qCL8CXBN1idUTFRIetM3uabDanNdS1Z/wMz2WUVFPJs1VElZVt+Udq4iee5xSH7FGmZgcHUSOBVPHuyQYbibGgLEc45wjBMx5NWK4izrfSsTYkXSGdT9IX1xu5cy2LZY21UuTZMRR5cD7Qtq4zsmJK+3OpPkRpkbPiXReSA++cFGtHSV0KUQyCnAKUi5rleiUqlRXsXKBqWafZyv0HVAjYwnavtW0rhegpZWQtzKQ5o9ZBUiEUXUPHLBPXEYlT6NYyG4rTZ4J+hEPGXtJWYwypp8+aTQ4lYxuCpA5K9CGmKK7HtY62FYUzJIVMaU1RSiG/LSIhtkSviUEKx32IKZLsRclNNRy/n3BnFKEfYWDzbzYNi9M6nDDYaYSRbf1G/wwxf8+pYeyc8EBqm3bqWtaySq4rpSGnF5SKPe1Qpf9LY8/1Fcdubep8I0pqnFBlOp+wP6Glqmzd86M7bTdm/dQyel/d3ZBSGzemknddxRxdSP7yl5hSubXABvQ65SoHQnLUIcea5HpSZEoplOkZMjHV4SrfjZ+VLqRAIhXXrL+j/8F876etzBi75yZ6iKR1e+/xse7otPEhpWYalJJ2Dhfuu8Rstk3TPMruuX2KsiJERcjPXa1jbHn0+0GabOSo9Hs8XU8RN/cc8aWsa1d6Kt/GNPpC4q6NjPFkBkq8hCIUF4TosT6yqhPrReuZjAr2z42pJi3z+TJ523Rnnefwbj8ctB6JvKGmCZCNuG7gZIcMPkCQ9upi5cv76xTH/HkJ62cmKuG299hC8pKNMqjUKTWHoU26xrzx9XMqjZZQmdGGkBTa4J0oyp3kkk1ThSieMm3BSt1BDLL5u9axXK547nokhgZldplt7aCrEuoVq7Dk4OSI0mouTLa4sHuO7dGISSF9R7RRmFIiD6UCorRjaVNvDK3XDdxi57VIudg64n2Dcyu8rwEpfs+LOGWMZykk95b6S0Qf8NqjEm2sjQFtDJ4oBfX5ueYzKY1VuXt6Dk/KZ2zRY/xCqHKzPFMpApQ35dyZXJ5tzwMR0pzqad6ZzQwFla4olQghW5aMxmNmWzMmsynj8ZiT/SOOz+1jLZJKdfMWAVjMpcg/BghBDEcdAzEYXPQofPLqOKKRjUPmOZBDq9FJDngMuKalrcUYbdoV4+mU0XjCfHHC8fwYVRicDgTnmO/tsbW1hVKKyXTKdDbDakP0srF8durOFx6uafGuFQXUOXyTcvCJKJ9SFrXCeY+1AWMtWpXSkR5J1SlsJGpJF9HKrXtZhNSULf3PGE1hhVktr4uc4hS6ma7ReoQyFTG0BF/joyOGhuhqlGmJQRF0St7qeRg5ZWT0o7A5agJ0FJCkl0SZVil7Zx3ZBbrUFu8DSuUC75SamFIqYvCYnpNDziuKfFlUuFKMirKsaF1NCJ425PUk0QsQL7d49ZMS7wJN3VAUs06JiYGkpAa8C71zCA106IwMnaLKycyO4qQIrevSokKIBN/0sh7kufvEdqeDynoEucZOJaNOHBS5jid0jqrctNV7MUpPFzVnB1dMxcAxxN4zUt21rJ8QZCkWY//V9XF3uK87bfVsL2Ps/vX/l5xm6dpDdnSxNkqUyjWEqZt3ECPTOZ+K4n3XWNAWUodhrUpU85Ka2hmsaZ8jRqJ9AcPq9wnu5t5e+AjZvTqK53TwmWncL2F8yh5oTr1253ed8kmccXFJhzrzO05/tth8L/18ydLfFxoQdfb7WWFeq8p34qwxO/1s1n/21ltnpJ02A0VHlFTA/B353uSzSmUt5vQVbZ6rW/edJ3PzuBxF6Ay8HEX0nmxb6eg7owCl0bpka2ub2Ww7OTpFmGnEubGuh+sZST0Hev9We0fQH92+PtoXdGrzz41R+0Lj7ilsR3tMbI0tRwTlaX0jwiwKR3fbeo6PamL0vPXtb8ZWBUeHRyxXS5zzXa1D5gJXUeMaeWDRKGwhaTQhCNNITKE0IokmTYZMchiBrFgoTSDQOsnvrusa5wPjySQxPSicP8QYRfTSMbxSMTVg02hrcNGhXZR67SCbbaDBkwrptKEsK6LzxBApVEFRKJzXtK1wurdaihctUI2SweOjsNq0La0P6FL43lUVwRiurY65fW3JU0e3ePWrH6MoprS64vn5kmZk2LMls/E2F6cX2BuPmVQF0cJ0d4aZVjgNdh5pG09oHC566rZl1Ujal/AsJwYSUxIVNKHBsSTGOYQ5MRqUGaGUJURpFGdiAKWIkynLVQMoKW4OkFse1/MFrSskfWpcJWNGY5UltrL4TGLm8Y0nqiAZSKLt4ZUYSfJ8I7i2S5uJXjwjIeY6hJT/HqUoVp5+Wt8RSVtJxqstyp51mo1LGI0nTJ3DBc8559jd3mE5P2Z+fMDO9pSDg0MODg555tkrfPKTz3D79iHHxwuOT5Zi0CqDjhNUkEkiERkrPTd8i07pLsYYrIbQ1KgQKLWWWhOlMVqzmh+wXByBMRSjMdvb21RlKZ9dNtwun8NYS1FWVJMJk+mM++6/n6ISxh5jLN/0+Os/8xX/Bcb85KSrA2rblnq1EsNZKXKtQpTmEGgjqWmMJ4xGIyQH0GAsWB3W3jxS5Ck3blLiQCh1QSwVRgfaRiEUixJ1CjGggyZiUGqCNkuJYoSa4DyxrSFoCjsjmlSXoCS6oGNEusMX2Qcp33tKscw1F5LimTejiNFShOxjUqq19GPxPlLXnuXSJY+/pyyFVhYNwXtCaqSnUq2GDwHnI1o6vFFWY1FhNayaBY1b4bxLxkGKzCXPl88sOMaCa/Gto6kbtraE3SRGRdumvi1evOZZfst7a4rcvOTyeYXwQaJWVZVrLxzOeazNzUA9sE7ljIAtbGIflPqS3FB1tazxPtU7ZMratNlmBkDvJSogmQiJ6jxGTI4GpTmiEtWxGJuyx+Smhfk5ZYeV/JGK79k0GEJ2rMSkxkmnP9Yep071keNT8711gkliO/SB6FOxkg8YhP1HKH5TFMO3ydjzidJdp94Y4nSy1mKtxhjFYrnCOeEyAIkwtU4MFJMiX5lhcMBnDnmqn60qdzduoy8WdfFzDYVKndgFyRefncgdjevpMTs9Pn21Np56/07HgYiAzdey/ZTFhjFFYhu1eN9CjBhbiPNDJYNIq65pIIhevD5tlgn9tK0sBdIrZxlld7xy73FHDcs9dkDctZFx/eacne0J0+0J6Iixlvl8zuHBMVqvqJeeelUzGjXMT46Y6hmPv/oRPvZ7n2DeuuwYB0WikXSdlR+JaNtrohRPhw9zugEb6ZYS9k5RhsRoQqLoy435spUqaU1AgNb5xNMutK3CHgHRmfTo1w++blbEGCgwIqCR9ihKF1hbUlWWo6MjcoSlJVIUdh0mzZuil14LwUjah7IKZSyN8yxPjmmf/CQ7OzuMpyPGO9vsT2ecryY8uHOe0XRbmluVJRceukCclMRS44zChFY49avAyXLJsplzNJ9Tty0BvY7YGIsjgIvQBHzjcI3DtY75qpGZoEtpDLecE9uGqqiEHtQ3xBDT5icNukZbUygM0WqikbQ0ejmxuYDZJ177oCT8GZEiU2tLtNIpUiIFjOsZoGQ8TUozUGvqv9NsHbBmXfHed8X9IDmdIR8XhYnHYomF5PdvTce4nS0m0xknJ0J9u3/uIvc/8CA3bx5w+bmrPHv5Cov5gnqxoD1ZYZR4p7SSAtnoRX2oqoK2ES+tVZrSpNoW0abEe5ny8wOB4AOreUt0DUbJeLXzObaqsEXJaDLGliNMUfLcs5e5cOliYkR5eW84y9WcGIRAoa6X1KsFhNR7wUNUCq8UTZq3VlvCYkVdjSirivF4jC3tmpXJVmiVCvW1cKRrcaUToxj5FIYYNCoWaAqMBq0CRifaRRUJZiLeDAI6LsUQcgtCe4Q3CrRG2xG5mZsBfPSgDJKQkAWTR0L3gNZCFeld9okhRYfJ0xahKCxl6ShKaANoVVAWkTDyFIVnVFmKokSphhA0PiTvdPQ431A3EW2n6dI9EWEjG+nAuJnQ+JV0HncOv0o1Z8rQZKO+i6x4Sb/xEqXUqbNv7RzL+oTGLVNjytShPiq8z+mNYiAZXWAw0qLASz0LqUeFUmJ8tK4Wh00M4niIHh8dPnqssZ3yTgxJyVa0TcT79XrP8r1L91CqI3/wicQhRrVm61EBtEenfcVooRatV2Kk+RQNCEhE1odsGIjjROmcm58METEXkrEQIWpU1KxrSVUyYNZGhldiI0cimKRaBEWbmuhFLxHi6DzayNyOQWSppIFp6nopHecJOG8JwSYDJ/c+SJ3nQyGU4bm3RiIr0UahjU6OkJcze8QmPt+FrF3Rdu4Ev+H97r7xBa+t7732oe0iVyH4jVq0dWPFe3bpnzFy1kGfIRTuflw3WbPOQucxPCuQkxzL6ZgeHXEXR8kf6o7rOXx6j2DNJPciUZaYI5xJX1E5zUu+O7+n0NiUyZDlf0eiE0Fpqf+NsXf/Gxca15GQJJvWw3PaKHlp3O2z+HSf2Wd7nrs3Mq4fUlVjJtMRo/GWfNgUEBXz4xpvRZFzzZJb169RNwushul4hHce72uEPSApgTlVan3J4nVPnV3z5oVae6xTAGM912IKnfVDSDI8OO8ojKi1KUVbFP6YhHpqwicpKOsHH1KOty2sbJ6hxTkvXb1VLvqRCVUWBUUpHXvbZkXwLTGkQGuiiVxTEIY1/WpKjzAmGTUe5ssVaEPjHVu7E+moPp5QjCeocgSFRVUVk+09WgveIFS040YoYhtHFaGolpiiSClqMhGstQSl0EGhgsI3HrdytHWLGwdUKcpy8I7D+TGLw9uotuZVD7+CIoUGo3NoFIVRlEZRGgNGE5QiJI+tpKJook7Gn1JEs95qiZIypNW6b4pR4rnOikOavUhepCgcnh6HeH/GdDmlOUIWTwVK1Xqpap0q4YU6uaoqCqsJVpp0jUdjptMZWpeMxxO2t3cYjccUVcnB7QOObh9whKT6xBA6ry4pUtL6depKTE0ZTdcNtXdNMYVaQeZgqrUgwlypxCpW0Kwm2GqEthZlLcF7qtEo8bW/fNG0yzTXPG2zwre1CFgtRfYhKpyCVim80gTtMVEUVFGwIkWQ/g22QJT8VMehE+2g2HWp3qBQ0lXeJiYVVFrLa29VQKIcqBFohzINxIYYWrxboHwlFIQxIH5mldK3ztiw8mZEqg/Thja6buPJwkumsxZZY4UlyreRopADtSqxNlCVWoqtE6OUD5HGtegQ0NoRiBhXiuKM1CKJ4VRSVSOqcoRrHbVtUMqlFB3Jz496nVjgg+/kc+5cLulPjqaphaJbCbV0TuWSKKMmqkj0LjE7pdqkXlRprVSFdZ8bYte9Oqc0SZqn6owMrdW67i0dFwHVoxM9rby44FAuFWZ6eTbe+K7mwZKbi0kj2H7KWT5fjn7KgWnDySlyPbUy/5NVnj2uZ2y8av25vncUYg7Wy3eHIKx1mS0vpciEuI5gZNY/14ZO3nVOt5hSo4KWFFefviNFjIzO9LZnpZMMOI2cMtefy9mhFZNTMdc6klOS0z8hUdpMb91IdSE7yHKkUNZFlzoZ18d8MeLF2EJPH3eXZzz1M/+eHQn9Y0/P3U3V/c7z9a8z3HHkHejJ8HVaWPpLWXGeqLWuEdcfItderb8jdrpspjbe/P4z7uUMK+u0jHopfLZG9enn+9ngro2Mp5+5ytb2Lju7+5TVjtAn2hGFrbjy3E2qKjIqLfOTE5596knK0Yjt/T12t2doFPWqoXHCd2+0Ar2m3goo8QQpJdFmfGetKp3C88maVdBt2DFGTG45uTFAwreulSFGYQzqwt8xhbGIqMTLnxe1Dx5PpLAl08mYNniCF8UyBCddGKNCEVDBUJZTtne2mEwrDg9usVzMaesmXYVcVJ+KMdP59vtvSOMkxWq14vj4mMVyjlKBnf2KoLQwSI0qYlmhxmOK6S4hSkdqWxZY3bJa1dSsmI3GbPnI1nwpXu9GGjEVZUXdOlRQGK9xK8dqUbNc1lQzT4HChcCibvjkk09ycO15yuh5w8MPg5FrqNsGHSKlUUyoMGnjj0i+eqGlcVrUqehTRbxKBDwxoGJEhSDexKi7tZ831GxonGYWk400p8aIGbghuGWSSL68IaVapXOjyGSGUhiqOmPE2oKoNVErtpVmMp4wmznKcsRkOmV3f49zF85z/r5zXL92javPX+G5UnF8dMhyIV25xRMsKkbrUldewIwK6jYIO5GWlLzcKM5HUVPRCptcn1FcWqxO5lJMrBXLck45nlCUJbaqWBwfMZnN2Nndu9sl+0WJZrUQGlvvcc2K6Nv0TsRHgw8RFyEoRdSJQEBBS6AJjto1lPWIsppQlIEqaEalBiMN9yB5mJNSakiN2FLzOfmq5LxAjP8YpcZB0pvAmznEmhBW0J6gi5JgCpRrwRRi2GjLugVU+tYknLJKqZQQHyziUmp7IihliKkbsdYQlbAnjaoxLniokqExmaCVE+pkC95J1K/xjnm9JEawxjKKEaylsgWllU7cEkmE8WhCU9d4H1itamDVRfycc9JFXmtCANc6iVYmT2pE+ty0zksKqmsoy/IMGmkZ1eywycZJshO6DVgU4Liu4+i870EMnhjFex8j0QdaFzBmbYR0G6tS5AaJuZ6hvxl651PjsFyqpTDaEYwcl5tXhVTnkFMypc5mLXM2kQ2M/t+fnQLY1SSCMNQpiXM579DWYpUw6sRW7qmu25QuJs64NtHvaS31GJmqVgyViHdRaG4VKVIcsYVBG0mtiz1v8O8PnPHM7gH6889a2xl73nvq5VKiQnbdVd4YScN2zolCatYRo8xYuU7NkT20aWrquha68rLsnKun3PMvgLu5z5eaq3fvAX8pBff0+/2/N5XsMz9NxK+zVtTaIbk+3wtdb3+swsYY5z06k0qsz/NC1ynnW99vPnei/VZ9GRElUyHG1DV9bchEUv5975zr+9xsEdg3LjZTcPM93Xmdct7TDvaNuzr71TOeYZ8GPP+8V2lUd21kHBy2fOSJp7l+45i3vuVxCjvDWIvSLZPxmGZZ45sWqxy+8dS+5dC37J+/wP7ulPG44pNPP4MLjhAlZA8+RRYUrk30hKyNiXxPOVoV19lRaWC6uZhozxSogAqKpmnQyorXMhkZYe1gl/RXB0QnnO1KvHBVWbKzs8V9F+8Da3ju8mVcU9O6dS+FqA2x47SGvb09SquZn1TcunlDWIWcI4RIUWw+tCygXKJ1zEZHVVUIw0vDlacv448WLHZ3aVeO+x94BeX+eSbbO4TJHjZK10tjNNUoUEwchXcUuzvE557noHEYWxJWDTpCWRSStx0iJiqaZc3J8QnHRyeMZ1ss4hG3jk+4/NxVfvuDv8lWaXl4bxd95RonTz3Dye0DFkfHlImCVheWYmtGMRlRTsdsn79A3D6HqsYwKlGlRhudiJkyow8prSWiMMLV33lz1hP89KIRIyPRDUZZttGvvUm547vMF82aEr9nqEBnYGjE8CuwEtrUmsIU3WZSVSO2t7dZrhYcHB2xuzvhoQcucPTKh3n+FQ/y/HPPc/PmLa48f5XDw0NWq5pVXVPYAm2lQH3VQqESq0eIWCJKJQ5wDQqPCkmhddJ00CqN82KgRqXwIbBsamojXdgnWzNq77g5P77bJftFicX8WBQoFDG4HFxCqUAboY2B1nuisZJC4jXOtyjXSA1VbTG2RpsVxpaU1ZTZ2DKuDFsjg9eWwhqs0XgUwUlheFGMJGoRYkqj8ck57YnBEdUITSGbmq1ALYEArsY1x4QABWN0UihQCmNy91nFZq4tqBAwSlHYghhVV4NhtbBdgcgtbQxlZRjHguVyiS6l+7Y1BoVFp6iX14aidJimwSOefx8jfrWg8Y5xVTEdjdnbnqE1eG+wrmU0dvioaNpAUwdcokuVa5bFEkNgsVwSQmA8GoszRCl5Jt4no0GlOiQx/LJxUJYpakqL9CiQ3hxN4zqDorCiTLWtx7VBPOzZWIhemP8iKAxtW3c1Cm1L4vIX5iuthU7Y6GJjE5R0r7Vase6InhuOxnStFfiYojZrRS6mjsun87LvQLZeOv+l53Q/hrtFdpIFyX1LKWieNgRMSvOU6JwRSmZb4p18v4vSawQiQUUiDmMUxghd52rVEJx45mxh0GWJUpGiFMpRrUNSgH6/4HPh8ZdzSv8aUZNCDJ1jEGAyLtM8Pq3oSV8pYVx68XQXazXTqdD/SxTjtCKe3WRfeOQ1d3rvzegyERJOMz/mCOnZSLqAb9frMEW410XvqveP3munz9Tx33fXERJjWzZSjDlb9T3t6Ox/X16za7mjUp2ZS0alOIzE0MyuJunT5ENiEuzuJRCiIgazNkAUbHbnPj2v48b35+s9/RxeDDmr5sUjT5tj+tlGNO7ayAjRcHyyAnXIlau3ue/CNqNqwt6+ZX/vOsfqgIU/oSqlf4YPgWZRszw5oRyNmYxKdrannCxXrBrXE3LiJfIuMX4gSkeyN9l41n2qL7IxotYyH1FIZaKIhxIV0UaMCk3PcOl+TwwqKkihdPDU9YqTE/EcWyOUsG2T0mS0eMi99ywWC5lGoUEhAmg6ndI2La6VJjqn6Xr7YX4p7oxdHqbRGmUswQbmiyWSPlbw9I2bBFtBNWHqI5NqQmHE2xXjEl2UTKym2N5hdDSnGk+FVzp13G3btksLEE9B6vPRrGjqJcum5cbVGzz9iSc5vnGV2jn8c8/y36/exB2dEJsW5QOXzl3EVCWqMIRVgxtVqMmEQAlhRBwFwqrBjy1xZIllgSpE8Vbds8k/9VoIJcegTh4HEbRpkeawFWnJKqHb7YSXWof+I+u0KpWae6WApXgOXUqZ6HXNztEtYbGJjCoFBIwBWxjK0jCdVkymFRrFeDLm3IXz7OzucuXKVY6Ojjk6Oma1qqXhlZdUPZMnWxC6SqXEm6h1TM25NKW20qshJoWzu56Iyt3SnaNtGoJrZIN7madLCVuUUC8aq1N9BFLrEhS0jtg6Wh+EnShKFIroUEFjtMeiiS4Qm5aiDcRQEHyBVZXQG8YIpIZw4p5GkeqDUtfbECMqSg2D946oI0YZMFboqVUJpgQfJW3K1+h2gVJjgrLoIApbTN45kSXrTP01iarkVeccfx/XDbAkYiDKZGENRdGANigT07iYtUveRMqyYDSqqKqKTAkuFL+JYKHrOZK59YXdzpqKqppQlgtoJOVKZU9aTOxXyZuvtcg2SbnM3blzITjk3guSukO6l0yxGZIzR6I4Qpvadkx9/UZjeX2HXiqKtZZVIgLIK7rPImW7KMvmZt8pBsiYOp96E6Qx1jrXh3nwEZU6fyvyPWtC14V1LZ/X3sf8XpJLXRRAAz5dT+jGs7vHGLtr7Ssq6SA5o1ZSQ4IYjTKLovQeaqXPU9tKym70Cu+gbaTvhdwf4CXtxvsoxrWT55ljv1qLQmSSXM0d6F/eyJIdImsPtYytQjxcPWdVpi8kP9sXU5y6HWP9d95n+h/TIouV6u1XG+dRnG56qPLp8ym06eYJeSfbCJRFiKeU9+7Osvd7TeV/9r1l737vGnqe83QlbIzXi0Qszk6T2mR9AjrGyFzjoNRZneY36TL6hdNpY97w7K/vJ/92OjJxeq3Jd2id++ukv9WmU+jOaxEChy72EPujo8idwnMDQVsI7b42OjFI6Z78WNeM5UHP15EjmKLznk5ijEJq0r/XNIFUukaJnNz5rLoWAKd7k6RzqNMybWPi5flO995nk15510ZGVJpV7fBhzuXnbzDbnjKZjNnZ2mZvb4/Q1jSrObkfS+OgbhyLkxOUgtGoZHdnRiDiQqB2vpuAoAk+eTR1Doanpa4UpMm7zoxaW/vy4NLxMXmKOy9X5sdPBEQ5bSpm76kcG1JirNceHaCulxweijeiMJrxaMRyviSnV4TU7Gq5XFI3NSE0TKcjCquZTqes1IqaRmgHUzj/tIc+N5HKQiFTb1pt0aVmuVxxPF+i7BFPXbtGsBXBVsy29imrbSo7wmhN4xy2MBTTEbqaUIzG2GoEJqVCxEjTNGQa36A8UXmpNfE19WrO4aLhxnPP8vynPsHq1k2WJycsl0v+14eeYNtWjG3JdDTm/mKGGXvpj9F6wqLBL1tcMaIwM1TtCVVB6wrw1ZpSVKUNH9Adz3NeYIHMvpJDiF1ea4yS7x1CNx9M6nHSpVKdGtP8fZmuNG8XIUa8SsSleX5kgyWIR1DHSKkhxAJjNaPJSLrZjwqqkXRW3dreYj5fsLu3x3g65datA27dvM316zdYrRqauiU4L0s4StqISukKRN8VHGMMyq49GzGeYsSOMdV+SOFmu1pSFAVVVd3tkv2iRFGVUqugpFaisCoV0yM1001DrGv8ssE1XvowaHEaiCEeiVqa1vnYYJxHU6JixajQpP6ecj6roLc55OZtYDoq0xjBeS/NmYzQOkRVgq4gjkDVqQi8xugF0UxBGYIyif51vaGsvUShY78Xg1LqAIScTTY4pUFpQ/SiCFujKAtD1Ba0KI9GKylgT9TUZVkyjiMmk3GiIwWUloJrJWvIJyazGEkdii3alFTFmLKUTuDaeYR0Y73hrRWltUdSqZT2kQylzJoUfC5UTZ6fhCxbnUuGXC/fXIyM0B2TH4qkoiQl2JgUNYlJCcjyNhtUuuulcdqblxWIOyky18Wz3jkxMtAdu1Jf3uR76O4Hcr9F1h7NuPkzZsOCpCzm88TOYbCpAmTjKL2qJcobohgqpHnkgyd4qOuGpmlpW4cPBucibR1om4C16XwuR+YC3miCj6m7vKi55L0OsUrWHvOXJ9bjlxVMWXPda52HOCuVyWCM/b83DYZNJSrrDut9ByTqyMb8SJpK3tM2nnXyYne7WzpHnp/d418XFcc0f1RHm5jv95SjMs299f2t9xA5z+bRmdAi/xlVdvv1bvd0A8MXwAvXYeQ6szs+sXH8xrrN66jz/AqL44tfQHfB+aQvcJDqZPIm7evmVb2gMdXvRxHjxspf35KMt/Qfk1o91TlIs/FwVo3F+ivYuKy4/o6Y/w4b8wdIjlqFUpGNSXzHF+T/dBQVPXviDGPvlHG7md52Or3r7nHXRgbIA2malqeffp5z5/Yobcm4qtje2SO4FYQVhzcPkO7pER1hdbKirVtWqzkXH3oF48mY2cmcj3/yamrNIBLadh1ZxbMmD8eQIx6yKQMuKxEKa2NXdCWFiJLnGk8Nfk6Nyp6fvBkZI5JYnDqBoCQnOYTIcrGksgWj3T1mkym+bVkul6L0EDGFxTtP2zQ0jaVtVhRWs7016zpTF0XJwcFxt2nn3M2cNpUNjVyrUZUVo6JkXFZCmVaWVLNtnr11i6sHx/zuk0/TesvyATi/vcv+1hamGBNKg9OW+WLJwgW8NihbSIM+H6hXQuurC01pLBQOXXoCNUeH13niI7/HlctXOXr2Cu72IXuF5VxRcGlvi/NbO8yqMdNqTGU1OnjwoGNB6xzL+Zz5U09zXygZb+9gt2YQxfvuFguKdko5Ggk7ljEoH0FH4WqHLq2JvhDIKzkpTujeVM8sU3kzz8I5itfTGtttoJFEpxlFWSgKm3JgG5kzUTQ/pbSwEyGK4Wgk7DfSHXeLyXTE7u4W21v7HB0dcXKyYLa9zbkL9zE/WXJ4eMTlZ5/n2rXrXL9xkyvPX8E3K0IQEoE1x4EYp6R0kJX3wm6mjTCAxXWNSkjKgaR3SY58DC31MtcwvDwx3drBpg6sRsO4LDoPq/UNxXKFXa5QnLCsa7xvaV0UQyRqdAwQC1wMeB9paTD1CKMjzk9wBFSU3huqNJKapbWkKTq3NjJiSBSgMrNcqInKIeHqUXKGWigOCbUjupbG3UarAhUdCkfrSrQukiIqMkhy/B06ChsbxjKqRsToiNGnBn6JZhnp+g0KrGIyMtTBSp2GtTJntDAjRRNQVlGUFq1Jij4oTBe9IELderSXTcVHiMqidMQWnvFk2qUOVWWFJ3ZpptpoiUzk2qgQ8EjtRfa6qSRPYJ3imDfpXKeRoxUhBOq6TSlTpOhHIPfS0On+m0aay2ktvzdNK2u10qlwOyn6WmGsQhvp2A5Zhpu1EtHbA7PBJ30jJLVLqUBoHFoZrC07B0Sn/LyI9zZ9Y+/nOlb1YsiGBr3vyTpy9pWHrJwqcYz4GIlpPJumpa4bnAu4FuqVZz5vWcxXVJWhKADl8L6Rpnw2OXP0ukZJNtVkcEeJ3K8jNy8/rOskZJ473/QU8ZB6hMS1A5G89xvWzTQ3z2mM2YjurA2XNdSpdCCtMglEb5zTl+VmuFFJVM/onPO9+b1xY16s3zS5g3U3S+78HCRjIQp9f//dzYPjnW/foS++hML6onhp4+TsT93pu79X6PzwLxqxerET9O5pw6jIYw5EhTEV6/tPTofTnz/z+vpn7OP0K2bj9ZztsX5eL3V/OULVc2zc8e2fzbN/adx9nwzbEpR4hJf1io8/+RQn82MID7E7HTPd2sG7FaFZsZx76jop0SmUu1w0uGZJVRTsbU+5sD/m6KTGuSDpTCk1IibaNoAYstIlG0CIKYs4beod01u6xnhqMTkfhIVFIemRKofN++HV5F1LfoumdSmdQ3Hjxg3uu3Af+/v7lGXJlatXmS8WNE0L2lBNxdO9WJ6gojQ/OopzSmswxlKWltGo6dIFsnEBnBJoMaXGtNQxUqLQZQnGyjUFz/F8yY1bB/hf+a8cvP4tPPrAQ7zi/gfZPT9hVI6pTIGxJePZNpOtHdBSAJrzjUPyZAQdsGNLNIE21DSLJdeuPMvt6zdpFyeMg2NvNOHi9jbbW7tMt7YZV2NG5Zid3XMUkyl6JEXxC9/SeE/tAseLBcGW7MymlMpK1MlFWDYoZaWwH3PHGtoQAqfnevI+daG7uHl8trQ7Zim1yZySo1g5bGuUTil3KdKROfFR6Ki6OSAsWREdNIWylKHAuQrUCGsLJpMpk8mU4+MFq+WKvb09tra2uXjpIrdu3eZTO9vcvnmd+fExx0dHtN6J517lvL2cyiU0m0TpFyMtSBJNoFoz96goNJt3pwh9cWO6syesbFbqpQqrRU2LEe9XmMJKzrOPLOoGp8FphVU5Lzql/ClP0IEYW5xXOF9AhMY5oT31TliWrEVbMTJaJ/0nvE9ex9SaQGkIqiXGluBUKuqeEClQugWzQoUWfINvjlBIRMo3WxirwGhp0Jk6hocYMD35XRYVdRtwvsVoI3MtKqIySbmUlJZRZfCNpfWa4BWFTbIv0aiq4NHKwmSMd7kIWKXaNNn4TubzpNw76rpJ3k6F1gWj0QjvnEQ7tKJxLc5L92hrbWL10xuOkByJgNiRWMjjSu+3jgg0dZvmray+pm6TopdofKN44GIUpdlYC8mwkPQqlShYe6lkMXTKX44+xygsSaeRlffWudQpPqfHSdpsYO3k0SqRcQTdral+TcfZOC2YoHMNvsQn87WpzsucFcfefxXSN8hrifoEKYRvU4dvl2pq6tqlehfpYi4BWUkDVSlaWloZQ6PXzf2IGnyK6oj75UWv+YsdOUIVE9VxNjiU0uvm06c8s/KoI0JDuo7kdUecNipOZR9seL0jkFkGU5Qup/luGLxKDLrYc4F3aTQqOdlOGcewacSfRR27We8gxo745c6ggO0ZKi9UKNwVW/Piivnpz/dJWoR977Pbn86KRJ6FF0vn6tIo80ikJboRRTlDD+mnsut+bj10OmK+Pbnd/Kz1+lrzITGIMzUTGOXMjJijaCrp/W7jGk7X9uRUuDx3+1kep/2zZyM3X4VNOdU3PCIktsA70N3v5hzq/3wp3LWRURaBliD0kwFuHx6gVWRrMmLr0fOU1ZitrR2a+SHeraRBn5OQrgtSCL1cLBjPppRWDI228SxjK7moSrwsokz2AkRRdX+fDut34ZwzBke8GJ5Ij2au9143hum780bgfUhfqTg5PmFna5vZdMru7h7z5UIUxGVNVU6YzqSg/dnLT+HauotMyPzUGANlWaSmgGGDqu6sB+S9l1Qz1YoSFgMuSG7uYrVktajxK8dsNJXCdm0wswfR0wnjckRZFJR1gy1HoE2afT2WgDx0RliVXHScHB9zfHyEcw3jUcn9W1vcN5uxN5tSbm9Rbe9SViNsMcLsbmMmM+xkIp7P6NHOExcrqA3RrHOddQQTIqH1KCfpKElPTLbEGRP0zDkbN4XFqWdM+q4UlCCnP2ymUyT2bQUxrOmDVbf4pHdFzqtWOtdRSHG2iQFjPD5KTnhZVhRFRVmMqOua6bSmrEqmswlb2zNidExGBbdv3SYSWS0WxOAl9YWUL5/GwQfpIRISq4FibWioVDhP7/G93DGablGVJWUyMqxO4eQQ8N5KEzIs9aKhGo9wChoCBpuKZFMPCmnxLYpV8ElxWKeZ6KAoHBTBpI7dEe+lE7YPUlAdk+Uqc0dSkqR2K3eoVyhdorQTWmbf4NxSDEBjCGaE9EwxnZLabQhk5VEafzatSnSlQoEtVK1rpUMTsYXCOC2F6QFUYolSKVKLt6AKRkS8ial5HJ1zJkcJ6qalaRrquqEsJFJkrKUIFUXZUjgvkaC1Lx2jLUF5SMXGEZUa1EnRIoCNPeUm3Z/z2XmSWJpSJKRtvdR+dBtnLqjTUl+gtLC/hby5yYYsqTzpPDEVehvJW/cp7VD1+If7edYRoYAtbJHkfyJ7SBtyjMmbnaKLeU/Jz00exuZ2EjvHR0zfEZPTa3Ney+svYnDkvTyds58C0el3KnU3Dy51MC+SYexxbaRpAm3jca0n+oBPa0entClU7PY70WNiNx9B5kmu03gpk+qLGZvjnPPrJXqgVKrTU3cq5dnRJ5G000XIZ43HizD3KEhldunvNFHUpiKpsoyJOb1FZMCdCt8phZ31Wjt9H/2f6Y+NmpO+jpTv7HT90h14ienQ//wLHvMZzKnT13L6/C9VP3PWvWzoO3Jhm6/HOz/XkUd04xvYGMMcgez+Vuu/kzzUPcriSCAJ8e6+NlPFWAvv/BmV0q26k+huTGO889lnx8tLj8vpgzbnRhqQFzhRPr4ThC/5TE7jro2M2SRyspCOydYWtK3jxs3bLOYnXNibcGFvwvZ9I9rlMd4dEsKSxrWMDLQtxAZuXr/JjnNs7cy4eH6P4FpuH0ZuHbVoC9qKt7txqhO866iuShbm2rLLG0dgPTkU60UWfBTlDjrvnBQQmm6wYlgXPvq0SSulQCsWx3OuXblG2zhe9ZrH2dnZw5YjqtWKhx54mPPnzzGbTfG+4dbN69SrBdYo6mZF0zRY21BVYxIZBU3TMJ/PN6IZfes1+EDrA3MfqLTGK0U0hna1Yrlc0awaVAj8xm//Jk8/8xQn8xPG57aYnDvHeHuPajblsG7AWPHGpnSzLv1MC/WmDxFlDW0IfOryM8ybFZPtGQ+du593PPYqTL0iNitCZbHnzmOrMaiCeVVhrMIWkb1XPMh4ewuvFPObt1C3WynILQpJ/0JLY67GowovKR9FkI5Un2YI84WyRZNo7sLKWpG8eWnRZ09AdlsoJYXBVSVF9kElBqycPxtS0aUjInn12ojy4oNHaSTNZBLYmnmWs6V0ra5rRiPL1taY3d0Zk3HB7UsXuH3rNk8/tc31q1c5Ojri+PCwS4cIEVyK0ClSemG6FpTQlpqUrxt5ceH+csLW9jkKKwxQhZEOxZKt6Cm8dABf6DnzecNsK2DKito3xFZqJ5yX4i2tVBJeChsiNojq7nBI/4MITlH6ihg1GIsLDS4U+FChrZJO28nIEEMjEn3EdMquAkq0EceAdw2uPcHHBqU92oyS572Qei8tncFjNCnVSKIu2qiuKNJH06WsKLOOzCoVMFqYmGIQZ4dGd0o3youDIxTYQjpABx/WXbADklLjIotlzWK1oK5rtmdTRmWBLQuiGlP4QBnAsS40hojWBTGK80HZItWseAh0jfC09usUjrSBeh9TDxOhp5ZUHU3T5oanEq3LaYtojfNR0sDS/FYqonQgxEbkizWYsiA0EbRGpcL20Aj7mtbrfGeUSZFaLVFf12LHyTALEh3RiT0QD6oQ2Rij7vpuRKVT9/OecpYU2UhXZSGKQ1IacwfwnCGRqXGV0mk/Sm+mZnoqKnTU0jsnKYUxCtNg8EDQqGhRWqJDjfNo37CqPauVx9XQrAJ17WnbVpQTlxwV6XKNjhgdsTrJEh1xrYdoZIyjR0ck5TCcJVFfPjjtTe0ruOLoMqeOJ0V+Ipg7laSzlPlOVz3Dc5vPY5XZeD2EQHBOouH5X76G/sWQfX6K0zrgHbULWT9IRpLu1s1ai+7TPBttUm1A93YX7e8bCxsRCeyL7jH5/C8UCZHb+PT3qLPO98J1H3d/zj42jQf5eVa8p48Q7oz0nY4yKC06W/by+84oFVmQozr9+ZP/rWtzetGzmBlQswHju2V6Vs1YnkFa9/TZO4y2rGdCF77ZiGzc2SfoTkitzGeqg9y1kfGaxy/w3PO3uX5zzqJO+aGteFV+7+NPER69xCMPnWO2ew6UpahOCAqaxmGsRxnPsg6sTk7At9x36RL3X9hnMh5R+2u0PufFZs+ekc7g3gntaWLIUF1BYGILSGOXH2622mNE+jFgJF0ph/mJWLsOW2cPECDOtihGjHcBawqW8xVtc52j4zmOyGg85vzFi1y8eIkHHrif++67wMVL5/noEx/h2Wee4qlPfSoZQSEV7HnKsqQoCiaTCUoJve5yueweamc8JdakNgTCqqYcjdjf26UsS27cuMWBvw0qULsVVw+u8t/+1/+Xxipee/MGb1gsePwNr2flA04p2hC6wqLO8esVylmsnjBfeI6OF3zi2StQTdh94GEefc3rwRQUMWCDp3ENR85x0s4xaM6VIwqlsSiu3T5kVliq2YzJAw+gzyPMQKuG9uBY/LWJMzgGoQmVKtfiTsP6JbDpl8mv3flK3z9nVGIQSu9lVhoFKKPES2zoGnvl/wUVMUFy9kOKjYToUVFRWiV1ExF0ETFqhPcFbVVQFZr5fM58Pmdne8SNG1ucO7/PuQvnOLx9m4NbB9y4cZPLzzzDYrHo+hdITZ4oYTrERFwA0XnaIDSrCnqsWZ/e2H2xYXtrH2ukeN9qlSiNpRdKgWFUNYxGK0LU2MMR1eKExeqYdtnSOk2rNY6IUZqoLLH1TMsxk6rCGGiJrJqGumlAGYp2jC2gYm0stk60M6UVmCRYcwpTlBSI7MI2FKA9ygZUISxyAU/bLLF2noSvRelKIiYq4NO8kVqCiPKeotBESlrvUrE36OhRJjGu6Uj0jqpUWGNYrVgXSpdGyu5MIakhSG1HVE6Yr4Kkg9WNY1k31K6h8Y4mOFrXYA0Uwcrni4qiChjXYovEjKQCyhQiL7UWhqsYUIQUYRICCx8Ck8mILrIMuJAbwIGyEo1t2pY2pcEqpWidp+mY9sRbJw4Pgy0sESfHGhgXlaSU5V4DOQUrzX/R3ZPHML3nfOwofR2RxrcodDLWwCjb5TKLgS81PgEtLE5BFPU78t9V/2dyQkRhuMubf0hGBiquc/O7j6kNOaWi1BVFJZFSOjYeJTS+LtK00iPEuYD3NXUTaJpIvfTUcyed253DRgVaSyf7nstWCdWUGFHI2AibXyA4WRNCjvxyd1r07jlFgIVUAYjSvDIfJ2kum1SwUW3WtnVRYzml6BlCY7hWzE8ZDCExi2V4AlFHVKFTs84ks+k0jTvu4MVIXe+4Y5VmVN4UOoQuSiL7RP/bNhXcUy+vkXWmF1AkczbGC1xZCixuugM/EwPhpfBCWQ0bx7zAPWzUXp1xaRsGj9p8YncYQ1HkhTYqycP+JYmsEVm1Hv9+ulQ2Ml5sP49EiZatTyOvrn2mosf02TI3xlyMCPHUnyHXuitdkwCcPXafedE3fBpGxv7umJOTOYvVChcVrZcCPB8j127cZmdrxO72iFE5YjwR1qS6rjk+WSThnBqWtY5lUCxP5pSjilFp2dkecftwhXOS7oAq5daTNyhmWqiNcGLK3003r9V6EWxadCpNCMjbiBSD5VB5f/ATb3yUbp6BSEvAh5Y2zIlGExHmpxwZaduG++67j+BbtremxOC5+vxVlssVdd1ibdEVRRZFQVmW3YRr23az0RQkRVJ3xYDWaEZVRWkNWoG1ijZG2tByvDrm9558kpUPzJsGbw3HiznXb9zE+TUndHeLXkHQGFVxcrxi1cyZ1w47GnHQtDx96zZLa9ktC2bGUGUtIkaM1rSrFqKFaHGmppzXGCv0mHEE2MRHulqBC523MU319Mzy4uiezgtivbheYoJ3cud0mlROv0spV8n72G39mVqPnMKUNxOVCmLXmkQOcWuko7lCo6woxzEoZrMx1kBZaIpS8tBnW1tsbc043Npid2eX7Z1dyqri1s1bHB8fc3x0Qr2qiYjHuA0enTbK4H3P4E7eCP25KpP7/EEnL5s8G00XqkzUrsYUlGVgPJ7Qto1EG3RgFVYY4zHe0wTJ4ydEQmiFZKGUYuqgI45AGxxtDCn6EZJsSB6nlJZoCi3Pc8PTJQ4CST9SonAjaUrGFvJcgpACKN+gfYPWDcG00oiyVzAak79MqcS3H8XT7hODEjqKPkTP2ZCiqIU1JFtI7lWrbu30aUnk/YDzie64bVOTuSwve46XPPtVjpCIMq+8yBwdEYatbpGqLt+8dR7lHZPJqCdD6ZoeyuaZCAp6Cksuuu/LubVHj7RBBilmD4GyMBvF3JlRas0stbkR5jXvgxiQkNJOFSlitFYosocwhkjOQZa6nLgenxjPFDfd/hGz8pE35qRCvpjS0+1lvWvu/Z73nBgCrnV4JxEOSY9qU0G8NEb0TqJ0uYFsJCbPtZHGjSk6aIwYczrnkqpEMUwUY/hlLEnuzFvP+kB/V9k85jQNqkQ6+gpxTm3qvoRsJHRPv5t7+TWz8RnVS4nKNXfZyJATnLoPzp42XXQjzcW1Yr0+d//W8z6puDNCk05wtpLY2WlyrWfVWnSXfkaKzNnf1X/tlDJ/F3v5HWc8U+lNKyie8YEX+pp0rLCtnWFk3PE98Y63NyIsrCVAflxnXWX/YiRqnpmhesecgXxrWq91lu71PA+Qdd1Ps7tzbUBitznze05ZMC+ArDF9ZjLjro2MnZ2S7aOC+bKgbmHVSMpH9HD95gHb05LdrRGPPXyO0ViEfNNIozLvPTZESutZLCP1quXo9gF753YprGFvb8rRSU3TBLzzaKvIBS8KQ1xn26eByd5/1T3IbJBkhNQMK1PkimNSHo73YWNcxZsnIVaFeK5DlPQDk3LvfHREq4nLFbdvHxJjZLFYoFTgvouP89rXvJYHL10iBs9qsUqsKUuKouxqMbKRkYsZj4+PO+ViPUEU2lphVkme+MLopL9L11YfnXRGxvOJT32S67cPee7adbyW9J+bt2/hvNvsexmBoMEbrK44PJxzsjymCZomKp47OOLm/GM8uDXj/q0tLkwmPGhH2CDhuLK0tPOGVIkL0dCMV1hbUc2gtRFVKKwp0csK6hacpLZEJR6/PE+FwvSl59xavN89us1c9ZbFKct9bZXEpOjmQZKtJyRFbL05aIJWgJACRCVRJxEaCkVgMqkoC001shgLk+kWTe04Ojpha7bFfH/O/vnz7Ozu8dzl57h27TqX1fO0/hYuKS7OuURFqlPkR4wyo1TK4le/D/jtRckLiOdPZ75x1mtASBNKJtMJxoLWAR00Teuw3oNrEoOMKIrlqKKoSoISO9qTaplyTVMqYM7Ktk/1MUrbLpLVbwgpf+e9SJrjaW3BlATj8FEio65nZCgvzeiiTmk1p1iHhCFMQRQDMibjsfuubGwpidhaK44GH3MKJz2v6nq8xAigawrV5kLtGJOyvnbErBVkUl2SJiSqT505T3Njp+yBDVHu1TlCcBvyCiQNI6cdibczkouKcw+NXId2VrqFMRJtRoVU4LrmlM//sry01kpdRl7bPW9FbnKKSalmClSUbuahV3wpaSOJNjtHrpJxkmmNX3De9gzRewmVTuq9pEI573De0zSOumloGk9Te5xLVhG5DiEmR4T0GLFGyAKKAtlDDRgTxbOf98mk/Ar98MsTm8YE5Dm98deGrhvveGaKzfSP0zn3eVzl+/qOy3X/g8xzmGFOX9YdF36XL2/qppvHnWlDmN4BL4EzteFTBtYLffSMgzZfuzNF7XNqy76Acv+ix96j6+mMhE/nfJ/Gsd1U+nQ+c6ahpHlRBjy18eMurujTh4qfi5jWgAEDBgwYMGDAgAED/rfFy98tOmDAgAEDBgwYMGDAgC8qDEbGgAEDBgwYMGDAgAED7ikGI2PAgAEDBgwYMGDAgAH3FIORMWDAgAEDBgwYMGDAgHuKwcgYMGDAgAEDBgwYMGDAPcVgZAwYMGDAgAEDBgwYMOCeYjAyBgwYMGDAgAEDBgwYcE8xGBkDBgwYMGDAgAEDBgy4pxiMjAEDBgwYMGDAgAEDBtxTDEbGgAEDBgwYMGDAgAED7ikGI2PAgAEDBgwYMGDAgAH3FIORMWDAgAEDBgwYMGDAgHuKwcgYMGDAgAEDBgwYMGDAPcVgZAwYMGDAgAEDBgwYMOCeYjAyBgwYMGDAgAEDBgwYcE8xGBkDBgwYMGDAgAEDBgy4pxiMjAEDBgwYMGDAgAEDBtxTDEbGgAEDBgwYMGDAgAED7ikGI2PAgAEDBgwYMGDAgAH3FIORMWDAgAEDBgwYMGDAgHuKwcgYMGDAgAEDBgwYMGDAPcVgZAwYMGDAgAEDBgwYMOCeYjAyBgwYMGDAgAEDBgwYcE8xGBkvY7z3ve9FKfWFvowBAwa8jDHIkQEDBgwY8LnAYGQMGDBgwIABAwYM+Lzjueee473vfS8f/OAHv9CXMuBzgMHIGDBgwIABAwYMGPB5x3PPPcf73ve+wcj4fYrByBgwYMCAAQMGDBgwYMA9xWBkvEzwK7/yK7z97W9nNBrxqle9ip/+6Z++4xjnHH/9r/91XvWqV1FVFY8++ig//MM/TF3XG8eFEHjve9/LAw88wGQy4V3vehcf+chHePTRR/lTf+pPdce1bcv73vc+Hn/8cUajEefOneMP/aE/xC//8i9/rm93wIABnwMMcmTAgAH3CpcvX+bP/Jk/wwMPPEBVVTz22GP8uT/352iahlu3bvGDP/iDvPnNb2Y2m7G9vc0f+2N/jA996EPd5//zf/7PvP3tbwfgO7/zO1FKoZTiZ3/2ZwH42Mc+xrd8y7dw6dIlRqMRDz30EN/2bd/G4eHhF+J2B3wGsF/oCxjw0vit3/otvuEbvoELFy7w3ve+F+ccP/IjP8LFixc3jvuu7/oufu7nfo4/+Sf/JD/wAz/A//yf/5Mf//Ef54knnuCf//N/3h33Qz/0Q/zET/wE3/zN38y73/1uPvShD/Hud7+b1Wq1cb73vve9/PiP/zjf9V3fxTve8Q6Ojo749V//dX7jN36Dr//6r/+83PuAAQPuDQY5MmDAgHuF5557jne84x0cHBzw3d/93bzuda/j8uXL/OIv/iKLxYInn3ySX/qlX+Jbv/Vbeeyxx7h69So//dM/zTvf+U4+8pGP8MADD/D617+e97///fy1v/bX+O7v/m6++qu/GoCv/MqvpGka3v3ud1PXNd/3fd/HpUuXuHz5Mv/qX/0rDg4O2NnZ+QKPwIC7QhzwRY/3vOc9cTQaxaeeeqp77SMf+Ug0xsT8CD/4wQ9GIH7Xd33Xxmd/8Ad/MALxP/2n/xRjjPHKlSvRWhvf8573bBz33ve+NwLxO77jO7rX3vrWt8Zv+qZv+hzd1YABAz6fGOTIgAED7hW+/du/PWqt46/92q/d8V4IIa5Wq+i933j9k5/8ZKyqKr7//e/vXvu1X/u1CMR/9I/+0caxv/mbvxmB+Au/8Aufk+sf8PnBkC71RQ7vPR/4wAd4z3vewyte8Yru9de//vW8+93v7v7+N//m3wDw/d///Ruf/4Ef+AEA/vW//tcA/Mf/+B9xzvE93/M9G8d93/d93x3fvbu7y+/8zu/wsY997N7czIABA74gGOTIgAED7hVCCPzSL/0S3/zN38yXfdmX3fG+UoqqqtBaVEzvPTdv3mQ2m/Ha176W3/iN33jJ78iRig984AMsFot7ewMDPm8YjIwvcly/fp3lcsnjjz9+x3uvfe1ru9+feuoptNa8+tWv3jjm0qVL7O7u8tRTT3XHAXcct7+/z97e3sZr73//+zk4OOA1r3kNb37zm/lLf+kv8eEPf/ie3NeAAQM+fxjkyIABA+4Vrl+/ztHREW9605te8JgQAn/zb/5NHn/8caqq4vz581y4cIEPf/jDd1VT8dhjj/H93//9/MzP/Aznz5/n3e9+N3/37/7doR7jZYbByPh9hnvZVOtrvuZr+MQnPsE//If/kDe96U38zM/8DF/6pV/Kz/zMz9yz7xgwYMAXHwY5MmDAgM8GP/ZjP8b3f//38zVf8zX8k3/yT/jABz7AL//yL/PGN76REMJdneMnf/In+fCHP8wP//APs1wu+Qt/4S/wxje+kWefffZzfPUD7hUGI+OLHBcuXGA8Hp+ZavDRj360+/2RRx4hhHDHcVevXuXg4IBHHnmkOw7g4x//+MZxN2/e5Pbt23d8x/7+Pt/5nd/Jz//8z/PMM8/wlre8hfe+972f7W0NGDDg84hBjgwYMOBe4cKFC2xvb/Pbv/3bL3jML/7iL/Kud72Lf/AP/gHf9m3fxjd8wzfwR/7IH+Hg4GDjuJdyaLz5zW/mr/yVv8J//a//lf/23/4bly9f5qd+6qfuxW0M+DxgMDK+yGGM4d3vfje/9Eu/xNNPP929/sQTT/CBD3yg+/sbv/EbAfhbf+tvbXz+b/yNvwHAN33TNwHwh//wH8Zay9/7e39v47i/83f+zh3fffPmzY2/Z7MZr371q++gshwwYMAXNwY5MmDAgHsFrTXvec97+Jf/8l/y67/+63e8H2PEGEOMceP1X/iFX+Dy5csbr02nU4A7jI+joyOccxuvvfnNb0ZrPciOlxEGCtuXAd73vvfx7/7dv+Orv/qr+Z7v+R6cc/ztv/23eeMb39jlNr/1rW/lO77jO/j7f//vc3BwwDvf+U5+9Vd/lZ/7uZ/jPe95D+9617sAuHjxIn/xL/5FfvInf5I/8Sf+BH/0j/5RPvShD/Fv/+2/5fz58xtehTe84Q187dd+LW9729vY39/n13/91/nFX/xFvvd7v/cLMg4DBgz4zDHIkQEDBtwr/NiP/Rj//t//e975znfy3d/93bz+9a/n+eef5xd+4Rf4lV/5Ff74H//jvP/97+c7v/M7+cqv/Ep+67d+i3/6T/8pr3zlKzfO86pXvYrd3V1+6qd+iq2tLabTKV/+5V/Ohz70Ib73e7+Xb/3Wb+U1r3kNzjn+8T/+xxhj+JZv+ZYv0F0P+LTxhaa3GnB3+C//5b/Et73tbbEsy/jKV74y/tRP/VT8kR/5kdh/hG3bxve9733xsccei0VRxIcffjj+0A/9UFytVhvncs7Fv/pX/2q8dOlSHI/H8eu+7uviE088Ec+dOxf/7J/9s91xP/qjPxrf8Y53xN3d3Tgej+PrXve6+H//3/93bJrm83bfAwYMuHcY5MiAAQPuFZ566qn47d/+7fHChQuxqqr4yle+Mv75P//nY13XcbVaxR/4gR+I999/fxyPx/Grvuqr4v/4H/8jvvOd74zvfOc7N87zL/7Fv4hveMMborW2o7N98skn45/+0386vupVr4qj0Sju7+/Hd73rXfE//If/8IW52QGfEVSMp+JZA/63xMHBAXt7e/zoj/4of/kv/+Uv9OUMGDDgZYhBjgwYMGDAgIyhJuN/QyyXyzteyznYX/u1X/v5vZgBAwa8LDHIkQEDBgwY8GIYajL+N8Q/+2f/jJ/92Z/lG7/xG5nNZvzKr/wKP//zP883fMM38FVf9VVf6MsbMGDAywCDHBkwYMCAAS+Gwcj43xBvectbsNbyEz/xExwdHXVFnD/6oz/6hb60AQMGvEwwyJEBAwYMGPBiGGoyBgwYMGDAgAEDBgwYcE8x1GQMGDBgwIABAwYMGDDgnmIwMgYMGDBgwIABAwYMGHBPMRgZAwYMGDBgwIABAwYMuKe468Lvj//6f2DnwkWmu+dQ0x20KdFodAQdIwGHDw1H15/jk7/3BAe3rqPw7O6dZzyZMd7aYvfiRarRGGsLYgBjDMvliqtXrvLs5cs0rQNtePjBR9jb3WMyHmF0y2J5jeOjm1y//jwf/o2PcuPmbY6O56zqQIgaoiKiKasSYxTGKGKMxBgJIdC2Lc45lFKUZUFRGIwxaGMgRpq2JQSPVhow+BBxPlKWJVqLHZY/r7WcvygNuamttZa6bnDOEYJnvlihtWU0mvDQpUe4dfMWJ8cnXLp4jte/7nG2ZmOa1Zxnnn2KGBVFUTGZ7qBtAcrgXcDFQIT0nZqmafHeM53OuHHjOge3b3Pj+lWUarEGKqu4eO4cOmqih2blmLcHhBjRpmI63Qc0MUKIHlMYtDVQFOzs7HDr1i2eeuppnGtRSqGUwlqDNnKTIQSqqkJrjVIK7z1KKWKI1LWjKIruuPF4jLUWYwxlWRJC6P7lY2KU8Y0xEmLEeRnf/LyKokBrjdZyzTEoQGGM6a4DYLFYUNc1bdsSY8Q5R4wRrTUhBHnOWlPXdTpXpGkaxuOxXH+vJCn/nn9qrVkul90zyJ+NMTKbzQgh4JyjruvuMzJuFu99d448F2OMWGu775D5Errx0FozGhXYwnB4eLBxvrZ1VFXJeDzhb/2Nn/40lvgXF77sS97UjcnJyQlt2wIiC5xzGGOw1lJVFcYYgDQnGkLwxBiZTCbd/FitVngf8d5T13X3zK21KKW655/nQH5Oeb4QIwrVzev8nUqB1gpt5NpyB2vvPd57XNNSKM14VDGZVuyf2+Xpp57h5GRJWUw5t7fNeDxiPJ4wmUwAeeYxwGJxjPOOGALeB0JQxAARaH3Aed/NswxrLT5GXAjUbYPWoFQkEgjBYbShtAXb0yl7syl7O1s8+tjDrNyK48WcW4dHjCZ7TCYzptMZDzxwP5NpSWEVxMDF8xfZ2dlhd3+X6daUopR5aAqN0QqtNFor2rrBGkthLcSIi55IRCuFd47oA8F7dISoAiDzmiQzmlWNsYbgIfqIsZayKAghcHh4yGw2wxYF2miapumey2q1SnKw4caNW2xvb3frtyiKTmZpA22zYrFccHBwyGQ8pSgqtDacnBxBuqb8WWttmksGhUEpk+aABwVay1zxzuNaT9Os8N4RoycSiDEQAngXu/nonOvmr9YaYzSHh4fM53NWqxXnz58XOaCg9Q1N3RKjwhgLaMqi6mRI0zSEEFBKsVwu8V7WQNPWjMcVZVlijOnmZdu2lKMKHwM+OELrGI9GGGUIbUvjHBiDKiv+j//H/+fzseTvOV7z2MPd730Znvel/LsxZkOWA51OkGV6ft1aSwiBuq47GZ0/15ff/X0uhIDRGqMNKoDSolNoW2JsiTYGZbMM8xCgMIboAzEEgncE1aC0XIv3vpvvWmucc9015L0zv5fnQd5H870ppTb2wNNjlPeaoii6z+fP9s+Rf+/LoLw/5/e7a0JhjSE618nS/F7+3Onf83Pov57/9Z9Zvt7+tfXvv3+d+Z7zfYcY8SEQkffy3IhEIHTPOescxhgUqpPtGfmelVKEGAiIboYSme0J+BBAKaxSGKXRSvQwJVoyCogGgo4b15v/GRSW9fPqP5NAxKm48V7e32KE4OPG+Mln0398AJUuNo2DUhqtFOsYg9p4RlprnG/Tfcpo+RjwMdAknYUQIESefv46L4W7NjJW82MmW1v4dkYZAkrH7uKjUigMxpScu3CJermgLEuuPvcMhwcHrJYr6mZJMA5blhhjCT5Q2JKTkxOe/MQneeJ3P0rdOJQuWByfcPHCJba2ZhgTOVlc5/DoFteuXeHkpKFuIs5DRBGilwFF4aMieoX3bAgYa216KHmRWlnMKFBKfkZFiDL5YlTdYrXWdhNXlEqPcwGlK4zJr6+FjqwbWQhFUbC1vcViPqdeLUWxTUILoCwqQojJuMmKRiSE2D34PJEyQnAcnxxzfHxM07Zo5VFRE7RhsWwxGDSKiGz6zreE6NC6xJgSpS3VuJKN1VpUWTAajSnLqhuzkJQf5xxFaTEmLdoQuoWaN0HnPE3TUlVVJyD6giEvUGtt915WzjsjLkaii52Cl8+f79/7gPMOoiwE58Soyc8mn7Msy26zyEKoKAqqqgLolNCyLBmPx52i3xlMMXaCbEMo9YzVEEJSHAzj8ZjlcsliseiO629iedPLx+dx6BsV/bESQ1anz64/E8JaOORN7uWKuq4ZjUadIZCfU3+MsqGQBZ/WmrIsadumMyhl7WWBa7qxzs6A/vjKMev5B3cK8v4GJ99NciKs50RnbIYgigEapTc3xjynxKhVaG2YzWbrzVpHQpT5GWLsNqogH+6uJW+UsF5DRinQCheSEpyObVsHFqKRuZUvflXXYBVFUTIajZlOJ4zHE8bjMUVh2dnZZjwqUQRGVYXRiuA9SoExGmtNN85aKdkqrZENKkZiTMpSDESlCM4TfBCFCkWM2ciIoDQqRHQEFSIqpvv2Hp8Uq2ws5OfUNzL7ClhGHqf+zxg8sfe+Urpby/Ic5b18vnxcfq9ToMSz0a0953xnEMf0ujaq28zltYD3Lc61VFXJfH6CMYbt7e3OoQCyNxljiERc7fA+pOuUuWytoSgKiqJgtVp1Bmfbrh1Asn6Kbl7ncxZFQd02YETWLFe1KJ0q4J1L1xqJ3n0Gq/flhbPW9mmem9NGyGn5sJ4bZyvBSmtQ2Rlk0NqKZZrkBiGAFgcZqqdYZkOXpEadup6zrvGs188yFE6vkbOO6Sv4/ePyMX2F9fSxp8cHwDuHiiJ68no7rfi+0DlO31P/3KeNyL6R8ULnTQejyDI87SNKy7hDt79CMma8F2NRKTABo8UBffreY17rMRII4qjN4xsDQWmUFseVSnLSe5fOl84RQqfTdfcQN+89f5e8JXuGnA+UTvI3fa77vTeuiijqkuqGQwySENAaotIQA5uzrzcPYro2JddLjMQQu98/Hdy1kfH4a+/HjCaoIhCYAwGFBaXTCHnA4U3LpUfv5/5HLvDm9jUoDfOjI25cucJvfOg3uXLlKrdvHxJCpCwqYoDVqmGxWBBiJEbN888+R9t6fIwYoxlNCpRWcoM1aGsxZgLaURmND575Ys7R7SOIYJXhwoUL3UObTCadRyIrjt4HvBcBL8qADMVisQKtsbboPOpZgV4ul4SgMKZAoWkbT+tWxAiFtWhl8dElYW8pCsuv/tr/j6qo2Jptce78PjGId8oaQ9q2UcrKJsN6A4sgwimKFyQr0ovlgtVqQetrTGlR0eK85/ik4fD2FYzSlNayPZ0SfEvwDY1bYbSmHE0pR1OKUUVRjNDGoqxiOp1xfHySFN48h9IM7RlqV69e7ZTs8+fPd0aG92vBnI2zqqqoKjFm+t76rERmJVAWznrzLcuSyWQiSljPIBFZrbrncHJy0ilffYHTV9C2t7cBWayTyaTz+GWveVZeJpMJi8WCpmmYTqddhKWua8bjcXeO4+PjbhHeunVrQ4Bnj2g21LLSXFUVzjnatu3+NU0DwN7eXnfutaKgMUaxs7O7Yexkg/flbmQYYzpjD+iMPO89VVV1z7wfyQJomhUxGkIwgCiyzkWaZoW1JUqJIdLfiIANI+a096xTEhBvXP91MWAiIbpuvnabkjEUQIHpnvfx8TEqGUPewXxeI6JGpzWzXhsueGon82A0GhGiwvl8Xevr7xv9kD1wkfG47KIyxmhiWOJDJETZPJUxRKVZ1g3n98/zwN4ee+fOc/m5q523/tatW9x3cZ/tnW22pmMqXVKWBaNJxc72DFtJNIHo0yYKEMTh4APRe3zwJJ8KJMOBEImtp/EeqzVGa7GgVESFiMVQ6AJHoI0e14v4ZSPDO0frXWec5c22rmu8D0ynk56iLXI7O5Gcj6xOljjnmUymQI52NlirxQWT5P10Ou2MQmuteKFVUmB0NhjbJGegLAtWK5fmVqRtG2La/G2hOT4+Zj6fS/QhJpmkihRt85RlyXQ67ZwTq3rFqllhTZHkl3ili7LEaHlG2VOdnRo5Kn/+wjmapsa5dkPptdayqJcYbbBFwf7ePq5taZuG5WLBfLGgGFVMd7c/y5X8hUN2TuR10TfI+86prIzmPSTLlCz7+8ZpXdcAjMfjDUOjr+ieVmqNMd2eVBVlchZEfNsyGpfigW5biqoURwiK6GUuKZSsUzblUt7L+k6W/rXkY05Hbzoju7evZrmaj8vjkyOCeb2FEHpOQ7fxnf0MhIw83uv9+07jrf8M+obCS6F/z865bk5nhBC6fTqPRX69f50xRmKSt3kOyLWAOHQDy/nilGNQjHhCJCiPSdfeP7c2SqLHSXYVOtsO+fk5YlBoa9BK9otI8qgk+ZgNA7mSpLf0r/vUeMrnIzo5tbXWuLb/nCwxzRutRY80xmC0xofNc/UduZ0hDJ0zRvYf3ck1pTTaaIJrUtR/8zrvBndtZPz2xz/C/vlLbG3vY8ol2lTJTIxYo/GhwfsGlMbHQNs0HN66wcnRbY5u3+bGtRt86vKcpnG0rWWxqCmsTzdUUlYVMYX/27ZFaVkgPrQcHRxTlSVb/3/q/uzXliRL78R+Nrn7Hs65584x5BCZWZVVrCqyWBzUbLCbQqsFQQMaFNAP/Cv0qIf+kwToQc8CAQF6oqQSSTWbQxWHrCEjIiPiTmfYe7u7TXpYZu62d9wsXgqEkNcTN+MO+/h2Nzc3W+v7vvWt62um2ZMpCICxUKjGYbvD2I4chcp5eHg4Cz53u90yYdYBt3Sdwfu5vLjw2eef4UPk4eHAMAwL7V1fShnYhHMdxiSMtWilhVKPEYVsRqjM8XhP3zus1kASqn1jSMkRIoURMRhjm8BeY2qmqRToBlnQ0HUGY8E6zbDZyPjFRJwDd2/eoFUmq0Q2gTjNxOhRORPTiZgNSXVo6zCukyRDQYyglWW3u+Z0PJVxjwXVlDE7Ho9LEAislKxSdF3HOI4LQzDP80LzV8ZAlc+1COLCIJTJ36L63vuyKOj1hYnyXLuuI4TA8Xjku+++4+XLl9zc3CznrOe4ZCJatqUmkHXjqQnIWTDZBKYhhDPZS4vEV6SxpeTrYj6O47LxAUvSW++3fo9Ionx5eQ1dSXSVUngVcFbYGD7svf6NPeoGWlmGVo5QWSbnHLe3t1xfXy+B9mY70EfL7C3jOErQqjPGanzwKDTOdcs4VxarnruiwPX7zo6KDtHS+IpLoOx8A1DElERGoyXA3223WNPx7Tdv0Z0ihoT3kWma6ToLZA7He6Z5YvYzs58ZNlsSiZAizroFOa/XWccrpYQ1CmUV3dBDYTy7zvFwOKCVxbqOJ0+fc7XfsBl6nOvJWXE8jYRX3/HFF18wjhPz5Hny9Mf0vSHEGeu2PNrt6ZzDOEMMAWMVSpki6QlAxmhDTnEJKmII+MIcGG3QGVIIzDWJNAaMJWtDzlVaJCBKIhPbjbQk08YYlFY47ZY1pP4axxEA5/qz57wGCTBPU2G7AqBw5R2Sd1qYB6MkwUBBigmtDNbI2MdU2IoYihRN1qScMilWxjGSs8zV+/v7wtxQ1ibHMPQ8PDzw+PETFIrXr19TWUytJRmp7wKAKpIbY+wZGFYZPGGr/LJedl23ABVVBlgDRhkfR0bO4WxJhAtAsdvvhQ3zHy+T0QbYrfw0pSSJrqr8gASMKuWzd7kGavVXy35771cZb8NIv48taEGmJHop2bILSKHQhdVAUGBBDEVWmCUpTzot19YqJ+re9b57vkT6YxNgtutpnff517xnbQJSGeB2H4Rzqej7GJGKemutyDGS8jkL2373ZdLW7vft+S8ZkDbpq89pmqazf2/PtezbF/dQYwoJ2yPeT8vzX59xpnOWGCKx7E/alHNSWAmj0caQYpS9AxEeKa3JRHISea+yFJmpAMVVqaK1Iuc6d8qaVxMQGYlF4VSlTRq9JDMCjNexVSglrIrEiJoQPDGFNZllJR/WGEXW4armSTWJLux9Zd2Icl/lr9AoUqGI8gcGIx9ek/EXX3P9dmS/e0PX7TDGFQYAnNOk6AlxImSDTzDNM2/fvmE63HM8PHB/e8fhSEkQNFkZoij4VvSNLAiQzrLJaYVOEGdPjokwzXJjSpUXusqdwBiF3fSQIzmERcNbJ9c8z8sLmVLGGIs1QlHHkMqEMuWhrvRzDYjaySySKpGvWKOboERjjEUZkRCklGWR14JQT9NIjANRa0Io31coutxyWyjIeqHD0pKNymIpMoSIcbYsZMKJuK5DEVEGjFM1R0EV/Tbll9YaZawkaSVQsrbj8c0TxtPXCEulUQu9Ky92pebPWIhyrSGEM9Sgfq4yAW2AV4N6mewNdfxeRKRm3yIReR+dWI/3IVuXn63fUxfzel21hqQiOW3w8j2EJJ/Le+rn6jlaVKou2O2YtLKu9rrbz1XpndZqGftlvD/io0UF6/i3jA2sCWcNpIwxmKzQRtEpRwgzEmQLsp6iMHBtAlu/q55r3WA428Bzziua1AYNJTBppLnnG2b5rySgCZUym2GVr6SURebnI4fDgZQ6tJHaghCDrA+5wlsNLZ4SOa3z64zJyBmNYrfbMU++IH0WayzWOpzrub654Xo7sOk7+sGhyhrWDwPPnz/ldJqYpplnz54S4kTnpJatc07YWKOIKZKjJmlBZud5kvu1FmImRQEgYoiEVPTJRkYllTmvkT0zlWUnZUnEcpJdOZGXja0NWKpMSpsVuGkTDTifN+3PCbvgl/Uy56LJLt8j77zCObvUOdX5JWDNio6nnMg5LohezvVZS91dzvLcx/G0rAcheLrOLUhxzomMYvbzwujOswBalZEUoEYve40Etkl07o1mvJ0H6z1HUrpgcY0kLDFHcpL7pxmDzjmSEo31x3pcrvvtvqFocozyvuQikyEXLrCZd+3YXu4R7Xe1Y1yPRe66yFkzWhus69FKkyj7bz1fCUhzc94a9P6n3Pv7mIE2QL+85vbn3jd+7/vM5efe933LfqtEnl0lQu/7uUsWqB6X13vJyrSfq/+9jBXOwZ/mz837cn7va8wh0yStu6qqEiv5XN0H1kh9ZSCM1ksyoAsotewsSr7jbE4twlhNjedjw2qs86BcX43B1ksr86gkF+WTKYbCqCHwe4mp6g+qJbFon+N54n02RmVs6vfU+9VK7lmS5F//TC+PD04y/sd/9TV++nNySGzcgDMaZy2b3uI6IAVi8jxMmVPUTDFzmgO7ocMoJPjVbmGK+m2P7EzyBFOGOWbmmLHKoK3CYeh0R4/Qmfdv39Dtdxg1yGaYEUpKKVTO7HdbNAlSOFugp2kqUhdZzINPDIPGGif1IpMEM7vdwO3t3TKRU0ol8xSE4HA4LBm/UmapCxjHqWxigmKF3BSY5kjnOrrOcjwe8NdbNDCfRJsuGa1CitdZMvCcNVkJEuO9FBpK0J8IwRPCTIcmI3pebRRX1zu8P6KJ9BtDOlkiiaQS2hmM1Sij0MaijRQ7pjQzTSLb+OEPf8hXX31FSusCmJInk5ZAvN6XK0EJSuPntEiCHh4ezgLI+hxqgLwW1jY0ZF7RFGDRFi8TXIm23Wiz/ExF9D799FOcW1HPKi24DEJyzoumWp71bpkbleGo11tp43rOhaIsSVS7cFS0MaW0MF85i5yqFq5W1KUmvBWdrEdlQ+S703Jdztklye37AefcUuT3sR7txtHWOgELu1QTsdPpxDiO7Pd7YopYK2Pd9/2CVnddh+5dCfgmttvtkrDknJfg7v7+/kweUw8BZc4D1xqw1iT9shag/mRFqJKPhWWU+3DOEct7a8zEd999y/X1nn7oOJ0ORGUWlK1KI5VeUbqaZGy32+WdqkFsUprHN48Yx5HxNAKKvt/gnGPYbHn67BmPr/YMvSMR0A6urq/5/Ic/4MWL58SYCSHJOhVGjIX9bicyorLx5RiIUWQBPniOxwNKwdD36Ax+mvGzxyhFKIyrSllY7JKAdF0P2hAr2ljQspSl+DXFvDAAsAYYNdi21jLP87KutAhnBQlk/NJZoDjNMxVNFkmsMNTyDvVLHVhK4H1Y3t86NysqnArzknMtEBWJ3ul0KlK6xGmcuLu7W56V/LywPiH4xWxCNmyW+6kMrzGrOYUkQEbuNWWslXe93XPWe024blfkUuEMyHHW4UMgBpF0xBgIPpCCME6dc5KAXCDlH9NxGZTW/cAYg4pFc19YjCp5kXqUkijGcPZO13UZONvj4BxFv2QRjBGdfUSuwWiNNYbdfs80hzP9ei6Bj1rOJWCm7dzy3te1qr4Hl+xFnecte5OXdeT7/3a5/7XnvARk2vttg/hWltZeS91PtdaiukDhGuCwvYZLhqJlWy7X1vpd1trGbEef/Wxbu3WerJ3Pjzrw9XPOmAV0IGeG3hUg8Px7Uom1Wln3er1KYjEErJCdQqRZy7cqqa0iC1hBSnS2A0r9WkxiClBqK1Iq9SxwMV5IfAhrTYbcVAHKzbKuDMNQauWSwPhqldbppW5wjZ3WRI4lYWgTb62WbEuehy6MSk6cCqPcytj+quODkwwiGG3BQTaKMSXGeeIQZtRRCu5STmQ01hl6q1E50VmRumjdk5PC+5kwB3yQYhihowqCnDMOQbt8oeWT0XgU0Tm0gpgS7969JcTI/uqKq6srnHFkDWSPj5HZe3xM9K6jc5bebUlBAkc/zVIJkcR9Q3UKazpyVsyAJp+9FPPpKFmcVkStmFPkeH/g9Zt3bPd79tfXDEMPMaDJdCSCL3UVSWEUkCI5enq3wxR50+k0st3uVjRcC4sj7EUiphMoSQicNiXxEB5o6DTRG/KcCWGWh68Nc/L4mCErDrNGmwGnLMZkXHeF6x7TuRsMG6wVGjCpqmk2RQ9syNSFJdGZDms0xlpBKcuLN9gOUOQkRf/73bAwJjHOpX7AMs0nZh/QxnK1vxa0QyucNVjg0f6arnNMxxNvb++Zg7jthKBJGFKGw/EBiOQsdPYwDMskr0lAq89ukfK6MV9qU0XfvRZzXiIkSqlFA+29BAxVF11ZkCrJW+ZKQSlTCTBTyiUgUSVxy8vGeDgcePPmDU+ePFlQzdbBbLMZloLy7XbL6XRkHNck7WM9xnE8S86qXM17vzy/0+lE13VLMhZC4Ga/JabA/f39khRCke2lRIznqFirx65Jy+WGCcg7VuZPTXqk3qFsH78G9ZOFnuVz27LIZwV9PxCmBFkRQsKQmOaJTCSEGZ+1IH9aCxuZIFP002qtT6gB6H6/5/b2lkTE9oar6ytevX5NSj2Prh8TY+bm5oZPPv2UEBPb3RVPH9+gbebJ88dc31xx8/QGpWCzGXCuExbaDBgDndXoGVSWa9ZakUIghkzMgVoAPR5PaCD6QPSBrDVRaWGVdS7F3wFSls+YRC7SghpsKasIZbO9lITUd3WaZ06TbGStpn5ldKZF0lIDq2maRKY5TUzTKJt7ScBUkV3WBLYGWHUe1WfeOsJpZclZLYnF6ShJXYwerRWzn/jVr77i2bOnElCoxNX1TgADP+HDzOH4gFaaafTQD8s13tzcyHqjtUgCC5utteZ0emC72eKcJNn1/toCb601D/cPdL3IPQ+Hw/L34zTRbwZMjuSs6FzH0A/iI5MyWknAEvLHm2TUYPl7AWaWAmRbEtUQQsMTwmazJeaIKg5SrQStJomVkW9rAdq/q+9m10ldVAXIYoxoa/Ex8O7dO6nbLFK1OXisKbLqaVpQ8xgz+FjQ81Vm9OtYlFbq2bKcvw7JbwPzFpx7HxNQz/8+JmNhbMr8q+9kBdcENF+Thpog1OOScWzlyJfXUp/b3d0djx49OmOY2vO1e3x7LBL5LCYTBdgnF1bVyAJb4pSASknejZyFdULMKOT6JK6S72pY8CyMhEJjtYDdISZ89FJ7YzQhzFjTSR1OroCKJABKKYgS62mlSkmbqGkE8FiZ/eUZ5lXm5mosVmR3Q99Bo7io9wGQy7NrE+T6LNaEWWRbrewuRXFbVSV5atm33bAhJIkFP+T44CSjncgxFbRPQc7FDkutC7kqqJXKQq2TEklJQKqVoe/1MpALClUGPTc6NKnQYA2wjcGZolX2nhwjp+MRby191wnNX2/MWtHQpYhRRmxrtUJl8GXD8vMkyH4W5KMzjkSippWt/Mdai86JTivoOqj3mjN+mlFZNtmRQEordQhSnOmcXQrQU6zWlanIvYobQF6dVGIqtCHyAovDk+Xu9jVKVYRWkVIQxoOy8DgHWSx4B2vQORHTTG81ruvEQrgbyKpoFrPCWFkYROu7OiilIoVICQhpIQpBdMmqIBhKG6zTy/2CbNDBJ6yBTSnm/uzTT3j2/El5DgmVZrZDj7WGeZo5jhMPh4m3tw/8+ZffEKIgBsPGYc0A5CXYr4FHlRGdSUoatKNu0K22tG4KbeLR6lnrgryyVt+X9LTFb/WXfP/6AreLYUVox/G0FD63bI8kEqdlQ6usSH2u9R7bxftjPNrFrt6LUmpxWFvlMFXOnAExFxBE2uB9RCtD1xXtslJoncvn0/IM4FxC1260Z1S81sQkga/OupDVAApVWMbKNNa3VWSHkFPR+iclZhWx0uuJrGTtMsqUf4v4kIlElBYwRpU1qep0XdcV6l2C/X4Y2Gy3nKaJTGCz6Rh6x9Mnj6W4ebNnuxl49uwZn3z6KX6eePHJc148e8qwceyvtwzbge1ugwKssRhrZaS16IW1AtPpMnmlRkE0xEK566xL0F7rFkVumcvjyTnhY8KaAoYoyLqs3ymWe1sDJpFbBVIMBd1N8vxzJsViRZ2kpkKeSyQkcV4TUGoNenJOssH7Ce9nKEWZIGYcJHGAsUVDXd3b5P2r7JEnxBkRG0ugikpl4w3EIL+CD6QcmedQHKQGkceWwF2h8T4wjTNaGYKPMr7WcSzF31kpjHOl/kLWSN2pEiBHDg8PRf6rUUTIAlZ4QgGhxFnRB482Il8gZ7EZLvLlFD0acMaSQkRb2Y+ncZQ9OyVJHj/S49dJcJSSfd80wWsFhEIIxBQWkKzOn3adBs7W8pbFrt/brsVa6/KOtMya6P0ppi4xr8h5jfyU6GuWALS9rzZ4vgTL6j3/OuCjTUbqn9vPn615F4H65XjU87TBf3sNdVzq3rbfbDkW0O0SPLj8rsvnd8lubzYbrq+vf21dSvvn9yVFMt7vGR/50rI+F3mREhVM+cH3Xvcl+r+qmoohRgF/9XIthcFJIo0yZjWTqIx1O47tuLd1pO195ZwXV7/Y7JuqJCkSi+ezMan/JqwsGFWYrPIDAlpfMkBFG1YlY1liOlXZjryOzfuYsPcdH5xktLT0MklYJ2P90uqmk4rdZwyBWG8gG4ZBkLQY0yJHqefP5eat1QUhrH0diqRAKYy19GrVWp+Op+LyoIkkjLEYK1KgGAIxBvG6txajxcUpTYqUvKAeWWOV2DXu3EAklCQjcfATyXvJOlPCGo0zWqgp15GNIYN4vxtLVprjHLBO+kvI5iqbb+fEWUQrRWhehppoWL3WAIi9ZVo2xEwsBYzC4qBEkhFCO7HXYFQQmYjuDaSInyIY0E5j+w7X9QQlm5bKEa1F022sZZ59QTnL2CfIKkMMGGMrpycojCovn5VgRZXnl1IpnMqJoddsup6b/Y5Pnj3m5z//GX1v0SqR47xo3qMPRBTvbg/85S+/5svvfkX2wozt+4HO9YBo2lttc50HbR1EXQBr7UNbA1KPmozUXxUJbIPTKt9pUaOaeNaFuUq7BL1ZF9i2mKyiO1Igf1rmfe33Ya0UotbaoXmeF3euumAYYxZnmY/5aBemtk5Cgp8s9USmSHdUfUfCIm1xtuN4Oi01BF55UpQapRoYigRRwApZs4SpaxPEs4XeFMeZuCIzy+Itgqkaf1PtnCGLyYI28u9JM4cq3cigUwFJMko7fBD9fEpZLBKVKoGkFO6pwmD0tsMg16ONYrPd8PjpU169eQsqsN10OGv49JMXgqRZR98PvHjxgpefvOTd2zd8/vlLnr94zm4/iKNSsaPVat2YWNTh8h/TWQk+Qy3wzsVyVqOq07sSeZjSGqWNbKLF878m5IBIB3Sxk00CDlFBqrpxlyQjp1TGsQRlvjq3+JKkya8QgxT2m3OThpwjMYWFPVAk+aWUGJLEhEaC8BAixq6FjyD3E4KX9bb0XIpR9gD5t5kYgiRGSdDG+v7u9/uyroguP+WMnwPTNKN1WZ8NuN5xfziglEg8tbXYIgedTyO9U1I/EQOn4wFnDX1X1sg0S2CcRPcek/RKSTkRCptktPQpMLb0Mgm+qAQMfvZEZD07HI9U2URMH+860iKzbQCrtMbpFuBjYbhzzgQfiPm8xq5+rl0PKhLfshc1sah77LL3FHMA62yRAwpEkXKCmBenoVxiGF0cI1VhMmMTT7XBd/urXa/az7X30Abb75N3XiYn7TnbfS9X8KuRCC1j3MR7dV8jiwTv6uqK0+FISmEZm8vvPq87aqWpQIFw2iTju+++O3tG77v3y2B8/e/3s4yzJKP8zfuYncvva0HXdlRTTWYWILEAVElqc1JIAuBYW9oNyNy8nL/lShogTK6/lbfV8W5lcbJ31mdDA+rImp2XupACrJW+FzI0qoB2axyfC/tbWzjUe1sht7Jr5Npb6nyO/brjP4nJqDdd5Qz1BW6bIdUAsLoPrZtBFmcSJLgQV450RlujKrqmFwnFOI5FUiELxcP9ofi3G7RW7PebNXNHY4xjs9kydI7xdMTPc6lrmNFG44aB7dWWHALEgIqe3WZP3w0M/Y4nz58Sc+BwvOfLL79E7eWFnaeJECMpZrKWRCHHSFZCQYNQZveHCTdous4VlH7V1bcWmLUmoFJzIWYh08q7YXSHVmoJWvb7nq63TP9mKoGDbETXV48WOU8NwOtEDIMBnfEqcIwndJxwOTLYnq7fkYlMD/do40hZMc9BHLymSSarkcJRXZrL9EOPK/czz4HTeBR3mlwaECoZf6Uk0TPaEqLm9e2J1+8e+A9//hf8T//yn7PdDWw2PbtHe0JMzLPn7tWdIHYhMU6eeUyUdiH0Xcc4Tmcve513VSpQ/3w8Hgml8L+6QcUYF+lRlSo9fvyYYRjEQrSMWe2DUSVUwzCsi4taC7CrFKftsbFQmYVKr/ab1QVrmiZub28XR6v6btQN8OHhgXmWPhCn02mxz20TnEuLwY/xqGtEDfjrOpGzSMyUAuss2630oQlFduJcVyyRO8w0F2YjcH39iNN4ZJpG8GkphtbalPNXJnJNItu17BK1a3sRyLqSUGndDKSngTCPqRbZZaHTQ/BnSFQ1TNjtdoRQ5VXiONK7jpv9Iyk+zmCywhqHNZaqJ99tr0gJvvn2Wz77weei4TYQfOTv/1f/FS9fvgAy33zzNY8fP+aTTz5BqZ9y8/iGzWZDjHNJikrQkyno2nnRXw3QdJEVqZwFBUfjQ0ArWecq47Qw2jkXlGzVVtd/m+d5YZbbd0gp0b9X5C9UtxYtiZz3svZUnfvsAz6mUkdmMblFQOV5h+iBXJgJsJ0jp8wcJDGZQ2AOkevr60bGKA1OQ+lr4ZwtPvCQstSVzPPE4fBQNm5LP/Tc3Z2Ks2Bt1ChjZp1hPM0LuKGVYxwnfJyJMXBzfbW8+1YrXEmW9sMjgLKGnxiGDms1KQVev37FMAxYZ9FWGvXFYmc+DBvmcSR4z9XVjr7vCrAlco/gAyl5rq6ulqaX2+22uCyysD0f49G6xp0FzjV5LsCk6zoeDgdSFrmkJPxqkdpVlUIrea0Jxhmbf4Hm1/W4OiemlCDJvm60mJRoLUlHzOU8OUnTNIQp0yAN7C6C4RrLVKOadv0/iyEasKbuP/Xaal2Q/L40X9Ml4W4kX1W1AGJCQ+l7o3KR8ejS26bUQgbCEm7qEoSmGDncz7x9/YZtPyx1T23j03rU9dUas5wfwBrpNRJDIITI/f09Dw8PZ7UX9ecXxqmuAXUMyjhkJIbMSQLqWghNSfLI9VlnjNKLoZO2tT4hFzDl3Oq8fr+1dqnXqmwwKFSRjflSY9f1ltFPy7rXDW5hQ/uuK/G7uLBaKy0aUJQ9cDW4qHI0U+dieca6MisoQpE25RRJIYIWmWsmo50FpZaakeWJ5ApqV3noWk8jcUknz7fM0NWoRJwEI9+Xsf2644OTjIre1l4GsGoVW1S4RW6hccaICXn5Vtu4liaqPuXK6LOXvFrPLpOrDL5WgkylKCNnSmfNGIXdCPOEKjIjZRIppCKfmuiUwxhN73p+/+d/wIvPfsB2fyUbyXZDVuKw8nB7W5xrCr1KJsTEOAYeHu6YxgOn4z2//Ms/I8RM8BkbDWMKxADzLCzEPE2kGqAqBQackRexPriMZvKBUL5vXXwyykQOR4UPdtmMpTdFOus5UMex/j6Vl6nvd8QYRIoQZ1KYME4y734rmw7GYjrH3/17/yWn05GHhwf+/M9+we1bGYOhH1DaEYIHPGQYhi2oDafju0UaIM4oSVC4nJjn8ixVwtjE29dvebg32K6D795xHGe8j/TJFZRT2JOYzRKUqezlpcnrxG7pxfrfltpsae2c85KQ1ALrmiDUc11qcFvat9WjtqhWK3daC8XzUsTXBrBr/Yg6K1Kv11+ZDmPMkhy1wa5SavmOj/loi/kuE6aVhZO/r2P8/PlzpnFekq/62XoOrVdZnJRyZSoT6pwrloJrzUfLaFwilO27BBQ50DmaVNGdWDblel9tgCAB7wq81CDAOUfnpEPw29dvubl5XOZMZr/d0m82bLdbnr94Qdf3xBSZg+cP/vof8Pq7bzkeHvijP/pDvvjJj9jvt0Dg8c2Wflj7yzgL4FEqQKHD9UJ9y6ELqJPLfcmGLEhrCqns2rItaYG7zoKu+q4ZY8i6jFkxytFGL8h/lbouwVj9vlQ26iJVy2X8fAjl7ymWscLEGCvIv6Bvptkkz9cECeg0qchBQ8ySvFlHSCWYKgGYD3NJDAPzPGG0K30yPNM0FivI4p1f2CYBD6TbtypjFGIo/TRqHwIDWZKYVJierjCiiiyGDlqVNkgJP3umWSyNu94xe6krqetBzjCdZqbZgxKpmk+FZdXnhgU1OBUWXWx169yszf20Vguj8zEerVa9TRAC4u5TmQylFW4jDW+necZ1rrDw50lFa+d6iWi3qPZisVz2lxACc2GXrXV0fS8JXIxi9ZlEFr1x4l6mVCaHWBhMYWpVLuBqRbSbPaOCX23CUwG2thv49xIuJfu+UuAK0ype+KIQSTEXVL0U8yqRfWkUVhupSw1imGCVEpAlaWLURFXNWjJWG1RWGGUYugGjNKREmL3UntY1pUnOciqsXxLmGWCOkwT92gqrmRU5QZzFxS03UiTFJVPTMhmsxfZZlBblVSQlCN4vxda1QZ6kIYpSjcsiGGoAk1YtMc8FuFFWZEu+6SeBxmmR+HsvAEe9xpBFKqm0YQ6xqG8s1p0XuOvleck4VHA95SoLFtfRECOqSIUVhnEW51Vt2vMZVG3QmoVhTjQWwVnuvjYXlARWkqYQoyzoVfZa1t6UZW8QidmHARUfnGS0g14Dpjarb6Uhl9TeQhWqlSpq/73t/qzN2jANOKPGQYrPU0qELBtGzcZs2YwyUhyOjxitMMWq2hjJnG3n6PsOmzNba3j+/Cmf/eAz9jc3KG3RXY/WVvyGp6lQ5bl09hW24jh6DnfvGI/vONy9wamReQrMk+fd7ZFXhxOhUF7BB7SzS4aozFrkB3WzVyQukYka3CSslh4b3ssbIAmGglIsWp9FGzQ750hRXlxre8I8EvzEdHpA23dY36Odw3aDjI/s3vzwR18wjSfu7m/FSUU5UhDUZtgMi2ToeDxibIfY9rnyUtRrjqSsUTkCERW9uI/NE6c4cdIKZS3RbRlLofe+vyp8piCDKdYlCqZxIivZ2NuA8DJ4aedkZRvaRbuOjVJqCdZrAtImBW1g3z6TFq1tpVYtzbk85+YZ1+8Uuvg8iW7fkUon16LfFkGrhYrtu/UxHu1G3TIJSolsCaqERRBuY6Rj9Tx5qlvQpbStUs3WOuaCai/In9ZkrUg+/dq58D76Ws7brF9NoiHH+d+351juR6/a7vq9EhiK283pNLIZdlLnEIXh2GyFTf357/4OXd8xTiMPD/f89m//jKvdhoe7O37n57/D9aMdzmlQnqurfmnUFLxIF8mxbJ8lYaj3pKoWmSXJqN2tKdefi2eK3G9xJ9H6e/O1BrNVTqYUy39Xbp2zn1nGrCSCCpZ6GKtcKSbMmIXVrYm2KbT+udPOel8Vyay/yhNUsqcYa+Vni1ylduaWhqwClmEhK+mb5P1MSmE9d/lv33eEIGCCJBhSt+G9lyRFS7f4GNIyh+wiVyvzTxWBQpZEaPYz8yw1Jc658v2efrcnZ6m/uHs4ElPGug7XS32htRZnbQkoxVyi1qnV31eHuyq3lPVTo/SHe778ph0tc3Z5CLBWglEq2pvOAvnLpPRcfpe/9+/vZU3K/lJBhjZAhYZzqBMAAQAASURBVNqvSX6v8rkNqirPXzXvR/2+90mD2r9vE/X65+8zBvIOCRgrCUZKxbwmUsA6aN+tlCQxqk6g4ooE2gqzusps5OeEFZXERCFrtypSoZTjAsZQ77XcRy1ErmuAzNtQkgxJepIM6NpbhHVxUc355F7Pbvx7Y7EMcrXwp8qKJBGrn1nbzJUvZ5VVtc8/pVSadspV5FRjw7Kf6VIHkTLKrOx3zgmVW7lUBp2xxiKmNnW4NFqnFWAt6/VyW+X+a0wtY6IXO3BtDLnWkhZmus5O+Xx5BxQlwWjGF1PuWS3J3bLbreopSZYvRuyvOj54pZHFzy/uPm3RD6wb6Gaz4e7urjh9iERJKdGMgrh4VPajbWJmjJEKxKQWBAdYpEA1CPPeczgc8N7z8uXLc9vTvpOAPWfRsoaJGCLDYNlsHLvdnkePn2NwdDnTacXd3R3bN6/wJLpHN/RqwGqDURY1OHSKqLwWdjkUQ1Y8e/mcPN2Rxlv+8Hc/Zz6NHB4O/PLLb/iTL9/w6t09r9/eEpN0rr25vuLu7o6ucxhl0JjSdFCy15ij1I3YEqT4yt5Etrue4/jA4XBfNiDxUc/ZLgGzdCNPi93j1dU1loHOWnqTSXHkdHvL8d1INu+YY8D0Pc8//yn7/ZbdbivN9IYt282GRzfXPH/+gjBHFCJps9YwFtvGP/7jP+Z4PBBjYLd9BPlQNuyIUqLVBsOm0zC+JTy84/7NN3Q6E7Mi4OiffMr+0VPsdk+wJVArIcKxNN1zzvHw8FCjiGXhr0lVTXhr0FM30opS1XoJkA7gIYj7RyvXe/ToZtloamfYNkhsEdOayHVdv2xANbmpcp5WKlhrR+r11UZ8dd5WVrCt86iJXFtP4pxbDAE+5qPOT90ErWvwb4pTlFjOPnp0RcZwe3vLdrMnpbS4ANUxHYaB40n07n3f4+fA2lcmiTa96QZev69lolrHlHZjr0HDpYY7w1IsWM/ZJrSXeuTKbFlr6fue4+mBaZ6ZfOAvv/oKoy1d1zPsdnxyvePzH/+Av/V3/4jnL57z9u0bfvGLf8fzFzc8frSDmPjs05doI/0UMlpetXK1phe7VQqLi2o2A71u0nJxZW4XNCurspPUJENJfYQ1HVV+tgRXSwJcUbd1zCFiDMS0/lsb4Cml1k2L1QAArYsEDVSsFygbW4qZvhNGotrkrolOrZspvUmSAB5KG/rNINdeexjlRAgzx9NBrMBjIKVQkP1MjGLZa4wwvWZJhimAipICTrkzTqfjMj/6vi97ZFjqs7TWXO22UitQE9nSZyOVdG4cj4zjWEwtdoB8n8xzz/3DgT//5Zc8e/6SjTJYlxg22+KipLHl2snl+YTI8XjieBQL6N1OXAzfvXvH9fU1SruPGqxo+1ctgZ/+vqtRznlhPqtECs4BgHq+lnGs86p+TwuutkFszpntdisM0TQvmntjDfPkRT7smmvK4m6UY2VLkSZqrO9Gva4KRNU9rB6Xa8z7nmMNHJWSZJNlJROwNWdJKlqm3Bhp96azFK1rBHcQe8wCCpQeW6asISmEJXlQ9QZZ+8nU661MWqswWIEKUXFUww6lyju3rBffLxRvgeoW/DkHPwrAk+NistPGCm29Qz3nqhhYbbC11sW2+gJkYXX4Wli1EEgJKJK8qcjXqfNCaTRrY8CaQLTNIEUKqKDpIP6+ZLedlzFGNpvNMocXwFSpIseX57fUHOaSnMaw3GeNW4Q5LmYJtc9OM6/kfYtr8vcBxwcnGdY4JCMWxLYWNYuGTBGz52H0vHljyFG0sSlJUBFzJOTMfnhGzlKQpnVkux1WVKdoyvws3XslU1KyAduOECPz7FFWc3VzDSimELi6usIYS/ABH/JSSDydTlidpKB6Crx5c89Xx685HP4FMSZc1+F68XI3XY+xHbrr+PyTl/z4hz/kd3/+W/zwix/g+g7jhLIW7a/B6g2ZCCag+yyuFWoCE7i53pL+/Eum0z3H0z0xIwyJ6bHK4R9O+BTFjjcrdNdhugFMVxpYZWLwSKM/CUp+++c/5Re/+Pe8efUWZxwkT0zpLKDe7XZLLYzUJJxQ6cBsFDk6rrZ7wBKD5pvXr8B0uAR3t2/ZbjdSkxEyhynTDT1Z9bw7TWQfyXkmH8eliNRtN/wX/+Dvo1AcHu75V//s/wN+ZA6RGUvur9BhwswH0usviacDpMjNds/sfYkuFMfXrzg9HDDbK/af/gBlHCFmxmliTokcZO5Ix03pySGJlCQCu92+FMDLPZ+OY0ECZG7O80jKgZQtXbcjREXGcfP4OV13gJxL741AToaoHCFrlI9Ya9j0g0DMZdHOWvHu9pZ59ux3jr7f4WNkPE30w40Ue2sNOqBywmpwneilhaaOOBIbI9c8zjPOdKIhVSKvyNqAVZg8i+QkeLyf+Ob11wSVStOzj/eotsAhhMU9qx7OdiXwLYHg8Yhzlv1+T/DiDLTb7bi/v1/YndPphGLVS69B72oOkZu+Ly1j0SajLTPyVx3rpiZBYg3Ya5IJ59KpurnV359OJ7I2DPs9VzcdXTfw/Nlznj9/gbWOP/qf/U1+9JMfYgbDZm/pN4/ZXf2cm+sdOWRIYG0snbcTSkfRNJ+5YMnGYrQuzHtemuAt+4LKVMhQAoWK6sGSZJCl9qAZt0v3k8qK5Cz1LzVAzrkUubImdmdIsDUoVRHUYqoQA8ZZSKBSAXaidNXt+w3WVkvjuHAVxhiRaIRETMIU21xY61IXttToKIX3I36uQFfCaDnHOE5EPxKDmAe4rqPvHMOmF+Qz1v1sQmsZtRgSm8LuxrgCPErB/f291Hz1famPiUuQVXvxpJRX96EypsvntOHt23ccHk7EnHn+/CX7/TXDdsuw2dL3TpD6kvzMsydGjy/9OXwoCc7V1TLHnz9/LmOqPjxA+E092qCvlTi2QV99p2OMS7JVg96aANY/VxOOui7AmhBfgg/132pPJJEsy16iOJdzKRRd34ujZYgl1qkoeZZw/ntM49rVvSo92v5S7XypwfEZq1ecrShBe/2sHHn5PnnnE74oSU7jkdPxHmOhs50YvSQx21BO4bSRWtS0Nr8UF1FJuJ3WZ+N+WadVx641iUgpi0xeafm9EplrPVoGoZ67ZbHaNal9ZtITYrUEb+dJTVAreN0+c3FoE1lZTTjbfSoUEwgK+FcBRaWUWMtS3qyY6KwTNiBlfAjlWhTWGkKo5jKzjHNZb2sX8lpUXZPEy61pBXUUXeeWpKUmxvWYQ0AZXdjbtX+cQmRsdR3w3qPV6tRZ58372EJR0qyx9n/s+HDONEl2S6G3UCvfrnXpaZASKSp0MugsdldZWCGsyuhcsBst1qZDb0t79oo8ya8QEiHE8qCFOoo+MU8e41TZNBQxyQOu3KMq16SQol2rIoYkL3IHKhqSR7Rx1qKM4eQ98+0dOUuQ08VAlzx9nvn6y//A42dPuHlyw9OXT9FGY00HRoNKqFJck8ic5pmHw4k37265vz8wjhM5yx55GieceWAwCp18GYcsTWyyWCBKHYi8GClF+q5nM2y4vr7i2ZMnfPXLvyTMnuBncbmyjgQSmObV+73VD6YwkSKoHNl0PV1nsEMnWa/pMF2P1QWTy0IhHo8nfMrSDVw5so6kIAudD4L4OWfp+25hnD7/4Y/41S8eYJTnGLQRZV+K5HkkF9TEdD27zZ7ZB07zTA6e6XiEmOkej5gOUpaZu9nuUCRUTlIEb0STXRH++qt6dadaJV7uRTYSj0sW6LBmIESxbBuGfvGWFqTaYI0W5xotCI7VCkMSRFNLr5dsNTHOjKMGIjkFDNB3gkRvOnH+meZJEE8AlemHbrGfS94zjlKkfxpPzNMoBa2d9C6obkWRSIqelAIRT8qBrD5e9LEebb+KuthDgyQV+Y3U/rTo98robLfbZeOvLkxN9Lz8vs7pBTF7TxJxKYNopQntxth+fv05sXV+3+Lebvxt8BJjRA8O1/c8efyUx0+e8uzpM549e87jx0/50U9+zItPn7Hb9rheghZjd3QGsLrYrFb1eYZC1y8CES2N5igIqQQABRnLeZE9CBNaEM/lvuQdyjkvkoQaOLX3XsdJajWKzIQ18KjWsO3PtWOxMAPFylpXdBPpft1KW3RZz01x8luvXb7rvMGUKfokTS12ZXmWlB5NM8HPKCUN86oVcUprD5V+6Ok60UsbI8XWNShc0cS0/N06b2rDzlQkmB3WyfpOkffasrGnJD73oTRXhUzXO0KsfV/iYhPeWctuv2cYBrqup3NdSUQqghzLOdPC8oUQCH6VJsLac0Qsyz9etKLub5eJK3w/KKr/XlmIdh62QfCl1LH+t2UXLqVMZ0mzUk3heZHBlGQilndBa0WOufQfKOev5U9NMF6/q2Vq/qrv/v56tSL+K2PTjlM+m8+qADsoSf5T9tIRPktSFLNUumRFAWxSeW/UAuBQEo1aD/O+a3sf2yBBer1fGY/1Wtf7+XXr8iWTcTkXMudIfD3P+84hvz8f4/a8beJ0eY7lO+t5yrioIrvS5eQiVVuTpHNGqVgg58Ti8NRcy+W8vPy7y7G5vKnza64yrBJ7lzkgHz1n+tr3bJlf6nys/6rjPyHJKEaGuTSRKS+QwmCNJWeLocdY0EGhsiKRMFmDzmibcQThwXXCdprN1oHSzHMEDF1vcZ2Rxkejx/tI8JEYBKmZTx6bFdrIgi2+814eopZFt976o+tHEGdyDJisuBqu4bG85LbvCSkxx8Dt/S237+6IPrAfBrrsuX/9Lf/2/i1/9ss/48c/+YIvfvYFf/i3/5Cr62v6fkA50SmTPSTP5CO3Dye+e/2OP/vFL/nu1TtOc0QrS4qe+/sH5vFEryKPtqKfziktE1ChSpFiKUaOkd1mw+Obxzx//ozHjx7RWUOYZ6bTkUeProT+NQ5Yqfa2uVndbGKKxNmz7Qac2zAMA8+fDSRlwDjspkflJM4EKXF3f4edZozrGYaBmBMhyQQcp6lk4oHjcWS32zJ0HT//+e/w8PqXBKSbZU4JlYp7FwpMJzaWbuDRk2ccx5Fwd4eNJx4eDnj/wPDwQLcFXRCUm5sbwjzh50mC/OLLX1kbYJFLVRSxSlmqbCyEmT51KAXWzMRQaHXVYYdu8et3tscaJ3pGIOcCWybPxklC0vc92Sl2W8dpGnnz+h05CQqx3/S4znGz37IbBsbj/VIEGKLHObMUGB5OgXfvbknJk5LnNM4Ya9noPdaJbjwnTcyygKcQiHlm0zuiing+bneppYkVnEkBpKmeOJkYo5hnqSsyVoulb7dZameGYeD+/p7T6bRQzctR1ldJQii/ziUObeBQE3T5UXUWjCxLdbOe1mBceg1IZ1Sl1Jlr2BIUlwChPaegYw632fDys8/40Y+/4Pr6mptHN/ze7/91nrzYs7/q2e96jM5QO07HGZUkychxbq4FSGXjQ6xl9ZJY1IRC7i6TVpkXdVNZ9fyyFq33qVTpvJuh7P5LcLQGQEHelyzSBNVuUOVksaB4kihq2T+W51Ukt8YsvTgUCp010UcJyou2PEQZe6fFfakCMlUD7qzGZ3Giqs8tU3p7pMjpdCTOJ3IWs4DZT0hSpKnJkTaGq6sdVcqQsqCNOYm1oyQAxf5bSW2HXLbBFUQxxsDVfo8xFmOU9AMp5xfnqEQMnuA9c5LmfVprtttVahyDyFZ2+32R0u0xtiYuDpXEUUZrQShrAFOR1eA90+SX/SCltHSOH4Ye57Z/1Wv6G31cJhltAFqPFgEHYVBrHV5bS3d5znpcIvLtZ+t7l1JaGgqrkmTkLPFXXddSivh5lmRPa+I8o52AAao5VysFaq+xLf7+dcf3k636btYC8LIWlP8WTHZ5Dyso4JzFui3H0z1JydpjtCYkSTJEZlPKpFWxbFXrtS2AL1xcz3p/Zw3mFoBJkhPnHCHXpGNF6utn6322tafts27Hoib9tS/K5b+38tbLwPzy860Er9b51c+1Mqa2Lu97CaOqhj0Ny9VcizjsmRK7SQ1HywS3yXH753aPWUCsyvS0iXN5ZjTnUaomNbLO+1kaBmq9NjVO+fsyQa3VInH7kOODk4yfffETXr9+xd3dLQ6N01Zo45wYDyM+KwKawRhcp3Ba0buO7e6K3W7D9aMt1xvDzc0j9tdXuG3Pd29u+e71LX/+l9+g3UDXaawRPbYPUnsgza40zvVY2+M6ucmapSqk34KxltPhUAbB8C4cMUWLFibPtt8sNpiYioRFrq82uDzTac2PPvuUx1fXJaOO/O0/+n1ev3vH22+/4//yf/o/02+HwjDsePz4BtsZMolffv0Vt7cHHh5G3rx9ICWH1g7XOYaho3OawUlX3HF+QJXC1n77iKwtSY14kgQI2kHW9F1HV5rpjccjpMjQWUgD0+ko9RDYglzKw76kzBSKXFwIQoLZB1yI7K8eEQrHE3JmGk+EGBmnme31DSZEtJ64ffcWq8SWz1rHd99+iTGKvu/o+47j4YSfJ958/ZU4V2mHjhNXNnKY7jk9vON6c8VusxVLW2PIw4bNsKN/9ISr40j35hXv7u745S/+LT/7nT9gs9mibCd9VkIgxyQJipLC2FrTABLIHQ4H7u/vpRBdW7reLotSXYyE3fF01rDpO57c7PjDv/77PLre0/cOZzT3d7ccHw7F21+kG9M08ezxU/ZXe3a7Hbkv/vYKjscj797dorL4hH/11ddSOGcszr5ksxVr5RA9jx5d8+bNa7766kvUFBg2FqV3mF5khTEJ2vXnf/kXhEmRg6HvHJ989oxh65j8kawDtjN0Q/e+1/OjOe5ub8lJnEkEVbWgFZGMSgHnVKn/chKUGctuvyNHYT66al+ZRH5mjcFHCez87Nlu94SQmKaZcZy4RMHqsWwCuSKLqkbeS8OkX2cXnGvwimxkaC2SySDN7p49fYzrRSIzTRM+Sj8QjUY5hbJ7nt58wh/+zb/J9eMtP/utL/itn/+Mbb9FW6m1IEexyI6e6D1OO3F8KRrdFr03GpJKRBUxnZMJlVJRQ5UyaAWJ6viUhAlV1aAQcZBZIoRyo2Wj0gu6mAt7LMF9jB6iRmUt1HkoBYZZFYZUNq3UnA6loTRUpbhHYYrfe6x1MFKwbrp2c5O/K1tuKb6uiY+WHkhaidS0NP+LKULKgszGSIyTWMCWYm2tJBAspau4jdRUoUvA42fub+/Em0dZyIpX37xabGZjCtKtPUFMgbd3r+i7nv2wEdZXCZAU69VnCBliyBxHz+w9rnPMU0JrsEZYW6MBHVG94+nTp2yGDUrLWmd0Ytsb4hxQBJIPjMcDD8cDKUrSG04zu37gZn/FNM/46SQskbViu5oit69f///w9v7mHJcSpq7ruLqSusfWaXAYBoCliWsb7K7SmvMArv1M+12XCU0bePWuQ2TekJUk8/V/WldL1SLVKcFenYvqot9Am2BcBqSXSUl7nTXorYHjeo3rO9T+7Ap+FPmLkmbJKRQbGi124inmIvUxKEdJaHNZk0tvFi/uagoB8qrCoG1mfDmWuQSwZZkp926ocr6afFSZfvvMLp9BBXUqiycAyfo8P0QOW3/e+wnn7PIdbYJ5+fnLXir1G4zWi3Poeo7y58ICyc9U6aSsErZazmaJd3KRSqmsed8+llJeOtfXe23lg0aXOdkAZ3qZU3UuFGcpV+9TnyUjl6xOlcXqDyRDPzjJuH37Cp0j1/st1u65utqjjSJ4aRZ08jMnP9FrxdObRzx+dM3L509xfUc3dAzbDb1ROCsB4+vbd3z73Xd89+odDw8HtPVAIiXPeJoIQRyUBPkRJMtah3NiBae0YrPpCWEGMq6z3DzaLVmjNQ4/efw8M6oTtiBAtqBNKxIVMdYsFrqb3Zah7zHWiP2dNpi+x/QDcwrEEHl398DDURbumCNv7+45njw+ZrrtFX6s3bBrFqsWT2ixsis7Uyn9E4Segm5I8tT3G7S1HKeJYRyJGYzrmA+pOC8h7gXNe9NmuVKfATlmSImHwwljHK73hMOBhJF6lFJQbELAFfeSPM2gNFkpejvgrEMbxc3No/IyCMWvtcLPM3d3d0xhFIQ1jlwZj/ZHLAnT78lmIGkrtTOxTnDNbrdnGDbcPDrw8PAvuX31HcFHbp69lOSCahggz3SRVVzQmMMwiB1dBnGgisVquS9/nxn6HgVstgM/+uKHfPLZS3abAaNFdz5sHX66Ik4TwYs14eF4JBDFfk4rumHAdg6loDY4U1kWFOLM19++4atvX3F/eCjsi8ZYxePHN8zzxMNp5u7+rrgkCVpxPJ7QxjJspfB+2zuc6fAh8DA98OAT03yi6x16VKj744e+sr+Rh0o0PRlKUaAxkrwVaa0Usg3L4hlDpCvIYLVslpqcnbAZnV3m/mk8oVjPryiIDueLc00w4PsBSzu3Ljf6iirGGNlt+iIJLZ77RoPJWGPYbHtikDWmUx22NIY01nE4Ja6ur/jk00/44Y9f8OKlyKNscbCjIO+psDu1dqJ+t7gD6QIulsoQpUqwIlIGCv0twY4E7nKW8u5wseEun0OYyGYzk/Fp5EFN4FKI94JsmhKwFKc1JGFSOYMyhXFG6htKcCMWjSWFUeWMi62nXhDNXOyCReO8Fp5f3MJZHw95xKkJUIokjwpE1P/K6GhrMVacm6R4WwKI4L0kfAFssc+t1ubF64UUEzFEki2WoxV9LQlgZUlDjBKMKYPWsg6o0u0+Bgms+m7AbAzGONFvR48fjzLHU2Q6HcilmWEIgfF0kqQ7RXxY7bNjjBitMaaXxoZIE0TSeRPXj+24rK2q91rNPNokoS1Afp8kClY0uAa9rZyn/vtlcHv5X3nmUGUuS52AQpJe+a2g/3XtyaWmSJ2vO1VK2gbQde3J+bzo9/Ja1vtSTSBbr7+RFClhC6C+h2KvTIJNtymGGQZy0e1nRM1iSp1AlkA5xlDGzZDCygjUuqN23bx8DnWMV9a5yriAIilURenRBrv1PC3D055PnuHqMtkaw7RzqE0u67tujCYlw+LK9L7ksjzLSyZM3s/yDAtd1O5BuYx7WYXL3EqY2qwxp6XQW+ZDaqR2K7vQ/ldA5fMalTN5XV7X6VXSh4AvrGMnvYvqfRdGrZEyt+NQn89/JGdbjg9OMubTA7vdjmGzpescj588wmjNNJ1AK8b5xDif2DrLJy+f8+zZY374g8+ZUyZrDVrqNPw8cTwd+O71G77+1Te8eXPPcUwoLZ7lPsyFflbLAGqjMdrQOUtnnWSCRrHbbfFeJkPfC2ugABIYM3A8jIzKCrJm14ZtVWKllPiPSw2kYgqRKCkwdugJZEzfs1Earw33hwPhdOJ0mBjv7qVOIQbmmJhDBm252u+I4VDs10QGVpHXGJB6kLIAxBQgBXKMYNWiZ8woMJaQFfM4M4wTWWtcv2HyopNUutrTcfZy1Q1Vaig0OWZyjIRpFqq9OxFOM7k0zNtsNsQExnlSBtcNJGYiCm0sqpdNVBvY7baM44nT6YDYzinmWZrHHfxEThMuntioB5SfpQ7HDSTdkZUhK7u8NEplhu2G3XbD9dUVv/zLP+f27h0ZzfXNU7QyUr5WvKwvNbQtPSmuTmLZ68MkyVWWPhRi3Z1wrhME3XVcXV3T9R2mM1iVxdHLdBinwRmOpxGfpQP97cMDU0rMwE4J0qC1lnqTop9MIdBZg/eBu4cDr9++A4prQ295OI2FSs8cT6dSOCcSwIeHh2JLOQhD5Dr6ruP2YeZ+vGMOUsy5jeIe8bGXZeiCvkvhb9mMlaLr+rIJCqq2uGnFKI52fb/I4FJKZ85jrrcSkGrFNE2lL0K3LvC/7lBqfYZp7a/SJh3t0c67ZVPJQEoF3a+bGXTOkp1FG4WxDtv3uL5nv7/mzbsjT54+4eXLF/z4Rz9kt+txpWBdZZEp5CTSQ4qsMqcmOVCt1CCVzasmGTUBkMSAvAinvncf7Z+rmqKiXudoYR0fmvM3AUH5bE30U6ouaIVFKWOyArY1uMnLH5cEp/x/phbHNjKSOv4X/XKWe2D99/qZNYCMC5CDWrvVVsADrQqTLNpoP00LM5BTJvhImENhh/Mq7dJVQhW/p2NekUKWIENQS1XGGbE4V01tAOL00pWktKKl0ySFyzlHpilCisRioLBIRQuq2Zd3JRanPG0NWSlCiss9WfPhSunftKMtgm6TjHEcl8a+l7KYS3egS9nJZZfqev72M+9LMKqgJadM1nU+l6BaqcXGVLHKZmJTLCy9Gs4Dx8traBmW9t4u/245yitqdLU3rgkFy/coBa0BgDZKdIUJejsUJYQmxLQUdtcgua4DSitykATBGANxZX4vr7s2uG2fQ5sQ1XdVHsEKLIilvdTkXaLq7f20a5as4ZR3Xp1d0yV71T7j9ueVYkl8zsdNrYDMWZK0UEdlnZIYfa3JUNKBW9XgfF3PTelpI0r5atGuFiAmoxaZ6/vmR00M3vdvlb0oZPYaP6UkjJtkcVLragpkVBNaeWAAF8ncuk5/yPHhcqmf/oCrqz1d57i7v2U7CGqWk9hKPt3tuPn0U377t75gmk9MfubLr77h3/7ZV7x6e8ubd7f0fc9pPDCOJ3wIzFMQ85Bki78yZDqsrdkZZCJDb4BEiEeM3+E6i0Hx9tUrhsExDI5N76QPxDgxnka03jBPiZjE5tJaTWc1XW/YbR5xnEZuDwd+9eq1WFy6jjk57uaAtQqlM7YbiEl6YxzmGR9rgAHjnAg+k6IGIzpylOI0HshZut3OPmLzlhgU8wind4Gbqw3bYqn77v4W7IwbIrvroVTrC6r13etbXNdhO0u33dNtH/Hk5Wf8y3/7b9lsBqzSIqNwjr7v2e/3VMeEaZqko6dP+JAI40yOwjjdH48cxplhdyVIvzLFaWvDZjuy3e1JSPHoPE1i+ehPHE/SNfXbb7/hm29+xYsXz/HTiel0YppGVL9BRyA8MN1+izOOvtuRVYeig2xISdM5wzyeGE9Hdt0GQmLbdfy9v/U3+L//P/850/GBh3evefLi87Ixy9t6vgCoi66ssmkMfQ9qI12iDwem6UQInjGOZGVQVvMwev4ff/xP+dV3X/PpJ8/4/LOXDL3lV199ze27Wx7fPOXrX33D67dv+ea773g4TCKL0Rpbehw4a9hvNticCfPEeHxg2/c8f/Epv/vTn/D5D/5rdrsNAKfjA//mT/+E+7s7cUvSjtvDPYfjidM4czgeifGB71695dmz54zzA2/uvuLt4QGPRlnHZrjiMGe2w5ZHj64/9JX9jTy6rqur70KjG2ukk7ytbhdZXKPKIn44HNgMw0XgK898t9thbHU1Mfj5btkcjDHEIKh37cHxvaMEsi0i2coPWgSxRTwBDocDu+2O7XbLNB6WJEi6XU/s91e8ePF8BQe05Sc/+RlYyw9/9Dk///lPuLnZonSmSpBMiqgkdVk6nGeUWimUMRgrDn0Aumq1K0CVJDGR7tWJHFeK/HKTrkl7lTS0qOP3AxvR4Mp/45p0FAOrWm8QY7E4zLVmQBrzmbo5pbQ0zFIZUvAoI01KRfldmJCcydmcvfd1Qw9hbap3+cwmP0rxdDHXMGWcFJL4kYRliTGvuvlc5CBGL5IrYw1KZXwKdJ0j+kgIM2/evmW729B1Dms0fgqLKcaTJ0+WeVPHVDQyilAcA7XWjCdf1iexY97tdovFcW2Yd39/L701ivR1KPM/F0bLT2MBmxT90DNNE0rBMPSr6yCCKNdGXW7oRNKpNfZDrWF+Q49LVFtrvTzPdh670gQRzuuk2kDz8nz1z5eJR7v2rIyAJPemSP5qgL9g3rno8Cma+IahqP0VzoPjc6es+n31uEyOvpdgsOrscy7dxTUlpil1Rct5S/1HkY8bJXLflCJpFrDHGlvk5Vka8akkCYk2EBLDIA5bfvaEmBbg87KfUU0uqmzq/PlJbZHcxmqPKjGgKQj7+Tp1WQzf1oXIGK1J/ftY6nZNB87kXPX622f+vWtu5lP7OWm0qJoYJRYXp+Usy39VSdhiXPvxyO8TOZtS41fXq3j2/X3fL+MhLPN5wl3HXqR6JUXMrPbJgO1cYbxFAiUysyxzIGex5IXF/r2Om6y91YD7P358cJLx+tt33L17QBvNaTwU9FCBSvzWz37KpnN0xvD63S23d/fcPhz49s1bbo8ztw9H3rx9IOa3Z81KZh9lU4oepQw5JEFahh6jBIEBjcrifz6NM7PW+PuZGAK73UBIiWkOHEdpVz97zzhGrA3Ms8ibTrMXuYkGbqXoTgqtE12/wxiH0Yajj5ze3BdbQ41xvkwuCFlsyHJKaCUFqtZKZ1nrqjuKFAJSAn/x35fxUzkTcmLKGpMNTmmuHj0G5VCqpyvFzdo69GZPv9linARexynghj1Pnn3Cfv+Ibe8wKhOmE2Ge8T4Q54A2lsPxxDjN+BBRygh7YSw5SaHh4e7I6zdv6TcHjLHEkKV+wDqs64jZ8OjJEza7HdZqKY70gMqM08irN6/58uuv+e7VKzbDQGcN1ml2vUF5YAwM1mG7Haq74hTEYlKTcFqhg0LnzKYbQFmOc0SHjOs3vPj0E169fcdf/vLP6HZXaDeAtmx3Q5EJyst2GieRHOWEsx1ZTDAZxyNd3xWkQHF1dVOaGHpCENtibSxZK7765h3fvbnj3/zpX6A1kgQcjuSUuL9/ABSb3Y77gwQc1hmO44xCiuS/nL5m12me3lzxgx+85Cc//gHXjz9ht3/K0G+wVhUkJfAHf/TX8Kcj4/0dv/z2jq+++oZvv3vNX/7FV6gYRWtP5ptvv8TnEz6fpGlRkCTmcHdAK8fYHZhOH7dcyhiziAQXRCXJttKXYvyKzNZEEuDu7m6x/2wX22EYoMgnh8HycH8oRgBCf2dTCyDPE5R2ExerV/3ezac9ap1PDWq3Vzuu9nv2+z2vvhvpnaUr7774i4t9ZdcPXF1v2Ox2vHz5ks9//DkvP33O/mqLUnEJrLMPCxJGSMXjvKB/CrIxZC2yHiqaataibUDcpkqgk2MuriZlg2S1cHzffcG5DKGOV7UsFP01SBIQF7RP5RXdXORaCHOhFfgckba7UkitSoIhZ4JqsVMx35xF741eZSFr0lPR0HXTW22svTg2hRlFlnqfVBtdZQlf0joGlSkxWi2yFkoicDiMkgCR8fOMMrDZb/h8v1mAjePxIBblxrApEqU6ZstcKRKI6pgYfGCeY0mC7TKn67g/PDwsUkBpINsEUrl0QM5infvm9Wum8cTNzQ3jKOtC3/eQc+lloAjRkwlQunz7eSZng7Zr74WP7eiMsJw5rVITUGStMFYMQs67rEsH46xK0pdq/UFBaZGEWCFM8VrYWxzD8xoanrEY9XkXlmgBKhTFllQqkuT9EJQ4+LDMwURmTtJLrO17sQZzv555aQPmui9WIxRbQBepRZLeBzlb8uKvqtCmsLxZkg2Fku7jqAU4UChxmwprY7YUa5M/RSQQYlkrtcHZ7/eeaBOl9xWwV1ZFVUqIiv5Xi+uyjyLxVpWjLRKrwpRKP6D6TGStW8YR6VFR50mq63t9fjnjYyxSorzIHZVqkz1ZzBQQ6zqt1dLZPKVM9J5Ukk5n3XI/su6qyv+uNyvUgoA9GYgJY7tyfUi8KQNCZWrrj4oaR54juZ0LpTA7r+50KYoNv9YGpdVSk5FCJGu5BudcYeCKne3SPDTj/VjelTIWOQkj85+byXj56edoo6W9+a3mcLwvfSMiD8cD0yh026vbO+4ejtwdjrx6e09QhtM040PCx7B0pgVFKH7LWSkR6mZpxmatKRRkKrp/TwhRenLYwOQlYDZOkxHt3+w9xlh8iMxzwLpZnKliJPtiyaaQor9QkgfJRwFDRpqP5JTFezxkTJjLrJeJEYNcH7roQgFdujZWqYJYoGZBvo2hFkLV80wxweSxznJ9tUHhAGFmjBLK3ji3jJPWhskHnDNoI82ocpJakEUHnCOZgOs3gEYbi04FZjTlRUkOtMigXD8AxTIXxeF4AjWhjeO7775DWXHC0MYQUnGpCp5xmnj39i3zOJFCLM1lnGyGacLECaLHli7jyg6kpFDV5o4EUUntp9HE4gGtMmhluHn8mMM48ZdffY33IntR2gllGwK6LN7CekmG74v3uGKVvazaddE1xyhJqgPEJ9lwGj3H49rUaxpH5mnkeDgwzzPWdRi3IYQqjYgiw0pRbGwPR/TWEtKWru959PgR2/0W2xtO/oSJYvU8Ho70+wFtOpTpiTkTUiIUa+bcoOjTeGRmJCovxe7ZSPMmBWSx3DwdP+4kQwK0uOza7UaZ09oEq0VqWj9y+H4jqlQkRdbWIv+KVpqCkrVa33M97qX84HITr8clYliDFEExDZ988pIwz2sAUQzKcpJEaLvfsb+65snTGz77/CVPnt5gjDC1pCTBcIwrNV7fmUJnozVKesotCUZlYVCFvq8anBLEL3E/haJfgp3vH4sUoPnz+nctYiybaHUnyTovNSP1miQRkARDIcyGRbzgc0m+lsvPedl+l1M013k2P/KqA77UVDcXjiqb8VpqmZf1QTbqyozIxQonL59bnelCaTYmDivGmgIaJeZpZp5nacBmxJbW2dVlqF53DbJqT4wQPNM8k5Os67Vo9n1zy1qLdasuvNYWxJhIUSS2IfiFNVLNuMfiwpVyFiY7ild+7RuQlfTn+FgPozU5RoqYBkDsVXMpuE1JhMraYEoiUXJjmR+pbAMl0FN5DbzIuZxT1l2tdHFa+v5asPxCkmetit2zyigjAbBKWYL3EhBXAKy+m5dgRp039Xva73wf8FF/5lwyJDdbEW6oQIQpjEGVeS1RMDXGl9hbsgy5F2HPcl1ycklGlDjZxSBrudZW4rfmGlcJlDljh9sxrBdQBJKs6Zxch1rGviYjbW1DKsFzSRzIS+JYz5lTKr0rajO87yeMskSuSYfYz1/uB02CWc4tAE4q8cu6htRPrMMr15+zqHWkBqywTfU+6/0rRW6knusap5YpqFStAalASZ2edQ6sjLXSJclRsk/UcddKEVOmKNLQ2kgCV9d8RQGD6ropd65qwpPX+/uPHR+cZPyv/+F/j1KZaR75d//uX/Mv/6d/xts3r5imiX/xL/9HYkgEn0hofMqEBD4pCXy1xjgnC10sulCtpUYhq+KwMeGMph8cV1dS0BmCB2N4OByKdluK2IyVPhmH04mcepwRl6cQojj1ZIUxYZkkKZUCmmVirw/BFzalUnnDMCwbQwipeXGFZhbHG4BE7aBbgw0pHBqYRr/8vFJrzYD3nlevXvGQPJmB3W5Hb3VZDNd4ImVFjAmtJaM+TTPeK/wsev77wx05zKURk8KXBOzaDWy2O3baME4z0yyMjS4OA8PuCq0Vj5+94P7hgRgjvRv4+lffEKIgkF99/SVJiROVKQVU8zRx+/Yd3373LdY5NtstN1fXhc7MhHBiuvcYf8ROI5gebTdoN6DGItUAjMqYpsPpNI0Y5zDO4EPkxYsXUg8xzkTv6TZSS3M8HsnziNGK/f6Kvu8wPjJNkvgYpbBGmtLUxny123bVxgoqXqlOKf7MSMIBGecUGlsSVNH1TtOMQpFCYvQj1vVyjkSxkuxAOcY5Mk4Jr26Jxzve3N3R6Y4wJ969uWfotwQfORyO/OLLX/Dq1Svu7w/4BFk7UEacaLxCJUNOhnH07HaDGCZ0O6Yp4OeA9x+3hW0bhFWEJhVG43g60nfdIv9LKS3dVinv5Ol04vr6+qz2KKaw0MJScJgXCloKLWFdgFfnsaWuIa7JSovgXxZ+ro5OhYZGGnH5Yea/+vt/j1/8+3/P61evOB4O2LBhnhPjOPPDqyuG/Y6r6x2ffvqUp88fs931xDihVZAEI0QoNVsZCZooBX1KqNUip8xUyUx7jZRNNpcEpQbqquxksuFm1HvME9oEq13v6vNqfy9rnKEWgqdUnXwi1dpQOtYKA52j2DCrYrxASosJRoGc0aUreSq0viomH8s8oZVDnK/JNdkwpf9EjEViUQHDnJcAVCOZj0hrzrc+lZFmoj5yPDxA6RIc/Iwzhq7vcL3jV19/y6tXrzgdR7S2PH36TGpurF4sjNu5Qq4dzStDVEwoCmMilr5xQas3mw3VicZaQ3U5814cyqQ+Y+J0uMdZw3Y7kFJks1lrEWLwS6KktMaXhlzKqFLXoYqxysd5qJyXoFjXoLPO3fr7wgScJX4ByBXBV8vz0ZilXiin4mZYzm8LmxYb4Oryfais6yrJjGVbkWszSkvfr5TEOKAElZm8yFre907WpnX1Hb8sNK7XUP+tfrbaO+ec6bqhPO+Is07UElpJE7iyPuS0Ju0Lg6LK65mTJFlwjmanjLWusJySFMc0l+TZlNhKenjV+rp6nW2dTK6900pwLo+vrkfl/jTUGtAam9XP1fq85Is8sdTFpLwyJ8EHSIn9docq4bxGLYkFJbZThYVQ2hIb97p2HkkcSmmEqZb3cpFzymOXmjDWPa7uc+k96H8uia3VAuqSqn26IpY5XZ2y1qQnLwBFThUmKeBC7b2hKc2MayoOFXCp+FT9B7lXuUfnnIDYhTWtiTuIe2JCldKG/8xMhu87rIF+4/jdP/x9fvbXfoIfDxzu3/DP/viP+YtffsfX394Sc+Y0zdL4TDuUkxdsPI3YMuGMcczjhE6WEAP3hyN971CdBWO4P50IXrpaEwLaWpQVui/MU6EcI/vdRpqokcgxEmdB6iNmcdhoaboWtay/r4Vi9aU+Ho9nG1j9t3Ec6UrDtOBTQcbkl9R82MJ2yMJRtaDVtaAGvdvtFrInBOk6a7V0nV0oS63FxkxrSdgiZKUL3Wv4L/7ef8m/+hf/jDevvi3jABhH76RreWU3ZNppJu85jUf6Xpo4WWfQbuDmyYYUA/PxwOeffULOMvXGeeb+9i23794yjTOkiLOW7XbL9WbDbr/n+upKGACEOlPAkGaczthhADMwZks8ecaHe3bFLGDXd1gjNpghzCL1CJmMwdmOOHn2/cDPf/oF33z1JY9D4ub5S4gzgzVYrSEFxvuTyKVSprNidVoXgnEcSUmsC733gop3HaCY5qnIWNaun0sxsfekKEWTdVM/Ho9Lw79hs8EYi1JFgzr1zNPIr351x+tXR/7k3/ySbCJBe8bpxDxJzU7w8OzpZ6QI0zRzmG6JKZOyJqAJSK+BFAPDcEWvMlFFTqeRvtugsub+9gRotLbShfwjPlwBG0IS9rFSwtZZBquX93CeZzYb6Y3x5s0bQSDV2seiLuzOOU7jscjoTgB0nfQTmGcvNRnkMy3wmSQqs7BZv+5o14PNZlM20Hl5v9+9u+Wf/JN/gp8mYgjEEOijQeUeZwaePH3KJ5+/5Onzxzx5uqfvFUpHYphIMaBSLjaxwi5GRdnsDGhF0iJbyDktG1Cdx5kG8UwJiusRGWHBmiRipd3XhOoyYG/7jtTzOtdRNzBlLKYUk6YUUVpcSlI168hFqkAs1ybN7hbEviZKpWZk6AdmH0lEun6zyMxWScT5c6n67fZZniG+UJKbKLriUv+RQcwGqN18QzEbkPOEmIhRkFTnHMpKsm+tobOGROJ0OqKN4tnzZ2hl2QxbTqcRrUTzXtceKLUQ44iPvvTaSBhjefRoy/NnL4URmWdub98BFDe81Z4658zDwwPGCgNRe3pIcp7o+k7Ww5x59+4du91ukV3VPjRKKW5vb7m+ebTUesg709N1axfjj/Go6319B2G1ZIWV4WBh9+QP50mzBLZKiZQs58Q8x6W2ow1oldaSEOu15uDyOtp/q6xbzpW9K0Ghpuljdp5Y1PuoFvQtyHEp96zrWT3quyAsvMZ1bkmOKhC91h1ELo+WKbkEV9o/pxAX0wNSXuRC0zShYiLrVYpaGecQAtvtdkk8arDuvafr3IqcN/d3CXjU37eJUGUk67i1ZhjVPnYYBuhlvQmzX5IJZ524RhZUvu77sdRzWWOpQ1xdDiWBjwvLPM/z2Xf6EMTYp7Db9ahMjtFamvwaI9dX7inGuKhobNeRS7+0GKsb3upyeAkKwbkJSGtKopTCR9+Mo8SRsQJlxhAb05PKb+WcF+BNAOLS6BTE9VOr4qT2vWn03uODkwxtFcIzgtWOrtsymsTxQQpIumHDsJF26yHdE9NcWIuIymLr6ACrxQnGFF2foA+NHpCCROmMJpWCKqGJQw5YI8Gm0YrHjx8xdE5Q0MOhtHxnRRaazL9FMS+lF23G+j6rtfrzIQSZKFaXxEG01PJghKZeKcp1UtQFadU961InIbrrQKRrnsQS/BRGSlsLWWMx9FvHi08+xVrL3f0Dh4fDsvhVRHhdLATJdUbqIkQmlui7XrJxrcE5QU+zsEpityf0ak4Zk608K0Tv21lT0Ee10JE6Bbo805VgbjQbZp8JPuAKe6FzguSXIjNNwiiKAWemM9J3ZTsMPHn8mDd3v8SqzLZ3BCv9V7QS9bp1Hd4HpnkuRcRqCWJqkFQTuzr+KmtCSos1ZRt0TtNEmCcp+DRrZ+YYVzvInBKn+bi8xNEHjFbEDLOfOZ0mQgqEFBjHQ6FuxYL3zXd/jrPStJLpRIoQsgJTggolCYTVhlzm/ayi1CUpTWcVS0fzC03rx3Yoo3FGo7PBB18KcaX7cWwLAJVQuLrKEG2xDl06pFbaWArrUgY/++V9XZrLabXy42VRzgtStB7t4n222ZXgQCtBb4wRlE/pjmGwpCD9Ih4OB37rpz9l6Hu+/uprjNnz5MkzvvjpT/js8894+vIJj272DLsOY1Sh7aXuRtiG8mzrhamit1UUJDFBFkkpBY+rAdSC3maWJKRS79SAKn8fKVyCr4oMl8+nIk1IiHRUm+rXnovuREFSCxpWC9JTKtLFLNptpbSwz65DKS3sjGpof60ELVNVQhVJKZTfp4V5rJKC3DyTmCXpKaD0cm6lpVBUSJKEUnnZ0LVSBRwpe4SflvlAQQRzQqyE0aLxL9KJXNaNzlpisVcnZ4auk0SqRI6VQahsKlkVVkaSjK5zxCggxlyClzYYO9t3lCDQFZWW/SJJg9UQC5Ne9P85F9eixND3+BDwIbLZbCVAUOIoZY3FKP1r3Wo+hqN9T1uDAkGSJZ5Y0P8yjmKjXF3O1DKPOJPYNAk7TQzQvG+XLEa9nstguFypoMa6YQBg+d7MCna1rFx7XMYg7fy4XLOUUpxOJ7pkcU7AMTG+KHFPlL4ukvjrRVHwvntqx7q9T2MMKrVuUGt/CmPtOrbNOLTGDO33LPdRZE9tHUr7nIGz59wmWGcgysWhlMioKpsLrL0r1CrOUiixpE65LikFQH3fSUs918Vf57q+NNfdAiDL80qZ3AAoqjlTZV9kHdOoUhsic+d8bFYAJpGaYv52zKn3UZK4xeCiJMbee/kevSYXYkCCrJe6XEczB0MIC8uiLwfh1xwfnGQoHckpiA2eHwHPw8M9371+w+QDaEs3bAVZPM3McyDEmVx88DdOCsNz5eGqHzUQQ7EFpWxKxpYXI9N1rgyYL5SfpXOWoe94+vgxu+1AipG3SnE6jdJwKqsFxT6TZ7DSgu3krJPhsqi0TUDqAGMNvXZFI6ek5kBVy7TqYy0bafuzLYJqzfpd4jxRN9Y2i5cpAkJRSUdz6Ezm089+wG6355tvvwP1SpKHnAtCF5dER6NwBnRvha6NnpADm96VFyrTd65Mbogps+l6YY6UNNSxSjbr4AND32GU0PG1NkTlhE2BLs30RmNtx0FtGMOInz03DpFI5UCOIv0wiD2s0whKqzWdsSgN237g8fU1howzik1vQQ/0RoLM0XuGzZZpKsX71VmhJBlVslCdi2TDl4ZHoRSL1WdbF/i5dFIPfqbv3dnzqvPDewkkKzpOhuurKwlWYiZGT5gS8xSZjp5+o+kGw9VWcX/3NW7bsdvs4ZQ5xEiKiqyloFdpBVpYMhTCxSmLUXKNZrAEL/M/xo9cLmWU1BtljZlqfUaWDshaJEFKl465JSgwVprwxRDwfl4SkYpIayVyhxjn8l6mJcmocqlcaxwu0TnOvdThYo2g1HZoBTGhNGhjcJ1hd9UxnkamkwcFP/ut3+Lpk6cY7Tgc4JNPPuWv/d7v8cMvfsDuumfYOlyvSpCn0Ghi4dcVlFquNTHQWmwPdWlCJ53oIwqNLmuEqjR3WStqXUtr0Sr3WTbPnFc5FqzSk7qRaClcrXUNuSBgEgqUQsFysiqXVnXMlnoLJWBPkYJap6Cx267OVIKseTmd1qQcSMmXtVMAJ8r3y3aa10280dHXJCMrhSrriFIBVXsk1PVcaVIQZkEbg59CWWJVCdSV6KurXh8FRoqlY0ylA7klVffAaWS72Za5GBdwK6XEOI7yDK3UhYlri7iCjeNJmuT5sMzFivIujVSVjEmYvfTSQJckI4s0OUSyEfvLvhfQqNYbXl1fl3qMyNX1dUl2oO+EzVbotebnIzxaVUKrNlBKnl9Fxc/ec6VkXi/AQ1P7oFel/qXSoUo1c/5+EN5+9+Xft+yhLj0XJEaopgdFLlWKcVep0+pudJlQtAlQvVY4B1DHcSRnJwlwP5SkvSbV0qROG9UEyqrp4aW+9x3t9yqlMM39VflYvdfaKLUFcev7Ps8zlXlov0sVRLwmIpVFqt/d3lt97q1L2PuSsva/AjDKWqWWNSojTjL1PZcEHWpSqqUXz3uyjFr0rhu2tWUPMuf3Xa9XgMq8mHmkIsdEKVwFPCkxYwnuRWIu5wxpPW8dGzm/KHna+29Z4Ly4dkEs0qfKvB1PJ2znMMoCtUZD5qmqyUjp69JaLa95y4dlGR/ejO/bP2OeJh4eHvj3/+7f8c2vfsXDwz0PDw+8fvOG0zExjpngZ2EbrGEYNmytxnUWZy2Pbm44HA+cjqP4yKdM7gxXW/GQ9ykzhcgUVvnCFAoLgAJtxNkJCW6j9/hJYxRc7zeE+Jj708z9aWaapmWC9n2/UF7175ZeEkU3WB9QpZwBbm9vF0nGZrNp9Iq19btslErpRf8v7g5OKO55+l4GLsiIoJ8+BKzpyyZUeoJYU9BERcpKOvFqcYwwRpHjxMsXn/LyxSe8/OwL+qEjzBMP93f883/6T3m4v2WeTvjZM/sZrTR93zP0a6t5wihosjEoZQUF9gV5I8nmqzTXV3vmeSQEybgDQRZGxLHDxxmTI082PZvDjEmalAem7Dj6ifnk2fojZpOwqse6Dk3CWsPGGAKZYbfDup5p8sTkyTmy3wzsNh13714TSfyNv/W3ZdP0nuhPfPXd1wSfiAnmGNhttvSmW2jTEMIib7PWYkzGh5q4rclj3Ryurq5IwUvxd3mO9d+/+uqrIiNx7LbXqFwYlRy4P9xLV/eNuKHlfMKGCTvAzc5ycz3wgxc3xGeWHCdUDvzo97/g7XHmzWHiF28euJszMWvAYdHSWM4aOtdxGk/M0wnIpRGlmBR8zMfsZ2wWV51Hjx7x8PBQnqsnWZBHKHbJlXH6+c9/m2+/+Ybj4UBtACWGGRK4zX4mxkzr0iO65IK8ZcXkxcSh1iZUhqpF1C5tELXWzGEW62JjiONIiJHOyNp29WhfEPPM3/jDP+SrX/2KcZr53/13/x1//Mf/nC9+8gN+/w9+h2efPUG7DCri4yhXERNxCljlEARftLPZUCumS4CdheEIEUIom5+RLrxIUF1LDlWuyNc5CigxTQFUWBMMoDQuLbR5FpcVux0wZSMl5cIUlUZRKVVqYaH723NJwmfJaUZ2OOmJkpaAQZNzlKSAjA9enhuZeR6LsUMi+hlKUJ6VIWWpt5OtTRfNcwkRyq1qa4ojocilpI+EJ/qZFOYiZxLHKJXX4smaIEkDzcoasgT+d3d30hgxRt4d3zEMA13X0feOt29fnTHVNViqshClNXr2WOeYZ5mDNzc37Pc7GYsEx+Nx2Vsq6DFOMzFLnwtxCDSkEEtEJk5/hcIip4jRSO2ONXz91Vdo19ENG4y1WOeQOhS3ILUtev+xHd77sq6vAWs9aiK9yFvKf6shA5wjzcueXhQQVeZczzmOo1iQXiQzbaANLL1J2qRxTT7E9tUahdMWMsQQmfzENM1L0Nce7blrDNF1HcYY7u7uluDVOXcm/9xut3SdMBnrNYjcZUmmVJ3fdS6cJxd1HwUBe2qCYK3Fz/PiiGZrP5YYscWso7J4bdJ1CdbWZybfmXHWkbJeYrGaaLf31UqEaj3dpdrkch2vz7j2UCKuEq6YktTBlZ+zqhoSZUIOxLxeZ8vkgLznMa3OdvV6fanLURdqmRijSCFNhmSZ55m+7D9iMCF1HkprkhLbYXJmO2wWO2oUZyBE13XybzEuap/lWVi7JDyqMNKgMM4QZo9C5s5uv2f2M/Nc12BdGuVWS+a8JEYhrbKrrCoX92HHBycZ/7f/6z8W5DgE3r29ZRxHxmni8HAkekHlhk5z8/ypOFAher2+N3SdNNLLyuM6DVroXMlO5ZyneSQ3HQcrfSNWlDJ5uq4n+hkfI3lWvLu743gS+QE5c5w9MZ0XU7V+wXURqZOjTtj6QtcAU2h50b3mJO4cp/G0IFxzo3lVSnEaR+ZJbHVRin6wuM7S947g5SXSSq90OJGkAmPwoGeyHvGjYWuNNOVSGXQHGJKK4DMpyaSZj3c8xCBWnzFgrCbMM+PxyK4zmN0GbzXzPDGNUrijmaWJW0FQlFKYZKQ7rhFnK8hoIzBeKgVrOkx0hWKPLlILF2MST2yRb0SOx5nBbEnKELNDk+hVxliwSgrRvM8c80wKmq4TKlcZzTzeMU+GmHXpvK4xndS4zDFyuLvnT//kT4ttp6Tl01wsIWNiuxML4pzFhcwHX162hA4iLZBF0xTHLnlJqz0m5OV59kPHdruRXiOzBCWuH5ZNYPJlcdOGlANaJ0I8cToccBp6Irshkk0kHt9yDJZjDzpO+PlEmEe+Gv8DWVk0hhsHp0m04FkpfBLpnIqysQxDT/Caw/0dP/jsBUrBPI8f+sr+Rh4tClVNFiriE0NaZHpqbwqDFjkcTtw8eoRrpHB146myNpBNcJ7nswBbqfdsRub7coNLX/S6uTjbSbCM5vHjp7LBKQ0YHm4nrndPeflsw5//xS/5X/63/y2/+/Of88nLl/z9//rv8vjJDVePOqrjbEZhlZUGVsWCMylJDsgZbTXZ6jXJyEnsn3OGmJYgFqUKwEGJsNVSpFeRwUWIjaxZyugFgcpKJFCVNdDWFOZAGEZrrdRP5kxMEW3Sgg63hzAKpagxnneFbQM1cl6aHuYowbwkDeIJT7GcjEnWs9XftnQzzwKOaIGX5N6yXliZy+ebEUbG2CJLCYGQIARhAsgJr2acsyLDDREfAt0wYKxdgtgahDprCTmvdTAl+TidpAaoBZLaotbT6USOEasUm+12ub5VFiK1LDXhXbTbRvpi+DSvspacicX+NBdmNSZhrY1WzKWuK3rPfr9DW4dxHbYWI+eMnyaRHSqD0h9vM76zZ928w+Rai1HZQLXYJWvUyqJqU/b6IK6DblukzyuTUX+/FI6r77vStcfl+nHJPCjWy5L3NJfkfgU0LsGvy3ld17r271opUl1L67nO38Ny3VrYgxijqAeUWkwOWvZmCShL0E+Wnxm6XpjiEPG1670SmfPsvSTrDbuxSKkaw4n22kUJEFEqs9lsliSllTxXxqReV9szol3rq+KgJveqfj6JE5lVq4Ra6XOjhjq2tVi7Hm2yt65n6zysPwuSnBklkrH6LOs1aa3F3epybWxmSGUdKughXbgLG895LeGSzJLPkrq2sF5ORgFNcgGMNDEnTpPY0qZcC8jXdymlUm9X5wxrIqpLMqXUhwMVH7zS/Jt/9SdS+LpkdUgX1JAxyqGsbOjX11eCImbxb+w6QeGt0/gwF12YPMjqoKKVxU+TYFTGAAp19qCFMtdGk7wg/CFlDqeJqXZM1UoKCDMLalNfmvrA69+3L2rNnmth9hJ8ALZINMTn3GNtyYKDZMdVqz2NM2GeF71vThqVe3onLzBKoTAQZnJGJBgmMI2jxBExYYyMWTdPKGPJ2qKUNGPyrpOHnDOnhzv8OJJSIOtajBTEyz3OOJLY56ksPQIKVa6KPIqcy6QpiZgWdNEoiDoXm+JctIzi7pWVJhslhbolaE86ig45R+myvetJyuCzwepEb8E5g8kWFMQUpFNtEDtdpRJWd+LVjCYqi3GDUJVK9MNTmBlPI6+/e4XuB6zrGIZNcQ/KxCjOIDkr+XMCH0qDmpQIWgKIOQRseXkVFJu2IsFI1cUDaX5lDSoI6iNN+EoBrjIEn7BOnrk2CqUSZE8KM+gsiYYCbGb2GZUi03HEEAg+4efEu/mdaEqNw5oBh8UrhafYDNaeBFZqNBSaHBNXuy3OaUL4eIMDEAlQKsldpcvru55SktKDlIkhLhv/eBrZPn5E34cFOaqbi9RhyTtW62kuKXR4f+Ok+p2XtHzOUgi42Ww4HE9yXVnhbMd2syJX4zRx8+gZL16+4M//7D/w6Wef84Mf/YhH13uevLii7x2uU2hVrymjkybGtf/H0pW7qoOMJBlKQQ6xWGBCsc2jWMGUwJMFOFgCDKsXPXEdBVFgVRRTcnWtNamOg5Lgq6p4tS6+7Wl1RVHlM7kYPShVjWfz2UbbSs6UZFZL872cqoxRmJhcAxtqsiI9aJYLLz+DSkunbgVLjYXcN0tQIVevloRIaUPWcZlgKWX53rIHaZ3O1n6UwuVVOpGzdM1WqjIm+SzQmeeZvu+/h3TWPWee58Xdr6KLdc5Vx6kYziUVZ0ElzRiWexZjj7Aw8SlHokISjOAJ88Ruv0WbmtnW+V2Yv2I/+uE45G/e0RZFnyHkMjkWpiYX1qfJOeRjbadrLX+uyfnl2qGrNrNdqOrXNX++RNfbzyzJMA2wUfabkNZ1p6LsbYB+mWTUc35fNqOW621BVZGLljlUGDxKQImqNRHfv+/2/EtylZDEKFKkjWtCpJVm8tNyLy0b8r71+JydEAvmyl6399SOxfvOczbGzTrePr+cimHG0kW7kYjCIjZazq/WP7fnXN7vi2dw9sxSloaFeu1sviZNxW2sec7LWlrmVyWJlZL6MVveY63O5dvLPNBqGbNLJkcVYGudcyLVpQAmRq1zYL2P5vyUdg66cadaYsjKdvzHjw+OWN7dj/RdzzAM3Dy+kYDceLKyy+DmlJjnSdxdrMUWZDoj2eTd/VFQ6BjR1uFDxHUdN48fw9HX6wfUWeZaJ10IEW27ZUEOITCN6wCvLznFqm8tTrqk7+pDrotD/f2w3SyTUeuCKkYJDJQ1ZbOVC5VWgZlIwDmFKbKw3kkBq54maWoTPCqDSxk/zWQiuMwhP3BEoZXB2q4UjoOzHWPV65bHayh604LuZpUwfcZ1a2Hy8mIiHTghSE8KLVyFqYnVOMmfnWW7lUZzPkbGydNZI9KpnBn6DSGN5CRjOyvPjMfjqS4tKkc0nlntyWjmmLkaYGM6GDQ5OHIW56bpcOI4nRgGxy5suDJXDLsN2lpOcyLrxBQmHk4j/TDwcJoYjyeuHz8F02FMhzGO4D0aS2c0xwdxTDHWYHuHdb3IDeYZtF28oAMR7RU5JgLndoDOObKWRPT1m3dnCM7t7T3WOimWT0JzK6voN6KXdiqx7Q1dDuTJE3zEGsfnn/4Y5yyH4wNzyth+x2a/x9/f8XB/i58mgukZnvwY1Ib7WUGXCzUvCfzxdCgBjybFxPWTK548fvmhr+xv5KF0FXxlTqcH+tIkcxxPKNVJUjh73r59t9DySmnu7u+JRT41DOKwFWPk/v4e7+eyOJ5vaC3yWFHiM/1ss7bUTb4Gg59//jlffPEF/68//n9LB+8Yef36NX/n7/wdHj9+jHOOb799zU9+8hN++7d/i//9P/yH3N695dXtW37+e79N8G+l6WccSdEgDZMKOVEMGExBnSTuE814LbarVLXcVNkkc8YUhkGXdlk1yaB0+V316NTFdAmOorQGgwLmaLNq85Uz6KzROS2bSi7BfUriEGWtZfaT2G3TBu5xCSraNVeCGZGG1ndKrCiNJBYp0Xel63ZKGCB5WVsMYtSQEQmncR2mbNKpjId8YfHBTxI859onqKycodrpIs1OwxxkjXWW8TSJ9C5JwXRKgXmUrtvRz0tjSBCpgveBzWazAFO73e5s32n3khACNzc3oMSGsoJelTGvtWLjaVo6fVc5zDRN8pks3220OOSZ8h3VRU0bASDG8YQik5MEMw+HA8ZalJYeHikljLVcX19/Lzj6GI9WqQDn9q21BxacB6arC9EaoFXb3+PxgHMDSq01EWeJYQFEW8FPi8qvczvxvkRjDZghEErdj8ZYi0vn8p561EC9rkuXHZ+rNPQysZVnvAbaAq7UZaQwD5niZCZrRpsk1/NdXpPRBuMM8ziiVJFOFSnPpVFKdVar41evv47pNE0LUCM2y/Kdc5FitUlGLfKujoP1HPWeL5nnrutknS/gyGazWQwTiIlcajtr/Ur9jr7rlu9NRHJSZa08T2JSlP5gl99d947Jz8t19n1/9u85JUJIyzXW+eOMISkILAGwgNiGpc5NO3P2vOuzVUph4rqP1bkjf84iv6pAGpCIWG3OOpxXJympuFnrdXJhSmtyW9cu55w0Ov3A44M/GbSCHInzRLq/4zRNpCj0vNWmFNcojqeZ2QesNbhOWtSDjN04iZ5YKwtYrAFrOhQ9V/vHy03VSXXpSGCMITfUXs5iH9tq+OqvakVbH/5+v182AqibhmcYhuXvrq+vqc2mUGJJGMvmrZVDa9nojA7MxweUyliteLq1OKUwCjSJ6CdIZSHRshGIC1NmY0WnnI3on+X6io2bldUspch2AFImRUFqTUEL5nlGD1poMJ1I4SSZr9al8YoEALudI+b1ZTQNItZbS/AiK/GnE9FPpIQkMFmCgE5rVJrpqjQrBJzWqBQxRFRWYoerMsbPGHViDopplIVRI4lPmDwqjmQ/Mx1OTIc7+rHDh0jWGp8V/UbR767xQRaqFEVbOhfqM8XI4BymvJyy+EoS23VdkQDA4XRcFoOq2a2Lz+C6JRmbJrEPrppW772gBdphVZTiYqXYDzuclsXcGsOTqz3TdMTPJ/x4gNMDIQVOOvPFz35C322Q5n8KW+yEvXKgU5EMat4dM9plNBPWdnz+s9/iPir+9Z99CWHGB0VI8HB/YDNIEf7d/YF/8a//lO7fG5zV/MP//v/wwS/4b9qxboC5ILGpINUy/gIABOZZEneliilBTPR9x9XVnvv7+7MF3rlOCnPL+9RqU1OpITB61Ty3EoOW6bTW8vLlS969eye9Oq72HE8PvHz5kqurK969e4frDF1vubl5xD/4B/+Ax08e8+jRNZ//6AdiM6oSYwj0Tswhwhzw41yuV6GyrlbuEKM0Hi0sBrqi/mCK81KbKCyih9SMY9mXtFKgtcgKYaHX1ZIOgIoFfTJijWusI5d327q+QnSl+WMlSgrL0gR0NGyRMbUzLGcoZBnomlVBlTmlSPRSR6CVSC6FeZQ6u1SKnLV2+HlGGys1a0DwvphUROnSDSs6TWncpTVKW/nrpDDaMvQbetvhg2fT78T1sH5vltouY6otY+B0nIq1ORiNgFtagpHjUezAl/q6i0DjjBmhmAT0w9nY3N/fLwFGtVCvgcHt7e0i21CmBtAszxIlc/k0njidTvjg6Zyh6yy9G9gOPbo026t9R4ZNud4c8bMnxry67HyEx6V9a4u618JWrbX0FGrmKSmTC4vTBtQ1wVPq+/KclNLisFNZvvpd7bNvk836d2sCQFE9QPJBAFmfSWMCayXhrzr+kjynfC4xyrm4YOk1WVjuoflljfQMq/cIYq4RfKDrhjW+ocypzMJs1byorlXVPCPnTChqjtp/R6PorCXAMs+22+1y3rZmph2r1rFRKUXXdeQcyjVXdkGusV2j27HN9brK828L5i8Zj3EcRXmgavNkvbAH7fW1yVosNRJ1vL33q8zJOZL3y3OqzycWFYsxdlmDU2FwFbXOgu+5ulXgIWmRS+WUSw8O5POV5ShrfC4TymhdsKW8SKTaQ1Qqck4p7M5YpZe5E6JY6n4flGuZEFXWVfl3Zy3bzUbaKfDhx4enI9oQc3GwOJ6Kv30um7dGZ4VOSIEt0sPAx7j0UxDmQbTBSinCXGhslZgm0awpo9ZNp2aVabXuanWDdRBaerBlNNqisHYS1QdyTtdVD/4aiGR5yasLRS42aD6gjWKwoA04remd5XrTY4p+Os4TU5KHn1Vc7R+VuE4ZY8gKQg4CjagiB1BqaeASU4Yc0IheDla5gOmS/FmBzhAJIjNTy6XLy2sMU8iLDS7NZFIFOV2hVfkZW5ibXP4+pygbm5bi9mVsFYSyGCuVMDpKMzkQNNB7QW5TcUwJEUIUF6YE0xzgcML0jmQMSRu6vSamQKwVV0Vr7KyWa2xkGdLpcn2uoczF+rzr/LiUztRCqVYut1C7RV9otCEUdFgDm86xGQb2uy1Pb/bcvVM83HneHiZu9nt6qxmc4fr6BmM6srLEKNaTIWdhYGzGOIOyimw6lJPC2oji4XjiIUCIHlVqV+aQiwEAMm+c5e54RJ9WFu7jPfLF79uNuDhBZVOSQEFj5tnjLCR77oJyhiJm0bdfoj3kvFDA7cZ8iTrWYrr9fs/V1RWPHz9GKcV/87/4nzNPIgP463/997HOstvuePbsGZ988pRHN4/YX12x220Zcl9qDSJKWcQdKy86+qKlLMidXLOYPlCK6VLRkJd3skgc69wW6lto7CLTl2Sj6EG0WQOIug4s9QLFOlFpkZ3KgKtqJVVocwnWz5OM+pgEvtBKk1Wxl1VF6tS8c2ebfJYkIqdUpImypuRU1551bJZgqYxLXIoaC5qcWeo6ZG2q86AGDWWdU2talRtWvL7fOhsCoTgkqqWJakqejFyHMBUr2yX3LRlHiyBXMKNdb1rTiDoeKSWksfua3NY6Ime/H5zWoCmluKDZOCFvYjFFCVHWvGX/U2vfGK0yOkXxxI+h2PDCPE0lGFLLeHyMx9IRXrE8H0ACurPnX2ysVXkvSl3iskcU23wt7bmRN6zoz8v35FikSKY95/fZoL/y73Jamr/lVIPXLLb9ZW5T1ocFEACazbvcc2EQlaa+pCmvSoUqCWoDZnJTk1JliQlpylnGhyJXqmNYu1eKXKbIW+tCUAdGFdyh/FmXJKzu0bVwGFiaSlKSLXnf5S61touEqSaJdb1Rmar1JMW4gBmktaFnKoyvqpfedMuWb6hATKoPReKxlBbVoAxTlZwVt0HWa6hd4+uCuHQir3/HgsEsCenCCJGaLW9lic6eEZR1vyYT5brJy3pee59R76dalat27at3vP5P59KZvN4P65q0nE8CwvUySwK3nl+VRoIroVAyJj7k+E+wsC1ygxAJ47QsjFkL2qizQkWRDucAqEQcPdVCDcDoHpMFcT+NE0pbTEiEmLm62mPNqilrC4AqIhlCoHfdunHWAONCq6a1ZrfbLT+fCnrd0nVtIrNuCNJZMUSPnycG1xHJhBTJMZDniLaGXbdh01t6Z9kOHU8fXRHnGT/NHPxE7C0+SWG2dZCNLAraCGUfU5LuzUosWKXgsaAFhbmI/oTVmqHvUFYTlCRl2pUOrinRZ5nskhustp1KKQyaXLpcK6UJeQ2qBD1Wy4IsLlNSEJeNZvaBGMQwMltpZKd1tzbhyQkfR7yPOJXorfS80CXjnr0kCylK8ZINAZ0SCoPSHSF45vkIzhCUIirD7iZJ9/US/Pl5IseIUWJJGkMgKVmsXDeIBCpIB+iK/PXboaEK0yJ1UEpqbw4HkR91XVcaK66beyoLX+1irortbm8NLx9f89mnL9nver7VHuWPvJ0nfvTTH/Pk5hFX+53IGObAPCdyVhzHedFdO2vJWmQTyXToYYCgCNPEv/vFLzgmwylleh0Zx5nJJ549e8Y8j6Sc2FxvePjuiKK4k3zkx2WCD1VLrIBVulj//XQ60XcwzwWtPEu0FCEGvJfks8p26jqSiyQgxLB876XMoNZqbTYb9vs9v/u7v4v3M+N04n/4H/6P/ON//I/58ssv+Uf/6B/xJ3/yp+Scef78KdbAZmu5frQFJWi3wqKzQxUnIInjIzn4Uh+Vi/kFkkgXeVxG3JNUyqgkTa9USTCSoAAk1SQcuSQwrBuBoPhNcarWpcZNziKyx1IEjlp6S1S0XGuDqXt8E+2IlEgYDGM0sUg8SvyzHOcBdi6JVTpbn6sTjTyLRAXgFrRWa4KPTOMsPS9KT6Uz1DYlEkUGK5nWspHK+lbzFdkqlVJoI8BPChFFKu6Agg4753h4OC5JTIxRmospMQoZBpHSaKWxdss8z0uB6WXT1/e564Tg0dkUFjY2UpO1oVtdh2rxq/ee4zSJpAOF3iuRexR5Q4xxrQfJZe6VZ1YLQg2ZEIpsIklzUWMM1nVnVqEf3VHBRKUXYE6OknioMtdSXNQEKOmBUnOStmZIKSXzogxgtSgll5rGRd2wJhlnBbacgxvtZ5RSqGTKvAUy0nm7SuwAHzzRh7IP19Bv7SatrBJzlhrjN0GvQtiyvLx7aRkfaww+BnQu4FQUwWRW0HdaupKXn7FGZJEV5JM8ooKXuXiuSLNQVBJ0HYSBUBnjNDH64rwUF1lhNfiozF7XWQ4PR2oAbYw8w9oQVTV5jLCzAspO40jnurJsCvhaa7MSsT59YVUW+Y+wXothBpLkkIvdeU0+USU5EWmSq3UnJWlyVvqNSP1olAbQ5jxZqEXQ1XggUwDtJPUrwkJIgtP2w6lzR2Uw1TFwSTFYbHdTcZaqbEaKcSlu1wphQXIFoeQlyIXxNgW4yXVMUyLFUOIdKyyPMmutZKVR6qEUcS5F8SaVfQ6S+r7M733HB0csp8NpcRAxxqyNr5zox3U2aMTqs2ZBxhqIXjTy4wlrpcdAymJduh16lNJM04F5Pi7Wt1WzWidHDQK6rjtLJOpCb61dCjUX6iqvFF39u8vAs/aqqNKpaZqIOWGdMBTvXn1Hp6HTip0xOJPojGZHxvYG70dO7x749nRCaelIPnrITlJko4y8UIWWDKZM+AxZi8VgzaLH4yiOVK5jjCO9GSAl5lPA1oZ50gWkTEqNT0nqE/TqJjGOo3QcHgb6bhAtrzFLnUlIkcnH4jkvaLoKSV70HOn6gRgNPsHp4YDTJ5yz9JuNaIGVFIBebXfM80iOMykP3N7NjB6mOdP1QIQcFRvTczqdUCmyG4Yi2xI3CVm0FNMceXN3kE1TaeI8oZXicHjg3btbrp9/gtlei2KwoEwoaYo4TRO1+PRwODAMA845njx5QkriVz+OIzlGNkXLH0JgmiZxf6kIilEoDd5PIj+wit4Gnt1sidM7/sOffsNf/upLiJndMPA3/8bf4Mn1DRm4vRs5lGvWKMbRk0Iqha6R6TSXAvuE7hQYS9YJ5kBIipBkHOYUmUvTr+ubgbvDRFaGm6dPMYPlcJw4nuYPfWV/Iw9n10608zSjjV4WOsoCWaVNzso7r5WSvihJEulq3lALqId+wJq8aOVb+Ulte1eTjFVrbZfv222vSuLZc3h44MmTR/z0Z1/w4y9+ACrwv/nf/q/IWXG4f+Bv/+0/AhLTdGL/6ApjOknOERZAXMtLUpCliDgVGWhG5DexIH/GSU8HyRKsJBiUTcB7YbOyzCG0FgYAQ0aTKrOokN7aGtCpfH/ZILSWX6SyBoWCUlICJkGwdOcWQEsrRSCfgVTJhxJkGbQtwWnKC5paNyStpW8QrElD1QZXuaeGIlcKxaHNFDZCZKLGdrImkuhsL38fE7Yb0HEuNVYJqTDJKMSMJJZOtKbctsQfwrrILYsMUVmNUQadLJ3uCUGJ7bpzYheOIK3aFmOPKi3JiDTyeFoMCayyBB1AIeyV0TjXYYzFF5lpTKUpKYpYQJd5mtBGGrLWsar7T1e04QC73Z7tdlduBpSTXgcJz9OnT7FWksNYGmRZq+m7TuZbkrk3TV66kmvNdrNZgpzZ3//nfbH//3i0yob6TsMKWIDsE62tbKuIAM7cw4TJ1CV/lWdbQY7NZiNAYE6LqcylPOq9LF65vjXBScv5ptOIzxlrLMqZkjhIUoMqxiJak8q+Xl316ne10hitRDqT1QrQVqYfpZbeFfVenXUS2EcBJ1cGoyQVOkuwWt5rqQ0oQF9agZ9qDy4d6dMSOLvOMph+qaEIwRcLVwdIfOI6u5wjptIY1zlSCKQQBFgwRppLRshaZFUGebFrfGmNwSgrwGxaA97KBF6yBctzLWBpTc5iDM0zTMs8WJLGWNdrd1Z71jbSrN+Tc61Nnpdr6Z003U05LQ519fuqTXsFUpY5WedKAcQv3fq6RnIWiYgsrjhJVZIlZbyfMU7UJ7kkzUZrumFgDqkkGGuh/lrfVJPIsl0YszCEKeclufyQ48OZjEwpLkyCyJZJ7wtFF7M0rcpKYVXR6eYsm5ixGCfaO2ONBJpU+VN5sCkTCrpV9atnTgmIJtfotYldfdihbOQhBoxeG6ydySbKZyuckYGEkmuzbkEH5jBLMJsSu96iw4RLkV3Xsx86tIIwj8xRk7M0m9LGloxVYfstOc/CdOYoGSKFjosRFeJSlOgPE+JJrNhaSSpySgzKIpIAJaYyUTZKNOiSGJEhlIUvFjs5hWS+ru9RWixqSYmQS8t7ZLNdsl8UqYrBkZd+nARB1Nqw2QyYFFA5Mh/vsSWLJkDMgW3fo5VlOtxzGj0habRy0gNgDgQvG69CFiptLG5jimWn1H/kbMhZnnHXOU7HI69ev5KAp1whSRoJ5mDJSjcLrhZduVw90U/EEITZtka0jboEsXmlubuuk41eV7mdWhIVrWGwsNt0PHt0xfXVhm++/oq//Iu/IBrDJ89fcHP1CK0MMeTSvyNCEqYi5kiOQm1qAAXeS5KhtaAaOUeSypi+gxNFpqFwfc++IGTv3t1yGO/RVnN9c8M0j9IhW3/Yi/2betSgXyPIudDACussYU4FuZbNUVcamzVYjTFhbQ0ipZtyKNaJWtVmSKUZZkzl97U/g2wgOcF2s2Wz2bDb7fjRD3/Eixcv2GwGUAmjE87Bk8dXmN7Qdxu0Eh9xKTrP0sSo61DKAoacDZXAl8aTvtQiiLwxqwy6FPY7JZNDqQVZLQtSccepsodC/Qt3D1SnG73ITnOp3aj2nEkDySwc+iJ9amh10QXL21WDE5UjdZHJSaQ8tTNwpkg7c4ney5M02izAU43fSmxT7kuRsyZl6Kwlp8g8J7RUarOwHQ3NL1pnJe5qXVdkoro4/M2kJK52qiDNMcZibSsP1uQsrHNG5kTp2F1BFBkzMFajTIe2BVwIEypJk0TxMhE5QAYJ2smgxBlLl6Sosx26JA8xVblosa2MAVXWHqclWTRa6u+60gFdFcS9FqwOw8D9/f0CshlnGYZ+sRDVTSAcUyRO8xlqHWPiVOy4/Rzwc2D24shmnfR6EOIjU5qOfJSHvgzImgC7bcbaSpsuExA4Z1FlvvNrP6+VKYn4+rOXior2Z+t/fQjYC2ladTxKOaFKUt46Ql3KrtprrZ+t8U9rbtEmUUCRBF0kYDUEUhJXaMQQRoL0KtVbz1ElRPXH2+9rv/My1pIkr8O5Vl6YLsY+r7JLVWrjfDFhKNcSkKDW6OJ4x3nfilVmeX59dT5Utqmt2c1JLMR1QSPqZy/NhurR1ntIPVCpm3uPFW3LyLbzcp1j559f6n7UWtNVn2JlUy/HvF6TnDMXhckKisRQ9rmyZtTPtdclLG6V81EYPcrv6/NekzRTGJ/K/KnCzHzI8eFJRvlFrsG6TOKQpXvq8n1KtMHiY167MYtWNPi4oIgp1yRj1dPVwHrRVSrJVqvrQ4yCxKXlxVwnb8rSz6JzgkguVKNqu3TWCSmt02OWxbkWXmmy2LKmgI6BwWlUztgY2ZjEfhBK6fY+EKPCGLc0OgpF82xdR/bSXIsssqWopMqfVDzvy2bvpxmMIJpDP+BDaSqmZWMW98a8ONCgFU7rgozmRSuZUi69SShIvi3jWYLgGBinCdAoY+j6Xmi3dqKUoYkhYJ0EEF3fowNEPzONJwmwsmy6MSR2j66wruNw90CImUwpBouR5APJB3yQIlZ5juICVRMHP4N0HzNLAezsZ96+fcvVfof0+MiQIslPsjHbjhRD0Z+X7vAF+TTJo4iyBgSPNg6DvLwGyoJSg1uP0grnBEXwBSU3ytKbyG7oePpoh7EwjUdev/6Oz7/4GS9evOTm6hGn23v8XLqOe0FfUoxCQy50bZYkz3txVbKqOMAImyeN1IKs+kpjbU9nLSkmbm/fcZqP2M4yHk+MpxMhSiL/cR/LQoHRFj9Xz21Dzn4JbDtny6JXggVYkoxcNhulhDlNeV5kgaoiNuV5Vgq86mhVSf+urq558fw5L1++4Pf+2u/x4x//mO12w2k68Pbd13ROevzozkqCjGG3uy7xcMZ2HUGVbuD5/0vdn/3Yl2X5fdhnT2e498bwm/OXmZVZU8/d7GZzsqRuSiJpEXwwYMMPhiU/2P5jbL/KTwYIGzDgB/vBgAGREGHLEiBbgCWS4tBsDlXdXWNmZeZvjIg7nHP25Ie19znnRma1sgAbqN8pRGX8Im6ccZ+911rfYdmSPFUNwgRxIs9JRp3FQVkjBg8rmu+MOhfzhTpOz/UN5d4pIzSiYnWLKsPHKJQtvNqik1OqVpwoFomyowXlXRKRutBRIP36lLReISN1ksgFtZEaRqmGLkGaKVa3GV3XpcJzFlQm18JSTkXICrJIaqRYKkmGsbYgLpSKqPQxqg2vasCttHDT5yZjadHcGWXLgitUsznZsxqjG3SU5lJmtOQgSYYx0tunnmPO8neVHpW1IGSNbYh+TbuVZCOmSMiJpjRmbWxzRpHIbTcHPJXu6Zxju93y5s0bhmEQmmmsRgjyNKouL5d5MvpRbC6tnemfdbzEkKTvTBYrdts4yVG1Kt3iv16A8Mu+rQP6NXthHTgCZ+yGrwr0vipQn/eplVT9VwHsOmCDL+tFayIgz9ZIca8c1qw4/ykWGrQ+b8i3vI/LfPbzkpD1dd1PkNZzyPx+Z0QDVsTLMt6r1nGlN1ht6/u63ndNjtaBeD33SiWszSnvB9/3r02vhNiCutRia0LNYv9zhkrKK7LcvWQPlgZ258eTeSzfe2Y1VlyjXuvnK/eq2G9zHrDfv99rnfD6Wa7Ps46TSq9cJxQV3ayUyLmpZM7nX0gcTv17ZciaYqBRndhgLrZRVqNUjATq3EIt85QPSJWcEnYKkl7oWLpUkrL6enPIL6DJcCijMTrPXSDvw1HVBjBGSQTOvaMN1m1KBgSQiCXpaF1zNklcXV6y3+8FcjIS+Gqt6dqO47FWoCVwOJ0OoGC32zCOgwR6tdOvWmBNKItPsURMWUTIaQKnDVZDb+DCOvwwMR7vaPPIRevYbDcoozj6EZ8U3nY0TUeMieMUUF6oPs4Yoj9K5R1AGQ7DCdsYbGMlADX1Oj2by8U27eSPco5KegSEVCBaEmolDpyby+WIKTxwYzVKSVDmrMCvPngGwrIQF8tLlSBOUSgpBpRlpp1oMhe7C+l/4gemEYxxZN2gGxhjwUJK4vjoyRO6tueTT77gwYOHWOvQyvDZZy8wGrTTHPZ76fFQsvSb2xtBSqwlBWhMi2s2WGv44rOfcXt7SwgTf/K9n0iQYC3Rnxj2GdtuuLh6JGLVnMg6oHSDUWKYc9F36BAk8kmjBHk+kX1ie31NzpEQpIlW0xTBbU7iQmJarHM0OnFpA03yvPrkR/zgxz/iFBIPnjzld3/394jjyHF/h8kwnY7Fg1smAJs1KSpO4zRTKIbxKL0LEviY2Fk4xcw4Rd4OY+kzo+mN4XC8JU0KombTX+KHyHQ78KPDT3CtjNGkzl0k3rVtPcG6Aj8vaOQy6Vc7z1Sg57YTmk7OmWEY5q7Lt7e3c1Be3/VKjRTEU6pO1mqsaWaB92/8xm/w+7//e/z27/wm3/nutzHGFqc3RYgnQhw5DCd27oJa5NeqK1ch74GdswMFBBQBCJAGQvAzRaIuJCmJfaGt9MXKFc6CLpwJoNUy+c+TeRFBamuK1bEqYjyLslXTkkriXoWXUZIyFUGVYKcWOrR8r5UUEjS2IM2lwodUu2b0VC3nLEUPoR2lUvVSSooFxhihSBbtlzFGiiYF9RCjhkRSGZWKs5SqaFOe57EUx1kUOk0T1e9+LDaQuiCuSuXSK6loS4xaElFdkN7gZ7QFpdGuQWuIJVnRVhrE5pjRpjhv5UzKAeua0i+H0hCPYppVUKqq4/ATPkgwtbu+out7FIro49wEdm0HWSkKd3d37Pd7bm5u5vFiiiPi7e3tWcFsDkDGss6kML8PXdex2WzY3+3ZbrZstzsuLrdzASezBHvv8rbufHy/Sn3/XtWtxiI1mL+PVNTnUmlU9fdN0zAGTwgRzM93lKpJTP1dDRbrMSWoLQGnVjgjuow3d7ez1es6UK/nsmZzAHPiVBOSNapRj13jqPV1VhvZKkz2oexHlwBTLwYGWqkzu971Pu5X+euxKpU9BBmP1b61/mydXHRdN/88hDBbrIYgReKU0mKLXSy9C467wLGs6Eer5GpNm6rIwxrRAKnuO9dKgseSZNa/v9/wcB1DxhjLvL486/tjrV53/Vm9NtRiNFHXqOqCWPddP1/HTl0T18mvUgvVPxWtbU2aYhYXOmcsGEUULEiSokLXN+Ud8GEpLFUX1nruYi60OEvVglTKCqtNodp/vXnkaycZ1eVj/SDXg682p1u7bcw3YnUz708ANWNbN28ZhmH+XPCLla33HufaUp2UB7HZbtFaKm5tKwK9ut3XZlRY3vso2pCU6ZqMSSM6S2CtLbQqs7vs2NoNcZoYgjii5MaRrcFZg3MNDecOR1UQOLtSpSS6FKolr18qiHA2kNfcUe891ji0kYdp3cIfTTFKzwxjcdYwjsP8DKrYvWpMtJb7ba0leOHtCVSb8cmTI8RYFmhVu9QeURRf/5QIBJgHU53gNON0wjlH2/XEZDmdPCB6l37TSfXRB96+OTEcEtE6bNMw+YR2mkZrrp5es7vYCi1LWbxPjMPEdBqluhsTKU6M+z2mTxilafBARGUNyaDxaER43mtDVAEKNSspS2WDpTiglMYaTd935CTe8Ys3vTy7NA28ub0hDnuG/VtCzlw9eMjDx0/Zv70p1PeMipnWOpQxxKik03hB7pwtKFw2GNPz6u0rUNKccIqjdCsPieMwMWRTOL+hwNcWlTSf/ewVTStjDZ3JQXjxzr67rjCwWFPnnM8WQZkrpKpmbQkEUq0YQeXpVtGsdOxdmh6lvIjv1pOyzCNGGultpMfPBx+8z+//pb/Ad77zMY+fPGBz4RBppVTTdIo4LL3aFJcUB9mBcuVVkCQjp1HQKiI5TsTsIXliPC1N38o5tF0n816SrtfVwQWQiDUKdCm4iyAFqiB09ZqSKhoLY6A2W5NsgayyIA5KkTGQ9dJ8ikxWpkAmEkCIWU6aF+9Y3ORIpQAxs3GF4pVSIoa49NbIxShzVmqW3htaYYyF4YRCY/QSuFVThxziLA2R+bOQt5TYZkoRadHRSCVU3KBEfG2kmJUSELDKoYxDoUlxaZ4HUqCK3pOCVGrnuUxJkUobhW00bZ8wykPMdF3L4bAnRi9ob4YweqErJuG8G6Vx1jGFYQ4I6noXUmS/33O336OVpjHNWZ8ApdRZUt227dk6kkuF+9WrV2eLf91/DAHddkIhTZa27amV+5sbCVprMCn0oTRX5EGSS6vfXUS0xiHrhA340loKS+C2ptjcF+avaVfryvM6edBKoe4lJwuCdY6i1N9VLan8jSAZKSVxekOatq37p6zjgRroruOCOq8tPT+WJOM+YpFzZhzHs2BfkrHSiM1aFNUNLdI2TgqScaFY1eu4v9/6/X1NQr3XtVfGep5f3+OK8FR0T5sijC/FD12UzMK2qCJ/+bsqCJdiDPO53A/2189lfc5N00gw7sdZfA9LErZGDNZj6hwtg3UMdz9hXZ9T/X6d/KypWWsd4Xof99Ge++vlrE1W0pxa9CUQQprd0VDChEl5SYpM0T6mENGqanfOdTV1XBXAYj6eUprGuZWz3debQ752kmGtI8Ya8Ks5qZCXyczB5/2M66tegPs3fX0j54y2wL9rZwDJTBef/QWSgxi9BAR54b6tX84ZRjNaeP2FN21SRuWASgGTPDYrrJIvpTQxwxRlKVYYeTAsx7hfgdCFzlQDCKniLZXVJcn66gG8DJ46SsRaNiIvVWbh0im1JHrr/y7fC9e/HKTQ0hZ+ZaWZaSuLt9aGaQrzyye80cVZYu5yXqjhNQwxtiluEhOH/Z7Ly0u5XqSxzTSOJC/Q/TB5TM7gNE3fYFsLBo6HI6fjieE4MByPECM6Z4xSNEbRtY6utTQqEpN0edfKolNAZ2nk1STpEq6MoW2sAB6qUjZSKYJojDWMk7j3KERgHKZROpePB8b9LcPhlv3NGx4/ecq237DbbIh+3e8gS0KA7DtX9yJE3Lu4niTCNKKMxhpQOs5VBx8TIRsiZY6Nhd4i/8Bq4VIrlek2W+GWp3cbyahmDXXM1/dBAqkq2q70mogSJhnVKGBdiZx76Si1uHusKA21+GGMoWtbPvr4G7z//nt861vf5Dvf/Zhnzx5zcbHBOg1JuP9aG5RehNDC9bewgpZlk6RAHA4CMQxCkcqhOHecv+OCXmh8qcjXAFvlsh/5AfXAucxxZL2Ie5TMXeUGFc9/BcqKwJlYyE56db4F0VAGjCw4MnYLlSxnantEVQjbakZBynVqReFUQbGMrRVF0XWUe19pp1Z0aqlY8WqtRcRZgrWQCxSvhAKnqDSOZQ2QuSoK+lGoSKK3q+uK0JlkgSzOeMWlpi6OSqnZCpcsi+S6+KZUGR8oXNtjVYNK4BrLFAIqGnKOgLhShZQhJiylUZai0KMW/j9zgFeTYEO2ee7LUwOzdQC2LsZBqf7GQPRL9X0deCjnUEkLJq/iss4moUEZY+c1VgJqVZK/QsmpAr93dKtB6/21735Qtq5Qr4O4+tl1UvJV2zpOuW9Nuj5uPdZ6m88J0UzVKnxFBGuQfD+YrNtaU/JV5/xV53D/s+tu9Msv7v0jK1JC5oviBGfuxXBfdV/+vG0dzwBnMVL9fR2bNYHOlOShzAemJh5nFyv6jPXR79+TrzrW/SRAacX9VXRdmLpPb/qKK6SuVff38efur/x6PSbvd3m/nzDdT5TqZ9eULlLRQ3P+Vs89TXJxpEqJKuiGSntaTANySfRmW/D5eEv8JwWcP//539++dpLRth2Hw2HuWKhWtA3nbEkwxHZtDf+sJ4P1w5umaX4QlVNaEY+Kbsw3azWQxnHCOVtgeVlIc672bQVqvpeJ14xRG0PbCEKgoidMEzZOqGlAq8zFtqdrDNM0ctyfOCRFyrKYG61xSrL9HALE9KUBXju33t3ezjZrxhixPstCM6sCoBDOJ7ZanaiUCqFPCLVLKVt4cYrFrHGBhutW72lFjEI5birnKtVVGZDWiqNPilMRf2mBwVSdZDRjiESVUEaXBlS6JCaRrmsZxwGlLLuLS77zne/w9uYt/+bf/Cv63YZpGpnCCDoznEY0AZcUN4cDutF0qeM9/YSQR/xw4sVPP+f25g2Huxtu37ymt5q2tWz6lqdPH3H5+BG2bQk+cLg7imakkYZ3WpVOyIPBnw64rmXTX5CVxjnonMb7Uq0VFjwhTQQ/Mo1H1MUlYdgTT3dMxxsOt28ZjgeG08iTx0/Z9DvCGGg7I2L+JI1tVPLkGCWQ8Z6QxCLQtg0xSIfg0zCSY0BrJ7SoxgmKBGQMMRvQFucshONs5ff+8/fm528M/NZv/jrej7x8+eLrvrK/lNs4jnRdN1e3K/TfNA3W1qJCBKoDmSRqaeYPGzabzewadjqd0NrNBYkagIBU1KR3gOXqasd//z/49/jOd7/NBx885/p6JxRH5+paK5OnMijVQkkQKSjArLmYg/OIrghGHJnGO5L3kJOIRFdVspnfS10ES9OtlOfKnFKKAscAunTaTmQtiUYGckExstYkLYlPRjRNEEvQLwlFnScyVbAKNIbkJ2IMWKT7NjmBmeUd8jd53TgqL+WsLCLRXD3VjYZYg1akF4xSoBVNtyH4kRiki28s87k2hpxHCSRKQUYbEVPLsy+HS6JfS0mMFJoyRlCqWGQX+oEyxGTIKRQtiUD99Z5Os3hSyfPKJZk00jtDl0JE0xqazmKUxifPg07oFKOfmMaBrMTVy3vp5ouStW4ME6E4JmZyQU4Ck5/kGGlxmplR6pJU1PVjbadtjGG/38v4bRpxPIyRpmnm4lvbthAjI4pxGDgej3gfaNuW6+uHkhhlJXOwP3FxscO5BudEGxmD2IW/q1ulSc1C3q+oJNdixLq4t/7Mmua03mf9/RrJUNZKYPpzgs9a7FzrDmaUoxg56OKgl7I0zCPnuefJWtdwXiRcFSpXx147HN2Pk0DGmXOO58+f8/r16znBFRt/MeUZpxFXCh8Gi1ol+X+euHtdsK0UwPVYrsev3bvXtK76uaZpZvZKLcxppUTnFjxW68XQo94PXcTLKeGT6DWUKlbDMNMq76MQ6+e8JB9ZtHylMFjHUkV97u7uSoz7cwwDyPNc/lWIx3r81fsxJxlln7Ur+Ha7nV0u6z1eU/3XBeyK3oUQZgvqXNCnnEQXKrq2qsWTgirFHGT9Lsi56bKGKLEwPktyAzXTyBkaJ06wwYei+f36DT2/dpKRE/T9lrbtOB6Owr8vlrPSkVph7OISAAuHb119rC9fnTTrTdVaz64aNVCun62DVQITRc6x+OK3c1OVCgXKix3mfdYAxhgzL0KGAMpjtadJma6TIH6aJk7HqcBmmZQsbdfjmpaYI+NwRCukDXw6d4SoCYIMhEAoL5FrHFozJ0YyAA1d5+a/qYOzJgcAYZqKcEdLpd5olJVrGk6DWCTmBW5dT0ALHFfgLCX84TomlkAs01gn1bgs3VFTiCIkRdNYR3aU9DgQiyhfOm1bXr95Sb8Z+LXf/C5+mkjZ0296PvvsC2lGFwLG9WweWoaT56effk5E0XYOZRWkwO3bW07HPS9evMIZePRgx698/B7Xu5bLXc+27wgpSRO74lK23244HkeOp4Gu3xX708w0jZjmgmbT03Qb9rcHSIomKcb9HV3fsd3uePL0Gd/70x9xc7dnfxp5czoQhzvSdMTkgMmJh1fXPPvV3+Tq6prGNWIz5yLJT6ToOexPDKi5Y/LheAAD1lmumwdMcRLqRmEvaozYyCURN1tr2ex2GLXBx8w0nGhsQ3/R0fe9JFePHtA4y/5wiw6Bw5u3vP7ZZ1/3lf2l3eo73vcLzeN0OrHd9mitCIF50a6LEiyQ7nrh0lqsUWsgXBP5+h5946MP+OijD/n93/9dPvr4Qx4/vuTqumN34UqxP5BxBTnQMAftIHSigJB5ACJZebISWpEOE8Ef8f5E9iNh9EVwq3Ebh7VLlbouItZaYglIIc22tar8rnjEyeJ/j9JhnBOaVEEy5DytUKEqfF/sDHNpv6VUlW0rxPYVQlkgBOSTyp5CUIA4BWzTUm1QpRpmqfLKHKRvQC4VsRqsrwM2EJqWLPKGiJdKcFr845Wuxg2VHkFJEl1BJYQyQZYwwjpXuhmDNeCVL0mGmsWzuRRmnJHqrGjRYqnMaVIIGC3Bg1ZakjYtWhzXGTFuyxkVXXGBS5i2YQqBhCFlgzENrPqV9JsNwXtOw8D+cJR9W0Ojmhlhs2rhhccY6bpuprQOwzAnGcD88xjFma+O+cPhQEqJi4uLee20ztE4x/X19RzIWCtGBdbI+AlxnC3kIWFdNSl4d5EM+DICsK4Of1XFfx0ArxOLtQbjfsA4a0p/Dvf8fgV9nSjUn2WVhR5YQMqU0txjTylm1kCNm9YxwX12w3pbawTubxUp++EPfzjHQfVcr68f0PcbfvDDH5KUdLq31jJNvlSx1Zl+4edt63P7eYnROiY5LxSPc+xX/ohUrsVZh2JB/kximXuyoJ/G2jJX5tkSdt3u4H7VP6+uK2dxqnLOMYSlnUFN2LTW9H1/RlOrAb1QRsV2uzpTrp/Vz0PE6vOAcxc0EGnAfcH/+j7W86v0M611WQ/LPApo50rsK0lI27SI6YmsArEgFNXOWOY/RS4Nk0t1/mxGkLlUBqo1Fj+MVJQ0hSjz93/HGKnb19dk2MqrK03lisBPFgTmMlh9cevNXL+49UbB8gKvb27N0moWWVGOul95WEuzLanaLeeoKkUgnz8k6SobyTmKO004YeKEM6Bz0WcohVKWKcQ5yTCmJaGoLjU5T/IwVnB3zvkskFCq2AkWW12lGqpNbR3MsiB82cd53YxMG41R4n5kTXGLWlOlOIdK11B7zXhVCT6kUU+9HwL15VrVj2Jlh1lVG0oAorUmqlS6aoomIlPFtEYqNBqcg9ev3nA43LEgeJngE9MUefz8Cf1F4vXNEWMbjFVYqzkdDozjHcNwRKvEwwfXPLy84Nmja663DV1jcUYxjCPJtKAsSWl805CyIimDa3s0GrLC2B7Vakyr8aHAfjmRQ8REDxNMRF5/nkjjER0nbJrY3+zpbKaziuE0Mk4DulbXV9SD8XDAn07EcSSeBtJUO4gnxuBpOguq4XDYM0wTIaYzp8hUrXijoErD5BnyyOQjw/HIk8vNTLfz3uNDIKXA2zdvORjou5bf+a3f/rqv7C/l5gqCVps9kfMcYNdCxLoqtFTRpMpdIfYFrbAoDMY4+r6TngGqQRtBKp4+fsSjhw94/Oiax48fcP3ggn7TMPc0VKqgGEKHrBSjinhVlUQJO6CKuwnk5AlhwvsRPS+2yPyTErBUpM7e/SK2pFS3anowc3lqBFKh6YqyaIsyNRGpXazV6ksLLbDSj8oxFvpToTwqNQcUqhxPGS3NumKhXCVp+qYRXjRZwlJV1iSVBRk0Ss1UEhGUq0WEnU2hKQlqgTGkKBB9vT4JgHSpfo50XU0w5Nq1LloZJVbXqVicxxjIiHZDJitV5kbRguXyIGRBlZwslUZj8jmxv0YbOS80unbc1ULBitEXkbHDNY0s5HESowfENjh6XyqxRetFmY/reqgNjW3P+jPN41wrdFwKcHXuds6JKUJaOOL17+bCFueUGmOMrBna0PUt1ZWnJiSCDKoyn4lTzLu6fVUwV+eKmmytEc1abLwv6IUvB/Lrv52p1pUmqFVJ3Msx53f23r3MdS2XT0W1aEiVKpbTZT+Vznk/OK7nLa9qLqyN5VrlGmoVvgqGqwZnrR1Y6IfWOK6vrrl+8JC7/Z7bt28IPqCdEetmJeYGNdZYV+W/irKTc55dKtfPoMYfNdG4r82tv4eSJJXxHOOKqjXHMPL+Bh/KfKCXZp5rylJNNO89xxhjKUJJuUjm5uX86jmt0Zr633VMtX4HxexhoSytmTr12PcpUSkVl7/y2Zpk1ftTr2Omj63WwfvHup+A1MKN/C6evR/1uOs1KOc8o3K5BO8yXPV8X2VOkv3sdluG0yRx38z5Ok+y/7ztaycZTdMwDCM5pzkgqJ3/5AKW7L0mBGuIR0TbywuwpvrUF3qdjdZ9VUhO9qvJOc7HEFeRcjNzRU7UjGjIIpqJodj9pYDKgTTe0VlFZxX4yDh6lNJsdh0xK3zMxJBwjbS8D6UiTY5QGmn5uCAGa1hLa411ol+Z/CJklUZVcXVPJrl/ZcFbhF0i3rHGFsSgwaAIpQqWkYlJzQ4wwgtei3aAIrQvcF2s3cCr+KxWPzI+lIplrfTkKnKTYCEQyUkoLFqrkqwlcAZnNI3VxDjy9s1LjscBpTJda8U+MWaOx4nLh+I89eZGqC05BXIeubu5I4QDOU5s+4YPnz/jyaMHPHl4xUWnyWESHQQB5VoSltMkvVYaZdDthqRqEy1D4zp0J44Kw3TAGkcOgZgiTmXSeOJ4vOPFz35G0/Y0CZJKvL57zcXVjl3fcnszchiOJG2YYpAgK4kN8M3NW8bDnjAM6BAZ9vtChQOsIasN2mpub2+YQm26aGYhXYyBpAMpKULUHIfEYfKMY2QcTjx/LFqW4/HIOBmsEcvbn/74x3St5bd/8zf5a3/t3/q6r+wv5daUBmRKBiI5yrvdtx3WmHlsrifVlKodrYz9WhHOOdO2DQrDpt/y9Nkz7m5uaJqGzXbD9fU111c7Hj28YtM3PHp0xcXVjqa1Rb9QAl5qgUIXILzC4hREoC4OJcHIHrInhoJYeo9V8ne6BN11u19xDcFjnZ6r9zXJUPWAChEblwAEXQVQWbQi2hVthCREMsNJgiFUIbmGOcTJSxKiUBilUbr8bU0yUPKzlMih6DRK07uMApVQWc0NEyl3R9BcU+hDQCodaK0kQ4os/TeQ6iM549FIF9+8oCilKDRN49x8MZWgxyhDNpTAWAKRyYtJQy5IjbFWmkVpKSyMfhLaWlk/Sj7D3E64BCvOOjDS2JBMaSgr9zImsaT2PmCto2sRc4pJE/xIzhHnNH4cJWjUil2/k7UuhCJszxhj2XQ9x2Ol7OSZxlcX9JyFOjNN00y51cZwPB3PkP36X2MMQSuCF8vsEAKbbS/rgoa2afDTyBQjbaEyg8FYMUcBMfx4V7e1a2VNLGpBstJ06vdwnoCs/73MLels/V6jHkvhjRIA14C6qp2Wz1IKdNKUlRlpy6oUPpExEH2QAp0xJQFekqD1VhOLyvaosYOp1CFkeogxlaqzxEgyZqDrWtlnliKBM47HD5/w4UcfkXPiX/3LP+bu9pakVKFOSZLhUynkssxfEoPea3KX8mKrXBqG1ntRUej6DobCvLgf53nvBaFVQkcLOWKUlHxiCOhGKIyTl47ftjzbcRjk/tYAsBR2ckkG63iQsaJYiFVS8Z9CoG2bOT5dB/prGp4gIJUZI8X1GGrR+dzG9qsK5+vzSEUDp7VmHAdiXJgodd1YnrME9OsEpjahTWmhg9aMd0l2qmZVnmeIUez+1bKvnEtTPqvKHFrvY1mTkszXEpPCbrdDqRN+8khPoIItfc0p5Bdwl4K2lYrhOI4Mw2Guumy32xnyGceRnD3GrG6gBmPE7aAmIGsOI0hm17Yt2+12Tkoq97BtW6yz4jpj8/xC61oJVZrG9bKQITCQyh6VAip7cpqI4QYbI62GXW8ZTidO+wFlHCkpgZ67HrM/khVYC11jimukHMO6C6F2HE+klOj7nq5tOBwO830aUyTECVRis+no+6YE9uIotHbYkipZHVia4/E0c359BJTGofBZvldWMUyiLXGmK9a25wNtXQ0zpiOnzJQmnBPhnzaaEKbiQa/JcXEsCDnhOiuV9OLSkmtgETPBD4LO5ETTd+xfvmS6u+Nqs+XJpSNshSZxOik+GY68Pr5lHO64O+55/PQ9fv+v/mX+/n/yD5imgb4zGLfl4qLjwdUjfu3jj/j4ww+42G3oW0vyA8f9HceYMO2O45DwcRI+eKnYdE1LTFLlgMRup9kPJ2zj+PCDb5BOI2n0xHFkajXH/Q3BJx60Gy53O8gS3De3R+JpZDwYfIoMThF15NXtDY8vrxmD5+1hz9sv9uAnaaiYPONJaA1ZAR6mMHI4ZvrLHdo1YuFjlgArxMB0GKHb0Gx7HrRb7CHhp0j0La/uXguhL8LhcODNYQ858ebmls2m5599/0/59O0tf/Vv/o++7mv7y7fVIktKjOGEsxZjLDpB2wgn9j5cPwsEVSaEidNRJkVjFF3nePbkKR994xv85b/0V/j444+wTrze27ahbRsa52jbBtsptCoLiO7IFQEriIVS4qSWq/YCSsU3Qgr40x6rEjl6/HDidKo9PhyH04Gua7CtVLpSkuLGmAJuuyVXpzsyPkiBwRorCAJIIGBkMczlnZffN2IfbjUpF4E6uiQahT4w0wlqhbqIwHWBVUiiJcoBpxRYR8oRo9sydyQCxQQiK/JxmkljATApCVqohGqlCspgRLhBKg0ig5a+RymBaS2MkRREN+GDJ2aFsq04w6kISrxgU0Gkt5te9pk9WQVSFuMNUFjTkhL4lJjGQPCp9NKorlKQY8APnqZQhpQWXULVxmltmfyIsZmtbUGlWYRvlNClVC5OPyli0ezanYiwVUPQkdi0jOORyZ8Yxj1RGF2kHDkeD4IUGc3Vblf0PoqQMv2mK1VYEcTXBCMmKVKkmLDOcbffk3xAR2jbnnGc5gDm5cuXPHnyhKurK5quFd1ODBKUaUUME6fjwNs3L4sLl8U11+Vdks7pt3e3xOJu965uNeAyxpwhROug7z56OJYmhWtqVY1F1r0U1sFY3ZczFuusGISEGoCXZm+5zBMq4kpjXoUSWiGUxHahcwLSswRmp7lMLChZxCpN00ggHeKEsBe0mL+UQFX0E2luNqudJZfGvCmMgiQahVIRq6NQDpNBBcvv/IXf52/9nb/NeDzwD/7Tv8e/+KN/xr/853/E1e6aYRq5O+1pdxui98QUxYUuRXRJRDxgtdjkh8mjY238llBO5ojqvDY3ZM7SxysrYUzkqLBNKyilmZhCJEdo9EJDN9rgjBUb/5joXFMKMQviJ/tWxRLYYEuAPxuDjBNW6dIPJNMVe9yYIiEulKzNZsM4jiWBl2Nbs6r6Rym0xiTUS+cWq9d10rU4iXGG4NTiQQjlnmpD1zTzGFwX28fT8exnRimy1igr92KmNaUsyaoWJ80QRZPXbVpCkMRCa5k/F7Anz0gJVGNbWekisSQN0ui1mHMTY+STz35WklsjLolBDIXuAW8/d/vaSYb3fs72q0BmfWNr1lb5YsDsg7zw9JYsb7PZzNzTNUdNqn1hTlwWREIg9Ma2501ASmUq5YwPYxExQw4T02lPGE/k6URjFCpFpjCxLxNK4xqSKt1kfeDu7g6UdBFWrASZ9aHEhVe72Qi1pdK77gugRITDTO+qE2D9Wk+IsCj/ayUreulgXGlO9R4vXMcMSiaXNfJTPycVncr2rvaF9aWQfiYZ8JMsbnXClcZxBY3S0mSwoiDaOVJUpBgQq0lJQA43b8hBksLT5Pn8xYFXb28YfOTx8/dFNBcm3OaS3/rtX+fVi8+5efuStm15//n7PH/vMc+ePqXd7EBrRp+YBs84JXyUKqsxEsxr60Bb0AZlHGOIMoyVBuvI6kDTaJ482KEvGvzxQBgSF0/fI/jLoomA7bYn54SfBp6/3/L6i7e8+OItL3/yio3paNqebndNyML53zUO3/XotoMYmU53hMmTlLwXsVQBdIJpioXr6mi7jhiF76qVJmTNcYzsp5G9VwRvUCha54gqMYyDVHRbg3bCgbx674FU5nTiZzfvtvDbmCLCq4u81cWNK86OXEqpM95pW5qX5QxkjfeRp08f8/S9J/zKr3zMRx+8z5NHj3j//ec8efqgoAQJ1zjRimmFkcbcq7V+xYMlMrsmlWlXAuBcgt4EKWIVjIeDUGRiZBFLCi1FkMbMZtPNwtpaTJgrZWnV9K7QjmRqKz0elEX0J3lGK6BWnKoOo15ELqSoPCOcUtKrCVIq9Cn5Lzmsjm3IqlABix5LZ7nWXP3TS4WNrKWnBcj+tCAWlMrc3A+kFH3EFSoK/Wq+3nMKQrWPzUmViqhUdnSWACqEVJIkoULJ35YAEVmDcgmcK03IFCqQM0IbEx/8MjcoPReTnHPMHdXLHRRznSRuwjGW2KhWjg0YjcJicqU+iLX4OJzwZmTShuPhOF93TAkbJCipaMW6klhpMxWRCz4y+eX5pBQ5HE5F6N3MWg6lFG/evObZs6c0FeXPktCGYpu82WzmKuNi9xyxVvQFRqu58dm7uK2pLffH15wEqEVbsF5ja3W9sg8qbWYdHK6/ZvpPiGcUkZmWVVC8mY3Mgl7MNOVqHawWTn4dx+vrmOlZZezVpmdrW36QmEJrGVeCDsR65NX+MlrnOY7RxpB8YpwCh8EzxMhv/9W/wu7xQ45+4nh7R06TlCQKtZxc6TGCIueKMuc034s1AlSpN2d07lSpQZIUNc4xhFHoW1rjc8YVXZdRGl3e8Sl4nBK9b1JRgNLyvFRJDmbaUD4XYa9jsfV4mZ9/EUjHuCAN1ThE+kgs8+uaKqWUKijRIuiuW00Y1mjZPCLK3wkSb0o8JXbaMSbimYmQmgP4en512ldKEcvcWhkBrJLreh7y/MUVr7JlvuqdUHotmNfz8WU/Ms9bvSRbFdXJJbn7utvXTjLWUN46mai+9fUi1vy72jeivqxrgcvaonbN06svfXV+qYiG3ACpPM6ZetldzgmCJ8QRKWklwnBiPNwRhiPKjzRtS7UTzc6Jw42zjL74UefM6XTClX4gWp1PNnA+eNfNldYJ0pJoMCMY6/u2TizWk+Paz9sYQw7Mv1sf++zvZ6qE0BbWwUuMmVn0qOV8Mrl0uaRUPmQwakT4rpVMMFarGcGpkldMgf0UJAUh5nmhPt7dgLaMk+dmf+LFqzcchkC2lgePH0vnzpRQZD54/xlOR8gnHj18wPPn7/H82RN22y3aakLRUEw+4SNkbKGOeXQG27QYK92EsxKbWmXE+YXinNFYzcWmpTcW3yXCkHi820LekXNA6Uy36UplPPD4gwd8/qNPaa3iX//kR/S6l2ZJtmVKGQe01rDpN1JBCIE4jbi2B21FDJ4gKZHd+pSkqReCYoTgMUoJ1OodY4BTDBz9iEoNBi2d362cv9YZ1zlso9FWGgehYIoR78ev+8r+Um5ie10XUkms6zhSagmf66RpraVtG6YpFE69BJ1XV1d8+MEH/PZv/xYff/icy4sdfddysZN7JbTOSinMErAWbi4wT5JJZbKKBUFgDtpVTkg/lijVxhhRKTCeBqngAXm23ZXq2eQDtTHjmt5QffnvL4x1E0pSmWd0tcpGkoy17qIImMsdYoGFqquK0IdWzGmoCQaRREQjfUOkA7gtVIcs72extyXlQtcSTUQqiZbcSUEdlFHS2wPRYgilpCYBCe5V+eYzWgVzS6VNgnatjVCnUpmXVOGklGQuFcttUFjXEGOShlKF7qWNxWipRortrZ9tHOWki/ZnVc2rWA81EUhlPSmbKkUsoyuRSuFSJ2uZaqWSWhOJw0kwsJRJPhDSUqg6s46s/OnCDU8pEYoecaH8JoZhYLfbzgYCXddxPB45Hku1swasIczuVnVtIi9Bdz2GMWWtUEr6nbyj2/2A6j7NZS3arcn9ehzeT1LW1d37CcZaY1AZAvVv63MVOtQ5MqQoAVxKaGPPjr0WS9dgfB0o1ngEyrPSKwt+tfTUWF/HEnMsMnXZvxRnMxBiwMfEmBKHGHj0wQdkZ/j2T3/E9//4jxn8gJscMXjBU3WZFeUkS3Jt5rFrtD7TQKTVOa71A2LMkOekrJKX6v+sNnORR26l2EIbU7RxtRCzKlKstQvLszjv47Z+7uuYa0Gs0tm9nwvpRp+9r/XvvkoTcX9bJzbr86jxnTy/vPp+oVWti/ASw9XkUZNVWjRBrJ49kvStdV01v1mPmeV4q7mt0qPqfZlX31IAo67NS3EkhMCs8fuaecYvQJdaxFCV91hvXn1R11zTtXNU5UhuNv18svUGVPva29tblBJv54oSrD9bM87b17doq7GdZXu1ReUAMaKyJ/kj43HPaX/L7auXNEbRGsNV1+Pv3soFN5bN5mqmcu33N+x2l4UDe5JmJSqTsqA01W6zDkClxBVnLfyutC+5Jnn0ucBU68oJLAOqDtiK9qxFUTln/BDOtC11INSARSDgqVxHmQhTIvhMSoq26UtTJlUQlXr+IiKr1Yi20RgjFAU/jehCIQhJjmW0m5+R1ppcDAD2p6FUiTN+2IPpuD0MfPriNTenzObymgdXD3j07DG9MzTGkMKJ6G959GjL++//Dr/zO7/KxW6DNYr93Q0xCi88xYBVBtf0NK6l7xrs6SiTfLcFbQgJfMy0qWPwiSkmQsp0rmVrHR2RZ48u0LSotANl8DGKja1ONLsN2jUo07DD8eC9lzx+/mP+6Ht/ijpZJh+4ffuWRms6lWlz5mL3gNvbW8ZpJKG5evSEKXhu7+6YTiNBaWIWuktKmewj9jQCCdc27LqOu6jwo2cMUXqSJLHk9MOJy6dX7C53XLsrjuMJ1zX44Pn8xRekkhhtd9uv+8r+0m61Ivvq1aszq8BNvyEDwzjOFn8gVevWdWIkMAYuLy95/uwZHz5/zofPn/Ho4SXbTUvXOoyRyRitCNNpfgdllaqqRhE6Sp6RSIQyda97RAjFCL8nToHoE35KDIejdH3OMObIZtOz2fSk4minVOZ4PNL3G2Jc5oazJCOv5gVnS/U/k3SFoBXWtqTZ7WrtCLQsBPIVYT5n+bkqQUFNLiCSCaQ8gXKF+iQ0JpUV5CC23CGgk/Q9CiEQc8K2LVX8nlVJMnSBYJS49UliUBKU8mWQjvdzw617xZW6qEolrwQtymKNJkSPjwGoBSU531hMFqxzklSgsSqhbYMSmypAk5MkGk3TM44navNW1yyOeyklrBE9CLk0uEMKMuQaEAkVwU8elFAYUs5c7C6BzOl0ILhYmmBFMkZcF4uVe4zS1dxZqV4ao+Z1Z120C0G6iIvguyFnRQiR29sb7u5u589Vl8TLy0uOR9FrBO/xwyD7LsW50+lE4xqca0jZF054kCKaczTG4t7hJAOWMSQ0lAW9qO5yNfZYF/LuB+o/b7+wUKXuf7by7pf+BjKD1E3W9FgC5tKrZxWc1rlu/lohGFdXV3OMFUIgxFCs+sV+djYEWLk1VUcqYD4no7VogmTYE2LEjwE/gds2XD57xJvPPD96+RIU/PW/87e529/Qdg277YY/+5M/4fJiS986/DgBotsMJd6nVMHr9zLXlH/nxQynxoY1UQcxhGnbRtDRymAp55nmREahrSUpoZRqfd7l/X6sdP95zU0r43mzxsUYYHk2lZq/2+3mWE6MLJaEpF5HffYVDVgX2I0xcwuBOjbXheF1c8I1otB1HWOx2V5b3lYTpJSkhQBZDIectdi2hVgS6bKerO9FRWZyXqha95Ok5V3Q8/lJi4P6Hhih8cV0lohLo2g7J7VfZ/vaScb9qv468F0nHLB02t5sNmcXtfZ3vl+9v7q6mn+2hkDXXtcheLGE01KlGk83tCqJoPeLz7h5+UqconLGxIjTFqsUU/RoZ4sgdEtEtCMpJbq2E9u0cqOVFnqMLRM2LE4Aa1hzLfipgwJkIWiMJeVIjOFLPL36NzWIOhcoLYPANQ6FmoOUtQPFcqx2pmPViU/usVQFnRPb3hA8teIqyUgQ7qEyOLVqHZ8NIZQAImciQV5ylQh+xNimCFFFPJqVVO2PU+Du7hWnMXAcEtdXD3j45AnXDx+w2Tr8yTNOI0NOXF5uefjgiiePHrDdtKTgGUZPmI5iUas0Tit61wrvPGe2m47GiQhfG4tPQktSGnrXkO6OnI5HvvjsBR89f8Rl19NpQxpHkg6gEm67lRBNKbLTxKYjux7dXIK6xDRPuO6e8Lf/h5H/8j//r/n81S1pOpDTBbgOVM+rF7e8efOK4XTECItRepQZi2qlkozShCzfJ5+Id3u2nYUyDg7BMCbI2nJ5eUE8ejAO3YlV7+E4EFUihIidxKt6u7kAJCn0+8UX/d3cMk1T+1cYmkaCsnEcixguni0YUBbPDG3f8OBS7KRTGBlOt0zjHvIWrRtJliu3NIqObA64cyRGIIu+QJlJqtYqorTHoGY3pBw8KQVSnDjcvCL4KDz2KZOjGC14H4i60lEMm01HTGGmGgzDOL+Tc7W6FAhCiKAz2SiULnzqJEiBVuKWVcXczF7mZq5i1ftYSKjUVVrMN5aFomozqmC9GgnklNGqJcahADuRlKNULTWCBtf5AnGaE+QDQT5UXppNRuGVx3JtdeGzRnpjVK5zXdTq/ciFDhDD0tw1JcQuNt/vRyDf29JrQI5B6QYs1ZwkeeFiXEWp4ho9d19XMaFNEk1IrU4X7KrSBmSOoFQ55T4bW7QuWUtClIVyKoh+jzGWpmuxrsH7QAhiTTucBnIRvlu7zN91vYjFCARKlXmK5KwYx4lhGAlBaJcpRU6n09xcTZD+Bq00XdtytduRokdR6Yh7hmHgcDiCiqXHkWG73RJ8WQv014wQfgm3Gviv4wVYgqv1eryuOlfR/DogXCe/949Rn1UN6tdWw2fIA0uKn7No71wxRNBKzwqvuu6vA8/pNJTnY2fdSN3P0mg4nvVSqddY78GaIaKUKqYDSPPIJM5nbW9wDn72ySf883/8T7EXF8SCKN8OJ/6df+cP+Mf/n/+a/+r7f8pmu6XrOrRSTNNeEGGkcON9mClY4ixXkJKSWFTEYX0dMUZcY2dEpmk6Ju/xU6BtGlIxialzmtIKZQzDOOISWL0E+vWZVEF5vW91DDjnOJ1Oc8JZj79myeiCnMe4FEBq7wkRlZ8wbkHA6nhLKZ3JAepzqWOkxsE11l33i5P9SKwl8Z6M0WGYaJqWEAOH42kuQoDG2EbmDaPBaoZhKMg85BiXQceXGTN1q5qjmtCsPzP6EV2e7TTJeqhq8akU5sTZT0wmQHSTWluJb/JXJ+r3t6/fJ+Mrkoq6rb9fVwvu/7xCUuvK/33EIud8BtGskwyttQTfRvi6cToyTCfiYc/49hX5uIes0NpiCiRHWfR0qXSlLBP6vE/TUJ+WtVboUqrc3DXkt4K+7tOd1tcrWWMq8OL59a+rK+uBUHYi51SzbrUsSIolO74PAQoPuUJyiaoFkQ9UpFNkPKkujgVtWWgh62dUzhXhSjprShOhMgayLOoCAcs1ejRThJAV1rVcXFyw23R0jUalieAnETYaxYMHF1xdbuk6ccmpDbuIEyhJIpy2tM6KsE2JW4ox4j6RslRTRfwvrlcpSMMupzQ6QfaR8TgS+w5lAasFApUBBX0rlrhmI1/6CnqHVQ0f/drv8PSP/ozhMHLrj6WBl8InzeE4MgwT0+RxFqbSMyCkIogtIHBKmRwTBoXRdaIN+MkzJS12yVYCStNIwmQ13IUTISamHDDGcjqJS451ulgMfm2E8pd2E+qHmZ3TZOyKRXa8R7FZ0wI2uw2brme33bHdbXj+/hPee+8RzoHWGV2MXXOKpcKGuA0VWlRB3JkzEETkLUlHKkGpvLdxGvDTwDQO7O8OeF+oWkk6RMciGtSNnReYcsha2Dub32qQXRcyVSxaQRVqkhgsJCpsXeh/5UsQBM2aB1txjNX/rdccKRQU+R7FGU9n4YinFMm6cL0z5KKHqQF7LsyymlBQeb0VpSXLzwu1gRjJIZDNzF+VhXF1H9bBYEVzpIZQ3holuhxVEg6tzOp6ithTICBp4hfSUlFVaqam5FwoolnubUw1mE8Ya+ZnQ677LO378lymlXMpYtE6QFVFt/RCUdNaOrlLoz+hfIzjxDSNpKSoPZ2sjnMhZx381vm93o86T9Rxs9ttCcHPfWPW3PKURPehEG578AGlMjnr4nDliUEcZKQQJWYIMQbR/bzDQEbVJsI5QlHv2/31uW734xHgS+vwel/rf5+jF0vVOKZIzPksKK3HWmsk1nNa/X1K6ayT+Fq7pVSxFS2nfD+5Wc+Ta5bEzDhZjV2QKrgxmk9/8hPaf/rP+Mt/8NfxIRBTRmdZi54+ecav/9qv84/+4X+Dnyac0YQY52ubqxdlv5mqy8zkmBdq0+r+zvFSlqTfWoefvPRaoCBDFPfNWOcH+T9rLarYONfEYn0v18++/nt9X9bJzleNhXUSUR2m1iyT9XO6P1bW+z67zrJVJOLLcTDM2rlSNBJES3Q9MRU2TCmO1WmoHnnWEaHKTHx+LfXY9wt1X/lMygnN6qDVLZL7Ij+Uz9YikTBnUs5rIdKfu/1CScb6ZVtnbOsLSWnpnHg6nc4uzjnH8Xhkv9+XjLaZX6r9fj8LjmtHwTk7LptSqvDvJ1IamQ4H7j7/GeHuFrW/o8OCacjFlYAEKUolCmvxGfzxKHaMujbsKtZjiCipdQ05M3fjnBv85XQGO82Zo1r2NVfqyu+Wql0+e8BVc1Iz8DUNLSWhAwiveeGMGmtxKwiyVgw3m838Ihz2+9V11cVUAjXp/i0L9cIXF8HnGsKde5nkTNf2ONfMScYYUlmMM8Y5WXZjJIcW3ULroNeWRw+uaVuLihPTaWQ6JbQxdLsLnr/3BKMyw2mPUZoUR3L0aIQ/bRA3j7Y1tLYRPYeCEMWObZyCaBhCFJvG48jpOJFD5MnDhxAix9sDb4hcXj6XZ2YApGEkVkHfYujItOTcQu7ItoHNhocfOz788J8w3Nxy9+OfYMiEmDlNkcNxxAehjiitCSmREowxMk4eYyRZyDmLUFZLHw+U0BpOMTKlDbgGo6R6sGlbnJIODcejNPoLEbbbDXc3d/hx5HLbo5EmkG3ztV/ZX8qt61qck8m87zukl4yh7/s5GK0Vf5D3pW1bnj55xIPrax4+fMjv/u5v8/DRJbtdS1ZHnClBYEqkULmvoAzijiYlA2kAqZSgF8oXFUYquEEsi2VkOtxx3O/Z7+/YDxO+9F3ouq3Y95WvDkkyqrhWzzF2njm98nfdrE8T0XFpIIgsrFlrshZ5tirIxTk9ammut2xl/snI5+akgvPPFAcnlcUxiRDIMZF0mF1SYvRCGVOQC0JZF8Ck87qthTTGVMWNS0uCQgwluSuBm5KzN3qB6CvddK1HkAPJvVAI7cQYC0oIKGEVkFfrRBADipgjuQRPsSzOMp8FSezRkDLTdJqT1UabGaXNWeauUuxdqB9Q3GhkqwUeiXsCGenorhRkA2J6K6JwbRq0EcQ3JoVtekieHI94P31lsLQIQhfqj+gvena7Da9fvyxI2WYOMFKhoZ1OJ6L3DG0rSLNWdK10Ca/Uh7Y4Io1jwPsR6yx604s7yju63Q8A61xxvzfDel2rf1fnmHU8cz9IvV8ktaX525ryUj/vfcDHwK4gS1mVv9eSZMc54OdLcVIIQVgPlR5Vnv2cRLD0xVoXOtfXVs+/Vuq11mKvT8baFmU0OssYbVrL9//1v+Rnn37O3/qbf4fTScZJ23b86Mf/hg/f/5Df++3f5j/5e3+fGDxt43j65CEbXYXRQfZXeu3kKA0jq45qrTtY4iEtBUI/YZRjs+345OVnGGNxrmE8DfT9RtCl0hwvZ0E2LrY7puHINPoZRZBYJswx01oPDAutqo6Hut3X4ayL4WvkS2tpQRC8IF3OubPu5WumTUVAakx3VkRB4l9jzNJ0NlYBPcRQXUCl+3nMCW3tvYKJzKg665KIiQbGe0/bb5ZzWVFxU0oz6lk1zfV+rHtz5JxnY6FM0RXnRS8p17Hcu9rnrYreZT34/zGSUd1T6g2uN3L9UoQQ8AUirxe12+2KfmDk9evXDMMwD4zNZjMLqaZpwrUdzrWM04Atg3QYB7SRLrk+RKYUsGGPGm64+8n3wQ8QAp6MJ0MKqCwwvHUWp5wwln0USpQRD/emaWgaycrarkMhx5KKu6Pd9OVFSRizaEtkIUoz1L3+AvAxkFUiIdWm4D3OCpcyxyj2b1k6emcQilBp6qQsklgoM7+c1pj5pY51UUpJqoutI1l52X300lCvPK+cis2j1rSuEbpRkiZW2pT0GIrwUiaKlOFwHLDGYoyTniF+QhmDsw39ToKsECLH4yCLlw+8vT3RtZa2U1gXsfqAyy02GnSIdNuei6srvvndb9K0mjANpDQSp4FGSQdf4Zv2aG0JOHAbUmOITiqL/hilOVXKKAwxJI4Hz+2QuDmeGGPk4tLQJkEedhgGH9l0jsY4pgDKdui8wfGUzJasHFkJJK1p0KpBbeEbv/d7eGv54naiHRve7G958faW/eHA27evidHz9Onj0jBv4nQ68ODhNX3b0rqGECdsp0ElQjgQbYvPlpAsp5ywarEDjARCFPqNJI09vRNrys22IbeK3lic1lij33kudde1M1xtjJ4D2JyFN9y4hk3/gNevX8sEmDKnw4n3Hj/i2bPv8gd/8Ad851e+jbUZrQPZjCgvBQXp97K4HqWQ5s6k4uwqFfhMAiUJfQyB/XHP8W5kOk0Mh4Fhv+d4PHI4HNgHqb5Za2nagYvLrcx5VhGCxxUaZgiBRtuCSGZAOsMKhXEqtLCWafS0zab0drD4LONZjBs0pLV7VK1ESiWp1r6+estnX3klCi/le7Iv+rUYyX7Ch8KrLRoWpZSgvZNYI1JoF6Z0505ADl46ZdfzKP00yKJrgELZKEWIJZA+p1DURbpxjjh5qWKW4Kw6Q8miLSchjaB0cZJyKBXRyqCtk94E5d7H4BmmgRAmJj/Rtg5jZIH2QbRe2kgdMIZYjilOeqzQhXV1eAk8JQAKaR28yPPJGZzTgAMyfd/L/DBFxtNaX7I8P630qpuwFMS8FxRTa8Xd3e187DUPXCnHzdtb+r6j6S1v37zBqEzbNNA2Ml5bWyxs7WpcpJnSEs9xr3dqa9t2XnPrfb6fSNSC2RqxWPP514yCqnOoz7p+fk1vCyHM/PbKy885z+ilUgofpGhXhffC1ivi6NVrWykxOWdxVitjrV7XEqxK8+P7ler7bJG2lX4Y0zQxjiMTYq07jImu6cVtTYOPI6e7O0yEq77lbrrgFAPWGT7+7q/z8rNP+cE/+2P+z//X/xv/m//1/4r/7P/xf+ft4cC3vvExfd+idcY6I+/6GnXOQgOrWjvgLGEax5HaFC/4wMXFjqbpcK7hzevXDNMk5RWjSV6cRR9cX/Pysy/IOZ4Va9eJQX1Oa/3HfWRqbYdek4Vqab3uFbNO1KoOphZHmmI3WzUkX8Vu0VrPFPianNTC2TRJIzsxpbCzaxSl+Z0gPWqmmaYYivBd+v+gKjoh778tmjmlxCyGVeKVS+G5FiFq3F7vVb0fWstcNPlwdi9rn7lc5tR6XTWxnSZJWvLZGvPnb79QkrFueX8O3S78yDrA1jBUfbGVKiLOtp0r9HXQNI3DGoXOQZwNlHDzWtsSojhoRD9hwpFp/5qwf02eJlRK5QGJu0gui9397D+GQK42h9RJxMyfB4H+xYFDYOUYBTaXSUQSDqlSfNm+rN4Tay0+pnmS0UVElFISPmxBMavTw7ywpmXCSrlW7Yqtpkb8uNfHLD7JIyMgFVixLSv9gBVAce1KwkmviIzY28niKLFXnmMR5xqMNigtL2GabfAS0+SLUEooSmHy+HFiPBzRwaA7h7MNJo44p2mswbiOq0dP2V5ciFVpkGp9TtUiTygtVulCi2pRpqXbXqKdVGhjDDJSo5opFTlpctY441DKE4Ln5u0tzy42xTNboVJCZ6Et6aaHZotyG0EwdCtJBmIZWleBhOLy8RMevf8B14/f4/OXJ27uDhyOJ8ZJXKSEB68JMaGUYbvd8ejRY3HJyIk8eoKfpOppNA8fPWEcJm5uD2izKZQUGXdTqdyP41iQPYdJQsGyWhqRGecIUYSk03m/pndum8aIayr6J1S/TKnOdB3WiM2mLpUWtMbplsY4UgwcDjfEMGCtiKxRWsaECCwKV1XcjbRSKJtFqKxNoVCVRXAc8FMRzh4HnDQ0YSSjjEG7Bt1GTsc9Jkaa6DDOkEIArYRCkKvWI5DkVZYg2LgSwslcklIgZ6lsVtGc6JosOotjC2UcKm1Qec0Tz0CkNto7J8zle98mMoGEoAo5I/vKqrT6iOQQUSmiM1JV0AptNSaXhlCo1SIit07i/FpUciglouuUUqFRIjTGumAii1ftECsOd6XLu1Y4VyiqlYFV8iillbh95bxQmMqN1UreOZWlSZ44Ty2Qv1R+wfuJnMqCW22AlRUNGYaU9NKysFbEix6lUkIralM3vXJ1SVSEmCVQRE4lZ0GNtMpYo4ihKj500UIkKDoSGQIilq/nnnJeGqgWSlStkla9Xf23cw3GiFD+8uqKauihnKXvpFeDyoVCK7dIkiwLqKrVeXe3GnPUBAHOq9VwTrU+c3Zj6aWwRjbuU2DqPuvPh2E4C6Trs6gWy7X0m+f1tPybc0rT/POUZlp0PcczWk+h1VQa1HofX0XdWf8slQDZqKYUYDQ6eazV7LYd3cYxvvIcxonW9LTbHd3VNdtp4s3NHX/47/0Nnr73nP/q//Vf4rOCKdA0Wgy0lSr9Gcp1lvG7RlaW+KuaKCxNi42Wd3hKozhHNg7XtlxfXeOHURB717Dte05jZgrxLDGrx/mqYH+NSt3/2TI+lsRwjZjPsWJJNFQ+t0Sux18H7evnVR1H74/R+dhKihE17qxavFpMUtRrgjpvUuhU1QQgp0TMgoBpranLwv04vCY66/NeoxgpJbSVos1SL8rzklIpUus4fbmWGit9vYLnL+QuVW9c/Xe9oPUF1mypnty6OnDfmnY9EBrnpKCWPbacu0KVSWSAGGAa0OMt4fYNp5s3NGURywV2R9VqfZwFOvUYqUYBnL+UFaasP9dlQY0xFMiKuYIUY5YmJywZ4fziFGH20kRngVpVZob2VLnelKM0kVPiYZ1ztUjMhFw4emSiKoXIlIr9rLDHcxZv9Wr1KHaGYrmJyijrqPaVkizNpICyn0p5W/jHOYOz7Ty4Q07zPYiERQBbxJopRpKP5NETkwedaXE0JFqT6RpFt9nw9NlDmq5nmEZSnEjeQ6FkxRyLfsZJ06O2wzQb2s0FGE1E7IhNYyBbpmGxMjXaSuMtpckxczwcsZc7OudojEbHgEqSZNBsoNuBlS7hWQuKQSHLyBjKqAzbq4dcPXmPqyfP+P6P/w13x4HRiz+2tbWqQalaWTbbjuurh6To8dOAD5rx5EFBv9nw8NFjXr16w+GL17DdSg0gpjm5qBUoY4wka0R0zpisSQq0NYxBvO6/aiF8lzbvJZGXCdqgtVBhvPdcXl6UwkSSBmPKorXD6JbdZotRiru7G4ZhL43kGkPOkRwDKmVpXJQiREkylLESSKvKF9aIDjczHo5Mw8g0ebLP9H2Ddoo9oKxoZWxShHRTGmABpJIgCwdfit+JEPy82DjnpIiSFyG2/F1AZbC6BYr1tDKFFmXmZFdQjfNEQtWKkZJx/5VbXo6FkmKCJAkKFRXETPSCYqgkNIwsu0cbVdLm0hfDij89qTh1zSlHSTIqpF7hf2bjX2rGME2eWIIPlJoXVq3FljmnWhTJlREGWShTovkoV50pSIUkpSBUVqMWt6tcKCkx1cCqBP5axo/WFqWlX0ZKaqZ8KlXsjTNLkprPaS21GEOSamP97BIoCjqmdKXYBsgJo0GrXEAiK+M0y/NROi9ock7ld8yB5qybyYtmsa5V9bhSDBIh8+VVN6MsKUfapiPHTAoR72XspJQZTgHpD5hAha/xtv5ybmvKCywBYA087weV9TP3g74am9T1f72vdVBWj7mmzczHMEJFSgWtKJ+ek4ycs+ifWPZTExKJG1baS3VO3xJXqiV+Wo/L+0hbvSapist0UJ2TxMFKYZIgr9tdT1aZ0zRwGD2p62j7ns31I0Dz408/5y/91b/GX/jd3+NHP/4Jn/70p0zjRFYWZzVGa4xUVEgpLsJ2loRqDkpzKegqK3TlYrcavLBBdheXbB5cs7285NnTp8RhJIwT4+nEcLfHx5EpFMaMUotBg9Gz89FXJVn1Xq+3JdFcnu06yZC/qX0r7Nl+1kX1GvutzXgqclbRkFpgX6MvlBhD65r81vlSithG5XJ9clxdCja1U3pKqmjgMrbVy71mGa8VOV47vZ4lrmVLKaGz9BeSAonMo1UTx+odqJ3Gl3u2Qtq/xva1k4zb29v5BVvzz+CcMqXUuYp9GAacc1xfX0uVqZx4hfhCCAzDgCJhFTRW0W12HIeJaRzx4xHCCNOAGfYMX/wEGycujPD0Y9KgpIP4cRzIKcwuQnUQjONI3/elsVHH7d2Baqtb+1zUQTGFCecauq5lmmqHcotz8kLVCmHTNHNw2HXdbC+Yc1k0qS+DLNi5QG3G2lIZM8TgC5IhoUYEqeprc+aEESYv7i5a4ERjNCoJfUwy8oxWiWZWimVIY3GZkGqCKW4XSos3s6J60EFKUVxTEqVZnSzou92O43DAh8DoB2Is2X/h5W03GzZtx1ZbjPJsOsfVdsPTJw/oNj1N37O5uuI43HB3vEEDIUxzIKhUZhyOGAWb/jmTz2AV1nR4HMZ1aGtQ2XD5YIPJiePmDZ9/+hmuVTx40PHjn36BP55QIfD88SMeXG64vux5dL0lxrE05FJgerLuyaojqZZMw2INWiqUJKw2mH5Dd/mAy6fvk+0P0c6zdZbf/LXf4JOf/pQXL77g1atXXD/YCQ1GGW5uboCIUpnd7oLGWfrNhm9997vsJ89+8rw6HImnTL/ZzAk4yFiqsP90HBD/F/BpIiuYjEZZh1aOuc/DO7ptNpuCTi32gjmvbfckIHKupe97rBW7w7/4F3+Hb338Ic+fP2HXduQgHHOhzSBUGUoIvuZZFxcPfxoYJ0noTqcT4zgV2mbmwYMH3Ny95XAY+OzzlxyOk+QpCpwRqqKRjoHE4Ilaka1BNwKdV/rn2v2tbTtSDoQw0nYdKWZClEp2pR+hJFHOypCQJFrQhPvb13nmGpnOJcCW1NkLnTR5VAwkrVCpiphFk0DWBdWAGTZdylnFLEMWZpk/xOlLVd3CvQrwOgBc88TX1WUZ+5oY6kLM6kvmq1isdJkF72IFm8mEUWwmUwr4JH/jg+g42qYtXbANfd9gXENN6nJKjH5iLFQ956pbD6ikS5PXc7HkHHBSRfPFglzp0pxVdBq5FHJSlO7AWoEpwvCu7bm6vCIEz+RHQpjwfsKHURx0XIPRGu0U4+iLJkTNur0atDRNw+l04ubmtrgiWgm2SrBqjHRJPh6OWCXU4L7vqGtR2zq0gIOzfuhd3NZ0p9rQdwnQq2C1JFNIwg1fTYWq7++66gvMwdq6H0PVA6wDr1m4neJS8Y2pFCDE9Uyt3mlnrVTy56KsIHi6CPbVXG2m9KpaGgeuz3tdkV5oQNK/LHov+gkgRC/re9I4LRqmU/T84//2n7LXPcp1pKzAWNrdJU3bsb1+wO3hjtcvPueb3/wW3/uTP+X1m1doBe8/fsjVbsuua6lJckqJMQQ2G0FwJ++J3rPpGtrGYW1pvJkj2Xu67oLjEImq4X/wP/6f8mu/91tcPXzAsB/ojONw+4bPP/kh/6f/w/+OSCBrRSaglSk6L0PIWXR2LAml4tzxqH5fNVaqFGOF3RFm1HBGRKJYtlY0QWmNdQ2n4SSU9+IKVYPrtQal7mdtELDe9zAMGK2x1hRzB7HSdY0hp1KkUULpUgXA1WQoKH0N7J1zmFZQTZOlEJ+DUCVrIduVzuZTmLDOno3rtU7FT5PEo0r2l7KI8402mKJNlhZKtSC0JLI12fs62y+sIq0Dey2ChgUaWr+U658JxLuZM+81RGmtJSex6wwZhv2R0ziRY2TbaNRwQx72pMMNKk6ySBpN0rq4HJXqJ8xw9rq6UQVDYhkmkOe6U/lavO5cM19D5QJKQ6NQBk+peJebXROVaomXkvjuV494jYg7k8AJsiAohbNqpjeRpKlUrQRkJS5cdVIx2kh9sFb0lGSbrjN4L4kVWRqOGa3KAhiFeoCSlykv8KUkL2KRS0w41xaGSR04stgej4NMbshkN7u/yAPGxxGj4PHTLZtG0znLpnN0jcM1DbZxRA0RT0asIxstmo5xGhjGEW00umk5eo3qLWQDHpqkIEiX0H5zQUgTMQW6bc/uaoefAt4nrFM8fHgB6pIHVxsuN5q2E5rMxeVDdNsy6Q6rLEo7lHFo1ZDmaV+ux1I5hgGtoGkbHj56xNNnT3j0+CGudaQ0cbd/w93dG7RJdJ1js23oNw0hjFw/uOLq+pK+afjis89w1tG3G/7kJz9gPwQ2V4+IpZK6tpVb84SrqFi0vNLP5HQciUoqPzG+2xa2x+FU7DyXplFShZZFOvhIiiKW3mw2XF5e8OGHH/Ds6QN2uxZnFdEPUiUmz+5duQRSpkZPqoovMzqD0xrTtLTG0FlH3IgDjw+e29tbXr6+4eb2wKtXN6RsadqObrMheC+Wu1rNLlTSnNoUtHSpKC49MUyxH9V0bU9MYnygrSFlg2vapXO92J+hMCjWFe8vw/01WPrqpKMWGCy6uGepFInjgErSgFJrLfynXEXPsprlnBcduSrufojXviAQLMcsCxFlbvXpnG5SF56aPKwpLOs5uS74UpiS4LAmGSAolnV2rspqbSSYz0IpyrVSmKIkPoUTFGPEahHXg+Z4HApqKzqnxghPPiEWn1qLQ56mUFfVsp7NC+q9SvKa/yyLdkEolMIoCRqDD9JHqGvZ9s1Md5qmkdNwLJ3FE1o3ItBFAtJNvzSgrbaY9Wux5iw0wyxzhTKUz0gwt9tuRCiq1IyKrIWyOcd3mi61fjb3q8wph6UoIDAYSou4Va+0ROuxOtOeWJx5ahPDNeWqVodrQF8pJbkgnJTGolTcT0miEKOYgGglpiapUKNtMSLQMyqRy3PRGGvmZKmeb91qLAMLInPWjyYLVc7UinSJq4ii77zdn/j7f+/v81f//b/Dkw8eYWyLVaLbyMZhWti/+JyYIn/zb/0N/p//xX/B8TjQ9T1T0tztB6bjxPXFjmGaSCT6iwv2kyfFQPKBNJ1o7QW2b7jY9mQreimfPdN4pNtcs3v4PhdPP+TV3cCL/afsb09smpY4HhjHib/5d/4W/80//id873t/SvQek0vnbwVR1QKBRCSxGH445/DFBltwypV4PqZ5bhXRc4kCKnI0Iw4wBY/WBmvENS7ljI+xOAAyv/v3aXjr+a/uT2JfVwrqE65pJNaoiFZFRhU4q0tTZAXEklhpjHJzfBiKsB/EDsSUc9bFPCIXqrCxdqaxrce6jBtFpfCiMn3p15GRxHe9xtQ5t8a+3k9Sf/qa5hG/UJKxvpn3+WjrbHv92ertDczVhzWUNF94nSjIjCFJ1a9YIzLcwbhH+wPkAFUkWbQDZCB69LxAmrMkaMksJfBo2/ZM+FXPqSYN8gBk8VgL/5brXv72/iQ3jiPaFfFMyaBnyLM8/Fy8pecqoFpEiChZ6HPlJqeEtjMIK9SiIihVuiHnQAq56Ek0RicUqYhg8zIYsjS+quJYUwTlWYlbStay6IUQJCFBFW1LCWpktMq1gCySOaCtou0V276hs5bOWRFOWQPa4FMWjngWQbZOkIInTKPY5LUtKWuOPqOnTNSJoAJ9CGI7azTOWfwo2hPbOTa7njBF/BTYbFu2usM5y/VFR99EusbgOkez25JsSzQNWTuE061miFFGROVmZ2q/gJTEaafvO66vLgGpAn7+xRfEOBGzx+hM0xraztL1lhAzbefo+o5NEYArLdXOm9s7TqMXnn9WZ9XJ+oyrfaEsCpmUi4d/Ei51LIlr7Yvyrm6n04m+78SKWgtPRpUAb/JexnKWxeLi4oKnTx/zne9+zIOHF2y3Lc5pdK6JryQQpV61UFfqYlGCgHoUYwxWS4V3GkdSDJx84IuXL/n8i1fc3Z04njxNt8O4XN7hIkIOnpxdoTvOMW1BEs+966WinefqsseLzkM7YjIoa1HGIZxrDXnlJFUD+jK1Lkl/+fnPTTL0fKU1cVYZ0ayl0otCq3rCMs5SKmICRMBd5jtBKstFioXUcpi8aEMEjVnO8z4fWe7VskacL3b1/+rvSnCWYW4QVQIymWML3YVqcV7viFRTlcrFOKosvwV1mrwXypQxRB+w2sqiLKtrndYq+My623dNjFIqGru80CXOF+1C11AFEMoUNEPNC39NXoSO0RSqKyRVxNgZiAltFk/+9TFqxX2NANYO6KZ0Ya62ks7Unip1flsFRknmt9q/413c7ttzrulNIENWabGXnbWH83zw5cBovb91pfd+cHb/uLrQmeocgU3lXT4P6OrrPJ9vfafnd6cmsfORS6X7y/SfmaZX/rtGCesxxQK6OECpPBdeY4YQE4fjiX/xx/+CX/uL/xYPnzxHWUcKstbaxpGDJDnWSi+nb33zmwzjyKs3bwkhMZZy3KYNHE8jWcO27fApEXwUXUX5jEwtiZSNlGiU4m6/58nVUx4/e0YyjtvDER89p1PidPLoNKJz5tHTp2x2FyhrSeOJUBJIVcwL6rWyui/l5qCQBCRUS/N631jKMZVCX9ENVQpTqhRjIZELA6Tec9HQnI+Ruq0T0vXPz5LiMpGUvKA88/KzMk6VEZp0jFFmqBpr1jHAzFeR+VBJZ/SKQqyRPbn35+vFOtGQuU3mV62rZqTqLxba21LoKuP157xLX7X9wha2NTO777JQT36aJpZFUK06KU6z+r5mgeu/U8pKf9okBb4GDXGE6ZZweIONJ3oTOZAK9ceAkYovKaFUxOiEsQ7XLOLy5YGLvuPq6gopEy+TRYVKvfc0TpCJsdjJ1ochMFcEJZC8tW62ZawOWtM0cXt7S+86eVDF1SSwLLrWSlUUPEar2aXBmCWgMMagbHO2QFcYTyktWsayiHRNI2iBz7QtxDBIIJpjiWGkSiiZaJ5fFHGQshgrzZ/EGSwQgnCToSZRSAfwosMIVZORwTqDsoop3BDzBShJ3mxjQVtC1pyGCa0k8fHjRIyZ8TQwHE8YJ4jCEBN+7xnSieaUabtE2/dcqh1da9F4rBOKmbGG3YNLsg/EKfDBB09QSAXg+rKhdXJetm/Jrie5Dcr2KNuVCq40JtPalg7FobyxYn+psud0OjCcDkDi6nIntDYCMY70m4bLy57D4Y62M2w2DdttS9dfkNEcD3ss4JwESC9fvuL2bs9diHjj2DWdVC/K2ByGYa6aXV1dleo2DIMkVSkl/OSFBqg1jW2/7iv7S7nd7u8wjaW1nfj1EzFZaHwvvnhJ4zr6bovC8P777/Pd737Mb//Or3K1begaK/A7K+1FlmmghoYpRoGAiyCTajkbg7gKaYVyjrdvXvHi5Ss+++Il/+pPf8DNzR0JxcXlQzbbbbET9WgFw+nAOEDnDHrToRBYewqHuYFTdamRKqincT3VMcRYi3EN2jhUtqAbsq6GA+uiTAmWV5S4pbovSRU16f+5aMYc4qBK1TUXITh1Di8dtKUBU23ulEolFUlAdCmG6IXzK8WWRYEBRchuFwtO+fMl+DNlca323GsKSoqVglQb1Mm1aW1mTZ1SUqBYEAOhUtUKnDFCMaIGA1FoAD5EhtGjraNphCayJEHiamathEIpRbSxs6PV+joq4lizkfWasHDzc0nkmBOBVBb6pDLjdKLqPXKWZmRgaLuOLTvGcSg0HEEZ1mvsfr+fq9T1e0HsxNLcGgNOOkLnLLbCfdMWpE8QIC3wCibJK2OMxZilqdi7tlXXnrXWsz63tnPlU6KhqF2yc5aO1RKznbsTrbn1wFxUrIXKuq11qDMDozzTWiQ601SoqvE5T7YXqtYiNK607RqvTNNE27Zn+4LzoLaOk6oJrcVUayXhjMngqxU/GZ0ik584+sDr/Qt+9IM/w7U9Fw8fkh9dcHV9weXFJX7wPH/vfd5awz/8h/+I//n/8n/BP/xH/4j/7X/8HzOMG1Shfb+5O3B7dyCROXq4uroipIm744nnTx6RTcPRR+5e3qBdgzGaRlt+9OkXPP3mb/CNb36Tly8/x7QK1zY8fHjN/u0tWhtau+VPvv+n3B1GXNNxuL3BTyIK37Y9EZnHjNJnjUDPmiwaTSxOozklnDEzahST9Em6n6yawh6pTY1TSrhCbZZ3t8FPozQv1fpL46iOnzp2alxYKfUzzW71jtcGjTXJrb+bkdKkUE64FnWs1vk2A01BfJVebHXrODLGzEnGmSva6rprcfw+M8lYJ/NiWqyCq3zgF6Ftf+0kI5HxMYiNaBah3azPyOmekE/Nmfs4HollAtBqcXRYNyrJWbQLNQNvo2eajsTxlnx6i1NCPUBBt4EYFClEdBBFvNLQ9I1wYLXBKcsUJoxt0Lah6TZk7XBth9lcoKPCWGkAMwxHYjn/SGLyvkwMlsbVwFzWEGdbOc+sxFlpksTpLuWZmrHpelIoub5K+IhUxwt4MfkBiKiyoEgRXXh14rajinZznNPVrJrFW19DbCARYDoS41ToUhFFCzkWF6qERvh2RlnIBXIzGbRjDBkVfdFJeKoLRN93BB8JoVrCiTOLtgGFQHvESFaxEHs1jIrBDDJQWkPKE3mM5Mmy2V4xHCM+DMR8JB89Ljc8ah9y/f5zPru94cXtgS9+8inYVzjX0fUbfvjJp3z4/hM+/OAp3/3Oh+i2Aevwtke5EyYMGH/k0bgRhMdZLq6vSTRkY5gahQ8jVomNMbkRRyndQOpJFdFQGQigI+QJTiNxP6KnxNW2w8c7Bi8c8EfvPePkPTHD4XDicHeic5bry5aLTtE5h1Gat29foowlZPjxFy9IWBrrsNphjSUX/Y5SGme7woUUhO14PDAcDpAyl5cXoBRv/BswX+Z7vovb9vIC2zjpCaEUoSzobd+xv92jlKZtex4/fsLz5894+t5jNjtLt7NSoS0C27l6XYLUecrTNQQuC20MUtEeBg6HA9M0MUwTb1+95osXr/ji1Vvu7jyPn7xP32+wrSMRSYX+klOQ52oM3k8Mx6N0BG8ams0SFKyrV6YsZqogFTFFyQ2M9HhAW6pDGcDSlbtuqyRCLYjJgmQkvrzl+eeZohMAzGYLwZLGgZyDcL6jOJvFIlYNMRBDEgcmrRA3JkkwEpqFwgWU/c5caKOhUIHq4jX7yRc6QKXL1vFrjGEaJ07HgVQqjdJrQuZAs6K1VMtJ72VhzzlDVqUXgNT/dAWEEARwOI2EKHbXaBinyOhHjDYcxxHjpcDjuzg3hvSxOPSteNZrGmOptkjQXgo3ggggblbRM02+zCliZ6sQTrOPngzl2sRARNYzi8oaP+3FAMJPeH8qzWLjPCdorTkej2faQWtsscaMoHqcs/PiL4g2BbFhTtDatilUK1WJA+/kVvtvrdGFtchVkKB49nsZN5zFHOtAqyaWNWhfU/vuo0p1WxJfzvZV9zPPCeXH62NLAWmpFiul5v5AQolzZ5z/9b7rVn+2pnrJ+6WwWROi0K7JEmBaLXNRVtA0juhHhsMdxhgaE1A5kmPCGluSU8fheGK33XKx3aA1xDiiugbXdfTNhle3J0KMXNgdL169pe9bPvj4YzadJYwj0xhpXEuiJSYJ7v/wb/4HXD16xhdv3uB2igfdJdbKubqmEYvtpPj2d36Lb/3Kb/Hm5jX/l//j/x4zdZAi3geiMYi5lToL7uuzq2Pgq+9fsZPWC811bd4z7yNnaUFQ5n+FUNytsygWTWU9xjrprXNgLT7V4L4erwbz9xv2rZ2c1oYEZEFmc5TzjMHPToUheIxe5uAzxtCKhVMT53UyvR5HdbyKvqUkvynP17Ae94K6fGlIfuX2C1nYrhfT+77S4kJUu+7Ki2WLc0Ipj80vTd3H+iLlIUm/hyZ7CCMqTOIqlQvnGqlayt+L5ZdUvhRt32C10CdUlAqY0uIj3PU9oWR6IUQsGkIiloW7QlAVkqJAaPd7gxhjvzQw5maBqwAjxwXOSsEXMWCS5lJKqFgpTcWBUahMdoa4FeRUqEoZpcyCXCg1W44JTBsIQbpCa1UdSURQVCsslUKiSydwqxXGVotNUFRRkSoVlzppLQ5a9TnXtb/agLpSWW6cVGxiuUapqAm3kOAheVLyTNFLMpSFS78fRoaY8QmOw8ib2zegNG3f8/6zBzx5tMNaRUpeKm/WErXDWrH0VNnTbregtVSv+y3QSkJnIjmcBNqsSVj5ykRULgmkykjSFyAFcgxMwyBcfGfouwYfvXA0Xc/2csdpOJE+yUyjZxhGTseBXW+Fi5rgME5kqxlC5vYwkI0tTkmW6nWtVBGtOV0qubXCaOcxpYu+oGuFL0lWxVnr3d3aUqFOKdH3PWmMaI1YQ7LY5D158pT3nr/H02eP6TcNygi1RCHjXKVCc0uJXO+Jkk70lRqRcyKmJI05tXQVN9lgkiGkKC5uyrDdXrLbXdP1LejMFCcqDaJaPisy0RctQ9LFtnahtawpG2faGqTPhlCLVLFSXdGjRJFCLnoPKgxdK0WZGQqX/9bnf38cSBC83h+A0pasI0lrcsiYOVconOBC0cpJKCZSyRPNA6p0oOV+JbVUxtRSnYf7QRRnCymFvqB11Sb4WXAL9d4VSq0ujj3F4loecyoUwkIsUCXRKfB+LKifdPj2LFqPKjZBCiexatogJF+0NaWbdpmb6rXMiVW9ZgWQZlpSTLE85zh/VUF/rZgq1l3Ca3cKCfKFDqmx1gminRMgNMIYpSpVE52KkJzd21zHZ5qv1+iy+OdcAgxYU8DSTCF6d4sVa9ThvhgamGOLLzsCnV/zVyUZ921I15+t+67/lWPmOSmowd0cExW0wuhzRCSldPZM1hXkn0cp/3nnvabdzr9HzY6TSpWZIyVJ1CvlUMGDqx3XFz2n6cQ0Gg53cszrq2uyD6QkJibTODEOQ0HrCq0SRVaGttugfGCcovT8cg7TOKYYmEIg+oiPmm7To8hMPnL9+BnKtuwPRx5ePpS5NkPXNZzixDiMTPsDTy43aAvaOKYp0mvRqaQg5gjz/1bv7DqpzDlXUsbZz+SzcD9JONsHpQRUEpgaf4UQpAiizsfieg2oCct6qz+/nwTc38f6s/XnqfzblvhTvj+3O85fWg+WsfZVurj1v+v39fql6G9F9L26njq2K3orFNf/7u1rJxlt28nCGlPhdVYBdyriGwqErRY/78q5VhJUjn6cLxjOX2yJRyeG0xEI5Elsa3VeYHylQMeMSTJyUnl5XWPZbrdYlYh+IgyTBLlaY4ym71tOhXIyDgeydcXWLeEaEdHVBVBuuEIbcfeYpkk8ikvwUkXetVv5elKagwxVLSoVwRfr0Rjx47jqYB0wpbOvVhnXCPRaBQ8hiAWqoOF1wRJ3ikSc9R4xJrRK5b6fZ+4pJST+0lgrrlBZiVh+HpI5kmxGJxk0Ug2xpbIQ5mRSRIhL5SST6buebd+xcYoxnMhJGqCRhJ5ltCGMJ1IaiGliCEHoDASGdOLw+edM2jEEmELgk08+YZwm2r5j138HbT7m4qIjpQmrd2CsBGjGIXYuDc3mAmUdyjly06GUw6iEygOKACWAV4Wao3IoyVJ1nclkfHHg8eQYGIcjfvRsmo6Liy3TNDIOJ4JxbC42XPorsoJxmjgcNG/fajaNYZgCwxRRbYdOkdFn9oOHZiNNw7TF6Igoa1RJLDSQZq2FdPvtzhaO2jF6zRd+Vzep6gSiD/RtSwilU3HXY4wkX8YYvvHRB3z00Ye8//wxTTcx+WMRyAnlTYtREzlGcixqBGOKc1NJMmaNhFCWNtstTepopokvXrzCuJa2z2wvHrC72mKtZgoDrU746PHJiylDSoIzlGAlRovSCRcT2S7FhflYxpKCBPagaJpWgvySaFA6eMtWX/pQqFAiNGT+bcFlckHdlurAKrBQq/2IbXVRThGrtbfSVK2hnv+q0CJRqFx1K6UBlJZ3IwVPtVKv1tmVZgDMQW6tgMnPFm/8TO18a2cUYBhODOPEFCL9Zit/k86DRqX00u+i2ErWpIMyr5NVMUmQuS+G2rOkdAHWClRpyEhiHDw1uM4pocc8Jxlt22K1JE6qiCvWwV8twEg3YuHgT6UCqsqcP3P267MrxTGlxBoy5YKUZEGKJElTtG0v1AmjicmWnjhilXw8HmUNqvSIcm+tNaS0rLuylhqslYpjTMXaWWlmX/sYGcdBKtftu0uXqmvumusONanNZbzEufo6B21qCdLgnG60pqmsLe3XqMZ5kFqfsryXzYxOnxdThW5zHnDW51irymsk5lxUvhjqrLd18lTtStfHkzeV4nCmyDETUmL0p/JOyLz0/nuPePbkAd//sx8Tp4ZjjJyORy42G6ZxJKbMs/fe43C3Z39zK0W6ksyHFPEps9ldYkfP/nDgwZMdTdeQFZzGkeAD0SfSOGK6S4zRRAyu2zL6wPF05Jk1pRN2ZrvdcjoFTqeR1y/fsHEN/jjy8vUNp2Gi6YQpkNFz8bTOP8u8UVAq6vxWtQ4yxwhtXQrTIcZZN7eO4erzXo+PWnyIxXpf6y8jXZWqVOlS95OGOn6a4gRVt/WzruNnLSrPKRJDoNtsiVEaXruuW6hPtTitzm1818nPOmn9KmTsPg3PWk2IeX4262up4/4r8t+v3L52kvHm9Vt5iFrPjVWUYoa6tVbS76pQBOqJjaOfs/b1y1yrtdXxKecEyePSxOHmJb0OOAKKSARyEveN7DUpW5Rpefbhhzx+8hht4O3bL9BKGvZNZoBJOlUrnbl5+1p6lhTLyClJ10JTGno5JwPieDzS9/2Kd5YQ8ypFjAU2U4qm+liVqn7jKmwV2B9u0CpjiotJ45rZH1qnKMp8oHctd/uDQFHWErSXbrRqaVSWSoIVpglrpfmSMxYfpZKA1nRdjyKiSQWil3PL2Yh9nhYnqZzlXocUiHEiJLFi6xqpnie1vAiJ6qBjV/xkXappwmV88vQRlxcXdG2DA/wpF8GdRWlNDJExBN68ecv+NHKcMm9HzWeffcF4GvDDyMt9QHWXNN2GR5cbXr25kcnXOS62PU5nkj/SNltQSq5ZabI2ZNugSIQpgW5QpsWaTtyF0kj2A5aIHyaOpz03t5+gXUvbb3ny9ANoWhkfSkH2qDgVq+QD4+nIcBgYOWFJmOxh2oOTydk6zcNHj3j94iWnYWAcRil0thuS6TjcBLQdSSiSKclMTOQYwMhCH0PAGkfTdOQSJJxOJ0HlSufX0+k0Oxbtdrv5fXmnt3Akjp6AYv+2EdtkY5gOnl/9td/g29/5mF//9e/y1/57v0vXGKzOpGRoc1foLEEs/kvDPakOh3keEiqSKk5ukewjeQxM44huLKdx5MWbt/zr731KiODang/ef0rXNWQiwwFC0EyTQvnIKZ2YRqnUDcMtR5+5uNxxdX1Ji0J6fVisbVZBj6bpbPHQz+Qo84743keBWudlsFSVVU0U1jN30UPUf+aapEzUhCKRUDSlqi8LjFaSTCciCkPKipQtrW3I40SYAq7Y3ZLB+NLrksQxTbRug04KnTJtzoQpkBTQGKKiILCZHCKhVNiFTubn4M9aW0w5RG/nnPTfSSlxPE6gpIeOagwpSJ8dHwZc4RdT0GrvQxnzCqP7Yq+oGcZBhNIZ+qZnunvLcDwwhQGfhP6Zs6LvdjJ3aotKmUwoc+qI1gnTODHLUJHcOLIzgKFrOkkCQiTGRIyemKYvVZdztTE1pvQ7WubRtT5jLOuRNhbrOpQRzrgzCmUs0yTiWJM1JlpCcPgp0NgOjVjT+lKwQmW2234+B2vNzDEP0ROiFxt05YSKlxUpeO7ubiBnmq57p5OM9bZmFUiAdc5pXwfsVSdXn0vVUFTtxlqfsU44auC2pr90XVcCSnGD0noJEmvjYhDdT+XC39dOGKNJ2c/B2jpYvS9GX+tgRffKfKx1wBqCWNdK4ivHqGhjoywhCxnUOUcKnuHulleffcLz509xbYvSmk3Xic51s+Vb3/4VfvrD79M1ll/56JvcHu+YhhPeR8IGLrbXdF2LMZonjx/RdgZrM48eXUnMFhXTkLnb3/Jrv/4b/Ef/s/+Iv/t3/y673Y5nz55x++Y1Dx98l4vtFW/f3pJzYnd1yabr+dknn3L96JKHj9/jd//iX+EH//Kfsz/c0XZOtF4s6MN9GlvKmayLqD9TkEfRBOvS5LBp3JyorbuGG21oihYhTKK1qT05WutkeclLLFvj2dPphLV21pOtHUxrLHU/YJ+RA10aORdtT02ktdaoKGNgHIal6BLCnFykvNgYrxE1kHLWenysKVH37ZnX2zhOUhS9J2ZfEB/NfWOCn7f9Au5SQqERtwzH4pYhlbsqznPOChR8lvWXxW9V6apCkxnWSgkVAzpOdCZh4gRxwo8nCRy0JWRFJKHbDd3uig+/811SmgjTia41RD+BUeJYhNBP0LJQOV24irbA8Yo5wZBzVFxcXLLc60iMQrlQCqzVxOjLi+2K0C4DkqhIBS3QdW2ptBms0xxv72Yoy1o3c6GDj9KNN0GOmWkYyWUCsoVXqZJYp3VNizLS0yFVPnrhl/oUBY0gEeMov1PQNIZ2rg5bvBeQU+eMdqbQJSqFLJSXgbkSl2KcKQ2V2wgUBEcmYtc0tP1GLIJbjVJREh3r8JNnGAcOw5GffvqG17eB16eW27sTOQ7oFNjtnpD0lhg1P/vZG3zQxOR5+eoNL1+8Yn93R/AjcRpQdgBl0a4lp0AOXpzH0BjrMLaRgV+6wyvvsUqxP514+cUtf/bDL4jAZrvjV0Pi6XvPcI2V5iTZk8NIngaOt3eMpyPjMKGzIXrpMWCI+GkgRkXyE85a2r6TF3u3I5iWmC0hKsakSKMHFFlpCJ6UhXoSCDNlqnZ71VrPVrbWihVlXfjqS14Xk6/i5r5Lmzaih4ohcXt7y6a/EPFqFjqZQhCIGCZo5JnqOkfESCqL6Jo1VKs4IBVtbSS5Fp2RQVvJST774nPe3t3x+uaO0Udc09F2HUpnxmkQXVnRcETvidNE8J7TaeR0mjgNnm67wTaO3ocz//W1DXaMEWWd0N9K8KIKapkr6pAlcJ49WFRFIhaEYUlEWP0bituF/Dur5ccApPnv69/VACxOoXREzwXpFQtNVBWDU1vhye2tVbKZHiApT92/LMpLpWvNQ5cFTBFzpV/KHDlNE9ZKV3TTiK1jTkW/sSpczTQ1VZ2lBG1GZXyQ/iZCeYCbm7fs93uGcZCmoTnMi+jd3Z2MAWUImTmYrA4qIUbGSeY4mxM6GqyxjGURJxfXKtKMeMs1y+DTAm9Q+xKkQpFJMZW5Xqiy1hQKWi6Utyy+/Av6zGxzKcGr2DHLHKBpGosPTvpr+JG7u7sZTVeqmHCUFyOEQEiSgvppkHvvJ/Z3twQf2Gw3JdB6N7c1LaYG/jPtaWWdfJ8nL8FSrdQuRc51dfc+vaQGoAuitTh91XFurcaHpQfYl4O6pdHefYrKfarP+rxnukxJTtY0mq+qRC+IjfzMaGmcl7XY4zK/Wxk/jfzRP/0nvPfe+1g0fhiptPGf/vjHPHj0mL7f8vmnP6V1DVcXFzy8viKECeUalG04Die8a3CmobGay4sdKY8cT29RuodsSFHixmfvPaHrG77//e9hrWO33fHwwSM+/ua3aPpLTNPSa8XheOTt67e8evUSbSwxQ9P2/MEf/ru8+dknfHY8zOhlTkIJrHa0sHI9LehnDMIYqfRFrXRBJJf72vc9Dx8+5Pb2VpDDccSVjtpr2pNSakFQVsWg+uzq3AJLwrhG2WpvrDpm159dn/99+pVCzRRcXaik0yhsmoqk1PEsVNRpFpl/lfvY2fWsxv5ZspGWdaXqS+p4l898/TjkF+j4XQVjUhlf3yBrHTFCCvLAlVkGgJx4vXmL/d66SdM6ySCO9E6RQyCFkRhGTGPJGKIy5Kahvbzm4tFjHj5/zttXPyOEI86JeDpr8Qc2ZWIHStVYlSQDaiahSqYvlC9N3/er6kQipXO3FEFkVEEGUlloNKlYi+ac6bqWZBq5T1aDHclJuv1qI4GUfB5pJqNk6U4hUOub4lXvxOtYSzd0lLTXKmUJZspCrhNMlG7EWSYZ5/Rc/QBDjEl47EoCMKeF8qRVJsWaYZfnlBIx5tkRJhXuryroxtLYsKXte5p+Ay4DQXQxzpK8J+TIFDx3h4E3N54Xd5nDacLpwLbJPLx+SMgbTlPi7uaGnCUJG05Hbm5uOR6O+GkihQkTJjATygWoHOgoAbvRQs0iAyGIDsR7yIHT4cirl2/44Y8+5TSO9Bs5976z7C56nNPkNIEfiePAaX/LNA5MU4CkCd5DClgS4zQSA6RpwhiNa1qMc9jNlmgdHo3PiqQMoWiJjCn88ZxQKZGIEmAZg1K1B8GCGq2rMhUGr9D/z+PovkubMZpkZWI8nU40boO1CrJQyHJmtoTMKYLJ0mG56I1SjGJVXd4B1pUh1MyXF1g/F14pTCnxxas3vH57w+3hSIiZRteGnL6I6iRhn5OMEuzFUIwQYsL7gPdS3a4L1Vn1vgY2Ss2oL7Xqo1Z84cUPq/C+5HvFEtDPSYYqycS8VdvbzEKVqt+Xb2eUZFkEQ/AQpZs8JWDOJUFTs8e/JGRz8ENe6GdKzY1OSZDjYqe7ppWAzCMpK0CsteucH4LoIHSpGPtpEqOKVPR8WU4gJrnf58kV5JKs1GtOKXJ3d8c4jlKhxgtVzFqsVZxOR3JSMn8qTdd3OOuEblS0cjklojXYKA26VNOUFE7+Z5RGGmAwd0o/50CL/iapIu7MpTeF3EiZk7UtnKsS5FB0HStk8jx4FCfBRWhuinWvcOvHcVz+TimUM4XCUSkdUm0VLVeWMR6ld1OYPKFUw9/FbR0U/Tw6Uw3i1uhALsnh+vPravSacz7HJffm2/qZ2mRYaydOk2G5n/c1HdVU5cuc9vPqcA1o18e+H3Dep7vUa1vTqipdSGvR6MSST6p67wBU5oc/+BP8OPIrv/obTOOJmCJozd3+wMXlNc463rx5w1Vn6JqW3WZDvH5AMpqA4vZwIBMxJtMYy+Vuy/44cTzuubzqGYeAnwI5Od5//hGbTcf3vvdv6LqWzWbLptvw/Ol7jNESkGaUU5BmwxmhFaENaMuHH34krA2l5zWTEjcaa770nGQaEd2UTL0FGSrU/pp01eB/s9kwDAPjWHQrOq/QMc7ud5bK1tlYvP/81s9xnRSvC1LrgH+NMKyRg3oMow0xL2YGNcldj/c6nmc7/LLdp7F+VQxxP/lQuhbEFleq8+v9/wNdqlZV68tbF1SlSkOxSmVQi1BYRellIFQqTVjd8AopLhPfgJ72uLDn2cMthyEwxJHWWYLSRDQBy5NvfJcPvvlNnjx/TlYRt+1J6cBwmmhbzeQz05SkkVN52fuuQsOZGEeMa6kOIUKDEii/2hUKGqPmibwukFX8LrSWRdR4Op3Ybrcz1So1F4Qsdob9xUPCeCROozS8yRrtPXmSpmPOGhonzQi1Aq1LnTJGjHVs+54YA85ZnGtAwxQkgQNF1/fEMBF8wpS+GZTJ93Q8lsXcYUy3upYJ17RSoSHhbEOMaUYuvI/EsHIeyOC9VCDrC/nBB+9xeX1N03VMxuL3EYXHWQmse6tRzvDq5ob3PnpG91DD544//dM/pu0yz552fPzBDvRjfNrw5Nlz/uiP/jl+yjROEXxmOI2c9icJQAqdSfkRA+TkyX7AtTvIiewnyBo1HMjTgTgeeHvzis8+ecknP33BD370OS9evSamwJ/94Aec9v823/roOd94/zFGRZKX7u23b98wDRPTGBmHyHA6kmPAaUh3B+IEaYw4Zchak4whOcdJSzM1oxxd5/B+FCqJn7i+vFwajzUtp2Jba63DT7HwLKuALxLC4lBRX/L6LN51dykpahtIcIwTh8OJlCyN22Ix7NqeB5dXPLi+JPoDfjgCCZ0q+pbw01iaTor70zCMoDR9L+49KKHpBO85HEb2+wOffvY5n37+ktPoCUkasfngOQ0nbm5i6ZAtcWCcRmmulTNt23KBo+syIYJp7VIsKIhsjJHHjx/Tdd1ccYw5QFQQDK4piJYS29oSlrMkB3n178XWVsJcjdCpWH22/AwFc3/4JeCXny9/p4zCKMPNcMImaJWIqmveknJCWSsok1HiE18pSxQNloKkRbMRvaA9ZOZeOxUNBRY+cq5IBJxOQ6kcKtq2EU72fhB0VUkyk5F5JsZQgrYS6iuNVk40CCVIClHmqXEUy2mhCmj2N0e0M4JQjJ4QxKkGEto1UvgKgXEcOR4P0iddG1pnMTrhrOLBgwds2kY0PqoIZ7OgKTlXg43zALTSh6lPsFiGJwVGZyY/0TQtTdviU7Xq1ZiV3qryuauTzTTVQCKhVCraDNGbbDcbsR32Ae0c40moZrvdhm3Xk7Po9YbTkbZxOLPDPnpA4xzBB8bi0PQubpXqtHZVkq12iU9nARvUIg6QludWE4wvaxpkq7HN/Wc9joIkPXnypNCivoqzvszhw2kpVi4UlWKdrCU5XCMz9au+R1qLy1iNlwQNXMTk1aAGqubNS/Bd5kgJ2SMxZJJWaGt4fP2Asaxt3/32t/nk5Sts07HZ7kDBixcvAcWrV6/JG8vxcMAqzd/463+dH336CX/64x9hdebxo0uudldYNO+/95gf/fiGmzcv+cM//Gv863/1Z3z26gXWbvm9v/jbeD/xn/6D/4zf+s3fpe96jvsj3/tX/5pH738b1215e3cDBr7x0Uf83l/4Xf7pP/xviUhC95//k3/M6zc3oLQg4Rn5Xi8JYkWeZlTAaFpnZTbNzFSoGoxvtj3TNPHy5UuOx+N5kllQL6FvC9U1VRMdJwH9MAxzcF8bZ9ZCYGUmrLVD68S3jod10L9Gs1KSAkEd53Xs1P09ePCA4/HIOI7nTmYsLRmqEUbtC1fHzuwKey8ZXu/DWKHZ1tG8dpeq39/785+7fX0L2yQiGYl3qp+7iJ5OpwNVXFOXi5QSwyRWgjkkxkk6eFOqYqlUDVUOWCYMR4wJOK2ZgmdSBm8aso/IiBKB84NHT7h6cM32smOKR8ajJY0dbB6QhoEURkwaAUE0dIEMx7F6EWucaQt6InZ/wU9SsbKWjKLOWYLYSNZmTJz9jOvEUK/VuE76MNietu/xClSF8bJCW+kHkbIhKmmuZ41HuxI7aNAYSTIoriBakAHSgLYdSQeiEs65bhpMbtA5MflDoVrIRFJpBEXGicqm2CROoDSNs0KoUBlV7OxiDIV3HEsCaMgWxslzGiZSBGs6uqahcb04PZkWXIfuNmy6Fm2VPEudON3dYJSmbzS7zY5us6XbZA7THS+udoTpxGcvPc/fu6MxEyHAzYs9Ob1B2wkMjDlzcxp48faO58dEbw3OaEzwxU45MmVFoxKWCZ1HGE4cXr3l5tVrfvbTn/LjL97yJz/+nD/5yWd88rMvmIYTbdPwYLfli5++YWc6rpqeR1ct/ugZ747sX91xdxiZojTiwUbajaVrdiQPn968Zn9zx+kwlH4jTYGkHW3b0zjpg4GqDXcypm3xk+c4jKhJAietHNY43h5uGYZh9kW3Riw8T/5I0zY0bcv2YsfxeJQxW7Hwd3S7uz2x3ezYbHpOJ6m+K6BtG/7dP/y3+eij93j23gPyNJKjL/bMkgCL4FYcwFRS0qE2RQkEZ9HfEuw1TUPKmqw0D3wga8vhNLA/DnSboTynyDScZnQsRrGpHYeh9DCxWNfTtBuurh9hWku/6dj0UlRoig9/RQ3rhN+0FuNarBPtD0q4/hkDc7dlCX5LeXX1s/pVHKnKz2vDuvo5hbisSRPJErgWWhZll5kgCGyK4hsfA2NIOOOoH9LaCPpYemBoLdB80klQ81oBNNKgM8co8FClAaU0Bz61b0gIoXj1R0EACypstGUYByYfCUGMN4pbrjTMCxPSK6KKmWXN0aa6ZSkMGu8Ximq/6aW5XRbt0hQnxslzPJ4gO3KWe6czhJTQRpeu0LagCZlTmLAmE43ibX5L3G5pGkvjLNaIe1XI0iNI1cCGla88WSAgykxcaLEq5/n6UoxM41DWAgra5eYKY9UAzPSJXCvnmXGU+abrevqu4/btjSAyxgjiozIpiHA354w0URTKjEhvZO3z02LX+a5up2E/ax3yCqmw1uKLhsIYw/F4/FI/L6VEUxdCkAo3ADIWpclYng0LchbDiBkB0fK+Ome4vNqWGOC82dn9qrYErUK3noXBuTq7zX81Jzj1HJumKQBnnseTyojwuTqwlbkhpwwxo6IgoRYNWpOUIqjEpAwT0kPFKoXJojU6pomDn5hU5sc/+Qldv+XRk6dsr67pWqHpXV32fPjsmkadePGzZ/zm7/w673/8LT7+1u/wz//4+9zcvOL1qz3bjeUHf/J9Qgp88+Nf5Y/+xQ+4uxnJueXubqBpW66uLvn17/4KL3/6Mz4LP6Xre/4n/+F/yNvbW46nOy4fPuI4jNy8ueXNy9ec9jfoVvprPP3oOeH/7Tke72hpUU4z+YngR6yxNE2HMQ7rNMPJE7N053Zanh85Y43GqGLDz9IPZ80YAGjaRpg1BRyOKc4Fl0hCJZkPt9vtjCis/76Ot7XG5z7SW5OL2kMDmKmSdawaY+Z+b+vEsiY2NVEYvZjlpJzxgxg71JYJu+2OYRil2K8MrWvlopJYXKeCzEis6iUO1mIxbqyTgntZjnLOBB85+bEwdb6erusX0GRUJf8a5slSKVohFAIN6/mkcgmaU0riYJRUaXadxJ42BXSxGG2MotWOSEa7Bpsygx8waLSyGNuy3e1ouw5jjYTRWpdqfUNWEa0jzkSsc6vzLqOl0r10aa5SfeULvYECa2dkDT2HrxfYfhbNlN/FpFDaysSuDdYocWJQmeA1GC1NuHKSKmjOOBTJGFmYUkYVzm+ufN2cZM1SkZwDKll0jhjtUIiYSZdMmxWEqor4UzxjaudPLdRtbVDGlPhgsXxULNm0uC+IENUYAxVmTknQjSyBgmtaXNtimwZlLM625CSOMI3rUSkSs8bqBqUdjU20TtH3G445M/qRF69vMSSCD7x6NTJOJ5kYCh0vhcw0BqYx0FUvuhTmKlAsvRLIEvj44543r17w6otX/OxnL/nBT17wZz/5nB99+gV3+z0qJ8iK27sjn3zyOVZBYzLqw0fkyTOdPNNpElcMShdMA7oErpokeJpKdI2h7beotpf7WoT5unRQluaHrlAGixUckPzCx6zuXesJyRhdeKMVkhT+7zCOaCN2zO/yFgKkpFFY2qYlJcXl1QW/8ivf4dvf/gaPH12w3ThSGJktRTPiIiWl5EJZSRCFJigOdmshmlS/c6GsSCHA0m82ZCWdZ42uFWlBsYQyNeHHgdPxwDCcSvW9xUVNyoZuGNk0IkwOIZZA1Zx5m0Pp7WCMCL9NMcKg/reiDDPmz4JcpJmis6ARy0fV/P9iQDAjIjlwjoQs+8jzDjLONcQobiUhLsEygJ4DZ7m/SYOq1fvitpsRm2qxDy5HWVXj7nPKqzjS+4m5g7GC2k+p/u2MZOQsLlIpUfUp6yoxJEl+CMQyD8j9FqMJmT3PaWw5iXVp1SDEFIk5iqMWihwS0QuK0DeG3Fi0Dlg7zTTR7GzR1EsiobKeUS81E6sk4ZXzFQe0GgBLPqFJqQSYygqKlDWZc51VPfcQpQeHBChCsWjbFmP1TKFtnDgaxaLLg0zwgRClQl5tk1OZuwO6UNyWEfcubilFQqh0sjrWv0wlus/TV6pSt5ecXs05fS6BfykOlfFrlZ3foTq3aw1WWYxd+P336VrrTetCR1RQe85U6hKcox9fxZ+vBdHlfSnFB7VSbykpK5KzOEpRDJO1BmNQZnnuJmeiDww5cJomspJGjxktdFQjZjbOWfrO0bWWi13HkyfXtK3BWU3jDA8fPCD4gXHYE1Pki88/Z3d1wfXDR/zRv/weWjWQNONp4G5/h1aZxlpa6zDKCKoWPTl7rBa6Vdt2DMPIcX8nzk9ao6yh2/RgFG3jeP/ZM3JvePX6FS9eSNNcRyOxAFLg0xS7/1yS/1w0XeVeGX2u41jf/1pUqawoVTphi2V66STPkkDUZ/XzusXf1+isj3efvnT/+3VyvEY81mM95iJNgGJwVJ5/lsalVbSurTSxlpCxUlFlfRUq6HItov2QQlLWCAKIFEtCiMVU6OuZ0HztJKNmZ+vOlJWbWN1wqjq/ClLmpkypTNaIuDgB5Ej0Iyp5GgI6S4OYTWsZxxP9ZkfTdAyjeIc719P212wvLnBNQ+Ul14Ut/3+5+7Mey7Iszw/77ekMd7DB3SPcIyIjsrIqa2JNPZAiBZIgCQIEJAIiBD3oSeCLQAiQqCcNn0EfQXrgowQKIvQgSN2i1BxAsEmKpLqbze5WdVdWVlZmTD6a2R3OsCc9rL3PPeYR1RXVaEEVPAlP9zC7du+1e/bZZ63/+g9KOndtHW2vub6+ZhgGQYmnST5H/dg9IudvCrGatgGlFx5lff8XN4oL3UsWiwY1ketmHiPdZkvKCa8m0jSLk0hOBJ/F7ckqrHZC1wqB6L1QfgodBA0pzLLxKUOcPTlX15rCdc6yCYpwUjZA55qFUZFT5aWai5OW7HYkWFK+p3micUVgq4tzRSkItLE0jWPOWXQK00jbNVhn2e62bLcbbNsyzRGNYfaeaZj48MlT/DxyTkfAMo8zfhJKyn63R2nHeTjz+3/4NdN4Yp49IVuiEmvF3jh62+KURXtFHGc0GaMzxFnQwRgwMdAgN/cwzzzcPfDHP/+c1y/f8OrNPX/088/5xZevefXmHUo1tK7HR8tXX78lTDNfv/yKL7/+Bce/8GNuNjsa7RhDAi087NpMBj/jp4lxPtF0mhuzZadb+tsPGKLizWHENRs55yXVvqLbOWeZ4mXhmI5DWNbJOI7L9VR1LnLuxP1DG01MiXfv3vFwOHD75AlPnz79rpfsn8tD0xKDwqtM123QWvGjH33Gf+9f+1f57MUGrSVZPYYJoySkMEcFeUYhVDytDNHLZ5iTJyvZD8SiUi0NxzSNnM8DwzThg5yXxjm2fYtO80KtOB298NT9xDyPzPOInyfRadAxTTPTnDifPc/Vc3F9y5kPn9wuTiJ1ZA6SSCy1fi6I6GU6kTEFAKiHWlGhioXtkqFR4Kj1Y9d/Z7hMRVbUq1wakZwf/chmu8VrTRgmpnHCNeJ8l8jFuEoJClpBI2XE20/JY4IPUoSkjMkZq3UROj8e09fGOZZieZqmlSGI3AvEGMMJwo6AGH6Sz18cuKqWQz4XVX42xsjoh3LzBWOU0GCUTE1Op1OZ9mWccwznIAV50xCVImR5X5MX6+MwR6ZxZjqP3F7vYSfuVUKri/gY2NDRNobGyTS1nu/6d53CrKcQtSmWXJWIa+o0W6G0IOSqGKSoxf5Y/ghl1Ut4pxVTlUq5MOX+cXV1hSvmESH48mdmmkdCjFinFk1iCIFAIha6kNZa6MTf0+PCEY/0fb/cv2MKC8VoTVGp9JB1uJmpGV6UotMoob8msTzOKS+NXS52CFoCqwT8yxnnLmLs6gxUC8q1QFsbWY+pgIdrjv5ad/G+4Lyxbqmr3ne9qmVrLTSNNmQrDBFVtJ4pRrS1WKVxSVBrHcVoYU6Bh2HgeDqirSnUMWhah7WarmvoWse2d+Q00zSaj1484+H+a/74Z1/x81+8pts+5ZOPnzCMLS9ffsVXX3/Fx87x8Wc3/NFPf86T2w/YbnYM5yN/9Mc/42a/4+7dHZ/+4DM2my1t1/Gzn/0Rz54948ntFR8+vaXb7hmHmbu37/CHO5JWJAXRG5rW8cHzD/hn/ul/GrPv+K/+67/F2zevy5qQHJ4QJHdJa4ttGoZhKE1+wZELMNG4Bh+LK6F6DJbIpE9IZqlOs8rXSWnRVKSUFiqS1vqi58iZdYOwrKMVCFUf03XdMg2p67juo8MwcDwel8nWOs18aUbK/j7MYqSEFhOPrCQm4XA4FG1vZd+UxlqrR+8157yi8uXFPc17v9TxSonzZYiy7z8KC/yHHH+mnabSAda2VlWEsuYUHo/H5fs1FdMYU1JRZ0KM9K2jdw6DxqFRIdE2Fusc5/OIchZlHW2fCLNie/0Bv/TLv8bVk2e41pES+Em0BXp3hUmJ2RhBk7LQsxIZ2ziari1ojjgmXZIxzXLi1uiHiAvTkra63rTqQvT+ckOJSHOjCuqsJl/4zVroGPPAPI74GBaXqBDlxiO2h7ogtKkwtjNG9Xg/cxpG2q5HBH+ecRgwVkaIbevIdMxTYp5GDoeBru1oG0nNTkloUNN0xjUdthSuOVdrPRETjsNYEETKTU7Gx0ppCd1Jgm62257Ntmez6dhtN4LHxkhjHfu+x889J+vYba85oZmmwH7/hNOXX5Fnzwe3O559/Eu8O058/eqeP/zDnzKqIzhP7xpiCDRG07mGfb9Bz5np4cym3RDOZ3IQx6UloROIh4MEnIXAcJj4+eev+PzLV7x8d+L1cWYMCmU6UmqkSe17dp3lcHzD16++5j/7G/8lf++Pf8qv/dIv8emLj7je7eVckpj9hDWaMQYO5zPaZfZNx5Vx2P6GozfMg4Q7+vNEEr4bSaflGjmdTmy327IZWcbhXXEksUsmhveeEAL390KBaIorxPksafTGWp6/eIHWmtevX/9ZLtk/h0fH8TADI1fXe/7Ff+lf4Nd/7VfpekNMJ5TKOCsTpxyzALRRFfS4BNZVIXgKaKUFrSmUo5wyIQWhoxRaoMBPkePDgePhyOHhnidPd8zTyDSNzHNEKwkKdBo6Z4hxh/eJX3x+x+RntG355OOPaJuOpunYbjfM3qNHSbrf7XYLVchaCzqXyUqlONUJhEHxbY0DXND7979em5SKchkuTYVC8jXWFIx1M3JBZ03bYrIiZsW7w4kMOBoxq6Cg6DmRvQdrQWuZ6ClFionZe5zSMpPJl7dTx/rrG1bVtlmnmefHtopN40hZwBIRJgudKy35BImY5tJE2MKjjvgYl6ZFa8U8z0zjXOyDhRvf9z1v3r1lnGa8j5xPM0aLhiYCJz+ScqZxLY1uy4S8wTaKKUI4DHzx6jU3+56+c/S94wmgdItzSjIPClWqhj3mlIlhLkYBaZkSy2cjYYyiu0jEnGn6HSZrtDJo5zBWigrJCRBgbBxHjg+n8lnC1dUVp9NJtF7Rc7u7JscaEqvxXvQaOctnUEWbfdfJVDUlplF455mMX9bS9+/Ybku2yqo4r8XcmprS9/3y9cpvrz+3/vn112oRt1BRCue9rt9aYLZtyzAMy+Pfd59aP99CHyzg0be95jKleISMixlCdRFb2+BC0VemhI+pOEmJG1k1culaKRR1CS5VOmONxWKQnGOhdH/w7Bn/3D/3z5Ky6A+sU2gdscZwc7OjVZ5zCoynB3RqcerA7dXEP/E7L3j99p6ff37m7/zdL9lc3fJwnvkbf+tvk6Ln9nrLk5sbjm+/Ytu2OOsYhxGUZpo9kw+0yWOePqOzjkYpjm/fMY0T4XzEZnh3/8DgJ3ZXll/58a/w8o9+yl/5q3+VY/bEmLBmI1Q0BKF3TgwfKJSxqysJE/QF6DMlk82HIJPdFFc2/TX3Qix4lKr10KW+Xesiq8ZhPWV4X3cBLA1oXVf1eepzr9fA2gypGhFVvdZ6bdbXdM5x07XM3i8NU31/SilcI66rOXnmOfL06YvSiMObN28xxi3PtZ6apPf0SuvXtK7klf3jtrCtF+giTCsfirV2EUj/SSmH8guLmMRliwqS7o2SpGqnNDGXEbw29JudoGAhoZz4hCfdcPKJW6VISmHIONOgyDIWcg3KGZJP5CDYgzJ6GXHm0r1pe5lmrDlzl062UJbKUT/49ea1OLUUTm6IaUH/nHOFjiVhTaFQMVIOy9gzZ0VGo7RFKyPFfHHAqgiEQhalcG7ljq61ukxxEE/0enPVWtN3vYQGoglBKEVLIxSD0MUy+JiW37Wet1xumvK5iFgzJXGWkc+sZbPpaBrx1z8cH7hyNzTaFmqAiEa3mx5tLcY1WNfgkyT1WpPYbB2xU4RoOG8bNpsNQcYqhOhFBG8NrdOkOGOMomlFlN4UekOKkeRr2KNhOslGP0+Bu7f3vHx9x5ev7/j67sT9MDPGTFaGzWbL7e0tT66v+fD2iq++gPBq5u39HZ+/eqDv3gEN85PM7e2ephHR2DzMzHOhK6WZbruh7Tva7RbtDVnPTD4xBsWUEiFlNHrZHB5bD6YlaG8RZq3WV9u2crMoftdSHiesc/h4SZ7/Ph/GZmI0pGxBO/ZXW66ve7adxmhxO1MofIgLJxZd0uZBUPVYjF+VIuQsdoaIfaWTYBuZIE0TMQr6NE0Th9ORYRrJWjHOo0wqUsJk8XPPSZGjJgZBx0NQdO2etrc0Xc/TZ09JJoNRknmgLcY6tLWElLBkGWwahbKmZMZYZJsV/jZ4UAZ1iaLl0hToQr/Jq69Vu8RKlqrPI7QAlRUZV55L0uyl6RDNhlB4StJ9DCgCSkWCH9AqYWwRNi9naD11kdeXoL4yY1EgqzIW5Ez2L+MuwBOlMFZI36NVJSddftecSuBoAYVqcGKusCNCvc2pJJhnCYZKIZBDEE29vxhVzKu/y+KQxmj2xDiT0DI5qbSArKj5JlZbclKEJIXP7D3HARHv68hptGQC3jvakg4uRZ1azlBCGrQKGKTFAUuhtCmgVBHSNxJ4qrPEJspsWZBTYy3WNbiUadtLGGFt2pTOmKiZ/FyordB1LdoY4dsng7PNQvUyS9GSQMlroDTme7yPrF18KsIKj4v1dcH2vp3ommrybVOE9Z5cn7d+b90sr/fj98W89Vi/t/p860JyfayL1eU98rgZqjWXT3Gh7dVp56VOqc8nvHuji9YzS6pOBRS6rqNtGqZx4uHhgI8BazUf/eAjxuFAnDUkz2m8J/qJ/XbH4f4tKk7sOmjMiNGetjF8+OGHjMFhXYNtHL/7u7/Dtu9ptOGHP/io2Mganjx9yjjNXF/37PdXRAKNsRAjd29es9leEXLCjwPj6SR6OZW4vnnGk9snnN+85vD118yTB0QT2bXtAqhKDSO0tOAT2nRSwxiDKtqMuptmxaN1UD9DuVd/k8r2/vpbn7f33SHfp0Et07aVbmO9Vt5fN/X8rzUddVKyboIVkl1XKVJaa6HfK9nXg5/r6A2lxJlO6tHMOkPl/XW5TFtW72f5jFK593xHfeifqclYEOQVD7kWS+934e/zDZUSf3yUUI7m8SzNpgKnLn7AShk2uz3nccJnL4Ji3ZC04zB4fM7YLPLJtmnJIaNSkEVkDDnImJv6HsqmkcoHphdb18vieNRklI5kvXnU37l2vE0jaPpCiVklbVsr7jPRF7emEjRV7XsFLVSgxPVJAVqLh7spdKyQZ7G9VULvGH0EJX7ozjmkbgplwQgf2xhN1/TCWY4wT0GKjjIejDGRCaiUmUNcGosYI8ZK8CBlLC8BpTJtQctCb42l7zuaRgSj9w93bK62dKolxJmoZWF2fSNuNk4yAubgQUWszWx6xaQmOhfZdordpkds+zXjYaTrHW1j2HQOozNd79hebaUBNRKQKPa/CVtoYKfzkRQS4zDy7vUdL9/c89Wbe766PzF4xRyFcrbdbbm9vuKDp0/47KMPmc93nM5HzN077k6Rr96e0OodOms2W0GrW2sY/CxUmhDRWahNm01Pv91gotjrTSHCEAhTZPYRFMsItIbq1Jth17WkYl1ZBd8g57XSpXQZj2ojcy3jLMPd3XIdfp8PYxM6WlR22Lan6x19b9l0einFySIw00ZG4Ogkk4HyHClnshLHphCD7BFK0Kmm6+VZUizocSCEyDAM3B8OhJRo24bzdEanhE5goib7RIqZEDLTlPE+4X2mb69pNz2b3Zbr22uO8wllNViDthZtBYmOKYn4VwE6o7VFaYc4SpXGh1SK/Joz9L6LlAKqvkKOvEwskMc/olaVvbVs41LqilhaZhiBnAMqiyV3jjOi3wjkNIreIhrUgrrVVkAvry7RFMLbrdL1RCTmgDJq4f4bZ5jHqVAKhEqVMwKQ5Er7uiTkphiJXqiPtTGRe4U0GFqXpiVlAVK0JoVEDlHszRFr4RQjPnhmH/AhSL6N0lhtmJHXGqeAj4m+p+j5LGSNMRZrHc7KnuqHiTlMYv3qA+iMdXAajoQwM9qWvhUxpDXVkQqZoCkKhcCLuDvOheqlQDvikqlSRciFqpACSUjP4masDMZaXIKui6VRFjtm55ygiDnycH8vU3MEBOradqG6CUAkwnulWGjOqKKZLNa439djTRdZNw/fNg1Yf/39ZmHNma8/Uz+rb3ueup/Xn1k3Ge9PJdbHetqybnDq89RjXU9BEXmvpoP1dxcKbyrTiVJgJmnI1bq7R5Lo6x+PrKNQwM6+7WhcwzgMvH7zhtlPOGf47IcfMY0nphTpXWY8PpDjzPX+itdffI4l0W0smjPRj2gFH3zwnDHKXth0DT/6pU959/Il4+nEj3/ll8r1DU+ffcD92zNN2/PBhx/y8HCH0ZroPYd3b7nZXwsjIEiAavIe3ViePn3K1c01u6s9Xb/BVWBT20KrHwo1MeAaW67FiI1uqctyrLbSl/MC6wyV/I3P+/3zX8/B+muVHv3+uVzbCq+taWvzUP9+v+l9f63X16rZbGsRec0tqhCOKfuL0mL44GcBayVjCIbxvKy7xnWE8E26Xr0eUs7Lmlozlyql8LvCFN+5YjkcDgv6X1Ha5UlWQSD1DafCXbsU8OD9sCS4ajLbfkOrMno+c7u7QlkDxuGalptux+wTX379jq69YrO94ebZh0jSliRjW5XwUcZ+EXCFn1lvXNM0XdwmamORoSnpvPWDqyfPGINrukW4aVYNSUWoYowra1txORLNgzzudDrR4kAp2qYljopAJMSJYQhsdk/o2g3GtagsAsGUMpvNHhDESduMzpFsZKM7jSdARMLn85m27XFWAgpBk5NZcbfrZikopSxmDcqI20uMhdrAkmMijcplKiW/tzRtviByRim6rmG73bC/2kJjmKYBlGgtnM2kqBlCZrPZEuJEiBNKZ5pWHLyG09dgO1yyXLeaFzcWnQw6W6y9xeSJ2+sNP/7hh/yz/9Tv8smLp3zw7JarD26wTSfoccyE0yRx9ykyDp77t++4e/uOn//xz/nq5Vve3J84TImsWrS1NE5xtW04H17zxekND1//lLevXwsVrdmxufqI85T46vWRZ7e3DNOEcxmiWGo2bcOzDz4Ut6zdlqbr0E1HnBN9styEHh/umUJiCnml35FzcQkA0wRfhYuB0+m08HnrWnNW6CHzPC+lZYyR/X7/aD1+X4+UIxmNaxt+5Zd/xA8/+4SnT6+IfsKaVBLpZT3qsm+knIjBLzcLKDfkquAs1BNXkOpp9ozjRNO03L285827t3zx9Uu++PJrrLM8fXpLnAdUDKiQMFHhQ2KeI8ezhD7mkmvRuA5rGzKKw/HIzQc3NJ0EUsaYSgprpO87LoYXiZCl1Bcet1nmEVBnBH8SXWU92aj//T4N6v2jNiyXiUmuhJlcphs5iudgjKic2O02THMqeS6FpqllOoPWj14xeL+I7msTKOCFBMCp0iQEL7a/pjYIfFMMWxturUS8/H5qroAwXlDXomsIKRGnGacFgW+bRoAHLcBDiJkmiJh9s4mMw0QTEm2/pet3HI7iKDbPYxHrZh4Od8J7bxqca4q9rEXphuE8cn19gzUZ7488PExsug30GmcNGU8sLme6TMjRqlj/XgoN2dshE3FtK42nsaToiUFsMaXhETG5fEwJqzXKWUKhoXmvOJ+FlheTl+TvnOn6XtKnm0YKDGNoXcPpdCDlmvX0mMKxDgT7vh4VmFlz3+GbE4KmaTgcDoQQ2Gw2i5aj/szaKnZdIK6nz+sCsNKV1gYHbdsuFrLrxqEWrmsQqaLd9VhTW4AlMXo9VanvZ11seu8ZBtElGa252u6JQZrsJX8MSH7GYLAobEG4ZZohadeH80iOgeurKz75wSe8e/eG8/lA11r6focicbp7xdW2I+jMefR8cPucrsv0O8P25oa/+/f+a/7wD77iH/zsDf+T/9m/yR/89Cf8P//av8s/9Zf/AsYorq+3/N7v/Bafv3nN3f2B3faW5x99xIuPP+bZsw8J08Td23ekEPjd3/s9SIl213Hz4x8xHI98/folgcjHLz7k6vYG1/f4nGi7njDLtOJwOGGsAB7TNOMa2UuMFRqRK/dVn2S/Jpfgy3hJUq+0pcsh9576mdeLQ60OAAEAAElEQVTatmmaRxMwpRTee6ZpYrvdMk3TEuBYqVRVY1H/rg1sZS8cDocFlNxsNss7qNTwWnfudruFOnWxDBcg3RU6nS9BfLk0mY1zcs8t77XGL2itmfOMUjIsWFv/5iyuV5Tffa0hkZ9VdaT9nY7vXLHs91dIIB9FsJouaMzy4tXhpTjz6EtqZYyJyQt3XsWAYyaOkWg12hrUdlts2Qzd9hqU6DR215qm3dFv9/S7DdbIppxCRCmPygGjMq0TYR8OcsjSwekk1IZV9woXClQ9kZcus2wQ9rIprDcWWXqCNHsvgWy2jJzENyYXkU0sWGPGNlsyjsTIyzdf0+87XLulaRum4SQLIEWMaZjnqSQWG5RxxRShjIQLfaBtG1wr5yF7SypeZaZsoBqNNlrCCRGeurYGydkxGKVxxhJjkiLOtMzRE7x406eYytTFLxaP2hhs5+i2W5pNj+lalGURXCsLOQbEnQJGJt68u+PN3TuG4lOvsyHnhIoZlzOtVuy6lnhlaW3g7d0RQ+bJpuPFkyueXG24udpxfbXH2YY8B2KaSUka1BAC0ziRtWPwkfthYojFSUhBqyFZcR1T2vD2dMIC1hiOSRPaHabf8cwaPnj+FMYTDYHrjcOSSSExZ5iSRrdbuqZlazP7/V687jF0KhHzzDhD24z0SZNUJCSFa3u0sSQ043BiHqvHvTSwKBFoNc7KdaW1uMSETNISCCkOZsVi2HuSKo5k3+Pj4XBE6y1dr/joow/Y9A6rMjkG5jiXDVGSzzPF1SwmoQnmS9gQrEbZS8CMKdaoIu59d3dgGCeGYeKLz79AW0PXNjTOMc+C2ItIUHzXlcloY3n1+p55jsQEV1eR69sbNrYImkMsInHPk+0V/aan65pl8110W3VHUEKmqRt2Kr5Glfj07cfqOyr/Qx95OcSxK1NBzAj1tXMgZdE8mHyh5s1+XFx09HqaoFX57GWSMXkv4ExjBSEvxZdxtrjOecbhJHbDCBWqcQ3DFJhD/EYSbi1y601tzYmumjilKzgizVlKkcl7qqVniDKd8EGakJTF6nWe5wIuJXwqLnr5Iqq+v3tHdbpKSaYEWlMQveLQFDyHwwNtY2gbmQqlJF9XqqdpWqxWpODFPz+LKH4ex4IsloyEMs2JCdq2RSlJ/Y4JyTKYM7FMpmSyoIXClylTkLW+RdK+tRLTEeusAEFK4acZUmbOI+ecKeZDKCVe/mt68DRNj1D67+NRi/hqVPKY7nxpMsZxXD6/9Xqr04B6fBtNpX79farSmqr12ETmsWtQRZvXeoycL7qR99FwYCkO63vISK1Ra6j6OjXrwFqxOw/xYsUaYyxOUqINUkqLaQrF5Yo6RVFsu57pPPLX/+O/zub6muubaz79wQuctWz7HqMyp7dBGhSjsVpxtd9zfdWz33cMMfHF52/4xedfo3TPv//v/TW+evkVL7/+mnEcMNZgjeb+4UFqE2PRxvHRJz8gZ8UXn3+JzoqmbdFG8eblV0vDb1zDT/7wJ2w2PVfXW37/9/8en3/xOW/v3gklUlURvC7XAeQsttSp9M/aaAFjESptihIcTb6kfa8nR/WQ81hsi1fr6v3HrXMx6hqra6v+vV4zy765amLXov71WgBpJmvz2jTNI0qec+5id5tkQqULsD3Pl3yNnIoRADJFlSGXUI4lBf1xI1uP+ruosvaW66WwaeTe9o9Zk9GU8DZB/sXLPKU1SlVunMuFo5aRbLl/4QPoKHQnmyNp9vhsMXYDzgnHWRts05GVxupMv83YZkPb97iuledPxX5WRRRi2easlcVjEskloVtoKzP+EBYErnJn601/PXpdTiKPExrria2bs1GKoCg3lExeyoaSUZGrSEdhbEvOFhMt6DuULlSJigbmi94CpKlQSmzbVErkoAqlShZr45yIxUnkQkMQN52M8L3l8dYZworGllf/roikQkK6NOLBnaNQHZYxX0poTEnUtpjGybSpcByFJy1J5dEEKXISnM8DDw9H7u6PzD5gsxLueMpAFKoCmdYZtp0I34/3iuvtlmfXe57st3TFyUUrhZ88YfLkFMtGKej2NM+AJWRFyJIa4JyjbR1dTgRj0a5Bm5bz8Y6oJB/NKE2z39M1lr6zPLnqoc00OXC17cWVJSspPG2DaVpc39OoKAL6poWsaXIiZE0XoGkGXMg08YKwausw2jHPE3hPdcoRy2XZONYFQAi+2BIrUo6YalWaxXUsZx55sn8fD0GWIsYonjzZ0zjRIeRYEpO53NDhAmIYa4VisyoW6uOEIqBAaWYv9KgQEudh4DyOjKMkJO83N7Rtg1Es2g2lolxf1qAjKG2YpsA4egnfc2f63ZY+Fw5qoRoozaKdEXRLNnFdb0pqde5Kk5GXvbG0EZf/Wx3rycW3ff/bz/9lcG4WipUslbzsNcKxlT1qbbsbQxTKlKrfr6nkFNF3XIqT6quOQm5AsYRJzpO0T3W/LFPZ6ja4vlGvqQnrry+CySUBXV1or4h7VHUp9METYiLEhA/xUZPhfZDvJUjpUijKFHoAMl3Xl/UVSdGTjSrnVBDMaRpRytF3G4yRT3Z5zzwuaDOX59dKePBaV768LE2jVBkyK2IW96kEEMwCHGglwI0wzuT8rcW+MUrjqpRY32pdxecRSs5R8F7WeHE0Wgd6VUrHf1OajDW95P2CHVg48o8zK9SjPff95uDbjj+JW7++htbGMPVr30bT+tNoOMtjyh6xplDVx4UQsDUsErk+tVKXNPqcCjVTrkNdKLgickO+mjPGWKZh5O/93b/Lr//27/D0yS3Pnz/n4f4NBrAGxmHANeU+Hz1tY9luNuw2O07vjsSosK7jxdOP+fKLz3l79wYQkwidI4HMy9ev0U2Da6Uw7jYbptPA4eGAjoH9bY+dFa9efc1+u5P7q7achjObTYdRiq+//pq7+3vO50EE8bYWxamAwaFcM4qi20bp1V5W6IqmnOsQwvJ5rY/agOW8lIjLuXw/0buyet6XDdTHrfU767VU18r6eerx/oRx/Zzra7eutaUBRbIujDHMZVAu9wRdhg6VUCXfy8vv8ZgCtl6Tl+ypx5qlet/6rpXInyGM75Lqut5gKypWH7MeMxpjyhio6A6Cp9XgjMEmjZ8HUpyxzpBSpG07GUsDGWlStvsrMgbbNFjX4ueAdRcum9UGXUJBQkxi2ZYzoaSlkqV4MaXQjott2eWiXk82rDHFgSkvGpTle6WR0YCxG6FLzbPQt7TkdqSUGIeBpmnFyjIpcvQ0NvNRcQiaxjPDYaJxCqMAKyho2zYlX0GBTmXkrXGuYbPZsttdYZ0lKYrbi6RMymYkHTFZGNXWOXSUJaS1JuvajKgywlWQBcHT6pJyPs8zBEGPRa9hCo3MkLK4u/gQabsOchRf9ilgaDAGFJrXr99xd/fA8XRmmmc2GXRSBB/IPoCWtGHjLDZm7OwhnPj1H/8GH7+44fnTHTl4zoczOYhXv2hgLE+f3gjFG2Gln88DyjRsdtc07QNPbp+RdYt6GDl5aLsNbb/FFvqAc4ab22uef/iExips8uAP7K833Gw3PH/xHF8DkxRc3e6E96o1OorlrAoB2/Y0yoB16KbneB4ZZg/jhNWGaZ4gJtrOsNls2LQNKXqGsYxllWh7ZIkWemGZjjlr8H5mHC+pvNVx6v1N6/t2KONQWmGt4sMPrmkdqDSRQqLddGVZyr4iWQiFB1omGDUQc02xiRRbZ2Qc7IOYRkyz583bd9w/PPDRxx/TbTsp5OLMvtsSg0wkfJixzslN6hTYbHe4JhGThLChwBrL1W5PYx2ucbRds+wdIUSsrfxtXfaDYoGYPLI/i9i4bvQLnYn32wiFICPf/F5+lOpdvv9ow5efFcH8unBR5CjNrQppsbbUWuF9ZDid2DRNEaor2SuKm5eh0ngec+CVNrK3lsJ2mib6RuwcrZb9XKsLvU1rvdA8apFYnXbW9xQQFD+Gqi0prjjWorKgs7FcM7VhEuBrZJ4D3kdSRNJqs9BG6+ufzwNGq4WW6IyVli55lDK0bScTjpg4nwZyUgKuGSQI1BjGMq2w1mDIzEUP6JxD9T1hnpe0+ArkaDTTOKCNxViLn4PYBxstYtQYUUoXYMJKk1zed9UVGVOQbsTQ4zwMQivMCWdl7VKm0CF4vBemwTRNi7NN27ZLgnWl8XwfjzWiuy7a12upNqyVogIsE9DaZKyLwdr8rp93zWBYazPrsTTppRGsqc8VZa5Ida2P1vSnb9NkwCUYbp5njH5cpK6b5aY0sdM8SeBczkQyfdcxek9KkcY1xCDr0GpVsrfycvM0ZO7u7nhzf+DJi4/47Iefst9f8+/+X/8vtG3Dpm/YdZoPrzvwI+eHdzy53qLUHrLhcJj51V/7TT79td/hl3/jd/gP/t2/InkaHz7FR89XX/yCw/09t/trfuVXfsxmC+cxiW1uBHLmv/jP/3N++KufcnO7R4WZH7x4wTQH3t6d+PSHPyTNE4f7eyY1Mc0TPga0NaKDix7ItK3lcBgZhpEQpI40OZPyxZFJAjiFmVFr07i6j0Cl/WfG0cu1Weqltf62UuW/rZFc06Sr9ev6vC16mvcE4nWtVhpUff51I/JYeqAehZ+ugZuU0pI2LlMSS72f1EZLlVowhLRM8uv7q+tr/bzvr0HvPWpVd/9px3duMuqHW98EXLqftWXWOI6PuF1Vy+Galk3XovyJMA0chrc8u92z2fZ0my1Pnt2w392w3ex59faOkIX+0DaNWAuiOE8zT5/d0jpFoyNq9lKIZ8l0yKvuyhe6iTGaKQjHFyhai0uxVsdCy4miJi9K41FRoNpwpCgBYbOfsE5OMvoS/T7NU7FADRjtSTHSdS191xH8jNYKZyzbm56Xr17hfSQrze7qCWE+EXwSBydtxXqOQOM68awPUmhpJ0mvbrNhHKuji3CgrbVoZRe0rTZTtjV4H5emT9pZVYqUvPwRJO8yihf3q8Q8T/SdUAWU0uVmHqDQl2YfcLkgpFrCYfwcOZ892gpFyzQ98zQQwkTIHh8d3osw9fmzjv3G0JhM9BMP94p51vQ9bK+uxGM8ZF7fH+j6Tt6tsnzx9ZeczxPjOJOyYdPvSDR0XeTV3QP76yuub55wuuoXr/tN39A5Rec0m6ZhPE48fXLLzc0tpu8xShq9rBTOGUJJFjVWFzHy5bowRtFow/X1FXMUFHKKoLImZoWfRoxCBJ4xSOJ64ZlP47ggJ4KuduQk56jv+0c3vXmev3GT+14eWQIZ91c7IJDiCLmV4t1Z0V8UzYrSFyRvGoZi03nZhEH2GN1I2unD4cg4euYQmGfP/cOBGLPQ7UqDaTSYpGAGnTQWRzBwf3fkfJ44DZ6sM7rRGGW5ffoBfd/jOnFD6zcdTSvTMhAnOPETjzw83KNUpt/2XN98SNt3NF1TCn7RTaRccjLUP+7zWHe+tTuVgeyAhFIJo30RBBqhrLoGVcLgkg+yb8ldB1IqDlilwKfQyhD7a2MUpIifJ8IswYlaU9zhHKfjCRDwpVLcatFX+ceLILn+BrkGhMqEQmvKdER8/02ZJPkQsM6gsyEWxybr5N/jMDONkTkkwhzECvY08HA4c3d3T9+I2JUAYY40jaXrWlrXkHNi9jP39/cYLaGLfg4knclWF3t0WxpKaT6NpjhlSYGJtYScmMaTpDRTtCcJlA5ob+i6jQjFY0SZyDAGtJ4wxtG1G5TKi4uXgE6ZnEtwZ4rE6ItVslwDRgmdpXGW1EoC/TiOTNPEZrNZ7nF9339Df/B9PGpKcp0irqcaFVFeU/Kstct+ukaFa2FVMwjWtO/6XE3TLK4+Xdct6/X96QJcQNZaxK4pWRXIrJ//+45XlQKznlwJA+HioFUbnr7vheZYnjvEUPRfalWMWlJINLYlqMw8eTHKAcjipUHSYiITM7ud2AI/3D+glOUf/P0/YDgf+OzjZ8QfPKXRkTg98OL5ltP5jvt39/z0Z2/52edfcI6ZY/T8zb/5X2Kc5fkPPuI3fv3XCV40Cb/127/DZ598Skbz5t1RAFjXsu16fvt3foerZzva3sA80W96NjvD9uqG1/cjh4cDw/lAvrnoJjbbHcNQi324v7/DGMdms2WeC30oZlCZtmsXGmj0oWTL1MnDZe9Z31clZTs+AszruWrbdjlHVctQz1+dbGit2e12xbQhPqqH62S3roG6Pqt4fN041/VS98r67/r1un9WwL2+Vtu2S8MyDOPy/DVsrwKbdV1VGt+6mXh/za3XuVi0m8uo5085vnOT8f6Yb+05ve646vfXzYiMq+QmtHi6E9n0DfvthnazobGSFj2O50uroJVMJkyxgtTSwWpT6QCCGqITOcloXWtNLqii2BUWtDOEhdj0qEBZvfc6+fgGfUo9pk/lVG7kZaQtPDdYbvQZEVkFSZbNxd3Kuar9CAQv4zrjGjCObBqS8aQEGIu1EkSWXCa6S4Jr5X7X5mF9VMoVlctb8+C5LCz53dTyfrVWxFibDEkdr3Wv1hqrtXAr22bFP0U83q0UIyS5mQpdwa/QmMg8R6ZC5WisJaIIKYuYM0ViSWXu+4amMcXn2jH7RGTGxxFcj9EZaxUJzTB7fEiM48zhPDJPYl+J0ux2e4ybMeeRGAO7Xcd+29CYjo8/fsFu15P8QGsF0Q7TQLPfcXt7w/XtLXPWZCX2o8bYEgJoBckMHtc4mral6Xry6JkLarrZdGzHnmnyxNGTooxbhJmX0UZjlWXyZRqYkwShrW6ITSOWzJQbjqCYl83u/evw+3ikJNZ5zknzChFFwuo6Hf3mz8QYmb3kELx/YwYxMEgZfMjF3CAxh8A4zaRcgQUpjHW9NUuXSkowTqFoMKQ4aBoJTUMbdld7Nn1Pv+kX0EIrLTf1wlmV/dAt16WzFj8PhDByOsnY2TUt1na4ZlsMG/6k43261OrIq+9/Y3+vs72161Q1nrWgApR0BMVl/J+STEVTEYRX/wi1vEwBkVY3WsiiF0uJ6L3k21iLMwZdiuecBDyp9Ld1Ubfef99vMhZ0TxmUyiiqni6vBIyVjlUblSB3lChCWx8SwSdJpk3y81pLjoDGCqUsa6JP0kDUJZFkemyMJsyeMWdOJ8N20+DsZe8lr+kELOdCa00qa2JZnxkJXC38+KQTWk9oa1HaLJkGKWpSaYh1CQJ1xpIa+UymyZfPvaT3qlzWWy7TnkLHK8BRRdT1cs/Qj+5h32e6lC0TKHIu9shccDJFmRbmwsdXS3GVYkIb0USlkkEh5yiXNSsTqgtdSS0UlHoudTnhQh2s1vWClMNlT1oXZ3UNyrrWxV64UHhWQEpOeZk0LP+9qkXWtBxK0rloVPOyZaR67atKuZP5J1pCTVPVEOQaFKhprWK/a3E2M01nYspc3z5hv9/Rdpa2sTitCKmlb3vSLPTIKWvePJw5h8CzjzyDn7neb3n24gUauNruUCmxu74SUwll2O/3eD8JpVApdk9u6PctxmTGeaLpxHHSnwe0UswpcRhHDj8/8PDmjuk84BQypSh1SM6+nBOhBiUl+qqqV6jXjULwHqXq2ilT0xiXyQUoYgor3DUv7l3RhxLUWM+nMF9yWT8XiuTj10tR3D/rPYNU1lumULPlv6m16qqJWdMBv22Ct6bgrScqsr+L9rY2Gbno06QGLmukUFClUUnL2laFUVBvNVFsQFFaM/tZprLuH3OTsR4r1a57GZ2oi+f/evyzTgfPJXDJkNBGYVvHftdztd/Q9BtyjhwP98w+0vV7gYi0BmNp3EYyJYwV0SyppF4XC8UsNwetDdhy4ZYPLQG2beTDrJaCq5NTeZVLMZeLSMqYR79PDeSBTErxMgpLEUouRk3NNnXjChHnLOMkKGxjjaRbzzOHecS6DtdsUO2W7HpSk8nKopyWxFYd0EmTxrAgI03TiDAzX9CQuikppZHYe9n8jKtcVHGQunDrKgojozO5jwvXWegqFaFRGGtpu4bt1U4usAWpKaFxKMI8Yo0iRs/kZ7pug8Lg58g8S1J3Vgq0wqNL3D3ECCFIke46cXlxTYPreg6HkRQ9Jz+QTMtmY+lty7bpuT8dOB3PPByOnMeZGEsYmzbc3lzTTzPkSGv39JuOvjO02vHbv/bLPHv2hDcvf0HfWu7eveWLLw7cPHnG7QcfcHV9y/1pZE4aZRxttyHNI41z2NwQTyf6vmWz3bLZ3ZDuDjAHUkhstht28yyp5z4i02DZxMkRq8VG8Dyc5bNViq51TKPYEPtpxBmFsQ5TRVvl+qqj0Yo4fJ+PlEXPIJkwGU3CqIzRmjmEhS4FhVNaUtTnaabmuMg31bLmQwiErIV/rxQxy2RtnH1xIbIizjYeapFWGowYMg8PZ6ENakffG2yMhJTJGLbbHVdXe/q+uyA95RpwZaJojGG329A0DmM06Mzh/oHT6cDxdI9xhu3umu3uiptrB06mG8Kl/TZe8J9UAF44tJcvqcvX1brJkOmJKu5WlLAqVbu4sqelmJmnCZsiKuXCssoX+nZBZaW4jQsCmFLCILkQKQb6rqNxlpwy0zyWzyiRH903vkkDWKiqhZImDy0oWc6QS3GdqyZD9DwxxBKyJrkWIYp99OFwJAZBaOdY9ngnoZebfotTrejLlLroH5I4FCbhcLDZ9rw+vWUaJ1IMdN3TpSmTSW0p1rVepm11vKlVLUzLNRwjsUwhMxp0YvKefrPBNg3JC5U4ZwGlgvM4J7RZ1cj9ThgCp0fnvp4LlAAZtfmh7BHGaIzpSCkuoM+6GPk+Nxmbvkch9NulwSigH8JyRanHqeYpCK3PZotqpPGTqb8W0f4kqHvXtuI2WYtEoLFuobOsLe/nOZZFfakj4PEaTyKwWRoMrdRSfOb6frUU3BVEgQvfvz7f+t+VvqPNRVy8IOOICY2gNTL1i0qjjCWMk9DIQyQbof9Yp2i3LTdXLc4mxunIlCK/8mu/yfV+y+ndFzx7YtB5Zjw5Nt2eOd4x6AnVX/P2ODOFmeurDXbTc/PhB/zwxz9mePWG6+2W/bZHt467w4mu7bm9fcrhcM/cTHK/321pNhay5zzOtO2O4+HM69d39Ns9USuOwfOTv/8T3nz5CvzEvnfkLBRHrRzGNIApQDNLIxdTYVuUfU8rKfCLlQRGK2lG/IxRDbbUS2GOS7OgkGo8p4wP8+PrRsmUUqYGXvDuMjGYRzFYUEAulrI1MHGeBTDTWtN2nUw8krh+bTabR5PGCrzUCIW6ttYhfu/rger6aBqHUtC2TVmvnlRClkXPpRaQx9pCcS2UrtoE1+eua9M5x3AesM7R2+82jf8z+WGuUdXK6VRK8e7du2WRv6/PqKPJGD1vXn3B1mU+uOr4F/7Zf46+MUzTyOdff03CIVaPhoeHe/rrZ7jWMisYpol+43h6+wQMpCScV200RksuA8GjjJVCd5rYX18xnE+EaRSNQtuQC2JXG6PaXKztu+oNrTYg4zgu1nLSsSamaZYQq5roW9BTVCLljJ9SEWkDOaIRGsE0nyU4xmrOwRO1Q9ke219z9eEPyPfvmMczjYU0HknFmanvtgsfW+hSeilNmrYlZ01OvjQLEtBltEOMfdWC4qXiQpDzalNKQRBebUmpbmypoIIj03hmnzMffvSCpm1QplC5tIQ+WW1oTEPKA9Zq+k3LYfBcX9/wUbS8/f/8Edt9j2o0Uxx4uJ8EOVSOcYLjKZGSYr/Z4jY3JN3w9mHkPM3Yxsl4UlmGKYBW7JHJy3mauXs4MsWEn70kjztLyp6mgY9e3DKPI5KMDh998uuk8YGvfvaG4XTPT9+9ETre9prt009o9zforkdNCec2hKR4d5q46Rp0UugYuX3yjKvrHf12g+t3eMBOgTYkzmOh2CV4OI2oJBMR7VqCnyBJGFrXNpJGnwRp032xxS3iWFXGkIfDgb7vxQVonjmdTsCFs/t9PRrX0NqOzvXsN1e07RZlLVMGovhvG11glixFoDgbifuO0grvpUkNFMqmtegEafZMZ0lLnseBJzd7Xr1+yzBMkiSPQmNAZYJJhBjxypPSSNN2KGWISQn9MUuh0jnNPByJfqB98gSrWrqmZbfborQUlarsc6Zt0I0h6cST/hOepEhMI7M/ch7OzOHAnDp0Cmg6tG5Q9CjMNwcT33rULI3SQFDcox4lhUOdaEhOxowEe6Zy3clEOBPQ1kMIjOFIo7bkFMjjmTR7YmngktYQotRSWqON0DPS7GmUlgYwBEmuTxcRfc6ZHATckBsjVIDHOdmLgnCIFoGmMtUaF1QS8wOhS1mMaZmTJ4REzAnrWlqEljoNM2GO+MmT5uomBTkKymytodcO9YHl7dsHTvMZlxytU+icCGnmzbuv6Lc7nJP712a7ZRwn7g5nMpr9xnG9a/nBpz/AGqFNZqVwXQ+I21UigzFoMv4Mh3uhz+32G8ZBtDlGGYZxZE4Rax226en7jYBlCubpRAyzUNJcW+5DiqvrHYfDQVKdG0fwI8FP5Cw2vIbSqKTM7EdpwksjGcK8uhcHQfO/5zkZtdivlutwqTngUoyvtQ/1Z6ojVf3jvb9QSvQlpHc9cfs27YfWesldqIXgmjO/vBek8F1TrOrj1zXV+03g+0Ly+tpt2y7fq6h3fU+uaMsUFK2OhPMJ+p5oXNH9eCnCdRZa1ulwQJXdxOjIP/j9v0NjDH/xt36FJ7cboh+ZxsDhONA5x/76lvj1xK//6o/QRvPBzZ7eanpnuOo7nrz4iL//93+fV2/eMCjN26/fsem2/NIveV6bN9zcPOHp02c8ffoB4zRCCuz3t8wh83A88fLVK17//u/z0S99yl/8S3+R/+6/8i/xv/+3/rf84o9+gjGZxjWllol0nZgG5QynY8A2QvvMpTmTXVNJIe0jWiu6tmfyE5WVsz4Xa8pcbe7sCvhbsw8qPWqz2SxuZvX7lZ5Y12zVpF3MQtRSWyqtiTkxjuMCJleaI7A0GWs63trZar0+a41QH18jGuqarPqSBbSGRy50xggYXtcisLxfrTU//vGPmfzM3eHhO12vfybh9/pF1x33+oKUk1JH62klvFNYbbneddxe9dy/fsNJy00o+UhAukowmILwhmzpb/YUbxPmyaOTIuHR2aPTLJ1mSuis0VicadGdYh4HeV+NI3svYsRykVvXYI04WY3jgMoizqsjpoQgH8YY8T6PCdOIIDDVkZfSpIx0hskjNDVD4yzRqIVOJAvWknNi8J6Hs7zntrtmSgayhahwxnC9v2JuGsbDO3IGYyVhNg5nvB9JxRebGt4Ey/icLF17+U1kYeoGSiee4uNCJJeRntB5ZAQYvIzwtNKgIRIxrsU4CRtbxrtkjqcj8yybc2MsmSiCXq1JypRU5MQ03XM+ZkJjMSqRkyGEhPczx1ExzZGcFffHI3fHE9lA6ywhz5JrnqVx0k78+w/HM/f3R4ZhEjtQlYqbUKBxDTkFWme52m2YuwZdUPPx8AofArMPHIeJbFpxsWg2XN/e4FpJyQ0h4dylwLIKmb7pRLftaLcdtm0IMRKjoI/zLIVU2zVs0o6b24HD4cw0zUyngW6zwc8wzkLramyDdY7dbsfxeCSEwDgMiOUgdY6JcU3ZnKI4ruU6DP/+HjWVHiRISdVrKYnzR3VJkd5d0ERSLsgLQBV2CiChlGiNQhRHk4oYKaW4v79fuKzGGEkTz0UvFCJ3Dw/cPxyY54lWGdEZKKHJNcbhXEOMgl7WsfiiG4iSZ2C0xhkjupvi+CYuVEKHsUqDyVCCJK11xbigBGXmBOqbLiTfdshDLo+7lDDrP0UvsDQjlyYk1Z9WMsKXyWVeHFcUYBBEVTuhf8UkoV+adWqu/DwacQN0YmcbJsl2qVSSKn1e06Ck0OJRsSWTAUFe5cYoU8A6qVJZprFai55lnkfRaCXZmxvXkGImmjW9VWEV+CkSM4QEPop7WSFhyWRcS6aA3HgFPLEWtlsJ+WpcS9u0tJ2laSzDeYC+xSK6rXGasNZgrZPfIckUs3FNuVlPvLu/A0Q3aLRMXVXRnphc3ILsRRAs4m3Q1i3naF2USqJ4DfSTe9VYwKzqBJhVJpfP1NhLcURWpJBI+fs7EV1T7tY2pGutaGVTrAv39URnbdm5dqtaA5C1MLzQhPOjtVxR63Ujs/7e8p5SxjTmkdajHvW8vM99f58Wum443i923w98FfpzKrRyiq2+5MuE2ROiBP2iZFI8TRN3d+9QKtO0jhxGdpuG26trfuWXf8TeTty/fc35NLL/0Y8gnjk/3PPm9Ut++dPP2F/vuNnCf+df/hdJ2nA63DPfnRlOAylKOHDXtlIbeU/XdtLQxMgHz57w7t1bzucTcYq8fPmKly9f8er1K7569ZJnP3hBCDP/zv/p3+bVy6/IBXiq+zlI0Ry8hPQaq/BhRKmMcWXv0eZi8V/odPUzr5/lWpNQz9O6gF8Lq+v5qNSmdS28Pqe1Aa46tKr/eZ/1EwtVSgTZ3/56dY2uDQred6/6tve71hvXf9fHViC9bVs++OADXr16JdTkeWbtDLtmMaWUOJ/PxPzd9aH/SJqM9y+A+mFDdXBYCG2k4p2utaZrGnb9hk3b8fb1awyCXEZtCUoQdkXEtltx6cBxpQ3BKEiZaZwgKKwJWBUwWQRPcuMT+0ZrGozVjMNZNgBjCeUE17G8MQ3OOozWctMoqKDOskmTJKRK+HL11q0WhEBE5rlwHtOCZCoKVcqWjcZU7YQBJUFPY5jRSAK195CVCAw1MgZujOF09wYQnnfbOUIKpDgTg6S1SsjVytqu8OpSyksCrXzmNVlYLOguiOcKmVn4n1I4yIivWnFqXNMI8hEj1ao3FUqEj7LB0bZLsaKUQRkZAWci83xkOGuSb2mcjDS9TwyD5zwlQhTE+DyNHM5nms5h3YaQMrqMuGOKaN2QgYfDifuHg1BhYrF5LEWf0kaS4F3D1XZHaCUHAZV4/fIrhtkzxczJG7a3V6i2RzUdm+0WRSIEmTCoBFYplDVYxEffomk6iynNzjzMhJiWRkNbi2saOmW4vb2WVOIwczqe6DddSRGOxBDp2o6+6+najnEYJaNk9gU9kHPYbTZorSiGEGLhWoqq7/PRdp2gtMWuWm52QGkudOW5r9qpaqsKWTQWWqZEudCAki8IdyyUSSX6oMPxBMoUvYRBK6H8xCjOU4fTibuHe9qy8SstehHjnBSXbVeokU0ZPV8AFqGriBOdLVbLlMmC1pac5PdQCkzT0RbnEoPokvJCaai/a/33P6zZqI3D+495v9FQ3/IYQSnr5CVV0ACEj4y4qWtkvK+dw2gl11Wh98kNDPm5JARLYwy50PzC7OtdqVgtl5/hQufUlXJJ8XZ/pGuoYt3LBIJ8cTYU/UUBrpQ0IylRRNAR6ysIU4CVJP74IWV8QnQ9q5s3qpiQZ6F/1qLRWqFBtK2Eb+VE0YsJ1aFpLMZqmcYsuQdiKpABTCoOVo7ZT5zOA41rMQmygVwcuyrnfl1wLDSboj8Re9xvFgyXe3BBs2PCaENXUMpU/peRcERgOee1yf6+HuvrcF3ovF/k18eA7BnrYnz9/fXzVAF/LdZCCI9yXurPvN8ArF8fLgFm6/dQn/N9oPb9aUV9rgu9+fF0o7pX1edaZ3EAFBkCSYsTpipNRuMc0YeiEbisiXmeOB4ONI0h02NMZr/Z8OEHT/j0k0+YH77mQd0RAuyubxhOENIDfhr55PlTPvjgGaQH/lt/4Xd5+e6OP375krdv3zLPAaMdOhsxjXGOUKiVSsE8j+y2Gw6HI6SRGDL345GHhwdO5xOH80Eabj/zH/z7f42n+47eSXPfWHHCq+CT956UA9YqpmkuRZtdAAelVAnfE3dDyRO5fKbrZnJ9Lt6fIq0b0nXdW8/VeupVDS5q/kml3K/zW9ZGDBdh9p88Oatr9P39Yv3+/qT3//4aXj/vzc0N7969w3uP956uq8GuF7e2+vzn8xllNMr8Y87JqO42ddxSlfC1Q6pvQNACuZl7H4SaEDxh8NxebUl+5t2bE1s70VhByo6TByPpzNY1KNvR7sXFxc8jGSuWrbPnfh7ZbQ27jaFvZMRESsW9Q8bwMWTadsN4PDCPnhgiQteTsK3GNXjvOY/V5lbujSEl0uwXTvh64ZxOJ2pce9O1i9sWsIychCM8kZVYyOamY/KRpulwTct2u6Xb7Ykh4QcvLiPGgbHM04zLsmhDhrZpsVa623bbM/uBNCUZexZETxuDsYYYNDkWZyfUwqeuxZUssssNKoQgtLYsIVKw3gwrQsKi/0jla13TEHJmCp6mb9lsNjjrIAh9oela+s0GHwOnYRLnnXlm1rPc+LPj4f7ANAdmnxgDJAyuaeh3O7RtmHxkurvHD54YBhT3Muo0e7RR3D888O7unmGcmGaPsYL295sNm67n6X5Daw2GhHOWtm8wTvH1lz/jeDwRsNx8+CnZddi2Y7PbEqZxcS7q2pYUAtbA9XZL9kc617BpO7Se8PPMNHnuHyZitjjXsHctIUeICt0odrsdN7sd797dkdIveLg/4KMgqMZaUIrZe+6++EImQW3L/uqKX/ziF+JD3ndc395wd//APE2QE/Mwoo2lbbvvesn+uTyapuHq+orb29vlpg+aru8gCCe+HnW91sY+pVQmjBYfS6q9MXT9FuMknG2OkYfTkZevX+OahtMwMofAfrtZnFRCSLx89RbvE7vdNVf7HQmFUgZjO5q2J6GYgmfX9+z3O3a7/RLQ2TROQjEbmX4oLZxW5SxYkZYnZaTQzlFooEo481mJAFJhUalu5LUh+C6Nxp921ElGRmGKdk32N+NadE6oHIlBmuQUM4119G2L1qZwb+u70iiiiEYROpqfRvIs2pY5SXBooxusbRgZpSBOYsqhlDSROcm0BiSYLgQBRED2rFgC/lIKj9x7yOLANo0Dp9OBt69fYYzm+UfPl0YyxsTxeF5u4vvdjtM0MYwz59PIcJ6YY8anxDDOnE4T3keMlmDYrrNsenHE08qiW8kFskasfK2yvHt3hzctqe1lz2sanLMYoxYO9TRNNM5wEaojZgHO0HQtx+MZpQzOVf54LhObvBSz6zAv0cvEYmqQF7qPMaZQKM8oJYYqw+mEa5zoFJIYYAjvX7QrqQpBtZhJhNLIfV+PnC9a0Kr5hAuNqtYn9XFwoXvUn183axVhjjEudJbqiLZuIOpR7/OV++4ah2uaR3oN4KLjzAJETdP0KDOmvq86VVk7Yq2npvU569crJV0pcb+qa2dpPrWABoWNuBzOGLwxhPKeQsmWIAgb4O27t7x+O/Orv/JjVFBsOsf1bsvXd4q23fLZZ5/hml50l1dP+Of/mX8a17d0NvKDj37Af/DX/iPsZsNf+J3f5D98+a5Qtg00PVGPkBPDcOL58+e8fPmSn/70J/zoRz8iJ8um29Eqi9WAUfgcUL3h+uaK/X7DX/i93+L45ktymOlcw3Z7zdXNnn7T8jf/xt8qjTqgLG3nmL1nGM7c3t4uNHlnXQGUMtN4Rme9rJu2bZeGf55niR/gcdJ3dSGr5+J0Oj36uWoPXWusej5Op9Pi8lapeeu1LNbUQnCt+svaBK4bl9qYSLCnWhqChcqfLuF+df0fj8eFHlVfr75fYwyn04nD4cDbt2+Xx8VlSnq5D9XGpmka2Y8KyP5dju/cZNQL5tsW/nqRL2hXluZiCYVR4M8PWAvWZtAan0SEst3tiEWkaKx40McwMw4HTNOj3YYUI/PsiTHhZ8fsQKuISVkmGYA1jpQicwhEH8haUElxGvBiImksPkXJaTCGZMTekUIdSunisLKOdK8dpyIXfuOl21xb4oHgmSF4ckpoNCEUBNJZQspy4zca7Sy66dBth0+Z48NRdBAh0TaNIKqtxUbDeD5j7CBUh+pqUWYLauFqF9cnrVHKiauJSo8W1oJ2pLS4ZIXgV1H1CWMszokrjXKSkty1Dd5PS7OWQiDOHoOmawpSP83MPnB1fcXz58/RxvIf/8d/HR8CIcL5VJKvY8ZHSEmjncG6hrbvCRkOw8xwPkmie9ZY4zgOA8OXg7gStS2Th8lnhilyfPuWq/2W6/0OaxSn4wFvNNvOsemsuBalRMya7f6GpFxxHzpjrcGpa7xPIvwMkZS8cLrLJKIzAZ8SY0q0jWEcpUEahoCPhqw0yhhMUyxNU2aexxIKJjkM2iga29Aoiy/WwFkrrm9vFuR28jP9dkOOntP5xP393UVgqhQvPrgVQaj5fmsytNaMw8D9/R0PDw/cXu9IWRBiqy4TATnWo2D5b7kZy3RQaYO1DefRi2uXUrx9d880B5qu5+XnX+KaVmwo/YwPM85ous2ON2//vjRtXcfhNLLbXdG0ErSYEAFov9mw7zdc7fe0XYcCmrYpokvh+FpjsFYTk8eUm5bgh5SJomhAqphZiEdG/mgndMn6eHJB5+Ny3v/hNKr1Jl/3gTqzuHxeORlCijIZSBJ8GKM4wflpIobA7taQVdHdpeKgUpFZXXnlEKYZYlhoVxIcmRnnWQIIVSkCYwRjQBuhlhX0LwQ5T0rLxKCi9vJxXegKrjF8/vkv2HQdfdMQguP58w/LdEjhSrEQY8K5mePxyOl4ZpqDTC5CIETPHGa0dXSuwcfIbrchhLy4T42DNFyz15AUKiu22w2bXuxK7+/P3Fzv6Jzsq+M4ElOgbR1XV7vl5mttuTkXq+oQAsN5wIeZmPMC9ngfub7aM45S7Nf05rXDXCr3xbZ3ZbLMI6qDUEQaQpzELUbrMmWvQtXSTMfIOI70fScNZEySFWIdfb/57hftn7NjXVTN8/wNwBN41CTUdbf+DOvjU0qPbGrXE4g1nab+d/27acTSekGX04U2A4+bEqMumRz1fayPWpC+j0DX62HNva86lPUkYz29OZ1O2FYmrEShzClt0MZhtbggtm1LDJnzWdaPbS3WOZyTCfFms+Pp1S1Prq45HE5gXAEBDdM44SPoZsPHL3a8fPWSw9szDxvNcD4RvWd2lg8//JBXL+84DzMb15Q6RNZ1zon9bkcMkb/6f/srPH/+CdvNFoKnsZo5zMwp8O7+HX/4h3/A65cb/HzmV3/1R6gYefX1S7QyvHn1hvN4IibJ8wIluSDFArqe73r9aKWZZ081EKkNZv1M62e/JKeXSUOlNJ1Op2VqVJuDSoWqE7B1A1ubjmplu15379PqMhDzhdJUz20F4sZid7+eZqzX2/p764aiTuHq2qp7Ta1r67WzFpNLHshMpSX3fb8MGerjpOb5bu3Dn5ku9W2jyLUQpgpUYiydXHEqMloRx5GshUeNFtRewWJnVouq2c9klURbkANWJZJK5DiRkyIlQwyJaFQpsmVhZSVc25jFIjWDoP7aoFKU/1ZqoQmgdXFMKryGZVGKK1CNda+LUTZ8Vc8q5Mc+ykujoZDvFQ5gjpGkQmkQ5D25tiUpoSpY1zCnLEhskD9ZO0mbdhaV/cJdF1p6pVcIrx2TyNlCrsm8xYotpqXgeJ+7B0JpKtgOlb9dE4ortaHcs1BkYvDSHCkt5zcGUrSlMIKYIzF5tnu5CW63W/p+y+w1MURpemIkxEyIipgFcclKUOO7hxMpRc6nEzkmnLV0TcvD6SS8cKNp28h5lFC703nm/ngWdM85fPCkEMAoGgO5q0GFGm1bVNbkpBnHGWUdBrEbTfESUpRjQispDKP3ZC2WwykmYhRb3qlY88aUZSSLxpRkTaXKtbDiTqYYxcLPCnUkRklYNtYsCfQhRlzTQNKoqPFasd1sZFOLkevrq8UN5ft8yPmPi71ozuJiEbkE2kG9SeelqLy0HlWbUcfFltmfGceJ0XumacZ7OTdziNimUvdyaf4TMUxMU8C1hiaLp7zSFl0MDZQC1zj6vqfvO1zjsFaXTd9grSS2U/YduWHAmiZar0+16CjWmgnZA1XWBWp8/9r8Js/2Tz7qp6Ko8X6KuqdBFYtnlDTEOkMqr5uFJhlDJMe0TEGNEt5PBVOWjqIALKpQLNFF7AoLxanqTUQVL7bbxlpM0RfkEBetRv21pABPhHChj13c84ryHxbKWiJ/c88tPxoLHS4mmYppoZ6LoYDRJKPQKRFTQEcJ9lNkjIEwB7zzxFYC7WSP87iuKee8TBl0tbusOUsXKlmMUQCuXAXoiZiy5BylRIolMDDVac6lOK1AkJzzC6VrjYxfPhMFsSQ8K4prDqiyXqqrl7ynkmyektAGteHS2H7/jjW6u55IrO/Ta+pS/ZlHQOCqQF948bCgzFX7UI9voy5VBkNGMpzeTyFffpZvp0jVv+vv8G0NzftNR318PdaAby2YZUWX584Zk6vtc7mU0opWk1ialm4jwbVX17c8efKU682WcZpIiNX+VivmaSTmjHEtt9srhtOBYRq4u3/g8y8+Z/fsA5788DMSb8hZbE+7pkG1Gu9nTqeBr774HGsbVM68ffOatu3JObJxjnd3R6YwM/iR8zQwjGdap7DuAkpE74nMnIeB03C6NI9S8LG4fJZa1CiNpti1xnJf0YoQw6PPen1uLzTIx5bbj7RkK1Dk20Iaq2h8Dcyv19q31mTfsn7qWlw3J+s18f6xfq5ve19rcHw9IXnvWZZhwfq9Xn53vvW1v+34M9Gl6pvu+/4bgpfaGQEMw0AIHmPkRBoF1mhyGNBNhzHCa4+xCJLHgabtpHjNkXevXrK7umHrGqzOdFakeoPyZG3LhmlI2UJNbSXgs/gpZaXxMZXkW1XSCZ0U/jkvro8iqlNL86GtkfRqbZZRUr2x1E2lnv41+rQOKsw5Y5QUIVppdM6QIimIfWfSiqZxXN9e8fLtEVUcH/wYUaZFW8Uw34Nt0K4lW0OYTsQs/PzqxyxiLuEGm6gxWjFPZ0CTs3iux3zZfBf3IiV8xLZt0FoRfMQ60XnEJFOSlCMpg9FObBX9jJ8nuVG3LcbZ0jB4QjBMU22gEj5GTqcBYy0xwIuPfsCXX77hHEZQmpiRjAufyNqgM8wh8PXr17x+cyc8Zx9QKdP3LbvtBmUt275HKc1peIvWlmGcOJxOjNMEyMa7bR1XXYtRhnHyNK2YCDRNQ9PvOd6fOQ0T52nmgw8+oG8bNhU5zOL8EiM0nUMrRQoTmohWGWsE+ZXsjyT2hVrOs6mNhtE4nfHeVugd6yznhyPoiGvgVC1sgYejOEjVi985x1W/5apv2e/33N7cYIzm7u6dkGBS+t5rMobhzK7bLePnitxTbgy1HbgUDqWokKqX0nuUZlsmd+M483A48nA8ktEi7j+eLsVIKg2q7Tgdjnz1xdfIzciCcux210Jv1JpEpinTD+tMaS6kaag5GcZIwerDjFYOZ+XcK6PFXppUy3pUfo/7ntUSiCcZFpcpBtSN+8IL/tM28svmr1hGsCX4T16jNB9KgvRAXt9ZR3IN2QfmOBGnCdW0koljnEAOUdzpsikNVRZASBlpqNFK0Do00zCQxSGSmCOuaUlagkrbbrPsO1mFS35GcZJy1qI1TNO5FNqyBz19eksKgvbPZYpqjMG4hnEc8T7gvQQvNk1T9pdMOA+QRV/TdS0+ZkKUFN8hzAzDzPE4sG2qq5OhsY3oxaaZwZyZxoEKuuQkVDLnHFdXVzSNFXepLCJsCmraWMNcphOK4u6TElNxiwrTLBqs8LZMwwzkxyLUSn+wVlyQjHPUbqxSekII+OAFJDIl+UUqAnJKWCNghLaGpkkFvZUE4qura2nAi3vM9/GolI561CJ9PckACVWrCPVms+F0Oi2PWX/m9V4OLPlEtbisIZLrQm9No9al4Wxb8wh1XhqQJG5ophSY63yxdZFan389oXj/d15/bT3NWddh+/2eOUn4sDXiDEedwJAZx4HTaWCeI027YZ5nvn79FYfDb3Bze8OHH37EJ5/+Ejf9lkYpDg/vyCnRaMumtXz1xSty09Nstzy5vaGxmjd3b/n9n/4hf/0/+0/5J//5f55/5bd/i//kP/kvGM8TTjXc7Db025a7+zu++Pxz/qOf/hHPn7/gxYuP+PCDZzSNwrrMRx9/yN/6r77gzbs33B0fmJJns93wwbOn3L264uuXnzM8PHB8e0SpK5RVtJ3Qle7vDwQf2Gz2iHmD1H3ee2G0KC1hfMYihhaXKSLwjYC8NVWufrZa60eTs0rZ01qz3W6X81Gv0YeHBxaK0arJWDeslSKpCtC+bhrrOdZawv2GYVjWyVqisHYoW6/Pb2ugT6fTMiHZ7Xa8e/eOaZq4urp6FPYne01agI91k+usXUyUvsvxnZuMGlWec17sa6sIqX6Yzjnu7u6YpoGUJGAt5yRe9THSZY9WcvFNs8c4R2s0zllC9FAChm6fXJOzYh7PvHvzktunYJuWp9c7fvHqjuLVitYWz4xSkgZrFYQkVACUhMgZsjQfsyBbSmtyjPgogXglT1XQZO8xZQOqVmKVo1cFYJTR6/ReUFot4qdpQpEk7IbEPM0Y4wolqCVpQfsehhOmc6hGTtj26hqlDdFLcFO/3WEa8dyfY8a4hs1mxzye6LtOCluli1hZfGOappWkyyTTjJwu9mtrgZA0hYX/nuMKpTOczwMxBub5wim0VmEU+HlGGYtzmXmepFk0ci5SSmhr2W82pJiZ5oHjURyoztPEeZhQRMbzWILObLlBSqN5GkeM7op2A/qmQxlHQvHm7o7Zi6D2fB44nkehQ6SEa1pCsszRMERFmzTONDS7LUOYCOcZ7QNDUAw+o13Lr332I26u9mhjOB8O7Pd7nOsWhFKV3JM5ZLH1TKEEJdWpB5J8rjvhmisRlUWVifkSnFcb8u1m5jR4Hh4ehLbiRJAWYmQsDhRGa26fPOHF01ueXe9RZK73O9rG8fzpDWGWPI30PRZsArx9+xarGp7c3rDb7QAvKLiTaVcxPVk29JRC2ShnKT5TSUFVlqwKdSBGQkrMQa7r8zhyGkaapkNbQ1QVVcrc3R/4+S++oOn3WNdhXMPsExgQTaHGOIt1Yu/XbzbkctOBC9oMGdeKmDsEzzRLto3WBozGELjMXyJS9OvL3+9NMOpR64g14vRdEKPq/q7Kkywz12IQQUG3EyXHwbW0XY/VGmdtCbGLGOfY3GxlPWcRgAv4mckx0bc93k+E6NHWknIJgTMWlRDqqjI0rZOQUSXZFxIsmZbiK5X3rLVmGM/M81T2GnHiC9EzjiNhmohB7F+1lr334XiUqW6ZaIG4PJ2OJ968fUvTtVinwSjmNBPnwDgHUoZ5nogxsek3NKbFGgFonGtRiH5BA10rwnelMl0jroHWWuHihxnnDNttv1BQY4gcxxE/D/hpInjRr8hERTGOAoZ0XSfBoYim5HQSd7mu6xZ9R/1DSqgyzaj3ISmKNT4qhnHEB0/XNJhadJTGKyUR+V9f3RKj2Gt7PzONfpl9fV+PdeFUi0RrJQtlGIbLxGnFTX+/Waj0FnEAe3wvr4yMWsytEePaANRGJ5a9XpuLc9SavhVilFDF96YVtQBcOwatJyH1vawnFGtufn2s1pphGJbCsutE/+mUXItai0lF8BOBjDOG7XZLSmfJbTCapnF0Xcfzjz7m1/+J3+WDDz/jpm9R0fNweEfUikDEB8+7119j90/pbcfrVy9pmobb26f8hafP+J//L7bkruXLNy/5S//kX+b//H/4d/jjn/yMX/+NX2M4S87Lpz/4hE8//SHz5Dmfz/zmb/4mkZFpGviv/+5/yXa3IakbPJF93/HqzSvO96/5zd/4VebDDfdv3vDHP/mcaWzJGrIWp8v97roAlBGjFcaAq/tmqWOMNYu5iDEG1zbL51xpUHV9/Unn4H1a0TiOy89UmlXOmd1uVz7ntKy9WhfUpqP+e5omsQe35tF6WOts1nSp2sTUNVkbk5qZ8m1UwEof3O12y3M/PDzgnMQE1PVcrW0PhyOq0PymaVo+s3ovUeoxWfcfdnx3C9sisqzK/JoeGFXAWSMORyngjEb3G6Hp5IQmk+OM9xMbEs4omsagjS1IoaVpG4bzmZRkfNeY4omvNIZEKAmD1rXShcZYhLqNvIZWqMYwBy+0lqxQRtAxis3fcmTRE6QYSCmg8sX+bvYTjXFUWsCCMirhy5lC1ZhmT0zVXUroBLFE1GeKyFEVgoZWYMofdSkucsq0raBv8+zFs10ZqUMwaO2wxgqCbkQQn9uG8+mhzP9VScwuPt3IcyuVSOp9NylFCL4sFJnIyMIXnxt5PilSjJVJSKX7aKMxztB2DSGBKufDaY1VghBYZ4hJigAKTSwFuanvdnu0ek2IQcKvMlKUUILW/EzyMEVfnFGEjtD2jq5v6bqGXH5PHz3DPONjxEdxSElErA3YOTIGcWVyVnG4f0tIMxhF0oo3dydCVmz6ntunT6QBU1m86l2LKW4VMQSInpwiRmWcUXSNpW8UISbGYWacItptca2I78WCVdLSNaALD5SySc3TzDxNzFMQ0XwUkaDVuiBdmWwMp+ORr3PkdDrSNZZpnth0La2zTMOwXHff5yPOXmwUvVxfqVxHumRjVNchAd9Fv5BVTfVOy2Qy5eIc5MWSkZxpG8d8HsgxkWNinCd2ZovThhwzwzQzzxFtG3b7K7p+Q9O2uMbiWod1VhLdnfzbGF1Sg8tUqlrhFhTKGoOzRvax1qGNpWb9LHtHVrIflP2MXGlNqyJvOaWq8Bny8p8ANYlVvla+n2tGRm06q1WtKoF7ipyFmiX0rFj25FyueQpd1GCaljB6eVfJUHUVOYkzUcq+aNbS8q5TVjjhokGhbUYSSltsI9q6rC2ZEuRUUpG1Ukyzl3ebcymAQ3GQk6ZMELSAUmJJqZVFqSy000rhqlSkIFowP42kGCRjBRZhtSpgU1MS3L1XKBUIs3yOVeCYk4TEGi3JuNF7KBbk4zijlRSsu36HD7Ps/Slfks9TIIRZhNYpyT5SaFyV+idggmgjasGwLoKrMFgoVpKro7RMnnQ9Z/U6yAmjtNCPS+OoFGSr8D6ImD4L0quN5JyDIKcpCxjyfT3WTfd64rcG0pbJWfnvdabBuhiDi4Vt/TdcmvyK4spzXt7D+3z4NY1mTc16n4pT/14ajFymZTwW0i4NkZZgxxiDWM7nCiXkR5TGZUcpbIeMNBni4gfZJCY/kQrQsd1uF+v1q6srcSZrem52t2z6Dc4ZMhnnDNNpJvgBH46cT0e0agimowua5x/f4rqW6Ceef/yCAcVoWvruiucfvGB4OPPy1dc8ff4B/bbn+uqKrt1weDhwPg/sNj2naSLazP5qg/cZYzWb3ZbjNDEOJ6LOWPMJzXYH3nN19cDX5zMxAaJhL1NwCIXqHVNkDgKG50KvtAv6HwuYWFz1tGauhbTWC9WsHrXwrtqNb7OOrfqgdSNST2fVNgglVACFqnFY0/rqmszL3lLAdMTpsr5WnXZ9GzXwfaqU9/6RscC3gVfrKaDsRYGmcaR0oVLV60KX/THr/x/QpWJMhZssI5XqCOJ9LP7HgVjcWJSz4hp1fIAsN4LoJ+kunRHkpZXCzjoRes8hkX2CmDGIkE4bC0aoWCrKpmqt5AZMc6KZW5SSsbjNWjj5ScbX1jnIURJXo3hVU+hDwXu58aXioR4iMQa8n5cPpPJipQDXcuNTmhATw+wFuSjkDmWE5pVTIhNRBb3LOaOtRTuHspaoNLmKtBO0rmVO0mQ0nQjOc1KkmMlZbG+NVfI5NA05NVKQFh1DKCneIvYT4Wcuqb8p+aUZyYWXa61b0J0QRABVOGXL7yydtFiFppxpnKFpG7lZeUGMwzzRtRuc0VijMLb65ydS8KWBE0u2q+tr4UInQdgWf24lG6X34nLjybQ2oTW4xrDbdWy3HX3bEEPEB5i9LwJT4Zr6EPFpLiKkwOQTm80GG0e+fPMlIUcCmjkr3h49++tbmr5ne73n7u0rnHaC5tpWAsTIhOxJfkbnSGMyrdVsWsu2N9w/DIznieMw0/UNts1QbPRSiLIWAVuKwFQu2GkcmKeZ4CPTNMs6aRu2/QYfghRcKfHu7Vtev5XTcXu149n1nv2mZ7/ZMA5nKu/9e30UR6MUMzFK41azWlRFaVIS1yYjdLQQw5JiryQBjxQk02TwXtJWyXRdw/F8lus8Zc6nM/vthkZbcvQcjwPTHOn6Hbura9quNBhO9iFrDa6RhPumcUIdKlO+OulbFw01GK1pHaZryMaJrW42ZKQ5qToJjS7C6MdGDZejlgmlGVD1EYrH/PnC42fdZEjBXNO8FbW+1cgWH+U1cwEVKkoHJK1LHsO0UEgXGka1mPUBaoObRfeWlcI0rdDXCsCQVUCVFGJtbAErMjF5VLWTVIqUVfl6IiaPj4L0OadJ0ZNzIGWPDIWspCOnKOL+JCLyEAIpBPw0cz6KlkuT6NqGiCKkmq2hca5BG1DGkrPF6JmDP5OJpKRISp5fqwZbkMTZR0yS38X7CZTCtY5+05MH0VbEmJacoph80XEU3nfKaIrTWCr5LaVp9T4IndZo+r5fkM5pmi4FcIzk7IWOmS8oakqSZ6SyUFgMuoBFpdGwBq1G0cdFcexSiJX3EvpVk5D/G3B8W6FTv1bR3mWqsBLnvt9kVCZCRYzr1yudRQo6lvu6NB+iW6wNjUKAEbhQoLQWDuFa/1G/r7WEWcoduBSL+qLtcdYJkOEc52IkI/pW4V+UDrbYzcv5J2di0fxoBaqRc26UIc1iBpAzworw9xituL25RWOwytG7DY0xkpqtFJ3TPPjEeBwJ5zcFdT8T9JGeDZ/2e7pdz8O7r8k5oU2Pa66Ypwc++fiHWDRffP0Fzz/9iNvbWxrn2HY9D9ue4+FE3zaMPuGs4vrFh/zii5doZ9nt97y5v2c8nokGYsj0roXNjuurK7784gEfEzmu6KLyyUqTET3nYaDvxY0xl+YjlQmYRrJqtDEYpTiP0xKe572/TIQLbWndmNZJ1dpMoAIFfb/BGsc4DqLF0lrolVqLwUyZFqzXaF2zS+NQfpOc8mXyUjJe5rJXaC2gjVIKk9fTr4s1rtZiBLDdbpfGp9rqAsv0pjbj1SkrBM9ms8F7zzzL7xh8IOaINbaYTPxppiSX4zs3GdvrHX72DNOIMQrXSCGtFcTg6Zym7Te8+OQzvnr1mrv7OwwzNk80HfT7PVd2S78V9DBk2Ox22KYha43bZFzSmGxIfiIlodJkBa0RFP3ueKLf7RjevOPh/kjOhqv9FlAcjke08igiWkVc45jPE/P5xPlwR/IzudBNplESUY3WNE3LPA3LyY5Jxm1V9ByiBH35mFFeCnfbNByHM41zbDY93XZDmCe5yfiAa4rl7jTz9MMPSWgiQhGSEDFNTIqcFI1ti2NSwCGIKxlefv2Sxml2G8eus+i2xanE/vqm3AQ9GiV2m8kTwiSbjMCRoKtISCwtjZG/vZegFeluW3Kui74kg2ahCMgfuLm9YbvbkbNYsUngYEujrbgBASF5ptNRGrycMU2LNjLCn+aJEGZCkByIttss6Od2vyMdB1L2bFxLDDPKKa42O371l3+I0YoUI+M8czjPTDERUuQ8TEjfWAIctcVYoea9fvUSEweG04moNLN2zMqSTMNmf03Tb/jy66/56PmH9G1PYxrOp4nkA2jhURsVUTFAGLHG4ZzYHmtOtI1mDpo5DjA4bAjC5w9e6Asx8OTZU968u2McJ4ZxZLPfYVvPOHmMa8oOcknZVFRxuCZr4c6/ubtHpcA4nDgeLLvdDmMd1Qr0+3powGlBdIdpom2E3hi9J5rLdHC72RGCrJ0Ug7hqFRrVMI2kUsAej0e0Amc10+xx1pJTYp5Gntze0jqHJuNsw5dfvGQYJpxrGecJ1zlcY7m63i/2fVprbm9vJTyqaeRyUhcUcz0+zzkSIiL6nBXaOpmgmh65jbE08VmpVVuxbjLqlKKOLVbfWh5X/6ymHKXByEQq+WiF78rr5ghEUCXfJ2WIkqsjgwyDskAUymTVfPlhROmagpvI3pOiJ0bRLaE0pnHodkMaZ7kGy/6GNujGYW0razpElK7ARuDhcMCHUCbBMIwTfvbSABX6pw8y+dYVsM0UpL6IOsn4aSbGgCKx6UXbk3OmDYk5aXzMzD4yR5iCUOkicmNtO0UKMJ0mhGor15QxxZpdB9rukpo7TwHUQFaJpmvZbzY0ruF8OuOckXwVpRm8GE/IxEcVmqxYkN8/PCDaI8d+f83xeCTOE9v9fqGJtW27FMaCrCfCPJK0Lo5AxVGmIte5TE6VwagSKlasNI1Wy3REJkOgleU0nIk5ktT3V9u1NmRZu/1Ul6b63+M4LgF80zSx2Wwe0ZHW1Kf116sjz7q50Fqsqk2uVrO1IJSi0OqL5Wgt8OoR0mMnqDWPPirJvlJay1QMoVMr2wiEGZME02a5XkF2AEMpTK1or3IqYEQCWzTQVmlMllyZOQqiPU6eYZx4OB7YbDY0TSONv4eHrx74xd/5Y3J84IMPP6NzHc4mrtwVmYmH88hv/fbvkt0WnzvePDjOc0eTO55dX/G/+l/+r/nox3+Rf+Ff/df5P/7b/x4bG9nvOq4/fc7r05ExBm42HX/w975gs9lye/uEFy+ekF8dOY1gW8tv/c5vcXd34Oc//4Kda3l3fsPRezQ9cQy43PCD5y84DZE3dwfuDkfZ6nIEBW1v8XONGujpNh0qeVKYGc8nHE4Alyi0ZY0U8pumoS2GHoHSLJZivIIAxhg2m81Cr3tfFN62LX23oWlajHGFqREYh1FABa0WXcR2u0UpxcPDgyySMlEt1QFGCdtF/k6cS7h013VcXV/J/hEFRCeL5kxINVLLBS8Tsr7fLlSoJV1cXYTptWmq10zdhw6HQ/m3NExaWzTSKFXGhqpZCX/K8Z2bDJ8TSecy7s+EJJawygj/TZXpxsuXn3M+PKD8xAd7Q297GqNoraZt2oJEil0txjH5xMPxnoyhcRtcuyFpyzh7yIrdZk9ERjRCA8po29B2Yqt1PoOzSuxsbSSHidmfSWekWfEzmiB0AZ3RBnIJR5Huc37kUR6z/I5aFXNYbSQFNwVCET9rawpnV+guw/FUFkqGrJnGIOLKpidnWezaSqNUDNVwyqBtQ9Zig+pMSZEOic1uwx/8g7/PpmvY/+gzTOMwWZONxrQHdBRE0hiNn0ZAYW1DinOZrgg6We1ARaNycS2oDRU8DhWqi7F27s452n4jydjayESG2vwJokkS9wqK7WuMQiXDJHySzdfaRgrkOZBRsmC1xYfM1dU1Whvm0TOOJzZtz7Mnz1CIXd44jpyGgcMwMUxephchEkIiJIVtWqHPTTOnhxPj1mFSYvSKKWWOfmLOgR//xm/y2Q8+5vpqh7Oa/WYrXvkpMwyjWP0pSQ02eKyKNDbTdzJJub+/R5nIZmfBwt0pyLpXiRg8jXV4f+TheCCiePX6LQ/Hk7hoeKGJhaInWI9F1zc45xxOG5TRbBvDj37wnA+f3fLi+VM2RVjm/fcbgdTGULNXTucz11cOtJJgR7Ma4caLG9ki6MxC0XRNwzSFSyiREece7wNV/Fx1SjGWryvFNI6kmOmuOq72e7q+xRXdVR2Jb/oeV2hRRku4Zj1fF+/ygi41Gts6bNNgmi1Kd2TVkJMFvXKiq/9auoDiiVfRt9o/PH40S3OxftxyrGhTOSx0R4ESasEUQJVGozrH5Qgpir4qpWX6IdRIK653KQnyrxRhLmP/hGSUOCc0gyKqrM1KTJKVU+0yjXFlQpXZbHclV0DO51Q0bikGlDI0TUfOEe9HyRCaA8M44aygjAqIKSwNX/XEr+j/pYCTAi9FlgLO+wkfEj4IP96HRAyi4TPWkEv+0mDFf95GCXfMqoqIFcfzmTY6lJap9zRNRKNJORZ9RSrWtXFx0QtT0U9Yi7Wu0KAy0ziLs6+WZm0cx0cc8CoMrqhjNYZY0zSUAj8L/dWaS+rworlTQrERZBO6ricnGAaZViktAZLf96M2+3+SI1Tf94+Q2nUIX50+VD7+2oIfLlMMqHQYmRw2TYtOgpR/m1ZDl4aw6lbXx0XPxfIaUqyBQqxmxZ1emkijL+LgR89TKLYV+Fgz31JMaFubliST4lJIg+RuiX4nLWssZvjpz3/K0ycvCCj+07/xX/B3/s7/HUXP//Tf+NcI9h2633L99IXkfOkWlVueNLfYrmXymTdvj5jmByh9TQhnfu8v/grJT3Rdyy//pd/li5/8HYgTxig++vg5fbdhs91xGsWgY7PZcnV1g1IN/QdPeXZzw82244c/+IQYAkaLE6f3mfvTmXfHAyc/kgw07aY4XYoxitIJ12isayFfqPHGGDRiVR1CxNq6V14+xyWgVOsS8hsvOrJ0yaqpzWKdalT6U6XlibuqrAmZCswC9pT9q173zrmieTBihFKovipn2qYtzqQKpw0xhsUJ7GJhK7UXVJteg/dFqF1CP6sxUc3qWK/Hi+720nysMz9qXSL3oNWe8WdgW373JiNIGrFSj7nAGuGxSfI2zNMJnWc2NnG1begahdVFltBsCTFJmrMR8WZInmHyGCve6MqJk0dKAxmF7XaMc+GgASFW2oQiBs88RnCKrinWhGEgjAcppFOEJDaEOQax+UvVzu6ykVS+mSrUIgmw0o9KBJUzMc5lg1a4kpJLSsyh8N6UIBshiD2pdY0ILY2jaftimSj0K6Ud2jZEJT752lrCMBKCp3GW+/t7QuhBaZIqjjZaYdseNU+onLDWME+TIHxakWNxoEJuNJKGmR7vQqsFphSPuvG124ZSSjIBmlYKCyM865SEKlGbDIWc25wiMXi8n6QhShCzom2E3y4THKFJZC20opQyXdfTtS2THjAktv2W/e6KefIMw8j5fObhdOY0TkyluUgpE5PYkRpXw5FmzoPmPHqcEjTz4TxxGANROT5+8THPn33AdtNLG1Y2Ce+jBFgV1DfOE43NWIcEabUWPwwMpzO2S4JMYnBzpaXFsol3ZBTeR96+u+P+4cAwTijbLKit0kbWzermtEa8qj2mc5bnT6/59KPnfPLRh3z66Qts1ywhUN/nQ2mBQTKJyc9kHJR1UUqFRXdVdUFKrQv2OpUTOp9SCqM0QYVl843FjjVnWWMxSiOYUkYbQ9d2NG1LU6cXCEiiAGtKoCV8o4BYO3tIMrjGNFaaDNuCaknZEbO4BgmL8dF8ofwKxdGujC1y5dvXL60EzfD4d//G5q5yucaLlFqtpx6Fvln0cTnF0lTI51EL+DqqqQWbX9HXUgjoXJud8r6UWNOmFDHKygZQP7sCICjj0OlSOIvjoAiQQ5SAOZTGmAZNJmXRNNSbfk4QYi6Es0yYfdkzEvE9qs/a+URpg8mZpFPRiInTl1EKn4TmJM2PXdZQSpk5BGYfJEuEhA5gbC5gSMQY2deDD3itBTnOkbT6bPOqyJhDwFHolNmhi5mEFLwSBqi0YvITzqnlhl9v9lUw2pamb83xrxSNirbWn12WVwZxaxMeuFaGpMu5cI6sMujvryYDLtfVmoJUr9N6rBO+15MKuIh7a6G45rnX56rotXz2qeSjdAuNRuvLdbnmyK+tQd9/v48dsMq+Qh14yjWhy6WmhJv1qPmp701es05YCy2z0iVV4ernKGHF5blSKhNNrVBRjEdEn5MY5pFhHjlNZ376+U/5f/yH/4AYrvgf/xv/OmYz0aoRba7RTUNWDkPDvrtGW8foR16+OfDik1/n2fMX9F3m137jI4bThLItzz/+jOOrnxOGA84Ynj69FbTfOqYwYZylNQ27zYYYEtY0ONfw8HbP0ye3Akyf30mIqREal0+ZJCMktKtZRNVJMCGDOqH5UBgW1hhIxWY7X0bGqexrkpS+CCke7StrPUM9f2vHqOVrWWoCAXfjSndVXDuLdnetD1prJJYVoy7antpwpijMjoWaV97u8j4fUZgev2+tL+uyvtb6ulg3GLIPmeX+KdcAAlCsBu7f9fjOTcbpcMRZsenTBpwFqxStUWLxaRsat2XXO1QcMUQ6CzGK/aCE3YBPSpB1LaMd3Ri217fMc0Q5h2oclpa+3cg0YLvjNL9DkXFW4ceJ4XjP8eFAax0uaFQ29G2HTjNpPpNOkpScqu6i5CfkKDcv225Ed1A25rpYmqYV6QZKtA+x3KiTiJ3rxq40YMv4nvL7pAiakugsYsuYFDkbUtbkLBzmxjiEo+DANPhiOYs2+BCY5ons5N9ziIwxEk6R/caxabZsttdM8Y7kJ0KI0qwlyR7ISmhYMYA1oOqFgaAf4pGuSxMnYy/nLgEylcu3XojONjSuRRuLMSLGrAtYEDNpDv08Mg4n5nlms5ebW8Zwc3uFa1qxFU5Cc2AKaOO5upVUTa0Nt7c3XF1d0202NF3PL37xC6Z5xvvA/cOByXtBb7QB5cSWT8vvPJaAndZlXt0d6RqDNi0///IXhKTYXd/yqz/6JdoycZvmyP35tAhON5uGMI2EKTBNR1wPtnFs+x1tY/BTZvKeh+EB1/Vo27Lb77h7mMk5YF1Lyom+79nFyD/4w59wPA2Mc2CKZ0YfcU3Hzc0VChbUo7pPrG9IViU2reY3fvVH/OjTFzy53dN1ltlPUpz9GS7uP5eHCqAEXYspk7NM3nKuCd660GYkGLKuSUIoN2GDryK0glxnFMoLHe/duwemycs5ieJAB4m3b9+WzIuO7XZbnl80ZrvdVjZQZNpRGwlnEj5fwpyUUsW9xWGdRvei/dLGAfJH4Qql6NIiyO+9/hDKjr38m+W/l827+myzalQKQCHNQxV6R5lWZLmx1XjOrDKKSFZS1CoiRNENSfFSLDwLj7trWzJyEzPGiRGCscScsVmycNACwGit0c5RM4gEIbU42xbKlEMpg7MWGz3zNDKFwDDPnIYBXRxuurbFFzplDDNdzoxkmlKoDWfZT/w8Mw7Hasy7oNVt2y6BaJVCE0Im5iiUXmfYbHo2haL67uEI55E5R3wQOk3OJXwrweksblBPn24Rl3XJYXFNI01p0/JwOGD0Ho0lxmmhDuiUyUEE377Y2qJFk+F9KEYHCmOaAjyK08063bfSfdq2XVJ9c84LPaMKw9u2FavV8juvBc+XFVYKT204nM/EmLHGcrPbEYJnGE5/5kv3z9OxLrofOXKVo97TamDa2mZ+LYqtxV5FeNeodW2QYwmv1Foc8OQ8Vopx+sZEugb7radT3wYsidV1EexnMUxpGoey4hhV3+/7v6+8Vm00KgyfyEW742Mkx4yKhTdVrI6DD4stac4CSCgj07Df+r3fpt87fvLTv01qT+juh4TpE758G/itX3lBHAxf/uwtQRmiNmAt25srEvAwnPnFy5f89/+H/wNun7Vc3wa+2rxmDE8Yg+Wr1z/nlz/7DOaBw91rPvn4BTFnpuBJE2xMhzUaB7RWM89n3r17xZc/+wkvPv4Bt8+eEk1PGDzGaT65uubV2fPm7h33xwexds0JnTOahLZZqP2niZxFw9VYCyjmSe47Slt0mYDFGFFlGi4p6QYfZBK53W45HA7Luokx0vf90nzWQv0yvcooDV3f4cMBHzwxBTabnnkWULO6UFUgwTlHzInj8cjVbo9xAnDHUE3HZR00rtrsxkd2ykob0lwdqbxM27SBDNM8st1uAaEWV9Cislnq3lP3mMt61rRtR9O0l/X13jp8f8L2Jx3fXZPRNOQU0CHQOce2aegby65r2HQt2nZo17JtNWk+E/3IPI+cpkTCYjdXWNezcw3aWpR1RGQyYZpeuOopFzvTGdt2KG24f7jnfHgnJB3fYkzLde/Ymh37tkVnD2nGH14znN4xnk8MpxPHw6kgd+ICk1MSlMs1zOFcxth22QSqNWDlRYJGmSQiqiihes4VRwKDjL6QaYBtmsXaNI5BrGm1RdsWbVsyhpg0fdODNmRlSEnoYjlmcS2aBoxz9FYT5pG2a5lmzx/84c/47Eef0iSNy4Z+syMMJ1SOYv17jkuzkGLZHJEbbQq+wlrF0eTi1S03tLjkn9Svr+kHbdcSkKlDYyyu6xbag3biLJMyxGkizDMKoRflmLCtwdkOouhafIxoY5jngsChub8/QhY7Xd81bLZ75hT54vVrXt0fmENJeI+JkAVxUDGjdEYZQ2tbMpqQIcfEwzyT371l01h2rWGz6fiNX/8Nfvu3fws/vJWSLEYOp1EcjYzBNoY5nulaw6btOd8fub3quL7uePb0Shw6jFC+hsFx9omsPbpt0cotxgHn85E5Sek3zWLna1FMgwRRKm2IOXMuXMcqMIsFmagWyf2+5fbJjk8/e871zR7XtYSkyaYXbYj5zpfsn8sj5MA4DxyHI3cPdxzPltYpuk4SiHOutIIgfWTlRWuhUIVSBDunSEkx+cA4TJzPI34OTJNnnjx+jmA0s53RSsbTMSbyNHN/f89t+6Q0MI7r7V6aDmSatO162pLsPU/jAt/UsTiAMbLfoVsSLYYGCj9bqViAhm+ZYsCinsirBiOXycPSmizApCpff5yncfl3AkoDlkEpc3mIYhmZS8OWCmoqibiqTkCyOK5UQbbCwexRJi9IuAwyMiFEshNkPlsnTkcUETgWpSwKS6Yg9yFxPI0cTgPj5EE7rq5vpCBLmabtGc6D0AfIGNugCqUh55HZi4PYfn+FXgCfsIgUcxa7SLmGoiRpH46EYkAxjyOTj4QMbd8xj4qoFFhD12+EKjXNxOB5yIG2NWyvPmVjG7RxuKah2+zIKXI+jxgjaGuyEvQXU4AMOmus1vjS5OnGLW5BTlvO86mgjuIwlsq0KOvLlKwWqMaYJVF6HMdHYNhCx0iJoTjOVW59FZ9K2rkYKGhl8TGKrbgPtN0Gqy27ze4f+Rr+//dRCyG4ILLvW9quqSD1c6u0KrjsKxVQqCCCtfZRwyLobyzTQo02qpy/x5OK+vz1HKwnJ2sr3ItblVC/L+wuATVzFEfHvm1Jfv7Ge69IekoXAa9MbtcTcpmc5yjAV8oyNVbGkEMkZXkPXdtLLeYU/8x/+5/i4yfP6TD8v376V/nLf+n3+NkfXfFv/hv/G/6t/93/iOdPFcfDiSc//CUxuDANm+2G03mg3/b8xb/8WzRdw1ef/5S/+Z/8V/zt//ff4+lHn/Hkxcc8/9HH3GyfYPOeq21XtJ1ignE8HAjTjFWKp9d7bq93NK3B0fGDj59z++yWzX7Lu/GBbicgXcxg2k5AXh/ptJMv5oSKgdkPqNKsz7OX6ULwhJBRNEJLQ5gQ1ejCWSf1HzCHeXF9G4aBeZ7p+/6RK1T9rNd5JeI+NTJNE7vdlpubG1KKHI8npmkFaKxoe5WqC2LaEGMkZskJEzMHmUbMc2C/3xdL8brGNIlUnPkE8NVamuJUdGHOOc5nycbYbreP7HfX7mu1Sar6k6dPnzHPM9M0stlsZZLxj+hs+Z0rFqeLPkFBZy29c3TO0lgrFpEAMeDHDDESA/gAk5ekWaMbKdgAoUcEYnnP1kmBH7NQm1L0+EmK4+BH/PCAJjFGS6KRRNUQOJwyxIkUJvz4wDQc8fMsTj6zXzaezjXFJlPguLgaS13E0eJWo4wp4/pqqQggYV5WK9AiRq8/p5RG5eoYU0ZwVaBYHAB0Sb7VWpor+RSU5HcUl5WUCpdSyeu7pmU+n3n99o7+ao9WisZuaSmuW9aSlcK6huoao1UmukAuziKSA5ZLn1ELm3yhZywj1IzKl5TQBWNNIhpLUVx9jLXoEFFR3nPTuEIjqK4dtmwC0ixqHbFGLqoQE8Y40GJnmVBEH5hmj7WTiCebFhWlIPDlJhlzkpTxhX/OhUmiIYZiOagVPkV81kwxYKbI8xfP+eTjF7z48Bkqz0KJmD2n0wljG4yThk9XpRwZaxR919B1Lc5Z4ixif20srtkS5kiIChMviegpZw6nI+fJcxwlQCt6oV/4EEDbglpctD8hhCL8tsuYUmtBf7ebDmdlzdTcDl1SqZV13/3q/nN5JHwQj/Q3b94wfLxj3jQEd/GQX27g6k9IFi0jYrm2xPlNcgBk3QvlyhBKCnLOdTytFu1FzSXYbjaP3D6qEH+xEOQyjn6Unqo1KFtyICziiacWhLGMar/DceHVZmKZYCiqBTYocaySVy1P+R63SpSP8nkVwbmqSHZtaAr/u9JrdJlm5PT/pe7PYm3b1v0+6NeqXoxqFqvc9T777FPdwnV97cjGcnCcKMSBEAQI8QS8BQkh8cIDEoVAggfEAwqKBLwkkQhIhDgh5Bqc4Btjx/a9vjfnnmqfs+tVzXIUvWoVD1/rY861r4ttYYVz+tHUmWuvueYcc/TeWvu+//cv0rFRgLKuS0I6qVCOkrglzQ44mqKD0VIwH6lVqcwalJYmq2RZdH0vU1dtWK6EqhZ9xMeJeb8EQ4gBzaxV0VjjqFyNUSXtO8dCd3od3Z0nANJIzb9bJoZAycQWAe00AUmMPZSlqij6LmkwZy1OPwy4yiL9vMZaR07iFXX0qfdgrSRp52K9rgrtTMGR58/xnJitKeX+xSgOYikGyXOaKYClqJwLy/s2l/cFm3Ir76hSr+kylOzBPsjoPsZ58ueYphGsxdlfbAOJuTj66gTnqza29z+/b1P7Go3xHi3m7zc5KF9VvjdHSs39r53v8UxR+WrGxvwx/7f5ZetjMCXMdB8R5f9eW97Xfyd1pK5InaILs8CQUKgUxWUtzvkfCM05z0nyojead4jVouFss2GpapbOkcZLut0Vh9vnTMNAnFpiqMhYlDEoa4t9u7A3zlen/MZv/DWuXl2yfXXgd3/nkm/Gp2jj6YYf03zj25yullRVQ7fvpSEwmhxT0VxIfZWDL++2TFqMc9RNw3JzUsx75Pc5OTlh7Dr8Yc9h22MwaIqrXfRkotA+nbjqkSPJe5yRnKIQpRE/7l1ZwkaPa/gr9Lr7tLy/37M4r1fZS7JYUBcKqzgkxqN5xVcp+vM91KZMhUuNo5Vm5ilpxF4/zfT2I6urPFv5fpOZjmBdLp8rdWfPPF/36VPz2pmnbvPvldK839yn+818vr/v2/F7rq/dZFQqUztHZQ1NZVjWVblhinH0hDCIR3iccOXh8ykxjJA12AzBd5IAbixDmNAl4KiqG/zUEX0gTB4VI8NBRk3EiTB0qCzuIPveE30kek+/uyWHkRTK16g040gs2pYYxHYxaie2mTqS8CgnAqIQglCkkoRlxaBolw5yIgRPXbnjoS65BtJgxGKHZozwj8MUmHURMxdWHV0pZOFb45CDsz5SHoZxIMRMSqogi+XQyIqmaem6keubHfGTL9HKsFy0VFoC5RQJH0fqtj1SwjS6UCMSykdiEsE8ScZfwowQJwKtDLqkxeYkvEyywjgrNKuU8CFQTZFUzY46Fmtlw5r8xKJtqSpHN/Yibp8k2ChnCN6jUqJaVUcutq1adCzTjywFzRQmzKRAR9JBo42TdHZdFo5W2MINz3PTMy/sFJimjLHF/jQpjG1BZYZx5Dt/5A/y9I3HOKtIxSr40Pfsu46mBZ0U2sN61RLCSEoRazVtW9PUFfNKkumVpV2f43c9YQqkLP77uiy865trXl7esu0Gzh8+5uJmy/7QMU6BerEUZ7PJH9GsafJst7dsNid3tsExUznLsq0Zh5GpboSfWjuUskIR+7or++f0ymTGaWK73/HZ55/z4QcPOVm1jMZTOcnNmIvnmY4HHF2nlKLwjO8Vb4X/6sMsEjdUlRXxrTZohHJibEPTNKzXa05PT3lwfsp6tSRM49ERRil15GfPlMK5QJkbFFM+cqFHCVVqTtcWmhLoUizfbwjmS/F6aZTKYRDkQKDkhecsoENpWhTzdCT/fT7mA2umXwjyClITpZiwShVhYUSXz2OUvcPYRpDUFCXRtdivWm1IkxcENCUiGVsOxKju0UayLk2NLk2XFD0Ah8OBnDNN03B2dib7wSSBn9qIC1NVNRx2A0ml0uAp6rqlcq6IqodCXzU4p16zJ729vb17vsqBqoDoi9sYikzgsN8xNy9KV9RRyxQjJ+q64WTV0tSW3e5AXVcy7U6grcNgcVpRVcLfH7KnQYFK5f3NaCsNKkoQSwFtpLCw1skEpDQZQg+M+DgWHcjd8zdTo46Bb6WAmQvOEIIAPloK1JTSa2Fd4nokVujzZNpax2JVS9hq5TCL9v+HVfz/32su5Odi/n4xfl9rMX8+I84zOj2v73zcU+6Kyvs8dZgbufs/Nx7XtTS1+ng2igbyrjC9nyY+v577eo1jLkOWxkJivWLRHEbq6vVwta9qT+ZiUKYcsj+IDiWKwYxO9L0Yw2AMEaGBpxzRyhC91Ecmw3jYkadE3axY6prnH/8NvvzZlj/0q29jc8b3BuIpU0D0oVYdn29rLW3j+D/8a/87ltUDfv93/gw/+Ynl9MGaReP43f/o/47584b3332bpw9PyCGTDZAjVimUsdTWsmpbwnggZfAZtt3AWVbUzZKmWXD58rlM9nLizTfexOWMHgdunt9i6jXW1pJdpRVpmtiPI7ayKCWZM3kUG38yTKPUKTOLZfIeyzzhkunVfA/nKdI/iB40B2Wu1+uiZZDJ8DxB0Fr0yuK+LvdwBgpm62SpMYxYX5c8IaMkv4MykRj6/ghaiOAc5to0ImeHgC0Ua+2MDxNNU6MU9H1PXQv9adYi3aca3n8++74/nn9931NXbTkbPdaKnkx9zVrk63MvxgNKVRhTU+miri+I9OHQEQ83pH5L1SzpkrANkzZCKUgZ3w1ElZj6Ea09rq7wo6dPA9N0XdxYDArxSk9+REUPMRAOnSQe+5GcirVYTqg4Cc+4oJcKVw4YKWSMNhgnDU/VlOTaOSyPmZohInCVhb5EEtTcqMww9Eefaq01UwhIppMgGimIRqFyDTFkFIa2WRAQ/2VtDHXV0C5XVPWCkBQ+BLJSRCQxOPtEIjB1ntFLirXWlrpZ8viNFW9/sGR5eorTin0nQueVbtCVgjGhXY1GU1WZFEex0HSOsAu4KkMSdDfGVLIAJfWcMqWxpiRdKlBG0GGhb88OFxGrMpVx8ncl0VgncYPJOeCqirpe4qdI18l4UcxTFCmMVAWp2x86bLMUUeck2SSxCCmVllG0zoocEtY0tAuLdprdfic0s5xROYobVAayuKRU1mB1Jk890TvapuH0wQM++Oa3OV2vsEazPyT6SSZrtq6xztBUjrYSSoyzmbaxPHx4xmLZkMnc3A6sN6cEAodxIhmLbhe0jSKkSMhSpI1hYj8MXG33vLre8uXllrqusLPwcOww2lA7x/nZmWwKKdEYJCBuFG3CYl1z9eqGcb+nPwTW6yWLtmG1WvLkyWPWmzWr1RrqR1972f68Xd5PeL8HDDdXB26vO85WAydtQ0ympK4XdGfOyQgSLKatZFnkMeCD0EJizBLGFgLGWeGhjiMx9CzXa+raFNezgNaiT0gpMI49+86QCaiccbGk9MbIg/NzFIrovSA7Be8bp0kQPGD0AZtUMUGQ301awLl9yMc/HUWZWSg2r08v5tDMCATJmSmNUswytXS6OrYZ6thkzJeCNKOS5jixvGtuCqqfkWDKYlZgC5qaYmQcRpbLmsqKVbO0OKn47gvPdy5clLUoW4FxJBKK4thSAkRnQbVMhoXzvl6tybloB1LkxfNnpJghaQ6HHScnK0nIXTQi/k4RYmLo95Kg7XvSNOHDXXJv4+wRZZvzJXRBJEMMWGd4+PgBCcvN7R6/FdFpiEihmHqauuXp00c8eeMJL1+9YhxG+v0eHwcePHiA1ZWAQ07Rdwd2Q4e2pzidSEaa4KoqB64tkzWr0UlJyGih60Q/iDbIZoiFh11VGGWI/cTkPcaao/uL95J23q5WaGdJiD++KVOU6AO2agg5FqHpyHLZogDvI8M4kbOisg6jhJpltDh1LRct5ETXd/8EV/V/9tf9Kc7MMfdlvcIdwjsX5jOFab7macY8cbhPWwVeK7jm75PyXGSqY2Nxv1G5r8OYU5SVUsdGb24+BIgT4C8GYUwYrdG1FQpPCcGcw93mZnN+XXcCd6EzGmNIUdbCNE2YRqaFbdNy+eoCFDR1RYhBNFSlCc1R1vjS1vzGr/86za/VfPtP/xJvPHyPf+Gf2fAn/tA1h+uf8uzjz9mtHuGzxbklppKCeBxHTjYrrFHkNPIv/hf+a/xH/+Fv8b//1/8dfvWP/fMEW/PqJvPP/fm/xOP33+Ozzz/hX/tX/7d87xvv8J1vfcD777+HC4qT9SlNZcnTRL870IdAFxVP3v2QanVGHww5BKrFGcaOjMOBs7WChxOkiKvOGUfN6DP9OLK9CuRmwemDFT/96Y9wJlFZ7rK/rOP07Iy+68ukOxedakYs/QWQNEYS1OfnbdZP3G9oAZqmoW1bxnFkmgZC9ICibRsxeFB3UyfgqLmawYSZ+umnSQI2Ee2bT3cmR4pir3+vcVUgdZyGbMR0SGtbHO9k2qAmOBz2KCWhi3euVBypv/e1Qnfraq4bhYZKVoWmXAnwp3KZgP+jr6/dZBgVqUryc7NoqYsgZPITQ7cjTz0mBqaxYwpy/GhXU1tX6AoRsrxB2Rh0tEUYbTFGCrKcJdmXKHSBeSG3rcbrgT4pGQIUHl1OEY+4K6GMWIoWQWTOHKlKWWWyykX4LILGGQmdcxAUxREmS3E8c+Y5jj0l3Xl2O0kFxUBBSJGMwhpFtWhwymGcxVY1TbtCG0dMmWkeoWmDKv+tZNgdH6QcEofxQMxgq5rVesPJ6RlWgyWi/S0hJ1SKhKhZ2EVBJYXSpFU59t0kB1sKZBVRZkY7wRhbag+hiB0RshhQ6Q7FMboUaF486Y1rsUaEU5WrpGDSptw7g3GaZlHuQJbwlpRlgRmtqZyibhrGyROmwKJtSgBbxgeF9hmHpmoWtO2CrDOJRL1w4nMfIykMZCWZFjJClECtnDRZKfzkqTYb3nvvfRbLxdEL21lDXUlCvPOJRW1xVmF1wDSqUGcaVpsNVaWFduEk70Nrh9EVIanSPIrZQC6p5kpJoz1MHp8oNJsJrcBqqK2lberC67Q8ePCApmnYPjzl+vqWYZiKjsBz6DzbQyIZh9GwXDS8+/Yb1LUUf0bBav11V+3P3+UnT0ahdM9u23N7c6A7G1CPRPhI2bzbtsEYOUhDCBglTbu1hn6YjofD/nBg8vLndtGURkGKjraRaesYJFm+rVqMKaF6ShUryEhbN0I3iaLGGqdRgrCswZp7wswkzyNajAGskVwI1J3Tmiys0m4oRZLYJ2k3lFjIxpBK0m9E60wmkHPAWE2OnuQDUWmUqWRyGoWicNdcpNJqKHkOZye8QhO6A5iKzeXsNlPoUDEEnKtk/0JLMKKX8DttrBxsM82o0KkSmay1OEpoWWsqCygksbvz53NrFchJ8i8Wi4bucBCdRAolmduKyDa3pBgYhjmrI92ZcsgLKmGbFTaLkYdBgIjZralumjsq0ThKo1G0G5OXqSZZLCG1T4Qof4+SgzQkWC1bknWy36UWLbgm1rpjI7PbHzg7E22InovMJPq3mDKu0GlFezaBErQ7JbCmFKbG0BT0NOfEqPXxGR/H8ZjrkHKiHwdCDOX3DBhTHzUpxolrWspJALR5ugcFHRfaWuVc4ZFnprE/FknmF5guNesI72ss5uLrqxOK+3Sz+1qOO2rmHYILd1MSuE/FkrUgYvHAHAB8v3H4KqUJeK3pmP88v055DZrsJ8StraRCR0gqH3WL96csr3+/sj4LzUqYFSXZvLgPhZxZbzZimeo9ymqM1ehoxC8CjUbj0PiuYxq3BHY8fvqUVxeKfhtQ+xVG19imomqFvWGN6AdyyuQIF5dX/I2/8R/yyRdf8vLmJa/2z9gMF9TB4I0iqxXtaslb777Pn/iTf5pPfvDbfP93fsCLL57x9OkbTHGiqg3vvfGIxaKmaZdoXTPWa6rFhrpdMva9uFCy5/rygtpkmrbh7NEjmvUbxLygHxOfPXvG8s0nHPqOV1dXDEkTS6q6AVlPMZHiUKjmMjWaJ8Q5C1gkoMXvpdDN5gv3QxXvKIxZwl3LxHl+7ub8m/k5mWvL+fOU0jzLlinB/NTlY3Sz7B33P2aKr4Jsikte5t4k7m7iNTdK3vvXnvVZnzH/bq9TD2f3NCMNWJQp3zxByfee83/U9fXpUlZRF/S3qmtcVYkX8BjEttaPGCLTFBi9FJe2FMr5uNlK+qQuQmgJfhMk2jWNiOi8l9FzzmQliHldN0zWFW5peSNyEuTb2COVRpJtBRGMMR3HzyCLVltTwtAK903p46heKV389JGETO1QairjUFOoT+WgV7H4Mc8Ih0xHlNW4pkLbFdbVVHVD3axIShZ8zMXzI5cEzpxK+mq+B24m+q4TjNBY6qahbWqc0RgiY9jjo4IIOYmLEojGBVMeLgPKLaVgiIGkPCYL6pFJQvXI8XiYzw/dzOs9PtBakrpj8MTgcXVLMgabwTkLKYo7RVURfEZbRaUdUwh4L7SM4uSJNZpGW+paHBIGlWnrqqDRUZI7fQajqXVDvTglRM8UJkHtVCQySYGmHFqlIoqahBMdVdFoiK/122+/TVU5tBYamjOaxll0dvgcaF1pSnWkbipWa5kSNKsFWklBaIgQFVpXOCt+4EKLM+icMToXrY84lSSkSMsoMR3QiqaynCwbNqslm/UKlOKtJw84PT1lGCdevrygO3R0h57nL16wv+m57gaivmLqD6wWDavlggdnJzSVpa1/sYXffvJSIquJw6Fne9NxOAxwz/pPFboJShKLU0ri4qSFmjOvowwMg7isocBV7jgyFn9zW4SVIiRXZRQ+UxxKBY5rKkLXkUjHeylFTNnwj2vnzu5P6JOGpJTkxpSPeeox/znNR0YxisjFtz2GSIwebXMZzSe0ciQ/STBhVthaF+/8BCYf3xuOHG5VpiR3+o/ZX0p+Jkd+sdKaTCo0xXwcux+pOwWtUqjisFA2pALQZA3KitU2pkxOlBxCZAFh5twPVahfYh2ZqCtH34n+IHjRCRitqJyBXBfThEDTNLIfpnnyao6NhtWOnB05alSxr5ZGLb/mmBJn44soIvBuCIQCwNTOoogolUghknUieRFVrpYbsk1HR0GyIgZBlBXCqR6miZiSWHYjZg5yP2UfN3nOENHlQBdBZyxn02wuMjtHxfh6InXf9/d434q+76VfTfdEzDPKWKyZcylMjk2GKsnPZZ9yzpFiZIrT0YrX6NcL9F+0ay52ZtHtPGm4X7zN11cbDuA1Wtl8HXVZSpFDKGt+/pD7bbSWJVEmIH52/1G/t8m4r5WRxr/w3Ge9RqHRTL4Ug+V/8prucg9mOuhXf5ej4qrgChSGhVIyZRdL5czDs3PGydNvR5yrCLGYvoTyvqEgJeI4MY5ben/J2YOHnJ9G+ptMFQcWqw3tqsWsRWOktVCI/CRi9YsXF/w7//ZfwdSGbjpQbTJfbD/nwaZhkS2XNzd8p/nTPHj4HufLhh//vb/DJy9f8uWniuQTu2FL0zrOlzWbk7eo2xXOLYi0VM2SulkyheIuOk5Mk6eqFK6uWFWWlT1Fu1P6CfbG0a5bXr56yRfXW7Jt8OEAPrJQWnJDYmAcPJtTMa7wIeCsK2+kgK/GCricEODbltyksYTiCcglNyCnJGtcQWUrYXyQ6bqOnNNXmpV8fF5kmmWljs6pZHXd0ZAkaFgdAWGl7nRb8wQOJWRbrUXfMtu6H58VOE5KhmGQoM57OR85p/nXfu35msEpo4QSN8apAEAFTrvPBP5HXF97p3l42mIri7FStPdDzzT07G8vUXFApZEYJkJMxCAhMIfuwORH2sWSxXqDtlZujpJiQuyxdEEIJ6IKJDOha3EnUlloNXWtcU2DqTIp3iFtWknxmnMijCO73S0peRRJrGDT3RvYLMR2TGMwujpuHs5VBT2SRe+clcJUgT1xhSMOM1dbabBVA+OIsQ7raiIKbSoJxFMW5xqqdsVitQZrhcOohFGN1mQ0UfAD0pgYpoGxH4q2JVBbi9WWyll0jnTba/w44KcepwJx6nEqcraomKJMI4bBY4zCJ0jJQH2CQdwWVJggjnLwzynApcueLfvm8d/RcUAprJUmjyyoZFYZV1W4Wsa3ysoUaLHYsNt1kjVgNKvVBu9rQpyIOVM5R1tX1Is1fShTDWuleZm82MaZgNIJxkDOHcYuURoimsEnfNJMXrE7TDhjhTGexEEraw3GEAK4dct6dcLDBw+YpgFlJdcEFVE6YnQUttzkMa1lsVrwxvvvYOslxtSywHXEjwPdzRWVspAtzWLD/uZQRuTQHTpsJS47VdXwzjvv4Ra3tLcHlNY0laG2hlVtOV0vOD3Z8ODslNXpitVyhXMV4+g5Wy+Ph9/Pfvoxv/3RZ2w/ecb+0HPYbfHTyH63Px6e5t7B+It4DaO4Ymgto+Lr21uurtfs9hPnp640vtJYxOTJOZbk7eIRngTxVUoCzpbLJT5GpkPH7c0t/dAfUaMYIpWzWGMlFFHJGPz29pb1+YaqqlivVlKI1Y24yJWDfhxHuv2eZbugauqjjamhCPOShE9m6WJlw1DzvYkkVcwwENGhUhFNIKdOaC954rC7ZX/Y0bYty8WSsRsk4TkGUoKFdmIhba1kuZSNn6N9bZbvf5xw3N/1RR8BpqR3VwhT1KGdTDRmatcMwKA1qUzLcvlQgHYVRmlMVZNdLZop7hA2VRoV+TzLHpO8WLSWpm3ZLqiso+s6tBKqxdD3hYqVCo1M9iatFaZ2YkmpIkonkg9YWxPxxDgKbdVa0WslMdBISiZMcfQYa2kajXGFEpsVwyBTb2szJmZ8VlSVZbVxjKOXwk2JfuHm9obJT5ycbFguV/gQirVlpKlqjDWMo0d6fjlxra3QKZbJfcKYu0Zu3lfve+vPWonVasHkJ7bbLd57VqsVi0XLq8tL6oWEQx5tWHPGVI7tbo+2BldZUMW1CKHMxZAEsb4nGv6qqPNr1gc/l1fbtq/pp+bfaTYAuI/WfjXN+34i9/3/bp0rjZmGYQBkXchKK5MJwLhKePp1BeoukC98pbnpukJHy5kcg/xMoxn9xGq9EpZASkKTKvdpmvqi55QG1NZWJm3eCw1v1mQkkEMsS/aXKtTLFNFOoZXYjRqtGLs9xlienJ/TnKx4dXVFDJnD0GOIDCniDwfyq56ffv5T3v34t/nmL/8h/tiv/WmqP7tCxYHd7sDtYcvl/pL9oeekPqFxS8ZxQpvIzc0r/t1/+6/wL/xL/zJ/7p/68/zzf3nD//x/86/y4Xf+CG8+XvNv/p//TX7tL/xlHj1aEgfD+nxNVSss8PL6Bd/7fd/lzbee8uj0nLOHbzNlwzRmzk4esahryQ3JmkM/kbLm0eMnDLfP0DFi0UQd6NMevdzw5/7iP81f+ff+Ki8vDxi35JsffJPnn/yE7asbzs7PpGHPEV0pXly+wk8iJn/zjTfIKZCjANT1ckFQ4H0GW6EN1Dqz2Cy57QOjT1TOMA3FDa5ujkASBfwQvW+i64byKEgeED4f9UH7fYezDoXQHskV2tQSqjdFQgolXyNh1B2VuHaV5H4oRUAaHOMsi6LnjAhF1mh7pNotmpaqEo3sNI5UtWMsblnOVRzzN5Qu1DoNWow7Kic18832hrqpjw6ZX+f62k3G6arBtitMtSCaunRJgd11EIcnPxD8yL7rmYKMoJMyNIsWpRJGZ0wtwXRKaaYgCIyxFa5qSu6BIqnM2O2Zho4UPM1CUPdIJqJxdSNFg9bkFKgqi4Q1TWjnivtIZJHisSOcvcclLA+MkvFyTkItuL8RSdcpv7MgUSAIETSNdKgpJwkKUeJo4GpJ9NauQlcNrm2wtS0aB5meKGtFfJ5nLrRi9v1X5SPF4fjQT6nHD3uG/TWKgLMGreDl9hrnNI0zEBzdOAoFTDnGlIlINxtToDuMhHFk6PY8OFtSOWkKchzRVhXqhnptlDcHwOSc6bsekzw5BFy9wLUboYPVTfHbFru9rCVhXBlVEic9YRoZfKCuKx48OMMnBaamCmB0BzEydAemcRCLRe9RaySYS2sOu2uMNcWBIpN8IIcJmyNx6EGDMwZb1cfpQYqB1XLFar2mqhwphULTyygDo++JfmK9aKm0ZblZc/L4nHp9TlaWRAlmQ+hl2jTsdwfCGAhTlLyPMoZsGrH/QytcFtG2ih6bJwyGZeWoK0dlDG++9RbGaMYQeLRY8Pzlc0JM/NIf+EMsNj3Be/zoWSwXPDxb8+4w4sPE4u1HLJqaRVOx2WxYbTa0q83XXbI/l1dEkB/lJ/aHjsurGy4uVlxcbFm0jsrd0R6sEye2se+pXC2j7YJidt1E30/0fc9hf+DQdQzDwH63B8Tjux96cjb4aUSIqzLur+tW0DjjqOqGzWbFnp0c5kpjCmoZgEN/wCeP846+P1D1NU3bkrxn/aBCOYs2yEFPOk4zMhFURmeZrBJHxrHjxbNP0SqJcUXXY13FftpyuFUsVmussqQQub6+xliHMbaAMUoGsPPIc3aUAsTRCkoZdHQwAiMULQxKOZTKVA5xq/ITaAmyspUtBTbiriffVFA6pVGlQcMUamQRHN+VqmWqkWV2I5OAgPc9YZxwVcXl5YVQCvuxZACIPmUce6w1QlnVFH2HoPEpSENqjSVEQRqVVeisyWlEG0HqhO4wEZPYa6eyj7nKkD1MU8B7KfTEiU+OG5MVIQuFwmqNqjUkmKaRyjkUiuvrG9abNa6q2Zyecdhd0zY1dbH1PbZ6WYJWxQZY4aNMro1OOHdHrfmq8FgmFiNaK9arE7bbLZ0ait2m0FlyhGGSYiYn0cuFlAjdhB4Vy9ZhS96BNTVkc2w7xdykOhYXKSX8NDH+Amsy7tu5Aq9N4r8q4p6Fu/cDDe9/7VzsCUBbxNfHhln2qrkgiDEXh6AyqSCLWUu6S/K+L0I3RmONQWUr/681KUZycU5M9zIrlHpdSK4U+HK/Yk703VAcDyuSKtqQMtlyzpYJXsI6yc3KWWwpVE5FYwoXr16xOTvn7MFD/vpf/xssFytq5zC24sXlNc9eXHHxasubXUKZnipm9LTn5YvnHIaRKSU2S6ERhlB+Vs6cP3jAX/7L/yIvnj1nGDreePsJ/63/yn+JL774kv2rK/6V/+7/kJPTUybfUy9q/sif+uOEcaTShg/ef4e6lfW/qBakZBnHSD8EHjysmRNFVssVpEC/T2wveshe1mG7Yp8NVb0imYbLq0vSFGhtjTk94Ud/74ckP7FsF4zjyO32QAZWmxVYw7LdsCwNQsrCTlmsFowpgbI0mw3DrkPphNYZnUNhcch0u64ckEVHXMCSOxpRmWrnJFPaOGsDZzBXUrhTnGfemhi86ILVTMXSUho7K4rlwjIhCeCotEQAuAIWD31/3Ovq2jKNXswzcsaHwND3KC00SnEFtVg7m6iYQjWOx6mJ0JAXQjFLkbqpObpnhfv0qn/Iev26C7utK5Q1Ih7UxaVkFgVGTwwTcRzouw4fEwlBvjgmoga0NkU44lA2Y0yNtTVVI8nWGOH6kgSRSdFjlSJMPSkZbCVOA5WtcMaQk6D35IwxDm0scY50z+I0Rb4br97dHKEg5DJal/N0TkScpx+5UADuNrK7MWhG6wYRBmhstcDULbaqqdsFtrLHAnR2JlLaQRSEIaYsjVjIhJSJORPibDubICWGbk/OCWs1KkszZa1h7A9MI3ir0bminjzW1hgntDS0FDw+BPIUmQZP1480jdjPCZLj0LNdZr4LZpkbDECs9FJExUg0gXgPqZHUc2noVKFdaC2FvtYlOE0XqgewXC45GSMRixXqItEH+sO+/KzEMO2wtiJHySWJ3qOdoD8piaDRh4lpOhDDiKsstmkkNEyZI5J8cnLCcrGgHwZ0HGgqg2qsTDN0RjtN3dS0VSuC/GaJsgvhMxZnB7HltGjtCBFiUqAM1swiZHk2rHPHhGFjLEYpnEos6oa2NBl1VTGMw7EIm6ZJKD5RnjNXVVJQxUzd1Dx59ICmbZm8Z71Z09QVzmrWmw110woF7hf4Ei2bPO/DOLLd7rm+2XF9feDNpydYI9zilBIqSzGbsxzuWSVIknuTUipCu+kYqiV+4lOZLhW6QlD4KYjLiu5R2rJYFHJCsZl2zh1BiJwENZe8GfBhQhuxplVKaHCajHeV0AXzrF+4y7iYGw5Jm46QJqZ+T9/tmPoe54TOoPOERsLa/OSJYaC24kl+2B1YrA5YW9EuFiX0LhWSRP69H2qeZ9zRpVRprMharJr1/Owoop+O+5Mx+kjzOjYXlGJLK1lfWkvDofTd35Nen6HkucGIqBxIYcL7AcgMXUe330vgXZgtOkuhXQ65lGa6wB1iJ/QfU/QP6Ug5Y/46LZQPbTM2ZaoqoGOhgpY7ExOYJMYcWacjfUVnhYpFPKutCBoTxKRRSlxfhn5ksViircE6sbydaRKidZF3HAUhZVKEkCBnRUwUGtOdIPm+1eVsZ51SPjZaoEqjJE40KgnwFnxktjdP5d54H1BB1pQq9ucKodkmfq97khQtQjOL4Y6P/Yt23W/Y7rsu3Xdcmr/uftF/J5i+E37Pbl4pF01kuhP0zpcq6yLFgLJzw3HPMvgfcGmtsc4eXYuUkoyW+/kd8+u5f58gH+uQTJY1ONcSWqEKLTGDiNHnf6fu9I9ikpKPVM8UE9MwEoJHO8d6syHH+cyriUmz3w+8fHlF33tcGzFGJpK3N5eMU8A2K6yzJWle3lfvI9ZUfOvDb9MsP8dYTeMc337/XZg84xT4U7/2Z8lmYpwGQgqcP3yEM5rVYsEH773DNO1JMWBVzXY7EVFUVY11DmMzWiesregOIzlFmrpiHGTSHcJEuzonVC1jrtjedpwsl4T+QL8bGLoDOQaMgq4f6MZRagbnIDiqRuqAbnfLbOefMgIKa8MYEllbYp6NRjxKO4wWOqWe6U8g+1+JAviqffF8f80ckZAl+8hai89B9iKlCT5JfpGWBjnME8ryb3VpflMqAu5cyHRZdFwy2Zv74tefTYVkltn5eckzxa7svczNRrG+Lf/eWsuUJoGtjjbudyDXP+r62hVL3Th67xl9JDvFMPR0+z3j2BOmkanvGLoDh/2BhCDbdbuQ0XsMTP1Ivaqo7FJurHYYU6P1nJhrEKlBpqoNi/ZMlBM5sb29wTpPu0isFpWMaozGkBiHgRgDuY60aVkcFjzBSxBdTpkwu8RkESQrpVBGCdUBSCkUsWlLPwwFYeAY5hJjom0WjEMPaKq6panbY94DrqJebmgWS1anZ+z3N0fKkbZGkrizIkbwURqM/TBIgTROjGNgvz+UVG7ZQLZXF0Bis1nSOE3oBzyJdVvz8vKSbfTE0OLqBrHPc9Ttkqqpylg2YrIS2oZ2vLy6Yb2sOVm3PHmwIoVRqGBGl9AohTWWnGehYaKyFVbNLjN3o8AUE3Xb4ksxo5XFGEkcNcbR566k0hr2hz3L5YKYFCFrpqCoqxpnHJcXlzIR0Iar2y/xUxATAFOzXJ0yP+pKeFN479kdblHGsF6vJfG9bpiFtpW1vP3Wu2zWJ3z+6WcYBh4+OKWqTokRFqsGozWLZsnZ5gEYSz8kKhyhjEmryglrQwnNxFUNzoBOmj70spBzYpgm2s2mcCojm9WKw+0NwVrefPwIlMJVspn/rf/kb7JYLHjj6VOcU9RNy2LZ8OKzL1gs15DFarJtF/zK06ecnGzwGdAWU1Us1yv6w17QrZT+MSzhfv6ucKexo58GXl1csahrnj2+5NsfPqauBXUZxxEd7lB6bQyi4QrS3ClBsCVdN5bDdbb8TIyjwbkHKJ2ZvOf582fYes/5+SPaZnWcSM2GMe2ixVlHdziw2++lCSjoYikjqYwRr3LvUTGgc0TnAFl0CbKzzwXAhCp20mk6sL14wWG75XS9Yb02QunsR7b7HUpHYh75/ONPqN0JWjX4mLh89QoUnJyuMVZoWfno6DFPThJK57v/dGw8pDnIRGSSUfYjpUVMXoSQKHFFmkXbKReO/4zEKwXGMvvq50KNynObkcWb0RxRXU+OEzCV/KKe3c2WaRjw48Rhe8CaCh8mfPQ8eHBO01RYa5jGSFUb0dppDUleV0JjkgBIIWQO3YAqSJ9GpgfW1VRVw8nJCYfDgXGahEJqNdYJfak/9MQgdNoci9tMlDPC1Q6jxHa3qjdMky/hjpMAXjnjYywp9ch91kqsZDNAYppicTkKoCw5J6YQ6A4D5+fnR47+er1mGAYJINTSXMQo2pC6FpeacepZr9fy+rIkTquQipuMWGzGWAAyPTdhMHpPVVUlvfied38WkSlJgVGSH/ALen3VrWnOaZotOe/47n//rArgteYkxniXXA9U5fscU5G1aDKnGI5T1mkcX/ue1rnXiq65uXHOUd8TpCul7tmDqmOI4nx/7us5lLFHw4DFYvFaAzU7Tt3XoMwNk3FOmt5eUs5T9EwhUjvHp598whAjf/SP/wl+62//Nt2+Y9VWPDh7k6HL/O5/+lN+5Q8fWJ9q6qrF5pGbq1eEmHm4FNBL8rEsISi2N3t2tx1Nu+C/9z/4V+j7PR//9CM+++wZf/SP/FHefPNdPnjvfT5+9hG3247riysO/cA7b77BO2+9xTBNqKjQWYrv/aHHLTa88eYb5KbBGZnCkBSfPH+GSiMfvPM2P95+zuXVK3r/JX/w1/4ih7Bg6jNT1/G9b3/AD+OB/+Q3vo8iEIJn6Dt2+x3W1TTLBc1qzRgnmdLaim6UCRM50l9PPH3vXbop8tkXz3jj0RP6MXDoDug0sVgK6JDJJD9SVY66rvA641Mm3m8KSsM3DANV5XDOcTj0UrPdA7FnrSdIs6BywrmGmLxo6FKmrioUYkcOME6THDfWMIzD8Rlo2xbv/RFwm5+R2VRifv5nm+04P+tZQOKmaei6vezxJRNDZUoTInTF+dn7OtfXrlcOnWfKmiklDvtrrm4u8WOHziImHHxm30e6KXJ6dspqvWG93giP2RiMyqwXNctli6saDlO8hwBGFotWqDE6E2N1tM+aRs/ZozepKkdT10xjhyuuL8GPVNNEDBN+GrBW44NnnAbi6HFFqNVvD0Q/FdTM4RZ16fQSOUTGsUcpcLUjoiQILmbq1YpqPlAzNE44+1o7jJMJjKsbRjTK1eSqYlSKdv2wdMTSFYeQiTlgXMXgB6YwMUVPP4lfvPdyQBkdydmz310yjbdoBWGEi21HLimdMS558ewz+mHg+mTDw4ePaZqWymWev7hkGHpCjDRNy1tvPma9WbF+8pDb7Q3tckG7WnCxv5IC3VhcVeNwIoQsIjWnK6wzBSFsha9NZhr2ZJ3JClzd0DQr4QAPE2kCY1WxwWwI0ROV5eys5QNVs93vuLi8pllsuL7Zo7LinXe+xauLK6Zwy9nykdAeFGg84+Gl2GamiLKGQz+SEjTNitXqhLpuISo2i+WRS7taLHj/3Xd4+uAEpj1+2BL8wMvnz3n69KGIBZ0DYzFtw+gj2/2Ok/QYFTwqTOikCaMn+gS6JqkJbUVI2R2uCDkSyHhlGD00RVBaKYUfIpeXHTe3H7NYNlSVwVVf8tZbb/DgwSnn56d89JPP+d0f/Jj9oeeP/clf4+R0I+NKIt/78ANWJxua5RqaNYGGrCxBa5xbo7NHp+nrLtmfz0uZkkYb2B8OvMyR2lpevbphtzsAiboujm/FdlkKJQ+UTIBxZBgGxmE8NvMpZ9FhlUmjpKlLGrMgxRWb9QnLxRKtNdvtnqqWMElTiX4jhcA0TiwXC2m0g6eq78SXzlqa4s4zdAe67RXNRri5AQTFKtorTU8KA0O354sffwQBuv3Af/B/+3WevXjGOIxSKBuhDYldouPpk/dYrk4IMbFYLPB9z+Wrl2zOznD1Au0q2fGJ0oLnNI8RBPVkdqWZiyZbBpZZNC5I8KaxFSaFI2LlrNA/E2K/6hNkJRbRaMm9yCR8MbwQn3TuAiMLNSOnRAoTpBE/DRy6HZ98/EXRbGnaxZroi023dXifUX1Ca3EAM72kGfsw0FYV1ohWTqMgG5SyuLoR04aZDz/TgGJgf+gZ+04OZkTobzJgNScnG6ahYhhGtvsD0zDRjxPD5FksN1hdxJ5JyeS0NBn7/QGswmfPbr+nrS1KZx6db9C2CHaNYhgGUBptrDjXoFBenPS22y11XR9Tg4VeM6PB4ViUzmLmEiaEluF7mVx4MVEB2SdL8UuC4FNBOUV0ru7pEuYmwxiD0QrjZ4rZL+b11UTueSp0f8IhnPjqWMzPeQj3MwFmbcbsDJSz2HW6mXKUQkGPpTmonEMrTQjiBLhcLI61gbvHT08plZ+niSGw6+6oabO71JESeo/KdV8TOefxoAotLIq4eN7vnDNYpUlVxBZmRlRC/dPHXicTUiggXMY1DaenJ/TB88Mf/ZDNySmrxYbddkelLc/219xc7nBuQ06WoZ+IuxuMlmetMoraOaHVZEVVL/jX/43/Iz/4/g9YtTX/uX3H4ycPefL0MX/YB6x2pAiffvxjxumGVicWj8747ntvEsaJ/fUljx88ott7xjHig+fk/CGmXaJrR7IaHyZGPzH1Ix9+4z22l8/5j3/jr2HDFrewLB+eMXhPSrBq1vyR3/ce/+v/1f+YLz/7Ga32fPnyGcPY4/3Etjuw3JwQRkO8uqQyli9fXvLDm4946+kTclZY7Xj45BHPL65IyvLg8VNsvWAKkcl41u2CrBPGWE7XG4ZuR/ATh6GjXTQEpQoL5M7RLIRA27bM55e4PWlykmmkNZLiHZLsdUK/CwzjnUYnJC9TjQKcF0oAQi0t9uZlzY/jiNZanv/IsZGFu8TxmCK20OxECiBgrYQGe5qmEaF3lp8z0wrn5gV4ren9h11fu8nY7TuisgQ03Rgl/CcJNeTqemIYeoZeuM+z+0BV11hXiS7BWLHBtZm2EmRIW/GBN7ambiqyLjaLcSoTbU3bLnCuxjnpArNSmJL0q5XGmRqbIraeBM1MEZcCaZzkhsQIWFKYhB6lFPWykRFiisRpBGMEodeGetFIcGBM2Lo5vpnHMaawILCuxlQ12tXSfDiHKkJwp8XlhpkClUUnMZQguHEK+JAkkGqcGIcBSFxevuRwuMGPO8ZOfN1Hp8XtSMvDNPY9OYmAO4RA3/cEH9G6ZxhH6XIzTKOgF9kYlienTAmy1QxJYZsV/bBnnCKrxkojoaNkjqAkMTNJDkjKd82SUNDKwRcjOBnNYhxaS6KvcMgrVBDReEZCuIZpKkEumtV6xWMsSS/YHzq221uM1qXQkWlJTB4fozh9AMvlCm0kp2W5XLFYLFksRWdiNCwWDb/y3Q95sGlpnSImja5rUBEfMz4m2kVNUzdYW5O1EbabsagkNImUEmHyJfhNOLgyhRKE1zUtyY8QItrIhj55yFEx+cAYAoMPJB8JKuMmI6JVbQh5y+1h5OPPnvP84oZ+GPnZZ1/w8LCnbRxtpalrsT3G1CjbolVFypqUpAEc+46xu+Xp4s2vu2x/7i6lxR2ILL7gkzV0Xc/l1Q3XN7colci5YbGohYtaQn+ijkcJwFwgmeL4IRuxKdx4GUPP7jqxbM4pSwBT13Vc39xg24q+6+kXDVqdCdlJifGDLa5A2RqUyUfqQUqythKRqDzdYUt2luwsuloWCk+ZJcSB4XDD7uUrvvzkEy5e3nDx8pYf/vBnDFPGWMfmZI1zlnHsOew7xi4R/UsWywPrzZqrywtiisScaBctxrpjw3/8yPO4XoqdzLz5F8cnhHamlSGV3AvgiKKlVPyo5mlFedbn8I8Uk9CIKFRKGWMUZItC65iDxCTnI/qJHD1hnPDjiJ8msVtNmdwNBZ2HrBVGW6Gy5URVO9IY8b6nH3acboqOzFoBjJS4CVZVLaYOKr9WSPtpYhwHJu/L76VxlbuznQZytKQYpcGcfEn/1mLzamwJy9LEkI4BjzFl4hQY/CCfZxHOex+o7OvoYAip7Pl3WQtfRdglfV4fg7vmf3tHn5LzIseEcqoEcyl8ikcNSM7mWMjK95Lspujj0Y3N6jv3JaWUNB8gNL6vVx/8XF73dYNzkX5/ejEX7bMm47597TwlmCcBx9C+4rSTUsIjz7lWIp6eJxRGaVSWRHln7Nzbk+5pMuCu+JIJVDrmK3w1w+P+xzFE8d6NUXqmi6Zi1HBH74rzlEWJiUpKGZ1i0ZSIbbJSGh8lX8VVFWM/gBGznO2+JxnN1AcuLq75z/+Fv8DLZ1/w2Sc/4+XFNeePHgOWFy9eMk2epl2wWDRl/DdTqmG73XFzs6V2j3j1cstyueLho1O06klxIiWPtSNu8mgNTV1TGUV0Gp811xcvkF/FYOuWarlCNw3KObQzJEo4cO6Yho7oB1onWRApZoIf2d3e0i7XNLVj4Qw2e2odWLSGRWMZR6GPu7oGrfEpse962qqmHye6aWJ76NgsF2hn+fz5S1ZnGxaLJW17wqJdcRMjfpw4eXDO/vaSKQRSOWOMtVKjlQny/et1Gtw9Cp8Sk42UEtkUC2Jt8WlCauiiich3pKfZQSrnROVc2f5lwnqf4jc317nQul+bZM7fh3wELe4oXTDr61JxyzraQpc1lWIU2upX3Nn+YdfXbjJub3dQ3JM6L17dtVUs2oZnQ0/fdQx9T9MujvxAW7mjVsJYh8oTlYq0DlBWklRdjakXaOeIJYAkhF4sDJVhsVziqrocmKDqBlTRbgDWyeGhVJaFpyTxMfqJMA5EP4o2JIcjz7EqIhw/ebzpsXUkRTmklqtN6dQLHxJZrHVVMVsj+tHjqgZlHGhLu1zK2M1YtK1Q2hYkLTDbU6YUuN3u2B+6wus1+EnEn/1+hzWRZ88/5+WLz3E20ihDW9U4A+v1CmPl9+z6DqcV2bmjpdqQB1KCqq6oqwZjrIz7YyJlTbNY0U6RaRw4jIGn52e82h/wvcfiWLQtxmWUCwQFKVKEPokYMiRJ6Z4fUGuMBGalCNriKqEbzQGEzlVoYwklCdMYEVF2fc+JVqw2KxabM2y15+XzZ1xfKqLRNHUjNJjgCVG88GOOkDTn54+p2xXeZ1bLDScnG05PTzkcbmkrePxgyZ/+o79EbRw5eUIWWk2kIUXF5BPG1qLB0CLyRmtc1R7pVrmk19sS/BdiBKWlSE2BdrUh7veENGIRtGFKAZ8S/TAyeM+QggRRjgrtJYH94BO8uCbGyMXFFV3vSVnz8WdfMIwHTtcLHp2sijjQEpXFlNwWJZUDcejY31xx9eoZT9/51a+7bH/uLqOEv54SUpCGir4fePnqklcvr9BKkH0/1eLKZoQSE3QQKqEGkhS+ztmCClrxDTeakCJazcnxhmkYmLzYd+72B8YpMo6e5cmarm9YjaNkvmRF0hrlpAg1BShBifVqipEwefCyYSvA7nfHJqOt6mPRkclE33O4veLFZ5/w2cef8tt/78d88vEzxiHy5I1vcX7+lLffe5vFuuXly2c8++JzusPEze0rqvqGD775Ds+fPaPvO0KMPHx0jq0q2Qf0HL5HQS0Lest8xM2uRgaQPVFRqCNJ3LGU1qIHi5mcDdo42e1SLpq4wv0NEVsdSb53p145kARRDjKQDhPRj/hxJIeRqe+Z+h4Qww8fI4fdHoMqqKy4pNzc3hBj4MGjB0zjQD/s6LobnMmkpiG5imzL1Kn41x8OB2muyu/vvUywJ++Pye8pgbFNcfaR+6q0wpS8JzeMhOiISTH6QE6glRFXuyTNgmQZCeVu6HtpvpQiZeiHgUUjph0xJUIJc4tFE6ILAuxcdaQszNSeuaAcx+lIqZiL0SManwpVtVil5wL65GL75awrNs3STMUQGYcJP4kzzCzMnb//OI7SlBPnLNZfyOt+8vX91GLg2HTMdI75a2cXqvtTg7n4EtqIuDOlKBPMWTCuFUW/eZchY5SmLbagkk6fxLK9FJAzchyLHfI82bifl/DVkL0j7eqeA9gsDk6IBtaWKWrwnqk8NwLOufLzNFFphmkUpzxjSHnCGkPTtmxvt5jG4SqLipHt/pb9tuflq0v+yB//Y/zw+9/n088+58cf/Yx3vvEO603Ns+cvGYaJxXLNarkkhiAUdyUNlKsqmrbF1S0vX+xYbzo26zXDuCWGHlJgvbaoMaGzYuk0fbcvIceaH338KXX7gHZ5ymp1gl0uwTpwDowhI6EE1hhuLp8R+i1PHj7gxRcXjH7CHyJRX7Bon9JYBWHgjQcb9LhhGvc8OFnRdQd2XWK5OSEpRcyJqYCzIUa0ddzcbjk7PaVqav7eD37In3zrT3B+/hBbtayXJ4x9z9APPHjyJvv9jr4bWcYs9Y5RGFXc3+D3NhSvFePq3v0uWSopo4yE3cXYY4xMRsV4QJgj872O6W4ioZUixkTfjbi6UKmSTMCnaWIap5Lt8jpdan49Xd8V3Ys9Nt85i+nJOE1izFRqoSkEoQpH0QAZhML8da6v3WT4BEM3SJRB1dLUNYSRy5cvGPY74jSiVS4Th0rGxbpmTIJ2N8YSfMc07JmMoXZL6qZG1y2qXbAbJkISsZxyjqZxKDSHcaJKwnm0zjFlsUW0xgiyPatuUsY5fUQEcgqEZiQnj9aRlL1QC3ImR0XwEzoEFiAhUVFC50QMKoVLSFFQOyViOqUVKnim1BFshXM1pm6p2hVZFYejpATtSpmQYAyRvu/puo6b6xuhM4VACIn9bs/t9TU3N9csFo6UJparhpQH4pg4DD39NHCzvRVdvNEsV6JpsVn4f8TAZr3h9PSccZzo+xHf9xhtcGMkXO14MX2MT4q6cizahqVZoTZPOKgtr64uefhwQ11pnLGYusIpDcmhnSb04px0GEaWWXIO4MBiVaNyAAw+ZapFS0qZfpBcC2sMtdI0MdI/+5KhC3TdyDe/+T5+jLx6ecXTVcOf/P2/zHe/8S5fXL7i088+ZbvdMcSIbipcU2FyZrs9sO9GqmbDr/zSd3ny5DFtLVSKV6/ge996l3fffIQOW7ReMkyBy+sbnrzxBn4cuL3dUTnD5eUVh33P5uSU9eZcmtEI2VhMrnAp0nV7QdvRKFfhtGM8dHTDSL3egI3opFhZAyVYbIqB/Thy8CNd9ISsaK0lT4Htbst6c8bQD+y2u4JeCOXh1fUty2XLg/Nz3nrvfQ67PWhHjULrVCgimSoHxvGSU3Vgsf5FVmQAiOOSKhx+P/Vsd/Dpl4offfQGGcuiadFxIoyBpDXVqiKOE8nou803JKKXvIkpZBKWxXrFvt9jdIurN4JSdR3Xuy0vLi9ZNCe0bQZdcX15zfnZKctmRa0dxlI0U6GgUomUI0pJIJ6cDV5yQgFjFM46cVdTmaRz6c4DOnj05Nk9v+Anv/U7fPn5Db/8B/8Uf+jXTvmPfv0/4K33v8uTd97jG7/0LWKlufntitsvb0jTxMn6IW0NLy8uCL5j2B/YXe05P12y7m5YbBacP3yTXFK+KZkus7c+SoOygKN0ZOV9D0VRUSyslegSogc/Qm4F5RPdVcBZi9GiNUk+oIzBaUMuKK+gDuJso5QiJo9SgWE6cHt9gR96Xrx4xvXtDdEueHW7JURo2iX9Yc+yqVkvGra3r3DWYEzms88+YrFYYE0SxyQZPZDShM+RlC0ag86aRXOC9yN+GjEm0jSOqjbUTU136I+OUmK0MBTNg597BFRxn/IpoYOi0a2AIUqC9BKQjUZXjqvdlsZaVvWC/tATJsU0JQ6x59HZGsiMfsQ4I5aTKVEvJNE3+ogPoRR8MPnAumlLcZFKuNVdhsNMc8g5Y5whRk+cEmM3ihtYFiOMfug4O9uwXrRypuWItYrlquX2didUhygWuda4MukJGGuFVXDHqfmFu8TdTwIYt9vtMWBw1kDM06H1es04jq8V9l+dHMyNH2kOTquOfzdPRULKzAYUcEd5GobhODlMOb1mjStTKeHlr05Ojq9xbkLvO4zNP0spdaSiaK3x9z6XjA5paJrS4BhjaJqG3W53fH6OOhJjcHVNvVyyaBacbE758INv0o89h76jdVf84AcfQ4Lvfe+X+B/9T/9n/LN/6S/yP/lf/i/47/wr/31Us+DP/7l/im9953v8zm/9JwxToB8mTBVLgakxleaf+rO/xgcffIPbmz1vv/0Bq9WGYRTqY1Mr2UdSosuR/jBwfXnJ7XbLbrtnGic+/Oa3qNdv0KzOWD04Y0hR0HWAGMhZfpcHpyeEmy8JU0+/u2bZ1FRJM+UEwwEXD6jphlcXt3zrvSfUecuPfvglD09XXF5foW5TcQor09qYuO1uONlsePL4EYfbG87OT3lwdsZyveTF1QW7/YEH54/52Uc/Y9muePzkTRanj4n2M7wOmMUJrd3gx55xvyNSIhpyYr/fs1gsjpNMAVsFAB+GkUW7PD5n8+QSEmdnJ/ekAgGtnABetePi4hV1VbNoW25ubmhrMb6ZG+35+d/v98VWt5Lvce+5B5jT7Z1zGOfKtEMmQ/IsuiNlOEfJCFHWURmLbhevTe2+zvX1m4yY0cZhtWGKkanvMXmiURmVkwiU6or1es1mc0K72qCtw5VJBsbgGkvIkX4cWLuV3HBtScqyHXaESdJwDwfpGvt+4Or6Rrx+kxwSr7aXWGOw2hJDkgThmFBZlbj2isWi5c03HtMuGpq6ZrlssE6XBHCLdo6MRamJTOEn54TNUtipwpXVpcmYGw0JVjE0urgK2QrjKkHFi0AxpcwUZSPxMXDY7dnttuy3Wy5ePuPq8ooQA21bc3V5LaNzlRgHsRNr2xUZh2sNM/mirgTF00YTUyBMkxxm0VNXC+Hx5UhdywMZahHE3l5dcri9pWquOX3wCEWDs5q6qlHLFTknLnfX9JOXyZKRDI8QIccs/6+K4JR49JJRKhcNTPEWtxIamFKG0RNSlnwCWxHTRLtYU9UN+31HDolaa9bW8uz5p6jOswyRt1YnLN9+n93hwPVuh2nFIlZbS1U3rNennKxPePrkKU4rwjgwDXt+6cN3OD9p0Xhi1lxud4xTZErwxfMXBN/L1GoYMCmjU2K0kgIuHXli3G9LxotYZpJ1QQIrximgrUVZRz8ltKmpKk0Og1gNTxOHw54vnj1je+jkOYgR7wNaaZpmQSyOD01bHxNZfYgcup6r2x3touXs+QUaxWa9Z7VcslythPYRZyeiSN917HdbHvzyP9Ya/7m68v2PLFZ44zSx3+95/vIVy4WlreDhaYVzCpPFc369OQF154s/W1ROk1g4V5XDZKirmhiU0BDH6ehAFWPi0HV4n4gR3n7nKdbYImC8o7nEGAXAKAm8EtQph/tkjFCBUkTlJOF0ZZJCNgUFdxhbk7y4tri6ZfKXgqqGiXE60I0DunK888EHeKv49POXBNuS64p6tWLRQg5ehM7TSLQjL7/8AmPfpF3UHPZbKlecxkQHzGy5qfWcvH0nQp9pVNIYiDFqCEJllNwIe6RKGqUIKJQWBxaRBkR0Aq0tKZVwMcQWOgdPVokUPMQgKOs0cXN9w6EbGKfEOPZcX1ziQ+LkxHO2WnF6suRks2RY1aKdUZmnT88J0XPYbbm6uCFOI8tFS9s2uGTBWKF8JU0KuQSw3qH+McXiLhiPVqE++nJfU9FZielHidM6Zi2NYyhTihLcqrJ8AP2ho9mshbK2NRwOHTFOnK4rpukOLb9Pd5mpOqTMmNKRwjBztL9aFN+3Wj26yChVHG1k5xXHM12m9fo4XJL9P5MLEr5arZiDVufC2FrLo0eP6LoDEgz4i9tkwJ2wWqxBX7ejvU9Bu/8e3P+3cwNxfH+cuAPOjYcuOqOjIGYGG+9NRtqm4ez8nHax4Ic//tGx+bh7HiTQs6rro+MT3HfoEZ3NV+/93Pj4EMQRkzvayvz67/a/CWvtsXBcLpeCShcajS+GJilmxn0nFOth4NWXL8gpsd6seOu9t3j6wVsMceTX/8P/J3/xn/tLfPDtD1mebDjVlrpd4lxNXS9JQYIstQuEOPGtb7/H0zcecnmx5fGbD1guK+oqMg6wux2kKdjvIRmcbTh5+IBm85hzL6/LVg3tyQOqdsWUlOT46EIRzBCUOCLtbm853N4ydnt0jsQcsVmhsqU77Hnx6Y/R7nNCDDgVaKzC5MDN1SuWi5q333qTL19eQxa76Smmwg5JxDBhrebm+pqx7whZHARXi5anjx9xfnrGu+9+wJtvvsPl5TXrh2+wOHvIr/z+X+HTj37AGDLRTFjrcIoCTqmiC4zHfUEmbHfBkFpLzeqnIFNpc1fzgaSH5ygMnmmaOD09Pd7zqqqKXkeAislPx73lfgM7NznzerlveGC1LUHZlCmauQPYwyRnylGzxFGvIc+2fu05/oddX7vJiClLIIwyTH5imkYcAVXLWNg6g7WO5XLJYrmibhcy9jKV2B9qLcLu4mwinZUlYxhC4mq7p9sdGLuB/e7Adrtjt99zeXF9zF449B0vr5/LG6ENYUqMnbhBKTSLRUPb1qxWC25v3+f09ITlcsl6s6aqiyuVc7iqFepUimV8LHaKqnBfFRnm9Ngsm8zcod7dLAg+MIVEPyWMqUoCrBJht/cMY8/N1TXbm2u2tzdcvnrGxasLUk5sThbstlvRrlSteLWbkmOBpba1INkgTYaVwufQ75mCWN3OKErOgupWRSgJmmnIDMNBxrxDT7teo52mSo6swFQOW1coq5mCR2vJJaiMISNcSJRDG0UiQeGdpsLpltRiX6hwjXDntcYmCVCEmcetqJpGKGopcfnqgk2zoFUaf30DQ8RlzclyRdOsWemK1lTUJyfYpsbWDafnDzg9PWPRtrRNg+87Bh0ZsubNR2co5YlxYkqObT/gA6Arbq6vxP7XSHBaUpqoFFPfEadRplMpMnV78STPibptCLGkdxrh5GvrMFVgmBJOG9FjTF3hKYq17sXVFYdulBF5QUqUEbHg5CeUytSVxfvEzG+PMXHoRy5vdnz27BV+8pyulmxWC1aL9mjNGrwgkP04stvt+cNfd9H+HF5zyNvM7Uk5E2JgGEcurm9Yr2rWq4pueEyLxVoIaWSFeBvFKCnzInkSRFDb0vQraJqaoZPNNs+b7j2qikKK4JylUBjHiWGYyIhmIATZtI2VgqGuKuYUXqMVsdCpco7Y2mFdhbGV0JGUFIeGTNITytaYqiGkxOQnmAYSnsnLWP3s9JRBKVy9IGJQriJpQyrp0DFOBK/x48j15QUnZ2s2pyco06PRWCT8cm4oVNETFB/rr9KDSfIqyUodXZKkcDJix6s1ara5NZKLkYDs53WfyDEyO25ZpcmFEhp9QGWxnh6Hge12Rz9MTD7SDSP73Y4YM21VUZ2eooBhFJqtUlDVjrPTNcPQk8NEVzUMfceoJXVWU6FcQClDTpIXkdIshEzFgz4em3KxD0YEvMUaPM9ak6gEMikNk4inU7EDlZC/O3egOcQPmaZbyzCOhDixbAzTFI7aiq9ylI0xwu2/h1TDvTyHQj29jz7PFB+tBayYrc0TQuFSJcdJGHMz9YLyu4nTVFOLo4wvVswzDWe5XBKiBKsq9Y+HRv48Xfd1C19N/T5asBf6x/xx3xJ5/v/5c2OM5FBpddReCfUxH89/hTo2fjM33bUty8WC5Wp1vL/3pyS60NzmxuS+HuS+fe7cnNwvAGf9zFenLvdteOdG48ibz5m6lgC4EAPj6JlCIPhI9AmvB1KIjMNIvz9glKauK5q2ZvXwhOubK7747c/5r/43/9s8fftNqramtZrl+gRnHFVVF72RrDmVI4+fPuDBozNOTg+sTpY4o9BKKNLdNnHYTuxue5Ynp7jFkmbzgCpLowySEVMt1tiqYcwCtGotRE8bM0lJ5tA0jQLwBI9BNGBkhY6KPA10uwtysdGvUsKqhFGJ6Acqt2DlHOQrUoikWJzXXCP6zxionGUYOjEBMgrjLHXlON2s0Lri7bfe5I233mb0mcXpA5SCJ+9+g1evXtIPE+HQ0TSOHEeImbZtj4YUs0ZK8ksEqE5lGmytgOUZeUbnSAWthRWD1uQkQu1lu2QcRqYw0rSLktVRdLH3Gs+jOxnqqAW6/+wcnymrjzWu5MPpYw6M7CWiHfHeH/9biuV1qtcb93/Y9bWbjIz4LPs4cDh0OJ1RWgrtpmmoHGhd0y4W1IuWqmlIpuYwBNAZp2B7mHh8vmK9OQXtMHVLnzWfv7jkN//TH/DJT37K5z/9GYd9R0jiOy9CXUnZ1E5T2aKXSJG2dtRmJQ+bNhgD5MBue8lv/t3LO+owchOMtbiqYrHesFwuWCxaNqtVOZCk62trQZv9NB03gZnPZstoqq5rxmmUYKlhBGU42ZyzWq5ZrtZAZLfb8vLlc16+eM7u9obDfsfU7UsBo7m52tE0Lc4ZjFGgbPkZBm1BKWmkjLFAcc4g0y4tyjaEaSCOOxmpCnGTcbT0XS/ohrFUS2nwIopt6sg4rE48P1xTO0M0CWPFjjhGDbmiOd9QuwVWQwwTyXv8NDIOHbvdHqU0Td0WZCYJTy8M7A9QVQ11uySrSAiCYIYQ0caxWK15/OQp/9b/6f/CL7//Tf7Ur/x+VjHT7zqmzjPGLftxwGvFoq1588mGarHANA3OtZyv1pjKst9uaZzi/PEZm9VjdrcXjGEQW9lsGGJGmYqmXTG+eoXv9ug08daDM5xWqBwYDjuuXnxJ0y6wtmb0Hqn9DcvNCbfbSykAmoU0gU1NUorr656oktB9UqayBoVjahq2uy03tx0haR4+eiSLJiVCmMhpOi7syY8Ybalrx4k5RRvL7b7nd3/8M37048yDs1NONxvGYWC9XgNKRNH7A8qILfS/9LWX98/nNdOPtBbQIZEJKfLs1RV141itF3RDZpoGrFEsly3D0Bcb20h1j3+aCidaF3Hj2dkZ1+nA0EcWiwX7/bW4cihF07Y0zUJG+sPAl18+YxhHtIHz8zOsNQxTYLU5oV20NHVzTABXSrFaLoUuNB8ErcbVa0y1JlEjFCWhTpgalFsSssanjE+eSkUePj6j1pncdfQX1+xCpLvcEjvPol7x2ac/Q6ct773dshQHCsIYqJrIqxcLtDW8/d43mFRHSp560ZKzOEMpZQGZqkijwb2BRjmw5i5Pa5ISqtccriTTmFKAaUO2Vg7DKIVWiJ4cQ5lmJFCOHGVKNPUjlbUMh46LVxdcX11zGCP9GLi93RN9xBpHY2qGfuJHP/4JP/zxj/jpTz/il7/3Hd579x3efedNHpxtePToIb/8nV/lN//u36Y7bOl2HSoFVFPEzrpmOqJ1iRBHvJ+k6VCKqlC7kpMphZ8C3keilt8zpsA4TcLJ9pEwJQGekqB6RimSlgybxWIlQXdONGZ129INvQRbTS2HwdPUoM2dg9HcVMhEQrMqReh8DcOAL7bqlXMMw3AsMO/nMfVdhy7nnQ8BgSdUoeglrFVYJ9Nt66pjfgFAVdVUVc1utzsi/OM4cnZ2SvAjfb/7z3LJ/xO9jg1CzkzjhKvckWo0TxuM1vKexRK6q3ltSjCjvUop1us1KkvjEPxUGolMSuHez9NHdHpuZAA+/uQTxnFksVrR972k2xeajEI0GwJqSAE4DIPUAOU5mWlU85Ri3mucc7RN89pkZEbG56+b/38W9Vpb7EpTKpqiojEhk5OiaRzd/kB/6Hnz8VMu9x29H/mdH/4O/scR5wznJ6c8fusptq7pfWDnRz748DslN7hi1ToCYm+9XjSicbKax0/WaCfmDzEEzs+fMOzF7e78/CHrpw9Q1nLrQ5nGGYy2nL3xJjkmUqFeaqtQKQnIO4x4Janr52dn2MMDDnpif3VLUzlCLw5wjYYHT09wbcvVzZabF9eEacAZxfvfeJcffvyCz59fcLraMHQdwzgyBqlrgpVgvQcPz2QKGgLDNND3HUPfEf2IbRw/+tEP+dFPPuZX/tAfZ3X2gGEcuN6NvPvN75G15fnFJQ/XZ7z88mMO2ysePXzIyckJ3nu6ritOT4EQSoOYktyXLELtEINM5Y0+aieurnY4uzw+e7e3t8CdfbHREgg6DINY6uY7UwnZw9WRqjWbHFQFNJv/nNJd85GiBD/m7LFGIg1mmp6IxGHRtnfNe/h6QMXXJ3j7Dj8lJp/BR3bdgdpBc9qyPnsg3E/X4JoNerEkVQuSsvihhPUNHus9t7onM1ItlvzNv/m3+eTLl3z/x5+yHwbCNBGzpWpXtIUTrLUEs+iy2OycuzaP+YsAUWsZfSkt1ifjOEIW95ShWHrJlRn6PeNw4Ppa8aLYAM5CX1sGVoJiyNeDOgYlKQUqZ0Hc8t0pLnxMOVSUgeAnhqErr0+mPYv1QkK/jJUQP+eOlA1bcewm7yNj1ppy+M28LUudJQwvVxXdbsfkJ8bhllXT0NaWk3aJ0Rq7OiVpSwiROEZu+ldcPn/BT77/u6yXS9ra0rrE0A9opRmco20lDMzZMjo2IoZ1uSYnQRJFUFmRlDgfqXEviZdR7ITrZoM1hhgzQ47YxrJYLNhsHhB8Rd084Mmb3+LwxZ7e3jIdBoYR9HBgzJFoMurmFr3vqFzF4uE573/3Q0aT+c2/8xu8/e7bhNwy+IpxN9JPgd57tuMtf/AP/kGMVnz5+eectI4u1oRRsVo/LOiffGz7gT5Eqmqkaipc3aJMw2EIdJPQm6quK++/2AtvVhVhGgiTZ/Td3YHualpbE9pMxrBeSdp0iBFlBDGNOUGEauEAi7jDyGabkyRAa5O4uLrl4uogRcpVhzi1GSafMSlhTPjaS/bn8ip8eJTEkegslBS04nK7Z3Wz4vym40cffc7j8xVnpysePlqIk4+WRiFEcbeY3TJSSCiVsNqyWa4Y9kHonCXfZXZD8cHjCpJ4eXGB92OxvU386q/+Mo8eP+T8wYqmbcU+kjkgTl76FKJkOFgjIVv1Am1bUBWaGgpNSenMFAYCCmzF5uycul2CFtR6qUduvviYf//f+jf4yaef8cWzC65eXDMsHmD0nmUbqU3D1cULFs2Kxw/fwgfIUaGSIoySdi3pz0aCvZVFYUVLpExpNO4OgdlpBJnborUl5EDOSuijWmy24xiJSWMRaikqE4dRkoO14bDfYbSAPXESWgkxEcaO3WXH5eUlu9st3b7jejdysx+5fPmKs/MHJDQ/+ugzfvbpl4xjkH0pn/CTn17y2ec3OPPbxDDw1htP+X2/75c5P9sQI8QA6tChqKBKYvahJCxUEPuJmTYlgnBFipHJB2af+HGUCdacsaLJAi7log0aByS3SRPDhMqK5D3b22v8NFHX7ohw+pSIIUqyt884h+g7CpVgFu+GEEghlnyPcKTFzBSfnDNd1x0BiJwFAR2LRbOpiisVWSaZXUfOE8pYzk7WLFcLlssWYyl0HqHKhVB0NwiyPSPfIQSZyhBf88z/Rbus0sxAauWcOHwp7iY/PhByocOWpmN2F1OlsJ8bhblxsKWREOcyj7UKrSt5L9Ud9XCKgQwYa+iSJ2rAWeI0YWcthzYE7wu9ONPFktOlpEBcLhaiubhnvasAP4lI21gp7mb6ywxyzvoSe2/SNt/b++5kISZJFM8KaypiEibK6vyc9vSUjOLh0zdwzZLee768uCAqyBGaquHRyQmbhaWpFKSGMILVinrpGF1mKM35ImuUjyVVPGFMTSo23qqCB28+ZfPoIcY6kqnwIZG6HmdsYT4oUhyFITPr7WaGp4ZoFWGKDOPE4fqC1E+kkAg+MYYdGoOpLclH9ocOMwVxs/MdbaN59503+OTlLYtFQ9PWdCEx5Ei0mkW7YRgmYhDmxWKxFnp7d+DL589pm4ar6xt++Lvf5/z8MQ/eeI/Hb77B+Rtv8k+//RZ+8txc3vLkZANB8/xnz7i52LNcPWC1XtNfX5ILVTPERGciOufjc2ttcf/LGa0SVgtVbPSD6AK1ZrFeEHw4UuHmKVWKYqOPKenf8xTk3rRibk77oQMkZLhuarwXAyRB6SiBjUBOOGvJGZms5ESImZQVYxxRJbA1q1zyOUrw8tdZr193YY9jxzQlxikxjJH+cEC3DmvWNO1axN5VDXaBcTXKOpR22Koi+Ek2XOMYg+JmP3D15U/50cdf8OWLS14+f4ku04qqbl4TXs1d//xhzTzyLKNIMwfqZUxJ5kXlkgQto01bkI4jZULdWdrNdpgz0hAlrvWIlM6X9+aInqichQLD3fjVT+NxsUsiuxxixtq7125t6SQNWZnXkK/7aMaMes2j1mP81vz3Wsa3SWtcI0FCYVL4EFkuW+qmFvpDYWdbrYnTyNh1HPqOaZwIw8DU1uS1xY+Sxk5WskFF2QCMKmFPRmOcI/p0FFAuN6bYXqqjQ4LQADxVjsUSMGNMxmpFU1c8fPgInxU33cirXc/D9z/gsLqmv92jbw6kztFETyRSG0fjHM4a9rtbPv74Z4SqPBNVBcYwhYhPipAUPiqGIeBMIws2ZqxRNLUmGY1xCD1KOlQJvilhijFJoKA2TowHtCEEz/X1NScnG4STH2cC2FHPUcjwkrZrHM4JnzuFUJouTyKCjpKl0VS0dUuKipQ0KTtSVPjJ0/URa7WEFiZxSjMZtE5iQFBocfNz9ot6qeOBPY9byyGZM9Po2Xcj17cHPv3sOW31Fpu1NL1a5+M/kZHy3SGbQmS2y5mt/cZhYBpHnHVid7xYEINBIfzWfhhJWdCc5WrFOHlSVtR1WzZ/TcrFRUMbjNFkXYLijMZUThoMXQNS4B/5SSqRVAarqZqah48fEzF0fY8xlhRHut0lfX/N808+4bAfMCHAaKgXicZprAr03QGrHcZVLNenKGWZhonoPSpbxO63aCugrHbDa3qMe+/0Ha1KLH/ngENx7YrFISqTg6xf8nzozwnESpKilSJkQw7FijEl4jSy395y2O2ZxpHD/sD2tud2NzCNgcknphB5ebVnOyi8V6SoUW7JEDzDJOF9YTrQdZ7dYeLDb77LcmFpas2yQfZ+OFItUozF+WvmDEtBryhUukloQTHO6euyJwudoExjynuXU0KZu6/RyhDz7PAj7zGqJDsVV66Y7t75Y1NxtI4stJrjz7ujwhzFnindUXLme5XvtBQpi022YFm2BOzJ+VPX1T3tEOQkE6oMpZAQCvB9a1R5fRGt8y+0JuNo/frVz7WRe/0VmqAqhX+BD8Ua9t57nlIizhMQM9vj3oF+Suvj1wmmqVDGEIsORmlNjOlIp5rzpmZ756RKo6jNcXIBHOuMmY49T1pSmbzeTwafKV/364Svak3m10ihx2nn8CGRfcBHCenT5Rnuxh6bxdDHWsuj80eMw0T0kW53YLPZlIY78vLlJY3VLGrRKE4xEbPB+4CbM0gpawVxaQwpop3DWVcosbnQkAUcUkeeiawLbcSi/06RUBLUCi2blEp2yazDQqz1dCaNQcIRQ5Q93yiapiL4hsPhS8Zi5BBzQluDyoZszGtTJK0tYRwZvQctOTdai/FC01SidzUa7yfW7Zq6qslRUzcNDx895Vvf+h6f/exHJDXIuWGd5CeFSBwnAcZUPj4jcv9kkqBN0YIVyn4szp51bUl6Brtfn3bN08kErzXN96lzlPdPmo67n1kePtHQziqQIy1w7qnlTsQ073v3nrXjuvjKQvsHXP8YORk3TAHGKXFz05F9oDEbmqpls5BkYu1qsmlItgSeVTUZRd93HPZ7zOKMUVVc3+z59b/61xg8xKRYtRVVvShCX3e0elNKcXp6ehwBVZVDcdcUzOMfkJFR09RSEJKPY6F5c50XwTiOrwXgOOdeCyuaeuEt5nncmO78tcXSTmG1ZqVWZRO5E5kdb2wSnu7ced7xe8sGo+RjFuSAjMzmnzdzaGc/Y53u+Jh330+sExcrQ46BGCa215dkU6OqBcPQkfsOrYpAJ05Mw4F+d4sxlugHRp24BVQ2ku5thLYSEqhYNmTE1tFWhhQCo/fEw4GzJwZbVShlCV6obTlrYsz44PE+ElISTjuRRVPz/vvv4Ul89OwLlt//T/mv/xf/y+wurrh9eUn6+FPcfkkKXkK9FDSrFpzh+z/8Hf7av/t96vWSX/szf4aHj5+QYmQ4dOiqQmVE9GtbktdkY2jcipRuWSwz1mYwO4xbYU2NNg5XLUuTZBh9RDuNdQZjNU1Ts92OPHv2JXX9DYwVH/U4TKicMBpcXaNdhazNQDQ1ptJopdjvdoQ0knIgZk+9sJycrnn8+CHrzZpxDESfMXrBNER2uwOvLkQAqIwlodnv9rStPNvb7ZbFckkMke5esNMv5KXFa37e3AxljabEmBXbQ8+LV9eo4cAbj8958hj6vmez2ZQCyqPs6/xn7z06Z3KsscYKynR9w267pV20PHr8mEePruj2E9MU2W63pCyuQ+M48ta770rDGlJpNCMUK93KWCpXYSuHa92x2MQa0EtytuRc3MgK0pOAqDOmtiw3G95fPuTHH33Gq1dX1M2KcX9gSmKWUZueTeNpDaAObBY169ZgsqxXXy8xzvH0nfeJU8/2ds+TJx6tWoxCCuA8l8r3m4z5KodLoUxpxNtdGSMOgKYkL5gsplMZYj+VcM5UaFiQVQERciYET5wyTon4OKWIH0a2N0IL9dPE9fU1ry4ObA+eZbvg9vbAfgi8uh54+o1f5vbmmsuXz6kqhSWgciDHkUqtuby44rd+/T/mRz/5iG9+403eefsRjx4uMVaa0ZSiFC8xkmOAGAlRuNWUoKkYRT8y+QmtNFYbAUqyWM36ostR+a64kUN2zgUpHORc+PTl45ibkUW/o7TY4wJHGs58rtwVq/q1c+R+gzG7FIEUCF3XHafYwyS0KpQ4YcmhL4COnHUlaA8wWpxtYoj0/UjOUZ7fqjpysodhIOeEMeDc1ysQfh4vre5sQWdk90hRKwU6yHuT1F36cvrK97lfpMcYySkXDvrdfTw5OXnta7Uk02GsOWoilRYHNl00OLOuZmZHJCX0JWMSp8v1a83o/HVSVNavPT/3gZR5mlFVd3bI8+8/f828F1Z1jaslLPh2uyelzDj5I210HEd+8IMfse9HjKt58PgJ33z3Q7Zpz8X2io8++ozlySnL9Zph6vnBj37MyjlO6pbBDyTrUHXDuO9wJwu0k/TrqR8FwDCGQz8cs4u2uw4fC+NDy54hesZAZaujqc3sWFc2NKmHQoAYWLSO/W0k54DW4OqqNB4BHybyaEAZ+n7gZNVidabb7fjss8+4vJkYxkxC07QtOWf240jTVjjm15PZbrfc7vecnp6xbFs2i5qzkyXf+OBdcEv81PHy2Zdc37Qsl2veevo2h5stj954kzefPOGv/78Un3zxE25v9qzWJ5wva6ZxJF5csC+6hpkOOU8nZgE4OZNioLKWcRyJIYJLYkZgDBhF13UCxFcVq9WK3W5HDIHVyQm7ndAfq6piHMdjnTg/H/dF2/N1pw/SR33jUa9hRK8xP4vTNBFTKkC5RBKor3bz/4DrazcZL6+27A8j3WHicBiptKZtKtqmZuz35GkC63GtKdSBkjapNMvlhvX6lDEZPvviGc+fvcArh2scq7oR7lpIMs1wtVCKZl7ZseuT3rauaukOZ/Fc+T0XixZXlTHcV1Cl5XJ5tI6bpwn3G4f7zURb13eI6T3+5nwoyIMiXtVyQ2YBVxFDlunE/O99CGUEOnujSyFqtHnt4Jm5lvNDpPRdcqmPHkm/lu/fVpWgrQjyEoKILTOKbT9w291werLh9uIZU+GJzqFNi7pCKcXN1YXwkpNntVzz5MlTHj15jKsWGKsxFuoGyBFVHpQcfBnFZr788hmn549ol2vqaomavd+NJqRESIEQI9kngjfkDG1j+aVf/R6ffv6cv/o3/zp/7W/9LX7pe7/Kd7/9Pf7cX/pnWSmLTaBC4ouXzxgIXOxv+Fv/wb/Hd77zDd5/722ePH2E1RqM2DNe3d4wDs/xacujpw1X17+JVQu0tlhbo7TBuURlG4L3hJBYLJxkm+iKkDXZKVzTYqqKECaapiVGSemcpgnlpZirQiILaR1dLzF1SwiJaTygbEsYJlScqCvHyjVoC9okTJVZrFqs0Qy+47vf/g5vPX2bk8UZz59fcnFxyxfPXvHx51+KW5GztE1NP4i+pqotzmkgwvjVo/IX60qUCZ2SKZ0tnM8UhDaw6zpUTqzdQ15e3LJeL1isFHVbC+/dyaYoqaoZYxzOKbICP06QMmGa6PYHiGC0iLdPTk55+eJnTKPHuor1esVms2G12bC93ZOCJGH7SVzarJGipala9DGbwhRdtVCSEhWyMmYe3t0VY2S1XvONb3/IxbMtKX3Cfn9gYS234x4InNQtT98+wXsRoF9e7Tg7WdJWhsvnz4g+EhP0U2S37altwtXmXtqrWJd+dSr0+pVf/3wuqBGN2nzYU1nwiewliTonCTLNx++rhFPsxbVJpSjZOEhezG5/KFlDnt12z0c/+5hdB5PXbK93vLjcEnTN6tE7/Iv/8n+Dv/ub/x/+6v/j/4qrDWEcSX7C4LFtxebBmrfSW0zB8/mXl+x2B95795yh6zg/W/HGk7NCJwmy940Tu92BfhjwYWQ2sWiqlnZRHwGjrhvQRkujEiOjT2TEEcwZJfu0c7iqkdwMHyBn6uK+NXQH/CgaFIWmaVqmYWLQGaOsBB7GCR88dV1LoZAy9T3EVKhbo1j1VhWH/f7YBMwCy2maio2uFIdKaayrS1ErQs+qlswUrcVKGUQoqrUE2OYcmO2L56K3bVuhT/xjiDZ/Hq/7Qu9Z2zK/f/eZAbNN5/xnskyajTVH/cbrjUZgNwxi+FDXx+IKCrKeEpWVQOBcbG11Oc9Dvpsaza9PzvWArR2np6e0TcOw715bkXOtMNc5MwV0BkLhTncxMyK+mq3Rdd2xAXHOSVhkENpY01QYa3BVzcc/+ymLZsFqseSXvvkhxjZc3+747d/9AX/l2QXf+PBDPvzud/nrf+NvcPLohJPzDev1mr/wz/4zbL98yc9+8FPamFk/fcz6rRNON2uyhaiKs1ldQZIMGWsqfMylVoPlciFTzxiKq5NCYVitFqLLyxCR9aIAqw2LRc00jfSHnlevPsdOe3Ia8L5DuUxOnjh5nAKrwTjLenFOCGItjDU8evyEQ94y5I4whmJjm2kqhR8HQGNtxTh0BB9QiPbu+voCZ0548OhdtreXPH1zxcOnj1CNZXN2hnEtl1eXnJ+doVIi9Ae++ft/H6vHp1y8+IzPvv/3uLi6IfoBlQIVgZTmHLjAYrEQLcaxLjW0bYtS6k68H0KhVia6rmexWByfk77vj43Kfr8/Pk/zGphryrlxzfeez/l7t4sFsWQKzWtottAehuGo6ZgbjbkZjlFYHUb9Ew7juzlkhlERsqNZtawXFavTE7KGburIWJTJ+FRhcZiswWhcLQW9nwLVak0/Bq5vd1jX0LYStJeV4/RsdaSvzIvvdUcICSHS9+wHlZ61GJRx4x3iP8en358kzN/rPg1qfmPvL+BU/h2oY9F35LtBEYnffb8YoxRL8g3FcalsdlW5gUYbOZTLjckpvtZE3X990klm5uROazWh8OTElx6O4lOdUdZgWrGnndpWkB1rQQsybpUuY1sRNuaUcXWDcRVZJZYLESbudge0ViwXFYu2AmWZ70iYVaRKkmUP/Ug9TNgqUFcUTqXQMMiCUKOliZqCiOWmlPjVX/q2pBwPP+LVxQ2ff/EpISaGIWBCwmTBYreHHUOc2I8di82KBw9POT/bUDuNn/akPJFVT7vsefTkFGuXXL76FKs0TX3K6eoNtre+UGQsMchhoI0Ve05tUNZisFirSQoJbZtGJARO3FhmlxCQbBWFEZqUrcimJoSRYfIYkFAeo1lvlthKEOCQPKjI2EWG/pZmveDVi1uUd+ybPR999BmXV7dc3uy53Q/lEBQUQbiRQnrzXkRuIf5iNxlkjTEWZy1t0wgtMQSmNGBSIMWRYUq8uLrhixc3rNYr3v/GQ6bk0VGD19isSVFBloLRWKHtoSAraXAnPxHinSOaII8aW1WcnK4IYWLfHYgJzs8eMnQDh33H2dkZZJneOVOBkcZZGyOULGUAA9milT1Sd+byvhjJUukW1Zyg15EXX1zw1luPMUbz/d/5Ae3mHEUghAHIMhkzitPTFZvNAoPiMEIXK5osRY2KkzgLJcPofQnHvKPqHKkglHA8BTMvX+UZHZRnESIqRzncVSaQqZAww1xr1JjkwI9eshmUISEcb2Ps0eo3DJMk2hdKw8XFK15d3PD85RW3+wk/KWIUS+xhCmRjid7zt//mb/DFF58AIi6covjqhzhQFQ1TUxmS15AdfjIMPaBrsrJsdweinyCloneYwSCheuYYCckTo8bau31WWwF2hCIr6zpl2c+0WFiRcmYMU6HCyJkSxhGfo+jNbHUME5yR15QyU0gE7ws1q1C5gjQpydxZmgrNdz7PiquMFuZWyonJewlS9QHjKig7cCiuLs5aEcgWi2XR7QnXWs5EmazmJBQvrcsUthQIzjq0Eg79L+p11GLdQ/G/+uf548gIyNI0y7owx0ZgrgfMkcbJEeT8PZdSuKo63iepUaRnuw8s3ne4mtdlCIFxGI9a0fvuUrOpzDyh+PvVBDMbY359s5h8/vv7jZXQuiIxJVxdk1PGT2KMYI3GGsvNzS1TuCah+fDDD7ne7kFJOOTp2RlaO8YhYtNIWzVkbbndHagXG+p2wWq9kWLVR5JOZJ2oEFtVCa+MZT2Kp11Omazn+5OP1LScMyh9pPaRcwGQ5HtrMrXRqMbS7zpi6Gkbyxjl98kxoNFUzmKcFSps19EPAyFI7IJoABXOVUxDL6CKTjhjqApom3PCGUttI9PQYY3CaJimgVFn9rsb6sWCx+vTI2W6bRupqRR4rTh4T1AaUy04ffSEq887QsziXGYyEU3Iou+VNSx70DSVqVQs4FG5/0brYsktoZx3LmVCC14ulmQyt7e3xyZgBirug/P3a+mvUvLn6z5LZv43855xf13lnEV7BJivOQz92k1G5x0xG3CaxWrN2VnL6rQlEOimHkXJaGDEmUmKt8pSlVHMME6cnzf4ENl3Pav1hsV6jTaOaUosNqfHUeOMMry+2HIZPUPOimxkYVljCl9dbLhmPts8bowxHrmb80KcpukoAruPisyUpRDCnZWg0Zhs725Q2ayULcEr89jTCN9b/p3Y+VaukofbWpTWDH1/h3Dku3Hp/Y1yvuYDqRCWSEm4js7dWR5qlVAZnDFoV9HUFal0sF3XYVwNCG96mkYZf+Uybm9boQc5WNRLtNLs9x0+jHi/IMSWTF3SLKWxchoobMpxCoyTp5o8i0XEahFGik+/IL7ayP2MORzTcL/7rW9AiuxuroiTp9tf89GP9/zgBx8xDj2KLGmglSwCazXvv/eERw/POFkv0CT8sAPVY6qRk7PIB998zHpl+Dt/+yfktGO9rHnjiaSddntFmAwxKuqqEuGnNkcurVifSvGTvGcaR6pa0K/lcskxfVMZ+j5gjAPryLYiakfIkjDsjMJUFmcMJ5tVGTdGuhFi1HSHjkN3YOUNn8aX3Lzcs3aOH/3op1xvDxzGQHYLQcmLhkUaW0hJkWaHnPCLjUKCwRpJpl+vVkK1GSex6Y2D6ClC4OUNfPnimtOTjUyLYmkyJkOOlhSBrMUOW1fCD1VStKUU8METYiAkTcwBHwPGirPbarPg1as9XT/R954P3lcc9h373eGYuaPL65SesozzlaBv4uAktrVfXbcZUFnjdIupwCwjmcBbbz3m9OSE3/yt7/P06Tuo5Ln48mOCH6X4SZnTkw1t2xB8oveaPlV4VYmFcpww1qGQJmM2nch5bmwo043EkfckWcFC8cqC/OX573OUZHoyEVBJaAPKaZQTLVGOHutqlDJoJe+rmvUQCcbRo41QGGLwXF1c8OLlFS9e3XIYIipqSNCPscQNZMI08P/+q/8+kYhC3usUImGcyGFg0gnyrL+osLqC7AjBUlVLrKvohx0qelSSqUpkprgkEpqYxFt/8v3REdBai7GGMMqhrbQE2wnootC2TGtykoJdSeOqtSYXVBijWJ4spcmIxdUMCpCSmMYJlYV3LVaZgiDGdIeu64KkSzEmqKqSb0ImM44T3gdizNhKKCCCSgrnX2yVXbGaFHG+MQ7v43Han/M9bUh5JmeQTBBlVbjtv5jX/VyI+25c94Wv93WdWusjG0EBUcdj4TT/ndZCSZkp2Pf1m1CKMO7Ay2mcxAmpvMP3LWaP+RzcAZhhDg4tqeuzRvP+tOU+lx5ebzLu7zPOuaPL1UzBmX9PocQJgz5lsZiPhU5trYjKs4JXl5d0o2e9OeW7v/wh9tUFVdPQj54H5w8ZR8/NzRa92VBXLQlD0Brqhmq5ol2tGKMnJKGDKZ2JRiZ8KcMwelKcLVZtea3SWCgFxmqctaR7Whap8lQ582QdqpyoDLjWsQ8DMYw0lWXqZ1fNhFEGZwxKa8ZppOs6un5gHD0ZSQ0XEFqotCGMuErRtDWLpmXRLMhIM5CSYRgHmtrgrGLyA63T9N2O3e0Vb779DaIfUdqxXJ8wRXkuotHspxGfFapqWZ484OrZ5yQUzmicdvgsdNX7Bb61UpukmI/gti56hzs3M2nKtJp1GRlnHacnJyil2O12x2fpq9f9Wvi+OcB9Cuf9r1VKkUo9O2cOzdcRrDEGTUbnr7eHfO0m48k7v1wWQSKliWqhSTpztb1hGA+09YlY2S6XHHxgPHQ0WOo6YZSmqRuC79EqUdcV7WKJqVqUqXBWcXl7YNlUrBYNULimedZMzFQiRQhjQSjurL5ySvjgMaaSLrEgHZI+7qT4v0efssYcN141b7g5E3yxrEMdLeFm9wfK1+ckegFbfK1jjLjCe52bGhEY31EoQhIXEwr33CjFYrF4LYb+ficp4yzh6s3TlaqqjnzKGXmpKyu8dqWxWtLFVUoSFEZmsdocG5np3s+6G7kmrEMmSsZitcE5mKaOV6/23NwqTjdr2rqiraRRUkqRlehjhmkg78HWsDQnVKql0iL4r53oNQTVOJCipK+r4PkD3/kmv/T+O1xd7vi7f+e3+egnH/PJJ58CnmAg1pZ3nrzHH/3VP8Cvfue7VLVmCCOTHzncvGLsX/HkzRUffPct1k8iU+gYpy3f+ea3aBay8Xv/BU/f2XD1KrG9zFj7iKaRyVkswt5Q3Eia1Zpp9IzjgM4yirTWsNlsGIaOmKRYaNdnKNeIY1cUzYmrHI8fnfP4fI2zK5rGMg4DXT8yjJ5hCPiQ6PtMt1c8u3jJpt1ysmh5enbCZvmApj7h5jBwyKaM0mcBmAhm+17oFTllEcH9Al91U7Ncr9isVjx++JBpGugOe2Ka8GkgRE+aJqxteHV5xWdfVHz+5RPerZ+isNiG4oqUZJJnFPutUBCa9k7YqZTi5uaa9dkTcsr81v+Xuj/7tW3b9/ugT6t6MapZrXLXZ5/a19dOHDuVEyVCAREJpLwgISTEA/8ByhtCPMEDLwghJRIC5TlCQSKiCgoW4MQY28TVPb6nPrtc5SxH1YtW8fBrfYyx9rWvtyPHOrsfzTPXXmvOUfTRe2u/3+9b/Z2/y0cf/hhF5ub6mr7rIFtyUPyt/9/foqoci+WCcRxZLo+Wo0prQa50uZ+LnuqbzcU3j5iyZBa0C56+9yHdviex41/+V/4l/sW//JfZrh/4K//X/zO/+KO/RRxHnLV8fPacr97u2G73PPQZj6adz3n+3hOGcUM7W9LOhDYmzVQkKc3oPZaI05ksUXpIaVmsr3NkEhmq0lpM4mWUpnINXbcTB5lJHKoFvXHWEpM/rHmv7+8xCqxS7PuOqhYKxN3dPVPCdbcbCEHWwZAVX71+QVW3uDrR72/Z7sQ5qaorbrc3+HFPjiNGJcmrSFkK/QR13TCfN8zmLWcXKx49WtK4K7Z3b+m3G7qu42G9ZbMbCSmzPD8vw6JA13WHIlKosabYgCaMlcZDJUgKnGsZRhHIyuecSTERRs+sbenHDh89s3ZGCJGu6xiGEVMm5WJPOlBX9p3shpzFwrSua7melDqYmYBMpXM+7kXr9aY0RY5h8EVcLnbOVe1wTmOdPryX4D1N02CtLcGgO5qmwQ9CyxqKs+JEExZqjaapvl2Q1u/jMdFMpv32dDo7uXhN9KFTrrkPMuxK+3Rw+ZoQhKZpDnv6oUkojAhfrE33fSeUFsThKgxePitjGNJxXZ7479ZZ2nnLBx99wND3dF1H6GUfnjSa4zgeGobTBgl4pzCcHneiwUx8+qqqDrobYwz39/eATKJnszm3dzdYV3F1eUFMcH13xxcvX4C2/Et/+V9jCJH/y1/5T/m3/hv/Tc6vHqGN5f/0H/9H/LX/7P/FT376U/7d/9G/izOW97//Me999AF/+2//fR4aRWNCqT0MTgl7YbMdiwWrZehHtDY4V7FazUkackFVm7qizGxIUdgaKI1BMfojNd0U6qDv9tDvWLSWIRu63QPWOkwW5ETXC7qQGMcetEXZin2/5ouvX6K0JWfFOAa2+73EHiwamspwcXnBcrlksVjycPdAigMqeT56+oj9uGU1q3l0ccHzp8+YL85oZkvevnyBanY0i0vsbEEfoWkbzs5WPPvoY2Lfc//2Df/JX//rLN0CVUfevP2Sx5eLgoJLDT0hUXVdC8VJaSpbEfIxqNN7j0EVsb5CFSoZKHw/8OblKwDapmGz3R6u19PGeKJjnQY+TvfKOAwHTcYkHZjMjU4DLqcG/SA4Lwjttz2+dZOxWLal0xIXkrpSOJ2wOTOrVrRVw6xWXF619DExxswYOyq9lA9eO1KOmCKI1hgpjo0uoXBCGSB7nKVAz5KGffQe11jVIOIgICH0I6VBQ6WdXLmlk88nHsCmTPRRx2JeaRH3KXuEOlXxZQ4hYdGYKU0VgfFyoU9QICVXHD6mD9YoEV5OHWeMJWDGGJraHXysJVFx6g4hxnxwAAjBUxtdEkgVzh7dtVyxt5WdqTQ+SBZGLBv01PlWdSWc65ypm2J/ltOBPqKUwWoRSKYi7lTK4mwlN/gw8PbVfWkSLZeXK+rGCcqgxFMcerqtxekGlSyKgLES3KV1wrgKZ+bk1MjkL2VcDFTNiLYtf+Ev/XN8/4ff5/5hJ9a/0TP4nrPFjIvVihR3xOyYr1qaZLnzWy7OKi6fO86faILacb++Z7frWc7Oub+5FVs8lTifW85XLa2ZoZXBtFaoZWiULnSHmMn7Dr/bMOz3tG1bRMSJoZdFUSN5DlhLUlKmaeXQSq6JgOLs6RV57FEx0A+B27s1u26gGyMYy+gjfQZypPc9qs/YrsL7deGjStKyQWg4MQeGvmMMIzkFUoy0zYzV8uJb39y/j0c7m3N2ds7F+Rnnl+d0uw1KJfphR9dvpaDNif3Qsd7uuH/Ycb/uudqOODNSmVrsVuPUaKjDhH02WxDjisViVgoyCc4jJ54+fcrD/T0heELaFW67xdmai/Pz4me+e6fIkI28PqFKlZ3xhFrxjzqMNsKBUYbHz97ni999Rtf3fPLJh/z2N79hs36gmS+4fPwB2/Wartvz2VdviUlsA2dnV/zg/Q84W7a8ffOaD67mtLOa+aIRxOZks5iaipRjuVbzAdWQlWtyURJaAjnL5EzMXrDWsfGByhpcJRa31tii2Yj4vpeJorNYI8J9pSj6GFl3un5g34/suk5oaBlCiIQIVVNLj5YDKnZUaoQYyIMXK0edUcpQGYPOiO1jiMzaVlLFdWK+nLFYLlgulzQ1qOSxRqMV7PueNitGn9hs1szmzaGwPp0ChxAOfOe+92LzWTzj8tgXqUtm8JI7IRbBkd6PsncVmoPiWPDpYoEeQzxYj4eCesBx+nc6TTxOKGWdDEH0drmc16mwlNRmoUFVlWTEGONo25qURes3DZ4m7cBsNjsEZk2FyqTz2O/3tG0jyDZ/cur5XTlOdZKntKbT8zuxA6aQO+89rgwOE8eh4TFXQM77fr8vjd8xMdkftEnQ7/fkDGEcWSwWzGYzmqYhpfSO4HbitFtreP36tezfWnN2dnZAVCb+/SkCcvp+JsbC6RBy0tbA8To5FYHXdU2MHkEbI48uL/Exsd/uUMZwcXHO+aNHrHcdv/nst4SYefTkMSEnPvv8d7x+/QajYb994De/+Dn/m3//3+P546e89/w9Pv3+D3FXZ6xToHvzmnljmVcNja3EiMAoumHg9m7D0I8sFwucs2y3O+p5jXUWZw3WIjVaFmclWapkCKtUsWVVmrHYEcdxxITIfrth2G8IfsS1DWCIWbHf9wQcPmt6H7l52LLZD2Ql536z2R0m+Jfn57S1Q8VI8onNekPX7WlcxdXFEkPGmMQQR4bthlcvXhBCBt6itOPxs/dJZsds1VMtzlhcPqKuG5qq4fmz94h+5OL8gn/73/nvcP3Fb3j1xW+4ubsB1wqVNQYy6WAm0w8dVe1QZa2Zrst3dRD5MGif1rJThCH7TF1VByOC6fdzFgOk06yVqck4Gg0cNRmn98Q3W4hTEyVBcP8rsLCtakcMkGKGpKmspqoMTWVp5zVNXTGbtTy6Wkmqcszcb0dc7YiiDmIoH7RzQq3STD7WAp+ZojVwzjCOQg/SGio3BRspnD66MUzQEoA1JeGicJW1UsIrZiIcTcVBxtgT+8syEYApZVMucGuscCfL+xfnmIl2ZUjxXe7bO7BqOvmIsoB1ugj2ktYCr5VzcfKDBf0AOLE2LPD74evARxVxV0ZEV0crxWPku9IcRD5oU1gShcepp8ecSFkZVEnyVAqjrQTXdR5yYBy88FHJZOWQiBKFjjAOY0nFdRjXoHUiqyTFjlJYI1O8XNKwdQwY49FaUTcNT55GhlHcdmLwdN0WnSMpieViCJmKGq0zxiXOrxrmZ4asBzbbLettx77zVLVivRuJoad2kXndY2xN01pC1OJK5Fz5jKUJJUpKsXTnEUUs6FZkHCLOVaU5VTLN1hMHv3C6dQAU7WKB34Hf79jte3Zdz64fGANgMyFKI6GtJmuFz4md93R9DyjsZENXBuaxpPJWVmHqplixtiyXZ9/2lv29PGbzBauzM84vzpkv5+Q84oNMaadrXCkIKdAPnt2+5/Z+xwdjwnuhpOAsMXpSDie83oTW0LY1TVMfLAcnOmPbNKzvHhj9gNIBV7nDfdKU0CvFkaMdYyzWwebd5mJK1f5TkAz5UQ1J6C7tYknVNBjnqEzNzd09Q9/TtDNW54/IypFwdPsdSWmMdSyXKy4vL6mM5PoYuxQEuK3w+nidTGYLqqydWcXScgiSkQr6LAtZWSMmGua0VhpDyko87jnadsq5iOKcQ0IZfWgytCrWiVmcnPphZPSBfvTsu060DkoVXYOR15ADOYIhTCIEdLZoJcMia0RcPqUKG2tK7lFivmhp2oa6aahqqNuZ5C/5sYhdFYlINx4LvVN3lfJmi5AxMwyhnBtZ92Jx1QtRtBUypJJGKRfqrFVHxz9Zl6ZAQA62o+RMyokwTaWnwulk35rQFRlATTz6/E4BkLNH6Qo/epSGuplyFiSAT8xDhDI1rfFaa5qmYUiDgDHfKDhCCFSVw6sk/O/v6DHt/ZORyynd+JQ7fko/koJW7lsNh89uepzReyio0+RMCXK9hKLjERoVhz2ysmLRao0Fy4lbkC52rvL83a6jbmqauqZp2jJAje9cp6c1zTePUyrVxEw4LTan6/zAv58okgXRkGC+wGI+wzYtGEuI8ObmDmMrPv3ke2zXG65vrrl5+4bLixX7XcfN29f8zf/vX+eTDz9mvd5gm5ZHH7yPTyP7vkfjUEGRHCgs0Rh8gH6IQo2yYv09DgGojkuomgbh+fjnw38f6zTZZRU6K3II+HHEj6PoAbQjm0zWgRgSUSuSMkRg33t2vWf0sWhDIilmjNK0TUNbOcZ9hzVOrHO1wlpFYw06Z4ZuQy2SYmIIbLcdKIuxss4NITJGxer+nrOrJxJpMAziwtnMqOuGH/2ZP6TWimHosb/7FWPOooPLQhvTWhGzOPNZW0MRyesytCFnTEE/p/Ux5ak5nahO0i6nRMl1Oq4v0zV1uu58U5chVC1Ze05NECa63TePg94oU0J0/ykLv60VLYRo3TKuqZgvah5dtHz63hPq2lFVjuXZina5IqJ59fae9T6y7wO7/ch63R06cWvcQQU/DAO1mdwyzMGWdlpEmqY5nCzLsYOfblR5ffYdcdS0+MCxAQApruvCuZ8mPBO8nVJiHDzGSHjcbrd7h7cm0whDVVnG8SjumrrOg3D8JCn0NN3zuEBMN9u7cOipYC1GT0qBGPU7z3PQcMCfWEyn58o503UdOYsu4FSMBkdf5Wnhda6SqaBW9P2AsyIyqusWnR3Be3wQ95t+9KxWM+bzmrpxoCr6cSRu1sSMuDQZQW+Mhhw9dTVHa0sKmXH0RUhrsc5RJZnoLbKSmzBFUjqj22/wQ48fBzb7DeObtygdaarA++9dkO2eF6++4vOXt2QqtKl52EioHxis09w87HDK4WjlnNlKmiAlQYEhRULOJB8K5U0CzLSSQKNhGFDGHahzGEsuwt+UhVIXc0RhqOtWEkpj5s3NDaOPiPWkpR89OYujmK3mxQhAM4SMMkL5i2VakVUvhJY0cHa2YL6Yc3Z2Rrcfmc3mnJ1dfttb9vfyePT4MU+ePuXq6pzKQfA7hkHcsxQl+8ZactKEmFlvBz777DV/8NMfEYNivd6yWjaM3stkunLCB46Brt/jrDjeLRdzKbazCJP7Es7njAUVD+5WutyDq9WK8/PzA99ZmncZsE1eKJKLUoTf/MPpJhNRSWehFWIqIPPo6TOMsfziZ/+AD957wjic88WXXzM+fkIzX3F20bNbP9CPIyjNxcUFY7cl28ysUrjaUrcV7bzBIem8xkjarnEVaHNoLCbKXUyh+KRTJrIiMpcgw4qU4+H9GNegjCKh0VasOFMQO1idEqRAH3yxL8yFjjlnu9kwjpJqK/eMZ73bg1vKPZWl4CLL5qRJEnymQRnBYKXnV4QIwxAJUdBZtCIpyZm5fHROO5th6xrlZAN2vqVqRgmZigmjI8vlvOR/5MMeIeu3o66rQ6E4+khSkZSONrV+EIpjQAJcU8qkkLG57CfJlIZChL+bzYZxHHAYQnmPRkkLN44jTVOXLIs/yX+etIfOyWOGEAuFgpJenmlnFV3XoTSszua4SmOsQpFomhqylnM6DZUKfcgaKwOoUnServ+SBRUJvvuv5P7+Z3HEGA/p15O4e9pLT52mhmE4nHNdhkMTTfo01G673dLv9+J2V7KUJqempmmwfUfla1ZKaCoTiti4ijR6dsNI4F1UYTKcyDlhKxmA5iSTZV8oUlPtMT2XUurgGlTX9TvOUxOta0Jlpj1fGsejW6bWGlf2lJAiNzc3oBRV3fC9732P16/f8vbNLbZqqLPh6aOn/Nv/tf86/6t/798jkXn2+Ipnzx7zu1//lruHewiBm7YVBy0f+Hc++QSsZYgGlTPb/cAuedabQH22QqmK+fwMo5JQB42inVUlzDjT9wPVvD18ljlP/yffjC405uIa1jYt1vc83I0QhXrvrKNp5pBqgnOM3YhSNWBwFsas2ewH3tzcc3FxxX0XSese46R+yzGz3+z59Nn7LC+WNIuKu+sXpH7P2O3Y3r7lyfPnLM8umJ89Zjtqrh6/x+WjJ/SjZ32zphvvMV9+xUef/ID9Zsfd3R0pRq4eP2axWlHPz3j/kx/hQ+Szz37Lqy9+QaU9bXWsVaeabTJnUJR12vt3bJBVQZbHMZKQPI0UZb1IOWNqsV2fUt6Xy+Xh/KaU2G63pJQE5SxD9QklgdOa85gmf0BVTh5n+q4Km+PbEqa+feI3UFWWpq2YzS75wffe58nFimeXCx6fz+j2O3a7LbqeY5sFzjguc0W+34DZ45OnHuvDghtypJ4JZ08bjXYKo6WrnKCc0xM1vblxspMtJ2NqJKbv000+FdJKKZZL8aaOKRKCL+Ijdfi5CVLVRXRrnT3YeJ1OQ1JK+JyI0VNVR3hpomTBu6p9pVVJLdcHatboR4I/LnLTBjHBVVDQElVBoTadinUOUwylcMUGd5qUTfzTw4ZyMt2AYxLtZPuntZbwwUoRCw9aAX6MBGJBcUQwqYxj9HvW657ttufq6oKzM0c7U0J105qu7+hffs2jR8+Yz5PQiZRmyKBNhdEVzlblXWaGcYfW1SFkK0YvoVIxY20FKJmGWM1u/UC33/Bw84ZHTz3Z9mzHB+azx/ggWNVstqKuGhQRZyMkjYpLdFqQgiOXpG2x1hNb4JgiY/RYEjonum6Psg5jHYvFgqqZHwL7whhAl0CubBjCINPUJBSJr1++4sVXX0lAYJZwRB86jK1wJRE+Goe1gsqFMIpYNQodyhppcqyFj7//Ac+ePubsfMXZ+Tl9N7Ld7Hi4P9rVfRePT7//fR4/vuLsbAF5AEZ8HEhvZbMUwXEC58jKsB8jn391zd3djsoaKiup58MwMPhI1LNCEQgMQ1/8vMUm8YsvPwPzTJzTHh6o7BnOili8riuCh7EfeHh44KuvvqauKz753kdcXl5gjcW5qkzjJwRDfePrH3Hk6Zsuf7S08yWKzJPHl2zu35JS4sP3H/P02VO6/ch+27G+eUvlhOYlg4wNioCz8OjJI86vLpgv51zfXwNRptrWHq7JTDpQpyR0KZDzJNae1o0irzQWkzW5WGHX8yU5eoZxYLfZsFieUzs5r1YrUkz0fU/tzKF4d84UhM9xdn7FL3/zJQl49PgJt+uR5XyBszV3b99KwRczWRk8GaMkaDKnSeiZCT4Ss9C10KCMYr5oubhasTpf0MwatLX46LF1g0KCPod+LwYOpmfXC+I6DWCm9XAy+5hEvnVVoa2gN0mkIChtqerAmJPkYXhBNWwS9N01rSDARr+zEU9mGypHXOUwStPtpSGjFP+n+RfT0GzK45jSy4VuI5lPo/fM5mcy+UThnMY5g3MGW2lS8hhdo5Q+7CUTZSccwviOU/JpD5PzkA6F3XfxSOlYDE2ow9RUTjkSXdfR9/07HPSLqyvqusY6h3WW/W5H13Wid0xH1sI4jkyZWpvNRoSuxmCtQchrMnjo+/5gKJBjfgdV2e/3FJaiZM+EwJgS2+2Obr8vepog+ziIccyJlf5kXxqCrHXTe5ve3/Se3hmgFnpYnPa2mGibmsVyxdXjx/zxz/4+s3bFo/ML3r654cn5OYwj/4f/8D/EjJ6YPW9efMXbV1/y/OlzzhcL/s7f+fv89Ic/ZL954K/83/9vfPjsPR49e8TifMnq8oLr61uGPtDOlsx9YLWac342Z795kOZdaXIOpCzNb9XUhBjLdF4QQJI+sAuEjiOsjq+//oIWqES0QdvMiKVWuL2+I8SRlEZcu2ToR7qQGSK8fPWa29tbRu/55Wdf0CdFVVfUzYy+65my2L/66kuexqe83z6jNoZgwTSG+tEZl2dLTFUx9iMhOX7z61/zRz/7OedXV3zy6Q9JGP6Lv/U3ef7BJ7SzOd4H3n/vGevNhpu7ex4/esLi4oo/8+f/Ap98/D7/z//k/8iXv/0Z168+A6CpmyJU9/SDDCequqbrOhFea4lJsMYWdyxLpqCvSYx3QKPKHhBiYNbOWC6XbHfbYx1sLY+vrshZBkDVvJKcoBBIBQUWbXPGOiNU/hhl0IQg2q6qCVHOWW3EPCCExOiPQ/0/7fj2SEYRWVvnuHz0mKvHz7i4WDJfNJhao0PGhoSp5hgnAVIzKrzMqtjud4dufZqgi6VooU9VamLHHormbzouKCVJm6fw4CnEc5qUfSpyOYqpMhhb3IKO8Oq0+At/zR5SbL/5HNOibYw+cCn/YQ0PZcufhp9ahnLlNYpDjdbNO+f3VPQ18TenJuOg6j+lVxVI6xQ2nSY8p6/79LWf8vJOHzMGWQ0l5Gpq1iZIXTElySptSVHclPrB04aEFQELjANWi/hsu11jlMJqJGRRieA0pYDRExzKkYKkJrrBsehR2qC0LEBay4VtbY2zM+6u9zRLxWx5Th+t2GumxH6zpqlbtFb4MYtORM1QaoZWDpXF3jKGYvGYSmJwCMQCbVutSnCZTCxjSmQlDhVamzIxtqQkBcJkLRdCYhgD3eAJUYJ/JrmQKQ2G1prIZKsqjU6OHqLYhS7mK64urnh8ecaHHz5nuZozaxvmywVrvYMQCcN3W/h9cXXJ6uyMxaIFHN1+zmzX0jQVTdOIfsAnFBaVJNzxYdPx8LDlbFnTnNX0fcfoPT4kvJLpFErcVPw4EksC9G63YxxGmrZh3s4wupbGbijp1oVKNE0z7+7uuL25ZblcCDUwndCM3mky5A7/UwhThz9JoyE0R0mHvSKN9+x3e7pujU8OHyIQsAacAacS+B6nUllrDLPFnKoWtG2xmItDERy4B0fthWJylqJMvSjIg1CgCiP9ZF1ACWUqplio0fpQSOdC95xsJXXxgMmUc1PoWlkprh49ovdwv/WkGAnjiMma5Xwhri5RPPNTziRSwYJyKfQz3ufiAGYkLE5B09acnS2ZzVuUOUmeVeIOp4v41TmHqyINmqoWHY1wiAXxiiEeLc8L/97ampw1KUFIGRMTRv5D1v+SQZKzrAO6CCiNOdqippxxSlE5R9+NpFicyOCdQNdJeyfT3J7JbUd0e0cN0Dj6ojc6ii+njKO6konwZJ8+keKm6eRUnB4yolI+iIunaTjIIM9o909+8/6eHDIgmvZ90U0ZramqmroWcfskAJ8OrTWprP1aFwPfLBQabTT5RKNyypDIWe4bUjqkyU/ZGEoh+VfGQAiHvwcJDFSmIJ4TvJmV2BOHKO5kyAAjIW6TprA2pnrkVAw+1TyH93LC4Oj7/lDzyOsV6mcMI6vVGc45tpsdMSRB6EpS9WIxJ6TE3fqe8/M5227PptuisKzvH1BKsVrOub15Q4yZvt/yi1/+MW9vLlmerbh6+kxogcZSKaH3ksXJSk8MUy2216ogFloVeDjn8hkI5U8VfLT4tYECazTBj0Q/kJXCVDVGy++ODw9iRlHVOFcho8XAw+aBGIWKXTUNu74jKIdyhtEPJCtp4JfvnzGMI0olxv2eWeUIypFdoj6ruXp8Bbph1yvCCPMWnLNYnfn8899i6zk//MEPeLi/Z73dkYFn7z2VAcHoqdsGP0rDPwyR9e2Wul7w3kefsr+/EcpRTJA0PonmL+vCdEFB0YyWnD68j3ItIW5WyoiVMki+kzMOjRI6WalFU4yo0uTmBDFFfBQ0BK1xtaNyToafMaKMWGWnNNIPvgyANFlHhiBuhMZVuFrhY2T4lrXIt9dkVA0Z+eAeP32fy0fPWcwbtM300ZN0g2s0tllJsrJzzCyYuiGmxM39Dc4d7eamqfqk0XCVgSyWhKfw7ylKcOqMFAtcNEGUOediOWoOvzvdiKfc2WmCdMpbmyYDTdNg9OTSsT889im3V5K8HW1JjjzYyZ483ukmD0eReU5ZhI7WorU7vP6JU3saJGSN3GwpHxNM4YjqULSdp1OcCWY76D3Kr502GgcEI8YD1O7HMp9Rmapw+8jiPpPwFFQNZw3iugL96BlDwoaI7yXkrqkb5nbGen2HVSLkb9u26DcywQ+IoY3cVMpI95VzJsQkwnclFnjSvUuBlrIsJq1RVK7i5vVnPDILnr3/jFc3N9ic8Mlz9/aeJ48/IGtL10nRrnWLVgtBhmImpZKFoRDBexzFajLJ8tY2LUlZYkYmi6YSWr4plsS6ImVNCmVirBI5OmJMwgtXhjFOKJXF6ViyTcrE1ovORJocjyFhcsISeXKx5Kc//iE//MGnrM7mhDCQEUvFbtPR1hVqtfq2t+zv5XF5ccFqtaBtKzSWbjlnv5+zWC0YHqIUxUoKsOw1KWU2u46bm3uuLuY8ulqw296UglUxZIWzS6zRpDSy3+0IpdHu+wHvPbNZy+NHjxg62O4kMM6ZipQUCou1hm6/5/bmlhcvXvDk6WOsk2JX7uepMT42GFK4/6OPU6wjlybFVTXPnj0j9teEsOfFm1fsByUNa1KksYMwEMjEMNLOLK6tqOqG+WIutAujuXh0Scjicsc0qZ7krHp6hVmQxKPJnSC4GdFGHHRjsjZNXvJZSRaAKf7y4koVCzJyYs+ZktgHlwyRlBPf+94nxGz5/Ku3hBjYbTdE57m8uGS72eF9j0+ZGMQAwhQGZ0wFUYgKWwnttm0tSnvm8xmXl+fM53NEqxQPPO5p3Z+ajCpGXN3iXFVE2rLGBi+5E6MfhQudsgxJqhaUEYepkARtRkxHxmEQe00Uvvj9Z4ROY605hKmmFNGmonENu80arxTkgnSkRPKelBPz2QyQYcp2sz345E/DBmksxNkupYxW5hCsJY2FoW4q6toW23ZZUydjD1uuz1QaFj/6A3Vimg5bZ2WibA21+3Z86t/Hw/ujxX0IgfnMUteNBOgV16yJKnWqVRiHQWw5JztbdVAnEU4YCadfulAqyRk/TAXcMUXcTOYCHBVPk1ZUl0BPH8PhHpzsiXPRQimjCTmhYqCtGuaLRdl746EumWqlqYGcz+cnDagptDt3cAJyVaE+DoHV2Tn7fceXX37FbDYT6nq35f333qddtIxhZNZVLBZzbu4Ug++YtQu+fvE14zjy4x/9kC8/+w3KGBYXF/zRz/8eTTWjrec8efqcH/7ZH3P59BG6TjStQuvAMIiD2aR3MFVNohitZFBoCfpM6cD0EA2UAmXIWnStZ8sZ6/uBve8xWmGqVhq6FInpDtdUzJYzrK2xtUXpgS+/eoEziqZtsK7B54QnoJLHD57zumIxn/HpTz7h7vaWPAb6zYZHz84ILoAyzM/mPH3/PVJ0mNue9NBxcbairmvutlv+H3/1r7M4e8L/+H/y3+Nv/u2fse46ktZ8/IOP6bodOSRWZ0teff3A7du3vPr1b/j1P/gtn/zwPX7w05/ys7/5n+N3Wxl25opIhcpSazknmR2kRPIBo6TwH7pEVdWCQpJwdSX0ysmIqREntYeHBxbLpeyfJEiFPZMSY4x0qcM4oaq3zRKrpCENeLCapAKjz9zuNsRR5se7MdD5SECj6pamDYSc/+kjGXW95PLRIx49esKnP/g+lYVh7Li9vqPSSQTgzYK6vSIk8IPQfbWuWa0u+ehD8F/cMp/Pmc9m4sowm1PVNU3b4tOAHwJj37+T0mmMKfoC6YKbE40DcNBvTEX6KTw8FdxT4zFtktY2B579QeRZrL7GYQpD8szn83fg1unxtcrvTBnatj2ZfhSL3CwWpN8UeE/c0G8iIKeveRxH6kqcraaN73TRW6/Xkitgjh/fKfd0WpBAEKMp9bHve7z3rFYrdrudwLXayjSnTPlSypCO7jUpB3LplgdfnLqsBLXc3N5wvzG0i4r3nj2naipcXdNttmw2D4RR6ETt4gxXtxjbYq2TxqLY4ApHOIE+BglF6Z6om4a6rtjuIlVbQ1SMW2irJfv1K/72f/4zPv7RU54/vaSdVex2l3hf40fQ1qH8jKo+o3GXDEMgxo6UPUPfSQGWI6lAuSorwLALgWq2wLiGWdOQjCNhiAlSFKg+Zpm6KiWZKdFnzs8uuLi4ZLPtSGwE0s9SuEzXoYgBVdG/yHR43lguz1d8/OH7/Ov/yr9MRuNDZOwGdrsNPozl+pYF2n4jROe7djy+OKNpHM4qhj5SKcOsarhandMv9mQc0JDCgG0p9L3E5y/umC/PePzkMXUzR48jQWWcWjEGCT8zGuK4xw974tCjgkEli9WO1XnF1gjFSorDoofKPfd3r7k6e86wHfnqs1dcPLrk6fuPeNxe0fcrKRZObGxPW40/7ZhY4II4ajAWZnPOP3iP5nLJ1Qcf8rM/+gU3b+5YP2wFbasqXF1x9ewRl1dL5ouW5XLOxdUZtnGoykJTF0tsTVKapBKpNBlW2UNDAGJylFMkZnGcUTkXaogIrnMJhnPWoFVFMNCnIigMnqHfYyeNhKnohr0UaiXsrRsDqnL86A9+wKsXr7h6NOP7nz6nHwLXmz3bIfIHn37K7PIxd7d3/Pa3v6bfr4XYpbXkCVlLZSx142hnNahA8A/88JOP+fCDxzx9fE5tI7WO2BIkN0SZZmc0Q1K08zntbHaw9cxZEpwbqwhBONBjcjzsdozBg1Hshg7rKpxrxKEpJEaf8X3AoA/uTRL7Y3DGSabLGAr91tKNPW4w1Nqhk2LoegaVaWYVHi/NXIZ9v5PCIYrVsMmBHDK7vsd7ycARFGMKYIXLy5YYLU1T8/zxJfv9Hls5zucXKG0l2ZlAAjrvBaivWzAJZTypBBRW1oKRhlEbh7Ya/R1uMi4uLsqATrSQ6/WalB5kzVWZpmkODkyTu9Z8PhcOe0p0XUfTvMskmFCASQd62mhMIWiTWH4ajK7X6z8xEJ1qgonz/k02gTGG5XIpz5Ui1aw6PO96/VDmA1JfLJfLA1d+NptJw1wapKnJqKqKJ0+eHGqMGKPsVRkWiwW//e3vDha+Wmv+uX/+n+PJ8w948eIFL158xc3NDW9ev+Lp40ecLRc8/tH3+eNf/JKLZUtKNa9efMFqeUbKiu16Q99Hzs+uiG3isy++4ns//QHnF+dUi1rQG62Li5QuxgTq0HzFGNmPI8vZHGUsWefDQEiJSEvcppRGZ4NXiqvLC9Ky4cUvXzJrauIQuXlzizUOVze42YzLi+f85vMXvLrd4KmZnz1nO7zm868+w7qGmKUe+OSjj2iS7MlvXr3l6aMzGqupNVwuWzItMXn2457Ls0cMHt5c73l985bRi/3x3g/44Nlu7vmP/qP/PX/pX/034fqaf/CrX/LVF+8T+hGnLTfX11R1zeJsRb2c487PuOsTv/z8mpdv1lw1mYWFHPbM6EloUtSorIlFb6iVQWtLlTzEB6rgxKDAi3X2rHIkY3kYHff9HuMcbXvGi9sNVVNTVXO2Q2IYM2hLs7jgze0N+35PP3qC7ohUZCzaGvphwFSW2XIJKmPtgDUBu1xih0DyCR9g7wUNnNhN/7jjWzcZRnvi2NPtdjzcrol+YOy37B+uee/ZBbO2ZracoZ1Iz3MWhxitBAU5P7vEqlusBmsVykwuT5nge8gBA9Qlm6Lve7RSnJ2f0zh3oAYZrQ50J3eii1AasXAs0BsUx6oSpDWF8jlnZapebtZTG7hp+m+MPLZSHOBPV9nDpjOJrie0IuUolKiSIKtynpp2eW05Y1BYKyLqlBOZI2XrH+YqkVKZUqVIM1nWRXEuMdqClaJYH6aNqUxuYkE4HFpLQCHluZ1LMk2PWSDMqVxSigjELHHxEw0iIVzlXAL8lDAYSAnxxlYGlTUKw2a9pe8GKrvGKsU2RowuXOLi451tTTKarIXvJ1Z+Gq1EpJqiJxeHp+A9yggaoPUMWwoHfI9mQa0fg9Z014nrbYd1HTEG9t0AqqKqVrRnF6jk8L4nJk8Y93jf0w+7QiORNzsFWmUF5MTY95gElTYkVYm9bIbMiHVNofkpyMVBSydm85pZVTEzhmAcHnX4nKMyOCPwurORtnU0taOpLNuHe1IYef3qNZ999oqLqwuaWcvXr15Lc1IoLJvtvnzG393iAKCuLa5Yj+qJelhVLOYLVmeLYuSkyElRuZacNdu05/b2luubJQ/rx3zw3lwoLjEwmy8I2154yDHS9T39MDCOHm0KFSYmQpSAIVdVVE0jvNQUCTGQ+gj5DpTj6qknJEBbnGvLfaILu0hLM6r+VEXGgQ2YKaDm8V9Q2lA3K4xxuMrz6fcj56s77m4eCD5SW0vbNjx7+oTlWUtTO+pGEA3trHwVYafQLaaQQPmbTHEdSQkmB6FC67HGFgqPTOiV0QXB4LCmKa1p6lroWCI+kuY/BMZxKFRXgzYS8GmtIYdEt9+zWi14/vwp3iu++OqGfYjshsCrly8YB3EGm81atIolGFTcl6wWb/3FfIZM6SzzxQUfffgeT55ccX62ElhfshDBggABAABJREFUSdOmiy7CRE0uejZtjDj4nRR84ggjiAhKJqXz2ZyqlhyipCSYUylTaLhHfds06TZGzoPVFmeO7lKnFFtd8hmEVnMc+ByYXUjDk4LQdVpnJTMhiv/hdrslxsSkm9FaaDizWYO1cxHbl0LZGEvfD1gnDlap0HBkHxNrYq0kmMxYg8oIKpMizhxhrVN0/Lt2TDoMKbQNMRRKW0xU9VFUO5/PWa/XB+3MNFScmoBTSvR0fLNpAKH3cULHPmVYTGjJqSPVKdVqEoBPDcuU7TVpe06pzWpCFeFEmMuh0ThFWuq6Pvy567oDkiHC8EhMMuxs25ZYEJD1es1nn3/O/XaHqxzdfo9R8L2PPiR5j44B5XvOWwfa4EPkzW0vOkUtZiWSXWaZL2YEVKFwCs1rcufThcZ4oCx6j3Hy+6Egb9MuNt1fU61UTtwxODh4kh+Zz+Zsbl8QR8kq6aLCNS26nvHrr17wsB/ZB/jq9R23D/fs94F6tsJUtzIkUZq721vmSjFva+azmtoanI6oPEA2WFvRNjOevf8JwxB42HR0XU8/jLTzOcu24e1vfsvlxRUZx8//+GfcPuxoFgtmiznXb14zr2dUM8ur16949vwp7WrJ1fNn/Hf/B/99bu7uefnqJT/7G/8fVs6QjCIljzOaMWvGoGnrGaRMzhpla3YhQtSYakGwlqQjmEBQEIAxwF0X8CgYR1TnSRnS2AMD2jT4kMkqY9LIPjpGpQg24KlJypERB8VcgQc2+x4VRmoLtXXisqctqlI0tcX7P2lx+6cd/wRNRiKEgf1uw931HcGPjP2O/fqB508uqKqKdtaWFMzCVw3CtTXG0rYLmqoSn2QjfHVtKPSbEZVE/GKsJQ0DKQTh4SmFKjecUhJCNbEXrJ0g66mYnrQQJ7xINYmiRWQ1USBORdLvLjS58Ah1oUgddRja6GNxkQGmRebYZBTHxYmQKJx8bQ6vhSwTbDTvbGanixogHOgi+qZQA6aG6BigMtlMqpMXJV8SziN/N22IRhd3hZwxehKNHTUtKYl0dNqIUukqZI0t/1I42mJlCzlpUsjc3z0UziXM2pZx6FA5sVwumM8XVFWNrjOpaDIywhkUdocqU75AzhFUaf7I5KzQqkEZmfgk5zGqxRmNNRX9w1v2t1tyGnCVZtdJUu75RY1ZtuSQGcMOP470+y3j2DGMW/mclUYrS+XmZGcwtvDPQwA1kqqarOMhGyPmhCkNrda6fJZyuuqmoq0d88qi2poh6KLnEMtiEaZqZnVksWiYzSSh/fN+y2a9Y/2w47effc0HCS6uMi9eXZfzJKLz+4cHYs4Hy+bv6uGsFkCgOK9oxDljNptxdrYsTXxpMqqWlGAcBza7Dff392Kl+PElSo+QE+1sxq4bkew2cS8bhpHRe7QVd7Vh9PT9iFIWbS1VVdN3gi75gl6muMXaVppUtDTppjqKK3P5mjQa3+I43l3He0opg6vmGFNhref5e5b57IzV2QP9vsOVDfvpkyc0rcM6hTGgTUZbizKSRK0m+tZULKpc0LgyPS1DCpULrWZ6PXmyM9RHmpSINJC2RQndSGtJP1dC8wwh4n3A2FNqaF/WRxiGnsVsxnIx5+LyjPm8pe16hhC4uXlDGCmDIYc288O6TQKlMs4Y6toSwlgyec549OiSi/MVi/lMqF6HaqR8ndBtDcXq25iDNe3hrKvyK1HRGkeVsrhLYUlZEaKsBUfN3btc/um7sfpATwPJyHCuxmiDT7K/oGXIdLgGchnMTGh5CERtiuWvRztH1/WklGWNLGiZNcKxb9umOPPwDkVXSBPF/Uwd98EYE1kfm0axyiz7hlbo6bV9dx1sDyYpSmliPO6fEx14EkuvCrX0lHUwfZ7TZ3xq6vLNn5n+XYZhlJT1P6nnnB5v2s8njcz0uNNycfq78hcnmQRlj5Z9Wr+T4HxaJ0z33qQJnVy0ToeUudCpAZq6xpff9+PI9fUb1vsdT54+wY89VmueXF1yd31NDp4YB85nNRhLHyJ3D5oQPNpC5Vp8Fm0lKvPhRx8wKxT1ylWoKO5QR5Oao5bEyhs5aIfKUnU8h6k0c+pYU1GohMl7oSoNI9F7VvM5dQ2unaGqhq/ffoGyC4ZseX275mG9ExMZJbR0p+W+9EOPN5pcWxrnmDcNho44ekLoZU12LednT/jixZfcPazFYGQcmZ2dUbVz9v3Icj4nRPjy6y/56uVbnn/4IT/4yY+5fvMa9+Q5s1nL7e0NT54+wdUVs/Mz/vAv/QU+//wr+Dt/hE+aMVl8GRIYrUgBhpBxtcHnjEcRcezGQE6a2szlPjeJqFIJA46MIbEJnqQ0IYmgu2lbBj/ifcRVpjQRkGMgKUvShqwrSKroGfWBvhdjKjbBkYBBaUPyUZBvY7CmKqyKI1r+j71fv9VPISE/IWa6fsfLty95cvWIZtYSQ8vjJ8+5uDxntlicTJGE2nT79i0+CQ/0448/4uXrN7x+c4229tC96vJ9WuDbtmU+n7+zwE/8VxRl6nO8cZ1zh87+9JgmGqcF/MRznehR0+MD79Cmppt6StKcNCBFk3R4LhH/jUzai7quDzeZcu9qN9brtThJOUnFPvUwnizqQgiM44i2IlA0xhyEXQchppKQH6XswWZ3OhfT80NmNpM0yel5p/dWFVGrVpqmrQ/naTpnk1ZEKXBFPxGTTItylkZjjF6Ey33Hzf2avu8I40j0o1CK/Ig1mr4fqesWWzUs2wUmBbIS1EQVLUqKAdIRBs454qqGYQiMfUfdztn1Hp8SIVvmbYUKlTjRVAPr3Y5x8JyZBa5tqKoW4wzDfkfMgTEM3N7ekpKEScZUPi9EVD6bKWyK2NzQzudU1sqUKUdSHDBO46qGpp4xjEGQN12JvgZN8gpnHctVy+PnK2CJ9wM5RbQR9GyioM3qFbNZSybz5Yuvub3fcn+/Zd8Fqq9e8MWbNxiryqZlBGXKoI0TFCp9uxv79/VwBkIYGceB3WbN0O0hJmbNjOfPn3N2tmOz2fDyxVu0NqSUUXrGsBt52K558foNf/YPvk+MlpCE0ni/3qKjRpsKn2Dwkd4HFosFgx8Zbge+evGKp0+eMYmwtSu+5QFihjFIIuzLV6/RuiZnx34fuDqT+0xpEc1S7Cn4lh7hUDjIU7uhNMouUCqQ4kAzM7SzBc+eP2cYOtqZiM5RlMDOjJ6iOrQ8rwj+OBYvTLSsIgYthapPRVydxcwgx2Ijq0RsarVGGVMK1vK7pTCdmpDaVQyjZ9pQnHVMgaYxRsZ+IMZAW9fcvHkj07rXd8xnFfPG0nWJIfQ0dUvKitH3uErTupbKVoK8RsmoiX7PYt6wWMqkUalE5TRtbQl+wFYybNr3PbvdDl3e62KxIPqRHCOqIBvGCB12GAYRh9aBfdehUyYmado2u744wKWCEufDGjrRG6ehzoQSxVgahZhwrsK5umTfjISJmqsNOci9r6D8fCSFSAqZXRwYQ8ZHRfQDIcikIieo6+pgMbnf7wXJbup39IYA2/3+kI8Uc8IYS11XuHnF9fUNIMVLW1fUTU0MRnRgOZFCRuXvcJfBhBIE+n5EK3so8k/t6B8eHg4UqWlvB9nvTylEwEGMP6WJT483DIP8HJK7NTU4089ORitVcTSbaMmTBa3WUvxN9cJms2GxWJBzpuv3xGKgoJVmXje4Um9M7pbTexpKOvNUCzVNwziO3N3dUdf1IWzx8ePHzGYLMor1es1YghqHceSDDz4gGs0QI7/59S85ny9xRnH96iWV1vT9jqHf8uz5UyKKagxcreZ4LFkbtLHcPez4za9/xdcvX/O/+F/+r6kXLbZyKDTzxexgCy7OUQmy3CchRrRW1FWFVYWpAVDQj6wz4rMgw86cwVWOFHqmTJrLR48IQ8dut2d1cYmaL/BVxYhj1i4xseKhC/houb+75+uXn4OBR48ecXlxyflyRuq3rNqGH33/+3zy4RV+uGN9H3n9+i3zRc0Ye16+/Tmff/U7IlDPVzzstmy8R72+5u5+zYuv3xJDxlYNj55ccff2Nf/pZ7/lJz/9M1TW0s4kuHq322Os4Xaz5cvrG2arc/78n/vn+Y+vPmCg5y4HbFWz1xqvE53y3D94+jEy+sSYduKgqBy4VhCKDDEnxqLzsUZxsTCkkvOlyURnwUaSGbm+3zJbLHCFHhnydM41Nu5pFDitUNrS951Q8OY12Tb0IdP5RApQGw0+s12vqaxDaQ4GOf+441s3GW1ds9kNjOOAT1vWuwoNDGPkbr3HNg3KuqNblFWomFiuVuz2O9brNauLC1xVC+80BEyIaFe62wL5TygDHDv/6SvGVNyaTtIHT37+1NLtdAGZRNvT4nQ6UZj0H9PPTcX4JLr6JteSb3bgyH9b6w6uHyElmXJZx67vD9NnbaV4SBmIsWwi7zpITBvJ5Hoz2etOjcowDPJY2uBc8w7sO1nhCoS6l0I3H8OfTr2Op2N6n9NCDBx8t/d7KQB1scbU2soEOikpCor70hASKgu/2hbUKBuLBm5v7vj88y/IGH5yfknyPbm4yYzjlHSbSsMRy4DSMfiET0iiZz8yxkRImZAVM93iUXS+BztjyA2bfsv9/o7nz56jUey6HePQMfQdfd/hi3uHtgajWnLZmJ0r02ojqd7ej6Ric6n8iGlFMKuTIUeFUVKYaWOm2TRGKfwwMgyefSdWqjmKVaQ1mdnFSmBlY3Cm5uH+gZvbe372y1+hbMN8dcXisqKabET9iFPi46ONKfQe+Xxr+61v2d/LI0ZZQ4Z+kCa1UBGmkEhjxBv96tEFOYMv/HedpYy+v9/S9zCOinGE9XYj2i+j2O73Mt1MmWEYefykZbffMYwjYI4BbCh8kOLDaE3bNhBKGGiOvHzxitlywdXjxxgj7hsHqzBgwgYmktKfehyAhqOeI4k/K6aSjVuRUErEfMo4chFhHyaqAiEWb/ITxDbLREnQ3ePkfgoO1UzrRyQMI24KE8sZjDlMUFGqNCCCFOQo4WM5JqyxeH20/EZN1ByxGfcx0g+R/W6LNpnFvOXJo8zr17c4G9HKY03EaBkmxSQD/5SC6JrIxDiiVWYxq/jww6csljNmi4qL8zlNY9EmY0uCuoT/Hdf7yjmqyhKU6HKUtXJOC9LjXIVSooXK9MSUiv1iEookpjzmSIqSQfDw8HAYWh32oixnfxi6UlhKSnkIBSGwhmEchA5oJUvETM1YGAvtVK7xfTcwDF4EyFnWPVuaorZtaWetuMotZiV/qjoUlVOugjGGwXtZF7SVnI1hRKmei4tLum5P1+3FQaeg+yll0nRNxe9u4reI49MBxUg5F+qlOQihp3DCif50OmycGo7pmp4yCaqqEnH0iTvVJPzOSfK8pmbi2HweA2+nx590oinJ/jj9/Gl9AcjeoxLGGqwx1MYdGqQpL2NCAqZ6YxoUbjYbUhJNyqT7PGov12UiLe9rtVjRzme8fvmSZx99wAePrmidJQ4DcZQMLFVV0pC6JX3XkQqN8OmTJzxs96At9WzObDbnzz/7kGfvf8yXX3/J848+QDvDMIysFktyinT9gGoqMXZBS9iyLtRMKE31yaC2cMuN1ngfhJqmNSEL8qttBdYVa3iDqmaoeoGyLWCIWBKWunX8+Mc/4dd//EtiCMUONvH48opl03A+b3j64WMuzpY8f/yYWQ3rPuPHwGJ1ycO653694Yuv31LNHInMcHvPerthDA9kLB9/+An9fqDrOu7Xa16++IyqmXF18Yif/vCHDMOe333+G97/+Ae8fPGCxWLB6uycr1++Iu4HdrdrZueP8GFgO/a8vb0VrV4MZO8ZhgjGgZb3m5wipEzfeSpX4ZqaunKE/Z5mPsMZRbe/J8VMzBCzrDsog6oamtajSZA8zlY4zSGcES17ZcqgdUYpsbIdh0joI1FpLIa6atFRBll11QCZQMKfILZ/2vGtK5ac8iHHYvQD6+0DOWXG/Z6vXr5hjIExeJ4+fSJvUMkN6KoKFwQ9SPEYomfsJJ5OaG0PvMfTBmAqnqfpBHAo+Kev0yn+afF8yq1854LOf1KINf39KQx6DNZLh8c+ICKZk8egFPdHYXgs8HvKYj2mC888HqbQUhycIgjT8x4g0X/IBzi93oNAOsaT6Pl3aVcy9RYLxgNP8gQGPj0fp3/+pqhepSA8aE7OtVakmEua8rHhUsoc3gOFTjQMIze398yXN3S7LWYUQRPKIEHEk7N/gd+yPFs3eHyQTVTpjC9itqQMISpiNmTlyKoi4hij4eF+zdWjJ9Q5kcaBpJXAncOIaWqMdWhrCxWOA3dUFQpXKp9JKp+FToFsHJOPkCRsWjKuaG8gBikWSBBDZhgS63VHiiNaJZrK4ExHU1fUzhHcyHqz5+5hy2bb0y5qoX5ZR9U4DA6Va6FdaLHLbNo5+374JxJb/b4eMXmCHwh+EI/06T6OoiUSdGmycgRrA6P3GCVwbdePbNY93ot4uxt6sRotk/7RR7yPhJCom4pdvxFBm6kLjYaDk9JEg3RamsbKaVLw7Hd7xn6QyRpwvEqFUPTOCOcf2mecUC+nHzpQE1W5zAv/WiFNBgllLKlMp+X1TRxweayy9JTnlN8BDmsS6vjcKmc0R3pmLjkAE5XK2Clb4/iaJrtDciaMIhzWBwaqnK+xJGrLWqEPRZi814QxmaoyLBYtq+WM0Y9UpqIfYfTyMxnRdZEzzmnqylI5zcX5gvPzJctVy3xRU1cGa0WjIJNREZxPxZopU19jDLmgDSixxEQVjpQSe9IYM7HQiSbqV0JCOWN4N9z1tLmY1kQ5/5FxHAjFYtZaRwyJoKPoKwrSW2Ty5ZzmQrUp+TpFOzH6QCgCyglRnZyk6oI+zAtN7HSPmhD1o3HI8QKc9ksfJLFcMlTKZZqEGpdygjgR6L6bx+mer7Ump5NU9XSsIb45rDw1WJk+5+nxjhQf/Y5ZS0pJ3BB5t3b4ZnbV1BBM7IfDz6eEcfbwHNPQEFWs9otzmDXi8pPKdThln0yv4ZsaklNDmlMXLaWKw1go6EnKB7aIQhHGkbHrsEphnCXmRBqFNaGNxWlDSOFADa0rR+0sWWmsEiOJ+axluVpy93DHk/gcXe7BGCN8g9Y1nf9pvf3mIc54h8XreF2qY1UgAaGV7MUmoXDoei7husDFxRVj1HTdnt1uSw4jVivmMxkyGTJOw6PzFZdnM1bLhrbWgJeaNChGD/frjre3O97cPbBiIZauSfJuun5PP4wodLFLrjg/W7HZfk0YNTmMxDASlSLkzPrhXiyDz8+paidZOiX/49Mf/ZRd3/Gw3bKOFd0QCHlHSCNDylhToXXFSERpIxTyNKAxaCIGTWXBKqHDhhQBVZBNLQ6e79S9CfJkElxGZDmTjUMqRDDKkFU8UsA1MlBVCiNcK0i5aAwna/Rvd3zrJmMYBox1tNayvXtgc71hGEa6bcd6s+Pp40s+eP8Z773/MdYJlQSEu9c0LecXipdfv2S33RJiwCpV6CsT5/n4oieB1iml6TDVz+FQnJ+iCacw6XRDT79zEHWXx5kmCaeTj+l3TkXgwzAcFpFvch4V9sA71CVgbWo0UtYHtxAfMlrL7/aDP/J5OdK04DgNmd6LRpG/EcQ3Qfld1xFCPAT2nNKupnMm52M6x/Ew/ZoWw+PNnQ+P/U0+8mq1ghgK1Sey221RyshAN2USEYWmqRv6fo/KGVs2xTz9HnB7f09V17x++YKqUMhmswW25KmgFN4nojbEpAhR87Dt6fqOMXhm8xkKA0qmlMMonuSuaekHoS7FbHh7fctHHw3UtSNHT9SWEDMoR9suMFWNthZrKib3r1A8tVOmZGgI5Ki16IPGmDD1gA0DyohQChxKt5ARB5exwyhDioa+h+vrjnHYYw2slnOub26onJVgpPmMzXbHZh9wbkk/JMbQU6fM8/c0V+cXLGZzdvs9KElGr5uWu4d10R59tzUZwQ9iZeqHg42hZCp4sp4cvDTGVGW6KFz1Tb0njZGuH3n54prZrKZqHPuuBxPBZJp5y2a3Z9f1hATNrCXfC+e+bWsk3TpjnSuBbR5SoraOxtZY44jjnjQOxMGTRslXsA4mjGDyjPpHdBcnx7SeffNnVdEzTUYKFcf81JOm5Bu/A5CLi5SsH/GEF5vIeSoo4qGgMEbL+5hooUoogLlcR1GJjkVNmReH6l8xDgO+H6hsGQAVVOTu/o6JrlnXlUwdlaatKzbDptAlRx4/vsRYxcXZgv0+8dsvX3O/3pMRE4lcdjJrGs7P5pytZjx5fM75+ZzV2ZyrR2colTEqYYvRux8GQVjKOmj10QFK1kBNUhxeb0b+PPhAV8wAfIiMY6DrxrLWZMlb8UEajySuPpvN5jghriqhkGnFMPRl/4G6bmXdSgEfu6kblPdXPhdFoZwqSx+FJ53RDKO8jnnbYG1FVQli4SpBxK3VnJ2tDo3PNFkPZUKrtJb0c63xYyzFayb7yMuXr1iulixXC0LwUEJOlYax7yTF/VtOIX8fj9OBmUzFRTw8NVin++R0bUzF/bTPnTIVjhqjE3fHusZaEegrxzuPIeJqf6Ayaa0PWSQTm2CqI1JKVCeDO621hPwWI5Wmag/XjQ+B4GVoNY4jZ2dnh9f1TVbHQUBe/rzf7+n7XlgIEWIxEei6jv12S7fbsVouuXt7zYuvv2Q2m3F5dkbTthiEsmiMwThLZQxdP0ieRwo4J+9n7LY8rHe4Vy9IxrF8+j5ZiVZosVjQ7fe4gsZVlS2ZZ8IESIe1DcklmXJOJkS4NCJaabGFL9MUHxNjiLSuxdYLsnIkH6nmZ/KIIfFnfvxT/t7Pf8WLF1/xN//GX+Oiqlk0lo/ef86Lly8Obm6ffvgeya9RsSMGI3o8H/HB8uLVHa+vt9xuOoYMN9stdVuxWs1ZNVd4/4rt+obrN9f4caRpaj7+5EMeHu7YdQO3b9/wq1/8MR/96Eeszs/48vPfUVdzLi6v0Crzgx98H7vS8Djz4Q9/zM3Dhtdvb6jO/gFff/U1d7evufMj5IhysleFfofVBqMycz3QaCAMEBWLyuL3W8YoBhrWVlKbkUnqmJuWYyxMmpKllMSISGtFdDN81qSscdYyplHWc6OYNQ6bxfpXmBnFVjdE0b0ZdUCm/nHHt24ydrsdQ/Ao6/jxT37Cvh/Z7Xrub9a8+voVH374EZ9874dSABa9hdKIaNFamraVxEdXUVV1mdpUaCU3XSoFtlLqoBkADlazE0ow+v6dQvqbC8/pRGrSOEzThWkxmXiUpzDnafMxTYtOG5fpZp58sMWeTTjWTeswRpqCYRh4WO9FgMdpN8lh08tlMby4uDgsbNNzT0eIBUHQRxRien9N08i0DvMnaFCTPgUgZ2kwvD+dfOmDOC6WyWDXdYe/P00hr6qKOHhi8IQMTTM7aAsG7wW5KCuHVuLk1VQ1OQeil9/zIbBeb0gxUWvFH/70xyybisYqqtYxxlw4q9DULT6C7wP9ELi5e2CzW/PB++9xsTynrlvxdlRIQRWhG0Zurm948+o10Y+8evkV3W7JYjEnVgtQFqwIsZ1WWAzWNGgMximaOtEPW1QZ2Y6hL9kVukxRrUDaSIZDXVcY25BSJRNQQCVLSIkYR2LoGMOOQMD7xP5uFKeuLEJ+mxXRJxSGxfIR/bDHWsVyXjPu79FnM5btOU63+CDTfdLI2ayW4vS7WxsA0HdbSV0dRqyxDF1Ht+/YbDZU7ZxxDPRDT8qSuyLhmNC2DUFH8pC4vl2zCnNmwdHHDdXM4uPA3f01v/vdZ+z2nvPLc4zVNE3NMHqGIbDf90xBmk3bEIwgFxfzlsZJk2F0zfr2ht36QULZsnCLtc4lOPLbNBjfPN79+VT4/eKD966+Qx1QkxPx6eFPEQkNiwdEQ2MEcTs8eDps2ELrlPBPCfcs1D9VJq1lgqjQKHUMnTMZ0SXVmegDp5a4Z2fnTG5249gzTbWGoYccMQYqKwGCklKtWa5qLs5XYpftOqLK1KamsQ1XFysWi4q2dSxmFW1jmc0c80VNLJuu9wOmDKVU5uDodDLEF2G4sviEpGwfKLUceraqrqhqw6yF2Syy3Q3su5FxFGtvWxxwbm9vD+nKWku4n7MKo+Bh508GTpn1w1ocFa0IMUNSmCjkLKNF8D10e2w9K+ffELqRlBU5K9GSnS+ZzRoWixkXFyvquqJp6oM+4NR9cCo6pzU8o2jqlr4fGIeRrhtYLmUKu+vEPWiaYCqlmM3nJD8S+/6f8Br+/TlOEScQi9lJqzYNBLXWnJ+fH9Kyt9vtYdB2Wgucoh4TUjGbzQ71gCR6W6wWcfOp0Pv0a8qoOEUZTvMtTjWntuxhlZMsmmn/N1nqlLqqWC6XB3QCeKc+mHSaxhiaphFrY2s5OzuTpihKsY6CZ0+f0Q89d7d33NzcMGsbLhdn9N2O2+u3WGto24YxelLwxF4Rs5hIKKXKWuDwOTPs9+icefXqJQ9D4H/43/pvo7Tm/uGB+bymqivIZSCtkjBflGiStC3UM3gHbSr2aEBZtiYHtCTnB+WIBKq2wTlD8CNd7wmqIodInhqyxYJPP/mIf+vf+Ff58hc/Z73dEDK8/+wpHzx9wvtPH7G7e8tirpnVjvlc8eb1jt1+ZNcpXr/d8/p2w7rrCZWl23Ww23L3cMdPfvQTyAo/err1nsGPopf5SgTqRilyinz95ZdEY3k/Zf71f+3f4I/+7h+jQmJZzfjyN7/l4tFTFmdX/OyP/pjf/PrXPNzfUxnNPHXsYo8fBxlIhJ6cYVVBigNKZexsgascY5C8nxSE3ZGVZjZri01+IMTA6vyc0Y94r5itngkqHZMgHcUpVMg0mewHGTrlmqWzxBAZ9nuGoOgJpBxEZ2NAV5rKOsTNTgJMv83x7elSSnrOlGC3HcjaYd2M2crwQd1y9fSJ2KJ1exSB5Ax1ZcmVOCGpDN16g0mJVVOLA0YWDkxM+eC+NC2ip9DmOI6Hm/Obi8lE7znAdRMJIE+JqhO16V1606kYPL9TuelCi5Hk6Vwmf6p031orWueonBUem85omwSKD5F+PzL0IygJtYpBuG9ayWJYwCuy0oQwQfIwpb+CCNuNka40I5w56fa1iAyTFAfWOnEwKi8/JnE+OlI7hMOccyQW0bzWCmt1wVIEtRCHAVmwY0wFQoykmAptK0uwjhILzJwiKTl0UMJxTrEUL1omrQqU1WKlKNI2Rj/w9vo1d/ePJMxw1pL6jqSM+GIbCyqjYoI0Mq81YVFTuQWLtqKpHVU1JW5rogrippAGurFj3+/xPnL99o4UFYvlBT7C7e0Nt7f3KGto5y3z+YKnT95juTzHGSv2me1MdALDwG47kMKIs4azpaZpK1AJsidnC1o0Mc7I5q2V0OFGbZg1DctFI84WIC4OWWG06FNUioS+w4+hfEYzHl2diYBcR5k47TtGHwSiV5BK8rpSpjSn3y4A5/f12HcePyZiVIQQWW86hn4gJsO26xnLJDGncCimIIvTUZayuBs61C4yJsMMRR80w9Bx/fYOPyQMCuMMfggEn0k+E0s4GUaLpXDlCCX7RNmKpDQ+JXwc2Kwf2Nw/sH1Yiz1mBcJ9SRP2h5T3f9pxQo86/LccpqSASyuhDj/6LrVKjpwnka5Qq/RBRJ5OJoAasjQexjqIxSZSaSlmy+sQ9xbhHqUsTXrOiaxl80lF8zC9JqFXJRkyhECMnpQlfycXflXOkUQkKwhJnNBQ0FRaAqyqlvV25Ooy4VxN5Sy2tjK9tzVXF2fMZw1aJdbrG548uWLWLNA4lJHiOMWINhKEp7TCWQvm2I5lVchjReA+nb4JG9LWYask92MUbYJKHOx7c074cWBMcq/JRiwJ4dbqglKLfH8ch4M5RQie6MAqQSFC12G0xVlLGLrCXhPU24+BIYjTmbhCqYOTX9s2zOcN7cxhLFini6OU0KhSmug58vNaG4y2EiaapBEU0lXJQSGRQyrJwBpnxN0wF6670oZkvrvaLq2PtNwkm+OBUijob9FK5GNa91gcig5I8MmteRqCO+kp4IhyTD9+cIiEd9yfANEnlUJPXqOwHIxx9MMgTS8czGOMFSpsDIKeBx9kPuByMaZwh8YHyjpQXnKKSWiMMREGj0ZRWYerana7HcoaKYpDYD8MxJiwVcX5fIZKAXJiPmsYveh1coqyruR8CMxDyeCwrmpx6xvH0ohXROXISnF9fcvz994r12pBhFAlpTofBo96Qm9zLihjoRFmZHiQJ41bLmWIkoGOsdSzFmUtSss6o5ShNi25mpF8IPQGm+V3rYKL8xVfFAfSdtayebjHqEilM1bDxfk5s0WFNtCNntuHLS/f3rIbA0POYgvrvQzCrcZZxatXbwkxcbY6p9vswRYdZghY58hZEby8v26/5e7mLZ999ttiQV3x1ddf87C558l24MmzyGIxZxh7bm/eEvo9sevwwx6jIaeCsFHMN7IMEoIWJzyfYcwKmyBrV+oyWZuMyqAVYeiFpod8BlP1qwCjLXGqB5NHI8PsHDIqN1QZ0bjFgaAzTJpgSpxBSgU1hPAtZV3f3sK2MugsVJab6zWz5QW2qlmcz7l6dM6j1RxloOu35KCJlcUtlmgt0E9Mme3tPS5nLmYzhpAk2bacAGOmABwON+k05Z9ga3FVOU50YozvuDgcb8pjk6F1KZwPk4/jAvVNPQLl4xUlaQYlAuycFSrLZmeVorGWxazG2AQmMvqBro+EMTD2AT8G4QtrTZj4kCcLFkDWBu+PKMrUZEyTEFeJCCfFIBy7cpFYYxmjLA6VMSevMR/0C6gppTyS0sRjjqVREyvGjC2WfJIBcOCqxtPckJHKWYyRfBKBixUpQpUrvIIcAnn0ZWojRbHSGYygAIqAzpmQPbf317y9fk3b1ixWS7G8cy3GNdjKimtY9mhGFq3GmRk+1szmDXUtFrDTBBcyI5Ex9vS+oxt7xjHw9voeVMX7Hzj63vPFly/41a9/TSCyOF9ycXnBkCIfOs3czKltTdvO6H1iGAf2+0i/76mcobItVSXNWgxergMyKgVcLaiEWEhGjNLMZw1nqwUxjmQj173StkzjxT5y34teQ851z9XlE6wz7PdbNuuefTfQDWUxz+IG4UPEWEMIiX7w3/aW/b08ur2IZlMUSs79ek8IkaZuWO/XJf1YkthDFFc65xzKS+GUswSb+bSnChrlWsI2sNvtuX6zhgBWG5zV9PuBsfP4IRK8CJtzzkQVcMaRQiaERCyZLZRBQbvdsLm/5+76ljAEcjt1AImkplHAn9Zk/MnG4vQw6t3fVP/QH82H73lq3A//m6w9hIeLVsWMQZqMkETEjCkDjcnaNknRpYyYMyS5eElGniMlSaM306Ali0DQh/HwuYQwlvUFQT/KtCtrQ8z6UDg3FdT1OYulIaYbtKqZtx1NY2lmInDX2nFxfsZi1hLGkdevv6auZ1RVW+wVK6DYWucsVCItWoykpqGRnLhILHtJLp9LBiXnRxmLqSQ/IpJKY1TOnZru75GxH4mFNpJzROhcGmfluypNRoqTE54HpKmYN3P2D/c443CuottvyWTZRrRj7Ad6P9L7ULJ3ZO/TWowHZvOG2dxiTC5rtC1icdkXYiwUsCzrqlYWgyLnwND1OOswSmFldCzrC5mcTBkASaFnUGIsYL+7oZ6Te5hohIQeJUNQaacnnVA3DJKtUgpCpWUQdgINyrRem9JQWnEW+4bzVPDh4Og2oRET7WlCG9q2lusoCQXUWotzkg4/jDLcyxnGfpDXny1KacIwEkMiBwnni6pkc5WaZSoOVZbnnppuo0Tz6PtBEDrjcMax5+gY533Gdzu00tim5vHVJZuHW/rdhvliht5PGTixcPKLyUu5b4wxNFXDftfhR4+PEV1V1NUMW7d8+eVXPHr8WJr+zMH63xqDStIU29IQDklCfUnpaJudEurEZVTuOaElkjXRGJrZjKpJxGEvFGwtRg+6meHHEZTB5VTGPolZKwmuxlma2Zz13TXkgNWRujKcn5/TzGo2+w37wXPzsOGrtzd0yZKMQVWGNIyczc5wlQw6vvriK87nZ5yfXXB//Rl11aCswscgjauykANGK/zYcX/7lr//d/8L/vAP/wW0UXz+5Zfc3N2y2Y2MQ+Kj732MVpmu2/LmxVc0ShFIOKPE1rrUg5kkFNlc3D1DJBYqXM6FqmcUJMmAM+Wa9b3QKbUxpDiFz8oeZmwZzKREJqJVAi37Xk6m5BXVPGy2KCOW6cM4HobNKRSCbVKk+O0Q/W/dZDx58oy31/c8rEVcY1zD8mzF93/4Q/G3Tz34HX235367praa2aefYpxh1225vrllHAPnF5fMl2fibQ/ErIlZsd5sxG0jSYEbSoBM3/e0bXuiFVCHoho4/BzT4qILcqJOHFHg0GiM48g4+hMXp2NhH2OkqmcS2qXkhskF8qYo8gOZEJ0gGrOWqrU8rNfs9lt8iIfnDiGw3W5p2/Yd3mZKxzTtb8K2E7Rb1zU5UdK6W8ZhIPiIHwMx7qmqCmvF2eTUfneCUKdpjNYOCi1tEq9PYX0Hyz0fD5DuqdhMtBuaMQRUFLtLW5AQWTQEfjO2YtXMyjRD4MNh7A/PpZU5KVACv/3sczKGulmyONeYmLAx0jQt+26P0obLy3M+//JLxtEL99lVQmHzHSFklLaEFBnGke1+YNcN7PYD+/We4D2jB2N/ye9+9xl3t7fcPzwwpBHzylK3DV98+RV/8V/4S3z44cd88MGHuEp0Q5VruLy4ZP1wL6GJCjKWIWRiHFBhxAwDxlqc29HUM2JM9P0g8KnJNE2FHwdJ1NWFH54SVkuDNIy+CMAygx949eYNi8Wc5WrBoyfPaNo5ow+8ub6hbmeo4qk/DPdyDX/H+VLjfgtoRh/4/IsXxJhFw6UMu51w7hVQVxX7fSe2v/OG3HlkUKN5+eolq7M5qzyj7y2vX76m2wuS1XUDi8WSs7Mzfve7L9jve3FCqoRCKMWaNHmjFzrf2+sbZm2NsxZnHFVTs93v+O1vf8OnP/kxdVtRtxVHpv8/4+OdtTyffC9aDlWS4DUygS/rSbffU7tKjBomC+o0Ue7yxN8EpVDFj96PIwpDGj1+GNlvtzLUKAiw9xT3Hk/TVAVlFbH+fD4nhHL950TnRQfw/L2nbDc9KcP360/5+uUXhKhQ2pFzZD5vWTy+4r33nnLz9g396z2zWc3l5UoQBGNxZfIr/GJ1EDwf3kuhiMUQUSqVIlSaqWH09MNAP3iZ7EXJU0npaFN7dnYBK5nqdl13WJt1ocVaezKcKp/HKf2lcpb5bF70G7og8EUI6zO7fUfIcu59GonRo1RmvpyxWLS0bY1zmqurS5QypKi4u7tjVlLMnXMHa3GhAu8wWqaM282WpmmwVj4D74+ubWhZy8mCdGitUaV4/a4e1lYn9cBkr1yKoIL8TvTUUPZ94yzkyWBCguomOtN+vxeKsZbwwqGYbEzOTcZI2vtEr56oxfLvAe8HhtFS1w7njDhDpUAaIz54IB0LPSCGRIqiEUpkKlfRzmYykEOQtf12Rx8DdVOzmM3ZbtbMmpba1SQjrysWS+K2aRlDZLdekzIE35Wpf2A+a0XAmyI6dZBHYvZs+67QupQ432WNThmTJFzYWIfJCt+PzNs52jgSmofBM5tXLFdn5Kz46suv6Ls93/v4Qy6vHgk9OScckIKwK3RBo5NAo4KsGINx4nCXC7IqRjVyZK2IxkGhgmbr0PNVMafIBB+IKFLVkPqOJ48eM3OW3O356R/8IevdlnXfo3PPsydnXFy0NLXhzfUt2jmUMay3AzsfCFYzvzinjjIiWbQLum7g9v6eL79+QTM7w2fFer/j/NEZUScGP/Dm+i1/8Gf+HFpLQObNzR3tosGkwN31a/7qf/ZXuHzynJ/89M8zothvtvz87/0d/sbf+GucPzrn0x9/n9XVihdffEnYb0ljQFlxMcwo+iC1oM6KYRghyhpc10LbG4Y9Q0q0dXVgxRitMaaWAUvKrNcbkSo4xTiM7O7vhVLftHiv0JUhG0XGo23NfF7x9NLy9vrXpDTDNEsarbDFhTUl2TeNc7h58+3u1297Y1/f3LLZ7hlGj3WGt29fgs58/PEHDJ0hh47kd8yc5vz8jNoZQvTcv3nJm7c3fP75l+zXW4ZBxG9JCRxGcRoKU4ORjqjDqb7gaEUXSfkodD6lOoUQOIy6VXFAQiAircxh4mHtUew8aTuOaZ4UAV7Fw8M9lbNUTU1OAo9rJRtnN0ghqayh6714raPQVlPVlUzUzDHb4jSgB62pK3PY4KbX/k7yeJk8jnGUC6ycA3GTmuDzeOCfOuc4Ozs7wrs5lwlD8XYvVIAYUxGpHZ2sJt7vQVx/4mIxbbJMkGeCpDLOiW5GFofMMPojFbxAtSEGKQxCRCmLrR2b3cj17QOrN294Zhyr1RnaOh7ubjGuYhw6rm+uUcqS0Qx+lK7aOlLM7PeebpA0Z2MNSlckHD4qNrsB70f6kIhZcX17y77bi+bDGNlwup6b61t+97vPUcqxWp1jtKOyFc5ZNJrzC1M2Is16vWayE9Yxk7UIoEyWhSbnTFYR4xR15ZjPWj54/zm39zsJ15mKE4Assl1jxSignc1R2uBjYt8NBzHf5Hnej15gYzQxZkmp9t9tJKPf3dMPgb73MhXXjpAz235gGMNho0khE/y0HnSYIKnTfvRiK2sK4OgSm82G7WbLbice6tZWdN3I/f2DTPGso2lqsUjOqeiUpAhBwb7vidEfksdvb+9ISXI3NpstZ90ZzazG1PaEivhf/vjHW9+ejlqPP6/I6JxlBq4E1VU5krIXh60UMEU2osvXZJGlVBZrbSWUhkkMXhQZhDGgU6ZWBodh7zt8P5SU6kgstNH15oEpE0ion1GKEm0JaZC6VltIEesMWE2MhtmsFtc2a/jww/fE9rYPdLsd1hqathEKKlFQ2trRthVai72vUCnkPKSUJclbSR0twxuZ9ouWTrjuRluULqKMrGiaVgpQlajrBjgis30JgI2RAyd/Wg+ndRwm2sq7Tjl93xN8T12JiYUMbESoTspYZYCiIdGKHAasUVTO8eTJJe2sFetbpwkhHYL4Li8v2W637wiRp4FQ3w8McXhnD/Tes9/vZdJujm6HqjQXlRXbbWPepQV9145Te9pT2rPocGRf0EaK/emYhmqq6AK+mYM1mc3c3NwckIqpqZhE3nVdvyMel+eX6/DUkerUDROO1vjWaEJpgDMUl83iKFaJcDcFoU1Za6nL59X1HfP5QrI6YiTFyEgiqkzSmTFHshHac+hHDB5HwjhFRRBalQ8MW49B0bZzxoSkRydkqJAkV8VqRQqD3FtEfOjJWRPGgbHvCSGxub9lzIonH3zM2dn3xd2ppIybQolSxiAD4eIGZiYnPXkP07ojXPGjpvb0epZog1yMrtQhd0Ml0fqOQV5T8oPoKIl0+w2aJJStFOi6HdZcSpZOjlyslpiqZrvr2Pcj213HZrvnvUfPmbsKhTRWtze37PuOxXzOdrtFZXBKc3F+xpvbt3RDX/J0AuPo2e32OGcYhx5jDc8/+Jj7hz1+v+fm+i3BBxZtQzOfcf/1A/v9jn4c+MUvfk4eQkFfGmIaCMVO3BiHL8iBMU5oo8qglWEMo9S1GgIWVa5vgFCcGlOWGIDQSYyCM5bl5ZXQnaK4xRIjKiea2uKUp6oNy7MZP/rxE67vPPebviAlpriljjy6uqIuwdrf5vjWTcbNzT3DOOJDwsbEMCa265qbt28kUCuNqDxgV3POL89oa3E8ePnqNS9fveGrr78mR4E3Q0zYqkYbmZYLnarYrZbnmxb4Sfw23dQpCwQ9XYynGRZp0ifkyW1keqwJ3Sh8QSPaiqnJONVo6GLTa0oYm1IWYzUajTGFR61lnulDhG5k8JGQhKstOSGSymuteUdQdkAtODponYq2p5tLFjJKc3JM6J028BhD8QgX9OGbYYQH8VlpuJTSB7vZnMVWF2LhoLrD8566dR0W79I5ZBC4VImN3eG9pELpKuEwRotwLBbenrNGlpMCS3fDyHq9483ba87PL5i1Lc46fIjMyuRos9myPL+SDbsIjEzOB3vPEBMGjbYGZ1uUqojJlBCbwBgTMd+x7yVsKxVnGGIkhkTXDbx+/YbZbMmTJ0+Zz5ZUtpKsE2VKnkBBuNSOWCwfkx+ZGYNBvKsT4umdSGirMFZTV47z1YrtbihNlhR1RheRrhKEQxsrFrVF/Dd6D1qKnRiLVWWIoDTGOpQ6om7f5cOPPUMnU2WlxIR1ouGEMIkmy/mOgvp577EpEMaRvutxrsE4jbIKV0HXD+y7ns1mK5OWMbDf7xmHsQSmTZtYLBQUjo2j0QTfo4iH+3r0nq7v2G63bNZr+v0Fftliavsnu4tvhxj/UzomC9iy2RanKdFIeUhCoxByVPn3IuCcaEFy/SgJrpuKpaTJQShJhmKLmvLBYjhGSZiVqa0va7NmHIPYHpKLje2JiLwMWcTWWlCFlGVCOVue0/UevR0kRI8yPTUV8/kMrRVVZTEGlIpAKIRgDtQKkGHGEYWW1xnj0ZkmF3H1RDYVfrLYSFrriFFRuUyoReuUyjmZbMGP7kGyJ6T4rgBba3m8lCKBzMLNUMgakxKMo6wP2knOii77UMo9dWVoZzXL1YymqagqK1q5LJ+yUmJacBq2Og2pTi3Mp387zYxKOVNpVfa9SZMjv59KgXfqIvhdO073ytMh3kQ7FJq0WI3mQhPR5sRARak/+TmWc9d1HavV6p3mZTrPbdsCJ/srRd85OSaf7J3fpGFL7aEPTWvOQlmZJsQyDBV3tIPJjDq6ZVorga6HGAADSSmSVvhCTZLXMdnWc7TFLfXS0A+oqsG6ugxwFElnchb3J3l9ihyHgnqKxYTGQC56iSgBudlusVrRNi113TB6qUmiTsWzYvLLOzbmlIZ3omenLE5HZYp5rPFOTQ4oNZ8xkAM5KbTOZG0K7SeiYkQlj8oBq0WbkFNgHHvq2lE3YuKQwoB2su+GlOkHTzdMQ1wl6CeKLkjGjA8BV7mSgC3arpgio/eF4tsWp08x/Fks5qhSS85mLX0n+pf1/R0xg2kirml5+uQRgcwwiiC/tU7s9bV8pRQO+rkQI6o0HBS97WRZrouWNqAOSH0IgTjtn1lob1NTXjmHcU4YQz7QVrVoQLI0n01VY03C+56mtSwGiD6SsinDdY01Leertlgb/1NuMj7/4gXayFR7v9/zwQcfM+63/PW/+v9mMV8xXzQslg3d4wuePbqiqhp++fNf8g9+/iseNlu60ZNxaGMxtkKXSbhMKgMoCTo7taebbvDjjS030ETtOW0wJl3DdBM6N1Gnpht+srLTaHOcYJzmQsh3hfcD2/0GyHg/oFJgNmuonXDrrZKU2e12y83ra+EVZn3gdVJyMay17/A2T10mpuRteDcIL6XEfr+nqury+i3OteWmg5TEMSUl6aC32y3z+fzgbuGcK7QGT9eJPatzsslPkPJ0XgRen73T7BwoXeV1ZmXIZGLwDH0noUHOAulQWCQkXfhUM4M22FouQo0lpciYISrH7cOWrvuMDz94n/3OoXJitrxEqYy1huVyKa/ZWJSNLM7PZHqtHRcXjhAgxMwYAmiLq5dgGnyy+BzEknLfy0JnLSorYvAlpEsW+JcvX4vzTDY8f/YBamFxVY3RBm0N/TBw8/aWZnHObr9ns37g9votn3zyIc2sYd8PODcJZouo0BSxX0k2TWkSvCXaqmE+m7HrBnzwxJx42Oy4fPwYazXb7Yb7tzcHEd/l1RXRFwtnJY3r9Nl+p48csVZR41DOcL8Z6X1kDMcBg7i3ybQ9eAmLioMkyo/DCHSS5D0OVLVlGCUbI4bEfL4k+Mib129lYpgFueu6PUBxZJEFOVE8xnvQVmMqR900rBbntPUMlOLlixecXyyZz2c083baDw8FzT+78ybbtjjHR5SQBYBITkFoBSmSolA+ckrEEMRUwBw38RhisQ7O4iClDColTGlsfUrYWh8KbNHECUqQEiyXq7JeBfp+zxSuIUFNNTFohr6XTVApjDXUTUsqovBIwljE9ts1OGvouz1Dv+fibMW8lYDRqqoBGV7kJJzrVHQS2rgD/XVaUyckWJpxpIiiBHwmkZXu9mI1PTl6GWOxLlNVifiwkXOT04EyOp0DYwwSPhqKU5/YQrZNQ4yRtm25ujqjMpax78SOOSnGUTpaa5RoUIwMFNI6cPFozvn5gra1zGa1OC3q8rxK1pXdbndIh+77/jAhn4ZiTSN0ha7rWK/XBzT74eFBGkEr9LIYpNipnZUpJ1n0KN/R49SpaXIA895LA5zywdnQaI2yFJMJoQJPhfepA6W19hDAN7ECpn87DfI7taftuq7UDvKYqKOuEY5aoXcOpajrClnSFY1zNG3LMAxstxvaxpGLW1HdNGI9Y6RZ6rY7KRKNoQ8B5SrZb2IkhBLQS8boREiWgCHisMqQdSLYmqEfaKyltprGaYYsFsAhFbTAGIyFoc+kJILjpBSuaWitFdbGm1uUVrTO8tH776G1ZtdJjTMMoyyJxsgkcmJkRsCqA6pmrT3k8RhjCCn+I89blhcm94SW+5icCyPF0TY1cZcYux3K93z83hO2Dw/4vuP2+g3/4l/4s1zOK9CZxWrBw3rDGKHvxV1uGMQRbrfr6PpRrg3vUaXx7LuenDNN21JXNZ998SWusswKhf/rr7/GGMtsNufRoytMJYX80HWcna8YQ+b+5g1392t817OoG/6n//P/GS9eveAXv/oVP//ZPyD0QuHv9gNXV1e4amp49+QsdZYiUzlxlBv6seRI5RKs52nbFT6EgqhMg+NI7SBqIURUJrO+e0vyHp0zH33yBMWIH3fc3qx5/PgP8OPI3/u7PwN6PnzvI/7wJ98TxDplVqsVf/iHf5a//bf/CwyJs0X7re7Xb91kfPTR9+i6Lf2wR+nI/d3rQjNpWc4X7Hcd+/0eHRN/7H5NZTS/+PmvuLm/J2aFcQ3NanVAFKRrLaK9ckJTgcJOcy4mh5mDuDv5A2w8aRimItloh/cCJSslXtl13bBYLA7Pp7U+iGFOC/5pkhFTQhtD27bs91tZbEjk7NC6IqXIerfl+uZG3NdQmCz5DilDLovZ9Nqni2FqHqZu/RSizTkfUranL2NECO29P/m39A2oOHN5eUlKiYeHh8Pm6JxjsVgw9HvZ5KwtFKtMCJ7NRhoTpSLX19e0bXuA4adFNKUkgp80+StH6kaKrJRFKOSLU0bTznCuKYLQKa9DnDbGYcBGEV1iDNlHfA7gA19++Tm+f8T56pxhiKwuHqFsxWzWknSNsUFclzrPfFaVzx/2/Ugo4VrN/IyPPv4+OcGXv/uMXCSVRepaiiCNEwU30+AkJ9huNvz617/m/v6BH/7gB3z80Ue89977JbvDgHH4rLH1jLPLmlmzpO8G+u6e2aylcg7rNKia4Ee0MsxnLT/49FPu7v8em80OZSusluJgHHpCmpIOYAyBh/WGuq4kRdxakg+HxNp+kHT0eVWXqc53/2gWKy7aOUoZvnr1lnD7QLfdsx88bdNKgemqMrUSmtgw7AlDR/BBgtRGTz+OdP3A8/efM46RnBVnZ2fsdsMh70BrmQ5XlePsfClJzMWhJ6UkyFyINLMZxkiRsN5sGPrE2fKcyrXc3d3x+tUrXGVYXizRThUK2z/DI5druTQVukRUSZMR0FrQicnBhiziZnJEHPAQ3YbWhyyScdfLZFFLwaONFKN+HKU4M9J0jdsNGXGys7Zhv9+WSWuB56e0vpyIfoAs/6adY0wQoiKRaJuVIHYpAJGYPEollss5y3krdKgsQn+YdB89OQeUioXqow+Ul4mDrLVl6IXSIWykQpPNWd6XstS1wboaYwa5f/uB/b4jJeRa6mUfUVr46Tln3DRhzhnvx2KXq1guVyj1umRueJaLlsV8wWq1QmeI3gOapp4xVB7vR6EYm1ZMBqLHWk1TW9rW4iqhpYAUTTkJyiZNVEAX3cVE2TlFM6w56kbef//9wxo+n89BTUFyir4bICeMouS+WKr22/Gpf1+PU+vZyRzmtBEwxjAMgwx7YmLd91Kclv1s+t3p96Y9e3JR8t7T9/0hh2qqN6bB5ESbSinS917uL2sPr+u04ajr+shmUAaljk1LiIGqctRVxTjsZB9BJtZ7P0qTXpLIx35g9ANt2+LJ5ChWs3XdSo0RI8RApwwBjQ+abEswsrXCv0+ROAxyP0WPIWOdLcyDwKYPZO3K+7S4uuH69h6lFO1sznwVJUl6seLlV19h6pbLx4ZHT58RfGRUHl2p0ugLzdFMbIkEnNRgPkSxR9XCUDggUupdV6+cxEpclSFwipFd19Hvd4z9nmVbkXbgs6fbbNAFCapcxXazZVmvULomRPAZbh+2/PHPf81vP/+Sh91AyorZbEWKgWHoubm9Y7ZYkJXi1ctXEt/QC515sVodkKgJ1W2amuVyxq9+9UvOLy6om5bb+1/x5/7cX0Bry259x7/0F/8FauvIMfIf/G//farZnITiB9//lG6zY73Zc/uwQTrQjCZRWUG4VAaVAs+ePsKPnt1+L8MXBU5DZRL97dfknJlrRei3hCh5SZcXS9qmgZzoth2f/uA55IwfBpxe8xf/4k94+viCn/3st6Rwzm4XqLRjuTJEP7C+e8vjx49RSnF/84r/4H/31/jgg/dAwRdfjd/qXv3WTcZisRAOdHEnGjrx1w0psN48FEFV5HzR8OLlKzSZbdeBKhaAdV0myfJ4E2Q2XVgSIiOLgKuqckFlmcIogTyVEc93rXRJL4U8DqWI1AzlZp+s6iaoe+I4CPUoMHGKjSkuLZMwcnJxUaLUN1qsd63RWG1lApZlopeAskOLpuGURn0ClZ4uOO9wDtVECpmoBSci9CyBYUrHYolXHlx+rSAIwrmrquqwKE7N1oSMaC1itxCFQhKCQOna2gMNahLK5zzRDHJpBAvdqZLXNXrPrHUlPC1gtCXpWAR2HJASWSSMQJopA1OeiBJ6kNbikBAC19fXElSEppmvGIsfvjIypWmahqwLtzMV56vCNcxIceRjYLZYcnn1GFc1EvJWpiSyeE1LNvLZloJt4njud1tex0BTVagMi+WSqmlxVU3dzLBVRUri3FVpx/rhHj9KUFGIUsDp4vKljME48ThfzmcSuqQNTd2W6aNYFyafikAv0O17FIqmrTG6JPQmSQSOQYR5IYSDE9j02X9XD2UdrmmxxlFXD9TO0hkgiq+3kIQtRNH4GFOY/1HQSx8CMWlUKqV25jCZTmV6nwuU3DSOiRZojKadNQfxWgieNGQ8scD1MhXqhg4/Zox2zNo964cHHu4fODtfEbzHWcfRbPqfwfEORag0zVnuQQgYPekV5J9SnlLUC9KYC29RK6HpaX1wClG5PFbIkNXheWJKjDEwxgDGYMw0ZdSHdVKGQUfaKYBWIiLUWhfqlgIMxtYF2i8GvEqhdULrKF76IE1KSAUNnEw7VHn8YldemqicpmGMnCApyI+nbHq7xw+p0Li0Fk1ZkiK+2w8lfM2X4YM+0F5Oi8WU0mFSPdEfU06Mo0erefmdVOhZHF6b1hatRctnjTS2IUqWUVNXtLUrlDCk4VOChqeyfk3N8LRnTMOwaRiki234ZN8+FWZt24pTUTpmIx2oVCf7w3f1OB3Gnf635DCUSXeUkE8Kan8Ioi2MhtMB32lhOzUKp4PAUz3OqRZkGIZynYj+9J3i+KS2OQzu4sm+TDFXKXuRKSYhVVVLuv0JZfqQ/TXte0phs5hgOGcLNSZB1ihdUaWEzkKrdMilFFNEm0waPSEFKjOT11XqGRRkpSWaoG4xVmxpt2NgNwianmxiP0TSuGcfMmfXNzz76NNihFKjtCB8WmkZ1iIW3WlinHBEM949FJLTc/x84dhIynqSxRWtnANjhfaUJhQzeFIQO9ZU7l9XBPXWVsQk2pYxO9abPa/f3rDvJGD6fLnEWBlW9H0vwxYlJgvTmmONoSp07omKP46CtE7rg6C7ncQKxMDN2zfM5kseXZ1TWYXRGR8i9/e3LMiYqsZZw+zyiuXyjLPzC16+ekHwIzFHnIGYSqOmgThA8jgd+fD5c7q+KxlCjhA8wzCw3+957+nlwRb4bNFwtpqTYuDNK8+zyznjMLCOe5ypqLRDoxm7jtXiEW3dMJ87uvGO3egZxwFI9P1IP/RYI9KGfhi4vV9/q/v1WzcZVVOBnheNxJxdtWMsfLY3169JYcCozEcfPOHl6wemlOlm3ohPuavwedoM5CLyJwvearUi+MA4eNr5XJx5UqLf70X8ozMYMMoeLkZtKyaSxXw+59WrV1jnWMym1+nLDRpOhFwjtVVoa7BlImGNEZuwHMQGTClUTjhtMNpgjcXZBsgSVKMc7bxBxIaR/X5/uCkENUhlb0/vLBJTYqtSk0/9cdG31hZYKkGM2MpikiamUmyWN2114TWW1wIcFkPK709NR9PMyDkz9D27bgrOQhK0lUIZzaJZldcQyFkLFUCb0uSJu1VKUdI8jQTjpBhpqkYuuBjwJddDirckTizKgtE4pyRLAikYK6tFjBQ8b97cFPtAw7P332McOzRgW4uxikU1Y541m11HThmfgzQNKmOsBm24u11TNQ0Xl1fM5guGbgMhoXMW72+lyaXWmvjqIlSVvwyjx2jF69eviCHywUcfskTcZGqnadqW0ScYA85B1wsaMQbhZmYFVlu0rUSLS6aZtVxenEGOhBiZrZagDD4kmrvtIeU6hkjfyY07a1uMqsBoshar2lRy1cZ+EOGZcwdx+Hf1yNqBtijraNqGxbzFjwP77Yah3xHjSEoVKY7MmgbrJAgoJnFqGceAVnURS9ZS6Br5XPf7ntEHtDJYW1HXLcOwB6SgaprmMIXs+8npS+ydJzeeFJI4sShLVbXc3txwcbni7HIl1IqmVP2l48/53ff3zgb6X6ofzN/4LgUshXZHyb3xfgAiyhXCoiqvP8bidZ9xxhQtVhbagdZF+GqY5oQ5iYVlUlaofVoRcqIbBoZxwDgn3O141ABM6yoqU+Hk/B9oRlmoWmPEWoezDc7NCYGil5iGDRZn5XXr8nZz0geKlTWWlHzh0CfGvhN7VqUIQcYE09oZpvVRlfdUEEvKX6eYBEFM0kClJJbpu/0dfvTkJGJoY2Xochp8dtpkMBW2SpqJYRgO63vXddiDgUnG+1im1paYvbze0oDM6obFrGHW1pyGrU6DGDW9/vIep4ZgWtfHcaRpWtGYFNRls9mgtWY+n8ukO3hZn6YBXp70G6XZGIb/Mhfn780xffZTgzs1EgpIIRKSF9MCJXt/7SqCF2MYcWc87pd93x+aiuNwUjOF3U0Nw/Q5WGupqor9fl9orBa/O2Z5nVKfJyYGyGfvB89sJoOrcRCNQE6ZWN7HcrHAGM12vaGy1eH663sZRk3rl1Wa2lbM53PuN+uSeaMxtqJOO2pGtAajEiEG+nGkqip2cRDXs3aOqxtUTGy7XoLVjEFZh5kvcFaC3169/preyzBiFzru7rbsu46sYX7+lD/IUFcSmuqswZW6KoREXUxPRLAtK+Ph8/pGqzGto6eN/YRaqikFnGnAALPZXIIuh4799u7/z92fPdmW5fd92GcNezpjTvfmnWruqp7RmEiIoCSDFCk55BeHHxSyI2zrxf7P9CaHbDkcDsu0SJMgQBAg0I0eqruqu6Y735zOvKc1+OG39slzq0lFAQJtlHfUjaqblXnynD2s9fv9vhNN3eD6Dmu0rOlAluWcnt6hMBHnWq6uVziVc7NYc3WzwkfFbHbE6fkDgtJsdzs26zVKKdbrNd57xlVF29RMJxOq0YhnL54zYrxHvbwXtNI5R1mlmjNEppMJn3/2Kefn9/n9v/8fsry5ok8MhclsTFEWRKXou4a753cYjaTpW16/YtWuCX3LaDrGOY8KgUxp2s0NPnis1vzOD77Fi5cvWK+XlMZhjeHm5obHX6z4rW+/K+ukdxjVc3pyTNe1mH7H+VHJ4qZm3W2ZHt9hdd2yvnnJZ7/8nN/+7YccnYwxxYS//Nln9K5BylHHzWIJwPd/43tcXF6wrRuuV3/DTUbXiThGhJSJPzq95feX1jIqco6OThg81p1zuF6mj13fk5VF0nXcLp6vP8AKYzN654SLaDTz4yOc69JmKVPOtm1oUyJ3UZUopWi6VgKbMoO1kh0xQJtS4Mv8USmFwxBSOJLWWopPrWWKMPhhA2XSXay3GzarNUfzI0jC5q7p9htDWVY47/YPgFgI3gqZDiccQ6OxWq0oy/K1ydLwfUVRUO92RGRKfnJyIl32rsH3vQjRlcIqmza8W20K3Do1xGRPKUFBbZqkC30kBA8RMpOJe4LSsjkl+8MYhYOXFQUxBtTRUaKhSADUdrsVv2qt8SksMcuy/WcaJq/jakK32xBcjyKk61NCzGmbHcvlEoJjMrKc3Xsk+StZji7EhclkBfloRtuKY4uLCjMy9N7T9I7Z2R1i7/A+8p3f+E1+/uPIZnWNjj0Y8Yr3UWxvhwAgpSK+7/YIi+87bq6v2Kw3GKP5vd//D5hMJ5Kk6aQI0UrhvaMocvGmRl57QHGMNRCEwxqblgcP7zMelzx//oL1cikC9ij6mLqW8zuZTOT8eRGjvy70D4nuVzCZTL72rlLDcXz3XgrHcqCMUON8T3At29VWJnJtg+/bZPkZ6JuW6KVpzLShaRvUqMDqyPLmkiePH9PWDUWWo5Wm9x11vaUojIS7jUZUVcX8aLbfpBeLS9abFbvtCkcEHzFKU+QjQg9dKwnibXzE5y8+p6bhg+9/G12U5LlJ1Jo0hRZ88W/oDA3JQcPrxTTR7CGscN2a1WKRKIoZ0WT7AoUUyWZMoi85jzJ5cgUJ4q0vrg1k4zGh7SVg1OT0bUOEvYNOkeciRPXi4S8T1LAP8nNBTA186AFBfX1qWmL0kA1ohLh5ZVmOiUYyHHSQNPUgnPesEGqSDVaQqr6h7xVFlsnPx+TlHjUELcm1ac02MeDXfTLlGETOUtQMwwXne7qk2QAH9PT9jhBaoXgaxbbecDSfUhQFznVIZsita9AwIe/7FucknGy12PDw7C54Rd87Nu2Wvm1xoScbW1Qh2Z16k/KeEBH43fMzjqcls7JkNJ2BNul6h4Q2KVCW0Mm5U0oa5Oura4zJGI9mNE0tzkQp6bkoCrquo21blsslVVVRVRXBOZmMerEo7hLlpyi+vu5SX7Z+H/bWEMQ9DfN6zpbWmul0up+QA/vBH8B0OpUifr9X9gzi66qqGOzXhyZ7oLPK+v26pf4hte0QhZL9WVLIm0YstKuqokuZJhG5xkOg8HQ65Xq9xFjLeDQCH+i7XjIytKGqhEK7rrc0UeOUxKoRDdZBrjRH0ymr7YYYDUU1QVnDpDrGxYzFpiEGzXq347MnL3h5eQnGkBcFxuZMJjOUsVxcXTE/OiZG2C62bFct9XaHVrL3ffjhh6x2Db/5u3+X+3eOBF0g3c1B9kib8q2GmjBLQbOD7iH106+hh8O18Qm1JEZCL5BLnpfSaI8nmDzjyeVTqlGJcgUfffRLdjtJBV+td3z8i085nY2YjSvmR3f57PklLy9XXF6t+Af/6B/hMSzWO7quZ7cTsw+bHEU1oAOMqxHLzZqr62vunp9zfbWg73qqquL4+FxMIYJnMpmwXK7YbTasV0tiiLx47vjn//SfcH11zXg64c7dO/yD/+x/zp//6CcsFmsePnyT/9d///8gS657/4v/9H/G46efcXUt+k/nOtp6x/rqhqLIhTLXdWyWL+h3VyjXUGQlP/rRDzk6mvMH//Hvc3V5yedffMFyueT3f/93+elPf4QCHj18RJZpTk7mTMcj2r7ixz/9JVdXrzgeWy5ePmOzuyYbKb7x/psQRrgu49XFBZ0XO9233n2PP//Jz2lTc/SVntev+mB/mQ862PwNXxvlBaOiEIFg0jZ4H3CJGqKHG0vdWgMedqwgBbXkP3T77xsEySQePYjTwGBJd1hgW2sx+tddePavASlZWosDko/kaqAOiDNSrq0Ez2kRHMWqIDMaYzKUup3GhQgqTeW00Vg10DV8onDIMbyPQax36JQFtzzO4Xzs368Si0PRVoiIuaxKOhBrWp0CWoivTV6Gw5jkZISwt/cIS4hpUpfQpIOmYlhEtdZ7C8SYBN3D63snW/ngqoGC0eh2ejNcs2FxNZkgFdqCVsJvVkocNmwmieV1XbO6vmRUjQX+tznV5Egmts5j8pygFA5ofeIpKwNaml5Hiy0dD998l88//RV1s5NaQgsPWat0/wVxqLFW06dRp9RBYuXng+flyxdcXl4wmU6YTCYERMDtvRgCCCxNuh7Fnv8bSY0MiqiFy1qNR0znE7ZNQ987eg9EcbYJ4dYIYDhvw6TdWrMPmRy4w4fTsK/zMRqNaZsG1zsGq2atFGWe4zJJp/UxkGcZeWYJpDTdpkNZJKXdFlhj6F3H5eUFfdcLDULp1wqC9XpFURTkeUGMKlHO1H6DPz45Bq15dXMtNFBlyG3GereV4tJoLq4uKcaSQbBarTg6ORXOrB4e8v2TfvDffxPHMNqTDdaHjr6rcW2dBjAWZTKCSs8hId3fInwliMDb+R6lLZnNho5IBiBa7+kHisPkZCVrQkixekpoiSaKU5TQTJKo2veENuzNJUJwt9QtDSrRu8TVShzyiiKnDx2ZNcSQE6IXqoNS4myTgv5smtIPjffgQjgYfLRJzEwcKFapOE/NWYiB6CPiBhn3U9QQPT44YgzkuUWWLYVSwmvvuvY1S3MgIdupECxKEeDqNplrNBSlxRaifdAabJ7Rth5lFCaz5KViu9yAVuRZznQ+o6wsWS6hciTKKkoTlIhaFXJOBTUKWKuFkpLuX7mn/WvF8rCXDGu6cy6JoF1CTl3aYy32a5z4fegGeejkFEIQOmraxw6tZA/t4Ye99tCd6xDZOKwXvmwwM/xs27apcZHXGI/H+8Ynz/P90PCQOi322QevP9RP6f4MIdC4HoWsc3meowca9QEV2mQ5UQoWCbJ1QuUPXgaom9bRbXd8+PIlbd+DFnTQKzAqQytLxICxNH3P2ufo6R2c99TRM8pGbB2E3tGSsekiShmirSgmGW3v6eoNz56/4Lu/9bvcv/8g1TaezFihY0c53yHKINqrW9pnSOvUnvZ2cG0PkakQgjAR0roahYZA7x1N27Kra3b1jtOzO1w/vuHq6prVesWLiyUXNytWyw3T998DIuvNjrhpWC631I2siU+fPaccz7D5iHFWUJYlfTfm/N4dCUoOERthtd6kAUFG2/UEL+jg+fk5i8WVDLSTeYsMJA27nRgDtHXNzdUlpycn+Bi4ubnmZz/7KU+fPGazbVLAbsPds/t87zvvs1ldo0JPkSmeP/0U5zrKLOPe2RHr9ZpynFOezjieFCg/pq6lCDs5PaEsS7bbHR99/CvyPOfho0eYvOTl5YK2bcmrMWfHJ5JRUhg26zWjWU5WnnBU5bx4fkF+U3D+8ByTeXq/pWkir66uOTo9YzIZc7Nas1pvsJliOi6+0vP6lVeaw+nBIFQe4EWBZAvyrKQZbEMHqzU/8ELN/mE77FgPbywJErF43++366Gz33OSU4F7GEI3vIZQjl63p9vf1AzIghHJZEq3tUYgOFJSZZkbciOwX9cHdJVTFhnaFMLh9RIOM1BZNLLpaSOTqD5h9AN38lDEfigMG1wxrLX7rx/Sq4ZJymg0YrlYUOQ5eZbje9koRAgciNxa42ZZ9poITlgdt3zVwZEldP52ih9u0aThXA02f0pJ3kXk1lNcerJAYS0+CK0gyzPqun5tQT38LChx9FKJ96mUaBmszfCupe17Nqslu9lCQo7yEhV6vLM4pSErEdPd5PUfIj6I3sKYXF4rD5ydP6AYTTHZjdjKKgfJvlbrZNMJ5Ln4+McgnFh0suKNsFqvuLy8ZDqfcnR8jM0mxKjxXrFrWqwZrjUYm2Myi9JKHH60RSmLMgU2LyjKksl0hLqQBrTvPFHlQs9LzmPDfSkUiNebjOFZ+bLN8tf5yPOCvm33dqAxcU6tER9vFR2EuG9yNdJkdHlD8EFSm73cS33Xsd3WElKkbgcgQ1DVrq6lCCxKqkqCE2Oii+R5wXw+x2SW9XYrcL7SWK1FfKkNzlpubhbcu/8ArQybzeaWR60SkXl//HvSyqTLHYJLnyuK/XdWoIzday1Iqd7ESHAiAFVEvHcYq8kKi5AI1P5lE4Eh/T3uCQyHCPMhl1oyR2xCM6WBcW44H7KmKiXUo8FIV+2pXqLfMJnFd70UubkE1gUn1Ctr8v1rDftKCEOImdrTJ2BwB/LJuub2EHOI2+IlhNvGfFiXQhqcyD4CJHvykJpTsQ8d+OMMF4CooCyKZK8rWry6qSkaS1YZ+l4oE9YmtE0nClZhCEiTpa1iPBmRl5KphBqoUoPO8Pbz3Or0wp4WNXyWPM/pulbMNbpu//UhJG4YaIWDa0mi7lgjNOCv66H07T17eMREE5QQPkdphdIbY8T3jpiCpgejA+WGyvf2XPtwG3iqlaLrXbqT5bdZa28DgGPc/87yQNyN1rd1iQQ27K9hGBgZ6c4SXSj79913PYSIs4HRbILSOr0nRdOL215UlgaPsgZlFW20dChaFI0LrDvNchP54vGCmPY++V6D8vV+Oq+zDAc0KiefzqFr6dsaU4wl5yp4lC2o+4gxkGUFmSnQmzWh3rFcrDg6Oub8/FwS6mO8rUdCcjGLyRGKOPxDIOnBSM/m/iETGuLw3zJZTn9LdtQxBKKXwcR2u2W1XnP/4ZxXn4r1/a5uuL5ZcrNYs93umE6n9M2W3WbLtm7ZbCWGoRiNuLpZMAuK+XHBaDRhVI0I3jObzen7TtDtEKVRMwqdWV5dXu3ZJtPpjOfPnuCDJy8sXduS5WXSYgm6G2OkqWvu3DnjZrng4vqaX/3qV6y2Nd7DZrPh6OiIh48e8O47b/CjH/05wbfkOvD02WNQkflkhjk6IfQNRTXl5GhCkRmmowJrYFt3HB0fEWJksVpzcXnF2++8zfn9hzSdpw/Q9J7r5RptcqaTMaOqoukbjk4mZHYKTctu+5K+B9dbLi/XuBDpes9qveLRG28wnU65vLpJA3BLVXy19uGrazKSwxHcCqvhFiXoXU8dAmVZksd8r1UoqxIfPG3XSqiTuuUrDlP9PBcfY6JQUqy1+LSJwWDmMkwThtA8uTOHacXgDBWjQiex57BZ7alZ6bMYbfFdS9830CtUbihGBaeTI7lwVgq65WqHNRafLpLNDJ5I7Xo67zBATNSkEBOsr8TzhRD2Bc/A1RwKR2MMk8nk9iHjdXFejKLXaJqGV69eJeHvfhRA2zSyEGrNeDJ+rUkZUmG997g+JA6yx1qdigO3t/NUSpGZwUniNrzJOUfbthJxb02CjUvxWE/2rBrwSUQZvd/bKQ4TpGHR7roOFUiLSsDmOaRAtJhCqnwILDY7yutrYoTcWLbjOaqcQT6mi6BtRpEbbJax2nb0LqXF+w6lDbYYU84CxeSIYrwiukyW3aGZck7sk7XklxjYUzsGsZgP8h4//+ITAp779x8wm5doI9ofHwJFWWIzS9c2bHY1RSHe/pgMbYRGODlSKNUTYkfZloxGFXXd07cNKhMUYygaZNKe73NOBqqbaGrK/YRtsEz8OodogQj+N+sNi5trtosVTdPQdT1d20uBGSP4QOd6WR+0JreW87uneOdpm56b6zVd3yPW15KZEoHmcDJpMoq8SjS0pbgh6UhRyFqTZaKDyYqcXd1x8fKCrm2JRmg8MfR0Dbim4/rymuejCW++ucC7DnCI88/hJOdvGskYXlWKD2ssdjyH8UR+jzK3k8HYSaiSC9ioMElOGrwnuiiBec6DTcMerQhdx+Bk3/eOzGb7oqAsy+T/7l4bHDjv9nS+SHJgUrLxS6Em3v7SkMC+UCCS5RlonVDqiDZgELTWJVe6LDOAI3qhJYnpB/sBSlKi4bzkanjvCK5nu9kIF9xaaWKT+B8t6Mew1zStvOYg0Ow6cYLS2orP/agiyyzr9fr1NRHE8lVprEUGURa6rma12aKM2GtOp2MJFDQqZe0EvAq44JmeTHGhR5tAOZZ0b21UaoSkaVWIoDWmZnEYFoHaO6YJLVXWAK0V3ksY4FDAOuc4Pj7eazdkLbYYpbBKipo+GSh8XY+oIy520KdGOSh0UJio8KGld2IJqoLjaDontxn1rqGx0ISebrdjNp4ShVxIFix16HA6EDONj4K+R23YNa3QZhSgIrOqxDixMm52O4oio8oyuqamKEuCgs12C0ZE/JKP1KORUMgsM7RdYiE4R1lAURbYrKBtHX2UesNmOUFnhKjoQqRTGZ9cLXn28pK6DxS5pu87VosV89NTirLC2Iyb1TplSViqo1O5n1KN8cG3v8XL58+4ePmS67ohSwNFEGOVqhSNXNe2KBRFljOfllxfLwh9i1eR5XpFCB2zyYQ33ngDjKELgcl0CplHZ5BlAa0kZyMSqb3Depu0c4OZg7QeWimCCgeocGomEIfNGBzRByKZoNnRU+WaamSJXUboLH27ZDrNODqZ0XuDU5qgI8Y4MAFVGqLP2NY1277DFDnvf+9b3Dk95uL5Kx5/9FPe/8a3OT8+psoy/s2f/SnvvPs2mbXUdcvp3RMWN9fU9ZrZyJLNZ8SoePbksWRlNDWb1Y5vfetbPHv+nF295Vvf/oC2cbRtR1O3jMZTFqsNrnPMxlM+eP/bnN055+2332MyOWK7uuTZ049w3ZLcQlFETuZj7t67x/VNw3/zf/1Dfvv7d7DWs1SOz68Dp/fGFGNL7Tvqbknfe4zO+O3f/V2KQnI6/uxf/hv+i//1f8Z0MuaP//DH/LN/+kd881tv8fu//9scz+9w9/SMvu/4v/y3/y3/8B/9AbOjEdtmwf/wz/6I+/fPefTgPsrlTEuD6nueffqUf/D3/iO6fs1i8fQrPa9/JSQDBtjvFoHIsiyJkgLGaLJscFcAayuslQXRhxFdiOzqer/4HdJ02rZFLAqFQtG7nhhDgoxdghqFpjDoQEIIe6tBrTVlUYqXfkpIHRbewepWKYU1hvEkZ1xUGFUyqgyzccF0VHJyPCfLRD3fdT1FkbPZtmzrlvWuxkXwaQpRFBU2CXGHYjpGicDK8xKVCukvTwUHmtngxX2ItAB7bQPcwovicCCCdJNlSc0ok7XBFneYeA+H0EaksRqKVgkZtIxGo/2U/MtNxsBBzvOcCmQSosSJaw8Ba40BfJBrrfRtzsjhpGfYFFEIdcPJ1DqKxcueshGjoYvQOU/fNXT1iu3NS47Pc2aTY1xmaXzARci1pc80Vilc0LR9j7LCYTZ5ybe+9wPm8wmfffwTfBdS0SPOFNLoyIRB5zkhOJxL/uIKTIw0TU3bNqxWS54+fUI1nlFVJVle0PWBLBddEb0IK6UZDozH1T6ZNMtL8qoi+Jp6lzGdTlivG/pugVYuFWthf12AfeikaIdez29xzu2Rr6Ho+7oeu/WWzXrN6mbB5ctXhF6SlmX6LsWqUnKNxA3NyYZTZgyi56beinNO0tdokwb5ifYjfzySsiwuKYcorKw3jqwoyGzO6dEJBs16teLq4hKbULaiEHHnZ598xsWrS5bLNUWZ89777/Lw0X0612BMlqgntxSIvzl9xiCQlFClmJoplbIeRBMiDGgJXpNmQodI6B2bzYpydITRGkJIugwJhfReQqx0kGYhJISn72VCOKCfslaZ/ZRdqQPNVxQqZiIjpSaZhGYY+bqSosKHHsWQQC1iwr5tsSkvABUJfU9mNFHJ5NmHpHODRG8aAkcDWoOLXiaOSMCo9xGlbMrrkQly78Le3SZGcckb3KRMys1RysiaSNw39wPlZbfbMRqNAJIu0DOqcqoy4+ZmxXY6Jysz8i7DLR3zoxnjbEQ5GolLTe9wvmEyG0EMGCPNgc5ybGbIlZZsojgI4GVQtUdz0vOQ5zkxdK/dx8a8bvahlNpnJkFiDcQomkYlxWxI6+6wn38dj6A1KmpQ0HcO3zmRsyihLofe4ULERdg2Hb0Fm5XEWKMUlEUG3u1zKLLM0Htpytt6hzUyCItekrMHWqdzHfVmjVGaMssxiWbdOc+28zglQ5FoC1wyQrBFnpgSHqKGakaeBSLyDPl+xXXdUV/fcHG14uJ6Sd2IHfrJTJBtj6GNmj4aKMZEPG3osfmE+2/dYbvb0fYB5XoxUkn5KION/EAh/fEPfygoozGEvtvXC1pruq6hbYSFMZ2McUiy+G67Yz6bEmKg7jrKMheWgHMsl0s+/+wzTFlCXpCZQFMY+irndDyS9RtFmZeyVnixlQ4h7I0ngr4NixwolQOaEULE9X6fut61ju16xcWLx1Smw9gcdMbjzz6hXVxwfXXFz3/+Mfb0jNF4TL1dcXVzzXK1ZLFagilZrDaYLOfs0X2ePX+BiYp33nmX6WTCT3/+c569eEGeFxR5ifeO5XLFdDpJTX7kaD7n5atr6lq0TeOxDHnzLOfq6nKvfb25ueHNN95ht2v46OJjfvKzn+5dSJ89ecrp6V1c1/PzD3/O2Z17LK6f8/jTn/L2o7tMxxV5Zjg5PaXpHUfzgr/7d3+LyrZstxsuXn7B06fXfD//DtMw4kd/+WOmkxlHR8fcvXOftnG8enXJ9fUNZ2dzPvvkCV3X8+OffMj3vv8t7t+/Q9tG1tvn7OoXKDQ/+J0foHXOk8cX/OznP+N3fvD3yDMtg7ywY7veMhlP+f73v0UInmYR2LXh3/Z4/trxV9JkHMLOwH4hNEYebmNNumGSF7WWFGSlNAZD9AHT3eotDl9Tii7ZgIL3e6F39Im7nmBMrSHL1O3EZwDjohebQKPwyY88BJUW6eQeonUSJ2eUVlFkmrP5iOm4YDwqmU0nsnB5R9N29BtBDJwXC1Mvy5LQFKIIk/OiYjwes1wu2dU7nBf9hKSOxj1H9jUXqS/pFg7/DGFAQ4PxWhjhsBElhylUaia8Ey1I8CmwTayC93BlVHsLVaWkoB10H9ZkQoUbKGvWMpw0rXWiWESxlrV2P4EgRrGRS9aNw/2gtN5D0QN0GuOQ1g0MRUlaSHyCq30QHrUgMK2kcypPnilMpukTj1oryAbrYaXp/YBPSSrm3fN79O2WZ48/oUsTaZDsExWkTBsaLK0M1gilI8jsF52K2912y6tXr3j73Q/S6dBiX6rFxtg7KUAGfnOIQ32gyJK/uHcjiqoiL8Q61XmPDfHWgjMVdkrLPVLkRbo/iz2VyMdkxWjNniP/dT522wRdb6XZUMHdCvIP+PPByeYS0xS8yC3OQRsbXBLjy/2m9lbV3kmD4X0geIiZ5DvkWfFag7bPxQkNESX5Pkolrr2myK1415cZ205yN/re8erlBc+fvmQ+n3NyMsfm1V4DBtLwyDH8+2/oYqmEB8Th2TmgEahbvECsVQchpdpbmA6kn/1A44ArPjRgg8PWoQnFXvOGEjrH4PiihvUn/UEl+qgMWbQ+eNNpjRajCUFfGfQacWiQhP7mgmNItB3osbeUmLg/vzF6SDqP/foY2NtZSvcJQnNMT/aAdg80K273L61Nun9ECJ9l2Wt8/kMOvVKRUZkzKgtedlf0ztF2HbumoSoLut6RJQRGBOpyubSGzBiK3B6kHOv9tRquRhys1BkSom8FzsPeMVxL0aDIUGpAzAet4l4PEG8pRINWQylxFvy6HnHI2oqKwd5+ON8CO4ilONrSebFyLasS2lrSk7XGaDkHKooLT4yOGHpC36KtSffhoOdL98GgKbQZRV6gIjgf6J2nCxqi1DlkYnPtiWw6oQR2vcMFMM1GEpSNxVhL3zm224bNZsfVsuZq1VC3HURxljTGENB0GGw5xmQF2mp8H4hKLNMj9WsD2GEIO5jpkAZ7282a0VicjX5tWBVF9xGD3+tQhmFjURR0rqfppLAmpYu3Xct6vWK9WtF1HVkl+kXXp9+rbh2lQlrXdeSAjsZ+H0xvIb1X2A+MkBDP9XaH6wLrTc31Yskk66nKMXke2G3WhCGzq6yoexkSOx9YLFZsm5q2d6gQ6HuHR0uQ8a6msjmVLVmsljjnpabLDW0rNVtmMxQaa3PyokSyxqTm2muJUw3s+tuw5b7vabt2jwYvFguszTDWst1uJfgzRJqm5cnjx+y2NzIQCdKMRSNDEAkVjpycTmiWEOnQOqOolKDN3rNabji/e5/pZCbGO77BGIW1mrtnZ1y8WrBcrui6HWdnxyhleP78iqAaQVEx5MWczXbLarml3Xnm41N29ZrlYoXCUu/E4TMvCogR5z0+/g0nft/ei3E/7R42paIoyK1wyTsnfOiYhN9RJZGiUnh/60c9THKH1xAeqSwevvfJi17h2p4+XXAREoseILcGpwIqSgPS9xIiJai8YbfbEpy4Tcznx9gDytK4yqhymBSKD944pyxzsjzDFgV135MHReHhV48/ZLXt2DWezhlZvLQmqxTNdkemDflowre/+xt8+uknvHz1kroTQaBWwjM/nEY75/YIS13X+41hcLwB9lSjobGKIbzG3VewT6XGRHBiN7lcLNFaouGFLziVSZqTNOSTk2OcE/5ulhV4L5QCpZMA23v5f6kBGRaZkDQxRmvKUbm//sF78hSy0zQNQ+0TYhCqAKBcchKL4mSlDKgodpchKvo+2U8Gj4texJVRFrmsssigzmEN6BhQQaGM+P9LEqqhMJaul0I8M5aj+TH1yRnTo1M2oU8BRw25sSgDhIDre2mSlCIzOTE4EUcGQajavmG92fDFF1/wg99sKUvJJLA2TYSdY7fZiHZjMuH0+FRyA1QgqgA2w1ZTKi30P/1yKcL14BO1Z3Do6Ygq0PvAbgfz8Yzj+YzZbMyrV6/ouzrVZYq+9ZDlWPPVxFZ/W4/r62uWiwXr1ZqmaTBRplpWa+iTCYSCereTpizLmJ+dcXJcsdtu2K5XSU8DwqUX3ZIxmt2uZle3kvuAIbMl0+mM+Xy6N0KQ9UYK6tXNmsVixcuLS+6enlLkOfP5hL5tKPKcoizYXi6xdkxVloyKCZevbng6e8FsPuXRW2+mQjqAEPDSpxz8Vf6mDynuxaZW6lSrI4qeGB0BaZa1NWiVkSf6RkAKUo04zvkolFR83Detw7Twy2u79x7v2E9DxaLzlmpzi6KKw5vWCptplPL7oL+ITHHFGCOQFxZjBCGJYbgekoXStv3tGqcHaoWIoJVC0OHQC/U20beUMkiEUZTU4WRIIQYf4ujrD6ikA11R3v/tVD+m3J9hCDSYMXSdhKIpo7EajuYT+q7nYy8IRNN1+KVjMntI2zv61RqtJROHKCL5vmspRyXTskKFQHRBkBjXURa50GzTIK13PT4ETDGmKAq8l0yOsixSkeP2790MuSTcMgsOc5NUWse989wsFlIQpaLva3sonUw2NBkGm0FwQZLWtULZHJNDVoxp64aoAuVkymp3Db4HrSnLEWSK4CLL7QptHD70hL4hGxVIcrxiz7pTgpT0zhGQrJ8QFN22ZtM6nC5BFxJamVuqsuJqseDp8xcstx27uqFpO7Z1hzEFWV4wGo3QWpC1rnO4qImjY/IyoZZZj48B5z3oXGiC9BRFSRd6nOu5ubnZ109Dszkch2Yww2AxyyWD6lBjC8kG3xiIYe98OZ1Oefvtt7m8vKTrpYiPqWElUa993xG8w2rN6dEZhQEbezA5mR2c8cQMRwsMun+2UKR8scOMDGmwYxwaaUPUkZeXS7wL9F1DVlTozOJDoN1tBZ21luPjE/7+7/9H/J/++3/Cy6tLnO94/uKS6XzG8dFdrhdbNJa+dTx5/AylI+vtlpvLGy5f3fDeN97n4Vtv8/njL3j58oJRVfHwwSOx5J9bTFbwiw8/RGvDeDTe11MDAjydjul9j/M9WZbxq1/+CtDM53OxmDaSGee8rHlaK87OzvgX//xfMBkXvP/+e1xfPGO9XEpGhvfUXY8yimKUsdta5tMz3nz0Bt/63hUf/eKCJ0+uqMo5b735LnmesVqtUEpzenrM2dkJ9x7O+b/9d3/M5eUVDx8JU+fZ0wt++avH/P0/eIvRaIzrIj//8SfoUFFkFd9871tsbho+f/KcFy9f8K3vfIPVcsPLly948fIp3/zWNwnKovPRV3pcv3KTceiyAMIRHzajW6comSpobYlKvIl3bU8M0tENC+nwM4eaDAmbkeYkSQUFgbCWSVHsJz1ZIVN+n76vbVpCcBij6NqOJmV3nJ0cy4Q9TZ3z1MT0vcfnmkznjPKcpqkpywJ0RuNgUwcWyw2vLq558WpJ68AFyWTo+xZSd2+VnLzoev7Nn/5r6nonvvJEnO+wSWw10LnKsmQ0Ggkn9sCOdJhQDQ5CMUaePXu292AfFoLRaLT37M6sRRkFylPXAtGfnh7T1A3NbkffdayXN6w2DSFCnmevTSc2m83+fQ1fP0SWhklelmUE3xHDLaw6LErD+wsxYDNLXdf7z3MoYs/znOCcTB+Vom1riAFNFF5wlCnLer2mO52JtkVFXC/hMk3bMJ0cUxYFxkM/CO6twaoc74VCFUOkbzuyouDs/D6/+Vt/l3/xz/7vgCG3BUaxd1RxSuN7obc5J8m5ZSGc9LZvZIMJUNcdn372BY8eae7de5jOk0xhtVLcTUmYN9fXzOdzsoklyxRER5HnYMbo6DieH3E8u+ZoWtEFhS0KXLQsVjt86AXmj4bVao0x0PcNTVNTVdVrtMIQHLvd19vK9umTJyxvbthu1sRBNEwKpnJyT7R9x3a9oRxVjEcjzu/cJcta6p24/8xmU3EFioqqKnHOsdu1rNdrFDkoQbqcC8QoBcmgZRmK5a6rWSwWrNdbxuWY3XbHdrMmuI6j+ZTxuKQalTy9eI5vI13rubn+MevNhouLCyAymo6ZTmeUZUVmD5uKfz9wk9Ave7qmpypLrNaS/p0K2aA8KrdyTq1ioqd0PlESk7ZheGtaa0hFxZftxPefIj3rfRp4yDoltBxjtARSOsl7ETpTRoyBtunJpllCHmKiWCmsFvGpDw4TZQrbdTKpA6H2FAf018M9p+87QjDDzDMJpCUczyfbcUFE/S1SoCK9D681GQNiLvQjQYdkH7pdiw/1fMYYRuMRPgQRuatIZhVVaTk+mtP2Ld2mxxo4OztjPB6hrRFfeh/wrmWzvuF0WqFcT2gbbIzoZGJgiyIVh47OOQkzNEJP22632ISeiiFGjvGyhte16MG0VntE9bA5HJyQgnNSgFqDEX5hOttf3yMLDqPEcayPnuhAhYBRgnTPJxXZ0Yy27phNTgDF5eUrRkWOd4q2aVmvNnL/KzHhKMdjtIbC9ZKgnQJYjZZiVhnNyfyIJ89esd71vNos2NYdz16+4uLqGltVqcnLmcwm7JIjpDIGj6X3Gq9y8tGIiCEaQ4cRY4RMBmrb5ZayGssEu3d0UUJtlY2sVxvRk2lN38gzM9ynk8lkj9LleZ4S7MO+xjoMGRRqnrgj1XW93++NMeLIlpyyhkHo559/Lns9kGd5Gt4K1XK5uOHZky/Iy5LTk7v87C9+yv27Z7z/7puS7ZDp5ITXS46UEerqoMsQcwdp7AfmxECXCiHStB1PX7zi8nqJC5Zf/vJX+L7lztGEl+tX3Dua8ej0iLrTrJuO6+slH3/8GXfP7xKM4ounT9i2HlMHCR30htVqy2a3hRvNB996n3JeEFzgk8+e8PjZE6brJX3Xc+/sDsZomu2WLC9YrjfcLJbUncNqEoXcsNvtKAoxEelSELD3kRcvXvHwwRtobVivN0wmE7q+o2l3ZHnFD3/0F/zsww85OrnD6Z07HB/NKYop2d0HhK4m+o7KRBbPX+CDI8tHzGYTRqMCYy3rlUNTcDTNmJ1OePL4KUrLkOH4eM623dE0NXkB7779Do8evsFo6tluWkajCd//zveYjk/44vEL1sst9x68zaPzc3zfcPnyKaNJxXhsk4WzhPEZW/JbP/g7YKBue6z6aoGefy26FPDaf++/hsC96NvN6tbNI6YI+dtC9dAtJwQRKbswaCeE3qTRFHkuU6wYRRAVhzCzIOFFpImZErAhy4xAknuYWcK5ht9nlSF6aFvPrvaYwkG743K9Yb2p2e1aNptG4KDEM46aBO8Hgg909RoVPCoGfC9pnAYPJmKLXKbtB5vVMBUbBJXDxHAPax8uogd6jWHjE7Fqlnh9ERUixqo9SqRS80MQkagCylKuyZfFwkPuwvD6w7V47f0oQMk1i2qgs+lfu2Yxxv37O7QjHuwBD3mfcqRkVa1SkR+JGMgz6r6n6aUZdW2Paxpc3eLaluA1MUhAYJ5nqKjpAtjM4t0QkgiS/l4yP73DaDxj53piv0u6snQ9bJ6m2p7BwlMlcwGtRbBH+pwXFxdMJsecnNwR0SxC7RiNqj0fXIoRTZVbRqOCstRUuUZR0hWa5vyM3fKam4sxr64cSlmU1hR5QdOKp39IGoOmbWDj9nD3lwu/r/uxvLkWS+YgBYEaXFeIGKPwTgIMq/GYalRRjUYUZUZTbwghUJUlmohPKdVVNSJET58E9GBxLtJ3Aml3TnINQIwrYhIu73Z1CuMLVFUmiarR47qBfRGTdakgAT44trs1NzcLLl9d8eLxS5rvNYzLMaL/HrQDao8O/HVajdtLnWgx6d0EwLsO14vF6nCPyjhQErbxwjsU9xZBC/dC7xgP3tB+hAgKXAo69F6KDBkUJWTGI6nCQQp7rXMG+kWIIdG4ZCw0NBSi35L/h9bYQUtCWmdSoGZUYU9dgvDaWnhIzR2GI4KAR4KPiY4ghgE4oacO54mYXAWjp+uliAlpCBa8oCkxCIo70MBsZlJasXptTRwGaArNPoUjeLRRnJ0es9h40QRYRdd6tG5xvccYcH2L6xt801KdzhhVJaOqZCCOCiocCOZW09Z2HSY5QOWlEV57kGyErmsh0U20jmJQcEBV9T7sUY8QJFPBuZ5RVWK0wke5NnGvLfx6Hr7doYxFG0umDF6le14HofUGT3ByN4hRAygliH6MoG0OxuKT1klnGR0W3zu2u568M6lYDGw2SzGUUWBeLqlbT+civY9sa8e617hsRFBabNA9ZF7RukTTVkrwxbTXGq1FOxQDeIePiVqHQqtIZuTfdddQjEdCTXEyPNvT5UKgSzb/AzNCPuNg6yuWzvt7Nw39jDGotM+41HwOPyeuebevMVDWBzOBCPtcC0mal7yyly+ek+UFD++/wfHpffIsp+16UEboa4n+qLXUc4IIvf6Mp8ndwbPPfhCdZTnKGF69vAQU1uaigZxMUEqx3awpswxtLcZmTGYzTkcVPZGb9ZrVeodSOT4YmqYnBHldm+e0dUvf9njXc37vnOP5nDzPub6+RhPQEYie0INRkbIsODk5o8ikOVqv17fMjsGUIRd9Wdd11E2NQjRXg65HJTvh0WhMVY0ZjSrunt+R4fKLV2i/o7SQm8h2s2M2naKMwmaKrACbR3z0XF12WFMwm2m0VtRNTzUqOTo6YrNZA5FRNcKYirM7kqGz3a3ZbDaMRmNmR1OePrmi2XlsVjIeT9jVa0x0HB1NUMpzdDxGZ5Y8t1TViYSrZiUvX70AFRmXXy0Y+Cs3GYe+4UPhe8jfHY5DfQHwWrF8a8l3qzUYviekBqP3kmioc5m+gKKspEjunNvrAFAKvEebDKVt4k5q8iwny5JjhxYIsCwLsjQRDr7HKI13UOMp8ohbd9R9zydfPGG9qYlRYXUOphB3iBjxOEyEEB2+97S7Nb7rCF1HnoltodERQ8RWBTEIX3M4X8M0YXBwGm7Kofg+pKENYqLDiVSRFpmhQVGBZPMp3+d62YjKckTMg1BVjdCWDj3AlVLMZjOWy+X+5h8298EF6zAgcJ8wftCQHFIpYozkRfbadYRbK1GX+Mm3YYTCh83trQ1vUAGTVey6nrqTjbNvWvq6xe1q+m2NVxlBWZTRFHkmAVhdILeWLvRiEakjPgpcPpoeMZ2eENqaxokYKwxTFGuFbhaFgxq9NI8quZIZbRgqxcvLS46P77Db1YzHt4L58bhitepBQZFn5IVlUuXMJyWjUU5ZGrQK+FGObra0qxuWr15ydf1C3oMyVGUlk2AfEqddJk3ON0yn0z0tYrhuQ6H1dT5WixusNpihkY0DBx1IOQmByHx+QlEWjEYVxmqaWgL5JpMJhUmFYlRUxQhlRQTqCfigaJqO7a7h+nqJCx29b4mM9jC1957ttqbvPUpLGNyozFAx0DZarEyDcGZNVEI5UoEm9OzqHcubJc+/eMbmZsN8MkONh0Jbp0Je/0/AMm61SyBNS0A+W9+3+K5mOj8maoVXQJRBDB7oPbF3hMR19s6TF4Ls+OCJqRBXKhJ90r4gTUaX6DUg7YIZOPtK3ORCCPSuS1+X5iBEj9IRlNAhQ5DQU2NNomMatNWEQaSePpVWGlQgqIRgpX5JCuDEDed2LyHGg0m9FNJt29M0LU3TooOVib/R8hmVNBTO+2TOID1VCOBcxPfyfm0mrxe8R6dgUX2wlw37XNf1EG+vqY/SZJzfPWOzfilIjpIixvWSaTGfVrhGmgwTPKOqYDoZM52MbjNEYqTv+jSQElOS3c5hkv6rrAo2200y8FC0fXtrv2okO2XY50gT1Kbuk5Nji/fdnuJmjdA0SI5W/t8Lne//O4dvdiiboW1GXo3oVcCrCEgStnc9LrRok9G1glhneUFbi526zXIwQi1yMZLpjF0b2DU9V9db8jy5RPrAkyfPk/OgJGMfndwBk9H5SNcrjB1RzidExD1TGwO2xOZpGKcguDbd9wprYsplUijv8b7bo0qZjmRKsl9CtyU/OZZ7veupRmNp1aOsS67vUfo2QHfYG4YaYh8vEG9dxwbtbEQoztPplMF8pOvk2c6MFVe3ZBAAB/u6FgMaazM0inq74uXLFxDhrYdv8Z1v/wbj6Yi278TOXSuUjih8oj9K8yavmzI/lKxHqF8fXGeZZTKdMq47nj37CbPZnNxqnO84PzmBesVyecPobobJMvJRxendc2K9o/GB4+WaL754glI5IVqCFzRWG005LtlutvSuw3vHO+++zXQ0IvrAenFN9J1oMbRC4RkVOTYvKasJZWHo2npvkDEYL4zGlTjLZZIDtt1s0tBJJ6dEyTiz1nLv3l2Ojk7Jy4qzszMur655+vwl2m05Ox4zrTJurq74xvvvU5SlZFMUknnS+8hyEbl7Z0Q1stxsblAqUhYlJycnPHv2lNlsymw+J8+mjMeO3U5xfb2i3nWMJyMmM8uf/fkXnJyecHIypyhyrl8+ZlxmvPHwHleXS46Ox5zcOeLycsXx0RlGFyyXG149XzCd5dw5Hn+l5/Wv5C6196BPxeVwhCALdQ97K9Ph2G63e7rQXkj4pQZkL5wJshto4U+AUUyqgvv3Ttntdjx9+oSzh2+x2+3YdK1kXLgEDxvDKEt6Ah8oR4VMBTTiEqE8xmpMYVlcXXB2dsrs+A62Knl2ccnNcsXVpsMlNorGUY2rND2AuqsxSqODdKTjUQlRzCJj4horFcEMQTO3gkGB+3tevHixtxscpgdD0zG4dA2LQdM0GGOoqgpjzMFCYPYNX4wKozOZ7EafuNoyySiKgrZ3uBBeu1bDdP7wa33fv7YoDQUtSQ9AlEZkcIwaOIjD9dts2v31PbxH9lS4vkcpQWhyK9NDlYSIeVGSqQIfMtpux27XstvWTKop0XlC19FsNtjxDJNneK3wBDJjGZcFXQRHQOFkU1U5URvIS3QxIi+nKOfou5oucZ2HXAbFwJxXqKQCGsRuId2f3jnW6zUXF6+oqjf2FI48z1I+RqDrJJhpOq4Y55KxopUsqrZSnJ2eob/hGGeGTz57Res9IUCpc3wxTdbLkaZvsRFsjGL/nCxssyx7LZfm63zE3qEzKSid78m0oihKJpMxq92WQhlsNsKYnKKoyLKCvutAGbKsxJiC3jqCi/LsexETohXKZOQ2YzQec3KmOb17ynQ8pkihZhcXF3sNmVKK6WRCXuTkZU5wPX3X07YNvncpM8djdUYXRfRZTcTydrvb8vMPP+S/+z/D7/293+O3f/e3Ob57kvQHUaaef93z86W/KwS13G236BDIrVjB7o0UYoC2I/Ytvu9e00vECME5EbgmRJIYZYoPIoJMKdDDAOMwnDNGmcjZIk8ucRl1vaXvu73AWqXirnc9EU+IBhPTICUqKch1z2g02ucYicOMIgbIs4IhrE8KD3crFh2CS5PjXtM0tCnVum07vBezB5QiJFG4tYPFuVDl8kzTtqJRaOoaRcRocdciSqM1mIIcDnyG9VGeuQFVkryRo2yG95G2gWdPLvHB4WPk8vpKzBusZbteMMkts0nB/Ud3yDMpLrKykDUvKyEqdnW/d/4bpr1D8+GbTrSCxtJ0rTg3KtI95kEFyR9CUN4ssxgtdBlrM6rqFv3unSNqzWYnYY7Z19gK22QleSFrY9sHfJAe20cgiMawyDKyomSzq2nbjk3vKKcnbOuWq8sbFqsNnfe0veP6ZkGwMqxU2jKfA0l4rCd396YFk7mmC4qu97Rtz2R+IkLp0JNlJRGHD4HVpiYfHBs1bDc3sg4VBb73FJlOQ1HFpldJf+k5ns3YbdYQFW/fv8vKdUQfKfOkGQqewTL+7M4dvPcsFgtJdg+3TpVlWSF5Y36vtRx0ncaa/dAyHNQGRVHgk3W9As7Pz8myjI8++ihFFkimTFWN8H2N7x1FmZEZg46e5c0Frl9J2nbbM56MuHN6RF4VdE2LycTCd89midJoDOyXqCSs16bBcgjQNlK4T2djnj17yp/8yZ9Q5Rnf/eBdtjeRB8dj7s0rfv7RT5hM5nhteHZ5wU8/+RV9DMxO5rw/mnF9tWC9afid3/otLi6ec3NzxcuXzxnNxtw5O+Hu3TtUVQldT+g87735gM3yijIz3DmZ8+773+RyVfPsYsGPf/EJn37yGXV9uz8P68Y33nuP9W7NbifNhyCblqoa8fLlSyIylHF9y3g84vjkCLTlF7/4Oef3H/C/+i/+Cz758C/odwv6ZkNZFtwsrtluaz79+HMevldSllOq4ox/9J/859S7ZyxXL7hed9x/cI++7/nJT/6SEBR979msa9YLTTFZE4OnLMd893t3aNolz59/irWOPN8RcXz++Qt+4zu/wWx0RPSW3W6D260IumG9SXEI3nB1teH87gPOTkrun1Vf6Xn9K2kyhmn8wJc9nFwPoT+HVrdt2+5/fk+bOoTg0mI+vJaOitLkRN9jgEwpcmNwbU1h4I375+SFwqic3EY2mxol7nVEAkVmqcoRk3FFNSoocytdpQqUhYSgaTTbTUNMosBPHz9m2wpNxytFtAn2DJG26whRGqyqmtB3kssQYo/NisShsoTk3mQMib4l0PohxWyYig3nYtArHFrHDpkJwyJwmItweK601vvO3w+hhy554aepd2aCTGy8u0U/1K3ryOH7OszIOPya1gLdRsJrnwW+nE9yKxodGqUh+yTGSFbeipVtlu0nOVrrFCxIEm/XiQoh0HbTtWRdQ6Yi1ahCFxV1K/xYrS2ajHrbIVSLpJcw4iqiUFTjGe3qRnI2tCTmWiIocelKDuGCZgRJELbWEr1MGVGKpm2p65qmaYSW49qE3hiyTDMYz/R9S4zSEBqbiTWfisRosdWY8WzGyfExp8czlpuaXSdUDmsyjBWKTXB98v+/bUJ1mlYNKNMAcX9djzLxw7USNUZupSAoshxNI44jRu65thO9lfOtIIo2wyCNdXDS2Pdtvx+RD4WaUhq0YjqdMhmNyDNL9B1nZ2d7aLsoilSkSyZN8AGFoSrHbLqlQPZKihetDRZL5yPL1QLftZjZjHrXcnVxybMnT5idzDCZTNGF83Srf/grHSqlYyfcLUaH8h2q7ckym7IphkwLD6Ej+IYYOob04QPOlQwNQpTiOrd75M4ojRvW7yjuXlqJbqLr+6SJU2Q2EwEzCh9uczJCDLStTNKB15BNkKJFoYlpvRkEkkNQnDxeMhUdhN8DoiWGFxGtDMZK8F3wgk4IiD0ou4fpp0pISkjaPqG0OhdeXx+DmAwIanKbt3SoYzjUGR4izqhAxJPlRj5z5wix462373O12PDi8oam3snelll65RmXM7JCBL5FpbGZ3Q+fxGEOXN+TFxlam9fsy0l6xKEAy5OZRohCK7Y2S5QW0UCG9Fm00kyn40SlcnutnyAyndDDfDK/+JoepjpGlyXKWFzTsnMtTduyqVuItVwDH/BA3XQpUFYzm/d4D3Xt2HaRqCxBZ2RjLbG2Ktm7qlToKsSgxAu9TBi1idZkNco1ZCnkrnOdmBMgjT0hSPNJZDSe4GOkblpUAKNlpKVCpHfixKRNJtkeWoIs+67F90EoYXlO17a4ZKhjsnyvgRyPx7/GJBGTGb+/9oMe1ForrkDB7wvjIVtrMJUZUK/FYoFSijt37rDdCFU1KEWuLSbPCLqg7na4vqPebri5esmf/es/5PT8PnfuPWA0GROApm0xqHTfSrMmeQ5ija8VMuBTQ30zOGLJZ1rc3HD56oIH986JvWO9WvCTv/whH7x7j/YmcGEd9+9PaL1jsW242Wyo+5agFDZ4lDEoLevPX/zwzxmVFqJjUhW0uy03F56u3XE0G1MayyjPeevhXfSDIwyBQkfq1SX1pqNrtrTtjkePHtH3Hc+ePRNH1SC17meffy6ZRAkt321btLZMJh1d15IXEh/w4OGbdH3HZ59/xnq1ZXZyynK95KNffUxV5nR1xIeeO3dOWG83aOV56+17fOf73+DVq2uePrui7i+pmwUx9ty/f1dSyUNkOp3QNp7FzYpnu5colXF8IqjSehGw2R0iPcbkfPD+W/hQ431PZjOePXvK8/iKvtM8vH+PPqxp+xVlrqjrjq5r0LrjvW98i7ZZ89EvP/tKz+tXbjKGzWO4Ob9saTvA2wMNaljwDxdrSfdN0p89WyLlJsSAVWIH6vCYKNSjKs8xSVQ4n45pug6dGXTMaFVN1LIdG2OYjCvmszEnxzOqqqAqs5TOKtMAo2XC3DSBxWrLxfWSq+WSoISfSSqsY+I1DzCpCklcrHNZpFXAZkUSDmrhh6tbLv/hOPLLU7FDUfSw4Q7fN0yqDzfAW9TilmY2UJxC2jCEP+r3blQatRd+RWTR8UlTYdKfGG8dHQ4pU4fvQ2slm1XagL/cZAwFW+SWDzzQHW652eIQpGAfKhiVShz8W1RGRynYvZdwsK7v6fqO1nUEFchyS1YU+OgINiPqDK8y1rshLGnQkSR+traMRlM2VmBxnZxYBrrInndPxHlQeGKQn5UF91aX4b2j61uc78W7f1+UyORU3MFksqvT1Dgc0F6sLcjLEePphKP5mLb3tK7di+aVlkar8QNl5TAdNu6v2f8/5GTk1qbcl4hJf89thlFiP2iygQ7TJZ/3nqYNjEYF1iRRblQoZTBG4bTY3EqTAfLwCXUpz3NBKqzBdZ7RaLSf1oMgeEMq8uCzn5djYnBUVUVeFKlIlnWDKCFuRoELY9qmZbFY8urigve6DmUMJuX88KXn5cvHv/s6xn2jEpNXf+hbTACjM6wpAYuKPUQPoZcGIzj53DHeNhmJvx2Q9cNyy3eGNEEMiXoaU7I3tzngA8VDvvnAVjaKtkWGQ9KNHf5UjMM+YfZ2o0MDsqf8peZg4I/HqPbOTnHgcZsUJGf03qc+RrnCrxdWw3WXYdeg7/M+iAuV87d7z2vc79tBy56zvue1337PwKcmRqLReBTBgFaBs7MZAbhZreh3opmJMRB0IC9yykrCO4si26Pi/7bfPdibD3RV9uci6fIym/YjyT6yxuCQdXTQ0CkUaEVeZISgCF7JZDr90r2mDtk3vq7Hzlu6ToGObHaebePYNY7NthOqlPP0zrNrOxH8hoiP0MQKpTXOBbpokNwWQ1bl++BfaahvaYX+4JGSfUQahEyDDh1WFRhraFonNNx0rgcTm0gkL0v6tsE7R5bChAdiogvDMyHOnCY10G3Xp8FHJBoF0e9RPWNFDyEDqCKtZ4OWKFlXJ10SMe6RQGPMHjUn/f4YU8OrxFCmyGR4uN6siSFy7/69FFqLCLeDFxTSKIqyoN82uL5ls17wySe/wKvI2fk5xpqUvB73tHfiYNseZBCrk1YrWV6L3un1AUlT1zR1zcnJEcvrGzbLay4uXjKrAkvdM7E9j974Pl0fafqe66UkVess7cNhaLx6LlY33D2bUeSWzGh2u44GT1SO6SgDDVbnzEYlk/EYHXr63YbLxZJuJ05amdUcHc3pu56XL16itMKnpuLi4oKyKrCZoWladrtGhqFaBPg2kxpxMp1ws1yzXm25ulownh/RNA2XVxc8PJvtA5TLasxieYPWgXv3jzm/85DdLoJa0PklbbfF9R3VfMyry0tAM5lMMVpxc7NgsVhSlpainqGVom62GHOHiMXogtl0ymYDbasoxjl937LbrVncNDx6dI/MFqDH5JkgI8Z2VCPN7Kjk4tWSF5c3X+l5/SvRpQ6biKEA3v9b7lkgpsTV+JpYuWkbqrzA7hdyy263xTNw9DSZtuQ2JzcFu80K7TrunR3tp/paK4LrJaBl1xO7iFVa0rrP5jx6cM64KinznGpUYjONNgAyDVUorLEUhWWZIuir0Yyml+lebkUMHJToBCbjET7xuOu6JrMarTMUjiI3DJ7JysrD2jtZXKzSe0rRwHkczseABFlraZpmX+gM3NlDK7oBHRj+/mvnHiSpNwT6Q3hfafo0rRgsagfR80Bh0sal14v7r8MtxUtrRe96ukYoBnme7z8HyKRyu91KgJ7TWCsQfFWOAC8iVdcJfctme36nc2IXG71H/Lx1WgRkYXS9Z7PZMhmPKMcjvO/wvgMdhKowmoLJ8Rhc1NSdY7tr8UHmoD55VloLZ2enrF6I6Kks7L4YMUl8JYVDwKgkPkeKJxVFqqq0YTwbk5WGzjestykJWBuapkv6mRFnp8eQroXRMi3WJpeFNWjQGbYsqY6nnN05YrlrWTU9Jk9cci3s+J1CGtY+UBY9WWaQt+kwyhCd5Ld8nQ9rVMoqERvE8agks5a+a3jznfdQWtO2Lb/4xS8IyKBivV6zWErja40ETU1GI8o8TyF8g4Qmyr0iY2AKJeF93olTyjD9GxrbPRIbAkrJtZhMJrzzjXfIcwl1+/jz5wJpJG2zslquW2FZ3iy5eHnJdDZhebPgWBtMZUB5hIv7120IIxHJi3FNg9vtmFYjyEswKYwztijvwLXE0EGyeLZq8OsaKEce5zs67xkPk/EQcCpILoQPWLQ4unlHn7jZ++ey6wn+tnDaGzvsg0ZBKXFVGxzrlFLEoDF5hkoON8OEvmkaQTlSLxjCcD00rpMJrBQ0RlBOY1LehKQk997TDTQqLSJm54PQOVKRleykiM7T1Q0hKHSEwhbJlESmtwNNdEBcv0zl3d+z1hI9GDzRpywga2FU4lxkXGpOj8bE6GmTfawtMu7eu8Od4xkxtoxGo8TVvjXW0EozmUxYrZd7p8Vh8CTrf0dZVdjMihNSOu/G+9QMGhyernN7ZERyYhxFnmFTATpwx4uioCxL3KCV+5oef/nLp7Sup3WO3a4GI0iQNoYYAtVoRDkb0d3cMDs6QWnNi4sLOiPmL73yRGuFcukj1mb40GG0kkDfhI4qBVaByQ0hKrb1VvZvJDsjV2DpZf2Iga6thbrphz1UNJPbOuX6xGG/Q4aVMRK0lVGXByQOKRlbeLJM09Zbri4vOD4+ZTQaY23Grm2oKtEHipjZY4zFWkMIPSbVEFVu2aw3bNZbmq7j7tnxntUAmqDFDr4qK7a7HaNxwenxjC+ePhWr3xC4vrrgO9/5NrPZnCwr+OFf/BuWyy3O1Xzzvbd48eQZrm1xzY7V8hLi2xwfzVksFswnY/LUZItZhUYDwYtuTCHI3EDnFKaHksfXB5quI89zjmZTLsobnj17yvXlBWenp/zJH/8r3rw347vfeMR6u6WYHKGyjE8fP2ZyfMxkMuXoeM7lxQ1t19D7nm9/+5u09ZK23tJsN6gQmIwm3Ll/h+9+5wN076DvWFy/oDBz8B2bxRWuk+FtZhXfePctnj5/wWq1YX40Y7VcA+wp7UfHR4zHI5y7oShTQGTSyjRti194/vLHP+bOnXvM5nNGk7lowpTi+OiI9WpB33dEIovFirreMhpZ7twteP7smqqY89u/+Tvkox3r64bNdsvVdknfS0PTti1vPHyHtulxveONd47p2xGu77G54zd+45ssb2o+/dUzXjy7pMynTKsTzh+MGU9zXrx4xZ/+6U/48Yd/wsnxXWbTUyKOsioZjXOMjTy/+ISb5Q6KyVd6Xv9KTca/LUBuKJijD/tMBZU6aKMgt4bMavJMUWgtVAkNfddz/84xxMB2u2E8mUgnbTMe3juH4HCuZ1fXfPTRFwQU48mUEDx9G+nbgOvg7PSI4+MJDx4eUWQKa8CgxMFG5ZJoXVRYb3ApgKXdOVbrrbggBIvFoHUA7cXFSEPMkgVg6BnsV/3e0x2ck4vovU8biCUCTcq/OGwKDvUOh0KhoUkbdACHXvVDIzFsgCBFQ1UJD26Ib1qvVsliUqhqfd/Te0eWZwzGLUppsvwWEWnbFp1EYCFtNgPMekvJUuRFTlHke9bHgFyANAt107DZ7liuW85OjgQpMobMWMik2N7VNSidii6DzQq00ngkAGnITPHpXnIhsNnt8N7hupa+2eH6HTrT5FWJViVBCwfbBMdsnO+pEUobcpOjVIZWivlkymg0JssLZP0a3L7UngJmjIS8oSAqRbMToSBapqzGGsQ4xGHsLVAVgMxkBB9ZLtbM5iOEtiXTK1F8WKKyoHJ0WVEw5s037/H45RVN3+L1hMyIDDP4nnxcEVpL7B3GyP3gjCLPDOvVkq6R1NOv86GsOEhB5PjslKwU+lRlSt56500617PerPimfZe27VKOxXOMKhMNsRV7aJLLTozkucFYg80NgrZrVKKXdV1L4xyb1eo1JEgmexofIuvNDlTOeJIzOz3j2z/4NovVNZ988ktaJ4nuAUGUbGZo+4Yvnj9hbCY024bdesvi+ppqXGFyg0WJzd1fjy/F0Dk5J0K/cjJBZSOiMWlzbhOS0aOCZOEI3UljbLafYMYYxd9eQZHn+N7tJ7EqIlNTlRLQm0bWqxAkN2dfjCTUGiAVpyGE/fozUB0EubTpM0cRWbfdXoR+iGJ471OTIWigIKDieqOQ500bg7aWPgWNOu/pvGTKCKViQEs0xITmhkBwjrZtCH5ASg7cvpS8buTWq//fZpcL7Nfp/Ro+IAVBo6LBoCgLQx1qjucl8+lDfvl5ZLWpafue8bhAhRajAqcnp0OPAKSmJURc9Bgj9uQDd354P5m1oMRuPALlqKIoS0iofWYLOnqIjmgFsRhoMnlmiVHWxMlkstfbDJ85M4b88A19zY5F06CNRdmCYmxpmg7nwSpFlicDgBgospx6swUUs2KMCkLTyXLNdtugU9aOCl5s4bXB9Tk+aJRt0HbHbtuBHqN0hqkqQQKQpnfd9ZggTfk4uTyJgY08D3mZi7nHYo2xGRBp24Z8XMl/9y0+BlTMUCpjdjRit13hQmQ8PgLTYYqcYjQlBKibhsiOSGA0OqZrPYubJWd3ziCKxgoyepPhFeh6SWUtVo8w5ZxRodilPJuiGlO3X9C7jthNKYsJd0+PeOvtOzx9+is+eP8+86MJu3qL0Wt0jByPT/h7v/U2rr9P17VcX15wPDOEUDGdlay6lmfPX/HhT3/Og0XPN77xLmVWcNMsJXcoyygLGTTv1yEl+osQIw6Htkb0ZkpRVBVxs8E5R1nmfPu7H/CrjxX/5o//kKwoeXjvPt95911yO6IPBqcyju+eU9g5uSmgz3j2+BlnJ8d84+03WS2uODmZ4ZqcF+st85MTzh6ec+/N+/TBczyuKPWIbhkIvaPrHbtoufv228y8ZrVt+fHPP+L0ZMLJ8YSm6fi4bSXbR2nu3ntIvdtw+eoagKoQ5Hy1XIrmRQV2rmVzKZpTHRQ3izXRZJTViLvHR7jS0LcFrp3gmi0Px2P6ds3PfvwzOldwfHyP+dFd/uU//xl5NqIqS45PC6oqmfeowOeffkRZFHzjGw9Zd2uUycltwWji+dVHv6LfBWLTcXJS0geN1z21W/Lzv3hM13ju373HZN5zfX3Fs5ev+O53P6BtLJtNzcXFC+7cm1CMC9587+FXel7/Wu5Sh0F6r9meap04dgKrG6vJcyM866Cx2iRrWkWVa6pS0gNzFZkfzcizjCKzTKoMhaV3lrbr6Jyn6XrqXoo3FQ0qipPUpBoxrUrKJEDSSCo4OgVP9V5u2iCLbt971psdm92Obd2SSASyNYaExacxxq0z1rBBJdicRCXQUjgrdQt/D4X+oVvT4XkjPVjDZvKaTeIBZelQJP/l5g7Y05IGmtSh3kKEleFgc1UHFKmYKEXJNepLtI7b108Qe6J/HFII9veAEnvgopAgRqVE4K6R1PCYKB779zs0S6hExUqUBEgBe5YYHb33SZfR4/segtCdRL9h0Vr46EoHqtJQN4a6lSl3UAMVTzGqRiJaMwZI006t9o3CwOHXWidKSbKjVQqUxli7T/lWUSa9eSbwZwwkbZFY/7VtK85QrsPY5HKDFl2GVE2YrODk5Igitww5MDAUaGI3qjI5Qy5xyBWR1UqgVaH0/JXzM/9WHdvdFiJk1lCOSnrfYa3h6PhIoOagQVfY4gTXCQdeW4VrHQpBkfKqlGsaY6LjJ52N1uTWptVH7tu2bejaLoVQZnt6irWWvMjJioxd01FWM07Pznnn/Q84uXuXbb8Tbi8yGE/Mf4J3uChw9ma9YbVYsriZCqrXtlRuJCGZf+3jlnY05CVoZYgmJ2ixfSVlYxAcJF4+6T0ae5CDkJoNed60UD8TnTAE0aHERM2xCRkdGNGHGguhRP66U2CWZQR1+H234X4MdNOBxhRu7a2dc+go9sDaIPSiRG8KIVlkaivnPaWch5Rb4PwhlfB2LXUpIb5vW/pWtHRCedTSnKbhwtD3HVJSB4rqoSbt8NgPfVBoTApc1+ImaNTeN//saEyRW3ZtJ4iQDhgjLjkg4VvWmgNGgEp0sNsB0P4uSGvQcO66rkv3g2xGfe8TtUTQj72BipWpqDp4nUHnFw72C8L/lHv0/7eHOFAaQaSN3btJStOZQn9JNuDJrbCqRhD72/sUkluSJO2p1Hn7GFJ+hoRW6qSXkz3zYA9LU3ni4IY25BnJ95o0dGy7Hq3t3iIdbRIqFYlO4zuX0sctEgAoaLrWGbt6hTKGLK/wnd9Tco3RHB/P6due9eqazEp9E2Og7zr6zmEzRVUqSmPR2QSqI+ZZzXabsd221G3Ng/M50XtWl4rTkyMe3Dnm/GzO/TtHnMwrylKz22zJlEX5hmZ9w6QqMFWO9xXNeoWeH9E5cTSLGJq65vLVJbPpOU0tTA1UyidSCp80H4nflxA5nUouof8JJVJRNy1N09EmJ63xeMx4PMJmhtgLVbkqc6pqzCZaouoYjWeM8iOInu1mw3q1Zj4eoYhYK2F4QYu+7P79c+49esD5g3PadkdpLVkIdCoNsKylmsxonVCx6rZlt92RFRYUdJ0gDpFhiJK0a4n9kmU5CrXX0XoT8CpgtKFtW6zOKMuSHk30QRpi32NNRlZNWHeNmBXpCacn97m4XOGdo9ntWK02nJ6OyRLLp+1ajNGSG9XusEZoyPUiMJ8ZrNZ0jeLZ9StKkzMqKrpe03QtQXWUVUmz0ygsk+mcySTS92siDT4ElssNdd2RF6M05Mgw5m9Y+P3lJuNwkVbpobNp8yFaIKB0YFwIp1YRZSqMwmjFtKqIXhJJ52XByfGcsszJM8Nut5Gk1iB8xqKasO3WXN+s0VFRFSWjomI+nTAZVZQ2w9cN0YJRBlVAWRR0rqOpe2IDEREedZ1nsd5yvdywXK2x5ZxIEMFt38sGnRqmgbs9iLazLMMrhdMadSDCfW1KdJC6OSARg5XrgG6ICDnb/8yXtRCHm9wwYRs2+EGkRYy4Xqbah45DA61tSAwf3v/h+zoUkx/aCh9+VmNE0ISVivzwmg9NT1EUZJllNCnJbUbf9ey2O0JRyrQ6QFWNCbEjBCe2lsnVZfhdg1ZHmpQMHQUxqjtH2YqjlooqFQpCqxhMGMEzLnPqUtN0mqLNaPpBE6IZjccURYXRFnAHjV2UTSI1HFrrxN0N2DzD6NQwa8loybQkfbdtS5FXZNbSdYGu7QgpXXm73bKrK5ouZzwqbz3CMYLSoFG64OzkiHFVkGkICuHMaoXNcmqfJrgotpslmVW0bWSxWBOcYzqZcnI8+6qP7N/K49XVJUWeM52Myaqc1asFWWY5f3AOypNlilk+Yq7E7aWscsbjkptdg0KR5xVnZ3cgeqLvIT3XKrFbyrIgJAqNcz2bzYa2bvaGnSpNDKy1TGdHVJMRbQjcPX+Lt95+l9/7+3+fXbcgvPicTbtLmgy9RxfatiEq8Tu/vrohyyTPYLPe0DUN3vVQiNFB5N9eyKk07f+3Ix23VqlFUSUdgsJjpMFQtw2G8o7oPBL3Is+Estm+uYgx3v6GVNgqLV71fd/jetFbGWPIE41mEGg750QcrER8HomJt56omhpKSlzv9ojusJnu14koYZ2HKO6whhllyHQqzJIl7rDe6mR32fVdQso1XdenRkLWMKEXJQMIrQhBGsndbifOhFGevyzLU/aF2OkOmiqThj9SmNt9oT7cI4dIh9hwa5Q2aJ0R4rCGRLIsJ/QN9DX3TqccH83YNh2//PiX5BpyK6JXrUh5QplM3t2gG8r2w41DU4fhzsnzfG/Fi1K3mi8vIZ5Gmz0NVwZI4kw30Jf7vtvvXUopue5dL45tX9PDh4AOghorFGVV7Sf5IXT0fUxoqU4NsAjiA4reifBZNF1S2HsvOkvBpzvyvMCHiAueajKGkBO9UHmd75NBAmRWp3qBlMERUpMhWU1t27HcLRlNjnHJQU0XFUHZFDqb4doGk2mMLXCtUDvlrWiur67JyoKjs1IGVcaiVCArDI8enRFcT727JMscwQeMduy2a7reoauMu4/OKXTB9OiU4/tvodsr6k3Larnhw49+xG995zcpspKPfvKMt958yPm9U05Op3zvg7dp+y277ZLVxXPuzGYo1/Di8pI3HrzBqBqRm5LpaMbJ/Iz1ZsPPfvEhkztnuL7j+uqKRw8lGLhpGmbzSvJ70qAuC1oMZcRSKukzxAnUhZCGC3B5dcPiZiVGPWl/LsqChw8f8PjTj3CuxceeyfSIZhfQ2jOZHnM6O2O1uuH5i0t22y2Xl5cQHWenQk1qu5Y2NHzwzXd5+OZDjk+P2SyvaHc72u1W1h2TU5QjZuMpv/jkCYv1juWm5maxRmmHD47dzu21YpKjtIXU1N/c3FAU4rSqUOzqHWQKnRuOpkc0dYNWlnfee59tK0yUx59+RllZ7pwdMxlVLBfQ9j3H0xm/+d0f8MMf/pimaWmbmmqUcXo25uhoineOzbqjKktOj6YUWpDRZtuzXXju39VYo7l60fL8+Svu3z3m7vmcTz+tWdVrovLk+gFF9pA8M1RVzqiaMB73+NiyWCx4+uwZMSh+53d/Ex+WRGeI3VdzuvzKTUaT4PQBxTjkrPZ9L+FwwGQ8oioNeZZT5paqyMhz+bOua4osw2jDarHiaDYnhsjyZsF8fsTT5y+5urrkO9/+Jq53LNc7fvGrz+hUjsoKirFhvdzQbyVdezIuuVhcs6stR9MS5zuKqmI0CdisofdO+KfesdpuqWvhsC2WO5re07mAWy+ILiEFPuw5sPqAyrSn9CTnEmM0vb8tWg+1Eq9B7Mk1Smu9D8053LwO05z3qefh1tb3cFMegniGYn/4f0NTcOhcNUzeen+b5t113f497q0aQ6BPzcIhhWtoUqQ5FGeCQcQ/vK+2bRNKAG27IXiHVqLVaJqWrvPEqCkmBt/H/dRNvLLjvgA7bKiUyZL427NpHXnTUjUNsW+hb6HvIKvoE581RllYq0zRFZaV6fFB40NCgbTGAa0PFIb9xNVasc8MSIFvjEGPKmKZE5NTlnOOum1hsWCz2VBWG+4/eJBSgxXWFPtgreAd1haEEGnbjrzTZDniE04KPEJ47qU1nMyn3D075rqxbFdLvAZtJDOjMIbMWsZqKsFhfY/zjhigrCrO7939qo/s38pjPBpz9/yM2WzKarOlDyLSN1oR+xZlVUJ1LOv1lugcv/d3f4c//uOfUe96rM2ScByiFv65/F3Rd448D/TOsasbFqsVhEhuLWenZ7RdT9M2bLdbVpsdpsgppxPu3rvD93/jezx4+Kbcn95xfXHJxx9+BEykII1KuNYyTJTnS7d0saMLUBVT2l3HbrViNM6BAlIIXRSCBbe43SAu/fVjeBpE/CyFoVYaHxUoj0rNtUpBeMpocpsngbMTmijs141BJxEjZEMQWwiAwidHJ2tMSv8VA462bsTNxvXECEFJUF/nOqEOBinUICbHKZ/AFykahJYeGETLw3FImzJaYTQyAU3PMsAQuNfUPVEr6qah6zrariEEh1IR7yXvQhFEW+YGFEV+V1FWCa0BkIbFaC0mId4RYkrsPVgzD/MxBiem4b3udjtUXlAUBUWW43oxgIDAtChw7Y52uyQajVWa0TjjaPY9uq5jubhhNp0lNIN9UZIGufSuJ88zBsfF/flKDc8QvloWhTRtzhOjk/tHizNa39b0aW1TUcicglLF1FSmAq+X/dBow2g0+is+uX+7jq7rUUr24EoLTS/GSJ4VCU2TiXKW5ftz2nZDqJy4LOngEzqhqMoclAySAiplx0AI0shrNOMiJ4QOrcFqWC2WVOMx5WhMm0IrQ4g0TY1zgSwrmB+P6L00PRHEfMJ3yeRAMylnjKsZo3JC75boKM18vVuTjTLKUUGRazbrJV3X4FyLa9asXn3CfDbh/Pycb37wHs9fvODp06f8wX/0A9ZNTdfVFN2Ks3mJsRu2lx/z/POPCL2gcd9+r2J98ZRalzw8GzEraprVC764ecHm+hVHRxPOH97ne9/6Br/66BO6ruV0NqXZNiyvlzSNrKPvvfcebz56k/Pzu3z0+HO6ruH66iWL6wua+sEtlTmm9aAX0qtPjBarFWi5Tw0KbQ2u99R1y2w65S9/+BM++uiXPHr0Bp988kuWN5dMZxXvvfeIvDI8u3jGyRsf0LuMyeSc//Qfv8fi5iWvXuQyiY8Oo2Xt6/qeZ0++YFTl/MP//B/yze+9Q640/fKa7asLlI7E4GiDJ7aOXbulv9nw6vKKx88vubhaMp1PWS5XOOcoyjFKddy7f86DB2/wR3/0r0TXk+fcv3+f5VK0VkVR8M7Dd4gWnPK0G3EOCyHQtA3WFlxfXvHTx1/w3ntvc3N5wXhS8v4Hb3F58YKLmzX16lfEkDMaF8xzzXsfvMu2XnGzWPLxx4+5c3aXGOCTXz4mT7S0LMu5M79P7GuMzfnWB9/jnbffpG5ueHnzgs8/r3n/m3c4uTPi5Ystv/rkFdNZxdGdN7i62lCNNGWlmU4n/OAH36fIRzx64wF/9Ef/TwqTcf/kwVd6Vr9ykyHF1W3C85e1GQqh1pRFTpEbCqsoM8OkGoLqFC4rZJNzAWUsXRAnoUXd0L+4kGmYrfji5TXXV1esNxvq3tOGIIFOxjCalBLCR2TbbUHnuJjRR3CupewCo6Do+p6mFfs6H6DpWnEtajtcUChtsTkQEDeCqMQdRus9VQpuC1OQDXAI/ZPU7YHXL/DXMN0/bAKKotgjGIPoe/hTFMVeh/Fl56lDWtTw/YffM7zm4dcOfx74tdc6bBJkaibC56EpOnx/sjDHRP1i/3rDe9pPK33Adx4RsiQHE6PJSyOuSfr14oLkZjMUPrf3j1C3UJZoIrumY1z1qXDa4n1LTI464gClMUqsajNjya18Fp3cxoKTdPiiHFGNJ9Bt5fMS0TpR5HTyyDeW5LmC61tBOYwhIhaTIbnTXF9fc+duQZFXe3Qoek/fCVVqt6nJ0GjlyKsMmxVkFqyyKDqi79DRUVhNbjS79UrohWnCOJ0eidAw8dO74MQ2txf4te17Wvf1tZ4EmI6mlLkUAtfXNyiv6VtHW+/IixwdzJ6uk5uMyXiCvmex2UfYLDIaCZIkkzCNtxqtbqf/McJus+Py+pq2bRlXFTrLhbOe0pA325oQYbFcU5Ql9x+eU+UZVkV8t2O3XON2HZYMlfIMlNZMixKzMTgvwUoPHt0jeHh58YqPPvoEY96lqjJC36KyCrRJTmri+KYQLcT/mFRjSJVOjOX9V8URLamBBuqiGqhRtzQfeabCfhjRpwk4RqNVjmgYFFrZ5KXvaDuxv2WgZsawD33ruh4Xwl6PphCk0aeiPqbGQlmTmhcpoLW1EG8tyw/T62OM+BhR0Qu6GW+TwpXSQo+KkejFyMF7Md5QSpK6vY8JnZQpofe3DUFeFOn/KcmQUFYQD+FQYsmIMSSXoWRkEQGjRVP4JcrSfi1MUhltNEZlGOweCbVG9rc+dIQUQjIaj6l3nSAd0eMceC/f771QJgYKzSEtdljDiRAHmtbAFpBvT8X0LbNAGlIY5n7ycdLd4l2iBYkbljw3kv/zdT1uqcGC/vTOyTOqDodhCsmMUQcUyWx/74UQCXi0ioJceAcq7mllRIPRFUU2EifAIFSnmKi13sNkdoTWRvQ/afAmqJSEUYYQUNpLynfsBc3vxNDBezFA6XYBeofvGvK84/RkTN93PH/ynDffPaUaVViTY8OIophjjGKzuiT0DdNJxb3TY958cA+rIn295fLlU47Pznh45z5v3f0OP/3hX9D1K/JqQplbQmIobHfXlEdziqwi0xZtHTHIYOONN9/k4vIVq+cXPDSW0WRG6SPWWG6uN3jvyDLNvfNTQuhpmg1ZbujbHT5YimxCkRvaZsdysSArDFUpLlzaGEwm7BatBiaBgYSuRi/1mkKzXq8gKvKsYLFYEGOkdz0XL5/jmxtmxTHKHmPyill+RO4L6q7n4vIlN4srWdvaFqMi5JbRaMzR0RFlZYjaU7dbvIewaciBuuvxBO7eu8/VqxvRm2621E3HfDZnPD3GecnNCsFhtOHu3bvSJFzfyJAghZjO53OWy+Uena3rGl0YopY09bbt6DvP1eUl+XjGbD7nwd2/w263omlanGu5vLpmsd5gAlRVjjCEPV0fuLlJ2t2oOTs75ehoznaz5XK75s1Hj9BKBipdU3M8O6calSwXDU3b4gJk5YhvfvsOR8cB4pbr6ye88eZ9bK55+eop15eOR4/uMhqfcH1zQ2YmgObJkycptTzi1fYrPa9fuck4dBY6TJIcpkCDPWqRS+CaNWA05EZjtJwcqwytE4hJ6YzWBequZ9N7bi6uKasR1WjEZy+ueP7kMfVux9n5PZquE0671lSjguAd0Tt2bQ1G0UXY9RJyUvSekQusN1uZgvWewIEeISqKUsRhSilZmb2kzxpui3D/Gvc37gtzrRRGsd+QDoWDg4vKsFAN3O9DwfStPezrlqTDwnl4bg/5z4fOUN0B1D2gIYec5/1mHoSu8GsWhvEgcC/LaJp6v2DLaybaFtD3TRKVC6w88E4FOUkWukN4e1o0jLUpjXygeAy6Ftn4RDci6Z+DeHdfsBjZPHatCPP7vqdttrhuR/AtOpMmQ+YeoIIi01DYiFYRo8Xb3KuIMZairBiNpzS+FYpJahJJOghjhKeptBRwSkUpWhN61XUdLnqi91xdXjGdHTMaT1EgoV7Jt77rOuptg/UKozr6zpKXBarSWFsQ6QiuQwVHmVvKPKPebphOp6ClKT6uRqjoiX0nwkYdkbRmKUy6vmfX1F/1kf1beYyrMUYbXN+zXK4ZZWNcJxP4iXNSEEdp4jObk2UFRVFiEp+2qipymyEhcAZHSryOKWXeBXa7msX1DVprJlWF0Uqm0drQdT113RBQLJdr8jznvXffwWpQocO3OxYXVzSbhkKXhKQNMMYwnU7wXoLNlFEcnc65eHXD1cUrfvqTDzk7nXJ0NKZvdlg9ApWBMukZTE1DQkH+nWwpUsBdHFz4VDISCIn9OxTywtkfWg/2tMsBcRWdhWQERHQU9xkpthNt1Qhto2sbTCpeQ0I3RBMuBgnOSSJ9TCyvOGglVLKbVRplBBmVvAaxAlVJczVstIfDD+kkY+KZI0ODvYNSQmSDrC/eS+DlYEEdg04ic25fj1v9gVhRD/a42b5v0FrWigFFlXXZ739/jLcU0+H19hTWNHxCi0PhMGQIIRCtFSvqdk0IkjFSlSXWFAm5DYK8qNuCd1iDhvd/2IDt/yQUfG8bz3ANFNkBCj7YLN/mUIkuT6lIm9AoNXweLU2i856v6yFDzlsacL2T4j7L8kSFum04rM3QKXE5Lwt8DLiEUhEjUStxceqEiii0Ynn+jKrIzIhOS+ZFSNq6ECK9j5wcHdO1raBxKhk1cEtNDkF+z2RS0YVa1vW8Qrka+h58j46Ktu5x3ZazOyUnJ8c4l/Hs8VMenc+pypK+i4zNmKPjOUWZ8eKFp95sGFUjjqZjZuMx9XTK8XTKLz76OXdOjrkzP+L99z7gL/7VH7PdbNAxMq4qfJDBw/VmzbktyLKKtt0xRuGDpncZD8/v8/TlKy6ulxTjCbPpXHQUwXNzsyTPpc6bz+cslkuaxlONS9p6B7pA4bEG6nrHYrlgNKkoyyHQz0jTq7U0Gol+GWLEdUH2WhTBay4vr/Fe0KnlcpG0lZGLi1e4+or7JwVZUZIVY4rqjNxlLJ4+5fmLZyyuL+jqRmhzOuKTQ97R0RFFZQh4ttuVPJfbHqNkyBCU4vjolFcvF2x2LdeLNTovmc9mFOWI5WrF5eUVfS/Pz+nJGZtdzatXF69FEAiVPAWItq0EgXpN0BF6ce1TKtDUNc5mnN+7x2986zv8yR//C0FuW8fl1TXb3YrKZqjJBLQMelzv2NxsKMsx1hacnZ0ynU5xvqf3HZNpRd927PoG120o7FtkpmC3e8Gm3qIs5OWEt779kHr3guXiBufXvPPOb1A3DT/+2S9ZLDrmRzln/YT1eklVaFAdr17V2MygM0XjN1/tef2qD/ah7uCwMM4ysVAtMkuVZ3jf47VBhYjvHe1uQ24tRVGy2oV9fkCHJHT6qMjHc+rNmuttQ7/YsFpco6MhH8/xUVGUFXXbsnj1irvnx4kTbATS7nu0l+j6vuuImy3Ru7TxavmjdRKDCZcyNg5tZFJHohspLd1z7xy9d/ThFnkYPv9e5xCCNDpp98rzHCJYcxtEOKQ0bzab/fcBr1nT7nY78jynqqp9EviwiA6NxcBzPrTBHYR8h02O0XJjdykRd7G4EcRAvZ5nMkw4t9sNCqjKUs6FVnv3pLKwjMqKu3fvsF4vkqDZsVqtEtSvKPNSKHQR5vMTSdV1js47iiKj7TvapibPcvJkRwkynSchEQot3HoitjBIsCEE56nbJev1jpvMcK854erlU5TJOHvrhBhFeBWjJjrIjWFSGU6Pplwu5TzZssC3NUpBURbEtkCrDJ0mptqoxJG2ONfRO0lLHoLcIGk0EuWt73uePHks913b8d6736RzwzUpcf1OoNDYcdEumRyVlFWJazxhNEHjib4hth0P7p/TkfPx40vyoqD3Htc2LG+ucH2H7zuKrMIYEYZ576i3Hh+grpuv+sj+rTymkymL9RXr3QprcsqiJLM5MQSWyyV5Wco0OlEPYgh0fUdmDDGL5JkmzwaRbkQFvafaWGu5vr6mrmustRJumYT/9XaH0hbvfHqeHMubFdEBTkvgXazRSvOHf/gvefL4Fd6VrNvNfuMISZczGo24e/cuf/Qv/5jgwZqCf/GH/5zZrCCEHq0dpw8MxXhMVpYYlSVkYmg01L+jwfgfO3xqMKRJQFswkWg9ZEhIiNK4tqYb1qoBwbQWY6W4KAqxt2ybNvGHM/JiyuZmtS/W+96lZ16mwr1LoaSZTVbUMdGuJMQyBtHFDJROYE8T3TcOCckYKKRKq9Tkp6nmwTrbO0/dCrVHijWHTe48MBhw3GrFYoyvufJpZRLaGQkhNXQosqpIiq64HwANa2zf9zI4GHJ7hsJea0aj0T7TZ7AUH0w9vPcoo9CZ0KS8l9fa7Wpms+P9/ng4eBqosQMrAA4apBhvxdkHx3AuD5uQQWfRNM2vDaNICI1JFvIxRtESZFmi5Hx9czIePnzI1dU12+0uNXz9Hi0ripy2a1lvNuRZwXg8QWvDxatL8qqSKXLTJBohkkFkoNl1BO8Zj8VPIQRFCAa6FqzFZJpt22Nsge97dk3DnbKib1u2zY4yM9w9OUYpxfX1DTpGdpsl6/WCk2884mb5nND3fO+7/wEXr17iekNmxzx69x0++eQxj794xgffeIPOS5L0/+H/+F+yfP4r8AE9KljpjtBccX254Y//xb/ijTfeIp6c8eLJBeubf8V6vWG93vD2o3dQbeSXP/2YP/wf/pA3H5wxqaZ09QZFRRs9nfEcn7+NHZ3y6mrLH/7L/zf/6B/9Httt5NXFjut2xdn5I87uv83HH3/C6d0TJpMKTc98Xu6fmQ9//nO2mw1t27Cra4JTdK5hu97x5MFb5EVJUZT88qNf8c57bzM/mjMeVyyXCyajEfPphNG4RHJwpZno6g3L1YaLixv+/M9/xM31DZv1hl1TM5tVjCdjZvMpzxfPAMtoesp4doKpTog7z/XNgidPn/Dy2RO2qzV/8Ad/gO9aNusln3zyC+7fu8Pp2R2+8e67uN2abtsQtx1aWbLxBLThJz//hGbX4pWlHM34we/+HX70lz/hz//ih/zmb/4Wb775NtfX13zx+CnzkzY1l/D222/iOtG6PX36lPfee4/dbsfPPvwZR8fH3KyuuXh1QZmXHM1POb/3gL/79/4+v/jiC5QxPH3xkj/70V9yfDTlztkRwQU2yw2h0HBvStvXFEXJLB/hWlChxPcG4o67548oS9isL2jaFZv1irrece/8iH/+z/4YD7z9/h20Keh7TdNGHpxvaOtImd3hv/qv/h7Pnq/4yU9/xS9/cck//Mc/oN41/PjHP+HhG2e0TUvfNbjeU1Ylm6bl6eXyKz2vfyWrmoG3OrgaoW7TUmMQ4V/bd4yrksxq8A5rDF3UtET6VPAD9E0ngTMBSd+uW3FGcI75dCJZCjEStSzOeZZxdiZWbb6XMWBuK0l1jT1KB4EofSD4YVYlU7mu2wmNSRtilIm9aG5FezAsyEIFuOUSDzxZkM1nCO4KzjMZjwneC8fWRwaXKe8TCzu+jvwAv6aLODo62p/bISdj0HjUdb2nVA3f770X+C/BwZPphK5tE/1I0fWtbPxKRPaudyitKAoReqtEBA7OoaK4VOQptboqc46P5tw5O6LIc/LMMhpX6AcS7mJtJjSTICjP8ycvuFkEdrsG7zuyTNAJvMIHxdH0CGMti8WNBCQFQXOCD3uINMtyumZLHwKmzIlOo5xci9wWOB9ZbXcslhtONjumux2x3xJNAGWFCrEvBiKT0rKue0LncVGS2YsyZ3Y0p68X6CjWvEUuEy/nHG3XUpWlUG+CYghyU1p0LlpB8Jos0SkWr16hY+SNR2+hbRJqhihmLTqiM6hGk5RqbVOmhmS0ECxdLZPFTCt0FHQiKEVRlGTKk+cWleUYLTQPHxTB51TFCcYatruvN12qbXu225rNZkeMGY3qpEHtA9reWj+bzLLZbHDeYTLLdDqm0W2ifCS3NCJ101O3zT5/pes6jDHMZjOZePpw28AnXjCQpk0l4/GE6WjG8vqKxdVzNrsNj794ynrriLrAFonrrjVlWaJQdG3Lp598glDuNBBw3vHJJ59SVQXvvvsmBI8KjugcWDsQmgCVeox/V5fxpa+nQIkhDVu+llAMpfCI9khFUCZplZBpfdO1CU0EHLTJGtlayQ3Jc7N3dxosd2OUXBucJ+DpWnHHIdFxtBXra6sNhkgMGTF4eteL6F0JYiCe/bdUKbjViQxBn4O97GFjMtiwCjwqgvChYRmCurQye3R4QAWGwl9OjyA1MXJLrUw6hF29/bWMiAHhtYnC8WWh+kCBHYr84bPsA/wiED1GC4pijGI8FgTFO4+1t9Sm1yk9ev+5D9f44bOpcKvN67puvxcMe1Nd169R0YbXH5qMkOglgxV3Zm+d/sxfaef/23Xkec58PqcsRfBdlrfMg96lZjPR0Op6h9ZWBoHOCYLgnCB0UTSJu/UN243QX0aFUBZVtJgIRWbpQ0PT7lhcXDI9OROUXnnq7ZJRqZmNT6lyzaiqKKuKb33wFk+fPKV3RyjeoCoVrt3g+o67Z0f81ve/xWa15OcffsjzJx8zn0w4/+3voHFMRiVFUdHsdjx6+JDri0s+//wJH7z/TV68fEFrDf+b//J/yb/6k79kuVxy9+yc8zvnZCajazo2yw3VaclsesT89Jyf/PBPif2W43HGnbfv0axv2LRb3rn7FsaOOTkb8Z/8439AURh2zRaby7P4Z3/252S24H/7v/vf8xd/8ed89tmnrFYXvPHgmLapcd7xze9+m9l0xrOnL/iv/+v/hu9+8C4jZWidwruGTz75mIurK37v9/9Djk9OmEzH0tQpiTLovWez2aGTa2BWWKpRxWefP+Zf/+s/xdgR7777DmWZsVxv+Pjjn9HUO47mR7xUGaPxCWd332J6dMq69bS+YTIb8Z1vf4+7p2dcvXrJT37yE8ZVSZHohWVRMq5GTLKSTdgQTUYoDJfXW4rQgsmI0fLyYkHvHDbL+Sf/5J9ydX3NrpZ9a7upaVtHZnMePnjE5fUVr15dMp/PqYqS4D2ffvop6/WaGCP3zu+xXC4lay3L+OD9D/g7v/sfUFRj/ujP/g2P3n2PBw8e8eajN8nKjM8/+Yiby5d0bce9O+eMK4vNMt559xGLmwVPn7zgT/7kQ9569A3u3Tvn7OyIq6tLFosFu92WZrtlNpvx6OFD5rOcn/3sOXXT0nVTtrstuzrS9Yo7JxnXr3p265YXr/6Ud9/9Dm+cf4f/9D9+wHe/e8KPfvSXfP7qGd/44A3RhipZNyfTY07KGQ/t9Cs9r195qREtlfq1r8Ug+Rh9kALdeU9AkZnkP51BFjQFARdvbea6ztF3IoLT2hBdSmaKtxOmkFyCBkhbK7V3DQEwJqPvG9loInsLxD1fOHGCbxdoIAkmAWks0pRL3FMckcHeldc2mkN3LaWUiOqU3nuQD5umiO1ubQfhliZwuJkMzlOD4HpALIYNd9g8v2y1eEtb02SZ3XfRqDQtZHArsgxaGXPwujFGgoqJSqBkc1QSklZkhrtnx4yqkjyz2EyT57IgZDan6XpiiPSdo1kvUbGjyIxwuoOic0EmkH0gtxZtLVYp/MF5DEl/QZTrFBG+u7HJL1uJoFMoRi1d//+h7r+abcvS9DzsGWba5fba9vg86arSle0qdHV1oymgCTQIBo1IERAkQSHDW/0CXekvMKQL3UhByoFkSGKAIhog0AQabFOmy1e6SnO82Xb5aYfRxZhz7X0STTCb0RfIGZGRx+yz9tprrTnG+L7vfZ/XsClrqs6M6kwDsgsXxIP0W/VIHCm0FkjjAtqTQIvKsjy8Pz6kC0slA93DhzDFzlEUPgeeDpcb3tvesCu8R1hLU5WUmw1NXRGJnjzUHzwszhukDOFQWoXNranaoC03jqIMxbXtTIfOhQOejkLqdQgVC5pypRTaS/DpC9OwL/K1XgUAQ9MEE7c1fVJ8OBDK7pDUti1t22A74tcgT/EmNDNwAana399XCW1XfUXOueCpsZdeonB/SNI4Is9y8nyAVIpiM2e9nvHk2VNWm4LG6ODR6hLKVfd43jnaumG1WiFUn8HgaZuG09Mznj55ztnZgsPrB/g07Q6gbGuH8Mt/2SSj+4t+rfX9A/T0m/C/F4qW7ncewhRO9lKmbtpgASswJtDapNBdkyhAHbyzYYLYadWNsUGq5AMuVHZf54LgvLOsBx216Lwaznks5oqnoSt2einkFUnnVVxs/+dwOS12nYypbXsiX/j7LbaWS8DFtkt/5T2X4mpGSfDsvADvuALf2L7qVyS/V8EbwNY8/1ngyfaeFHR0r9Bo0UhkpGjbOng0uJyO9FOXq/64/jGvPnb/nK76Nfo94erreRUW0v+bXpZK934pHQ5xKgp6/K4f8oW9elJjjz0OYaZBxmTaOtyvSYL33fvlu+llU+OsIZKCWCtaY2ldi7UN0nXDQN/QNBXeKvApWRKjbAgOTZRD+TpMT1349SgbMhxmpFEgA2oNWrSMhzHGhjPMpliSDzK0HCBlmB4OBjl7e1PasxCCl+UZT58/5vDaAZGK2KxKpumApnWUVbNtqukoZm9vl/FkjHcyPEbb4r0jjsO+MRjkjEcj5HBMlKWgWtJMY/BY3+K9QYsRw8GEJFYcqpSzkzPSuGEySkkTTVtXuMYyGQ6piw3r1YJiXVA3Y1ZF1SGVY+IkJ8mGZPmI0XCAR6JqS7lZU8xWbIo6gBd0FCTAQhBFIjTvPJ2pHrwC5cIUUnVfd/z8mDRRjCcpSaNYrZas1iuU0qRZznA0ZbJzRJRkYFq8MIFoOhxRlQXlesXTp0+ReJwN5zSPxxlHtdhQF3WQjkYJpSso1jXO1VRNTVmFjKIsSXn8wa8CCEdHXMzmgCDLBkynQQljO3x2lqXkaRaau1dUKHmec3YWPMdSCIQXpGlKnCasN2viJGE4HjHenXL91k2W8zOK1QLbGqIsRcsoZHkRGh1KC4xp0BriKEgBmy7EdGdnikKQxAlKReF9mQwRSmKtZ75Y0rYCQcJqWTOfrVktS5Kq5daNEDkwynLu3nqZp0+ecz99SKQ11lY45xkOh12zR5HEf8FhfFcpIQBpGvBc/ZjaI/FSIbxjuVkg8KRRhI40WZYy9JKqXCNloI03TdsthALRbfxRFCGU3HYj+2LD+4DlWywW3LhxY3uQuLpRAS90gfpwu17m1XeiXLcx9f/26vSgrmuiKO7wo3/2oh82B81isSDLMvI83yZ7994MLRXWXSZ+98+r36x6xnw/STHGbLutPY4wy7Ltc27bdiv/6DemSzObfmED6v8uTVPSOJjOr2YE9JtpWHwNbVmEbqZpqMsV40HG7u4Og0HPQG7wndZ9NEjx1tEqwf50wO44xzhHXRvqqmazKbiYL6kqQ1EWlJuWRDharfDdRlsUxXaDXK1WxHFEEmeEVd7hhcULSLMUbz1etGyKik1RboMOO3I+/cGrL5iiKArvp/LYxm4lCHkefpbeaNZ3/qSU20KP3qtBOLZJoVGJoG1qhHBbv4lUAuEd69WCaRQjdShmhfQY01KWFqUsWbZDlieMJyOWfk2xKdkUG2bLDVVtWG2qMB3rtcVKByY7Cnx4b/vPQJIkFEWxvUe+yNeTp8+w1CA9SkV9CYeSiqxbeKXWnM8ukFoRJwlZljEe5Zi6oVgVGFvj2w6rLAS7O1OkuvRFQVgTFotFKDKcRcjOmOzD52RnNyTojkYjymZNtSm4uFjy6aePMSQ4rXEymB2nkwlaa548eIStA4wgNDU8UoXsivV6ydlpkH/9+Ee/5PbNI7JsgBpobH8yBrbu3cvf/MuvbWMkEKWCVDN0R4QPm4KnDUbStkFFGuMsWIGOgyZYOAdSdIf2NWVZE0cJSRyjI0nTgLHr7u8Ny9Wq8130RTDbbrhUEX2N5Al5J/1EN44TXAcrcN4hCGti34j57GS3T97ur36dNDZMRlbrFaJLzPWOLhviEj7SNA1VVXWyx/gFv0Ng1ofph+zyJi4uLnBcrgtXsd7h+Vyu+VelX1eR31fN4FuqIBaJxVqJUjEq6qVV7RXPx2Vx1ZOrrhYQvSSzD8+DADOu6xo6aVQg/qntPtL78cqy3DajeukXIvgy0g6UIERoAiI8kp5C9cW8Tk9PWS5XVFVNHCcM8lF3MA3v4SAfkOc5y+WabXZBbVgtZsSRZjwaMhoN2WyWlJVDRzF1FLKXJAXLi8fYVqL1gDfe2AEkzufcPtrh4uyMYrOiqir2h4cc7GWMJyOECLLO8/NTvv/Hv+TrX/8adVnw9OkzHp6c8c47b3Pr5g2eX8z41Ucfs7875WtfeYdXX7/Nw0fP+fTeU37841/yW7/9XfJsl/OzNecnT3HWodMJHz84JkljonyHP/7hz3nltVe5fu06L730En/v7/09pJTs7u5y584d9ic7qCjmtDb89u/8FsqsobzgR5/OQDYMc0W90tx9+xbDoeL09BMWQrI3HnBtf0iWDonfeYOmcvzJP/19qsU5e6MBL926TpxlIHOWyyW/fPdTrPmYSCv+xt/416HcUFYlqih59uwxdSMYV4blcs1qvUGqkGsR9teuyYnAWwKeetOClty8eZu//tcn/M//F/9b3nzzLq++epuybvj0048p1ismg5Rrh0dcu3abvb3beKGJM4+uYLE85+zsgrPTc87PZ9y9e5fNesF6OacsSzabgvPTM8zsjDiNGOzuMtgdY9Oa4yenLGdLjLlUQBwcHaLe/YAkzYnjmI8/ucfXv/Z1DvYP8N7z7ofvcXZ2Rts2xElYbzfrzXaNgY6+2jXQTGv5xc9/Tt0YDo6uc/fuXXQUUZuWebnm/uNHiCji6MZ1Lp4+Yn52QRnHtO2Un68+5mB/xCuvvIRvHUf7N5Ei4d2PPuLW7dtcO7rNwVv7XDs44kc/+hEf/eojrl+/w9e++Sar9Zrz0wUnzy8YDodcu7bL4sLw/PQJTVPwnbe+TdvWPDt5zIfv/4z/9X/4N6nqCusNQrYslysEEe+8/RV++e5PMe6UOHv+ue7XP5cn42qOQ3+Y7019SAUyCkWHF2HqEMV4KagaQ2NWnXk3dJ6lirYa1BCe5Lb8+at5DFJKsiwjiiKSnj9/ZYG+6l/oH6//d/2m1Xf/baexlx1Fqi9grh5OXN+Vhq15R0rJarUiz/OwuZowDekP60E3b7eH12Cq89uC4rOBfP3B/ypGcDKZALxQBPQ/S4+/DZrTpNuwLwP6+u+xXC5fKMzcFd3vVYZ9eM+CSTpL0y5QLyJPc5SQLOcL1osF49EQ4ZvQ6bQO3xnerTUMs9Ct9w6KoiE/2OnSmteUpeHsfMn5+YKHj56j8wzRaZKn0+kLhU94Hx3edBuxlkAE1uPRGO84ny25sS6o6wbfgQbCuSFMvkIXS1DXJhipWsKBR7QhaTRJAnYSG8Igr0gfrpK9VBcSpHpPZqc570povAibelNXHD97xnA06Uzynp3RhKbc0DYhaT4cNCS+S/UNFCtBaQXLsmGxCd4KLQkmTRmyOpTghcPIVapY37n9Il9ZmuFVFLCFQjHIBsRxEkz+1tAWFtsVoDqOaBcLfvHLX/D8+RnSS4bpgCTSobsuJA6JShR0718vcTTGsNls6Ek9Ami7YM9th9wbalPyiw9+gS1bqqKmMSlGCqzyEHuuHVzn7PiE1WJJRGi/CQ+RVFi6ELquaKjrlrPTGT/58S/4ypuvo3VKlk+QaUxYUUz3weqTsf+7rqt/5xA4Wtvgm5YQaW4RKsAUgtMjTAutdWzKdci66Ez0UgXjeVlVgaWvuqldRPA8OENRrAkHcqjqlqJstgfoOAqFYOgeplhch48Ok0jbpY2nSU5VbwiFv6Vtm07yd+ll6O83IYI3Tgku191uXSyKAussjj5MtCMB2UAirKua1Xp56UW7Ijvq940QoBl8GW0b1i7rLHESdxQhtof1q7S+Xrp1Fa7R7y9X971+fe2/RkmHUAJvRZjeqhghPGmWYU1L27Tbf9s/Tv+f1joUEvDCuh9eE79VEFzdy/rJfL+vpenlpDNJEuqm6d7bcC95Y7ZFoVaqk759cY3fp2cXpGnCaDzGtC1VsSEETuqQqVJUNEWF94Y0z3DWcX7yjJu3p+Bhs5lzUc15/UuvcPPGO6yWG25cu8l6M+dHP/5n7H75Dvt7N7l581W++1u/zi9/8UPOTp6xv3fAs0c552dnnJyccOtwgpCGZj1jtDul2JRkieLXv/V1NkVJrCV37t7ixmuvIh0szudsNhumkwlGSH7x/ntkkcVZzfWjG/wH/8HrWN9SlRvK9YzdvRtsipKLxRmvf+kWopNOfvnNr3Hz5oS6qvjnf/iH/Dv/zr/Laj3j+fPH/OxnP+HrX32b/cMjtIb7Dx8i2g25bBhPxlStpdgsefeXPyHWKwYZnJ1+yoP7J+zt73Pr7h0mOzfwsqIyK2bzcySGNE4ZphG/9/v/hOvXb3D37su89sprPHn6nOViwfnZmkHikDpimEuePn/M8emK2XLDbDbj/PwcLzxSTlDCI+IILSOE6aEvAfhQbkrmyxXHx+f87u/+LhfnT/j0408oy5osStg5GrI3GVGtlwwne5DmbJoGq8IEt64r7n16j2K1JIkErWloWoMXmi99+W0Od8dEOMqLU549e86BlcQ716gdRFnOwEmqomBdrbh4vORX9+6RZhlpkqKVJo3WLOdLmjpk8tR1w0sv3eXa9eu8994vUQTqqMLx6it3qeqan/70ZzRNjTMW4T1RGnN8csx8sSRKBtTvfcRXv/VrvPz6G3znN36DR598zPHjh+TSMxnkaKlojWc2e0a5MRSxYTQeMV9fUFeBoGZdw/379/mjf/593n7ry1RVxXR3j/HoOov1KXu7E37nf/TvMZn8HmW1AGk4fmq5cWdKnA4wbsn3vvdTxqOEv/rX3uAf/9f/FbuH+3z7177GH/7RP+dwf5dIR6xXxzz49CE70yG3bnw+DPafa5Jx1fR99YDbbxQS0WnRfddV8B2NxGM6GZN1gXqEbeiyaGk7GUKQvlx2i/oFue/a9EVGv+j3E4n+OV3VzPabZN+tBrajfHHl57lKJum/xvmAuesLq/4AGsZdEv2ZwqH/vv1kwfMiRra/rk4bmqbZbg7+Mz/zVWnWZ/XBl2N7vz1Q9d+rbdvt9/jsdZVS4jsJhnMC0w0ElPU0rWU2X6FVoJA459HCdFb9YJgOjHyD1gqtg6FViYg0j0hdTBRJlrqkqluqqmUwGEAc4bvx4RYRCFemMEE+J3p0DS6cQJB4q6jbhrKsg8ymbch6wg5Bt92nEISDzIs/s9Kqe094QQJ3VbYW3vuuq+IDNUoI32WidEhVCAWH91jTMp9dYNoGn8RISfCdmIAplDJs5lKKsLj4IN3yAlAx1pcY25HDhMQJT2uarlCXBAgvL7y3l+SYL65hEyDLErxQIQndh/wcIQWbomBsBluCSJIkIKB2gRZVlSVKaBIVU9ctEgtCInWEEz5MmAigg/4QaN0lpc1ZQ922wcNlAwY2kJgMpbMUy5K6NFgrQUKcRMSDjKqsuu9fobMsJC47sL6XaYT2qSCsOVVdcX5+wb17D9nZ2+Pm3Zf/jHLiin7qz/gb/L/4p9YaTF3j6halQMbBhwSd5NN3siUb8KTtFtTRPUTvBe7X464Qk/Iyw0Z0E4DwuQuCp+V6w3Co0DHBf+KDLND4kHavCR1ks8WFyo5KJbrHvUTXApeyUu+6rI3wONaGtaxpmssiQwZTf9hHRGeG9mjZ0/lCs8h1U2hjLHEUd9kQlxhu383LdBSFZpZ/Ee3dr+8hu+PFaeF/Fw1wex9uFxyxLWz691YKhZchJAzf4b6NRQm1/Zx+dr3u16bw68v94ure4ZztkPKXXpf+ayFGyrCuiC5Acvt4XT4HvqeUfTGv1jSkIuw1kdTURY1rLa2rEWlGMHTDeBizvzskUoqd1DPdi7AWNpsB1kGeCqxZsZqf4/bHSErwLd6Fs8ZkMma5qLBG4Z3m4vyMtjVEUcJ0usvZxTlpmnZY7RjbFXOHhweBjORBxxG3X77L7HTG/GJOU1eMxkNiJXH1hiTNMUbg2/AZqKsNpi4Y5ZY0jvEe2tGALI9w1mANeCeo6jA1KIoQODzIM27fOuT85ISq2XA+O6V2GttahNO0QhNHEa2N0VHC4fUMfEtTtQjvmU6HODzPj2fEw5rKQYOg2KxJJLiipGkb9ncGTIYJifIU6yWHu1OmozHnswseP/6ULInYGY3Y391BJ0O8znn/w/e58dJNALwIIYfKSJwQRE5uCZR9Y7ZtDYvlimvXrzOdZKzmp/zg+z/AO4tPE9o0JYozZJRilcQi8V7gfDiTNE2NlJ7d3RHnF3PWRUnTGK7HOW1rMW3I+HBC0rSOzbokT3MKUdC0NfPVPJyMlUQ6SV1XWONQUpIP8g5JbUjSlJEMjYKyDDlyaRyTJLJroDSU5Ya6LkmS8Hk1VlNag/Od1K+2DHanSK+Zz5ZEvuXs9Iznz56TqjC5TuMAVRpmGa71nJ+tKOqKPM/IhhljHxPFoGNBlEQsN0vA4x389Gc/R6oF165dY7wzDU0fHZNkGYORIUpDHtpms2E6HbE7HTAej7h//xFWGI6iA6ajQ6q6xLmGup6RxUMioWmLv2C61NUOzFV9bd9ZFwQ5sI4jvFPbLnBIaaaLvZd4XDjAty3Oi8uxtvehlBWXXoSr2t2+0IDLhf9qInd/9ZtHb5DuvQ99Z99Z+4JW+GqRsd1Auk346mheSkld10ghiZK00736F77/VhpgW0JSr3/BoAhsx/r9WLv/mv7f9v9dlYJdPWxefa59sbIlX3Vf278v2/kxl93x/nv3P2fddrptD4iGZ8fnDPKUJI4om5ZUe7QK2MY0jbZehjiOiDuDchprVORx3qBjQWMMWZYwGAzY29unaBsaa7av91Wfy6XpM0wLQpHnCBj8gH9sWyiKMIasq5LUWy5zBLqixIsXNuheSqNUME2JzsMRXpJg7r5agPY5HcZ0AVbde6u1xgmxZaM7B9YY5vMLqrIgSxN0rCmLAmtqRHf4DB1jT12VWBteG+8dIspwYoPzHXpVig4j2iDiDO9MkBJ1RXTfuewPPl90b8YgT3A+dNetj4ij8B4vl2sODqfEMhTxo2FO3bTUdYMUIaDJOkdBibRxGGB5iLOUKA4I0VjHaKlwXRKwFxLbbQhVU4fiwkF/4g5UJIOQnnURigwhU4SQZEnCcDjk5OEx5SaEa3kIxa8TGOeQKmCcvQ/yJdsd/pbLFR98+AmHN27yNSTqys/v/b9gbfsXrqtJ4aI77Ls2YH7bsibRAi0ihJb05XFY39z2/7YNkyHfHU51HIHvs2kuZTUh+DAEtumtTyzcA97BfLEkTjMin3ZPXHTJvZambdBJhEBQV20oIGSgxik0xtgXDsIQYBNKCrx1WNviCTKT4M9zITDOGay3xHG69WEEn4VHSUHeYYlF0HHRtC11VSOVCRk2V4IOXVeYiI4m17YN5krxCVeN3wqt5FZ22f/dtrmjwn++iyTuMd+iK4KuTpGFgBDA2TU5jKcxDU3bMEgHQcLlQxhfFEVbgMX2ewlB402gqnXrepomW69KXZfbta6qKuiQ3c55tO4m6LJfxcKBAzpD9LZJ88W8pAKlIU4kuYpYtDW1Mbi2xSjV0REjjg6G3DraYTTIEHcPaN0FTSup6xSLomkvODu9x9NHJ4yHAo/BmyYE9TYN1rS8994nNHVD0wiePr5HHGUkScru/jU++vgDDg72ibO+yAiy252dHUwbAimjJOZbX/kyDz95xGMhKKuSncmQWArMxjGeTFluaopmw/z0FG9WRKplbydBx5IkTsizHdLE0zZBRbFZrEGVGOORMuX+/Ue88soBL710ncXsnPP5gsXxEq1ypFUoNUDomEhYlIiJ4hEvv30LtynwrWUyGrO/f8jj4wUPn54TTxdhyisEy82G3TSnLCqK9Zy33nwlkN5czdOH9/ja177BcDRhMMz56bs/ZzoecOvGiFvXPbeTMaXT/OLdX/Dd3/7NQIVTMhBITYvxnljGeGW3e7LWIZB3U5SMxhNeuXMTW234/n/7xyznM8ooIhaag8Mj0BGtFCBVh72WRFGC1oGitrc35tGTx6zWBa0BvKZYr7HVitVmzXT/EOsF84slh9dvcOKes1zPeX7+nIPrR2RpRiQjLmYzmrJBeMGdl+6Ee1vC3v4eZVWz3qx59OgRWkWMhgOGWULbNiznF8zmC1rTMh4Pu0muYbOeo6KIOE6ISHjlzmtMBlOOnx4jTc2Dew94/OA+e5MBF9IzHsTcvbbDcJCxWBacz5YUdcUrr+0xmY5J0gIdt0iVI2VKU4fDf9U2/PBPvs9X3nyF6c4RdVuxXK+QyjPOdtiZtjhvMK1ls5rz+ut3GY9ynJWcnD5CaItQDQe7Nzk+ecSmWdO6BdcPbyFFTblefq779XMXGWmabhe1z+JskyQJdB0cidI4PNaHEX7YAIPExvpgknGun4BYlLrUvLrPHD77Q2MfBGitJcuyF8xv8OLBq5eU9MWPMeYyTbvb4V2HCLzaSVJKkaQpCInrvl+oUMutxyNNU/A+xMe7roDwjjiKt5OTbfJ2txGbbroAkKQpqiPN9Mbwq1OYfpNaLBZboslnu1zL5bJ7vvIFQ2KvL1bd11dFSZJkIXTKtuHgLi6nIuH7xcTJAIFFR5Io0azKmrptSZOIo8NDdKzIs5jRcIjSAf3aS5XCc5cIH2HNBtu0VE1NVdd4wvs6Go0xmxWuoetWXkq4Qvc3HCLGozHOhcWnbR1tU+GcxXea6rIq2WzW1GVJW27QcYJQilBgRAgiJuMhz2dFSFeVCgskccJkPAlBb1xOZUxbo7TuJBMKY9qwKURR1yn3RDr8uSeY+owI1BwtJI2Fd3/5M27eusXbb76Jt0HWFsea0XjCar1hU2xI05T5fEkwoGqSfEiUbNBJYG+fzxe01gY5mQ8FOM7hpWK1Wm0/v1d9RV/kKxIbjAXhJGkUU1cb2lbQGk1VNB3eNCTtyihGK80wHeINYaNbtTyplgRjvSTJFAf7e4yGQ5IoIRIaocNEamd3yny9oqkAPNJ58jRlOpkQq5Ac7ho4my1om0C0GgwykjSlWFc8ffYAFYdALiUikAqDwUoQSRSaIt20VsjgvWidofU1nz5+xu3Hzzk5nXN4cw+lriBs/yVSqT/z6OclkY5otcQoS20M2oRsBK3klcBIqMp623AIZW6455q2YTzZI1DUYDwZU9cFwngGwxQpoKpq6qZlZ3ePoqhojeHW7bu01lM1FrcusF6Ew7JpaZoQnJWlEePpBNPWwVxbWwQaHTmMN5SbTXfsdzhjqDdB8gWhqKjrJhRxLrw2EoV1nrZqt+tfURXBuyRlyEnBo3SM0gEBHcUZQmmquqGpu6ZM0DzSjV/C+mNrQJDngy2C1piwVpnWbNf9/to2Rei5cwGkIbXGd2ABgdqay0PRaQjwxS64T0iccrSNxbfQiDZ4EZWkdbajLF5KIbMs67DogtVqg1KSnZ0R3gewivLhlLNtbqnLRpexFWX3uvUNNilDMaYggDP4Fz2WX6Trm199iSSOGQ0HvPHq63z8wYe0VcN4MOInv/qY/f0pN28cIHzJ08cPqIqC8SDlzTe+xqyqefjpU5JxBHKJ0g1f/eYtpI9oasX1o5cY7Q6ZLy74k+//A772zV/j4HCCEodMRoqL82VnNpfcvn0bgWezXjObzdBRhPeWx48fM5+tmezssDOd8r3v/QnL8zXFukJKxenpGdJ7ZNvy81/cI85y0kGOkJbJcIoWjvnFkmsvnwR5W+14cP+YJJogSDh+OuOlNEEpiRaGs/NHxOmGuh3z3/zTH3Dn5VscXTvk6Og6/+gf/jOyNOeNN94gihUynlI1DQ/uP2U3G5DHKVmWcu/+Q6JU8dW3rjPZLfj400csFyU3ju5ybXITKRRNXbGpVtRNEXyzWvB/+U/+r2zKgvFkzM7uNYb5gKoqOT49YbwXsXNwg7/9t/59Hj64j3MNf+Wv/mUqF8hp3nmscGgl0UrjvGSxLoi14trBHn/0Jz/kgWlJpORv/a3/Kf/wH/xXPHv2jKfPT7n50mtIFZD9cRYjPNjWMLuY8Ru//us8vP8r/uCf/wFKpexOdxlPdjk83CURQ+rNgNa2HN1+mfmq4NOHj9m0lnv3H3B+ekyWxIzyIOO1xnF4eI2yqGiNRacpVbXBVJZoucBaR1OFSdrtW7cZDVKkcBwfP6dpW/I85Z23vsSjhw8py5rWeMY7Y/I4I4syRtkOb731BslwRIPn29/5Dm+89jJPH37CD/7kD9jf22GQaVCGP/yTP2V//5CX776MiiI++OB9NsWar3zly9hlhlSeNDUM85tYC0PT8ld/R9BUEfcfPODn/8f/Ay/ffZ22ETx/dIzhgjzdIc/2OHhrj81qwcefPOfZ4zlvf/VVskHOfFbwg+//v9nd3WUwyEmSHf7df//fIM4iivYvepIhOp8FAqE0dJ160wSyAV52gTSu65pIojgLXfwuMVd1Jt0e0ZqmKZFWKOW3rv/+MNV3+PsDMVwaAz8rRboqZ7rKH+8fo6dR9F9rIUgcfGDIWxsIWdZZom5RFkKwWq26FE/P3t5emGRISZTEtE3o3EkIB0MVDvDrskBIuo09LPahuyeQShN6rFxORroJxtVJw2cnGVcZ60mSbGUQQkqiOLrkpzu/9U9oqTofRaj0hZZbw2YMSO9DoOG6YDiIEd7jXSguRoOU4WDAdDIgTkLwjk7jMOJXfTBVt1H1RVKboLxD1zXjwQhJQyQblIoobUlrm3DE8iC8QCGJY00rmg4cYPC2DdMvOq25EHgpghG0NTRlRb24QI5zaDUWHw7+yQChc4SPiJUgVpLGiz4cOXSPlUZ4kMKCa8mzMBmwrsH4QLaiC3VzLox0m7YF0dHIBIgk70VVxNJQreeUqyGmDZQK7wNdbF3UJFohvKdYLgJKVCuUdkQqItIxcRQTJRFxGgV0rxC0gs4gFu6RKI5QOvhENmWBQHS//+JeQXIYSCN9dxsR/CvGGmg7xLEKieCL5ZpHj45pG9O9vj18QSFk0NzPZiuck4yG021jQmtFnieoWDBsMtabTcCudnK0pipRWuMRtMaioggdxagooihK6jpMSa8SkYBeaxlkU16EqsCHvwgfOY/1jr39fcbjyeV98i8UFn++Q952HRES66EoS4zRjIcD6tZQ1y1V3WPBAxnKtGEsH9YOT2tDqF6/FiVpjseGYCkfgvvKsgzTURsIU01rAka5tZRlQ2stjWkxzpBnOSFzRm3XKR9pvItwxob4wK45hAxEGSklxrWdZMnhfZhICMA6T1WVXTMorG9ai64BlIX10YfJQZJEaB2jdUwqg1zCerbZN6LLuqmqopMxhkbKYDDYSqmuyqWiKApTI+8vQ/a6z1K/3tFLhj1dmJjCtj1ogO1jev/i5F/2DTPC87PGhJ/RhKlNmsY438ky+4aZ9+hIk6scvO8ylaIX5G5Xp+9XG29Xf93vgVeN51elYl/E68HHH3Dz+hGj6JBycQZtAaamLlp2d2K823ByUjEapGS5RnjN06fPyLIhUmVM93NkrAL6XijSaIx3OcJ7xhPJbH5MmkW89todNptT6nKF8Iq27L2ejvV6jVQwHA63Zv0nT55ibcOrr75C2zYsFgusc8SJRaEYDAZESrMpN4GqJDR37rzGfDVnvV5weG3KYJAjrGd1seH0fI7zjrYR3Lj+CsfPz1gsThnvDvDWkWY51798xNNn99iZTtg/vMarX3qH4TDIkD/+5CPefPN1tIoAS1nWFHVL3VgipVgulzRRxMHeLgcH15HKIZXjk/c+YjCasHd7lzjSrMsThFcIqZE6JlGKKGmp6oK9gz32xR4H165RV440TYiimOFwhBSCzXrFe7/8OelgzO7uDqYNzZAe3WJdCzZM3ZIkIm0CeWtnMiFLIh48fsRqPse8+hLL5ZL1ekVjHK9/+cscXjsKDWshMTZ4Rwd5BrUljiKybICUMVmakESSzWrBul0jvGX/8IjWC9ZVzcViybqsKKuKJMlIUt0RlRyr1ZqmMegkJRlEICXjyTDQsVzLarXGtBYlBG1VsyLIGU/OZmglyPOU3Z0dys2Kk9MLNuUK6XPSNGWYDRikOdYapIAsSfgHv/cP2CzOqTcLpNLY1lDQUlCRjwdkgxQnPA8+vUccRQz292lqg20E2SBmNEo5eb5mOBiTj0bUpqVxICPF7TvXEcJiW4c3lvE0Yb0sKYuW8WRKnEQMRmP2D4Y47ynLFmsl165PmYz3ifSAulK8/6ufo+IIIz9f+fD5iwx6tGtYdJ1SW+1vOGyGHpTrIl+lkKgowtZN+L1UgEWpgFjdbGx3mBAI6ZFXZAS9HOuqD+FqwXB18ewXTinlduJx1T9yVR60lRlxZXwvJA7X9btE35jcFgG9JKs/5OsuzdqLttMwS6oqkII8ULdN2EhcSKztD4Wik9zQbTZSXNJJrj63vui4uhlcDQXsvSjhHwWdsVcuoHM9VGWJMxYtJa3zgcmvxJaYBT7ghTsZF8YQ64w0lqQJDAcR08mA8WjEaJih4g7jGcXhDRIqFC19aJ3wICyCBGUdOkoYDCKkjNA6QsUt83JJ09bUZXiO0of3QIqAjMS7QMTxll4HI8OL0vl2oG1a6rKkXi8xmyVSqyCFkYrEg0oFjohIBhxv04bvddV/I0TQXGutGQ8zTNuyKYpAeEIjgmCLrSTEGHTUJxoIVJSE5+gsykNVlzTVhqoqiLPhtsgo65ZIRmAti9kKJKhYEXlQIiVSmkhHW5lPQAtyKdXvPqO6M8ZfZeFfldJ8ES/nXDDWS9Ep+S4TI8K9prqgzDDJOTubcX520R1EVWdCDoQ3KQXGWNabCiEjiqomjzVeBBylAlIVobTEW0OeZQgPpmnYlFVI8SUkIKdZsiXLFVUdkmL9i42McCjuygNx9Z7a1hnhHpGSwXBAksR/YR6aPhFbaoVvO7SsDFkZpisgWmNp2nD/eA+tCbkgriuc+wTtgIsKGRl9MSI6f1dVN920MfxAjQkFiOkKkNZZjAuS057qc2mMBrzGKdWFll6utc4FiYFUMuBwTfAoBD9VmABYa6mqBg9EsQ6yqu559DLTMJxwxGmGkhopFXEawAGuDblMcZJ2gX0hUbwvaIIUNaxjV3Hi0E2gu0bNZw/pXWW2zTfp3/VQ+HXSu88c2i9JdXTenU5OG0VsiiL4Z1zwz0iRIoTHSrk18uN953kTWGsoirLL27hEAm+9R59Bo3+2iPiz5Klf5CKjLVa4eoxvSjaLGd7UuLZiXa4ZjYdh6r1ekUZTsjRGekdZ1szmpwxHUwbDXbxSCDlG4mjqS/ltmua05w2jccre7g5Pj59QmgqcAhuRJsMXXs+oC8e11lIWBca2W4l00zSs1mtU2TJKBqRxTpallE0HYRCK6e4hrW3YVDOiGIxtoRUombJeXeAAJRJ2J3ucnZzRmg2TvQnNqsanA64d7XIxfxgO6PmQa9fv0LZzqmrJfD7na195Ge87spoPadFt3aKEABHWB2NgNJ4gcLRtyfx8zc7OITujCUVZ0JgSKTWxHmBMRJTEJDqmakqmu3skacLB4RHPn52gdXhNnAuQh7Jd8eT0IXde/RLFZsNqtSZSgZKJDNJl58N+K6UkjjRZEjMY5AwHGU1Tc3Z2Rh5L6qrE2dD8Ozg6YjgadejoXsHS4p1lMb+gaWp2prtY40iTCC2hKtZgS9I0Yrq7x7xqKeuWqm5ZbwoSrUiyjDTVQVLaTVnpppRKa5IsYZApBI71coP3Fik8UmmqsqRqWxpjWK0LRqOgJInjiEE3nRSyJ4DSBQJLjGlAeNIk5pOPP8HUGySGPAqeQXA0rmHvYJcszWnampOTY166fZPJeMRqsyGSIwQSrRXr9ZokTsnyQK2yXpHEMbu7IxYXm+6zF/C85/Wik3SPQ1MnikkS0UEjAK/YP9ghiQZ4k1EaxePHn+KkxIjB57pfP38kj5Lbpp2QMoy0vaOtO6yejrZd9RclPiEAL2xAl0FHW5OftaRp+oLnoigKIGzscRxT1/W2wFivAz2lbdtOjjPa+jN6Y3Ecx0Gn+pnrajfnKjYwSZLtQX6xWGy7RH2glxAhVbXf6Hp0YhSF9NyAYo1f8FP0v768AYIGOoqirSk4TdOtBKYnR/Vm6P7n6X/O/nF7GlIvrOgnG7Y1eOtYLpcUmw2H+wdIPNaFPBKMwPuAwRRKEytNnsQc7Y/Z3R0yGQ+YTgdEsWC6s8NwMAIVQRSHgkKo7aHfi7AVhkaux9OiYo0SmlRKJIbMWsbWUTYGkTiy54LNOlT3FoFzgrJouAL9D0hT3xeFXZKzF0RxynK1IYlnFEXB08ePiGKNjCO8jIgrQ5S16Cwc2nVjqcsNeZqTxBqXxXjboiPHII052j9kb2fMcrng8eOq4w2EIrA1jkhLlIqItEDKS/JN+Nx4vLVgLVKFQvT4+Dk3br+yDfPCBXOqMS3L5ZwojtAmyNnyLEJJiLQIPwPBK9QYBzoY9Rwh7LGu6+30ajweb4k4X+Rry633Cqk0Wik8nqIoA8FtkJJmCRDR1Ja6CrkjkU5x1nWAgAAhCCZbRdW0VOdzFqs1X337yySJxmG5uDgL0k4fULQ7o4Ot3PKjjz5isVyzKRu8iDkYDtE64uT4hKpuOz+BI04vmwSXE9FL70/4yzDBUEKgOvz0crEMk5j5nIPruyGsUvwPn0IJKYnTFESvzx8SRxqkQmqNjGJka6nqi9A5x1PVobMoJVhCLkY49Auq2lI3G8CSJBFtXVPWDU1rkUoT6yCrKsoaJSPapuHk+Jw4S1GxJopjkiTb4mPHozFtWweNtLdh0i08rmO7t02NxSMiRZZmlGU/LfK0Jryv6/WG1rhwD0cxo9Fwu0dEUbRdB2MdoZSmqgIMYjie0LShYZOmCUkafDUeRxQpmiak8mZ5wnK1pm3MC9jb/sCexJf0wn4P64t70TXOrs6ftNb4KKZtmyDb6AuhK5N15y8/K1IrIhmh2gbbuJAr1TSUmwII7+t4PA5f78V2ouk6Gae1FqkuUd1hnwh7YghXjBmPxwyHwxcm+P3P0ge+Xi2uvojXv/c3f5fFfBVocOuaSGhq4zk7PuXV69cYDQc0bUOsJJGM0TLntdfeZLonaK1lVTwjyXZ57ZW3GA6m/Gf/z/+c8XjAeDxg/3DC7Zt3KYoln/zqEflgwDDNwUvm8yXDvSCjOTq6xnqzZL1ecn5+jtYxb7zxZYSE2ewCqSSj8YTxeMIf/dEfMMkHTCc7HN29G4pFH8qaxfyUnWnGwY2XOZ094Yc/+SnKxfzV3/zXuX+mmEym3Ln5EuVqyf7uHju7KaN9xY9+9YjFbM2tO4cslmegJMZpqtpycT5D0PDO2++wWC66ZmnDnTu3uThfcX52wfPnD/jt3/xN4ijjg3fvMYkGpGnOIB3z1jv/GsvNGfcePGO+uuCtr9xhsjMhiQf8s3/2Y65fv8nR0TWa1pOlI7xXPHs6Y72YMzjcJ89zfvijn3Dtxh2y4YRH9++zd3jI6ckJf/rDn/K1r36d8TBDarU1qVnn2GxKpNBopUkixa1rR6xefRmJ41fv/YxhFjG4cUTRWmbLNYNJSZymwcdlWtarFe+++0v+8J/+Q44O9vitv/wbPHv6DG8Cstmbhlu3rjGeTEgHE56++yuMseSDITrSSG9R0jPMExaLBc558ixlZ7rH02fPOHl+xje/8dcoixnlZk0ba15/5WXqqmExX3N+MWPVtNRdpsbu/j6xlpycnLBaLomjiMODQxZtwenpCcvZgsNpyyu+Qakwyfg3/s2/SaQE5XrOf/Gf/sfsjq6T5ynaK7702uucPD/m3if3yBLN3nRKEqf85Ke/5K13crywnJ4YNsU5dTvj5FxTlI7JNEFpxeOHF+AkiU7Y3UmwtaFtTimrNefnIVjv4nzBp5884jvf/i6j4ZQ4TqjMhvPTc4q1xja77N00bDZrnj1/8rnu189dZOgO94f3tN3i5X3IdejNZdYarG0RV/SiQYvcLeQyTD/6YiDLQn7BVTJTmqZUVbWdIMRxzHodtF9JkryQmn3Vd9FvBFtOOJeEqR4x+2JX8pLO1ONdrxKr+gTZq4eJvtjp8wv6IqN/Tv0UpS8w+o2h/7NtjgVXKStXqFT+RUNi36WazWbbTbbX5zsftED6M0St0WhEnmWhYHEmoIKTOBiuTIu3hmEcY5qGNI65e3sPHcFwFDOZZAyGKXGSI3So5pERvkufZntIErht1x88Ed7XoDwqirufIRQPoyQhfumQ6SQjjSLeffc+ZWnwXqI646zzNmi5TefdsS5MmGwgMGipaG1NUVWcz86omzi8N0pTG0E+mpIMNuhhQ8OQxkZoqRDCoqUniSRKWBItSWNBrDyxcuztDMnTl3jvg49wXuBRmLYl0hopPMZ6FrM5SZyQZjnrYo1WnUTOhOc5n88pP/wVt+68ghIC4RxNXTIzDVhDFsdUpsZh8Jhg9sYQa0EaKZwPAT2jLMeprPOhhM/RYDB44XPVF+Zf5CugfDVKRWid4LaFKlRViY4EcRK8RptNxXpdIunyTyJJkvRkMIVzsFqtmO7vsbu3y61bt3h87yOsbUA4NvWa1pgQEGocUioOjw65dfs2b37lHX710SesHz1jd++QzaYIskkvkSpCOLZGagBEjxgNa0oURTjlQ8iZ0uHfIMnzAXfuvsSX33iD115/jZu3bl1OJvG0rSWO9ItFyn/f5X13PwlUFJMOhyRxBN6xqSuKuqEoSjarDU5EVHWNMU2QP9UGqSU61lSVoW1DfkUUJ4QcSYOUjsVqTV036CgCGbwNrTFhau0s1rVY1yJlCOpMsyTAH5KwToYpsgEfPAtKh2lGn4+jZKAOAl2SuwOhusA/Q9066sYRRUk3pYSirhkMhltca5xlpGlGlg5C17NuSPIKe2XaG8cpUvceP4v3AikF1oa1Zjwe0+9HPU53mzsh1QuT760EDDqZaJBKScC7AC/57NQ8y7Ktl6+X2AWMdSgKmrYlTpMwFREgRYazl9kdTV13e4/eTsj7/cM5e2WOwtaLFwKy3LYB1jfxrLXbRle/11xFmX9Rr9W8YLOsqcqGar1GinDY/epXryGyUWha5Z5YK5ra0DaOnZ2cJw8/RcWC8e4YpTS/+OUvsa3j13/jbebzGUorprsTDg/3w0H82XOGg12cN7RtTZo21HVNXQe533CU07ah4bhYLOgLdq01k/EuQgY88euvv06zKWmblgcPH5IPR4zzEft7UypTcLE85vzJMWezE27dPiQRKT/9+Z+SHUyo24jZ7Jj1xQqdaOJ8SiTHvHxXITHM5zMe3H/CjTZmPL6F1jCdTqnrgo8/+pQ0SwLudzTkk08+AavJ4pjf+Z3v8tHHn1CsW9Jol7LcMBwP2L8+pfAtp8sWg+Qb3/wOZVNw/8GM4+P3+cY33kbKCGtadsY7COKwd5qKyXBAVRZ8+umn/PZv/zZSxzQmRAdEwYjKIB+RD4bEiUZKj/ChCSScR0eStmkQ3pHFMaapmQxTrh9OefKRZ5h4qrphvVwQKYE1hvViRRIn2LalLNbc//Qjbt+6wWiYc3JyysXZGVoIYiGRtFw7epPReMSzkws2qwU4yzBPqVrD7t4+o0EG3rIpwtQkiTXles7rL9/i8PAbXD+a8vjRnAZHlmhOT48xxuNMkLAORmMmScJ6OWM+WxBHkjTRVMbgu4ZLtaxIlMZ4wdn5CT/6wfd45+vf5NadlzDe8av3fsmj+5+wM53irKVcF1Sm5sc//FOmOzt86dVX+NTeY5APSdOcWzdvI9SKi8UFF2cVB4cZaapACtZLiTcNUgni5IC63KCjiHQQ8/RJw3Rnwv5hTpqO+NM//RkIx2tfvsWmtKzXpwgMkz1Plg1CqnypWMwLjDHsZMnnul8/P8JWXoZdlWURDqAiHJa961jxru/6WOjlVV2YkurCsvpi4M8a3fbm56sknass9P6A3T/OZc7CZWrqZ3/92f9ffQ7987j6b64+Rt/xuUqi6mUDW4O3u0xrvap9/eyIeksNkUEipMVll6yXYvWG+stU78sOav9ctib2DvPoesmVv0TkSh02/jjqEq6lQCcRPgom7elwiLCOOFIMhwlSe7IsIs1ikjTFETo+SsXdGPnyv1465IPYvJOX9bKmIKcSUiGVBxc2+DyJEaMhN44O+Pijx9RVS+sM5moyu/UdkSs8fq8jd87jRZC0NMYEAyh1QJ0KRd0IrNe0VhIT4eMIL4ORDGcQCiItGeQJ41wzzGPyNCLWAbepRMJokFJUDXVrEISDSXjt2TpxJaJLh7+8AsWsoWznGGvRLqBZrXE0pg28bCURrcMZS+MtwkucbZHCEymFlhIlQwGulMYrdUXa8eJn7AWp3Bf00jpCdgjP7dRTBMho29YYE+OsZbUME0tnHUJEKKnQOqSd9jKptrEMBinXbhyxe7DPZDrm3kchKVxKwvvQGFrT0tQtF/MlKkkYTHZCR19pojTFOkdd94CGcKh0nUqmv8KB+RIlqrUmG41I05QkTsjyEd5DEqdMd6eMxyMGeU6SxJcFRS+H+3NevTxLyA4ekGZIAcaE0XzVNFSNoW4tZdXgPTgkVRNyYSQOi8HZNd4LtI6xji7V2yO93yZ8ewi0prbFtDbc4y5wrrWW6EgRJxFplpAkMaqTAoXXLnhVZL+2X1nfL9d613nnPM4H95WxYIzHI3E+3GtSaXSUEMVhMqGjGB3FSBWh4kC1E1KjtMbZAHRwNnT8pY4Ia1RodjinsFbhsV3q8CUx6upepMSLkI0XJEUdOcu70ABB+CB1kv1ELVx986kPYvU+HLI8gT5mrNkWTXTyY/o9UQRfkuz+XCq9nZwpRZAci6v7ndjuMdvPihDb3I3PFkBX/+yLfK1Wa4SISNMBm3VNHIdQ06Kq0TIhTmLiOArFcdco0FGEswnaK+JoQG1toBw5R5I6BsMIIRUIR1PXOGuDHM8H+IcUksPDQ+azNdYG7Kf3njzPul9f5iz1nh4lIYpiDg+OeFY+omjWZKMQFBhUE0uyUYdn8JBnI/Z294lFxPL8EcNRilSG+eIY6SWmTfFlxGohQcQgQv6NsdA0jnLTUGyWIUIAibOhGG6aIOGq65ZIhICaqqxo2hoHJElOUy+o25LabkgGkropKTYleTrCGIkWLbEe0tQ1Sjq8C9IcZxzCQ6wlsc4oyw2r9YpXXr1JUdY0bTjICgS27RvCEM6HdB6XzunofVBgK0EcKfZ2JihaEmVZvnILYWtWm4LSGJTyNE2FtYb9w4MO72sCSEhHeOeYzecYa4I0TEuSRDEYpAwHKcMsZpwnWFOwrmo8XXM4iqmKDa5rMtm2RWDIYsl0lKF9yyhPEc5QyJrlYgP4TrZqETLEOGitaU0TqFfeYX2IHbA27Ec7wxFpnGJqR1UVFMWGpq4YDoddA0gxGA6RIhRdkdABtlGWFCKkxrdtS6QtR0dH1DxHCEeWpiGIOQvP4e5Le1TNM0zbUJUF3hl0BLWBpjEMckWSBoVMmuboWDLambCeGYSzxJFnunPEfLbGWc9oIrHrBCkk6ef0h37uIsMJz6YsWK/XLFdLBvkgdPLj7qDvPHT5GMaE3Tl0uGzXgY8oioKoy7v4bMHRb9591+Zq5sVgMNgWG58NoLuaO3EV9dr7Nfocj6tTg6Zptrkbw+Fw2/3pR9x9MdWnml8dLzdNMHQdHR3Rh8pdlUVdLZxC1Hy2NaQ75xgOh8RRhPSOoii2Hae+wAC2Cd99l237HnTFiLUhEbc1Tefv6DjudD4P59A6Z5hFONuy2qyCmSnRJFHE9YMDRlmO1iIsKmlENsiIsxh0RFU0tG3DeDJA9ubW8AzonKxB5uP7n9V24dtdp0/EnW+lC+VyjlRrrh8eMsgS1uuCti0pm7Y7kMit8VoKQHrapg2dZecDk985Wmso67Lz70ickxiT4FljnCCPEiI9RqqUOFY0VUOsFEmsODrYZTKMGaaaYaqJVeBxt67h5vUDnp+e085XaEXohHuBEoo8ywihg54kjgGH95efJ2NaGutC51ISOizB59qZ1wP1tDEGUxtsa4LfxBviSJElMda3NC5MpYLPR3QTQLb30VXz/xf5yrIM03ZdYq1QUUiQdl5RrpeYNsEYy/PnzwOWVGq87QhqsSLNIqJIMJ8vsbbh2vUjvvTW66SDnNn5GV4GmIOWiqKusTb4c4qmxcwWVNaybhqMC931wWTC6fMLIp10E5bgcej/65sLYXpot2CKNE25c/clJuMJo9GI/f1reB9oaQGfHXCibdMS5wHTTXc///mOeMHjIXwoMBCeKIqpmxLjLK2xrMuyC0GFi8UqSOuilKK6YDweYvEUm5qqXBLHKcPBmLJqqZsQWBbpUHi0xtFWLbPFMpD+IBzmcQgJWZ6G0M48ZTjMyfIEXPDBIYN5HxHogpUPpu+tgZpuMnsFaWuMR2mNMY7WOJSOaVqD1BAnKdPpdLsX7O5OKMsy/FsC3UkqTRQnaOnZrBY0dR0wtHFYf6QMEtHWhHDC3oPS+1v63KXte9zRwvoJ9AvNpzB2wPWH+m56EjwcLxZTWmsGg0F4T6zFehEmat0aHxoknZ+iNVtXigSwDuNacJ7J3jiYh60hTSN0pAmkRnuFTBi+dy+FiuOY2WxGkiRbIuRVc/if1VT7ol0X8xm3br7MaDjl008eo+KYVbnkg08e8NJLr7G7O0VPhqzWC4z1gCRNFOPhEVGqSOOYxcVz9vb2GOQZp+cfMZkcoJRmU6x5/vQx3oH0ik0raWxNNkj48pff4nt/8qedxHpIVVXs7e0yHo/Y2Zmx2Sy3BcjsYsZ4MuVwd488TXj06T02mw1vfevrpPmE8+Nz3n33l3ztW6+SZRkH6hqj0ZhRmoFx+Jccuy8dMZ9d8PT+fV6+cZfVpmSxamjnCmFXJHEDWjIcThEuZnG+5vT8Hlk+IUkzdncPcNQsl0vOzs546aW7SBPRVIY//qM/5aVXb3BwsI90+5w9XzFfzjB6zXT/iKKYc3GyoFyUDNMpk+v7vHTjLn/8vf+a3emU/f198DKEcQrBIM9I4jxMUNsVrTHMFwuKomRv75BV48PEZz6nLGviSAbojw4+O+/C2SWONHiHE4I3vvw6q+UOq/mYm2PPydOHnM3mTPZ2iSJPVa0xxhNHX+7uLcv1a9c4e3qfVbGmdZ7dyZhYQqoku9PRdv26c+OQ1WzJh9VDnjx5Sr5zQGtCk2Y+X9I2BmsabFMyzhS2XFDOIlSbcTTdYX8y5tnzMzZlw6ZsKKoW1+Vl2VailaRxkqZtWG3WIaOkaUKehnPsHewzHe+wvFgy2N0B4Tl+/oyvfvMv8eqXvkyURJzcfxdZL9BIxnFKsrvHs+dP+OUnH3H75l0WszltY7nz0i3uPTpnNEy5df0GRT0jiiSj4Yiv/qXf4vs/+Mfcv/+AJ4+es7s7pXWaqpWYDoxjjGc+n/P2O28htaRuS5pmwzCP2dsd8tqr7/DjH/+Qxiw4ujFCRgchI8y2n+t+/dxFRkhNFMRpwmF+tJX3GBPG8TjXhbRpkvSye2daQ93U1E2F9IK2aYIkJU7CeB0IXSe2JsGrXSYpRTArNQ2rbnzcy0batt0WIL1HAthOBbbP4YokKoqire5VdAbAPlG718ADaKW3nWPnHJHWzObzQJvqDg9aB4rJeDTabhrbqYwMm5gUAtNtuFEch0LIOaQPSeG9BOuq5rsvSK6a+Zxz3ai23npYjDGBliMBF/IWtNbbNPOyWBNHisP9PZabJVVhKbEn9TIAAQAASURBVKVgfzAg1SJo3RPNcDJCR5rWerTUxHmM9gqvIjwBN4fstkEhu3dKIrFB6OLbEK5oG5wxwXfRBHQmInR56JB13/rmN/nVJ5/y7ge/Ah2I7c55vJPUZUXb1DR1RaRld0gJX2M91G3L6ckJ+nDShXAJEBF1XWEAqzUJA3QmifMEKcKkx/iG6XSIMGUIw5KaQZ6gVAaMWBUlN27eoGocH318j7KsaZoQJhhSg0NxMN2bhkW0qSjavrgUKA/3Pv2EGzeucbA3DZ4bIRDeYdqGpi5x+K67Xm1D4qJIEWlNJB3WK+i6HmGCc0k06j+7X2SzZn8dHF6j2FRUdbg/W9OGUW6kWFvPcrmirGt6ypYUYPEkiSaKJAKLVpos7adsjl/8/GcYPG1dIZylLivqsmJnb5coSsmtZUdClMaMdibsX7vG6dkpxaakKhoinXVNhNDRCRMV2x1QDWmSMBzu8NLdW/zqVx9QVRXOwXvvvt9JHyVZPkT4IJe6ffslXrv9OnmeoaMOkiBE39j/nFdPGbJ4b7CmDtWqFFgkdd1SVg1V0wSyVFlTlzXOCy5mc5yztMZxdjHr1sO288TFeC9YbzY0TYn3Fh0JVstlIEp1E9G6CTKGPNfBa2EbVCSQ0qE1aC0oyxVJpDrJpsMYtyVIxUmCb33Iu4gi6rLAtC3WNOGetNC0UCzWPH9+TFO3XLt2g8PDQ0bjIZPpGKEFk/GYfDCgaWpmyxVKKg5GY6qqIdKKNIrAtdg0Q+uIwWCE76ZR4GjbBh3lCBFSrpu2y6sRAWMLVzC1PuTTDAdDnj9/tp1GlGVJkiakSYaIY7wJgIrBIGPRNCRJTJ5nLBYLsizb+n4GgwHee6qm4vnz59vitKpCx3JnPKZar4OEuPN1yA6oUlUV7ckpaZaidULb1iHTRQiE6OfGoiNwXUpt+8e+CktJkmQ74VgsFttC6It63Xn1FudnFxyfnfPKa2/y9PghKpO8/pVX2JyXxNEee7sTjk8e0JgQEtm0Gw6ODlmXC+4/fJ+D63dYzDecPltzdHjEpx8/ZbFcslwX3L29j5YeieNo7xp5koKAn/zkpwEbqxWz2YyDwynPnz/n0cNH7OxMmc1mWGuYTMakacZms+FXH35I27QMs5zXX/8SZVnx6adPwAju3n2Fk5NTHBpPTF206IMReaLY2Zny0x/fI449168dMhy3rKollWkQ2vLGm6/iXc2Dh+8RRzs4E1Ouao4Ohzgymlby9Okpd1++xujmmJs3b/HXf/dv8uzeGU/vPWGy66ms4eK8oFhd8Bvf/g3mq+d8+vgD/uk//oe8cv0Gr75zk2r2iG/85h2Mg0/uPeLG3qtMdoaMhjmL1QytC5RyJInn2eMLjIXhYMDu3h5tG6S/84tzLjY1Os6ZjHeoq5oqligdIWhCnofWwRtpewCMReAYZJpUDZio60xzy/7FkMFkxc0be5xdlJyeLhFCdjRNy9OnT9gZZKRpwqZuGQ6GKBOyhd740qtMxqMQbic9zXqGdDW7kwF7N69TtY6yabn76us8vv8p1WYBbckbr99hb5IxymJMUxLZIVJo4kizWC5orEdEKZO9HSb5gEgqnjxfECcZxjouFmuSJEV3vq9Xb7zKcrlgs1yyv3PAV7/+Vc7O5vx//rP/DHSCjiLiJOXddz/g1jThYDJidzJkuZ7x8s1bvP3lL/HBhx9z7do1RpMJi9Uxkd6nriueHz/m1Zffom0dm2XBP/kn/y+O9m9z6/od7t37E15+7Uusi4rnz88YDAR1k9C2inQQsy4uWG9aTs8qvv2td/BtQbGc83//v/3nHB4NmO4myPiMzVoxXxQsV6ef6379cxQZHYpW6E5fK4Pm1ViElNiua5VmwbyMCESgLT/JhwCmQMgROBnoS0IE/W7bGqBFiJD+rTppURwptPRYLN7WeBGjpQCtqZsmkFGkDI/ZS1s6WVEcB+1+XdfbA/vVbInP4vyklJ0R9bLLZK9MGCKlUUn4Oy1F0Bh3SEW5lQmEw78UgAtYXKztulUeZ0ynmrikBn1WNhY6bH3Kdzh0hmJDd8b2CPAIl9K2Ad1mvQkSlK2foMFbE5Jzm7bTkVqclFwslzg8gzwlFwn1psHFEMcSH4XDsBDgncGJbsSO6vToois0OrKUdwhbIrzD2Ya2KgOpy3QH/LZBSoMQHrxiZ5wzzFO0kggXdxIkjxctUocQL+VDanqgOgRZh7WCujGcn83YHyXIKJBXnCjxxuOEp15pWntG0ngiPehkEKGLerg/JRI5iYLRICXRIanYe0cUS9pWUGrL9cMDnjx9Tp/oqT1EJhR+Wqlwy/iAOw0HzBbfNJwdP2NnPMTv7m7fN5zBtiV1scTjkVp3ZK4gMRQi6MZt17nx2K0PXnUafwRbPbd3VxCXX9DrYrnGmkBp0tKBd3jraV2LkhFSqoC4lYo8TQOfPXJkkaQPODS1QQtNGivatmFTloGk5hx0gZtSB7/LIM+Jk5RsPGa0N0anMWjJ7OICLDjjwmsturG2M1jXIqQnjhS3b90Msi3vmM8WIcvByyBBaBzeB0qelsGo7g0IF3wMxoaJYErU0bG6KuNfWmxcJYh5vAihpt61AbwmBEIqXGto64blYkVdGZrGdms0bIoghQB7BXDR0LYW5zVKJzx9/jwQuJQkyxKW6yLAJmygzXRsA8qiRUYCqSMSIYg707HWClQvdQxTRikDctqLTj4pNErGJFFCvV6DbZE+YHHr1nV6bctoPAYvSLOMfBDwjrInVsmAKx4OxjRTQ9saVstFh7T1GGcY5nmg0zU1ToQgrn59t953B0Md5G5FQdsaPEGiKESf+0NHuAk/a9RlN6mugAJwHVbaSTq/GnjVBzyyPcwbY7b7jPOX/irvXBdK67dyssbaDjLgcSII20T3s7suEV1262DvzfGiM7K60IpUnVKgl6u57l5w1oViswkdx7ZpiXT4rP85K95/pa7np2cIp0nSlLpaY01DlEQcHh0ws+c433JxcUZRldy4dZs0zTk/n3F8/gDna4YjRRw5aulpvWO9FIyGU5I0I06XDIajIGH1DhEpWtdiXMOmahgPd1BaYa0jiodImWKiBts2JFlKWbc8OV5xtLuLwmFMQaZTmrqkbUp8Ekzf1sGqrEhSTRZnKJVRFC3rzRrrYwbDAePJDratWK5akiTIB4dDyWqzoDY1zrZUpSXVgiyCJAFrc5AROpLs7O7w6Mkzsizl8OCATz76hKefPOb48VOI54z2domThKJseHByTGsLVDzglZdfYaBiiirsa9duHmK85/7DxxgX0bSSqrTURYGKNGXd8uzZM+7cuduF6Xnu3/uEpglyy929PeblU0xbUmxWnXIkC1Nq358JQ8iv4HJy6LyjriuaYk27WWGaCi09050RWkKWKMajFNs2zM5nnD4/YbmYE5MHSlKa4pxlf3eHa9MxuztjlHB406CdIY0kaRIFSasUCCzOGNarBfuHBxSriLPnj7qohQgtBTvTHeJ8SGXCeXE4GtM6UFHGwf41Lk5OWc7mKKEoi5LWtOT5MDS6bVDa5MaiXDhP5knO/Y/vs1htaK3l8NoRm6KAJdy6fYejkWRnMCTbuUm80wWZOsns3DAZh2C9pi1pCofzLUnssY1gvdywXF2AqxkOc+IkYv8oZzZfsVhsmM2W7O3uoRjQNvDsySdcv3GdJIpIlOPi/AGJShAiZn/vkPHEgWy49+kJafQySgnK8i84J6NuTHeglnjXLcw2aM2F9Ftkq1AaIUMnyfq207cHRrrvjIEA1gQOe/i3ImyQrkEQDuhOhgRWoWOkEGjpkFiED3hWGelteFJ4TNmFJYXpRxRF20C7rVehKzL6q+/29EWEUgqhI5ywWGM7Tfhl9kYWJ93m4MNYj86L4R0Sie4ev/Z98u6lfEsJgfAea5oX/BZXfR9bykkSpjw9/SqM9+XW/B0O/Z5YZqxXhrYNBBYdx0GPKTytacIG4x3tJmysAR3vma/XOASNcSHBtoUkcYhMEskGGWlQDrTD0hU4IsLZ0BXqBvtho/YGYQtAYJqGptwgjAtAQAdNWSC076goMVkSiE9KyG2HF+9wNMhYE2IhPG1ThwXHSzwWL0Kewex8RXs0Jc4CAs4JDzJoxq0DW0uskeSDXeI873TwgsODXQaxJYkgiSLwvnuNW3IXs1k34OHm0QFnp2eUlUClEV7o7vDpEM6ivMSroN1UnWmjbWrmZyeUN653MpMg0/CuxbYFbbkEgmlXJIH3v0V7ekf3KmM7mpb0IeG4ByhIpWhs08kSP+8d+6/mdXw+I9YRkdZkicB7E4ItfTjsa6XRMhzQBnlOHIXE8zSSXSEAbetCRoKSNNWGtqxprQehMKZG64A19cB4vMN0usf+9evs3tyjtg0nF6dd1ywY9mTHkceFQ5mUHiEFcaw5Ojrk4uKCxWLB8fFJOKi7IGlUqA5LHZCAzlic8SQ6RXUHcGP6DbXLWvg8xozODB8aDQ6PwZm6M6ILdJTgjaGtGpaLNVVZ0zSGurEY5ymrmrIsESo0QYw1NHXNpkP9Kh1R1DV5npOlKUjFYrWhrmqMccRxjjXBp2FMQ9b5g2QnJwvTU4nQEm/are49NEEkXspOlhTu51jHofhrDVKJTh4aJi1CSHZ3d4miMJnKsjTIgug8CD6QlgaDIUJINptNQFrmGd47GmOIs11ia7CEoiKJ9FZmVbcNSumu8AiNCmO7NV+obTHTeyeCLEoRJUnnnxPEWlI3bZByCbakRfAge4AI2wlzT8O68nZuaXFhEh6KDQdUrdkWAUopnA30QCUFbd1wFZscDmMdGAK2RYYUbPGYQkmausG2gddvTQg07acaeZ6DAHMFn/5Fu45PL7h+cJ3RcEhVrlES0iRlNNrB7TQ0dcXZ+SmNMRxeu850ukfdfsyD+++RZpJb+0dEypHEYGPPelny0qs3ULEgn52RZ2nXFHNY4ajahsYYWmfI8gRnoG0MUsUM8jFaCk6ff4xOYrwVnM3X7I0FGk8iDcNhzvHJgqIqSEaBYue9p24c4yQnjVOUjGnrlvVmRUPC8PAWhwd7LGYLZucX5ENNmsRMIsdmccam2mCMpSosk6FgmDmygeR4kaMiTxQrdnYnfPTJR2RZxnC4w0/+9Ecsz84pVgsGI8+1W9dBZ5wvFnzy9AFpohkPc9586xqnT55z+uyYpydnfPrgHtZbnh4fM927TlEZTKtoa0vMmLKCR49XfOs7t0mTmPVyxfvv/THpYMRwtMNgPCKJFc42XJyfUFUl1o2RIjRLPeCwoWDumoJCChxBXbJZr2mWS5qqBO8Z5gOEDT4JuZPhjGF+Mef89Jy6qigjyWAUMchzbFMw3Znw0p1bjId52JebFgho2yxNiJOAK8dZTFNzerLmjbfeIkkks4vnSKU73L5ibzrFywxXtngkw9EE6wVKJ9w6usFPz+ds1gVRErMsN3gBO5Mdzi/Ou0Ij+CoiFImMiFTMpx9+glOa4e4eRzeu8/DhI1pruXP3LhPVkCY5anjIICloy4r1RUm9iVivCmTU0vqapvKoyJEkgtViw2I+Y1PMuHYwJktjogQODoecHC9ZLDaURU2WpQiT01Ytx8+OuXXrOnEWs449pyf32du5xd7kNqM7Q0R0wmpd8ODeBe+8+RpxLLvz4H//9bmLjHK5CsFLAhpn8UmMwKO8x7VNR90QrM4vgHCA1h2uVYjuaBpHXUiSCBIUa7Cto6rX+K4QCcYdSZoGekkaRZ3XIiJNU5yXWBsOvjdu3qSsqtAZa9puYQ8diDzPA/e9qi4zBrr/iqLY6lfTNN1Kk9I0RabQ1A1lUQT9eCdhcs51o/CU0WjIcrV8wUNxdTrSS5l6b0X/523bbvG8W2JKN23ptd791/XVWE/cuir9gvB6aglxEvBk/fMLco82HDLiBNM4qvmcvd0dpFbh5pUxF6uSRVGxqBp2RyNiVaPFkiRWpIMk8KBHA2yxRmvFcLKD3WxQkULpiHK9wliH9xIZZVTFhrauaZqCtioYZRl5FgxIQuvQmbCOsiwwbYNSgkxoytbihNvSU/BBp4nXtE0dCC5d4Jezkrq1rMsWqSMyGVHVFbQNQhVEaR1wmZXk+KlnuHuNNM3J85TD2y+Rxj4UMXikt10XU+DaBp0vSeqSPB9ytjjBP2mZLTYIlQYze/f69+FmCNFJxcJnvSxDInlRLEkng3AwtBVFuSSOw/NXsYYoEGRMGzC9caRJLeAkm9YQ6dD57e+h/nBwNT/li3zNLjYIH/JphsMU7yxJFDEZj8Jr1nXeIdwjPVHOtAYhJEmkyXW0zX7QcUJpTmmLYAJUSUKcpmSDnMPrN3nrzbe4desm071dluWc45NjqnVFsWmxLSihEErQNY0RCG7cuIExhqIo+NGPfrS9p9M03ersvfdILRHehyktniiOyIcD9g8P+LVvfZvrNw4ZDNMQPiU8/0MItlJIkBFnFxe0RQXGszOZBr9SZWiqltOzGXVrMdbTNobaCAwahcC6FmOhtYKqalgsVhjrGeQDsmyIQzJfrHn0+KTDY2u8X5PESci5UQoqi1agECyKdTA4akU+HuKCvmqr9bc2+LaiKA7FuYFWSqqmYbMpcM6zs7tHYj1Va2ja4FHQUcTB/lGn8Q4QhCRJybKcNM0wxm5/PRqNWa9XlGWgEB4dCqIoxTlBVZUEU2mfeJ1s1/04TrtCyKIUDIejFySJdVPjoTPzp9TO40yLQDIYjBipIB2L4uCNWK1WYdLWhoPDdDrd+qeqqtoiyrMs4+zsbLt2r1ar7rMdTJohuwSibmov+sl6kuCdozZBwhfHcZh82pZEX+6tdVkwmoxx3lNs1oyGE1rZUvnqhcDX/l7qww6/qNfb73yNCEUsNeN8wHAyYrnZ8MGHHzPN4nBYVYrr125RbWqqpOKbv/YttE9YzGcUq4KdaUqWG5RusbYkzcPavl4uGKSjzjBdc3J2zHT3gCSd0DYVo8GEui4wdsPDx+/zzW/8Gq++/DJ/cPwBH374Iaicb/+lv8Ivf/iHjDPHrWtDxsMEa6eUzYA8G7ApV1y7foPv/Pp3+ei9H/Or9z/g2ZOnfPc3v8v7n36MreDm6y8zHihSPWVncshoMsSbDb6teOe1a1xIy2KzYbUo2U8ioiRnNIk4XWesVs/RkeXg2j6//hu/FTKmioIP3v+A/8nf/p/x7V//Lv/xf/J/pvUpvqpJWRMlKXVbcHFaM8puYySMDw/4a2+/xc4oxXnH9bsF8/mCp48fsbyY8c7b3+BiXhOnQ/6df+9vI6OG0/Mzzo+f881vfo112XI+W/D/+wf/gG9+8ytEseB73/tDRjuHSClJkphRHgdpmuiUHT6gwAOyO0HGCTLKGA53GSUx682GJ6dz0vWSKMvJRhnjwZDJcMj+7h5vv/UWkbfkgwHj3SknTx8gsLRtRZ5Ow4S5qVkvVwilyIZDdmSOGoy5OD/h+OkTjk+OGY0HHB3s841vfIPF6WOm+QF7e3sYYzg9f8xsXVNWjvWmQIiIQRKxvlhy/fAaeTbg3v177E6nRHHMYDTk+PgZ1hmkhPn5jEGah7NZ9Zg7r3yJw9u3uPbKy9y//4CHDx/x7OlT2tlzZnaNjmKiacFq9h5Hkym39m/zb/+7v0trZ1wsjvmj7/2Yd955DSk8F+cX/OIn/5iXXj7izbde5t/6G/8Wf//3/gsePX2IjlO8cxzsHbLz8pC96YRfffCEs7Mlb7/9VXbGe8wXa05PH/Hq67u8/fZXeOnOm/y3f/hPMOUc03puHL3ObPEchOfuq699rvv1cxcZn356jyQOHUghgsFVBolwIBsRDHlxl5jdL2zeE4qFNCWJ1XY0LDspi5KCuAt6C7+H4SBHa0msNcNBSET0boDd2eHp8TlKEaYlznVFRouUYYQfOjyWqqq2h3tg67voDXNXE1l7TWtVVdu8if7qMbXA1g9yMZvh/YtFwdVC5WpabAiYqoKULE3J83z7PXs6Vr/5XCIPQ20PPTbzchLTHzqds2yaljzvOuPGUHYdMZRGJynr2oTunI5Zl03wkAoYD8NUBQOlWVEUNZEURCKMINMsIk5jkizoqqWQRCdLTNMEOYEUNFWBs0HulqQjcAYpPUr58D4ogZcenWqEihBCdcFVilu3btB6+NOfvh+6s66ncBEmDJ1+QfSGdiFDNodUOB2zKpuO05/StgaFDGhZ2aJlg9aGJAaNwZuaphasCkOcDlFJTOBh9fGLoJQlcgIfaZCe1790l9FowAcffsKqMLTWYp2AjvxlOuqRMeH17d/39XoVNKGjV0EGKY0xDZGS4QARKVblJnR+ncMYj+3SiPERaRwRRQmRjreFbf9+9+bUL7ovw9tQHKAccZRi2tA9Xy7X6EgQdRPCvvDuwRBaBv9Ln9DtfZDRFVVFU1eYpqZ1nkGWMxxP2D884s2vfI0bN28wGI9onGW5WLFermnLBttYJJJIhcAi38lqkmTIYr7cFutaxtvn3iNPt+FzSnahkUG2o6KIxtT88r1fcOuPbvKVd97ina++QZyGLvP/kMt5D84wHA7Z1JZyteLB2Se0KDZ1zexixmZTUjWWqjZczBZdUyc8pzjW1GXNfDYjjWOMC918pVqePjsGITBty+nZIkyXMs18MSNL824SLJjGISfAurB2bzYFXklUGqOtCWtPWW7R3v1ntawrqqqgXMzDOpGkAUmtE4QWEHmGOsIYi5QBST3I8g4EcFlsXs1BCuu5pKpbtI4ZDMc0bZiKBOtYFCSjSgb5hQzobtNa4iRBKLkNSEUQyGNdsyfPh93nznfTGYHSAdcphOwM4QYlNYhQPGyKDUoZlLJblGzfFAiUQEeaXTaJgGCahRB01jTUTd1NKjRZ3BlfnQvyzG6PVCJMPSUehGS1XJJn+TZbqSxKrHO0pmWzWSEQKCnIO3y7NW3AhLtQYPgvcLNifjHn2sEhSZLw3vvvk48H0FEunx2fYLr9+PBgnwtCCFuxWfL++/epa0OepeSDiNt3bjMcZnz/B98Pk38bpkbPnz/j8PCIGzduslhdUJUNkpTX7n6JSDo29Zxic0FjW2azp5yOYg6uHfKqrSkqw/L8IS+/fItBJtgZa44ObjJc7bLe1Cw3JbPzE9qm4MOdhLqqGU0m4TOFpC5qiqbm5NEzivPHTHcOuXn7yzw7ecZ6eR4aeMkEMU4ZpRmvvPIq1/YTlos5T95/yI2bb+GcZl0U/PgnP6ZpHIcHB7z2ystUyzs8Ob5g/b2fsDYp5rxAu4YITYIgiVNsmuJ9WGd1FHPjxk3e/eVPiZOEO3de5o/+8GekkeLg4CY6kvz1v/HbeKn4ox98n+vXrmO6BmnbGh4+eMDp+Zwvf+lLzGcz5svHPHm+4C9956+wXq/YrFcIlzAeJ8RRQERrqfDWbRu0g8EEYS3r1YJEJQwHijvxgNIaNIGQOTs/5cH9T3n86AFxpNjJhzhnmZ08ZzrKmQwHDPOc0XiH07NTmsaisyHpeErUrqEqQQj2Dw5J04R8mNGWG9YLSeKH7O6MSWONNS2DPGG6O0HnhnZecb4sOTmZcf/kHjcOr1HUFavNhpOTE3YPDqiqimfPnpFEMZV3WNty9+5dxoMR3sGz4zm/+zf/JjJNeXJ2yt50nxvXb1JXJX/4j/5Lls82rKoZpplxNL6BbQSPHj1jNvs+Bwc3GQx2+O53/jLZwIBXTEZ3cEYzmiQ0bcl/9B/9nxjuDBiP9lGxZmd3gG0sdVlz//4xk+lO9zzX/PyXH6O04rUv3yWKIt778CPe/eADoqhikO2hEZxvjvnmt9+k8XAy+wuWSz19dkwSh7h1JSWyW/z6ADKPxAsVsIZKIVWHESUc8IcDS5vGAb3qPXEUheTB7usCahWUFuRZihQQaUWWJrRNLytSHJ/Owij+ysYTjLHQtE1gtIsX07T7TlYvP7oqT7pqqjXGhKTfjjLSd46vEjqstdRNvUXY9YVHb1bvSTRXMblwmXXQF2FweZC6GvjUd6/hkmp1FcF7iewNcgYvJN4TWNUuyA9AdCma4RgtpcJ040Dw1E2L6nI6rHHYpkWLUGTUtSCqNVGkkJHG+1AgaCnxLpBQhHd4G7B+WkeMiLoAO0kUB0SpjjUy0ggdMgSkUiHdG8nOdMIt5/nxz94Fb0I9JfULr1enctoWV9tLKjZVQ55bvAhYONlplaXopjsSEkWQ1+HwzrIqKsaTMakMZnxw3ZHVgfToxARfu685PDxAeDh+fkxRzqidxbShILlqzDet2TLuoyiiqipms9mV9ynoomWkt0mfdVWGn9GHyY7onkcve1BSbCUX/dUfbPvP+hf5cq4r7KQiTTNqHyQ5VVWTiqjzHrnt/QJ091ZXZHgwbdthjR2bsugC90J2TJYFKtH1Gze5fvMWo50RUaypy3V4/eoWUzV44wKMoJPNhc9eKGirsqY1bVifkrD5X8VaA1st/9X7W+ngUzs7P+PxoyccHR5SFDXDnctk1CAxFFd8F2wf78++wtfFSUwtJdYYTo9PaFEUbctssWBdt1SNpaha5vMVUaRQSnTIVEtVVKzWBWIosS5Mfq3zmMUCY2yQUi3XxHFC3Vjm8yV11pLECVGsyEYa74I0Srjg8ZJl1Wn+A9ChDwntJwVChKDKsqqoO1yrUhFKhXBNJSQaQmFWN/ReL9+BJbzvDdkAopuQdGuiigK+NoqI45RgxXEBi9u9YlvENr2nK+BjhZBIpTuZIhjraJqWeBvIqiiLdWf8D0m+jamxqvtZw63a+f6S4E/s1qir61S/F9grEJJ+ytHnirRXaIhBPhmaST0FxVsbfG94JMFrAZ0kuIMiBF1AKBRNR0Br2wYtFUoE7LOzBm8t1piuKyi+0J6MpmmoqwrhPGVVQhRkt2VTY+qQI6Q6A71pahopKLVgvV7jnGIwGHFxseb6DUGSjsgHk27KFuiPx8/PKTYbzM4OcRRRVS21LEkiyc44o6kTnDG0TSjy03RAHKfs7IzQq4L1csH08BppplAJRHlCToRxBQ8fP0cJh2kLnj25x+7uLfLBECU0m02B6OSy87MZytTkWczR/h4/+vEPiWJBmiQ4qdHGkWjNYHePdKiZr0s21QWb1RltE9QCy+WS9aogT5Mg53SW4+PnnG8qBLBcbtCuZZImDIYTGmcpbRuydGSQB5V1zcU8FLRt6/FWkw4HDIcjLmbnDIYxMtJsNhds1kNirdjf39+m1gsBB/v7PH32ACUEu9NdmiYAXqyxXZMt6vhq0KNsnQsS1DjNwTnqJEc0FqUEA53Q1B7hur19NWe9WmFNy41rh2jvqYoNVdFyuLfPzmhIGsc4B5uypiwqIq2wQmOFxljPcjZnZzxiNBrgTAXeIGxDnmgSYQKWVgV/WJ5HWNHiL1bkaUoaxeA8TVWz3qxZrldbEFFrWlbrNWmeIbqfLYpjdBzhnEAnMePdKV4qODujrWr2d/eYjsZkac65cbRNhU4M5cqwrEqqzTmV+Yg4S4niIZPRFOQGbyOUHLCzm+ExLJdzPvjwA77+zW+SDVIW8w0vvbpHVdZUZYFzEWmeMhoPUPKAh0+O8TiG45TZuaVu1zjWXDsa0NSetgS8Jc8GmLphU/8F06U+ffA0mJdFGOsqwjqlVDjUCxX45OHP1BYxm8RB8pBlGXmaEHWmQa0ko0HQBDvtkVoEuUEWkaUxEgKOUEmqjh0eaQWi83O0hqoKC4qUYQG5mDUM8oydyfiFCYNzbnv4+2w+R1VV2wIhyzKSKKZxNUVRsLOzsy1ketlT0LkaqqrdJq82TUOWZQFPeaVQcM4xGo222RZChLCmXl7TP6aUcss2hz5EMEwMegrIVYO67wqgLBt0+uaO7CLDodsYE9KTR2OQgrZtyLMsGLlNS1PXJHEUEKJCYIzrCLSe2jioaryAxrQ4OURFCWkSBWaLM3hryGPNaJiR5Bk70wFpmhEnmiTV3XvSAakAFfWFlQfryPOEA7VLnkZUTUvrLYJLKVCvWRaIbcHqynDAFihm64I0z9iXqptChdA+KWJSlRBLTYxD4lCRQqYx5xdzxpMJUZqTxNHWVSJwIDw6GSLjBE0LbYFpWm5e2+f49ALTlBSlCVAA68LBxYburRCQJqHbXVUVLJYIEcyi1gWcrZIRznqquqJYr7dBj9jg7Wmdpa57k7xGiFB8Xk3n7ak0Vz8nX8SrbmoGecZgOGR3b5flXFAWYNqGYDjx23u3v5fatqX1bLNEGhN45MZaZos5+LAOOQHXrx/x2uuv8fobbzLemyKkx/sWJR3DJGIpBc2mxLWGpm5pbTABy0jjjGGxCv4iJTQIG7xMHeGtzz+ALkxTChBdQ0GFokNqSZImCDRl0XB2esHetWn3tZ3PIpgutte/TAInhQzBmCL4AIyxXMxmbBrLsqw4ni1ovaA1nrp1lGVFWTqkhCxLWHeJv03dcFKehUIJwWDYewQayrLANSHoTUpJmsXI7t4ajwekuSKOFLauyJKYgQpIXiWjQJ5DolTMarXZrqWDwYC6DljxJEmoNiuEkAyHE/LBGKEVXgqKsuw8MQIv4GI2R0lJliadry3I0SBkowghiZRisrMX5KdVQ5zktKamrgPoQtctqVBkcYqxJcaGyURZNUAIW3TG0BqHscHLJWUUft82nJ+d443pQAOCsqi6acllgR9FmjTLUF3uhhBhD8rzfCtblTJMf+bz+VbOGscx9+7d62SywTeSZ3nXZPJdYyXQ6VbLFYGE5ZEqFBMehxBw59Yt6roKfjxTh70CwIIWBNpjZzoPzZTgMdBS42WQ731RryxJefjwIdZY3nzjDUbjEccnJ7z3ve/x1ptvcO3wgJ2dMc+fPGYyHjEaBtjIzZtDpE7Y3dvl937vH7Eu1rz66pe4ef1tvv/930crz29+9ztcnP2Ahw8f8ODBPV5+5SXK8oL1Zs4n9wr+7t/5O+wfZ3zyq18xm1uePlqxXDzl2s1dhIFUapxqqeuG1ik2jUSnc7ARs+WKH3z/h/y13/kNdASPnj7ktde+wWq1piiO+fDDj5hOp0z1lNn5nN/6zpu8/vqb3Lj1Mn/wv/8D/sf//r/Nb/3l3+LRgzPOnnyKaxqi0ZjZpmY43eG1UcLv/X//Pjt7e+zs7/HaK6/w4UcfUxQb7t+/x5/8yR9z95WXeenuS+wPh3w8Ow0erGu3eOXlr3J8+pzTex8yaBvG4wnee37/n/435HlG1bR8+OGv+Nd++7dpmg0XF8f8/u//c7y2HF07YjLMOTt5zhtf/hJ/6de+yaeffEqc5syXazZFzc3r17nx7bv8+nd/h+//+D1wjmGWkybhnOM7kEHTmhCHQJjixnFOrFOSmy9zev8DqqLEekcS5UH2NHdcLEJj+rVXXubb3/oSP/3hn7KYSUaZ4itvfplICryzPHn6nCfH5yyXazZFBVHCYtOwKmq+/6Of8G/+jb/OSy/d5uz5IxJlOdwd8fbrd3n/Zz8k3h+zt79PuQnycWs3PLx/j2u33uBgeo23vvQ252fntI8esKwKkjxjd3eKc47VasViucTZ0GD/5NN7JHFKng+5dvMOf/DH/y07031Gkx1+9MMfcv3aDUbDIaZ1rDcVSSx457Xr/Kf/jx8GU7ks+ct/bYoVDc/PnvP+ex9w8+ZtbKuZnTfo0XMuzmcU65qvf+MN9nYPOL9Y809+/4/5t//Wb+CMY7Uu+eo7f4Xn5x9hbMHf+Tv/G8bjfe4//JCT84/44N0Nv/ad1/nGt3+Ni+Mn/OCP7rFeVLz+yj73Pn7M49Mz3ntw73Pdr5/f+G1F1yX31NYifLdwCVBC4kUXLiQ6U6DoFkUfio44iohlYCNHWpFqtS0yhoOc3d0Jw1HCcBQj/G4wpeBZLReUmw0AlQ6mZ3dlAoEQKK3JsiHWW7I0YdB5KXo/RhRF5Hm+LTiuFho9ErangdRlhe88HX2h0G+cEH6WwXBAVVVbFvl4PH4h52Kz2WynFn2Xuz9Y9o/Z/9mfdcDQWmPtZQDf1efcd8Qg/Nxt2wb9YhxTVlXXYZWMx2Ost2ip2ZmOO1lQghRQrFahCBAerSOsb8MBQwjKtsVYhxOATol0CNZzmGBz9QYlLHmWMsg0WSrx2qBzSZTGREkavB9XPCSBHOEQ1nZyttClG45yiqbF+g5TawNaKYqjgME1Lc4GTG6WZ8Sxpq1LFC1xkpEPxmRRyDbxCJTPUV6jvEAai21qUDGoYALbrAsEguvXDrcdwF6cLESKIMaaEuUtSTTgaP+AWH6Ekh6lIdIRToZpkHMuBGcBpptqOR+KinLT4LXH1j6EwTW+G+d3eRfW4J1FSI3EE0kZjM1egXe0xnQUmMuueZ8RMBqNPu8t+6/k5bwhSTRpGjGfn+GsIY4VabrDpiOP9PdSACCEBkHbKOIkJR8OSbJA9vIChuMB1sB0usdXv/o17ty9y3A0Is0Usl2xXi1ZrRacnTxDGMfxk6c8+uRX1K3CiWCwtd7SVCWu82Q40+X+OBDRZVJyWZbbbAVjDJPJCCFBa8nrX/oS9z59yGKxpigKFss1bevI8yG40BjY0qV83xG/xHX/dyUwO+/wLqx1yTAjm47waYzAoKwnSXJiGYVy2XmSSFGVJdYapHeYusbUdaDkocJEwjuWy4KqrgJmupOeBbqZp15XYX1QglUxo2pWQSorBK+9fJc8HzDdmSKloigqqs2G9XqFlIrxeMTudI/WGPJBTjaMkdagRcCZeyfJ8zFOehrb4FyYZgTQgWI0mmwnesPhABCsVmvKssQYi9KakdSsN1X4rFiDjhJaY3EdlGJTVhgXphC2+9la6/AdXckDrbFESRoAJtKyXG8YpFmgJloQSExrqcsVVVUjOqR1FAeEqVKKolDUVR8YKaiqats46j/D/fS8qipWq9W2W940objbFGVYq42h2KzRu5MwNe4+F6ZD7noHUazBhQbHk8ePSLvQOaTqfAhBlunp6nUXzN/9eiMFCNGzDb+4197uLpHWVGXJ6cU5F/MZQgi+9c1v4qWgrBvM+QXeex49ekgaR3z1K2/zzlfvcjFf8OTpp7z86nWU9jx99pgnj59xsLdPmiqeP3vG/u4eB3sHCAEff/wRw0lENogwtuC//ke/R1OFwNbf/u7vsCpqFsWG5bLi6b1HKG957ZWXWZWG06fnnM/nfPe7XyaSOXk+5H/5d/8uq8UT1ptz8gQ2qzlt3aIjye7BLtPJDrGOGA1yzi/OmP/w+/gf/Jx//a9+FykMP/j+n/De+0+4tZtzdHjArVuHHC9WnJ484/zkGb/27XdI8xHWS549eUSWJOxOpxweHvLrf+lbDAeao4OMv/bX/wq/93uOs/MlO3t7fHT/4y4ba8Ird6/z05/+hJPTY27euMG3fu3blEXBB++/h3Ez9o/2uH57j4vFGYNsl+Ws5tP7D/ja17/GYj7nv/z7f58P3v+Qo2s3GU2m4UDvGn7+s5/y+//se/yv/sP/Hbdu3STPE5qmwDkVJFpXJhhKaby1ASSkJEk+YXp4k/U84eLkmDhSIDU+iphOxzx89JT1uuT4+ISXX34ZcfcOuIZRHlOVBVVjsGgaI6isxMiE9z/4mFVRU7WOa4cHPLx/n8XFKZPRkFduHpBpeHr/E6bjEednZ5ydnTGeTkiu0PiOnz/n/HzF0ycn7B8csN5sUFpz4+ZNnjx9SlWWYSrWNkityNOELE0wraX1Hisk66pmjGcyytksS47299nb/f9T92e/lmX5fSf2WWvt+cznjjFHDpFZWfNIsqpJqkRJYHdbsgEBHh5ko20/2C/2gx/8D9j+AwwYhgfYbaHdDQh2tyG1NZASS4JEslhUkcWqrMo5MyJjvPM9057X4Ie197k3UrKVgt2wcicCcfPeE+eec/bea/1+v+8056Nf/YyqrqnLnLPnIf+z/8n/iNPTMx4/+QiRHHNxUVFXBek4YDy+xXKx5nLziP/5//S/z/Nn53z84VOePPolhzcOuXNvwnz3Lifrn3N5fsbyIke6txnNLdoY/lf/i/8lq9WaJIP9GzPmOwFlkfP40WOmg32+8+0Zuq2w9pQ/+mfvMZqN+au/9Wuf63793E2Gc3ILXTvYWo8iOuJJr+6mW8i6atI5EMJSN4ZQGE9nkpIoUKyKnCgMSeOEy3xDlkUMBxGXiw2j4cCfkCgAZzotiHcb6UV9qpuG9dC4QCJU4DdTLEEYI5X1dqlIrDA44YWGvbtPb8cohF+8rfWFMB28KH0EJcZ4W0Ihvd993zT0SESPeHiIvUs5D3wwlbdHEwglvchPiK1F7/XGod+Ygk73Ar0+4yr12b+0jlbU5WIYazoecAfJy07gbVqCQPnJ/TXqkXdD7OgH0tPd/KkUCGO6zcmiq5og6RoG7yhLoCSRlIzSmOkwZjDwItswy1BRjAjjDsLwTajCN4XCGqR1ON3ijAOtGaZD1nFD3UJjBK3R0G2GqvsMrOjsXqUDCVp0abYSP2lU0ifOO4EMAoyA1nk9hO/FLKCJIh+w1TZtJ3fpucn9K/X/b4yGViMcZMmAsHc8Uh0ty1owGtPWBIGHhH1DqLZN9eViwTgNkbb1i2QYdrSNtj+BnS4nJIxAC0cgJXXLVmTeN5b9+f43FaNflGM4TAkjhUOT5xXO+tDMLImvKCZd0yg7eFopRdFqGl1Qa8NOOEcocHidE051CCHk+RpjGopihdYNlxcXbNYrNssFykGxXBJJge6QNisEbW2wnc5DiKALgeyGCw6MfZnOGAQBSZoQxxHG+nt+vV6hdeunccZTFYrCNy5bGc1nKrvr6OTVD91nHtilQgtBaw2laWgxFG1N1TQYa4jDlChOCIIA3VZgNG3rCQihkhgp0aKb4Bu7pfwZ4zorZdEFDRpcRy+UCqQBoxRNm3pqbOADBoVQhKFHO2QXINnTHIyxtK0f7LjOaYrW38+2p3d2DZHpinMVBD5dWfqBgUB2eiyPmPQUpbZtabUBmV/TYAT4pdE3GPQCUmOp+0BPB84J6tpr9/zaHNKTjaT0WsG29blDKghwut0Os/xwrac7NpjOQKO3Fxe9Xe41/d11Cm4f9to0PgtjNBptkW2/jnfnWwiausEGHsm4Cs/zesXemMzvF7IzYunXLrFd473NtesQV4PW7fY1+SGgAMkX9lhcXBCEIcPhkKptqJuGKAyZTaZUVnsXR2OpmpYwSoiSmHVekUxSRsMRe3sG0wrKqqGpNffu3SMKBM4YyqLyVG7r0EYzHAwYj4akgxghHGGY4WxLkkVM5xnZNGNQpDx5/AxnQ2QQMRxPuHhxSRhEzKd7PH36AulChtmIX/vWt1mvnmEtxGHC4vycMIrJ0gQzHrLerAik5GDvgNqcUpUFdVmytzP3TIOqJE0TrHWsN2uePn1IS0ggJbPpDuNME0Upda05PV8wnkzBOT784EMS6UAFlNbxzkefUNY1aRKzvzPm7MNPsc4RRzF1noNpSaOAWzcPef7sKXVdEgSwWp8glCFNR8xmu1iraGpDKL2BwWq95vToBYMk8dlm6zVRkvrhRWuQkg7F8zVClnR29l2d0B+9q6Lr9tQgjIkHQ9qmQgaLjvLoaLQmThNu3rzFejSkqArmBweEUqCbkrrJWecVRZ7jZMD55YpVXiLDGOsk2WDIJEpYXC5omprN2jBJJowGGaMkgNYHJ9dNS6U1m7Ihb1rKuiXNRlws1qw3Gz9wVJLXXn8NFUd8+uhTTo6PqasK1TklBnGEjEKaqqTpwlOLomQwHDGZTphNx8ThgBsH+2Rp5vOZJiN0aSjWBt1uSFPJ3v4ueQ1RcIJROSrwSGycxExmEc9fHHN0tGSx2JClKcvlgiiC0XjIssnY2d1nZwq2tVjT0rYVJ8cX3hm1gqNnOVq3VCWsLkFvUsajjDiV5LkhzUZkaUYafD7K5eduMgRXCdwIhbv2/KZ7xPb47D7pHEZbNF2BiNgWUh4eDkjPzoiDgDQKmY6HzCYDpqMBN/ZmTIYJg0FGECYY47YFmowiXPc8ddPgkLTa4Zy3QwuDiDCUPi9CeAcDJ/A2vF2RHcex9x52Fq0rhPA2or2lYRAEBEJQFAVxEm2nVL22oudp95uJzwpJ/earJHor2vZzTNv1Yj0ycj2/o5/iflbLAWx1ANba7ib14VJRFNC2XkAchcG2+fHPGyK7Dek6atI7b/VJ44RcCYxbzwkV2tDkOYlUXVEc+oDBMGAQK+ajlN3JgGyYocZjVDoEFWJFAFiU1YDxhb/zNDPpLLYusa0BrZkMxizXDUXtaGhpdQvOEAVezyEl3g5TG+8w2lFpugg/BH0qr8EikXFAg6N1hgDNKJaIwCFE/zn5rr23gER2G7HwtBesdxoxdYnThijwIuxQhd71RVswLVbXtHVOHHm/9KZuvWC52+BfHL/AzidkkULFCUGaoLXBtF3xLHxhE0YxsQuxAejG4YzuMmjUS45ln9X3fJGPvb1Z15i1FJscrWvCIEQy7pyNfCEZRjFRnKCkYti05MWKoqxYFzmjyaiLU3cMRwPCMCEMI46Ojzg/PyVNYtIkYrW65PL8gqosiKQPN7DWMZsMcXmLxqeeFpvWF6rOXwfWmC3/vhcg9+hjT10bjUcY12IqQ1VXfPThR4DEOi9MX61WbPLc8+7pnvszx/Wcnn9V0C/oqWNS+sK8rGuW+ZrKNCzzNUXe0NSWQTZhNBwyGg3JN5cIZ2gDjwQmcUQn+cGppFtfdEcvlN3L8ta9xmjfNFmNtJ6C5ik8kkCFRHHsjSQAqQICFRLHKXSNhW5btDbk+Yb9/X2s8uiC1Rrb3bVCKlpt0Fb7oDQhCYMQpTxHuSzzjiabdRqETisj+2TwlrLWxGnWocERvsHxTUb/eq11HV3r6lxWVUMYxsSdN77fA/zUtG01TdP6AVgYUpt2e1586KovePK8RGvfzDRNTRJHKKmg01mUZUld11tarN8X2m06uBe0hgSBJghD4th2+jOPfFdV5QM6A08TlSL0wzqsp07hm70sTrd0VGNNt0Z7CnPfj/RNTtu2OOs6vZzwWT3qi7uWPHn8hHv37zGdTrGbdec8JwhUQBIGfl9rG/Ky5s6tmwyzjItVziyIGAwn7M5vsFn8lDJf4oTlO9+9z8nzcxYXG/KNRcmAqiopioLbt28yGE1RQUxVNhwe3qOq1pR1joordkcT5gw4enbMYDgjiUOGkznm6QmzyZT57iH/7J//XazR7Mzn/ODXvoW23pUxjkacvjhi7+CA3YM9hIRPH30C1vL6q69i8hWtFghpGWYpRVNhneO1V++zPH3B+cU5nz77iP3Du+zv3+TuzQc0+oxQhlRlzWg45MbNGzz+9Al/8sc/5ttffQORJdSF4ad/9/fZH4+4s7/H4XzIB9UxxilCNeHsqCIJJaPDPV595Q7/6X/6dxA4vvrVNzk5fcLl8oI4mTDIdinWJbqFndk+ZVmwvLxgsbjke9/6Do+fH3O5uOS11/ewtibJBkx2bkIXUmutYTqb0LrWD/ec21aRzjkCpWg7o5AwjIjSIVFdEyQZBIpWa0qtGc5S3vjSlymKDe++82PCOCWQ3sH0fJFzebkgX68RKuLZ0anPO5ntEKdDZrMpu7u7/OLnP6dtKkwXgx1HHiGZZntslisMiso4PvjkoUdgnWAy2eXR4w9ptWYymzCcjPjer3+X6c4O//H/6f9CVVXotmU2mRInMWGaIKOQJ48eUlcVSM1yuWK+s8vBwT47OxMevHaT0WBM23rr4/39PTYLKNZLfvnOT5lMdxiNdzDmgGFao4TBSoO2hiQLuXl3xj/5g3/OxXlFW1m+8/XbPHz4EEfM3fuvMxntMJuO2J3PeP/dTymrBXXTEgUwnQxYbzZ8+N4zkiSiLiybBRwvn3D/tV3SgaSoGm7euYuSLeXq8nPdr5+/ybhW4FwXJ/dH7+d9/bguhPM/Crups+sWxNALOQ1s8oacGpzrvPSlF1oNE3bnU4bDAcPBkEDFJJ2VbDqIkYHEYtHGiwet9WElaZrgWrwbh7NdKq1DG4NUkRcvW98eOenfm8IRJQm+ghEvFXeTyWTbYNR1zXQ63RbmPbWj115o4zdsazwdq9en9Ha1OIeuG7Is2063qqoiiiLCMOTs7IzpdPyS13qvzSjLcisKds5tOeJKqW3T0AvJcV4odT0zpD8nQed9329sRVGwXq85OzvbumAdHh7SOzwJ6SeWKvBplKPhxHvJhyEqBlTrg8OcROCTfnEG5aw30zQWp2tM01LVmrzUuL4pkSGDQYwAL060no5luyTcsi1QgULKCCeH6MbQto7VuiDuwsrAYfIFYTZGSU9FC6MUFQ+QYUJVG6IwIZAxq+WGyShFCQe0SAzYFqwmpKZuS8r1hovTC5pKI4wkFBGN9QLlsiyomwYVJFsNDLQ+dbyu+eijFemXHpB18Hc2yMjzEmsLwjDyTkimJQw1cRihgoAgVqyKC0zboDHd9PTl++96pssX9bh/Y5eiqMnzknyVUzWSxkhEqNgZBxR1zeW6wEnNRe51T0kSsX9rj7bVbMqa8zwnDEJGwwFvPHiLNA2pm4rjo+esljWlUkRBwGaxxllDKHq9hLd1DWLBvdmEom5ZbSouTjrqJRLbJdEJAUJeaUP6BqOnRj56+IgoDDqUga2bXoBAKsMPfvAtvvmtt9jdHfvBiASF9NoNPNorZa8Na2l17ybk1x7/n+qqxRCZDFFRglBeA1ZslhRFjSBkNAyZTBOG0yEPBm9Q5Gs/AS0qTp6dUsUteug4vjhHSYcMJThFHGW0bcNydYlu6q3TmZBgjcNJb1t7enpBO3WMZ7vMDm8x2tknGUyI4gFpEmHGQ8IsRlhfPLRNRV4siDstVln6AUJRFeTrktF4jHOWum6o6oa68o3Acrni/OyCwWDArds30M50n7vXKEVpSiIlMlRsNhvyYo1uDdPptLM1D5jvztG66ZBgidU+oFFYQxwESBFgjaBtWqLYux/2hgqmbRECAun3FCucd6MKVScsN8hAerdDo3Gm9evDlnKptoMg29GatG4x2tE2lRfUErBZF36/NAJjHEnkTTZCFZBvNH02CMIhQwVOerqF6FAtvPuOCrv1XHauhLbHL0DrhrpqtjlLTjg26xLyyptxXNtbvmjH1976CvP9XcIk5vjynNF4TBwE4ByLi0ts9ylUrWVda1SqGO3d4uFH7xAFiul4ypNPnjCdjZjOhvzZn/yEt3/xKUrGfO2rXybPG7IkYToe05qKQMU4EXG+WPC3/69/Byk1O3sjzvM1i8UFVVny1QffwSnHRZ7zs/d/xeHBlHyZ8+HbP+OtB1/ly19+jd3dMQ8fvYdzkKYzApngqmNoKxYXp5RO8+v/3vdw2vDLX/2Mr//6t8nSIaKFx4/eIy+WWASHB68irWb/YM7BfsiPfu9fEFjBbLTDRdWyOj+iWK1ZrXJu3oKvf/0r/Pp3v83Z8yestaOygtdf/SqzOEJXOf/wH/w+41EMBqo85/s/+Pd4+52fc3p+wqOP3uO3f/DrNG3Ler2kyGv2hnvM5ju8ODpnnA6ZjMZkacymWJClCbs7cx4+eoh2gvFwwOHBHhfnx7w4OefDR8e88aVvc/fuLXZmY8qy9AyT7pw1TeOHDLF3/OyNUHABIs5IJo69e5K3336bycE+b7zyKtPpPT755BlFY/nS175Fm+cUZcUyb/h7v/dPGQ9ShoOU5y+OiLMRURry/PiEd375K6TwocRppAiDgIP9XX7nL/+Qpw/fQ1cbwhu7rPOci03J8cWKH/3xv+Sv/pXfYTae8hc/e5c7915hsVpxcnZKkEb8nf/7f87zF0eUeU4cRYxHI+bTGc+fP8euVsgwZHe+x2Ss0dahneDhJw+RtESqQtmA8+MjyrwkCiVnF6e8ePKIzdEpX4teYzLfZzie8fOf/RmTkWUYjbhYaz759C+IYsF4qrhz+3W++Y094ijmL37yx3z40UcgA8bzMdoKTo8e845+m9/8wbd55ZXfxGjB3/4//x843B/xpQf3+Wu//UOePH+fzTpntcr55JN3GM3fYi/cQ6hbvPfJn5OEjpt7n4+6/W/dZFx3Pvr8h58yuf5L8Bz17svPipqtcRjnaIyhMQWldoQXawIlSYOENIlJ0pjBKCVKfEAUwnZFdIiSIXUZeOs/6WHkpONSG2NR0niuM9Y/ZkuXare2rEK87BrSU5uUUmRZti0+4Mo5qp8cbfIcqRRxmjAcDreNyrY56+hI6/X6pc+1h9B9Q3NlWXrd1cZ2biU9rep6s9ejQ/3PAiW3FKrrFpDX3bU81WON1hql1FafckXR6V2eBNp4oaS2lsY4WguBgbDRSNs7uXhCnbMWrPGYQxfaqOuKclNSVC2rvOFyU1Jpg+3oY0EQooTsCMX9hSI6OoajD3bUraPRllZbwsD6gENraKVAhhEqjAlEp7roaCIqjJFCdbanJaNh5K9I2yJEBbbF6pa2zFkvV6wuVxyfnFM3GtNNuZ3rfF5kQJSkCKm8EB4fPuaEP49102wzWF46vz2qpbz2wjutaR/gZw1JqCido2m7pN9rSEbfWH7R0YyjoyPf/AUBWZZRVMvOpcgnvvbFXBD6/AHrHINBhhSWIJBkWYx0ivFkxs58l92bd4kiaNsaFcfUmxxd1TRVhXMLHH5C5qxEBKEv4q3g/HzBJq9Y5xXaGO9U4gTO9uuSv9+ddYSxD8GMomjb5PuwwMFLw4Vtk1+WfPDBB0ymE+69cofhZNSdN9GhCv0a2jWPiG1g2nXalOt4QqJDGpy1COvQVUMkA1rRslqtOT89Id/kBPEReZETJyFSOFbLVfcZeq3T3Xt3KMuCzSbn9LTY0m6mkwmXTUvdoRnOdCJk/HoihSKOEyaTKZPphGww6JBcRaD8GjsYDNF13TkeOcqyAgtKSqqq6nIvYtrGaxQswmsbGk9LFUKyM5+Tb7z+riwqT+XqqGJR5BN8VaAQWndUNIdAkucFYRgjpaAsSqzzlEujvCtVjxxb57r0bF+US6noE4eB7ddOiC3lSAiPPFopEJZr966/Ppqm8e2gCl661+u63rpV9cOp/vcsl8srq3chKAqP3sRRSBJF/vmN7pLIJQ7rKXs4lADZISTaaujW6X6A5FEXf531a39VNRhtu2Y59m534efe+v+dO/qhWNTRhZum9kGPkePw8ICTszOOT05J0gEWxXJT8vj5CfcPMzAtq9ULbhwcoFSMawLySrM7vwHCcblYsF6VTMZj4jji+OiE1kGYphjW3Li9RxQGjEZjLpZromDCeHfGdJowWGZUyzUnFyfsTkMm45RpcoNcw+nJCUV+xniSEcdjLs42fPLxM27NPbIWxCFhlGCcpqoLKl1ydHZKHKyR2p/LnfmcIIyw2qOASRZy88Y+BztjlDOcnZ5z4dYIY0jiiGQv5fzsjPOTU7CGvekYV+bYuiYZzbh56zZN03J8dIkYzSmXS4r1kuFgwCBN2cQxgZKcnZ3iHMRxwo2DO1gRcHZ2yXK5ZDYaMBxFTEYZnz75GJxjPJ4isOSlD5M8PzujrkqiMOTmjRuEHXW5qvx64dd+f5+GgUfbrLEEYU9pxP+tFCKMCJKU4WRKNhwTxRl52ZKNRohA0dSnbIqS58+P+PDjTxBhQjaeMchSqk+fsticIlRANhrzxptvUmyWlJslk0HGq6/e59bNm+SbDXEcE0pHWZZIpajqltWmZDrf51fvfshkPOXBG1/iZz97m9Vm3YWLtt6GN/RUrkE2IA4jiqIgiWKclMiOGWMQTEYjvvS1b3F47zXu3jng/t1DbOMHXVEoefON1/mLX/yYJI3YvX+bLJuwWpWU1acMhymH+zuA5r2PP2TnwHWsnARjBS+OnmJ0w/7ubd58U1M1NVW14pOH58znGXfv7nF88ilHzy9oa8lsOqSp1+TrkDSYY9rSWz2nY4zMSdOIxaLk8eMF9187ZDSIGSXZ57pf/3+40gj+TfWPc13qbY/r0m24wm3hXQSYXlhrLY3RVKZAOE9jGKiIOAqIooBslJCmoc8g6NypwiAmDBMC6d2ogkARKYVO2+1Go4Tx0w7ni4UoDBDSw86Cjl8v1DbLAq4sCa/blX6WI983BG3ToMKQRHg3qSvb2a5BMAZnzHYj6qekPW/W05mabcNwvaEBrsLAOlSif/7+tfbNUBjK7bT0esZCj3r036s6wXgYhluYv4f6e2m0FR6paq2j1oZN1XibWikIlUNGeDMAa3D26vcZHG3ddOLHmk1esSkblrmfWFetxjo/MVVSYR309q4911pKr7HBuo7PLTEGGm2JpcF2jle6kai2JjRdMm9XsAm8U5lvFCxN451XlPMUKUGFMy22acjXGxaXSy4ulpyeL2lai3Fet+HLJ4ET3r7Szw0tTsjtY/yl7TMBfDaL3maBCOF1IwEOZ4zndDvvOOG0II4UTddAeicdsb2+rmcGfJGP4+MTprNdBoMhaZoSqNyHOhqNs2p7Lfcapb6gB+/2E4URQTBgd/+Q/cMbDHf2kEITmQaVxOiioFgtWZ1fIAJwurcSdls9lDFwfrZkk5eUVYOho386j4L6hNdO+9RpEXqUsb9Hh8MhYddIJkmypUv2jf7x8RHHR0eslitu3b2mo4LOX8p1XHuBcL0JQd+A9HbJFiGsz0gwxiOvxltsKwQYS7HecMIRQiqsk+RFzu7ejCSJOL+4AMLutwn2Rgc+TLXTCFhrOienlHUQ0LSdHXaHZkh6PZRfGwaDAYPBgKSze/Uugp7fH8eJt1x1/lrP8xwl/HRQa00YKaIwJooMxvp7Rm3XJo+4DodDkjj2eoqqwRk8Pcs50ixDtxYZSJC+CVHK7wN13RAoP0Qqy8q/dtE53HXTUD+osNf0UH7t6p2ihRCdVMtff9e3Mm9t7LUXSkmEVZ5q6WRH1QF42Qlwa0zSP3eHQDrnw2D9eh0ggLKqCJQkkIJAKXTjERCnBKDoU6icJ4x2z2Mx2s9/r9O6nPMWyf311ttha22Ios6mNwh86u0X9MjLkmCzIXGGNEnJV2s0DhuGTKcTLhcLqrJkMJpSVQ2tLjk5OeGrD16lrTQnR0t2Zq9SFpa6MmAT9vaGaFtzdn5CWdQkcUzbalarFel0gEwEYeqYTnaJgoRQpSwXLYPBkMnYMyoGo4xCtyzzmqYtmU4GzOZTHj5bcnZ6ynJp2Dt4CyUHCFmzWm+4vTfYJkqHUYQ2DU1bYYVmsbwkS4YMg4w0SUmSGBkErNalb5iVIkkiDvZ3KaqQIi+oZM1AeKvbMIo5Pj2nKAqaqiINFLoqULolwTJIUoIwJcqmGDWhFTW1WdFqg1QBcZQQRxHLxSVShoyGE4bDMRfLFZvFCmsNYDzFHEO+yYmihCAaImRFoFva1rA8XyBDQxhG7B3skWXe0KGqatI0otdcAQTK3xPO+fvOdV87Iby+SwXIMCIdjonTAUqFbIqGJE0IQsnp6Rllo1msNhydnDGczJjMdxmkMTIIqdY5UhnG85Cbt26yughZOM3h7pwHr9znxo1DNvmGYZoRCD8QCaOYVluKqmU+3+WDD97jPFvyjW98j/PLS8qyJMlSirLEAWEUoaQkjr1dfr5ek6WZH0oK4TPFhHelvHPrJsPxiMloyHQyZnFW+MF4HDKdTlHK16c39+eE4YiybFgsSw52d0gHQ+8c2MIgg0EmCWRI3dQsFkdUxZqv3P8Nbt46pCjXXFzm5JsNuzsDptMJR0fvcvriCbqRPHiwx/HxOU2lCEWJ6LQzYTjgdjanLAPWa83ZccHXv3WbNInQ9eerRf6tm4zrlI2XeOL/HzqM7dScXo9xBeteP/xC7x9lu6m1cAqjO+0CARtt2TQVYJHLFaoL8AuCTozYebVniUc84jhkkKaEQbANBRTUaOsj3p1zJHHkbXkDhez0IpIr69Aoiojj+IqGBC81GD6kyWwX+tl8vuVy53m+3ZDbtmW1WuGsJQmvJt39c/WaDP+catt49Kmt/aTq+lQsy7Ktg4kQwl/Ysk8e96dFKbV16ulf5/W8h+FwuD2vvXsOeKGl1S3ev14xHI/RFtZFzSdPnjIbDhlnGbvjEfPJCCXA6IZWG59Q4QTaWpb5kqIs2eQli01JUbcUdcvFMkd3vGulfP2kW4NpG8CLoZUMkEojVADS4JqWKB3hRECe1yjbEklQgaJtNa6oUJEXZTtdQ+u1EkZKwihFyrDjbPvpoLQaYUp01ZBvSj758Ckvji9YrQtWm4rKSVqcpzCFAUXtKVODYUxdV2jnwwOtscjAu6jt7s8ZjYYEYUhb1eT5BmvpJvIO07aYtqEqCs+Tdr4pm6QxTeNY22brRBNF0b82r+WLepyeL6gay2hYMd3ZYT73hYCfTAdd0x9t76W+2Ygib5wgVEg622V2cMj04JBGxh75tBKrIiZ7Q6IkQUrB5dkRbe3QrUZrw/JiibUSR8jp8QorhNcRdcGXDrBYb8rQ2XCHgb9P+wLu1VdfZTQaEQQBP/nxjzk5PkYIQZZlJEnCYDDg5s2b3L39Grt7e1xcXFyjufhD9qgGV3kg2wIVs0W2yqokVMpvxMahmxbTNOxMprx4/JzT4zPWizWPP3mMcwIpvKV2fnmJShSX6wVRMkB2QV+nZydbmuQoSzk/P2NT1wQq3OoWvAC66abg/v6rq3qrEfKTco+uRVEEpumKDYkUCie8SUJdN8RhTBz5PBQwWAFBEBFHCY1uqdqaqiq6DAyJbtuORibRrSWJQ+gGTlXZ8uzpEcboDsGOOgvZCJCenqQtxhm/VltDWdbeOGQ7YLgKYx0MBrS6eamRd14hjpP+vWkBZdP6vCAUnhznW8RASbR25K5POdfbYRF4OmovAu8Rj+sNdFmWlCXEUeANJbQmX69QApq6pG0bojgiigJvlxtH4HwTJ7qBUtAN7Prf2Wv74Goo4VxvJOL3hKIsEI1CRl9cutR5UdPKJXM0r91/jefiDG01ySjgcnFCEAgOb9zg6HTJyYvnJIHit3/9OxwfLyirhsIMCcvKo5Jac+fWAcFkxLoqqRan7N/YBWO5uDhlNpuxf3CLye4OJtC8ePiUxWKNrVa89coNqnrDqtjws3cK7t67z2w2Z3eaUCwvOGdFaw0nF+d+GKFSTo5OyZcboijir/7ud/nk0SWrZYW7LBgNQw5vTkmmGacDyzCFb33jLX7r+3+ZP/rnf8qvfvkuz549IQpT7rzyCnEIP/vle9x+66vUhWS90kRFQ2IEttacHL/g5t2bzHd2mU52+I//93+bN167zxsPXmM83+H9Rx9TlZphlvH84ccMRimvvnKfP/jxn2G1IYmHpNmQNE6QMiKOhxgMYRgwmw54Y/8eRy+OeffkmLYsmY4PMGLEi0XKWf42e6OQSZwi8xHBxOHCADeYcOvefUbjEbqtqWKJRCL82IS21QRSEUURzkoMBoNFKEFjnHcADBKcCJEyIgoj0tg35batQQuCIOP+Kw+4d/9VXhw9ZToeEAWSey9e4d49w3qT88nTZwhjGAUBr9+4xb/33W8iAqAuuH+4Q+DAtDVVmWNFgDEK3ThGowGzQUaer/hHf//voqRhOp0QJwMefvyEy82CuqkZp6mPC9Atq2LF7HDH7/OtpliXZElKm6/4f/xn/wk3bt/jwZdep1x9g+n0gGE2RoUBH3zwIcfPjtisF4T3B+jcMUpTbuwHjPYj/uWff8DlZcX3vv8Wd4YFTsNyJflk9ZQsU4wHM37+yw8YTisCBYnL+I/+W/8NiuaCo7NHHJ0IJjs3GE+GxGPD4794DNph9Iof/JWv8/HDp7zz0cfEgxMicYNJts/vfO8bULzNu+8/5+e/es7/9v/4b75f/y3cpf5NNCnXdZ8vF0PX6TxOdAsfojfKeEkvLvpLzXUWqvTUBQfCJ+zaTjh7fSZonM+Za63s3J8ceVmhVO0pVnEvJvT2g2EUbH3rBZ4SpJQiSWNiKX0adpfo3TcYo9Hopalyn7TaFx89IqG1xmrdTQRtZ3Xok12zLPO2tg5CdSWk75u2HvL2TYTZIh/9ZKxvSPrPt/95X6Rcp1T5x/lJ43X3K2PMViPSv/bPBgJe/14Qqu1z5nnRpc+CUSBlSW0ci8aSLlZIHMJptLYUjaZsNHnV0FYFum1pjcUISautF1pq07l5CRohqMq6s1r051d2G6O1V+doPJ6yvDijaQybvGSUhqBkN6F2WzSkqSoiVRIlKcM0IBzGXeNjaLVPz8V5+2XTaPJVxXJZkleCopaUOqAREVp5qgQOmk1JEAbELuociPoGSSGF7BDdgHv37pENMl8kJyl1XfrQSRlQlzl106CbGt22nr6AQOKQgfRvBRgMBttrrb8u+uvgi3wc3LjpCyQV+FAkFTLMMoZZRpoqrBBoK9AoRO/g1l3fxkHdGiIEKogJwoS6apHKevpVGhEFEt3UyCiklQIjA5wSGCtZrFcURUNVWyrT5Vw4R+MalPJhf9b2k3V/j8iwy8+JfW7D0dERL1682N5jN27cYDQaeZvdtmW5XFKWJcuLAqMNd+7eBvp1Ee8OdI0CIDuXFfBIrXEGBygZEEcRAovWNXVdYI0GB0VRsL+/j3OSFy9OqKqSsmxpKu8wty4GpMOEsNOq9DSwvrm+jmC2raZt1zR12wm/DVJeZc+0bUvWZYREkZ86No0fAkRRRCDs9rFN3VKWBcVmzXqVYxpDEeUY21CUm23OhXAhYex1U84aijz3TlDaX+9JnDEeZj7HpHPQmoy9uF1rT/9aLlcY64iilCTOuuGKYrVYdzoy7zbo3acc1njxueqcp/rBjO3cwbzDlj8H3mHKf149zZHu/BljeuIvAHESb5Oi+/uzR7X6wVCfsdIPdbaGG86RRgHaaMDihPCNDx7lCJQkTiKCwCO5UdAjbA4lg62WsH/e/mv/9xUK2K/pVV0RJwlOvhz2+UU7bt66yWwck4SSRx9/QllD3TbkRyuGaUjTWqrGMhikfO0rXyZSksXlJTpoiJKEGzd2OH1x4a19nebho4+RoyEqjtnd3cXmJXEUMRrGqDDi2fPnPH7xjFffuO+bw6LClI7BYIAKHUYYdqKQxcVzwkCyMx8zyRRNU7HarCirnIODA+bTKcvlEbYFIVuKStGKS4azjCyecvzkmDCIidOY2ze+wcXFhj//04/4+L0zimKNFIbDm2OWqzOev3hIFAeMp5aTk1NePFvw/Nk5N+8McUIRSMX+4Q3KUvPo4VOa5iF/46//hxwc7hNEIf/wH/1jDg5uEcUJbV3z1pcfsFpfcn5xzM7BLUxjwGqOjk9YrSuyzJszPHt2hLEtYaQYZBlRGGHTAQe7B5hWUBkIdc3Bzk1ocuraMR0oRjsjFo3jg0ePSLIBaTYgihTOsb1GjTadY12AFFeURsDnwVjb1VWOOPGUW2ssSoIMFYFMCQ8OWVyu/IRft4wnM05Ojjg/O/GuUjiECrh7/z62KkmBsfJ6niiKUJFitV4Rd2GXKgh5cXxKlCS88sor5HXL7dv3WG/WbDYVQjhW6zX58Rm7Bwe4ADb5Bl033okzSglihZSwWa3ZLFaMsoyyqoiimFdeuc/O3iGjwYC6rLjxYJ+6blksLnn08BO/HqmQojQcTG+SDjRBsuLJ42OUUuzsDsjSkkUTU1eGTV0wjEKKTcNFXrFuYHcwJw4ki/WGjz9+H6caNJYHr79J1RRs8gUfvP+UOB4x2Zuzc5Dwox/9FOMawtAxGe/S5olH0NMVxiVMpvu8+ZXh57pf/y2QjF7c5l1PtlQU0cea+ccIIbaNgxBXFCix/QbXlmh6E5Vt0yHxdriy/4EAh/WFp5C+2ejCioRnWm3dUxBsF3svPnZo47C2RQrPcfUWaiFSiSv7P+fDvaIiIpEKgdcTSKm2CEhRNh3nTXbUKkcUhUTWJzYr6QsGn+DsLVSdtbRt04Ve+TwOus+v10Bcb8auN2Ram+1G6KecfQPR829fnmp/tqnr0QrnZIcSXLms9O+9n6Z6VMN6r/zuJja2h+H7YkzQ1g1aeCqCiAJUrdGuQWjBpa6Rzt/wWhuKWlM1LVWjsW3tCyjroFsYfLHsT56jR8f818Z62+ErkoCfyPkT3Gk/jA+ww0VIGXi7U3p3FYOwDVmsGA4iRsMUmcVoArQBav9+rfBUEF031GVNUVTUraZ1YISCIOzMAeRWkxGFkc9WsNonfuN8mmp/neK8XV0Q+YBKKRCtbwx8o+Anpra3CW5bn1xuHJEUhN0fg4VuobW9NsZ9oZ0nAUjSAUHgm7KmbkG5TjslUYEiDELC0GINWytoz9kNabQmLxtS42gbTVM1qCAkURCpgDQOEUZDR2kTYUiVV9RVg24dZWuotKHSFiP95AzXGVHg/JoiJcZaIil9CnR4ZSnsRcxXxguf1S/1xXuPWG7y3Bsz/GuMo7aUAPo1qPv3eP2EEKACCdb5YDWj/SaLF7AnWcZwNGQ8nbLaFFjXULca6wxhExLogEhE2/veGgdcUWf6QrdtW/I8p217hBZU/DIXuv+qn8q/RKeUdBoC7/BXlRVlWW2bNr+u9GnZ3vCjLCu0NahQUtcVTRcW2Lb+Hg9k6LUhrfaaEmvRuvWGYrJzqpO+QGmblkBp//z4QYhPKg+6AkVc6S6u7Q/W9uuj3TYZ/nJwXSPm1+mXKKlcrdNbimoQoPHrydW/tS89ptfI9Z95jwg5azG6xdnudWzHb16LEkVhlzIsvMZN9G5j3YBMXNGxru8FrtsMex3QdvjUUWz8YvL/9a38/7djPBoSRwJnGxaXC7QL0c54ZkLi0aQwkMggYjadEErB5fELnAScRxWd8xz2QKUUuXfnioKQndmcRX3stS7g9SvCDx6asiIKFDoM0GVD0SU8r/MNw/k+ua0AjW5rXxR3VtxxElGWBRfOYVqHoKJuwC4F1jUI5ak+QRBQlg1N63AqoMwNdVlQlYaqWjGZpgyHEQc35pyeelOUtpVclAs2+aZzmwwp1jnCCfZGY8qiQuuGpm4YjTOsM6w3NQg/dJGbDdZYdmdjhLRY53NZmrbBGU0QwnA4Jo4zrPFrmwoEYRCwWFx21q0KFUZo06KEJQ0gLyWRGpIqSZApiqqk1h7VTJKYIAx8jWYsTqhrRJgr3drVgLlbe6TAn0QIohghvPV0j+Yp6bVRw+EABDS6oSxyH/YpFGGUgLNEccTBfMrm8hxRVkjtnd5UGCIDrz01ztEnGxVVjQxSBsMUq2qECtFGUFReW+brJa+ZCoKAJImxCIaDDKkkZS1Ik5hi3VndBsoba+DdC4XwRg35eoXR3oBGOL/mxXEMLqHVAVVjUVGNUzknLy5pnCBOFLpZUdpDaisopWUsIkTcWbrX56TZkFgpNmFO3ZS0pqY2DSpqERhCJYnDCeloxmQ8IhnB+bsFo3HAbJJgmoamMigq7GCFNRHWhVg+36DiczcZfrp1JVjsd06/2PfLo0TIa5uls10X0C2EdM/hPsMt7yZEdJu8QF79HgFdsAE4T5lSKJRQLy2UsqvCnDP0WgtvwehFfK0x+GQmaE3b/VvXTaQ7fYK1hEFXfFgPSyspCZQky84ZDYakaUw2TBgO284qM/aFLoYoUEiBdzvq0JDVIqfpdAet8cWm1Ya2qhmPRi+hEm3b0msr6rrtigDtBdFdwWWMJY6TbbZHH/DXIxF9ISClpCgrgG7Dp0NbvOWjdX0j4pNwr2s0ep955yTWKaTz76tuyu3ETAqFUI7AGqBktV51m66/8XVX3ISh8hxgKTCtt8e01p+jQHotg38+S5yENI0Xjcog6fIJ/KVsuyyQpmzAGYxpqU0NdoBSEWGSoESAqXOUq0llzc39EYP5lGQyRYsEZIyxkqJoaeoCaSxRZKnyirIoKIuCqi4xwiJCSaBi6qburhuHUgFBNkIIh9UaU5tuIdII56diynohLCqEIPWFQ+itb7EGh0LIECn951OWZWfIKxmOJiShJAtgvdwQDcaoQGHwdqNRJAmDL65gE8AKSRAlhEp5S1/ni16LIMmGHkEIA9prqFpVVYRhyLpoOL1YMtk3LC9XSBS7uzskWcIgCkijiM268naqFoJ4wGV+ysXZJRBQO4GLY6JI0Za114JY600oBDgpCVRE02hEoMhGQ5I4JM9zNl1SO3iuahLHJHFMURScn5+/hGZmWYZppM/MaBpvMtFPQfCc+ZeKvK7RMX0h6T8pVLem2c5pyDiDxjGeTbk4X5CNh7z11a+w2uTUGkotqKoSlcTEg85Gu23Bdra8xj+zxFJWJa32OqnF5RKEn5h72mnYCZYFqkvj1lqT5zlSik6H4umj0gHOI5NFUVKWJU3TsrOzs9V0NK23/3bO+RTbTUVRFhjbsFot0a3B2isNiGkais2q/2gA2Kx84JoDrHBMZzOchTwvaVs/7ZNKcXmxIE0zj0LHoXf26hB2uTWQuEJqvcHCv4q+t61GdGiNMb0N8VUjKToL9F6cam37EtrfU6T6dXkymWwFy6PRiMFggLWG1cWZz9uxXpc0HKbo7pwNBqmn8jnnBbLG+HmHEzirEVs3spf30+v0u7puuveuCFQX6qquF3VfvCOLY6pyQbFZsClzWq0Ik5D5zpTpaERvZV8U9TZLJEwSCBxaW87PLgjDgJ2dHSbjEabdoxWCME6YTma0K89dvyhXDCTsH+wTBIqyWLEzm5CGDcf1kk+fPuPk5Dl5seK3f3uf6cGcsqp4+vwZm82G4WjEbL7L4cGQd999j+VizXe+/mugFpR5Q3FqGOz4dPjSFezs7nB+vuT07JKzyyXDwYj9/X1uHB7yy3de4ERDGE/57e9/j5//7BGL5RLdFpyenJGlYx68+Qo7uylvv/gFm03BZPcGYZAxHQ8JZvD08cdcLFbUreUb3/4Of/Cjf8rZ2RnDYUYgWtIsZDRK2awuubhYIoFbtx6wN7tB01rWm4o4CRmNBkRRwNtvv81sukscZ1wuN8gAkjRkFAuefrLktfuvsL8/x4hz3vnVR0SjA77+679LNshQ0hvttFp6FkA3cPXuo369ckKA7O2bO81RZzEeJQkISV03hFFMoPr8NMnh4QGt0RjneO/999i/cZPJbMazp09o24bBIOX+K/d48smHXB4dkZ+fk4wHiECAdMRxiNBeN9u0rY8hwBIqwWA84nSx4cnzU4ouSDNMEmaDjMVqgQoUWZqSDIfcODzA6JYXJyW7swm2rqnyHBXFBEJhtOHh48ddbd0gRMPR88dMJlMGWcRsMmZ3Z856rXA24cnT54wmGwaTBZ9+vCYaWIZjwUWSYYY3sUrhUkVURdy49QrRZMa/fPtHjCe7REJRTpeEQcDJScWzZ5ccny64c++Avb19Xrv9a6zyC1AVUVaTxnN2d1L2DyLe/dVH1GVFGCrSSYFwt1isTvnk0Uef63793BVLELDldV6N5sTWBclY35VZ6xdn30tcwRbO4e0TZY+IsA2d8zCzn6BbZ7YLoOcZe2tJ/41uYu+uJvZ98a2UQkgPJQvx8sQN2GoQ2qalNmwnTsaaLpHXv9RGd3ZqziKc8QgFgkWeE14uvZA8DhhkA9I0Jk0SdqYTJuMRWRfQ5ZynHRhtUCogjRNUIImV8jkNzmGMo6oaVNAFN1nnU2utoWkNuq3/lcJ/KyxvW5zzm2Ov11Adh7xvWDabzTUalibLvBNA27a0bbudxva0ECHE9mc9tUpKiTWmc2SRW0eUq6mZ6HjcracpWe+XD2wTq4NQonXzksBSa02LL9agp2Ll23Pkz73b0rvCQF0JMoX09ovC4HRLWbUMxoooSrBSoQLBII3JBoOtKxVGowKDNTXKKQZxQK59kvDx8hTlGhZFw7qqqdsW3WqaRlOUdTdRVijpN/mr5zQMxxMPuRvNYnFBXdVUtWOzKdjdVwRh7CcnozEYjdMNTav9tKJr9MLQQ9sWPyWPo5jd3RnLPPdFpW4RoZ/sFtpD2F/ko6xqyqpEIkhUgBNsA9CapkZ3AvkkjT3kXdeURY42Em0FUTjEtpZ8uSISku989cskoSEIOjF129JUFat1yfPjC8oGCDKMgXQ8ptWavCwZzaf+/jIa2zbgAQOMMYzGQ4ajIUEYcHZ2BlxpsHpK5GK5hGvaNGDLwT8/P2eYzHjx4oh3332Xv/q7f83bFHsf23/lEEKghELG0k8S+6FKtw45DKPhiHp3xyO+YYh2gAoQQcy3fu27nF2sObtYU1QlKjAEyhGHgtOj4y6V2jGf73aFbu3XF627bBa8A5tS3fDCF6FSSgaDIbPZjMlkstWd6LblPN9wcnLKtGvEwPlU6jAmDAKGwxFt3dA0PhupbTVKScbjEePRlM1mxWp1AdaxXCxoG81svtOdB43Rlc/y6Nd2FJv1GgvEw5HPo6haiqLymhkVI1XA8+dHzHfmpEmMdQ6rW4JOX+I38yvjDD+EkgjhKWBKKmToTSKUCsEadNPrRFRX1NTouvLuT8Jt0ZXPauV6rUe/ji0WC4QQjMfjbfMhcKRpjNUNUkmCKEUCceg/z7OzM2QgCcOAQeaHLiA6K/EA3dPArH3J7tw3576J8iJzjwCH/XrrrgTkX8Tjo3d+xWgcEUWK4XhAms5xOIp6ydPFc0bjMdPpnPHBiIuzc+qq8p+z1djW0DYN08mMs7Mznj9/xmQ0wAhHkmaEMiJJM8q6oa0q4sRbjteFZr05R0wMWTrhy19+i6IsObx5AK7mySefMhpPkEHAIBlT1xJjYvKN5fz0OW+++YDxaIYtU8LMUnYU4lsH3+Dy4pQXz4+ZDErixPHa3g5/5fXv8dGH77JanfP4yRnf+PrXqCtfG/zkx58ShT7gLS9adnb2wEFZrvnjH7/NV7/+FWbTOcdHK148OyUKJDvTIdNpzHz/NQhSjk7PuH3vLjfv3CZNIzZnLwiihJ3ZnDfe+CbnZwsuLxc8efaCzaIgS8fcuHmP771xj7PzY87OT/jSl76EFBF13XJ8es53f+PbSGPIL5d860tfoTGGk7NzLotnvPGlr7J/+wG3v/xlbKtxgSAOQ5zxNZ7AMyakFD5M0Xp6oNYW7dotIltXDRfnl9y+dQsHHhmQaotMal0zm03R1pI3NV/5+jdYLZasVytm8z2GY9/gtE3JV//D/xqLk2NePHpIWW2IQ28kkWYJdVHQ1g22dTStI8+XVPqSVakZjna5dTvj44cfsdzkfmiK49adW+T5mroqEEHEYnFBlkbcu3MD6QwKz/Qoi5zZfJ94nJANBty8sU8cK9oqR7QVOl/RtJqzk2eAYzAYM5/s4qZrmtayWbeMxjvcupUxHEnyfMPjoz9nsjPhzdfvsPqgZFl8ikqecO/WnNFghNOOeBhgWkgGQw4OAg5vScrCcPz0ghP7kNlNQRj4QNFkELK3u8+r9w4ZJbc4O39OUS3RFFwsl9y8dYPv/fqXPtf9+rmbjOls6OkLwheWV41Ax0M1hlYb6to7ufhCGriGSkShbyz6ROp++mKtwyhPBzAvwc14ePM6lMbV772uabDW+pRaKbbGGdcF6raH7IXsDVo8/9r1E6DOuaij7LiOyGBdRxdwAt0apLGU2lBrSVS2RFFNWVtWpWaQZd51JrAdbcqRJB1fv0umDaRCBAIT+UCrq2K610VYhPATl17IvZ2edR9E3yR4YffLE7j+/3s+br8B9oLHfjp83RK1/951EXr/+cqemnZNYNj/2+v6AKXUViPST9EQbO123bZJuDqH1x1Xrm+SV7/76tpRwju60De6IgARUreWpmkx2jCcDBBGEUR+A25b3QWEtV7tI0Ks1ZT5pqNnNDTWsV56T/HNpmJT1jSN9qiL0SRp4hth66casmuyTedY4ww0RqOCwNNrAuknML7jxTkIwsiLz3EEUYRqa6RSBJ340gFCSrQ1Hh3qINfGCbTz5zIMI3Cir2u/sMdomFCVXo9iheruVa9F8IN877LjFDTCgoQgjraoXSoVgZDMJhNuHO6TDkJCacFpjG0wOqeuVpT5EtN0uS0q9BRJKQmikOFoSJomXT5NTZEXZEmKtd721YtsNUW+2mbp0NGXmrbZ/rHGEEi1Tac3znSwuSVKQ6SEsiipi7orHAOcM4Qq6oYnV816/7dDdhtmQxh4Wl7b1EjpcFahlBehZ8OYVpfkZUOchgxHKVrA7dENJAajK5bnJzin0bpGG4e2BuNs98dbtcrAW207IiaTCfOdOevVAoclDAPmu7vcuOmnXePxiD6BWwhJHCUY68iLkjxfEwdqSxttdYu1rbeGtppWNziCPoJoO5EUwtvTepqaRhtLrDx1rrff9TQf7/rnUQeoyoKqaqmrhiROqcoaRItUAbUxVMYQWI9E97ETtt+4tjTZ/lO/cvgSXRfo97CO0Cl656mXUQ8hPFe8R+b7NfB6lk3367o10H9PKdkh+g7hJKGKfMMiwDo/pEP41y6FRDhB2xgEBiO8Vi1JAq4CHv068zK1y1ttI5Q3EhCCQCpM99jr6cpftGNnNkGbgqLYUBSaIPTU4ygMqcuaqqxZuEuSJEa3LcYaLhYLJJAmCbs7u1hnGY2HCLzWcrVeUBUF69WS9aak6RyWpBCcn5/TVBWTScLOzhwlE8qipmoa2maDaQtGgynGCKq6ZVNWvHL/Aa12rNebLaXSaO/ANI69jjIMQy4vlxR5hXMwmYz8kFUqFoslAh8KFwiJ0YbFakWeV8zmc1arJWAIo4A4DtG6odU1cRTRaq93HE+mLC8Kr0MQXrMYhCEqilmtV16XGSrSJCKcT4lCT898/933SJIhUZevtXQbqqZms9mwXkds1mvyTU6axSRxRJzE7OxMsdZQ5hXLRclsMGUYBzQ2YfX0gsWyIJnknj4Wh4RhgJLOZ2h1e6roDFSE680x/CHoaZL+/o2TFKECdNtS1y1R1CF1geiGI/5aT2XiacsI4jhhNJkSBBJrWopckA1GuKmm2a8oNguk9HlG2jpaK9BOop2iaixhlJKOE2TRcn5Rom3P3hEgvZYyigLytUU3DVZJEN68Ym8+wzQNbneGChQnZwuEcCgl2JlNmU+GXp8iWi7PjmAyQ8qAQEAYBJRlzcX5GdnwnDCMmMZ3GLw+ZzIFR8PxuWaSLBmKDc3lJatSEUeWNHBIE3J5fk6rLXlVMJ/so9uKYmNIYot0YwIRsVlrNps1elWxyUsODu9jrOHRwxe8eHLEbCdkPEpZFZLhKGaQhMSfk7z9uZuM2Xzc2f5JPlus9oFydeNDkHRrOscNB87Tj4SANPG2XlEYobrptO346W3boq2n2TSNvpriW49o/OsajM86XfngVdk9/grtgH6R95u4thbrBM712R1XXleuazOsAKzr90R/k1qN04B2aKMR0iBly6ayLEvDIGuZNpJhKggVhIFARp4GIJ1EG+9kpbbWhL4I99NtfYUPdRti2LlC1XW9/cyDIOicpNgmeV//LK43HNenr3nu/ec/20R8VgDYNyW9WDzsvu456b2w8br3e58y3v/sZSvHFng576M/L9d/d++K1YcLXnfdcc4gkZ5nL7p0XxGACCgbQ1k1ZFnLMEsx2r9ebbzDTVDXyKgmsJ7BZFrD6vKCstJoa2iN4+RyzXpdUuQVeV5dNa34RUIK7+Wfl+WWciGVNxmwzlG3DWEUEgSSMFDbosTfAaKji+ELzCiiqQNk4N3Mem2KUgKjLYGwSAlxEmFbz6VvWi/G9SacX2xVxnQ8YOUshTXba1hKi3UVzir/PmWAlbZzjZME0cB7+wiFkBFJqNjbmXLr1j4q9A2GNTWtzmnbNXW1osqXKCc8oiYjoizD6pYsTZjPZ2RxxKYoWK03nMmAvd0dnPX5BFEQ0LaNt7KMYm+r3DmcFJtiO4m22kLgJ29SgpAChTeXSLMIFUp001BtSpIkQiiHoSVQ3u2pX9Oc68Xf4KzXHLS6QUrlaYFtAxp0KxH4xjTJAqpaoF3uqQQhDEcxd+8ekoYhTVnwq+UZzhpvi6kNddvQak8jsDiQwgvMlQKRMt/b45VX7vHw4Uc4HEkScfPWTe7evc18PmU8Hm21ZIEKGY8ntE1FUVScnp1xsDtHJSEqVDS6RpgGXIsxvqE3WCpdI5Sk0V6HIYA0SwmNptWG1rYEhKhAbif30oFoNFKFne4NqiKnqlqaxlMJq7LGOa/5aayjbFvCtiWNQ6+9wp9DyZW+jV5aKJ233+70XsJdeff3CgnnfPaPEN5qWzgHwqPKnsoY0NvFupcKeD+d9YivH7j0joDOWIT1CIMQDudaP2RzpiswU0Sny9JtbxXqf28Y4+nF9EM40f0uSas1IJEdQtVa7YshpbBSdc6HX9xpxcHuDsenJcuioG4EWhuCQJGECU2kaZuWZbkgDwTpYIiUkuVqTSgkaZQyn845uzhlMp0wGI4oi4rl8oKqqVmtFqzzBocgimKUkqyXK4p8w+Hea+zt7VJVhuOjY2pjuDg7pcrXfPer3+T0/JI8r8jzlrt3XmeTF5TFY58how3r9ZrNyhGP2k4bGnF6egzWJy6PRkPqxlA1LY8fHaFESxTGxNmIzSbn/PyMdV4wno04vzhBSsHB/s3OWrsFDLPZnM2mxLolt26+wmw+wzQ1Ulq0g6bVCFexWa+YzOZEYYiSguFshsAnpf/sz3/G669/id29XeI4IkpirHYsV0vss4I8X1EUOdZplPThyPv7u+SbNeuLktVlyc54zHiS4GTKi7MJR8dnEE950zriJPKaGacJ8XRgB9vhqEAguxrFG/OITn+hQUiSbIAVUDcNeV4ghOyiDAKMEZ1+Q5HECVL69SobDLDWhxnXdUliNKBQUUI2npNkKU1T0bQ1Zb6mMaC1oNWSVgtGowHj2YxoaDm7/JSqaXCdyDeU3f2Pt6a32ltyB6EiTWN2phNMXZEmEYNhxiYvcU5jnWYymjPKYpIkRKiEk+dPifBZI2ns9Z9tU5MvVrjgiNn4PtPRXea3D3BsWG1WtKbk1u45oWhpLhYUekYUGyKlqTcti9URrbGo2BsfhJFDiA1COsajGSYZ0TQnFMUly/Wa09OGt976CmcnKz58dMzzRw/53vcfMB/NUEXIeCKJpKVebz7X/fq5m4zeIlUpxXA43LrdOOeLOdN6Iewoaba8XK0t6hoMPxwGZFlKlmWMRiM/Kepg3dVqTVFXlFXFZl1SVQ1N09LUmk7LiZRuuzheb3Sgm6Qb6zfl+qp4vd6Q+IVYgYiunIv6cdW2xPdFov9WJ8DF+WwDfGEZyoAkzXwwlFQIGWBEQu0iijbACEcYQGglppK0QpJJxTBOcUHoqWIyYHF5SdttPNffUyB9+JUUbota9Hae/TlQyl/AvZiwRyr6IwzDl2hRURRti+d+szPGUJblS25T1+lX4/EYo40XbV/L5uhD+667mvR/989jrReDej636XQYjiRJthS3/vX1U50eLZFSUhTF1Tm0jrb1CENZaTAdlc3Ci1M/kUmThKYqyYZDwighiGLWZYkWS1rtSEdTTF5T1y3Lywv+8I/+mFZrBuMR8/0DVnnNxcWKOIz9VEJJBnFEHHghsLZeNKmCwHtXxyFt3BAlMUkWe/pJ1/wVRcVylSNUyHA48JNYJDLwyb4EktZqjk5OGI9GJGlKlMS0pfaCOBlQ1yV5pWmNABlRVw1hGBCq6PPesv9uHq5gmAUM0zFJmHm/bV2zXJwD3opahRFloxkNhwgVglRkofJBjSh25jEuf8HRx2e0a586KoRABhJdV0RCMB2mmF3La5M52WhMMhwwG49J4ogoDGjrirPzS84uL5nMRmTZEGMsQjrOTi5w1hAkMWmiKKsGbTRFsSEvCrT2bkNSG1QYEYde4L9zsOMRqKblxfEpxjjSOOPk9JRskjGMh909/Nk0d+gLX6XEVnAYKC+CliKjKVt0268DAbrVVHVNWZacnK2AEGTI7//D3+O3v/8D9uZzmtLQlC1tpTHWsdls8PqBTlclZcfVV9y58wZKSc7OTrh3/x77+3vs7u5w9+4dJuNBR/m55JNPPmY8HjOdThkOR9RKIKTj4OCAvZ0paRIRhYqy2FCXjtp5/ZtxlsuzM375q19x685tqnVOfrkgTlIsHhkZDFJEVaNbw/HxKWEYEobR1t47DEO0FbRVQd3WrNc5m03JcDACVxCEMffu3KZBs1mtWV9esr+3QxpHJFHgkUMnuqGW9joI2Ib+bRsJFXhE0kmM9U2gMXobGikD79pnTEsceY1bb3de11d2vz4jyZLnmy2aXJaex+1dBh2uqjGm3frSOyd9MyF8Iri13pDAu5v162hPj+o0L02zzW3yn1lIXTfUdYP7zIUWxwmt1rRt9V/RDf5f/fHLP/8pg2nCwd6M77zyZcaTG2zynIcfv8ve3gGBkijh6UPGgYoiXn3zTU4eP+fs5JR//s/+kBu3dn2gX5wwGs0pqgprNUMhGE6mxFFMmibsTBL2f32Xsiz59PFDjo6OOmfDJYc3bqPQLEPJk+NTnj97QTYY8Zu/9UP++I/+BAcMhhk7O7t+oNc6hKk9NVLCaCwQaUVba+q85A/+4Ee8+cZ3mIwPkXbOx+//GZOp4P4rQ9p2yf7hmKlVfPj4j/jqg28yHe8TqjFPn32CNgVCGXYmBzw7PuPi4pimNLzx4HWKzYanjz/l7mtv8Ud//Mf86lfv8MaX3uBwb5cgDHn29CknyzMOD3a5fesmX/9qQlW3PP70CY+evM9v/tZfIlAxR8fn/OIXv2A0ypjPJ+zu7nJ2eslisWQ2m3F6dsZwMOfm/Ve4LE741Z/+ijLfcO/umzS1IY4z3vrym1hnaOqWwFpkGPlmWVwNODu7Ar9OSf9105lA5EXFxeWa1x/cp6hqLi/XDIcjwlAQhnTmEZ7/7jRgDUp4umQrIIj8Wj2ME58nsSw5v9ywv7eDbhYUVc35qiJAUZcty/M1N26/xjsfvMejP/mXvPmVr5AXBVIJduYzTo6eIUJFHIY8/uQxcRSyu7PDgzdfReiKJA7A1BzuTnj0+DEXR0/Y25nw7PiM5eKCZnWJqC6ZTceMxkOeP3rErb05e/O7LPMd/uznv6AoCt567Q6FvOT05IKP332Hb383RwkIwwG/85f/KmL9I0IHUXib4ULgqjN0ccbHH1ww3J2zu7/Lm299i3/wX/4eTgumwynOJIx3d4njGUZsqNoDdmeHvHZnwMOH7/DiRc56afhLf/nXuDh/wgcnZ5TNlOFOwyhNUdH0c92vn7vJKIuGutJIWZFvqg7R8D9rW43Vdhs6hvALrgoU49GIbJAxHA7IYrWdkvsmxXYuQQ1NHHoOujFEkcYY1wncfBiRs87/Ee1Lk6IeWbHWL8y9sO/6saUUdQ5B9JMd4S9g3BVD1UqF6LUggk6bsZ1n+TmytwXAGecvaNHTryQqiIkGiYcxI0U2HJDFAUkUkA5SQiXBaJpqQxjGOMS22DZGdwKnkHEW+0wFo0mSZNsUXLlHWcryysK2/9N/Hj0iAFcNgP93Po32emMDVzaI/fNvN82q9oncXWPQ/6yqqu2/71GNHn2o6/rqeVRfzFwljUsptxbA/XvqqVS9PqRvnrzVo+0sPRW4kKKouuvNnwPrPHLQNg1FWRFoR2gFURp2Dl0eyQjjjGEakA2nzH71Dlq3TOdz4jT2AYVOYJHEgSQUEHQZLF4b5BsoY70XfxSoK/Sre0+uQ3MePXrMaLrjbfpijQoE0jmE8YFesqPYpFnqczICn+UhAgVSIIQlSxMqXWEBGYQd9ctQU3/eW/bfyePe7ZsUeUVdNujacHb8nGKTs15vSMcZw/GYLAiwWqNbi8XrNHQck6UJo9GIJJG0zZqqrFgvNc6FqCAiHQ4JA29BPR0PmY7GhElGFMckWcp8knWOPRLTCNJAMxspXrl3yNn5JWVZMxvcIEBTVRVaazaLU0+HEd4aN5ASEUicFUSxZHdnznw+5+TkhNVyxXLhaBpNVTcEsmaxXPCrd95mOMuY7k248ge7hp3aayik6IrKKMSYFqNbdN1gDRjddrarFikDwjAhS4c0zQVGa6AlEgEfvfshj6TkxdNj2sbirPTuTFK9tDb2ToBSShaLC4KOkzyfz5jvTBmNBzRtxfl5ub030zQlCBTGaFarBT6t2zGbzQhU0A0EWuq6pqprL3zH3zvjyYQ0yxiMhly2mg2WuqnJBkNUEFI1mvFojLXQls12PdLao9tVVSOVJBmk2MpbUEsEq+WC+XyX0ShF4CjzDSpQTEYjrDaYwGKswDPfeoqt6/xEPEm2L9iNsShlt6Yhvvmz2/3Bi93dViMWRlHXEorO2pftutZ/xqrToUVKobLMB6OlqXfQC2RnxuERiiiKUIG3z6w7OpjFXdPCdW5T7soNrV8z+3X0s5o71VGPnfP2x602tM0X18I2EP4edziyLOXk9ITNekPbah4+/JBBkjKbjJjNhyw3OflqxekqZxKkDAdD3NzTXlerFdquQMZ+/7CGk8sLbt1+DSkUdVmz1AWD4RgpAspas1ytECiiKOD9d99hvjPlxs1DTk4W7N7cJ4pijk6fsb8/wzjt6bllSV35JnWQRlyc5ThhiFMIByNcYHGx4bXXXiXtsrOm0ylvvvmA1XrBBx9+wM6NGa++co/hNGFdLdBac3FxQblZMN+bYJ3C2Jyd2RwZDKmqBukaPvnoHd8cC/iTP3ub0WTGD3/4WziraZuSpqqQ1jEbzSjXFe/96gMQGUk6YDwec3C4z3K9oGksp6eX3L59m+EwJQgkP/3pL/jmN77BbDqjyht0dYJJG2TasLzUzHdvEu05QlFy984tbt665elfShIqSWD94NZ2SAawrRGc7dyXrHe8Am+0F8cJN26OePrsFN0NHtI0pWkMTdN6hgwdHRFNEoWeKmq8Y2UYBD4GwTrWqzV51VI2hnXeULfCO5VZRZJl5Lnm5HzNd779gPHRCcZ8ygcffEg2mDAeZQzSkLPjpxitaasG6XwIYhr7AEPlWpoCdL5E1nsETnNjb0otM5zDIxp1xfr8hPko4e7tW8ySmHK95C9++hMeHV+wXC6wRrNZnKGDhFG6z+z+TURU8Omjpxgt+e5kyumFv15b/Qw5TMjSiDS9Rba0jMYxjd7wR3/8p8ggJIoUQehom4HX7jrH4Y05P/rR2+jW+NTzdY2QMJhEJAOHOE9QBMynY8KBH+48f3L++e7Xz3tjt63uOKWCqmq3sLXfBDqXls5eNYpDVOAn7ePxkNF4xHQyJovDrnD30xdrDJ6L57auKnKrC/B/ggCM8Xa0vtZ3Wz5t7/gh8RMfIT8DSnRQ8lUAoP+eu8aP7YtsP0wUnbgcpPO8ete5p2wf2wnarfHiOc/ltWhtvZOJkARRRpRGxElE3PlBR2FAmCaemmD95MoYh6grhKyp6gqrfaEvjMZa/1n5jIgrYVOvtXAdV9/bOUqUCjr6iXdZMKbZFhU9WgBs6Wk9srPlOuLtJd21DQmukKKeAtVvZk3bbmlkcEVN21pbbhseb0Xa8yr9Y2SHnoTb92Cs7Sa8njoUBCFGG5x1W+G3EI4oUtR1g9VXqeJ96q3WDaaUKAOGgCAZXP1ceCeYKE4Jg5DDmzfYrFcIvNAyVKrjbztkN2kSwm4LQON8g2C0t/hzQWePSc+BFlsNxnK5ZL1edwVxTKyCrlH1zasKQsIoIRuOfWZEEKKU56h2/jnEUUQQeEpXf+06Z9FfcFHGIE2RThBKRSMbirUvwgLh+fw4i9UaKaEta+rWeDMG64izjMF4xHAyoqmhrgxtU6FbMEYgRI0aJD7ALA4ZDjKcEB46T0KyWBIGgkCBDCLSaMTONCXJBnwaesG+6xzK8qKiris+zU+QnWW1MQYlQCqPSsWKjl+swFnKsqJpWtrGYKWiDrzF5WJ5QVUX/l6lo0Z1609vMuG2a0ynQZIKrSvfZLQNOIV3zruycpZCEcUJSioa3dA2LU5bjp+/oG0aNps11tLpPK7uXbh+L/oBQlXlxCSkachkMmI8GpJliW90nCVQnvsdhKmnuyqPNgrh0acoShBduKC13nq7qmvqbsIeBAFxHBNG3sWqyXM2aUJZ1d66OAypW0MYxTjjcK2ld7/zgwKPbAdhQJwmHiXtdAh5vmY+mxEGEqsbis2GOI4IJhNPPTVet+WtZEPCEJwNOvPDfv3o1z7/HlSXveMHWFeIuPX/Q5/gJKXsxOpuG7jXU0e3dA8BOEugFGHgQ1mFi/1Eu3Mk9MGMvRGH18GZAFqlt9fK1bCmp4T4/w+uUVr74Yx11zR2XXaQHwB5q2DdfnHXkTgMcQ6apmWT55wc+9RlnKFpNaFq/bnorJ+rquJsU5LtHhJFEdPZFKE0tdaYtqHVbafD9Igb0luK66Ylk5KyqGm0RsiQpm4Zj1MO9vd4/Ogxbj7y4nA0k/GEMAwp6w3j0RhjLHWtsbZzzeyc1tqWjgJkkYQ402CNYD6Z0DaaqskZp2P2DiYYl/PiZI11k+6eDxlkM9/AlyXLC8N097639ZcBKggYjxLS2FCXFzw7PUWogGw44+jklDdeu83Nm3uslwvauvFGLcbrnqqqoapK5rtTwsDbud68eZPBZMpqucbomvn8JkkSoXXLer1mMBgwHIw4efa4o7RaKrOk1pbdnT1mWUS++Jjh5JDdvb2raxJHIAVad438VUG2beCF9A59Xuvm2TQOSRQkrDYFoZSMEq8LM9o7xanAD6/7QlB2g+E+rkDi1/I8L8nzkuVqw9nFgtFoQlVriqKhrg2TcYxxkvPFBqVi0nREmo14dvyUV0cTsiymrjoHwI6p4Gmknm1SFgVZLGmMYZmvqUcDolAxn4zIXUzTWgIpWbcVUQBKWJxpuXnjkOPnLzg7PuXs5AIhXBfYabDNgGQ4ZDjJEMGaus09St0cc3JhyQuLEzl3JgIhYrSLUVHCeDqkbmuef/iM/dmMOBAEEgRjqrpCUxAHES+enyNxHO5Pt06EQmmMKxHEhCohSwMIQwwF6+rzoaGfu8mwOM9Ndj5DQTnROSTVV82ChDiKfDAKeEFk15nqVuPSLo2azgXGtDRtTa0r8nxDXRtM4xORsS0Sg1AWJ3Sn/oHO6BDw00Vcnw4O3ra3E+Ns50s+6CxQyn9HQOM6MTJXKEdfMAt3Vej5y9R/Ze2VqFoISdVqP5kWCldXRAaECLb8+ShMydLM26vFHqpXUcxgNCSOApSyLBbnVEVOmW9YXZ4j8w1tWyNwrFZrb70XhMgOvbHGkRdrhsMMULQdfcL1CA3e3cVD8y1aXyEfPRriU6TjlzQZbau3xYb30rdY27DZ5NR15eHFoQ9esdaijabV3bTMQdA0pGm6LVz6lOqe5tDtop0Lir/kjPU6DBV0+h3tubS2K7iElWAlkoDpdMJ6vcQ0DVI50hiktdRtixUGh8bahqraYNAEocW6iHRoEUoRpTFxKIhCR6AsDs33f/u3+Yuf/Yw/+Cf/mB/+5m8ySkMmg8BvPN3FZpDoyieYt53neY/YREG4TXI2xic0YxzSCLIw5uzFczAtwzTGhUOEkigZoZQhzcaoMEWGY5zVKCkIlUBXZxjrbUrjKCKSFa01NG3NcDIEAdpeIVRfxOP4+IzhYMhkPCHdj/nSG2+gW83iYsHlZsHFYsVqnTPZ2WWxPGG9WlNrgwszDoZz7r35VW7d2CGJJEoa6nLNZllRrEsWl0uGw5Q4DoiTgNE49W5A2hIoQVtXoCUiDBh1LkfDQcwoFrx5a8p6XfL8+Ix7+2PWm4KLxYJY5JxfLtnkNVoLFk1BEMTMpmMchtXihJMXjwFJ2/pBg9EGjaDCUIaC2zfnDBKFaUtkEIOkowgBeLpRd4sguoBQbTSuc6dw1s/7VEeHiaKYurHUtSUMEnb39jh5ccri7JjTkxco64cf1rguU8gB7Wd0Tm6rrRoMMsqqJcsi9vbmHBzuMp1OvOd+kbMz39vey30woVKKoix8YaYtm03OIA2RwuGcpml8MOEmXzGZTJiMx9uJ+2AwIDwUDJOITz55tJ3IDwcjmtoXiE1Rsbu7S1XV5HlBnue4TiuxWa+pqhpnLVGouLxYkk/XpGlM3ZRcnp8SRzFZHHP77h3KsmK5XNE0DfP5nOFw4HUx/b7F9YL7ygRDCLDCOzVpbbZ6FNcZXiil0E3dBRr+q5RVrTVS+OXPDy26PcZ47Z+QkA58GJpzAtU1C0Y7DJY4SpBCde41dtuAAtR17dezINxSVHtU2Nvv9lkmftikupCzvKhp65aq+uK61I3GE5bVktPTc16c/Zi6kcRRxN58xA9+8zdpq4p8veD45AgnvXhbOsiLDZPhkN29PcbTATubFZu8wBrBotVEYcDt+3fJywrXQuAkd++9wk///C84OTvj3uuvAhVvfukr/M2/+d9ktVyyXC04PnmBpkHbikQpppMRz58/w5iWMFTcuvUKWTqiLCv+xR/+I9567XvMpgPitObFCeSrNevlBuUki+UKhOKGW7O/HzM/DPnK6B55CX/0L/6E9brkwVtvcLl8Qr4pyNeOjz42pIOAdBBi3TlpOCYKQibjAavxECskcZayt3+Li8uCzeoTXr13m3yzpC5rdKN57+OPuHFjnzfeeIM7997k+aefUjcl3/zmt/nBb/+Qx48f8nf/8/+MJA6xrcUZ+MFvfIMkDHny6Bl//7/8Pf7rf+OvoaOST568S8KrjAZzdmZjQnXJ7t3X2T28jdaghSEOfK6F1p21J85rlKBDFA1RILfxA3XdsFgu2eQl67xmd/+QYZqRRhHPXxwxnY5Jk5i6arGuRUpBGCjWqxVRnBGEMWVR0BrHYrnkw3feJ4oi3n/vQ9555x3e+tJXePz4KS+ePcU5zeHhTVoDz54e8cnDJ8RxxhtvvMmnzx4xGA0YDDJOj5+ThCFxGDMejViulhhtKPKC4ThlZ76L1A2Lk+dMJmOiOMAJB6WjTjWubWkDwXe+9XWWqyW///v/gP/ef/tvsbuzi7NwmZfE0zFJknBjPODRpzlt1bJYPOHGJObV115BOEOrn/LBI4EIY157MOPVuwM+erTik0/PkMJw6+4tgjDg4jJgZ6iwuqCtK0aze6yrd3j67EP+8EdvY5qMWzfmDDJByy6r0085X73g2ZEg5j5pnGDsBWgYjufcGx5+rvv1czcZd+7c2Qa4eTckjTZ+M6nrCq198J3sJsYqCL1WwVrapqVSFdb5RFroeaQFrfaiwCBQ4CTSWYzxSbcO560/Xec8Zfx0uYexlZLdJLx7kcI3Ogi8CMdfsp6Da6+scYWUfmq91Wr4w3Vivo5Ttf1+jxD0U3FvswnCWT/tFhLXNlAVXFycEcQRzvkNMBAChUM6hxKOJApRShDHEQcHh36DM5p8tWS1uGSzXnJxfsqiuKCqa6zZEEXBVocxGGTddM1tJ1j9JtOn8va6meuQfZ/Bcd0Bqp9s9uLxK2vHPpPDbGlO1+1ley2HbzJ8ynbfVPSP7T9P2bm79BOMIAi3P+ubHk9181NdrVuautkG64F36BFSEsYhzlhMLYjCAJnEFHlOGMVEaQYqJokGIAKqsgDbYpqKOhck8QCXGAg8VGURPHjzLW7cvMXy/JS7ccZsvs8v332fpunE2FJtp5N0V6SSnlNf1zVBl6aexDF106Fbzrt+nZweoW3D3bs3qROJVQrpOlcblLc0ThXOGpRwBMLRNi2tMzglGU0mLDc5ZdVgW0tb++C/9gtuYbvJwbkWbQQWS1XXHj0MFTu7O4ynU5pWU9QNVT0jSRJaa3nw1W9z75VXuX37LmFosBgvYA4yVCxIRUicDphOZiRJTJIGhJHwTkrG0jSGIt/QGo1uDKqybIpLBC3j2GEsnp6lDfdu32I4GpENhvz7f+0v0RpHWTU8fPSUTz99zpMnz3jnvfdZ5AVKBSRZSNt4wa63ljYo7XBNS71p2SyPaasFrt1hU68Zjmbecaxbn/ri01oHztLqhtXyktEw8hM4a9jka87OF6zWG5CCLB2hZEQUbmgbRxL5xudgb4fNakNZlORFRWUNoq5phOX1119nsVhweXm5dUJyzpHnObfv3mZ/f4+DgwOKYs14nBHHKXEyYX9/F6UUZVlukco8L6mqguFgRBgGOKO9DqAq/L8fDZjOZ0RJyIvnzzHGMBwMGGYD4iCgxadSh1FAEAbgYLMp0caihCTLBqxW6+1kvqq8A4/qrAOrsvTIZBSRxhECQ1MVNG1LohRZkhAFAS+ev0AIv3YOxxPCMEagMMZ6pz/8WMo5T6Ht10Gf2+SuuePZLWIKVwiQiKIOmW/JsoymabYBqnVdEyrJaJAicp9RoYIAp33YljUaI4w3ousIWUmSorUfEEmliD1fE+u8Paff9xRxFNMnkmutvcZDXDVI/TMaranaEiEk2WDk0RnpKchf1OPtT54iI0mYhEx2xsSZQwlodc3jF09IopgkCskGYx4/foLWljfe/DK1WaFtw+nqkvPFikAapDDQGF7dP2RTbHj7pz/my9/8HtlwhrQpf/DjnxOlsH//BoM049mTDf/k937MH/2Ln/C1r72BRVOcnHIwnVMuN9S1RSUTdOs4PltwcXlJ0xq+893f4MadWzw7+jJldcb604dUxTmvv/EVwp2AYTJnb+8WYXxJUZZcLC/5k18+4vbtG3z7m1/DnJzz+qs3CYXkcH/Mf/HzZ8gg4C/98AecXhocMciQx6cPeWW3ZXeyx4M3vsq6KHnvg4959/1f8MPf+iGNy2itpLJDAmUYTIbszGfIJGE4DImGISfrS8rVKZuLS/7xs3P+k7/z+0wGDW/eakmjW8SDGUrGLDfvcjDdY294g7/x7xvm+ymrRpK1hxymjpPn73NyMuTGl36daH6bZDBAtjVpNkQIaKyFwBAYgbPSMzt88A5SQdOW1GgKo7m4OKdtNGGo2N+fM9+bcHx0wvvPj3jttdeQUYgIFHVRE8URgZLIQJCqBGsldWMpSs3pxSV5npMMMu7eusUwS9idjfnpT/6IYr0BZ7lx8wZhlPDq66/xt/6Hf4u///f+HkdHzynLgt/4/m/y/vvvkm/W7ExHhEpgdM3lQrMpSwR+P2/rhldu3iEdZLBjeH55wWwyZjQY0mwWNOs1Ot8gnWb34IDX33yV737va9y5/zp//qd/xtGLE25MU54uL7m8WPD8NOTi9IQbN0Y8uHub/+Av/4/5f/7D/xs/f+fPyJsNNw++Q5oEhHbF2796waNPjrk42/Bb3/8af++/+Pu0NuLBve8hLh6iAjBBzD/78R9y41bBeKz4zb/0TZanAc62PDs5oSoE4xT2ZocIdcBHT86w2vDKK5LlixIVj0gne5/rfv3cTcbezozeakwbbw3atA1lVbJZa6q6awpcn1HROQHZHu5ucdvgI7bQbtu23l/edBx72+dcdH93VrA97OyDWfwiaox52Yqvg637NNS+SO1pVT295Rqf6qXJk9s2F9dGRm77QHqG7lW3gu9MAes8pJ/nOavlAim9D3QgBBIvVBbO0CRxx0sMPLdRCQSWNAyJQ0USBeimIr9cdzar3o8deohVbL8OgvCaRsNtCwfwaEK/QX7WVvF6c9VvlltHpWsaF097ctuN7HpD1gu/cZ2cvmswrtsKb9GR7ZT2ZWpV73IlBISBpKnr7ePEFu7v0pYDiUSgbUuf7umk8txpb6OCDBOfud3RHmTXpNq2QQn5mdT4gGw4ZjgcI4Vg0BiiJMe5Dz31zXaWkdtGS/iwtO71SSGv0bU8qra9toTzSe9NTWu8a5rAIZ23LRadO40TdptCHyi8zaY1WKsR0m0n8kVd+SJLeIetL/KxXjdIGRJEHnj0U16BUJK6KKjqmqpuIQjJshQVRhgHO+MR4yQiwqCEn+xa5xEx8FPgOE5IsiFxEhPFIUFgUfjhR2sbVGgRUvt2UUR+Sm0F61Z79KF1NLXj9GJFXrZkWUkcaP+8wwR59wbz0YCb+1Pm84xnZwuquqGqGk5PLlmvChyeTiedY5ikHO7PCYUhX11wcZKRjKe0bQ1CbMW7/vCbq+ft+GZVd3SOpq5Yr9dUVUHT1BjnaLqwzn6djZMYwYi2rhDCEYQKGUfIpsFIEHVBn6cwHA7JsqyzjhU0WnP77m12dubs7u6QpglplhCEyqOK4mrNuBo2WOI4IoxC34y3DXCFnLZNsx0etLrdmlNUQlJFMXVd0bZNh3J7BNMjK979qW010O8RuhuSsKVdFkXBcDgkTRJclzlRVz4MEOnTtAU+EVwF/r6TMugomV1rYTt0QV7LYsJ1xXsnHt0GKfqfXa1vXfpxlzLcD3f6z+dK8+apbx6V9o8ruoT7QEp8BsfVwMuv454+6V3L/DkwHV35ur13///AS7+3D7Z1rg+39Q2sdyn07/+L7C61d3CIihQqVESDhLoqwHqXsc1mQxNU6CjiYD5nuVhRVt7MZL3akCQZ8+mM1fkKISShEjS0hIEgigRBYKnqBVmUkCYpQhnSQUIUKc5Oz2gb422ldcUnDx9irCNJMqIgRg09DdRnvywxujOvEFDXBVWxIRCS2hlkoBhN5mjtaXJS+n3BOkvVFFwuzhgMx6hwwGJRc3pywTAJCdPEZ8oM5yRpzO5kzIfvvYcKRiTZlPXFJatAkgWSF0dHhFHKdLbD/t6GQDq0rlECJqM5l3nBel1wsTiDRNLiWGxWDMdDBoME2aQ8O8qxeOvsSEXMZjPaOqAqK3QT8PDhp4wGY37wg++yblcEyyW1jRknhuNySdtIhvM9dvf3mUzHW+qgdSC6Ya1HD+mo6lfaImNNP2oG8OwBFRDFKU1doXWLA3Sv3+xrAbawIV4rpalqTdv4wNCiKGm1Jc4GjOc77JU16XDEyYsXlGWBFYLzroazVnOxWbAqNzhn2T84ACyX52dcnDzfUumdr0wxukXhGGYDf9/j64Q0GxFFEWGguHmwD8YRCpgMIuqqxLQR08mgs+02yM7aPY4TQmdY1BCljqrZ8PzZc372L3/J4nJDFKaoZMBwJBkNQ0ajGS+elQyyIcFeSGtyIpkQBRmTLMRcalbLgsvKkqQz9vZ2OdhPaUrFE05ZrxfUjaZpHUkWMEgTkmzGcALW1GSDiI8/OiIbSYbT/c91v37uJuPGwW4nwulTej2CsVw5dJOjNTQtW5u/rcVtV6w2ArQR3j1GdcJv3HYqLgDTOHRjcbQ+Ndv6wlwJh1P+mjGObmIMzhl6i7/+uBIRd6Lw7Sa+fUDH/385+2G7kfQ7GX3z0BXE8oqj298Y4AvDLV9et+T5GoTcQuWhFDgTY02AaSVZEpEmnk40HAy8lRuWREriUJFGEW1dsjzznMm6m+D5o3Mbkd4XOkmS7aS9Rw96yH4ymSCE2NoL9z/vkYa+obge4tejGn0YnzHeiq3fuPrHSSmZTqf+/VuLbnVno/eyEH3byNB/Ri/nc/QICgLCKCAnRwh8Um/ddBaMouN9BzhnaazfMFyn9wjDAIfEOEmYDCiLGtfxnwMBwhqc1sRht3FLCSLwKbsdpeDGnfuURYsMLnBO0baOtu30Lspfs0LSWWqypa3UVYnpGjkpFVaKrvG0OOmwwtJajbYagUQ6iFTUNRmgTYPyohVfFAYhztQY22JMTTaI0Q4ulwWbPEepmCgZfN5b9t/J4/yyJIgT0qFvDKM0QnW6oBdPLzi/uGC12XDrzivEcUqShQgVMAwEoS4xmwuicQjCQ+l102KMRkhFmKTIMAYVYUWAFV0jgqUxBhUNCYVPZJdyy+KjMRVlm1O3FWXVcPrpJ7R1CabhcCyZz2dMZ1Nu3bnL4YM7fPXLr/I7v/N9Pnx+xqefPuXRw8f84hfvYpoW0zYYoVHA/s6Eb3zlTUap4vLkOXW14c2vfJOqLLBOdOntfWva7bId/hoGAU1dUVcFm3zNcnFJqy1SCBarNavlGmstcRzT1A3gSLIIFQqSQUQQK2KdIfOSFoNYCS4uL8nSlL09j1js7Oz4HB4Bo8mQwSBjNBoymY7xGgFDVbVbk4cevex1A+PxmCCItsOiMPD6jCzL2KwWaFpvZdvxlnXTsihKsI6m9lRMYzR1Y9BWYkxAmg1p64bNesV4PMIHfDad1bOAMCSJY1bLFWmSMJmMiCMfhFeVPpldhTFRHGO016IJqaDTtdFpzYSQWN0itoF8artXXBU6L+cTbYt650PwyrJmOMi2jl/XC/22bbu1VW7NisPOBU9JL0D11FGPKjt7RclK04wwjKjKHBUEGNNRsaTbUsakUrhuH+zNNq7MMtotZTgIAiKgbQ1FURKlQ+hyN76ox/d+7dtoa6i1ZlWsOT2psQaUTGg2S0rdUoaKb3z5TcDb166LnBdHJ9y5fY/791/hw+ID4sDTZ3VTo22Jiiw37h6wWJ8QBwHTQca9OxNEKMnzkvfff58bh/eYzaZMZjH/6Pf+Pm+8+RYP3vgSVVmzf3BIKBXFZsPJ8THT+ZTXH7yKkI7V5SWbyyX1egVSMJkfcOvObT798AllodEGyqoir5Ys1ic8fvYhv/vX/7uYRvHJe0ccPf+UvZ0hu/MRbat469UvMxomDGTEx2//BZPxATdvvUp5dMmptRTrgodPTnj1ja/w4MED7t17hbPnT9HVOSJouLl/wOrklOdHn/KTP3/ID373NwhbhT23vDW6wd7+Lnac8XD5iK989/tk0iAuPuXg8JCnj59zevYMqyP+7M//BXfvHvIf/Q/+O7zz/jPUiyMa+4xMrQlXGxyOvf0Rd+/eJEtTT8/S2lPYEJ0texcZIHr9qaU1xlOnhUUBaZwQigApFKiQo7MzrLXs7OxQ1zVFWSJw2yBLP6txtNqRFwX5pqa1gqaqqMqSvGpwYUKQOYbzlm/92m/wpz/5CZ988jGXRcH69AV1XVJVJaVpCIcJaZIwHA35wW/8DRbnZ/zv/jf/a89cUAEyVKhW0bY+oXw4HKCkxLQtxSbn9jfe9DoIZ3nw1peJgoDFYsFgkHB28oK6WGHbQwr9AqEMk9mA5fKcbLSDSwNKV5Pt1hy/eM5P/uQR//QfPOVr377H3VcP2dm/zenZEeNpyqv373F5WvPqK4fEseOjT/+CL7/xdUaDOUloeLZRPH98yUePjvjrf/N3+epXvsLe3j6XZzmLyz+k1pq6AZAIkaDUiOl0hyiOgJZRpjg6/jPmOuD+q+L//U167fjcTcYPf/h9lsslq/WKiw5y2qwFeV5QV023GXnEIWxblJS0gUA4g1aKRkkQbjsZ80LAkCROCHcC1ssltq1xrqFpSi/o1BpnOuenzvkDX5MB3i1kK4S8dlyJnL3uQl2b/vop9NVmcr0Yvjrc9jmV+uzkuJ9s9Z2y7BZ/16EosF4taOuKOs+xTfP/ou5Pfy3L0vQ+7LeGPZ75jnFjjsi5qjIrs4au7mZXt0m1mhpo0dZEw/IA+4MNGAb0d/ij/UEybIowJIiyCdOiaJHgIFHsbpLdXV1dc86ZkRnznc+8xzX4w9rn3MhiE07BBNy5gciM8dxzzj17rfW+7/P8HvYmY0ajPtEgpywKtISLSBAryNKEJNJESiPSDI3H7h1QzgtUJ8tZrRbUtSbLUsaTQTBKW8tqtdqOyTep2Rtq02Kx2Jq1NynFm8nG5veEEJRl2aET/RdQuJv3cLN5OecYDofbrttG1/0i0WSDULzaYIMBUnYmys17vpFK1XVNVZUY26JaRRwrpPSBn688kVDoSG437Q0GVymFE5vQMkccxaRxRlsZ2qYKcrReRJRG5HmfLOuFxcl6fOsRsUAoHdTYHgQKHcdkPc/h0R2qR5/T2G6D94bGWprOjNx0WTBaBYyz0BrfsaylUqg4RrYJSjuUTpAqYj5f08syhv0eKgokJC0kPYKZV+Fx3tEfDImSiNY1CCXZ2euT9gyz5YooySkr22FIv7qXjD2X03OKYor218j3d4nSYPq+/epN8vMeJ8+nPH58hheaNM+5cfc6tS2YzhpWixMiaTDO0RrHqnKoJCPrD9jbc2GkHkfoOHx2IhWkOK6u0HGCR9J4SaJTvBQE3GGLVwqiCN3LObx7h7YJ0p+z8+d8/v4nFPMpi4szev0RN2/d4Z1vfYf9mzeZvPIS33zpPv/Wb/8WJ8cnPH32jJ/8+MccPzzn3p3rfPtr94hshWo1dlnw0U8+4O7Xv0a8G+FtjPPBwBuKX8BbpHDESlJWlrY0tKuWYl5QVjVV3TCbzUL4adNwURRB/ueDQTLvD3F+hbUVCkuMIxXQjyPyNGV/b4/haMT08pK6qhgOh9y8eROM7dDQcPrsNKzNWcrhzjWEDIXFZNRnPp/Ttm2YTjQlzrYh7I0WZNTRI0Px05aGtnZoEeMaT1nVFMWawWBC1XiWK4OO+lgfCHJSCxwWGUnSYc6qatA6ZzgegsiQMkx41sWK+WLK9aMDru3t8eRp0L8LGzrHKs5pjeWjjz5isrfHzVu32T84YDqdhqmAMxSlIc8yvNpgyruGAhLnTNeICjLZtrXgQDqJRCG1xgmJrWuEjEAIrDUdVauiaWoiFUgzeFgVNU5oGicQrUUnMWXTULUNvV4SgAdSI1Vo+qzrAlMsiaMU000lsuGYpq1CMwtPqjRtU2GtJe2IRC9KZ9smkMhMEw5BSkmsN9RVjZKKva5J9FW8Hnz2IbPFgtZ7XnntDfr9IevFKiRB37rJvTu32d/d4b/4L/4zvvO973Hr3h1++t4HHF27i5QR77//Lpdn54wHA8bDPofXD1mvgwlayz2GsWd2sebkwYfsHhwS5QrnBXv7++zsTjg7PeW/+90f8ef/wq9zdHQTpVP+y//qv+Yv/cW/yO5oyOMnn/O9b73JeHfCZHeHxbphd9hDWsPJZ44/+OG7jPYPyffuoJIJu8MwETw5e8z1m9c5uLHDcBLzj//BP8Q0GVm0z2/+D76P0muUtuwMXuV8vqTpKdzBmD//7/8OWmVEUY/qvZKX7t5kPBxRd4VkVZa4tuXG0R6ffXrG8dNn/OD3Sr7x9Td59f7X+M73VkTjHR4/esqjTx8inOOjBx9z+uwJP/nwmKNXXycfjxHxHj/72bucnlyymK25cf0mX3vzECkM/6f/43/EZ48XFE2DoSZTa/Jhn8HOPg8/+5BX7t4hUjHGWPIsCUGThMBjv1mGvae1TbiXXGhWFquCuiwDUUw4iqLk5PQcI0EoDVIznU7JsySAPjbnsCAoIE37HB+f8/TZMUVZs3+wT55lfP7kOUlicQa8F7z7/ntESUx/2Of/+p/8x3z9G68xHA6ItObwcJeTk2POz4756//5f8rR//5/x86wz+HOiMv5jHVVsZ4vGE32GE9ycJbzi1OeJJJ+GpGokG5km4qqXPHJh7+gLWu0MCympxzu79DvDUh1xtnpMXuHY+7dO+TyYs4Hz2ty3eft771EHH3McloyPatZzirOZ8dcXMw4PdYMds949OgJP/3RT/nw/ee89tpN7t0/JBqOaVcNTT0lHzWo/ojrd19mNLkO5il//+88pW1z3n77TaSsWRdLfvSjz/kP/qf/Bm0rWS0NZ8eXTJcPENJw4+Al7t++x2jcY5h9ufv1SxcZShriCOJI4oyhWlesFgWL6Ypy1VJXpsvFCF38WgjAYrUKY+JII5XoioJNynWLEEF+tUm79t4GiZTYdBrtlhTAJhxpE84n5AvlxQuypxfG2tAVIi/IonjhEP3PFxhXj3I1tbj6vRceopu6h8JiG4rkg5yrbVvKsuTi9IymXLOYZwyHfXZ3Rph6QKQ8WRJh+z3IU4QOBrU4ihn2+4zHY+q6ZrGYs1zOu8LCUJZVIKfoQJh6cby4mSS8OEKHq0T0q3H81fTnRTKJ+KX3Je5CojaFxYsFwibt23ePvSl0XpRWvUikEi+ihrvf21CvlAzBUd52GNtIBWxj9/5XVdlRcl74fsIW5SgI0YbeNODaQAfxjqKqkTpFxlC3FtuucKJGxAZDmIAgJFopmsqyWATyhzHBE+rpDP8y+H/wtntNvpNvWDr0TPeed7KIKKOvE+I45fxiTqI1kU6IohShdPghFUmmsabBmTBtSpIUIQXSRFSdlCSKFQeHuzx/NsNYyMRVMvpX8YoThTMO07ZcXFwy7GVomaPiUBDu7ii0TLHmhNlijceSDQb0x+OQdYCFpsA1NQhHFCmGoyFJkmGbmnnbdPo9QZrnQQRjHW1Z0XZG6CgO6GilBFIJjK2pqgohBP1+LyC5nQehcELjZZiMLJYrVusG6wRxkiM+/IAkScjznP39fYbDEW+88grXD/Z5/2fvgbNML57RH/Tw6xUq6rN3rU9blVTFGiE8URKHz1k30dNiI5fyrFZr2rpBKd0FzlUslstuKtBgu45gHMfB+2YNpjJoqbE6CshXKUnThOFwyGQyIUkS6O7tTWPi+Pg5UaIpyj5VVTGfz7l+/YheF2Sm9Cbdut1Ofq0xHB8fMxgOSbOMwWBA09TUTUNZrBE+QEGqqkYrjWkt3lq89cznC6QUDPojnp+cYLokX9WZl8NUoiJL+5jWU9aB2hUnG6Jh8C7oKMJ6j+2mp1prVBQjk5jlquD07JT+YIjqkNlFUQTCVRTS3513CC/xsgtMVRL8RnK6Wfi7aXeIaMEY2RUfYZLsOp2HlKHpJDsplNhMPJwLxKMoyMC8811CvOj8fRbtQxEQyQjrLFJ1UiopXyh2AurWeYfvaHybfaxpmq1cdbOuhucRKHnWB39imuXMZ0twAi2/unk7Sgt0rLGt5fz8HCU1ed4n1RlvvvkWVbHmk48/pt/rsVwuKeqGi9mUe7deQgpPVS5RWlJUJcYaVDRivgo402XrqcqKBE+q4PT0KVY4UII4SlmtlgjpuXv3Bng4OTnDesVb33yH6XzBajFHSEGaakb9nJ3RgD/58R9QHuwySBOE93zjzTeJBxNqC8fnz4M8MUt5+uwpRzffpj84pFiX3L+XI9yANDrkcnqGjFbEiSTPWp6dHNOYgicncHjQpyzmnC1PiJRGqyAr8iJI5BazORfHJ2Ta44VkNLrL2eWKR4/W7O6k7Owc8eDRU6jg+sFNZuenaK3YPzrg7WyAqZacnaxpVkvGO0Py3hBJjhclaZaD86wLx2g8JKrWLNcV67KhN8kZDA+4ee0mSRyan0rKraqBzZkhhGGEc5+3ITxTQFk3eBeUA3VRgg2ZW1mccLlakA9TBuMJWV1RVxXz2Yy9nZ2tnDpgoCu8t8SJIk7HNFXJdDrl4ccf8HvtAmc9VVFRrJdMxkNMuWaQSCJn8FVJbS2J8Lx86wbxvTusZzMWp8f4dcbXXn+Zn/ziF0gt6Q2HDIYTlosZpjXcuH6ElpDEEbeuXUNLSLOEXqpwVrAyNbatSSKFwGKamrVdUbc1zgV/TesMRdmwbi8p24KIU6bnBdPTktGkoWlbTCtoqprdKCaJUpSLqe548l7Mcr3k5+894tdfGdMbpGgks1VN2dToxPPmG9/AmgvOLlq0tgwHQ25ev0X75hBHibUpUuaMd8Y07jOKsuDk+ILlcoUUhsWF+v96r8J/jyKjqgL5yLYNVVmwWqxZzNYsZgV1YTE20I4jGQoJ50yHtrXbA2p4ShvtMVjbhs6MbbtJxQbRuDFDhgOl8yEkCe87u1rQm4b9rpsmdAWH60ZlVzKEF2qUK4NF929CB3AzJt/8i3/REOjKvyF+eXjS+UXEdpzuraWpa2bTKVW5YpFErFd9XFtjmholgwkcFzrZOk+JlEArRZbn9Ad9VusVWZ4jRDiEGGOp65okibckqCuPxkb25XA2/NpY043T2fob6FBr2w9ARwATG50vV5I31aVtB10v22JkM7kIXy+8Xikkzl4VOZtp0caTIbtv6KYgkeLKpBgQt+H7LAgkMHyQXgghaeryhYM8Xed047vZeGU82BbZLVCeIKVRrUW2jqq2VE2D8RKZeGqr8CIEKSqtqYuW5XxFVbedJ8MHCpDz6C7bwjsXioyN7Mu7cCB0tpMxgLMiGHITjVSKi4sZaaTpZz2kjBBSbD+FOorw3uKswDiHimIiKUFp2s3ESSv29iZcXKywXqCiL3dj/1m94liHhFfrWC6WrFYrIiWJlSJVPfQgIUtymir4WayUpFkeiowkQjlDvfQYDwpBFinGwz5axxRlRV23NNZicPQdeGNwrcHXDeuy6kIsc8oqUNOkklgRJoNJHJNnOW0dyGnOepAaneREaYkXirKqubicEn3+GZfTC7IsZTgYcvfuPe7ff5n9g0Nef/k1XF1y/OwJZydP8X4X4yNUVLGzd4uqWKMiHfxrsh8kpR2aGi0JSGzDuijxxpLo8LnZTBpD8KjFO9c1cKKtvNFbF4IfhaQxgcqno4i816PX63XTxZYo0ltox8VFg441VVXRNg3z+Zy93V1E53vTkeomj9ULDQwXvndx6MKmgz5NXQWPXVmCdxRFQVVXDJIM34aEdIkIJKo8J00SinUJSobpXhTWENtNXaUMdKSqqmnbBqUiZHdP9gdDdBRT1XXnlbrq5ItOrjqfz8N65MIaVZZlFwLr2LD0w+sJxii58XbJTjPeyWKFUEG26V8gEUpFlmVhHfThILRZI5VW+DbAIzZNGSGuULebKW+YqjQ4H4zLQsogEZYBGLLNdeqMb0pppHc4J7oU5yBDa5pmC/JwrsPJs8k2Coj5cO8ltGYaEMFf4WUkioLsTEjDarViNBiTdr6pg4NDPvrgPT799FMGg0HIqFivuzDHDImlYk6SxazmBatVyXCcsSpXrMuGdSsDTKSX0h+kPDs5o+nW5vFwwnpdEseKl1+5y3JRUJRLPJo3336LTz76gEW54mBngLMhgVtJwdNnT9G2xQxDcOj9l17CJzmLxnAxPyWvU7I6YzafEUUpg94ELXLu3+sTqzGKXT749A+Q8ZrUR1RNwWI2Y7Gccnq8Ynf4GsVyyfRsyt7OLXDQ1CE9vm4aVqsV5+dnKFeze3CPfLDP6vQJx6cNzlRkqeD80Qn94YBr+wc8evoJuzs5O5N9Dm9nHJ+VzJZrlssFvWGO1jFZHhMlS0TbwxhPXVl29sfEa0fbTilKiY76ZPkOe+N9tNIIKYijBGPq7lzWKSE2jVq/ySIL+2pdhf08yI4Mrg33bZ5mnFyco6RkOByStimL2RTTNtsiQ8rg6wx0S0+SRiiVcXHynOnZCadPHjI7eUoUKbQSTC/OuHnziEhL9vopCQ7VndVS7zjanbC/t8vq8pL17AJbau7duclHDz5CRYqkNySKcqr1Ai8F148OKWeX5FnC9WuHxEoQx6CVpq7t1mvcyzPwhrZtcK3Ci5a2qagqKMo1q3XJdFVxNl2Qa8nF8Yrz4zn3koKq6tO2OXhDrBOiKCMWI6Ruca6iKApOjlfwiiFLBbHOKJpLWmvox5bD3SOGA8t8Ocf6kjjK2NvNyKKbNOZTjNFIETPo91hWmtZ4FufrgGauSqYX/5JzMj754FNWq2AUOj2dcnGxZLksmS8LrIhQSYzWgkEmibUk0pJIKxqrsV6wtp5EtCH/QgaGY0hRDYnSpjUY62iNoG0l1kiMEdSNp6qqLifDY7GdeU3iXOhhSxRKaejMvTKcMl+YUgh8l9y94WEH+GhQBW7LCimuipFfGnB8ocu/cTsTvoZwZms02nTmhXB4Z6gbg2lLykJQFSsW0xm9POX4SZ+6fIXDgz3a/V3UwX6gAyiBE6AyQdLXZIMEEUVUZUlV1wxGg80TCq9CCpI4Jk3iDn/Y4p0ljiJmizme0PWTMmGTwl3XLSFgSoYgOK46C96HZOsrP0fddWZCl31Dh1osFttpRhyHRV8KgRKStEvplULStg3YQP6oyookS7uiQqKlou2mIsa04dAFaClCSm8SI6VgftFQ1yakbuOxrcM0AT6QZX2EUrQ2GHrz4RAVRQgV4XWCQVMZwWzVUNYtzkNqJbNFReslVkWUBlzrqIqKabGicg1OOrIkoq6DD8aawNgPxjIfEr6twXWkNSB0zdYlvV5KHvexxrBczJmen+Faw+HBIb1M09gqaPLTDOMsXghkmtKUhjiJyKMeIzGiqkusg77OOTywzGc1q+VXG2HbS0Kn2VlDuV5wcnreZSlcQydjeoOY8bBHpEt6k4R14zHOkI92yLIE01RczqeB1iWTQH2zFQLHIImC7tc6auvJ+5PgI5CGKBMMdrq5vDN4W1NWJcUqFJ6j0RBFxPnxBXEcb4EUKslJPOAFu9fvMr84QyuFdZbdyYC2NSzmc977+fv8nb/993HW8/rrX+Prb92hLBcslpfYtiZKR2S5ZH5xgdMRo7Lgxo0blMJhu2lgbzjAG0vT1FxedgF73tOYFuMd48mYLM958uTJ1k+18VgtFwsWszl5v09Z1xRlQd02NMaE7reC1Wqx/TebRoPsjCnnncZ5MBhwcHCAEIL5fE5VVUwmw2AQ76SUpnVIoXnzG99kuVrQtjXnZ2eBmuQ8cRTx6aefYKxBa0XSHyKkxmtL20ocMJ/NOKkqrHUI1AudeuhFMZPBgI8/+bTDPod1wNqQR9S0hpu3bhNFEU+fHYfkka4JJXXEej1ntVwinMcZy8XFBa0x1FXYeBEQt5rJZNy9H2E/kCpCdSSqYEoPQYO6k01aXDfNdWHdTZIg4/Qe4a6mxILA4o/jBAAhrsAabeuIYrmFXti6JeCPLVXVkOd554lrSeI8eMfEtlVGyBjqpCLC4bp1+kXgRlXXW/O4x+BFyPowdcNgMKBtGtr6qxzqKUjTjCzX9EZjlvNVMAlbw9/4f/zfAxZcCIqi4GA8Zmc04uj2HX74B++SZ5q79/bI84T5rODicsWrb7xEnJ+jc83R+IjRcEQqKhJXcO+VfXb2b5NkI9arhvff/5A4UVy/sc//62/+XY6ObnHj5k1OT55y+/ZRwNN7w8//5E948uQpB/sHvPH6q5iiZLpcg1C898EHEMXk4zHDscKairppeOONl5lfLHj62Qm/+9/9Mf+jf+f7pJmiXM94/Wv3QNY4YWjrGW/dv0kevcRwmPP+hz9g2Et46bVXuH/7Hf743R/z9Mljjm7dwTvP0dERr738MrZc8P6DMz58+JTReI+9G0fU6xl/8//513nl7gG5SlCiJhaWy9mCxnl+9dXXkf4ZSnkKX/OTn/0E09ZkacJf/kt/mc8+nnJ+/pzPn/6Ab6ZvYdoSYRbs7h2Q5js0TcyHP3/AcDwOPkytURKEusp88VLinAXbBDJT01CuKqraIXyDwjIajcKkz3qKMig84l4wSgO0Jnh4QxMmRXiPc5Y4SUjSHmLd8ODBh7SrFbZccnOcEUlPlsUkiebHj5/z6Bef4ZxlIjVD29BPe/THO1yenzH77BOO3/sZ169do7c7IlE51pSkSaBe5v2c6cWC6/t79NKEYZ6RM2bUz0jSmPFuj9PjJ5yePOPWrbvs7e0ilaTXSzg5eUYSK3Ynu+h6zXw25eR4RVlYLs+WNBKO7vb4tTf/Mhcncx59/ilkv8v7v6hZzOD+vT1cq5lOa85OHnHjJcN0uqKqPf/L/+B/S9x+io0MOwevcdQqrJkRuRn/yV/9Wzw6mVLahlU1YZTfpJ/vMR5MKGuDlyH77tmzz0jynKP920zyPb751tucPn/Epx/97EvdrV+6yHj86Izlas1yteZytqSqDcZ70l5GP0kRSiGU7IqMkJQMsCwsdeuwxmFsF2wmAmnHewFeIXywxnkMHk/T2i7noaUxBttlJ2zpT93/g2wqGGzpFn5xNQL5wtxic2264Jvph5RqW2xsJxXbf7CZTIAXfmuyC18jKApfhP2IbWHiv/DDEzp/xXpNuS5YLiTLeQzCM7ucsZgtaKqKyXhIL0+JIr3t8EsdDgPO+q0EaTO1MM7SH/TQamOClsRRgiCYW4f0tz6MEHwXiokkTTqfRfh+pGlKsV5vA+SuzPOCNEu/4HERXTEiRNhkN1IC0XX6PVC3LbYs8d4zHA4wLhSTm/d1ox92vPB1kpyqWiNFkDYYa1iu11hrkFKhFcEfUTVg3PbvjYYJkQ6HvmTQCwc2Y1EyBIelSZ80HYTPoAvM7dX5GXXr8TLCRxnTRYF3UJc1F9NLqrpEetMhDkGrwJlHBFKOcwGzKaXCYrbGeq0lw2GOxyG79Hlci7E1RbHgYnpKsdL0BqMupDFG4bG2paktxjtsbWkagY4FXqhA1VKK119/jePjGQ8+ffplb9k/k9do0As0IasY9A7AWazzPH12gmCAFD2SOGH/YIdsOGJVOc7nIWixrAK1qDSQZwMGvYzd8SAEu82XPH/2CBn30GlOkoWuvYxirJQYJfDCd6nZDaWw1MJhJORJn14v5Di0bYsQgjjRRElG6w0yzcnyPs55ojjBthVeuI6aFJ6/FDCe7FBXLQ8fPuX23ev0e2Pu3M44Oz7BVJ5lveaHT37Iq996E+tbsljTG/RC2ruUpLGiqGrKsmQ6vQxprB0FqG4bqrKiXJdbHPXmPmqaBtOGROFyXQT5ULf+Zf2cPO8xHo1Zz5Z/ipQyEM2GwyHD4ZA8zynLkrOzM5bLJdevX2e9LsiyjNFozNMnTzsjtqWqSgL5zoG1rFdLlos5s+kl1radvjpYOzdM/LouQauusRDIOkk39SuLmigOHgeJ4Pb1I4qiZrUuOT8/YTzZRcowTVqtCpQSpEnEzetH1G1D2zQUVYOOUvp5j+jmTcBzcXrGbDpjsrcbpJ5tSxzrLaHJGBuC/GzYW5TSoelBdxAS4bNjfFfgC7ay0PA9UMRKURarwOffUAU7mekGmLHZD6y1W8lW2+qwthD+2BobQhajTQHZdsWT7CbJtltrFG0dfCCbIkN205gkSWiNpaobojimLlsa01KULVVdhcnrC7TBr9olicn7OVJrLudzkijGNC2n58cILdkZ7THs93j35z9hMZ+zLivOZnN2xnvEiWO1vuTktCDLJ9x/6TqrlWE1r1lXFfUzz907CaksidyCKBkj45aoXHN5cc69e3dBOOpmwTfffovRYJcs6/Hg82fE2tO2OigV4oThaMze7h6fPn1Kng9I+2PKqiH1c/Jeyo3rYyxpkD8rzZNHz3C2YjTI+bf/8r/F7kGP84sTPn/8KXfv3SNSA9q25ZOPfsrto1u05Fw8n2PTAWKYUiaa//zv/m0m4x5ZljKfXuBQNEoHcmNTkvUUN24OaNqSwUST7O2i1DeIREl/ktAbaYqPppBNsCLD1JZifkGe9njnO9/n8+yPwRdI6fnxjz9GmBG9/og337lPU1cob9md9HG9HYx3rMo1k2GOkiKAU1pPlMWdksVCF6AcsswEq+mUomooa0tVCXTkkBFESYz0ijhRjCYjfnP4m5QmAD36/ZBOjrNbmIzo7sN159EbjoaMx2N8ElNqgV2c00s1OuisGWWKyfVrZEnCYrFmPByHEEvT8PKta8xmMXVZ8Ku/+l0+f/SQqinI0h63b12nLFuMEajBgNV8xvnlBe1ggHCGLAYdKU7OT0iyhPsvvcR6VWFMIEeNJ0c0TciaK8oZUZwRyYjWK4SteOnOASWewixoG8Pz48f84r0/5uBGwWh4jd3JDkdHI6aXa5TUHN2YkGZriucznj2/xNl/wt2bA2xvwOLxKU25om2WrJsVOwd3EL0hXra88vIRn3xwgRYNN97YZ/bxiLOzGcvFOV9//Qauzalrw2w5Zb4+w9Qlo529L3W/fuki4+xixWq9pihLysrgpUAnmiiKSbM8OOyVJI08WgYjn7EO0SEdnTE0XTy8ZCOdIkyCnd8GnjWmpWnabZFhbNBHbwoMsZVbbRCEQWfosAgnukKDL3gwXpxoXF0v0kNUMKV3whvhN6buzURjU2h0Kd9ShUjAbnT+gk/86rE3wi4RjEgCjzMtzloaAW0tefZUh9TNpgnpl21LMxzQy7OObtTNXETgqwsPkY6uiFCd5k8I8NYSb2g13dgxjoPMom2uRvcQZEjeBYQqnbRJyGDC+mUPymbMufE+BGpDOEBrrZBKYTvzani9QWLRdsVNWdUBySrYapEBgoLBbQtI50NWQVAVCKzzVwFYUYywNcK88D0UYRYVRVGYjEiBjhXWhaRQpSK0TtBRilIx9boIuQouGD+FkOFryXDIL8uGYlXiO3217JCWYfKmUEJhvQ1yDmdDUf3C56tt25CLolTI2egyE5xtSdOIKA5seu8dUomOLhPhTDi4BD21wnmLMx7rHTKSSBUOQkmaBE/P/uRL3K1/di+tJN4Fzexw0Keta+q6CiP9iymIYAY+GPYZRZIo8VRNwD8KpcOhHolOc/LBiP5wRCUUVd3SeAdtg0JihSQpCqwQeAlO+OBZME1YY7zDAE5K4iTDeYFxHocImuYNKczpgJlOUsbG4mxLUy6xTRHkXN7Qdr+vtEZHsKoqLi4WJNEeB7sH1OuatoW6diznC06ePcHYBlPXHN04Iuv1SNOMYrmgqhrqpgkDF+s6k7XBOkvTttTdNGFTaERRRFEU4aAJW8+TUpp+v09vOGA4HLK3t8+T5iHWhjWvaZurnBsht/6pkF9UbQ/IxgQfmJSKXi/4REyXer9crtBKoCQoKSiLkuViyWw2I9YKdODdL5cLMhXhuuRub6BpHW1rUSpgfMN91RAlAWQhnKefp+A9dVNTVQWX03BfhzWtwTlDUcCNo6POk2IRXqAjiKOIOE1xxgavoAkH6wClkHifdp/Iq3XR01nsXsDcSqHYZAVtfgTmx2ayIDrZndr+fJPBtLleLDICcbHbBzv87Yvy1c5qsfWbbaS5GymUtRZrDDrSWynWL+OFA9q8Q38rgevMsMa5rrHku0bdV/OSMjTMjO+oZkqFxo70QY7jHcv1auvx8W2LFpLxaIxUFY1b0pqaONVonXJ+cQYekihFqD6mFhgVJL6u9qzXDaJyXE4vuXHzJt63LJY14+GoCxK9RIuwj0gLKopIsow4SdGRJksiVBxDlBDJhJHyZLEg8RWL1pDGCXGkibUgko40luxOxqyqmro1xGlo0lZlS1k0YZ/WDY2Di8uWZBBjUFTWMK1W7EUDsjRisSrRSd5NtxouT8+I05g8jUIDTbXISJONBpjW4yOFV55IQeUEVe1ZLQvqcom1ICvLeGeCJMXZhiefVqRxTNaTTHbGnB+X9NKY3WHC5/OWhhppSoriMkz/EGFiAcCGlObDJNBbvG1pyi7F2gikSNFKEsWSNE0DxEAr0jxjJ0m5WCwpF6st7Q53Rf8UBMy8dyGfJsnSQKuTEJmaZjxkmMe0Tcl6VXF4sMdwkBHHQU2SdLJkrySjQUJbazCCLFHEscRKSZxoBv0esQ7Pd21LXBQROccgy2iaAq0VUayZLUvSdMBgNKSsDFoooiQhTlOsd7RthRQwGO9gm5qmKGjLgsHuGIzj+emKk5NnLJZnGLvk4tQymST0ehneN0gh0Rpk5HAuQpKiZExTnrAsNC0Jbbsg64FrBWUDpjGkWUKSpUTRgCQpEBKKcoY3faSo0VGD8xXSD1ECEFO8bEF5VJz+i27RL1xfush4drYIY1xrieKUNIuJk5g0S0jTGC01EoU1JW0bCoa6agIPvTY0ddggXefg1d0RLXi7HcYZWtvSdiZYYwKa0vkXD8gbYZPvfB9B8tO1loJuVQZD5xdOy5tNRHQSKbE5jHfyCbkxhgf5lffBEOx50YfRfd1gMMB3G8+2GOmcHUFZ4bqNwXYbV6fN7aRM1jva2vHwYTAhXVxc0NYt61XB3u4O49EQVEtZtlgDOorpSU2sFUmaEkVxoL+kMUkche6Wt13iZRkkSt4ho3CQ9Q7qutluMFpHX/Qy4IgjzWDQx7ugDZdKBaNn18nfTk86vbTwvnuvJcb4ILvqHr9tTedhgOfPj4mTmDzP2O0P2eRetCYcwo0JG2Nh6uB18B5XVeH7LBQiUiRasW7aIHOIYxwNtg0ypQ1SM04C8z+OY5ROSbIBcZIhdYITmlVZIVR4voPhAI/CCYVBkSaKs9M5F+dTxuMxVSnAtSRq695BeIHtEtSdc9iNdhS2achaxchI4jEYG6hcdVNyeLjH4bU9dvdGpColSoJpNYpiluUaZwPGMkkT2tLSGsuqKElTSRQJvPacX54RJzlvfOP+l71l/0xebR1wqFEUhfe6qmApmS9XfPz5Ay4XQ4pqj8nuayRZzjAV2IkKqbpeIHWCiFPSbEg22AGd0NtJIM5Y1IbFakVR1MwvzynqhsHOmChLMS6Qudo2GKZ9V1AIqVFpyuUyIGGzLGPS6wMCY233fQr0qzTLca6hWkWYMmLpPUVtWFclpqlD80FqhpMBn3zyOVoqXrl/n1GecHZ2ycXlgv2djE8//ICPP/qI4WjIn/vN73Pr1i2yg4iTp2d4BCqKmYxGIGC1XlOvlnjYFt1pmrJcLjHG0Ov1mM1mYbqmFCqJcEaQqpijvZuMJmMGwyHjyZh1R4byPkhQi6LAe0+WZazWBcvlMmiYgcFgsJ3shB8Gax3T6exqglIbSlOilWC0keE0DaZuKJcVk/0xaRzx8MEDxv0B8YZoV1c0xmOcYDzZo6xDCrVHMBxNAknGBblSGiuGvQTvDR99+BFKxbzy2mukWcZ8NmU+nVK/8mq3nnjSNO0kUOHHsijI8h5ZnrNeLLfrTq+fd6Gk6gvT6TApF9tCQ3bmaa01xPE2IyQ0TcT2/dpMEDaTdqlUmELQGfPt5nAVGi+hMIAoirv8DoFSUZAGd39Xazrcu0AI3wX9BfpOkIj5rfRtI/FbrVbk+SA8d6UCHth2n3WlSTKFaRqaDkv8VbyUjLm8nFLUJf1Rn9V6SRJprl8/ZFoZPv3kYx5//hm/9u13EAiSNOO1175G0yTUZkrRzEiSHRZTz/PjC54+e8C3vnmNo6MjRruv8vjxCamCXiq4nDoWywLjHOfnZzRNDRiKYkVTaT764AGnx6f89m9/h9qFCdO169cxVWgGFGXBS/dv8/SyYlE5JnuHTOIhbn3BxZNP+PGDGaPRgP29EZNxRj9XSBpOjz/ms2PDZC/irXde5eHHJR9/cMpiUfEbv/UqaVIznxZcnM44iK6zXtU01vLtX3mbkVbQNMwXC9I0Aampa8NPf/4et452uHV9l73RiGq9YGkFp5drkjzFGolvGg4PdvjsXHJxUfDsySn1es7zZ2d89JNn/A9/+1sIF1MVJaNxRNtOu+bbkDRNuHF9j9fu7vFP/8bfobd7HZUp3vvgD/n6d99BaY1pGja1M4RphrFdgVEvQzPQeKSIGQ6HxBkkmWI4HDO/nG2bkZfzOctVQV0HJG7bth2ExhNFCiHldlonlSSSkt3dHUpnSbyhr+4w6CU8f/6Yy8tT3n77HS4vj1mvlownQ+bzBZHWTHaHSGFpzJrZ8pz3PvgpvcGQvdGYJE1QCkbDAcN8zKeLB4yPrtPPcw6uHfL4yeekvYikl+KmHovDCRhOJsRREpQgSvP05BhnSibDHvf39lEW6sWa5eU5kzynLFs++fAZ1ex3GQ4k91/d4we//4QsEeR5y7Nnz9jbuYt1NfP1MaI6ZNA/JL8/Ipcfc7IoqeeKOFd8+9aYYikol4Yff/gL7t8/IB/scPys5t69O1TlnB/8yT9mmH+L60cD4t6ay5MH7A/v0ssGEDny3QHT8yVPH15+qfv1SxcZq2KNjiKSLKXfS+kPsg5BGxHFGiw446i8oDXdREAIIiXwCpwEqxXWsjX3BY+AxbWW1rVYZ7akKfeCYXxz+S4Rd9uFcR7oEpCF78zjHtf6FzYOQle6m26EMDPLxpUBobOKDPKpoHkK5KarnIeN0buTWXmF9wrnutDBzvS39WnQeTtk8CggPAKHUgLbvQ7vLXVTM53WrFcLZtNLHn6+z85kwsH+Hlk/5E6URcl6WRJpFagx1mJMg9YgRNyN1TXCx9i2RQlQSUSkI2ofDvNa+22BEbzKvttcoS0ripVBKUkvS7qpUSi6Bv0hvV4Gns4oK3GRwrmIXpaGIC6lgua3C4xqvEXZQJGIo4jXXrqDUAIdafp5D6EldVVTdSnedRM62cvFEutChknTtmgVdZ03i3YK5wNDW0tJax3CGTwxWZ6HMKQ4Q6qYJMuQKsKJ0JmOAaUVadanKIPHYTBIKcqa5XrF+XTJLz56wGy2oiwb0iSi14uI9UZy50CEIitO4kA1cRbTNkHqpGQwq0mJMZZGuO3PlVIcHR3R72fkeQ6EbIe2bbFeYH2YFUul0Dp0a7IkAjRlWZBmKeBZrNcIBQ5Ha5sve8v+mby8abHdqPz8/Jy810dHITtkujqjMg1N6zjYu8mtGzm9fswkN9CmzIuG+XpFngxwTtEaSZwOKduCSlXQ67E7HBHNZvjzSySG9cUpQkAcpaigDQLrqFuD1jEg+cMf/ojhcEC/30clGfN1eUXqMQF8oLRi2I9xUtJYy2q9IkoHqMohdIuzDa1p8W1NKQr2hmOyXBInBi9rJruSNE/oDy1GD5kvG9bLBcVywbMnj7k4P6XX79MbjNBSdAVRoDn18py6bYniCh1FCO+5efPmdoKmtSZKQkdqvlhwsH9AmiacnZ/jjeX8+ISHDx5Qty3D4XBbQFxeXoQk7n6f6WzJcDhkf3+f5XK5lWWuViuU0pRlxeXllJ2dXc7Pz3n27Hnw0mDQSrBeLrk4P6MqC6w1ZFmGaQ3FOoTmles1FUFiWbcNDo0QEet1gdIRUsDZxSXnFzN2hn3uXdtD0AafnPBUZcFoNEZHGdY65osZ3jlGkx2yPMgx2joc3mVItaR1jiwN8lMJnZ8sNEGKomAw6CNlQhQF+EPYWrq9C9kFZYZMHQch8K37XCgliOKQ6h18bnVXfGmEAPtCsOgXKHvC07RXuUTOQV0H5HcURWi9CVG1X9jD4Cpwz1rLer1GdkCUzRRDiOCda9oGqSKQGuO6zAwhQViWqwJnLOKrq5aiMWvSJCeKcoxbY1yBchmOlNXyGdevH3H31i0uT89BeOLWwNlzps/nVM2C1s+4fvs2d+4c8vK9AZlasnt4A9nrc74+Y149wsaOSCtM5egnQ9I4pejHPPrsM5qmYTo7R8qaO3cPee2115mXC2rboOoW455RrQuiNEOhODs/pWokzkqmpw95en7CzqDH6y9/BwZzrG/wruHk+JTr79yml+d8OPuYt996hbQviZKag8MdEn3EalFy/PQB0+PPGQ92+Fd/87dAw4NHH/DZex9x/eZdju7cJR8NWK1akt6Qsg6Ah7/yV/4nRBi08PT6Y05Op0RK8p2v3eFi+hylDZEUrPOb6H5Dr3XsaKjjEbs3Ut75xjVm5+csLlYsFwW9nqbXd/R6fYbpdYrZc6aXCx5G8K/9hd9i1Tic0ty8cYskS8NervW2LyucRzjQrsW5Bmth3RjKOiBsD3fCPRbIbJLZYoWUktHOLkkqsfOG1WxOnqQspvPQML12hBIhBM8LT5wkSO8RxtAIwc7eHmI8pC1XWFMxaGoOvePGnbtEac5iPsVjkWkfKUPIaV2X7N24w/6N29y7e4coUiAFBgFes5gvmU+nHF4bURUlZb3g0eMlN29dZ2d3zN7OmKLYI0tSdNSjbiqqxmCdJ88Sjvb2mM4vOZsuefDpx11GmOftd77NJ0+eIa3mN77721yc/hFZb0I+us218YBxpsi1p5FjLmbHIBtU1DJK9jk9OaFerfj2r7+KfpyyrBS6b3nw0Sfcu/sq//q//n0O7v0e58czzs9WnDx9n/LlAZPxgJfvvUo/uwFyik49v/UX/lf89A8uOH16iqgX/P6HH6Bkyk7vX3IYn1CWKNIkiSCJJZEkQECdw3fjfW9DEeBdWDxDBoFHCo8WLpBBbDhgW9tgjd0WGcYF74V19oUR8AsDiW7CKz3b6cAmCTwswlvuVOeTuzLLBXpBN0qTm4frKD9eEE5wXWiT8PjtVMNv/+5WNoXEC43ghUA/r7aBsQFNqLZP3GO3zyWkG3fTDuURHZa2ci3eG7w1rFdLymJFf5gHk6WxFEVFmkRopTpNrsAaibOBwBLrCK1EwFoiwIWiRhKoJ8Ek2yGChQ8deQg+CR/07t4F+U+apt3rgCiOQ5EkQ55H04RRrQSEliix0VISphfComLJuDdCS7lNNY/iCKkVWiqSLMYkEU3abaY+oW1TUk2XNGm2xJjOtRHC1thIBl5MKw8dcaWjwKsnTDGEVLTWUTUlqAgLJHnGyfmUpm7oZT3Wq5Lp5YLnx6ecnZ5RFA3WhdfZy3tECtpy3WF0O301G6pV+LXAIX2QmuR54GML4VAq6iQlAiUj0jRHqzgUwN6CDGm+gdyjkVKgZciUESIcvrxPw6FICPqDKHz8tt3Wr+4lVcwGRV3XDUpXFGXJcrWkdS2iqZgtlzx8+AzhPZNJnzQXCG+IlSOLBZFv8XVJWxRYO6ZtWmzrUDLGtAbvJTpO6Pf6NGWJMxYtJFJ4rAythbYKZJqiqME0uLYJQXqmxrSyG446ivUKFUVBZpAPQ4cMESSjiQ2TNwFVW0J3oMyzjJfu3+XwYA/vDZEG2YtIkoBnblzOaGgoq4pBHhNJhzUVzsYU6xm6SUi6UDqEJE0zFus51rWBeGYcWZJ2rAlPHA3DYVTCsJdSr5es51MW0zl101DVNUVZ4QiAA2ccSZbQH/RRnWxP6Jg8zbrkaol3BushjhRlUbEJAV3MZhSrFaauKVcrogishLYuaesKZxoEDm8bcBFYHZpKvlvA21BkhlNGl7FjzJaCU1Y1vm0YpRFZAjoOa+3e3oSTsyLICa1Bd3hX0xpWyxWum3xLAUmcBB9cG2RdSim8joKM1If9p23bkKnS0bm21Dul2PjoNmtOaCQFyars/G9CdVNu77r3qlvjO0mVCZqnbiLig0zQhzwcKVTYd3yQY9muofbFZPENdnxD+uugIips2XVddvsfCB2aKp5u7xLdOoUPoX5NCA0FOonwC426r+CVphFn52uKomXvqIdQDd4JprMCLQJVyBpD3ut3TSLPaj0nTWKSZIKXOd5GOGORccvhzoRyYVkXS1ocwleAwvlAH7Q2rM1SWtqqYrVccX58xu17Awb9mCTJWV0sSJIMKUWgIqkYhKI1HteRzJT07I1yZnUPLzRPL9ZhCtPJzlsrOD2fotWKk/MZ/fGMdWlZFnOaOiPRQ0aTBDnvsUqH1E7w+PgR+SBBRpLDa9fZ3T3gyaNn2LYlG42DNNS0XUZKQe1q8BaDZl2sAUeatEgT9jrXaOarmrIokN7SmiH5YCdkQdmCXpbg+w6FJOsJpGzACZq6QmCYLUuWxZzxzhiihHQwZnJwExlF2/Vxg9sBwlnFWXAmBPCJCBWHLKk41cRxhNaq8+lalA7J2hsFTRRFxHFMluWhKeiC91Ioj1QS14bsHy1CAGYsBDIOjfG2XjP0Dh1HZL0xkx1HmvawWAYdQl4KgW0bpAjkz3zYx5ou8FdoJqMYLVMUgRZYl1WILrg4J44jsiwlTTJ62QAlNaARKkZIB1JQ1w2xjhgOJiT9MUoJhA5nzCRJEF5ia0PjS7RvWS3WXK5mpGlMFgsmw5z7r73Gw6fvUZZTrC3xtiJVQKw5Pwv0V4GiH0n0zg5Sai4uLmnqOUIosnTE7j4kaThrXV6scKNnRHGFMhV/+Mc/Z3oqaMo1SVsxHO6hVEwv+XJBGV+6yNDaEUe+y8oAiQXrsT6MuzbiJ+dDQJqxLoTndQu7FC74J7Ad3rbGdEWGtzZ0rX34gGxyEDaLLfDCwigQPmwDm8ReOsnPxjAo/FV2hO+M3hstLV0YIAQtIF4ihAUR8KxI0008rrLCr5ZjH2RU3iLQ2yLDd2nOwQvQsdyR4DsWO+EwTodXRXaoNue6QstTV4ZpU7NazinWSwajfqj6CRQSZ0NoU0jXBSXBNOGwqpUkiaOwKPhQITtrQaorGsnmufqg63UdfUHg8c6G47ySZGmylUZtyiQpJHGa0tT1tnMmUd33xKERWNei8ESJZn9vEroJXaGV5QlCStqmJY81Mo3xvYz1atUldnuySLAuK6qqZlUIFqv19v1quy5dQGq2Ww+H8HTEp3DzOhEjVQoCbFtRVmuM8zTWMt7dYbZYs5gtGQ1GLBZLzs4uef70hPl0gbEepSKSOKbf6yGFoy1WIbeiOzhYb7sp1BXmWHZ69sFgQFPXWBM6y6YtcDZQXZI4Q6kowA8kxDoUvSEHI0GrULC1PuArw8EkxnqBVJrxsA8iyHea1nzZW/bP5KV0EvS3PmBbi7JktV6yWC2QOtDjVmXJg4ePsW3Lwf6Eo6MxJJZIwjDTWFvhiiWNlNTlhLqsMLVBEzFdLWkbh44z+uNdSrGkrSoiJTGmQvjQ7Gil5eTyjPOzSw4Oj4hwSNvgmhIrRYeMbliuLonTBC9znE87H1KM9SoclpVEJYp20ZLomDSNmexMePWVl5kMU7xtiRJBomI8CVGcECWapoHWGnYnOdZ5GmMRvmW1WiCkYj+JMY0hihOyNKOu11hvkVrQmjAVlVKglSBPstAdqwr6ScLDzx5xeX6JN55lWdHaIJmxzlOtS1bzJfm4x8uvvkR/OKBpW8ZpDwE0TY0xoeASAsajMbOyCoCIJExH2qZBWIOpym3HsGkqsAbpLUJYbGuIo+Bnqqq6O/J6qrbtSIDdjiGgboLZvSwLlqs1GEMvUuzu5GQ+RkeKW7eOmM4/oyiDjCpLIgprKcuK2eUMIXwouGKN7+pw56+St6MoQuCg86HZ1tLULXEU4dPQeNGyk1l0RTAQjkO+y/lRuqPibDKcfPBeOYPvphybH16ITWpsOJAo1dHoLLKDhuADZtZ51+nTuwIglIPbENQgl4oCpKRrcBSuCHurEMRJjCPsny6cqNgklkdRijErmqbFb/KIOp/gV/Xq9VI+//yE84s5t+69jraGdWG4mC442Isoi4J1UbG7d4QXlsZUzBZn3N65R5aGQNTjy2PKdYmvDbvjIQ+fziiblqgv6PU9WoL1AhHFtMbhvMVj8MbQrEvm55dMvnVAlkZscOr93gAhYbFYksY5UkdYH4XvjavRGm4cjukrxcW04JPHJ7TVJbu7E8bjMUqnPH5yStu0TKdL+v0nrIuSZ8eX9IY73Lx+g53xCOn7tPY688Wcn3/yUw4OdzjYP+ClV15nMNjlH/7JTzk/OeF73/8N2mJNY8NzP3n+BOtrvHQMipambMA3tO0zRnmC8DnepCFwsy6IJazajP7eAd5UzKbHjG/eoRenNMMWFXmWixXOeOpqATTMlwvOpzP2Li4Y7e6xH+UMd6+jdIyQEh1FSNd5azt/p/AGXKCLCp0Q65i01yPJYuI4qCKaymyDKa31IVukl5H1Knr9HhDOPNYH7xGdRMpaixKSSEgSHYVmkwSZxahYEaXBoB8LmOzEjEYGIyxeyrDfVjUSQRxFREpRVWuaxQXWGtKkTzKISZIBeT6gqlc4E6a3l/NLdKSJdIRWml46CA0pZIA4dOqWsmqQaAaDHnvjCc1qgZWhieyFREmNbQsuZk/oJ57pdMmzWc2rO7eJY81wOODb3/kuRsw4v4D1QmCXS/LEk6iUhw+Pab0mzjSpyNm/9hqrteH9D95lWjwmkrfp93bY3RuQpkvWi4pnz6bU1ZLBIEJowT/8Bz/k7uHL7GY52rRcP7qNlJLIfLmzyJcuMmyzphUWJRwmChxv23klTNtuC4u6DRMJ4wJm1JogYWpt6Fw2TRv+fmfA3eRisCFEsSEydb+/6dbI4IXAbCYW3RyjM4Rv/q51PiQ7+6t5sBBi88/AXh24N10q7wWuI1VZ100xNqNqXpBMsfF6BJNuMJmHHc11khrhNUJ3Eq2uXncuVN+brxX+VHSm3uBHMbalbSyVAOsK1lWKVhFKBU9FkqSsih79YUZ/kGJcEhCx9oTRoM9kNEYqATpCioCyNcZ3iFjLxrAexWH0GHjqEqECAjfLMobD4VaetjGH9rucjrIsGQ8H1HU4EJi2Iev3SCKFMyV5HDqCaZribIvWEEcx/UE/pHo3NTjHejVHK90F4K2RJCgtSWOoa0MUQb+f0jQNZdXQekuSxiFLBQvCh/eqrbGmoWxqEpMQ+ZhYClohoTtcSOsQUnfFV/hErauSX7z/IVVZslquKJZrjnb3EBsdN5aPP3gfrQT7u5Pus2hx2zJaIMNHbNsMFFLR6w+IdUxT1xjbIGWYOi0WK27evIlAhUmGFKgoDVi9KEFnaWcuhzTNQxFpHRZH3BVQFh1MrK0F99XVUgMU1XJ7EBNS0jQVcRzx+muvItOIYlWxWlTY2nMyPadsSqQW7OwFaWAkYF0sqIuKZrHENQ3xYEjrYbkomE1DUnuSZUyXNYtZQVPX9LKY+fQMgSVPI44Or9HPeywP51TzGVlPIrXDLC9oynnIlkgSXv361xBaIZUkiWJcnHJn/zrvvP4WIhLUbUlVrzk7ecb0YkpdNigR8d67H3Hr+j5vvHoLKRqcDZtk0wTNcN7LGAxHOAR1GzCj42EPuTZUTcP5yXOu336VOM1wEu7evUtdtVRVw8nJCaWpcKalKUvOz4/RShBpyfzyjPXsAleXpElOsjOktY6iarmczplPZ1xOp0SXMVESk+YZ55cX3L19n6auWc5n7O3uIAmTgE8//og4znDOsZhd4NqGKJLkqcT2IhyGxjSUqzlJpLq8B4HzhOfnNlTA8Hut83gpiCPdIWuDxymKIu7du8tHH3/Kar3mkwdr8uyV0LQRsDsZc3S0R1G2DAZjltMg9RBJikBiTE3b1lxeBhN8lgUZ5XA4xLQurGV6AJ1nL4QSCoqioqpKDg53ArwinMLD1ILgtwrmaQAfIBTeIoUPRuMkCt3OboNxXXJxkNwSwBauRWmJUDJ0PLvME5wjViGh25iW1SpkMGyAJG3bsCFceV+jtOqCUFsGo1FHFWupmpqNPVBohe2w2qZpmc3nLNYVxjniLGXjMguS4a/mpVWf6zf36Y9jFosZ1imUSrl1a8Aod/RuXUeriH/6z/6YNE+RWqK84On5BTsTyY2jHYZpFUhoxQK8YxglvHr9kLe++QYfP/6I09kpF/NL0H28M+AFWuW0tWc82eXXf/0a3/uVr3H6fMnZyYJvvnSD09mMZRmmjy7KufHyq7z+6uv81f/4/4zMNHk/5emzY44O90mGGeQRF8ct6/Waoij4xje+wcnJCdZavvb1r/FH/+RHeAQH+7e4cec61hQcn37GT374Y371N97h1v1bSHWHjz58ENDONSxMy7e//Q5lMeXpxQk+idHd/n50/RrzxQmr9RwhS3YOd4jzmGTgefb8EipNYjTffrXHK2/+BkR9/uZ/+bu81l9wNBjy9b3v8INPfkaSS/q9nEhepxCSNIdXX7/GP/q9H9AKwfU793nr9Zf4+fuf8ODhM/6d/X20CkoMSTB/KxHOHnXZZVtJRZJGxK0CqUJAr5AI6xA25OsoESGEwnpBEmVkvQH9XU9/Z8DFckpRFeSTAVke0NFN224byt4HX1WkNN476qYgSbIOtiJRkSZOw6beOAc6CUWQCflAeZqRxjGL+QxkD6kkB/vXmc8XtG1DOqj4xbs/IpICqVNu3n6JvcNbOGd59/1PuXXjRhjkWotOQhCmMYb1/BKd7LBYLzl/+gk3D3fRQiGEYzq9ZO9gF5Fozj/5CMdLpKzY11OOXvKsypY//OmH/N/+xv+Mb37zG8HPOzyg0VXISbGKV+98j1X9iHU55enxcz5819C0BU4sePtX7/PRh5dcXhxz6/aIV1/9Nkqk7E2WPH/6I1Zli4gyvvvdbxLXoCzg9nn3T37M/v6Qr79278vdr1/2xnZG0EoHvsW7glLXW+OzaTsjZUcj2VB8vPM4a2iN6YhRlrYxmNYE/bINicnehZFzGPeGjj/dtIIXxsjeg7pqMYWJgffdwZ0vFCgedzUR/qXR8IsFhhAhuEiIzaBEbgsJ78X2OQjxYpHhANut06HLpaQGr3BCIHy79WqExwiPLeRGhiVwPkTICuFRyuOECY/pHVVd0LRVII/IGCEimibIAWbzJUmWgFAoFeGcp6gaYEHnBsQ7S9M2IAJ33rlgGpSbUDnfjfUFOB+wb7obZ24+/LYzkgYOdSjedKSIkxSpNEVZ4DwY64hVkFhoHaOiBGsMjQ0MeMO6M6KHm1yjaG1g/zuhWRZ1579pWZc1RVlT1i1CRQjlwLiOpR+IK5Yg4wpyAstiuWK8MyLNU5z0RElK29SsVisGvTwQbUz4egeHezhn+NlPf9YVoh4VgfAm6Dadw1SGNIrQuptscUUhwwaqj7P2C0Vw+DttJ7m4+nwFLn5NXdfUTSimrItRaQuRRXbVSmsttm2YDPtIEaFxiJTgHxIKoaMQzqcl6bD/ZW/ZP5NX1azYKGecc8RR3OnhHZGyJJEgGvfwVlLXDVY4WhE6yjgwrkVYT1OtqO2KVVXS37+GU5rFugSlcMiA2K4N67qlqVvWTYV3gHVU1Ypi9ZhBljEajLh3uEvV1KyLgvOLaWC6O4cpak6fHSO0wuMpy4q2KGnLmrooMdJRlUuqaoXwhiSOQz4BhuWqYdjr0xqJcCHQTmmFKZZ46VDdmhLMvxFRLHGuDTQVrSjLhs8//Zgk7zPa3aE36JFnwfwdJzHFakmxWjGzDaINnqjWWRyWKNE4F+G86eRQilwJ1qUi1TFSRzgpmM/mlFVNrBMuzy8ZDYfcu/cSvm2YTS9ZLhes12uausJZS12V9PKUOEqIIkkdQ1m24AzDwQDb1lfhq1J2uRZhfZbqau3zPrwO50JzSigVDNBKs7uzw1IvKWYr5os1zhlymzCM8w4lbWjqkqIICMn9vQl1XQePRBQDVxOFTRYFW/FTwPWaDt/dNA1ZHhLbryAeXQ6G6Fx7gu16KWRo+uAIUkkpwrqvBUqGsL/N146iQM3yzmLbeosgd87TdB4MIQVVVW3TwIPfo9srxMYwvqEUbu6gzdrSpXpr3Ym7XDd1pSOIBROs1BFR7LFNw2yx7GApArUZ93wFr4efP8WrNVI1tK1CMMJLjaMmi3MkjqYqQhNLWJIsZWc0ZlY3XK6fM//4mJv7h+Q9gYoVhiDBKnXJTz78eZBst4LYJfjGkPVjojjHix71MnS20zjiZz/7CNuAbQWuWfPk+SlOa269/CqtgcdPH/HZg09RUYxDUTeOy2n4TFsEqyrg48ejMf1+n2vXrjGdTimKAqUUeRYm2FmWdllMnjRNeOXVOxhT8fz4CYvFkiTqI4SgLCsqL0g1RGlMkmoq5xkOBty7c5fl+Sm9fEyejZBRj/5wn3wwYLgz5Pj05zTNCr9c8u7FQy5NRG+0y+HOkIiG42fH/PT5pwxu9RESWtsSa0XbGpbrJT/52QnGg4hTnIp59OycorKk/QFapygIEwWlQ8Nwc39Jid+Ip0SQFyqtiZME8LQdba9qfIDexAneC0zj8daj8OAcWkniOAprrDFBMm9MwE87vz1/yA7oEGc5pm1wUqHiFN15N7z3aOexPjQJpPRoH+RLrZPIpEfSnaFmRYtIekiVIFTEy2+8jW/XeBNCqyMdGgbXb2akWRbCkZuGyvjgI00lSiXEwjM+cFx3ho9+8eOQ++SD4sdLg/eGwSDCiUP6mSa2SwozZVokGBXx577/LSIGLKY1n33yMQfXYuIkwQvFH/7wh0wOS5JEkiQTKp2QZoK8L2lrRRTHDEYwGuc0rWK1WPPxg8/YHUXodIRTOY+PP2cnjnBoFnXMK3duo1XLxenzL3W/fukio23Doc6ohqbZjHDF1jcQLr/F7G1M264LW6ubhqYx2DbQiayx0PG6Q5CSDQXGC+KkLxYYm/+LrXHIv/B3r4gFLz7GF//tL18hbGkztt+Ig4KEauOx8NsKoZtueMIovCtAgk9EdxkZHmcl0oGXssv/2OAJJVebXbeZhYAJhJRBdtBNGIwxeBPIWUq2KJV0/gXLYrlkvDMKqEMZDj9ta1i5MjThvNvKBKTsOojOdwm6EimvvCSb17dJ+t78nbYzF0oZ07RmqyXWHV9Rao1SOpCkvCeOFUKGrrunG/93WOLGlGwSbyOv8KIjShgDCKo6kMSEdIGNXVuKsibLYza+mSsDfvdOqk4fbRSrosR5H9KzlUR16cdt23ZZAcGdYp2jP+jRW+bMFlO0CLjZUPiEhShMnUxIVO+6hv7qg4V0altMh+tFfKQPn+cX/CIQNI5VVXWPKREq6gzu4fBlncBYQ1VUjIejTg7RyScIFLPwnjlkp5//Kl9JFiZz1jmqogGCkTkYsn3Ax2pF23qKsqFqDctizSD3JDrIEkF1SdDBQ2GTGKcS1lUbDtDOYpzHIqiNpbGOpqnIooBKbVYlZ4sLru3tkuk9BgcT4jYUylW5Jk8imjaEt63Xa7wIiezL5ZJisaJYrphfTKlMTVOvMU1BP4/Y29un3xsQpwnTVcV63WCtwHjQceiIb5sYnaHX2ZAir7puthDB89RUBU+ePyPtDbHOcZgckPVyenlEkmassoRVGuNFkFDZtsF31CF8wFevVmt0okKCdAwDkxN1G6p1UBuLbS2T8Q7OOuI4ZtAfUC7nWGOoqxrvfNAgOwO+JVIJkYa4+1Fhkd3hZ23qMJmwdnv/hJwPiVBqOxMO02+D95bGGHScoCMQMqI/GCBQCCOpqjYEdwnoDxxxrAPGt66o65p+P2R7PHv2jLyXdvQqtzWthxyKFt8BOowJkoxIhOyLYJaWWx9auPz2IL5tLHVTaCkI7HwfZKYhZ0mGJV4IoCIUAbILw5N4Z6ltCAENe1bAcyvdNehMvSVcyU6qBbzw6800/UpCHL7Fvvs6oiso6Dx/wbSOD0QpKTUhwbylKIMxXktFJL/01v9n7prPl+hsjYpb8IMuG0pS10ucjTDWUNcNgjBx0kqQRDGJtixXK2aXC/ZHOVJAlICXnjZqqdua9bRif7SPEDGJyhGuZRAnqDRhVjp0FG99oatlHc4jXuJbT90YlNT0soxVUTC9OOPk2THDwT4yCROVppmzWBQ01jIvLQcdiGEymWz3ZWst8/mcXj9H64heP2cjnwPBtWvXKOo563XBfLbk+tEO3kNZFeBaVB4aYM45Ip2SdBIk50GKDERE3bahUSlShBuh6WN9iXcVl/OK5skJw7XhZm9CP45ZLWoenZ7xzst7KBU+b5tmbtu2VLMVXqQkWY9sOAHvmexeY7RzEKR+2K2/cZtlBiAFzonwOe/OQpu10ZpwKPdNoGxGUUoUx0DA8rd1jSkLTFWhgEjKEIfQtEFH0jU7QleLbQwAnb/CGANSh3skSoLP13uUp8vMCWTJSEhwHgPIOCbSmtZYyroiT9IgoXeOgxu3addzbLVGAKvlHLyj3x+Fhro1ICOKZYVOekQ6wnlJJBx5npD3Ej74+U+oygZna5IkoqoK6qYijhSN6DPoG6J4wdwXOBWRpH1eemnI9BhWs0vmFxXDXYvQAusVl7ML0pFH6ZxY9ImTiP5AMdmNsT4nicO5cWd3BD6iLEtm8wXjgccZF1DjdYWTLQ7Nxcry1o0x+JJlOftS9+uXXmnms/V2URUybNZCiK4LA+AR4QSw1ZIC26LDGENjgiQqnDIsG1KUcO5qaiE3h7SNh+CFX9Mtsd1/NgfQTbdqE5wn+OL1RQzt1fVFs932dxHCIdxVpycY/PjizUFXiSND1Wk70kd3aJBeIdCdr0CGw8NWpyvAifAWdAZBKTXeErT6AMbirae1LcY4hKhpmorj42MGgz5pHDMZDlBKYh1YZ0mzoPt3zodDS7vhojuSpEv87oqYgKcNmu7WukCZKiuSNNm+v0VVBeSsv+Llb1+7FJ3R3+NNSM60NkisNh1a5zrqiQw+FrsKTGvbfX0IeDkPVHWDJwKpiBPNYlWENGzv0EJ1jxVejzcBMxlFMcvFJcW6xBrLcDRBiggpWtKkRxxlSJ0hdYqUisYYatMGKpaQtE3Ncj3n+rVrAYXXWvI8D9jIbREmOoqY2B5eNtrpqlqH7sRG8mct4ZvItpOqlGI+n3f3B+zsXiOKUpSMiOMUUJi2Zb2qaVuPFmH6V5YlMopDoq9pSfIe3kJTfXVlDgDf/PbbZEkGDh4/ekxVVF3DwaGjYAIuygWfP3xMUxtAcn5+ysnhiMl4yP7ODjvDCT4GnEdGlsXygtYJ6tYBEVXdUtWG8e5+mARJFeSbFmzrKIqKR599zumz5zweDrm4vMM3v/km927d4xvf+hU+e/AJp6cnNEXF/sEelWmojSEa9NHpHKciZkVFdbagn2b0x0NcUxALQT9LePm1l3n+6AeUVYMxnjQPFCsQ9PojrEzQUQJa0RQFzmliHLbLTDF1xfGzx3zwwefESY/5bMbl5RGvvP4at+7cot+THB3u45ylKFacn5+xXq8oyzXKga1bVsslH374IWk/Dwd8Ibh+9zreKxCSJM05u5ghhObWrdscHh5yenzMxx+8x2Q8RIiQU6FVjlItQgQQQyAsgaAl0ZCnoSB0pglde9N2aFgdDrtb7XV3wLYh/6ZtDU0TKE/GeXSUcO3oOpFOuXY04eX7r/Lgo/coqzA5HI5qJqMBkdY8evQs+Bu6vWU2m5JmByRJjlKQJElI6baW2WxOEqekac5yuaR2Db3+gP7tfpfToTq5UtOt05K6rkmjkEK+8WSJLdL8KkMDQqNH+iCfjeOs2ytCGGoSJzhnaNurdG0NxFl4T2xnNodOhikldV11lCkdTKFx0h08m+36vdlbQ3HSGc1NzSabyftN5lOg8pVVG0AFSFrT0DpHwy/ve1+dazKZ8OzsOevynDu3v8lwMKaqS56cHKPLOXmSoXXMZNRnZ28fpSLOz885eO0Gewe7rHfXPHj/U/JeRtZL8Tl8dvoEqVKODu+STW4gGoMtCnrCILKIWVHwh3/0x3znG28SK8lsseTf/vf+PT76+CM+ffApO4e3mdx6mdY0TM/PqFeX7PdiXv7WfT5+csm9V15jNN7h4Qc/J1KK56fnvPeLT9j5lW9gTIBQPHjwoPsM1Pyjf/SP+PPf/z47u7ukvZzpYsXTJ1OW8yU3D66TJTH9/gF372TMZ3OKoqCsZt15IMW0hkdPznjnW9+jWJX83f/6H/Kdb32T83M4Pp3x8Nkf8fU3Xqef7lFOBxxdT+gPNG4Y07//K1R1gzQWXZW88s3f4vDlGn/tPfZ6GU3VUNctxq9Je5LB+Ig7d36Df/LjH7J7eJ2vv/OrvHHnLoPeiDjp4VoNyuGFw9rgyRLdec1LQVO7TjKZgAy5QO1igZAw0Jo8ThjvTTibLzDOgIe6KJken3D89BGpB2EcEdDMVqAUKlLESYRpmq6oVl/4DHkPUZqFs6p1tF4QqRCQqbBYUyNF8GLggwy6bUPxYq1EKkjjtDvMOxosXsc4EWF8yC5zxDhvqYzCWUeeDugNE1btGb3hLgBPnz4H0zAZD0jSjLfe+hZPHn0SJLCR4OGzZ8GnJoFRw/3b+9zf3+d3H33GwZ37xFHC8+MfM9CvcOv6PvuTu9TqEy7mc4qq4nf+td9kWTxmvWpYnkUMxjDejdnZi8HcpyhrWrfglVfu0xT7OJNy9+5tPvvk93l6+iGrWvFv/sXv0i6PuZwteXy64G7WcufWEV9/860vdb9+6SKjLKvtwX9rDBYbTngncXpxkfOb8fCLC6PYmoWdM6G664zRYZJxpWx68fD/YliSfqEDvyFQXSVUd4nU8IXn+eJz+uce858rNDbSqDCt2XytzcGZzguy8WyEqUogktCNqC0eLy3e24AS7LqXLswqgolQ69Cltt1ExzegVCA2CsK4Tvgt6zkYGy3r9YqLy0uiKGI46NPvZd2mFIVQMBfeE9wmET1cLxYYG5IKUqJ0TNO2SCWJO5ObNTakcxJyR2SH8AwTkbbLwegY8niauuZiNiOOInr9Plmahq9lLXVdI2W0PXC0pghmd2eJo7gzQzkMLoRYCYGXGtt9bze6advarlunaKxBEELTIp1wcTELqdijPYSIECIGFKtlSaYGpLlitao4OblgNltxcO2IxWyGlII0Sdg/3AcXCFmz2SzQXvAoobap5lIEnajqPtOtaZFKEcnNPSHAGZxpO2rHVT06nV4CnizPSJOcXj4kTnuotI/xDlG1tI2jLGpiJZDe4q3pjMWKJE6wrUGqMLH5Kl/LteHJk0eU6zW9NEEAsVLoOGLQ74X621tuHh10xaMLh7dEg4CqaTg+fU5ZV9SmxWvJaLKPEhrTNiyXJUJG9KIU1awQQoMX5HgiZ6jbCl+t6SeBBrIu1jw+Pme2/iNGwwE3blzj3r3bjHZ2uNNUvPfgE5ZlSdW2tBam5zPWixXLYoVWkt3xmDvXD3jjlds8ff4UlOTmzUNu3jpEac/njx/w1tfuIDoD9HsffswrX3uTXj/Be0+apygRaCtFtUbHCd4aitUC2xRczBecnZ7z9eZthv0RvbTH0dE1lNcIFRH1I5I4YEtbE0LHTF1jmoZX3niD08szRJcNU1eWum5oW4OOIu7fvx+ABs6zWlwQR/DS/ducnhyTxIpYpbR1ST+LkcJj2iZgtI3BtC0SS6Ik0knKpgIXQliBLohVdbAKj3dhM24bQ5IkWOHBG5wj5G2ULWX1EOMsh4eHvP7aK6hIhfd6XtM0htHOBOs9UiheeeVVZrMFP/3pT4N/oWmpqpr5/JL5fE4cJ2RZn/V6jUCGpPbaIeIAAFkul8GjVmnKsmQ46nWeuY4eJ0KYl+zoUBtztpIaSxM6uQK0jAI0w4ZgxKuze4cM9yLQ77pup3WOOE7DpNg5YqW23jxhwdpNYGl4vKvMDEXbNtvpavB8eSAQCjfY2xBKpwMYQEFrKoSK0JFHNC06kjgTZGxf1ev07DE7Ozvc6B9iTcznDz9lOOrxG7/xq7z3h3/EYrYgjhPeeedtFss1i2WBlAmXzyt29g557aW3uHji2d2ZkPcSfv7+j7h18w79Xh9JzHq26uiEFU+ff87u3pAsS3n9ta/TmIqmsSAsP/3xu3zy8GPOZ2d8/7f/Eh9+8CHTiwsWF+fU86dUCdT9lDgaUpczZtYwv5xzenyK0CnvvPldFotTFvPZtol17do14jjm4OCA1pScnj2hfFozGB/wxutfRzjN3/vb/4D9oxFSC4ryOc61DEc5k8mYdXGJijRR0uPevZxY56xNja0hT4bcu7/H0R1IP33I197YIXIZT94ryNwl0U5C29/hb/+n/w2vHo64dXCAv/k2//RnjxBJSd5f8fnDM+bTirJo2TmAw4MjnBX8/u//CD3OOLx2i3svvUYSaXQcMoaINcq3KCECEEZ2Zy5nQUl0kgSKZlkTx2ko7JVAaRB1S1HVnK6eIeIIHWmqYsaTzz7l9OlTnj16yH/21/4a3/3u97h79z794YSqtUz2drj78r0AmfB+2/hWmwaBD02/jeQ+MIpc8FpphxOhOYrytFUVgo+TQMoTUSBNuu58pVREnCjWxYpIRaSDMda19HSMxBNpSVWV4BxlG8ztRVWHybOEqlrx7NmM58dP+Mbr9xHiLlme8PHHH7Je10DMwcEtPr18zM8/qnj/3TW//+Ez3nyn5ubNQ7QfcjkvuTh5yuMHn/KNbx+SpxOyXKN0QyQHJArqOGNRfURx6ji5ULz30/d55dUJt26PuXh+SRz1sLbAi4Lf+M3f4enzS45PLqEBFfcZ7fd4a3fIbgyj3UN2D/4lezJa07Ah/Ah5RV66GifDBkkIV4f4FxNJw9q5aWu5QPvYimI2j/TF68VpxubaEKOu9LabScbVM3rxOfxpj7X5+S9PObz3eNfppZ148R+/+EidXl50k4qNfKrrdLmQabDV7W+09d4RYggVQuhuRCheQOZu5BQbs18Ibwnmj/Cam7ZhuVyRJRnzxRLV6QmUVgT/R/ghpAyULet+6XvwS+m1UgWcGkESIjqD5gbba7siTjg6f4YIrP7Qi8BYS1WuaZqWJElCGFiH9/WeLs2yCTsygSTjOlG+Q9Bag8NCLBC2Y8cbR9PpKjcUlk2+h/ehuMEFr4ZSOrD2LxVlWaGTmqqoWC4KYiXxSQ1pQyMiAgxBk6Z93CAsckoQUIfWErVho67rEBi0TVYXsrPqhzGu7ChicRyzKUq9D9KTK8301eexrmuqqqSqSsqyJooNUjuUD4eYwNaXzGdL+llEnoaCprEhYCiJIqqyJE4S0s409lW9Hjx4QlMF1GmhBYMsI9IKPKxWQf6htWA0zMmi0AFSaMqu8+usp16vEcKRSkGcxvTj8H0RxpPrHgGuranbEu81SkhyKYi1JMsTst0R4ywJh18kUZZiTUtZrFgvZqwXQ/q9jCxWXN/f4Ww6ZbZcMS3XuKZGekcvS4hiTb+XkcQabMuglxJlCf1BxmSnT7Gac3LyFP/120EiZB3rIhhDpVKI7iApCZ9FKcG2DXVZUhVrnGlp65qiLjg7O+fzTz/HtY4sSonTBB1roiRCeImSMV4rIq2QKOIoYbwzwUhwePJeTp6HRO+maTvEZ77t3M8uK6wxoVEjXCDSKYmWEVma4J3BNHVI0e0O4cKD7oJJRRdCt1lfnA9K643saDPZ9N5vg0E3mRPOhwlWY4JfYrGYc355Rn/Yx5mGtbEY4ynWVSd1CGnXtgsn3N3d3aY7a627QDsfOqMQELlVTdJLybLQlLmcTplMQjdx42/oXkUX5tetkUp2obBXz38DAQmvQYF3WAI1ym/3oav9QsowUfAbCVQn3/RcIXMF4iq5mA4W4jwbsEhAYl/tr5tE9qtmXsgYCgGAHmM11gX4SJBnglR6Wxx5/9WdiF67PkHHCqEktRPM5+dYX1LVBygdhUmSjnDecnZ2wWJZ0h/s0FgFjcI0kjifkPZ26fVTdgb7jKIBygiWyxn5SKHiGK1iHp+fQQYHWcTe3iHF4hjb+RSliojj4KeaTc+ZzS5Zr1bgYdAfkMaeLFGUxhIpSZYk5EnK7mSCUDFxlrBor/bljTdICMHe3l4IWDQNbdtS1yX9QY9+Ntn6Eop1ydPnx3ztjVcZjnpEieLhwwfs7MYMhgnXrx/R1g6tNIf7B0QqQsehGTwZ98A3KBVx/UaGpqHVitbHxEoxziLGeUKjMqbrkqhdsqNWVFUbpgBxTBSF/Ky68sznC3bHRyRpj/5gjGpros4P5jqp1IYGujl7eUGXdh/jsSADLTKKNXGi8d5gHbQWpLc44Qmof8/Z88esF/OgVHSWcrViennJYllS1iFf5y73MMagummftRapdAgYlpLWh3OV4Eqt0jl02ehmnLWh6PFie9/LDuuPVIHM6TxahXy2kNEBrgXfYWqjNAkwFxvoZI4giZPekcaaVVNS1iXGeaazGdW6pG0szgqSJKc1UFSWs5PHRDoii1OEz5DG0hZrTi4W5Bqsr8n7kqps2Ts6oD8eM589oF4LXBvR68XUpcVLBbJHFFliLbBNxbs/+5CXXu51QJ0Vq2KIM5ZEgXKSdQO1dyhdI3VObRzn89WXul+/PF3KBL0pv3Qo31y/LG/65anBxvEQciw8YjPBEJ1bQWwO6X/6Y29ObJsDqu/+f/VF2K7rf9pz+OVi4kXC1IuLddc+7yRc3d/dlEHdEw55TZsiYyMJ6KYbUnceE3BO4Jzp0IPB6Od9hPB60/C7ek9E0A4GfHooMjaFmHUbjWU4JMxnCwSSfj8LGy7BAKi0Ivg8BGIT3eGvCr3AWb9KuA2THkGcpME3UzdBH64UWugwfeqY640xFGVFr9djMBiENOu6omkb5sUCvAQtaFzDelmQJAlRHCNiRbMOuOJNeNhVYnBIeHfCEicRtrWBBFO1uMaihEJJjY4STHsV0BhFCW1T09QVWmuKdQgum17OMS5ivVzy7Okxk8EAI3s0YonVCqVzslyyWlXs7w9QEqR0xHGEqUPK+I0bR5ydndM0begISr2RdG4+OAiCiSxJ9PZzVhSrbnpjgiTMmu0EzBhLVdUslytOT89ojGDQwjjqoeMEKYKh9PnxGYe7A/JkSBQpijqEB+o4YjGfMhgOmYxHf+r991W5/uCf/YRrB3sMeymPz57x0t2b9PIYXMtycUGkJb08oh8fkukgy7NNQ1E6pBfEQtIUFYNBzmDYZ7I/wQqH8Y6+jrl2dIeqsszmax4+Og4poEKT93J6aaCfZTd3iVSE9YLWeJarkrpaI7BEtDz+9AOGg5z93V1+7Rvf4LOnz3j89DnNsqBRkjzPSEdjJI6eFpi64Bc/+zH3X73Hwf6YPNdM9nusizOePn+Ec9+h9cGjpHSGUOGAFDY7ESaZWNIkZj5bslrMKVYLnGnABzz48bNjpmczHn78kDzq0R/1yXs5o8mI1jdYwEkROoc2FM9Jqsl7fWrTUteWYX9EmjqMaZhNz3Gu7jqoHucaynJNWRboKBQIUgiyfp9ER9RliWkMWnQ6ZRUhu/3AS1AirJJSiEA4+sKEWXZm5LAGLRZL4jgmSdLukE7o8vvQpFks53zw0Xt8/3u/SqI1sYxRQrFeFzgccZ5wdnaKaT07Ozvcv3+folxhbcvu7i5Pnz4N2TpddzhQmCz5sMdoNMYLweNHT9nZ2UPpTr7aXVIE07ZSwX+hVfDKuA4BHIzYwXfhnCFSCu+ClytMQtwLe1i3JyiFreuuQ9shztuA2HVedB1NiY403gdPmbWWpmnJ8z7gWa/XwePRNdc2crDNpMN3Xpi2bamaBu9jvA+G1LpZUTdN8Ks1Do99wVf21bt+7de/yccfP+X58SVKx6zKGcvigp/91HNjOCaOwiTn4ePH/ORn79K2gt/5na9RFjWmMjx++JS4NyTqDch6Od987RtU0zOmF6c8ffQZr3+rR3/YxycJ57NLJgc99uQuo/EY3IymChLmm7fuolJL+tzyox/8LtNpAV6yNxlz8+AGWQJStJy9/4BRf8TBwRHmcsZbX3uV+arg/QcPSZOky1PI2NvbY7lcYozh+vXrZJGmMQ1eKlblGqVhvNPn5ZfvUjZzFsdTnjx5wl/59/8KUgnOzo758IOn3H1JEGcZN28d8eF7n5KlEbe+/gZKQ1WdUNk1eZxw+vycnWHLW9+8y+VzwXEBi5ngV97+Oq/tZwz6Qz5qIrxc45uC5nKKFH1298b08gFp7nnw4DPm8wIVZWG/1AlxnCJtS5JoskSxrmuUDEj7rcexO9LpOA4EKemIXfAKZVlCr592CHqJkglporlczvA+SDdPnjwgUhF7+xP+1X/lt6mtY7leMV2cUtQNcT8HBKv1in6Wk0RZkHHKQJGMIkVb1cGDIUXIsXGbcj/k1+AcrTPkcRrSxG1AGyMChjZKQlaZMUGJEY97tG2XPt62AYkcKfpxAnUdoDtSY+wMgSPSMOonnNRL2qrGqIj3P3gfU5XhPCJidiaHzJcFj58859OP3uPa3deZ3H6TV8U1DkcKX5X8yY8/5Wuv3ebabp+X7r3CgweP2N895P4rr/D//q/+mKboEyeavSNNMYuJ0zGD3i0muUdyzOzimL//937Kv/vv7pP1Naad8cc/vEDYhkx71HiP82nDopyTRTVHt1/l5OKShxfLL3W//vdwf3VM3M3a9IVFahP9tpFDvfhHV14KsTWvbR6om0B0v6O6DezFf+5cR6Da/kY3OemmGeHn3eO/WHO80PX5F00t/jnTdzgVbguiq5fovvDSA4g9bDb4EFLlO+2xs5tANbHtwgfHlQOCvCiMzZstTSQol1TAJ+JxTqMU4CzWCUQL3puuu2VYL5e4tkXYBi0E3u4Ra0V/1GcTiu4c4T8iBOy1ddNtciEh3BMOWGW97roJVx0V0/GPszynNfVWt5jlKVIJ6qbsAhcDEUsISPsJWZ4Q5ZqoH9E2hqItyLMeST9DtZZyXRAnCca0NG2N9YbeMCPKNI2sSURKUxuMMKR5H1MZbGNwjSVNEnwUB+RkXeO9RccRcSRDkKNGPJTJAAA4zElEQVSzfPrJA15+PaEqCy4uL6mrirzxZIVBRCU7O3vsDAaMs4zZ/JL5fMbF5Rnr9ZLxqMdkNCDuukR13dJ2z190mR8qUttJnhQKqcKI1RgLAvJeDzXoU6xX3UHD0zZ0co6G1XzB++99hBefoqKE3cMb3L57D2MsJyfH1HVJnkoO9gY0RUEaJYjwQWAyGhElydbL8lW9Xn7ldZR0RMrz2huvk0QC01TMp0vqJqD71rVgOMoY9zPSKHT8q+UK0GRJxiAf0EsSUqmxqwWtrUEI8iTh0Yc/AamJ0h6/9q3XMQbm8xU/+/nPebyYUpZrimLNZLJHFCUIqVmtC6T3KAmJDlhdj0cqwT/7p3/Ezu4eo8mY777+Bs+fH3N5fsHJ8QmFtehBRm+QMd4Z8fjJM2bLgvHOES/fvcs4TzgexNjW8elnH/Ps+Jwom6AkRDpILU1tApHJeUCT5jlRuuL84oKytNS1o6k9Sq3AGObO8YM/+H2yXs5wPOLm7Vs8f/6YtNdjuLOLEzAZD8nzjMVixrqqMF0Ip/CCslyzXq8oihVxFG09V1KCVqCEZzIZ09QVpuvYmjYgeJWSGOO22UZJ1qOqSrx1SB3hUUE65AXGBBKhFCLI3QghgmXT0liHqVsq41gUBcYZhISI0IjpZxmHe2NEZRklPfoHCTqK8VJQm4bpYhbkoe3GC9eSpTFSJfTyDHt4iHOeKI7I85zFYs16XXJyfEZV1yRpSppEtG2FoE+vlwW0pfU4D7HUKNxWuhomBSELI44kxgRkbWtbpIy6VIsAedg0cdq6wrtQdDSmRUkVvCi2oZ/3aGm7Tm5EY0o6u0tHZLR4H1LTN3j2NE27fKMOm+4D9loA1gbpmjMt1brEWoVzYKzlYr6mqQMtsDUNvpOnVevi/29rwP+v1z/+vb/Hg09WzGeer7/1Kv/z/8X/mHVR8Pu/9yOSwxxnDUVVodOUt9/5Flk25uVX3+Djn/0eq3qNjTR1JLmozihqiGcnNI1g7RvkSHJ0o4/3Fev5lP/17/ybDPZzyrbmv/lv/z6/8u1XiBLN+fkx7773PrduZ/zad17n5LNnrA8OsCJBZWMuLk+ppivqYoltEsb5Pnk04B//4/+Wt996ibSfMp448vwGaZoGytR4zHg85vLykvfefY/3fvIZ128e8c5332RVHgMtQlRIveLWjQkiLvnJz1oePnzMxx9/xi/efY8//1v/CvnEUbUL/upf+4/4te/+OQbDMcYsWZclcdIiXM3HP15x8+Zt6qTHp6fPeP/dFYNkj1v7N/jWX36Zjz//jNNlyb07Qz7+kx+SCcmtG29xtvgEZEHZVvytv/4Dvver3+Pa4S6/ePeP+d/8h/8hg90bnJ1e8PKNPbSyeNdh8P3GPyRCbogNvqEkjqiblqppmc3mTEYTyqqhbiqUslRlS9MYnJFkWYJCQb1kdfmc2aKEuMev/eZvEWd9VkXFD/7kZyxWS6bFgsvZJdPZFDc0SB+Q+mEWERq7iRIYwDqCv28DM0KRpRm6I3BWRRUmic6TZxlFWdFWBm9lF8CriGWKR2FFiVCOfDQk6+fUdcXZ9ILD/X2qqmK5WGBsiBeIvCdVjuXlCdP1mkYn3L52jcZZyrLk7GxKnA6wXiIiQ1O0yHSf5Nqr/LO/9X/AvH7A7mRMlh/Qn2ji3prGnZPEioeff8LJ6XPqlWQy2EfFgvn6E6TO+OzzSx59/ojvf/cekZ+hvOdX3v4eDz79BUe3dvhzf+5tRu9GiOYCWV/w8NOnfHh6gs48/8av3uIX77/P6eWKs0XB/+VL3K9fusjw9ovBGy8KpgC2KNhfFjx58YIOytOpcK6KFPHCEKKzdlzVAr4rMDY4Wg8voPc2xQAhU7P78y8WFy/+/597TX+KnOrqF+Fws33eXL0Mv/0PWw35i8/IOQvdZhAkSd2EpMvv8CJMdqRW3b8nSA6E6H4tkbKjhwiF8DHOhdBAZwMppGlgsZBcXlwSaUWWxQxGOUmkwhRECKTr3j/ncVp05AbJugyIWKnU1iPinA0Jus6G74MQnak5VPfWBbpR0CKG78nmdSdxGrr3OEpTgQ4/d8KDrRFOYY2lbpuQMWFbzP+nvTd/kvW6z/s+55x37b1nv/u9wL0gFoJbLEakxbLlcpSqKFGl4sg/p8r515JU8kOklCTHSpWd2GZicScBkuACELjr7NP7u50tP5y3Z+aSoAWVEFuo9INC3Zmenu6e7vec812e7/PYht4oRyUOL8IhbL3DK0HSyRBGII3AGRHUutYpqly/bxIpHNY7ZJSAC0Oki9kU7yydXgcVJYH+VCyp6hJ0FZIcrVmsVsHvo25IohAIzueL1hSsbNW12sHPdQNPBKlQPJfqMK6l8YSEJyaSkqapW5ldi9EJSVOTJglZmlI2NdYL0JqL0yPqOgy+LpcFZVWxu93F+t3gII4I7WJjw5CZCpKBn2UkUfBlyTLFoJ9RFSuMBWSKccFozXnBbFGRJVmQLdaWk8kMYxxJlDLsdliUBZF0DAcpt27s0mn18K2rg+lYYlmtDikKjdaW1x7eoGm2KYqS2XQeAr7WBM+JkMTmScKg12W5WgbKn5Jo61gVRejmlRUCTy+PYWcEKiLPYrJUYeoVZa3x84LJ2YLx9oDt0RihK5I4xRqPbiw7N7aIouAWH7qZQanFWbA2rDPnHVEcEUUSpTXeNySxQAiNNktOTp7RG/Sp6wVGr1gsZ3R6fbQ1RElCv5NAHgaHbasOJ6SkKVfo1rPGO4c1Johxe0e3kyPxOBOCW+k9jW9pNSbQCpS6mguAUBASUoFQQS0NcdX1a7vPbr1PCBCt0k+j63aGwAczTYJnUtPUQenJOXxt0UUw+5OAswYvJMaGdZ7nwZ08mOXZywDBaEu/2w8KQ7oBHCqSxGlCEqeUywpnHDsHe6xnuIUAb1tp17aIsC5+ha0+BP7OmrBvirBfQxCuQAikjdDGtBSx0NlQKm6LtoEqLEUrft6KRQjvwxCsDIWE8Ma1nXHnkNJfdpuljFse+3q+Lpiwila2PDx+oHLUjaFqDHUT7quUJBIC3ehgyudcS/X8bCLt7rC3nTPIHFvDLrPFgrpq2B6Mg7iD8xgPtrEMR1sIEfNv/+//k4Q5neGA0d5NmuMTMmtJpYWsx2I2o2kMo0GXxWpKudIspjUP7r5GuZgzXVwgMRgnGPTHvPn6GO/g7HTCxUWJcp7KWYytccUZpqmpdUNpNa/eu8N0esZkfsHdh69weHEBU4/KM2qjiFYxkVQsZmd478P80XDM3ZsLBoMcoyu2B2OKWcHT6hmTZcHRxQV1U/P2l99iWc6JYsntGzfZGmTI1KBUh3s37hDLhNOzKYcnp3zu0SvUS8NqueTo8AUCgXVbDMY7obXmV3g74eRC0B+PiLpDDp99gHeGWsDh7ISDm/vUjaauG77xjS9xcGOX3mDM5774RXYO7hJlXWLrsLYmTE7KUISQCiU8SgDehaKdjHA+MCa8lQgLxWxBHEmU8rz3s3cY9Pr0ej1kLDhbzphNzzl8+hHLxnJw7wF3Xn2de49eR8jgCt4ZbXExndPr9VAqIm3Vnxob3MK183gblAxdS6MJcZ5rV25b+HYCiwjdVSWIZSgcR4kiI8Y6iZAtKd6BdxovLMigDqibpvXYUUgVs1iVCARp1qU/GKNcgXElvino9EbYKKGSjheHT8Kcp4Q0j5iuzpnMFxwenbC3f4NBL0HZKb/zu6+z282JRc7+uI+zjykrixcpj5/OuS1z8n5Gd2sLvKHTSXn0yps8mzR4N0Xac4TTPH0+YbVcsb1zB+Vjag3Pn644Pj5md5gz3tnirh/SdD3Ehv5gwMGNu3T7JXtl+YnW698gyXiZwymuDVXDbyYdL/9y+8+6Vbb+WoirnxEOLdrZjXUFSazpS/hrvx86B7L9zXUv5DLu/5iOxcfNdfz6fS7/XX/9MfcLSYx76SZ3TXYwcIwt+NZd1YXXJ/Ag2sBCAMK1kq/htVkbzJpES8Pycp2kxOGdcRJvDd5p8D4ctquSi8mklSXrcItd8jQN7t+qDc6dwxmN9GEA3XpBUbZdFKnwIkIIWrf1MKytVEh+mpba5FybCLXdI9e+B2HwUJCnXTQNxjqMqcOwexuZN16DC0NX1rf/ugYnDJ1BgnZNCNJFhjaB4pDlObrQOGURKri4+9bFXUhJlK6TWU9d16BihBA0dc1yHgbQB8NBUIyTEmEaivkK4erg8VGUNKZNXIWg2+miTcVyUVBWJVmWBWnbKGrNwK7SWdtej8HpuE1xfaiaqjgKQ7ytYo1zMXGSkCQxSZqQpim1Dvxuax2L2TnnF6d4oUBGzOZLFot9tNWMR0Os9mht0doSqwQLaP3Z5VIDJAp6eUK3m9LpJJTFKjjrygRLHbp13jNf1vR7DiGhKQ2n0zlF1aCE4mB3F1cX4Br27YAH9+4yHo6Cf5LSGCxOwnR6ymK5QsqYzz16E0FKVTXMpkum0wuWZcmyqjAK+mlON+swHo1IljlIgUwUVlu8sywWc05ePGd/d4c0TRmPevT6QyBcz5N6hXbga8PZ6ZTd3S0GvQGRt3gfhp8Riu3dHaJItd2L9f4QrijrLNoGRbVOt0OtG1QTZiTiGIK7tGY2r0FojC4oVhOUBOdCZTzNu5idAd4mGF3hjV8f9ZimxOoarAnzYTasa+stWX8A3mO1Jk0SnNY4Y4OfRaueppSkqq5kmv36YBZB4e7SSrXtiLq2cuQIs0pSQhJJvNVUZYHWmoODG+E9NIF3nsRJcOMuKqpVQRwFxReDAx9T1xWL5ZJer0eWZSgVUdcVEGhXWhsGvR61rlmsQjtfSkmSpkihKFcr8JCl2aUwSJgXsSgRXQbqQab26qxyzoaZlTRupcLbM0IF9971nrn+3/tANW1lQkJRSYh2EN5cCnpwaQB4rTDmYS2IIuXaMNZf8/0AZ30QClkfwz6cwVIqtK4pS0NZWYhihEpaC6VAV1VCkqXp/wer+z8Muv0bpAcrqC3b20OOz85xGnZH29SmCueTVGhtkXFMXTf88J3v8sZrtxkcHDDeucnZ0ZTclaSA7m1RP1+Cj9jf7VOWS6azmtnUcP8uzCbnzGfn7O0OMVaQpn0e3LzBk8dHvDg5Z7KYcOvmHo0x6MpSzwo6w16Y08OxvT3i8PyIZVlx/9FD/uqv/g1lVTAcDzEiAeNBW3o5IWFVCVm6xaP7N0EJTFPSTUfMzuZoM2FRNnz4wTP6ww5f/dpbPP7VEXmW8torD+mkIJOYTj5k/NoQRMbJ2XPee/8xjz73BlVRMrmoKaoFq+WE1Tyimo2IaIijCiEXfPR8zq07r5KnCefPf0ScZWineTE95kuv/i7Pn59Rzmq+8XtfYlUaBls3+drv/zFlYxHC01Uea0ucjHFe4LQlSiKUbymV3qFa+X7rFd4rcAKnDcv5gkiCUo4ffPtb3L17m1s3D0gjwcnxC549f8a7P36X2w8ecefRG/y93/0GWacbYgfg4euvs1wVVGVFsSrodXuBruk8xnlkS4kXNnRvRTsrEijl4foSrBU7aenZMWptEKgEiYxxTmKsbpOMMEvmRUulx9HomoQMhCJJc5ZlSSfNyNIu/d6IelWhdUNRLMi6Q2Sek0UV77z/HuPBkEGvT95LOJqdMFtccHEx5db91+mmArt6wX/y1depZ45yLtipO1j9I0rAyR5nF5qdA4OMPCLv4OuKLM94dO8hSz/BmQ7dKKNZPufsvORiWjK+ZcjTHo6Uxx8tODv9BYPuA9LeLlseXutWONkgo4T9/TvsbBuwn8wY+JMnGb8WWFv3Mv1obXjy78PHqT1dfwzr24sg3APaCtDlc/81j//bOhYfl2T8bfBxHZLr3hPh+/D6nQ8nufeync1oD+j2Z5cVenw7AyFRKgG3np2QRFE7uK0cImrwLX2pdo7zyQwVRXTynATFjeGQrXGPTh61pohBVtIbS1k3lGVDmo5ZFA1lbdDWheqW95eyq+vPqa5rvA+KKkmSE6gTDk9biUMSqZxEJjw9e4pIPf1Oj+HWEN+em0pKbKmD7Ow4RfhQ2bTOYFNwViKsRGlB6oLXhhQJSZKyrFY0zgWTrXaDSNIYIQV1XQXJzkjhmyD3i4XFZM5wOGB/b4/zsymD/pjBYEyanmLxlHXNfH5OlKRkeU6n18W1nh6+pSWkafrS7Mr66+DqG9qqQfayvqwUeg9VVeOsodK6HZ4PQ55CRhjjKMuKcbdLVQc388l8wfbeAYPRFsOtHd750bs4U7JYThmPBuRZlzRVQKgw6LZC91nG7a0uvUGXJI1ZrJYkUUwjDVVdkKQJuq4wtcYYwflFwVRU1GXJxaqhqIOp2XSpGfS69DsdTpbwk/cPedB4vvyV17n72j20qyibJZXVzGdTVsslF2cfMrvw4FPyrM/v//7XUImgtg2//OiQydk55aqgrGaMbw7J8pysk7PTG3NydMTJ0THPn5xxdnpMEsf0+33eeu0Ri9WMyWyKj2IGozFSJXx4+IyHD28z6OXEaovvfO97HB6f4UXEgwcPUKLA6MDhL4qSTqdLr9tlMplCa6b34ME9qvc+pG4EnW6KkI5enpHEitlsinPLsK6jFBll4AxNVTBbTMk7AmsLet0Oal0g90EcQtgar0swpg1uwRvDcjZHxRGD4YCmWAWKlNM0TY2p69bvgssZACEERVHgbGuW2Q6Dr+UuQuMvUCQiGRTRYunJpeTmuMsydtRa8ZW3XuPk9ILT8ylN49DWsSgKbNv9i2VYe8Y5BttbGG0oVyVKxkQqQSlF7Rus8ThhSZMIrTXz2Zznz5+zs7NLFOc4J/nJz3/C/t4uWSejauW51wPULxu0isAhl2HIHLgsLkkpw3O1SYIxNrgRtypRSqm1xVKQ72Y9lxXmLuI4DpxtH5Lpui4vOzGBjrYelg+zImH4O7y/abqWsw2dJWMafCuyoQ3UGowVlLWjbiy1tizmK6IkxwtJ1VgkKgzXxp/dTsbp2Zy+h3Ev58G9e1x8UGG9Z2+8y/uPPyDLM4b9MUVR8P3v/wipFP/sn/13PH36AUXj+Pl7H7A4nUBsiToR2c6IO3cjRr2ML3/hLk+PHzMdaSYjww/ffYdeB27fvsV//kf/hP/xf/lTPvzwCXox54MPPsTKGOKUo7MZZVlTLUvmx2d89eu/Q5R3MUvNn/xvf8qD115j5+AGs9WS7b0D4liyu7uNERGzsynVYsXrr73KOz9+h4+e/Ionzxb88T/+++T9DjOt+ZM/+XO++Pm3uX//AcPRmBs3oNtL6HY7fO8HP+LV2w/58pv3qIpDXrn/kPHOFqJSjHbucPP5Iao7YGtrjwUSaRX/1R++wpuvv8FsNuXP/uLPGY5ybt/4Io/efIs//8v/g//1T/4HTKX5b//gv+TBm69xvjjjhz/9Hlk64vjoV7zzo59xaydBRF1EvI2xCZEK3YIkdq1sbBCIqSsbBGgIHcBYqdCh9AqPIMsEdVnx9MnPEXVNsZwxmZywmh7x8/kxv/pZRCeN+PKXvsgX3nqTvRu3uHH/Nbb2bqIdFNPZpbx8M52F+aYootPpMBgMLpWlgi9G6D5KSaCks45FQ0zjHYhIBgpi+zjgLv1/jLsSYFh3bMOUU2CAVHXo0gqxFpSI6PYGRHEa5tYcFEUZPJjmM1786n1kkzLcGXDj9j6/fPcn5N0uebeLWS159NpDdg8OSPPHGFJOj5/x5MXPib7ykFztIuKYun4avHfyPvnoBv/FH32O1eqUx0+e8Fff/4g/+L0vISPPd779Q77/4SlRFDHqpBRFyRtvfRERZRT2KTcO7uB1wuyk4eHDW2R5yvOTY/7sf/4L/uE/+jJbOwO++/0P6ffuobxF2E958Fv8hkHoupnc/lyEwPmlxOPX5jZ+8zZe2uDDRn79sdeB93owO2SZV8/rXx7EuHyef3/X4tdv+23JycfhZSM7/7G3r02cRNsaXP9JznGZPa+TkHWb2/mr1+G8DhzGa/rs4MMCkTGoGOlc4PYhmS9LXrw44emTQ/p5yrCfs7dzwHw5x3tHmvTw2rIsSpZxRVRZhCjxVExX1WWFLHRUrjxOlIoAGbJ4FSEVrcdG8HGIo5hYgRSOKImIOioE7VxpuXfSLrU1WOHwJsj6+vZzs7GkNhZvHKnM8a2yjm4W9LpDvHEYbclTFdqQQhAnEdZoIh+TkmGMJQri+EjnqXXN2cUF8+WKutQ0jce61m3ZNESR4NbtA2SUXJoKTmdzpBJE/mo5rCuH15W4IhWzNjus6+baZykvQyspFEmSotvrMM1y8B6tGxarAlvVofopBd1OircNwht6eUKeqqCuU5Ro48mSdWIqWS3myCgm7XQ+8bX6dxF5EuF1Q2VqqqJgOllQlA3WeaQiOBQjqRqDEAaBpFoZkryPynsIFHXZUHuFLTXTYoUiQsUdbhyXbO/ukvcGDOItVB5xdPiM48MjXjydcHHeYHRJHDfwvXfoDVKyTkxXReRbQ8TWKCSYeUqcpSRZzqA74O6tfZpG8/Wvfx2rQ1DtnWN/3GdVFMyLFVZEaB9m04RUdPtdjNHMlwXLoibtdMm7/WDopoJqVllWnJ2dMRzqtktQsFgsAl3Lebq9DhaQZU2SSLI8IksSjE5BWLyvAYkxiuXFOY2b8LXf+zpb4x55JyGSYU7Atl45GoWuS0xThT2nTRjiSBFFrXFcXVIXK1zbfXStx5FrVerstY52XdeBIOva6vq6cATQqtuF4esYo2siKel3O7imZGvYI+vkdPOM8XiEtvD+Ry+I8ySYH3rPdLGgk2SkSUKa51ycX1DqoIizWpU4B2maBLfwVpXHt6puSZIwGo8oy5JiMqeqbehQtvNnayO+q6+v7+nisrIZxDrC37cuwmgd7hdFEd6HgXVvryUq12iz626ENqaleEah+yACRUPK9Z4bOj/eeaQK4htxHAcVKv+yyW0cx3jb0mC9w7SmWWVtmS8aVpXFOImXsCobcpEglcRZSLMcZy2L+ScLEP4uYjwYMntxyNmLFzw5O0T0OsQq4fn8Obu7uxRVwdnZGd1ulzQN7+HR0RGT6ZTGCJw05HnGcnHBYrngxs4BcSSZTi74sz9/l6//w6+38r9LkiSh28+Ikoyf/ewXpEmKrkqePn3C88NT7j98xL1XXiVOJcPhkNVswQ//3bd59ZWHnEzOeH56zOtvvkGSd6nKiqPTM5JEkqYZWZoxW1UYbTHaUxSabm/I3Xspd+6GoXTX0pPfeOMhcSx5cficD44POdi9zf0Ht/n8W2/wn371MYnIaExJuVrx4vCQ47Nzjj46wRJDHM6NNIm5aDSr5ZLhoM8vP/glZVlwcLBHr59TFDXv/ex9btx6QLe7xXwy5d99+9/xzi9/Qm/UY7y3xdPHR3TzEV98+yuM+tuczVasFjW6MfQHCVKFWSwQQUkyKFIQ3LyDlZREgfAhbpCSYjVnMT3m9OhDzp4/4+TwBUeHL/jP/uAfkGcdtDb89Cc/5uT0jKzXp6gM490Dur0BAkG307ncg9ZqbVJKojSsI900NE4Hpkzr3aXEWvjmam2/tAdcW3O/Hu+ti47r2y4V9ZwjS1NckrSJRoR3ojVGlhitaaqKqiyoywJnDMPhkKfvH0MM44Mhne6Q5arm/GzGLz/8gKzbwSPR1nDr3j5p9x4yE9TNlOOjI2wjufPKFk39iOVS8/TDE5o7z0iSjMFgxJ2b9zDao63nwauPWMYjBJ4Yx7vf/xaoOf3RmC//7kMOn52SiC5379zldHaEUhFRlPH2V94m7fYQccqrjz6Htz10taIpP+VOxl/bRmgDZuBjg/CP+36Ny8HsX3/ElqJzLW1pqUdX3Lnf+mp+Cx3qb9rR+OsSkJerYOvK9/qCDVSjtXxrcIgW4Nd0n/Xg93oUya9zMdZSur5NLtbUHNpKG14gpMf5UKGazlYcHV+wtzNmPB4EQo+KEKwdcGO08TTaEWkDVPhrTuDAFde6XXDykrLV/l1S4JXA2kDtkC7cT0iBjAUqUcg4zHcEyhg4Y9rEwiGExbS0Di9l4DVHQcfaC4mtXBgKrxtk59LvOyg2tfMkISsLEqAqjoMsZKQQPszW65UOrsCNpqktyDnGhQ3HWB0GS7tdtAPwwQ/EXylv/bbkc13d9F60nhr6shIKreqZDNQR1QZw3kdEccvn9sGZvaxKojhUXbyDOA4BHt7S6ebESYLzCuMExnqUCJ/Jcj5HRNElNe+zCu+D505jGlZVRVEUaANxnEMUlNic8sEJvZWQrk1QFEvjiChK0c0EL8Dgqaua89mKPJ3yq48OuXPngHHcpdPp0B31g2OpkfRfLHj+5Ij5skLrivnynPFWl/FWn4OdXbpZSp6l9Pt9nILQsxfBlElKsiwhz3pMLubYqqYxhuWyQFuHlCmoiChOUHFMmufEsWRZFlxM55ycT9jd22d3b59IKaRQGNtQFiVVVZFlaaD94dDaXHpZxFEcghrriONQKRdKEMUKj0XIK7refLFktiwZDAZkeUKkCOvOt8IZLnhUWK3x1iIjFSg7Yu0Q7QI9qmla5/FASnXtwONayei6El/TBN8MT9vhWLNZ/ZqGIFibEAa6lGznKARJktLt9ZlMpizLhrIK8rSipQ85HzqvSiriKJjTlbMq6MuLoLIXigBXXjYAxjY4H96rTqfD8fyE5bKiri2j0XbrAByKJWt56kvqkoC15G4wm73aE1/Guoi0Loz5SwW/UGho95K2R72e8YCWatsycsWaRxVWBuEMlW33o03crsmPr4OVKIoCPcOHz9VaF+YwakPd+OCxJIOEijFXZ044SMAaR11/dgUkvDU0uqFoapoVdNME4QSrumHnxg6IK1+oPA+eTYvFgkYbtAnD/XmaYVSEtprpxQW5SKnLgtPTc7SxNNoFIY5OJ3TLKs1Hj58gBCRRROksvX6ffn9Ar9dDKEeWZviOYTwetp0qgnzs/gGVsRRVg/fhHMFDXYQzWApFFCXEac5wuEXesUTxFq65QFsLQjAej4hkhDFBDUkIhzUNi8WKnZ0xpvIY15CkKauixNglF5MJRaXpjsbsj4fUZYG3NqimRREnp8fUTUXezcnzLtpYzi8uSIdDhuMeSQTnj99nuThHJZZthlycTUjSHr3dAZOLSSigdEvKYslwOA5nn6ctTgRhBikiZNslcGuRnJYaL52hLpesllPKYkZdTGmqJVZXSGexusYaQ7fbCVRlGbG1u01/MCLJOkghSeOkPcdplR3DeybbWMlJGeaX1uGuczgvWVtWXi8iAJdd2/W6vrzursUG6w7o+jpbr1EpFZFaB3EK668EIWzrr9U0Tfs5BNlibTXL5YrJ+QyEoiiDguhstqQxDqEitBA4b8iyhP64y2LpODNHVHVD2hmC7xMrjWCONlOEHCAYsLO1jXWaqg4+bN7Z4GeWZURRSigZOZSMKFYVMkvpDzrMy4yyMWhTcOPOTfqDhDhWGCKqlUFIR5p9Ms+uT5xkBCWhNQTX4q+rW8V6M10H9O7y/uF7y7Vd9RKXH7II/PvfeEyx/q0QaV/pUdFyWa86KNdVpT4Of5OuxV+H9YW2ftx19SlJ2iAS0I1tnaqvBj3XyVNYBKo9hMC4dUs+wlnd3jdUs137HwKUCqdT0GSO0dozW2nef3xE2ungVcRga4utcQeFYDYr6Xd6OK+wTlLVlvmiZDZftWZ5spVMbFppyeCYq7UmjkX7tgdzmlhKVBRTVhKPQXtDLSrIHSSWxpXtFCtgYVY0IRgXQb2n0VWo5KsU5wWdwQglI0xRUZcWqywqDglNrASxgtVyTprmqChGO02SxGF+xckgk0vb0PKQ0EUag7GGpl5ydHHOs+NTlFLkWULeyfFOcD6Z4oUkyTKytNMmUleVi1+/ntYbipC0tIfQRl1XMYRvZYiFxDQ6+GCs+dUZoWsSxcxOX9DoULkvKs29Vx/S6Q2YLmbsHeyzvXNAt7eDsRHFqrmcUzo8fEqjG9Is4/e/8Tuf2jX8HxqLVcN0NmGxWqCtxjpBnvfY3tqhcmUwejOhOiuiBBzYKARWWZbT7faZnk1Jk5gokhizYrJYsloVHL54wfZ4wKuP7nI7uslAbHFwe5vR7qv08ts8ffoveHH8mCePDynKFft7W9w82IVXFPdv3QhzNcajy4JVVbIoV7w4n7YGlVBU8O1v/YDpbA4IdgZdBsMxvcGIpJPxyqNX2TvYJ81TBJL5YskHHz3mBz/+KX/4h6/w+ptv0cnzQAvSK6bTOUopjDWsikVQb5soTBOEAIRQRComUposD+ulrDW2NZEM+4/C+4TJbMXjZ4fU1pG5wDm2ukZYG3ZkIaiqpqXwiMvKu3e+/RyKULkzOnRbRKBx6roKtD8f5p/WdB2tNVVVhQFiLyjLsi2AhOpgSNhF28H1SBkhVYwTEZNFQWmhtILvfO8HrCqNExGD4Q4yTqGtzlfakMY+CCWgcBaMtjTOUtcapWKUMsRxchlwV2VNHAUVuDiKmc/nNCZ0gNcdBuscdV2TtvKh67Wtogi17ois17u4OjPWfzci7AFam8u9G0LiEkuFiCLSNCUIlgR9/DiOLjvF0CYZUgAuzM+1mUeSZljdYLQOAh/mispa1zVJkrSmf6ET4p1FG8OiqCgri/MJKolDIGrXmvgRQsZIDMWyDEUP99nlXb548oRICPZuHPDwzdd5/PQpdVm2hoWaGzdvMBwO+eY3v8nW1tZl4JmlGd5VLBYLiBS7+9uA41vvvMveYMyw3+Nzr7/F8+fHnJ5PODmZ8Pqrb3F+dszJ2TmFtdy4cZtBr8uNUcZX9++yrB2z2YJVOeXHP34X6Rx7wyE//NEPkWnC3t4Bw+EQWdaIOOXRcMz04pRiOefi6IRb91+h2+nTyyX3HrzKdHbBclkwmxkmZ3O8EkS9HsatuHP7Dttb24zvHPDjd37Cd77zEd/53jd55ZVXiVUMIuLRw0c8Pzmkqgse3LuDNhB1crJBhycffkAv63Ljxk1UFNE4TaUbEmK8DwVPJxree/979PKY7V6PP/qj32NVFkwWS16cH1JXHQ5udkhTyf/+p3/J7fsPiLIBh4eP2R6nqCxBCsFyVV4WAcKYgmvntVSYOfUhMLfGMjs/ZXZxSoTl7u2b3L91gNOad3/wIyazKXEa80/+6T9FkzLev80X/t7XaYjbOaeQKCRRctlprKqqZcSEvSpSkkiFGaRAAQ8+bWtvs/W6TJLwGI2tL/eA6xLRa1wvtlwVF0Jia5y9pEU6Ky6ZIX49yykldVPRi2PitIuNG7I8YTqbcfz9E0xjgtdHZbh9+wFSKVZ1xcXZGT/7+U/Ym+5x+84t3nrrDVYXNcfHR5xePIf6Bnk64M03Dlj6KWcnC5bzirt33qRYHnMxmfDBz9/jO995l9u3b/H5z7/B7/zOV7FItDO8//NfUZeOfi5RStPr9nn87Fc8eXbGP/jG1zg42KWqa7773R9QFg1bw5yb+8NPtF4/eSfDv/yNaO0Srw/HXa9k+bZqs5aXDff9TR7oSzSj3/rk65JPmOa/uvU3uxUhKZGXFabL1/Yxz/tpzGmsL2zRVuFEFCGj4EwZRzF0W2M25wKX17dGgjhkdDXoLVQU+H0e6kYjvcA7i/Ea6cJQ4doR3ZrQhlciDGyvZWmPL1akj48ojcNFMftbPWIVAoVunqGNpW4MpXbUGlScMxyGxGjNWVy3/ZyzdDpBQtF5R6MLnAsVRmMMTVMiIolKFNkgRSbBodzYiixOsa3UpXQQpwngqIsV3X4nZNQqpjPYwngwzuE6loEaYYsGPStAaNJUImSOsV2USsJAdSypqxKJJ4mitmvSfo5CheqGNaA1uzf6GO3Q2iG9J46DMVtR1qgoRUiFUjFpmuO9xVhzqSp1SVewV4Ou1luKssBaQ5omQbUlClUhfHAFJ2iQhA1WCOIoolw7gCPY2TtguVhS15qt/ojx1g6dXp/GWFarCmcFi1lFszgkUaFqt1zMOT09pD/os7W1/be+Zv9j4p1fPkFJT2C45UQeoihw66tV6Gw0jWa8s402TaiGSUcepdAYltUFvTQmySI63YQ333yb58+fUSwXmLrgr777TYrm8yR5wtbtu0gfEScRB/fv8o0/+BqD3T5zPaM59BxNCo4unvDRiwtef+WCe7f2eeu1e4zGXWLv8eUK4T1ZkuMiyXK1YjjapT/YZzzeZjWfglBUtQIpKBYV5/KEk6MnJFZzenrB0xen/Nf/zR/z6isPiJOQvAsyqigFJKPRAHA0TQN4oiih0xmQZ5qLi1OqusEJQb835PDohJPTc2pdsbXVCzKujefiTNMYz3D7JlHaxSuJkQYLJHFwqW3aSpZ1DuPD2vHeX0qv2qZuD04L3lE3IdCN44jFsqCuG8qyDPx/HapxxhiSOLlMQFAx16v8SRy1PhgCj2JV1nz09EPOJiVZ6ckbGB3co6stDoIfjnEY3dDomlJrBr0+KokpiiLQHJSin3dI4oQ0ycizHKNDB6xtAeBcCNzTNKXTyRG1wxORd3LSNGUwGPDo0aPgkt5oBr1eMN5sE4x1l2NNm5KyFeNouwmIq8BCSgFO4EWgTwkpWndw3xZrfasmZVtzz+DbIYQHF7wwpJAYFwxIu50eUkRESiBi/1L1M4qiyyQviiPqKqhF6UYTRykuFUFEwtVUTUXV1HR7Q4qixugC7yS9Xo/G1VTV6j/K+v80MMxyRBqj0pTTyZQXT1+AtdzY32NVFDx98pRn8hlJkvDRRx9RVRX37t3Des+D+6/w5bff5i///J9jvSdKMva3txnmHbqdnCzrcXh4hPVBynm5WnByek5ZVdx+5T4CqMoCYws0ESLtk+R9Xnn1LheTUy5OT3j8s5/T6W+Rpzlp1uFf/l//mijJ6A9HfP4LX0SXq+D2LiXlcsH+/l22tvf5/g/fIY4Fdd3w7OkZe4OU7b1dxjcP+Oa//NccH52iGweR5MG9mxizi4xipJIY3WB1w3y+bLu3nulqxp279xjv7TLY3ea97/6Qo8aSJim37t9mMBoy3B6hRMR77/yM/mDA3o09xuMtYmHQuuEnP/kJN2/fZjgckg9HvPeLx0znT6ialDfeuENn0KeszvmLf/4/cWP3v2d//4AkzdqOTRBPcT4ot0kV4iMQWN2gmzDD+PT9xzx78hjfeN796btIIRj1R7zy4E3K+gIvNGVVYqOIxliqxlBZh/AWKUIhII4DNUqY1m9Nhg6tUtElBT+wTtJWSVO/1KW4jH+ExDmPUq0AxHqWg6uY8Xph+XoyEscxjW6omoaiKEjiHJCXBVvrLSi4c+sW5fQpVTGjXC3p9LrMFitOjs5J0ozuYMxwa4fVItgL5H1Pd3uE92GOb3J2wb/5V98BDP1en52dLYoLQbk85/z0F9y4O2JrlNDrRBSrE/qjPsYY3vnp++zvDImV4/GHH/D0ySmjcZfeoMOtm7dZzQ3VasW3vvVv2dsfMOz3eHA/YTqfglQsFys+eP8xX/ny5+nmEU3zKdOlRJv1rVvhAoHw19KC9QElrkJ/cY3qFDrJno9tgYR7XO+BXH/ml772Yj0EfjWXcfkc129ZJz1c/+E6GP3talOXF9BveZWIdRfnytBORa0crFJESRL+jyOiOCaKkkvu/vrpnfetYpO9TDhCyrQe9FN42fKh3TWjwPZ51++hbykN4SaP9ZrZYoE6keQfZtTlNnkWo6RnWTeXLVyhYkTUustarlGi1pX7q1ahcyYkRk6gvQ8Bgw9OsmtNdwkoCcj1ZxiqIkgPyiGUQwhPliVEaYZTEita40BrwTqkV8EcTzmII0yjcSJwLCOxnosQ4C1S2HAdeE9dVeFvQhHFQaVCElqWKopRyhPFDm9doFxBUIlp5ywErbN6K1wQx/FLHMv1RhQ6HBBFwaFbrmUu2w3G4xGypXh5j2mH6ZMkJo6SNnCwGOnJvSBKwnD4dDqjKKqgBe48zoLTnpnWeBOCkTgKjuLONTT1J5ON+7sKESXhfVLtAB5B5cOaJkiqtrQzIQMlyOORUUtpaWk7SRykl2MlePvzr3P7zi5lsaRezCnOzzk6fsFPf/pTbr76kA49olQRpzGdXsLWXp879w+YTJ9QW0OjYVpbnhxfIKTi5s19sl6CtqEgYLSllyWoOGdZhC5k3WgWq5K6CXSjSDnybkqv22fY71LXkMuQRIg449bt2+R5B6M1VRVYdVIpsqxDHCfUTUVVVThvWvqL5exs0urFN2irWcxXVHWge8wXBcZapFJYK5hcaEbbu9y6e48oiWk1nwMtg7BtSBXRaAMIlIpatbjQZbDWEUUqqKTo0MlYz2AYY0J3SWuMDl4Zzti20CFag8z2w/WEddWqq4VEOyjaVaVmWdYsS40jxskUZErWTUncmuscYa2jqkqsDbTJILUAq6LEe9rZMEW09vhwL6/BtQId7d/Q7w/wlFS1aSufgQYa6KgO62zrpt2+H+1jRVHYj62zXFGdAr1USE/oYraBR0ttiuP45eqne5lG9eszb0IKhG3LZ/5qNmQtKyyMuwxk1kHMFT2z/XsFCKmwzlBWmsm84eR8GjquSlCWFVqHLroUiqqq0U0dZkQ+o8jiKPDeheDF4RFZkhG3RoXT6ZQ0y+h2OxwcHDCdTpnNZlhrKaqa+XTG9PyU0ajPdFVRLlbkeU6nkyLwvHhxzLwu6A+7jLaGVAtLp9MjSXPiOGW1mBILwzAVFGWBa0A1nnKrTxRHpFmCUoLxaITIMprGsLO7R2NcWIONZrlY4oym3+shlaSpKy7OL8i7XcbjHkYbZpMy/Ew75osV/f6QNMsvOwNZFiNFQpz2WKwW4bqIYL5YolRMrxch4walBIv5jLP5hG4nZ1rOmE9nDJcjBrsDsk5GGmd0Oj3SpIuiQ7GY0M0SYhXOct2k1MYzq5akiQBRo3VNtxPjadB6SeMduinx1qCkwDSGLE3DmsDRimKGbiki0N2WCw6fPeb4+SGLyYJcCQb9AXiQUcLzw1O6PU9vkLJYFRzcu8tovA2EPUgIixAuJPbWEGac1OW5HqSdQ2d13c0N57a4VI667qHmnMPjLwuNoQtp247mVYKx/n49q3nJZrh2m/eB5h1miMO1aawNVFRjqKqS5XzGyckLpOogpKSqGvrDMQ5P2Wgsgn63h4gE0pbM5xcIG/yOqqImzgQqkiyXBu8FceIZDBS6UqwqTdXU9LueuqmotcV4j5KOJJJkWU6SZi3lXhOpmKaq0E0DQjM5n9A4F+bEvKUsG6wV3LxxG6NrKqGJ1Sdbr584yZCoq80RgXDruYNrwfmvGfEpcZUyuOtB/nWIa/SnX/vxeq4h/MjjhSAMgbs1cwrpr6UlPrDsXMubD7/dHmDr19EGgdfTiOuZ6fWvPw4CLi9UhLzsXsRJElQ70jAkpiKFiiLyTockCQF9FIcKeRgG8jRN1WbUpnWVBWuDRb1uudFoT9PYq05RqAlc8Xkl7UIDhGdZLjFnulWWcoxGPfr9HJomuNgqSS/LiGWM9yDNmr8aHmwdTANo3bTmbxIlk8sDXLYdAGManHBtkmCCeoJSONt2Z2IJSuOlJZaSNO9hkoRGSqwgyHUGSRSUVAgbaANRpCiLMnxqMgIfeM7Cu8DVFBZEUOeqVgu8DzMnkrj9jCSxisLshgSl/GU1wntwQl5SxUNltlXLEgSag/cvBQvrQEEpQZalrQqMeVm1gnCoSwHSh1kB7z1JnJAkOWsZTIehG6dYa1lMF7x4/hxnHKbR9Do9+qMGUwaZzuVyTpxE3Lt/iygWWKuZz6cfe11+VjAYjrC2AW+QChQG8Ghd4lo99VgFY0qPAAmxkLjaIFyQtI5ihbUNUsBXvvgFohysrVhOzvlXf/EvODk94vTknK987e8jE0knytsEuKY/SHjt9fv8/BeHVFZhI4mNYo4u5kgp+NyyoF9lwcnVeprakGxndPsDygqaxnAxmXE+WZJkGZFKSBPJXpKzvb3L/t6Qpu4w7IZEZVVbsv44VEDrCqerENBISa8/QEmwZkVRlFgXkoa6rnn8+BlJ1qMxDcvVAu8F2oGUCauiZr5Yte9PzHIBe3ce8ODhw+Cg62sgdIic1iAkUZKgi4ooiojjiKZp5YJt+F/ECu8NjdbErWQqnuC1YSzOthKuXrVmfEHr3hp7SefxIlQr4yRIN8t1YcXCYlWwWJU0XhKlOXHWJcn7AJfBf1BygeUqptY15WKFI3R3F6sVURyjWge6OA6d3xD0B++JS8GKKML50CXY2tpC63PKchYCERESk6IoyHqd0OVpGqx1wQxWhL1CrT2BXJCSXdNytQmBWxgNuzojhAj0LF03aGOJhGz39kARXgcxzhlsS1VTUl3qltg2ABNC4rwJe6M1oaLaFjzWz7Pes5z3oRsbJzSmYLZc8uJwwgcfPWE0GjIaDZlMZqRJRhyHLtpysQz7tvsMJxlJTBNHVMby+OkzvvToc3TShMVqxunpBVvbY8bjEQ8ePKCqKo6Pj9Fas1oVPHv6BF/OuXfvPodnH/D4+REP79+k181ZzJf8/Bfv090aMN4Zs7WzxbPlCds7uwgZoXFMLiZ0E9jujFg2FatGYyjoZDH9YUoUKbrdDvsHByyqmtn0gi984YscnZ6zWBUslyvOTs/JEsXt/V2iJOLF0ZTJ7Ihv/KPf5e7dGxhjWM0qFhczFouSs6Jgd++AftYhiRIqXRBFYQ10uwPmywVSBbr29HzO9sE+vW6XyDTgHS9ePOUXH37I2w/fopyVzM5nLJYL+nt9kiwUR/b3bxKJnFj0OD+uiXaHdPsdeh1FU3eYLGc8OXrB3QcDjK8xpiaLJEWzwkUNWT/DuRq8DV5RtYa+IE5ihITaNkGJzgQPiCA3P+NH3/8up4fn2EbT2+pw/+59jHGsyob/59vf5LXX9ukO95nOF3xh/4D9m7eQUuFdcP6Wkb8UsfDOIePQgVgXS399puq3FY8vi4p+TW13l0UF+E26FHCZ9K8Tf2stKooQMsQHdR2KRlKqy45m1VTY5YLlYs7k4oLHjz/i3v03kUrRaEN/OODs4oLZfE4ap3S7PVQa0RRQFAWRiMnjhEgohLfoRnN6smDQSRl0FeP+mCePDafnc5bVit239jmfzam0I81TnClJk5jtnT0WC4tnjncaa2E+XSJ8zfZ2h8cfPMMIUFnM1vY2Ta2JZMYX3v4iv/jZdymVYDT6ZHQp4T9NbdcNNthggw022GCDDTbY4P/3+A1h2g022GCDDTbYYIMNNthgg78NNknGBhtssMEGG2ywwQYbbPCpYpNkbLDBBhtssMEGG2ywwQafKjZJxgYbbLDBBhtssMEGG2zwqWKTZGywwQYbbLDBBhtssMEGnyo2ScYGG2ywwQYbbLDBBhts8Klik2RssMEGG2ywwQYbbLDBBp8qNknGBhtssMEGG2ywwQYbbPCpYpNkbLDBBhtssMEGG2ywwQafKv5fU9IMLEPiXtEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "class_names = train_dataset.class_names\n", + "\n", + "plt.figure(figsize=(10, 10))\n", + "for images, labels in train_dataset.take(1):\n", + " for i in range(9):\n", + " ax = plt.subplot(3, 3, i + 1)\n", + " plt.imshow(images[i].numpy().astype(\"uint8\"))\n", + " plt.title(class_names[labels[i]])\n", + " plt.axis(\"off\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EZqCX_mpV3Mx" + }, + "source": [ + "As the original dataset doesn't contain a test set, you will create one. To do so, determine how many batches of data are available in the validation set using `tf.data.experimental.cardinality`, then move 20% of them to a test set." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "uFFIYrTFV9RO" + }, + "outputs": [], + "source": [ + "val_batches = tf.data.experimental.cardinality(validation_dataset)\n", + "test_dataset = validation_dataset.take(val_batches // 5)\n", + "validation_dataset = validation_dataset.skip(val_batches // 5)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "id": "Q9pFlFWgBKgH" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of validation batches: 26\n", + "Number of test batches: 6\n" + ] + } + ], + "source": [ + "print(\n", + " \"Number of validation batches: %d\"\n", + " % tf.data.experimental.cardinality(validation_dataset)\n", + ")\n", + "print(\"Number of test batches: %d\" % tf.data.experimental.cardinality(test_dataset))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MakSrdd--RKg" + }, + "source": [ + "### Configure the dataset for performance" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "22XWC7yjkZu4" + }, + "source": [ + "Use buffered prefetching to load images from disk without having I/O become blocking. To learn more about this method see the [data performance](https://www.tensorflow.org/guide/data_performance) guide." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "p3UUPdm86LNC" + }, + "outputs": [], + "source": [ + "AUTOTUNE = tf.data.AUTOTUNE\n", + "\n", + "train_dataset = train_dataset.prefetch(buffer_size=AUTOTUNE)\n", + "validation_dataset = validation_dataset.prefetch(buffer_size=AUTOTUNE)\n", + "test_dataset = test_dataset.prefetch(buffer_size=AUTOTUNE)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MYfcVwYLiR98" + }, + "source": [ + "### Use data augmentation" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bDWc5Oad1daX" + }, + "source": [ + "When you don't have a large image dataset, it's a good practice to artificially introduce sample diversity by applying random, yet realistic, transformations to the training images, such as rotation and horizontal flipping. This helps expose the model to different aspects of the training data and reduce [overfitting](https://www.tensorflow.org/tutorials/keras/overfit_and_underfit). You can learn more about data augmentation in this [tutorial](https://www.tensorflow.org/tutorials/images/data_augmentation)." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "3P99QiMGit1A" + }, + "outputs": [], + "source": [ + "data_augmentation = tf.keras.Sequential(\n", + " [\n", + " tf.keras.layers.RandomFlip(\"horizontal\"),\n", + " tf.keras.layers.RandomRotation(0.2),\n", + " ]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "s9SlcbhrarOO" + }, + "source": [ + "Note: These layers are active only during training, when you call `Model.fit`. They are inactive when the model is used in inference mode in `Model.evaluate`, `Model.predict`, or `Model.call`." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9mD3rE2Lm7-d" + }, + "source": [ + "Let's repeatedly apply these layers to the same image and see the result." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "aQullOUHkm67" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-08-26 10:11:52.781979: I tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: OUT_OF_RANGE: End of sequence\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxkAAAMWCAYAAACdtUsqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9Z5NtWXrnh/2W2X4fk/76qupqM8AMAA7BGFJDkWIogiG9Er+FPoNe61NJesFQUCEKM3QDzABtqqu63HVpj912Gb149jn3dmNMKaIBNhT5dGRkdd7MY/bZa63H/I2KMUYe4zEe4zEe4zEe4zEe4zEe4zF+T6H/134Bj/EYj/EYj/EYj/EYj/EYj/H/X/FYZDzGYzzGYzzGYzzGYzzGYzzG7zUei4zHeIzHeIzHeIzHeIzHeIzH+L3GY5HxGI/xGI/xGI/xGI/xGI/xGL/XeCwyHuMxHuMxHuMxHuMxHuMxHuP3Go9FxmM8xmM8xmM8xmM8xmM8xmP8XuOxyHiMx3iMx3iMx3iMx3iMx3iM32s8FhmP8RiP8RiP8RiP8RiP8RiP8XuNxyLjMR7jMR7jMR7jMR7jMR7jMX6vYX/oL/43/6f/hqIoMFpzc3NN1zZ0Xct+vyVJLMZatFLc398TYySEwDiOOOeIMcpXCABopUhTw9nlCfPlnLOLM2xi0NpgtCFJU5I0RVuLMvDi+TOMMQzDQF3P6buRvh/RKmG9WtO2O9p2gwse5yF4TZ7WRDTeBTbbDbvdlr5taZuGvm0Y3YjzHptkmCRFG4NWGucc4zgy9D1j36CVvF4VFWiFNgaTJCiA6AGPwjOf12RZjtKab797Qz8MgCKxkaurcy7OTlnO57T7htRaLi8v8c7R9nt27Zam35EmCUoZxtGzWCyx1hCiI8aBPM9I0oTtpmW76QDFYlFzcTknzTTaKIw2DGOgbQdef3/Lm9e3GJPw5MklP/7pS+q6IC9SsiwnxsjQD1xf37Hft2R5wenpOf/1f/1/4OLiCbN6gVYG7x3OjwxDhzGWsiypyhpjNav1Hff3t3z55W948fJHzBcLqrriV1/8G7759ivu7295+vQlZVmh0LTNwHfff831+zfcXL9lVi3pO0fX9Ww3G4geRUCpgLUpxiZobQkhoI0mTS3zRY1zI13XsG92jINjPp9RlhVpmjEMjmEYaZoW5xxZlpJlKcZodrsN+/2e9WrN+ekZRZ6TZSlds6dt9gzjQJ5lZGUm96MxtPuOru1o244QIzFqBue5v1/T95G+d7RtT9MMEBUKjUajlMIYQ5qmhBCOa0ApRQRiCPT9gFaKqiy5urjkP/lP/hk/+ekf8clnnzOfV/yL/9f/k29/8xW7h3s+/eQVy5MFi0XN//n/8n/9/e8Ef0/xv/8v/wv01NpwztE0DeM4EkJgGAb6oWd0I3lZUOQ51liC9/Rtg3cO7x1928j1BFCKSCQAIUJEoXUkSRTPn51yfnZGVc2wSYFXGjQoHSFGYlQQFW7al1QEFSPBhePjRxwxcvz84MN/hxjxIRJR1IsLqtkpeV6RFyXjMNDsd2zXD1y//Y6ubWU/DBo3jrKuxoFmv8d7RwgRoxPyvCDLC+rZAmNzIBKDw/kWN/aMQ0/XtoQYCCESInjnUCpgdGRW51yeX3Bxfsbnn33Gdrdhu9uy2jyAjiglXzaxnJ+dUZYlSZpyd3eLdyORiHOernUED/N5xfnFnCy3GAtKa4KPjKPn+mbNd99es9t1ZGnOT//Rp5yfLzk5nVGWJdZaFIqm6dhuG/p+YBgHPvnkR3z22ed8/qMfc3H+RK4voBUYq8jSnKKoUBTE6HG+52H1lnfv3tB2PdokXFw+IxJo2z1/9df/A02zRWF4cvFjYlQ439H29/zqV3/D6n5N13Y8e/qMth3Yb/e8e3dNahOKImdWlyxPajmz3MjDw5p+GFBKkaYpRVEc79fdbscwDBijOTmZk2eWGDzDMNJ1IyGA0pblyRllVRIJNPstX3/1JTEEkiTh/PwckM9ts93gnMe5wDhE9u3IODi6duD192/puw7vg+wrRslZpBVK6elnljzL0VphjCVNU9I0mx7ToZTFJBlKa2KMtM0GN/Y4N/LNd9d/n0v/9xb/7M//lL4fGIeB0Tn6vsN7Twjh+BXjh+8QQEWMNmRFRj0ref7qCnRA6UhV53z+2eecnJxSl3P6vmG/37LZrrm5uSEET5parq6eMJvNUUrjxsBm0xA8gCLLE9LMYoxCqch+v6NpOtqmI0sryqomzwqstWw2G4axwzPy4uUnnJ0/4eTkkrKY0XU7mnbN3cO3pFnCfHbGxdkrfvzjPyLEnrbf8fbtd7x//55ZPedP/vF/zMunn5PYAqOSaY8KRCQ3cSGAUqAUikiz37Ba3fHXf/2XfPXVr9ntNigNWZ6RZRlplmOUwrmBcehpmobV/Za7uzVvXl/z/fevKcqUxaLmk0+fUhSWxCq0geAD3kfGIXJ/t2O93jP0A3lhMVZJfmcs5+fnJIlBqchms+H+7oGm6RlH6JoRazPKsub50+c07Z71esUvf/lLNruG0QVQlrOzU9IkQxvLfrcnBDlbkyyjKCoSm2KNYbVa0TQ7uq7F+ZEsTUjShLwoMMaQJPL7P/rpP2K2WJJmGc470iShKnPOTubE0HJ9/Zab92/Zbh7QRIyKGGBeVSQKDJGiyFDag3JoeqwCBWg0NjFUVU5RZKw3K4bBEXyEaDBaH7+ICqWQP1SBMXgGN7Ld7/n+7R03t1uubxtWWxhdxMeIQqOUAeRvtVbHL6OtPJRW2CTB2oQ0y8lyyVWVNlhjKasKJVktCjBaSR48DIRp30qShCzLCCHSdR1N0/Df/fd/8R9crz+4yPDOEbxHEfHe40OQgy5GQogkSjY57/3xb4wxeO+PhzPIQa4VWK0xyqLRBB8IWhO8x0XPOHhQvSQQ2uPHEWsNWivcMBKjIgawFhQerSIaCN5DAIhoC94FQnB45zEmoSgNZVGz2zzQtg1d34HWWGvRxqKUwoeAVgqtOB64xIg1CcbI76VZTvCBGBwxKMZxYLttaZqBGBV953BePtjgHevVluA9++2O5XxOnueUZcHDwz1N17Lft5gkkfcVJbWRokUS1IfVHcPgGQZP2/QoFGmWUs9KsjxBa3mt3kPX9mw2e66v73EuUtcFl1fnJIlGa1AovPP0Q8d+v+fu7oZhDFwWJefn55yfX1CWFcYYtDKg4rRRK7yXg2t0HT4GVqsbVqsHjE04OT0jTRN2uzXfv/6G3W6HtSnnZ1d03UDXdez2a25v3rJe3zO6gfl8wTrs6PuRGCJpmqBVBDxt1+ObDtDUs5rEGJJEPoPdbkPXdVMRkVCWBWWZM4wjfd9OB9AoCyrJyLKctm3Y7RuapkFrKMqcxFhJ9Jo9zo0oIEkTjNWgFM55mral7wbG0cnzW4s2hiy1WKNJrEVrxTB6vIvEEAlEVIyooI4FxuE7MP3/SAieJM0oi5KT5Sl1NacoZmRZhTEJ2srzKW3I85LFfMnV1fkPXbJ/kDGOI1rLZvhx4m6MQSlJnrTSGG1QEYgRoxXGaGKQda+1IoSpUJhKgUN5FwGjFIlRLOqMRZVSlgkow4AhAFF71FRkhAAqQFTymYNCeS+POx3Y06bybw2tIihFlhqMBgi40ZHlcohZa2h2G9noicTBM8ZACP74FaOsS1n/EKVawmgDQNSASgBZi6Fp0FpjDICi814KHu/pu4EYQWuD85FhjAxjoB8ceZ7i/UDEMV/UVHVBnmcEH0iTnGYMNM2evu/R2pKmGfNFTVFmWKul4RFgGGUfur15YLPeAYbnz5+wWNTkRYoxCiK4ccR5x8PDivV6h/cRm6Q8e/acZ8+ec3Z2idZmShA9ox9Ro9wTaZah1UCIjtE1PKxuuX94QCnDy1fPqaqS9eaeu/v3vHv3PcvlnOVywWK5YLtpaLuR7XbDu7dv2W72EBXFZxX7XUc/DHjniFpjtCLPc2JQDIM0PJq2w1pNkliyLEUpRd/3x4O1KArKsqCqapzr6YeRttnRdyNKW9JMrqt3nq5rubu7Z7fZU9Uls7pGKRj6nq7v2O+31HVNlqcQDaPfSsFpDWmWMQ4j3k/nZ1SgtNxJUZI2rabmnNEYo1GKY6NsHB1KR1KdYJQkMWmSEqYE8h9qKKWIIeK8rLXDz7SW5g6Ac1PjQMXDH6GmfSRJE7nvlRTn89kMkM9kH3fEOJKklpOTJd57rt+/Y73eTwVnSVnWVGXO0AfatmMYBpzvCTEjTS1JYqnrEqUUbnQ0zV7Wtof5YsFsNmO3j9zc3XFz8w6UQStL8I40M5ycLnj6/E95/eYbun7Pm3dfcXpWUpQFWgEort/fsl23PH/2wNlyQ5lHVFKgYkKcUtuIn/awCFMCmSQJs3rOq5efcnN9TdM0dJ00bYIPBB+wxkzNCEgSTVnnoGSPfv/+hr5zPPgN9azg5KSmKFKy1BCj/I4pNPNFxTh6vPc0TQtE0jRjNsvRespFdGSxrKdEFvpuakQMgeA1m3rPOE7XN0jOKc+hsDZBG4NC/ts5T4iBoR9JrZP9NASckwYWCqw15EVOnucUVUWSJIBGazs1rOTLuRGCI7WBcdDsdytWD3dsNitSo0g0WKWwKlJl8t2EgKWXxnP0KDVgp0YAQGIsRkMkMLrDnq+n+/ZQEKjpJDscRXr62CJFnlGXKV2d0vU93eCJBKKPcoZNzxOnveHwZsJ0jukAwSswVq5JG45Fn7cWayxplsnnZwxpYlFTN7DrumPxYhPL0A9orUnT9Aet1x9cZKAC680D3jvpmluN8fKCdvsd+0YW+TiOkrRPyfthkiHrXKNjxESF1pYskwTQGotWeuoOBpxXcEgfouPm3XspxrXmzbffHysyomycMU43hoKAmi70KJ2EdsBHODk7pyhKijzjm69+jd2ssI2mG/0xCUySBEIgBrlRCOHYZYxo0qIkzQqytEIbQ/AO5wasTei6lm7qdhOlUAFFDJrVw47tZsv56QmnyzNsWjCOkXZwjC4S0CTast9v0Ubx2WevqKfF6FzA6IztdkvT7AGYzeYyxbg4QZtADNJRbbqO1XrHzc09X335HX/2H/0Jz58/4eLyhKpKp8/FMIw9r1+/5uHhgf2+4eTkkqdPn/Enf/pnoCFER4gWaxKSJCemGWmagYpoDSF6bm/e8zc//yu6ruc//9/+H1ks56zW93z73Zd88etf8uTqOc+efoLCEmNP37XcXl/z1a9/SVWXvHzxbEpoGoJ31FXFyXKG0jCOA5tvvqcfHCjF8uSEqqowRrNer9nt9vjg0Erz7MkTtNZ47+jahrZrGEeH84HTs1OMtngXWK3WPDzcE3F88skzrNaM40DXyEQusZJUmVSDVjgf6Nqe7a6FAEYnWJtCjKjgSa1G5ylFoSjLHIViu2tp2+HDAo/SnVdKfZjmxcg4yj2VJJb5YsHJ2SknZ6fcvL/H2G/o3cjV1RmDHzFZQlrlrJotVT/jSic/eMn+IYZNUsZxIHiHtYayLIlTghwBm1hc8IzDgFMKYkABZZ7jrKFrIyFJjlPSqRwAFFppNFAkmnlpOMkNT09y5vOKEDNGk9N7T9N3EALj4OSzUIGgFAFNiEaS+jAVLzES4whEtP6ALg0hStGAJHZ+2BGTFJKENEnIs5xkNuP84hJjDDfv37K+v8futhACrXd04zgVVvKYMQb6vidGKMsBWxSgNc4rtFGEMeB9kIZJkWOtQSno+2twcpDqqWPtfJBioBvZ7XvWq4axGiirlPlsxvMXlxgDSkm3O8tyNus9tzdrfBi5vLzg9HTB+cUJ2kjaEmPKft+w33Xcr9b86pdf8+TpU66uLvn0sxcsTgqZamvD6EaaZs92u+G7775jGCKLxSl//PlP+OnPfsbpyTlJkmKNJUkSvHdsd/3UlOpQak1Vlfgw0LRbvvrqN8zmZ5ycnHF+ccl2/8D3b77mr//mr8jSkuXiivlsQdM+sN3veLi/483bN+y3PaktSJOMX/ziC/quZRwGghtI65wkkUJu33Ss12variVJDWVZkKYpNrGsHtY0TUvf9+R5wdnpOUVZEqOnabe0jUw6ox+Zz5fUdc7Q7dntW1YPD3z7zdd88sknVFVJliYMfc9qtaLvO9I8pSgymdxrS9cPhODp+kiSJZguIQQlXc9DIerB+0C0UgAPwzjdQ3LP2qkxgdK44GDsMX5EA1pLx1f9fSz2v6PYbnaMzk2TzUCSyp74MXJCroVM+2Bq5luFtYYil0L49OSE2bzi/OyU/a5hs14RwgN5nlLVFXVdc7I8Zz5fcn39nl//+hdYm3F+rjg9KVksFqBgdD1Ns2MYWpLEShFa5RRFQVEU3Fzf0zYtbStTqbLKqeqC2fIzvvrqa5kWPFzz7OUVF+dPqOpLPvv0c370+Wd88cUv+Rf/4v/Db77+G16+fCWTvzDjj//oPyU4z2++/I5EKS4vLjk7vSAxM8CiMCiVo1UHeEJwOO8Z+wHvA+fnl/xn/9l/znfff8df/MX/m9XDGq00SZJQljlZlmATgzEJSTKS5Zp6lvKnf/ZHvP7+He/eXfPzv/6Sz3/ynLOzBdQVaZpitEIbzXIpE7VqXfDFF1+x2+4py4pZvZzuvQB4lPZcXp0JcsPc8nD/DW3bsA7TZ+wH2q5hs93T9bL3VXkBUdaEUpGyLBkGKarHMdC1HWYcMMaw328J0WOMYj5fsjw5oShKkiwnSRK5SwLc39/Rdi1FkVPPKrpmi+thaC2vX78hBofVsKwz6kxjVcD3Lcav0Ur2R7xB6YhWkdQaOPTWVSTiafuObugwykqvACUNY2uk6FIyHT+UCNZYLBGrDRrFclYRvCcGhw8tD9vAvg0Mg58mlTKZj4APmhAV0TtBVWiFQRqbvpf8Iy1KYgjEEGjZEX0ArQkxkGXZlMNK0yJJDCF6+r4jBMkD0/SH5SI/uMhIU8swdNNo0k1jSY82Rrr9RBnlKjWNadXUeZZN3HtPIBI1RKNI8oQkS0nSBJtY4lR/K20E9jDN0JWC6KeuYpAkzY+O6AMxTtXbVCQopWSyEiNDPzKMgRA1SVoxWy4oC6leF6fnMnI2irhdS5XsPb13eD/KhCJ6nBuJgQ+j6cP/lMGoFG0FUuON7GKj6dnvdtMBFKebfuqyKOlqey8bX1SWYYg0zch+3+GdlY1tVjCb5dgkTB+QIU0yvN/Q7HtQkefPX3B6doI2GqUkKdYx0vct7989cHOz4kefv+Lp03POzubMZiXWJtNn43n9/Tuur+/ouo40y/nTP/unvHr1GUlaEBD4iPKjdETdNIZDkv8YHf3Q8D//z/8j9WzGk2evyIuc9XrF96+/5Ve//jkvX3zKrD7B2pS2bdluVtzeXPObL7/k4uwZeZ6hY0bb3jH0LcTI2dnJcRQXQiQvSrJcks7ZrCZGqai32y3eO/I8Y1aXxwJjGAaa3R7vHEZrinmJUpF+6Gi7jnfvXzObF9TVgtRmjL2jazp22z15mpBmCTa1aKMZB0fb9axXW7SymFSKaR88Q9+jgKdPLuiGgabt6PqWPDfEWGBNwr7pZJJBnDr2hyID6aoQ0VMH9fmzZ8yqmr5tiV6x269p9jPK+gWLkznjuAN6lmcLqrpA6/i31uY/pNDGYKI0IbIslZ6bFmhZIOLciPWe1Fr6rqPtezSRQYN3HjcOE+xMS7c+OmTOpohRo/GkBspUUxcG4xvoImlaYfEkRpHmUaCRmcF7RSBjN3gGF/EhMODlPvQR7xyHTuAhOYtMDWWpRgApOs7P5swX52hbo01OjOBDoJ4t8T6SpgXr+3vSbEey3TAMA0SO0CfnPEppQvA0TUOe59KxU5G27Rm6ATf6acooa98YTZ4XtG2k7zu06lltVmijKMqSd+9u2O939H3HbD7j9HTJ5eUp1mpi9PjgiV6ue4wRYywxeqy1sjdbg0xQ5D4eneb6esPr1++4uDzn+YsnXF2ec3Jak6YZWss0ptltefPmHbd3NzjnefLkBS9efsIf/fE/waYpPgZG38tERhtskrCYnzCMA1pDklh8GPj2u9/w/v1bFssTXr76jLKsaLst/+ov/wfu7m7QyvD5j36GMQneRbbbNW/ffsf19Rtef/8NVxdPiFHgLdera7wbiNGTpOZ4YHZ9T4iK4OXaFrkkhyF4NusVu92WECNpajk9FRirGwfpKLY9fe9wLjKfL0jSBOcd+4d73r27xjnH1dUVdV0JBGHoebi7lcdLUoosJ7EGq5UkI2HEjS1uaEhTQ5ZnEDVt08t5eGzYqWNxrpSSwmJqbHkf8M4TUeRFiTUCf9AK1qsHnBv4903n/tCjKEr00DMohfPuiJbw03/DBEuNh67uYVoqk6sYHEPfYvWMeV3z7OlTNust6/WGd+/fE6Kb4LkpRSGNgrqesViecHdzw5vXb9hu9sznc7QWtIBSjq4b6boB5yUfyfOMLM9YLpekaUfXDjw83NCPOWmWkeU5L559yma74f27G25u3/Mnf2rJsxmrhx02gSKb85Mf/wk//+tf8u71hu068OknP+XZk6dkaU7b7Li/e8vQD7Rtw9XlMxJboXWK1Rmg5Nwa9zT7Fj9NSbXWVNWcT159Rl3X/Hf/3X/L+3fveP/+PcZETk4X1HVJUZSAIk0yqBTGpFhrqOuSL7/6Dd9/d8N6teOzH73g7KRATbB5DGRZSlHm01RPIM/7/Z62zUi8xlhJVLVWZLnh8uqUth24vV1zd7Ph9uZWoNrjSN8rFIY0zajrGVU1I4SAc+74+oxJUXSMrmdoR3xwWKtJs4o8zzk7P2M2P5HGdpIIUibIGto3O/puh3cNwe0IrgEC65XCu/GIlslMRIcezYjWAyoGKWBR+OAwGKIxhKj5qFWOMjKll2aYrF80x+JCzheZ8ByKEy2jDxSKYCxlluMqN8E6FagOYwbW23HavzUgTXd8BCXoCWsMUUnR0Q/9EVI4jiNZKsWWGwZikP1faQ1pxuCmx8ULvC+MU4OrwIVI/wOnoT+4yBiGnr5v6TrhMxwvmNYCX/ACnyJOsJBp0z5gmwMy7Y0KMKCtki8jj8PhQmtQh/Gwmv5Ia+kgI9AGpmTtkLj9Ll46xIAfPSEqlEnI8xRrNEo+Xer5HAhorRjHDgYHLsjIzTt88AKHih/GjDIt8dgJMqa1QDOIgWjM8XooLQtBKbB2nIoWKX7GcaTrO7quo+t69nvpbvT9QFFaqqpkPq9JUgOECTrxIQmJEbI0FbjJVJSBgqgJIfJwv6NpRhSGi4szFkuBRCSJxdpMnr8bWK3WDIMjSTKePXvBixefcHZ+RZYV0+QB4R/wIaGVomlgu1uxWt3R9R1Pnj3n9PQcbRS3dzesHh4IPrA4OyVNCxSKvm95uL9j9XDHOAwszi6mwjQw9ANKRbLMUJQpWhn6QTYVm9gjp8FaQ9u29H2HGx1pmpJnOUVeEiMMw0jf91NxC9YY0qk72vUdzX6HNpGyyCjLAqKm72UMG6PH2ASTGIw1oBR9P8hh4Tx5LiNEpeXnIBOIsszQJhKCo0sNQx9ljGu0JGZTB94aRd/76T6dNg+tMcYwq2vKoiDPMjSKosiYzSrmi5rEGuZ1hR+WaOW5fPKE0/niiA//hxo2sVJ4hUiSpHg/SidBK2IMAsV0TjZ/5/HOT4dB+LCfTAelPNBhVCyrwehIYiBLNVmiMCqg4ohhQEVJzJWWqWhCIOoIRsbVvYPRSx/QT9AsNzUqDvwLdXhqFEFBiJrIBB31DqU8VZkSsQxjYHQyjcty+dy0ksPHOUeaZVgrxat3nhj7Y5dvHAfGcQQEdukG2ZOIkNhkgsrI+05TWdvCefDsmw6jN+T5HdvtlnEcUApms1oShzJDKU8IgqMeBiccJu9Is5SqLqYC8EPzJka5Jvf3W7bbDu/g4ukpZ6cLFsuaLEtIkpQQpKP88LBis9nR9475YsGLl694+fJTTk7PMGbqIMaAD54P54iZIC8RHzx319c8PNzRdh2vXr2iqmsgcndzze3dDeM4UtdziqLGOcfQd2w3G25v3rNdr9BaEp1xjAy9gxina2cxBtquw7UtTduTZjlJIlOVNEvx3suks28J0ZMmKXlekGYJITrc1DEdhinJSXPSNCcCQz/ysFoxDD3WWOq6xmiFn+Cc47S/JdaQTB1P79xUaA4T3CKiCBgj52RUcdo/BOh96DICx2nYASoUJihzVBCCx43glUMhe7gxirIo/66X+t9hTJtpjMcJTozho6/40X47nZIKsiwhyxLS1BKDIwSBE6VpRp47+n48nhvy2XeUbiSZkBM2SemaiaeweiDiSZNkKkgynAc3etzo6LphguBo0iShKKQzPAwN49BPzTTFrM6IQRoowziyenigLCqKoiTNNN4HqnLJ2elzhrElhEjTrnCuoyxy5osZfb8jBM9qtcIYw3J+Tl7UMnmdmqVd19L17QSvE0RDqqVJYRPD06fPaduWh9UD682aEEe6rmK5DFTVDG0sSaowJkxNHrh/uGe1WrHbdVy/X1Hkc9QE31NKpmxaQVkWgoiYGimr1YayyiirDJsc4EGKNLOkWUJi5YzY79upASxtJGstWZpR5B/fu1JYy3NCSCw+9Dgf8H4kK+sjtHE+X1JWM5I0wxjh32IiNjGMThAeQ+fQsUMxcYkPRcEBAh0DKoyAQzMVtFMD6nC/yXlkBGY+wYwO+aHwNj/wLsyE0v240RbjBJrSWugFgNGaLEkoshznA20fGB34AG0nE71wILcxwawOKEsO0P9AjF640ZJY4rSWfDZYmfDagDbmeN46NxK8FDAHaO84WtzoGPrfc5GxWj2w221pOyHUWpuQ2JQszcjSVOANbhSo0fTGxnFK+KMQVNBROoBWoawc7IL5jxMhc7ptIqgoaXSIaiLERAgBFQ4wKo4bynHrORQbEVT0GK2xFmazkuDd1LkKLE5OKcqSalbT9x1ds2Poe/o40vkRP2GJtdYT9ls2a8Eqa2LpsEbeU5AcSJIjH0gnaNGBQ3I4vH0QfO56sxbyJIrb2zu6vgVG8nzJcrlgeVKjzIibEqxxiHRde4RznZ6dMrqe3X5LUZ4inQroh8DXv3mHQnFycsrl1TmnZ3PKskBrQ5ZlNG3Ler3m4WFNmqacn1/yz/7ZP+fVJz+iquYkSS5EoWkipSceBHHCEHcN3333DV9//SUvXr3g/OKSk9NTQvB8/fVX7Js9Z6dPmc2WcmCOI7v9hu+/+4bNek1VVlRVzdCPNM2OthmYz3MhpOcp4yjJ1Wa7xVp5zXmeEREiXdd1KB2Z1QvKIidNMoahoW1b2rYlxkCWZgKn04Z927HdrNjutpyfnzCbzUiThLEL7DZ7YhhJU4XNNDaVxD9ExW4nvA5rDxAzJdCIRjg1s1oOAKUtSuUoFdltH4jBE2OgyjOBc2lIEsMwbGXzwAACI8zznIuLc6zWJMYwn885u7jgRz/+jE8+/ZQQAmfLE8osYbmY8ePPf0aRZtiPCr9/iJFlKcFKIZvYhN1uwPsR5ZBCsusZh2Ha5KZCLZGxrFIRrQ3jMBKmboNglI1MFUIkSyHPFGWhSTOFTYSUaBhRIaKUkdFyOExOFcZE0lzjoqJz0E3FJsrgnGX0kdEFdvsOvBQ2UcVp6ufxUfhgd/d3oDSXl1c4L1PDcZr+GmuZzRfM5wuGYaAbeqqqxiQa/9GG7UYnkFE3TPuVl6nL4I44/CzLJ+jWoWNaTEnxyH7fwrad1liPMXaCcKQ8fXpFPc9QOoASaNgwenbbhru7B4iauqp59vyKcWxwvqcfWpIkJwRN1wd+/cV3xBCZz0549uwJF5enzOaVJC1pxjA6hqbl22+/xzlHnld89tmP+bM/+3MuLp6Q5hVaCxY6RBj9QIgR7SXZHt0oByEjf/Wv/9Xxuj1/8RJQ3D/c8uVXv6RrW2azJRfnTyey6Ujb7rm/veH1t9+hDbx4/hzvIn3X0jYtWZpSVcUEkQo0b9+x2zd03cjF5Tl5npFngtl+eLij61r6oSexhsW8Zr5Y4JxMObtuoGl6vPNkWUY9q9BaTWIoLW/fvufs9HRqJOQEN7Lf79jtNtIEsVbw+6kRPsowStHSdWgNeW7Z74U/pk1E6XDEXuuPRCF/e4ohEYJAAFSEoevovBeuWAgYFanncy4vzv5e1vvfRfT9QD/lG/K+P8Cj4kEQYWrKfTjLonBi5hWzuUwexr6n3TeMg8dogTmdnZ1yd3/NMHTsd2BtSj1bkOc5i/SEV68U19dv+c1vfk3X76mqUr7KJVonDMPIbrejaVqGYWToRy4uzqZ7KyFNAjfXG7qmZ+gjXSucgSwtyIqa25vr6axryUtLWSyZVRf88R/9x2x3t2x2N7y/+Q2zWcXoXvDs6St+/JM/4vr9W96+/Y77+3t+/OPAeSJNrxgD/dCw3e4IIZCmUlikaSrJrFcYP/CP/8k/QRvNbr/j7v49+2ZHYi1D73jxsiTPEhKboFJpsCaJYhxf8M03ivv7Db/6xfdU5ZJ4rjHWYo0UtD4MLJczymJB2/a8e/ee16/fcXZ+grbnmAlxo5Q07MaJaGyspe0G4RQg8HzhskoOsV6vAdDaCul54tHmRULAAo4QDEWRM5/Pmc8XzOZn5EU5oWsi47jDWE2SaCI540PDMDSoECfRGSFUSxkUIASCc0TjUcpPhZTwXxRGpoXaopV8+TCgtSB6NBN8KchvT1z8aZLBREJPBO43FSBKa5lcKo2JhixJoYgYrfFBE6Mhotjte4ZBhA9ciMKlnZ7jwHX80MCQAtEouebeTc0XwA0C1VTa4IsR7wa86xmHThAIUzN9v98dm1o/JH5wkXF/d0/Xtzg3kmYZaZKilKZrBVNPDEI1Cv5DBaWmSm+qxoTsEkmM5vKsYl5astRgjaYPUSo7K136A7Ys+khUWqo/DTFOjx8jigHRlYlHLPJRxWc6hBWeoX2grA2JycgzUS6Y1TOWJ6ckScbN+3fsNmu6/R5rLPv9nu1uSzQBNRVBMtlwjGPPZrPBJnITGiK7XYsfBeqQWFHIihHGwVFVFc1eoD67xvH67TvuH1bU1S3jIOO8sip4+eo59SydlG8s3kHTtGzWW7779j3L5SmvPvmEokjwviPicL4Hcm5v7/juu/eMg+PJ0yuePr3g889fHVWVlNas1mu+++47Xn//muXJklevPuHFi5d8+umnLE+WFEVNnlU4L/AQpaSK91G6EUmu+errL3hY3VOUFT/+yR9R1RWb7Ya/+Zt/Q9/vKYqM+XxJ8ALd2O02fPHLv2a3WWON4fLiiv2uYbfbsdttp01/RllKIfGweqBte6xVE0ErwxjL7e0Nzg8kiaEsZpT5HK00XedYrTYMQ0+IgTRNybIMIjT7HXfXd0QVqcuck+UcTcLQee5u7yEOJKkiyy1pnqBUwjgq7u7vGUePNaL0o42SJKVtWMzn1GVBai1j2+En3o4hwURLdCIyUJYZs/mCLLNoE1ksS7bbls2qwTvNrJ4xq+eczOZcnp1zdnrG02fPePL8OfPlkiydJi7zuXwWRro73X7L6uHuhy7ZP8ho2/2U+KaivqOmw8iPZGmGHx3SGz4SFRiHYdpXgqx3JaNgVETFBBXNtKE66tJzsiw4v6jIihyTpChj8EEmVUohXKsJtgYKbSNVmkonsmmojZXpCQpnHDrPQaWc5AkExTh6mq4nKOhGTz96lNG0+y3vhoGmbfjJj39K9Ao/7um7vRSkKJli9j1JmvH0+XPByHpPcJ6Tk4bVakXbtgyDY72+x1hDlqZ4D2mSk6QpaZpIF5aIUcIfyNIMaxK69i0xakan2O07EmvJ85Q0Ndw/PBBVTaTApil9H9jtBt69v+fuesXJyRlPnpxNz98Q8WR5SlEmrFZrfvmLrwghcH5+xtOnV/zkp5+QZlaIolozOs/NzQ2/+c1vSLOUy6srnjx5wn/xX/5XnJ0/oSxrsqwSTK+RA9ZawW5rpRn7nn7f8u7da7786hckmeWzl6948eITUPDrL37F++v33N+v+eSTn2BNCij2uw3397fcXr/n3/zlX3J+fklRFFhl2exuaJuG4EfOz0/JsmLiujmyrCRiKIrAycmSqpIE5Obmhr6fmhZJwtOnVxhjiN7Tto3wMwZpBM1nC9JMGh673Zbr2xu2uzUnZzOWi5l8dm5k9XB3FJfI8oysSDGJwYfAftfQNh3NvsEYQ57JPuZ9oGlGrNUQA/t9TzzetocJ+2+LShxCJm4yDRwGSQaKLOfZ0ytevXrF5z/+8d/Hcv87iflixn6v6TpRufF+nCAg8Xg9/ERgjsRpomXJJwWoJEl48fLVkfj7v/yPf0k1q8jzlLy0vHj5jLbraJqO1XpL1zmyLKcua4iBxXzOTz7/Ed9+/w2bzZbdtuXqKps4GDKB32w2AsPZN4QQmM9qiiKjLOdcXmbs9z3r9Z6HzT02tZRVyScvP2O1fuBhdc//4//+f+Of/vmfcnUVSGxFWSxYLCuqOYTQ82/++q+Yz77hP/qzgR999lMuLq84Pb3g53/zr/j22+94eLjjZz/7GUTB+9f1jHFw5IVwjbzz+DDiwkggYpKMV5/+iLqeM6trvvzyC25vb/jNb75lHOHq6ooXL18Sg0MrhTGKV59asqzg7nbN999f81d/+QvOL5b86PPnXF2d0vU9bdtIsRAswUOeVzRty2q1Z9/0PHl6AciEY7dpuLtd4xxU1Ywk29API957gUUHR9s13N3dTlNPKxAjZUB5ETlIErJ8gfcznHOsHjYMlZOJUmYxWnLJED0oLxC7EICRLFXomEy57JRzokhsQm5T8gSKVOBSUtAqtE4mVVQ7IRQStDICyUysNAmUqJxqJbmhTIc5kr4/VmMNIRyT+RgC/jC10xqbJuhJECIqg8JgTYIPGqU27FtH20b8lB//7p5w5EZPWTNGkyh5H96PtK0/4mP2zVYmOJqpSJGJdp92oASSOU6iC/+h+P9BXcofyWeJTUX9ZXqheoI7ED4QNSPqUFVMAyQZ82ZWU2aWWW45XxbkeUFUGX1QeAJRBfATd8FHUFEelkmicpIABYjht0fGh++HsVGckgjvHctFSVHWGFthk0ygXQ7SLGdxcioKRMUOrQ0hRrq+I00TfBB8a9/3MBFnxlHk87SZyOpuqraPUCk9NUIVVVUTfJyIxJ5hiBBHgt+jEOm7ECJ915NkapKZNIwu0HUjm00jAzkl8mZDP9KPHaoLoqChMm5vVtzd3lNWJWdnSy4uz6iq+lh4ee94/fo1TdNQ1RWXl1dcXV1ydn5GOXX2RHpPoEbHmxJRZxiGjvXmns1uTVEWXD15hjGSeGy2ayk88pw0FTxm7x3b7Zb7u1tW9/fkWU6WZsQYaNo9/dAS8dR1TZJYQojSxR4GQgzYxFKVBSEG+qmwNUZwl6LOohgGwaDudz1KR6xNKAohY4p86J7gHUWRU1YVBkPfDfTdQPAjSaJIUjORBi1D7+l7x9APWGsFk55YnBdSZZokUmBMG4dgOSPORSGb9W7aIKbOoxKoQ1mJEk2RD5R5R99FZtWceT3jZDbnyeUVp2dnnJ6eMZ/NKfICmyTkRSVETTTKWPzYMw6O9Wr1Q5fsH2QMw4C1gpmWglZCRuLxODYex36aSh7kYicoxBFLPjUhJuyrVpHEBObznNm8oKoKsizDaotWBhU/HlcfiMyACjgfKKuCVEki2Q0yTZBJiROsp7KgDtLEHhJH0AarFKkx2Dyn6UacH9mu17x5/T0RRdePuDEABh9gt90SgpDe8ywDDvLekTGXqWPT7Nnv9rRtgw+BfmjJsxKb6En6UU/ND7kmh46SQCwyUa2KIsV7UGSzNuXhfiMT1X4kSRPathfScjNwfnFBWdYCeyXIWhh72m7E2ob9vmW72XNycsL5xQlPnp5TV7VAUAEfHG/fvmW9XqOU4uTkhCdPnvD02TPqWU1eZKSTnLR02ieoi1LTtQ4oA3f319w/3NIPAy8//YTFfIlSirfvvuf27pq23TOfLUisFBhudGy3K96/fc3d7Q1VJVATYwxD52gbUUYpy4yyyjHa4HygaRuUVmSZQCfKssT7IJPtTqZKaSKTD2vstO/LtGEcpSOY5QlJKtCOYey5X93h3ECW2gn2KvLbXdMeCwybJNhU4JchRIZRJk4CuxKlm0OTSsVAmpgpebGEAMPgcOOHBCJMEMOPxSXgA2djGIRrk1hLXVa8eP6KV69+xMtXn/9dLfG/84jxQ5L22zCpD3uIwFMkF5FusjmiHATDLxMrpRS77R2317ekueX8cs5sXpPnJcYWbNaNKEh1I24QiEyMDmM0y8WC3b6j7x2bzWaaFIgaWZ7nk8LXwDCM7PcN3nvqssaYhCyLlIVj3+wIztF3HXd398J5dVDmFbc396iYYHROmuQUpUWbhOXygmHwOD/yqy/+hizLOT+7Yj474cWrT7m/e8e+2fOrL37Ok6sXpGkh94+1EzRPmiwu+GntKaxNqao5Rif87B/9Y6xNqOvv+P6772mahvuHe9Islem7lfGDMQmXlwlZVuA9gk7oOr75+jXee7puzzB0EDRWB7SWCf7p2Rnr9ZrNZksIHNESTTMwDKIM5lwnfLFjVX0QtQjsmz15XmKtwNM1HmuE1J/liSBfJvhSkhYordm3DftmS1WCtRaIKC2E+Bgd0TlUlHsnhg/wQ60gBpGQtkqayvqoGhUkt1V6mu4cFBKnKdoBFhXjNJGY+BlyFwNM9ylHftXhv9WhYT7lsGiZEOkQ0EpTpClDIdPNbgy03QixJ4ye3h3k3D8UFseC45CTT6MUEUmKMkEJMjVRWuOjOxYYH+fWBwn+w7Twh8QPV5eKh2LBkCSykARzbvDG4GOQQuNYYkSiOlROMlLSRHJrqDLLLDeczzLyIscFy4BlmDSBVRCYkJvgEA4EcsWUhB8qtTCRPKZa45BU6wkvfQDBh+CZVRn1vETpnBATumEUhRhtqGcLiqKiKCoZAw0DWdOQZgl+kgM84NFEKnYUkuWkNuN9QEiYZhpDTn4gWpFmIq82OsFphqAZxoj30mU0VuN9ZL3ZokwkhAxtrei5Nz2bbUuWFZM8sBCdmrbD+ZHVuoWYsFpt2Gx2fPbZGadnc05PF9LRR0/vp+Hdu3dkWcbZ2RlPnz7h4uKCk5Plh2mHks3bHOaXSBI9uoHNdsU333zFMHScn1/wyatPGZzn5uaW+4fbCbpQHfHl4zCwXq24vbmhaVpOlqfkWS48lGaH9yPGQlXlgGC4t9s946S2k6YJeZFOJLE9ITiRnctz6qqkbUe6rmOz2dG2A1lmpYORlex3a5Ga3O8xWlHkObOywnlP1wofRhFIEkOaWmyaEL2m6zrapsV7T1HkJEmKsXqaahiyxFLmuUiWRo+LEe9gGAJt5yRJ0JHUaowNxDgSo3TN8qygLCJ15Wn3jrqsqIuKk9mCi/MLTk5Pmc/n5FlOmqQkk5a1jF0lse3dOF3X9Q9esn+IMY6SEGujGd1wlMF2E6RDK401hj6E4/o9FBeBMKlvTJClOHEy1FRkJJH5omA+LyiLnCxNsVhpcUy1ycS3k71k2sIFGqmkSCbH328nrkBEI9LdAY0JVngdeLAjUackGvJoyKpUus2do+32vH79vSQ7WqF0jo+a0UV22w1WyyTnAHs6NCXcUGKsIc/zifPl6bqOYRin+9VMfB8pMkDw923bfuATpAnDMHFbvGA51dRhe3jYMzhRnEoSc4R0jKPn1asLjBasrVKKcYw0+5HNbkUMD4yjp+tG6lklqlPnJ2R5NnXBPG3X8ebNm2n9FFxeXvL06VOePHlCmibT67PTAS9X/qAC5L3DEwjRcXP3nu1uQ5blPH32kjzPaLuO7779mtX6AaU0F+eXBK+PHgkP97dcX79ju15zefmUNE1xo5OJTO+oqpR6lpPnCd6DGxy7/V6SzzSZVA5TNps1u51AAfJMeF/z2XzqMjr6vqfvBHKrjCbPU7SRJlbfDazW9+SZpZ4V1HVF9Jph6Nnv96gYMMlEpk8MEWnctU1P2/UT6VK6oiJiECYegSVDk6WI1HdEZIhDELz4BOVVB3XG8KEIlw6xFLRZmrGYL3j65BlPnrzg4uLF38+C/zsIUZCS5DNGWaeHBE6avpMAzdQgMtaQpHLfhRAnMRd1LMCN0dzfr9G7SJJCnufkRU1e5Oy3g5wbrqPvWhILxoiM6mKxRKmGGPfs96L8mOdSvGRZdsxHxnGkmfg7RqdYK8+bFynWyPvpO8/bt++wxmKs4fzsks1aIIzGpuR5TogLiqJkMTvDmpS7+2t+8/UXzKdCvKpKXrz4BOda3r/f8utf/wprUxbzU4q8RqlkEp4ZJxXJaT9VhsTmGJ2SZ+XEr0qoqpr9vqFtGtZrKaIWiwXWGqxNUcqQZxVFWeJ9ZLW65/b2nu++eytTYDdADNRVxayWQtnYSFam7PZ7mqZnv+8oiwpjLOMQ8V58wtqumwj9h1xKJKWVEkiimabNShusFQ+IdFrLMkGwGG2ZLzQP6xX7Zs9msxKhDHVQ5hPYUwwO70YORSnqIPIxSa0Hj4oaoxSi8XMgWE9KbVPuZxNzbIodpIbho8KfKFMSfTja/vak4XeVKOPhgFOTaAEBhSdPE1whBYiL0DQdeHBDPxWQk4dTjMep5/Qk8v1QYCD82zD5zIgQRyL7yEfaEMaY4wQ4TFzlg2zufyh+cJFhrQUtXaeubUmTBKMVKsZJM1rRxUCR54KXDA4XAyEKSc0ohVWQGigs1GmEfoVSLWVakielFBOpjJXiJPFskoRNOzJ4uWhtF44bhfcKH6QT7oNoBmvkYI9KHSv1cRj48qsvOT/f8smnPyI1VtSn+pZx6NFG1E2W52e8efM9WVnyrHqJUhCcEFHHoefh4WEiGHvu7t5jE0luY9SURU2a5milCfgjXyT4yHKxZFbPGYff4LyM/4ZRRrBCOMz55pt33N2X5IVo0kvSLWTAf/Ln/2QioTqsFqxisx9ZrVfsth0xgrUZaZqT5ZYsV8BAUZS0bcuvf/1r8jzn5OSEy8tLfvSjH3F1dcVisaDMCxKdYCbZO5DxqvgECKfi+uYtX371K/6Tf/rPOT05IzEJ79695bvvvj3yHbRKBBfo99xe3/H2zXfc3d7y8uUnWKPp+o6Hh3t2uxXzRc3FxRnaKCG/Ny273R5jtOCb6xmb7Zqm2dNOPIzFvKIsSkIcaLsdTbOnafYyJTLQ957bmxVNs6XvG/q249XLFySpxfmB7WZD14iJWVWlZFUm2PBo2e06ttsdQ9+xPCknaTaZGilk857XJdELDtiHSIiKbgg8rBvevrunmmUUZUWa2iNZtOt3vHnT8ezJJ1iTk2eW1ETyJKEqchYnc5FgnpSMxtFR1QllUeH6UUbAU5HRdQ3Nfsduu/mhS/YPMiIRbURRyDnZ2IgBFf2xw2K0eGWEKFrgQX0QYVAToe5Q8Mfg0SaQpoqzs4yz05rFrKIqcjKdYNS0GU5TRw7JeRTiZZygmQ+rtUwX0hRtARTRCQckxkl1KrTTa4hYLURtqzRRG/CG3Ch8IvdF2zZyhMRIjGtCULgA4+BZnF2S5yVJkjIOfio4MlwWSNKMomiwxtK2LUrpyWyyFOxxlKREemqKqCNaixpV27VHGNUB79t0DZEw6ZrntHvEI0HJ3/iJe/b++prlcsZyuaAulxib4oPlzZv1kdxsbSp7hPJE1RGjdDF3+56f//xvBBYyn3N1dcXPfvYzTqfieV7XFFkqWOjI5Ekk94P3I873bLYP/PXf/CVds+fs/ILPP/9HhAjv319zd3/DV199wcXlxXF6MnYju92Wh/t7/vVf/s+URcnFhfz7ZrNlt9ux2WyYzyvqWUlVFcQYeFivafZynbJMjPaKsuD+/pZ2Moa0xnKyuCDPcojQdlvp0rb76e8ykiQlTVKBwe72rNYrqipluZxTVxXRadarDX0nU4yqzEjzhCRLQGu6tqdpOh7u1xR5RTLBzrwf2Tct3jlePn9CNwy0bc/DasOslqmL1pqm6Q9aKdNnPq2JKTlxzuGmSVZd1ZyenvLJZ5/StZ7Vw47Z4uHvfe3/vkJ8jYap+eeOkCiZ9gzCy4gy6ZPmQcLFxcXUixTPk4eHO3wYKIqC2bxA6zM22w2/+sUXdK1jeXrGcnnK2ckZa7Viu91wf/cea0W8Is9zynrBfLlkNj/h/u5ezuPdjqqqqKqKPM84Ozths9nIFL0f+O77N5yenEwkcJnCowLBBfabHTbJKKuSi/NTTk7mrLf3/Pzn/xPj0PHs2UsuLgV2WFULkiSjKmd8++1XdF1D3zf87Kd/xtWTZ8zmM7RR/Mv/4S8o8pJXL3/E82efCmQxL7CpJfaAdygvEF+tRRwnaw2RT6hnJUmi+frrr9lsxMj2X/7Lf8nLly95/vw5VVlgjZ6KKsv19Q1d69isO7775poksVR1yYvnl9TzOUoFmm7LL/76S4bBk1rJf0BD1FgjRHWjQU+GvDH2oODs7IQ0zSaPNs+u3ZFFR2Uj83IpsruTEWVqM1CaiCIrC7JSfLJev35NjH5S2TtBaZGl1aS0o5O5xEdd+0OxaoymqkuWdYEeVgLlD5On0SQmorUUGALjj9O5/YE398GM9yB48tv+cfBh7R7CWosKwkoheOLkq6GUJk8zjDaijJkaNCNVrjHKoxhpukgXIBwnEVHUWafJyGGPCJMv3IEjoozGJIahHY4Ni4P/zKFgtiYVZVP9ey4yyqqczFCEdT50PWMQpaVx4Njxj1NXX2uDmjqToIkBogokxpBnRjoCOqBxmNjDpOryQTVjIqgQmKeR0UcGB1khhEwA7w3KJIQgXR7lFeOk0oBWDE5gStpo+rbh9uY9Xd/z4sUnDIMn+o5xbNHB0vvIfrcDpBthJyMtmKAM40CaZnRdS9M0NPs9oxsZ3UBV1iSpSLKpST1GPkiBWfU9IvsbDzeWvLdu6DDtpPBgE/pOfs8Y2O8HMT9Umi+++JL5rKKqS3RWslicAJbr6xUgjo1ZmtL3IzfXd4QwsJjnxKho2x6jI2enp8wXC+q6pigmKIkV/KiMvTwxClEpBPDBs99v+fLLX9O2e37y+R9xdnqFRrNe7fju228wKnKymJFlBUSDG8Vp+5uvv8a5gcViTpomws/Y77i9v2W5nFFVYlTUd8OkHy6E+jwvjuSnZi9k7tGNXF1ckGUpEOmHlrbb4cNIlhmUsoyjZ79rxDhvkn48PT1HWzsRYnu2u7WQUxNLltqpWteMg2f1sMYYqOpc/EDQeAfjEFjMSlJrxA3ZT07NPjI6uLvfsW9a0lQzq1PqOifLUza7kX4QVZcYFevVjsQGEpuTZ8mkw14ym9eip17mVHUFKJz3DP0wacCLKdd8MZcOiFGk+T9sn4yiKCRZnTx1FJHghfDX9x3BOYJzaMPU1NAiZB4PG9oHkicEUQ0rNbNKM6sTyiKlzFKKJCOxoi9OBD91hifUJok18rBRJq6iBK0EGSVyIgQVUVEfu05qUpH6rZG3mgxKXY8KRiYm3ou51gGdEZlwvlBkVkxElce5HpHZ9BPkRThpaNi1LUVZYY2mKPLj2F0kVwWC5X2QCV3fHcnyi8X8qMTW9W46YDQhaIxJ5cBAY23K6UlJJDIMkux2bct+v+fkpKVrHePgiVFNHjFiejmOjtX9BmthMVvJ3jtxy6rqhPl8zmLaZ2azOfP5nCQVoznCNEaC6YOIhOh5WN1xfy+E11fPP+NkeUpqE95dv+fN2zfc398xm82wRjpsfd/TtgN3t7e8/v5bikI8DbIsZxhGNps1w9iTF5Z6VpKmFuc82+2Wtm3xwZGkltm8mmAaQrQNE456MZdOsXeBrhMhCufE5DCdCgytFX3bsn7YMLgRaxUny7kkQi6yW2/pu4YQHGkmnDaTGJQyDINju9nTtj1pmmMTO02uAvv9jtRagX2VCTYBYyLDmDEMHVpBmlhG60RtjIDSMAklIQaTkhwYo8jzjKurK06WS8Z+YM+W+4dbTPrDQQx/aHGQ0ZcC1fFBAvR3OsBAUVZUdUWSZmgDRZ5QzzKc71mvnZghVjXGGuq6BhSrhxV9P9I2HRcXl2gdyXMRT2jbBjedAdrk5LkhsSnz+YIQpbmw2WymNZ0TQk5d12jdoboe73seVmsRdRnlbM6yjHSW4d3BnkecsGfznFk9I88yHm4f0NEwDo40SUmzAqVEhvbVyx/hg+f1mzdolfH8xTPKsuD5i1d0bc/d7S3/+l//JdamPH32nKLKxVcMMMqgrdyXAMRAYo3Alf2Cp0+forVmtVpxc3PD7e0t9/f3jOPIP/rZjydlx47VakPbSBOmLGqatiVGUefb7vY43+HcwHqzJaKo6xllWbOYL6dpSc9u1whkO7EU5IyuQiuR4PXBYWyBTQxKVfgYRT0tOlwYMbYmzXPytMDaBO8jgxuJMYg3SlFwfn6GsaKS1HUtRucylVLQq+63oEHwAWIUCLjocHFA64COTJ5MCWbiZMjv89uTkANjYHpMUdDTv1VMfJiGqOO/HX5+4KIcpA0OVn1qEiTSSk8wyILRDYIeCg7vdwLbbj3tAIcJX1QfuI7H9xYCcSqoIBK9Jw7D8XUdfkc4GQcVR3U0zP0h8YN3Gj2RqIKXF+omB3Ct5EMIQaSxjuY3Rzyanr7AmkiaKPJUYycrenkfAR1GwYMhnAo1vUkTI1VqGb3C4Em0bCYohQ8RbRUhKBIMOmiGIdIifAgNOK2wqaV3nq7d0/U9VVEQQHCNQ4/Skqiu1w/iRj51FrU6uKgK9tcaQ9c2k5P5CL3oy2d5SpIY4WiEo2fjEUogLtnDEVMo/yYGgmLd7jAmxztJaIKJGJ1ilNy169Vm2lBH4gyUSqbDRPgxaZqSF7kQzXYNRgeik+Q9BCEOV3XFbFZTVWKa87GxmCQvjhi8uAhr+Xzv72/F0dsYnlw9o8xLdrs96/WG/W5PPS/Jc4EWDUOg70fWqzW73Va4EGUhXfi+Ox7iVV2STcoWXS9Y5BAC1tojnnUYR7qun4zHDGVRYLRsDsPQ4kbxCxHSaYZzDf0wsFpvcH6grgq0TvAhip79JLtc5AabiMSsisJ7adue0Y0kaTpBxxLGQQpLcchNMCrgnXTNRucZXaRpRSrUOUeeJdRVRlWmJKllcIngShGjRHE0HzEqI7UCu6rrisViTpZnk6yrErWyECfn0h7vAjZJ8ONIDFIsS7H1DzcSm4LSR6KbJh7XgXcytg4Hx231YdOOh43ykLWrILA3C2WuqEpDVVjp7CRClLfHzV+6OB+bkBk9eV5Mh9XhuWJggjhN+NPwEQRUmaNPAR+Nw0V5xKHR4gSrNXHKpn0Mx9/TTNrneEIQ/XEwRAwxylYsHdoe5x11PRMIQJoQgqwTP/EtYhwFshdlb/HBgZYGSYxeGhxDi5lgA0rZIzTrIKtZ1eWkiNSw3qwmsrk4Tnsn0sugKIpcPAPKjBiC+NWsFb7f0fUjIUKSCURoNpt91MiYoCGHz2GSRZRDWTp8+2bH/cMd67V09M9OLymKknFwrB7u2G23DENPPTtBKyM8qLFns16zXq3Y73aUZXWEnu12O/qhRalIUQr0Q7gJA/t9Ky7YSuRMrTWi9NW1k6mqeBJVRUkI6oil3+87tI4TZC1Ha1ETa5uWrm1QRlMUokwVgxKfnaYVWKiOJKmZCgwt0/imp+9HMWYrC3Gzj+JeHWMQNbA8E+8Mq/CJJk8TFK3cx1F8RKKZyP9a0/dORFLih06sMYa6rpjPZlRliTogL1SUDvo/0BCfLn/MNQ57wgFaI9NJuQY2ET8ubaW5WVYpdV0wDO3k+yXyoEmakljLfDana29k6u2FY5FajVaijNf3nRhdDiJ5q/UocKNEinAIdJ089kFvP8sKEmsJacSNgf1OmgB911HXYhRZT9zNYXQTtHdPXhjyPKPIKvrmTmB36oZ6VnNyck6WFyQ2YbE4Y7/fsttvub55R1FlwAl1PeP84oquG6aJ4DVlXZDmKUkiEwSlhTh9hOmEiNFGuFO+4uxMVMgOzb/9fs84Duy2G1arO4IXlaHNRpqu2mi5DkpNssyw3e5oO4F6t01HXc+pqpq6rqnrg9+FR0zrpAF7gPiF4FCTh4+efm50CkoxOsfow5QoI9CpJMFoK2gSJ4m6mWTl68nMTht5r0mSkyYGa2C/3fzWFEPuqw9cEKUCETehC+LUvNLHLj8Hvo/6IMn7cRx+70Ci/rcVGf+2OL6WybX8+HOtUBMfOtVGctoQGN0gAhHTSghBfFpDPEgk/XZ84HbJvhBiILoDX+Rvv6YDsgL+3a/5d+MHFxld39FPpDcVwY9OmBbWAmo6tJWYeihJEsQ2fRqRx0hdwqw2VHVCmifoJAFtCVEfD32BMfhD6UbUgXlV4j3sYkvXS3VKiLjgiKFFRUOpRDkgTz2FjUSjGRJDwFDNZ9ytW5re0fQ9v/ril4KhMyL15bFC4B068qygKDLqes7QDyRJRmKFnJ1lBX3RkCQpu52QxI3RU6dCpjV9L5tOnCR4UWKAMgwddV1PG1CPcwMhirP06KBU0pXXkyHLiyfPZNrRN+x2Gx7u17x9c83l1ZkUR6M4u1ZVTVUVVHVB3++JITB0I3fdyHp9jzaaxekpZZmzXM45OzudjKbEjTpJB/LMHEdhPrQkWUI/DPz8539FlhWcnpxyslygVGCzeeDt29fMZguqshCilTX0Xct6teGb33xNVRaUZUmep3Rdy8PDA+M48PTpE6qqJsbA2I/sts2xwCjLEmst4zjSNiIDWdcli8XsuMH1veCbQ3TCdchz0rSk68UopmmkE9Kagbu7FTHWdN2Ott1SlROULDUkRuNGTbdtub+/p56LVG6SChxk6DuM1pyd1hgVCH6ckr+B0Sva1vP63cNkZmNZzgtOT+YYCxCo85z9tscNgrVNSkViLHmWcLJYcH52xvnZKc+eP2WYNsmHzZosr6iMRqcp/XojhNMYWa82aB2wNqGqZz90yf5BhlIy8RrdeFSmC2HymJjgT6MTvlRUatoVzWSQOW2TShJ7rQN1ZVnMU5azlEWdU6YpmREJ48P1CzEg3jZmKiSmKYieOr/TcCQGKQqMnXgcKPrOCb5XabAG7/URL+/DyIFwquJInuRokzJG2PeB0U9cEiUTWkl+HH27x1iLSROMzmQyq8St+O7+ht1uT5qlPH3+HI10zMW9WKSwrTUo2+Ibj2+HD+IEk2x2NhHK27Yhz8rJXC6fulWCOy7KnJOTOVmeEuMJV8MlDw8rrq+vef39zcRBUxiTcfXkfBKocMQ4omIkjIF39zv6vsEmlqcva2aziuVywenZ6VTsyAS4qmpCcLjgwfVYOyPESD8MfPPNV7x58x1KwT/7839OnlY0TcPN9TXff/cNSZZwdnpCkojBqRs8fdfzxa9+gXeOqipYLBZ4N9K0De/efU+aCkzj7HQBaHa7PdvtnrZtj7y52awW5Zu2EdhYGFmUNbN6TpoadtuO/X7H7e09MQSKMiNJCsqiYt9safYN64d7tNLMioKT0xM8kV3TivpU15Dnov2fFRlap8fC7eb6njTLqMqKLM8JQfh6u+2Ws5MlZZ6RpRY/DoQok7LUJmjEBLBpumlCpDFGvAvu7jf0rcMPAaUM1sr++OzpU/I0xWrNYjanrGc8f/mKH//0Z//rbAC/p1DKTMUZ030Zj4kVUZp4xsr5foBJzmY5dS1fXRdpmpau67m9uWG5XFLkBXma8+zZMx4eHri/v2e/33J+fkpVC4y2rGeTfHE3Fa2BLB2o6py8SMlyS1XlvL9+J8Xr6HDOU9cLyqJEMRXK3jO4Bm1S8rxkNpthtKHrWtqu5WH9wH6niUFjq4pPP/0RNzfvub2+Zr/f8tM/+mNOTs+pqzmJTpnNFtR1xfvrN/z85xvm8zl/8if/ESen52RZycnpOb/4xV/SdDvuHu746U//mDQpMEaScpmoBgJgdEKW5Nh6Usuc5EsPjupd29C1e/7yf/qfKMsCazNiTNFKURTCHznVS1b3a3b7HTc3NwCkacp8Nuezzz6flBdFCESbgDERYxBhlggKaah57wQkqywiphLIsgRt7MQ3dSLV3Ds6O1CUkxjFxCfoulaaHYklTROMySa52MnUryzIUsP93fUx2f9AkpazoSpyitySWIhdi7UaoyYJ2SgczRAOcrF62mc/JPAfFxGHqcDh5x//3mGSceA/HELU0vyHn0Uxljz4JGmvpntLwSR/nmU9eTZitWez8wxTEeR+B6L1obj0x+c/NCgOr/tg/ipDgA9r6nfhXv+u+OGO39bitMbB1BUEJuOlECbsdBRZyQOyQWHR0aBNIEk9s7lleVJwclaTF+KOfFB++chaTpINJk6D83RDT5qknJxU3N9v8KOQlqwOE2gi4OI4jasCFuEG5FoTlYF+S2403kTa6IlB4YJg4IkCO/BepjTlck6WaULoJ2KUJ0RR/bCJYRiFhJvlBWUxEfyicDBCiKTZSNsOjN4TXWCz3xLcOClcWGazM/q+5/37t5PCRUWRi2HeZFlInheTQV3OZXZC153SNB27XcN3336P944IaGW5uFiSpIbIiPWBcWhxfUPbtIxO5BKLLlCXM05Pz7i8uhDd5qmb3LZ7vB9ESQDo2pGbb294WK1IrOLJ5SVVOWO32XN79xW7/Rb0wLw+ochzUIrdbst3337Fw8MD4FgsTo7THiHAwnxes1wuZSNt5SD23k0TjIy6rieYhxQSs3pGPasoioLRSwel7zvBBFpLliakiaHZr+n7HTBydjZnt5epxd3DA7v9FmMgsQCaxBYkNsV7w+3tHcPoKNKUWV1Nihma3bYnS41IK2tPDCNEBwRcgF0zsG8mo77EUFcZJ8saYyXxDSFitGVRL7GM3PYNWZJRVxWnyxOuLi45Pz+lritu7h5QJsGmOUVZ8uKzH5PlGUprslmNH+SA6voBYxXRZNTLix+6ZP8wY9Ia98OAm7TuvRfOk52ciZTWuNFNsrUHMpysdIiEOJLYSJ5qlrOMk3nBoi6Y1xV5ItMiq0XBx0xKINGJUohWGpOm9H1/nIyoSVN/2uoJo3SIrTbEBA4tJGsTcYaeJDIlsRHHcTMRb20MpMqw8x6CqJUQ1BEbq7QW/x6jSa0hKAdqJATFerOh61q0houLiwnSFdGJJbVWJo7R0w0tTd8BHvBcXCwx04FlJiMs7y2JFQ8jIVvLpNEmGm0sEYcPHRFE+Sk1wBKi4csvf8M4ykGYph6lA0p7CD1WK5r9jv12jXeBwQWy3OBHOF2ecXV1ycXlhXCNpsbFdrciSwXy5bzH7Rq6rmez3fLVV7/k/PSCs7Nz0lTTNFtubm745tuvqco5RZmR5Skow243sF7t+Pbrr/DOkefppArleFjJerep4ezihCxNCSGw2+1pGjE8NcZQVRXWWrpuYLvdStNn7HlydUWZF1irGcaWfbMRkQiFqK34SLMfJlW7LePQESIii5umBO/EH6HtGceRqrKkRTJBUlPGQU3Fzo68TMizbDJ5MzT7Fms0Z6cnzKsSqxVaSSIq0EyF95p2L9OPfILclWVGMSW29axiv+u4u9sxDlAVFfNJJvvs5JST5ZKrp0+5uHrC8uSEk9Pl39uS/32HwGHClLApROp/WmtMe4gSJa80lwRz6PfEmKFUijGKLLHEPEOj6WLHZrWiSXYs5kuyvGAxn1EUBe/fv+f6+oZklXJxeUmSiK9TWc7ZbITH58YeHzrKUtyTyyLnxdNn7JuG7U7UqcYxkCQp89mSxWIubuBZOsGme9abLRcXp1RJQVYYkhRu73aMw2by4hJH+bquub17z69/+XOWJ6d88tlPmM9PROksMSyWc3bbLff3d/zFX/z3fPLqc2b1jBfPX1AVBW/evebt29ckacLzZ59SV/OpoSLNkxjETFCQKJLISVE+4+rqir5vWavI2Pfs9wO7zYjWRrikOhCNqF7NFxV9l9D1hrZlOhcVSiciRx+D7JnIRDdEUe2UCRXI5FgdURdd1+B9j7GKNBXn8RDk8y6LpUiL947Vek1dFmilSIzCT/eCVpAV4rRujMA/5/OaGBz7vSBFIgfVMo1CmucQxS9i9EQrzUIlLw85i5xMwpJkgkf9turS7xYSIMXEB4GG3/6dQ3L/b/ubj38WOQgcCFCotOUkKCB/n6dbyqwhNT155ti3nu1+RHkxAz9MPI8qf6jfek2Hycth+u298EnS1Bwnhh///r93vf6g35qe9EDIdGEUEkn8IC8ZPpKXlOtwkJgMMmq2UNcZZZmRZ+kEZ7CTtZA+Ti4Ep6uI6KnQEF16GEEdlHIncs1kSxQPeOkQpnFbRE2uqcKpGMTLgIhV4JRUqAKjkIVFjHJQRyfqHVN1GoMWXDgwjB19L4nw4uSEIhPfDcHryvObSWkr9IF+dCKvmsi1S1OLtQbnzVFWMrFC+AvBCwQkTkpPBJSOJKlC65wYOWKknZMbIysS2rbDeYVSnr7t6QlH+bMsL8mLEmsz5vMT6mo2STZKpxbEqX0cBykOo2e323B3f81uu+Ps9AlVWZIkQkK9v78V7J9iutkiQz9wf//A6uGBoe/I8xxjDH3f0TQ7+qFnuZhTVqWY5/Ujw+gmJSkmRYh0krzrJqlgmM3mot6iDX3fM4wjoxMd54PspPOOtt0RwkiSaOp6hk0MbduJ7OA4kiAdL+89fS8GbzFA148oFckL+Qwiov2slUD6rIkCaQmio+28YOH3TUvTDGgdRfe8EA8CxYFsGIlRT8QwhVZmcijPKIucsixJkoSIou0G8jIltSlZOSMva6y1giNNEtp9w9D1ECFVGRGLSvIfumT/IGPoe4a+Zxx7ghMTOudGgUlZc0z8D9vrgeAtcAjhDinlJUlPNVWZUZcFdVlQ5uLafNhoP9rqRZljIr596CRN/6omOtwEsfDh4839w0hYXJj1ZBqqJp7VhxG7QqBSRZ5ie/FMObjBHjpGanpTCmTSoiY/Du+I0ZOmCUpNZlnE6dANQpYmCq/h+N4UidUkRrpn6gg9G46GqdIVU8cOWvAR75n04QVWpbVnGDzD2AsvxktCZK0lyzP6fpDJaxgwKHGADZ6irMkyTZ6XpGnJfLFkNpM9RvHhsJS1LvC3EDzdrmW1WolfUFkym6Sb26bh7u6ezXYNeMpiTpbJexjGke1mxfrhnqbZU0xJmjGa9XotcEzvmc2Em6GVCDd0XS/Ovkxcu0ndqut62lZkkou8oJj2rQNeexw7Ip48F2GPA09scIKrNwbms1r4JkS6oRdiuA8YjTgXJwlKW2IwNE3DMAhuOssyklSkat3oMVr07sWszchILUrhO45B/IDWLShRQEMFaWooae6laSqO40mJUjljHynzklk142S24OryktPTM87OLjg9PaWs66MM6T/ECCH+dqF/5KJ8yD1QkKQJkpsJlHsYeobeMPSylg5ncnCWzju8c+x2W0BhkoQ0sZRlQdM19EPP/cMDy8UJaSoQ4SIXmWfvR4ZhmoyGgJ3ghYfXtW86gQ75yN7sydJ8StwrukmtrB962rYly0WBraxKytbhXKRt9gL3qSuSxFKWFf0g7vZvXn8/KUKWoASaaK1wkHbbHbc31wTvyZNLFvMzhtFhbcpmvSax7+gXPWenV1MO4iSXCY6owgRjchwUH2ezmrOzM7zz7LcN46gmEombOB6a0QdG50lTQSkkScJ8PqdpWgCGvmOzXhEpqHR63A+PZH04Qo4kWVeThLOZeIpeuIomQBT0B0FNQkCOvvUUicKmKWkuDUVtDCaxwn3Ji2kvleaKGyNDH6b998C3Mxx4v0pFtJFJtMjVipEn021mrD7usQe+7RFR+xH86uOpxuH7IYn/98XHhcbvFh9H3gcCw01VQgyFGOxNpn+TwCCiXuzZd4KccT5yAPbDgT/yAcJ1zO0n+d6PhxZHyPIPjB9cZBzGJtYYBt8dKzmZOUhyf1BsObzxw2RBmUCSRBaLnKrMyJKUxFiSyUhFcVB+OeDCRG1HDnDNOHU1RzceXcPVlMRJcjBVVtF9uPjIc0PAB4FHGsRd2QUlExmE9KkVKCN+zM51hOhQWiBPxmpMVLig2O+3bCfX8xcvXwopaXSTaopMPZx3eDwuOEIzkqUGoxMSK8mH90E2IiMOmtZakfMcB0Te2RDCiPcD3mt8UBhrQQn5ydp0woJKV+7u7p4k0eS5pd22YpZjFMuT+WSyV5LnFecXT6hnc4yxZBO5+eAC6SYS3Tj2vHv3htVqhfeR09NTiiLHu8B+v2G1Wh0Tc5tE2qZjs97z5s33rNcPJGnK6Ym4fa/Xa1areyBSz2rx7VBWlJ+6kXHwWCtY5iRN2G0bttstzjmSJGW5PIHJqK1pevrhg1FNngv/pN3vhawfImWecH55Rp6nrNcb+qGf4HqAEv7LbjvAxCsaxkBRGoo6Fa5N7xhHT5Zp0hS08rhRpmPOR4bRs933bLZ7hmGkLnLms4KyTBHEYPhQeAdD340MvUMrcWgWoyaRN4xohtEzjJFCJyRZRTk7xRhR+CCKGWDTNLT7PXmak6RiwBPUP2xORtvsGYYBNw5E7+nbRrhGMeK84aAKcozD5hcPvhAOa6MYNqaWeVUyr2tmdU5VFqRJIvwxPfnlTFupVhoX3fHgPD68mvgW03MdDJgO5FF9lOWWTVprLZ4b8YDnlH3ocGhYY6jSgqQdcIhXxcfj8g9jZoU1FnTO4EZG12OMYTavJxjmxOfyTsit5vBcgdFJsaCVmtTtRFlIKRiGViapQyBNkqMb9AEH7H1AuTAp1x28R0b2zY71esPd/ZoIE166Is0SVg9r3ChylGoSiTAWFqfnFEVBVc2YzU8EvlHPRarWZCIUEgLeO9p2kCaKilzfvOPdu7fc3z3wn/6z/x1FPkMpzd3dPa/f/AbvA0VZUlXiJB5CoG933Lx/y8PqgRgCs1mN1orRjdzf3wuZO7Gcnp2iQBy0J2duEKWWuq6Pzuht29K23QQjXZImKSF43OTM7fyIseIYHKNh9bBhs92y3mxE6GFWslieTQVaR7MXxbvsKImboG1CCIZxhM16i9KRLBdzRKMTgdd2PWWRUOQpZZ4RfI/3omZ2ULDb7Dre3zxQFjm50VMjLuB9zzhElFqISWmhqUrH2EOepJRZwcXpKS+fv+Dk7IyirJjVM5Is+8GkzT/EcM4fJZo/7qaGo3qOrOssz6T54we0SoRPqQNGQZ5nKCP+GSGzEDOGQVQI5W9z0jTn5GQBm8B2t+P99Tu0TpjVmsSm1LOKpom0rcBp28bjxxFrNNnkHJ+lOd4/TE2vgf7+nrOzM7Iso6rKKbH3DEPPw2rFcjmjKDKyvOT01LDd7litNsRp7dS1KIU9PNzTtB1f/frXzGZLQVNQTJ1+4VsMw553776X5l+Sc3Z6xYtnn3Fx/pT/5a/+Bfv91yyWa6qyoswzvBsYhv5YLHnvGEYhASdJevSEcYNjfb8lBjvtUyOb9QYwAjt3gWEQDlueZ9T1GTc3d8fG4/XNQIhzjF2Q2HJqpkTxo5iSeREL+qDAJKI7Ae8C4+jROqAwGANujJgkooLHjz0hN9jMMq9ySaaVRhlDmuekeTFNJgfKMqPvPW0jXDjhOx2UlLQMxXQkTWRyqNWHf4c4NYHtUUwjug+v92MOBnzgXnwMSToUT/82M83f9bv5Xb8K+Ois0lG8ubRGKYGpaqVJjCVGjzGRNBNYJetA23tiH/EcCqnfXl9/e9JymAB8gHv9LqTr3xc/3IzPe4wRMs5oBeYglWcgTp1AopWuYPRH/LG2kOWK+VxTFSlVkVPmOYVNBeeMbKhMcB0UZEmCN+HYmThAeZiI3sLjjIQhoHQisIjoiUZP8IqDeZebuoeORFtUmqBtjt/24AMuTrhvrY6VWnAOoxWJMWAixjqZkwTFzc17vA88eXIlxLsYCdGggiZPU5RWtENDN/bTYgksFzVpYjFaCWlsHHHjCFG6lQIrmohsMUq1uQ/U84LcJ8To2bc77u4fuLleMwwdT55cMpvNWCxnNPs9+6Zlt93TdlJ1aqNYrRvyaseTp5f88//if8PFxSl1PSMv8gnDKp1dpvfWDS339w98/fXXLJcXXJxfojDc3r2j7VpJNPwoUK60YrXacHN9zfXNNV988QVPnzynKCpiUFxf3/CwumcYOj7/8SuKvCQGaLqOrh1wowelWS4XxOho9lvu7m/Z7zqqqubZsyuUjvT9pFHeDvggHJT5YsY4Otp9w26zZeh6Tk9Pmc1qlHYQe7R2lLkBbUiswyYDyuRsdzu6JrLbDbx4eUaSZYRo2DYN0cvhM69TwUJPXbJhjLSdZ9cMfPf6jiKzzKqck0VFXacYq/BB5CRDUHinaPZiYhaiYXGypKoryrqkqCrQmsF50izhJz/9Kdt2wJOwa3pubh8o81zw2A7KvBQEZPDkiSVqg+Uf9iQjeI8bBoEZuGGaIjJ1bT1Chv5t0tmhW6kms7IijyznFaeLipPFjEVdMatyZpV0qdBamAfRizE4H2FPY/ytTf5Dl0kODuc+yE8D02RpKgwOayYqtLIkNkfrkRBGpGERiMYR1TgZMvJbB8jHh0SaZixPzjFJQdf1NG1LnnfT7x+6tfJatIKhb/FBFFN2uwarE7xK2TRrnGs5QDa71qGUxRiBIYaJcCLSp9KFi/HgNQDeRzabjpubW3bblhgdP/3pZ8zm88mvQ97HdrNju92Dn3g1IfL69Rv+6Z//GT/5yef8kz/7U54/e0maSaddoTBTx9n5Aec6uq7hYXXLr774BVU159NPfizT3UQz9iNv375mvd6QpglVnZOkmrYZ2Gx2/PJX/5rNRoz+Li/P0Vqx2ay5v7+j7RqePLlisZgTo6bdN7RtT9M0ODdSltVxgth1Hfv9ns1mw3K5pKpLykogmc1+fzTbM5PIwmxWs1nvCVEKwa7vGJ0mxMj761vSRBpTfbenyFPyIiVPLZlOGJ34Hd3c3mETyPN08uDJaZsBNwaKLKcuMoyOuEGUr5wXo9Wmi7x5d0/TdBS55mSZUlYFeZFyc3eHG4XY+vbNNednCWlSQEjJM02VZdRlycnpkhhh6EeqSvDUeVawWJ78fS3533t8jBc/dNqBqdEpUthGK4LvMHlKUaScnM6J3tG3PddNRz2vKUshQaeFnN3aSEOh2e/p+54065mfLFku51R1TrZa8+7996xWBVeXT5nNKvExyWbsNtuJN9hxfz8ymy3I0oI0Lbk4fcZmu2Hf7Ni3W9abB7IsYzabcXK6oO962gm2d3fvyLKU5XKJTQ2Lk5qyznj75pr7h4Gm3fHkyVPmiyVVHWjbjr/+N3/J2dkZT5494/zinDwvqMqCIsvpu46uafhX/+pf8Wd/+uecnCwo8pQ//tk/5quvv+Lh7oa/+Iv/lp/85HPyydvDGHPkkgBkWS6wmsl87vmLT0jTGevVnu1uzXa9Yb3e0e69eDMQMalieVIzm9XM53OePX9C0zS8f/+Wzfaeh4cdXRc4O9N4J5YEbdvLPaw0wXOcLhz246OKk2OCeInk/r5vmC8LqjJh2DdcLnJm85KyLujGSFCaqDUqy7GJ+FmkScZsXrJ/88D7d285JNEw2b3Zw7RYknSFNLmUgiyfzv0oiksxiABikqTiXzNB9w5J+O8m5Ueew6Q2dXDT/l3jvMM9rpT6W5K3B/UppRRplk5nlLieF3mGnZqxVV3ysL5n1+yZzfZUlWGzG1lvR3ZNpB8jzn9QvvrbilKKqioYRz+ZUndyVbz5W4XRvyt+cJExTgo3wTtQonVPnCzMD5bc01JHTSxK5SlyS11q6iqhyBKyxJIZgTToiX1xICMexj+HLp3S0zRO2pnyFAG0NiSJIh4dgxXWJhORc0oiJvWJcDBYmSLX4tmh1aGC+2BsBVLBiymYwliRxx3DiPeRqi7lMfJMKnrnGIZBumAKIUQGcawERZZmuGEkeJHq7LqWthlxLk6wiA+Jj9Z6um5y8B+8E5yLrB/2tE2PAi6vLnj65Km4ZadiRBNjpGs7iiqfSDpihHN+fsn55QVFmWOsmm6khCQR190wyQ13vadtB+7vV8zqU2bVkiIvcS7w8LASl+6uYzGfU5QVeVayXq+5ub3l4f6ek+UJZVmhlKFpO25urklSy+npCXlWTEnNIJK0Yz8Z/ZSkSULTjXR9z3a7YTGbU9UFSsVJ+aOn60VlKssL0jRBK0szdDRdx65tWMznx8+j7xqGoSHGkbJMpg6zYCwFuzsS8JS1oek6AhEfpfIvspQstRBG8WyYPsthiGx3PQ+rHUZBkYnz92xWkSQGVCAGJZ1HD85F+sExjpEwFcPGWGySkmYZ6vDfeYmonXq863BektexLCnyDD928jiDBz+yWm1wIdKPjn/IMfS9cIqm0fQRxhMPnUiJ3+38Kw5+O4a6sCzqkuW8Yl4WFFlKOnXsRbt7Wty/Lcjx0RTht4uOwyEg+4h04373dz96kCMMVKlDx8qilMPHgEecV2dVTmQ4KjTJvjg9BGJA13UtF4sTUaUD0iyVe9Q7UUGKTApDRqYUfcfQdUKSjxMYN2j61k3FWSQGhUnMROYMH425D67HAllqm55O9A0FXjUq8qyirlKePX9KWQpPzE9cAyZIbJakAlsIgZPTmsurK84uTinLFG3EqyCxVtbDR5CW3rXs9g3v3l2TZzV1taQsZ4QQeXi4FT7W0GKtJbEJCst2u+bubsXd3T0Pq3sxq5ymsA8PazabFdvdltPTJUVRoJVlGD19P04QLyf6+ZmdVLS6idvVU1c1s9lCYJ8Bmral6wfGKWkViW9D3zc0zRbnOoyJLJczuq5nHB13dw+kqUZrgUglk5GmtQKx2m32tN2AVkwKXUJYHXonEMjEMKtyMXwMnuBHRi97Rzd4bu52uNGRJoa6TFkuKtLMos2EN5/u0+BFsSqkhtRmJFlCkWfMZqIoWJaFTJzqasJXi3fUP9Q4OCP/LaIusuyTVJyfyzIjsaB1xOoJEouoPbatKPC4ECiLTPwBUks2TT9DjCK9vt2TlxmJSVnM59P0P3D/cEvEkWcp6eSb0U97mxs9u13LkESyFLKsIksn400dpFAdB5pmhzEKmxhqW7LbNXgvssnr9YbZrMJYQ5omnF8sBa43tNzd33JyckKSpJRlMZn5dbz5/nu00pyenVFVEwRQGYxK0Wrg+uY147ijnlXEqDk/PafIUx4ervnyy1+ymM85OTklTfMjnForc5yGogKlSadmsuGP/+Sn/M1f/5zNZoNzkSRNsVHU+qzVlGXOfF6xWNTCu6xKksTw/r1lGEec86xXO3a7lrbpEHQFcv2nJotMq/wxqT40nPK8kEZpBBVGUjUySxNmsxPmVUqaSl7nvUMlIk6jjSJEJxxcEwSyaM1HwJ9pYmA1ceI7aG1JE01iPImG5XwOSjgkbgwcvSA5NKoVWn9oTn2crB++f8y7ODShPoZO/W4jbGqTcYAMH/LFj0nZUpBNzuJarr9SqVAcNJRlQZ6npGlDUfTkWU+yGtm1nrb3DGOAj6YsH38d/DRCPHwWE05oWof/ofjBRYbYjnuCdxNfAFRUIvTi9fECTEAplBL1l6JQVKWlKlIh61orrpaTFJb4ln44zLVSkz/EVASEQ/0yFTLhUIAYvA4cCCxaG6I53JwH+MChwIjoY8IJ1ijGMI3l1Ac94MMHDDJuypJc/A6CHAJ1XUnlmCRAnORpR9IkmTwwEGiXk7FaalM2+x0HTf+u6+haj0LGiPJ8klwdPDnkcaWTNY6eoXfsdr0YK6UpV1cXXD25mBSi3JEw1bQpeT45xirF2GdcPXnK2fm5SKQe7tWoRA0iRIIJKK3Z7be0bc9ut+f09JyqnpOmOf3Qs9ls6DpRbZpdzCjyGmMS3r59K8TJvufq8il5XtK1Pbvtjv1+z2V9xvJkSZIk9H3POIiUbIyi0jWbz/BuxI2OrhXd81ldTjKZ7gh1GKbDMMsy0onM2fU93dDjgqee1cKpmEjsbuzRKlKWKcGDd0YO1TEQ8JgEiiqjbUZir0AnWK3IJ8UK70dJJEPAe2g7x27fsd215KkRWEOZURaZbDZBTZMuKTDGMYr6l4/TZyv3prXiLq6MxliB9AzDwDD2jC4Qu27aiBzOFUQ30rU9Y98TXY/fj/TjSNt1P3TJ/kHG0HfHDj18gFUezLPgwOX67S6JAoxSpFYzKzIWVc6iLqiKnDxNSKzhoAgVJ7gkh+/8Ns704zHv7/7836aV/rd/xrFIOipwKD25MIOPI3mW0w9h+jvhlx3WN4cio2/ICzE28iHiQsS6AT+OKDp0lMaF1uDdSBsdYezFFEFZ2Q6DknstHPYxdXSJl5H3YV/+cFjFoOj7kf2+wznZPxSi8LZYLri4OJeEWIuqYFUVQsKfYCbj6Ig+8PLFSy4vL1ksF+J2i5hQWZuhJ7ldhSf4/y91/9kkSZalZ4LPJcqNOQmWtKq7qtHoRgMzkBnIMpH95buL3ZnFyIA00CBNiiWNjAinRpTrJfvhqJlbRGY1smchgkpNcYkMD3cjaqr3nvOel0jh3zYycb28es6i2pClJcMwsN2KPaf3njwvxMoaw273yO3dO25v75jGgdVyTZrmuMmz3e5o25oQPJvNmjTJJLB09IxzjkiMiqLIZsqVmEd0nXDD15s1VSlUjWka5F6bJkIMQuVNEoiRrm3pWtF9ZXOa9+Pjjq7r2B9qMYnIDEUuKcNaJ4BlHCNt3TG66YkiZSxEzTSOJEYS3PPcMPaDUGSDUDb7MdB2ju2uJrWaPEtYLgqqKsdohBpmDcMo+rKIwk0eqzzKKvI0lQDR1YLFSpKr0yzFWNGCee8Zx+m/wd383+f4EPmF+a6am/4sS6jKnLJI0dpj59BgpTRRS0jlNAUiI95LjoIxGmNn97kYGYd5vW1btNFiJVtIoGPdtGy3B5raEF0BeUZR5oQgOhfnJrp2YDSRMQFIxIAht0Q1CTXZTXR9S5paiqKYdTVutm731HVDkljyPCPNLOv1Up67bjjUe/I8RykJwlssKrGW324pygVpmkrWRb5ApQlGOYyx7HZ3eN/RDyuWiwvWqxVZamnbLa9ff0nfN0QCq+WGLC0kV0eJflTWxohWVihDWvH5zz/lzZs3PDxspTGZzTaUFsvbvJDzUlY5eVYQyoIsz/Fe6NR1fWC3q6kPLePokKBV+TRDDHOT4U60uKf8F2HUyP4aKDJFkQSWmeLl9RKdpKjEgFUEFSXcz6q56fByoaTqNCUJIR6FBrJEaj1fSwpjFGliSFQgMYpqkdMPHX6cJwvh6KKq52k7p+bgqSl6SvL+cIL+Q5qL88bjCLzLVPx98Ot8vzq+FoiSMYUI962RtPsiz0lTqUPyrCfPUiItSo9CL50zRY5I2Pl+N03TU8MUPccwQsnp+a8fP16TgWQFODfnNaijnZZBgtyEOqW1jG2MjixKy2aZzV8lRZqRaispvPrYhUH0CkKY7VtFXH48meIiMYtb0KIC8QEfA9aeC1L8ibccoj45TxAVIXiMUaDFF7qscnw3MPWjDFzOTqhSCqNFfLVZP6MfBRWb3HASYYYwd8hK+Hph3hyc9xzqg3CqdcLkJvbbhoiI0J2LWJNIkTlnZng/vzNtZjRVEJTt44G+HymaDO8Ui/KCarHgZz/7GcvlYhY+izjRWtlMkySlbRtQ8Mtf/oI//sUvubgQaz6tLN45BtVirfBVtTKMU+Tdu+/Y7x4pspzVUrjYxhi+ff2atj2AUmyWFywXK0BL4N5XvyNJLC9fvOLq6gXT6Lm/f+TLr77g5avnXF5uWFTSlI3DQNvWtG3N9fU1y9WCRbXg4eGBh4dH9vs9P//8FywXBcRAP3Qc9juG0REirFfi4AKKthu4vb0lSTXPX16RlClhtrXcPm5Js5QiTaS4UAW73cjjQ8vtwx1Xz0sW65xqWdC2jq4NNM3AelWKA8gIi0JhtdgMdt3Ad28eRSROZFllbNYVi0VBRHIRtDJEpU6J7H3vODQe74zYlM6fq7WSRqq1FdvMrp2NBCbcfI3jJ9zQ0meFiFa7lrHv6ZqGIi8ZR0G/fspHXR9kCkAkzTPZmADlZ7GrqKxQx2Ci0xQD8kSxWRleXBe8uCq53JRcLCSVVsIz7UyTOgId708rznmwH04qjhvZhw0FvN9oxJmOqbU4J8nvS6FntEZFcMHhfT/bDioi6fxeAoqBED3ej4xjx3JVMI6iamv7iSRNCF6E7TFxaAWJBj/2qKlFTQqcI5qUcVS0fU+elfNmLGjWNFMdnhxChGbgpidOanCB716/wyaG9XrJixfPub5+xosXL9lsVoBjcgNT3ZMXCWm24fnzK3bbHXmRsd6s+J/+p3/BcrmgKHOsSeUecI5RjSwWFeLbPjGMHe/e3VDXNc+ffcT19QuyrEBrzbfffkHTHgTEWS749ONPAc1+X/PNN6+5u7ul6zo+/fRnKAx9P3J7e8vt7S2bzZLPPvt45r1HplECvSR3yHJRXZDllq5vaeoDb97cslgsWSyWXF5dQlR0XSdIajeBEkrmcr1i6keGXsS1zWHPYrnkxfMLtEkwOrLdKba7A0qJC02MkboeiD4nMZbbu3co5chyy2azxKSS7j4MDq0iRWHIUs00CAgVCZIq7yOHZuBw6NEqUhUpq2XBs2drUF6uIQWrxYq+3dNOIxpDnuaURcGqKvn41SuuLjdsLjZcXV/io2byjtfffcfls+eYNCP8A4Sbf2jHeZPhvZecGyKoQJ4nrFYVF+sFNonkWYnRcDgcyPJcBMBFLtbx00hdi43t1dWGLE+xmQUdUMbDINOv3aOjTVIury4ospI0TVlUBW+/vmFsWvo8I4QNZVnNovDAw92evu3Zh45pdFxcypR+vVpgbaSuax63W3Z7sZIvior1eo0xDX3fM44ju52AeIuqpKpyLi4uWK7W3Nzccnt3Q5EXvHjxcs6JyVguR15/8yVjX1MfnqE/+2M26zVJkpCkiq6/5+HxjoeHRz7/XFOUVxRFxvNnLxiHgYfHW/7Tf/or/tGf/BOur16wqAqhXmoxgTDWQNQ4H0jcQFFk/MU/+2e8ePEJm/Xf8e7mO5TW5FmBsRprJRNIqUCaWZJEDGistdze3XDzLvLmzTuCEyBGKytg8QzgHPVTRyRdtCGieUpmfXCaav7RL6+4WmQs8oQiVZgyw5YrkuqC0e7mnAgITh4vyxLWyxWvv33Nmzdv2R9q/GxBizb4KLozIugYKNOEwhhSFWnamrpp8S6Q2AyNeUrMngGkGDmBo/DkDHW0Aj7XYcjryU7X87GROu5NYQaPJMvkfXDr+PPjKLESx2mKihozx9NpJQYEWSrBjstiTzf2tENPnt1z99jxuO0J/kAzeDlX4X1RuvdPCRui9zDzwOG/MV0qOHeiB/gIwYcn9DHAEa0PwaG1hGQVufDXl4uSZVVSpOnJ/QWl8Ag9yChNUE9+wD/w7EfCwVMhEo9CF54+lLkZOSbaEhVeuTlYK4B2KD2R5Rmd06j+6GDw/sny3jEMI2lmSPMMHyJ1085Nhpt1FU5Ct2wgzxLathH72L5BGblotE3EHz1Ms6hJGooY4kl8KsWLxvsjEoiM2g89bdtjE8Vms2KxrHj27Jrr62cy4kc2rGkasFZzcblm+7hjvVmx2az55S//iIvLFWkqqdeHeidJoWkKeFzICN5ze3fDr3/9K16//prbm7f8z//z/0ReiDXtbv+IpIouWa2XMt7cPXJ7ewcoylLsd7Ms5fW3X9I2NdfXlzx7dk1RZBitaZqGphGxb56nQt0y0A813333LVme88lqzcuXHxHCRNfV9L24DVmjMCYhzQw+eLqu5+27N2SZoaxyQSK9oml6urYTgXWekKaGLNNEb9FKCsEkSRiHQNc6ikqulzxXVEVCdOJwNPSO3VZeZwiRtunphxZrNOUy5cWLS4oikVTmGKX7F/Y5bop0naduHEMfQOm54WaeTDnc5CCbucPB03UN0zCJQNZHmigCV2MSXEDyJMaR9tCcHJiOnMif6qE0R/MchnFGqWI8LbowTzDn5kIphQqBRalZLQxXm5RnlxWbVUVVFHNa7XGRP6JT8+PM64PWGjunv3/ooHE8zqcZPyTC+/DntVbkZXoSoBIF0ACFVRqDIGBZltANnL0voXE552nbhpt3b1lvLnn+4pI37+5F9KsiMUsliTV6VIyUhSVRCzalpmkH7ncdUzeSZ+LQl6UJKNjtdqf3eWwyrLWS05GkYnHLcRoDRMkZWCxzLi4XXF+vJQzP9ahBwJnFomQcJ7qup1oUfPrpp3z++WesViVZnqI11M2BCGQ+I4SCJJEp8TAOvP7uS7755gu8d3z80SushX440LUtdbMnhECWZbx4/hExRprmwO3tDdvtA0VZynS1XPL4uOVx+8jbd294/vyK9VpsRo8BaH3X0/c91aIiS1PSNGGYOrq2Y7ffU81200VR4v1I3410/cDQDxAVRVGRZQneQ9sPtIea3eOOy6vLme6kGd1ACAMKoWQmNmITcXtyznNz+4gbQZvI+qIgLxOUiQxdLzaQBJbLFMU8bQmiSXQuMkye27udrH8+sCwF1KjKFKVErySmKKCixaqU1ChCTCkyKSIuNxdcXV2xmG25397eC7qdV6wuL3j+8SdYYyW88Sd6nNcISiuO1qPGWpaLkiQRndwiz1mvJAhvGCSsVTnhqtskRakU7wyTG3nc7snzjPVqidIWmyGgJQPT5Jmmnru7B1brBUliKGzBqxcvaFqh320fH4UylOSI/enRHTOIJXIDkZHVSuiwx4C4u/sHgm9xLopN/mxQMAwDwzDgJkddH6cpOYlNuL6+5nA4MAwjX339JZ98/AlZJtOQZ8+uGceBt29fM/YDn3/+R5RVTpJGtEoIfmCaRh4ebhjGmqLIKYol69U1SlnSpOTtmxsUKYqUZ882ZKnQsJVW9F03T00N2iRU1YIXLw1JYvj66wV3d/c8PDxyvbrEWiOZPhrsvBYmSU6SXhDp6TrRX40hEoJBaTuj5U9TDOemWXejT0yXRCsWecLlZcnVZcGzTcYiS8hmo4tsuSQmuTiGRfBBqM/HSYAPnrqp2T480NYdKtrZdAeZfs90+swoFlmCEfQEFx3T1OOdVJnRR2TcLHuP1u/TjD60eD3XaBz/TaxvnxqGc2MQAS+OjJsnOtY54HWkEh/l8jGKS6qaxx9RxZk2rLDKsCiWZGlGkUsy+nJZs1l3lGXON9/dUbcTowPv39dlnH8xswXCB2Dc7zv+AXSpSV60nK6ZnxVOb1JOTIAZtTfGUGQJZZ6J2PuUACv8vnjc6c5O0LHYOEcTxRpsHuHMP3NqOHh/CvH+6EmmA5FjengkqABMJDYlsQprNZObjbxmNOTYLXov+R95maO0nbnwcZ6KaNGTGLGLLfIE3ECYFKkO6ATGmfuslCRKoiLePXELz9+njPM9Ws3TFrToOrxnmgIXF4o8T1muSqqqQBtwfmSc1Gmao5QIvi8vL3j58jmbizV5nskIWBmCH3FK0Do6Rd93NE3Db377K37zm9/x9s13PN7fsV79ShqBRDOMHc+fv0DrBZHA/rDl8fGR7fZBiv9UHr9tG5q2JhLYbNZUlQTDSHBPf0J8y7LEGBHA931HP3RcXj5js75gsVjRNHti1PN0R5Ek8hxaCWe6bRuGseXiYkGR51hj6ZqJcZSshSxNZutIg1GWbv6+0oHFoiTqgJ/D9IQTrSlzy9gNDIhGZRgnBid0ta6TwMQ0sywWOWWVYe1RNyToSAySlj6Mjn5wDIObwyVl1RI6ilj2jpNjco7gPX5eRMdhlAUnih5omN2VXFTEICnAXdsKNS54pmn4sbfsH+QhVtezriEIevtD+od5vUcDNlFUhWZZWVbLlEWZU+RCn9NGOKeyNh0pV8fjfX7psYH4sGE4Pz6kYZx/7zjROH5PGy2mFyqiArJOCaCKnsf0SaIRkFwJz3nWr8UQxAqyqVlt1pRlQZwnwrJ+amJi5LGCJ0sTEpUQTEpmwE0DbrK0FyVd50+0s/MNK4QgwVQwT28CMc6hSsqgolh7TtNEnicUZUpeJJjEMHlpho01subOI3uZdjzj+vqKJBV7Zq0UwyT2l/OngNbQdS37/Z4vv/ySr7/+mug9RCduem6ibYW+VFaVFFCJWHLv93seHx9RWlEUBYtqCSjqpqFtG6zVMkEpitkue2IcemnAVaAscrIsQxvDbv/IMI7EEKUpyeUeHseeru/n5G1Hkqakidh7D2MnGo1xxFgzi8bFQXDoW8CRJAqtE5QWpy1jFNPg6XvHMAhyGykAw+TEEUwrZnts+eyDl6m42GO7OYOnhyj2qlWZkeeWJH0qWIUiooT+GQTgODoZVXNuU1mUaC3PO7pAhsYkGdVqQ1mtkGl599/mhv7vcMjeKden2EpLnZCYmfakhCqdZ5Y8sySJRStoWjtTZ0f0LLxViSUEj5s8fRyxZiAvEpQyGJuQZNLcuUkmZX1rIEtnQXk252gF+sERabHWoVSKc2Gm2yRAmE0DAtkohi9iRVuS1S3OBYZBNIuLhdiY53nO0QlvHCfGYcQYi9GWoihPRapYyz+wWKxYLFbkeYH3jmkauX+4Iy8khHe9WWCTlLwoMWak6xsm3zMMJUolpFnOMq7R2nB/f0vTNKTJjovNpTAh5pTsyY2zkYM0wqKT1Bgj7A5j9Pxv4h55zHI4xhwozZzpIfQrN02EcCxDIz64WdcynmqwI40nTSx5mrAsMq7WGdeXOddXBVWmyecoAIWcc6dnbd1ZCa5UnGsKS5pYhl4Cc+XfjFxLSrR/WjEbAGmJBJhrPx/C6fFO9CiYf/cJ9IYPtHwfXL/H41yH8d4UYw5zPta6R0BIUPQjss7Zvnn8p6Pn1LFJOdbo8ndjrDRFShEreZ50TkkfxgG7bdjuB4aoflAj+fSOn/74rx0/uskYhkHIjEooR8xowpF7Nr9jjlOHxGiWVcmyqlhUJYtSkmeVMUSl5wItzFSI309POOdPKyWL63kN8L0P8njij0ieTubHE46w8xPWZOSJYsollEspM58wCV2DQIiOvj9QLgqyIsHUYKyIhK21JMoIxYtInmgyCgrriUONThK2h577sUUZRZZIyFPbtvR9/55wTegbcrNGBHGUoBknNLEodp1FlbBcFRSVle+PMklarpZzQnbDYlHx2Wef8Mknn5Bm0tUnaUaWFbTtXhod79nvDuz3NW/fvuF/+V/+P/zqb79k7Ce0UvzL/+f/yvpiyWJZoKxns1kRcez2D9ze3ElybjtyefGMNElxzvH69VdMrqUsyjmcqqBtW5qm43CogUiWZ1xcXjCOA/f3t9zc3JAXC66fXXN9/QKFFgtbDyEKr7uaBYtN2wtvu22wFjbrJYnNiF6x30qQjjaRrEjIihSjEnCW7faGYRyxSeT6+RV1N9IPEw+3PZdXGVliqApLYQN9omiNYnSRm/s9XT/ipsh6UVEtctYXBWk2N78RYpAR5ugdbdNzaAaaztGPEWOKmRpl6AfxP+9ambbo00IkC2rXdcQQMFozxU4akXFinEX5MUbhs3e1NL8/YQQSYJoTXI8Ukx8K9JGFMmIQgetyoblcJ2zWGVcXBYuyFFvfJJGG38qo+tjEn4vGz4+jk8eHOosPebHnKNT5ZOO935lXWGMNJjEEJ1qrECJT50RsapQUo+YJSMFrjjEcEej7HmIgTQ1dW6MwMw9agbHgFfhIWiQENeKjojAGrQoWlWW1zvnq6x1dN9GPbvbId08b1kxDk6yYOcRTSxPuo8L7SN8PZLklyw3aBnyYGMZRwvtsQjMHXCaJ5c///B+zXq/IshRt1OxAJSin91JcDONIU7d88cVv+frrr/nyy2/53a9/wzh2/N3f/TX/5C/+VJoXAtWi4uJyMydw99zdPnB3d8/NzQ0XF5eUZYW1Kbttw+3NDZMb+PzzT1mtFlgrtLe+6+g6yaFYLmXtSpIE5zy3t3cE7yiLBS+ev5ppaiNN01A3Ml0gaq5W17O1paNtex53O6yG56+uxcbbTzNifYc2lqpKCV7e89FwYJx6ggooK5k6/VihjEVPoAlUhWFRGqIfTnbXPij6IbA/DNzc7/DOUeSiYdxsyrkYe+J2hyDe900txhBgWK1WLFfL2clnKXaf48gw9SzXl6T5krzasL58ibXiLmjtjxNt/iEeR2q20BYB5PpOEzuLUa2I5auMNFEYEyExXG7WNG3Lbn8gxEhRlGRpNluYCxh2c3PHs2tJuE/SlLwAYybc6Bh6T73fMqYpKorWpVpUZHnJd29ueHzcM02RGDTr9ZrFomS5LBimlhAm+n5E6yCmLUlKlmU8f/FcTAx2B+q6xhhpaquqkmu77+i6Zs6ZMCgs67xivTpa0cMXv/uKzeaKly/g8vKK5XLNMPbc3r7j17/5G55dP+PnP/8F19fPWK82hOD49rsvaFtHUzcMw8irl5+QLleUZYmKgcftlrZpKKuCapFjSJmmkWFo6IeOYejo+5aqXM2BeYHPf/YZ6/WK5XLJX/7lvyPGBTaRFOy+H5BIAIvSI8PY0TQ1j9sdWbLE2gylB9EojiPTODCNndDZo6ydZZZysSr55NmaP/58zWqVUhYJRoGJVjQdQXRKwcMUmOleWhxEiRRFQlXlPHt+wde//ZLg/NPUfP6S0NZZxaaAOWhaYtf03JSIHlnNE5Dj1/k1+kNNxod7yblz1PkU46Sx0ELNFdBIHkOdXunsehUicXaHek9vOFuIRzxeyWyNYCAqrLLkJiXZGFbLUuzKc8Obtw/89ndvIMLowIXz/VGAstM++N96kjG62faUJyTvHPWTsY7BmpT1MmWzzmd7yZJFkZOn6XyBHb3wRechKISeLRXfpy8AJzrCUUl/rsw//tyHIypBOMLJp13NgwqjNJnVDNFhtSE9pt/OYXsqQowjgUAII7e371hfbFgurtH2mqYdBZXWglSGaQLn0BryTJPbnE3+jK4bWaaRwq74WkWmKeC8IPl+LgCe+NxqHp2K+0WIUjgpJYFBoxt58+YdF1dLnLsmMNIPfhZGT9SHeg6PmvgX/+J/5PrqijQVWpLWUuCEMJGmBUdqVpmnjIPG6B1Ey8cff8Y4OMZ+4vZG83g7sr3fkpea/9f/439lc7Hmo48+oW7EmeLi4gJjI7v9jvrQcH//wLNnV5RlCUiybdM0dG2Lc44XL56R5xkxhpkG8cgwjPzZn/2S1WpFxFPXB5quYRgnlLK8+ugzQpgYho6H+weaukEbxauPXmF1ytCJkHQae5IUssyQFilBpYxjpNkfaLuRohQ7TJMGXDQz2pDgx4lejegwkiVmFn+Jna8PGrDkKSTWAjnOVbS9J0vMXHiKIKrvHU078vC4J0slO2PsI1lq0CYFBGk91DVJImI1sa+TiVnbdjId04KU+klQIjfzOsdJxIAxcJp+/JSPp6mAbAbH45zGBJFEaxaFoSoMF2vLi2c561XFZrVmuViR5eL+E9XEKbFWHUPMnmhP543ED9GglJJU2fPC/GgveP73p80ABArSgmoJCRa06KKssSxXmvttA0S8stSDxwfJ7VBH5WmUYMg3b99hkxSU5vryku22Zuin2XJWEDKTWBaXFzDlhL5kuL9hWaZkmaYsNFebkseHlnc3B3ADD7NY0s92vN6NjEomYTZJsEkyJ2JHnHfU7YG//Mu/om4OZLlFq5yu7WjbnkMtQXeb9Zo/+ZN/xGq1Js9zmRimYlkOYfbml8Zaa8v93ZbHh5bvvrvnv/znX6OCJfiCmzcN/2r777Ep5FXCX/zTP+Nw2KJUpG1Hvnv9hhAUq9WSoihxznOoH/jV3/1KxNrVc9arFUod3aJq9vtH1OygsrlY48PI/uGR25s70jTh6uojLi4uicGx293T9yNd0zANI0kqeQWRcAJrvnn9JVdXKwE5qpJpCrR1S1PvSWxCliekSUqel9zf9RzqnsOhwWSBzVVFXmSyLtQjXe8o8pyLzQJllIjhQz9PsiJtD29vdtSNUL0uNyWb9YLlsqTI7Wm65Z0jBo2bIsMg5yqSYLMCa1PysiBflGRFwb5pWW8uebG5IOoEbMbkNdtdjdFSlP2+Sd5P4fBhJE01aWpYLAtCMLMTo6dvB1KjUZXBOxiHUZBpNHliSZZLyqJkX9eSbu0n8rzEWJicZujh9vaWoixZLReUi1z0BKnDGJnUTdPAzV3N5uKKNC0xJmW1vuJx+x2HuiEGyIuUipQ0M1TLJe2cD9R1YraQZilFWWJMxuXFFavFhtvb25kGNRBCIE0tVVWQZZbHxz2KnhhEu1AtcvK84Pr6GqMTtts9X3z5BeM4cXl1RVks+fyzksfHe+q65m/+5j/zz//5v2C1WpJlOZ9+8nNef/cNbdtyf3+Dc/1pKvk3f/PX/OY3v2MYJw6Hmm+++ZrLi0uePXtBP7Qng4vFYkNixQQnxow8CjWzKApsYvn6q694fHyk60cW1YqpmIhxZH+45+9+/Wv+9m9+I4YpoSe4kTBGhn6UGsk5vAtoZUiMpSoq/uJPfsaL64qLleZiY0mswiiPopDJlLGYrKCslrReE/sBo1OUMbMhTuTiYolSgW+++oamrpnGAaIYDWkzU56MMHHSPGWxKojUxHAuwtYYLXRYfQLD1YmS688A+GPd+hQAq9778/19D4QOJbrkp7DJeGogBJTWxOhnqms8xUuc18Hn4nAzg+haQ8CjgoJoSMgwypOYSHaZsygqPnn+Eb/82Z/wv/2b/8LdY82+6XFz0OUxCBuOLJz/1poMH4+yltNJOu++jhOJPBEUZlXmrJclZZ4JV86cub+AWG0JN+l7dIkPOWfHD+Gci3mOMH6P3gAYIyJH4eIdbSSlB9RE6X4N4nfsZ5rDcf4TRYo3TeJ7PY49RZFTN42g5kqjjDRVaFAmktkCEy2+ndB4tE7QWkaeTevoOkfdRHprcE5L6vhJtBaYpoEYA8ZOc1KvjGFjCNT1wJs378hyQ16VEDTjKBqFum5I04TnzzcsFwtsksyf1+wUcGSCzQm8WqlT6q21hucvnsNzTd9PHHYNbScBcNM04kbF9r6nbQL1IYJyrNYd4+AwKmO3a0Scnpcn5N45T9O0tG3HNI6s12uyLEcpaJqW+7t7lNY8e/acqixRCqZRxrfDOKA0LFYrkjSj7xx9P7HfH2RTLzISneBmoffQ9xgbJfwrsaCsaCP6kUPbkuSWNE9J0kQ8rYlYA4syZxglELBDit1p8gyjpx8cVkOSG4rMimuR8nRdRwgwJvI9qw3D4Gm7kUPdY40hSy1ZYoiTn5EQ6faHYaBtWhIrdEFr7bxgqDkUzeOUaH0IQmFx0YvhwDThnaPtepxzP/km40Nh22nOO/+vAoyGItcsKsOytKwWltWiYlktqGaRo00E7Q9Bz3aux8d4AiB+31ry4UIP7/Nlfx+lSjJtwtPomnmqNf91GEa89fI5G8jQBKNJtDs5mETEGY8gzx1cpGlaHh4eqBZLnnzhNceQvwh0kyeNak6rFXMCBagskqUKS0ZmgODIc8v20HFzt5v1awE/eWIYZkTMA35eiyMxanbbljdvbqmWX3B1+Yxh8Iy9YxwcV1dXXF1dsVothXbFU+oygNIRjYBHYnohYmilNFmW8cknnzANka7teHzwNHWNMpJk/dUXr3EOlsvlLFh35FmJTURgut/t2O934pBS5hRFjrH2pL/o+x6lDWWRSfiagoeHe+pa1rKPP/kZm/UFZVFRH/az/37EuyDOPak0q+M4sj/saJpa0M6yIM9ziHqmaY6iOcnSmYJjMNqglSXO9CUsKK2xqSWNinGcCB7AM4w90YOzgTITKlM/OHb7gbqWezu1mkWVU+SpFDBGEYOetY8a5yS3ZxgD/eBFhG6FApHnBVleYJIE0JhEDEaGSXJKJh9R2pIl4sSm+XEFwh/iYS1Ui4yqyiXjZIxMo6PrxEZ8mhxNM9H3HqIWG1sr64udE5qVWjI5yXVwk1D40kSCTr0X6s9hBraybE5kTzwhE6MbHzR105CMAa1T6npknIFDscEWY4dhSDEmI0mEJj6OI5N3xAGi0hR5IutFnrK52FDX9RzM9zBbvyaSDr5YEqMAHX3foY0EwSVWErWFvKHYbrcC5gKXV5eE4OmHjnHsefPmDc5N4saWGhbVghAc2+09+2/uATGE+Ju//ltub7ZMDv7y3/1Hfvbzz/nkk0/JsyV5kYI+ToNna1ukKA9e/syyjKvLS4ahJ0kT9odWgFA30A/w9u133N0+0rUeY1KOFHU3J3qHeY1V6NnlM+HzT5/x8vmSy03Gsgjk6XE6LNbjc2EHBlzwM5VQo43oc61J0DqSZSnej5JZ5pxMKM7ZP/NWEkI8i0+YcSTEsEhel3r6vdnE6MPjSbz9+w1F3q9xj8+nTnfn+1qI4/AgnihcwHvTi/PnfY/eC7MT3fxmEGBMzxMRayzZsmS9sFxuNO9uDkTe0A+3+Gm29J+pvGLf/iO5UvxDmoyzN/U9ECRK+IjVijIzLIuU1SJns6wo81SaDC1dnzQY8o6PG+jxQzgeR/eXD09YCOF7J/TpJbxfFBgjjUAIinHyzCUfKooDtFERq2UBOlqQajTBPzUjIQS6tqVpDzxfLfB+wk0j1kh4j1Fik0b04qWtHO14IFGWNIEsgzQ3HA6Ow2HkzeQYZvcY7z2jl4IyxMg09ng3oY0lzTNsNNLsxMjQDbz+9i1d37C5XFMW4nPdNiP9MLLerPn0s8/IZupCiDA5h4kaHQPRSHF9HLHFGHF+QlvFx598RFEUtE3P7c0D2+0jO53Qt8Jv7vuaphm4u31LuTDUh4760KKVpa5biJqXLz8hsSmSMjrRNLKoKCJXl1doo+iHju1ux3a749mzZ7x69bEU/84zTqMI591AkmRsVmtiCIyjo2062qbj5csVi8UCgmLoO4ZeBGxloUgyI81VtDO3daDrWp4934hzg7b4YUQRSKwmy3PcY41zYkEcg2KcpOjpuonMQJ4ZNqsCHxSTl2nCOKUk1pNYS5nntJ2jaUYOzcD1RUWVp5IoP4T5jhYB+DB0HLU3kvEi5gdpmsyajDlIre9Po9rJOfphwHn5t6apZ7T9p0tzAN5HdBTzYsnpe1ZHUgvLSrNeGpaVZbNMJdW7XFCVJWmWzmF3ERVnp6gz8IOzx3tvwvkDI+z3NBYnNw3/vXXnabpx3Bgk+DLKDxGDoht7lFYsKrnfcq1QUZPoIOnfUcikShnQGh1ARUPf9mwfH8mLQhA1rZm3tNPrbLoBlSjyeWNXSF6CNpGAI09SNssETWS1KLl7bDnsO8ZRgixFBzbN5hqOEB1JamZHP0vbOt69vceHgV/+SYAoE16tEz755FMuLy8oyhKlpeh1XvgIxhpMNCgj1rnz6SACSZqwWi3587/Y8Hi35/7ukb4bGGZjBzd6fvebb9huG6pFibGK5y+uxcJWefpOAkJ3u0eun13NQXYWIkI/7HrGcaIoMhaLBVmW0g8tNzfv6PsBm6S8+ugVaZLPk0AJnvIeIppFtcBYaYjqumG/f6TrW54/vxD9mDa4MczrnMNYQ54l5JlM1P0pTwVgbgjm295YTVFagpMmb+gbRoJodS4WDGOgbSceHw/yWo2mqlKWi5I8l+ZBESUsFnMyCxlHz9B7+jGSpkjjqUWXkWU5NklQyoIyOO/ph3GmXhqClxT4NElIzI9L6/1DPLI8Yb2uWG+qOdhwoFMwuZEYFM4H6magaUYUKUoZkkQolUrJZ5MXK5q2p52vx6JMsdYIko0EwzVNjTUGTYnNLKm1+NQBCT4qDnWHUo6IZbtrmZzoECQl3jEMLXWtMGZJmom+JoTA6CZG53BNjzUF1ohJweXlJc5NHA4Du90BayNKLcmqnM1FRdeK61Q/9EQceZBAv7IUJD9NM7743VfYrYBYz5+/YL2+IBsyDoctb9685uhOdHGxoiwLJt/z7l3LV19+SdcODN3Er/72C0C0Gv9p+3eEqLAm5+WLT1ku10jYsdQuqKfwOQkyFTrmcrXkE/MJy9WK3/z6K7ruQDcM+H3HV199w8N9g5u0ZOIohw9Omgsvi4dGoa1MMZZVwS9//pJnVxWLUlGkE1YLEBPCXNxriEpy0aZpkvw2JWutTRKyRAL0ktQSBkk2P7rxyXoqPx9nur1EvcWj8FKsxOFkD37UPqAkUuHcsvZ9ho+svWK48wTOH/ejJ9Btvrij4mlHfJ+iez79eC/24SxE70M20NNrOQJxkeNuqZXlSPy1SlOWFUlaoZOKm/uOQzNye79lGINE5MYg/ia/B9z/fcc/wMJ25ngJqfe9N6IRm8UihYvZYvL6smRVJuIoZWWDtlpEhGE20Dvf1K2176nuz4WWHzYQv0+4eY5UuhDQVmOsJU/mJHDBSXH1gFWKIjVUZYLvFUJ1VyhliX4iesc4DNzd3xO14qOPP6EqSkEe607oDMKaEC1nmmLTgqWJTA/3GDeQGE2eaZ5fFDgHzy8S7u8WPO47bh4PvH73gJvEn3jsxzl1VDNNkwTtJRqbapJYMg5wd9Pzb/71X/LixTMWiwV5VvLP/8d/zouXL3n27BofxxkB1XNmw4RSEWslvVZrEYg+3rzl7uGOtmvIioRXr16y3e6omx1/8T/8KQrZHG/f7bi9u+Xh8YG3b9+yexxpDo6725pf/+orrq4vxO5SBT62n6C1pu8Gdvst69VqTtStOBx2PDw88Otf/YrPPhfepjHQdzVd39P1HYd6y2ZzSZaXZEnK/e09Nzdvubu54dNPP6UscrSCoe/YPT6iVKTMLXmVYGyKUpZpgIeHLSF41heV3NjK4Dy0zchqIZ72Wk+40rDbBx4eaw6ZYxgll8TgWOaa1UJcjLyRcL1ucNStp2lHxkGoDsM0oZVMRl5crMhTEZ6No2O72+NjQrW8wPmRfoBA4FDvxCI5SVhUC8Zx5Bjs5sZhFpIH6qY5NfaRcBrD/tgAnD/U40O3irnvRcWIUY6qMKwWlueX6dxcFDy7fM5ysSTLMrIsA+VgFlIbYxj9eKJUnq8B50jRuePS0W3quN6cj5uPU77zDeP496dG5XyzmPNQvCCJwQd2uxqjZLKmVGSVpyg83RjE7WTOUFGI9fHUTfS252K9ZrncMAyO7cMBMEjSbiR6yBYly9xihoapPeAd6KgIMYD2YAI/+7Ti+bMVhyawWS/4D//pd+wPjYAm89QuxIjXQaYhiabMM+q658G19P1Imlk26w3Pnr3g//x/+r8KiJBYxjk0MvqI9xHnJozxGKvJsoCJgXEcGCbH7cN32BReffyC1XLF7eaOapExTN2svxjo2paHh1vqww5ldmS55u52z4sXOz77zHF/vyPLxF1qsVhhTco0BbYPD9T1AVQkzzM++ugVzk+0bc3XX3/F4VCzXm344z/+U6y1TG5gGEYOdU3XD2id8Oqjz9BKXm/TCiUkLxKurtZcXmwgGPp25PFhSwwjWabJ8oR8UaC9xY2B3bZht3vE2pTPfvaMQ93Rt56ubSgXlstNQWoVwXm2jwdZR0bH3eNW1ujJs9/XbNYJ62XJ1dXV7CQFkcAwTGht5boKir7z1I2nrj0KS2JlEnPMMdBa6L9t0zJOI3W9IzKDbMow9i1WI2Lkn+4gg1/+4hcsVgV5Zun6jvqwJ8aeLI+sVosTdep3X33Hs+sNm3WF1gsS67EzGhvGME91Ug51T99NaK2oFimq0NjEkucJ24cdrhsZ8ozLqwVpokA5QpzY7vvZbjYwjJ48S1mtlnz+2cf0XU3THLi/vYHgqBZL8qJguZbmZhwmxsGx39W46UjbSri8XLGoUu7vb7m/u2PoBdS8utqwXq8IwfP111/Rtj2Tk4De5WotRhhJSv5nOXd392y3D/z6N7/il7/8IxGTG8PBNNzevePdzWs++fQlZZnR9y314cBvf/MVu4eGrvFoVXFxec1qs+bq2ZqyStHGME0OY1JQHnzA8ZRjMY4T3h0nAIq8KlmuNnz00Wf84o//Ef/+r/413377JV9+dcftuz31fmIaIlmVibOUBxUD1kT0LOBflAU///gZn7645JOXK9IMjJkNJmw2RxWAUqKX0FGjsJxSuJ0jGphcDdpwubzEJpG66Xj37g3jNMmEOcj0SR2nFl6ee5kl5EaRTB4dPToGApw0aDEAWiYn3kXsKYbg+zXqh/Xt+2DX0R3RzFPLuRk+mhOc9rW5uZhZQMf6+Xw/G8fxtBYcn+N8Oq+PNloqggnzOVMYDJlJ2KzXPH/1Ob/+4g1ZamcRvBINGQjo+b3X//cfP7rJeDoiakZojyfLqkiWwKLUXGwyVoucqsjJ0hRlLRgZM/ngCTyd/HPv+vM/zz+Ic07bOdf6/O/vH+cUCUGVUJqo/Clq3SYJ3Rhox0Ceatn81TweE3IeGghRMfaO3fbAl198QWR2aCFANGfnQDO4iNaB0mRMzJ+hMtK0KI+1gWeXGUVmuLoseP5sQ56m3D3seHg8CJ8ceb2BQPCKoBXRKxJjxaVo8Ny8PWCNiLo//vgjPvrkBddXz1itNgyul5CUqPCjYxw7nJMQvGmaThfJ25tb7u5uCcHz4sVzbm9vaNoOrS0/+/nHEBVuCqzXF6wvlzw+XrJaLXn9+jXjJAiAdymH3Yif9sSgaNvuRANKk5wsTymrgkjk/kF4oS9efMz11QtxXonwuN3OQviJxFqyzGINjGPD2zff4aaR1WolIYjx6Gt+wBqNTczsJJWASvAOttsdSkWyzM42gRY3BaYxUJUpaRKFwxkailThipR+KLjdtmIvqRRVqVktCxZlitIRq4BE0N756oI48VALhSLPU9KiIuogIXBKYVONTjQxGJRKyTLhbIJjGCdAoQfD0HfHR5RFRQka5L3DaMs49LgwpzmfaDQ/LgDnD/X4cKwcgrjuJBYWpWW9TNisUq4vci5WSxbVgtVyKTaK1qD0UXcBQQmS/iHV6XhoZU7I1Dn6cs5X1Vqfwobg/YnGcXH/PpLE6bFgHlghUwvZCyJBcxpLJ4lGD6do2BNGE2JEqBeShP7u7VvWF9dkaUZZVcQwZ+kEh1BuPC3+FDRFhOhBYWfUzmFtoCoFvYtxA/5zbu52vL65p5/GOZNlBlzmxHCiOPN472jqntubLZ98/Amff/4xl1crFosCYy3W2zngMuAnR98F+n4AFXCTWOh2/ci+FlOJNEmEcqQUh/oAKvCP/+yXEAyHfcv2cc/bt2ve3dzQNDVd44ixpWsnbm+2LJYl6/UGazR5dsU4jgz9SN3UhBBYLhdsLtYopTgcDmwfH3h82PLi5QsuL6+oqlJCDPteTDfGjrzIsdZS5gV9X9POYvMiF6v1sixQUaa0Q98Tw0SaqpmXnxCDpRs8fTuy29eU1axPyRU+FnTdxOQ8BPWEfppIWaQiLI+abj8wTo7gI0lasVgWLFYFZWUx5ij6FBR2mrwEs46BQz3QdZFpAqXsKbRV8gQkJd5NYtkegjjdxRiZppku7B1bNTcZ6qc7ySjLNXam5j4+7OapnCY3ms16iXeeoR+J0dF1s9FKjCwXmaQ3eydUNx1Q2rJcZJgOJudpm5E0F3qULQxqrRn6kaZtCTGwWK4EtGpbtAriZmUU1sp9niSglKea08azxNLWLSEqXIjoNCPPShITMGZkGAa6vsWHER/EjCRJDNdXzzA2Yxwn3rx5Q1UtMUbc1K6uL9httzjn2O/3gNASkyQ7ZVP1fU/XtXzzzVdUVcVyKWYNPoqz469+9bcYY2jqhq+/+ortXc84aIgJeVlxeX3By1fP+fznHxPx5EVB0+3Z7u/EJdQonJ9mOq/HuYhCwDNrE3QSyaxY9Xo38LOffYJzHV9++TVdO+JdnOmGGlQk6njKTSuyhOWipEoTylzcuQ51TeoUKI93PcaIENo7WXttmqJMQlATJBNj0LRjoHeDTBuMZlmuMEmk6xu2jzvGdhI7XjRFnhPVXP4pBU6jnMd4DX4gEiRmgafMCmkMhPmilQDEzOv/eW16bC7e25vONINhjqGIKLR+/2eOdDQB84+c4PcB9WPNfA7Qn7ODPnzeY218pEoxO0lV1YIsy2i7hn1dc6hbmm6QvWWm3RogqKe8pR9z/Ogm44d0D/O0iNRCkc0F2kLSkPNMwuEkAVKBPkssJL73mB8ikOffO28+PnRl+rAZkceUF6YQoWWI8WTjeKS8panFhwnnxBkqNV7Cefyxy9OyBgeFc4G+Hbi7u+Py6hlpYpmSBOK50EaC9iYd0VmKtslsDymIU4wBoyO2ErH5VGnW65RhdBgtPMhD135g7wkxKAgak2iCEnSmqUf2+5b1ZmCxrFitJAk2TROikRsmRsWoJsaxx/sg3OAYZueXgdvbO7quE1671tw/3uK9eNVfXGxEEDp50iRHGzXbhSZzcFVNP/RzuJ+naz1NPtL1HdZq0jTh5YtXQslyjroR1wzvw2l8G6NnGDpxrZlGlIJlUWK0JviJpumoDzusTcT1IEkYe9F4jOMg4/4kIUnnlG4nmoq+70hSTZLKYheDuOfEEMgyi9aze1iY5pA84TP3w0iMitTOiZhFSpolJ6qn1cIvnxLNaCTJXlxlPEp50IEpOLQHq5RQRxJpECNKRPdaXB4iYl/pw4QfPMKKFI5lktiZwuVJ0oyjJWvAY7SaF+Xvcz9/SseHWiqlwBooMs1mmbBZp1yscy43JevliqpYzBaKhpOXeYBjwQ4f3v9nlCgh+3IEf/hg3TkHN47f/yFt2PE458U+/dzsRKKluRdrQ/X0nFomidro+XqZX/q8SQnVSkKidtsdq80FWZ7gvcJNsw7NicbKz5bWqRG3lOME/OilLteSx5hIphSrRcrHLzdYo+jGkX3bMYxipRzicZWUBzFGqKJujLT1gKQJZ6SpFuQS8fU3qTTuI5q2qXGTEyc87/FRioH7h0eatsUsF6CgPhwYp5E0S3n16hVGJ9T7jtXygLEW5wMoRV0fGDpP37Y8Pux48epK6A7W0PUtwyBNRj90VGVFURUslqK1OBwO7PcSHLparVkulmijGIeevmvpuxbw5EVJmqRYYxl2E1030PeD0E7ygjSZNV9dL1anOpIkBpuIsNR7RddPdP2AC55VUZJmFmUU1ortdkSjosNPDqcUiQZrRK8CgclHaUSiIkszsqwkme2YlVanvCeQJO9hlJBPyZWRabu1CczFxXHNcJPYnaLCSXvjnCO4WZ83U+WUtj/pJsPqjOADzkt2i00iNlGkqWaxSAkukFqFmxyHRj7f3V6oUCE3xKgl3wQwCtI0wQfJqZq6keDNSbtRVuDdRO/ksWAiRM84eJQWXadN1PyYCq0ibuop8ow8F+eqru0Yp4nY96T9QFUuSVLRzkyz0YcPI0o5DGK/vFgsQSXsDwd2sy4JPEWRURQ5fZcRo6TUt20rRaOyJEXKoqpIEsMwtGx3W5lAWLF2h8A4DXz77WvcJDrJd9/doEKJ0RlZKi6Qq/WC1bri2fMr3Owat6+3PDxKwniR53MjO+Kd2ClnaSbGCEWOtpHEiDbEOS9gXJqK3sXJ9ECfps2cJrtqRuWzLCE1Rmy+u47J9ySZgMXTNILqCU6mwkZpkixDKUs/RaI54KJidIFmbE97Qp6WoP1p6hnGICi+EqvwIxiemHnv9p7gFNGNc1moiGoOhJ5rg6PO9ZjjIXu2XKfntex5A3D+fTXvUVEpVHzfKv39acGso5Df/EFmz4d04B/ezzRPrdFxM5UA6jQvQGsOTc27mzse9zX96E7ifoW45PEPVHT9g5uMJz5aRKMwSrFeaC5WCRebjItVybKsKPOCJJXRmpZ3dOrwzru8/xqvK0axjD2ewPNG47w5OTpP+XkzPjYbGiUUlKjopoFDXVMWOaBJrWaTGNwk47ZDCASkkonHDTgowhQZ25HLP16TlxV13bN9rGVUhwYV5ptHYVcl1cUlvq8ZG6E0oFKIBm1GbA4x1wQSsvQlHz1fc/vRFf/hb78UMbLzDNMIGFTUqCip0tbI+RudY79t2a870iQBJibfokeFMpDnuRTOSrPfuZPmoO9H+rGnbmq+/PJrfv7zn7FZr+nakfv7W5aLJR+9ekUIeg7bkaK3WpQkqWW5XqB15OHhge12zzh6DoeWEAJZuqCpH2jDgFItz5+94vb2nnc3t4xjR5JYLi42/OyPfkZiMpqmpm07hn48Ce6Wywu8m9jvdrz+9g1KRaqqYLVcoUKgrvd0XYvRmuSYh5EJItc0NU3TzfSJhDTLMDqhOQxYoyTILJHET+dFDNj3I3030Hc9wYkvvcYAiViHWslA0MzNnoc4eca+YxwGjPZsLiQIrGsf2emA1QlGGUyWYhKIKuD9yHL5DKMB7bm42HA4bGnbmmmc6Jp+9gqf6Ed5rogi6ohNNDpJCDFSLgrKMqcqix97y/5BHuf3u/eeKhcb4YtVykcvSi7WOZtVybOrK4p0QWJTtE4ISOq6mhdxWUzVe1MIuf+PdDJxnDpOTsUO+Jgz8LTga61JkuREh5Lgp/cnF8fj3G73vOFQChIrOgp/DH2a17yIjOKTLJIEKVikHWBuMIQl672n61qyzLLeLMiywH7XMEwRrzWhE/vSEJVQaFASihqPAaYzKobC+wHvB8YBUgOX6wIVr3mzbTi0HU3b03TTXPSqk+ZENDEGozJu3j3wu999xcefvKJpe7Isp1oUXF1eMhlN9Iph7GS9DZHRDfRTz93dPd9995aPP/6IxWKBipF//x/+LZ9//sdcXl5zcbHBe0+eF4KuFikXF2vu7u/5m7/5Ow6HPdM44Z3i7XdbumZkvzuw3T5QVZXQArzm5z//XMI4Y+Tu7o6bdzcMQ88vf/lLqqokBEdd72nblq5vmdzIenNBVVaAoTk0vH79LdMwUBYlz66ugYCbRh4fHpnciFaBPNdkZYbWKTFYmmbk8XGH9xOXz5eUeYnQcz3T2JCmBXme0fcHDoeOxMKyyuh6T9dNdJ2AW5k1M3AAIWRMk6VpJXSSKEij9zCOnrYd2O5qtMlm6+CcorxiGieInHIUuq5HqaP7TDhZZGsl1F43iobF+YgL/5Ay4Q/r6FvH6AbG6WjrKuuCUZHERGyaUObSSCZJQ90MPDzuCTGyWuZsVgVae9E0AdNQkxiLLhTGJuwPE95qssyQWMNiXZJknvu7kS++eoOxiuUqIclBaSfmI7PZg/c9Dw/vuL66IptT2D/67BV3j1uarsEHCcUrcrFnD9HRNHvatgafzJleltWqZLV+zjM30TQ1/+E//Gs2F2suLiRscb1ZU06O/e4gYN3opY7R0hCnacrFxQX391t2uz0PD4/80R9/zG635ebmjm++vmH3ODCNAa0yXj57znK5YrVe8rM//ohuqHFhAAXL5YLH3SNff/sFTdeIw99yybIsGEaZyGllKUtxnivKDG1G3DTR9z2vX3/Nt99+xbffvuawa0lNwWQc3geGYTitvUcAqusHmUBay3Zfi0bRjxgrwYuTnxjGQPQKFQxVmYomIkS2h5Ykkz3Se4fzE1Hp+b6QOhIVUTqCDyQ2IU9zsiIjyRJsailyw6pYMDlD3Qa062bqvdDXNW6eAWgSnczOVlJ4ixxAwG3macKxfj1+fU8IrvTJJMa59+nER5qU5ommC+83K+d71vHfzo/jY2lt5pTueaI+vwtjDYv1BpOltNPE67f3/Mv/719y81gzOBl466hQs0ZF20Cc240fc/yD6FJPLz7OdrCKVWW5vki4WGdcbgouNxfCn84z8Xo/vkkUHv89a8kP6VDH7/3QiTqfaJyPh+ApBfSpizz1NbMYT+gBKmqGfpqbA0EErVKkRmGV2NJH5HcEKY2Crh8avv3qG9aXl1xePxP+oRfU0rlR0LwYaduBJAYCAa+8WH4FAIWKiYxFo8OHFqKizBXPLyv+9Gcveag76m7g0Ha03XTq8CXLQ7psjcWQsH/s+H//y3/FN1+/pihLsjTnxasrLi83IoJMF7y7eYebJLncBc3bdzfc3N6yXi/I0oRpGPnu9Ws+evkJWZYy9D1tO5Am2Uy3iOIxjqfrDoCnKDOS9JLFcjM7XA3c394SsRityLKEaUQE423DbnfP5z//GOcnbm7fslquGfoe50bKsuDy8pKqWgCKb77+hu3jgbH3PH/xAmsMITj2ux3jOKCVIitL0jIR6kGIHA4HsbKdHFVVSWMbFV0zYrQhz2TRCE48t71XOBfZHhyPjx2391sWZUJZLMmyEsXEdt8xTJr1KiNE8C7ihkCzn9g9Cuf8xbMNi1WK1nPeRStUhcEH+t2AtlFcLdKBaWoYgsfHicVS3L+MThhCR5pGVCooaSTgJs/kvNj6+flaJGCyhKwqKNfLf8gt+wd3PN3nkTyBzTJls0p5flXy88+esSwLFkXBsloTZ+cQbcSUQW5HsV2NMZ6sFGOUol7oT2YGFeTMMdOlnvTyc3jeGbp0PH7IVOJc2/GhnuTYnDjvIEZx0FOaoMKspAEVPCSa3CZMVtO002ltOmpSQpBJWNM0fPvtNwzjwMtXn1DXD6IjaDtwkuOSqEgc9kTX4aeBoe/oOkFKx2lCmTA7P0X8pKnrkWmKeA8P+5p2nBgmoWg5JyflqEk5naHHwO9+9S23N3f85te/I8ty1usVn3z6gp//0Wfk+QKjEm5v78iyBG0NIRp+89vfMgyjiFg3lzw83HPY7/j41cfkqSX4ka4dZA8IEW2grHKMkenNOEqT0vcDw+Bm4W1GDJbbdzvuzY6qKvn440+o61poJt7x+rvXXFxcsVqt2WzWDENL2/V0XUff9ySJljDTRY5zI82h5esvXxO9Z7FYsFqt0CoKpapr8W4kTww2TUlyjTEZbhL3sLvbO9LMUFbiqBeVcNX7bmC9yMSOOGrG3jOOjmkCHw1tO9G0I103scoiy0VOlolZxjDt2R80bZfQdylZKkYpTTNy/9jIpBXFsszwTkmGQN+CkqDVcRjZbvccHZXFyUga0LZtJeVdCco+9T0uhJ90k5GnCeAJPkFh6dqOotBU6/WMBkvo23KZoZQiTa2sG25iu3e0fcuL6zVZgMQGrNHgJ5RWpNayXsIwOtnLU9FW+aiYfI2ynkCg6QZWST4nryvW62wOrHtqVIuiEi1RnnJxuaYcB+7udrx595qqWHB1eY21msWiJM+EujROHjs4ut5RLWUqUC0r/vwv/imvX3/D119/xTAMvHz5ijwveP78Gdvtga4b2O/3eB8pynwG4gouLhT7w577+1v+7b/9S/a7mv2+5fGhIwZNnlU8e/acX/zxL3jx8prnLy6plhnDKPlOf/e3f8fzl1cURcEvf/En/Pa3X1LXDYuq4uOPPsJq4e0737Hf3xCpMLbi62+/4MsvvuHtdzd89907vnv9mt22ZvfQ0zYS5Peh0+AR6BhDYBodqkogiPahH7xMjIi4IIWaikJJnHbjCdDx0aC88I+iD7gpMOPGhOO+MVN/iBFHYNJi1asTg7YKYyN9vRAALFGsSkuSKJJUUy0jRRZJCMRoUVpjiOgwTyFnCpWydp7OxPdq1Q+n7vLnvDnFY937pLVQvA9sfTiFPz7O+fTj+G8f6pnjPPw/OQ56RWIliHG9XpOVJbdv7vjL//h3NLNhxOiBoLi+vCLRit3DPUIai5gf2Wb8H9BkyKQ+SxRlrlmU4gCzrDKWVUWRF6RpIqN1K44b7016+D5CeH6ijuji+Un68AP6fer2I3/tiHJ+2HAIvKgJfnamUZGopJvNUoWdJNhE+jSekMZ5gaqbhrwsZv9qI/kXk8ejUZO8Lucj0iSrE6rpnZudF6TQ9EFoD+OgGYZA34tTg4znBBmQ9y0X4LHLPzZY06ip9z3ffnVD1w6kaUqapFx8veT6+oLVakFiC7bbPVrDclVgbMrj45a2qfn8s2vGYWAIPUmSUFULEisF/dgOTMxiUiKTG+Z03AYfJtLUUhQ5q/WCaQrYxPBwH1kuF2KPmxgOh5a+b+n6Du8C0+TmZNJ72qYlBPHwXywkBKYoCtp2EI9sHymKiizN8EESsfu+ByTIJ0nFmclHsRhuW3kOrWcKwcwv9D6I25MVnqefx7I+RIZJwq/afgRgWaUsFilpltL3Cu/70+diDTLJGh2HWvIqsjShqjKKws6RB4boNUOMs/2hx0WIBPIs4nyPhEd5UANKT6AGgm9OFC2bZjJ+NgOhdwz9SJinGswe3CZJ0Pb/0C37B3OIM0bAGMWiTGZgouDZVcVmtaDKC4okJzEJLhwtIp7CkuD9NYDTIqpmGpJMoMQV5Ok5T8CGevrecez8Q7qL89d7/ucPH0+OICfxIEcOrYLgSJQhNaL1OoIHRLEGd3OjEqLj3dsbuq7nsOt4+91bmjnAM04STmiI4HrwI8FPTENH140nx5owB7cRFSoa6maEaEiSlG6YGJ1QQ+PZaP5DkfvQR3aPkuGyfdyTJglVVXB7c8v93T1FUZGYjENdc3G5FDcdZajrPUmSsVxW1PWBaRjRynBxcSmapBjp2pZ0DhGLMWCtYlABpSNFmbFeL6kWFTEatts9EIhhouscaWaY6fXc3t4TgiCV2miWqyUXF5dkacowdLhp1otEsDYhSzNiiDSHmt3uQNvUFHlBWRSkiaVva8ahZxpHjFLY1JKkRkIDg2YYRtpGHPck4DSdLbtlim2NJksVRosbXJFZxgHG0dFPga6TPUDhWRSWVZWS56kkRbUB54XKVNeBIfEYrWnbXpKkIyyKnDJLGJXYEQc/YRLRwIk7X3vSGKVpOmctiZ2r1zMAFwLRjbI+/oSV36vlAtNqINIPCQ6Djgar0/neOgpnIcsNMaZMi5y663He0feR7b6lKnKKPCFPJdRPozBarIRD0HivGcdAiKKLiSpSLlOIfg5t9FhtSZOEMq/QVqiDA2IiMo4TTdtTWiMGNJlisRhom5Gur3ncadarSjSGeT7nBll8QMIwx4Hc5CSpZbO5pG0agvccDgfyvGC1imzWFzIxVIYYW5qmIRLJY0BrmNzEOPQ0TcOb725pm1G0OkFTFhXrzYaPP/6I5y+uubq+YL1ZkWYyCTHa8GDuaA41REjTgqpa0HUtD4+PpKlltVhijWaaOm5vb7BWYxPNd999w+9++w1v39yyfax5eHhk6CbcqOVcntV7x+P9/4dptrIVbbaRqkxFjhkR8qWeGmaFhO49pdahjZXpwlH4cJQhHB+YIIGlXsno0IAykXsVaRNDk2q6NiFNFVmmcTHiqkCepvgkmenUQjs32pyS/CTn7PRufk+tygfnYAaw9FPq+Inl+wHw/kMNxvH7PyjKPp6ik5xCmhE75/2sVhc4FzkcWt7dPNJPnimAl1MsYOt8yjQiEfixxz+oYpE3AImJlIUSm8mVWEyuFyXLakmeS9qqtVqaDCfWef7vsd48F8Ycm4xz56njOOg8jO+HOG7vpR3GeFpwYoQwc+dCmDl1x/8UpJklGEM6SUOAV0QlNCu5qCVNWELvRtLUkGYZXTvQ1B144duLU41h9OAnGCeIztO2o7goDQNo2dTbrmccEISrHhknqOuWth+pJ89sq38qAs4vKuccqoX9Dt6+uZ21BYYQJq6u1lRVyTgGIoqyynn+fMNqlROUxiYZl5cbvvnqW6bR8flnPxMxvJGwmn6YcG4UO8AY6bqWum44HHY4P1AU0hjkhUUZTzIBZuT51TWJsfgQ+O1vfss0jUQCZVEw9BPbx4OIKYdeaFhVxctXL8hLeW43jkyjIzEJy4tLtAn0Q0c7J/kWWU6aWkwqN7IfPX0/0tQdWZaTp9lMl3GzDV6kLDO08sQwAlEsLF2k7Rz3jzXBO6oy52JTsVxlJKllt9e0rWdyjt1hosgVfvIM3cTjtmO5KqiWGUWRkiVqFvEatEo5qAEXBqxTNK2gx8sKJtdiEyVBZ3YA3RJpCNMjabEmK1KyPGfyI0F5RjfKxMsrUIbECkJqjPB4f8pHjJFk1nBdXZR8/GrD9WXF9cWCzWJJZjMSk8xr4ix4D/q9hfM8uVualqdDz01GnAOD3qc4zedOhRk9iohzz/sTivPnOoaE/r61ycdZQzXTM4/AhJrRHg3gOnJVEqwhVYrBCcWIGPGTuNj144ALE3XdoJSmPfwVbpxw88h/6ocTlzlLLdE7YnDSaEyzY1SM9G5AafGXt8YyDhGbpCyqlH6Se+BI0To/h+dAjmg/JlQN2hxtwyO//dVX/N1f/2amsFmiivzsZy9ZbxYoDcVyyWq55Prqgt/95kuWixUXmwuuLq/ph46+Hzgc9lSLxekxwdP3DW17QKnIar0gzXLKasXjw4GH+we22wfcpKiqksSWjEPg5uYbAT78xP/wz/8Jq/WSalnOaKAEWbnJs1hUlEUpFKZu4Pbmlv3uQAiezWaNNYYYZGrSdx3ee4o8J83S2VTAMPRu1okdWKxyikK45wpD3/VCySwT0sRBGIgxsl7mHJqGvnHsm55+hCJRrArNZlGwWmRkmcVrMEmkHzxN69nvBmLoiTEyjBNGRco84XqzJLWaNjpGI/bnqVZoY2jbA01bE2KY+e/ZvAcbptHJHhbEOMPoo7//T7fJePHsmu1uj9aatj0Q3UhiNIpkdt+TglKZKIG7KhW9X5yEtjYE3t3s2Kw961WFUglZOtu9e4c2GXmaoW3Gze2BYb4PtVVcPauIMdDUPW++2lHmFckqoSwWGCsCb6M0vXIMU2C3O6CMpahy0jTl+fNr3r69pWk6Dm8PpPYTqqqkyDPKqxVNO+B8oOs69oc9Ac/SVlRlxaeffM5qteY//+e/4u3bdwzDxKJaslwuSVN5/C+++IqAx/mREAd2ux2PD1se7h+5vdniJgVYFlXJs+fPefniBb/45R+x2awpq2J2NDIkiaYsFS9fXPPm7TumyaOU5ZOPPubrb7/iu+9eM/Q1H718TpYa6sOOr758x/Zxz363pe873r55YLdtiMHM01WEe8NTMXxu/nOu11Nai/vTzDtN04wsFd2MVo5p3tPlseS6ODJXYgizFtiSWcMwjnP48TlNn7MpuMIEJYrJufl4eOxItCK3mjst+1VZaPpxYLMZKcuMqijwTjQLqRGLY220uGNpIy8sPhX/H2okOD7/qYYV/bA5ukO9d9W/v0+d/+45CP1D4PzxJEXmJkMdDZUS8qxkUa64vnrOb7/6htvbLe/ud3SDw4U4U80UbdeiYmT0nkTr2c73x92vP97CVis0guyuF4brC8uqSrhcp7x6/pxFWVEUJVkqHvYRjx8VaZISZuekY6ru07RCRCjE951hzk/meRrvEyXqaWT0+yhWR6RSeGyy2IQgXaI/jtPU7PAy81KU0gQnm7X8XShKMqHwtE3L7e0Nf/u3in/85/+Eaaq5v3vHw+M9Y++IU0CHQBg63Ngx9g3TIDkPbTewa3pGP85TAiBKoFvfey4vnzM5wxRloiDCvKf3czwnxwwRuZkieEuYFA5FDDk3fYfSQsUSgd+OL379mrKyKK2wieXhdotNLBebDZ99+il91860KMcw1ILCTI6mbdlt9zRNO6Mn+cxbnzCHPdv532LwjFODUpnYKmZCnSKKbmdoPWEayYqMth1A9bRtz2b9hvv7O6IP3N/dc335nDwvsNby8HhL0zTU9UHSbOephNJKXlvTsdseKIoSay1KI25MbiRNUq4u1hBGXJgIXoTv4xQ4tCPffnePwlOWCetlzrOra2yiQEcuLzTBW5omsD30jKUVp46mZbFKWV/kVFVGnmuMkuskBhiHaRZVRpbrjKKEcQw83N+JKC5L8S7HsyWOE3jHslIsFgZjIcaOrvf0/cQweiYn3GlrU/JiCV4QTD/9tN2lMuvZrFKuLkv+4h9/zrPLBVWeUqQJqU4RGz9QxkuRLn3+7Mn+tIh+aAbB3GzYJEFr8OqpaD7Xcz0twkfESahFx+8fLWw/pESd6xaOX24ORRDnjRkhmpEs5wNEh4oeP02YNJLplOg7+m5knMQZqN7WDEPPMAzUbT3f9/o0kRPbcCl+jgVAPxgJ8gxBeLIznxel0ErC6sSpxWDntet++0hizVHVclqDj8fx/R1Ta4/rsXfiiCQ7suF+7FBqEB6x1ty++VtsCstVztWza66u77h5+5YsLXj5/DlXVxd4H1AqYG0kTRV938yboOfxcXdKOY54rq6vSbMcYxIiJU37SNLCn/7jP6WpDzjnuLvbst0KfTPNtNBEwlcU97esl2vatsFYzctXL3j54pWIR9uO333xFU3doo3l00+fo1CMQ0fb1DRNTWoTKdBzi0ksEaHN3N7eAlAtcspScg1CUHRNT5EZcZ9KJNTtSMMYhklcajDU7URmLWWRstkUXFxWmLkGSYAyMyRGzc5SioeHmt2uxQfHq5fXrJYFaQKJgTTTZN5w/3bP5MEmOYGJbqjpx5aHxzuyJCcvCrI0Y5qmedoqNB6jNc67U3DcT/G4vLiQ+18rRtfz+OiYXM/t7SNX1xVpBnZuYGOU2iUvLC9eXNG1A/tDy/1jzf39noeHmo9fXbFeJhSZpsgUPli60dH2IybR4g6tIS8ybGKZJk/wijRLiUS6vme73bJa5qRZQVU5dOqwg2PoHdvHR4ahpCgLlquK66tLFuXAdnvg229fc7HZcHV9zbNnFzxbXBBCYLvf0nQHvB+Yxo7VYkmSGNbrJX/+53/GN9+8Zvv4yH9pWv78n/wFeV6S5RdEIt9++w1392+FfVG39J2jbTyJXbMoJbRyuSz4+c8/4+r6impRkKYareWeHIdI0+yY3EhRlPzJL/4RTdtxe3fHYb9jtVly9Rd/xv/+v/0rbr77hvbQ8vVXNzQHMR6YhklMByZN8ClRn+9Z8bTGHo9jg5FlGX3fn9aeJEkwgNGGi4uVTBonEaHHIy1JK+IcLCqTYcdisUTPN1gEfAjvTWuPRbr3XiYfSs3OUfNww4tqzkVFGzQqBJoO7N6zO+xYrXqqKmG9TlmUOXliKbKUZVmRZxlpmpLrOedIHd2oDFGFOdDufcAMnuQA0hjMVvUfTC5+qIn4sEmD79vlPj2GnP955IPWKYvFmsVyzePhwL//L7/mf//3f82/+4+/oncQlTjHpiaSGdkzRiXuUmf903/1+NFNhtWRxECWKi7WosFYL3Iu1wtWiwVZVpAmc0hWjEcw4b1gq/d5Ysy2nkdak/DPTt3lB4XBDznAHB/z+OeHwsyTZzHCmVYKjGSrC71BRQji/JRqxaqsGMcgtIOZLhRiIPjANE6zy4LDeUe962ibnt3jnu3ukaEbCJNDR00MnuAmiaz3jnGUr8F5XJwH1VpjjcZHBdpQdz3M1KiIjPzebyp+36hM3qFw1LVsckQkWXguwBSEMKI1GDvxxW++Ic1TbssHdtta+HaJnRsNxeQ84zSxrxt22wNdJ3Z4di5ejLFYk9A0HcM4Enzg8f7xxP1t6o7gAgpIM0kItdaQ9yOoiEkkmnP7eMC7OZhrmlgtNmhtGMeJ+lATgifLMsoyJ7XHCZanqVvJFVHiRGG0CB2bthHr5MSSWIV3XhY7L135oempm54QPGWRUJU561U1TyOkUNQoqiIneEXbjDw8NIQgeSOLVUZeGJIUtIon5MSHKHkXAbE+TBKIEi5k9EBiE7QaGUfP+OhRIZAYRbWpOAqSQxRbUDcJlS4EyLLZB19r3DQxDQPD7wmj/Kkcm2XBxy83vHqx4fnlmmWVkVlDou3JGlDsnGeggeMa8f2RM7wPNADEIHad6ngPnK0dwNlapM/Wjick6MOf+6G1S55YCSUFIXOJ0HaeDKiAR6696MW22PWB3hv6vmW7ben6CTcGukMnn7t3TJO4j0kzpZ/G+ohr3PE1e+/m2/z4et/ftLSS0X2eJFgjlIl+cGitcP5p+mutPb3n8+nM8f0e3388cm/nHBDmKbAMhgKTi4TQ4t099aHl4W5LuciZRkd9kOJdaCuBfhR0chxkuvv4uKPrxECiLEu6rmEcR1Ca3U6KrDy389clXdvx5s13SJqvoH7j4AihpqlbHh4eKYuc1XLJar0ky1OaumPsR7GyrhYz5dLSdx19LxMW4SYn2DTBJIK8juNE3YjNdGKt0IBNgpskbyRN5HUZJU6CIUCYHe2abmK3renakcxasjRDK8PkIn4O8IozdUOdKpzANIhtbmLFRSzGgWGCxuYU0eJiJGpFmqckaUaSFOQ6RxtxIBv9yDDOzkvGQhRx+VHPNIWID0EMMH6iR1GWjM4xekfRFnR9Rd9HpklyXo5aLnMsKrVCG0WqNQrRafTDBO3AOHre3WyJvsAtMqIqGKeGYRJQShtLVRq0TQlIYOvYO8Yxstms0EqCfeu6RqtI7jPyKsNYTTKvQs4HvBvpW7nP8iIlSzLWSwVBMw4jN+9uKIolq7UhyVIury5oW2EPHA4DMfgTup2lOc+fv6RrxZr57du3rFZrFouF6LKUJgbF/d0jwRuUSlgsViwWhkVVUpSZTFo1TNNA3zfkhTinjVMgzuGdegZ5jU6oSgXXV3z59Re07QHvHV/97lvGvqfvRh7uGtwkblDee1SU+yHO093j0vohMHxcg45r67EBORpyHAEg5yb6ccSfi5yPUPq8XipAmRSUADQuuFP9mcwa098HUCut0fNaS/Tz3h5nh1KFjhJpoDpDiJ6uDzTdxGY1UuaJ1AwBXIBirmetMVitn4zcNOI8iZ51EZwB7mc6jXk0flynP5zynE/Wz/9da/09IOy8sZK/h5khA4lNSdIUZTSP+z2/+u2XfPnNW7opEBCaeaKhShRFLiGsfR/x3gH65Nr6Xzt+fJNhInmmT1kYl5uC1aLkYr2mLCusTTBao2Z092gzGebwjnNa09OmeLSaPZYFsyzlg5N5PHHHVMXjhXF+fDjJeA/tDH7WYYBRYgd7/G3h93mUTlB5yk5rPOJdHGIUq7zJM/YDLjiaBnb7Pb+tv8aN4k8u1ostwXm0sqLiDwHvHEYJ71qCWxRBHVFHi0WSXVEwTCP6GPd+dr7ORfHn5/D4/+8Le8J8LqVQi16dbsBxcCKgdZGbtw/YRDzZv/ryGz5+8Uq8r62mXJRi5+scdd2yPzQMwygb/2myoubN1s8o5fHila/E5jMkAEWRE6I4eeRlLr7yKiUaxW5b07c13klqb9d1M8c5cKgbrFVksxWg0RC9+MV3rfycOYXfBIL3jEPPelGRJqKV8DEQg8eHwDAGSXhte7SGqspYLgoWi4JIEGMAJWhIliSMiRR2+32LMYGiNORlQppprJ1RgZlq452TcawSj3CrLC5OGBVIM09ikxMFZRhkC4ypBZ3hA6govF8/+9y7SSZrYm+ZYbSYC4zDsej+6R4vLjd89tFLPn51ycWqIEs0Ril0mJGnY/hcjKgok85IfO8xPqQvnd8bkmMDxwkpPK0FcJ44rjm1MPpJSPf3ab7gdHdCFMBCSc4nQUfRYInlA262D53Gkbb1dFNPO0YOrRNNQDcxDR43e7VH5gnqLD7R+owKpkSPpM28WfgPxIDzzwhwNtvyqtk21Wq5F/wk3w8SKPVD1NOju9b3E2SPJ3KeoDLT0YI6neeudUzjgcO+4T55pKgSxsGxfdixKAtW6wpjNJMXB5ym7TgcarbbPdM4zBa/imEYOSap73biCGS0xvuJslzg3ETbdmRpIqAGsrYNw0QIjn7oePHiOWVZzFMox9BLNoA1lsViQZIavB+EwjUMTG6iKnKSLMEkGmW0JCv3I/WhmY0wUpJEhNrOOQiRqsxJEwF23CSoufMwjJFDPXI4tIzOU+QFeZZjNDgXGZ1/OsdRSfbIFHGjvFatAkVuSHKNUhOTg3YQQwM/86TTPBFjCZuSZSkxDjgzEREhuh8dMSq0shglgJ7Rem5k5/vjJ3qkaUpW5BRukolNVuDcxDB0dJ3Qw8Q5Lc5AwDGnSKEyizGarsuRWmNgtz+QJlJQRp3SzWg6EbLcUhYLkszS9o52NzIMHj/B5bMKqz0xTOwfO5rW4qNGZzkmsRgLSYxkzgvANPbQKKwxQhkuJAtnt9tx2B/Y7bYkWYpNLav1Au8bunak7we8CySJFYv1rOD66jlDNXJ3f8vDwwPTNMmefWgEwFWGuu5JbUWWZyyqFdViyXJVUeQJXXfgmEretIqqyoGACUI1JIog3mh1ouMsqpLd9pH6UFPXNd9985ZhcLgxMA6ciuYYougJ4gzkAie9wQd129F5CZ6mqcdwuXNarFhvT6dG5KivU2gp3M8K6RAhhJkN4BzW2rlheZpofFh8az0HNs9F+FFwHWbi63G6PEwGFzzd4Gm6EedGFqWEhMq6ZQhREYMiTxOiFXtrWZtn8EiBOhsDnIDk2b3pvAF5ojaZ96YTH8oEjufthwG1p/fofZiz4yBJMjHK0YqH7Y4vv33Dm9sHAb6jTO8yq1hXKXmZ4rynrqFzfnbR+nF2+j+6yViWlquLjMtNxkfPl1xfbViWC5bVGq1SuZjU3AEG5u5VnTbQ45joyMUNPhLOioejM0aMs70YT43EOX3qwzCvDznF57931HIcQ9hjnBuZuTiM0WPUJJu2n7DeY3xHnObJw+Bx48Q0jOy2Ow7NgcmJx3zwR9cq2YTjrDlJjJNOOgqqFU90hjmSnmNCY0KepvP5UDTtEQkNpynG8XylaXp6n0cqA5wHq8xF17EIiEJ9ijHAnAB+dDhWKLSxjL0IFAF+/fjN3M2L77Q2zDeGpFf7uWE4+VqHiDUJxwIjIsicNDTg9EScfdq3j3u0EVvFJLUUVSEe2GlCMhdANjFYm/H27R0hBIZe+JOr9UIaDJuiNYx+YL8/EJyfNV5CMWgaydDYrFZURUZiNH4a8MHjPIyTYneYqOtBXKgKy9XlmiJPSRJNDA5/rO4wdF3H0A+EKONUH4U+5txAnJOmiVIwDONE0zVoy3yVBaYh0NYdSkWeXV9gU+i6kUPtmILHjeAHz9t3WzabFdYqiIGmGej6evZZL0UUrgVRCH6i7z3D0P/YW/YP8vi//9/+L7y4WrJepkTX4JxMlkTiPaPkkTkk7onydDyO9wBwGrFP0/T+eFi4hE/3O++nox4PpY50yidq4of6hOM9ePz+sUBTUahMzPe/j5EpeqbgGP1E3Xc0dc9+17M/TBzaibqb2DYTnQsiYHZgvXqyPUR6BT0/5zRTWqy1rDcbMUzwHmygazpZF82TW58y8ljHNWKcHMvFEmPMzNG3p/d4pB0cz+X5JnXeXJ1vyk/n9/g5zWtbVMRoiFrhJnCTp+8CDze/Rutfs6wqjJWwKpsYsqJgco6+H3nc7k+ZBEnyFcF7lBKhbJiBKq2gKPO5+IloDCaK3i/ayOPdAZtKE+aD4uFxL+Gl40T0sobHqPjFL/+IcZTws8OhZbfbobWiqEryIkMJAE4IsNsdGIYJYxKyTHKIjNE0dStGIXnKokwh9vggDcbkoO08dTPy5TcPZGlguUi4uExYLq8Zxomubbl/bFmvMopc3kffSwjcdtfT1hPrTcl6U1BUhrbtGAfHOLTUezsvURGlLf2gmcZAnl8To2FRlqw/WnN//45hGJjGka5uGd0k94PSEEXsmWb5/3838n/Ho/cek6SUiwWrds3jw6PY/U7SjB71TpRWrqW50XDeoVDYRPPq1TWLuuFQNyTJyK5ueawHin2P0ZH1suByvaAqLVki084iNeyCQpNQFPlMk7MYbSjznIftgV1zoJtGnj27xiSGJBVqibGj5K/0LVs3kuc5y+WKzXpJVRZ0/cC3X3/FMHRcXl9i7XNWy5LEarYhsH3cynWXFaRXJVW1YrNJuH5+zX/+6//It999x91f/WcW1Zr1+gJrCy7WLxhHj9YGZeCf/LM/Q6uAdwN9n7LbPtL3Dc53ODdQFDlFkcsUwSqC1dR1z27b0bQd+/2Bf/dv/h37XUvfTkyjw7koLpvBIO3v0eBE6Meg3kPXj/XbcV211p50b8CpgXiPBh8ifdeTZRlKS6Cw0vPjacNiscA5h3fSWIzjcBJ7Hymg79uby3G+5h1p+c45fAwopJCO+LkfN0RlCEpJporX9FNk9ELBrjtPP0YOnaMqBjbLikWRU2QpVQ7KGKlXPGjj0UpAHmtkTQ4h4KOfKZYCrJ1PJ6y1M9ArxzkQ9OEE40M3q/PkcHkMhTWW5WpBVmY4H/jN777icd/Tj+JOaHWgMJGLMuGf/vkfEVXg0IgJiWJgHLyAoT/i+NFNxvOrgufXC64uKl5er7lcXZCmGVolM7cZ4ekG8NpLcnV4n/4kYQFH4ZmsA0//f05jeJ8WFcLRDUp97+v4c8eG4nyCAfPkaW4ATiXHPOYJXgrh4Cd8HHEqYHUg+oH60LI/dPTNwNiPuGGUcd08LThBjvNrP1KF4vzG1Px1bKriPJKbGdHii9/3gspkwvU083s5v9GOBcP5WOxD/cr3Gy1NxJ4w4HMsOARxZfL+CdEFRfQQJ/lMdFBoL6hsjGoGI2Za23HqFI5F9fEszOc0zu4PMFO2DAgrDT9FuqZj6Aa0EUTHGEWSWGJQGNvPPxuxNqFuBnwUh5QQRJDeDSJstUZSWftGBElFlkoxoxVELyJvH+kGz6EZuL3bYTSUec5mlZOlVgofLba23scTklvXHYd64HBoeHa5QpsAWvzqtdIED3ma0XbD/NoseqaaxeDp244sSUlTS2JSgh+lqQ6wWecoxJGmqQduH7Yy/VKWvutBB0HPFmDUKILN0aDsU1DkT/n49KOPub4oqXLN4+1AVII4ilgbTo3rMbgzvq8deH9dCN8TZr+H3pwVyx9OAeXvx0nAcUz+/mv9nu2gPgIc8/02G1r4EBjcRDcO9ONI0/fc3+3Y7wd2u4GHrWOaR+m9C7i5N4lxXovi6UW+t66dT3DFPUiQMGsMSZoSTuva/Ovzumnm4DeFJP+ilAAcZxvQufbk3ML2eE4/PGfHnxXjATVTW+Pp2ZWS+/b4e8yTohAUh8M4a2oQilPSyPMEceGZVEDhUHqcz4HGaDvbEMua3dbj/P/i974NB0laTgw2teRFRpanVMuCMCmaw8DUv2PsW4qiYLFY0DQNwyDUz/1uR1Fk2JkGJe564oS32zc4F9Ba1hilYZwG4uBJrKUqMlJr8FNPiMI/90HE2w/bht2uwZjIoipYrwqePVtjbES34L2l7ye6TtZ2owL1fqBtJg71yOXlimqRUOSWLFHYRcGUBZrGyVRmDIx9pKggL6QYdF4SozMVSbMVwzDNeSyOLFOoIpk/Wy/5AowM0/endD+VQylDmlq0MWRZ/vQ1jPS9o23DacKu1NN1fVw+JZ0ZFsuMJNOMDkYvTl5t5yiLFB+0FNBzMG2YPPt6wOicJJeJ9Th0KCwmTTCpZrEuGceJrht5eHykKDLKssDYjExprPUYLY83DgO78MhmcykTtqrk1atXdH3L7bt3xDDy/MU1WlsW1RpNSt+LO9bkZAIxTNB2Lc5NJwBi+3hgGiNZlrNcrVgsFoQYGMaB7777UqjHicW5AZQE893e7UjsA2mWkucZ69WCcRgkr2aauL15ZL+XqePjtp41KYEYzwCJEwtjXhVm6uv5BOOH6DtPn+lTnsSRKpWlqUz2cehUnSxi08Ri7XGCjUw4gqxHxzXz+Jh5np9qpmONeKynzqlaUmcJ8DrPvGaLlflvKqKQMNU413khINTEEBgmx+QCdTdR5gP94LlYBxalJ8Qg+VZeal9jRDeIRgCKeTNQPAFq51OJGCPDMHwPSD9v3M4B+Q8lCud1ozQkCVlWUpQLQtTs6pq//rtvuLnd0jY9KkYskecXaz7/6IpXzy7pxx4dZXrbdV5kzH+PmdP58aObjMuLkquLBVcXS9YLSUfVWuzWjpxdPTcQakbu5zP0xC87blpKREbfP44dh0K64uPxhNB/OMk4v1C/p7AX9tXsOBPOKMzHgf9sNzo6nI8MIdB2kabp2B9q9vueoR1xwwQ+4sJxTHR0FZJDNu10dmiaEX8lc20B+9R7b09Oi5y1Iz/2/Kb7fTSpc9rHD1E6Tg0IzKO7eYYTz8/TuavM/D7iXPTMtp+Ro22cdIFHis4JuTx7D+r09r7/b/JeZj7J3DyEcU49Vke6icZah9ZmLvqlkCpLwzh6IuPcRA4EL41GliZzBJMgrWk6J4SmduaCyjmYXKTrJ+q6ZxodWZVSZCllmc/Cy6fCVp4j0PcTbdcLiqlgvZj5zjjhiw+CchA9/SDZKAor12iIBCcQdZZKSrpGMU7CT02sYVGlgib5gHNQN2JtSZiIwZHmarYJTghe3IeCdyiMIJFn1/tP8ciylEVZsSgs7S5jmkY8Igw+2rsC0mucNRPnxzlV8O/L13m6Ls+/caZj4nhpfv/xv/dc84uShxCBZHAzJcp7ummg6Xu6XlDR+4dGJhh7x74WFDmqY4BePE1YTjdQ5LTJfLh5KKXOaEwBZROU0SdKsjVGnIVCmEOb1OxSIhxpFePJ8UQrRZhppx9SyI7n8DzL6EMKqrxKKTDetzF8Co46gkJxXjkm7/FO6CdKgzKRp/+U7A88rR4KCNrNTYb83U9CvZDXF6SIVqCNJkmNNCuTnKPgAqOGJor9LVFhbcput5szOHqZ8hQlWZqQJBaNgC/jMNF3PTGIc5OIKB3eSSFTFTlpIkF60ygULVnDJTuh7QaGcSLPLFWZU1UFRZ4RCWSpxrlEUsaHwDRFjAnUbc84BrTVYo2dG5JEtBRaWRSB0Ua0cSd3mODnzU05xqlDGzdTNVpi6AmhR8WJIs9QsyjDeYULg6C1H9xTP6VDKflsDGCM6Gu0lsyCEBTTJGtCl0n2RQwGm6g58Xq+5zQYhFGQpiWJ9UzuiABLllI/evJJE6PcI0M3YpOMJFHkuTi3EWTfSDJpVlECio3jMLMWDEVhMUb+X+g4Uazdh5G+68SRM8tYLhezs+PEbrsnz8UytigWpEkuTfLYMw49u4M0jXVbM01urnMMo/OSqxMVq9WaPE8Zp5Gun7i9eUtZSsSAd9Oci9Vy/3BPDJoksWRZxn61oG9lmt93A9uHvbhh1Q1KH4PlpM45FVkffD58UM98CACfF8Xnx6neOZX6MxXKGlyY3+dsknDOJDlH8c+fo6qqU4NxpCUd17cPjS/CebE/vyU9A6XqiLDOWkGYg0+DIrgwr3kT4xToB0+Islc7J+YfxmiSJJBEmYjqebp2dPlTp/f8/Qn6h0ydD8/p+Tr9oV7jw7pSa4NNUpmIZSlNP3B7v+Wb725pmh43eTSQJ4bNsuTZ1ZqL5YK6U7hxYlUVHOpJ3nf4cbXIj24yPn55wfPrNZerJYUt0crMb0w6NR1Eda7PTg6cCb+j3JDKyBs1Wgk/7OyEHE+m/P58Yszx4uO9i+l4Qs+bjHM0Dn38oISLGpwTtnTwROXxyuPw9JOksHa9Y1fvuDtMPO47bnet2L05ZoNgcMcuXR8nAE/Ug6IoyGYrWBQEF3BaxuNERI/B2egGMEmCD4G6bk6Wg8cb5XgTpGnKMAzvvccPC6vz45zacbr43utxngqF07k6fttEse+NQWxg9ZFOIovGObIrC8ERaYxzAczpRjkex9/lWBDOgjOtYHSeY7J61/biSmU1iTWkaY7SnhgVwzAxjh3BTxAdF5crmZaME1YbVssFZZlBnJgGN9POtHym+46HxwNlnrCschZVRlVmoMXTPHiFUpYYZZpR1y27fQPAs6slV4scpSNTsExjYBoj0yiIFypijCWxGRrNMDZM40iRp5SlaF68kybHJob1KmdZZceakiJXfP36wH4/UDcdeWrJdUaW56xXK7q2ZYgjXjvcoE6F6k/5aNsaYy9YLhe0qw1t18IsVtRaKH0xxnlo4E7I+4fX+/HePx+Bn2u2TmvDOdKm9PzXed3xQcIy+f6C/L4e4wzXilFoeNNIP4wMo0w4675j33TUzcjDY8f9XUfbQT8YvLJPryUe239mq9mn5zunhR7RvOOou+/7U7r5kWcsNERDVVWM00TfdUT7dG+micUrLeuuUmSzyC/GyOPj43ubz7nW7WSY8cG09Ol7YlZwDio8YUrH4iGervMYo2jFohIu8mwNfjzvR7Di/JGiP5tIIaghc9MYZnpS8IE4OMZRSTBo23PYN1RVgTGiS7m+3jAOge3jnqYeaOoWiKw3UrhlWUqWWRGw9gP1oWYaJpJM1nJjFc2+hRhIrGVZlRjFbB8sDebkPMPkubnb4pwnSzWbVcHV5YqiTOXSU5oik8nIbitUOucd1kYO25Y8S7l+tqaqJPjLWpkZzfR4IKJNJC80WWFoa0XXDgzaEQJcXGWgGvZ1jzZb1NQRvWN19RloCQabwkQ7dATv8O7vv0//kI9jmGMMR+2FOhXuKD07CXoetj3jNFLklqrKSZKE42QjRhhG6AdQpBityBPNMknoR3H5Cz5itdCrIDK5gDUTqUlYVRafZbSd/GxUkqmSphqzVux3kjTfth0vXj4nyyzWKrQWvd2kxInp8fGexWLJkhVZUXB9fcUwDNzdPfDdt7f8/6j7syfLsiy9D/vt6Ux38CGGHGrq6kY3ARIgRCNFM0oPetOL/lqZ6UGDCaBEESAGAwG2GkR3VXd1V2VVZmRGhLvf4Ux70sPa59zrnlnNpEyUdZ6yqMz0cL9+7xn2Xutb3/Dpp5ZXrz5lt9sw+4nz+cQvfvlLhq9HWXumkaZqIWvqqsGQRUPpZzabltPpiX4YOJ3OnE89aaFSzlMBujxDPzLNMs2UXClFnAPBJ/wUMcIFJiMUxpQyOSdMYabAdVnzHOh9CZpcay2WeIKlKbgGVXPOJC/0NqVEXzZNkjFmnMHYhRUj69pyD8zz/Kwg3+/3RV8ldKvrdX2ZDlycS5eJdlon3aZYgQsTQerdshKiBTGBrIkpcTzP9MOMNZPod/qJ/bZmHFtimumalrZuyppWgxWAa2Wa5Iuk4OWk5+I8RTnfzwHd67/7LlB6+W9XVTT1hm5zg2sqvvrid/z5L37Fr/7mtwyjL80j3O86Xt1seH2z5fXtDmdAxcTnr+85nhMZmeJ+n+N7Nxk//uwVjasxiGNFUrJRaJshXMrXl8jXt0ZjORV3J3lwv6tpeOZbj1CMtBHx2kuXqfXkFWGPbGgZlSRgR13gShKZkIXaMM4T/Tjx/ptHnp4mjifPw9NI74XSMPtEzFo2RtTqKLsU3dcbdNd1Qn8ahgv3W2mM1tRdgzUy2l3EoDFFGe1phbYO5SpiiBglhcXNzQ2n00nEXIWXvZzXaZpWLuNCeVi5hFfWk9fnU67NgsZSpjDf9lJWShGV3PRLK4ISEWZO6dnrAavGY6Xw5Od0let74Dmneyk+1ksDaKZR+JyTmRnHL2jalqquiSmJb72Wx9F//YTRGWMUr1/dSbhh8GgViYg40vvMb7/8wFxQxVd3W25vJd/DmLQ2uCmKDsXPiXHyHM9BRu/WsmlqnDGgZcHpmpqnw8Q4BZTJbHcV2ggXfDgNRJ9QVOx2W3L2TPPA8TSgNdSVoas1KnuUcuRkmSYRr1eVpg7QtJDVTN97vvxdz6bbUNkK3VomPZfr/MOlOQD8t//y32Gdout+zvbmhnN/Bq0Zp7PMFpdNLEpzfL3oAs82I+Bbi+tL9Ofys4vWS5GMJUa/9h85P1+0l98DSyiS/LxMMiWLYPKBp+OJ89BzGkY+PJ54eJo495HjMeG9JSRFVFnsdIuOwcpDVaYNmqZu1k3uuqES6o40Fc654jRWfasZUUrR972sJ1YcP6yxkJHgOycTVq0Mflzont9eI6550ZvNZm00pml6pgP7LrfA9RySVyrq9esBKC2FScqgLuITjDaFlnn1vUDOqajIxFUrK6F8ZS5aEKU0ysrXU0jMMRF8EDqmFrDC+8hm09K0FfP8iDXSuL1/f8RWjnmWJOGpFIQ+RConaGNOkdNxgBTZbjbsNhty9ARENxdSxgfF6Rx4OJyIIdDVjq5rePPqhqoyaE2htUl+B1lxs9syDLM0Pf2Rzz/bs9s1bHeWqlEi1FZA1sUsIjCOgaqqWeitKQz0557goW07zqfINGWci/hjT9dUdPst1gZCghAz52Eqe0rA/4CtsKd5KjQmzzzNhbKasc5x2zWkOBJDDwpO54Fzn/BBqL9NI2Ya53FiGGfGyTPPI6/uKyrXYBV8+PDEOAfmOfHl+4i1CmtE1fj21R1dq1HxCasV242hbgzH44yx0mi4qmG7Fb3eNHrevXvH/mYrRgG1o+oqXO2oZsc4zGJMME3cvXpF07Z03Yaf/HTH8XBmHEZ+98Vv+aO/9zPmeWKaJ9CK9x8+yt5WdTyde+bJM4+R5DP9SVwvP3zznhiFAjiNMzEs9dIlTkAaBtmDA4GZIJODIl4OXpNMXp21lyJijR8oTUC+EjK/XB8Wuo5QEyuMMc9Ak+t1emk8cspMadFNKNFHKtkTYkho5YhJwm+1cs8sap1z6++cpmnVn73cO7bbLTFG5rkY2+RCAUPcI402VM6WCanUOrHojTPLHmHKSZEaSHKNxIFpGkYOh8DpIIYz+13NftNw5z3bzVbWdOdApzUkz2r7rfO4nMuXVPmX04vr71v+PPvMSmFszWa35fXbe0Yfef9w5HfvHnk6eGISdokzcLtteHt/y6dvXuEUbKqatMm8uvHsuzPzHIt29n/6+N5NRlc3WG0xqhh8qyTj64LxLafjJff5upu6HDJ2upyo63HOpfOCItRUC3/62yf2Gl0v/1JGDfLkLELqEBM+BSY/048jp37gdB54//7I40GCkM6jxKiHnMlJXUb4hTf9EkS+vqDL71+R1FW8LrC95IyUMZkp3LySJZFzxlkr1mYpE2ZPDOHZg7N81mtO9XLTLSjBIhZdvvb8zV5GgAt3+uVIbp1OXNexxa5KLef2xefn6usvqRbX7+G7EGKlFnjyks6+vL959qQsibkZ8HOURdzARKByhratmH3kdB6Y/UxTG6LPzHPi3IvjjNHQ1o7trqGqjciCrmzcUpLXHobAMEaCVzS1IF5+zpz6WYwlyMKlJ8qfoJm9TIRymvCh2GA6h1KauSS+hhjYNhWVVRiVICtiyPggv3McJ3KO7LY1XWcRb/dICBPnExjlMNqREeFsZX7YTcYv/uoLPvv0nt225U/+6Ce02w0hBeYwiTXrgiaptc1dUaXleHkvvSyYf9/fk9LlXoVSEH/bHlfri8WgrCGLBiOKdWYIDOPMsR/FFrkfeDhMPB0D/ZAZp2WcTnnorlCyMrlbPt3SGC0b7PXzcy36226362Y4z/MzdDDlVJp9oRWKI7NM0ZLSBC0UvxhFPxKz/FmOl7SzZfNfNqglK+T3OfvJ1xbqwsvmY8H9Lv+8nnY+nxhdpqTyvVe01/UVXt4Hl8nJUoRIw5OIQVDH4CPDYCEnAS6qmspWnM+z5FnozDydxXADhbVO1ock7nSbrqOpnDjcFQc98d6Hw3GkH0QI6ayhbWu2XUNdu9LUioWpUpJtEoJMvud5xocgzQxLjohagbGcWAsgHyJKZbS+CPdzmmlqBbUGCuo8J4YcaK1BG4c2Ts5bisSYmadA8PlqKvTDPLz3QjfynnGa5TpnAfaEcpnRZKrKkZO4Lj0dBrS2+KCYvOJw7IUmqTJto9luLJXVGCDsGuwQOI2R4xSYvQBa+01V6okgdGitQWmszrSNw8dc7O6Fd185KdRjnBiHkRQjW4Sip63CKbFonb3k6pzPZ1CKtlW07RZ7V61Th9/85tei/fKe82kglyZg6CeZaA3z2khM41wMaqSxj0GAESF4yNMX0wI2XK2n5fwmstyDpQC6kIqvNRVS26yD4t9XG3ARWOecGccR59xVk5OeP/O50I5T2aNVxpQK0+gC9oSAUrro2tS6Nl1rLZ7dK2Xd2u/3KyA7TZOYhpT3IbkxAmljLRqZnhjnyvMrEP9K27x80kL5FEAEDORMiIopy7OXU8IY8CESfLgwbmJEtR3WabRWZK0uz+WLxe4aZHtZY39XM3Kt6YjF4VVrTdt2tF1HVTWcT2e++uqRL377DT4WzZxWOKt48/qem/1Wcu/IUm/VFV3bsmlrzsPI2X2/ReR7Nxm1rdAYFguurEQgQ7oghS8/8Ete2DNeWU7rjZxY0MLnE4Lln0K5WV47P7shr0XR8gPC86dcXLEYFdeXKQT6aeTpeOZw7Hl66nn3zYnjSRaeiBGXl+sLrNQ6slsesuuLufCmF5Sx73vggrBaW2KBcmkGrAjbrTXkKAFOMSTariZGyUrw0yypz1fuOsu5vaaD1HW9NiJLobKINq8nCOs1KfdEvLJQXCgmz7phSimUL02g1rI4Lafm+aLyHLF4OfHg6mfk7S/ncPlsC2VimXYpGXlPM/M0o7VlHgPaGqq6IqWZ3NW0rWEYZqYpYS3c7DpS0Ixj4OGxJ8VEW1s2m4rtpkUboWtlWb3KRp6ZpsC5Dwx9JASDampBgkfPNEVBcYwiGUgqokwizZZ5ghQC3ki43qar2XSNvOYcmb0EyrW1bGCKTE668DYlNbYfelylubnZsdk4CV/yif4UOB1mcrJ07R5TKXEr+Z4P9t/V45d//QWvXu3YbBr+wX/8R3TbHSlGhlEEjDmXxU7pJdes3JuX13jZvF4XyNf39cu1KJeMGoUSz/IX05H1NbVi4ctmX+g5KeGjNBfj7DkPI0+ngcNp5HieeDzMHM8wz5oYbaF7CWyvyhRjBVOuPssiul7WkZco4IL+3d3dcTqdyDmXgLWL84jOS5GQGOaZbGRtzikSgpfPkrLQI5IUyMo+B36uJxTL9GIBLRbx5ELbvF5brq9DLJ372vykayCpnI+rY2myXjYay3fmtYm4rGMvf/f1GpdzKj2kuGyFIAX+OEwYq2kai+gBDa2xnE4TIpwLzHNP29Y0TYWxFl/yf4zS7HdbjJzQsufIuZw9PDydmWcPGbatPP/dphZr8vK9IUS00oSQmKbA6XRmnCZyTmy2jeg6YkCt9s1qBVomPxFjxliHKiBUjJEUAru98OtPR9F4TFNiHjLN2z1ZV2SM0Dxi2QMXN6CM7JE/0GOexJp0nudiZ16aDK1J0ZOjhxQEGDUt/Tjz7v0RpR31mHDOczj1dBvDZmPZ72q6xkiScQJ9s8HYicjIYZgY54g2mttth/czXhtMLeuT0uJ0tNu2HE+B2cuUs9s4XMmDShGGkseyPLPOWWwFOVcoY9E+0PdnSYzWmq7bcX9/yziNPD1+5Bd/8Qu0tSilOZ4nlhSOw/HE6aln6AeGfkS0uMtzU5DvlMsUTcTRmdJALDvuy0luuW+XZ1kSUV8+72XCePUcXh/Xz+WytoUQ6PuepmnW9ea6yXgGqGbJC1M5o4udrrVGtHBTxBPFSEddqFfXr7WsPUszo7Xm1Suhoi2Bf5KdAV6b9TMJW0Y0WsbI9MWrGXSxPI/xypU3QwkqzeV8K8SGPWWNj9LMeS+gx+zF6t45Aa1TqcNa1UKZQqcFDH4xnZDL8nxv+C5wbZnkfBeoq61lu93TdTuMrTkcP/Dr33zDr/76HSGJi5Y1irq2fPrJG272W8knAyprSBV0bcu2azj1PbX7fmvI924yjFlmForIjCpIP1c0mmtL1eXCV6tN6wUhu950pDmVh+B6vHb5vmUEL5v9d93MF0S9vEYugUNB3BH6ceI8DvTTyOE88PFx4OPHnsfHkdPZMEfJxpAUSZmyiIBSFgSjzbNi/JrScD2iq6qKpmme8QKfh6NAiJKJME9eEJgonfvpdJCGK0oREbII1bW5dKMvpzZL0bFezOLO8PIcXdMrlu+DbyOYz84rsJDVVGncVoTjRbFw3eQs/728z5fv+Xnxd3lPsTj1aC1IokqXhSdFQQ9ijMxTD1qmBP0w8vb1HVpnlEo8PAzkoIhlM3/1ZsvtTct+32CsWI5K9gnEoIXHPQSeDoFhzMyzImdLzo3Y1RVNwDTOzN6zu73DqpaqjWzeOE6HWZxq+pGf/nRP3WiynpimwBQk/PD16x21lSY6R3GjOJw9597z+HQQjcimZr911JUGVZNSRVM1ODNxPs588817NnfiUqJ1+61r9UM6DmPgt+8e+OWvvuSvfvkFf/Lzn3KzuSHGxSVuvnDus2yJF9tDeY2XiabfNdW8XkvgueuGUtJgaqNFQFqQNihrVAE0Us74WO6bEDlPnsdjz7EfeTr2fPNw4NRPnPqZhydPSrb0EnENqlM5YZQtVt6pNARlq09RTB/TxflkWS9zzs/+fRgGlFK0bcs4jmsRfzqdrtxFxE4yLTzfFKmahpQywzyTMoQkZsE68a1zA5fnc1lvYowcDof1+l2vLS/P97L+vBzpP3veodClytfMt80s1ubvqhC+9tP/rgYyUYCDMoFaGtOcFCHJ+hL8xDBMuOrI+TxiCi1KW00MQklyrqfranTOdF3D29dvqGtVAkOFZhSiZpgiX7574HwesRo2bcWbN3fUlcY4RUqhOHoJx73vRzGV6Ge+fPfAzW7D2/sdVeeYZgke/fDhyP3dTUnnlgmtsYjIH4hhZOg9Qz/z+u09dWMk/NZE/MOEU1DXmvcfHxnnjv2+Y9NtmEaxCx7OJ6ZpoKoaunb/vZ/Zv2vH4XAoFvMTj4+PHE9HQvBUlcVPE5AwGm43FQnLvKmp6oovvvrI+4cnyPDZZ3dsOiN/GoPThZGhwdSGlpaI4+sPnqpkRXzxxVfkcMd+17HfbWgb0VdpIjkFbvctPsDD45nzaRSNRu1Kk27wfubx8UBKcm9tti11XeFcJkaHrQ3z5DkeD5A1fo7EGBiGkafHI30/4kOiqjeMg+S4nE89h8eTOGAleQa0loI1X00rpQTOZR0C9FUoHM/rqLROlCEp0Fyew2u9gPf+2drzsthdXm/RPuScnz3H8Lw+WtgZS6bUOgFRYiNvskyOjKtBFVtWrRmGYQVqxDEKlnoRoG3bFSiZ53l9P4fDUda4FLHW0bYt1himcUArhTUihh+GEYVGK4M1oJKENefC5sloyFYaIC51a0KIIDFlPjwlhikzjJkce/qzZ78VirDWikY1WNOsAOsyLdFX2t/r8yZ7mVxZVYLxtFbPrHrXabeT4M7d7oa7mze0zYbkM/+X/+v/g3//H37Bh8dHEgmtMptNx88+e82bux37rcQNoBIhRbLKbDcVt/uG81DxdNkW/tbjezcZgsMm1kFRmf5fF9rLSbj+2su/f4l+5Sz8t7xSqHS50cJ6sWJ8joR9Z5f2bHwkESohBMZ55ng+83Q6cexHHo8933yY6fvEOBlCNus4PhGkuVgu0NLpq+c2YS8nKEop6rqmaRq6rlvDcZZNWlBHQexjLMVRFrct2RSFDpIKnSGV1IBlO39ZLL08lvO6NHFw5TT14tpcn7fvvh7LlcgYVYqCLBoXpS54bOZyE1+/HlwE+DLi1GuxcC1of66tkQft2m6QMj0SFsgVLaIUDjL+j7z/eKCpxYISMvMoLjBaK/HMDpY5GNTgscaiEKS572emUShSw5ghWyqnxWNdGcBgnJX7SjuUCbTNLTF5QMK4co4oZXGupe9DobEp+j5Q1466MlROy/2dkBTxIdH3E9PkqZxmu6nYdI6mUiiV1oUjY0BrTKXZ3Si8jwQvTjk/5CMCv/v6AWM0/+AvfsXtfs/NtuX29o6+PzFkiFEKBaUlaRUWseGlgV7uoWVB/a7n4vr5hOf3+/W0bqUXlqZeNFMKyZgRusXsPad+5MOh5+nY8/B05OHQM4yBcRYur9ysy9SzPL9ZErglg8Gso+v12V4QMq3pum59nuZ5pm2loZznedVmXbtCXU82rykMKeXVrSTGtDZrGLOCOsu0YfnZayTx5fFdgsOXDcHL7/nWhOICn5Zzvayv6rLSLVvLi/exBG29fA/Xv1uQ1WViK+uHMUKnuLwFcQJKaeYpPWGs6DOMtbjaolXEeyALZTLEzDAO4qhTrIpDVByOI6fzyPnc01SGrq3Y71qaxqJN8dhPmZQNi6GEABoz52Fkt2m42TZsu4q6NjzlmtlLAvzpOJNyafq0TC9UhpQj0zCilWK/a6hthcqJ6CPjEGnqiq6Rz2yM6Ba+fu/ZbTPRJ4IXjVjbalylsO6Hq/x+eHhkGCRIcZoGQvSkLPa+0zBgbaSpdWFbiJ5AWTA2YaOYifh5JIZMjorkDcki000t6PM4B87DzN3tDSkFQpzozyOPTwPTnIlJoXRH5TR2oaSFCbJmu6npRynMxqEv0zMBIjMwzwVsTUmmZEaLhX3lMFpSyD98eOTwNACQciBnQwgw9p7T4ZFhFC1KmAM5sj5LSz+Qr6cTmZUJsmRpXXbx5fuvn9WFtZDXaSN8e1rxUqB8/cx/p/nPd7zGy6bkGrS9BmfJFh9TAZ8gJC8he8Ug4+qDkEK46HfzhQGygDNN0yCU5qLLU2qtQchgrBUdW9GAyvOfi6FMkQioUinq5VwqQnz+mVYQDGHrTAFUn6ldACWfw7oHseOlUODT1WdRYmSguOx/l/Ou1xp1kRNIrSwByfL5DXXT0bQdXbfl7u41bbvhcDzx26/e8eXX3/B4Ghi8uKY2RrNpLPf7lrt9Q1sbFFGm32XTqmrLpqu43bdM/ub3PKHPj+/dZCg0i/Wryhf7rfxCRHj9T7jawH/f66ryQMgvWb8mF0qajKXZkL+72jSuN6O8jN8LZzbKeGqcZk79wNNp4HgeeHgaeHiM+GBIycjMQiVEjZ5YOMMX6k5eN8drbck1LeOaO922LdbaZyJs+Wd5iFIqImqxLVs4IUpRqFqp0ARyKViea1quP/PL5u3lxGI5X7+vqXj238uFuF58SjEgF7KIv5SSzA/41u9aXlMe7sL3LA/78ltfNmcL93K5iMu1lgd8OQ3l50tmR0ZBgpgz59NIirkkAGtJ3lRgnBSgs/eMkyIEqF3GKEsKhqGXTcn7xeKwwhorQjJtUNqs2Scmg1MaZytMtqQcSXFGqYKcUDNNoywUDuaQ2O0a2sZgTYYkqPzsM8MoriIxBtrGsGmtWFYaEWcuXNsgJiQYq+g6y+kEPiRi/H5iq7+rR0LxeOxRwP/4i7/m5z/9HGveFiFcK8JU5tLELvevQqm43ifXk7PvuqeX4+UG9q0N7vJDcl8W7RRZ7q+URMg3+ZlhnHg69zweeh6PZx6eeo79xOwzwlAULc5KQSAX0wiNpjzDi110aTPy1UahlHi6L8DEAlxcJn2XKeqz987zSaVQRmKRnxSnuHIyFzcrVc7ZdQP2cjpwfS5/X4Hw7Lq+mFh+q8koy0rOkHWZkLLYelAyPi7X7dnv/K5rd9VoXE+/l9+9fH3JA8q5AGVZphrDMKKNR+uSopxbUBGtZLrunMOHyKkf0LoWiC3JtPN4GjmdB3mGdw3bbcN22+Jc+Sw5lwymkuYdkOnmLHbV27alaxxtZamtYrCOGGAOM+c+kIkonanrCpQlZxG0p8IM6Noao4XH74sZxKYTeo4toaAfHyZO55mUzsVzQMJn264SDrj6fh73fxePp6dH+qFnmqayJ6W1gAgpYRAXy8XkICTR0dUVGG1Y9Ep+1syTJhgnGfNW1pw5SO7BHCK73R7wxKDQDHx8CKQ0lWK1gmxRtcKk5Zkz1K4mZccwycQ9ozBa3OAcFX6emJMEJHZNjTGN7CMZgs9M08jhcAYGlBJJqPeJeUqMQ6Dvx5Jwn0r5UCAT2ZS/db4u0wrZOy/6qOfP2goCsNRk1/qo58/WSyDgO9kQV+vz3/b9LxuMbz/P8n3LtFu9EEBfUzNTTqiUWcDq5XctRhpCVasKoCk2s9pocpbpSYgBpTWmsD1SFHv9mOIVkLKuWiLXVaVWKffgUhuta2D5+xBhzJlTHzFGzoVzJ3meraFtamFxFLBK/lFqsrU2XurBhVnE+neXOlDAT60NddWx292y2W7pNnumMfDum/f8xV/9Fe8+PHIaJ0KRKlbOsGlr7m82dI3FGRAVqqzPS517s+/EUfZFnMTvO/7nNRlQ8gkKSqDyyttdPuTCMf59N9RLd6jL15fvzyxZCSmrUuM/v8HXN28ln4BMmb5nciksz+PEaRg59yMfnno+PA0cTjOPh0Q/aVKSQac2CXJArSHpsvEZiuVsTqQYmFLEGLv+/qZp1ve06DHmeWYYhrU4WASawzAwzzNVVbFUGsEHJAFPmg2hiGQZYyotc8ry+tcjxeuH9uWD/XKDv7az/a6fefbwl+ZBeskFFZXFa9k4db50zZnnFIdnntMxIGkt4s9vXUVGMaf5W+NR+dyLLmN5nwlXyd/FmFBoUioadKWwyq7LZMqZYRAHFmcNu01HVVmsU2gji/zTwctiEAdUNlS65XSeMLam6Xa4SuFchbUVMgYO6yJ77s+kLJv+MD/SNjuscpz6I9tdRcqKaVIMZ08/zKgpcXfb0TSy6SsiGcMUAsfzxPHUE3PAOsX9/YZtJ9aGqqRdpySb3OE0oFPGKoOxFTf7zDQlhuGHWxwAoAxBKR7Onv/zP/nnvL6/IabIf/aP/oS23QoPfRJ62nVSaQj5W/f+cg/Bt8GH5b6/Ln6vM3ZW69ucS+EvDkDaGhSOFD3TOHA6HTn2Z47ngS9+d+Cbx5HTMHHsB2afZDFXForrHmVjTlGv42vIa7NdbRrhCZdmOUSx29bGoLV5FkjVNA1N03B/f89vfvObq2dXGmFbiuHrBqSua6Y0ElOW5wYxnrCVWRv9lyAQiKtIujq33zUZWr5/2WyutVwvReGX6dAytYCsYRG85fJXuRhLLI1E5rvNQq4daK4bkOvm8fJ35mr9ooheU0E8F853JAWZXgcveTqoVDb/DXWTyTlwOp+ZphqrLSobjifP0+FEjIGbXc2r+y1tW1E3BvAruJKSws8R7xPTEPn4OKHQNPWWrqlwxkLW+AKQhJg5nDznwVO3mrZ1GGtRSRN85PA4lnVFJq6zP3PqJ0JMbLc1u63DOYM1msrWGOOxbuLXXzzijKZylt2u4+7+BqXEmemHerz7+itCnIFE3dSib7A1tduhjSJzIuqB0yzmH3OYCXHg7rbGuQpnK77+6knorseA/cQQk8NWGl3B8RTwHpyr6TrDZmPQqqKtLeRHzueZbz48kXLi/m7L7b5FCs5F65jZdi3WCKj41ddf03YbycNwjhwNKYj70OPjgZs7ha0q5inS957zWZzHyMUuO8j+djoODMPEPHl0KVLzYlynLuj2db10DUBkZaRozc9rqWdFfRLWwgLrLhONpZJ9+ZrXtcU1aHFttf/y+VxAFHOdK1bqJ6mRWNfu5bOkeKGf11bcOnPOa+OwhPGlmNBWtFe5rLHGWKx1hOAlV0UblLNk7Jq5MY495/7ENI1UVb3Gf2QUyhhIiRRlyrHoXMgZq01xLY1rDsdyLp5R0WVIQkiZp5MnxMg0a7KyWPeRSMBY2DQSDyFeZoqkwoI3S3J90ZQFn8hKMsfs+nuFBmxMRdtu6Lott/dv+PTzt1jneHga+Of/6r/nF3/1K/7iL/+a//cvvmQKGW0sisB+2/LJ6zv+8Cefizo5S+2irYNyveqm5o/3P2eaPf1wiVb4247v32SUG1T+l4QnL5XYt27Wl8XuMwTuxfcsN9T1BhrCfPWLv92YrBtLuXCLuC7HJM4v08zjaeDp1HM4D3zzcObhMNIPgdMQCdFCaZKUykVpotex+OJIVaAB2bC0XEhrLV3XrQ+BUopXr14xDIPQs8ZxdTtYeNbLZ1uaMaUUVV0zTxNLl6qNiI2uu/P1Abt6kI25ODpcH9cuV0uhnrPA4cvPXBdeL0d6y4suHblaIBQEYhQEMl/QXoRrmPPVNS2voHJBhaEgw2m9Sa/PhzQZi+d+LhS5xCIEl9FkaWouA6XltpDCJJUFMEGMgZQD1lXc3e2JaSQULrXWmuAzOcKsEpvtHU3T0m621JVwNqXRcJKIHqRBORyOzH7Ch5kQR5zT1HWFMltu7y0+nHh8OtEfE0FCicl7SZFPxmFNw3kInM6RYz8zzhO7Xc12UxW0oMwEc0YrW+4hj8kFCc8aqJinM1UFt3fV/9Sj+nf6sEqEpzFnxqD5xV//lu225bNPX3H7+kZCD8eeab40Aou/+VLUXhe3L93dXuo04NsTjeV4htKVeyzMmXkaGcaB0/nEx8ePfHwceDzOfP1+5PEYGH3Cp4KE5fJPltdWKC3apaXAts5eBJ9VTcwjKoF1Fqf0OuLuh75owERwuIAUdV2z2WwI3uODFLLBT6tBxfWa6gsFYDkv4zTLc6O/PeFcCgvvZ7HTXoAGngs6r59bWYvk/r5ei64LjuW/y0m+kDKUQptlrSiNR7rYZStdppQ8f5/PjpwhRWnKlExnrveZayebBbSw1pBzoZGppXiS9W3RGco+Iuj34dCTMzSNo6ktHz+MwmWPMA6BqjFstx139x3dpsZaJeck5XV64efMOEbGMXI8RuZJLHWzcTw9TfSnWWgylSJqCGkGMxJnW7RhoNWMn2dIsN21tM0GrRM+zDwezyigcppNYzAqyhqIwXtFCJqcFE2tcFYmHKhQQt4qugKS/RAPYzOurnGVY7+7ZZ4l7HGaR1IeCelMCiemvsFasA62Xc1215R9VfHmzS3n08QweH731YHb+4a6tRhX0Q+yB1mj2W4kVV0pw+3tjpSga0eOp4Fpmnh4ysx+5s2rG6zJYnWrZdJtFGyamtf395JVcTzQtRussWStiFExec833zzw/sMBbRrGUZzCmrbj4eNHxkHyW4bBE8Jivb5uqeVYis/nddVLyrSsp1I9f4vxAJdnUl/A3ZRFm7qi68hUniuGyvX04TJ5DcBzp6PrBkOOxehA6I3OGZy1hKLJUOpqKqxEn6BQ+DmUtYL19+vSrBhVTDS0ETA8gVYO51pc1Za11VHXLZnMOA70w+lZM3Q8HqhcLZ81Jl6/esU4jgz9QAphBYyctcQcUSmis7iFKiVgzjV1XV5oYaiAT5l+EvplVgnrNJkzWlvaumXbbmlcA0mhsGSkociXJXV1RlwoolpZtLW4tma727LZ7sRFqm347buvef/xwF/84nf83/7JP+Or9488ngYmn4UejgQF39/fcne3p6ortLMY57CuYru7kwmRhqapaOoKxXdTlL/r+N5NRlXXhOiJKUgBXjYP4csvJrbfvnmvj+ui+bogfonSX6NgOWdU2eS+Jfgr/MKcJbQoRnF2GOfA02nk4dBzOA0cThPn3jPOaeXNAaXByFCyMJZkSdmQUim49RpKB7LhVnVNuPJermu5IRdrwvLuLudIXegIl/OjliGmFAchsvRt11yI666YfGXlu/wKLtSt6xCtNW+g0L/Ql3P9El1Yfub6qi1IBqy9FotF5PJzl+nT4g6GvEcuPGq1LDLW0rpKLONilCCtfPn8siAZLlONuH4+EZ6vdNNn7xsl94FSlGZIGkdrFY3bCDI+eoIXxx2tDZVt2Gz2dN2GzXbDZrOjacTa0hiDn8UFYhxnWKYZfRJ6VZixVlNX9WpPp4k4o8AaUtL0Z0/l5D6qKhjGSD96hnHGOkPTONrG4axe74KcFWGxGgwRnTMKKWB9CCgFzhlxyPkBH05lvABm+Ai//fI9r273vP/4xO2+o6pr2rZjHM8swsXrZ/+6ibimYl4Xty8nnt/VYDyzbmZZRwSsmCZx/TqdTzw8nXl4mng6eo7nKGtIkmmubIKLgfyC2Od1rVAU4a826z1urKBqi8OPq2piipKTY2zZkM3qJw+UwCojTjbymwQsWAvpy/ldF34lhcLK5c08G29fI496Xd9YyRTX5+y6yVCqFNJ54QOrdZ24Pu+/z1Ci7BKl1rlQN5TK6zmS17r8zLpWsc5VRXOiy9r3gi62ADRyKq6nX0XnQymiZPFgmW7IEiLP4dCLu5T0nxL0FkOUgLZaoTQYawRwy/KaKYp7XgjSYAxDZBzFhSonjVIVxtbEWParnBl9wNSOpByoKQqxTQABAABJREFUiqZxSJMHwzDL2mI1becwVq004JQidWWpqyJGzWKQkUJiHDNjMatoWytBcEahlDSnE0lkKz/Qw1hdcmNqrNWFOhSBiLVJgAKf0FEsgo3Wko9RObSWpOiu08VyWXE89Jz6kdFbXA3jIFS1uq2wRtwgFRlnNZuuLs2t4vHQE0OkHybO/UxTO3AKaxJGS0FvjaJr6kJhEWt6o42wFYxhmCThOyVwFcxzaSRiou8HxjK5mKd4BbRd1w9ScH7XGgc8+9p3rY3Lq13YIOUr6tJ4LI+JPB/fgXDyfL1Y3t2692vzrHa7UOwvVYbSFP0m6725NBjAes4vX9OCgRYQWGtpNIzSWFchCfCWpmlp2o6m3cp7UXK+9DJFKYGCzrliretXwFjWb1k35Y8mJ6GcmkULEmYRGirJcktZnO2eHWutnFdWiC8um+ch83ScMVpTOcftrl+zfFTWqLQA6ovGSM7LkngOpaapWipXUzcdd/e3wh5Rmi+//sBf/+YrfvO79/zZv/8Nv/r1Ow79yFiCK5WS877d1tzd7NjvttRtLRohZ7GuWmm8CwS01KHmu8v8bx3fu2LZ7vecz0fiGIXiQulwlUbF5cRexnTLgr9seotI8/fpBr5r+qHKBqbMBZlbxnAxBXyK5KSXfD/mGBl94Dx6Pjyd+fBw5HASPcY4ZVISIlSJ7C4bCJAXZC3jymhIfkcqF1c8mReRYOWcpGJeObLc3NwQY+Tdu3dXHXhCK+H2Y9Wzokis1ZbPqDj3U3lbF3RuOS8LrSjlCwqgUGtA1XJuVueGMnmIUZCInORaSUPyXCdzjXYsD8JCmxAZfplWSbDq1SKTREithcqkrzI/tFoKGI0yFuccTdtxc3fH4+NjCVDyhBAvUxOW9FaZbISYucT9GZzV5TNdaBnLe09XuhZIpBSIaeZ+/wnBZ8bK8/HDico5Klux2+y43e/ZbDZs9zv2Nze0bYerKnJWTONUmoyJxaZv6Ae8D5xPR2IM3N2+5vD0nuh7Uoh0tSXVhhAzX7//AGi6jaapPMfzzPE80Y8Dn316w2ZT0TSy8edyrVJWDJOXAiJGKV21I8XMOB7Z7RvqxmH0D3uS0dnM4DNzghgyv/qbr2mqhn/0n7zn809fY13Dzc095/Oh6E/ys/Xk2f2aL+vN9bE8N4tI+rvWm+WfixtIDhLyNE8z577neDrycDjwzfueh4Pn2CdOfSawLLV2naYt/F9VmnD5iimbq5gIiPNIQmlD07ZibRgiTduwFLlaG3ISs4S2bagqu3KJc3mOU5YNN7GITeMz9P8aXUrl86eiARMIjPU5ctZirMaaqtgHLw2JQi16pKI1k/OciuZD2JySTbEgaupb1+F6SrquGrkAO6gLaKGzUMb0gpRexNwLdXYtq7LwoNW6tmoCz0WoMvkuU2q9AFfyZ7EQTwuXPctmLQVWCalIMI4eHyI+JLqmEVcpH6hrS0gBHxQhBYYp4KylthUpGvwcmafM6TBzHkSvE5OshcY2VPWWZBoUEEPg+PjIxnRC26Ble6sIHqYx8vR05O7O0rSWbuNIITBPkirsrKFrHE1tMMUyM8TMNAcOB8/xfGaYRu7uNmy3guhP85nhPDOcJw4P5/8vnt6/G0dVWZqmo3I1PvSM00maP+toOsMcLGGuqFxGGbDOsGlbbAlV1QZUDVrVVLUl5cDD44mQJpomEYKkZ2+7ToCuUmChMm1X4ZylbipSjPTjzDx5PjwM3O4VuVEi/ldhvXdrZ7H7naSQf3wkRSvAqXGM45lxEl2NqyyxZCkMfc/hcMTPsTCPF5OGRbi9NADX7pXf1ia9BBRfgjK5oJpqGYvmC5CIUhLK93uAyJcMFlOcMBegRXJfTFlLroXgBRxJoqUx5lLbLaGlujiKkpfn+MLs0OX1dGFVGKPKmiDvo246MXXQltv712y2e9p2I6/BknJ+XmlaQk3dFhpUYugHKO6DVV2tgm+tNco57JWTVdagYyBF+fyzlz38+lwtYNk1GBOLO2vqI5CIQT7Xfn+WybdVVKrCaFtAVotSoTS8F3lBzgpjHPv9LV27oe023L255TxMfPPxwD/7F3/Kf/jlr/n1F+/5D3/+JUnFIgPIKB2xWtM0hs9e3/DJ2ztev7plt93QOFX0ao7aVSVrLjAOPWEaBFz5//Uk46c/+Tnv3n3Jx48fZHNOF8qC0hRrRnNBxNbiOPEScbx2XVpuUPEszmtS7LOioDzosYS0KCPcae1VSdEW9PHx+MjDU883H3t++82Rp+OZ8zAzzxGli9gnlyajXPaQkoTwKLEBQymMNdS2YZjm9SERZ5HENM88PD7irMNag3OOYRieTTXmeZINWimCn4s3/YVaBLKJykNFCWvRaxLvhSIk40UZIxoqZwjBP+crKiMCtyRNhimohnPtmgLuvZRGuWhcrl1l1kL96o8t9DS1dP5XDM3rqdMy7nS2OOggFJ9Fk5KVTCW0tWSlmGaPNgZXVWXRmdd0Tu9nrDUYK4vNPI/MfiaGgFIGYyw5i9POddjOcs+kIrw7HkQUF2Ok63Y01Y7NZkuYGzSK2lW8urvl/u6O3W7Lfr8nG7M6zSgl/E4pRBJt2+D9lhACw3gmp8A0ThxPHzgfHiGdcWbm1f2elC0+SpP4/uHI+4cjTT0T4kTlNK/f3HKzb2lrhbPiGJORxmScA/0wEWYvAk+7YxpHYorUjWK7q0BB34/f95H9O3n8oz/5Gb/67QfefTwSozit/M1vvuT/+H/6J3zyds/nb1+zvd2xO71mGA7EMD2bUiyo+nch5S8315fUneu/V0WInVHgDTF45tlz7s+8+/prcZA6THzzMHM4RYYpF5vrS3NeXrw8b7KBkXNBn2SeH0ognDIaow0xiU7JaAPacDodqJuWru2o644YZK2s6poUAzFK1kPTbAS5mgMxC7JlimtOXBvVglamFfIUxKmgdSlHaSCUwlpJo1bkqzH8UmgIHXY5b2IPWQqmakuMS6CV8ANz/nYarXNu/e8122f5HdcGGmZFetZ9QmuNNW5NoNVaSXBVFregRb+ijHyGzXa77ine+9WwIWkNOAEdYpRfu7js5IjCFkAF4GoyqyhW11maDR/pmprdbktVG7SWcLynpyPaIBQNZemqHcfjwDDMGNeiFFSVwbmaJVl57CWMTCoFS7fbsd3co7URECkFUjyTUo/RNcFn5ikxNwPnc4AEVWO52bVYLSBQioppTgxj5tQHHh6PGKu42VXc37bUlUYb6JotjbMMved8+uG6Sx0f35HSGXYdt3dbfEicTiOPT08Yk4kZuq6i2wA5EqLneBzYb2XyoVWpWRowlQa9IevE49PIV+8eefv6NeTMPE1Uzq6hiilF2fMrjbU1+fUtp9PI+TxxHka+7AeauuazT+9ho7Emo1UoSLOlbhxV/QlfffUN/VFCFiWrRfQBj48fmMaJ4D1hCdUtE/60MDCUxjmh/pUvfCeAIv8OWksNtuRnLceFWbE076xggLYSKJeQhnspmNXV71jW4qX4FvtZRfkBrHXrNHaheMUyLY4hIBYgcizvrapYAVprFCGGZ1QrrS6T1+Xza6R2s8u+gKKuW7puy2a759PPf0JVVSgtOT+i95TC+uOHjzhn6dp7qlrsrBVwPvYYfWkkalejlcY6R9eI41/KST6HgpisBG3OEylGcozS+Kuyv1wzTK5qWzknhmHK5EPAhzNKvacfPK/vJz59fUutGgyShaRLfQWS01M3LU3bcnf7hlev3uLqmqwV/+xf/g/86tdf8ld//RX/9X/zbxhmSbxPWtZaW6ZGrVP86LM3fPLmnh9//pY//Onn3N9sud93tHVdYHdIcabvz/jgUQqmeQb1vEb/247vr8nQls1mT0qZjw+ReZakYrWmcT/fyK9v5usO+vdZsL50C7j+u3JVCz1KoVIJQClFyjiNnM5HPj6c+Pg08PFh4PFxZpgSPggKINz2a+502YRXqkMJ1tNgjMVVFWERVGlNW9ciCC7vbxlvVVW1WqitovdFFF3+X5XGYfk8OV9v6JfJj1FL0vCC4C/nrwCGXJ+nZbyfyjRDPpPSClts2mRaENaibEXzFucmniMg1+f7+gbKK6LwfDFb6Ss54ypzQRyXKUaBjfQVT5rS5FgrScWVqwqSoUqit75qTnMJEsproRTCYgd8eWjlfbNOBPycOB5GPrw/cLMXy7XKCgKxaRte3d9xfy+ajKquiShcVaO14dyfSvEvyJW1hrquaNuWtukYxp4YPNMwARnnKtrGSIZF1mQlpgDOTsWXf8Y5Qd+220YCmoouISdFTBkfEtMsCJYASY4QIjEFtMnsdrX8TAnW+iEfb+73PB17zv3I09mTkmKcIx8ez3z1zQP73Zb9bsft3S0xTQzRkwpF87umGS+bjev79/dtvsvU7kKVieIiNY8cTweOp5HjyXM8Rc59Zg6LLJ/vfG35IiWZloVwtNIYshJxnil8Y6NUcRuTTW81fSDTbTqcrXDWMfuRFBMuyaadEuQkGgpw5BjwfhK+70J3yJmslyYjX6bOLAJLeYcoMVpIxdbp2bq8AguqUBJkpmmNoaocMT7PQxK71uIIly9N2HUzuExY1QIsLbSyvCCyV8goggNZtYSAqsJalWAomfbK+bSuYrPbM02TbH4sVKgyLSkT96LdFASVuDZG6/QkPV/31EKhS5BVKlMc2G5bMoGcAz54TNL4lEnR481ITAprW5puR0rFRrJqZG0qQXoKLdqaQilJeUarGmcrfJjRWlPVlhgbMhPTHMnHiZw0dWVpG4u1MgASkAWGMdGPIsa0NtO0js2mpql1aSYhK4WxFcaKruGHejg7Qsr4aebcT0yzF+1dGJmnGVtBVSvqqiZFcToUoe1MzpbKWZYcAqNFs5GJaJ3ZbGt88PT9gDVgTIu1qjTZl3s1q0RdGdg0WGNJWSYSPgTeffNITnuaxkpuiorkKPfiOAWh1CRVdDuhNKCRsZ8IfhYL7ZS42JQKAKlXXdXSEF90les+rorrZyrTgjK6vAYHL8WufB6lpGjOwg5cLa/X7+NS/C9r8PXUZG06NIh2V8DXuq4xxhIKgCPTR8EYlv16oVk/m4RKOSaF9TqlKWtK0YtprYq+whT2idCaNt2W/c0tTdNRNx11U69TEKHUJYTfFIvtPSgtJj3zNBN8wC3W1otjaNPgoqzdTduyCL9zlVbq/DxJgwECvCy0LOS/ntF8L7Q1QClCykxzRhH55oMk04Nmu+nQG0mHV8pg1KIe1tRtS7vZ0G23vHr9Bh8S7778mt98+Y5//q//lF//9j2/e/eRp9ModWy5Z6xRtE3FblPxo9c3fPbJa17f3/DmzT0324aucdSVQynR1cQYmLPQxOU9y8TelmDk73N87yZj8om66dBaczwepSCSof3V6OZ5k3HN+/2ucfo1snidVH2tLXi2+ZXvF72ElsnCNNL3Zx4PRz48nPj4NPHwOHE8FY1DsSlbedNc+MeoZQIjKJ0uTjDaGKytcJWgg1prmrbDVYUeVZwLKudKmI5bKQ3GOJSeuW5olJINQcJZLuNOrs7XcsMtjUMpU+QhYymo07eKAfIiipIXVOVmWnyml+ZBmo2EUjL1WMDO6876OndgPd+XqeV63tafKcWa5FJcGqJS0aC1OCNpK3Zqy4K2PLzz7IsziF1568ZIs7G45iw3+nP++KWhfYlakyVZ93yeefh4xuoNTZWw1tA1Fdttx/39DXe3t2hjSAmsq3FVA0rhnx7KFGkpLAT1raqKum6YJtkIpjxTWU1VNbSdRWlZeLTKOOOorGPWkWkcqGu76ilMSYKORSQ6+4T38YomZVHKFrQgYp2h29bMYygZKz/c4gDg9d2ejw9HDseeYx/IiHPU6ez54nfvefPqnk/fvmV/c8PpfGCaR+LsWbRFy9rwUtS4NLDXm95yXH9t8U2RYEnN4p0agmeYep5OB479zLGPnPrEMEHIlKlcfrbRXudrQCmCFYVmWYpYo4k5F36rE292ICa5N5xz6/vOOdM0DW3ToZQpDiqwhoyWBmtJRg/BEwsXPefi97Y0Xiwb96U9WugBMskpgssrFzt43oxpTUkuT+XZvQRmAev0QKkEMa0OVdfgxfLa1+uWZmnULvfyt5pCCs96TV+/RispTYbDVTXb7bZ8ViAV0WWhcMp5uIhipWHNa6Oi8vJ747P3kuPVc1bWgqwibddADoQY6Ht5hmOQzJ6oAk3T0bQt2+2N0LmMparqct0EUfazFLEpCTob0oRBU1Uts09iLmEqwDONs+Q/+EDX1VhnaNsKTSg2y5nJJ8n7GQLzPNG2lk3n2G4ctVNX+h2NsA0s2vxwJxltHUl5ZJ4m/OHMODq8T5BmQuyx2WB0tWofckqkODLOAgwZbVb6rxxyfa3V3N02nE+ecZpQJOpKret3Vdl17845Yayi1RWVE1BIMdGPno8fD+LmlRqUqnBKHJtigtNpJCbIWa/anRhjMQuYyak4Ti4uk4voWmYM6/63NiDqYt6yAjBRnvm8jD+uGoOFW5/S4uJZToPK8mAmadAX7kLmSl/Jxcb0mpZ1aQIumqglnHhxABXTm1zqBGmyBAD4tpZElQJ9CWheAunEwEForVoXQNIYKlcRc8Y6x+3tHfv9La5qMLZaWQ8hykTLaFkkYghYs0xUFae+ZxxHQggy+VAXqmhd19hoiUmmByHGdQ0hR+ZJpu3zPK/UML26cMoHCjynqS/7hjR4ijlm0hT5+DjK+qoUt7c76kp0QVZbsUFGY7Rlv7ul3W3Ftazd8u6L3/Hnf/k3/It/82f823//l3zz4cjTYVhLOKVYjQjubjre3u/4+3/4Oa9v9+y2HfubLV1taZzBlcbQ+wnvZZiwgGZGOkmqytF13fd6Xr93k/GXv/4Nn3/ymt2mY7u5FQeeVC7WOipTa4z79Zh8uYmW/IhrFOx5Z/38hnvWfV/mAoIAh8QwnHk8PPJ4OPHNhyd+967ncEoc+1waDFseTWARaiot7i/l5tKYlfeWsyYrWQxCTFR1Q8oSwnI4PLLZbKnrhqZpmadA5SqqyhFCcXBRsqFM44w2sSQ0G7QWYVpMCVMmkympwvWUIyzWROpiPSvNRuK67n85FVoXCiWjnVgWmHme10Xn0jkXG81KNuSYMsMwPWvqXjaDeRV4wrUQFy4THbEqz9LECH8A6xyVa2i6TfEah8PTUZw1SIXetCR8y4M5jiPe52KV1pTJS6KqGpwzV0jEc3vL5f65oNoKsBhV4UxNUzVYrXh1d8vd7Q33d7dUdcXkA8Ps+Yd//x8xTBOn84ndfi+8w+CZppHT6cQ8i6tPTmXEm8DPI/W+RtsKZWp8nMVRzAdOp4noA1olCQp0ipQ9fR+p9m251xQ+ZA6nmRjEocLqhpQW4WjP6zc72q4iFKerhQ7zQz5++vmnzD4Rs+L906/wSeFT4sPDmX/6X/87VHa8efWWn332ltevPqWpW77+8FvCPK/CxO+aeq4mB+v5yeum+mxaV+gyhQFBJpOy5/H4gY+PT7x/PPPhcebpGHg6xtUjHJbZ4uV+u7bQLlWtpMI21VrYpYLeu6ou95zneJSEZ6WhaS1N05RC2RBDYBikAL179RprxXZVQAOIwfPV777gfDrQ9yemeRKq5/LIppmAKs9OxFXyHtPimneprNY1e5kuLscz3VzOa3PivV9dX1462RgjnOSYJPBuni8WxNcNxrOJdy6T2Ksp6rL+xBBAa6ytsNZAVNRNK8V68cFXRqbM/TASyr6yTJWV0jhXMU59mY5KgzLPU9lADXrhOyuhUlwjtGvieYqFzZVL/sjE3e09xlQ8PZ45PPWgYLtxbJsNXbeh61r2Nzd0mw113VDXDVppvBeK2fF44nA40vdnaaR9j9aKblOBaum2mqpOvPvmgXFM+FmmMPd3snaLk05FiDD7xOPxzOFwIudIVWte3Xe0rYSBKpYUYhGbH04jwV8yZ36Ix93dHYfjxOk08/j1gHUjxkLbwtubLeMwM/QDk3JUlcMYRbYiqD4PI8Po2XQdxsqE4PHhTOUq2trR1hv0LTweez4eTqTs2W87Nl2DNQ6fyx6kotzzFpyzfN6+4vHxxPE0YHTmy3cfOR5bXt3f0LWWmCfm4DkcBoxpGQbPw9OJ83ksMgSh/YhOaSGqUBK6M1W13NeFTmjdur5dp2iLYFjqBp0R9ofM5cSqVKkyYZOpwjVwqRSoxRpXyVxWx+fN9/OQPKHNK4VQpotl91KcL9TWBYCV5eRShwgoe4k7UEqhTFll1bKkLsJxtU5ntRYxP1noqN1GaEzdZsOnn35G1sJE6boOU7SwhIyfZ1x70V2SoK7F8OXrr79Go2ibllwvTZH8/nn2pemw7Ha3eD8TYlgdRFEekJqn67bEqmY4n8g5rc3K5D0xKuLa6C1r4lLjinX9w2lmmAKPhwGlZT19c3/Lp/c7oYC1GzabDTd392RrOA4j//Sf/Wv+7Z/+gv/wl7/mv/+zX3L2urj2aQwiB6itZtNo/vE//GM+eX3L2/s9n73aoJVQw0lBpu3aAophPDP7gZgmttsNlWtlwl7VnM8nsQXW3699+N5Nxn/7L/97/vP/9O/z937+Y169vWOcz8Qo3U4IYUWkl5v9pUf9te/5spFcO8Z8d0d7QR9lwxaBTAiBeZ55enri8enEw+HMh4eRx6Nwp31cJMNLx3i5ia0t9gVCmFs30JQyyXu0E4ejZTuOKUpytJ+oQ11oC4n9zQ11VWOtZRwGFp9qcY+pGIYzp+MTpMg0j/h5QkUvr50FZRDmgiwi1pn135ebs/wXxup1mrB8juvzKC+TnxUK8zw/822+tsSVBkTE1LprRKiUvo0AX64JkAWV00oVhLOEjCmF1cI3z2RiiCsFShl5oLwPoqt59kdJorG6uOdst1uEViDojrWOTWcWHgghSKMa4tKcPkeVZRomTUvbtmw3WzZNS2srbvZbXr+65/bullev7nk4HMlK0213PJ37QrsLzHPEz+ICsiDnxkh4jtIyvSJFzuFMTIEYNSlb+skXF5DAue/xacJWcLPt8H4ixSCbXwXW1IDm2M8EHyFlNAawBD8x+4nbu466tmjFal1ojP7Bu0t1bc2bV3dMIfPlhyfefTwwzoGI4usPH/nTP/tzGgdv/w//eyrXsN8J1+Ph43uCn0nFNz6VcKRVbKgEdc/58hxZ+1wnkFXJwlAGlQ1o2SSP5ycO557DaZQsneNcEnvzhTm89K5XjYZSqizMqiCbFmssrmoEPU2pBIJltJECtnIVqYosFMC26ei6Ddvtjqqq8V5c1TbbRqZeKokWAxHhOWfZ395jrC2I+ZZ3X30lmgUFLosQUdat4giiBAVMyVxoEKTisKIuqFw5Fovg5dm6bigW8GIpcK7/PcaIVoq6svL58/OG8HmDvECoMj1+NlEtG7Mu0xlNFtc/lckFrLJlOqDKvmK0QVfyfvteps1N07Bk7lSVWwuiS/O5fDa9TmiUUisQJuitUMCmSSaqD11NVW3YdBXb7R1hduQE1ljub+/Ybjo2XcfN3Q1V0+LKBBQU8+RxbmQpLLRWnE5Hgo+MauB0eqJpOmIYOfuB7COVVmANc4DTcRb4RBustvRD5Nx7jicRYla1Yb9r6FqHs6pYoguUllKmH2aSj6iYrpyEfnjHHDWzhykUqiGyH3VbS1M7rHZUtqE/zeQkmUSutqCXgE3F02ko+6UieIM1lsY6bhpLDJBp0VaXpiSSUtkzK6HeaSNUq6wyIPfVZlOvxgIZQ/CZr9890baWrJKE7SbF8XhmGD1DP5cGY6EiUVB7mTRK/oMAKM+fRb2i+teF+kL/U0aTlZFM0bRUEYWiqC8W0gLavdRZQoFBpQJS6lJ4cHmGUwHcnFuyjPKzCWdKaXXavF4nrtkS12uLUhKKt3D9tTZoJWsnWUmG1bJ26YSz1QoQ2KqibhqqusGnJFolLa+ntBIrWKXp2g6t5H0N557tdi/TzlQo565imbpcf5YQAsZYlNFCi8pxrVFSSqANthYHpmXuZIwrp07uUcoESSvIeu2XngG6i/ZmCpl8nvnr37wTcGeGu/0bqvaG7c0du92O09jzP/7iF/zVr3/Hn/35X/PLv/6SD49nhij5ckZnrFJsnOXt3Za7/YZPX9/x8599xs2uY79pcFZuOqU1VbvBmOpKpC97q6tqsZBPitlHvB8ZxxmFZxyuoib+luN7Vyx//svf8Onb17x5c8+PP31F27b4eWaeR1IOXBbO58jVdRH8ki51fXxXk7FuPMvXstwQwQemaeJ4lpCs03nmeA6MU2IOlAh0+blnr6lUsTDUa9jKOrNS8lg5K8mcKUMqvvQxirCYq7dSOQlL0trQtB1K20IPMtR1TV1XGKWZ51F4yCimMUmRnjPoTERCoXIZm6PzWjxTun5BIC5Nxksk+yUHffn7RYux/N23NReU4kMTgiKqvFIirq/JpTnMz0aUrpIkWgU4LR3wQnuzrsI6ceEAQQAVIg5fH7AETdMWhFXsIJ2tymsszkAi7pQG4+L/n2NkyfC6PlKSwq2qKnbbLdtuy7bbsO023N3cst/dSLJ006DOA9YY6mZLzIqQICTWAMilARXbu4u7zULhSEmSg0MITPPEOM6MpckY5xmlk1CdOsc0ZYKXxWvoZ6pKFLvzHCT8KMvkZTE20CoLJaII3EKQRVpG9t8vZfPv6uGsYb/reOMDr263PJ17fAjMIXPsR3731Xt+8Zc1X737mtd3d9R1zX53J+d5HJjGcbWPfg5OwMLtk+adwsUFQR5XpYRYA6IkDTh6Tv2Zcz9y7GcO51mSev0yDb06Fh9HlrVJvNGXHAZT9EeucuUekt8ZkjTMizNdCpGUk9A2EDqAUAzsau0syPsC0ugVeLDW0HadTCmc8IWPxxN+niSQanHCAaIOazG7OC5lFsOIxQ1GSaGkLmv0dYLu9dTiQo/67onzpXgQyiMxEuPzifRyXH5WCgutLt9ntMZqjVooYOXSLsu1sZa6qdcJ9DzPQn8pxiOmoJ/W2mKGsbjRyOZvbWKe9TpBvT5Hy+d8Oc1NQcSWp+PAdjNgdUPXScYOWfaDu5sbdpsNXdex2WzRZY9wrpL1O2ViEoqt93UxsSh6vhAZx5G66pjnGe97so/UTmO1Qc9ihtEPEWM8dVXRj4F+8MzB09RCx+y6isou9p6iYRR794yfg+QblCT6H+oxjIHJSyNd1QrjwNiLZsJZg8ExD744sJWiryD5WWVm78FnclIEr6iswRqD1aKhctbQVBXTnAihiL6Np01GktUrJc1Gkr0cEs4ZUA7va/oxcfITfT8yz0YQei1C7HM/MU1iq15WpJVKrEq3oQr9aJ2iLo23lrZbLc3IAoRZmSAYpfAecaRSitVdbZkkqLKT5e8OdV1v+7LULWXS9fO+akK1XvWUKV2ZYZTjpQvg9UT5219Txfwmr5QrslpzsFxpAChNhjVOzkF51p1btLFq1UKklEhxyXQTrWQsGWwhBELwAiTryOKOdf0ZL2Y4eQ0/9CvAFZ+5TlVVBTESykLlqgpyXuneLDNktUzE1Qr4wEXDhhKd5uQzHx976uoJZxo+eX3mdh+xzhMZ+O1X7/i3f/ZL/vyXv+ZXv3nHVx8OTCERyxpotaJ1ik/ud/zo7S2v7/b86JPXvL3f0zRVmXIKXVlpS1U1ItQvRgELCGat1HbTLAZCqWgC/+dMQr93k/EXf/kVn3/+Fa9e3fHJm3t2N3dobfBhZp6HCwqlL3Hu1zfZNTp2uVEvF/N6bPatZsRoWRijJqaR2U/0w5mHx0ceCrXh1MMUVEEfL1OM55QreYiMsYVvmC9ddtmEd7sdKcM4jRyOR0TcDlVdFXqUjO9jjPjQQ1a8fvsWrS3GWOqqRmkI3nNze8+Hb76iGRuGsefrd1PhibImUIaopIBGOM1SUFwhjjnJRlQmOdJoXZC/a0eW64d82fCX8eW11uLa+UVeRzQV4j71fOK0XJMlyMe5mq5tabuGmIUaR1K0VXFdiImqqakah7GGcRxXfrWkpOcyZow0bS0c6fKgzrO4cC2plotYNJOZplmcx5QBnVikuDlItoH3EaXEP/1mf8OPf/Rj7vc3fPLmDW/fvOX+7p62a6ibmpBgs92jbU3V7nDtLel0Yg4Z6xqi92IXGsXizavCXy+UiRCkePJzIiaxpvXJM8+pWFhGdjeWprFok3j9+obz8czDR8/D+4mmzbIh5YTJFoWF7OjPj9SNZrNtcc6WhTAxz5GbfStONfZla/XDOqyB222DUZlPX295//jI7D2jDwxz5uOx59dfvue/+Rf/nP/8P/3H/ORHP2J/e8tuv+V8OvPhw0e0MvT9kWkaS+Mtr611CeUsOiuRRpSxvoqoLII6iZ7OTPPIaTjx8HTi4+PAh8eR9x8nxtkQEuVevH73F/IlSslOjvimu0ruK4ogWRu7GkMM01hsrw0GGWUv62F/6qmrmrZrZXpnLNYYcZYKGmNdEZYKBUIpQ91U5LzBe0f0M5999jnn84nT6VgC/MR1SSymRRBpjCVlvxaXzpkrNztQVhGKfeb15OIlLWpZb67XEDkd6lnyuLNyjsnynoGr9ea6QSk0Cy2uOcvfG6VwqpBGEsSc0A6U1djKSdCUlVybp8cDIOvjNA3SZipYqKdLinzT1GWi69a1Ymnkp2liGVct+8W1i18u+p2Hj2eMPuBnwydvtjhrqaylaxs++/Qt282Gpm5AG+YYyQm8j6QUVnqrtTJZaZqa/X7PMPaEODPPM4fjR8bhwDwe2LYT+90eY2t81Hzx5XsOx8jpPLDfWc79ILQPldnfdGw6R9dodBH+5wwpS47EOEdSCOgMShkUP1wr7Pcfj4QwoVTk7SctMWpxmDp7nA64wmF/83rP8XhknGf6U2Kz68qEXeipw1DyJ6JhsxVb2dEn/CQ5G9FDW+84nUfGQeyDb28cdWNoki2GK7LuaJ0xtug0Ng3uNKEtJCLHc1gDOVOeOPcTMSTIBruYvXABEYunT1m/9DpxMcaWvXwxjxHNaNvUhZZXY63h+PTENA2QJU0+pYifZtGVFVbINF/cQZ8fmcW84eXxUlvVNNUy1wUW+qgc1yyK1UmzvMbLZmQJ+FVaoUqzYo0jBo+1GmMsbdMVcXq5txf77KKPNc7h6oaqrtffPQ4DKQjAqbRhu+nwsyKFCa0UDw8fCrhTFRCvWoGJaZpEfxkiylQrQO29AOsCgiq0ke+3pqLSltEM60RpnmbyDHmeyzm9psJd1phvs3wEGDgPlt9+eaA/RaYR+lECPb2f+Yu/+g3/7s/+kt+9+8iUpXnMSqFUpDaKbaW431X8F//4j/nk1Q032477/Y7KlOEUGV+MjWRCV7Pb7skp0ffHQsMzWCtGH/15YCzW/uK29v2P791kfHw48s//u/+Br999w+3thh9/+obNfs80R47H96VYvNjVXvNxv0ugu9xsawPwoqNbmoKYEyouo8GE9yOH8xMfHh54PHoej4HjKdKP0lyg1bNR8PJeFuRRojI1xhrhT1vHXGxhtRafY2MlxGUcRpQSGzZbWTabLfv9Dbe3txwPZ1CykTsHMQVCjMTBs9vtqYqN67i7Zbvbk1Nku9ny+PjANI7ieT7PkOU1ssoYa6TZyYrZ+4K86SKojKgk7zuGwELru6aoLZv8cn4XnrHWmrZtV4vHa4eeZaSpFxjlKojwWjy+NIFN3dB1Lfe394ScSAq0sdSuFTSuH+hPJ4xROFvROFWK8ojWlrbt5MFVM5WrSckUe1/FdleXTnmiihX9+cw4joVX64hJkWIolILAPI3M81TQ1Uzb1vzBH/yMm/2ebdtxs9vzyaef8dOf/LQ4T2wwzhFikBTYm3tef/JjQhQBd1M1OKMZ64rhdBBtxjyTQ0CTqSvLOAAotps9cxwE2QiSeRCTGCHc3N1SOYtRmXmcyP6E1oZXd2/5+quPnA4TMLG7kYyCnGCeRprO0XWOprV4H/CzUAGaxlLXgrIpLov8D/FIOaByoq3gH/7xH/B0GkkJzuMTXlsOveevfvsR/S/+R/79n3/B55++4X/7v/kv+fzze7ZdzSefv2a7aRnHnmkcOR5OhDBJSGgOaC1pvetUdZkMZrm3hY4XCMwchzMPhxNffzjz9fuBh8PM5JV4mC972ItpYIbikKIKSqoJ2lC1jptuQ1VVVHXDxb8e6pyxxdjAObc+S8YIrS+nzOOHB95+8hldu0ErzceHD+z22/V9+5CkUWlqmqaWppeE9zPKGKq6YZNhmiZSCGWqURFyRGmxXzS2Fj5xCICsK6L5Cuv6aM0iOL+s1ws/eWkAxnFknuf1swCFUmDWwjyU9yB0rUujckFj5RCKlWzwt7d70jJpyQmVNVZJsvccA03XYCuHcYbgAyRVGs4B56QAc/ZimzlNI123YeE8iwORF//827tCeRCk0Ri96lhe0ruemW0kgzMNjWupncMZzabreHV3y+vXdzhbgdL048ybTz7HWMcw9Dw8vgcSSmVi8qhiztG2DV3b0feZcejRZKyGatNyd7tdhZYoeHV/L+GQj0fO/QPWQl1pXr26p6s1zpXeN2dZx7PiNMyM44z3QZxz9IYYM/P8w83JeDyeeX3fcHvTsdtKeGEIiXG0HJ5OOGtp6oq2cWy2HbVveXwaOJ2O2MpS1VVx5IJxzHTdRD86ximRfMIPslcZW5G1IeUK0PgQeXgMVFWibSPdmGjbSpp+nTj1A3OQnIRhlKa127TUtWaa5evjNCOkiOeumxf6r3lexGXZl40RlD4VZH8xUjHalEmdOET5kCX5mUamVqUeUsZgbZk2hiQBlmU9S+X3SwGsVwaI/L7LRPMy1ZT179JgXKYYS/222OdfW+NfH4tmIxURdU6Z4ANVVaOUJoRIVdU0TUNV1SzW28sRQygGPY7b+1e03YaqFmpPKOG11mjG4bTagjuz58P7rzkcnjgcH7FObOEJM1Xd4OyizYVpmkkp07SdaFm0uC1JGKlkRsz9SCZTVw2bbku32ZSog4iOCeMyJolO1bhcIhIQ4PWqRr6WGFwzTlJKjF7xzdPIafgbfvvVYwFzEg9PZ06jR7kKQrpcFzK3neFHn97z40/vefPmlpvthrZ25BRRpV6MKRWYVu6FlBP9cJbrEEIxPLI41wgoVxqTJQD1f87xvZsMHxKPh56vvn7g1198xd3Nnv2m4+7+jnk+M88DIcwyluOyKS/F7LWFV17m3lw2rpfNB2XcS8os7gpKZca5px96zsPIefCch8BQEPCrSV+ZWlyaF7mBQJFK0WxldG4srBkVFAcXQf+rchMqpUr6q3Ts11xwraVokZA/io2ZUJxcZdlsN0LvCJ622zBNkqExTxPWe5bwmZRjETKKB3xGFYqEvKdFWL2IrzWqWBKalcbwspFbblzRRbzI1yjHNT1LqAqFF6ouIq7lOi7WvrKRF5cZrTGupq47UkwY05CzxjqxsjNWkfJc0AYrIkiz5HZk+R4NviwqFA75NMUCUZdF1Tgsmpihrio8iuiXBkmar/u7e7bdhqaqccay2+/Ybre0mw5jnHCjtWwWu/0Nu5tbWRhCOdcZYpjFGnSaUGaxki1pXSvCWbyOtPhiCkpJeZ+SCG+1WCdG78lhxlqF1TKV8jEQUqLvM9RCj9ImstmIj3vOElSnShZCXdliD5jX5+aHekjQpCC6m67m1e2OQz/x/jAQhoSPmfMY+M1XDzw8Hvnm45E5Gv7RP/w5b17tub/dcLe/obNb6kY0UtM0CsI09TwTMpYRdVZc7F1zJuZAP088nc58fDzxeJg4DZFpllCzdR15QQdaNgRJlpXCdXkuhPJkV6qg5OsIzc4ai2RPLJQny0JLWv5drnnAFOQyRQnaczYXdE3WBXnO4/oZjTGS7pqXTcqAEe2CMgZd1iLrXEkV16UAWEb4IiKNIVxRBEuzwLdDD69Rfu/92jC9pMhea6ZUcfjJZUpwPbVeio2qqmgaCaXLSMGkspHmLEPqz1hbSz6RM8yTgFpK2/U1ZJ1yaCNBabOXRihDyf2QhktlhbGaeV6eJynkUo5l/7o0RavtrJKCrms72qalqRpaV9F1Mo149eqeTdcxh4gPEVe3uKoR3UtZ81PZwEMIeD/j/bxqQ5QSR6voPa7Sgshah1p46WQptEqAoFhtGqzTNLXFWnG2E2qMUC5ilCmo90EcebDEuOwV/n/Bp/x/2UO0SRWVq7FGJsLKArVmcJqUAsMolrSVazHW0HYN4zwQo2cYI362GO1oG4tzkZxrYjSikdMVyli0qcSCXS2uSBaZMGTmWWqJVCbYxkI/jYQURAuRhQIsjAUBDZeCepkmXtOTV6qgKQ1D0WFIXoOjrlvZd7JMU40ukwEyrpKsqZySTFCrWtwZQ6kvFOi00KvkGXfGLrJUSaLOAvRlhFq3TPS+RYtk6Xkv2tGXdMhlqnldazwzkwCppbIkdIs4PYNeaFEyhW6alrqWZz7GtNYhi5un1jLp7Qp4eL0OLVSveRIbcAXCJHj4wOl8Yhh6XIkckMBUaYx0CQ001mKUwlpHJq+UeaUorIZLzRVVIHjPYmJhrS3XUs75MMiacz3JXc7Tcm6uz53UzGWalaX2TjES4xMgTJZpFrt7azSNcWhrZL/LkboyVM6irWaYRmqrSTEQrCUmmd6uJ6hoV6pK6mPR0hWTkLLOx5JDttRmf5vs4Tuf1+/7jSmLje3TceLPf/kbfvKjz9huNrx++4rD8YFUQm9SSoUT+5w2tdB1UlqoJ6o8SDy7OVbq1MJKSPJIZgVJRU79kWPfF/6059xHaTKEVMxKJrxqYshZkK6CPkox4DCukjG9roHCnXauoAMyTl+oXmJdKiPT8/lM5WoWQ0w/y8aglabIu1BKCu3tbsP5dCZEj60qQda0FJJ1jJDF+yHEIIWBlvwN6eZ9ufHNelOEuIy8VUFGK0IMz5q4a6HVopMYhuHZ9VzO+bJwLQueXq1oNcraNSxvcWupqxrrarISFN64Ctd2NO2WnBV143GuloYzeilYZD0REWTbYrzYJ/qFk6wU4yzmAUorMolxksJeFTTaugplpMCvXIXKCT8JymmsoW1afvT5j6irag3Sub2/Z7PbURVHMGNsaRAm7l+/odvuxRO6kiJQIw3jPA4YV6NtjU8S2CiPfCbmRCiiY+0kQT4HTUIEwNbJ+FUBOUaCN0QUMXiC8bjakXQCrzk+zZA8da1oGtjtRfg7TxLC5pymqgxtY8sE4zma80M8TOGgpwzWwutXt5znyFcfj5ync8kNga/en6it4st3B/78F7/j49MjP/rsnk/f3vJf/Zf/K3abhq6taduOeZyZxoHjUWwGQxCB+PJs6XX+I4VzyIFj3/Ph8cS79wc+Pk6ch8RU8jDWJYSrzbUs/hQdkvjRq9VGVS1NRdn4rht0lRTzPOKTWB1WlVBV9LrGsD6neVnIUypaJmmqm2Yr2pXJk3NYw7qsteQl/DJfknEXu1unL5aSs5+pEOerU0muV0rsCMcwlHULrNaELFkuy+e/njSDvN9xHNdp5/X3PQM6VCmIdCq88AuCJ79b7CIrV9E24vSCVkQFWlm0MuSYmH3GmgprhJ7kxyMKadjaVoLvluvVFHcvO08YW62FtSoN1PI5lPKoYhOaEbOPmBLO6JVau2iiJCjUcHt7w67bsm07tk3L7c0Nd/e3vH3zmqZtGZ9OzD5w++o12jpShpAu1FY/S3MxTQPjNJXMk7L+InuJFIkVGEeMc+GAZ+YpkGLCGk1IYmJSOSOZGWW/jBmhchaa5Tz7depjbc04TuQcUPqHOxFtmwZrKqDcH3nEqIS2it3GcTxP9P1U0HaHczW7fUM+S47I+TiQ8w1N2+Aq2RNIHbIDeJpO9hBB+hUmSF0hgcFxndQpMtM4AwlbaaYwSX5GUwnoUFVUrmGeI6eT7C1rVo26aLGutVC2ZDeIZqvsuXXDdruTa1noP5JJI5O3uq7XGktryS9QCtGvhZmsMjob4uwLkKAFqCtW+WihcKZCEU3JP2t6rkGGBfxd1qtLffCckfJSE7oc1827IuKsXes1Yyy1a1a78O12u5rN5CyARl3XbDYb5nkmI4YPTdsUS/5cwjhl+ktOTONYcoQSHz+ceDw8ME4jIURckPpEa7vSwbXWNHVHVddoYzHW4ldHuhljLvQ2yOIhFOW5Dt6DBltVVEB00qBoo0iRYsl/Eb1/W+dyWUOVysSSrZKBkBX9JECQyoXhEnPZQ2TCS87kOOMqYQD1w8g3Hx+Yx5Guqmnrhq5NOGfFqMkpnJF7sO1qcoj4HEqTUYyWokzlZNr93DL+5XTq9x3fu8kw1jCHxDcfj/zf/+mfcn/7mhQN++0tn33yUw7dA49P7zkcH0Ssky+ojZzUyzRCbFdNISGKeDLEi2+3tAyC2OgszcHoJdH78dTzeBh5eJr4+DQzzotgd+kQr/h6ZfSXcyJFj1HieZyVoH+uEksuQefF7i4sFo1KE0NcLXm7rmMcRmIQ96Gf/fTn5JyZ54nz8cRuXzjFKRN8LAmRgkguuRUATZfISuNnsYNMUbrGttuWwqA8bE1TFo7A4XCQePe6IcckFJ6CDIR5FqT9CuReuunn4qXnSMK66YWAQhwzjEI6YCUTFVs37PY3Mkp0FcbU65SnbVuUNri64c0nn7G/vWccZz68/4hRBu9HvJ84nw+kEiYUxok3b1vaztButvTnk6AUKXE8nXk6PBVtSHFkUKCMYgoTVdUWUbcjBc80ToJGGMNnn33Op598ys9/9vf4+OGR2c8kEq/fvOXu9Wu2NzdiP1w1KKW4vZ/RRuNnSdS2WihoJE8OvlAni7NC0xFOkgQ9+5kQPT5O9MNA0zqh6FvFpt7R1LUIe1MQj3KjsG3N3AeSF8eqdmdgqsmqwjjHOEes03TbiskfiEGRkiDc262jchqIBWFRxPTDFWwC7PZ3DMMJpolNrfj8M0U2jkM/kvmG03lgGCailg0vK0VA80/+n3/KpnXc3jT8i3/15/yDP/kJf/gHn/MHP/mc13e3vN7f8uMf/ZQvfvfXnE/FHvTpUFAbEUD6nAghMgTPx6eBr74589uvznx4mhhnsa5eBNILZqG4TGSdEa6wHOJ44mopCLW1KGNBmYLiRbmORqhv8zSXcEyZXNpiECFWlLqgl4kPH74h58TsJzhnEbGqG8b+yDhNhaZkZIKoNTGl1Y++qmtc5TgdDkzjsK47MYqo2BqZiKgiVJymsYTDAQ6SEY/+VKZ6OrNup+pqU7yenL7MN4qx2C2XNdhoaCpLXrRE2lDVbVmfoarE3tVaJ972xqGto61qXNuxaNCqes/p+CiNEY623QEy7t9sxTrWaM3Dw4OcT62wrqauN9IwpMQ09as9dfCRlMQCc5o8yjoqI65Y8zStqeYheNq24fbmhtu7W96+es2b2zvub2750Y9+TNPWbDYdXbfD50i73VJvDd3uliGIG9c4p1WMqzLF21/QWVTGahEr15UTtD0FQhIHpWEMzLNnHmbO5xMhzhgTaDcNWgdCmDifA5uuFYe/bDgOE34WehTBY3VDRjGOEyFObDYVN3e7//888P8LHOf+gMobgm/IsaKtNUZnNIG2Nhjd0NaOw3kmjwNVCmxcxWbjSDlzPiZmH2iaLZXdEmZLt70lp8Tx9EGa+SRGI03Tsuk2JS+hYslPWlDtYZB7qh9GEhVKZaas2e32NG1NXTvef/NeJtnGkCOi2yqN//PGXJ5lrRVqyqtOoKpknQheEu+bpsE6i59nng6PbLablWZktGW72YjDVM4oLRS9nBNxCjjXSNhtzlRa9ldjHCprhmHkdD6vjf9SK6zUxwXZzxIWeF1oLoyVxa5WGp6FAWGeAxVKY1TRYRVGiRT0Dkz5GWvZdNvSdCmgZ7vdUtf1CtIsBXucJ3JhX2hjmMcJpbLQQWPkeDxwOh05Hg+E1er8QtfXhQoldaMmJ6joIARin9ZrvgA30zRITdhsRKOw0MpyprKWpBPHc19gi4x1mpheUuPyOtWWXA1dJl+Gqazz615EGfzkpenI6BAERFMKmytCydEKwTMNkcenA84qbm82Yu9b19xuN3TtVsBLq9luHfttx93dnh/nzy8NJGJ9vtl0bLdbtDoRQ+Q6sHR11voex/dP/FYy7o4pczid+df/5k/x48DttuOnn33KttuXDdkwDoMEy+SZnH3hul7TD+RPLKr/lFVB4GQKIDCwLindGR890zxxHgaOx4nH48TjcWYOmZjVuhEux4K2LZxoxeWmzyjJumhboe5YJ8JILeLIeZpl7GQuwV9AEetJPH1K4rlsys/N00SOCdsa2nYrqFhM+IJcLZOFthVxtL7ykfZ+JsZQ7BZzuaHBaouyClRdLm4ZO+aArsSLL5PQUWOK00GCggyotbFYzsd1MXD5PDWb7Z7j02EdAaYIygoaf3v/mm67w7m6oDiyMDZ1w+vXrwgxkRZSijbsdjv22y3ffPklw3CmH86c+xO3968KuqLYbLeQxU3FGum+ffBsdxu0QiZi/sLnjCkx+xkfAlYbalcx9D1+HtEqc3t7w49//CN+9rM/5I/+6D/mt1/8lmkesU7z6Y9+xH63p24kr8MoCSpKITKMR+Gu1jWPgyTIxpiY+hPn44H+dMZPnhQFyfReHmJZoJa0UY2tLa5xNN0GV5xsgp+ZxpEYPRFQ1hJ9JPkMJykggs9ia6wzw2w4njVNBZqEVontpine48gYr1DF5h8uywGgTJq2NHUtXuPZkFD4GKmc5fHpxOFw4sPDER8TsVg4hhg5DUnspOdf83g485d/8yWfvPkl//Ef/yE//vQtP/n8E27vX9O0HfXxSOsaxnHAB2k6vZ/Fq/408tuvHvn6w4nH48QwXag8cI3c51JcyxqSYiSphUboVkG1dY666WjqGmMti/tI8AqvpYDWRmOyISVLjnGlNxlzofuM0yABe0HC3kI/kZInRM9+fy/ARPDEoGm6Tuh6ORc6TZmMVBWhqWUiWTaxZf2ZpgnnHM65S0iVlwLCduV9xyCi8xSJSZLQlwVbKcVUgqeuG47r/zZGHNWGoXxfFgqQKVRQZSzb/b6AFoIiaiWmGW3byLmyDlfXfP6Tn9H3E/25x+izaCiCR1uFL8gaEWprpTgoFuIKhVEUS0Yt+iijSTkwjH0JtRTevXWKSi0UlUjCrw6GKYkO5v7+nlf3d9ze3FIZ0XO8efuW12/fooCma+k2W55OJ0HHm47d7SecziP90Mv1nBrIiZwiehqlQCjTUwlji2WfVPgQpSFInmH0+DkwT4HJT1iX2Wwc223HMPSEIKi9sw6tMzFpxtGTBXnDqJoUpSgIcWa3l8L3hzwQbWrD7EfiYUbTETtN7RS1E0v1ymm0UWhrmWaZRJ/OJTBtkryI1soU4+K8FsXiWpWgN2upXMXNzY2YvlSOrpP9O8YggJOfaeqWoeoYpoHJT4iVtWa/vy3XY+R0GhiGGe8jOdt16vScIqPK9LoIxIvrorikOWkYudQk3s+kHKWmyCteK8nVcyX6TqXE2rWqqKsGkyWF21UVPkUwFCaHLdkpanVMekbhQahUigUQVsQsVHYIK4Xppf52OVJKl3wNgNJoi8mFLSn0shfHJNNY6xxV3RSA+AKkLGvOoje1xnI+n4VmbgREBqnPTuPI0J/LXhyYQ7yaQkDOfs26kEK/6NESxdVSQByhvcoJTrms2UZR2UoaE5Y8jVn2DoAUmf1I8NOzye11baoLo4USa5DmsJ6vRSOnSsr3wvxZaP0hs8ZLRz+t4cpQrk8U98unw8g4Zs5V4DxmajvgrKZyiqbWvL6/IaTM6TzQ1aa40snvzVleY5noPjcLUqsz3v/U8b2bDGfFuSmmzDDP/PKvfo0zij/+wx/z5u6OylXstregFUYfGM3ANAjPLWexvjLmenS28EzlJAs9amkYVEGwpK8KyTP6mfMwcjzNnM6B8xCJSZcO7/I+rzmCqtAedJluyJhS+MlVVVO3DVq7MroUpwDhJUpC5/VIS8byknA4jpPwffOyUYvNLTnTtg1DP61e/jEFrrvW5UGp67qIl0U83DbNOk6T3Ai9jk8XxDCGSMq6PKiJFANaB1IymJQIKaze97O/VKPXFIfrh99aw363Zx5krLowRY21VE3D/uaOdrvDVZXkgwSoqoquabl/9VrG/SGCcSvtYts2DKejJAWrjKsrtvs9XdtcaFhZeOpW23WxbJpGaC5XC4HcIcW+NiWiNlhNQWA91ihe3d/x+eef85Of/owf/eQPpBCfR+rGst/fCOpTUF6ijIJDiPhxQltBQo5PjyVZXRHmET9NMiEqTkW53IuLhRuAKU1o3VRs9hva7RZTYmT9ZK86/UhC3CJCkClXVlkatORRCmafOZ0UuVM0VaaqFG1jUMVaVClNiArvM+P03daDP5TDaI2pZOLjw0xWxexAKXRKPO5aHh4bNJHzGBjnyDhFQkHHTj7QjzOHfuQ3X73nZuM4nSY+/vwIwE9+8hmmathsFY2rOB2PTOPAHD1nHxnnyMenM1+/f+Lhsefce0JktS+8fj4u/GM5ZJEFKDqM8jw762iapvD/xeIvPfOClyJWnmm3ut8twMsSqCkp3oHgZ0LwzPPINI2M4yBUzFSSektYpXztys65vJa1tmi95HlddG4xFqqodRgj/HyFrF22FDbRB2KYsWWiMc+z4HEvitKXqNxSmNhyLkLIpOiLZikWpxKLrRu2u5t1ipMSErhnHFUt6/LSjLx69Za66SXUNAvVVZxdZnKZUmutcJVoxIR2JdQRcVopqezFUnfR0aXCqzdOAtCcMkCUYrw42IiVtKZrW+7v7rjZiz2tzrC/2XN3f8/NzS0hipbMVS3azHSbHZv9HbvbV6BPKGWE2uanVaMlm9aCjkJOUayLy24VQ2KaInPMTJPH+4SfBeAwVtO0jrZzpGhJ0TOPE2PlS1Gr8D6iU0ZnBVooVwKyiTW2tXq5PX6QR9ta+rO4/xxPoHJNbkwxEFAYrdBGYStDVoFxCgyTJ4ZEiqLbqVtHXctkL0Ul9LGidzKmoalbNt2Wu7t7mkYExZttJ+yBEtQ6DQONa2hcQ9XXnIZezrNRNPWGEEf6IXA6DWJZG0pOQv42rXmpVxYrV3k28lqgxnixdtVGgh0ViqYRRsFii3qhBsqaUFWVuLOpRGo1TdtKnkQOIuJFXNwmPRNiWqdri3BbKTE6zTmhc7q4eOelSbqsmy+L0OVY1h9dNGoGvYIdSpmVlmRdJfetsbiqpm03ksOGX5svuNDvFQplYRwmbFXhiq2vLo3IOPScTydC9Bdt5dVxseT2hXopdY7CYGYPSpUk8UpqkgI86WKa8ZIGtgSVAigSMXqhyF2J4q8bS6Wkzr1Q1yMqUGzMr76vrHVSTxSHMC71bQxhtSbWaLHRTZqQEsPg8R7GKTHMCkvEWUVVaawRbWndNAzDSFt1QCbHiHGSbr+8l+smY5E0XLuJ/W3H924yPn214eNh5NB7QoKnIfLrrz7wz/7Vv0arxB/9wc/5yY9/TL1tuLu/YxonPr5/4nz6KA/kOJKWtEyRF5WOXhWKjCYrWUhJpjQFiZA8vR94Op959+HINx9HjqfI7FURaV50HdcXz1qLKpxsuIjFrLuk8Wb0OlUQlyhHjkKBmucRlJI8jCte4sLN7PtzGakL5elweCSlyKa7ON/M88j+5lZuopwZhmF1FthsNtzc3jCNlTgLlSZjGTkubi1t26KNLa/nsa0uBYrQpkR0LlXG4fC0hhZei7EW7va18DvFSPSeFDz73YYYa1KI2Lphs79lu7/h9tVrXr15S9M0aGuobEX0kegjxlrC+Ywxln/wn/wDvnn3NcNw4quH94zjmUykbmt+/NOf4sNMP43klPCzZ7fZcrPd8zQe6IeBaRrwfqLvSxKyUlhXUZUOOgYJ2Elh5ptvntBKLDg3Xcd/9Pf/mD/5j/6En/z0j7h/dQvqx9K0tBXn0wGVI83uBo0CYzFJgdJsNlvhS/tICjJSVkrROM22bUghMg0jlRN7wGlu6L/+inme1wVOK2iqirvbG2xTF2RZ4V1VLPA8s4/054kwecIcFysPUJn9zuCT3EMfHzwpdDSvJDHYGGm2pNA19H3geJp4PDzX1vzQDu+HlYu832xxbqK2hkrDTW2Yxtf0w8jPPr3n3ccjHx7PfPHlB46nkdnDjKA4j+eJx37mqw+KX/32n/Ppq1v+i3/8a/7ez3/EH/3hj/jjn/+Y7e0r9rev8bPn3Tff8PVh5JuPPf/hL77gi68+0o8we7UGscE1inQRYS6LuVxzg7GCstVtI1O+qqZuGkLwjNPI4+MHjJHJZ123EsZYmlMpiCWsz/uZaZ4596fiPZ6KiN0TwrxOH7VSHB+PdF1H23bs9jfEAmJMw4irBAEUvZag5TnJhLDrupWasXy+lDNtuwHtmKeJaRyEPpBM4ShrrJGArWEceDo8EpOE9y3NyrUTylpcFD1e13Zl4nhmnoQb7+qGbrvj7vUn3L56gy62nKfjyP72ht1my3YnRV0/jnz9/gPnYWS723N3d89D03Labjgen3j39e+ECtUIVWm/36OQKWVdN3jvJVxzHERgHYQ+kZIUVsYa2YHyIk4XGpOrHMkonnKma1q2mw2fvPmU12/fkGPET56f/+HPefP2E27v7ul2Wxa7z5gU3WbP289+zKs3n6KVw5matmlwznKuHU8PQnGZJi+T/hiorOjtlNY4W4vbVZqZR09MIz4KsJEz7Db3OJcAT/Azm01LU9V8+VvPh3HEWkVVCxCjEc3CNAZmP4r+6e0erSXcc7kff4jH67uOc2U4n0c+fngkxS3TXBNCxc3eYYpGxWjYbWqqyvHNxxN9L0WaqxSbXWK7rajchocPM1Vt8HPC+8j+bstuu2e/v+HNm9e0rdjDdl2LLtTueRqJ08zQ9/TnnqfDEff0xDBN+JAY+8B5GPj48cDjQ0+KUl4vtvlwoRgC630o2Sm25D4ILSj4uOYYCFCpGcdBdI5OGvXF68laV+hOkKeE0zUhJeZ5pGr3NJsNddvSOU0OnhQCafZUlSYlaXKVlhyNpeY5H58kXyLFEqybMAqSMtzc3KGN4nh4ejb9eGlZm8q0LqfEze6Gruuo65YQMz4EaXCGkaqRJmiz2/Hm08+ZxwE/j5DT6iS50NfFZl60Y7vdDe1mI5Okwq+Yzo7D6YAPQZgeV7rV5X3lYrxjlBKQUIuA2s+TTG+1aFNDjIQYgVgmkpkUBEhyzhV7ftHMkjOuMlTRAZew6aXRCoWiroqudZlczbPHz34Fs0QDqJ9N2ZcjK01ESA5aiaJMbqqEKWcgRfCjJ5lAMJFpkKgE5wyulqy4drvjforMcyAVgGnuzzS3d5JAnxfAX4KWfSh6HRT2e9rpf+8m4+c/+gTUe2b/xDnDHOHdw5n/7t/9ioenkU/f/gWff/IJ/8X/+h+yaS11Zbh9vWN/0xC8Z54nTodz2TxnxulMSsUdSLOOncQ9Q5qNlBM+zbz/eODrDwe+ft/zdAqcx8QcQV2ZUC3H8uDWrli7ZnHpaeoWu4iCnSQbCndQkMNl/CMjqbx6UYvvPnRdV7iRwqccxp4UhE7g54lxlsTWYTix6XYrpWqeRqxzgmbmi+gzzHNJzEkrv3EZKTrnVlpCCIHt9gZXNYzjxDT0q799VtC0XRHaSxk0jIM8jMnjCvdy4U+vE42UJKnY2OKcZAoy79jeSgZK0205nno++9yx221xzkrzNYoeIecLMvDlF78GIPqR8+nAuT+z2WzY7DrmWKFK8vLYDxweHulPR06Hg4RDlXnFwtuMUahJTduRkiRiN3UNKZK1omlqnNHsthvu7u6YxpGP77/BKMO73/6ODw8fyCqx2TRs2prPP/mM280Gayt5WLXm9u6GFAL9MHLux+JUIpSW8/FUBICLd78UoLkUVUuDFvxMTgaFBDdVtVvHitSWbrsh5cw4jMxjxs+RFCLGiDC1ri3dVnEeznifqZ1iHGceHjMxBd6+6QpVSiY5D4+DUCf8D3uSMQyPK3qVUkdVNeQKnB1xBnSlqXRF9wef8/b1xOE887MffcZf/80XHE49h37iw1OPz4qkRK+Rk+KrhzP/r3/1Z/zFX/2GN//2hh998pr/3X/1n3Gz26O04Zv3J37xV+/41W++5ovfPXIeZLr0XcI7eC7MM4UGl1O+OLIYmUqgNancv/Mk1tRGlxDKLE4dIVxsUBdXNmUt2hqmvl+dhq51ays9MmVizsQwksp6kDP0Q49zFU3XCSIXIn6eOR8PNI2sU6gL9SvGyGazKZ/Ncv/mE96/f8/5fAKl6E9HFneU7X4nGRsKbFWDUozjwDCcJeenPAfLxHVpMOTtp9JYCFpptMa4ipu719Tdhqbb8vaTT6mbBmuNBE0WumxT15zOJ7Sx/OhHn1PVLUZlCBNVrWliRcwdN/6eblOv9AtjHTllrNLc7O8492esnakqyzBofJhXE43lzxwE2V7on2GOnE+SvaLJfPL2DZ+8/ZSf//yPGM4yVUpE9je3vHrzhvvXb2jblqpqWJzvdVVR1zXzPGBMxOhM7QxtXXE+arnvbUVShpAhpEQolNAQI34O6AIGESMpGwkM04rtVvI3FAmCZTz3WCvTlrvb13z88MDoPSF59puWjNxz8zyy3dXUjXC/vQ9rrtAP9di0GqtdoUdl+l4MYKIkP9J1FW3nMBpSDJAjRoGfithYe8iV0BZNZre9lb17HAQ1zlI4dp3kFdmrKVgs4W4KzabbsGlb4u0NNzc7qtpwOJ449r2sI8mQk4FsVyT8eh9eQcB80WktrpfLxJEMqbiGxShgojYaayu0kbpmCXW01pUiUH5X03SgLMYo2k3F/va1ZEk0Nfev7jg8fmTse+axF9rfJrINkZQjxghS7kOgaVuG84nz8QkVIraEtLm6oa4cS4bUohG4Xjt10X/lFDHaUDUt251oJNu2E/2L98SihzBWtIoxJj68/0Zsoq3FWrUCfH5ekqY12mg22x1ohQ8eskySQpjpx7PoxFJxH82LviE/E2HLGl/eM1n2dkTf4Vx1ZcV9pTNOCY0uFrvVOplZzGvGccAuznYprda6AhzJlFVhVhB4cRNTZQLLsqro8u/qEqy4HkrCGqNglgtxHaUkR0wpCeVTOUPMC+sa7yM+JpTJjMOMn2Yqo0nBlxrFFut3aTCmUXSqxkiTbIyFDPP0/bjb37vJ+OT1HYfzyGmYOc+DIPNT4OuPZ8i/4903T3zxu/dgLW9ebbnZt7y6u+HV7R5XkHCjRVjtw4Q+acbxXKwUWQZAwgWjjN9JTCHwdBp5PAw8HSb6MeJj4QgWlPEyY7iMHUGoGcsFlYfXrhMN8Xi3hLAg0xeOtEytNVrLRiujKpmsSLe/cB+LU0hxH1BKRFJ+8iwuL03TFHReUsQXTcfkZ1KxMBQeYEbZC7JR17UUMwj/Gq3FeWeeBaksN2TdtOvorollQpMTMcmCa15wpxeeuS1CK6UMxunSnGmquqVuOtquo1WmiNUiPkuYUyp5BDGKMC7mxNPTxyJw9YXmMVPXjuA13s901ZasNbMClUWcNE8ywrT2Ymcp4Ua6OHs1zLN0zc5YYrkn6qpm09ZsStN3PvW8//pr/DhBMpz6E8oo+m1DvL/h/vZWJjsI5zrHCDmScyAnT05yrdQVZzzlXJCLJW8gFg73MpQuD3U5Z66yOCd5HxI3n8VlqnJYK5Z8uTADhWJV07aOuhLvfq0i0UiSa4hwPM1UteSvKIQq0fdiA9zW348H+Xf10CbLGDkEvLY4V6+bkXMWTcKoTF07jK3YtJFt26CT5/Fw4uPhjDGawzDTT2IdnDKMPvL1w4lhnPj4cOSbb57YbTfc397inOPpeOKvf/MVX7175NQHce5YKJUvxt4vnT+AVYuzNB1102KdEw90U56TLLRMXdAPhZINqhQoGQEtUH4V9YlriRdnEiXnZgmrFKCj2NvmiPZLcXKkDi2qU1itxcYThVnG6Vcc7RhEU7GsRbIeyvcrrSVMyokBRi73eFVL4UzOsh4UdG2ep4vBxhUFkywCfaMXtxzhkmunoQJtK7rtjqrt0EZQv67rZHKQImMvhhpLjk+lFJUV3nOYZROcpgFIuMqy3W1p2kqahXkipijUoGfIsDyHKV+ML3IBnFBFo1AsPjWZ6Gf8PBGDZ9M1fPLJJ/zkxz/lZz/7Qz58OND3J2LyfPLZZ+xvb2k3G5yrhEKbizhWiYvcNIIxgRQzOQUBklb6nJgD5GIzKyhrJKSAj77o0oQ6lZGiy1pNVdVoayBpcoQwAylhDMXlzxF9IvjE7EEXxLWqNXXjcJUhxbSCZ0Zf7u0f2mE14HSx5K0LMJVkKjg4sZ01jlrrgpRHpikUHYCmdprkZ8Z+IPgKZ5uihRJ3pqU+WKjNqIW2G4RqbS26bshhRiuocDhnmOZxdUf0IVJZR+0amYSXMNmF8qJ1cekp+1pe6oxM2cOLdb9SQMK6CxPDOYuf85pttaTbu8qhtNC5YgqFUmjQ9v9D3Z/9SpZlaX7Yb09nMLM7+BAeEZlZWXMVu5siCJKCJggQIOhBgP5nQS8iJREgJLEpNru7unKMyf1OZnaGPeph7X3Mrmc2OxpqSRmn4BWR4XcwO3b23mt96xsMvbWM455u3DHsRm7v3hBWXylXvZhIxIQPon91zkixnlKlb9kN9W/PsgSMKlKRWqsIH/5CjWr/rpTopbTBWZn8Gis2wVYp0C0rC2w/bN+fQiBrTdYKv6ZqpSoaCaNqqpzS8j3VyjinyBoT3q8yeWiahnpdU37gwnwp1OYjZ1SLQyiFUt+3qowZrVWdymShG9WflVKqgny5J8F4ASAqvU4bg0ptoiEZbdf5QY1906YeTWRR2t/rSxzE9j0VWC6q6WMu5kfbo6P09u5FslHfa5ZmJNcGyhmzqRdQzZa9nSV5++xVO9dg0wL+O9frj13Yf/azD8whsabCd49TRfxFvP2Pv3vC6Wd6+y3/8l9/y1/+5Qe++vKerz+85X/1v/jPuL/d44zm7RfvJYsgJJ6fH3h+/sQ8C7WolCKaAK3JKpMQ3vppjjw+z3x8mPn4ODMticLnfLg2lhNLU1WKeM47ERQpZUQrYgzDMNAPY7Wvc3z6+LJxD3PODIOIba01YASRLCUzzXP9gKmTmGVzH1nXuTowFJZp5fnxmb7r2e329F1PKuJ3vNsfUNoQY2Q6nykp4Zxl6PvqynAJ1tvv9xdUoxOLNu8D3TBSklCkTE3RVqqmgNNGa6Y6DfiN8pVym5hk4SF3IrI0rqPrZHG4roPKhzzsb/izP/sF03Tm5fmJZZnZ7UZKyTinsLawLtIozHOqPtbNFzxwOh1F+H1+4WfmFxhrmc/niiy1+ygNpjFqo1/0rmOwkj6ZYsLPM2sKpCRUld3Q8cX7t4LK+czD+ZnlODFYh9FOuJ29ZZ4GnM3My1f4lKSIqIXEMh3JqVLSiLXxE2676XtSTqx+YZpOopmpxYdSsplmZSjGVLGaox97bGdRSQLSSsloo3BWkkqNNehoKBj6ceBws2cce3LydC6hVSTpzGF3y+l85nQ6M6+eYXBCE0uJZfbc3gy8f/fTdYUBONyMnE9n1tUTYk+IkZwVSln6YUfQmsCKUYrDrmc3wGF0vL3b8XI688PDI+++f+JXv/+Ob394pHjJ1sgFYtE8ngPHKfDx8czj85G7mx1D7ygovv/hI7OPhFyR5yu07frQueaaNvqiaI46ySUYe+7u7qm5WEJHsjLVKqVsFspoaWytsxglxfeyesqyCo6hFLlaI4bgRcxa3eZa6Nb1Ph5iJJfMsi68f2cxWjP0PW43UopiSKkiTAvBS3DUPC/VrcVU4wlNSpmHjz+wVheBru9xzlZtQKKrk9SYEs4NuC6QcmaIiWk60txfGt2g5AI5iTuUleBM48Sxz1hDVqpquwYRdirhzTujCSWxLGeWZWXodjSnrWWZOBhYphPH45GXlyOHww7nHPf3t/gUCOvMNJ/pXY8zDqsNoVS+/CrudtP5tFkyqqrHi0nMJWIM+GXm/JI2bYSzhi+/fM/f/d3f8ud/8Tf8xV/+E949PPL88oT3C//kn/3H9J0AVK7rGXd7og+E1XN6OWI6KfiLUpgaKhbmheDXOg01WyMmAu+FECMhBtawQMqXukhL6GezX1cKqGGTKRpKjiQd0CYzHDrUqjmfNMdjwVnP0Gfef3FP06Z4L9Qr5wzD/qeb+E1JOKMkQ4UerRSnyfP4NJFOYu8bs+VOO0IsTFPi6XHl/bu3jL2ls4Xp9MQUM4mVm/siU/WicKZjv99L4W0NNGemFAhh5d3hKw77A7vdnm9+92tZ30Zxf7gl5yjgiFacjmdIMmE83p15en7ewINSLlMMhZIAYQVFGUJ18VFFk91l8e92e4ZRJr+Scl8qoBdk6litWF1n5HlKRWxae411PZ0bJNX55ob93S27ww3H4xHjLLf7ndhYzzOn05mX0wnbGawVOnnf9wzjDtf1WGuJ61Ltr/UGgnSuwxhB6dH6VaNBzpWOXjOETE9G40OuLnAdBrFdHsdRQJpqilBKYl0Cp5fnDUQY+gFrO2nIgHG/k2DUFMjRczo+s64rVGB3A6HVxRDn2m1T1eYupFSd9URrIo+a6HSKFv2X0R3rvIg5BjK9jiHgreXm5kYmTxSMlkBn72UvvVxqo0hdT9GvqXPkSscKUdjVFUhvmpzte6pzYqnNSO1TSTltUwuFFgAGwChK+x4l9sdGgzOKvjaVqjJbhmHAXDWWLbhUwluF6qVbzsS/4/rxk4wP75hjJmvNcfF8fDixrDIFQENRBZ8LPzwfefi/n7FGsR8N/9V//d/z5Rf3/Pzrd/zNX/4Zf/7zr/nqi3e8/+JLDrc3Imw8nyt9ZpXRdsnMNQvj998/8K/+zXc8PM2c5kTBbA/G9ehIxJNla1pTTGQLVhvGUcJa+n5gHHe4vif4wPl84nR6qQ4kXfVfXurUQrGrhb5S0lXP04kYPCEGStWXGNNeR51wxIRIpYT7+9333zLWyUDfOZQWEfI47nn89BHxPw8160JSv9sIX1dx5tPDJ7Gc6wQFSDGQk9ik9jsJwfM+MOwO1WGlo+t7zqcXWXglYYwTVLUUXDfQ9fLncLgjZbBOMizG3Y6+77BGcz4eeXj4yDRNrItYKzZ7tdvbW25v3giiW4PC2mcyTVOdUMC3337HMvs6Mi3sdyPFgveJ83naxtDrOpOTZGXsxj3Pzy+cjoJMp5AIq0erQjSa87SQEngfGXtH0IrOWD68uedwuKFoxZxW/vwXf8mHd18wWMPHb3/L46cfeHl64tPH7+gHcdoYdzv2t285LoF5jSjjQCeMg2Wd0KoIOjLPJB8hNZ1PkeeeREoeV4wEJuZCmAPreWI+T8zrCWUKxkk4Wr/r0E6jrWbc3aGU6DfIc3VyMKB6jueZ07QKekLh3a2jdwZ1ZfX8k7yKZRj2OJdY5urg0w3sdze8TEfOgA+RNUScBqsUtrf0zrIbO96+u+P2/pH7Nzd8+cMD//xf/IaTL/gMqYhlodWSITAvkdUfKwiR8dWx5frQaUXfxUlObWYLbZy+vfQiSE4IK09PH7HdSN/1GK14fpaDrYniJLtBkMqQxC2qFOi6nuBXQcNKTZjONWypjtNzLYivGx+gZleI/ek8T3SdI+W3KL+QitC/umGQQyQnhiauryrf3/zjrxh2O4ZBHGkGZylKGrDVr1UUa3jz7q0Uv0GoX+K939esGVOnmXnjWqMLRvcM417oGF2P94l+3Aktyjm+eP8lN7e3HA57gl95/PSJeT6zP+wlL8fAbmc5nxfm88I0PfPwURA1oE6cHVrLFLF3FnNzYOg7nj99YjmdiEF4zcJJL1XsbZjPM+u6cnf/lrwGcoa+6xk7h/cryzJjdGHY7bi9OfD3f/93/O3f/S0fvvw5h8OOlDz3b/Zoo3h8/Mj9zS373Z7O7FHKItkJYJTBoCkx8+nhkyCRWcKszs9PnE4Tx9MJv0R8EB60uHBltAZtZDLa73v6nWQQ9V0vAv+UmKdTnfwbVNeJxitluhoUZ4yEQC7zLIXlaDBdIKyFGET3uN9bOqdw3U/XCjtnhUY4IkNvUKan6x39MPDx4cx5npjXgI+3HE/nSjm+5eYwMvaGzha67j3TlFk9JO9ZlwhYdqO4E6VKiV1Xocko1VXbdk2ptLf7tx84n55YlzMjiq9/9jPevXtH7wamm5nj8cR+eEIpxf3dPafzmW++/aY2e3lze7OdEwv9fpTnSBuGYazFsOwH4h2ZpeheQ52mDtwcDqzrSj9IIzDsRjG78FLYPjw80RvD+w9f8Ob+LR++/JKb2xt+/933fPnhA35d+PjDt3zx7p1osazh7/7+rzYkXGvDP/9vxYb+5v6tgIUnMdOwRvaXFCPWWGJcK1MlYI2rNZlkCQ3Djq4fGXc33N2/EcTfGJQBqrBYrWLNH3Mkx8gw9PhVXLxKKRgnYpslRjrEYn439Ny/uefh43ecXp54+Pi96EaUkcT2mqvVdT2nk5iDXGf+XBf7wl6QA8JqMSOKyaKKRRcjAcg5b659nRVNmzEWbbRoMCtwY4zm5eWIXxeWRZzFUkYmS60JU5esoBiltrLa1Gmr1NPaSuCx0oroZQKuKkW1TdkaQFsq9TJTk96RdVKq/KCQL2dfKVidcb0VPWnvGDoBKlRlGOUkjpohrhJUmoXKbp2pDdePW68/uskYx473b+/IKE7zys3uidNp5nSemObqTFAV6DEnvBe7zfjr7/n0eOSbHx757e8/8he//I5f/uxL/v6vfonrDc5qxpph4L1Yfz5PJ9Jp5TQFfvf7TxzPK4tPpML24LauFC4jL0EVhQqUgoSrQOVUG1vDddpGlYheLEp13VRWv1bXBClKgg9EVZOnszi/hBgJIdSQJEGtY0Uf5PvkB/gQUfOCMR6tNF3f0XcdqaKTWUE/jNIslExvDZXtTSmF48uLoPK221BP6UAVOcuoWG3FvaZTWpBDY/BdxzLL+CulIGIg11d7yiTUCKq4uh8Yd4fa9ct9mOcJv87kGJiniXWeOZ+O+LCy+rV6QxcUkgy8P9xuaEApIr4sNcgl58zjw6O4cw2DTAKaU0EuG0KglKme3qYG8EESZuFGawGhZwkCKwt16Ae6Sk3a73t+9rOvsF3HEj37YUBnsaX94fsfWM5n1lmamRI12QSiX1iXmek4cTwvxCLuYcfjkePpmd6aSqsoW6YJSFMtdIxSx+ARsuhdol/xqwj/ZZokaecWEX0t64JSQl9x3SDiriSbxdjLqH+tPv2qQFeRUzCEn3iPQTHVySmR87nm0ggKJ1c93erzBPLsxxTxSeiTKUes04xjx37fk03BRgksssZSYqDElZJllN9Gu9vouT5LzdmpWciWQtUJNaeXy2a+cYxV42YHTJY0X8rVCFup7cCg/V7dNF6S4Fs2EWSj4zUVkNp0PdfCy43D3RohJTK/ECOn0wtdL+YQ2jh2+wPWWlIUgabOQs3JFFCKGAJrQRJyjUUVoYJopTFO7ocP8syKIYZjv99XeqmpE9sIZNCXtWGsJRdF1/Xs9gdubjuMdWgrzjEpJ9Z1wRnN+XzifD5yPp+Z5zO+FkTLNOHcuB2ycLmvYpghGUsxBj589RUqi1tTC7AtJVdtSwsrk7XqrENXXd6yrDJJqc5cWmvGoWfsO8ZKw1yWVSiYa+TT9584TxOus/SDwxgYrWZf0+Y3u9Oqg5EGOVQ6RJYUY6Ppu57VeqGMOFf3aitnSrXsVrSAxo79fke32+GMAxQpxGoOUCkfCDNT2FgJtCDDIfhKvYI1KKZJpkwaxdBb+t5gjRKty0/0ikkYiBrQumCNonSGjOb2dmRZE6svPL+cJQNFKdyhTtbqN7quYygFpWFeAiXVZoJm9yvUXxNlzzZa2AHeR7QN2DVi+5Eu1jDFamvddZqbmzuGfse42zPudjyfT3UiIC5FD58eWNeLiFkhjUXXdXifALFjLkVo0VorchbRbR1nbbVOV13aXCfAotaacb+jG3piStwXVcPapBk+HZ8JYUGR6FwHxWKNqZPLgNIFv85VR6pYV88X799z2O+ZpkkAtqJQWug0JkoulJhQiK51KEVyg5S4djrrsG6g68XquR9EQF+U6A8bJ6V3Tizma13V6pXcRNf5guIXa+Xz0rDOZ3EQXMRYJyWqu2VL6Jb9VBw/L+L06+sVDanS5TPgYySv6xbQ7KpFNqVsVvsFUFFzPh9lWnPlOlhKpqs1YynC/EBXypS+cP11pZs6ZYRVoYroirWShkFLpkiIAR2EUqvqubAFH2qNqmeRZJHIREhMjkql/UkGEoiGI/pQ4xjYjl5r2/7ZKtKL5KCUZohyHUr4P379+Caj73j/9pauF4rDm/0ofvYPT3x8fGFaA7NPhIAUZKXgQ+HT04nH48Rvf3jiX/7Db/k3v/mWP//5lyzryrt3d7y5u+HrD2+5u3uLJFMvnNbMGh54fln43TefOM+BkKA5eXyutG//TSkR69jOiUVf5Z8Za6Vr1rryyMolUbf6Pzdnl77rAdFgrN7TErGtVvJQRUnbXf2yhW41DvT1GLRRG6w2kmYbgyCkSYScuQhyFoM4hfTO0qLrSym8PD9jrWV3OGC0rdi5lPaq8qkllAs0Gm0NQzfWUMFue9BKSShVsN0oziUx4DrHsnq0MvT9wJt370gxczyfxHs9rZScWOdpC6cS4eck/uA1s0IjWpK+31W3GEi5Obz4LZ30eJR03nJ3V+kQFaW94m8aa6ldZB39yaIpWmOMJmldtRGZJXhc5bvuxh2dVQyD2BJ++PI9+/0NMSWUyqR1ZsqRj9/8huZL3Vc3MYqkjpd5ZjqdOZ/OTKvndD7XQuiFVKls0JoMWbBthJmr60JJUSyXUyKFhbAuG83KGKGraKXw64lCpJC4u7+r+SGGHMUNyDpFR+G0zILuUOhrPkvKmh+ptfqTvVqh3dZiiNIwik6gVB6p7HYp14A8lZnXwLyunJeFl/OZNUiSbdc7hlzQGkJR7McRP52Z/VxHyYjTxtU4WU61S+NgmrNcLsSQZT6t1Ebju9ZnqCu7WaVqI52ufOBrkyEuToIs2U4KcOp7l+mF6A9Ks5tsr682Gs2soe0n12JR2ds1MWWOxyN9CHTdwDDuataEJfjAMs/V4AKhLDgrrmkx0muNAUq1xm3onHO2CiYFmDFWY+0O67r6uyWsSQFoW1HGjHWG83kWdHF34PbuDTGJsFkpmVTG4InrwjSdmaeJeZ54foqs6yzAyu6ZD1/+nL4fsc5sYE/OpRZlsj9O05H7+3tSTCznsyB2FZHc0pgVgHwGnXPoTiYsplFqoXLwxfnq7u5QnaAcL08v/OZX/8jH/juMdqwh0O96dvuRu/s97+9uKbf3VRwvk69+6NGlI74cSTFKQKMSy1KtoO9WnPM4O9N1HZ2T9HKhtYoYG0Tq0tdMhvFmj9aWkiH6yDzXaWcVyqaE5O2kjNKx0sCWqgmAeZbiZegyQ6cZR0Pfm4pu/nSbDB+z0KVMbfC1xipFrzR3eo85raS08vg0QRGWgtGiPywIgKVNR9dLM3s6HSlZ8qtQVJMAyadxWdZM0pFYU9SVjRgfubs5MCL0M7LYcWujubm9I+fCIUYOt7f89ve/q+yEXtwtY+J4lLO2VXJaVe2hLuRqo5/r5FQbXZ0sRfDsXFc1AtXkphN9mHUWnzxdP4ASq/d+GCtVyeLDwvJpQmvNu/fvUCWhEefJZZlBZbQqvLw8MY4S7jhNM+/fvWddPT/88LFO5xAwsBbvpVFp6lp3VosepMh+OfYDKHHk2+0OdF1HJpNyrDRkqVWsscScxTK7ZFIMG1AZi2glFE0fUCc7OXI6TpKHsa4C+BYtxbSSwzLV13dpMi512ue5Hk14rbQhg7yGUjbdnTVCiyUXYqo/TwEhcDqfKs3dVGpTc47KVbQulvZwmaKUa5qusXTGEqIClXG7oWokkNfkJDNMa81aMzngYioil8wvrBazklzq50KRdFXJOMYg51HwAb+K6Uip3DJda65cdRubjsSAVY3uWcjpP3AY35vbW3YhcDP27DrD6cO9WG6FyD/+9huejwtPp5Vf//Y7pnllWSPTmgRxy+B9ZgqG47/5yD/85hP//F/8mv1o+eLtHf/k7/6S/9l//j/h7uYWazt+98OZf/GvvuUffvV7Pj0GliCo5ucTjOZIdP3fQ+3yrLVgwDrLmzfvSLIyhNPXdZKaXcTtaRiE51hURlsjhWOuiHuK2+9LSYKyUgikIJt6ykmKxM+oDboi9rqzhBQ5no789re/qkhjR9GGm9t7Ykz41YuYSmlUFl5gNw6UlDgfjwzjKLzFeih1Vrrgvu+Y5rOgGlaKg84K7akfRilyk0xfHh4fRZSqDaYYwGBcz+39G3k9JWC0CI8k/Gnh6dNHnDE4Y9mPI9PxSIkRlRPrciLnyLJMeL9yc/NGckYQnY44mMgi1JW7uSyLJA/XYMNx6Cm12IyVUxmTJ4SV3eGAM4XdYOltx3PyLIvnvM70BCgDnTHiuuIsndWsa2SeTtV+0/L89P1GnclxQVuhE1gnFpanSRJOD7dCd+iMYQqBqVJfdv1ATOIsMy8zKYfKNzU4emKEdU4sp8i+06S0EvzCur7g/VFcyyh89eUHctGsPvDwKeDjCqsI7PaDwyqDLQPPT/X5InHYWzrXk6IUsvNqWVYRrP+UL++DhGApcVETmWQkppXD7YFCYvF1xOwzPiTOk+fleOQ8T7ycTvz6h09M88K8eF5OgRAlfKjkAusCKaJKkkkGoglQSm/okdJla+ZFPOxZa9PtXLch4KiC1pfkWq0lnMmUstm59p2EW5Us+09D/Od5rkJKv7lPSXgnoJWIglMSq8TaXKXCZujQrGKvfecbJ7c5lIAhZc33332Hc459TcQ93N7RdztC9PgwE0IgRHHYSVlEyC54UqxTworSlmRQdHWqUqAk1rBWG2ehi6z7vXDBQ+Djp08VfTcU5eh6GMY9u/0NN3f3nM8T/nTm5fRESuKmp4DBdXi/Mk8z5/ORNUjxlGLEaMfNzT33b9/XqYV499/e3JJLZp4nTqeZ//L//F8y9COHg1jfUidA87zivZwB3q9QxJ2u7y3zvLBMM+uy1klqzaYoMA47QszM80L0gTh7hq5jdANFK/rdwHIYUNyzeE8oRUCPdRH6WFyJOaKKx5mM0qIxSjlzOp54fDkync8SzpoiPqyS6t74zlEALGsd1mh2Q88wiqg5Z1Da0Y8Dq/eyJo4rYfXkKl5XRIyFm4MjZLkHL8dIigP7D7fsRsdhp8ilop4//uj/k7ueTytj7+g6Q+cMzRZfplWalCwhJeY5koJClcx8nnlWiq53uN4h7rAZUX/mzXCks4YQVlIUzYqt6LWzHVoLpWkYD+wPd7z74gNGi/Pbb//NvwTV0Y+Ou/t3zLPYJw/Lwl//zd/yu9/9jofHB6wy/NO//6ecpzO/+91veXh6IMbI6XSicxKap7QhkZmXM0oraZJWs63/UtI2aViWhc5BP4jF7tO3D7i+Q1v5GXc3Nxx2Ow7jjl/946+FzqkN83zi06dvt71EKzBWKEKffvhBgCAU3ovjkNYaXQp93wE3DMOO3W6HVrAuMx9/+A5Vgw2tMXifarCe5u7tm+rMKdOWNSw0MbVWInJOObCGWdLVtSNQePj0Edt3uK6jdzv2+x2lZObzGWs063zi+DjjQ+B8PuN9pB9uELqbBCaufq1mGgJQXKybL1bcIG5i14Yf13a3VRUOOXOOCcol98Not32dMboCipd9OteaS0ICpT5c15Vs5XMYd3sRmqdMUUl0sTGgcsL1oimmFKL3dP1YzWQcIT69eu1Qm41SKEpjtYQdmq4jpIVUJJ+LJNkoGokEOFTr8JQVOkMMirhY3PuBlAo5SVRE3ibsVwDFH2L9f/T60TtNoeCsATo6O7HrLZ0pZAd/+8uvOc2R0+T5+v0bvv/hgefjiefTzMPLxBIzIcOaC6FkcoTvnk64F8UPTxPffhSL2v044Kzl6eXIb3//LR8fnljjpcG4fgj+QCzDpcC/dKUyHjpPL6BdHf/rugGE7fvb96UorhCCEhVc5fSVlFhjEG5b5b81NExQx/hZJ3z5k1IiF0dBRICPD5/QxjDuDoyDNAP73Y6nxycZ0aZIqF7LpYj3fZcSa1rkgaoPa06wzNKlaiPonHD3EC94LWmmKWdMjPST5CuYOrrvhyQuGtVTWyYjjqEfhdsXxCUrsbIgyb1+rdObksUJSIEi49cJWpJ3KlgnvPPgVzrntmexLYZSCiEEnBVhkuSMPHLYdfSdaCWs0/hV3FmOL1P1yK6uKxUJViR2Y8/t/iB8wpxQ9EQP63om+Igbu8phn8W9AcXL05HD7T2Hmzvu377n4+ML59PEPK8s80xcPSWmajE6E0NAK8Vu3EmwXin4GFHFEpbC08eJ6BPaJHLxMgHJHutgGEYO+x0xAsXQ9wdilIPi6fGIubNolKSLl0SInpACisz7t28wxrKskY8fP5FT/EnTHEBQwq6zdSOWNUFWFfWtU8CQ+P1333OeAssSOU2B43lmWhaO88zTy5nVB7xPLGtGKWlalBZkS1HD55SuqOBn+2GpNoF1zaZYMx+aPs6IAUOuAEK7rJV0b3FH2tOSaQW1NpuOIQQRc8cGeOSM6cTeMFckrv2JMch0Vama23AJAb0Ot7pOgW2ptiL8NIRYKCWip5nj8yM5CyXSkDckXSsxnvDrKmGT1fPeGsv9/V7COxXiWFRzTJTWFRmMZGQKY+tUjeoAp6uhRt/31Sb3wM3tHdQRu7XSLM9RAKmwLgSjaTkzKUYJQUNoGqfjy2ZnPox7qABFrsnvYh9a02+zOFL5daUUyX/QylQaU6UUJY+2Dm0NMRciSvQrVZSrjAZbOE0L1eJHUFyr6TrH/d0tt/dvCDmRdebPfvZL3tzd01vL+eWZl+dH5unMPJ1Rup4NxtHtbnle5kr31HS943iMnM5Hgq9TziB2o0ZpstKgFdZZuqGj3/W4zqCiQmoHJf996elcT/Aydcs5Vz1LT9cbhkFxXgrWFAFBVkm4Vyrj+kHOiTrJ/6le0XvmUgjREjpDX5O7UWWzK8454Jyh7wRRn9cTKHChx4XMMAqFLFeaaohQSiT4wL4bRXScoth6ph6UZn+4ZX97x/5wy83tHfd39xgDOQc0mfPzk2jCXM9OG1KO9OPAh6++4vH5mefTmf2u44svPvAFhXfv3vL/+u//OU/PT5yniZfjM7udGJFMszh4uq6jc0Jt1lrAzPP5LPoQwPtK83xYeXz8RMpR7OitZr/bUZKIps/Pz6zrQjNAmCah3ohOE0KKnB+OvLw8iTbA2AoOKpmkK8W8LIQkAbVKGcZCtaK2LPPC8fiMjC9ERKyNwjrH/nAjtG6tq3BYCn6KTOkpYm6ikckByH5VlJgjxCKZFSl6ck7M08xSM7VySnRdh9aWrhcHraXqR2MMAlzGUBuK6wneJSC51SVtAt0aiHaJQF+K86IENFVaoYyATs2a9rqe7LoOlOisXLEEa1/Z5l4HLItJiAYj9HGMmF+YVtfBlrtEUIQYt4R1+btLDVuyrG1hairG3Y6QRqEbe08JGY24jq4lbxSqrBLKKiyKLnXkOsUXp82wieVfRSH8yGnoj24yJF1a+HtWazpnMapQVGEcRva7zO1N4u7mwGFwPL3seHw50XWW47RynD1pFZelmAvTGlGlcJ49x5eJkmHoxdM5xMzTy5FpWWkTmc0O7erD57Mx+fUITL5HHqZ1XTBOOJcp6u2GtRvVOlrvPVlRBZlgjaPlWKQo2gk2OzO1cS9KuRQD7XW+Sr0sajsE53naXufhcEPXOawd0EY2/4zYp7rqkV2oQTJVKNqsbanWjNJNKzRKxoJUjrUWWpLRCuylU2+LqpSyueg0u0etqWirrs43mZh85UZGCmrrluuLoBTxYvd+wdhEKRrlOhq61Ggk16mfFwRB0MAUA2FdyL1CFY3VVItcsWH0q4i/S7PzaYF2dVS9243shx0pBDo3SH4BIvBMSVLXhdIwSJc/rWgjG9LN3R3Px4UYT8zzSqiBOCmKC1b0qxwcVjizIWVCSsRcKpVBs8zixa5doiiP96twha2TRrJ3aAMpafpeBME5rSyzZx0CVmkJ3UImOiFG4fbudvTjyOwzx5OEFub40+ZLNT9wQfaF8iPc+1Jr3MKyen749MTLcWFaIuc5cJoDiw9M68oyeQEDUiFnoU1opbacBkCodkW9SqpWlSYl/7/x/luvIetFvq7RMmX6Qc3ovp4mSCHbpiPXCbBFmovYxtSyvjRCCYh1UrlZq1bObD3r/y1X81KXQ8o5JxPUpKrLS6UqpsTpfKIAfT/IoV6zeIRW0nRd4qQSQ6h8cI1RQtFo+hJVb0xsz1uh3guhlZhSqs2n2Q5AeW2CvhWEL61rerFGS9DpspKUoHhKKXIUwADkjAlhYVlM1cm4GqJU3V9qxoPQi6XRiDGyLGs9A9iEkQoBTlTWmyan6VKU0dhiiKsIalMpLOuK0RZnKsihc9V5jfzsq6+Yg2eNnjd39wyuo8TA8/EHnh4+ib7kdMQ6TT9IeKc2luMcyUVhu55cJGBxXSdxhaqUnJJLbbiE0metTFqtk/VRSvv8Wxq0qU2wPJUoVVPAB4ZBbK9jWtGqbDkR6xo5aehHS++E1/tTDuMjF1KQ6XMqQrF1Vs46ER6LGLnvxZQk58zqZxbviVkRspyrWmnI8txczug2Ka5hwDXIDRSuG8TEZdyxGwaGvhNXsqK5vX9DDp7oA67v6VRHTBHjLW/fv+fNx4/Ma2CdI++/+Iq+d4T4BU/PD6Dy5ljpjTy/oovot92qZSeUAiF4+r7fuPbNBjulyH4/ynrKEowZ10UmtfNCKfI8aa2qRqDUY1RYBi/Pz3z69FEyZ2oKd+c6zqcjBZiXhawURjuckzpEtGCG3X7Psi5bHWZrSrVzTqzy68w65UyoIYBQ6N1+o0SVnAnt/qs6PKg6SKUUMaykGFnXBb+w7fUt2LMJ12NqDUbcar0/oBSpZpvuGMexajlkf70Grtsl+tEstFcNqujqfnWxsI1VeyFTjLDRs5tNMVzq2FYDxRQv+21Fg1SRJkMS0uVMUfV9mixOXW2/bXXcBmxTnUaTnD3DOOJyJxP1JLWuQVcgydbllIVKRUbrguvF0r/EvE0w2n5xDfL/B28y5mWm60a0tijtcL1seEGBUYr96BiHnrux48PbPWuIfHp64ek08e0Pn/iHX/+e3388cVoLa4SihLKitUI7w/cPz1umgxTLlfterg999cq/2q/h1QNxHTp3QQQhxBVjNSlkziFgrdv+flmWzRVmDR7XO5pugNL40gC5Uqyq3W15/bC2DvU63bEFtDSe9rwEVi+OEesyMw4jKQaWZRKU0CpyUgQKu724RhUQKtG2KF1dPHoTfpX63s/HE6V2wON4qO4FUhS1tNDWbLRFt8wTw26UAiZ7cqrUrZwhI9OMKCi763u2HJNUKDETS2BZJcir70fGYY/RGqsVu3GoG7wnhMC6rnRdtzUyttJKwrritGE+n0h+JkXPy7zUUCKNVZaYPcSCNhqVNCrXkJmSGYaeu7tbTDG8ffNOUNX7N/zrfzjyfDzyfAz8/Bc/5/0XX9APB774+s/54fsHxnHP/c09798tnE4Lj88nfExM5xnvZ7SmNiiaftiz2x84z4Koh5jo+1EQmqKE/jDPxDThOhjHgd04cnt7R/CiFTLGkfIt69pL0vL5yDIL8qS1oJmpKHJR3I0H9l3HOAzcvzkw7G55+PiRH7775scu2T/JqxXmprqsNTePUlVHy+p5fD7xq28+8vwyMS+Bec2sgWosUQhLzSBA0XdOJmo1gEoBGS2Zr1VDAGwInr5qBpqyXFc74o0nWy4oVyl6e20xJUwutMDImxsxPAg+ElWqNpKGZZkFmVMKa7tqHy0Ik18kayLFgI+hhhKmLT3281DAduUc8V5Sq8WNSAqAFhrWGqSnpyeC93RORMX9sJN02JR4fnwQg45Um46c0UmzzJPop7Q8p2hF8WJbezqdME7sJ4dBNFaNc+ycFORtDw4h4INnnifG3SgovQZnxCNfFYherFob31opsQnXpooVNUAkhJmSAykioYnaMp1PLOu80dlSEgvYeZ63c8E5RyyZmKTYJEfWVSaE/TDirEKPPUO341MUsatPKyooOtfjrKXvOqzKDH3H7qbnL/7yF9V6PKF1Ic1nnk8v/PY3v5H37aXw2R/2RDLkQMbw9DIx+4iP4np1Or7g40JnDMGvrNNEXLy8wfrs2k4cdwoSepajePf7ORD9KrQzMrYTS2xQ7G8Gbu9usVaJHsTu0ESsztwe7nl4fOLhaWZaA3e3vRRHP+FJhlEjOUdSiqxBcrP6zrIbHMviWSaPXxJffv1eHILqNO70konrik6REJq7j0HlnqEbJMcrpurgJY5f07xg+wMjGmUsXT8w9D1D54gtSZ5EzpG7u3tU5e8ba5iWidPpyM//7Je4fuSrn3/iV7/+LX/zd/+Ew35PIZLLys2/GnFO8+tf/6aeO2JrPww7dNMOBnGIbHkJxhick2d1npetoLbWQc4kv7K8gA+e8/nM8/ML9/dvpaG9yrIppZBj4enhgel0oqTENJ0x2kom1buRp4dPlWGRGXY3mLHDWqmTmpve7f39FpZ3rUtr/970qylL6GUMAXLBacN0PuNXL0BqTFWrKQBKroWztZZ5Wet0WKjGpU6Ai9L1vhjmWfHp40diCpuAWfbGjJjFsIFczompxX6/53g8XoT4n7FmtNbkkokJVCkbs8ZY8+q8aDk/Wmumadq0Cyklzufz1uxc6+3avRHgSoTeuhKajNZiZZtroDIF6yyjHkFJVpt85najpZuaudbqO9s5LA6U5ng6k0szMEGCcItQUl3XE6YJlSX/pHc9eVXkmofW7kMTtbfX/WOuH91kyOYmPsnv371nWVfmZcLHiI9RkBNVME5jcpEC8f0btDO43nK4PcB/9488T4HZZ9YkDh/kRFpncTkphU0ao1o3J7+/TTC2Dx9BKmP1WpYP6XXiZPtQ29jJdUIHUuricNQaDe+9UJRSltfsrPA1q08wuWzBfS1l8fPJxaXRSDKaKll4i9pQiiXnyn/U8kF9+vSJ8/nEMAy1IxV/db/6SnsorF7QrhyFBvL8/CRFWSmkLNONYRzZHfaC+KdU0b+K6FU/46aD6Pue29tbHh4eWKvLUYnVDzlHtJJDssSAUTLNaVOY0LiZRlxUWpOolOL48sJZTzh34u27iwXnw8OjuF5UTnpLAO3q+1/XtbqmlOoKocFYxv1eDu/Fs9SMEvndsvg0Sh6UUigxkPyKsT3LMm3Fjrw+AypjTGIcO4ZxJDxHSkz4aeJknYxpkxQKp+lEUIGkUhXuthA0zW63J6ZMCElcNIaBFBLn0wkfJmJeKCpwYx19J4iXcx3OWlJShACLl8DDFHvOBnKsIs5SeD7PHHYj796+ZzAQY8Gvntt94usPb7jb73hze/9jl+yf5CUBliKMHbqB+TyLmQKQekFbMoICP5w98+xJPpGiCA4rP/GC3DSEvokFa9DcZh5Qr/bsbQdHUbWwVWhrwVx0F6+8yJU4I4mjj4iQQxCDir4fK6VAtCYy0VuJKZJCrAd6QlsxdcAXWaNtKrGJyjUNK9kQrnjRgjXEUTz2WwNUBdVerCzHYaTrel5e5Batq2dexPceFEXr6lNfXY1SQlPwwfPx0yeCD9L4d46u7xjGnSTXThPaOmInrjcispa1vNvtxCGtUsi+/fZbxLVvxRuYpzPLukAS/m+OkRIL0aeKworhQ675HmTJUIrxzPl0AhT9sKNzA33XEzuL1gO7cWCuewLImbCuK+u6st8ZSAm/TDw/P/DlF/cVYHFo55jOidVPPB3XGuQXySqhtRhC9J3hyw9f0BuDs4ocwa8epbQ8u+uJ8/ODTAPigrUdQ2/puhsKimWN4BN3PazzzHSeWdaVp2Nz05oY+44QvOwvKdbwvUJWWWyxSxGxcVylyfARP8+cn1+Yppl5mUHnLURVW0Ui4kzPYXdLKQbPQglrfWYMMRken8WxUXazn+4kI0ZxIdTKYEog+cgSE3HxPD8tGOvY73ZYrVmDJ8ZC7+4x9xofIsu64kPNbqiZLhnE7S3JlG/xAT0tjOMetAjGSy4yGbCaxUBJE6XlaPhAiVEoKuPIYbxnVKJtOp+PWKu5f3PD4eY/Yuh6FJGcPO/eveP48iXzdBYNlxf91OrFUEKpjDWKoevF5MQ5VgrrvLAunrOdkVystKHqyyJBssv8kcenR1AtT0vjrIB8IUTIhRA80/mF48sTy3IWSnTwYAoBeH58kNyFIuDNfn+HM1ZcllQGlSvV0W/AwzBIoN48z3jvmeeaI1af83WWZoEiNr4UocqGEJnmWZgYRjPsRqE1piRGKCK8Q0Od9vf0w0jKhen0QkpSbxlrROlXp7C50t9bnSb/LW/g8jRN27/DH6cBtXsrLp8CirUCv50ZTQ8sdNnAsizb97YJhwBXZWtm2lSg7ftNT9x1Hbtxx7IuaK3oa7J4+/p2hRC2JqPveg6Hm/r+27lRGPqenAu7mwPeJ8Li8fPKfH5hXWE6BV4eZnamOVJpSkzkLI5Ych7mSpO7SBWs+XHtw4+nS1UOmVZB6B/1QBaeXXNxKZW2kwkxs4bAsq6sXmz1xJWk8dsKnZURei6CmhelNgRSbVMCNh6BfBi5cqrZioGLBiJvZYW5KmpttVFsXVg7ZJsFWUqxohdl6yobP1zchXM9COQ9tiDCz6/2AchoKRFjqWOzvFEP2ri76xwhSOBVCIHgV5SWFMsQxa5Opgb1/VcByDzPVdVfFw0Qra0uVbUw0VLMuK6jBjmSs9p4g7L415oebrA3B7yPLNPEPE0s81TzQqR7Fu5BpUpVdLjkjIqRZhcZYgAtPtNyD69GiVE0K9rIZkgp1TEjVTFW2nQtRQBpFPqSiFsypdJpChm0xThLXzU8FBk355g4nc8obVjWRfI0ckDryPEkG6izuzqpkRTYp6fMFBJr8IScmIMn5kJWGqs1usjYtyCJqDE2XmV7isWtIviahaAS6yJBgcFnYifJoI0+1nWanAVJcL0jKhl/L96L93k/Mo47RmdRiEtOWFf2N7c4M9LZn65gE6iHRianjLEVqUmZVMRMQVNE1LcG1lXyBEhXo9lStr1BxoxNhCa2ii3JTCsphssVj7S5z2mtUblRmCTUq45DADY6YazPdy7tuW/Wg7buEXpDA0uR0XdM0nxvlB1k4pZjeoVkNfqjMLzyq4On7V3XB1+72tdd6FOReZ7EAtEaKd5TCxAThxYqyJDqtKPkC5UzlyxhUosX9zukaE8uVj92eX05iki97wdAkqOvX6NMcyPGCFrojBbbb+8rvWWtImXZzApKKEwbGikNloqyylMpHI/Pst4G0Z1tmSJX0+oGIpnq+iJ6siD87RQJfhEanZLpUQONovekWO0dFZVeIM/eOIiphDMiBC5Z9rd5lumKqhPuRi1r590w7kkFYs4cjyehXYaAXxam41HOAsUGrGzcdAXKKHTRpCQaoRSziEFTIidPDBdL7JwTXecoWQ7/ECOrXyWvyEjQqhgLCEWs73syiuUk3GoJQvyRqs0/wSuEsOW3GOPIRT7LNRSCV5vzYAyR5DMpa7TqcE4Ei7nU8L0W1lYyIXnk1JFzKcSID5GuF/fAGCLrvLD0E5qMIeFXvU0WukphU0qe7RZM66yDFFjmI6fTiZAKD/P3QkGOkU+P33M+nsmpsNvt6brIugZiPAljoIKh4tY4iFZCW1lPJZIyOCsGAa2YbSDFuq6syyrPhHWiQaK5YcrzHoPYrQsAKvsRWaYzscBcGwyURmlHSRmy2G97v9A5Q9F6m0y2Kc6185DYrUJJRdzoGvUGRUlZgjHDxZEPJfcxhLDpHXwIQgtX1TFtkMySlCQoOVRv9xhjze2CULcbY3IbaG+6gnaetN/xuXHPNd39eqp8XfZ9TpG//t4Y46vfc93AXGuJW416va9fpAES6FsAe5Xl1AyLUkpbfRtjxNia/D7022uJKaGNRhe4uTmQi+Z8nEip0MWRftB0bb9QGgwoXWoWW6iNRkJsqRoroAFjP24P+feoWEodh4ExHc2dRWmD0kJfaJab0xqZl5Xn05Efnp55Oc88n86cpollhRiEjaOtjMpVFq/hoiRNGaUqUiFjs+YZv4llVKn2q91GEyglk1vRVw8ea604E/TibNCyMrqug8q9l0yItY75WoifdKyCXRZSkeyPSvTd3nv7wK//ub2WDCA6Dxlhif3YYS8OMP0woGZploSHLt19TuI/r2tGRj9IGBNGUzIs68I6S4e8G3cXW8p5kWIeQXfXdcF1kgSqVEOQPcuiOJ1PpLYZBXD2C/ySOT498/LyRAyeFESU1FA2oYhdOm6ZpohNrNEiRkJncqnFnJYHsOtcbTTk/qRSyNUu9MJnFA/4xkGWHy+bu4+RVJED1ehzVtPvRu7e3rPfCZocfMD7CYyEi52nmdP5BESMyagfHnn35gWjOkqs92hZeH55YckwrQshJxafiFmjdYcdLGmt1BIF52lmnhbW1QsnPBZKluI2VRecXBLTKXPsF0rWaG0ZR7bicug7fBARmustaPA5MK0L93f3jOOOrhu5vT2Q4kJMnvN05g2R/W7gZj/++CX7J3jlVEghE4NskNQiNlVtjgFGa1iXtVpGN5pTqXvcpSiligNz5SxrY2iKLaVUnSCl6qpWaT7GYJzdghNVYWsyZEJ52cDlcFQSaoMcWNY6+k6C6YR6KNSDVUjCF5Sn76QhyvKaZW0C1UgiV53V9cQ1VRGjc2JD3XjT8rvrG6YJwquXfI48PT3J3lEK3q9Xh6McwloLpbXUhiLGyNAP25qOqXrwA87lauUrIEdzmclZBNb7/a7SvVLdU+T79vsd3nuGvsNqw9D1vJRCXFehelULWwUitk4yFYopYbQ0ht5H+ayMeMM/Pz3i14DfhUotkEZuXT22Ch9DkPA9CfsUQENE1RENQs2IARc6jvMqSK7WQkWNtbCoVC7RXCq63tIpS2c7dsOIosMvK6fjzDiA7i60C601i195OZ65uX8HxpJXz8dPj3UCnfDLwlJpZ0Pf8/LyVItGoaEqLag8SpNiIayZsCZyX0jJyz4QZkKYpbBQsNvt6lAv8PL8CWMkfPBQsuj2EpQkZ+d+59DGcZpnud/KvEq1/6ldIaxkDdYqrOuBlRAip2PEqBFrBpwbWOYXYpR8IdsZtDW1XjGgfD2DEHAgRCiaznaEGLG+cesTwQfWZeF8PErzHFdUWim6hth2A7v7e1DNjl32BQU4YyEGXh5/4Pfffcfx5czTpyeiD6iSOZ6eOc8Ls/f03UjfFazxTOeZUMEVodtMaCMUJatNPYsFAjVapry5FOZ5qTXFhcUBipwS6+orom8wumANpOiJccVocdLK29cLsLCWXCmSFuc0KUg4XgyakAqd0zjjyDmxruu2pzd6UDPQGIaOqArzWfYAW/cVcqlnt2/oogQS9x3H4/FVEzAM/RZFcLs/MK+rJJS/vND3/QYOdZ1oWZzrmKYZ0BiTttqlNWF/3L720ihcNxDt+lyL0Ohh1w6EIPXWtea17e9NFH49NR+GQQwsKv2pUYoLkjvUmq5rxkwTq7efCc3lT/YBXUEwkzN+lXpxHCWrhFof7c2e29uOm5ubTW+nVMG4Ii6fcSUmjwQ6i42/6EQqDf9H7iE/eqeRYBHhti3rmWE3ou1ASF5SoGMi+Mzjy8yxNhSPz8/85vtPsogWz8s5IOIjERav0wlFqfaxEjCVStWgbJ+qAoxwrilI7pAEXMUoiLlMEKQAaPzpNpFoNINxFE1CTrk+eGpDIVOU0aR1VmLua/DKdDoRaiedUpT6Rosn92UBydhtQwZzrkiBPIzeLxhjyTZhveUpBoZh5J19h4i2InOMG+UipcQ4DKiSCX5hmWfGYbh8YNaKKCcXlnXBRisjs9Wy60dSFZKiYZnOFeHVDOMIVJpYjIxDT4qRb7/9Pcs8iUC8JPy61GYnEXMWVL+UDeG87rjrBySoQ4xCR+ss1oneQtwcsmhHOnmYpUFTLMvM6fTCPE+1wCm4zrHbDdze3HA8Tlg0Vhm8eS00+su//Sv+4s//gr/9q7/m7//ir/ndr37Hpx8exNHlNEnBWmB/94bjyzMvL890Q8/HxyO5OO5v3jIMI7bfsdeG/9s//+d8PJ6YcuH+w8/ZdyPOGHSBh08fOZ9fOJ9f+OHTb9kf9vT9wBIiIhYW54/d4Y51tXg/sc4T337zkf7BcT7dcHe3Y3/YC2c7yueccyCTOM8nlFJ8/fXX3N3diyBLKRLUhttQsHzz7XccDnve3N//2CX7J3k1MWWMmcNNz/5wYJkN8zRjjeVmp3h/f8Ptzch59YQkWQZVuyzrbBssKIpR7WySw+tqY1dV0KyUeNDv9rsaEGe25FZVIEwLfdehjd4mlMYYhnEk5YSvDXk7yGwVPJcik4AWPBlCqHa4awU2bNWCJWksmptHFTm2NdQOoEZ5ALi9veXm5mYr5FsxL00G2/eFEHBOdB/H4wvH4xFrLX3fc39/DxX567quJs8KHWM6nTcNg1h47+V+KMV0Pm+HdWddTbaXtfz89CDorTHsdmIXWUoheCk+nqYzD58+8vOvv+Lx4RNPT48s8wTtcC9lmwpfO2g1gXwpRaYZquBjQKkVZTpusjRUwXtOxyPjbrchgof9HoqAYN8/P28TglIgZYMyDjsMdEXh55U4rxSfNrG+NgqrLAaDUYreWb5894HdsKMzPT//2S+Y5zOHpz2/+e2/YvEnhqHnw5df8fb9V8xL5OHhmVwM7969w1rL+V/8K7755jum80QKHpUVcfb4aWZZzuQYcVbs1UWQLAJ0ozpOTx5/fiR8iOSy4MPM8fRESuL6M/QDX7z/M56eT7wcj7huZfUzzgdyyfSdRmWLLo7TKaBNoesU93cDp/OC05re/XSbjK9//pbTcWWZA6uPLF4Ro/DZdzcjyiG0Wa9qdoVFO1nb1jmG3YH7t1bWVgxoCufnWdZpaZksidUH9rt7BHMX1sXY9Rz2e25vdghuJpPu4/HIhy/eMg7DVeinQhvLmhKn85GXpx94ejgyP8/kEMUSdT4x+8DsI09+qknsUmiGeQJlsA6yGchKUyoYkqG6kXUY5+h6IYcKjfBSTDc6j7WW6fwiQYFjT8mBdTkzTSc+ffoOUye1qoIZthaxy7pilKmgryYHT1jOUILsrzd3DJ2js5Zvfj/VEFqPD0GcJZXChwXvzzVoTzSOpWrxnOswZsUYsVi1OJRuLoNh03k451hXT7aWw+HAuNuTi2KxK7vd7pUm6+bmRiaMIaJVtZItck+fn59ZlmW7P9cTi+tm45qK2RqS1py05qDrxOa4/ffW5LQJQ/ueeZ5faYe9F+F++73zPNM0gI1O3le6VEHuw/l82n5+a0Ta15/P5/r7cs0fmumGgX4YZKrX9ZQUmc4vQmsj8+7tDdPxGW0z6EQ3aEoKJEDnUtkhqeb3NHOEcqHIVe3oj7l+/E6jRGsgxGgjo5KKiDw+v3A8zZwnz8PzzOm8MM0rz9PM83GRuPUgvvWqxarTqgaEiqMuThrbr7zq3uQvJVmzcYLbh9y+tjJ5BOVTkkCuYsT7WMf6BWucNA6Vt9/cI6RQSNW2UYKsNlpDE27W19EepPZQHg6HreO+7oDlwb18EFJMiFPF8XSqoT9C2bq5OYg9ZB17ydsVWtI0z/U2Cbdy6yBzriMyWWC6irKVknyQxS9CLTAKRS/Wk0pCBXOy1QYWzqdTJTBIsZBqnHysItdWEBjzmvu5oayU6pAjlLBlmem6fuNoygISncvz86nafFaqgIxEJLiwjvsUit04bsVXCK46fBT63jH0A4f9gZubOx6eTqxZo4cbrO4xxTCfXvj08IPQkaIXOkOG07zSDwvv3nYM+3vWBDFkQjGYbmTvBt7cvmV0o9gbVjtSHxbSKYGGkDyxJNaUsF0nuRnGCHqiwVrD+ZzwYWKOCw8lUVIQOlWIWNeLeC14lmnBGsVuf+DDh6/FVz8EoXLU4lpjca4nhIV1iUzT+qOX7J/ilXMkFxFKhoZsa7EEtK4j60S367m93fPpWRy/WsG4Ta2VQtfgq/ZMbv/9CnVqwjulFMM4VMtVLeYIroNKR4guYjtJhY6xJtAqGc3Pi4QetfwLGW+ryz6TRBvV+LjX4/jWOIjTVEXN1GWH+9ylo32P956Xl5eN+tDew+s/QttyrpNnr1q9toPIe8/T0xO3tzcSIFX/W6xWjo2OADAMA9ZZoUnkgrky14ghsDvsQCGe8zFWDUzGVLvskgStNFoRSmZdZn74/nvmZao0zrDRnGIq4iimqO5XFawpn9uqFkJKDEoSaCUcqgk55d4LbU2436aab7Rmr00KrO3JWShIOVftTJA1TKk+/dWSspRSEdxI9AtrgWQizy9PrOvCvCyIjWikkBnHjnHcoVRiHoVS01uHcW6z/UwlE1Ks+g9pAlTJMkkygnqX0wmCcPqNkTMtRnh+OpGZSVnyjrrOSOhifwNKwLnODXSdWGSnqDm+nFE72ePbpCT4QMoRZzVffXhPjIl1+enuI0pp9oeOftC8vASEkWcxdsA4ASRTkmdNO7FbLogJQ9d19ONOTCeay9e6EubAmsQiudnbO1fd0YzBWmlIVx9ZfSIWzbgXZ6QUI5rAOh+JXqgo/bATMMIYduOO9+++wK8r09Hz5ut7coxM5xNrCWAM2mZymUlFAM3UsjusY9gNFGvQqroxkumsJiQJphzGTF9/l19XrLMb97+d2209i220x/uFl2fRYZQsbI2S2Qw15Nyve5OqtPGcWNeZlD16lYnQYbcjrCvLKpbdfd/XmIBIMo1SkzbgMufM4eaWsEoI3LIsGx1VHOkuORWtGQAuIEQupBB5eXoWbY33f/B8zPNcIwYULXQ55YzpzXYvrnVvORe6ztVnqwq9rwAg4NXe3q7rvdsY8+rvt/tdm4Hrvfu6Vrz+nNr3NcfCUgrn85l1XVjWpe7zvPqd7bW1fT+EIO5+leJ6XjwqSRRAzJ5+kLPDWcP+sGccFa4fCbGws5I35qppiK5njNGVnkvaJqlas7FV/l3Xj24yjNEikqvFntHCUwfF4/MLHx+OPL/MPB0XTpNn8YmzDyxTqDz2AuUyUlJF9BlNpFkQQc3rl13TF+t0QpVqmVYLu/YBtYejjf9LVqRKuxGbS3GD0cqKmC/JaG9ZBPWuPlbSqRVkTJjX+lDnV8jjdQHRHo5xHF+JzV9z+dqfRqOSQnyep63BEH/5fX1vZuvaS21+ghe+YXtgu12H0SI00nU0Zoy5vAcFzhqWpVBKqgFyom8phS2hM2fpuNd52hpIsX6TpN6USi3uX+tf4DW3MTc6Vb3P0zTReIONLiV/n5jnuXKSr7NFgFIqn1s2m2EYtlG10xaMJJd3zonPs7a4rufh4UjMCjPsMXpA+USILzw8PoHRWCce9bMPnOaFcVhFBLvbkTyUFCiqR1ux8N3fHBjtgCpKAnBOvehHckQZxFtcBVEXVc9s4UF3GGtIzhLCivdLDXUKGCWe9jEmdoeb7X35ZeZwe8vd3S1ffPEedMcyzyzqjD8fK+dfLEC9X4khsSx/uKn+lC5B2eLWZKDAVHqMtjJBdL1lvxtxRleKXOWzoqp9oNiQNl52yZdJ2zU39tplru97QY8QnqpzsnekLEYP2tasjXxxzCgIx3fj/F8hXs0ppU1mPuf2ynu9jOYvnUX9h3otott+Zz0oTqfT9t+uOb+XECgBF/p+EM59tXN1zm085vP5zJs3b8RTPSZaOFR7Ka05a2LDomUy0zuhlYLkWFgtGSIeqt2soJ7GKFQFi0qWplh43p6nx1XseWsRlhoIkXJNMv5Dg45cG5F299M2QVUbdUWKJl2duyQoza9rPeRbk9GyEirdrbRGqH5WUeyiVbUmbqYg7RmxWkn2RswYHXl8fMQHzzRPUoBVHZm1qur8NM50lJgqHS4LF7++Nx/FUUtswGWC1ncdtuuxXcey+i3d3hhXpz6J43EiM6N0wLrCuOsZx1GCA9ciTlh9T9/vZNJfIvN5pTddtR9PpCKBkKVkhsHx/t0blsXzWI7/H63j/39eJWe6XuF6y/MxEquVdecasiyfQUoF5YSGXYrCWIvre4ZxpB97QO7zctKc3ZmwRmJIUCK5AXltTIo8+6sP+JgkN8Y6AQJVgBQ4vSzklAg+Sg7Wbsew2zP0PW/v3hBXz6fvH/n63QdSDPzww7c8nV9QxmIdrCFwXmS6EnOs1CEp+ooWzSklUijiJJYS83ySWkghYZsp0vXC2mjF50blkTdBDJ51kUwa7xeMhhQbpUeajJzTxmDIChRZniW/EELdr43l+PLC7GbO54lUQCkJNs6pWlMbI9bCpeovU8ZZSw6yd67rIrberQbjMtltDURjpDStSPCe8zwJWJxidcu6UJ+WNhkw9rKvJAFUrTGk2mRcAOGLZu8a2G77PLzWS7x6Fkv5g32svYcGeDnntulG+x3XTlZwCW9uRj3NOGeeZ5ZlERF7oQI8bFOq199/mbTkJI3dPC1kL25pmFTz0HqcdWJ7PWq6fqAUTd939M6Iq12WrDVrLNEUdM6UVB1cTU2i/w/dZNzf33M8CbKYsoTFpRg5niZ+9/0T33z/wMPjkTUWpikSgoxUUhP0pIxxBmGa1Q+uPcTaiFtQva4P01duMErRWbeNDGOM1b1Jb9QBEHJtiVSbMkGbxnFH3/V03UBMCRsNNlliumwofddTKnVJxJFUYWp6RWe4FvZoLa4jzQrt06dPV9QGACULtyScy/S95Dhcj+SUUvzqV7/i/ft33N3dc393x+9/9zuWRRySmrAnBBEftsLBP3vxCc8icCOL8F0bRU5i7amNEbeYvieGyOIlaVYOJdmYmgix1ElLSLlaXabt9bX72xqdnEVvknKznLs85E9Pj5KYvdvx5s0b5mlhms788MP3rxowaXyUoEVOb9MkKIy7ob5fU/mHsuDDGvj03Q988fYLpnkhag19j1Edndvx+29+z+PzC+vsWZHUTJcyp1+9sH4VUMrx/uXM7f0tzvb0wGi/4OX5N5zmB+Iy8eX7D4z9iNGKTw/f8vzyCe8nYppRKIyx7A83IjpXMh0yXV/NAoQ3Lu5WClLk+WFmnTPrkjkfPdroTej6iz/7ivu37+l3PT5ojOuwXWY6vlCyx9QNxBjhuib/0078Fh1QYDUrzll2uwFjEFFrCCij6J3GKYUuiKWekdTu1q8ba7DaYbRwlEFqeFWTVq8b4WZVqI1hv98D4gmvQBBEU8fpkiyJdpZUZDrRGozWDLTJQqMjXY/R13Xd/vc1WrY1HVf78R87qOTlmFeH3zWAcm1i0egAneu4vbmh63tJt62c6PaeAU7HE2M/cNjvsdqyHed1D2tUrC+++EJsfI0mkfFRdEeosmX7UBLOCrfddbKnHF+OQhftx0q5kHMhhHUDZtYQpMlIosG43tvbJOp6b811sinNUxK9llWkWcSlzjnu7m4qfc3y/PzCPIuV7fl8qq55CtdZdruRvhfB7Ok4yyFujfCMk0yWlFb88q//gr/4s1/y1fsv+OLmlocfHphXT98rvvv4A/OySJNRAjnN7NeO5+cXevdCjJD9zPPDJ56fnsSNSClmP3OcT5xOR5Ywib2pUigMLheMNtzd3PLw+ITWhnGUKe06z4Rl5TgfsV2i6xXD0PHu3Xs611WwrMN1imEUmu/pxRL9QvIr8xwFrNGGUE1KOmv54vaOu/0Bdd/z4Wd//v+dBf7/g2sNxxrSa9C2J+QzwQdi8hj20ujlKNbNKmFLQGlHVxuDcTdinKo8dEun4PnjI1PJhGXF9b0UadHzcnyis07sl0PEDR2ZA27o+fa739HpgtOZ9fTIw6cfOB1PHJ9PvP/iA11tWv/27/6WXive3hz4T//ZP+Pu5oaXlyfm5RFKwVknYY3nEymtLOuZNS6oZEhzIoaVfneg7wRZHjvHukzkuJD8TAkjSRuy1hwOB2xFtRuNuwVWWmMYR6Fxns8Ty+oJq0eRMcpKsFxKG90LLkDNxmAoTXwNroOHh4+I9qsw7naUItq6nANgsNqyu73lpMTwwC9Cd2yTNuMc5/lMLpn94UCq1KCX55eL3qAUfKGJNVnXVQCgFAkp0fXdVn/kKtLPOTPneaMlaa2xRvbttkc2R6jX2rdLJpGAW5lS3HYvrsGR9vpandRA73bvb25uXom1r/e89t+adkOmkq7q0y7uV+2sUUqxrl70KnVSdf1z2znlnNtiGXSjo1ajIGUEVBuGgt5ZqVuMYxh23N+/5Zdfv4EceHx8oOs60VkXCfVMydc6tt2fgn6la/i3Xz+6yVBoGZ8oXSkda9VHGFCWORQezis5IhaFScZvqmQpFrRCKREqNRvEOp/YENv2aF8LNV0viZCKqtVQCqelOMgK+T0VGeu6TqgLtZtrblLXqGGs/P9mM9tsxrQSF5lc/y5Vv+acL45V7UG+fiBjjJxOp1cLun3tRdwjr2W324tgtLpdtej5lBKHwwFVBczTNNO7HrJwIi+0IVkQ33zzzQWZ1YrZL8zTzM1OeNW6aMwqbiRN97GsYoWb6hjyfKqTlRhljFmdnkISxD39W0aD24ixUj/agrimiRmzl4VU4PHh6VVTdu2yIO9dNo6+77m52eO6Tkal84JSYhvbCriUBRGc/cLHh4/8m3/817x5/zP6oUNZxRIWQhZjAOrIz2mx7jQYfCi8TCsv88pSnjB2D3pPP+4oWTEfF/z6glVFBICL5+P33/H88sD59IJY4RqMA72sODeAhpQQpKkWR9pZdOcwpUeXns7ICD+sheBXrDN0g+Pdu7dY67YNZZozy7yKiL/qWTIZWyAmj0uWfXQ/dsn+SV7WdmhjZUJZ7WYpmpIMOTbLZcvN3YHdbsd4joCTJkMrlJU8g8ENWCMbaoekUNvObQX09fPYNupchPZIEZGkUWxrs5RCqo+7FJMXB6O2f2xfl9KrUX5rLK5ttq9fw/U6gssUQ1eKzx/7uutJafvdzYJ6HAYRCVa0z1eqljjkyfe2acbCzDrP+GXBr2IVLbtw2WigS1x4fHxk3O/Y7Xasc7WLBCmwfKMoSYuitGZdPSHkzZ5yWRax+Q6hIpY1RDTnitLLwcTVe70GWdqBHyvIsE0BfOB8PvPNN79nvz8wjH3lSQfWdbnSwfgKgrQiQD6HYejpuh6jRbuRqqtPVILG7vYjb9++4a/++m/4+7/+G969ecfT9w/o/lbCqLTh6elBuPz7G56fH8hJodfCDw9H9rsTRvdbKKEvhXld+Yff/56n88SaIOEYxreYWpyF1YNyhJD44ePHOtWVMzYnCF4mlmGttIpsGMeOsAqDwPYGp5ScZUqakJvbHX4xLGeRMa5NS1gU97dv6K2RVPeccUYx9H8YOPZTuTSaEC1rUDw+TSgV6Tq5N2ulk8qEPWOSxwaFNlmK/qETm30rkzitFMoaxv0o4ahnj1Vika5KIfpVpvvR45VmWc88PX+k/DqwzmfGzjA6gy0rRmkJX7U9Q2egRMLi+Yf/4Z9vLIt5Cdzf3GJthzMjX7z7gn7cYbuel9MTLyct+1I2pKRqPkNkf2MIwXM6ZVarKNGzroGSxWK5ZJliDMPI4e5uc35LV5pSZw2X3Kyacl0zuKyWgrIxF4CtaJU1nKtJwyX4NJfmiKe3oGC/LpyV0GLX5WJV62vCfYoRlUVPG2IkrAur9ygttdPpfGKeJtnTogQmaqUouoYtUyixTjlV3SfqtMl8Bkx/PiWVWIHX1NNWZ7aGQQCgQnODhGYZK//9c2H49RnQLGYb2Oq92Pq2Par9/GsgrIFRJYu5zP39m+1nt/Nhe+6N3mrBruu293ItHF+qbbmiThoqrRcFxmkGYwX0OZ/pO0vnMj7uePv+LV3vICluDzdMayDGDMuC0gljFKUYQCINhPb/Hzgnoz10WjU3BhFxd9WSNWdYfYLEZlFGKRUNq/zjikQWJEAFJUnVKLWJDuXryibi6bpeuHpIFDo1ht1oSSVM9UAytroitBTIq261vfZC2WhCG1+6dcv6oplISTrZ9gA3TcIf40Y3hPNa7LM9FJWm0V6Hs0661dr4NM54K1KkeJnRtKTLSteicoXrYjmdTzItUWCcJUVBzhdvt/ReEMRYOv5CXj0tG6QtNooQ3lrqcEyymTQxa9k+xteCqJTEaavUe/M5ClCKIJYET6x5Aa04u/66VO3VjHHiAz0MOGMpRW2jQwn9MfWPkMBLKUzLxKdPn3j/9S/EOURXMZmRQ8N0jtu9ePgLEhXJReNDYV4joSx0fUc3gOvEalArzen4wuAM1lj8FJimCb9IkyOguQJVqSelYFB1AUpad0pyz5WxGNehqyGB2Gl6Sk4VBZBGO1QKlE0Gv2TC6qu1sjyDmkRRGZMKh37gi93bf58l+yd4VT1Drv+uNCiDsV1F++XAGIYO58RuWquOWIEKbcRyT9J83ZbkrGuTkf6I81vbS5RSKA2m5lY02pGzVrRIjRp5hQ5dj7Q/P1Sun+frvQFeNwmfNxzXIsDrtdX++Tkds+0fbUIigEwDTeKlUakNwLa+mm1uFNAn1j0D2NZ5zjK1mZdZGrWrqWnJhdzJc2gqFSrVgxetWX18pUXRyCRP9lfZS1JtMhr6Vd/0q0N6uzdw2b+v9poQpInp+wHnpDnw3m8ie7lfTeNVs3sqZ1ioVrKPdH0nScZazg8QytHQ9xwOB/phh7EdPiuUGzFGYY1hWr7DxISJkfO8Yi3YojjPK2uIjDWHoxv2+NWzpsDj8UzWhn53YBxv0aWgikybn8InQiyE6tzCZkJSDQ5KXRvVMSj4xDx5psmjlLx2Y4Q+o3UWIW0xlGyJUTI4QkqEFOm6gd3uQO8Myc/bGd79hC1snetZfGFZMn4NaJuxRsTscdHEak2cciGXBOoqRNJIA3opMEXs3PWuujHWfJ1StjWTojgzxpw5nV7IORLDSokBdgN66Ah5IdfplO1t1RcJjfD0MktOhTZMpzPeB8iKvttx2N/Q70YRb3cWW7MKNI3+fMWmiLpO3symnyqVfi17D5tOVdWaqmk0234h1CCFczK1LCihMFYL26bXukbsX1PEW5PReJ9B3C9RxOhhEYZJSBGt/QVwaWYM1e0v1kDTNQRSFhrPsiyCwnsvVuD5YmdbpIugAKnIvoJur6NUJ9Km2XpNP90oUIgOTAO6GgO9pkCJ25hScs+2s6rt0Z/978/PA7jkuQEb86M1Hdfnw6vzYqu3XlPTG6jVjAgshoSE0n7+My41VYsMyJuOF6g2thXIbx9dyexG0T92nUWpUrd2Afra+29GBJvZSXVlS/HHBXr+6CajZPGQ1krEgGFd0Max7zt2ncWqWhjn5lmuQGdUhQeLQhyktkZCaCfXHae6GvsMXU/X9xLIkrNwtV3HOk2oXDbUYA2eosANHav3W57Hlixdf56qvP+YL/zpz4uEhv61Yv56cvE5xQEuG9Xnh+X139/e3tYbSE20FbvEdV0uzRh1PLbI1GJ2E0aJg1SKEWWqbW5rEla/LeRWVBhjOJ5PtcnQuNUIxQbIRHKRAJv23tuUxbZxaJawvVxKXUivF9N2r+rrvZ50fL541nUVS9saesjVdKc1U7EKSA+7A8NuoB8Hun4QNKIoSpHDoGRFKVWDYeXvje1Y18Dj4yN3dweM7SnZ4LQkoLuhp9vv+Mu//Ev86pnOE2FdUMaQi+G8RroSwERcKVhnONzsmOYd33//DDlglCH5Qlgl8VImb+IAU1LG1M3SdIahG1gWj18XSSRWYZug5ZzJyojXegKyJpcIKnE6TtjuhWGX6MdCjooSszge+Qg5QImosvJFGfj5hw/8k7/9Zz92yf5JXjFJ8y7PrTQZutMMhx1aFbIWFLzvTS0WFc70wnev68e5XsTJztEzynN4ffDRJqdqWxvioCSbd9dJ3kwzGtBasy7LZmXdKJjt++GilWiHUlv7ba9oFMk2zbxuEK4ngM1y9fowun6d7evbhNVau2m+rBFzh3SVDi76pnBpRuzlHuRa8K8p4n0NYVPyvmKsFKZSn+m1ZiGlWPVQsj+uqzhvWSNiwTZ9zrBNV9u+OQ6DfAbNQaxNMdJFz9beb9sv2n0pFY384w2Z/HOZFwkNNJZlWbbf3fb6XDJpSZia9GuM2gwUuk5yApyzuGDJqa9nmpLgKZ95eHjmfA6c14RxI53tGdzIGv41L58+Ma1nAN5/cc9gLIuXyW+vDb3bc/PmlvPjJ9bzikezu73lsL/lw5sPnJ9ftsyMp5eJ0/mRGGa0hsPNDakoliDBnNo6XD9iVtEM+jXy8YdnjLFCC4qBw2FX35e81xgTykI3dkzrjI+RmDIf3r3hcNjTdxar7ylZqILG/Diqw5/itd/f8/j8zOk4UQpYDWNvubvZ4UfL+bxyPi9CDMwZU7Mk5NmsJgU1UdkYSTV2g8UNVugSRayHYyl4Y1mXBWMMPiVWLw3Dzf5AZw0d93RGc3o50llpErRW+EW0Ds5qKJm+E7Ds+emFl7sTznbc3bzjPK1oq8lkOudwxonTmRI6iryHwnQ8M9zs6TuH6weSMqgIGeHray3mKi1d2lorUwftpNnILfhRxNVd76TR0FqmFCVVNuplcvrH3CRTymRVLeqVQsVE0VIrTfMMy0KGVzVG13X1Z4tQdi2BECT7Yg1h2w9EJ3tZ1wqFVgWFGDOITqxAUVsd0uiOxgrl2miNupItXu+rutaCLVz1mgb++QRD1TDoBnjWfk80u9UMRxqDS6HfNHFtqt0mGdfmJO13XvIxchMPk2Pk5eWZw+FmCzpte9tUnUKNNejy2vFqXWV6J9MLuQcxJpk8VWDKGENnRcs7OMc4DFiV+Otf/oy//5tfUJInRihRPpcQjTA0qpbGVMMlSJtdf4z/oRO/ozgzDf2Os55EpGY1h6Hjy3d3/OowYFQhWzYBclFlE6oAGOtkTF/qh3bVZW4InVIYrdntRUMhh2t1lHIWb6VIV0oLfcLIA5euEPo2tkpV4N04d9faDe/9lf/y8AfUiM/5c+2BvRbsXDcU101Ge9CstdIoVCqS6nqOx+P2c6yz22LJFYnMJTNXzrgY54FKqiKCiVhzK6j/7eHh4RVvUiFo734cKKpa+FaxpVC2dtvorpTq35+lcFBa0nLb4tmCCa8KrsaXvqZ5XE922iana+ihqamQWkkQGghFRSknCIwWwXfnOjkIjEGhOR/PkKWTPuzvWKwUgfNceHo8EkJCa8ev//WvGPc3WDdUuk1mf9hJwurdPfO8QFGcI2hl8L7w61/9ugpne4wdeHh44fnpB07HR+5vDigt92wNkaKrq0JO4oqUwLrC3ll2hx19P6CU5fTyQgwLpMjdm3tKKfgQOJ5O7MZR0BvvOT1+IqWAXwIfv/uBefaMhwM3Nys3hzs0GltABTDKoHPBBsuXX33Nf/yf/hf8b//3/4cfu2T/JK/LODmxeE+HUE165ZhejthOOKf7/Z5x3NN1AYWl7wZM5+h2HV+8f/8KYXOdQ6FISaiLoVpTNgc650TUe73ftAMHIKaF3W5XbV6XC0WgjqVbEQ0XlKlt7u0gvZ4+NNHltiaviur2/htq1faSz1HD9nObcFOoUoKYN2Sr0Rnaz9Va0zlLqeGheSkbGKAKKCN5IFprVBLzDaGO5c2jvY3dP5/IKgWmBmQ26lObEF1zkdseESrSmvPrpuF6UrMd9FXcn9JrYeWF4prIBc7TJO8n5a0Zu07Kvd6Xu67nzdtbrLnQEZVS9P0gurMQCAnmeeVT+sQ33/6O3e0t+7t7dNK8efMlYQn8/re/4+V45HQ6M/sJPQw8PB+Z14V56nn37gPaHRgOO4zucRM4B859A0omO6hMN/RkK42zsYBOZCUBVw8vn0BbrOux2lUjiZ797T1+OeH9zDQt/O4333BzM/LmzYH4/p7DzQ2265gnySAJQWixMXnevH3Dze2tFNNW8pKMFZrbaZo5Tj9d4fdvf//A6RwwVnN3f4MqoTaWHYebPV2/Y9itfHp8oRSNtrCGiXmylCJ0udvbG8nbQlFyqEWqRTlFinUamgs+LJymI2i4ub0nes8cAnlZ+fDFB87nCe8DnTN89fM/QwG/+sd/4M39LWPf0TnN8eWBT48PeJ948/Yttze3jOO+Us0T0zJxnk/sh1ESyLXBmIRPgYRQuGOEvCxEBc4YBMaV56sZHTSRMBTGccQ5w/39PSEEnp+fBfijsK4zz8/PTNO07WsNaKSUTUD/ua32NVAgBSgVAJaJn1UykeCKBgpUcEZqE2tF2FxU2XK3rsHZZlkr/1uJ5pSMKlpCAOvrbMHPqho3xBBZKXVSqVDOkLPZ9lDr7FZ/tD16nudtT5I9PpCzUBcl3JDtj1RjUnS3ULpWT7a9u93L9u9NNyH7Tr/dv2a0IYAwdINYo/fDgNJK0toXoaGuXgIVYxTBfzsX1mp20X5Ho7Tlzb77NfUWINuEofD+/oZf/vxrTp++4d3ectuBSjNPjydSiDI5XQRgykmy2zZKZ2WUCEB3cXf9H7t+/CSjFZNaXBqoB6ftHO8/vOPuToRJS5APRzx0S02+VagiKKQRmhip5O2GXacellI2tySxYnMb6q3VhRcNkHWdjuQkOpDP9BLtCiFsBcF1M3BdIHw+jfhjyNv1YrieYgjvThT8rSBo3aPWiubU+sd+vgReXcSrpZQtpEsoZM2Nq2zjOuEgCjraHrZtGqRErNn+TyY7gcvduHyebbxWhzx/8PefNxHi/PKH05rX91xeP/W1u66mLsMWvNXGeM6ZukmurIvQ7kyWzcW6rjrCFKzV7PSItYYQV0oJxCA2jMeXF7S2KAwlC9e0VAeNlC8WxFKEFILP+JcFCRG0GNPzcpo4Pj8yzUc0qySWZgm6iknsHyV7Q2hiOStSjviwVvKIxlhN3/VYY3HGVWTdkMbCfr+XYsl7/PlEDImcgZhZpxlVFE5bDsMoW2dWvD3cQgiYkhgHxX/yn/1P+Yu//6f09z9tutR1wZ1TQRWZkKJqS100KmtyBKOdWP5Gy3i4YdgN7A4DrnPb89xoUAA6yl5Sat5NO2Ca9unz0fIwDDjXEWN6tSdchza1xvnaHaRd1wLm9jXAH+xDr5qbzyiVkqbaphr6D77+8ylhqUik4dLsvLq/zUyh/sktY4RKbWwgD5BL9dsvVCrp64ZIPq/qCFYERUwpVnrFhZbarlyLFGoirFKg1B8K2a/vo7gBVhOQz/bX9jPFKWuqOiVBQ9vxdj2BbgCTcYZh7On6UagnWg5GuTe2InIyIVVGYTrHNE+cpxPjckMshlQSIQcWv8pERmBCKVSUIWWxN56WyLQGBh8oaiBjKMUS14Jfz+TgGTtHpzvhqx+PzPMJHxZiWtFZpvtWg3NW6ArG4JRGG0VnDfNimOczKUaWaeVZVZOABN0wkDKESh/za+D9F++4vX3Dfn9D8AFSRJU67dMyzW36nZ/i9XxcAIM1XaXxOaxxWDswDAOFlTV6XGdliK7kuV2WBaVEixXHDuc6itEicE2CWptK1xX0XCyWY/D4dSWsq+xVueDTyrKshJBwXeSXv/iacdhBKYzjgbv7t+zGjs4pzucHAQhTxDqY17UKqBXrshD9SkmJse84HPb4FMnmzBqDNOoIzamUIkFiGVzv0FoRwo7zaap7lUxp5nkipURfv6YJmTsn4cchxA2ouJ5UlAb+wh/sBddr87rpaHuXUrlSAmV9NtC47acpxbofWJSttUe+7Jnt56fKEGhXKUiTlZKAjhWIbQ51wAZkyoQhobWRsD8rwKmtxh8551egTBNWX0BScSmTyWvYwhobv6g0cXAuG43ruoa9vjfNfKPVZe13yv2WuqRokDgIMSjq+rHuLxBzpsSEr5PLdsZcywCuDUdANDlpq72ua1bRe5SccQY6U+hUZNfBYBKmeKaXZ1JchZafqDTYy5Q51/oJMtZ2r86If9f179FktHFP2wxFxWas5Yuv3vHmzS27wbGus/DnqhYDLeMuTf3gdc1qyEIDalMMuBzO1traaAhfdqpcW0W1A6vc6cp6FKrPZw4B1zehFePtQLw8nBc3l+vOu/3v6xFX+9p2XSOTXRUrp1S2tN5LkyGHG+kPqQAUcYJS6iqSHjl49aZdEbtOXTI5Xx72Rp1qD19D9hrq2B6uXBKx8n7bhtLGd7mOULV6XfhcPvPPBamvG4/Pv2ZjNhb5fCiCcqRSRZwp0bUxrhJUI6fAOguH23V9RQ4Uu92NUIy8RxslaZXRMc9nQshbuvHp5YVx2NG5nlI/i1IK01k2cO/FRraUUtE+z/PzI5RVml7bMU+e4/GFZTljTWHoB0EhcyTElZBEkJqLNLu5qC0PJMaIKprduKezTni5xlTqn0Npy/5wENtkvdD1A1oVUtKksBKXFV8K3lny7Q1aWQyOn73/inCasAXe3d7wX/wv/9e8//mfEY3jpyz9Fts7AR5yzpDFqECpgsagiiEnRY5gTUfnBkJSjIcbbu/23N7uxe0IUEYz7Maa+yL6nmZ32hrvjQ61rtum3wrT3W7POIws8yL8ayUH6/VeAmzUoTYNkffxGhz5Y4jf5/vR62kFiHPJZUTffuXn4MargrxkCR2tIvZtj0K2ZLjYCxprSFlyGdqEgZzJzff+quGQvyp/wB3eKH91kpeSWFznJK+3TVraPRVTj9dWkO2eXJ6BBqrUAqdc9GbX73ubVJRCOh4x1lXQCsxVEdSaDKWg7zuG/U6mPt2AVWoLGMtZimzd9F2I21A/jszLwvF8pD8fsN2BEFd88IQcyKqgncXaka7rBRXV4ENg8onT4unmhW68IaHIRRPnxGl5Ye7A6sL94Q3n05HHTx85Hh8JcSKXKJPLvscaQ985Qqz8aWtwxaGGHm0Nz8+PSBhh4hTnamGeGYaVYb+vIWiSRfCzn33N/nCHcyPzNLGcj+Q2zTcWQ+bz5vSndB1PnsPuQDd0UApad1jT49yOru9YoyeXhOscRCmEc0n4dUarjNUQfUfuoBhHDpnkpbjSRoStRkkoryqibQrrynI+sx8PUKQIm84zaEM/DNzevsHZjlIyh8M9d3fv2O87nM188zsEnCoy3X55ecGYCUrmeHwW5JnMYb/n3ft36N5RHg2naRKXrJJRuuYuCKRF3/dQ5PfN81x1lABCBfV+JYSeaZq2grfrO2IMVzqqS4Nx/TyUkok18NSay5TytX7hAiqWooipYEpBZfnGBu5ALVhjazIKWtut0Jbf2yjaDXx9DV5mqMDrBSQpXMAKW01mShKxvzVCFbfGomotidKvmBlwiQS4ZFUIoKJUwvu4AR9aNSClNWFlo5V9rv1tr7nVgaWUjc503UhlEwV81tLMSqBij9ZGQpCTMCjEhrqgjYZ0aWycc0zTRPChavEaFTDLGVuuwJ+UJLjRKG5Gx84VHCtuUAw6o+LKy9MJW2vRUlTd5y+RFblctMrGOFCSq/Zjrh/dZLy8PDGMIqQdx766ikBOEZ0SFrDKoIsSsa42JBofTtDd3u4qRSmx2++E7qQvAVrtQxCEsXbhFWGjyEMx9r1w+bxnXZftcG8fdOMJN/SyLaDWBVprt5HcdcH9OWoPvFp8rWiHVgBcGoPGP2zNyHV3e92Zf45wCjVMioFxdFDtJbfuUVRflCgjqy3NuyZ6FfIf2GyKQExxLIJkKGlhoYYdig2Z0B1ykg00lni1wF8XOO21NrrWNcLbfm+qG0AL9MsFqM5Vy3RGG0suMsmQiYgcvHh5cAuKoSj24479/oAxjmHc8/z8zItf2B/2lUsd2O/3eK8piK7jN7/7DdOycnP3hnF3y9s3b0XY2DseHz5KY2otf/M3f8Gv/vEfOU8ThUjMiZgTJokLBCVKuFgRkRpaYzTMi2zYMUUKUYTeKNygsRbGoWc/3vDu7ZekmPHVJrhxpoWWl3l5OTJPK7vDG+azocwyDTEKdJJR+PTwiT//+pf8xc/+nH/6y/+I73/9O/px5H/2v/vf8OVf/g0Rw+PjzPjm7scu2z+5S4pfee5jWpjnF6Bnt+8plY5WlObdmzvevDkxR4VeCsL0KVgDJQd2+xu6YeB0OhMq0jifz3C1hpuNsnOO8/m8od3ShM5M55lxHLmrbizWWFxtFBsq1PaQ6ylE2+jbCLzRL/f7PdbabXIKlyL9csmEV9ZZ06XJ3whNsU5lrvjMh8NhoyW1NRd82NBGShFBuwa/LsQsvvBa1WauFHHcq6/nWsDYGh5dJ5UxXlnMInSIVRVyNpX7DZQGsuR6ny57TwM/Pt9P5P29RkKv97p2T19PmpsFozRSznWV8qDwKWErldbUokKMAcBWxzBnxZ5xnVdxqysyKTO2Z7+7R2GAzHz2/P533/L2/Zd8+ALevb1jN+wgy+Ftx577L95yd3dHionT8UjwK5qCT5rJF3qfsHuLtg7bWw63ez4+/CPn04wm8PTxE/PpzMvTMw8fP6GNfGZKK3o0RjvSkAAjAId8rNIMaYMdRsHtSsYohV80OXmWc6I7B87zicPdgb/+m7/g3fs3WLcD3REzsn/FSFwnhq6jFFOJuD/NKyZxtLS2x2qNcyP9MLA77Dgvz5ymE+d5IifL3d07ur4nR09KM96fKWWh7zO5HOjmgeUMpxePnwtW9SQd6VzH2PfshkHyTXJmPp8I1fUQpekPN9WSXlNSws+ShRLmM372OA2qz7jOEWLmeFrw0WPtma7rhEarLSmD0o7/7L/4n5MMPJ+P/Hf/8l/wX/9f/q88fHrgfJrQSuO0pXcdd3c3iA5HdGBS11z2mq67GF1477c94/npWSzngTdv3vwBLRLkZzR3Tq30RqFqgM3ngcONaaG1rpOEC7gSKz0rp1gpRoUYUg38TRWsuGg9ZZ9UG1U8pkttA1VwXJsMrQ1b9HmWplDVGkdAbYUi01mDmNplbm9vN1OLdV1FjK8uDBVjdM3iiVgboUiukIjGmznFxRTkej8GNlvz9u/X7lCliF1t8J7OWYyqDl2ILXDTrtluIM0LyyrZNrtxRz8MpHBxqjoejzT3Tq213ActWV6RyN3Nreimva+Oiop39zf85//J3/F3f/kL3t7uuNv1uOKJSXRiuWToO6yTyY8J8vm0c05A5MoGieu2X/+Y699jkoGMwRGBkcKiikNh6ZxjGHp2u4HjSVJLlRZve+Oki+67QVDJKuoxNUSO2p1eTxVaF9hEL7vdfjuoXddtGoxwFdYyDMMm4Gkf7ucUiLaI2nVdMLcD7vpqN7FxqJtWobmYbGO0PzIF2FBILYKka552KaXShsTZJYc2iqIm0FYr3Hb4VhH454d0m0C0Jmp73RRyUoQQ6yKqwTAVvUtJV/rWHzrkfD69uJ5ifE73ur5H7V7I6ypbwwFFrPO0JheH6ztxWEqeFBKqinmFGyv2xsMwAIW+H7i5gXlaACnGjDHc3t4hYWgiIJvXgJlWYnxhmWdkMwvM59Pm6nU+n5mmCZDpTkOrFSIEU0ZhsZQoDWzKGZ8Cfl2JSZJ6tdHVp9pVfcvIOAwMXS/BcJ1GmYyPkXmZSVl4siVrlurtbYyl63c17C9gTcYZTacsezfws7fv+duf/4Jb23H793/P7u0b3vz8F/iiePj0yDe/+Y6f/dVX//aF+id+FTwxaiIaqx0hBmzUhGAoWhAXlGJ36FG2gE4cDnu63tUieiWsnlM6Ys4LPl01h/m1KDvGyPPz87Y5K6WqG0uqzlWvKUdtQ40pkmLZwIPttZeLgBsulIIGVlz/rOs1cr02KaXSl+RulNIcPKoLjGpFw6WpaDSgNjUIIdAPfaVyiEVkqROBksSYgKJqNk4iVqvBXKo247PPZOMVg4ARWRDBNm3KKRPlpdNuR2tucpLCANTmZnW9d3w++Wyvg1osXDcZ7b1e7lW+oGWlVIpPQWlbOdMV0USCNBWK4FfO9Z5rLdSXFAVkca4nhCiAhbWEuBKjpKB3BebzxMvTM7vdLf4cWddI11lubm+5ORy4ublhnhbWeaUkMEpzPi+k/MiyBJ6fV2JSLNNKigt9Z1g9HF8ecXog+oSEGGqKagihgC8tid1aoWOVopjmI0pnfFi2lHpNdVnMCb9EvErEVBj3O24OB/pBGt9lXYnJcz4t+MWLWUC9hxIK+ONEm3+K1+FmL/knXQ8pM/RddceRuiDGTEwFZwes7Rn7kfH+ltPpB1JaKQSOpxfWNWHNSliMBMxh6YcRvy5iKtEP3N3dM0/neg54Yg6V7g3H85FYMsZZTtPEMp1F55QSyS94I+F+3/3wxMPTidO04roblHWEVPj0+MybN19grOwHDy8T/X4ALGM30ncdnXOs1iLJyxf3JGPFiMQYzeFmJ9bnS6AooWXBRVPR/oQQhBmhFHN1cfqcyvMHk0fNK0ONz+uDa8qVahsYoGOqG02tl0qq0xYBNVKsVvmxBmZSefRX4Mf1NPPV76dABVAoSuqIyoox1tTJg+xNYV1R2qCNrc9/2va7Rp/q+34z9Wi2rJciurlzIb9Tv85w+xyUbXrg6xDE7R5T96paxxhjsbarmim9BZbm3ChOFbBWkJWqYmuZ2g7DgEZXYDPJzyhiIJCCp6SEQQCXr796z8+/estf/+I9P39/YN87Oqvwi2iFU8oUJVRSVXW8jZ1zmRLXfas07dtr6vD/2PXjm4xtu5cAD6MTSgltylpDPzh2uwFnF7R2KCWhVtZYOjcwjvstFMvUDlWbOmZPCWMuSKFzbvujlEIPFxsway05ZayJ28HeusrriUJze/lcUHn98LbivNG1rhfRNVXh9ffn7Z/tcP386z/vdNu4TdUHuY0ZVeXJNf/+zX2KULnK1dJMXagU169TKV2LlkJWuUmTtgdSXo98ehdahjzqspj/CLr4b2sy8h//unxV2FWMFLhMNihiL2eMBFQ5Z8SdIMrrtprN+jJVP2+hwskG2vcDp9OK1h26s+zGA11vSSmw+uogUlTl1a+cTkdJGi2ZZZ6kYXUO7x9RdWQagv+sYZLUdzES0GIB6QOrXzcUq5DRSvjcrSAb+o5hkPRM53qUtthcOE1nYhJq1rIuUBwxZaiTNFWxFr8sWJWxRgqW0XXcjXveHe442JHbn/+c3YcPDG/e8N3DE99//4lvfvu7H7tk/ySvtkmBQStbJ2/V1tfU5FSlxG7UGZwzmE42YiiSjeA9fo2ABiPPVK60Gs1lDN4cPi4gwoUe0HXDHx2dG2OY51lea85o+5oucD0dvd4brsfl13/+kIrQvoaq72mH1EUjJuNwK/kuV3vc9bTWWrutrdK4uKktagEORYtQ12VRG6VC8Zru2P4pX1vpmhlK5YFfe+dnYbtu1IdS9xNV1Ks19fm9eP0MlAtV6rMm45qmBZeMItnnkgBX+jKBaQ2LrlSGWJ8lo01tvgT11J1DKxE/o2TKcTo58sYLVyzzwvH5hdvbE8ZECuLCsxtHoV8ZKfSUEtKKUpbzeWZZVqbzCeeOaNMTY2E6v6BKRpXCuswEhBqYS+WhlOocVC6UNaO1gGgZQkyE6NH1vbquI8e0NRklREJItWGA/e1Is5L3Xpy9QiisyyqizZjQuRBigLo//lSvoe9wdX3nJICd0XL2xZBIGcBg7YC1Duc6DvuRUkZ8KIQoRgcxKBSJ5B1aDWht6ZwlxyTnsJLzJ4YggliotCdIFKZ1RVmL8yufnp8YraEzml3XUUoihkKJkdN5ZV4ja8gkFShaaph1XnnzfhSAVWWOk4fOkXKl4xRpnHXVFbU/7WrUUDEWQXINUFJc5/CqaU8psaySR4FSlJyI4XWTARcjCrgAJaqZ3/yRWuF6/V6zH9Jm+FMopZnJNBvrpmGr+yh1PHp1Xddpr69aO9X/1YCj0iiajdpUhBCaU8JsTlGX12utfTVt/pxNQ/2sVQWDqbXUdYPx+ZVz3uhX12fQ9jOLMFPI4pYqtMgGdlVApzVRVE1ufS8pSoJ3A+k34NgoVEBeX9sbUsAhZ8gwOP7863f84uu3vLvtuek1zhZUSZUOVVpvtzWIDZjfPsuU6kcvzCO2Z+YPbsEfvX68u1SSsYtSFjd0OF9LbJ0wXeFw6Hn79obff3PEakcphmVd0Z1CGUs3DFJgGYMrhd1ut3WW8yLhT7kKp/f7/dYJXnN7rZWY82wzXe7QB7ONgqdpetWFi696v4WdtEPs2ns4hPAHE4brh+d64WyjPGVkkrNRHMo2Umvcx+ZU0yYx2wPcd9V/XhC6XINwUsqQxdXBmMK6+lquy6Gk/tghXS5CTUAoWbVpEepCbWyav32oYnJdQ1W2H/maHva524P0LfJgafOaMnL9fe3zks8U2mbQ/LFVlvfjvQig47riqE1Qyvi0MJ1O5Jw5zxO73QFtOshCDTl8uGW/3/P+3QeOx2em6UTKips393KftYgZT6cj0a+oIlQXQXx75tnXgJzA6XTi7du3ND63UJpksnG72wnXsXqjm1ZRVSODUpGyZY70w8A4jhjVcf/2Hq07Qkw8Pj9i7A5jHDkZUlFoHdDGMHY9JSVyP0gCs58hBwpRtCApEeeVL//ZP+Xur/4K9/YNcRj4b/+P/xUfv/2G6eXxxy7ZP9GrNd1GKCJJnheF4bC/IeWCDxlnB+7v7lmCISRHzOKKMk0novfkCKUobG9Zprw5lbRcmr7vhd5Sn2fnHE9PTwD0Q7+tzRZy1w5kpRQvzw9QClaLZXeCjRZ13TC0vaMhPXBxnfqc63wRVorgWJ6lur3LtFt88uuh41zPUPfMay1Z4+PmnNEUhs7hl9g249q+Vv73vEp2TG1rcwrbum8H+B+d4ko9XEGQQoqZout+WNhydIypovVymWa2feEa4fyD/aQJOK9oVe01vfqnvBO02iBONAVnqq21tVjnSHGR5jUVYs5YKw6Fh/2BYdwLAKA033//A9ZZus6KduPYgUqEIIDP+Xzi4eEjd3f39GOm63fc3tzg14VU7SWjj9XuOGBN4Xh8ImePIqGUI6bCukY+fvweazNGCy3qZToJOpkTIQkVotT/68eBbug53N6w293WcNcZQ6npvj339/d8//EHaXyVNEo2FUIGv545nwxKK4q23HqF1h0UTQ6ZuErWA8WjS8Ap6PWPrBD+BC+tAzEqVI4yDQ0r6Ay6cHyZSEnTd3f0vWj1rDHkFHjz9o6UBub5zNPTkXUWjQtpoHOartP0/Y6cEzmmzX1JmtOeUgKuG0AbTNH4lMEn4nni//Ev/wf+03/yT7m/e8veOrpuROlEyIluPDAcYMlnfvO77yi54GzHfrwFO2CHnqLhtLwwFKEZnU8nXp6fmaaZjNCBuq6rU34lFudkqTOGHu16umGkxMLzy/Mmar7WoaH1Bl7GINQdWceafMWU+PxsvwYR5f7r12uaP94UlEr3RrUJp9TZRksz3ACWjU5Ors37awC0/U6lL1RTpUFybDSd6zGmhh6bus9pJQwJbTbwKsWIQnQmXd+xrivn85nT6bTRqNo/U4obkHvdXDjnNsrY583Y+Xxmt9u90gO2fy7LQrGWZuOrTDVRMoLa5AI+JFyX0drgHFXXKsY9x+OR0/FEjGJoQ0n0/YjRDmU03q9AxKiEyZ4Phzu+vLnn65+/5a/++gM3N46SJtZzxmupxWKGogw07dFnusJrK/YQRQhvrEXrPx7p8G+7fnST4b0XrlZnpRjuFDlEpvlMfxg47Pfc393h3CeU6tCm4939PeNhYH/Yc3tzYK7iS3eVIbCuKz6sOGe3A69RAuCSiCh/Cod3NxtCV6qX/PVUov37tfVqe0jbomtFQCmSUtnGiY2jeI1Ubqhjm9q/WlT1JtqGgtptotImMV3XbXa5zjkGLVZsKUaxo1UaRUajyTFVtycpFihi15h4vZivpzOfbwalIplb84Og8yWnDYW5/lkidHrdWLV/XnOkUW1Ocvm6V1qQ+vuttSISiomSE0YLdQkUpuvZ73bo3V6cEyqHXmvFfhxZ/Qpac9P3vH//gWlaOZ3OMho0gmxmErv9ADqTkAP3+ekZ7+UZSkGE3rFuFCEEZjNjbb8t3mv7y2YIIGLawhriFghmjGatz4RWBQN0Rp7/zvZMZ0+KM8ZE+ufnzZnk5uZG0slXL5QL14ubxwz7ww3LdGbxAR88qihCTKzrkaePPfHn0N/c8eZv/4pyc88Px5n/5v/0X/Pf/Df/T5bpBcOVCfhP8IrxMtkyxgkloKuBlVpzc7On60eCeeL29pmnc2R6EdrZui4s3uPXieiFxmMWU2k3grjvdrtX6FpzUWmAgjy3llR1YTeHG5xzG0/38ekB0fFI8ZxyFBOGSr+6njZc29q2XIu2LtraaXvL9QSzTUDb1/y/ufuTXsuyLM8P++3uNLd571nn7uEeHn1ERjYRWdlEZVaRrAJIFQmIIkGoNJAIDSRImgj6JJroG2gggBIEciAI0EAgQFCQQEosFsUsMjMjo/fe+tfc5jS702Dtfe595l6VEVQVla4TsDBzs9fdc8/ee63/+jeVgyz3wS5gRQVJKpW0Njmr1Yp5HInlZ07RlwkFxbLVk3NcXMuyzgQtXvqU76XUaW2fNxiy/gXdKsMBJKBL7rExZQqaMmfzGYB7e8mb05z7B7I4oLxpxHG+pznnCmAiqLtMKiI5C5BhS1FhDEQvFoukhLNOUEIlm92670HJM/LgwQPu7vZidqEdfb8q50skZ3Fx2e13PH/5itXa07YDw3AkxSBC2nnGasPbbz8mhcSHH37ENB+JYSYTaazDzwk/e1TyxMmDUbRNQ99YZj8zBb/YYeecQENMgWke2e3vGEdxeCGnQkuW51BjWHVrVCl0ckwcbm9Qh8Q0KKajmBdMU8B7WPUburan0Y6QFTkWN62Y0SFhwpsI8Zfn6pxjmgPzHFj3Bh8jaYJpDujc0FqHcdK0XWxXdJ2jbTPGBlKStbu7mwlhYDjOxDnQtZmcNF2vUJSww5x5+vRZGfpobLPh0eN3absebRu2Dx5wnI8cpwPTOHA7JvpRcfX2W7iVYpr37Ha3PH/5mle3e3bHiTlDmMSVimx4/vI5b737FS4fPCAYz3E6sL97zfXdNd16xTgHpt0BZ1WhN4MxDZBKsKgRSr6ZscZy3O/FmCdnag6ZpHVLsJ01BgX4aUCpUiskCSukNBN1v3mTcm50yckpfM83jRrO17PQU+s7VvYYJY6L92ytKWYgClSS7uIcU10aHlVCNsu+pVRJQ0+BKUxcdhc0zuL9saybElqXE1YbjHVMcwGJcmIMsUyIpNYcx/Fe3QgQQ1w0tRmhFJ3T7u/VR7BMMeqvpZ41hqbtxFrdz5CTTBRVRjuDsqIts/Zkc1t2S4Kfi7lMxmpFQrRzkrcmFDOdEw0JZzOrXvO9d7/NW90Fj7o1b1+ssI1FqYQ2iZwDKYkZj08GreU5cgVsA+7lLrWt2OtO8ylb7uR6+Out119/klFTXKOgcc46QgI/TZAURolwsmlaYhIB3Hq75erhBa6x5UY3xXVACvETInZ/TN62VVh+X7gdg2QwVO5fHY9VkZJP/t6iAL7wED33Mz5/UM5/r5OL02EpR6+Sly8LFAnzkaLAYszJWercWeU8EFBTPp+SUqm0WJ3mIB19GfVrpQRNBFmA3D+8l0P7bHRYX1P9i1SQUvk5Cu9xGU3eH2/+067zj1FKi96DdO/neLOjP+tEqPZySmm6vqfteuHPm8B0Nn1SWjz4s1K4pl3ul0JhnaHktcvfGVmUjZMidZ4mvBfKgsqSslp/iJwSEVAqLCLbil5X17GmaRfnnhyjcDjrQqr3vzhiqUzx/kwcDwPTGEhZsdk8KK4L58Wnpl+tyEov48irqwe8DoHhcJTnSxXKXYI0R7rtBQ+++lX0dsvd5Hnx4ppf/uyXvLx+iZ+PaBnaf2mvnHLVthZ+qykbrKOxhq5r6fqeBw/EKQgQ+loQlw2UKrSnuh/VAEl5pvPZBOEcxTvfHHNKC01rsf9LcWkuXdsu+T7Zz4VkeAIvgAUkOUe43lyb51PYc30Xy7o+8X4pz8H5gV1D+z5HGSiHkPQDC+yxfG+jtQwXsiKoVJC4s8ksp+91+pJnSEqlQ9WPWZoFoT7Ix2hO1ru88XXuX/f2mdPwZtmnzoGg84ak0n+kLpA/5CR7gOz7JYAxgyp6QY38vOLtLnRFpQ2gqda1CoNrelarTaFnRoZpD4rFmjYryT8YxwGFCOr9PNGVwNCUICbx1Q8xiG6rgEQSUlUoIlEVcasgktM0EmKQJOpyBqAzqCRGEEnO0FW3Yig+9LpoDoUTLrkXYZ7x40CcW2JoBImcAyMD4+FAoy3ZWnKERonda/IJmzNX2xVvXTz43Pv0Zbm6piXFmTlFfIzYlIXahzgX2UZQ/bZzIrBXZ2s/S8aDnxNhTmInHhS5KcyBJCeqQoHKTLMguEpbbGvp+w39eoNtWrYXF+QjzMkzjjMhWGJqMM2apD0hK6YQ2R8Gpllc2ZQRrWos5+jkJ0KSwEjXWJSyoBWHw5GMZEsZ7TCmKTR0vZzrC6WqAANSJwUBxIz8Xc21qYLvvCz5QkVUeQEPz0HE8wnkAhacaSp4Y6+rn3MCZutXhHKASmNSzC1ONNFTE6GUYiHv5HyieypVJhcnqtjyuVqVrUg4opJ0Lc1QjBHTNIsmo3FKQNsUCT7I91AnLdiiq4tJGipd7fjLazibAr8JppyDS+f7GUqmR7as2/raYqFgm6pLViB7RFgoUilGsc8Ovpx3YTHfEaesKEZLWXG57Vn1mouN5utvP+Yyt2xwrLoGrxKUsMVc3vlI0eghU7Lz5qo2mcvECkQrxhfv73/d9RvRpWJIRJ/R0dBYjU6aMAayV+SgUNnQ9WuGCbRrWF9seevtJ4Tgub29oe1X0lnnxDxPgsYVd6RzekHf90vyoxQIwoX2swh9N5tNcQbQgh7XN3v64pFfbVaUUveC6OrDdf693+Tql+pQDrp8OiGlWJUi+mRb2yzOWLWbr4FgxhjG40GoMimSU0CEPeIK43MoX1rhjMUXq9RsarFbmwTOFrE8jFmdFlzlJFYeXUVS27YpC+B0kNdi5nxMVu9d/T7nU5OFKpWF+1wR2mrVlnNeJlBSQBlc25GzBDFeXD3AOkPygTllfJTwGK01NiYwBm0b+vWGYZzE6cZobBY3qZyjIJdRph+ts6z6DuGzw0evXuCsKRxdQTxrQ+rDLBup0gulbZ5nxnFktdlIM5IicZ6ZGkGDQ5BGQeCC4sATI3GaCW5mf3uHj4njNPP4yTs41wISGtZ3PU3TcPngiuMwYqxlvVrxzjvvisD0+lboNsljrGFlGxrtePTeV/nqD36P4FqeffAJH/7sQz78+a/YDbdMfhAk5Et+qZJmq5SMvXVBTFZtI3zrxvLkyUPazpGL9WTKVfBoiwWphJwFX9b2GQdWnz3blR55nmFR0alhEH/5pm0XZKzSrfw8YbQWsXGZJp5nC5zTBuvkYRiGpZmpVMbzpqROVBbIQGWUkkTrWiSc719d15FS4ng83hMSntLFdaEoGmIqtESKrsvJPZrCLKGoZ/dEGi1xTlL5nOKQWUqsM1Qz+FAO7URKoSB11YM/L/cD7u9N583W+cS1/GXNtFo+/7yISCnRdI04GOZMzAlVG0Xkman5FxqF0gaVNVZpYhRTkPE48JpXuKaVoDvTSjaLsqxWlwVVDaQUiNeiy9LG4kMiHweO+UhKAbII7FMQd7vr69eQC0CVpcGY55kxFV1clqIXpDDzAeYo+QWHw16MJpQ8/xglxiBOY3SmbRquLh+wXm057I/MwaO1ZrNesVqvl0n0frdnao7E1pOTJ/qBFANhGJkPB2LjoHXEGFm3a4xt8VHRqY5vf+3b/PCP//D/myX8/9Nr261QWJTyHH3AxIRVWoBOa+j6jn7TYxtFyjM+QEdHiol5ihx2M4fdyDh4qWdQGNugjV2CHxUIGEbGpyDPqso0bUvfr3BdhyCOQnUWM5UOpVbopsPnwBRhDHAYZmKxx20c+FasnrGGUCzmQ/S4xtJ1a6Zxx353ECpXNjRNR9usaFyHNQ4/RzEOUKBTonEGP3nGMu0FoemFEAiJpdFQ5DK1yAWoOLOdh4WtcB7Cd140y4Tt8xqren1R7VUvoUjlM8pp2Y/MqdY4rztQxcp5EVufmoHz+s0YCWnOJBHll+Ym5cQcA52xaCM0+77ryUH2hrt5V/RamsaZE7UMxTiOAiScgUQV9DTanIG4953x6vRiec3GkFD4aZaGEdEzk0U4DQhgUOqggCb4hDMGrZDmAoT14iWzxxdwXvsZYzROKToM33r7EY8e9Dy4bHjv6jHmZoZjIDdK8r1CQhtFVqXJzXzu/DqXJ8xnpgApplJrn8xOfpPr124yuq4BIrM/cDxa+q4BJUJdEyPbdc97X3nCR0/3NBMkZckpcnd7Qy52phrFOE7Ms8eaYu9ZGonVasU0TQzDwK9+9avlgdVaM09+0Wq0bbtMCwD6vsd7z+tXL8WYRotr1TiOC/2pFsNv0qXg5IF/3nS8yS+8f2iWFFdq4Eq7uA1VikMtDipNSqs64hdbXelYFDHO5Ex50BuxkIwJPx1RRvIDztHTnDNGFU/oOoLMp6IgZ0FHQJDZSp2CTE2w1PoLArTK9SbPEk7OOEuBojUGdY+Hfu7Cs3y98jMedntJsiSXKYgikIk503a9TMKApuvpVxvabsU0eVJUzJOMF7u+w1jQRjYQP86M48BwOHDz+pWEUPmZFAPKyXPhvZdJSkEQnLEyLo0RW3iVSmnW2ws2F1ccDwf8cCAmSWKPwTExSLNSkuvrkCinyLDbM42ezcUFX3/3qzTWAjV106PNSkahGq6uLvCTZx4ndne3OGO5vLgkRY/BcWkveH/9Df7V//5/j+/83g8xbc+v/upD/vF//I/4yU9+wk8/+q/wepZnwt5Hc75sV9v2heZigFDcK6K4u/RWEJ55IKvAj37/+3zlrbf4f/yn/yXDlLndHXh5/Vq8241oGgJnz16M5ZCV5/h4PN6jQj569AgoG6VWpQD0KHsW6GccTeuEgjWMy9Qkx4gttpHVXa4W/ZXSVK+mabi7u7sHbtTN/NxF78R/zUvmRd2vcs68evVqeW2Xl5ci/JtmfHmutVJo55i90KWMNuVnE2qpT4mYpXg+R9ruTUeyOPLEcOYLf8a5zjkXDnBpjQoaLOtc32suPjfRfOOqdMr6Z6UUujgrnael171smqYFOY0p0zaSOzPNnlW3ou97ur4l9SuG/b7sJZnNeo0yhrv9jsfrFZeXV2y2lzz97AVN29C1PZeXF3Ql1+l4PNC0a2xzMhwJwUsOz+4OlQowhGRETaMvxWjm9vZWxLeFphdDIOaMaSxERZhn7m6FzhlSlGlMLoFh1tJ2cmas1ysePriiby/pmhVaOZpuTRwHUg6MYWIYj3gf8T5ye3OLUYauvyD6QJgDpIzTCh0CYX8gKM3vfPu3+e7736XTDZ/96mN+5w9/yPvf+w7vf/97/5xW9H/7V0zw4PIRDx86Xt7e8ermmkxmu96wvbjAOk3G42xL2zisgZhm7m527O4O3Fzvef3qDoXFmpbN5oqu77HOCeihRQc4TwM6V/pK4G7/mmfPP8bHicdvvc3ues+L1y94fX1DnnumB4E5JQ5zZL+7Zp4PTFGx3j5CDQMmJlabju+9/X2meeLTTz8lq8QwHLi9NigbmYc9169eoZVhHD3zLLqn7XaDc1byElTmydtvo5Rit7vBGsWI0JKPh4NQCbWCss8644R5Mk9CIw6+5HAhk3SlccYubm81TwLKuq7/0wKyfZHw+RxQAO5/fpk+1z+LKQ3iJBi597XOC3dp0mPJGDuBo3XP7bqOrm3RqELDd9CtWPUtMUTMOJJyqQUypFAMM7TCOkvyGW2lPlitVqhS21ljyCW0L+d8YiZow2a9ZhjHRcN5bvLz5tW0HZvNlovLKz777DOpdZO4P/Vdjw+e3c1OdMquQbdiVlFt/XNKOCfTyMkPBAKYhMkZlz3vrh/w9sUl724u+ebXn7DZOrpe4SZDUIqgM9nPWJMwVtO1PYNSksMRIjlIOHIsoNiiq63vozwgkslT8lWmaVrer3uuif+M6zegS3npnkPGz1PhCCaUkbFP2zkuLlZoC512oBzO6uWhnqaROGdiQcuwWnzVc753WLetoMH1xY7jdCaGlIlB5YlVyoIgjCKQzjmWhMwaIiWHXUU5aydWR/Pn6GF9YM6Re/n8kyZBOvCCPubz8ZFa0Mfz4qI+fFXcXUfeLHxGoWIonVFJCtmU09I41HuzXLkuRETIFYszUr6/WO99Dve9+s83iTdpT28WB+dNx6nwSIUX+HmqyOlzhFemFPS9JLEqENRnDozDKAhpyhhr6Fr5mLZrix++RceEBfq+xVhNyolhnBmHo3Ckg+f25qaMSDOrQrOqP1O99xmwrqVpV+V9VOIaBDjjlmlUDA3BT8Jrd6FoLJYnloykxVK4oc4YnDZYpdjf3aKMWPVqrWlaEf6jFPM0oRHdiVWavvhev75N5P2B7dtv8dt/+EO+9r3vsbq44rCf+ejPP+Dpx59yffOSnDyHw42YKTVf5ig+zsayqjT/gRCkadzriLUSUKnbHpsjrfIof2DTbVC5xfsVdzfXJQk18mZxq7V4u4urlzpRoMozWj9O9A4OXcKmqt1z1zXF5KKseWNLtnbl45bny1pMod2db87VhKLuAW827rXYzymL1WQZWetCAVRnTYD3fgEu5nFCtk35GLFKlJTXrCRPSAzhhXpotdgeYvqFc1yvN5uAXClcWegKXzSJOIc836SfLhzmNwCJN0Ga2kCdT1TErYRlL/38PnIqVBbMBMWDhw+xrjh/+VisYMU0v82CTmet6VdrlDb4OZx0MikwTkdCCW0zJVejbVqMNQzDET9PUkicufDknNnv95C1zHvOmkfnHPv9fgG0UpIcj0yZnqVYDD84n0kLEB7FWbDrOsn26DvabkufNen1S8bpiA++NGMl7bg8J0pr2m5NmGey0lidcMrSGcdF2/Pd977Gk/WWRrf03/kO3/it73P5lbdRXf+bLNu/Udfm4grrOrIyrHwU2lTw+BjwYUbpjI6JGCDbhgRM05Hd7R13t0d2tweiT/R9S7/ast5ssbYVWp0Wt8ycDDFowjgvDfCUPS9fPhdgMkWUg8N+x3A8sG5XlRFEzJnjODPPHj9FsrJY16Mt2MYtbIeHDx/SdZ0E1saATpFpGBkLVRxkkq6VmBV0vUxZx8lji5W64gKtRMh9tHuMquYrhSLqxDxhsd3PeQnKrWehKntyNY2p0997+xYyyVdnYMqbtUGtm85/P6ej17WhFq7n/evNfeccoKl/X+uhpmlkvywT0aZpxX48JZIyQjXXpkxPiouSLRNRpWi6lpjTsj4lUwhhj3xB83CO8J8zP85d/+rPvOQrhbhMIaIPxfFPE1IWq/GQmCdP2xlSiEx5kj2iTNJyjBBDCa42aGswGDpt+N133+Mr20serlY87lc8bHqcUSQdybOHGIUlYzTKAkYxq0hS8nNqFOHsfp+/1nPWkAjgz5vN0/XrTjR+/SYjeLKWV+/9TIjCb9dOOmvXGFabDusUGovSEpwUwoyfJ6Zx5DjPGGfQVpOiWlT69ZCqKFadOqSUGAfxrDaFn3dubwtwPB6IQURGulAecuE4xsi9h71SFr5otH9+KNaf4RzRW85ZJczfXOwgU7zvIlPpDDnne45LqTw82mgSBvEpP+P8U9ByKs9QJhnn96f+zFIMyOfIdP70c583DOefE8+aqfPpyDkHun7eF41DT4VcIpy5DtQD9lzcKjzpgoqi6LtemowMpCwLapzJs1/GoG3TFF/wRhAlZbCuFEzF+jhGcfwYjgdSmUAdjnusUjhrWa3XxGLt1jSNhNiUUXHbrWi7voh+xT87ZeF21ylUDI6R00ZmjCbEIsDPQkvTZYPUphSaSpFCYH97J65rbUvbr2nbDtc0jNPEPE10TUvXNahYw8I0OXpsijy8uuB7f+sHPHr3PVK03Lza8fFffcjzp0+5u7smes9hd0fWGVd0Cl/WS6kTwpWKNiJ4zzge0XlGGwnea2IkzRkVBxpmugaMcsS44hMlY/+6Ab7Jg02lQDec1k/TNfcABecc1jUY45hDxJfJXEsn048sziLaiE23UorovTSoVYNl3dJk1D0rxrjQpv5pl9YS7kRk4QUvAIc+C7c6A0imcaKxsu/V5gYFeS58ZyFDiFbBCFqHTph8AlfqPX+zkK+NmOxD9w0l5D27v5fUr3PeTJzvG2/uV+e/1331i/aZ8/1r+ZwyEVUlE6ha0m62WzIwjgOJvKTkKpWJCAhgbEPb9uQM4zQJRSEHYvTM81DosBlrdQkwk/NnGAam8SjniGLZ28iZ4TjgikBfKATmbPpxCiqLMUnBd4/pLjQVCUWs94WTsNjKeeGahr7vQTn2hx0+zEx+JhaxveyNjQSQkem6texnwWJVxCpF51ou+jXvP3mbjg7X9Lz1tYc8+drXUH3HYQp0/4x1+jf5Wm8uyGhiRvRbzjBOo9yrOKNCQmtL8JlgFFFlDrsjdzd79ruB4TiSk8W6hr5f0/cbKLq5RCyaJkPQhilIAxNDJMWJG/1aqMIpsr5aMx4P+HHErpXkL4WJaZo4Ho9M05HgJ0Rs3mAQ2k8VA2+327IHVcDVMx4HhupqpbWIgm2Dc+KIZqxlnANaSdK17jq0ygzNQc6j0iyk4hakXS71x4kmlYu1c83MUFqfmn2kcD7fv+TIU/fqgzfXNdynWZ/XGHDKJEsplUP0/ud80X+f1zL6bF80xkidUKjRGpkeN20LcxCspaz/avEcYyQoTUIYK03bor1fAkStNssaP28y3gRdx3GU16wKXfXsZztvpnyxm52nWd5P74ttrZEGI5X3IAj4EFImzbM0O/m0T6QISWWMcxgiK2N51Pb83vvf4Mo51taysY61sSSVGXNABS+fr7UwH6wimcxMQim71LLn9/bcYCRGOQ/rc69UrTelHnuzGfzrrt9IkyETLMU0ebpO0MCL7YppDDij6Vzm0aNHHMeMjxqlDbv9DfM8Erwn+ESeSwhTGUMpLQFYtYGw1nJ7e3tCpBv5OxF9D1xdXS2HWNu27PY7Ys5sthdYo08+wih8sSbV+n6nWZHutm0Zx/FeM1Fv3jlKVR+cpSkgE5McfiEG0nhaQDWBu+s6mqbBj0LZUlotlpSxBL6FlMRHSilAhKpOO4wzDIXuVblxb2pG6mt5k+/85oTi/PXAyQnqHDU8b8TOF/ibi9xYQ46gzhqwc4cmkA2qscI7zMWD2bVlOqFNOSQ11jjGPLDdXLDZrJfJVIxiEbneXFCjcV7dHnjy6CEAw3jk5YsXGGPo27Zs0EJ7maehFFhyuKec6Vcr+vWG7faS9WZD42S68OEHHzKNAzlnLi8vOBhNSpEQIvM0ipg8RjnYC4Kq0UQF5Iwphc0wjsT4GtNaHq3e4vJiS7++4nJ7RUiJl89fsFmvcVqTfOBwt+f1zTW72xvy8xv++O/9KX/4d/42P/yX/g7JbfnFf/lLfvqf/xV/+dMf85Nf/pgXN884+FsOYY9tLd36y4tAgqC2KQmv1JjStIaZ/W5Gs8EahVaZ/W5PxtCQ+NEPvsOnz68ZPVxurrhY/y6/+OBTPnn6knEK6CIcb9uWKXjhrSvDenXBPE3kHLHGMhyPUKaLfg5CdbSOlOs6P3FOc+H5O9cQo5cplrOYLH9vjIzYKzByOBwWV5Gu6zgcDl84PTyfcBgthg/L4Z0yTeMKLeIkvqt0BZAdaL1a42OlmnnhHFsr6dfWCviREuM44IcBDWzWG476uOyPcN8dptIf/1mFxKkBqLSp+zqSf9q+9EWTHJRQOitVSim16GHqvhKLYJosvv4pSe7Ser1if3tLVgofE75YfjvnyEDXrWj7FU3bMYyzZDoh9FwQW9jtxUruQ5Y7q6Ekt3uc1by6uyXFwHq9XpzPcs6lYJHn19l2oaLV/cs6JzqWGAnzRCIJNSMG5iSTO2M0phSJq66ncR05GfaHGWsUTedx7czd7TXOObYXl+iDxs9gjSC0xjqsLia/3qOVwk8jyY+kPNG2PRfrNRxmHn79qzz4yns8+M538X3Dp58+5ed/9XP+wb/9r/3zX+D/bVxao5TBoOhWLQ+3T0qBFPj5z37MPA3MQ8KoS8bjSJg9+7s9L5/fiJ7PNKi2RRlHVgbbtIX+dgIOFzQ3RGIUyp5SivE4Iu5TlsN4xzSP5JiwJvLi2Qfsbl/w+sWH7HcvyUnCI+cJqLqrHNhu1wDsdnd8+1vfYfYzx+HIcX/HJx9/yM3NK2IKbNbropAS05yUDSlomqYHNOM4cnPziovNhnmaiV50naKBFv59Z1sRm0NJ5J5EV5jra8pFU3Jyyrs/dVC0TSt5PGd/fw4WnN6WE2X6TRBi2QOkiPxCILN+jbqvnBe/57+cc1xsN7iy5zVthxFEEl2AnrZfSYhznAubJhTDBWmuYs4lwE/W0Kbvub29ZZo9CmibZgFmK3iQUroX+OycTEoIJ0ZOpd/HGNntzymzVddcLNWNwyhNXCXJ1Soft9lsxA1LaxrriJS621nauOLbb7/DH7z7Pt+72JCPewgTWidGPUhN7aOcUc6SjSG2luwS2WWMVfRuxTzNjD4Kc6Rtl1/1vYtS3BJDXHTFdT9vXSOumKWG/nWuX7vJ0NqhtcNoh7Mt1rjigqR5663HHOeE7UYeP3rEJ89vOUyTiLtDEKTQz/jppH+AEvpkxF3m/KE7D5Gp04f60N7e3Rb0UDpXEY12WFtH4UfiJCMtcpK0xBiY5/uBW2/yqGOMS5f65qFYaU/yIJQuU4HRclDUgwVk1LRardBaMw0jBk3XSMPhOnE0SiphnUS1OyuWqOMsb1xKiTgMi82vUqr4NsfPUbzebATq9YV0B/kXafDCmeDrjc9/szmRz5JpQAr3Jz/n06FaKCilME1DShq0CIa0Nrim5eLyEm0sFxeR8XLklz/7abl34iO9vbjENa14N5fvb7SGpHj5/DUxeqbRs1qvyTHgvVDplBU0OCFTgq7puLi4IhuDaxu0ttze3nF9fYPSRhyfRFlGnGdyDEzjkcN+J2nPMRUOKfdoInIAATkzE9A6SKCkimjjSsEsItDPPvtU9DUhFEu9jJ9H9vtbnJ95p+t554//mH/j3/q3eP+730G5FT/5Rz/mk59+wvOnzziMex5cXaBs4BefXC+LfhqnX3fJ/o28ZPog3ipkfe/ZU9qUsCgIMcghnTIX647NN99DaQe24bOXNzzc9nzlySV/9pe/IoRCZvMeSFhj0aYp9BmF0bLG9vs7sToFQhdKMZ4FTSwTEHm8c6HUGUwyoBKoTKbFWWmWlTZ0q1VJEA/FiEItfOZqi1sRwWWiUpJUU0yLo5yy6nSY6rJenBN6VM3J0EJj0M4yjAM+BmKIzEFca7LWoEFhCq/csF5L41Sd/LquE7BA65IwfX8Ke76fnP838Lk9RvYSyGfarPPP/dz09ezvlYydBeN/I0D1/Hs4a080KiWi/67vWa/W8m9KY3TicH1LLNRL56wYg/QrdGk8lRK3mUZB28rEYp4nbu92ixf9y+fPSV7Op8lPZW9vTg1U2XNd04DW5AzHaaQ64IQQyh53Rb9acf36FV4pppyZp1EosEpcWk6uWJk4z4RxYtB7XmeIWZOSGI1M8+l+OOvYbDclpC9iUkPfteiceXH7GbP3Zd+C43HH5a7FXwZWDx5y8f77rN75Cr7r+LM/+0s++uBDPvrlr760TYZQIiWYcb29YLXZYp1F68S3v/N1Xr14yeuXr7i73UOUnJdpSPT9pRgDZkUygmqPfmK3v8MYoT+2bUtOofy3I6S40Lolw8Hj48wwjdisSEHQ8E8//oC22dB1PeN+w3C8ASjOZob1eiOW2dsrUvDMheHx/PlT0aIWwMuHTEbs8Juux9mWxnWsN5cobYgxcXN7XSanmtV6zfXNa4bDQUT+6xW+1D/WWFb9Gu0sWWumURqR4AOttkVEfD9QD+6zP4SFWUJ8z/qCczDiTWDiNM2L9+oV+Tyo1PJ6fRG4W2u18191utA2DZv1RqhASuMK9VVpQwPMBX1PKRYNryushyNxnoVWl8Te3hWACiQQ12iDznKPYor36tVzYfSyvy2TISSbw+gF1M45E0posEJjbP18mWSoBD0dw3SyP2+apoQHLrQJlLWYfs3bXcfjy4dsuh6Cx5hqJmBRTSa5LLQqGrJR0CiilkZSZb3oec9B9krdS2WyEoLso9WBE7j3/skzXUJzv0B390XXr91k1AejCqt1Qc2cNaxWPbbTJNOy2axQL+4IwROKgIXl4b1/qAHCJz477M7Fj/Wmx3gSL1Z3lox4BmcoSKa4CCh9GlFrrbBaM5ex+ILIl48/6SXi536u+qaf/1l+lXHa8t966bBrF17RR1nowrWuo3iZ4pTUV6WF8+0abJlopFToXG+givVNra/hTdpD/dg3+dL194rC1UWhlPocNeJ8g7j3+vNJJ/Lm/aj377Q5yNg45dNmpQp3WJeGzLmGxjlW6zXGOJlupLQIgmNWJZW7ePRnhN/qZ/wcsEYTlRJebLWWVarY0QmdxBhH0oJRymvP4oVdCpa27UhZgg/neWKe54Xmtmy6RZhGPi+UxG8+FxpHRlyOQBqMcRzJOIZpFuu6xkpIVsqSVH08cKkNjy8v+YM//AO+9b3fYv3wEce959kvn/L6+Wv2xwPH8QhaaIiNsyTXSrrnl1z4nauQ8o1Ja12XQiUqybWlALRas+k7rGvQ1hFDD+kCqxPX13fc3gzMc1xQJ9nxU3FUqc9pETUWxMgZVwKppLgv23n5OFkrlUagjETc6WhwTYPRlqzEPS2TsVYAB0mbTvf2mTeRfq1lP4icRJTnNABZl8XFhLODzcjoWxtdOMYS5rY0+0ZsGnNZB0JDdHRl2pFiwhiLVopJKTh71msjdB6+dHq/7gMuy2uBQiM8/dsXftznpiAsGrLzj6+fs0ySsugOjJG9NJBPB2Pfi8NYQbRjue9GKVarFW0j9BKlbdEtiHVtjKEE+AkFbn84yHsADMcBP0+kkqbr2qak/Uqzk1IqoJgUnxmI2aNB6Jza0HQ9TdX61PfV6BLeKu+JylqCuJBTKoVImD0TIymB61ZlojIJLbU64DQtnTFoH8hqRmstgbYpFcSVQvdBgleTonEdV++9S/foEfQ917sDv/j5B3zy0Uc8e/rZb7Zw/0ZdxU4VoQaqUo9Ya7i4uGCeRobjkdtXO4JPkqMyJ1zTifFIFjc6bS1Kgw+SLGxyWYNGkXPAeLM4m+UkxiVKaWLyhDCjtRXqS0wcj3fELhLDhMIzT3s5w43Fmoaua0lJtKPDMDLNE+MwcH0tZ9vsZ9pWgv6sa+lyQitH2/aSedKv0NoQQkTd3hQwQ6amdzdZJmdJABavioOdElGzaRqUsShlmMdBwMxwptE4u7PnhX7dG1JKMiXQ6t65v7wb+USXfPNX/feqa+SN73U+TX3zV6Uxn4cKWiPaqaasOdHQiLau1hfaBwEPSBhrkFwRmEMgpEj0950C62WdpYli+rDYoucTNbTu62/eA1XvtdElyqDsO4rCbvE0rkWb0sQ4g/czMQRyNkuNKzVhAWCUIpfJjHIO1XRcrDZc9CvWTYua91LvKI1RkHQWzabS5CzWuWLtG0/6rWI5fn7WnutJYpZp8XnT+blJFJQw0Ptnwz/r+g2ajLiIf7SWnIy2aVl1Lc4o+s2a/uKS7aZDZU/wI0YLHUHljEoZsVj3y/jpRBOIi8tUbSSqir26dgAlIVEOl5RhGMbCjZcDNhVhtWkalC886moVZhzGOZriTlUfXqWE6lCLzHME7pzL/IU3VKh5GC3CZW1OegzUqVDIpXDxx4E5+MVRJ8SEjpmQxeJV0Evh886TTFW6QiWrqGh9AOo48c2f74uoX29+XM6ilagekudOEF9Ikyh/rgXb+SaUzxah1PRaOvMMoDG2JpdnDseBtpVkc+ca3n33Pfb7O6Z5pu+7JbV5DpHDcZSFomRa1rUNWsHd7Q3WIi2mUmQFEWn62rbDtR0YyzBNJKVwKdGQubyShO/Ze5TKYi17OLLb73l1c7dMCKQRlALOWIsPXpqms/Gw/C6bitQvkRA8+8OOcfZ0/cwchcazdmswCu8jwzCSdjuevP0O3//m1/k3/p1/E335kN3dxMc/f8rzj15xezgwpsDN/jWJkZAmLh9ccOEU2dRcjS/vlXNC69MkrHJ3K3JSpwHaWBEvFlthYyDFGaMVvY48XGnatza8dfEDfvyXH3P9es84z/zy+hljEEtIo1cY7UAppmmQpFWy7EdkcozE4JlnTc6nzAU5VAWkQAsKpFINo3MLtWqeZYKxatf4eeRYKFLnSJzWenFJSkmEv32/WrI6zieC5+iYRpocXXj9tmnQVqiAWYFxDquUHKLlkFXKcHd3gy40Aqs15sKIbXYRI+6Px3uHZP25qhPem/vEOZjxppYtLU0cC0L25sF0vg/lXCap3G+6zmkX5xlGpiBujbHsYsQ1DW3Xs95sGcZR9FplSqGUpmkd77zzNsqKsB4tE1ihGGlGL02GcZr1as3d3R0xeNGDtQ3TeGSeR1ZdT2sFsIrA9uJioffGlOlXG4x1bDNLsnLfdqimJ4TAWJzFQmmY+r5nPB6JoTavcsNUOainYcDPHusD337nPVZ9h4AWAqoYY2j7jrbrMD6graHRjvVqTQqRxjZkKwVsRLFWjgebS956932+9ad/gleO69sjf/FnP+XP/8lf8PL6OYfp5l/4Wv8XdcVCiUxKMc0eBnHu6kpxtV5vePwksr8ZOO4GptGTYsY4IwgvontZ9T2Na4heEpSpBiKbFXoEH6aF1hejUO4soKImxIkeKzPPjDiQhYmoYJ5UoSNlyCLSnuYjaTezP9yQszA7jseBpmtJ4kFP1/V0bY+zDUo/4O76Dm0cbd/R9x3OtcQUefXKMo7C3798sOXy6gGT99zudmQNPopukgRrwGrRNfZ9zzQcOdzdMRwOxajkpAOta7Fqy0IIC11bJq0NSp8okefr+81p6Pmf89mavzcF4LQHLCwIc8qaONfftm0r+4F19G0vU+9aKJemXxvDZnPBNI+kYioCsFqtaNpGXPIUoEbCEKRRKT+7dY5utcI6JyF8KYLPzLlmZajP7VU5F92tMRhraBtH2zWFRlTz2GTfaNtW0skbR7/q2O93TGMm5MTmYrvc73GasNaJgyKKdX9B0whwcdV0PGo7nnQteb7DZjAZiQTIHpUMJrT42WOULUHMnsatUEYvjqN1klGbyBqzUKlcKaV7gdVVo5NSKsGPJ0rbr3P92k2GdIsZsa01zD7Sdpq22zD7kWwGdNPyB7/7bdZtx9PnN7x6deD1bsfrmxueHfYicCmx7fVBrgj2/rBDFeelHHNxW7GLiEZrcd/ouh60OAON0xGTy7g6sViBAXilybMIBRvr0NZKk1HcqeA0wajOM4Igzfe6uPOHKsW0dK3nnbY+83GWcDGLovjur3rQhjkGZj8vB896sxGETck0JpXCymjNxaUI5snS1DnXMAwD4zwtxX19QM7dDhbUgVPxcD7NOF/YqnTLvNFA3UcTTh9fvQXOG443N5QE4i9YeNRKQ78SeaH3gZQnjvsjRgu65+e5FJcOpeD29pauX7HZXrI/DgVVDOV7yb1/+8kTbm5eM0+eEGdW274sYAdJ4VyL0ZKlgAr4MDKHgdlPGAUqZ4bDxCcfzaA0bdfRdx3p4oLxeOTm9WsZKZdC9Rxp+dwYOIMPJW2YGdvMuEYmGO1KnLI2XcfWdng9k7LFZ/j+3/oBf/QnP8Jutzx9esPHv3zKX/yjH/PLj3/Fh598wMeffcinz35OvzY0rZFpCI55igzTl5sulXKS96eIHasWoOZM3DuAQNBA5xi9R/tJ0EQSjU6oVrO2DX/81XcZH0d2KvH2zRWvdjte3x04HDSzT4SQGFKkGryFFBnGgfLllwmj0oZWa2JJY80qczxO2JJHserXonso3uvGWi4uL1mtep5++qlokM4Q+/NphoyjhZO73+2WA7V+XNVyBF9oUOPEo4cPUcYQciKkJEGTWTEFv1g2WtfQr3piTPgQWW+2OFf0GUoVLZwXaqHSbFaKxjUchoM8y4VnXH+Oyg2uQNC99+4NrYXcQJap6/n1RXtKlpFofWO/sNm5t96sZhyPjJTMoKoFAa4ePJTD1zla1/DZJx8zHA8ch4GuX9Fteq4ePGKYAxmhN/XdinkOTMOO16+uZdpBxvuZeTgCQhMQznEV6JdG2Dpc07Jab3nnna/QdB03N7eklNjf3XHz+jUPn7y9NMmHXcPtzWvGY2T2QW5UEa/HMsnTShKYNZqubdluL0izZ9jvmaeJmDNN29F0La5x+PK+b1Yr5mFGpUQOHmcduW/okmGVW/7WH/0Rf/CnP+J3f/THJO345V9+wIe/+Ji/+Cc/5uNPfsYQjmTz66GQfxMvH2Zi1kQS090e7xOusYxWkdPIYb9jd3PH8bAve7Om7TesLi7AGJlMxMyq29B3HbfXN6QQCMA0aWZ/ZPaTmFEYyETRZZ1lToQYaYwRkW5MRQYoltrH8SgCX07mFtM8Y43sba4RS9D9foedBJHXxvLq1QumaUYpzdXVFa6xEkSrYRgPUmdlaFpbilAYJZSM9foC0PhpkGY2T6DExMDHhGsjfdvQty0PHz6UWsyL1kzYKbJG6vlWAYdK7wROgX7FXfKccn0OGteidNkDtFoycf5pU9L6b+fai9VqJYLuplmMY2yZ3ugCNoNiGMWMQWeY/UwMwnqYpmk5V0KQfTUnccUUh0cv2gIr04cUEyYl2q4tTnCZaTjQNVaE2cVx8HxyE1NcKP+uaWW6nSvjRSaMSkHwga7taNu+6FMHCXi0Cm0FfNExsh8HAVa6FdZ1tP1aWDdacbFqUHjuDtdczAFnGnkO2kRuSp0XwOSMMRHTyJQn50j0AR8CXd9/7v2qtfXxeBSacnlf6nNgC+CilRLQNX2ekfTPun7tJkNG+VXsK0XYPIlgKacRGz12nlg3im2n2LnMdRy4WDn81HDjNMELd7o+UNKFCoI5evFutko40DIOP43s6sOfsyQUKm3ODqjiNZ9lI6+dZUpiNWudjJ1smWRQ7MoErTxRFWrj8yYHDYQTK1MGaTbuNSCVTpMpDYdZihdl9PJgpoL0mxIYpLQtG5agua7YssVgRNBcCpOubRekMJHvNRnnE416/dOai0rHOM+4gGrzWcgiZ0VSRdpQRZqgKhGNN4af5W8zLFSinFBJEGNTKAPWWnyU1+Tnkk6qLaDEzrPoZkbXME+zNG3GMByHciBbXCcuVCkFYg70/YrtdkvbdIRZAiOl2EvSJCCp8nHO5BQKvUlhm4BrOsnn6HsO+z3TLLaDoufJGK1IWuhR589hLYS998SgyGWqEksNtVr3OKvpW8eqbWmzYjwcOLx+xW/99m/z/re/zdVbbzPOiacfPePjX37ER4KlvMIAAQAASURBVJ98wMubF7y+fcnN3WuG+YjtGnS2kDLZJyYvSMeX+bpXn5ZGvdIWzwvMuhbrqD2mhCZjVMYgWQOyg1v63uGUwc6R9OQRl+uOq3XPfgevbwb2w8QhBY5xJkRPzAkS2GiwwdArmZbmKHalIQZOfJbMHGY0ilXfk2MZS2tByyWjwC/p4fVXvRYkH1F6VMroeTO/fGzRe8lHnu2RWeGL40dIElDZtA19v+Lq8nIBbnLO6MYVKoFmniZSOeWMsSjxXUJpXV7jiZ6ptV40EfV9+CKB+JsAzAI0qBNn+4tBC5DU0Fzuxv3rfGpS/oaUpZGXvU9okEobfAjoSptNgiZ2fS8BXCHSKXnzYpRCStalEgFvySMZhqMkc+ezYEUtkyEFMiHSFm0cXdtjnEMVivA4z8w+cHd3x3q9WSg7aoFikGTvIrL3xfI05hOtaaFdwsK9zqlMNWLANI715qKguB2rlYQA6gwYEX1bLTa92mjSccJpeLDZ8MMf/QHf+K3fYvvwMdcv7vjkZx/z8S8+5Pr1C3a7a8YwfKmbjHmeSRiSsmiTJCzTB1LIDMOBw37P4e5QJhQykXRNQ7/aoK0V56UQ6bsVXdsSN5Jb4pylX/Xsjzts0jStxTWGaRK9U05FU1b464fDAVMmeVJXQEpioe/0yXlxmqYyvZK6II6eEE56LWPlvdjvdlKjNI1oMvuOxokRRM5i9S70OVlHKSdmX0Ea2Q+c0UzHQcCKGAmTnLG6U4Vr7+j6lWhPytp1zhFzulf7vEljgrNpxRtgyjk9Es7Wv1JLzXBe0L75tWsdVWuwOr2oGjKlBBipFrB1j6oUxErdlzoonGovdWJcpCShwT6ISUIykVe7HQrwxZVLwGHQ1oqJQk6yJ5SYdEkgehNMkZdZzX7kXkjY9Lmjn3MnJ0SyQisr74umgG2eaZ6EEm00yhqhShkjAnUF61VPW9xcVQaiMBuyVSUWIaNjxiVVcd7lvMkIpVciD1imU/XenCbIdSt/g/aWT4S3N3U2f931Gwi/zVJ0xhiK9/pAzhGjPWbURXzVYNOISUfieM3lo7dJsefursPPnmA0Kd2fBHRdxxCCLHTbiHd5Sa+uouLq7uScF8qCLsm2ZYOunNlcGhDtNCZLB2aNEzcO67BNs0xG6k2vybn1ptcuvl6Vl0tB8H3yn+Pm5SRiHqPlgVVak3Uu6Jt8FVW+p2x4a7HaDBFUpHG1OFB4JcVtDAGfhKuplBTqIaVlfFs3hcXu7o3Ffl7MnLs13BttUlwmOD/88+mFI3WB/KugkbVOUOUw16pyZEsxVYpylFjnWaslFMm1khbu/RJqFqNaGgLIMCs47Jnnib7vsUYzDAcaZzFK0tG7riHlQMqB9WrDg6uHrPoVw+DZ3e7w80wqvNmURQyZAwzDjpg8Xd+wUkoQX61o2oabm8C+NBrEiFYZZzU5V7cNFucwkE2lUvqWzbPeABVxTtO3DVerNU3K+N2O/evn/Ojf/Yd87Tvfpds+4PXrHR/89EN+8bOf89HTX3K7v2N3vGEOAylLqmsiioPOrJh9wM9f/sRvueRwkFHwCTAAea4qT7Xa0cZEadKVOKcUhDAQJLF1VvRT4v13r3h0seKtqw3DXvGBfsnz6zvMHLnNnpQ8SUkj7KPHBlv0FIJKTSlKaJoqWp8sia0pJlatpAZnLXTDyYs9YSx2f9W28HwKcE/0yH06wXLYArkckJTD2+iT+YUxGjz44MnI+L9tO7bbDW+//TbPnj1bvo/ks3SQKciUiIqscwQlokNtDDGI93oq6bPOOeZ5XpD4+r3PGyY4gRCV1lAnH3CiVeqzj5O1sbzl4k63fK3yd+nzjO37TYdCGxaDDQECMpOZBHhYDniWpinnzDAOjNNMjFn2APRiMjJPvkzUFW2jy6BBzg5nrUyJbEPjWlb9RihYShqD69fXzPPM9e0t7321JStN0/bE6FFIs7bb7RiHoTgcBtEnLgf1CRyLiJYkkZj9DMcDeja4ruXxk7dwTUfbdKxWPS+eixFCNBaLTKqSEs1QHI+4ruXJoyt+70//iO2Dt4hYPv3lZ3zwl7/io48+5Ma/4rC/4TgfiXyek/5luaZ5AuWEj68USsaT+OS5u7njsLvjuNsTg5SEWotL5Wq9xhamQ/SRvpMi3pqmNHMN6/WK9CzgLbioOBwa7DjivSZRNF0ockzsd3cYbYTCs94QsljHEvO92uZwOBR0XmiZ0zgsQFZKCZ1knx/GAw8ePaZrG6HWGKHJOGtJiPOc0Fdq8Qg+lIwd54BMaw3Hbi/PnfcEH2iaTGMbVNkHrDE0Jc8rZ0mZH/0kAGoSIBfuF+r36DG1Uy7ggRTap4lkvd4EOiuYe35uvqkNqNSovu+XzDEFOC3Wq3WS6UPAIGu2OpBqrUkxLM1KrXnqz962rezVSpGi5ljE8sYYtFJs1hvaphHae/ACgiqhZFedRMynl5/L/6PkLOu6jpxzAX0O1GBUqR/axSo8JdBatDo5KbwP+GnmeNijGidWdxppNkotaQxsLzb0KuO81AAplIbAlY9PoELGZEtEJqYhi2ZLK0VvGuZQLH456Xyr7fr5ni3v29mUP6Wl5js/w36d6zfIySiBLirTtQ3TuCeGEe8bukYXhDIz+8Rlb+m/+oSL1rK+eswcM7/znff46NPn/OQXH/PxZy8JCWm1UmYaR7Ejsw3KOrJH3B2MIkUvuQhRCvgYAmEd6FfStcfSZdWHKERPCIkUpOiLKdO2TqxLtSZGEYBdXmxZ9R0ff/ThvYaiOsAopRa3qVhQi/oGVMvdupE0TYOfZ3KI9BcdfSMBQGPwjH6qKw7nHFeXl6zXay62F7x+/VrsKrWRrrYc/je3tzSli211t3yvEJqCzMm4dponuq5baFN1M6tN0nmxU4uHc0oVsLhWKSXz++gDxpQDV1X+pHTGsdDFZHOpNDJFJAmllfrwiZZCKRFwD8OAeLtHcpQwx3mesFZsB5U2bDZrpJhwONfy7W9+hcPxyN3ujuBnnAaFQ+vKlU30XcvFesVl19Baxe64E5RbAymjcmQ8jIyj58HVQ1xj0DFBjigSYR45JKGvjcORnDN9v2IcBI2Oc8Q5i6TZ3Kd11M2xNnmCPjlBxkIgec9F3/Onv/8H/JP/9P/FV7/ykD/+w9/jR3/375Btz7MXt/z7/7v/Ex9+/DNevX7Oy+vnzD6wP+6Zw8BmuyHlwDAI17o6gSxm5l/S6xypapqmuCmdUL962OScZR3qGi4lm6PP1a3M0ZjE8TgKuqszWif6ZOlby4NVS2gVb6mOw8OZ1/PIJ4+f8MnNNT9//oxBZZS1ZK24ublGgvuK450VC1IfJBfDaEPnWqw+GUWM40giM00js5+Y53EZJRuj75tJpNMaXGiiZT/w3i8bPTHhrMM1DZvNpvC1M7P39F2LS4mEZHzc3d3h55mu7RjHkbFYXq/KNMQYcWIayFCyY8SHXdJuXUFLY4zM0wTG0Pcy1dvv92Xt+mXCcY4+1ntwvr8sug2lyNoItbQeSqQirhfkcbnqYFuBynUGsEAciMtSJOcknviG4tAiYnA/ewZ/FOgjy31/+PARu92O2Xs2iE5rHGdm7yEHchJw6vHjR7x8/kxEwocZlDRjSmkwBu0acYzTlt3hKGii1WIna8QQYJu2ksVTpkw+BubxwDQei6jz1CRZZ8VCM8bSbEqxEXxGEQGZzLhOY0vw2na7BdXg58DPf/ILXKPpGkfrHHevrhlKcFu+ueXtbsMP//AH/MP/yf+Qh+99g8PdzMtPXvGf/F/+E/7yp3/Op88/5rPrjwlmZE4zc/ryTkS7YMnKkLRi9iNOaTCQ0sS42zHu9szHAacMynVY19M2K4JPdF3D1eUlkCQ9O8PhONG0vehHsVxeXDB5yzgJh75xDdElSLOAAIVNEWMow87CWYcyNTRLw55S4vb2lgcPHpQslanoB7RQemHZ32LwXL98we76Na1t0Va0OP16Tcyw2azp+5ZHj6+424+EIIJsaw2kRFKKpODhwwes+46XL16yHya0tWy3F7IOSx3Qth3jMIo2ZBxAyXRY9qzTpOJkRiGNsCoIeXmpZX3LlOeeBqMwIOp1/m/nlNhzitS5BsNaS9/3oq2Icn+atl3CAFVO+BiYgi9UrwFrLBcXW6zSWCu12n6/Z7/fk3NmteoZh4FpHNntChhZGDLOubLGDfM0ngTRhaUi73sJ+VRatJH6pGWtVv6bzYbVaiVnxDDIxBiZrgzDgZwyb7/1Hpv1BbHLBajPsgfHxLTb4bSBpqV1GqWlfn388Ip3332P7u4W/fwpJieCG/CtQrUWjEdPinzU0ELowLeJgQkXxRktRoVWDhTEs/temTBLfZhTqUsV2kRiZc3E32yCUa9fu8mY55kqhqwPYc7Fiks3QC5jn4jKCaPgrUeXdOuOjOLBtqPRidZmHl+t+OiT14RJ7Pjm6MlGkeLMHBNGN/KQxkQmFh6vUG+IiRS8JJwCKBFChrKpC8ItC8VZhzOuHG6mJHpqOcCbBhlZC9UqlUKgdr6wEIikOy2NSJ0G1D+Ts6CCWTaOBb1TYm87h1BC3FRpJuSwPRdyKxVpGiWmOErRr1akKF9TaQh+LotTAupszmgVmOeJxjli+Zmr5Vh98K21wgMvOom6WM5dbxaUAtBJHF2yOgk7jSn3AKGCLSgHp0nIEuYls//lniqVpXGkiFetK/W6fE7XusXaMaVEiGCzwTmWzeGw32ONNLExBg6HO9GrIAXHqmtoLFgdWLeB9aplGDIvX800rkFvHX1feNfThA9zKXQGnAvYJtH2ghArY4hZ0lJTFkrMxcUDhnEihCOaSNaftww+34xTzOzvjqy6FbvbWz765c957713eOedr/D+N7+Jbnp+9cEzfv6zD3n67CmffPwRu8M1oz+wH45iRZkiKkvDl3OxTy1UPKN/A6+Gv4HXm0iI/FmdPW8nT+4QQhHwpeLxLhv93Fhs4bTLRqnAAEaThpGkNKlXOGVZNxYbFY1RbLqex1cPefjwCf/404/IpYHQWYmAuEwWc3ke50kKhVXf4xqHa1x5Too4MpXQq0KRkkJY1oukpSaMTvj8eaFkRbzk/dUoEm3bCHLpHMYKVZCcJQm4WFwba+nblnXXL2BIbV6A8myXqcw0LkV6jCJEtsVJy1aPcyUmHtqaJcDrnKpWD+AU4ynQMxc8/gzlXH6V1ybIX4msOddfaKEtFQCwoGN6mfZWR7EsNwmlTq59cgbIZMcoTS4BY3X/iDEzDMKnNzkyTQPDNMvzlfICGllr2K6Fj6+Qe4M2XFxe0BdKnJLotFIIlmyXkNntr3HGIfkakeG4w4fI4TjQdx3aysTWWEMa6n0X+l29n6dn/Oy8MBrr1MLjD8Hz+vU1segAfAhctVcLJWcYjjDPrHLiyeUD/vDv/ohv/973efTO++yuBz77xTM++cknvLp+SUwysVE5MRyOzHkmfIknGW+1l2TboJuOzdUVr3evOM5H8jSCn9EpYRDGhHMNxrZY1zFPnr3aF4Q7i+bBOoxp2WwuymTDkPKIMrlYsAvAJGcl6DL5jykUO2uFNoqQIq5pscVa/7DfLRPC7XaL0hofBHoW2pMUbK7sIzlG2kYoQTkmjtMO13Uoo3Ftw6vrG7RRtF1LTJoQMwklxjBZhMtaQfAQ5knQa2O5vFpx9eABl5dXkpvjZ2LyuFKwpzmTkmjQYjqrE7g/dZW/QADGjNAbqtCCqlWsbpL36VX3dK2pEI5KjeSa5h5lvTYYEr6sMUYmofJ1C+ipwOIgBUnFzhSQWgTXsayfaRzOJsuJFBvGYeB4PDKO4z03vSkl7m5vGV0jRkLWYnODiwGmQoOr+1/d95RaqGD1OqdIxRgla2UuTmRZzm/vZ7p+hWuqMciRpiTBb5otxjVizJPBGYMrWt08DBjvadG0xuBdIjoFVqGTKU7ripgCIUmOl07SWIq/XrFv0gpruAf4WGsXPfICupd9iTem21XD/M9dkyH8eSVV7/loW8mImdK5pgQqRbTSrPqG1snDseos89hj1UO2fYOa4Xg3Mk4Te6/YpcAcIyFltG4gJ1LMZCWHJLWgjXHRhIitmjzswtsWzn3OkilgtMEUeoVC6Fd1HK5QJcWzchHjvQV1uoGnRuPNf8+FoqUrFakIgJS0+EKbUvUeleCXMyTwnBLgnISCCSWsYU4lSwDEhUoVcbmycm9K8q34Q2txUSkjwvqgyPgwAUFC0Aql6byRqpcUCKmIqcpIMJ9zL4tYPAtlQCmWQmBhGSu1/Kd8LpBVcdI6WRJncgkR0+TSAIl7S0Yp+fkPh8OyGWhNMQ2YGQYvVp5atDzrVceqd7SNpm8vwbTs9iPTPHIYPa21tJ3h+vX1wl0XOkq1yFVLYGPTdEWMX+eVGde0eJ/RjKhcbCj1qbg656fX5yLFhB9nht2e188+47s/+tu8//Vv8s5Xv87k4cXzaz79+BnH45G7uxsOwx3ZBMbpKAeOgphUSVavqc9aNpwvuYUtnKZBKSVUmVrkdE6POR1M94WC8n8JSfFFg3YaFTTYjLaaNAeS08TO4LRQ3nQDVjk23YpNvqS7eMDP9nvGIGmwOkRJZ07FAvTskK3vr7VWUPTqg24dhED2p+mg0L7q+6PQOhJVvufacX6llGQyrsqE/Iw2UNd0/TWOI66RSY81RswOrLt3UNZJkCCoGT97EnEpaGT9y78ba8U1BbGFtI0TYWfmnjbtvOlTwqdY7B2X9+b8Par3jXL4qtIcqNOHKVVopFmAnPu0iry82eeNTCqUqtPXPT1L9fOEoz4vDUmMYSm25DAfS7HhSF1H2zpidOhJYVzDxfaC7cUFfo74KcjemcHHWeiLKeHjTDQCnMQUOB72IgYuzZmpKG0WTcj52fJFaK48apVWJui4Dx6mmdvbGwl9VaCtCICBMn0a6UJgaxzf/tpX+KM/+du8/Y2v45oNN7/4mOcfvuCzDz7j7nBHyqEUavlULKn7+/+X6frGV77OFBIYw5O330HlGXU3M+69FFUFNAhJ7Eutk7Uyx8g0ezJHrIWYG1oU636z5G51rUPvLDparHFoZUuzqQuKLYh+Wp7pk6mBsRbXNvSr1SI6dq5hvd7I2lMUB0lpKnL20uwH0XlYI05wMUZmP4HR2OAIPjAMR6ZpYp5DmeYXG14tCdJGa9ENETlmxL5bmwVZd84yjpw0oNYtoKjYpxba4nlph4I3HhO1/N/Zes5w8o+SzztvVORjT02GRCGVfdVYUPf3vqrFFBC31ibyo6T69aodNOlUjDcNxlhiDMyT53gcZE2FQCoOptVFdHEBLT9jipHjccBbz8V2izXiWmVdIzqu4IFYnKZYGoyl4SjretG1ndV33gfmacYaR2gCs5/oul6yeKwpYIykmHf9qoyIZFprtbgEaiCNI9p7GhSN0WQHuYFsNDohtMEMQSVSqVl1yhijRH6ATLq0qtrhUs+oky7m/D2r75sxJ9aKUnI+3GtG/prrN3CXMmc/2Mmq0BW/YkFjLGqYSEoehjAciHGW7j8lXJp5tLE8XD3kdx99hY8/fMHtceTgMn/x4c85TgHvNbv9TMoicvaqRK7HiE+CCiktCKSxViYMxSu5in4ADrujeJgby8X2Ymm8dc7c3dwurlDjOIhIr3a7KZ8VBDL+pxZCZQpQ3RNiFNV+2/cLVWZzsV3eYKUUbSMJ0xR1/jmHvyYmVt5zLqNK72dCEspTClW8JnQqBcyTFEeb9UZ4e0GRXLqHbAqXURWPM8s8HklJBvPpXG9yVsidioPaHOXlz4L+1M8BlKTWAmgtP7c0bImUVJleZG5v7xjHmfVmg1aah1//Bkor9oc91ze3OCdNnzYdIq2Sr1kbDO89KSdGYtFjGL769tdZrTes+p533n3E24+3vP3kgt/+/je4vrnl9e2eTz675X//f/i/klKga9f0/YZhGGEO5b3UhDnh55HucODywVtcXD7i9vUNKiXm6UgMIzfXt8QgiKnOGauqteV9e87a3ccU2T64QPsZDgec9/zO7/+Q7eUTfNB8+LPPON7NON2yWYtlHqMipYBrFDrrotWZz57FzKpbsV53bL7kid91iua9RyuN7SqtLiy6n7o22rZdRrnee3QpzlrXELMI/4XPXjj1wZJHCeRTKREbjwoag4yHrc4o3ZDbNd//+nf4eLfj1XGPPh5E65KT7CumIOtasV6vxQrWaCKRq+1WLBMT5OORGKTA1boelLo4eiiUimgVGSdKmvCpgQJQZBor4j+jFOOwB7WRZHFnefbiuewNSnE4Htmu16gMw+EgzbkSzUEdeZ/c7iyUQsjPQQpkkuzd1mCcXUbfFSmtTi3Z5eUQqfc+hIBWGuMapiwTgxjzPeJe3dOg7hW6TKMp+5fco5xFZFtOakCdkpZzLgW5oPxCYTuBJimK8DLGSMzyTPjgaZtSqCCHdte1Zb9suFpvqQncz58/pbEGZ8AYOSx9MGijePjgIVcXl1xcXGBsx8vnr0RT4WfmeSDWe5g7bvevxPu+M7i2o+/XXFxccfXgCoDhcOTnP/2paHlCROdMzKd7VM+XcxFsTJlpjsTjgHEzzs2EmOhWKwkbc4bGGsgKPyXi/ohLibffvuDf/nf/IQ+/9R2ianj1bM+v/osPefb8BdfHPa/2r5nGOwZ/IMSJy6sLfAqM4cur7fof/c/+5/z4H/8ZTz/4iIfbBzzedHz87BP+ny+f0WmHcgatYPSKrtvSdisJ2mtcAQgsXdNJBlHjWK1X7Pc7Zj/x5Mkj9scB7yehVuuGvu0hRA7zDEbO8WrSkAtw55xbMqBc2/Hg8VuivzRCrckgYOuq53jYEbzHJcdmvWaeZ6ZxJPuZOQktXaFK7tKRBFxcXDAOE08/e4Y1Pa5tsBaG4xGtxKTEakXf9dzpW5nSLlRuz9NPP2MsRhAVuGrbhuAnhrGeu3XdxcU+W58DaoBYkKtieauW2kAlYRawrON0r3hVZ6i/QaaJ1jWLC1elqVcabde1tE27NAVQmoGc8THQ9h2kRA4RhThErbqW9WbL06fPOA4D0xxYdfI1xuG46BnPg/2AZR3WPTHGVD5GogWMESdMP8+E7O/Vd+STG1etVxSKeZ4xpXGIIRJ8JHgBOYfhKIDE7Jinmf1hX5hCmuNxoF9v6LtVyRNraYzBxRkzj5gwY3OksYrUO+gVQSnE+DWTpwxbjXVgTCIrjUVsjJt1RxgLjTOBtQ3W6qIVyvcavWmeF3aPhMTawjYSAfv59Pyvu37tJkMeLocxWm4IpxyJaZpOD5OWw0NQqGI9ibjCaDw5ayKaEbhqGzbK4lvNwx/+NvthYrefuL2JPH15ze3hyKjgkGci8uAHYIoT1ht6syYGQavGPCxinJwkSZtUQvOSWKjqlLC4MvZPpYiuSKVYjwlFo9YYJ/eUc2rAXAoSlTWazHa9LmNQK17ESkZ2Pnhubm/Zbrdst1u6rsdaaVDu7u4WbnbbtkuASwiRaaq2tCWvwYhwzbmGMM/FyUQuU0XuRYtRr1rIkbM8SKrHB1+SLKVAkJBKgRjPu9c6hZBFqKgBLafAwxNie+req+uFbE6yqci9qxQNP00c7m45HAeG40iMYhfXdj2r1ZpxnGnblouLi4XvnVLieDygiCirUMqJq87VFQ+uLnnn3Sd87auXPHm0wrQj3VXkqm+wF4/57/7Dv8tf/cXH/OKnz8hJ8eDqIZvNhuvr15LGbuSQ2d2+Ft1H03N1cYlOM6OBcYj44hJREQylxEI1h1DCnKTA87NHm1JEDEficebi4gH/0t//+6w2D5hGuH654yf/5Kf8+Y//gk8+/ZjjcMc4D/g0M8xHsk7LgUQpCgVp1lxcrNmse1bFEvjLetWiqtoY1/f5RB0sFoguLhtZ13XL81wbb2MMVhuC8iIItxrdG8zconJARQ+9CPBVVKQpoVLEEFihedKtmOYAIZFtx3Q8iN4peEKQjJW27yUjoTjKiB+7lnCtdc84ToQYmKZRNCNJEaMihETXiVWgn2eOw0AMEQltrORBadZzkgM+l8K7Upt88KjilIcSofswDIv+6tGjRwsqOo1eRtva4H1gs73AuUYKGCvp1tM0gJEAy9nDNE5Cdc1CkdTI4dsWJ7tq8dt1nYzRk+ixuq6XEEPvJTWck2WEWp7dehVXKWU5Nw4BMdCQbChpAjOFrlkKuJTy4ixF+b4xROZpxrmWi4vLYk3pUVphizBUppUJYyXde55nxnHkeDyKK6ECSKQYuNnf4r2Ee666hlVjcTnw+ukH5GjQJDQRq2EePeM4s+qdAG4mQ44YJZqKHCbubq+Z58DxIJqM2c/k5GmsjPhTgnOtSz3UxYY84L2RRle0wzSxRZuettWs1ysedGtMMgQ/o0Lg9/7kj/lbv/9DHn79a4wBnn36jB//Fz/jl7/8JR9/9jGffPYxP/nFn2NdwLpMs7b0Fxt8jJj5y6vJ2H71q/xO0/ON732P/adPGacdlsTtd77H//sv/oqUA1kr2vWKpu9xbUe3XpGNKc2sou06abqR9yHmwDhFXr9+zW634+72ht3uhjRNTMORMM1Ldk1WmayFmiKNvUywUgFD/OxZb7ekGJnnEeMcl1dXbLdbHlxd8uzpU4bxKNbS04BCQtXGEEW3Q6btW1KuE12pY8ZRnqcnT7ZS3MfIFAMxTHRtg+oa9rs9PgSck3NSBL2icc3IerbOMo0HxqNZ6O8VWJCJoTAWBKXXp72KfJpOcqoTpD6o6//+pK4W4nVEYhSSk9VIVlYuFNCa1WCto+96Li4uF6pm1YVpLS5Ltlh0V63AHCZiWOHniZcvBo7HA8fDQbRZnSvmCzLFqMBuLZBr3bPkRJAJMXDRXlAZLPM8kZUGbcgqfG66k5LkDNUps1LyLJglhPNkZT4eB4b2iDYyKZu9L5kVkp0igE6hlqPwfqJrNNvNGmejTIGUwaOYreR4xJTRGIwGZRLWZJLNYOUMU0YvLqenaXIFPBIxelJCdIYpFYMigyrvs7UNKSpAk7VD6VwA+X/Ok4x7I/GzUflCe1AnbnDOYRkRx5TR6jRaLE8lmUjTGBo0QSm67QVXvee4mrg1kSYmbpxlVAkTA7tp4hA9qWgwYkqEebo3eUgUQWIU5K0pLiG6IJOnSYJ4PufSTdQGo470o0rEKKPCOhKqDUZ9/VZXrqCgb9pIimzKWYqKMpYex3HJ5jDF5QJEzQ+1UROHF+saas4GORFTlkTRMhmKSWhHlbdcR3W1SeraUoBmoGX5szUlOXcWpEFFSQcFmWycU1Lq61veWzEKB0RIL4/afdeJhX6lwVJSU+sXSxmtZEozz5LEGmMsolN/amj0KRm3Nl+1q04polSCLCPE1jlWfcfF5ZbHT664uOzoVpqQJ6LxeBMZcuTy7Sse3x3YHY9cPx3xsxcfaa2JaS7ceskk8X5GKYvVLc4YghHXLBFv1nTlSo1ShHgKddOlodJKYXJGH0fefesdvvGtb/HuN79FVi23Nzs++eVnfPThhzx7+inX1y/waSYhZgo1l6HOo3VJZ1ZKYZTCWVOC1zRf5quKCBcxYbof6Eg5tETPcD+UqU7oThQeaYRzSTtVttD1kkZFjVJRJnkanDKis0kJkz2bxrBpHIe5YU6Q2gx6EkFfDpLRksJysCptMFomFKAWUACKKL2sJ1mLenHHqgJQpRUqlddOeW6oyeflfba2oPwwT/PCkdVGDvqaaaGUWg4Ecd8KJYxPMwwjrunQ2tB2LSkGgpf1p7Uq6Gut3ovW6mytVSttf2axKe9J4VJbvRQckAllRB/lzeX+TlK3KbXQo+TsKEnqykAxiMg5E4kUAoTkD5SvSWFHTdOMNoPw7IsuRhvDNPuCyMkBH6KEvyolQYjDMDAUY4cUI8HDNB3JOeKcwbqO7WbNetXQNxa/tiQc0xy52834ICFgtOasSYlkRIujZ48xI2grVKsgTV8uNFChbGkZKmeWxvr8PIllCqy1BD/mVAMhM42zPNxe0CnDeDxwuL7l6+9/lW9997u8961vkU3L689u+PTDT/nVz3/BZy8+49nLp7x4/Yyb3Su6XtFhWLc9MYsNcviCxOMvyzVnzerRI9abLZ023L34jON44KJdM82eOUSSamiMLfWtAGTdZkuIiWEccW0jFBKtSsPs5Rmbz6ivITKNI8EHcm2Al3lr+f/K3KtTfSWuhV3b4f2En1UpqIuttJfJpC2hnikEcNLs+HnGZAFDUBpVnpEYAhmZYp3vOXVy7mehFFsrlEDvJUBP9qCwUKAWWnsuP+9ZDSf3qU4s3qDN1MIUdW/ty8fUFV8BBpns3qNA1rpBlXPeWZqmpWlbYq5ToGIIUgKS695zblm7AL5ADoHoRSzvZy/CaWCc5uIuGVEKaTBiWKbhlY1Sz5Vav2qt71fDlcLUtss+G1MGVSaAnwNli8auANv161ZtxnnMQAgCZtXmI0cjYLESaleMUpvmHElZoU1mte2xyqNyJqhUas2yi+tM8kCUe6Mt8lqs2PFqKyGV+VwDVkCOen8rqJ1yKhljJyOOU0NS3+dYKLBv7vZffP0GFrYlI+MMbawuMOc0ALHxGvBeHJBiefjkIHNQhIhGZUwrwmkOnv6i56K3sOk56swT13EcZkYNH663fHp7wy9evVxcYZKC4/EgwmJdRbexWOuOkDPtgwd0XYtrhOOsjMEYh4ry8AlaKGPDOvoTNLA6p0zLg3LvXtSiT4vnwuGwp1+v0U7QgpcvXxBSWtxjjoeDIJFNs1AbhuPxrCFW9P2K9UaKk812wzgcmaeRyc8kBVMZGwbvZcPjlHthCxJwWugsm1rOwtckJ6ZSwMTgUT4Uzj9LswIn29tzzp3WGqUtKZ6Kk1rrnhrLvNy/tqmLNy8CphQ8wzBwOOxo257Liw3+1UgKHj+PpLQu2SCRm5ubpZF1zhZbOgAZVbfOsek7HlxuefcrT+jbgZxHhvnIHs+r48SvPt2B2vD4/YdsHzn+7P/+IZ99+Izj8YDRYoXrrKZrHfspYnSD1S1pipBiCT4Li2WqyqLpcY0U/yI+j+gMChFnWa1wZNrdwJ/8W3/C7//Jn/Lwva8zDJpPP3zJf/WP/pyfffBjdocbEjPTvBfkoTFY5fDJL++HNR2N1csYvDboX14mtVxiRiDP77kGoyJZdU+JIZAK/aht24XzXj/+pINoyH4m64Q24dT8WdBokk5oo2iUE61FSqjs2XY9m86x9w1+jrh+hXZiixlVZAqew+HAulvRuIbGOoxpIOui5cmLY1KdPihlMUbTdRIQWUOglk26Nt8pliIly+GiJeCv6Tqx2FSK4/HIbrcr+1N7j4oUQuBwOJzlWmTaTvRZt7d3GHtAK8Wjhw8Yy96TQsBpLf2skv0hFirmedo6lDwa60oGRVOQubQgmrURUihU8ISYiMi+KI+vurdvyntaRc0IR9hYjHGCmqqT8F8OwbxMxLUuDZYPHA77hQb6+PGTQqtreHV3Q9s2dG1L162X0DJjDPv9Xpy3CuUihChhbnHk6uFD+n7FarXiyeMHXG1bVq3h7Sc9IURu7o588NHE6DXb7QXWOu7u9hwOM+M0AkINDV7yeYxrBSwy0vzowg8f55ntZi2aCnXf4e8csHvT5bAMsegax3tP3ibejrx4/oxPP/qQ/8X/6n/Jb/3eD3nw5G1u7iZ+/he/4uc//Tk//eAvub694dX1K+4OrwlxIqDx2TAnGPeeyUeG8ctLl3r6+pa3Hj3k6q0r1ps1OQWub2/QM7y6vmZKmqa7QDuZQMec2WTF44dPGOaJObyg6zsJY8yZu5ubEqqmidGzWa/JwZOmkd2rV+QsoJcyYjaQAVXSxXMBRCrY5pxjtVrT9x1aJfxkWK02xJi5vdvx9OlTFEgj0rW4pqd1si+FGDDe4oNn8mNZE5EwRfKYWa839P2qBMWK1kf0GzPGKKwRN8exWOSaQkWqgAxZEPcQQ0l/Fn2l9xFra/MkXZOsRaoKagGJtZJJkOzDquQzUKb86t7zXClSKJlgmBKw3DQtXd/Tdj0hJskHq3sQskbv7u5EMF+BNmOWSXZOEZ9T0Vh4Zu85FNv7cRJDIA1s1j3H42HRpFVg99y9qgJBOedlD6xAdaMbVithqTAKyKpn0c3U61yPEUMgqUjVpJzrbhc6aalTxfBGsVqtOMRA0KK/CPOMn0b81GCs2OeaVnH5aIPb30peVgignLBGMkQb8bcJPWVUTnSNgiaRG0haLQBUTif6WqWM1d+FlssCKEGl9aoypZKzGBCJglInd7S/5vqNrGp0Uf93XSdJpcV6sikPSaXsNMUxIKUkQVVKbL+cbrAu4XTED0WHEANpmsiDIWCg1Wysw/U9s3H4EPjKd36L2xD5zmHPf/Tzn5AyIoiZJMVWZQgp0ZRFbmvwXtMgM5PI5XaLMZaUMsMQCYuyvhbOCq0tzimMScsU4rysq0Ju0ZiUJNniPiJi9JkQG2zToAoaXx/ueZ7pum65X1prfIiY4oqw2x+WZmm7WePHoYSDeVZGbGzRGtM0zLPQoCp/EQQd2+/3GGPYrMXNYrXeFq5hIBULuK5fcTzsyKXJyTov4Ma5r3T92esGpRSLCO5NwbPWmvV6XbJLtHzdnBdEMviALSI0kuggQtQ0TtN1Isrb73ZMsxeBOtC2Hf2qL2nGnv3ujhACx/1ACh6VZnQ8ksORbGdC8jy7jbwYZ5Ld8tVv/S53t57D7Svm4Tnf/e6MP+yI05HjfsZPe4xJKL3h6+9/F4UjhcRuvGY+HJmGIylrsiqBPGh0cRJKKi9iKGMlxKk1lkuleatf86/8m/8Of/IP/gGP3/8Gd0Hz4hcvefr0Ba+mG17cvcSHIzF7TAsmG4yyGNy9A6t3jYQMFsRtu13TtA7Xut9kyf6Nu3KWAlJzOpDqITKXBHjIhKBpW7PwZisiVDNhzlGixkpeTiai20yaI+mQ4DLLmLgxKBpUyaFIOrO9WHGhFPucub09opUmZY3SlHFwJEcJ2mtdi7Utq34r7kMFWLi9vWGcBiCTk8LYIgo3JxpYbfbrz7yspyx2kMZYbKEPqOKoImsxL5s6sDRflV4JFCGojOnHaeLu7o45pAK4BIaDhE1No0wQcwwYXxzuCsq7oGn55Ihyd3e30C2UNqzWm6I/E+/4qpc5HvYMxwMZjyvIWr1Owub6dUsAqLLEKOhyTCVNVp2m4EuGkVGFDlaoFkn2Ots0aA3Hw45YUOmYwBoJrevajhilMdtut/cmZWJl6bFG0TYdlw+u2Gy2rFdr3n73Ee+9c8HbT7Z8/f23uN3tGEbP7pD5P/77/yGvXu3Z7TxN0wNGLN1zonGGGGCIM/0msL54QLeyfPCrj8gYlLYYMo+fvMNwHLm+vkOlSaaU+kTbqO9xDac02rC/HXDKMTZH5t2eq6bhT370t3j0b/7r/Ojv/ktk2/Hps2v+g3/v/8wnH/2SV9fPefH6MzKi4RmmI6ttjzaCxB6OEzGOxKI9/LJe/97/9j/g9//oh3z/d77L9777DZ78/g/g4SWvxoEH//H/jZvoiUrWvlOGrunYrreiC9Waq+2WzXazGMj0mxWH/Y7gZ47RM+z2xHmmteIMNXtxJRQr5xI2m8SkJIVAzGAOB3yIeC+ZKK0zxcRDk0tgnNC2PQ+urlBaMc1iUEJxW7NNh7IWlxO92qCNYjiO7O4OdE1D34kwfQ6e4bgHpej7nseP3i500hlrHRcXF6UBSXUQiNaS8SDTcEuaM6t+TYqR1eqOKJkC1LGFc1amb+aEdsv+kyBG0Y4GcauTRuTUOJ/rs0DqJWM0jRNR/Gq9oWk7ATBMTcqWyY3oL+TZrJOHZdqgBByMKS1OXsYFpuvXjMcjk9aElFiv12Qy8+zFUt7aJbm6Niogus9aj9XJRp04nEDaSNvKVNoHT9M0TNP0uWmkQlK961UB4HqJZtlgtCakyDjKJFXE5B5TwISr7QZrFSmOJBzKijtrvh3Iu4l0mFCHGW0s7tJgGo1JJfeoBDWqlUY3iaRAZYvKhgzLPTg/j+r+r5QEPUr8QaJpu1Lr1QlXPYO9nJFngPZfd/3aTcZ5UXnq3k4UonPu2ZLUm0UfgZJFmTQEqZVRTqNaDVHDDCrkk12lU+gm4wpaoI0imYYn6pJ3Hr7Ffp5LGIsizV7oLKUoRits27BerWR6Uha4NEgN2limaSpTj3mhdWktr6fmTkzTtPDoVK5JrkJzUCqfUYYkCMdYsbobB6HlZPLi9nI+Wqudcx1R6hDwJnA8TnLgAqRA8IWnO89MhRaitNyPOqo6dzPIZ38nzCVBGRSCuqhs0DpjbMa6BuuCvJoov59b2p6/55WXCIW7vSAap2mWUoq+60qIlcXHWKjU4lM/DWIXJxSyjCVjTQkFzNIla60xOqFUxmnx7K8HsHWNoJ5JEoDHceB43HM8dgyHA5pEVhPX16+4mQI0mdzs8EER4kjOI4/fWnF51bG7thz3iRBnYmpBG/p+TZgz4zSwu3staZ2Fb6iK44agzqfXL3SvhMFis4Zp4vLxE772/tf4vT/8Q5689zWSavnZn/+ST3/6KZ988hEvbp6T8NwebhmnA01rmfyMj6Gg4/I8GS3o/Xq9oe1ack5sLi7pVyv61erXXbJ/I6/zwydXbj4n2mUVDIcYcNndQ12gUktOFEZFJqRq95xRWiYYOiJWdwayzcQmkX2EnLAZWjSPHzyA7SUvxw+EiqPAGiNhWlrTNS0pRUwRJfa9uLSEMJckZ3EpmedA8KKt0FqLE5RzC2L9JjWGLAihVgbjGkmyNuJqZpb080EoOop7wVJ1/63J4tXFxhT0vHUNOQXmcSQZjTW6iJen0pwUumjwiEBc9pDzQ7ECF3Kwn43Jy35X3bWMdWjrEHmC7JPnos/lfT7b/wSw0AtVYxGFqpOLV/24ukfkMoECyEUfNQ4Dxlha55iskaYlSIFiiwPbwjEuX1sanYTsjtA1LRfbLQ8ePeSttx/y9jtbHj/q6daJWUFuNbGBH/zxt/npX33KBz9/TgyR1UqmrrvdTnjcQtfmsL9DGaFfXV5colNgniD6zH6/x09ebHezCHWVvn+Pzp/1hdahFTkExttr3vrt3+Xtd77Ck6+8i2l6nr2446MPnnL96pqXL59zc/eS47BnDp5pkmwQ7USHI1zX4gxGvncmfdmu2/1rPvzVBxgUF+sNbz3esnnrbb77B3+LP/6TP+Wz58+5OQ4cMSRV6DnW4gqVURvh70NJat5smIaB6D05RsbhQJxnSRFPJfw2JUHwKbdOsZxxSp8mdzFJevP+cABlRLOUq6tXxBiEAx+k0JRQPpmUW1PsW60R6/8csGaPn8XS3DlD01hCnAGZnh2PiYvtVtgK1hHmSc71UpsJFZwyqXE0bYN1Dbu7Ww67Ow7HAzlVe/rKi7rvBlf3BqnnQALmFAqzOM29OcGovwsoqxcmiTYWU5H1s72fUivmfAoNPhcXL/orKFSrDlC4JrLb75dJii2Nug+eeT7VcOdT8wpcSPN1H2RRSrHZbJY1mMrESGtxxqxAzLmOkFwZ5ad1dS9/rL7GQnEz00kP1TaSFK+NxnECxkNIpGxYuZ6V6+lVSzq8xkxSc8h9L5SqEFGx1GStEXqUUSgjuuLaDWil7tXvlQIlW2udWMnznFMq+pqqrSnPwxlDKv+ae8h/I9N9KeYlxlyp6v19lh3BiadW/kOKNaWISpJ7bWPQqYzdo4HZQxAXlugCymlMEucYnSOt1lx0He89eMzz/Z6bYUBlxRhEu2CUIkTJOzDW0K16uXs5Y41EIhpj6bqeO22oXuTitJBISbq5rutK4TAvDdOCQKbSZFCbKmlebLFOy0q40n6ehUdd0jXPkf/6wI/jeNY4GMbJ0wxWQmbGoXhey0IRUaYp2hJdxl+nje1NcVEqAXOlN5BSThuUEbtdU5LPk1Ikf3KjerM4WHyUcwIiSllpsOpkQ9dwLXHRapuGxjViE6jEyebi8gHDcGQ8Htnd3ZJjWqzz5AGX58Q1bumYtS7pmchozrlWaDFRAoOGYeCw37PfNRz2OykM9cxu95r9BLmJ5KYjzi1+vkWx58mTC5482bC/WfP69fWSp5ILv94nydG4u3stzk7LzavaCzBa9BGmTMzGSbQ/Fosl8uStJ3zrt3+Lb//O77B68BbPX+z4yT/5GR/88pe8un7B69sX+Dhzt79ht79le7kR+8sk7jM1m8Npi3MN/UpST30MdOsNm+0l283Ff5Ml+zfuquN2Ss9RN+8YIy5bar5DLbbuWQSntExSsxK3EZB7Z01J6k6GFBLJZrJNpDaijgGVEk0WkfGDzRbb9vzko6fCe44Clemccdpiul7e+0KBkRDOjA9iwSx6h4iffNGQGGKIjMO4HFr/tEZDKSnaTcmoqBMQa53QikhYZ+8dVBW0OA/bnOd5+RhjhKpILj9fgGQ1fp4IPpQ9oo7Hx4WjHQqVqDYxbSuOLCFEaSA446JrvVhnGmMxtiFm0CqgOe0j9TpvIgRVTVQ3wtM+epqI1vRdXSDYWEwnyBk/Ca1B5cw8jbSFltY4Q827SMVhMEWhV53nH0E6TUaymINs1muePH7IO+884vGTjsutJjGQnCfliPeJ7/3wGwyz5+XLG25fePq+F0vQQfj6xggAcTzcyaSp33B5cUmcB1SOTNmzu72Tva40Y0ZJqGDM9ymQtpyjKZf3XwExkI5H3nn3K3zlvfe5evQ245x5+tkrPv7wKeM0stvdcTjs8H7kMB4IIRHLa6x864I4FQvLfwGL+r+lawx7Pv34I/xh4vGDh3Tdt7m83PKtH/yAP/17/wq/+snP+PiDD/nx8+cErTFWL/u2TJ4N17c3oslrHF3fY60jaDF08X5kniaiFzfLUDSMuYL9Z1d9tmNKmCS29jknjuNUkHYnk6OQyCmgSSIkT4HJH9E1jwWx2zXW0LYNV1eXxDijMozDyDCMlJzIxfLaRwEZ5mla2CQoQ4pe9JxZJgghJkKINFbE1k3TMI0jd3c7xvEIWWyeoTZQ+dRhwL3CNKRUoVYpRvMpY+y8uahFbLXt18YUkxRTzGNkYksu1FdUMcGQn9kUoKCGFU/jwOx9McHZ0HW95HykjLu5hfK5ttjCVgBIXtO5Y2jZc1DLPnPeCGit6VcrfAjCWsiZ6ANaQeOchKPO8/0GI581GuX7Ve3gonlIqVCkImpUy32NKYIGoy3aKXxKTH4mJkjZ0pmOlV3Rm16cE6M4jSadQZVmJ0zY1GCUxTpdrNYVSRd31AKSV41j/TmV0mf35fTeGV1pgTWfqE74QSX5uMyvH8r3G2ky6uGmlKJrJPU6hliySuUQqZHwVcV/LtpZuZZEJOVIJBCb4rOSLC6ssCqglUe1kTYaVFLkKYKOtFnzUDu+cbFFxUwOmdSuaboNwc/M00icj0zTyDCNXBQUTgTFHTFkvE+0rVrCrpSivB4ZUV9cXCzcv3Mqh7gaVJqDQmVpqsSurmV5B1ALylHdcN4U2ozjuCCQtVGx1rLZXpBTZDgemBCdyDxNTMPAarUWD2hriX7GGvles/esVqvCX4b1es3xeFhoFM6JNaUt5F5JGdXMwdM07RJusyq+3rvdbkGJ5QESGWad2Aj2HGUDmyTtWCkl6Gnfk7UhEko3rDHG0a9WXD54wHEYGH0gzCO60AGapuF4HBjHie17F6zXFwzjyPXra1zXLa3zo0dvY7AcDzuGwx37/YFXNqP1zO03Lthsrli1lsvGsZ89h+OOF4c7INKowLpVfOub7/Nw8yO+8fWXXN/8h+yHmZAUr65v2G5fsb+9Znd7jY+jIDlaQUSCuRQorWmMxRlN4xzr9ZbrVzs0mk3b88d/8Lf5+//a3+cPf/QjutUjppvI64+u+fAXH/Cf/9l/xm5/wxyOjP7AHEaUGFtLMFOEeUK4raYIuSijTGfJRuNjZJxGyWf4El/TNC3N7HotKe8p5xIaGQtqKAdiXUO73W45IKomQYVUng9PTJ5AJivN+qKXzImQSHeJYAOpydBETBtxs2IVDbvdgUkZYjuwXq0EDUqZ0c+0bU/rWik4ZjEF2O/vWK3XKAXTNDCOA8HHpSlWSiiD1lrGaSoGB2k57O5NCc9+lwJdPNkvL6+K+9O8UGeqYLHSxpa08XI/uq5jtVotdFXvJ/q+F7rN7o7hINbATdez2myL7kUzTw3j8UiYPdo6Li/F0e1wFGckH3yxZYz0vViAWiPueaqAK5OfaHIrlLQyURGLxuHzDVWp0JTKGOPKfipuLLYUEsYYNqsVrryW4zgijahMko6HAyrDdr3mOAz4ecSHCa1hteqxxnF7e4sPxYocFs3FZrMmhInhuCenSJgDVkFnYdspvvPN9yBfM4533E0De514vZ/46KM9Wm/YvnvJn/zrv8V/8R/9kuefvuKwO+Cslv1YG7rWsC/7rlIDhpa+sajoSAGmkMgFEVdaABrhn8v9V6UgmaZJ8l+sZqV7pk+fYR8+5rf/6O/w3e//LuuLR4Ro+Sf/+Cd89NGnvHj6jOhnhnFgnEaiChgr+gGdEyGMZbokhVbbOLrG0Xen4NYv2/Xq5ikv50/55KOfM7245fWHv8+3f+fb/N7f+T1+9N/5V/nG97/Lr37yE/7r//X/hqnvidtLbreXdF2HaxzKKDbrFTe3t9zd3mGy5WJ7ycVmQ0oTN69fIAF1wKRYcpMojSpnFB6tCzVnXACrtu15+PgJbddjrOHF86fM05EwjwzHA2HKWOtYbVbM6YhRRgIerZWmIyfisGPVd+S+Y7rYMAxHbm5esdsZ1qsVSmWs0WhtefbsGV3X0fcnLZj3cbHLHeeZafJcGCdZMTGgkCRpTUfQQumq+U+hFNeVmnkOPNbCWitDQvQHFGltrXXqdaLiKFzbyt7jHG3XFTqLpm87JLsmSmOcIsM4cDjuWK1kv3XWYrTQfWISGlrb9eIQZi27w8AwHCRoMHqUEZDy4uKCSllVSvHixQtc2XucMWKAMAt9Smm91DnHYWAq2Ua6TP7yPXzi3EHrxNiptXGdwJyDwHGWEGBtDKaAaRUkUlrTrtdcPniAuj3gdkfiNGOymEW4nFilSCLhVMYZ0C3kPpPaTA4Wk0WfkUkoVyzYkyKpYiah5D0bp0mCP8sem7M6nanqZLEtgLjEEvhYJ6FydC0alH/eORn1qhOTc+tJaShUoSSdhOEiAs9Lc1JHSEaJoCUkGRUaYyU12gOjQrUQjViWtlpC6kKIzH5Hax3rVrP2DfuQ0c7J8k8Boxw6zuQpMRwHuqbDNhZnu6KHkE18X0RCOSdCSBgjCMRJSHkKoarTh0W5oRRa2YJSCP0qZaH0KKU4DkcRairpxpeQJmOWN7P+qkWJUKqS2JYpJSjKQfjPxjrarqfvexpnGYeBaZqIBb111pLIxapxKE4UWfy/V6vyIIlwPJb175wIEnXSJ9tKWIRRSwHT9MXeLJCSiOSlOxcRuLOOpm15cPmAMM8Mw4i1Edu2OGvo2pYHDx4W8aama3vGkDDaYm2Da1qcnYtuZcLapvjxW5QWqpVrWrnfTYPzHSlKyI7RCWMzP/n5B6w2jn79kL5rWO2O5OglkMnAxarnweWGVve0LtE2FucMrWvFl34cefXyE8bjgWk4YkuqeUKRS3NZR+RjiDTO0TUdD1Zb3to8obENq9WKH/2dv8t7X/sWxvVM+5n9qz2vPn3Kr371MyCgTCJMMykHXCNojqwfsWAmC5VDlblkzjDOE9pJwFNdU03z5W4y3pzqQcFQlFrQuIqEnbuMnaPd2rgFQdIJbHFN8iky54DNYHPGRoOJmqQUeWUwPuIsuEnRJaHXOKNwyWOV5Fs42xDbjuN+z2F3x6rvZX0qxd3uTuiAfsLP4v5UM2fEavm4gDHayCYd3wj5rJfoeSQEr1+tWPX9srlWA4264dd7cu5UUg/zc1CkHlzOOZRTBZhwqJJxsb28whmhFgXv8UGCTVsjPvASxpeY5mp7qen7nq7tSkaP4jAM5f0rkw+lF15zLUhqyi6l8LDFvCFTAQyhPSqV8bPkAmkjBYdmJXo74+haZHJbQJjVZss4HHn9+vVCzTTOcDgcCCFijWO1XjMcpTmxztG0ooOTMNBSKJZcDkUip5kwHznub9F6wMeZ13cjryZP1Gu+8rVvsL+dGY/XqJz56lcfcby7YzoI5dKPR4wG67Y8Wr+Dcx1GOfzoOc6+pC+LrTkVqDLnTnoASZBVSsJxSY7Xr2747re+ze/+9u/yR3/v79E/eMLt9cinv/yYn/zXP+YnP/8pz148ZZgO+DgScpD3zpz8f2qaSa39tpsV63XPZv3ltcJ+/fIZnWnBrvn05cd0/3XD8e6AnwLf/P2v89bXv8Xq8oL/wf/0f8x/9p/85zx7/op0d8e1UjRdKwYBF2uaRvQNn372MVZrxMFQphcpRUn1dpoQNTHdR+nrVQtMrRQpBIZh5NWr1zx6+x1cihATjdWESSYZOYbiIidmBtPs6Vslae/B0/WOromoOLLqeqztQUutFLwn+Jnd/oZxDMSYyZh7hhhN0yyaz7btiNETUmYYxYZ6Hkc8iO12sbh3rZMcL3NyhiyszvKMnujvRkt+mdDIozxdbzQY9c9taSz0UsCrAlKoBVF3RYOXy4TpOByK0FgMIEKhGGWUuDulwDx77vZ7VjnTdh1t17A/3jHN40KlrNdScxrLar0tTmEy5ZunuYChRgpoLeLuYRKQJaUAydPW5sAYbLsW572UhWIXpXaEU91U70MuXUkuYvqsTvrC+ksyUiaG48AwjGyurvAW5jlyPFzzg7e+y1cePCDNkvtWhdmxMEuyMnK/ihuqzhkfytTSnITdlT2TUkQrqTNZzDjuB+Gev49aGxQSeyCU+ZPQ/de9fqMm4/QgnXEQi4tByqcwk5qT0DTN0iHdewjRaGXQko6HtlkEyCnBnCVBUmcwCqsdKopIkOTpVh2bVcc2K/a7QcaMOaGjQafyZubEPE20VkKZmqalbTsyiWk6LvSBGIXXqFVe3vD6EHzxTSw+0MUzuVIHRKwn7k5VQFQLKTjRECqVoBZaS7pl4QvbQpvQWsliQOHajrbr6fqexrkidqyuNchoMwnn0/upfO0aqlIDZxR+ydC4P6HJOdO27VLMgFANyJnGGbyS8C2hS0n6o3OOeRJE0xhL07ZM41Ti3hVO9TjX0DadNNQLbaQmkUsabudaaMUdxxi78NzJiaYIT5u2Y78/Yl1D2ydSFGeYcYocjoEXL3dc3w5cXnmcbdg0IrSck6JpDJfrFVfrDSZbVPKoDM5YGX1GCCExHO7w80QKs/hvx7SoBSqtA8RcIBb+4rrteO+t99lsLthst3zz299le/WQEOHu1S23z/fcvnpF8BOuMRivyCqBlnGwNmopQsUeVDywdSlAamHkgwQP2RIK9P8P1z2eavnv+qye06LOub7yvMo0zshOS05lYlZEaKEgOUkp8bFPSqxskyJajW4pgZzgMlgiNgV6pzgU8Ecmf9LIee/JpXCuybFQQJN03yXofP8A0KmMovP9zfvNCaktE4IKNChkX+j7ftkvahGRK4/4bOT9xTqq8jMYI1M5I01623VSJIQAqtIoAk3j8MEvP28q2R1KSciV6KWEIqULQJRTtZeT/a1pGtbr9YLGL/scQvMK5TCTrJDK8S3mEkU7ZrQhx0QMsZwPGmUsrmm4vLoqUwLNq5ev5OBaLKWFpuZNZLXaiHlEyigtRiUZyRRo2xXz5IlFYxKCZxoHDoc7DrsbXOsJaeL2bs/NmLB9x+qql+li0uQEjx+v+agzaJUgBWKS8EfXNGy2D1DKkUJm8gNhnsUNsFKilCqmB2d8da2EwgQlvE2mpa3WPOpafuu7v8X3f/AD3v7GN0nZcf3qJR/94mM+/vgjnj//jNc3L0EnErK3lKxfobSU71efCJUVbevoWkf3JZ5kHHY3JLcmu8SLEbrckgO0bc/j95+wfdDz4K2v8Ef/8r/MsJtY/+Tn7I4T0zgwFUpdtxUAzljN/rBbgIqcfHGelOC0qhs4R7DP+ftyFaOUGMnMjKNMtKyzmKSEO5/iojnVSijaOSca24gbmVb0veXxozXbdYMzifV2w+gzunEcZ6FOj8PA7e21CJgT5ByXc6HuK7Wwr2ujTs20kslZTvFEFTIG29jCdDBYK06JwscXuvI0jXK0w7L+K2mmdCJodV/obIpJUNu2i+D6/BKwVhctCMBJo1TXhS5U8yBOERgrrpXTNIM+EHMu5jlmMcnw3jPNMwrecHdKJTBX9oJc6hFVGAPlp5LXXKhSOXlxItxuC/PFEHXL8eiYRsmYyGe14vnvWp2eG0Uma5nmSpZSXCbU4zByPBwkWDpEVpuNrFmrCWES4LRzqFuZeGlVrGaVNBlSBJrFHh1T3p+icz0/O0Ix1aiUKDlHFHUaU5+f+xSqU8OUc6byWf6FNBnVSlAX4fGJ11UQyILMzrNfiue2bRaf+HOXGDlYFN3KQUrE2UtE+pTIYxLel1GoxqCUgxhQOaO14dHlBWxBHT1PDx/Kz4OhSYbpGMAHyYGYRvT2iq7rWK83cpD6mWMMi7f8OMzEEIVLrSLH43GZ0NRpQ31Qz5ZHKWikGTJKsdlsUVoeHuvsvc1ocdkqXw9Odp1wsuKcihio0h/GSRIgXdOxvbqib1uM0QW1VPgggiQ/zQLOkbBW472gMKgs9Boj1nBityt4WXXoqQhp3/cL8iBFCOQUUHmSPBBVedjQtq40JTM+Jo7TxN3hQEgRU2hjTdOy2WzpVyuePX1GiJHD4cDN69dM45HGOQmUUhc0rqXvOx49esxHH37A4XggpMDl5SXbiyu0cXz0yVMeXF3RrTpCmMBDzpZxbBiGjo8/2ZMxvPvOhrfeegtSJM4B17dFJ9KSJ5gOgXmINK6jb3tUNngtGwoxo9HFunOW8Sjq3iLNKTNME61xrNueH37/d3n3q1/j0Xvv8uC9t5mi5/pmz8/+/K/+P9T9WY9t2Zqehz2jnc1qImLH7jJ3tqev9hTJKlkmYEkUZAiiBRu2BNC3urAvDP8iA/4FBmzABmzfFECTAClKKqrI6s6p02a7++jWWrMbnS++sVbsUxTEU0CJqJzArlOZuTN3xIo5x/ya931ebt7ccntzx3c//oSfvf45czpgJiBrUsmkIOdzrhkcRYtXpm2FALZar8kgBmjn2G62J7ndN/l6d9hwfNbkhWTrhEt+33F48W7TXopsouZ5lsR1BcZ50apm+WttBChRApShQIAcIOhMsQoaQQIbpbEm0+jIwwdbrvavBEtcxJTrrKVxIllsXINuBDcY4vJvHLLvei+OZ92yLFVzXO+dd8Tc72IEZa2emMeRtmnQ1mKNPBOvXr36lf9uqWB0g5CcYk4sMZyC+Y4vyxO9LiVCjlLAZn/yzWWoqfLiKYm5sIRIQeQKttJYco7EFOQetNL0WyP0lVTusZ3Hs+TJkyfsdrsqlxKqnQJWXceoIEZIOdQmWszq8xRYr9d0bUfXdkz7gXmW3Imm76Xodp6nT59yc3dHLrA5e0CcR0pRlAxn2zPu7nYsy44HF5es1xvGaeLm9pa275Etu+Px4/dQRTEcdlAC+92e1zoS446PPlhxfu4oKvDqxZeMpocQmHIgLh1pfEvJVzx5b0vXAkRyCWiTcY2l69ecnT2SDcZ84O7mNeOwr/eLAnItniTANVcNuX5nSuqsYdW19DFzYT3/3r/3B/yDf/gPefbt71JW57z5+Q2f/eRLfvQXf8kvvvwpWUU2Zx378Q7bKLwyRO0JqaKwi8LaBi0+UKwxOCsTezEPfzOv/d0dEyN3xaIXi4lSjDorGOMPf+NDnn3vGT/44d/j/acf8vznv+Af/9//X3z26iU308D1tGd9eVHpXgZtk6QyL5FlGtjvD0JADAGlpfh7d/p8fJdLsjwc0+xDHai2FQqQc6RpHIfdDfM0scxHQtWCdw3Oed5/9gHzNBLjxMefPOZ3f/sTnr3/kMcPH/DFV694e33g1dWBYZEhxtAOXL19wzQttakxv4KaTylJcrY1LMtETgFVMo3TNM6eErQvzs64VeIVaPuOXAtjozV920K9Rw/jJGnkOdfCue7I6tZdLJniJzkNZxUnCulqtaJpGm5vb09nekpCpXJOAjRFminKjaPJ2hhH2/YsUQZtKSUuHjxgWRZevX6DXQLqboexhg8/fJ/1agUlc9jvT19vjJH1uhI284Kq0vRijITlLWIkN9UvYr0kkKewoEvEkPAOfvsHn6BRzCHw+mZgf6c5GEglH/VD/8ZATAaHSgbmVXqeyRxfG9M0sSwLh92eHCqePWbubm5l27buiROkeSIOEyYrWttTmIhlJnuFsqDqu8qVLPkYvYHWoK05BdnKpldqT2stjbe0Tc2PQ6OTYq5neKzNtSSX61OzUkKoP19d2UO/fqPxazcZzrnatd3/vWMB8Ks6fqop836K/26BfSowwiIMX4Tji82oWUHSlDlROihNJmwD5SpATDS5MN/uOL+4xD0+5+vdwPX1LXOKGKVx2uE2W843ZyzTJDdwmEkpsIRMCDJhSPHeKIq55ybnLBuQ44T5FKT1VyaFCiEcdH1HX02AUiyKv+Fd+s3x+845M+z3MhHJmSkIDq1tRcp1lIroaogKlfqEFnNTqA/b7W7POM/kUuj6FVMNfkJp2m6FMfPJ6HfM+0gpSWDNshDiglLi+ZC00sqodo6z7QZvFct0IMWlajw9MSV2hzsyifVmy3q94fPPvsLUYLIYZbNSjMUpC6qwhIU8wO3dDqWVGNh15my7EgO1URgyMUyEMJ8SOkMM5CLYX+ta2tbyrU+/y+XDh4SwME4z8/6mHu4wz5q7W41zEMPIZqU5O1vx/geP5EEpwod+/uXIX/z4C7748jUpGHzTU7AoNbM/LHJuai2yvXI0etdAJFUT0lWkMNF1HX/wg+/y7U8/4fzxM/rLR+Rs+PoXn/P5L3/B868+Z5kCcwjkLjKxQGNYnW2Zhl01gUmhV1T1I+SEtpaMTGOmeT7xw1f96h1U8a+ng/zbeh3lgcdn41igOuerRCGftmrHM0SmYEIeU+qoC64vOefxWiAPXYZ5KhBBeYW+NZJUWqDozJHSqJEGJ+uCc5qH5xs+e/sGNSaIM2EeKXHBaOibThC5JZPSzLLI/ZpqkOdfvUopJ78V1FfykdTB/YRPaFWdNAT1TIlIABipbmPqCyrFJGS1ijdufENIGQO0/Yqu607Fz2k7pLXIJ3NhtfKcX2y42+847A/s9zt2t7f0Xce66/CNY0lRiGbrDct0HLZkjNFMk5yZKWfGYTix9q01J1kXcBqUXJyfMQ6GuIzkFGlsxvSOmBRLAGMVvrF41xJTZg6RzIzSllDEQG+dZ7XasN5saPue16/fEEJkmRaWca4NjAVrca6haY5bYk4M+ramOjsvm8CcSjWfWkqO3O12KB1pWrBe0fUtxjRctA1pjoz7W272dxig94XtmeG7nz6mzH/A0yfv84d/+M8p08K0JK5u7+jaA3c319xeX3Fz90ZkplQhdxK7rFFgleTfyD0icmCNRkfF8Po1n3z6LX7vN3+L//wf/SMefPJt5mj40//6L3jxs+d89tkv+enzn/Hy6iUpLxQS2kLMQdDa1pJVrtATxapZ07ZSdFqj6fsG3zj8N3iTEYJAO7wqnJ+d4VtDyDPP3zxn9fmaaZq5e7Hj+//+D1ivzvnkN3+T/+Jsw//n//H/5GeffcFydU1XPNpreueZtluGYcdYFtIQJNBuWeozEH6lgDw2/FIzuApj0AzDAMphkMI9pqMkUDMNkRgKKXJPoiuGzdpyc32H84WzByv+V/+bf0DfR5qm0LWJb6+fcHk7s3l5QPs1V29vePP6LW3TctADEEgxs768pKmhcV9++SXOVihGSTK0qk3DYdidBhXDGDHOsup6Hj99j93urgaQJrx1stkPgqvVCmJJTLNsEk31Wy5LRhmN0eJDiWGqdRAyMNH32O6+709n0zAcmKYJawxd19dtfiKlwIMHF2ht5FlFs133oBTPXzznzdVbAWxUv2/KkbQsvHn9Gor4B7brtTSMScz28zhKc29kGCzEPlXJkHXToDWb7bZunRO6JPqm52zV8uThhg8eCO54mkXSdt0aBm8Z20bO5qL4lcL4uLmuaghR2snnXnKmpPpOK+CNFQhEAZWLBHYuMjR7fHHJ47MLtsYSPv+aLoLSCe0U2dRGL0fKQaIcijXgFPOSabTC/Q9szp2TYX9YFowpoDQpVahGfZ8d4R9HTwbVjH/MLio5Y4zDt79e+/BrNxnSoaqq17v/wt8tpI83VcpZMKV1Ug738odjkX6c5qQi8inbKHQAHRR5KmRfKAZwimwjOhdcAWLGpEyisGkb5qaBnJmz5HOkINQXqg4u58xh2FfpVqi/0umFDfyKjCmXLLjd8m+GJZ2+/kqpOK6WSrkPL1mtVozjeFqJnXR5WYK35M+QtdO7jcW7n/Oxc9fmmPBcGIaBaZoYhuEkBTDWElOq4TYtJcZ31oRSqOcsE56jiTamiPe2ThN1/X1i9tSqsFm1LDYRg8iNvDdCeEmOUKBrNH2jWHeGVCQnRCvNnAtaZRSREEb0outDm4lLJNWiraSFeUmS3REXrG9Q2pKyPvlMrDWM4yDTkWJo2jVCB3Ocnz/gNi6UIsa8cZy4uTnIHZV7bq5nrm9mxqkwjgM5JNKcefviwOdfXXF9O4I6FrVVvqW00Bpq0m6hmpzq7icjWkes4ayxPH1wzocfvsfFwwf0Zxts23Nzfc3bV2/5+quv+MUvf1YnzYVDCAzLSMyJokXb27Syqp+WWdLrU6SEgFLinzk93MfpkpX1tdGGpvlmS6bezUU4Gqa1EpngPZVInrF74lQUjbo+Tv8NNQ8IpTTKOglPTBntBGGsAhQDORTSDKqrcquiUIugCUsBrSMtitZ7fONZpolSIpRUk9ZtLQghVzzlkT4XY6yhWPfSrqM34t2g0qNc5jiruP9rTUoZqlQrhUxGaHMoYb7HJH8mhdOZFbX8c6012ppT8itAiokFmVKHZcH55qSzHoYaTLeEijKVadw4zzXwz1QJg8U7TcqxnjtLPecF7Z0q+ctaj3NyDoYQmaaRnBLWaDa9J3n5zLxzKC3El92Qpcj1DcY49oeCqi/MJcx1kqmhIiOV1qQYOUziE5mmkXme5Cw5mW8FoV3kzhFzbdVyr9ZrIdMpzXiY8E0rYV6TkKPGMXC3m/nq61d4r9huO/rW0y4jOSdUAe8UZ23Lg82K7WrF+XZis+lF4qclbyTMC7e7t+z3NwzjLaVIE6pO5ogjFlRhjcadpLKG4bBgtGHVNFw8OOM3f/u3+d3f/30u3/uAlBxvX13zZ//9n3P16g2v3r7g9nBNSDPDuCPmQNc3LDUUMdeANY3QCNu2oV+thNJDYbURLLZvvrlNRtM0NMbjjQSWLWniZn/N1d2Otl+xhMiyRPxZx7NPHnN23vHg2TN+6+/8ELtasfzoJ+zfvGFzsaVfNVxsNuQ0E8JUMdgyPCvlCIb51WmC1DAiU3HW4xvHPAdyqSAbFL76mGQyHEmxyo6LeA2bpsVUkMLl5YYPPrkk2kDyiewKUSmsKaxWlsePz7jbZcI0c7hzlRgk97qxuj5Lcl56595RUcg0O4Z73b01Fq00h2Gg7Vf0mw1nFxei2R8GljphjyGefFXr1ZppnrkNlZhkxE+VUgAELNM4oSLm6rdarwQWcczZ8N69I8MRo/dSKZgxST0QU6Br5bNx1stArQ5srLFMZRLpFBUDnBOFxM2NbFlEcqhPIh+jJcKAIkQ6qzKGoxS0yBmXTicn1oAzhu1qxbbzbPqGB9uOxigySjzCVtP5hr7rmEIhhVzl97KpfGdhXeXsHP/P/UY7VR8PqmZuHb0R+aQW0kBaFhzSTCtqDaI0WIl4KBqpEVK1KGhIpsova52t3rE2VKETRyKYteqEHC/Vp1b/j7xXax10OrsK5JIklLAcccb/9uvXbjKOJAWl5Qsz7xTeR8O0tUbIUSmS0r3f4Pj7YowVHQZOKYYYCTXjomkdNmjsrMn7TG6zSKgcZBfRRdFEiy+KKQSWeWLtLVPfU4oixYBvOoaYGMYJcqatk8Dbu1v6vj+Zu2MNZHkXm3k6PE6Ng6jyjz/843WUdxzzL0JYaKyVoDznWK0luOoYwAdU9KpM6KAa9XURaou5x4gd/5xYDZy+IikLmdu7W66ubqBOF52xVVcd6Kxls95w2O1lE5IT8zIxDAdCSHjXyITrVByYajwUUs44zqiScVax7bcE3xCCNFrWSPOxag1zSrS20NjE2dqSMRQMRVkMC+SM1pFp2p8+N2McyzyQwoIzivEwMA0HxmlkHHo223N825OLFJnaaJrGMwx7StHEpHB+xTDOWGN49OgJYdoT5oGcFw6HPUop5jmRgmM/vEXryOrnL9jvbwjDRDjM7K5nluxQpqHfnuEbeeBiDFhjiKWQ1dHEdWRoK0rR6KJEU+ng/QdbvvP++zz79H22jy6w3ZqkLTcvr3j94iVfPf+Kv/jJjzDek4FDCEQj8pbj93PRr+n6lqu7W1CCKr6vr4Ufrsr9iaWUUNyMt3j/zTVswjFUTv5/0fHqk7cnVs8D6phrIMmoxiiBAmg5T97NhgEt3gMyqQSUl2aRVMiNJi5iNzZnVkhGpaDHhEoZQkEl8NvIyne0XeDu7iD6dlUTaq1wx5WWCXkIgXmeGceReVlOPrTTkOIoB1W/al4H6mpdmoWcRD0fU4CiMBqmKVC0A2VJGUIUMEUM8fSyKLkwE6SIsUJ5SlWWpJXiGDBWsqB9+15CMoWQtSNWU6BzjUxcZ0nAXtXfl2JCURGSEW5vbohRfBPOvStnkKnY8fyKUbTsutJP1uuWgkMkQSKdnZcF1EK/WWGtg6K4vslYJ/STZRmlcKrKX1sBFfOycKhmznEcmKeBVd9SSiJVdn7XdSgtoVO7u1tijvi24/z8nIJhCZHDYaZbr3DOsM9L9bdlys3Mn/3oc5rWY62haxvWhxGXC0kZus5zsdnw4OyC1nbYKh011b+jUKRl5urt10zDgTBNWCNDlpTVUdBPVbVjteSZeOfwrmXe39Jox4PNGb/3e7/J//w/+g/5O3/w+xh/wasXe7742XP+6L/+I4a4Y14OjNOelBcO445pGSlmI4ObKhnMWdQE3jjatmO9XlfFQWRz9kA21O039xxZbzasuxXeOOb9wG66YVky1zcj2jccppH9NHLYj8TwfT741nt88OElf/c/+F+wefyYMSX+2T/9ZzT6GWf9Ux6fXTBNe6bpgNYyHE0mnYaPxzrmRBQ6No5Z41wrBeccWJaEUrIp67sVxhTCtJPzPR1Rr5Ie3zatDFxc5r2PLvnu737IF1fPeeJatk4k4i4OeLvhyaNL3r4ZOdw6bpyR7Xrdknjrq3xZhqUXFxcMw4GUIm3jcdbWhkEGH76Rc/R2f8B3PevtGWdn5yzTTIqRaRxZxpEcUx0Swtn5BW4cOYwjzmqsVWgDKc8oDM5oulajkFyhXAoPzjcsKZNzlQia47RfNtLzLHXYNIvEXuRSAVUU2+2W8/OGsAilL5eCbwWmUwgnOqech5kh7dFVfrpZrUXGrgUYId7LiEIaDFVftEYpnBZPRsqFFEZ861l3LR+/f8nZqqMxGqczpiSMqhls2sgGOEAolhQSYynkEOrbWhpJBafNAOoojS4VjX9EdN/nUlDPd43CacnHGfd71DLijIQw6xhE9+g1rtVEHSBGXNE4pUlGk63GGTBKAEvH96gMXeTzykqhioBOQjXCyxmFDMyLQNTv8REysC+lZoQgXg7hyv7br79Wk/Gu5ljp+4jxIyUnBHVC18YYubu7Oz2kwnevXWRW5BwwSuQikcxYwCktP9ioccmiiia1GnXhMVPBHaQAnIc9edxTlpk4xcoxlrC9tmlJy8LVm9d4J7kNfdeLObBiFN8NtTrSE4CTXvA0mYTTQ3Mv67iXOthKXAlFVmClLEy3O9ISiLV5yUkmrKepm/Voa3DWCQqWXLnlmqluQHSl2Qh+13B99ZZxGlEq18YiMc0zr69e8/577xGWhTevJCiqaRoohbevrpinRQ4fHdHmaDTUUigYL+mTSXF+3uNUxqmI9wHvCykrhmHCOUl+bLynmTPeZEyccGVGuwZlROjRrORBMUbMmrJeQ8zOjvrAdtiLlv3ujpuba1DQNuB8YUnyAFonDWfOC84XHlz2/L3f/yGvXl8xDBMay3p9Tul7rMkM+2tK0czTwvXNHmtl7Xl3O1OWFburkbu3e1QxnF+e0a7X6M6xLBZnNeTMsN9xVL8YV3XLVIBvdpxfPubi4SN2X33Gx48f88EH32Hz4XcomzNubwde/eJn/MWf/Blfv/qSYZlo1huePnuGcY7XNzfkGmiWY+ZadVjbkLLCN51oKl3GuoZlmum7jlW/ousaljQR8sKL1y9FCmg93je/7iP7t/I6Gsq0EnPzMQk6RslPkCnKURZWar5Rrn6CckoFPz630nD4unOykmXjCmpdYGUoQ8IAtmjZngHJKlgcKiVUTITXey6aLdPa8+rlLZpeZBCu0G9X1YAoidHvNhOllJMB/Bh3fTwfj8OL4/l3upTQllzjWW82PDzr6FuHt4oXr15zfXtgmgey7bHGYtse1XakJVY9d8I3ntV6Jc1xCqS4iJRoWVjmY2K2vHCpMs39bsd+OMhLrgC1kWi85/zsvOKyJyiFi4tz5mpInEZJl9VKDJO+cXImZhl2KCWFQ9Ma4jyzaiznm46+14zTUE2jAa0yVkd6DytfaDxYoymP16RiSFkRgmJZIopAygNX169o2hXGCphiGHYs04izhXXnmZeZ/d0dziqUlpydJSTGYZRwK58JS6zTOMv3f/Bb7Ha33Fy/5e7uBus93st5btQjdvuGtzeFVdvzrU8v0UoINM4b2qbD+467NwPjPpIDeNvSNXKvhulAzAGVCxYxXwq9pZrTs6yrcilMMbPpPWf9mgfrC773/rdp2pbVZs3/7h/9b3n4+AlKdaTbyOHljuuvX/P5818wLTvmMDItB6blgNIF6/Wp6SuIJKckmcZrbSgUttst3apnWmZ817E5f8DDh4/+XT72f7OXFvwoqhCY2O1vmafAYUj8xU/+FTd3b7gbnvH81S/Zzdd89ctnXP32t/nOdz/hk+/+Bu8/e8aq9Xz95Rcc3j7nB3/393jx4kuWw8Swm9AojDXYZE/Bucer8ZLXlJeIypHDbsc0DqScaH1H2605f/CI+XBHiAPTeIcM0xPkjCqZnALzUghx4T/4z3/I9tEl+9jjzYqXt5mbQ6Jl5lGr2bQTfb6FeIA8oVSk8U0FIyica7E1MdvnLLLGmNDa8PTpe3zxxecsy8J6tZZgPiCnQt+ucdqhigywVqsVRmla13BzdcUwHIjLxBwDy9s3AoZQGWPh8uEF2+2KFy8yXlta33B2dlYDhGWQuVk5bvcj+2Hh+uqA8xbvpemV80mRsz7Vi1or5jkzTzODHnBGQummaWKaZ4bngwAnqnLkSPXTWvC4YZGAwxQj3jrJA3EygEnIu/x81UKO0pA4x6u313ij8auWJ48fsV11rPuGi7OO1lt0zTfxWhGzbFdds8L4hG0UblYYfSvFPFSZlwyPBMZ0VMNQ5bXqlDFkjQy9Gu/o207qq6ZunRU4a3jy/ns0KMo4kZaFxYPuHbr39H1DzDPkgF8C0StoDc5bXGNpvcdZx6QlkBJ1v/kXuqcQPkUBojBqqbRXUXPcU6Ry9WUosBKUKxkemXLaAv2PX792k/EuA/hYqNbTu7r77Ykydfy97xoDj5uOkiVgSWmFLmCqRElQhYriNUyFskCZC9khayGriI10bJqC15pvvf8+y5dvCTd7xilCTpJgnRKNczitMUq61lLEyCidWOVvvLO1eJcacZRFncwt9bM8/j2hIFXTqlbEJVC0SIfQsmJP+Sh7SfXflzW2tQZTPSBaSfLuHINMw2KsayyLdWKKv725IQSZ5i1LqKnb0uA55yT8K4pMoWtawrKQq3knl3LKo2jbBu+FUDRNg3hPSiaEhbNtQ9soVt7S+Iw2ULAY3UDR5KyIsYB3WHMkhzlUbSRQYLWBUokVWjYaSi0UY6ETEpDVCpUTwRYak8EoOg+u0dhsuYsTYZnZpUjTeYbhjpsbx/OXX3B7OxJDpm2ayvCWCXbXr0TWpA3eSeiiMPcdtulwytP7DbvdDte12Nbh2paCIgSZylKOcWOFlLIYg7XGaosxjnVjOHOa1WbF7/zu7/Ebv/tDTH/J86/e8vqrF3z5k5/xJz/6E672t+znAde2xFzIqeDblpBkwqWcoul7tDUoA63pgCNvWpFiwViPtpax0kmss2LWD4V5Gklp9+s+sn8rL6XueeQ5y3N/lB8oVVGCqnAfxqdO0zDglB1x9HXkSh4BmV6VE6WpYFpDnuv0ZQpkI802zuC8wkSIJWNDYN0p1jUAKkd5hhtnafue/X7HOAwnzwG8Q6A7ToByrs95JfuUX91+yveuTpJMRcbbwsWmYbtq6FvP44sNX3z9muvbgTkq5pDQRuh40zBirKbkjPeWxiq0LhggFg1JkbXGVC3t0S8SaqCY+CjS8ShCKQ0xs5TCYSfTVmssjffcXN+QYmSeJ5Yws/Ie5z3OObqurV7HzDAOsulRUEicn3tap/Eu4pyRFyuZkise1MKqb+icxqgEOdHY6ncqYBU0+hg4CkpFNAlTMuSAIeOtwvUN03DLNM/M88xwcPimR2lHDPE+uLTKTJX2aOMJIeObns0mcXb+gDgPpCJytMNh4c2bkZQUjRt576liu+lYry9wzhLmxOHtxNXbha++eMubV3u8a2kakdzFEAlhkftYy7b+KH8wSu7L432Qc2aaZ1LX88n7H/D06YecPXjAgycPefD4PYrS3Fzv2L8c+PxnX/L25QvONyuuDiNLyqS84BrxvimtTpvvdPTj1L+vjfj75rCgZkNMx5R6SYD/pl77w57opYgkx0qoFAwsKjFMd7x+q2m8ZZoPfPX8Mz778nOub/4uH3/yPh988Ji/8we/z9Onj7l684r92zfkecYUsN4TplBlg79K5wFqo1CBLiWRkqKQsUZjDBhdMBRKKmgsznagE5EFSmJJgZICrrFszloa79A4Sm548PgTxvE5u+EtV7evcQ96dEqYonj58jlXV7cc9jvx71VyWt+tsUakSLFmDB1lSikJFr/kwhFVepRvjaMU7blkvHfERbbDxhqc9+hlrICVSpq04NYNTkcam3A60rcGi8K7gtWJpBack+FB20JMcqY3nSXUvKmUI8simTqr1apu3SwhxpO3ZZikaYtBarVcFSPHplkG2uGU82VqhhcgoaOAVoVkjvj5Qqpb6PN1Q+tdPc9MzTVpuDjb0DWWxhm8zugSqw8ugTEY62m9572HT3i7fMbd/BalJo4ZFKctdt0yUaWRpw0G9Ug+ytwqjn7V9+LJda7KSnVFm3u6CjUpGHrnwYFycrY1zlNiJulELAmsQzuL8k7qN3klVFKfxhmPcpLPIr5IV1Uv8vWd5L1RmgfZ2FVlh343OFVVAuFprvZvvf5am4x3sacp3yPcjBbGsv4fkP4c8yG0liTCGPNJj2ySTJKlGNYoq8BLwVFipiyytMmCcUI7jVMKlWUl/+ThOV/c7HHDAVQSDnWOlCJNhjVa6AcccbtBGMcVX/ZuU3GUNvzVguBISzhpPHhXU10PdFUP+aJAe4w2VRJl0Pq4hhIalXVOin0r5sMUEnFZ5KAQTY3MZLWgVIdhIJxeItINO+swWqQKoUo2Ygg4bQjzItKFeDw07Mlg3jQOaw3LMrIc+e0UtCn4xtCvNK0tkhipNNa0pCBTZpCmRnqKLEbkuvKjFoCqflRaFSCgVEYZj/I12AZFSRlnpMDSVtG4grUFXTSazBIicZpAZ0lqdYab27cMQ4aiT0GER+mBcy1alWpW8qSUTxrQRhta37Hqt2Be4roG13ica1jmyNFfdEwaVVrJC0TdJ6j3raM1GZ9m3ntyyXe+/wM+/u5vUMyKl1//lM9/9kt++uM/52df/ow5BrLWbC8vJMAGZCKQZeJitCStF3F5SbqvOhoKwXvB9KEMIS64xmGMQ2FZquZ9GPa/7iP7t/aSRkP0nQp9Eq8eNayqPm8li8b83UTZdzMiTl6mX/nnSpx2Gkxj0CaSYxGYRB8pRjStxhgqSRIbF1YGVk7jrGbKEasEJ4rWjOPE3e2dkFsaf0JRluMLpZTTswsn5evpa/oVX1fVuWpdcDqz6RznK8+mb+lXG8iFzu/YjYHb/QTaYL0jRZEilZxFsqCK/HUtsEpSpOrRiClRsuiQU4yEZalBjvb+7CKD1oS6aZ2nicZ7KIVxGMQjUre4xzOkaRqaxouGuGTu7m4AV6WXhfXa0diCLRHv7t8NpRhioNJrPN6oCjvIOI3gy5Emo1h9+jkmMlZltEoYElYXrNNY33D19pYUJkoKxGXEOidyryw0Nm3ka5qXCWuVTG2VbGQVsN2ec3szQxFZyOEwcf12JCxg7UjOhumyoG2PmTO7mwM3b3a8fHngq69vuL4+YG2DdyKBKbkItktzfy9zPA9rim7VZJfaQDfW8fF77/PRt77L5ZMnXD57D9O23F3fcvv2luuv3vLyxdfsdzdst2v28Qa9KNAF5807762adl5EF65q6rF18nqfl6UOhCoeug6XvqnXNA2QIzlZkbGcfJKAzozznnSz0HjL7e1bGtfz5tUNq+0G6x1P33/KR9/6DtvNmtfPz/jv/+i/Rc0LOkas0QTF6fk91i9HJQJVRq0qZa3kJLhsXYNryZQU0aVD6wbTWigLc86kuFBybTJMy9m2pfVWnrWUaZqOw0G8lLubGx42hZWzJO/Z3V2z3+9lwxCDbDKcEJiMcSd5S06S0YMSgpFzHlAndK1sfxdSigyHA6UUfOMpqdA2QudS9UgWj2XCGoW1Iq/RJeFNwqpA38gZakxBqYjRksjtvaZpBNdqtCFoy90+ENMxyydUimbHsgj8w0Txpo7jyBIkgyjMAWMs2lQZp6Fu6+IpGsEYQ9T6JEeMIVRliMJkU98zMkicQ0DpBu8tXd/Sdi3eOprGs+6ckDQ1GFUgR3mmEYCC1gbddtjzR7juLcbuZHBefWyC2s33Eil5swH399I7JaScCZUyKg2qbJa10ShrZMtsHaVuYr1zEiprFLpu+6mNYy4Rbxu0MyhrQcXj3UAKFQdulTTBNefs6AeThcuveqyPjRC1PpY5rKoSvdM3eN94/1uuv1ZOxrEoPybQnpi7dcVzLNThvilpmqMpKTLPkaySFFhdI7kWOdFE8XBkJYZXYx0paUoU1nvQklprimYMkVQyKsP89jUxHMgmCLZyWVAqyfpcebyVrUfM0ljM8ywP6jieiFel6pyPjdGxoztynU/G9ZTrhNzSdB2PHl3SWIVTiba1fPHlc253B7QtkB3WWNr1Fu8cyzTXzUFi1bf1YXbM08CiPd4cV1Zy2ORq3owpilEzLHU6IaFZS0yn6e+0H05F8bgXLWYqiaIK5+cXdN2KVb/COiNc+HmUwpeCtYYHDx/gXaJpFE2jOO+jyFaUJnUahSPGwjguNN2KaZ4YD4Po+aJMRq13HAbxYQiRKZLiSC4Jr1pULcpCKTjj6TokaTRHnM0oFkKUqawqhTBHdnGPRrNZb3l4+ZBxJZrXuCS6riMss0xEDExhRivFxcWlsMPJpJIwXYfvWrrNBr/uyWRSyoQ5M44Th8PAcJBD21mDd5513zMOo/hRnGW9ainjHePhln/wf/o/8+Tjj0hKcbgaePv5G/7yL/6Sf/Lf/mN873FtQ9P19Bct47wwh8gSA6UWV9Z4Qkkss6AFUZGu8yglWtnV6qxKURJdt6bkQlwKTsHd3S3jsGccv9mbjBAiYmEyQKQUhSmmvsyPEIVSc2fuD7EY868U7EeWuTUWU4unlNJJoqIAuzLYW0uZCmlJqF4KtOwSudTfmxVq2LHWj7hced57fMbbl1+Ac9h1w4uvvub6zVsO+z0F8SYUZMgSYxQ55HH7edx4wknRqt79LhQUJSblvmnxWrHxmpWFTkXKdOD9yy2PzrccpsjdMHJ9t+fF6xsskVIWYhR0pVIt1uo6ZXSUqFhUFkmdsxTE03GUamqlaLwgxeea3+CcE8lnLaKmcWSeJlKMKCtTzc1my2q1pm1avG9YwoGYpKGyzlYJqcE38oJuvWLbWfq+ISRHjJmcDfvdxLIkmYBlKV4MCmuTGN+VQjeyvRUYgJYNlg2gwRqYJtAY1n2LyQeGQTFNCt9rmlZTFOz2C23r0fY4AAp03ZrN2YZPP/2YcRjZ7+4YtmcI5zigVeLu7pacFMMQWa3W/OIXv8CYxMXFipvXL5n3I/Nh4fomsLl4hG1atHY4n+sGoVRZnOiYY/WK6NOU1UgDogpLPPDRe+/zu9/6mL/3/e9x8a0f4Lfn6Lbl1cuX/PwnP+Grzz4nh4VYwK0N67OefJuxjWFNz7zMlcTGSXasanHlrGO92bDZbJmOvw/YrDc8vHxUg2m/uQAJTSQsmbjoauytQzFnmZeRYdxRcub8bIPOmnUX+ejZt3jz6povfvGSy4snPH26Znv5lM3ZOcYofvKv/oT04jVZF7K3pJJOmylnHaVkpsMO47xMmo0lHob6M1VEQC0zOsNMy3b9kLZf4VoPauEtXzIvh2owtyjVcrY1PH3suZ1vuLp7zp/96SsUCyqJf9GWjNMyANycNbx8dcP+sGcYJDfKWEFeG+dYb1b0Xcub1y94/fKlyCNvb3n/2Qd0Xcc4HuSdU2SD2D8443a3Iywjw2GPc54lyJR6d7ghpxFrIqu20LYK55Sc20nR2UKjIro5SnEUmoX1ytVCNtO14vFcOs1+KeyGOuxJGVO9u9M0AprGdzReYfTI2E7MswxBjdN1SFIlqipUb0A5oWFjuaeWKhSRRFZIkK4rcl5bBxjupsDy8i1n646PP2zYrno6Z+mdoWvE1wcFtCKWjNIFpyHHCbxnKZmf/OVPuLrdk7KQ4vq2YZkcBU0mHRfbpybgNEDj3f+VZjAuimk4MKkiJDy1kcFjFghIYxtc0VgUzmiwkJFQxpf7V9ipYIaEWRLOOpSzRF0gJWLOoILUD86htavS1mPDo6qfbDp5iIWUJhuyXOlcKUbx5yY5l6VpPTahil/n+mshbI8F97tSKPkGZPx4JCcdme1ikpxO0ofjJBJq92Tc6SHRIRNVRJGgL6Qxk4ZCvgW7shirMCNwSBAjRWWUGfn04j36PvKvx8+520+EshBiZtWt8F2LdU4mzO9sV+RDvt9e1J0acO89OTZUv+rdkFh7kG7+ctvzYNOx7luenG/Y7UdevL4jFs0cElMIWOtJBoyFznpMiZQQCUmhi5iKrMqEAo2X5PQj4jRFKi6spnBWDXqpX1frm8qsP8q6CsbpKlsraG2xxuG8pJwehjvGcWKaDxij8F66+tV6TevB+EJ/1qJreFCMhRIS1hRsL/6LHDXJGfrtuvpxwDQtviJx133Py+dfgAqomFnG24prrb/MQskJZaosyRSUgUYb1G6BUkkJaMb9yJV6w5uXX4OWYlwpS9N6+axyzzzvqySvZocUwa21bSvheSjIMC4JnRMpBO7u7rh684pxOLBMA87Kar2pHh61Miwpioa5FL77g9/iN37zt/n0N/4OUTv2dwtvfvEZL1//gv18hW8drnWYxpJV4Ysvv0Rbj3EO37ZoJ02GpqVbSWBWmHM1liucs3TtWpjgUyAskbXvSDGwzDOH3Z7hcCfTbP1rIh3+ll7vBlgJXUr+KsQFXctzpQpaO0q5D+aLMdZAQleJYJI2O40D3vnT4SjI5kLMmSHOIp0qUk9q5cEWsk6wmzFJY4qlt1sKlk4bLrdbVn0PuZDDUUctL7UwB5ISuVN6hz4njc873yPqmDl3+l6PU6/N+Xkt3DvadoVSFqMMTov0UKuCraz6vtFsWst53zBMgf3+wDiOqJJ4cL6hcZZSEs9f35FTbbpcORXy4zjVqaVsbsdxFK9YHa7kmIQcF+6zOLTW2Maets1KVYKOb2nbhnkeWCp2ehwPdN05/apjc7Zm1SQ6X2jbgjMRoy3ZKkrSOOXl60Izz5XMFQNmtqhKTxuPuMm66SllQBPRyoIpKB9Pn6M3iWQTymcpgjxkpeg7xzjsZePbOHb7a1KJxBL4xWcbciykIM2tSC0jWgmm02hLzoVlTqz6hyiViVNiORjmQRMmzarfiJG6bZnijJvkHo5hZtbHLJP6bJ/aTANZSeOpMhddx7ffe8L3P/2IB5+8T3d+TlKOYTfy/Bdf8xd/+mf86Cd/Rts2ZKUZ5oXn12/JBpSzEC3Oi9T4KH/LWiRsCrBWnoNhOGAbj7EyMT3bblFaMVQM8Tf1ap2X5jVVfXg+FppRUMCmoKwGJSqJKUy8fvMSbSqJ8jDwm9//Lu9/+IiLyxUffOt7/Gf/5X/BR//6j/nDP/xDXg8jioJuG8IcUDKewmhpXEvOxCJ5L6ij/6aQ0YQY2e2vUa89Z+cPObeP6Tcr0I6YFSFnunXHBx+9z7//9/8eH37Q8ubmBlVGduNrCQcumU4XrIYQEzd3Az/9+Vd89eLA7V3EGI8yHt92bM7OSEURQibYzMX5A16/esU0T5RYePnyJcbIuRrnkZubK4bDgYuLcwwVuDAesDVMRedCa4t4ODGQLc6LcVtr0MXhjEzprfN1i6SwRrE968QUrguNs8RUWKIiT5aHZsM0J4bDxOtXbyROwDU419NsV1InpYz3TUUHL0JAUzOlJNJylMWqugkWAFGpErCjfBYU0yREqrarzbRoL8lEoisMaJ5f3Yo0zEggYeNV3ZojQ4MigxlvNAXLkAt308LNEDmMAzHMrBrP/joQQiXJ6XvZljYGVQMCKQWDOQ2kcowoIxGyOSe8l22wdgbTWJaU0Crz6GzLJoCPkTAvNKsOVEIRaK1FqzpOywvZG5TTNYjv9MdWMqEAdaROkner0UoCHd8BIB3DmOHeO2mUFf90ha5YZ5HoTyWh1L/G9Ws3Ge9OPo566qMWXr4pdTpS5RusybhJ/rm1hpzvdanl2O5pKShJEWU1KmdUB2oGokLNBd2XunpSkEAlucnTfqZbaVba1ah0h1YWoyyuabFNI4aiw/70Nf2q16Imw1YtNX/Fn3H8d+o3fewBURScLvTesO0dm87RWsO6bdHKMofMMC/sx4lUoFhx86uScFq8Cd6Ivnycy30o2burt2MQYNVXH5ODc5V0qYJ4ONK9bEPM3ZW2U5G5xojJyDlXp4PSPLWNxXsj/442oDVFK1x3Qe8NRolsYtnvpRgQYTzZGygNXeNIyYix0Xti9JLGbMVbYypVJcckh1mpHhWqmE+Jhj3niFIBbby8HJRMs3W9k3LO7O5u8e1K/Ap1WquN/DfneUBbV2VUmpKjyOuyyATIsiUaxxGTEzkszNNBKDDLRCmZrpHQPuc8WluUUehSsErx8MElH336bb7327/H6uIxn332FS+/fsmLX/ySm91bljhhvBNiA3JvLdOCbSSgqGt6IkIQKqWIiVZblLF4fwLkvvOzFR17qpP6WLXxIciWzppf78H+23y9W5jL81in21rXrZz8vnfx1ynlupaXKbeujf/xJXMcBLyLzS5LRjvQTs4RlQrFUn8VTASVxBQexxlbPBerNZ1vWJZASQldxDR4lNblLA1GKpWhe/RlcN9lHHNUKUhA4NEYqMBVU6JxDcp4jO/qC13kQrkUUAVrIXuNUQ5vFFOX6L1mGC0lJTbrDgVMUySkWOloItg4blpCFKrMMXskxXszurycSt3o1LNRK5QG79vq61AnDe/xl9Kq/rcDziLyJWfEQ2aMSFo7w6pR9f7NpEXILvJikmm/NZpkBX+prSUXSfb1zqLqs5DSRCmJnGqiMVlgIFmmpd5JQ3f0pyQyRolBPVXvy2G/q7hQVbdAVASv/HBUlZ06J2AFYz0KhbVtLaoiXXsG0aLySNGatmtxXUtZ5DNcFsMRzX7cZGijEWqBFGtn23NSyeQcuLANTx895dHT9/AX5xSjmYeJ21fXvHn1mqvrK253t4zBk9BMMTCGCeUMRRkyGu9bEUQc3w1KSaOZEkrLkCnGhLb5HWiJP2VDWev+p3/Q/ye6uqYh6EQIiaU2yIDIcyuZRytFylE2lXFhP+xort+IB3IYWNmGkiIpPOLJh+d8/L0fkBW8fvmKP/vxj7idZ4aU2GuRFKuiTgCb4zlvdNXcU+WSqpyIccNwi3EW1zbY5kwUCvV+U1rjG8/52ZbtSoJpl3GizDuiLhgUG29xxpKSYrcPDGNhWSBnjTGeUiQ8bn12RikiC08po8y97KUgeHprhAg1zwfCPFSZ4ULXr9DGkkhYnbDKYFWidRL4qZWilGONIBJAldXJZ2usyL6N1hhd6JsWY5XIr60mFYNJikOCRomMJ8aIs/eDI2flWbFWwvmO52PjI85bcpZhBOo+o+0o5VF1a3AckBy3GakIIGQcR1qQ0LoauBcpzBl2k2Ru9d5ScHImVAk98RicKRJwjAPtSdkyTAPLPLHME8wT0zSJKZ7aXtSvQ5t7uWKKCVV0vT+o29q6CVDUusnKhsw60AbvLJ11NClhEWlxCgvJBpJNYLwM0DKSpWZEIiwS0/payll8yCKKr0NaGcgqc4+vPUFM3iEhHmtlrbXUrsj3pLUgjI+KgV/n+mslft8/zFLMckRQnjqngjHywihJpmVNY3FO0Jvv6r5EViX6emH3SpGL16i1wQwKYoGoKHXyVLShqIK2Flcsy34kuVsSGpXAKEtjWryHtl9jvSHFhdvbW9q2PW0m3mXXn/TUVdedq2b6r7Kx5UOQ79tqhdfQ6EKnC56IsZp23XBxtmU/zozzwu4w8uXzN/hWE41ld3dD2/b0rWfdNbRtw9ubHYdB8iwotiIIxRgYgmDHYr7HZKaUqsm6sMxz1c/dyw2MNVV7rerktxYITleDvsZ7y3rV0PUOdGEKC0U3uKbFrx7x+MkjtquWqxdfcfXqK+ZhR1hmlDE429G3DTlGmX4ohTaKxSiWOHN7d6DeGoIdbjwaQ4qFXBn7uRY1uUgYHyniOod1BWMzMS5o7WjantVmw+3tDZtCRWgqLs4fCpmmQCrgtRjlrfN1UpuYyszd3YGSNCUpxuEaUyKkyDwNxDBRcsRZw9l6g7fyAo4xkUpCARfO81u/80N+8MO/y8ff/y2SXvOjP/8pf/LHf8zrq9d4l1hKxPqWIc3oKCa9xncoHI3uuNg85O31K5aYyHmmIIhS4xrW255lGkgpstvv659bMCYzHHZSw+Z80voarWiav5bC8W/ldTxHfgW6kO9fNsYKWOL4DKbqSbLWoHD3GndjiJVFX0qpnoHm9JxMecKui4Tb3SXiAtlAttJsWF3QJcM0E95coc5WPP3oGZuu5y7uSCGK3+z4y2hUOq7qFUf2OOXIJa/hS+V+OKGKrLqPOMCcEkpbMJ5sGtzqHG0CpUzy3yjSaOYYcUphvaK1jrJqOF97lrBhXgIpJ/aHA6/eXrEfF5aswDXE+rZLQMyZJcXaMJR7cl4uWGPkpZqPq3B56RUFbdeRkzQZbdPVwE5zQvpKA1W4OF/Rdw5jJTxUGUM2HX51xuMnDxgPt4z7OxlUIMSVohWLBuetbKsyaOdJBTCWs+2GuMzc3V6xLIkUZRBQspbfgyImg3PV0OgsxhaKSoKLzYJJDyExDhOoxKPHT7l8+IjN2YZ5CszjzDwWpnnBWVWndJb1pqdte+YpUZRgYDu/YeV7hv2O/W7H3eGOdt3TdC1lMOR6j4hWv374itosHQUShu9+7/uUmAjDnodMfPDxd3nw8XdQm3P2dzM3r9/w9Y9+zpdff8ZhGTFty5wjISdCyfi2q82RJidNt9pSTCarTEwRY60QdqZJxmDVyxTmRTY/VeZgjKXvV7Rt9+/wif+bvc63G5YlMs0LV9d3UI4+TyUp7NrKfRZnSpTGfZj3pLeZm5s3vHr5FSplXn/9kmfP3uc/+i//YzZPPuA3z8/56OOP+L/9X/6vfP7FF7y8uiIakWcnBcV5WidY5hgTKnNSEZSSpX5BfFLjtCeVyBwORJ4xjRMUhfedyKHnmXma6cwFD9cKnxVN3c4YrenaBt92LEFzt49Y+wDvLc4fiFHOPNd0XD58St+t2N0JNW087NBVkjkjwbxJZXRRxGXCmYLtHa2HB2c9xjqGaab1hcYlvC1SmFesairi7zhKPktRoIQguepX9Ku+Si4Dzgk1SluF9xZsh80WM+8lwyIXmsby4KLnMAi+1laao3OGlKTB6FE0vgEkoC+EGWUAjmj3Wj8qASyknIUgdfTrFQSRPw5sz8+wvsF4j+86SqVYlgw3+4HWWbZ9w2EcMUWJhD+B9vL8llwwbY/zW1xuGIY3zMOBcXfL7uqKm5tbUcpUH56AHzTWO7quEy/IOFVAiSRv5SjDQutMDSa2WOdpWiHYraxh1XhcApcypmSyLsy7G2ILcaMJ1mLzjEkF3zqSLnXDkLFKPHPHkEM5kww5I42hs+jjFo5yaijuoyjsaWiijMHUUvhotNfqHiTw61x/rU3GceroXCMTAgUlK+HI18P1aERTCo4Ir+NL+ljkH7VfOSVyAlc1jgZJqTStRq0UptQkwjmIIXxlMLOCBQiFvgRaneg2a7YfPeP/+0//KcN+IuaJjb/g5uaa3e0du9sd+zvRsufqtzjlYxynqtTFSlEV83h6rE7NyGa1YbVesd2uMaZBKYvC0FlNKopUIKnAw40jdJpta7hYeUKUicvubkvXNjirMarw1YvXHMaJrDRZw1KAJA9MSEkmlJWGdSwQdO3i4biaFza6bAQtTdvQtSvUOwFnMS3s9zM5R7qu5axb4Rsp5pQxFK0JGQ5LQTfnrB58wOMnT/jwk9/l61/+iNvrl9xevyLMotmeppFUinT6tZvdNGsmNbGb7ig5VoLJhM7HJk4OKm3AGYsxlnGcZMWoDSENFBLWaTabRqYgToy31ze3GONoW6FULdNIdl4Y0CWzRMkEuL27Za6M+vVqxTgcmKeZaZoFJVgSVkPrPZeXDwgxEpZI064I80KYZ87O1jxpz7nYbvn02Qf8x//wf01/9ohhgf/fH/6/+dnP/pQxvGF9EbnZXbGYQHe5YdjVtbk1PNg+4Hz7EOc7ZgwhaXKYUSnSrh7QnJ+RycQ4MswzMQZyLtxdX+GtovGGVd9gjMdoj1FryvkZIQWW8M2lwoBs796dnBwbjJTECC8yGsglntLBm6Z5J4BK2Oaylrfk7OpG5H4IAtKY7OeRFoPz4HtNiosMLbzBrTosCpNBx0JrjMAiNg1nfUMOC4tOmCJFd8oJZTU6SJinikLqSTUlNiQJ71NK0ptPAwwKJYh8RqZCst0rRaH8GrO6xLeZVk2Um+coieMjFyVNPBIcpRA0qteajOH65sD1MHNXNKldo7PCZVXN3oG4LOz3h1ogyFmWouRtaCpBq0oPjNEUk2uTJ6+Etu2wVoARuSSWZSKXQIyLyKPOe9pOY51DGUMoGV0cuBXt5ikffee3MBSWcc8v/uKPGPY3hEWSw+3Zpm4qqhzNapFSdo5lFnqObyzNUiUGEcIcoSjJDwkz0twBqlBINI3B4bi9E8mlQmG1pwSY9iP7mxu2mwd1E6rZbFb0rRciYQ7M08g4LoBhvd4wziNFZbLO9BfnuL6j3W44L48lg2SJzFNgGCf2+z2725ua5yKbmmUa6dpeqDG+4fDmC8w805XCf/pf/Vd89IPfZX3xhDc3M3/6T/8FX3/xOV9+/Rmv7m44zANLjpxfPqJd9WQFd8MARTHsB/Z+h3VWmgwSOoxY22BdQBuHM5bNek3fd4zznilMXN9eUYC26Vmv1yj1zfVkfPLpR9zd3rHbHTBai7cgRpHEFKi6Q/Edtk6Qpq2iay1t09K1PV+++UL0+1bxZ//sx6zfX7F90PPkWz/gf/9//D/wp//yX/Iv/vk/48V//c8xrqdoCYez3qF1wSI4z7mCEyR/ptTnych7OgfGww1ff3kQ3GeGzrc0voNkuHk7cPNqZL12PLl4zKbfUKrJuG07/uhf/ZSbm8Bh0Bz2iWlaWMJMInF5+ZDt2SVGW8Zx5u5ux831FaUcmJeBTKJfNdzd3qGVZt11uOIIzpJCRseR1iWa1uKdwroFqwNGwaz2olDRCo0j5Ezf9Vw+uCRMUx28KKZ5xhtonEJljXcO2zY0qzXvffRdbvYTb2/35LeRKQ3EnNHesjo7x6+KpKAHxW5/h1YHrPP0qw5Fj1Ka6+s3ONfQNEIZjEukZKG1KaUoqo5uKnr1hAuv7wNKYTjsMNMkHtJpxncNzhmygRevbtAp01nDw1WHVhaNxWpPVEmoZabIs6IsSll0iszjyG634831DfMyy0Cpbi/QsvFq25aalYezVmTbNfA3afBNJX42Dcp6nO9Y92fSFFHotWGjHcv+hhIW2sZSnCf1mmVt8Unjo8JmiY2YugbdKAyBnJdqWgeq2ujoJ1baoowD6+Q+0AbnHW1u79/HpdzDfBAgwNFWkGu9mes7+9e5/nqJ31RqRvVjyF+rd7YZMskppdJNTmoCVb/JeyKGVgqM4R0vCjKT1+KR8xp8QQ+GHJOYXpwCk0/KBKM9JUR0WOh0Eb2aVZhGQpxSCMQlkIOE6mRE6hBPxU0+aVrfvY6motPqS5p3WTlbh7GeiKFoj3YthVRf3oWUI8rIlLTzQjXJWTIxWiM/vJQz8zyxnxemXChGaFHHP7fUyW2MsSbzlhPh4r7JqFKTeqaqenMfP+euEy620qoavgdpoqzGN23VWYqGT1uHNkK5ePH6NecPHrA+u6C/fMKDp5/Sri9YnT0kxondzRW312/YX7/hiLejgLXgssZrh9UWrQwyCUknY6xUPMcJsGBbJfHcQMoV4ebxvuMwBZlAWEeMid1uxzRMsnZMhbZf0fUr2ZQokXAMt3dC1lKS0zIOA/M0M88ikbKqnPSkbdthjMPoxPnFJfP+QJhHWmt4cnnB+0/f5we/8dus1hfMc+Tq5prd3StyuWa1mfngo6fcTRtuhsiru8D8+oZxuCHFmWbjaNYeaxtK8YQlMh0m8jKyH2Zc26KdJSPmwljvzxQDsYi5dXEKWxTZQNGS8TAtM4dx+HUf2b+Vl6qF9l/FQ4uJrMikrJpoTxKUKh+UsDgpjo4TePGDiR79KJs6bjq8s6hcARI242MhJjmLXNuiZdxPCqJbzfPM/PaGImvRKhGQbVwuvfjHKvmkzJIRpEo5ofwkGZ5KSzruLo7fp2zenDEn6l1OiRc3d8S1prSRpiRMlTvEip00qk7o6n8/ZKGkHKaFwxyYsyYhvz9FQXjP1cCdq0b/eLymLH6nYzMkKtcqg9AGbQ3Gip/ON5626QSyEBdCXJhmwWJ762hbh2/kfEHLsEIbyxwib292RN3Q9z39+oIPl8DbV18w1Y3ofndLDGKMRqvKZIfONaQpEFMkpoWQAmTZ7iklsrWiC7ociWylctsDIc51yy1Nx7Gx8o28PPf7HbvdLSEIpc7ZBtc0xBCY54jzLcb5KjXKwu9XiqLq8KhI+6dqsTOPE7vbG4aDfE/GaNpGMJRGK+ZJ/HVKa7w32Djz+PIBHz57xnsff0y7PiNGxe3zO37y05/w5Ve/5PX1C+acMI3DrxqKLsxxIRZJQ/e+lYKg7wQjqUBTcN7J5glFsgJNUMYIcMKJ77EozTQFpvH2BL34pl7OW5kCW4VzEp7okkMypGRDnpHkeBliKZa0YONESIHdYUfrV/Iz1or2xz3t856nzx6xWf0WZ4/f59u/taCc4WqaePX6mrvdAAk2fY/SQue6GyWFHikVZIpdi553KXhxCVjjsE7C4axpmOfE11+9Zd1azrYNq7XF955pXpjmgcPhDV9/teMwFObZcHe7E7qdd1jf0jQdvmlpGk8IkdWqpeQNt7eH6meKjOOCUkXoUEaQ3kvRRKXw1qBVqF//LAjsTC1+FlAe61q25xcchqHmTjhMEtSsqT6MxlmclabK+YbtxWMun37IxdOPyFc3HOJb5vhVPV8KJSK1hwVrC2OWUL6Q5blv277K0eQZ9M7XgXBGK0NO5T4wV4ny5F6qeC/zAUDBkhMewdyWkIhG/DvWOFKG3X7m5ctrNu95rBE5qHGKiFBDlU5ko1lSZqgY8HkJzHOo2xROEiRd5a4FGeJwlOZnUSHIA1ugmKou8Rjf0PiO1WrFZrPm6XuPudxuOPeO7vX1SXZbWRsyPEHjEphU0AmKl6E1FVsNRhQ59T0qihZTrQ2iPjLKVC+T1OK22iGOCh/x7YmXjwpzOi4RTuRY++sNKv6aCFtdV5Ly8jvlZhwNIEo09TEITs9oiW2XxkifcHCnL1LrE/Y0HUfdRZF1QruK3YqGFIykfytNslH+nAJWN8Qg0fNmWfDO4FpPVlrMfTFDlklDipGYEyELeel4HbcY93fp6fMEREd9fCkLqteitCPhKLZDt2tKOaBKqkE7SV6EChojk0ddMySsLgwhcpgWdnPgEBJzVmTrMVjB4VUvRgiSbMkxFCUf11pHXJscZEUhHgKjTwWC1pp+1UkHnSKHYccwHvCNp/M9znmcNVWXJyxtXfXwX339FWcXF6zPL3j4+AO2D5+xPn/E2fCUohauXj/HNJ00QWEkp0BJEUPEJoW3FmccRov34Hgv3OPONKUaUVW9ueW+SDSuwfkeZbYkPeCbBmMsyzKx3+1RRdalyzSxOTsDBavNBqUMIdxnl8SYOBwOTOOBuARCCIR5wmtFsRqrNOvVVlaBJnNx8ZDZesLB0jp47/EjPvn4E771vd+k4Li5esPXX3xOjje0q4ltq/md33nGIVte7RLNy4m75jnxdWY5vKY78/iuNtWpIUSRbkyHHSEMdNstTd/jmirvSlEOpVx53iWxWE7a86ALcVkYxoH9NxxhKzLLapQ+qUve0fzWZ1M04/XAzoL9NEqRnMHo4yTlXlJ1TOM++sTQ4rVJgEoZ7TI+gsmaoGtyej1A0yy4wjwtHF5eoZRgYQnHItHLAW41ZpbnJERBL/5VotVxaV6qJvro+VL18DZGS4IrEMPCV6/ekGKDPbdcamisxipIi5xd6JoZgUxCM4VxmtiPkzQZRRqMECNhDuRlYtjva6bHvW72HmQhExNdz14UlHp+WGPFl6AloK7tWrquJe1n5rgwjgfavpcwwQqNKKUIwtMKqWqeF169fsthjmzPelarNX1/hmtXDPsrlulA/OLnTOMAVLkaMojqrGVkgIr7FLqPaNSVhHGIR6ZwCndNGUqOLGGiqISxWow2Mn6pm5jMoW4bYipY42m2jVBUKmTDNx2uosVDiNV0KvjuqQSWRYAMOi4s88w0DNzdXDHPAykEGm/p2pa2aXDW4l3LYRxQWgq6jbF8+ukn/PAP/n0uHj8lYjjsDlx99Zqf//KnfPXyM/bzHa7r2K7OaXrHUgJhnAgpMYcF4xzKalzXMI0jpcj03FlLVFAQIpdRmoIilYw2FucajLbMc2Ic9nXI9831dkltINhP7xylUydk/LxE5jCxxPsmowDTMkGBsATGYeLh5RMyhWGeGKYJUxwff/oJn37yCe8/2/Lhd77Po/efcDtM/Kt/+Sd8+cXXdK5nve1IJXAY99wMo0gA4ZSrcfQ6aVProip/tl7M9846rPFMY+aLz99CTJxtPOtNw+X7F+yHkdu7A5999opldqRkiVFzt9vhG5HgaNtibIO1Fm/lHl5vOtrunN3ua1CZnCKH/UDXOIwuaJXxjcZkaTKaxgALKQVymuU5UjUuQCmUEmrc5eVDjL1BIXWQtro2LYaua3HWYI38cl3Pg0fP+PDT38authyCxd5MLFHuw+PwxBqHKYpsCstS6iZfvBdN01DIxJCwVqA1cv5DtplYpWYycqHiXOWMe9dPcNTwx5KxpVTqjIRzlnouFG3YDwtxGPlw+4DOW3AWZXJV5iRQgWQM4xzZDQshSpMRggS7yj1Wox2UIiQZqoaw1PwOoBSctnWTAaXmeBnnML6h73pW3Ypu1fP+B0/5zrP3uGwbXv6TfyEp3kYTSv1eC7iiMLFgovgMs9YYJQF6xoofN6pMIVe5fB1iaxniy679qIQBjn4LOMkOlwr1STV75SihOiK4VQ0U/HWuv1YYn635CUpBTMcXep1En7YYQbo6zEkSEUJgmnTt+AxaZ+ZxlBu3hsUdb46UEnNMaKrEwIKKGpU1xlniOkGOqFQwc6aLhi5ZlGn4+7/7d/nJZ5/xox//JZmIUQpfPQkpJ1QNiws1afukBf8rU4jjdP70YlfCjM4xShOBwvXntBdP6R89wk0vybu3kBasUTJFQR5GyV2QB6Jxmv2cOMwzr+72LLYhAiFWCVAQyc7N9RW1RT6tAcWYlKuOz9wXZnVbITK0FmdrYT5PHA5LJWItnF9s8I2s56x1NK3QokIKCP5bXljLdODu9g03tw8I6YB2a2zTs/IrFLA6e8Z7n/42X/3iR4z7K6bhltvrl7x9/QJKxkZorCW6hpIyhznW5z1L6GLFHyikeIsxE0ImK0eMgIGmUTx79ox5CUyTTPrX3RpVYH93x+0yyyF/+5ZnH35Ev9piXcOjx49ZZpFpjQfF7dUryBmrNE3TYRQ4rWlUg6eRDApjWOO42JzjthvWK8vv/p3/GU+ffUK7fczPfvpL/vJP/5if/fiP+dbvd/zOt3/IxaMHNF3H61HT20s+aD/i9T/+x9g3Z5ThJd992NCkhmG/8PNfvqJzMFvFIUdCCvg0U5KGXLjYbolLZHe7Y4iJUCJJF5q+EfN3iMxhT5gnVPlVAMM38coooZIUWKaJCqbDGH3aSsg5UkMsENXl0XwtWzN/Ahgc6RmlZFKBGUVjDI0S8+tcxKMTmlgJhRqXPZvtOZGJGEbKytMlI1KcJfHdh894vt/z1dsbiEUkCikwDntyKsSwEJejLIfTOXbMwCjH7yMf2fnyTaZSuLm5ZbPeUOLMtC/kxjLnnuDP6VxHGW7Iy4wpmhIleCqmiegKEc0cC/OSuNtP3A0zodjqM5iYDwM5L/dr7HdeukcaoKp5RkbbavbWWO9xTl5G3jv6vqOUwuGw4+rqFaiMc4bzyy1dv8JUzrpv2uqxqqZWFKpkUpr45Rc/xbeedr2m31zw8fd+vzYOe9YPn/H6q1/y5vlngrqOoT6nic5JMFkKC9o4UpiJSUz4oI5HM1bZmjgucoGsDEvKxDjQtC3aaJZQsG1LRjEvUshYbfHW4Iy8x5SRF3MqkSKvcQ6HA64mPU/TAtkRl5kYJnSayTEwTSPzuCdF4fI3vmHbr6WZS6Ctp+nBU9goxX/2X/wjPv3eb/Leh99iNxc+//Mf8+KLL3n+/CtuDq+JaqbpPX7VMi4Th7czru8EF2wUfuVIRHIRvObt/hZKwuhC0zqsdXRtw3q15XDYY6xFG0eMC6pYSJp5mljmhbu7W65vrv5dPvZ/o9eTZ+9Lke061pvEOM4VlVzY7/foUUHm5EeKZEqaKZ1si+c08/L117x58wprGjbrCzq/ApV4+8s3PO46mo2jWz/gP/xf/qd8+OG3efnVCw5vbri6es3Xr5/zo88P1Pgoke8YLUPI0zklZ4EyBlW3riklmqYTA3KCu7uJf/KXf4RVgnIflgNPPvyEfnNOocG7jpgEeX5xflb9lg7r10xzYlkWrm+umMKE1omcR372079gHgIxZEosFCub3Lgk2jbjvcIZg1KJEPZCcU4JbcXvii6stmuK0mQCr998iVOO1rdsvEc36jTt1tbRr9d0qy3nD5/y+L1vsz5/zOr8ETfjgc+ev+Anv/gpjbXSbCmNcko+r6IoFlYZ1uuWGIN4nnbXpCgm76bp6PuO9XrN4TCQkySC3+ZbShYVQAhBPFF/xUObFSStUNlg0OiiOVDIMWBVQU0Ot+7FGD1PzLuRvDFQ6zfXOIptCMqj2i273cCLt7eM+73IZFVBH0EA9Y8OKaKOIay5kLVkgxml6zZDo63FIhsWlkDbaZw2TPPAi1df8eTy76PmW/Y3I70p5LZjUorbPLK6WFFaiKYwTQNNXHAK3CqDS9IANoZpjMQc69ksOV1oJUnfxlZ6p6rGc1HDhJJQtbbUWqNjQJeMLpp5nk8Er6ZpaNpWhn+nwfH/+PXX2GQcNVhHWc6RBKNIKdStBsiE3aIU7+Cxck2fNDXgpVIAUhIeb86sVitA/h2tNVklChm7gjQupDGRZqFpKKsorqAWYInk/UB4+5q+97iciEtg263ILhJ9kNROCjpnVIoQ06lDy0pIJJLieb+VybUJqVk/WCWdni4y/ZznhRdvb5hy4KP1QlsE9dpYw5KSyC+i4FSPk/yiROogK9HIEgohFkLIjPs9KS6kKPkc/4aE64g70KoG/6g6GTV4L4bXrmtp2xZrhRcu5CbwrWW97fC+QevKrkcIEseR8vFnYozl6s1bjPk5z957xoMHj/C2oUTFZnUmPgHjePzed1imHTGMPF0O/PJnP+L2+hV316+Y09eYGFDzghCfdKW9SPesyZKQnoM0rdpgfUeeAylMpGxIeIqSg9sowzgMYpxcFoqGQsIYGPZ3eO/x3tN3PVppUgyEaRLxnRFtuy7glaF1DRebMy7PHqDQxCWy1obL8zPOz9dcvv8eT9//hKY/Y7eb+It//ed8+flfsh+/Yt1+l1UrIIObmPnp1R0HArHJTHpANRGvFA8vHGd2zbjPHG5mxts9+7tCiGJ8j3EmLKCUdLAlyWRIaSUHohXJzRIDS0zMc66ykX/jtvjGXSGKEVFVGVGuzx3INkIddfY1QEkkNRV3W0ERbdv9CloaRAqUsyIGGS4oayAI1c60GrM2LOMdaQmkQ+Gmu8YHsEWMcs4adFK4ZaGxmjQv3OxuOWvXLHFmCfIyEWJNquvvfApWs9pzDFbUTqZJ6R1cbEE2wPMSePX6Nd3+wGqzhrbhcNdw0zbkRx1KOVnTK9nIiNQwkmIiJtmCfv3iDfMsJuAYMnEOEKWZ3qdY5VsKw1HmCu/iw3OWiaUxpr4oLZvNmUgXjZzjMc7VfF9wjaHtGjbbvpKnpIYyRpDNqp6TotnNUBI3b98yfzSAiqQiOFvjeqzreO9DS7+6YPvgKYfblwz7a8Zhx/7mWpKbo8YZhzeOOaZ6ft5LoOBXwSFKSZCnAbqmp+0umAPsDzWMTAla9PnXz7Ha0biG8TBy/uCSlAupyNR0t98TloUYFlZ9NW3OsxC85kmajBLw1XexWvWEEHDW0vkGXdRp0x+WwLnzPH5wwW987/t8+zd/yNnlE6Zk+Of/5J/w2c9+zs31W5RayArQlqUEKUgL4jW7HdleXEjT5BQlezEgl1RBKhmlMlpLQWaNBHnGmE7Ty1gUw2E8ha+lMLEsBxTTv4vH/X+Sy5gVm63G2TXTOOEOhyqnEXpiyrLVXJZAqdmtusryZOMvb8+UAiUVCgFj4XC45U/+5b/Em4XVRUez8Tz88DGffNfw6PI9dq+vuXn5FX3neXv7ms/ffgloISPW6bBWR/hDFgMxVD+WKCG6rqHrOxrvaXzDgweXxGkghZkH5+dsV49o+w1Fe1KSzUHTGMkqQDZ+0zSDcpX+lGgaR+MbFI7N6py83JHDIjVMFuJW0zhUJWWlIltzo0wd+BWRlqpCJjEtE9pkoRrFFt+u8MahEam6qrIb03Q8/vC7XDx8j7OLJ6w2DzFNR7GWJY7EONWaZkGmxUJSOiLqJeRO5IS+MeQitU9cJO17GHbv+Ak8q/WK1aqn71uur67um7nq9z2F3mkJIXaNo1WG9faMZrVm1FBSxlvH5fkZm1VHvLslXr3hdhzY9J7WOFRrULogBneP8z0wkWISVLr3OO9FHVEx4jLsKif5fymFxgqe/CgPFgqXAHis93jr8AX6xvLoyQM++Pg9XBoIw0C4viO9fA1oiUBoHaZ1JCNeQBvySW6qrXyWMQSmNMtsWmnQULTEPUCp8nhVGeGC1D7+iklUOMfv7zi4PoKSjjV/zpJjJ16Yv2FPRs4FreVFfswlUFpBDdDTSp3c58eG4/hFnYLutKfoJB+00b+SnPsriYMKlpgptqAahT4USiikJVAawGqU1+hJUUKhhEDa7VitH9I7Q+MFq2YrO79pG3Q0mJxQ0VBYTtQJSjp15sh9xfHezfWmURwXHFIcWa0Iy8LNbs9cIpddi1MGZxxWFSKcVlGlyM2fEH79skTmObCEREwSMhZDIi2LFKEp1kX/r5aT7xZU8rRKQ+RdQ9t29H1fk3elEIoxoHSR5MjW4RtX/Q+WkESLmY//3XLcQokc67AfMOYtV2/f1sAuzzxG0YEqMVyvNuc0bUfJAUrkMASMX4HxVU+tmOYEDOQiRldJ3pQHoKBISegS2riKdg0VySueFOdbbONYxsA8jMQQpODImZQgJUtOEVXle8Za8bjEJA+MFq2i0UBMosW3hnW/YtOvJPtABxyF7XrF48dPePrxt1ltHxCS5vrqmhdffcXt3WsSA60FqzIlR/Yx8nK34zZNBJ9Y8gDMWB3pGrhYN/SmsF3J4VxKJGWRjknAzdEk7ESvnyUfQhmFbRTWG5aSJTsp5/vN2qnQ+mZepRRS3RaqurGQ1G/5e/eF5PGvqc/lPbLW1MLYmHsTuc7yfJWYSHUrUkrF4lqDaSsVKWaYIvMyYpLBa9EX6yLGfVtg7T2ts3WTKmhB46zgP1mAGjrJ6Y1Sp2l1M2CtvLxDvP9+lUipYorc7fYsoQ4Atmcs88I8RzANysjUmfq5qKIpGVQuhEk483e7kai9NBkxsCxRJGEVzJEBVMV+H7ezcGoyjl/LMcnbNx1d16M0lJxYwlw/u4JzVs6P1uEbi7OWEAspF3lhKWl9BT1dZZ05s7u7k9C7YUdyGV0szjSs+g2bc4exDU275m7Vc9ht2d9diQwhBmwKmEUmb+Ltqi/H0/2gqtyyyu+41ysb47FNh3GKrGwNds2kmDiEAwbNZB0pJpFj1qRwo0VyeRiGapCXG2+eJoZhJMwzMc4YEqVtcMaIdMUYvJUBx3wYMFrjqj/u/bMtHzz7gB/89g+5fPI+IRvevLnmZ3/5Y168es4w7WlbLe8zJ9JSnUtFNBsohsZ1NK4lEUnlOAhSuKY9yWBSWuRnqwR1WepzlXOp2UqRZZkZDnuUipQS+QYTbHGuZ7X2eNeR8hU2RHTOWK2x3p6AEccitJDv9fFQEbeVDEXiCBwpJfL69XOeP79gNfQ025b1wwtWqzN6v2HdbNhYRYojL958zo++/kumIF4dXUxVcByH6kfyXD4NBSUo0dK2MhT03mPyhlFrwmS5uHjIZn2B6zqikjwZrSVtO+4OqCzyx1Lq8OQ0RT8ObsFb8RYEXUN569ehtODic613jo+uQoaf9+8WkV5aDFoLwttpg605PspatBW/Rrd5wOXTj3nw6H1Wq0uMa8laEYmM44FlnoghyFa6yIBaJn8KagaSqkU3KHwj3qJgIlpLxlqIgVIUjS9o3WGNbF3HYajwiIg2hpjiabJerMF1Hf12Q+9bVhcX+M0GnxM6ZlrveHBxznrVMVrDfprYzQfGnFjpgrJVmkSBLKS6ECIxBGxVxrjqc7DWVstCPEmPjmWaNRar9elM1NUv6J3F1cFoYy3rxnG57fnwyTllvCPu95TDnjiPqLYFZzC+hnnW941N4s2wtc5NQE5ZvEdW/GCFurmuzfXRg3v8lUv1L1UlQK5bGJPS8VuBOpyyNXldqSPE6Si1+rdfv3aTcQw6AU5a6KO3IleNp66u+VTXlMcu6LjR8P6oD5TDUSslP7wYZSLkXP2hJaYYCGnBNB7XarSKpCWiOo/pZD2sIxQVKalgx8B7mw37p494dbjj7ctbtNE0bcv5xQUxSQc4zwu37DiaqSn339f9Ckg2Jvf/SDSfyxIhZ7Z9wzAdSDqjnGZ2T9C2x6WJvH8rwStZ7rswTWQjdcOMYn8Y2e9HxikQsyEskTDO6Dr5XJJoBg33P8S/OrEtJeK1Y71es9mc0fVi0ByGPbvDLSFMrFY9q66n6Rxt35ByRh1fzNqSspK1fjWVlpwJKXAkf8/TwouvX5GSmKhfvPiavm3oug5jDKvVGmMd4Ekx8+G3/i4PHt9x9fZr7t77iF/85C8I+adc3+xIeZGGTeJAMdpgtSVH6LuNpI2mha51oIUrPi6G9WbLqt9AlJelFF6SsKtKpqQkOMamxRspJm5fv2UcDjgsne8oJVJyYJwO2LagVEPXebrWiXekhzLt8V3H+vIx508+IGbL3fU1P//xX7KbXqNsZN30OJ3Jy4FpKOyXhdv9HdfRspiZab7DTzvasEOnlr5XWAzea66u37I/7EWnXw3K8qEbGichj8OwoxDxjaVde9YXHXbsGKdITkPNTEkciW3f1EvC9GJ98dyfUsci6SRhxNYhAKA46T+Xarq794hpnGvq2SuymDQvEBdIgaJkq4qVHBWTMnoBokKbDG3GLkYAERkaMp8+eQKrntk6vn5zhfIOl1t81xLCQrHCZV8WK4CLIl4SOchNpdk0YhCvB3hVDQuOugTSWEgF+stHgML6FrPZQrqVlO40C8EvaXSAEjJ313te39yScRQtqazTMjIsMwYlUkAso05ELaQ8U6jYx/tzRPS4mb7r2G63PHz8mHEamaZBZIg3b7i4OGe73dCtO5pW0NgxZYyhvn4V85LqUKZSrVLgmD909eaaX/7sl4Qlcv7gjLTA2eYB3/nW97Haslo/oOu2bM8fQVk47K5J6r/h9YtfEtVLGO9k+6EsWomPLpUjyx5QCms0xlgJw9KOjCUmhSmZrluxvXjEbj8QwnSSXM7jyDQLfUsbxcXlJZePHjMvsWaBSCr67W5HXMSHEmZJSM8p0hgoMdJ3LZcPHsJhxDtP261Z9iNOK1Zdw7c/eJ8f/OC3efbRp3z8/d8kuTU/+bMf8cf/3R/x5vozfJcwfeZmf41ZW6zt4ABjCmz7Ndt+y3b9gKIdS/XVkQrGthjf03YrulbepzfXbxjGqZIEE43XlLIwHpaaVRIIy0JYBrrO4VxDq5t/dw/93/C13VxAkfDGL776kjmKnG4pNfeqTrIllPbo04NpqhSiAtbL8wKKOQ60vWd91tOee56//AJeF7CK3c2e73z/Bzx89Jizy4a1h83G8uTS8MXrz/jszS1vh4iJHlPDNI3OkptUC7SYjk+MFPZd19F24gFa6iAjhw2P33tGs16B0RzmA42W/CejNV9/PVQfVM+2X2Ocr6AGzdvrN4K+ToGpSlCtUQxhBuXJLMwhQtyja6hg2zR1/pBIqTDMg/jhlPirigGtDI1xWFMkb8gbXL+iX1+wPnvEh9/5IQ8ePaNtN6hiCXkmlUCII69ePOfq7VuG/R5jbB3SCplIxCCZnGotkqTmUsrQr3tSTCxzoO08Nze37Hd7bu8GSil03YrVasVqsz7JZbU2An+pAx3tGx48eMRHn36KPt8ItlUb4rTQG4ttLHrbcr49A2B3c8ermxs2OeM0nGkwJVGCDCeu777g7Zs987CXoYzzBOtonBfDdK1/c77fGJvqU9FKk0uqnoeC0YWua2nWG9q246LreXrec9kq/HLH4fmBLovvojzpMNpxzDyJ0x7tDSvnaZCv1SqDcy2DjtTQDGKQM1IpRWMlRNU5j3WeKYtyx1RlUooiJ1ZK4bSEsC7LXHPa5N212WyqcqmuBZUilPgrNMf/seuvkZNxX+geNxPHYLsYEliL1pppqlMwVWlMNf07xcQ8ioQnp1BxY4pSNClxajKcdcRloW8borZkrbADmMXghsx87oU61Lj6Ek8QCg2Wm19+RYgz503PbrUQpwDINCBMCzEGSpZQk5ISx3g9rQynHkrLREBTKOl+ClgUHMaB9CYxThOb7ZZm3pBz5sXzNWeP1nRNizYNsovQYDSN9sSSyCFwc3vDm9d33E2Bttsw3B1YlsC0BHxRmKKxRTMYmbyYotDvdItKKZyxUArOebq24fLhBTlnDsOOm9s3KDK+MZyfb3Ctx3pbQ+buu1GHNBlC3VEnqYOpE05KYZomfvzjP+fs/JxHj5/y7NnHjNPA9fVbxmnEGsfTp884255JkRczxjWstk9YYuTRswy2J5XCuL+CEul6IbrMS+BwGNm93AmzfpqZ0khEgYnYYilsmcaRJWReXb+ls462bwlzYTjMlKQqmm+DLoZpWNjd7VGp0LkW2ylimGS6bcQH4LxHGUHmNVamkZbChx884+m3vs3TT79DLIY//9M/44vPP+dnP/8Jn79+QeMDF97z/Gpk/Whm6ywXeeLB8ppll5nnhu00cG4Cj9Ytj9crtn7DojqefLDh2ScHTPcK//aKt6+/xjtbjauZm9sblmXmsL/Dt5lVs2G9bTm/fIg1PSkp7m72vPj6JWGpU6Fv8FWocp2YMVq2gkfSkqpZDiVnkjInM6W1lmVZBL5gREJkrcNWKECpxUVOhRCWusXQOGtFpgTQGfS2Je9n0jATYyE3ioWMv7lGqQ6lBf95++VzlpTolcUqS9+s8NozDRNLG1DGoko+pSbrqHDWVWmGhNDlMZ/kpdRpk9GaknLNrYCYIru7HfbNFVjHxsNjv7AyFqtr0FKOoBOWLHkfMRGA4jy2MWybFjZrjLU03tV02Il5mdkNA2VeUElSyyncfx250LZthQ9EDoc9w3DHOO158uSS1XotoXONTNxOUyxjxNCYNDmpGtqlZSJckE9baZZlYbfbsd8d+Ojjb/Hm9Sv2hxvevH2O1pqmaWibTmSSydNtGn7jh/8J24s/5/bqOVevP+df/9F/Q0gTIRRiTpWYIk2TQiaMy5Jp2hZlZLMTwkjMFhsyTaovxQIlFg53O8ISSFmmvKlE5mVgngcePfmA1arHe5Gd3t1cEeaRMA8YJfegMharCo32ODw6W7bdGV3bcbZes0oZb2Gz6fjeD36Lb//G73B++RR0x5/8i/+ON1df07Q7Hr638OknH3B2fsbdnPnTz254fnWANzfcvvmMdtWy2a642F6A37I/jLy5viZNe7QaMG6PX29ZwkwIE4dpRCnZrg/7HX1raby8e0VKYyltw6pvRAZSTarf1EvFiKp5Txfn59zt7lgWSbYPKWKsY7PZyGAxiDogpFTf7RpbW35TfUjdasPtsiPdZBILeZkIyyzv1cOEKZZ0iDx69h7+bEvXFs6bxCdPPkTnnos+8/73fofnn/9cNnLznlKHYSEJNjqFhblIwK2QvQxae1arLXojXtV2taFoyRc3zpKm6jXRhgeXjwkVfY0SP2MhMw0HVMl1OaBo+hUxZXQUCZh1CpQMcZ8+2BKrHFCABzK0km1HPmVQmKJxWuSKWhewBpyDdsUPfvfv068vafpzzi7fp/GCmw1x4U/+7I9BZdq+4dWL14wHef+mLPRNVTd0Cnsap1tnMToBCYc0vkolUIZkLJcPDet1z9dfv2WYRpSxPLi8pO97MZ57J0OAGCSpG2gvHtCfnTF7y1nTYpeMnyOX3ZqJyKwKhzCSd4V5iSjb82pcsFc3LCbz/e0TWqWwrqNZnzEtHn0biOlOckzQNM5B30ttGUzdAalTZhNwCipMR7keotgZi6I1jtY1bJzHh4iZR9Ts0DoTXSFb+TnboiAm4nDArHw1j0fKPhFQRFcIZiEZBUZhikjZUkyCSlcSBmh0RDlLa63I3QrkIIG/OcoA07bNads9jRMhxqoUQIIWq19jnCZZNPxNezJMTaoU890xMZXT/8pVqgZQnXTWIFPyVIQioOuKu5R4VNCJnKhmQmTAGUe2BVU0MWaKN0I8DQVTRCphtUO7TPAJpTIuG5gCjVZs257CtZhknatfSybnJPIaqvQkyzpTa1ulX4J4PZrbl3kR3Vlds8YYmeAUQpK0xrStpI4aj/IGJo3KIlUiiRdApUJZMvN+ZpoDS8zgJJY9KU3SitI2+OxwOaHyInOPlEXmUz/fE2qsCHtZ6EuyKpTuM7BatfSrFt82WF+lHqfvT9VCQ3CaUuwJEUyuYyMphdAwDNzd3nK2Pefxw8cMhx3TPHN9dV1xxDAMBx49elLXn+K7cb7Fd2u69RlnDx7ivaKkhaYR0keIUSbyOQsuVEMpURjOVTYTY0CbiEFkMWi5j0oNmHHO0/qOFDIzC7nAYdjXB1nuQ+88kjKfyL6l7Xq6rqdpWryzNE5ewB986zucPXwCtuHVy9dcXb3l7u6GcRmY4kwxhTEabvaRYSr0oeBy5lFj0EuhjQu0iouu4+Hac9GfsYyKuyExzgVtG9HtKnUyqUkCs9zzMSzkEkTCYgSZ2vdrvO8pRWO0Y54Ch/0goU7f6KtO+EwNMDtu6QqV031MsL+XTt2Hd8oVo0yGBN2MMOjrS13Ch0SK52wN3iQTdUF72aTpDDrJOjkahbIKh5KDN2XyMNJ1Le89eMDiHNMSGKeRYTgQlqV6JRLOe5nIZZFLZUpdQcs9nOvZoThOuOTFobIMIQrUZ3dhmmZCMeAl2Z5wRzEZLBQHyyj3SkLRrjY0jx6B88xLpB0nqLKD1mjiNBGmme6w5/b1G9I8Q0qCmazJ3Vpr+vWKrmtRSug7oWpy15s1bddhva8+DVtfkvJzMnWqNYdKfVHl9H2K1VHkOofDgeura+Zpoe/XWK0Zhj3DMNA0DX2/5vLBY1nJG0/XOzYXz0A7itJsL78g5orzDbkmLJf6eTtqjYR3XfV4Vd+fk2FKLkVkYFlBLMyDJIjLWFUIPCmG+l4qeOcqES9UvaxsoExNkNYovDL0TUvX9PSuY1kSnXacNR0PHj2i6z1n52d8+Ml3OHvwlKIcX33xnK8++wlR3bHaLHzv6Uc8ffqYdrWmmQ0f989Qr+7Y+S8J6pZ137Ndt7SNYYqRlBZSTOJLywmlNRujKSqLNDaJxj4sAiQIOmFURlcvk9FOMMMKxlnyiCS295t5tW0rKPr6Hui6Dq0N0zRKVgFSwxqj5fxHpIPa1sGFkiIx161YUZo5BZgGXt+A10imS4hc3V7z4sXXWESpsXm0wriG7sFTfu8P/j6rH/+UL796gU0LrYXgDSU7Yhactsg8BUKBgmUeGQ4HqKTE9vxMEM7AHASdfYTSHAWyuRScb0hlqRlkUrDmnOXdESNLEhqbNgbrHS41NJ3IqJ0NaFI9b4/1V63fOC6Lj4Q8SYY+DniMs/h+xerskvOH73Px6CPabov1K7xvxGCcIssyiRm5bfC+Zb/b1yHwcRtdp7j1vChZ6kM5oyX/SmtTLRZ1S6kN2YgXzzd7wlJDVueZ87Mzmral7QRRrXOqHr9EjAvTPKKHgTPf4SI0qaBdAl2BIkthLgtLyiRtGGNiDEl+BkWhlUNpR9Gem93ANFcqTZHAae8arEKgIHUQdoRrHPMmjDX1/BRfrkYG2t56XFH4DBtlOVeOdRE5vzZH9pOQP8kJlaWxcd6SLaSqNilaUxzgIOsscQRKVwnOEZ4in+/RH2icRtfwypIz5Hdw8jW0lTrMk/BPTmokeQPYumRIf/ObjKPOWM7edOrWjjfFu2xia02VSmXR2MvvJEWL8Q5jHCEEwUbmGmYVCyZGbEysajqpIoi0opGUxBIy1Am2dSJLmHwh64yNmmYKbKwntJYcIs54rDaY0VRfRSamIC8NkDdULXRMlWs452t8uq7p0aUWMYIXzTWMK5VCto52tZFKx7fQWvJg0Gm411rlQpkDeVqYDxMpFJEqZVDeSaEN6IstvbG4UlgdDow5yop7GNE1OEuKVNm6OO/o+l7QnTEwh4UCrDc95+dbtGvu2cj6GKQoN27THLGggoSz5r4jNVoakIJMhl+9fE7Xtnz47COapiOnzO3tLc45bm5vWPUr2rbF+7auaYVEY53wvM8uH9I0mhwGKDP7/Z6wTMRpgBxQtmr+tITyYQzaaA7DjDGdBGettmIyj0vF3WWcdaxXGw77Ee3kMBumA51rUBTSvNA3XS1KRP++Xm/ZrtZcrM74/1P3pz+WZGmaH/Y7qy139TWWjNyrsqu6unuW1oiAOBxySIIaQoL0Sf+oBAiUBIEEAXI4Mz1LL1VdVVlZkRGZsXq4+/W72HJWfTh2PaJmRmAO1NB0GRDIRHqmp/s1s3PO+77P83tOV0vapmG+mPHTv/v3Eabl0Hu+/vXX3G02+OhKSJjIjDGzHzM3u8TtFqpGoFTiyXLBmXLstSPpltW8ZjVrOZld8s13Pa/edbx6OzK6SRc9DghRvEgxZ3zwOFdCEpUGRJqwjDVtXSZRING6AjQ31xuu3rz7oa/s385LFCkDSZBC+sCLRfERcTQ8Z7I8rg+/+1fvfSFpCHmfvUMq97lo0aHAXnVZYLMgiIS1EmkkRihSgIgiaYFftNjRIh2MziGF5KxtefDpE2YpcH235eZmQ3e3Y3QOMfaE6LGmILRDSNOUYgr35IjeTfdM98kB9Z6ihZi8SaW4ij6gqznVzGC1Y7jrSGoEmyELultPH0v3anl+wcWPvkTXNYfdgf4wEGIikKnahuhd8a/tO74ZPH3egp+Sn21hz5u6YrVeUVVVMTePJeSxnS2YLxZoYxFK34/Jj4SslDJag9KyEJti2bSleM+rP+4Fu+0WcmZzc82nn32JVorbmyu+++45SivmswWzdoYxFUKUA0Y7vwBpEVLz6JO3FCxrxI0CpYupunceo6oig54kl2MYiDnR1BbTtGRqXJKslmuMPJBjYjz0xTuoCv1Qqcm3N+EbldZIAbsQSb5IY0uuiZjQuZnGWFZt+bmXsyW3wx11kpzYmovzc1bnZ5xcXPDlV39MUg1vXr/jL/7lX/D8259z8khw/smaP/rTPyUAfRD0g+KLj76EN7e8RJPMLWe14LyySJ/Yvbll2B9IwXPYH8rkjkBSibptkdNkOzhf7nlKBJ9w4nhg0IVAKBQ5C+52h4KX/z2m1M3mcw59Rxp6pJTMZ3OMHicfn8GPmTABZKTShfBDoagpWeS6y8WS/e5A34/okFAikdzIOAw8Pr8Arckpse12PP/+Gd12i9tvefAHX7C6PGN98Zj/6v/0f+H0f/ofqf6X/5lf/erXiOiwRpCpyH1CGUWtSmZJmLIehr5Hbjd4NxLGkWVdE6QkAhjQRk/BupEj3KVMPmUBv0x/e/RdBufw48D+sC94cyExVX3vm12u1kh6wuAL+vW+sTM1YDL3TVQh5RRIV6SlQipMU9OuLzh/+DmffP5HLE8+QplqKggiXbdlHAdG5zDWsFiuOD29ZDdNl3I+AiemNS/lcnilHIiNVoxukrmJAlSQQiJ1ObAHPCkIZs2MAyX7Z3N3x8l6jbGWqq7pum463yRc8HR3t+jo8VLw2CmsMlRasdcQrSRLgY7QpYBLEa/A5UzIZRohczHzIy0uCb578ZpdH0sTlIDRFiMEAsPNnZuG1WW6pJQqhdAwlFyUqiKLzDCOSCRGGBZ1S5MFrc+cZMUjPaNREpEoVNKkEAlGF8gxorJA6Qrb1DgdCmhJQdYSjAQrifiyt8qyH4r7Pee98sh7P53LFYJ0b5Y/epcKpKT4OKwppi2PL8Vx8EU+pfIk5y1G8R9y/XCEbS7TDKUk2thC+Tl2erS6D5Eqk45cOoqTBg84shdQyqC1Ikyc+aNRPISymfoQ8fOalD0yC+raYtY1SQyMfcC93rAbO/LSsqREv6ssqazB9CNra5ifrHl4fsbm0NOPDtPWVL6dRkeBXJlJWlYc+WoaZ8lJ/6gmrW9VVXghibLQZMTxhcwliKs7dNzc3FC/fktwI5erhp8+nKNELCM/BdkFVM6YJCAl2sWCar5g/dnnJCTdMJbUb61omwatFG7o0T6yv73l5fPv6De3SEp1XxmLqSztfMbF5QUxJfZdx/7QMZ/PkLKGXNE089+5f3JaoFLKDKMrvR1ZpAdlEcj3JLBjNzmmwMuXr5HC8NHjT2mahuvrW54/f8Hl5TnL1YL5Yk7bVmiliSnjxyJDyynhvOfVm7eI1CNwKDymUcxVja6gmTVoYSFLurEDrdCmxVYnWJMQskYIwdhl/OBJIdHWNcv5mrZd0DRz+qFDRYE0ktm8Yd7OqU1FpQ0qFTIVwG63QZOolGJmK/7wp19x/vAxq8tHCDvj+xdvefbtd/zT/+mfIqwkpsg4jixmK6QBVcGLtwNjeM3Z6YyPHy+RCJpqyZOP1jQzy82m5821Y7uHX/7mjldXW15e74mxyPpiSrgQIB9Z2gWFCQltyiHGh8Q4dVJFKqb4ugZ93jCbLTg9Of+hr+zfyiuGKcxJKZS0UzjiFFikDQJ5zxw/mr2PmTFH6VQqnQ2EsRiREcNQuk8yoVSeFtUyUVBSlfCiLKhWc0QypF1E7SKxMsTa4JXCx0BMAmEtdUxYIi2OR3/8Fd++esM3KvMXf76jUgZ0Zus9nuIzqqwFjoneBYCRKCn0KSUUBVecRUJMNDgoxLXKlpArcuIXP/8LwuM1l0tLK30JghIQFNxqeD063u5HHjdzstZ4LRjqzDpUmCiQEW7vOmJrGSvJu/2OejZDxoDfxzLuVgqhFc2sJD9n4PXV28LwN5p5W1PpkuEitXrfOT3qy0MghFjSeyew+rEwLDQqgNJEiTFwOHRcX13x6cefY6sGa8qhIKbIfr/n5uaaL774MWdn52hlEDi0Smjbsjy9ABFYrRfsb1+xPlmQc+Z6c8vm3R3ddmA8DGzyNT45Qo4EYchqQEgFwrA7HNjtdhy6A6Y2BFfWuOAL9letTzldn0ESDPue7tDz8rfPaBpLbeqS6ROKfCbHwKKyrFYzTldnnCxPOJ/PSwcyjDz++A958OnnrC8fkfWMb371W5799jf8+pf/hldv/ozZySeczR4R/chbl3nVeX7x5kCeRe66Hmf26LXiYl3xo+WMhVjxi/QWFRzhMGPzLiFkmiZ/nhR6pLCcLFdsN3ck50ghMsYwhYppunFg0/XEkApxaDoY/NAu5N/G61e/+YZ3767ougOnpydTpotklTNXb98SvKfv+pL9QDlsa6mYzRYIVaSCQlW0jaG1gtl6WfYiqzFKcTJf0O0P3N1u+M3T3/LCfEelDX/2l5bT//kjvvrDP+Y/+2/+a84fz/nRn/wdLh9d0Px3/w+++e3XvN1seBsSctLuN1WNcz1GKoKKxOgZDjuCG0jecV0ZspTEDEnaAjsxGm1K46UfRvaHA3U7o21n2KpicAPjkOgPe96+fkk/DqW5IoqRt2kaZu0Me3aGH7ZEn0hUZKnIwZHisRmTpjDLDBJkzAQRiSljG0s1P+erP/lHnD38A5arS9Ynl/fY1pQjv/71L7i72wBwcnrKZ5/9iLu7DX/xb/5ladT5cC+ROspujmGpBfedGNwxnVpOa8ixKVNqKm0VYDhdt2Q8wxgYx46QShCeVIq6quljJqQEyZOJpMOOODpWf3CBlplddvz59Wu+OHvMXFfQjwwnGa8hzi2z+Zx51dAoi8gSHzK2tszWF9j2DcofEN5hlUA1FSEINv2IS2UtPDbdj+fZ5XLJcrksUk4tkNGiU8bmzNIalkJyZiq+aFoWC4VoIZoy9QnbAXEI2D6jbIFCZC04hB7hwQwC5Qwpa5LVBGUoWWyJHEpgs1KlmFAT/OhoXThOXGIMaC3IFL+KTrpkAYWiqECKYlxXmvFeiujZ+z21qY5WyR90/QeF8WWKDktN7vJjl06p43jmSLag/AhpGuHI44PJNIpSGGM/MDQXYgaiTCz8MJBjmL6/IGlJ0iVVVjkJqWBRs0kIAjkJHBIty5SFfuRyucYHCCGjmwV+9MSQUMahJlYwgB7UpFMukfA5JWIoxKw8HbgRuaRBQvk9J4NPnALA3DAQ4oKsKmYnjxg3nkwPIpJqiU+Jfkh0MROkRlU1i9NT+hQQnSkH4kk+kZJA1g0DA6my1LMZ43aDYpq2TKY2bQrdoB+L5lRKwaytqSuLMYrpmSt1ai40h3uOvyjYUFEUAYSUJ+/JJHn4QAbnvWNzd8vXv/kVf/jTn3F5+QAhFH2/x5qq6DFjYcyTRTkUVzOMrhFout4j8oAUHqMSOXq00SxO19RNRKGJITPeBJgWmf3+DrIlBUg5YCYPA6lMZaTSxesxDDjXUckKpcvUSory9apuqFVFbWqM1LTGMh7ukASMFjSLFe3qlHq+5vbuwPNvn/Pbr78h5MDYh0l6kyBJ3OiIoyOJggftx0iIkpt33zOfNXzyUWS5WnN913N7N5LTNc+/u+J2s2Wz70jJ0x32JRTQ+SLfSgk3Doyjp0h9BKYx02jTF/nYscsgVKGf9D39+PsdxgfvF6cSXKmmpFKFwpQulpLT6PY9/9xae2+oEx8YxEu4n0LIEjwkhCLFQEpFHqRl2eSyVOQUSCqQVPl/e+8JHkRtICbikPFDYKYtMgT83Yb87iWthocXCz5+csntm1tIAZ1FScDNkIQghFjg7BNlT6myvhxH56WIL1KFMo2UENM9Wz+nEmIqbYNtZ2gU0e1IKeBT5t3uwGYYOYTI6BL7vkelgHChGCiTwCTBbPT03jNGT7fZ0B22+LEjBUdlqgKUmK4wTaSLeTJTWcl8VhUkomTSak93LItJDy6mxlGRA4QQOZ4LJpXYJFcsI3jvPN999x2PHj3h5OSUEALvrm9RSrJczFkul1ir0VpO+M80FeGTPCxDlhLTNMTju5E8KTokAW2KjKWo78pecgRZpBzwruBc29kM1+2LDzAVaMm8nVPbhhRh6Ee6Q8/Q9cyaFq0pwX2TNjzrOCWKK/wUTKiQBYFcVbSrBZeffsFsfUbIilffPue759/y8tX3bPZXrE5OmM1mCBGI/kA/ePa94/YwkLPlMIz4sKcOHa1UzGqYK4VMjjAeOHRbfHSE6EFkQhiLtDRlFOaegggZZRRClYBb5yPOlS46kz+gmP9/f6+u6yfoyQJrdZFZu2JURWa00dRNi62LOdzHiFEKY6v7rrqtGpLMkARVVZfpqoAxOHbdnpQjdmZoYk0cR/Zjz+4QiVFy+u6M6+9foOQZ80XF+sGn/Ok//MfMT095+u1Tur/+OZ0tk4CQMpVtEGKSPRmLi8eGiWTwAz5EXAhEYUqRoTXaqkkKXWSgIcYJdlDCSDc3G/bbLX3f4Z2fTOAK7z3RRlJSxAjjOBL9QI4O0dgp2FPixrEE5JHvc30K/ajInRcnl5xcPKFZXGLrFcrUQCZEz/5wx/6w5e3btxwOe4w1rNYnaKkgJYaup+v69540cTwTAghiPjZ1xf3UtxTOxQ3LFCQXRSrnHWOZLVdEETkcOjabjrvtHZWtmM1mBOdx3iOCI06STgnolBAp0vUdhxw5nc2pkMgQYfTkHkKOOO9o2wZjLcpUVPM5WVn6KLh9d8PoJpCRgKapmLcNMQaGt559VfxqKpUC4+gNkkIWU7bUxUMcJTYFqhSZq8jD5ZyzuqHVCmEyUWRcSJgskD4jPehUCihhFYEA2iBCQZOLFFFNjZxrvJiy3oRAoCa55/uC58P0+aMaIMYpxiEeDdzvIyhCCO/lyJNa4MMJdcGWv0ei/69dP3ySkYCcJubvEf961H0dmffc/z33X5+qZCmL3nnSGuopqTJn0FqSs7h3u/thmALsipoyqgxGFq2t85AkZEmyGUQx2uRQNpvsAxx6zmcLdr3DxxKa4l3RMw7jWFJmRSmctNaFAqDKgSakadPkPV4XmLB3E1hWlU5dptCeYggl2RwJugVhycKRZSRaweigE4l9CDhjaZTBNA2979BRU4VMkxTD6HAxImvNNiVcLpsagslrML2m6v0EyHlXEhmNZDZrqGs7pTMetdKUF/c4UmI6PBzlDWIax+YpK0McxW3TfY+R/X7H8+dP+fGPvuLs7Izzs3OefvuUnCNCSJx3994BpUwJ/DEVasrkiMEjhCdZQUiemdaYukEdfTcuYbqm+DVcwI8dRutibAwBU59gjCk/o5RoXTrHoyteBrIpprUEKZaJmNa2kCiqllpXVCJzEAGyZz5vaeYrTFMWk9evn/H98+94+f13ZJUYxmEy2VHShMPAGDqSzviYGcaID5Lvnr8urO3QsFpLbncjt7uiTX335opDV+Q1IXi67oAbx+mzKpO+cSxBg0xDSyGmkJsUKSFueSJLlOmg8yOH/u6HvrJ/K69jHguUNSRPI2o1SVjkxBKPuWyqTI2IY5Fx9G8cE1xLx7roiJXSKAlBFKiBmBZeqQRCgReeKCPZQOxLN9v7jKksJEUm4pxnIRU5BMa7O8a3En1ywnpm+PSjC9KhJ4wjnVL4qiIIQRTFy5GnRVdOE4OUJnY/UxePIvUsTY5yIL5PXs7lkJylIeuCJ82+BzIpB7b9QBcCYwYXIqIf0ClgfCAGgU9AyBhX5JzSDbjNhv6wI4wjIoapKfCefx7C+41GqUxVa9pZfR/Mlaf196jXZmoeHQ8GWglyyBPq+/j1snIU31rZsN68fcObN68RQjCbzYmhyFRTzsxmM2xlUVrdh6UC5BxxPjA6jwsBoRWjH4l+JOaAlAljy6RSKIWYyHMSjZCSmEWRuoZUULiVYDzcIQSoKbF41s4x2uLHQMie7lBIUvNZSwgjeZJliliyQLKUWFuRcsZ5R0fHzGqqZsnJgwesHz4mo9nve549/ZYXL7/n6vo1u2HLJxcnVE0zFUkD0ff4sYTjjVEyuhHGHfPkaGWgNtDWBq0gRU8/dFPnufjSYnCTR0agpS8Fey4YbGM1ykhQ03oaSh4VOZXUZsTkUvj9vEKInJysmc1a+r5jnKQ5zrsCnLEapQxSGkLMJOfKAXLCjkohShArZa9QWhekZ4o43xODwyiJNoKqNXRxwDvPMHY07o677TuuXnxPyB2XTx5z/uCCH//JnyKNwdQNb1694N3ocbEQ5CpT3XdWbF3Tj8MkzTY4X6SKvXPErNFmmJqIGls102GvNM+ULA2YFDzdYcd+f8c4DqSQMOXBfo/OTxmfi6QqxoAoKCeksggKfUwqg1AgKOneYnq/q2bB8uSC5ckDTL1Cmaokp+dS+G93G95dX7HZ3NL1HU3TEkM5B7nB0XXde6mUKI3Rck1NinzM2xClKSzKfZhaapM0sxxZxBT23NQNUgWkSGw3Ow67LWq5pp4vMdaijUZ4TR6PoaAgEiWYNyUGMhfnZ8yUQcWEjwk1OCASk2e+mDNbttSrBWo2J2TNOERudjsSpSlrjGaxnHN5fokPnuvthqqqETpip8N4Pwx450rxnwsYo0QbRFokLZmlzJwvG86aGdZnhCnp5z4ldEjIACoplCieDqElKQeUsohUVuOcM7IyiEYjRI8kT7l1EudKc0jeS5HfFxrHM+3xDJJSaagWH8506sjHAULp86mjf2v6XjHG6Uz6N1xklB27dAHiMdsC3muqp6ZjqeJKh1EyVVKTiajve7TW2AmnNY5HEtXxly8LpfdF13/0SSQNolGokxnxMJLHTOgj/WmL7hw6eOrdQEYTBs+wO3D5ycfw6CEnqWzM1pbUypwFvevISpGRmMNwb8ZNKR2T38uDBShRdMDBu9K51IaqqhldoWFV1mKUZrfd8nzsCHev+fLBjEonyAEfAwcSdyLz7WZLs2pQLnN7d8chdJiQabOglZpZFgSX2Gy35P0N3X7D9e1boh9JRaiJTPr+4fET016ISNtqHn10QoFwKkJOZBmKfCPJ+6Ihi8Lqd36cHsRC4DmG3uQY7qcYKScIaaIf7ei6Lev1gtPTMxaLJS9fv6DrD+wPe5pG0NSGtm4ZUo+1NU07o2kWXF3dFdnFvCbmwN1dYf1X1pIRaGV48PETuv2+5CBcanLUvHm7K8mXtaaZzzDOInLmwePHeOfZ77fMZhfTAld0yWHYI7NEn55RNw0SQYqO5czw+Sc/YbFYMF+d8OCjzwlo3r655b/7v/7fGfY7UhgZo2MYB/Z9x/Xtphz2ZQAZ0LXADTWdqdhte4w5A1Hx9mrk7dUrbncHtvuO6B27uw3jOOJiZHTjFOrVczjspxe+dJLjlIegKdx3rUo331bTQUFkkg9cvXvDZnPNbv/77clQUhxrh+KnOB5Zp0U6TTK7nCckrNbUxkznW8ExeyfHBInyDOlCRhG5SKuK2TsScpomGgqZNZBRlUCsLb7ryC4h+kxPZlnNSuMjZ/ajAxeg99h5YDhsCNbwB09OEXd3tNPCq/qeoTswdAf80KGUufdZiPscobJp6slwbWxVkILaFKABovhToiRKyTfffs/mpuVPfvwR1syohIM00tYNdeMZRMJXhbBlxoAePArNq37H627DV8w4MTUmSn799ork+lIqaIOpaqq6pmlbTs/O6YeOQ7fHuY7Lyxnr9ZLlyQUuChKBRABxbOpMfjxRupkxBqIO9xKIlCf/V34/0Wb6k1PgdvOO1WrJ5599wT/5J/8tr1695M2bNyCKUdJ7j6DkZ1iTMXrEu8zd3Y67zRWVDUgCSiWqZcVs+ZDkIfmM6yL92ONCIKFp2xNisvSdIGXN/tCxPxw4bPfUVtHUNZcXjzCmxbnA7e0tQUZEFigrUVbixoCWgvn6jO3ujmwrtBY8fPiYuW2otaW1htOzEz778it+9vf+AUk2XL1+w6uXL/n1r37Oq+uX3B3uOKTMzsH1IbDcDfxoIdgMA+twx3m/5enmLdFHVmnk8/OKh23Fuq549OAjHj2J3HaWZ6/3VG1HHgo1L4QpbmBqEu32G0IcMbWgWVpsUyG1Zgx9KWyIpAg++SKn+H02flcNZEHfD2w2d7x69YrRjSV41VYgi8yvrebFyCuHIh9TGq1KM/LQbymEJ4PJFcQIIpJ1oBsGcAVM4g4HKmOwswYfAz57bnZv+eXTP+fVP73jo08+5cuvvuJ//3/+P/LlH/8pl08+5vzBQ/7F//Dfc73dsgsB5z132wMuBNbn55gsUFoyaxvevn1ToA+umLeVcQhVMjfOLmuqatpH2xlVpck58ObVd9zevKU7dAzDiMzyHkixPFmzWCxRWrHd3jFfLiEZkhNTEa4Q0mLVjHpWYVtD1Vi++PRjuq5nc7tlcfqY5elDmsWyENWURwk3NYIDITi8H+n6A5vbLX3n2JzeEWPk+fNnfP3rX0/o1g9UEUxnuVRyOVIKpJBxY48xdir6jgFzGSmhak8hGRSaZVtxspjRKMvdm2vGsac7GJgk+G07B6Ho3UhwBc96cCO//u47Li4vubi4YHV6wknbIkNklwT9cEBajVnUPDp/xB/80U84OV/z+rtnVEGQLbSLhoey4nA4kHzgD376R3z28acc9ntevPqexgeIESEFUQrCYknwgcPtFiMLhTCFDq0D54sZH80XzNFczBe0wpDHjjRrkXXGioB0kUoYrNYkIenu9kSdCHMJoip5SINH5gETUsl98wNJG8hq8luUzxiKD/nYVCpE19LIM5Pn4lhsxOiwtsbIkrERU5wUMGVKHGLxF0pVvDzHsNgfcv0HFRnHUJkQSgCagN8JyUoUB7vIJThEToQA4H7zP24o2ugJYTslf6dIjJEQIjlHpLQTkCBPaFNBqAVGKmQENWakE2RjybUk9ZEcFUIkLJk6ei5/9Bmcrvj+dsN+u2G3UzS2IoTAiMPlhLX23mdRbAqyHA6kpB+H953XPFFthEJQULJ6kjqISbqRsgDT0J4+xOJw+3ekLHDuwK7riUJw8A7hRk4iRJcwISMivPC3hENPFTJfzM+4u3vHoR+g6wq6UU5yMatLNkTd4J1n7HtiGLEy01QzEDMSBp8iUgdSDIRxLBQYmALxJoqELJ6X4IuGPcSJqjLlQAoUiEyMmb4f+Of/4p/xkz/4CT/56R9SVTNW61PmyzXGyrJQSMXoHQmYL5c8yI95/NHHWKPZ7zZ0+w3eO2J2ICIsBUpbcoqTdyNRV5ZmXlHbJWOQhGyIOWEqizEGRabvDkgpWSwWnJydst3s2G337O/uaKqa2mq8GxAUIo0WgnY2Z3V2wfrklOXqASFaXrx8xV/9/K+Q0aNywR1e31zzd/6Tf8AYA//sz/4Fr199T8oepRKqp7yIxqLssSAQXOUSsOOix/lSpGy3W7yPCGXY7Xf4qdPmvcdaQyGY5ak4L93qw/4AIiBkwo0jWs9IRO7utrx8+Rwh4Pzs5Ae/sn8bL6VV+b2hmFGjJ8VcQpwm/N9xwljS4CXSlmyNMD2jtZL3SaXHgzxQumQkskhkBQhdnvmYiX6kzgYlJEoJGlFjkYQscUqS3FDydrRAGENGEVEgfCm8x55h2KHDQAMsjGUfMoNyBCGRVV06b1PX31hLlgI//U52IjVB8XMppam0xpq2dFgpjZmUFWjL/OSS8dYTfSAnmBtLLRUiR4Y4MpMtMmfEfiDailZbLucn3FzdYnxEhcDMVhyih5zKZIUSoCemBOx+GHDDgE6Rk/mKs/U565ML7vaQhCfhcG5P8unD4RFlAlNMmtoUHKVzodzPSS57T1oWhSZ3ff2O5WKJjwOLxQx4RNu2bHbX9G7A+AprDFZXJAvGFvPqMAbu9iOrRZmyypTRIrOctxgjyREiDiMBH3Ahsb27ISeDEA0xl3vaNjXDvuRgCGlxLqIURW4rIk0zQ4rSAV8vVyznCyptWc4WXF1dEZMv60mSLJqW09WKhw8v+fjLr5ivzxmT4ttvfss3X3/N61cvEVpTZisgtOTgYNvB7Vbw9l1Cecm5rfjxasYJjpgVWlV8fjHnwfqURbPi6dNNuRc0NPMT6voOiARV/HnBR9zYcXe3pR92KM2U91DTzJdU9ZzVWnH97pbDrqM7HMjZQIo/OK33b+P1zTe/mdQUkaEv+F6lNVVdY01DSiPBF1WAUIq6bqmbpkjVUsA5XzyglPXIVFVJAZep+KB04rDbs9/dlWC7mMr+rgxJG7roeLF5DZXiZvuK9PVI9f+s+Nkf/5TVcsVXP/071Nry+tX3vHjxnKfPv6OSmiw1q8uH3N5tyjkpQiVr0AKVA7aS9xPEmFPp1kvFfF4gJUpmYkj3QX7eOfw4AnnySuhyOBQSZQxt25LCtjQEomeIA3oydhcQQiBGSUwV+8MOkNTzGVJrBjciDwXSkuLi3sNRsseKTKlt5iwXpyyXK7748kvevXszwVncFPAGIMrB95iDVObyZbosRQEXUAJHk+To3C35OFmjpMXqitPVgu5uS2vh4mzBy3cd43AgxszlycU9GbA2FTddyZWSSIzz+L5j1+94pBK76JExkWtJUy1Z1BVmVjN0B+42ezwa7Amh3+O6A/v9noefPMH5NSEmlucnbMY947Dnxx89wdmaMI4E77mNUy6S0izWGq0SyiRMm/nodMm5aThVFXYUaBeJIhN0IFOmSo2tMXuPSBB9xuaEk4AWxFYi3IAeIsZFWiOhlqRalecyFXmkPA4BpvdbSVUmWaJIn6qqIqXEOI73XsdjHAWTWqb4qyepXgikVKSscqIS5qOR/G/a+H3Pi+Q9cvJD80fO+X2Ct5j0//L9146Hh2IcDEAx7aj83micc75/mMto+IgOpOgGjURZgwwR6TKMiaAUWMi6jCaREitA58RCC3RjGJixWs847Ld0O41Vquj3J9pKimWcnNP70ZJUEieP5JpjNS7uu6lSllGWEoJjoGVM0LtI7zNCK6SuUZNkQiKn8B3wZByFeY/PEGCQ0EeH85EYPFVOVDkjfCxSLinJQqK1QU0HMB8KglGRaaymNhXKzMmiaHxR5aCQVSRNhSCphJjBMV1eoI2aKDmhLArHlNBj+MpkdL+5uWFzt6Hve6p6jrUVMWVCnMaOgsLVnsyvVV1xenpOcCMpBO5ur/G+FJQpB3wdICsCie12z7xpqIzFWkNVG+rpz+AzSoii3c8Z50qRWlCchWRljCkdOiFIMbC/u2M9W6LqCmsNzbxlvjphtjhFmZa37za8/P4l3z17hhKZYejY7baYymBrS3AZF0YG3xOjQ1AOJc54tDYY6yeyiyDHTF0ZEmUTG3wJRfKhTECGvp843mEqpkuOQ8Ealk0lAc57tBOMY5l8aOMIMXNz8w7vR+az9j5A6Pf1OqKtj1IwUO89GpNWNOeMMeb9NEAW6cs9TCK/R8UmKMx/JVGUMXNC3a8fRYZUNM1ZmsLKV0fCFeDF9LSXKSoJlFUkJUhSEuVRF5khRmZCEpRmVJlbPIPUjLoCG4o8sfySZcIiwDl330E6TmpSzkQSWZVFXxmDUIUwk3LR5u4Hj0STlUXqQDub0zYDtS8FaZwkisYnjBVIY7Gy4lD3uMET+n467E8zBVE29GL+K0F+JWTOURlJazVtZZnVNd1QULkJQRQjUk944FDWQDF1JQVM3hNRglHvhVRlnF4kEKVvcTgc2NzdstnccHH+kKZtQBRNulL6fhRfDP8FEVlVNcbWKGUn3GiRecacGYwvsjMUWUlsU6NsJncDKZSufUoFZymEKb4ubbC2xtoKKTUxTihtEe+nw1KUhompWhpbs2yXEAXe9YQwIsNIZQzz+YxHH3/C+aMnZAx32wO//e1Tvn/xgtvbaxarBSGWtdZWNT5ldl3i3a3j1eseaxJkVSQTqRzCbFOzbhu0nDH0mu9fbbnbjQxuWrOF4EgZLE2hEqQ1jkNJ/dYCIRVNWyARdbtAUJFTmRYfc2RS9IVG83t6XV29KfCBEPFhZD5bUFVFpWAqda/tP0oxSzOtJic3+TTLWh7TfVLWNHQrkltrGqKJBFuaSy46IpFsNLqp0K1BN7BeNEQ30g9veP3qKRfna0R6wMlqycef/5imbamMZr8/MI6RLBTz+QrXjYzZAZm2aossRjrGFEgiFR9SEuQYCaNj7HryckXpgwrapsUayzCRF0p+kCxUR2tKPocvKO/gAzmWWIEShjdR7rScIAIZqYoUV0hLFpJ+7NHZIvVICvF9Aj3vA5iVUlRVzdnZOev1Ccvlgpcvn3+Q0n0PIJ92Nzl5pjLaKibA3jTVP3rvioxeqkk2mZmanZFKg1eJSsNiZtE3B/pxwI2JsVkWtPM0zc5HgI0QOAQHWdQwc5XpY0ABtjFctmtmVUnd3guJyoocYLk8R1PTS4N3gdPTk0m2DPP1sgQMSnhwdkrI4LqOYegRYSSH0pQKSqFEQNtENc88WDQssbRBlYDUEMkygs6gMkoKrFaoKWqhJIQrhBJkDUmBjqmcfUNEKkvWAlQpHnIuBUYB/Lz33d2fp2NC6QJBSOnfBT8c6Vz3/13R3BXZa5o8Gv8eX8cPuf4DioxJ+0zREgZf2NxFhlsKjDgVD0zUkThx148/WJlUlOTtLAW6mkyGY8b78Dso3KILK5MSKwuCDyGQixa2HXJw0AVyK8hWkepykDBGU0lLhaB7+4Lkblg8eshnT84Q0bG9vSX2kqQtVAlPJjpP8IHkCjZNTA9+ZS147jusxkz4x+mvx8ThGBLSSLyHN+/uaCvNw5OWR+s5OQRmVcvpHFaLBTsMwigOKiJdII6RGAT14zV937Pvdvzm7QsM0GiNQaBsXV5CKbB1Tc6UpPQUSCHQ1IrTxYxlbWkWC5At/mqDjxGBpqpaQsxk74nJI6Um50gxciXqumi1jymPTPhDQUak8ojklNG6yFacdyitST7hvePdu1ukLLr5pmnQxuDdgAuB84sHDH3H4bArEq3pBcop4XpHjsVgefX6iurRR8iFpqpblM5YA7WB6CM+leyDcgidDqQpYrZbjLKsl2t0VNTaEKPn+2fPaUwNpyc09Zr5as367AFts2Jz2/GXf/GXPH/2lLevXvDwZMG76ytev7viP/kv/jNeXr3m9bu3vHz7Ap8dbqLLqEkaopQqm1YWKKkx2hCdJqVQghelwnvHMDpGv2MYxiI9m7Bx4zhO9erUPSCTSIQgSFGTMuz3HTFq+n7k2bOv+eijx5yenHJ6evaDX9m/jdfRVwSlwDW2GArjB5POGCNt25bPR0DMRbKXc8l4iVPRIGMonTslUUKjrUBrcE4iRsE4Tsnq0+E3yUxUGWEFqZYwRMQ+ItYKqSdUat+ViYMSRRokMzJLVBY0MTGzM5Y2oGTPjduDspi5Yidl4ZcrkJWauPqKFArX/WiSU9NEIVDIJvWsxmiLlIq9d3ifuNvt+euvn/LFR+c0dSmmVw8rTj2MbIpfa7ejypqFMMyNRVSWZA3645Zvfv1rXt5cs+l7+n4kK4FRiqZpaNs5s7ol5Vz03NFzumppTKLRkUYnlPCTmbt0tKq6JsSID30x0SNIIgLFbC+nA4wbAyX/KJSeVC6Me4HgsD/w9u1bvv76VzTNjKpqadqWJ08+L94KVTxdYdL71m3L6ekZF3eXBD/S7/cEd0fMJWD1cOgKVahuMLoq2F2pQGw4O5szDonr6wPbfsBYhbIVtq5pF8tiplSa/XYz/Q6KMJaOXtRlcrto2xIWaCyPHzyh399y2N2QQ6YymnY+5+Mf/yGYhuvrO549+45//Wf/ajJoCg43twxjQEnLybxlO2y4vhvYdR6pKk5WmuXccHF6gtWepq1Znay5u3Fc3UY2mwNff3PFZkjsDiUw0I1DmQQHP+mp89Rdnop2mREysZidMpuvqdoZUpbpTTubk6Jgs9ngj2Op39Pr5vo1IZS9K4SBGIrUQ2nLerUuzSihSiEZSgNTKYm2LcrrctitDMMYCBG8LwU3OZCy4/Rkwcn6nLPVCbvDDXfDjugL/rW9mHN+vuSzxyd8+fiEV69elf1P3fDNL/4Nt68e8bO/+3c5PXtIu1hzdvEQN44ctnu8iwjZsMEgBdjKUlMK7d71vN1c3SOWi7exJgyOq+9f0VYNTVtjK8Pp+pzb6xsOuz3BB6w1aC2xtWFxsuKw79nvOyoj6bseq2MBOuRUGjFItDDIKqMbSbtsSoKzT4Qo2O63zBYg9ZyUwNoWY1sQ0A1bBucIKdK0LY8efcR6vUKqzO3mmrttkQmXom2CX+RQgkWnxb9p2gmfH6b7VM53As1ssZh0/x7nAiSHSD0pSYwaaarEopXUJrPfD2x3O7KH+WwGQBgdxIyMxZOhlpa0muHO5+wVyOAxUrFcLvjoRz+miRl56Pn09IKdgFQ1fPLx58xRHHYbXr1+zoOHD0sD1FoGAXsJfpoI66amP+zZ7XecZo8b9oS+wx92VEZja0WzNqyrFtNllEuIKJG5nJV1LRBWoXXZM0ggUpGcCjmdbW2ZbDVRIoMgBehkkdRlBYkJNqI11h5tCKUZF1OaJhmiQHZimpRDRS1wbOp9mO9RYCATCj6XZobKpYEs1NGDXPx8P+T6wUVGnjq2JTCs5EkU+1gZfd0bvoUoibiT0eTDqucYTAJFO62MIktNnsbUYtJIFsxloSlpKagqTUrgXSTNArGLxC4yHg54bZBW0562SBNwvafvO9rbkeQkeafBbTm3NfbRkln6mG9+85qbfYcdRg6u5XB7U/IjhH4/sZECaVTRzcdIVVUlkdxMkwQpqG1NXbcoXTjrgkxEEaUl6RbqJfGwK6mi1qC9R2lJcD3bN29YOtAOmiA4H+B0dY6rFvRvr3jx8gU32zsGHwmpo64LYm/WzGmrGh8CtzfXSAK1tcxbQRjeEK0gqzl9tyFN3QIh4fzikr4f6Lqeqrb0fUcIBa0afIQssXZO8JGYHJlQEJWS+85Q1zmePn3Ofj/wj/6LFU3doo2mbRvGsWhCq6pidEP54wcSidOLc6TK9N0tz779BTknrDE0tiUmDzFwulrhxsD2rqOutmx3t8XXozWzZobXEu8FfR+xdV2IB1Jw2O+Z1S0KybDf8ejjz5nP5mil6H1PXRvOL8549NFnGNOy23X89S9/wZ/9y3/K65cv2N1ec7ueEa3g/OOHXG1v+OVvfsVme0sWDhcH4uQiDqEQa0QIxJywtirmNSR3dztG73ExlKZ3zveHYSQlx6HQE6ZCVkxov3KoUvJIhhD0+8i7N7f07iVIePTogk8+ecJqecJ8tv6hr+zf2qvk7KTJTJjvDYdt05Lq4xSzpOWmKZjKaDP9x8V7U3TlpQNplEIoiYgRPxUpOSVyDKUzpg1Ca4SSJFUmiXkmKMi/iDAKXRlEMFhvwAGuBJpZKWGuSFaQc8C0sA6atpvh1yPv/MBdcOztCSMlWDMaSQ4jKgn86EgpYytLZSuM0bg8oWx1xVc//RnL5QqlJP/Lv/hntIs5TdugqhpMSycTu5hZ//hzPn38GSfbA9++fYnuAtolehlQ65ZRwN57hmHHi/2Om0NPn6DPCZ0VDQqZBCIk/DDy/MV3ZAbaWtJWlnmTaWuPtT1NnRn3A/3o8DFQNw1NVVPVLaNz5XPLia7fFz+UYMJQFj1v8aSkyYA5dZUpG9d+39G0M7SpcGNgGBxXVztSiqzXJ9O+UjpwDx49JgSHkpKn3/yS/dbhXA/CobRAywl/3Q1s7/YIBCfLlsVyRt0IYtI4kRDCIoXm5OyU+axFSYV3ngcPH5S1Wyj6/Uh/6OjTyMmyx56dU9cVConEcX624OPHa4yRPP74c1ZnlyRhefbb7/nVX/+Kf/3P/4zgOobkGYLjbn8oeQMiwa3D5R6hBbqy6O8a1PcOQUBmz2o+Z7k65eQi8c2za3JSRJ/49TfPCalkO43DUBCTPkxkuvFeFRCCQ9uE0paEmsJOy+eThaSuNVpXNPWCr3/1G969e8t2u/2P8/L/DVwnZw3BZ5z37Hd7BCUZ27kStmiMRRtDCB5rS8fzdnNT1hpZmkSzeU0ztyhp0FLR3d0VSbeqqBZr5o2l0pl8O9DtO0KsmJ9+wud/+Cf8+OMz/uTzJQ07fvzHn5OC57tnL3j1m+949u33fPOrb/kv/tv/hovLM9YXn/AP/+v/AzevXnDz+g3Pf/OUR6sFSUjqxZy7/YZ3myuGmx0hjPiYQCrqdoHVpoTq6or97R1D32Ery6xtaKs5J6tAcJ7r67eMQ4/pD/gEWtfUxnKyaEmzjJQOrR3RC0gZqw1PPn1MwJNlAgVX7+7IWSEpygH6kaYfEbJ4V4VUJZgvV0glaNqG9fISbQz7w56u2/Ltt0+5fndNUbuYKfiuTE/SBJZRUuIn+lFKIKVhtTrBaEPX9WhtyvM+joxuoLYWYyxkh0wOIxJN3bJcLOkHWYAIOfP27VXxPrqeMQW0NNR1y8mnF4hWIvs72mtJK2rWp2d8/tPP+fTxR+ggyJ1DR5Cxp0ue7159y2m7ZFG3/OQP/4SqLhOVnBK1LwZsvTScPnjIYbfhcNgy220Ibo8YavJ+x/BdpGlrRCsJK4HMFulK8rY0AmRpdomFxklBDqE0vaZsDDGdpW1roRYE7TCx5GeIJNAzUTIrAIzGTGha7/29LPfoMy7nVjtBgQqB7BiUeETbGmPulUZ9X3xcx7BKcvFzJIrMOeUJQJF/WKPihxcZCeDY4VYwmXSOWi8h1RQoVkwm71FIYhqrq6JLnnBY0YeCYRWyaMpUQoiESMW0k0iIHMnIe9RiIiGMQFiJMBLhEzJmRMxEAlJDthN5CgEqQfYw7MnJFZ2yzjQi0xpDyJLeB1AalEbKVAZ7UpVOfc73MoeqKpH3xxuJEEVDqBWNtWStyEIQyOy7gU1lmDWWyjQoVZjrT378I97uBzpRzjEmgpYKXRswipRgDILb6Nk6xyEEHGUiVOV8r6Uc+oFxHNhvdyxnFN2iUWgR0MKTlaeqJIdxJCVQKMZxmORQ+R4hXMxAoXTA0JA1Iw6pKoRMhDAW+VvK97IL5wKHrqPruqmLWKQIYcLowuTPySXopZ0v0EqRQuDs/JK7zStiGFECtJTEWDr5TWsZ+8Buu2UcR6RMWFtegPL81KXbIQxM6fNSCJzzGClpbI08O2U2nzGfzZnPZgzjjsuLCy4vHmJ0TXfoub3Z8P2LZ9zd3RDTSLOoUbWhmbWgNW/fvaPvD6TgUKKMCkkJkUtHfYLyFSZ3DEWqIyUuRvw0pi2fMvemWCkn+WD6UPYg741TQhT/khAKcvlMdrstQkE7b7m4OGe5XNE0Lfp42P49vWL0wBGVnCEVYpg1JRE9pkggMIwDKpfnUugSBppjLPQ3iv42hUDyHqXLelS0x5PefCIdiXu835QTA6BK8BqyJJ6qLpN1Ga9LrcDlaW0JZClIJGIt8CoiFUgrsDU8tgvMoAq3fBjZpYwTgqAkIUqUkFipEU1D3TTUVYVVJTFVKEXVtBhjWJ6esFyvefjyO+yEoCZnum4ArUA3jNhS8IbEZTWnqg0pJPbdgTsJAzBoSW8Ew6wizmrUdUCmMicL3tPt9xBLwRa8R8oi5TzCK0SKxPGAVg1CFPIITBKbI+YQUNoglcQHhzaFShJjRoqJWJI9Obtyw4vFC3JZO25uNry9umK1Pp3QnsfJNcSYkDIUTXoozHZtLbP5grppJn9YACJSalJIBOe52xQ9eWUMWllmsxbnEtu7ntoqnCvJyEYpog9EynNiq9UUnpWmsLQwGdfi5KzJCJHQWlC3FYvFjNPTC1anD9C25eZ6y8//8ue8fP4dyQ24oUdoidVFD397c4vzAwJPUiO6KmCB6+u7clsVWF2KXR9H+rjl1ZsNyZdwxu32rtC/UiR4V6QobixBbN6XPyEQQ0Abdb/nlin1cX9WCD1lzjDRhGRBvf6+XjGD1BorNW1alETzLAgAuVD5pMik6MiUNbnrHdra+5wHNfYYk4kisN3vcN2OnEFVgr47UNtE22jOL2f4mS+I0pNzmssLWC7ZoIhCsqwNM1Xz4GzO1bevGMY9m+uOZ799SgoR/fFj2vkJJ5cgleXm3Q03212ZznVMz3NZ/601EDNCampbI3N536TIuBRJLpWGF2nyQGlWyxOGoSuACyGIPtJYRWU0KR6nM4WeZqsKJUrWkCcTciaFNBHIKFIjoVBSU9lpzaobEJPOP4TJQ5sJIWNsXbrtk/Sm0OqKNEocQUGieDulKLQvo81kvi/PqndH9HiRDztXkPzvu+QJiBDDBKkxjN4zevATft8d9gzdUDwGBAYZWVQ15ydzPl1UmKoki39kZjQfPWH+8AEPHj7mZLEiDJ7ORZ6/fcWQHVFmbF1h6xNsU6IAjtjjsmtFKm0wCGzTEEQkyMSYRlS8m4II5HTmq0iVIrcCuQcFSH38fqX5KLT+QI5b2jHHLJESj5AISqIqBWNGxFRIejKXXBSR7+ldRyUATCqJD6hSUor7aUXZJ8PU7Pvdd+t9yHa+/z75qGz5gPZ4NJD/kOuHy6XykRbCB56MqZIShXMvVPmFxIf/iSjV6zERUcoiuUohllxJqchKE1UsRQYZGMsHQEJhSMHd64utUYhaw5gwbkQESCoTo8MIjbSCpAxCy2KiVQnigNsfiD5hc6TOiZlUJKO5yXuEMkhT+OyJWExktiaGcF/hHf96X2QYXTp4uvDefc74XAKPDl2PVoLKah6ezZFaUEnJF+dPUN++4PZw4E4m6qF8f+oaZw0HH9mKyLvs2aVMnyEwGeNjOSH5caT3gX7o6fZ7Fk2DkmC1xKqMlhFUYjaz7IeOEAsubrvb3huxUooF6yjVZOopHQUlK1KCurYoLdjvN0UGl4pnRQpJpmQC7HY71us1SkuULsm5cupMf3jvV6sTemXJKXN++Yjd7i1u2JOjY+x7ZCj7XVUphn5guxs5vBp58PCcmAwhBrR2WJMwusHWNaMrxUxxumQqo1jMGk7mK2zVUrU1q/WSc9Xw0aPHPLh8TE6S25t3vHz5gu++f0o/bFFWMJ+vkFXhcCcEv/j6a0ROVKYQfIipLACpaPeZdOMhZ6IPZVSpFGXphyxlAQFMJiqRy89YTMqThjZPOvZpAXhfZExd3wSH/Y6T8zXL1YLLy0vmswVaVbx/u34/rxgDaprkHP0VUggqW5HTRCWKRZJnKQn0ZaKpCKmkjAoESRY9enC+FINkgvf372ip/cqEtRQ1cspuKPdPG4WQpcjJ24SvE1kXqYLIEuFB9okgEyEHQgDXTiABI1ANPKyX6F4i94nESPTlcJelJCJQQlFJTVO3NG1DVVlqoVGpGKar+RxEpp7POH/ymE+++Kz0/GNgt9vRHUZM3VA3S3xUdHuH23U8bhfUyzUDmbC94epwwJEISjBUknTSIIcF5t1Il0tuiBsGtkHg+oLzPF5CSIytEEJPGUUdRjdIcawOYHQjQvj7wtgYU1JvdemOKaVJsXT8j+u28/vyWeRM9JGcBW4MXF3f8Py77/lUaB4+mhctuTXIcJTVlmJxdAPd0CGUpJ3PmM1npZgUJXFWIsgx4YaRu9s7qqrFzAxKVZP8sxRRtVb4IeDGSFvXuHEkTYWtUuVgHieDo0il20pKRO9JxoOmEMHahtlqxYOPPidj6QbHi+/f8Jf/6s9x3Z55bdgc9rTrJe1sRjVrefXqBdvtphRzJlDFCnLiegi0TUNd1+i2oe8LBnzb3XJzvcF1HX7sOXQHfEyTj6t0GEvBV+S73pVJRk4JhJ0kxZMnZmIkymOOjDhCwkozrqp/f5sVg5skQsYyUwUekVNGRYGegoELEceV0EXn2e16ZotV8dHJguYyU0f93cvvEKmkKrdZ0+02zJuAXs85v5wTe4mKkq5ZIVYte6347W7kQg9kVWGV4Xw1pzKBlHd0447f/vqXpJiwdc1HHz+kWZ+jqorTN294+foVu25PP3QIXZ57Yy1106IiCKlpqmZCPZf7KCTEXBK+U/KMvUcKWC7XjEOH9+M9HMNohdESP24RckAIRxSO+WJ+H7K56/sC6omBYRgJvliupVBUtmExL2FyTVtkUiEWGlTOkXEoaOnVsi3T6JJRQGm/le+T7/+RQmSJkjVaWYxpMCbe+wOg3IMQity+T6F0ylMsB2MxHe9jIAuDT4a7fWB78HRjxMXMbrsl+SIBChq8hXpe8eRixU8WFa1VtMbyxfoh9c/+CPP4AWa+wqqKbdxxmzy//v4ZTM2EJ7ML5suaWmvC2GNtc4+HRSqUNmghydogmwYRBsRBosKA8h7pM0KV6UGsNKIVqI1HMeVBSXEPGhJTc0dkkKkQTa0sjZve9XT9QNYGu1pA9IVklUsQahATBXXKh0sxvfdaTOfwDzMy5DRFOsr/S/ByvidPHaXKR8nU8WxynACKI/zpg+Llh1w/uMjQslRyQhQDXk6xdEqUIOU0PRDlkHkkqmilJ2lLKSyyFFNORrlyymSZJyOzI8RYAqm0IGZRgrqUZRwd5DyRYRSislSVQu4tnQdvMr5KxEMHschQlG0YRSbIkrgrMzRCMreGannO2+3AG9czKMtyeYrLkcF5slEIDVILsi85EIfDgRhj8RtMDvtRg66LFvg//cf/FW+uXvPu+h0vXr/kwcMHtG2NspYhVwwRvNKcf/wZ7d6hq4ZPtIUTuDns+PawK11ZYwjrOUk/Qowj9o1A7iN3caDb7wh9z+5mQ1U1SCWZzeZUdQuyZfQGIedEF8h+RyUajBLEBCH4+0h5KRV3W49ATNq7gBARbQxVVRX028FNcohDCckqrWDqZgYC+sHxy1/+NdZaLi8vCaEERAlZpHR1Y0jZIp2irZdUek5TL6iMhTxy8+4lm5vXVEbRNhofHIPrETIUFrZKOFeqbO8cIR1YLj11HbHaUNWzovdOAl3pYpaKDtVYbg+3eOE4PZ/z2ec/4mR1hk2Sl6+u+Ff/+p/z9Pk3fPvqGQe/BwHDwZF6hdn3GF3x4y8+5/b6e4bujnHouL1R+BTKVEuXQ8mx3C5yHhCyFNhSGEiJFPyxHi+FBoVwVYLXjgvA1B3JxyQzUcyqikm6VnN5+ZCLB5dUZl4WbyHR5vf3cADcTzKP4WF+SimWefJfpEjKGWtKEraZRr9uHMgp3zcp7k3hRKQstK7jtPSYTB1j5Ei+IyaMqQBBTBl5PkcljwgjgRGrKoQVqOxJgwNRIaqa0A0kJfAKknRkY4gCxJjQY+CkamjbimVr6DXcuoFfvHpFbVuisERtmK3WxBQQJNbtjLlQzJqW5fk5btYg8HTjjgePHnBxssYoxZt3V8RdoGrmLM8eUJ8uuLt4TXdzzVwq9iLjFCw+OUd8+5TbN1ds3lyxE1vm0rM4rchfPeDw1HE47Ni7Hj9E7nZ7EILFekHbWnw2vLlxzGcCZQyNapgbyaEykwF9KKbGCTpBLtk8grJhDeOAmgJCyRqlNcZUSDWhbHNkZMRoO21Yif1+jw+FsmaspgqWqIqcVilFTCVdtm6a+1H+o4+eMAwbbq8lh90Ny9myUALdwKMH5/RdIPrE0Ad+8fOvyUTIicoukTNNbSzDUChbxiqatuXd9TW1rZg1M1bzBVRziJn9Zsu3w29ZrZY8+egjzs5mrM8vePjoE2K2XL/b8v33L/jv/8f/N/Na4TBs72757vUL/vTzj/n0R1/yr/7qz9mPO25317jxgDGiFJlVjbENcb6iMz0vu1c0VQVkUo5EEemmMLPReXwsmmjvHV23vzdnVpXFywkZMenZta6YzRYF/awESk8oSjJd1/Hs+VOQA+cPVjz55PI/yvv/N3Fdvd1gbfHkLJdLrGmwxhavUYREkbXGnPF+xI0OkRJhGNEWbF3Rti3Rj7ixRypR5CMCtEpcLA0fX8z45MmKB48kdiswh4Gf717x7HbGbGhpdOb57jk/u1xQnS6YjR3L9YKzy8TV7Ybfvv6at3fv+Pbbb/j7/9t/wCeffcLp6Ql/8r/7R9jFghfPn/Lst79BVzPmbsZsmIOuOHQDKQvmzbK8H5XFNBWdGxn9iA8jOXkGMeJ8Khkyqhx6ZYqM/YgLI9kF3Ljnk49WtK3G1pJuOKCsRWjJfrcl54h3nt12Xzae7FAy8OlnT3j06GMuHjwCKRjcgPAFNrDdbu/X1Vk7w5iKruv5q7/6a25utwyjn4qOUjhZa6mrlpz1vZfSe8foCn0q+IQby9Qz5VBIgymRUkApyWqx5mw5g3zg+rbjxasb/uIXL7i63eK8J4ZibJ9yFTkYzz9+8pifnF/wJw8v+QdffcJifUm9uoQf/zHy8oxsa0LMDN5x1fW8u3rLejlntV5yslrx5cOHzGZzQOCFZBxGKmuoTCFfxhAgZVyGu/3AzcsXXD/9Sx7PG3SSSGGJIpJai7CKWQciUCS8OVFFcKkktEspMFaTxoDrR+bRTFQtSTOTyAea2AqySsgskLk0r5rZHKqMV2VvEz6TQmSMZV09NvA+lEMB9/6kqirejRjivXzqwyaxtfY+kDhRhiX3hcZkg/gbl0sdfRdlFCTK3KdYAEu3eQrScq48MKXqEfc6LikFzvsShCMlKidCiugsS1rlRJMp0huHC6WD74ZicCtG2UzQCWkh1pBNIAXAg2wF1bwlj5HYRxgDQpSKz+ai38+6dAUWrUaEmipJfPZso6OPgl5JgrFkJUELXDhQKUOyFUjJcrko4UwTaKpp5iyaliQzn/3BVzwcPyH9OVycn5FjpN8f6BOI2QJrW7rbPXNdI1vBXBtYLKlcj+7u+P7dDdlHUhzxw4Z2aanTgpAyd1cdLnlCcgQHh2EsKLnGIraFYexDRGnL5fmS+bxmpi1LP0f0A7tDNxEI8gcjsiN5p0yjUkwTdUPdV7tlvJYm3J8gp64YNLViu92x2dxSVYX88uLFC5qm4cmTx7RtWxZIYzFGl65ormnbFScnj8ixkLV2m9corQuRSgROTxa0TU1dO8ZhRMpyaFFakUUk5hEfexQSJQxKGkytaBvDctZw+fCSRygW8xUfP/mE8/NHaGEZusgv/uLPefrtN7y+eYNLjnY1Q+gS5KV1gx8D0Q+I5FBiwOpItlBVJdjLhUnqNE3lhJSopO8Z1DEE3mc+HD1KZVEVx4OxKLLBY+Lz8esfjial1EDxIBW9daQMWg05yx9MdPjbekkhp0Tugs0TE0EkhMDoJ0O8FBhddKZKSPzoyudHGftaYwsCURwZ3/H+Phw7M8c/5AmZKESZEuQ0dT4FkQQyEJ0v/i0lQScII9KB8hKRTWk2yEQ1s+RKkUXC2wD9SHal27bMilpC1Vbw5IzDITL2Gd9lahuRxmKsZbFY0aJYrVZ89Onn3IiMaVsqIWkvz1k07SQ3VYgTzeAj227Ljb9jPOxJROb1gtW8yPz0zNI0lsPZGYeTE/bPn9KJLU6ORFVRDWe83Aie3w4MQ0RGkFmw7zp8dAyjYRw9wUceP1iTpWR9UlHXlhmabddPkthSIOQMYkryzbmsDansQGidJz31MBHnynobY0LJfC9Vefv2LavVitVqVaYg00FYqimUMZS1ab5YlST02hHGnv3uBq0Eda3QCMaxJyaJLLgWRjfy7Ntn2EpjraZpLFJugaqEgypLP06yLylQAkQuskeVSzBgW7esFyu68UAzazg/P+Hi8jHL5RlGt+y2PT//xV/ym9/8hjcvv6O1cgrJPPDo80/YuY6ff/0LfvXNL+nGPVknokvFVBsi4+CwdmR0DqV0wYe3LVJkYvIkVfIfhmHE+cjgHD6EApUIfnpvyl4YpyAzIYpvYxgEu51gHAaYDhh+yNzeXrHbbxmHAycnSxaLBcvV6j/iKvD/23U85MQY6bqOQRZU/kF3WFuXIoOEJBKm7m4JMIxYC7WpiG4ghoEYByASsye5xH6/Yeh3BNcg04zVvGXZJxZ5ZN573N0Vqa/wCh7JPTXFWI9P9D6yd4EhQ+cHlO3pY8fV29eEGLi9PeWLL7/gwcefU8/mLJYrxsOet9fXpHeJuW1YNGuquuX05JIxjPgcCTkwxEgeBoKLpOjLPFtkUvKsT04IwTOMI1kbZos52khS7rF1Td0a6lpwGHbcbbe4EAuyl3IwjT5OAY0BIQK2rjC2JFl3w4FGgNYWrQxN09zTQYtErzyHBWYiJtKjxIVyDgwhcggdHINWlSTl8i7EmCgEurJG50neepxCZ6HwMTK6gZQO3G437PseW88gbUrqNQmrFKnWtJXh0VnLTz9+wlerNZ+fnLL+yR/SnD5CLc4JZw/BFr9wNUmMlrM5F6dnSCl59OgRZ6cnnMyaaV1KSKA/dETvcXJktVzeT8q10bx78Yztm5eEoScvGlzKEFLBvWpR/Cgx4oce6w1VMqgUC8DEArVCyDg1IyXRZRg83oOvEohpX5KCkEpum9QQVCKJiQIVExFJUgql6rI3crQyvJ82HFU43vsiF7Wl8BAhTJkmv1s4yCnoNvoSLiiOkqkPvt8PuX64XIo00ZTEfTex6Mzz+8Pq9OJ/qNnK+YjoFEW3P+FTy2gmIXUu8gkt0dJMmuhUGL05l2wKNVGnZNHFZwOigmASIpYqUQiFrjQplskKLiFzYeaLqJA1RAlJRmwjWXqNiTCYOVV/YBccNmZ6pQhSEWVBWFqlyabCNBWzdoZVGpPBCEU9mzOfzQkpsDo7Ya0Ur9+84OJ0zdD1+NFR2RZdz5H1nCwydTvHVA0LbeH8jCo77DDnMPTE7oD3RXJlWwW5xsXMTbfhMBTCTvIlEEcqSVal++VDZPSRpm6omwrbVNSVoK4MY4hMyiWO7fUStifu9Xg5F6xZuR/H0VkJcQkTxaTQvhxKKXTKHA49m9sNVVWxWCzZbreM48Bi0VDV9n7UllKcusyaqp6xWl2QYsA7T7ffFFN5Lh1prTXWVmjtub7eMqkZUFoXvnkYSNlghCRlTxKaZdVSW03bWNaLlqaZs1yd8fDyEZWe0R9Gbm82PH36W96+e8t+3CEqia5tGVULhdU1ORxI3hP9AasjmkKOmrWlovcx3esRpZQoo8npmJI+AQ7usX1Hkc7RdzAhgZmQwfooVcv4RJrrAAEAAElEQVRTLkyeXmqJFBohplA65/Bu5FjcZ6Zn+/f+mogE6f3zGGMo1DKl0FJP1KIiJQjeT0nZEiH0pC8/Smvi+4Ll3/Mn52ObAwSlk0QO5DRMmtiEPATiKAm6LPxCRHQCGSavUhSIKKiEIShBMICFJAJMWuYGiRFgjUHPltzqjlFHPBldCeysws7mzFYrKmFYr0948PgSPXqSNQXFPGuwZspQWShErhBdx84f2GxvGYeRHDOVKnrj+XzOYrWgqhR+tsTPlrjes+2u6MeylojRo2Vg63fchbE8sxHCJLspm07JuLC1YXVSM1vOUWpGZRVZyMmbAEe4R0n//qCblTNJpfv7OI6OlI+SnVJsB1neKSkN2+2W29tbNptblss1fV/SrK21CFO68FoVmRlZEnVgXJ5yenoB2SNwhLEjZ19obESkSqTkuN1smc/nNG3ZbKV0aBWL/8FUhCxJqaxNShbktRIlL6FpahbzBQ8uH7Dbb6hnFWdnp5ycXFDVc2LM3Nzc8OzZU549/4bD4Y7oFJFIILFezrnd3bHZbXhz9aoUDTmQRS7SvlQ8diFGQgxTGKNCyyIJidERpSxUOufwIU0FW7g3Zd6vLOJ9Ki+iSMy8h6GH4I/epMww9Nzd3XA47JAyc7Jesz45Yb0++f/f6/43fB0POkdS3/Fd74WgrgtRLouM1eIo6J72ryJL0UqR/EAIE6krx7Ku5pLkXiR1ZT+aNZalVawUrLOjO2xgLHLsxdJT41HZkZB0PtG5jEfic8Anzxg8Nzc37A89m7sdy5NzVssV51VF3dTsrl7hQmC33dGaima+pp2vODt7wHbYM/iBbuxhtyf4iB9L5sERQBNDoqorpJeT36wg3aUS2KoqsszK0s408lYy9CP7Q087qzFakmNGZjHRjBRKS6qmwtYVShe5sg8eKRXSVveT4qN6pUwmPF3fAwWTLYRCTAVxSoU8CmXfE9JM/ywRQzkbiEkhw1FiLAAkStuiosiJ4Eec86RYwhi1LJKsDFitkPMZzXLGp08u+fLTT/l4seRsvsA+/hh58gDaE5JtESlOIcsSozTzdsbF6RnaaB49uOT0ZI2VxYOSYkRJWbxcoXj9jpIhciakwPb2Hf1+i0iRTPGr5JiptLg3vpOKb4qo0LlMNNACNERd/n0xGaxFEkUanzNRJKScAClSklLxF6IhyimWYCrQkiyfWRFnx/vP8d8uCo6wiBKaLdFKItAThepDhO17pLeQ/+GFxYfXDy4yfCgJ10rqqeo6TisUlamLJGeaYhy7rQXXmAo2fTIQo/IHFZUr4+u6fEMpCzU/F5AvZfYZsVVTGOC6GJWoBVJo5Mwg9g7hMiELehwiC2TWCJdRXSB7R6d78okhVsW8uWwrdMwspOZPTp/w7N1brvc7NkPHaz/Sp0wMZaNrbU2rK1YXZ7jgqKTkrGpYmIrlyQmL83OGsWO3u6VZzPjyi895cH5GPwyszs/49OIzxpRxwOryhMPrV2TnaewMsagIKuNxfPL4DPfN9/hXb+hDpJM3eG3wsxlzlfjlu1c8uxmLjCAKVMyMw0A/wP6guNv2aKNJwnNwBz75CGKsyudqGkTyvBf65HtywNGcnFIuZKnwXqcHoKSZDJ35vvjIOXC32fL06XN8iPzn//mX7HZb7rYbnn77LfP5rExXfORw6JnPV0W/3bQ8ar6gbZcYO2MYOtxwU6gMohSoVgtmM0nTVAyDL6FZVWaz3RBCpKlGGu0ZO8+wH/njn/yMulK0lSZ3BxbLM07aJev5CS9fXvP8+TO+ffpbnr76LftwACM4uzjj3d0tcXRIaRizx4pArT0xHVjOa5Ss8SGShOTV1R1j2BKO3H/yfVr1cfNPE0XtWFRPb+r99OjYWUipSHqsrXDOk7O/X7yU1FNxLkhppB9u6QZDFgOJpqxX+ffbk+F8oLYVWimCG8smHyOONAV0lvwZLdV96E+RVRYDoZKKoT8UL5AqWvOqqn5n1Csnvb1gKvxyIiVBWZbyNE3N6Ap0A+1V4PoQCAiS0DBXaFG4EWIs5n6ZNJWs6Ke8lDS3pI279+sYZfGksnc0lraS0MYyddUKe7rEnKzQpw+QuqFpFshFw6P1CWOIDKH4rrIsa6TRiq7fU880X5w/YfOLW7a3e25vt/x6+xv+NP8Jn6onnK5WfLR6iDl9jPoykx98jHz7gnx3xbB9w8dS8W2r+XRu+L/95jmhj0gHOgZ8jqSQGFOmqueEKLi6vmG1bJCVIOcKbRtydPeGWuAe7MC0fiQhCD6Rk7vX8pZchmLgLHrrESkDxkSM1ey2e66v32GM5enTb+j7gZ/85CvOzSnGaJbLecGEo0jKMmtPuLh8gtYS7zr2wdG2DfNZxXZ/R4yaGDwxjaTUEnyk60ZC3NM0LU0TaGzFbNZSKsQyQW+MYdk2NNUMIQ1RJDb9jpNlzcXFOZ9/+gWzxTlD53l7/Y5/9W/+Oa9eP2MYtthaYmrNcr6mWS755W9+w9vrt2z3G6QI9N22FHB5ChtLU7aLdyRBCY2tNIf9jhB8KSxyyQFJOeNjJMR4r1E/TnwQkH26111nEjEJQpwIeGTG0XO32fLs+TO6bo82ikcPH/Dk8ae07awQe35Pr/detvdrYZqKiM1+g1QKqTTBCqxRWGUn4laR4UTvSZQDu3PFQJ+hSIbbGYNP6HrB2YNPmVnB45XDkkhj4vVmg/SK1aziE1sxj4GwHwlxxa7XdMGgqoQYR0JMHLqB767eEkaPEpp3Vzf8w//yH3H54JyHn50wWyzYDyObm3e4cWQ2a7CVJfhCVaurGmUNL168pN/3DOPIYjVnfbpEG0UMgTev3wAU1YCWHPZ7EImL0xatoGksFxenvHt3h6IjDDve7d9ysl5RWcu8XbDd32GtZn2y5vTsjOVqzWyxwNY13nmkUNTV8bPn/rN0znF3t+H161cgCrDCOcfoCuADBFpZypkjkqKaCJbv4w9ynKZzx4iHoofl/PSUi2XFXCf2b1+zqlekeZmaNLZCiSlaYNFy/uQRl48e8kdf/Zi//+M/4GS9QiznDKszvGwQHka/pbYVSpbQQy0l68WSpq55nB+xWM6pawsU2T65HNsrVbLUMpm6qokhcugOfPf6e/bOFRpYNSMkiYilqEgq4xkRWaCyoq4sMoMfHX70BFucU9F36ChRAVSStLqCWTlD2JXA1xC1BGkRoUOT0FaCSmX9TtBaS0iT5zAGXAhoJdDTHnkkvB4VF96VUGAhRMlNMoYYIs4XopRSiuh8aSZJSdvO7s8274P7jsXg//r1w+VSHxi6y0tdKn81VViCotm1xt7jrZx3qKzQSmF0GbUVDV0shILRo4QqfHfKIuGnzuSxqi0PaoJc0l3JkigEUQm0rkqlFTJqJwhrhbKgZ8Ao0VkQpcGmQMgal8to3zcaFRIyJNiPnFYNjdGch4aHNnM79LzZ7ohOMEpL8rDSoNsZdVWxni9pheLy8WPOn3zEVfAsbEVlLOvLC+btjFk7Y9YukFi67Ybr3S0/f/6XdLsejeJ8sebLH33BvJlz2qy4XKzRj79AHjrCL78m796Qhj3hsOOJgC/nhm9OV/zLV9ekLoJP6OhxlLC+yhpWiwfUVqOzAtdzsTphObdUlef121fTVIFJH5l/h34E7wNajgv4kShT1oIPAxPLQaLvR+7udrx+/YbPPvsMIYqB8eRkxZvXb7h+d8PT62f8+EdfcXp6Rt3OERIWnBQik+vZ3r2i29/Q7a4Z+z0xemKKVLVGm2JSF0aXEaGPyKy5WJ9CkMQxc7pccbZec74+43x1zuXFY6pmyW63Y9O94xDuiGbkwecXzLqWwY0c9luSG4BCqDIiIfOIEiNtI1g0hf3vo+LhxRqpDcpUvLy6w/mA94EYut/ROX6Iag6TfKdcmWOoTc6gZC5Gu5Cmgr3wKGIqxVsxKwhkCjg3MI4HxvGAsQsQEpHUD31l/1ZeOeUJRiCLzGDSokMxv5cQpmn2MMn6pJQYrdFaIScdekrlOT0ulsfJadd104Hs+LweO+zxfsENsWjzgxXkBjaVJoeIHQW0kkEkcqVRGHJ0hOgJQyLcOJK0JENZf5YVHCK5L6NrQp4SLg1tU2ElVClz2O9RPqGGkdRvkKsaURlSVSN1jYll2pUrXZLCBRz6nsoapNYYpfnpw4+5nJ2wuTjw7uodKQT6w4HaWBpTlc+NDJ/9CPXgAXLcYrq3fGzm1FfXzHZbbpcnvHp3x83tlnGzwfhhyiIy1MbSVjOWdUUVA62RiKoG2fDq7Wuc99PaoUpzYmp6/e7acX9CKOGmFH+cVuLeZBhiIA2RN2+uiDHxySefcX5+zmaz4evffE1d/6zkcviIEIrKtoV207ScrB+ihGLoBuLo8G5Pih21NSglqOuKqm64vT4QwljyN7REaUqgYB5RouidrTEMLqFkRMvMYtHgEkiluHy45tH5A05XJyzrJYe7nt8+/S1f/+bX/Ob517y5fkXX77GVKQerFMkuYG1T5G5pJKeR5GuG7PAu4XMoj7MURGAMsYSuyeJR8ikxBE+eKDsxF2CHUGWKVvDwRTIopERPco7SEJqyBrIiOMHdTcfQf49Urzn0ex4/fsTJ6Smn6wusqclR4n+PczKO2VspZ8S0FyXKs5WFKl32HKlqi2k0SkLG0u8c3bBldAPr9ZqcBFASwaUKGFMxny+ZnzxgCDXPvt9jouby9JQvHiypzTVfhTR1/xPrVcvoE6/eRL5//YbnL3ds7gacTyzna3JUdMNI7yNWK4wMvPjuW/6H/1fgk88+5Y//3h+zaFZ8/tUfc/ngI65ev2AYRobRsd2PJFFoksk7rBKk4Bm6nrqtGEdHLAY+kALvHHEYqZuKeVNhDLS1ZHQ7Xr/Z8e7dFYeDK6nYleXics44OHKMzGZz2kVL1cxZrM45P3vI6ckDZosV2mi227uSP1Yrus5x6HYcDgdCWNL3HZvNHTHC0L/HKpd1pTTMyqG0KCcKgjlPP7a8P4dAmQgX/Xshavn9AWkSVQMOiYiOHAOJAglqrKWu5zz+wz/g85/9IZ98/jl/7yc/Y2UrCq0KstMoa9CNJfnI6N20vwiaqkIpzdzMGLwj+siYHXVjiyVg2odms1nJhkgJYy0h9ISYGGNCX55SjzXrcUDu7/B9Tx4dzcmiNEhiwvtQMrYoUwHVGFSTyHUiSshBIiOoCC74grMVubzPWULI2KimqiTjCURR9jOt1KR+KE16TSZHz5FQpaemnZrC9D4szo/3SkpJVdXv1QEpTxOpIgs/GsaPxnB4H5r9Q64fXGSICUubKWPaPCHycsoIVQ4IajokhFCC4vw03lVHmZUQFA9mKRwKNSmQY0CJsvgeD7BHTXUhWSWOoQ9KqqL0VSBnNaKX4CN5SCA0WWeSTnDw0yFaFRJAzOgEWmiwimQyWWfEUHCqjZAYZahsxqiEUoGhyziRyE4waxT1oqVuZ8yXa2qhWZ+vWZ+swXm0seX3NKZ8DlLRNophDNSNYSlabg7v7rMTNvstu/2OtqlplhVGNVijkItADgq5OyX3W2J3w/bg0csFzX7HO1Wxvetx3UDY7yCMZfQvKME2FJqDiJFGJJTI7ESZEMXJh1FCtqb7+oGRB7iveO/v+33V+rtla546Fof9gaurKx49ekjbzsgZ6rpiuVzhXKDvR7RWpBw59Hu67nD//1qsTlEKqqql5DVrnOvJfihEsYmqYbSkrWuiThAlRskJZydIIVAZw2I2Z7k4ReuaEBOd29KHPdkEqqXljFP0nWa33zFc76l0qfStUYgYIEUUkdpKjClEI6EEMyRLX9O7wJvruyLVyVPnLH8wis9Hw9pEQJrkYkyLaP7g8zxOhY70nuJNEFPHEmQuGOb3MrbIPbXj9/dsUK77n1+UgkpOmwsUr8r07+SjVyXzHpcnuG9gHD9vPfHBj4UGcP+10qh4/9yWe6JQMpNleWmygWQkIpUAJ52KvhspCCIjYkTmSSOcCi4bWdZBaTV5pKSuMq1XSiBSkX1KC6JK6IMphsAEITj67Q0hC2y7xiyb8rOIooE9FqluGAvOVmuMMpytT6hnc1b9gFUKKzWzpkVLhRLls8lZELVAtLMS4qQi1SefslquSbs9P5vNmb19x4u3V7z7TjDe3RFGR5gCukUu30PmhCkqX6yQaASB4xrxvov14YZ1pJV8+M8ER+3Dh5KVgl0cxxKoN44jy+WSqqq4ubkuXbVY6HX7fc9qdcJ8tkQbQ9MuyCTO+o799pqhKwjMlF3xSMmMlIbgEiGkSWpZDp2D69FRY6RAiUjIjkpraquprGY+q8lCY6uGBxcXnJ1cMGvmiKx4+fwZz759yrPvnnK9eUfAo2qNsAqMxqdM7PppnTKIbHGjL/rp4+d2/FymkWbMiRxBxYhCko6tXHGU+JTP8CgvFkne58mU/bEkMOecJlnY0ecl6bsBHwLKKparBScna9arE9rZvCQ3598FsPy+XT74KaF9QuUftemTlEUpjbGaxWpF00ikKKqIsR9wg2ccRrTRZW0mTeeWctaIqXSHu95xdb2nQqHFnMXckGJFpQUhOfr9gZfdln7MHPrEq6uR27uew2EolDmlSUHgfVmz5k1TUPdx5OrVS3IqFMuf/sGPqW3D+uwRWmtub2/Y7bYMPjCOgeAKhdGPA1pI2qouoZO57As+lFyEFIusWcqMNQKtMzDi3UgfA95F+s7j/EAmoFVF0pOMuTJIa5ktVqzWZ7SzBU0zo65atC34+6IQinTdnpuba7bbLavVkq7r2O/3ZSI0eQjv14HiopvOYcc14r08+N+lE0kyJXNMIWmMQYlEToXdmMgT6TJwvloxbxtOzk74/H/z93ny+Rc8ePiYy4uHyDSRH0ePMhY+kCaXAqf4C8K01pJBGVMStoWcJt7v1zVtpkDi6d8VIZFdwPcjSlssUAvNeH1TIhWQCH1EvBbaXmVN2TvitOcZQdYSJwqYiJRJLhADxf+gM5hCQiRD9hEZACFIWoJRSFXOmghFgWy8V6ocZSpaK4xWk8TrvYT7w/PK8bxdmhbTus3v3pt/e3JYrr9hT0Y5AJQfNOYwdc5K5QOglSlax1RSvVMsHgKR7cRGVgUXOaU9J0R5MWIkx4C0xdh6PCwcH8SjtjSLhMoKowyRSFQZddrCIEh7RxhHkixfcyrAfodKpvCZhYFxLN2uuSFaSagg2kg+BHIUyAy1zGidqduK0xPL5q4n1Qkc6JlldrbELpbY1RlG1yxPz2jXC2Zo+hAJiULFmozq5cV0XJyveFSdoyS8MO/Y7fb0+47r63csZzPs5YPSjZQCUTXw1Sm6fwRuTxxueTxKmv2edddxd3rK8zfX3Nzc8u5VKvjMUPTmIYzEIKbKOGNCT04R6TKV0CVzg1w0k2UWeP8AHV+oY3V6b5ydrvcP4fvD9TiO3G3v+P777/nRj76gaVrqukUrw8MHH3Fx8ZD5fEHT1IQQuLq64ttvn9K2LWdn57SLFe1sgRt7lKoQsqLr7sj9HcN2U352mair0mlFC0TWEGOZaiVBt9tipGK9WLFcnDMG6EPHxu04pC1qJjip1zTLkpaqVGa7ecO8NjR16Tgf9iMplDewqTXGTMbhLMgy46NhDBVa5hL8Jor04TjuvS8u0nuPgMyTqS3l6Vwx5WNMKfE5i/ea1IlhHUJB4qYMIlsEFpENMYrpOda/954MKY4Z0NxPMMphFLRWUyZL+RxLt0ugtbn3U8SY/53n9HiVTJuySaSJs/5vf/0opSpZFSB0RlpFGoq3S0eJNZIcIkMcqZzHWIPRiqBz8XyJCUmsS4YHCoQwKKsRWiK9YBSCZDJjlVCyQguLTApCZPP2KTS3ZDWnbpegSuPEAPv9gWEcGJ2jaS4KZctaFvOWU6nxMVFpWyYY9XTgmNb+IpPpCUIis8anivyjH9E6R7vtSJ99zsnb16xfveDXVrJ59j3d5o7DviPlor0eRyDVyOBQsoNBYZBEYfA5IijPf/73mACPXbFj1+z4zz+8jptamiZat7e3fP755ywWC7quwxjFze0t19fXbLd7Pn7yKUYb2naBMRpTWbSp2GyuUFoydMWwKr1HyYi1pcvfD479fkDbisH1jN0Boz21ioiscV3gR59+wWJWsZzVnCxa5vMVi8Wax08+o6mWkBT9wfEX//pf89vvf8vL61fsc8ds2dLYloRASotzkWG7ZV4L5ExT6Yq71JUMzun3lPp9dlSioJxTjoSUJluaQFtLiMU3IPKxATGF2lIOOcdDQPG5CZiK2yMmXgpVUp6zprUtX3z5GSfrc+p6jjUNwTOhnP8GXub/SFfXH7DalqDNIw5byHLo0oaqrmhnLY+ffIyUnhh6pPActhuGYaAfipneWos1FmNLoyKGQLffl4P0bZGgHG4T/ZBZL2t8DMwXlu7gef3ihu/fvAVZIWRN7zS3246h6wi9484fyEmR85TztVwhmhaEpM+Z57s9T3/7LbVt+OjRI85O1pw/nJGVISvJYRzY7G8ZDnu2dxsO2z1tVbOcLci6ZEz54OkOe5q2wCKkGjE6Y3RCKs/ot8UQPjj2u453VzdUtaRpDc5r6qamshVVY0FZ5osVFxePaNsV1jYYU1FVBt+WcDbnR25ur3jx8js2t3f80R/9jK4b2Gy2dIe+SCfTh8/tca/LUyOzPPcfyt3ufbs5lz1y2h20VJytlli5x4eBRCCIhCcR/chXTz7joycf8fEXn/Hjf/Kf0lYzal0zs22ZHqTiq6kWLSFDP470vcMoU85llDDHYRgY+oGLy4dYW6O1xo1u8v+Vd0UaBapMm2PwiNHBYWTY7JFaYqgxyrLvAk1SVNqAligtULlMUxd6hk8O5waSyggjy/6QE01W5BCIvSf74pOQWkOjQAtyLjJI7YFKQ2PQVY0yqkQ1IAgp3MspC/214NqtVhity9R/8pV8eIY7nldCKLEGYpqKxhBLBscHEql7qRyCHxiRAfyHIGyNnqQHEXKe5FNlpDT0A9lEsPb+ICqEwGpDXRUNnB/dFJJVNF8FT1lY9SF4tFb3GrEPNy+l1CTUKzxgkisjtRgJcYAYEDFR+UR3lwgVZJVhpTEHgR0jKQkUCpMVRlUcCJjGkIUg9x2MpXtstGWQgSAF0koendfYCmSX6boDJkcUDkGHOblErZaItkVhqGLECMjWoI1m9J5Dd6BtGgwSGTKfP3jMRxeP2HUdL1+94mx5wsliVczkShWje4q4cUALTaYmpJb8p3/KchiZjZ6zlPj61QteXb3l+2ff8t0/+9eMh54UM91+w61qQTU8SDMO4xZTL3ny8CGYlpvdgbtDVwJjpu7PsSP/oZ79Q0TZ/7dJBgi8j6T9wHffveSv/uqv+fTTji+++BJVG4TQWFPxoy9/UrB7OfL4o0f/H+7+68ezLcvvAz/bHvNz4dJeb8o1m90kpwWKAqV5G2EwmHmZf3P0PBhID4QEDAQJNE12F6tYXfaadOF+9pjt5mGd3y8ib7XYt4ER0FenKpF5MyMzIs7ZZ++11tdxeyeJoDkncREbxH//Z3/6X/H73/2Cu9s33N+9phRDCB05B4FOxx5yobKOxldYLA7HR88/5eXzj1ksn5KV42Zzw/X6mm9uf8/lR89oZ3PqekbOsDg75/zinDJuSf0aQ8TmgF8YhtESY8E4C1pTjhqhNLCaa9p2yTB8xO+/veNm3U18yAfk4viyHqc1ekqWPVoeSwFspxfUToIqLRB/luBC6yxaI2nJulC5iqZpaZuGFA+kpE9N/Q/1qrwDMjn2k2WhUPisdZSJUlNyJoxBuLNaMQ6TG8p0MLVt+54rV9d1lFKo6+rBMUM9FLTHlRtjxBjJeQg5kkoi6kTtC3QRQqH0ClM5gi6i1bEKi8ZkjYqJ/aGnNIZqXqGDoqgAKVOjJJ1ZJfZqpFnMZS3NHeVgGVIiHgJuUVM5x3a/4Rf/5v/L6uKS5fkFTduePMjbpkFpxersDOtFZOqOZgEFePmBhGoZQ+U8Xd8TJv2DMVa42RRUmDMc9qAd+tkZP/n0S57ttvxke89/8Rd/wVf/+j+w/uoV+7f3/NXXv6MfDnRxRk/BxR21Szx/9hnFtdztOm42OzRZRMdMdJVHKOgRSXp8PS4kjgVIKYVhHNis1/z2t7/lyZMrzs5WnJ9fYoxhsTjnxfOX/OVf/iVNW1NIbDa3giZNmoWPP/sZ2/UV97evuLuu6PZrxuFAzAFXGYzzNK1GWc/+YDkcDujiuDxbYlXF7q6jsoZZU3N5dsbMWs7bOavFBYvZGbc3W96+fcev/+ZX/Py3P+f+cM+gB54+fUoXB8ac0UYSx70t1HNNf7hGM1C7Ebuy7A+GmBTDlPGnlPjkO2fx+eGepTBlA4B4YEyIRS7CFkAp7OQwoyc0TvbQBzpgzgWVBYmyznH15AnPXzxlMb/Au0aGgFZoICmmk0PQD/FKMTESyCVjvcXpWtyPXI3Shqsnlzx9/oSrp2eUEgljj9eWmzdvsQ6qxkys1ELKkdSHiR5SiAm6w56cE9vNPd8WeHu3o21nRKX5s599gsqWIXVUtWGz79kdOjabW3IU5OCw2REGSFGhtOO//pf/NZdnZ6R+4H/67/8Hfvzll5ytzqnahv/+//P/5vPPf8RPfvQTPvvsEy4uP2C+vCCh2HY9t/c33F/f8ec//TNiinRDz5ubV3gt6LdBGJrOG5yvaOtCiGvGsGW/vyNGSBFyVlgHTWtZLGvm85qmajDakVLh4uIFlxcfcnH+krZd4qsKyNzeXUteVknT2sl8+eWPaBthLWw2Wzbr7WkNHq+HnIXHE/A/7mxPBexRX6SMuI16hzKJkPYQ1xQr52JjFc/nM/75n/wZH/6jn/D0T75k1i4nNywruVYGqlnNfN5QlKbbd2x3B9a7PdZoxr7j3evX/PQf/Yy6bqhUxX/33/2/+Mf/+M/56KOP0UpzcXEuNLQ4ihtWKsQIZRzZ7tfc7m7Z7zZc54FbY1gbB9tCMpDbQrsyIsE+ZIb7A+sxQJw0bEZhG0dpxczQFiBKAGzOCjXT6IUhGRk4llDQ+4iKAVU5BNxMchZksbBmipZISbJUlLNQNF3fiU6rZPaH7o+SvmGisCUZhpqJilkK9MPAGIKcY9Ozklpd/63P8n/r+v50qcnRQn6tSfFh0qiKuAXEEMVTWR8nk+KaUnIhTJZmRksYiXzRiRhFe/G4uXigS6lTsVCyOsFw5dR0yORIl4waB9S+h6LJjaF4RY4CH6uhiAhxyJRtASs8+GIVupHmiajIClRW6KTRyaCWbuLKZeoh4YtBJ8hxZPvuG3EcKIbl8pKk5CAxSNEzDAND39M0jSTqeoeZzchKsxyXNFVNpR3LxQJvHTFLWqY4FBWUMUK9ci1qKOjKYWrF06qCds6TZ895+ewpH8/PGW7WjLdb/vDuDQMSQDSWQiwBlToY70A5QZb1kTI1QWo5UdT7bel3p4/HIsFaOxXT6cQBBKE+rNdrdrsdKcVHPEuNMY5xFBg1ppGnT16QUsRay9XVOX/z619xf3dPCgVtPE27pOv2PHnmyCmQYqA/HNBqR46R2nm8ssx8w2q24MXzjzg7e4Kv5vRjZr1fc3+45xB7FjngySQFsRja5RnWWvrdZ9x+859Iww6dAyi519EcMxj0JA6G4gR1s0VxuZqxXncMfWCTM/FoJ6kVKvPepnqcQB5RObnd5VT0Kq3EshMlAX5K6EPagJnuay4yOQmhIyUxSxjG/nu/3P8Qr5KTuLlkyVB4EJIpof0glJoH3qc0wwINS4PwsA6PCJI0eSGEqZlLxKjeQzGOInJVEMekaRKvjME2BvYJYibFAipjKo1a1nBI5FFJAzKWiQ41DaW9QlUGVWVUl/HKYxREIjlEik4UBUoXSsyQRHxujCRmp7HwZnNHqWuumpbaVzLBmgYxVVWJ256e6DETMmaNPRlkbHc7+bdSZhwDVWUY8ohWiEtMisSSyEXSx5ftTITVs5qzYtl98DF3v/qKLgxsehEglwmpyCUyDPfkIoeYUuJloo78vywp6Sfu5fFePyow4H3K5YmWmQrjGLm5ueP167fUdcOLFx8IvdVarHV88cWPpGHSmru7G37z698RY+LZs2c4a1msLqmqZrpfFYf9mq7fiGYjSS6J14W6EioryeC00L9mdYVTisZXnK9WXCyfsFxc0tRzur5nfbhj09/R5z3tRU2qZ9jRnA7xmDLGKpxKQESVgcoGGm/wpqUfLU+DQjvPkNb0QTQqEj4pOQJlWuunQQ/Tz8cteqJ2gJy/RmuMtZMeQ+hpOWuOzo9aGbR2TFjHhHZUKO2FSlyKUAFt+UEbSDjvJjQtC3XKVigt1sxPLq84Oz9jNp9PA0oNtsiE1jiY6NxhzGgVpB6xBm0LWiWUSux3W8ZxQBuLLlBSoK4q8BW//EVAl0R/2LHvesYQZaC42ZJCzzj0bDcbYlCgDMZW/Oq3vyJ/9jnLdsazjz/kfrehH0fOzkbe3W1JMdAddlSV5cOPXlLVFZeXz4kpY7XFKs3F2Tnbw55IZrVYSJZXLFRW3MmmIAOKHigqUgikPAJu0rBFVqsZ82XNfFbhjJr2So8zLYvVE87On3F+8Rxf1YCEcN7d3fLq1dfM5zM+//wzrKnwVYVzjv1+J0jA0J+Qsb+NCvW3DS2PH1smXQ3HfaSUaa1DTiOuZLRSFGNomwqToaC5/PhDVk+eMmvmWOXI2kjOSSmC+GlNtoJYZwpFQx8Hls2MylTMVnO+fvOaxWLBvG2pmwprha56e39H1w20bc183hJLpu96xn5gUbkpIFahVeJ+2LJRhk47XrQtOe5JMZJjwBQwMeOLII2l1mStsC5TjORkKFPwxqA8pKamHyQoUqFQaTLgSQWXCk4blLOoygmV14AyworQSlGmGtQ5O4VSGsmMsxZdCsaM74EASimqqsIasTEvHG31ZY9y01mUs2jECuUUdvlYS/N3Xd+7yZBwoyP1QxFyFgtKrTHHyXQs9GOPdx7r7CRKEVpUClFEL1NBdaQzlMnm8G/TAqip+D1NalSilCMvXaGMxrYGlRPcDahpIpFrQ7KaXBkyGjtKYEsaE3mfYFFRTCEpMI2DIC1mBkloThoTFKXylLqgxoxzBV/MlHAf2d9+wzgkQrY0s5VwaqfmaRwGCRlLx/C4mqrykrKqLLOYaeuWHBKVk+JpHMLkJPLg7KS0wfoa0w1kq1GVZbFY4GcLnsanfPD8KZ9evWB4c8vhD29R/+Hf8Wr9hrF0HFmMKfek4Q6tLjCmYLUipnKa7sozPCqvHoqA431/XCA8OBUILHfUHcQQ2e127Pd7cX6oJ35gAYqhZE0MhUM3cHX5lHEcCCGwWJyRUuL+/o44JJ4/f4bzNWjLcnmF1cJDvr+9x5ktKY54rfEps5oveHZ5xbOnHzKbn6NtTbffshu3dOlAtopYMpFCohBRzGZzmqYlDQfC5g19CaRxlP3NWkwxxBR5bNXsrBz+KRfOFi1n84auG9n3A5PXC1pNehd1vE/SIJ8yNFLi6HB0hGrhwQ9cKT0VikE2LwMgKcTjIEL1Uvb0fcdut/2+r+w/yKuUdHIdOu4BssYi+aipOFrbIsinQL9SbLrpfXkstDdGn2ia3rv3cjIeHL84OYDlkFBu+rxGY+rpQEpFJkpKKFTGOcr9QApQgoCoqpIJoiqZ7DS60qhak/cZNx0OTmtJHzei+zKTFa8qmhQyxnh8DU7DzW5DszzjPBcJTcLK5Po4adJT0jx6sn6UEjLlTJzQ0tl8Rggj3aHDaEdMsqab8yVVU6FDZEwJlTK1dXhnWdaei/mK/umWd6rh/vodX19/y5vDOznklIKSGPp7YCl6B3VyHUZNTeCJc/neM37YQx7TIh4fcEeO9P39hrdv3zGfz3n27AVGH93BLB9/9KkEdfYH1utbXr9+zTiOnJ+f4b0IVet6QRgDYEFZxpxIuw0xCj9dA5UTXQvRYJXEYDbe44yhrSrOFkvOz55QNyu0rdjsNmz7e/q0R9WF82dn2J3B7Xbcru9JYZAzSFlQI4qAVgOVyyzbmrpy7HtLUg6M5X7XE/ejpHeXR4d8EVv3o/11nhDN4wDoAWEuUw0pDYb3fsrPySglz+AYRqmVFc1FFu2fiEKF0ycaJrknQrX6YV7ee1J5cC7TMaK0wxbFxeUlq7MFTdNwPJKzMrJPnxLeE91hQPRZRuxa8wNdZ7vd4JxHG4PVitDvcdbi25bD/c2kGYB99zBQPWx3jP2BYejY7rakojDW40riV7/9FVXt+eDFS64+eM5vf/mf2HcH0LDdbOiHA5vtmhcvnjObtVxeXbBaXWKspnaOxhmGEfo0YoJluVoQYw9EaieW3hhpTlMJpDKSSiSXOLlDAmTOzhfMZhVN7VBMqKev8fUZy9UTlmdPWZ5dkqfsihBGtpsNt7d3OOdYrc5ZLi9O9dvtzTV914m19kM//N71t9Em3/t1zqJAUopiNGVKqXemQBwxOmOVIWtYzGpmzmIbz+LFU5rVEqc8BUNGidh8mCx3rQblKYhOzjhNImBrizWeTOI//fq3DHHEe8vqbIVzjhgC9/f3bLc7zs5WzNpW9tZ9x9gPnPuKyjhq56gMdHEg5MKI54N5g9oNlDSSQ4Ci0BmcFhQxGSaqm2JUQpdUVux0jdWYRjGmw1SHAQmMFcstk6X+UtaCtxSd5PsyeqorZFhp9BTEaYT2dGRTlOm92e/379V1znqsVeSsRZ/CQ90nAwkYwiAsJFXEHlkfB/7/f9ZkjP0BbQSZUCiaZoYqRQ7TGCcBTcJ7L5OoKXQsTzwwEBRDCujC4bCjruuT8t05d5qYC/3h6Gl/hIQfDqwCMkU2BjzgFFl5fDFUWEqxbHyYvl6FXkcqbckWcJo0QjYFtMLUFfSKkpJ44S+XZFVIY8AcHMUBK7DRcxhGIOJai0oj737/K37/699wdnHF6uKKqmkQ1xwrSI6xLM9WKCNdunzv4jGdQ2LetqSU2HcHCnDoOlJMzGcLNoc9zmrm84a5XtH1vVCLmoTXsmBW/orLesH47AO6j7fsdxtmbzSb7g7tHM6B1xqVoFlWArlTuFlLOJ9Mu7IImpSC73CpH9OoHjYNTknLU6lBzoX1es3bt6/5w1cr2rbFGEcxkGKhaeYT39ExjL00HIcD//bf/DVPLj7gxZMP+foPX1H5ivX6ll//5recn6/44tMv+ODDj7k8HzFKU0LgcH9DTWbZzrlYXfL8+Rfsu8jN/Zo3mzeoxrCaXbKqnoLRVHVD09bMTYN1M0ouLK5ecv7Bl2y8Z3P9ByCIpTWamAshjWil0b5GaytZK7pwddYwDiLqfnN9y1QDk3LmGCKk1AMS990JbkqRmAqORMYQkqau6xPNZBiEc20Q7uNh35FiYLvZAoYQIsMQvu8r+w/0EtOII83jsetFOeliFUWViRcrCM7RKrjve6E7hUBKcdJX6BOikbM5NSMpJcZRpjeSJA2hCN2iRioQpTWxKmSnyFERS4EyQdIuMaqRpnIYbShjxgQNI6Q+MZYRAxgLY8mUwwY0mIUTq+0ojntmZhjTSOoGwt3A8uULlqtzVqsLboci62hMeGXIRoERf/KixPo0piNMbdHKUIri3fUNOUcWiznrzYabd++4fnfNB599QSkZazTWai7OlzQUDn0nrkUyLkIVRZUdVXuG/yd/ys39DfU3Fasbi/VgTMErhSuK1eWC+z7T9QO7Poq2CIMqcWoEBRF6vFcch0aP3euAKflcDkWAoR/YbrZsNhvGccQYL+sfi1KOse8Z+sTLlx/xL/+lFAHtbMb+sObm+prb21v+2Z//l9TtEvduQVJabKn7PcOwE61TGMkx0voarzy6GErKrGYzzuYrVotLZu0Fu35ku7nldrgm2ohbaZ7OnjC7aLm9vubd2zes715z1mqcszS15bDvIQ/oMrBoHbXXYhtaG3FBLPD86QXd19fEPJJS5rA/nPIGHjfLKaVpL5nEzCXDdAaKcVmiWDBTFkEpEYqgykbbyXzFkMrAGHYMY4WyQQLBJo1YCMMp8feHehlrKGlCekthu98xQ3F++YSLy0tm8xZfWXKKkEeUKuIwZjTOe5rZjMNuT06yZxACKkaYHJBKzifEqKkrMaYxirOzJU5Ljo/Gcnt/P2WYRGIc6A4HMbtRSvSDOpG00D7//X/8t/zy17/gi0+/5OqjF+gCsTuwvJgxDIHN5h3/9i//F8bxwEcffszHH33KarGifio2y//p93+D8gVXa2q3YL+J5KRovIYKxjjSjz1j2tAN94R4kKm2UdTOMZtXPHt6cZQzY4ylnV/QtOfMls95+eEXLFbnoGF9d8vqbEXbCkL0L/7Fv2C1OqdpFsQg32/X7fnLv/wr3r67pu8HjiGRx+tIE/4ucvGwL0xSspxRU+ib0AAzlTOczSpmpsOlKHln1nL+4gXV4gnt2Qf42ZyUFEMfGVrDLCroRr767VeEnJgtZlw9f8Js1WKcw1jDsmvxrcVoRRsd3mWszSinqOc113fvWK/XVFVDd+gIg0eVwOtvXmG1ofEVKiYu2gVNSvTzM94cOm6HgSFF2lnDzEZsUvQqgLVYpfBJ4xYVHAbyocdWVpzlikZlzdBnbNLYqsInsfRNPagnHtVUlCERdCDqAipRyojGYpWVwcPRCMBokpEBmAwuDUo/nK/ee+q6lvytEDDGkqbmejZfMAwP7mAxHhkpk8RBTW53JVOKDLxC+H7BwH8P4bcWQWYWyFxPribWeeIEpaDkRVYcuyE48mqsFg6xTHhlER4Lh+OU69hwhCC2f0KpKKci7PHN8t6f4GTlwC80cRvJfSCbjF0axmEkDBE3DtS2xmVNToqxG1CNdHjS5otQ1xWDOWTGEhhTj1sUqJgEu2qCjmAMUNctVdR0feH3b7/lQ+85t5bFfIFTXgSuR37bI/cYhTiStK2i63v6vmcYBy4vLznsdux2e2IWzrJ3lqIKi7amtQqfnEB/UpcwGrDK4Y1CNfD5f/kXmF/PuL35BlePmHCPSgGdArG7Q40KWzJaFaFIKZmACA34UbjTdD0W1x7vvTEiNM1ZPTR/wHa74d07x2ze8vz5s8ltRxY5iCWsc4715p6UMs55Yojc363JKXB9fU1MI0Zb/uxP/ynvrl+RgSGMbPcHvDbMvOeLz36Ei4m2njFvzxmLp8sD+9SzCzt+//ZblDM8e/mC87MzvPdwtJIrAxSN8TNmZy/o+554d43jgNIJnfJkbpCm5imCzhPFRxC3+czz9OqMTz/+gG/eremGwBiF9wsFpWUaflyvx+sEGZPFnrIcG5HJRSolEThrmVyGEFHdSAyJrguIULxM6es/3EsbCRxS07TeTqK09yg2Gsooriwa3vuYY0hhFh7VI3RDM47jCcE4Ni9SyEFBidPIRPPRtkxObxNlolES9r0PlCGTjdAn/dyiUVLshUxtK5KCbgxYr6gc+DmkhSd1UiD6umKvBoRYasFMzYbVeAqH246SG9TC0m03dGVDp2r2TYVuapRzaKvR4ZisLd731jlyyvziFz8nlUDTNtSLlr/5zd9gneXqg2cUK+FYpRi0s/RjgJyIYyB0gaZtaeqKde5lz86FfEhcfvIx/qzmfHNBf3iN7tcQOkLqCfs70qjQSBBYYTIx0Eb2ADhlvcAfTy0fKIQTs+rRBCyXxG6/5e7ulvv7WwnjNE6oxknhXEMpisN+g8IChf2+5/z8kt12z35/4De/+RtKiTjfUDcLFvMFJUfC0HN3e82oe5KWwYE3ntpVrC4WfPj8M16++IzLqw/ZHzJv7t5xvb5hHW9ZPb2gahqaeUu7WJ2CzfrtDTkexImuzlTaMI6KccgY62UAo8FZqFEssuHqvOGrVwVrNEVNwV7wnmHEKW8ni72y1kroaKcRsSCeOQs9VSkpLOT3EqVEDJJ+nnMgpp4QDozDHq0rjs5TFMQWNf9whxWy/qSpqhsJpXPe0Yctd+t3KHOJc5LMLLWGpmlqoYbYAYWg1ehyqluO+8vREluN4oyUk6SxW2M4HHpUiugiQwBxCYyEFBjGgfHUJGp0EheqGEZqazDaYUjc3d1yeXYpLmpkGHtSygxdz69++wvG0PP61Te8+/YV/+yf/FNm84ary5eYqubZ3Tu22zuG/sC1CjiTKIy8W1+z73d0wwFTJ+KkI6gaz6JtRUgslQNKW4x28p6sXrBYPeHy6ScUrSSsdrfj3bu3/Nmf/TkffPCSP/1Hf0ZVN1hjJ9OHTD+MbLd7GfTEPLlaaWl6leLotAcPe8FjGtVRBF7KtGdoDdpQtIEcUSWhi8DHMhYpOCsOXGdPP+Lq5RdsXu8oRjFWsLu+ZXMY2N+u+eVf/YLzy3Oev3zO5eU5cRhAF0yOpKHj1W+vsUZzdbai0pmbt9/y9vW3fP7ZTwhDRhXNarVgc3/LdpO5vVmSUsIag7IKW1lKPxDiyLYUNjlySPKc16WgTaT2ijQNtLW2mGiEGZM1Sjka3xD0CCVhoibFLBQsZ7F7C1WBGlINxUYYEjpmdKWh0hQrIanaWLS2hDEwhGFiBiT8FGR7CsRG2DeHwwF4QIrVhOqVIm58xz87np8PTmCTPXkR2UGOEvwoGtO/+/p7aDImmkc50g6QJG4ttCWmRuMk1BZ+grjrKCaLOKYv9oHnf/xx/IZOU2D9+GDSJ75emehEWmuSEksyZUDXCr0plFBgBKMsUQtikZ2atBaKEqHoDH7y5NcKnJbk31jQIaNKQZdCCZFiFRixuWQUvl/oR/zM0TSGwSq2Y89hGJjHhFEa7eUBKnlqCB3seBchpUJKhbdv34ECXzkO3YFDd6AfemY50o8DqSSq6Cla/OaNKox9QDFBi9qQlAYli7lernjywYc0C08KdxxuBlLOQESlAW88bWVwnSYUERUJf0efJsuUU5TcaXN4n0s56Q3EX+ckTBzHwHa75e3bt9zf3VFXM+q6FV56mYL9HjWLZmpS+65nHDpijOx2e5qmYjZbsO+2U9K3hLSFridpCc/xWLxr8X7OLhSi1UQLUSpSilIMoyQZl6LQOmNNESqSthhX0Swuabs9s9UNYf8tJfWQE1qXR993mqgMmWNyuXeGeeu5PF9yu+mISZrunCR8KH1HT/l4nYul0qQPOLnDHIvnIsLf6aXOGWIsp40DtKyb8MNuMh7rVh47mH2XyysNmVj42Ucf85hCorTAxQp1aj6O2q7v/pjqtKnZn/atCYFKKmOmyAMVEzoU0Wg5JXSoXjQKhSKPIoo+TReNMrK/2dpQpvRvow0qK8hK7IiNxlSWkjW5C/R9IvYREzO7w4FWOQ5VwzCcTYiuJZaEM8f9InN3t6aua5RSrDcbmcw6zZhGdv2eVbVivpqJILkILVXbCTWNiThE7t7dMc4GZvOZUEnTtBZjpl0s8Y1leTnn5pvIcDcyBinISpK8o7Zy7McgU7hjcZAfqD2Pr8co6AnROz3vMv1f1nrXHdhs1mw295yfX+Csx2hpCIXSUUEnuSopFg7dgaGPKAxN1bDdbmgaKaS3+46nl+fU3mOWBkrF2HdCcRp7GmOZVw1PL57y7NmHnK2uMLahj3fs+h3rbs0u72nzEq8VxnsslsWZPOfNuwv6TaTEjkqLdscoC2VqmM1RiwWORF1pVgtxsCqMlCFL4OJxWPSdRuOkUVLTXsmpM+NIH86poPQx7XtipZZ8siCmCOXwiJA8FHoT3a3Iev7hXnrKCNBUtaOe0t0Lhf1hg/cWawWtMZOe6bsUS7nkPS5ZnHRyFovUEKQBU0phBnH7yTlxOBwoIUyJ0QbfNNOgQpgc6US5LtOzKFAyFvBWggHtlCYdcyYpRTZiMqOzpu873rx7xdD1xG7kyfkVz54/F6v81RXOKGaV4/72NeOsgSK6i9t1QVOwRmGMwmaDwVLXFXVt5dhJgvoYbbGupW7OWa6esTx7QjtfAjCOw0THlftijGXWzoWVUCanT8rkWNUzjiMpy++paR0e58qPr79tb2D6WKb65Tj0dFrhraJyetIBg1IGbxvaZsV8ds5stmLnerKBQGTc7enud6xv7ri7u8U5TbecE4aekEd87UCDN5ptdyDkxFZlaqfp9pHd7kBdOdkjUqGqHaVI6N92uxO3xylJ3VSOMMBQMl3OhJyJE/W3Gw4sGg1GIgWIhRIyJcr5pKIY9CpjUMqgFdiiGYuE+WqjMWVKMneFbJIM5FIWpoVjqreVOBueGBJpol0moTCp482VZ5KSUIll+CRPSZBkGRTLHiH0ue+yV47EZR7tIWVCP9T3tJj6e4XxgWxSE3IiE+3psKdIfoCzVoKYHk1mRLBmRICUikReTNex2Oj7niNHXeuJcsRkiziNwBQ82iBAWeHhJQvaK2wu4mmfFFqBWVTQ1jgS5V0iBhEBSeGnZINxoJYOjCYeAuSIcwZXzdnnXnyNjSLNEgyFPCT66w1n8484v5jT1DNuKrEeDP2IjgXTiFizTDanIUqnqJUipiDWr+t7/pf/9X/lk08/5k//8Z/wH3/5S0IYsc7i5p5+dyfTWqsZQ5zs0yK7ux0WjfOO5nzJWgWyyqiUWL++5cmHH/HxT7/g9ptf8/VwkPTyvMFoOJvVLMyM7XjHpkuMsUyFgnDJj9x1WUzvUx+OzwpkkaU0cVjVxBFPie3mwDh+zVcffc1stuBsdUYhnqY71hnatoaSiXFk1jZcX+/ouo7ZbM5+v6Hr9my3lqfPntLUDcYYPvzokt/98m847CLkwmJ5RVGOkEG1Gu1qtI+4MOenT59IGufXX7PdbnHOU1UV52eXtO2cutb4ymEvnlL5ink752/+6l8xdonEgLZRfLBzka/7hNgI/9lohXdwNq+ovWEMgtYYYzgc9oxDh4zipSiw1k4c+kmofDzplVgJp4nknks56QGY+NclQ5peemvUSSz7f5RLKfWey83jhjbmPDm+GLQxIuSd1qSZTCEkhNITwkgexfGuqqr3GhhJT5+cMUZpFLUVdx6rZGI8qEjRgvDpXKiDJkS536kCZTIKKQAP24OE8bUazjxDyYwlMxfAjBIRTpbK0jTWoBtDqSyxzmyvO7bzhj5DGHteb2+hRBaN42J8igkzoNDHDrdcklJmtzvw67/5DReXF6xWC5bLBZGRomHT7ZitZszPZtQzTxwGqqahth5vLbooQk4Mh5Ff/vUv0Vozn8/48Z/+lOANqWSyS/jRsjp/SnP+CWrseDf0jMOALnucVcyrCr+Yse7eMiRxeMJMYWCTLfnj6zE1AiY0tCgwnpSCFLmT3ma9XqM1vH33hovLS4x2WFPDNLQyRrNcnGG0peQtt7drfvH618xnDT/64md8++1XWGPY9Xv++q9/jvvzP+PF85c8ffqSi7OPiONAGDp216+pFMzrhg+ff8jHH/0JpVjutzvW/ZqudEQbKMoSyIQiP3JWtKtLzi4uGDbvuP5DR78ZsGXEWIezNVXtT0GSUDCqSGhYpXC+4fOPnvH1mzXfvF0T1fH+lBMt4ahXiTFy1HWZR1QHmDjZUzGW00MxoafCVf5nUHgUFcIlNmjlUMqRJg2UVIR/Dw/Kf2BXwVJXNe284fnLp1w+OQOV2OzuuLu9Yxz2bDa3fPrJl/hWtBU5ZXa7Lbvdhn4YyErWYCkwhqMgVs6yOA1Bldb0/QFrBInf7w9Cj9Qaby0X8xkpFoYQGY8mCFoQDl1EPGuUpbKWWeWYzxqevXzOoduzP8jHulrj/YxmKYFv27sth+tv2a+3dLuOL778Mf/4z/+cZy+vWLTnNK5iuHvH+XyJtxZnNevtLfN5DaZwiGuGaMhEfG0xJIYxcDiM1E1DVbfU80tW5x/w4oMf08zmDGFAW0XT1FxeXvHhhx8ya+ekCF0OzGfNpDuUczCGQN93bLeikxRj/CNVmImG/ce06++iGoKGToNeDeRI23iWi4bz1Yy822FwOG2Z1Stat8AWT78dUUtHKom03xJ2O7r9jnEcWMwb0jjQ7zZsb2+53d5x/vSS1eWKJ2fnqDhwe3vNL3/x1/z4Rz+irSpW8wGTM3EYSFmodc454pi4v9+yWCyp6ppmOUO3Fd1g2Bo4RLGNM9P3G7o9VDVeWzyacNszdpBHLQ6FVqOdZlCJogvaKJyyHPIBGwwmQCparK1LJqhIvQdzKJSkiSaglcVYTTNrJE8pDMQwUqJQV5WGnNKpxmCyEE6P9BbTuEyQiChGLDHmSef1UO89zqQqUwupEd0HSvFI2fufvb5/kwGTm0U5+daTsrhKxXFqEAQKVkWoNzEEtNKiTC9xijkXvUbTNKcm5DiFtNbifaKuK4ZBpjNHWhXTlCCEQEkZdMYnQ9YKVVncXMOqkIZAHBNxyJTp4E96xHuF6gu5T9jKkHqIOpJUFLtHlckqYUOPRmCmsRsnu1Er0ypbUFkYw/39nqpasWrO+Xa9YTvc4veRpbFUrFBevKeLLuQkU+jb+zvu7+/RRvP0yRXnF+dklXl1/Zbr7R1PLi9YnS0xlaKdV1TW09SO2lXEYWQcer7+3Vd8/YevAfj0i0+xs5p6OWO2nHP20VMWzQxfNGn+nO7sQ3ZFsyuJkDMpjuSkmHnNEOTeJ2HuTDxpfVpgxwX52HbSOffedPIk7j51zeKec3N9y+vVa7yvePniI5lKChTGYr7E2QprKmI/8i6/Zb8/cDjssU6d/Kn32wOxD4R9Tx0Vf/LFj5jXM2q9ZBgV6/2aN/c33Oc1Z1cXNLOW5dk5s9mM+XKBrzzb7fY0GRQ0IjKMPftujzcVpQSMr2jaK9LYE8cDWsNs5ilFEUNEqYIq8nKpUtBEKqt5djGj//gpX7++5Ve/e4WrZ5ytLjk/M1y/ewuIMUIKAs1rJaJDVSRDRqwVxxMVLZdIyccQv2PAmiBMYRxQ3lLKwzTzh3o9tvo9opLHtfQ4Pfo4tVfTZmaMnew7pbkQS1dF13WnZ6wmN4wjFQsKOUbSdG+1mkRx1p4OOGtBm0zKkVwC5aA47DqiMqTKoZxBz8UmvfSIdiuCH6EUQ7KKohVZO4YukWNC5YjN8uxSPqBdQxwT4ZDksK49dznwuz/8hqdWs6o9Z3XF8+UVAcOh67m5vWXs+imQz2CsIsaRQ7cnpJHL5+eENPCb//RzdEksK40aZ3z1q19xdXGFWZ2TbEXKkMaIpRCGju12x9s3hUSimTfU84blkwvQnqQ14zayqM4Z6wtU1dGRGEuRxiB2zCpLGRJ9mJBnONFJ/6iI4P0BxWmSPNErrNHiOhcy9/cb/vW//tdcXl5RuZqmnREn63GAGAO73ZZDJ3oGZwx91/H6sOPVt69YnS2pKsd/9S/+G2IaCDERC6y3ey5XK14+eUY+v6JSmrZqubr8gH5U7PsD692Gb+++ZVCRerVkNW+kUatrZrMWqDHGowqcPfuYsduhNfTb1+gJkTBFMQahZBltJKndTm43ynCxaNjvOja1IcYouhgFZroHx3sk7i36/ebs2DQrEXNqbVFWkSYDBQksNdMEOWFdTdO0LGZLKt8I6pxGaZRToqDJ6nsf/f/gLu9blqsVV08v+Sf/9E+xlaLkSN8/49W337Beb9huN/zyl/+Bly9eMmsbwpjE5tY6ShmmIrhMlLPHSIeEp2UhNovWaJrSoxTGORQQSmGz3zPEkSEEKHmikE9WrFPTIlVLwruCtyP9/hU51/h6xnx1yebQMWZxtdIUVhdn6Aw5RIIfuO3e8Ks//Efc7E+YNzWVMXzyyZ9wv37Dbn9P23j+6q//HYmIbxzeGLSrScTJZanC2obFQjNbXLFYXrFcPeHZB5+xO/S8eveOr775Lf+P//v/kxQLt3drctYMQ0ZROD9fUoqhTA1qioGu37PfbyTzoUxajOk+ClppTu/74wb6b3OeAmTPnv4dqzUljBw2ibrI5N8Uje3BBoUaM0O357Bf470XtMo5XGWpGsdy0VJby8w7bBjRMaFSoqRC0Zknl1esFnNWixmb+3tAM6tqnl1csGiWpFSY+YrPPvmI25s1337zVswWKsnPWswaQkb2pqT5wC3oVMVoB+bK4WYaNTNUCpoZlBKJQ0+JkagSOC22wWJziMoS1GyVgkkIruYaPVdUIVMHg44Tl2FVw8Kia3t0NKDkwngY0GaiOhWmBjdzJOqkR/uxoFHHME9OmVEhhIkSPgEGRmp1owwpaEqeMnqUxhp3Qk+/z/X93aUmKo1C4lLISSScJcmU8XiITKm9pw5I5RN0q7WEob2X5s3RfzcSY5gsUO1pY7XWirfv9HUoY6bAO9nAj0hOtqBrjUoKFQsqyUPAKaiV/FnOlFjk4MqFHIWWYjQor7AzA/sHC9LGNWQt7bmEo4BSiRIz+20gzkfUYmQ39LhYsBQu+zNcnAOJMXeT3aXw7tbrDV3XY61ht98J7GUUmcR2c8fFqkWVln6/pdtv0PVMLDHDSJmSh1MY6fY7QkzcXt9wri9wThOcRjlFN/aEDM7UVKZhVDUmW2IWDmBRgWXb0AeIaZxCzx5e/iO9R55Lee/5n4q5R0XFe5xrZGp8c3PL2dkZy+WSly8+fPg3EPtOpSIlF/pxIOZ4+nyVr6Tbn5oeMqgErWlYNitm1RxSRSwGYcUlNvstfl6jrGa7Feclaw2LxVIm4kFcu2IIDLpHR/nv+XmL8Yao4fzqKTlsSeNuShd9oOZNq45jJyUvbsHqxHLuWc4989ay7QaMcVRNzYuXL1nf3zKOA0e73zI13tN+PAXORVKMk8YlUqaDSlKCj0JahTEOyt/PNu4f6vXdxNfHe8Dj9XXkk4oWalLYT/dRKzV9vHCoHzcqebrHQheyRGtISTMMCZSgqClGMEY0Yoj4G8P0PmryGCQDIxSK1ShdUE5ha03qEkornLGgNIPKBJ1JJqOd7DM4jU2OopJMl4vMmIsGP6uoao/XCkKPc55aGdqi0dPkXzIwBBEeh5FxECTFGIWxmphlrwxhYOx2PH9yCTlw8/Y1piScVuIiF3q2d1vSECghk8KIKhmjxP5WK7BK45WiDz2ohDYei8MWi8kGlSaLVBJaZeZtTcgDfRhOz/TxvvGwd7xvlfiePmni+Bz3F6FiFMYhsNvtOXQHlnHEWTM11grrLFUlOUxGae5vC0PfMww9OYtZSEqRpmnJxdE0Lc5aCom+O3BQipdnF1SmktyIekFMHYMq9CrQ5ZEhRyiaRluausX7avr8R/MRjWvP8LMzzGFLPtxilaDnkyGcWP9O0YpHW0mA5bxhtWhZbTrud/17+8txAgz80dl4vEopMulTwjBBFZSWdS4FsiCCxkyD4YlKCJFh2Ms9zoGcR5SyMvj5gV5VXbM6O+Py6pK6qdGmAA6rHRdn/Ymavd3uuLl5y2btcEbyIkoW85Ujm0Em8BMdc6IJ5YlOos0DbVvoajw8KCWp7UeEieNgCCaETtx4jFa0jWMxc8xbh3WZMQ4YLMSOksLU1GRSFp2X9Z5m0TK/aHEzSzIj6/6WVFoaVzM3nqZeAsKMuDq/4DDuySpOZ4VY/oekqNwMXzVUzZx2foY21aRpMQxDR0qZi/Mr9vtettmscLbC+wrnK1lbuUxa0MIYRjbbDdfX13Sd6Ekojyipwhd7r7H4boPx3R/HZg+grWtqrzBM+S/HyftUQ8acSCmw3e2ZtQrvGvmURmO9oWo9V0vJHlvf39GNPYt0frJzHfo9KQTqqkavziXx3DdU1pH0ZOISMrOqYqgrKmeoK0dTVzRVjQngjWPWtJxfnLMdR8TDNFLNZiiXp/dfkeMIKaNRkquFAIjaFQm6S5nU9ZgUoSiCSoS6oL1Y0JYY0b1IAKLOFKclWMOkaV8R/QsckXtkr8pZNBvTmhb0c/K0PNJUC2II8WiffqDLPwQoKiTbR/KlBRlR6nFez999fe8m43ggCAN66viLTAAfHyxGmwk2Pv5N4TymHHHu4dMdC4IHV5hEjJYQItYeN0xxnRrH8bRAjXXEWAilUDFBQ0A04GpQI+g+oyPkpMEqTGtwo4je8gAWcRfJoUDWWJcwNdgzS0iTfkMbfFMzmkhQGePEnSprhdoH+l1k3PQMsy33/R70gFGZfjxwliGNia7rIUPlPSln1vdrsRoriZuba1AFbRXozG5zw9ifkYaa/WZgc3+PWSZMeU5/6CR9OgnqoinkFNis7zm7XJGHgfE+YuY1h92AipkXywu88jg8JhrZeIgorTlftBzGzJgKQ3joRo9d7UPQ2ftNhtiFmu/oaTh1uCB84bdvr1ksFiyXS1KOaO1QRXz+xYoTxhDY7nbknLDO4JOnnc0wRlNyxBmH14Zaey7aM1ozx6mGpBxdLESlwGv6caDre1CK6+trhmFgPp9zcXGB1opxHIVbudkyjPLC5ZxpmwrvHLmpyf2HhG7NeNjQd4P4XE9uLw8BY+qhEFAFlQeaWrNaVlyez7i+fQNK43zNZ59/yu9yYH0f6TvJLDg6NWjpwIWNniIxjlPxHB810pNfdZJiofLV5N72fd/Wf7jX400N5MzOj/jjx/V1FIWDhOgxmUAcCX0xhhPP9LFTz7GJkckveGen4UUSClPJk22i0KrUkfKjRLSvjULnggrACLmWgkXbjG4VYxjQWlNVFUUZAoGkIklpbIWI8SqLSxpyIpXEQJZhhdfUy5q28rSl0EaLweKLpkmQxh7dzHDeSuAgmXEYOHQHxLnPUjcVqST6w54wHlA58uzqnO12wzdfv+Lq6plMPJ1lHHvefPsNaQjU2qFSoPYGW0mjUzcNTVVRF8X9bk8yDleDwaKTRgUFEblvKuMMrGYtfchsDwNZxpcczTkeQ/LyMzBN+v9WE4SpiZatRprp7WbLdrvh8uIKZyuhAGCo64r5YoFzjqEboEgI7G6/xVpL13X0fcf5xYrFYsl8NsM6i3eK7rAlHzp+9uFneDdHa09Slmgt0WmCK0SjGUIixUgbohRZzjMOEa2DFJ3K4poVbnaJO+xh8xZFhykF0kQ5zULJnb5ToSyQWS4aLvrAdj/wzbs7Ypa1PMnmOUkveL8pe3yftM7SYSiZkuvJKttaK04vqojlpZKsAUomxQNdLy5r49gRc4dRDmOa/71e8f/dr3Y24/LJJU+ePpkKJtFXWldxfn6F8566FlrezfUbxiGyWiwZ+kTOgggds4iOxRpwus9QTjqOE+98qmlKEXq4migjxphTMyK3PE+DIzG4cU5ztmw4X7bMW4/Whl0XSOVA6BUqmdPnjKEnqkJTWZ48u+Ly8oJ2NsO3lrv+Hf04ozUtya9YtS3z1pBL4NOPP+Hm/h2b3R1BBXJUpBKBRN1cslydc3HxBNfUrDc7+lH2zr4Tp76Pv/gZ1+/uAJlSe1fT1C1VJWhyPrkBJoax4/b2hlevXrHfH6QJn0xeZNh8NID44ybjsdvidweax6ewnM2Y+4IvPWmYdEulkDREMjonhjByv9lSlKNuJjtVo7DeUs1qnr54Sr/b880fviJYSy4Faz0uF25uNwyho5pVPHv2gqqqcdZToqIECWYMSVE1Fa33LOcNTV0xb2cs5gvsUJhpD+2c8OwZ327X5DKSi8a1DdATp8Zx7AfUmPFak5Q0FsVA9mWqPxNhc0AFTVaKYiHWmtpLnk86KOgyOWSCSxQP2pYpD6NM9ZTQiY2ZhmEqk0NAGzXZnxc5k1DkMrzXaORJq3E8d481iOKY3SP1vp5o8dKwyDN8kDT83df3bjLSIyRDaQnfS1MI1inXQalpGjB1TlG4+MpI53wsAo7uMKf0QWNo2ka+6CK/L04Q9pTSK7C7mgTnGqtAGXBAyoku9WinUDaL3da6p5iarCyjSSgdRdRr4LA9EHUmVVAtl3S6gM40ldjB0Reh6txERjWSXaF9Oqd4xcjIdr+FxRPuiLy6u+Zd3HOxOOei8bxYXtEoy5hhwPC7X/+W58+fsljM6bs11nmsl1j4jz79iPv7a371H/+KZxcrnIps79/x1R++5kc/+hmrsxXdYcf2dsPd2xs2N3fEw8C8dtRe0tKVUYSUGGLgqqoJRRahaT1YTzGWrM3EcddYqyjxwMxryrzFuVoKjInGcizSpHA4Lo9jM/EwbT46/qSUp2dkp49JxFC4vb3jD1/9gatf/Uc+/OBT5rMlWvvpxYj42rBcNVT+iq5refP6HRRwxjFfneEiXC7OuFqe8/T8KUZ7Yiysdxt+++4tu3HPIe0ISXj2TdPy+eef8/Of/5x3795NxadkKjR1w/OnHzGGgb7vuL27pu97jNK0VU25fMY4dChj+Pa3HaV0lBJQqcikQIHWR3qP8EeL0bROc55mvHx2yc9/8Ttu3u25ub1m291TV55qVjGGXnjXE+VP6TwlZipxisrToaUMmXyiQ8ghp04i5TQ12seUzh/q9Vj8LxkhBbGvf4RcTH9+Wos5C2VNCR/0sO9kMDFB7I8F5Me9pTscqKtKkNGccVYT02TqoKY0d6tlYlQKxStoLH7lYZ8JqVC6SFk4KRxCYdwnTNWKvkw7QpcpGJz2WGXxVkPIDDc76qszMSEgU9rEGAfGkKjI3O2uuY+ZA5lXNuNjTZ17ntcWt6gBgxo61tdbccgLgRgTzmsWi5onZ+csZp6u09xpw+uvv8Z5x9OrSz797FNyFrcyXTS2FAzQGs2PP/+E+/2O7dBzGPaUveQdFeW52+xwxhBS4qyyJG9JTuyBCyKQtyXgdWLZ1JRiuNnu3xsWqQlhkoJCTwgAEzqdTwfTUYB4bE6kySxsN3v+5m9+LTqsDz+SdcDRaELhbCPo5fZW3OlS5O7ujtXZ8uTbPg4jB6WJfWC43/PTH31JbTy+WBQt+z4zxD2bcKB9KqnsXi/4eP4FUNjudvxP/9P/yHq9YT5fYK1ntTynbcDWltl8Tv3pP+L87CkljWxvf0sad8DIqbBKkHIv9LuSJ218Yt46Pnz5lJvtwM36wK4b6IeOMgUdyhL+Y9vPE+VEJXQ2k07F0UyuP30vaI5Sx2Y9sl5vCGFktz1IYNwwsD+smUbNP2hNxp/+2Z9wdr5kvpjhnaMkRYmZMQWsqThbXbBaLlmdLfj2m294+/YtX/3+K0rQlFzQ2uGcRcVEVnI/lDrSzfIDbUTrE01bTYOLo55UI4iomvYso6f6phRizlTOsZxVXJ7NeP7skkWtqa3GWYU1mSEkhrhhXs2mHK2KvpeisW4ts1nFsw9e0s5arHeM44E3b76h23RcNk/54qMvOF+u+OCDn8h7cP+K2/vXfPPuLXOlwVe0ywvmS3FJ843jt3/4Dd+8ekPfj/yjP/mn3N9JcOX93Ya+DzTtnGrZcr++PxWUzjlB2Ukoldnvdmw3O3a7A5SjDb56D4UGTtTrk6mJehg+PEYxjoWqs5bL5RyVR4gZ6xLLqyUxZSiGer7Cny3YxsC//+tfkXrRmfSHgXldU3sPlaOeOaKH3BjqqxX/5P/0X+C1g5B4/e23vHn9ipAH5pczxjRytjrnfHnBu1ev+e0vfsP99R3zdsHnP/0xxjsqp/l3/+Z/5eXnn/HJF1/wQTOn+8NX5P2OJ8byFx99ydebW357/Q0wkmIihRECmFDEjNt7rEnQKtTCYGJGZS20JZUYPGhnsLXFDAq116Rtorvb4tsa5lq0XUuDax3Oe8pQCFEQHuMdrjJQxFnMVDXKWIoxZGWpZgtMyuy7MO3lsrSPblPHZ4K8CRgtKH0qIocoj5rCI60QHqiwf9f19wjjKydRttIi8lblgdL0Xpc6hVJlI8ZpWoF59DHHZuNYaBgrKeApRrqUqKb8jON1LExyLhNvfeKrozATDxCrST5DnaFy6IMijYi6vzHQFolg7wslJFQGE0GPBeMU2WqK1+hekU0hmUxlND57IGNDZtQCRTfLBt807KzBK6iVFBk6K/Q4oFLEOc9s1pBSou8HjLWUXDg7W6Ks5n6zptUVuhRmVYU3jtB3BArPnz9jsZjLFDYlvHOonCjjyEcvX3C33bAfehEeaUBrdDYc+sS723u6vmMMkeV8xqxcsR9uGIcR6wzWefb7wMw3aGNJZLaHnpzye4fb40spmZjJoFKdKDvG2Kn4fpjUy7PNbNYblIJvv/mG5WKJ1lIk5FwI40gce3KKhDCSUmS1XJAztHXD5fycGsv5fMlqtqAkxRAjQ0x0MbDr9hzigaBGnPOEEDgcDsxmM548eYJSirZtKSVzff2O+/UdP/7yT5jNZtR1w2K+wFeVCIpLwbqKdnHBrO9JyoOO6FKwVtxG9LHQOaLhxylCydTe8ezJJV9+8Rlfv77mdr3jcNgSo5/mU9N7ocUto5QyiTZlAqROkOfRkWTiOiqBbkUHFdHKnAwWfujXSYfyR25eQs1JaRLEZllTOWVJwz41ITLEMEpR1f7kKFVKOdnY2rrGVR4VZPDhnEObqaDQE1VKeCcoLZOkrAvZJpQRxLJog2q80KiUwmwTqkypy3NPPx5QTmOLJwKVcVgHeMRFaMzTxGjA+Sx8Y5XFVjqDd446G0yEfoy8GzvOy0ISWrUmTraDh92eZy+uWM3nVNqxqFuxtfaW8vGnFALOi8HB7n7DrF3S+JpUFNo5Nvcb3t1+w+c//pJcW/TQE5QSe+1UWK+37HYdQxjg5oZ/8sXn+OWCNl4wbLZopmeRBWGb1x5lKrbdSIhBaADlsUPg8Tk90PseWCbqtJ+nlE9/XooiBNkr7+/v+fbbb6g/m+H9xA/K5rROQhiIaQSKhBZai3ci4vfOY9F4LHPXsjBzatdglINSkYis+y0//93P+ZAPBaEuBe+8nEPW8tOf/vQhv6ZIym3MkdTtqH1LiILizOaXHNavSKon5x7rJ2vvLE3FRORHqzJNUzVNZZg3nu2+xxmNbud0hx05h2mi+EA/O94vKdaOoZIyRNJa3MFiyZR8tJMUVkAICQ4jKWaGQUSdKWZiBAnVlX3nh3qdXSxp2wZfOZyx4u6jjvdtyuLShibNuLi4QinRV96+W0/ufIk80WJlrU5BhlrQ6hAll0esy6dPeqpdsoTVlSOzY3IQnKibR3G9NuC9ncLvDN4fGwyFz4aCCG6bVuE9WJOxqaC9Z3G24sNPPmVxdolxFlRmHDZEXYgms4tbNv0G40T7sFo9k/yPdoG2LSMK5SsWl0/Z9QGlxToZrbm8uKIUze3NLX3fA4owBmIIKKDyjrr2NE01ZakI0ibrauD+fs1ut6PvxaL7oR54n3L9Xbe0o1MoPBSnD4izlhyKqmZWFzw9JQXiqChIUK0yEihnjWbZttzsbylZ3pe2ren2G0IaMLVGV462qagWC7y2DPuebrtjvd6QFVSzhvMnF4DCOtG7Xa2WbFYrbIKrp89pZw3aO3xb8yNlsZVn2NwTS2bYr8mbDT4pQTw3G9TdlkM1Ykya1kOSID5lqKuKMWZUpdBegVXEoslTplI1THTgsZC3kVxJLINaGPRcNBi2Abw0LWVyqDxSwY9ulEoJkm6cxTiPsk5CIV2NryxPnre8+/YbYhyms/dRWG0pDyG4R97bxFYqTOifMRKEOQ2kH5u2/Oeuv5f6Sx0nqw+0xFN3897HPRBMKTlS1NEpg9M3cXSd0kbyM4BTGJGx9lETcuRPTrkFOUuIVpGDCa1EbKUM0UeKL5SqYHfia19GKI0WEXit0DXQZXSWNGmbFFFpMIVki3CqC2I/aS0mSQGoJztejMLOpbCpUPiScMqQi2KcHAqUKjhnKMZJknPOjEMghEBdV2inud8UVC5U1mHaOZqR/X5LoXB5eSEWjEoOde+9FERFaD7FLLCDJx12AhopeRl3h4Hr23u2uw1KK1bPn1KxwM/mOLZYOyW95oB3LRjLIRyNaI+804cm4rvP9GGjOML3R2va/Gg6KQSAru8p94W3b99KkrdztI1iGAJhHBiHXmgrWVy3lsslYYg0vmZezVi4mkU7p/GNuCqlRB8TQ0kMaSDkkWzL5Pohnt3OORaLBVprvPeSFjx03N3dsNneU1Ue64S6Jk5PmZQ1GYNr5rTLS3y7IhyES69KEteGSZdzZAEeN1VVMt5a7Lzio5fP2B96Nrs9IYyUItRBO4mRy/QXj9kiFCbx1QO1ULivk5ORnl7wnIlxoKoatFgU/H1e2X/Q1/t2eXJTjpSFGOPEbZ7QHvVI9K70iXfuffXA64X3kDZn3YnLa61F5yM55YFnfWw60Jp81FbYR8w0o8FryBrtQQ1aHDaskVyMrDHFMCjReWirsDaTR7HXzqWgYpJQzMowWrAKnNbUxjHH47Impcw+JRZFmifnHG5aO+M4cHG2ovU1poBTmspYtJ9hnz7j0O9PHPLbN7c4KryusM5RNS3Ye7bdHtM4Giy50uy6AWctqigOhz19P7A97MRv/cvPMXWNn81wQ0VK5YTmWAq1M2QtAYWB+ADBf2dS+Zhi+JgucTwvHv8dkCZlGAY2my1v3rzmgw8+EocxtFAEsgQ55jJZLlpD09QTrXayLXUOj6F1DWezFa1pcLoG5eiDpk+RbX/gzd0bZus57WyGc459kCFFVVV89NFHkqET42T+ACGMxBix1pFLBKNoF+dY1xCGnRRAVpoMAS0nwbvcEEHsdKFymtW84W5zoBvELSa6SkIX1eTCcVqfD2dpyo80WUXWbC5FxL2P6ao5kWKBEiV/oY+kVMhZ0ItSplX/vzFQ+iFcs1mD927K3dJA4qhR0VqjjdwPayvmsyUlw/Zsw/b+wKDjiccuWpiHJsOY4zBN1rSYhRw57ZOOqORTg/ZdCuCxfhFqncJ7w6z1eKdwVk3ItAQ5ihw8M2sMzhQ0CW0L1azh7PyMJ89eYOq5aHzyKGiKt+haELztuEV3BoVmNZ+zsI6qalFKM5RCMRa/XLE5vIGcqYzQ//yqQSnDen3POAwobcSatwgN3llDVdWSV+OEncCkSYopsNls2O8PjGOYBmXyHktWxsPE+4ERMVmGnwxLHpCNEy172tutMXgLNisJeB4L2lbSJE17hdGa5axle78W+mjlqLxlv46kcaRu55jaU1c1zniImW63Z323pjv0KGfwTcVsMSenjK+kRlvMZiwXc8iK5y9fohuHsuIcOZtdcOh3Qjfs9uQ0QA6oWHC54Loe1w1kNaJqI+5LJYoT2XQ/lLNoB9YqkjGiFy4K5cDGQImJNB5doRLFKVRroNXoWmMbS1bxFNCakeFjykm0V5NeSBuLdh7ta4yTYFNjJXvIWY02byEGSo6SfTet8aNRgTzPqQmknAaj4ob5EDJ8DOz7Ptf3bjKOL/TR+eL4CY6TluN16k6PHOlcsMfJSxY7WhHhKJyzU+y5mVK+5RtJE73kCNcpRIMRcoYyucRoSf02xoujgQLXWGLSxL6QVEfuJKNB1Z5iDcprqoURrl+SzaA1Hm0TvRrZDBtWei7C45yw5y0qQskwVJnRBfFFLomKKfivHxi84dWoKb3lg2HPcuZxswYwrM5XVK6hZLh5d8uTp5dcXp3xo08/lvl1Homh482br3ly9RTvHMZY4mHAeLGbDEphZy3ZGf7yr/+SL//0Z1xeXpHuDbVzpFjo+563Nze8+vobur7jw5fPkWgOg7ENBke/3RLGDrSnKNExWF2JlWLKp4AV9UgQ9Pi5PobK4FhsHzfbB+7lFOZLjIE//P4r5u2MsY98+lnLN19/Td/tiTFweb7CLhcopZjPFnTrPTYrXMqs5jNqU2Ew9CXS5URfEkFnqAo2G7Sx3N3fcX0t9Kif/exnLBaLEyWjaWtevHjO+fmScTyw3d8zjoG//vlf85Mf/5jL80vOVmdsukDtW86eNvzkH/9LfvuL/5nN3Tekcc/J8G2i6x5pT1qJE0xKmRI7LpcV54ua26ZiyBmrDJWvWS5WHA4HhmFgHEeUtlNpK77/p7TfHMllSl5XCj0MGHtETyTxWZN/0DSH4/W+JfKxEBUa2ZE6E8YRawxWG1zlp437gStaVTXeycYZYzjZ7dV1TV3Xsm9MNpRKy1oRVm+Z9qXE0R7Xu4ZgM9mA8tPm3kXytqds9BSKpGhagal1ryj3iVACrjiMclgDxUM80of6SAoyQW4uG7SyYA2lVTSpYjUqMp62WVE7QUFX7YIqW6pkeXJ+SW0qlm1LZcTxRI2BYbtn9/aaSl/SzBsWiyWuqlhvbrl+84q7t2t2d3uWi3M+//KnfPzp51w9f8bzTz8glUAqBa0t3O1YLGtQhrv7O0qKsk9b4ZgLmpRxqqbbrwlhEOlA5ShMFJVciKmQsjrp7Y5N9NG+9nGqdc5COzxasWptGYbh0aRezDGUUjhv+PJHn1HIVK5FYacJ2kBTW+racXmxZDFvuL8Tp5mmqpm5mtZ4rlbnfP7BxzglNMs+JG63B15t3rDpN1w9fSbTf6XIufCv/tW/4ic/+QkfffQRbTujbRv6vuf+fk3XH+i6jnEcuLw4Z17PYd7Qec3ttyvScIAkFEttxERgHMNpr5RVnjFAZQo/+/JDxhAYx4Hr+x2z+Tl1nXF2z2G/lcY4Cb11IoxBOZ6zmayk8D3y1XMphFE88pU20hAihZ8xhTBmYiykWCa9ocKY70d1+Id4VbVBoyFDLJGcw6kBresFuch+qVSFteBcmt5/WXPOaShiqQ9ytjnncc5M+h4RNIuOaxo4ZChaE0fJ0DCnBkeuo+vdkR9vTWExczx/OsPZLI2PNhSl8FWN9VA3mcZ7TE7oFDHe8OT5Cy5efsrs7IohA0QMSVAK45nNAyrDzd09u35PWI2gP2A+m7O6vGC+uCRmoUP+9vW3vPr2K5aXZ7z85Dld/5T9oeNw6Li9vUUrS0qF63e3vHjxwQmFrP0co/3UjMlZJZRFePv2Lev7NUMfZD/Qk6YNCZM9FqEySDjSYWVfPw6QHobTmlwUOWVsTIK2hRHKgMqJ0Afqxov5T4iEOKIbz/n5Eu8t83bOcrEkdB3GKmZuxicffExa1DhjqLPi7t09N2/ecnt7h6oNzazFtzVjhGdXz7HKQIJ9GInK4JoZTz76iOwKKWZCl2jbOedlSRgOHH77O9rFDH0+x7Sa+tWORWq4PMwx9kCjC5XKOK0xAoux226JZ1MAtbGMGNyg0EMm7zp0FE0yZNqPa/CKYoUKP5REMoKIWO9JSKoCSqGdFuMJ42TYZpS4mWoPtkL7muXynDBE+sPA5u6WEAoly6L2zkn9URIPQz5BmNHq1ByK45oi5UiMZkJ5Nfp7liLf38L29EnfF+9815bsMa9auvZGXkalpuJTNvVCxnmxpz0chlPytzGTxd9UiFTOif6iFMZRcQiBlDLGysYRJ3jSGAUqYR2Y1qHrhBoTuS/sBnkoOWTGLpCzwliPcZahy0RXoJavta5aTCrkIaJ3SYShWmMjVE6jtUxM4ngg9COpGzD1GXXUmL7w7nDg/LBn4Tx13UIpHA57Ssx88vFHPL+6Yj5vIRVCGNHG0bSO+pPPpwyNjtevv2V/d6CtFzx/9gFnV095+fJDzi8vub95g5vVxCKuUHdv3tG2cy7OzrFO07SOYRiwVonQqEhKtEIyBwBS6lHawuSS5GwmZBFtv984vP/zd91jjqiWUkxOJpKfUZADLkXYbzvevH6N0YrFouH2+g273Y4QBpbzinrioy5mMy7rOXYsuD7RKE1KkUOMbIeB28OefRg4pB7jNDkq+mFgGAaePHlK09QnKG8cR/p+4OrqckI1GoxxOOcxxvLhBx/xzauv6Po91mmGMYBqccbRrs6o2kvcfk/q9yhGSk7EksSCWUuQjoBomaQLWmeeXc5I6QPapuHf/eL3qKxIMdN1HRcXFydK193dnUy3EdMEIWzLXMsaSEcRdJHp46S5IsdysrD8IV+PbZCPa+i4ucnhpNC6EFOYCit1EuIfD6+maSZRpmIck4i1lTlNYI66jNVqdfo7znnJJ8iJkiIhDCc4HwXWWYxSAiU7UL3GJoXvDMkIWyfUkhSuk4jDl6qG7CjRkHVkJKLIhHxAhYzJDzaApShSVuRkqGYtda2xY6H38OTinM+fPKcOCVV6YgXhbMHX337F9v6OMPaEvmN7e8f69o79dstuc8PZkzM+/0efsd+sGXOPbSyryxWxg/3+wN/88ld8+MlHVJXj/OKSpAIpJsZDzzresFnfUdUNH7x4xtn5gn7oCXGkmjWMO48yjpgKk58gMY2o1AtHt3hyHhH7vELKx71iov49osYCpwR2oVc8truVwplJ/FxKoesOvH71ml//zW/58MPExcUTUoTdVnQGqmTGcTgl8Z6tzpk1LbOq4bxdsKpntFUjNMsc6UNiP4x89fYNm3HDWAYwEFOi1YbFYsHPfvYzSim8e/eWFy9est1ucM7z2SdfimnH+p7tbs1hv6c+E9G8U/DBZz/m+pXj3dc947h5SO3WD/cCjnqLQimJOO5Yzi2X5y3XN/d0+x3L1TmffPIJf/j9b9jvtozDg0uSTBiFS5lTJiLOYsdgw5SDNG1lQtmcm1wfkwxBJjZGmrRN5Af62g/yyuqERKMKKUUxyKg8uUjtkEsBZVF6ABXJpaOoQWoEY8hai337VFiDIsVCCP2j2oZpkpYkHTw/GJ4cm+jHZ2KZ0FWjFS+fnvP0Ysm89tQu412F0XZqymWfMkpzzFQsVlPX59TLS6r5OdrPcHGYhiqe1dkFfdex3+95+/qtZAN5zeAgzDW5cRRfU1LGWc9Me55dBBbnS4YU2L67pdsdGIfx1Ch576XIzzIQ3O62uJtrlqtzqroW6l8RWtf+sOXV66/Y7XYMY5gCmfOjfdthreeovZCi+cQ1e/TrhxpxsidAkSklUPJe9mdGKIGUAiElTMlYa5idn+PbBWp/wFrHbDZjOV8wOsO8raXebBq8duQ+sLvb8B/+7b/j/MkVn3z5KXZeUUym6CkHK4GeaLOxJHYh0Y+BXmlCHBm7nn5zwHpPGPaM+w3kjLIV2nvKvGE4cxw2G7bDBr2/I1WKZCBuA74TJ1PX1FBrMYe4B9ftpeEEKBG1cljvMV5j55Y8xSkYNDZLRl2cbPSTEgSMUjDOoa2nFE3TLlBGE0kEZTC+xlYNzXxF3YDzHV0XYLclDInYHch5nHan6SlNaAgTE0Chpj15QkCVsIliHCfzk++nD/3+dKly5N3m00L6Y9cA+cATX3HSa5xSfYW8e6Kb5CSHy2P3KHhkaRsC9gS9Ca1GT1PPItY7MHHGlNYyc9ZiZ6u8RsXjxNSI+NzKRFIpTtPNLMgWBIWvKrmhBoyFEgo5JgqJNIV1WavAGsYsyZSNtsy1p1EOr4xA0xPXXmfFYr5gv9vTj6MkcgJlDBw2O7bbDVXjma0aZmcN293IGEcKkiI6DD3bzQ5ja5p5y3K5Ap3ISlJJ5+2MsO5RFIyG5XKO9WaKmI8470k5oL2HbsppEJwSslh/OqVZzBxFQTiE0+N+f1uYlsAjFOOUTPsIOn74T9Es5FQY88jtzS3OaC4vlhidsQZiELeKnCM5WQyKWlu8ZUK4NJJrloka+jzShZ4xD/jGk6aUcqUU3nu8r+j7Hu89kgjrkL18giDQhBChwGKxpB/2QtMrQk+6vn5DGAMvL69oZ0vGw4pxf0tJwl9MOWKmRk0cwuRQKTK4pK40F2ctKRf+8O0t3RhJhUm0G0+o3PE+Cgo9FVfTpiFTy3K6hYLPy4slh2b+YRcHvJ+A/jDplkLzWEypMoUSTgJMoeCJ/urxv5GSFBjuqBObaBBH3+9jcm85onJFhhVCwzo2eUrEv96BM5TKULwBr1BjwfUKXIYa0VrUkEOm6IROhTJGSpfJJgsv3GSKg6Ll+7BaoXKRv2OYuNEKhcF7g6lqVlXDmfXE1+9Iq3NKKQwHTd91KGC1XIjdrDVUlSf2jhwCKYyCCHtHrWpJ+I4dcRwJIZJ2W7brDe2ixc88yVnJ8cBwdrbiGJA5n7f4xtP1HV3fycHrHdo7Unn0blOEJqClIVvMHHFfSCHxt1mm/22UnO+61j3QM6ffL4UQIvt9x831Ncv5isrX9F1gs15TcqJpPJX34JGAvgReWWpjWVYzFs0MZ5zYeMbEmBJDTvRpYMwjkYjVit1uj7Xi5LVarQRpnA5YcavqqXzN+fkloWmJMUjTOP1QzjNbnLPb3IKtIIgu4njGPTRax3s4NRtKvofFrEKR6bo9bgqVbJqacewJ4zDRJWX9Ux6dr1lcsIqR55ImzZZIlaag2cnJTyGp75QyYSJqogL9LZzYH8illZKQ0ol2o7UEnZkpmVsakOOKShQCuYyUEpAOS5/2A/n3pv2kPLZpn6b3U61zXMnfHbSdhm8cT5mC1bBoK+aNp/YOayZNHUd6ilCunDGCPgnPC+VbfLPE1QsKU7bT5HJYkHdiv+8oKGbLJU3VoCpLdrBPPcNuwITCrPIY07Bsz5j7xPawZzxcS9hrAaPFDMVaT0rSLDlv0QZKiaQcSSmQkpamOA903Y77+1s2mw3DMDzsqWSOCezHfeJE60O9N+3+Lr3seD+dVXiv8U5yqFRJcg4oOQ8KhZAjMUVsKXhfAVp0dtZgvZvOB4VBYbJmuzvw5qtvuL+9YX6+xFQGTGFMEV0UTVOhtUNri8qaMSa09djKEHIgEshFMt9yjqQYSOOIYxpIuZrsZgTX0avEIe6Y6RF1HEI6oegrbTGNRcWMShmCgiFRZgacaIvVwqK8QXuD8moa6Sg0GS1MQLGkdZ6CfD0lCp1f1pT8O0zaWaOktlXGTUwWjasK7XxO3+3IeSCFjjyMsmecqr2pgDs+p+mnP3aROj7371eMfH93qSyBJsfrMUXqYcEcF146NRiP/e5jOB4k8pKNY5gEReN78GMp4oFeUppesiN9SiwpjynJE1VeuJhGk9BEkxhNxHpQI5SiJKSrdlCJh77eBMykEykNU8CWprUV/RhxStF4S9mPhH6UcL+SsLHCzix+5dDOscQTVKEyLbWrqKuaSlnaqqHSHjvCBy9e8vbNG677jsN2TbddMhZ49dXXvPr2G1aXS55//JzZ2cds9vesd2vaRUtJmjzAer1muznw/MULnjy7YjFfErVspAs/hyGRU2EYOs6unlC3FWMM9P2BZjEnek11tmK3ey0LWgnNnBJQRVEby/OLGcYM7PbhYQ1NBd/jw/L4bI4/P0azjoJ/feRZT1kmQxx5+/oNY79n1lp+8pOf0Tae7dagdKYfOlKIrPwClQpGO3xdk52VaVxRmKqidIoSsmQUeDfRXdRpMt73PdvtluVyyXy+5PLikpTCNFkUd5vuINO/+XzBJx9/TuWsBO2YzG9+9Qu++eYb/m//7f+V1cUZKg/sbm/QeWSMB1IMCCNdioaSp8wYVUAXsoosFg5jl3z5yUu+en3L5tAxxMj19TVVVVFV1aN7WJiG6FMRLcnCCslJKI835Icj7r1G74d4PUY+j01GzooYkwR5KkF5HuZcIp426iH9+LH1dSFhjBeNxom2J/9+309TScq0l0z7SAaThb8eY8HXleytRqMbi5p7SAlCQu8LymaULtjWM64iaUyEIZFiD4dC6QvZO0pl0U5hF57YDRCmCWlIpIMge1hDzANFQ13NeDE/57mumG97Xv36P6F//CVeZbpxh6GwODvj5bMn9MOOtn3G06dPuX31hsNhIxaTWXN+dkkskSEM7HZfi+GGFj3Pm1evOeuWPP/wGa6qiB4qW/H555+xP3SkUnBNRWNb7MGezA10VaHbRkLj9DEMrqCIwEilDR8+XxG+XRNiTyyZ99Dz40ADTvq6x8OnaTWIZXVJD4MnibknDHB7fcNqscRaze2NUImMUVycrzg/P8M7j9YSDjhu99hUWNgKrx1KGVIudDEylELUoGslQa5FaLavX79mGPqTVfp8PqeqPHVT0fUHNps1r159w//5v/m/UDctKScW8xnO+clVyFA1c1w9B9egxj22QFbS4Bp7RPXFZVEbQIvb13zWcOgjRhf2uzWHvuMw7Hnx4hm+dgyDBNtKcKe8E0arEz0qxSDNhBLUz1qHKpLLkeKUtzKdwSkNlCKBljIZEUriD/XSWsm0d7qvdd3IvBEZBqUi4WVisT+S8jjZdwYp0oompij7hJ70VXEyLZic/rTOGJMnSuxD8OTjwerjhuOE6GuoDMy8ZVZ5Wl8hO7iRhjFlUkxYbbDeom2mKEPRnuLm+NklVbMihZFxGAhBfuz2a969u6brOp4/f8FHH36Ec17E2zZzff+W+5s7zu0FLy6fsmxmzJtLsurBKgY/cMe9aFi9w/maECJ9P6AULJcts3lDXVtKGQmxRykJJhzGHdvdmru7W66vb+i74RH9SVzkjtfxeBIk729vKk5D6QKUTFPVLGee1cxihwOKhNYKq6yYI5AZho6761vmyTBbXpCdFH4xJoyxdP2BkDKzeoZVmd3NHb/4+V+RUmQYO9aHNcM+0g8j7azl6upzai801hwLXT8yWyyZa80YDhSbMKZQ1RUy1I6QElYjAYBNzagbRgr7dGAz3nF1WYlGxDhc63H1pJ+rHfHtBhWn88wXWDmYWzAK5T3a6pM5DErUl7akadgm66eazUToPY6MKWGMwxiHVoYxBlTRWG+xRijCKEOI0vQa6zm7uiKTsN6grWZ/J3VHyZkcR07aI953CztaxIM4BRot79YxRPTvur53kxFDPB02jx1C3hcDi7/0Y4uyo+tITomSxa5WbgwSpJQSCn2iQBynlF3XEUJguVqhVEVOiTCO4nIiLHm0caKmNw5rKrQ2lKxJHszZJBrtEnbdE9pAcRrVKNy8wgwG3SucUhxKJOaMCw6lM8obQBN2UpSYAs7VON+gawetZ9sFdGNpvOU2ZGJtqc4W/PSLL7HrHbELqGbOdVL89uvfc/3N13z52Sd4Z8gxMp81fPLBS9pZzbJuMErz/NkLLp88IebAV+EV+9QTxkBVFG9ef8v93Q2ffv4htq3BGtKi5uUHH0ojlgumqSgj6JKpqhlhzHT7gd2um14QhbaOGMokIMrkfCAVQwkRoyCkaao+baoyeeNUNLwHD0/TaNFqZIgyWVZk6b6nudlhfyAMHZSAM575bEFVtWgsT6+esKzn+EOmdbU43ljLXmeytSLudJZlHjCtI4bAoTucNEFHK2RjDG3bst/vJ7Gm6Hys1XhvaduGpmnIObPdbogpEONIioEvPvuCv/hn/5x/+ucJowtusaTb79gNI5Wu0QacNhhvUEWmg8ZIDsFxigUZTcLZxJMrz82d4tDBWISWEeKO7XYrFI8J3Ttpmyav8eO7oLXBVzWpJHlG5UEj831t4/6hXsMwUFUV3vuTNXWMkwgtJRGbTfRI0ahkEblOORnCt44Tn1qEimLNLBzgYzAoyPo0Rjz0c0mUKccBpdHOkhPkoohDxlZCB806MjYjJSR0KJRtRG/AdBp7BTkYklaMy0woCpVE5DmjEsc9BabyxJXFjAYXLSon+jCQSqH2FWUcGXYb1vfXPLkcKbMFdjbn2Z9+zBhH+vt3NE+e8LOf/hhrPCppilVi620s2tbc3LzBeI2yNRDEUjwqFstzzs4cTjtmbsbrP3zN9Zs3/Orf/yX//L/+l8zOV9i6oksD3npBX6xliAGUpqrmHPYDu/sdh80OXaYUeq3ByMSQFMnpQAiGNEZKmt70ad84VRr/Garl8XpwI0T+3uTONIbIL3/xS4GZy8hycc6bVzcopXj6ZMU4dnhnWbQNTeMwboYJhUYJx7sfA9u+57bvGEpkzIEu7mnnNTFZ7u7uKAX2+z1ff/01z58/p+s6lFLM5zOePXvK+cWK/X7Pze0rbm7vuLm95dnTJ7x4+pymbjl0I9X8gsuXgDb8/N/8D6CCuP1psYJUium0kuYgoyBHau94enHGP/+Lf8b/+D//O9a7PdvtvdjeTk10SjIUk3AzoU+cWPLq4ddGW4x2k9uf0D+8d1irxaZyarqPzYc+Tud+oNe33/6O5fKMtpkJnYMkyfYpEcvUiGVQGIypcLbBuwVGb1FqooioiZ5HJsQgLIlpTz7ashqjT7epFHEye7B5f4zel6n4Uhhrmbc1H334jNXcUYiUMo2jEfc8smRPxDTIAFQ7bL3iy5/+Bcur5/immhoo+XcPhwMhJM7Oznny5AmXl5csl6vJqnjNmsLd+o777T3zZyvWY08shqX3LNo51bxm7uc07Zx3dzfc77YUb7jbblC1YTFfYLRinOqxxWLJfrdDG8NytWS9vuX1t6/53W9+f9KpTPai0/fFhGA8aFxSetDdfZdaLw9HT4iuIo6JsQukHmxOgkgojzEFr42EW6fEbn3HEGB3iDx/+RzrpAaNY2C/3aFK4YNPPqaLPW7V8NGf/IikCsFq7sc956tzLi6fMJvNaNs5Wlu0smL0kYXybZ2h8kUG6kVyLYbuQLfZMK7vWRYIhy0jidFahhLYdTvurt/A2QfYJPoJpzw6JdIY2O92wjaZOUzjyM89tnbibpkEE8h5clF09nTmUyDHaWBfebpDR8xZzJF8PVGJBeUyRnRxrqmo6nZC9TM59AQ01jlmqxmFS5q2YrFakp48ZbO+ZbdZs755Q9u4SaemT5S+4zuhJ01k0eqEjH7feeffy8LW6D8WOz0W/R5hlAcryshxsliyJLXK9PcYwqLQWlxBrHXv0bCcczjnHri809RBSRuFopBKIicpZk2SqHWlxYYQEyi6QEnoQeN7mYuiCqVS5FAm3rShxhFLRkVNsoDKaJsIWh6gKqCzJQ4BZQvYCaZVYJ2eAuMWXPmWatfRre9Jsxn6GaShsGhr3PMXXFxcYrR87W074/7NWyATQkZNXbsqljgUmtkcY2pYKFrbMuwP9PsD//Hf/ntefvYJi4tz6vmcUBRDSIQYMG2NMRbvFVEldtsd3W4vft5K44xDqZqgtNgaloIthVorVm1FVp5X13cnXYV6BCkrVR4974fr2PHKQpQDLmemog5KKpO9X2R9v+aw23O2POPy4oIwZBgkAM2hcdaRFOxDT2o8ykoxWJwItpSR6bTzjqqqTo3u0QlmsVigFLKWyPgpOfMoSn0cNCh/V+hL/TAwa+dUVS3IVxpIMfHyky9Yv/2DfJ0xEoM0IRwLI21FSFmOyb4ZbxUXZzNevrjCuB1/eH1HKpMIVJUTwldVFcvl8gQ/C7XnCM2pU5OHVuj/A4i9j5fRekIcOLmQUB5yWY4hYsL7n6Y6RiBomSRKUcHUjBx5/CfHklKm8MMTIDcZIDBhI9MwxMjURuWJGjFp7g0K7y15psQuG42K4q5yuN+iqChaUcaMc7UsIaXAVSSb0cLKpFRyeqSQqbXBFcmbsMDMGKLJjApW8zluMWOcV5jlArMdIEHuB8hCjcw5se96irVUzjGi2Bx69Kg4HxOmsjirKUqjVMcQAn0aOdDRx54hDmx3G/7wu9/yonzMxdMn5JhY392RleLsxRNZl8ZSrOL+5pZuvycMg9A6rANdCEoTwkTxK+CNBHsqE7lZb083fdppp6ncdwoMHoYTSrpJVD5VcqfDq+RMGHpu3r2jcobqU09be6xzgggg5h15iFgMXjusFz3CqDKhFLLTDIdAF3qGPFI3FSGEU0DnarU6Fd1KKUIQPUVdN5Kurh111ZAnTnjlPd+++prKO1arTErgqhpTN7TLS9r5Jf32LSH0QrFMR8v3B8qNWJ4KZdUamLeOxaxmDIE+RVKMOOtwxjHk8aFx0+aBgqK0aCuOk+JJbC+Fr+wVEkD5IMBXQDmZ0Ehy/A/1ur27mZykoKoaYhTKjiR4P9QiWrkpeM/TNHPqumbsMyMB5x/uZ8lHtE7JsCOnR/So95H8x0YG6qSzKWhjcNbS1DWX52dYozha5eYcQBtBM0pBT6GfSssasc7h/RzrK3JJjGEgFdFnxhhOjlRHNNz7itu7W/quZ71e8+GHH2CdA6VY7zf0+0hjdqTFCq1mOANGWZbtkpyg8jXFmRPTwFYOSGLN7SybzT3DIO5RKQUOhzWH3ZZuf5Dz/FTrleP88XQf5J69j/a8p+MtR4e/h49fzFrOZg5DwBROlvGV9xjnUEbeBwocg5tPKOnkwNi2LQbEodMp6lnLi48/RHvHMBkhLGcNfnLOkgHA9F4gYvxSFM4ZnK059FvylJNlrcFONajJoMZAUQOWA4f7HTobrs6e0fgFNmnUmCUrI2eUSeAKtvKoylIag67tdKZprHaMR9qrnejUuUzW9YnKOYy1GOvkTMziWkiSGsZoeanbWSP5a87JHpojJQnFKxdQxpBiByicNVDXMiyLkRilgWOiGxtjT3vs8Rnm6Z0w+iFA8Wg//3ddfy8L2+PU+gh/H4vLUiLHalQ2NaEpxSj2WEeOibEP/tyy+AzaKHwlglxZQOFEgznSS46TNDUVsuJVffTplamFVgY72ZE5b0k2gpGJhR7BdhKkM9ZZfIiHTBllw66LIRVNGplSGQvKFqJNFCPfj8uZOIwUougZlg3aFLQq1NZx4RsutMferhlv35KHBdWiBQOXyyX2/AnLecuYOow1LGdLxn7kcNjRjSMKO9ERhOjftDOqGqx2tK5lc6047Lf88t//Fd46vLasZgtiLMQh0PUd1WqJNWK7Rkns9x3dbg+5iBe1c9giL3DJImimZGoD2nlcU/H2di0WjEhhdTrKyh83Ge8LeB+m8zmp0zQuT01GLonD/sDQH7DasFwsefX1W2IdQCes9WjnGHJk0w/Y2uIUKKNAQVVXqEkL4b2l74cTHe/m5uY0IT8WDCkH6ilvRVwspgn41GAYowUpMYZD39G0M3xV49ycknqUNnz8o5Ff9zt260SMA3HswVqUVZK8ri2gJtErGDTKwPlSMz73oDyvr3eE00RSoQ0nv+mLi4vT1yTTeaaiTOiJ6siXVO8fdD/ky53ycqYNaqLXqSJanFImO73J+UVpddqQSymQxIVIPbon7wdBKaHqAYWp8NbI4GPScEERapRS5Kmpk2m8DEBq50goolZYYyhDIg+F7m5P7SbObclUq0YmOxqScRSdyUZ499oXoVXlxMxWwhUuBR0TjdZErem0op3PMGdzwqrGtjPsoFFDoO96xu6A9plcNIeuRzceVSxDTmy6HqNhGBLzusJYJUJAc8+wn9yQhgEbC0klsIrXb18xO19xdiG6j916S1awenaF0UayhhLstntC15NDFPct48XCV1tS7MRhDaiN4nzRgolc32/keU3P+egwV/jjtfuYNqUKJKWOPj9AObkrxRC5vbmFknj65AnztqFqarRWOGPRGfIQMcpirVhu4iwxB9KE2qZtZiyBkAJt3dIPPeMoAYdHu+sYg4AoKYvxwqmQUpIGXMTNbLHIfPPq9zy5uqSqxIe+Cz0aqNs5s8UTQr9hONwLCpdk3Vllpv1TKH1m6oKNKtROcbZoGcZA2O3FVt1YnJXg0hAmZKMoofVOrlyn2zX9nKcwQjkPhcqQS5r42TIUMXpCQtUUKvoDvW5vb8SEw0jOgTjuGVBuSqcW1JPJ4cgYS9vMJN3ZjaAGrNOyT0zaQTXZzooGvEz01Qf9KTxQfY75AseRBRSMtpNNe8PF+QqQsy+rOKH78k4UCtoqyUPRIgKvjKOq52ijRbgeM2PoGYYBKDKh9uZkkmK04frdK/Z7CdF1TjSJ2hg2+y1l2FPpGouY1bTe4Y2m9S16oZk1LUlr+n74/3H3p72WpWeaHna905r2dMYYMyIzmSySlcVilUrdXfLQsKwvNgTLhn+jDcP6DwbsVrcgWeiJrCoWhyKZU8xn3NMa3skfnnfviKwq2CmgJXR6A4lgJiNOnLP3Wu96hvu+bvowYNuaEEesNRhruL6+Zb3ZkZJ4yoZhzXa7od/3It9Lh2FAFk3/B5fS31c6fAsg861BA8et9XLWcDKvsN4LpD2DQuOqRrjQWqAtWPN+26QFax3L9TybzdApsb67Y3axpJ21zFZz6rYTslpMVFV5ZitNLqGXh+/j4Me11mJ1gw8bYkyyKXeSx2KUls3uFMlhwg57+psNNhgenT6h1Ro7TjAE8ujJXULVGV1r7Kwi1oZYyyBEYdC5NKwxoQ/I9RAKYVGuP1MJehitsUoTsxePX8pUtcFVUvPOl3PxGAN+P5BCIIdICoEpRrLS+HFLO1uhlMhDtVI03ZwYI1UzQ/S8Bq3dsYE+nCel2/57CqbvdoZ85ybjH5PKHKRQhwNLbkDKmlHY7ykEKXCtFbMestYEoRscprrej9IpGcvB2xFCSXQtEydrHamEk+Uok7IUJcRoShlloKorXFczJEjZkF1AvQvYrSoM64Cbd0SXmGaBNHr8MJJ3AXMXsE9mqNainaY6bckmonpwqcbEQPKJQKC7bMRM2G8Yrq7plz3jbIVZrrj40WMCiv7mHbPLB7QnS6r5ijxmhj6Q0cSmwa5O8NPE/XaHj8KJdtaxmFdsd2/Y7Xfs9zfsd1vwkTR5uosl37x9wYBn+fAc09aoocf3A3Hygsksk3ZrBXtGbNAsUNGSwiDXkgpoPCaNpHFDzgMhWWormRs+QlYaVOJga0vp243GYav1nvShcHUDOTIFiawfdhK6p1REpcj9/R1vX7/A5sztqzWP3ZJ2dkk7X9GbRJ8Uua14dXNF0za0sxZXVWWKkcV0ZR3zRcV8PmM+nxd600Tf97x8eVvCggb+5E9+iilBaikGUhLT22p1wjAMjOOAn4T3XFVrtFGcnzfg5rRVx0eLFadnZ3z927/mi1//nP39gCFjiNKkKcgqkNRIGWkDCqszbRVZtJqzecc0JXzSJBLGQAiB7XbHy5cvaZqG2WxGSuJPOTThwUuIEuXB9/8vcilrZHqd06Hpkw2nrWvqqpYpsw9ymJVGQhuDlyQxtFLF8Pl+DX/wXtR1LQm1WSwVq9kSW4lkZex3ItOMcvBKkqk0IMGPjCkQjKZ2Qq1y1lJZS241Yz+RpsTs7IQ6C8Z23IzkoYcpokNGnS1kOuwUvtMkrUiNTNr6dzv6MDBqT7oJ+Fqz2Q+8eXuDXiz4weynfLb6IdXJgpyuCdsNcezxwx6VE8bWXCzmRB2Y/D2u1jx69KigvK3gJrUMWh49eoq1V2wKoWg39qwWj3j+g0+oqopZNyOazOJkySfmU0Y/0Y8DthYzpbUG6wy6bcElsh3Bb4h+4iDBNTliUiSNG8gTOkBbGYZQNhYlxOmw8UC9z9QBvnUdW2uLWTKIXj6Gsg0Rqtjd7R1+6tmttywerWirGXjHR88+pg4KvffMXAtaE7RipwK0Fc6KNrna3zGvNTEF+r6XB7cxzGYz7u/vCSEwTRNVdc+Tx884X56y268pqn5yTux2d9R1zayb80/+4j9jOZNNx3a/59/94r/ldHXCjz77I07OLvH7Nb4fSdNrYg5SxKZIVTUcdjxaK7yOGKOoXMvnP/yIuqq4//Ve5GIxo5zi6dOn3N3dsd9L06iMKZN5CXIJ3sukvOCi1DQxDj2uslLAIaFwMciEUoZzkegT0zT8z3jX/4d9vXjxkn2/Y7254xMVqdwcrWzZVA6k5MWb4RVV5VAqMZtVJScKrFNEnwv2WtN2rQTpxSiSoSTPBO9DoQn+w9ySnFIJyq1K8O4SpwKVVTSVwlnZWCjAGle2twprNU1To1QWSo9p6doly9UpFw8fULUtwzTyxddXALRtx3Ih4YN393ds1lvquqHve+q65pNPPjnCRay14s3KAyklRgO7HElBUSdFpxy1rXHKMu43nLqKVVezfHjOPo7s+x273ZZM4Ob6Dd57Pn5+wR9+/xVff/2S169eo1RdtvgKVUAkUmuIVO8fC2mTYULZUFMaDK1BGRqbyNOO2A9oemwajxrtPsuk31Y1uu5YXFxStUtMNWO+WhAIDH5gXtfcv3jD7m7NEAZ++OBEBtRakUNGZ0lktwDJkNFlMygDjeAlsHIYRsnhWC1QusJZRdvNcGimekayPbv7ewgjQSn21cDw8gqz3bLcJ/Kre8Jc4TpD97DGrRTUmWAiITuS0mStaNoZjalIIXJ99Q6VAypm4qQktM9oXNNSty3WOamlc8Iow7xqmCtFPwqiv2oqKmfxo2f0A+M0YZXGkNE5E6NHKwGnxCkwKoO1Na6qUFXNbGWxTUdIit3tnQwyjEarRIgTKXoq+54YeLj+m6ah67rvdL9+5ybjQ2P2h5jav298OhB/dNETZVVmVCkyTSOHNFiZJssNLKz0IBNA820N38HUe8D1iXkzolLClJIsJyFshCkU7bAm2YyvArH2qKoYPvdgI9gTBVGTsaR5ImtH9oaYKqythfRgFI1WhDaRyDAY5nVNzIHNtEONntpoltYyqpHVfM789JT+tKNqZyifsAyEvqffbKQJypbJS1LmZlyjnaVqO5rJMwyemZVpiFGJs7NzXFUDt2I+K9khl5fn2ILxjDkSp5HKOS4vLggqC0PdaLq6ZbZYYKwitY7+biR62dSo4FFTCS+qKkzKVMBcOx5f1Ly+2TJuB7R1Zfggx/ff716/jbctmGOlmHIWn0iYiHHCGY1zFU1jST5iEqyqjh/++DknJ5cY59j5kd/84Q8MKWBnLaoybPcbNv2a+WyO9xFjZAMyec80jozDQNe1dF2H1pL2ba095lI4ZwlBthA+TDR1i7HSDBx1hkV+sN3s8D7QtjOqOqOtw1Q1VbekXV0wP3vAdv2WlAMpBnmAKNGLWm2LkVAf5TxtBadLxUePGra7HYPXJGXwMR+nYL5MVA8oRm00bdfRNi1T79lud0VGVXIE+H4bNgHISaRPCkhRpkNWHSWUIg1wR7Y6QAoJnYtOWiliFjb7EUHLBw//LDhFV7c8ePyM/X7LOPbYppPiN0pokyrGzxxBaQng00aR7XvJicqI5tUAtTR8GQ2tws0MaoA8RbKPxOhRQaN64C4J0lmGpbB0mKhwqsI3CldrOlNxHmfs4ppN2LJjQgePTUJXMd6zW99jukC3dKAy9iCRaQ37yhJDYugHVqdLlFakLNfi2cmKxawjBc8UMkZpmsqSvBcNdPD83e9+z7yd4ZqGpmvxTuGMw+mK5ekpaaoJU80+7YnIe4X3KJ3BKJF/5ERrFVlbLk6WvLrZ4mMWNB/vTYEfTjTh/XDicL7LdKzCp0BKE3GKhCkyjhOVA1Jmt91ASkQfuL2659nqsWwetUNVjvU4MISImbWYyqKsoMdPL84Z+r6cB+6oqT9k6VRVxXK5YJomJj+wXt+w3W5pWslNOGzUY4zs9/uykd1QV47z03POTs5w1rBe39LOZ1Rth3UtMS3x05ZMKtf24c2gbDEAnUFFHlwuCCnTD4FXN2syEnY1DAOz2QxrJU8kxkgiHom/OUeUSjijJOfogMOehCihFZAETnHYBIYwHd+D7+vr008+4+7umtcvX0POnKzOMMYRQ2A/3hD8SIgBo1oJv1WKod8x9MPx51ZaHSVngkKWDetho5wVx6Dbw7PigNdPUc5+oyvquqNuGvy44+Rkxtmy5XzVYVVAiwNHtmSH56jKTKMvmxNL3S5Ynj3g4tFHNGUIq5Vm1s3QWtO2c2bdgt//4TeMo9RBp6dnPHz4kJQSu92O9XrN1dUVNzc3PH78hKat0cpw399QVYrROFyGaXI0TrYajXWc1zOihjwlOSuGgX7Y0baOB5dnjMPI1ds3vH71iuurd4xDT9O44yBMq/xeIqn0t87jf1gjFukkHDdMWsNqOWfWVjQuo0JGuYLB1aDShNItuu7oludkxMicTcZYix8mpvWO23XP9vqOnBNPfvBJGZhILer9WlQG2mDNKTlXZKUJKpG1qGZM1oQ4MU57jLEix24bGQgY2UROSjbbnM5ZX10x9D1+gNdf/po6jly2lurc0iwr3EyM35MZZbMWNa5Im5RRtM5BEkqUsQqLLVLfRDufYSpRdRyCg3PK6A+oZ8YYTk8XCCQlk8dAHgNpnAiD+DacNVijidEfw4S10eQ4EbMM6l3byRlat+Sk0VjCNKHIPHh4zm57x2Z9C3EsEjb5XOu6lo3PP6BO/eOv/9FNxj/o6D9oMuB9KmlWckPp0gXkrMrWQ8zhh5ccfIILs8oU30ZZY+V87IwPAX5FsAsHmokqa7Oi/xc/AMIVrTK5yeQO0pDRCfSkiHtPzmVVb0EZ+ZBRSrjDRonMyihMpeSCmOSg1kmhYiRPHuMMFaDiJBMiq4nLObQzjA6oSqLf49ATtcZWLarIQXzo0U7jKglSmUZPN+tENqYSbduRs0y9Y2gIUaYAF7PFce2OgWEcUCFjlbw/uST/Vm0tN0pOBJWJ3QI/SBwZ/Yayk4SidTdQJvAGZ+QA0VqV4Jb8LdnDhxprOYQPU2dB+FHIPykFIGBNTeUsbdOis6JSlmXd8fTBI3AtyRomMve7DftpwIWBs4fnjP1AP5SJWxYJXYgBP4k8bL/fM1/MqJw7XvQnJye0bXuc7BwyE0QuZnHFvCeHnOQnaKMIXiQqw9BjbV2KRIepWrrFCcuzh7x78Tty6kk5CH62TKe00ijeb3xIGWdh1sHlec31TUs/ZUJWDN4xDINM5lNmChMJafjkV9HoNtUMH8T86X2goDi+6+36H+1LBhCUh28ujak++jMOCNFDkm8qmtuiGjuaMg/bzr9vIpatrhHilK4k7TRnjKoIfjpqZa0x4sHUxWBbMLhZlw0eh+teJjvKKLSRykNnjW411Eiy9xTI+ygpSQHUENDGkUwGk8mVxuRK0ntr0DZRK8tsXvH1+pbNfs3gBzrfYlNE5YjLmTxN5ErIVxkxIyqlqJuqUNWCnAvlVkYV+Wfd0FaV5LtEU4IjFdPYk4JAOIZ+jw6ZOia6mUgFtNFUdU3dtHgSmUjVLZnw5OhBlUyLkgGhoxTLzgiNT4pZjoFwIorL//DzP2CMEQ+N0loe9IhpOwS5x0ViJM+Dceyl+coZxgBDkPO5tkStGEjsU8AET5tdsUin4rOSv6uq3DGPSSnFZrPBWkvTtEyTZE8ImrPIRNW3i8sQhIY4xkCMkbMTODs5Q4pHTTef4+oWZSqUbkANyAWhOQBk5cMUH5Img0rMWsvJsuHyfMnNes8YAjFEhmGgbdtvDdyOEpUMh27j0L4daIApil8gKQUpCsGmfDaxIFFT+v42GYtZx/3dNftdz7s3bwmjEIZ88Oz31/gwEmPA6hlN06CVwk8jwzARggBohIoEZCX3vxVJ5nu87fvrVpX76iDHlCGpZT5fSvaSUoQw0TUrFvOaptIYlTikQLwXEcqXjTGhs0E7i3Y1dbtgtliJFLwUkbNuhi9ADAXc3l5LRlDXoZSoQA7+os1mw263YxzFa9TUEpbm88Rm2DIZR61MoQxpwcVbS5dbIokxZHTIGGSDG5NiPpthtWa33XB/e8t2syH6QK7SkXyo5BgoEl/1rYHPP5TSlHpRKTjIB4HaGpyWbCSlEc+tnAxynyDnSdMtGKMhJNmUjtPEsNuzv10Tr+7JKdPMOxanp6KGAXJM7Pd3stF0Nao7QylLpBjvy5BLaY2rjEhVtRT72ry/DsRbBtkoqBvizhGThxwJYY/Fo6sWs2pxy5qqdahak0LJD0oaXchNgnjJ+HIfaq3FIwEkFFXTYuoaba08h0IB6ShB2x68r7WrCv5fhlyEiIqCyY1hIiRDtgd8dbEbKCAFYk7Hc8FWDdbVzBeK5INs8sJEN1+QCDKg7dPxmQ0cvdLf9fXdE7+1Rdv3Ca5yw3w7EwMotBxJJZWE4vfEAYm9fK+jlnyMYipRGaxQe2RjEYnxgDiUP2ZsaQzKhSamHEvK8jgTnZvBJtHcm8YRDXitYANMsopev7vG6gZnW+JNoF62mFqM47FqiBa8CniVoMmgI/12gu0IIRLSRO53xKCIKrHdXfHVVcXeaR7++KdUiwW6GQFDvL/FB08OI9ViSaWRD89P4DRVA9VQsd/3rE5XGFOR04TRlsVszmLWQfLEaMjJ4CpFCpPQdmLizfqOfr0nTYFPfvrHBGPAWepZg2saxnFi8Jnl+WOmvmXYKKbbVzLNohhsrYYYJdFyv0PFQOM02Si5IRPHqfLfPzyU0hjr0EUCk+JEipEUPCl4rMk4p6idpasbatuyqJdczM5xVUNwQpOiNpxenhNvr7m+fsfFo3OmaWB9f4vWivPzCypXcXd3CyimaSQET/WBd+f29hZjDPP5HGMkZKvvezabDcM40DQ1ZLi7X4vm01W0bUdKQbZpWVamXRcgW0wSQ9jJ+SM08PqrP+B3VyS/I+aJA3gLFNZU5X2CiEWrga5RPH3csZg3bPew3cMYMi9evub2bk1WtoSKBZJK+BRZb7aEkPmTn/wMY2vubm94+/YV1r7Pgfg+vyTkR16ZckYg79th4n3YcuZccmoKzSIpKZYO+TqinI7lAFUlUyeTNHif+ObrF5xenLFYnZMQqV6KmagjTVVhshYoQbhDW4XSpZAzRsq3pMBkrAKr5SFjtRWOeVbkTgn/PARU8ORkyGNCXUfMJqFGD8GjVhbjxMRoG83kd4QUcMrw9e9/Q7t4wPNPNjxQLSpMGCK1UkzakI1FO0M/BcZ+JJP5aP6Aqk5kJnKWzBxb8lsUGlV8cGVfIIOaSVLqtbWYruWjTz7mq1/+HXfvbnhoNCxacA2uFgPpMAWiz1w+/oSb14He9/ggU7BDU6i1JgVP8AE/JKzKZCNwjjC9by8+HE4d/j2lfDSBGqXIpUgRPv9EiBOztsVa+b6nvsfGyNJaFicXzGwtvgVXs86eUBmij7y9fsuFvqCqBTN7QG0655h1HbPZnHEcuLu7O35PMQb6fg9kdKu5fHCOtXL9ee+PWwSlNHVt8UGTgXe3Vzx/+inOVZK7Mm148/IFUVuSrrC2gezFE4RMrrWyeB94DyFI5LzH2YnV3FBbxeQzYwhMd3es12uRvozjtxo02aoBWcJWtTLlv8mATGUlElMSSkWMQab9ByT8PxZs8j153d9foRJUpuHd62vub7YoBGaS8iCejJQhB4xdFy+EbG+Cj/gplmtSlBQxZnw+hPpapqmcR6lM1It+P4Uo/kZtsKbis89+zO3tNbc377Aqc7JqWC0qUuhR1QeFHZTBqioN4CHHoCKZCmVrrG3ICbQ11NawMie8fPWSyU8M0x4fB07PH3C6OmO9XrPd7kgp4Zxjv9/Tti3z+YI3b95weXnJYrGg61qub6+oTMXJfMWqW+GNQptMY2qcs9gQUONAh6WZn3N2fsFXX3+FMzXRRMLoub+/Z7fdkrPc74eQWKMd1thC9vu2Z+UfeDMO0uosA+ucIionwjgQakfUApKIKh4zjByg/ISePF07Z9pFCTMME6++eUF/c8vu7RXp7T0f/8WfcPbsCUZZyJocIiF43r7+gq5rWSxOWCwfoUwmZZiC59YPGGNpXM3lowtmiw4/eda7Ow4DvRw8NQaVA6YWv+/F00ckElEnXr77HYQtutOoRYVqHaqyZBUhCt5XG2nwsioAkf0gOUYpoY2j7mZoY8gobNOhrCUrRd+PGAWmeNAqa8sGE6ahL1S+8j6nhFGKrq7piUXuFzkkqyutSOkAgBBI/P56i9YV3ULCRbuPnuDHge1agkchM18t2KXxmC8V43srw3fdhn53ulSMxBSJiuMD4bA6OSY4lkOZVGgXMoKTP09+39SX1ZAE3WVyjkU7+Z7P++F8JuUsHWxGJg3GlGY3gS7JmUY8INMwkryncmVCai1mpnCzSrSo+5F2scDhMNky7TI5eGI/oWImDxNaaVplyJXkMiRl0EtD0pk0gN8rkRAYg3OKh49n3Pktt8NbruId0Tvq4HFxwk0To58YxgHbzsoqNkNQdLMZZjGnspHdbkMqOtsDUSiXhl7jpLhSkTAmUIWuYzRPPvuUzfU9d6+v+PV//2/R8w676JhdnlO1c7CG0UdQM7LPhF2P0RWuCqhQMMIAytI2jouqo1s4thO8utkIbe4fOTjkwCjmJMA6ya4Y9j3Dfk+OEWcMde24ODtnVjc0OP7yJz/j448+4eT0gqAV3iq8yWzHnvnJGfV8zoPHj3n09BJUYrO546//+hf87Gd/xnK54vb2jnEcWcznXF6eUdeWupYAvsoJbvZbeFgUTdMeNx0pxZJUqalcRV03vHz5QhJUU2C/X5NzZLlYMZ8v0drQzuY485Q/+bO/5MXv/4b7m5cEvyOnkQKlRCs5PMka7yFnR8oBq3oWM5h3lozDJ8PlqWK7O2UcNG9u7rm+vefVuysIiaHfsb/f8W93/5rFYokxltOzM/b9ukzgvt9NxuHQM+Uz2u/2hHjYLLkj3nYcx6OuX7S/MkiIOR6Ls2OzkiMpZMYhEwKYpKhty0k3p5ktaGcdicwYkpiBrcNpCdVLKdLNl6Bkgu3DKKQYZ3HGMqStkDp4LzmJUDTxMpFWWoI8jbUwz4S5Rt1H3GCwo2Ucepg8ebTEe42qErWzLOtT/ukf/yW6OuXl77/h8hxO0oROkQDQWpSy2Kpl1naYvpfNaEKmlsPIhwHwWckKV2tXYtgCMdzgpx19v2M+v0RpSzaW2fkZH33+I9bvbvjmF79Gn8xwqwXVyQpd1QQEyjwNE/3tHdNuL1sh5/F+YpwmtHEoZamc43TZMWbDfooMPpV8hvitQuP4fQK6oMyNUcQw4stgIvqRHD1WR5zJtG3LbNbRmoaOmvNmxfnlJbZbManM3X7Nv/jv/xsunz5hcXZC0pk3V68l/6ZkFLRtR1M33N2vpbhRitPTUxaLOdM0sd/vj/+M48jp6QnjeMBTZ3JWxT/oGIYeciDlJGGQeJyuMLZFGccPf/pPePD0Ob/99/8dN2++ZBrWhGGgrgsGWCWsqeU6PvhWtGG1qKnqBZte8c3rW97ebghJpJRCt7JHo3rOmd1uh0Im3ylGNBpt7HHbm8qm77DtO8IlCjQB9f09R/7wu98xDRE/SZ0x7nNpBAxaVeI9SZGYQ3keyHwzp0xKZVCalJCJstQm5lCnpHTMJyHno/JAcoSlvpnP5zx4/Ii7+2uurt5wd3PF6cLijKSO68qiLKXp5wi/yWXTdICzhKx5/tGPWF1+hG4X3A0DLZH9sONvf/MrUkycn59zevqYZx99jNaGySdigGGQAGPnKrpudry/DgO2w7W7OllJXaUz9ckMW7yVa+8xWbD2XTcjjorRJ/ajZ3fXU9eWpqoYxwFbpujBe3ZhL1kMtcFSlXPciCxUHbY87+FA8PeG0UrJxtMonDLMZzVGe0n61oFxEl+EcxXWVuI/CpHN25f0ekZ0DU5b2qYmK00MiWf/5E/ZDwNvf/8Fq7Mzzp8+xLYO3WhWpw/L91jjS7DuGBL3+x07P9I1M7SusFXDbG6IMRBzKdLHif1uEN1cCrjKYWtHqA1DP/Di1RvMfImloaoTps6YkkEhBF+D0YqmkjRyXWoQW3fYw+D2uDWRrW4/TGRGUFBX9VH2VBmLn4R6GWMsOGzZTjorTVrKGZ8i2RmUARUVKsRSj6syqNNHiFLlnBjDx1G2Lwq0M7Tzlv7qjjD1xGmQLfZhu5eKFyzLffJdXv+j6FLlTuHYTpXX8aIuK3JVVnzqOHE5ZC5IRyU3c/6giJCvc+iMPnSwxySHsHE1rqnw42GNHSEESmSh6PjKwZBSBiUUAaUy1h30l4hcobIUUBrWVeQpSxpmKAbmQ/myD+LP0ILrMsagG02tNaF1JJfROlFXGr/dMq0td/e3rOolKiWIAZfBxog5yC+MxqdEv97Rtiv5m7JsbVLR1erDChIh2RiVUcmTGdnvb2VFaxxaV7i6oVskoo/sru8J+4Fx8mRjOH3SglZMOTGOA9FL2qWxFTmJRE0bXRC38qCqTCKQqYx6n478wWcNHxYM8muKAZ8SMXgx1YYAOWO1YP0qbZjXLU9W5zx/+JjTxQpQvL29Rs9bVNtgm5qY5TOz1tHve5y1nJ+dse8FN1lVFfv9juvra4Q4c8Y4DTgnht9uNiuyEaQp+6Aod646Nh+zTkJtBNUm27OUEypCyr7kaziatsVpQajaumZ+ck7dzTHrhhhGsg4lG+GwVi1aaK1ISaEx5OQwKqCK16hCo5Y1Xa2ZvKZtLYtZhTMwBNju9uz2PWHa40cLrsIaQ1U1x7yZ7/PrgIkUeVSQkM8k0z3nrCD5kLMhU7wqSn/rgSVpxdJ0HF4pJcZpxLriM5h1tLM51tVyFpAw1uFSxOQI0RNzIqRwlL1lBEucsqSJa5XQxognK8fCfn8v7zLKyAMpRZwVrXLWSlCFcwVOoSqFcR6Slu1/L805E9gQWSXH2Hv81S19d4pJkYpMrh1DTLgoMgZtHcaJXlwZKVZj9sSQyAqCyoScsCiZaqOLTnpimnbsdrc4N8O5TiaQykghXtfMT5b4GMjDiN/vqZuaSCbEwDRMaJTgbRGOeogBYiYmyU5y2spW1hnGkIHw7abi73kyZEAlmmwN+BAJ0yTb3ZyOeQNdW9NWNTPXcLm65HR2yqJd0LQzvNVEJeQtW1f46BnHgWbRcnd/j3OOqqqkKYxBtjBRfA7GaJpmRVXJ7zlMg+u65uALmiYpVFHgbF1Svs1xEBZjRCvPer0mzxWzuQNjaRYrtNU8fPYpw/5eGqhhL5IHiTYscQmxFPzSDlqjaGvFatFxe99TbwbCdJCfUDxg6ogxlUmlL89MVZ51RSuvdXlEf1tOePwcCrrz+/q6v9uQAnLGKiuURGUwWgr4lLJQwnKUbWWBysmpIbr2lDOH9O10aPaghB+mo0QGSpNRNInaiEw5pMD9/Zrtdk2MgfPTS2ZdR+VEifFeIleQxaXIO/ydxmhs3dEtzqjaOdkapmGCKdAPe/b7LWenl/Is7IdyLyPFeNbUVUOIkb74jeR+ep8zdvjcD4RF6ypMVbawSXymwzjiMlS1o8oNOQR8SFifycqT4kQuuUPWGCoLPgRiFP9EjOEoezLlZpbr6x+/uo4yqnKPO2eYtTWVihg8ks6eSkCiLZumg0xfPttDoa5iwBhNtWjRtWW42TGNE7qydMOS2il0Y6nblQyjMYzTRNYBXyRFJiVsyrh8qCldkXJJZpDKChUyOgS0FUqbdSLFsilTd3Mun35C7O+I+3eEMJStoi5kLjFtG22xzuGaBlfVJGUxUdQ4KQRiqYVDjEjOnFynzkqTorLUWCl4kUfFkp2Vs3iHFMemIynZVChlsFpkWkIRLdkxx4Ge1OnyPUyE4AlKQvn8NEBOcq1F8aCqcgOJ7SGUayz8o5/z3399d7pUaQYOP5DS783Zh841ZXHrWyu4r1wMrYdOVpfALFlCiMb80HzAe73oYeqslCbEjHYNru1oZh0hlQTenIQBHA8aS4DIIeRFnHUKMFgjzvqkEskplBGEWVIKN2/IoYSvhCR+jWRI2cA6HFelJiXsqkK1FjczpIXD54kpDlQopt2OoY/cvH3H89kDCZTxQTBySZjuWimwjjAErm7uOb94QoqZafIM/Yj3kuR9iJGXG8xKk4GYS9f3L5h159T1nKoWzGHddRhX4bc99y/f0G92DM6QHz4gK/BkdrsNNkgybLQ1OXmZALuDaTmSksLqCZMyOkrSZk6xBCB++7BIh4MYiOVnyCnKRVuSMa0xWOMwCZau4fNPfsBHlw/RtqHvR/7u6z+wOD9leX7Gg9OPmHwsB7Th7du3dPOGjz76iIvLB5ydX7Dfy4H69s1ramdI6Tnr9b0EUWnLYr4s8ohEykIHAUHCybZD9PrLZUXf78t0OtN1Hd5bQvRAXaabOxaL+fE6VMZSz+ZUzRxXtUzjDlUMW0ofbnxBAguX3hCThlxzCCdUKmK1ZlZrmsqhjObB+ZJHF0vOVx17b7i6vuXq5obb+3ty6Ak54JqWtpnhg7DTv88vrQ4hV4rdbih4R8F6tk1FRn2gGZcz55iVw7enYgfJ8+F69JOnPZnTrU5Ynp4xX51grBXaVJacH2UNGcvYT8Qc8Unucflah7DKQRr+EKmtQZGJEUIBV6BFmmWdoR8TISSclqICDcpUhHZCOYWuFW7RSBZEUKStZr/z5D6g9xNV9kTl8W5i//ARUylAXFcTQqSL7wc3Ih2V8EFRXySCH0k6E1RinzxzwGjLIXA3xolp2LHf3lNVK2aNPPDwidAPGKV48sNPuP/mFaMCnxLGWRKZKQRGP+CqGkOHH6QxF4lqYPK+mBkT1kJlNUYjBu3SDH+bl1++p1xIYVk8X36amIZBcjlyxlpDUzlWiwWNdizqlk8ef8yDswcs5idgLKOGaDTG1jz79GP6oSeEiaZesd1KGvrl5SWUh+J+L+b1fb/DaM3Jaokx5kg3PDQOB/PqMAxiusyJrp1/MPiSAiIE2RZcXV2TUqadNWTdoUxNbTQf//CPubt6yTRsCcOdoC/zIasJEhNJJTQVB2m7UbCY1czbmqaq2I2xPHPl2g8xHtHXwzCw2WxkW6vUcXiXUiwyioNu/r0+/uBHke/h+9tmbO/7UoDK9RajwCSczBJEcRGjyMbKjXAgI8qgyZLLNirlIObYLM1aCqKTOvpJk+RJgXgdXe3IJO43t7y7usL3I5UxfPz8GSerBXXlIA2kXBq5D1UA6SDbCuhK03YntPMTTC1N/RR6YoRh3KM0PHr4iJzh9ub+fUNaBhxdt2QYet5dvWK73R6v4w83V1pr6qah7Tpms1kZTihU1qQM2+jRKVO1LfOmoZ4C0Sdm2TAMe4Lfowr+XpCnjs12J2QtHwmTIdUtysogjGOeUy71wT+8xg7vhdaaylnmXY2LAyrmAv+RTYgtZ77WsqGr6hZlG7Kr0a4ijSOmsdSXJwzDnn59zzCM6FVDu1kzM9C5JXV7IrVfiAyjRxmhjKoUaZWmUQqXMzpDwiC5TKBNRW1rtGvw63t0khRunCUraIzj8qGjsjV3b/7Aq9+9RaURi4Ek16Zz7VHl4+qWpptTdTP6wQNepLoxYkikKNsTCaUWX44zh8DkSAye6H0ZviGWhOLTncr1KdsrGXQZpbFK/J3TMMgGJGVsSmhtJNhTiwws+YHJOhnGTAPjfoPOCZVF0ppCQEkgnaTTK8XfH2D8f3t998TvOInhUeuSsCtdWkJWiIewoco5mlrMVvv9Top0ACUrzZhkWl8ZCYM5dPbW2uM3fjDmKmWoKsfjp5+irWG/3+LaBcfALr3HpFiCJzXoUTo+EjHH9501moQUB23lSE4IDlpprHGlkxTtr1/I1EFhCGc1ZgNmD3rIDPs1OSt01TDdiCm8ahSdXvDHz84Zdc3+zT1f+S956CqeKsUWjzcW2hrjWurZDDebY+sGV9dMTKATX3z5W9r5j5mdNOzIWCKGTFUmjjFGQhhQOXF3/4aq2vHo4RKL4vr1W179/kuq2vHgk6eg4W/+6pdsr66ws45H52eYfqDqKkxoeLW5li2OcRjVEaZJioIUyGFg0dTMuw5Td/z+5RXbfhQzfZYDB0ClEoSThWtNSjRVxaxdcHf1BpwV3nuGJ6fn/PDpMz7/wR9Rz0759Zdf869/+Tf87u0XPH3+iKfPHlGtNDAT1r2yPHnyjJgDKQfarmGzHsgZ/sl/+k959vQZZ6enPH36iP/mX/4LfvGLX2BNxT//5/85WovcZjabofWI0ZambsnINsf7UOR5Yu7WRlNXhv1+ZBw9uTRkKWWGoZeJqG2wpmJ19ohPfvLnLE7P+O3P/zvG4aBtFtnEsRGnEJOy6F9Fw12a6mLA0znK5EaPzLrM8ydLpqj57PkZIX3GVy9ekBL0g+fl6zt8UkzKoFP1XW/Z/yhfTVMfkYuHAYW1lq7t4JCNoTLGKirTHAukYRiOZ4M8qIovI2e0q2nbGSenlzSLFd1iRbc8YbbqGHc7pn4kRQ/TXlb1zmGrJbOleL/ub+8AoaNMw0RKiqrcA8FPVLUcqmG7IQbR0g7DSFPX6BwxOdCPO5bLFU3bUbUNb969kZ/GWdERmwmqRDebs5gWRJ8IQyS8umWzW7PZZd7crjhdnbGcn3Lx8RN2uz22NjD0RBXx08gUPdte0y0a5stWyEd1zTju2O62bKaJ88WKWVXj84QPClctOb9smF88wuoaAtxcveWLX/+Gabvn8vKc+UcPUdNE3O6oUuLBcgXdAjWuGdXIkCeGbcTZSjZ2ORL8hEoRFSZIey7nc1TO7PaDyESKHOXwyjmTkM9PkLgjxMjQ7wjTgMoZZ534t5qGy9mCZ5ePef7wCf/JT/4EbRvGlFjvbqkvzhhTYj+OnF8+JueIdYrLx2f81V//nLdv37Db7fjRj37Mft+z3WyJKXF5fsZyuWQ+n6G14fr6htevX/HkyZPjcKvrOt6+fXuU7BlrGIaJoZ+wxnBycnr4iWRDEhL7bc98UaGUJWtD0BW2W+G6FWpzTUoTOXuUDijtxD+UIIRBNORyNXN+Ane3cHer2O0UUzIkpJgOPnBzI4jutm1pmgalYApTgW2UaWWZhh4Czz4EqMhzVX2vVZfj6IuywIJJZegg092YCgmtDDNyUqAFGxtLBkEI8Tg0y8h1qnI6qh0UAqfQGnwMSLZCKU6LbLwferSC1XLGatZxsmhxKqISGKex+uCgk2A0yQwTqIPSNcY0GDtjsZrz6s3XvHrzmo8+esLp6oRmeUJ+/hm7/f6I667r9mjs7nsBFuSUsFbz8cfPWa833N/fs1wuOTk5YbVa8eSJnCEZaTD3/R5jBLDx9Vdfs1wscdby8u6avJ84aRecz1f88Wc/xvsd95tbNje3nC3OMMqxH3rGcUcsgXjT0NNrK/QjZaiajhBF8iTCDdnlfDgYCkEyQ0ylaQzSYAQPKaKzNHbOGGonRLfoR4x24AdMrqhczWK+wrQKVCT6iauf/4r5as7q4pT54oTx3R1qO+GGzOz8DDWXzy8pyY6JKeDsVKToiqnf40yFRxGyYoqOxikcAqbfrDeC9q4r2ZBpRciZ6CPXL3/NtHlHZ3L5vmUjr4yTjBplsMpQu5YUFbvdSIhyDcaywW27BlPLsMFZe7xv++2mgCgKVTVGDs9IsRyU/4EECmsjEIu2auX3FYO3qirQnjR4UsxYJ0b4WGp5ZcGoiWnq8cMgZ7EfSF6sBzEcwikVKUeSf59q9F1e37nJcNYep4ZGCx0gF9e7mLBlDemqQjnKJcH3A6P3IcTlQ8OsfOPvpVJQGgM5dclo7u82EsJkK5bzGeMoGQfK1uichHCiKmJSZCshZlnJFMhYTdfNGNZ7YhC/iD5Md5Qqa1ORYMSUZNqpZYOgTAaTSF1C7RVuysdmSg0y0YpjocGUKYVXsE2WqptRz+aMFkxlcU2F8h6dE9YIv1u6o4Rxio8/fc7iZEk2hjFNrPsdThkWVQfZiCEyKaybYRuHq2dQGfb3O4YwElRiurlBqUy1nPH48x8wX56gTUWM0O92xGnAj1vZYhQUsNaKtukkITYE0ZuniRQ0BkdbOXyE0Qc58FCYrIhKFboXVNYyxV6mPsFT1RW1FU3n5WLB55/9kE+ffIx1Hb/94it+/dWXfPHmJetpx6Jfs9h1TNPAcrkiJcO+9yUcJhc9siPnRAxi0DbGstvv+fqbFzx8+BDnXKEwDdzeXuG9TPM+/fRjmQhoi1aSQRJikGunXMvS+Iox1FhLie5mmkaurm6oqxarK5xRaNPQzc7wq4nF6SPCu57gD6mu+dhkyEy7sOuVrJJTjoKzE7X9ccqjVTpKqZTPZBWxBh5dLMgJfMicr5Zc3/cMk2eavt9yqYMRN+d8ROAdMjHiB8Qba025F/Xx9344oVNFxrDdbGhmK7rZgvnqhLqbCwM8B/b31/TbDX4ccUbSZiXQMYluGpmULVfLQjWSc4xkqZxssMThKGfabHVC8J4cIzkkCWckC6c8SsMS/ISxmkprUpmsplCoNUAyGdNYcJlkFeZiTtVONGNGNY7u8pT56RnKgK0Mgrzs6f1AtgbrLNoonG0KllH8F1UClzKDHxmHLTpNGJVlm6ZbKjsjR800TsR+Yrtec3JxSpy1DNsdbZio5y3V+RJrWtIYiGFgt90w7beEYX8kTGmlhW4SS95ISqTsaRrFvHUs5y3j/R5ifi+VRchfRxlPTOQYaawjWUsOhtEHGtdgtcFmxcV8yfMHD/nk8VOqquMPL19yt98x6MBDl3FtR91UTGM4PkPevX3Hp598wjh5lDZ0XcsXX3zB7/7ud3z22Q/Q5oyqOryHFcvFCrKibdty5Unyd1VVxYMjHoYQSq5FVR2lfvf3d4AMp3Z7x2Kx5BAr2DQdDx9/jE6Rfn1D9nccsb6l+NJFSpGikLAg4mzi4WWDsScobeiLCbwfZOsH0mzs0o4QhQFmrGE+W0CCoR8ZhvEfqAgODXpRMHPANH8fXzkflBAJrRLwoZwSaTDU+6m6JChLorXOSEK4yqVKy+K5LKlyWoHGHCfF+pAMrQRo0LUdqciPrdLUzjJvKs6WDXVVcji0xhzC/UA2JUUKJH60hqqaMZvPmSbJkXLWcnF2yW63ZRgHAS8EefZVVVUUHgal6qOvox967u7uaJqGqnKcnp4em4yu62SyXzZwMUXu13dliww+Tvgwcb+55jd//Tf82ec/Y24XeKuwdYM18hb96PmPuF/vsFlhM9gzxb7v6ceRmCH6iUlprK3kbKdsm1WSOhc4eNneG8MVXVNzspxhtWwLD3VZXTcliDKTs+ShhUmxu72iW1W4bk5jNKEEGaY4YbJ4XVRMqMnTv76GxQSF2KWdk/chJwIRkxPWNVBUIwoxsscopK3BB3TVCDAgQd00pJyZYmbvB8Z+y7Tf0t9dkXc34Hfo0EuAcFXhaodxDpKCJDLcUYLHhFyaEdlzSszahrpyKASAFPxYruMs/zt/oCLRB2uEXLsH+V9OkcpZtLFlcFpoqVnycKKCrDW2cmQfZdCqBurlAvmgJUcqe49KQTYrR6lURBv7fiEQE1Hl4uv4boSp706XKmm8QGHYi/9B6/dppkpp0e7m9/zzQzrme8/GP9L/lAfE4QJU5bTISU7E7WZHUpqTsxO62ZysDFPMsspLsWQVVBg3AQ5tFN4PKJ1RWvT0pvLl+/LlRigfljp4MGRSYZRorY21oCE46SCVVdhYNJEpYiqDHyKpz9iYScMkciQCewWWKCt0W9HUFls7sh8heDKSGBxzICvpLD969pSqa8nGEMfMbr+XdVfOqGwgBGLSODuTZOBKOM77/Q4fJkylGfqefiukpssff4LJRvJApozPmXEcmHZb8XckmegrNHVVo5UuWR5Z5AxpwqJpa4fPCp8g5VjQiYcVfAkbsqKolLVepms7KqOZNTXPHj7iBx99zKOLR0xJ83dff8MfXr7g3fqWWHm2w571bsO+71kuE2gjh0d5BuQkWlNjRAvtvYTq7XY77u/vePb8MdbZIhtI7Ps96/WG7XbLw0cX1FWNQmMMcgDgAJkkHBqNnN9j2VIqD6uUub+7x0+B5BJYkaHU9Zxufsri9BGbu9eE0Jcb8P10UEL6yoaHXBJ+VXkCRkAKXLJMyw5GTLlPRHd/sqwlwyFr1HlDU98zTKKZ/T6/DujZA6oWDp/BwaNVBhkHZLWsQYtkSvwaWhdAaZFourqh6ea03RzXiMkuR0/fb+l3W6KfUM5Ks5r0UZOsjw+8lhAjwYt0KodwDM8SRLbIrGrTYKtILoF++zBisGiNpKvmRAgeM2msEUlCzomoNAlDBqLKuMqgsiJo0KuWum5Ik0a3NdVqQX2yIGcwRV4ao8f7jLMdlZXr1NkKrS06GxTi/aqSyJ2S93iFVDxaJmrWVhASYT8ybnYMmx2nJ0tSW/Pq5kZgGfWC6vIEtS8SSBJ+v8WXTUPOvpz54utKNuDzRIziWdEqUVvNvK252Qzipyta3iP+GiF6keT+MCVVPRZkpNGGylhmruLx6QWPzx5wcXJOP3q+ePmSt/c35DpTn804cZp51zKNAaU0MUV26y2PHz8mZdj3I3VdMwwDNzfXfPLJs/K5inF6taxpu46qakjZH+VS3nu0NlTVgaSYcMETo6WqxXuTUpTwLqvQE+x2hhA9JQGAqm44v3xE8iPvXnxFvx4hj0AsjVfZ8WsN+YCaBKsjpycVbesYhsxuhH4I3K01u14Y+DEloWEdLtGSr6MxWFPT9+8kCTnLsOVAhJHivOAw9XedQ/7H98r5/RktQ4eDLOy9PEx8F+8lOwcZNsjv0RwkyeKJgfe5GVKzlEm8FsO+1pK43TRNQSxPWG2YNQ0nyxnLWYW1oWxYDgZnjVaqNBnF06EdSlVoU9N0XSkQHcvFisV8yc3tDevNVs6dxNFn4b3HGHME5OScyL3I+kIIdF1XAtJmzGYzjDHsdntm8xkglL7dbssBhR6iJybPvt/xzYtv+NOf/hnJakaVaJ1FU9E28PzRM16/eY3QuDNVdMf3cwqJ6D2gyTEyxQHMIY27NLS5pKhTJt+5ZC1UlllToTj4lSgSqlqM5DlDlsFmCjDtNszmE5aE00IDS9HLNlVJcGeOmWnXM623WG2JPpKKB1CZkrCNoLZL93eUKqaMSJ4R2XNW9ZEGZauaKUZ8DNzc3zOur/CbW8abV7RqwqqI1QnrWlwlAXmucjL8KBjbEKIEaRqRvsqAVtHUNc4oGVTmVJoMqRVS8BxIckdz/eH/O0iVlIIE1lXHhlJBoc1JUksuzzFjBaubYmKcPFXZZKAQOEmUPA6rNFOWpUBOCCyk/HuMWVC+KIz6D9xkHPR+cpPno9bMGCNEpHJopqJjzVkmlDJllglOCNNRNhJC6ex4/yASXZm4tIKfQEWUc9QoXNWyPL0AXSRKyjINW/LYk4JnN+yPSZFCcxctdY6Zm+tbamOxzpIU+L4vNASN1ZaunUkz0/d4Lw9NlxT1vIMwMuaJWCsshownEGiWhiY6miCT/furDbtND/std5sNeqZ5tHzG2dkZyhiyFq1l2hiCgrthx/J0SVXVdIsZla0Eg5ozXdrhUXg/ce971HwmB2BSNN0DmfyGxLTZsnl1hUqJ8/mS6rFMFXXw1CnirUFraNBMzhBiIPa7ItXxsj5UNWBAC78fhM3tNGAVUdVo69gHRYx7DnSdmMUYmmJgGrYwDcJ7tjWPHj7EKTjpZvyX//x/y2pxwTBlfv/iFb/88kveba/xekQluL/dkFPm7PwLJg/z+RltdyomLbHcyvcdxGS9XC7ZbrdMU2DyE9dX13z07ClnZ2eEoDg/f8q7d9f84q9+wVdffQWUFXqEH3z6I05WpzhXI7lHYg5vUj6mz4fgixm0JiXLOEQqF6jriNIBUxna+YonH33G9avf48cdOY4Y4zis346a6NIoC17VolQl3OyC2RNylzTotky9Dl51ozKpeHQyO55etqSsCrXi+/v60Dz74XlykEFBKQKUElN4mTRpLYekVoYYEsEHUjKcXD5ltrqgWZxQzRboHEkxEINn6rdoFdFOkaI/TtVAcf3m3TG11DZZmghb0bUL/FiwwrEUr1mMpCFnmqYRtnpKsqnNMpHS40CU4R0+luGLkZ+r7WqmqPFRjNrNqiVnxRgSWcP8ZMmqPWU91Ywx048e2zXUpjSjaLqmRTUtqq4lTRxpYkyK6BRRUbI1Vt0c58TMbI3DzRo0mhwTeRjZbdYMb+6x656kDCHJRtOlBOPIuF2zqFc4pzFGYaPHR49KRUesIGMAg3YNJiuUEj37dn9PyhWNE8liUlE2AFFY7YdNuMqyOXRas7u/QxExRgtJqqp4eHLKD59+xP/6P/1n1NWc/ZT5F//mX/Pz3/2a++GeemE4ebLAdSIbiynSti3WzWhiLRP8lKlrS4yKn/3pn/PDH/yQ169foJXm9uaGf//vf84//+f/BScn59RVS841VLKVFDyoXJvOVaLP14a2aYkpME0yEJvP54Q4MU2evn9HXdecnJyK/l052vmKs8vHPP/kR3z1u17C+dJIDH3xcils1mJWjpoQFFntUNpjmsjPPr9g9BX9mLlb7/jtb79hN3jGkNnvdxKqhXgGmnrL+dkDnj37jN2+Z7/f4H3AGfH2yVBN7sH3QaTf35fWsgVSR++iwVpTAhczKWYpvqxFGUXOke12I8WWkT8XS/ZJDJGYBXyiOGTsRGLSRa2haZqGZ8+ecXNzIwNRFF3d8oPnH/GTz55QScC05EsBOWayPiCdxXCdskLrlsFHXIxo5zi7fMiDakbKmrv7t6Kbdw5rK6xx5JyZpokDLcpiODlZ8c033zCOI+fn58xmEkR7cXHBMAzsdnuGYaQfB2mKtWLyI/P5jLfv3nB3V7DwJyueP3vG5f/p/8zJyRlowzZO6MqRg+SQLWZL/jd/8c948+4Vf/t3v+Lf/OZvqRA5U0oT+2FEa8NyNmOz74XMpQRGYYx4c3UuIaZKGra6riTrYr/Bu4FGJYwzoA2pFMdKQc6xePgUXeNwKqNTAO8JYWIKA34aSZ1he7Vl2gyoMXJyeo6Zt6z9DpUnajQuZ2oqIaMiT2prSo1Yhlu1sVhgGROWhA6R5CPjFEmVIyjFX/3i3zFnoEo9tr+lO51JtkWRyXbzjqarqZqG16/eMPiRlBTOQOMsVdPirCZXhhw9OfhjHZWC/ApAFlQvCN47xoS25jiQjFl8HJQBKUXpkXxAAmmNnC/KChYYQYU3XUWIiSklYk64MtSP3pNDwirDzHX43RY+HILETAyQo8CSrJWwwO/y+s5NxmGdfGB2y0REyAl1XRGjGOck+0KMK03TfFBICC1GF+e7qKyOyIcP1p3SnSttsK5lsVxycnnBbLEkZyWxG4VA1C5m9DoRvMJYzXYjb4zWBrQlpgBkKmtRWgK+bFWTtcX7qZj3RM+mFOg0Hbn9mchi1uEmcekPxZwkGDzLqAPWOpwz5KwxZy2uszRDRN16UmOJjUXPZf2vgBAzOXmUsSznS9p2jrGFCEElD4GUaJTBW0fQMp1pqg6jrPxjalRKZC+otfhuLXq91lE7R7/fMAwDtzfvMLMFlampcoUzmto5fFURoiByDxuoTCFo2bpgJxNEj4qRRtV0JlMzss2hvDuapDI+jCQ/UeVAYzVWAyGgQ+TTpx/x2UfPOD25YLePvHx3y//wN79kPd4Ty3vng6cfJrTes77b8PhRwNrMrNNs9p6Q5OboXMs0TgQvCZ2np6ecnp4CIiXR2glAokj2ZrMZHz//hBBGqlr2vr/4xb/Fh5GT1RnLxSk5J7quY7U6AWopPrPCaCkqnAVrBv4v/9f/Ow8enPL55z/k+cdPmc9WVLZicXbOZ5//Bbdvv+Tty9+w3dzIloss708GCm2KcpCJPM0VGZXC0pLyVKZLRTpVtiEaJERL56J5lQ2Hzd9jMTUwXyyOOlOUYBG9F6LX4Yw5UnCKhvpAmcsJooKqXaJtJGZoFnNW54/o5jOMNYRhIPqJGHyRCxU5T0yEMMoaOiYaY6i1xqZM9mKIRWWZzKUkYcxKU7cVPhYiSYbteotWiso5yfHRQjxx2qJTPp5NzsjWM4WJYd/jlEErx+QFi5hTIowjYYwok6hNxR/95Ke4SjS9TVOhJk/0gTgF1DhhXY1GsZsUU5CzqjFgc8Q5y2KxFNNf2XYoJK02o0hGppk+RPa7Heu3NzIpK0bIzX5D1ShcaxjDjtqDVYI59NYQohIC3/vVGxgHJh43do1TIiHRjvuh5nbTsyv69wMCNJLww56oNclopnHL6empkOOc4wePH/GjZx/zFz/+nLpZ8frmni9fv+Pf//ZX3Ax3ROUxqWa923I+jWgtdJyYstDzjJWC0WjayrHfScNgreP05Jy6rvFBsVgt+NWv/pqHD5/w/NmnrDc7VidLural62ZUrpaJZs7s91tkg2ao6oq2zcVErZi8lwKhgAo4lDAqoazFth3zswv4nTwnMiUj4VjqHO4FMfbH1Mj0N09olWirRO00Xd3i9CUhGkJ0/PI3muv7Nevtnt12z5V/y7AdGHYDbTdD6cwwyIRUGXWUgeb8/W8yDqqISCQlqCpdtt2mqCxEe6+0yKF1AXDJ8FMaSaE5hlKoRSECIWZXkaWk4imS50Tbtux2O/q+J4aAs47TeUNbA7lH4cpQSXbVzggdCRQhDqQoKOSoDRdPnnHx5GOe/eDHmGoJWpOTZ/ITPgiwxE+J1arGWtkcbLYbpmEs9ZRiuVyyWq3QWjOfz2nblpTSMTNKadjut7y7eleMxJLxcHNzzZs3r/jTn/4JbSNZM7FRjGOkaQx1bbm6esu7F68Yt3seLc55/vCCB+ePqLVivd3y+1cvpM6razmftWa/2zAOHleL0bwfp7IF1lL0UnR6xrBoK04WNWczQx0mVJJntDIWSnaJKhtrlELmqxkfAv2+J1/foE7nNHVH17V4HHf3O7xVPH38nJOzc8yyI686bra3LELHop7RVZZ8EDMrMV2TAkTxgxjrhGCVFSol0hjxu4kXN2vWw5b1fkNOnm5WMTMGXSfa0zNsVckg2YAyjozh+voWHxPKOFzlWCxWVHWFdYaUPLkABw4kJ4pCRmRjcp2rDD7K+Xm4vpUU3VjrSAcVkdYF3iPWA6HLiWRq3w/iNTNOUMRZU2lwWmNdRQpSs++2expX43NgHAamyb9HOSsDymKcxlQOUxVa1n/oJuOIqT1q63gvb1KyPj6kPBvjPsBUvueBy+H2nnah9MF7Uf79sA4yBlvV1O2MbjGnm8+pmroYmKT7UzGgbZEUKCcBdCEcswRSyngvTUxdtxzEqNpoXKNQ1qLLdFxlCj9d1vdZyYYlFBSrUarAquQD1tkSiRgFysl0VScnWDqTWeglzWJB0BpV9IAGUD6SkFVqVTdYW5G1JmZkqZUzKkUMULsKl62kUboWq60YiYwjBcFpppwhJsI4CZKtq2RgWMxdJmdZY/qxEDikAKFo3Tni+97LVFIumyVESVbZitYoOmvYHxQ/SpBqYRpJfsCpRF11OGNwynC5XPH04gEfPXiEsTW32yte3dzw5u6GPgySMaJK2kFMjGPg/n7Ldruh7Vq6rsXaijBlmTL5UJQBQh6qawkSMsZyFyX1eJw8Wjm0koCis7Nzbu+uBR+IbAR2+62kprYdV+/e0XYdMQa6bsaBVuJchU4ZY21J2zVlM9Kz2d6yWp0yny+5OD2jW52RcyRGMQt7PxKjJIHm8r6qIt2Rbd1BLhjLZX/YI8tFeMg6LWOcoyQtK8mKgH+IE/6+vQ6SBZDD0BfMXkqJpmkAjrIVOWdEnpNCwtiKqu5w1ZzJB2KC+eqcbr6kaiqUioRpKIFREZWSNORF/x/SQZ+e5XM+vL85S0NAJodATgWtjdyrtki1Ys74kcLSL/hdNAYNH0zqjKtE+0wiO0eYAikkobqYw6BC/g5DRkVPngZ0HPE9hEmj9RxT6tCUs8gmxRJIROFjRJOorEz9dBlCZCXSAHVAMJY/FVXGq0S0ClUJujZEkd5ko1CVwTiL1YYYonh/pkm0t8YcE9HfX4P5KDNJIDKqnDAq4JhojGzjyCJ9zEW+EqIn+FFMuRhUTlitaJyjmi/47KPnfPr0GQ/OH3C39ry6vuXLN2+4268FkmHkXN5stqzXazbbDa5aiR48JY5YLZlcFf+OPHxTgr4fQGUuLs6Zxkk8L2Hi1etXTF4yMmbdDIUlZZG1HjxhANY4aSAU1E0l9LJiBh7HgWEYqSqRyCptqKqW2eqc2fKMvI5Mgy/TwQ8aDCRkEg0aS86mbIui0LoAqw3npy2Sv1Ox251TV4amdjjr2O17pnHPdnNL3c4Kbaj5gEZXroV8eG5/f5uMwz2hZRWMvI8l58Z7eTYmCU/MSUnyuX6Pq81A9PE47NBFv045naVYe4+bPWSM7HY7yQHLUFnDvKtpG4OTPuB4v5WHcPl65X7JovUwruHi0VMuHn9EuzoH40hZJvPrQgvLBz03B/mWDDVSITceGosD8exwpk6TZzGfA4LvbduK27u7gqjXfPqDj5nPZuwXC5aLOSBD46qqZUotVQ/321teXr1ifbNm3WxpKsfprOVsdc6nT5/hUyTkxLvtRmifWlKrc+whhaO/4DB15/jOgsqJyioqnbDl3w/5IQcFn7xf8TjMyMVTgJER8DBNkpGsDc4YdBOpu46cFbPzU/SsJVWWQJLcHSMwmRg0uEZCOrMgeOM0So6NsdhWzvKoFDkkptGz2e55u77ndn3DZntLGLbUp+fM2oZkM7rqJMxYiffGh0BWME4TxpoSkmqxVh9pZWKmLh7YGD5IfozH8/L9+5BF8XOcLZYsEmtR8b30+CAdlD+YxE9R6nKwKK2KvLaQ6LRkVYXDsD3lct2J5DfG8t9QksHjZBCtdHo/GP8PTZf60DwWQpCOT4kJPGfZYngv6526slSVEzqDLzhKlaic+6BJUe/fFGXI5aJS2lLPFiyWp3TzFfOzC7p5Jx4JAlO/FW9Dmhi0ZF5Y12KtoZvNCN4zjbLCZi8P9NXyhN1eEjKTNti2pi4PzTBNhGki+YkwJqySRPGQEtfXV1ROmgdNCU1Bg3WMkxSQwm122KSFCJXg2ZMfoGzHFAErhmKrFE4nQpSOva5rgnGMUTH4jFITlcoYpEDt2plMoLQRRj4anUWi5m1iCtDHCdPWxGHP/nZD3CtWD8+YnS2om1YOjymzudsQ+4GQAVeBljwKgBh82d6osm2JRyayAhqrycpxMjesdxOhNAfDfiD0W9I0kJ1idrKkcw2NqfmLH/6Y50+fcXl+yRA1v3v9lt+/fsUu7RjjSMiRVILDMhkfIm/eXnFy8gLvR4If+fjTHxJCZj8OrHOibVuqumK/35frR9LetTb0vehSZ7MFShmsdZyfn9P3e4ahZ5xGzs8vOeS0WGf49W9+hVLw8OFDPv/jn6K1ZACcnJwhb5Pj7PyU/+r/+F/yr/7lv+Bf/ov/J7/4eUO3mHFxeck/+2f/Sz77+DnLB885OXuE1jM2m1v6/RY/3BfTlkAIQogFjiB5J0K50PhcSMuUCqhs4RSKkCLfvoelEI7Rf9db9j/K18GrJVQpeUjEqqJpm+M0LgTJMzicEdoYIp7ZcsnFg6fEqNj3IzHB5aPH1G2DUhk/7Rj2a0A47LKOjogoVpoMtBLmuRONa8xJPFxJGoEQghBiCkoxasR86RxZa4yCyXumaSq0nqKBNUIV0kqDdiSlsFrhXE2sPCGPIhtwgIropOQzryDEgen+FS9/NTEph6o7Th88ppuvqIylKdAC+X4jOEUcvMzCbYXRHGEWCUUod7QG8VgRmbJnl0fSvKJ7fEFX11xdvxMJZ+NYXlzQrpaYtmV/N7Dd7QnbLUlpMBasA29JYZKAMuQeTMUjkKVKkeyO3GNTh80RnRO+vEkiNerJYUApW8AS9rj9fHh2zl9+/lMuTi6Bmt998xV/++VXfPHmJdQJE8V30e8H3r69wdoapQ0/+MGfkHFkFD4EjC1ZAdNI2zaCZtx5bu9u2WzvWCxm/PCHn5XCTdP3gd/85tesVksuH1zwZ3/2p1Cofgc0qJwlklcgeTWZurLUlUAnJj/x9s3rAseA9mKG0RWmcdgHlqc/+GNef6V5+2Itxa+KRb50wKQX1KWRrUYOtuSzFHiEElO9POkzf/7Hz3nz4IzbTc+2j/zyV79mt+/JoWfYBaqmY9Yt5POJZQuqDTF9Gxv/fXwdNv5J54J1lp9xmsD7cPRkaG3I+gCnKWGESYraFKWAU5TB4kHBkIvpFY61ymGDcWjOnLFYrVkuGpaLhvmsQqf3n6HSiEQNMS+bQ4mtLd38hE/+6HMWD54QXUdWmTCN7PsNL1++pGtnx0wnyeWRLevqZEU7taQYmc0WXF5eIBjwHcMwHsMjLy4uUOaQ63XGl1/+gaura/Z9z1/8p3/G559/zse753RtzeZ+iyZxcvJQ8NwlDO/6/g3fvHvJ65fv8Ns/MIXIjz76iD/++Bl/8fnPOD054fTkhP/2r39+rE9Oz07ZbjfEMDINO4ZxxFQN1ikMWqAbKaFzxtHANDGlQMbLFkPJcLeKEnwaUkRbJUN0rYVW2TaYqsLnLEOLpEhBfC5nFw8IJ5H27IRNv2fY7Rn3gdOTJVUMmLGn326pTs7JriKkxBQj+/Wa3f09i/kKp5yoIlTGT57Nbsfr6yteXL1hs75i2Nxgt2+oP3nE6uSUfl8TEJ+CIjJNAyEFrBOp0qzrSkBvhuAFkZ8z3vfvt2gpiRIlH2hQGUquRU4cr6nDhS+DL1EKBSXDOJGXyVAt54RWmZwjOQqp66iOcKb4KEqjod7jnp2tyu8TT5HU4xJ07YzFdhXKarIKWKXxo2e/33+n+/W7I2xDODYZ1grH2FpZT+52vUzOiwejqquytgwYI9o81MFYKw3Jfr8/FhtGa6ZR9HxouLh8zGyxom47qqYm+Z5xN9Bv1+QYsFrW8tpIQqMH9gWhao2YsSrrmLdzSBnvJyHVFMJLzGKG0crQzJfEyZO8J1QN9pAcHgJowWsaLZsHP02iHc8VmooQPdvNnrqWQK1pSgRvqa1jefmQ1YOPiGFPQKYpVsE09egQqeoaX9WMOTHEQN9vOV9IIV1VMgUrjCKikoRzUSUEdtOeMYzEhWP5R88480/RPvK3v/0VO+8J24FPnjwF05BthK5G+RpnE7oG1V+hsz8etsM4Cs7XSmqpIJEFyUYONNpwPm+4va/ZT0FICZPHxUjOEePh8fKcJ5ePeHr5mD/9/GfYasZuivw//t//Ha/XN9z3G4LJgvLjIA7OJThMsduP/P4P3xATPH3ylDAlbq5u+ebFW1xtePr0CV3XoZQ6TntiTCwXJzLbVWJAl+9cOOcXFw+4unrHZrPFmlqwqFVF27X8Z/+L/xXb7Ybd9p5h2vLVl19zfX3Ls2cf8/z5x8eG5fHjB3zy6ad8+eVX/Pzf/Q/l5vtb/sX/61/xf/iv/iv+7Kd/yn/ysz/jj//iP2e/29Dvt6Q08Obrv2O3viVMA/d3VwS/J4WBMOykkSgT4lRW8zl6NO642j5MsMSsGWUzWIIDv8+vcRzlOrMWzUGyUDYDseJgCG+a5ijLrOoKU0sYZ0gTPsDqbEU7W6CtyAP8OLJb35fpSpme+yjTntKtWWfJpsh0VMYo2RLlIAmmEj4UsQV9GZIEII2HzV8pzIyCrqlZtEJlC0FCO3f7kTB5MfhZx6QoDbsiaQ3W0FgjEricCFVDSj1qnFDTjrAemHxmzJab67c0Jw+4uHzM82efMA4T1ohfalUrFvNWdi0KcohHgkjKusjvFDqDyUkMkuOGd7fvqJSmXVTU7pRHF0v2ux1fvfgKa1tUtqQpk40hW4uqaxazc6a8QacB42tyigQvhsvKVhiVQGeGyYsc1Tic7Xi6ekDWa3Lespsiw7AnjT1+uyb29yxWS04WM1zdcnFywaPLB/zln/6M1eqS9Zh4ff2af/VXv+B2d8vO7/D4QpDKDP1Ivx/xkzQ287nFB8XkE33vmVVteZh7hr7HGMPpySlKKSpnmM0aVquVGBqTpm01/7v//X/Jq5cv2O7WvHjxDd988xVV1fDJ8x9ydnZOVdUfDDX25KzouvbI/Q8hwrNPZKshKt2yBTcYt2KxesR2dc/6/ob95sXhN8gEV6WD9ZiMR2uwFnxMZOUBg1G1+BXLtBmdOF0ZFrM5SVU8uuzY7ffcb3bc3Q+sdxO7vqdtWiHMRCkadMmo+ccyDL4vr4Oq4iCPzUqJb6okIh9mlwcy04EGlmMh8pR8jcO7IDLXsvkqPoimhB7u9/ujp1Qbg8LgXMV8NuOHP/iEk7kMD0WEIXvGrCL5IPnJYiROCbTVLC8ekowjZS3P1+AlJ2YKnJ9fUFcNtsgdvZfna0wRozvappVruKqFHKUlv6JtOvFw2ApI3N3esttvcM6yWa9ZzOf86Z/+jP1uImdFXc/QRnN2/uCYU4NKtI2jqix7v2fKE14HdnriX//6b3h9fcXdZsdf/slP+Pijz3hw+YiT01P+1b//OW/vbhk2G5wCdEKnkeT3pOSJoaabzdEZNBqrYDVbMHMTFT3ZSx6NVgqnrEzQyyakqRqMrWSYYKwMh7RBRwP9yLDdsfETsUhAd/s9v/jl3xJR2MYyO2m5OBF07Og9MRl22w2DMtzFwK4Ss7RdLng39qjUkLJlm8H0A/1uz/Vmw7ubt+jdNW3q+fM/+THzWcPkJ/phQvkBrRPGKkHD1nLNVY3DKEWOkThO+GE8LCUo+dGQ5fknIaRZqKglnDbHTAq5DN6luY0hHrfgohAqpm5NoaDJQG0c+veNtrHkGIg5M5LR7RxjHdpapjgxjYFp9CidmQ6D0Ryo2koQ/FmVFnkgR4gR0pSJY4D+uw08v3sYn3p/KAnlQAqCAxXqQJKS8LLDRCBxDAP6YEWbcz7e/ILx04RpAmvRrsbVLa6uxTGPIvpR1l5xKqsgKdq1QjIekmiv68OkMCNGWzRZS2eo1UFsAD5JxR5DYghjWUllEkKSwWhJa1YaXahDpq4xbiJ6jx9GsIfJhS8/g8JpRaMSYXvDXily8EwpilGmqunqDmWkgUgpo0lYnalsRrcVxhaCQFbHCzKhKcHHUrCkCH4iTAPbYU+jEtmCVYbThw9IRIxzsu4PMsGVmsOgjEwPravJcRSPgMkY854OJnhiIYdVRonpE0WlHbWBMSfyNDH2PY11NHXFwhoenlzw0eVjPn76McZ03Kx7Xt/d8fr2mvtpKwhOlQsOTW4kOeGLMjlCCJlx8Gy3O7rZBmcN5+cnwoFXoh0/UEJEn2hICUKUKYCxHmcU1iqMztRVTVXV1HWDNgv6Ycs0jWw3whlv207+/qxo24b5ouPu/paz3RnjNHJ3t2Y+W7JcLfijH/0R/+7f/huGYSSGiSlM/Opvf0ldOS4vL/jBs8+wdUM3WxHThDaWfnfPsF2zOHvIdn3N+u4dfmyJfpLtXllPHn5NJRBKGov3QVLlSCqX6fe3OACOmTqp4I5lQyPTcD9N73W4qRBHFOXgE/P2NPYoWxdynJRcx5V8TpI8e5DOHGRJOUuDVsk2IiqR76gsssoYxyKdEjNdOhSAqRi4dYTjlFKoMcoIQUWrjLNymKc6E8R8cDzrUkaIYFG+pkEza6VZ9lPAe1UC7oRYE7JMsZzNbLb3ZOOwzYwOyyJnOqWojEgws4IUM2kMhBjxKWKbVhDcJZ8o7LfENKKzSJjGgsd0fcZkWaevTk4JUyTlQeSg2sChOSsPKmMcxjiSdmVKKo+eA7pcl/NPoAeZmDwG2Qwr6Q5kYxG90KNsxaJuuVye8ezxMx5dPuRkecH9buRqveWL12/ZTD1DnPA5yPui5OlsrGXfj6zXW25ubnnxzVesTi9xVUtO4XgdfZh+bIzh/PyccRwkiGzb03WzI8CkbSR3YppkW4GC3X7DH774Dcb85Ph5npycSDDZ8Vl3CBo0VFXHzc0N47BlMVvQthlnK4x2zBanzJdnzOan9NvX8hwr1xkHmTBFHoFc0tYcthnwfspUel2dcVaSe1NOnCwq2lrR1prTxZLbdc/dpmf0sN4khmkSah+HZ/D/xDf6/4QvpUS6gfo2da6okuR9ze9rkA9lpvqD+1ihURlCTuRDeB4cgRBt28oGo9ABRYIo2QfOaKyJ35JcShiwbJ3I4tFJB5qeqbBVx2x5iq0aKZazDDliwaofQiCrKrNcrlAqkLP4FcTf+j5zQmRvmqpyGF0diUxv37ziyy9/jw8TP/nJj3ny5CnGOOazBZMPAlyoKsHYywlbzjTFOI1sd1u2WzGOhxBQCsY0crO75/evXnC6XPDk8pTVYsmnT55zt9nx4u1bru5v8ZWTGktDHvck7cg2kl2Frhqc0TRGyzNaKZGQG1UAnx/Uicj5qo2T4lnb4kkQiWuc9qzf7Zj8xOQntDG8u7rm7v6eq/t7lLW42rLb1Tx+eIo+OcO1S6pqzmQbYtbch8B9iDhlaCqN7xp2bcU+J27uNtj7PdP9hs12Lz6M2nFqNW1dMQ0jIWeYBiorgXe2NhhncJXFWJFDBu/FzD1OJUhP9mVZH3Tn+SDQK5r943/+UPH5fksdAtkYzKEe+OBaP168RfJerPbyHNVavEZFKlx2GZLT4b2Am3Iq169IQSVd4fB1RG0SUyKOYHpIw/8ETcbhwJbrQAxwOSWGwR+bjMMU8kNp1eEg/rBJ0VqXm0Z+WLnxLc5VVCWozjgpuskl2Tt40a0etZLyEYVhLOE6imyrIm3L6Pb9jybaxXKIaEX2vhhJE/thKJQB0bWpYt5URt5eZSq0q3BO45zHDwNxCmhVLnxr0KpwirOQXqb7N4ybO+7fvcS7DtstqGdLTi8esagalLGCy82RWimMU6i6Lc1ZJoVEUrISzCVWniR+DfyInibyNLDbb/BRYcs/s9MTYT8DcQpyYcQIXiZ+qng6qqohhUGK/ZyPF7ZCJjmQUAmcUvg4ISs0R6UTOgXiNBCGifZ0wcms47yqeXz2kCeXT3j66BlXu8jX7274/asX3OzXDFGSq7NCJkUoYhYi2eFZl1DkrBjGiaura5p6xmyxZHnygJv7jRim8vswNq3lsB+GEe8nWQ/mTNPIdeGc8OObumE2E3rHMMra++b2RgJ9jKXrluQUWaxWuMry9Tev2O83xJj4wx++4MnjZ3RdzU9+8iOabs44iqk4e/jdb/+OunI8efyITz/5jLZeoDpFiIF2tcRPPdvba3IMvHv7Er75Aj+sGbZrpmFP9APkUNagqvx872VShxwSOXx1OSS+33ipUHxTQQfGJLKmw9EwMRy3PHIziBEzRwE05AlGpWlcRUziNRKtqCGrLB4pbUnlfQoplwNXiTm7qsr9lEGZY6q395Noe4GcApH3D3OVs0ASik9Ga03WmpwMkSL9KpsZ1RpCzExBvGIZyFExHZCtSPNom06m4nZinDLJ1aQmYfY7op6wWWPmDW/fbtn7RB8V54sLYirTwKopR798Pd97+nFgmEa607IdVhoLTOs1KU+YGubOsNv0XN/cEdcBmxV1VXG+XLHfyepbKUXXdaRxJPpAdqXBsBVaO7RxmAxKSZiUNBgZaxSu5JekHEjTDh0nMXxGobTkELApsWxaVu2M03bGZ0+e89knn3F2eolyLa9fv+Cbqyt+//oVk/IEncQ7kksglNa4qqIfRu7u1zRv3uGc4sdNS9u2xOAZ9hHrXAmrU8d75vz8nJuba8Zx5H69wbkKaw+pTeLTaZoZ1lY0TUs/7Pniq7/j4uLBUfc8m3XHDbwYew/Fa8bamu1m5PrqmqZ2XF6e0bUzqqqhmy9ZrM5Znlxwf1WL8ThzlH4evo6YwOU7csYJ/SurA3mUA35VawUGkQmGibYy1M4yq2c4O+N23XN9v2O9m7AqsN1BP3oCJQTwe3yOaK1F9qh1yTY6NBjq2KsdCn/RpB9qF/VBrVLa8AwxaqktyjnUlYTso4laHWAHpkzjZSNJGsiphArLShGtFVpV5e+X7SgorGupuxWL1TlV1cowL0m4mvcTQ99LwRcSMWZOT8+wVkJcFVDXTdneR6bJy0DQWKqqIQahD/kw8OLF13z19ZcYo/nzP/9znn30XAAV1hJDLBs5xzhIaLFI5wzWajabNdfX79hsdvS9bAqVNiQT2fotX759iTMW1A+Zz+Y8vHjIn+fMg5MTfv7rX6OmEZ+8DASmgazKlrpq0a6lMpa2MjiVMCRMFrmbbIBkryRDHWkEtXEoLY2GsTXGVLJ56bes1/f0Y8/kPc18xuuX33B1e8dmGrBVhTWa7Z3j7ZMLqSVWNVV7QjQVMWvWU+Bus8GS6aymulhwnyLX+4HXV3e4zUDebvF9z7nKLLua89ZASgzjHp0iDZG2nVG1Na6rCqhFrqEcI36QMLtUYCKxwAQSciYpwFpVGlWOw+6DdF3pjC4eDK2ETqgR/LQ6IvOLH4ODheVAbD34gYSapkvjkFPJqwOhV4b4Hn6gUwmh1OQQUUoGdKhEHD1+SqRdRu0UeQjkfvpO9+t3bjJmsxnHA1WLZCV4/62JEbzncAPHic/h1IzBl69waNPE4JawuK6ins2YnZyyOn+IVomcghRjYYIYsGRClDclxoxPAzEKSrJrWylIsoBPw9gLHzwlKBIvYwxWO2ZVjXFiqr69LQ1RjExHSohMOrUVcyRKjNYmJ8iaqmoJfhT9vzEoFdGmIrhIzgN66Al+x9jDdghsU8VkZ1w8/yOeP/+MeTPDbnrOlGh6W2eIVpGLbMRv9+zChHKOphODFimR/cTu9QvMsmLhFHnW8Ovf/oHt7Y7+rmd9c828bejahuV8xm69wRrNar5g1rbMlkua2Ypm+YDJTxAjtbUY40s4lhAwrNGQPH0/4ENijIE+ToLUDHum7S0XpysWTUNrHI2qeHb5nIuTR0zZ8sXVa3751R/43YsvmNiibGFU+7JRUqbERhyMe2Lku9+s2ff3XL39kvqfa+rmOcuTGQ/qM0Yv025lDOM00vc90xR5+eI1TVNR1xWuspyenjFPGWcbrBEKR93UvHjxBTlppinw+vUr7EcOW4IKt9sNfb9hnAYqV5NRNG3DJ59+zF//9d/w8MFjHj16yj/7y7/gd3/3e968fsvt9TX79Z5XX7/kb/76F/zsT3/K+eklbT1DW4PNNdo4bNOhUmL18CM++cmfc3f9mjj17NZ3/Orn/5pxt4EUsDbhwz0Hq1XlKkIofiYkLMz7gN8P3/WW/Y/ylZKkhqoo8IBpHIVQVzmqKh0f6FqJcZqcUD6SdQnPS5ICu93eQ9/jmjldbdFZJHKmyBuzNvh+kOGDUSRriEqyThrrUEqklsmIgyEXPatSJbNHK1RhiGdyCZoUD4Yx+mgGTkkY4qlsC7UxzJoaXVegBFOslWK/2zFNIzF4rq4lQGu1WJJVTzYGbTVdd0q4v0P5gKtrxs0X3Ht4eXfHyfmGF5tTlpsTnhpNrivZ/BrLcHsjkk+V0XWFiYkqZ06dQ4cJTcCESFAj+7tb3n75gt/+7ReEccQoWLYdTx8/oK4EKztvO6wxVHXNrHtI1Z0Sgf3uHle1GCNBfEGJrjingLOyqQjRM/mBZDWtM6xaw+3NQL++h5w4XZzydLXk8ek5zy4f88/+7J+C7RhC5puX1/zLn/81V5sb+rgjEIkalLGk6OVBSSYrhVaW7XbkNdf8+Cc/EgxthDevrujHPd2s4+HDB7RtSwiBGCM3Nzdls1kTynb0YOhuu44HDx6w3e55+fIbYoC66jg7v2C26Hj54iVffvklv/71L/n8859ycfEA0DRNJ9eszhLGpw2v37zlv/6v/2/85//Ff8bHHz/j7PyCzz75I1YPHlK3FSnuuHr9B3abGw5I5UOBG9JEGdKLTFKJaRUcVlekHMjZlw1MQpeNpz4sQhSktONsYVjNVww+E55dsN0NfPn1K7ZTZLMfud9+Nz31f4wva+z7Be9xsn8ILdMo/X4jlLJwpQ8Sqw9N70fjt9Vl4qtw1h2lmnd3d/L/HzwzWGoNp3PN86cNiy5hTSInhVJNkX4fSkQZEophqubk/CMuHn/C809/gmk60BCT5+bmiqurd9zd3dG2M5q2ktwqDXVTF1KQYrvdUVU1zlUs5i1V1ciA0yj+9le/xFlDXTv2/Zqf/PGPqeuaP/zhD9zdbTCmYrFc8vDhQ8iJYeiFxOelCVA50jQOCAxDz343sNv27PuRpu3EB5UGJj/yqxeRXZx4tV7zT//4x5ysHnKyOOPTR8/4q1/9Ddd319ysb7l+946gNFEZ+u2O2tQkEmiLyZ7se6a4o3MKqw1ZGVI2OFNLE2g0VV2Dtth6ztnHnzPuB/rthv1wz27zhvvNmm2/YzGegZloZoZNaXJi1AQ8797dszobmZ9kQo68NYlrrbjRlnF1Rk6JTY4EHHdD4G4z8eJqw6muWZiai1lLN1qYBrbTwHh3x6OTGfNZzXI+p7U1tq6wTcVEwJchpIqJOI6iogHiAU5Q6uODFzPGeJThqsNW4kP/cxJPjrNiBUAp+cyK1Fwp8ekZdYBzaELw5evJoWKMOtbhKouC4CAPPj1ZkdOcd1dvqCqhazlr6df3qJKyMewmwi6Q9xl1B3on90tS320d+p2bjPl8diQt5CzT5MMU77CjyEUH6wtqtOu6op8vUxqdjoeqT5n54gRjK2JUTCHSLVasTs+p25Yw7QnTxDRs5M1PMgkjhKMcIqaMtiJv8iRM6ZBzjgQv+mo5JApNImrhEGsDkz5+2MZolNW0dS30qvIR9VMgTiJXMk4wiTlmQpSLQVuDrQxd1+En0bZlHLlpiT7gJk92kYqKUdXc3LxlTIq2XbCoOkaj6WYz6llH0hAS+Cmyvb1n1BlVVVilYRxptaZRCtXUBCXBMNPUc/PqNbfX9+w2PcNuy25jWbQts/oJYdqSVKZXHsUMKkWuLYuLZ3jfQw6EcSNHs5btja01MSjClAtLWUL4pmni/raXDUalWM5bFk3L2XzJn37yY+arEzyC2nt1+477/pYx7JjyCNGWh18uk8+DjvlAtZL3W8gfCmUcwzDIdGccma3OMSaVjAkFxazkp0CKl8dr0oeRaeoJTYU2IoNRSlHXhkePHmOdYb/fkrJnNpujlYTvtW3D1bXkaXTdjP1uz34vTZAxGmMVdWP48//kpzx+/Ijrqxu++vIb7u9ugMTv/u5r/u2/+St++ief8/Hzj1EqkkroVhkViefFWFYPn5H8SLs654+y4uvf/Zow9FTWsN3OyNkDgRQmjDOYkvuQogcSVfX9lkupIpdLWaRzxoqHIh7oGEomd1mVAUHOhQoaQQWRTWpLNhG0xyhFKF4WnAAkYgiEcZIC30mQXgQMkgSsdUkPL3IqUzTbMUahfSjxa5ky+YzhvV+jAE/QyGQqx0hAoXIgE4uXSiQT2lqMdlTWQtdQVYaMZL5477m9u6MfeplUY1AqEZVF1+Ibevr4EnO75sXNFTe2Ypcz90qjQ6I3shl0TtOcLnAxYTO89RFjazrnWDYVbdeg80RKPbcv3nD15h03b98S00BgImeYosJPO+KUiGEizRbUTUPMM3bTim51gnKGqb9n3F2hEiitBd2ImFuDT4zbIKowrRmGHcOk6HeB3f0VrTNUTnwslTKczU95/vgTXD1nMyZe3234H375N9z1dwRGlCmIcw74RldKN1WUQ4I1nqbA/d09r16+ZLk85eOPn/Dm6p00m9YyDMNR2mStDBZkIix6ZGtFXkmW7I62FU28QtLUbTcn58Tp6RnGOF69/Jpx2nNz84aXL9/w+PFHLBZL5osFzlU8f/4RSsHvf/9b/s2//nf84uf/noePH/HjH3/Jx8+e8fTxIx48+wm26ljfvOX25i05TeQUyCkUI3MoOMvAYYieyzZTYrwsSmVyVGWDp47Yy2yEVKVF/CvT+9rS1S1t/YT7/ch6u+d23fzPf/P/B3o5K/dvKlP+g9RGZWlAj/Ky8suR8FRecu9z1KbYSvJuFAWFv92Ss5ANnbFYY6md43S1ZNkqzk8qHj1ocS6jcajssMaijdDwlMpl6KBR2mF1R9POaNoZuWxd5RgRmEdd1yyXJ8cmoq4r5osWraxkfqRE00hoZ1XVAttRib7fcnV9xRdffMGTJ0948PABP+p+jHOGECJv31zJ5sKVxtpL4BtK0XYt4ziRU6KpHeOwoe+3jMPAZrsnZY743Jhl6p5QDHiud/ekV7DZbPn800+4OFkx7874kz/6nNu7G169e8Xr128YgCFnxtstvt8STaJZLhn6HbmAbnwCbRTaWeqmw5iqFASCyNdKsO9hv0erCmMsMU7EaYvOA5VJhDgSUiJrzXK5kg02CpRlPUb2UTOpij4p7lTiVilulGETUlkcGIJPbH2ij6DqlnMU58ZxamaEbYWZxGh1frJgOXPMWkszq0XGrSMx9IRDAR8iJiWRtyND+ZQ1sqAv5LJjLS0e0gOWWVLm35u9j9EOBzlgkdilyWNtKvTMVCRYCpLC2apsM4pEKoq71zpXaKyq1F9eJNo5UVuLypB8YOgn0hRkV57BZIvaBtQ2SaRDY4hGISac/9+v/1FyKTGiZmJ8n5D8PplXDuqDqUxpmb4Ow/BBc1LiyJUmR+jmc6xrGKeIzYrZYkk3W2CMZYqJECZiEIOTSu+3Eln2zKKVtDItCAd9W5FSxeCPRYrWilTsDCpqKKZqKA1GmZyKbEpuQoVm8oe8xHzEngm9BUBhssgXjKtl2qSsUKdcg6ki2k4E46ltw5ANL1/dsZ0SrtmyWJ6Ra8dCaeZVhTeCsg05s4+h0BMScfLoEFhah7JapAxqIHpPv9+zubtjc3fPbr/HTyPZOqxKTNOeEPbonBjxGJOwbUMVl7hajGJaG0hBJCVlwqONIWNRyZG1KYFFET+NDPs1RllW85aTecfpbMWD00s+fvYpuqrYTiNXuy232zv6aU/IRZZ28Bog68EPb55DgyHPhiILUprdbsdms6Hr5swW59S2IiuRp+UkheT/h7r/+rUty9I7sd90a63tjz/XhM/McplVrGI5dokNUQ2ILQj9LECA9ChB6keh/6gG2BK6BQgNCHpgQyKKLFaxfKWLzHA3rjt2u+Wm08OYe98oAoJCUJGduQI3I+NG3HP22XutOecY4/t+32iFZua9ZxwH+k1LTAEfBoahJdsK64QRvVgspIiYNGQVy+0qQTMxRPb7CX4cqOuK/b6V8BsthbKkrGaeP3/CcrnkyZNrzs4vePP6Dfvdlrbd8+WXL7m+esLlxZV00vQhGdnK9ym0k7puSHGCrSc8ydB3HUO7x5Ax9YKYBlIcGLo1hFFyVdRISuJf0OaXvMjQquifS6PCGnJJWT+cqKQgFRrJQcYnw4QEIaCMHI6VVeQwEnVCIezuqI2gZkM8ssUxhlBmREd5Xsn1iTEiooR8PIyo4yJfjgI5CemlyLuEAiKej6xTaWbIGqhyAn9YD5PQUQqm1Th5LeMgxLGxeHPEAiVTm4QRJCJwspzTjyP36w3boWXoGrpqSt31bLwi145JpTmfTZhmRR0y6/Ue6ypi3bB3jqlz6GTJY2Lf9my3e3a7LZmAKuQdbcHHAZUCYWzpdUSpGdYpfAxCXrN1CR8sWQM5H3148rNX9LoribkZ7weGLjJ0I6SB6XTFpJkwbxrO5iecn1xwdnJBwrAZOm42a75885KRvRSYWqabsjZI8FoqXrFD2z/lzOgDt3e3AhLQmo+fPKH34rvQRuNLIrCMpBTjKACTcQxY64s0UeGcTMSdq6gqCRNUQdw54zhS1RVnZ+esH+/JOdP1LQ+Pt2Tgwl9S1Q5jEovljOfPn/LkyTU/+uFfsd0+8ObtDZvtnrbrcHXN9dkTFIaqXhCzI/qWMLYM3Q6IxDAUL8YBy3tQb5ujPrucklEcCHXlbSmeGLLgkTGyx1WVYTKZM2kt04lmMvl2ab2/iJczBk8uJK/D3sFR0nY8kBXfn/gX3mHaDxITo6VJOplO6IeuhH9mhqGXgkNpameYTmrm0wlPr1as5rCcaZZzK00ILAohvKliAM8FvMAxKFAO0PVkJmsL5dBIwoeA1obpRJLnrTVUlcVag1JWsrmyFCJ1Lc/g0PdEPLt2x/3D/dGnOJ3OWK4aUgrFS6KZzublnq7wQfyV2kg4Z/ABSFjj6PYt7X7HdrOl6wYyFN/XUfmPAqJK7MaWsEmsH7dMpyJFdhfnXJ4/YVpPscpwtTxnHUa0H2ncQAqeOPZEX9F1oFzG2ExICqc02hqq2pFz8VHlTApBZGx6ZGx36GpB9AHve3JosXmkNpCMpmlqbCMN53b0+JgJWSNAbUuPpk2Jtc5syKwVrGMWvLFS9D4wjOKhaJzlNGfOleW0bnh0FSoHrDKsVktmtaJxCm0MATHnZ1+kUD6SY0KXc+ph8irDynLmKT9fzodzsSrFwDsf8zevYy5MykeZrNZZ1HZFFiXFhhZ6stZQUM3Hey1zHAwkKLktWfDGCORHCqRAGAM5SK4dGXTUqAHUII06JopcSaDgt7m+dZGx3++OhttDVgGIxtoY8w5pqzR6cUBUWqqqIpTOnfcebURSMLEVq/NTtHawbVmdXeCqiQSE+MjQCoZMhhhlUw+ysauiW60nNR6IpZMTM0KRCHJASQUbqq05EokOjvujBvZoHIMRMaSLydFwspxLsq426KompowfDT4G+hDIQ0SNHqUdk8kE42qy6gU5W1nMxOB3W6rJlElW9D/+MZ3eEN2M1+2em+A5CYGlNWz1VMxkFVSXK05dwxAir9qBenmOrh1zZ3E5kFNL95i5eXXHbr+j9y0hS2fSTmvs1HC/fivkgxxJQ8aYwHS+RMdE//BI2O7I7R7T7+mVlTGcUpisi6GsYTJb0rZ3tF1Pu99DGjk/PeHy4hkTFnz0/ne5unjK6fkVt9stL96+4UdffsagIv04EDNoV73rUn9jtK0OD97B1JQyztYolel6z1cvXtJ1nt2mx+oFV0+eM50t0M7i/cA4DgBUq5oYE13XcXt3g1LQdXvWDw9cXz9hNp0zmahifpsJ0jKNhUIi2vr7+3smkwXGOHa7zfEhDyHy3nvvY7SmbfdMpg1VXXN1dcnv/8Hv0+4HYszEkPlv/sX/hS+/fEtVTbFVZDab0ExqFos5OWuclfCaFIIUHG7K8uw5v/NPzum7Hev7O7R2DP1I1/ZsH19xf/OCcb9GJ8/YbwlxIMbh2z6yv5CXzmIaBsEo65yFSKIVxlXHEbEPIzqJCtqVrJmMBK4ZG6mdKh3nTPSSd1BPG2loKMlFWE5nJCQALgMqQQoJn8eifxZeOYdkWa3BCXL63cH0MMKWhdkoTU6Swqt0SVJWQEyyruRMSEORufWQDvpaOfRO6hlGi4b6sHaOw8g4eDGCDgOhy9z3HbZ2XJ2uqJsJf/Pqgc3Ys9tuWX/xivvgYT7h7LvvEa8vmGSFIbGpM66aMBrHz4vuepoyJip8dHQhsfeepMFoQ105ZqsF/ThQEZlUEIc10QRSZXBo/G6P79b4zRq6HSknvNLlM5RskGoyRe06whjpR48PPfvdjnY/8uTihEm9oKkmzOspf/SP/4iz0wsm0wX3+z2fvfmaL96+Ysxb2nFfYgYsqazXB1IKBdihVEmbSZE0en74d3+J1YnVckoKLednS0JCkpXrmpwkPyFFuLu7Zxw9TVMxjiN1VVE3DdY01HVF5SoWiyVVDbvdmpubV9zd3TKdSvjXe+99UqaqI0+fXfGnf/rnXF5eUzWWrh24OL9mMq04v7igmSy4vbnn859+yaeffsann/6Mzz//nP/j/+G/5HpxzuUzz9nVJ3i/Z3P/mtdf/ZSh3ZJzSwgK8ih6aRVROhGKJ0gSwj2HnBKj7fGAfEgqV+pw2JYOrFFWQmCnmUlTc3ZS/4/x+P+DXIIelkOd0frYOMggAX0xHiVyh1yuGN8FEEqmgGZ1Mme1WnFxdcbnLz6j324Zw4BGU1sn8ttZzXvPz7m6WPHk6hSrOxQjKnt0XqKUlU68lgPx4VAua4Eho4khMVmcsLp8gnMN6ExMkpGw2WyxtmI6mbJYLKRBRaZrR+bzBm0FDDGZTNHaMPQDf/vDv6SqHYdi+7d/53c5Wa2o6lqm94U2BIbnz5+jlGIYBjabDZPJBOccd3d3dG1PVRnMsqbv9rx584affvo5fe9JSZWprMjH3yGBFX0c8Glk6qb86Y/+js9evuYPfuMH/NZ3PmZ1MmFezfns/S/4/O3X5N0j6vKcx8dbfLfm5Ve32Gen6FmFnTiyslht0bYCrUhhLMHOkj5tiGg/0N3fMeQdQ7enfbhFDRsaMhNTkZcnnF6+Tz1ZMobEm7t7tt3Atg/UiwtG03ATEms1cmst91pzYzSbg+9VKd62LWazZr7v+L5KvOcUZ9YwcxXdbIqbOmYVLM+WLFXGJE/btQIOUhQAQySPARWEuCdFbob0zhf2zfiGFAuVrEwcD7knh//u0JwnwxhHYsxHMIfRTpo9UaBH4I6I/oNqRAihYgvQRia5rqoYfGCMPaaS5HWZmGpJTy8gp4iEHyYfaHqHSWCsIleZcJrwLjGaf+CcjL7rjyEcB7mLTDWidH3IKCMGqhj88cUeOuTGGNGjGQmP6see9cNtIUlNmEwbMEYqPDLWipEtedHj5piOlZ61FldZbCX0KZQEjfhhFJ11jDijj5MN74v2v7CBc6HISKgWxZxeJDxKKEaoUDrnrpi5Eq6qqKylMuKlSDmSifTDwDh6Ukp0fY9WFrImZ82YNTplnDP8k9/5TX7y4jW3+5H1/o7PMUyzZp41mztLfXXKdDnj6vSEdsyMRLZOMVQNOcG+S3yQE1WGNhiSnTEqS7YVlbEsFpqTxYrGOTb3d5xPDA2JamzpHl5jdUXGEqLD+D0qK4KdFvJAlIBDXeHL9IKk0dmQPQzbnol2nDUL3j+55snFJ1xdvcdktqANgZ9+/RW36wdCTmhnSFozlpGzObSaciZ5f+yAVq4ipiINAEwJFpMNRDOZzFksTrh5e8OXL14xX57wW7/9O1jrqGvRxR8KlMlkijYG5xQxBvpO/BWSfAzOWbquY7/f8bC+5+F+w8nJGe+//yGXl5fE6Gm7HTc3b9FGpE1JS4fIlbSlzz77DKU0IUTu/uRf84e//0ecn18ymy743/xv/9dF05/IjGw2D+zbPW3b0bZ7ptMpJ6tTXNWUIEGDMo7gLdvW8+XrN4SQuLp+ztVH3+FyeJ8nzz/B93tSGLh5+bmkqh7DtX45r8ocjK6SiaOKrloOA6IrNVlkINLpgRRVQcjKtpqC+IeIMvLtxh5byQJqjWXaTKiyLgblImEA+r5DKaislelrli6UVrKhKiXEE0Ehy+tKQQzHGukQpZhkIqqzTClEO8RB7qe05LSMfX+UbehUgBlai17XiZfCOYFkVFWFXihSH+h2HePoGdPAw/2OIWXGpKhiYlGL9K9XCl1NGUzN3dZjTxKNkc26t5IKXqWE15nJkFihmZmGVK+o5pfMz3psDkycZTmf8v7T57x9+SW53+LCjnrcMOwGdn5ksrohpntU6DExknQtctlCmUvWonQmDIG6mhB9pt0NrO+3+H6gMZr3ry6Z1aecLS/58INPuLx4SkiZV+tH/ubzn7MZWtbdjiGMKGtFzpQOUwyOe4hsuhx/TxCOUDVzYkq0XUu337M8uyIrizIyQT2QVbz3NJMKraW7v92sCRPJWKJopI0xnJ6ueHwMdF1LTIr7+3tCiKiVhmTY7QZpdPiRDz/6mOVyCTlxf3/Lz372KTHCP/uf/ad88cXnxJj44rPPSH3L3etbfuj+lv/Xv/of+N1/9Hs8vX5GXc8IYeDs6hlXH37C3YvP6ds97X7Dl5/9kOR35BQgCB41ZQlaS0GKDK2shMFlKYq1NscsHaW0hLjqQzijTIRy8qT8y5u3Y3PGZDn+2iJPzCB7e5HNHALqDmcQuYc4NgXquuH6+imnp2d8+vMf8fDwSPADzsh79OT6gk8+eMZiljhdTZlNaxrrCyxFQZaMFqMzWh9aGTJpy0XNcVBEPPnw1zi//pDF4hJnGhKSmdC1I9ZUzGcLlssVdV0dD5rDMGKMwGWUgrbds9msuXu45cc//Vt+9x//AdPpgu2mxZUzSkqJYXh3b85m7yTuIQhZSimZ/N/d3bFZb1nMZjy7usaYmqaesVisePt2wyE3RGScsnZpLY0eVc5SQ+jIoSVuBv7sJ4rp1HG5WLBwjt/7nT/g4tVXvLx9yWcvv+R85hh9R9c/0u43qFRDnHJ+doo1FRrD2I8YlKwtOYKpiVrW5jR2mFlD7SZke0H34gsIGYPFxsTSNkyqOftx4IQJRPBDYu4aZlWFM9Bu99z4xI2ruGkmbPsE1oDTtJuWxXpHtd9T+5FubrgLibut53EYCP0ekwaCjkwAlyWZpx0G8fI4zVRrCAqdFMvakhjJMZLyATkr750kcMvUJY4BEoLtzeIL+iYoKUeh0KlUqFFZpE9G58OSJYV2ITQengVdUPhSeJiSSG4YxJs7JwABAABJREFUQsCnSORAWEukmNnvtuRYVDxGmnQqgwow7DuIIitsnixo44juI67/dlk737rIiCUk5VBkHG7ew3gnp0gs2uYkLSh5sw6m8JwBocUcFv4YRpQxmKqmH3vhlqsiv8rS3VTayFRCZWJ5gLNWQnhRCqutBMIooSBQQl+OvOFDerU5gL9UOSjEYsJBaAaaY9FEPrzDMibUZKHgFNqozkJTQRmUNgxIVUqWzUv+f+nah1BSgh2VMZzOpsSs6faBNkXhN7cD972nmjRMrcNNpjiTCUbTWRlRBTIhZxYhM0URlcNNT6gmKzIGmxPL6USSqOuaia2owyNmjFgCY/YoE9GVIXUlul5L0JbJAVJhImcKozkRfSKGhMawnC6YzhY8Obvm6uSaq4v3qOoZQ0i82Txyu9uwGTrGHOg7MTNNZ7NCUjjoAyOxwAJEapfREUIMBF8Oc0qDcQyDZ7dvWW821FXgcbvncbujqhs++PADmqKdPkj4lDYs5ku0EV2kPoQNxkSIERvf+YG6tjsuyI+PD2QCk6amaWouLi5K+mUkJkkaP3TFQgg0zQRrLbPZpGBUM64yXF9f4sehpKtbxqH8/xAZhoEDxWs6mRWfh2E6WRwxqbPZgruHe3wKRBK2apgvz2C2IGfBDe53W9r97ts+sr+QV8oiT9LlObelEynmNMHzpZIFknIovgkkTTeJFEHFiB+9yEeMPU47h77HzmbSDKkdhILjI5NSOBY0B7gDWZ4DQWIWA27OokQpkpODdwOKnvaAxEwysi4/FVqb45oYKQGMlHF1KkVU1uRR1pMjRUjJJmG1kcDXSYU2CuU9dgyM5ee32mCdY1ZXDNYwGMdaG7aj527wOKewGJFtonCIjGYBIh+LiWAqlJ3g3Jw6e5bThtPZgpP5Kem0Z9wqwmaPRrrnWUdMY/FdAlXWDGMkmTdl9KFRFzPBR9ksQyaMEZUUja2p6wnvXz5jPrngZHnB1fkTMJbNfsPr+3sedxtGlYQWlgqmlkN99m5/efcrHycZqnhnUJquG1ivN9zd3VE3K+qJY1pL4yEn8TWRM9OJPL85Jbp+jw8jox9I0QtlCEtVWfHZhSWr1Sne99IBtoacRbYVU6DbSrq3VlqkUJUjpsAweKxVnJ2fcnl1wf39HY/BM46e9cOaF19+wXc+/g4XFxfUdSNhrVWFm9TklPF9R9/u6PxIv3sgDC1+6BiHPWLGLB3ELIXH4QADh7fv8F6B8EQP0j+NwqB1wuj4D/5s/8e6jNY4a+Uwfyg4KXvzwUT770lOlFayXpdJWNM0xBjZ7bZsHtck76mNZbWcczKreX59wtOrBU09MqkdtdMYdezrF/krxz1AHCLp0EtDH6Tj2tFMV9TNAldNKV1OYkz03QhYrK0K9clgjBTZzknB23Ud2+0GgO1+TdftUEoJACdlqqpmOp2URlhRZwAKUSNI8zQdu+exrF+uqpjNJtS1Yxx77m5ueHi4Z7/fH2WKfOMtPKCqySJTzCXlXiUYAtxv73n1cEPwA13dcLFYcnV5ja0kd2TXrdl3ax4Z2G73hMHTMZBWEEMm6gRaYc07uT1WGk9ZGzCJqMFnaBX0GWwSMpMaI6rzQE9ct9QjrFSFnVjOTs6YVhOImtx52qDZVoqdqugx0qxKI3QjZtdh9i3RRO73QtJM/Ui7bwljR04j4809lZL1tVIaHwaMAWc1U60wKeFypvWGeSWzxhikkSohemUPOcgaSxDy8QbOB6kt757p8teRQnXYPw6ftNKlKVPOxzlJk04d4BFl2lf8ILFQFyvniEMghoj3AV1CXSn2AVkvNDnJ3piVIeQEg0J1GrP/B55kHG6sw9jnOPIpUhhffnijD0necpjXxhyEYRBFf4yWXAehx0RiHHl8vMe4GuNqSZkuBzxtLAbwh9GR0URdtGcZaiuIs5wRyRaQlWLo9+/GTfqwAcuH5IM/RrnroqNWKElfRAJPCihYHqTgMSEQ9CAj6gwKj3FWNP/W4L10/40x9N0AURa0cd9KZ0EbRuBsPsW6mp1fQ23ogG6IbHJEPbRsMbA6oVaWbDKjNZAyrcoMGuYxs1QKZxomJ9csTp5Quy0uB56cnfD8+gmr+Zzx6TPefvaXDOuO3CesTVRzR3M6J7lAbh15tChjsCmhYsJkjU9yaIgls2LoPEZZnj95zvXFMy7Pn3F5/gGn5+9xv1tzu33g09cvuGs39ONAiIHb9YZmNuX09BxtLG0/yOhaZfr9TnTExQsTo0GHkXHcHzcJYx27dsfrN2/o+4EnT99j17Z093f87Oc/53/+z/9znj55wsnJiXS3lcZaTdNMMCaRUoU1jt1uD/jyIEogo7OOGCPL1ZzgA1988XNi6nj+3nMuLy75lV/5FXa7fUl0Hrm9eyu+iX6kqSecnp4yn8/4+OOPylRjIMYRo2uaxlE3hnE0xxH1fr/F6HdTlMXihBjF4Hl9HXGmom5qPnj/I9qhJcSBzfaB2s1Z1TW1naI0VLMl+92e7XrzbR/ZX8hrCAGnDVaLF8DoQ/aBdFyMsQgaFKKSYMzkEymVKWSOZJ2JucfExGyxxFpHIrPftUwnU5FjVQ6I78IOB48r01SSHBJBEk3ltGCKBCdJpkNpjEQf3mVtqG+gbctU5bDYa20lYyNKweODrF8HOYdCMNnJy/fNBz+Is0gQjsZYTT2rsROLHSwjGrpA30YqWzNpGpppQ24k3BStuRlHuq5Hx4zVFY2qySpjySQFjYI+Rvaxx2mHNhMqPaVJnpN6wUm9YGYmTK+eslGeu+1rgsrgNHpmqc9WpE1P7COpM9LQSUI1stkQkfDO6BPRB4Z2ZOxGJq6hrhpWi1N+9f3vMl88oZ4sqSYzbrZrXj7c8/NXLxhTACuobp9lOiXFQyE/ZenYHVDoWpcDZdlbrDOEGFhv9yLztFOmzRln5zWrsxPqaYP34zGQbrmcE0JkGEZ2+w0pBYaxZRhbIJKdo6knrJZLoa1YQ8rj0TuWooAijFW8fNUym80ZhoEQIxcXksOx3e64vXvD6mTO8/eestvvGYaRFEb6tufrr7/m5uY1lxfnXJxdo6zB5Aqc5uzZRxAFcFDNlzzevqbdPrC7v+Hh5hUpDujs0ToUidThXpMD95GEVF6vENDk9w4TO63B/RJ7u5y1oDUmJYYYjz6Hb/qE/r62vXTfSUf07XQ2Y71+4O3rjm63YdrUnCznfPjeMz54suT8dMbZyUSe83TI0CjTiaKvNyYJGOiA1kcM3+mwJhghVNpqinNTnK3JyOc29CPrxx2oCq0r8bjqkmCgKFMHeHi846c/+QlXT64I0ZNInJ2d07UjRg3MZkuWyxVaSzaNNhqbDkqKhNEORcQYWcey9yitOD07xZyfoHOk3T/ws09/zNevXvP2Zk1Mh9dR8rqO3ih5Fw7UzhhGmQImaIcNL29fs91umNua6jvfZXlyzsnJOcv5gtcvv+Du0aFCS+i2hHGk8x1hiIydh6xwlZW08nL/ZqvAWLSpcI2l1bDzkZveE4JlFhVWGVLrGR/W5K1nf7dlOlkwb2Y8PV3y9Pl7JFezHUC1kc54tpVmpybEaS0qmX5gsvdUmxbT7mmXhvXDljgMhL4ntjsSnpQDP3+8p9IGW6ZUlZHgTGehAuoMDYpTm/nOxYqpgdCPVDqLgqFQDfPhfF4Qs2QpSASOUyRPMaIxhTYn917iHZpZccDbGlkLDvVJIaolBdlnlLYlW0MVO6E0rpyzhE4Q7jFFadiVRqwtgIKUFTobojLEBO22x3UW0yry7tutId8+jI8SCvL3HmDpDhxQmymKQdg54cY75yC84/ySghhSchbCU9E3p5TJNmCCx8WRPKmlIacdaYSh64ij8MJdVZG0ImUl5uhMwUvKxkESM5MuyDoZHZnjmydTFFVyMjLGarwPqJLaK39GRvFCzjKQDSElUuohJjggxKzFOCeR967C1DJanM1mqJhJY6BBMcbAEAL73cDdw469T+ghMm8SS53Bgarm3BrLLmSGbiBniYB32uFzYqpgoSU1dDGMTHzPlEgaNWa0NFmzig1ul8i+Q/sBWsi9Jo6a+5x5uHukyl/x7PQp88UCk2u6cQb7DSn2+NQzxMR+GNntO+5f3xEHz3K24PTkmu//2m/TNCtgws+/+gkv7m54tb7nJ29esI9eOjjK4GOkX29Q2y3nFxdioGtqZoslbbMVbG9Ts3nc4H1PiJ7pZCE3fxT+ftXM8CmzaXdc5JGzixXbbcvPP/s5/+Jf/Ne8/96H/Oqv/hrT6YQnT59yenaGthOMymgTqWpF7UXK51zFMIgGPxF5771n1E3F3d0tN3cv+emnf0s/bklp5OL8Gc7WGO3woeJkFXnID3TdQN1I0mrwgWbSsNmsmTRTxmHk2dMPS6cnF4mVpJcKQalC+UgMByhBYhxGPv/8yxKmJPSpX/nku+IhyJnaiZH5cE/WbkZA08X8//EZ/WW4pqNlJDLoEYWTTdwASDclxCBkJ2eoGgdKESOYZCQZd0hYZwTbaYoJOYoPQxvD6D1Yob3YmWiNvS/GwxCkoaBEOkOR4VhjxIBdDHjitJVp1mEKK4Vx2SAoi36RQ+WUyaYE+RWCmphCy7pZtLJKy+J9nI6kxBgDwYoZU2VTGhhCunNuziJrFknRfn5LNZlQNxWTWUaHSBMj+yHwk7s74nKJXZ5gQyD1EZ0TWxNR+5an0bMk8OzylPm+42Q/YjY7Ji3Y2BHyI+OwxrcdOk7ovGVLZmw9uxeveLJYMps2VM0Z7dCQ+z25b4l5xMfEGCL7bmS/3uIHj1GOjz78iKvzJ5ydXHF6+hztThgT3Nze8dcvfsb9bsPGt8QQeHzcE3Lmk0++y3q7YxxH/Ojpui1WS0Co1hI8lvIhxBGsM9RVxThKFoK1DZeXT7h5e8fN7RpbfcXv/sEf4KqqFK/62BzzocgQVMJazWc//xnn5xecnpwW+YmlrmvOz84JcSgZNpkwKtq2xZqa955/iKuEhLdZr/nqqxcE73HOUtWO3/293+L73/91/uiP/hN++tPPePX1S16+fMnPfvqCk9VfMfSZ/+yfnaN1LAfUQi+zQjS6eu87nD15X6hTOfDXf/KvePvyKx7evmJazSHtSWkg54izDjJH76GrxVe42bYityIAPa6u5XuoX94iw9YNioxOkaFrZZ2EYzBwzu/CMKH8qApiUjhXMWmm+GGPzpFpnVg8W/GDX/81zk9XTGvNYqJwDpQaZCJxGDkiCewahdPSHChKezn8cSBWynrubMV0tuDDj3+V6WqBZ2T9cM/bt2/5i7/8W/6v/93/g//qv/o/CTlNuWOx5MPIen3Pm7cvefv2DW9v3vKD3/ot9vstm+2aMIt07YDRIxcXsyJfj4QQ6btRJFNjYBgiSrWC3HaiHqCguZ01zCcOFT37bcfp2QkPmw359p5Mka6WQv+bk8TDlSl+S8qSGQOmsrRjz9u7W4YU+PjZc65Pzri8eM7F6oqh37BZf83Pvvwhu/2GbujY7vf4mHF9xWQ+AdUcJWu1mqKnK8x0wXRxRtiOzIyj+vB7DJOK7s0ND28fWHYb/HrEuQnT2SnXl9csLq5prq7RjSEbOWRfniq2txtudj3dxlFNOmaNYl7DR9qgTlbkqWXXPnD/sGbY74lDR9c+yDOUImEcCVkw89ZabAZbG9zEUhmFShmTYR4jL3Y9dRhhc8fH16ecziesJg1NXZVCtYCMCAIQ0gYJiCzSR+NQqKPxOx+a9eTjva6UgvguOkJpTVM5SuAFxlRiK7AaHzzbtsVYR1M3EhQYD0Z1UQUprckkwfujSCGxu29Rk0ropD5gg8B07Nx9u+f1/5eH+x1mS7SuKE1GHf/5IDs4aGpN2Zylro/HoDjKG6eKCVbCt0SGpZNm7BOucmijwdmjPreqahmPH75GTEQVxOgZEykG0fKVrqM2gtc1Bw02HKUPmlKkxGLWOkwHjwuw8IZ1kpyMEMqHSi43kj6iyNQBtalLqJISvbaxmmpeYZLFhYRXBlwi95G975lPJ1TzBjuvMBg0iTfjwO3DI3k6x9iaSluG3tMZ6HWmaTvcODJLiZWt+e7Tp4THDXm3pxky7Ztb2izc+v5xRz8EfK6p51Oqk0uakzO0sthpg1WJuHsk9aI1jDoQo6cfPPtdy9iNOO1YLs757ne+z3R2SsYw+IE+bDCTRB018SbhB8kuIQfpnmUppXfbjSy+2kjuhh9x1tBWjqEbkNFfkTQZKxMObalrMTYB+BCpUkQbmC+mtPue129e4sNIXTW8+PprTs/PefLsOdNpJTkhyxnWOZTSpXgR82cm0UwmKCWj5pOTE549e5+L80sWiwXWinYxRdHRT6dTHh8f6dqe07MTUhIZ1X6/I8bAev3A48MD89mS6WSKLdkwKUmYzWxaE/xEOl/l4W6TdB+jFwZ2VDIh3LYtox/ohx6F4emT5zT1hKHv6YdeQie/JZv6F/Uym4gr+QcxillSG4WqNGNOKC1UKFcKLHWktmSsyeAkU+KgAAlx5EClCiHQ7XvUVFNN6jJlRbpEpTskPYl309iD1piUSnAfRWIgpjo59MsqdjDXyj0rXycWnrkquljyN7KCvrE5i4xCvsbBnEsyRB+J1qAsR0S2VgZd17Qps4+RdUjsw0g/DvRdx95oumwZfMa0I2b09B520dLUC+lao8l9YL0fOYkBpTPnTcXJ8pz+uWWo7sjtFt+3vL77GUoHQuwYhoHdqKjPL1mcX1ItVzhby4G+XhAe3ognxiaGMeBToh8Dm+2O7XpLGmU8//TpR5yfXjGfrtC24mH7wMN+z6v1HV/dvGI39AyFdjP4QCLTtl1J3p4QQmI+n4tfq0ycU04EP7KPYmamSBC1MfTDyHqz4c3btxhbE0KmHTzT+Zxnz59xcXGBc9VBiYA2mcV8Cci6cnp6xqSZyL2AmOKj9+x3e/qhFfJMhPeeSzNBMJOZr776Eu/Ho8F4sVzSNA0hjHgvwWmoyPe+9wnvv/ec3a7l/u6e7W7Hixdvubl9EPKfE7qOtU72DyRoTpVw25wjTz/6Hq5qqOoGC7T7jUyA80COMp13ThdPhkipnFPEoCTLQaujz+mQKvHLeIXk8THKrxCOzYID+vMg49b6EKIne4wroZlyiNWcrmYs5zWVgyeXc2YTh9UJ50SqbzTSDj4IVnTCZlsIX+/eQ4VCaycNTxRkOdzNl+dcPv0YVTvuNw9s9zs+//Jn/PhHP2Wz7vj+93+di8tzJhOZmKQcePP6Fbv9FghUleHs/Iy6niLTGJni1HWF1RNms6kUl8iaE3xkv2/p2g7vPTEKGa1pKlarBZPJREhHWlFZQ+MMQxi5v7tjs90xDB4J7LXHw6zo9tWxJn0nzVPHdVcZg3UVNw8PxX+Zebt7RL01bLuOZ8tzZlWFMTWr1TWffBC4X99x+3DLqzc36K7H1hVjitjKvXu+0KioUElj6xnTNKXKmugM5knFaFZ4e8tZdsSkMdWU02cfsTp7ipsu0FaM6jEExiHyeLdm3I+EIdMHj6oGZlVmUmWGHAlDy7jf8vDyc8JuTfA9IQhVU0bU6TiJRmmMMtgEtjeE3rJTJZhaa3wzQfeRJmUq1dC/vOVy3vBkteCjJ9dodTiHlnOn5hskr2M0YfmXUsQKQUre328W0fKF1FF+q41MLvn3/B2HO5lD0ZIOQdeBZiKKiVykwFlLgZH6hHEWnCGphO96UrT4DIP6dpLLbz/JOB7SUyG45DIc0KKzLp1EneRLFjmZHAYo1IuUywOqjw8GIaCNkdFjiqgoaEdjRbeunS2LiKF2FUmlY0GQYiIivPhcdPSSpCiTEqVlRHww/+Yi7ZJiQo4OKURZ1PVB71ti2FX+ew/UOMhosFhW3+mqUxKJVpFyYfQ3RlkZXYvcy6VMUhZqRXKehy4za2qaiaNuLCZkNj6wHTzdQ8Brg6k1lbMMQ2QwMOrEZN9x4UeMhtPFhMvrJ4zVlF4/oLs9m+0jQ7fDVZnYDtKdrefMT66Ynj1henqJ2iVsPcWahO17gpZwsoyS8L1+YGwHVIL5fMn52RXvv/cxMSq6oaMbd/RhjXLgJqCtjIhDjORwGCEDJNp2D1KaEQsu0hoJ/MuRgupThOBRtSkbhcGamhAF8dn3I3Vdo7Xi5GTFMAxst2u2mw3GVrx+85rVyQn92LE6WXB2dsJkVhc9tioTBKH5oDLGNAxjLz6OxZL33/uYi4sL5vOFUDmyJmnZpBuacjjR1FXD6Hu8D7RtR11X9L7j/u6e3W6DsyKfk/tfDpqTac3o5R53o6eqasZxwCtNhFIEJcZxZLvbM4w9Xd/S7jvmcwn36oaeh8cHlJJJ3i/1tfXoIlsISbI/MBpdW4IKKKOx5t1CR1ZEAiaLcdNZA0aRjvScKAts8VP50RCrGrIS70U+TGFFnp6i6FHR6hhepLWMkQ9hSEoJyCimxLuaLgt8Ir8rUA4hnjFFUjSHfbmsGe9Y58egUg4TDAAFSfKCcoQcFUNIBC9rUEiJxxjZhsjD4HkcRrTqMYhHLWpDl8AOiSYqWuUYdQOnU5FpZEXsEtsu0KWIcYZlslTzFamaslOW/lazGQfePDxiXUKpiFaQzJTFyVNWT95DT85xPmOdwc0r7PqRpAeisqQs+UZd8U+1uw6DoZlOuLx6n+V8hTM1vc887u95+/jAy4dbbjcPdN4TktBPfJBO/m634+z8QigoDrSeE7zIjLSWZtagNF3fleL0UBBYRu/Z7va8uXnD6uSc0SceHtf83Y/+jgxMJlPq2hW9MWirmE5niJ8mwWkJgCwBipTPt2t7NrsNXT+Sk+LDD2TCoUTJwX7fklJksZyjtWI+mwsSte/Y7XZCDhsD19fPmT1fUNdT+m7kj//4T9is16w3O7QOVLVhEhs5cCojnfCqQStNQmSlF0/fl6yPqiL0HXazoO9aUtzTt4/kMKBTKcCI5BSxVib3WWu0KshN4IBw/2W8fPCMITAGybWRw5cVRHSRoRwaCEeZWxINeu0sTWWYVoZnVydcni+oK8VsUguGtmQjaVPWjINEqkhTjC6G8kzJ6RBvqNIWyQCUBmXdLFmeXnF2/T5DjLx49TUvXr7gpz/+O/76r37E+fk1/+yf/XNOz06oakuMnhg9L1+9YLN55PRsydnZOXUzY7FA6JzBi3xbKWbzKbPpVAzuWRD9MSa6tmPf7kW6ra0E7xUhx6HIUEq8cFol/Bh4eFiz3e4YRi+HZ13kN5njee0wBUypmIO1Rluh/lljcFXF7WZNYx3TuuZ+v2WIgcf9Dnziarli3tTMmzlPJ+9TNVOyMqj8I7p2QI0jySimi1mZLtti40wQMlo7mqYiZks2hlk9JeearBoulGWIGlVPOf/gQ3BzsjJCkDSG2HuGfc/9/ZrgFQQIQyDutygTsC7TTgx+GOk2G25fv8HGlpQ8Po0M3V4a5CmTQyyTKsm+yEmRB03uDW3uwSA+FFuTcmCiFFPT8ObtG7ZtzzgErk7OqJzGasq5k0MFwCHzS/5Z4EXFBSjTJaQY+WYAttzrh0T74qvQhyKwPA+Hxj7SZRFDeiB5T46RatLgoy8xDQUh7DN5SFhnSVYm8LEbiTaSNYz/0GF8h2A9MUZDN0aUzjS1wzkrC7QWGZIp1ZSxleAOY8AHj00Ka0wZ3znZ7LMEgCxmtdwYY6Dt97JRKkVV1ywWCwgRnQ4VnZgZ23ZPDBLIZa2W71t4wdo4+XByJoZ0rN4Ohu9DFRSTYO7IMt1ISczp2pRDR4pkFFaLWf1grcpKY7RUrQdTYY6KqJRkGihZ3FNSmGywynI+X6ExpKlnlQ2PQ0+13zG1QoxxrWfZJxZZ81mfCLOBenGKm0wZQqRrE2YXuOoGnlSOZ6s57qxGrS7heWL/6gX73Qn77QOvv/wJ12fn1NOG+nQJz99HTZfgpngrjHhCiwmJcRwYhp5d2/Hm61eMrccGxfnJFb/3h/8pV0+ek6Li4fGBx+0ND5s3vH74kgHFPoJVAyqNYmPRBms1h4o8F27+oaNsjKQShCJ7D4XIqrXi4VEKEmMqhn5CTF7GwDGWrIs5z58/p+96NtstbdsSvWe96dl3j2x2b7m4uuDq+gmj9zy5fB+NLpp6BDebIttty+3tW1JKOGd5//2PqKsKsphmUZFMIOUeV1d88slHfPjBh7x6/Zr9XhF8YLvZcf3dT3j29Cn21xRKRWL2MpUJEWtFomGM4vTUSldz8Ox2e5yrCwUm4pwVzfggnc/V8pyL8yf82z/7N3zx5ZecrLacnZ1J9sA4sG/33/aR/YW82u2AigmVQD8gXWqrMY3DmYyeWGyTiLTkxpOqzN50rGYTrDYlJ6QUcsZQT2r6bpAci6xZzKYYBe1+Wz7T9G5qyTsYhSlygIPETX6JJCaGIL6kKJp3rYToIfr2dybKwyJvjZURd1lzZf1410Eax/H480vH1Zawv4r1MNLGQJc9u5jZD4E+JNr4yD54tqPQTVw1Q+1HUBuYTKFumCwWXL73nPExcKId+2x4kzN+O+C7SL8beTl6LqeO+WqFcU7kQbXjYvk94vUlV+0HvPdrn3Dz+Y9xKjGdVjyQsdfP0KszBlULHSsPqHGL8oE4joxDTzuOPN49stvsCdueJmo+/PA7/Pbv/CHXF+8TY2TwA7vhkZEHzLTnvJnz2e4OPybGITKkUU5sCnwYeD2UJG4Us9ny2KyaNRWgcbbh7OSK2XxK3wsmV2lFxgGJm4d7Ti4uWM7n1JOaP/3TP+HVy6/5/PPP+N3f+32apqKua2bzGdOpTDLAC71v39L3A3IolSbYdDbn9dtXgmNvGv7uh3/N9ZML5ospk+mCP/iD36fvB0lKbrfEFNhuNxjj2G63krHhHH/6Z/+a73zyXX7wg9/m6vKSJ0/+C4ZhpN1v6Yctu/2eN2/fsFotsNZRuYrr66elO65xxqGaEy6eNpxcXLK+u+G5cZAV+23H3ZvP2K1v2D68xuYNKY/HX1UtBQbZYqMh6XII+SW9+q4jQpk8Kow20gA0msEP76A0OWO1pHBrrThbTljOp5wuF3z0/IxppahsBh3R5vBcK5w1mOK7yFphdC3FJwHyyIHypYwVrWc2pGTQpkIrB6riO9//T5ifXmKmC374s0/57//7/xt//Vd/hQrg3IQnTxqWqyXWwm73yGb7SD+0vHrzgpwTv/rrnzD04v9EweP6kTdvXrHZrHG24fz0Kcvlktm8ETNxFl9iVhEpnGGxmHFxeUrlHFVVMZvOSpifJfvIiy9+xt3tW8Y+4n0SJQLijWAUjKykoL+TGlZVg3EO6ypmi1Oa2kFO9F3Lev/I4AOd9/R+wCpF4yzd/p7vXD/l6uQEW12wnKx4+vSEy6v3Ucny13/9Z9zdvyVsem7Ca7rVnHhxClkx1xYbG4b7e7ArMDXZWcwYsMHg6gVTXTNtFmAa4rrHTSpiSIR2QE0q/Bjo257twz25qiVY8bzG7hQ2Z2lUdy2WhkW1oDm/4NWbTxnGPb6E1R2C8igwIa0UVZFgxiS+kmEcyDajbC8Y+tmC2lVMraWanrPbPPDq5gU5Zn79o/e4PFkW2a9Ip+SsJJQylTRWi1zKKCOeRVMaVvlddMTBg3TovGeliVlxZJIUnxJK0Zc0cmtlv4pDC3GE7OmGPUNIaKOEnNp6ch/QY0KjGeRL0QRNmkJuNKr5duXDty4yxnHEGEPlHCaDUVLRiq9bDHkoQ3KVTDVKJaWVwRZjixA8yjgzJ5RRZUyY2O12aOPQ1qKVpWt7QoycWourHRgDPqKNIiRB+FmjC55QNO5koQypYrbMRS5R9rDjwSDFKEE8WhO+sdgejIbAMZHxiE38xgHlEIiUEVqD6ONEFx4SEF35sGEcEkpZ0NDvtjyEyF038OXtBk+NaQfsvme0lgHNqCznZgZRsw+ZfQikfU/oMr4NvNl7PrSG3lgwIlfLWoE1TK+f0JwsWPXnLE+X6P0aciQ7y27To2hg1tD6jth3qLBHpwE/DrS7HY9394y7gY+ff8yzq+fU9ZyLi0usUezaO+4eXrJv7xm6e1zuycpAVfH+0wtQO7b7QNu+CzeTBbKEGXKQAb/roenCdKYYmVIKSJGhCEFxCEfb7ySYz1jLYr6gridU/UivxmPoYkqBHZGMELEqN8GZBQoIo2foO05OTkry6XgEFqRUyDjZE0KiriuUTux2az7/4lOWi3NOTy9ZLc+pqynOVsxmC5pmhrPTssEk/upv/4Lr62c8f/Y+l5dP0FpJZ71wv70fGQ70qSAb2nw+ZxxHCWOaSgen6zrGceA3f/CbHCSCq9U5zlbs9ju228dv+8j+Yl7PVughosdEDJncJ1SKmD3gII0Bv5WutZtNULXGVoqQA1QZ5zSutoRcciuQTdBo6fTkFIlHo2KFtVbIdGMsRYAqmRvvnul0wGMXP5AuEgtFkiyNLNPRf/9cpos0FPLxMz3c50d5T5mipSLH0lqcgnvvebnZcDMmdjnT5kwLdF1kGCOtj7R+JMRITAntRiSIyWDbObgKu91xt++xizMMmYXKxP2G2y7Sd4ldq6kreOx6frbb88nTU5azhrp2hO0GncG5BjNdoZ9+gvIdOg1EItFD2PekGsI4QOxQYYfNI53v2e133L6+wfeeqW34+OMPWK0uOL+44vzygmHsedzcs9k9sO9vudve0wZPqyy+35ADKCVQEF26eYksydfIJEkya+T99IM+6G7JOdF1rfyLrKlKvg4qAbHkGY10fUtVWR4e7/jhjwYh56TEYrniN3/rH7FYrZhMKiaNw1jJOkopi2Y/xJKIG3jy9KpMWwP/+t/8O774ynF6esJv/MYPiqfKHpOad7st+3bPdvtIjJLUfHFxzsnpGSerExBOoDTFTE1VwTBYJn1DVVXE6NluRYoZU6Jy4ilrJg3OTmTCkg0//tnPmMwE8X19/T6LkxP63ZrN/SvG/SPr+xs2j7fYPJBKorgpUBNV8kZ+WS/vAwnZO7RSxYQsKgYf/FFu45Ri1jgmzjCtDd/96H1m04rKaRYTsDpiVMa4g/QbaYQpjnu80kJtykTIAUUszQaBPSjlpLgwNWfXHzJbnNFMT7h+/xOCUtzvtvx3/+1/y6c//ZT13RajHKcXC1Ynp3z3ex/z53/+pxiraCYVi8Wcs9Nzur7ji89fMJ+dSQp4JcSz6+srzs9lH7q6umY2m2ENDMOOfujpupacRAmilWa5XB6xuEZrmlqmZGM/8ld/+ecM7Y4UR2azJX3viTHjXI2x0viSabxlOpVAP2MEvW1cjTYyJdnvBpEw7nZEL/JHP8qamZ2hNjA9qWj9DfebLYY9XXPCfHbCdDLn40++x2Qy4fHxjvXjLftxTzu2vPria/LTq6Mka9pMCSljqinTekUzrbBGJqzJzBju1sRujXE1w9QzhMR219KqREvmMUUGBq6nU5pJw01Vsx9r0hAYupF+fYPJCR09cf8gU3YFVhe5vtKgM4lwlMXG4pMorVSiAnOko0IcB/oQ8NoydZbZ6hx9csqXmx366zc8bHY8OZ2zWs5xTnwoysZybk3E6NFKgCEogWsoRZE9vlPaGGvQ38x20qL1M9pIvIQu3mVyybqTM6yPByQ2hHEU76iCMQzkMZGGQB4TdjkjW5nA5zxhO80oFzHfsnr49nSplCQpUhUDYzlKHvSyWjA/WGMF1lK6hFobdNIoygH8IKZW5jg1UCozjgOukgOAbPyR4FWhEhmUFVNMJMlGVKLuVdFbSmgR6KwP6okjGeGgQzuKsouu+vArH3Vq30AmZtFN5HSIni9ovG+8HwfZ1bG7CfgAMSdGEl1IdEMk5kjAsw6RRx9YDyM3+5ZEQPmIHgOhqsjWgaupp1NOUqTyHtu37HyP3yfGVrwh2yqx1YrtZs+qsSLXStLtt9UEpxQm+JIaHkgmM1K6tkbJgXrswLeosWfsO9rtns3DmrPlOc+u3+P95x+CES12jCNtt2EctgS/J8ceRyyj14yuNNO6ZhwVXcH+kim44ncFRhGPHLuTWh8mHqUe0SDz7kBK7/S03gcpMow8NHXd0EwCwxBog0ymEhKQxk7M53X9mkl9glaa4APtfsc4Dkynk+Kp2KNNQRmGWEbOudCAAm3bcn9/z/3dhpwMq8UF0+mclAMxVCiUdH7KOH4cPY+PD1jrODs7P46YczrgjdXx4Raxr9y9B3/AgZ4To0AUVifndF1HCJ7tZs10OiFET9v+8ib1AuS5JTslxKhRsNf4TAiQrQZVGgM+o7qECgrrIdlInippNhy8EiqTfEQfPVgH2IPgilOWz1MpJyGIB1Xq4bk+3ItZgjtzIc6BLuuS/DsOHg6t3i0AHCSkWUbm+ZsClHw8iBw2ghBEQ96OPalSPI6Rnz1suU2KNif6nOkz9HvPMEb6kBjDKK+JjDIDqeignY9oW6G7nn0/cmqnODQ6BeoxY/sIo4LQgHb0MfK2HRmmFT5ljI/EzY6mlsO5ChmnK5QDlR2NDozakFPGqUwXe9LYovwe37b0+z3trqXbtpwtzzlZnPL86j1Wp5c00ynWGrpuy37/wG53Rzvc4vuNbNZuwrQ2pciXNVOkxlnoKiVlVibQ47HISIryP0gnLwa0kqmQMe44ORKJU0dqaozWTGdT2n3L/f2d4GFDYrFcMp3PuXpyzWq14ORkzqSuJROpIKWDH/BBsO2zmWji+75H0pRH6saJzt9ZwZsrg9aKYRhRqqPve5lIVDK1XCxqMpn1+oHpZC7UH6WL6bdM1WNkv98SQ6QfejabDXXd4Kyl7XasVmcYZQgxoa0jpCS+Fmdo7IrK1dSVY+hOMdUU7aaM455x2BF8S+w3KMJxr/tlvVL+xp7xDQ8G6Z000mrFtHGczCcspjWns5rrizl1ZdAq4kwqKO1csJ1QtAvvnuOcoYSsyX4vEjQhsmu0abBugqsmzFbnXDz5iPnqgunslNnqlLv1A29vbvj8889Y368JY4TKMV8sWa4WNJOK2/u3LOYzJpMzgg+4qhK07r5lsTjHWgk1NtYwmTQoZairKdPJRDC+WehAXdeyb3e4yjJpGrS2RSJYvcOSakO777i/f+CLL76gdgZbsn6GcRR5qJZi3tnqmK9SubqY68VbCaJY6fueGEaiH/FjL7I8pLmSlRIJWAKlA6Pf0aY9G+WJ4yjmfKWYTBuunzxlsViymi3YDVvuHm54dfOS/WaP0xVWO5pFT7JycLYporLB2AprKgia5AOh60hJcb95w6YfeGj3DFbTOc3eaoYUsXFKHTQmJ+J2w9Btod/Srx+xjKjkSX4vp0JJ2Ds2o9C5pHeLnD7nLLLdnEkasBpVJmqixU/FnwzeGHxT4Z3hcez4et3SDyOaRNU0oBxYhbZaGtaUs2j5CySlXpVO19GTUQ5XxyR74EhT0QZtiy/1G1AShTTHQhTBn1Ji9jYyUpHElyQ+LlAkZ0hOwotVdqS6KH3+oeVSSml8QW/ponXMKROjp9YyNtJknD2Et4AycoOmlPHBC0fcR8FnVY1Qo2JAmwxhxDqLNk3h28ubMY4B5aR4sY1j7HbEKFrMY+x8fpemmIuoWpW+n2xi+lhw5Mwxu8PHIIeDwwKTJbSGsnhZ56BQqFLRwR1GsQepBHBEz8WsaUOm84m1D7ztOjY+sx8Tex95GEfaKMmtCUVMHjUM6LYn1Q3YCttMOJ0sqHxLlUbO+j2fbTr2u0A7QDU544aWF+vEzx/W/Nb3PkDHRNq3ZKVRJIietO7RzUooGZUUOno2QU0qdtvAPrX4YUvYbNg+bHl4e8/dqxv+F/+r/4LLq+dMp0uGcZTwnH7LenOH0gPWRJKR1GaFQuXI0G6pdYPTlhwDUR28K9/QC5KhFHGH65tMcwm0McVX41FZCB0oCTC7uX3Lvt2RiSwXF1jXYHRF349i+C9V+ZAHQnikaz13bx9Lgrthv9vy2WcTmknDYrEgk1jM51xcXkhHIgcxmSlJDN+s9wxD4i/+/N8y9PD0ycdcXlyy7zZ0XSZEh/eh+P01H338XV5+/TU/+cmPefb0PWazOUfTeco4V0mBE0qnNmb2+5YQxKR5YLcrJfrbzWbNfr+lbfc83G/4T/7JP5WOlP3lLjKS8YRJIjUZhSWNEDzEoFBVJYeEmLGPHus1qoM8KEKUQ4Sdyvte2guMuw7jBHtsnShYVcFV+xCwdY3TVtYKM1I0lHL4P3i0Do2HQ81Y1gSrIBZfCBksplBkOC74uRzYdPlzScmUNo4HZr689sF7tt3Aj76+xc9OWSfNl7uOeyBkMZDHMdNtevwYBD+o3km0JBtIgdY431MX9CXbLdXyCSZGtM2YIWOCpsbB3FEp6VLdtlvG24Zu1+GNhmGgOlmhVGZ4uGdot9j5lOrslKb2RYaiaWrLsOvxYU8et9y+fcv28YHdZkvsA9//3R/w4QffoXJzIhEfBrp2w3pzS9c9EvyaNKwxsaMxjnrq+PD5NW/ue97etsSgEPJRaUgcdMYA6hsEFTiGMYIiBs8QAsEnxlGITuLf97x5c8vZ+SnPnj7lahh58/oNbXvH/cNN8Tjt+OM/fuDDjz/k8uqSJ0+v+f6v/ybaSIMoxkTXy97kKoNzNTFFjLV855PvkolMZw3NpMIoVxCxcsKtq4bKNfjRc3F5jtaG+/sHppOG3X5H3/Wcn10zqQvJpTQfnBNdu+4sxjpMMZ37UYhr6/Uj3/nOJzR1gzWWf/Rbv83twy1d37PdPVKbholznF88IaRzFqdXnD/b8Xh7z373wG5zy9uXn+LYQ/ak8O0Y97+Il1amSK3fPbs5itdEppqCFL0+n/Hs8pTz1YyrswXGlEIhBzT5WMDK1zw0Pzma4w/jHh+ke22VNAtQFu0a6ukZ09mK+fKU93/1N1munlA3c1w1IdvE3Rc/42/+5i+IY9nPjKOezPjkOx9xdXXO4+M9kJjNp5ycnvDq1RtyThhrMMFwcrIqSd+aqlbHotrZpoTvxWORsdtuWW8e+eDDDzhZXWCMYzab41zphAM5KV68eMGnn37Kly++5Mn1BZB4++YlbdcTShJ6SIHlcklVVXRtj7E1MUpRMXhfcmIS49CJr6BMfo7NXfluBN/St5luX6FTi1aZjV8z2C3jsKXvHzg7PaeqJ0wnV1xfPseZzJubr/nJpz/k73701+hRYaJhtuoxlcHmCmtGhsFjlidMVit4/QabExjFaDT/5u/+khcP99wPHfX1KSympGktPrQw0hpHlw37n31GHvaY1OFUJJgAKjCmlqZq0AH6oZfzZSlEBZOsj43rTJbGLVIgHHwqKmdUjhigVpmQIq33BDJ5ecYXd6+52Wzox575cklGUSXN1LjjFI0cy4xESfO8FBtkCfRTR2phaWhS1DtKlSRzzQG6k1NmjHJv5Sx+5jEEObe7itrI15Q1VhN1Op7ho8lEJ7kbVmsmRsz4OvwDh/HZ7UFjD1mnQn/JxKwYvccYsFZhKtHopSzJuDGko8Z2Mm2IRStpksZQQ64wlcYnoXCMw56kDEpbQvDc395zfnaOaaxsskm8DhotY3/vJZ1Qy/c4GJFyysTSUcwZfEnkFklUOpjx300u1DtCBUX+pbPsaoKrFWxmStIxPxqglAar6YLnoQ/87ZsHhsmEXUo8DgP7IdMOiX6M7Lp9IWDJwTMWDR3KULkJ2lYo2/DmdsvJe8+FnR091aiZZkdqKubLxLBpuelHvoyOs59/QRUiaRhw1rCoayqVae8fJKX8dMHk4/exKTJ0A+PDHZOU0cGRzAJzWnNtL/j1p9+H3848u/oQjKPrBu7XL2mHNT72xDyQGUl4Igmsw6WEIhBU5snZgso5Bg+7fixdyoJjUyI3MeabdAqOBBClxKuTtfCbRU4n5nmtKAFFkRBG+r7l4sJg7IScYbvb0u73+HFAqSREhOiJYcfYjxLYZzR+HHh8lM/VOYtxlsViwXa34fr6iZgJvSfvEk1Ts1iu+LVf/Q1+9Vd+gxwVX3/9Fa+NYXUywVWaTOT+/gZjLScnpzx99lQKlhCESqYNTd0wnU64u7sDMjFmptMZfT/gx479foOxkt1xQGEeyUfokgJb0/cjP//8ZyzmcxbL+bd9ZH8hL3sXyDqRDeiFJtjy7BkFU0O2iaAiaqIxQWNGhVuX4LchM25H+loyaoyxWJOL/E2C3Jwt2F+t8SmhQyAajbIObYTUE5NHAyFFYhTPxqEgdtbhw/iNZkIZUavCKFeH4C8xpx/55jkSUhAZqFKAISNj6u2+5Wdv7njxuONRT9jnQKsMawz3D/f4YSSNkYqKHIXKl1Uikog5EVJEF9yNQjr829AyrWY8XZ3jhj0KD86i6ylVVTG1E6anJ3yoYdHuqeOWP358wSpnpjGTdi1pGFk1Dd//6ANC36EIqEpRPf0uYbfF71v8fkfdRmwyKD2nPv+ANH2CusycnJ1xdvmEqp7hU6TtHmm7Lft2TYg9KfdYk3A6o6qGsUigKneGTVkMmNEWDnyUxpAWLKhMNf7+dTgQSjaETHmMhZQHMd9nISu1Xcd8mAuGtmpomilN09H3nWRQRPEqfPnFT9ntHxiGltXynEm9wJkKRUBrR0yZ3a4jZ9i3O9p2z/PnH1BV8rwaXR0bbgAOxepkSVU77u5uqVzN6AceH+9omicYrYDIv/t3f8L3vvtrXF5cY6wmBNlZjU5MJrVMM6NM9yeTGTkLjOP+7uFoFK2d4/RkxelqSTd6mgIJUc5hkqZSmmwrWq9YXr5HGAfmJ08Yd2/ptw+067v/CE/7f5hLVRqTkAYgAm9RGpxVXJ3Nmc9qloua7350wcQZaqtp6kzOQSb7KYA+gBrkw4slrNVoyV1JKZKIAjWJMq1MymLqJa6e0czP+Ee/9z+lms6wdcP85ILKzkQOqRLrzR13N2948+o1fTsSEkznS/7on/4Tvv+DX+P9958ymTqM0Tw+PjIMIqtdLhdUVc1iXqa7yTCdLRiGDlXJ2rPd7rgsgIQYwdqK07Mzlssli/kCkKwhayxGa8ZRaJFfvXjBn/3Zv+XnP/+UJ08uOTlfkWLk5u4t9WTOzNZU1ZT1ek0Mmf3Ysd1u2e87OdsefQPl3M3fB2so9HGqFzOcn1xxtqq4OK1Qmx4XRlxKWN2T045hgLc3LfP5irqaUbsZZnbKxfn7rKanfHTxMbausJMGNamBCo3D9hV2foLTDrXzDPctqZqzVxV/9eoVr2zmbmq50Yi3rxtIvWY/BrooZ1alLU1/L4GvZFLQRDxKJ1xtyCEdVQU5piKT1xK+WZqjKSfJaCq+4wRH+I/RVqY8KdHnRKMTKgXCmFh7zXR+StCZBwd/99hzPiSuJ5YrFHVlJKcii0dD+uaCmNWUCIYS+KySUM+UtiU3qCqWAVN+r6LtenyIaFdjbCVkqyQFxmRSy89kKzabNd5L7ld+26H2WSxrdWZm5ew9JkXoPHFI0P8Dh/HFtx5t81EKpWsFBlCZShVOvA3glSThKjnkR4OM6pQiW1uSCEXjqPVB8vSOSCTdO0ognnxYOUViCBKcRdFhFt3b4S7Xxcj596YWBdNFPhQb6UiE0YrSfTysXPK3g2tfKsKDRyMfv94BP5lSEkZ8THTJ8+AVd0Pgi13HMEa6lNiPI/0+MvrE6CO9H8jlIJJSPiaXYzQxBarYUGUJc9E+lM3UY/QU5yy1q1k0htVoqfHcDjs+e+jQ/YDft8R+YNU0LJuaq3nD3DlsVrDpcPM5WYsHxoVEbSAbwdhCkOyPJItIP+zoxp5u2NAOmxLyk4lxlETqLJQmZYSy5RjRxtNUmvlE0fkk6ezkd/I4OPpdDte7A3X5TJHOb/mP33WXy7jPj4HtZsswdDT1lNVqwWY9BzK9UfLepnBE1o5RCktjdIEWyIJiRqEKeT8SY+DTT39SEldd0bBq6rrmZHWC1prNesfj45a6aVBqWgzdshmNfhTZTloSQhBK1OZrfAicrM44PRVdbSwb14E/frjXDqNQrTTDIP4Ma628D1lRuYarqydoZQrv/9uxqX9Rr7qT1NCkJBXaWRnP6yh6V1UpqDRZJ4JM6HFYwm4k+UjsMrkufW8JJYWSe5OGHl3VGOOKrlj8DLJAq6Pk8Vg8lGmnUkqSX8lHnHA65PkcJ6NlqVAHnKM6Lh35OAIpv5+VKLpywkf4/PUdX9xteN15/GrJZoj0ObAPXkysYwRfRtnvdIWywZXXp7WEBsqEV/45E2mHLXb9BmwNRqgmg50Sqhkmw1gZhqFDDzu+7vY8pkwVErvXNxifOJtOqWcNH57M0c4Qx4jdD9jsaNwMPSaUnpKVQ5mEOpmS6pHsI/PFDBDa065d046PjL5lDFKwxOwF3qBl/Tcp4WJAV7CYWBbzGr/Nx/dMyjXedZi/MTX+eyhGpaQjl4AsnPmcy3Q9y+F8s13z+vWr4pVomE7nDL3ozHOSkMW27TCPjzhb8ebNW+bTAWdr8fvZA6DE4kOg7wfatuP8/OIdgS6KZED4L55+2FM5IURdXz0pvw+z6YzgI1VdM5k0pIjsj9GjTVXCzYSWNZk2YipWmslkWoJepVkSkxTEWmv6YZCDaYp89fIFz67fYzFfyaSm3Zdk34SpK6rJlKqZcBLfw89njMtzZquL/zAP+H+EyzhLKvujURarxKs1m1RcXyxYzGrms4ppragMOAMaCac8dN0VvJPr6Xehc6kYfA9MH0XBqRpHPV2yOL2kWZwwX12yunyKqWqUtRhXHeW+KUdubm55/fqGu9s1H3z4CdPZgtOzc3739/8RFxcnzOcTxnHg7OysNN4AMpvNlrr2XF89YT6bM51Mca7m5uZGpu1aQjfDiVDRxtEXSbnGVDXWViK9wZCy4tXrN+w2Ox4f1/z005/w5s1rRj/IxHwcCTHIlBihqvkxMA4CXBGSXpbg0iJplH1ZPgd1mAZBUTWU91TJGcoojVWK0O9pyFhTSH5EMp6YB1LKbNtMP3bUVU8Iico6KmtYLk5kMuBkapuxyKGzKuGniTAOvLy944HA7djzd29f88XugW0caW2iG/ckrwoJL5VQZ7kPYtqRStaJivY4jUxJE5M/fi6ihlElQLisM4e3wyjIMmFSHDKRtEy0rZZiLINNkcYqKiON14RiAHYq83aQCQc5Ma0kLLiymsrpo6xXl/PU4Th18BpnJe/9gYKqjXx/Y0qGm7GC/zSS32KdQ2WBA9iDNSFnxrEnZFGE6C6RuyzKDiP02OyBkMh9Ju48DAnlv93z+q2LjPBmxNaSbmgAVeeiIcs4k/Em4k0i2oQywrdPKpFs8SsoRVCGZDJZJ5RJpWgQkgfFBE7ByElnwTCZTiQd13tCGcnJSqGJ4fDqhNVs9OHrpSJzSuSYil46o3I6FiwZjovO4RDxDjkpaYvHzpk6aFgVR8R9zuz7kXXbczvAm6C59ZmX3UjX9owpMfpAXHtiKB1JleUQXMaNyh68JoYhR6wCS81JXZG8Jwbw0aOLzrmqLFOnOJ84pqnjzWaN33vSdk/3sGZ3c8+qnnB1suKf/tZvsphMMEoT3zzgJiu0sdi6Io+gXI1SCUUiKU8KIzEM9GPPtt/SDjuGuGOILTnLDelTwGePR8yxRms0YHNA6YHGOuYTuN+JdInyAKik/p4G+Jt0nhRlYpHLIia/r44HhmN6fBKfzuZxQ7fbM22mLE9WPDw8kspkahh7yIKuG0bpbkfRvyBGKklbDUG+9tD3xQyaubi45PT0lIvzS5om0DQNs9lc0LoKUgpYo3DOSW6A6QEYhr4EvnmGYaBt97x9+4oYhTJ1sjqlrptC8DrIP2QREKNn4rBMj6OncgrlZMFPOVE5y7Nn7zEMQ/F3/PJqqQHq3oH3+JigC9i5FZ1pyLDPmInDTCw9iWgyyiqq04rUSpGRu4A+qY7hdoe1IMWE7ztsM8HUNdYaRp8ISQzc1h2KuzLmLh4KUzSuMRcKWvhmgcE3TryqSC3faWQ5zHYLTldpuddTlnXCh0zbe3784i0v+8ijclgcj6OnH0eGoWPoBlRUkg+kgpj4lDridjOF1GdMyQ0pCErrQMG6fcD2e1AVWdUMXqGbBbqZY/Z71lOHT56x3bIf9lRZ8onevPmSpW048zPi14Ynz38PqxSx7VE3j9jVKa5eoLtI7RSKiDYZ1yh81eP7Dq0SwzjQhZ67h5eMcUdSEVTEGkVIIz6OxMPHBFQkdJ05mVuGYNj2bSHNKeCdD+vADv6mLPVQbGilqJw7Yjtzkk3z8Jn4cWC9DoxDx8cff4+6njCfw+Pj9pgnkXLCK89uuyNFeHn6ktlsh7MVYRyYTCbM5zMuLi8Y+oGu646TRj8GuTcLpjjj8bHlcX3HannGfLbi+fP3uX+4AxSnZxfstnvm8ynn5ycM/YDWMPheJMTlMGONw7mSuGscxlj2+x3jKJ4tyEeiTNe17LqeuPN8+vOfopVMXqxz3K8fykHDyATeSrNufnYNqxXJ98Sx+w//sP8HuqyzZWqYqYzBOcV04jhbTXl2uWI+dTS1RueAUe4IbDiGAisp4t4hQPUREiN6dAG5aKVQ2aJMjatnnF69z9X7H7M4uWBxesVkdXpcH5SSnAuKSuHFV694+fKG3W7kd3/vD/jwww+4fnLFs2eXjKEjBPFRXF1e0XYdbdsyjp77uweaZuQ7n3yX1WqBMY6UEo+PG4ZhDyTOTs8JXjIZhmEkBMlbElOvI2dHTDCMIz/79DNub294uL/nxz/+IZlIVVmURr6n94xjJEZRe8Q4sm9bKWgU1HX1bi8/HG7LnsqhH6IO9YciZ00qc0jpX0aG7ZpZJQGTIqkSEqPJ4rna9S1kzaSSjI9pM2MxXaKrUlQkg8sNSck0KZmKkDLR9wy7DT99/YpPuzUvh5avtxvu+z3JKfTMsR26IgODA2hClBKeREdSkFDYFDFWPCgpS45VKn44FMf3F3U40GdpNCgkCFbJQf4A/0gpkqzEAuQosIKZUsysIUcYU2RImW3W5NETktC9llYxt5ppZTk9WZCIQjVVHBv06hv5LaDKa+b4MyotRnDrKrAW7SqMloaHc07OYwU+kXPC+4FNP6ByRIWE2WcYkNw3ayEKCCSPidRn0iaggqiRvtXz+m0f7PrCEgbP4BM2Z3Gea1BOQfCoBCprUlOJnEmBqwyxFvSWMhA2geggVZCnkcY5bHHBW1UJWcpWKGsZBw8opk3NOHp8AGO0bC4aks+kIOExqkwaxMBbNqaSHn2YZggPP+OUErJJVoha8V1hEUMQeQ1Q5hxkJabiOCZQhpRh9IH7zZYv7tZ8fr9jNzljqx37DA8hsr6/Iw4B5RUT25QCJ6O0FDiJXF6PLjel3JxjGFm3D8RXPyQrR0iKwYOql4TsyKbCPr/C+45q7DD7R95qRQ6eYHp657mczRhs5v/+6U/4+OKcE1ezxPDedEo1X6DrCXkyJQ4tyQeSH0ihJ+aOoPfSTZxlqnmDDoGlnYlHYLulqTS5T/hO0r0FbqZwaYbKimnluDyd8fJmLwnpSpUFXbJKDov6uwIjF13j4QAhK5bWksAccyCmgNH1sSDNCYZ+xGjDyXKJH0f6rhNNaRiYzSa4ymGdo21bDgVGSvHIP0+FAZ5zZBwGHh8faOoJi/mK6+un1E1NVUkb3fvEcnHKanlO1/WFMOVwdmQ2PcHZBkEGagYC1jb84Ae/ze3tDa/efMXp6QmrxZmMkEPCGMXJyQmQcc5xf38v/OkYcK4CDH4UQta+3WKtpqpqHh4e2G63bLdbfve3fv/bPra/cNfQ9vgg3bPcZ8I+lxFz6YRtAkkn8hAxZw7mmr4JVNVSFrs4YqJFY2UxVYaopMg02uKHAesqXF0zbSq6fcsYPKmusM6gdY3RihgGmUWUjJJkgFw2iaSOnfNvdtBTjMfuEeQykZQJlTZlPK2kK9/UNbdv7virTz/n5QDd/JxUTfn6YXOcaqUYsKoiGTEOpiTNCFUkocaaIs2Sg9Bhg4z9SN3UkstSWSHrhUCOAzqB9Q+YnSLeTnh0jocUyUPHdFIfcbz6rKKZrnjE8Of3r/niX/1Lnk3mfDxd8uRxzdUH77E8OyM6R04jOmaIkXbsGGNLyC1GZ7yFaEbcUmFyRT90tG1PyFoaEioQ8ThToY2myoZhfKC2c85XU76+7SX4Scn7z2GKnb/Z9DmQ4N6l2h6aQoIWlecbZBP1YZD1RGeq2jCbz5kvVhIYuFmLtDJroheEbvAb/uLf/SnTyZyqqgDx5k0mEy6vLrHOHhstz549LwWAkSm5qlhvHvn66y/443/9/+R73/0Nvvud3+Djj36VYQg4W7NanfBYr4Ue12be3rxhHF4wny34wz/8I5RaEELAF9mfQnxs+/2WoeyDi8XqONUYhl5oZhhm0yk/+PV/zFcvvmK3bwX/PXp2+y1933F5eY1WCmsrMlDPFuQ8I4Vv2Yb8BbyaeoquaioNJ7MGazKziePyfMbJzFJXGuekUKtcg9GWFFUBNKi/P1DPRdJ9PDHLwNPoKdpM8dEymZ9x9uQZv/s/+c9w8xMJqzs0xkiQIz5Fdts9MSS0cvzxv/5LTk9P+d/97/9Lfv03foWu23N7+5r/5v/8X/P02RNOTk44PT2TyQOi83/65Ckff/QJk8mE09MVo+/527/5C/7sz/6M//yf/y+p61WBh1j6YSCmTFNPqOuaQ8MjK/j61Vfc3t1zd3PPX/y7P5N73o+Mvmc2nbBYznn29LnIqPYDu+2ecQxlSKFQyh+9gsa+g/EcwAp/rwFTpvEqCSKcQt9sqoaL0xnXp5ra76hiQKGISuNTj/eZMSdqnUk6Y7TBzTPaJqIZ6dQGTSQMihg0MdXEyjGg2ITIJibitmW4X/NvXnzKV7FjneRc0teJpBNxHBhyLK9Jo+07sIoUEgqNkuwhrVFlH4rkovowpWBIJK1k2qA4+vLQSnJLtBZfVVMf5ZPBjzgnIAk1BJa1pQZ0TqS+p2pqdO1wk5q2bxn6ke2+42d/8xmfXJ3z8ZMrTk5OiOlgxJdJvDYWYy0ldOy4J4jhPhNzximNthWmasjGghUvkkqJupIpoB8DfujKNE+hQkSFiG4Deh/ogyc1kewiYZOwncEGTaNqVA5kJXTYb3N96yKjnwGNleoUMY5kpaRS6g06KUzSgrrNcnDWfSZEVUJrEkpV6FpDrQhtJC41plGYRpOCVNNRJ0xVSVq4NsTgS7cg42Ms5nCDVjXee7Roq5DshSAdieLKl/tAoZ10i9JRY62KhvDgxn9Xph8otgfMbiq3VEzlMc6CEPzRV294uR+5Cxo/sWzGyM57tts1YQjkIHq2UUXhG2uKu186ccpIqvEBgaayOo7oB79H40jRoIOSMKpSscavt6zDiIoe7QecLTKh6DFVJo5bHsaOV2h+vrlhaR3P7IRf6ffMz8+oVgvasafRkUpnGjJj90DOPZgBhyNaSMVkmbPBGMWkmeOMIFXrZkJWSFqxj/h+IAePzhqXHdPplDQMDIeJUVmYdOmuQXmPvxF4ePwIytjwkPYt+0BJlC9/7vb2DmsFHXmyXNHuO/b7jhQl/E9rJanJGowxZXM+kBnyUTp1QIv60dO1XSlKNCprgk9sxr3or53DWcdyscQ6ef3LxRL7gfgo9u2eh/tHajejqWY0zZTrK4d1lpjCu+7RYk4IYzkwRUn7jvFYPCyXq1I0aybTRvCYRtP3fUkRDgzD8G0f2V/IKzQZyn09DgEVAxojEqfGYbXFKEOVAZ/JbWIkiLRwDMT9SHOihYRUSTdSKy3dfmUlC8UH4jBiqgOBQwz44mk4yJtKW45vHFr/vYPt4b49bLASxFUOwkVGIMY/ARRkNCFmdvuWFzdf8+phy8tdTzw5p8fShYBKGX1YZJSGWkyCUdryx3wgytREXr8kNR/oSjKVi+V5yOQQiaMn+ATWiOxMZXTqiKkuh/fEfhSjaM4JpyHsEi5rVBd5iB03+zUvqjt+9XHF8+RZbh9pVcbGganVnE0axt0DMe3JDEx0TcwSjKhqR2Mstna4ukYDXW/pe0XbRWk4oFDZoVHUtkK5KY1zRC/PYuadN+6Ymn74GYtuIYsm49hYOsgr3zkG5TAZfKRrex7uH7i8rFgulpycrCAn+t7i/YCEiUtzaog9KWVsL3TEcRzZt1u6fo8ra8BsNiV4L969LBSdYZCMlso1PH36PrPZipSg73rqusJVmhh7qlpSlLXWnJ9f8+KrL7m7v+OLLz/n8uKaA1kuRtnvrHVAJ7Id9W6ScehcLhZLUkr0Q890OuWjDz+grifMZnOaeoJzjrbbU1WVhH96T1VVpGSIMTAM77JbftkupWwxQSucm1C7SF0bKmupnaayIm0RqY/4++IRJS1yyNms4kCAy+kwGVTEnLB2iqvn1PWCbCrOnzzj7PoZZrIEW8lhj0xOgXHsBUseo0zVo2K5POWf/tM/YrFY8PTZE6bTmrv71+zbLb/yq99j0kww1jAMI5v1mrqpWS5XzOdLmrrBOfGjvn7zNbvdI01T4cPAbD5h0kzIWcKBUxIikCqhbijFzd0NX7/8kjdvXvPm1Rt2uweGsScGUWYYY3DlZ+i6vkxQxjJRlysjeFKl3oWVwjv1wXGieExUV2RTRpUqo1WiqSLOeIzSKEIxQ1N8qDKtt5XF1jVVXZUAzoqQMz4NRD+QB5myhKDIeoabnnPXj/zl118zw5F6T7vf8/P+gZ1KeAXZaKJTJK1I2qBzoY8BqERUCazCmZo8iqdBizYHVVmUUeQYoEhXj6RRrUhFrppyPDZ+JvXk2ACqqkrARzkLsKgP2KyoscxNTfIjY4joSYWqHNkYgg+MXqY+Pivc8oK3YyK9uadpJlydLJg27jgdD1HoZsa8k12nIv1VCABBSHcGpQwhZlKI5CCwgzwOhLFnGHoUBzBNKh9dJEfP0A+YxqCthA2abaYp5+4QfCFo2bIm/X+/vnWRMbgsFBel5QNMgjDFVGAzOmlIirjzBJkhSXieLmFXIaFCRkVQAaLPYDNZQ64K9ozig+Ddm5hTRJmyACTR+mstmDBlLCpFgaqnd4EpuSSL842HIcZw9GQcZ3zyRHEYO73TR0n/MB2D5A7FBfgY2feBL+823EXDvpoSQmY7BtphoO96VMwH4BU+Rw5cgKOk4jhifbeJkrLobZUiFC8BSYPXJLxImxSEh1amBDkJutMq0U+mwKRy9KMXJGXShF1gpi33bkIMngvfMfcnvO22nMwc88ZyXjnG8IjKAyZFgrHkKIuG1RWxHKoMEg5DpdDGopxlGLwY6vOeNLTknHE5MJvVYhEv2QDvNod3qDXKeA8oHcGDRCoVSZq8N4eD1LEgJLPdbiW9ta5ZLs9w9tBBzvjRC2K5bMryVou0RutDZ1o6k/L9JQn8EOy13e4EBWwNPgRm01lBCFpms6kYTJPkadTNhGEYca6ma2V8bY1GW6HM5Jx4fHykcg1NIxtE14sW+2B6BznQrNdrlstlSX5NWKeOk679fs9yuTwGYv4yX6ERrWcOsoCRZPxrrEa7YlhTBhMV5EgYE8l4spODdg6Z1Cf0VIr4XGBbWmmsNcRBCt4wDqKTLbKoGCNY2UwOVy5PJaXIKI0q0dSWcfmRbMSByX+Q8EnDAl0QgEqTosKHyL4b+ezlG952nnW2+HrGOHrGOGLUNz0GMo5WOaNi5JBibQpGEg5LkmQDlVd7lBkGjkuVTP6il8aMCpJcnEZyjuVQZhhTlMIoRyJC39IJTNbs+4H1oLnVBmzLWBtOQ8ejijgdOZ3W6GrFODxAbtHKk/1EJBJGiy7d2qJJNgUBLp9tyEkAEAlyTOhcskiMoqlq+ihrxTevb06QdJHDZZDU3QMm+xvX0UenRRqRU2YcAu1+TzqP1E3FbDql7ztBkmYpxPKh0ZA9OWeClqaKFPOZvm9xZa3xfuT+4Z75bE5V19SpOh5cp9M57z3/kEkzh6xYrx9ZnsypjGH0RYeeM2BZLk9oJrfsd1seHx44OxUTr9aacUyloJUmVDiiJyWn43BPNk1TEKKRpqk5PT1Fa5l0TCfzUgBLMSs/i+QP5Sx74ej7/38f5f/RruV8Jc83iaqeU7kRa4vk7iCBylnkNaUJ+a4BKcWo+DCkEEkoOUsUs6yrT5jOVszmJ2AtF8/e5+T8Cdo1pZkgX3P0A23X0vedyG+HkUNa+2/8xq9S1zXNpCGrQIyeTOK9995jHEf8GAq9sadpJsymc5pmSl3JxC/lkXHsMVZzcroCcvEFGFKCECJJQayEuifxApmHhwdubl7z5s1L3r59Qz+0R5KeHAwlEyb4wH6/Y9/upLBFH9c1kIm71uZYYMA3iv1yHc8vSpqocoTKKJWonMjoTYG+SM6EFogOClfX1E2Dc/J3Kaq1yMRTAB8I3hNiImSR27d5xs3Q8eXDLdc0jMGzHlpuYle8rQY0BK3JRolnNMu5MaXivjAF6lNZTHJHeAdKy/5gFFCiFbQqh3WK2qT8zAVdb4wtPk0hHdbWYZUSb2uCPEQsitpaLJpR5gmoSY0qzdbYe3IsmFs0arpk0++J7cjk1Q1GK1KesphWaGPEBpDjOxWMkqm33PPIfnr0tyl5D72HELAG4hAI40AYZZIpKooEWtZliY4IVFUtriQf0V0UipjNjCmClYJMT6pv9bx++0nG6KmsI1tNtEq8BAaUjYwTQ0iyAYTTCXnM+AAqgr5Yyihm22IGg+2VMPB9xFTyRg9mJOgktBirSMGTY0Abi6snQotRhqQUvQ/gFM6UAJIYIEaClz8jct4sN2yIgocsWvx3D0gxXZeD6TcPv4eOWFJl4pFFY03WpJC5W+/56599yZsu0U5mjPWCt/drSIGcIkYZqXrJ4sFQUgwcDi/6qAHPBB/KeTsXTa4IuDSaMI6EMinINSjlgYTPLagKpQzZ6IK/lM589EEWIqeJWBgzj7Hnvt2zZ+R7KvDeMPDXDy85fXbB5dmcejZFu4DOMlKTtHVTsLwDCUsKib7vsPUM4xy6rpnMlrjGSGDUpCUMe0Y/YMeRCzSeyBjS35tkHN//wwHKSKZJ0kXTrigLf8TZQ6cpFQhA+fcp48PIZvuIfp1x1sp/7zQS1isY3GHoJFU7BUZ/KDQljGY2m0lnOwdyVscFN2f4t3/yb/jDP/wjrq+vmM9mLJdzQhQpw3a3OT7cMuJ2VM5xdnbFfL6CLJOZtzev2e133N/d8qMf/4hf/7Vf48MPP+KD9z/ERfkcxZBuWCwWcsjxnpOTEx4fH3l83LDZrDk7O8UYw2azYTqdslgsuLj45TVsAgyLRB4TKoCdTrA+YQuJq+sjHk82I85qKgzkRNz3mIXB1A53XpP2A7lJUINqDKP3KJWZVBVGZ5IfGHb+iJYmZdqhpy6ZBtZaohL5UyoFr2wUSdaJsinFGEv3t0xH5YQPQNKpdA+NTEqypu1H9sPIfch83Y1sdE1cXfDQ9fgYIEeMyfioSEqhnDRPVE7yZSJoIwd1o7V0H5HXZrHH3I2xBASmKIFQ1lq001S6kqK/yCbk6BAkN8CKwZUEJEW2qgSaSVBq7iI+BvY+sh13jI+WZ2FgFwb6RcWlXrAwNcrssdljVWTXPUigqjFYXaHdTJ6BIvmZTpbMFyfMlufEJB6o9cMjyneEocMnz8nJKV2GsW0lGOoAgzh0Sssl+UhldS7ELwDxRYhnKhGP8lPQKFGylI03U1X2OCXSWjOdLiSVvB8Ydq00U0wi5wPjP5JHaQbs9/Ic/g//8l/y9NkzTk9POTs7JwTP2dkp73/wnGfPn7LbtmzWW374o7/lN37wK8XgO/L4eEdKCedqzs9P+I3v/zrBC8hCa0NV1UwmE0IIx0bCxcUlu92Wru9oj5NWjkGfAoiQYELvNbvdhlevXvF7//ifHiV5j48P+NFjrMU6RTOxgCfn9j/C0/4f5vqD3/l9vvzqBevNmrPL56SwhdSx6/dY09MEQ1MX46vOx0aVVgbtMtqIjwYkx8uaCo/F1UvOLt9jdfYe55eXnF2c0Q498+U59WSJsg0pdcTo6b3nzdvXtO0eP3om0zmr5SmTyZT5fE5VNagC0Q9h4OxsxWRaEWPg9es3hcgpnXFrK6pqgrNVCb0T2dF3v/MrXF5uubt9YLU6JSXFft+htSWEJGtEhNEL8TGEwO3tHa9fveLN65fsd3uCT8V8rAGLc1PqasL9wx2vXn/NbrcjpkjlatGbJJGECmnTSFO5PJeHhus3PZVHMqcRL0NO0uVv3JRJPWFSaeLgSMpgq4rpZEImsVycsJiu6PcevCKESE4BP+6JcZTCJyuUdRjt8CryZ59+zs3Oo7Nh0+141T3yRffI6EpzqKQujynK+2ocSUlIXlTSNK6rSmSoRkE2pCChsLZyJGcwWiF98dKgtoamquUcEmNpBIdjoe+Mk6JFaxql8NuW0A2YMTAOI14pOqXwPqGdwUyn5KmE3jEGUtsxrSoGpdmESKgc+eQScuKvv/6c+92O984W/OCjp5ys5pJ9od+ROQ/nkVzyPHTOkCTewSvPbr0mjj06y3nDx7HIxSI+B8Y0luBBTxOM0Ft1hXYTQtcxtAPEnjRE8JI1oqYWMzWw/AeWS12OU0Ib8KGn61tmFyuU04TkqWpNCfXGVQZda5QrxUT25CoSTjPeQxwjakyojSL0AxmNbiyxAZRstsbIgTB4z/Bwz+LsAlsLP7xt+6OT4rARGWNI1ogEqhwCghesnSBU33XGxISuj7+XwmHDkoNjLEF/SSFBXgjFpN113Kz3vLrf8GLboa/fI0XYjwFbkL0ZxM1fSXcyB+G/HxI3y2kGhcIduixl7D8WhGqI8d3P5eTPhBBIhUQliomAVknkG0qB0VJwWemohqxIPqJ0FOnR/5u9/+rVbFvvO7HfiDO8YaVaFfaus8MJPBQpURJFuKkG2hd2GzBsGHBftgF/Ad/Z38yXsmG0IMu2mmKLokSRPHHn2pVWetMMI/nime9bmxQMbUNFigeYf6BwDmqvqlphzjGe8A+q8FXc0m0T344PLHXFzc0DN9sd37zQ/KMPGh61kooahyi0kZIpKXDotqeQnpQNYUyUWPArR12vqIxF246x22JiwMTAuS8EM2Cbgf3+QJroSeM4chR0UookWAJGdo8ThQrAnHzAYZpCIx+jjJJDJ0U2uw1jHLl+/IiLywt+9vOfTUmlkquS8nHqX6ZCpBBC4HAQLqLSBlNE8+C9pENXlbi7xJRR2jCMAzEGQhiZ5sjknIkpcH5+NU0H4yTYBFsUT589ZRgGHl8/5oMPnvPVV5+z2Ww5HA5UvmHoR/p+ZL/f8+jRI1arFc453rx5S0qJpqmJMVFVQpF68+btVBS1NE3D3//p733f1/bvHHofsV5himacUlKTBmwiHvKpCO6YaCNJUe1EG1NckWnTIVP6SOpGdCPTy5wj2/0WXSLWGJyd7BSPRWgRVy6tDa4yjGEkqkSOUZyllAh5rRVnK22M/DqaqSopVkIehf5ZxKoRpMHY7wde7QduupGvdz2bes0hwdgNGGQrQ44ccmL08p4qI6t4rQ1OO3RK8l4UGOM4UQ1kgiZaP9FuGCce6SjhhefThlSjcsFpB1qop9a50wbWKD05cknXkacGLMSA4ZgmKwX9z3aveT1ueFad0ZXAoRt4e/PAH3xYc9VYKmeJY0RyeQolFvaHQVLTU8L6hn1nUdazOF/jvcX4jPZnhMOGcRzoQmBtC3cHTRckWVel9FeelyPt1aCkcC6ZUvSpEMglU6KEXRbK5IhzpFDB3e0dy6VQiM5Wa15++5qhHxmjFDLeOdq2JsSAVseGJU8uLUwcftHehJDZ7YXa2DYLVqs1y+WCtm3EBfHoXpgz1mjJdjIeaxJ13bLZ3LPdbmiaimEQMflmc8fhINqJD55Kvs6R3jQMI2HiT/eTOLiuK9p2yTjGE9XUOTOdXQ3L5Yq/+Ms/49GjKy4uL4TGM96JrbaCw2FP33fsdpu/lff9bwK3377i2fU1H3/0Ebe3D8TiJzMATx93ZFVIJeJyptUGZy2NN2KTTaZMDnJaOaxpWFw8oVpesrp4yoef/g7ae25uXvOnf/4XPH36AdUCPEA5cHf3lmEYCGPg9vYGrfXJwayu61PCtuhqJPTzV7/6Jbd3b+n7jrpZ4JylbYVmc3/3gLWWs7P19Ny9e5dT8TTViqtLy3a7E5OSlHn+/COqqqY79Pzilz8nJjGSCXHk17/+OTdvbxm6URoM4SdRtOXi4pKrqyvWZ0v2+zuOdIJjONtpqFfK5KJ5DD6WIeg7Afg7WuOpyJ3YBkobrNGslucQO4Z9j7cNrl5QtwuW6zNhncTMdtMzHnoJBi5yViktmxCjQFlpTPps+J++uOXP3xy46wJjDNgy0hFI3qAGoTxpo1G1EzqTmhgiRtM0NdoaHrZbijagLc47fOXJSbShYYi46XN39jv0+lyw051E0Vht0BMrxtpM7A+QCirDkEbIUtNY71BWmsVSebQ3VM4JFU4rhs2e3I04pclGnAI1kT6KB4rXmsXjH/DV5i3bmy1RK/7xpx+yaDzeOow5Uu+PtbdQKdEK4y2ZSByT6M9y5DjYLJNuI6bEMMq21hqDVRYTFKFLjPuMuVBEb0i1pewcfrnAVBXeaoYYSEYT1PfL7PreTYY5ZHJMmJDwA5hNQVkprt3CnHzddTN53k+carqIcqCtFV7cRANx2TB0g1wQY0FXRxoRUjhPK/EYAzGMaOdwupr4uokxFEQLM/Gxk5V1urwtJD3lLJR3oW/vBEucJl7vbETlzx1pW6ijFZuEae0OPV+8fM2rbcdeO0bjCJNT1PHLLWpKHTZGppNKJrHaCkeuTJ/bSZcxvczCu1XfmRRMNAmtUFajwsR9nH7vKMRKSFo60+SyHDmSRQo3Y2SiR4JOZe7SQBwL1w62/UgcFDdacbGAoivauqJpWkqUtRkln4L0jJWHWRuDsp6CIReDwmJcg4mBLKQqfKVoWs9YKtmEBCnUjbWTLaes8aOKE71NppfyEojLWOHdzyz99cJDHZuvxG6/x9eSDXCiYp3Wu+/+zGnygkwBjZEASYo0dTIlnkLRjjSvacuk1ETZyDJlDJMzSF0vsC7DpFvRk4e9taIZ8s7RNBWbza3UxvsdVVVjJ/pFjCIOA1gul6cm4zhF6ft++lyNTLCnpNTfZKhUJE/HQCiZ7DRRZ7LqKZVGZ4MuGuUnG9gAZRBqDVZTvAFjyLFQBnlO1dH/miLMSeRCjDGirJfi+5iUrDXWO2T1Kmt8pfXUaIibyHendEcKlTD4JpMCmH5fhiEhRfZD4LYLvOkCb4dAdF7SYFOhNpqoxaDiUDLKGPllDSRpaIyxkGTokXNGFX3K5JDRuznZFyo9NRnT11lO2zX97qFXRVz+nEEXmeSl09kif/fR1a3oaTM9GTEkVdiVSE49Pnm6wZJHhek014uM1jVt7anqeto6i5tfjAM5ybujiqOkKRlXeTkjlEKZRuijtqOMA402tIvIkDXDEMgmnQr10zNT5GyTxNlpyqiPOhWhyuXjOThtjY9nwDAMbDYbmqbh/PwRR5ONnDMxHqkcTO/4u7NFaTM1GEpyLIpsUMIonOUQomRwVNJghJDQGpytWC7g0aNEU7dY49A6UlcNnevo+2HanArNBgU3t6/RWnN+doFzHqUC3xW6i65MUp+NlXyYcTxMz6ie7hnRy11cXLLdHuTjtKGuqomGNfKwkQYnhIEUfnOF36HrMecFbzQhBazzaGXJBGIeMZOW8jjcM1pY99oeE6k1WnuqaknTrLl4+jGLs2va9RXV4pxIYMyJw9BTN+1EheoIqeP+/p4YRGsYxoDzldA7jQzGlJ70INOmdBgH3r59Q0wjSiuGvkfrGmsMla+5vJTNulD0OowtaO3kfo1yH2ot+T7jODKOQbQfubDd7Pj6668ByfwZx8DNmzcc9gdiSJQ0OaAZcRpq2pamlUbo5m1HilMhzZHFIY3G6f7MciaKHOqdQc13m4sjTluNaarvvcYaeXZ93VC1Z1RNi69XxGFkGA4MXQ9xJMVRNiAl4is3WQZbfN0wYNiNma+3HW/7nm0UVzE1bRpTRrIcDFIvaY0uZTJfkpdaT6wX5/xEhXZ456EkcUCd8ihUzELn1wqVCypPdRBa6spJ35N70cMMMcoAtmhMUZAjtnJoL/+WyTK4kfo0Y6wYlMjUR3QYdbOkywNDFvOAgiIUSEqDczjf4FTkbZ+42XUorfHOf+d7Lxu6rLLcZZOjXAZyiqQcqKzGTUHNUuNEckpYY+WeKGCTIg5BBr9GkXQia6ESxqAJtSV6y6AVoyqgzDRk+0/j+2syHg6oXLAFWtOS7yTdFqOoshU+cEqUhVi2K6VIXaLsxavbNRVdHiheLj73qGF8mSkxoXtQS42WfhSYpnK6oFMhDMPEf2toKi9WocPAoq7kB4go6Mt0SVIyOunpBZEHnch0scRT0yEcejdRcsQb+8SzNnKpxVToxsjb7YF//6vPuU2K+qOfsBkGxpyBjNUQ8+S57Z0UpmiMkctMGeGaU+Qynv5xRD4mwUuTPc7U3ExieaXAimDKTC9wshlbVYBiGMcTPxQKVh3pBVOBgZImpCiS0Rx0YWRkGx/oo6EoTaUt//Zlos9rzlcNj68uCH1P6HuKSeKuVTJoQ1YG1zT4Zk1WVkRMRWOtQyl5YDMa6z0+ReoSwDbk8UCOgZgD/dBzDEQMbiROPt8UWVtK3aBOPx/1HXH4qfCbRq4FzdubW5xvaJqGo3PIOzead73Z6ec+vZzeVaSUyWkQfmsGpUb6vhMeNFnoF8ZNB5MmBEWYthqb7QZf1Xhfo5U9eeqLLVzBaKEnWOf45NMPOewP3D+8Zb1e0jQ1TVPTtvXJFrNpWtq25f7+fppY1tzd3VFK4eLigkXbglJ/RaD3mwi/V9StwnqxjUVroo4M6YB3DU5Xwos2lhQV45BJRdE4g/KWWFl0X0mzekgQE1VtsdrgtKYPZRLIFbp+wDUiWMso+lGSwr2r5PmZEuWNdRzdztLR4rqUieOqToOLPFkInvRESjYiu27grg+87gZedSO340h2Hk3GpsTSGII1mGI5FIV2lmIN2ovwz0wiupI0hYDKSmw6U5IE6pKprZ445/pkWkERoR9GgzZTI6In/ndBOwXOCAfaaLphwGiN1Zo8uetprdDWSV5JyJATAYhGsdeFz+OGEYdShkob/uRFQJkLLtY1V+sz+v2eOIwSalUi6In2aZiaHEfBYfxSLnsnFEXlGpQfaV3hInpwPQ8P29PWMwQpIlQ5dnkZq+V7kJEL9fi+y8DguHGYPv5ohx0T93d3pBQx2mG02HL2w4EUEykG+olaabRDHwcpypwai2OIqzgYRsZBNg3OVZSiGMdEGUbqumLRLjlfX/L4+glVLTSLYYgsFmuxZUeet5QKJWuuHz3liy8+I5csoZ5Pn8uQaLJel7N12sBPXyso9vvDRLOZBJ4x4auay4tHJw1GQVE3Lc459vs9X3/9Nc+ePpk2/v/lzoD/XKiY6LZbQhwZhh2LR9dopTkcdjjVgk5oW2hbh1dKihxVpu2fReGpm0vOLx9zdvmYZz/4Ecv1I7K2PAwDXb8hpEBd1zy+fsy+P/CwueFhs+H+XlzC2mZBnrSnEkI32bZSJDw2wxAGdtsH7u7e8uyDp6xWS158+5pxlHpmXdV8+umHOKeJaeRhe4M252jdolQ9uWpGYohCidSGEA588cXnHA4dm4cHXrx4MQnFZQh16ERjUXKChNRaztM0LYtFQ9NUWKu5u7ll7EcxPyhTvVUSUKb6aHJzLMf/rt7ZIht1MqX4Lg1aT3RwYzSuilR1RVM1LBZn1MsLrKswzjP0G/qxcDgMtD6hLJAhpoFKSQaVdY7V+oz7Tc+3hz0vuo6HEhmMnC9xK1lYOWUYMqUxYlZTJq3jNDzBaBlul0JdNxjtcMZRe08ce2E7pIyOBZJoW8NErco5Te+VvE2lFMIwSr5WjOQ8UiqPNZ7KVHhrcMsW39Y0GEyS8zTHEbXv0ZMeOBeFKuCt5/ziirevv2IfRmJONGjZSmVFNwQen52DVWxzz9f3B5zzXKyNfI3HgctxSmIMxnu0kwwRYV1E6maJt5o09AxjJCbJL1osF6I9jEIL7XcjJWTcwhIZJTPKweChGKH43/cj2jqMchjesyZjNGCmyxzESaqMkbAfGFGSeBsTdJC8FM0xgTUKdBDqUsjopaEsCrf+DhMsKlrCJlFfOAzCv0uISAmj5AuNmTiMxL4XDvRkcZhTwjoHBsKQT2LAMk2+pp3ZlOBZTqt8rcUXO+QokuzyTochD6imFEM/RDaHkfvDyLcR3PNPqULhUGQarnLE5ciWRPSarMUiVRfhVjsrQU4lZUKWf/uY5VGUhNMUIzw4XeypOy1M00ktKv40RsIk2DReUyY7M6s9/TBM69qKNISpIGL6tyyYQgmJtBXxbPaGqApmWaOtZciJbw4b7F1kUWvOm4qFNviqxVlNKQvhqpdCF0BZKQK9r4lFEUJk3+/EOUJbitMsm3OiHcm2x/UDyRlyFl1Mu5w0MjGQYiCnKB13ijijCSGwP+wpKMkXie7ERT9OOPXpe6gmKlPPctnyj//x7/HLX/6azWZLCIPYdaqjoPz4K01N5YFSIKXJXUELT/H16xf8xV/8CW9vrnny7AlPnzxmvTxjuVjhvcdYERjHnLi5eSvp9dqzWq1o24a69lgrtppGSQqvMYUXL77kz/7sz/n4ox/y05/+lOvHj2UjN47kUmiahmfPnlFVFQ8PD+KcNnlzn52dsX3YkiOo7+lN/XcV6nWhtIZSGxoLeTTgLK1xLHxDSooQC8VMBb1XmIuGgiGYQnKJtnaoTqHGRI76dMhmVXj67ANiCPR9R4JpuuOobEUYR8ZU2OwHFosatEHpkTiOWOdJOpKGJJPDaZulpo0AQArjRBuQi0JjeHO35dfffMuff/uGw+KCUDVE58RCcAq63HU92li89Xxyfk4fRvo0stsO1M7iKo9ra8acifU7R6tD1wlV8rR5mwYj3jOGIL+fzbRdlEFGosfoGmMUtjKAIcVCIqBtom5qKl/R7XaUJFoTJotGVCHrTN4lilMkq4ha4dYLijH0OfEq7Pls41jeVFy0Dd41tK7CGUu9qMUhqRT6qPDNAlevUK6iHyNaF4wVP/OiHEkZXO2pFg0LPaL9mjTsxG5zHBjDMA0kCnEMMp3NZdLJTRPYaYKckpqcg4QieRpG2MIYB/YHYbI+eXbNYtey2d6JDS2ao5vdGDIqvnO3stbQtu20SZV0+HEMbLdbXr18yZ/8m3/Df/Vf/ddUlTg41ZVMvUMILFcLjBZR/PnZmrP1GYfLa7bbLV9//S2rxRV6pVgsan7/9x9jrcFZQy4JX4nIM4Rhoo1mvPfc3Nyw2+0opbBerwhBnJFKVtze3YmDHYoQArvdjhACf/AHf8CiXbDb7Xj79g1//mf/nlVT84MnT/8LnQD/+dhvO2zlJ2FvJKYOtCaURM6KhW9YLi0md2hE95itJuWa5flTHj39lHZxzvnVI1bn5yzaBfIaRKxONLVl+eEHmA8/4Fef/ZIxCo05BBlSVL5muVydhgNVVXF5tSaM8jG73Y66boCMcZp//Pv/EIoku69XiadPn0geSyxUvuH+4YZXr7/mj/71v+SnP/1dPnj2A549fU4IgRjluWvbls8//5zPPvuMh4cHDvsD4zAwDL1QfLPc+SEEFELB9AuPMjJVr+qKupb31EyDFq2sON0pLTqILBQ82cwchd9mWo5ONG87hQ5O+gfgtG0z1lLXFatFy3J9zqKxtN5S+RpXnWGsk0GIGVicnbFYVgz7t+hiMUoohm27AjSpwMOQeL3r+fp+w+dvX0J7DtqRhkzq0ylMd7Fcko1QhuJpqCt01Ha1EsG00qQxTW1gYegHUtcTh5HQDdNWXJbZShWKUZPxT2ZkEObJRKVcLZfiMmkTPQWNoVKeVeXx3uJKoep7VHeAcaCMPYesGVMi5EJfOdQwEmLhNTfsgd4YIoUyBPRUyEalue8HQuWhWXJoK8Z6BW6BOm3dmdgtFdpZTFVJynjfMw4jjy4vWSwayJFdf0BNVPuMOiXZi4OAxEKEXMgehrAjlMyQMm/e7FkuHEVHbvuB9fOPJUyw+37b0O/dZOi10JHipLwnIn7CRUGlIEtRHGNBjRFlJF3QVmI1apTB4WQiOMoGQNUKlSAfCnEXxX3AWYoRKzmlhO84jgM5joyHHa5eyEukYBjGaR0qHLicJCExkVFZ1udqojhojegaYEoFPy4JIZZJFD6tywuSxzCOifs+8qoPvB0znbZEU4ipsLSWVBRjAjXm6aK3GGdFIGQMxjnxgE+T0BdJbT1ZwenJqUIrnH1Hp5Ki15zWfJSMKQ6lLba2E/9XEYgYm9DOoq0lhjhxxYuYsqmJCGbFLi6XRByD/PluRLlC8YYuRl5vt/ycwI+vFjxtK6w3xJDQVsFkB+uVAeNQRiLvVRFpm53cv0pR6KToRlknW+vIrmAnfUWIATNNA6OS4CBpMgIxDFhjxUlscgNLKUv2iYJxCh1K33FbUUomfvvDHueF1ypiuuOkWb97ESdtjkxnpKEwxuErJxOdiXfdDwfevn3JMO7Zd+Iv/vRxxpqapq6AiFIBrYVDnmIiqZHDoTvR7qzTpBjRWtG2NYfDgcVyyY9/8iMUhhAHDocdKWXuH+7JGeq6pl0sTtSwh4cH2raVLVyBplqgnMbk77ei/DuLUMjTdqIoCGNBebCVJhwGtLJ4Y8VGmST6CK/kedbgNFApVF8kdfR+pFR6CvmU5g8N3lvGmKeVvZY07Gk4oY1GOS+6p4nWkOJEtcoTUU9Jrs5x636yvdWGkuQMeLjb8OLtPd/cbtjZhh4jwXI54YqcZ7pyJKNIYQrgHHp5jmOgjAFTFIWBFDO2kslQmTa5ra+IyhDKSOX8iVppJqe7jDi9aUk+JeeCKRprjFBrjEFrR9IFhVBH3KTnsM6BzpAyksCLTP+MwtRW9A8xgbaEbhTLRWfYDSOvNg+sXeHvPzuXs3c6T6uqls1LzpAUxldoI1uQWCDEyJikUUvKUgw4t6AKmlCk+Ui64L0URcMwiEYuJYKVrWeehg1HqofOIKfd8bxXf+VxU9qAEo3Vi5cvub5+gjGGqqomG0f5Wed8IsJNKJOGK54mvVqB9eZkPX04HOiHAe+9iEAnOmgueZpWv+OrG+umPAPDk8fTlLFkhrGTTJzdjt1+i1aOxWJFVXmksXnnimitZbvdstlsuLqCGGVLbZ0MPmTSLS53KSX6vueLL75guVyc6C1X6zMWrqbV7d/kW/43inqxImdFfxjIMUJOiKV0oORACDCM4Ixoa7T1NKsL3PIJq4unXD7+mEjBtUtc3Yi7lBXKiymKN7c3VM7T1g2HvpsodDLVt8aeqM+LxRJj5Z3SymCtbACck8333f2Wb775Cu8NvlqglaWuaqyVINaqkqFqDJnuEGjbFdbIe344HEQrEEVA/ObNhpcvv+XNm9fsdzvCZDsrQ9PJqWhyCvLe4pzUIiEkSh6hTM6gOTMOkd1uf7prxJltSsJmypRQIko/NhlSKx0dloRSdKyXzGRc4KuGuqlp2hZbLcCKE2lRRujHUzCqmRoVZSCNFc4IG8RObk65MA2BE2+3G765vSGUQhmD0M2HJD8rLaGCyk73PMfPTShSyhl8VcnAukA3TJbQyAc6LbRVnCHGyVYcoZUKq0Q0eUUVlAGrNdbVrNpW0rjLQF1EY2wPexaxx/TggOUIizqTfeAQeopdoLwj+0qGVSlJ9lAcwWmUljqvGImHIGdKiQyjBHfum4pXfaDZdtTW8PeuzlBKfn552jLJ0ExPDA05G7Q2YhEeg2RjjIlxTISYKDpRciKPkXzfEfpEVJZoPV+8/gblLcbV4Fesz57gTE25v6OtVuyLZJV8H/z/1WRIlsUUcKcLxQJeU6wWA+TAJBTKmIK8fJWbBJQGr8TDPaWMjhm1VEKgPkDaRZQzqDYL53oS0HhnANGDxD5jXSVNglIMIZC8NDHeeQl+SknWfipNLMOps4V3AqUiVCo9PZRloiToyYetZNFhdEMQGkQfuQmJXmnitIZvjSFOhatPhWQnCoS1ZDVtMpxFGXGJKdMl0Y8jMSURCFlZeWkKvqpO03qVxTniyNvWcVpDWo2vHRydZrLC+iIXzPFXERHSxKCcHlyFrS15yORR0tZzHyAWlK4ZU+J2P5L7LV/dPKZWK2pdY1LGqUlQNTV8aEdRmpCDFC5Ko40naUXJmqwUwz6QEO2ItQ6MlvWtOvrfG5SSaXHSQTYghUk0VtDGkVI3vSwyxT1oLevjIK5bpyCukjnsdxgDSn2Ic7JBGkfZ6sgU5t0BqjhaXGaMk9A0cpGpSM6E0HN/d8Oh27Ld3YnmRFcsFhfUdYt4UIug02grFJpS6A79NM0x5KzousPEzMpst3vatuXy4pLXr14To+Sp5AKb7RaKFIir1Yq8WJKnSUTTiDiwO3QsmyUOjy2/4U3GREsiSMEfx4Ty4uIWwkhl1fTeSPOfzeT7bRQmF0wpBC9TdxUz6j5Tzgw4KZC7sccbgzUGnTNGKdmmWntKS9dGT64lcmnGECjxXW7KXw/iKxMFE3XUQSTGEPnm9Q0vbh94vR8ZL64ZMIgbYEaXgK4c1BWq8aT9QO4DOQyEJFvfEhOYJEOIIeDKcQKvwRS8nsyvM9TKEJEsIcV0fhbRXempOSo5o4+NhjKYMuWPKKBoihVPfTS4ylNCoijhARPTSfNhakvqIjmIM17sp7BVbRhC4O0u0BC4PTzH10IRJBd8JYm+Ohf597Sbinz5GnLOjHnAKEPWIpo3rsZV4LN8YlnJRDmWhHWeGAMpRWywBDuS4zsnvaOGqhxFMggt8q8736AUKcPr169Zry9wXoS64zicdA1C7D7+PZMSpuSpaJcGA61wzp+KuhAjQz+QlwsW9WKamIoOZxj6KatB0GiNMZam9jx+Ihz7MI7c3L7lcNiz3e559fI1i3bFB88sbdNirZ2+frl3nRNa3263Y7FYyL2CNBnOSfE7DJJWfvSw/+abb3j+/DlVVaFRPLl6TK0crV38zb3jf8O4un5CP+wZxr1MY5PQfBTibhQC9H2hrjWVr3DNkuXlc5aXH7G8eMz68gkP+/vJ/ACGGKjqWgaLYeDu9oamaaEohjFQVZVsLUw5WQ3HmGjbBdZqjBX64XHy75ynlMJm88BXX33Jk6dPWesaX3l8JXx6YzV11RBCZBxlA/P08YeyIdGW/X4vTeMY2O33fPHl57z89ltub28I03MLCBU6xZN+rJSMsaLhOdoeS5MqG984yuZ/t9sJZe/0rMv/HhsLdWwyjiY5vKMva6MnytTkzmUdbdNSNUvRXzQN2rUUnUkUclHEyZlJFbk/lSoonXC+ErtbPZlbRDnL0pTr8/phw8u7BwqaOEZKTKg+Yb1olLQWM5jjfEA+f422Qrlyzolm4Tv5Z0InN3hrMDjxAIvp9O7mlMGJ1tcqUHHEOi0fryytM3hVKDGwMAoVA6brWGZQumCV4iI7Li88qRTehMSIIXlH8J7Ud9OmXJ5X7GSTG8X1SuIPijzL44DSsI8Nr7N8n7xS/NblldAe1RTXYCaLYCVskDydi2LlLZbuYx8Zh8QYEkPMRJ0oKZGHQLjbk3pLqgzR1LzejVRLz6pe0J6fc/XoQxrtsUHh6hW6RHbfk3P5vZuMdCUc6ZIMOmkR/E3bgH0IlDGDLdi2wmZJHazaiu6QhANmMwZFXSwuQhpHUtZY52lXC/I4oIYMh4SuDJlCSIH9fYdTBWc0GJk8CpVIkX0lazGl8ZUjlkEm1lqK/BjCNPUWEUw5xstnEQwqmPi9wqvMRaGypusH7jd7vtp2fNMn3oyJbUqYZkGTwXYDh+0WbR1NU/Oj62v6YaCPI9t9L64I1uJ9JYErOROnTt5aS4qyUWjqmlMw29S0FJUxzpxoT3ks5HR0KrEYDMZ6QONMnhoqQBdqXxGGgTQGcjkWTUmcRayTLYgzIqYtmjQk9rtb3NISTcW2FP6Hf/8124+v+Z1nF3x6XhGDksAao6hdTSwQ44AmoLVDaU9RNXHauuhiUfs9aRTxnDUW0XAqrJ2mQbZQvBSbYtkYAEeIksZZcsCaFmczqEzdxFMo3f4QadtqmjJmwpjZ7vYMw8j9sw3Pn3/Eer3lV7/6FcMwTIX+JOY8URctIQ4M40ABFoslqhNRXoqRvusZQ5Ak5fw5Vtesl1c8ujijqWvqSiaXknvRczh0vH71luVyTeUXaJ2JLk/NQubVS3GHWrQtjx494vWbV7z4dkdVtbTtiqpqaKeVvTGWtl1wdZUlKKkfKCFzff2I1lZU5TebLmXWDutFfOeUwx0GilWYhUfFhFEWVRRlO1CicP2Dzaj1klJpig8UJyJO7Ty6D+i3GcZIvChsxy1Wa7zRUKJcMpVMDYXvLxuLVBTe1VhXMRw6jgJvcZR7Z86QUjpt0JQSHdTuMPLmYc+//Hd/ybA4Iz1+zr5ohhBxSnHZ1pKym2SjqxYN9fkSg6I7dFLQxwSj5SjWzjlz9+I1ZmriBxUoSTzOwyBWr2aiARhrJx1EIWl9clfKRTHEQKjE7rdeNOhKhjYYg85Cv3PWoBro9wcC0lyjp0DUnLBW42onhWpUpARxPzLs9tilZR8TXz8M/LN//TP+m5885ePLJQtrSGXanhhL5RoSTjbxJeCUwTpLpWuiApJkJe0PA0ob6rYVmpKVLaZJEWurU5NRciKGgZyC8Iy9o+s7dvvd5ERoCSGeeNR/RcOF3BHL1ZLFcoH3nuVyyeFwIIQwUbLUSfQdQphCQ2Ur0tTHYlDuPGluCqAZ05RerxQxjoQ4EkMkZ3HTi0nOt+fPP0FPYnXnZPPifcNi+TG73Y7z8wvWq3P+xb/45/zD3/tH/IN/0NDUNZT+ZPqwXC6nz7dweXnJ/f09u92OFy8eePbsKaA4HPZ88sknfPjhh3z66afc3t7iJ8ejx48/hLrHZ03zPfnUfxfxv/vf/u/58qtf8/WLL/nsy18wHEZ8U/H06pr7u7cUMmMEu7jk+uMfcnn9lOXlM9ziAlc1uNrjs2d72HG/uSPnzOXFJZvdhj/9d3/CarWmqpagHDFmnBX747NH58SYJv1D4GFzR9tK/tE4JbMftxSfffZrXrx4Qd8PfPjhx9NzE0TYbRJKJQoDf/zHf8Zy2fLBB0959Oi3QSkOh46vvvxmalQ2vH79ms8++zXbzQND351ok8eCmokedRSfG6NIObDf7tHK4WxF5R0xBF7evuFhI25jZaKZKn3UlqgpY8pNf7d0F6Jjl7rKOnFmct6hraOqGrzzVM7jqiXGOYzzmHqJ0rIlDUocoXRKeO1E22tEu9Iu1pB6sa+NQonMOTHEyB//6o5fvRq47cWpSfdiI1uIvJuhSxNTlJEi21rcpEswzjCEJDEHMaNT5piVZXPGaYPz0jxkPW1HpgGkcgarFZXWlK7gjTiCDre3jLsDsduhD2/4+KPnnDcLzq4qLs5r/LrBNRWtcjS1ZXfocdbz8tvCMCSCDZPBBkLxNeIESk4yINYajgYFYyClXnItQk959IgWzbmyvDj0nNeaptJoq6kriTVIKTP0A92+F3pfMZJ/MQ502z0xZsZiGXGEIBSycEh0+xFdGrJqiWbN7/7X/xvOri45v7jk2lxSuhv0dssn8TFldcnQ1hwW71mTocY0aRoyKIPy5tTZBjuiKoXOakp0lDUZPhErOcAdMoUpWFICczet6RSMtaUcDqiDhDexmEKpjKHBEdNAKhBy4dB1GN+grCMrzb4bGUwEZOWkNSQl9qPWCU1HUsNle0GWxZpEoqvpoZUuNxUJU9v1ga9e3/Jvv37JvlkzVi3jsahXGlU5lF0Sx2mSVXZSlMZADiPGio6i3/WYRS12lUeng5TJYyDuD0wOrTKBdI4yjrLNUGoifgsFaRxGkjfEyuKbiuiSUJaMpSThDnvr0UbyQ6IN9OUASShNxcFRKIlKJBVkxVwQLqSSiWmkcJ80r7rC1T7zdGVZmCPPt1AYxDN7Em4721B0pMsdql1SXE3W4hITIygmTcnkAiHrZskRASgatBa3FKUVNkiRk1NAktYiIILtdiGHZwiduLg4R9s69rs9zsmUcLfd8/jRMy4urjg/u+Av//LPJYRpmv4dxZsiBp8oZyHRdcNEO/CkVCAVcimMWRJZf/nzn/Nwu2G9qLi6uqRpaqzRIvY2Gu+MWHROKbNd3+GcmyZJQdbDAGhCKHz77RtevX7F+cUlzz9006RMU4qs94+T1sPuQEmFxjXSuJdCZdRffzV/o5BWYgNLGalVRdIRkzV2bzCtpWRFiJmhD5Q4bRuTwXQaFcSWNVYSRKdrUH3A9hntLLatyM6g80RRMTIJRB1E1BsTKRXGNIXseYfVGq3EXEFnMViAd1sMeCduTDnzsD/w1Zs7/t1nL9g2a0K1JCjLLozoLDk1+xSwTQu5MGx76rrCKIVRUCXZXFitWS2XQg2YaJypiOVkzgWVI8aKFW9z3N7mIpvilMWsgEmcnorowJTG6qMbkZFGa7K9jkW0bdYgeQFGU9U1RhvR1KkEZdpGgphgqExG6EKFglYFpwwFQ1fgZtS83CsWtaJZaUzR5CwXpLJ6mtaNGJ1AedkrK3nfnTJkNOmwF71aYdpYeblftMHaIrTE9M7lJWkLoScVi7ENi4UhpYEQEjEkjDZ0Xf/XqJVSlA1Dz5s3L1mfrfnkk4/ougO73Z5xFKG0QAZOMvHMxFhOqd5puv9yBtV33N2/5WFzS1UbXAWXF2cyxPEy2FEKypDo+pH7h1us8bIFtbL9OQadVZXF2BV14/mnf/g/4+Ly8jQxNsahtaRzr1Yr2ZYaw9dffzM945amaXDO03UHXr9+jfeiEatrseYd+o62bvnw8XNILa5A/Rus/P7t3/4pZ+crLi8u6HZb3jy8Je4Dm/zAerWiaTyrZcPHP/4xTz78iOX5FaZeT45liXHsCGFgv98SwsjZ+oIQRYv1wbPnXFxcUArsdhKCKowAyXI4uhIqDU1dTQndnhACbbvAezFlcd7z7IMPePL0CXXtedjcs9tt2e/3NE1FXbcYazg7X6CAoe9F6G8sTd3y+PEThmFkHKIM40KQZOep5jJGRNjOiQ2rOmqqcqTvx+802GXKmVOsVi1d90CMo7CHlRihHN3W3kUCvHOP0koaCz25eNZNg/WS0G1dfdryGKWp6gpjvVDGlSGkglaa5WIpG85SsCWj8kDJgRTiZDNuJ31kRKEJGbZBcTfALimGIs5I0pgliorEIuY6IEGdHKmJWhHJ6JIpxaC7EZOYNrwygzZa4dF41HQWWqocUClOLBJY1AYLmBAJaYBR/vs6HLhYexZXFyz8iidPn7BuFqzqFttw0sbZrGTAEGC/TbjlEt+2pLrCDANZi1bIL1tCDhATikjsx3c6uTJpMEshdoEQA4cUeUiRuzGwaGoW1qKNWNmaSbCfQkKhcbbCu1qMd1KihECgoVo9YnX+hEPf8+bFV2wPPdiWtl3TLi9ozh/zwfPn2NUC09Qs3YLoRooF7TR3X72BtKZefz9d1/duMsohiC0riE0WCCfPCrfaOLmgYykUqyi6gAlkQGVzyqtIIJbxB8nSwCmiE25xyQU1SqqvtpMrlNIoU8t0UYvfuyoiqlVa3HZihjFO63qLPGATh1pRxH/9SDo+ipUmqoQ4tk3EqgL7buR+d+DVw5a3fSCYNPG9IYcoK3FnwNupcA+EkpAoqOMKU1a4JSXyoXAM7EpKqBYpBLFB0/LtF6oDlBDf2bWmgpq8mUuIZCUppfgk3ssoiikn33g1rWuRoGuMtRSkcFAJcvxu7z8J3RFPajVNMlGKgcJtN/DyYc+PLlq8FrpJzIpcJEiukFEpkYpC6TT9jD0xaPqs6PuRWCZOoy7EIBsVlHwf5UcgF6xMSzROFRFfp0RMhpwDZBHgK2XQlax/m6GTSedk6xhrh01yKMYU5CCsK9TFOZdXl8Qoh7MxQiXIWSbSx6kkRQRQ1klicRiFp0gWCt3QD6R4Sxwjd7d3rFZL6rrmGJhmrcE5i/eOY7ZHjAFrhVKRU55W72X6mSh8VdG2rfBmp48LYaRYd0r6bduW4dBjMfjicMgkxenf7E1GqRH72QzJQpnsQUmJbByiocnEKdfBKkOhYKK4sSmjSYcg9Cit0E4m8Ixgo5HiFqESaiNTcTUOjN2BUsSqNsfE2MvGAjsJqpkWghMlSul3TQZIoxFi4m7f8Wbb8eow0q/PGbUjxExMGTOdj7s4sq4WqJBgjJQouTuKgh4CbtJsNdYj+ZGGYg1j5SiR6UwzVNbIdC3LliCmKRuBPDG3tOi6lCRoay3fI+s0zoqnO0qRYJq8yza1xOOlbNBG9GQllclaF1KUUFORMoltY5kkKcezIivNNiRuDyOXTeCDhUNPrsCS4p6IWc4npc2J0pAyKLcA1OSEhYhui2SYvLOMPn7njZwLWs5FNTVb+TR1VZOxVsJaMfVIk3XkUbN15NSHGNkfdpL+vWhP1Jd3P/0j3mm5yhTmWjgGeh63wyPdYcfNzSu0yaACTeOpfY3zFVorOY+CUH+3uw3WOIz2Ir7HyWZKCc+/MhbvDU+fXTMOgdvbN2I/a4Sm6r3HOUdd1ywWi1Ng31F0G0JgHAMpZbquAxTjOGKNYYgJkzQeKxrJFNB5eP8v998S1udLcnmMAl589RFhDGwPG8IQaB9fsj5bcX6x5vLJB9TrC2wtHv9hujtyiKfAzVKgqVv5PmrNer2kbVv6bqBPPU3dnJpV2bjLe+a9xVfV9AwZJBBWtn85i+UtCtq2YQwDfX+g6w6Tm+D0c9NGBg0TlbpkJkqnmqyRhe5zbHBLfkdpOjabR2t1GaBNz2tOUgNMTmTGaKraS/2V00m3c2wwjjg2Gdaa0ybDGiVUOyOa27ppsc5hjMf6Cu8rjBY6urNO2AzGElPBoCjaYFyFKQmVEypGTEnEHMgxkI2WwW9mooJCSLAfM3eHnm5KNldHyuqUWVSmwQHaTAMKmV3mSeOKEnpmPkjjorUGC95anNbUBcwYZciqFQulkJNScs8urcdP/26uxWxIZfC+4dFqybLxrFrD+uKCpmpofU02YgxQigyJY58IOXMYIqWVwXtENIBoCfozlZfcuElnKjEGQqPKhYli9q6GG3OmK4V9zoxFkSeHRAWTA3shR6GraiXb2BzFMTHGRHYe156zvvqA8eYtrj2nGgvKLGjcimWz5LJqeVQvKNaLo6gW7XVSMuhOhilP5D1vMsKLHaZ2uMrhvCaNowQ7tRZboPZQ+cImRNDyiRzyAac92og1oDeKMQdSLoSnFQ2ipygVNOcrSUBMAaJYZGlryKFwcX4JFMZxoB9HxHbSYrzDuoqSM2PMVAuPnfh2Y48U8wWGccRP2RLHxO3jKlAlIxqNLJSFL1685ovXt3z+doN58gP6BGMuVDlTxig+/fWC4qxYtZ4pUj9SkoWUUIOIjLRSKGPY3dzL318U23hAKxnpq1SISPedgTEm4uQxn1GUJC4qVqkp2GkKipns3YrWjCVLMRAyIQ0o05BKISuFqzxJRQoJFSGMA0xrOjUdTFkl8jTZsViqRrikL+7fEPa3/OjM4ZOn9pZkK0wuKETzomKipIByjqpdMhLZ7/e8vHlgsw8UrFiRxpZh7KAkrDN/lSuNhsne15ka596JOiVUT06fMoXJWFvjjWWzu5ualsRiKXamIGm9+/0DwyDOCj/84UeAHKx9F7i5uaXrOrRSvHnzlhAyoNFW0juFAy2WySlFmSYkER/nnLi5ueX6+prlciUUPe9P9cliWaNNYQxCb9jv9yee69OnT4kxMgwDxlp+/5/8E6zVbDYbSoGhH7m5eSvhXoslVVWzXq1ZVi3hMBAfDiyco7aGyn3vV/bvJhqNyw6tLFVdEW2HinJ5jD6JrsskxpI4W69x1jH2vaSCW09T1dy97UmuUGpNc7nmsL0nDgE9KFIVyVmTkxGf8aRJJdLFLcb4k53hbjuSUwtNjVZStGujAXPi3x8vYDUNIQ79yBdvN7waMvbxhxyi4RAyY9/RWsn9GMikGKnqFdYovE4Mw0hKGlMy+n5PE0cqq6mXAR8UZrXArBrE1UQTjQHTcN44nDboab19OOzp+gMxRRwi5ExGk4ZpkmVke2Arg60kMC+rKY9n0jypkIhjImdPVHLeaGsmIaBwI8JQTg5+RmuSCqciJoxQNXIP3B0OfH13S6sTP71aTLxmGfCMoafkUSaPxuF8JirNLkQWzYfEDENMhLFQlJHPHyWbzIleaawk8OKQhGPjpwLJM4wjuQjlQy68RKkSzsvmYzCKEJgm0JKJcbxoYwgMY38qMmVzJY3F9BtoZaaCTYp57xzGiBXs0WmqG3b8/Gf/ntevz7h+8pQQIs8//Iiry0fSHMSIsSMFuL29RaEwxnN5eQk0+MpNQtWM0WayPB/41a9/wds3N/y3/+3/msViSVUtaJqK7XZLjJL0/ejRI25v5Tyr65rXr1+jlOLRo0c0dUPOif3+wLJu6TZ7VAfhcuRs2TCmkd3uLWt++rf33r9HjGFPu6x57j7E/uF/g0maFy+/5mZ3w2qx5Pr6EddPn3B+dU0XYdjtOTeQ0sg4jvR9T1WJratCcXX1mMNhN1HZNF13IKUs9GRjpq1YJOWIDmJVvF6saermpNlq23ZK+YZDv+fLr35NTJG6aVkuFvR9L7bH1qOwaBzWVFycX1JVNVVVsz9s6bpxekYzdd2glWXo+4lGJO+k1pqqqtFanMTC5HonKFPzqtFKtD9NXXN5ecXDZsPDZsuhH9DGvTOgme7kY7Cxcw5thXXQNA2LxWISFIPzrViYaglH9s5P76nFWn9iTBwOPa5uMJVHW0caRhgH1Nih1QihI8eBUTsJxMuJUDKOTDcG7vcHvnj9LYfJtCaEd1a5Sos1vLIOjBVdloaihKng6iUaTRoC/d0W3dTYpgZvWC1aFtpSD4m4vUWniNOZpQ2YuENFoSc/Xzta53DeUl9d0jaepnEYpamdwxmDd5pkK8gaHRXkcHLeKiaTDQw6ss0HtrFhM2R2YeBwv6FZttjagzPkkZNhRjnWHFloY3o6570yqBFiUhy05pChi5khZJraTk1IIg+RNCYSBjR0/Ujc7xi7Pbsh4xYt1fqK1aNnvLm754OPf4j7BNLdFnYjy2J4qhTpcE+OjmIt2IpyvyH2PaEElp98hG2W2Hr5vd7X712x5K6Qh5FkItklTJb8E3MbiRRSbQm1pXGKPBqKVSz8GbZIajZYshEqk1EZ6xUug9aZohOhLuguoO57iooEPGnlUMbRpQFnLFXtSSXhjMJpUM4SJ2eQ4oDJtcAWJ8FlSuLlK+9RRzep6VA4TQcKDGOgHwJ3u4E//stf8aAc4fpDdsoxEFEKVk0z+aMn+pf3VNfnmNrjrQGrIBYSivV6TYpJulTvSVahxgwxk5PBOhEG+WwwtpFDb+i/4zutxFs+5xNP0inQXqMrTe2dhE8hU/JjEaFSpmx6si4iTjeKQCapTDEFnBZhZ5ZcC2PFqUVHETZSFMOQyESCkoTdz7YPrNs1j31mrRNddJRJE2AMJMQaeMyRb1/e83CAzaEwxMnpAYUZDuIYpSDEY5icHGq+quXAskIh0ErJVBAAL00GYG0lupo8MljHUk2UKiUe1iGMhBgJ44GvX/yaMBYO+ynN0onbx2p5jtaWi4tzLi7OOVuvYUr77oZOprmA9xUhRIa+Y7u9B2Rqudne8S//5b9gGHp+8pPf4oc//FT0FDlSTc3v8WdZslgOAvR9T9/3eF9xdn4xBSpFusPIm9evJ+vJiuvrx7ICnyxySQmvhceeKseyqtFASL+5IVoAptciwNeK5ICVOPL0IdPbIOdCC61ZgLOMubAbe9zYM8QDh8Eypo6YC6VY/MUZpVRS4A4GW8SiOZnIECQrxRpovCOXCEqKV2IgZdGFVbVHUYjjwLA/TEFvYnktNAGLynAokYNb0NWZqCu2txuhYubIWDSjKiSjiI2jKwmfpElOMZEn//iLVcti37Og54wDVX1GGAPd61vS/VsqXYEyrFMg2CkPAsehL1TnK5aLmq4LYCRvQzc1QzcwZdExKE1TtUKfVIbEFHqYgvinj0l80bc9oUSyVfhlRRlHCV8yhWxAaydkhJLlkjgONIAUCz2BkHteHjK1iXx+4/i41ThfQdWSo6SBazJ5jIw5UJynbZZsd3se9jvutpnDkNGmRhvZ6vV9hzaSZXHcMh/558YyaVLkDEt5cl/KIyWPqBKpa0taCud9DDvadin6s1TY73Z0h457Zbh42PGP/uHv8/bmLZ999hmbzf13BOTvKHPWKEIcRQRqLYtFS991xBgYS8+uxIl6s6fyS5r6jLa5oKksxlR4F2nrFcMgeQdhDOy2eyiFEBwoCejyXoI7nXecna8ZxoF/+6d/zE9/+tus12ekmNhst1hjqeuG6+trALbb7an4cs6xWq14uN+gisYZz8Ke8eMf/YR1s2DhDDn1DMOW3eHhb/vVf2/49Wd/yfWjJ5wtz/n4B09p/xf/S759+S3/4ed/RnVhWK3W1E1NKQmjZWtXGMWtZ+i4f7jDWYf3QlXd7R74V//j/5MxDPz4xz+m8g0lS9hr1/WycTaG/X43FYJFbFltNWkhNM7JRH+zfeBP/vSPSFncCxWGGBTnZ1fUdYOzNU8eP6VphKr45MmTqamIVK6RglVl6sry61//mq+++oqHhwfZwCPBfIqjoFsMS4wxHMMbJ3kRiiKmDpMT3TF4VBs7Gavk0/16HPp5P23KljVmMlBpmvU0bxCxuvMt1nqMcbL9N8dQPkVOE1VTO0JW9H1ClYHVSkMeUHmPjntiFiFyjCPKjuTJHc6UkbHfs9kPvNz2DA4OMTLECFkGEdqI9ixNG9NCJukiCdhOY2vZJjJG+kOgqitsW6FbjzFwlg1+17H/4jPy/p7GaprW8/GHF6wvzmicCMLPlkucMWgKWXOiN5YiTlhaQy6iaVAFVBETGqacHu1kO29DpkmKSnls1OgUsTiUdmRj6GMijIE0Cg3WmikEFE0Iss3XU65Gt+0xxlLbio0L9HVFrIBUKK6QSqLrOsaQwHm0rdAaimuIUTFajW/P0VWNtfD8+TNUShAjxTbccUscIh2JpusofU9CcfCOMUOuPbpZMfiKsFpizi74PvYR338sqiZhUBHtg1EKkxU2gY6Tf3wuKFtIA5Ls3RpyiBj1LjE6IxNoXBGhDgVbCklnlEUsW7uM2gotKC+10FxMpBhDSZGSAiVHam9hciJJRSgBSmvpso0jE2XldHSIUe880E8vZYGYEtuu59cv33KbCgfnKMbJqi4Lv287yjRVW02NFQpESCQFug/YbsCWQqM1YUyoZHHG0JeMVtMKL4njljMalyeNhNHCIzegtTQqunKTy5RwrZXWaCcbjGpaUYkbEwSjZI0aCyVE4QGS0QsnjlU2MuQBFeWwKSL1QI4hpr9rCp1KoJxoM3Yx8/O3DzxdVzTesPASHAhy4JRSyFoTMOy7wqYr7PtMP2ZJ4eTd+k/nJLSNnFHquPI9pnO+i7s3ZqKwTNSEI8PDTLSGUuw0XRwoaaTkgNERU2tcCRwY6A8DY0indNRjcZAiJ1/zcejIMWGtxxrN9aMrUpGgRqVgHAN9V6GUCNeOE9D9fsuvP/sVMYrjyJMnj0/OW9qYk62fUeYkFK6qilKO/Go9rcWFj1k3ns3n9xjrRNQ5BrEZNY7W1qhSMEpRWYfJkj8QpsnqbyriLgk/14AxiUiiFKHsJQ3FyBpft5ZsxZpVj5UkYMtjjjKelEaiTkSbKc5QIsRtwZ9phNavJ/vnSZeVJZHZWEddO5ISa8IxjDS1F/qQtWjnpKDO+dQoa20oSrFLHZ12DCbTo2XqXtJpU1C03D5aawKSvUAMlLFM9CuL9RWm0zTW8vTcs6xbxgSHMXLerPDFQVI8DJpDGaQh7XrIFhsMpo+kw57FcoXTFk1itJxsCwMFXzJm4vRmpfBGU9cLegNjEc6vTQoVEiorVIambRiHkT738N3c0EmgKEGA8j2JKU2/r3kYA2/6gdddz7Nli9MFXQKx6BMJSelCQuiHKWVutju2B9j1hZBA64Q2FusqYoroac6gp/Rg4cAfqbMKq6XpSCkSoyYncQQsxaJUpq5l6hnjiDHysdYqUhJ70GPRuFjKFRlC4PPPx+mMKex2W97xaoWymlImxCii2CnDqORMDAmQ++/lty+5PHvMcrGmfXaNs45SNSyXkTGMdN3AOIwMQ6BtQSH0sH5KEE8pcnd7j3OeJ48fT8GbmX440B3GqeAVUe5yuaSbgjzHcaSua5lgo6hcjU4apz1n9RnreknrPaSOIXeSuWR/c13qXnzzgjiMjBd7ri+ecH51TtGK/XBg0Dt8Izz1YewIRagp4n3ggUwII9aayYXJ8LC5F6rTFFwnFAd59sZxPFGIROMS8V7oa9/VbBltJgJywlrD1fKakhU5K6z1VH5B2yxYLFbUVYXRmmO6tmQ3JZyX7UKcdD/plNWjJ+oTk729QtKW5c/L5yDfmyM18PiraRqWSzE8uHn75uSWdryfgalJchKe19RUTYXWVvKCmN47JeYz3jfiWGcsxk4NxlT7pSPvqWRCSKQSiSFLo60HHBGvMmE8UFJC3MBENyKhxpFgNPucedP1dClz9AhNIZzChkuZ9BlKIXmIasqKkHs4HvpTorbxDuNEEK/7gfHhNXm3Zbz9liqPrM6WPFksuF5WrNqKunKnNHbRi0h6uNJSwsWUJ82aaI8lB1lyxATTuVcKNhtUVsQg6eCjkhyKkBN+OkPy9OeOQZ9uck4tR7bH9KM8Om6FmBmGwC5mihKXS6stKWbGEOlDJBaFtxZfefqh5xAKu6Hwdh9ZVy3aeciZxnkyo1ABjcZWFWKxLyL5kcKgFNrUZG/RvqJar7jfHeg3O8Zdx/Vv/eQ/+b5+fwtbbaapnsHUNSZrXFK4oDFjJIdyyoAIOoETJ6Gw7/HGYWsjdIASpPj3kBuP8QaXJc+CyqAWBrXpMdsCKhFrxRAzQWtGbTBFpovZOSrvSEFCVOIkyjNaT+5OFUnJhE8XdXodv9tklCIC3xgTm0PHX3z1gp1bMlYtIWsO44AlYci82Xdcrc5pqpq2tmxjT9KRQsYeesy+w5bMIif6PqO9wyM0JVPk8CdGKu1w1mCSYgiRrCWrwlrwVp4o21Ynm1vSZEFrJKmysl684lXBGUtnxR4uZXFhifuOkBOVW9JcLU8cTCEDQlYFYadM/OwsE8rjuq5yDbkU9mPiP7y644ePz1i3NRdosS3OGbJsj5IVGsfNvrAboAtIF813KFF5FMcoFKlImuixeAhhQKdEMomUs6xptZr4nVoE2OTJvtcBIqZOOZDjAGkgpQNVbdHWkVNmHHrRmWh5JkpIDCqKgC6LLVxOA1eXV9RVQ920/PDHnzAMA93Q0y5q+j7QHURgjkqnFfvDw4Zf/eoXvHnzhrZdisiwbYTeod4lohplGHqxtL24uGAYR9mUKHDWnARuVxfn7PdbUiqs12vEaQicdizWlTQZRdE6R+oGUk5CkfsNRngYMVr0NEUbQhzJFJyR6VTSkA24xpAqPVlfi+CVLFNxgyf1mTGNBJcojaLsNeN9xF9rrNUor7G1YxyPVqcjGIt3mmbRoFxmf+gYh4G0bOVQNwZbVZRxmPjP02BFWYrO3Ec4aEenEl0qJ7tuEIoixkg+kNYELZMlQkCRMVqJyLxqUcbSNJbnjy85Wy0JKTPEhPJrbA+pT9ztDuyGHZuHDTe7HUu/IsU9425Ht9lz1VQ0WFQsBK0YU2Kc0qRUdGIYkSZOtG1wyzPe5p5cMjEnMXvo5X02sdBcrem6A+M4oKwihzJRSIvwofNkt4giZbl467piEwdMP/J6CIzO0VqNLYFULGCmzRGMCO206yOv3vT0UZGKeOJDj9YWl4VqlSiEGE7nhNYGV0l4qNb6JHKMSYofsc82lCI0g7qWTBBN5tDtp7/HgJKE7rZpqOsKaw0XF+csFi13d2/lmZxMIk4o0gykWEhppGnMZFahiONIjkU2QqXw7dcvOF9dslou+cEH11LgWJm+ioZiSwyJYQiAwVpPLpph2IkTXdfz4sVLHj9+zNPnT6d/PtP3HXf3G/G3D5GS4emzJwzDQMmZ3W7HcrkkpcRus2dZr1BR44rlanFObRy6JELsGdOeUCKqqv92X/z3iG++ekH3cM/+8oLF31+xXFxw+eiSon/C681XJDNSVKbrNvJOaE0uhcuLq9PPwlpLXcnm6OXL11w/foL3QqEa+nDKvdjtDuLsaA2Lhbh7HXUxos+Vd0RrCZzVRnF59YiL80v6PrDd7NHa4d0C7xesV+eIu7CItHOOhBCJKbFsarSaAm67URz4TnocfxJoQ5mGVZmow3fqGdF5HP+/Upr1en3a3v/qVz+jH8bT3VyK0Med8zRtTdPUNG1FVVdQDLloQpS8K9lcOLxvMcZO75QYQpQsdKeUZGObs9jN59hDCYz9nsfnilWV8AaGcY+dmhYxhIlolbAmUSrHQWledQP7kFFGKEr92At9AkRjqSTQWAKUJ/cpI2dD97CTAbixKG/RzmBUQW87dq++RW3vYPuW5aLiol7xg+s116sFdVNhnZW8CczUvx27t0nHmictK2CtIZNFq3yknCHZGuSMxaKTZhgTu3GgM5YBGHKgme4bhcIoTShiv135WmzxkeE4atoe6zIZeGT6mNjFBNpR+YbKGrp+zzgEaWaKpfWOuqm43+x46BP3h8CL+44fVQuM9eQoTohpogLHUnB1g1KR0A/EHDmozKA1q6ZG+xrTtDSXV7y8/5y3b9/w9vaG3/seTYYqJ8PlGTNmzJgxY8aMGTNmzPjPx2+2Vc2MGTNmzJgxY8aMGTP+zmFuMmbMmDFjxowZM2bMmPFeMTcZM2bMmDFjxowZM2bMeK+Ym4wZM2bMmDFjxowZM2a8V8xNxowZM2bMmDFjxowZM94r5iZjxowZM2bMmDFjxowZ7xVzkzFjxowZM2bMmDFjxoz3irnJmDFjxowZM2bMmDFjxnvF3GTMmDFjxowZM2bMmDHjvWJuMmbMmDFjxowZM2bMmPFeMTcZM2bMmDFjxowZM2bMeK+Ym4wZM2bMmDFjxowZM2a8V8xNxowZM2bMmDFjxowZM94r5iZjxowZM2bMmDFjxowZ7xVzkzFjxowZM2bMmDFjxoz3irnJmDFjxowZM2bMmDFjxnvF3GTMmDFjxowZM2bMmDHjvWJuMmbMmDFjxowZM2bMmPFeMTcZM2bMmDFjxowZM2bMeK+Ym4wZM2bMmDFjxowZM2a8V8xNxowZM2bMmDFjxowZM94r5iZjxowZM2bMmDFjxowZ7xVzkzFjxowZM2bMmDFjxoz3irnJmDFjxowZM2bMmDFjxnvF3GTMmDFjxowZM2bMmDHjvWJuMmbMmDFjxowZM2bMmPFeMTcZM2bMmDFjxowZM2bMeK+Ym4wZM2bMmDFjxowZM2a8V8xNxowZM2bMmDFjxowZM94r5iZjxowZM2bMmDFjxowZ7xVzkzFjxowZM2bMmDFjxoz3irnJmDFjxowZM2bMmDFjxnvF3GTMmDFjxowZM2bMmDHjvWJuMmbMmDFjxowZM2bMmPFeMTcZM2bMmDFjxowZM2bMeK+Ym4wZM2bMmDFjxowZM2a8V8xNxowZM2bMmDFjxowZM94r5iZjxowZM2bMmDFjxowZ7xVzkzFjxowZM2bMmDFjxoz3irnJmDFjxowZM2bMmDFjxnvF3GTMmDFjxowZM2bMmDHjvWJuMmbMmDFjxowZM2bMmPFeMTcZM2bMmDFjxowZM2bMeK+Ym4wZM2bMmDFjxowZM2a8V8xNxowZM2bMmDFjxowZM94r7Pf9wP/T/+G/48n1E87PLkhKYbzm7PycTz79IavVJSVDiondbgtktFY47xmTIhdNUZa2bbm7vef+7p672we223v2hy0Pm1u+ffk1m80D2+2GEAIpBYxRXFyfUa8arHNo41AZwjgyjgN9tyfHQIqB2B8wOqCtRhvD7jDSH0ZyyqwWDmczzmm8d9S1IeVMiokQIwqwVrNoK7zXKAWKAkpTiiImeNiO3G86YkhoFE1lUMpSimF7iBz6EbTl+vEzfvjJJ5yfL1gvPTc3bxiGSAiZUgp6TDTa8aQ95ye/9Tv88Ld/lx/97u+xun7Gw2bP25tb/vLf/wU/+/kveHt/y93+nu3+nu3mlt3mnu3DA2M/4qzj8uoKlGIYew7dnqHv0IDRmrauuThfY62hkLm8vGZ9fsVyfUHRipwzWimqusYaizEGrTUvXrxks9mx3x/YbTd03Y6cRqBwff2EMQR2h45dtyekSC7yfarbBW275Oz8go8+/hhtNSkH3t684LDfYIzi+uqK58+f0zYLqqpGa0MpmlwUmUzOCVBoZYnxwHbzlru71/zyL3/B3c2e/jASU4GsKABFUSgYbVAoYoqEcSTnRCnT91trlFKklIgxUkrBWI3WCmMdztW03vH00Zpnj8747U8f4W1Aq0QhYrSFogD5eK0SKCjFsjz7mKtnn/L8J79HtVzTjwOH/sD9wz2XF5dUVU0pha7bY63FOs83X3+D1pqqqnj27Blffvklh0NHKZnQJdpqyVm75qMnH+AVOKWorcUZQ0mBGEYuf/93/ybOgr8V/Oz/889IWhOBkBLdkBgzBDQvbzfsDx2Hw4H9w1sOhz3jOBJjlD9cIOdCCIGcMyVnlCporaafSSKliFIarQxaO3LOOGd5/PiaTz/9lJgib16/5vPPv6Rtl1ycX/GTn/yUf/IHv8+j62tAMQx7YhqJYeDly1ecn52zXK1YtAtQls3mga++/oLXr1/gvKdtF5yfXbHdPpBSYNFW9H3i/OyKD549JxfIOdH3A59/9iXrdcNy0XB+fo5RFTH07Hd3/Jv/4f/K5v5bxn4LpYeSoBQoipQKKWVyyRQSuw5e3fT8u794zbe3O2IOFBXJUZ7znDPGmOl7oVAocpbvY1GgtMZXNcY6jLbTx4JShRQjMWVyyqSUKbmglcZZC1pRyEDGedBG4bzl/HLNj37yE1brNU2zoBQNGIoyFAphDOx2O169eM2Xn39B33ekELBG443FO0fbtFSVJafIMBzY7bbEoEF5nj39kN/5nd9hvV4TY8Raw2qx5HyxZHN7TzIa5SztxTnrizMUheGw5+Hmhr7rGMNIu2x52G4YxwEoDIeBu7e3vHzxkvuHO1JKpFJAQUiBqtZcXXmeP19RVQ6F4vWbB+7v74lp5GxtWbZL4lg47EYOux6yQimFsZmQCjmX6RzKLBaO5bLC+kSKiRQzYVDst4GcFApDipm6bWiWLWcX16yXSxZVzbJpoWtozZKlP+fi0RUXz56wfvSIi2dPsI3HWo21msZ7FIUcIzffvGD79p7Y9diY8Qb2hw139zf8r/7P/5f/MofAfyaePFnw4fMnfPiDZ/zu7/0DjK7YbTu+/OIbfvHzXxDjAeszv/XbH3F99Zj12TkX55es1itKzgzDwN3dHSGMoBRXl9d88OwjVqsVzaIClemHgUPfM44dSoFznvX6kmdPP+Ts7IKL8wu2mx13t7dsNg+UHFitliyXS64ur1ksLjGmQiuLUgZKIZdECHuUjihd0ApKUZRsoVicq0kpMIaezfaWFy+/5n5zx/3DHcZCXTdUvsJqO73PmWGI3D/sCSEyDiPffvM133z9FW/evubbF1+TU6JpKy4u1jx5/IjVqqVuPLmMpDSQUiKExNBn9rue7fbA5mEn9ZszrM4WrJYtpWS6rmezObBcnrFYLAnjyHa74XA4sNvuMaYixkIMhavLx5ytzzDG8NXXX/D5F1+w2e7phshisWSxWNI2CzneiqKUQgiRGDNKKazVpBQIYSTnTNPWPHp0zWq1Zn1+ha88oKZ3S9EPB8axY3/YUlnQGrQClEYrjdWKxhYuFpbaJhx7tMoo5K4wxmOMwRiNMVIWKwpKZbTWlFIAMNahpudQKTDGAFBKIed8ekaVUtOZevwczbsHuMh0v5TCGAKxSO0yhpHb+3seNjs2uwO3dx3bXaIfC/0Ahz5K3VoKuci/cfy3lC6nvz5n+Zy11tPXZFBocgZr3enjjjWfUgqDoq0brLUoo8lmqrGUwhmD9x5nHVVVA5zqqX/2//jn/8n39Xs3GcMw8nC/ZegjhzhSLzyhJK4eP+bs4gltu8L7msVuCyVRSiHlzMOuJ4ckh20MGFXwzuKcR0+XYClMP2iDc5aUEjlrcin0/UAoCWMtxjjMVDDmFKYLuEDJqJKx1gCKFAphHKBErClUVUUcC0PKxDDifY1WCqwUuDFmQswMY0Qbh9Fy2ZqpgNFasVw4Ykrs9yPbTUcMFmsK2shLoo3FVQ2Xjx6xWNRYq4hxZLvdkRJQNEppgkqEGIi3PZt/vaXrB+q65afrc9ZnC0zluL194MsXb/DdSDUO7MoDKitIijxmVAKlQeWCqyzgSMkSB03OmRQLh27EuQ5nDVrDOAS6rgNt0dYQU0JrI8WvseSSiSEyjD1Ka+q6IadCjIEhZ1IcMdpQeUNBsxsOUuwX0NrgnKNdtFxendMuG7z308sXOOx3dF3H3d0dy2VLIWOshmRQWFCaTCalEVCgCzknjDHUVY33HmMOUtBoTYoFUNOLk4FCplBIlPKuwfguji8TyDOjlMZog3ceaxS1dzS1Q+uCUgWlQGOgHA8N8M5MRQNoZanqlqZdslguqRctqSTopLGp64a6akgp8ubNK+q6Ye3la2nblqqq2O/37PdSSHtfoQwUk4lK3rFQCk4pFAVrpFh0SvGbjJQSylisdUQySQ0kBVlZ0BZjHZWviFVNCON0FiT5w1maCaMyKMiqTId7gen/CxRKaeSHlyklk3NGaY2azpWcE4fDnpQKYPjk009YLFdUdYNzDq3lkqmrGm2Oz4GCUrDWsl6fceh25OmwjTHStsup6Ql89dULSlY8fvwUrS0KQ07w9u0D3mmaqoICSmlUUaiisL6azsOMQp65I7QyZKUgQ1EDACVHwhgpRcHUSBwb6+OvUsr09RdAGmSKImX5WaC0XICqnC6tAqcGQylp5AtyKaaYyTlO75nGGPkz4zCw391jTEGrgrEVSjmUyhQUSmes07SLGiW3v3zOSsnl5SqaqiKnkRhGxmEgjpGCxznHarVifbZmuVxOP7eIUgXrDMv1kmIsuvLUZ2c46xj6jsN+zzgOHLo9fd+jNOy3G4ZxwGiIfWDo9vTdHrm1genO0QYUGqM05ELJUZ49raEYxh5e7jc8fmQx2qGUwzshBigFvgrYmMhJio+UIiUnYgzknMgpk1MhRY3RDoNBKYOzCqMNKUAKBVUcxrRU/oxFc8nKX7CuL2nOz7l6+pTzJ1dcPL3CekXJkdR39Pc3HHZb9tstL7/4hofXt+R+ZOEr2qVnP+y52dz8jb3jf9MoCcYx0nU9XddR146UCiFkjFboylLVirqq6PqBUjZY62jaBu88bevIuXB7e8tuvyXFVxjjGcPABedUTYPSFu9l6NgPPcPQ8+LFNygMMSa8c9RNw9Wja5p2wauXL9hu9wzDQKGQlaHyNdZWeFsBhlwyKResUfKokUmpoACtpD6w1qOUYrU84+ysoyhNQTGGAzll9ocdh8OOtmnxrqaqFng/TO+o5dHja5SGqqk47Hfc3Nyy23WM44i1dnrtNNrIIw8yYNXtccigpH449HRdpNBhjUUpCCHRtguauqKuPMtlDSqSS2Sz2aALpJjp+8DDZkcuYI1hDKPUPEnqQGPsdM5N9/CxqFeGnEdKScQ40PcHjDH4yrNarViu1ixXa9rFCmuNDAVSxFeGohyljPIOJBnMqKnI10rOQmvAGYvVoKRskDPv+N+txhg9nbtlaib+6n1bcprq1v/4Hv7u7323/pDag79Wk8jHaqMxRaG0wxpDWAQUBWflGbFm5NAlnJE7a4wKlQsxvftrlJrqIfXu3z7+yjlLpaSl6TnWRlK3aRnUTXeF3AegtSVnhdIaozV1XWOmWrGqKoZBmtNxHL/X+/q9m4zDrmO36VBa06wWBBrUreLXv/4Zjx8/p2nXKOtxizWkSI6RcX+YpnCJoe9Iw54YAuSRw2FL13WnT1jpQtPUOGe4ubmVByhH+sNA2B3kG0ambSopjK3GKEVJGXLG+oyvKnKCNCS2twdWZ5p2YTA6YauWGDN9v+fVy3uWq4rlqqJuHCXLlPDQjYxjpKosbetRpaCRif+qtWhVU1kNGV7fSDHurEGrzPnFBWfn51xfrihxz/Y20PcDMYJ1FdY6uTym7vw27tkdIvs//td8+bPP+O91xdMffsr5o2v+8H/+T1Gu4Vc//4yf/9nPONxvsAvFwrSMDwMpjxg0KkDREZUjVhec04QRYsoMQ88wDnhnWbQNdX1giBm361idr0lZCogQRhaLBc5JJx/zCFrhKsNVfUVMAW2sXLLo04bKVjWx9CikGXj0+IrLqyseXV/gPCgtU4LLiyuctdzd3fDlF78kpZHHTx5RSqBySylEtEaZQHd4IMZEyQrvKygjzhWMBmNAm0IYE+MYMcZRVRanHX0vh2gpiVSCvMxFnyYJx19aaWIuhFBo2wXeO6xWhOHAsrnm8eUSUyKqHE8gpkJLozV0hx5tjEx+bcXjDz7m6skH1L5Ca423Tv7eqmbRrhiGgV/96pe8uXnJhx9+yAcffgA8pu8H9vs9d3d3fP755yiluL5+zPX1NaVAHw988fpzbDE0tuLJ+TlD7GmtY+H8931l/07iYfeG5vwaZ2pK9OyHniFndCWDB5ULrhRYLimqYKzh0EEKsjU7XshFTeMgFLmkad4ghy0wHaIydQ9x4M3bl1w9ekTJcNh3GCOX/jAceHPzkl/86jNCVnzyyScsWwcUckqcnZ3jvcd7L41RjFhrOT87wzoYx4FxDAxdOBXd7ULz7csXdP3A+mzF06fPAUs/jPzJn/wpX3654JOPn/OHf/gHWFVJQT9m2dQqpODXSi4AFFoptDKUYim5oExHXSuaGrwtmGkimpHLYrFY4L2nlMJmsyHGIJOuUk6dS06JcRwwKQGZYUinxtsaL5c0Cms8qURKyaSciClMF1WmjACFYSyMYc9ud8dqteTi8oLrJ89omhXet1jfUopMb11lyUXOe+scvqpYL85ofYXR8ObhgRgDKMdydY1zFXXTcn5xhvcWrQulJA6HHednK86uzrl5/ZZmuaJaLLFtwzD2hDhOm7BAjJkYEq9fvebQ7U+F/m6zY7/dMUzbT6U1GsU4DFhnKclCccQhEIaBkHu2Gxj7zNAp7m47Gpe4vKy5etLitDs1nIWO3e7AOCTimIkJhkMk9AlrwFcO7xyLVYtZ11AMJSuMsYxjICVY+iueP/57PH38IR9+8BGr1Tmr9Tnnl1esPrii5AA5YHKg7Do2b17z5S9/wZ/80b/i888+4+WrV6wuH3Nx8YhHV9f85Cc/5rNXX/Ht6xd8/e1X/B//9l//94IxJA6Hnvv7Db/+9a9ZLi/JSZNTol1UWGdpF5brR88wxpJS5uW337Ldbrm8uOLx4w9ZtGdY41mt1tzf3/LLX/45vqp5/vxjnn3wCb6yGAu+qmiaBaAIY+Sbb77kmxdf8uvPGn70o9/m/OyK9dkZjx8/45uvv+TNm1f8q//xf+KTH37Kat2yXNU8e/wcZxoUDqUNORuKyrItLwVrHNZWKDSQMcZSNUs++OAjVutz2nbF27ev2O0f6LqO/b6TZ9RYnNtQsCitcE7jasPl9SXL9YJHV5f8+X/4c77+6gVffvG1bD3uN5xfrHh8fcViUWFNIeURpQpN6/De4r3n7nbHftcxDoHXr+6mIlWzXNYY47DWoPTI+cWC1brh0dUjvvzyJV23YX/Ysnk40LYNxhq2uzv2h5EYpZGofH3aZOz3e0Aan8p7rLGMoaPrB3KJ1L5iuVxwcXHJ2dklTbuk8jVKQymZGDNjGFEq4SvNalGRQkSaBDXpAQolZ0IolKhkEKQcEJHBkTQI2miMledIcawbpr+hvBtiWWun2ilI7arUaWtw/NgQwvR1qdM247vbjjz9vqnM1PBoFDJ0b6qG9aKnrTcs6gf2h5F9l2ga2WYc+si+i8SsZAuk3jUYx8/viJSkG3HecXZ2xuZhQwgydMs546zFakMxiiEP6GQwqgjDxVr578bipsWArzxv374lhPAfDXL/f+F7Nxnn19dY69HWkhU8enLFer3k/PwCSianINOlUtjv9gx9T0oJ6wwmaWJJVL6laIsthna9ImvQVjGGPVVVoSiUnDDaYJQFpbDGUcogF13ObDcPVHVFXVdU1qNMwtqMNRbvLftdx36/5fKqwnqNMppYQBdpCtq2YQya7hDo+5GLyxbrDFYbfC7EIBduziPLZYUyijJRMYwF6wzaWRKKFCJjLDS1wVeW2mviYUs3jCitsa6iqmQDo7Ss/2IupKIoypOcZtSWfc786f/7j9jdbfng00/44O/9PX7n7/2IJ48f8YPnH/JH/3fH7e0b7h/e8prXXD75EO8tY+x46G4JeSSXDEXWssJgmoqJUogpE3OhUgbvnVykQdZz9/f38r1X0jn3scf7GmM8fRyxzlEDMQ4UVcglElOgspriDako6qbi/HLN6qzFVRqtQJWEUhljCudnS5ra0XjHF1/+kq+//Ib723t+8IOPZIsUAv3wQN9vJnqGoakXUDIxBna7gzQf0zMtDYgihIRzBq0t1kJIw2n1CuX08gtdKsNUNLUr2T7EONAfdvzooysu1jXeFhRR6CVatjTmO1OLnGWDoW2Fqlq0bzC2kklwEeoZRvPty5egFCEMpNLz4YfPaNuW+7s7bm7uTu9UXdd8+ukPGYaBYRh4+/YtZ2dnLBdLhn4ghkg0Fr2sMFVF0YZRKxbf96X9O4jmbE1Whl0f2O4C/VgIIN93rTFWimmfK1oKxsoFOnQdQQVCDmgNTBsA6QT5TqOR0cagjUy6Sik4a7i6usQYQyoFa2tKVrIhUZmUR158+xmZAWUiP/nRD2WAUWT4EGPCGCkGDoeOEAPaKJpGNlMpZvZm4O7ulu2u42EbuXr0iPXqjExit99S+RbnLT/+yaf86b/9I7bbGz54/ogffvzTkzJuu7lnHPvvbOPy9MwLRVAhW8lcPFpFFo3jo+fnRLVjc+g59D1lelaNMaxWKw6Hg9DNlFyeWh23HlByJhGJEWlktJGpJdKQo2Ryp7SCoiYaolyUx88tlwhBGvccMwqLtQe6/jMWixVtu+b8/JqIDFe6w4G6Bqsdqii8lQ2AtoqcMsZWoCygWa3P8E4avJQCw9ALnStFhqGXS75kjLds9hvotpxdnRPGA/vNPXc3r0khn2hmx+chRtlibXc7hmEAlDRmVSXb9+2Gy4tL1mcrzs9WPDx8wRg6QhwZeofRjrY2jIsVi6Vjfea4upICqe+g7wt9X2G0bDL2mx5r5IKuK89yVWGdxhppKhSeyq9YtNe01RXeLamrFZfXj3n+ySdcPb7m8YfP0DmgcoIyMD684ub1K+7evuXNl1/w5usv2Tzccbu55e3ulvt+z65K9HHH/U3kq4db/uLbz3G+sN0+cHP7+r/A2/+eUIpsgnJmuWzpDwcO+56H+y1KB3zlWK5aLi/PKdO2u116hi7w5s1bvvzyGx5fP2GxWFBVFev1BXXdEGPk9etXbDZ7zs7XXFxecHF5IfWIsTjnePr0Q/r+wGZ7xz//5/83nj79kA8//IhPPv4xrnI8efqcy6sf8G/+9P8FjKzPG/TvwaI5w7sWb5cYjNCwixRwsukEpn1Emdbn2liWizXeV9RVzYtvv2boAzltQStSiXJPxIQ2dqL/Wpi2YnGh+eSTDzg7W/L4ySO+/OIr3rx+4PZmwzgELq/OaBtPVZmpaJcZxGJZUVWevg/cvt1wd3/HMAyEMeL9ghgTMclgU6kiVPOV5+NPPmC9XlHXt3zz1Vt2uz05SxOQkhIKZYH1+gxr7TQJl0JefimMVdS2oqoMY1sRQ2IYRsYQUAaMRRgLeTrzCcTQU3IkpzixFOA4bFJanbbCi6bFe4U1CZ0jKcfTNlUrC0WTE99pMN41CKdB5XHiz1/dTJy2BtPHCfvC/Ecfp5Q6bReEtCH/iy5ApGlrrLPTn7dUrqLrO7b7A02zpxsMh97wsFPsD4lhLKQMY5w2xtPnePw3j59PSon9fkdKkVySDJnRyFVaCAVs5XF1RbNcyiZcKVSBw+FA09RTLRmFM5IT4/CeNxk/+PRTvG/QxrLvOy6uzlm0LcvlQrrzIv8wCP84Tb+cd7iqoi1L6qpmHBMZS1X3jGFgGOy0MjeUbEnZThM0i9bfnUQXFJmUIzFoRqVQOWPtiLEFXzvhueZAUYHFqkEZoU8d+cVavePKxYm7fDiMNCc+qyElKdJDyAxDBq9xVoGRB7dMf18p7xgU1lm5+PqOQymkVPC+pqoritJMu3fhZqPJE1c5K0M2lmwNMUa6hwf2b94yXL9ldXmBvT7HGsv9l7/Fy6+XvLIVby9uWC8XKAO7TjEObxhiIBGmw0VP074sFBKEtjaOAedGtBHKzzAOxJTkV4xCCSgZV7uJ063IWfQtlkLOx4czklNAK3BWYZWhrqXI11q42jnF6cUuU0GoMLrQNDKt6buOoe+pfT01GSNd/8A47smpUIqj8r3winOi76TgluJGph4FKOk4GdAorSnxOHGQQ0UrLS9zAaY1rfcVj66v6fueFCMpjrSNx3v5viktDcaJWjX9eWncNGiN0hZbLajbNcY3jKmgdWKMI/tuz5ubNzxzwu+sKqFHGWMYhpEwxtPfn1LCOSsH8ThO699puuUtxRRc7XGLGm0doEh//cX8DcO2i4TSE1Li0CtChqw0OkshK6t8g7Eel+W6TSlSUqJkofSpXNAcdRgapaZD/zu/ONKoAFAnbioIr7agpw/O5BzYbG7xteXq4ZIQf4Cavt/OetmcFOG6Hg4HhqEnk9BayTTeVwx9AgoxBYbDgaqqqaoKrRSvXn07TVU9pWTevHnNZnPDL3/1Cy4vnlBbL/RHyrT6LtPQQD5/oU/liV+syNmgSHhveHS1YD9o1K2apktpouekv3pR5gJoac6UxmjZDEOZNskGdHnX1MBp62GMnhq4dHq/jpdqzomCUDi1SlgT2NuOokaGbqBve9k2m0JM8i4bCmiFygqjjl9zJuUsG1/r0NrStguMNROFQZFSJEYDFLz3hBi4e7gjjZFuGEglkemJoWO/2zH0O+LIieolW6eRcRwJIdJN5wrf2YApJT9TV1VoYxlTmS5yBbhp2y5an5iEq15yxOhM2zpkF2JJ0aF1Eg1X1viqonI1dVVRVxW+cjjncL7BmpbF4pJHV885Wz1jubhk0Z6zPltyfnXBcr1g1VQcHjaM/Z7hsOOrL7/k/u6e7cOGm9cvefPt12wPW3bDnlFneiLJKXoSYxpRObGLPXVj6IaOQ/h+BcLfRRzPZgV45xnVME21B5QeQAm1oyB3gLGGqrJoemJM7HaB+wfRZDSNaBSqqsHaSD509P0B7jMxRoyxlKyoqka21V50dq7viCnz8HCP1jIlOFtdUvkFvhKtQUb+jrc3N/SLRFuPrJcaZyuMtpNuTDQb04kmLca0SRdtgsNM1KBhGKEoYhjpDg+MY0+MgZRl+2FdpKobFBmtC85qVusGbRTWGvb7Pfd39xy6jpcvb0k5s163nJ0t8N5M9ZGeJthaNrchs9vv6PuBcRTdxzCMeC/UG+OE3WCNpm0rxiGwWDYYo+VdC5ExxElDoCf6uSbnQoxx2hRo2TmoiRasNVo76lwRpuFiLoWu61BKUdcF6yyilyikkiaKc5nqju9oFYDjPS4yMT0V9FOJPZ2HKHU61/5TjOTTNuI7TcVfxzt69l/dgpye3xO16R0tVmnZWheM/OfSoJXCe9kwWafohpF2GHFOU7lA12f6sUAng2SpkRTfbTJkWCb0ppii3Isly9ecMxlFUgkDR/mpfM+mGleGS5y+FjP9jL4vc/t7Nxm//4f/lMovAMPrt6/li7aG2ju0r8hKkVKQl9oIjSiXjHaGZdtwfnlJitD3I8r2VIeeQ/f/pe7PeizLsvxO7LenM97RRh/DIyIj58zKquJM6kUg9aCGALUAAXoQoK+ml2419CAIkh4EURJb3U2yqrrIysqqnDPm8NltuOMZ99lbD+vc6xaRSXYQaAkVJ2HpHu5m5tfOPXvvtdZ/2knxHQacNQInqrebB0A/dLJoVJSiK8hhU1ee3kQmM3DGkWYlV6+v6YeWrFBMZgnaJISg2O5r4kFYHHucS0eRkuX2eoufBfIioSgTkmDxgyAau11PLGUTsMYQgiAAVdWP3EJHkiRMypzdbke13dGWE/J8gksszuX0IRAQ8eSgDEFpopYFFZUGm2DyjIt3HmBUpLp6w81vDaff/TaT+Zz80RnJP/+HfPHLz/n8VyfEDja7NVVbkdhAVQ3sm44h9EymE7RSWK2IUWgQMUb6IbKvKvre4/Z7oZ0ohbGGvCjwbScN2hAoyxm9H+hCi7Up1iayCroOP7Qisu97GAacNphEUxSaYajoOkNi7ThhlimxtZq+7+i7nqZpyNKUrm7YbDc0u0+ISAHkfc0QuhE2TFFamgyULBDfD4j8QoqMGN82fAdYM/hIHIWWMo09fK5MXtMsZ75Y8N633uen//7fU+13WOUxOkqDYSLamrHge9tkDEH402nqRAxjHNnkhPnZA1w+ZdPWFGiub695dfWKDz/8LRfnp8xmS7w/BZQYIwwRa0VYOAye7XZ7XLzW2uOUpKorlssl1ooYNp9PUD4QYhyLxW/u9eFnKyJOptUmJUkn2MRilaGPI2XHOJwLI2dYEfOBGPxYSPij8O1AxTxSpOQkE2rP4GUfBQjQtz1JIvuBcIDlcDugZdvtLS7RbLa3NG0jPF5lmEzzY4Nb1w23tys2W6EtTCZzTk9Pmc0KYtyPQjpF0zRMJjOscxir+fnP/4af/JHj9PSSZ8+e8ezpU4ahJckMl5ePuH92QeEsZZHRVoa+k0ntkRd84AiPFLHo5RBKE8O98xyXzLHWUFc1Q5ShQdMIXx1GnnWMKGVGfrJBKxkKhRiIQ2AICiXHDXdUGCitSBL7tqE4NhjxSGk9iC8JgTh0+D6idMfeVSTJLfvNNUmag7J4D7EPqCBTMgZPjD0hQO/BpSnOJqRpRjkpRNBOwCWGIXiGQZrF+WJO13V89NFHTCczGXINHa9fXkPsRSvTDdSVlyJOaXajNkyMAyJVVROGgDNGJrVeKA55kRO1pup7dtcVibGkqSVPDfPFFAj0vcdY2G2u2SWBfpmSL08xSLHWdz3WBZyLZFnPdDIjy1KyTAYaZTmnKOfM5vco8nOWJ5c8fPQu5xcPWCxPmE6nqKFjqGvoW4br57z+5Nfsd2s2qxv+q//i/4DOClxRYKcZ+1jT2I7G96QuQQWN8QEfQBmDtQlZmuOHmh7FcFeI+g27ZHgke7QzCUWux4YA9vWecnBordht92RZQZIkZGlB6nKKoqAsSz799HNWt7dY53j8+B2mk4I8zynLks1my2az4dXLl/jec3F5n+lsTpZnKG1wLuf05JIiL7m5fcOz50/59LOP+N53f8RycY41BRcXZ1gHWa55/uwNRd5QTqaEe5FJOSVPc5KkHBsUA4hBAtEf194BdYxYynJKWU64f/8+aaL5m5/9FevVlhDFBEHrjr43skdEoQcZq0kzi9Ip1inS9Nt88cULnj97yScff8F+X3FyMiXGM2aziaCGzh01EtoYzi9O2e/3eD/QNB37fYWxGqUCSarIimJkE0RQA8Yq0kQQlabpGYZI0/YobTDW4FxyRA9DiKJFHH9OGIfSTjSezrnxvFTcrNe8uXpNmiacnp6yWMzRJmC1gl6ho2VQik41X2oy5DfSvLVDj0eRaLm/0uhplBLjmBhk31NW/V7z8NVG4quNwx+67grB736fu0hDjHF8DWqkAUvjpJzCKDHlKfKc+XRKWWbUbUXT1cwmPdt9R1V7VpseYzrqZqBu/biPfRmNGYbAMLRfaXbkvoQYICiGGOi9p21bnJaz7PB6tdGjZtodDXSkGf4fvr52k/HLn/+c84tHFMWcNy+vefnqGXmR8Z0P3sdZh3UtxhgmxVQEcklCkWfCk7Upxji6dqDzW6LqSFKHVgj/yxlCJ1PiQYlrSFU3dF1L21SkecQ4i3GWtk/xXaDvB/puy34baZuBtla0rcdaEapkeYJG3KESV1DXHd4PBD/QdxUKg7GW+XxJ29Z0XUPbeBbLifD/dWDwnrre0baRsjjlZl2x23V0TaBIc8piIkhOHEAret/zarXl0paopiesN5jEkqQpLs+YFFO22z1912FMRqIN0Xuudrf8+9/8lA8ePORsOmfz0Q2fffEJs/v3ufeD73Nxcc7y5Ae890fvM/1Xc14/e8Vut6ceevZdx/XtG3bVmhA9fd8QoizWiBH6hIpU3Z7Ot7jOEQOju5KVLncs3GKE/b4mzXPyJKfzA7tdhSKSpI79bkfftfiup64bjDPYRBMGgfGbfEWV5nS9cLdDEOrRerWi7VrCEGiqiPciIG0YUAi8q3VCGPRRexPjgHMa6zS+j4Adp7jgg/CyI0HE2SjCKAKL48LWSiaXauQrRiJpnhCV5+e//GveXL3AEFhOc7717ruUGWgGaXrGBWrHCS4xQBzwwWNMgk0Kzi7fB+foYk/na7TRbPcrmmbHP/wH/4gQFFdvbum9TJ+0sRht0MYxeNH+bDYbFoslMUb2+z2TyYQsy5hOp0xnM5xNsM7RdZ007cNwLIS+qdfNpkHr8dAxHRFH4G1jcNAjWJuMhgnjVCaPGCVuGE1V0Y9c+zBugmDk2YmD6BNilKmyEnH/2ek5k3JC0/aATGPCIJxWFaVpDQGCj+x3DSqKGFkRxAHEe+q2IskMMz0hyxOydM5kMmNSTtluNyRJxnQCp6envH79hq7rqOuazXbDq9cvabueuq4YfGS93vM3P/05J6eX/MlPfsIPvvMBi7N77LevaKr1OOEbm2QiZnTQCiHKJC5ojAKXaM5OLHWTst9lxKtA1Xb4vmez2cigxygMWv43Tu7ieJ9DEK3FAcb34/N6oGwoxWioARC+Mr0aWc8qQGREhwfqqiFNFXmREofIdn1DnpVCt1UJvhvG760oygzTtDgXUTrHpRlaabrQE+sNIXoUEWfAbg316I7Sda00nIPQLYeuo2sbtps39F1Nkjim5ZQ3L17T+YE+RKq2EerUKLnqe6HooTT7ukJbjU0cs5MFeVGQZI48T8WNRnuc6dF2N+pbNLPijE9+00HjaFYF+nyKDeAIJNZgdIIxKXlRcHnxmOXyguXigvnJOcVsxmQ+5/6jd7i8/4iiKMiThNhUBF/T3F7z6ouPefXxZ+xurmlWr/mrX/yUwRrsZMJrE1nOU9y8AKfobqWxcjYT9C2Og5OgUdoRjWXQ4IPGK/n4xl4KmqZlu9vRNB1XVzeEELj/4JI0uy96Tat58+aaIm/IspyhHyjKHOcS5nPDBx+8x263Z7fb85vf/JLT0wWLxYJ79+5RljlZluL9wO3NFa9evSBJHE/ee5fTs0tBP9KC+eyU6XTO/b7hxYtP+fSzX/PhR7/E6jn3Hiy4d++Cy4v7PLr/I968vmW9XvOL69/x8NEJi8WMk+WSzC5wpsDoUZcTDQdXIzigheFIJ8qSlA++9W3KPOf586f88le/4NWrF2gtvPtqV0lxbgxKx5HmJWhwlsPDR2csl1Mu713y9OlTrq7WvHz5mm998A5nZ2ecLJe4aI+IaowelxguL89498m7XN+suL6+5osvnnLv/jknZ4o8jxijaNuW66s1r15ck2YZbR/ohwANyMBTBsRX129IXIJLUmmAFVhtcImmKLKR/+/krHUJxlqm8zmr9S1Vtef582cYI9R1pSJ5lhMHYWMYbcSAZbyk0FcooyiLDJcElBpQcSAx0qqGCH5oZdA9Ihrw+zSnw/c7OjIdhOWjHuNuU3GgWB0uEV0fkIYv06xAGmdr7NiAjYiMQ2rEaFFIXRsQts5ut6Xpeqqm4/p2z/VtzXrbcLNq2OxbOi+MmhDV23ugDgiLHtFtCPpuI3Z8UUL5cmK6EcevCyF8SYvxhxCcP3R97Sbjt7/5NbtdzWx6wpvX17y5ekmWJWROUIuiKMmSlG0/wlsh0vQ9J8ahMovWjqbtqZqGqq6oqh2+byGK+KR3Dh8CEQ9aYa0VMZ4KI9xpSDOL7TzeDvje06ic3nf0bcT3jTiYWOm2tNKjLlTcTsgsg9f0/cgtDhGCF/G2S8Qas/Psdx1JYnHOoHRP30PbQ7tuWa0a/ABlKRaNqTMYpSBqnBHalzaRqm3xEbohMFvOyZwjzQuSLCP1QpcZupGipCNh8Dx99ZS23jLPSnLraOoe9+uc6d/+jH/8L/45i/NLsnLKB3/6bdIi4ebVDTfXGx7ee4csy1ltr9jsboCBrvdo1GjGE0fYWH7XD15ABoXQ29TYUSMuC1Vd4UPEJQPWpWJbKX9F03pBFIYo7gMePBHoCUPH3gos2w9C2YhEnEvZrHd0bUfvPYPXoyvVWOCpgFYGa9y4KMJYGCFFpop4H8SmVukRTvYygY2DiEjHopIo1slqnASFsXhCKZSGrm/xwdN0HcPgKYuc89NTcdcYN/W7bJHDxFYK1wECoAzapGRFzna7ph16dvsNTx49pMgLEQYbS+89REhcKkWQ9/Shx/eRSMAYzenpKSDFWZIkzOdz5vM50+lUNuDxPWvaBu81TdOw3+14/8kHX3fZ/p27/BDQEfQ4Cer6RmgFg0zDjFFjc6CxdoS5Q2AwndABQoo1impXEWM7bsfxLcwdDxA5HN5Iow1lOcFoA7EnhiCbZxwYDiK4IdK1nu16z2a9g2iJGZClo4FDT14mFEVO4gy1UXz66YfU9QXDvfvkecLtKtK2Lfv9dtyMpXEqy2IEA9uRRyx6ovVqy+9+9zsePXwI3/8e85NLXj+fovQNDGHkE4tznvwk8qtSh79TI3I5MC0Ml2cTOm/or29pq45WxXEtaVyS0Oxq0Mg9vsMtPtwxNdJJBVIPx3vatuI8M4zrWuiwB11GlKGStYIkjny1GLV8BMPgDTE4VEywJiPoUTxOxA+RrhNqZ14IRU1+RiU0zhggBlY3K7pGNGIH68VhECvYarfDdy1927DbbPG+ozGGrpFGvu17uiHQeX84vgFzdDf0MdL2HXpQRBVJnBudaCBxkOcpiUlxeiCqTp5TZTBJweXJCToabCipN5Ew0mJTl7OcXjLLAtprnjz5DidnF5ycX3Dx8CHFpCTPc6aTCdNJiYqBfnfDi09+Q7W5Zbu55je/+lu2qy191xDouB32dH1kaPejeF7EuEmqUVp+LK0M2lhBwnTAuRS0GymIFsyA6x02eWtl+U27hAKr8N3A1esrdvv9KPZOMcaKley0pG893ovBwW4ndD/rLNYZyrIQxoWzoiuKgd1+y4sXgclkirUibi6KHFWLy+Kzzz+jqWtm8yUnp+dM1UzeA+1YLk/J85Kqqrm+2vLZZ58whJayLDiZn1EUU7ROqBrFdrulaXasNzdcnj5iWp5S5BrDwdRDy/4z0hOFUzMWdoBGM53MubwUdNtax+3tNZvNij01CtlH8yIlz9JxPQllT2tBCY11hNBxe5tye3vL61cruha6Fh4+vECMOsWxUWvZeUIMpElKmmS0rqNpPVdXK5wTPWzXDmw3NXUzoKKm957Oi/297CWWLHt7rvV9S1SKvMixTmGTBJcIO8S5RMTZwuEiSWXvlUJZBqcHOlmWTtAq4HsxVDlQhOR+6bcDk5HNEtWoTYsHtoK4hGpzGFjFLxXSd1GNu/qMrzr5HZqMw+cc/vsPUaoOSMhXReGK8e2W20/U8o4rZdBRj7tjglOW1neURU+eZWTZjvmsYzHvefF6xWZXs6s6/KAJYcSm7wAvahymcrgDMeL7Hq0Ug7FEY/Gj29TBfQo4ojDGGIqi+Frr9Ws3Gb/77W+p9w2LxQm7TcN2t8I5ObSX8zksA3oSqXZ7EV2GwHqzJS1KQBMx7Kua/b5iv9+x327p2oYYZOEbl6D8QES4onYUgMoi1uLEUWRo0xOcZ/AGDez24LuOuupIc0WWabROYHRqUES0CtjEMow2oH4QbvcQ/chtFleqqhrY7zpiKe4f1kDXG7o+sts17PYdzjkWi5Kh92JnGCJaGZk6IxSobd3Qek83DOSzCdpa0iwnSRxplsrBHQJD14vOIfY8f/OaN69fkhrHYjbn5mpFt2+hHZgtF3zrR9/n/nvv8c4PHxMGj3MW3ww8uv+ILM9Ic0eILd43hNBJYxURFx7AGEsY/fZFrhFQQeznjE3E4UlB0zT4IeD8wGyekKYpKPBDT++DFP5Bo5QFlNgJNp66qqRBVIPQemDsvidUlfA4+76DKAe7woiQWge0PoiuRoFmHLBKtCN4xeBBu7E4iAfeqnT0UlQe+PVxtB5lpE2F8Y8V1hjaTqw/275DESmKjPOzU/SYR3AoPw7bQTxYTQZpZkzUaOWwNiNNHev1Nfumpq73vDc2GTEqus4zDGJgIKLVgb7v6Lp+3NhkunxycsJ6vSZGxudqwXwuHuR+1GcMQbi4Wit2uy23tzdfd8n+nbyOlrMHKl/XMIQB3RuSxKKUw1p5Fo1xMAo3de8wxuOSgTxLBJH0/fgsKNlI492CWR1pc0op0iQlxtHfe/BYN7q8REPoZSLetj23N2tublbiUjcZBDlpWqEjznLS1NBbjQ+eTz/7HXWzxdjAO++8OzYSHbe3N7jEMQyepq6ZzxekqegxDvk7IUBbN3z++efc3N4SlWG2uCQrllh7NaKABy2GNLiHgkOpwFvCiEJHz6SwXF5M6XzCarNlPXj8OLBJXUZZFtTbihBkwq3/ABVApnLqaA0ZQjw2HvpgJBH80VY4jvbAh8PeR6GoadQoZrViwaoU1uY4l4kzDMINFt2eoh8ielBYl+D7MftEjdV6FJev7XpDXTe4xGGtZTqZHLnG1X6P71q6pmK/3R+1gZu4Z7Pd0fY9vfcEBSgzomgJzgm//qBN01Fhh0BqxebS6IgxgSR1ZM6SGPChxuqIVYYk5Nw/OyV0BhUSmq1GJwqdaKbljFmZY1VO7uY8ee/bLM5OWJwvefDuA7IsxWoYmhq6inq34ubNC37z13/G6uYVtzev+enf/hScQ6cJblrQZ4q66qi2e0JM5exBkY6sgMN7qLQZByKRJMvB2NHCU2FipPcJSfrNbjIUmugj11fXBAJpTOm7jiE15EXO5cUFTdOxul3R1A11UxGCJ0kT8jxlOpug9eFMtlxfXVPVNbvdToTiRUGW5dKMaEVV73nz+hVt21FX9XFdWOuwxjKbLThZ5Gy3e25vfs2z589BDcxmU5y6pCiWQtXqA0+ffcTN7XZEDUWPYV1KZgDMiN7aI20KGJttoUF5P+BcwunJ2Wi8Ax99BKvVit1uS9tUKBWYLybMZrMRFZBMqMTJPnKgOJVljtaKp1+8pm1W9B3MZjPy3GKtWDdHxMUpDDXWZpTllIii8y3b7YoYg0zZB03berwXFXnfC3VHjQisMYqiyIkRsbXtPb6rcakhKotNjOihkpTUpaAMPkg9obWS5sgYsjw55lkkSUZeTLEm0rXVaFN+l8ajUaPmKoRAHAYwB5ThMNAI6FH7pbUadaG/32TcbTC+2mT8hxoJ+RWUOhT5gtrfbUAOnzsMw9sB2XiWKaVESqcgDnp0GoS0SEh9hw+eyURs15vO03QBYyOv30Q0A/tGyWAi3Gls5B/+0msMIeD7HoXYDjtnR3qyMF4O1wGRMWN2xte5vnaT8dHHn/Dq9RWz6YwHDx+MKnXD+vaG50+fMnT9KKQdKIoCbQyJVTz/4mOSrKScLekGzWa7YbddU+03dG1F37fiW48IMrM8xyUZ+71YCxKkWNUYjHZM8oE4iD4izxyBiA+Rbl8TGzDjdMfqjDRRJFZhlELFQSC2zGBMStNa2m4Q2kVoURjybELve+qqp25umMwmNG2gajw364oid6Sppu+qMWRHfK2n04K+a+kHjw+RhZtRdz37as/1zTVFmTObllhjZGKhhQK0ul3T7He0+z1DtSdRDqMc1+uO2/2OYQgYpfmzf/Xf8ObFSz740Qv+6f/8f8b7P3zEw/cf8PBbT1D/b4ezliE0vLkyFHmOszAMPXVby6TDGKxOCBGGqPABIr0gAoMnIAeTNpBnKS7JsM7hh46yzKUrr3umixPZyHuPVYLexBhpmh03tw0+jCE42tDUHW3XoJUU6GFsCrQWkZoZF+bRxz+OwX6Ib/4wDEQjjjdFkYz+/IeFb4ABImPQ2NhlK0MMb515tBE9iVIaZ4Uff6CH2TRhklrKJJKYQUTsVpFYixnRkDBadioCRoNzC/JiQVlOSbOE9euXOJfy7uP3uV1v2Gy37PZ7FILsGS1cb2MNpS2YTASh++KLL1itVqNbyT2m0xnT6YQsy2nbjqurK5I0JUkTQhi4uroiy5MxPOqbrck40tfGzc37Bh0HtE2J3TCiRgl5ngu9TEnGRNe2UmwT0FaTFj1BRZq6JTbyXsGXYeoQxcWj9z3XV9fEaFivt7x+9WakEmhSneC7Ft8P7Lc7uvpzCFAUJUVR8sd//CejMFQQDa2h6xq22y1FmdL7PW+un3L//n3Ozk4p8oKiKNhs5f0ti5IQPcvlCYOXXAcZCmTE0UBhv9/x5s0bvvPOe9x75wdYV/Lq2W9p62ti6EbtSSdthQJrhE50sD0UpylLUThO5ve5Xa25Wd2ybTowmiwrWSzPIFj2O9ElBEabxzsHph/5uGI+EI5TLNFuyIHceT8iweEIqxvtSJMMo+WQ1FpR5PnRrer0dCbmB1Zg/4CmbVuaMZNHKckIKYoJq9s1dV3RNjXvvvOI/X5LvW/o2w7nLH2M1PuKvmmZlBMmZUlVV+y3W6r9ju1mM9LbBnofiHf+p6yTgYM2lEVJ13f4oafre7KiIM8yJmXJfDJD6wHnFLl1FFk2NjcGelBeGpLM5pw/LDExIXrHfq+YLudMTxZcvvOEbDIlKybMlkvOz0+BnuAbjN/TvXnFarvm1ecf8ebZJ7x59ZQvPv+I6/2KXkU6FfGzhKbvGNqGsF3j2xZtHNqlXN9ck03nFPMF0+lE9qquG6ltYqWsrKWcTnBphrEaayK+r3C6R4WvN4X8u3j5weMQo5ZJWdD6lq6t+OTTK95//x28P0FpWMynLOYz2rbl1auXrFYrdK1p2xTvO7Fit5ayKMkeZRIYud/x+vUbVqtb0izj/PQSZy2L2Qnnp5e8fPWSF8+e8clHH/P+Bx+wPD1lNl8w7RdkaY41E9578l3KCWx2N/zlX/4Zb95Z8d57H3BxcUFROi7vnfL0acevfvkh23XgyeMtjx9teXjvPtbkaJ2gSMTxCIPGMAxbmq6h73q6zh91ldYm/PCHf8Sjx+/wvR/8gH/5//i/89lnN2w2K66uX5EkCYv5knv3HjKbLUbtn+jS0syxWJbipLW44OZ6xc3NLf/1f/2veeedB5yeLUic5vWrW4YhkrqC5bJgsZwxXZQ8f/aKVbOjaRq265bJZI5CnLCapiVNJoBlX23HBs9RFDnDEEgSQ4jiitUPPU2zJy9SbJqQZBnOpkSl6OuKruvYbHqSxOESS6IOmo2UNM05Oz9ht11R15Kdo46ZPwZFImyWUextbILWg7BIVBT9pYYkSyDIXEOC80Ya01eoUHdRkrvi7gOt7a4b5d28CqVk71OjniiqeGxSDl9/RC+OKMzo8negE3PQxI3mH8rgtEYPmoulYYgBHwKLWclm23C7qvn441c8f7NmV3V0YaRIqYNO9a1u5NAsDePApe1a0e4ZPWpj7DEnI8syQgg0TfO11uvXz8loGnrvqeqKpms4PT2jyDPqVvHyxXPx94xCa/F9i0ss1lm6phZtRdugXUnoO8xoezZYzTDokfrC8caiBMqJSqOMFXqB76n2a8pCREdRhZFL1xHxTMpEhLkMbLdiaTYtE4rMkiUihlZKci8SK2+c1ho/BIaRc691h3WaIRi6PnD1pqftB/phIEnAuYi1EqZjbUGS5qRpjsssmACdoqukaUqsw80XY5H4irbZ8ejxfbTR+N7TNXtptrY72t0O7QPeSAGRpIYkncpjrhRP9xXrn/+Cjz/7jOubW/7ZP/8XnN97xOWjU370j7/P4tMp5e9y9tWKZ88/Z9P0JCYlOktUAWUkmKjznjZ4TDK6CgQYgpdiIBGOpEtkymWtBNM1zZ6DxZwxGq8VaMVkOpWCfvAYO6H3HU1T0Xb1mNwZGfqIpxvdHKSTD8NhOhNGk4C7MOTbiYAaxfJhCEdrUx3B+4BVI0UmCBccJfNrrcyoqdAcEguNEaeR+XxOPeZp6KiZz2fcvzzjyeN7JAlYK3kcSuCfEUrUoO1xWh6x1G1P0vfkZcn7730HZSxZlvH6SmxrsywnScQ9BGRyro+ER5mmWGuZTCZMp1Pu379PlmVHuLVuKna7ivliLnoOIrPZhNX6lhfPn/Pppx/zv/gX//nXXbZ/567fc73wkmKqhjC6qPi33uNjaBMKrEvGED3wvjuGZYFkmQz+y25KR4EdAUYnqO12x363F/2O78myRHzAk0Qc44Jsuuv1LVW1I01SPvt8zuXFJZPZBJrAanWDtYb5Ysa33v82ee4oJwURsDYhzxWL5YK+l0wVlzj6XmhURMWP/+iH7HY1n3xU8tHvfsukKHDGEILHJhnL84eiXTCKpx//jL6VdaH1cJxmam2wyIRsVMAfJ2Ba9dy/mNP29/jsxTW32x1N1VDtaopiQl03o/BZfOG/On17K5YcLWwPXEl1sIJUR6j9boPSNK0c/NaObigiINXaEKKn7SpssLgkwWVTuuAJPZR5RuoS0iTFjCLzwVt8r3n9+pVoL7rRPajv0SPCV/kB3/VU+73Q7tqW3ovLlORMSPCZMVY0KUaTZKk4+xiLUYq+bYhE0sSS5zmTyYwiLxiClCcGS6pSQgeDUqANyk3QMeJUwsn0kpmbgjf4TvHutx4wvVgyOZtzcu8cNVIDLdCtnrNev+Hm6gU3Lz7n9Yun7LcrourZVSv29ZZNv6ZLBrow0A4D0Q4wiFNYs2/p2hZlPdoFqq6lajv2dctmU+NsQszUSLOJIoSP4HsppkUsHYihZ/CdhNV+Q6/Be2IQ96ghDKSpJSsmLG1JXqSs17f87rcN52fnTCYTMQqYTzFGTBmapsb7niRJcS4lzwt5Lp2mLOHiQp7npml5+vQzJhNJsS/ygkk5I0sL2rbh1csXrNbXlNMJjx99wGQyIm1O8+TJe7jkfYyF589e8Nc/+zO893zwwXcwJkeR8MPv/ymnpxcE3/Ds6TPauhrrqgnW5KTJZKQIh2NRV9eCRuZZMbqwaWkAsozFYsFP/vhPmS8WvHz5nC+++ISm6Xjd3bDZVLzzzrucX5wzm06BOKJbCYkrKfIZ8/mEosz44oueqze33NysSRPHEAbKoqBczkhTS9PV7PZbXr16jbUJi/kJk8mMtu3p++HomgjZ6EwXaNsahRb7+8RhTIbkGEHbdUTEwnq33TP4SJ6HMe9BzuVDgWjGnK4sLzFj4atUxCVGzCGGfpzWH4p5jvtWGA1DDiV8mjnZ48Ywu2Npr7WE7o20/bvT/rvnyyGP4kB1uotofDX9O4aRtn2kKakj6n5AqEMQBPf3UJERwdLqoKsAjNQpBEGNHQpLxNlAtsw5nRseXiouzx7xs198yLOXV7y6Wo+mKW9pXYfrbhMldFhhI+F5e5aOaMuhcTrQbf+Hrq/dZIQYaLuWru/pvMc4ix9KiiznBjWGdhjyLKPvG7I8ZTqfEgbZ0Jq6YTI3aBSJNbRG4w9WWNqM3eIhxv2t84Ueg0+EetCQOik8QoSuCzIdN5FZIRBb23XsK09ddRjhzWC0Q1t9oPdhDDhhLmJHTqY4QA1oLYVt76GuI/0QCHEgSSFxwuE01h4nzQL1xbGLFIcmRhs4myc0bUVTV/i+ocgtWSFJ2k1d0ez3tFUlwTpRYKgIJNpilRbRtlZsvGd3s+fq+ooIPHjwGKcs8/N7PHj3HOvkcX364lN2mx2+C+R5TlXvJUMDCbWJscHrAaXFNlR0C2P8vBaoUhs9+oJrYvBSlGtLkr61boyATS3DOFHRqJEWJPCopCiLe48sTITfKWv5SG06VEbH5kK/FSMeJpwRKdTNMeb+uN/cKbLExlaaDAmGPqDMzjnyXBLI27ZFRbDasphOOJlPWMxyjG7QKo4NRjwWVFJIHfhXWjJekpQky0mygpMyB6VGlEamDFoLdU7rg9CrPy5MovrS65nP58ffKyUWpPIzD2MOQIc2mvlsSt/3oin5hgu/v+rIEUeqmjwbB5g60nUOl2i0GUOLrMOO1qx916OUPK8QaG2Psf73C2atZfihhH7Z9f1YYMu+EYK4ukhgV3/cPJumom0VtTG8fPkcYzRDEFOJuqrJ8ozEpVxc3CPLHGnmUNGAVkSryLP8GIYXRmGyH5ugxWLOBx98C4VidXODNRo7uvFpYyknC4y2DKHl6sXHBO+JsSUe6GDjBFMrK1Mt3i4puXqW84KuP2HfDGx3Fb7r2e8rlovTce+M4gRF/L17Jofs2+d//KMvNxnHQYA6TsBApqPCZU+OE0ApgjwgKJRxRqwarZZ9NEllQmmNWF+rKFN3a9lXe7zvCIPHKOj7DoUSrnBkDCSTyeEwihJ774VqGIQWaoygndZoEmvIsxStrbjp9f74bDh32NMzIrIHJiYhdyUhKlRwqCADmNQmTJOSi7NHTNI5KhiGoHnw+AHFckI2yynmOe1qTb/fs9/tuH7zOVfXL3h99ZSb18959eJzqmpLMctphpo+9nTRE7WhCT2t93gfjmeC7weazsMQUQN0vaduGvZVxX6fC9qvZBIZQ2QIER8DbdOIXiYYYuio96sjmvVNvQ73RIizgSRNSDJLXiTMZlN8P1DtK67V1WhTm49W4hlKRbwfrTwbSbFWYy6LMSK+LcvyWHNUux1VZUSHOETKYiJDJGPZ11v2+5a2q3A2Z7HcURQFRZFzev7gWLSvVmt2n265vrnG2pTp5JST5SWPHj5hPj9ht7lhu23ZbncA1Pmeophh5makjEozdQh6VIfh2cGiH7GZTvOCh48ej3lgpYis37yhqio2m61kYmVCOdKKcb0mZKkWC18nDfnV1RtWt1vaET1M0oTUKYxx+NBR1Xs2my3eeyaTGdPJjPl8wc3NmhAaetWPdZZMwdMkk4C7kU6auINwWhymjjtQgK7rUaoFpchTh1YK46RMtUaGjUniSMbBnDGKJHP4Xii2IYbR3VIoSoyGGeJW+3ZXs1Z+rhADPng5f+Ko01Djx5E8/ZY+9VXKFHDUrx1QjLsIhlwiLr9T3Yy0ae58/7fP9R/SgSA/wpEJwEFpIkalKAwoSbxPbIZ1BdpkXJynvL5as93VXN1sZMgb40h1/cq6OqyoGL/UJB1+voM1+qG5+EPuWX/o+tpNhksS/HhYtpsd+/1HlGXB5cUF3XwhmRO7PYvlnOm0ZDqbUBQpOkZ807DdNyyXp2JlSEJXr+k7KfKLIh+pJWJh6pwbf9iBvBQNQ++9bIy+I8kKlMlYr/eEoaXINQ/ulwTvqJuE1CasVtes1xX1XkEsCXlC4jRJYlBRxEzWwmyas6tamrYXyleoabrIbq8wbipFStAYFGUu4T1apxRlhrYyMd+3DavVlrb2GDKKMsckosy3SUk7wv+//PmvOD8/E/5c3bJfrwg+YMY0Xx8UKmi0yxm8B0S0GjGEoqAh8LOf/wbV/p/48Y9/w3/2v/5fsry8YPbdh1w+PuPzL54Sg2W5XHF2csKzF0/Z7lbsqhVpZkXc3rdENYwLTxO0RkU99tVidRYBoqZpxArNOkm4nuUlbdfQNBVhaPG+pu86mrqTA90aspE3eXho8V5EiVHsV7UyR2REjW5BxmiSRESfIUR8L6nKxoigse0aIu3YUdujkHoYeuIQRrtRLXZ3MaLigSoDk8mEk5MTNpsNcXSfyDLHw8szlvOCSI1CULgYYYgak7hxw5IJi5RXBmVTHrz7LS4fv49OJmibCeXM7xgG4aCGQZra+bxAa81utxerzCCTo4O4+5DbUFUVwzCwWEiytNaQpoYXL19xe3srcH6Zo1Tk3Sfv8KMffv/rLtm/k9dXJzzSXCJamzGsKQRF5z1Yi9UaN1rnSVinGCWggSgUN9/LFKiumi+J77TWR/vONM8JqkOZQIw9xIDvO0CGGkodSvUgAu1xYPDppx+z221Znpxw7/KCi0sJ8bLGMZ3OxDRAK4iGLkqRrEeUpaordqtbdtstvRfnM2NSfvxHP+Thw4fEEPmbn/0lxlhOT5doDVlRkqQ5rjC8fvohoKh3t/R+L0n0StanVo6otQiAEZRWJnI9i7lkdOSTObe3N6y3Navra8piSowBWZ4SajcO0Y73S7jO7jgAiIdOhkhUo6MKYtigxuGCUBcSkiR9O4kbJzqST1GTpA4zBvr1vsVZy2w2J0sS4jDQti1VtR3pjUJf6Lqa2IvF8ECga2s56Hpx27FGbDHbXgwAxEhA9iytFFGrcRppSJzFGUWeJGgM+8YTu0GyNYaBoizHQ1ujTEKR5SwmJRfLE3ZNS1QaHRPOi3Pun97ndHHKvQf3yWcT0rIgm5bEpqZvdgztjvrlS55/+CG3r15w9ewpf/4X/w239ZpG9Vw8uqQLLSEfCKZm3+/w0RNUpK2CuDB2gab2FPlEXBKtpe49Q+eJytMPmtV2jbKW+bxg6Hq6pmG/b5mfZPT9QNP31F1HVVWEOLDbrbl581Kmot9gC1vhzkvRaJ2hKHMROZcJ77//AYMP7DZ7fvObX/Dq9UuKIufRo0cURc5kWjKZTlivNux2NXXVEIPQe50zJJkjSTSTsqDIU8oi5/Zmw3pzy263p5t5siwnTVPeefKYzWbF7WrFz/76v+fy/iWz+ZTZfML5xSVhsITB8eD+Owy95eWLN3z+xRcsFwFnM5I0AB337t/nnXfe5dmzT/n000/o+5b79+/zve9ZsqwQymcv51+SiK38wfq19360eQZrHdPZCe9nJY8ePeEHP/gRP/2rv+T58+e8evmC65trVusVWZbxrW99i8V8QZqK82deiD5jPi/55KMv2O88bRPpWhG9p0lH0/bcrm+4uVmz39Xcv/+Ak5MT8lw0AW3XEKOn71v2TYMEU0Ce58Qo++p2tSOGHmvVGB9m6PuIMQlFJgGrfdfT9y3kCYvFbKSciqWutjLwTNIMCfuFy8szPqvWMkQ8HCYjFUpbLXYZBpLEYLUncYbZJCfLDHXT0FQeQ3KsgWJ466In54AU1Qdq02F48lXdhrX2S1lXbzOFxO0y6reIyPHrRhv1u2OiA3Lw1Usdcr8C0iSMdVxQooNT468WxSRNmcyWnN9/j99+9Dmv3tzgrJXQwiNFnWMz9bapUV9CZr5K/xqGgaZpjvSpr3N97SbDGiNdpRmoqmZMEKx48fIldV3T9T1BQRd6NtWWclvQdh3LxQmJsyxnE16/fIZLcoy1QlsYrdkkkEZyEPpe7Lm6riHica4gy0qUKghY2uqK9a4TMVfbszgxTCaO1CGWX1aTOoeKE5pGvM9fvd6yWBQUuaMIknB5cJ2yOlJkDmc0VQhcvxHbr7xMyHLH4C1DH2j2NduNxxeS8Nr5nmbfUDV7mnYgRotWCVk+oZzPcInBWBE8WZWROI1Rhv2mxncSbtPWHUZbnEvRNiPNJqRZQVYW5FoC50KILOdLyrLAOcsr95zbvudXv/kt8X//X/An/9P/CeePH7O4uMd//r/5z/ibn/2Kp5+/ILUFu72gJEPaYwz4bsVmtSPqIBa/Rrp/RSR1jvl0SowpVqeyWGMriFEfWG8qzs7P0XiiD7S+xXcdfd/ifYe1KU5b+X5awnNQGtV1MgkevKR2RqFpifhM0A6tFVmWUteNcOsVI3wYRgnCwaM/EkKH7yUzQZzJ9DGobRgUgXgUVllraZqGm5sbtlsR9BkFuXWkScBZD7FHRYvCjZPZg8ON9PWh90QsNsl4/3s/4sG3vsfs/AExKYCeer/l6uo1Td2MSJw0THXdjA4MGWlmjxDu2dnZcU0dRNDWJmRZwTB0+MGS9JYk0Xz66cegFN/93ndEWHxXCPgNvu4KjWUq/2VXjxA8fdce3X+cc6P4bGwy4kDwHAXkLrGkXnQcdV2P/NiRg2sSlBFnu96LO5JwdDW9F3QocdkxKVemhSJsDiGw3a4IcaDtaqbTcny9Wuxa+wNFS4YNSotLiaTZetpGgt8iivv37+Gs5c/+7C/44IPv8t3vfofLiwdcX98QY8rrVyvOT+4LGqLBJBkPv/UDytmS65ef8+Kz3WjTGFA6EHVEK7A6ESczGWfh9YA1kSJTPMpnfPDePV5frVnvetpmh1KBLM8EIQjI/QxvYXDvB0wUtyittRjd3Bl5qcjx/UqSXKgLacZisSTLc+BwMHu872UI0XqGAL4H7zWpt0zmJ0xnSwbf01R7uq6laaox3FWhAqRZwjDIHtP3/UjJhYgW4WkYUN4TEdviGCPGulEwrlDKkLoEohTuwTdkqsPpFOMN2hvSLGe6mKKUxZmUxOU4m1JOTygnM/JiwcXFkqwsKSYFF48uOLs8o5wUpNqI81fo8ZsrPvrVL3jx2Ufsbl7zcFnyb/7sv+N2uyZfTngz8VQ60vcDN92GiLzu7UaCOHs/0PeDNI9BoVTC2ckZeZEL5dIo+uBp+wE/QOwUXV2x0ZquvyT2YuFbVxUDN9RdT9W07JqKNHVYZ0kTSzmZCt3XfIObDGdwaUIy0l3qpkZbmM4nFHmJiprU5Xznu9/m5uaazWbDT3/673nw4AGLxYLlcsnJyZLl8pS+D7x5fU1d76jqgK0MaepGG1Whwl5eJvT9wHZTsVrfoLeavMhIa6EVL2ZnTIoTnr98ytXra5anCxaz33K1XFKWOZGA1QUP73/Adz74E65uP2G7u+Ff/r/+z3z7gx/z+NG73Lt8wIOHjyhHO+yb61f87Gd/xWK54PLiHnk+Ic9TYswIg9gvR1EHyyBsZB/kWcKknBHjQFVv+PFPfsK9+/d49vQpr1+/oq5rmqbhZz/7GQ8fPuTi4oJ3nzxivb5hvd5wc7NGacVsNiVNCzEsacWK+6OPPiZGj7WO+eyUx48fH9PC+75F63EIEodRGyl78EEgf7B9rfeNNAEqokcrcWsjRTaQ5hB8i2/3nE3OKJymTK1Yv4/BxiqxYl5hBA2p20pc9PQBeRCqNEbc4pTiSIWW+lChdWCzrej7geDVkbaNEk2ZgBnqODCFL59bd+lCh8+722AcbGMZ2RB3tQ+H7yn3xTD03Zf22LtF/l0EBd5qP+Trx3+CKMMR+dck0ytJKYuC3W6NGqlxdduPtEmpkRIl4dBRSd10/L5afelnO/xMSoletiwnOPf/gyYD9bYoEJjrwLUT27AsS8nyFG3EwrTvR1hPu9EVwB6n5HoQW1QJfVF4//aNOUCCB4u+PC+EQ2vB2JKuW+NjGGPUA0pbtDlwhgeMiaRJpCwkEVK1UDeB/b5jOESv3+UiK4BBCpt+QOgTopxPU4VX0AcgarpuANVhXINLLE3X0jQ9vR+7W5vgkkRSaq0Rnr9K8EYcARrV0rServX0bQAsWifidJIWuDTHpin6AN0nqYQJ2YQiS3HOUi+WhKZhVdf89rPPiH+Z8c7tive+77n36F3ee/8hk0lJsxt49OARBnhzDW1oyJKS6WTOvj7AZoGDUHMYAnXVkFhHGAsYbZxYx2qD0pLzEPxAW+3FFWhohSLVexiDvtToOy+iIXloJQhGCoQDwjD2xoJYhWFM4e2Pi1MpKTSAOw5PUhDFcCeoLB5AvrG7/wrPsG3bEebzKGSzm00nzKY5RZ5iRkTl8DAoxcjjl2x2YpDU8yRjsjghm8xxWSELc0xLl2AuixuTZuVZPxS0kKXZ25/pqDsZhWNIQJFCs16vqesdTVuTZznnZ+dEBL0xRvi3BxeZb/L1Jc3EHfg5hCCHQtREZB/Qo+hOj7xZ2aQtRAsMxOhHVEiJhbXTEvgWR4RCi0A0y3O2uyuaVgKJlNaoYTg+f8YaRJjHWLDLh/eSbSGo016e3TGxdggBG2VP6fuaGPQ4bXRUleh/rLXEEEnT9BgklaZCmcvSkm9/+7ssl3P6Tp4lDkFQWjNZnMlJEiMvn31M39ejte0A+OMzdOA2H/Zoo2VtGBO5dzEXdMLuqTr5GmudBKfqt800fFkvI43EYZW+5Q3fbQrTNBn3qIw8LyinU8xo5e19T13tqPY7qv1Wwp58oKfH6h6rDFlWsl7d4n0QTUwUxPDQbN71kCeKaFFenx61IiOiog6OMGG06h7b8TG8cxhGz3gN5I7E5eSlZb/rSPOU2WSBSR3TYkmRidXodHbKyckJF/fOuby4T1Hk5EXGdJ4znYnjUL1esb25Ybtes7q55tNPPuLVyy/YrK95Wlo+e/2Mum/Idc2+ruiHnhADdduMBgfhqI0LgyYOgH1rialNJNKjdCDLDXmeYMxA5+W+9EPE9y3b7ZrQ1LR1w66uMIOSpm4YhKIRQUU1ZiZonNE4+83NyTBGH61OtZFnbRgSrLFC70U49WVRMAz+6IhzoIjFGDk/uyfJ1s6QZSkhSKPXdc2Itlmct2RpOobdGYZSOP1h8Pi+YQg9icuwDojgTCK0Y+149uxzbm7ekBcZ5+dnJHZOmuQURclsmBFjR11VXF+/QStF1zU8fPgu+ZgTYYxmtXrJ7eqW/X7LxcUD8myCsxlEoZhrrVBGoYPQpoCR6qzkLKTn5GQ50oADSeJYr9fjOVPTti2b9S0vXyrq/ZaqamnrVihIqR1/7pztdkfbNlTVnhgieW7JMqHmib3pQWwNMHL+D+dU5OhSdyiwh8EyBHGvE7qUFnfPuma6KEmtprQpizKhSMVAKCgl9HFz2JdEhxcjJCPzxR80AnfoTpEoFNMIzliMljO97wbarh/rIH3knR4Kcvk26vd+/Srd9+7ff5U+NBJMf4+W9Pb7ceR+H/7srlvVMAxfQjTu5mwc6VnjjT4EVBJkQCQfhqZrub5dc327oR8C1hzqD02Mw/E9EzPSMCIv+vhvfanJGP8t58Rq2NivN6j4+k0Gbw8hgYveHgR1s2dfJeT7lCwr6bqeuuno+wGjraQW5zlZnhNG60LrkhH+8TShFTeQXgq2YeyCtdFMJnPabo8xki6pNg60By1uURHFEMTCUiFcQGdgWkoYkjWGGGC730sCZVQoI5CoNRIk5X1L23XUdUeSZFL0W0FHoh/oo0zXJWSuoR8GslIU9n7QgMXanCQphDIw2h86p8kSR9cpCAPBS86E7wLBa2ySYl2CTTLycoYxDuMcGE2SZSyWJ9y7fMB+uxU+olKczBds9Ip9tWezWfH0//Ovef/pC/ZNy8lywcMHp1xcnPH88yu+993vUWY5wfe82V4xn52QFzlfPPuMzotVrXViEdyPP//JPJXGTRlcIhxlbSwog1GaoW2oNmu6rhtD80ZOI2akLwi/VTbBMFK0+tH9R0uDoIJMSInEMOB9ZLt922Dcjaw/uN4cDuXDOj7wEw8pnTLRebtYD5OFtm3HNFg5KNI05fzshNOTBdPCYLXQrWIcQA3j6xLbOz02LcZakrwkm8yxWY62jjgMRxebGCFL81FI6KQRGpufEAbStBzpCaK7OHiwO5dQ5OLeNQTP06dPado9EHj44BE//MGPRrqWwfcRlyhcmv6nLNm/c9fdBuNLAUZRinYFjHw3tOmEFmN78W2PccwGMCgcg4oEL1bSSkMIvdhqo8bASX0U7y0WCz7//AuqqpL3dJyKSeMrz5ZSHIPrDmFUIYg+Rmt9DLdT6jBRGhgGjdKR3e4WazOczSjyKfv9jhADy3IuhTfilPbd732XPM/QWtKt/+RP/5Qw9EQ0TdeQKnEoQSny2QKXZmRpzq9/+VPqesvQB7QORN1jTJRD46ChGCnIxihQkRA77p8vyNIMazM+/PxKnibroB1pXuPJdPcwO0zmlFYjjU2g9Rii2NEaCcvK0ow0y4Q+kmVMJjOyXKw/h2FgdftG7D93m4NmHd8NRNdjlEybm/Y1XT8wDGB0gsJKVs4gvHkZ0kmQ4CAwBtpYhijTSWPF8rMfOlmzSovUP8DgI9Fqhl7jewXGYlVBmS6ZTWb0rSLJE2bzBeVsSjGdk6QFEcvFxSPuP7zgvfcf8fDxA7LEYbViqHfovqXb73j9ySd8+uFHPP38cz79+CNW7Y5Ns2ff1WybNZPS4SzsVjdUmx0YUE5R1x3DiKqp8X4qbbBOi32zFnrFEEUbpLQizTST0tFaje1GE422J/ie66s3BN/TdT1V1aKbHudSnEuYlSXGulFHmOCcwllF4r7BTYbVpKkjzZMxl0lyV5y1bNebsQiNWKtGxGLJ5cV9fvu7X7Ner9nvK/JsSpYFjHGUk5xID02g2jd4H1BtL7rECWS5FP6TSUmWpTR1xXazpq08nR5QqiXEIM9/lpAXCZ9//inD4HGJ4yd//Ecs5hI42zT7UdfhyLIZT599xm634cWrZxhjxAVqMefi8h4ffuR5+sUn/OaLT3j/vYrTkwumkwVJUlAUE0Ebrdi8ipYV7Eh1jGEgJI7pdCpiaWuYTqe8efPmaDRSV3tWq1turl5iNWiVEEmEHRADSlnm8wVaw3od2O/39H2QRrftWW9WuHRCmtoRxR2HdIdzfKQ1CDL8NhfCuQS8GhkJjDWDYrvbcjHMmExyTmcLLpcFNrVgofbS0GBE+BwGT+87lIoURU4YqZIHowo1aloPjAdUJLM5mjFbp+vxwUOUPLU4rrmviq7/Q1kXX0Xj/+Cl7mov7v7xnWyMwY/NjTruu4e9uO/74+cfjGG+7FglZ0oMMsQWrUXEJanoFbWi6Rq+ePaSL569pvORoCJWi+ZtaOuxQZS8+SGqt9qQEakRpDtQjCh1DBHrLC6R7J2vc33tJuPQxdy9wSiIcUBbyAvNbJHhUk2976ibTvzlByjyjCzLKKelpF8nKUmaHtNaq33Ner1mu92x3W7pfYd1Av/tthW7/QaUJ9lE9jtDGAxJAmlqiSFQVx0qRKYTh1ERHQPOwqTUZKmWmPokoWo6bm4bukHJJLtIqJtawrZ6mWaen54SQ6Rpaur9IHzvCGgIvYSJdUNP0wdc4kZXhzPSJCNxCUWRMpmmgGcYarSGvmuodjuaqpXnXRmiCpTzJeV0Rl6U9O0gFrh9T9CaAU07RKq2IzGG6aSkyHPyaYlJNN10QjObk0THs5sVH/5X/0eef/Ep/+Sf/VPe++AD7l0WlO473DtbkAXH690Vr25f8erqBal9g8IQ8CgdyfIJGMOA5uTijDTLMc7Rh2509YG+9TTbK4a+I0lKlHL0XpAMozWnZ/cwxuJ9R9pLhkHfdYCirmv6XnIyQkAmEojbgw8BFWSidwiw09pQlrLQ3no7y8ahrbhIMSIaQ/Aj0iKLdDKZjFPjlMVleAUAAQAASURBVJcvXx6n1iiH0ZbEJpRZitVCxRK//4iEQEacLoihP1KujHGgE4JOKGenWG3B95jx2e/7ht1uQ98H0jSjyEvOz8+p6h1KwWw6wxgR6YYQaduONM0FoUoS2ranaxt2+xX/7X/3r3j3vXf57ne+Q9N0Y+CZYrfbsTw5wVpH+IazpQ4b5uHjsJl572GcVh209oP3oDp0a4jOYkaah1DMHMSCtjUQRcxpDGRZRt8N1KofBeIwhI62rZhOJ3dsWscwOUCNiMVhXyuKnL7vqWvxww/DQNPUvHjxgt/85jdcXl5ycXGB1rDZ3LLZrvn1b37Go4fvcHn5gCfvTPjud7/Pfr+lqndU61v6viNxMv2Rxkdg6x/96LvU1Z7dfsvPf/G3PHn3McvlUugF2uKyHGMv+OBHf5+rZyesr56xu32J0YIK9oMEmh4PszjaeI9p3rNUk59MWEzn3KxrtlVH3QpCJAgBwJeduQ7vkxJYTxyiRh/1xFmyLCfLM7Q2TMqSNCtJ04LFbMrJcsnZ2QmLkyUf/vpveaYb7p3+gP3es69b1usd00lG33e8efWMyaSkTyyD7wm9l8Cp4MXO26Vsm5am6yHG41TZGEtd9xgtroG+F1tTHaDIc9rQ47TB5RnT6SkEsUI+P73g8vSSPMmIvefkO5dkacaknLB4cMqDbz/h/PE9zh9fsiwznAZ8h/Ud+9s33Fy/4Wd/8W959dmnrG+uWe82dIlicJphYrDnc6Ztgatb/ItI125pmx6tApvtjojo2y7uXzI9maKU4vXrlySpxjqFc0oKqCPKMbrhBLGslDN9oO86qjpStYE+BHbNK+bTAmcsRSqp1s4lSDYS+KYj2EhelDhnSVNDln5z6VIK0WIIDczw6J0nTCYFaZqwXt9IcQQURcrJySllUaKnlvlyyX6/4+bmhl/96ldjDkbJ6dkSpYNoNsqpaC+6Hu89t7dr7HZPmiYsFnMSZ0iTKbPphNVtxW5Xs9/X7KuKtm2YziaU5SXnJ/dYb9asVit+/je/4vJyw+npBecXF5TlhDTNOF3eY7k44/b2muub1/zL/+f/jR//+I955/H7vPP4A+4/eMzJySnvvf8t/uZnP+XTTz9DofnhD3/Ck/fewyp91CAZIwHEMqGORAWJzTCFUKEP1trWWjEa0QrftazXKz796GOqbSO6xpEGM6iBIXjqRva3GBX3799nv5efc7NdE5/VVHXJZFKwWJyQJinONSMuepiWa0F+fD8WycJWORTvWZaJvgRF03ZM3MBJAZczR5Yoktyh0gwVLF1QDHHMOvLSoBur+d3vPuT1yzfsd400SiN1FGR/sMqQGBh6z4A0ZAwR4ogAKVDHBgPgyyF5R33fHa3E3X3yQGH6EsoR9TgQfYs6fDm0L444y2i+cQfJgLdOVndfw113K3G9EpZHjML6EJQdkjzDZCldjPy7v/4Vr29uqbqOxg84bUnLksVsyvWrl8QwZoSNdbOKERUM/k5z5aKlbVoJUU4ltC9JU9I0+1rr9T8Jybg7hZQbJR/z+YTJTLjn0NP2FW3TYbQeuYECqdd9IyJiI8LIY5MxhvTVVU1V7WnbZjxMDEQJdQoh0LUd1b5B0eOsYjrNjsVb3w9stx5nFakVSFhrRls6ObCtS1Da4X3PZttSN34sJsXFYT4viGoQl6gQidGgrIQYuaFniIOwKLTGWKEGxSjwbZY5stSNNreBg0i5rmr22x277Y7ddk/iSoxzkt+ROIyTezGdZGx3e/peplDZ6FCDgjRPGQhUTSWeTdbgTAapI8cxmWSokwU31zd8/uknWKO4/867TOcp+r1zdPoTXj1/w0effUIIkecvnmNdgjaRLEtQucWHgW4YRsEmRAb6oUW5cKTIDYNGJylJPiUrIpLn5NnstpyenmJtwhBk+ltVe6r9fuQpyiLs+16630OhacyRNhXiISRGEI4DJ/BLfPDD1yktPtNAuOPSYK1lNpsdBdUHIZPoS/RoJxkos4BW/REWZKSniNXsSB0R4BRlMmaLC84evk9RTkaqTmSIA+v1it1uR4xRoPcRobBWk2Xp+PqFPyvPfIJzKUki+RfXN9c8f/YcYxQnp3N+/OMfMZvL67+6uiZGTZKkTKZThsPG/B+amnxDrkNTcaBGHq87P5dMaYAo4Ul91420D4W2BxTEjdSzSDO0o31sPjZ0imSIQlcaRckiQO7GZuKg5xifvhiOh4u8plwa2nGfk0BQM7734pCyWq3H9yOMG75mv2vYlTVGi8e90Q5rHE3TkOcZzhk+/PAj7l08oixmaKNJUwukhOhxSULbdiP9NCdxoivAOM4fPMEZTZamVNs10BGCp/aNeKVrg1YGa/SRNqjU23M0V5oHFwve3O643expOznYYgSNJHofpmlv3aPkGnpPHAZ0jKTWUmTJaG6RMZ2cMp0uuHf/HvfPCk4WBWenBacXBWm8YDnx3K57XrzZgUuJJsNZNZo6DLhkDOY0Cp1k1Nud6O2qLdp0+F4aDK2VoJ69DCScMWRJJlqufY0OFu89sVc4I+4/aVowm8yZFHPKfMbF8oJJllPkOfPFnLRMmS1mnJyL7exkPqGY5JR5gvM93X7P6vUrbl6+4NXrl7x89ZzfffwrdvsVTdfQ4Ym9IQaDCoZpqsgLsVLfrErebG7wviZNNXXniTHighRAkhkEaaYwLqKN/HkgjBoZoZJ4D8MQ6bpenIxaT9t42h78ICFbISoSl5FYR+wDiRErYWMN/RDo+oE4yETZDQbvA536MrXjm3QZo4Wq2vU4W1DkGfPZjOViyfW1GC1U1Z6miVRVBSiyvBRnJetwNmPoA7vdlrqpePGiPha7eTYhzwus7ek60SIcxK63t5GyEKeqdKQJjscHbVvj+5bdNvIK6P2AMZbLi3ugA6vVFbv9mqbZc//+I6YzMf+w1pHnU06WQkNp6o6nT79gt2t48OAeaeqYzGY8ee9bXL1+w2a94dPPPmJAsncWy1OczY7rf4QxZKI/0g+1tlgr1JuyLKVoJXBzdcV+V6FweN+iVCBGz3q1xQ/yXJmqH9koKfP5nMVijvc9Xdey2d7QNQN7OmLYEoKiqlr6bpDGWDEOcg6o79uPwyRewgwNibWcLDLOTnLmk4Q8NSROk08KTD6j2jRjwG48Ou3pEdVO00TQ7MioxRLakyKOiDRSc1gLWkJED/vbwSHPmrcUpgO9Dt4OOd/qLBizRn5f+H3XTeqrqMfdTI23oazy93fRkv+YLezdvTmOXy54+0AIb6nERVHibIIfYLdvqFsvmUFKBrt931PV9TGXTKEwB3dNFDEOHC3KkbOPIRKHQTLevKcfqcBf5/raTcZbeOatLakC0DCdFeR5irXQdTVdv6frZYrtfUfdONI6pQsdB2chZ93YHPhx0i12qV0n03FtNDEohhCPEzVJ5e1w1uNcJM0cOiq8D+y7lrrq8E4TU4MaOYXGQGYNyhiMC6AsN+s1VdUT6cR1ZJyKlJOS/a7C+5EGoYTbppXGHfM8JAFRmdHBQB20IEEyNGxEG7k/ES0N1E6yD5q6xVoJ5VMykh8LXMV0OhV6AFFSSA/uVFZEboPvaTsJ5EoSsZpVo0NROckpzSnbqxe8fvUKoyErMubLC6bLguLkCZPZnC4MrDdbZpMlvW8wVrGYT+htoGprfL0TPcLoYOOHDh0C1lgSl9DGlLSwaJfjVGAxTbA6cHNruX/vAmMzOh/p+26cNENdVbRdy+A9nWqPVnLSLIzc6ThSnfTIXxwL0T/EiTzwEGMQ6E+NAnmlxK42TVNiHHMJgEO6uNWW1EKeKMoCtPKATFrU6E5l1KHJUMepurYFk9kJF5cPSdMcjBYe/+DZ7/cStqcN1krzkCQJxipSld7ZoGRC4VwqC3YMdHvx4jnPXzxnOi25vHfKD374fYZBhKBt26K1pJ865472tl8Xovy7et3dtO/a/h034PH/5O/lcKLvGZS4oGnUmCMhwwqlI10r1ql5lkloXISQRHQ92jQaizFGLE57T7zTmCpGk4LxujuRkkncW+QlGRsWrcxoS9uP1pg5s+kCsAw9HCwx9eiKFQPybKQJN9fXtG0j+S9OHJCEFy5N0uDFfjOEiJ0mYzGumZ1dCj1IKz778NcwjGGRvpc8ERRRG7QR6uhIxEfriAGcilyezsbCtWe7UwTU6Ewycnq/imQc7snhcNOa1DryNKHIM5JixmwuAtp3Ht3j8ZlhPrMsZpbFWUQNU4rskqcvdux7iKbH5oahr1GIXbgxgWBlfaQ6o9nu8X1PVVc4N4itLXcO4BgZfCBPE7IkZZJPiZ3GxJTBHgSnAy5JKCczTuYnnC4vOV1ecHl6QWIURVnw4N2HZLOM+emM08sT0klG7Hti36PrPX5fsb+95erzL/j0ow/57OlnfP7iC15uXzG4AA50KvoTgtBrst5QFhk2T0nzknaI1E3PEA1tL/xnZWQw54cWTcCljOdIEM3ZECRjyEuD0XWBvo80naeqRFcoWUO83TsHMThwxhGCx1krTYYzDLEjIpq0vpNAND1Ehm8uWwpjxJEnDB4Vhf6RZxkny6Vom/qeuqkZBk9dV6IDNZLRkrgEN0sJQ+DVy2d01zWb9Zq+Gw1mcEwmk+M66Pt+NDEY6LodxEOegewpaZIQQ8BacXpqak/f9aAMi8WC2XRBP9SsN9fsd2sRpSfpmHugKYqJ0NqmSyaTKZvNitV6zXa7xyWK+XzOdFJy//4jrEmwNuHp0095+fIZTStZPLPpEqXEEvq4lcU7wmTeCpnFTUqjDXRNx3ZT4ZICYzti9PgwsFnvCEFcLTGeybQkL3LmiymJS4kx0PUdw+ciWO67yNZXDEOkqlq8D+N0460168H+1Ps7OUhaj9bSljJPuHdZcDJPmRSOxImWLklTTJ4Rdy2HvCpGOqs92NkmVrSVb+t2DuDAkXbN2GTQy+RfqZFyrTGjC92Bdn2XmiTf620DcVdDePhv4EtNB1GJEPvwn/GrNKw4viJ5dw5/D3+YnvVVlHl8e9/+sKOFv9RHToKAjaWpe7a7iqb19OFwc8RVsOvaA47CeEd5SxEOklHH4T69Hb5qbcY9StgqX+f62k3G4SYeYRsdR0GlJDxqBU1b8+rVGymwVaStezrlJElxgGUnQlahDElxJ41DS5YXaKVIk4QEyzAo+s5z279G2xqtZaLorIhC+76n3qfkaYEzmlnp2Ow8TdOx3Tecn07JtMEZhVaeorC4xKKtYr1LxN2p7RlcIDtNsdZS1RW9hyE6UBaXJyhtiGi0ScmnkvBd5CVNuzs6K1XVihj3eJ9xcXkCaAYfaZqezbri9nbPdlWhjKMbg8C0U6MQTdLMT5cnKBXQRg7fvm2wRpOnkuaqjUbphHpfsdnuRhFhR5Gm5IljVhT8gz/9Y149+4Kf/s3f8Ff/9t/wj/7pP+XR+9/iwQff5fQ7JzwYHrBva/qm5/MvPqHvG56c3sdODa9vX/Pxswo1hJGz56iB0AVMZlnOz2i9Ii1KsiJnd/MZl8uMSW7RXPDud/+Ytofnz2/58JPnWFthrYjzJsVErHjDQNu3spDvLNI4uoxxKPJDOC68u+4OeuQS+lEgHqIEuIUo6c1FUXBzczOKsUcnBSUNxtms4PI04fw05eIswWkRGEMmz4iWokys4ZRQVVxOXp4wmS5I85IonnvEKFCyOBIV6NKitaPIE7JcmsNo3k4ghf4igVi7/YaA5/b2ln/zb/4Nf//v/0MePLjPfH5KkkbatqGua6zNkZpKputdJ37vZfHNTeoFjmI24ea630OqiCJZjF7oIloPRB3wIYKzqGBx1mC0HekgHm0c1jnyIqXtemnclWEyKRg8DINisTjD+9/QdW/zMN5O7A+DE02aZnRdP4oSgXELNtqSJjmnp+dcXFwwm03RRpBSYzT37t3n6vUGES7r0Q1O0/cp9++9w2SS4pzix3/0I7RSNHVFmqbIASGT+sXihKrast3tWK1XTMoJLkmIUaPzKdNzQVN0MkH3CgaFocV7sTFUilEMGY6CbqWVuOjFgfOlPOtFalmvNjRB0Q+RPg4iDr9DYYuj/iGEwGw6FTl275lOJqRJjtM5y/kZZ5ennCwnLGct3/vgnCTxdP2K1fo5SeF48DghyU5olWVRW7Q95eknH6PVgLWRN9sXdL1HBUteZBSzgkH1NMMeHf2IZgW6rqdv/SgUDWRWYVVK5kpqBpanC8piQlkUfPzJ78jzjHffe58H5++yXJxyenrGBz98j8l5STEvmJ5NGeoKBg++Zv/mmu2rNzQ3K9Rmh69b6rbltqrY9S03Xc2rdk+bOdEDWk3mcnG9GTxt37K6XZNlGfMsY362pLg6ofED15sVVhuy1JJkjq6v0dZgR8Q4DIciTPaLpg20XaCqB/Z1BzGSj3tLmhhSa9hWPettx74WE5G2blBpJDEWl2akeYJLDL3y9Pue3veouiFJU4osZz4t//+/+P9HupLEkmUJSWJZ3V6zPZ0zmUzxPpKmGcvlCXmest7e0HYVbdfQ9p591ZK6VIIfleL0ZElZJFzfJLx+vWK3a6nrDu/90aLz5OSEpmmOgcL7fc1+33CjtyxmM6Es+h4YMBopgkPEOkPbtFxdXXNyNuXRw8cAvHp+w6/+9hcS4PfkHR48fEyel6SpaDrPzlKGoaeqt/z1X/8lRVFy7/I+H3zwfZYnZyyXp3z/e9/nb3/xN7x8+Zxnzz/jO9/+EScn58xnJxLKGMTevWt3JKnskV036tucDF/zIqXISyblnPVNQ1mUbDZrbm9uCST4Mf06hp4hDDinWSynTKdTtBLK6unpGVdXV2w2G1arW67e3ND30mAYLfXdODY6NhjyOkb9gdaYGDibZ5yfljx5Z8Y0VzhlscqiArRNB6oWneiY2o02WCUMmtmsYHVzRdu0om9gkB1bKYxV41BTo6zBB7BKoaPCjP/+wbY23Amy8MNwHGzcDeP7qgPU3Qbj7QCecUj2B+QF49fJ6+NLf/9lhtCXG5O7SMldcbkemyOl7HGImWcFpycXbKuam9U1v/7wczb7hnEugVaB3CkWpWPloWk9fohgrDRdIEjPeN90hOAH7MiskSwZg9HqSxKK/9j1tZuMruvecs/k9IFB0XUe72FftaiqRikvVCLEInZeliLM6wa6dsMQZdLmhyNYJdPZeHCYGqjrnbjMGHCpofciOGpaxaTUOJthVMpu2+BbRZo4itxSFjnOWdrOs960DEGR54Y0tSMSMFDXnqqupQgpCjSRal/TtZAVCc7MUNrhUlEYiY2mwbqMrMjHaHtHUkHXWrpW4/uaGOX7r1ZQlBMGD/tdx83NlrrqGIK4ewR9cBZSzGczgbmdEyFllqG0IklzsqzEaEPftgzDWzeN+eU9Xr58Rbdp2e12+KyhSyxdV/Gvf/pn7Ndbmv2OWFV8/F/+lzx58oR/9i/+BT/4B/+Yd9854/79c374g++xevmGzfUNr158wc5v2O0smVaczqYo6xiAxDqarmHbrqlXFQ8fPCZVPYlWPHlnxrv355wsMvIscrpM2O8DWUip1jn0OV1TkxhDEzwET+Ls0SWK8YHWShEPjYSMPYQKdWdBHRbZQYgUg2DU1jrKeTEiYT37ak8YxL/faYO1cLZccHa6YDlJWM4Vk0KJ2JtiFLhbrI2IlVWU7JCoESmUUKZcVlAuTkRkhRgTtE3DdrvDGMtyMZccBy2BTX0/kDiZGElyuqVparbbDb/49V9zeXGPLC/53ve+z73795lOZyitRyejjt2upu8GynGitt1uR2g+sl6v4eHXXbV/N6/DBnpXyAbjxGj8HHExGje9oacPgRA8ISRo26OUUCCzrKRrMgafk8cJadbQdpLWG0lYzM9YLs7J0pyzswvCELm6vjoegG+9zKUoB7AmYWBgUJHEHYT2iqZtRUvjUpqmZTLJZRscem5vV9xcr9HaMp3lKO1ResAPHUVZjE4tsFwsKMuCJE2O90KoBL2IgQdpKvf7LZvthjLIa1A2lwmcdizPLqnX1/hGEYIcwoeAPbl38nrDOL1So113lihOlxlZmvDm6pZX64p964mIQ080BqcFJe36gzh5oDMaZ6ysXzTaONI05/7FCecXEy7OS7737QW77pbN7ZbX6xW3TcVkOhmNQDRVt6OtFdp7fLWl6Wr60NGFBo0TEw4kxycELyiuckQf8UhyduoSsizn8uIeTdWR2BTlDXk65eGDJyyWp+yrPU+efJfzi1P++E9+zJMP3mNxumQ6n0pukxGDh279ms9/8yFvnr/k5edf8Fd//hdMJyWL+ZRHlxecnpzQD4FX+xWfvHnFm/2GBhjG4FilNQGFUVqm5FEahN1mj/iEOPKyIK1LNpsVWZKOxbEVUe6g8Si6PlLXHV0/0PaBfdWNE15DnmdMp8Uo3FWkTmOtUFeTTFwVne3ZBClyY+jxDPRDjo1gFITo8UM7ZhF0knPVtux231xx13RakucZeZ4xX5xiTcL6dsPPN7/EWEuaGZJUszxZ4L3sx7tdR1evhbZqLTF2aCWo0mQyI0kntK2nrsXy3FpLmgolyjlLlos7XFU1Yk7Te25Wa7q2pes6iIGiKEhTcVpr2x4/DPRtzXYTCH5CmuZcnF/StDVd1/LJRx+y3a45P7/k9OyCspwL0qQNWZZxenZK33tev37F7WrHvYsLzk5Omc9O+NZ736eu92x2Kz77/FNev37NYnHCB996nzD0YrATO5pWBg+9b8fnyh6ph7NZgtHpiI58xoe/+5A3b64Aw2whGhc0ZCM9UmuwVpE4CdycTuekqaUoEoah5eZmhfIQowY1htFGCTMOY+MTwoAE1lry1HE2K3h0r+TsNJcGQ5vReENEzUWeo4spq2o7Ig4yYNJGhlQATduI5iOK+P1wxSDUaxUBrcnTEtN3mBDFehoYq2lBH0IEPboGWnNEcw9mWV91l/oqunGw7EVJ8X9wvwLGYenowsXbxuNuM3EX4T98zVcRDD1S9OW1jYMkpUbEXc7DPniubld8+sVzPvzkKdu6J2CAQG5hmhsW0wRiymZbUzeCAA9hNAfXSKBhGBh0IJpA1e4YlEdZTdt1FJMJ869J3f76id8j3BXj245P4FpF147CTTzayoNojUanox4iavpkYLurUT7gUUQfGbwgGlY5QujQRIgDWkmKt3YK6yJV3eN9YPBgx6LcaGi8HMiKSOIi1ozORlj2TS1Wf60nKk2Mnqbx7KtOIDqXkLlUhKDdQN/J4aMyef3ainbgkIrpkpR8kmOdwzot00GjcUbRtoEQxCq1rmti1Pg+st92tHVHCEroNGmJThKUMUcqhbOSPzIMAa0tzolDRJqMtJ+mQQ0cBTpFVojTlNaEQRJdB6/o+pr1+oZ6X9M1HTYM1C9fs29qitmU5ckpl4/f5fTsHlNXUM+n3L6Z07c7/LoRDUsUkauKEJU0b3W9p2s72r6h72psD3boySeObKrJJoo0izi7p8wM904dNxdTmrajajz79S21swyDAZKj3/2RDag4FpbHgg+hDRwW3l3nmwERuWZZxmQ6QVlA1QxhoOtbGMTSbpJnlJnm8mzC/csZk1xTZIHEBRQBpUQopzUoFUaa2EiwHXv6GBXFZE5ezkmyUpxroiYGaJp2pP0lpGlGkjj5HlFE6lqPvM3RinW7XfPq9Qt2uw2L+ZIsK1kuT5iUk2M69BAO+pU4NrdfXsSHz/mmX3cbyN9LDT1wZfUhpEj0E4Ew0hXB2BatLWiNSyxKO7RJwKTYsYgMUWD5PE9Hi8rIpCzZFQXqRt2ZNMWRFiVN5tszZOSjjpas1oqds1YGRjeyECIaOZv6/uAWJLa6MOAHCZVyTp6FwfesVitOT+8J5YNI7/sxFE/+fdln5UN0RZqYR1KTjpPIhNPL+2y0pt4adkOHGrojfzaEgDJvG42DuBAiRgvip5Xh/HRKPQSG2ND7Fj++J4fE3Dhqq+IgVBujhI4lKJ+krc9mJWWmKdJAmcHnL9a82mx5vqm57XuK2JG1Gl0r1vs97T6iu5am2lJ3Dd3QYjOL1dLcJNbStTVxGCizgtQ4XLSYaNj3NYlLmZRTlrMz+tSTmoQ8yTg/KXjy5D2Wp6dUbYVRcHZ+wne+8x7337mkmBQkqWO/2XD96jXrWxmuXL94w9XrN7x4+ox/99OfsjyZc352SusrrvcrAop13XC9W9MEj06c0AgErDqYXIPSo8W0pe88FRU2LciyZKRvynN0ENr3vT9EeVA3HW0nCM0QQCzUNYmzYhWaWjlLdRQHoPEDZej7hDAoNutWLJ5VIERPCIfnyYxOjaP9dxyOdJ//GPf77/qljUKP6dyTyYwszYkRdts9QxjIC0c5TYXeM2Yq9J2iqVravqEJA0r1WCPaIG2F8pgkAYU+Unokc0f2kCSRTIw0FUS6jb1k4bQHaivMrCPLc0ExbU/btbRdoGtbNJYYDLNpPiKYka5v2K7XKISWdXYemc1npKlkSmRpBrGl6mqazYrMWcRoO6GcTMmzHJdYrq6v6NqW1e01z59r3KgLFKfDMDo7SX1xoI7GOODcmCiuAr2v2O92bDcVWt1gE4NzEpac5xl5ITQpVMRYTZI6nM2JdEQ8q/W1DAjvaN2GMDCEHt93hMMeF4WgU6QJy9mE85Ock1nCrLQkhrHBGDPZrDnSOA+idq0NiZOJepqmJIlhGDzDaJYAHPdCAMJIz0ahiegoDcaxyUDJuX/ENN42FAeaPnFkN/Dl5uCrdrZv/zuOiMCY4H18TYem4g8/139osPr7NKnRDvjwQuHYdGglGp+oItv9ntfXN2yrhn6QdsQoKDPHYpJxtpwAEmochkDXhZGOJvNWpSOST6ZAR/pBobwag2pBGUOa/Y8s/D4WA2rsDhWjnaRju6swJmJMZDpzZKklzx1lmkiBGDVp0LhEkI+28+j9wH4/yCbYe6zpcBqsjixnFpdqlFEMGuq9QQNlEXEWrJUNxk0z6mpD29UMQ8NivsDZRMKGUsOuatnsRPiiVKSpPDc3LednJzJ1cAn7Xct2r6Uo3nuU8qTKoK0IS5MkIysKJrOpOF5ZoUdYbcmSlKFP6TrDfr+h7Rrqume/29C1A03VM/TgrFhIThenGOsIBLq+fastYBABlrEYnaGixWhL73vqtiEGj1YS3BL6HkUkz1KyxLHfbWhiL5zewbPb7Ok6z2Q+IS4mPNttePN/+b+SBPjjf/iP+N5PfkJ5coleWoaYs7hYsGquBP6KkZs3b7BJSpKlzC4mrG56hr7FKMd6e01LSqETzs0J636D3yvMvqXNb1kWc959cMHAJYPO6GLGfrtiiC1JYujajqaqhc4xLozDiotEmVYPb7mbb12I7qzKqIhRc3I65Z0n7/LpFx9JkNXgCX7AREWWpzw4n3N2knBxNuP0pCDRgTC0o3d+Ko2eAqW8FFOjDkVFM47Phdt/+c4HLM8ekroCo5ys69Cy2eyYTReSD1CWRy91YLSpNSNftaUZap6/fMonn/6Ws7MLsqzAGEea6hGCNPgxcyQC1iXkeTba74oWo+s6yW9xydddsn8nr7uuGXeF31/aTJVAtocpzcFPXeBkD0qPzmQekxgkbyZjoEWrHpcMKCODg65v2Fdb8l1JWRaUk0ImeVEOWqFCKUmPHwsw0W3I8XCwPc6ynOl0Ls9mP5Cmjq7tcYmIu8t8SgyyNxVFxma7omkq9tWO6WQOKKq65S//8i+5d+8xi/mJGCTs9zLd0vEYgjR4cTXbbXejPqyX5F+lyfIJ7337u1xPZ9y+fknTdgxDhSKIxfQwQNTjQO3tKTQEj0kkOyhJNI8fndKNjc1uX3FAdQbviXqkMCJnbBgGBqUYZNNHWYNNLdNpilENvm2p1vDJ82ueVZ5Xg6bOFnS7SFj3pNsGf31L3HtMa9hsNnRDT1SR2fwcR0piUuZFwcebLVppLi8umSZzqrxim2150b9mPhNKVOomPLm4oEgLyqzk8XvvcfbwnNnJlHyecv/BBakzkiyMh6GlvVnx0c9/xV/++V/w61/+nL/8s3/L4w++jUpSmjjwxsFqu+J1s2fna/bVBuUsk8Uck01QNmWSTqn77jiQCDriQ8RoodFqJvi+oe5rCqDME+oyG5Frcehq6hbfB7oh0vaBzb4hzxxZKs6EJ8t0DMsTK3Zr1UG6x9txDKROMSkTQtD0/hpjFdpEfNcyhA5IAEPf9cQwTk8RJ0hj1Zf31G/Y1fcdYUhRWlPkE+bzhRTSYc3nX3yGvoW8TND6EXkxw7mMs9MZ1/GK7WbNen2DVoMIh62hnC7I85Q0zcmzEpckbLcbtlupLdpOmotJOaUsZ4Q0YkxDCJUgWhHaukdp0S4658jzFD8ktK3j9Ztr9r6ibT1ERV5kTCZTzs5OefHyKS+eP+Pzzz7nu98biPER02mJsREwR0v9vq3ZrG/ZrFZs1zXf/vb3KCcFJ4sF337vO9ysrri+fsOf//l/y+XFmWS8XFzQ92EsPsUMwYxNhjHpiOJ3+GHP+cUpeV7y6PH7/Pxvf86bN6+pm4qyKFksxca26zpikGDIJLGSpZFMMXZgtZ7Q+46uDzhjiabH+5aub2nqCt93xCB7lFGa08WM9x+f8+7DksXckqWM4mM5R401mNTiQ0+oaxkIGkENkzTFOaHDFhNLPLBgxiGNWIDLNF5hsErhiMRmD6FFxR7oGaIgIkYJyqDHZkZrsesXcCMwxDjaY7/Ndvo9BP6IaoQRwRnF04jxjLUW4pidFdXvfb187dsQvsOf3f393cGANgckfgx8NiLwN1YQztV2y/OXb1DGofDoGEgNnM0LHt474Z1H90jTw+uAzdDIkCNGacwUR8PCgQEVFd4rmrpGYWh0w8bsv9Z6/fpNxsjzHT19mJQlzsiEualqjIEkNTg7ocxLysLh7KhUj0E6SA0uMaRekThFkkDTeHZVg9YpLrUUqWVRivORD4GbXSOf6wzGKQbf4seQNBE4W8Kg6Jqe11cbsiylnGS4xJIzoNrAat3QjyLQs+WC5aIgsXacCqVErVDWEVRD2zV0vqOqG07PLjBO6FE2sWgDykhUfV4kkBni4PD9aJG7q7m+XrPfNvSdp+8iRmfkeUmWT1jMTvFBRFN9O7Db7EiShCIvBE5Pc7K84Oz8ks12Rd1UTMqCEDxd29B3DbvtcMy1aOsd1W4rr7lrRxGaBPLs13spwoiks5I//4v/nqfPnvGLv/0b/lf/u/8tSTalPM34zt//Hl3sBPo3GbVvubq5ZrPasK9uMQbyNKHrB643t8QmoirD7rTANR3OBvJ2x8Mi4fGy4oP7nn4oiXGL0hVJlpM3BQye0DYC4Y+CU2vd2ydq3BwOE4i7XbwexeIg6Nf5+T2yLOf66obnXzyn7wUFW04Lvv3eQx5cnvDu43Os3ZNai2N0BUOBEopUkgiNRDanQBjdqtQ4uTDGkuUnuGSKcwXO5AT8uIkoVEwxJsc5yce4WyQniaJuKl6/fsVf/dW/5+/9/b+HtYb5fEnfB7bbCmLCw4ePSRIn8GSQ6XoMhw9NmhQkLtD3DftKpnTxmzuABDg2j/AWKj5cdy36hjiMHuIH725Qg5KpVRDr1rZL6Hwrbh8ojM3p2j02GQWZsWK9vuXqzS2/+uVv+P4PvsfZ+ZLJ5I/58MOPR9/3lrcuZGDH3AVxQxtQaiDNJDjunSfvM18smUwnFFlKmjp67xkGz5N33sEPHj+K6vp+YL3e8vz5U95/P2VSzpjPpzx8+IT9bs9qveLi/B5lOTlOn7NsoHKJpG6PNM3dbsf19Rum0xmpK/A+8MXLl5yfnJNNFkST8+qpwjcbQt+gB6E4Sc6IPk4wU+vQyo70AU+ZDzy4nOCcpu0GbtZivuH9gLYiZo6DTB77tkOFQGodRZlTlDnKwr/76V/w937yLhfnS9qhp1KWLsuJ6Yz5yT2CN/jKUzUvWW3f0F7fMOw9kzTFGqGMLqcT6k1Hu99z3dZMnGUxW/DBwyfoLuF584aqb3l48YTF/ISLs0t+8J0f8PDRJXmRkhaOB48vQItOMMscZtizvt3w7OkzPvzpT9lf37JfbfnidsWz1Q3rtmby/e+xtweHw8Dp7BIdA5qB682eIXpUGGg3aybG4YzBKLHFPYSt5mnCfnVN8J7OBzKXUe121PsNvmsJxhB9S1HmbOuWMAgtIXOBbEQpZrMlRe5wVo9BeYyUiqNqVFAP3uoYlVLEQVAmQsS5lO1uP+YyKVAtXWeIMUgYbpKhtSQx73Yb6nozUoW+mVeSZPh+YLvZc3V1hTFi+uESzTtPHrDb7dhsNvz1v/9bzs4vmS+WnJyckjjLbFribGC1uqb3PU3XM4QdfRdHx6icNHVk2Qln53Nub26o6pr9bk/feXa7isRlZFnByckJZVFSNw11XdG0Lde3tzRty+npTJwGXcE7RcF2U7Hf17x4+ZTZbEZZlkynU06Wp0ync9qu5+WLZ6zXt0ymU+4/uE9ZTknThKxIMKVYc/ddoKp3/OJXf0WeZ5ycLMnSCRdnl5ydnpBliuvr13zyyce8ePmcB/ceM5nMcS4fxeqSn5ImidC8MCRuSlF4tE5Jkpx/8A//mM1my2q14ne/+5DdbkOaJkynE1DQNA1+iEwjGDfQ9jVffCEZRL6H6IBhoG07+s4zdEK9BIXVhif3z3n/nQvee3zK+RKcHcacBzfWuDKEDENHEjzaBhEfh4E+ePphT56kKF3TdIar6yuqShgXXdWRptlIvZWaE6uwUXQEfVPRDa24uRlBNoScY1CYI5IRh3BgPo1mK+pt7sad6w81Ckc9qVbHs2Xw7Sie/rIG8avuVYfBqjiP2SNl6u7ZCF+2uvXeo9SAdZrpvOR2s+V2tWO9aaj2LSGI+Ycl8v7j+zy4d8pyWhCHE3wXhGk0aLpGBmhDL853QugQytvgB3TUDHgMij607Pv111qv/wlNhgTSKS2T4jyzWCM33ZlE+L8x0rWeumrRREwpSIbSdzyEx1+zzI50JEVAuMttN6BVYCjEecoHCXrTZsBaTZ47vFejsMa/hY6MwiYpQ5CJ9m6/p1COvgv0HRCNhMUoScO1OmDG8BiLwSWRNET6oadrRfA5IE5WWeFHDYE8AGa0O9NCeCUajVYp1a4nBo/RGVoJ7KoZSBIpRK0TugMKjHFkeUEYuqN/skss1h6cDkakaJwuGjFPp2872mqHNlJs+b6h7xv6rpOJ1fBlsVAYpDHUxnDdNnTPn7GqKx782bd48t63WZyeU0wWPH73XfJ8wnyy5MXLZ/RVy367odpX2MwR1JjaTcSYDJdP0cUlQxoYdE8bDEnTkO56TjYVZyenLBc9y1XDfj6hr9b0tZVDWhswMMAxnTcgU2oTzdHR4Muw4XjwKo3LLEYr2qZmt10TfcdiUjCbFJyfTHny8IyzZUmZiyDKqENKtgi7FSPdgLFpVmPrHOPI0RyBU21wSU45mZNkOVEFmq7i+vqG12+u+MUvPuKf/JN/JGnd6kB5E4qM9y3PXzzj5uZK0lutHZ2vMmkkotxP0WsYxOJPnremEfh9P3RH7Y6k3ct60eYbbAszXv9f6v6s2bIsu87EvtXsfp/m9t6ER5eRmQASBEiwWKQoqspYZlWSnvQL9CS96C/J9K43qcwkFWVWpSJFIwCCAAkSmciMjMxoPby5frtzT7Pb1ehh7nP8RmRKFTSjyTK22Q2PCHe/zTl7r7XmnGN845sa1m8utvLfHAzgxMOSIR4ZH4ERtLx3arDTGrOXqO07RkIPc6On60a22x23N9fMZjOyLGc2m7HntofgDvI9gCRNUOPkAZoCJ7XRHJ+ekhfFJH9SUzbL23G4tRalpJDyLuKdnw6xA/3QoZTmnWfPKMpqCoCcJKiIdkYpRVnKlGsYOsZxmCYZge1mTSji5Cm5JU0Liqzg9PEzhu6O7d1rmvs3AlhQIGQpxTBM2EUlHRJNBO0heorUsKhzTo9mdN3IbgrGDPu0+iCbYpQXXx4hJbplYzSzeklVFeS5xViHTTyJSUizhLooOSlPSb3lk+sta5UyxCmMc0I4Kg/3V3dEpyFAHCOpMVRZzrysmR0dcX72iDHAqAX5vVgu+PCHH3B+uiCxGmsiZaVpdzuazZavP7/h+ZfPWa83bLYNl8+/ots19P3AxgXIBZ5Qp5bdZoefOnjGJCJ+Cppd1xAZQEeUH9FFTZkkmCwlzYR4Y21CmiS01uKcEI1UEFxs7zzD/ZqRSDcM4uEa3TQdCtKkKhKqMiHPE2mgTTIoxYNDjDrY1KZp3r5LCtEPjF4x+kCSGCETTtNuRSB4zxDHibYUGJ0nhH46vGi+z5A6WXOZ9gnH6v6OJLETjVFQ4VVV4b3Ije9ubui7nroup6mhoigK1DAyjoFxdCjV450c2Gwq4XWJNczqmsRahlFeS6FNRbwPMpG2AnnQWibYMQb6oWO9VqSZTECSVEz7AhYRf8R2KxPKxXKBNoaimFLFQ2C72fD8y5Gz8wvmiwVLa6b9IyWx0KqWYdix3XaMY8/p6cWEyNbM6gVDP7Jrtgx9x9XVNX3vUSQcH80mibasU3svmOxZI1oryrJAa0kHLwrxAd7e3tB1Hev1Gh8CSeJJ0iBY+13Lzc0Nt3f3Iq1RgHLTGugJPkxWRzGDF2nGe09PuTiZUZUWY2SafdgXw15SBbH3DKElaNi2ik0rDeDBdRj2oXWBl1+/otnsGPqRMEZSK9QtZRRRBVxqiM5wfedQY4OKTuSHWcAmMqmAhGAiNr71OeyVFlGBUnvc/lu7c3xQMOyv3zaBgDCFkcrn3hcS8nN/c6KxN4A//PXbk5OHQbb7IiZJhDymlKFtO95cr/j65RtZcyJYo6mLlKrIqIqMuijww8jJvMONgW3jWXspSLyb0tWVkkJjyvsgCsFJaQPRER3f6fqPmmSI8ccyrwvyXPCwCk2iE/re0/eOruvZaE/wI4m15Pmkq9NSGGizf6GkSksSSYa+uVvj+xHnHbMyBx1x0TGGEW08WaapqxTvrKBuxxGiF42ssiSppHb2fSveD1PRdZ5xlCRZkwWMkpExYUCQX4kYwTI50IzeEFzEebnpu66jGAqcF0mNQgtG0gixJQbZ9LWzBCfJslaXWBOJZkRZT5bXJGmG0W+D1Iw1JGlFcNLFFn2pHIZjdAx9Qwjy8A99S5alwgXvBzabOynamNKyxwHvRrwPuLE73IBZlhG93JguBrZZ5P7ullfX11T/wz/nH/7jkR/88Md88JEUGafHF1wcPSYNivXqjtX9Dffba1CBqLUUkSYly2tmR09Ynn3IYDoGWtq0YHX3mrIN3G06fvRhyenSsZp3tIua1VWCVmYKw7MH3X2cRvZaJnSHgmvv/5EHbxrdTQ9nURRiRu062t2GPNE8vTjh8cUpF8cznl7MKHKNMR6C6M8Vmqg80zEVrWWxly+w94FM7Ok4jTdNQl5U1LMlNk3oXcdqfcuvP/01n332FX/zN7/mH/zn/4DEZgjCQtEPDW2zY/QdL19KZ+fk5JQszQhezKxaWwjSGdnTLWKUdOK27Wmalq7t6LoREErJfF6RFTnqt/g0vm/Xb+v4/Ka2lUlvGg/Sumn3mnTBgBNTs3eZjKW1eLEkJ2PEDaAmTbrI70aurq8YxoGTk1Pm89mU1+HZ7bb7L0iMkSxNJp30AIhxUSmYLWZkeYqxWvTvk949EnBe6C0AdsrqUMpM+OGBptlibcLjx4/Is4o0zSZp1igFgZJRe1HIZGy3g65rBXWrNPfr9ST1g/V6Q1Gt4Sjl4uIJfbsmBk+7u0f7/q20RoGX236SAkzNFoR5ntmEWZlyfjLj7m7NOPT0MRCcyKX2JJTDLTc1W0DQ0RcXj5nP5+SFJc07qgoqrxhSwyI1/PDijKNkxt0vPuY2yRhNCmqYvinpwl2/fMOsXpCnOUpFyqygLkrqquKdR094dPEOy6NTtsGxHbfYwnL+zhl1ZmDo8V3L0K3Yrm65vrrib3/6t/zZn/0F26YnLWcyEdOKaDU6LyirmjTNsMbyanyFdwHUIM8WIn1p+xHiQFQe30dsvcMWGYUuyTJLXopZVqFQxuJjR9cPDCHQDQOD8+x2GwY/4Cafyzh6IGCNNNhmdUpdJeSpZY+OjEEwtgcld1SSgzHlZoyjEKickzR3yROSUNpt0xFdJPFvu5shQtf29J18TyFIGCDKfq9R2EmaolUkSTTaRNbru4kuWFGVUhTYekaa5KxWK9b3K+7vV5ycHJHnkwG/qFBmRBtpig79yDiOdD1UdQ4xQauUuqoo8pxhGLi730h46gSW8D5QVfUEbIl0nQAUnHes1qKqqEMp/st0wtGnhtubO9puR9ftsImhKCvyPKcsSzabHbvdjuurK0KQsLUstdiqFipWYlAq4PyWtm1Zre5Jk5QQqsl/VnK0PCNNSm5uL7m5uaPvPIktODm+EIqcUUDA+4HRSaNyGCVrKM8ywEuhVtccHR3x2Wef8erVK55/fUNAkWWe1HkiA9vtPZeXb1jdrYnBHiiNIQgdkBin/VSTJQnzuuT9d05ZzDOyhIPPjiiF2+i8nA90YIyRwXsGv2PbR27Xa5quoe12uE6acn3XE5Rj6Dq881glHi89IZyD8gyFZRwMcdiQ6oBRIu3PS0eaOtLME2IgCfJ3Q7AHrLcWbvjUUPrWM/ObNcY3CgWY9rnpdXi4z+0LiIPPefq7+/+///dvI9/3++fDLA+tFVmWC4kQxa7tuHxzy9dfv2FvoRYCa06RJpRpSl3khNFxPB8IHlabgW7yVrs9ceXQQQMV9z+DTPf3Ivfvcn33xG8tCZpVlXN8PCOEjizTHC1rrLaEoBjHyFdfX7LZ9jTtyDAEjo5qijwhTQ0xOpQyoglVhphIYmOMHq2XbLYdm23Hpy+uKcoUbSNts+LJ4yOqMiNNFVhDkRV4n7PZbRhG2faUCaR5grKRqOHlq+YwGqxnFWUtyatxDNzdrSmKSFGl2DSlSIW/37UJ1k75DVHjR0/fdrSJoUgNjCMhtaiQ4/wgnQDnaTcj601H3wYgJUsiiREGsbUZegoWdFHkNlpJcVUdndJ3Dc1uy+XVS8qyIEtTuv6e3US5+PrrFzw+OyM1CTpGwuDwcSQSpGDb34Ah0HXd4aDe99K10krhfKQfB7RJUFrzt7/8nHbrefnZK+bJnJNHz6irmtmPlsCIsorMJnz98jmEEZMY8iQlK0tOjhc8eeecf/qP/zGfrl7xanPFzSanb7dEWrR33N1uuLu54X51i/diiu0HTzd40rLExMgYA23fT6g7dQhoe3jwlA61IgR/CC7K0pJ2u6LIDE/OTjk7nvHs6WOOlzOUa0jThw/B9BwoiAxTIacPpqy3o1DB5cUoRXOalixPLvjoJ38flVleXr3kxasX/Pznf8Nf/Pm/wzvF/+5//3/g0aNzkswSkenZxx//nBcvnvOTP/wxz959dhhPo94afJMkZbFcMpsdURQlcTqADMPAer2mbVuc8yzmC6HHJIa6rpjPFyi1TxH9/l4PF86H3Z5vJ6bKpCAcJljA2y5umAzaUWGNpSpKksTifYcbNcPg6bsB7xRmgilkmWO7aWTS2va89+4H1FVNP5zz07/5G1CSfzKOHjeFRxKC6HLDQNuv+eKLn5MkP+ZouSTPKnbbDcHLhLdt9bSBW7Is5ez0EWVRslwuWK9X3N7cSndxbPkHf+9/MaX+Zux2W5FmBZEXdO0G58RUDvvJlWGz2dB3HVma8o/+4T9k23USLKoMT9/9MalNCN5x9/UviTSAw09dDR8Cru9I42T81pE0yXEuEm3keJby6LRGExj6kX4IWG0mycGeugY+OrLMgPK0fcvry1t++MGSup5xcV7yJ4sFl7vIiw0sK8fZ+JysV7ybr7hJA8EYtmiGbSNNm6io8wXvnb3D+dkjTk5OGYaesi45e3TG+z98n+ViQVmVHFcpYazxrmfobvj848959eVXvPjiS9abDVldYdOcYYQf/eSPCSYhJhmv797gvUOFCGiyvMAkCUob3isrbm9veP36JYnRdI2sxUGOGLK+h0DfNrihAErKUk9hq6NMyseB7W7Hzc01zW5H9E72s+hJbEqRJWRlRdd+fSha63lFXhiSRCGggOm+jgII22e9DIOj60aZlLgwTcrUNLFI0daRxMgYMnbtwOiEnui6LcFv8CHip0JFaUtWFJRlJdOT7D8qh/d36zKKxbJmVufkhcYmMPQDq7s7mu2Ooigoi1J8i48uGIaR29tbvvjiK5LEMF8uODu7wCYZdVWxmFs2mzVD3zGMHdvNQG8taZIwn8+w1lLkJUUxZ73esWsaNts1u2ZL1zckScJyuWS5nBFjnIIApRBp247trmE2k0KiKHLeefaIvu9ZrdZ8+dUX1LMZR8sjzs7OqeuSui45Pj7i5uaGzeaWF19/zocf/JijoxPquiIrhFqo1MDodry5fsX1rTQrjxZnVPWc06Kmqmo2mxXb7YbPPvuE0XU8evSYo6MjFFpCJScyU5bmWJtNB1XZP0OIdHrgvffe5/TslGfvPuPTTz9nt2vZbLakW8/l5SVXb1Zs1l6aPMqIOT0GmZqqiEkU81nF8aLmvYsTEhMZho7BeZQexdMyeG5udrghTIU1NENk1zp27cDVzT2iL9nvAeowYfXBHUZ+0iqQ3/MqolONUgGtIssyRUdpNmeJpsjFu1PVGfNZIZRPa0RirQ3WGJLEUhaFQIV0eNusmYqAoPmG+uKA550mDSKRDIfj+P7v7fe+vS/xYWHx7UnHN5uub4sPPWGCjbFkeU1W1KRFyq8/+5LNriEvC+4bh1aQGEVmFUfzObOyIFWKRSXEQm0yVtuRXdMQgwYsbe9l6qpAemoizwwq4q0XIECefKfH9TuvNGWZURQZRZ5gDMzqiqJImNUZxIn8ZCKPHx2zXu/o+oH7TUeIkbJIqaucorCTvl4OG24UQ3ZRpAf9WZIk3K071uuWiKOqREuslISu7V31BkVZlMDI4ALj0OGtlfGns5TlUgoaI+Pt5fIEFWG3adlGQzcmxDaieyFIjM4RRlDBCkXGWAbX4wZHu2m46YVipY3gZNGSUh1CoG89bgCCHDSKWhjk3kWUsiL011I9S2kYcGOPd8nBdNx0G7QNKONRPjC6DkWkKjJub64F7aYFLTn6fZGhQJnDRpUkyTc7xSEcUjf7qDHKYJVhs9vR9h3NbsebFy/ITMJsuaCYzTh9dsrOfYCzln/SR3b9HYPvGPxIqxouFhkfPSqo4isyd00yrNDdiuOs58TCbJbStFuev3zBJ5+9IMsuCATQimHsCTgG7+mdox8HkiQ9FEYPH1TRIMu9p7UiMZbEGBIdOX9yymKWc7wsWMwLqsJg6IVsZtRBchbCnkph0Dpjj4+bSgyImhA0cUpKVUoTg+H08Q84On+GKWo+/fILfvHLX/DTn/0NV68uaZuR07NH1LMaH0ba1tEPLVdXlzStcMmNscRgCRh0jNze3rLbbQWrGgznpwXz+RzUFNA1dX+8l0OIMTLON1ZIIWmSkiaZFObf8yLj28XEQ7rUQ7nUQb66lw1KpQjTgq6VwSiL1TIl09qiTU6vE2I005RAJpZ6H/KIxrnAdrvj888/49HFIxaLBednF2y2O4ZhxIVxGm0jGTlRJAVdt+PVq+csj5Yk1rKYLSiKfAoQHbi6umQ2m01pwQlpktHqFDdq+j6SpmLcfnW55ub2GpukXJw/OkzuYEr87XrxVCBTuxgzSdgde5wTKk5R5EQjQZJ7NPTy6JTof4Tbrdlt3zD0G2AkTQzBMBUcU8BhlNfSKEWiIbeaWWHp64y+r9g2I+3Q44LDpinRTb6OVHThNg3S2SJwf7/l+lpRFxlVlvK0SjkqcopqTh7B7VoSN5Aqy7yYcZIuWN2vGLqB6OGPf/8PeffJ+5yeXnD86BG2sOR1Tr0oKfMEbQKDW7P+6o7L58+5ev2aLz//lM+/+Jxd19F7R1JXVM1cDldnF2zWW4ahI7iGmGiSNMdqWQfUNJVt24aiLMnKgtlyQd82YKQDmhUVbgyi6Yzghp6xaxnaHV2TTU0Bx3rTcne7omt7hn4QtGeaoFUUQIeStFwdFVVe0GuIYWQcnKSEK4NScmjyIRw+r3Nhog1O8lorzRa7p+1ooZ2FqPCjww2O4DXRK+K0JxzkDVMn2WgrdK56RlFl3+siwxj5sIkmzzOIfgoMUwQnMIWuaajrGWmWY5RmVlfAGf3Y07YNL1+9pK7mVFVNVVbkeSZ44EFgHc6JvO3+XrI3kiQjSy1pUqDLhDQpaNr1JDWSjr73xWT6zqdG3zitD6OciTrx5+SZ5Posj5YYm+CcTFOHYWC5XJLnpQT0zec4JxOWX/365yyXxxwdHfHo8SlKGeazJcdHJ2y2K7qupWkbYoBh7Mkz8aV61/Pm8iU/+9nf8vrVG07PTjk+PuL8/AlplspB2ubiS9Ui4VT6gTyPiE0SqqrGppbF8ozb22uuby758stP2G4aQa73I1kqBDUxT1uslTcrzy2zqiBPLcPQ89WLN7Ln6UA3dnT9FC/QeIZO1kKtFZ2LjB5p+sQgUIqpIBezhbQL91J98S9JobGXOY1uyiEisg6Og9WAQJ5CuvHkWcds3pPtU8YzS5GlZElCnmVENNZ4ea2MwepwKPZl6jIFmhqN2TdnDlPgt1ONh/++n2D8Rk7Ug+vbf+ZhcfL2/yu0SajqkiyXlO+mHdlsBzbbQWTESqbzpycncp8bI5NAoynylJkPLOcFs1UmMvzo6b1HqYiZJJxlmbCoa9575wn1vKAqU6oy47tc33mlyXKhRqWpjOuKvKQsUrIsITgx3moFR4vqgDFbb3bsmp7gxWdvrSZN91gy5M3XTMQDJk11wv1WknmdHymKFO8lMynYfcK23IRpkjA6Iad0YcANkWEE5xRFkUO0k14+weqKPQJSGenyDT3EOBzQoW5UKOxbbXcYcIMHHxnbcQp7EbmTNvqQ5+AcaJVgdIJSDm1yUe7FAEwm1uAx2CnnQRITrdWMfmAcpQtlLEQco+ulI+UGrNZsdlt6pbBG2JSDGwlRPCXScftmuNg3wmOiaKA9grYMSuMJOO9o2h0vv/6KKktQoSOxI8VyzvGjM7xK0D7n5vYrVptbru9vYPQsyoTzmaWI98x0y8KO9GbgeKY5Sw1VldIPI03bsW06PD1hQt/54HHBMTrH6MbJ4OoPEq+HKd97+olSQFDkqRBYqjzh6cURi1nGvE4py0T03VMYkplkZ3oa9YlExIgxFH8wUqIkAwMsRDNNnMTMfXz+PrPjC5w2/OJXn/A3P/0pP/2bn9LvekEAzxbM5hWbzb3IyeLIdrcWf1IqB0UpVCGayDgMUyrshEHMc/I8B0Sz6t0wGZCliNVKUxT5lFhv5PBirGRwDN8tZfN39fo2svbb/63UviA4KKb2ewn7AkM+hAKitZn+XaOMoGy1TlCYyRBnDxVLjGpCBHu6tqWuSuqqYD6bAYau62iHFqWlcGeSsgnir+d+dcd2s6U7GkAJ7CFMIIftbks66a9DlHG2JPRmWJOi04QkteR5Qde3dG0DvB2bq+n5NmZaW4JMsfZGw31Ca4iRYZSANq0ES2iMoaxnKB5xe/xIkLROsKjWSvipDuAmlCl+L2WY+h8KUqvJs4S6zPFR46IjuIBNEkL0GJNgTUb0ChW1SBKUYr1uuLqKLKqa4yNDnWvmZY7ODN39huZuRbdpwWvKrOasmrOsj2nbgeADv/fjP+Dx+VOWy2Pmp6dkswybG0ymWN9esel2dLsNX3/2Ka++fM7rly/5+Je/5Pmb14TEYsuS2h9T+8A8BorjJethRz86XFTYNCexyWHPUYh8dPAjehzwMaKtlXmNAmUMaZ4TYy+EGCd+t77raHcN93eKvh/p+5H1tqXZdfgpmye1lsQogVtoPS3/iughTxMU4nkZ+hHnMkKQvWH0CjdGhjFMCd+OEAJplmDt1Px4qyGc5JXS8XWj5CCoKBN4mfga/GTslqBTM5mQE7KiIC9z8uK7dSF/F68YZFoEYfJIGmIivqYutIzDyDABJmKUQ3KSWGbzGtNq3HagbYWME0LAaEOSGWxiiCTESUa5x9h6L4j8GERClVhRSKAcfd8wjANd1yEH3gyb1AI1mfA8+3DYfRCp1mrKxSowJqFpGpqmZdds0VozOsesnpNl+UEWc3N7hQ+OYewwFo6Wx9T1jMVijgsDzo10fcd2K4VPlgqh8Ob2ilevXvHF51/StnB5ecXR8ZKf/CTh4vyCpBJ/kZDRJ5R7FF+WHO7FD2gSQ17m1OURs1lBmsGbN1/hnEw/D4dqmJSa+wN1nMzLcmhuuoG7TS8+xBhox56m7RnHQPCaoZMDvNWKcZIxy+ROH/xJ+zPPXq4jkuO3eUdKqSlte8oKmv5kNwjdimkaPo5gu0BjA90QSTNIE01dWqoyI09TyjGgdEJqZcqRp+LdkP1GfKREiPqt8mL//exfBw5nmrdhpw8zoh4aun8bIve3BfMdPKtaYaydPDkZ3kdWqx2bbUffO9REqsuyhMViRpYmGCNqDqUhtYY8S5jXObMyk3vZO0oUqTFkiSZNFEfzitPjJT/66H1ms5yySCnL70a6/M5FRpFr8sKQphrv9oFBFmsSOSBr4bDHCKcnNVWVoRRsdh3btmd0A84PLJcz6qogeI+x5nCTwMQaNxlWi55xHGG9ainSDD9CDAVFvmeFS1hfMaVyd0NgvR4YxogPmuNjhaKEkDH2I9dXLVmaUxZH1HNP34oOc2hb9uhK76GqCiSx2zN0DmMUbj/aGgbpAGotMiX5trFJgrGKOEHzt96hlJCZbZLQ9i2jH6mrgqEbDovObrfGBYdzI0mmaNstSkHXjSQmQwUIo8MPPV4pnJEbdhjFjK4mZOVvMw8ppYjOiZdBRVAaoxR5aplVNUGNXN295l//uzXt/Wveffcx7w3PWJqPODk94fjignfe/wG3n3/G55//mtd/+W+YVUvmeU5lAseZw56VPFkY7mYdyyQli55k9Lx6k3B6/owPhzlffX09eVocRkfarsdNes19wrA2Gm01Xd8RQpxIUmC0LDZaeR6fzDhazjialzw9n5NqD6HHmjD9eXlwrN57W5AgtclsH0T3Ihr6qNA6R6kElCFiqRdPmB8/5vzx+5w8eopXihc3V/y3/+3/lVdfv6LddiRJzsXjnOXxMe+99w7/7P/5f0NreP+Dd6mqCoViu9vxySef8s477zGfL9DaSMdqCuZLTMlyPscYWXS323u2uw2r+xVFUZBFhVaWxWJJYs20aMm9dL9e8erlK85PTr7rY/s7fX072OjQAdp3dKJmwn3Jf6sHiMEJwrA/ZBhjiSqSZrOJvOMI4Qbve9zUzXo4clYEbq7f0LcNF+dPmM0fMQwjry4viUQaH3GuxSgpTMbB0bUDwyBNhRDkoG2sHE709GxGJGxUa81sXlOUOVVZ0HY7RtexWMwZh0EacVEQudbGQ7p7VZWkaULbjIA0I/bd0KIsSWzCLz/9NWVRspgvOX5yjFEGbQu0MZw9+yEBjTI5u80LTBwkTMqpSZYw4CYaW3Ci9R+cYnQRYyyzyuAxKGukm6UTgo4YZdGqIDUVZVpT5zXWJFxertner/HNhh+9f8zyyFEvDc3g+fhnv+SzT77ixVcj7SZhUR3z4dOPeP/9P8ApGJXn/R+/w9FiKblAncO7gb5tuH9zx1//+7/kqy8+5fmXn/NXf/6nHC2OiEnCjevwJ2KYddqwvVlRdC137Zr12OKDwgXxMKRpRTJlnMQYqWcz0fQnhq9fv2Loe9w44oZOJkhakZcVbtKp990AgxRWQ+94/uVzkkzCU9Oi5OjoiOjBDSNhGFBRZJhlmROCwjlP13VkqUicnDes1/fMqoLUGpzb0LbJlJERMBa5n7SEyMrBBUDRbAf63tF3nmY3YpPJWxGRzANrKeuMLI2M3cDQB1zMJEcmSUhyQ1ak5GVB8R27kL+L13a9IksjWaqocouKkFjxGmgynDWMo6PZbenaFpsk1PWMJM8kJXpZcLe65+5uzd3qhq5vWC6WZFNnfz6fMQ7DQfLkxo5dHCG2zGbzSfaUcXp8TNfnNO2W69sbds0oDYRuoK7nZFlGVVUTxW7EOaFTee/I85yqFhlWVVaEGLi6uuLVq9eMo+fs5BHvvPMuSZJjawmh3GzW3N5cc331ht/7vZ8AAoo4OToVedjmni+++JS71RvGcWDoOz7/9XOu39yzuh3Yrl+gLcwXNU8ef8jji/fJshnWRMbYT/IeaQIOg8ArwGIzIWzmaUaVF6RZpKotSo98+eUlbrwmSyQ/ZC/teZjPsd21tNuGLEmpqhm7tqUfegY3YlNJ4iYoJH7GEEOkd3EyHou3LMZ9dpTso+vNBpCDu7WWMB28g/dvTcuH5tT+UhOpTRHQRC/5D/2oaHoHymNMZD7TzOqRPEuoioFd5ymyjDzLmJU5ZZ5J409plBepPZNJOiBGd++8xMlNhc9Dtca3kbXwTRnUbzvLAQe55F5ejhZfZ1YUVNUMk2Ssdz0//dlnXF3fSmdJRfI8Yz4rOTlaUJU5aWqJevoejaLILWfHMza7OdqIP3k2m3NxNOf8ZMGTR6dcPDpmMa9YVBVucCJBs/+JPRmLRUVV5RRZhkbR7Frp7nQ5VZGLREXsyKR4VK45P51RlCm7XcN6uyUScT7SNj3zeUmSmgOpKUZFNzh27Yi2sCxLjC5wQ8tuOzB0gb4LHJ+UJKnCWtAG2n6g6xxuDESvMcZh0pFm50kMJNZSlTVppvDBcXP3RgLsxkjwCmOrw5hPqkvpbgSgKArRhiuk654kqKnIUAeRnfwjtZYkScmzgiyVkL+u7UiNIVqLip52u5W0UOdx3tO0ok0O0eM3TkhE2uB9JLPSrQyDwwfHAYUW5WAgxtK36LP9h9bSCU+MdPCt0aSpmE+lCzrSNDvwgdV2TduP/PTLn/H4ZMkPn73D+fFj/vgf/Rd8+Ht/hyxNOX7vnC0jZ59/wf32khfP37BrXnP+7hlVVVAlikWeU2YKP0a2I3z98orXb9bcrjb0fYsb5KPrxCApAVbTQ+UDHoefApAOEgOtqDPLrMg4P655cnHCrM7JEsjsiFEBNaXfMr02Qm+ZRohKgQ74KGEzBulOxQBBGYzKMTYnzUqe/uAnLE+fMpufUc6OSIqUr199zZ/96f+bdrMDL5Oqoqr54MP3ee+9p7x4+RVaxykJNuP66gbvHdYajo+POFouqWdzeU9NwFgpyBMrwX2HLj3iGyjykuVyCcqglaTNmoMuE25u7/jbn/2MP//zP+Mf/Wf/2Xd9bH/nrm+bvPfXbzO0i5xEYAhai2RS9LByCBN/jce5DqUDTGmoKIMyKWU5o2laxnGYCpj91ETukt2uoes6YlD8yd//+5RVTTWruLy8IvhI13UE18sz5iNd6wQmgEWhGMcwBXJJl3Kz3UzPd5y6lJYk0RwdHzFcDmy3W9CO09NT6rImxPBAHiVGxrbd0fei5d5vKtbaKRVeTcVzweXlFU3T8fjROwzjgLUWm2Uk1ZLTpz8kL4/4/Fdb4ngHCMo6MZZROZyHvncMQ8B5xegNJMdkWqESuFq/wEd5nct8zpN3nxBc4ObNLVV1TJmXJCphdbdCx0CbKOzoufr6NfU85+hkSbl4l5tL8O05hYWnH51zcXHBj378Ay7eeTZ1aAOJajFuhW893V3H/USr+er5F/yz//G/Z9dtafuGnTIyEQ2O1kN3tzmQhIw2eCcZFNfX11iTAYaAITGRclazWC4oqoLdbodznsQY5nVNbxO6tmM3DnTjSHCO+awm4NGJJWIYuh3BK/zgWSwWYv5PLNqIiTqoSPSRbmxJEyETVfMK55BG1hgIbo1SAg1p2sDdqmd0nixzKKNJjABMrFWCSlcS2tf3vRS4nZNmg5Jpf1WVGKNQOuJjS9PtiAhYwhpFtIoQDEmSo22KMeI/lC7uHqbw/bzSLME7x3a9oW8a8jwjSRPSPMVkFmU1OpEDm/ce7x03NzcU9Yy8yMiLnOV8SVWWDOPAZt1ydX2J1YZZUVBUErorCd4Vu62AOPquY+hHijJnsaxY2FI8HramKHJW9/e0bcf9/ZoQZA0oioK6rsVQ60bxVvXDpJyIzBfL6fvPOD4+Js9zmqZjfb/jk199QlXVnByfcHJyTFXWOC/NyTdvXrHZ3LNer3n69ClKBbI05dmzx/ziF3/L18+/5uuvXnJ33TIOGkXJs3ffY3lcM1/UtH3D7eoKZTzL5YwQpBHovKNpOiSvIiFNS8pZIV5VHYhqpO123N7d8Mkvf83QSkO0CS2963/jLLI/PLsoSOzQdXRDABKSNCXLDM7LRD+4PYxlOnSrt5OINMlQZgrJRZDF325MPZQlHUzUMU7rvigZBFkvU8uIIShNROODkWfCB8Z7x673ZMlAkfeUeU+R5xR5xnJWsZillJkoK/IsF9CATdA6JSpRj6g9lUmpbxQH326k7RUc+8nGQy/G/mfZKz32ONv97ysrVoCj+SlGJaxXWz757Euurq/ZNg1ukpElBopMM68sVgeIXqagIYCR7LfFvORHH77L++96hjFQlxXzKmdRFZwsZySZBCAqB76TiZcy3027/Z2LjDyf0qk1mEnb6oOnaTu00pNe0WIOp6dInhkCCcRM0m8Hz67pcKPcTLNZgcotxmrpPDnPMDqSRFMWhiQBP0aiA+ega0c2m46itGS5Aedpu37CNGry3EoKq/IEb8BYwOD9yDAonBvo2laKCyM/D2iyCUkpBCk5jLgQSLw9vKEx9tOYSWGUEnztdANHouSMG0ORZxR5Ibx5JeGDYQq2EqO4kKBikOCrEDw+Cv0m+IjR/nCzqxiJPhw06TGAjwey5OF7e2gMiiFKmJaf0pJVnDoK05h9Io9sY0uM0PQjLuzo3cDgPbc3LWm5xPUjT3/wPuXigvOLU/7wj/8uv/rVT+mHK9yw5e56he9bUgP0DZtdT9sF7jaR69sd95uGtutF3zr2E3Vj+tne8lOm71++dwm7URgNy1nOsso5mhU8OV+ymOfkqZDINB5NnLr8+0kYE8c6Pvj8+jD2jgSCn96pJKdeXpCXM/JyxtnTD5jNzyiKBTZL6VzLZrvm6s0lbnTEKCPJ07NTTs+OmS9qxlHkK955mqZhdE5SSK1s9MamGG3J85J+aISGFD0xjJO/QkbJcohMKArZkJSycpBQMjZ3o6PrBj7/7DOeP/+Km9vr7/rIfi+ubyyaDwqNw6IMMMmh9FRc7AOb1KRZD2HEuQjKfMPzkeU54+gZR5G0fePrRFlk/aSH3m632ClEq6xKhlH01LuNUL5iVILDbVqGvkNrMR+ChijTRe9b3Bjk/TOaVEW0EalGnme0bcrt3ZqqqkiTnLLYbyphmq4pfAgMo0gfKlNOxZU6bEYxBhaLBbvdDq0FrbnbbibGf46yKXm1JAbIq2PGTUvwDUSHilPOgk4YXGQMCh81USd4r0FbklTQzXk1Jy9Knly8w/HimO16S7vpKIqSNMnFI6UzgpPA0b6zjD5h7BVD53miEuriEeU7Ge+8W3F8dMRyOeP07Ig0dQQ/4LqBl88/Zp4aTID764a7reT0fPn8K16/uaR3PQ5PTBP6GGQvmDI8AgGvPVFH6CJuHBmGkSyLJInQVoo8J03sYf0V6k0goIjBc8DpqkiaJpBYskLAHt47bNoxiq6WME1fsywlzVLQBh8MXkViEDLV4BxoTyCgjcEkQhQaneyXEuQH/eiwPSSpJkvl3g5Byxo5yiFtdBLMKIQwjdL2MMV76+XawxHitF8IrlQOJqC0llyPh4eUqA77x/fxyvMUozXBB3on0ufEeTyQpha0AD3SPBW08ChI1XHogUgMkOZWgnutxY2BrumJXvwckUCW56RZLl4+jKzd0Qkmf+zpOkWSRtLUYq3k8pRlCWicbxmGkX2aWZqmh457WeaT3yNOyPL+IK8xxlJVFYlNCR7W6x1913J3d0ue58xmFfVEsmp2O5xzrFYrtIE0NRgL49iyultxdXXDzfWWbifY+bIsOTs/4ez8iPmyxhjFtrlHmUDEYYx4N0PwDP0g0BKryXNNmhgijrbdcnN9w5vL17x8+ZJPP/2Cu9sNXTtOxdzbw/JvyLej+MJG54lwMFUnRgKJ475rq5XgrKcdXO5zhTFWbN8xTPh3+w050bcP5Qf/QoyTRH3v7Zt+jXFi2cvzGJnkWAFGh6wnzguSegg0nSNLB0YXGIaUqrDUZUZViDQtTTNJFtcPwjPVvgf9tgB6eD2USH1D4v72T/yGROptAWVJUslgK8uaGBXb7Y6Xr1/R9AOjl0a5UZClCWWeUubpJBmXb1Bbwesba6itYbE8WFvIrCU1mtRqrIboHaOXBoV3AWXFcP5drv8IuVSCigHvRjBKFmInXfHgPXVVYW1KkhiUl8OBNSNVbkhMTpoavn55y64Z2UXJApA3osAmimGM9KNnHB15oSlLTZZo8IZMJWx3PXerlru7EedzfEhxvqdte0JQpLaknmf4AN0IQ2fRKkErRdPeH7oa4+jI05I8r8izfKq499p/T56loBUhBvphfIsDDHsyi9z4YZDOe/AeHySF2ypFmRdUZUWMkTzN+OLL55PxWQ6/Yara5WisDv68ECAOHq+CfP5xnEgGYmQOcU9V0G8P6tMNuS8yrLVyZ4cpHVJPvxcmk3gEQsRF4Yf7sH+QU9Z9pL2+p21S2j/9c1588gn/xf/6v+FHf1Tz9PETnv3gx+h/prm9eUnf3vDyy0u2JeQJJDpyeddwv3PcbgKvL1vWW5l0ub6bwsnE+6KntOYYo0yDwltkY2KFF5/YyDsXC06XNSeLiouTOTEOxOiQNLq3aM19VoqapDQhOghyADFa44LHO0la9VGJvjJZ8OjdHzM/OqWYLTh+9C6pLTE6ISrH/e0dt7dXrO/viR60SbBZyg8++oCLizNms1ISmlWk7Vqu3lxjE5k+FHlBmuYoDDEainzG6m5NiCNGi9k8T8WTEXpQSks40pQqrVRCRKQd282O7WbL7e0df/mXf8n1zRv4Hodo/bbrYWHxcCF++/8nk/fkv5BD977IMNPoeJQcHxTBy+QvxkBePCwymm98XXmEpFO2a1q++uoLNtsNRydHzGe1bPwBmt36sEkGH1ivVjTbDVaDTizeSVHZtf20eYo8Kc/TSdYJRieHbuann30qa9EYWC6OyfOUcRT0ZZIIFjX4wDgMmNkMY/TBBDyOAny4uDgXY6aPNE3D9c31IfsjaktS1KAMi+N3uOvXhNERQw8hoLEYmzBGTdApapqubbodxkjqcVUtubg45/Gjx/zdn/wxQ9vz4sVLrq+uKaqSLM1IE8Nxekyz202ftyYxx4TBsLtJSZ895uLZM04eXXD29B0snuh6xmbF9u4F203D3fU9f/Yv/h+8e3FMmeW8vNyx7QKr7ZbXVzc0Q0s7SpFh8lSCD4MjoEQmNOm8nXN0nRwWkjQl1hqjE/I8Y7mYo5SQo7a7NUxtCa08QytZJCGMKBUkqC1JMNbSjx1m7GUTNkKoIQa8d6SZpaxylDL0TuFHhFyoLc3Q0owj1Twjz0pMosgKyzAmhMHjXY9NwHlHPypmKiPPRb8/dJG2GenannGUZPskkUT5skwFYDCZ970fDjkyKAlgjUHh+wCFrIWipJokhnsghlKHe/v7elVlcdg0h8EzNB26HxhGx3xRC0VQK7IyxYwaM2jQgb7vpXGwbVkczclySec+PlrQJR3trmW1WjG6kawfyAtPnhtCEG+fNQZtARXouh2RnqLIpwC/TMhPeUGSZIKp9S2jGyWbIkmwieHoeMFms6PvRobB0baCXk1HS1XnpElKlubkRUmS3HJ/f8/ry1corUiSd6nqmpmdkSYZw9Cz3W64uX05NUdy+r7l+fMXvH55TbOJEDOKomR5NOP80QmPH58zX9Rstvdsdit27Zr7zYrlfIY1Fq0UfT8AjsRGyrJG65G+33F99TX/+s//HV8/f8HLF5d8/tmX7O494xB/45D8UOazlwTpqaFotCZLDVmWoqLEDOzl51qJ7Dz6IDlIBzm1oe/GaSLkKIri8Ln355+HEw1rrRSQzuFjJCjpzu5zaESAvDdwB5FNH34GzegCows0BJpuFFmuNWKqzi1VkXC0zJhX2aGxTIykaUZirUwZDQfZ1rezoPbXw0LjbbExJYXrfYEhf3bcwySMIc1y6nrBrF5QljV9N3J3v+L5i+d0o8dHMb5bo6jKnHldUpe5THNQKJ2SpYVMALOUxaI++OyIkegGhq5j7DvWm34qAiPogCEly0rSMv9Oz+t3LjKOlnO2m93Eh4Yky0iSjOOTgvV6xaZp6MeRR+fn0o3VisQGEhVIEkuaymJ5c7vlfr3j7r4nxGvqXcbiaIZSS/oOnB84miXUhSVNDDhItCHNDHllubzecHO35fLK4YLj+HjJrCw4qnJSY+l6jx8cN6s7XOlJ0gLvR8pSTC+2SiYKjCwM3o8YI9rv4L0EMiHFXtP2B5zkcnk6VZOSTTF0HfvSt+2aSf4SaXYbdps1whswlOUCHwM+CjGmjaOw77UWeZkyGCW4Ne8dMfgppC6KttAoNG+zJfbjwz3Z6qFez1oZpWslVCPvx8N4kMnwFGLADY74wJxltEVHA0NC+e5jsnlNYyL/5//T/5H/+n9zw4//6O/x0d/5E/7xf/GPuLu64fXz5/zZ//Df0bnXBBrS3OJMTjsq1m0gKStUMGincH3EDeBcxMeIShQ2SviWnwxmKkCSKB6fLJnPChbzjA/fPaZIDZlVaD1M5CWRPGml2edaCDkoTtU5uFHC1TweGywxaiIZNis5OnnM/PiM86cf8uTdj0jzEmUTrE1BBTwD0Xturm/44vOv+dnf/IqPfvwTPvjwA37w0Q/46IfvTx6gyG634f33P5RNa5JgvHzxEuc8//Sf/lfU1QxrxRi8Xm9o2x0hjjx7+q7ohRvpdjnnD0ZApYWO1g8jTdPx5//qX/L186/oh47b2yu0huo7Pti/q9e3x8HAYeH8/3ZJiKWZ/DVqb8oiakXUokVXGkkrDX6a3L0dR0tQlz1sRIeOkJYQvxgir16+5ub2hvqy4tm7H5Bmhvm85O4upe87/NShu7i44OTkRKaeiqnbl3F6es52s8VPn3sfdDW6iMORpAnHx0s+eP99Xr58yf39FmuSCXXoCEGRZQWbTUKe5xwdHdF1PeO4J9QMk69Hc339hrqWaUiWFuT5mrZr2TY7zk4fk2SKtCw5efohVo2sr56zetXRdB0hSQg6Yzd6mj5iE8XZbIbedsznJY/OzilsYLNa86u//hn//p//GY8fPyEvSy6OjynriizNKJKU5ayi2bRkacaPfvT7zJdLlidHnF6coWMvEgur0HHDq6++4PXzL/nV3/x7Pv4P/4Hew6gMn119ResbBj/SN4Hj2Ql5mmETi83FRD30I9t1O71fBox0qL/dMdVaY7WW6Yrrcf0ON+wYR083yCRVTNAJZVlxenZK17dsNiusjSzmC4y2fP7552zbLX3fMviBsqwYhh3D0BK8kFmsnVqVgyNE0XrbNGXwCeMw8uryiuV8Rp5lQofLUpTyoB1pJkbvpvVs1tA1G9GH93ry6JTkmfh8QhyJ0eH8VjJ8tDwL3gCTNDZNUhaYKXx2oCjmDONI6D3eHdpZEgrZdYBYfL+vV9d25NP5A2Wm6X6YQjcvKYqMqiqZz2uRtVmFTiPGDlPTYeTu+pY0S8nynOW8pshyiixnuVxwfXPLdtdxdb1G6zsUQr08OlpydFxPXf2NNM68o2lbOU8UEqRZ13OWixN2zY77+xVffPElVZVT1QVHRwvKoqKuEoiaXbNjGDvabmQcc6q6Js9yiqLg/PyE4+MlzjlublZ88eWvef5C8/TpU+p6Rl4UKA1+veb15Uuurm65fnPP/d2WsVeU+ZLF0TEnp0sev3PGZntLuU5JMpnKv3r9mtXqnq+ev+Ts9ITZbMasrkhNRggdTbvh7rNX/O3Pt6xWt7z4+iv+x//+L+iacZICBqR+eDs92DdztZYC2RjDMAyH53SPdjVGYxPL3d2WfcdQKQVaiuIkTUhsclivm6bFeXeQFGmtD97WhxKk/dfc/z/n3DSt3AutpibDlIsTJwJbNAGUJsR9Hob4GRSBcRwZAfpA1wysM0eeDtzcNSznCXWVMK8zur6nzkvJPClKkXIaLdJFtZ8SxAO2H/hGcQQSWvj2id1PbkQ6GaMQCJOk5OjonEdPHlHVNdud4//1p3/Ox7/+gp//+jmr7cDgAWUBz3xes1jM0NbAJKvN8pLF4oR9l9sPjsAUy+AdQ9tOGWweZZJpeptQlgVECSvW/j+xJ6PIs4kJr+h6WbBBRllZVrCXfqw3O/I0xRqNTTJilC6RfA7Lcl5gjOKOSNcPOB8ZQ4Ixa7QKE1YrEa/G9PltognKkCpLXhQMY0s/iLbYO+kOGwxGaVQMRB9lhDXhUZ1zJDY9hPXUdSUmL2vpugZt3kozohtFUuQDVTXDuzi9uRnWGmIQXG6o3QEvl+Y5bhhkSjHKSHWPSyzLGWkulIj19o4YNH3XCXFLwxhGxnEgMo3ko5iXg5exoiRhPqhu4VDxP8yT0BPisChKEpvSd70sAlGM0Urrw8Eu7lMBH4zi9g/henWHdi1NqnHW8PEnv6AdB/px4Ed/+CccLSp0fMqP//Dv89WXv2J1f8U4ttytOzrn6X2k0gFLSp6ACmuCV8RoSNKMQCAGCb8RiZkmSQ3LecGjszmLWc6sTklNwGqFUSJ10NNhEB2RO4PJlzLpNqPcm3EKTkt0gtYZUSWYJOedD3+P2fEF5eKYxfEj0rKeUrTBxxHn4yRh8/zt3/6Kq6t7/vH//L/kD37yE05OjqnnJV9//RVFkZLlMnnIsgQ70VyqUrjkRluKImMYW15fvuBvf/YLPvzBD1gezYQGZDXOj+hBJhhyRbSx9EPP7d09N7d3XF1e8fLV19ytbqbk54G8yA4dnO/r9dtGxA//ff/f3/x46005LMhaio2oxGz9Vj44PTMokTOpfWq6RevxsGkdriij8mEcBcIQRub3t2S5GLBPTk5Yr+9pu3Z6Zie/D0pwf+N48Hx4v0eP2inpWyYsRS4puhhYLGqUekKRl4RvLdJt29I0zVS0yvRUMhL8hNjUaA1t23BzfUtZzvjw/R+BUnLwN2aSAgSUNsyOTlDjE2JwbNcrwnhH20d2rmPwHpum2EQzug6rI7iBbrNm2O7ItaGcL3g0P8LYVHT9SYbykOqEWT3ngw/elyyIouLRo0dkWUKWJ2Q20NyvuVrdsFrd8urFl9zeXHN/d8vV61c02uJMQh81d81I78WjNvYOpbbk6UCRWvqhO/jRzJSGLNLTtwFW+sG6tu/6KQLRj/Rdw5vLV5N8zVLUM2AqLKNkK3gXMDolaE/wkeDHQ0hjmMLxBi/dU+c9bnQymR1S0rwgzzIhIxJJrDTSnLb0/Y6m7SCCKRIUlhgNwWmCEyoUwG7nKQuN1UrkWlNSO2oi/UyTbW3MNEk3IgXay0KMnjCTjhAdXT+ircKgsEEKkj2xLcZI17Ui7ez7/8RP9v//rjSxh+fOTHr4iJnyreKEqW5E9pGlgv7VKUkO2nqMcVLw4Rn7lvvVIL6IJMEmKWVV46NhdIq7uy1aGbI8Y76oCGHEWEnG7vv+MElr+x4fFDbx5GmJTjR5nhPjjOBHRtfTNFsgcHxkKcuEvMjJ8oSm2U6Szc3hYCySoEQmG1mG94G2bRjHgTeXb2ibljzPyAvLer3l+nrF5etbVrcdwWmytODRk6c8e+8pxydzjk7mU7ZX4Ob6ml1zPwX3HaOU5c2bKwES1BWnx0d07Zb1es3nn71gfb9mu9lwv1qxWfW4UdbYEETGLTXC2zX8oQcBOBQc38hFinFSs+yzgIQ+qbQ869IwNSKljtJ03Zun0zQlnwISHyLA91/rIb1JvN+TBmiSX8mkI5EDNPK13QMDtkgk9PR3AOz0ORQuRroh4rynH8D7QNd7+t7L2a4cqIqC/adBpegoOXIirZ+yNnhAUVQPsjV8fLuOaXV4dvcN4TyvmM2XzBYzeudYv7nh15+94i//+hd8/vw1L67vGUaPD0IfrOuCqizJy2KSABpskmKNJUsSudeCZ+wHQnTTujedz4xMvbOsmCSXgoA/UEv3gcb/E9d3LjLSNJVunlIMk5dgihGRMb8STV/TdoAmS1PyNBHtvBL5Qpoo6lokVeMwcr8eaDvH4DsS6ykLy6yyZImZ0rmleSkBhArlNWmWYYxH4URa4NRk4oaglciOPGSZYOa0SdCDI02yQzhWWZYTwUPLqHw6OFhj8KOZdIOeoqpFxx/A2pQ0TYkxMHQtSkW6rqHtWpIsZWg7XN8zdK0Y67R04YqyZrE4JisK0jwj+Mhuu6Vve3SiMa6XTQ85/PsoY+0YJJ1a9JrTmFtN2Fx52VFTAaWnUZ61mjxPSRIxnhtnpu6XjM4kWWw6hKi3i8NeeqSIbO9viWNKlydUZcHnzyXsahhHnjx9h3p2zMnxET/+O3+XEFPMixdsdpcMq5f0TvwgYVQYlUi6d0iQZPUUmzg8I8HJTZooS5pqytxyflxzflRRVxlVaTCMaPYaYo1GE6az5aR0lOUj7gdKb40qWhsxf+oclRZk1ZJnP/gJxfKEtKjJ8lqmV1OacwhOsJKjLBSvXt/gveGf/JP/kh/9+CMijs32np/+7AVlWVDXFefnF1grD1maJMwXCwlsynOSxLDe3PHy1Vf85b/9M37ww/dZLI5I0xTnBB8MiizP5ZCrRPK167Zc3Vzy/Plznn8h/ou22x26MfvMl+/z9dsM3vDNMfv+14f62ulPsQ9RPAhflfrGRnf4fFN6M+w1vfqAg3zo29gjBn0IuOhx7cDqfsUiwnx+xOnpMdJRijRNzzgIHU66YBHnpZsGHCYoSZISI9PBNFCW+TSS9ySJ4vTkiCTJCYc05zBJfjratmW329G2QsMTWhVYm0yQA5E/vrm6pK5afvDhj4kxYq3gcUU+4NDWUNRzcOeMQ0d+fUVYd7Rjw7YZxJhaGIxRDH2DigHX9WzHFe16x9F8yWI252i+ZLNrCUpj8xxtUpbzBWcnp7z73nssjiRUssiSCfDQsVvdcfvmFV999QXPv/qSn/30r2k76US6EKmOH+F1xjBG2jESgiYES4iR3TCIxNEbuqE/rHXGWEIQdHecml3fNlLuPV2SZixFRtd0pHkpk+wsIwSZjInHBYgaa9IJI+2kkbaXY04F2+CkYx2nwnHoB8ZxJC9LbJYgS0kgTROGMRUZcb+l7wc0msSIZ8iNMA4QvYZoiCiGQfZFmxnS1AqcQtwmEIX+orVCG3tAWhu9z8qQgklkuCI5DniiEry5STT7Y1bwUjC1TQN7P9P39MqzlF3TMAwDqWYin2mUlYm/GwUxHMKOECBLM4HM2BSj9xhZCVN0bmS72RFCQZbl5FqTZjnpEDFmpO0k1FZpJEBusGRa0P0xBHoiwYUJ+NCRjBGjUpJEPHp1XaJw3K9XtG3Ldrsjy0RaXlUVVVWilMf5ge12I7CJEHFjYDabk6aWxCaC37WKpoGbmxXDMFKWOUtKbq7vublec3e7o9kGymJGVS95/OQJH3z4LotlRVnl+BC4unrD6u6WzWbk2bvvUxYlIcCr1y9p2i1Ns4E4sF7dcfXmhr/+t7/k/m4j9/wwMnR6auLAQcczyYH2Zm+Rbb8tPIwx4hdT6jDlCF7Qt8YIoS9OzdDfMDlP5xcd9WFSUZYyLdhPv/eBdvuvOU5TzgMSPyriJBPUeo95tiLJAkRXvt9/9j/QvsaY4hYmZWJAMfoo8IzJkzuM8iEwECl+k1QO5UpLYKzS+0aYyKwPZxj19vvevy4QxTMxNUOkEDMkUwE8my1I84zb+w2v3tzxb/76Y3768RdcXt+z6RzKmsmuIIbuelZSVSVZnpOlZsqks3KWmiSg4yj01/3+qvZhhFMQJdN0fhgkkmIfiPhdru9cZESF0BtSKz/gzYphGBiHgVJVMt5KUqz1NM1I04wsFxVlnkyddI81giXNE0NqaooyYbXpuLzZkqcOm6Ry2B4C0UqwUFDimR1cZNcEmsaRZTkXZyVaK+5Way7bNcMwsqgrvIu4sE9OlezWsiyZzWYsFguWS0HVoSbqQF3BtEmlJiEWakL+Zdg0xw8j3nkIQjTw3tEoS9ttGXygH0cSo6nKmpDk3I+SAIwxmFSzWB6xWB5R1jNOz08oypLb22uuLi8ZQwCj0cYwn83Yrjd0TUM/dGRpNt148vDayaTj3MS6V4okTej7DqMViRGj8N3d3TT9kMXYKgPRSYptQLwh+m3ytdprdpXQqrRxOBdpO88YPI0b+fp+w/PLS5QP/MFP/pgf/sEf8t77Tzk9O2d1t+HTjz/Gfvwf2HVbghFd8TAGRnqi0pydPaZ3Pa+vXxK14DMTFVmWGYlVFLnhyfmcWZWQpYrMKClKbIoxCcFL1yREJu+JOmgxFbJo6ETjYwAMWucoM6d1gbPjJzx+7wecvPsjTF6gtMF4kbL4MIoh3Y28fvWa+/stZ6dP+F/+r/4biqLk0aMLjI188cWnfPnlp3z00YfTQRW2my1Ns6Oqak5PzqnrhUzOrGEYeq6uX9INW/7oj/4QpsNKlmfk0bBeb2nbHoVIfbTRKKN4+eoVX335GV9++RnXb67pWoEkRA82yVBTpsf3+fp2uND++nbx8RD7p/fmhulQGWJABdHIy+8bjJbiXKYHSjoufj+1CFM37S3IwXsn/iq97xIJBCLiubq6xvtInpe8++67k6ba8tXzF3z2+acURcHv//4fYIyd8LnShS5LkUtcXDyi67bsmg2b7Zq6KkgSCaL69LNPSJOSo+UJ89mCvutYb+7Z7baUZck4jjRNw3a75enTd8iyEq1EWiG5F4Z3nr7L1ZtbfAhsmxXD0DEOI6vVPWVVUZVx0u8n5PWC+dlTzvqBL15c0Y0do4OqqsjyjOgDu82WftPRecUuGobWYU9KbDbjq8s7jk5Pubg458OPfsB7H3zIciEYcqvDNDUYaO+vef75r3lz+ZLXr56zvl/z4uqGN3cr3mw3NO0ODVRpztWXn9P1gXZwqGmjj4gR0YVAdE7Ct4KYrQNxSjieQha9Jz7oWB4mXlqRZlJo9d1IHxxVXmOjwWoNIUwJ8Cnz+ZL5/Iiu7bi7uyO4ga5tGMaOPE8JOFkfdpMPxEvi7XbXMx8CPqgJHCIZS0TPYl6RJJo0s8Qw4N3IZuzY3Is/DS+HizyvqWcpSkM/dDjfMLhIknZ4lRwOcNamFLklsWLATBI9TdGY5LdyIIlao4zB2JSsVLT9MGnCNX7ocKPDOclX6roeraxIjb6n19FxTVmmtF3Pze0dfd9LkV1IkydmGT54uq7h+voWhWKxXLBYiIQ1zTxpNuKGEdc7WhXYNVu2ux12syXL59yvG25u77FWU5U5SWq4uX5NDHPKsqCqS1ENZJKLs921uCHgXC+himNPmkrhWJYp89kTvI9c36x48fULbvJrnr7zlIuLU4xVLBYzyrJgvd7SdwNN0zEOnjwXf0ZepGRZgbUpeVZzdX3Jy1cv+Ntf3PDqxQ3NbmToI3lW8u67z3j69Anvf/iMo6MlWSF+EIvm5PiYskjYbnZ8/unnKKU5OT3h7/7RH3J984avn3/Fv/oXf8PV5T2ru5b7u16auBN2PvpI1OIx1ft8IvVWmrovEh4+m+mUJ7Tv1htjJIfHB9JUzmLSrC5lD5/kb9FL8yRJElnXHxQx+4n+OEqhsp8qZVk2NfOcFNSTLFZWmDjBiwRzH6xIk0Ax9n5C/UeZIE6QDAAfpjPdNBEJcJhybFvox0jTCdSnaT11NdC7jm5oWM7nJMkZ1uRIflNCVNLEjkhhZdQk3Qr76Y/IpEBIk9ZmFEXNxeMz0rxAGcvXl2/49z/9FT//+Ev+5Z9+zK5rcUGywqz21GXGoi754J1zPnr/KU/Oj8WXMRFTiYq23dBM0zGtxaqQJAmzWU2aZCKjR08ZJmEKjWykYRFE/v5dru9cZHRNL9pGrUgTw2I5o+96truWrmvxwZFlKUmiyUtL9LBrO3wwpFYO6IppzKBBlTlFD93gyVI5RPRjYL3pMcEzq3OhSGQJq3VLPwScU5RFRpnnZGnCOEhOQtf3NF0nC7NO0UmGVglh6jQabUgSQ5aJGTDNUphGV3meMQ5S+VqTUtYLbJphkxyUpm9axmEgm/wO3nvSPOc8P+fu9prrq0u67XZKXpW0YKGOwNCNEvaUJKR5xjA2mNRiM4vNDRYlCxMGHSKpMYT0rYRGpGISxJakCcZYuulhipNRyhr5WZyLhKhlH0OTJBl5UYoJjsjQtPjoJJRPqYPcSsX98yNd4hADPiIHtN5TFiXaWDpt+OrVK3RiGYYdH/3B36ecHXN2Nicv/phmbFjf3zG6ga/fXOFjgx5hVlX8yZ/8PZLM8snnv+avf/pXuLEXz05akCWBLFUkxshGarRMchAaRcCLh2SSLoQYyPMEMDjnAclIUNoQlSLNluTFgsXRGVlVszy9YHn2CJNUk6HJEaKn6xt2uy2bzT1KScL7yckpxydLjMkmJF3E+YGqLnj6zhOyLOX29o62aacDr8GahDTNsEaC9mwihtRnz97n+OiMm5sVi8UREc39/YYsKWQypS0hQN90yDE4cvXmmtubWzb36wmfGg+LXVnOWCyOOD09/a6P7O/k9bCYeDjm3m9AD0fH38b+weRznQyE3gu5jSkFea+93UugrE0ZR+kMCrZTpoFaGwngDB5CFGnmpIVl6sjtdi2Xb95gjOQVnJ6dYGzCetVwf7+iaRrKSghGWcjZ7naUVYHWmu3uHqaDcV3NuLtbE4N0i6yxvH79kqEfeO/d98mLHFQky0QWcXNzc2iKNE2Dc566XnC3uidNJXQp+Mg7T58B0sVLU1mXhrGXwNBpajIMW8bO4SPMj054/PQZ2ubo23t2u45tuxWcdjdQFwuZHEbD+cWCZ8/e4/zigqPTEy6eXFDXFXVdUmYJBEe/uebl65eMzRY/DEQ/8OsvPuPy+g2XV2/ovOd2vWHddiQ2IdUW7xxtK3IdN2XWKBXRU5dQKDCy/XaTM3lflLpuYG/AjxFckEJkX4zumw67XTMRXhQGTcwD49iz3QTudxvMxOpPE0tiZKJOcCTWsHUDu+2G7W6DtvJsHy/P2K1X9FExTMSnYZBk7tE5oYwR0Tbg+55xFPpYPwgOd4/mDD5glHQXkyRSlAFtNaox7O7lYJVlBpPJxMIaoU5lVuRQRkeMCtNiPRXbKPGDeAVRwvViiOw2I0pLY6PZDUAOGKIKWKMxSj6+r5eKkrmUpwnnp6c00z3VtbtDl9omKdoErNUHqZEbR7I8oyzl/JBZRaIUSvmp4PM0bc/d/ZVg8d1Iniecni6p65Lge4a+lUZg1zFfRrKiIElTFvMlQy9+j7Zr2e029L0isZq6KjFFSl7kvPPsiNOzR7St+DVWq+vp2ZpRVzNOjo9wLtA0HdttK6S5bqAcBPmvjcZaRdfuWK1WvHl9x27rIEox8/jRY569+5SLi3OyPBErZgiMg0jlvBvQKM7PLijLGV0nIYC3d2+4u73j8vUbvvjsks26o+88bhQJj0iPRPK597M9TKB++OtewvQwFyKEQJIIAGNoe7SxJNpM4bySCZRkiWT4aOmgo/cNIf8bU+190WGMoaoqWVcmf0ZZlgeT/17pobVGIVkb1mrSJDn4nLS2JE6k5eKFjVOg+CSLHSb65fS1JQldrgC4oGCM3N4P9KOmHTQ+Crhh9B505GR+SpZkJCYheiUyRpQUHAcpl8LYfdCghFNX5ZyiqKhnC6r5nKYbuLq65v/+z/6Mz758xas3K5quJxAxRpEoqHPDs0fHvPPknPefPeJsWVHnoiwyRuGdox96nBN/VpqJrytEASGURUnwkqPRu5G26SbJtsj+wgQM4juuId+5yBi6AZtK8JQymixNUEo0aU3Ti1lkiBiTCtpKa4bBM45CfdHmLVKMGFGYaQyupuRA0d4PY2Szkzh0FxXWK9pW0k2NtuSV4LjyNKG3gRhFE+umBOmoA1qHKdnXSWWXCY5tXxWnSSKHlOBJ0/TQITMmFaxpUZLmJYRIqy2u7ySxVVtChNwV2BTcONDutuBGRkSKlGYFIyPRi69j8HKw9wTaoaMfe0Y/4oMnsdMEIcbJ8P3WLOW9F356mk6Lpmgag1J4t9cLB4iK4OTApacuO2jBUBYzqdxjwEbR/A9jT8RPCbgTbo1Jtzj90wd52IzWEmRlEwJKqC+Xl2gC1eyIJ88U86NTjk+XPHv2jLuqYr1e8erqRv6uMdRFQao1eZJxcXrG0fKY3XZD9CN5PiOxDmvl/d0fBkOAqEUTqcI35S1aqUM4lYxLLcokKJtSVUvK+pyiWrA4OiKvauZHp9TzY0Eu+544scA3mzVNs2O3a8iyQpjmeTklbWfToRPa3U7SlmOcJGyywBqj8U4oYftk1sM9ri11tSCxOTGKEb/vB/quZ7GwMr4NkZvbW4Zx7wHyXF2+4X61FriC8xCUYEe1jErzPJ8wid/v6/+XB+PhZvWN662AlcNJ88HH3ug96f4O2luZ2P2WrzeJEWOUztWewqOUIURJVt9udqzKFWenx5RVgcKw3bQMw8BmvSbPRRYVEfqbntCifd9KU2Ua79/d3TAOPTF65vM519c3+CAdcmPkmWfSHMshSWg0m81GJpL5QIxeJDYxMo7+IFEVv5LIJptmx9HRUrp0weG9w3vRAlubUNUzyvWOrW3ZuRbGiEFTFnPOzx6TJjlWZ5ycXvDo0SNOT095/PSC49OlpI8Hx251w26zZrdecfX1C1zbEp3DWM3NzS03dytu7teMSIaRD0E08UoyfoZxmKaSIlWcFp9vyN32BQdTs0EkY/5tSrlSIimapJ8PYQLjOEqRoTVowzDK96CGnoFIUdVkWcowtjQ7JrSlSKTCFIwavBSuxlqyInmAE3e4INPFoR8Y+h5txAPQ946+d5MZeDw0IQC8d3sj3eT/kzBZayKpNex4m+idJIY0MSTWSObGJBfWk5x1//qEKIMRwYJGhlESjMcR3OgmNWHEuyi5G5qp+Ho7xf6+Xt47VASrFUmeQZT8p350shYEuaESK7QkkSIO4n2cfl+XucjUjEy2nNc4L963tnWMTvZAa6U5WRZyTtgRRMExOnZNgwcKRBaVptIYkc8jaH3v5PtIU0ler+s5s9mM7W7D6AZubt5M1MsRYyx1NSNJMpQyIq0dvTwzu0jmrHioxoHdrqFpOtpGCow0zajKksVyTlWV0qA16mAcjl6IklpHrNVkeSad+hi4ub3i5YsX3N6suL1ecb/a0bUeN4JCaJCKyD4cTPgbbz0X3/bQ7a/D8xwf5Hl5Cczbn9KDlwkA02stEqYp82rKLjvkfz14zp1zB5loXdeH9f1h4Ko2Bh33UBwJWN7jnLWx06Ri0nMoLe6Mqdmq9nLcCff6bTnu2x9SGoTOT00zFQhBoU3A2JaIBGUWSTGt1WqaWDCtEXryXomMSu+lwCgSmzKbzSmrGUVRsdl1XF7d8flXr/npzz/jzc2azbYToIWJJFZT5gkXy4KnF0c8uzjm/GhGlSXSwLUWYpQ4ibEjMJBMe02WZdO6oacMF884OClyW4kg8F6muxKYLBP873J95yKjbRtSlxLSBJNqTGLJczn46Ns1u13LdtOgVJhMVCn1LGe37en6wDgGlnNh3IcA4xBp24EYAhcnc8DQ9U4QYf3AEHrsbkCRYK1MH8oy5+jISE5FFB69UpmkferItnEM02IfwyDGqTSjruupwLCkWUKW5dOY2pPlBcqkhKjQJiMtasrZnPlsgYqevshxQ0uiI9qKxwObcHNzSZolVGVJYY0kiA8j1cyzbbe0wwDDyK5v2fUNpre8ubni+uaa7fqezXbH0XyGd56uH1BRDH5ZlpHmOcM4orQRH8h0+CdCltu3o0OlGBPZ8HzfkxWFnMW0kc730TGJMfhhJKktm80dm/Utbb+bDFZy44nBXAzZSptJHhCZzwvSxExoM0M7DLy6vmazvmdodvih5533P+LkyXv8/k9+j+vrWz799af4n32MRVMXJXZ0/PSv/i02TXj20Qf8wQ9/n1eXl7y+vGRx/BRCB6Fl221QqqfINMWE2QSN1vLAG4xsttYRo5t+z6JNjlcJJp/z3g//c+rlKUmWoq2iHwdUUqBsgYoDbmgYho6+63n16gXeB9I0o8hLyrKmKIoDplhPi8CbN5e8uXrN3d0NdT2nrEpmM+FSv7l8Q13PWcznjG5A6yAEHCXZCVYr5rXi9vaW9Xot3e6iJklyhrHjr//dX4kfwAf6oefrrz+n63cM4zCReqfFz0iRaRNLkn5/O5D769tyqYddqt82vQBZwJWWjeBgjFNTpytIh1c9KESNBqW8UEzMtHkdPt9UzMAkLRTTL1rWCKWkgGxDx3q9YTGfUdUVZVmwnM8wRF69+JrZvGbwI7uuw8dI9MMBqvB2GqO5urqh71qyLOEnf/AHhwPlMDRonUy+oDBpieU7lJRgMX/vdmtOT08P053dbsf9/T1pmjKfL1BKs9lseP36FX/n7/xEKEK9SH/KpCIoTzf0ggFWBh0UuofalNT1jGfvvst7H3zEYnHMYn7E6ckFRZFKZkYWiXFg7He02zU/+7d/yeWrl9xeXxP6QGpSEpuS1TWbIdA42A3hcBDMrBFZgIqE6OnHEbTkQTg/Bcyxl22qiaw3FRYP/VeTvFXQ13tz1tuDxV4Hvk8a1lqhbGCzXU/viaJeLljMK2bziqHf0m7vSdOcPC9xrp+Mp5p6tqAbRrQypLagOq3YpBn3WrPd3TEMI7ttw7owKO3ph55m19B3ArgALRQWrxkHh3c7VBil0ZVqUJ7gJKsjM4kE3BqPMYqqsILyNkrygNS+yJBi2QcpLHoXGb18dL2nbR1N69huB6xKSBPJraqmSbQyWjIRQiQGRfhuns3fyWuYfBJaG4wKzOoCVEVEs1pvcYNjiJ6yykjThDQNZHnCbtfRNR33qzV+vmA+LylKQY6OphM4g0IMr9GjCMi5bCAEydDJT44Zh5HNdsfruxuyvqceRqzNSZOELM/IcstqdS0ytWGkaSzWFpikYG40eZlT1iVHx0t++TG8fv2Cly9f0LYD77zzjMV8wXw+Z7FYstlsubq+YbW6mdb+wPX1Nau7hmY3QkypK5kyzhcVs1lJxNEPLVWdMboeNzUaxnEkzyfSnhtAyUR4t9nw608+4/rNLfd3O7wH7yAEJdOLyeez914o9ZvJ1fvrYTjw/s/sD/5919G3HYa9PBucHwnBgWIqNhTBR3ov57f9WSfP31IVh2E4PPNZlrFYLBgGiUUIIbDdbqemsZVJcyrQnma3mzJL9v6RCdDh3LTuTj9TjBg1IbIREtbb6YL+RtNTFCAy0fAhErpAP0pejptM4d5HEptKIKEKJCqdGloabVJQw7TMSd6bNJssZTnj/PwJRVkxeMef/quf8otff8XHv3rOL371Nc7HKe9PY2KkzlOeXhzxk4+e8Ph0ycnRnDJPSAwYFUmTlKbdMQwdzndkuSHP5IycZxWrfkXXdWw2O0LYF9OizpFYL2ncD2MQ68N/6pyMNMsZh4Fu6MnTjLQImEQmG/NFTZpmNE3H6u6OsfLkuSPPPUWZEnzEjY6bu+6gK9z1vRycrKaqJFxnGAxlZrlewbbvcTuHIXB8VFCnhvlcYbV0dOQtloyLLLckyZw8G2lax27r2DZT50ZP4XpuxAeH6OM9RVExnx1Rz+e0vWMMEXTC/OiUWT1jXteo6Gitom+RaUZRoI0VJWwYsQrKPMWWOfdqQ1QaTKDWUJQRR2TVdqy3K3o3sF63+D6lzM+5OHuf3WbF0N0wuh2JMYIY07BtWxkZGoVOEllMjZ3CfCq227Vg4ULg5OyC0UlXZdwXJlnGxaOnrG5e4YYOk1rKckE5W3By9pTXbz6jbe5xrif6idakpo6oDwcz7K4VqUme5dRFxWbb4NIMFQ27JnDz8jXWR5r7DY9/8CNOTxeU1R/hMfz6k094+fw5mU45Pzphs13zF//iX3L67DGnR0vee/c9bm/vGabQwDJLGcJOWPJ40ixS5EZkVNqijVT6fjLCKpVibcn5uz+iXJxSzk85e/oDglG8fPWcv/o3f8r/7B/+E0H2uo6u2fL69WuaRgy1zsVDerSYuyJKi8QFFD54+r7nF7/4GWmWcH5+StsKlzxJEk5PLvijP/q7VFVBiCOr9RVlUVCWFYqMYRilEzCMsjDFSNs2/OxnP6PrOna7HS9fvEBr6RwMw0DT7ghBpGEajUnFxF+WNWenx8wXM9Ik+a6P7O/mNYUt7X1Q++tg0psu6Ui/HcnvTX5xL6fSslHF4CDsx+mSqu7NIAX4ONL3PX0/Tl9aH7pEMfoJvyheHzFUj8QhoHUqhZ2xEDWvXr3m5vqKuip57+n7LBdH5FahoiMG8fZMrS6MEfpJ0zST1CpjNptTlRVaweeff8kwiPZ112xp23Gio6lDiq33nvV6feDrG2N59eoVy+WS+XxOVVV8/PHHJEnChx9+wCIu6M7OCSFwefmGEEYJIO1bXNlikCJLR0tlZpzXhvd/7wc8efKU49NTzp8+papL8kLQmcZqXN/Qbjf86mef8PLrLwjeU9UzLi+vuLtv2PWReTWn60fumo67m1tIFZ20bsnzhLbZysHCjWx3sj75EIUNdyjCDMp7VIxSnE/FZdh3Ew+Tb6ZprngP+r5lGEX//pAYdgjjjAoQ/GIMMvH1buTu7pZuaJnPK4xWbNs1wxtH240kScZsscTalO12dzgo9d2A9xFtUjSWvvPE2KEM2CSglHRayzInIjkuxqYolTIOjrwscK5FMlNAeZlMSSgcLI4KRtfTdjvKUWNMjtWpBPyBTHl9EPzqJNdq2lGgKWMgYEjTDKLGGJmcFkXOrC6oykw6w2+rcobOSQf8e3oNziC8LmkkWPZNicDRrGYYA/3g2W06kkyk0klaMJtZqsLjZo7tfcPlmxatDLP5CdvdgPM9SeIpCHgvMAJrAtvtinHYMKtr5vUSm1oWR3PSWcquaWmaDb/+dMXR0QlVKSbrxXxGCBXeSeO060fiZoc2N8x8TZ5nZGnKBx/8gLPTU+7X93z9/Dm/+uQTyrLi2bP3OD07Zz6fkeUZITgu37zm9vaW+9WGxfyC+WxBYj3P3nuHPLNYC96PNM0G7zv6Yct8Pp9yXuS5cNvAZu1ptjuurla8fPmaf/83P2VoJXeHaKe1eTIAT2ctWZvNNwqMhx6LvQJjv+Z+O/F7H9QXnMdMHlBjZHKntREEcduCTqb8IwjhLfrWe8nXiFFCjLNMGtxZlrHZbA4yKWsTCUJUQhQUtY1IG5N0nxo+aTa0mYIAwSR2WifeNqokujdOVEiL0voA+dirP94SrKaGV5QpY+hguO7Z7hxtF3Bec3LUc7zsOD9ZkJgUi5nWPWmcaKWILlLUFfV8zqNHTwnA85ev+dkvP+P/8t/9c15crrheNfRBvq5RUGaaJ+dHPL444QfvPuajd89ITZQsp0kKLARF9xaSoRV1XeMdNM3A9dWrKfNNVDHwdgI1jiM2EWIYKsHaiNHf3Rv6nYuMsqrotBat2ziABhsCEY+xCWmqIWYMQ0WMnr6TN6MqJU07sQbnNP0gzPJxFGxnYjVlIQcnJYojkkTT9hxQsn3f0HWervUkupoUE/LQmIm+Eadqc08actNoznkx9g5DT9939H2P0TImM1qoB4ERE8BmJXUtiNuqqvCuZeinVOHI1DGVbkeVWWKVY8KIGx1Fnk2VdUkMntGNtENPuFuJ8SjAvDqhzsCahHpWcaWe40fH0Peo6ARywBTU90D3WJTVtLlaZvM51hr6vqPrZHqRG0M1nx8QeEIp6BmHhrEfUMownx2RZjl5kTPvjwk4VAe4cCAYqMkQte8ljqPDaI3RBpd6IRzkBVk9wyvL/bqB8IbVakPvPYvTC5ZnF7z73juAdB8+++XHJFMH9sm5JFEq7zExMow9JrEYbQlxgOjQOCKBxFqslqmVUcjioBQag8lK8nxGNTvi7Mn7lPUxaTEjKMPoJJn99OyMPJfAyPX6jqbbZ7yEw5hUKDOWNJsS370krxsjcjrnBo6OFmRZymw2o+8DRZmSZTlpmlNXM7SB9WbDr371S46PTzg7PWcxP5swhLKwJmlKCJ77+zWb9Zq2benajvV6NRHLmOgkUgQrpcU3xP7ekwNUlqTMZ7Pv/HD/Tl7qbbjQQ/zgt0fR+8LiIX+dqdPNvtsd40QD2k8vFF6/RXvGUYABknGx3wgedN6mTvk+fR0kFXqP3FbKkNiU0bViru473nv6jBAG7u9vceNjIGKVyAkkWf4t7Wg/jSnLcpIBBra7hteXr0gSS4iSpUNU0yG1PGzaDz+HUnB/L0VHURSTOW+G1pquExSpMUIDubu9kXyhEFiv7lC9o8gKyqzieH5CpRb4o8jp4oTj4wXVfMbs5Jhh7HG+EwPr2BPGnna34fL1Sy5fXwpGt9qw3TU0XcvoHVEL0nHwjm7sBUs5SUKH3tF2LX3fSVfP+amY05OxWd4jtZ9UTBLNg4k0TqDqSc8ZJg2wseJL8aEnRE0Ib1PevzH5mqSWHneQOY7jwHazph9ahqEhzzMxko+e4EWaaoyaNtnJVM3ewKonOlFC8A43RsYhTlQ/AQMYI0UGWGyaSu7NIJKwtmWaVkckU3QgRE/EkZcZ9IGmg2H0sokbJFxvkpcMvRCTnAsToQ5ilCmdsan8LDFiraPrvHgjc0ueaWl+KU3E4kbHqMI3Xqvv23W32lGWGUWekERFjA6t9sSxCX+fGyKpyPJ8YBzATARGqw1uHOi7wDhGrq/vcX5AW0+eWqyVfY9oyXMrPtIocqOd2mHTjCTLyNKMiKxVm9iwazYMQ49zFYt5JXjzPCXN7HTvK3bNDj0VA9HnWCOoWx88x8fHdN1IBK6urlBak2U5+yBOWScSvFMMvZMQteWC07MT0kSj8PRDIzLurqHrG7qunYp58QMNfUfbtNy8ueHudsPN7YrNqkXtPT0P1kfp6v92mdBvYsbfTjUOntFpDXvYAAhE1NQaV1E8ZeawDuz3ZXXYGx5+/hADOsRDI2KfMv5waix/3xyKDPB0nZv8ex6UeF7HcSRJU7QxuHHEOyeAIiZ/AuIZk9zkPcVNHdDTKKZwv29e+6fKB8XgQHURsxlJbIPzMLpImibUJeRJKh4bNQXOKktWFFSTRCpqw5urOz7/6hV/8de/4KtXd9ytW5reoVECzUkMp4uC95+e8+j8mPOTxZTsLahvbSx5VpDnU7RB3xKjNJS1tpLh5pwkz6v4jfft7Zu9/0XkwGZSmR2iEP4nru9cZFTV7KDj36zXoEaEp6vJyoixltwkHOslq9WavpcueDp5IJLE4IJht/N0vUOSji1ZrigKoSYJElKQfomVN2R0nq7bYFSLUQVZIg+mmsZ3eqpMiYqQaiIapSzeO7aNx7k4yQcED9m2O1JrCT4QQxBMlxGtXjmrmdU1dVVRVQVtK3hbsYiraawWMRqq3GJjTqoCd3f3lGWGsSnnp+cYpYVlv7ojKEXnFZ6U+fwxSZZjk4QkS2UzdyN+nAoCNxKD+wZnWqEoykpGa1pTVhVZaun7nLv1BmUMRVlSlDnWyMPjxpHN6oau2TGOPTFKqJNOchKbUM0WdMNOurlqOLCZzcRiF99MYBwkeVbrgcwNgoGsSvLZAqcsd+uGZtOAH7hZ3fH0ww+pZxVPHp9Qz0pOzs54/eo1oW8pyoKL8zN+/uuPGduONlnTD1tmxRFZltE2oKPHKIeyQcZ4GmyM09pjUCbF2JKqPmdxdMbJxWPOHj0jzUqistw0LYPbHmQpRZnTdh27difJ8D5IUZGmmFY6L8L5T9lPL4ZhJMvMNF7uefbsnUkCZbhf9RwfnVBVNcFLdso4dtzd3vHzn/+Mp0/eJQZNWSwPRYYPHmslkOj29prrqyv6vhcc4DAgOGE9eYgmeoYxkgczSJd7GCQUx04Usu/1padjZfxNBCm83bzehks+GE9Phcbe/L0vMjTxoMPfd2n0lAYeYpywgOKD2Utuph6FyHSMnf5/OEiX9EQ8SdOcwbX0fU+77WjbHVpF+r6l655h0gxr5PvZy5323q/9z1ZVlcihhoHdbsNXXz2X9S8tmM+WssEYkUZKgJN5W1ghP7bQp4TNr7Xm0aNHeO/Z7XZCywvy+tzf3rGczTBKsb2+JxkhXVjyumB5doY+TUl0zuPzMxQjyip0mbB5c0PT7OjbLd1ug46Rseu5ub7lft3QjQNhvSEq+TliCPgYGPzI4EcCnn7oaPuGtm/oJ2qJcyIXiFPIlTSSJGhUTffC4WM6zIsseSJ/GZlejROUQhtNlid0nSKEvUfFHaYZB9pNlK/jgkNNgWHD0OGHDnaKzdYwm9eTZE9jTT5JRgPdlMK8n5rJQdKS2AxjZDIfAgRvMDojy1KqKhcscTREDDpNUEqIf2rC6gbvpjWXQ7ijjyNVUQl6FkPXR4zZy8tk6jAMI33X07WyVkcUWZqSJWLUzIuSNDMT0KLnzbjDWEhTMZmLh00TSXGDTFC+ndHyfbqubtYsXU0IkGeGxIoBXxoNHpukpDYhTXO2TScS6tFTFBKOZhJNNctRJuA3jlevb8lyTV5YCpVKU8vKoW9e55KHMwW/rd2GNHMUUVOUGVVRUU7EnuvrO5rdhnHsSa2hLEuKNGW+OKXtOrq+oxta9C4wjh1u6CjygkggTS1PnjwVIMN2x5urS3wMgmvNCna7Fq0TymKG0Q3DMJIkgcVyxmI5I7GKGEeSLrJadbRNQ9M0h3OD0Zo0sazv19zf3vPi60u6ZpRJoJvUGVGEP3uqEnBoxOyvbwbH6W+s4ftD/14utb/26xnI+h6VaADjNG3WOpkaQ3Y6v+nf2miJ3hHUPk8iTChx+f00TbF2ah7bfdNUiT+KFudHhr4//Cxd33NydCSyIK1op2LFGktZlQdstfJySI7sg5AnhPqE8X0o6314MI9R4YOhHyFuPSEIvKjvHVmWEdFQKWxiSXWC1ZbEphwfn1BUM0yWcd90/PrLF/zs55/xr//q57y57xi9yCytipR5wrLKeHqx5KP3HnNyNGdeFzLxIQIGZSxFWVEWFVmSsNncTa+rRUVLjNKEcRPEYv8jPNyP9V4CLq+2wARixP+nLjLQhjQv0VP4zf16Q9OOmFGq8iRNsGlCXmScpcf03cjN9S2rqw1ZbqlnGagEbRQoz3rbcnySYFKLSlL6tqFtR5pmYOw7Tpe1YB+7gdeXt6xWPU0TaHevWCxqZrOSokjQZm8E8ijtSVM5oEQUWjuGAbSWA2Pb7tjc3zPLC7K8JFHwi5/+NeVsLgd5HGo5R6mMEEVelWYp89mCWATaroXoMHhWd9eMvZCnNqtbnjx9xtHxCYv5kn7XEseeNAb++Ic/RNkaZSuy6gQXJx2dMWzvX9A3Od1OciRCKx21LM9o2xY3jrRxR7y6JCsr0rzg6vK1hFLFSFSatu/w3tF3W3abFV3b0ncD7bYDhJiV5wmr2xes7+V1ubq5I44DKojxsKjyQwe1mgg5MUbaZkc/odHWu62YOd3I3XrNsjii1Al1lvPk/ISXr1+z2txz/eYV/+if/tfMFycsjz7k5Ox/y1/8qz/n+RdfcPn6Jfd3W/I6I52KiBh6Bh9wOGKARKeUVYqOHco70WLrhDFkFPU573/098jKGdV8xuLoiKooD1OmeWlpegsYMpvwi09+JQtHkuKdBNQkCF3o6dOn08MTyfMCQVmoQ+jierPly68+Zxg7qnJOXR+xXB6RZ7l0lGc1VTnj/t6z3Q688/QHnJyckGUF9/f3hzC2tm159eolz796zldffknXNewpOUrpQ6AQUwc8SRPyLJ0mbwPei56yyAruV/f85b95zT/6B//kOz+2v2uXSPGmcfODxfmh6Xu/cO/55w+7YSoEorFELdLJtyFPkRglkGxPCQmTKXvfPVfSEp8KurcbmDWJUNW8Y3QDwXekqWCUN5s1Xd8xOo9G8/GvfklZZsyqgq+ff87y6ISsqGk2W95c3QKK4r1nLJdLvPe0XUdV1bRTftDv/+T3WG/X9P1AXc04Oztj7+Ex1h6Kjdlsxnq9PgRWnZ2dUxQSQPXy1UuKPKcsC7Isk8wdH5jbjNnshLqoMMpSnuWcLM+p65p5VTOr5yRphjaWptlwffWS3XZD0zdc391PORGBTIu8yrtA0AU+Kdj1Pbfra2LoGfue4KRLdnt7z65rGfHkVTZZJSRo1VhLVoo8FuQZ3Wunx9Exjg8mBgqiNiSmIEtzqrLG2hSvHKMfWN3fs9ncs2s23N+vyDOLRpEmyTenU3CQPKioHsgapvV7CiYNwfKmfTPdd4YsKekaQYcDVFWNNlqwkFZP4hyo6gUg/omiyskSRV0WnJzMUVbjg6QGByXeLu8D1qRoFE2zpWsbIR+hicER1W4i0BjKek7bDvT9iGJkGEeGfhRvS2rJ01KkP9aSZZosMySphH8qDaOHpoWrN+MUKuggSkBtCIF+CHTNyNAFIVJ9T6/gHa8vb3h1qTg9nnFyVJNlBmsCOlV43xOCSGaKTJFnltFFtpsdHaCtxqYZgZGgHVkJRaUBz/XVPUYVzOuc+aJmVhliFLBN30cGF8R4/eaKqq4pa4GFLOcL/j/U/dePbXmW34l9fnabY8Jdlz6rqpvNNuSQ4x40GOllDCDzj+pJ73oZSIIISUNAnCHZVV3VZdJcHxHHbftz87D2iYjM7gGTACl1bSCQN++NOOfENr/fWuvrNusV4zhz9/HI73//DZvNhmfPX1A1G5q2YX2xJueZ3e493anjuC8Y4xYzGs/V1TMuts9BKX7285/xb/76X/PrX/+Gjx/uefH8E4xxKAwvXrxis1mDhn664/VrCR+2VrO7v5PXPp148/oNp+MIKJy1pBAJU2SeEvMoeRWcC/7z1IUz0vxDETc8NhjnaffTIdCZ3vkUmX46MDo3DWfL2QcNnnMPdtUxZVJOmOU1Hl3jEtMUsFpjjQSwxpjwldRx5wBGySW5oG5WxBjo+hNdNy1rasU4DpxOxwURMo8UQq2xXobh1lqKUoJEJkMJEhgcZqHTmSUssyhF1o/OWT8IeEVeVmkxu+hnydo59oGP9z3dkPji84nnN1tePdOsn1+xbjdsVmu++PIrunHkzYeP/J//L/9Xfv37t7z9sOft3ZHAUteqwtoV/tFXz/ny0xf87PMXPL+6oPYWbxRFZeYoQyDvCuM4yrk3ThC1ItoeY9yiIxXa2nkAB/xg791stsxzXKy6ZUD3OLz7dx8/ucl48+YtbVPjK4+rK9aIAGcaR6YpkrMIdKpGOtK6Njy/uuR4OBBD5O6uw9crun5inMLSdBTGOZH3M9NQiNGgdMXVpWXVepxRTF5R8hVdP9P1E8dukgucM0ptcF5ScBWFpVZDa0VdW3JSKNLCo/eS3GkqDnW7wE2a7boVm9QwECfPh7ffMg1XXN3cCO1pHJmHgdo3XGzXUBJp7hiHgRRmKLBer4hx5nDYi+g8istI7T22FLzTuNriG9h1nUyxUyaGgZSmJbMhczZGU0o9hM1I1yvcO4EZBYp3vmK12XB/d8s8DcxjkkCpJbsEBWEOYpE7T8QwCARIYY4Few5bcRZfndNOHat1u0xhNa6qOezumMeRmGasNQ+CwlIS1je42pONIhaYQqTrenbvvifOM9V6y8V6y1/+xV9wdXHNr3zN7e1HQproTgNzmnG1RxUtxWGaCUEzjAXvsthIWsf6+hPc+jmrixdcvfyKWKIEgznHGMSJLJfCMA387e9+g9aazz75gnM6rixyjnMeQozi2GGtuLjkc/ChEk5933e8f/eOX/7yl/zjP/9zqrpBG0me1xa0KRgL3373DdM0UnnPn//5n1PXNdY6joeOeQqM48huv+O7b7/j4+0HpmmkLNSns/BeXF/0cs6Fqz3P41LsKhQGYyCEiRgyw3D8qY/sP8xDSXOlSnkIQDofZ3j8KVT+9x16oTqedUpq4c8Kl/hxGiMUq6fTGY3SBbWECD1wjZV6ENl7V1Os5F44JyFcxhgKDq0s/TgRk8Dv7969YxhG1psLnr/4mnEMTLPoDqZZUsDdoqExRqbr0zTx7NkzUkwPrihaSaZB3w+ABJ+2bbsk/SZSTIs9o3CbD7sD+3LPer3iqy+/EkpG1DTBYmtFUzU4Y3lWX7OqV2LeoGA43tGpQsiFu8Oe+9s7wjTjtOVvfvW32CXhvHgjNosYmtUF3fffsT+dOPU943gkx4DKhdfv3zGMkxTDZSaqBq0UdVWTN6CtJCjXbYtGmsau6ykc0TpgrSWmIIMr51m1V1R+jTEWow1znNAlobLDzwkzTWLRXRarcCUYyGNw16LlUQtCUljQ9gX1WhAUdBbRZImL13+BNEKG4KaleJLXLUqTk8Ioi3cevVot7jqCnMRQOJvlGAtaCf85FmlmAVlnvMMFTwySn8GCoOSk6U6DOFQNibGXz6s0tE1F7RqMUdTeUDmwRuGMwlp5P2MyMAEGFnvyqrJi53saURlKTuSsiLmlUC+5VX+8TcbVhdQR0xzphwmloa4sbWMBhTUFbcTO+uyE5IwEAYcouQanY2QcA3OIXN6sqRorg6gE4zEymJm6CqQoOhdnLdpm9BzRRqyXQxg5HTPTONGuaqw11K7h5srSVw0pJW4/fgQUVzfXrDcrqlqz3S72/8derFfnSKoyq1XAOmnI+7EDhKmhlGK/PwKi9/r6658Rk7AzwjTx/bffL3qHyPEogX7jOMseO0cogvJQCiVBjlCSMDTQ8pyUZe1k2SPz2cntyX3yY/eocyF6Xqv/von+U6fAc8Nx/veUkliLLwW61gZrfygWPzc/mqdBvPKlFvOXqm4eGhfRVPKw9rZti3MiAJ/nWXI+cnkY9J0R81SJRsYYS8p5cYHKxCBU+5QyWi/UywVZoZQHxPxxEHYOSz43bEIDS6WQQyHEyNuPR6YwcXd/YBozl5uXNI0lq5rX73d88/0bfvP7b/mX/9Pf8nHfcRoDc1GgCk5D4zRffnrD558+55OXN1xdbsVFVMkeFp9oFJUC4zTaKDJCxxa0Pj3Y0gpF+IzUPA71zr9XmM+6QTlvxiwhz3+HLPb3Hz+5yRA7RSlT68ZRtzXGGlIqzJM4/VMK1gWsRWLL1zVhHun6wtTPzGFmmCZSjly3LYVCiJlxSJSoJHjEadaNovZgdcHqRGaFsY6QCvM0CY1Jga88TRHxuDHSXMiNqYSTWomLRk4D0zhgtePkao7HE9476tpLg3DmyuZAf9yhAWcNTdOI13lMKA9t3QCJMc/MIZBn4W42VUWYJ2KQxVw4doq2qXFG4S14V1BqJMdOfoc5EOP44PWfKTwtsM6hM845wvIwawV1U1PQWO9pVy27+4/EMBHmEU0mhpkYZkrRy0MszjnzOIiwVSV8vXpoFuraU1VeeMXeUzW1WLJqi7aeOM8oFPMoOomziCymIA+SLoQcmVOiBMUwTnx8+4ZhGGm3V7z8vOKTVy+pq5ahH3j77jW7/S39cIBUyDFRUsIstLSUIuMIa+tQrsav1myffUFz8Qnt9oZ2e81p2JOVZo6BMM94X1Eo7A8HPt7e4pzn2fUrsbBbHHXOFsCgFsvAGa0cypmFLlYWuFAzjiN9L2nubbOiqiogE+JIyVa+1xQOh3tCiNSN5+WLV8vzkDjsu4XrHTkeT9zf39OdOoFf1dmQQK5vKSLOknTQs/WonAdpMES4aKxMU/qh/6mP7D/YQy2NRvmRxc35vn+kCf2QRvX482c3qrMNIbIAnsWK50V/2UiK9BALZ/uRAvMg2Fu+hPMvzag1VlDX88aJUGbmMBJjJOfI23fvGMeJGDM/+9lfcrFZ04+jiM5jfNBJQBa9uxKXPq0Vxjt8JenQyimcMg+iQmOMFLSVFl3aHDilTprxCCwiSactTlkJDa01KRo8lso5rDGoOmK1Fm5xGDme7gkUphT55u17+tOEzppNvebtm/e0mxWrzRZlK2GmFYWzjjlGpnkmxCh5RCmhgPvjnpQKMSfmOKGsovayfjhXo63HLGuK0C9ncoFxmtFKy3kkY5zH1y3byxtW7QUs+om5m1BobPE0qw39IChgyZqSFo66Usvab6BI4SJNhmyKuUhRkctieavEQrIooYaURT2ZSMxMErrnHJPRS1CmBGBqu1hJe4cyUoCEYURpCakKMWFQQtvRWt4zLQWSXuw0jUFpI4LWJRMkhELO82IbqYjxrP2Dy62nrSu803gHzkg+hNVLarAGtegrcmZZN4q44aTMOM6IPCeSsyHmTFUb1DmD7I/02G6EnmT6iXFOdP1ICIaUhaLoncVbGT7qIuffGo3xFaAY58w0BeY5kUphu67x3jDPEa0nlJJ7ZQ4zw6CoKxk4WG9FG6QVSmXGIUpq+GJSUdd+MWcRAXLf9Zy6jv1utzgaBS71Cu9ljZmnxDTGB6rRNM0YKyLo/WFPKfnBRn5eQoFTTFir6YeJvu84HU4c9iexVJ5nhl6yNVLMQos7D5tLQaPFma2IfffDyvcw6zkXxed/+yEd6Pz/5+NMjfo7HP4n3/eDgQ88rO8P+TcpPWimRKS8/HsuJNLD0OjssKa1RhlJrLbO4auGdrVZ9vmFIrUIJ4w2NE2L94JQHA8Hil7Wg8Wd01mP844YA76qMEao+2ZBd5KPxJTE/c265X3Ov6U8a+pcgKtHKu+Pz0Up4j4Vc+FwnJjmkb4fsbri1fMDhYqQPV3/kV/95vf86m//wDfff2SImVigKC0OUVazrh2fvLzm8nJN2wrzImdpIQBCOq8NSyC1lvwNUl6an+X8ny+84u9cv4d/AOYgjeoZMX6aYfVTjp+uydi0UsTdf+STz56xXq1p2oqmafj44Y55Gun7gNIzlc9gA9ZpLq9XVPUKYwK//s231CvN5sJT1ZLpMAyJ3f1AUzes2prNumbTZHTuIAeoHGioa8922/Ld61umeWJ3HIgxst2IteTFpsWYZeNAbvy6kZTslBT7w0BMBa0d3i6J31lSU1++fEHTNsyhYGxFHAfefvMNX379NZVzOC2fVRmDVnqh3yDOQRTquqI7HrHO8fM/+TlGeciJHCeMFng2M3J7dyvTkzkyDEE0HmiUqbGArg0hzNzf3z9AkafTCeMc7UrRrFb8/Be/4LvXb+j7nvdvxT0qhomhP0FOjOO4QFtIxoUTIVzlFZBQunB5cyUe49ayateEWUMxKC3TuqquFt/tLbW2jEPHNJ5AF6Zp5Hg44PGoGAlzS0gDd7tbKl+DVvyrf/1LnFGs2oZ/9l/OvPzsFzy/2fJf/uf/BetVy7ff/Z5vvv0t37z+HeM8ktLIs5fP6ZQip5lhCuhnz7j69EtefvYFly+/xNZbrK8x3pD6RH888uFWuNMXF5corfi3v/xrttsrNuvtg8tKWegx63Xz4OQ0DMPiZe+oqmbhtwrcfF7wr66v+G/+m/+Oy8sLhnFgv9vx+9//lq+++oqqrlEKLi7XnE4n+u7ENE20pqXyNc9unhNCYrfb8e7dB1LKi/ZCipBzYNR6vWJYHLzmMJHivHC1M87VC7/fcHGx4fMvPuP9+7f8/ve//qmP7D/I4yzgRglt5amjx/nfn05RHt0wHp2mpLAUw4B5EvgdpRffbnGck1CjvKAOMtkpKj98SQqlLJI/gPi1IoVC0gIHj2lmnHpijFS+JhcRBh9PJ/a7HV9+8SXW1UzTjlevNuSypR8LMYpeNGXRjFAipczcfvzAX//yb6iqmr/8y39Cd+rZbLbUlw3WOoa+f0AuwiyWjlZZTHLkIPfOp5+8Yuo6audxg+eiXaHqimJqKgOlJGKcOB3u6ePINI2cuo7dYYdt10Rt+f/8f/9nrtZXtL5lNLLplQHu9vdcnylIudANJ4zVNE3DnCaGsScbEcIGMnNeiuxUqIrCWC+2zptrtPdgNFOamIaOXBLWiyvMpBYP/yGL7qIoMFC1npQi/TRwGu4x1uCrmpeffkbIkf7oKClyOuxlSmeNrLHLpFZrJZPZc1hjSjIcS4/WuKVImJ8/u1UpjVEGXZbmYZ4wRpGTRVvLdnVFSolxGDHOQJTrOs0jGMswylTyymzwlaAMWi3ZIGTSks0jnPVMPwwiHo+R4dRhbVq0gZ62gn4aSSWxWlmuLjy1N2glAyNKQZWzmYGE8SllGae0FNyBOWZyLEKruKyo6ytyrjjta4yzpBJR+o/XXer6ekXTeIZ+4n53knvlNHB7n7ncrtluVmw3DZVTeIfoq1Igl4pS9IJYB9GxILPnVCDGzDBEXn5ygyKR4sS339xxcXnJerNmfblGW4M3EesM2shgMYTI/v6esfLUlVjmt3XDerXihXrJu3fv+P7bbyjfZr78+nOeP3+G9zXb9SXPbl4yDD390HM43nF7Hxmnidu7WypXo4qh8jW1MwzDxDzN/Mv/8V8yjSPDMHLci+UsKFRRj4U/PEyan4qyy6K3VOeALJaffUJZjTH+oIj8+0wC/i7a8MPvO2cGgWSYPXWl+sHrn5FcJcYrZ1QDpRbLbQH9jFKSGeaqB5rU1fVznj1/SVU1xCS1nLWK/e6OGDMpZ549W2irQ8+Hd++lcdGCclRLvMF6veZudy+aK2fx1eJAlbO4dXXdYgphsNoS5omcE17EhUujBGgtVF1VFhOix0btTAXOSjHFTEgwjoHD4Q/c3o4PtsV3d/d8++Yj7+/2hKJJS1NrjaGyik1jubpoePnqBhTcHw9M40hl3YLsO7HhNwptQM8T11dXWKOx3jCOBWVkiNa0Dd7VuGlm6McfDPjcgqiVUpin+SGX5Ex7e5pb8u86fnKT8exGBLrHruO7797z/FlgvW5Zr9ZcXG2YBs84jAzdkThHnNPEylB5CypTCFxc1qQiMN9hdxIrwKxpa0/bWrQODMNEbR3OKrTxlJiwRjpZ2WAv6bqBrp/o+hGYmedCipmrK8nDUGSMzigrU6EpdsSSSBFO/QmtJZjucDwwzgMhzKzXG5pmzWYrsJl11eIYYpfuWTpesjwI1zfP6Y875rHDaLi6WOPrGmcym40lJ5i6zPvbe7phpBsnPt4fOXQjcyxkHCEUnK3Ybi6Z5g5IixPW/EgDKZkxBArnCVViHgfGvhP6ktXMRdLFjRF71/OU7OLiEqM1w9hTNxbvFJtNzX/3v//fUXmDQZGj4m9++R1v397x/u2OVeUIACmz2V6wvdhSecdRFe6P9wzjxDRNJF1QpwPD1HO7f08i0zQtyju6YcJrxTjOHHa31O2azcUNF1fP+Kt/8hd88skLPv/sM+z/W/H63WsO3Z6Pb95zcbVldbFlu2n5+hc/58Unn3P94hWmvSRFoeQNw7xMEoR+cX11I++rNH/yi19Q1wJT39/f0zTtUrSWxVLUYp3h8nIjmRPOy0S9FKqqom1XUBT90HE87YkpyH8Xd7KqqoVfrSxWe5p6ReUanl1L3sg8JYYhMPQTVdXIfTaOYt25uHgJJCyic2kIp+Xv9YNTiWJJAy2yVWhjePv2Hfe7e8Ifsb89LMwkADJZZRTlR//+w8yMp38PZ8FZxBVxaWvaBmOV0KAWV6iyWCWep8lpSaxd8lwfxIIPr5fSw3QmF8njaOqG7XbL/e6DfCYF8zwJ/6KAUpKtczjOfPPtW0L8f/Di5TOur294+epLul6unVASNcdDxzQPfPXl5/zyV38jDmPjwMXFlrZd4xerWmedFLxZc1FfUPuGtl4xt6NQPI3n2eUzynbGaljVFY7AFDrGfsft8QP397ccjnt2+z3bi0tQinmOnPqevNsTsmLjLWke2fcDr089ylimOfD9928YpkjVVNglY2d3uOfUnRjHWYIvs1gAJwWxFJJS2LrBVSuMb8RgYiUDh1wSZZzQBXTR6GKovIOSKMVgnWYOPdOup+/v6Y7PZYMrijhPhLmQU+TVZzWffvaK7rRmf79jtV4vo7VECAsCUQpaNVhjyCkyjSNKDUvhlZahztLTGk1Vtw8BXHbxfFelLBNV+TIYcgyLrXTBACE9utUMfWCaeo5HOOwPYgVci27Lef+A3Ox3O7pTR3/qmMYOsQhV4g7oDZUzNJVHGcWxcwzTwDj2xBVkZx845CIohXGIzCERUyFmQdnQCuvAOyjGoo3H+JqLy+d4t2G7dpxOe+Y5cQ5W+6M8VMR70Nrj/CWnzjOMk1Cqu4Ghn7m9O/L8ZsOmFYct7x193zNOiX6MGKu4vKip6opxDhyOgXmC9XpDu66wJqOKZdVUTCGyO+7ppoHtdoPzYpBSt5oYIi5mKsuCRgxM08Bme0FdN1R1w831Fe2qZp4nbj/s6E8zFxeXfPLpZ1xeXHJxsWUOE99+9x2v377leDyhlCGMI9MQGPuZOGeOh45hGBbBdBRkI6jF5Wcxs0AoM/wIBT4X8Wf0opyx3PJ3p9hPi+Lz/8MPNXRPj6cheY8/C+e2PpdM5R0F9WDSIIc0wo+axB+Kyc+OgWahFhcUShtWqzXXNy/ZXlzSrlbyemmxII8Z5w0Kh9Yw9MPCTOhQqIWV8Ej1kqDGEe9qmtUK59ziSJpIAEmLFjnM5BhRZbHYToKy9H0nrlXnEcYD5Uw/DLd+TCU7I+khQ5rh23d3vP14wC5UrWmKWG3xtkgz6xxVXYtphcp0w8S/+dXvqLzFW9GfrpsGa5zQwlURxNMqtpuG1VqcCG8uNg8NHShh3qTHsOMHs5qUaJp2ycEQbfP5eGoX/lOPf4+cDE9bFEUZ+mFknAJKDyLusxXUklqbgkyJc44UHLlM4uVdZuoWYtLkDP1xYp4kl2B16air5UbOyCKIiHz0Au0qXdAZ1q1/4M/HVERtPwg8VtcVvjI4e56SJlKJYtdqQJEJSWD/YRopZHb75eLGjFaOugkCk2spOKxWGGcX6o08TMY6tpdXlBSIYSSnsHi6J8bhhNFC4zkdjny829FPM90w8eb9LeMkjlzG1mjTyEWwlvXmhr4/0fcn8ZxedAb5PJ1DiqFxGpebV0SvJWVQQjUTt6Ql9wKDdxXGio7g2bOW9cpyddXysz95Ru0cuijiWBi7iTBOfHz7gfF4IsdaJgyXVxjnMFH85mOW8x1ixtjMFGdinsl5RhtNApSt2NYaWzWgHd2pY7+7FZ6xNdT1iqvrS1Dws69+QUkZleG+v6dynvV6zfWzGy6fvaBeb8D4ZeoiQTAhzBLgk2SqV9cNZ666BK/pxS40PenMRZglTlsilJQpiV7Ov8MaaeoOxyO3dx/ouqNY3OnwAFm37Zq2XVPXK7S2rNrVwls1D4mYZMnfmOfAMEgeRlqKG3m/c8ooxHjuGJ48uIWlmIAzP7aqKuYgwTionzY9+Id6ZAqGvED254L/cfH9cSDfj4+zhgGkYTHGCYKpHhuI8+b59KvwZNKm/i4N4MdTuLOexxiD0YasJUBNPWzmsukN48z9/YGUZry3NHVDijNaWUqWTcxZL5OuInSiZ9c3jNO86CxkA7XGotHUriLVLYyJ1rfUvmFVNWTs4kDiWFcVORW0ylidCHNP392z23/g9vY7bu8+cDjs2e2PnMYOZSwxSSBqTBCTnKWYhJPezwMhR6Ygm6t2jlVe471bUq4ToPC+IpGZQyHltFhCKow1VHVD3aypmjWuXmGcJ8WZOE0Mh9OD0HueZi4v1hQa5tgwx4E0CHIz9j17Bb5q8L4hL6nLUUemocMu6KjWWiaKYWIeBoZ+QaMW5K/kRNZaEIuUIARUhKwlqVZpjbZGfPOR+8MqQ86JwpJQbkSDI2GBitpXWCc/KwYgmaDk+sYg1uZxjsxDpKpGnJNJIUYxRUFB5nF+eOZlmq7wztNUjsobmsos+44DomjtQsA5QWBSFNQohsA4BikQCoBFW7EE1qYwOUNMBjDkZAkBVDmjqfrv3Pt/bEdZkuKNVdTGgqqFUqq1IAsxMY6J+50mRUfbOJpWcziNDzoZbx2Vg8orYhQuowK8qzhT3JxxGO0ow8gUxF2q63p8cFS1w1cO6zRGS8MdJhbqnDS4C78EV9U0db0ERg6i+xgDp1PHZtsuBgGSrjzP8mWUIkwysOqOPWFK9P3IPM0UdaZCn7mg50VuaRz+V+kvPz6R8u1PC+Cn4m451//r98mP1+of6ujyk+9bnOQW8Fg/zb9R6vyRHz7D+TW0OmvvxHHOVzVNu6JpV9RtS7U087IvPjkHi77EaqFLp5QIc5Dg6KUmePqZQ4hCi5Rf+EFsXhbEx1cVVmuSicuErIj7XHmk9ypkOCGmPPnh/Pz4eEqJP+dq9FNAEc8qE/k+eBCZGy3BvjFnQk6UVHj/cU/lxQTCW0dbz0uTYVAktAZnFaex4dnz56zalqvNSgrss/ainLlsyH5cyg+ue14ses+f+e+jxf2U46e7SylN3cji713N23ffs993xJh48fwa5y3ONOK8tLtjnGZiLnRDXPIqIlWTqXHEqPjwVuzV3EqzajxVnVHKULKlO82kovBe09QOtRSUmILWEa0qvLc4V/P2/Y5unBcOtGa9qtlsGrzXhDQzxwl0xlVOxE5Z8ihSEaHybn9Ao8ixUFdrqnoQIa4Xhx9tDaoYVAoP9pvaaK5unpPmkf50zzRNlJyIYeROZ+5uA33fc3d/5DhksjJMMfPm/UesrbGuwhLxarmRFXz11dd88+3v6PvTA8cu5UgIMkGnZKZp4LDfQylUVc1ms+H+fkIpS12vsFbjjFsm8w0gFmlXL9b8+V98xtVNzfV1xdWLQq01plgImhI+Ze57vv3t79jfvqdZb2G54YNWJG1IypIxxKIIqeAMzCWiUmYae7Q2jCkzZ01TXeDbLavtJbtdRyjvOJyO7E97Pvnsa5xtuHl2zT/7p/8pHkutKtJ3gVXdst1sefb8ORdX12RlOHQdGwMUmVRIYF1aIFhF5Wv6vqPrThyO94uIyeCcf/LQyAIwDCNzmKgq8bvXWh6oum5E8xMi37/+ht//4beEOPPJq8+wtqLZrNhu1oxj5PrqOZcXV5ScaC8bSkaa1l6aO60kzO3D+w/cfbxdnKaEJ26tFypfLiQeLWsfvcWX5iJnSehVIgjfbjekfNZz/HE3GbEkmWgvvF9BbmThOgfuwd+/Sf5gUgYC+8NiMSxBjUpbtHpMkj4ff9/05e/bTEtBdBQKUkw45xZjhrQkUD/5WRTDIMjeOFhevXrBPM+cTjvq+pqQM+Mw441FK0lezRH+5Bd/yqnv6LpBioY647QhhcS2aWmUo4mG2nicsXilqNYryY4xBlRiiKPod7Rif3zPx49vef/hNe8+fMPhsKfrOw7Hnvv+BMqQcqGqJHwpJUXdrJliIuQMTtPtR/p+EL90Z0mqiC22kulhVTesnSftbwkpEmfJx/C+pvI1m80Fm+0z2nZFuxIXpLnvGfYdd+/eM0+jZBdpzV/+5ResNjVFJQ7HO9CFoc+Mp4HD3T3ODzSrreAG2pCC4sPb16zWa5rVipvnzyUwb7/n7vYjMc6crTq995wOeyhQNfYhzbfkgrUaX1V472lWK+aYUEpjlKUsrkGFRF1Xos0RUjNGGy62G7YXW1JO3N3fIUjqTJyypMnnQt9N9HsRIlunaVYN1luUNUz9KEFkaKyr0EaoHW3raSrRXVQWIJKzpZSKd+9PjFMUL/2oCSEyTfMSDpjw1uCdo6lXWC8mBejMNEIZFSHAPFluP3RoPaNURbVY6/4xNxmSY6I4DyI364ZmCbfLSSa9wxD48OGOYahp25rtpebufkflLTdXG9rGYnWBFDEKvBW9glKOGAJWG5Tz+NqgnMbHwOk0sNvvF6rrmit7iTEW5TPGylDLhISeNOMwMM8T4zhyeX2N9Z5V1XKxveR0Gggh8vb1G4wR+k5MkePhBEVjtGceE/vdie7QcdifJG+lAEpQggeRbuHB0a2UQl6m1H+XIvUEuRDKvgi/z8OeJ03CeU96mm/xdAB0Ni9xC93wKQ3qfF/lJL+XUmLJrgQywVlDiOUBfREdrfyM0efQQDmMElqPNZZYMtvtJev1lvX2YqE3S3q51AJn3YYihijho1rTNiu604mSC1dXVw9p4VVVPbhChRCxyjLPIoSWgaF8fmMsTdNQfEUKMtG3ViIS5mnC+RodZX9wtZMgwpAf0PiH8/GEAnzOPTm/f+ax2Fclc5ZMqZREh5IUaZpE05YFsT31CW9FayR6WhmGGiVuqlpJ1EKzq3j18hO26zXz5UxZ4twLS0MHUPQyfBBts7WWnItQypcMpx87h/37HD+5yfj48Y71+oKmbrm6FOvErj9yv7vl7esPbFcbLtcbCZSyZuEV3tMPo1B4UFQ+YHRBK8fzm2fLRh25/fCBZ8+2+MpjnWNz6RmHmb7PhAAX2xajWWz5BAqqnEavDObVFV0/cXt35Pa+o+tHTl3P1fWFTN6jJmVIMeK952KzYb1uiGHhEufC/tARQ8Yax+ZiS4yBvjthK0/McaEwgF64tWMItFXF1c0lTaX59ve/pvaWlBJv3rwBpQkh0Q2R2/3AFDNTTEScXFA0TVWz3qyF0hED796/YZoGrNe0bcV+tyfFiFke6hhmpgGOh73QCRQcDwemqScRUC6x3+3ZXmxZtS3WOE79ifVNzT/933xBVb9kLhNvjh0f/+X/xOc3z7lebbhsVjx7dcGLj2sunjXc3e1Zb9a8eP6Sum4lFMt4phnqoReIL0MiY5QsDM1qsxT2FY1vaeo1m+01q8sbpjiRusBx2PH+bs/dfsfLl5/wyavP+eTVFVfb/4q/+Iu/4v/1P/4Lgp2oN56mbRBxdUKpRMqC1MQ0s9vdopdU5bqpGaeOv/7V/8yHD+/50z/9uSx6i9d23w+yEHmH0Wc3BJnInl1/pnHG2VqcJHLk1O/4q7/6p5IcnRTdacQoT8k1P/v6U7GLVIVCfsgBmOeZqhYNRU6FYQz4uqZuV2w2F/R9xzyfBcMZ7z3aqAVqfcxt0NoK1U1wD9p2xeXlBc+eXfHLX/1b9vvDA8z7x3pEZ9BLpqUvC6/zAbl5PP6u2PBx3KW1wRiF0QWjxC9dW4WrRcCXtCFpSypwjkt6OmWTKbJ52ICfNhigMU6c226uL/nt34qmRqEp5XETlU05sfSEHE4Tv/vtHzgcDtze3vLnf/6XrNdbNusNfRdQRaOK5f3bO75/8x3GWj797AtiSKhYyOOMzYU4BdwcWGvLpmmxWhoy5zTSmgbmPPBu/45+6MXK0Vs+9ife7u95v78lpZlsMm7tSSVxv9vz/et3/ON//E9IUQl/f7cHZbDOs95cUG9qXOO4yGCdIeeJrg+Mw0gJkGMmHHtsXXPRtFxaEbeHWcJNr64vcc5St4Z2U9E4ByGQRsmmMHrm1SfX/PP//D/hT//sM5pNjfWWf/yXP+Nf/atf8be/+YZf/pvfApZcFHOMlJJxXmG0Jc4TOXlSsIxDjzKBOUas8/zsZz+jIHqrvpcMgZxEIJtypq5bSkrM0yRTQWOotEE78ZE31kGGq+qGpmm4urpGa8s4TNzdfiTHI8fDkWnoaTcrUpjJQazWVRGBqSBSVprRkoXCmyeUngVlKwgdrqpIccTaQlVpri7WMoHUGaOEllU5TYoWsmF3Hzh2AWs1q8bhrKPZ1hi1iMyVRmsv4V8hMEWhDI2jIkRH016I5k/XeL9imkVQXNXNf7yH/D/yEYIUkw9CYTLGFtqV4/PmBeMwcep77u4/0g2Fu8PI+8NIWzuct8QsKFeKmZQy+/1ASg7varbbFeSeeY7sdz3NqpWQXW8xW0tdOeY50ndHxnFgvW5pVzWVt7haYyuLrz3VJILhGBNv376lXUnzfXV1w/Pnz1BKk3Piu29/z6nrmKYZpSvmOTEPifv7A4f7I+MwMY+BnJdhCjxM0OE8PJH1sWi5z+R7fkhtEvvuczl7duMDofg8Dq7OA6+nx5lKKsOdvBikSMPAUpyetRyl5Ifhj6ytC+LJU6Qkg5amx5jHAD7nPGGWYZpd9AXieumprOX58xe0qw1oy3qzwleeomRIG+ZADDNtU9GfOozWbLcX6IXxUS/789mqXynF6XQCNMaKa1MpmRjLAwUqpkiMgcuLaypf49qWlBND36NyoWoa+r6Xxk6zhP0uJj1PNAvnPeb83pINYp5cn3OToR/1mxSMgpIkSoEUMBSpEZQSTdeciGSMmpnssofljHXScWmruUBxPA30/UgOiRJFp5bRiynSo9OWVgv+VM6KHkGgniIvTxuN/+CaDKUM0zSTM6zaFc5Z2qYhxg3D8cjYD9zHyGqzQhtJAG/bKI4mIS18c4OyGus026sarbQIa/pAdxwJMVO3YJ3AkFkLRNz1M84avLVoLZMYk5NMopVsGkpp9vsTc0ik44S2o9wkKRKjUGIq76kaR8oDXT9wOkoB2VQ167aVh9ga1psNq/WGOUWubm5QqxX9OHA63DH0J47dkZfPXuK1hhQXMd8ZCl8Ex8h7b7dX3B+OdENHGGdmFWiUpm4EiSg5M88Tp+OesOgxpllsMnOW8KkUJaDPas24uAsppZinWTpNhDNe1ZKgTsmcuiNf/6NXPP/skna7pWqek3IgxhPD/p77Q4eKmVobnN9gKo1rPRfPbmi3W3xTi29ultGHMmWh7YiTVpgHYlIUNN46lDJoJdxhrTUhR8Y4ydSlFHKIjMPA/nBg7EdKCDy/ekFdbbh6dsnXP/sFXdyTbUTrIsFZZCKZkGuaerXwqgNOiQirritCmNluLjDGsF5LsFleNvS+Hx94nsY7oUUtUyhzhkcXtEctEG5VNVhbYbT8+4vnF+K65SvqukWrvEwxxgfe5Zn2ovUiQLZmcaYx5HIOKcqPEGlK0ng/BMMtSfUPhfVjYXxOT5Xk3/wwRfpjPd7v72iVpTWOy6oFZLL2AzrT+ThP41DiFoNsj21laVtP3VSsWs+0uGkIpK1JRjHrs9vcY4LpeZPTWtx3zrx0cTNZ9lwlsHzOhf1+L0nVP/Jtf/CUXz54AXLK3N3tlkC+zM3NNTHOXGyv8G79MLWqq4r7Dx/xvuIXX/8Jw9yjQqQME944XFZCKPMylVIK0IVuHhinnimMTIycwkAXRnb3B169eMFUMkOcOE0nFMIRnlIkZk1WkWpVk4CsNcoCUcKUVMlkMtuLDfM0Mw49IY5kZcUJqRQRPdaWlTH4tiGVLLzl40EadisBl+t1i/WeUqKsDQq0NWinuLy55POvX/Cnf/YJ189qjNdgMi8+qfjqcENMM29e39J1gVwU3jiOx44QJwoJtBNHOK3JGJRx5CSNYwgR5ytxkDOWdrVeqItC88pF2vaqrshxCZ8KEUlRzKATm80l280Fq/WGi+0VZE1fdczTyOlwWqiakaGDGAJQluFTfqA2FgUqamKKC2XjSVBszFhtcKYizbMknCdFnDOmEueZVCJx7plDZp6EWw5F0BQF3huh8CgrTmM5EFIixp55LoslaZZka2dQ2mGs5ErEEnFWPSSG//vyqv8hHTEI31yKH8hFrvM5yFRrj3GQyjWpBHKJ4rqYCtOcpJ4w4JygAhIErNBEvEloU7BaEZbQ3pDLQs9aKHbii0sMhWEQzV27qqlr2ZeMW4qwaNAmkZUi5cgwDBhzoKzFuSznTN+NDP3ENM5M07Bc+8Bx3wliFQsSYrkgEcvxA6onnBeKB3rL+XigHgmH6kGRwdOtRp37jR8Odh5+Vj+GnCqeuCM6wzmU7vx9FMnwevo6Twc5KERbeqY1LUi2JGqLdbPmiY5BiSaxaVpQ8nP6oS5/RGjapqVUFUoJ3THGyP6wx3tx8JM4gJqc08Oefd6vtTEi8uZsOW0Zx1mK8STufkbJ57PW4auK7BzeWsZhQC/XLeVHIfzDnrMoUzL5wXJdhO9Pzhnq4TwqxcJoKNLAPfyqWfRjSwj1GUmXoWRe7GmleUxRk1VB5cLQC8tGn5tObZb+TvZGtewxkjO1ICsLeqsWVttZqP/0ev77HD+5ybDWE4PkSThrsN7gvWO72ZCGURJwhx5jLb6q0dpRVStS3hGCcGutcaKz0IbNRqD/GDWaxN39USaPGhpVsFYe2HFpQrwrqKbCailoKQm9NBreWQmlmoXDOEwBtR9lqlmS2Ol6twi5oe+P7PYH7u9OlGxZr9YM4xpQDOPIdrvl8uqacZ5RRjbbYeh5+/4tu/uP3N19YB5HLlZrWl+RskzEcy5Ufi1R9WmEMrPZXHIaZnI6EadAIGMXqK+uBbJDFTiJcCwukHg6U8QWx4gzTWseh6WpMoQ5LILAjFaGtqmwRgGJXGb+0Z9/xvWrKyataDbXMmELNcfD7zj2EyZlrtuW1SajrMa1FZfPWprNBu394tMlbjzaFKraMwfPNDlimkUkWwBlMNphtHCY0TCnmW7qqaoKlcWhYLfbE6aRPAccGaM0z5976nbNF19+yb6/pQ9HunwQR6sUCCVSp41MM6ME3Em6p1zzvp+4ur7m+uZG/r8bhK+uDSnKRCUamS6cc0eaplkWAbkXvfPELPkiRjuxuERC2p49f453y+ZhLKXMpBjphw67UNPiQruwrkhqqZJFJRVpimKMUqymjNLnh/bRRQnUkybjcbJxXujTQsf4I2Y4PBzvbj+wrhouqpZ13aDLo1ju6bFkdHM+H94ZjBI9x6Z1rDde3O1qxzhJ8JDShWQV2SqiBWfUw0TtxyJGeUd1nuk9FKIgTUbKif3htEz1Fjh/oXPlpTl82F6Xve547IRiqQtv3nxPTuI+9+xmSwiarDWrpmLuRwiF2jgKGhszlBlXGXQC0CQLkUIskZwK+27P4bSnG0/MKmAbz1QSu67juhTmnBnizDD3WCulxBAnYtQkrVhvV2QFRSuUtRinpOBG3F822w1Q6PvEHEYMIiI02uPrirpqaFYrfFszTBNd15EPe0lWrmRtbVcNKHm9ebGNxWhs43jx6Q2fff2Cz768BgZCmQgloavE9cuWfrrh2Ysb5tf3FDR13XI8nRb0L2AdhHkCEKGzaxZEy8g6veSmKK2oqlo+wzRIk7948VdNLRq+nJljwDuZzBYyzbphe3XBdnPFZn1JCnLPnJqa/iRIToqJMYvtqWil6sUeV/jLGIUKAaJafPUf9Q+pRDQGqxyq6Ie8gnGMYqWtEilGpmFcQskKVS0W8XoRcnon+iCyJkVpGFIMjPPMOEnB4hsJxS1YYrQonQhxImeFS1F+JuVFBPzHecxTWaijj8GaWhfUouH0xmBczRwsw9ARk+gvS4EQEn0/i7uiM2gtf2eNRpGwOmB1wlmNrwzHU0bAY8kdMNqi/ZKnVALTNDOOo+yFSlFVMuEX9ykZNikjye8hzmKjWvTD3jFNM2FOzHNmd3dgmsWtqu8nUpDJxznf5+nxd22+pVp8aqTxFMU4F7xZ/gIW/doyLnlYfZ8OZJ6umTKZl1cwRi822+6hKE25YLQUy2dw5e/T1imlJPsjnwNRHx0DlTpTpvSiXxS61bnJKIhO1igW3eUyuMvQ1MJ+mKcOYwzTOHAaj0I1R56Nuq6EvRIkENRYJ0W3MdKoJjkvZ5Q754xCkWIkLFN76zy5iG6nWtgUuURSDg8W5E9/V6Fcgkas9H88/ZfrIgGDcnEe7UlYhsdyrc5fgqorrUh56RDyQi8560wKD9bdg5oe9jCt9KI1k4DOcr76qixoa5HzurCFCtJlpJR+sJb9+B78dx0/uclYrzYM48A8Tdzv7mhaT+U9bVOhbq7oh4q+6/jm2++4uHyGsZ79oROBWs4LLLZwzExhjj3WGeraUvsLTN1wOJ24vzsRNpG2jTjvqRvHNEamMNP1PTfXaypvscajwoRSUZykVObzT645nSZ2+4H3b3eSPWEUbVNhVEWImY8fP/D+/T3Hw0DfzVAcp1PHcXVCGU2m0A0Db9+9A2X49Ivv+OyLL/nLv/oLhimyP/bcfthxvP9rvv7yS37+1ddcXr3geBD3gk9efcbxdMIdDoSkBAodJCG30pZKa3QqfP/99/T9sGRPGNr1hnES9GWaxyVDoYirQiki9hsGtNIUH9EGRO9qhDvoNEZDChNt4/g//R//K/7Rf/IZswr85vVr1hvFnBKpn0CZxTEpMQ8TWmmqqmG9vqTvEtlY5pyZhuPCYdZsNy1aF0IMjHNgc3ElDUNMOGW53FxQFneNpDJDGIl9wUfJ8OiOB958+z2/+OLneLcilYpf/e43BDKvXn7KZ58/5+JYcxyO3B1r/vo3/4o+jCQDn3xZs9vtmcaZ/X7PzY04SjlbEUNH0zRYZ+lOHXe3dyhtubp8JnkfVjzN//qv/y2ffvopz549o+s6vPfLl8PXnj/8+g98880f2B+O/OLnf8LFswtubm7wXhwWSinM84CxipgS7969o65r2qYVC9K6BqOJKfHx/Wu++/473rx+w+7+g2zyi1jRewmhlDyMiHc1aNFyPIjCl0X5T/7kH/Hs5oYQZ8ZxppRC01Y/9ZH9B3m8+/iRO+dYtQ1+1fDCtHhtyUr9wF9cm4JVsjlYb7jeaNa1fD27WWFsJQMAowlexH/DOOJsYtNqQlWhBsNwgmHZeM9thAJsEppFOU/xtEwCi5KGRinRPuzuJdztnGtypkmlBCEtXGCtcd6hcVAy7z/cUcpvuH234/RJx8V/+hKvPVVV45Xjv/4v/2sMsIqKl5sbSTGPidQLpS6mRJ8iua44jT0f7z/ycfeRUAJZZVztuNk8p71Y8wJNPw/sj/fsDndgMkklUo704cTpNKJNRdtektQktMCkmeYogvacub+7p1tCvLqup/IVJQJOcf3skmYt2gJj1cLTTYv4Xp4FkwzaWIZhAGRznjHkmIgKrj55wdd/9iWff/kM6xPffvs9x2niOAde797jzCXaNfxn/9t/Cv/iN3SHGYqmrsWRp5DQWjGNEykXWuu5urqQJPEC3eHA8XgkxkBVN9y+fy+IzIJ8aK1Ba1IqoB0lJ+YQ2VxvKaowx8jhdKJu11Ttmq2zxGlkmAYOp500CEpsaXNWtKsG672gNGhZm6eJrMTOMoTIMPR471FAiIHKSVGXU8IaQXskY2Fi7MTtSBuYQ0u7dWxWRqyHjxDGyND11HUg55lpTPSnQOU13su9165b1OIwNUdBwsM0cL/rcdZjTE3uhK+u9aPLzh/jsdtNrFaFurZoXajq8+DxMY8gxMI0y97ZVIrn1xvGviOExBQybz6ExSVKMQ5HvvrsJXVlIA/SlCoNKnOxrQlBMc+Fw2HEOoPzBl+1QMS76uF6T+OM946Lyw1tXS/ZHIa68UuidWLsI9/84XtizMuwUDFPhaEP7Hc94yiZKZKZdB4slQd6zfl4WsCfC+Ifh+LBeZACpKWoFKgDjVk0GeUJReZpQ/HoLnUOp9Tntc4JjWmz2YjVdgh0nTimab0gFU/0HY8CcRZzgnMRX1BFLUY7Bru4Z2plsEZQSescznmathVEdWEjzPNMXBgEJUGKFqOBEtjv75imCa0N0zwK5coohqFfkLxIyoX19mIZ4kX6/rSwBKTET2kJMUTYCjpKJlq7qcg5MY0Td92JcexIKTxcizMl6nzuz02XtYYQEuM4LUOqRxSjlKWh+FHwIUotOkAlQcxF6mcBIYS2VpRaDCrUYsGqKUYv7WQml8j96cSuH3CVBw390DEMI6UkMRuYJDhWaf2g1zH28RpZa0TQnh7vsf81Y5a/7/jpORlL0qnWME5RIOMsQWqucrR6tQSZKEn1Hk/0w0ROhbZtub7aYEwixZEYZsZBo/B4p3A+Uq8syq4XrceJvp+wc6RpK5kGKIM2sD8eH4LkKmdZUrZQFJwrNI0h54rjwXPqRsKUcTZzd7+X6XFJ7Hc9Yc6UYqAUsWRdKC1GG9qmwRknThPZkCIMw8y42MmNp5H19QqnRNAUwoC1BqM9IAFWtRdB3zTPPH/2gsvLl9zvD8SSwWrh7DcVVbWE4RnDYb+joGW66Tw5ide7WjhxYZ7RpXBISXIgnMO5anHC8VituFjXPH+25svPr1k3kJzi6y83HLo3nI4njqcDjkKlCpUG4y3vP97x/t0du12PVpfiPjMHfGMJU5CbLRVOp46YMs5XNKs1680FJWW6+wMhiOOV8Z45RdI0oKaJaZiYhp4So4TmFej6gXJ7x8fjR5x3lBSYjzvWzZZGGy78hk+vvuT+dEcXOmxSvH77hlTgyy++5PmzF2it6bqe3/72t7x48YLLy0tyzjjvyLlw6vbc3X9ckpsltM0599C8nVEDhWXoRoZ+oBT45//sn3N5eUlVVWhdFqc00e8Mw0jKMzHOGGdoVy1t01LVHm09p+7E/f6eX//ml7z+7jvu7+6Z5p6cozhlWEvT1oxDT4oRre2Cj7IsMmbhpjo++eRTXjx/wXqzZhhObLcrxkkJdeSP+Ng0LXNJDDHweneL2yg2vqayDlsyBgkbaypD6w2106wbqOuIM+AVmPFEUoFiAu26JpaALjNeBSiBQsQzc9NkwrbGF8X9oWeIEgZXHhxZZM89F8wCnVtykYCtrusXGF+OGONj0aoUKc0L2pgXsVyWeVPS9PuJo+rZuyPj7shmtaXyNXYuXPsVlIKNhWnqls9SmEmoSjOExDcf3uBXG6Y0c0ojk0qEFMkkNJb9YScNT8p4rbFe0a4qhlEEL0rnJZ9HbBe1mknhhFYtRnvCNDMtkzqh13hsyhgTsGahpOrCMByZU79MiRXGVxhbUdWe65sbyBlrtSCWlGXKadnvTktGTWEYey4v1mzWDcfDgbvDif00c4qF4l9R7DWoCudGrl5tKBy4fzdwcXHFPA9CkbQi4iYrau8YuhNKW4xxvHj5gg/v33E8Hslxpm2lwBvH4QdUDY3C2woQytVm+wJtLQXo+iNdP2P9iYvLwKE7sD/uOBz3OC0aKY1mc7HFeEvRipAS7WqNUopNLqSFKhJTWtZymSCWIpSnnDIpZsJsQIlD1zD0hCToUl17rL/g+mrFeuN59+E1Wk2knOmHgt4HnBeh59X1Cr0M15ROFCV8+BwVMUojaHQizFBXGWNm5umOqUtUVUNdXfz/9sH/D3h0QyCkgBsUdW3JBbyHqrIUNMMY6YaJcYrUtVBcLjc1qTXi6tRP7IfMGAPjJOGO0xQZ3YzTBufsMuvJQMAZj20szm3oh4kUE32chduvpYCsq2ZxXCvsd0dCM9M2Nau2wdU1Ook+YZxG5ikxz0KrDDEydCNdNz40GGeO/Fmbd6aCwWNz8WMk4+m//7DJ4GGtK+ef1+qBrvTAmlLqgWr1NJX7TA0VmpTGOaH8nHUN5wbnacje04L7/NmMhNk8DGVAYRYUyRj3sDenGNFoGYAs76y0pm5aXFU9vPcZPs450R2PNI0gGbvdLafTgTksGUPWPZy/c/0htYBfsjUEFYkxiauchpQjq5XoZVNIDw3cPM+S0D5N0liQsM5yfsbPzcWjrkVMM/wZAV/SwsXJTFMWdIFl/zmfs6fX9ZFXtVDKlJyTvNBoz7qaM9VXELu8XO2MUYWu6zmcToxxxCqz2KrL+8i1sYszVYLFmUqu7ZlGtSgbl893Fvj/B28yjBV6VCGSiyMuKv25zA/hYqoxNG3mcLxjGGamMeArS1NXXFxs0ErSnOdpEDeoyQAa5SLGeKpavOLnMJOScGD1pATW1hqDYZqHxe7NQFPjzCNfEMB5jY8G6xZRWJSp1TjFRVAD8yTJ3OcLnVImpZkY9+wOe3LOrJoV61VFXTfUlUDzWhlUVsQ5QSqEaeJ0FGqPVhXOliXoLZKTpHEZY6iaDco0mHrNnAIYha89pSScs/jFwYalm3S+khumSBT9+SGnlIeQKW0sFe1DkqzzHoOICVet5+pyReMVxRWUq+mPA8wnGI+sjKI1jsbJBHJ/HDh1MynK9XhMxBR+8ZlalFImF9DG4L2cG1WgzAliFk98pZjijM6JUuC0PzF0HUbBxVpSe7XRJJXpuo7T6cjx4FFTh70pWFvTGMfN5gajNNVU4TCUOYLWrFeSwD3Ps9jDLuFDKaWHIlAmEx3TNKKUFD5NU9O27SIAKw8wq9KaGCaM1axXDa9evXgQhZ+51TFG5jnQdUfmMBHTTEpCVZMpjAVkA9vt9rx794aPH9/THU/EKOm+kv4sE4cHa2IleRjnRWa1Eq2T957rq0uUhhDkvVxl4NyU/BEfVmvmlAg5se9PHKvVkmpuqR3UGmqtaOtCWxVqV9hUCesWuDgXdAwUpcnZoHKW0M4SsSqjtVxboxKtiVxWClaWFDypj4RURPi5QMWqKCkoHgkDGK0IpTAvkzK1bJ5nSF+MBUT3c06/dsqQlWSdKKNYuRVrt2LtGmwsuFTwKaOz6JNyycxJoVQil0QqmaRBW8eUC8c4oftCSJFxHplTYI5BAu2iI3ZBNErzzPXlFlTGWBFfGpsX7vM5a0eCxSIDzlgUMlzJZ/trzAPtoSwbdymBEApTGJbp42L7WtWst5esVjVVVVFywixFQ4gBMIsluGyypZxRIHGOGYeebpjo5siAwW+vaJqXaOWYh/dcv9gwnEbe/OGO6+tLuh7yULC2IqUlDd17pphQiyamqmQQBSw6tfLAG/9BIcR50FBhXMvN88+w1kuqenhNQQTn/dTTDUeGsaeUhLUeOWtiC66sJivISknhY9zyHMt9FRcud0ozYrcq906KiThHhqV4SCkzBxGKFzRFyYTcmhawlORRKmNMxhjPHCN6ofFUVYUYEUQgUkqgFE0pMvgyGqwRdY4zEhBIDAQiqlhJTP+jPRQhPnLrQbQZZ/SxHyJ9L8OGutY0taGpDViPs/LsTnlmjoEYM0Ypun5El4wqntXKLKLyglIJpWX4aLwhRSO6iZSJ6VFP55xFRZmKh2lmRJpaYwzKOkE+Y2aaErkIzWsaR4ZxEor3MBPjo95LFfWDvQGe0G94bCb+Pv3F0wbh4Z/V0lScdQKLGQHL+nZuIp66SMHZMINFAPzDCfY5U+HHmrenovOH1zTnYvqsVdBL0aoWZMTjrCUue6Ix4ognbINK7OSf/F7y50zJiWnsoUhY5f39LcMwPDYQTwaKZ/qTMaLPDPMs38OiieShZn9sZMxjsrlS6sGd6rzG2EWnd0a6fyCQfiKKf2zEFsORvJyL8zVefrenzl7imsjjIFJ6DEoRBF4pQR4e/65IEOBC5T2Px8724XK5FycpzuG2oM3y95zvtUdXTs6v/XCPPYrZf6qu6yc3GTGKw4WxtfjvHk/EINkAXddR1y11taKpwbseawNaR5qmYrVq2KxXGJNoG8c01ezudkyzwFaZgq+LJE5XlhcvnrPf7en7nuN+oF0tm4OxVL6m6zum04l5nrjcbKkqh6vMslkHtC0UnakahzKWUzcu0x0wSqNwD+Kh88mSRqPw3bffcXV5yauXr/j5z/6EV69e8tlnn3F9dcPd5SWn+1vImaE78fpN4G7/nnkKeNfQ1Cv6vscaxTj2HPZ7/OpakqqrFV+++pQpzSgNTeO5/fD+IdTp/v5OPNG95+r6GbsltTImgf0bX+G8I6ZEyhll4gM8VjU1m+2aPA2QBnKwbFdrGl8oesaEyE2l0LWhmhVr62jrtRTT2nE8jYToWa2es9v1OP0EvszLYuAcVdMQciFOM85X1HWNd47Nes39h490pxP90KN6jTMGVRQhznR9h/BVa/7w+hturq/4xLxkXVmMzkzzwPv79xBntptrLi+e8+rqmuvtFWMMvDu84YvnnxCUaDuGYeR0OnF3d8ef/dmfLRtuYbfbPdjL7fe7pXgVmsonn7S8evWKtm05nU5MU8DZjDWWoEc+efWMFy8u0UYyXVISQb51doHDR+7v7wlxEsrYMHB58Zy60qSkUcXQD4H97sTt+4+cjiehdwRZ2LQ2aGs4dR0xZihmWVsMZ07tz372NatVi68sYY68efMdIcxYB6WM+Krgqp/uOv0P8RiGkaQLRSuOfc+tP6K0YrPyPLusuXFwaQtGB9AJRcJFhTfSnMVQcJXGGUuxFhXF6YecFju/ihwLMU+YeWBjM26lqfyW/C5yGhJ90sSyMKSUDB5yLhSkOGybmlyS2F0jm5AGnF0MAlCUDLWtUUoSmGtdo5TBKkNtPX/285/x2YvnfPHyBZfrS0nVmCZKKdx9eM+YMnrVcPXqin6eOQ0dvvY4pQgW3HbFxw8fmWa536Z5YH6wMJTP3XVHvvv+D/zn//w/YY6TcL67I20jg4varahMvxhL7Fi1CpzBaqFwxGiXhhcRuc8zYZ6Yh8QwDg/v7bzHVZ66bSkFPvvCsNlcSSL5wo8expH+tMc7y2rVCgKrJPfh5vqGoR/Y7TLeBfpxZkZTfMXm6poXL3+BwfG3v7rlq5+/Yjh0/MvdR37+i6+Y5pF5CqzaS1Caqvas1lvyqZf1XCumaRSRZs4cjgcJ7lwKoO12+yjc15qqcjTNiu3VK/7yn/xnoCynY08OjqB7ip758PEdp/2OlEZx66tqiccsEOMs3HxvWa9WON8IT18Z2qYlUxYbTNHF5SyakmqhHMxzIrFHih5ASViqBPtNNNdrDoee29vAMBSsqVmvK9pVTd8f0CajjSKWIFzskgERsyskIbmtHdEUnM6onGi9o64cptXs9cQ8R4bu/v8PT/9/mGO7WRHjyDSPvP2wYxwTq1XLdqMZ58AcxJFne2HZbpzkj5SCshptKnxdM6YTc1DEIEj9h/f37Kzm+uqSly88VQXeCZqXk7h+5RJoG9GBzdHz/uOHpZhVbLYXuOV+J2dSiJxSRz8MrMZAyooQCqd+xliPUpFTN3A6CqtCGgz10BiUoqRp4oe0lB+jBY+uTn+XHy/FPTJQOJtcUJZU6h+iF+fvN0se2CMlBqF9LcPc80APYJqmB8fEH//sj4PoZCovoIpWDyatrFaNILxOnNPOJirnQV+72tCu1viqou97CJJ3Yd3ZHVAYHt3pyDSO3N3fMi2WtsJaSAsdSZ7LUkBHWUNTWXQHShyo4pJ9YTRM4wSFBwTjjLRIJodQwoyypGTRi2ZBXiMulvXicnl+jTPSIa+hUctApyQZzBalQIMp5sm1M8t+84hs5EUzkQs4I1lfatFwCdepwDIgNihKTFA0xjjqZoOeC2OMzIPBWI/QW+cH7dq5cbT2sc5I50RzpCk8oy0/1enyJ1csr19/z+XlhvW6pakbnBG3qa7rmKZAdxo5HQMxiAjHWke+2lLKTIwjb15/y4vnz3DOsmq3eNdyOHbMIRCOgTpErLdY77C2sL1Y0a5qjscjfTcwTROVr5eptEyku9OJu/2epqq4ur4g58I4RXb7TkS6CL95DnGBqBR56SzPHWvOeSlS5aSFGNjtdszTRF1VpBIYpwOFPyXEgaISIU28ue3xR/fAy392c0HVNGQjCd2pJOrGiz9SmaGM9JPGVBZjNUUF0GJNRo70ncTDx5TwzjPP4pjy2RdfcffhHXGa6LueGAKucqhSGKYB3zbiyd56Vtsaw4qqtvzNr7/lq1+8oF0ZjGp4dRG4rG6YLtd4A8Z6+jHym9++5/ZOcX8/cne/o+8G1usGbRyvX9/ifI2xHlfVaGO5vLzCWIcxCoqkjnprWW9XWGcwTjPHjlAUuohF8eZKGprVZs16K8FEiUCYJt6/ec1p52kri3aGOc2kMrBePaeu16xWG0rJtM2GaEBfrrFepirWGtp2xTAM7Pd7/uZv/oZPP/0M7z1t2xJC4HA4sNvt+LM/+0cPC/TFxYXoNYwhhIH/57/4v+Gc4eJiwz97doG4WGTGacBExzxJk9H1A3Xl2W5WfPrJ51xdXlNVNc46csncfXzP7/72t+x3R3EGCRmSoiiN0lbMEyJYI4uB1vDVV18s9reFuq7YH+4kSO3+gFrEiau1p2oy7apis2l/6iP7D/LwTUMuiZAlfOrD4qoGkV88+xSsWLWSZ0CB1mRdEdMC3atCiKOE1ylLiiMGQZScczijCDOkKOncJvdUJXLRVPzFz5/x/j7w69/fM59pBsqSS1wYBbJp391+ZJ6lcTkL7jSgSsLrGklk11xfXEFM6FT4+tUnvLy54XK95nq9oq6dDGW0Ikw9u+OOfuhQleZvX3/HXArrqxuOtiOWQEgzVWqxo2x2h8Nu+V0Du92B1apFkcgpMQwTX375OZvNlg8fP9CPE3030A8jddVijTRNx8OBMBVKtoAlhoQzAUzAGE83zsQsOTGH2zvCOJLCjNEJlFAj4hL6FaZACCc22y3zJJt627bC002JMEdA/N8Pxz1hiuQi1IubZ1cUZUlIfoQ3MKVCTJHT/h1GKZy1NP7AVy8+RfWZt//0juPxjpxnmtYRygnjLdqJOYcIT4VqOvTdkvotlpOV8+hl8HA8HnHO4b2X8NIibix146lrS9tuuLm65HLVsjt+4Njdcr97zYvLLU5fUlmxsk1LIbde1YJ8WYtrWn728z9lmiIf39+yWW0YR0lyv77W5CI5R323x5CWqa3C1zXzHMRIZZXouoph6OiGE/e7e5q6xfsarRqG4UguA8aPHE8D3gv6alTGao0zmrpu8M4uBZ6MO8cpgJJgOq0F2Vh7g9rWDFOiH/94aZcqBlaVY9s6Nm3N7jiyP/R83J2IIbHe1Fxc1DS1OLSRZaBQFBSVSaUwzoFVu2K7ceTc0Z0y8xS533f0Y2Czbri8aNluhaFgdFpoh4LkN5Xl+fU1Xd/TjyO3tx+oqwZnPXVdL9k6mZAy33/3DmUq5BksjMNIf+o4Ho7Mc6ZkCc8VTYN5UvQ/UqCeahvKEqhWEKGurGMLh/+J+905xPdMDMacDb2hqEcL7zOd6ul7nAN/68pzduF7SoGCc15E+gF16ymKYa3FaE0651YYg7UOra0U+9pweXn1QBcGoeV77x/YCt57MbPJiarygjikxKE/LeyOzDyNHI4HGYwsE/tSHif48nnk75z1OCu0dqUf7XOLkWFiSuJuGeZZNBlKAjPPn+ls2FMonE5HLi5EN9Z1J/quI+eyaDDcD87V+SilYM1ZP1IIyOBHGxlC5piWRiWKoYGRe+Ds8PTg+KU03lqM0mSVF/ewcg5AwSgjTYYJnLqBj7sd98cdF3WNrWGla5KWgNKspME407m89z8Uvyuhyj6gQeoxO+OnHD+5yQhBAuYgs1mvsFYg4lIgxYF5FkpJjgu1qnJUlWWaT4QwEeeRw+FA2zbSiVaOOjWoyTKN8vO5LFa3SqONx2lDu2oWWDQyTaOkLyqhLrlFtzCHRHcaKRTGMS0FiWRVTHN4EBgtxLLFJehxIvCUzxhjWArMifcf3mOdYZ4HtIWhO3K/u2MMgWkOxAJFG7RN9NOEsh1TmmBJflbAZ199zpwVY4JcxGkIpbHOEcPINAzMw8hhf8cwzUIvWG+XTdGy2Wzo93u6SSxyz54A5wYppsA0j3T9CVNXOAM2woe7I83FmovYsFnXi0+/3Id933Hsjuz2I999t+d0NOx2PcfjAaUgF0fKAlfqDKRCnpYpwEJtiUEmSZRM4yu0cg9hODJJnoWrbira1QrrJLk7xsQwD+QcMEpoGdNsGGuL0tD1J+7u3vHyRc/FxTPW62vWTY1OlmgUum7Y9Xf0Q0ff90zTTIyRaZpQSovTxzK5FMMB8wC5nh8SudhFBNXDQHc6cH1zRV1X7HY7tHHEmJnGibq2y0JkRDTZ1FS+om3bBV3TKA27j3fcfvjA7YePy3OQH/if1nl8VYtff5ZFy1qLItG2DUqJQUAII6fTkdPpQD8MeO8W+s/Cg9VuKRj/eI9IefiaU6SfJ/EyPyq+v2tJjSd5w00jRgZqQRtyWUTxRmwHRbQo3FOjJX07xYh3fuGZnjdq0CRsHvB+xaYqXKwNygo6m3IRp1OUTH+shZjwWnPZrBiGExSDBnQxVLqhsp7WV3z96efUxlJpw/Ptlst1S1t5am/ox56uG+nGkfeHA6fxxBRnXGPpYsD4GmUVx9NBpk8aKBPFi6XmOA5CgTRGNEanfuEz24XOCN7VvHr1GZVvmV2Pr5rFZlnomkLRkSmXNXaZNILWSQonpynp3LBbsrVi5ViEn2zV2fkKcVwrMkULkzw3TbsBI/a9YVaEpcDVGmKSNV3E5Tdi8ZgMVdVwc7nFjIFDBKsKlR5ovOPiWc1F67m+WPHFZ8/5m199h1YITVcJhUHCtgLe1yglwWzH45Fx6JdQvvIw/QNkr7GSlK6UhKxWVU1dV2gV0Srireb5sw11ldg0ipWbSfNE5cTQYn84cTydGIaB7XYjjZfWVG3Lar2hqrKEuTq/nF+FqysKiRAmrNGkeWCR2KLT4kZns1DXkGnvOE3EEJm1NNjebihI1keOE2qxy81R4StN5S3e6iX59xyKBlmBTUKRSiUSi9wDYvcqicRiefnHeZRSlubKUDnNnDKpn+hPAyEkwqyI0VCyJsUibmBWciRSKkxBkuq9N8KCcA2Vg76fKHvJOuiHs2NUoW0c3pmlLomyDCmFs1qKcM5ORIWcIllpWaNyZpoi/RAWxktkHGamYWAaJ0KQKfPyWwHwlOL3NGcBHulSWol9MQuN+VzXKFkgFk6+aB6eWseeOS+yppaH/+cJzemHdZH6gYj7xyjHg7tTeRSe8/CS0vhotfBxEFWT1Ra9PItnt8eSHxkldS00zKqqlkm50DenSQhoKEnAzlnc2FIIYpizBOilH1B4pNl60GQpRdF5cVCKy9onQnQedAyilTonqhulKNY90LG994tAumCMfdCX5MVl7kH3ovQPztUZ5YghLiwPpOsxBu0Najm32EKKkRgj4zw9NBXnhuURFdHSSCiFbzzoisxCWY+LgqxAUUItHIaRQ3di7UUPpjV47wklCiUQcQ8r5fEzP70f1UK+OqMYZwrZTzn+PXIyFF13Ypx6se6qKin4bSUbTOiJYSTGRNvWNG3F9c0FfacZhp6+K+zud3LxgPaipV23OC8TIukC5QbQSuErhbGO9boBCt2pZ78/yoVYOHN13TAvASj73ZGitdjlZoGmxykwDBMUA0W6eUlxfNLF8wgXCm9QHr5M4cPHDwxjx+3de2IahBbQjwxzZJ4TRSWMK+gpsDvs6YYOED9joxV1VfFffPkpu2PP3f7IlAPTOBGjwpqGvjtwOhxFDHn7Xjjg2uKcFLFVVdHWDZX39NrIYmkMj/MIRZhnTseTbP7rFU3liTnz/rZD+T3DpNBmjSkwDom+H7m73fG3v/+Oj7cnjkdLmK3khpyOXFxsFktGMMYvUwdFmKO0N0WKu3HoOB3vSSHQNis2qy0piktODoVpnkg5cHXVsLnYYI3ldDrRT71MNVRhVTlCNAyz4tgnYpwoKTF0J/6k2/Pq5ee8eD7y6tUvsKUmGwve8f2bP3B/3HHqTsRUcEuK7cXFlnmeCSE8CLzbtmWz2Ty4qTxAfEpg1uPpgDaay6tLrq+v+f71G6pqhdbnlGSF1g5nhUdrjGgmvBM0R2vhS755/Zq3b95we/uRGMR2VKYllrppWa3WrNcrtNJcXVzSNjVxKUC6ruPDh/fiCBPCAn8/nWApvPUoHGH84078nmJgVpmQRZcxRhFAphT4t9/B8WLFdLFm3WxotHiiKzK5qMVu0KGspygtz4PKWGWIOTOOk1AjlOgq1NL0oqDEARWPNNby4srjBtifIqdOONLSmBhqL5SlxtdU3vExpmUSqCFbNv6Si1XL84sN//QXP+dms2Hb1IRpJMWJFCb6bsf3799xdzjwfrfjl99+QzagraZeeT794gsu2w1147jf79BWY70jKtDakXJhDjPtWgKnjDHc39+zXq9oW6EiTeNM0zZ8/dUvyGkmp8A0nIjjPSmOJBS+ysR4IMWCqSqxpLUKYzNGF+psRHRcCm3bYLRhMpZhymhbCd0wSKaEiP8UJRXmaWLse8xzESGfofRx7NFa3HdSvmcce0pRTKNw5OetpaobPn31Ar8/og8nXOW4aArrNVxtLtGT4XJd8fknz/j1L7/FaIPWlpgLVnsU0uzXtaLkxDiP3N99lIIjSXgpC8c658TFxYVMh1HMU6KqN7SrLU1bk/MohYatubi4YFNdMK8d41Zzf3dL7T2ffPIZd4cjb9695eNtYrvZMMwTGWhacbWrKkvlKkqc0QacM2RtKAi9qqlr+uP9Mt2OlHlB6YDKSyheKYVxnBimk9BQUsCtNyI+XfQdzpZliAPV2tM2jso/bcblGVMUEelbRYgTc2wwuuDIDHNgipHwR6zJKCVjjaL2cl2nUpNU5tQntEqkNDMNinnU2KxQbpnk28IcE+MYJRjRG+rGcLltaauKrp6g7Dn1M/M00Q0jSmVSWdPWHmdB6/gw/dcoam8fcmJOJwnHDPOMcoZ5saKdQyanQIwTh93hgfZ4pvvlpcg+c+LP9NlznfI0HE8rKfdKedQFcNZW6HMDIgiGMYp5fgzCezx/ZUE4/q6I/LGh0A9f5/C/M4Xm/FpnfcK5wThbnZ4LUfldWH5O6D9We6zzYjZhHZWvHrRgKSWaRoKevfccDgcZesRImMPCBrDoSvQZU5jpjtL8x4UC9bTwPTdLZ1qVNuYB/cgpElMWBFz4soJ2aUVKghCVXEhK1pF5ls+3Wq0XvZkEBuaSl0BeCYoWmHMpzJfroZSibVvGcSTFSGX9wzV13qH9o9bSKnHYCjGK0cdyPc5i/BjF9aquqqWO0qxWK8kGyYlpHsm6oBKiwdHSEAzjxP544sVFu6SpFJq6gTQSVEQrizFW7kueaGyWzIxzPXJGr57S5v5dx09uMq6utozjwDTPfPf6NddX16yaFW2zYbOxaFVhVMfheACVSGnidLqnbWu8t1SVwFTHvufw8SNXacPFxRZfO679Fd57+r6nH0YR8cSI8wrXKJqmwnvHat2yuz8Q4kyMQlqoKg/OMYXA+w+34h2M5f2HO+YpcQ6rU4sX81Nx0/nhyueAM6Wo6lpEXlqLhWDX0fcn7m4/8Nlnn1LXYue4Ow6MQRCMlGaUymIzRoGkqOqKzeWWF7/8N9zcPGd7ueZ4OvHm9Wvu7m653+047o5M07SEHCaapsUbzWm/p2pacoykacR4x8XVFe1mTaGITWyWB7o/TQxd4HjoOdR78YmvK8ZU6Ga4vR95/7HHlpGxP3E6HXn9+nvudye6PtIP9mHqa52nWV/ibEVRmjnONIvQ2hizwP8zY9/z/Td/YJx6UgyC2hRF5StWqy1ts6YUEc723cD+fofSin4YlgRPSeDWToODIQz84Xe/5qvPP6OpHCon/vDmt4zhxDDtKGRevPgZK39JyJpq8lzaSy6eXfFxvyNmsXe9vn7GNI0PD8E5eG+z2XB1dc3t7S2nrmMOE8+fXYptpC78d//tf8vbt+/55pvXHE8dX399yWZzsdyTA1op6rri5uaa7cWGtq3lAc6LP37J4ne+iLRhWbxcxXpzxeXlBRcXW66utlxdXLK7v2N3f8+HD2+4398SQiQXmdCfURNrFau2XewZCzFIorB2f7xJvSDhbDlnkgLrHRRFzJlunPndh3vuD0fe33lu6q94dVVTV4a6RDrdULBoDHXlUcZQFMypJ6NRGVzJdLsBozNaB9qVp089JYLDMux3UCwXvqHZXDCHA3f7I8ZdokDE/7Vn6xqcsXjt+Oov/xlWOZx2bOo1X758war2OJMwKmB0YBp7fvv9t/z+22948+E9f/j2W7SzGGdR3nE3Hgg5izXtNwdev3/Hzc0zvvjya26eP+f2bsfd/YHLq2e8fKlZrzf8/E/+jGmaMaZB65qrqxtyFp7zatXSNDVzmHj7+jV/9Zf/BGs0w+meIwttQRWaViijwzjTdSNwgXvuaC4q2qYhvNsz73v2h5HabcQa3Fb41ZoYZ1IMOF+T0oBd1sbMYmM9DQxDh3ESTpZRzLGgc5HMCltjXCTOgTdv3nA8Fe5uW8gv+Ys/+4K2XfPiWQBjqbzCe8vKrBmyhjkxDx11tUJpcWyyKKGGZI13jqnvCPPMOI3kGMjnJNucyDFgrKOpaxSwWW9YtRu6bpawTec4HY8cdu9x6oLL5orGjhg9UsrA8bDDU2i8Y9VUNKtaErodaF14fnOJ8xXa1zTeU9ct1bXntL/DOkWILa5ZM8dEjIFpuuD2nWIeO7H9BqqqloJMi/OdTG9r3n94Sz+cmIaR2/mNTKyVUGdXV7VMOUOQkEKlUNYDkpkqE2FFSJmYIEZN10fGqUMxQSwM04Rzmqb+aVSHf4hH1pDIzDmKqUsc0Hri4sJwub2Wprab+PYPey63DauVZ7VxKKuZI/RjIYTCZg1tLTTqppb7ar1q2O1PDMPMME50/cA0J7yr2G5atuuayiuKi9IglIIqiG6mbZimwMfbPR/ffWSaE1ITVvSngXGciZMwJc7ZFVqbpRg+Z0Y8Ov6ca5SHyfLSBBgj6DglPzQ85ym80Yaizw1D+kGdAzwU9E8VHD/OxtBa0AKtHh31QNgszrkHRONwODxQrM7Iyw/oQYvbnvPigmmspHejFNY5vJd7PgRhm3jvH6ha4zgu9ZoMiO9u73nx6hV12+Kdo6nl95+GgXEcmRfr74ea7gnKAoIuZg0gDqNpiuQFTdBKkWxALRTsyjvmcZIawmiGrkMvw8UH4Tfn5imjtaVpViilGYZRnlldqJxbIghgDjMaRVs31N6LbqgUcGbJ7YIcI3VVLQwVoe5Pk2QDee9/ULsaLdQqpRRN04oxRwjEtFjXkikxY21DKYEYHdOoUEX0ZaUE+t2RlNPCKwhYKw1vTEJ9lTwOg/dmCZktD1ob0bv+B6ZLrTcbjLEYM9B1PX0/CisoabxbidOQ0hgHMS4evLNAvA+w2FahvWecZvphIJcDTV2x2aypGy92cMYwjx1KhSXNENFqGI2uKy4ut2KLOkkiY0xiVSbJysJFneeZeYqkWET0I/J7Cj/sdOXheZr2q3C+Eg6vlYdgngYprOfA/W7PepXYbi6oa+ErT2FiDgOUJKt8Umg0YwgMYeY3v/0t7z9+xDvP/e0dH28/MozifnB/f1iEUwXnHFpZvKup6w3tqsVYEfIZaxjtSBlFoOmcQI4pZqyRm72qPWrJX4gh0A89u91eUny7HpUnxqGn7zs+fuzYH06MYyJnj3FOFgDviUlSNZUqWFc/2KYpDSUWxr5ntzg4TOMoAk8KeaF49F3Hs5sXpCyTks32SqDGKRHmgDVWHBAANIQciDngW4etNdpJ8FUskX1/hFtDu3pG3V6gjKZqL3l59YxQChHoT4EuQEgzWWfqZfPWRgRxq9WKzWYDILkrKaE03O/2dN2R/X5HDDBNM2AwxpGSiMRAKDVaZ7TOeG8laGkJAjTGLZPamd/85tfc3d0Cmcp7nJOE8Ovra9abFc4apqHn4zzz9s0b7u/u2B92TEFoaIKgyb2plKJuKgqZnCM6a0qRJOii/U99ZP9BHm1dE5ImpoDOBR2zOJPFSKprTiHz/WHg//6Hd/zz8owvLhte2EJWMiVWRlNSWBbGQo7xIcU4zDJU8JXBV9D3B0IYxZEJTa2cTAHzBHnkeu0p+YrTJFbY3jraqmVTtayqmk3T8sXzT2iqBm8dlbVsG0/OM6fjnrd377jd77g/7rk77rnf3XM4HbkfevSsUUahjOL+cEKCpGAcA+8/3jNMgVgKVVvjvef5ixdY2+Lrlrpds1lvGMfA2EzU9YhaOMB93zPHyIvLLV1/5MOv3pLLX+Gcp26ElpjyKJztHHFOdAChQNuu2Wy2bLdbrDFcX7U4q1BZYHy0xWlPmmequkapCkISt6QlWI8iluXNqmaaBxyi79JaQlhLTuKiM0shF2Om6wamORLjhHeJEgsvX73g+fPnuNoKXK8gRU93HNjdnfj4/lY2fWdJBfJiMiK7cWCOE+fIqnPxdS4qUkpLKKyjriqatqVpW06nCZQ49A39xLs3E3O3I/Z7zCevcMrgbGa9WTGHhLaO/fFEQhqXpq6Yxh6rEpUtVI0XKlSKdF1gmmdBNhpPvbpkCpFxmkg5YVyFWZz6VvYs6BQDgZzPVJFZknYRbYV3jq47odRMszKsW8MUFB1iljEHg3Va8jvSksmVijg7zoFhnOm7hLUBZxWrpqFdicOS5P/8cR5ZKaaUyVNhHGZinrEGbq7WNI2n9pbKOToTmEJi3g+MYaJaNcQIw5ipvQwStNJLnSGCa2Nhs2nx3lFVUkSJaDvy8XZPmCOrVcVm3eDs4ni3TLtjkvDVOYpbZsnTkggel3pERMjirFREQ1HyY2Fv9IOD0xkReCoadueiNSdSFCSvlEJVmYd7SBmFmB89Pg8/sLQ9Q15PoK8f2+MKEpjJWb7nafNwFno/RVjOjcbT19EonJHAZampKqxzWF8trlEVVdPQrreEeSKn9CAuf1rMFrENY73eSGOvtaznRuibIQXJq8kZvfzceS04f87HPAqYz+nVpTxQ2o3RpOJEt6sURilxzNOCZsQQJcuIzP6ww1kZlHp9Zno8Om2llB8apRgjLFpBa6ygmEU0VdpaobWdz5uIVJZaSxz/xJZXzscZyTjTsJyx6Er+bJ3DecdKaS6vr+i6QWiCMdMdjou0wbPf94SQUXrR9egk9L4UKGSRCuREKUk0w+f8jSeI15mC/tRu9991/OSVxllHrgQOCkGs43IaoRguNo1wfltJPe77zBxGco5MU8Y5j6mtoATO46rI9HFm6CWfQhJjPZXyGGWEepAKkgi1PHzWYBebUYELM2GapRMrEJNMc0LIDINY0y1JJsvTJf95yjn84YO38BAXcZJz1cLjle8ZR5nKa2VYtSsRdKZFExEkul286ZSkssZAP4/84dtvaJsGozT3H27px54MeF/T9wMli9jLO41SUuSu2jV1WwsUSsE6KxPEFIk545fFMQaZNFbe0dQVMYeFLpbouk5oaKeOk3PkODNNI+M4cDr1dN0k9n1WU4ykdfuqRZtKONgovK9Q+mzLGIlhZug7jvu9CEHnhfutRYwVw8yYe1ZtA8pirFxXCcERnYJYuckFKRpSDsQScJUGmykGKJlIpJsGMoab/kQ/HqnbliqvuFyvSMUwZ83a3ZNDFss/JQ5A1hmsk8Ceuq5FiJfzD4SfH293fPh4y7u3b/jk1edYK7Z2dQ0sorGU8jLJyWidJPDQisjYe0F3xmHi7u6Ob7/7huPpgLWa1bql8s1Ck2rw3hDDRHcaiHPk3bu37Hd7QpxRRvi7armnZdEWF4dSIikVsc3UFqXdIiD84z185XGxYCOYDJSwuGXIIjulxDhH/vW7HRfbBmc1q9ZibULrhFJCPVCIwKikQDyn5k4RhcPqCpxhnpcmOGfA4sQEfUnRHtnWDmtrzD5DNlSu4mZzwVW9YlM3XLZrPrm4pPaV8GhVIYWeU3fgzYe3/Pr1t3z/8QPv7u8Yw8Q8jYQYZSNLwJLL0/U9KAdoQoTQSaqz0ppPPvuUm2cvuby4plDTtmuapmW1ucBXiXoKjNWIM0IRLSj2hz1Nu6KoBEo2P20NVS0hcSEYWAof5wx+cSSzzmGNF02aijSNpWTHac+ymWdJ+KTgnMc6AzZhuxMxJZQBssIsz1dIAUOFUXLtrPOySeVMwZAzhJggTzDO5CRNhsZi7IarK0+tK1KKxJwYh8RuN7Df9ZyOA8550ZKlwjhdKjeCAAEAAElEQVSNklmTEjEUSVY3GuOcvF8RigOlkBeHfWM0VV09iL6NPfOOZX8K40QYT6S5Y9NYtu2KynvW65Y5FmKGKUyLVq3grCZQKDlAOfP0pcCY5kCIkaZdUbct7WqFCQm0oR96jKuwSTjmXsk6dE7lPRcpzrnHQkJpnDWQI0pFKlvTeqECztFw6iPTHCVVWkOcIcZCjI9NxjRLqGGKYmPbtjXr1uKsehCU/jEeWWXGCHOCeQpoU6i9ZrvUIUlYtSgMh8MgVJYuEIohJkkMXzebpbhTyzU4NxqFpnaLU50mxcQwypp07ET3l3JBKbHFtVasgiVENzFOQbQWSu7/cQpMQ36g/J8RDNTZDptFx6Q42y5rbR7+DIsGxYnJjLOWeZ6AQk5SH3jv5RmKEW3Uw9BUPdFcyOvw8N4Pf35yPLhNcdZyFEp5/AxPi+cfazj+ToCf0ni3PHdGhpjGWsk8y8KacL7GV0LTLFkCN8WZ7UwTWnR4aOrVCuvs8hkiCR6cObU2KJ1QOf+gGD5Tjc6/W0HWI/Xwqoj+IidUig/Xxpx1L0o9BtBRCAqGoYemXQptvVDaHN6l5fM86kGf6lSUlpRueXMluUPoB5cvuTd4+F6j1A/s9s/3gl6ajKquZTC9oErW2UeDi6omxcI8J8ZhxjlAW07HQUIgnV5ss0XDkYtQpCSiYHFbLAm9NMPnJrgUuf7/0ZqM29sdbdvQNiu0ttzf7wjzzDzvCCGw3WzZbDZLyJxinmu6Tvil4zQxzhPb7SVV1dA0hrbe8Pbd93Tdkd3uW774/BMqJ4I89+wZp+7EPI4MwygLri+YyuCsY7tZsW4bSeruB/p+4nDoSUmhlBMlfA7L9Tw/YI+Q4NkRQU6cLO4SsGVIITHmQErieFJVLc46+qFjTpluGOH2jhjSslFkpmmipCIuFsWQDRREQPnX//rfUtcV3jnxSJ8nQAnvH/eQaFlVDTkXQki06w1qMUBWulA1FUVJ6vzzly+Zxpl5Csyh8PL5Fc6JW4ExDX2vGIaO77/9gyxWSuDgvhuXzl40BlVV41yNsjWu2bC9uuHli1e07YqwPOhQMBZikMltnEf2h3u67iSWiRlU0RilcU0FZFnswgjaknLizZvXrNYr9CKQHvuBtrU0jQNGshpJamDMRz7sJpqqYtU0lJTxWgq7oRRmrZhK4P74Fm+3GN2wshU/e/6CLlww5Ug08O7+DfMwEULg4vJCQndiBh2Wh1IxTj0KcVHYXlzy2WefM04z8zzzfLVecjFEUH6eJuWccXWFstI8VXVLSfD999/zP/wP/wMfPrylbiquL6/44vMvsFaEXvvDjt1+YL/bc397jyrL65UirlPqHL7z1ObOLPkkMmVZtRfUzRVVvaFqtj/1kf0HeSQN2lkqq7EoYoFU5PmMi2CxaMPHfuJ/fn3HaZwwL2/40xcebx1WF3KaZCMwYAjkuSdNAeaMqy6oraHxnsp5piWTAoAS0SRcTszjwEVbc73a8qJtUaVm02742WdfsK4rnFLYAq11HA97TlNPtpnffvNbvv/wjt+/+Z59DCjv0U3FfnfPOA7iQkSRxN6y5LfkhUMNGCP0UW3gcBz43e++wbiaF598wudf/Al6cSFrmjXbdUXKiXkeuL19T71acWEMeaER3Nw857//7/8PzNMsoWvtCl+vCHMnrltas1o3OF8Rg+L+fk8IM/vDPXWjcbZiGmd2u49sL14yTgOH3Z5YLHV9hbOObhpwjUcva6a1lpgi/dBxceFo2wrnW8L/Qt2f/dqWZel92G92q9vNaW4TNyIysmGyihTLNGkJNmzJIGy/6MF/sgHDD4Js0zYMi5XVZ1ZmRsRtT7v3Xu3s/DDm2ufczCIVgiiqYgEX0dzT7r3WnHOM8X2/L0KeNF234XJ/gasqvl8806GE+akFkuPU1jxuEr///T3T/Fu+/MlPWEJknmce7+55uH3kdBjY7F6wueo4TTOHfmC4OZK8l85bCKWYkFzbdXKhjXjxtFKFNLjw8mUnWTgp8vrL18yLNFv8FAjLzLyMnE6PNLXh5eUFV/s9X735El1tSBnGaeIvfvX/petari+vqF3FcOpZloXtxQsUCaMtdVUBiaptaLqWzW6LW+SweRoG6nYr+UKhQhMZhhPESNt1KCUSz6pyQD4b8XNO1E7SjxtjcUqTraWtM4fe8nBYOJ48la0Ye888BcYh0LaGqjFsNjXb3QWnk8dZxxevrqnrjNb53/N0/jiuxMDxBMkrutay6Tra1tDUZVJpIDmFtQ2bbcU0e+7uDrx/f0dMct9/+doWf5GnqiTVGSUeCWUS1glkofnimqGfGcaF2hn6ceH27pH3H+/56s01F/sNm65mmWeOp6EoKaAfQgklXkhBGo9K6+KXWfHlYh5ep1nyvjuRCJXOu0IgFk3TnmEjqlDExNeRMdaI4VuBtRrOoaaasEqjykE2Z1Wasf6z6UMseT9KiRdWpiTpPFFYP3Y9Oz0//OYsWVJt22JWWTqaTSdS61QkfD5EYl5wVYMuz+uyeLpSPGmdORxE3RFDKMF7FqWtrHkluyKFhdv7B+ZZcNJKmbN5fDVYr9fznx0+V7JUzhGzSAh1aVAYrVFtJx+XMqSEqysyT6buXA7oSsv5TxtN27bPplJPhVnOkp0GMvGxTUVUoIzBAClnIUTxlMVhiyRt/VlXqRKsOUE1r16/FtlamXD140AIgXEaeXF9yeKFQjiNWwwebRT91JNNEgACQreLcaVKaaytpKgq1FBlhbNi9OoNSp+do/8hbPI/dP3gImOeFpHnWEfbtlxcXDFPM6fTgXmZeDxGpqXn8mKLtRJ+ZozmeDoJpjZEDocTbZOpm5a6qXn58jXd0PHweMf7dzdsuy0X+wu6puHCWkLnOR4fmZeZEANVrlGtEaNVbblqauLNAyGAUh5UIsaZZVxQiKbwTNwo95ZIt8RMaYwuKY/yIi5LkImJc/IgaMU89czzSN20hZNvJPF88RSRFU45onrSwaXMWRKUkK+bYi4G4kYqYO1o6i3dpmO76eg2DUrJ9zXGlU52JMSFFENJrt5zeXnF+3efUHlmu7kg5oSfRunuZtEkh5CZ50RKvpi8IIQkBAEj2EbnauqmYX91xTc//6WEXSVAW8bpxDSPXF7vSWEmpgVUROlMVomkMtvdjl6J8Vwbg60r6cgkzzAF6fxbjcmSeysYNENTaaoqoRhYlhOJBR9GpuVA0+zFMKkjkx/JqqLKiu7yJXfDyKfHI3e3n/jf/Of/BftWRppXu5Z61kwhMBE5uRadFYGAVoa6bthsN6SUOJ4OeO+pKsf1i2vefPkFm01X5GqVdE61ks6GUmy320KsEGqFNpqUZEGNi+cvfvWXfPvd71mWiX/5L//sTG1wVcWyeI7HA999+y0+LILTCwU1J8tf2Uw4L0gySRMzbVPXdF1D03bU7Z5uc42rNtjqx+3JWIzI8XKGeREdLEajjJbuvpJOTtVsuPWBeHfCLond9gWvVWaLUJOccxilSF7ei7h4kk/oRgrdeQGrW3CarCMOTQ4JYsTqxFW1p92+pG4umQbDxfYV227Li+2WmATDenv7kffv33J784lxGuguNzz0B47TwMN04jAvqEmki3XdgNIsfmGaJhkza4M1lYRdKQ1oVNZUTYNS0v28fxx49+4TTbths73k8vKFpM0XqpYxUNeOpm3IyP1ROeG1ez+TkY1Cm4qmvSDnipQsOVsq10IWT1HdOO7v7wl5ZooTb5qXmCxSj7ZzKDWhdcJZmU6E5UgMI/PkaVt5RoZxOIdfhWXm8e6Of95t2O32VMoRQ8ZqR0yKbnfJ5YsRlOJ495Flipz6QEqPaC0/Y0wVx0ERshQEd59uGPsBPwu9z9aJxQfmZaQfjhggx8QyTWdZpJgh4/nA46oKax1VXdNtd2RjQCu0NVxeXaKU4ng8cnPziRQTziqctozTwvfv3vH4cMPr1xuqDDlpcpx59eKySDci0zQTUsRUIvXY7i/IGBYfqbyjahqqWjKNjKnIwGbccDw24nnRW3JcRLoxTzhXnY3Aw3AS42aKZDLTPAiRSmVpcE2ZOSbGKdIPAjrIKbHdeJrKst06XlxuaGqLrkAZxRwMKRXtv4rnaQ4/8IDwj/FKsS7Br5Gsxc+WkhbhgwzxMCpTVYgB3hmy6jgOI/OciCny4dMNu23NpnV0rUy5rNUoY4qsSTiOWme6jaVuLJtNw+OhZxxn+nHm7vbE6bhQVxZtMrP3hJhJSfPwIFlMJDl0U7IaVMHKrpKkLImwRSplz/d0SiWsVT9JmELwZJAmlyqkxCxd9qwyGklj1mi0FUy/URSPlMRJzvPC8qzA+EzRgdCUrFb4pIqiKENptj0vMuDzSciZfFSC6i4vr2k327OMPqQS6KY0xjVnb0fwnjFH5vJ8nY4HlFJUdY1RBrRBW0e33ZzXnuPxkbubG1F+2OrpTBfN2bj83JuxhuH9ofdE5GrF5K2EhpVyFpJVmfSY4q1bvJefdRzP0iittXiryoF7nqczuGVFzoLs7eI7kZ9h03WkINOfpm1FYWENysh/PyeM7ff7Z/TMdQKFmOGjfI+QYpFkGaL3nI6PYhPIiuurPX7ucQ501TL5RO1q2nYjmGwdUBh8lSB7Ap7kJblepF+xFHJPPuZ5nsv5+T/yJEOhS+WTS2Kipa4hxg3LMkrndYqcHHRti3P2jAtEaXL2zLNwi5VaMFqXzk1HjAv3i2dZPKfTScY+TtK/QwiM40A6FwHCXjZWELbWVhjj0caR0kwMMrZaC4D1AdAll+DpuSjEAS3fR24GVSRLtpi6kgSUpIQES4lJL4OEp2RVNvCWZZ4IKxbwbKwqSDnpX6C1wdqq6OpEcrOGvFhryRjIir7vcc6K3CJ5YgJrDcYafFJo47AuU9UV8ySv/TLP5BSEkJBETxlWSkJO5XWyWFOx2ewwTkxYWWk5XCvDsix0XcswHlE+UVWGyUdi9AQ/S45H8OdkSVXkCnVVydivdOBimLGmaBErCTDLcuaicgpjIilNzNORrAIxeyn4KnNOBkbLgq+tQ1cV/SLEj6Az/TJgTQVG0bqO2go1QiXFxjUYpYgmsek2tE1TDFtzGfV6tIG+P2LMju1mw/E4iv9FyyL1nKIxTZMsTkZRGSd86xSZhp7j4z3zOFBXlt1uQ8oySu5Pgtc9Ho/0Q18kJGUZLxvGenusi9D6/ayxVJWMxpu2lUXMVGgjkqmnoeqP88oolLFoEsF7bDkA6iwHyCTtO6xWTDHxmAPfHSe+P0xSgLSZbe1WnyM5raQXUMZinUMbfX7+rK1QOmOzGCJVzBAy3eYlm801bXPBYjS7zZbKOvzUc3+85+bhlg83H/j27XfinVkmqrHiOA8sMbDkjE+yppgMMYJzNdq4UqwX7a3WIt/JZcNJ4rESyKAihMTx1PPx0w2vb2+om4a6aPakV6/KZtaikEnu4iwhzPTDkQ8f3nJ1dSVTntZSNzvG/gGlR8gS0LbeMa4yaGfQVp/14LIGZlKS9YPsISdBMGNZZvE1RTLRe5EpIfdq8IG7m4/yWluH1R05C27SGEfbbfDLxHg6MI8Ti4+EOGFvHgghM82RfT+TtcGHyONjz+nxUDbqhLYTMUVpMgVJds6pBKcG8VZlrT5ba23RS7uqpqobLi4uOeuxl6Uc3ieZPqcISeONYhhmVFrIYeb+/o6m8WQMfolUtgRkle/UNB2b7Z623VJVjRTHi6y9WquSkC4J39JtjlgtCeyV1cxjkI6vLp3ZlPBhESJfjIRYOPnRY7TsJZP3DHMUtLaXMM8UpemBEklcVzu6uqauLMpA1pk8Q1VryCKRkHvyR11jkFPJGTDioRA5r+Rc1LUpvgbJxrBG1hxrKX8nkJoUA0OfCH4h54amqQDppq9SIZQEbBirzyFkKTUyLdCKx8eFaZqZxkW0N+WJXdG1IWTg84O8vO4lzADOh1lVzN7r+i5UNVMIRU90IbJMP+pKuusSiOzRJFFR+HguCLJSZFPOSrZCI3CRp478M1M5EipqVD6/dgk549R1K/K6/LnHY+3YQ0GbPvv/VdWczd4xJqq6ARQxJWwlZy6t5EZMMRJzIhZTtTZGJF3lddFGU1cVyzySYmAaB6ZpxtiKStlnW6KY3VM586ySsHUisCoF1vfjM89KFKwxWkvTZgVFqfWpl2s1wmutmef5/O/rNGctQP6hbv/Z11IIq5TCRl5HfZYgPS9OnieJP/9553k6vz5KaVIsaF7vWfxYJHdiVldUWJOR+ZZMQnatwHfkdRApbQhJ4CJaoZ5hhVN6AgVIs2x9Pn7Y8/qDi4y6bpimmXn2hHAsWNCKly877u9vWPyM9zOfbnquLi7YbAS32HYtxjqUEk2u96EkcnratqJtLXV1hbOWh/sHPn26wRjL5cUFTVNzeXWFsYZhHBnGEbSgwZQ16KRQykqmRtXiF0khz2WMSHmjBV2mRMOdY9H9nV82uk7SJq2toKQ05hQJYRG9s5HMjUpJ9Wb0KnORDeXy+pLDwz3LPGG1ZRpGubHXzrSxOG1xJdRFiAm6sNoV8zJjK4sY0wMPjweZBNl12gJt1+Aqx+1DD0pR1ZWMuQq9wAfxTBi9Aso0YEtyceZiuxMdpKu5fHGNNpaYEoeSnG2NI6XMq1f/lJhOoEa6xjGdPH4a6E+PPB6OEm6j4DT2aFXSxrc7Pj3cYbDsuh3OdNS1E1mIWzneCU3GughqxscTx9Od6KqNZr/Zsd1sRedMwjYb2m5Lu9mQgH6ZMVbz83/2T3noe5YpclEvVJcWoxS10SgFV21LUC26q+iudyhryDrj/SwULZUZx4G//qu/4vLqEmsMm82FTKmMwYfMZrshhsgwDLx79w7nHNvdlv2uo3EaTeTh9iMkT9c48tWelITsMM+eb7/9nuPxyLzMpJgEvaplYzrrWEmrz/u8AOlSeLddy3YngVzGVmSK8TtJ+uyP+VKImReDoB6zFFau0gynUxnfCgpZm8yY4N0U+fP3DwxLh3rZ0DXlIJ8zJBnNW1thXUu73aCdluI1JmorZCgVDUZVxKjxwfLy8g3bzZ6m3qB3RkLupiPvPr3lr3//a+6OB+77Ew/DCGSiVXy8/8T94VEyEjZbbNXhqgZra+7uP3H94pqmcmBdOfPKBhlzLIZEMdqB7GfOyOTsNIy8ff+B3cWOpmupm4ZNd8HKuwfYbnbENhK85+Hxnt2+pR8e+bf/9v/Jv/k3/wc2L3a0TcfV1ZfM41GSu+eA0TWRBb8ELq8vqNuGqqmLdltQjkRPjDNh8cRlxkeLrTYoHMs4o9IFOWam4cTh4RGtZIqYMvzd3/wV9bd/j3aGf/Ev/tcY03Kaey6vrmnqhrTdc+oe6Y8DPnj8OHE8nvjw4YZu0/KTn36DaxqROsXI+083zPNCToJ0VQpZt2Mm5liKSsW8LGL7VgpT1yI/MA5btyI5dDV13fKLn/+S+4cHbj594t37d4zTyNj3jL2EeSWjIQQOrqKtJLzt7/7ud3SdBKs5U5HigjYWrQ2urnnx+kuuXrxie3ENyjAvA0PfkxFphZzZIuN4ZOiPLOMDJnucNlilOM4juWQwCH1KAvzGcSClwLLMUszpjGk0USUO/cDjoRfcsrK0m04mLTmx32+42MuUuHVOvEcaksr4JHKglGRCy9odz/offkB/BFeOhroGV2lcpUkhMs+B6BeUkganNQalkgD7YmJZZjabBmtq2mpDfxh4OPbcP86ktGOftpTBgAAmdEKgNRpYc000FxcdTVtT1RUxnjgeJKR1miJN26C0YvGlwEhigF4PoXJo+/ygmylY2pL7JeFxqoTFWihCna7ryiFTCpDLyytQkis1jaeinc/EOVLXHaZIgWwjeVuVrWTCUfJyQJ3hJsYYXIE6qELBM+vwRSlevHwFOXN4vAfgs2lAuZxzpCho4MoVr4WryRhOQ8/LV0JfGsYZa1ZClULnDEig5zyNklOkNUsIaJWozkQlyCkQ/Mw49CUhPQJLKdI93i8SyplWz4ichFZEMHBuIK7m8s+CBMv7ZLUpeRsKjEL5J9/JOqWAZxkS6smsvvpJnHOfIV7XyQ3AOI4IIerzDBLU03F8LVrWQlAQyafz9z0ejxhrJfRPG4ZhEtpUiES1FI9GLf7iqsZq8WtZU7PdXvD6xZbDwx1rBsZSeZm2ZIVJipRM8YplFHJPgirNWP7o/f8PXT+4yLi82PNpuWEcBg6HEy9ezHQbMbZev3jBskyMY8+pP/JwOHA4ntjtL9jv9zjX4lxHXS2SyjhP9P2BZdG0dc1+v+fVq5dcXlwzTTNv336PD4GubXjx4gXddocrnd2Hx/tz58LoyMPjwDh6eYBKlZVSKGmOrEo66ZBmgIhB0IEik1rHgnIA8t7L5yiE4mQUuaqLtj9K0qJz5HEioslaM84B17S4uhZdZduIAdR7jNLUTjwZ0qFuxQhvHKGMzIw1hJjY76VzHUIsN6gYbobhhI8JV9flcyU0axoHcpYAm27TkmPkdDyWm9iczcnGGK6vr0oRk+mHE5vtls1mw9dff0UMWd6705F/+//4v3E83tL3j/x1TNx9/ESOmW63RRkxbrm2IdUJoyTo7sWrV7hNK/zoBF1n8b7Hj0em4yiHp8bRVQpjZzFd+oCigSSdpugNOUgS9BgibbuhaTuuX7yg2Th0vSWRGeaRw+0DKmZq5fAxc7G5oK1bmmyJscZn6Yywpn0addZGPjw+cDg8sNm0XF3uJYclR7yfyIsmAfMkHcVlmulPE5cXkizbGAjzkf544q9+9dfsthfk7Lm/+8Sn+1spBpLi4f4gG3rWGOM+02j6sDybXGhWWoQxhrZtaLuGupZuLGhyNigtnesYPT/wuf5He9W2IjhL1hmMdGBCFHrPWmiplDFZ6CTGGAKav7175Dj1DFPDm1e/xKhirkOwuCpDNpmFRKUUVml01kQvTYZtvafr9tTVjqa+kDA3Iil5Dvff8/bDO24fbnl7+5EhZ+5OPR9uHzmMgXEqcs3WMOmKbAwhG1yUw5rWhma3ZQoBA7TbPVVdyUYRAyF6VAjE6FnxkWIyjYJ+9Zl4TPzlX/6NSAu85+ryBTnH0jkyOFtyLrTD6APWWi4vL/lX//pf0badMOfrhtdffI33JzKR25uRum1ByVQzBI8JGhNFPrPtOlTlUJPn7v6WtHhMzmy2LUsQVntTKebpkRShtgmtIn5JTEG02w93j9Rdxas3r/j08S1aNaTkiGHhcHxkHAfatuWLL7+kPx359PEd47gwTDNzWBj/dqJuarQx0o3LMuV1VU2O6tzdr5takoNVwijHPC3UlaPbbPnipz/l8fGRFBM//8UvZDMukrqb2xtyhm67ZfERg8cpx8a15Bho24bLyz1ff/WGMA8QPYqG03GiqROb645xGGWSXVm++OJr3vzkZ+wuX1C1G8F61ontfifIz5Q43Nzy93/9Nyx+Kg2thcPjIymIlMMZe87EOY0Dt7c33N/f8/Bwx7LMhLBIgytJZ9TajKsyL1/scM5RV46qahnGhdkHYvJnKZ2rleB+kWNBVRlykqZaStL9TkkC/X6s17Lcyz6oKxrbEEuoK4wc+hPW2ALxqIkpMS+JeUrUVUtX1Vy2ll21Y7upGeaFfly4exiprGfTVTSNULucM8UMzLlg0TqjdEJbQCeMU9RNhXUaHyLLIkSxckJnfSPWQ5l47gR9GqPCGpH01nXDdrsjRukexyiymnmWgNYQAtaI0TdnmKYFpSDHTNO1tHQQoTcjbdvh6kYCIRUlSFQkNl1WGFtL077QrLTWkn0zSvFNSqIW0Vr8GdGTYhJ/QpkyrCF2ayffaI3OhqpIcbQVY3fdNLTbLVUhdRnnSEmmgmJMz2efVUgRnTUpJGJOVNaIFI3A3c17jocD4yjZO91md5bCj9NQnjN/liU9WS+k0DDGcHV1Rd/3kkPzTAL2XDaWc2YJEnSYM+SQz0qTtUBZpxXPZUzPiVur32X9nBXNu77/K+1SazHHN02L1ooYEw+P95KtoZ+8w+vnrWGAdV0zTpPkaRRTevJCCAzLgrJSdM3Lgg9J7q/K4NA0ux2b/Z7NboOKnpAU8yKp4JI4L8AfoWbJWhFDycRQCueepq8hLD/oef3hnox5LIecjHNGDvrlRXaVVKVdJ+PyYRSdbH8aUBi6rqPrttAoUNIhiCXcbvELfT+w31/jNpam2xJTYhx6Fu+5f7hnt92cK8G8vskhchp6pmHGL0LhWaaR4H25tcTJL4tEkeAAZIU17kwTkhfUlMVAFXRjWRjWNxqoXE2upevaNC3WDeK90BqrM87K9KMfjrjaYZyVsWDWtCVhtm7q888j+saA1gpjLdtWKEjGaEJY2O02gEwofKiFzGDsmZ8teF7RsMcY8D7x4vpSpCNakq/XfAulFIv359TflLN0Oo0mhg3ztDCOPcNwYJoC03Rkmnphe5/EtBRTQjtb0qtrdrs9KQrubOiPpLCUm9zTblsUC9YGrnctF5cdbVtRV3D/0Avn3ccy7vdoDW1bl+TmRIygjaB10fDuw1t8MXfudxdMfoGYCSrx8eFWoF4p0dkGpxAjlRa5QlaCIBz6gZwylXNcXuzZffWGqq6Zhomu26OUJaPxIUBWGKXZbRu+evOKqrKonLi//YhfZtF0336kHwb6YeTm9oZpWTBWks+VtqjSoVlHuGuQ4Xk8mylTHFNkdKZQsQzGibwBbUGJRI8MEiT74z0cACLhycImN5Uj+UjICRVD0fOWqbVSpJDkJbSaPns+TQvurudm+CmvNzUba6XPp8T7JJ6hXMh0GacbattSu45td0HTbKmKHvjx4YZhPDJNJ6bhgd+//Zbbx3s+He8Zk2KY5ZCtTU3VGkzOaKeoa+l4aVdhlCUXvbEuicslPbB4BkXXSmlqKBTRxMKPF7rQGnCXsxj1Pn26pW5aXrz4luvrl9RVi3N10WgDaFl/TGa72fFPfvFL6qo7J9rXzYbt7opp7rm//8A43TMOkjCcdS73EDTNBvVssptDRieD05baOsgBlSOKCP6x6L89TaNEw4vciyFE9Ozxs+fu9pbKdTTNDmev2G4arBXfFipjrKbpWmKSQ/TiAynP0kCxlrpw850VGWzO4tMJRW7h1QJZSIdaS/Gy31/QNq1ozRfPqR+Yl0UmkwVXq4187esXL7DGMbma2lSoJJ4XWzwKlauxdc1ms+V4fCAlXb53Tbfds9lfsb26wtV1KfZFY+8qh9YbkX2MAykErFYCN1QZdKZxmlTyC/wioazjPHE4HTgcHjmdjkzTyLJMkAOVA2s0VS0EI0ERG+lKF9+JsQq3GA6niPcJ74pEZlVjZoUtJuIUhJD4+LgIAtX/ePVSu51FkQjLwozkPMmeLX6vEGU/CHEiZZEkpmAwlcGWA6XRCmcMzjgqp1mWxBRK2nKEqspULovs24miQGWYplkC/ZZAzkJnrBuDVhWHw4kllzWMp27/ejhdL9mTDSu150lyU5KU40pyEtWAhM3K1I4imZKQt/L11j0ChTEJV29oug31phWJU0okHzAmoI2jbmS6rnSRSxlFlzLT2FHVDVN/IgaZEIifRL6PZFw8TQXOhUZ5PVEVVdVQNx1t2wkNq66JORQJkUQU+BTOidfDNMheWcLyVqm6A1KZTqwSKaEFikegqVtilKmfSKRiwa9KVVdepvNhf5WlPydPPc8QeU4dPVOpirL5eUjhH37Oc/nU88kDcJ5krPfBc1+I0eZ8DlRKaJbjODAOE9p8jg1ev9bzgkghZ8OUUpHKp3MQpK2UxBIoRYgRHTzGZLSu5fygAbUmm0v4YHljWdHH6mwHQNDlKp5fB13OIP/RJxlSTS9Yo9hsxAQNonMdBsSk2ghhCAzTNNP3AzmfAE3bbMVnQIVSieAdwS/EEOn7kd1Oi0ehqqjbmg/v3nJ4uOfx8Z66rmiMJEHWVcOp7zkeTxwPB5YlFk5+ZJxG/FpkrJVCGVc+icr0WbbkXEVdNcU1L5/Ttp2MSPWKSCvUHysotqqq2XZbqfTkG5HSQlNbUvQcTw/UtfguqgQ2C3mgaaRLPU1TWUTKKFdLp32/36G0kiTKMNO2V2W8OFHXlYw5C5FBKYrUJqGNIIWnaaJtvvwM29Z13fnmHoaBuq5prIGUy40ZqZxlnifGcWQcToQ4EgqO8/BwRAtTFr8cMc5QNTU5J16+kNCj4CeOR6n8g/cSNrUBpWacjbx+ecHF5Ya6cVinuL//WLjhoruOMWCsoq5LAZR0mSK1aOMIOfHdt79FaUPbboSIEzzINJrb4wPGyCKsa2i1oSpY2CEmAlkIEqcBgKZusF3Dz376U6Zx5OPHGzadwWgH0ttGkzFWsek09devWKaZcRz48P47pklyYu4e7sgPj4zjxMPjEVsXeZuW+yQnmabkLJg48emshj/O96XWRYJnjWh/rcAIBB1oUcqCMk/SP/3jlTkAJevAYJTB1I44zsScyTGiYjwj+hQQfSAqJTI2FHGZCPPE98eRthYePhrxCJWvLwZdCEFR2y3b9oK2kdDQdXI5TT3fff9bHg439P0jOS989/57HvpHjvNAP2eyqtBGpBG1qUjKEHIQGYHWKG1ZIT0hRjEXr+bInCGksogLslkXuowJkUjxPazttgwxZ4JP3N09oLVht5Vcoos9RZNbNMPIGpXxNG3mzZsviWHtOGWqqmOzu2JaBmzVMc6LkEeWIF4MnVEGrNkipvGFZZ7IXsh4yloMBqcjGNBEYhyghDx1reC7Zw0xanmPgsgE+/6etlkw2mJ0YtOJ2fnDh17yjDQ0XUtKgaHPZ8lTykG6k62sx85VGOtISZ+RoM7VZY3WbNpO/rnZsL+4KNNlkY/e398DibauSW2N0J8U2jouLq+wtmLsJ+JmxqRM8D1+OZJDoG5auqZhv7sQ026W5k3VtOz2l1y+eIltxXs1LxPayuFufXbDssAgk/Smcqjs0SqiUeTancM7x5PkFfXDwOHwyOHwSD8cWZYJHyacU1RO0baOpjG4si5oLfeCq6TRZJ3DOE1faHqLl/T61VKQcxZZVJLDRj9MEqDqF5b5h3Uh/zFelxc1Qy9ZWFOYaFuHsdKF0VqJHzHAMM+QNTlpYjQYpaXQT5kUISeFyobKVkJo85FpFoBL7TPeJepakZPBOoVSmWM/swSPL7JOay2VExR2P/SoORcjsDqvZc8lOkJoWxGgq19ACoQUE94HcsrUdY0PMrlumuYc2sizvWNtxmgMihVwUFM1G5puR7vdnr1vyzSeNfgy9VrXFPFWOmuYxg113dJXFfM4iF8lilRGaUtVS1id+IWiYFiLfNxohdU1ddPSdh2bzVYiC6whh8S8iPSxqWqhCJYzyjQOQgrUGuVskT3K1+uXiWkM5CweSKVENqyNo22bkvQtf//csyAFl/ymzycK66ThuUfjv+96PuFYz1bP/99aSDynQT0nWT2fRDwncimnMFB+JyFInQq1TpXCc71P1q/1vGkMPFEw/SLnvDJdcVgqrdHWSRMuRVQ21M6WRpX4bBe/4INiWdJnv6P8Tvo8jbPWoJIipVim8fp/0FnkBxcZd3f3GGuoa8f19SuqqsaHwOF4wC8LxxiYppHtdsduV9F1kmB9Op04HB55fHzgq6/eYK2mri3u6oJ5EhpDTJqbu3u2O8/l1SX7yz1tZxj6K77//Xd8+nhLXbe8evWaV69eUtcbKttxfyukh3EYeXw8EnyRGBVj9To280s8U6S0lvFk08hm1p9G6roujHKDNkImadqaceyLLlpupr4/Mo8D2UsAoC4au9PphKGR7mIjRBGJpVd0W6FU+TCzPI5nbV9l6hL6JInB49iz6VqMUizzyG9/+2ucq+g2W9lkFegEw9jT1OLl6NqGuqqY54r+pMsGKzf8xcXFmY50Op2YxkEmDylyOvW4gkt8+/23LPMsTPm6pm4s87gw9CPJi/Etp4QPM9uqpqsd+21LnE9Mp0dSClxdXzDPI5VJtDvF1ZXlcDgwjz3K7PHxhPIV2jRcXFxzOEx8eH8LOnB1tePycsPFxVY6QJVju9+y3b9Gm5ZTv/C733/H//Jf/q+42F9y8+mWZfGCcnMV7XbPrCJHPxP8wrVtaF0lunZlOUwTs5/ZtxuOQ+bx9Mivf//3WCradsO2u4Yonp8QA3XTsNs4Qhi5+fgOqy3H44lPnz7xb//tf4s2jozicByJMaONxdWtbGReHuhpnMgs5BxI2T9blASLaPQ6zTLPOhMKSEIUUTUhaTSSjeFsVczCihB/3JOMeRzZtA3W1Ywmk9SJpDJZKVlESxcqBn/egMOUiFYRsmLJhv/2N99xHGf+5MWer1tLVjKJNFhaGoyu0NZhL1r2Fy+oqxo/9/z613/F99/9jl//+m/4cLyj6xratiaEGZ8EPvDi6oKXrkG7FmM39MFxnBJjSARqlliSYtFl05buT8xBjLYqE2OQqaF4JUVGaCja2loCLwu5I8WnQiOExMP9QQhGweOc5c2br3hjFF1rSkimoaprclYc7x75d//uv+Pq8gWbkmpdt1t28TU5a15/8cjjwxG4oT8+orU6y20kJyEQ0swSRpngIV3Jh4ebMjrPaKO4uNgSUuLhNGFcyzRlpioxzQobpKBPIeOMY5ln3n7/e+7ubwS5WdWkKPQ2XTp4L16+QmvDNPvS0RVZ4DhOLD6It8JV1M0GVzdFUiYITIigRq6ur6nrBmUsnz59ImWZGC5zzzz3TM4SfM/Xb75A1QZTWfbXOy6ur0kB5tNEHAb8dMRPj3S1EQz7Zsf1ixcoZRjHnsUPOOXop5n59obT9C1KQdu0/PSrn6GbDTEL4YWYGPoTYz8w9CfmaSAlD0QeHh6YF88ye27vHjn1UmQ8nh7o+0e8nyBPXO0NdSMTDJleWJlyWoP3i7wnKokR2YK2mv1uw+F4Yp4yx0PkonMEH5jnhePgOZ4Whikyzj3kRaQp/sfr7Wob8VXEAIfHE0N/RGuompqq2spkwySih6H3+MUTA2xQDD5xHCbGowcsmRWP2mJJpHlmnjXLktEqUlcZ8iRfv3Ychh6loW5lurjZCFp2nhea1hKCIywzFCP380yBFZ8vz6HFuZbj8fS0FxjLphPFRtM0TNMgn2vF5+C9L6jjuvgpJGPLuRqUmHpfvHpBt7tks9tx/fIFF/stQ3/i5tMHfv7Tb5imqRCSEj55tNF0XUvOmU+fPjHNnm9+8U+5v71hKNKpp5TwhMrib4zBY7SibjrBzCpF122xrsZVLdvtnqXADLRRZSJSjOp+oW0aIcTlSw7HI/OKpx4GpIOYOBweUYWehcqFvGlBacFtHx65u7/DWvF15myFoqmeioeUEtMkoIdhGArJ7fM8jeeY2+dI3+cTC5D1e1kWrC1qkmdhhM+LieeFQUrps++5SqNVKXjXvwdpCrdtKwnmXqACu91WYDox0hQqoYAFZvm4WRrCxtqzidwah1VGAmid4+vXL3l9teObr694uW9RceHhvud4fCSUPI2hP0ABjcQQ8CGiCwRJzinrVKj+o2Lrv+/64XQpI6m4Kw7POUtVVzRNxeH4KJ2UJXA8nso417LZbLDWMs8z4zjy/fffs9937LYdXStj9YwmRhgmSWM99UeMjVSVYbNp+OLNa6xp8UvkcDiy222kc6gS1pabQiEYw6iK2UcJierZKPJJ/26KZk66mmuCobWOlJEpR11TVTXjOBaqA4TQnycUYh4WnS5aE1Ms2MpI30teRyrdpGVZJMeiJMN2XYs2RRubozy4SvRt/Uk6BMs0M04jKcP9wwNdt6UJDVXlSDFCZTHaUFnN6fjIMk/Mi0wmQkzn8ZeM8go5QgkiLsXAi+srMVoWs3hQmhwz8ySmqRiEfrLp6rOBXpsG5yLOTpA0Y68kjJFEmBVh6SkMLabJYEyk21SkHHk8HmX0pi3HR0kK7zY1GdjuKjbbSsalShC/Tbvn6uoN3faSqu7oukucq1mWwDz7gqHVqNpwOp1IIdNXI/u6YfOyxVpF9jNOQacdVeuYK8Pthw8MD4/sNzucqdBK7oEYPU0jI+xTfyTFzDSdeP/uPW/ffmSZPfPsOZ4CCdE/gzl3rsnPuhupYIfTAuthYKWXFcLUU4FRFhslWMNN21HXDdZW+GilIDG2AAAsMf2w7ss/5issEp6nKodxCls5iCVdNheYAlKkC+ECKXaVQbsGW3e86wPdzQkVFV/9/JqcPTmKkb5KklptVS2SAQM5jNzdveO797/jw/17+jzRbBvaTcumbaiqPSFL2mnIXohUxoFWdKah7RTHOfHh/ljMhsJsUhmRwyjE45XXYrFIHZ5dzxdmrXSh0SjITyP+dbNaZs/NzR1//ud/zsPjAxD56ksjwYHGoYIhEwjBM00THz6+40WMtI2YxlPaElPg6voL3nz5C7Ru8IsYQ1fqYN/37BrRCmtn2bzsiD7hZ08KEVsAG5AZhkG6v8FjzUJtLbazOKepglif5lkO0yDv2dj3Mo0KSXKU9heAmP2NlobG1dU18zwXWSv4mIhEdFYkNE0rBljrHDlHrq6vMIXaJD4UWQevr684nQamccJoUzTEM+QDb999x6s3b7jqao7HexSOFMEPC2pZSH4k+pnBB2prqKzl8Ph47iZvdoLCff/xE9//3a+Zwshms2W3v8DYhutXX6K1mNbj4iWQ0c/4ZaY/nRjHnn448ng4ME4z4zQzDDPTPDFOI4/HO3KcsBZ224q21Vgn1CSlE0aXYk9TyHvqM8mk1oqmtfS9Y54XbpaBoV9f98joM6cxModISJHLbUvtNPWPN/CbefZYJbK97bai9uB9ZJ4iIYyCD3aGnBSLB++haRTTLD6A5A0+IhlYVUNCM88LSqUCgJHpPSpTV1YUF9EzjBFyI53n2dC1G7bbLW1TMU03TOPMNM6kLKvA50FqTzKeUCYUzjm22915L0gxFYy6IcR8xugLibMq+4Xi5ctXHE9HAQT4hZDEP1o5kSptNxt2ux0vXr6QA6w2dJst4zSjlSgr+r7n6uqCqhYZUfCBGC5RRQLUbfcY4/CLrIuCDbeMQy9+wZwKVVI8Ij5ENrsL6lpyebTVmCxkTflYh8QKKHKIxBAYonTuFy9Sx1wgMKkE+2pE0rNKHnOGZfEM40jTNNIUrKtna+067V+zp/JnRKbnhm3gs2LgOeY2pXRWxKxFw/o11v9eP2bNWFPFA/bHSeNPBcv6ta0RL2tTi3T3D03iUlgKjAQ4y7DGcTx/fFVVBC/hpCk+PcwpSUq5XzxaKV5ebdnUoNPI6W5hOl7CrMhBUtbXM8V5bypnZqOfQgW9n8t05Y9lXD/k+sFLjXUVKcQyioxFG2toW4cPslGkeTkbYdYXveu6MkqKHI+Pog1TWUL5uk4CQLLGuJ55mVjCXCr4CmsM2+2WnBzjIBOLeZ7E1DJPqxqqyCMkaG6Vojzf1OXPU6ERQsSYiNartEiBymUCIhrEFCWNVbt1fGfPFbvWYsJB5TLN0MyLJ0UZ7YdAqf4TIYZzkSHjVTH1KONQMZSDvmfojyKbCIGx71n8LHrkLCmPKpexl0IkSeW0MI+DLDSlsxBDKqxu2YCsFdKGKWF4wDlJUgGbdkMKEikfk0jPtFLCdC+jNa01tspAwNkFg8JHMKqkd6eZHCY5cBlNWHrB7FYV2mrmk2eeF/ycWKZASoFuI8bYtnHUlUEhaD5XtbTtnsur19iqxRhH1+64v79nnkdy0dgaLcXUGGdAUsnbpiI4WAwE71GxpLfrYsBCU2vHfr8/UxnkBvIInjgzDA+k5OlPRz5++MRvf/ttKdo0s8+FOoFIFpD7LUSRna2jSeluy+u7biAgvoGcnj/QJbhIifbR2qqMxVXpbImUShtdJFPPJDY/1ktBCnIgM0WDm20EmyEVo2UZeWsl0jKVgajQlcXWDSe/8Om0sNETU4CYtBzwk8Ukh8NhlCV5z+N0ZJh63n34jrvHG0Y/YlpHXVm6RiYZbVODSoToGaa+IEs1WSVUrbFVhXGZ++OJGFQ5RKgiSeEptXVdkOCP3qc/3KR0CZrMGZ5wi0ILCiHR9wPv3r1HG8311SX7i2u6NlORRUJXGgdNU3M69YQwn5sWxlmRLWzkOVqWSH8cmOcBbQKoQPSeXAlWtdttQTumfiqegAisgWArmlEyRoiLBH9aJbpuYyRkc1kQ5L/GrBLAEgYag1CxJItoKfpox3ZrPiuaxYgqvrtUCi9jDSYbYopsdzsqJ4nHtavKzQRVW7PMkbB4/AIpigwzhcTHjx+xlcPVFlcvVK6DrFmWmQZQSnwnoUxC52UudKAFYxXGVSg0fT/w8cMnpjBw/TKhbc2wLDQlaGuZF+Ii0rNlnhn7nuPxQH868nB85HA6SZExziX7Y2JeRobhSFNR8qcsTasxVvxFZMGJrsGsa0ONQn2RCVouMonEvESWZWaa5HNTgpg1WekylYq0bc2uc+zaH8a4/8d4+SWQtMLqhLVKfHDKyB4Wy/5LEsJTlvXXVYoYDGQH2ZFZQFeiU1cKa8UnV1W2qBrkezlnWJYZvyykacLpIkHJ0NQ7atcU+mRgWQLeR3KyEsb5TD6Ti8kZKFM3oR9VVSFaokqzShdppcFZw9N5Tp2bod1mwxI8iUxIqZj1xPjfdp2EJjcNbV3j/SIZWxcXzNMgoXdKzjvOyfcAaY7VVc3V5RUPDw9FNm6ZhgmlcjkYu2J6FlxtVdeyJKSMzoGq7qibpuD4M4l0JupV1smsPqWzrCeGkkEV43nvzIpSZBTISRbvmkaM0T4EpmmSV0Spgt9/Wn9DePJa/CH29R/CycLT2ryeGVdj9/pxzz//+X8DZ/nVGlS6BucJsMH+kbxKXutUcNdPcrrnOSQhBDmLOvVZ4fMcaftEtuKPvv7qf9Eqs2ksXaWoTcLkiJ8G8BDjgrMCl1Hq82mM1qqcV2VvikkgP/kPiHT/0cP42rZjHGeCDzw+9nIY18Iiv77aM4w1p37g4eGRaZrOVePl5eWTaTsvPB4eOb4/Ak449e1W6AhTzTgO9P2R0/GOoc8467i8fMmbL6+kG5wzf/Gr/477+wf6U0+MmuADiw8scyDnp4d5RaSt1a0UCPrJQFnMWV3Xis5siWw2G/EjLAtJNBFUVY01TogJRkZckujbs2ZqoA3HwwPLPONMjTEJEDNemJeS+Jil6k6JuvZs94qmllHecDrxaVlk/0iZeRq52O/PiLNpOJGjJ3ihVPXHAysi1xjRSK4PhbWCewsR2kYWwBQ9de3KKM0SgqfvB4wxfPPTn/Htt79jGHqWZcaYxKZtqJ0mh4mqcmidQQe8n7Eq4HSg0hbjpAgwCtIskxkVBT9KMdtvdzuO40Q/TXx894mL7Zauq+i6DaiaphEZhTaaqunotpdcXL3hpz//53z69JGPHz/Q1C03n+4IIbDb7RmHmWnypDRQ16LPrGpHd7nDOyVacxdJccZFj/WW1lzwiy++4esvvsZsWx7HAeM0bVvTDyfm+cQ8j7x9+1se7w8cDic+frrl4aGXvJEsG7ZSkvYUfCwdBjHWda+3pXsYqJwllvpFOgC2yO5iOVTKfZmLmVsXFnsmE1MgB42rOilOrWw4oAvR4fMO+Y/tqncbeS3Hmdq0RG3AOXJIqLjqQBHsr1XorHCqZQ4ei6auGpaQeZgyb9PCt3cTl0azURW12aGXTZm6Zn734W/51a//nHc3b5nSwv7qguai42J7DWQqbXDGYHSmairJg4kTjdGoLIhErWe6tqXrHKeh5X4KTCGzBIhhKVVG/mzT+sONCZ4OHE+jeYUs8PH8/Cr1tOEFnzkdBz5+uOHX7d+z3V7w8uVrLvaXgBj4urblT//0T/n2u9/TNjUpeR4PI03bYGuLrWr2Vy/R2lFXHb/9+78h5R6tobEWkx1NVfH6n7zh7v6BT4tn9pMUs/JDoxRFiiArX1xGtA4o7bCmIzth79e1IyUh2m26DdvtjqouhUC+OYM8pmmSDJhyGFmWReSjVcXV9TXaGIZh5O7+QWSnpYqzlax9TW1pKkNdtcyzZxgmTNLUlWQfPD7e4X0UrXIQ0s/d/S0X313wz/75P+fLNz+hcg0hz1xeXhDmxJAHgjJgYFpG3r//xLwMGAObTcXV5Wse7+7BR5Ypoqiomy27y5fc3j1wPDzyeH8HK6Y4RJZ55uHujmEcGJaJYV5kErsEpmlg9id8GFniiZf7a7abmra1aBNQZXIhm/rTAUIpkczFmJmmhWVZmP3MaTjyeLRMS2L2XmTNzlI7S9c5dtaQcqTve/bbmv2mYtf9eEcZwyjSMqMV206w7G3T0LYXHPoHhnFgPM5kNrTNThCeVjMNFcY01FVL398QE0zzXMJPJU9ps9mUIGFTICxeDsM+MAyiGPAxEkJku7lEqcA4jNzf9sxTJJWG9PPn3xQ8sxSKPCMVyR6gz00H8ThYVwkoB2k6hiDSGVdVKK05DaMEgDaiHaD4TKbF84sXL+i6Vp7HeaSxmnZ/yX6/5y9/9edM0wg5YW3m8HDHWvv0p56Li0tevbgmek9dOaFjalGkSCK3Yp5m5nkS2EyUxoixSl5j58gUQzKJaRyZ55FlmtluNpAz0zgyDSN+Wc7TgnbT0dSVYGiX5UyKKnE+UiTWzVnutDY+qkq8tW3bltcpYO2EUqLiWIuR58UGPF+Dnw7Nsj5LY+MPDdt/WISsh/11IgRPEvU1K2OVQD1vKKrSTIwhME9jaUJucG57xtseDgeWZaYfegllfTYNWfMyzjKpZS4QHX/2/Yj8amLT7rjctdi8sG9qXuxb3lzviPNc5MkyGTXWoTJY6z8riuWKZ79yGb2fX8v1d/sh1w9eabQxXFzsUUrjl5lTf2Reeual5eLyiqqu2Rt544ZhIASREN3e3opxu6m4fvGC7W7HPC/c3T6gzXdM88Q3P/spTVNjjZaxWk6cTkeGYWGePvLNN2Iqb5qKyxdX9MPIw8OB42PP/X3P0E+khBiZ0OdKTJXJxJppsS7Y1rpnRYgcjim6Q10ICNoYtrtLMV0rLWm3+amqbJoOMUQZamOoq4oUFvw8M89zMepEjscD5wZUUszjQopCq4rei1wpLExjLwYqpbEKlmmS8WAMjOOEVlLBXlzscVVFRjGOE5vNBq0NFsU0TmeJQ4iRUw9i2p4lVTKD93N5T2rquubm5iM5BYzOGB2pTMYqj1WgncfqTM6BeRxwVlFbi7OWaVpI8wDG0XQX1LY7hwF2rmFztcNtWm7vb0AldrsOq1+TQ0AhkpCLi5a6HB6c69jsXnL54ktef/kz7h9vefvhO27vbvg3/9X/iabpOB5PTONIVTXnxfv165dAZvEzp/6ANtIROR0O/PyrnxECqGUhPDxijKW1mjxHdq5i9jMPxw/87tu/5TA8cuyPvH37kcNjzzQtzIsHZcVM+fyhylIYpCwcddfUMqFAeOcplQlX6TIUkIb8Kf+eUsaUYhdKNJM2GFNhq5aqqqlcycnIRpCXyyJ63x/xpZuaOHji5CU8rXNgNDlG4hSJKUtgndbSDEjSdVFECDP+eMBkqFxLXTUM9SVvNlv2umbrK7bbC1CR2Q/cHj9hO82Lr15QNTVN10mopdEYLZMmpcTsb2uDTrC72KH8IgQsMp6FMN+hsuaLHXSbDY9T4tPjVOSZn3dznne7WL/+M33vcx2vUrlIYESeIQXkOunS5CK//O7b7zHa8bOf9Xz11Ve8efMGnQ0+BMZp4OJiJ54HDcsycRoOIiHQiouLK6pChfn+3e/p+5EwJ6y20NTErLi9ueO7775jGHoBMSgxeedyCHK65tzxUqps6J5xGfG5ImRLSI663VNXQj86no6kg5BIdrsdt7e3kBNt27Ldbs+ds4uLi/MmnFPi+/cfSFmkSiioqwpjBfk6jBPLLBKzFHtWatfmci+TbMZyGLLk7PE+kfNEXVuWaeCvf/XvUDHz5Zuv+PonX9BWlo/vDnz/8QM5RrZezN+6MmSvOA0DH28+8uHjPeMwM/QTVI7d7prN5pKbTw/85Z//ivu7G06He5HWBJlOx5To+x4fQwkilXyYzc6RAJ8jOgc2O4uyCxiNdWvCs7zWKQnEIKVcZKKJZfFM08LxOOCD+FTmeUQivjVVpehax7at2bQVbSP7XIyJyogpGTTGVv9Jnvf/Ka6X1y3jsDBOnk93B7abLU2daBrY7hzWdRhn+fQpyKRKQeW2bDeyZ2eiJGQrCam72F9ydXUlE4BNx3bbscJilmUmeU9YAn3fc+x7aQxOE36OZCKLT/QnT4yKnA0roWftTgOUwSdLFOmPj4kwDHTdVuA9Sg6u292ebrul6zaMw8Tqydh0HUpLs3S3v6Bp5flYvBeiVpADYcqBYTjS9wc+vPe8/uIVy9xz8/EtyzywekxzTtzc3rDMC1pp/OIZ+57T4VGonfMsEvSkz8j9pm756ic/5XQ8MAxD8Qn5c7bR+ifGQMqJeZqEojb0WK1x1lK5ipnxbDBWRjPNM3nOTLM0eJUCqzU+ZrrNViiQ83JuXrdte/bRrtKhZZpZ1IL38ve+ZICsBcHqfVhpX13XnacO5585rXu8/qwwWL/OHx6u13iAtah5fHw852h8DiDiXGAkcslwgZQT4zRR1RI0G3yg70+SU1KM4p8VFovkB6Wc5GxhhNZX1/X5dyGLZ+tnX7/iX/zJz/gXv/yGba1xOqNSYPEzIszQ4i8tgIiqqj6bwqxNbGstPoTzRHUtuFZj+g+5fnCR4f0sB/26YXaaZZLD+TjMWCs6SGsNbSv0oWXxgtTyHorvwDpL11Y0dYasSSlyOD7w7p1hv7/AWoOztiAJZ4KP+PLCC6GtI4MEIxlHjKNgU71IVOTNlGp0fWOfy6Se3ywxSlc4piDVuBEJhNYiZ1oPkmZlbmeYpqF0HdNZ5qByudmKm1/zZCjKOTHPVamApasdg5g9pSDIovV69uDHLNjOnDJr3pgu5IklLsW0HQS/W4grT9KsiFUyopN09rHcNCvWV0a1MQW0lvj6eZ4AYVUv04ByclPomKlsKofiQI4ejCFFRVTSYVg1fX6ZpUhLMgpEZbTVWKcJo5cALbIUfojUQ6uSkKws4LBuS7e5ottcUbcdsxcIQLfpisG64IaVpB/HGIgp0m46YgjnbrIkewd88hznHrVAHALxMPLmxSs23UYSyJE07+PtHW+/e8dD/8hp6nm4PzIM6wIL2j4Foq3ykeJhEyOrKSGLxTOScjwXF+un5TLyFQnVky5frdVn+Tpay31tjDvnoWily3u4pgD/uCcZ2hqyTSJHjAmKfMw6S/Zwfo4x6CJjzKXLlMuUp9aGLZoWzcfHgS/dhqvG0dZbtHX4HJiZCSbR7bc0usNVFXaVQZQDHmfelypyAyOo1AJIiDnJZCknVNY0xkJlyGiGqWi1i/fqD8fv/77r8wlH+mwTOlecrNMQ2byOx5737z9gjC1m046u3eD9wvFwJISZrttKeJx1sgll0E7jjISMKhTX16/RWjEOFmMTrt6ic2QcD0zjiF88isyTcVLW0ifufJFIled5mRfmmAhJyFvd5qIUD/J+zfNESrEc2hBEs60KpeTpj1AHRZZijZBs6lqQ1tYZnHMQRAa1hEQMHoUp0xXP4+NjIc1E6kY6mylllkWySYZhlDUvZy7338taYTI5Bj69e8+7jx/IMbEZBItbuUaMlePMsZ849aMQAbNiv7nk4uKKi/0VPol0Zxqn0liz+KIv78eBvu8JMZBVpusE9CGSEs20CBHRWlWwwmKyB4EYpATLEov8NhbmvYTOTdPCMC6sfq62aUsIoCYCxijqytA2lq4RMp0PETutsksHuv4f/Sz/z3XVTpPqcpjPcuhagodFYatVlqpw1mKKPDmnhDJl7S6FvHMVTd0VWM1OnquuY7vdoJQ0kdxk0VnWqraRZmc/DNjjkWlZSFhyqujaLTEqyMs5q2GVbq9SrHWdV8aiisRXFakTiMQrZZlsBr8gSFbZf5q2FQmNsdRNc57yKaNJ3mMrS+sqNtuWaRhlyjULFREy0zzKPons26fTAw/3d6LdLwj/VGSNwzgQkjQZqqota6RI9qwrad26+KWsO0/Yn4qMSMrxXHCLDDyu9rUz7EIbjXG2FEmBZZ5Z07IpBXHlKtqmZRhLwVUO9WsjJ8Yoxv7SyNFlHV2Jc2sexh9KoJ5kVOm8Fue8ruFP6/C6Vn/eHHpC0j6nVn2G9v0D1O0qbdLFRuDcuh9pQiF4SZGYz4qTlNNnXzP48JT3VrzACnDWymtaIg1eXu348tUFb17suN41VCZBiixzLO+lSJD/kLK1vr7OuXPo8qoEWi85+wgM4JmN5D94/eAiY5pH9vsdTVuJ0czBMi2Mw4IPB7a7lt2uo2lqjNEsi+d47AlBDOHLMnN1dUVdN1RVzYsXL3n79luOx0dubt7zi5//Cfv9nq5rpZiZGjmQp4X7h3umeWRedozTLOP5piOrU5lgrC+SFBlKSajTqjVbR5Fk0cTHGAhB2qQhBrquKx9jSgVZsieWhbbpqJxUzZIVIlz5VPCUZEF8yeFPOnBPI6VM264PgHT1vJIFqO+FXOWcoaos1kicfUwZYqaqCiULRdU0RW8sr6kyM91mw0+uX9KX7uO6IGknh1cfBpYi59BKoZjOD4yEAoo5f5omjMpEv3A6PJJqyHMmVhndGkiqGLoTOSp8WghBcMMhyybeD0dUthAjMXkCC1kFwWUqKXKkGFxobCMTG6OpXCt5AlRUzRXbiy/ottdoW2Fy5Jf/5Jfsdpf85V/8mmUJGFOx3ciGMC8Lp/5E2zYFi5qwzgkiOAWUgduHG+KcWQbPzd//nsb8GZ3VOA0kRToNHD7d8t3v3vE4nRj9XA7y5eHSuhgC1uJg1dDLQmRK3oqzEkAUY0+MU8lKWFndz8xn8HRPFs06ShLlXeUEk2wdpuQEnLskMZG8Jwb/R4biH9ulraAKc9akGMghoqzCVRUERQ6lSI3iRaJsWjkU30IOdFlziWIfFb9/94mfui0v9Y7N1Y6sI3PwnNKI2lRcFHT2ujanFIh+IgdPZj0IAGXDd67B65kQ4/l5VEiTolJKwryVZQ61dJfIoknWT6m+f1hkPP+79VobDzKGzmdT3XnB1wqVKOtN5P37j8yzYA4vL3e8efMly7Jwd3fP8fjAy1ev6bqtYJ6rmhgiPixUroY2s+12PNzd0zQdj4+3pHii7XakMDMv74ghS8EHZfK63veaGAQxq7RGWwtKlRwQj18CSwjM0fPKGLQCHzzWmmJMH2WNMYJ6raqaeZ5KA6qssV1L5SyozMV+i7YWrSwxZSpnsU4aJ0tpPC3TQtNIJ3IaZw6HXsyKRtG2rXhDMMyTZ5oDh8OJeL9QGZkGPx4euD/c0fcnDvePPNzcQkw0bUPbtlxcXKMQ7944e/rTgdo5Nt2GqxfXvHj5kqvrFwyDp2s6KiuysCXKazEuE+8/faQ/naTTnDzXL3Zoe8Vmq2k7y7HPZGLx58lrqyhZCSUA63SaGUeZqM7LRIiZJUSWRbyRXWtpm4qLbUXXCdVw9olj3+MsVE7RNCtqPZcN0pF1RVY/3iLDqExbCfikbiqGMeBjYBkjDZp5Tixzom23VI3kiaTsiWkp0wWR4NR1w267Y7/fs9ls6bq2yKW6MkmK6AyNcwIc8FuGccPxdMQ5zf3jg2Q0Wcerl1+guOGoTudnVtCq0o3WyP1ZVbVIVNDkLBMlXQ5umcy8TCKbjeF8P4AURNZYjHXUVc3D4UFCPo1mmEd2uz2b7Ybryz0fl5lxFM9o35+k6etnjGjwWJaFb3//uwJ6SQXE0BBL+vzhdMS4mqpqaFt7PmRKVo6cmUKIOOfkecv5TDsSo7Y0Z2LxchltxYwchSC1FhLWOqpG1tFVYrR28IOPOCselNrV+MVTVdUfGbmDD0xpPBcdSilplijxu4QSQ7AWGevnC7hnbew8+S3g82n08wJinSysH7NKmFYfBXD2YTzfC84KmbJG1XVN07aSO4Ls75wbXRanFFGLb8x7f56++MVL601rMJoh9KQUqGwroA4MlVX8s198yc/eXPFiX+NYUFEK12WZycqeRT0hxLW+PUvBzlI+teaPPHlI1+upyPhhZ5EfXGT86X/2J7x/95bb377nm2++5nJ/Sd5qxnHhcHjg8Hji8fGBN29e4ipH19WyAPQjy+JZFs/9/YmLvXSzNpsN3/z0Jzw+PvD73/+O/99/9//ixYtXfP3VT2i7mqoWylOKCu8X+vHE3/3617x7/xGtHCQjRqsQSTmhTRkIUMInWHXvq3ExirbPOaq6KnKhqozp5XPneZaxciU3QbfdYiuHtoq67jgcnbyplaXrpFsmsrDhXHXGlLh+8UIOiMA0XfH4eM/pdDwfMNefRwxmwvQOWaMq6Zos40y12VDVNcoYYoZxmAhK01jH11//hN1+T1PXJVlcoaKWDX0WTW7VtMRxwlnLfrtlmUdy6bILSSszTTOHw4HKavqhZxh6NlUn4WAhl8AYeQi1UnRdIyFHPkhITpaNy1jF5moLOeHngXpjqTqLrTWLXzgeepbJi8HcBra7LZtuQ9KW3e4lu/1Lvvz6T3nz9S9Aa079kZgSj48985Rpmpb9/gprLFpnLi9eEKOwt5vWEbyklb57+z0fP7wjE9lvO6wyXF+94PWba5bhjrvljng386K9YndxzctuT/fNn/D3v3lLmN4zzoGognROgZACnzU3lJA+zvrKMlIPIdC0DdNcplNxXVyeWNnwTJ9ptCTJqyTJspXDrZtP4aFrQ5H6gYqJeRrPxdSP+bI+gLNgHXFUbLsNVAavE0f/QFYKdCYvYvLTKePqmjxNqKxJRnNcJlx7xcu642rb8pMXP+XF/hplavrlnqOfOcXI/uuf4UriumjZZ4KfSMuROHvCInrrlDMmG8CQY8K5lvPakYJ0eLSmqiy972lVxTdXGyqjuT0MPJxGsnoyG+Ysh3RVOmL5WZHxXNcrG/WzcfozwkkMofg5ZaoafOT+7oFpnGha6dBtt1uurq7427/9O3IyXF68pK5UaeQo4jGdPWVGGf7sz/41Dw+3PD7ecTjdkcLEcHyk7q6w9lMpMsQYnrN0yYw2OFMREyQfUMbSNhu2+45uB99+/5E8zLT1hmmamRfxY202HZQsoMfH+/N0b55ntrsLQCgotjU4m8l5oT/JpLhpWrpuy7ZrWXxgXOaS8KzQVSUZFEpTVY6uk6m396LjPhxn/CJj/67r8GEmJQdi7eDTp1tu7+74u1//hnlZ0BlswUlyeEAZRXt7Q+U6nK2oXMWwREIGVXm2l1seDjcc+wP3d/ccjh/phwceHu95f/OBYRgKJnQqz688wze3t2gbqZvMdruX5xrDNC5sN1v8orj3I9M4lwlGYBi9NBiQorOpDZttS11VdG2LNQpjoLKK2iVQlkjNvARCyJyGmc2uwTpbZK2GECqmOXFzd/yfaQX4H3/FUIzssozQdS1LzPRDKGGvmRQVbRdoNzJJe/XiZ5wOmX4YOR4P0hUuHfW2bakqJ94jIsNwKqFyLU3TMfYnKYbrite7jqurPZeXOz593DJPM9O0YNF0dUM/jQzTyM3NDdM04/3COA7nMDhrLNtuB0ozTp6EIqZISgGj1VnLvyZFa20w2jIMJ84eUBJxmVEaKuvYXbyWJuUy8ld/9ZYQpMgZx5mqeo1zllrVkOF0PHI6PpKjwA5iiAQUtasIy8wyDvh5kXwVU+G0EXliWkhJuumKXOTXT2vZXKROWos0UMzLAgdSWQJytdGYqn7ybeR49iKsh3ZTwv0Aoo98ev+RT/oTx/5ELFlB60FYiebofBBfD8LS1DC0bYuzDl9w6Ov3egrjW9de0PpJOiR/ivs2JTJPEKF1MrJCLNZ8jBACTdOcC5p1LU9JckqmKeNK2rtxNXXKWKVKbk9fwEWZ3XZb5KABBYzTCDlLQbzZMc8CGLB1RaeBtKD9woumYdc1XF1u+S//5T+ldhkTeuZ+IZEllLLEv69HmrquPtuT1iIupUTb6s+mzevrdp4Y/YGn5T90/eAi48s3P0frivv7Tzw8HMjbiqZu2e22pBSYJs08S7jZ/mJH2zbUdcNms6GqIvPsJRcjSG6DNpmqEh70q1evgIz3C7/97d/z5ss37HeXtN2WZtsxzj3TMnHqB2LI5yp5WcpYsoTrrNfz6mx9QVYjl6ue4uFDiNS1LRugPo+KJLq9KeM80ck+Hg9oo3B1RY4R62xJGo/M83zW5wHnhSKndGacV5X7TKd3fkgoEqasqNcDUQKMBGO5upaSqYxJjdLUrYTcLCEIzpfSFagTroQMNl3LcOql+x0EdbYaTINLWCOSsXGcMF2D0Ya27bi4vKK2UNlE0ypCmsg5QKlc5TWNZJTItFCEHGg7mWAFb2k3jRwOHo/yvmQpVrROYppLGYzj4uoLLi/fcHn5mi/e/Izd/pJTf+Lu7p6UIualY7vZc3l5dZYnOWfoNi1aGckHIzIv8qArbVHaYrVh07UcHw/c3n7g8f6GDzfvuU3vqZRj3+z5Zz//Ey43ezZ1w//2X/4rLn+75+/ffs+7h08kFYlEYl5H6zKm/gw5q9YgJXn/Fh9YQsSHdL7//n1d7bM96PmfwlWXBXTNz+C88K1f78dOl6oUJKOJxci+DCMkB52Tw5ASKYuP0q3NZElONqXL6xNLiJyWmd7P/Kx+yWWzoWtawJC8RlcNdXPJkCPaSh6Obi3L8EAeHliWA2SR7okcTQpmVYITU167Og60PcvcUoqYLN3+lAwbp5gbS4g1wxLOYIAUIyoFuXegTMOeCon1Wv0af/h3qyQv5QIKIKGQkf84Trz7/gN11fDF69d89fWXfPnlG7bbvWx8XnTJ8nWkY2isJHlvtjsg4Sp5RudppKla/Njz+Ol7Zp0he3xY71uZsChkOKeLtCNm8Qr4pFC2wjiROI3TgjGyBoUom/HaTdTakHLCewngW7/uelBZ18TgPcHYM247RSkE19dq/X0qJ2Fiq+SoaTbknHm4v0cRz+t5XdcolQvxL8qBw4ssIceEUZqsDWRF1gmVMnkciEkkRosvib7WoIzi46f33Nze4n3g9uaeTx8/cTgceDgcOPZHpmkp2ubESpUDkT9N48LhsYds8UsiJsU8Zx4fBiEAasU4TXgva7NzjqZxWGdoGlemE/K7V84W+UUW2pe8QSil2W4vitE4Mc4ZHSIhZmYvB57nVKEf4zVOMukXqZmSfVlBUxvqyhCWiJ8TdRVIwROWmcPhiJ+d3F/Bo1DYst+vB+WUn5KgtREYwX5/gXM189QzTz0uS07Nq+YVOXImSm23O9Q7TXVyYkKvG079icfHA8fD4dyYigUOYIyScDRNacLOUuicU6mFFCZFhsij1wC9uzvB/QuQQaZhujRMP3z4QNdtcK7COSckUGSLiTEyjQP96VTkU0VlEaE/HYFVSg4KizXy2q0o5WA1tlCvYtCcTiecm8m5YHk1xCQSeb/MJQsI6qpmHmdZCysnU36tIElR1fc94ziWA7k0dTQiqwqlW+69lz6fVoU8hzQGFOf3bz3rrVjZDLKn8DSlmOfnnsZVpl4mSatvsshBs0LSyMlyOFdPORfPA/eUUuegvOdNRZHNRbQqRZbWBeJSCFYhYuwau/Cs0RTXs9l4LjJCDDRVK80JLUAC8oImULvET9+85OVmw8uupdUarYKoSJInK0NCCak0rZENcgZ+nlYOnF8D+ff8JF/j6f89fx1+yPWDi4yXL79CF4Pzb/7ur5mnGaMtXbdhs9lgjLzhNzePReaB5E00DdZlrAlotbB4yczIeHb7LdZqLi8vAfj48ROfPt3QtC2V62gaoVrF7FFaSb6FMvgYmScJNkoxffbCqKIjW1+QP3xhqkq07pn1wKY+k1U9T18+j4O0oh97KmepjS7J58KWTuWhWm+8DMwlfCWGwMV+KwFYdX1+I58fKARnVwJ1lcFYi3XSvUqI/0RphdUWVcnPuxpulmUhFIb1SnZwhbjQdRtIiXHIsoCkKJKl4OVrJ9EALl5MitpY2rZju93TVOBsRuuZtCzEqMoCWWhKRb+YS4WcU6ByjrquSI2jri39PDPMnpwsWjkhZZUDnLE1rt5wef2G6+svubh4zdX1K6qm4TT0jONwLsKcq2iaDcsiBVpTVzRtjTUVCsvsRzIR7xeathXtKhHrDMMgRvF5mnh8vCPMHp0VXbWlq2ryqze0L1/zn/3iZ5ASJgue+bgcmcJMJJBJ5b6wnxUY5wO/PPXElAU5HNM5pG19r59fa2ezCPnX/1sORfYzM1lm7X6v9/Efo1F/bJfLEIwiFY/UMs2QI7aRRHulxKcRFoVKmqzKEMmK1j97MYeflpnDNLHHsrVOkKbKkGeNdS1t0zJOE8q2qKrGbh0xL+hlAFQpMorf6VlC7LouyIZmcEaIdCknUgxoJLwjB2hMzbYxRBpm35OKuzMXmYMqOmZZnJ57Lzj/+0qVWvWwK1NfKSXZH8XfIPINSZO+vbuXQ3vKfPX1l7x69bqsayK5XOaJlBJVVZW1Del6VhVsNhKI2lQMw4yzNcn3vP3tBo0nBkXMQcbkiJRirYONkfs0ZQghM3tAy6Q3KyMTBDSOda0Gaw3zHJBw1Mw4L2SgrgQjHFd9dimy5YCy4JdZSCxRkJexjPflbbJYq8s4P2CMpm0bUIrj8YjSAa1F2tA0UmQoJZ3HmMSoGmOU5o2CmMTgnk0WVLhaUNrJuhwT202LLjlH33//LdO0MI4Td7ePPD4eimHVE5MYsWMUtOpnMoOsWJbI8TgClhgzMYCfE4cwYa0YKX0IItFTim1d0TSOpnZsNzVaR4zRWCPp3+t9pVQu0k75fm3bMZcp/zB6jBNJX0jyGmhVoVr3P8nz/Z/iGsZIxpCVPJ8ahdFQOS3ZWSRSVKiUyCFIdsnygNG7YlQO56nAU3c7EqNmDctDCeymbjdk5CA2TSOxdP23XccyCTo4xSTUw1k66OMicuamabFG6D2hmKHlIC0kSWuc5CoFz+JnKWwy5wZeCEsx2Do5iyjxiYzjIFhaJ4GfU99DiGgjgbxaW6yRZqN4CwVLn2IosqZBENYpkWMihsg0FhlSSijlpMDwC8syokxCIX+q7f4MzBmHgaWk3ucseP6YY6EeLags4ZuVswynntVDElMsEj51zlBbSVA++TPWPcVUVmRRCyij0VmXxoRM+lepwfOznnNOZIhaYZUccdWzIk++tSprz5MUbK0nZFtffTSyK5jVS6mfQvvWc8DaTFn//3kaHSMUOIzRT9lYKCWKkBix+ZkcqZxh18nIPM0s84z4bT1VQc5qrQjRY3SktpmLtubr11e86bZcW4ekk4gPOmdN1krOfDmjUiqp6ub8sz9/XcoGBvkJAfyH12dKjh9w/eAi4+rqgrrWXOx3XF294Le//jWn/sjx9MhPf/ozuq5ms93QNhU3dzd8+HjL4iMvX76grhqapqWqF4ZBM40Dx+ORYTjRtC0vXlzz6tUX7PdXvHnzFX/zN39D8ILp21/seTzcM00jbdOhc+BhPjEOM/1xJIZUDgxrVav/6AVc3zhrLfv9XtJti/xFl8rSlMpsWWZiiixhoR8mvv7JN1xdX2OdZXuxRyshPz3c3jP0PcMwfraZSNCfkFLWN+ji4oKLiz2/+c1vzh8XY5RAvJRkIhECfjYQBYk69EMZ8Tms1awucGPE/+GBeZ7QRszyVVUTkhQxy7Lw/be/Z5kmlkXMX1e7ndwY1qKrmrruyCkzzQtLiGKo7nZENNkYlE0s4SjdiEThJK8G+3K41iWQLCeiX7BtTbu5oJ8mSA6jNEE5rKnFeJQXfvL1V7x4+ZpXr7/kZz//53TdJU29ISGHl7pu+OKLN/zn//m/ZpoC47BQ15Igao3FVfbZcxDLhASapuLnv/g5m85wd/uB7777Pb/6i1/xcP9AfzqRSoBXUzds6on/5v/9f+fnX3zJv/zlP+VPf/5L/uTLF/z01Uu+evWa/89f/hUfHu8wyuJNZiVJrgf+5xMMow2uqul2e4ZpwpyOYkxV+VxDPB8JP+9Wy8Io6fR1VZ8LDG1kihGL+XwthmXh+nwy8qO7phFVSYaK2XYcH47EKZD7GVdbMpGUPRiFUQ5yRiXQG03ygbR4yJq7YcQutxyqj+Svfobb7bEvLkn9B5puw8X1jun+QMqaOUXuv/uATj3ZJ5TZY0hYNaP0glcOXYp0Rcb7TPKRFCNN05GtyK3CPKDiAimT0kJdJV7t91xetKK/HxaZAhQjpWR+JLJ60tz+oXRunVathcVZUqf1OZMlJ0jqabFf5oV3794xjgNKZX75y39y1pVP00KKkgi7+BlUwIdEv3haJxPQ1nRUdYU2Gec6Gud5++qag01Mw0BWiSUoUgrYqiL5iMoKZxym3rAEh180h9GzJE3SIvPTViZ+ICGZRnEGYrRtRwiJYVyY5hLIV9XklJi9HKa6riMnGIaR0+nExX5XOrgyHRrGUQ5J84Qm0zYNm+2Wq6sXhLAQE7i6FpS4tnSbmhAqhmFgHGWdTySykiMTscAqkLyBnOVZtwoqG9E20zWWTVfR9z2fPj3y6eaj3CVZESKgiiyCjC0Btc+JYutUChx+TjyEgcNhkkm50kxTwCpNXSvczvLiesN2I/ktldOQ4/nAIM0OXWSsqhy/gNLNTwnCEgkR5iUyTYElLFxcVdSt4apxfPv3txLwp7r/RA/8f/zr9mGgmWraRnFxIR7RTCTEgf64oLXl+qrlYlfhlxPT48g4T+yuICVNDmIKXtflGD3TLB6mGD3bzZZ5XsicCEjTztQdly9fo3LAWAPacf3yCykuY+CFtWhnub294bvvv+fTp1sutnu++uJrFj/x9u133N7ecP9wx8PDLc5JI3CeJjknF8JTagRV7FzD4fAgUqe6KQfq9eD3hHDdX1zw/v1Hvn98y+l0IqbEOExoZdluLwg+lQJqwelMKjk3bdswjzMkJK3e6jLFyNS20P7mmf7wQPCNmOtnz5/92b9g7E/c3z+IxMaJEmScZ6q6w6QMiPQrpww5lnT5YtD3M59uP9GWdOtT35ecL1FJ6KJYkMBSdTb2xzIRWNdQ58TTmDMsi0xGRb1d8kScxZaJxuqZGIaBuq6LjyJQeDEAhDBJM69klcj11HQyRn/WANRaAkXXc6a19jwVW+8roxUpRnI5wBtjcJXcdylL+KjxMqVSSrxvKQQhlE6T5EUV6ilRplskUElR58yriw2vX2z405+/4Uu9p80aGwUyk4KsGU3VsJQmaMpxHaqf16h1AhNCKIWOKtMXaS7llD/bs1Yp+Q8tMOB/QJHh6kCdHErvaZqOqqq4v7vl/dvvefv2W7qukyTUiwts5Zjmkf504ubmju12w8XFBdZpNpuWqra4StBlfvF8/HjDq5evqKuG+rrhz/5FzeFwYBhP/OpX/45IYBrngkMLTMPEXDI7zjIptQbZPGHHVi31qmMMfuHh/k4Y/GVU+vLlK9FmFxpUjGIIPb8Ra8XpLN12g7OGUFcc7h+Y5pnHx8fzi75ym6VbIh2K0+nENIk+d7PZ4L0/V+8xyzZhtCk0haLlzpm4TAx+YRpGVM5ntrxzFYfHx6IzL2NKyjizBErFGLn9dCMPSZLD0qnvqbuOzW7PF1//hK7tSMXs6EvnIfqZJUKVEi4njFJkBcZKPP3kxyJRkoUgK6mZY0iMw4yrOurOEZHk8WWJnPqZq/1r2nZL3TR89c037PeX7PZXXF5+SVUIFSgYpwGl4M2bN+Ss0VqmIpvuqXsiKZilawHkHIhxZhgPvH/7jndvv+XTh/f8/ne/4+OHW5bZEzxIIyiQ4kz0gfbK8vbxhuEvBu4eH/inP/snfPHyC/7kmzc4Z3h7e8ffvfueR98z+Yk5TugSthNiKpIPcyadnY4HlnlCkstz0eRzXrA+Ozw+X3Sco3KVHOCULJzWiDEQpMM2z146b9qQ9I/b+K0eTihTgXZEC1VbkZVCG4eunHTXjBZTIhlyIpUNVSnIMWCyJirNbDTJOZZhwB+P2F1L19ViYPx4Q6ssi8sE5Rn0zDzOVGi23RVDD+1G09SGaCLj6Z64jGQEfy2V5RqGJl0xU9fMyRNZvTGeMB8JaeJ649i0LaPP3B1HQs6sZJhzR+xZt+3JXPg0ql/1vuvHGC3hhEnpZ52m9fMFYf3733+HMZqf/1xxeXkp91sp1rVWJdhU1hhtchmsaBQ1u22Fs4alr+i2F8RlxpQC3niDD14kX0aaHCkqjK6wRpj4rgoom0FJt7XrurPeevkwYrTClg578AFtLF988VqK9RJEmlJmDTmdZyHdBB8Y+5HdpuU4DMyzyNm0ESJPKp8XjZENPIvUdvGe/iQkQqMUSknHs+sa6logDeqoUPMEWpMm0VRXxpL9LJIIrdAYlskTfcTPCz54pnliGEdSweZa4+hcVaQLgWl+CghbCXLPpRNCQhKqWooBpYIYW53iYtuw3TVcXm6oa0VlDc5K6rdWa6AX5RAl3VDjbMFlRuapEA+fac3bVryPn25OpCjp12jQOjNPC7efHv4TPfH/8a8QF/ohMs0LISu6pZJJlU8MY2a7cez3HV2rob2U9OwBop/xXhE8aFUVHPDINEnOEjhyEoWC0hFtEwlN3W7puo6ucQzHO5ZxoB8Gri4ucZXIn5wTNLGtKk7jxDB5KicQgTdfvuKrr7/m5uY9f/t3f8X79+/lnhpPpEyRNlWgrABezILeW3bbnRQWIfLw+IhWkpcUQqRyDq3F7zhP8/mwu1KatBJvatu2KBI5BqZlpu8PnE4HKmvLARK0tWVam0sLMRWjcAYVmOeBNcPj7fffMwwj4zTRdhtZH7L4O8gNzjo23Zb+eCwESJEkhujxIeCnpxTrVQ60LAs+iiR7lRMJEMFIuG0qB/+yDmstExBrDFppnNWs4aHaGOpG1r4M58P/KmvfbreklIqPy5679d5Hgo8kVohHOeiUg/VzeTvIGryu12tAXlVV5+8luNlE1hqKOkZbU0hy6pm8fpV+ydlvWSSJe5WSrvuGD4HJL1TK0hrLT1++5Ksvtry8anmz39EdNTrKu2d9BKfAOpIyhAwhSeMM/eRRXkOZV+zuNM1FTliCBFFUzgErtEaVRvzyD0rB/33XDy4yHh5vcaYTjGjdgJJD0jxNfPr4jmWRpO/NZsem28iLHUTGMgwDWiu6diM3ganQagso5nlhmQUz2LZS3b548RKlNYfDI3f390zzJCSSORB8IoZ1sV6xY5+73//oyiI+SlFCUKyrMNkKbYEykit0h1UaAEKgWOaFYRjFB1E2/RCCSJXiH8fUV84xT5MchjNnfa4x4j9JOaEWeQDSWcYl49EUY0lwDUVzp8AH0U56TwxBXv9pQmk54KMgGk1YNOM0AZoYIn1/EmKNUhgl5rL1Z1hZ9SklNscNQ/nZtaIYjtN5BF+kviKVENJa2USlo5aSIukyUNQO7VrynAqOL6MNbHYXXFxcc3FxxdWLV2y3ezabC+q2K4dHxTiPPD7eYYxhv99JN8dKbogUifm8UZdUCXLODMORx8MdDw93fPfd7/nw/j13t7fc3R9YlkRKGqVkEfU+kdJCjNAvwtw+nk7SqXAWNLx+9TU/ef2CpqnJWvHr94K8FNRxxlMMvUrLIbj8fEIcW3MOnlktSrmxTtrW+2T9p8jzpFCRcerq/TAYFCkJppNcpHY/8MH+x3qZacYmSNpwVLLBgdxTxhiy0SSVUdaUyZG825EMOoPR6FRIPOJ8lGnBMpP6I1Yp8JE0jyhjxBuUJk7H98zjQmdqtt0e41pc19FsO7ItxLiCrtXakE3BR6oMaqUuyUarciInD0kmoioltrWjUQ63ZI7DSHn8We+AzBNt7Pn1/L+fL9zPJZ7wOUBgvUIInE4nbm5u2G63XFxcsN3sREZhxD90Op3OkqLKutKhUljbYHUFOeCqBldJsGr2CyFmube1fGz0gciK1l6lZkZSvwt1qqprLq+uQIlc9HS4FyJajISwkDJUNdQFtzpPE2McShEuo8KMomla8d4cjgy9mKinaSbljHP2ycuREsusGQfL0JyIWbKBBMwh6cI5ioFdG/HFrbCIlDMkTVKiMa+MJWkpYlQBgchmm4AAwyhBYTGhlKGq25K1ZOV+MJ6YU2Hzy7P9ub9GlfTp0plFGPkZjXOGppPQvO3GYa1If7SSTuiKutbaEGMxcEZVft9MCMVvkstqo8GY/GRqzZJJBCLhSjGRQ2aKP7wT+Y/tqmuDD+LbOhwHITIqyRLJWdZjVzmMEUOvSYqUFX2fJFU6lmK7SJW8X7DOFEE6rPJVrW3xOrZ0mx2X+y2V0wzHAzlnqroBipzGKJLKoBWz9yw+YUzFfn/FVz/5KfuLLReXO4bhIFk2px7vA0Y/dcdXI7PgSLNIGVMociovBac2aAyxGJ5XqdHaiV4lPDFFgl+gqYFESoFx7IXQFrzsLbGsKaWZKgRERSITs7xOLNLUW0MCD48P53iCuq4LVVORU8SXjIsnRLWY6+c8sfhFku79It+rhGXKOarkMuSyBqq89mUo7ojz2QyeSZ0yGJ2wWgJBRXIpUQrrxGNVtayeLzGsr2qEfDY2SwMvlwBSdZYyr5/3vHP/nG617uWrTOpJjSAG9pRi6Q5Qzmz5MzZRPP/e8p5L4yVKozmGs8Q8xoTKkcZaLmvHT64u+fJyw+W+ZltX6GPJelMZLVpf0BDUej//8Z/1vlt9zSIVe5JJnRujqvzczxql/0OuH1xk/MVf/IqfffNLXr/+qlTdO6ytCorL8OHdO96+fcs3P/05Xdexa8T0/fbd9/SnE7e3d/zkJ1+z3UhHu2lajLGM48Tp2IthfL9Ha8Pl5SVffvkV+/2ew+HE73/3G4KPbLoNVlWQ9Tn07Dln+vmVSycxpUwKczHGGUJOMmZTEir1cH+/KqdEq2wlAM3YCpUVp6MEs33zi5+TfGTxEx/fv+f+4Z6UJNE6p1wM3sJ3v7+7I8ZIVVlWdKnWmrZrmKZR/ruwmyVrQePnyFLmdzmFs5yqqoTZvswz/el0Jk6RIcRI27VIloAEwFgjQX3zPD0FC9YVxlnqtqHpOvw0kbsOozTOGHKS16TqdnQ2UVceZzyk8uARiSqCkc68TgqFkwO21mgc7eaKdveCdvuCxyGRMWjTcH294frlF1xfv+SLL74mkqja7kzussXA2feP/OY3f0dV1fziF7/gJ1/XWFOTsyGGTEYODJlIzmKqTTHw/bvf8f7dOz5+/Mjf/+a3HB9PzNNCCIaq3pZFO+J9L0jfEPA+c3t/h7MOaywPhwO3xwO/+/ie//O/+T9ysbvi4uIL3rx5zfG/6UlBCts5niAGeb2cxQfpNDhnRNKQZYkWZPD5fApJgdEo85QWetZ3GisYw6rFVA3aOpQxKGSiYXQmBcVpmcjRk9OPe5Jh55mNqVDdjt6fiEskBzHhVsaWKWLC1RWLaMXQ1jD7BZXltdYYdCgj9a7BNQ6bPMv7t9iX1+gQUfPI7XDg3h+5nx/4dP8baQ13F4T8NV33ms3FC7qLK5RThGVGo5h6KUTzagpUsvgrZJRsjEPLKZQYPNooWmswKpN0xpBpHSw+l2mXTET4Bzo/q7b4udFuNZ6u/4QnDewffgxlivjx40e89xyPR/71v/rXJevBiQdimJjGgRi9aNeNdOGvrrZCcakt290Fxko3VTctKVqSAp0dTb3h8f6BlDxaJ8IS8CkQssbaSvC9ylA7x3YjeSQoGE4H7j994nA8cDoc2e4vaKMYsrf7vaxfXqhN4jkSvOf1y1ccDwfu7+959+4jlMNFJjNPCau1eL+SmMj7oWecRoxzWOdouw3OiRxCDlQBpyqMEy9Xu7QorXHEz/wmahTJqdZGPIN5lI1fa4ZpKZ1NjTWO7VbMwMMohaxViorMclrKvfI5eWWdXqai95YhpUic2tZRNZqqUbha4YwuilQJkc1KYALaVoQk1KlpDkxzSRTW4CpD1Tis0Rgt0o8QRG5ptaZ/nDjmiDaJZUoYVUkGzY/0evlqTz94Tv3C3cMjSwjEpDidFl5c7XFW8pcykJUAVLptzeJPeD+T0oJWpWdfYABtbkSmQ8ZYR1U1NK2oM7bdlt1my+XFFRcXG8bhxOF+S1o8VckHm/2Crhyb/QVf//RnVO0WHxJN3fLl1z8hxle8Orximg4Yo7i5ueX29hZjHfMsSfDO2bOawS+epmnFI5S8yPqMGIibpsUvc0HaHzmdTudDo3TdBSKQc8DqApYJnof7O2LwGG2Y54VQEN1x9Q9QDvBZDp1aJZIv5X+BxogvE0ARl4Vlns6H5+PxePairgqKnKIQuBYvqOsSiLeuY6vqI6UkDY11nUyJiNA6Uyr5YUph8hpHwFnKrWoj9761Zf0pOoIyYVjpc6vS5JzlUXwYKeVzIQ9rnoUuU5Mn+f3zJtDzXIzVRD0MA9vtlrqu2VQ1oxskyyILkCPEQIgJpyGXwi+GJPtYTueiVxVvzBwWlij+XpUSWw1fdA1f7y/5Z9cvuLysaTaGoDNJeVBJmmFKkbXcLzOBylQYZQnpyRi/ErqeT9VXKdRzTDCU4qhkL63Y3v9JJhlfvvkJN3ef+PDxHd9880u6dodzjsvLV5hfWq6uvuD29pZ333/LsnjatmG32/L1Vz/hdDpxe3vDb379e66vr7m6uuTy8oK27ajqBucarK1ZloXvvn3HMEzs9lup3pTl9cs3HE8Dp2NPW5lz+JGxjue/5/Nf+vmmnGMqIXmrFUPq4xQ98zSirYSBVdW2LE6amDRdu2W339NtN9RVhVUajGOz2fH6dS40USWEiaVIZbTm6uqSlZrinD0H7Nzd3QIKV1nMpJmXmeDlICXIMvm5FLk8/JGYplJEqXN1r1adYvQcj/O5c2BKQGEq6dPGiWk8lSp0mWeOjw+Mfc/x8ZG6athut7DfMy8T8zxKgR0DOQvu0xSqhTKKFEAZMejWtpGxva1pdi/4+Z/+a7rdJaZuaHdvAIPWosX+4osvqduWkBLzIhSJ+8M9fT+eTZXT1NN1LdfXL/jFL35RRoTSwZcFyZOIQODjxw88Pj5wd3fP7373W969e8f9/QPeiwQjkzFWJHIiTYB2WxOjZDOksDB50S5bkwjG8u7xkeOy0P9f/y/8F//8z/jq5Re8uHzJf/2/+y/5+7fv+cvf/Y6//N3fYkmgPCmIcdQZTVM53r97j/eLdEI00uHNSrCrVrHmbay60bUu7rqObrOhritcXZcOnMXPUWQhIeH9TAgjqYQq/pgv5QMmRkzKVFkxGdlYUk7M4wRKxvUhxYKzFZKRdVamOFGCt1y0aOB0GhiXQB96+o/vedlsUdGjx4kLAx8/3OIfPrD3PZVb4HTPp08f2Lz8BcPwifrxiovLlzS2w+1fS2f6ZAjzQFgGQhhLl0eRcVjXoIwcYMZxwpCxKqGVdOSMq/lf/JOf8Jv3Dzz2E6dxLs/tSlSRgw0892U8eTXWzXeVTa3r2DqGXzeAdaNEOWJI3N7ccHh4oKks33zzDdfX19Su4WJ3QfSe9+/e8f79O9Fx7y743/9XPyFGjVaZl9fXbLdb8nwi5AipIumMTYFuuyf4zDiMTMNATIHZD4x+IqqOi4trmqZFa8Pd7W1h6K+eNykOlJLk5BADp76XQrp4CrrNBl9CprQxoKDpWl5/+SXvUyrwjUzTVEzDQFoTtYMYYbNRfLoZcVUtjStnCVGmx4nAPI8sy4wxom13VoOqqJDpZC4Hjcvra+Y5Mi+eJRmhZqmMNRrldVmL5ZAfKdhb48RMHiXU1ZX3TJ874U/TDPkXWb9TkiwRE8BVm3Mei7UOVzmiT8QsNKhpHgVjWyRyqiBN240TFLZeKWQLi8+QMuNpYp4X8WRMihCEyLW7qDEXJVB1+fEWGbuNE4z8pma333D/MOJHadiFJTL2CwZN21XFrxKpnBzCioaVFCNh8SIJjpGwzMxkNIp2q3B1w3Z3wX63Z9M1VNawLAMhLnhfZHa1xjo52G4uLxj7k/hNT0e++OKlBCgunrtP73i8v+Hu7iPv375jGhfqquH/T91/LcuWZWl62DfVUu6+1VEhMjIjVVdVdwNoARqNRjMYb/gEvOBj8I1wwyu+BdkEja2BLhQqKysrRURGxNFbuFhqKl6Mudx9n4jsjjaAQMUqOxV5xN7bffmac47xj1988smnkvOSd/hZHJmCToQEQT3wxEh+lnGOVMTiScEcxckppyS61YsLgCNyv7grpRg5HHaE4On7A7vdnpwiknulmZdwt3Kd70X+GG63sBwURkvjsCDa/aA5jDJJmr00vedF+eLMpFWZ4D0q7s8yKNLpXEwplcBgAWBSCVyUuk2X5sdglDkBN7k09CmRvHyK2lrJC3ok9BZthrWW6+trXr9+TYyxWOCCsFpO4M4yxVg0mOdi7+XXcXKhdTFAsoSY6Lc7jClmQlrjw6K9gBSk9lQ64YyEGUqYcUQIVGV6bpWk0mNYa8v/8Zf/kGfdiivnuHAOEyFMkdl66pCk+WoqUmXILpMNNNaisykUOJk+LdT7Y4BiTCx5GIsj3/I5LU6Lon/502Lw/9j1vZuMn/70l7x585K7u1tevvwjL55/QtdtaNsVbbcmZ3E4itEz9AfGaUbrga5raNuOq6sbxiEwTYF3724BEUQ7a+nattidKWKSjniaRxbRXNN2eJ/oD6M40BQUTxC/c37zh2FYC29FF66hPIhL15hyxvsJnRQ5J6KLzGHCVZqmk+yCtlux6tbkHBiGkRBmcZQoXGJrXRnRalQWZyGhP52Enalw9Pq+Lw9h+QAXZKC8Jl0IFrIxmtJycJrUFE7iwvuFxCmxshQqxz3jLE7ruDjKz8yKMSaiD7IxR4/3E/PUk7Qm6+KTr3URcwrqVmVZ6FY7GlejraHpNrz47Jc8++gz6m4jjV9KOFvjXIOrGtabDdoI2kPZOHJBpUWykLDO8NFHL7i4uEKSjZf3BjlHxvHAOA3sDztev3rFu3fvefPmDbfvb7l/2DIMYk13FCppacaUEcTbmRqTRECaghVhW4YcIj6IhiTmzNvtll9/8Qf2h55/kOHZk0/56OZK0nb9xMNwzzD3TMGTjVjSHXY7YpBxJXnhZMtnkLJFSkyxSCXG4gDmWK0qLtc1XVdRN46urWUjLaO1iIi9cpzLhvptus0P7bKVbKp5loYsyy0TOlQZP2fks8ga0EL1s3oJ00woo+iaFWu35v5hy3bfs+o6qm6D0mJtPMbEq1evmPYDNmqU7XBKUD0fPWO/FbOBBI1tadsW69asNhII6LGYrDGFHimHsQUlonxraqwRP3TZjeR5VUlBmljXmpQdSmV24ywFIstY/TRiP/cpP78+RIoeO9LJOhYULqIQ5xg/z3zz9VcoRJ/1s5/9gvV6xXb7wH5/QNxGMnMt4mlr6jJJSdRVzegqAkomuqmCqCVhehK6Riq0wRgVwSvmrBmHAQH8NcMkAEJGAILZz0caxDSOKG2wzjHP41GHkXFHOgRKHfnCkFlt1kyzBGRWjVBT4jzhp5EQo6ztbEoivNx/P88FuQ0EPzKN07HgnyaxL005Y6xBqWLnaCxV1aB1xthIYsBSQwGHdBaaWEISj1OhoxgtCdsKEWhaa8nxFMS6rNdHWTlldrI4XMkZZSBrEaKmUCxNQwnyk85EF3trobAqUBL2JpQpcQ6MMZFCQkfR4HStoWs7DodenNVMQmkv4McP2MJWqYwt6egZhbOKYBVVZUjJM83iuBVSRlvhw4cYmI7J0CdayEnLIp/1MI5sUjH4iKVOCJ7gNSmPxCjU5TDNxQVMYx1Y7bDaCJgZZrYP79gfevp9z7QfGPo9/WHH7u5BMq+Krk8+36LV8xFjT8W2JDrLa6icwfsZH2bqqqWtxU0vBn8MhFuKv3meT3ulqsv6oDxzwpYwyhynBOd8+8XO9AhmQEH2FTlrUOFIofHek5S8hwXZX6hFIQhoKmYzEmq7iKjPk6aX/UKV35+PdnOmNNfLn5c/C5FYhMlHa+0sTVcqTVFZfBR451g8hxDOcnXCIyqV5KaUrzsDqeED0Lr82XlWxPJ9mqbB1bXUFN5DzgJGlmT0mCL73Z66abAWfAlfXqY3qtyPlKKE9VnLpq756fVTPrm5YWMMTU5onYU+rLM0nMV5KhtL0rpMNXIJgRTtSlVVj7Qlx5BYTtkhHyajy2wvHf/+/Kz6j0oUzq7v3WT88ud/wWZ9wdfffMm//Xf/krZtxTqwaeXFG0PbtVhr+PKLP7B9eGC/3xertYrLy2tS0rx+9Zq7u235YB3r9Zq2aUuwmyZnxcPujoftfUH8TBHV1CIMbxvsoZeUVKWBeOzAPxzzyI3QEoZVntqM2LaRIeuE9wkVhJ84m5lpzqx0hXM1rmqliWo7pnHPbr/HFyeEGBPGyHuIVlyg5HAfjh+UDCBSCWca6Pvh2OVLfkWQ1OMsY66sSrOEcL/5YJGpJUlaF1BGVmY5RJEFpRUmH3spuQflYNKUwjsL7SHOwkNXGuZ5YBr3xMqSDGRVnK2cKeFx0BiLVQZnHLVzmNqxubrhp7/8c7rLH+PqVsJ3SDR1R1V1aOOkiEzi6qJKoQfQNFKEpRTQWvHi+ce07YoUMzl7FspbiDMP2/fc39/x9Tff8O7te969e8+rV68JIRUXJjmMc0FPlJL3oDKC/hlHzlWx7QtMvYTbhRjlc8iAsfTe8zdffMH9wwOtc1xvrrlZtbQ/+gylDS/v33K/v2e7v8dUjv0w8PruVsgHx+Q+VdoKTZKMTrRKZUQPXeVYdQ03VzU3G2kwXG3p2ooQErOPYmeZIllFcj5NMH7wTUbbCqoyjTJRzOXwUZDjkjGSjxajIN7ruhRyxIixNd26Y1Wtufv6jod9z03T8fzJc0xVMaeRPsMXX/wR29Y07Qpd15AsIcwoL37xKVvIhqk+UFcdrgRwxcFjsyVkg8cwq0mQPVWEelphbMY6X9ZTsXvNGdKEH3asnGhrXNWy954cpeG3WpGSPqJgiw/5h9qM5SA+RxcX/RZJ+N+50D3IhV8dA9988w3zPOLnkZ///Be0rRgrTNNE3Th5LrMkAW/WQs8IRetli7W3MWIdHdE89AP90BdLShF1ew/ewxRhx5ZxEBHm5CfRgVnLYb9jniYpfsiMkxT7rVb4aSSX+xOdESpEOddDaU6896w3a9RomOYZ19RYY5iNFkvSHDFZo5Wk6JqiH5tGSROf51k+4+PUSKP1QIwijG6ahsqBayxt04CRZPG6keK1skKn7YeDaH+CgDa1LoBUCFhjsVqJVqWcZz7PnBzo5Exairbl8xQRvdhdy9TZkpJmmsTychhHxmlimmc5W52jqSSfQZ6PREy+FMaJ4BPT5ImF1nnRdLSNpWocbXvF+1vFMELkQIgzORtQP1wLW6G3iLjfpoxzqkzlNCl6fBgJyTN5sJXFWEXlNX5KxCDalYycSTHGEoYnBi8+TIQoVsR+niWgbtKQ50LVTaQQST5AFOt3VwOUZ1EBYebtm6+5u71n97Dn3TdvZGKSI4ftjnEKzDHhQ8JVAioZY5gnX0TEkqWUUiCiUDlSV5phmBjHCQ2smupoy3oe/BZjLOtOpolVZY9FdIbyzEWMkunZOV3mu5D6Y3hoEVLnAEZJ7UTQRwD3Q0Bksf83erFAEZhXzHVO2QsLCHEESfmgoF9AZF2ajBKAbCgGHQuVtEw8FKCsRpWmIxdtklaaqnZs5/nYZIhe9hQst2hhQghHN68lIPDcFXR5jR/+ubWSZbbeiKb0/v4eP3s0GWed1I0hst/uMcqg0YQkVsICUGZ0XiCXjKsbrFLcXF7xD3/6S55tLrBxhllCf5VJYCX8MFcVOYkMIGuQai+jEcMYZU6f7/l0XO55PD47IRTavRXXMI2SVPsFGC/PwzmF9z91fe8mY7O+oapanj37iE8/+Yy//c1fs93dM8+BZ8+f4ox0rJdXa35Z/5Ldds8ffv8HXr9+Q11XXFxccHV5yapbMQwjv//D78n5LRcXPS9ePEcbaFe1UImqxMuX3/Du/TtevXxH115zeXHJL37xc1xlmKeRN2/eCMr7QdH1oVhyeaCV+J+RgMl74S1Keox4SZuId5715oZuc0mzWtFeXPD0xQturi558/obMuJdnXPi6uqibPBlM/ITMcz4qef2/RuGcWSePVVtSwJneMQ/lAW8jB51eWWyaI2RUJ6UEukswC+D8E9jEaXm00Yhi1TsfOWWCAoRyhSFVcYaQ105khd3BXF4EMtKRcRqT46RnBTZyMH5/KPPsFaz299J+rK21MZhK2ivnnHx9FMubz5nfflx8e2WhWu0RVtH3XTMfiYWoVddS5oypZjphx3b3T2///3vqaoOpSy6tfgg1oDTNPHVV1/y9Tdf8fr1a37/+z+QIvIrZUGiFpS/5EksjRi5IH9GU9XNkYNNTDg3CLUqBq4vrshJeKTeS5HzzduR/89uh0nwk09/wsfPP+Xilz/n/e4pL2/f8W/+6i/JCVau5sX1NXf7niGNzHMsuh9bmmZonKNrYN1knl5d0tpMbWHVZdYbi7GapAJ53uG0Y9U4mnZDyIFDPxL9gTgrcoQftiIDmusrprrGA+RMVbivUYlv/MksYoAofFaTFdGXMJmQyZXi/fv3jP6Wz2MjaFDTsfnsJ+TW4PcKPR4IQfP82WdcvnjKVCfePrxk2t8zbN+zO0xcV5qV60jK4rUhJQjbEWc2tKsWmise7t9S1ZFKK6q2Zjjs8HOPnw7UVST6mRjEDkApwVZzHlgpaJqGC7vm9k4zZcljgHzkvn5Xw3jOV15+f15I5IxYaBbnJGuV5FOUPaXve77+Sixgr66f8OknP8Yaw5//2V+w3d8LqEFmHHvWqwuZ/GRdXNhkqqqF8IxWcHN9w277QPABFAzjSD8mhhmmIAWuUT1GKcmo0SLEj74I6XMuoILQFXb7Hf1woG0b1uuOTbwSwwhtiFEaiBQjVkNOka5tWa1XQrkaR3QKqLrGWSkCsgKdFTFm+mFivNsVQWpiGCecE7egECPW2OM9DT5ROQFo2nbF4XDA2gprK642nWSOpETVVNL4zBPzNDLNUzEAgRQ8TV2TK0eIYtMpji2Jw6FnngVAeuwyVVzHlBQw292enGvmeWS3e+CyTH2bpuPy+ua4r6WUGIeSv5QC8zzK90/QrTo264sjFcKpiEIcrLLa0XSRiOJhp5l9K4DMgkD9AK+YDQq5j9N8IKWAqwybiwZrW/rDxGE/cRhG9KykCTUGoyu0ctiqLtTiyBhnhmkCJYFqXbcheM88jYzDwMP7d0x7izGKEANtt6KtW1ZdR11ZjHXFOchSNeIeGYFx2DMNe/w0cLleYbVYz4/zgKla5hAZZs9h3DNHj88BdEYr0UIoPCp7alfTNh3DYQtxIvmBeXDcl7BG5yT8bymYp9LY53SyXbXW4CrDxeUF2+0Dh0PPFCYUQoNamhDgiO7DCewQABeUSiSjCWU/qnShBhftw1J3+WJSc5zEZMc4zpJzc7a3yaWWcuCoNfs23z8j9vkipq6MK9oyYZCktNg8w+IylZXU7fM4ymAiS/aSKdazi64AZD+Yp6m4CtrHk+WUqdu60NPjIz3lQqU65WIk5nFiMo5utZIskhixVcUwHaTxipmL1UbMeeb9MSnclilSW9UklUlaYbuOuqp5cnnNk6cfYXyP0QrTOGpjQC8ieU0OChU1NhsCU0kWt2IAcCZQX97bIoJfjIlQFBCbRyYC6McNxXdNdP5T1/duMv7mV3/J5eU1q/WaH336OdZW3N7d8ub1a+7vb3HO4kpib1XXXFwaPv/pT3nz+mv6/sDt3Ts2RTB3cbHhL/78L3jY3hOj5+3bN6zWK7Hu1Ia6roqFmsfZBj/HI39wmkfpJnNB9xb0WJ0oU+ed8pFKhTo1G6VgzzlDSX212qC1om4b6qbGVo6nT5+A1uzHkapuuNAwjgfu7++wVgIHxcFJaDk5ZYbxIG4q0ZOi53CYWLytF1Tr/OE+UpzU0fT0SBs4Rxg+HM0t32/5+mUYz/I1pozVyYXzW5Aa78kxEYI4RCQFIXmsTiiXRLeQDRlNSJlD31NXMsHomg5ntARNOcPm6hnXTz7hybNPsa6FLM2PseLQEpNnf3jAWIPQzYZi51vej4Gvv/6a+/s7jLHFu1zjw8gf/vAl+/2e/X7PmzevePPmDdvtjmkMZWIgv3QpDuVeSWbG8jkbbcoUp7gRZbm31jk648SPehiYfCgitUCMM5UW16MxTnzz9iVGa3JMPL36mE4pnq3W/NlnP+aP796QpgFrrOhFFGL3SaRuNM7KfXt+3dA1ma6KrKoZHSZMznTVNbWR4EeUIuiEshljodIBnT2qDnz0xBFnGVkr/cNFIAF0U0PlyNZI7sVy6OSEbq0UjUZRVxXJB3KMqJgwqgj+NFS24apteWIaPkktV+sLalfjYy7i+Qanatabp9SrS9z6kuqy4uv79/TBMFPRblaYuiNrS7Va0V6sMVVFaGvM7LFK9Da6WTPMIyEFlDPYKMP9mCVoTkWPjp4wzGIKECM6C7dW5Qhp5qPrDaNXzBFGPzPO07fG0st1PpWF02Z+QqAWKsBi52hQOhR2QIKsiEiR+7e//hv6w8DNzRM++ugjnsYbCRRLgbZd4VyNMZZ2tQbKhDErwoKKhsQwPEgznkUTgLEoI2P6lEQYn3UpQhaCZz6N/GOMQg/NuYB1QkkYhh7vJ7yPYgOtLc5a2rYtrizFSU7rEjSnmcYe74UOVdVtKQZnKmNQqez9IZKsHKRN3ZyxL06CRylkQBKxI/F+h7UNOYsQc86JuqmlsB8HXFWyipD9KRWq0zKRNcZinWEY+jK1kM9Vl6nVh5MqmSapkhgtdM26EX1BU9cltC3jvfDVU05lei6Hv7GmBKdayelxBuvKRMd6clqcfQJzEJ2JoKiJaUpHivEP9erHgLWCXs9jJIWIqxwXm45h7EsGRYV1AlalJDQyJbgPMWd2/U5CbI1lHEcWRyFjZoZ+QGuHzobOWVQtWVTWGrQyhBgZxp7N+qYg3pHpsMNo2fMvNpf87PNf8KZ9zbs37/no5rlQpbYP7OcDo89oH0jAw34mhEkoyzGixgEbhB44zyMxzvQ9mDK1zFnhS67McikKVShG6koYFTJIyEzzRM7CSPB+LjpX+TrJdyk1TNKPtAfnReT5syI0cc1izb7oCZI+6ciWNU5xg5xnTywhlamEay7BtvIFpzrt/OdJcUup1YqdKwkfPcZqtHFUzpLSVLKlNCFGqSOsO9rji8Y/sx8OMohGwQep1zGIHaDilHGz1F5Ga1IQWp3iJAZfGhWZHgkAcDhI6jdna977IGYTWppCZRQP2x1z+RylXtFYY4rtiQIlJkStq2mMw6YkdPwMFk32JahVie7XS6Y3qITVHIGiEEXwvoA8y/1dbHZPk4nSOBlDVTlEGZyPwO05S+g8K+T7XN+7yXj39vVRHPJi84KPXnxKXbfM08Tt3ZuSpCpiX20q2rahaWpSmHivYOgP9P2e1UpRryqub16gNOz3W/aHB1BQ1y1VVRNDwM+B4CPOtsSo5PCLgRiHYh1bwlcWEcIZj+9PXfnsvykLF07nsmi03FRjxQUIMk3t8METYmDTNRiTCXEqi10fR/wxBMjiNjONgzgA5VToU8KrXWhPy4d1XlicDNtO3eaj8TqnCc1jPuMHU5wFFeC0QE8drHgt63kihyg/U5dxfgzSKJUsisKQBiXcSmc0lXG0VYM1QhVRbcfl9TNunn7Ean0lU5WYmWe5nyFHUgz000jXrUi5TFTKmNNaA1GQ13GcePbsKQDDMDBNA1988QUP9w/s9nvu7+/Ybh/ELz/Kazx/b0KFkAJH6+IKoTiG3Ci1CM+W9GNJe80pM3uPD8viU8w+oJ1iTtCHka/fvBQdyxzIU6ZZb2iN4dOnzzlMo2gGJrnt2igRhObAqrO0laXSmicb6KpMbSNWJXISJyNnK5yVqZXW8nq0zlgDhkhOEzBz2cGu44gs/JCvZBVBZXyOR7eNmIQ/TJ0KWCCuaEsxFL04cCw1dmUrVt2aq2bNC3vBZrOhahqiVijrQFu0snTrS1TVEJXQ5aYoFB+PYWUb0JaoNM16Rd01mKrCNo7Uj1hjpdGxDXnoGeeJOQWo1hhlqV3DHA8oPxL9BFGT/SQ2lt7Las4BnSauuzVTskxB8TAocRr5gBoAFA51oUSe//kHVARYnmFxePJ+htOqled6nnj56iW5hEt9+umPuagvOPQ7pmks3FxTKF1yKOsyfUs5HB1nxqFM/JLYhSuthQusMokkVo3akOZCb0ypjNclwyHEUlyks/03Fx1BsXw1xoqY01h8QRQVst8rrcVNT+liE70IUiUcNMSM0ycjhfPJj3DVE85qrCnC6kUUW2xPU4ZxiqydWMTGLNbE1kmxIK40tnjyK5IxxBAJIZYDWPZcreR7Ls1AzsvnsexVcjYpBSqXJqP8EsqUPqa25yAovZ/9kQIqznqpCHsNXSuZSWLXKZQHRRIReAxELzqNcfb4UOzEtSkNyH++ePPv0zVOARcVKmfGIUCW7BJnDUMGrSWzwFgNkxJjgZhIWcJjFYk5zFgtQOE8zyXg0OBcIHiPn2ZmNxUKjWhcXN0U5kAqJiMToYB3KWWckyyfuqp5/uQZOSSyT3z66afcvn9Nzp76fYWrLJMPhcJdbHWTfA8/e3IUzZDYKEPOka52LHb9i/C8lN+ijSiC7so5oUAazTQtpjCKTCzA5Vn9sEyz8qmuIP/Hm4zlEiCk0KpAtGjlWnSiudCjQhCQc8lxySkL31sXJzW+/f2Bco6rQh0ra4hMyIGUxcVOGy2NE1L4+hhxS9FupQnXWYn5z9CzaL9MCW1e9CVGS54FcEZ3lwlYKq89p1xo+o/355QSPkum0FimYlVVnd2/JNMu6WJAyTpXxZDh9H616IaNQVtHZWsaW1Ebg85C31BI+jiJApoWXYqMPIsORqhSKcfj60adWD1LDXoOeMtnKvfTOnukci662OU6Tzv/vtf3bjKurja8ffs1L7/5kpT/Mdc3N7x4/owXL57x7//9v+L1m1e8ub3l8vKaplG4umazaqnM51xe3NC1F/yHv/zXXIwDKUVWqxWffvoR43jJy5eGr776mqYZWa3WvH7zRx4e9oSgqes1TbvBWDgMB+ZpYJ5DsdXKpfuUQJiszBHoW0ZvR8eCJFxcir1gmMUpobZWDvUYGP3EOA+ognbdvntDVjJe+/GP/pw3rwbhAxr5EHOG6AO77S3zPDBPA/vdFgU4YyFBNBmfAymdxFSPR+en7lC+5+OQl8UVwVp75HB/e1QlC0VrUzYO8Ul/fNhGhnFkmiamoefZsxd0dc3ucCDrSFUpunUJ2NKA0nRtx3q1oWtqaqOol7AqZ7l48pTPf/7nPP/oZ2ijSrhVZvYTtlKE5PFxZpr2VJUlBAgh0nUtzgkqFKLnxYsXPH/+nB/96FNevXrF27fv+Pqbr/nD7/4oYY3eE6NnEbsbox899DEGjLFFSAqLP7w0cidh7aJryUnEviEXAahzRO9p6kaQjYPGzz3zOLLfT3zzxz/y9OKGj2+es3Z/yT/7L/85P/7sc15cXdKt/pzXD3f83cuveXf3HmuVaFmy55NnLZvWYfxIqx6wYULHCaNWYGpM1WHrFa5ZY6sObSqGwz0qJ3RKGCLj7oEUBtoKfvTU8NAr3u5+uAgkwCFO3EfPPguKu2gVkla4slEnAil7mSBpgw8jaCu2nlFRVR111dC1Kz57/mOunj+nubogP1mTnSZozaws7c1TDilxf3+LP0R2454xekKEsJuIqaZqFU+fv5CYZwtVVfGQJ5Q1xKbB2Jq66QjDyOu3r2jaJ7SXjs2q4fbdF4zb9+R0R91Ggg74SULlZGMK6BxZuZq1q4mqRhvF7nAAxMY6Z+RwSFK0Q2lYl/2N0z6xrGmlFLWtqaqK9XrN4bAjpkhWQZqdgoTv9zu+GL8A4MWLj8RKM2dCFBOLphbHmhwjF1c3TIcHhv29ODilfOSlp5JEm7IiZ0mrjQgdYX1xgTOG969fietNlq992O4K71loE8uaFavIckCSmKZRqJVaCsV5HI7NyjAMuLpY62rFerPBGRGjD724LoEWHnJBGLuue0TdyNlTVaIblKlnaWKto26EajeGQFO3zNNIDGJPbZxF54Tz5uxgFYm/KZ/bOAz0+z0+eKZwppEolNbjNLrULzJtKo1iFovapu2AgA9Bwv5KcyO2nbkkF1u6uqNtm7MMlNJ4ZHG3CkshHRMxyrkUQhB6lxWDkqurFSnvGUrq+g/1GvqRCdG13L2beP7iGbWrOGz3+AnE2bDCNhbjnGgs5sjsvVCSTKZuDDkqcbWbxMwlxkzbrqXQshZnHShHiIqE5erJM/bbB4IfyWHm5Ve/Z7/b0u97JONI03Ytn3z8MbXWPL24oDWWtq3kV1NhteVHP/4pc/B8+fVXvH3vSMGTyr6/uAylKRLqgK0rXF1hnMPMGT1H+v5whihLc9o0NU1TU9cO51aEEHnz5i1tUzN7z/3tgzAX0okFcU4LiikVfFI90hAZY45ULDjlQYgj06nQXALscqGxkSWkUH7OUpOJ+BwKyJviCV5dBrSPpraLtaz+VmEfUiAkT0iiGVgQqJhOgnrvPVaLtgAjNWmeZzJgnAQXQkkYP0PlnXOP3P0Wi2ClJFx00W4seo7F4Eecqma0UgxDCTDURrJWqiLc9xPKCHVtlaT57/uBHAPKaIxtaJoVVdNS1w3rytE5izaZfJhQShw9beXwZiYh2lqdNSZpjJepxpw8IUUabVExSM0TQ3Hd5FgXLw3VObtG9DuLqydHXcqHNN//xelS/+CXf8F2d8f9/S1/9T/+K55/9Ck3N0948dHH/Oxnv2Bzccnr16/5w+//wPWVUAYmY0swX0XTNMTUc3t7y3Z7j9aUFHDHs2fPUcpw/3DHm7df8+bNO25vd4y9jP8++dFPuLxaU7eGL3//W+7svTyA5cmUXkMV8Th8V5N1XCSqTApylqwMgJjIJlLpLCjQPOGz5v3b11zfPME0FX/z138tXOPo0UrQrP5wYL/bst3eFU1Fom0axuGMIrV8eDLre1Q8nAeeLB3zubAm51zQfx77SZcH4cOHQxyuYEH0l8N2eaC01mQFc/DcPdyhjWGYZupKUVkrB9+CbiSKOHwiachOgs8k5MVwdfOx5FBohzGaOYy8e/+G3/zmb1itVkWUJlSH2m2o65anT59Ig+GEJzqOMrV4eHjgX/yL/06Ecvs9Dw8P7HcDpYP8Vtd8jhBYa46bQi7v/Vy0tvxyzp2oKDkQYhDVigGiYo4RnxI+K+asCBHi6KmUpidzHz1DOvDf//avePXwln/yD/8pV9dPcdfPqHVF//CA7RSuhe3tH1mrkWoecCnSKF8EsQ1ojakqqralW61puxVoh/eJyrZoMjpGVJrpNCSliMMeFSc6DB9vfth0qRFNiIguaDsKjdEaTFeTobh/DIR+JGWNSiKsTjGikUyRZn2FW19Cd8Edml2GKoMDcgoko/BNxR+2W2YXiTYR1MCrN68Yh54we1ysWV884fL6hqk/kHUmq0gkMOVAblaY7CQPZZrxeaZed/hhIgyz8P1Nh60nkvfM4wDZoIzD1R1zvxOkX2VQe3IOoGpWVcX1qsLqzH6axcc/SyioPgcQzuiR5xM7YzR1LYVPCIndti9ud2K/qEooG2RygqlMNP7tv/uX/OP5nxynl8MwUtcd1miImaqg4qrYcCckJTamTFOL6HqchWs9DDO7vSdGy/t3b4HMbvtAl+LRNQqWdZqFblB+n4svv9AaZQJptMIaoWNO04QPoqHQxU0pk/HzzH6XBFBwTgqXoi2IMaFMcRBM6REN4urqiqpqqKqGzWbDbrc77qkAjavo2rVMbK1kDKxX3TG/RykBRI4FEJputSKnzGHXS0hZFqKrqwTsmGfDOB4QS0yZeAhlNx+pIVqJgDbFiG0rtNZ4H1i1FY2thI7hLLZarGrVMqQWWmeQkMOwTIx8aS6iTCycFTbB5eUV1gkNWWiwFUrtGMcfrh22U5FxjExTwugGSpaSTx4/WYxTpanLOFfTNBZz5UiFBAKJw91BktKLPtG5hHdO9FXlnB/HA+/evUGZ59im4t37d/hxj8oex8zrb76UZPggwJ5zjrl/YPv+JU1dMc8zwzASL59idcvV5QtePB0KNTdxdXlBWzf4OZB8IrtICjIBm6aJ6SFStQ3tekVVwm+r2mEniw8zIciUcrt9oO/NUX+xnPvGaKZisWyMoetaluRrOO0r53WF1hoSx8L5vKA8p6PD41pGKYWOC/iayYRjfWKM1BanolToOUqfKDxLt2FK3SB06m/rAay1YsFa19RFk1LVLXVdiU6q74/v0ftw1DoorWnaBmWEUpVzpq0boVzOMzFEqrqiruvCrhgfTfvOm59c9taskpiALE2pK2CnhmEcaJrmSGds2hUpyZSs73uxZkfo+XN6SwZ0VVM1HbaRzCy0Ec2FzuTKEK2cndEnoasayE6JCVDQwvapM0OaiSqSlWiGK12jlEWbRpoV8lFfsuyVRy1PPjV2zumjacgCqi/GBP85Vrbfu8lYr66KkEjx7v0F/WF7FBFeXt6wXl/g58j2fociMk+eUU9Y02CNZrVqePbsGcZYdltB3sZxwqVMXdWs1i3TfOBhCw/3O4Z+JgZN1xqauqJrG9rOsV531HVV0rpPz+dCnFo24g8L06JpeTQ9WESJ4udcpgEgQTBBfKsVIpgWPmMsG5flcNjRH3Yc9pLguYTo5HiGFHxAc5AJSOnq82MrsA+pVOev8XwaA3xnZy//s6Rinn3fc8GPvH75XvM0obRh4XFDyXSIUcaYhYKwZPEudAylhAvZdpe4gsArDdvtA9vtPYf+wDiNOFdT1w1Pnz4V5xetaNv6KETyfuLt27fc3d1xf3fHH7/8SgRp08w4iu6mUPBZ9DbLvTt+pvo08jw+C5njvYRvd9t5gVQWWBEoPrpS8GrxyNc5i+g+RYaQud0dWNctZveANppXb1/S1A2u6ni6ueajyxt0HVFuJhio0ozLiZqMlQ/leCets1R1LVOZFEW/ErPksBQUiCyosMqB5GcMkUplcS/5AV9jgjkkwpwgFKqgkg3M+yCC/1kU7jnHYyGpVLGMrlboixvS+oKx6vhdiLSTBx9ZWydr2VnSquZgFHNOBD8zzTvGaWL2IpZ1xuLqhrpp2O12xDhDjiiVwGhS1CRTE1WgfxDbyebigmwccfaEcUTpCnRDVjUhV4Iua41yCuMCahlvG3ECySpSxciq1sRk8FEzLpESpSEXNHD5s8eUKRldF1qnNuQieJYMjxIjW6wdC9oAWYqod+/e8fXXf+Ti6or1ek3TyVRFFCZigZtjKM9fKq5NSzhV4SFbi3GZqoK6UgyDTCKWfVTWXHy0b6myiSzC9AUIWKiLpe4+UlhP/ydTU1nL8ahLWCaSieKYZ93xZyutj2DCYlm5Xm8KZVKfprrHvVAoIyqJYxCAUYI8mqLlohbqwzRNYoerVXG/k/3daEPWUuCDKg2JY5oKXbW8v0XceuSro4Qykhcal6GqDOvNuoTqiY25Nno5uKQYLDSGGIJMiWKUZ0CZY2FpncNZjbOGupJGLWWIc7FvLwjlD/XKSRcqHrjaoTSFqpbL+uAIjzsn+UNN2xTzP9lfQ+/xo2cOnqxz4eUHZj8xz6NQqcpn58MVPszc3fXkMOFUIluhQi/2sApp/mRqMmLUWsTPMTAOE6tuzXpVc3P9hJAjcxC3qqauGYaJ2Xh0TCSdSiMeISp0jEUvoArVT0nz0o+kFDFmcXJKZXIgkwdjDE3TMA6jnLkFzT5vCuBUDx3vbS40SKVPetcP/v1ynVO6z5uPpVZYjtgU86Ofs9Bez7+2tDKFKkrZvx47Ti06COfccdprnStZXjJ5cFUjUyEl+xXnNV5pNiTsLlI5BzkTZqG3kmSO/q3a8UOwh9NE2Rp7BDrrujqWFGkJI7Ryj5q6IQQvlGhjMVmdKPRZMi6UNShTXmOpweq2oVmtqLsWvd2iYiLngFeKrCKQ0AlZ10DW4FMCLQDXQoCn0DbF8reYlBRGznJvY4xHoCZnjpMyPxe7me8AfL/P9b2bDGtbVh1UtaNpGv79f/9vefXqG968ec0//i/+GdbVPLl5xqpp+eKLP7DdbslxwGiHqzS2guvrGy4vbpjGmT98+VvGYRaHjC5T14bVqmGzXnF3tyXMlqrq2Fx0WEdBvODq6pLVqsM6Q3FxFhoMpwZjuRYkTQpjQYIWa7XlZoUoydpKKYy2YjiahJsrwTVQOct6veL+9paYIlXr2H55x277QH84EPy8dA5HwV5Mi9Li9EBWtjoKGpcFvCyi87HV8oEfX2cWG8/z1718T1UEOsv3Oq7fD0ZaqRTWSclrEpu2JOFvOmFUQqtIDhNZOzCSBm5tyQBRIu40yuJcS7u+oWo2WFeDCrx6/TW3t+9RSvHwsKXr1tRVy8cffVqaE9G7DLuBfhD3m1//+m+4v39gvztwd/dw4ngeqSFL+ZFRSgqeRRd0LHzK5rJseCenh8eBZ9+mmHFEV3ThZSptyFaQ9eQqorGoaaYfRh4e7njxTGOdxu63/PYPf8uqanj25BOurj/mJ89eMMYdo7/nPnlcmqlUojYapRxJieAwEXG1o2krVE6ComNIaKqq4chlTTMxjEQ/kop/us4JE6bvu2T/Xl6HFBnniJ8SFivhb4XjOPRi/5xCwi7BiTmQCRjEVrpa35CefcLcrrhXhl+/fMe8H5hXKz6pauzsyU1F0iv8ZsU8iz5hd9iL7bS2aONYrS7pNhtsXXN3e8u426JSZFXXdLaCEWK2TNZw//I142HgkydPWN1c4GfP/bs7iDNJjUTVEnQnovwcwFQ0WFKYSHHG1uLVn1HEfmZdAVmK3Xk/ExErRm0sKYWFU/OtQiCWQ9AEqKsKhWH25YDKJQjOiPMOZe9b6A37/Z7f/vY3/Oznv+DJzQ0ff/qCqhZes9KaceiZp7Ek9Qry6aqKrGSikVFYV9MoTTbgqsib1/eik0qpmDbYb629oytWmewqvQhGS1Ni5aALJMZ5OopR0cKfT1nyClgSiIE5z8U6tKGqag69BJCaQpeKMVJVFZvNhsvLS/p+YBhGDr0pQlfNXCggMc34WSheMm2UifISsmVMxXrdEcM922mP1rH48ss91sYc05BV4qzREaqEnAELrzkdzyRBBqUEqKqKtqu52NQ8e/5UpjOFshJTLBSohB/FrGM5K/zCm1aWpqmpKkfd1ILqKimsdNEyhtnTH3qGYcDP88mJ7wd4eW+ZvYTWra9qMCXzIuRSRQmFTmxLa9quo1uvQBfOek5M24HDwx4/TVin0Drgw8Qw9Bx2D+QoRWLIkdmPTJPl7vYdlkxbGehqjHZol0ttnGW/SsJo0CofKYDTOHF18YS2W+HnwBwGhmlAG1i3K4Z+Yppm5hjIMROJJBRSA2bSHNBrmWIoJQXsNInLpS76UTitt4WuZ4yhH4ajjfQy9Vv+7XJ92DgctZ8FfEOpI0D7XVrR5XpsZCEZCyD6qxOmJ86P+YOfu0xAlm93DrguEwznHFVV4awlFrpWVdVo4yTzA3BtJ45OxUlznKYj2BuzuNHJ3iLggcqZYD22NJmpTFvP6WHnCdcLRUo+W1MspmWK0TQ1vtAUcxZaqg5CYW+almGAlCasqcjZk0OgPxzw84ypKnCKrAR0E90bbK6uuL6+4GJzAW/fY/wIRCYTpNFKSiIYiKASOUsOm9FJpqVlZJoV5BzQ2pTohcUd65QTElMih+X1g1LLVEyslVEUTZc/+5z/09f3bjK0TpJs7RNNs+G/+i//a169+ob/8Jf/A//vf/H/5LPPfsznn/+cJ0+e0TWX7Hd7vvnmK/phi9+NeD/TNmuurm54+vQZN0+u+eqrr7i9e8+7d6/QNvDm9Vv++OUrtJKwsrpyVJXmsN+iVSDTSU5F9KQkKatkEQl+l9L91HemgvadHhI4O7yjvLf97iAop5OCxriG29tbQoxcXl7RjwdyDsSk2e937HY7hr5HpVjEkVIM64UzG5K4HJUPyxgjo6cs3ST65DF9bhu2NBbL9MMYe/TzPi7JD5oIlcv4bkEISree1UmgtXSwKUecdVTO0HYVn3z6hK7WVMZj4ywdr9YY6zgMIzknri42mKqiu7zh5sVn/Ojnf0FdXQCK3X6Hn8XbfppmXr18wz/6R8/5/Cefs1o13N3fMo0DPgb+zb/59+z2B2bvGYaRcZxLpywc7dN1oppppdHFXWjJmjinlJ2Lk/4UT/Ax1/P076S5AIVGJTBlc1S2wlQ1qoPVaiZOI/3+Dh17VB745MWGt3dfQBqwaubHz58xpQ39tAa/Z+zfkuOI0bnkiApFSxlLioEwTaR5z25/i60qLq4vyMGXDUyJG0dORJUlMTyr4wTsh3wFDCEnQs6kHKiaCtM49KoBFVFzQdyCODVlEjhBvcc5cns/YS+fcHA1RHhzWTFYxR96zx9/+xU/sYmms9iV4bN/+o/ob9/S375FxR2zysQ5kqLiyYvnXN5cc3l5yU+fvuA3/+NfMU89N89uePPmDfFhh335hp/8k/+C3G3YTZmvf/W3/PQf/zmbq2ue3Nzw6quvSyGosfWGqlIYnch+YP/mJSkM5Dwx+C1DfxDELFpqU1GvG549fc5f/d3X9HMkpEREqC4L+nSuv1r2hJxE21TXkUwkph5jI0SIUWFsBcV4AhbetqBlD/d3/O2vf8X7d2+pO8uzZ5pVs6LC0LZrqroVbVVKzNPMOM7MsxRA4xw49BNB14xTZBxDMctYXE4M0zgeJzDLhFEpQV6tK5aRWQJXl0tqllwAIwGAjnua1keLTbHDLehgsa5OWQoYhSpW1bLPtl2HLVOY+/sHZi+ahVAMBpTWx+lE0zSs12u0NozTiJ894zhSVTVV1VJXNSEGum5NVdXc393ip4GUAs4h9uXRn6bMyLRiyclQqCMXXQbm6jhNMNpxcXFRrEgr6qYT3UuhqY2jJ/pQggULraMo6Ou2ZdNVWFdRtY00FVo0aSHNTNPMNMwM9/0x2NbVFV3XUVUN6/XF/1pL/n/xa7cLxGxRuiYnd9SizHPCNHL/cohoU5dAWYMpeU9GK4yC9eWK4TCIKNwrEdPGzDwObLf3WG3o2pb7+3fMf9tL82YtjXPEtkHnzFdfveTm+pqLiwtevfyGJzdXdOsNRq/Z7x/o+5Fh8nzy0U8FZEiJyhl22x4/D1TAi2dPqbuWi6Hn/cM9b9+8w/c9FPRdo7Da0nWdnAtJ6oSmcUieaWIYxFGrqqpjg5FzPlIPl8Rs72cxoonhWzXQef3kvT+yJc61ouf0mEe1ynf8Wc7LBECRsziFLm5ICyL+rbNY61PkwBmIuPy3chWVc/Kr7aiaBusqOVNDQANV3VBXToproJ+nY3zVfjgITQhFXfYj6xzrzZpUGBYxRnwIzArmoklbpiTLaz2nFS3aHWOMrNd4Mn4Yx4Gm6WibFu8Dxji6bsPQjyhmFGLrm0PRZKVI/eRZSdcS0ERbR0qZ/u6eJ0iYqUaTatCVRTuNLftaAHyGVjsUQb6PMbiuIqGJw1TolIqUDIfDjpylORyG4dQ8GQkQJstZI1oMqZ9jTjhXHe/X97m+d5Nx6LeMw4APgbZtMLpis77m85/8nLfvXtP3B37/h9/w4x/9jLbZcHV1hXWal6/+wHYnb2IYB6phjzGKpql58uQGbTLe7/n6my+5u9uy2w6EAHUlC+vJkydUlfBj+8OhWB/OhS+rlib+UXG5IPxQpm6ZcoiV4+xM8JQLWhajhOYpramKG4pQukaMq7i6uWa17sg5EoMvh1BFmGdyVEerQaVUSdJ8LAxaXuP54kaXRf6oYF6K4cJZVqdRnSljtA8F5Ec2znIzVClTcqHiFPeSY5eMoC5eJdSU2O8rotfUNtHqLOM/LYd1ZWVBWqOpm4arm6c8/+THWNMgkwVBR5qm4ebJEy4vr9isr3j+/DnaKO7vb/n1r3/Fw8M9OcPrV6+YZhFda+OIoeSUlHt2fonjR7FXM1L+f4i6HA/zcr/On4Hjs/AdqM35f3OWJXQiNMlBrjFU1gglrNboThEmyUl49eaPTA93HJ7cYXXisx/9gtpatN5wtX7ONkWCP+CM8PxV8pADrq1p6xW1axgPHhUn2WSGjHG1oKDW4qwme0NWlqgiKYkoOqsfdpMRj/qB4uTmNBTBfCq5GFpJoBBRoTCQLSk7cDV1tyJOkyCCPrEfFOZiDabCAaOCa+AyazarDc8rAxcrLuvMsH0HSMiRqVd0V2tM7UhTlJTkpMgxc/XkCUM/MPY9h7stMRR/9GEkhUCIMypp6qYmpwuck5BH5xTWZDSRPAXi1JPTSNgW95co421FgDyjYs9la7EmMwTox5K3Ue7V+ZRSlUUue9ty6ImDSN1UwutORaC5IIacprlCUcqMw8j9/S1/+N3vCAFurp/y7PIJ7WpD3XTFfg20kV8phpI2rbEWDoNnGDzj4ElRkYqoO4ZIEvNFVCkKHrnkUdakKkJNjsPW41pcgkrPi5nj/pnzGeWqFOwFcbPOYW11dGeq6wqyuAaJoDeVIrsmn+3FS3aRBP/VKFXjrMH7wHq9pq4bjHX0hz3zFIpzYBSaFwo/+WIRKpko4zgWEbFnEYkLiKSOKK5WiqjKfVKZ4nwg9rLjzDROwt0OnnGYCF6yBSSHpCtcdXHiWuhU2ohVqS/vZxwnlgZHO0vnVsKxriqquiMlLY6NP9BLGUWYkugpRsltIEmwLnHCuIyrwdUy2TNWJvIiwFdYo+jWLd2mZRwnDvejTAxCElepamIce/qhFq568EyDY9112NWKsdCXL69uWF9c0nQdTbvi5ulz1usW0kw/PBxpvtvdFh9EHxL8zDCNkgatFL/45Z8xpchhHvm73/+OnDK37xV934sz0kIfoqwFbakqx3qzYp48fT/J2Z5Fv/mo0EfQe4oG4jhOKADkORXyPNDvvLbIZ78/gh1/6nM5O2uXRuPUcGdONAu5vut7njccp2niEshc0TY1q65DG1PA4ApTVZgo+5AxttCoDHVV0a07drs9h/5Q7oW8BGMkBNRqQ2UtTdMeg5YVMBlNTucmFcD561z+vxJL/LquxY1vHMrkZqkxE7Of2G4fqOsGZ2vWmwumaRTtYZhp6waUomqaY2CyRtHWjTQbOVNbCf50WaNUxlaapCQqICWgMHUUYJUSswenJExZL4YV+nhfFw2J6HHkvci5LHXUsn+JQcUyWUoLc5Mlo+z7XN+7yej7PeMo4+yqqiFrunbNT378M6yzvHn3klevvqZp1nz8ouJifcmL9XP2h1tmLxxCCdnao1Ti2t2w3nSgIsNwz2/+bmC/H+gPEylk6rUI9Z4+fUJMMzHOTNPIOA7FK70kUX7QaBwbjMKHVeXQlT0+F2bG42I2Z4qVpozh5dnRpBSY/YydJ7TVtPVKbFn3EvhUVw2h8uQQIYm1Ggjqdj5WPA+pWX4fYzxSqRaOdSoIlzoWzctUoxTAShdHmrNFv7zXMgmQr5H3GaPY5KWY0dqeCd+yNEJeRmi73ZYwG0Kl0Y0lozAuy3t0mspKmm5dN2wur3ny7GMkpTbJZzr01E1L162KwPsFIQT6/sD72wN/+7e/5v379xhjORxGUgalDW3nzrQij5tEOG00wLHZWq5zUbf8+5Nl7/nGdS58P//ej75XLhkbC18xSaFrlaKtLZW2OOVobMXD3cTUb7m9fc2Bd0Q/cLnqePb0Ce3qhqZquVw/JfiR2Ti0njB5RqUZlSSMsKk7nK05zFt09hBn5jFQqwC6RukKaxqCKomqSpcmSARfP+Qrhlj8xjPaGpRVoCHmRApBaDFkSWotm+jSZGhXU61b9DQwRRjnxOwbDqZCVS3Gga4SozUkZbhwjqt1R3d1wU2r2W9XGKvpNmtud6OI7p1h2g1oFAZN8pH1syswhmmaGbYHWXeVw+yiTC2jJ0wJV1m06qhqsd02liJiVvQXO+LYQRqZhgPoiCGTlEcSVifylLhsNMYqzKwY53jaq0pg27HhOBYPQsMRhFBoSNZWMvaeg+yLnBX1LDoI+dMYZUT/xRd/EAvfmLheX1DVLbYW5DfLrUdpAU60duWQ18TtjJ8C0+QLKFBa8yjuU0qJtegjHdmRBrGABKfC6fy9nSegnxcrWk56Ylr42zL5iLLtlibD4CoLCEiSYj7TLAgQcQ7wLKjlXBKALy43VHVV3JwiTStica0NwyD2uWNxRlwsz0MMzPMk7jF1zTjKJGT2JdiL0wRyKVTUsleX9x+KPXAMkaEfGUeHWPN60Q/Fwi+vHG3TStaHc/gFmCEx+ZF+GJgmaTDGUUCwpq7pWkF2rTFoq3GugWzJ+ft53P+9vLQiZU8IiXkCleTMTjkRpxlbQcqG1YWIi4/CeSM8dGM17aqhWTXU+4r9/cCi/fFzws8TwzhgDk4KdT8TZ4MD2qqWPKxp4mc/+TEXmw2Vc3SrCy6vb9hsOnIcePXKFCoT3D9sGcaAdRVaiU16TNIA/fjTz1CVZQqeYZ54uL9nGgbmcSpNRsmKyEtugyliZ8vkxClPK808zcegSFscM1kANC3WpJTzX7YFoUMte8p3aS6W3+e0QB1/miJzXucsvz9PiS5/ejyfv+vrl5+3fK+F/WGM5JTUVUVTN3RtR1YKY53omapaTD+OzZGAQlVdc3l5CYgBxpIIznF/yiWXyVA19al+SAGrNdloDApf9o9zhQOcKF9a62OTITVeKE3GQm2b2O22gKKqWrpmdQwGHoY9dVVLYHDTCouChV7vUDGiYqAylei0yj6mnIjCU2FWFfEqWkHW4KzFVQblxP6bxKOpkC60TjjR3FJx5tJHfeAJHJHaNB6fxcWl7Ptc37vJmOeFb6gwxqEwWFtJB//8KW/evuSrr7/kV3/zl/T9jmfPXvD86XPW62vqquPpzXO+efUFfb/jzdst2+0D1zc3WAtX15esVysUt/R9wJiKTz/9lB//5Ed88uknzHPPMByKu9UdKYFSlpxPLgkLclZOaDQi8CGJx4dQv2Wj0csEIQNKE2NGqVgWgORGqBKEo7UglD7ObKor/ASHw4BW0km3bce663j/9jX7/U5CWWQeiC4WqgtHb0EJFgs48aovugpdkMu0UKeKExaPBVYEZNGXX2UvAZWxVhf6wkl8DoJ+iGdyhBzKhEQetKRBZ4NVlspYqlp8tnNKTGNPrSuUMiJabVqs61BUABz6He/ev+Xf/w//kv/qn/zv6NYXGKXZbff87W9+xRdf/p7DYc/h0JfDVAEibtIq0/eHY+Kk1vbRBgOL8OixnuK8KZEFbr4l/n48vShj5/Lb8/HwabPLhctr0c7RoGms4rLreHa5otYJg6ff3dLpjnmj6fc7fC9N86u3X4My/PSnf84nH/+EpzfPqGs49Pfc378pqIBBqUhWljkk8VifelKexGPcRFrXYLSkgkqAUbGyJLN2Qh3yP+wegzhO6NIr+eRRtoYiZoyzhzLRslqVvBp5Po2tsdZQ28ATRsYEg9ZUH10Qn1yT1y27jeK18djKsq4sYRKuvTWWTz/9HH+1hhxEHFtPZG0JWZOdprm8JFY1IcH73Z5Eprq5wlUd3c0lKWfefvWSzlQYFO93W1aulcLNGPaHB+LBl3yIwPrimu76GU6ByY5evWFUt8xxC+nAHCei37PWK+puxWrVMUVNP8wlP8IXWkGhVkIRY1u6bkWIgrqFmBjHiZwTxihJ1WUROguSuCBugKzlrPjid3/g3bt7PvvsLR/dPGWcD4TkwULWgTn0TH5CW1UaCtFiWTOjSOLitTi0sRTOVlCxGNBq8ZaXPVmwHgE4xGb6cWMBcD7BkNeqjvoDrbWUSKdlLes3RYwCZwX13e13Inx2Fd2qk6yIcWSehdJkrSWEwH6/P/6MsVh7101N1YomZzf0mHli061RxQlneY2yv4bjhERyCtKRQiFWueU152WiU8ILcyo5IGKZ2h/2tG0FKeJnRd1oqkpcgi4vO5q6KTkiqkyjZT8c9qJrO/QH7ncP1E1DU7es19d8+vG1BMdp0Ep+HjkTgi8BiCN+/uFORA/9iLWZqgZDxocZibPIhJgIURGTxSDC3iXYt6qseCOQcbWibi1V68hWps05aTKaoeQpxBS5uX6CznIQP9w9EKMIsI2raJoVN1c3rLuOw26PnzKTCaxXjsvLSw79xMPunnE2tG3CuorgPev1Fc44EoqvX91RdTW2slx0l5JmrcTVZ5kILnQVWduZuhKXJFtlqmbFOAzknJjnqUxX5eyfYyzWuBL8mKJ8vQAQCzYrm8x5AN35L631EbjgjHGxXOdWtwtAcM7eOE5Gyr//UBv5IdtjcYp0ZTqwOGVpLZb6ElYpVuPKGFSZVFW1ODmFOLHf7UtGiLy2oR9IQYTeqqyDQ9/T1DWzn5nmmbqqRJjtZSqoFBgtNEer1XH/SmXfQkmtJpPDsbh3dTRNAxkOB7GKVmqWwFFtqOeaeRbXKecsPhiZPmkt9Mhh5PLmqVD1tWaeRnZbTxcrBuvpaqHjJ23wUTKCsArXVMTgMSrTOsXsAKtIRRMk54Hc96XmPDmESYaUUhrvR5TS2LomJY5NhDEyfc7p5Ah23qT8p67v3WQoJU4Vi03aHIVfZyspYNerS3706ed0bcebN2/541d/5O7unudPn1M3FU3rGOdrKeJDpO97+n5HJpKy58svv+D+9kESkj/5lBcfveDJzQ11XdE0lqatcJXhcOhZrbY0zZbMDlX8j04HVHEuOdMvsBSdxcUmL0iaypBPCPiHI0MZn0laagqJaZzIKdF1K9quQylJJu4POzLLqC7jtC3e7SLcC+duJn/CQSotY8wjh4Cy/k+d//HfHzeK0/taKFOllDiOVmW0tSxoBVlQUG1kMRuluFhf0DYGZxJag7VQOUPXVtiywG3dsLl8xubiKc3qkqQyWSdco3n67AXzPPHNN1/x7s0rvv7qG+7u3rPbb5kn4QHKW5AgL12QlYU2g1oKj8euWR+OUc/v37FJ5PHG9YiapsqNzPLnixP4kjdw/HdaUTlDUzku1w0rY2mdZtPUNNqj4kyOI60J1I0huAanMqnO6Kx5f3/Hw/bA67fvePbkt/yzf/q/x9mKrr0gpcjD4S3Re0KOXF9f4mwDEaq65rA/oFKmqs1xVCqUvIDCYEgYP9KrwJAyuwT/5Psu2r+Hl1MaZYVDr5qK7Cxxge8LakaxftZGJh1aaWylabqG9eUlOU+sqobOdcSPb+g3Dbly4vLTNAxOc28UD1mxUbAyGa0jKlgIQlm6aNfMWkbO3ScXXG2uyMNMPx7gqhUOsNKkINzXaRppLlbM+wNVzqy1RcUkuJPWXF1eMAwDh0PP3d0tv/m7P1BXNTfXV/z8xWd07SXz/oHd/jXz/R/RY8KFCdRMTmBU5LPnT7m7P7A/HNiPYxkSLInRsFAdBYmqWZ7teRbjiQwlzDSXQgMpjst0U2WZUiSlqJsOHyJv377l3/zbf0WjBubDezl8shQj8gIklyZGMcmYJ48Ex3XC6UV0YFrpIiaWqaA0SlLMiH3tGQZ4tq7P98UleXlZy86548TBWVtalFIdLS5aqIIU7o4FySJeresGb8IxlK+qa9E0wBGUiinig+fzn35OBCY/s33YUTc11lgymXHosdZwdXnJu3fLmeCPU9SUcmlmJrHGzrlMws81NRqlijYwyQReZ4qDVsS6mvVmzYvnz6kqhzaqUIKlUBsnYQOM0yQFVJbQ09WqK1OYButqKlfTtSvZQ5LQudIoKeSpUEpkuPSnaS9//y8xgakrw6briMHifaIfRvIcy7pJTNPA0CvIgewDet2hs8WgjkwC5ypsVaOTRqNLc6aE4z6NbO/ucNqiUBIOXLciMEaK19vbWw7bB8bDntoaTPY47bi92/OwHejHQEgKHRI+B3bbPVc3P6ZqO+YYmPMESdgPMaeiCfDFoVEAXXGQW4ADocAoY4pGc2I47LFW062qY9hiLHtoilEci5ToUVJeGnUxOlFKg1JHTegRrD3d6mMTsIjKgUfn7Tk747ymOdYy6tuTy+V7nH/v5ecvIu+FIiUBg0VkbZ3oa7QhpoQPE8Y60aXlVJK34/H7KaW4uLigbVv6w4EJ6ENgt9vR9/2RDfL82VMRxytwlRTtKcma1VkmHqncC8o9O6/hFuB4nibmeT5+35yyUHunid70SG1mRfcxzzIFTYlpnpmnuQAQ8rn5MHN584Kbq45u5ZjevSOmjMsakw25FiOfuQ+yv1tIRpEtgIKkUegjdX8JIj01dao0GSfWiOA28gwu3qLpDKha3usxe+x7XN9f+K20cBuNLLgFlQI50Jyr2WzENnAYZ8LtLdvtA11Tk1cdTVNR1w1dtyKGxL7fsts9MI4HhmHP/d2WefRYU3Fzc8319RUXlxvqqkLbLEFnObJed3RdS9PUGK0KnaIUKUt7fpxScDrQ1DIslL84H3mdAX2PaDjTOFI3I/M8HZNvrTVUVU3brgS9yxn/EKRx0RZrKd0jxFzGZsvP+oASdG6z+lgrsKQ2fvf48vg9zt4eS0F9/DeL8xQn/Yp8kmXjMMemyGgjo1mdyWXUaJ3CWulcjXM03Zqrmxe0m0u0dUQCcxjxQdJH3755w/bhntevvuHly9fFe9qXdHax15TXmx9tStLgnR76DwVh6uzB/nDzOo43P7iv5YuP/5WJX6EvKCW08zK1UiiaqqKpLE1lue4snU40BlobMMmDmgGP0pmoNdYotFpBq4k+MY+e+90Dh35ivz/w2aefcXl1hTWOrt3Qjzt89KgoXvyiq8mFI6mOyaa62G6kWNx4EH3P7AP76Hk/B17/gP3tARlVLyLdyuGNktF94GztSjqvcwUVJmOsonKWum7IgLUW20r41Ogk9FIaa0NUMAKDMfQaelWa+KTRyWJVxtYrrFYEpWhsQ+VWpGkiHQz6ssVZQ4XGz5GkxPGlvViJLeU045qGw+6Aa2uqtsEZSzAWrTQxJLa7A9ZOZKP55Wc/oVYWWzXk2rANO2IOEjKoEirPmAxtDXOlSd4yBovPiRNhqlxlnS9Ndi5WiEJ/KGFZSpr3lJGJLrCkQh/pxcVMou8PfPHlF2zqhEk9+CWJXZoUayoykRAlW0PEx1K0iF2oUAhkG5YGQ4CedFzTjz//0/s4n07Cn6BqLIfacd3L+z0F3+ejL34Igapy5fAuYWrLs2IVddMwjhNRi9uL2HrGwtWXZycpBWovKF2GaRqFOqMVRp2sOiVluAjcWVKfT8nA2uqz966O+56AT+XjYBG3apyztG3NZnMhKd7A/rAruhJffP+jNEkF3KoqJ642bYU2DqVsSULPhCiJ6sH7Y2K7TJFKUvyZmPWHdlXO4mzGGUNdO6gbvE8kBSGPUkgXLvw0ivGLypm6MhidSMaQj4W7WBYTKU2Go3KS8K6UIswTWQcUCh8S4zySlFBs9/2BnAJOK9kXgid4g58p7leq0C49IUuBedj3DJNH12CqmoQm64CPHh9myV0o+TBHXU8xS9ClOfUh4QplkoR8vlmcMFOKBbgTe9Wc0iKzYtF6Up5BXTSP+fh3J6BVLf/3JwA/zr7mQ6rV+bo+acJ49H3+FD16KXZdycCoqwpXVRgEOTcL+0MrxCqzFL8pEstetBTRi07FGCPPe2m6FhMFCg1EppmTMD2UkkbGumMJEWM4/jspOk7P4rIfLFR4X1zhrLF47Y/sGj97JjOitaZpJEg0hlgAENGBxCihp1mbQglUYDLKKowV22YVRZ9lrKxzciZHYbQs56o2sUxexUWLUoOaszV/qpsEwFo++9M0i2PtlGIUEPiMDfKfc33/JsOYkswqHWTK4loQ54hSBoXGmpqqq/mzX/5jHrZ3/OpX/4Gvvv49Xdtw8+SGyrZcXz1ls7nm3buXDMOW+/s7/se//A8cth5SRVOveHLzlGdPn3Dz5BprNDF7lMo0qebyasPl1YaLuxV15fDTSWS9CHYXf+vjrSj3J1P49x92GJyC8VISAar3nt32/sgJfPe2Yn/oudhc8Gf/4JdcXV3zAPRDL1aCJYnR6LrQjSLKJ7LR5CyBUh+OCs8L50dcx4JwfZeW4Lu0BacpzVmHWUYbyyI4bSJSGBhT4axB5Yl5nqQxqjLMo4RvOUfCo1xLtVpx9exjPv38L7DdJZ7M7Hvu799ze3vL3ftbfv3rvxY73xAZx/l481OGIwfZBDkIi3Bx6CWrw1lpQs7vxYcb1Xkhcr5APryOGyAckdWcEV2DWdJ7hTuvckKT+Oz5Nc5knM5cd8A8o+JE8F5GsUZhq8yIZk6JpCzrixUaS/SJcfT08yuGoWd6O/Cv/7//L/7pP/8/8Oz5R3TNJV1zEJQmGEDjQ5lsqUTbdiiNOFRoR/CR4CUtdUqKwSdux8gX+4HfvH/gf3p9x//t+y7av4dXmD22UmiboXDbKetXpVQSb+UzFA90wzCPOGtw1uGUY1QVqmrQdY2bZ6JWpKamWq9wWUHIBJUZa8tdTpiceZ4kzM9aS1vXuNUFXiOOTkoDnqQzxq7QxaFm9gGMNIBVZbn++ClxliLc+sjrL77i6tkTbj56JtNOn9BZ09YdT66eMoVZphvzRFPV2Kbl+tkVg5nhneN9nIhhR0oemwPGv6czltxYZnXJw9iLrurMvlopoZaJVaIHpDlNCyep0JEUmhBAZRG8oiPqbI2Fwucf/cQ3r1+ycpnGRBrtiZOn7wOzh6a9ZH/YMY4Hbu+2xW3OkJDmT6ajsrue8Bx1bCKErqWXPwWl5LUWesv5HregqMsaXkb6H6KrH+6BS0Lxcog+PNwzjiNjN1I5sbmVzIw1EhJu2Vxc48OE9xMheL744guunz2j6VY0bYs1jnEYeP/uHfvdQwGyMsMwHF+jMZLGHYInTxPO2ZN9qC1hpMogWrl8bDQk00NocNY6uq6l6xqaRv63TGdm7m637PcPUnyqxPX1My5vblitNhJuGyZS9OTsmcrzMMwT8xiODZQxZXKsS25G3RSUuP7/w+r+X+e6ulijWAT4lrquqWqFrStihnHy+BiY5gF1CMQwiR6uAq0ajGnQ2ZG9Is2K2nUEvFjeVjVXl5fSUKaEHwdiEqOSCGwPDzg/Ubcdb27fUztLbTRP1msB9TLMPmJcTbNa0yXFy/ffcNi/x8+R2lR88ccvePriIz7+8Y+5vrzgcLhnu92x6/dUTc3F5RXjFElRKOlGO/wcpSmKsO13XF6s0bo0wcOAn+VZsFqjjC2hdSv8aIsjmxgILIyHlAU0BplinFNfUkoFdDyF/p6j1x9SqpavecTMWMDaxVGK0/71XWDCudB7oUq1rbi7OecwWdE0DUprKejL8+yUKlasCZUp5g/maOrQ932ZDiiG/sDDwwN938vZbsyxTnx/eyvngnO4uiblhLFWGpJCvTrjkJTSUehSy3sIhTaplWK1loBPiQrQpwBEFEMzYG2NsZacIkGpYz5bv9vSrjrqrsFqxe3ujk7PRHMNBw9RkZXGrpQ0xsWiNuWMUZqqruRMLRNssuhLUep47yj3ORYL7BDicYoEFN1XKqY8iVAAq/N6efk8v8/1vZuMGGdBj1TGx4AvQXxEjTFgjcVo6cDrSvPkWvNf//N/zv/0V/+O97dvePXXf+T5s89YdRuapuPHn/2Uvn/g/bt3aBrmcRT7WGt5/tEVm8uGupXmJU2BRUDXtS2rrqVrm7JoCmK/UG/KR7kU9fJHJ1Qp5cXK9dud+cKvJSWMyiQPD7fvGPo9MQQ2V9colfnq62+orOEwDkx+pmo7VisnxUpKpDgzjwP9IZJ9JGtBI6ThOH1Ii5vK8oGdH7Df2Xxw6kBPC35JugbxSZaDX+nF+eU0OTjfFMZpIARFZRX9MGC0HMSr1YqmMVSVxeqEs4pu1fHko8+YUuL9+zfc7rbc37/l93/3d7x/9555kmTTRQhq9OIrLeFWKSdyQVdzzOI9v7oiRoWffeH4SSfOd0wtvusenDask6jsUTroMsFAS0CaUkTvhWtfaZ7f3FAZ0Mnz6VVFDgM5TlQRUIGspUHyMYi4VGtcW2O1RVlL3XSMh4mMolaK6xdP6HcHpmHitr9jGrYQrmk2l1xffIzeV4RdRukVOfXEOMvBZoQWZJzDB/H6jlrxzdbzrve83vb86qsveRs9Dz7yMP/noQh/3y6rxYbPVBVJwThPpUAPxCJ0zSmBNkzjhLGCtnk/0m/fErxnrFq6H39O27Wob/5IenpFNpfoqqXDsMmwSQk19Ew5sY2eb8Y9P1qtMFVNriq8LiJhMqSMzwmfAvPUM+/vmceeeZr49Ed/BsqgK8vVpy/ww4xRhta1/EIpsJoUIm++eUlVNVLEZvj4o0+oa0fbOEIK+CxJ1ReXl2wPH7Hre/a739N7UCSczqzjHVf1FdebNTf1DX/12y859EEoDyUd21rD9fUV2+2OcUyEIDkshmI1GaNML4wgmT4IdUIr2VuFIhQI44xPMmnVKIKuOfjAzs/oBFOv8HMmpIlhNkTVoKtEPkR8jKQ0n63LRW9QqFzGoDg5rCilCTnJ1Plsjz4Xd+ZUnPcM5JweBeYte8DRBOIDXvh5YTPPEpraH3q2Dw+suhXrzQVKXZCSuOBVJdisVU2ZtnqePXtBt96gteHe73j78msO+wNDv8dpyFmKtKurKw6HfXHy0UzzcAyxMlZydFJWx1Txx9PqdPZLkbI+7n/jNBDvRprWYXQFiBvUJz/6mLqxdOsGV60wukIrSwyJw35mnGb2uzumeS6GGg6rqzIxrXCVpnKSOly7qmQe/YBF35QQsSw5Ba5a0646Zj9xu70lk2i6lrUtCfZEgp849DPKTExzwzB0zINi2EtyuLU1OYloVhvLxcUlFCZDf+jLJNxgq4rJQyBDpfjVH77gyfU1Hz19xi8+/pzaWpxV2CrSjzPvbu94+eY9c8oElBg0h5nDuMfu7rG3LZ9ffcZq3WHsNe9ef812e+Dublsoj2CbivV6TUaMJpqu4+b5U0gyvcirFdv7O3IIxBJYmZIANpOS4EijNZWr6fdbyVlJCV2QcXicjbEAkjIJFV0K6oR0n5u0fHg2n4Oox+kjlGnKY8vc5de521FVVdJY1DVN0xBCwGhNbR1aG0nqjvL+dod90Upp9oeBrmmp6gqTBXSYpolhGJjnmbapcdYek7w/tOg1WstZU1yVrLUoI7Q6peVsnqaJMJ+sqoFyLvmTTrSuxXo+RQ6Hw1GLu0xopBmK5BwAIxQwa8jWQlNjVEblSE4TMSoyK17cfMqzriHsR2w0ECFpRUoyCU8q4YIrjYWEKUs7bMpkKx3rzHmcBPzR5shmWWrEc5B9HMezuhko95RczFpQBQT/fvvI924yvvzyDzx58pT1ekPIoXR2omcw5mwsnhfEXJDHq6srQpzwfubu/u0RdaprK1y10XPYDeRscVVNt2pAJ4yV9FSyOmojtFY4a8u4VESGSah4y49envbl3sjDwGOEm/Pff1jAlq9cnFv8PBJj4LB7EHQ/ShDO5cWFjMyVOfqpG20kNTdJCuk0ixvJkmSbMmRzOpA/PCi/azT56LV9x6jx9L+L2n+hKORvf92j3y9cK21FVOsaCdTS5VskIEfQhpAV234kv3nNu/stL9++Zvfwnvdv39EfehFAJvl+pxGrKo304qAl1ZdSjpw1ISQUgqaIb/NjFORPNVcfoijnzhWPs1KW2ZW8H6th3dRYDSZ7NrWiNmIPp8MB0ozKHr3kqSzEOgXi8GRAO2xdH0e21hq0ksJqnVqsNUztzHi/55u3X6OMpuk2OOPoqo7YXqBQBFHzHz3PlZEDbEYxxshunPnrb+54Oyluh4mXo+cueuacZYP4AV/jPNI2klwb8yIMzuKQUSLeF1pjTJEcQRnNOA/EQg+KKEz2NCqwmnrWvsH7GvyIqy2NglVS1KOnyZE6xaPnuLKWZE15VjM6J3KUIC4fxD5U50BOE94fSDlglLi8GGeZhpEcM0EF2os1ISemMBVaSiIrTdPUaGuPiarWGnCaQOb29R0xGcgV8zbyerfHWGhrg2qA3GOzAtOwbgyaGj8rJi98ssURSVK5ixsagJImQy0TXRTGZqE9RUG2a1tL4Z+QTTMVZ6MM82xIITCPAWIkzBk/Z4ZhFBvlJON74XEvVocLJ1k+22XtxgiKhQpZ9jROW1Jetik40TL0wkQo2qmz/eu8IPlT+8KjP1vwyZxIKZDiyb8ellRsOfCT1ugsBZefPcZkalejlZUi1jqMSsfiIQQvTjBVRSYx+SJg1wbt1JE28af46QvjgoWOkDPTPGOscMHrpma12lBVLUM/YCtwlaZpKzJGrG79xHAYC4VqMWSRYtJYQ9O0GCOvnwIUGSumAcuzsBSYP8RLUzKTdJnIKHGniykSc6bShrpu2axXhDCQ0kTKI/M8CrVu9IS5Ige5R8qIaUDOkrcxjpO4cWlLRmNMha0qmm6Dtg3aOWxdMYaRqAxDgKRWKGdRJhHySEgKHySY1xiHdRUogzOarCFEj58n/DSRELQ8R2kscqHSCTXbUjeVrFstq+jy4kLqkuAJfsYaS1CamEHl4o6ooXIVQRWL5LSEEpsjXepDuvZSdC/n6jJJtMYIAPjBufytdXdWn8j3k/dxvnbPz/alcTm3qV0C96qqkrOx0CONLk6iKJTJ5BALQzRhlDmrCYSe5r1oR2IITJP89/xnHv/92euPKRJjQOuWupYmZ55G+TfaoFSQc+ODPSiXezWXkMsP2RfHJi4nfPAMw0BOktFhtdhQO2sh18wpkJIiRYVKiuQzcUqEwVPlssaNAp0KhUnOSp2NGBSACLTLHnMeVrwwMxQyATFak3Q6NkGP9yu5tzmXCIG0TG9ka9bKoO33ax++d5Pxq1/9FT/7+S/46KOPy2DAoJQtvuTLCCkfx8o5iuf0zfUNxsgL/fWv/6YUk3II7bZbdts9D/cHtL5ktVpzdbMhxJmTXZZinkdSKnoIJ92fNaY4Jiz6i+POfWo25LGStMPyt/qDYhV49L91oXDkfHIywnsOuwe01ox1i6kamkoU+MZUNI0TT3VtSHFGq4qsEn1fs3gPHz8dIKrF1u1UFC/CK+CDYvnxpb7rIV/Qg8jRCWVZzB++x3PupXiIO6paApqsdYAvCbOLb7JhmBMv37zj7Tby8s1bvvrma6bDtnA6RV+wUOZUsdw7vWAtjWfZbIypSFEca3LOsrgUTOP8SA/zH7sHy/t5jGguvz/+VhAUpTBaUTvF86sVjdOM+wc2VaI2CZMDcTxgioXtqdqRsaTR0vFrY8lUWNdgnJHN3RmUKU2uhnbV4kPk1TDwxcsvGMaBpzdPub58QVs1KHXFmHb4qFBRXE+0deKQUdfs58ztGHj50PPvvnjHXVQMOTMDh9LUmx94k9FPAzaLHsKXYDWVRfNljRVbPiWb8ZEWo2H0E1VKaCxudYEj0GTPVZqZomfwE6nvsW1DYyxrFKsxso6edU60VSX0AKtFHKdKg5ETMU5MvseHCXKkcpbgDcYI2CCPhTyP4ziSfSRqz+Wzp+QUYJS9ahh6lDJsnjxhCjLtDTHzZHWFcpY5Zd588ZLmSQvREfeJ1y936NqwWjeYdSaEPa7xECNXbUPrWvrJcbfdk7IclofD7ji015LCKRRQpUAlluwKp8tEIQmaS9NAEioYOUtuRwzEkBijWGxPoyd4cYILHh62A6vVmpjF3UkSriPqA+HfkWq6TFiJRXPEcdpYpvdHEEhlVeyM4QiM6KXBKMLJDyhV5z9PFwpAXmggUNa7wRpx/dKqGClEXxqEqtBADN5LEZWzou9HchYryrbp6NoOkhQ3cR7ESStnhvFAVdVY64hJuMo5K5keaYsex+NB/aE193IPtDlvooQaVdWSsH51fcmzZy9Yry+4u7tnmqTR1VoxzZ5xDAyDZ/9wkGaqOPPVlSo6p5ZVt8I5Ea5P84DS6YhqDqMIU8dp/p+7lP83u0R74rBGchJi8iWsVkTtShmca7i5ecI0bZnnHf0gNYT3AT8PqLyicWucrUBbARBDYBx6trsdbd1QVzUZg61WtN2G65tnbK5u0M4QVOLh8ECKmX7OjL6iXVVkG5nmkZQNGaHHVq6CQi+sm0ae+5IQPg4DIU4Mw4EUIloJlVipQFU76roqCe5is59SZL1aMSiYFcTgS0OkUVksTikMgq5phUbnA36eBZVXGl3Mdz7UUCzF9+Lotjy/xhg5G7X+1ro/py4+yrkpQKY6+7vl35/XJecNxvLfpdkwSgriGCO2qlhc6bISYx/Zx6CqRauhtTRDiwGDLcyRaZyYyMfvv7gjnTdF2kgTEGIUNo6r8H4u2g3Z/5U2R3vu5esWTUuKkTl+dxN2AkTFNfJwOAjQnmp028rUGYs2mjBBzoYUNCYq5sEzJYjzjMkZa8AYSGbZX400YVnAEhBjCWVOk+IF2A9BnBU1QheXJkN+ndPiyosvFFzJ1zhvPgQkUiW07z99fe8m469/9Vf89nd/x8XFJf/lf/VP2Fxc0XZrNmtB+cS3PJYHWHItUkoY61h1a3gKTbXi9vae3fZAv9/xb//Nv+WPf3yFVmuevfiIT3/0ET/68cfUrebV69e8ffuOF8+f4JzCuRVt2zL0cuDstzuMVoRiR4vOR8vY8wegfMonPiInJf15kSpFK8cHOWTIvoyINMR55LC9p+k8G1cxDgOuqll1khbrnEwvUrKoFFFkUojkeMF+v6PvD6hxRKlIjDDDo3HTghp817Riec3naP7yZ+fv1zgr1rYlrOocnTj/fstCttZiXYWPcLcbuH3Y8vTScXFhycaSestDnODhFq8O9PPvQQl/0NXdsXGIyR83N3FvWfzslXS70csGaMBaQ9OIA0o/hiKYS48+B/sdHXJeNq6ze/EhBSxkhQhylsIVnt1c8PxqQxruuegUTmdmNA17dErkHNAqiPC6oFrG1SilaFISXFUbKSB0BVkch1JMqBgxQK01ylqyMiRboX/8CXdv3/PNu6/4v/8//lv+L//n/yvXV08krTNnwiCFnDUNrq7xxvLqEPjV2wf+9uVLfvf6LW+9Yc6WrBXOGUx0zHNgmg/fd8n+vbxuPnpBvVmjase43xK9F3etrDFaE6KYBZjyDGQgzgWBMZZsFE8v1pKVcfuWn17fcG0t9wFe7QZUO6BWNbatuFlXuNdb3P5ANJpcO1RlZFqXIzHNhDAzTgdCnrGVpts8wSq4uEqlOHWgLSkLwvnl3/2W/n6HTZp//n/6b4iNJbSWq0+fku7u6IeRt/evIWk260ue3Dzl3evXbF48p7u45JPPP8dUiiZb5n/0z3g7BF493PL1yz3h5op1l6jrEXc48PTpC5q6YWVr+n5gDkmmoVkToyclD9pDlGwb8sL7h0xmnke0VtQVVK7msNsdD5JMYBwOzOMoGUZBsWRwLIdKSpmqbnBVzaZp+Oijj/jd737Hfr8/HlrL9a1JQz5NJ8mgtCn78LLHytcslIJln0rle2ptBKFbnJjO1vp5mrhC4c4Ou4WeZbSlcq4IJsVq+tNPa7KyGGOpKkvXNSwTYD8HtDKQDW3dUrmWSc8En+TvtKZpa/qpZ5z7o+HI0PeFSiC0hHEcjlSpZX+WxmvprTJKi/mBsQbrLNdPbri4XHN5vaZbr7GVJWcR5d/d3zKOPfM8yN/ZGlc1PH32rEyxMsH3FBIPKEHeFwF4348c+j3TODAMB1xxiNT6ex/9f+8uq6WBcpWjcoasYZw00+yx7gJrW4y2+EKVWa8dT/SKvu85HCb8PPJw/8COAatr2nbDarNBqXJfsuLhYccwvqWqOrp1Tbu64OmzjzCVk2wfA1998yUq16i65f3DHl2tcS7R9wPZtrhmQ9NNRBRXNxdsNhuePXvGl3/8IylnXGXoDwcUEbwE/2oNdS0p5kuDUdUO7xXayDTi7v6e9+/fEP2MMwY/e6w2uNWKaRgxzmGLE1O73qC00BF/9+u/IcxTodQA+gxwPKMuio7BPKJQpbKuP8yxOb+ObpEUsLN0GedIuSp7gDr72R/mNyzfu6rrMqWVvS2mMuw2FrzUBCqDUdC1DcYYHrY7trsdIUiTQVpME/yjfIil+F72rcvLSwlejJFhHLDWii1023LoD9jRYezI4XB4VIyfGDKPpyILUKqUOv4cQplyFver5T3XdU21knBnfX+QZO4pME09T67XfLxq2TxE1CQaPWEARLRrUc4QDx6nIZFEF2gt1gotuW1bttutOPQ5J1lAVpNTZBr2pCyUOj/NZUrD0XjiGINQphkxyp6fUcScmb7nNPR77zSVq9jvttzf37I/7PizP/uHvPjoEypXMc4S464VhY8vYVvOWfyQQWmcrbm8rGibS8abidvbd/z4858Rk+VvHr6UA37dcP3kkpubS+7v7zkc9vzxqy95/uwFzlaFeuPKISuHgzAsTm5R5w//sWDnRJM6P6SW35emW7QyC1EmSUS7UBIE8UfJjfbzzDgORcPQFeRBClxxgAxs7AWb1Zqvv/rjcfyJ1piCzKGlCD+nAiwo4MJ9/Nb7yCdB1YfvL5NLg3H6fuf/5vyh3mw28mAXDmRVVczTyNDPzNlwmMEfEnVINOW1jmHAZ9HeWGOIOR/vuoSDnfh74mm/ZHVEeTaMxVXybKACMU1lfH0KdjnfvM5pYJTGRS1cg7MNTz7LIixNkhXQVJardUMOkcvOsrYRbKTOAyaDrTIkT0LsOnNOhS5Wk407HcBZnJ20AVMsAJfPIKRUgpIUwWoMNVq7MuHT6CeZtm5obC2oFeBMhRpbcrSEaEgahmh43wf+7m7Lb27vePmw590UmSnPVMpMQ7E5hR88XardbMDJ81OeUEG78mnMXsaIx+f66HZiEkYrGqDTigtreL6qWOuKOmve9zO7b17TPr3g0l0RyKysZV03XDqLM2UyhdBowjwxTSOHcSCrTOUqlGkxyhaqjSfnQEiJfhr56vVLdocD/XaP349E79G1xiJAxKbrcMrwMD5w2B2IY2A+jIQUaeeAyhl70VIpSJcX3Pz4Rzz5zd/y5u6Wh/sHrK6YQodzmZjvudxc0zYalxXPb9bsD55hSmhdk40lRk3IMzku+UDLuskF9Dm5oiiEdjpN0uBqo9hvp5JoHDG2IhfubV2vj4PXpnZ4HzgcDvR9j1KiZ1iQzg8F2edgQU75OAVSx1C6x9OP77qOz0FBEPXZHiZPzAmgUXB8PUeU9Ph9KI2TuLjd372nXV1KcraCGH0prhxdt6aqGpyrJZjw/S3aVlRVw/buHdZlnNPM0yAWtAmCF0ehGMQVxpe9ylkjFqIf3o9C9yNllCn7mZYJREyRh92Wh4cHpnGSYvL2Hu8lvXu12rBeXeBqaTJq15LLNHTsFSEM4tk/SVp1CFFEm4vzkNI0bUddO5y1WFv9z1rH/1teMQY0kAL4eSbmQJgTzrRUtWQV1HVF17U4F8Vtx2jJK1CRFEsoaA4CXKCPZ3TMMAVPyhGlMz7NjPOBYWjwfgQjE6pxHhgOO3QOmNTgiyFIJDFMkYhFGaEh6wQkRQwJpTVVEVmL7kCyS8Zhz/3DA7Ofj0WvtTVV1aBURV07pmksFtNweXnFPA3sd1uUkYY8Z7HLD96TlKZV8n50mcauVisJAyxObLqsDVVAhfPpxUnzeAIKxLXq9Dmc/xso65aCdrPIpAsAeAZIoM7cSovt9CL4Pv5vK9kgudQ7Mcai9ZIC2SBgsw9iDzsNPUobDvtd2QMy0ziQUyhGGVLgL8LwpcFZrpzzoymKNAgg81uhjFVVJTa1BUSIMRbXNnlT57DwuUgeJKtNZ32s7RZhujWiFamqmm61ou4axiQygnk+EONEzK5YVteoGEhEkpHwSZIwNRSF9lQbImXfLI3dyZ62BAQWN0dT2eKKviR5f2BEtHz2lLKrBFvGUmem/L9wk9E0DdvtPQ8P97x//5amFn7varXCFnGZMZrKVkeNxDIikpGLWJKtVvL3SsHnn/8M7zN/+P0r6tpS146mqVitV8x+xoeJ29uBcZzFZcF4mQLMkXEqXsRlvL6cXd95cH0wtjr/lXMuCYfLY1IWVM7EmDFVhXWVIKvl3/t5JvqZnKTokYCTssiSJqGxVtwPYiwpilqs8mIUSoPVWTjm6aRB+HBScf5+Hi3kD6YcZfl/6+8e0aXgiFbUdX1sMpqmEUFSjGSlCVnTT4kxBLpcQQVKJyY/i4CahXIGueRzKKNRaUmHzEjDIZaaKUecNXI/nCV42dxj8oVPXOhuWT16vcf3XOgVR5tbVfz4ynu11mCUNDlGJZxNrFvH08uGPM+0JtMwoXVAZ+H+K6OZg4h5lKJwmcvIXFnEnlOK3JSToJQUmoMq7zFn0IasNclocYswNaZwua11NHVHbWqyVWSthKpBDbkmM5K14X7MfLWd+NXrLV/ud+ymwJAsOSuckqJlnv3ROtr8icLsh3JVdYNXgsQohOajynNz+rwpKbPF6z0ljBaBsjUKlxOd1myc5bp2tEnjI9RzYNz3TJXGX3UkFLWrWWNYV1bc1BSoosOI3uPnmbk822jIyoKuIcVSIEdikLyBdw93oDXaWuYQCLOnClbG1ylhlaZWhloZ7odRAtMe9jTdimsfRVjYOExK1KuG9UdPqKqKFAOH/R5jO+YAxirmsOcXn03URsCbq9WNOEURSaomIuGMKEVWci/Jqmz8Cw0snAVwCY1gnjwhROqqwvuM90BW1LaSbIAQObeUttbK183zo6nDd+kj4JwioMtnWmhRnPan79rfzr9+aeS1KRPLQos6tg85HxsPOBlonE9TZO3m476ngO3uAW2FYgNSrC6U38urK4x2KG0xVY22QsEw1hZxpxhqzNNEztJkiFFBJBe72JQkCFErRfqOZbq4D+UzI5Ll1PEhMPmZ3X7PNM2orJgmyQ2xzrFarVit1pJuXNU0dXv03x+QsNxpmujHgf7g8UHCAk9Ta4N1RoL+jC3U2B/mFWMQ8C8p/DwTYiT6jNU1Td0U21NLVRmMBb3c7mxISfIucsrC8T8Wm+UZVeCjhyyJoTHODOMeay3b3R1dXhNz5DDsGA4HnFHUbsaHmTlEQowc+oF5DkWbZDnmHswzfpoAeU6t1uyGQ5kyDcU8RVyN2qbD2oa6bnFO0udDiMRZmum27TBG0/cHjHOFHqyKlDKhQiTFRCriaas13WolRXFKBfxbLE8181mg5DkKfwIyy958auHP1u5Z5lf5kw91lQulUQp3dbRRXsDPR9qM8nymlIgFdAohYJXshaJFz7Jfec88jYxWzu1x6I+NwZINswAhQhc6TUHPLV3hxHBZXKyW1w2yxzjEveo82yctZ9cZHf5D7clSL5FPf7c0GVpr9rs91o3EmHjyvJFJmYUUZ+AkODbKgkrkYkwj+jpV3m9xFSzBecvrOO98FgBPGoRU9vmTZe0xDiIlKEDx8VxWhYpq9JnO+Ptd37vJuLxcM44rZt/z9u09//Jf/Xf8/g+/Zeh7/sGf/RmrVUvd1Ky71ZHuMk0Tfg4CRCM8SmclMOjpP3zCxcWGtut48/YtleuwleHQ94xffUHbNlzfXHN9/YS/+81vub9/4OnTG1IKfPP6G778+stCTjveweONPZ8KnB9s56PBpaAXxxGHNaK0P/GK5aHcbDZcXFxIOEvhRHo/ovUlQ7/nbfBcXF5T1SJAG/uBGKTbHYee3aFHK0XbrdAKDoeDFDUxonIuH5iIulR+jB4cKQRnAqLlYVle++KHvPz9I74gZYqTM8oaWZg50/c90zRhjGG32/Hs2TOUVjRtTYiZ/UE2O1tdwH4sQqMMRvh/ISZsVZXxmkKaCvEeDzGiime/NIAZ6+Sej+OEVjKOllAqcZNSZ8XkI3pXTqii98AYUEZsT4vTi1KKi9WatqqprMUohTMjlQ50ekTpAyZmbASbZvGS1xpx1M5Hf/qmagv/UxAQhRRqkSgJ6EZ8s11VSXJ6TDgSUVmhUhkDq0uU6zC6okqJdZrx04ir78grS66FmmZth62vcM4xt55//1df8ru7HV/1Pb1x5LqmcrB/fUvSGTH8DKDF5/v7L+2/n1fW+TRKXxrsKFOhVJAhlTMxyLpYNjhX19TOsmpr6jBxoRRP64pLZ2CYWQXFRwHu5kB3GLH3B5qrSy4vL7hWilYlcNKg5hjx40SYg2i6lOHgPbOauUgBQ4UqtENlIj5NDNOBeZz42Z/9GcyZu1fveNgeWCmN6yqG7cDw/h585GZ9yevpNfvdnsPo6dYbfvyTn3C93vBgPGnK0Bqqj695e7jnfn/POGzphwlMhTaGuja8en1P8h3XF5a1atBdTVevmNOGt/cP+CmSQi5IloKsmcdATpLEnXPisO/xs8dPgaGfsLaiqRs260tigMpOZFKxThV07nDoj4fxOM7HBsN7CSY9IoNnn+u3kE8ANKjT778Njjy+lvV//HdLA6qEa77sbTGd7GqXPX1BRKUp0cf3EqMBJc/SOHmsq9Ha0K3XLB77xlg+/vRHvL/bsu9HGpuxlUM7TYiSvTGNe/p9Tz/vi72nRmPK9DuRgj8GquUMmOpRgSKW1SKc10oVF0KZPg/9IHQ1nTgcBuqrltV6TdN0oBLOWTbrNW27PiZ+y/sZ2D3s+Oqrr3n//jU+zGitWHXXrNcb2rY97qdCE7Eotfj6hw9v/w/mGuaRrBowhjzMxJTxMWOy3CdXS3Mx+Z7GGFQGPwcOe8/uYWD7cMAqsTauqhZbinSloWoc47CTvIIYS1r4yH6/Zbt94NnzF9Rtg64U2/v3XF0ZnEvc3b4m+D0pzrx98wXBj/g54mexLw4BvJ959TLRjwNVVeEqx+tXL08URl1TNRtxysyazeaK9XrDenNBVUn45sNDZLfrUUpjXcXzF58wTr7UJ5FxmAjFDGC33aFdRds2NOs1F5sLaTisJT2IHlJr0TgsVKHlHD5HwJesh0w+alqF9ncGBh0tqUXTmkJ6tDaPnIuUcFqJrraqmEM4NsJKKdqmpW3bo7vUUo+FIFkSpEQMXmjH88Q49EeLWWMM0zBgncVZjbMd8zzTNA0pJQ4HoRov+teFHnZODdNac3V1RT8MJYQ5lFwKaXyWScTy82Jx88rp8RTAWnu00E8yUiWTSEkdm4vgPYf9nnmQWmweRtEd1zVt15HGgYvVJRerDfX9gIljATc1E7FMigI5ztRGmDZijw8xanKM2MaU++fFVTCI5scWxy5rNUYnhn4CorBKYhIw86wpUUoaGJQhRKnLjt3Mf+L6/nSpyvD06TV1Y5j9yPt397x7+5Z//a//JYd+z7OnT7l5csMnH39MVVWAYp4nRDi0JDguv+Shurl5ws9/9gv8f5Oo3EYQBZXY9u+5vb3De8/NzVM+/dGnHA57Xr76hjevX/Hu7Xu0ciyI3dE6tRw834WWnSNvC69Qa03bVBgtqNtCBVi+hzGGeR65vxN3ksV+E2C/e8C5AWMrDocD680FdV3Lw3oc92s++eRTUgxlRDbTTxPJz4QkKJOgdHIwRhXLv/OPXu/5/14s02TJ5iN1SJ29/0fTC6UwCowSS0tTQm7O0QPvJWmyqWusNaSYmOaJ23e3WKuoKsN65XDdGlWcdlx5qFOWEOUUJEhuaUgk3AqGcSrjf2lGqqoqlCJztHST4uJxMaKVksJaIZxSbYq7RCp2nIbaWTaN5rI1NM4UhyhxiTJhRpMErUGBcuWAFkvPuqrFgcVIPkUuoq+swokvajVaW7RxaFMRs8K6FbpSZFULX1xrUP8/6v6zybJsW8/DnmmX2S5NuXbHXe9IQiKkECgpQgwGgjIf9RP0NxWUQqRCIgjRACBw7/Hty2XmdstOow9jrp1Z3QdAUwEhbq8Teaq6Kmvn3svMOcZ4naPxNX5zjWt26ADT+Qimo9KOZCuSMmRlMK4mRc9pGvjdYeBuynQxMeSE8xVhCKR+ojGezEwmE5GJk0yDf9x0KeesCOrmuSCBGqMMVokZQAplw42P7kRaa7y1NNayspq1TZjpxHQPd2HiOCv6rPHZceUqbjO8CJlVN7BqGxrv0UZzRqwdXco4J9SKNaAGKQ60UWQbSXmS+1FDxjHOZ+aYWK831G0LLlGtWt6/vcM4z3q7pd1c8eXf/YZwHrj9i1uevXiOb1ccTj3dMBGmmThO+FZhKkeYE103Ml81sGvQ7yvm08g0TzJNNy0Pxw7vMlY7xnkkUpPNmmbXYtSIShN5momlEM8KwjxdKDzTODP0EzmD0Y6r3ZpFd5GzZr3ekRpJlk1psWLMDIWuI3zieHF6uaw75fpkJA035kUr8rjpPFKXvo8cf/e/nx5PKUaX18myiT+dPC7izac/64JokAsdwzIOI9ootDX4upKpsXPEOOJ8jVGOlBXffvMth+OZYZqIqzVh6slpRqmI84Z5RMTfIZJNJiZFiJNQpopzVUaV8yA022UT/v5nFHQpJaGDWGOoK4+vDd47NtsNN9fPCFOgGyRHZRh6xlFEo/vDnr7vpLDLQj15/uIlunhWONdQ+RrnPIut7zzPJeMjfu8c/9iOBIwhEpmpa1sKbo3zBuuU2Pb6YtyQAuMcOO6PvHv7ntOhI0yReuWp6oa6XolTmJahWGUr4jwyhchc0CExLpkIQxI9T11hvMIaiHPP/v5bDvsD61WDJnI+3RXakJgC7HY7bq5vaZqK+/17TocHUs7sH+44930RJDue3T6jH3qxNQ4BbTUpBwksHs7EOOG8pF1P08Q0y/Vu2/XFaaptV5xPJxF7dyPV2pGTDG2s97SsMVooOmIJu7g+5oKGPN6zT4eaCwohvy4D24UGROHsC3p4saOGD55xjTwXvgTsWecwztHUDc67J/frDEgjtlB+vJe/iyEQ5pG6brHOU1WJ8+nE+XQqw+1MXVdM08T+4VBc5J5Y814onJBCvAxKLppYremHkX6xq82ZGCZA0FSKCYw2Rpq5mEoY6uP5AqHjqQXdyPLBY86X2nBJnNcAMQtyYSTyIOmAzoZ1VZOmgblTVPOAGgLaKnTlqWpNtAlIWOWwyoK24BymUtTOU1lHVBplHdoGdIqlFhc0V1AZeYNP9TApSaBoXobqpSlTpRNfIliXYc6/7fifoP7KOO9o25brq2umUULX3r9/z9dffSmbWwy0pQt96mluzAKxi6JdaU2M0jU2TcOrl69omiuhIoWJpEaOxxPDOLF/2NM0NUpB3VTs93v6bpCbZSmmy53ydJL2lG/3r+P+KsVF5Lh839ONS7pWCTnKMZLLxMOGSazNysY2z9NFWOS9JJsrpZjmuRSH+ZLbsOgKLqiD1sK1zxm12Es+ec//WvoUC83oQ/7kkgGykJa0Ej6hcw7jHfZJk7F8XuFLSuEfk8BoRhtSygzDRAwKoxLKtSiVijPGE/5lWpqh4liQoyxa5VgCELVWOOeF+nOhP5XF63INucCKT1Y1eX2VsRq80TTesW4qNl5Rm0ilxV865xHyLHa0SombhjaAFTCAjEmhhOE4jPHyqKdQAKEoD4/SJUHTY4yXoEXX0myusdYzH4/0507+jXUk7YnZoJLGu5bsEiprvNHo6EFZUlJoVzH1msMQ+Ob+SB4jNglvljnAPMM8Y7RYeRaj3yfC2R9vcQCyiMttu8DAZUPLT3isiAYmK6HdKGPwztN4x9ZbXm5bbmpHazLdwwNjTEQM1tRMocX0Dj+0XLU1DWAEC2KYZpnMKEWl7YUCWacotrIqYym4sZLGPZUGz1oREiujCHNiKmhlDBESUrCsVgwx000jm6sdfrWm2U50/Ujd1kJRyI6Fnx9TRrU1VJVQ75I8VyBe9uduZO9A5RHvFOgRzMyYKsbhzDwPYoEZiqOeykxTzzRKWN80zuSkL810U6+ERlMKKKE0aSS4L13CowQtFz71EowlE8WM0VEQqBhJs6SL/6GBllzHhV74YbHxb2oyLveJUh+sexfk9sm6+NTf/7tuMfK6RXxehjExptLglr3KOdmnMozDIGL6MLO/f0/fHZnGjhCFCiNC+yhaIS00P3HhE1rS4zkoaNkje+Lynh5//+HnBHHEqrwXQXgZyoVJCq5hODNNIzEmoUcNA5BFQ1J0I9aZYswVyVlogUsw4IJALQMqpVQZrP04j3W7JiRpNvpxwlqHcwZXOWQDFQ2XVpLEPU0jp5MgUeMgNqPGOLyv8VWNNpak0uNetNDh0qPdvAIIE+M4kUgwA6mE9c2RGI6EscUYRZw7ofkgyFWILePYkfNM350ZeinwAeaYyp4cL0NK57y4LiKIFYi+1XlDTIIwRuFiFdSzJhiNVtC0LTlJxscwSE1S+ZpmtUaX5juljLFO7o8kmsQPqDHfOZ6onOS/C+ojj9vy7+Q7l9f4oOa61CjiemWdwzuP8xUJqOpatBJlqJhSEr2CfWwQlp97cY9zksmWlaLrugsC8zQDLeVHNAUeEQyNwmpd1tt4oXkVdSDDNDHNEmapUsDqjLOCAGTjGceeeZ4WktTlgf5Ay1BsxC9U4OVUJUEaLignGouWwU1K5Ci0YFdcoyonjqoql6GXEZMZ6xzaJsiiT1lqS22MBMiWOjspaQmUNkL7N8WFS8m6r1Sh3D5lz2hz0UE+UpdLXWj05TqpP7x0f+/44WF8SWAhaz0fffQJxtTc3z3w+vUbvv76a+ZZbOSqqqJt20vCalWLn3guvulay8MvArWBlBOrdcN2s5GLmBOJkXmO5Kz4/e8/x3sJoPrsp5/x3/7T/45pmgnFf1o2m8wjV/APw/Lfhey1VsXl5HHzWmheT2lWT8WNOiV0FO9kay1NXVNXnpAfxYlKKa6vr+n7jr4fOHc9OcVCsxrLQvYYvPeUwhUL80nu0+X9Pm7QFwoYS2GWIXLpQoGLUDKlhKaEyDlL07ZFW+LQ1hboXF0KiyUkKo3iv+x9hdKK43FiniMhKmwTUciNnfPIRdqlZZG3RuGsYpzSBT7Viyi7pN829eoJBWwhKmZpANKTE1B+XT6rJmBRrCvHqjLs2obrzQoVOlTuUPMMcSLFUehOCpS2RQviiMoL11FlVAyinzDisx5jBjXLw5dNEWVqMBblaqyrcK6h3jxj9+pnuGpN/+4d3ZdfEnPCNhV91oxdxI49u6trsmlRlaWmxg2gsydHjaobzgHeHQa+/vwbVlGzS5l3SiYycU4Q0qM9nJLzq6x7XKh+zMfFIbg0uEl0A4tQVhpjjbFamJBKgXdUTcW2rXm5avjzj56xqSpUzPzyl18wBRE6uqplShUzESrHq5cvaAFiYFKK46kHFKmqsLVFZUG5alfhkqCZPqtLSq1YQSvqqiLGlgcntqX92LM/3lNnTwozcZ5p2pZPf/FzDvcPvLl/4Bd//Kf4qiErsVW03pB0xpbbPgcgaWzToH1FxqKiLmulFFDH80AME4djlhwNbVHqQHxzh60tMUHfBYZenl+lMzHOdGfhhKcIq9W26OFqqqoVO89uIISlMKeEwY0XUeMyZLDWsV6vMdaUSaBYN0ttkUjz9Mjjzo+o6mX9VIuj3/cNHf51g5+nf/fUPW+hTSz3zdP1/LI+LzzqsimmvASJibB3ngMZjZ8nUgrUdSXw/yzrUOUsKcx8/uUXzNPINI8M45nTaU8YxMaWYpsp+m3JGImlGc1woQJ+133muxa8yz5gjSmLPIWiJoLKeZ45nzvu7+7Z7++4u3/PPI9UVc1ms+bjjz/handDXbfEIMnP4sw20XcD/SR76EI5eVpEOGepqh+v8PvV85ec+pFj3/P2/j2rtkVZTeMtiVBccDR1VTNOE92p43h/oD/3zFMmZ4MtAv+6bghx0fiky36f0uM9XXYjUJJtlKZMSAGXA30YiVHynzRTmdJr5iIOtlimqefrr/fEFLFWlyDcUGxkQReGx/msaZqWyldUvi7CZYOxmpvbHUpnUpYhQUgUBMdJ4TcLN3+z3VB5R991nL95Q13XbHc7nr94QXc+0euOOUZ8VYnVbnjMa7pw9lHlUX50iHrsjJeapfxXfjRuQX1/sPuoS+CiX3XeUzVy7ucQaVdroYNl0VjkLKHIzrlLo5xzxlmNdhbvHVXdAApfRU5djynrtdaPbk7eexmuFoRzHEeMNiX/xkjNKqFVwuDOYuutBxkapzhBHHlxsxZEvK7J2jNPvbB0zsXJTxUr7suaJsMNW+6dXIp1ltU9Pq5ZSluyeRxspxjxxtJUNfvTgd264apdSbBiLXlL2lt81UCVJcld9wQ1olSW5knJ+hRVLu8to9H4eiUMk6WezKLVUzyGhy518DRNwo5RBsVcrm9CW6GO6YwEz/6A4wc3GedzV2AmmUZ/9Oojbm+f8/HHn/B3v/w73r9/zzRNjOPIZrNhvV5xc3PDRx+/Kvdopq7WEno094xTT9edmcOEsYoQR2KagMx2vSLFG5ras9tt+dWv/pavvvycv/2X/5xf/e2vOR76wh370Idc1upH96inf7cU4raEZJliV6uUusBy1trvNRbLsXSGWQlLfhoHxnGgmlpi1kxmkqh75zgcDhLMknP5eQ6tYZ4e6UHjOF5cUWQjEB2ACKYX1b6+TOouX3mBN9UFulwcEcZR7OkSQo8ypoiprKNdbS5e0q6qhKplNFYb7h/uinBQaFNX11e0TcP5fKSuVhf+4dQn5nFAm4nNdkVdC70qA9oEmQiOAhPL+9M4q0skvYKsBX5mgSfzpeAESARUlsU+UZVrCZvGY3OgrQ2fPL8mTR3EgXA8UXnFalNjTc3D21MRRtuCUlmcdVTek11NdBXKVlTNinDu0Bi8r9he3TL2Z6buTOw7Kl+E/q6iWm8wTtCMqr1hOA+cj51oPayS8KxnO/7Z73/PerPlatNgKouzK7xes1t5ui/v0FQotwZjqXzDbbPhP7r6mH929znvw5kpiaNJCDNxjtSVFktNDCFDyJAUJP3j7jIOD3tCob+oBWaOiTQLFUVlWQQtkLRGeUuz2fJsveEn2w1/dXPFn+1WQKYfJ7Y+c72qmFLmXX9gDB57Nox3nrvXb1HXW+p1jTKezeaKnMEByojWJcRIdzrx9s07FIqPP/oUbcFa4ernlGl9jdWK8faKfjgzx456YwnHgf3xPZjIs08/Yn29pdq03H7yirbdyoTZV7KJa2nJx2GU4qaqebXb0ZZnV/mKcT4wJ1nIdTa8f3/iXme0zrjK42yx3dYwzoGYMmTJplkQV4PQ7irfcPXsVkLXygbbd68Zx4lpGtkfHrBG1jSlxL9d1iZomoambakrcbeZ5lkKKS3FuvfyXsIkIYSPhYe+uK08bSKeNgjABwXvh1k3XP7tUw3dMrl9Wrh8gN5q9ZgVgCKVtPEwjvjK4asG5z0hJdrVivVmg7GOrj9DtuSkWa/X9Ocz+/0Dx4d7tMqEMNEPR0IYmONEWGh+YaFUmhLSKeuYiEyLlmdZ01L63l6ynHNrLavVmpygO/eMY0eIM4f9Castx8Oh8NMrfvGLP2a73RRvfFUoDxUA0zyzP5zou46uP4pFZaHqKKUu67T3nrYVwbD+oWPIv4fH9uoGUw24pqXZrJlKWO/d/VtWbU3lLNEZ4jxzfNhzOp65e3cqBbtQb+ccmVNgCjP9MNK0raSkK4tarUk5M0wDcwwXChHMqLPGlyagMo45ZTGRiBPTNBDSTOrFtGCZwmcyMQQymfWq5Xw6M5di2vtKjCVyxlhP2zRYo9BJtFXDkAgp0g2d2C6vGuY50D2cQSUa6xiHGaW0NA5Df8m/ct7z6tVH1E1Ddz5zOJ6YppE5RFbrzSV8tD91xQyhUIKykrA1LTk3SxOcCxtBtAXL82u56K4WGgIfIpE6Z6yWOqtpVzSrNVUlKJKvS9ZDTIVyJKhN3dTklFmtV2ilOR0PnE8HQLFaby7/XhvDnDJ93zHNI3OYqF170XiM43ip7a5vbhmHiRAiY0F6VWGzoFRBBxxpnjE54FTGV5p/+Dd/RuUNOQXuDh1DV5FCzThUZX2VYcZCxZLPDJfutDAyUi46LMXj+bW2aIO8ZLMU1HiaJla7Fb/77e8YXM3LMbCqPdFkJh15pjyjSUxKHNCMBmeFCjVbsV+fp0Ceg9DZFgSDpTGMYuM7xwsSvDhwOecua6sYEXjR2YJkpWgtmoz8w7qMH9xkdOcZpcQitG0NxngaIyfls88+Eziy63j79u0jxajEV65Wa9brLc7ITQFSZI7TSAxBNq+ULpx7VGbxM27rhufPnqGJdMf7Av0mBLleHn51uZZPAI3vbUrL5E4VgdJTiH35dUEzlm74KYf48rMuVBrh583TkgYbLhdqQQeKRxgAlS9aCPWhDaTY0j1O9i+OSyVx8eJVndLj53vSZHzgWa9EvGwUBWKtqGvZZLUR2o2xwilcBIzOesgQYhAaR4iEEDHGs15XF7u5lAR6HoeBqnZ4L/qTmLJwAgtbTyxsSzudC+9Qi3f9arUihJmu7x6FvaXZWKb0FkXTNigNRsPzXYWazjidMPGMYSITIQVSgDBrwGJ9XQpzJT9PKbJxBBzGVGjbYKoV7e45qUmkUCz7/AYdLS5XNNWOyllQmoDCuFURjBvGrqcfTozzQJ4H9u++RpvM0NUM799jwzNGnVDtc1RfJr5ErK9wuhaa1TCQTmeGhyNvTnveDmf2cSRoSFOWxacSx4+stVi7xkLyLrzhH/MRktgspijQsNAaNBlNjoGUxTfJVA7tDLb2bNuKj9uaj1c1L9uKWst1m9NI68B6g88QcOzvB/TUE6dRpvPTRDWJs05r5OdAJqeZOcpUMMZECpkwR96+uWe1rvCVTMyMLRslSgoAK/rxHCeOUyDkiX44Awk0GGeomlrCo6xFWU2eKRRB6OeBMQu6mccz18BGK5xRjAXFUFlBFNTYOkF1mvWqFLYyMKyax3CnXKyio3VosgSxWcc8iUf8BTVUspHMYWYcBia9TCy5bPAi3qzL5FYGFR6PUpqQUuFNB2KgrCda3PnyI8r63WPZb5/SKL5LnXpEmPUHf/6vc7Fa1lFVGgxrpClXiLtfzoIee1+JTXfd0A8DddPSrtas1muaojHLUXM8HNkfHjgd9oR5QitBhYjiGBRCYC6Im6zpGq1l7cvpkWv9lK77gcbsiVuN1jLkMoVKO4cg/OcccN5R+Yb1es3NzY0MkKzFV56mrghxof+cyelc6KpSLKAUzlU4py/7mynBtdrIr9aaMin+8SZ+Ky0T/EYrmo08F3OY6E4Hzqc9OcyE2Razg5l5yjjXkrMhKUVSSs7jLIJbcVyKKGWpa8+kEnbsZW/NZbBX2BLjNFzuY+s8MQkDwHpPIklqt4LKVZfmUvZtqdK7riuOb0vNUe6ZlBiHnuPDPeP5LPQYpbDe4XPidD5x++wWX9V0/SS1hxaWgLVWKLVkYtNyPB3IQNuumKbxUh+M/SD3iHWousKVgevyOnIIUrdkXjyG6z6uPUJxXZ5ngwYC4YJ2PK2XlsE0Sl/qJlPo0imX5jwlaVyiDAfmWc6pLg21slYy0eIjOrg0OdY56qZhGPuLfmAcRxRcEJAP0E5jcEqRrVz3RcxeVTW+ZG1M88Sqrmi8YdMYto3HGcTNqrJsas/QNHRroZmPw8DYD2IWUk6hvE9xFgWIWYYP0y0tOQABAABJREFUKfN4Hkq+WtNKjEDlvTh1arEVrqoaaxxWGTRJ9hAtWrg4jwwmMMUZMyVUfELRzAuRq+wLpa6DhLWPNPmUhfrOkzX46UBEHP1kYK2fNI+Xa/wDa5Ef3GQ83J9kg/VaCtZCkXHe89lnn/HNN9/wzTffcDgccE4m9vM0cDqc2W6uuH0WMdbinBYhnnIFkoo4V5eTI7Sqyw2BxlnH82e3pDDw9lsjuQqRIprjkV7EBa0HPnRaWnzSl79XKhe61IdZEsv3PtV2PH2NywStdHNa2wvEvTykS7H/mPaaykKUcb56ggZZxlG4wTlFUOnSaFw264wUQBdKgjD0n/Kcl/e6NDcKiv+1Eq6q91TFplZC5UqjoR+FPt57MstGKc4jWk8452nqtoj2DafzgXEcmcaRaRiYK10gZHnfwvUzpWF47PiWz+ydpWlqhhHUADmXc6QKMKsNBoXDcr1egYpoHbndVOSugxjI0xEjrCcUiRATYQ6gDL5aoZU0BJTNI6EIyqBNjXYrbLXBtzeolZfPcj4x6xZdebxdsfKSp5Bioh8ntK1R2pIydMd3dN0D43hi7O45vfsKmDjfZ8KUmeLEAHD1Kfo0orJMYH17hdcVBs0wdAwPB/bv7/jd/h1vxzOdSiRnySFjrDQZGJmUPt6YCmUl0PDHfMSCFMY5iqsUkqyeEcQrx0RSGe0MunHUjee69Xy8qvmorbitLIZASjM6zbROoZ3Ba41xmq/fHWAWmtFchIJpmjFWYytN0kJvmefpQlkAjbGeMItYkLxinhyhmmlXNYtQqqkq6krjDMxzz3QSpCPkmUwQKkUGqyxZIyazKTGHiLMOqzQqZsYwkMKI7g5c58yVVjQWRh1xSaOzIsdEXTX42uMqx2q7KfREyeTwviKXomWe5kLJLKn1CN+46weGvielAGSss0IlmaXAutB0tNhGCpIqa+MyHJHJlqCValI47wizTO0luM9IHkeEZe0CPlhDKZztp43DcnwXcX6KUsBjvs+Hmo7HJkNrXfJPFscnS9KZlA0xBZz31E1DXbekDHVBaVbrDc1qBdkQ5sTbt+847B/oTsdCCSvUmBBFw1LsSdPC3n5Cp83psbn6twmql89mrJbQK1WSnEuTNo4B7ytub5/x8sVLQTajvBdyIk4TwzDRdR3TKDSGqlphtMNZX9ZqsdsW9zz32NglLtqbhc7zozyUNPPaGerNhrZtiHHmsK/4vDuU/JLInANjH4gzeN+S0ETkucxKclLmMEJSFyaBtZaYBOVXZaO5mJOgS9NenguU2ETnROUtc0xl2v8YLAePJgVKKfqhg8wH2oGl+gjzxOmwLwVyolmtqFIDSrE/HVlvNzTtmnGUZ08MHHKhAIkGs25qjqcjGVitV/RdB4UyM4eAryqcK4nphdnAxVL5cfyec4aUyUYV7n7Zo5UwFS7P9JNC87uDg+Wzab2IpqXRMEb0hSnlC1KyPEuoTAyJcRqKtvfRlIfMxd1ymidM8GhbNKZGyuAYE8MwyKdJ6aLVQF4FYxTKOkwZbKcoGRFV09CuWrnup8D1pmW3qrndtdRW43QkK1h5w6rydE1kvQaUQaMI04RKiwasfCYe2c0px6VPvQzWFq1fXdf4EhAIck6NtmhjqVxFpT1WlYTvwl6bQ884BuYYaEOCKGt+VJT7U0a+Oacy8M8Iw0PsrJVW0hRD0dc8Dn9CcfzShbmTLxP85Rqry97xQ44f3GT8F//X/5JPP/uYVx+9wGiP2mkykRAnnKv46U9+wqeffsavf/VL5mng3flAfx4Yh4wxntVqw//uP/tHtOumhNhtSQmsrWmbDSnPxNJ1jePEPAVCSCgMRkvD8vb1nv6ciEFEK5lFwS/d2HcX+O8t+DlDlonFU9vDp5qMYRguPFbgArs95QMbXSZ3cSKFiWfPnlHV7YVudT6fyTnhK8fx8ECME+TEXFWkEiSkkYdPhhxyMyybstEySY8hMpY8kDJaXFQQj93od/jICglM8XWNcV7SMZVGmyKUQsRIlffl/UZCdLKZhUCIARCR5Kq1jGoiBFl8yZqqatDacDycmOaJqnasNi1alwZIZ+KFrKcKKlX4mM7w7t2bcp2FLrWkk+MaXlxfUQFqGvnpizXjdM80PKBO95g4IdayCu9bDBaTDFFpKr/FrVY42zKHhHIet9nQdYNMjVImVy2r62fYquHYRaZwZoyRMRuaumHdtKx8RVtZSIFpGJnu9+RGUJ48B/aHI2N/YBoOdMd3tEQMCT1FXoyK8zd3PLybmM0NK7eirVa0ao2qGzj2TK+/4fNvvuVvv/icf/Hua/7l+S2zRbIXUkZ74VwmC+M0Ynwt+hlv5Uk10mj8mI+xQO3kTEXx3A4RHQPWIJuahrDKXN+03KxbPlvV/Oyq5nmrMWogKoVx0CjHrnbMxmLrmk92W/72V78jDpY0d+ye7SQ4MszM78+41YpsLdEaTt1RFnnnaLcb2mZNCuLCsn+453Q48n4YqVvH9c2WdlVjUUwx0XUdr1+/5tXzj/CuwljDoXvg7m7P8dyxP/e8/PSn1PUKZyps1sxtoKmEDpHOR+I8k8PIJ/3Ag4L7dcX/x0csYnCgyVxd7WhXK5x3jGGS9G1nGaYBq8WJ6MXtM/b7/UWEbq3ncDhw6k+cTkeGsSsFVLEHLs5uS4BfU9e8evUROYNxoh3JuWxUyN7S971M2xe0uaw91omRRIwRVTJvFvFhVVXSxC9cXyTjZXEWhO/rFb7bgCwWk49DoCUYqwyNkGXRWnMJ8GraLdMsNLgQZ2lgtdhlvtzuME4Ev9a4cq5OvH79hru79/TnI3134uHunRQFpUldwssWsS4fUL1SGc582DDN83z5HN9tpHKOYMC3hhcfveDhfk+7ann16gXjdOL29hlXV9eCHoVE3/fs93sOhwMSrMdF+2iMxTuhjpiCVMQ8lwGOjDeHYWQcJs7nge48XmhUP9Yj5yRUYOfZ7K5p2hpFZL32bDaet6/f8fabdxzuOoZ+IoaMseBX7aXYv7m+kckxivdv36M1xDByPh1QOjGHCV87TK+LJjGQkybnmXEcGLuOwYtgWYZ08pyknGmahv1+f6ExH49HmqbBeWleXBE0z9N0mf5rpdiu16Q5MM9if181FWGe6ArS//b1W+7f7zG6xpRCcRp6cZ2ykgM0dGdQSgpXX/HwsBeKqHN4J6HJOWXRZBVEYRhGmloXFkTJDCuDyoVy/dj0i8uaaEzjRVfyXbOdnB8di2wppo33GOeL3b+Yq2y3W3mekHqo68XkYBxnIAoVLkassTSrFeM4cf/wwP3hiC5uny9ePmO327Jqa7795lu600l0CKVuMwXRa9v6UvdYY6msluyRmMTgYYS28fz0kxs+eX7NbtWwW9XoNEhGh7aMTtG2K1bR0QbLHBAUIwv9d2nVEvlSmLMMcCmlamHgaJAYgxiEvjcLYaGpG7TWfPPNt/xis2Vu11Lop4z1BuMNQR2pjBW7dSGRgDNka4gqXNbIaZgKqitudiD3jXEWXVXkKaBioqorjNGXoXZcrOtSugREKvUYqRBTJIYfZoP9g5uM1abm/fs7Docj8zzz/MU1m03DetNijQNj8c7zJ3/6R3zz1Re8f/eW0+HAMEDTtDRNxf/9//b/4MXLF7x48Yqf/+IX1LVDKRiGswg9S/EZQ8baCq08IcycTpnTceL+Xji05EeU4BHBeFw0P6Q3FVi62AYuNKxlcVi4aAtU9LS5eAodLdMJpSCGGVc15KxJSbj/CydYtBgFYo2lm44Ch06IvSQpiijbaLRyJKuZRgljIZfM8TIVMcaUaSsX+HY5vst1VoXesLjmhBRRURyjliZDerJUzllmnITPOoeJeR7LQyeTLoVinNxFBCrCfknHnWfRDgxpxpgJGkWyGWPEzUomoYmsI7ZaYYwktqcoE4sQBXlZty3Oyft9vq1odcZNgTR8A7HHMMhECenEjWtZrZ/jdYXNnqwtq+fPqDYbsjLEDMZ76t2O7txzPIiriPYebIN2DW3laG3p0jWYMGOsQleayUMYZ5LP1M82aOchJkI30A0DQz+IKDRlrG3wtsWU4MW6C+K4czxjNzXWQh4142+/wKSMSpkjia9iz5dzhzGOqMWtBqPRVheFnNBnjHWSb2ItgYivK+pV+0Mf2b+XR+5HCJKNkWXsAjmSVCJbxHnEezbrNc/blhdNw2dNzbPWs20sviqTsCmT53hJTzbKULmKP/r0U45jZJo7vv36c/L1LZu6xilIxd51TCWE0Rq0tnTdmTCJG9l61RKSxdgasuarLz6HGNBxi7MJ5zRX7Q792R+jUZzPJ453R/bHA8Z6nK/59LPPqDZbUlIyMIkaqy1GGdr1CtedhUK3uWGwiitfsWt3bKsVKslalI3iNHTMROxoRbvWGYzWJf1WzsO9uWfsB0IMpCDr4fF0ZhwHUoriIR+L21uSvV1rKfrrppGU2ZKnoBSgEl3fQaGFSqaO2OCKt7pYk5+70ngoLanJS/gesuZN0/QhmlwoAo/oxh8+vodiGPnMWivZyFlCRc0FSVFKU9U1VV2zWu+YZ7GjnoMIoU2xyry5fcbVzQ3OOfppwkwzwzDQ9x3kmXE4052PxBQZhv4ybAohXPR/3534LZTVD+7xp58vS9bNY2SWcNo32xXPXz7js88+IwYRqvdDh3Oa8+nE119/I4/G4olLluLDaJwz1HVVnGIWXc2CtGfGbmAcJc2+O51KcaExxrFe7zCLs9qP9AhhAmNJytB1PTFFjM4oJfkSxoj7TggzEgRs8XVLu9qAFppOmBOVE0v1589eUDdNoRc7Dqd7cq6IuWYcz+W6i9lMjunyrMQ4MxdAqCoogdLymvM0Ya2lbVvJoMgZYqKqGylGtfDgV6uVBIKOIzonMcJICe+c6J0UWCUsiGmcGYfI7e3qMlQNhfLrncM5y3EeGYb+iYZpoWxFxjFisy96TCvC6zawXp2lgS7MEHIxhdAfookgz3ZMEINQqeQfLPXEd+g0pRGvm+byOikL9dvYksERRAwPMM0Ti73zYutrrAelGcYRtMZVEpTZDUL9ymQeHu6pvIecMVrT1LVQvucZo3QJA7YYMirNEKRhZJ5RSSx4W2/ZtI7tuuaz51fc7BpqZ9AEceUqNPCmqbl+viPWMw/jG8ypv9jC9pNo12KhK4m+EBa6zeLWRBY9cVQwTzAMvdx7zmKcBgMYSX1//uwZt3XD+v7IHEfCEGGOjJvIrBzZSO6OLo3emKM436WyN5Z1XIAkSxlvi8lOTOV7isegXqjmCmdr5jAzTTM6qIvD14Jy2KL/+CHHD15prq833L0/cDye+Prrb8lE5nmD0uBsjdaiN9itNty/d1gjAqIwT0x6ZOh73n7xjuNBEkm32yuePbu63JyVLj7Ipbi21qOcxmfP/uBIGfpuWGQLZeEtNls8wunfhdsvlCK1/F6XG/hxorYgFU8F398VJV5et0BF1opTk9LmUXSo1KXBkGAmmSRdMh8SRcv/HSgxP26+OUOKj9Z5BV97/Ppg//pww142nAvHUjAzLvoT/WjbtiAJsWhHdEEaYpSUzDlJsaELtWoJb/HeYY3DGCsLXIpMw4SxcoMq5CFRiLtMVhmtLVp7VDbkPEvOhdE4o9i0FZVzxDRR65lKJZyeOQ8HYppJJCZlcMbjXU2zumW9+4jKNDhVgXWY9QpVC+VOkzF1hW9WZFURsyNrmTZX7ZqqbrBVJVPOLLZx59OJVDmwNUknxiTIU1V5scoLWSa1FLcGZYjaMCiN9jWbzRZ6hUpnYjcxdyNqo9HakabMfPdAshZV1RzCzD7OnHJEFboEBrCabBcqnqBR2gqXWhe6irEGZ368xQGADgEVMyqBTpKxAKCMWDdW3lFXntYarpzlmXe8qB0br6mclmZQa9BJ7GULRZCcSSFyu2nRauA4znTHB8bVirauqIyGQnuIc8DWDVaLLeEwj4zTIA4la4/zkJItWh/F1A10WmFMRNcG7Sy79Q19f2aeQ/Gln0FbvBYRsalrxrFwZpEAypwBI9QsZaFpLW1T0dYVbd2yq1YM01kSpHPk1J8Z4yT6rSAbplbiZCJ6CFkUxmEoz7RMoBY01mhdckeKH3xGqFhZo6y+JFpnFsSWMvVahJ1arDxjLOuKujQKMigoKGThW0P6gPrwtChfqJxPByMfUqAev+8pNVWXZ0EpJKwUZDJZCknnRGtWN00RktYYL0isDTP9cBZHPWOoijYtA8fjSagVfc88joRpZJoGxmkoAWyPCecXm8vyeT50KtTlvH3/Xs85PyLty6Fkza+bmvV6Rd3UWOeEj3840q7cZeCW0+LyZanqCu8s1pki4naXVOKYgoSxlT3sfBZh8TzNjFPAaAmbrXwt7n7WPrrX/QiPlGLRVoVCB4wYo7AmMU6BMKdyD4qbmNbiaNSs1mitJcwRLeLtqqKuFHXd4J3DV44QBhIzGbnHrJmJJpUwXso1LXrJZb9PGVdVYvlcN3SccWWQWVU1ScnAsGlWzNNYCnklU/0sz1gquWJKIfkOpSBXMWCS1EfLjFEc+QRhWQIWwxLqtzhFpsVdbWmKHlkPMclnIS9hkenyvXkpiv/AV0jposmQZ3qhCn6/5lom31VVXexjF9q3VQuTIxX6FdIUkotOxJUmw4HSjLOEIS8/TdanSA6JaeqYnJfXKzROdCYpLfeFNlgtlhBOK6xWaJ0wTjFHoV9tVzW7TS1uTuua1gsFjRxKArbUjr5p8bbChxFTgj2dtVS+ojudL9qspEpWTvlShZK2rN85RWLMZK2JIQiNC4u2Fm1N2esd3jqsFnvqmCJkGVJPSjSbOil0liy0pHTpEZYa81EWkEuzvdjXgtTny3cqtdSL8mWsIZYwWm3M5d4CGaqbkkP0Q44fvNL84hefsN22vHl7xy9/+StOpyO3t9d05xH3R5J0jJe02JwzVVVze/OcvvuC7nyg6zpOp5H9w+d8+/UdVe0w5s+4UdfyRkzxRA4ZhcF7oVU1rSemE+vftUzTQEozmccAGaUMi3XadxGM5b9jufFk+vcYX2+MYSxQ+KN13WNQ0VO4XilFjlG6aVexWm2o2w1VvcK5SvIwciIWweE0iW7BGrHSc8aSYsQoDQz0wyhhOAVKG8e5+K4nsVpcdBmIK4F+8hnh+/zH76beZjLOOeqqpm4EClMoksoMk4SNSWMgN+Jq1bLZrHj/+o4piK/6fn/PEt7lXMVue1XcsISWkaLQ5c6nTnh+WXQEijIxVYqcHSlZrPZ4UxNzj/cVq9bhdWLTVjijRFC93zPHiIqZOQemnAlIkNaLZ1e0N8959ekfc739GG8anHKo2vH719/y/u4BW/QxfhgZY8T7lnazYXN1LVOj9ZqqqXBtxRe//i2n+weGhwMP33yN+as/oblucXNk7o9yraoGlxUqy71Sr1b4SjNNFeP9zH4I+OqWZz/7S9j39P6O4X7P8dARfrImN2vyaZS8gqwJJvPlfs8wBawyzFaRDSQLyhpZIIvpgYzaFcpqrHco7SFl+sP5hz6yfy+POubCR5V7dChWjN46bq53NFZTk3BTxysyn1nDp20tKcwmoUvGC95g0LimJiVFnCf2d+9weWJrEw6FjROCpil8LaL7HGZUmFnbLdrV4GuMcZwPe+Z55HyE7BOmdqyrhr+s/4r7r7/m9RffMnZ7sjdsbq755Oc/KRz3SEzwiz/+Y97d7ZkTDMPM1cqCginDbr2hriThd5hnzHaHSxP18ED17Jpqv6d92PNqc8PbEc5dx3HoGNJUipRKKI7GYpUmTDPWFfMGpTns9xcL8Vw4v0BxFpH7dxGf5iz4rzXiwz7NM8fjkc12K9xmK2Gjsh4GtI74xV+9DFGsMVSVp+vPoiUgY5wlP6GZwncm/EpwjpzyhaMuGUWP1MpFqCw0i5IvVF5D1mFzmShqrfGuom1XbHZbjBPRZMxQVbUMqkIgkeT5sZY5RH73+y/ouo7DYc/NzTUxBOZp4LC/pzufRRBfGoz4pGhbqFpPBzuyMeelt/qg+bg0JWR0fhy4KCX3YttKw3N/f888zZxOZw7He1Zrw8tXL/D+OdvNreRgOEfT1lSVv6BNoYRWhhjozkdO5zNDP3DuJA26qiqauuGjVzeFHibUGF+mj+nfoh35+3zkXPJJQmKYEk3TYKwGFdnfHzjtD5yOZ2kOU0IZi68qrq6usdaRYma33V6K3nEM1E0raIA1rNoVcxyY5gGjlunvIw6VU2JOEVvboq2xKK1o6pp2veHq+pb7+3vJqHKWzdXuQu1Zr1fs9w/klPDOME+TNPna0oW+CKPl/p7LAFC0Yz3O1bi6IoSJYegvJg6r1YrzOdCdTlhraNv28lzJa0nOUDdMRZ9Us3944OH+nuPhQN8PkgFUCumc9aXheKqJujQRhdWRc7j8HK0fG4zlV1PyuZqmkbiCMlwQfYtQqFMKJTdCMmy8Fxqj6A/EPGOpbd69f8+5O9N3PeKeJjbV0zjK4EFrrNa0dSvmOlZCLilNl0qJTdPSVBZNpq5run7g3A/89JPnbNe1sBwc6DxddGbTHNFWogCqzZZwH5iSrLPeWlJdo+Ka+/sHilhUGlGlHt2Yci7GFIp5GiWsLxtsI8MbQXoly8L7hto35BTZv3ugtgY1TrRGHP6SVsy1w2uLS4oqZFn/nMdbTzIzRkstNEU5vyDP/mL4Y7TFakPUmazFwCOGmVjsfEOWX3W5hk/dUhf7W/0D15Af3GRcXbVYq1hvara7lm+/fs+bN+85HUfmSfP8xQ23z65oWsPd3ZmH+zNhjrSrFSl37O/PjKNmvfVUjePz339OCDOvXr3kT//0T8qEoOQiaCP84NpQt/piI9i2FUqdiiZRJsoLTer74kD14WJfUAylLPMcSUkg5YtgWj1JjC1fIQSqSlwYUoyYkpTYNGtc1dI0K9brNVnl4lEe6Lsz3elEDEUQqDTzOBOYJZUzBMZ5Zg6Bc99f3CmmKRSXmCUPA+HOWYNKHzYWy/F0YrDQuRaEZqGDXRLMUyqBZxFtFHOhSIkDi7gvVb7m5UcfM/Y9XdfRv+7FTlMvgq9A150Yhu4ySVRK8f7+wDxPrDct19c7zrPcjNYZbN3glKX1Fc+udqRdwJqA05HQnTFhZhwjX37zLSZLdkEOcNf1zGFG5cQnV9fMK4dxN7z4+V9Qx5ru3PHu8EA+w9dv3vDNmzd88+XX/PVf/zkvXzzHOV8mQhrvJdF7jD1TP2Jnw+HNG6b3ezh0/NXf/DUhBw6/+gIdZvqHvRT3L264699LQ1m3PDwceP/+DcPY4VaG9uqG7c1z2s0NxJHu3ZlpUnz0yR+xvn1F3axJZmKD49fffMM/+9tf8WXs2U8DQw5MOpGcJutCg9NKfq+VBNC1jSTMK02cA+E0Mh+6H/rI/r08vHFEpQhIOrIzUDnLtm3YOs2V09xUnj+5ecZPdhuuKo/XsqDppFBJxJs5p2JDOWONuClVVcXx9I6+7wh9wG1eCiqyaoROtGQQjCOnu3t0N6CrGtPWrOuG5BzMGYUlakU0kaubLZvKcr7a8nf/7J9xeujx1YbG78jaUJ878uHMf/Ff/r+o2zV1u+Y0aX77m6+onGe32rJrt8wR8pzQpsZYRU6acVAcj4G7vuNd7HAf3dL2gTzDWQ/kaZIpn7WMYS6zVUklDjGQ55lpngkpEknEQsuR4dmjYFXAhg91FBhNu1qJRWrTsNqsZLI/DvL3SEMi/vVSREt4V2AuU/OFn5v+QHG9cLQX3diyMZGecrcXjoUMjBY3Gf1kELQcKUbqYvXY1g3DOIFSzCnx6Wc/lXOQElHJuQ0hooaJMM8SAKodd3d3QqEKM84oXn/9BUPf0Z0lIG2a5wv95EMNxUI7eYpgFKQil7CrMo0V+u4jql7Kjcd12iiaVYP1jpQzD4cDc8g433BzbYgc2W43vHjxnKbeit5EL+5+kWmcGIaRw+FA1/UMw8Aw9uy2G5qm4frmGXVVF2GwvoTuxRA5n4+8OZ2Y58Xw4Md59ENPxoJy0nhFmfhP88Dx4chxf6A7HPFWhjPWNhjt6E49VQ1NXdH351JUK7Su2WyvpfEziqwmhvGMGjR1syHOGZ0VY8qy9qTlHk9l6CYhn+M4kjLMIdGu1mSkyAPFy1ev2O125JzZbDYlhX2hSQFRws5CnC56IuPFcCQnSEEs3NvaY42iT+Fi6LDbbaSA1FqyMPpzSalOF4pSN/TMIQmiX1XM00jlPaltUQVV0WZxzBRuvlKi7XgMw5PCXgh/GaWthNJFYVxY62SQUPQYS4PxySef8ObNm4s+K6XE6XwkHQ94J0gPZI6nIyFMtE3D1e6Kuq4Yuo5pmok5FQ0NTMUwJ8VIioHKuyKEyJKW7oJoGa0RDUqWNWgYR4bRUzvN9a6halqur9ZopdmuW1a1w1uNIqKKVW/MiabVqJQYw8Dx4S2vHzLvDhPjPNLWnjhq9uNU3JgE6VGLsNtZqromjCVTKEmwX47SBHnvqGuhgC329uv1mqurK3arlk9Wazb9AA9fMzeiIVIaqjFjdcaUx3ieAmoe0UnjK08mliZ7RgI6NfNscQWBiqnIvrVALkkhzUWQjB5f5XJK5Rz4Sn72on1Tj2mM/9bjBzcZ2kBVW1DCr8tRcT5NdOfA62/fMk0jfX+mrj3v3h3pzoNQGBC/7hgfQ1uW4Jbj8YgxmqryvHr1Cu8rrLMYry6JkiHIpO1wOHI+90V8Vdi/6kNY72mK9cWj+jsTf5QUNxTo87tpscv3Lsdlw1QSUFdVNXWzEhFmVQn3M0YRRJXQvTLWulCldIGuUhK+nghnHhuKlGKZMHKZ3l1wjH9Ds/iHGgxXXAqWBmNBM54iNHVVSYJsEhHhsqErbYCANlagSlVSiHMkAv1wvmxe3lUoVYNSeFczzwPnUy90ND1TVZ669vjGY1RAM0loXjyj0gQ6onLgdJo4dCOv3x1p3FYoFSFxd+qptGFdNWyrK65vPma1fU63H9GNE8tXK1zEum5Yrzas2hVN1VD5Cm89xtmC7lBEvQGVBLiMxx7mSN22GKXoDh39+UTtrRh9TYnjuwe6EHHGU1Utp77n2HUMYye2cr7hPIzsjyeqEVCWul6z2d5i6zXKt2inGPOJ+67nq/fvuK9gUgm8Jqn4SIMrwPMCs7pKnMGMlY3GjgnxSP1x20uZMklBaRGxzyM+zVRTZoXmyta89JaP1xU7r6ltlk1Q2TJJ5tKEZzIhBipbibuKKtbNWuh4TVXhrAM0/ThiyiTNWUscJ9IY0KYj9p7shJpmjGMcZ6JKJJPIPghyWuC5dr3BlyJ3jFGSxquW2+cflTyGiqpuWfsVtfOs6lXJXVnQUy3AudHQNIxT4jgn7lVibCvyqsKONU3O2AL3mywBwxkZruULvTMxh3Cha6ScUTmSFywjl+VjWffIl/8ta0xMYiXeDyXYNCahRioRgDvrirhThiGmNA6Ltu2pc87y9d1ciO8ORy5ajcL/VuU96mLRvBhbWGsviAKAdZ66blitNxg3Ms/hgsYIi1YKHYwu/GPFIn4OQQZA0zwSZ8m8OB72TONQhN3CuZ+fUKM+QC2WhmhBiZYF++mhZJ3/ngGJ/AMR0lrNdrPi6mrH7vqaqloxD+/ou44pzlLkqcWCVoq6EEUA2/cDfT/QdZ1QLbKiqhqapmWzaanrWrQF1l3uj3PXE+axUIwUVVPTrq3QUH6kR45LnlQiTgGrtFhxxkicRsnciVkMNZRDG4cxjnkOKDUVrQ8X/aJz9uI019QNMUEIIo62ZeJrlNiJa6XJQoC/sEsWgbQq03/nRIshOohBNHdKMcfI+XSS+yPnQlkbL026dR5lDCaLdqKqPfMc6LueMYWipxKHJAEOEjkFuvOZVMXiJFY494WeaYwlRwncnabA0A/YwrpYPoOzVnRtxsieWey2lZJnfBiGi0OmUP9kWr/QucUhSibluWQ9Ga1KboMlRnlvj0OHQAiQUmCap8vzEYKEgWql6VwvQblB7KPHcQQl0QApCD0wFNq3wpaarQyH51AymOzFJjqhSEozzJHTMGJN4tpXNM7RVF70OVbhzYJZZakTyRcnsIxCGUdIowwr5onU9/R9Tz8OLMaxACihNy9D3xxiGaIXNIeC5lorIcnOYawMere7Hc9fveAnL265GWecyoRiq591BiOBeBGpzVSOEiCspSMNMUiTkaJkABSTD6WXQY4WN65FIqJgMR5ahu2PqG260Otl7xSNbrlkP+j4wU1GzgFnFVp5jLZsNlfsHzp++5tvePPmLYfjnnfvZWKQSndlnfCYYy4Xrkz85zDTNi3zHHj37j37/R6lFLvdjtV6xaoSDho50/cj797d8/bNHXd3B2Ksy4lJ0oQ9aSwWWM17f4Hnlg3tQ4RDrDSXEd2HaMeHsJ9oGBLOWpqmpa5bmnZFVbf4UgRO4xmTdenyS9ZGhpgDRpkLlIiaJFci58cNPy9N10Ls/TDU6jFLYrkOj84m320wlsZiaTYWqsVqteZ0PF1uoLZdEVMkzbEkcFaigVGGcRK6m9LC4RvLwyMTzKGI3C3BFaenyrNZ77h/EPeSczdS1yvatiamms3OQ+pIITKee+L4BsOM0xltVrx9f+b1+zNfvT6x26wwWoR951PHx1e3vFg/4+Nnn/HpT/+M9uqKd5+/If/UgAHXenxUPLu5pa7W1NZzc33Dql3hncfXlSw8KQvVrSwYTlnoBpyxbF7c0h07Tu/vGU4n7MtbqqpmnibuvnmPamvSVlx1zsNIN8/080Q+zKAd2ni8a7lKDR7LZnvDZnuLqddgPejAfph4fzrx5rDnbm2YXUI7S5pHFpUOuqB4ShV6T8laMAZiRucoUP/qh00P/r4eVht8mTJ5Y5gfOvQ0UE2BTWO5bXe88g03lcbpGXGD05jysQWRWywJc0mrlUl4TjPGKLxztEqxaleiHYqJ4+nEqvJYpfDWcz4e0cMMcyBVkK+vMKsVZtMwn3rJQ9CG0XVMXSdiaGt5/uIFvm05nE50cWIK4OsNf/Mf/IxpDiVUSvHxy1cCR4dHqqNWSjQ1OYugf7umn+EQ4d5ozs7AtsaHSDsqmkp0ZzORgEzppTlzoiOIkZgfhyk5Z2JKpUiXO4tSzCst06tQMgEsljkG0giMAzFFKQpMSYN+4mIWUyqUoBIelsQWcUnkXVCN74aY/kGR96UJyaSsLz2zUOiKULIExRkjqbzzPAsyW3mxn91s8bUkYnddx939A857yU6wrrjHPOZnnM8nzqee42FP3x2ZJzFv6M+nC3UjlyJnDulCsf1QL6Iv/PNcpstLk7EUm8XZ88lHfWxIEovuTdKbX7x8zu2zl2w2t5z2c3GAGmnXYtM+jhPOzsQkNLh5DuwfTuUz91xdXbPdbFitpGHR5vEHCxojr3F/f0/fndBGcX3zjOcvXrK7umJ3df3/0/P79+HQMV+a1DwFstEonTE5kKcJHRNWGXICpQxGe8koiok0TsScqSonbk8WnHd0nex7603LMM6c+4G+GzCIG+MSHKoL0V4KblVoOuZCcZKAxRWbzZowz2iVmYMwFaZw4PU3X5eAxZq2aQQVnGXCbawXe3YtFsQ3z6/pu573b98TwxGxyo8YLS5RmkwKgffv3lFVNW3bsl6vhfKEJqZMVRliyoQ4ME4Tp9NRkutz0ayUZ9dW0nhaa/GllrDGlGc9kGaZxKdi2Ux+HFaIo6UVwXWcIM8yPPYOZyVUUmthFEhocI/WAa0VfT9cBqAxyl49jRPHdKRy9UXfKkGTvTyvWhFmYY5IxlguVGl53qZ5IkaDi1Eo4aVByLaimxNT7Dl2J3TdoJ2l0RXWIMiAFqVviqWRzLk0lwqlLFVzhdLvhSo+Dezv7zgdjnRdf3GQkmNx0nMYpUlL4a4UFsWcpcm1xmC8x/kK72pqX3F9c8Unn33EX/7RT0i//4J57BnalikHks1kp9C1Z8wTMU9kArW3aCv36jgOJCWDMec8ysj6rZ3obrUTLV5iaTCkxiWJpbxxovfKIUBaBlETWilqX4lbJ3xvmPSvO35wkxGLcwlK4EZtPKt2zbNnz/jlL3/N62/f8fnvv8ToCu/EteTjj59jbEBrR4jgJi7CtTlMXF9tMdYwzyP/zX/zT3j2/Dk/+elP+Mvdf4g3HqcN3RB49+aB/b7DaIcySSApllyGD5EM4LIxPRUeLsiGUop5nosgZgGz+eDfX5oNGYbgjGG7lkm5r4TCknJkDhNMZTNN0vTs1hvySrrpaRg4POyxToTSKMXpfGIqG/TCc/tuGm56sjnn9Cg2/G4jBHxAkWrb9oMmo2laKbadZ7vdXh7mnLMI3bwnkwgJvLWsNxu6visPTSfTVqVIoSQy64gyMm2zc2TRa6yvNqQsVmfjNHI8dZz7nvu95u7hDq8TjbfcbjasWkXlxPFhnCc+//bA63cnvnx9x8rvZZEl8ny35SfPXvAP/4N/wB/9J/8L2tUWrS3t6oq0scSxh27mrhtQyuGd5dn1NbvVCgPs37/n5uaaeZzozx2hn3h2e4tWit/9q9+wur1ic3vD9asX/O1/9U+grtheb7jdXTHtT4R5xIyJv/qf/Q2psuyngd3tM7p5YM6StjzGyKEb0HcPHELPc7+iXl/TvPqE3HimEIiFgmEqz+r2CuXE1rObRoYQsFqRtThNtJsNqoi9Vala8pwJ/YhKgWz40SMZu/mMGwJmnlH9iee1Z7uqeXmz5Y8/fsaqrqm9Q6IQLUudnHNC5YTJMnkLQVC47W6Hsw6NIsWZudCDtIJ5OHHa74mHE3/3P/73/MWf/gnpPPLuN1+yazfc1hW7yoO2vH+4Z+jO5JRYb69wtsIazzAeIRtsVfHqpz9he3ONrT3Zas5v3hCTYhoSn//6K07HE8MwiB7rL/6iNLuOj169uqAwGkXMiSnOdKHj86sVh9MNPkU+vboC/4B+dqa9O7JB453FeMe/fPuac+OJTcVz0/D7X/+S6bC/5DU8pfDEMuWxuhgLZIjpsTCjoAQxJrSG7XpLU3vCPDN0Hd5o6qZFG8v5fKaualQta9AiEI9lg/e+cPz/gGHGH3SRKu9HEE+Dd/ZC+8gpgrYXqupiA1tVFZvNBmsscwjs93uquqFuW+q2JaOKnWZiGCaub25QSksjNo8c9w/c391JwdefGYeOeRKbUFUEjHOxsswpXdDmD95/KaaWJkMpRKBdEtUV0iilgrB9MBiiGGBYqFvLq49fcrXbUVeOse9IaSbMM6dTR1aw3x9w3nI89gx9hzGa6+trPvv0p9S1aBW7vuOSq0Sk62Rd6fuBw+EoBedmw09//ifsdrui6ZAEd0Hkm393D/W/5+NqEmOPZr3l488+493+LYfTA+/397icScairOJ4DtRtja8atDE0TqxTldbU9Uam+cmw2+0kbyaOfPvtN8zzzP5hz+tvv4YwE8aBGGasNYQcywRXhLyxWHyeTiesr0ueShk2upI6Pc2srzx1XbNaixGF1oop9MxhuKwLS/aF857tbsum8bTOUxXkoet6uu7EetUCgp4sKPg8z5zPZ4wxF6p013VUlSBWpu9oKo+3FqNgnifauqZyjinMrHe7S/3jjaGta4zWdOczvVLELEGqKaVCZxSGwDBI4W+twupA7QybdoPWinbVoK3nYX8vYmFjcN7QtA02i/ajqvzFpWgcJyajGceB9/v3jNMo9KcoGWtTWQ+EbiROXykmpnEkLuY7QIgKrSIhGdrNRnQdRqOtI6ZAIIHLfHvo6UKkH0aqV9colYhJia3sEACNKXRzlEUZjwqKNAbiOBGnkYf9ga7vmEMQ9EKbC2ocU4J5umjVikHwhQaqlBJ9JgqvLbXzHE4P9N0Dob9n2Hum+2/hfMRheKDH1hXVtiaEGZ0TOgpiZILCBIXNhqCEKRNyIoYICDpqlDjTaaNBZdlHp1kGailLnZciWSna1eqCWs/zTC4GIdM8M88yPLc/MLTrf1Lit68K/aTAdcpkqkrx0UfPL4Lq198+MDGhe81+f2SzrZnnzDAGrq6uaduatq1Yr1ciaM6K1XrFHAJdP/D733/J9dULcg6s1g1zODOOPdNUhNLZPNmoPnSSehqHvlzEp8jE4noi1CWZHjwVLD0VUFtjiHMoIU+GjLo4PhmjcVWZMmfxOV4QCOcch/2eMM8lTTiWKbU0D82qxT+Bn5bm5yIyvKR9P4Hen2xcTz/fgt4saMayuCxNh1aPTjCL3iTGWNxJfJlmzAyzwKghCP1AW+ESpvOjXV/KmRQQj+eUSCpJsqbSMpVpVzRZJjO73ZVMGVJEqSjIRJ+I84n6LO4ORivQDfeHjmPXM88TYw5lAil/X91saH/ykvZmi7e1aHCUo9vfE4eRPEV5bHVGaWjbisP+QdIxnQT7KW1QrkLXLdpqwjyRdeb61TPa7RbrLJ/96S8YglAmhjEwnXrSFFlvtmRrCBqCTri1o6o99eiZYiKjmVGMaGLM3LYt/naH8oasQVmDv9pg3tZU2w3rZzf4eY+OI4QJo92F15hzph8HdBStS2VrhjTKBDlGzEJrcz/uJqM6vOOjmxtun93QcM121VBXlra2XG/WMtlZMhDUcn8beQYukzSxTFRaFsu2rTFKMQ49gzXEENApct6/Ea1C1vQPb/j87yIuW3SCtS0Jq96RNNRJY1Imn88k60k1RK14//6euzuhs3hfMSTZbPfnE7ubnQSGGs+qXnOzu2WaZ+7ev+Nqd8OqbfHeCnKaShEr5CvmJIjYqXEMVUXUHpcdTbumVp7GrXj37g1bY/hsc83LkDmtK+ZVxTop6vWKceqZzvMHBf1T6qckyz6ukYtAVWlNzEloJhlO5zOx2EfGEDgpZCOxTpx4nphfSGCW+gDFWJqC72raluPpUGQJNZPB8JLcqwsVRAtWUCw0l6ZmCazabDYlLG1pmoQOcnNzwzTJYCnEyLs3by7UVQWMQ0eKM1OYBAVTSkIhE0K5CUtQ1ocoMjwix2S5bqk0FAv6Id8j/5dCFHCjIOwfOP8ZRdN6trs1dV0RY+B8OjP0gXHsCbNkQ53Pk4QIOsN2s+H29obKO9q2xfu2oGKZeR6Y5+lC2zBGUPXNZsfNs+c0bUvbSOhgXddY53HWXt5byj/M4/7v4/Gf/eP/PYe7PVM/sq033LYNh/6KL6ymezhC0CifwRiauqWqapqmuAqmzDRLSKNMkjVD31+K5cVK9Gq7Q6XI3ZvXYn2txNSEuAzquKxJOUemaUIyaBSTNhwOe0ls9hUhpUsoZs6RYeikOJ5mUp4vvBNvPAZxwZv6MxM9xmg2TcVuu6by0hDkFBn6nnGcGMcZpezFjn/RQiilLjkcwq4QG/8UJ8ZpWUMlL6HxnpvbZ8QYGYcBYhTNU8pMw4hWmqZdsXE7vn3zGqMXG2WD1vJadVVzvdvIvo4EC69WFcY4cvKEBGiFsbK2L5loV1e7yzpgS7DeUoTPUdwlUaIHk2yfzByjBBNnsGUtW+qnp9rcNEX2h73URM5jfDHG0GJdfx4F0VEp89HtDqMyRI1Do5Mv+4slqwg6ow00qxV102CdZ46ZuDDICj1qGSYP80iOUeqmIkG7MKMRh7yLE2iMqJRwCm6u1ry83fBs29A/vCGeDjD2zCYVIyIgBcgz1mm0VVS5aHeNKe+lDJOSrL0pikV8ipp5DticMdaRwwyxuGcBFxg2Z8I0Cdsm5aLBUE8Qp0ggMP67pkudTxLioxtTwj+WABW4vl4TYmAaZ96+eRD3hXnmeDxjrXTyYU6sVy3b3ZrVumW9apjmAW3Ee3gOkdOp4/27O77+5iu0jeymFZmZrjuL13QovHQ+bDCeCrfhkfP7XSemhWMmV2IRLH7f8lYroQoR5abVZTNeLCJhsYt91E6kAtvhXMlSmGSCeGkyJPWx8iLa7Av0t3wtSeGFwVU4gFwajOW9LZ/jD+kxLq5ZxZpTqYUGEAS1yI/0LKflZoxJbqppGumH/vJzlRb3GdR33ksqDU/KFyHXMAw0xYrROUfd1ExFlDrNI9PQy6RuCHRjpES242s4nkeGcZJGC3HfUt5RrVvqZ1fUH93gW6HhRSXo0/Blx9wPkgCuQGURrVXecnw4oYHd1RZtNVZ5HAa/apjmkRTBr2o2t1f4ugY0zz/7mFN/FlrF6ztAY11FvWqITjPpRNCZ1a5ld96gVaQfLcF4fN1imxVZG/R2jb/eoWzhO2pFcJbZWnJT43YbzGFAGYtCJrmyV8n/z3MQEaASq+GQBJrWFLjWKKz78VpPAtyqwGebmo9f3LCuPeu2LhtTpF7cc1gm4o/PpqCFwrvmQhlUhcIjltkpjhgrC6+OibG7JxNIWcF45N0XJ2q35mr9HGscylfk2hFNwidxEh6GkeQ7glYkozicz+wPJ/q+Z73WzIcT/TDw7u49TduQE2gkpHKzWUMWHcNud0VT19histAPQleYwoyvKpLKzDEz1Z7gPShHlQw739AYj3WR392/wRtwruJ6vcNta8aVw44zvhbNkTDtH4+luP0uwrsMQBL5UuCrYmc4TZPY95ZBxjxJLoaxMkF8CounYmFpjb1oMpbN/bvajO82Gpf/LoKRRY8mfPay4SpKkrcMWawRcaR3lroWgf8UItP4KEZdrdbAWdbaEDjsH5jnCQUYoxjHgRhnxrEXX3ht0MYKLSIJQqaKo5vSFJe8x7X26edIKYnLFqqkNC0bs9hqZlUa5DIVzmUN1UaopatVgzH6wpE/n0bmaSzUjwSz7ANV7dhs1my3W3wl1JUQxIFnHEeGoWMOc8mVCviizVivd1zfXlHVFZX3+KopxW8J55oGKW7Tj7fJ+If/yf+G17/9nIfXbyFlmsZzGlbkeeCLL74khJEEmKrFeskTWWhMU0gkBoxzQpkyhmkWEbaYJES8NTR1jdrsON/fixtQLBbmsfAohGeCypB1ujh9qaAJZmYchjLg8mijRQMZJadnmibCHBjHiK8Xh7WEV6ZoFRUqTeisqZzYMg/zhr7sq+fzkfPpyDyLLknrjCuoyYeaqMVKOuGsIQYlNOkUJaguCxvENw27q+vLfj52XUlND0XHorHO06xWaPNeXLOMpl3VKB0gRRrv2G0bsVqNAUWkbcXeP0XHUApyGZpLgxFTkNpvlnwJ5yxGiwtaTpnj6VCGJBDmCDldBrFLXaK0KlTOdFkJF7F7Tpnz6cxczfhqxqYA2pZ0cEPSMjDVKXE49VA7cAarK3S2KIxoilUoHUIuwngDWjMv6d4f1GFGapKZy56VleR36Pxot24Wt1Or0Vn2Hm80t9uWq1XFysP07h6mTsTbTmG9RRlIYRJr2YIG24wU4lqRtAxfKOdGZ01MM1mJZjjGgCqDhiKMYVnDtJK6RWqRudxBQusCS1QSTpoRelV8si/8m44fXLF8++0Dq1XNet3y0cfPSqmfS0c6EOYzc+jYbFvCLO99GM58/vkD3nvW6zXeV7IQrlas1i039RVaiyh8vTJo7bG241e/+he8fvM7mrbGOc9vf/MF798eSUGgK6UeC+7v2av9gU3u0uGybBpxYQ2wuKA8/TchBIj5UrhrI6Fd4zzLRMNYphCFR1d5Vs2avjsTQ2AchotP8Rxk0hRJ6CQITJwmhmnk4eGBvu8vwsZceH8oVYTgT6ZgZfook8TwAeKy6C6qqiKlxDiMBD2z0hJM91SduLxmdz6Tk/zcYRxpV2uh6BjLF199KeIeI1NFU9AaQnmYFtpAgYVTTBz3D4RpwFcVzapls9lQVyIKDykWFy8Rb92/f093OtGfz7StohsnpknCCb0yOOux6xWf/cP/iJd/9SdsP35JVTl6LZFWm1nz9Xnk4d0dh/0DSid87fCNZ3Ozwa4M62bFR68+Rm9WVMrisybkQIqK9abi5rOXslCIeo2IorneUl1vWPkV9ac/FweMMJBuWqbxzJzhz//8jxh++orudOLN1+9IrsW1V7RXrxi04qpuUVWLMhWJzOl45ovffMNXpxPfhMh7Y+liJkQgyYQ+XlxrREugjMNoR1amTJ2L135M6Jjw04/XFQbg//i//l/SNJK8mnMsuiqF5OzA0vQ/TZldPNaXxdM7VzYsodTEFIrtaS4ZF4qUFXWeUemEzvBsBQ93D4xp5N1gUFfP+bi65vntDVOlWKWM60fim/eEuwdBvFIgVY6f/MmfUjvPPAbevH1H3Vh+9tMdb755I+JS43h4OLLbbbm6vuIv/+IvsVae/3PfEVLk86+/5NvXr3l/f8ef/OmfcXNzQ7tZ07Qr2rphVXleqMwzX2FT5tv5BNdrDlPgV4d33GxuiNaRoqIPs0zbcyIQcXxIodTFL90YWwZBksJtrWUKs+gvtJeprfVUlef57Y0UHiEQ5rG8nmKO6VJ8wJMBh9Y0JWRroXwCF9OND5rDJ8iyc+5SKCzIsPMGV35e2zQSHJplh3HW4IzkRoxDR3BO8kj8klFk6bqO8/lc1lPhg+ckVpGn45l5FpepaRoudJTb7RXHrifNIpzUy3OYEeS6fKbl8yyfM6dEugxdcuHrcxGGL9aVudD2BHIv4WJOvqZpJCeZjDsnzneSYi06otVqxapt2WwbIJfck5nT8cDxdBJqjrXc3rzg+vktL16+Yr0RelvMGqXmImrWVJUhJykup2ni9Zuv2e/v2e/v+T//n/4v/+4f8H8Pxyd//hd88os/Jpw73vzytwzv3rAyGvXqM/7u+ncM4Y7T0GONYZoDc+pJSvPRJz/BOMcwjUxxvjRiMcyENDMNA/35zJATUy+p3pXzzL4i5UQ/iXXqcsg8aHFl0oUlMaONpV1vWG021M0KjKI7HejPR87He7pzj0ZTVy1TH4GI0gnlAzFk2gp+/pNrXr28xVpHyJrV1YaHY8/xPLDerCXfZZ7Rei7NiytOV4HXr18zjgNtXZNzxHlxeZrncEH3NrsN7+/vUUmxW2+5ub0lxciqbXnz9TfMakIS50WcPfQdp6HHWKEzK524ub5lWivSPJOngFEzqIRWE95rqmrGWXludpWnGyNv3nXMw3RZRw7HPWSFsxXb3ZbeDCiliSFx7joWN/esClqRIzmKtWrKiRyFjSLNSyLkR+QVBSEGQjfR94qqqgCDcY66bfBNBRHiNPLf/fNf8bOXz/jo+or1tkVHjbZgdCRXE8k4JhLffvUVb96VUOoQZMhTXPucNxcaqS43yAIqNL4WtLNowLwzYolbNzSrNdu25WrV8mrl4PiOhy/3VHHE+Yx2mpQNVbaEcWQee+y2QsVIniJDngudK6O8JpsiugfimFDqccj+dLAtzYYwsJ03aC16uxQTXS8hl3KdxN3OaoPxGhPT97TC/6bjBzcZ0zgiVqsCS19dXYHKRVQG4zDhjOH25oqb2xfkDL/5za+Y55G+7xmGic1mw2rdorXFaId3krIpDg+dUFxs4O7zE2/evqHvB477gdN+pD+HDxoJ4CI4XDa0eZ4vqMBSmCwnV/4hKEQ49IcoR0tnrIpIPeeMQoJhXCUXQCkRVHnrChc4MagRWFT5Ev4y5kTf9WAWGpWlbhpev37N6XQUHuFTcSGqTBjTB5/xaRO0dMxL1/z0y1pLXdx0rDbFGQEpop8I4OUGt4xjKK9tOJ+70qFb6qpBHAWE2jFOo8CU5dwsG61SGmXEveVwODAOA9ZZ/PFImMPFx18rJQF42pCN56MXH9O1J/YPe4ZxYuhPdF2HTRC8o1lvuP34JZ/8/OfcPntFW2+ISmOT0BGmQ8dv/u7XHA97SJGrTUvT1myblmc3t8xEXOWhFfHSeO45HU785ve/5qOffcbu9loaDCU0tzjP7I9vqdc7qmaDXTVYW4HWtDpzjgNNrqmVYmsUozLs6g2vXv6cPlhG5RhszcM88m7OHI49vxoGemU49COfn3q+GXq8szTNC+L5RDzsiWUqE/KMspqqrsAJB9RaT+WsOGqkhDcSJuSVxv6w4cHf2+PmelsafJmGFM8OtDISrKZlqr0Up6HQo4S2WJr3MRBRwn1WwhuejZa0bBTaWioUtpJnKsyRrDO7Qm+biXx9/BY1VmjW3LgbklFgHXbqCKcjep6wQ+Cnz15ifUXK8Lp/i3YGo4T6+Nd//ddkIMTENCe2uy11U4FKF9eQqjJ004zxjjknvnn3ju3umnmYaZs9btDssue58vD+wHmSpNZg4UW9wbeGrXG0rmXIgZRmXOWYzx3D4cQcZ2wWJ6Wl/MkUjrdS2At9SsSSEo5Vs7u+oqoavK9omxXPb28I88T5dOJ0DGV6G7G+vkxHFwG2wOmBbugu18lae2lG/rV6DPjenwsyInzfeY5cjBCyoBi6aDW0UgzDiJpmlLZ435aCR/Hw8MA0TZevFKRBVET67kgIMzEESQ0G9GAYpwlyRGRn6nKOQMxYBEUTZPwxL+NJ4veTz3P5l8sfFgrY4plvjOL6Zsvz57e8ePGSzWZLVbU46zG6YuwD8xy5v38ghMjxcODtu7fUTQ3ZoxAf+81mx+7qptBXPNvNLW2zpWlqjJN1fpiCBGeFmTlkSWwfRBeWcmSzWfPs9lZC4H6kx1dv7ri+2rG6fcYrXzO+e87h7WvCbzNrVcEsQZaNrfGuxmord1UWYaxBcbXZlLC7gKs8bV7JHhUjY39imnuG8cw0DEzzTIypNMWKBdZ/WrAt61YMMjB8eNjjqprr25a+P2GNwjvDoDXOaUgyJBFL/Jaq8ozDmT/+xSt+8pMX/M1ffsrz51dkoB8DX3x95G4/sD8MvH97x/16wzxMDP0gHPq24frminkKbDcbYtsSw4z3Lc5ZrDW8H96VxHgnonBXo7Qlh8Q8SQOSYub22XPOpxN9d5ZwyqkE9hrYbWqsjlQ2s3KJSimC0owpY42EIipv8RWsVxrvDHWVmZIGpbm+2RKT43Q8czqe2D9MaO2oq0C72uCcJaWaGBO7KLq7TOJ8PghbRENUxdxCaAzS1LMMAh6L36VmyiXseJhHWtugY2bsJ4lyrj2uqknZcrfvUWPimW4w3qFsybiwDRiHcyv+7E/+Y745/Ne8uztI5kjTMmtNijOu2Eyn+MiQkVpN0JMLAg+QxVZWeU/drqR2Q5HPA6wUVJGsMpMViroKkKPCoNC2ErosM0kHDIA2ZGXlsy5IDwiSZISJ810H0g9c9FIskQYyaPHOEYIqEoVctMFynwehs1wMTf5txw9uMprWkZNYiB32R8Ic0UbsyJq2RimLcxVNLXZ6ItYR2DsVZ5Lj8cjxuKZtxV0hJ4UuU6mYPHPoSClwPBx59/aBw77jdBww2TPP8VJwX24gPtRSPNU3PBVKw4d8uO81H0/+/CniobTAYpTJnXgUy8OyWA2iKMUSpVhShWcvV1lpTUYcWqZJoO55msvFzJeLlZef+WQi+fj+lBT1ggx+QIH4QJehJRHaGCsNkSlTuLQEcRVNSbnxpQNX9ONISguv2hHCdOliU3HzWWx4ucznyu+TcCSVKumnKdGdzxhrLu8rJ7HrSxmqqhGObD3RnXtykKlmBHAa39bc3Fzz0fMXXG22eOuXYSDExDxOlwLEWINRilVVs6kbplOH20rIlTIaFROH+3vuvvyGd2/ecP3qGZt8JVOQFEWPMh6YxqNYyBmHN2uUd1KoWk0YMl5JEWyHHlSFryxue4MeIEdNlzWD0hzjxBxnHsaZQ9Qchpk3UXG2jl3tuKktc9WQjS+8dIGyJclY3Dp0KUoK104QDKUwaskM/XEf3gnnXSY6qdAT5XMtJmyXha9MllPOxSlJF5vl5UxkyEosCyMyjc6SZJrI1LUnhohOiWQNqQTK4RKHwzf49wZTg8uWuvHYNKNURk0Tec7EYGiunqOtJQJ1W5FB6Cq9CDaruqJ1jjmKNsQ5A8j0SOkCNU+5PLuZbho5nc54bTFzgPOAmyMexWEYmOaAyhCw1E2FcxasJReNWIiRbuwI04yKCZMXJykKAmQliEmL0M88QWlDTqL3qSpWbYvzVQl7k7C9/GRo89SZb4F9l6yNvDhY5ce6+umgBj50HvmuluxD2pS6UDghM5ciTRVkb1nXFKoIszPWFZSPR2rsozZkRheEWrIIZmKcSyKyZBGpKCSzpZF4uuYuR0pyf33XaGNZBZ8e+envnqIaBaVzleH6esfN7TU3N9dstzsq32CMQynLar0S5BeIMTOHIPkDOVJ7j3M1VVWzXq+xVjSCTWupqy3eNbL3MYk16DwyjL0UXSrjbIWvKupakO+b2xuauqGq2h/8zP59O37/uy85PR+4vr7m+fWOSsHGGV7EwMuXH/P13QM2vqd2FrMMu7SssVZpsJbKOYZxYA6zZEf4GoMEkpFm5mngAlOVgOSlcPxu3XCpNRCWxDROkjPV9+L0ExfbVXGfk+TwRIipDFYM1jpGDa8+ecbP/+gjnn+y43rbkDM0YyDg8PWAcx1j19PUdUHBFtqQIONKJ6q6JsXI8TBS1/WFAYHSOOvwzpeGSfI3+q7jeDyK3mGeqZ4wODIJrbIMTjQ0lcUZcCah4oTXSO6PM2KSYzXeW7yHurJ4J0GrKliyNgSlmYMuGiTDOEykLLoKcio24jJEXa3WLMGL09gTnJOqIwU0ulDLc6k9QOd0cTb94PosfWFKl38zx0iaA8Y5vDJo5xjGnmOUoOTaa9lKjJxbyWTTzNNIioIG+Upye0hREBRr0UF0Kk+Huiz0pPy4x8ufKzJadH1oamVoo8KFjI5JmpwMRcQHIaGKY1rW8ucqK2QUY0nKkrUVpIllrYofotxP1ujvmVMsdLQM1rhLc5Zk+v2I3vKEqvYDjh/cZHz8yS3H40B37jmdznzz7Ru887x4+ZzttiV7B8mz3V4T0kg/nDAanPc4pzHGsd/fYWxmnsdC8WlKiFbCVxAOIw/7e7795h1vXh/pTjPeWCLCV/1u42CKo8Dyawjh+xtZObE8KWAWgeJTtyXgEn4nN3YWcbcWjt3CXzTGFas3J37mIFzBnNAUX2rEj7hqGhKCrAzngb6E3IUQSpkkxaPcR/mDi79oNOSmWChTSnIenhQOTxsMs4SLaIV3IlwKMRKSQKZxFheTEDRVXeOcbED7w5Fz3wuiUZq1OcwiciwPR4hxmTHKopXThYmVhZh+ee/zOBGmy8CHvuuFA1vXpYFLeO8Zx0EmS8Yy6JlNY9nsGj578Yw/+egTXmyvqI1FhXRpYIYw89GnHxOnCU2iu7/jZrNl07T8D//yn/PTv/ozCUvMBtVPfPvb3/O3/8M/o3m2E6Qri+gpjTBPA6fTG1ROpKknYLHNqlBgLLXW2GaDDgHUyP6be9SqxdgWo1uCSgxkDglOruXNrHlnMm80fHOeOfeZSbU8u6rRjSU5zblakX2NNY5pPqK0TBHiNJHQJYXdEuaRPM8QJUXelkTjxyCzH+mRi9gOoYhY40pjX1zMcizXyF4mUYVTBdaiXYVxjSB0eSZnICQJE0oJMIQwMkwjm+2akOVZdG1L9JNMhdvI6ctf0nevuX/3BdNPz7y8vWXjLO00ovcd05QY9Qn38qUEM1YVrz5+wTzMnA5nXn/7ll//+rd89PFHfPTpx/gyTUspUdUlDCnJZxz7jhSDWC8qOA89rbFcZUV8947UnUkk3uQB7WTTqEisjCIYCFooFSORfp744vPPCXOksh4VZHNQWlyS1qsN3ot7zTyMRd8gBUNIorHwlUxPJWBJpvqn7gxPpvWi7UiXwYbWmrpuZL3SujiPrOjH4UmCt7msW9/VMTzli+dcUt/LvRxzJoeItYrzucMai3eOVd3gXVVSqh+1JsYY6qoqg5F0oW0J2hJYtw1jmDge94X7LW4rsdCziJE8jcUp60NaV85yq03z+MG5+GCvKPelgguHefHIV2X2stD7nDNsNg2ffPqSV69e8uLlC25vX5SmTjH0M6vVmrpupDmOoJCGoGlaPn71CbvdDbvdDq0tIcyM04gxGaMtkIr2TcxRuqHncDwB0ox98sk1r15+ym53zW57Q9PUxJAYx/nfz/P+/4fjn/w//wmbqxuevXrFP/pP/xG7zY7N1Y7rn37K37x7zf545u6Lb7jeXtEpxVyGfzpncU6rW7IS+9dxGEg5cXN1S1M1QrGqHRAZhhNaW5KKJAx6NqQSJvnUEXK51rbkmvRjj+3O3N/foYxmt13R92f685lxEAewMAdSytTVmjBHJhMwVvOzP/6EP/rLz7DVkWQ6dFa0xvBH2+esVkLfOj88sGoqvLXEkDBFGzUMUldZa5mniXGcqOtGBsOHA3VVs1qJ9f7Dw55hGJjnQD6dS0inFdqyK9RVnUl5pnJSGFsLq0qiF4yCqT8VR0tb6hCovGW9bqhrjXOCpGqt0aHCBEv2ltO5Z72u8TaxP5yZZ8kDUppi4pLRGna7XRnM9nhfi9kDhpymy/Ayl9BAk1WJTvn+cCOVAY/JSqiOSjGSIQRUSlRK4zYbpmngNI7s+47NVYVxluTAFu7TPI78+r//f3O430NO1L6i8pVYvcaIM47kEjkrUhov+9fCuAHR7mqrUMqBNqSYyeOMNxXXyvOCFp8VOsnw2U8Gpkg4T2iKHa9RdOOAjQo7aTSelB1KebSr0GqSxjAnhnkqw/HHNfkpvXW5fx9/zcWe3IqYXAlIMBeTD4qJkFq4Vj/g+MFNRlW7y7TpfB6oq5oYM2/evKeuVoAskHOY6PoTD/sHXr9+z1/8xV9T1xUhzHz77ZfMoefdu9coDMfjgfWmZbOp6Mczv/nNb/lX/+qXHB8ycTZ4K576SonbiUyl4mXht1be/oeQ5eNm9vT7LpsECuf8E35avIi4UbloHjTWWBHwWJmYx5hYbTbFlcKWjSRjlDQm3alnGkf2MZRgFtBWMw8T4zBcpmpKibe25IY8br5zKaKXYJ5lAzbGXGCYP4RggBAMrDbFE3lRyyCOE0maDLl/BNWwvqKuW+qmoV2tcXWDvn/g3A2gIkuAlfceV/zvp2kqLixSOMWQLpNNrbXchDphUsJOY5mgLh77AeaRY39mfzzIFCJlpjgy6YnZBVKT+Qcf3fDXn37Mf/jxp+yMIU9iDZimQLtu8LVj+2zHn2/+Qpq0FPkX/+0/5as335K/iei6ZXv9nM36Cj1nfv2rX6Oqmj/+n/8DTtOJjsRdd2YzvcBozXp9xWrVEMNATIaUNFPsqFKFThqtPRoRTeI07ctPOM8zQ9agPV/qxHuXeeszn2vFW6W5s573LtOnmWk6cj59gc2ZIVTsvWX/1RvcaY/KHVn3pKxR0aGAkAJazWhlMVozdgN5DmRnCfVMcg7rfrw0B0Ccn5RMbyrj0co8En0egTIeA+MkQdfVDuMc2hrqdcMcJLukqhqMypicIEtCvC7+44fjXsR2AeIwk61C50gVe/745Y5zSHSH1/yP/+S/ov7z/xi3uWI+n7nePad+tSbtVtyFjun+jLaGVy+e41Jm6x3u+TOclmJ3nEbaVS1Wglqhsoji5hiYpomh72nbmufPrqhby7OXt7hs+OVXX/H56684x5kuzRziSPPsFtc2hCmSFr6306SYOZ96Tnd3vP/8K9w0Y5Wm9g1RZVxVUdU1q6YVK9iU8O0ixJTpuHOOlBPDMPD1V19dGpO6atk/3F0mrqSINcVlz1liGbBU3hOmWRy+kCmaNRZr42VD/64+bvl1EUAK4e1RFK2NvjitCJr75DZQuri0Km5ubtkfD0zTzDRMdLbHGovW0iisSnp5inPhvR+Zw1ymheqDVPI/ZKDx1LLWlHyNVPjITxOPP0A9lGzeyz2rVBmZlmbBKHH12e1W/Oxnn3F9fU272lD5StZqZbA2smpPkq2wXjPO79nuWl69esHPfvYztttb6qrBOc25O9GdO06nE/1wZrVa411NmOXvnDPsrne8fPUZNzfXXF3tqGqPNa7kGynevX3Lw8MDd+/e8fF/+kf/jp/ufz/HF69/j3n3mt9/8SXvv3zP3/yDv+CTn7zi05++4h/95/85P//LP+d/+3/4x/wP//U/5V/8q7/l9f0dU9Pw7u4t63HDqmkwzrBuGtpVw9v37/nVr35FihFrFDEMkqcyB7pzV4gA0kRP03S5V6ZJil1nLYqSQVOcfoBiK9tzfX1FjIp5ypAtRlcoZ9FasdvumGexUf1f/eM/4z4e+Oef/5bdlWW39lRZ4aLmZm1wKlK7gNEzdSVGCJWvMa5htdqx215z6s+kSZzimlXLMErj8cknn7LfPyDuQImcIpu16DRO5xPn0wO+EntjYwzj2JPCwLbRQjdTCa0TbVvW66xIQYaQrqrYtCuh9DpDXVmxtHVa7HhvXvLmYWQ8jQznE1Eh5i5mxbWvSckQQ+Zhfy8MGG1LBpnCYYCKGNfSZPuZuomiPQ2BSJAhXYrFoUpqwsszrhXayrWrk+b25z+l2m4J1lIrw9XVlpuba5rK8/bXv6Z/+5bP9yfcszWbbKgzhHFEGwXac/3sOfZ9R049GU1d1RgysVxPVQIevfcX+n7OGVv5Ymks7oROeWrruV5vuNGWl8bwLGtWXqM8JCtaxOn+hOkS1agx2wrtDTih32MMJEXIA27VoCoI05moZ1gG8FoRlrUtX3ZagA+G88vXstZJrcqFYUNO5FjMDcpQ6YcOPH9wk3E4HC9Q1Hq9ZrVSpChuFw8P94BMf9dXa47HM8dDV76voWkqMp6Ur+i6kXlOdH3H27eJw8FRN467u/e8fv2Gw0NPjrVsPkoXV41H+tNyAz1O2z78s+XkPS3Il98L/C3TCKUWzh48AgCFg6fEUSrGhHNcpn91XVHVDd7XzOMoAT1KEYP4vIvTgXTKwMVhJJWG5tLNKk2KgRwf32eKBYX53mZY+L3leKrJsNZSFeG3d66kQ0ujkmJEzRL+l3LGJJn0xrQkyM5oa/FR8i7quubm5oq+PxHmqUC78YJcaK3JJosZQUoXa8zlWGA1lfMlHVSpzBwDOWkoFK1pmsShKiWmGEiAd55Przf80XbLT9drXrYtpnIiDh0C3lucFdg7eUXla0iReRxY3+zI80qmhus1ddUShpnD+wfGaaJZr2nWDedvfw8FMldaON5a1WjVkF1kKiGRIcykHIg5oAsEKXC5IfuKYZ45hUgXIg9as0exJ3NAcULTYwiVQbUZPxpMBas04qaIiQYVZ+GNAgkNSaZgWYmYLScJ05qZiVMgTQEdM0klbM6MP3K+lNFWCs2yguUCwy60qUtwJY/NtjfmUogqLbS8LDxDrPdYlTE5QlSEUUKejNVChVCgs8IajY6CaCpn2doWM83YKXGaM6+//ZLD3T1OGw5VS1aBaTrSTSNZS8NepcjWNRhlqY1lt1kJtU4VLnAqKbE5M4wDUwjFV1yGC95XbJoNbbOBBKM1rD9+hT4fyfsHOPdM5kAcZipboWp5tutVg5qKu8o4IXEpFmPF5cVZI+jqEqIUA5R0bgUkVQYqsziD5ALXL2tn0BNpSdKNQdyTrCWjsPNM0oK7zk+QYqX1pWBJ8VEYDTxZbylTNHVxpcqXaytrm7g1yfv8QB+3NB4ZoYidOlKQ10gplaAzjbXqkmK7pIeLfXh4pCTkRxH3d/UiT9/ro/YiXXhRywDrDx2PlIenf6g++G1de16+fM5ms6KuqzI0EmqL1oaqUkWAL+hNiBpSIgZxgOrOR/q+L9bmcr5BQZbX8JVnu7ni5uYZzltW6xptPe2qwRhLdz5fhlzjMGC0J6eMr368LnXH4YRWgtrMXY9VkcO7O8Z9x0c/ecbVi4+wdU3TNpi25te/+jW/+s0XxOORISZimKjrikavsJWTIWKaistUJk4DwyAWseLExYVODI+T4EuNYQzeV4UClYlTsa7PJYFeiY1oCEKTjiGitaLyFXOY8Y1jtW3Z3GzBrZlyy6xq3j3s8TnSomiMZ54SYe45Hh+IcS7UWl2eH6Fxr9drQXnDLMYHi/6zXUkzHcVSPsVZvifMkAIqB4gzKSh05aisEnesZHBaEE0ZdBYUUmmUsXhfSfCvs9TO4IzCFSZFu93SbnZcPf+UQd3TxQfSQ1eo55JgXRlIURF0IswRpYRyNk4DwGV90VoJCpc8YQ6s2nVBawb6rhNKupLvS0/WoWg06/WGZr1i3W7YfvQSVzdEYKMd1abBrCpc3VBtdoynntfffk2zP/HMZl7Uq7L3OLJxdP14eQYVYlRjgGwt/dhdfq6ED/oLhb+uK5x3xXDG4LOmUpqNNVx7x3VdcbOu0VbCmkv8DgaDVVq0deiC9gdyKd1VjigVSGGAADpLQKugKQuVTyhQqYjnl4H18v4WQ46FCSTvf6EFSqp4TI9Bqzkl/vCK+IePH7zSPNwfcK7CuYrtdkvl6zIV6/j9774gJsqD9pzD4cTp1HN9fUNde+pGCmDnr3l46DgdR6Zx5N27s3R5VvHNN69LoFCi8rJ5Gm2KfWy4fMCnDcZTmPu7Wo3vCrrl7zSmuEDowsS47BAF2loEXFqZcgEKdF3XeO8FclxveJgnSo4k0ySCQmMMSYEKxZFp2XDKTb9kVyQVCTmTzSKg1mgSSrDyR1jrAsIvL5M/aDKctbS1aByc90L1CvnS1cep3FxJOMiL3eHICCU4yvqKmMA5y/XNFdxFySSZJoYyqVF8GFQYAaP+cLW75AAsx5QCKVE2VV2cUgIhSmesjGVVN/z584/5k901P9lsuF6vyJUTOmyI1Jt1QZZkUuCcJ0wjccpsb69lg/aeerPFRs3p4cDrb14Tc6JetVw9v0HdfVXsfTVaRzS2JKfWYAwpnPj/UvefvZZlW3om9ky33DbHho/IzOsvi0UWi0Wy1Wiq1YL6mwRBQP9RfWo1KJECBKoBks0mGzRVZNl704Y7ZpvlptOHMdc+J5JsMAUVKeYCIvNm3oiT26w15xxjvO/zBnWEKLQinQJaZVLRo2M00VqmnNnFyLvJc+9q9ij2CY5KMSbFnBTJWUxrqGZNvTY0R4+ZPSi4pwSPocg41DJ216C1BYSsEXIgzkKPCFFGyEHB/OOOyXiYAiKPXihBbKYExyktEsKUF/qFwrpaDpJFBxqDFywtko1jtehxVdbghUhitGaaE1klbFZY06CSRhspTFoHSluciTgc7z98w5wszfkVN2cb5iHTTxN29Fgn/gjrJ9zZFW27wrRrVk1NsoqkMuQo+PJykj7uj8zREwqIIgNOO67WV3T1mjkEUlVx9fQVzYf3qKHH9iPz6PFVjV6fwcUZrtFs6o45j6icyH6mrSpMKv6dIuXSeukwpjLJiEUz+wBrCDHKBl8mPct6l1MgFq1xShGMJaQIUTPPHl203ykljCrfQ/n+hKbyqUTqNNGgyIoyJ5LU4nPIxU+Tlq4Y+iSFWjpsqiAVY0zs9we0FeRzyhJ2Kkz60lSCh4N4CdZbitnHe8TSqYNP94ilADl5UVhkq/H03r7vzfhkUvN9nT6gDXRtw4sXT1mv2pJlYE5yKmPL/Wj1o/3O4GfP4XigHw70/UQMkt69WnfUVUtVteSs6NoVm/WWq8uXrLoN1mmUjhzHnhgj+9099/c3HPb3HPsDu/s7Xj5/zfbsgssfceJ3P/XlXofb/jtyP3Hz9TuOb3e4+g/YXq24evWGl5+/RDcVq1XHzW+/o/KBNAz00ZNCU7IFFFXlME6Bj3jvmaeRcRwZC/kwpiT4+kf3zsNeLMViVbWEGEhZUtpTzGhlqFxNiqHABzw5iTlcOYOrHNM4cHbZ8PTVOVXXotw52WzIpuXju4+4NLC1mW0tRtwYR3Z3N3g/AyL9Fp+a3Iur1QatIfiZcTxyd3eDRuPnmaZtCGHGzyPBj4y9eGCN1jid0QRyzFjVUFuNUY4c5YCbVWaJfjRWimKnTcmgsDhraGsnTR2VJTfj8jnn1y84e/qa2/FL6mME9VEiEKL41qyWKYZWYqwX/8XE0Av2PhWCjbOSiu0Abyzr9QY/TfT9kVyw5iEGkYWWLDTRsDk2Z+dcPX3K9vkzqqYVTP4c2ThHrA1eZ7I12G6Nbte8PY7UtztUpTg/X9E6gzEV0dbs9vcEX4oMpahcDdagsuM4Hj9RoiyyOq01dVVTlULD6Q4XAnWObAxcdo6rdcP5pkXbmZlMiBmdFZVxIjtLUmTEODOHmUwLKWBSpMaT5wTeoDEFsbwUF4/N3RCiZ1mDrbUnVO0SDr3c26YoWBa1T0qhTHbNyU+c8l8ywvZ48Dx9esHFxYVQoIygVusm8/lPXrLb9+x2Pf/z//zPyElTuZpVtxEdr4YQBpSqOD+rWXWRb7+54eOHW4ZhhqyJscIai2kimIkYIiGoE8pwkT0tH8Dj1EStNXVdM03TJxuddH5iCaCTPzuO00lDLNWaJ2WNTpEUI1XVsAzsLy+v6LrulI49DUdyDFTWsFmv8PMkHY9xlC6fUrimKZMJYRIP43D6Er33xcgjWkIx1Ig8KeVEIp/+nikM7rywrmVRk66BmDe7TnDAYtASPbGtKgyZfhyL6TtDSvSzdDbmeWa6u8c4h6sbjuOI977gDisq56isYypFTC5eGKs0wu75dIK03JQAWSmSNTRn59RdhzIaf/Mduh/QIaGGEeMjEYXSlo1Zs32y5cnVht95+YS/8avPef7zn9L83u9xTA2marFVi2lqCewLAeUMkSwmtFVNVuenxd/lzN3HDxzud4Q4MalAHwbqMLDZbqnqRvCYxpKjIpbU0RgTY8yMIXN/7IkR2pSxTgIXc9F1ohSpaQjzzH53x1h3BFOBcVjtZOFVmnDoqXRk3Sheb5vy2c9i+B/vMDGhcoWeBhmtG4WyClM7dCVaSDsmtHOkpNBJeNcmqx89XUpSP6TK0AW1tyyCs5/lvRe06nKHpRRQUZOURsdI8tJdPK1xxsr96xoO+xtUythkMbEGO5GJzHMvDHrt0NkS+oHsAzZlrs9W0NQMaGJVc5x2jHOkHycclv2wI+wi3+4/ki6ecbbeoM82eGNoViuZljUXJ7LdOA68f/9eZIpG8IYxicH87/zO73Pz8Yb93R2xP3AMN5jxyKVLPLXwcei5u73lt//qj3j97CXb8w33V1vOLs7xd3eoeeL55Tkhyig+kTHOYACdM3kaUDmQk+Csla7IKIy1jMMg00trWHUdTVmrvPfcjxNt17HZbqUggOJ7yeU7iBJgh8KV3AFXOVxwoi9/BNt47GVYiDvLtazLy4RDLBLxtOk1TXOSPMSUqKuGtoSpSdbIVLr8EaUzthJzasr6RP/RRv78PE+gDY+bUo+pKqfQ0iIZWPYY2R9E5530g9dvWef+fXkgn9CnFJhKsVrVbDYtXVtzdnYuONII03QQ0IA1cm/rjI+S+B1i5P3790R15OLygqfXr2jaFV3Xsd2KJOb87IrKiaemqiqaZk1KmWHsud995JtvvuTtd99xe3PDZrPm8y8+54vPfsqrV69ZrzYYU6NV9R/9Wf+PdXk/0h8OzONIrWq+CXB3+5Gv/vy3fPub7/jZ7/6cn//ez3jz1z7j9/+r/4a//gf/Bf+n/8t/xz/6e/9Pvv7z3/DNV1/yZ+/fQcykrNmer4jbLUerOfZ7UsikPhRjeCj+ifSJQuI03UqKHBQpaaypULUhJcVmvWbVdlTG8OHtb5mGCa0zdWWJs0A/pv5AVVd0zTVPLjb40eAai9KGOXoBPBxuuJsOvFhZzi8uaeo1WUmAo/czdeWo2zXdusO4incfbvjiszc0Z+cM/YGcMsM04GeP60X2lKPn7uM7tIq0Tc319RWrdSdnjZxYNQGnIyoHIl58g0qmmdbVXFxccrbZMvd7AbAUgmZTuRJwaNhcPuWLX/w+z17/nElppn/7FeMUpCGoHakEFRttqCojoW/OoU0mRM88t+zve2m4+cBuf4P3kg3RNK3QuuqGi6tLaaLeZpjAVQ5byJhZKdqzcy6vn3L+7Dn2+pLqfqCLmSfNmiOePgTifuLb4wAhMGvDh+PI+dBxMUaSB72qUboCZfEJkhYAiU6JpmsJcWacM7l20uxSAq2QgMay5viIqRSVqXGVpdaejsR1rfji9TVnpsYECFqja4NrNHGaURFUlCIm9xOxisRWkfyInhN2inSzJ7ZbUmuJRpGSnDO1fkCGL8VO8B6FvKZxHE7nSwlWViefWl3XUnAXmf/iz3NOMc1SIBrrftDz+oOLjJRUGRumEikfQUWsg/V2ha0q6rqh70fGQRKw67pl6EdQiRCnounPBB85lsOcwoCyOGdISTp/0xRJoWwY6GLU/pTDvnxojzeluq5PATILgvXxOHy5pDsv1Zg+dd3Khhjl/blCNslJiAsDQ/nvZFIKOFvT+5njfi+4Sq1AG7quI4SZaRBkojUatCDAUtSSDxBlU5qjGJFzpoRklU1MaTCLzEuVsKqHYqqqJJxpSZQ0WmOtY0F4ZyiVaCqdWyMhgKEWXnzTCJI4Jfw0MgcPc2bojxgt4/q2aQv2j+LJmEQfnzM55pOR/nR/KEm8dF3Ly88+I1aOOUeucqJuJuqcaa3l25tbjiEyJnCXG6ona+rzlsZ57HqLXV1h20tsbtDWoaxhfxjYHY+M88QYZ1abhjiPTP2B67MzIa6gOB53fPPNbxjHEVNZrNNgEzEF6rrm7OyMzXoDaLIW6UxUHk9gPx05DkeRSMQlET5iTS7Jl4nxuCcMIzYlnncr3jlDMBpnjKQNk/A5MB3uuIyKrRdzerQylakStJWMcxPCxdelyMgKchIGOEXLnbRIXXyOqGwxWZF/INHhP9er2KMLZu9Tud1JR5uy+JXKd5QXHnPOcriMET95Zh/RTg5LKQmG8fRfUbkEFyaIijjJJq/I6CmS70ZMjlhrqNvMeWWpgUPsMcahoyeMPXcK7rPHk4kK/kS9p+3vybeO89U5l2eX2GgIzQq0TAulyy5eLltV5d9L0vD7j9/yx//yXzEMPdWqRs0TdZgwxvOzN09Z3e/odgcIIys9U4171IeB9999zTh7bAhkEiYnrJaAJmOVbG4p4ZTGuTWgOPQzg0/MIRFSpFuvZKiq5Jne7/dopajqGls5UoZjP7DdnlHVRZs9zwyTNCyMVbRVDTmfmg/OWuJJBvBwPZ40/6/JjZZiYyk0Fk3w0kAxBQM7+4n+eKTtWpqmpmoqQoxY59BK4f2MRoAbkhhs0cWvEYrG9/v5HfBQ3Dz2ZDz2aWgj1Jdlv/n3SXO/39R6+P/BVoZus+Ll6zfU9UoKs5ylm+w9MSWOxz3v3gvW3FpDTIq2XXFxdsnV5VOunzxj3W2pqpamrWiaRjrvWjMMA7v9jhDfcjjuGcaevj9wcX7Bmzef8/rVZ3Rtx9Nnz9hsNtRVh1YVWlUY9eP1du13dwzHA36aGKNl//6edb3hxeVrvn33DeaPtci439/w8qcvObvccPbsJX/rf/d3+eynn/MX//aPuf+H/2+iD9CPvHjzGdrPODJGJ+bxSF07Vl3LMS34zoeCcpGXLGTEHANjfzzJrp01VFajiIR5xpk1qnHSxDSK/S6Swkwk4AmQJ5wJ6PyRfj9xHCz6PjMfd9gQqLVBGc3u0HN3N3K/7+nHhA8iQc5K0a3WPHn2gm59JGdFfxzJWVE39SnbKsaAtmCdYrOpyWHG2QxhpKu3ZFWmARzIMZKzJ8QBZxrW6w3nl9fs9nsqa8TbZsW7pI0+nZna9Yb12RXP3/yKzeULsqk59HsOw55xkiZtLshqXc41S7BlzAlnHahMiIbVdkX0sp66SvJw5mnm2O9BaTZa09Q1l9dXGGMk4DjEQmaTM0oKgV1/INzdcJ1g5cEpzRQjs1OgM07BnZbGc17VXD5/inMyFSAqmTxliJhTeLFWAnU4X2+JKTJMI/vpSDYWk6GtalKWyYyfPDohZKiUIO652jZcNR1PjaXJChUEfTtXMm3WVrHSK9QhoOYMS2ipyUQjsvc2K0w2DCqil5ifMhW2JTl9nufT+RgAJYG+1gnV1fuirMifrnFL42VZM40RZU9MMiXKp7/+h68fXGRoLWPcYRhwlcI60dxbq1HalsLDUDcVwRevQkwc+4GcBRcqpikhgozDXAxVBqVKyiNBkKheQlaKu1DSLBGZ0WJE+b7+NyUhFimlxJScHxE/viftefjHx2ZFTt4HkUhJkSH+hkTUEeekcosxEKImlk3R1bUYeLUUBVoJZSJ6X2RZCrRC65rKClZTnVLAH4mi1ILKLRIlJQWGLsyzpUKWsXrZ6JTQY0yROGjkZxiTTjKlqq6xWuHnmVlLxbpMeETHnE+bvMq5IC2lI2GUFs5yirB08KCYKkFeGESVMabozi8v8NZgY6A9es7aSJ0ymszkE2b26JTQz87RZxWqs1RWo5s1tFtUtYEkKTFJgw8R7wOzD0xxxgbNNPYcdndUKrNedVTW4aeRftjjo2e7PcOuGlxtQGdWq471ak3bdmLCoRxgSQQCc47MKdEaJ9KTrGSk63Ihxsj3macJBbRGGOC2fD/Jyz2e5hF73NMlTRdF6xpiRMdcZDsZrxPohLYla6R4MnKKqKjIKqKtKTrYLHKc0pnhR15k5FLcyyj30+L/4fC2dLsfZFUUgZnKWWRDMRC8Fw54KkbiJcVYyweqjIZohDoVkWRnJYdx0wsMwVRgRk/buqLnDWgVAE/Mnpt5FqmAVowh8FW/x40ibYlBYZTD2Rq7XeMqV9j7UdasYqyOOYPJmAjjdOT29gPzOHJVX6PLyLvSmSeXG5IuPjAidZY0Vxc96XAQapzWJKNQhb2unWjKdU6YHKmyRRuZnMw+4rMiJEBFSRovGuGUxAAuh2mRfKQsz5rSQp+zzhEBNc9ozekAf0rd5YG9brR5tJY+Rn3m0zcIfHKIL1+63BWL1yIIZtZaK/dJyoQcGIaeuq1xpsJZg40RXVCbMcbyXKhTgWGNEAD9KAbGhSj4fR/Z92VODxIoBC2tP90/vi+RerwPLXf46Z+1dFa3Z2doXSRnMTFNEzEpUJpxGsRMqQSH7IOhchVts+by4oqzzbnQ8lyN5KJmpmkg4zn2A9M8E1NgmqWzHVOUtPl6RWXFYL7dbqmqSjx5UQ5IBZnzo7yG/sg4DvhxAg9pzOQ2cbW95v5wS/VezgHTcURrSwxw+fSMZ59/Trde4SrHl99+y/u7PWOMpGNPZyy0Hcokbm8eEpwfqyY+KUKRA2pKJWPAz+U+01S1QREhBpIP1G2LsxWQ0CqInCnL/lsbR9dWnG1rbOs5THdMvdzzJoEl0ViRNvb9zN19jw+KGCW12hiBYVRNy2qzBWXpDzvG4UhKSRKok9z7fpTJQV0ZdOeIUxB5Ex5rIpko6dJxIuUAOaII5dm3dF3HPI84o4Wk6cSboY1GW0u73rK9eMLl01dcP/8JzfqcbCwhCpI5BMmmIZeGhAK0Eo+mtH/kgJ2X7C9HMPGU7aA19EoxjFMxtE+E2LJer0sTxBSjfvFWkQhhZjgeSEZxHjRNs8Zpzb0fCOtGUrOBrAKxcuTa0m5W6DSXPcSRlCFmTciKkAqt0GpUzjx59oycM/vDnpvdR5SX3IrWVcTSzPF2Rs+RSisqnalM4GLteNI2XCSHiaI4SbnAMZQEDNa6IugEWTJMTGXRFpQploCs0FkRtMYtfThFwQCbU3P9kya7+tSr/LAMfzqRXUzrj0NWoQhjkLPc/1rz6PvXDy4yVquG3f6eu/tbXsQnnF+sqSoZNxsW6VFm1TXkaPFz5ttv39E2lRyUUuB4PBJTJsVM8HLIWKgNcnAP+DkSvVR1CjAONquaGBO7vYTifN+Tschl2rYl+oAKGa8n0YypT7tq8k2Uv6hiqi77oIyDKqpKpgVG25M5VcbSIi9YULTkTLdZo7Qh+JkQAvvdHfMk5IMUA4pUpAU15xdXHA9HjoeDOP4pHoaUUdZgi8FSqzLaV5J7kRC0J1rRNA3Re8i54OrE76KNYZ4mumpBPsrYbEEhrlYd+/t7xnFimmapaCtJ+62p8EESuadhlM3KK1KIuFpIW9Z0BCjVeeTtd98twmQiGZ+hUtBah3eGpm7ZZkW7gTerNTF4/vTd17x4/pImzpjsST9/SRrvmcJMbc5R66ek9RN8c07odxADKiqaumOcJbRu226wrWFwijz1/PEf/yEvXjzn8uICFTPtWUOrG7YXa66ePQUMOWvOtpdUtikpyA85C5nInDOubtnYmi5Bo7T4AoLQuBSi+W+VwfhIioFj9qR2RdYGHxNZR9Jxj76759XtBy5QNGRQkcO7D9RZUVsDcRamvY642on5PWWSBsoUQymIJpONAlumbtagncW6Hzai/M/2CgvDuxCHeMCSAqfNPZ5ClaR41aW+skahVRaEp8kEPyGbN6jkQcnBXls4hiMaIZG75JjGCe1AbRva6LBaoT0c3t1jti2rtqJtHcfcU7vEZq2Yvr5n7RrGqqEH/rTfY4zhSbdB90d64CZOfNYZrrfnMtWaZ7q2k2ll8EwFCVhVlu12xfmzK+7v7zkMPSuHIDaxrNYVL6stT646fvbZU/IQUKNHHT35yRPu5pFj9JiNY71Zk4D9sUc7R2UMldGk2fPhdsfdrmeaZ5yTIKlcKEymSIQe+w8Oh4NIEJxDG8sco3yOxjHP4URtWXUrdvc7mZwaffJ8GKOpKoed7OlnPt6A5IAfP/lnWAqOhxIkhiihnkZIVkqpU6OjqiqZUs8zTpVJR8lACHHx60kh5Kqaum2ByDAepeAo8oXHwXqPkbiPpV5LISbNsVT2Nv3pIbPszstE3RiRwJw487YipJmQvISCThPjOHI47vnu7TcY66iblqdPnvHixXOMrhgGzzjeAwajLc+fvaSu1+Ss2O3uRY/tR6a5Z5oiISq0rXj27Dk///mvWHUrnKtZr9YQlUxkSyKy95Fh6GnqSNMihuQf6dUPR/w4E+aZOAZa02KdQpnAYbjHHiqoK47jzP19z/nlOZ/9+jV/9e/8is2LV/yV6ys+//Wv+B//X/+Qf/qP/wn/4z/4H/j9v/O3eXF5wTat+M1f/AXzODMOk3gfnUMpdSrKF9qOhKAJ4jnFgHFCpIzJM/Y7TNY0ZkW7WVF3HdZpYur58OE7ptAze88Xzz/j57/4nL/+138J1Qe++vqGu7uevp9wKFpn2NROfElHz+6Q6Nqn9O09KU+gLPVqQ1W3oERee3t7x+Fwh7My9VQ6y+kQmRJuVw5vamYtPq+mzgS/J+VIiDMxeVSWYL1us0JbhQ8DHz9+g1WWSje0VrxwMUNWGm0cz7/4Kzx5/hnXzz6j7i7JRuMJVI3GaErWlloEs6RytpL8N42xjawbylBVDTmD1oloEyFE6qamaUcyht1+ZHc4EGLi+sk1wGnyyiRSfh89U46Ym4l82BPPE5efnxGM5p9++JKz7gWbbFl5aLNncoZoM0En/BiIaMx2i161zFQMcyCkRLfqsNZyuN/x1/7W30LlzNtvv8Hv78n9AEGahPsoqendWcW8P1LXmbZVXF50vD5vuDAV1W3Ej0MhbmnBkpfQ2RQjucjuo/dszlbULcQ6MamIuPAyGoNTEEn4LI2NrB5AFksz+nHzJ4RwIqXJumlLYREJIX4SZg3lDK0NBsXkB1JOWPWXXGR4P1JVjpwzX335LX1/zna75er6EqXkzcQQGMeA94kY5bDcD5NUllFSTSnSJOccMZYOVpYxTPCeeZ6E1pQLm72u6epKTImjYXYOHx8Wf3iYZkzDCIVj7awlpiCFRjE8SkNaNhijVTGVP5ipy7YhU5dJULeVq06V9FId5pwZh+FUIJkScmONkUMQmRRm+hQZpwlX1SQ0Nzc3eC8yqjnMMt1QBmVEHrNseE3dlJRNUBka15ZJiKJ2DtM0WOtouq4UGFLEXBeChBzcYLVayXtThv3+QD+OhEIGqOoapdUJw0eWgLshRsIss7fK2tOBImPIUYg1TinOry6Zhp7Zz8SU6JKh1RXVakXVNNgIdgqc1zV/evjIwY8cHPz02TOcVdQqst+uQVvOU2R1/Qr761+inz+HOFM7R4iihz0eB24/vGecR2xjObs+Q4Mkmz5/ynG/47i/54s3X/Di5SsmP3F3uOGFfYWzDVo5rLLorMXbYCsxlUVIWbE2ls5W5ErT6gqVUiFxeWIZ52araLZrzpqWmDMfasVb7/kw9Ly/G4iT53IcacaJs+RROjGGmY/3O+bbb/F+YlKRYZJDWmUdMQSyF1294OWUFL1aEQqWL6co5vDgyWOS8fqP+NJF05cRCtkiu1ukK8Bp1K3K9O4ERdAKkiZGjwKc0aQQIYlRPMwDaZpZrVesNxvGFIl+luIjKpyqiUoxhIm80hhVYbWjnSemMRLiCATW24ZoArOZeXm5JuuGrGpGGs5qCce7qFs+f/OaQUUOYeLP/+KPMa+/YLveApm0+BTmGaUSQ/D008SXX3/Ncejph5HD/kjrNC+uZR0Nu3fUJEyIRLwgcSs5cM7HTLvqiA58NWNrOfhcrCrmAD4m/By5O4zs+5kxJKp2TchGzOAqlSRrOdIvGtxlEjGOIyH2hAQXFxc4J+SRzXpF5YpJXEl3cdl6jLFMfmCeJX/HFLjDwyH9oTP2/Y6Y0MTK1PfRpGMJK8s5FyRtxPso0hYl019jTUktTvTjsZDrEiD+krquUTmSo8caByxUnfDJxrsYwadpOvkzlFInA6R0mNLJ+7N8Xo+nGacOX9msl3UclWjqDu9n/vUf/mtWqy3dasVqteKv/NXfFe14CU69+XjHbnco0y/L4dDz7v079rs9O2SN3e1vSGmmqqWI+MUvfsFme03TbqhKWN8Dmc2cAArkIIGQUQ4WkxpEipmbv7Rn+j/1FXxGG0fdWLIJPL24prIVt8f3HPuZ8NWfABU/+eznPLl+wvbDhi+/+3Pub265enLO2eWGN58952//V3+XX/2VX/Nv/uD36A977vc7Pn74SG0tbdcSUqbfH0/38LL/p3Loa5qSz5JFCrnM7CJK0LDhjrGXSdX51VO69RplDDFbYhZZ0DhO9MeB8eB5+eoZ+rrisjlw3B9wWqYH6/Wab9/tub1N7PeQkibEQEwBdGa9WtM1LU3lWD1/ytm25ni84d3bv+B4gHGYGA4Dbe0geoKPVE5jW4uk3idmf5BnNCa6RnJplBaIzDwdsVGofV17iVUKpSJRK1zV4doV6/OnfPar32ezuaZyaznwhpFhOvLu27fs7/eMw1ikyB6lSqc9G0gGssaYjLOZlAMhFCm7zmiVTyGuGkc+U1jb0w8Dx/7A3a40PpyjbRpyiHhj0NExDnvCPGNiorpI3OxvSc6y0TXXuqUJCTdNoDLv7g9knbl+9pQvrp/x7OkVq8+e8/a7b6mpsM6xWa+p20Z8Mz5gVjXTOJBM5q98/hPmu1t8P4DTDHEmR48OUgy2rWK1Mlw8adiamipaKmdwSC6IdgqaimAlnNBPMkG2lcV5xf72Dj8p5o3GNAVVHiImB3JykDQ6iSBZByBmvA+yJpVz67LOLTaDBcSjlKKpa8mJ8Q/J34sSyIdwyk1rSi7RD73+v/BkxNLRkWr0eJhI8QBZs9m2zLPneBiYJ0/0EJMmk2SkGMUtn9KDxEc67YnFAS/0Ben+5yQpyNpoauc4W7XEEAjTRAqWmBZ5jnm0yMsHalSRLOmS1JhFA7+kwC76ShYxRpau6un1pEhWmqzkoLlsLN8PZIoxYe2SsmlwRT9ujIxzyUkkR2XSkIH73e60sT0UNfIyXOVOxBKtlCTepAen/6L3zCmiXdFAZwgxoWLE5kRlrbz+LN0rW+Lkp3nieDwy9D3jOD7ItIJssIvMbBk5Unwi0nHMJRvjkenRGFzdEIIYZ5XSmIJU9AiCtcFSG4NtDLOHSRncui0yDE02MCgHuhKe9stnpFVHspachWKTlSZpjbWG9WaNGTT7Yc/93T0hTPhhjy0jKJWF7bxeb6nqmqwSTjuctihlhScdI35O5OzLQUg23mE8sNoI5k4bwe0mRMc+TrJJO2uwzuGMwyaRWB3vDxwPI+PtQKs01zlxoRSuMdxPM+M84oeeOPXEuWdKMyEGyGImXzSPcsh6CF1cSFzWGJKR16kAXQ49P+Yr5UdqTvWpvv2hS1j+Py3vWc5OuSSFy7hnOciKKiUXeaLw4WOI+DmI3KWsNxG5T2UupMitIUVNTFLY6YL2M9HAmMg6YUySRPCYUNFjx8xlDGSt6Xyk8xM+DMTjnvEwclc36BBoN+folEXX7AOeyERmjpGYFPv9kfu7HX0/MBiNNQqrFedVg7IDJnu0StisMSljaosKCuc0ySkmk7CuNDzQ6DmRRk8fIjd3e46jZ46ZbDQxKwmii3L8yVkK18f+BDl8CzHFWUlFjyHgg6drW1zlpOljZIPJKUGKzDGUtUQaTEtS7/f9Css9rlhkn5SQQJEqLJJRVSa4KSXmeaauxf+BghADLtpT2ngsfjSFIvEgVwrBS3evTMSqqjq9v0/M2Y/ut8fG86Xoevwe8iPR3nI9ls3kk5+uzOgUp9dgraVuKtpOCIBKG1LOTPNE0J62Xp3wssN4ZLNdsdlarq7OmCZpVuScqOsaV7W0bctmveXsXML1mmaD0u4TuUNKi7TwMep9kUgYPhkf/QgvhS7TTYVxDlNZMok5DhynI+MQCV6z3W7JKnDo7/jwwRDjzNnFBeeXF/gYeXJ9xtXzl/xsntjf3fDh/VuOxz360KP6EZMiypYA3LQUxYjW/yF1UdbmU4yzeMgSmYCs7/vDLcoqfByp2gqyKonKIjucx8Bw9KS5o3Md1cbSuRqtLCjD7DXffrfncNDs94m+H1FAVTkqbWUqlTNhnjn6GWsjxiqG4cA8TyfoSONsIUxK3oWPQpYTmZQAYjjd7aVBELyExJqIyhmjFrWxwlQV64srVttrzp+8Yb29pqrXKCyH3Ud2x1uOwx4/B0KIxJO3joe/J/FAQsLYcmZ83HCTA5r4VJWCKtN0jZxcVSQlz/3unlW3whrLar0RT27O+JzQ2iCDp0w/9Nzae6p2xeV2TecqagtWG8Iw0mVB29fnG5pVh6oaJlWR7ZoU5HU6Y7m+vqJpO7wPtKsaRWTVNpy/eMbc1vj+yJw8MwHihJqOsO9pG0PXWequxiYnkmxS8VoUGZQuSeaxnFWRz9xqgy8IZaUV2jzciwolclVtiEoyyCQmIEtS+UnKWj727zV/FuroQ6PEkpM0AcXbLBYCBSitqexDmPUPuX5wkZFzKrgrTdtuOB56joeJu7s9n332mmmcuN/tGPuJGK3gsvBUlSsPXiTn5cZRhLBogwWPtWj2cgqlEJCcjFVb8+RsjQ+eaZoZDsVBgxi0l9F78IGstMiOjOjwrZbwkxiLB6Ic2nWRJeW8bE7qpAnWKqHJKMOpIDkFznlfDkHFgMqDydDYEsaiwumwY53D2AptLDElbm5uWK2KAbCqHnVsNW3rpIuXMimGYv4GskLqF7FHRR9Jpcs4+4BKmYQQVapaPs+c4mmz9iFw2B84HI4c+55pmth0jRiVQ6Dvjyc5WYyi2w5KPBjOOXKOhJBkkmQsGofSFm0rjK3IEeqcSVmRtOEYA8M4sm1WNHUtE5jU0qiG9vyc2iuyNihneOcTShlM2+B+9hpvNHOIWCdmdqM12Ri6rmWzXXM8Htn/6YF3H264v//I7vY9X7x6xrptaKqKYRh5cl3Rtg3b7RanDCrJ4hRiws8eP3v6fsRVDSEIgefrb37D689f8cIYknEk5YhZ4bPirh/omooza8VEryRky/tM/+6W4b4nHD3P1xu+qDQvnOO4qTgOO9I4kOeRFCbGuWcOA6aQx0iZWBZDlv0py0NsrZV7txL4gY8ZtCTKfo9h8KO7RPpXClb1cChdnvlctKlaKSi+DK2lSMiPppJLQKT4jcpouKQ0j8MgU1Mf0QiUIOgie0OBsbBSxBHGMQqZKWlM1DSp5rgfoImoVSZkjxsiZlbYXeRsiMQsXad8UZOHI3m/w0+ejxnSOPHZ+gKDmKMJnmEe8c4QlKLu1tzf7vj4/oM8V0ox9D33d/f8rd/9KegabUQ7TYwom1G1xmUn5kiVSFpRGYO2GsHAKvrsGSbPt+9vyNqhTIXKEvw0F/MkOTPPIz7MVJWQiXJ+CBVrmhLOWZXn3k/QNgKvQNap1WolU+lyMF4aNTEEqrYtOnD7SUPmJFN9pP81RmO1QSOI2kxGW0kmTynR971In5wr2OJAcrKpWWOZxqmQyBwhpSJXghAm9CJn0Zq2bujzwFxQjY8lAI9lUiEEkcieCEIGKLjH8lel4N+ZypT648HaIVlCxsre0TQNL1+/ZLU6w4fENM58+HjDNA8Yo3nx9BWHw4Hd/p7d/obXr1/w6vUzXrx4io+ZxhmaquGqPef8YkvTtELcarbUVYszNVkX/wpRmiNRvHUKJRNcLZNoayqZyGtX3tWP89LaFiCKonGOkAM5BeY0MKcenxMxae4PN4RUJjfR8+3br2jqNevuksM48vt/8Nf46c8+4/rFa168esGTD0/ww8A/+fv/ANUfUE5jKyu5JSmRlMaogmDWckAUP4Eg9xNIEyjxgD7PsN/fMIee5tiyOb+UVG3jSLJzM42B3V3P/rZls65pOwnXCwnu73u+e3vLn/7pO1JaE7xht9vhnKFrGupmTUZMuofjnq+/+5arqzU5jXz8+J7D/sA8zHLIj5HgE8Fq2f9mAVKQIzYL1Aa15CIEUo7SbHS1HGQxAs/QoKymWW+4fvE5F9evuXr+c+p6i9bikfp4856vv/0th+OBp0+es9izlvOfyGUB5CArAcj6NMUUr24pMnIp5rTCKE3d1qzWFmMiKc3c3nxAKdiuzzi/uGAYBnwMEDzWVojXN/Hh7g4/Jy6uFF+8eUmuHVXlqK3h+K1InHGW+uKM4D39MKMPnrq5Qg89aeqprePlixecX1wwjRObTUetMubsjGdPa+LlGb4/sD/cEXVCpwk7t8Qv3wsJrKsZGw2zIntpnGGNZHEpaTYSMyoVAl9OmKyolUM50aTn2mBMMc5r+WysrUjWEA3E6IkZklKoIr8Sr/DSIBdU82LmTmWau5yNrbVyyAklTDDJucQgDeZlfV9yY/5D1w8uMl4++4y7u3sOx17Gb71nmkTedPPhcLqJqrrjOB2YJk+KBTdmTTEwL5jBVLpLXoLHvGf202mKYbVDK8OmW/E3f+cnnK0r7vcHPt4r7r/+CLrCVQ2rti1drkiIka6rZPw9jCK/il7G3TmBkvCXpm2KWUt2BVs65zmWyQhi6rRGNLy6bDqP8blNXSOTRRmTdm3H2fkZ1ihuP76TFMyqxrqK/XFgt98zjiObzaaw0vWpE6aLHMlaI16IEORwgpiqrLFIAA4oJWFtbSXpx3PiAdfogxRrBTm24G699wxDT9s2QELlyP6wo65qkV/V9UlzurxHP0+E6NHaYdXDvZ90JqtIIlC3FcqsCbMnDJMYEOcZ7vfoEIkkBh05Zk/najofid/echw8pqtRmxYTJl58/opXr19yvn2CVo4QEwMzlZZwqspV7A977m73oOD3fu/3+Prdt/jwipg9f/KH/wqtIs5aXj97hTMN42Hm9sN7LroVIWSGKfDxMFA1HdYK17vrznBWYbTlF7/8FcZpxnmmijPaSgcg5hrn5MAbY8B4UCGhfWB17NmOAWJmpTU/8T3PKsvGaqKPWD+j5xk1T/g4EnM4+RBkrl7uvyWgsfiEJMcEXKXEOBjF9KUx4upaTHM/0ks5Qy6UOelcmzK90RKKFeKJdy6SqiwjYVtJcWusZKwgC58U5RFFonFCIJl8ADXTtivRDJtMbGq0P5QCw9FpjbcRT2A4HFBzRiXFdByYdUSdOenUVRqdI8pEKqd4MjfgM3kK9G+/wjYVTzYVK+fZffgLwrhn+/Q5L59c0bqazij+xT/5Qw4KdNfx61/8Vd59/lNqZfn6m2+ZU2YYAiH0/Oa7O85q6GzLxiQyA0oFkg5MSjYbwRlzapR4H0A7YeUbSzY1MRuih36/O3HQ5VAvEppcDgL7/f4ka+q6Du890zSU5kI6UeWGYUBrTdet8D5KaNk8MZeNqmlbNtst06LxBZGPaitjd7zIVouxcZlgaaPFvFi6lKYSj8Vy6B8GwX/Xdc16u2G7FiT6ImXJShEjoAzH4yi6eK2FmDdPjMP4EBaYHiYW35+egRSpwzCIKXuBYiiDUnLwWpRIp0CqR8XTg9dPyftV4sWappHb24/80R/9Iff7nvV6y8X5FdfXl1w/ec26W7PuzjhbX/Pi2Wt+/rOfcv30jNevXvHs2QtWqzPJLIozIY4olXGupq47UlLEAFELuANS6UrKvroUR6bShCidaldV6KX5NM/wI1VMRd8zzzJhv0+ZrqmwGhQBW4lBOFaKu/0HDkfZW9umYn9/y9Orl7x8/oq79/f8+R99zbRLXF22vHh5xZMXP+Hv/reXXD655p/9T/8T//Qf/yP+4quviU1NbGq8SyLLDB5Npi4TvqUxErKcCUIIaGuhwBmM0hA9Y+8Zxh3OVBhlqGxNioa/+LN37O8mvvvpS7YrR1VrsJmv3r7nfjew23kUZ1LgRl8alQpX1TTdmpvbI0qPGOf47LOXdF1FijO/+Nnv8C/3/wt+iBil8T6QW4eyinEe8NEjzVpDXVdyfggzUxgeGqBJKEsGI2uHCiSj0d2Wn/3Of8nTFz+hW1/i6jUpzUyzZ5pGYpp49vwllz7w7TdfMY5jkbhreORvkomjbIm+hP+KMkFaQgCKRFoA+sZRd2uaypzOJ18dv2M87ElB/FBtu8IaR101jB/eMpVA1NFljv2RW6u5efcNl6vPMcmQJwg289OXr3h6dkEXZaKRXEV0LZ9//nMuV2s6Y/nuwzesty11bdFnEnxam4r1+Tkvzs6Y5p5x6nGHNWH3jnyYUUMimQpnaqxtmM401R3YGfRZi/aJ5GfiNFGpFuUUwWTCbkRHRUoKn8S7l53BtpZUZWYtDbiqVni8TKijJukoDXilCUHOxzFmoRFac5rWGv1pltxSfPR9f2q4OGuJYWYB5ZzWjkdr6H/o+sFFRm07Vm1CK8vsE0a19MPI/f2OafR4LyOxqo70o5iaUoKUoxiHrRXSQX6UJJgWdFYsXgnIWeQq15dnvHx6wcXFispmpmBZryrq2pBQGC3TlXkWFKCxRgK8NFhnxWiYIWdZjE/nuvwQfnZqsClVKmk5yJ0UG4UydTISFkPjOE6kIicyxTwd/MQ8yoH+9EAZ6cQtY/jH0isoG1Ze0kSjVIxK8GWaErqn1EkiQqaM2mdUTPiYWVd1uRkedwEeIceKKT74mVSSgIMP5XArG/owDKeuYSz5ENYYMXMSqW3FdlWz73ummJiYydaRsyR3qpxJWihUuqpYdZKiGSrLOHi5yxJEA7PL2OixveLZxRlPV+dctltqXTGME8e9yLout+ds12tWXScZKPPM/nDgX/3Lfy0BbhqUgecv3mBRNK7CVh0pKA53Pb/90y9JT55iqxpsRbfaULcrXO1wFbQri1aWNtUyMVIi7fPB40oIZG2lE+BUwipBFfphZOwHDje3HN+/JXhPqxRqVmTVEJNlOhxIwzLFGCGJgSv58MlDnVUx+WuRy+QSqqRYgh11+Sdo6pZKg40/brmUMYaMFpyf1ixEt5gENZsoxUPOJ0IcSUFKGC33tgAdFMpI51vAEhKKuYz6Y4qEMBER+RQJVFuRK0NEEZUUH7lKpDqjU0ZF+bQr5yRPI1hynGVwiiauDMpqGBNxisT9iMoKayybphYpj03E8Z6bdzMmQh49aXdg8p7J7PiTqNnd3RMmeYZzlMDHTOLr7z6wby2XZyue/fwnHD/8GTl6jAoYa2UMriTNNS6LlNbEkMWT4SPaVqRUYAGIB00+kSwJ8zzKcni0FslkQzJ4fPAPeMlPzNABHxLzNMvhNwQRC5XpRQiByjpUowhePEWLrCnEWAqNWHxj8p1L/0IXKYo+TRfg0eFd9BL4GDHB44IjoUQGoLX8nCz3QAyRcZpPQV6P038r58q/S5904nKRh4qkSg6KpzwXhBT4fYnVJyAR+SmcJLjIvlNVjqapaeqKy6undN2a9WrD+fkZFxcXrLs1bb1mWgc2m47NtuHly6dcXl6z3Z5BtiwhhmKcj0VKaVFZtm6ROITTlIWsZYpHEopRFIIQZe/LSjHNA8d+x/n2zV/SU/2f9qrqihA8IQgGfp4SQRXhWoKcRCadyfiShWFtIkfFoRfjPcpy3O35+je/4WdffE5/d+Di+oyrl2e8+sWvMW3Hs5cv+Wf/6B/z9Vdf8/Hulg/TLIjQpDHKyuHbKJQpk9SYJIx3uVfKM6oUUmiATNRUlimJcyhlmefE3d3AH/3Rb3EEaSyogHINWVegWoyti9w8cbbdMM0TOYP3QQp6a9AajFYyaZwE+2xKAzP4qXhfIaaID0m8VmUKGWMqsuhFzFrkjfJ0AjKFrroNm4vnXDx5zdWzn9J0F1jXYozmu7ffCi3Ne0nCdhVazRx296I0yZmFs3+qy5fzoBY/ky9+XJG2lktJppJ1gmA2NFxsW1aVpdaR4+09hykwDUf22rJp1ygnDefG1XgjxY+fA8GA15p9q6l0xEQ5yF8+vWT79Iqz7Tn1lNi2HUEJvvx2/5EwD2zqhm61oqqsNM2BGBXOGHTdgHUY3WG0Iuw+ouJcZOwVo6nR1oEzOK8wMUNM+N6z1hVg8EqRC5NGKyWy/ZyJIZGnGdVZkaqR5NylYpFACTUxASElIV4WhY5ZlJFljaOoBGzZOx+HVS/XIldV6iFsUiGvxYd48lL+pRcZJENbdzjnmOZEXWecG8RsON0xzZ5xnBlmL9KnJPpfhZAsbHTUuTrpbsuq92ikLneT0rIZPL0+49WLSzbrCvJMPSvazlHXBh+kvR5jEJNKzriqJqaI1RrrLCHOqFIxh5iLkFAO9GYxHy73sFLF4Fw6b0tnrVCh6qalaYoJcZ4Z+pGqbjDWYZ3ccOPQM409/eEg9CY0TgtS0VqHc+EkJVgmGcKalwc/lRejS4EgybrLprZM5eWA5UOAmMSPkcXEbgvydLlplgTHheASoy9dcTkshPCwmY8luM+U92+MUIyqyqLTTNs4ri82GBU5zB7lI6pIuQS369DWilytruiaCtfW5EoTvCIkJXKqbOizwsVI4z1vVmvOq5a1rrHJcNgfBAX38SPxRQAltJhV11FVDSnt+e1vvuTsbCv4V614+dlLwjihckabmuRh7Gdu3t5w5jo2FxVd19ButtimxjhNVQcqJwf4lDSmcmQiMUfGscdoWbRrg5DTyJicCLNnPA4c93v2798z3LyHFGkrGXcGOuZQ4fuePI3gJ3KSaRoxkUL53NQiG3y497QRPWUuOm+t1ENyZ8oy1VHgwmJK/XFeosNf0KC6LJIlPTQvPoHif6I0hQtfXOflOZYCbaElqSxoa+8DzkgiaUjS9YvI5q9CRlWWXEnSfUiZpDO4DK3oWJVX4i2qK5QthsQJ6b4bUCsrz6BE3sMhgA2oKtFuHNSR5BRp3HG/35OmSDxO+P2Boe/ZhcDHm1uO+z1D35NjIPlE1pqUFR9ud/RDRdIVqbkg4ISMpRRmyWtBCqxISThXioVQF1MWtK3WBSaQF8cAS6GBolChOHkPlvVi+eVLx3H5/x83RUIQCmCI8r+1Qr43hBrjjMEqx8RcipDFMwGhHOB55B8AhTbFi6SKEfzx5lVkEikJw3/2Gjt7lLVSoMOpKZSyoBdPE2EeChV5ziwQyEn9O+N+6eQtusXTzvAgH//3eDk+vR5hyNGQBanetg3bzZrXn31B07S4Yh49357TtivqqmOePU1raVrL8xcvWHUbqqphHAJLarlQEDMLGU8bW2S7AaVEblKCeAv7PqK17A2JSEqZaRrJOTKOI31/5Cef/f7/D0/y//+utm2YJoAi/ykJzBrJ8yp3XLnPpLANUUHSHIcD7z58h8Lw4d1bmrqRqeTuyMvPXrJ+ckV3/pSfbs/47Cc/oULzr80/5c9j5uDf4jGEclc4LUnXugBU5hQQ0p06NYeWiZIu9zFeDn9y0JMsl5Q10xw57A6Efkf0E4nAizdf0G1XNOs16Aqd5DmuG4sPnhjlAFpV9SkzJsWAz4lxHBgGkYo5Z5inZQ2Qoj+mQFsbVJawzFS8nJQ6QPJrykSh+HCzUnTbS86uX3H59Cdszp6hjZP1KHo+fHxPfzwQU+TVqzfUriYFkT6KNH4pupYmgnxNqXxG8pwXKeLp3LPQ3AzONVjdoFLDulsTTcDGA3eblskfOA4jh6TobCPnKLTIjoscPseEUhasw9eaOXuqFHFJc/3sDZdPLjlbn2GGxKpuGeNM7u+4vf9A6NbkvOH55RXW6NMZ0iiDtgqrnWRvmQpiYDweqaYRmwJOW2btwFqwBhcSKsr5L40eW9eAeFC9zp/ISpdJWQyBylgpQnIEHHpZDbJYCDJC+6qVLftCoTLCKeuLLHuuKevt4zLh8ZRX1kYpauu6EzVHypCLb3rpqfyA6wcXGW/fveX6+pKLs0tmL/KjcZppu4bDcYca5RY+9kN5wbls5l60IDEz7UaqqsI5oWo87pIBZWMzfP7qKT/7/Cmvnp+z3RjGKWHHiLERpSIhJek2leIkZ5inUd507TCuQmlO9CC0GADhUT5EuallA5XqztkKWwlFoKqbgp29ZHN2JhHs80RMGeMqLq6uoTwUu/sb+v2O/rjn9vYG5zrqpqZtW6Z5PBkirRVahNaasR8YF+Nv+RxMkYzI9MNIJzeFE24wowoXv5LNLIj/gmLKv7y8PHktrLXc3d2dFjlrDDOcFpPj8VgkEB3zPBfZWqJa5FPG0jQdcy9TqmGceP3iKVOM7MeZd7sj45yYyUwxUq+3pKyYU0bnTGcrXN0STSDUmbnO9C6z+/ZbDIpVZfncKNRhT1aGdPaUP/nyz7g73DPNcp+sN2swmkPf03YrXrx4RYxwdXXF8Xjk/Yf3DPcTh+MeSDy5uKZRhrbtePHiFe12y9PXL3n65jWhqthPO7wXxNzYH9gdem5ud7x88wbnJMzr/vYOtYGuidQuUs0F6xYTu9sD33684eu7Wz6+/YrueEulEmuvwXt2d46jq1hdrDFpQDOJJCtLp5ziuRF9r+TIOFtMm0jqb84alRPDNDIdj6RxQgVPiiOucqy7H94X+M/zUg8bLhplZNFTRog4ajnkldCfRcanlAYl8qiubRl9YA6B9dmZmBNjwNhG5JkposMs8pKgZAI19qSoyVmkmLOf5MBuFfaixdqMnkDPULeOXBspGD7CEAPRJuqmFpR0lTGXlk61xKDINwM6NqybiqQ08907plCxvzty+90t3739yLvDgQ9jz1vf46yT9HYP/TyjrcXWNda27IeZ8e0N/+Af/TNenzsu6gtqGzHHHVp5komlKKEYfMU/4GpH09Uoo3GmRpuMD/NpYiHhS2KCXgyEizla5FEPetzNtsNVFc5V1HX9ibwzBMFgOuu4HY5UlSXHzP6ww4cZrS3WtrK5abDKULWV4MlDEElVITyllKmsTHqXbmwohnR5HqUQquqafpjAGGLO7Pc71mfn5BzwIVI1benCeg7HvqyjtgSKPeyEqUxVHuAd8ZMiJCMesbquP6Fjnf58eW3fz9co9qFSJBtAo3WFQtaiN29ecL69LJAQ2Kw7rNXkHJj9SCZibKZpLSkKrlMryS3QRgK3UrJi4A8ZP3tsW5OZSUnypjKSNB0jHA77InGIrLoWPwcOhwNffvlbvv7qS7n3c+K//Dv/x//Iz/p/nOvy8orjYUd/VCTvCQWznBb5IPkEf5FpnSJkX6ZrSQ7RH6FtWuqp4Z/+yz3vP37BbndgXV0wdTNPXl3y4s3P+K//zxt+92/9Ab/9iz/jv/+//fd8990NN3d73n+85+n2Ca7SZCLf3d6QZunCG11yCpQASXJ6AANUdVWKQ+kGN21dAhYrustL7m8a4jzTNi3Pnr2mWq0wdc2xyBiN1vTDgRgho6mqmrbdylkkR3b3t0Akxpl2taKbtiQFPgZ0TgIw0RkVelTVCumweLOWZ6XYSqD4JmadcI2jWl3x+S//JlfPfsH2/A0pG7TKTPPAx4/v+O7bb9gf9oQQeP7sFaY1OOuIUQrf4EORx8rPhiIvRDyufe+JKRbqpyLrfDpIGyqIZaqYPX7aQ9hj1ZEnlxXTLDECb9+/pb8/UruGuq443N4xjUeS9zRmzfpqQ3veYsY957eJq/ac52fX/JW/+gteXL1kVa3Z3+35wz/6N7y7+ciHwx1vXj/lZ89f89PXn7F7dwPInt24Cl0VzWHOQtkLkeNx4Ld/+L/w/LwlGUeOjqDER+eMYWIgx4BJirPVijxniQEwGq8jMWdyzLikqF2NaaRhZiupGCTPKNBEhQ0KP0fGJAVUYytJ4lZKmg4lg0eVBkxTV2WymQmzP50XgRN5yjnH0I8yRS3fkYCEDJVb0Q89PgRi/Ev2ZAzjwHfv3vHx9g5Xia9hHEdu7+/YH3YMUyDELAtp6cC3lePq6rLIpBLzPDGNUzl4uzLCkc1LUqwlmv7JecemUzTVjMoeqxNVCYPJpWAhUUKmygtUSyif0I2MqZDgATBGFXrKA6P9RBrRGasNRhuyAmMtVd3QdSuaTjbblBLH41EO/66iW+XyHospNUaG/sDxeCRl0cCqeUIpuLu/Y54FE9Y0QmRyVjb8cRzL/VkWIbWM2zXGOhSZFJVIPQrVqaqbcthKKGbJ5IiByc+0bSs/C1nEXOluOGvZ3d8X7WUt3cgQTpuoXWhGCsLs0UBQimHy5CjCgWM/cXF+RlM76qahaSrGSXw5+33Poe+ZgyRP3v3mz9l/9x3ZWKYxcfCTdH+cJs0j7WrF5rxhN/a0VUUdPcdxz7v7j0zRs9msefXqJZeXF3SrGpUkv8RZx9MnT3n/4aNkHmCI3nN9eUXbSpaKaRo2F2e8+ekXQkMzsD/cM2XNHCbhgmvLnBNt3fL0Wct6fYbVkGOEqkPP8uDN2hCmCWUsylpmo9mNPbv9DRxuOFMTF13Di4sz3r+/pWtr1ps1Z9cXjHjCbeTt0MtCqUQPH4JQOhZ61MM0r3SP5KbCOEe3WRGtob+/w5tEMIlkftyeDOnCCglD/ETLRFPQpMtllBEJ4aI3KKNb65wcPl1FTUlPL7SkRGaaR1AiP4spy4alZMPXGen+jR59GJirjK9LdkRn0U7hBsU0DKSgIVqRMiXIPhOOnmiiTDZcho3CeYvxlrgbUROkSRNy5u6Qub0f+LDfczeN7OaR4zxwPO5RKeO0oXMN0zjKxOqoqYZGjHWVpJivmtfYqqWxlmZtYNqjQ49VMAZp4mgjWns7S5dbMoimU6ie1lJMiKxsCep8WAPneT7x/5cAJpm8ymsQ4+ZTcs7c3d2hFYx9L96XcSB56dprY6h1feoeay2dRJVFriWdW012VuzUp5M5KKNpupaXL1/yzbdfE6MksaPFl+O9x1gj35M2GOdOFDarzQlLrrRmvVkzjwMxJGLxlcQoiPRMPhUaj4uF0yS9BGFNEzxO+X7IwpBGUTwVSenhzyJYT7JGPBwGV9cy8Ta1FIRKMlseS7bkQOjFaJuSEBKNR2HK3ibFBiw+xlg+H5k6p5SYYwAMKULwkfdvv+X29iN3d7fsd7uy1i/YXqhrAY/8WK+zszPWXcs0bnmvYJ5kvZ5mOchy6pQnaWApeYhNZTBWYypYndVYbYhp5qu3H1BGM8SJm+Mdxjmev3zO5z95w+/9/i85f/qGulvz351f8If/8o94+8073n7zjs2q43Dccbu74TfTWwF6IAG4S6SuLqoNAcWkk0RUF0lMXVU0TS0p96sOH2fiHNiut7TbLaZyJK1Em59FdmuMo1tvCCHhQ6RB8PNWaWw5mESfuN/tyUpTNR2bc4XTiqbWVDYRpyC+piSgghRLGFyGIFpxgJKHYKnaLefXb7D1ORlLCBMhiCf1eNzx5Zdi8j4ejvTDyIf3HzgcJDTx48f3xBhQSuTxOetTk4kyPNRG45wRFUiZnJBVaXY4mcb4SPQjOo+4+lyod7YjTj3n2zU+aG7vJOF6mmfu7u8ZhoExR5JRdGcNLzYN12vHRZX55eqai89/wvkvf8nF089oqo4UYZ4ndvt7co68fv6cnzx9zlm1gjlKTlmMDH3Ph91brq+ucKUJVjnL4f6W3c17CYTWBmUsPipUzoQ4keKMillw7AZ89oRplmXDaGoiHkXMgE9EH8hBYEDKS2GpnNxDoaw/uIZsHMqKjzArVaZVSab5caG2CmRpnqVwqGoBAC2KFygTX2NZbzZ4Hwk+lj320Xq30Ot+4PP6w8P4Nmv6vufY34M6SHLpPLHb7xjGCe+F3yx+CDlEVZUkjjonumljMjGWcXZ8GClaW0y+1tDVjvNtS9sqrBWcmS5+CWuWEbmU2lnJQ7u8W1209Ll0E3IuJwQUj8OgKM+QjDEpuFsZqdVNS9t2NG1LXcbbJ7Y7Mv0wWoKXDNKZCn56GP1r+UhjjIzTyDQNhOLSD0EqR5UfZE2PdW2ncZWWrq1UoMsZS0kYirEnAksKglmNIZKZOfTHkxbPmnCa0iz0gGWCs8TMCzmgbD5F/59iIHj5ZkarMWVkeRwnQkzUtaOuLY3TzG1gmj2t1Zi0Z5oywWfMfkc4Hpmz5jhGjtGTFdR1hcmRbrXiYr2m2qxIVYXXBipLIKKMYrNesVmtaGspPJWRrhRWFXa+dPtSyvhpJjc1yUc+3u4wV0rIPlqj3YKKFb+LrJ6gKpkSWV3yTZTGpESOCZchR0kzz8ZK1kGRTRzGnmHcMw971LTn6nLFxapmUxl6p9i0hrOV46KtuGxrbnonpL3TGFKjiSeDUFEKPUgyymFsSZlVzkGIJ62lT5Hgvy/T+HFdqjxri9lbZD0i91hMvw8HIlU6xJwaF6Yg/rQW43AqYIdUvF0xJzEUK30iVIngvkitUiZPHt17VNYoa1FOkZ0UeDkr0lwKF1+CMrM8ByZIBynbLGSnWqGsFP/5mEjJE4Ji1ondreduP3HXDxzCzBhl8hLmWYzvxuKUJoRZwBUpM/lJphpOOot3VxciG0gNT7oarXsUWQzgeflsyvpRFv+cEiFkQkwSVlc+x8drzdLYWTxbj2VDtlDyUqEJDuMo7zlLUrUQ2iaZHOdcMo1kxC8TDwDBe0szSJoe4lPXKO1KN3n5bpAGkdHU5bC1pCdTAl5jilR1K942pWFZt3TGGE2IRQLrHDnVzNNUJj1JfkZRfJRa4OGB46HBI69b7sXIQ2Af8Mka7b4XhnmaipfObOn9obVive7YbDa07ZrK1af7frklHxfYOeVi2o5FhiYBjkvGVMoPE/gYI8aY01RqnCbxJ0ye4/HI119/yd3dLbv7e/b7veyvVcVms2K1XuEqS1X/eMP41qs1KQRq55iPe+ZmZp48ZhiZ/Xxq2AniU9ZuETTIXpKVUONCkKJkd7jjdr8h5Mjd/h5Dxe7+njQHfufXv8DqmtXmkl/8ekPOlidXH3j55CMqJW5v3tE4zZ9+9yU+zZIIrfVJ5ibBulJgLi1EoDyvi2m/FP/W0q5W5CbTdOviJxSxi+SKRcmqMhbnIBPwky8HdwErzNNETDPTNEojTmuMsbTdiqayqOzJaSJjWZxaigfpotIGEicZeI6ZplvRrja06zMwtTxL2ZOzISUBk6gisdLa4GyFq2pZM+aReZLJGRTR5um5l+fPWHVSe+giGTbaSKFeKHhKZdI8P5J1RbSSpnZdNzgrxbm2Fh8D4zSzPxxJKeJtRFnN9bbj823Ly7M1z85qfn71ms2bL2i/+Cl2dYZShnkOIvu0BmM7nlxd8+L6KZvVSoJB25ZpHOXwX6ZTSumCkNWMfuIwHAUlq+QMGkLAyk5HQqOyEvmSAowiqSxrg9Volco9okrTKJFDaXYsf0Y/FBEqChCE0xmD761xZX+lnDkf/q14QR81TpZL9l5LzjJDWhrSn0x/T+vXf/j6wUXGL3/9K/74T/6Em99+ydt3HyDLxGCcRo59gKzRRlFXrYRlaZlO9P1AVVu6tqauK2KcyNnQHwOghQJQ17RNQ2Mt69ry5EnHemVxtpBHtBOsbFY4XWGULzq+h0IlFd36siEYbShq1E820eXDWgqGxx96zJmLi0varkMbK4nYJbREflMqmNlICr58SZrjcS/dhc6gxrl4HjzDOD88gAqmacQYSzThJJF5bCRc9M+S2KjERGas5CUkQX/6EFhVtSyWIZG9MLtzRjqNutB6lGbVNvh55ubmht1ud/r5iyxCOme+eD+KxM17Jh+YZznwdY0Ts/vQM04z67Zi5Syuc+TFcHu25rJuGI8T82Eip8gwe/Yh8t3tPdnISHZdrTGT50lX88VPXmOfv2G8Hwja0j19SvdVi1Hw4vqSWoFAASNKGWSgKHzorusIITL0A/3xwNAfiSHy3bfv+NUvf0ZtLf3+npcvn1G3K6yuaV1Ln48SYGQtairc7xBJ/UAOAfxEHMQsp60EK6q2ZoiJwzzx7dsvOd6/Jw932Omen738nMY5jvsjm0pxVmsuKsUFgUtnuKgcrTEU3pyM0S0ng11KCZWTBNSV+8AZQ13M/FnJXR6zYp4zk/f08dNi+cd2aWtlcyETHhX+S7c9xSCH0LSEMSlISUyWZRq0bKiKTAqhcMGjZCRYMTMqFJWVYKEQAn4KWGelKzPM6CFQqUZCEWtF1AnJM9I4VRGmgB8D85xosFSmQuMYh4FkJaciVcVAXmW4Az/MjL3nfoSPHwc+DoGbKdLHyJA8IUWYJaQvpsxkDCF4Zu+ZfWDehyIPc4Rh4Ou64uPNiqZr+d1fvaaJUMfEVhms1pgs90bwkXmWBFdywW0CTbdCpciSRbRk9CzI2qUjD5yIdDlLCN7kPeMkqeG//fK3sgb0AzrL780pU1UlJLVodJctRylh+KugIEiRYLQqE1NJ6E6FeJSiBLTGnNj3R9pVh50N49CX9TaQCsbaWsF8j8eDrN9KYxyQM03TyM8pG2JMIo1xtSNkj/jHZEKmUi7YzMdNnlLN8qnfYvlM5H2pTyYZj/+8gAp0WWMz2gaev7jizZtXXF89x5hVyXkJp+9j8coYYwjRM8++rMlyKDNm/eAxSaEUIdJRHAbR3EuK+JHd/Z7b21u++fZrfvvbPyPnjDWW7eacp0+fstluWW9XhRpjT82wH+N1tr3AzwOz1ein13g/M00Tu91BGnlBPFrGVszeE3OSRpUT+EpIkQ+3H4g+4H1gmmbuDx8ZpiNhTsxT4u7+IykE/re//dvUa4VbGbYvrvjl7/51ws9mUu+5/e4dd999zbdfn/HVx9/wJ29HDuOM1YJO12VyZHQqstClwEzkGAlelAjGVRhbE71ivT3HWIPSllzytVKGrlsxjSM+e7RxqJhROokXMAXiFEnRc/P+vSSil3smKMng6lZr1l3L/u4dx+MRo6DVNdKzmclzRBuDcZZE4Gy7oakrgk+cXT5ne/mEuluVJySg1YzWFdoY1usVbz57wzAMVFWDtRU/+9nP2O/v8X6i2IlOnqFUmsRoWXsa1whmOKVyYLc4V2N0RdN0VJWj7w+njrzSimkaUczYFKmrFTGPzFGBttzvD4y90OWUM8w6UTea3312wX/x/IIvnj7hxZvP6D77HeyL15iXr4rMTjFrz7rtePH0GdZanr94xmevX0mzEwELOGOoXcWm605hzcZYxnFg72du/UywNREnUQ39AUVGmwqrK2IOxJBIGdZtBV4iE0yrSSqSlJR+la2Jvid7oYPlWpOtIqGYY0T5gPaRaoqQalROEv5nHLoEmhitxSuiFtCHeISruqGqaoyx1E3D7e1tSQCXgjj4iNKGqhIJlUjql3OrREiov+wi44//9I/57t177vYH7nfHE442xExV1dRVfdLC7/c7+qFnHAdQEJNg5S4uNqVTk5nGIzlL9do0DWTNel3z6tmay8uO2iRUhhQruR+1oa1rzjcN0UsHOxVeynItRZzQRkoIS9GiAacDdk5lrFk+eGMdVd1yfnHJenuGczJycmUqI9QUi9YwjSO744F+n4hBNoBDfyQjXTwf/AnPKxvExNKtCiGRkmBjm6bBz/6TDayqKxkBFuPN4uFYXn+OQraqjRMzvbVk/dCpGeeZrOSwUDnHMEoXYSq/ls9g+cwXZG3TNNJJ8x5lJLBs6QbPIVI7zfb8gs1mw2bVsm4rnClTlCgdhVfnl+Q2kVYzrlL0KnEk8Sa/4DCMaKW5Wm9o64r26oqKmY/ffY1Ta1Rds/twz9PNE87OVvzy5z9B+1RyLDx1rUSjnCClIN6g8zNC8BiVOR4HpnHiJ1/8Ej8JynJ7bvmjf/tnvHr1ii8+72ifWHTIhHFmuD8w3t+hp5kqRCbVQFORK4uyCVc1GKfBGXyCY3/gw4f3fPlv/gXn65rnz864/NUbmtrh5wmn4Hzbst5UNK1i8j0bo7iqKs6qinXbkX1iGoTGk7QmqUxIYhKUDpslpIcDkrLSdXBotm5NZ1tWKrNVP+4iw1VuGeSc5I6l4YgvBDTpquQTfUvrZbwuBZrTBo1HFV0zKZ5MxxKKlUlESeGNkpiutcbPgWwSqopgDTpo1DEzRE+9qcgW9qonuYG6qmjXHXEeCYMnTh7jPZUyJK2JU8Sc1aRWEauMe9mibwJxH/l4s+fDLrDziSFGPu7v6If+EzxqDFIUlNmC0PKSHHpmRuI8Y1Wi22zpLi754984nmxrrlfPuFhZOO7IcRZpYww4C13rOPY7PA5la1zdcHW2xs8zt7e3pCRmZGstwzCcDsmnQiMEDscjv/3qK8GdGiMBlvtZpkdZDtNGSRBX3dRyvwbPcDxIKGKSqZJSWcg7yhKSeG90mcSmJNKspSumtGKcJr766ivatiHHwDQW/542SNiULuSZTN00hGnGOsnHWK1WxJxP60FdWVIy+DkxlETbpXiQey+fCoXHcqhluvD4M1kaM8vvXTba5d89NoOnLLkfxmgur1s+++I5X/zsFa/evKQ/KsZhYByOZXosz4P3M0Y7FBqtHMNwpPR7ubu9Y54nZj8zjUcOx0Oh5Mi+MQwDx+ORb775hv3+QN8fORz25Dxzdrbl/Pyc66tnXFxc061W1F2NMQ7raqrqR8qvRbDtKUPWistnl9x8/IAPE8YoLs7PKDFEWNew290zzqM0NUIm5AR4nEkYDcZBHGfef/wWox3O1lxfPiPlie+++5K///f+B568uGR13kKtefOTn7DdbFmdXVFXHZcXG56/OGe9jfxf//7/g3/71XfczI7Xr98Q5ol+d4spEsuUE+M0y+tPgXE48vHDe9phoO165r7n8uxcpNQhgBmLaiijTSxTysD9/lBysWo2mzMgC3TmuOd42MvkAOhWKw7HPSF7ZjOzC54YotAjVcBZgzMyvUheqJa20Zxta16+eM6q67i7vWd98QTtau53d5zv72iqirZumSaPseIPM86itOHsbM2TJ8/QGo7HHbe3H9jv96VppEUVoKMcVLN4lyQ8L52Ki7ZZsdmc0fcD0zRKgZHEG4kSE3NbVVRKE33mT3/zHX/x9S3ffbjn/c0dMUqHv9GGqTF8fn3OT6/P+JtPLvnJs+c8++ILnvzBH+Cvf040VmTeBSJRW8fLJ8/omhbrLNvzMzarBkWhb8VMV9fkmPELWKdMMYZhwlUNm6trXr16xvruFu5vmcYJN0YUViTvzqJroaGZaPCogrBXxMqRVUJHmTWFnKQoM5qmq0kW5pBplaYi4zS4RpOsJSpFyJHGVCLWU4q6bkqGUJRGvSqJa6Wxvchll3Ph0l/xwZdp1cNaB5zkUmWI84OuH1xkfP3tt9ze7tkfBlLSpzmCLT6Brl3RdavSMZORWa4zk5+JKeNjFNlKlg4UyDgMNLOPbFrLqrOs1w6jKV964ZSWbk/b1Ky6lt3Bo/QsEpjybnMJdUE9JLAuB/i6rk8bgjH6hHLSZSwk7PGGpulQSjS/MqKjbITyZ1OppEFSvUUONRGKiVHkUup0UJIcEPmiQKYt0o2yZZIiGDSlH2ERly+mYG/DY6N66eJO8yxECPLJMHu6AcpGSkrsdzumaWIYx08Y8csmC6XwUpqsE1HrB4kKUNUNWmecE19H5QTZt/QstYKMwiRwRsJiclaYOqMcWJMxJLarCq0066bDWoeuHCombAoQe8iG1liuthe0jSNMHpPlIDJPhqaqT9MgayUFXGS2kcNux7Hv8T5Q1y1oqKuG7eaaPnmqrmWee+ajIfZHGAd08NTTjA2BKiYmPzBFT4qO1baT7woIWQ66wc/4fk+TR1ba0JlMY7UEHPmASZG6LmZ9o+QBTQFDZOU0bWWZjCDqhHj2KDm+yLSUFg29KjI6mcMJxhUyubDE048cYZuX20eBVkXCBEiwVSyd8Xiid4gMRw6aGXmGUjmcip7Yo7MUJc4aWZBLUR+Dh5hKOKUE8YkyOlGbCosjR0MaJ6KOqApMpYhWJhSehGkRwsqcibPkMIikMROO8dTIGG1iqiKTi4wExhAZJk8/TYyjrBOCBXyQKcUYRdta5EyFvynTwUm8D9Y6mm6i3/ccraVzLel8w5z35JCwRp45azVNWyP+hzKlVQ9eL2MM8zyf5Dgy9ZDjbEpJ6DSP8MqLnMN7jytMdaM0KYSTsdVZR4iBVCajeZGMFtlELhsaKZFiLpKJePKJafPgp1j8IZvNmqwV8zSxYGcl4+ekMUIbizbhBApQCkLx+6UYxDtRMgpknZMiJcTESX/Hgwzq38E4Ls9c+W6X37N4Mk5Nn/wwiZYfKPdzRp0Sy5u2OYVmLZItBeQISYnsMxQD+zxJV32eBkEEe8XNx1sJT6ylGp9nzzhK00goUT0fPnwAZHp/tt3SdY71Zs16vWa73dC0Na6yRWrrUAWg8GO9Vus1VW2IqaOtc5FICR2sbsD7KECAui1BvFp8kTEXOZuYiheJiXW2nGYSKXtinkEntFUc/RF1G7nrNVOcyEnx5Mkznj81rNedBGfWmc/yr/n1l9+izIovv7vj+cUF/XAg+yNQwu2SomtbgRJkaYYGPzP0MoFRMVIbja9qpujxeZAwW60xVvb1mGT/NzYLElUBOTGNR+7vbujLVP8kzUrgakfbdEDEqEgyiegHIXOGjM7yM1LI+DFTrTTBT4RgUUYzTgNpTmQVGYYl78JiTEXK4YSQXq1XtM2K1WqF9zP9cOTYHx+kWItcUwu1KqMxuqJyDuvk7CFnWXl+vJ9lfYmBmIIclJV6COhMiXGeud0fOI4eHzI5RiygrUB0uss1L58/4fPnT/js85+w/uIL9IsXzFVHVPIzYhQqoUzAoWlqztUZkoesHsLoirxXo05TmJPMKGX0HGAKpCkyagV9QB0jqRf5qK40OJHP5ZDIc5KQUa3AQbLiIRVvGDhn0E1NQuS0cU5kq8ApUQToRNKSIJLUMhfVMqXMIsOKpUhRIMhaZU7fw7IHfX8qK5CVWCbuCZ1MMYEXGeIpiuKHVRk/vMj45lv6XpjUSkmS9hL41rYd69WarlsxjpIcaK1gUMNxj+BmE9PsS7S8BKlo5UBp5tnTXXasV471yqJJKBxLgJ4iY52j7TRt1+CqXiLYP9GdlS+8mC0WowpwmgbkYkJURhedt0IZMXo3bVcOqZKNsVqthIgyT4SSzOhn4a9rYBgGmdZMI9o6MfRCCftbQpGksHqYsYgBPUYZ5y7TAqN1MSY+vO7FxD1N4vdYmPYKJQcWuR2ouwZVNjbKX1UR/e72e6bSyVvkEo+LjOXfyWq0dNS1hAEqRd02aJWoLDinBdenpJucyvhEl4AwqwzaIvkjVaBqNcYpVAzYdYNRFqMr4tIJDok6Jeb+QIqZtatoG6nij/d7uraV1NqU2a7WAOVwYvAh43Ni9jPv3r1nHCdQcHEph/xu3fHi5QvUuiH0e/x4ZLydif0A3mNJtCnjlMZaRepnhuSZk2d7Jl3RmCI6BJStSMEThwMXVWZlIhWS6j75TAozOkUq24qhVkHIkkSqs5ciw2mOZRFVUQk+tSwMIS5yuoxt63Ig0UUWJNpTVJQxaUpEfhjR4T/XSwyQD91fwa8sHZJ0+qXMshiqEswnxJGUJFxIMmZyKfoF5SxZDfOJIORjQIUo0gJEKpOUFJBO19jkyElMeXEf0LWmPrfESgzfU/ZUK7BaQ58ZhhmbNEYZOQj3ZRKZNP06MDvPUAUmHZlyZJwn+sMBH2TdeKylDyEUo3XEWtFjLx3snOXwMY8jsWnQwTMfR3rXsHeRMTn6OcMcaG0mK13G3jXGaoRuBCrLwX3JsRjHUTbvQhWRjR9QYrC0xQvUFFOwHII8TVXjrMUqjU8JZ2wh0GlCCSEy1hGDLx36In0LkST0ZulCkkhmKXospqzTy0bnvadatNzjiNGapmlYrbrT/bNkAOXiHZGCPTKNA30v/jelFcaKNGspBLS2hBgeNOHwycYKqkxhFt04p+JnQfwuU6DH+uVPrlLcoWCYRkGc20okTgjSPeWEoaSc50woxsvZB8bRc9gf2e1uOR73hDnxZ3/6G0KYefb8grPLM3wI9P3Ifr+XP1c6kZvNlq5tWa1azi/Wp9yTumpw1SOiT1bS0S+F0o/xOjvfktUGpROVDWX9t2hdQ9IM4yTky6YUGQpSEHmSNIwVsgpIqrTQLpfMiISPE1lHXGMIZuZmd2D2I7vDjjhlhvuBmpq6W2GbjqpRXLe/4nf/+p51e846/Sva8w23JjINFXMIzB60zlJ0an2SPk/zzDwOzNOIASqrcVXFHANjyCKzNY6qNix225OnJ5fCPQWG4cjd3Qf64Si1Lop5mmlXHZWrWXUrYo5Erwg+ET1M84jPEQPY7ApSOxBmxfG4R1AalsN+R8wWtOD7U8wY43BVwzj3xJJHszk7p61bqrph9uNJ0lc+9HI2EyiCNI8t1rTUdUtVGVAzfha55+FwFDpeWQ8F7hHR1p6UJnP0HMeBfd8TIigMRmVc8bfYqubqxTPefPaKL9684vUvf4354jVpe8YxGsw8kZQmnuS30txuXM2qNYQUhaLkE7glUDrLlqVBW1NIUJEcImqcSf3EdBjYD5nmvsftJuw+UW2NNF4dEDNpDuQpEoImVwoqhbLIfqhLkVFZXGcIOhDHiXmIKGtQjUZVlugCyZRmErk00nTxUwBZzp+x0EedNp+seQvoY1kPl69Jl2ZzIEn0Aan0dx68Q7lMrX/I9cPpUkMgRoNSwmGvK9HJnp9fMPQTKWX6fgDKBmKkUr24cEVPH5hCpHYNZ+0Z52dShOSc8PORNy/WPLloOGsdVtVF3ypvKKqITgqDw7gatDmNSyXXwbDq2pMZZqFvLNdyoJZDWxLEV5YjudYWYx1Ns+LJsxc0bYt1ptBMSgc1jdzfvCfM0j3a3d/JwSFGfEzkIJQorTXTNHE8Hk5FxkMVL933lMRA+eHDh4fkxVJALF6J5UDweDwvsiSNqx3zOJEKy94fjuIfsFZkDMacGMgXZ2eMTcP+cIBcNO5KnfTXS/DV45h4pTVayQY9zTMKT+MaXr24oq0t1mrRWCpKzkfG1g2pGCwNCtqiCdRQzRljKrRtMNUa22y5O058vDliG8noGKPnT7/9Yz5//Rlt3YgBa5o47HaQMrV18r1YS9aayRepwP7Ai+undOuWpm2oukoekqRwU+a5roimJqiJ6e17LKUoPjsjNBO5yFbW95F+GDkOIx9sJjYVUWtChi9++mtB0E571jaxspnGKVzTksIejMJtV7TrTiRWgDKZqjK0jWVbaVad4RgcQ6zZf3NLzKJqzOYhA0XoGg7jhL1ucmY+juQ5sLo+53x7zipFVuP0Qx/Z/yyveRpP71meUXWSsFhj0E5jrZCCloUtRDEHYgzaSbq11kIgatua42EnJjhrYQ6ognUO3mMC4CPj/sD2+hpb1zjjCIdE9hGdDFfbC0KWQlztEqZpmW1k0pHReRolB4RwTNResiGsq8mbmmnomQ89VXagpFM0EJhtRncVa3eOnnr0QXM8Hrnf7b63sItJO2VfiE4P1KNxmtjESFtZjrt7bnzguN/z7qs/Z1tnVk6xbiXUq/cT98eZtlkRkqxtFkjel+mxYrVaUVc1wQeRbqWI1pp21XHz8SN113Fxfi5FYJaOXWWdBEkCyUjHN8XIHEUuOQdPJosHoyC9UxJJYMwJH1NJcS+hoCEUiarQohZ87uJ3uL29pa4cq/Wa2lnqSrCdTbdhngM5JQkoNRLc5fd7+r4v66yguUEaIULRWrDlnyZ1ixm9kH60kolxkkmZLljlxTe1/LkY48nLAjyYcU/TDoUyEVdbPvvsM7r2HK1aUjICk8gBssf7VChIkFPi3bt3fPx4wzdff8u/+Of/lmHco3XiV7/6JR/ev2eaRvb7Dzx/+QQfE/0gdMbz83NevnzJixcvAAltDX4GFZcyXjroc0T5GcYZrVtyUuQlmOlHeJ1dPqFqBftaOdjtA9puuLqUZ2wYeqZppHY1Y5EK122DjwFiIOeZaQbvpcgQcITsg+2qwa4q9uHIn7z7cz4e3hPGAT+PjOPIcZ643d2yv7nh1W/+nM2zKzbPLnn2+ef8rf/DK379N9/xy9/5x/zDv/d/x/V3nGm4qy1BBnq0zZoYPVopNu2KoXTrY04YAz5O+HHibr9n8lnIeFqeF1fVVE3L5dU1TbuirqpCjrwhxpnKOZrGEb34nYwyWGuY5om3H95zcX7OMM7Mw3AiamoSmkjrKoxrMLVi+0TQ8WOeiyzdMkwz+0PP61d7Af0Eec7ruqOqa3xwGL0CBFLStiuRHdvqdOhdcnqqqqFpJCNmmqRJNE0zw7hHhCK6QGuKHJZc4DyWrAyDT1IwRQ/R8+LqOZaRSh/www5tI6Z2uM2a3/nbf4O/8atf88vPvyBeXpFcRVIlt62ppeE3efaHo8iYtGZ/PJBipKobttuLUxjw2E+4amkyyLlzjooUEslP3E87jtOBw7Dny+nA9XpLp7c00wzvv2NNxcp11Gi0raBVWFehjXjPsvckn8TsnzX9GHHGoCpHhSJ7j3IavTb4FZijRo0GVUVR6ChNUhofRVoXfSAGTy5FQlSelBXZSPSBL/6uxae3nFMpa/GyT8kaJ89eykAqeGj7w8qHH1xkVJWTTk/M5BwwRoL15smfJB5yKQS/J10yY0V+ZKvFDyEv0mgn8hejudxuuT5r2XaO2koKJoAylnpzTshJuNBzpmpWWFeX0Y+CUmQYa5hH2TiXRX+h9Czc85PMB8qERKGNY70+Y709K/o1kTLFKPKrnMBoS9O0TFkM0Mf+yDTP+BJu9/jQsGiNl05VUSucNtLl9y/TidNho3TNFg/JNE2nSdED3148IMYYtJVD2EIsUUpRO8sp7FCBs650LgXr5osUZQkFXLTFOctn2HWdJDqWTon3M2ermu2qZdO1tE2F1RkQ/B1KEMDaQtZJOu56JmspBFXpWFTra3w2fHd3JB4V94eB233P1ZOK9XbD2dmW68sLmroSKk3OuLYVk+nsH5CRWaQgRE+lFW61osrgABc9TlmO8yzkMe2Yjzum9++Y725YPd+KUc01cHbO7Ge0D9hx5q3quRkGdsOO8eZLvNPUmw1PX7xh9+EbxvsPKD9SW/HN2LoWCoRKMjbVCt04YVgTQWWsgc5orpuas7riUM3snSa7jIr55HsxVjrCUEyrAlbH+9JdKfe4dJhm5n3/Qx/Z/yyvxYOwIBuEMrR0UfQJxhDKgU5QtwVfWhDSyhiGaWIYRlIfCX5EK2hqh5oNOSRUglqLFywrA66B5Xl1kFrZ9NSUyIdMKqnvKkfSwaNaQ7VyzCYw64RqMvqJI90nwhzwPhKHCnzEJFA7j7IJExSNq9FmFiSuNVgCdailAZIS4zCevFsnj0CW5yeW+xykwdD3PTcfbwjo0rWuqSxMJnFnMrVFDlAJhikyh1yaBJoYROokG7bIxLKRQ3ZNdTo0187x5Ppa1horaHGK/yJnObD72TOnSUILy3eZ8wPtJKZE07SCEp0mMRxSDunL9OHRBMFaR11L3s8y4WnblqZpRJ5V9MGL9rzt1qTck0LEGcUw9OXnCI53+fla69OEKKZYDpGl4bP8PUXpxmpb1t1cJjGZXFK1xQCZPvFdLGvz4zX7+wQq2fM0m7OOzVbWTAlskgyHfjhy3PcM/cAw9Hz8eCOoz2HicDjS9wN+DiidePf2LcGPGJUwylA5w8XlBe1qg1JO7i1nUaos2LK5Ms+jPF9a42ddpESZeU4cjyPDIDKrH+ulnXhYUoQ5Rrp2g8GhgHcf3jEOY0kEl8mRtoVSVFeEIMFxIRYzuNZoVSZzShFiEhRuyTc6TCPbVUe32VAdj+yPR74KX7Pf7fnzL/+EbrXl7PIJ/5v/+n/P1fNzbLvh9S9/h/+23fD222/47Ze/4Z//i3/OfYIxZcYYqY1MBZXStHXH6Gdy9Gw22zLRm4k+FgJ/JqqE1pmxl/3/4vxSaJxVhdWarunw7cTUDtzd3AjUAIWtNFVTgZGg3BAyJFV8Jyvm6YYcB1SOdKs1TVfTrGvqbcWxH5nGmSlkctaQDU1jcbWTPdAJxSn6iA8z/XFPjJwCKKfZc3t3z8ePt6QsAA8jrfby3HE659S1LRPtRXpY5OdKWlCPlYyVc1xenLOuFN5bsjE0VlHXFVUtUvtV3XHx/Akvfvlzfvev/XV+9sVPefH0BbW1+H5GY6hWjUyRfGScJGtlGga0UVxdXXE4Hvnw4QP/+l//Eb/61a9lHUkZ5yx1XRfcumYaBIvvsHRNy6ap2VQWO0W+vr9lmxS/WK9Yc4FrEwEYK4UJRibYzhH6AZsVxtQPE4REkaVpjFFUVAQrjfWcQU8ePSe0T3KvZCHtVU1dJsxy1iOKP05pyWzRJbhTJiWuYOI5SSgziRw5qV8eyJgi9LTaEEmQRO3xQ64fXGRsNxsOjJDnUydHMLYz1jjR2amHX5QX5qyhqh1NW2NdddJLarQEjBjYrmrWXU1TdKOmmNK0ddh2IwfjIB+QqVq0tQ9kKKOE3KD1I/a4TBWqwlh+nLK9YLweOvZO8G5NVzaqJNrNnIhBMiSstdR1wzQKnUjMeJ8G6X2fq34aaRaZ1IlC8uj3LBvYY2PNsuEu05jltS8Y3XGaPgnIsiXUkJTKmHQhZxmMLvzs8sunfNLinihb5XXZMoZU84wPSXwmwVO7jq6uaJsKZw0qhxLWkzDLzUsGLUhJYX1alGtRyjH1B3R2jEHx9q4nqMCxHzn0A816w2a7oe5amrqW6cdpMalIVZS1Z+k+5gwxk/2EihmjoFIGHcSfM5vIru/JQOsa7DwRjj3hfo99uSFXmlxZUtUwqxJmluFdmNkPPf39PYfpA7E2rOJEurpk/3HEH27QacJa6Roba0XGRCrjTS1TCbV8vhmdE5WCrbN0StMUXJypDWGOEHPxBOniUZIOMVr2llASQZfviiSd9zT9uCcZqozNRaUj733xaSgtEhgQeYMuWFtjrejwtUYbDUVuMIdQDlQiORKSg0IlBVrhChYiKdnYCIkcgFYRW9nUdFLE3ovWVWUIoXg55BmiUUQDGIXZWrL3RBJpEsRtjlLQMESUk+KxsQ6DEJyyqgQHryVotK6qQkCSDhJ5kR/mkwxsQQSGGBmGgdvbW7Rz2HnGzRWhrhmzRyGhbXXbgTKkLFMfZ8UX4YMv1KMi0SxSNLIgX5c0XXKma9rT2rj89xfM8+SLdjdGloVN0JOmdL5EWrV4ik5GCTj9/bHnwSxrknXFJK5Ok4y2bTG60PSSoKSNkY19mrw0N+Bk1n7885em0jzPUqyl9HA/PWruLPkSSxp6zlIYcMKNPjRflp+9/Hrsbfs+5vYx0tI6mfqiEuMwcDzO7O7vubn5yP3tjr7vORyOvHv3Hu+laJ2nQpiKCZ0yh/0eazSutpKl0FScn59x/fQFKWpC9KToC+I2F7R3YBzKGqE0fk74WehjQy/IeflvH/5jPN7/Sa55Fi+B1RFDprIVpn2YPi3crjl4gcaUwMmqcmVumoRobUxRXViqqpafPXqZ8hQVRdaaqlvRVnWRdk/4wz27/X1pdjWcba757LNfoE1mfdbi2jN+/Tee8+Tld6zPL7i9+cDb/w91//VsW3al+WG/aZfZ7pjr0iEBFFDVqOpqdjfZokIMMqS/WA8SX/RG6aFFNqUgW90oAxRsIjOvO26bZabjw5hrn3MvQDEZ0d1RuRAH9+a5x2yz5pxjfOMzt3fcDyNjkf1BIfVT0/VgLDoG2rZnGgdCVugMVunq4yMuhOLiJgYtKUSysaAV3jV0bc+qX2G0IQWh1CotkQFCCxc7Wq002gpoWoonJznHfd/SrOVDGUXKIyFkQkDokMaxXq0l7NQKLViAEqH7HY/jeQ0qpYghMIwTwzjVfUGmilTtQIpJ+C1xxrpq7YwGHnVuZ7ne0mgU2eJb62h0xmhF1FqacC16zVXX8cmzZ3zy5Q/5s3/21/zkx3/GqxefsNtciNX/LNo803rGcWaYZoZxxmrNaThRyKy3G3LJHE8SYPnq5SdY51nswi8uFA0NlMJ4GvFa03pP3/Tsuo5j29AcFG+nAasMqt3S6DXFjkRmlFVobyBWQ4wCukg6eVKaohJFVVt2MhaLw5C1IVW6p4kZEwsqidsUCpRRWGdqIyL7gbxmov0V0HIx5C+1riznPbuwUJfzB00GLOCgMGRyWWiqZ73C/9/rOzcZf/FPfsrrb95z8+6O+4cDYY7EmHEh41zC+wbvLbrqNZSSm7zrGppW3JS6fl1dQBIPhz05nkQwg8E3HtN4aCzNsxdo41HKEY1njLPckLpgmk5CvIqI5kTZXx4PNWTD995zfX1N27YcDodz8N0yHXjcXPoqcDakVDgOh+o+JWjrdrOmbRqMavj66wceDg/ieLw8yY9QraeuJEqZcyOx8Ho/to1cxlVPkbjFWWr5mnEcz6mg+/2eqYoijTG0jXA8I0qC45QUM+vNhgL0bccXn30ufuqjuDAt6OTyOG3ddFbrFeH+gTmJQ5Mh4nShdZp115DTfBbnOlu9pIEyJeFZakc2Lclt6Hcvwfb85h/+e8rda4Y58e3bW1IRIb8G3nzzrUwmtOby6loCvazDFMA6Wt/Q+kZeiwIlJEqITLf3DNOJECY+vXgO48g8jryZj7w9nUgZeuv5yx//hNV2Rz9E9G9uGZ5NpE0iqTUP8Y77/T137264v3mDeX+H2d/TuwPt9SXOT+xf/z0lJrxKtDqhfUMxmkwmxYmYJmlAW880T8KNzJkcMmUKmJhZK0U7jjQh0mrDerfj4f6eaZzwykJKdRplCQjqq7UinGbKPNfVbTFa4b2m7b7fYXySelzpg9VtaBHLLuPXUjJ5HOu/O0nIRqOKiLmTmsmlWi5aJzxUVUR/oAvaVR3HXJgIZwvbVWwwSqO2mtNuRPcOMxjC70fiXG1VU4QEaQ6kwxH/vCV3htIotLfknUa3BTNm8mGkBMmpCTGjssZrw1p7fDowB4gKjuPAOJwI40yeI946seaujQBFAu2WNPhSAYNYCofjkdPxVMW7Db5t2VxcMo4nQpgJYUS7hrbtKwe9YK0wzqcQyYcDKWfmaRYgonJurdFnXUsMgWD9GczIdTyulRInpyj6jbZrqw+/gCjtqj+P00MIH6DjIUiDYK0hBnHLW4CfhSKqQIwz4uNE+GJ3CSgeHh6YwkkOu5xxTtDmGGMtkNVZLL7s6cueKDdRnanXxiMlCWoVyAd53kmskmVyNJ33wqd24sv3L3q2j3Vty15ujJHnXAwlaY6HEw/7B27ev+X9u1u+/eaO199+y7evv2Eaj5LF1DQ8e3bNMMw83O+5vz1IGFlOWCNny2a7Zr1ZsbvYst2tWK9XdE3Pfi97dEwz8zySkthOTmPk4eFESpkQEm/fvuf9u1uOxxPDMNCvJLfKmKe+jN+v66tf/4bWN3S+4Wq7Q4WEVeDbhs8+/YzDYc/xdORwOIg2xxpaZ2sgnKr28BFjnTQfbStNdjEkB7rS9da7DdZZGgmlQBlPs9aMpwO3N+9Js9CWu4fX/O2//yHD7bf0mw2pa/gv/+v/ipc/vub5Fz/iy5/8lH/7P/4P/PZXv+J4OrGfRo7DwMPDgauLaxJK9BnTiNctWEWwYsedVSYWcaeypkFry+n+gfk40fUrnj2/xnnLqtvgjGN/98DbN68ZxxPzNPLu/Tt823Nx+ZK1a/HOoLHcvH8HasQ5Rb/qUI1nzIXh4chpPDFPgTBnctA427Larvjkkx9wdXlNUXC/v8O55oyAL2vbNw7rDOM4433DarXmcDzV+ioxDCcBD2pcodZGTGyUCKyXurWUInJEhUyjS0CjScPI3bdv+OIHGxwZbwuhTEzzCUvmn/7oz/lX/8V/wRd/9ed88a/+KVerC0wxqMos6dadZHJ4y/Bw4OF45DgMXF1fMMaJh4d7fvOH3/OjH/8I01iunl+CWrRTgdev3/LDH3zOer0ixcDdzR2btmNz4blcbdGba+wQ+P3dA5MHWwpHArPXJAPRZBorYJmKmnyMNLYRGqoqhMoqaaxhtCN6VJgIpmhh18jGTIdH1/tCrx3ZG7KBWHKtOws5yrTWLGLzHEm5iOkBRUT1RZHQxEQ9k8oHNucLuM3CPCjS8FKzqb7L9Z2bjNPxyDyNpByEWrOS5OkYhBo0TTMhZLoWrJP8CN/IFMAa8eZtfEumkFxC6wK9o3OKZ7se5Rtsv6LdrIm6ZQqFEIMIT8pjQm02iqyEkxdTxihNyuWcWrjQi1JKPDwIarO8YH3fc3V1debwlpIJcSLViPQ5zChV0Ev4Wy7M88A8Hbl5/5aH/QPjNJ6FNIu6/inS/nHAHsgB5L3n8vKSm5ubc8OzHFZPR/BPpyOywGqi+DCcv3Y5TOVgFVFlSpnjNLMkSYc5SNGmK++7FgpN09QmrBFrs/r4ckoc9oeaOyDcYdLAq+df8uJ6Qwkj2giSoIxB50CJmWQcdnNNMR24huJb/ubX31Defksuit/fDOQ8kjLEVEPwjKZxlk9ffMLP/vqf8+rzz0BJMVHmgCla8gSoRmAps58OhBiJw8T9t294OD7wMDzwpvsdZJhS4nfjETtknDI0Xcf9NHLtOq6cY3z9QG80cT/x25t/z834lvvbd9y9fcNf/+Cv8GXAqoDtHa7TmFahXSGWCWcUzhm6vqfb9LimRRmHqgIt6y3ei/A1poTJBTRoq3DG8BfXG5yRIkdri8ZwakbiNEkWSAzi698aVBJE9apbM5YTkULxnnEaYRjJx/G7Ltl/lFdhmV4opnmm62wtOl0N45Om21VkMccgfHpt0VYErNoLXVAbDXN1nCqJHKt7UcnoUlAqkV0mtYXUQBoL6pThpqCvFMnC1GfUlaGNGoImjoZ4CBglpgw2eElvj1m4rFYTkd9n0CiV0RkUlmwNKUem/YDPCh1rcN1xJM1BhJXLxLNqC6KSdHKlLMoaoXpIsumZOqULzBOkWogcjseatSKHhXNZrJnNHuccw+nRRU5UcggF0WgJ8EyRYXHNq81ds2vIKTGeBpmAZLm32zhLAVAKw3g6/9xSCtP76YNJ60IB9d4zVke7JaNomQyM4yhUixjQk2YYT+J/n8WV8O7+VrKEUiLGzGF/oBSwvq33jkyFhOol4/vxSdDoI8d4YppGUprJKSAcynymgsmrUqcWTyfw8EfuUUvj8VSXsTyn5XktH1orKIqbtwf+n//dv+biYlOnMz0URdf1XF1dYLSiZLHfHgdxABzGqZocSP6B71qmWEj7kSFkVhdrppA5DQMhTOz3e46nA4fDgWkUAfT+4cS7dzecTgPzPNP34iy1u2i5ftazWa9p24aubf4Trfj/8Nfh3Xtm54lNx8pY2q7BeINyhtNJCtqLi0usdcyz2LaeDgdCkCJLUPWM8wJ+WufQtsEoR+M9pYBvO5xveDjccjIao0HZAjmQbaHddMRJMw0jIQe+evMbbo53aC2/8/b2ji9++AO+/NEPuHr1Jf+H/3rDX/71v+Dr3/2GX/7i59zc3rBvO1pjwXqS1/zhfmTbb7G94nK14XZ/w3E6MYdJ0pyN5Ipt+hUlK/I88+abb0UPaASE8bbjk08+J4aJ/cMtai38f6PEES+nmVwGVr3FNhtcpVS5tmGOM9M0kxNMQ2CeAhpLjAearieVREiBcRooWrHS0Poe7z1LIKDs31JPHY8HHvYPgNi7LoYXSgkFSGsx4Fn0UufpJI811bI2C6KP7buez148J3JLZCbqjG8M3goI8i9++Of8xT/7a66/+JSt7lBFCb1HhtugC1ll5hDwrcNFh0ojYx7ZPt+xuuj43e9+zxhHtNFcPrvkt7//Det+Q9t0nKotr1aJVy8/4Xg4YrzFtpYSRqJRTFZxXwJ3ZaYMJ+LDkavrLau2sFIGc0qMbwY4FRosTeNQjeRgGF2d30qhNS0NiFGEC5jeYHrZufJ+krOvwKgjxWqsKVgMunisbaDVpDiJnrGeWdo5tHUo5/GuZb25wBrHzdt37O9uiLUGXjQZZ6vv2k+Inq1SYPV303V95ybjsD9IgZ0kfdL5RihHJhHnCEWRU2aeJ8GplaFRQn+QMbwcQovrrNGapuvoGkvTdmSlCMVgkiZMiZAkgyMnLQtIyw2inSQ5ayMp4rkIxWH8SOkuQpZHru5qtfogrVUOleWASLVQj3WcJAhXmGemUWzGTsdjXQzLYaTqaJ2PfuaHybqwUJHch7Sf+vULWvb08F4O0Bh5cojJz1uEk1pJGmQs5Zz0W3jiGjVNNApI1KIhYqyI3OWxiRnbgtKB+N3LQZwwqnCxXbNZt3SNRZFko6rPX5uOqSQiBqNbjmMhz4kyR6FFxYOYAYyRkpbHr8VeToEzmhfPX9I1LTkmxvGAd07SQpsOU+p0MhfG4cTNcc8wTZLQur/n4bTnfnzg9pTRWFKBb+YjXdR0yrGicLxNhH7N5DqGh1s2JZBIfPvm1xQ7oMY9LSO+THgVsbbQbTpM69CNxljNnJUkgzuD9UL9c40jZmozqisvvNKbUkZlGUnqei9dd479aLl1mmOCUA+yfYjioEXVB6QMSjz9fWtJxkL1yDZFOKpBfX8RSKBSHatAXiWoiP4i8BMRpiA0ct8LATDlKLSnrLHGQxErW600Ssuka7GXLksattJgFDgFnSFHUDmTjxnVK0qjSEajWi2NYRSBtxlVNfUq6Bl0AhUzxQbwEkIZnbhVlZDIM6iisNrilMIph2VGF9lTUojkKGm9OSXROnxAtamIubWE2vAvQmZpI5AcG5I0HzX3QQ5OhUIoNsk86tGWqWgpi2uK0MhyEtrFUvwvtJ9pHMXxJoSzJSVKMc9BLAv5ELkHsQZfmozF0GIBP0JY8oLSI/1IHhiAeOPnxDRLjpDsf1qaEOOQSYWAR2Y4Mc8T2oiGwzcNx/094g4kPzvlXM+fuYJGYuoQk/yehcpUKu9boT54/Zfr6TQaHu1t/xRFavn6D6mncu8dDzNf/e419/cPXF9veXb9iqZZ4V1L1zdoBSlFxnGmbVumSRK+rbNor7BWYZ0jZ8U0Z+Yw8XA3QH5gGjLDMHF/f8/xeJA/DyfmICFf8zyDyjivWa1a1uuetvO1uWjxztH4728YXxhHdIFkJCg2psR4mjlNMsGxViyMm6ah61rmaWT/kKvItmoJisJZj3X+zGwQS31pEguI/adKUBI5IYGf8wTVxTJrLXoHDQ/DA7MSFLqEyFdf/T2oWaxLP3vFut+xWm2rHiFx+f4dN+9vUNkQEkxz5tD1bDcbrNOcBsPD8VYC1nJCIdPPxUZaawnqm0NATQI6akApU10gNdYcoTEUZaq7W6lucElqr5VFm0LMkeNpIKYoHP1MDcrMFCLaJJRGphTVelppsZn1rpUYA+/rdFX4VdM0EGbRxaQo5g+iU1VnjdjS7H8IrH641lTVzpaqMRKNnibkWfRTRtG0hk3n8XRcXl+xu7pmtdrilSMgtDNdYDidsL4a+hgxbmhbz5Q84zTQbtY443FW8fbNN3jnWa82aPsIbG82K2KYOR1PzLMEqXZtg/YObTPRGSat8NnQKEPSohspWuITvDe4JOybrCIlJKJGKNde6LWpiK29D4UlGyRZTbYKozQ2acIxUrKmWMCDcUqiH0oRWvAy9TjXqhUcdh7tPMY1KOvF0to4rGsRLXREkbHGEItM1nm63/Fouf4xmP6/dn3nnebm/R3TFEgZ2m6NqxSjpi0Mx5EURMMwjAdiNpTi6TpxS1GIreI4TZXWJp1as+rpugbjPYnMaS4MZSQAStmqmZDCWBtFUYmmlxAo3zQyzsuFmOVA67ruPEJfDjhrbRUjiTvR8XgU7/eq1ZDXsNQMjIB10lHHMLN/2IttbQyk2oGfQ/DO9CjOh+xysC/d+NIJLtOVxXZw+dqn1ohPw6lkcQl3VA5fec2WQ9dXi8kyVgvaehN0bSvUg5QJMeCzI+fEeDoIdSH7WjxoQhBK1nq9RitB1VSugS0l44zii88/Yb1qcU5hqdkFRZGVQa8vGcaBYyyE5Pj67a2IlZXizfs7wjSR46P/dFnGd8agjMcpzWeffsZ0PLG/uyVMJ+zFJd1uS9P15y655Mz97Tu+evst+2lEectpGDhMI/dh4mbc06gGqwzHNOCNZa0yNmjCcWIOE3fGMNx+w/pBQ565v/2aTz7f8uyiw1+tWeWA0lGCiJ5toTMoL+mnBskPcNYI6tOIA9Rxf6y8UfFZD+NEiYESIyo/ojqlRC5aw4vOcmw0t2MgWU0pngdlMSqj60g4JflelSX9c8mKUNbQKyhZEli/z5f1jw5K1qnz33MRqlJKsRYBAlzoInzRuWZKGKvxVbM0zxPeiFtUTppxHs9IchGpDJgMvqB3VkwrTol8nNG+pWw0uTPkRlNUQSXQJqEPijIm8pzhmNG2oG0hpBG70ygnjYtqKuIeIjqDNxaFZdOtcWpElUBetBcpQZa1mZYm4wm1UldrQGMrtac6FT/VuOUKNGQeD+NMIZaIsfK1T20Jl31ooQilauEtI/EoxUIRW+27h/tKYZPidtHOhBSx+vFxLBNjay3b7fa8Fx6PxzNdyjl3dqvLOeOdIJ1KaZx31bJVLC5TCmf6lBQnE8kkCe0rEhCoJ8m/KAg9rl+tePutFHpKa5q2ZRqnStkaCPNMjtLApyDvgVg86gqicL7v5DV+1IwsIA88ZmMsf38UlX+oxVv+voBFORdOB9l7xnGk7z3dSmxEG7dGG4U1MoEOc8Jaj7GO43FkGgO+0TStwVhPHIvoNeaZr//wnpsbAWP2+4Hj4cjpdOT2/j13t3cYa7jYbXnx8pq+v6TtJFdqvV7Rti1924OqE53vaD/5j/EKc8C7Vha40hyGgduHO37/+99xfX15bq7dYkUfAu/evmG93pJzYZxnlJ5wvsFaj28ayYrKhRBntHGEEtFhwnihiaSUOB0GhsMBg6JtPSEDTjKg9uGE1TIV6Leau4dfU357ZD4cCfuf8KOf/pTr58/55Mueq+cvebh5yze/+xXj/YH7uz33dwf0s2v67Yaii+QmqSrErVx5qw1WG4bTkX61PpvfhDQRUs1UUtVnICuMbdAUQhZ76Kzk76Vk+vWa3UVLzjNv3r/lzbu7SnlyEtBXq7YQxV2yaSzrzZquX9H1K6z3HA4H2qarNZbjcIykOTIMhWkaJQy1KKZpFoC2cHauXIwltOaPGnd43BMXgxCltLiKKhjDAOWI14HGa1Yrg7tyNGZD9+KSbr2h8R0Wz0ElvLI0Bb55c8tqu6btO9xa0zoNqqPoxG//8IZNKzqxxhb+9uc/p2l7/vwvfsbV8ytSKOSY+eIHn/Lm27fc3+/pulse9gfarkG30rDOt57JaK7xZN0TWoe1La5R2A5cr2hGS7tpKSow3O6ZwkQ2CpLBaEvIApB0x8iUE1iF8p5SNCY1mEkzPURUYymtxmw0vqk5OEWRqklMCAHrNYurl3Ee7Rusb7FNS8EwhwRTEbaQciglTajQacUwQmrR5Y0pYo70H6PJmKZIwVbv7w6j24rywHbTEsPMNE087A8Mw8g8j2ijuLx8hvWNUHeMJgQZmzlrmOaAWAhaEa3YmggbUm3A5IkYbcVxxMKzq+e8v7zhZnPHcT+iFGc0/ukB8VRcPU0T33zzzRlls9bSNi1Nq2jbNV3bobTh3du3dJ2XvQvYbnYoFDEF3r57jUeoRqL6p1ICakhM5dV/jHh575mmidPpdG584HHC8mgf9njQaV2F54l6qEsTsIgZQwjnwJ2Fi6wq/eRMZRgmhuFYxZ3yuXmaRIfStoLo5MTtXWC93gh1bJ5pmhZnPVoXhjFwPI2Ykoi6cMJgfI/pNvjmBb998w2vb++Z599zursnTBNhmrm5ua3Tk4x3Tqx1lZZNcrPhVGZOceD/9n//v7LtV1ysVvz05StevXzFrutQppBU4uH+gZu3b/j5//DfUZSh2274/M9+THd5wT5E3gwrwutIozW+QD/OqPlApy2rfsP6+gJjEkoFupcdF87TkHl5AU2ncUbjMPgHSEpRnCLrgtZLqKOgZAaFwUDRnE4DmZG7h6OI1psGqzVzCEKJiaGGlcl0aA4RYqQrMxd6xt99gy+eVjmerTpOcxRhny5scsEZS2MdOU6EOJONZt02Yg/qLLlxf7Q2v09X36+Eg5sElZ/TLGmwEXrrMMg6mCsNM6XMEBLFOvyqp/crCUQyBmctJWWmGEgxMM8RckIVoTp1qw7jLcolislkJvCg9obyfkTdT1iviTvH0Bdw0HqDmTNu9rhgGW5GbNbYrOmcJZwyySsZb680aePIDtReEe4nmAuXqqVJRqaIuWBbmXGXWdDQEiO5HqK2SupSSoTTiVipk2o5YIuYE+S8hLnJBOORnqMrSJIIlDrZ+Qh5BzTl7AcPkq2RshTaMYnWSVeTC57oDhaKphT06gMq0d3d3fnvy5R1eS7LngbVIa5OE542Quf085SqB704ITVNS99Z+n6F0ZLRU3LCN7oiqBOrzUboI87jmxZjR1CGu7u7qrEQjnEpkNIC3OgKKtUpdo6VNSWv28IxNkqAG40WG98K6gAf0DmUUh/s6SDTnabxDMPIcJzJZaTrb/irvzJs1j3r9Q7vWkIIkhicDKfTgFaWzXrDw/2RlBLjAI1rOBxkSnE4Hnn//h1G3h72+4nVqmfVN3z66TP+yc++wHs52zZVR9h4jzGqMgEUMPFxMNr38Xp3e4tte1bWcXc6cjgdKBR+8IMfcnV1wTRNHA573r17x2E4MIaJ9eUOrSxGO9bqgq+/FTpvyjJtHseh3ica68C1Lc63NEYMT3SBjZ05uQdSDqAyp9ODOFe1LVdfPuOf/+wHfP7qgs+er/n69RumKRKmd/zb/++v+fuf/zsurj7nX/2f/o9cXV/y4otLnr36gtvXX/P7X/6CafgHOIy8e3skloKyimfPntOt12JKMka6ZkXbdDS+YbXdgNXMKTFOJ1KaCWHi/u4GsHjX8MkXX3A8Cag6p0S3WtF0DqMjq77n4mJNyoHTaeRd3jMcTxzyA1eXGzrfsWpWzGmi31xycXnJerXhYveMfrXBOEsKia7zWAvDeODv/u5vsNZyeXmJ957j8cTD/V60BE8aCVMe8xo+vg0/YHqUp6LkzBwirSs0tqcLHonciVxdrLCXG1brF7z6658RxsRhP+C8g2Pkzc0ND29v+Lf/07/lxz/5Ea8++4Qv+h8wDwNGZTbWYKaZ3/zd35LjzPX1Jf/lv/xnzCFxOjzgVpfSnKtM3zei+dkPaOWYw8Q0zRyHgVI81rWsV1t803LpHHOcROviLY6CnTN6niljgDlWcxBQTqE7i80ZnRQUS3aJohuUt7hNS/hmYmYi2oGy0zTbBrtyqJUCkyhKzgnjFbaIIFwrAY20MWAVxXiSdmjtub5+AUUcYh/2J2JRzDERTgdCGOQcqVMnteTsoD54j77L9Z2bjJQlxVXrJTXUoZWMaHKu7hZZUD3nbUWz4OFhT1GaXSMaAKX8mV6iJNqbopYEwyVJsFKNVMYYKeh9Y+j6BmOf881Xf8B6EZgvVKKnSNTHSNMiol664xgjsw5is6on2hgwJlPI1ZZLUGRnvQQ45YI17nzAWCscX3k9xMVJVSpRoTqtPBEPPm18HoU0T1BKFn1GDQs8838lDCXFhQIhNCdKIS+/rzyG7MGji0qKSTywtehjJPW4TlBmhbHy+qfCGRERvl2pVmYQsuZmPzKMM42W6VI2CWzED467uyPjYWQaTgz3dwynE4fDidPxJOihguSc0I2MxbQNw3giz4ps4DQP5HGDmyYO1vHm918xnw6sX1yiN2vu333Lw+s/0OmAawy9LbSnPWl8oAwRf5z5NGdW3tIYRe57kgFnFOuVwuqAKgVdCqvW06MwqWDRlGr16X1LmkYREXcaTCFkGWOqFOr76zDKUVIhTIFUhNqhlIFSSHMghwBJ/Mkz6UxzASksG6u4Xnf84GJFujkwnU50fo3tVkQkWMgCnXX01hGGE9qJR3YsBWKpfPrvvrj/MV6q0pBUKtVVozy6K1UuZckZojgZqUqPUd5jvEchVqAgNESlQWVNBKLSpFIzcWTuIdoYpTG9YhzrvykgzJhYMFOm7AMGTWkVuTHQa7CFPCaCzjgMNiuYpRnNWehTvrNgxQ43J7ET1AqaUbFxnl2TORhDMhDk2yEM59firMOqz39xCFoE2XrZG5b/f+Jvkc/0nMe9j3L+4j8uIlWlCi0OIqhzaGEunOlMMSVMdRb5+HGqmqB9BjWeOJ0t4u+n7nnL49Banye4H+9T8rWyWqQpSk/0cRqswmQp5ttSzs1S01S6rrXymK3Ft40YC6gadhaiNF1qWY1KKHTlSbiUoqa4V7piFlqoNFyOpmnwXXsOT3TOnfUmT8XgTycZIICZzZK8ezwGbm7u6Lo1m81OnmcqxCBTihAy0xQ4HocK0M1IIGPmsD8xThMxBry3NI1ntW559eoVXd/SNI6mKXS9E0tMoyVbxILSsY5pxFKeIlMWodd+f5uMEAL3Dw+EXKlRztJ2Lau+Z5oC+/2Bu7t7DoeBmAtKCSV7GoTKY5wWo5raEGqd0VqCGo1x0oCnQpgTWgWy0UK/6jesu56YJk5hz33Z41Zb1lfP+eQv/ikvfnTN5VVD0xe+2HRMxyOHmzu++ttfc3M7cjge2P18xw9+9CUXlzu2FyvWV8/59MfQrjfkv/k5729vmOaAbRqKRrIhMDQeNusLVv2Gpm0pBkJO5HlifojVrEGx212cm+iUItZoQNw4p3HCO9FmjeOJ/b6GlGpHyUjuhveUnNFWEqebfsN6d8F2d8FqvcW7DucanHes+lV9P2YxlZkGVqtrXr18ye+/+oMAoUrxpwrSjynly/XU0UimjnXNAtYonAFDghRRKmJMoXMt16++YHf1Gdv1hnBMzDlQ0sTD63fcvb3h7u0Nx8Oe4XjktH/g/v07QglYb7GN4WK7xenMNJ4YTkdxGysKrzW7Vc80y9Sxb1q+/OJzjocTYS48u7rmcrfDG4eZYe078uUV4YvP+cPdDftBk1XCNQbFTIiBLhYJ7yvg2oasFHiFcRatDUEpqe/WFieO+HCMaJWFStlZYgOpzRSbaI0DaylKkRCrcnQFRLTB+Q7rLMUoojJo10gmilvy6BwX189RSjF6y2AKnNSZrFtyOrNl9HmP++7Xd24ycq6J0Nqgja3DNIVSkgobQxBhVcr0TvzOrfWchgHjPP16jbELf92Qcx3XGwNGi/e1WQ4ggJrBYBSmJk53vcP6nrZvsE7QmZL++EZ9etAtB8HiEiIWhwFUROmAMYFpHutE4IlwW1V/+CC8O2Mstk4qpio01Fp+nioLN1qRKGJt+aT4//jj6fXhfz8ehqWilzmLu8Ri9ynIW/rgsF5G+YvF4kK7UhRMqcKpnGsjAcyz/JmNJLDX18fWAzukBEkxhsK7+xNWFbwGYzyRiagG7INQG+I8kYYT037Pcb/n7v5BUqyXLjinGqJWKMUxTgMR0ZK4FFgVzZAVe9fwxirm+Ui0CZ9GTjffEO6+4XIlFDlnFXp/z3RzJB8D7pR5tV2x0YbWOkrnCTaiDTQrRdABlTI6ZzrbYkKEOUKQkDCtFLZpmOcBuza41lBMls07iyik82usscK/z/L6xrJMreRzMQdyiOfFmKrHNzwiM94aLtYtX17vOBxOTMcjatawWTNpw34WRyFvLE0Vs+puDa0VbvCchGv5PadLkTIqlRoDXSpSXwEKhMZRcq5OSHJf+7bBNA2qhmie6SxGEuiNUVBkHSS1NOP1faiaMNtYGS8X+ZwaM+aUsGMmHiNWW0oxKKdIrSHrTCiR1IANRQKIJgCFihmlMy5okjNokwk+Qy+jfTfBxjfslOKQDMHCIQsVDD3Wgp+qo5J9JlbHpjPiDzI9oOJHtUYu9fM8RfyWvUUe3h8d4Kr+Q1kajYIcSE91IU8mwYsRxXLgn78m6XOAH1BNKDhPO2JMZ7H3071vcV5aGpSnQU/yO0ult2kW4b8IRGdp5oFpHOnavhboUfIhKkd7nmfRCTqPdU5MLoI679E6C+kEFiCoalVqaKlWCiEVCCCBUuef1zRNTSEXqupCD3sawre83gu1KudcbVOhkBmOgTev37Nebbi8uIJsmcaZ4TRxPEpS+eFw5P5+z/Eo+pOFSiVnqgBEbefYXay5vr7g5auXMiU2kNKEUkKxNUahDaIjKFES7ZVDYVCIUUuMhRS/v/vIHAMP+3uOwwkoXF5dohSErud4PHJ7d8vd3S3TFIR/ry3OaU7HmcXe1vmGvu9p25YQBqxN6AzGNoRqvhFjhjiC1vL1646rdUvMA/qU8amhubxg9eozrn/0M7qXHt1HxvLA8+dX5OMDLQHfDTw8DOwPA3/3N2tyybz67FOM/5ymWXP9ec/u+Qv2wwntjWgHXFPXfwU1dMvlxTM2mwtc6znOJ4ZKSRpPE6WIjfdme4FSskceDyfJp6jhkuM01YwOxTCeKHdiFJOCBMo1rWWzaTgeDmizNBk92+2O7WZH32+wtsEaJwYPjSMEmbjHKA34drvl+YsX/P3f/8M55+Fj5PtDYPV/DTQrT7QAosmwGqxWGDLkiFJZmmrX8uzlJ1y++ILG9NxMezKREiYebm65ffeO25tbcgqE8cSw3/Pw3hFVol139GbFxWZL1xiGU8Prb78mFsnyWXc9237FqAJjmfFK8/mnrzgeB373m6/Ybdasuh6rLWZMdMqiug7z4gWHFElKQEfroFQTkzPIBvimJaFRvtpoG00siqI1qte4k9QscQxoD3ZlsGtDaiBS0CZRlENrWwPgBOQW4xmhQDnXYr2jaBGKG+vl/tIWhcFquLi6BgqucWgnetQYg9CXxxMlJwmhtZJfpM46yv/t67tPMlLGemk0RGCZiCUzxMDhsCeEuaItnr5fs91uubp+xhwlgOiXv/wFr169pO9bfOPx3srEo/GYtkd7Kz1YjY8vCGf7+fML4VarwPFwx9/+zc95//4NvjMYCylW5P2jA/ep7eAwDGy32/MhEGOUyYlSNI3ldDrIC+w8V1cX5Jw5Ho+8/vY1IEho0zTsLnakKC4e4ziIf7vvSCpW/rz4PidZF2eE8LxsnnbpfCgalOe9eBOL8HH5GsrSoIiv8dJhLpOMp6m0UC0qrRVtSs6UmLBaC5e7ZEHks1AmCjA9SQAfhuHMpT6NA9IbF6xWbHdXGOtR2pFvjqicMArWreMP9w/c7/dM41j5fwarNY23Yo2migTgaVNDBQMrL17Tc0nsw8Q2R9ociXlCv3vPJk3stusqcBNb19t3r9malhZD7uDh5mtsXqF1y0kXvCt4a+mMOEzFw0Q4zvDuCFEQcjWOWOdwq4jJEe8Kpk2UNjGUREmyaH3jhKZXrd2MbYhJCkDvPG27QpVMHFItEMtZYLfca0tRVUrBAZ9eX3C93XF7GPk3P/8F7+7eYH2LW+3Yp8RpmhmZaVY9ytX7IEaOb+9wyrHq+u+6ZP9RXsUIwhZzZhonYprr1LIQa8GnAFtRGGU0WRVMnXColOnWW+KcSHkilUJIMylOKBWxVpNjIcXI/vYG1ziMNyTvyFZRWkMyGY1DDQ5OhfLugN8X9FwwSnO4sJRNRm0SrrfM3xyY7440k2EcEsVobOM4/WHP3GSiS0SfwItritNwUTzDMfFwzAxKMSnNoAzZWaghYXMQrnJRtQFgsXEUuqRgCtKsS6pF3S/4UJB8BhmqNbBMIx+nqbA0J+K7X8j1DH/cL6Sof0TlFxrQ08nF0hAtRhZCj5I9exxHcn4ERoxZsi7yBz/7bPVar7PAvVIfnBOHJu8cDw/3WGfxzjGcjoQpyKFcCqv1BuclvKpdtGilcHl1xf5BqHTOGMZxeJwS5aWhUmil8cbLvhuD5Jv0LaDY7w80jcdaR8mlulSJzfgCMD19fRfahzgBitBcG4UyhZISx8PMz//dL5mGSAoFYxrCDOMw8fbdt7x5847TceR0mmphJmdf21vWpqOUzBwGPv/iOc+eXfLs2QXWmvOkK2dJP1+Sq1Ux53uoFIhBmtKUNA/3J46HA/v9/j/Ngv+PcN0/3NF1LW3T0rYtN+/f8f7dO371q1+x3x+YZqExv3zxKSlmlK7aRyfvby4Qo2h6rLOU7HFeQIuu31CKFcqrUrz/5htisdgOLp4bVG/oXUN7uUF98kPG7hl6+4z7VvPvH064hxNNfM8/TzObEvBO8dOffEkpt/zh6xP/8y//P7y+e8315TM+efkJf/nP/hnPXjxnu7vkX/5X/xcebt9y2t9xvHvPL/7+F7x/bzAZmm7DdndNu9owpInNZoe2Vhw09yeUgqbzxFS4ur5EK8Xh+DumQYwVtBFEvmky1kRQEzc39xz2A2/f3GAs9NmhdEPft2zWrdD6cmG1umS9vqJteoxVhDgzhsjbt285HvdYZ/jkk0/5b/6b/zPWWlKOaFs1RyH+UYPxVOC9XB+wTsrSYGjERKhmI+WZkiNWF0wjQHcxlnW3o1E9Lsua1RsvYYz391zstpQYMQoaVYjDieMN7FpLNIrkDOSVWOfT0VnPi2fPGE8jzjo26ws0Qnsqx5F3wze0fcs4TRzub7i/u+X6k0/47M9+zDM04x++YX73ni5G/uXFK97YFf/z7d9yn46sVMQaI+eZ1lij6JuGYZYQXu01wThMUJgZzGGmDCOUjPIK97KFRpFNRmknJjooUlakTBV2G9KUcE2D0Q6UrcB3EGZEyeKF4iwhFqwWh9a2b7m0z1jPG6bhgji8lKnOcc8ffvNLKDLxXXcrQkrn3Kfvcn3nJkMrRZgmiSpvhPcs7hgjKYUz1adpPKvVis1my3pzCarQTz1t27DfP1AQp4KmcbWj8hhrsFbEnCkHdhcbcpZRn9aZ1998yzgOhDhz8+6G6TShsiRISvkH6aMC/uOb+HSSsbPRmjlEjHOUGriyHKQ5J+7u7ygpM44j0zjQ9eJnrpQmVkcU7xrZvJBAv2ysHFbVX14hvF5j/vjx/KlpxiNlYDkcnqyzp1SwJUcBmWgsNIplCrEUBR+GRAkvOaPOYX1a12KjCD+XWlQszcXS+Jz2+0ofKxhtKKou4upWYRDe5F2K7I9H5jBLwqpZON2ZaRrPfGhXnTyW16OUQlYQKLwdjqwPDU2r2N0qbB7xGWyE4ylCBpsSvamPobXQW7bPq92wLZhG4bXBJkXZJxhnymkmH2dcVKyaHm0Up6BJjRYP9RRJccTg0drjdEupnH6HoKWuaWianlxkjK6VxncdvvHkGIhVuV3yYyGonvjnU1/rnDONd2gtItR/9bOf8KvX7/nD/Z7ffPUPdNevyFbSWW0vds9lCpRpptEKY7WExn2fr8YSU2BWhawVjW2BaryAuLUtQmeMkcOFQio1ydo2TFFRTItpC/NwqE5NS4hdrt8qbl8pzpQitMa2ackuMYu8hmwzyRZyadEPE2kKhLcjSq9lM3cFXCauFKVYmtywTgpSIYVMDJoG4b8eS0Z3GrwikGi142JVGA8Qb00VO0eiBtV2zNPI4UFxPA1izVytNRfKYqk0v6IeNRg8QZCMNn9MjSpg3RJ69bjnLMh7rIXoQpl6ijI+BSrOWRNwDgZddCKlKLEtj4s9bTnf26WmKj5qy/40NfQsSFfqg/0uLe6E9b9zEdrnlDOBwoN7oF8l1pstfd/L6wVQJ17GGKwTilMMM3MMHzQB1EZpKXLmeZbmwAjwsSSEG2uF6llkqpbT43uy0KSsFTVNjAFj9FnsnqJMTbQF62XS0rgVcc68eX1Hzr+SILSsxFp13FNKwLcG32wpGWKdTLx8eUnXrYkh8v79t1BmUhwIocG7jbz29X+Kuk5CYRrESjulTJgj8xSYpsDhMFT9h8J9j92llDcUq8kG0JnxeGCaJsYpMIxBgIsceadLtcaWsD1dQ3uVjnivGU57Tqc9KUsRrrVhnGfabkMYBobDA+PhAeN62gLH2zekzQXPdy2fvnpGe7zlD/PMbXjD13dr1n2LVxPueMfxKrPyCtfK/TsDQSsCkSENjHFgChP/73/9r7m8esaLly/5i7/6C9rtNf3ukutPPmOYE675Gms1u8tnoDxZBbIyRFXDaK1h1XpSzmilaX3D6Si20MYYVhvRwMUw0bUF1ERMA9N4JMxSL2ijSVn0mv3K07e+6ngMfbtls7lmu71mu7uWSWGKjMPA73//e3a7LbvdBc+uXlCQJnsYjnzz9TfsD4ezI+dCHl5AN/iQgbKAEE8/r7Su4n6ZVHedZ9U7mWImiyHjtcNFjZkyeQwc4oEQpOky2rAfj0xxJutC03teXV/hjeX+9pZTTjz3jquXHlfg3etveNjf0W0bVqsNznmKKjzcvuer33zFmz+8Zrfe8uLTT2jXK3745ec8HEZKCrz+7a/YvXxJmA/EdKTXhnz3DnM44E8jp/hA6Q2mczSNI+uJMkVOhwOpi0JFjRo9JhgyTJlcImZlMI3DrTx6bVBWiadtiVLPFXENtE2LsppiNDHMlSiQsRameUYbxbpf42wjQaElkk53pDr+KBSc91XnazH0whQwlu2zV4TTkRwTw5ix3gudPvwHTvw+U3FiqsWv/LfwcuvBbjVt10rQULeiaTq0kRGL1hDjLAVhLXS1qU4DQNOI05NzilXfcjodiSlweHjg7uam5l1MjONEihmNxllL1ImSEvkJX/nsTPCENhBDQMVIrI4U1ENjEW9Ddfep1KIwy3h/qfQlBTHUqQk47+vP0SQVKQFQEoRiKnKNUufm5ynquDzGc6H9kRjv3GDIV3JepEUakUXYKf8qwWNLMfCUKvYUxSyFys+tiCkyC1l+4cffQz1QU6qx81pjD8dqn6soKQmSliX1fZonoXo8IY4XqCM3eX6lPL43xhjhOcfAnGT8Okwj09Ew7zVddZMhW9SUq3NGRjdWEt5bg15ZGjwqVk67NlgUOkDeR7ILlCmi5oLBYJRwU7EW5RVoyHMUq1mBIlFU3/9qnae1xjiHbVvmyrlXWlxylFaVxwIYTUmVK88f22CWKtw1WlEMdN7wyfUFwzQRwsTdbQKnmLRiVgplgChIaJnFKCFrGNKjoPb7eClrxO6vZHQSFwtKJqra9C7FsVYUbSqtp9T3QvikWVm0LdhSmEdxNFqWi1DWKnWILEJfyqOVqpHmMpeaLKtAZQvzDEOBkFDHCEmjm4LyGhpNKZaYDX4CNWV0AJ0VOlbvvJzRrdyb0YsWqvMNV43jISi6YaSZA9FqSphRZELjmapWQSZgcOY81TV6vsqiKVimG4/N5sfUpMUl6il9Z/lT5A/5g1H3x9SoZS9JOZ8fTqkABYWq5cg1rXtZ7h8WDE8pER9/NE1zFn4vX7N8f4wZCB/s3bpIgvkcZnzw9XtkclAqMr1Mc4yxtK2EBuZqJf3BY1zOCK0QzEZVdz3q/se52cu1AYop1iJUABvZSnXVukW8M3Rdw/E4kosU9xnOrojWNeQSGE6Bd2/v6PsJa6qeiEzXe4xxWNOSouJhf0cIA6t1y6pbEWPkdGqr40tiGica30vtRa6J4aE2fol5DvVz8UleSWIaZ6HVeEffPYrZv29XUctHkWAxlShEUhqppw6lBObpCMqitSWnRNO2kq1TqTbjKI1/weC8iGNNFmezcTxwONwzDyNt0ThvUXnGElj5jpdXPffmyP3tifvTxGH/jpx6WhVZTXvmUZGMRxlLRMJyk1Iop5lT4DSPHIYTb9++5+Fw5HA80W02PH9+yXa7Yr3b8OzVZ2htaJqGfrVhGCaG6vCZkhhIxDDT+Ya5mi4YNOM0EqI00M67CnZGjC3EPBPjwDieKNlWmqLCWVv1PU6KzJqG3jRrVutL+vUFbdeTaj2k6p6wXm3Ybi9o275OPyPzXF3ewsLM+OOGAh73naef/4A+VUsfwS4kX8to4fwoEGOGolAhU+ZIngNJG8bjCWMsbrUmpowyCtdYDC2b3QZdCrd37zHrNdY5jLKkcWQ4DhwPB1RTsI3HZQ/Vhj7NE/PphNnsqhWtY9U1OL9iChNznEjzSCkJbRW6caRTwKjMumk4HWdwFtUKRT2nSEmRUjTZVLB8BD1GOfdzoTQKVgbVWczaUyyVhg46V9CplPO0m+qQVne9R3DZKDEoaDx6CYJNkRKiTJ+L2BhTenGowqCslddfazaXzxmMZx5G0hyxvpN7Sn1wQv2vXt99koHQf1KKnOYZqAh5TqCqAMsaLi4uWG+2dP0K5zyoSt9xmu1uXdNJE3rxpS6Q4sx2fU3fS2r4cDpxe/uOm3fvmY4T0zjJGHoRRWaw2rLq1+S5QJKUVIlXfzxslxs55yRIfBWxNK2kzmqlOJyOzEE4sEopjocDJUvs/cXFxVmweObiZplybC4uMfPMqAZU5f+qYnCNxhVPLknQpBios4cnwkDOj3EpAFKSZaPOrNFaTCgFlVF8ftOqN/1i0Sthh+YDIebThQvVLk7VG/HcoPzx4pfUWoBCrAJb+YrE7fv3woGvU4ql4aryhYoqyv8VJcLSFGMNclGUMp/DurTWHI9HeUwFdqstcZoZ94nBzvRjQZuG7DvaviepSLaFsq5aIIs0BwFcAF3EXlhPinwITO8HXKdQueCywvaeMWeSygxdQa81ekqk+5lm06G8o2hLLApXOay5JLz3uKZB+4YUZzBLQaNIaUbCIqOgvEDMBVsP/5Ll+TeNrANViiAQSLNhjeGzZxesWsfFuuctjvcxcxszQxiJUQSixhiatuFhnnj7cP9dl+w/yss4Q9+sadKK0dyjU6bkSFYVkVVV32TM2bI1pYRWDmyHa9ZgBGAIGmZrydmhciRrJLG7nk65iIsTRTQD5xRTpUFbSgPKAiag8OiTxpwKwzFQBgVeoy8txTuCsxxDZAgzHugRrnsJCcYAesatOlTjyAaKSfSbnt5vec97+pjoYqaMI8cg+6f3nrZtRe8VE3FxkCtZyJDLWFQpaYZqo7HoJ+ARlV/ooU8d9Jz3Z+rTokcLVT8nXO/8wYEPsCT35tpEpJzlAKs0rad4RwyxptWr89R2KT7OGR0fAT4Az54943Q6nd2pFrH006nLNE2PjYPWuLap4nQBjIbTiabtaNqOOS5ZHGJx2zZeskS0IofE2QqcR43eMo0AoeHlqmcQMK2QESBLG0MO+Ww1Lt74sob7dU8xhb5v2V5u+Wp6Q4zVeCSAdZzfD2jIKXLYT+RU2F2s6buWbrVivW7wvsXZntMhMv36yH5/g7EFaxRaOTabLV0vYZX3d0cUIr4F2D8cOZ1GeWxzJMaJaUvUq0kAAQAASURBVB6ZppHT8cB2t2G9XvHZ58/YbbcC+vE4Zfq+XTEnbEkkDElluu0K11mcF4OaaTJMExhV5GxPoVI7HCL6T6Q4MQ0T05zQthGRtHf0rifMR1Ka0FrozyEYyA2X65Zta1l3ls3K8zIo7m5HHo4HTnju3yuCyTzrJ/JDJOodaXVB1j1zOTAXTbfuGI4TKd5LOK2Gm4dbbm9v+ep3v+dnf/1XfPmjH/Lnf/ETPv3yz3n56ZfMw4nDwzvevX/H7d0d6eHEMAaG45GbN29Zd329L2cpHOdATlGKUaUkLLZpQJ9IcWSOR4bxgHfb2vhnXr68pu89jXN1MtfgmxXtasfl9St2l9e4xnN6uMc5cTD78Y9/zJc/+JL1eitTTJUIc+RwOMoE6Qx+FDkjUaD0BwDcU8r402uhZ1Jy1bzKlDrFwHhMtEomhplE0GI+Y+cRf3nB+9/d41xD211ijadfK9pVQ5pHmosVYRwZ88w//cu/YLPaYYrm7fs7wix22qt1z2G8R9nC1dUlz68umF8+x2XNn//sr7CrDqwmpMgXly9QBiIzh9/9BmcdencJz3vSwwm/7fh8s+Xd7W8hTuQ5c3caKcOICbDqLMpZdAR9n2GYyVtH2VnUpUV5wGuUN8QQyEVJY4WmiCBZgPsi9doYZpTxop3WBow4OjatOJLlDHGaCdOIilGMhbJIH05hwLqGpt1Ipoz32Kblue95aNcMhyOn/YH1bkO/almt2u+0Xr/7JMNoUpwJNchJCtY6ujf6TJOyzp8Dt6TQkrGPjOlDpTJYvGvZbeXBtq1DlcjdzZ7DYc8f/vA1w2kizElE1Fm4vwvXXXmhKe0ud4zjxBxFdLsM5nL50MqWIkFNqiJdGmqOQ6LxcniFMDMMJ5xOWCPZGouAEeSwOJ1OoBSuaSU4K0ZSKSQW1EqEqAVxzNElEw9HskoUtQgzP9RRLJzlp6jeGTGrqHipRT8VWX9KaSpFktFDDPW9ME9+xoeLt9TqID+hYH2wqJfHdR59fIg2nNFOVR93DXwpUhmyPEpyJtZRmqnQ4ZLcOU1iYWytpe97cozMx4EHdYP1jmb2RAfd5hLTeGgc+cKSVBCrV6DEBAnUWBjeHWiVozGeBo3OilQMRRviOJHJJF2ICnEnagzNyqNPBlXvCd1acm/JvUFpg28aTJ3SKOtJRVOCIN85SoGB01LEhpkUA5qCNUbQiiKBaZINoEghsaQNi3ZHGjStEhfbFau+42K7ZfNwoh8i7Rh5Pw7cp8QQC6eYOQ7SYLfmu/Eg/7FeD3f3j2vFOkoJ5CxCt3PRqyXg0WiN1Zp2Y9lev0IpRwpiyWwbQ3aa48P7xUmeZYimSgalMW4ppBRaS9hkVkoQeISXrzVkB3El5hOuszTvZvIQSPuZMMyYXYvqDZPN5I2h2EROgbZtIABB0WgvdMlYUD7TFYsyDhrPZ19+ymFKHKeItU5SrmuOirNVu5AyrmsIIVbzhYAEg9bpha6wXp3yfKzHgEp10uZccPd9f94vlnC80+kk+RQVZTw3F+YRpR8WiqPWYj9dwZAQgiBl525jeQ0Xu9yENAuP2ouFXrRMkkCoq6UUuq7jdDo9AiFPKFuLrgNkP5/mAHlPyZndVmxKldJChWlaAYEAc7RMwwmUZrVas7+vJhdlmWrIubXoUJZree7GGtabFeNU7cAVhJTwJWO0EoTU1pstJ64vNrSN2HSDqiFmSaakSRBJlEJjBCoqhRgTm82Gq+sdxhScl5+rtSIVaQidF/RT5RNGy3m57teSi/Fww7ff/qIaj4gFvNBdxRZ3s2vZ7Tp8s2a9/gJnHFZbrHG4ej4ss77v43V3d1ubPke/6uhahyIzl0KK4Jo1/fqSGCZ2xmG0hWLoVytSDozzkeEk+3aOiRQLq/WW1no675mnB0qeQCUSkWE+ke8jf/eLv6Ntfswnn+y4unpFygd0TFw1lj/cHbDGsPKWz1c9z9o1OrW8v1H86vd77g+RVEAVTdt4Sjbc3N1zONyzblq2bYeaRv7t//Bv+MXP/4a/+f/9gH/xL/5zLncXrPsLrl9tcf2Odv2O069/AaeE05qr7RU//sGPCTFwHE/M6cQ4N4zzyMNwwBnEUEdrEQMXhS0i2i4poLTi8nLD5cVOggMBazzd6or17jnPX/0EtOLd+3f8/qvf86tf/wN/+Zd/yc9+9jOur59jrUeha8gf50n0NA3CEFFL3Wbr1NDIBLJ82GD8kYnFk2koWZwq1/2KXW9Z+UKaRI83kxmZKI1mUplf/OLv+Pr1G7yVHLXWWbabnqZp+Hp/x0igu1zzT/7Vv2C93pDmyHG/5ze//i1THjCdQXvPDz99JRkgxlOUxbQdzXqDX+9w245YCofbO8YwoiPkMhPngEsFbR1285LGBu7jN/zyzd9ySg+0xgsTQ1lWm5c0xWGnzDScUEnAEH3tKFcGdpqmb8ghkEthnALNQjPLmRAj1D1ytdlKDarFDWx/OJ1pn7vLDU3Nphr2J4kxKNT6JlFTJgUo0qBKJExHYhiwbY9re7aXl7RtzzxOjMcDYT6Blgyl73J95yYjLHqDipaV89is2gBWPuxicbUgaKVEKcbyhLapPhlL4x2URJhGYjhxOj4Ir3IcuL+7I0eE415UHf6oOsqW0ZIpMv5xrcMGy1xv8lxJQCnFx210oQMASkuCZskadEZrhzW2UhaqM5V+DNVbbvSz2K8e4gsPnErjkCKnIuCkupgFLctJUVSmqCX1PH/AV16up7QHOWhlnF5X3wcFxfL1TxsA6nuxHCDnhVrpCKp+/596XsvXP1rZPh7256t+fkltP3+ci6EF1XxscJYDbUEOF/2ItZZV39NYhzdOXIAcaA94KGtN6rSEzVgg1Y9cSFMU1zHj0EGhjHARlVaoJFxV62VEnjUUA3QK3SmM12SnxUWmupilVUWtjcG6hrZpoWSG04mUhbKkCCwpwhogOXIOdVJTA65KpZdUWsby0p/nRhWBkGIny58avNOgGy5DoiiN0woVR8bDyBwyvlkRoDpVfL+bjBgiBYUBvGvIyoB26DCj86MBgbFtpU1ptHfkoigxMo+BnAJaZSiRZXksTbExMk4vgNbS4halzigYLJM5gzUKqxVaFYqFrBTJGvSmUkmS2IjqqYDOGFcoTkEx5PWC2msoFm0X9yZELzaLOx4FXr54wWEoZDyv//Ca7vhATpGxUgkbL+nDGFMngxIMuNCizpkZcJ4Ufmyfuvx9oSLlqlH5OENoWX+5OsAtyIwuuoqjP/S0X9zr5CVeFAD1Uo8v/YeFwh+7Lz2dmAzD8MHe9bSo+BjlPH9vKedQPa0VzkmAndZWAlKdPT/fhc7krKvi7ZrL8mQevDze5X7LGbSRx/L4Oix7sPx3iKEOlgS40iqx22zouxZrHL968vqp8++oL5UWel2uE6RhGDkcHE1jKFic1WArGKY0RhuGYcaaGUXgdDwR48wcZsZhYr8/VnqLp20tTWNpW4PSntWqwXmDc4aua7GI+Yam7vuFcybI9/F6mrMilscNilJDGBXeF0F8lRYgLEso7BQCKQdCTOfzTUDQdHa6KymL7jRVt0AWaiAo68H2zNFz/1Do7JbnG01nW3o/4o2jcY6Lvufh/khMJ05z5OZuZH8UK/gyT6joJQMrZDbrXtKVozgfbbY7yux4//o1//7f/TueP3vOq5cv+ezzT2iaDbsLePnqhPMdq67Ha0PXt0K1iRqLxltDzgZTMs4UipLA4hBHpnlgDuJw17QeawzOid5Pa7lPfLNltb5is33O7vI5SmvmaeJwPLBer2mapnKYhF5MZVtQ12+MM1IbLsRsOHOflvrioyZjuZ6CJ48aLoW3YoUvxiCJftVVylHGtB6M0IjapiVM83n60XhHSYl5COgsNYNvW7Ew1objPHF82GOcpXNrXG/rJMAhCdiGoi3ZWJI2HMaJft2AhoRoTo1RaC3nudS3GoqiWEd2jughIVMISsY5jy4GkgBeZNmLbevJlxa9MuBlElFUZjF0sNZJHlKMlEINb3XiulhrUwHwPcY5nPdCyyxSrxIiaZDmzCiR1edq+Y5RdUItZ1bKijwIWOr8SlgincZazTxqYpwI8Y+ZM3/q+u5hfNVz3FQv7nNoVO1c1aKxeMIDDmEWrmSeSWnEK2isxztN4wxhGhhOgWHY8+b1N8KhVTJVUEosQmFBymqCr6qNjpVCsukb5jgzhJESH2/elPNislu5xOVMA8o5ycarlQDwxmCSCCZLpSg8pR0opc5uFEsBH1M4I6/aGkFja7APyIZlKHjnxFs/ZZSRDZJcaqH+uMieTiA4/1s6H+TLYfiUbrWglMt1bkDqa3D+mRWl1ObxZzz9OfM8VxS4/kzKORH2aSEAnCksPKFIleXxGEEWFxFkyQtirDDaiCNT1+KcxTnPdrfFKyshfdbSrBV+o2CtCRsFK0VpFc2xwASqAiN5CChrcK3GZSdWbUayDZjkgHetIxQ53LEZtdHYRu7fGQ05VAvRTFmLSNNqS+fFtSSGWcanMaGJkB55sCjQWVLac0UUcoqPjWcpMtGq6LNG19+lRKjF0ggWQJwavNZc9p7WarZOo6YTd+HEPGea7Y6HCBHF99h5EoASM1lJ9o1yDcZqVMoUM1PiiKn3qLMyii11sjEeB2JITMPIPJwoRWw9rYOn55ixjlJplaZaPhcgL8JnEBhC1RwKbWQUbyBrCI2iKV5sQMnYoySiqpzwfSb2FlqDsk4oVUWDshinyEbMFQigTwlVIvSJT1++oJgO12w43B9ZDxsgU5I0Gc5rjLbEXKpgN6KXCYZSj2u2fm5B+Z9OHxfwoG1bhnE4P1/v/QeTAqVEIxfmutbVQs2EUqepH08Unk5Fz2u//LE7TMU5zgAT8KRQeGwqhmE407eWf3tqi/unig6lxcJ70Zt0XY/zHcY2WOswlUr1qEmRA9d5oSnF2mA+NkZP6WGOnA1irFGYQiCkRE4ZsQuvAYPTXI8QaXK9VVxsO3abtTgXZZle5FTBhuW1otZhWqGy7Nl3twKqbbcrVuuOphFdoiTsSgbP8ThijTRJ796+4/5efPSVUoQ50rYO7825qWgaS9eLDmS5dNECbBQ5Q0t1/0r5Q3rK9+lKQajToj+ZBUWnEKcARVVNSqDrOsI8Q1FsVoYQ5lpUxfO5tVCoS0rkkEjzLILomKpds1gea+tYbS6x7QWn0PDV1wM/frnlsm+56LdcbQe882gt1Lj/8X/69+yPmSE4bu7EvnY8jYTjRJo1MYoz5g+//JeomJiOR+7ub3l+fcG6NRwO9/ybf/Pfc/3sOT/98U/ZrLesNy3bzTOs91xd3bG/u2HXNdwdA2lKhBywVuOKJieFVRmrC7EEwjQwxiOn6cAcjnhv6dedTOF0DWNQGm1b2v6SzfYlu4tXrNaXzHEkT6Ib++EPf8R2e8EcEiHM6L4VYKeea2IGNJwBtqdAxFI9PXUD/dCk5sMpxrInaK3p2xajhV1QUmB92RPizDwF/LqrNGbFi2fX/P3f/R2aQt83rNcd4/HA6XSi1ZbWt7RNh289eoR5GNnvH9hdXWA6i24kCy4Eee1cYwBL1pagFDf7PWw9trEUI7kazlqcNywW0sYgEwgtzYLZthSVhJGTE96v4ChNsZkDmYhpHHbrmK8M2lmRE2RNLkJVJWecccxJ8tOU1timE23wgsIqqXi7tsU1bRVyZ0qIlCg5TnmaSTESSsI5C0pAI5UVxWSpo2QnZBpHCieabodreqx3+MbiG8XxkBmGh++0Xr9zk+Gb/lyUl5xoGrnpUhQKgEIJylgghIi1kdWqk6yJKP7vJM0cJ8I0MR5FC5FSIpdAnJdDSQK6tGHJYEEpiZ/XRkR+UqhZWm+53PVYHRlOD+S0OJwo9BNxo0Y0BBoR63VtI4IfY+u0Rey5ri6vJMHZWrx17Ha7igDKeCrnSgtSheF0lJ9ZixihIwg/3zt3tuJc9T3jMDClSQqQUkU9PKKPi9vCstCoP29ZYE9pER9b4i4FgdaaruvOSFquORDamBqc09f0Rs5fX4pkXTjrzuP2kqUpKx993YKAqfPk5MnkQ4EyGuc9XddhtDlnp1AKXdNhl4aniCWwhOA4fLPCagPpiG00ba/ZbVuCUph9wtwW0pgJxxGdYdP22KjRsyaNAQLMrkAKmNdHycOwFrPyqMajfCZa4S5OqtQGT9NMoJynXPeYRoIXjTKc7g8M+31dZtSRYoRSSGFi1TTiEKUEgRBe5CNKbq2mGq3JQZjFnm55X4zSaCV2zUInTKAFRl31jrZxrFuPmkbCtuP1w4k3b7/Gv/ico7Xs1eN7+H28QorVA94xBOi7nra16LXGeEMME2GeSLWBSykwTSP7e7FHnocJVRSb7Yb1Zs1m3XM3D2QU3rciptNFtDjGSOZArO9fDKRa8TlnSDkxxyx4nLaCYKvEqUuSX9Y4zL0l3AfyPtCdAuNzR940mKuOcr8nHzLlJNbQLjtKMqQM8XbCDJHWBNpTpI2Fpu4VXdfX6aqg1nJpVIjVMU9hlSaRqviyOTcUC/rq7CPnebGIBXj37h0omSYej0f2+32dLhrRBmEqeFEddVAfFPhL6NxTjcd5KskjYqkVtRiWZrmUJaxV1ef0IR3nKcXzPK2qP/vj6Sw8Nle6aj6kYMmkEpnCyHqzpm1XaOO5vbuj6Rqcc+x2l5gq9H3/7g3zPAvgpCUQVBtLQRFrQyXp5IG2bVlcslIU3R+ZOq2uE99SiDlRykTfWn7yo2d88mpH3/Uo5diseqa5Gl2YGpqaI3GeUG6ZjhtBhudEjCemaWaaIm0TaFsJgp2nwHAaeNjfEMIlbevZ7FpePH+Gcw1KGe7v7rBO4xvNet3iG1tfJ0F/5ByEXCq9NglKHysSugRafh+vaZrqVNyirGUeJWQvJ9FeLpqepw3rcTyBEdMUbRTeKmxrMF4xnQLH4YE5jqB3WOvF5YsslJosFO9hHHn99p4Q4XgM/PYfIq9e7NhdtPzumzd0rSeGwOtv3/Gr331D0R7rN9zd7wnjQJhGDvs94yBZJQXDnGd++pOf8Pz6mv/Hf/vf8j///d9Azjy/fs7N7QNvvvkdX/3+VzwcbvizH/+ETz/5hO1uy8vrT7ja7Ni0HV+9+Zp+67mcNlxse27efsvD/Q3eF97eveH+cM/9/pbddU9jLUY3bC7WtF6hSmQYRrRR9KsVfX/J5uIzXn3+5/SrHf/wq7/jxz/+Ma9evuLF808lZyXA6Tjz4vlztLbn+mAOM6fTgbv7W759/S1hkvvZWlenTgKcWvvYSDwFJ+Bxcvq0rjFa0zYtu/Wa3ibUPHP39j1QUMaiejg97InJ0r/s+POf/hjrHJe7LZ1vcBr6zvPi+TNY92hnsVHzq5//e06ngaQUP/7xT4k6McWZ2/tbri6f0TY9zjaEMWNdQ7/e0HUdlAGVFVvnBHTNmTAOjIcjvoBylni6RTc7dCjkI7TtJa2z+NKibwLxIEWCf6GwXQfeMntNsoamaSXzJynGaSDFGaMy+/0t2nqa1Rrfd/iuQxnLPAc0NTNKG9pWprzGWCCTwyjARy6s2paQIiHNhCAmMholhjQ5U5KmmIIyBlcd1+I8gHUy8c+Rw8M9aR6kufwO1/+OJqOpoknO4+eSRbOw6Td0qxVdv0ZpK+LoaULtC75RpBxlZBUFxZeDRWxQxVFmoUNVlNdqSu0yVOVNa/3ouGOMwRpNqxwrv2LlC9Nxz/ubgRARehIy0q59mqS6aumlwzwLR1gHJAUXlDG0bVudpmTRSNq3FNTet7XwlklHSgFYJiyKlFS1JcyEea7WhxlrjIgQiyBU2hiZTC1uN08oUvCIsJ2bhWVaUg/mjylSC6r5VET+eFCL45dzFm1MDZYSKshiaZmSvJc5iyA2q0eofLHFLcLhYBFoVvynFhmVovYULa0LD3mFqrBycXERly4mRa7pz0YVnIGX2zXXbYsdFHZO6FgwGbSz9LpDpwxjIcdE0Rkc4BTaK1SjBIVoHMVoRp3BFaKqwX8x11peYY2lqJGiU0W6JRxSlUKMAaWWpHSDt9VGtZQ6GZP7SsL6Eqo2GfKq5DMnu5RyRpOtsef3QqtKNSxa9CJFvgdS3SQUymoud2t+1nzJy/2JX/zhDb9+/xqtHY3vvuuS/Ud5SVDaDNrQtisRtmqZAg7HE/M0Mk8n0jzJ6xwDx8Oem7evSSGiisK6ltM+EecT+3uIYUCRcTXZXhzBZPQvvuuyXgW1rJQ/K7qelOs0swiY5xQEqwThV1qcOZxCHxXmLqEfZKrhVCKqjOqUeJMfg6CksZCTpKiapNH7yN0vfssxZObDUB1FwFrHxeaCEvLZ9Wka65i/7ldGi0lC13ayxzyhMomFqpLC6kkmSwihWkhDzjJdy8geKs3ARy5yPGleasF/BhX4cBKhjZbxvmypss886SXkSx9dnj5GKZffsRhXPP35T3/PMpoSZNDUw0xhrCRXD8NImCeZdKvANA1kEjF6Gi8mGTJRlYJca1NRkcdptNPuj5qbWMeEXdeRDulRA7aE+VV9YddothvP5UXLau1wVhMTXFysOQwjx3Gu9KoEKqL1XJsmKYz1QpvNBYicjhNhzpxOEaWk2Wtaz/VmzdX1BW3rsRrW665aiFu03hHCRM6B/X7Phd2htTjnxyg0h5SkYcopVTvnwDBK8R3i97fJiEnSuXMupJyEGlSzT56eo+eJHCIWL1kyM0w2tF2Dd5bqPs7pMDLNM+/ejTSN2GqXUrBOi7amwGH/wDAcuNfS6DQqc3uYWW963j8EPn+1ReM5nG4opWMaM4fjnuP9gTCdmKeB27tb5jmDMtim5W9/+Te8v3vHxe4Cu2pYcQEpURysL3piShyOt/zqN3/PNB15//Ybnj97wZ99+UO6ruXi4iV+teFwfOCwv2c63bJuHGrVo4iM0wGtMm1j8T3MSRGz0Lqs1sSYCFH0Dk27pe22rDaXhJi5u7vj22+/4ac//QuUsjzc79lsdjRNR1v3JKXqnlJkOh1C4OFhz5LULSD84z6wXI/vj6p7U7Wih8poWfYiyW2dZ2mMIxlXnT61UhhlxHXOKFzr6dc922mN1gbfepq2xVlDSRGDxhSNCoU0Dvz+l78kAd3ljq++/QqcqdpSCeKz1qOV6FdUbXy0AactFkUiCVtBa6x2eBS2FEzMqNsTBxLTYQ9j4YId7TCThplgwK0dptHobaF4mahjxMjBGkPrHEVlrNEoDE5blLH4tsd3K3QjSeFL9o+1BqM0tgI3uYJ0hSQ0QA3FiFNj1lCQM0qXGkCaRC5A1Suq2txprclhpARLzJY5RAEB55kcvpvT5XduMhY+/blQVDMlC2LWr1bsLi5Zby8IWSYcMSVOw5GMRZUoT7iiQZSC1o8eu1ohtlkgPGFjWfh7qqJmWgsdh1JojKUxBuvEfrTRgYdNy/FhErRGQS6LmqG+CaoibEUcf3LOcuhgyKVgbIFGnEvK0k0/IdT6ppVmqcjz01qdx37aaIxWJC3FdUyysaeYSFovfQnKiQCw1GnNU8u2jzfHp7Spj0eIHx/eTxHHp4e31sJRXw71hQKmtWaeZ0oudWPW52CnRaS5/P3MW+VRhLpciwh8eZnPokf1qIHRtckoQNG6Uouk2CwRlM1Yrei95rLt2BiHGcBqScVUZJRVeGXRSkTyOSaU0xidodHoVkmugYLcCu0lFkAXUqkCzCFSnAVbsFQupCp1WiZ0JpF8SOOglVBYrJFMkVyfz1KbpRTrlKPqMSol75zZkGtBW6QhWw7AWlJBpZHlakVXcgFd6WVa0XcN6/WazapnGEbe3f2eVGYeW8Dv51VyJKdASQ6jZAKQY6yuJAfm6SQH8ngUdCUlDod7jvc3qJLxrqUoxTwlYjgR4oy11RHMO0opOKcrqq4xWZqMnGNtotP5fUlFkLZiDIhWV7jzBlK9t7MV8bMyoA8BHRQcC0ZH5j6jrUY5RZ4hx1xBCV3vdVCnyPF33zJpQ8mZ3jkOlfLZ+I6m6Ugpnu2yhVqoKUqL7aBz+MZ/kINTSsFZB6XUrIfHRRljqOh/df6DMy9aeOz5TEsValN9X57sMx/nWyx/ntFHyhlcgUe22iN99pGWuexVT5uMj92mHn/vkntUzva4y/4Fj656MVZr1ixvWMoRQg354tFAQOiujsViXTQRS4+kz3vpU3pYKTXbpnC2ylwmz3Il+taxXTdsNw1tI69jKoXddsXbmweUVjL1ThmlIsZEyTVBS+O0pK6XQoylOkIVlEp1wploW8/1s0uurnY0jaCI1laBuLJAxzAUhjHy8LCn63sp7FBSjNUckxCinHcxEWPgdDpVSt5387j/x3ktBiWxFkYGjEG7R2rguah9QiksChQGbaDpOtpWY3RBkZjGapE/JGISYEgbDUrqA5ULw3BiPB0pOXM4HNEU9qeZrusYYqJrNjhdOBwS86wYh8BpHDkdjszjiWk6cTgeiakIrdMp/vDt73l/+47Vas2PvvghftXLNDMnGm/Iw8Bpf+L1268J88Dd7Xvub27pjOf5s+dsLjdc7db0bc+6aXj7zZHUdhikIL5/uEGpTOMNuIjLhZg16GoLrjTWKlarC/p+i29XGCdU4BBkX84Jwpw47E9st5eyt9b9oy4UIJ9pktM4yv7Ch9qLj7VXfxxoqVjy1qT/kJ0rZbHJDzGQdMYW0dGoem7HFAWs0+Csk0mxUhhrsV70nmXWTMPEumlRWjONE4f9A8pbfFlxu78TrUYj5661Hq2t7GVapgKiaVVY7dGqMIQRrT1WC8hrtUGlRAkZwkjIgXg4UI4zq+Rwc4CU4MJgtxbbGUofyXXP1MqgSsIgNW9kyRyzOCtNhm0abNOCtcQQJeOl7rdWK4wSKUPKVcNWsuikQeqjyvBdADRTCjoXUg5nKixkseFVcn+QA7lmz0zjRIwzOQXyQkH937j+d4XxLaJBgDKCKonGavr1ms3FJdfPX7K9vOSbr7/i/v6WeRoYhjtBqq0+Owz9UXGtRPymtDzxog2Lm5RWBQM4rWm8x7Sadduy8gY7y2GjQ+F643nnIAZIETLCsVULE1AZSoZ5Cjhv0SiUEsFfqhSBBQX0jYzexWPaY4yla1v2h339upmm8UzTyDSPGN0LpTEjtK9akFprhJ5TKrpmLSYnVP7jxfZ0wX28IJ1zHzQTy/eFIGP+pQE8b8FlEUeKS1bXeZTSTNPIMAxsNhvmWTQHIYTz+wKP4VuLsG658XSd2oA6C2nzYmNb748UE3Mu0lVrjdWGkp7wu1NGuYxWBoNBhYg1gV4XPvGO9axpoohmW2/Iuopp90dKqZa4JJIr+DX4nWJqFLkrJJc5TgdOKtHolt71pDnhokJNBX5/Q74EOikk1TShncV0DdY3hEolMNaK61S9N2PKpFIkOT1njBGLv9PhSE5ROv+cJEl9EdtWu+RF8P544EnaPDWDAwQBWRrX8oRSopDQM6fhL3/4GW1j+eU3b/j5V1991yX7j/LSJcsBSCKFkSllpjFw+/6O+9tbchhIcWB/+0ZsS40VSlkOOO9ZrVtiSugqCjJKqC2xiC5mWQulFLz3NY8lkFKk7wW5m2ahV6TabLiuYzwdISW0M3haaWjr/3SnhZaRe9zRw1hQryfMRSSvFXOniU5aR1003rXc7e9IMWJiIbzdo61l27X8Fz/5Ef+vn/873t2fOAVF23Wy/0wzVotoT6GYkJrRKLHr3Wy352JpnucqvhTebEqZZcjoZyf7joJxGM8US6V0RQNTDZSUg1EsaPWZKgWcG5c/tR99gP6fQzfLBynYT4XoSqkPROBPaZ8K0coYpXBWJq1hFkvFkMWee5m+5kzd6xxWG969e0fTNDRdR79ekytiOs+SF5FSxjrPbrdjnE6EeRJ66DydqRuL3q6UcnbCKqVw3B9IIVBSXoY2AhQp8M7y7HLHJy92PL/a4kymlIjC8vxqy9dvbkBrAc2UNBOSOZIgiXBcJg4KhYGiyEnePFP1cNZZ2k5zcblms+3wzgrFTewfUID3DmN2gOEXv/gVRgtiO4eZFGW6pY00UdM0CX11yVLQhqZx/wlW+3+cq+u6+n5FSkmkuZCsExMN7/hgOkepmRoKYx2+aej7ji++/BHGZkqeOHiYxgMxScNXitC+yYZxDJXiZkjjwLt3b+u+IsnUt29fY7XGtA3f/vYfJFEZuL8/EJOY3szjgWMNDIw5U7QiEZnmI6jIOMzM44HDw56f/tlfcHV1TeMND/c3zCqRXOJhuuf+mzv017/jt/7X/OaXv+Kzz77gr/+zf86rz16x2fQ8u/6EphQOqxtO44Hj+MDt+7eifR0nWuswtiFheDjtcb6n69Z8+tlLLq9fUpQhZsXNzS1XV5ZVv+E/+6v/nJt394SQGMdImAP7tGccB3YXuwoiSEr96XhkmuZzE1KoIZ5PKL7L2l/2iGVKCZwd6BbAQSTeAtzuhwMhGLKFokJtYFItjiM39zecsmZ1+YqmXQGw2OynEJmOJ17/6nf85K/+Ce2q4xgHfvjPfkYxCtM2lN5zub1gu95wcXkl8QoVmC6l0K9WXGeNsR5nV4Q48e3bW56/eIm1HqMNc7NiGA8Mp5E5zLBeU6aB8IevUWXAt4puZ9l8ukF3hmwyxzhBMFgN1hUBq8PMkCLDONVMro6uX4lxkFLifDeFysZRrNY9jbGQkwTxhflsipApNUND9phS621dAQ+vhTKbnOV0Gikpo1KirU0PWoM1gNg+h8O9NCIpCI38O1zfuclIFSFLtcA1KmGtpmlbVpstq+2Obr1mmif6VY8xhf19YDwOwDn27QMEq34GhaQcFxSpCgo1BacLm9biDThnaFojVAV9wsaCzidsmWhtYrf2XO0aKDMxJBFiKxG2SDhPJBddk8pLRfnq4VnkMFfwAV1hngPWSTc9V83F0mSM01ApYxk8WGPBQ+O8IFkpCS0rxHPKxTiOZ9eXUooUCnA+nJ8uvqe0pqejxsXHHjg3GU8do1IVLM5hPi/eUpFc0V1k7u7SOXOk5PwBLWpBuJZmQ0EVeFexlpJ3UxxYKo1AqTOKRqE2Fgo05zwSo7Vw/JZqSBla5+mNYmUUu6ajMQ26KFIKhDiLCMkolDbMFJRV5K1Dq0jxENrEiYwqCp0U22ZHOSnUAHMSH/S2OLpimRonZX8W2lN2BuUM2omjj1YKbS2rtmccTjJtci3aCT9XxYSzloJMqs5FWB0txihOFyWLpfFT14yze9eTOcbjREgcp4ySoUjMUZKHta6aGo2zhk+vt/St5bNn2++6ZP9RXnmeiEomSSEE1v0FORZUjpR5JIcR0ihuOymS60amtIQYHU4nFi3AB2YIRcLTFo1CKaVmUAiKE6zFOSsNipkJKaFrg0yasUpGyqkIMnYGAVJiJqE0lK3C9g1ln8jfnuAhomaN6aDsGlJJpCJT77516CmTQsK3Du/EzjbHxD999oJ3my33IfDt+3fMo9wOL16+4Hg6Mowjx9NJaABtQ1Ofx0KX7PtV5UJD0/QotZTCEi5qrBHaTTdXJ5JHeqVzDSA6s2WMUZCCe7GWDuHR5Qs+PPz/1ATiY9DoY0H4specNWV6WQcFq3V1jTEotFigl4wpWd4/K2LnpvE0TVOn6Zq+6ylIk+Uad/blB5imkXEcmOcBVfcgauaH53E9LvfJgsCe7bupdM96P4njk0yZLlYtL692vLjc0ViPVjO5ZCKBkie806z6hsNp/KPXSAA1oYNo/aizS0mm61MJGCMWtwpN4yxWC9BWWJLXRet12D9wOk0cDkfCXLh9/4Bv3FmbEeJMGCIhzNVyXgShTesfNS7f00smVEJxDXGsyG1gmmUybIzFVhMaVY0krJF7ZLPd8vzlMy4uL1Ba6Jg6a27fP3A6DqASp9ORInCvnF/GIvkO5fw5mdbJHgWZ9WaNM5WPESHMUmjKx8g4V6v9IkCETLozvm1pvaH1LZvtJc4oxmHg9m6W9O0LR7dbV6BFztbhMHIf73F7x6+++nuin7gOl+w2O4xp2V18wibN7A/v+PKzG/rO8/bGEMpIxJJU4WK7QduO9eaCTz/5IRfXl/zh22/4/Ve/5cXzz4TpkPbc3t5zcXGFdQ3eWhSFvmvpVz2wnGlSD2ijGceRN2/eyhlZaZpiEiH3uq1OHY8Tp0d2wNO9Y2nQQUL4nl2s6TuNMwmdKtOjiHuVzhGbA2U68e71a3y/k/yZ3VoAUC116mdffI5vPMpo1hdbvtyIcNq1LSEqvBeww1Ifs7Qy1Y5eYMP7+weaxuFbx6effYH1Hm89ThsO2qK3a0rfcHj7lvl0z/3phiE/ULaGvHHkjYXeCi9Xgc4W5WUPtEYaM+sc1rfoZi2vq9ZkbUhZmBwxZZwTh1ZXXbfiPJFTJIVACrP8bAVhniVctNbtKKGCOd+IC2gWo5EAaC+mKSpm9vsjpom4vmNzsSXFIFRkkDpIafJ3zNr5zk3GosOo9GVsRcqbtmV7cUHXSwx5nELls8so0hgldrG1K/wj/UEdp9WcOLQpOCeTC28Km06LS4LJWC0+ppaMLgldIkbLGLnrLJu1Y5oTwxhIk6qMWnGHOOspEB7nkuSoVeUzI2NxYyslrIjdptbiIiCoyVJkF3HOygVV+EB4KZQkObBTTOJ4VLIsGEUVp5dzQf+nOMuL6HEppD5uND4O3nqKDqaUz6iiMYJgPp2WlJIIIdcmo5wLjacuVeeFrmUcKWOa2iouDUdFiOQlFU59UVls2pZvMeLHvFjnWmcxjdjDaevwStNpy8Z5rtdbWuUwWXQ0WReULSinUc6IVsRpWIlwNRuIClTW6AAmalrriGORBruAnQ22VLqLcxJqoxEXEoMsdFN1Ncu9srhAaclN0NZJyj0RXS1GH4u26qBVeeqlPFIrnr5fj38vqPOLBjyS0Op4Odf8GUF/FvcupRXrvsVazaprvuuS/Ud5lRTIQdajwZCXkM0YoATBrhRnjZEc7LJ4cimUmFiGdmdtgqokm4UWUf8cx/H8e7U2YlChTQ1bA6XqJC4JF14S3B9D6s771NI/e0V2QFaUtYFRoQLoAnSaWBJZFaJKaCtszJLq6FmDIpFPA9faYJoW5x37sSWnxDBllNH4tpW0VWvoKTjn6PtOEPC6fxpjz3ua1obGuzNa6H0rNCYl1KlxGIjLZDLKPbyk+ebqZDVX5Gt5vktY5gJafEzVfPrfH4NGf6oR+XD6IQihOX9UuqbRwgNmoUzlKl6Ux9t1/XmPs8bS92vJNhoH2WdRqNo3hXkihpmSxRnKWoPWzbmpWPbX5fEv06HHf3MoZqFuKCk0jFZ4p7nc9ew2Hau+/cASVtZswVlD6z3jHP8EHQSkwUvIeb+8ptSpcGLVN0LdTIUQEjGI+1GMmWkaapJ3Yp5SpVlF+q4nVDekEMR5caGdSLCaWFl2XUfbNt/7JmN5/1AKbfIjI6CIzfCy3xpVsMaDWpLge1brNdvdVhK+FWRtCL7FOi9TbK1qiG4UjaUvWFuqWD+e146uE8YiXvsYo4gVfScWYhKwIibJsIqLoyTU4ljOyRwzpoHGafoGKLOAxKmgdIOE5xZiCsKRVwbfO/zKoluYGTmFPW7UFJPw2bD2HU43rFaXvHzxueh4NBzGe8YYCQVM29OsLuhXW/r+At+uJPNCifA4hsA8BaZp5nQ60bSFvlvVmsPjfSNF+IJCIhPQeZ4Ic6g6Q7mWaYaudKOl1PhTe8WHVzlPETWqpltnVCk1b2MRhiNncIoMxyPFtPi2Ff0jVYdlNF3fczocULOhv1jT9C3We5z3hFko2lqDKoZczStKXdfyn5nD4YGLqy1eebq+F2CrStO0N0LAcQq/W1PSjJkbdOdQa4fqHXQO5TTamarnrFa0lZ5nrMM1HcY1UGTyLgBJ+YhSK/unopDmQIozOUZyndovw6NSqolF3aceYwykCc8IyF5UqBNYJXbmNQOj5Eeqa05yhlhlRVv9HR3qvnOTQUnyRLKhcaY2GA39esuLV59irCPlyqdLgZwmNEG6JVU31CfBTQv/tQClROGTWYW1sOmhc4bGKjaNptSNo2QJPdNZgu6UEs6aw9L1hYuLlpgC05QJAVKxZDRZ23qzAWRifuQj1gpPir+ccX1/Rt5CmLHOUYogoIstoqlCwlIFYUuS8MI3bpoWaxf6QEOI4ayzeJpL8UGqbQ2vWoTcTz//lNu8XKYK1ZfFqbX4wpdS6vsg6LwUG/K+PAo8cxV+i27E2keRpjHCQV2oO6mOmql6mHL+OfV1Q9UmI5Mo4sEMMmIrttoeG7TVuMbTXcgoUhdFi2LnPM/7NT949oK8H0hpYragGoVqDaq16L6hGEUxUBykWVzGSjS0uUHPGZug0QZOWTiOnWatPAaFImMaB71MM6Z3I/5a0ARlODtklVKqjkgaaNs0WO+JearvZaUKPmkSz9OsWguX5aNuksvXL820RahUVORcqGZyCJassUqBthSdqyZIIImu9XhvWX2vudRQUiQjHt39akMpsdoFH1FEjCmgDSlbSkyonJ5QyHhy/z1aPz/mQORzw6+U4vb29pwNcXlxISmoSmO90N8ASpF18NSA4WlC9sJnBXmvooqoDVjbMr8OmKFgRoW+T4xNJjlIZcb7Ig53KaOqsLvMmTLMbLTFWrFO3V9umKeJ25uRmAtd39H3LX7VsVqvazozHG6FflUiqMaR6r2htGa12p6brVxDnQqyxh/0ndh8xshUwDlP07TsLi4IYWaaRu7ub1EhnA/5zWYDCPCwhOU9/Vhec2vtBzQoeCwAz5qsRS9WO8OiOCPN1pgqOCz1lF7ouFLYLwJy7z3b7U6axqJomo7d7oLT6cQcwlnkXEogRZingZxmFi3G0jQtRhdKKZqmoes60XakJM8TEZe3Xcs0DLLH1X3OOs1q5fj0k0sud2v6tpEshmyQzIyMdYrGW1rf0DRir7q8Jo/AmlivPt3PRbwsWozN+oXsRwkebgc0okM5nU7c399xPB7PlFfvG7x3PH/xjLdv3jGcTkzziNKB1apjve65vNzSddWtxixN24cuhd+/Syi51llyNjgn2pNxkH06UZ3DUCjrarq5YbPdsbu4YLPdSdFb6xFtlGRuNQ3GiiFNipmUqQYQAmZN01CpQbI3NF7yObSC02kQC+iUIGVc05xDaucsZxKLJpGCLqCKOInRebwpWDWQg0bZllW7RhcRPA/zwDgdaJ2jb1quri94dn3Fdruhu2pIduYh3nLa36OOluv1FdvVhqvdNV980bDbXbFe9dzcv+H+eGIIidXVc65ffo7xLad5pBRN2614/uwFF7tLbm7uGE4DzrXs9w+EEGl9i3cNzjQYJRRsVXKlTyv2+z3jOKGNPTMd5BYXNz+tJSZgAY0e3ek+fnuXOkcm1CUXTqdAbCVjjAJGi07BOYszhqAhlUSYB1yc6z4IiXJuFBqt+PrXv0N7w0+v/grnqnlGEIRekmQMqsh7J9lmUQxbrAKVxPEtPgfVo60WcCwVyBHfeVKYKAWeffGKWWVKb/n65lv0WqFbhWkU1Ey5nA0pHem8rE1tDauLK7T1oAwlFkIapLnIkZIizlraxuGcFdZEmBnnUJ0uq8lDSZA+BDoVMi0xVdcmNYkS6qZSqDBDFdt7r3G2Odd+OYaqMY5CwS0CDobpP3BOxjgONL6hacQCtl9v2V1e8dkPvmR3eSU3UC7M0wDZMgxw2r8FZWq8/YIVyz2mtaLxBmcNXetonEHrglGZxmY6W/C64IrYXi7hQboiYEoZmVRqi9GZznqePZfsDOssc7jjNCXmADmqOpNbcGMNYu1MVjKaltGeESREFayCeRrx3lGsYa58Vuccm80ad+dkTBsX3uGjHe1iOblarShFcTzuGcahImqPjcaSKL4ghEtDEUI486KfOscsPvhLfkfTNGcawv9C3X8/2ZZdd57YZ9tjrknzXBkABQIgCDU5YndHS6OfFKEJKfRnK3oi+qeRRPUoNOxuOqBgyjyT5ppjttMPa59z7ytiuksRpIJ1GMlXePnyZuY9Z++91vo66zyffvYZqkiRdDg8M0+TULyqQEfcSPJFCG4103hJCb+eOuaSSVPGaCvuA7WIy4vdVimXKWQV1Is+IdO2jUD33uObVqhOxmCbnm3TsWk6dq7hkwhfdBte2Ybw7lEaiDaTnEXf9yQDEQg5YNDoolBzwZxBB9BzYjo+YWZIRUHXoJsGZyxmMOixTrhUIm41ZgKdhD7htw7VKFIJqCJT4ZwLIYtmwipJCJ+iFMVN23Jzs2c4HZnHUAuWfEU7qwWWtWtxRSliYVunEDlIo3sND1OnX7kkUklr86uyBN8oIxDfNFW7uR+4he2CbFHg/PjA+TyKHiAkcemJSzq1mEQI1Q+qBEMmTVcF70LtWSbK13TE6+JuDmHdYJ1zayNRilCMVnQKVhtXpYQasVB2ClryE3RmbhPmRYM9FfSxMD6dUDpgGoW+7bF3G0JOzMNI/+V72u4W126w2dIMMz4EGAf+j7/6OV+9+pRff/qBv/vqG54Oz5zHQfJExiiTdAVpPK2N/RRjTUsvzHPgxd0LFJoYxM0mxgmlYL/f4Jxd9VVaGVIS579mEupmrEYVy8Gz7DfzPF90avpSlF5b2l6LuK/pnnBB7xQKq6prS33ejZMwTmus5N7kvNYV3jci2LTV+ccYnJW0aoXQT4ZhEJtda9FGVTtYoYdud3tgET3Kay738vb2lsPhsH79zc3NOsBZmlGAkALaaUwV/eqi2GxaXrzc8/nnb7jZeRon4wt5HxJFFe5e3PDNQ8Q/JW6d5+npabVRHcdhFWK2bUcuIjAexkGE+Mhz/fD4hLcWZw1//3e/F7pgddna32zxvqPrNhgD8zxyHp45n85Y0+C9aAx/9vOfsd32tJ0EWhotOoUQEsN5kqYm/XAtJKyVxkAoZxLI6Fyh8R0hRAryPocUOQ9n9BzwvvDL+xfcv7ivqBiIyL7gvaPrGjbbnjhnzocDOc/kGKRwKxK0Vkpmnqf1eR/HoTI2NMMwQMlUcRC7SguMJa+1g1IK49xqqS80vIR3sN0Y7ne2mnskKBEVIyYrPJm2d6iS0WUkzIbdzY95+foldy9f0W97huHI8/MjX//2D7zYveR+/5KsfkbfNOxvPuPu7hM+PHzFMB6Z04zpthzmwOPhmd+9/YY/+4s/5f7+BcYYjocz0yT7cspwPJ4JIdJ1Pb/+zW/45JPPeG2FxZKz6CJCOHM8PfH49IF3795Vx0rZv2VfyCsF7ZrJsuzTy/uz0BRloClvp7OGl3d7uibjmLFpQsZUlqIb8B7rWppmS3f3AtNs2ey27G9vOaeTsCOGmT/8zd/Qb7Zs7nY0vhUhdAnkOHM+feD25hOa9haKF1SsJMY4cy6KvnXcv3nBf9c1aGOYwwBZcToc0angisKmgKnNVNRwGmaybXjzxS/Z+ch4+JbHx7eoZElBqJ99u8Nb+W8Jqe4IRROzDItzRS+8NfjWreZLi8as5EScp8vQQIEyYjJSasQE9R5Y58TGPSUKgexrDkwdmDvtaiUswxZlRIvYOLfqbaxr0EaJ1436fnvI924yFKLcb5uOfrNjX92kfNPJQWIM1hv6VnE+jUxj1Rqwni3YBebRGtdIeJCz4HXBGhFzagq2JDZNi3eaMA+CQixTJX15UEX9L5xVTaJvG1JMhJC4vR0oT8Jvj/naKaryCBcUZSn6Kl0i50iqGjullQSSZIGrVA2as8bgvaS85pwwV1OyBbFYBKjzLIJVAFuF2ItLzALRA2uzAFzC7MqFArJMBK9pDasVpFKkJCmy3sn3WnoBpbVAm4ramHQ4a2UTiUHgZGqmw1J4Id9z8ZK/iOgiJQn3fQnYM3pJEI6oIhbHTeNpWhFs2q7DobDasHUNN13Dxhq2uvBJ03Oz9TSdoXSF3FmKlzAaGpkgm1zQqcAYKz1NYSeFSfKRR5kk5Poe5jmidaGohFGW4gvZg+scJgoHccoDDmlUSxGHI7VMWHLGNrKYSy7VxaIIlWax75QdUehT8gaBrs/VAi1e6TAytVhGOP/r9KYI1WZx6Fp0GFK8VLC4NuTCQS78wAO/WWwNl4leSWGlHOTajAmdsSpYKhVK+OzyRl0n1C8o4or86WvcgbWZX6hTS9PgnFvv07KuBBK+ICfL5yUjAZQqFLIkeWuFalVNlhVurR0yesrYQ6L4JBbLnaXsG5JGtEQFshahZFMK9unEnsLn2x180fI3X/6aMQSmca42sJEpjagkjkEpZVJBdBnGUIo0FlobcipM00DKAaXgdJZBSZijJK3nIsWZUozjuAb/WWPJKayNwnc1GNcDFGB9Xz7mT3+cd5Fzrg5tMi0W4a3Bt63c29psGq1RqwubuD8ZpbHewyokF+pXrt2mUnA4Hui6jn67wVnNHGYR9U8Dw3lgmsY1+2dx2Vr23kWDcTweV/R4EYF/pC/RoGv+x2a75cX9vQSIOrl/umhyvKbzVe2GVpCqri2LAFPrgtNCxeo3LSlJ8KIxhsPxWAtOOJ3OzLXJKKUlFykEmlaMS1IUyisVbW285Wa/wduWeQ48PTUoHBRBRoUKN0vBV514cqXU/lAvCRtcqJFALY2MkWcllyQoRBSksqBIeeY8HNhMPVs26zaOUjRtI+5BSsmzoiToU4LKytrALsYeLKwMo1a3zFIZ6ksoccyZJTySqt/QFw4LZGmS2taz3Xbc7DfsNi1LUOKcAkUNWOdoGzGeybVgbPuG+/t7bu5f0G62YpZjNMVqzMaje0t2mffHd4S0p2ta+rZld/MJ/WYk5QDOML1/S2MNr+5vUSmTQyTHsha2SivaphFrba0oJLQWxDDGqQ4tJWx5mkcOz8+cz2d5thSgLjTh5c9lDV9rFuU2XDRLy3tUKsBplMJpMCWhEfdHhdzbTCEbh7Ye5TzWt2SE6ZBLYR4m0vFMeD4xngZef/KS7d3d6nQ5TyPj8Mg8H5i6DdZ5rGvIJTHHiefxCNZTvMG4hu12V1tTQVX6fgMhoUPA4jE1biFbQ28cxne0/Z7h3W+I2pIrMr4MFYxZXCflOZnnRFLiilmq86TVmq5xGC1rOMUgDo11HxZqk9TFuRTRByslG9jS0NX3VBoMcVUUTYbs5ylGjPdroLIuMuBURij4181hjJGSI0pd7t9/7fr+TYYSwXHfb9jt79jfvqDfbFHarAeOd5a2UQxnSfuWJkMKUqvBG42vQtau97SdweiMSmN1nBGgXOdE14gDxuN8utBzFg6sEjRCa1W5cvWA8g2pl8377q5lCmemMBNSYbEKrdUgy9O8cN5VLU5ShZpAeJhjnXrlXLBOhJsaJVQlaykl0zUNwzAwTdNa9BgrE7gQAs46gfe8/Puc0xp4JQfhZdJxTTdYGpFr0WS6KvwlYEvyO1JKHI5H+q7H6otDlFI1J0MvYVmijTgej5Ln0RWxQqs/hxyMlU713SZjpQnluqkbnHV470hz3RCMwvsFxWiwbYtTFq8NG2e537R0StGTebXt2G4MthOHqLzR4DTWyYLTUahxNiniOFPmjEoGmywGhS2akJToQHS1HI2RrMTBo3RQWgUd+NZiRsSJJE9E3IqqmZIvxSzgrMdaVzUBsmkYrYX7Xa01xTnKrAjIunHUzW0RkSotwViFSo1ExGoLFKyqdXMpUgCq6jy10NXIiqKpHvvfd7X+C77URddS6oRQUwk+33FaA2S5ZnHiEbCiXNyUgFiddKTZrUWrumyK17avInwWhxkJX5M1thTPKcbLMIK6+dZCRqmMMmbx25bC2RVAo6zG0GCjWCW7Q2LyM2prURsLNx1pVpQwo0shaekuGxTp7QNt3/Jq09O8fMXD8YnTNDKcJUsk58gcJiyCxkxzYA4RZcRtTxvN89NjDdoURIxqz5zTvFKJYpBn2VTzhXEcJbeoiI4gxX9sVHAt/r5uMr57n66pa9eNx2rrWBYHOk3bNDKhq423qonrC0qTcq4NiRXb87oXzfNMrtQ5rRWH40ECxOixVpqtECbGQUIIJQtJMjTkkCwrZep6b73OHblGYRbT2sWxaLff8eLVS7b7PeQBlQOmaIpUA1AUMQWhHBhIY15R3lQC2iiaxtC2DV3XEpM0DN55zuexFg1IjoUOeGfFTbFma3jXoLVF7OHj6njY9w13tzu0cgznUXIDpsSgIzlr5nlkmgTBXpLAZQL6T7+0//91SS9bjUcyq/061MFPRvj7urIADCibOZ6f6E8tu/0W7yunXym8b9bcmRADhURRGdRiy3pBxag0k6ypDkQf/2BLNs+Sq7Tky9gFDa3aKJTkJvV9y27bs99t2PQWVeTcPY6BVCaMBd84dhtHDKJn6HY9dy9esL99AdaTmcBYjPf0t3t815E1vD2+JZVCKAVsy93NfdUBRCDy8PxM7hL7uy1jiKQpkOawog/OuUopnHHOYjRI7FAkhJFxNJWWGZjmgefnA+N5lH1dXeit103G0qh9F8VY30Iu8+RSB2xibS3mIIrq6AhAJpVE1gZtPcY1aOuZQyHERIhBwnXffmB6fKakRLvd0G63FLEcI84zp9MBkHwmZ1uU2ZByYgojh+ORbbdF2R6tLaaxFFUoJGIKNK6nzDP5PNT7jZgNeCdGQJ1iu1P8/t1vsEqhnTQL2tQiH3Pl7inOURgnL1SKNFh1ry+56nvCXJ0tWRELaXykubJOrYMcXYely7sseyjybKdav1RnxlKcNNDWCmtEi/HOgoZcmowAJfF9SRXfu8lw3uPbns3+li9+9gtc25IrDKwBZzK6yTw/PfHbL3/Nw4d3WC2Hs9Oa1il2naczGqcVmIhKo9j65RFv7NrNbfcdWhfmMImNV6l0HqTzM3WSIIXEkt9QJ5lKYYDT7VmmdDbx/jFxHBIxAZg6bZYPozS5CPwTJZ1LAlCUoqTAOAh9xnkR5JGS0IeqwDcXKmdOFkzK0ikKPVM2E+fld2sa0Wcsk8LvcoSXAxBk6hZCkNCfSou6PiAXXrTcm4bGe+ZJckK0NtUhSywqrXW0bUPf97RtRymKTb8nhFlSjxdaVQgijF7oIvqyAWitOTw/V/ekiNYGZyxN47nZ7SShOUdBdoyuNA9N73ta52m8pe89P//5J2xtwZfAzjfoJhN05jzP6Jjx2dKklo1yzIeBcJrQzrFJjYToDBlmCcWaVRZKUWvQrabZNcznmWIV+saTOyS0j8I0j9hH0EGxu9+TbJ2op4wK1aNeKfquE/GtE8ctVcAZT+MErlb1GVjurVLC570e2sQgIqqyDjkFOjdW42wNJyyXabws/poIvliw1sZ5yRy5ntb/kC/rmxUdmKapuvpUt51apAoCOF8NFy6UvgLM4UJZ0NpitK322q46dMi0d5rGtWBe3IPmSgGCS/bPZrOpA4JQ3TxMvUcymEhZJseNtbLeY2ZKYv0crbiCKG/RpoVjRj1FzMNMOs2YjSHtHckUbKO5jxs+nE6kDI0ypA8DPA2k9sCdc/wP/9u/5MOv/pz/2//0H3l8PqLCmf1GU+ZIsxHK93kYyCkyThPWaB4fPmCtp2k7msbL9LZSN5yxgrZkhOpRy+eUk+hjSiYFqoA6rvvM8pwtg41rCudy5ZxX44mcM13XIRSuGVvRIq00YZzIJTPlzPw+4Num0gAVY5pxtlnvhfOCgDrnGIPsQzkFIK8Dlxgjh+fDikKhYBynmjdSg9pK5DwMpFTpdMDbt2+By9Bk0UwsP/+1wcY0yUGuFbx+84ZPPv+cz//k53S3PSqNlDgRT6f6XmsUFqcDTSMuiIe3gzRJdSjRdZ7tdstmsxF61zgTQlpFtKCIMYnWQMuZsd31vH71hs1mQ9N4UhqgJLQq8netEzecqgkYzjMpFr76w7tqxW65e9HgvUKybQvONvLhftgGEtfVfa4Vqeypor/QxrDvtnSbjrZr2N50FDLvHn7H19/+hh99/lNub27ZbjZoa9nubjgeD8xBmBOl5j5QFEZfrI5TRcWojfB1gSiDpCJoNRLOi1K0vq2MA0hKEJbFJfLFi7sasqgwRowcTNEUXRimgG8su03B5RNOKUzX8+ZHP+L2xSua3Q1jzDRWoazCekfbbjk8HXh4euT4dADvYdvge0VsPGmcyXNi4zd89vILEgFs5Le/+4oQR8ZsUK5jc78hK8U0zey2G5rWc3Oz5Xh4xBjB59+9/ZbtbovWimE8cj6cmIaRvGiOluZClfUc+y6NdaWJr++gXAVF0bbqdA1WLTbdCqUd1lspjuczZTqzffEZ3f4FWTum+Uw5HTEfLP/wn/8W+3ymz4rP/9WfEk8jQ3ng9uU9xWu63Q7dacL5QEqWw2lg4lummBnnGRMmvO9oKXRaEzJEFBlLVhanFcoUioucHh7wXYsxlvMUeXp4z3R8Znp+z/T+t5h8xqmAtRt809G0ogMazzMxFhliqoR3Db5p8E5TZktJUWxrc5DmImdKShLcqwRJC1NY2RW5agytcZimvaorq+V7HfCRZXhegNY7oV4F0Y217QbrHdo4YpwYzjKsMBoKizPhPzGS8erNa5xryRSZmCO1U4oz4zDTusCgB37zm3/gfHrG6sKmdXhlxOWBgldnceQoy3QyiWDO6JVWhZKQrHGSh9RZT0nyea1UbQCoh+W63qUAq3Y8pSnsNz1hjkJXyROomXFKTHOsG5SgIeLscaFSGS2kLYGu5nWSmUKk8Q2lhhqllNBG+HfJGtFnJPExH4azcI6tE51HCKurlJKx9VowLpvXIs5cpq2llJUT/V36wvp3sHIYZdouVo3SK5VaLCiSURjTElOscKa8r127xVjDNAkKM05jnf4GvA8rbWs5gE9Ki2+/MuLfbA3eSqMxlYQuFoWpoTYdbdvz6uUriirsdh1/8sUbPnvRY+KZNDyTVUJbEVu5pPHRYLKIkGKBNEXKXNAOTAYVFWU2FFcwzqC8IpkEG01pDbOD5B1YTd5akp5xQeFmg3mGPCep+Z2h6Tx4ORQogDEoY1HWiqg2Cs/aWb8iHkK9kMKhijBWOBLFaiRgilnpakINipjK0RUqF6hyyQ9QlUqikmyoxhrmUCo78jJ9/GPJqT+069rVB6hiwFzNCi6HzzX6UCo6JLVEnVAWQZOMvjislVIYxlGs/HJ12ahrZqEWLjQdWCb2iq7rmGehCznna9FZE9uTiK3FrWpidf0qilSrd2WgbVpi0ZQGSqfg7TN6CphhRpeWuNHETpObDm0i5aRIcYJGYet+NL17h46B3lh+/vIl32x6nk8HHg+AnqFoclYY3zCNAynOpBh4Ph/FPSdH3mzfkGIhzonpfF5NKlIUkwzivApjhR4WmaaReZoFgSuXzIvlWt43rfVHYubvIhfDMHxEpSqlrOnWC0oIYuWtjZGGujrfKAXWaGKcCapg7aXwFwrsZS9c9slhGIjv3krSeikVbRfXmxhibSwTjfd479efb9lvr6mny+tep0Qba3HecPvylma7ISrDcYLGihtRs28IIcqQIktIbO8dm65hd3tDCakKM48Y40AZUobzOHEeJvnaYQKUFATaMk0zRYtQNaYZYxVd13C73xOCZxEal6I5PZ+Z5oFpPjGOA6oOtF68umGeJ1Ku1rV9S9NYmZwW8e/6o4LbH9hVFhCpVIy4QKG6lBnDdrvjx198zt2LG/qt53Q6cj6fOR2OvH//NafjE33X8frlS4ZhJkVwVgac1igoum7zi0uj2Kku5cNH2gLkWV/s3mExQ2FtMCgwj7N8Xkmh7pxaP5S6UKzatsNUsb43Bk2W7Cnv6Pe3aNugtMW7AiVhjUc1mhQl/0dbxxc/+xlt00FjCGrm77/5e8JxQifNn/7oFyizwauEtZnPXyput7cchhPfPHwgVTvvIyPeLXanYgteslgoPzw+8f69GJJst46nxwdOxxMp5isXxYpY1wLYaPPRuXehSYn9sKo0H1U5xEKRLjTeQ5rFj9Ea5hQEKazmEecP7whjprt3TClCpVJtvKe9c/TWYhR88+svUVYzl5+yf/MKZS3WbqBxLDaCpRicNigrlFinNWmeOXNA2YYpFUKGkDRl42i0iKpd2xJRDOPEh+Mzw8M30mB8+IqtCVinsa6j6Ta0G2nctLU8PI1izqMtm0YGxpLllolkUhZzFMrHWVqpWuYvtfFCr2Zp5kqpdacM1FHisiUhwsuQRa0D/KIq9pQl80yc2zIlJqwxJK0YpwFvFU3jaLvd91qn37vJ2N/ckqu49XQ+ghboXZHIYeKoJ1KwPDy8p6SAM4q+cTQqoGuKskWKfhabU6juPvqKmC6LVN4chFdf+e5KUScHrItWvkaKjVIKzkC2mb5tmPuWnAtTKMxRbk6IUSgF1eNXYLNKX1GVBlGoqd1x5WgL97raW0YRiZvaSCwFaIgzqkTmSola6BpLQNRq1Uj9Ha9oB9cH3HVmxcIfXtxu1oTaIs5PUdVU3OjQdkm0zeIukBKlKHLSkoqZBdbPWQRz1mq8a0S8lTJqDuIvXu+t0Xr1Zl447RLKKPQrp0W8aa0lO/G/NlrRbDa0bU/fbbm7v8e1ltubnp/8+A17NZGniZB1fQY0KoGZwNe8CzUJrKdiQWeFLqU2UwqsoTSZ0ih0pyk2kzsNXoJ75IfXgiSEjBo1ZgQzyO+SbW1anEbZ6oOtJKhJO1dpHAVdG7dlAbIWX6XSnLjQK4QXVQ8evRaxVK9tnSp1imrBV20Jr7UFuoqhlZavv0x7ZPPVSq081R/y9V0kZunTFBcNxEWPVAsJFEvpJ6m9+urrP27CJOFYqDKqWhxeN/QgB9c8i/OdMWX9uRZKwyIGzlqvsP2yDpdpmmzYrHuRcZrcQtIQjYaTQ6WEngrqHFHOUhqItoBXlAjRZ5TPkLXQAY4noGC955VzqGaPcYVTOEpgW9GYoqroOzNTiCmC1qQiKE1McUUix3FaDQjE2cxRNOhUJ1lAjokwTTIIKaVqT9Q/en+NMWs+zzWf+hrxuEZiF3SgqIUWB8udW0THSqnq/FQtfrUUjDnFizd9fe+Xxuf6+QizCMFjCpV+IJQn77zYucaAaH0utsbrRPoKtbhu4JfPKSVNRtM37O/2NH1PMZYhyGHcGIP1Ft324mY3FZw2tN7Rdw3bLZQgVudqLBgrq38OkXGcayq30AWtdShXxcTTTEqZoArzNAnKHIQqJuek7NXjEDidB8bpzBxEh+Mbi289TW84nRTDcCaljFYWCZXVxJDE7vZ7pvX+y7zqMLEsOgn521I0RWm0knN5t7vh5avXvHx9R9tZNl3P8XjEGcvbt2+ZxhMhjJAT43BimiJaOYw2ZC1Nb2IJkxOkYZ04qQuWsj5HC207F6Fsai3INx8j1gs9W2noWkvTaKyl0r/F58hoLW6WVacnttSmWpz24kBYmRwxyRAhxMg8B2LKGGN5+eq1WKBaw5wm3h/eE04Bmy3P44jXBq81Thu27R7vWtqmJ8ZCKJk5C9c/FhkGOm+xTvStIUwcnp8wxtI0DqM7jsdnxuFMCqlaVVMprpex7rL+/liTK/+u/kutawCwDPRKEQ2EqCFKZUzI+6WBNE0odSKHebX6Lkgd2DpLax1hGpiHM8UozscDftvjmgbr3KplBaCeCaai5FaLCUXKEp+QciIkaTLEwRQZIBpLBKY58vbdW9TpgXx+Io3PuL1YlpumlebRtWKPn7PUbHVo47wXgyCl1vpzsRpfmgwWbVCuAcD58s5R9zK9YtZ5PUOp9G2pVRIp5zW3rJSEwlTQSd7fnDJai0GBM4bsLPN8Gerb78nf/v5Nxu5WPLpj5PD0wDAcaLxjs2kI4wNPD4lcQ+68AW8sNxsH0wB5RpVwJbCVJGWrvNhhFZm2UXl8SgyspUhTwrVfzElW6ojRApNSJ8FOfN8NBZ8t27ajpCV9WZNESyp8x/MMxUBNZUVVdGThnKVEiHJTNfXr5glVCsY4sesNoXaVGaP35BSI80jOsR6wktItMP5yo2UjkWehCHe4TueudRfXU8RrUeqi3yhZUIycIEdNjlHEQFVsqZRY8hrqNCYlnh4f6iTBYW2DYiCnIiK1kJimmXEY2PT94rUl0/1aPIzDIMJRpTFONkGxj6sfm20t1Axu07Hpduw2e15/9gl/9ssveHHb0+uZw2/+BhNmGiMODG7WMCTCw4xVFqsMCo9OEYUkTqqYGVOgOIV7sWPUAd0q7AZmq8hanik9ZfQMWhVUtrgPGTUmYohkbZh9IrcFu9EkFbHaYp0DNM2uw3jPw4dHnDI0VvRHqQbv5QIh1DR3LchDjLIJpFJW56JlolBWOo9G4Si5bhix1LC0Sx7DouG5BBuKBmMJgIo54JZpMv94c/4hXeY7G9PaNCM0M5lYx4rG1vu6okULP1etwYelFKZqpbc2B1km8o31eC9ObIvoN+fCOAnXtmkamqYFRGPlfbPSuL6bAbEWu4s3uFK0rRNxcsn1QFQkkxm6SPumR3cWPmji4YTKGRXgkD4QVSK5SOojzAE9K3TQmKSJDw8opdg2Pbc//Zy2yTwMHzhPSmg5CzLmHLYkYkm8+PQTpnFmHkc+fPhASZkcE9M4ypSrPl/zFOl0R2Mdp+NRUNucCZOkYM8xEmJit99fIU16FUZvNhv6vl+bmO82Fd+lQyzv4TTPGLUEc2m8c4JMpYxVBl/Ru1Iq/VGpSkdcNCEywFgbl/o9U8rEFBjDcDWEKTRe9DbD+YzWSuiLsNK4Lvf00tguz+aih9NaaJA3t7e8/OQl27s9umkZ58R8jjgLybU0969Q5wPp4R0mZrqucBMN98kTggzL9nnHaXhmmieO5xOnYUJhsM7TOo9zfnUMPBwOzHNkmiJPT09Y+xWn05Hn52e2m5Z5mjidThyez7R9Q9s13N7f0m9amtbiGyeonJZi93gY6LrFrjlyPpw4nwcJnvuBXst+LEPGep4iKI02FmM9Tdvz6Wef8eLFC/b7HdYpbrb3jMOZ3eY9u23P49MjDw8P/NV//L+z67dQFCkKBdNaLbazFfVbch5kWdRmF9E5LciFKlQ6sQyVrjVNy88tjmgaZxTOal6/2LHrteSA2ZZFs5aWYVZGKDFGUYwn+x5sT8oKHVPVQ0wcDs88H544nY4opdjtduxvbhjHiTnMHE9HphhIKhFV4W+//jV3zZ6Nb7npPdvG4XSDaRw//axlnGfGeaLzj4x5xnUNu/s90zxwPp04HJ4ZxyPbTU9JiQ/vnnl++MDpcGKaMl3Xi0EGone8RuCXGm4JAP3IQOLyr3Deo7OEwD09PXC/gWIyIc6UkuReG4MxDte0WN9ADtx0txjnKSFyc3eD7T0o+Pb/9dfcvbjBtS1ljjz8w+/Z7m/Yv3hBf3uL9g6MlOdZ5cvAsZ5BSsR4QpUvCUXAYEAVooKCQXlHSpG/+Zv/wmdbRa8j/aaj3e5wXY/xjQzNtSUl+PD4hHEO31m8bWi9l/MuBqbzqdrHig4l1dpPGoskTUbOpFguz6hR5BDFAl9r0RHyMcImuR8Gbc3KhJG9V4bHCiXGLCkIcTBFvLM422M1pDBT5sRpOnyv9fq9m4ym6eg6SY5+fH4gTCfilJjPEmCyjPQ04sgTVWQ4ZFo9oVVCr7nXtSPXBq0cShkUhlQCVhuct4i3mBTKCo02AhEvIULLYRBikK/Xai3QVD1Qu5qE7ZsGbRpKcVh7JiWIcSAEJQ4UdcK8XIsIu1TOmVZ1bqpZ2MzkDMP5xLLPnY4H4XHWwynGiLEW78eKUkjhM00TzrmVMrLwEa21YoFXv++104nWerXYXMSyRotoyDtbf3dZeLkIbUMrw+FwwFbnp7Y00qiZgrGFlOokdzwzTqfq/y3BiefzEVObOqOg6zu6tmO73/P1H74ih1h1CnblTksuiMV5SeWdEUvXGAJbZ/ns5oa91zz+9kv49gBEcBBsoswJPWX8rDBd5d3niNGZ0hpKY0hWMQUoDtQLi2ql84/F4OdMnoqIwg+BfpSbMplJqHdkkgX/Yk9pQTUFt3WoeojkkomqkIcBNc2gNMM0M86JcY68fPlaqE6lgNbVmi+Ly0vdDEvO0uhRszyUlmeliMVcJWWx1M15hTJryA9Z3EYWnY0SXYG1Dqs0xjeCkNQpww/5WlC7pUgVi8+lwV8QNhkZLs97jJUHXQolS9CVCN6qi1E9zJc/rTHkIoWC1nJoT5OkX19EzWLnKkYNF/ekpdG/LpYvGTLS9KWSCTkyjUPVgGkmJrG3LRmLprQOpS3WbzGNIY6B9BwwY2HczkRXKK1G3RrKKVPOCZccGoMphTwOqOf3/HTf8+Zf/wV//Xff8Pg8chpmphBrCJRFuYZ5njF4Gu0J4xllDLnAMQSapsG3Dd1mwzgNGC+ZNd2mI4ZADlka3LqvJFM+2gMXYfw1HepaN7a8n9duXcs9Wf67aYRisYhiUapaYcOm72WdlswcZtqmq0hppaLW0ECtLnvr8XhknMQdaw6BTb/DNw1GS+M/nGV4Y7Tcu1jFjt+dnl4Pc5bfF6h6Bs/Lly/4V//d/4ZPP/sRbbtF64YxDYSQGOfA/PDMy5sNynTobs88JMY4MEwTw/mMsq0ULcqw2e7wsaENgb7PhDlTkoTaxooqtG3L7c0Nx9OReRqYY+HDwyOH45H3Hz7w6Sev2O92vHrzmk8+cxij0Fbhm4bdbieN1Tjw4cMzjx8Gnp9Gzuczw7ngrCalIG5uJOCHu48oZYQypqGUJMYfRaOM0O+6vufm9obPfvQ5Xd8BihK0DKqKZre7Y7PdcH//guGTIy9e3PLt199yeDoy2YomxLKyEaTBkGwwsYSWQUSqNqJSGVTKT1Er++HaFno1s9AKrYQD/+q2l3PUGLwFrS2lyLoJ84SzTsxALGActt2x2b/izac/x/VtRU4uoY/OOV6+fMlms2G73dI0Lf/xP/7PGGP49NNP6buep+mZ8/nANCWeHp/ZtRt+8umnpJJxNUS5sWJT6q3Qx3K3o3hNwvA8DMzzCCrx2aevySFyPp/4w1e/5enpkXmKaDwxBJSRgZyyyGBNCwpyTbO8zte5DCmq4JtM1zbsWsfnn+7R8wdIZ3JK2DXw2cj7nQJGZW42HXNGAjs3N5gXiCvTNLHZdsR5hlzYbnd8+N232BeJbbuhvBAGhDKSS5QqVKUQs9xLjVjovaVzFlPAFWCOpHPkq4dn3h+feTg+oHRBG0F+vNLozZ2wMBSM05lUXeMAdjsJOSQX5uOj7KOlVPp9RS5yJoZZ6l+tSGWR1CtQMrxfgjfHaawmSgtiJqhSLpIvt2Tl5FwNDmrtHGPCaHCumqgYsbEts9SLpQ7dpeEJpPD90ND/H9yl6o03mq7z5DTWgI6EskYgxVoUO6NwZine80p2ELcNg9LCC7XGrdMBU50ZtNKVZ7ZCF1wxFOQ2L9OnC0uF1RFERncyoVaqaiIK+00i5cI4R8Y5cy6ZPC/PzUXf8RHnvRRZyFoeNajOQTEAcd1YUg4rNPjRYoHqgCE0hGUaek19WhbY9cTjOlBs+fzy31YL2WqlLVkjbgBVPFUqrBerQC0HoVE0XYOvwvhYErn6tw/DkQUNQmmmYcAZgzUabw3KOYzTONewv7kRp4FcMEXReC8FiJagPV0tG/u+pXOeXdtzow18eCTpgnkcUadIsVKwO61QWVzFjPMSmFcgjjNzq8iNfOANNBZlAFv5nkkJneqUUbOIwRmS6CGUTH9UZym6iNZ/ZzEN4AvGW8i6QojylKaUUZKYVO+jTC3kbVFQXaZyrvBinWwUtVCgoGL4ckjlBf6VjVb4jiJKpD4H4iRV1ud6KbSl2K7aBW3qv1uQjB+28DvFyDxNTJUTf1lvl8m39HSXZGStF+u9CpfnVBkLqhaPl0NrBUAQ4f1yAItj2sf0tOV7SAaJHNLe+7XB+G5+DdQslRRJc2LRgBZVgFr4K7DLBNQp2BhMbkmqoM4ZPSSUSWIx3hh041BZQgfVDCXKs2ZKgXFENxrbOl54g+4brDY8nEem4ARZ1Rqb5WuKipJdAygDTdOslr3GGrxqsBWd1MaiU6ZoQTNVSjKEWKiJV0XA8l4tmRnXjkzXmpfvolQhxCoO95d9/EpkfaE/JVKR5jMaQbGMAWsdxhtKcUzDaaWyKS33KlUk2RqLreslgzhLxVjpAxcBP1f76EdOUld7/nLObW82vPzkBT/52Y+5v78nZ02Yl71c/kw5cR5ndIqkqME0GNdifcS5GeM9qqZDlxIJQehPQw4S0KhkeHZNk/Xe00QR7+cUmEOlaCKjiqZrubt/gdGuUqVmDoeR4Sw/0zSPHA6BYUzMc2GaMiWPogXLAWfBWo31P9x9RNwNL3ulHL5Sf5iKuEkehmRKGW3EpS/LmW20BLgt1uApJcIYKAnG04zRjlxdjRZd0ZKUfP2MX7skoS6DyWVfgcv+s+gyKvsdo8BbQ+sczmp0NShZm786UFlojQWL8z1tt5NRZ46kEhnGs0y25TRju93Sth1aG56enpimqRq+tKuZS1EQi1ArTdScwohWjTQZSVBEg1inbnxL0opUYA4FWzStb7BWk+ZMQjPpkRQkkyGGKFVfLmgrrAfLsk9QqW1L43ZB8//YJUG3CopoUhYyuOiS9JqZVlIkxYkwnRifP2CaO1zb0RpDtpDzREwzUM+RlJnQ5BCI88w4jTgSRqL48MiZu9yNvOafSNii1lLzWK0pIRJCZphm3h4OfPv4nsfn9xyPj7j7T2j7Bq8KsShyzChEXyY5L1aS57VC1SC9OEluTimZRK5n3aLDWmjal/3ro5p4oenLA7OixfqqPlmHn0VkCsWsL7DcHOBiGsTyRNb6RWsZ8n0k7P9vXN+7ycglVtgIttuOMB0JV5QGlDg+WWNoGkPnwNuEqtV1QThuWtu1gHLW1UlhrJNIVaGbBbUQzqW8QZfDYaEXqYXwt/x9FYCp2mTYihLEWAhROpJclGy8aSaFRCxiLbpw2T564HO1Qi2yiRUlMJIIgOVw1sausNpyraFO1YMdJU3Vorv4blru9deIwHT8SCC70HC01jTOEMIs75F1AilWuoEyihRrvoXUz0zzzPF04qV5ifUNShtiDDIJnGfCPLHd7aAoQoycTyca72mdIzeOpDSuKbTasr+9rVODRAqR1nmx4U0R1wkdZZxGPt3e82Kz467b8ALN+A+/Ffu4AudThk5Da2mKAiJKZ/TGYfuGFGbiNDP2nuQS2Wacl0Apo0CnRB5ARdARzPMMM+LKR6H0muJEo6FvG3nCjULf1Am5FrpSngUtk9WbargMK0XDWEvbNbWAXNyPtDQiS/FfsthvapmoLNN3rTRZZ7FRLFQbOdlYoW6eLI5J+dJE1o+Cwjor38MYrHGgNNq4Ndfkh3qlKK5I4zh+1EwvgwbpJPVHwm+tddUMpLX40saiVLVXNZdC+NoiURoEOdbTimBcMmyu95J5nnHOsd1u12LiuoAu9WtTTBBEWJwT1S2duofpmt6uSTmCMRSnUaapzmQFdZ4xx0KJiqIVundAAhUpJ7HkLLGg0ZR5phxE83aXFbZzNE3DuRSGWexwVRbkN4ckzUl9xpRGwkBhzQBo205uQiloldHaCQ3DZkx1Zbqe2S3T0ev97Drnp2ma9T01xtC27apriZUfnpMgGSI6LsQYrpzDquFFkn0xERlRWGNxzguFzUmw6fHwBFXHVICmbVCLveVSvVSO8aJNodIK1h7jqkFfGsm1SKxMRaUV1inuX+759Mev+eIXP6ZxO47PI/N4IiVxQyvVMORwHFA5QYh41+PbQh81m6Fgmg5jvWhE4sQ0jQzaMA/PFGOkZCqCWAJM07SGrArdS5rspNRKyexrAR0mxek88vw88OHDkdNpOZMKzivmMRFiIQTJSoGE0ZnttsFpg3fun2mF//NfIURhQmgtk1oZ1bDY7N/c3fDmk9f4xkmjugwU1ldQlY4qz8B+B/PLSMmK54ej2LRmA8S1yF8E2bpa9i812ULZVKpU29tlGHEZaCyNsa5kV1UyhoxV0DUeZ+Xrl8nUYnGeaxJ8RlNKQ9Nu6Pod43TC6oaQAofDE23bQB1mbTcbQBHmwPvnD2it6bqOzWbD09NTHWhqab5NIaiZQziDRvKsSmEohV3b0DlL0/WEWVDaojKdaui7jqwLh8cB7zSNk+EHdX3HGNEq41oLyuK8IPBSxlU0p7IxrimX/1gjlQm6ECzE8YzNSQYrRbIzFr1KiIE0F6YU+TAm7t84zGaDV4UxZ6Z5ZJxOVeuViKkQz5MMRVXmPJ3RacKlgldFqMlFrcPrlIs4xYUAw4RvO5T3ZKeYY+E4Bx6Hka+eHnn78J7D8zvmh2/wf/ojtrsdCs1weEIVseCNOdDqBustTesFpYiRHAJprmGZuZC1IAgKhLWyjC2LmJIsNQdIIyR22uXSIGWhOplaT2slA7G8xJgoyTWD6qC46jUEeSpKLz5rKGskOyMKbWv999/j+t5NxjyfiUnU5ikI7Kpr8b8EiClkoydKgatdwtRCQCa28mAZa2i8WRfwQoOivjHSPNSu9WrKez1F+2MPJstDrIx0aSRMgU0ndJOu8Wz7FlKkswMPduTDc5IcjdoIqeXAqsjIclNDvEwqVZ2KGWewznI+n686S7WKIIXL3AisrRcP/4ublKsb/VLsNI0kPzrnPnJxcc6Jj3EWwbquPDtjHc5LAiXaIM9cRttC2/Ycnw7kIrkdc5gp5xPDPPJ0OtZFXzAomrYj5cwUE/evXknoT05kDafxjJ1m0nFmVAHbWAnKSpnzcMY7y+c/es3L7Z6977jten7x+jXqNJCeT8x/83eECkOqtmUkybQgFtI8YgqSuO01NBk2Fu73FCOTC1dghyUdZtScsQmYS00/zdIgtJ7cWErjKduGbCHoQGmkQLTe0ux7YqnC1qSZ55PQBpIs0LYXR6yQBA0z1tC0jbiMhEiaZUpcjKTnxiTImNGGxjdVE1On7FSrz1q0GCtNRkoZklqLC60WG9VqPVcAbUHL/VRKo63Ftx226dDa1iL8h3v12y2pLCLtq7RupMgKMZHSIrZknaCXcpn0yRKtE2oF4zTVwyDTtm0VtymZPiVYQoMW7/emadBaC+Whugota/FwONA0zYpqOOcptcibQqhDEjAq4LpWnD/izDCcLsV209R+tYBKjDqQN4ViLLPKmCOooZAmmLcz+Ix2hbwpGN3gnKGZDNHL3mgjqOeB/Y3nze2el598yl///a95//DE4TTgrCNZQ7CakqpeJWVyCLha+BtlKVkQU20UORW81yQtphBKKbqmxfmG4zCuTd7i3LU0W9cUo2EYVsqktQ7vG8kOQNE2bnWSWXJzcs6czxf9w0qpSiKmLFd7vYRUacktKtBte6ZxYBwHnp+foCLCbdMINYmCMqLvmJXsDyVHcphlOKQ0RatqcVsHWNWZxVBNRbSs++2uo+080zjwd//5b/jFn/4KYxVNZ3h8CrXRqBYbxoj71ZBITpN1g2sVuz2UOlDz1jPlRFSSG+K9aLSEDy25LqUkQhRTiO12x2az4at5FnpvyoTTxG//8HvGeeTh6ZHzIXI4njmfBw6HEyGI3a51SwjsLBbRIaK1pCb3vcc1PW3f0vXtP/9i/2e6TscTTStrVE5p0dZtNj1f/MmPefPpG16+vqNpHb7mX8Q8o7Qgf957Fs/xojW+cTTNEd94tC1rk6FQV2YfQFFMU6iiY2mEL5qySxhlVhfTkPWqk2ZkFkDTOD755BWlpDpskYbGKBlolJIxXqGMZGMopPA1xrDd97R9x/F05OuTZGO9uH+Fdw1Pzx84n88opXj9WuyPU0p8/fXXfPnllzw/PxNC5PPPPxf9pVK8P3zL+0fYtD03mz0vbvbM1gh9SIvOx6dMmyJmVEwhc0yB4XmgaXRt7guush8MiilMhDmI3hZBPVtjaLuuOl+mmklSWSvr23Sp57SCm03Pq5ueTWeIxwNUqtSm31Z6GSgl54PK0PqCjgNqGlBzff5VofUt9os3PL99ZD6OhCHyy1/9KWa/Ifaeh6f3dM7R24a+2WOUl/2n0mUPxyPHw4E4TLQvXkKvGErh7cMD0zAxnc/87ftvycf3+DTwZz/7gm3fkFPgfBoo5wNd5+k2Lba6ei4mQGGaSdNEnEYxuam025IrKq6Q9O4UVqpTiqm60H383qWccE4C9FISSm1JkZxB8uQgJ00x+aPhuOh1BbHL6LXBCCmRlcYZA7kOCMOMQvaa73N9/5yMpgqbisC2q2sJS7e+0D3EbqxvNEZPKMIKWYt0Q69Wn+qqMbgWDsqTU9aD7XqqeX0tHe868a9w5WIvqpTGaFAWshNnJG00r15sRBysMjGOnMbCHCGVa2PcC/VpuRb0RNdOI9bG4xoBuQgJ5emo/kIVMpcbc83zXiZqzrn1NZZiZXVFubJ8c87RGIfSYrVrnV9GcMJ3vkoel6mcowW6thM9QM50bYeuAksVk6TsWsfuxtM2LSWFKmBP2OJQWOHKY4Q61Xp+8aOf4nKkM4pP7m/Rx5EmKzZTQr39gE0JF0N1gFBkBUOeML1De43S8nvZtsE4y5QjwSuK1WAcejyjxoSeM6pY9JhRMWGSQjuD8gblCsVkUutQjcV0Dry4dngtyZ0y5TayqYVUU7wtMcvBrookuS9puihVXSQs3jtxOYuxOnVl6esXNwd9oZ7EmMikVachaMVlIrUI8pfGg+qMsqAnl4lXFWtpQcm0Ea9qtBHNR/rhJvUCazbMdX7FBVFY3ISExnBNF4wxiIaqpoFTQUx5b1WlStSNW1WiZm0ghaYg19JULN97pVOlCy1FXIoUKRW8B9s2NaCoUIK8/9a6qitYrKkvTVFMRRxCjBFKYwlMLhNyIfYFryQYklPBHDN0CtUVgs2oHmgUyRqhBgImZm60YZgC0/HI3jle9w1qbknjyDkK2iuTOSglUXI1klCLu5agYste6b2sc6UUbekwC81jeT+vkNXV1vWaHlLvy6KxSdXVSilBBSUgb0ELck1hviDQ36WDLvfJeV+zYly9v5WPHIWam2IkzqHy5WWSmWKUKaVW4KvN63IOUAtEBNWIUVZlWu5bQRB6Db7xNJ1nt91htSNMgXffvmOz+QPb7Q3etxhTCHNicbcBqojSMccsdNwpEGKmqIBWUiws6b1QzT8qQkqlQlIHdCnVPQHJIMkl1cGbZZ4jT88Hci4Y5SVhXEseUwjSaKtZrQ2zWQYXRVKkpzkxzYmuVzj/w20yxJZeGAVFVSMOo+j6hs8+/4Sbuz2+sZAR5JHFsTHVfyvmLnJLNEonlMkoE1EmCESOoFWpPmfyHC9F8CIOvyCnS6o8XNYFUPf4Snsqsm/0nafvehrvPh6eyFfU9Wnw3qw0F4Wm6zfsb2/om0b2O6PZbLZ472mbDmss/+W//DX3L16w39+uSMiy56WU2Gw2KKV4fHzk9lbqgq7vCFMgkTjHgU+2r2VPLDDkzClMmKJqk9CjYiIlxRaHyZmCovcNfddTiibMmRAn2RtTJkyKafCI26KslSVTa0EnFydGec+WwrcKkVVhnkesWv6u1BWuKqVHAZmiEpnIEsJ5fHoidg22dzjX4LPi8HACn+m6LamxhBIZhplZBXZ2iycxPrynmI5kLMFajgXGlBitIRnNUWdmnTgozfsQmceJcBo5xyi1lre8vrtlHEZiAZ0irTN03tF5j+0aUolVexOFfr86PSE1RaU7SUUtBhKypVU3KsqlHtUXYX0phTAHQV8yaFtEolCpxUUh+wwV/ajvnlDXkLp5QbTrUFaed00pMjyXbetyv/5b1/dvMqy4m5RcKstk4ZlfFtbyP52zkqhZYi2mlgdBX4r0q37h0qDwjw6x76Zc/7FroVRc/iLL96I2NQacqyIko7nb97IAS2Ic53ozC1OEZclz1W585IwgxAn5r5RWi7rl571uHFSd6q2HKmC0WcPq5GGQBuK7+QGq0s8yAhvK14oPvGtaJGm9FshIXyZc0oU3HGuuiMEosYqM1Q6tbTusF9F4idXFxXkRcBsHRWLji5opukPh0Mqw7bZoDY23/PKLn9DlSEfm3nuG8T1qijQhoaZnlFEYrdBOkZSudrsJ03VIzEGimIJuDbqx5BwEzlYahcFOoIaMHhOUhE6FGpSMaiyq1dBCdAnVOPAW23rQkkTplTRg9SgnzIE4RXHU0nUKjvDPnVuoTnKHl0VnrGWeRnmPgiQpZ1VJJUrVqbZMe9CxNs1yr1KuntYKctbV7tjWhlrKoJzyCh+jRdi9NJhF29pkGITmJwXXcmj+UK8QgjyHtYFeqDcSkCdrRinz0XqWdSFyvFJAmcs6yRUiNlpX55aK9BSZ1AhlrYrkrvaVCyRf6h4jKG3O4j+eUyQo4QSr6vxjjBXbUa0xzlLCvE7fhQ4Ey3MkWTsiRLW5OtZlSC1gjdjrnjNGYhIoulA6SF72oKxA54JO8nO3WrzaY4o0bcOtVaTWMXjLNEmzgNHVWED4sotbiFaqIuGmNmQi1BbmnyCsGrGllMC9aivOxU57ub67N1/fwxhEmybvodBftRYTgyVbKOVYC4cLv12K4TqT9tUMpDrSlCwZKjEEgemj7GFy2JW672lIeWU/rij4+mMvB7DYMkqTUZ+tCnpZa+m6ln7bsdls5V6HxPPjM99+/Q3qE4W/F7G1JEFn5PisNprOMYWROUamkKpeRJKhS5F7uXChr7n7ZQl1rdq9lFK1WK8uiiqveq6UCtM0Y/SZ3c7TdA5jDcfDkWGUveF6GOWcQ1spZEpOzDGtDdCShv1DvLQRFkTKmVTAugQams5LJsam0vNSqbbtYuVZWd0oLVrFslRYSqw6tc4oHUFFUFK3LJRLkEZYLee5Vsj9l2chpY/rhHUwWk+g5VtZ46qrnce55etLdSVc1pboZsyyBxYwxtF2vRgIeEcsBWssu+1u1SoV4O37b7i5vcFZyecap4lc6yeta/6GMfz+97+n73u89+tEWiHPq+maNWNhCoFznOQ8bTaYrHFF0+rMrd+ACegc2TU9m66nZJh1ZJ5MbeQzOQbmcaxUME3T9qsWCyNrQmg+1WWU2lZVOhyIo5HXanVzynWIu7j6VWPbanMrKPn5fEZbi6MVXVgjGUM2ge82nHNkPA2c4ojZWFTfYoplHs4kU0jOM5eWd6Uwl0IyBt02nK3mrAvvc+JhnEnjTJlmIlI3eGPofMNwOmJLZuc1XdvQeodzBuOMOECVRJoDKkptoes9VFpJjpzANJfB9XqOyXOYy+X8gvr8FSQFvYbslQzKVP1ouTB18vXzWZlD8tpipb98z5wudG55vbxqp5cz4r91fe8mo2Rw1X5tHsaPDpvriX8xiqgikYJVCYMUBQaDNb7C6WKduDQX15DPtavSMmG8vq4/d40GXFMe5IYsaIL8scBBrXXc7m7QStKXKYnGjxxOkeMZzmMhFclOKH+kgQBIRQ7K5fWXw3IRcOt6SF5PN0spwmGuD0LTiGh6mqaVtrHQpc7ns7yO01gjXLxSMlor2n4rTirGooyp091LcaQxWFXQ2jEXsbA0xpJjRCmNtx7ne+HYWUOzsZVHXsMD0eSiUcqimp6u3WO1wxTN/+m//0uaklDjyH0xxMORfDwSDgP7rsVZcQdzrmWOs+SGqITWBZxG9xa9taQk9CO18QwmoZIU5PaYKVMgjxP9HFkS4GcUfucwrSI3BrNtybYQdGQsCe813tpaMUjzpI0YC8QYiSEwjQO5IhnaGHzrVk/yrutomh5tLafhzGa3oelailKcx4E0zjAHusYTKl5RtKJrusrdF71OTpGSIqqID/0iOFVGFlCuZEhjLaoUAkWoUcqAsogtn8F5mbxMcybMIgZTvjoq/cCRjGmeCVfBk8saXgojGUhc7A1DlLA46rQ7Ic5mot9QpBJZ8mcWNDDXiXBKBVOHxDGGtZm/dqTyvkFrs+bYeC9uTTmHuqnKUMWFQNO2dE1DdlL0ZhJOZcxi1Uh1obGecZZQNWMcW6ckp6Yk3O1GbKu9ZDHoJ0UKkB4VNnWkHpIPhE3Czopcs0PDOYoT1AhTnGkM3ClN//Ke0/QNh6Q5JI3X4ppmjGK/2zFWg4dYDRu0NjVTQqgLWotw8qwVnArzOAndajlUvjMAWSy1lwnp4siVc+Z0Pq379zRNdF0re5ptOB4PUuwojdFCn/KNJF3bSns5nc4V1ZBie3GHSjEynk/M00SY5xV9WJoQWOhVVKvtj0Mrr3xYKGWxI9GVXiqdyfZmy93dLdudpEQvaGOcE++++pYcE/M04vuemBxqhhAjVvfSJCa1mCKCVrhqICCNsybMk6AxKRHCXLnriTCXNTQwZclwEo/6xBym2gQW5jBi7Yb9/oZXr15yf39P0zTkXNht9/zNf/k7Tqfzes60bUtT6W+H45FxHBnHE4fjWdDt7odrYdt4T8ihGpxAzBNtH+h6h9IBpT1GW3HwyhUhc4bGeZQS3UAqqU5z5dmwTkS4gkCWZUtGZVbEUr53U6nY1OZCUIyPh4sXBoY0jKJ/ss7Rtl0tBjPeIjS/lcGhLsOvInuY0ULL2ty9oNvs8a5Bo2m8ZGYY5/jqq68YxzPGav7iz/+C7XaPMYbT6czbb99ireXm5obtdreiGre3t+s6fXx85NWrV2w2W/rNhmLEeESVQlCFY454Y2kaw+ntB7auZ7PZ8osvfo4tgdP5GRMyX/ZfY7JhNhObvuF0PjOMIyFm0jwxpUSOmVwZA0VRLVZlqLHKu2XKh7aiq/UGrJGBqSpVX1dT2FWRoQZaNG5JF1Rj0Y0YwEwpYUPCzQWF4f7uFWM3cjoP/O2vf8Pj4ZnjeOLP//XPOTUG0yW2t3sULcV1qH7DH84Tp+OJPAdevn7FsbU8psSvPzzx1W+/wcXCrbHcbzY0+UycJn7z+2/ZWNh3jq5r2b7crkX5NB3r+SQGPLrWPyUltDXrAH6tOSuCoQFVlgI/o+2CdNUQ6TrI0EWtWkFdkTCJh1A4I89lTLE267IbphixzouRiBXd7jDPzCGy3e5FW50yRhm0a2QI+0+dk9F2e1pvUWSG87hOTeC6g1c03tK2Dt8AU8AaUCwTfVmYcshfTfi/02Qs1zIlu16819eymJebcd14rBA8lSblqmokK1rVUa5ujLeWTT/z9Jx4OkaGKTFMsXofy+9VSlmdrFCXTm/5uS4HsZYwHK1wznzUCC1NU8lZJvI18E4OCxF8L8JU6lTbOsftzU3ND5iJKaFiFDhsjiLyZiHuVcvUkkkp1glmLQ60JpZCorBpO7R10ng5g0E2z67tiPNE0/b4RoNJ/Onnf8JGOcLDE9t332BCpIwTzGDPIypGlNVEIjK81VIMlpGsJuadpjQGKsVpYEKrgrEaP2s4J3Qs6DGhUkYpi7Oe4GfsxmF6i/Ga5CAZyFZCzMRKONIYu6bA5wqjkzMqiftPTLFmkVT7N6urF39tQhVkErFEdLm4ZIFsZkZLfkVMkXFM4DSlZrTkEjGoSq+xIpIqRXigxqG0kUyTityJ08NCF1Q4X21Tjdh1emNqMQ1TiBzOAzGDazbYLBoObX64rjBQG+JyEXQ3TfMRYhljIqbMHCbRbiCiM6G26BrmJkJJQSoBypUd7WW6Pk4TzlSBYBWPg6Cb3llK1qQCkYVjn4jfoWZOQVXHNpkkeefQ2mCdw5HJRpFDIecld0cLPSJHwpTIOWCaBoyh0e06lS8W1I3GeDCDIQ8wHAN5KqgO+hee7CIYiE4xPM/YotDF0ITCPiQ21lI6x+HuDmcUOU68HU/keUJXSp91EjZljLj6pZyZ5wRMxChrx2p55pTWOC9oYCoXhPg6LX2hmF1TqNb8npVOVQH9IjzieR5XwTSAsbJWYxa9ja+6jxwTc5xrE5NIjSenXNfesHq6KyDHxKLpSyvnWAShMeYKH6hVuFgK1ZlNEG4ZxEjx2bYNN3d7+l1P0zU4Z1ldWHJhDomnh2fmObJ/sefTTz/HGMuXv/t9zfeoGSZ6cSES6t61A1J2iWE4czyeeHh4YJpmUipY09avl4fZWQfYOkWMbDY9befpdy2//OXP2W53dG1L07Y0jQcUN7t7ci68/fYdHz48rKYGy3khk3CLtV4aljnx/v3jP/dS/2e7jLNCFwOmKRBzJKbM4XTkq69/x/3dC252d1jTshJC6kCzUIN2hZ1GKQqtG6zZ0LY33N6+Zjw+kMLEzCy0q3oPSxZxd64FW0Ge7xjjH0Fea72RIKpC27Q0viFMA69v9tzuWjatQ1OzbOq+L6+jKuNbDEbQjjkVtOuw7Y7zNGOL4TSe+eqbr/jq6695/eoVn3zyhnHcAloQV2V49erTGqY78M0339D3vdjMV01o0zTc39+z2W5Ff1ZKzQmSXJmvv/4abx3H84Evf/sbyjDx489/wudvPoPsUdmwMYY//emfYU3DV99+xe+/+h2P52feSX+FInAeJ3kOG7HvDVGQNe+bBbwg16ZBI/uKs4rWKRpbIE7ELOGVmUKJgbwMnkqsNPRq/y7JyZINdB4ZU2I+HHh4946HDx84HI88Ph94PB+rgBn++v9x5id/8mM++ewztj/5BEXPpBzfJsXgWqaNIbQ9XyvPWRsOSXGICjY7uhC5K4VXmw15PqFSICu4e7HjtvdsO0OOmYBoLdZBQszkIWAlYIVSMnG+oPzXzoa+caQ5CtWpDpVFUiA6sjVX5epZ19SBe4SkpE4sVPQ0F9AZayRbQ1gT4pq1QMC6so7CPGFUkUZxONI1LRkY/qktbPt+g3cGcn3hK4qT0F6r+kAr8TQHlJLCqBKA5OBe1+LHzcT1dU2d+q9d321Svgvrr/9b1yAo5OdcPN0V4qhUstAdyMJrlcmkZpgTQoUrlOo2IFXNx8Lzf/SRy0qj+EcQahZxn2xbi1WYXp2o1saJxYFBJhlaV9vbIlB3QSZpKaZKwanmpktDU8rqqpGrqFISRA3WSpy9qq48oqFp2HYdQWfu77dstw15PvPGGdpUCCXhnp7QMUHIEApmFptIbT2zU2AV2moSgayLZFlsJEl7+Z3zPKMy6KRwk0F6ooyO1RbWGfTGk5KmbDRlYyhOifOrlg/0kvIqExeBsoWilFeOq3w+pUDKgcISVCjPZSmKJZ27KASdUEXoLc5X9CdJXoiWxiLFIILsWvguG0POor8oyGQs1YRupYQrcY16KXX5vkrZWvzVlPCa3ZBzBFWIOZNLpWMo4R3b7+no8C/1WhryZdIHF+Qy5cWdRRq8JdDQWrtqn4SOI3CwUlfOLlcDCeDqz4XbKghJKYrFkVAq60siNHWoINqZSscq1a0tBILWqAzGZil0rEWVBNnU53ChN4jeJ8dMSoFRsR4Wi/mDMmqdDSgjmgA9FMoskyuzKSgrNKqsC7mhilGN2EguQWA58ar1TKFjHFu+iTKMIEuQV181GcZmnG0gZQqSNi3UnaUe12IioTVmDoQYV1rbdWr6dYbGNff8Wjcnzcny3BfmeVp3+wIY0677VJjnmoMhyPEc5uquUp2hKmISwrxSOJYQ1PUe18mvAtCCkpd68wusHywxowqUyTStoesaNtsNm40U7dZZuTcVnBJNXGEcAymfwcHnn39O37dstz1aGYTBmFlsVBdagVg9ys88nAdO5zPjOBFCZJomcgbXtxgtTkdFiSmK0BkikzFYZ+j6llcv7/n000/o+w3WeqxZ8mQERXnz5g0lSx7M2gjWKaU0MVJs51yY50jOP1wkQ1wdXYWIPZvG0nYS8Pjw+CBrPSu2mz2mBrYpVSl5RdZNrhQdYYtIoFvje/b7Wx6aE9MYkJnPhe6tavMmXHWhuyx05oUK/nFNIh/eddh6hod5oG0sXWPRKl8NStT6p3yUlQ1RlMa3W4zvwDimMJFU4jyceP/hbR3eUvOEhPop60sOzFKF1ssetKzdpmnYbDbsdju8byqyD+fzCaWF2noeTpjtljnMPB2e2LiGqAoTEpwZQkZrQ99u+cknn9NbS6cVv/32DxeWhpHEaOoat1rJoC7L7y/0TgW1blzohKSEKgkBimNt7kp1A5VGseQsNcHCHFkoR0oseNN4JE0y3H768Jbj4cDxeOTDhw88j2fQcr68exvZ3uzZ7O+YC0SlGIrikOCsNWdrmZUMKc4JTqkwFNDW0qO4J3PvNgxTT8wz1maaflMpjYUQZ+aUCFlc/CiFkgo5FLRd6Hhytl2fY3I21ufpqqZV5VLlrMUml3OrVsT1/y/POetgZtGEiVO/rjqxi8pCZndlHewsOj8ZYIuON6b1J/ivXt+7ybi9vUWrzDydCUn4sNI0KVA1jny5+XEm6YJXV0umQC4BuxRWV0X4d5GKP/Z33/1z+e8/Vuz/sUvXTINsJGncGOHpmRro0jiLURljoW3B+8L7p8QcSw3t06irBum7Dc36YJRKkWLx+b90o8Mw0DiPdZrGebHH1eI2tIh4FgqHrYtSoQghrFMHYw1TiJIzsOpJLlPHWG0bjdYoa4glMU8B0zVY3+KaDuddLXLlBt3e7Nh1LXtvwQf+5EcvefPyhuGbb+DDOzhN6NOILhGrPUZ7dEkoJ8iF7iy6F6etznie9Uw2luwcad9hZo2dMuY4E88BHQs2KvrRMdhCcJA3HpxDbzzmrkPFE1kriikkVSQPRCswCjPLxpOVTJlS5c6GKs4WH23RrpaSKIhOQ6TysmCkJhBhdVlcJNBY39JtdmgK4/EodnnO4bXieAhCO8uazokQOMcgYVrKkIJMdGOWTVXVLdE5sZ0VAaderWnVMjmoV4iZaZqYQ8A5j9IGZxzOW4GNnaFtvveS/Rd5SQMN1hiGcSSGKM1FSh+hlrIBysFxbTcrqFSqDYqsd1M5Ud/NwWiapgr2ZQ1rJZqYUoTfntVFFIq62NsulrUZaWxiTpQEeoI0BwmebD2+a6ppQMaYapVaStVZiRg6p8y5lNWxammwIpBVIpmEcgo82EGhn6GcCoUZe6vJTSbYjL11GOsxZ4uZZTgRSYzTiZe+x257Gu756xgY6gQ75iAFrPxy7G/usFlyc0rJ+AXhKAnrHE3bYo0Eg57Pp/oszuu9+64hBfARgnF9iRBcUXJa9y+hjxY2vQj7TUX65jCvQl6ohT2lWq9KYRinSUSPWYp+4RPXBqektelIsbo1LYMgVSRXB03BVJ1aofGaF3c9N7c7bm5vSTRoK/cTtTQsCooWA4FQEbZ3I+fTid12y2efvOHpeeB8EqSGiljmLCja+TQwTTPDMPL89CyNH5fk8pyX56I6ohnZH1IMxDBXxLVgreL2dk/fd/RdL/9e+XXA0bYtn332KdY4Qoh89fVXNaNEhmXLc5lrQjRwdZb98C6ljVjTWo9vHD/+4scYC8/HD7x/+8h4HjkeDrx++Zq7u3us7cW6PSVKUTW8r6wUKMgYY+m7jtevX/LtV2+rM5chxhqaihYjkJxXrcOi4FTVAOA6FHRBW4123N+/BgopzuQY6FqDbzQxzTRW9B3rnldri5SkiEdrslLcv/oRzWZHVHCOM47M8fTE2/df86/+7C9RGD68f5RJeVqGcJrD85lSEsbCZ599Kgng80zbttzd3a0fIV4yiN6/fb8OCBb9JCpjrOKTH32O7ztOcaJzjnGaIQShDO3uuOt7/uTVS/6f/8lyPp04HY6C2naamAsxBVRJ4kJlPFMKhJzJKGydvlNdI+chESdNbhvIqYYPyt6gETODkDLeerS2KOVqTpDYBVttmI5PzPNICDPn0zPeWbrWAIFYRiiKki3P58Dj4cTm8czTeSaYhmeleDbw4BWHojgXRUqKYYxMMTDmzI2GO6v5ibO83NzxNo2cdKH3Gdv1FKeZU2ScK0NmnslWAvpUVswBiXJAsoIWOptoRV09QxD9bIksVkJG61WUTan639pjlEXrqZRYp3+XBaRr3b6wiahIak41/0v+LydB3bu2FbqUKjTeMU4DuSjK93S6/N4Vi7FCxSlEoSrUrlOKaockrhecE06XNQWT7HoQoME7hzUCvadw8Uf+LiLx3QCspWi4TD8/vq5f5/r6Y02L0w5tFfIyir7boJVh0/Xsths2j+85nkeOZ0PXK54OgdNZxHxzok7AL7qQ5edd/q7tmlUfMc/TZYOvvsYqy38P4ygUIiNT7KZtWdKKrbW0Tbu+9vK7SwBVYq7FmavvpzEGqzXDcBZ+Z5Z0SKGcZEpjiU2LaVqUbzA5s/GG3bbjR599yqubGzoFTZhI8Yz79i3Dw1v0FChPMyYpnGuxFe4LagRbKF6hvMXtodm0KGc4a8XzKWGKxgaN/d2AGzN2zphJnJmU1djGkl8Kd9I2wFacHNAJow9g6nOTM6kUOmexlU84x1xpLosGJlfImYpMCd/dVvG5sV6a3cUNKEeUcSLG9g2m7cF4lPXYdkvIFpUCJWaxf0uRFKvdaqVjhfOAagtZa0J9yg0Xnv+io8nJUKhIhKtFrBMkqWhDiJE5zAzjSI5CI/RNgzVWxG1KOPOUwDRHhqeZN19831X7L++a58AwnKsOqYpVKVdrVTi2MdfG0LBO0JfmYknxLuXaOabOPa72EmPE67uULHqc+g0y+SNEyFhb9y+DdmLRnLOkuIcYxZEmZ6HGLahJFmqXNaI1c5uGaZJiU6naTGlFNnJwnE5icbskM4PQIUqBqALRBvQdYDQMCgZFeV+gKahNxm4UepcoLZRnRT4HSXB1YOeBvTKUtsGEADHVxkc0SWUcmGOUJsJJboA1mhRmNI7NZlPpanGdhC92v7lkoW8i+9g4jgLfe//RHggwjdPqaJNTNVtQrPoNkHv5/v23LIYgjfcrWjFPE0oJIhlS9Yf30giF2ogUqijdLBPlxSVIfo5UaVBCDdCoIqiw0JILWkUap3hz1/HZmy0vX9xx//I1754zQ5RMz0hGa1BiDFSNA2qDMyb+8//yn/jq93/g9Zs3vHjxBlUUp8OZnMr6ux6PR8ZhQinN/f0dP/7Rj5mnifPxyDdff8U8JUIQRKltJZdHaSOUkIq2WudJKXI+n3n77Ttev3mDVg1Gb8nJkLMMoN5/eM/Dhw88PD4yjAOxOn3FJPeh8Q2N99ze3Kz0tWE4/zOu8n/eKxe5t843fP6jH/PqzWvarkXrP+Hrb77kw8Nbfv2b33I+nZjjwM3NDV23wSgPGAqGzJkQBjE7GKOEy6XA6Xik5IhMoRaDD7WiRNY6tLF43xHCuD4XqlKoKFQnoCx5U13Hz37+M/7+7/6W9+/f4fVc2QxKQmEtUgyqmnFTdRk6B2IS+qczDdq2aOdAF95/+IrX93fc3dzyr//i35CzWYMvN5sN8zxXtGxmu20JMTCOAw8PD/R9z93dLff3L+hrGvq3b9+twxVjNV3XYqzm+fmJf//v/z3/1//L/5k3b17x+uVrVLYUpYk543vPb37393z929/zD3/7Jf/qT/6Un7x5w49fv+Yvf/WX/PjTH/Htw1v+p//0/+H3Hz4wxEgxYgF+Pj9zHgZc2zLFSCoK17T07UbMcZThZtOy3+zZ9g47DlBmoagVVkdM4wzG2eokaYm50N6+RtmOp/nMnE6cjh84HZ95ODzQ7XYkZej2HXedFdo5CmzLORkexkQwHe9D4UEn3hrDO6N4znBOmqINT/PINAzk5yd+Fmc2KnPOmT88jRymiVMI/O79e37//CB0pJyrZW8Uap/KhBggF7yxpPOR29bz6X5DOD7R6EJjFJs21fpGNGc5xRqfsFCZjAzPy5UwG0WWvPKKnF9c/pYz8QJXKHJFf4ySSARjLdZZ0WxotYbTSk1bmGMiodHa4u33y+z63k3Gzc2e0/GJ4SRF1yJIWSlE6vLLAys/bEUtdMEsLj5Q6QXXkNAf4TRWpGKB6r8rMpdv83Gjcv1311cpEnC1FKqULJMGq/DerTcSlWm7gbY7Y5zFu4m2CRyOidOYCUkSD694X+v3B6oITGgMy3/npGqnrtep6Sp4ql2pd+I2IU2GeM8vDglt237kIBCCbCLaGuGr50RIkXE4k6oLyzgNzGkGrdDOYZBAl5uu45N+Q+sV267hVWPZDCe6XOhqIaAqj0+YEJrVrMzJfS4aSqcoVskTZCOWQElZjDmeZ3TWqGIwc8ZEhS4K5T3GZ5RT6MZSWkPxmeKgNMIR1Ep0KgW7wnz2qplLSdLMC1oi7xF60uLslGKAIhaiFJliKi3aFIp0/SvMoaUIVdrg2xbX9Limry4PimQccR5kSqpALSriSrUJcxAkSlc7WyWccFvpT4VC1kl+hnpYGefBGOGkp8Q4zyLwMzLNqGCNcCCrRXJJQdyHUiBdTZZ/iNdiFVtRWJniSUT7lX4p13WeSfFjKtTy+YXfLxqMyzDieqCwXoUVuVs4q1x9XqZE4mM/z/Oav0ER/veSLrv8m5wSacrYEPC+Ae9pq2+/UqpSCPT688UqrFuQmGVPk82bNdhR+UzqBEGhQJkzDAWVNMpBMYXiIqWVAtgk0RyQKnUjRPrGc45J8iUqCppzxoDQqChV6B4oSq1DjY8tfC9GFoWyvsbyc8swxFZxtEDwQqOqezFSKIkoW+7FQrMyxoiYftHSrrHpQhMUAbRoypRWxFhpBAXS4piiFicUkERg6s8hN1tcYBUoLQFo1a7cmUzXKDa948Vdx+3Ws2k0jY7s+xYT4BwL55BkSLDQk9ezTgZE59OpOl1FvGtRyrLd9EyjJMcrpdhue9qmRSlD0/S0TY9WlhRSbSgueUnzPNOoGk6bFLCYQWhyToQ58vx85N3bD6RomCfF6RA5nweG8czz4RtOp2dOpxOn8xNKFXxjadBY21yS37UhJQv1nv5QL6VEO9T1HbubDW3n8F6Glzf7W0Cmw+M48PXX33A4PPPq5Su6bgdFE2NimB4YxyPzNDBPEoiYU2IcTkzjLMOPXCphQ56lnFgbXaMNc2G1Jr7W8ECtN4zCecvT8wdO5wMhTPS9Y7fbsel7yMv6X5rky2vkkkVXVUApS+Md59OB43ji6cN7Xuz3oA3nYSQva4ALfdFag7UdSmniIXA8Sv5P13Xc3Nyw2+1Wndo0jcyhZpgZcYMLcySEme22p2mcGP7MEW/bWmsVhunA8/mJ98cHvnp6S/kHzcPzM49PB37y+p79/l6cpIzh9g+/45uHR7768IH6hGNVwakM8yjufjmTtMW4BmOdUIJyIkdBnsxKKxM0GiVoiK7p1EqpFf1WxtZ6s1DyDOmMI0KOaOfYbW+4a1pCyowhMgRQqmGOiqdp4qlYnovlEBRPRvEcYIhyn45TIA0T/nBmGs4cVEKbRBjPTKcz0zByngLvwrDezxiTUH4pFFsEUSwFqzR5GNnNkadYUOcBmyYaEvebhtc3N3RNNZEo0ozWKqSiOrkOVfVKd9K1FlkYe4u+Y202tNRAq/6nVDaSFtqvWVA/atNSNWMZOas27WYdkH2f6/vTpe72TNNxtSIsudQNHKj1m1ILDFsPF62xXv5NUeLqU6S+r2LZq46rUiKuxdRwaUCum5Drz12HQ30XyfguwrG8VghLCIxw0gS619V619JPZ/rO4b2jax2b4yyZHzpwHiuctTJ9P0ZhQhA7yZRz9ThXZJXISkE2cvhr4dYvKdLGSAKrq1aZy7RxHGUitrz2Mg2cqzuPLZZi7Sp6lSlMIsfEcTgSVUQZQ6MV3mj2TcPrzZaf3u4xKtI6zR2J8viES4VOGdGjKE3RMKkCxssGqjL4UpsKRdka8uoRORNnjS4aEtjHGZM1ugphtbEoZ2HTYrZCD1FWk62mWCTrwmQR9mqh0mTsatG2PBvrNDun1SJXipXKiy3pInivtn4LV3N59lAi1E6LqK5+vvEtfb9F27ZmuCmibUnlSRaniDPEfz/l2uwFeeiNwTqNUcJFN4iQCq1IOsnmIN8aba24l+XEFCPDHNBKgiJzkhBElYWLmsMkQWkoihH3qjhP33fJ/ou8lrTcy2Dhsq6vN0OjDXPdmEtNBv/4NS5ogPwpWpelmF1eb2ks1hRv+cew/FlvzEIzSCmhY5Ti2zmhVGqxF87VZjelxDRNmNnUqaXQXqyxKAUxzuvzJ9+iTvfjJVl8mTyJJ7rBUMDL2pXdRWNCQQfQo0Z1hdJnsivQZhwePSvUnARZi4lpnOiaFj9HQpHGOiZpVDHiGEJ9luMcxMmsGmcsa2tZb1pfBj9LOjss4ZGm0qwWShlrUbYQhaWREDvJa9F9zplsspwDCcacV2eoUhIxzJcMC7QYXSxNxkJHo1p+VsH1yuFmaTJZzxWrNVolrM5serjZOfa7lpf3PTcbR2sLOk5suw3KGVQohBxWTYPcQ6FgytAjrS5Xp+OB7XbPfn9H3295fDjIGtea/X6PGJ4YFA4wJJsFOTVCGcxZ0O5xtLVwbhBufzUQqGhPCJnj4cw337xlGjPH7cz7dwceH544nY5M4UBKZ2KqDUvTSi6Aa+j7rTTCRUnxnKRxWahpP8RLVcbAbr9hs+2wTnKXoLDb7Wjbhv1ux29+/TcihjdSrN7dRkoRxO3x6SvOwzPTOBCDQSsHuRBDqLqZyzBkUVAWcrW6lr0mp8V+FaSYFV3f0iwordBW8dU3f+BwfCKlSNtuudntq93rkVIqKstF07fokTBLc+toGsvp+MhhGDkfz6L3IvP4+ChDSSvBocs6W+iiAMfjgWEYqsPUlv1eqHdisiEhgAsKWSj0fYfkfhR+9PnnkiheUcxmt6vrNXEenzmMBw7Tgef5yOOXZ756+46vvnlH9+/+HS9vt9zebHn96gX73Z6/+91vORxP8trOoZPDGsUhTpRplpA+47EYtPWUlElhJoaEy6lqZKQwlnViq8vmcoZkQZrrxN/amoReAjpP9EZS37VxbPcvuLt7yRgih9OZ948jSTfkZHgeB47GcdSOY4bnoniOiiFJsT0OAXWa6I8D03jiocycVOD0fCRNIynMjCkwDEfRzeZEiLI/aa2EZq4WVgWYmGimxLdDpJ1HGA/YMPKm91jtuSsK7yzO1nNCgarUMTkGI1pZdKmDlao9FWDtY4MOY01Nnr/ohgqKokX7gzZobSkkcpHh+OVDarndfk/OhXH+fgPP791khDByPh85nU/1F6kWjEZEsVI0FDa9xeuA04r9pqftLDEF6bgjLKErpU6Vla6J1nkR0V7eFKXUmji7FCDXQsRVhFWLjuXwVnUCdBEhXpK2F391tRxGRtxOZCvxNKVhu93xSr3i8fEDp3HkNIzst898+/7M4/PEuw9nTmMVhS9QVVkmrrkemMtEVUujkRNzCdhqXdv0Hda5ertlAacUhRaVE8N5YBzHOmmYVvep5+enmtqr60Ehv9M4TJxOx9rlZmKOFJ2xaPoC/8PPf8ldt2FrLfdGkcaBMgbU8UxTCq6Km2k0AU1UmmINel9dCnSkbCPFGFAOaxxpmiFE1BxoThoyBBJe+xqWZzG3PaEz4DWN1ygnNo2pCPUuAyiFd44chZIXKt1pQS6uN86FNiZdu1AjlDEoNCkpWu8qcqFwToSsSkuGQqzNpbEisDa+odvuiUkTpsioRja7ThKArYNNz+FRqFhL3khR4oJBUuJ9nzM5RFIC62vxlUFnaSiabkvJRWx7U2QOkTlGKaSUZrPppaADUg7EeWSezuQYiTLqp2k7Gu8IAeYQ//Hi/AFdS4NhrV3XLAi3f5mYpyTQci5lDczyvupaSiGlBSFVV05H8ixcI5/XoX+uQsFrQ1FFh0DlaotrR4iBrutkIpYySiV8I5a5x9NZ0KX6My5/TpPwnPu+wzorRR2XzANfM21KEZcqmSUXQoo4LyijrojA7GRtzErRdy3qrDEPkB4iataYXhGbQOwzeFBHsNHBHJlGoWc2bY9uwGrF4XhchpySAl2mC5Iyyd5hrftI69J1Hc55nIOUhZap6n7bOA9ZQrbiHIhIbsh+v69pwqG+5xoRHV9CDz/aj7Vkd0zTeXWvAgnJy1mOxhQzKkW0FvpsjBfnFWvE6jFXetEy1yvkdeKlyRg1sek1u63l9asNd3cbtn3Dpmvo7eKulVBloHctzjvads/7989MSTKEYjWt0ArQVu4lgm7+9te/YbN94ObmHoXGGYgWUp7QqpVBixbdX3aSit40DShIKZBz4fk5E+q61tZXClgilYKWsoI5FH7326/53e++YXGtKrk2WhScF/Gzb2548+YTtDKUrIixEGNmmsLqXtg0baXK/FCvws3tjtefvKDbWAnWLVEQR1NofMN+19I3v+LL3/yad+/f8j//1f+b+/sXKBTzHBmGZ9FI5Ay5qyie7CHXaKvCiH6rSDG+Vm/UAL7VolaT05L1JMPDOU48PUfGeSTEmaZxvH71ihwnwqzoGlPNPIS+SMmUGEAllE5Yu8O6TU0WF6ex/f0L/vIv/3e8f3jL6Xyk63qhfFfjCRmAZqZp5JtvvuH+/p7tdsuf//mfs91uV5pjCIG+7+n7lr73fHj4wJdf/pZf/+Y37Pd7/u2//Tf84hc/49NPPllNTO5evIAs61rpws1+i/GKrBNFZSYz8zAnxvcTT//jmV98/jl/8tln/Lu/+BW//Okv+cknP+Lf/vLP+I//6T/z7sM7Hp8fiSUwHY4wz1ijGI9HCAlbCrbpUWRyKgzTSHE1pNU7NjcdWjv5nXMihYAqGcuJ8ze/A/tMoGE6nYjDATU9c6sVub2jf3HHj37+F4RBmvdmEFMAdEvnOj7re/xzYJpHntLIcXvD4Dsm54TmP2Y2U+HTZPn0ix9zfvrA17//LefTmen0zDQKohinSQJEa/CjzgqTQZciyLTKTHHEdx1t29N1W3rdYhuLUiNf/va3fPn1A5/ebPnVTz7j5198LtS9kqpxSAbkLItpRqGwylZzKLVmJi1DIWMMzvt1wJUrk2BFNJC071Q0p/MMxmJrrIKpgcolThijiCUxpn/iJuP+/pavvvo90zzLYltgK139jpcprgZfrce6zjHOkxwy6UK8qW3Gyg1beLwfK+r1On28FPBptayFSyG/fM1iTqMqXy2VuH5uaQRytfRbpg+aCjNVdX1Oak2Avd3d0bUT236ibVva9pn9bqTvG377hw+McyamQkwfT1eXA3PtFJWIu2teNAkRX1KQzhZFTkn4x8uk0JpaUFvmWWgO1jratq0zD3n9aZpqnkB1ZSnCGyjiu8mu9fzZ60/4vGvZWIUj4lIS4ZH2qKRBBaIqJBNpNi3RKqIuZJ9wNacj54ROmRJK3Vcj6hTRMYn1qlYUp6Ww3rZkZ8hOkVpDNgVtMhixYosZUkgiNiugsyZXakIpuVrVVbeoJAXktSfzyj8s4tSltXAPG+9w1kqxNs/4ake7JLbKc5iIEREJz5EwBW5uX3M6j5wO7zkdJzb7Pa7xGOfZ7G9JIYiOQ0logdKJojMmV0qgNoxTYE6y2fXOg9WCZGQJAEwxEqNMGpdnTesCKRBDkqC1cSKFiRynOklVWN+y2ewYw8icRNz+Q76uE2ivEcDroj2lVAXGMskz9pI+fZ2voZT6X3GUunDjl79bvMFlHwAohMWYoQpJrRUahKo5PgkR4OWU0AsVoaKuS5NzvUdN00QIYdWRGCuWsylnrC+ghaqBroF9pVQ+N1BELF1KAp1QXjOXmVIMOlsYFGkSNxI2ltQmsspEl+g3PZ1q6XNEFYcpF4/0ly9fCy0nhLXAANbkVqO1NB81q0c0LyJydc4xB8d2s111Q6lUbYo2YAthHqUhrPfmmlYlqWfyO16n0sYornQL6pFyrvM2VeH5Kp5HCzXqCpe/1sHJmLd+sPDvMs5KBlLjNLuN5XbfcbNvub/bsttK0rIzYt29WHyrEtBFYUl0xrJrNU4bhlAIiQrRG1mzZbHPFbpTOTwTQ6wp8AmyPGs5FbRKuIrYpixTTRR1UGSIQTQ88yxDItc0dUIZoeSaki7FwDBV+2+juL3diiWtafC2p99afGNoGiMNRBEaYc6G82mEckbpY0XDdS1Kf5jX/qbBeWRIleJKCYkloVRirGYcwzAwjWdJiI+K54cjFE1KkKImZyfru8j5pjR4b+veVBvDJEM7GUKESyAf0hRoJdSTxVqVhVqVJa9AV8qet2JRbki0TtM4hTG5Im1UxEJot1RqCsoxh8T4fMD4hu3NC9p+t3LnpfGHYZzo2o629XVgICYJXdfWRqKn67p1ICN7Y83MqXkH3gmzZJ5G3rz+BQrDMMwY26xW+EZbwlQHpxTevf/A8XhmHIVZIdlFojF7HD/wd19nnoYTQRU+e33PpvXsdq/4y195np4eeXp+5Pn4iEmKt0+PRGv49uFIjDOnpwdGnziaCZ00G1MwdYlbrujIOUjhL4pIkoJ5OlGSJjvNix//mPf6wNP8njjN6GkmHU4c//A1Vveo44h5HvnUb9i+fMXm5Qte5YZsNG/zxPx84pRaRqvJJuPcxF0KbFXBOcXv//AVh4d3vP/ma9LpmXE6EeaBMA/kOQjLIhfZZ3K1KS6KEFLNaskM8SxDznHiZGToZEuhu/+Ec575JibCr//AeQ7cbTtu+pbb2x26DvfX9O0i9CmpOqXaNtUyXyH1p9D1F2qZlWfAGApK6PdGNDfGNaBNdTe1oAupBOaSOR6PhJQI8z+xhW1MIlQLIa7TyEtXD1oV4dhpmaCZSpuaK+e81FNv5fezQNEfNwvXXOaPUrzrda1N+NjVRHysLzHzrH9eNyU5l6vPqo9go0XoJUw0TetajBZKgXUCa7atx3vP+TzwfJo4DeLRnr/zsyy2paspmKoksiuOXM5JHgN9EZNfh14ZKx9hjuvhb539iF+3cLxF5KNZ8FuDQGv7tuXz21t2StGSxRWqJJyqtpvFEG0m2Uj2BdspkqqWrkaElKoIX6HMBYKCUFCpoCdpEExrKN5QvIbGoPcNxSmUhWxEilQfEvn9yuUWyUsXUszV+WkpIIVysdq9LQWk3ND1Hi6bpOhaLN65in4kTE3MXhuMnKtFrOhqMgGlB/IuMw8jx8OJ4TyitKIrPe1GdBpaz6QwU2JNZa3+ccKgkgJ1zkgzacTVC6PJShCMMAVB1nKlcyHhcapAnGdSCIRpIs9RCphc7QirM5BCEVMmVL76D/m6biS+22RckEkppJYi9Ltrfrn+8R7AR5/7ODOnrE3C9c+SU8Zbtw4vlsYlp7KmncYYRTul1JrCeq0RW77fPEvitbGaxguPWRKvxd2F+nMsXUVhmcQvjGwqFC5Dm0RC+/rMFSijIs8KbRRFJ9FoGOF+m6KxszQ/OqkqVlY0rr0gN8vhoi7TKxQrEnOdwl6W31OJALxQmOZQ9yzR0ShkjS7Tuut7KCF/WoB2dUkHv87YWOZMpZQqAFPrfrD4wAv15DvuKFCL/LzSBsTJRwZdrZcGo28197cNtzcdNzcbbrYbuk4ctDQKlWrWiox50GWxui70XhqQTGZKhVyW92sZcsn0VqjDErTnrJV8DL08Q4qiNFrFK0qanJ9L0vpcxG0n1tDJXC6/08LlhisvfFOwCtpOmom22dJ3L+g6g3UK65Y3qFJK8OQI8xylcU/5f3XN/FCupjEoIjEMzLNDF1v31olSRGMwDgPjNHI8PjOPEzlkhnkUel0WK2P574XanGVdObXWKtRiehkIlKobWm2QWeqGtUtgGb6uZ7i2Qk/RhsZadn1D4zXWyiBTra+DNLI1Z0de2kghaD1N19P1O9p+TyqhNp9CUYw5ruvbGE0pQttUlTLVdR3b7bbSHmvwrZW8n5QCz89PKA1t07Dbbrm9vQMU0xSw1kvrryqthmX/UpyOZ6YpEIKYYGgtDp6RRI6RdCyMMeC6ljlFXt7c8Or2hpd3b9h1O+73dzw9feD4fMIoy1OcOTWBYZwIMTCPJ85mwmSN30pBjAGnjdwjVcMWc1ocQihaXLvQM0VldL+htC3RWcbzRBMy8TRy+OZbGrulRGgS7G923Ny9YHNzT1cMe6toVSSNkSnPzBSK0rTdyLbMbKLYCD89PnF8eOT0/EwcnpjjQIgzZQ6UGKUmXRgtVaSdURLMWR2zFkv2lDLBJozSQtftNwzFkeeR8fQIX7/lzc2WeH+D73q80xgj93wJ3VuCSOX5XHSI8lxCIeUaoaDljDAISoXWa1ZGMVa0oyyGSzULSDZ85mkmVjT7+1zfu8n4q7/6K959+55pjCjtxcGjTuh1SVgFjVFsG4vLkrL8/sNpFUlrLNoUsc/SkkgLF+rENZcaLoXFtZvUAqt/90ArdQpA5ekuhcLV8q0iLnljlinkqtVACpocRUeh6oLPRaaaXnuUhU9fGe5vIy9fRDZbz+//8J7f/eE9DzkyRVXpUwtMIh3kksfAwv+u38/UA9w7h288pf5+8LFblTEG1agaCjXjlV83sIUetqAy3lmBXEthjJFbZ/j89pbPbm5R5yPZaZQV3YQkfmuUM6S9Q3mNspHSKFQRJrG2mviYUBPYaFGTxgSNjgZjQW8tqpFwPDYWvEF5TWwLhYXfjWgMKp1hGkPttgu+8cxjIoXMFEZQpeopFivA6p7AZUK9cMYX2tRSRGqtMU5SVbVOOJ8+eoaen5/XZybX5iUNE89PB45Pp3rYSDZFShP9fsdtfom3Rpy1jGcaj+Q5inWcVmgljjBYS3fToKxY0xpnV8ecaQ68f/cB7yzbvqXxjpwjJUqi9PPjAykKh7T1Lda3KK05PX6gtY6S4d27dyQjPF2tfrjFAVz0RMu9WJqNpQClTglTKpSi1+d7Ddb8Iw3HdeE8TdNHzcJiKbnQ5qSeFTTTaou1hr7rRYhbX/84H9emdFljWilKTcFd9pRr16WLTkumzrlA0zQ0rUerKBNLY5a+aZ32y9RUtgbtGmwsUKengQIedGdJXcA8O/TJUkKiHCaUK+itI7nEnGdmN9PvHKfDTJ4yJM3Dw7NQiFReEQeAzWYDpRBiEscoFvRFMhvGaSTEQIhh1Vc4ZxnHyBQCJUp4Zs4JVQqpfLxGS1mS1wvWXZCoa2opyDhn3ZuvX0P+Y31urs+Byx6bRMhpskyKvWHbO3a9p200m9bw4n7Pfrdl0/f0bYvVpppAaBK5DjzkUC6Ic1wpka13MnFuPFOemaIiJo3Cklm0RKEiXpmUZsZhqKnRjrzQNavxSQgz8zwxz5NoyrRkYuhK34txJufINJ0xWgS42tSpupZmsWs2OKdoPOxutrx59Yq7u5e8evEjjqcz8zwyz+Lctgy6vLe0XUuMibZr5b0rsGiZfohXiYHh/ASM5PkslLAQGKcjMcxiwXw68/T0RIpG0thT1e8VBUXjXFcp05k5BrRRKGUQJ2JLyRBSZAkSpqLnS+GmVTWRiZGUKtXKmPWs3+12K/o+nge0smz6DX/+q1+w22aMkWZWMl0EwTDWk0p17lSKhOb2xWs+/emv2L/8DN/uUdah88TDwwOHw0HqEy+OltM0o5Ris+1w1ohQu9JMQxAqdtt2WOtpmw0pTbx7+w3/4T/8B/4P//3/ni9+8lM++/THGOOFOhoSm+0N8yyarDjPGO3qe1HWfbTkpYlVNfNHCQpXxPTmyw9f83e//ZLb7Q1/9tOf8W/+9Ffsuhte9rd8cv+a0+OZMhVO33zJq/0N8yYwzgPj+YHnkAiDxqkdqWnQWvJMwiTIidHVzlVHcaS0HUUntM+YzvAPb99zmgqj21PSmZcBCAPHb35NGCKvXn/Oj7/4BS+/+BOa+zts35F15sY07F3A5EL8cGYYz6Rw5raZSCYy6sTZZMKYKCHTlpmHcKr1Y6nZH6zDglCEam61EU2mlkDSUhDxupK6S8UZtOg2353PxL6V5rLt+F+++g0f5sgJTfYd+8bSe8umb6pl/kVyULTUW0bbdbhWvflQRs7YGBPaZDRKLKGdRzuPth79/6Xuv75k27IzP+y33DZh0h1/TflqoAF6UjRNDZHi0AvH0J8q6UmP0lA/sNUiu5sEWgCqCiiUuf64tBGxzXJ6mGvtiDy3mroYRJO4u5A4N8/JjIzcZq05v/mZQl1XQNtYJi+fS5GrMVka9e9yfOcmQ4FA8Umhsqj2ZWMqNqFKHAOi9ygiOqfi/GGWbkovKB2cjs/rBvKHaFD172sRcUyczVTalti+iYXu8XtrE1OL/fJAnLzmqU1uLjQjq4yACUYVIaOCZLA06GxwbaJrE61reXH1jJ/+cOIv/uozvnx9w/1uwFPQ+ZLAKNzNYyEM0vAYpTAbzew9IcVvNT61EKvvrWnFcWocR0CKtZubm8U1RD6aglQl2qzpUPTK0qNx1uKcxjSK1miSS0Q7gwvQZJQSwbGZEmrKqDmTvUGNEuqllMF1koehG4VXAb1WZJs5JM965XBO4ZxFmYJM5oRCLCRzKWii0oVvHEhKumrrRM9R74vaTGqtl024psRXykdtRGqjkUvxN3uP95794cDN7S1N0xS/6WNTKmii3IjWKKIf5N6IiTAN3Pkd87DFathsz5ZU7na9RVtL8DN+mkQLojVZK3TjZNyoFbOf2T3sCD5AlhA97ydubg+s2garFCon/DTLOddyfo0zYnHnI85ZtAFlMqra1x0C5v77Pck4vcddSc+uz4vwkiNZhyONSFXf+PgtI4BK0emK/XN9xiparhABvtFGEu61KQ+nkkZPCXVx8jNNKzqKCnacNvl1ypFCXILjlryI+r9Ucz3kvgopkacZHwLWubLuibakUr7EmtUv6xkYTDQYFI2WrBujxF43G01cZ7KNMATUIcGYwGfiVnjjUUeGsGcMnjkp2naNSY4QvQTiKVWKYLv8/MYIoh5iWJ6n1Wr1OJtknmVyZwxN2xK1IWrP4e4BkJR7X6Z0x2V7aafK9PA4wYIjtY18nDw/ahyPd0yhRj5urpe9xwg16mzTse4bLs46tr2lay2rznFxfsa67+m7TkTuxYksJ4r9YykIcnq0jhhTm1DNk63l4RDZDTO+mJ1UVDLn4++qlCIGQSWNc9JEaCNuf6Nn9kJtrY5SIYQyFRXtUSrZL7oR33+tKQGBjs12y2p7hrMaa8EZxTRF7u7umKcIWbJdlErSMJep7TQrhmHHNI+0rZPpHOoR/fT7dhzuRqb9yIODG/uGcaEMBxrX431kHGYO++rwKMQRo225xpGUxMRB1mdbGBWi12jbkh+jxFFJ5WJqglBGFoZCVhjjMNpJ4GuZHjRNw8uXLxmGgZvrGxrXsF21PD1fE+MBslBZSOKYpqyYA9R1qyYyN03P0+ev+Nk//nfQ/YakIIWRw36HMZbNeivW99oua6hEDEjR2DQd5UkhhMhms8EYh1aGaRr56uvf8/r1V2Tkntntd7x9e812e8727IzGaPa7+3I/FcVT9DSNxVlpnIdxYp491joB3Er/HaO4cQcSd8M91ihu51v+4nd/zdfv3vPTTz7hJx9/xKvthp/9/E94+dEn/OTdN/ztV7/jfv/AMO2x7VOu33/Nw8M1799ec3V+gVMN02FGGY2zovt0upxPLKZd06wvMM0KbVv6bNl88lP0D37AfvM5V9nSeki9p91ecvX8E559/CPs9ilRK2IIGOe4/eYdu+t77O09jVvRuSCsjBxJZdLYzgGTPEkrvOvxYS76Kw1W9u+cxAqd4owXchLQTGfRwCqFadpCm8+QqsNkxhhxEo1BMQHd1UvurOL3XnG4HXjSWq46x4+UmM44IzTXXCiqWWWUFnAIpalB0JR6rE6R6/5jrEMbJ31EjHIRcyIeEtPhIDWPtfhhEt0Y3426/Z2bjOkwEn2EnBfkbaEWKUnMtlb+oYAly4RBFVRFaEHyenUicRRIP6Y2nf73qabiuNnUzUg0D+TjJlVf7/TjQ/z39Od8q6Gpr1tpPooFvdBKrGjttuVsY7m6gP0uM0yR2UfC6Mt7QW7Gk99teX/AbAxmtBjj0drQtM3yO9b3XN2mHh4eHp2D09cLPpBNBlP/Xd6wBi42Gy43a1adw7UG3YBqILlMtlkiTkxCpSzWszNi4eLlcx0USmVoFKZR6F6jG6ARSoNZabRV2IJWOmdprCVaRfKy6KUYTwpEMLpSIjRYFmQxF4pUbTKORaNaqGLyb05QvhNE+3SylQrfv36c0maA5fygjo1lKg8+WRYRPx1QCg4Pd8XHv0E7R9N1NL3FNhGtB3HZqIiqLhasITLsD/hJaIIqq4J+y5RMms6EipEUvTS0VGOCUuggBXcugUMqGeJuRu0S5uH7PcmoxgzGlPF3SSMW60ehKChtUMSlaK8CtlOqzSMR8elUsrx+vZeMFms+ShSj0GqM2HAjlz2kiKkUPY5UqEVbwPE+y0nSTlNOQo0pi2F1lanlcX2vPkCnSvhc0XKcUkMXsEVlEfJiCk2pnAulZRUy8rzkHOV59RqmRJwi6IC2qrjLTGWNkGa+0jyq4UGd7NQpD1DoRqcTxMdOfvKYJNEZIr/iwu8tTUbNDZHfS8m5Ka8dwpGK9eF6X6lgp9e0/txH76Fcd1mHJc3XOUXTGFa94WzTs1k1XJz1bHtH2xjaxrLperqmFUpctc/NmVyKcbJwpMuvUjYtoXspLQLXzmS8y4QghaEEnqbFrvT0SAKXk1Ec9geUniFbZi+2oPPsRQ9W1qFKGT75dU/uZbDG4pqGtuvZbLbF5lxjsieWKZTWBmfWaCPJ1dpA8FJ0+/HAMA5FLyQNTqVMfV+P6JWYeAyBzEwq9948e5zLhAB+jsxzXNYVuaWLzUq9n9FUSshyH+ZTJkH5gYUeVIs3ih4nl4mQqs7m5b6uQIJklYTF1txZhbV5udaKmllQ1hBpXYstaca2LbbtMa4VQCunxQWvFojBB1zfHqf2CaF3Wwe1klGiwTFlMjbPA7vdAz7MdH3Lxx9/RA0ZrKYb9f6Yp4l+tSrIeJD9rgSN3t3dstvtGSdfnBoX3sixmEXoXNpa5jTj9zdM80zbWZrOYUl0WtOtNrx4/grlHPe7W+7ubzB2xsWAy4kwD6ikhfUwSJMRGytMGidgn8ZitcO4Dtutafpz1gSalejtuqewPYw0c8DZTHf1ivX5FY1rURniICGm0VnC/Z54OJDmgav1ikZbpgTpIPljyY+EYQeHPXHa4/2hhMLKvbDUx0poZsboAnKXQN76RSiwstYDBfgCCRGN2CwZFhpNNI5ZK3Yo8jgRUmT2AT2PrIzibLPiWXdBynNhy5RJMRU0M/XGO97WWaZp8ifL1HqeJnROWDI+e4lGKHVcJIoRwt93k/Fwe4+fpoJOl0ZD1QcmY6ym6ZzY6hTXC5Zfrox/9fGXqxsdHDeXusH9oSnGoxH78u9lI87HhuB0k6px6Yq0LALf7VBisUimwPiyIOT6uopNv8G1a7RZgdpw+zBwOMwM4x2xbuzqyOdUSlGdsernMUV0QUpT8ZqvbloVQW2ahoeHh2WTTiktwTlN0zAOYxmYiHhHKZkYOZV59eySV08u2Jx3NFaRXSI1kdnJiEzlwkueFHqAvNfC+S+FmrWK3GtUD3qr0K0CDUmLBaXphbLkUoPThcJkG2iMeCuHjJ9n4SjWc++EgqYQt6aaOpxPnMNqk3Es8FgaC+cqTUpoL1VsexR1H8Wn9ZxP03QixhfairiHxKUR0bo4yBhFGifmMbO7v6HrhMJkmhbXrekKyju3E1lDip7kB0IY8dPEPI3s7h6E970URwmtQFuFcYY0+RJCl9DGLAtMSCIsF8tUxRRmQkwo78jfTJiDXKvv91EajCLMCVXwnY4NvdYK8UCXjatOMD7Uc9TAuLo+wPEZ14gtn1IWlNyPKgvP3jrN7MUKOJHJMWJiELpDcbs7LYYXUXrwMjIW9IRWCx3GFJFzJQBVqtxjNzzJ0WiL5/npNANkXQkoUpZrvzQ6IC5D2qCMaHZ0p9BBnpk4SOKu2TpW/ZowzyisTM/CVBCfhDbCz66vG04KCe/9o/dRz+PpmhyDpL9iTBHRiz4oFz57jOIaJ+9ZHIxqQz1N8VtNBhTqW2mql8HGCchS74f6h2CyGas1fafpe8NqZbm4WLNdNay7hvNNy3rVCOKvNauul6LLWHHkI0KsOg4W7dypoUIiCe1RgybhiKysQvdCSTgkmWillIp16vG913yQEALDw4GMpW3XKCVp3NMcIMmGb40hxrovquP4Rouey2olWU1tw2q1Ynt2Ttu2GG2Zd3t8uCXE4mpmLdY2WFscYqKkez/sDkWc65nGwO5+zzCMDMPwv+Qh/t/0UNkyz57Ze6Z5T9s1pAjDIXBIAykVEFalQrNUy5RUlcZdGoRSixQ3SkpdEsJxjUE9Np2IJY2ZDEa7QhuX9OV6XzvnuL29LXpU0QaSI4pI15fsllysinUuORliRa1VxhQqUtOvUMYyTDPbzTLvW9a7eZ7Z7Q60bU/bilbUewn2ddYxz6HY89syadA87G65vr7m3bu3fPrJC64++YgfN5/y5vU7Ykq0bbs8e3XvrAGiY0oYLYCCn0fevHnD7e0dh8OIUvaIbOea1VD2bxIoMT6Y5wEfJ768NgQCMYxc9mu2bc/Z5px//9Un7B7u+eb1l/jxlh7NWdtx/3AtU0Kf2d0fUM5gW0eTEsascNpglMVh0Thcs6a/eMYFszwXxnD5xGJ4R2M9ZxuHvXqJdj15iqgwEu/3zNOM15AOI2kcCHHPJ6tn3DjHbYL9eODwMMLDDfv332DjnphGfBxom1Yc90qOXOao1dWVWgtYZyULiJKboRE2hNbEJKCXyok2BtbG0GmN05b9PDMbAeHGacKHwENOvNnf8qxzfPr8GU+vnuBDCSIu925MuUxG7Ldr6GIEoVyVCwRCzBz2Oxot0+tpktoqJzFLiSqQdUVl/v8ffyfhd1pcNRI1AEUoi8eOLaWEyQilwApVRjimCgqKeNpInBb+i0d+2dhOm4tllLh8uSoi7oogHpHBBYnLqTh81A1F/r7SBU7Fp6cP1iNETSMjbZWKlZvCYLAoLtYbthfPiLRs1yus1YXvm4p/fOYU7FoanyVELhGieOdXBKQuZqvVCuDEElLe//n5+dKgic+6jOi0E2eAadyjkufF1ZrzC83mUtFdwRTFGYOUcUNDmhXMGQ6RNjrhpLqM14FcphWh9ag+oRzoUtwLd0PTlCaoUiycdSTgkDLzwwFCOoYZFainFoVSZIpvv7MtTeskrbuI2GuDVa/DarVaismUxIBALGGlSRiGQVxeTkTRlQ5X750FkS33Ti2A6vldiqvSZOUc2d/fsLu9punWdJtzxsFzfvWUfrXBWUskERIc5kgcB3SKGDTrbrVcM+NgHCeULvd1oeREL2PtVGKFjdJYJfaYKWTSfobdjJ5ksqRvo6BZfftdH9l/kIdkrwleV53Rcj55NrRGGYOPoXiGyofW5mTNOJ0sakFmOY5+yxIFRBJ+CRFS2iwWiFK4HymMcwjoJBMzMbeQQsI5CepUqKWoVkbCwBIUTrVozOp79N5j7fGeGoYB78VCdJraRY9WNR+6WNzGOBOzoEU6i17rtIFCgRIPRGIr07O23+BvZ8LgGe9nnnRXpP1Q7q8j5ey0eTfGsNlsFsE3wEcffURNJq/NeX2+mqYhGcM0T0zeH+k+WXRCKSVS9c7LQBILzdN1G47X+FG2kVblWuXluhbcWBKQyx3QtIrGQeMUXWu4OO/ZrFu2m57L83Maq3FWs+ob1qt2oVk6KzknVZNTEBkkqI9l6my1JiD3TUKEsW3b0jUdh8M1Sitxb2ocQ2c5jIH3t4dHU59yUWXSlSJd26BMi216zs6f0DYtRmm++ux3vH3zDff3t6hBtBfkYoBRhPQ+RpwTQattDGfnW7q+xRgnRbLKS0N8fnGGMyumKfD+/R3v3n/FOB0kYfwwc3+3Zxxn/JxQSvbWpu3+Fz7J/9sdz5+/ZBgPHIY9799lVNbEMDMOhRKt6t5dJ4uixxChdUX21TGgMCUWNx4t0yAfBbHO5MUEIniPUqlkucrPzFIhUrnw0zTx9u1bjLWLvlApw4sXz/nBR1c0tseU14CMzwcsDo1DTD/E/ce1K5Rpabo1m+1FWTgzMXnevH3NMB7IWZoC2TM1XS+BvikmpuhxrmG9XpcG2+DjwC9/9Vf89je/45/8k/89l1dPWa1bnIOcNZthZpoi5+fnPDw8MM8zfd9zd3fHMIzc3d3hp8iPPn3JixfP+Md//O9ydzdzOATG+VCsU4tmbTFrUISQiHEUQCFDToHr+/dM44DJiV8NI51r+PmPfswP0kt61/LRRz/FKcWLZ5+w379jDg/8+re/5vW7N3zz9RuSUbSrjtV2Tdv3sv5kjznsaW1HxDAEjWIjJi9acZYUq80ZTVJYWsbre3K4BzS53/D+7oHb/Z43854bk7lWmS2Z4fo1KIOfPbf/+q+w/g6TJnQORO1BB5wytK4heinIU6xAhcH2tgQMS/1hnC2TtEwudTJkYk6oxgIycWUSGppVGuaZ3grtV1lLVobrceLaR3p63r654au7gS/f3fGPPn3J2bpn1SlsBlumdyHEhW6ulCLFdHSeijMxTqSoGSZfgPlCJS3T+5gkaqHrG3laviNz+7vnZBSLVErnv8AuuTzAytK6BqsCJmfxApZHvazrqrzpsqpn4TCbk+K+Hn+IL/qILlQLj1ObIh6jcHX2+eEYuk4JjiLg9K2Nov69hHcV/mWliCHuE23b0bYdTeOIsaIqcSFM6IIgomTCUN/I0t2G8Ijq8Yja9QFtoO97mqZZONwL1axwwmP0xJxwrkGpiDOZtlFstx2rvpNMh1EcoUgKnRtyyOSY0Bayg9RkYpeZiGirMS6jW41ujYTdaINSZjnfp5OGGCPBB0KSzZGssNqU8aERChY1v6AkX2sNykn6tXCGBEkur/0hdezYVB0nFyH4RXyrlcJ/0CDK+ZUpWiouIpJOHJf3fVr45HrN5CYgBRF2+kHOlbU9ZAkyu3pyWZDOSAwzwXt0jpicccYyzAdxllKRXGlSJOKUIQoiHYofe1EsocjEMZKGCEMkDwGSNJDpogWjSNU95nt6zCWsEhA6VJkgKaXKyL3UgagFBRLEWPQJ+vhoA0gBULUR6gQJL4+0LtO9giuRc6HfFaqTvFTJzUkUQEFJ4VAaUYUUw9Y5QlDizHESAlhvm1CnHMApSBILkCBTNtHbVGOD1WpTsnBmnCv3buLR2lDvT3HO0yTlwco0JcRE3hjykMlzwkeh2OUs1MQqSM/qqGeLUTabU8rZ4XBYPh+G4Uj38v6Ydp7SknQdgzRi1ZY7lwJDfl++lSh9SpE6/Ts5idJ2Uly2jBatVGNrjoCiaTNdq+kaw3rluDjfsF51rPqe7Wp1/J7GHp3CMmUqsOxEy/lU5b5ISSZZWusi8ZW/DzGig6exTgK+VEK8piKqFc3EODu8T2V6IT9BqBBlIts4XNvRrs7o+l4SvcsuIloSi7HNQm1JOaNTQuniQsXRHGEYBxFmavnacdyR04APkffv3xH9PdMYeXgYuLl9yzyLcJ9k8D4sFBujpaip+TTfxyOkCaUEAOj7lbAGLPT9SgACACXko1gs69WJbXQFHCuF0Q+F4qxEIC4NQ3EDTEJPqhpLoZgcwahafhhjlmfqeO8rwGCNxWot+4VK5Fys5lUuFreFWJhrLpBBmZanT19xdn610Lmqtsr7Geea4i7kWK070e6UvCixjBYgwVrHOBy4vb8R17u25eXLV1xeXtG0HUrpMmEQGt+H+24F/ZQSneh2syLEmXdv3/L557/j/v6WaZ4esUtyAXDqyTnur4DS+JwhRpSfOPix6BATv3/3DWPwnLUrtq7nrG+xtuXs/Dlwjm03XL19g1a/4PWbr8hjJOiJb774ms16Rd93wvRoOrQxaGOZTaTRKxrT4rpOGnoUWXeEr97KfmAa/uarb/j8/TuuhwPjyjJuOvYKrmPg7v6WA5oYAm58i8oHyFGMYuIklPFGL6Glp+yV6jAoe4pMUOdSR6M12hpM42QDiaLDWymDzYqWhs44dE6SsdY3sp6lTJoCPiRSUiTTELeXaJX5cozc//I3vLg648WTMz5+cl7uz+MErF6TxXeq7G1aV4MVyX5xjaNrLeN+T47ietc0DW3TQkrE+e+ZLvXYA71webOgUCqLTqExVqYYOaGKn3TZe46DldIdqVx5x9+mf9RJx4f83Mpfla1A+NX1OBbp5QKXTUvgMf3B1zwu5k+nKR/+3JqxoKj8e/n5TdtjGwcK7h/u2e0HhsmzOC+WwkUr6VZPfsKj6czp1KZ2/qcPep0U1MK7Tj2OOQCVqx6LjXAUl69Vw6Zr6YwlTRl1iML8ykIhybmEKXYZrCI1Cd8l5pRwWugVuhHLXLQmZyOUMZDFUR8tKWuQmnBQPc61QjHS0mTU61QfuDrN0bZ4NCtJGNcYIVKZx3qdSu0IIZQH2eO9NBl91z2aUh0nXrmcN+GjhiCIVEyx/O7/huY0V7s+IBW0IQbCeGB4eEAraYTOz9dop8kpkMMsVJpiLuCMJgaP9xMpBVwrAX21YCDJ81ELQLH6N4SYibtA2keMhxwz2ShwhtQrtMkLLfD7eoQQlvvAFLelfMJdqJSTlB8/J7qkkQKFjinrSPJhSdot2kwpVivfvrhNxPo1JGKO5WcfNVL1ECZEaTByKqNmVaYBJSdh4bTWe6jojMpGqo16dE+dUr3qfzvnaBpTxJmaEBLOHS1+j/S+43pAoYcmwFglFskqoNdObJFHzRQioUxQFbk0A5msJQ9DKyXP3AfN+OFwWNahGv5Zn+0FZMnC9Q9e+OapnLuTVZg6IfwwB6Wei+NxnClqXfSiSsb8tog6+9aUCYWi6xR9Z+k6y2bdcXF+Rte2dE1L51p5DSVaEKMLBVGxbOwpZxHvqtLO1zUjC0pXmw/BgxQxeuH2h7lQWJJYPqaMcTKJ3awch0HsskOdlgIKjdYZ5yxt27BarbGuKbRQacqqk5e1DWaZWIFOkTqfFxRRnJMO+x0gWQUoxTg8QBrQKpDizHCAecoMQ2R/uCdGmQo3rpfdUkuhKEn2hqb5HjcZYUL6R0XX9aJDItN3PRmZoGWVBYGNkVTAxg/Bx1r7xRhKc6hISRXqrqDRKcdlOio9hZRmSZBVKPd427ZCez6596Xu0GXiKtQ7hew/VQPibDGLKDBIVhqwWNtxfvmU9XoLyLN8Sgdum17yMrSj7xqcE3qStbrUFeIkNc8zD7sHvvr6cy6vnrBarejaFZvNFmsU5EQIidmLS5ZS5lvg2zIBtZrziw2kmdubG77+6gseHu6Z54mUBUD8N1HSy1kHJSY9SSmCUuznCZ3Bp8iX1+/YjSPn7Yon/ZaX51uuzjZs+g3G9JxdPWO7fcI4TMyHAzEFyJrx7gA+EuYZsoQxohXKiD1/ayuDokGVAD+UJfuZkDUjmr/+4nP+9v0brv2AerIFtWVScD/N3IyzvP+UsPGWrGaZOkZNnCdsNmjjmAvwUnKmH4NEFQRDNF26gLDaWVzjFk2qSYoeQ6c0rjSnKUWCUdhORN15CuRZGuOkNJPS6NU5OQXmaeDzr95wN42MMXC2akBBgxVNWgH/BYhTpTxWaFeS02MkEwUEaR1N7xgPO3JtPIzBWUf0UUC173D8HZqMSJglYAhLET1KDd/ajEseEzI6H9DMcvNmuyCGukCU9UGtQSJkEX2ehu4tDyksnTTlxJgFkTgRZpVDFurin17HdhynJKdNxR9qLOpU43hziB9zSgpjhTsp1nUNq+0G7SwP457/1z/7V/zybz/n7fUDxjUi9E3yYVQR/SpNBFTKJVDJfOtnxiiLUOO6RwXAMAzL+djv9wsfOAZBhbumoW0b/DjS5My5bfnTH/6M9dSQBy8COD9h+xa9agnrKM5FVqFaBVYRcmZKM5aESmL/a4zFNEIzyZhlPFYDrA6HA35BpgvPmYw14vSldKEBFWTROktSFmvE5lEbsXxVxeEmjpMs7j4Uy8d5QYVOqXR1oSXD/iCJwdYY+r6X81MW+hAibdvTtWLbJ1xdKbxS9st1XlCWym3TZTPRmlXfHa1qy0YR/cT7t69xrSGlAHGEMEniawxMIS3oYc4Z27WlWRHnNaM02Rjm0ZN9QgeFmRPTzUwKMtlo1yvSmSW0mkOL8CNTxn6/s/jQRoorY42gJ6U59d7j57AUrMGHJfMmp4RtHEqLviLGRApCcwspYkrODDkvC59WFFu/+hyVsrZONbQuNAiwrnkEUKAMMXnm2dM4SyycmhT9ot3JoQRx1UmJqtbYdRSdy+81s1qvF9GcNqbY8waUMgs9qdIBq2tVbawrZWme5xKWpEmmoa1BjuOI2zj0uiOuGw7/vcdnQWDnvSBrtaC9v7/DuYa2bZemommapampk4tKh/LFqa023xkk2Kw0Qh9OJk5BktMgxNMj54zVlMC8IoY1GWsVbavpW4OrTUbjcFbhnGGz6enajrZp6LuOVb/GFvcmlVNBiiVQKp7AQdT1PiW0VcvnNdgVjsF+OYkUOCtTcloyh8MAOZUCMdGoSAwHoOFp3zFZzW6Yud0d0MYRyj1JzvK7FaenAuOKNqbvsHuLnaTgt64RKhfiGmiMFLlhzmgiUxp4N7+laR9wjbhNjeOBMO8he7rO4mdLCoacHE2zZnXeiuuattzfPSyUUmPkuXPuO2/9/+COmCaCF3tk11gglogJ0WFV0XXMAFL4+TAh+iyLRfIhdrt5uReqVkP25bp/eAFE0FACX3OsTmSI85sS2tVHH33EMAwMw7CI8cnykeaZxgT6VjQIGqFQ6WJ6okojjDEY1WJsT7cqEwwljYci4Zyhyy1N09H3kgQuEymZzucc2GzOKUgLfp759d/+ktdvvubN26/55JMfQLbMU5lCJpmvxxjpOglwBKFu2hK4st/viSnSdA0//NGnbPuGcX9HnBXrdV+ArxprUMHhx3bU3nvE0EODMmy2W9Z9T+scn3/zhr6V753CzOubt2zbhmfbNU33A8w8kc0KkwwbLjjfPuO/+M//K/7oH/0JD3c37B5usU7xy1//kjdvX3P9+h3j3YHzqydcPk+4dUInh5oMk/f0rz6mVZr85h2rpy+4mWfeDgNfpJnhakOg5bW/Z7reFUv7zOQ9icpIGJiN2Njb2OBaKc4jRVuBLuCyIup6ShVzsbRVWgvjx5UML6NZdx06JhgMw/09MY6MGXwG0zeozmEuz0nWkKcZgsfmzGXfE7Xm692OfRIGxao7w37yc76adty+uWfKmT/66BnPzjZcbpvlmuSU0NpSuH8kpchakUJiHieuri5prEGrJJqhFAh+luDFJOHRfvp7Tvz+6ouv0FmjlaFvO2zrxBNZKZq+UlYy07DH6DLaNwqIEkdOFiehQpEwWhe0EmJO6Hzs+j6kDJ16pAPLRh5LGvQp+g+Cisl+pwqY9XhU/4gTXBGsk/+uryM2uaXASGXMbQ1t19GvN9wfJj7/6g2//ewr7nYDU2kSLrYbCSOMgTBPSA+f0CkXtPbEljOdCLqNCLRWqxXdqifGxDgcUKUAiCEwFiqDcMbzEjKWi9qtbRu2rqcfErZNGGcwawdZoTsHvSa3qXDSoWkdPsmio3PGKREMGaVQ1fqsILUxyTgvq2PSOCBjZytVnKC0TbEF1FCoA9pYXNeRMVgtyAhZrm0MgTlECaSLYjtYx7O1WKmNReWWSyeuCVMZTWdBB6ud6ThOEm4zB1Ia6Xu9fO+CUiWh0NSmCV28v0/obSFEjFVYNGRP21rW65a2c+z3d8ToIUeyH0khiF1doc+Iu1YizQljxItfNi/Is8IeNPPDJFOWZImzQvUW1RsO00yePDmJo5nS8n6nx3Ey37tDmZIOj1z7YRiYC/1mcb+ovV6xN03F9QIyWUt6dYoBktiuGl2mRDku01GtxFhBURJOTbH4BFlca7gaYrGqVbUmLfbTSpecA0GScpYJgc5pAUrIaXHJijEAQSwsnaUKoK3tyOhCBTpOKHPOS8r2qR1zpbEMwyBOL8XVI+dM9AGCAivCYKUVjROnLJ8yISeePDljenPLfpweUUFjCKCkUKrNBMia1zTNQuf6MK+ofl43Jjn38dH6fJxY5IVidtpg6GLHaMp1WfeOrhOb2XVvaZwq+Q+l6dASRtW1PY1tcFayHpqmwVpL2whqLChSsWQtGLMMxY72jBnZ8DkBdep7Pz0HSsl+m+oNmFWh3BQKQZbrZ5Uu4v+5GAk4cJBWDQ+jJxaffKU0Z+cXbLaXdKsn+GiWRuL84oJhf8c4HDAljEuV+yIGSbHOURyTGiNrt59n5mkuDlKGYRzQKokWSDlUdvT9hovzK549P2N7tqLvWm6ubxgOv+Hh4WEB74IP39pTv0/HOHqC96SUZRKohGqpNWidgFDu8WqpXOzotUwnQyyS2yy6yeDDsjc4Z5E0bHWk4tbpuzIkqi2u0J5dMWDJORfNVcnpyZrGWvqm4eVVw9MnLduNweiMyi1aG5yVdR15iwvSn1NmHkea1ZqmW2GUTF33g7hCzZPn4qJj1a/E6nwp7uW9TtPIPM9M08j1zRt8mLi4uOThYY81Ldvtqmg5wkKtTLGyVSLVWTMlRFdrxSzFWEPXtgw7+V3nuRiVWIvOdnGbk8fNLrWctQ5tLW23Ynt2ibUaP0/s9vvFyUqh8DFgnWHVZ1SbeXf3OdPwDSvr6Oya7eqSvutZrzu6rqFtXvDkyUusVTx/9hEP97f89ne/5snFU1ZnZ6yuLjF2jVM9Nne4fov1Cu9nDvd7Xt/e8uvb9/zl9Wt+ffeWycFkEg9pYIoByS+x4uqXRDORsoZsMSX/LMtNV/a042RLa1XClxXZagFoy/TUNU2hv4suzPhIHmf8w0D2kWQ1ylpU52gah2scrm+ZQyBMgbCf6TcbdnEu7JmAjpkQI7fTjAUu1hfQGt7juQmGPmou9HFimlNGWdE/KmexjZN1IQhYZrVoeyQUMTKPkWmO7IaEy8W18zvWIt+5ybh9fyciFm3xrce2Dm012oBTDUMT2WuHmia0kXG+QQmXX55vrDLH+q1MLuvQ/EhEkuO0E/7WUa5Yzo8FhcvnLC9yfN0P6Av18/ogfPADBHnK9XuBsnEY6+jL+HscH3j7/o7r2wcmH6p+UUzWFUvQDgXhrx8VTVumGHURLKwRa5340ceI9zMotbgn5ZzLn2U8fyLQNEDjLKu+Y906TKPBKWgUSkmoHy3gjjSyrEVjolA4pbHIZquNOOakep3ysv1KgXjixmFdFTZlSQA3R845iAe5sTJSlNMqxXcuqJ948XtCsVeURsUUxLQ415wUBzVg6DiJyESVSpqlNKG6LgCoBRk+am8U0ooWdKGMyrOS7kDpI6UuxChTDAOZSAwTwY+4RjNPAyl6cQPxs+QopIRWVaSshEOtdBk3ykKQhgwDNAcDoyywyhqiiRgj/G8fPDpkSIrYOixFgDh/v+lSCaERSnMcS/ihIO+6OHJVcqLcd7k0rzIBJGdiCuRazOlKm8xlUqqXBrFSr4TqlJcNQJ53mUighHOddeEhI1OIulCJA6YIbeugq8xXSrZLRqmj1kwhAjlddBvaHEcoSp0kWZ8AIHWqeZr1URvp02I4FZG5NopIlmwiY1BZ1lpjDZfnG97dPFBplKcT4trM1I86jZAcGXnWPpz2nk6BK5hRbTQ/XEcrPbXSVXXZbJ2FvrM0ztA2DZtVQ9ca+s6yXQu33Fp1TLBVGqstznU4I0YRbdMKYFIKQXlPorFRtTvMgsxKg3CyD5Tjwyn2qeFDvbByTaSBBBY9Sr3qRwQhl30t47Sib2Bc9BmZVCa4XdtyfrZhmApNJCc22y1N2xVxMISUFkpPitJAy0ckJ7s0brIWSSMbfMBZjbaWrl2z3Txluznn4uIJz56fsVq3NE4Ti/6sTqXk/v/+NhgAfpYpdQaa8ozJGmBwBdyJMaF1KWCzTBoL8kgdWle7zorqxxIu+SFNWxqMynCgpCVLYa+NXOcKuqWUMFrTtQ2bruNs3fHqRcvZxtG4EuCKQasj9bJOWOs9prSh6VY03QrnOmluciRH2QOMsTSuKU23WNNWeqNScHNzzW7/gHNOrLbLhHW/P7DdNDSlSfehJIYX+18/C/XP+1BE5Ia2bUTAbMQNjQzz5NnvB0IJPNZlQhFTzTsTByVdpkNt51Da0bQdTdsRw4yfPdM4FldNua4xiltbTIGEZ5xG9AxRa4LbQIrEuAbWNE2Psy227XDGslmtOVtfEA6e9eqMdrWi6TYoWlQWYb22jQC348Db21t+/e4Nv7p9x9/cvOHGD3gFYoos02BKZIFSqtDvkDoqyZoudYEuH7K+lwJEKJUca1OXa+2rcMZglRYQzQfC7MleXMuUFQqVchbVWIzVWK2wCnzKx6w6axn9yCF4QkoYhOobkpyvUXW0tuMhK6499HPiKkBbrcWzIhegtvIGa9xAThnvA6RI8J4wR5kcBkVSLdms8H5m+vueZNy8v8MqSSxUSmE6h7ZKhMNhw3Qw3DWas66EBTlN2ydWWi9uDyYbbFJCH8oIbw7KGK3YGeaKMP+B5gIK0kypKY50hWqDeuxJHotc4Nu0qD/UYMimKqQ6uUGOxay1DX2/4cnVcxSG/X7i7dsb7nYTc0xy0RTiT54TcZIkXaNqwncqTUYqlAkEgUeRY7G9jEcLWWM17WqFymIFO2ld3COOoVe1MIkxYp2hXTdsL1e8/PiSQc1E4qINSU1GNVFoTFpcSkJpxKw2WK3JPktIjNEkjAjES+da7e1SEb0ZK5zBrmsL91umV8a4wuO0NE0n10VJ6Tj7meSDbH5lg62BXzGEE4FdVwpRQXxPwwqPTlNpmXbEWJyiluJHL81IziwoXr3+wjPX5f6w5cFLJHVErkC+z9rjyPD25i37/S2XT58wDTtIwq+N87wUI8pZss9oZejWa4xFrnmKTCGS7gPqPqMGjWk1ZtXQXK453F6TgkfvMhwCxEBqNdPZGqUteY5iWfo9PqZ5FuEzpvS5ohFIOWGNobEOpx0pl9RpH0gKgdq0xihT0LZSqOuT4pEjMJGR61inhSqKkK3aV1Y+tkImIDlkVLHXTbEmtsq0wFqD0paUDahc3PWLuFyJYFcpoepopcr7qA3NEWWUPyOhNCO1mVjec3moq0V1RSjr/Q4FuAiRaGStccaKqFE5dGN4/uwJX765Rd/uSCkszUqMka5tWa16+tWafrViKhqNfrWiaVqGYSCnxDAOxBMbz1rALOLz9If1bLXSV2WI3TpF6xTrleXp0y3b7YrLiy2r1mKtwhnFdtPjykRcOOUSFqaVISVp+mTttWCEh18tiFUuZVlJF08n76dSz+q5rRSv0+NU65dzLOuxNDkhU5JwLTDJ2qZK0GPMJdk3EtOIwtLbhsmVnx3BI9SnlBLnZxvMQeFDZPaes/NLcahrbjFaiei2rHvRz0IFLOYQ3nvSklIuRabOma5taBvHatXz8ccf8Y//+D/gbHuBtQ3aSqkU48RqLSFh+/1+AaM+1Mp834559JKMbQyu6QvynrEp41xL49pigqLKtDCQsxZabimYlVJLSr02dV+ouSN/KHtH7pEkiFxhYqTlOb25uUEjBaQxhpdPL3hyvuHZ1YZPXmqcjRgFir5ou6BUjDIxUyz0bNt0vPj0p6z6C5ztMcqhiDjb0neJdGZp206ch4zoGmsQsdLwy1/+JW/fveU/+A//Qy7OrzgMB+7vH7i9uadtNgICaoPPck8eDiO7hz3jNDMOE2/evOHTH3zEs6dP2G63aOMWgfq0v+PuZsf1uzuxCaY8t86Wqb6s6V3XQpb19OrJMxKGECPjMPBwd4OfJ4Kfj1SxLOc5hQk/R6YxQRtIBPEITAdml8n5wDjesVpvaVxP4zq69hxnWozq+PEnP8MH0NbhVEfKhqwNWVlmIMSJ690dv/js9/yz17/n63nPuzCTnWLWkUAiiT0qIKF5SZI7RaRtHHEOZeRpobHSYBiFiuV+0VoyToqRDTHRuaaELCactmSfSD4S9wPjYYdtLN1mjat61ZIpZ2ePiVFMPUOSzIy2JaAZMxxyxudIV9YFnTI+a+6miQlg3fH7MTEpT9+OnLeXQuFUkUiRFSGMjZQyMSTGcYK8K0SkwDxM+JDIqqHdPqHfXnB7c837u7vv9Lx+5yYjhoLkIhkL2XuyUSgLw35P7wyrxtIaxAWk1WzPGq6ebOjalrZxrLuexljxNC6omtJS0C6UFWo8+mNx9LcWRSW2kaomsOZQkEQpPk5tE+G4iVd6wqkopx7HTbPIu1RxllEykF+ttmw3Z/SrNXf7gb/+zWf883/5FzyMgbBMPSO9A7JijBrvo3S/SqOJZSMUSzURCIrAx4/TQmU4HA6stxvZ4LTi4e6B6CMpPEbeZDQ6SUCgNWzOe378g6f8/AfP8d2MTsd8CuccwYA3FMcUsRdOKeGaVjh2PqCMIRXENYzTgn7WYqU+RG0vi7spfG9yRWAdTdNCoS74WTjeYdngKtUkE3Mm5FO//SOfc5pnedDQdN2quFXkxQr0sfi9FjwFoSrNZ0XFlXpMvZLfoSCTKjPHsKDTtWSqKO1qtVr46gBWg9WZNA20SgSkROHvCjHYECdPChlUws8jtA0pKqJXsFPYg8HM0CrDsPWELhDTRBdaTFDYqEgmEc4NvgdtvNBkJmD4fk8yNpvNcu797EXIqiHrXILzBBXSaJjl/Fpnmb1HB4ptp6UGYgnCV5zWyiZb77EMMs3KUo2mWBD4NNM2fVlDKkXqZHKCUBpjKtza8mfTtcvPlUA4Qy4uNEpTNoZakBTOc1bF2lqR0MzztFAcFKd6MXl/Qs22hYIoBUvbCr++ZoTEIkSNStyC2q7DtGt6GuB3gARyra7EuSrEIO9ZG7QW0XJWmn69LjSthuAPhboYl+nJ7I+c9dpk1H9f6Kn1eSoUR1UKsJdPL/jxD17x8aunPH+2JqUBpZJQo2w1DFU0tqGpaewIElenEzF5ytVB6XiceiewShD+Ixr9h+hbx/+ujdZp4/GtSUwqujIlm3XOmTjLfZnLPQHCgReb8ohc1Qg5sO0a1usej+Wb6x13t7c416KUoIPzPHMYRmY/0bQ92+0lfpiY/B0hzMzel1whX0Ab8FmRjEy5XNMWMXiiayQTo2kMl082rDeGbkUpNtOCkN/d36ILMFOpPF3X0ff9v61H/N/68fTJcxHkG8NHH3+KNkdN1f3dLfv9jt3uYdHl1TwTfeqIWADJrCpkkB/VBMfnuNwHOS5Wtm3Xsj5b87C7Zw4T8zyRY6ZrWlpnOessf/STJ1yer9iuHE5PKAmYElqXSSiVyEtSgtzzOufy7w5UgzW96D6QZ/7rr9/w5s01q/UZlxdPsUbonIrMOB3Y7x+4vnlDiJ7zi3Ourp4Q4kxbhOGN24iOoqxpMcrEJ/jAbv+AUpr1uuOP//jnrNc9XdfRuIZVv0ErQ5wjv/nsl8QAT5++4P3NjbBbjKXvOqZxZA6iRXz+7AyycDeGceb2bsc8T4Qwo4pqyujKKZBrkLOiX2159nTNJ6/OcQ/f0MRMk2TfzWkiZYW18DC8Ix8UZE1jV6xX57RNR2csMSeYLGocGVPmIXruo+erYcJGxWG343e3r/nr/TsOOZK0JlotIcKFzquKe1TKkawVzjrJuFIJTHU1zFhXsrusgShW1ApQSVYKlbI0E+OBh7t7dg8PbDYraZKVpjcdru1o1h39+ZqNaXEhYvxMuLvFzx5vDSEmBmMgBnQItCmhW4dykKeZMCfRdZBIMTDuH5jHPVpfMEXLPkUimVXbc9VZNq2msQrXNljXoNGMwx4/e0gCqBvKBDx6YnLo/owXP/xThphpc8950P+GJ/Tx8Z2bDFnqWVC6VBbkDMSQSAHCnHEa3EHROMU4e3xMrFctq1WHnzxt42ispTGOxgli51RD4R7ITacUMf+b6UynG0d9dzkKoqzgg38rX/EHNqHTJuNRg6Hq15SisxTQzjY412Ks5bMvv+b3X77m67c3eJmeywJuFau2BGWFjPcy0k+pFrHifEEqdq7FcsAYW0KjpKESsZQ4LTXOMc6BVMSm1QWlulloBU1j+cHHz3nx9ILzbQ8qonVtkizJmIWGXhzil/Nbr2/1NVFaJi+qCNRrk1G/VuuSpKxqQJ4rtVcuE4VQNAmJefZLgS9TAVsaF3HJqaFeUKyLTdnsUyYEueNOPaaBRRRbC6B6+CAc0Up1CTEuSKhc41PP/hP7YM1R9F3ubck90CcTlEKvKLScGIIskpkFya65CVKQiRmS0mAqHStp9KzQEygPeaXJjSFrRZgj6oBksGjDnpFkIVvhtFuMnAv1/XWFAVl0jTaS4l2aA7FA9oTiNiXn3wrrpTQkulyHlKtzlFrSfOvaFLMEWekTokwhuAg5LvhChQFsKjza2tiW5jSBOKKpAoLIKwgvv3Lz5YW1UcRCgTnVW0D9OzFJiDHKjUJNEK/I6bHQVUrJs1/+XSkWc4zqLlcnH+M0lee60IOQrJA5Ch1ms1lzMSfmIPkV5XGQjbIAHm3XYYzQGQDJzJiKzW6IxBiW5+xUNybOgII86jIJknOilrWpsYYXz6746Y9/wI9/8IpND4fDLSFOQJDnoazvVlu0snLNFCh1bBRRxf68nttyPclIvkGMJxSNbyPzp+f2tHj88Gvq19V+tFoiUydixf2ughdJa/JiZQbkdHxGrZSsVmvmFJnnid3DHdNkmEaxKo4p0TQtq82WYb9jfzjgJ3GoC7EaRlBAKNHpSTHgJB/Ie9GVZbnzjVZkAilLVpD3I95PjOPA3d0ts5+Xe6+CQH2/+js/u/9Qjo8/fsU8HVBa8fFHL9CmJUQYp2mhLQU/S25BK5kpoTwb9erLMyz73GmzfBSCnzSnhZqVYma93tCvOvq+4+b+hlQoRyYrLrYXXGx7LreOq7OGda9pnawpOeuyX8oUVZrAomGSx2lB9eX5XKGMIuRAnAJ3D9f85V/9gi+++Ib/6r/6b5aE7ZwTd/e33N/fstvd0XaGq6sn5LKPHfaSJ3I4HGgvNovjGUi2htFaJjQpYq2Ys5yfn5fQWwnX1dowHAbefPOGz7/8UkACnbm9uyu0NYX3gbbrca6VdS3JfhxDJE8D8zyWOiCIGU7dpuWsy3qeDSlC8onkPSl6oSQWAbxPMzmAsjJprMG6uEC0Hq81Gs8UJmKAEDTJdewU3ObAr99+zVPVMo0jX84P7LNnLpPXrFRp+US3RsooU+ivMZG0rDnGmgKqlu0gKXQGHUEvzmQixLfl6wiir9Ip0xor3oVGTCCMs6waR+ssbU7044jzE8ZP5LBnSIo5a7KVZz/HCDGwn0aiO7IulKmro4I5Ft1pYLd7QK16rO6514YbH8QGvLjUSZOXxZ2wBMHmJB+xmPDMPhJwWGVRTcfaimunc3/PTYbwXqWMT+WipAy58JfnmImFSkCKWJ0ZxswwejablrPzmaFz9K2jax2rtqNvm0XEl6tAU4nlaFZ5sRZcUDP4FsrAh2P7kw3lQz5x/f76UQvoU6FibTC0roVpAUKVkeRI50DD3/zmM373+de8u3kgZhFHWw2bVnO2dmWThmGMxbawFg/S6iqdF8etnBLOWaxzWOcwWuwmUYrOtHRNgz+MxCDCVlMcL5pGEByjoe8afv7jT3j57IztqkHHgyByWh7ESelCVS4FWkF3H2WGZHlfTpefcXKeajhe1VrURE+j5bwEHwnBE/2M9/I7x5jY7/ePFu8qblXKiZtBzkWgq2i6RugmUWLt64brrC2IjVyLGqD3CI0skw1jm0VT4X1YCj1TxfMplgKtnBsKxaVUo1IsJlk8nD6ZouUS9pdLAxlQ1sjGkIVHSynCQkxUpw5tS8OWNSlqjAc1g/KZ2CtoZESep4Teg3Ya1VoGFeRZUrKg21jSq08Shr+PRwqhTCzUo+azUuKES61pmrLxFoMIY21pJlKZCqhaiZK1kfsoi96jTq9qZ1qX3+phvmhmUhYkMUWqAVBKxaWohPdllcqUJEGuKD5iBV22yA+nppW6Wb5QUttVFUQeBch1MlCpAqrr0DqRVCImhUkZax9PEuuUoQZc5oKo+XHmYQyoDBfn52TV8Ob9raTHaoVJisY5CUNVmr7rpNBJmeg94zAwjeOJRa0YMsRCLT1OC9NCU6qOS/WQ50zhrOGjl8/4+Y9/wM9+9AnT4Zp77RlnSSFXScZHQmkrqbQlnOrkxcTpKQOpglocnd/U8dx/m9by+Bk5vS71OP2aD6flKYVHwZ76xNFQcgWqzgURepdmKyuxedQISKFSZp4nrq/fkegYp8Q4BYx1NF3HOmeGhx3O3qDUUXe3NG3aSIPRdPSrNdqIaJWcCWFCaV30agEfRuZZoZRht9+x3+/Z7R64ub1hmiTHwDlH1/WsVis2m83f5bH9B3X8+MefMo8PaJX55EevyKplGAJv3t9xf3eHbyZC09K2DTmLRmIY6x5fWQosGT0SGpvKVOw4qat1RM51YqY4O7+g6zuUgXn2krGC6E2fX2356PkFVxeG7drQWLAqE8taJUVxkmZWlQaXvNxbWRWdjzasN1uUUUx+ZHd44LMvfsef/dmf8flnr/lv/9v/82LBnVLg9Zuvubl5x2HY8Sd/8o9wzYoYFdM8cXN7w2G/Z5wmzs+eS/ZB3wHFNMAoEhGtS9aHc2w2m2J1rYuoHW5ubvmrX/yCL77+ks26p2kM76+vydoAhnkOrNebcr7A+8AwjDINxQv8mynZZjWLCqg1UEYoVVNkHj3z4YCeJ3CyDicFMU5EEjkYKBNY1xhcb8FmovKMPnLwD0yzZ/IR556xMw13MfH7929xzRmTn/gyPDDrXIBVyTOL5ToblDh6abHT9tO4uC81TStuhgBJMe1GVBCIVucsjUCIhGkiurY0sYkwexpj6c62YCLJCc2t0Q3b1tEocNNIv/e0acCmCRhRtBjTQduRHx7EtCAG/DgQtENZyZpTWtV53AKWpRTZ399jtaLtGg6N49oHzlLDU2MLYCP7oFQrCp01OSlCUuAjcZoYQ8YbcURLKC7ONmzWHdvtdwMqvnOTceq6tHT5SKauKn+fci2mDSHCfJ8Zpsz17YD9Zs/FuXiLr1aOi+2as82GVRcJEbpG+IXOSDy9snLi0OJ2VDdm59wjdE3oCsf3VQtja+1CL6iix/p71ObilCpVj4pgPrJKRbrm7fkG0xi+/OY1v/38a968v+cwyxijt5lt7/jJJ0/42U8/ZZpnvnz9hhDfMo2R4CPRJ6wWsY3KiphmckESRn/ABIsJBhsdXdOgtWI47InzTEwjpskYZWhMA4VqAJlV53h2teXTV8949WTDttOMD56QDTHDrJSE5CVBSw74Jdzv1B7YWrPwv7VWNI1bphld11HD7ZRSjKO43szJsz8cHod0pYwt4u+u65ZiEo4NQkoJ13e4psFkV/QYSXj31qB8ESNlcbSxuUxSssH7WRC9eHQF0caijUMtTZBeKFopelwt/HISf+0i4tIlfbwWLtoUOkShZkkjJyuiWGYenYCq2YB0/9JXJCJRi52csQ6FZjiMpNET9jN6mMnZkx1kp4kuY6NlpTuCmQk2EazHx0hvxdpyjgkdClKivht68A/1CLMnFJOEUwpb1c9UV5eMbMSJkm3CEUm2xhZ/eZjnURxbynRPGr0yk6sIdUk1FZqVUPByCAuaGKtbRoLgM6ZHUCwjdn66IJ5Kq4XSJLoqj0KKt1PUHyiNrkzPQO77mAJwtH91zi0ULZn6zUc9UIAxjTSNW+gtp0F6sjYBaMZpZrcfeXe7Y39/y6o9Q12tuN5PNFqJhisF0AltM9aCnyemeZbzX0wYcsok7xn2B3yUcK4QQ8m7yagUMcmXZ0XEjyGURt8adFYlMyLykx9+xA8+fs7zJ2d8uXuNSrIJ18a5NmDoYj9KEcWXwFBydSA8prmrYpJR1/V6rmujURuMUxT60TVRilNw4sMpzR+amB9BKLlXlM6gLDEqvFdyr+Vj2vl4GDiEiXlKxKzZ73b8zd/8DW3XY90a49agxGGmounTPC8hlVofXRdBY8v0vHGdUGmUTKOmUe63eZ55++Y9xjZ0XYdSii+//JLdbsc4TmikOW2ajr5ruLx8wtXVlmfPzv/tPOD/Kxw/+fEl55tnXF2s+Ed/9DO+/OKW168f6JhI0yXvyaRpojGaZBVkA6nlMErqtFLVqKDiEHlx3Dq1lK8U3dqcNE3L02cvGIYDv/71r9jf7TnfrLg83/Dp8wv+9Ocf8fRqhTEDKlUKuIy7pZRJCF+Acs9k0BadpTBUaM4vr7h6/oqr569IRvG73/+G/+Ff/HP++X/3/+Hq6iX/u//0P+L5i6cYC7MfGKc9/9Of/0vOthteffSS/U70JzVrJcbIerPm1Uef8PL5x2y3W9pGM00HCZk7HJimgcurS7p2zWq1ZbVaF6qyPOfffP2GX/ziF/y///l/xz/5L/8zvB95eLhltT1HawEMlbKM4yivNw4FICprYJkWFJy6gCqiedLJiPazJNFv1w1PLjtePOuJN2+wyD4QkKms0YrGgut6NtsNm82GYQxM8yChuNMo61mZFAzpgb95M/Gb6wmXFX/98IZdGLlXnuQ0JkvIq2odpCAOUimhjMI0Dte1JK0wuqGxLau2Jxc6Yxgm0n4mzzKpMClLYK4SEfacZwm/1BrjJBxxu9ngrCf4iTTOqOsbLlVCxwniyI+ePufTV2ecbxu+ePOWv3kb8YCa6/qpyMbQrnoGC0lTRPwyxSQlkip5L0GRfCZ0kWHwvN3v+UpB3zi2Y+CFNTgrE7owDAz3B8aQ8FnjFkOASG43mO4Ct7nANpbWCstA2+/Gqvg7mWWfdvc10IngK54HIELjosrPWeOTJvrM5AWtGmfPek7EqPFBMfSR2Wc2q47OOdpGbOFUFFcqoyCptCz4dUIhSJoiKS0L/8n7OxUrfvjeP+Rcnooa4fGkI+dKcTCsVmuMdcSs2I+ezz5/y83NAyShaPTOcnm24qc//JjLsw2HcWS/X9O3d+ToxfawOu5miuOF0B0iGR/Eci6lzDjNuLZlu91yeXnF/e2NLEhKSVNnZNTlbMPzp0/YrhyXW3GyaK2WcZwSHl/MsqylUKDazEK/qNSl02arnmNjDH3fCd80HwOGxH5XRI0xHoPvFPXXE/u7UJqA02TkhZ6mVBn1qwUlzlmsSet0SmxbNdY5oQ9AEV3KlEGoBIKIp1yzLxTtIqor4jytycWK7UiskZOvVMW11KPmoTqOCMpd6SYnFByllqK4Ou4sZCslSbLWyMTGNY5xHIl1UpTFyz0ZTb7cohhhyvhxIqSAVaXQng0hCu1MEFJHDJ5pGP4uj+w/yKOG7anSMGRznEjVwkmXRgOly2YvSacx1aKTQmEQ97FcsgkWO2pO0OpaeJafX80XcqG65SQTL4OIisk14E/sSnOZnMjGm5e1hwX9PGqD6poiYIg0tBIOJw9+ndSc6puqC0lFs+trtW3zaPoBR7G4fB7JWRFzou0anjw55+z6wO2QmMaZnBXWNCjj0CrTlowFZwVIaJwjoBinYXmGxd//OA0S3UMsvzNLk5uzuGittmcobdgPA1OM5TrUwnkixPkRGqyU5GbnUrzprMUtpZDcNKlMFT8UlbMYSFC5Yhwbh3pUEAQeU6FOP6/n8bQx/PD5Pl0TlRJa3RKyqkGl8vMfz1/QxuFwpHgQCkZMxDiSYsA2CdNk/MMestgKT/PEarNGGUUzOPa7HfPsSbnSQGUtdNaRaxgqiRAagh8ZDhM31w/c3u2QPIiZUPZkrTWr7pyry0v0ldh7P316Rb9q6Pvvb07Gi+cNfa/o+sBu9zlnK0fz0rFqnoJtMMbhI0z+gBss0zjwECO2XFOZisp+mkH28ErHLPdC1VeJKFwcA1erFe/fvWEaDxBnnpyt+OTjl3zy8hnPLxo2K4OuE+h65AwqYrQYGlRbZIoDYlKao4FNw/nVx1w8+xiv4F/9i/+eX/31L/mLf/3nvP76LY07I8SEsYovvviMEGfWm46XL16itWKaPN/sX3NxfsVqvabrLM+ePcNay6pfLwDi0mCXhO++W7FerbGuxdlG1itkbxsOB37xy1/wu9//lhBnbm+vabuGtu3Q2iIUp4T3A/v9TiZrOeBcU9Y8eSZPG/vKPMhlYoAWZoHSCecSikDwg+zvFFMgJauDazvOLy4hWVTUTIeZNEeSn0hxJsV5AQuNbfj12z2f3Rz44m5kP02QZ3z2eK3Io6xEWLHvl9pELPqVsyXPydK3q+IGVhwv50CaZ+LsUcsI/KS80wqsBTKqOq0qgwmefH+Hijv67LHB088zP3p6Tr/usP0lT1dnnK1bGqdYt2ssBwwWt+pxiDFQ9AHdOFxTXQ9nmfgXe2UxRyq0O9eigyIOgd3NwK1puW0CD4PnaSfhoFlnghanzwRo51hvNzzkxHgYuZsjxsqEQylhbOiUMd+RVPF3okvVj1OaUTpFf+o4XWUodrUpK2IR88VB0nZ9FGvXkBTjLBZmKUHo6wMoW47BoCtfUUnRiHr8nnRZKD50hPhQDHiahfGhqGsplD9oROT7pBjv+hXGWoY58O76jjfvbtntx+JvDn1juVj3vHh6Sd83GAX79Yr1qiNESZDNMRy5/wUdz0pQq5ACfp6Lc8nEentG1/cY4xZeLlkEaz6KA5Z1jqdXl6xbzaZVNKUIEhE1pKzLdIkl/BxYGoyKxv8hNw35GlcmD2JxJ+dVOPOnCfDL+a3jX2RUlwv//sMNvF6fGlBWi85aYKUYaZtGkCCtF4ZQznkR7FEE/4pcflf5N1ddcCp0gvzyol0RUae82MllOLkvapMl9LEiNq3wC/rk3NiT+0stL1gL55qfIK4w6RjIFYWuhtJka9GzgeDF/zpHVNKobLDKEJSISxOBnBt5dr6rOfU/0OPRZgNCizktXGMgRMljWQrGhcQszcFSgJbCVShHQkMo2zUVgcy1Yf3wfXB8DZWK2LdwpkNOxcG0XPd6jVNpMrSWHJxqWJCO68hjyo7QLyoiKu8pUTUfcFzD6uenha+xBh3EYehDK1prBKEOWaYjTdfQrtc8f+EZvr4j7yZJ0XYOo8QadvFmLwVVThCDOOrE4pGfc5kMF4tWVegcssoKsilOirKumKZFW0ua5iIaFF3eYRiYZnH2UYVCkTMF2U3L+cklO6iei8Vl8FHpfrx3yLlYLz6mPB3X7m/fa4++/+Trv/XaJ8e3phrlCgr9rhRJJ+9TiXtBCe60VJg8l0lcSoGYFDrAMEVSOGpy+tVKwimtJniZIMWQjsuXAmcNIenSaIjY1k8wh8jDw57dfs/kJ/w80q8a1quezXrDdl1D2yxd57i83CAad/+t8/u9OdpEsIkhT7y5uefJ6lLC3V70fHUTuNttud9P7Pfv0CR0ToyHQagrsGTp5AKtZ13zk041e6XRkNGbOCW2Dbv7W2KY6Jzm2dUZn756yicfPeOiz7SNQhWzmJxPth8lU1ABXkWjiZKCTaFBG7Sy9N05Z1ev6M+esh9H/uzP/4y//tWv+P1vfstwEAcyYwzeT3zz+itSDnzafszZ+ZmEZ84zwzhzfnYp+R1tS9u6Yvssbkf60V6six2uExDVyFQCpRiHkWEYuLm+4/e/+y1v3rxGqcw4Dhgra3bKBeQJiXGcmeaRXOmD5bzJFOPxBFEokuX8SxQ6qIzSsdA55TpojNSR2uIaQc/bbkXXrfFDJPnIOHlB76MwBFSKaCfxCljD17uRt/uB63FgnyMmS65VLFPTrIv0PhX7WC2TCGstxjnZyxsjOgWOoKKsjzKhyjJ4RSlDlMcT11hsCliVcQZaDXYaYZ5x8x3bVrOyiove8MOrFauLnuasodMdtkzMnW0EhFQKrF70eimDdlYiJCr1TB3XpLJICd1LW0gQp8i4n9ltAw9TZDdHwKAkQRCfIj4lQi46F6WYYuZhSuySZet6dNPL+h2inK9v7ap/+PjOTcapv3rl8UP1EVfLL2ZyRfsiSiVQVhq9AClk/D6yHxPTHLnfzfStY7uZ2I+Bi+2KsF2RSLSN2KWSWykctAKr8FOxSatQJkcKVL2ZT0fp9SGvX/dhg3GKQJ7SrYBShDuatme1Psc2Dddvr/ln//xfcX19z1zei1GKq7MVz6+2bPuO7WZFby05RG6eHtBqT2IkhD0plyJRF+9lZENPIRGJZK+YRs+wHblVD4yjCKWM0VjXcdVvuN/viSHQOsuma8Hvubt/z+H+EpdXRGfwIYF26PIAmdYtG2nfi3OEc+6EpiLnZr/fL+dlt9uJO03w5c+jdW79nvpxDLYqo+A6Dq6XIbM4e+WywI+7h5PRdKU3efzsi36jWfQYWmlq4GA6TRSlZiUojOFReF+lM+WcMc4UV7osgXlSgpERf+h6/b33tG1bvldSVOs9pbVmtVrR973Q6bxf9Bm1idBKmgx54CPeS5YGMaJ8Qo0RHQQ5Gd/eClI2JpQPhJjQc8Ao6LeWeR2ZXGSaR6bsZKHZfH9dYeC0ucyFKih/X6l41FC84kyiyoYcY1qCGiVD8ThRqE3K6aQhl2u5FPGoAlLUQr9sbmScKi5ROYsOSOmyvpQAOSomIIWfUWC1hF6hlGw0ZXGXtUZAhVqohHAs6D7Uh+UsIU91LXtUFJcGamJaKFI1qbrtWiAzjSM5BdrO0a03/Gevfoj+13/DlL/g7d0DfbeSRh+hTIaoIIFTiuvrG+7v77m/uaZtnYiFh4Mkr5dGQpXGTrR4iqxsaTAEINkPA2iNTwmfElaBsZq3768ZphGMKvo9AQNEr1IcBKm2srKXnDo/fXicFipLFbMAJ1KwHScmoo2qtLS6N3xI9z0FnurP/Tf97NpgiNhTF87zsbE02pKzYwyZOUSc68rUVah7wXvmeUfiQEoWa1uccTT9hhhbvJ9pnCMW2k7wHmOqjk8cyqIXMw+UAEzGOuKUuL3dMU5zMaDoyCmzWq159eoF/8l/+B+z3x0Yx4FxemAcHxiHgf3+4Ts+sf/wjn/+5Rs6m2hUQI8HfvLkjqdn5zy9eMkwfkPXKV48P+P9645kJpKZ6Y1mAEKWqbctNNiM7BsLsFQajTrJSCShrNkGoxQhTaw7xZNXT/h3/vhnnG06+tZilceajNHFkS5IfaKNwejVAo5IcyOUcrIjZ03TndNvn/CDH/8pTz/+IVEZfv273/JP/+k/5ZsvvyFNGdevefb8OZ/+4GM+++y3fP7F71mven7+858yvfYL4+DJkys22y1dv6JrReNVHeSMloRwow1eG7qup0lCm16tVijdAo4YPb/+9W/47LPf8/VXX/HZZzLF6PqWzXbDNE7c3+8YDqPQwIv9sjF5oTL6YB/VZKfP1vK8kcEVYJREToGULEY7Vt0ZYbghKYN2HZfPXogIHc08wbAbmMeBMB+E2t26pTHoVmuCdtxHzZeHibdhYq8jrusJD5E4ecI4Y5RFW4NqhDWgjWSYZJDAvK7FNS1+CoyTUBqbxtIWJki0mkmPRBtIXibPXmXQcLHqMPOECR4TJrZKE/e3pJtbrvTAT37+KS9ePuXZ1VPO1iu002QDJlqxup89M4lgI1OaeDg8MOwPzOMo0/G2KVosoYSTs2gJrRV9IRGUXPsUklgBz4GbIXLdRe4CrPtzOgc5eR7uB+5Hj7KOtYHffPEFX7275d3dwNOPf8bHP/ljnl1e0fjAfJjENODvmy4lCZFyk1SxZioUharJqCNaVTjuOUeyisIj05BzFVop9oM0GrvDzO3DyGEM3D0cuF23vHi6Zt134uveS1FnrSHnYudTpxs8bhw4+Rz41qYCPGo+6nGKYtevqR23dQ1tt+LJswve3t7y9Ztr3l7vGH0mJEHONp3hcrvmyfkZ5+sVrTXotuVye8bV2Y7DkBhGzyBgl7xziQRfiouCaWC1wq065sOB6AP7hz3rTSfTkVZcnBqrCUoTwsCL5+es3RYVtpydrVBkEVvpmsIuG1JNJQVYr9fLBlttDWtjcTqhOGpZ1LKx54LKn/qN1+JnoXKIem0RQstmW67byYThNF04xiiWebZZ7IxzzvgQsMYSc2noPli4lLbSgP6B5lEV5EgpipOOKiL8mpMh4sq2q3ka8n2Hwx5jNG3rCgot5WwIYfGbl6LPE/wsD3tJoM2IM5q1jVzVqCQ0rcDsOshPD7XJNArTKNza4g8TYRoIE3TNimlOBJ3p3Zp0UMQhEh6+35MMKJtMSgQvmR9Ka7R1ZF0mEylLyKFxgt7Uzb9OykoTWxFGUiIlEdoqnRcKhC2hmFXM70O9r9MRPeekWa7vLZ8i42V9yZBzKE1NpdfZOuugxF0UQOl4H57qAj78M8ZI4yS7Q1HR0+O0rN6/MUpWzOn5qx+iMxF3ubYxdGvHz3/8EatVT9u0fPHVaw7DgPeJacriFBIyTeO4ef+eaTiggHE84MPMHGZxbBJlKvpk0ojKIrwsjlVd53BOEZIkAOckLiwxJs62W/p+hbVO7H2tRidV6Gly5uXcHtHjDwv8079/1JyV61IpWIV3Wuq4cr4/KGjgWEh+2GTURuHDHI3TNbBOMqSxkHtM9osytcCgbY/OSnIyQrUPr46Hcn9ppeg2wn23tiX4ul4F2raHcl/Ewoc2JQ+lTpRD9IQwi13o7EsgWvmdstDxZp+KEUdgngdub695uHtgt7vn/v4eraFtDd/X4+t4SU4TioneKw5fH/jkoOi6LT//8ROub+H1m5kv1h0PYSL5iGtXnJ1rQkr4LNq/lB8DjYuGa6kpgCxUNWcsJM/PfviSi7OOq4ueq4sGpxOaGWNEJKy1XAfjHKqYo+SShyHuhgpt2zIxcFy9+JSLJx9z/uRjXrz6MW7T8/rdG/7sz/4lKUQa2xJy5tmLZ7StI8YZ4xQXF+fknPj88y9IKbJabQQ4tE0J/LOcba74q1/8JdM00jSG7fqMp0+fsT3bMhUnOZBMs4xmHAd2+xvevnnHv/6L/y9ffPZ7Docd43TANZa+6+X1e0uMR8p0GXXK+mik3rDW1HHGI8YD8Og8yyHrK8rQdRtUVhzub+jciqbf0PQb2tUTFJppGLl9d00jIkVMI4CFDDy0ME5cyxjhdgzcHe4ZvBc3qjkS5kSaZc3QrQYrToDi0Sf1gHZiG25dI4YuYcbmsk+lvIBMbdvhrBVXOD+x0RqnFY1RbJ1Y7ybvGfd3/OjZBZtPn7D58XNenrWcX27pVz2NW+Owcm9EkRook8FmnEkoP6GjxUVgSqioMaphCpGsi2SgAHAGRdu2TD4KYQKYky/1ERBmHoY9163h9arl9Ry41A6dDQ9Bs5sTJkdsSPz6i685JEdaXbBaX9HgcEmxaluin9HOYbvuOz2v37nJqELq2ulXukMJV6UiLsbYpXBOdfE/+fd6U8kIOaFClsVUj/gp4aeAVolp41n3c6G5aFLjcNmWbIwyDlLqJInzsatI1W6cdtCnVI3T4xSRX74OGU02rdj9Wed42I28e3/PN9/cEmKZ3GjFupdU1/OzDY0zEnZiDX3Xsl6t6LsDnTPyMBc7WwkjrAhpFbAHcjmHMcygJDlYZ7tYPjpr6PoerRVGRV69vGTTgA491iqxE5aZsEwitVjM1tCvD5upEOJSxMWC5p7qVKqGop4yKc4r6pOFolL+fdmA8/Ecio7iRJxfbHtVDbv5QHgp9rjCvxddRzwp/BCaCGUQmzK5jqQ5LUqOaNTpNZePsu0r8cWp4Y7HxjQRgidFUCot6cKnxeKp8LS+rveh0Pq08O6NhOOIZX3h9sdCC1MSe5FMocupvFBUUkilmBMf8xRlOojPKJ/Bfxtp/b4dKQttsp57o+r1q4LXWkRCrqGVJ0fOwh1VKEwWQOOEkUSlJekqWF6+TwrmDy0qtVqWLGlW8ymJPBJeAAEAAElEQVSVJxcXqtKXVLAiF7F5ocSUn7Dc+6fHh6DHKcVQ3m6ZrJS3r8vXpDKtVYkyVTt+3yk1SJVJBTnTOs2LJ2c4a9nvDvj5wM1N5vZ+z5QifvJMU8CPijCO5CDhnCF6QvTCqSajctn4U6nekfVclWRbY+Bs05KzZpwjKoteIpeJxQJOZDDWLZ9LoNlxz3h0X3ygjTjVU9TzWCcZwmcXmpuc8+M5Pma5qkc/47T5q59/SBM9bQzr6x2/p/53BaEEfJCpm9BekhLtYa571LJusmA14hh2Erhlj+Gl07BmtTowjhMxHpYi2PsZX3RuPswlyVvsNq0z5Dwt7zEFsQ4/7Ae+/vprdvc75nGGBK1rcY2mX31/rbC79XNmNRDTyMQDd/sbtmNgGgZW3RV761F4urZhp3TJOyhOigpySI/WgFP3NCjPdrlWJilaZ+nbhlWjefXsgvNty7pX9K4mjcs+qAslql6XrASjp95DKZPRaNNiXE/TrHn20Y85v/qIs4sXrLYXzHliGAfubm8gCq9eW83HH3/Ek6dXrDc91mrW61XJjJpQSsDCGCIvX57T9x1N48Shstz/PviSri1MAQkedQU7FGbKbv/Am7fv+Oyzz3n79hvu7iU0L+eIQsCQlMQqeH+QsE+grImyVi7ADCfPzuLRy6Nn7VvTRTgG22lFs9rS9lua/gzXnZFCQJmMdg1aZ0gCMFljaBoJYLS2ISuNj5HdNPEw7hk9hGzJ84QKojeTC3YET+t5UKZY1EJ53xFCEsp2AX2MsjilsUBjLZlEyop1TjQ50SZ4qhv6VqN0Q7RbPrnasO1a1l3D1WZF08okEuWoHUEuoX+qgJIrY3EZCIlYAIV4oiVcqJtQR7rLtKzSxWPZW1TOkBQ+eAY/cztNvN4PknmmFHdDZDcGVMh4O3I3Z7JraNsNq25Fqy2N0pjWgdEo66Bpv9Pz+neiS8ER7ZWbRfjmlA1PK0XbNOIeUzh1CxUg18VcbkiFJmaKUBBubz1DkzjsA/M0cXnRcrZp8WFGoei7ntx1wtUvTXINsxOk8vGmcLp5nAbwnVwH4CikrP9+bKLKhV6vOTs7JybF9e2Br7664de/+YaYk3TtRnF+tubZ0yc8fSJpikbLjdu1ju1mxWbVsuot/coRUxJqVIoYXR7MLEmvUYkDRdIBTcZqRd/CqslYI/y+zWrN06eXnG3XXJyt+PlPXtGaRJ72XL95LUW3rrQvcerpuo6cj5kXy3kqdAzv/VKAKXWkdCzhdaUxyWX8q5TGTzPkSDbSxIRiWxt8QCgpR/QxREH5VUGBrdJYJe+tpuJqLZQoZyxWW2Y/L0F+C7qrzWIPKvVPPmpcTq4zcGyQSOQs6K0UOchDpw0pZabCd3euwZpKr0r4GPBhYr1eLTqNRbOhFGGelwc7I2J9YyVELdWGi+IGkSQrIXpZlD1JGg0HJktaOWMk+QRJka0mVOOBkCBF9GykyXgMtn7vjqyy6I+iX4TAdQOqCLHWBm0avBcLVbIq4IIqiLOEOmqgCL7KxpGXBTilUiicFO+oo4/5aYEhtqRF/K21FAOpNhpxuc7WWpTRpKxIIS5NjDAST3QGJ8Vxznmxnz29N6vJQG3Wq9VmRiwvY044SlFSzAtOEdf6XFhraKwlRYg+0BnF+skZF5s1cRiwOvLV64bf/X7Cj4Exe+I0MfsZlYXeFJNQSGIMJXdCLY09S3GUQSuc1RgDTWN48XTLbjeSY6BxmjkcV3cfIn72BJ9omw6lTAEi4klToBa76brufrjPnE5Ml0mEfCeVjpaLSPp0UgRQxfb10+oYuEwnTq7R4/vhMcXjuN9RmprqWCi2vQkIWRG1xhMFKS9FU5ZfFigTGC28fR8muZ5J+PJaO5xtmdZbpnGUMMRpJqbAPI+Mo2WaJAk85gA5yXrYODabNTG+E/1P0dkMh4Gb61v+cv+XrLqOvus5P7vk1cuXuFbjmr/Xx/p/1eNHr37MQx7Zhz37+9f44BnzzPBwT2PPmaYD+90Nbd8SU2KaPNPsQYs+ZvITU3EObFyDsaZkk5QGM4muVAPaKLZ9w0WhQ3/y8lLCduMgSLMW2m2dUtUmQxtxRospoHOghs0m5bDNhn59wdnFM37wR/8uq/4K51Zoq2Xq9HBHLPRjbSzaNfzJn/5jfvrTH/Hy1XOaxrHZbJfGIqbI3e0twzDy05/+nPPzM7RSvHn7DZeX54S4Yp4PbM/WoGCcRrpWnB3rZHicR95dv+F3v/9b/vZv/obbO8m1idEvGoqYMvPsuX7/ntdvvil6M1NqKUVMC5xTmv1ijFEbCY7PWH3OTmszoVJ7lGvo1ms22wtct8V2G9rVJcN+h20Vl08VYbolhYEcYdU5+lb0qzEoppwZveduf+B2t+OQHbMCdiO9cYsRRy5NT5046eKIaazFR3EPNFlBiNKPaKGcOtPQaoOJiQ6FyWByos8zep5pyXy6Oeds1dK3a9ar52xWDc4YrNG01pKyGCNJanpepmopKzAah+XMdLQYVIgchgMTQTR41bumAFxaCyU1J2F+yO8ka2XwJT8uK6yCHCPD7Hk/jPzu5g5jHRvX8PZ+ZhhmolKkKTPYDW1/RrM+Z7vasHaS5cGqw2pLVtJEf5fjOzcZzjkuLy+x1vL1118vhakyjYR5FKsurUAnXRZTQ5wnpNMvGF0+IsJKWZBcQXzWpBl8iMw+sj8ENuuRwzAzz57NasXZesv52TmuEeRH2aPwO8dj4aA++OUfp7xWSsOxCP/QScRYizKGq4tnnG2u6Jo1fsr8D//Dn/M//vkvCdkLb88oVr3j049f8ORiw6prJDE7x6Vgf3KxZrdfcRhabh7AOEUAdAwoMn1jWXUd29VKPKw7x8XFmidXT3HGQVK8enHF+cWGzXZNYxqeP3/GxcU5T5+e43Rg/3DL7TDTtk4QNaUxplmQ4tNCB2AcRxmxlQLilCIVghTd2ojQKJeGK8aEUgaKPZ7SrnCqEXtMzILqyPYqlApjrBSTlMlVQQJrE1BpXMumjkJbg4mWrmmXMLNKdarC8JRqgvhRrH16yGsKlaBcWeCYObBMrZLwzcUmVXz/rdWkZAjBM00T1trlo21b+r6nX63IWUSz4zTTdp0kyhqLMRI4abQ04TGId7ZKCe0j9qwjby0HldCz6DTUIaJiQjkNrWac95A0FsXGQIwS/PbYuuT7d4j1ncUVHVX0UZq9aSYkhP5mRMcQYxVg12Kt2tPKs6ORpqsGWAol6pih4pwrdXJZxBca5PEkLnSJQmqIIRxBEWRjMUVkHYOkqdZDa71MteTzo0tZnfxWSkItWE8b1qobUmWzG+dpeUZ1lNfJMeG9ZzgcHjUqp8fZ2RXdak2/2jDuB9JuYPaeVnt+9HzL063l06dbfv27N/zus6/5Iu243w1iQx3kHKfki1kDReMiMHzMGYzBGIVxhr43nJ91XF2s+cHHr3j//o637++5vt8zyxUhZvjdZ1/w7/3JT0FD07RHCkVZJ3KWvSCmefm9/pCW7rS5X+4DCuqXj9fhFBgp42EUjyek9SOd3Af188dZSUe62unPRImgM6ap5CMYlC4/N0dM60hjZIphKawevV7JXxEb44lIxBq97EdKKbpuzXozEoJnGPbc3d0xz1L0pmQWpymx0z5OfsVowkMOkn+gNFZbPv3kBzy5vKBtnExDwswcEpHj+/u+Hf+HP/4Bv3zzJZ9d76CBi63iiTW0m47D+MDvP/8d/9Nf/I7V+iOavmN9tuYw3DLMkzgYxrhoubSWayMNnRTNRiuc0bRWs2kNP//xK148vaBvoXOSAaatmD/U6WauJhAFpIsksYAOAZVzMbsxtJtzfvwn/ymXz17Rb0WLYU1b8oC8aG9C4Nd//Xt+/NM/4pNPfsA/+qN/xL/37/8JPoz4MLHbPXB2dkaMkYeHexrX8uL5K/p+xcXFGdO044svP+f/+n/7v/B//K//T3z6yad89NELUlLMc2AeZkJINE1TCnvN9c0tb9++4c3rr7i+fsM4zEQfhUGRLW274dmzV6QUUCoXipWYWOR8yiKAGLOwMsokU3F0JJXa4lif2eLgZIzBWcv67JzV2ZrmbIN2hYKoHT4g2Q26odu0TMpDshg6WifavRCloQwG3tzc8+d/8zVBrXAl/NOrhI8TsQbtRStgR07o1hJKzeAw5BBQc0IfRBtlVi1N3/Cqu8QNE3oYyff3rHRkYxMXbeKyUWy6czZ9z8vLs2XarEzRVJWJZEKhTANKk3KQpHdknbCqJROZc+Z2HplVgAbc2uJGsUEPcxRgOgR8DMwpLU2uQZENCxBrnC1AXSYkyfBKxkK35vXdRA63bJuOZnNBsj1jhsE47lTm+fklF0+f8vGrF2y2K0zXMDvLIVlISsIFv8NA9O/kLlXFv0tnqk3JHxA3GGs1tog5YxTbN61kUV1EztSxtC4gdK7wFymDjxlmeVBDzBgzY/SAn4Xb7xrHil4WUeuoovNEwlDRKXVy05+O3I9oaIVPl42JOtWQmPWm6zg7u2LVbwDFb3//W968u+Z+PxDKvF9rTdcYLrcd697SOI1CrMByoRY0jWazbrm82HB/GNieyeSlMZr1quH8fMPlhQjGdTmH623D2eYMjSEH2Kw72tbhWktjGq42Ldve4rLHDyNhmkmhNlkSXqO1koc9fxtZlWTfuBQ9VVOx0OFyxuRKk5LzdBRrIVSKQgvKWTasFIuBrTrxFycvG6gxquQZmMXvvnbvGSlEKs/ah8jk5yWYiuI/XQ+5Zo+Lgg8bSylOjk3lcXr1mHKCMULnqvQYhCKVs8EY/a37qH7EQgOLxR1HGwNoKYo1VEepnETEqUPEhkggoFSi1FioJE250TIVw2lyo1GNJ6pMSJkpKNLgyWMmf8/pUjJ1VssEsviBlkIPUAmddDFGKAFVyGIty0Uuom8JbxOQoY6Q03JPAuW5VoU1o5dARzhpaitN4uQeyjkvG+NCYyqo0Wkmz6krHRxpl6dN76mW4BEaXwrPU9rG6SFUxlD++0iVEiAgLK9njCFEcX8bx7lMzWpadyT6EUviarvmp5++4NmTM372s4/413/5S96+u2f3MPLwUMwJKPasSi8UMZSICV1jWfWOq/OWJxdrnlxuuTrbkENmngK6pJ7XdXyeZwGhtCrhlGXyfSSvLaDP6bn5Q3qWDymutaHMNV9Aqcf/Xq85j+lPpw1HPZf1up0agNS/E6S1iCcLOEIJMDOIBkh+kGh/QpSGmTLJPN7xx/ellZLJk/wFzhrEilgAlpTDcv1SigutSmuxLNemNhel0VICzNWbNKVI4wxt07Barbm8uMJagw+R3WHPMO5lVma+vyPRdb7myg6MbcBOgeeXjqfWsNkYHh4M/WrL1dVz9oejpW+KET/PEmaWZN0gH/UY8SRoUytYdw0Xm45XT7Y8u1yxXRlhE+garHm6H4ozXQXPYpYiMElsAVo39JsN7fqMi2c/5MnLT9lcPMG2HdpoCfzMMkX8/LOv+eqrd7x4+Sn/+X/xT/joo1dcPbnkl7/6K/q+oe2aMmUsYXHWst2e0bU9bdfL/u4ncg48ffqkNPZHNk2MCe8D1mTmycsULopD2f3dA3e3d/L3obg4Vk1K05SmJBKihKemdGQcPbrP6zRHNn9yVmhtMao0+ur41cYYmqbBuYa2X+G6LbrpyaYn5IREi0TiNBQ2hNSXrukXJ0ZFKPux1CAPQ2Y3wZQtEbErVlUXg+gvjLZwQmlTKi/UoqZt8YdZgMEMtnVoZzBas1EWf/eWeHdL3t3Rn3VcNC0v1h3Pzjq6Mh1zTow5UCzBiyCi/5jBKI2ocANLZZwVSQldWmLEE9P4gPeaVj2l1ZaQPT7OHB4eSMVxS37O8aSWyyYuiNbACYgcs7iTzj4R2xbVbWg3G55st/ibPVNITFnTrg2rqwv6q0tU16KslfoMcQ5UaFrz3dqHv1OTsQh9Ct3EaI1r3OKEITZ8phSwAUVtMkoboGqlp1BZCjK5AeQrFipAsbSNEYz2WK0lnj4HVqtO0AdraHJbHp66IVLG1OpbyFTBJaWoOfmZx81cwueMbej6NZvtGZvNOUZZdvsDf/3rv+X97S37cSaUmtcZzap1nG9bVq3BGQramslKNqOmsZyfiWPWHBK26WidY9s1PLk648nTC548u2TVuKWAcW0W+7KkyF42VEFwE11j6Bw4FYnjgWmcmMe5jHuPlLRTbUU9B/Xv5nkWDUHOj1xrKpVARqhFNKv0yWuyUFsWhLhOQOp4V+viilIbUbkwSknTVUevADUVXGkRi9UGJwWhSZXKbkFDaubG4l51UkDAES0+Fm1CTajUDPkaHhUbdTxer5tWFW1WpGSY5/n4esuiKXa53odlgxcP7UJhr2NiJMMhxYgJCRsSs0pgkoiclSLHLI2GthiTycaQnUI3hqATMWWmKaOmKEnhy0j6+3mcNq1puZfUYouqUiapvNAOUBUJK5qAQj9RWZoMY4SSKXtRXO4LqNdZmmWtCg++1J91epdO3o8chX6jOBYS+UiDqu//+PdHe+xTGgAcC+f/ubyeU/OD0yOltDi2pVSF6sUMYQluK6GT3jNOI0orYrRCTyznIoQJlRWbdsXqZYftG2Yiw3hL21revbvH+4lwqA1/KdpBGjyjsM7SdQ3bTc/zqw3PrrY8udhyvt0QfWK3G4oLZd0s62Mr/z+VaSElY0ep41S53BXAsfg/PbePppwnjcSyNvCHn4e63meOa8Kp5uPDpuX0z3otj+uEUDRT2cy1rVqaTMq66BI1IcSjrqgiCKevX1Bz55xwq5XGOl1c6qRJnuaBeZ5P9iQpKq2zNK5Ba1vemy9FbFrc9nIWi3OtLG3jWK16VqsN0zQwjCMP+wf2w17sa9X3t8no4zVP7AgrRRcyL5uec5tZW839g6Hvz7i6ytzvXhP8TPBTQZG9WKCr47qfAkRVDGxKg9E1hrNNy4snW374yTM2K4tzGXIUP8Jym+Qsd5gAFMdJXMxBiuEkLlLGbTh78hHnT1/y7OOfcf70JU2/El2AgpQCIYsV7Fdfv+XmesfPfv6P+c//i3/CxcUWH0b+H//P/zvPXzzn6dMnyLNSinNrWa83tK2IslNOgsY3jp/97Ges1wKSjuOEMU3JbZF99zCN+BCYZs/N+zvubu7ZPeykDkjUShXXNLSN2CArMilG5mmW+q3iBjIQKLVW1YzVCbPQUMXSXS3hm6AWdkDT9vSbc2y7QbmOZFp8nJYmI+URiy21XcbaBp3lEcu+akrlNXdTYj+DxwqzgyiglEplbdcoYxDevbQfqtrba9HhxoepsGPAtE4cLlOmmTzT9Xv89Vv0tGO7fc5V0/Fs0/P88nyhky8TW46TrWqBn1I+MRmR/azm/yQVoeg0lU7M44EQDA2KVlkmDCrBsD/g1Art7ALCqcUUqSyyWlg5iUyOxUQECKXJSLbFrDb05xdcPnnC+/xAHiNTgKazNJcXNJfnpMZJsnu5lvM0YbSh0d+tFvk7JPIcRXeb7VbSaqm8WYs1wg+ep6lijAvnWkpOQflVUXmmpAhl7z0dd9c6NmYYgyLcJnL2jJOcGKW/kXTHdE7XNdjcyM/QBuPKBhLzo03COSeWchSbyxPGQQgRkKlI359xcfWMq6tLnj5/ym7n+eWvfs2vfv0b/vs/+wv+9vN3XD+MKGOxOnC27Xn1/Akvn13ROkWOM1E3Yo9XRoPb1vHs+TOUUvzpbkBrjTOGVeO4WPdoa8RpKonIN5PRKnHYHUgxo7IFIpiMtoquc9zf3zMcDmzWG5RpQSVCmhimAzn75XeuTQOUQiVT8ijiooXw3i/hfJUjCYJ4pJyWTU7q8LTczNX/Xxc0Vmez6CMkpK8Io8vEp2yzOFcKdShFu6xSUwniEz58Eu57QZmMdeL0UIK8rE2AJyd/8n7j8v7r72xL962UXGf5HY+Fy9KE5VQSWYvFZnmvVZC5UGJy5U0Kmjx7aYZm72UxM5KLkZf/JaYU6bXDFLSdtiWtOvK6wdqZeYjEfYYR/BgIeJIDrMO5Rsagc8Ix07iWxq2/+yP7D/BQZTWQAMVU7rO8OAPJBSquYLo0l4CyGZPzosWi3CfHOvWILtYivmmasugbUgEXqjuaLsnwKHCukQIkxqOeTB81RfX1al16Sn16PIE4NgGnxylFp37/6evUJuRDMaqv4ZScltKliFWCFHpvyqYxMY4jXdcuSKt1mvOzDX4Wj3RjNJEJY+G/+S//I25uB95fP/Dr337Bv/zzX/Du5p673SBNTEEi+1VD31q2646XTy/46cdPuThfc7ZZsVqv2O8GnFZ0TcvBz1LkZsPF+QUpZx52O9mMcm3w63RToU2GdAQkPtRG/JuMO05RZHIshQQn16neFaoUgOpbr/9YZ/GYjnVs8OrX5lISmaIbsWidSToRZ1FeoS0+aGaf8T5jTEvKM6IJk/2obTpWqxVtt2YYRwlL1YGHhx273Z67u3umaaZtWrp+xaebDSFKwxFCIAZV/PorgKJpGsNqvWYYDsSUCSGJ3qkgmbf39wzjyDQO7A4j1lla2+Ca76+71KuzlvNNxxg2zGeadSspz8Mhc337njfvd7x9d8s0DygVMTrh/VTuQVX0oqpouHLJJLA4q+kazc9+9IznV1ueXW653HZAIGeP97Og3wVlk72kPJlKEUIq06eMxqFch3YrXv3wj/jkp3/M1YtPaDZXRyvtEp728PDA7mFPjIrziyuurl7yk5/+mO1Zz8PDLW/efM1//J/8x2w2a6y1fPXl1+x2O1arFdunL4R9YWSvahpLc2W5uLjik49+wjjO3N7e8stf/jUff/wpbdPTuIabmxt+85u/5f7hgZzh9euv2O3vGA4TKYDK0sgY27A923J2fsZ6vWLY32OUpTEtkVn265xABULRqSlrSo5PAVyyuDFJ3ZWErmwMxlj6fsWqX9O0PU1/hnENuunR3Zo0H4hG1nyrNU6pknsS8NOE1RmrHVVPmnONBVAMs+ft7XuatVueSW2k1hLNnyUZmXLkMjkwTYNrGpRPmCg1agJya2CYYXfg9Te/IL7/ChcOnK8bfvLygmdPLrg4W0vtoEraek5LPVTvDakxFH6eyVFoqXIflqbHWlSaxa8uJoaHCa07jHZEb3BuRddpUgDTtpi2JVvDnMIyqUkxYpRMx5JShBhgAb8yGEPWjqQb9kozasUBeHdI3Ng1103iDZ4mebrWcn6xxpuGaDRJK6zOXJ6vUEmcqL7L8Z2bjM1mSygUFesM3s+l0BJ/b12QSWHCFmQyBtFm5Frwm2WEllQqaHG9Do83iEwJWFNwv5eArpAi1on9XNaZvu85X1/Q2IacjTjRlOKuOjNV9w/qv2ShVcm2rWmalqZp6bqei4snbC62RAW//+ob/vKvPuN/+rO/5Fe//i2//+aau73wxnMWS9+z7YarqzMRo1uNdpa2X9F2KxGEKVivuxIsBttVR46RHAIpePaHuLgc5BSIXt5Tt24xzuEag9UObUTcJUiXCD6TzK3wYWCeJ6ZpKm4SctSNSSm1OEvlLNODU8448GjDNdYsCG+MsSD5Im5ztqVaCMcYBBGo7YMqqEauIKNeJh7x6BgqnMFcCi0lCIcqv08q3MF6pLLhd31DLFoeoUIYtBZfbpX/MN2kFguV8nLKywYYhkGafa1xpghrC/0mhEwsRZy1IgRrmkbGj4UK45wEFR7Ra73cs5MPElikxQ3LRItKgTwrcoDsPckXlFg7jMqoGVznyE0gaZlDKxSETH6YyUAwmWy+7xa2hQJTUC+515CiudwLSkGOIsQWwKE0EzmRozgZaaSIKiEVSzMCj6cFguxU96aTJrZ+DSwNxrfyK+KRUnikAT6eFoLcawK6wClt4PE9CI8LYD5oYI5gwKkOQV7jxBELTUyiG9LGYJ2EQspkhmIpKetf01q6Esa13jayhkZPmgLOdTzdnrNtV5ytHM+eXvD7L17z67/9nF/97muhFBjNqrdcbHuuzrd89PyKp1fnbFctfetq10BOGWtkylQD/Hb7gZTEb94UAWwoepnq2Ca/Wyjn9DgROqVI1cbgD2lRjs3Jt6cRlfpy+vmHdKg/9Pen9059Dfm6ev/IhMcYxXq14fp6R46ClU5zFPGrtpAkTlZeM4pbTtey3pzRr8/I6oHDMDCOI/MsDkHb7YYXL9bSxKDx44APjlAmu8NhImaKY1XRqJWxkQB9DoUhRsXhMHJzc4ufE4dhIAaPNpF+1TCrRNp9f8P4fvHLv2W7XdO1Dg47rq937A8z7289v/39Le+u98x+Zh4GpnEQgbTYBcp2WybbORbAQcPZqmG76bi8WPHpq3M2vaVvAqKgTOV7C0pdhmhK6cVyO+cAVJ1Pg9ZrIg5o+fRnf8rZ849wm3Oxtk2RGEXQ78PE7e0tDw87nj19yccfb3CuZdU3QMI6zdnZBtfINGKaZs7Ozri9vWMcJkIQG2xrpYhXOqOSsAVSkkbZaEvTtAyHgd3DnnGc+Pyzz3n79o1YT2e4v79j9iPeS2BwzWExVrSdUryKAY/RpoRFlrWcDFmJNk5X9sqRKSBrtQC8xlm6VYcpINpmc140RkIFc10H2jL6TJsNnXP0rRX2kB9RMaDTDH4gAFEp4uzxKZBTwETPzf0DD8MDyQT2o6yLOcp+npKI/3MIYjxkFFlLxILSGhLs391hs1oC70wIWD9ipx15f42KO6yNbDcbmsYUfZQpDaw0XVLPV9EOWC2TDUUWAfUpbKSV3GNZKJKxaOHa9Rk+a/beMw0HJhOETZQkcTvHRNYi8g5ZpteEACdU8qwM2hZziuBplAQcBjTBWB5Cxk2R2Ch+kzO3zhA7R7d1uLM1SsE0e4LWJKOhgZUpQGr4e24y+n6NLxQDY9WyYYTgscZIUVkWbG0MJovLRRVmLwiVqhQI4TEqk8sDcUIpOJ5+UobJV4pWpt+BcRPGas43O/qmL4JziT0vu1xZiY8Ievk/oG5aFq0sTdOz2W7o+p5+vWYKgbuHPd+8ueVf/I9/xS9+9Rs++/Ibbva+hOjIQtX3DZvNirPtBtc2WCd0MWMdfbdCldRGSbAU9F9bcbGJRGKcy4ZURfKJnE0FckUoqcVpKSOc0RQzox8xxmFMIoTEPEuAXahuJSdFzGO07sSmr2zKp9Z9FatbqBKnKC7lnHIcx1V+elaPaQyZas1ZaQO5TgTRxpCOV+E4JjyhMp3UaPI1WprWmCRZWdcTVBexUqCe9hi1QKz//eFxRDLL2FY/thqUW1E28IWWUhqzD0Xmx6KkFiylyMu6jI2L+CICIRfDmySWn9GgQl7+XluNtoplVc5KRnqxGEqoTDbpW7/P9+kodekJZ71cu6UBrPdCufdyhiTpDPVGUiCpzyDXLqYy8lZ8WCwu9yFpQd1ScTSp9sx/iI5zqgeon3/YsMrE7tR29VRn8Jiu+KEO4PTn/M/9TPmznim5n8TFxiz23ak8GwqZDmWKUDgHobQ6Q9M4VNKkqQhSp0TbWlzf0jSXrNdbVm2LjomHw8QwC1d43Rr+f+z92Y9tW5beh/1mt5rdRXf6c5vsKrM6FlkkRIOUbVCWoQc/+EXw32L43X+KAMsPNgwIJgTJlC0JkkmrzKJEFpnJyua2p40Tze5WMzs/jLl3xDmZRV4bR0ZdYH2Zcc+9cXZE7FhrzTnH+MY3vnG2mnFxMufidMFi1tBUFmcMIR36ZSTwOq7kDMMwknJx34npuMcc7uuHv/+H+9H9a/W77stRasDdlvG7yAalDvfl/YTi8LMO3//+z/7wOTr++PKn9P8ZqaRbg88SZMWUSq/FvWQ0H/ZEISyqWqoU/eAZvQSaSkvlua4NJycngJwdqjgYGiMJzjB4ynI4PG3kJISSVveleppxlAqJH1MZGpmYL2qsM8f9+fuK1y/WjCc9s1ox7tbs+4H1LvD6euT6tmPog8hVQzpWS2MWy2mxFT+cZ4LKKE6WDWcncx6czVnNa2oHpZ2hVF/vGSJwtybz8R+Uc8ig7ZyqOUHZGtsuWF08pp6tZD4Gct988Gy2G1IMjKPc16oSu3zn5D6B9PPt9ju0Bu9HhmGgaZpiROKo6xpjFdLXFsnUhUyEFIWgoBCN19dXdP3Abrvn22+/ZrvdFCJSZmQc3OWsuWvGhnzsxVVK31XVjjNlSkygJNi9/xwe4j1TAnhjDVVTUTcN1tU4V9O0krQY7XDWldlDisFHSVpMhbYW5UdSDOjoIXmSH46KgxgSiShOgHGkDwNdHBlyIpb1kmOxoykWsJlALOcOypT3Ln1WvusxtYwJUE6jvUf1HXQ7lO8wJtHURnplGzFhOCScRyc+hJg4PGZGH5wuM6ZMS787J2IhyYSMocQStqrQVYUKnoS4dMZ0F9jn495SqifH8ycdK9GmGPgoIBshrZUyRKWpF0sGDNdjZB8zl1YzWEfb1szPWtrWYcl0my2dE7mcNVaILa2kCP0d8N0rGcsThmGQ7vgsDHnKUoaMMWC0xWhLjIH5bIZCcRsPw/rkgZNkJJVhaKlkepL1DsNwt+mT7/S9SoY9JZ8J2wQqEgu711Q3WOtIObBolhRPMilrI9q2w8VWR3tSMMZRVy113bJYnPLwyTmurtjsB/7lv/gFX379il/+5iX/+T/6Z4zBE8mELA5Zh8Pi4dmShw9OefDgnNmspbK6PEiatmlQKIahZ7/ZIRFmLs4AslhyTFIaRGOUYT5vhcEyFlPVYKUCRNTsdj1+HPHB48eIc/XRhu2g+Y/RH5MDykF5qGx4H1gs5VYfpABGvf+EyJfFIlu5k3Hct/e9s6YtVaji8HLfWhOlqJsZxIOjkpSjldIY546soxzqqWzgcpBrpUjI72K0Fpcvpei9MDY5STDurJGARh3sLSnOLe8z0PB+YHH492P1oTyHKYrLjy6M9SFwCyFQUiyUUiwWC5xzKKVK41t6L0A9OF81xmFNqVBpsRY1Q0CNQabLGkPCMAQItzuqDma2JTkljmkyNrkwbWDrinE/iETDvh9Efd+QEkW7Ls+E1loSjFJqDjEQQyj3F0D6L3LIR7Zba5k7Ij00SowWUsZoe3e4aaksHSwUc47Hno2DVer9w/BD3Jfs3K+CidxHAmtVqrHye925SAG/NUfl8D3vB7GHn3t43aFycRcQ370PmUosLKFUFqVaEUJZ+xnEJtzKvqcyIUii2raaqppTLyqUM+Rdz9WLa5bLGXXraOuGxalh6SqenJ5wfnHBizeX3KzX5DDy9OEF56crHl2smFVWqhZlLxBJobDtOR+qlIpx7AsRFcnh7r4drsNhjX2YcNy/JofXHK7rh5Ugee2dMwtwvIZ396IMDzxWs+5/7fv35HdJ2o7JyJGMOZiaiFa9aWuijowjZQo6hfXOd8mVEsmHMRpbGdpZQz9IE7KcpaZUI2Ro6qF3wLkKfW9fc86Tc7jbbwFyouu6474mjeKWYQgEvyXMZKJ63Vjm84pHjy5YLBpm8++vh+36peb62xd4/4711RW2PqMLhrdrT9Q1KhsqXWGSRSVHjpYUFbopVXrvscqWoZqwbA2fPD7lwdlS+i+UqB20ssg0BE2xl+Dg2Ki1IvjiRmXNcf9SusY2Dzl/8pzl2Tmri4eSYJhKFB5hBCL7/ZYXL76lbWdUVcPFxYq2bakrsdQ92FlfXl7y5//sn/L48aOjDHM2m3F2ds5iseTZs6dAYPQ7Qhix7owUNSGI3az3Qcg5rflXP/85+92Ovu+5vbkhBI9SmrquhUEvxgWzpUhyY0p0+w4/JFaLFVYbXr54ye3trTyDSh3nXfHeXiV7q8zpEuWLsRZXV8zmc6pmXgx2ZKK20TIjxlUVSSl8EAv52WJBVpYI+GEN/QYbPY3K+H4vwbzR5GywOqB0YMATLHQqczUGqnpG9CPBj2SljgNdyYmkIso4iTUqJ9WLIJLD1GQJTXVGbffk6xvS9SUqjyznDaeLlvPzU05PVszqFoViHEt1UN1V6Q/XQ0w+uLe/U5KRRBhC6Z8w5DhIXyYi619drDibR+yipd8OyDiew/UVcxRrLdFZiYtjsc5XGqsN7awtAzsV82ohia6tCMbx/Ec/4t3ra77ZdVzPB/z5GbPlguXJkoeLmvMUWfR73n31JfViSVrOOXfnEpdpjXEfufG7rlvm8zkxRd68eUlVVcQU6HsnUp0kA14WizkcNu6SQR3syay1wrpHL6Uza0lJZgwoVYKKzPtaa/kUKcGI4nYbCXGg6yNaW5RyjCFiHhpMthglpSujxGVeSKXSJaI1WjuWi1NOT89Yrc6o2prL6xveXn3LX/76Bf/Zf/GPef32lvV2YIxRegoU1EpRW8VqOePTZ4/40efPePbkguePH3C2WgijoDUxZoIf8MEz9MIgxRRIOYpmsqnRNChgNluAEvcYpURvG1MiBl/clTIx5LKB+LLBaUSppNEqgzoMs8uFERHJkTFia3jYLPq+Px6ohynfSilxOThsFqroBT8I0A+JhR97+bla/1Yyoktjl9JiB3tgedEGe2gaQssDnxMqS08HpmT86lDh0CicJDTcVU2UdKKhtcKPg4jdlCKqjLG6OJXfVTR+e4HfMQAHhlwKXqJbvP/auq5RSt2z9hUHlxgj1soU8EM15MhUSwQs7IG1KGeKJeqIDcW5QoEnH+9XjmC1RanEEAKYmmQ02UBQJdj2CR0ghBEVwnsWqt9HHCxGj1NIS5UhJTBWY5S6q44Vpx5NPiaAFCnVIRAfg0ecoyTwr607VrZykut+TBgLw3wIRA+fOySO921U71fy7js9yX2/C1IPbBTcVSvk83eVjPsB9f1GbwnS75J/WXeHqtj7DeJ3iY0+7hPivR8JoUxOV2DMYchhpqpq+m4kBIUfoVk6rBYJwvnDGd6P7LuOzTbjjAzMO100/O0/+CE//PQRm13HdrvBGUVTVcznNTmU/iNtUEaVfimHrWrMOECQffbs/BxtLMM4MivBRFXVQDxe//tJw4eJ1/2G+Q8Ti/tmFnc9f/l4HQ9/Z0yx2y59WR/isC8cvPo/dJg6fJ9jIgMSgOTMmEdevXkNWeQH2mghw5QGA1oVE4KDq0sILE+WfPr5p1xdbdHW0MxalM5otS/JYma9XnOYKdQ2LS5bQrSkHHF1T8iRFBK7/Z7kR2IMR+lyCDKjaBhHrDHUTgiiJ08fcH6x4vHTM2YzmTOl9fe3Inpx8iO++k3m9euRMQSGNNKnzM5novK09ZyZW9HWI90+oZRnPj9F1RCTTGd+sFyWyc1wcVpxvqxY1IrWKSpnizrCyAyZOB73BWPAOUNdV/TdIMSgdQQMq7OnzFcXnD14xunFBc18QT1bYN0cpRIxdNxubtnvd+x2O7z3zNoyUNE4mQWkD1K9yOW7N2y3a5zVPH36iNev37LZ7FBKs1otWS6WOFvx7csXfPviS96+fc3f+ON/h9Xq9NgEbowQMtvtljdvXrHbbcVlq8xskj1L9h2JGTTWWfb7XXGIK2Y+48jrV6/o9ttiwxrRRhJVxT0zFaPLsEmD0WCt4eTsFNBo66jqFlfNMIceEtccZWgxglVCRKacuF13hDAwbxWnrUFFTR4C+26NRgLnHDOxGBlknVBNzZfXl7y62aPGRMwjKiVsiVs0wkUHBdkqTO2w8xZXVdgRVAwEHwg6YVViFjP58hJur2C/waiBebPk4cUpP/3Zj2jqSqiLIvVWRZnyYaX0jvi8q4SJRkPRVGK1HgFXNSgl17NyhjCM9LuRXtX4AD6KDW3oB4n/oiFYRQx3PbBKS6/HkcwhU9mai5Nn5NUjqBy6cby88byKhqt6zma+oJ7PME2LtTV2BHwgjomz589QIeKNIWpdYkZ4T3byb8D/F43fuTCQgbqucU4ceMZRnI1SGXYmjifCLh/mWZjiRKW0NO7qnFDuEGGIvOSwiR9Y499CKVuHqOhHUCpydTNQVzsyirquWM3mVAbuuu3Lv+dcGAdH3TRcXDygaeagNC/fXvGXv/6Kr759zV/84mu++PoNm23P6Etwq8Fqxbx1PDhd8OBsxSfPHvLJ43POT5csWnFeMEUbnqIvB0YgJn90KjLKUDd1mVitCnMl4+SzyozjIFcgK1IaGfx4dIJQqgzKigHQJF3YUHIJru6uV7qnOT84iOR050hzvJul1pZNvlf7fV8LfXwdh5fcSVlkunc6BnvyQMuiEcvN4v5UXFSkWnGQUB0+5J7KELYyefuwOCjlRdJdwzmS8B0npSPBRUylD+cYoP22m8zh3w/Bn3zx4effvU6CE8OHAdB9Pf6dRCUVZ6o78YFShZHIcp10cUTKUcq2duYYtQxbSyEzq2pUiMTgySGSHKhSBbFGGgSTD0d73Ry/mw7yrysO6/uQMEgPAdztAwdnqTvZERxkOMW161AhkBV6972zVC0URyXNe/f7fiB7dFK7/zzc+z7318B9hvtDm9XD9wWOiex9Vvz+z/iQiT/8rAPuGsnvSXTee22xyAzleqk7OZ8w9aBU4uBqlMmEKJrkFBNoGWZqjbCvGSv3IAWGccAoqdIuZi11U3F+umLXrfDjAIeqUTGnuKtCCpFjnchCY9nIQxBXN60tdV0d+21+u1n+7hp8WOW5n3T8VTKzw750kDXdfyLuS6oO//1XfZ/7z8ChKnD4+eKoSJExFAONBOMQsFpJkqEMKfniKFSqvtzJUA9zQozRuMpiQyQmi6tqcZfKkGIhkjKSxGkFWUt/h9GEFPFhFAcq35OD7At3s1bKXS/v3zpXHBPFxappHNYd5pT89vP1fcEnn/8AbRpmywe8u/yG9X6NGnp83hdTlhqVLdbW1HWL0oaLRw94ffWSfuhQNmONpXaG2ima2lA7gzNa+uOyOh5RMlCvBHAJlFPHBmZtDNpWGNdQNSsePP0hq7PHrM4f8PbdaxbKUi9OyTkyDh3DuOfm5ppx9GKQk/KRTNBa9iRjnFTBkLXeNDWPHz+kco3Y6WfLYr6krmbU9YyqmnF9tWaz3uO9yKv6rsebwDiM9MPAzc01L1++lMRhEOVJLmz3QZojg0HFzn8YDlXIIrvRGVdZFss533zrSTmWIYR3OJKWWmTFthJiuXKOum7EGVBbrKlxtpZ+D2PQWvoTcpYeo6whJ4RcHXtizAw9xCHSELBJGqit1RKVl7M/FlLK5zKALiRMVugs/VJQ9m6jSapYxVYW09TYpqY2FaSeGAKmtjhrcEpRh4Dv9qhxwOSAtYrlXGTyTVUBmZSjxBJFtHTYj+B9sulDSJzDce8il/G9B7IpK+ZNwzxqOqPFkTVKz4Y8IkW1coicSxX1jpCS5EOhZa6ZrbCzOdQOXVmCcuwbw9Zo0nyJrefSgxMVISW6MWKGSOsqZjqJSZEypFLZUx+oYf4qfOckI6ZwHFjTtjOUEhbOh0AcI8nIJFej9DGwruqaWdty6AdIKRKiQemE1RY/DnL4leDiEEQqbbh/iN9HQiNJeObqesDoLSEmYRcqizaKQzuywZQsE4y11FXDYrHi8eOnjCGx3u74+b/+gv/3//Bzfvmbb/kX/+prfIjl3qkjs1o5xcVJy08/f8KjB2c8fnDGg4dnzNqatjJUzhGil+FtY1+kS4WFPTDk1jBfzETSkUtzcUhHfXrX9VCSDx8i/jCMLGeaxpGzJHg5i1738IvZfFisctCFHEsCIPKsw8Oc7zGoR0mBKufZBwftfYnR/QXx4dAreX+HDaa8JaXkfZYFkA8qhcPNLcmFHMRyH4VV9kVmoIszRXF5SomcgkjelBIHKKWPyU0srEcpFBwnXR4qDR8GgkDpi7gLZFO8k8/c//hwvsHhT7ibr/KhJEZmndybZF70vCkpole0bY03UZKMmCTZTZ7NbiSNHtUYlLEYa3BZwYjotg/X+XscHACllHzHLB/ZY6SCqcglYddFY1zu66EiEZOsLXVPgpTuVb3yXaB/Jz/K793DA+7L3N4PZt9n1+8nCPe//lAJOTwv96dJ309MPmzwvpO2vD9g7jDwkVJ6v19RuVt3CT/G0h90kMccfheRkxpzx5jFKFNifRC5XY6p+NJrkV0aC4ysu7VMAA+K09mMxXKGdVXZJzd0Xc92uy2+8rLmZPlGIOGs5ugpiWK/k5kdzjXUTX00wvgwgf/wXhwfk3tJxof70YdJii49TDKkvaSeShJ0jp/7K8grOO4VH/7s9+2IRaqZy9lAIUeiTWCyVLFDIKcyL+eQYJTg/3ANQvDUbc0YolSjcoW1lhQiASTAUDI3hxJwHSRYPoz0Q0fX7aRZPEufgJyxpbI3yiTyA9teNzUpR3wYhHRSonlP+TsKqv8a4sc/+z0eP/+M66s1//Kf/XMur15zs74i376mqlu8T3RDQBvHrF2wWhk++fw5t//dukiFJY6w1tE0FmMStkxjVghRoRMkdY9gKMGcMZLIx+QxukabCuNmrC4+4cmnP+P0wWPq5Yw/+x/+nPPzgdPzR6Q0sO82bLcbrt5dYYwtlUg4Gt9omW8hlXJT9gfFycmSxbImBsN8fsJsdsLpyTk5i1tZU825urphGAJNLSqSruuKsmHk+vqaN2/e8OWXX0rfRTg0qKujFE8pqCpXiNHAbrspV1qSZVSmndU8evKIf/EXXuZold6J94m4u0pIXRvqpqWuGmzVSKO4tmhTYW2DdaW/UeljvJJTwuhMjJlxjPTdnq6LGJXY3AYulop5BY2tsNlDjuQolucHdUA/RnTK2KywxXU0pyj9lVok21orIbubCtvWuLalTY59EMmZm9XUlaXJiXoI5L5HhxFDonaGk+WCk8UCUir1FMVhyPTxvLp3nvyuWUj395YDISmx3d26J2ZOlyv21rONZU+InuRFaqzK/1CaoMq/l+9tinNVGAPGNWjtGI2ibiyqqUui0dJbx75yzBcnzJsZtRYnrB6xzQ9DwNaG81oGDCslfbUHIv+7QOXfFclPmDBhwoQJEyZMmDBhwv+P+P7SGRMmTJgwYcKECRMmTPhriSnJmDBhwoQJEyZMmDBhwkfFlGRMmDBhwoQJEyZMmDDho2JKMiZMmDBhwoQJEyZMmPBRMSUZEyZMmDBhwoQJEyZM+KiYkowJEyZMmDBhwoQJEyZ8VExJxoQJEyZMmDBhwoQJEz4qpiRjwoQJEyZMmDBhwoQJHxVTkjFhwoQJEyZMmDBhwoSPiinJmDBhwoQJEyZMmDBhwkfFlGRMmDBhwoQJEyZMmDDho2JKMiZMmDBhwoQJEyZMmPBRMSUZEyZMmDBhwoQJEyZM+KiYkowJEyZMmDBhwoQJEyZ8VExJxoQJEyZMmDBhwoQJEz4qpiRjwoQJEyZMmDBhwoQJHxVTkjFhwoQJEyZMmDBhwoSPiinJmDBhwoQJEyZMmDBhwkfFlGRMmDBhwoQJEyZMmDDho2JKMiZMmDBhwoQJEyZMmPBRMSUZEyZMmDBhwoQJEyZM+KiYkowJEyZMmDBhwoQJEyZ8VExJxoQJEyZMmDBhwoQJEz4qpiRjwoQJEyZMmDBhwoQJHxVTkjFhwoQJEyZMmDBhwoSPiinJmDBhwoQJEyZMmDBhwkfFlGRMmDBhwoQJEyZMmDDho2JKMiZMmDBhwoQJEyZMmPBRMSUZEyZMmDBhwoQJEyZM+KiYkowJEyZMmDBhwoQJEyZ8VExJxoQJEyZMmDBhwoQJEz4qpiRjwoQJEyZMmDBhwoQJHxVTkjFhwoQJEyZMmDBhwoSPiinJmDBhwoQJEyZMmDBhwkfFlGRMmDBhwoQJEyZMmDDho2JKMiZMmDBhwoQJEyZMmPBRMSUZEyZMmDBhwoQJEyZM+KiYkowJEyZMmDBhwoQJEyZ8VExJxoQJEyZMmDBhwoQJEz4qpiRjwoQJEyZMmDBhwoQJHxVTkjFhwoQJEyZMmDBhwoSPiinJmDBhwoQJEyZMmDBhwkfFlGRMmDBhwoQJEyZMmDDho2JKMiZMmDBhwoQJEyZMmPBRMSUZEyZMmDBhwoQJEyZM+Kiw3/WF/+F/+HcYxwGlFJ988oTdvuPmdsu3L645WdXUlaapDZ89f4Imk5LCR8vPf/kNV1drNpuev/O3/y7jONAPPZBZnZyy3Wz5i7/4C549XfHk8QlPHp3gbCKlyG7f88tfviTGGqUV1ik+/fwc5ywpZb744htOT86Yz+fM5y1ffvUVCkNVtWx3W05OF6xWC87Pz9Ha4n1iu+354stvaJqG1ckJn376Kc5ZjLFYW/HFb77k3bsrbm7W/Omf/ik/+tGPePbsGU+ePkYbRTfseHP5CoVjuTzn4vwxf/I3/hStDQpQOaHQKAw5W2LcsdldcnN7yb/+17/i9//wb+Iqx8tXX/Cf/9/+rzx48Jif/PgP8D7x7vI1r15+y5/9k3/M7/3ez9BKc3O75t3lKy7OTzm/OEUpzctXb+i6Hq0UDx9dMAw9t7e3rDdrHj244GS1QmvN9fU1fd8zDAOnp2ekmBiGgW+/ecFqtaJpGpxzvH7zimEYiDFS14acFMFnNpsB4xR161iezskZnNPUTrNsDdEHvI90XeDtVU/XD4zDyNMHLYtFQ9M4sorkDDEmRp94d7Wj2w+Mo+fpsxPqSmOMgqwYBxh8ZN+PWFdDVuSY2G03nJy0WKsZvWffRZwzzFoLORGiZvRwcxMYxx7nNKtVjXOBnAOkSI6Obh8JIaFMJIaGEBQxZpqZJuVISgmSwlnJvWPM7HtPTIqMAgWzxlHXFU3Tom1F5eTfl21N4xzOWkLOsOt5eHLO3/+7/zP+wf/6f0MYFJffvOEXf/bfcrX+mtvda769esHNuGEIniFEun2m6wa895w/bFksWpyzZBQpO/wI/ZD4T/6T/+Z/pO3gf3z8p//R/4FPPvmMR4+ecbp6zF/+61/xq1//mn/653/Gt1/8mroy1LXl69cvefqDz7FNxW+++ZIXr75h3+3wY08YBnLKkDNaKZq2xRqL0oba1aicIUWGOOJTJqQkz2YIhBgJIRBjIOcEZJQC+QdARmuFc5qqdjx+dsann/2Q0/MLfIC3795itOL07ITnTz9luTxjNluQgZQhxMh+N/D6xVvevbvi7eu33N5c4/1AjCMKDyRySgQf6fseYwyVq6irRt5BzqSU0EYzn7ecnS2Jw0DfRXKy/OCHP+GnP/0p7axlu1mDyjx7+oTPPvmE12/e4mNkGAeurt+wvnnNfrtmt17jh8jNzZrrmzU3mw1ZKVAGYyseP3hIjJFut+fm6pq6aWhnM07PH3B2/piT5QUPz57z9/+9f5ff+8lnfPr0Ibtvv+Ff/dk/5dd/+Qv+u3/x51zGLV5FsoG2bdFao7XGGitrOSVyjGzWN2y2aza7Dd3Q0VQN1jqUdux2W1IKKJUJccAag7WaqkrMZuCcwWjL9WVPThqtHcZmsgqgM662rOY1lVVYA0ZlUlbElNnsA1fXe7o+EqLmwcUZs5mjbQ3b/Zrd1jP0GXJF5TJVrWkXFScnPyTnmuAV2+2G7XZPTorz04c8ePCA+XzObDZjNmupmwprLTEGdrstQ9/Td3uu3l2x2+/Z73dsug2QsFazWDXUtWYYB25ubnn54h3DEAk+Q9YordFKo5SS/anAOUvKkZwTOQescWhtMcaQsyJnUCiU1qSYAIV1hqquqKqKuqr4J3/23///de1/LPy9v/unaC3XxBhDSomUEiEE2ralrmucc2itCSEQQmAcRiATQmT0I6P3dPuOse+JPpByIudEIpZ9AZRS5Jzf+wBQgNaZympmjWXWGBYzw2LuaJvyZ13RVDVt3TBr5jhX4ayjaiqsM2ij0RpiiECW/ydZ9zlnVNmPlFJord97PzHG47U47BWHP621x/caQjh+L6318XUAaEUMEEJkGEZiGo4/I6aaIdd0wXC5GRhTJuVMSrHsm5DR1O2C2WyJtRVki1IapeS97rdbbm4uWd9e8+7dO/quRylNXTfEqMp7UjhnUFqhlfzsYezpuh2bzQajE6vlgvOzE37/p39A27SE6Lm5vWLfyxpSOqM1aK0xxtE0LV23ByLWwaefPkUbDcj73+06uv3Aer0lxow1lrquuXhwxupkTts2WGPIZECjssRD+33HZrfn8t0tu13POAb8GHn2/DnnF6c8eHjBT370Ux4+fMJqdUpd1xirSDkyhI7N9pqbm3fc3lwTfWYxO8fohv028uDhQ548ecznn3/KarXEuQpjHFopMplMkrVOkhgTTYpwqBHknAhxQ4gjIY7sd1tevPyWV69ecvnuncTHiwUPHjxgOT+ncrLfXr77hnfvLtluN3g/MvoepTLOOWazOTlHfBh48+YF//V/9Y/5za++5foy8JPf+xmfffYJP/jhZ/zv/rf/+3/rev3OSUYMsRwYhpwzfgwEH9FkjJbNv64rFBqUBqWISRPLxTg8/ClBTgqtDSkmYgik5FFaYYzGWo1WiawUCkXK8gBJEJCw1qC1JsZI8AGtDdZaWUQxoY3BGMs4jijAWosq36ssS2LwaN1SV64s5sOChnEciSHhjMO5ipwzox/p+o5MoB87xnEkp8RsFjH67kbLxp7QhwJRzsQUGIaevu+p6watFSlFhqGnblrqqsEYW65DIsaENRVaWbmWWQMGtD4eGIdN1TgjGw+QUiSnKAvWaHLK5T0llAKtKV8byMljDdSVwVUaZxUpaaxVtHVF8JrkM36QjSfYzNAFUBqFojKSNBw2rJyRAzCD01AZRW0VtVMoLQlh0JBTQqWI0Yq6crRNTVNLkqGyQhHIZHzQ1JWV66EybatZLBzWGvZdIiRoastyUWENpOQYvcKPe1IesU7RtpaqUnINSZAqchoYBg8qQ8ooA1bD6UmN9x7vAylqrJH7ORIxNpNCIgYkWAmGwMi6Hxh8xFrLbDajm82Y1TWNqwhkTrWltoblyQKtDXEc6Td7ttsNu+2e7a7n5nrL7bhliIGQoeuivIcU6TpLBlkPWqNVTUoGlb7fxceTszOWyzPaZkHfj7x48S1fffUbvv32K9a3V1SNo80tZ48fMubA1fWa33z1a5SKQJQgAEg5k2PCpwha4ZyjchUxGZIP+HGgG0eSUkQyPkR88HLQUoIGMpCh0ALAvQNeAjVJtrfEpBjGkURkPl9ycXHOYrHC2aps+AptJEGdzzWPnz7COlsOZs9ulxmGUILHEhySMdpgjcUa2cMOP//4gYak8KNnHBM5K1LKtG3DbNYyDHvevXvH2dkpWSl8GAkx4ceR9c0tN1c3dLsN++2GnDR9Lwl+ihllZM9ta4c1Bp0hKEOlHRaHzY55taDVLctmxdPHz/nJT3/Eo9Mlxke2ry+5ffOWzc0aVdUwDIBGaUVEgzIobchK3nPKkFImK0tIStaPdhhlMBicrchNQ8qBTGKzHdntR1LOQhpUBlD4PBJjxmg5V2LuyEoSTmsN1hqMAaUiGUkwRp/oOk/fe2KA+WzGrLXMGktTK5RypJgJwXNztWc+d2hXoZ1lsWoZek3wkbad03U9PgV8GNlutyV4S8QYGAaLsYYQPLvdlr7v6YeOm/UNXbenHzpGv0fpRMyQ1ntWJ0tyyhKEVo7gM4Egz3gIKO6CaZBgzPuAUgmUEHIRRcqJlAzGOHl+yaR4FxwHn9AloNPHpPr7h6ZpiFFIocN1yTkfE48DDq+RNQVKGZSSBD9lOR9TzqR7OwElBr8fvB/+W751xmhF5TSrecVi5ljMHeenNfOZo6kt81lF4yoq11BXLZWt0VoSC2MluVAqo5WWRD8fgsmSxHxwb+7/bodk88PE5/BnSum9rz98zf3vm7MQNEq9f70kStJobSCoQuQc30X5eyHbtFI0TYWxEpfF6HFOYhljLKlNzP2CFD273Y5h6IjRM44ZY2q0lmS8qiyU/TjGWBJqiTNilHt1uBddPzCMA9tdR0aSC4UipoCxhqqynJwsmc0ahmHPvt9IgJ7kugzDyGbds9/3bDcDq5MVi8WM5XLOclXTNBbrwGgt+1VUhJgYh8DtesvV9Q3fvniDtTV13fDgwTnPnn3CxYMzLh6ccnp+wsnJkuVySV03ZAL7bstuu+bq3Sv6vsNoePxMCLa2WaJVw2w2Y7lYsFjM0fouHgWNIpU7I4mSyqp8XpfnNZOzJKopB8Zxz7urN7y7esvN7RWjH3i0eMKDB494/vwZ3U7inP2u4/r6mvX6ht1+ix89dSO/13K5YLE4oet2hG2UmNRKPBzzyHqzZrPZ0Pf9d1qv3z3JiJGqdjR1RSbT9wND15PCQEoarS1V5VC6wtqWlDSxG+j7RM6G+XxJCPKGUwJjNN2+ox86qspQ17WwWcqglQRdGYVxFtBkFFllXOUwWrJL+eUtVVVhrSlBvsYYKzfUGNq24RAwHNjPMA5YrVjMWqwGo5BMGtjvdozDiDGW5eKMql6gTQ3KEuMoh4GxDD7ijGU+n91byBmVKZsGQCKEgZubG96+vUSbSpKjceTm9prKVSil6bsBHwL73Y6h75jNWrnmKZJipKoqCVRjZhjG40ailMH7SPDpmMzJw6gIMeB9IIQI3LEhKUZi8DhrqCtHJpLTiDWJuq45P11Bbhl62G0H6tairSJ4xegzvo8MXWSrB+pKkpzBZwYfiTHidKauLNaUd1Kuh44aFTRhAJUNTWWxWqOVkgNPMiVUBmccRluIgZQ1lW3QOFlqytDWiraRJMUZzTAqgk8oMpVTNI1huWhoatkcU8r0Q8K1EUzGKQO5IaVAjD2PHs3Y7xNDHzA0nJ2uMNYwhsh277m52XN1vacfYFYb2toRs0Lt9qTs8d2aYEYCNWO0DD7w7/+9/zl/9LM/4sc/+TGurtmGPf12y4s3r1nv1vR+pG4sjY7kccQPkc1mzzAOhOTxVMyGujC3hhgUQx/oO/9dl+xfS/zRH/8pcczsdwMvX3zJL/7yX/LV17+h72959OlDqqbGNQ2mnfEX/+pf8vrtK5xOpBiIY0+32+JUTU6ZCGAsPmdSkD3D1S2ezG4cGbwnpiTbtFbygZbKlixXlFJY444MXM4JaySxU2i6XeDd2xtu11vG2POnf/tv8fDhY06W5zg3IydNCAmtNLVzaKOxNqG0om4ec/HglK9WM16+eMHl5Vuur3fEMMrBkKGuG4y2crDDe8HEfD6nriuMsWw2t/hgsGaGDyOb7QbrDKenJ2w2t7x+/Yqbm2tGL/tDionsE2Pn6XYD201HCJn1Zsdm1wMaoxRWZ6xO+H5PDqCD4mLxkL4f0aPlyclznpw954c//Qn/k//gf8pnTx9iuj3+8or1l1+xWsx58vknvGXg+rUn54B2lgA07YymaTA6s7m9ZRh7hv3A23fvZA9yDY0zmBK8RB/KXpCJaWA+q0Alun7k5rbH+warFdF7Tk9qtIFMLyy01hhraNuqJKQHVlaSmd3e8+5qi1aWWeNYLSpWC4OzEqhXVUPdwBgyrg1kbfDR0PeaV6/esN8l+n3i/Pwx1jpSTmy2twzDQL2pub1t0CVp01oRgqfvO1KSAOD66i0xjhIIxD3tXBhtH3ouL3u0cmjt5NzMmZDTe+vmfsArZFTAWNAqHxNWciIWNlyXZ0opSnUjM44jIQZ2u/xeVeT7hsVicay8LxYLrq6ucM5xcnLyXpB9eI33nq7rcNYSQ2QcR/bbHSEEUozHCoF8neEQ9N6/RkqB1Ym6ysyaitPlnMePliznjsWs4uHFiqZyVNZSVy3OVoAm5xIwloRQqQSJQh6CVpqYpLp6PyG4+7nqvYrKhzgkHYePw+fu/3n/tUCJhYTsBUlKM1H+AqkONu2c7BRpMwhJiSKpQoAgPPLY74kpoJSFbHGuPr5fV1U07YwYA7N2Q9ft8X4g50Q7q3G2weiKTCSliFKZurZkHDFGtnrH0A2stzuUTtysb9jvBvZdx2Zzy2JZl2qz5snTCx48OGfWzslo9vs92iRQkRiEON7vB16/vEIbjbOWi4uHXDxYMZs7mtaImkIlYowoKrSqGPzI9fUt33z7gs12T7fvCT7x8MFTnj57zs9+9oecnJ3inMU6TdNULFcLTk5WxBT55uVXXN9ccnV1iTWas9MHrJYnPHn8KQ/On9A2C3I21LVDF1LEe0/KGWJCW4ldwaCVEFZycCkynpQ8MXm83xFSx9XVG37z5a/41a9+ycXFQz77wQ/47LMfEUIiA8Pg+fbFV1y+veTq3RWnZytQiaZ1ADx//ilN3UgRwQdubze8fv2Kn//i52x3krB5P3D59i2LxZyn2yffab1+5yQjE3Gupqot5MzYj4RxxOpM5TRNXdG2M6p6gdEzhiFyc3tN342krJi1LSEkUjqU7wzD0OF9wLqapp5RVS1GO1ISWYOPCWMNPsrXGFtJdukDfTdgjVycGCPDIAkHyENljEYbyYplcUqCkWNkHAeMVszaRhIMcvkQOdHoR5ytmc/nVHUFWtEPPbvdLcEPxOjp9j05BZrKQvQoI3KpmDy6MJAZsE6Vw8dwcnpB0zbsdiNdt2c2m1NVDSlnvB/Zdzv6rqNpaimBBc/ou+P3yDnhvT9uiAcWR6oKiMRIaUJKwtqSUUbqKilDTFlKhLaSwAaFD3IgG6VLcBXJUTYDpXuWq1OqpgJtWN+MWOdwlaXbDvhxJOVE7xPbbkCTcY1Gu4psNFFJApcQtijGhB8jxhlcZUsgJ4mIBHkJVMCYjMpBAksfqJ2DZEg+E8aEtSKDUDmQgiF6VZKtEaPBGiUMQBKWmiy/t+zRGpImJUVOWhhMb9DZyddqsCZibcZo2bRTsKRQcZsGmirR1AmUI3hkAaeE0xW1hVlruXhwwhe/+DlNMvzdf/C/wjUNUWf2foe3t5w8VlxUC4YU2fnIEDz9oLDmhkTAVZkHj+ey7pIiBk3OurAWv33QfJ+gx8zN1S1v377jv//nf86XX/+Kq9t3eDxD9vRDIvuBWVSslks0ke36NSFqdE703Sj3UamjzCmmTEwRlTKm25NiJGuNqypUjMScSr1Cqq4GU97NgZ0rSYWCnBXGWLRWx7+L0VNpy09//HucnclhVlWNHM5JHSt5clgKE2a1QdVgHXz+o0/QNoMOvL18SUoZrawQJsYIe8ddciGlf0Pbtigi3e4WrSx1VeFcRd/3XF6+JUbP6ekJbdseg6L1+lZ+s5yJw4gfA+MQ2O8HNru9VFNCxBgjchwUSmX6rqN1c05Pzlm0Zwydx+iKp4un/NHf/CM+/9kPefb8AdZ3bF58w81XXxG156a75s3tW15dv8LVFqMc2Wic1dRtS902NJUjpYwPgZvtG7qxp7aWtm4xOVFXrsjdLN0w4H1PCBBzT1MrUJphSGw2UilpnOV201PXmbqGpBxt7WgaJ2u/VHcjmm4IbDYD2+0A2dC2NW1TsZxrNHI2kWD0ma7zDGNguTD4MZFCZLeO+H5A65q2mUEyGN1gNAxhA0BKgdEPeF/OHS17Wd935ByxJmO0ZzGraWYL+tEQCcScQCn6LghJE8ZSyXY0jWYYPTlKBUiiwnvrSN/V5o8JcpKzUGtEHaBCSTbukpOj5Od7XMk4MKjGGIZhOEqDbm9vqarqmFiM41ikkZJY5JyP6om+74+B+f09VfYAkQeBhHiVhcoq5jPHs6dnnJ0suDhbspg5Zq1jVle0VUPtKqwW2WZMhbVUwjADEiCmu591qFAcEqP334d67+PDff/+fbxfAb0vi7r/de9LsKSimFIk54wxGqUkEU1AVDAkTx+y5EL3ftb9D2cN2qgiXFFok8l4iVvGge1uw3q9ZrvbsZjP0WYpr1OGjCkSCC3VpZzx3rNarYgx4dYbekZSUvR94osvvpaYKkdSCqxWZ5xfnHJ+vqJuFVVlUTpAtmhlSEnT7SN+vCIliBGsdSyWM2azmuWqZTZ3WFuUFEqjcOSk2Q8j6/U16/WWq6tbLt/eYqxlPl/xwx/9mKdPn3N6dsbqbEU7b4t8uqJuKq7Xb7lev8VHjw8jSilm8wVNNePs9JyLswc8uHjCYn6Ks5XEbnhSTmiVUDoezxKJZ4Vkp+zTWSXIkRj3+LBnt9/w1VdfcnNzTSZTN3P+3t//92haeV+uqrl+9ZqrqytevnyFMxmF5uz8hMVihXUAkd12S98N7LcdXd/z+vVr+n7PMHScnZ2z2/b0XWA230HK3N7e8Otf/+o7rdfvnGQolTFWguacM8F7gg+iT1S6lMkqtK5AOWKE3W4ghHzsd0hJAr3DQ+r9QXJlqKoGZ2uMqQhZNv+cKUmGrHZjDShNiqKtt85JyTGL1lJr0aPGGHFOKh73hVIHBkgrMFphjht1JqeIH6VcnmIk21ykWapo3jxD3+P9ADmy3+1JIWCNIfgRnWTR+DBgtLwXrQ0oqWaMY89s1h71ft57mrqlqiT7l58/4P1AVVWABE4hBupaSqxwp8c8BCJS+ZTr6kolKCdFOBxOKLRoB0g5E3PGOIsywkzEmEuQhSQZShFyJqeENVA5TV0Z0Iaq0rjK0tQ1aaxEZx4iY+nN0Ap8MHRDJJFxDpwt9yclYo74GNFWywZVVHDH+yP0CkplQLTGOUWsrVFkue8+YK1BkaGw1DFC9CJLcZXCGiVJyKEAfWSlcvlZB50yaCP6xpzugk3K12qdsVq+n7OaqlLUlaKuJIF0TgKUlDIq3b33xbylThlnHFXdkjL4GBjjQDIe5TSmVtTKkkONiwbrNHW9B2WoajhZzaTMGxXBi/xBl/fyfUboAu/eXPL1l1/y1ddfsN7dErLHzRzZKpHWZMV+v8caxbx1xEEzjprBaKzWjDGDUmilQW4BIDHYIaHISoIvlTMqFSlCvktMtJEE9/DPQ6UvH5miQ0wnRIU1ltXyhKaey/OozVHGKT1HnpSkPKKzhSySAm0Ns0XDbF5TtxXGyvpU2uBcI/ezVFhLSgzIXmW1PvZuaOOwpsZVDcYY+r5nv9/RtLJ/xBgYx5GhSBzJmRQiIURCTFL2H6Wyc2BqFZqcFH6IxDFicwu1Zd6uWLaWtp7x9NkzPvvJZzz99BFtrXnzi6949+VvuP7mG/o08PXrb3hxdcl+2KHrGRgr0ldncJWhqkS+hJL9rBt6jJbqnFbCGmtrsJXFWEc2CjMqxiERYuBwVcZhQA5ajXaWmD2jl+Ckah3GqJJgAEVmmwPsu8C+DwxjxLmKunI0taEqMo+cRAbZ96FUqTV1renIeJ/o9gNK19Quo22mHyQ4zQlyjCjL8XyIKeL9eJSohjCgdMIYaBpDOzO0M4urG8boiTESk2bou0KUBXJKGKMw1hb5bigyV5GuyON7kPPdSWzS4Rkqe93da+IhRvzg776/GIbheP4ppUoPTDwmDSEEvJfre+zJKElGLqScqATupDhwr2rA3bW2Gk6Xc06XLQ8fzHj4YMFq2XK6mlFZTe0slbUirz5URBXEY2AOpuwRZIiH66/elzvB+4nD/T//qvt2n5T4Xa/58Ht/mEzBXeKqlShFAAIJdAatREqW777+/V4RhTUaSoykjUjR+35gu93Q9wMoWC5XOGfuYpiQCCETQhYJdtZF1pRIOaFQRwk8gA+J9e1G5DyVZb5oOT1bcnq6YHUyl+TiQGUW2XrwhZAiYIwrCcac1WpG21a0M4e1Qt7KOtH4kAghst12vL28ZrvZs17vcK5idbLi7OyMZ8+fcX5xwXyxoGocxmmkCJ0Y/cAw9vgg8n/narSxtM2S1fKU09MLTk8eMG+XEutqC0RCHCElskpHSV4u8Z9Wh1aBQ2+GJ8WR3f6G7e6W7XbDZrMlZ03TNpyenXLx4CGQ8WHk8u0bLt+95ebmhu12zWrR0tTyUbkKpTMxwug9t7dbxlEqsJvNpqwLxXy2ZLU6Ybcd0Bp8iAzDwGaz/U7r9TsnGcYmrJPm6zhmxmHEj14ab7BoKrSqQVWkaBjGkfW6IyeNcRbnqnuLWQ7ucfTC1mRFU82oqznWVsQ0kBnIKJy19L1HA5UzGKXxRdtbV4009eRMiAFTAkZyZN7OcMaisiRBorGLjMNAU1e4EqiqstBiTHS9JE45i3ZVacgkYgrlRgyMQ0+KwpqM3uOco+s6AFKOjOMea2tprqsrlPZsdzfcrC/5Wfs3pCcjJsZh5PT0grpuRf6VE8PQM44Di/lCkpsk7PxiMccYLQ/evSTDOffeBlLXLVpbctbSQxAVORuMqQBDzIqQwc5qslUEEmNM0jxpwBgLOFLIxJCpnFwnaxQZKRW3jWI2M1R6zr4z7Lue2+1AiAGSYpcUb97taVtN02hmM1f6UBJjCoxhpGqkF+TYaiPnPSlGUo4l84gSJRCoK4XSnhCFIWnbBk0q2nYIPjKOgRg8bVPhrJLfR8tzEsvhovKhVUoRo0cbsFYRYiSmfGwkzVmClLv0VILWtrHSKNpYQoCmsuiU8CmVxNcTojRV/uT3fsCPf/T7KCq6vVSuurAnmUQXAr7PmBpQprwjVSSAkhbnKIGYsRanZsQkSW9dfecl+9cSm9s9X/zlr/mLf/XP+fLNF0SbsK1hsVgSUWhVQTJcX75hVkNdJWYNRWIJxihykN4rbUTTbM2hUT9JfxPxmFTnklQcA7JD8GDMUaon1c4iqcxyYJJKoIopGtwW5xqcnWF0UxIWfWwq7IdIjhkVNchvgjJIFdOK2YA2mXY+pyeglaGu5xiTCX4g+LEkqfoYLKlcNNFZY21DVc9pmjnz+YqYEvuuo9pucM7R9x3b7VYqnaU/SmcYg1SEMxL8KCX7Goi0NEXFZj8SfSb7kdoEPnk449GDRzx+9Jjf/9M/5Kd/8hOWJy2x3/Hn//V/xdtX37JeXzOayD//y59zvVnTnp2KVpsKaxoq66iconJA8vTdjv1+yzj2nMxXqLLnGg1oUFZhas2iaQnesN/BOIC1I1aPrG8881mNdZaqrhhHz9iPdNvI4xloEkpF6VvLquzXiZt1z9AHUlSsFi2LmSl9YBJgxgQ+ZtbrjrqumC1r6sailWe99my3G+aLBWhPzJHNeoNztSRxMVNZaVyNKVE3NdvNmm6/R2twLuMMNLXh5GSGcwpjM41tSLmWHpVs2W48XQ4EL/0nwkBaZrOKzbajHzxp9EWdrUW6koSIkQc6F7b5EDClu4C59PC8p8fn+13J2O22GGNxzhX9e01Kd1V+uGP4gWMl4yAbOzD4H1YyhPAqsmclvReN1Xz+/Ak//OwJP/vJc1LaY3SicgqVMipLFdIUci8d+mRyKCSHxCwlRLz7JYp8O6S75uz3gnjuEsmUYpHA6d+6b4ffEe6qFX9VNeN+MqW1KlpmeZ1RQsHlQu451+KwpaenvGHef260NjjrpBrnA1pDN3ZH1ny5XLFarvj0k0/p9zu8H/F+EPOffiSmAJG7vpQM+90e732RwMt1CyETxh7rHHVT8/TpA54+fUjTOqxD4p3SqypkrShdNpsdKQeWyyXz2YzHTx8wm1cYo0jJy9aaFGhDTprttmO77Xjz9oq3r28YBk9Oij/84x/w7NkTHj16yMnFOVUxzDFWYXQixIFx3KL2QqLEGFkuT6mcEEnVrOXJ42ecnZ6xWp7gTIXGAgpjFD6Udanz0eQhZ433CeeiSOzIhOwJoWMctrx+8y2vX79hv++o6pYf/uhnLFcnzBcz9vstm80t1zfv+It/+c8Yhh6lFPPFXKoqTU1T1ZA0Qz+y2+95/foVr169Zuh7ck5cXDw8GgMpnXnwIDL0npT/Eu+T9GSHOwOCfxO+c8TSthWVk4N5P3j8GIk+o43m8u2OnFusHdG6I0XPer3m9etXUg0wTWnWLmVDVNkUDi4ahrZdUTcLrDOMYS8bg+8JXpIZXdciTVLSixFCLC4SVoKNII1MMXpCiCzmM9H2o7EoQpYy6W4/0DRLnBO924E1P7iBpByxTno5Uo7E5IkRum4gBo/3I33Xyw2wrlRHPDGGwpyMGHNoStOE2LPdbtnttlS1IytpJF9vdjx4+KT0WkS8T+x3PV3X8/DBQ2LMxOjphx1VfYo1ukioirypyClCkGsaY2Q2m5XESza8nKScWVczlJKeDu+9aAC1JiUYxgBaoa1GO0NQli4NdDHgWod2FpQpByo43WMZUTagG9BYtk3FbtujnWO1WHFysiDlsSSR4VieDT6Xn6WKfCSXYLAkCl4Rk8M4B9nIdQ3idhDiQEqR0Xu0aqSH5lj+FnYkxoCzNbXVOA2GjNISxSgV0CpJRUxrUg4YpXCugnw4aDKmNH0L26xICULMhJioG0czq5jNaozWLFcrxiHS7XpSGrHOop1me70mnjtwM5KquXl7zesXL/n626+4vNlQ1+KYk7Y7QuzwPtJ3mW7bkxmIMbC5DYAjJcvY77i92WAtzObf7yTj//5f/iO+/PYLXt28YsRzfnEBRrHt9oDDmYBTidVMkeMGzcjj8zmrRU1TaXzw+NQRS1XOWoN10q9jdLpr9qTE55REA0WKojuWYCKjXYVzjqZuheUvB5UqVRCtTJFLRbwfCKErTcmQsIToMVnK7cvlvPRGybOYkphCaKV48fI1N9c3jN5z8eARD3/6jBQz7y4v6boNKkpgEsr+WLmK89U5tWsKA2vIiDPLYjHHVoox7PH7jhB7xsHjvRfW1nusFgmW0XKIxJBQ2kmIozIaROMbRbpQuwYfMxenz/i9H/8BP/nsR3z6g095/sPn/PE/+JuMm0v+4s/+Gf/kH/0/+M/+03/I9W7NoCJPLh6yH3YMwXPz8iW6brFNTTWb8ax5SBgzferYbbd89eVv6LqB87MzKlcThoDvR/bdyO1uCzqxWDRYK4FLbWtMbNjvPdtNQGWH05amNixOMv1uTqwaoo9cvr1mMVpmo6OdtVSuxfvMdjdwuxlp64aTxYyzs4qmShgjh7b3iV3n2e5FHlu7mtqKeck47kEFTs8r9t2eftxjbALriblFZY0xgf22Oza0u2YmySIB6zSrlaFtrJhQNAmjVXHCMWgMwWdubtbEkDHK0NQ1p6cN6FzILZjNTxnHyPX1mu22J0WR8gjhWaqz+q6JV6EYRwlwJShN7ykIDoHn97knY7fdUdU1OWf2e4kVjJG+zq7rjtWLGOORlLuTFpfPfSBFyiWh1yofG+OdNTx/8oC//Sd/zO//5HPOFobN9hLvO0IYSl289EGqDFrkklor8miOzQ9Z6/eSn0NFJedM1nfvQ/5eHz8kaE7F+Yrj13+YOBy+9r45wH0J1eF170muFFS1JRbHSbLIRSWFPRhNhGPl/8CkH96DtZbV6hRXzUQhsduyXq9L9SLz2WefFjl4LZUJJ2Sjs6bIszRKSa9EiJEYRImw3d7ig0iuDtUNpUTavljMsdZye3uLj+dUWZOyJkTF0Cf8MNLtR9a3e/b7rhCvNU+ePOLJk8e4WlzByJmIEAODF0fKm5s9796tubna8PLFJZ99/gk/+MEjPvn0GauTltm8oZ1Zqgrq2qB0Zhy27DbjkZSetQ05QE6G/TZwcbbiwYNHPH3yjLpuj5JQisbiIMh1tiImJeY/StwkUaB0wKcOPw5su1su312z2+zZbfeMXcejR0/45LNzTk5Opd9t3LJ5fckvfvFz1us1w9AzW8xYLhfHxMW6lpRg3w1sb6959fol79694cXLrzk7O2e1OuP09LQ05CtCiLx48ZLLd6949+6K1WpOiiNKK0LgO+E7RywHhjyETN8HQhAGiJhAw24/Yq7W9AMYU7Pdd4TocZUtQWbA+8ShH0MY/VgY4IgxFUY7UFpKxVoYhVh0+aqqRHcHJckIVK4+aqkPzY4xykbirMMUzf+hVpmSSAZc1WCsFbm+kpudkZLRsZm8rkSukyPSwCVfH0upaLk4K+5TErRq7bDW4pxImLSWBb/erOX3sxZUYhw7xrEXlw8trk8xHyoU0sxtrCOmUQqAOYkdnzXlgCnOUuZOz3koB1trhKUsrxHLM4uxtjD+gXEcmC/mwoCUzwlzIxtPRh3LydoWOQgiSTLGonQ+BuSHzTmGiFFS6VgsMouFJkZHCIph8PR9YBwD+33H4CP9OLLbd1hbiasOmhAzMR9U8qbIVsShJufDhzDHh+ZKlCp6y0wsm6gxwg4cVEXCBqt79oCUQzaCMiL/485x5K5cKTvxXS9Lws5cYYFFSz2bzXBG5AwxJ2m01NDvtmhnsLMGXVm63Z717Q03N5fSLOotzimUHkixL7KMIuXTAaUiMUhfTCwyvXHclPXnvuuS/WuJUfXoFtqTmjQuSv9VEsmhKlUEA0b1WJtwRrFoG9wo7mYRwxCv2A+BsciBDgEVHHojCksdYzmgj3qRe89ucVszd/1Nwhwe+OBDjwTkFAixp+tvCaEnpgadXcliIsTS8GtEFpRSQqtMCD27ruf66ortbkfO8Mknn7FcnJFCxFjF5ZvEXnEMgLKSTUEZjXUVKEXdNIj7m9x7H0QKkmJg3HeMYzEDUAo/jAy5MNspi43qODKGEaUlaSLnUkmIaGOYzebMz055+vAZD84e8vDhQ57+4BlPfvSEymVevnzBt198wbdff8PbrqOLGaUNm87jQ5LyeRhIPmC9NBdv1zUpSHn97etLgh+wRlHVFmcsRlusdcQNjKP0I2y2++Lc4whNZOwDXTcKEZLFRSVFCKOwzLa2qNqh3YKsIsOQSQQ6NeB9ZrcfqCpx4ZrPa5rGYLQXrjoruiEweqmG1pW8r5w1+81ATkrcnmpHPyZCSIxDpKqkD8QZjWkcKRZ77pCIyqO0x9jEfGZpGkNVK3GsMbns+SLLHH2i7zy7XU8/jGhjuLhYsFxV0lNBYt+NpGTRSjGf1yUJlkbQOPqiqxeJyFH6on5bZnOwZJVz7PCofH8rGTmn41o+VCe0MbhikDIMPX3XvyeHuu/KJErbO08pXfZ8aaHIx15BUJyeLnlwccrD8xNalxj2hoQiIa51uch0jrLfrCCpe/fg7n0fqgwxxjv5Efdfd7f/ZKUovyYHMvS+ZOlw9h8ctg5JxeF7y/e8c6qTBKQkHUqcyFRxZzLOoCJHibpShqxEEqy0gWzK9RFXvIOJhrGG2XxORjF4SeqqSuptlauoKkksxrJ3G+twzpFIxJQIKcIAfhilf2YcSDmV871mHAcOVFFIscQi8v2ur7eMPtI0FUoZdts9u92ed2+umM9XzOcLTk5PCaGjrp3IFrWTWLHQRMO4Z7vdcXu74eWLd6Qk8dcnnz7n6bNHXFycSoIxq6lrJxXznIh+JCsYB+lLPTxTwQfm8yWL1YoHD5/z5PEzlqsVbTuX2OkoezrItgVau3utOnIGppwYQ88Y9uy7DZfv3vAv/sXPWczOefjgGavlGfPFQqSzw44XL79mvb5hvbkR6brWzOcL2rZBlTPJ+8g4eIahZ7/b8OaVOF6N48ByecJysWI+X9LUc/bdht1+x363Y7/fY7TY2s4XLftdKuqUew/3vwHfOclICbwXfXC3H6Vk4qWUZ5xitxsYxhvqTU/dzBiHcGyEzFmCe+/HYjkrD21MEgTEYylQNkF11DpnYgjEIIHwIbtKJfPVtXovyYjloE4xSYXjUEosqoOYEsM4Ml+cYJ2TBF3LzpwRrVmMSWZBVJJkkAOHptuUxAZz6AcePWxL74QwCKb0PUhgKOxJCIGb6xtCCEe5WNfvGccOa7VUUZRoEMVdQgIJkS0NwhwoYQHEUSvcs6bNxcUklDLkePyeKUkFJmcJpI3WeC/NcMM44NyJVFCKBlHrfGzeIkuGH2LEuaJ5L4G2JIxyz6TUT2nm9iXJSMxnicUcYrR4L5rvvouMpXEzkxiGwG7f4RxUNpdqjio6VtHl5yh6Ta0tGU1KYuXrrFhE6iKRSUUOEFM5MErfglby+UNnRsoHO7y7hSzXW66N/H0+6ka5t+mnJM+Os1rcXIikEoSQlegylbDHOkEePW5WUy9naOfo9x27zZr1+prddi1N3k5R14mcI35MdF0kp4AyCaszKYby/EtTe84dYPn+hgYCO9fM04xcR1xXcX1zzTAOkCLaio2qSgmjBlqXaSrLct6gbcDYClu1XG16Yu7wMeFDkL4sk4vs8E6XfjzMQRLoA7OYJcmIMWHiIfHUxWHukF7efaQsB2jXrwmxJ2VZW4em4awUEDFGzANCaZYcuq64i1yJW5OpeP78U3GUCZGqNoyjzAwS+9MBZYpVtaLo8hV13ZKRQz2R5XoRiT7Qbff40QvBUVn8IHNWYoiEst5DDPgUituQLNwci4zGKObtjOdPP+Hx+VMuTs959OQRjz9/zPnzM8b9LV//6ld89avfcHV9S28saIvTBp8UQ8h4n6UqXRptUwrcXlv8IAfc61evaZqauq6pnMEag6osudaMIeGLK9K+69EkRhckqO9F9nBgVIXkgbHL0h9mDa5y1LMTtvsdw+iJXZYeOJ/oe8/F2SmzWc1s5qgqinxIERP0QySEjDWGuhLiK8bEdtNhXOknqRxZjaSY8CGBNdSVZtYYGi2y1NEnujGw7T3ayH66mEnVRUw7DgnGgck+yBQGtrsB7wOLecXFxZJ2JgkrCrTe0w9SrZi1NTHKzA8w9HuIQZUKemHGkT1M3H4oQeehx01wcDv6PicZYlYgZ7+c47oQgzWmkT6N4KUv4z7pcPwohOMhshM6K9+t/UKs5QzzWctqMWO5nFEpj1FKjEo49FVIsqJRUOzFE3fE5YGMO77333ndDzuN5uBMeVDAfRjG3U80lJLz/9Cb8uFr7lvfHpIbpaSvNUZJtpXWWGfJKpNjJkeEbU8HeaVBKcthphCHhEpJtWQ2a0EZsZXNUlFyLogF/7Ff1uOsw2qLtZoQPT4GdNBkJT0Jo+/xo/SjOiuGGNvtmsMViEVWljP4AFfvtvSDZ9bWWGvZbvds1ltev77kxz8+ZbU64fR0xc36rUj8o0episKkEmJmu+24ulpzeXnNixeXnJ+dcXZ2zmefPWN1OpM+ukbjKlOusZZ4NEl1cBx7YojHfqkYM+dnLQ8vHvHjH/+U1eoEa6s7mVsu0UhOZHUwH1EoZcsajWQiMQVCHNl1a/b9DZvtLa/fvuLnP/85P/zBH/D5Z3/A40cXjH5PN+zYX6/5zRe/5OrqLdc3V/zgs5+wXJ7QNDOURvqMkycUFc7m9parq3e8fPElTdPQNC0PLh7SNDMqV5MSbDZbrq7esdncUlVNSZQMt7fXrG/EgOO74jsnGS++eSdDV7DsNoH1ZmQYIjEler8j5W3xns6l6gF9NxIDdPuRuu6K7Z4EiovlojC3itmsJqaBbpAmn2HY020D414OGp2FOaord0xGygoQ9r5kasHH4rSUqJw76q4pN9YH8Wz+9NPPadoK60qjYAlUh6FnHAJNo2mblhg7/ADk4jqw6dht9qzXW+bzBXVT37GgSpWkW5gqcYva8uWXXzKMA1Xd4L3n9uaa9eYWrWEYpbQbQ2azvkEp8QAHkVSB2PUdrPByFgZfvOAVOY+MfkuIHUpHjE7kNEoyMewY/YA2GZQ8uKPvZT5HXaGR5nDvPW0jFRWlRcMbgvQXzObNUVYVxoBpKmGEYioDrjQ+KPZ9QuOwpqV2S5y1VBaaytDWNfOmYd324kmePVUtfuG7XWCfU9lYFWjQFkIU2Qc6UbUKZT05etCZpm2k9Fqq0TGDP1SvnDnOUTk0jKbiqHVgtYTgjSIbMQpXHRgemb/gnEGLOaoEq/ngXpSpK7nuuth1vXv3Du/luq5ORW4xszM+fXrBT37v93nyyedka9lut3TdlhT3hH3Hpt8Tc6Bdapq2IkZx0MhJAmajHERxlEohEsYeZ8TlxHy/x2Tw8LMLVsOC/XbHF1/8hv02YhEp2rytCX7ADwPaJuaNpanEcCApkf5h4OxkRjeM7Pt8nGWTYjoylPcbQA8sprEyuPGQaB4GxYFiGEZK6IKxtvTWJEgRl23plQE/lH4oJQFBkke3aIozMQ4olVE60e03rDdXXF6+4dsXL3n+7HMeP3kuw6eUQptEVpbf+9kPefvmklcvXuJ9Lz1QVuR9u+6Gg4c+ypGVImYYu562rjC6oq4yu80OP4740cja74VhCz6QTQYtBgzRRwlltMIai2kq8fF3lkU743R1wuNHT/iT/8WfsjqtCeOOf/Jf/hf8n/+j/5hXl1ek1QmL+dmxydgYQ+ilSpKywxlDCpFuvePN0OMqsSWvbM1ivqBuKqrayl4YRK60WCyE5TQOa2ti7InRs9kMDP1I8JGcwBmDshVYQ1KKcZQqn48j81XL+cUZIWbevd3S7XuGMRIiKJWxNlPVGWMVIVpChO1+IERNVVXM2xpnLV3X0w+eTKRplmirSUS0ijR1prbSwxK9JxpoFg2jkv3HR896c81iPmO5mLE8abBWGGilDj0AQNbsdj03tzs2257bTc+zJw9YLRtmraaqwFVSfW6aGZeXt2xzx+gSi4UYqqQEy+U5wYsSQAE319cy/yTJTKsDV5pSlOqJgoxUbXK+k+98H1FVTuaczOc0TQulCdxVjhxk7ftS3TtY1h4G0x0/YjwmFhoh0SgEZ0gyh8enwNcv3rLdbVBK7HLv+rdKNb2cKZRq+gEHp8vf5Qp1/0MlMFajtCWGw2vVveSozLoqZKgqZIlz7r0ZIXAnY7q/792v5ByC/pxkYLCce2Ko085rhj7IXJqUZWhpFGOUWOYAqYQkVklIRusU6ITShnbeYisxwRkH6bkIwR9jiaZp0EZmP2nnSD0M48Bmc4sxmsWiJtZi1VrXFXVdc3N7hR9TqTS2DIMQiU3TsttGtts1KYkr53K5ZD5f8Ed//DdxRmRgN7fXxCTJhTa5JAeG/X7k9at3/OIXfym9Olbxx3/8Bzx8eMHJyYrTswVKxaKaEGI7hlhULEKAxJgIyTP0I1VVs1ye8Kd/8+/w6ac/4OLBQ+pmAao8A6m4+R0zR3lO8mGmHCPaRKyKrPc37Ls9292eVy8vubl9h9aZ07MV//7/8j+AZNls3tHOMl988a/59sVXfPnVrzk/e8jJyTl/9Ac/FBc8JefT2A2E4Nnvt7x6+YJvvv6alCLOWp49+6Q4Kcp1v7les9msubq6omkr5ouGJ08fYW1DXVX0Q8d2d0u3D8RgSuP6vx3fOcmYzZb0XaDrPNutDFU5HBQ+BoSBlgM4xliuo5TvQozYKN7dMYjX7mGysVJQNzVvLy9pG4vRMA47Nutbum5P9DLd1DmRXcU0gopiO1aYZrjL1IEyV0IfPw7sxcGPuq5FenXIDQ7lv5iSDGvLmbatIYuHcwyKGDK3t9fc3Nxye7uW6kmO9L4TVU/RcBttZUqrNRhr6PsBY41Ud8bIZrNjv+9lYE2kNHcn9vsdkI+b04GFqZwrvR+Uh9MUSZAwEiLXMtRVVSRoQQLyHKiswhlhWf3YkXM6DidMx00xywC/w7C/kI+Ss2NCV7J0V7TvOd451MQE4+hp67uZF1m6psu9SeTsSWkkBs9q0TBrLW1jCCkwDIlxTOz7QAKsharSRB9wDnSlCXlkjMIgmOI6cXDxSBliadS2pT9H6cJEKRllE9OB/ZGgUiRxoqXPhfGTIVVycKh8OKClupWyyDOM4disnrU6HgJaSwO5MwqTE7fvrmjbOcuTc7Ci3c/Zo00+zmTIKZMTjEPCBxnEF2OgypX0AmSDKg42fvRUlVjz6aP96vcTy7MzlhnGk4Gu36NTz7Bfo2LPrIokq/DWsN8nsUc0hpTF6cvZTAt8+uyEmIRQuN1LA1oqTkH3XWbuSweslUoT5r5VrDjAKe72CJm+kQtRk6XvAo1RFdY25GJ/LMyU6BnE7tIBUo2KqWe7u+Xd1VtevHzJk8fPOD+/YD5rRWiRZYaMtYaYPM3Mcnq+YLerUZL/EsaRPpcGd2WomwUpCQGglRWJoPdstltiEhlDCFLR9MWRKKsyTVd+bZFEBJlTpK1FY9BojDY8e/yMH//0R/z0j37CatUybm759otf8w//4/8Lr9cbBucwShf5RCKrTNW2zPMpdmgYhx0pD6QwkkLP2IsDoTWJdl6J5LVxzGa1/IJIUDRvF1ij6WtHiC37/Zau2zEOHmOqwvxJ8m/rCleVJCyWAVQpMYwJHYcio/UYrWmqmgystx1KBVJyhKUjRsXoI7vOM2srnK3Q2rHvRvpB+lpm8xqlpekzpYzTiqaVM2W3k36g3mduB0sOis1u5Op2S9s2tG1FXVuMKdOMVameHKuSIvVY70QmeX624vRkxqx1VJXYjYttNdIcG2Ue04PzMwYfGIaRYQhoo2lbmcVAuT5935fGWXFfDKEM8ipE+YEH+21+/PsGJXHEEKnaTF07nLMYbUSO2ktsMfY9fhyJPojjj5L6glAE8Vg/yFmhjMW6itliydur66OBwpu3V3z76g2fvHnAvH2KrSrs6PBxxGgDhx4ZfSdPg7sma3j/8wdp0+HzxwJETu99/v3kwQC/PeUbOMqm3m/I1scEQ77+/pwNeR5UVqVgn48T4eumwtiK8VaUFjYp0qEZ+dDnVs52hcRMi8UMZRzrzY66mQnjj0hRx5TJOtFUDnIsz2Vkt9vSdT0ppONsEW3ECTCWc3EYe8iZqgz4m82WtE0r97lI5JSypX/G48dErCMnZwtykDk1Q9+x77dSdfDQNPDmzRXr2x031ztm7YLzi4rlsuHZ80esTlbM2raMEDj8nrDf7xj6nn4Y2Gy6YpQj89l+9MOf8PjJE54+ec7Dh49omhk5lS6WUuXKSfoCFQYwqFxsaZXIHPfDLSF1hLTnzeVbrq+37LYDihnPnvyYulHUreerr77g5nrH5rbn6xeR/X5HCJEf/+hnrJZnR4dWmUcna+Dq3RU3N9d0+x277Ya2bajcYbacFRn7ruPqWoaFaqVYruacn59SVQ7rDm6lEju7ytL1O/ouQtp9p9X6nZOMxWKBH3claTg0w0JIGXfP453CdJMzVSWNfLZkS9ZaKeX7QD/05JTQZZ7Fu3fvpDxtFDl69ruOcRghZ+q5LRIr8f+GJMNL9CHJKPKH0rR5nPJd1l1GMvO7ha6kAUjdWZwe9IyH4XVV7Ur5WaQxPgS22zWb7ZrdfofSoln03t9lg1q0oVrL8W2sIURP0zbMZ3NykiGG4zCWLFAXljQfvb8PSUbwwkYIa3+QgUiVxNgy5Vwd+j+0DDM0Bn9wkEBkANZoFJkQZAK6sw6VD25b6chsquLVn5IwFXDfkUSuo1gCJ/EAh9LweJC7mTJn425DOwz8SUn04zHKXJFZXTGrDWPQpBiOzEtCE6MmRcNBZm50ZugPLmRQG3NMIFTWcngnShNwkciV5EKeiXtJBuXvQjz62UuvxkHneucnJeVyaeKlJBkfyspEzpbRRiyRnda4MqG5bRc0szkJ8KEnxIGMVPJEhpVLKTniPQyj9MHUQQYrxlAm+EaRrjX6UHb9riv2ryfqdobWhqppefz0GWnYsDeJcdfT6EQyYI3FB1t6s2Ri9EFCklXm7KTldjNjt/fshxJkp99mCeH9g/y+5aNSujQg3u1bBzmVOjwHShW9tfQQOFvL90yJHMNRkphJaFULwxc9Ie65ub5ifXtL3/V89uk5q+WcppYZQLk8O4pSvdIZVynq2hD7RPKJcRTKWta6o9WmTDmXPSaEUJozR0JxVTm40R3m5qCcrG8ldt3aqmPvUmUbKldTVy111fLk6ROef/6UZz94RKUjb16/5uu//BW//uWXpPMlrmmxVSvDB0vC7+q6BFiSzHgv3HBMSRj/JIxxVcdSWZEZS1pnsZnWmrqyBO/QOhOTZRy74hxmME72KlAYi8zhsHLf0LEMV5XEIgdPDCITc0YmdRur2Q87xjGw3QobHNOh5yzhKovVBvHi94QoRIR1hkyQa5hlurNzcgbFODD6yBAyqRvIXrHvRT58sprRNpJkHMgIrRUpawgiKes6z74b8F6csFbLGbO2kirpYXRAhBSiNK8mqRi1TYM2A1rJ8+yqSpIwZfBjFEZei2VtFTN+lGGs41AYfKSqk8vsoO/zNmLM/SBdHeVCuThMyQBEOUNzzMfzXc6Aw1wsQT6kHUqBMeiqJqII5Xzc9T3Xt1tuNlsZ+Ohc6a88XEEJ1u9L0uB9J6cPqw33+8cOMpp877w94E4WRXnX7ztG3W8Y/9A17HfN1zjGQ/feak5i++1jwBlbgniFyQcHqtKYDqXtR54fShOKqyzaFitXLdO7Uww46yGm0hspM3J8CPRDoO8HuTdJ7oM4eRWnLB8Zo/QOKKVxtqJy4oZ0SDBUOQ+slYnjIpcWgiDliDUVKQsJu9+NhKDo+oRzA2/eXLLfD0QPDx8+4ORswenpjPOLJW3bluBbxi147+mGjpubK/q+o+97tpue5fKExfKE09NzPv30c549e86TJ0/R5ZyQJvZQTGfKEIV8TxJ3vJcicdzubth2N2z3V+x2XSEcFYt2LgOhq0TkHTfXl7y7XLO+7ZktpIG+aRouzh8zmy0gC4nR9V1x89vx5tUbttuNKEPIzGaL4/Dqvu/ZbTv2+47ddkPKkbZtZAL6cll6JDND8IzDKCYi8ZCcZ1GEfAd85yTjwcMLvJcJqMOgiXlHKC4Ni8XyyKp77xnjgHWWJ48fvxd0WitNWTlzdIVQUQ6L33zxNcYoKqs5WS2EEUsJUuLktMaJFyIxeVDSeGK05aA7lUmJCWss1jlRD+ZMRLLFruvwfqRpa2IaCdFymJKdIgz9wDD4UnI0VJUjZwn8JDPu2Gxv2Gxu6AfxXAfN4CO24m4ugxLbSrQWCzg8i9WcR48eUDkrszDGUTSKppJGvpTZ7/Yyhbs4P41+JMVIO2vQyhBLqVtrQ1O31LXDGEcMGa2rMjhwQc49xiSUkmqNcxVaafw4olG0VQvREv1ACh6js0gnjCQ9wXtQYvGplCpOOXfyEoU0hR1KujFJkNU0jroRRimX4FhcTYwE0kGazp3VNM7QWIvRiqQMGMXABmvmWN1g9IxuHxhiIIyJ/W5P1hnrNM4ZQhSLUK01PkZ8EAZkVleSkKmDxEksPPsxkmIuVQBFiJ6qLtrdEPE+yO9XHLxkX1THr5fytBK75mPgIDI8paSPwxpFbQ1L2/L4/BNW54+wzZztMLDrbtj3twzDRthNXXpEgBgy4wh9H+m99P9In4kk0j5GxtKEL2X17zcLma0hZIupG372x38Ll0feVYrrF2scHrQhWYc5OQXu1MqVM8QU0H5AG8PjswUqGba7EciMIYrt8AeHrr7n3nJ3QJlSeZTq3d29F5mivTfDRRswFoxVzGYNzkLOA/t9IMQ9IYgbmHNzUlBFSjDwy1/+kuATJ8sTLs5OmC8anIP9vsf7UJJ8JfaHw5ZxuEXFRBhHxi4w9oFYVyhj0CZSzz0KOViMsWx2O9lLlRAgOYr1doyxhAGFzUwiAXHaYuuZGP8nzbI94WR1SlPPcG7Gz/74p/z4Z5/x5PGK4e1rfvGP/1/8+Z/9Oe3jx7QPHuDqhspWDCmKrFR0pCSVZbZFXeGHmhBGqjjS7/b4sSfGgB8Tu+2elKSad/7gDFfVZf/uqWrp3fM+E0OPIjJfzGgbGdBqrWPw/bFyBAllytGVMylU7Pc3jGMgR8VyPmPW1swWFcPYstns2W729H1P1rKWVwtXAhRxrLvd7JnPZ9RtBQxIP14WF7n5QqonWmHcjMurNd2uY70d2O9l/1zMZ5yeLJjNKpwzpBRKsCuGAGOK7PcSsA4h07Q1TVNxumqpK4U1QuKkrBl8YN8PvH13xXKxonKWGDw5BipnqBvH6ek5GbG5fHe5QZFxzrBYzGnbmhASwzByfbU+yohDjGDzMSH/vqJta2GSnWHWyAwlP3qGYSDFiNGGpm7o1lusNmRj8cUe/djPqHSpaSiphMdEHEbiei2VSS39d8Y6dp30ziyWK+qmputtSapDqYRDjncExqGKCncuT/ednn7bilZMDYTuvuuhuOsvkwSy1F3eSx7uqzXg/fv6YXVD/r5UQsLd9w4xs15vqJylrmQWxT7K+zKlQlNagVAxizxUlX6gFDC6Yr6cFWmTxrkKVUdaZ4udduD1m0v6fc+uH1FYVFLkCPtdh7MKLaO4SBHGMTH0kcrW1HUjvVyF9D1Y+c7nK05OTlgu57x+84p3796y33d89eXXfPL8eSG4T/nyq5dcvpPKVN8PzBctq+WKZ58/5fMffMLp6YLFqiXnElMYQ1PP6PqBbr3l22+/5cuvfl0kt0JIPHv+GT/5vZ/y9/7ev8ujB09luvshVsqBmKQc3dQy902rBpWrI6GNFmVHyp6QR16++ZbffPFLfvmrX/Czn/2UZ08/5/zsCSqd0Pdrbm7f8e761/zTP/+nhFExa8/4/d//d5jNLdoohk7IXO9HdvsN7y7f8Pb1K95dvuHm5oaLi4cslyuWy2XZlxLD0PH1119xc7smhsSTJ485Pz+naWqcc9RVLWuqH7m53dD3e7pux/XNmrOzc/KphvyR5VLL5QVv7Uiip25Eq3+wjZvPZsSUGH0ghrvs7cDKS/WjMPO24uSk5fz8gtevX9N1XQm2IsFHBhXw4xqtElpJcKGMQ5s79uBgySeDVCTx6PoyoMcWNyUtE6djTmQV6Xrpf2iamkNzdAgKra0MIBmGoq+rMFYz+oEQDo1YI7e3N2y3Uno7Pz+nbWcybAVHiroE5VJZGL3Hh4H9fs3bd295+PAZdbVAJYsfPCkEVmcrFrNKGrKHSNdtccvlsRS43WxRKrNcLcr7lTkQMQVpZJzPcOX61nXD2dk5i+UpWu+JWVM3A7OZlBetMYSQMNpStZVI2oJM1LbGYIxDa2nUCrEvOk2ZNilNhaLpDl5mV8j9TIzBC8tei46yck4qUyqTtZQ/JYj35JyYz2pACWvvA93o2Q6RMYIxz0kesnVU1YzZLKJ0ROuEH/fsdz3DPpH8yNB5XOVwrqLrtSQCiOzOWHOUBWSkzDd4SZRk+Jg8a3ZeyVyVJH0o8jwX27+yoUt/ilTHqsqKW1nR5Io2WhLYQ4+GyYq2avjpH/4Js+UpPiZubm64vnnFvr+RWQk20s4MtqqoZ4ZhVPgom1IIitFnaSQdZCKwD4ExGGK2ROG+v+uS/WuJuq1QVGKpahpWDz8RomDY062/LU2PGUNJtJPMvjDKgDI4I/ftbCmuJ19/q+n6hE+lAU9JtUkXJu5Q6bvvJ3+4b1kbjFKgUjkYxP3oYLft/UhVBnz6ceTt67eyPxjLfj9wc3tJiKMYMmSHpi7PRmBzvcFaR+0a3rz+ivQyIo2RltH74oSXyVEG6A3dQLcJDJ1Yg4MhJlPWpWW/7zldndC2M3a7La52aKOIUQbRjWXGzmFGhtGG2awh+IDRMl170S5JXqGS5dmTz1menLI8WfH02WN+/NMfcnE6w69v+If/x/8Tv/7ya951O9zJivPzC+qmRVvLGCOhGGC8ffuGpMSwYfSexXJVZpck1jdXDPs9fugheza3a/Y7hOFTmvlywXw+K3NEAqPvuLp5h8zF0RhbsVguaGYtrqpJ+QQ/yPDPFAJdtytzdTK9H/FBkZLMJprPG9rW0tSayjpqt2Axa3j16kpsuhNsYiCnsTTcj6xOl2KFrDUxWXIKOGtYzGZyBslRgEGzmM9JyfDu3Q0hWNplw+npKfN5I7MwTCYjrC5ZETzc3m7ZbDu6fkQby8mqYTFvqRxiZmEMoPFjYL3dsd3vWa5WOCvByTB6UgrMZi2rkyXLk0UxY4kYBe/eJVKqqIphSQiBehQbcGMdoBm9p9sPjL2wkt9X6NLwb51hHPdoK65Si9mMy+2uSCYjaI7ulLpU3cmpyBuN0I9ZZlVUTpr0Kws3ZbAiiNxus+3YbHZsb7fMZkuCD2y3W5QSyZ7E9fqYcNzfaw44BPyH5ON+rwTwnqIi876t7SEZkNj+/aTlfnP34bUH3K+g/NY8EHX8oZK6JEXwiRw9WUNlHLWBHHohAkszezr0wyKud7P5DKUtm/UNdTWXpMQqlBMpps4ZlRSLWuP7yHrYUc3OiCkz7D3dbmAw6Sg3iwG0kuptPavF9lUpxnFE+qs02lRUlca6jHGZx08eMJvVrNdrvv32G5RS0qisG7abHj+KGkWrmvlsxZMnj/hbf/sPOVmt0EYGNscsBHOMkZevXvHNN9+w3e7ouw7nWs7Oznjw8CE/+cnPePzkGRfnF8zm86LEMXJG6VgqHgNdl7k4f4DWrlTJIzEHSS7CQNdt2Gw3fPviW3ZdJHjH2clz5rMVmZFd95ph/4Ivv/qSq6s3XF59y8nqhOX8EWcnn9DWZ0Q/MPQDu91GJqyv17x984ZvvvqCqqqYzVp+8uOfFGm5Yhg6bm5u2GzWbHdb5rOW588f0zQt89miyMQgeM/VZleGu45st3vqpuL07JQnzx7z8sUrvI+I69i/Hd85yYhB4z34URiSw2KRh740VJahMQqZMl3VlSx2JVKmfGjCNKY4M0mp0ugSzKckfQ69xxR22Ggrw1h8OmpNU5QmOiN2MMcy6cHlSRtTAkXKFEsJdlNCmP37spNMSThEM1jVlQTvORVZgyQ1fT8WazArDGDTUFVl6F5VY6w6yo5yluvgvadt52XgnivSG/Gmt8ZhtMWn4hEdRB+klS7zLALWaqpKbHrJuQwFHFFa5jmgpL/FVU4mUNY1wygOXkobqrrBCfVaXKTK9yv3TFgBddykckZY0Vx814vTlIIiV0vHe31sqE6y8E0ZXsiB9Thc3nww8VBY6wgB+lKhGgKMoyJhqauVyDqsuEhVVYV1CWsTnekJoyEFhVGWcZTqQ1aZrssMo5QCpWyaxOFJZXK2xAQhpiID18cNW7SxxYYtSz+GLYPVDsrdlMXZSSkxHjiyQQlSLGmMkvK9UTKQyZmK0/MH2KqWgWm7LcO4JaahaDDF4hKjqBorJsMjaBVQiPxDbF0lefIh4kfo+8JUpe+z0IEiyysHbs64dkW9OKdanLPfv4PkhUE8vCrfHZCqSEU0wkbP24rHD87ofCKmjjDGIkcqyUaRGvwuGcLxMFbSfHnoqaqq6jh75r7HfAiR/XbP5ZtLlNL0vWe9vrmTTGUrbFXW5BQYOk8wiRzX5CSMPjnTzuYMQ08M0kuSYyB46cvyg0XjijOeIWuZGG5KkydQEppQpluL6UWwFhstMQayMhwMmEWmGFGFqV20S0YVSUFzfvaAT37wOY+ePuSTz5+wWjZs17e8+voLfvGrX3O52bJLkbptcc5hnQVriGFkDIHBl+Fw2qCNxdggQ+tUcb/SmqyVfASR18YU2az3uGZHVhqtDXVr8H7A+54UpYpkjKOqWtq2oW4bXF0DGm8t8SATK7IwH8SV6zD74PBejS29a1r6z4yONI1B2dLLljLbbWG2UShz6PE6WKCLQclhUrHIJyEGCD4TfT5W2JTWIrNVqvT3gVYyDNXHRN/1bLc9Xe+JCU6WNW1jqZ0uTngaJZMb6Yf9USFQVTXkQ8VYrMyrSsgcddCvEFE6sVi0GONo2xkpebbbLZBYnc4xVqru3otcc6hsUQZ8P1FXDc5VWOewtkIZS0pZZB+7nQw1jAEfBkIYS29WQhXZLEkUDqUtAaUide2oncE6cFr22Zgh5MzVzZo3l9eMXlwiq2JoEONYztBSIShtGPerFh/KpT6sNLzXN3FcuXdf+1t/Hu/7+/hd7lIf/rz3e0EO84IOGqoyDDaLBDiXRnhziKMO26U6uGgq9l3PMAxYK69PZc6P1oDR6JwwJIxKLGeWHCuCb9iHwDj07LsOUNKbWow7lDLHXjmt7rtm5bv/5VQqHxmtowwlzktyBmMqNus9fRcwppc40Tisk7lBQiIblEoYK3GNQtPv5NnZ7/es1+syYDkzn885PfuER48f8/jxEz799IcsVyfMZjOMdeUd3ZtSbjQ6aJFvxYiNAa0Cicw47umHPftuzXazZt/3hJBZLs9wVYtzFbvtnv1+TQgDL1++wLka6wyffvIpKRmcXVK7mnHsGX1HP+y4unrN7fUtfdfRdx1VVdPUNXXVYI1jGAdGPzIMYvwDuciilszmM4lfjZGEPET6fmC32xezHFgs58xmrTTkNxWXb9/RdQPd/iP3ZOy2nq4L9J1nu9scD+KcJZiOMRJ8KFo0uXlNW5XgVhrDQ/BF53xowhb20RWWOKdIDIH9sMVqmVZdVZphEC1rsx84zNtISVwRtBLt+jAMtO2i9CqUgFAVDaGCEEVudDdb4yjULpatomFt6qZM6hY5hS6H9tDL1O+6rjk7v6Bp5RBsZy1tO+Pg3a2Kv3TOMoX80cPHLBcrYT+7riQYVZlsbAm+Z+jGom/LoBTBiy2ktYamadH64L/v8X4g5SAfMdN1O2bzGfPFTNjNvZxwGUqS4Qh+JIRIU0vl6TCBWyzt9D3mPuPHscijRFqUUkQrha3EZk0WeemDCCVg18VpAwlspFmzlHczkDUgXz96xZAyKSQylpgsWldUbk5TN2QSIYoDVjPLVHVEW8AbkrfUs4Z919MNgW4Y2GwGjJEBOaMPjF6CBnFJtkdnKDlSVfmdcpHEHEreB42nKZuvLoe7VKUqJ9pQVTbXnKUR/rBxG6vEnk9bnKmYr84wTpKM7WbN6HekNCAuXyPKBKxKVLXII9wgSaPTGaMCKidS0jLXxGeGPrPZJMKo8fX3O8mQipK4zMccMM0St/DUq8dw8wrCFsWAQYl8JGYhL3JC5ww6FoLBMGstP/jsGetuxMeMTwMhSsIJlMNf/84DOBVCQ6NAZbGftdIQ50fPYYAUxGLTHNjtevbda5HSRRgHYZczEY08+3IYywT4lEY2ecP1tfQ4GWM4OfF03cENaiwGADI40+oFq+WSppmhjWWMAWU0pnKFZRKmLIRRDkqtyVmIlWQtLjqyjhwmGvd9R/IJoxMmW+azBTqPBDIXDx7yN/7kj/n8x5/y/AcXpN2aX335Bf/P/+a/5dcvXjNYBXXFWdOirCKVoaX7vmO739P1AySkOlqJZHC1WjH6UarGMRJSIhznlEg1db3uUHYjMlE0K1Wz76SxUplE7WqxTGzm1LM5VVNjK4fSkkDEEBm6gb4EOMMw0PU9RmdJCmqDdoVsKjPSchqIvmN1VpGUI0XD0GvWt7cYo6jbmpCFOFFkYvDMmlbMFowuhIU8u+OY2W1Hur2nqhxV1aA1bPZ7zuNM+hO1KgYoGT9Grm823G72hCjDa89OF7S1xVqZsSS6dw3KsutkuF9VAgTvi2UmmXbW0rRSrY3eM4bw/6HuP3pt2840TewZY0w/l9vm+OtowjEiIyIzq1RVDUkl21SjAP1CNVRqSRBUgIBqSAkIUmalslIZhsEIkpfkNcdsu9y0w6nxjbX2ucxA4TZCoeAkDi6P22fvtdcc8zPv+7xy5s0T682apl7QtktCsNzcRGY70C430nhGhXUek+mU1vu7G8ZXNwu0FrBKUTWAou8H7u7ueXx8hEQPHGZp2KIPEm10zteQXKNTQ5hnkWVjqMocrQx1kYZRXhGU4v3tI7/55h2TtVRtQ1HIgNHakdNzM/hTUQ8nSdPHP+T3vru9ODUgHxfSMuCKZy8EfLQZUSfB1Hf9Hb/twzhBY357u/GUeC7bea3k0ay8MLbOTU4UvHfwityIx1B2v+opTC5qHh+37LZ76qbBaIOzLn1OoDKhUakQyUzgYlFSZ4oyz/jFN4+MQ8exP5KnwaM0aIqyrJ48Nh9JxXTKTZPhqEcbdW4yTJZTNxUhwHKxZrt9xIde3iNGyEh5Ls1FURhC8Ox29zRNjjGQ5RXHY8c333zNdrslxkjTNCyWS5bLJT/5oz/m5as3XF8/pygblD4Ns/OUW+aJWvyzRaIdxlm2aM5PmEy228duy3b3wP39PYdjh0Lz7Plrnr/4jGmeuL//wF/81X/HbnfLw+MNf/nX/47/+f/sf8Uf/dFP+KM//Anv39+z33Uc9j37w0E8It2Bb7/9FR++/YBWhtVyzZvXnwLiMR6GiWO3p+87docdi0XLarlktV5RFpXUfml7Mc8Tc6IT9v1AlmWUZcXLl88pK6mbnZPna9cdef/u9nvdr9+7yXj/4Z6Hh0f2+x2H4+5MH5rn+SkjApEh5XlGliucm2kXC/KswOiMcRzPaY7TOJ9vJK0UdVWep3XTNKTpDZis4HAYmeeRwxGsnTG6pK5birxGG5Fh7fcdVdVKoexsMgGnmw+hdQSvUkL4yegpE+l5muj7nt1uz5vXK5qmpq5L8qJKJBfLOFmKoma1WnF1eSXJ0DhCmHAuS0EvYvp23jMOE7e390nuIJPWfnjEZJGyOhnZBZ+53+/OZlTvA103kCcCgOJkSH2amscYmKaR4/FAPxxZuU26Kb00H1hMoWgWcsN2B+li66qkqWuMSvkj3lGXlRQsRiZ+0zTL12IUPumvM2NYtBV5ZvBKMHBhEqrLPAUyXch0KTv5MVwi/Yi+chwl0XoepVjPTE5RZ2RZgfMBHxz743siq2RGLcjyDVWjyXPPdNzR1gHTyNe0WtbMNtIPDhN3+OBABWkEnSUzkTyDMhdPh/YOrVOEUhCNfVHk0nzaJ1hAXmSotDaNCFlqGC25KSiLLMlvZPIyj9JEUii0LsiyEjt6ej1QrS4xZcU4ex5ub+kO2/SehtnOqCxicv2RgTEQnGVRK5aLjOUiBx3Za4jRMXjP/e1OvELl73bi97t376mrhqpqaNuMqiqp8pes2w0ax+7+N3S7txB7lJYprZ0DeSahR9EHfHQoMoiiy77cLHFBYf2eLE15xrFLUrcTReq7kgLrbPJtIfprk0FUdJ1Mv1An0k/COSoJDTwR7bwD74VEphCZzQmbO00dWaaThljw0QrZlhweU4xX2lhtNhucDcw+sLm8ZJE2ktpk2CiGydlatMkEtOAcx2NPVdXkWU5VtAIyQFNow9T15+1N9LIB1pkiMxWH/cDl8ornnzznT/7wj3jz5or10hCOW/7Vf/vf8hf/4S/5q7/6Ga//4E8IOUQTKYscF2B0E2M3sVwvKeqScRjpjz2zimno4wTG4eRFlSYtI1IwBocuSnAGN8NxLxKGrus57BsiPk0DNcvNkrpuqeslWdGgMoMyOj3MJd1aZ5qgItYFxtFRZAXGQFEYmianKosk1VVsd1vmKeApuLi+RozSsH2cuDgXCY6Hh46yjJQF1GWR/GXigRLKHExT5PF+ZL8fiQRevVxi8up8zt0/HnG+ZLHIKQvF8Tiw2w3c3e/Zd5bNesHzZ2vauqDMxV9DNChdMlnPsd+S5SWFkUnuPDumWeSry2XDctWSZTL06vpJDLTekWU5y8VSgrSqlrv7GzYXG66eXVK3Df0wst3t+cUvv0wSl1Yyfn5Hr7qqcU7CGm9v35NlOfM0srvbEiYZwHkczotPU6iXWmh9MaY8pAQTKDSbdcvnnzxnuWjITM5ut8O5yOTAukg3TDzsDvzi11/zkx9/DlqRmzJJbdNGW6esjAgnW/lvbyJOcJmPcy0+llad/zxPsqvf9s4oOUi+s6H97W3Fx36O08f/uKHRRoN3QuhUmhCMKE2IRK3w2qCKAh1PNE8J75R/TuRSWhmassY5K4MPK0PYk+w4yzRNU1IXmlpZuvsP6BBRFVy0in2h2emM5aJmGIczZvg0sJYhQQCExnjaHCkt58oJxKCNou933N8d2W0Hum5iGE65aobXr69YtA15kbHf7wQupKHfD3w9/5Isy1G64OtvP5BlOZvNhuvray7TWbzebHjzySes1pe0izV1uTznamkdZI6qZAPkhxmlNHXdsFqtCNGC8jjf8eWvvuTd2w88PDzy5pMv+IM//DMWiyWzndhu37HdP3B3957377+FaFgv3/Bf/W/+jFevr9msN4yDwlvN3f0Nv/7Nz5kGy+3NPf3xCMrz8tVLqqIlNzVDP4mHYuzZ77egPEWR8ebNC9p2QZblZCYnBMU8zMzzxDAcmabhTGS8fvaMtmmpqgqlFEPfMYwDt7e3vP/wln7oKarvN/D8/puMrmeaTpPC795AeS5m5RAD1s3kRUZV51RVTtvWFEVJngl+sOs6vJ8Zxp6Ypvciv/Gcwopk/SW0oLKqqWtN02Ss1jl9NzCO0qTstgfQkn0hHa8530zG6HM6c4wwTx5rA0WhE2ZNnSdXIonyjOMo5uIiEwmMNsngLaaaPMvEhFTkSR7mAH+ejkgBEtJ2Z2bopVudZ0d37Dgcd8zzkMJWRmJ09MOWY78jy7JExZLGLTPm/KAMyQMhgXh5kjtF5nlOr628Xt5ZgrcQHHkWUVoSy609JYzLlO0U9Kb4CKmXVrEiNZEVPkhRHINJ0w3HEzVD1u/T7Cgz9dFNLxO/s7zAh+RfkOmHHEQyOTnJrWJUZDrH2lNycSTLK8bB0x9njgdPlUtoUJa0yyGE1EyoRPLS1E0hU2HvGHrLYe5lIhMjRaEwakahMbkBLT6RqCbxpehkcgunhPOYkoZJAUOJWIYhywsWz9Z8uP1GiiNtcA5MkvK1i2Va4Tv8LKthO1spTB0pv0X8ICIDlNTkolLkuSZPkzSRbESyTEyLKhM98u/y5Z1LKdyBaR4ImYRiOW+p2w1jv2U8bpnnIypRlyQt9SQkUOj0ENcqUGSaq3WDc567hy3WBQlzatbE0EmQZyosVMJek2QCZ8KX9UL2IU0bo7yBo5AdhZ6k5Oc+vbljFHa6KLMUWaYlXDT4s8RSNn7yvU17PjTqTG9DBVzyXxR5Lox7b4mzkI+UKdLApmC53DAMA/3sUEqyO2IUEIP2Ygx21gkByYlMyllPnlUs2jXXV8+5vnjO9eqaV9cv+eKHr1kvS/Ajt+/u+PLnf8fQD7z69FOqRcUQJmzwuGlkTAOhrChw3ol8MBN8pMiJClBVkldo6qpivVwxTD3TJO9XU0mIGcHR9wdiiEy9Zx8HTAI61E1LXS6o65qyKtCZQic5krUQdRCjOT5JYrzIFBPZT6EILjJPDj/Lz50rcCEjYijMJdaJlEYrKArx24XoGSb5XqigKXSSYCqDMgbnI+MUGHrPbttTFIa6KlnUJVlpsE42OdPkmOYc3cM8zez2B/aHgW6wrJYN62VNW+cikdLqPGkdZ880O5yLFGWZitGInScUgnBv2hqTiczLes+cSC9aaRaLJUprxnHkcOhxznN5veHy6oK8MNzd32Ot5frqUiRTxlDkxT/ynf8Pd7m5Z5ws4+iw48xge7ydwTsypXFRlAunbKTTCiCqtGlQiqzIyQtNWRou1wuuNktWbUuW5VxfrJn9gWEe8VHohNPs2R8OYCBTIsmG724unmRT3900fIzS/m2JlHyMp4bgZJU4WyY4UaieIBanc+p0fezP+Bht+zGFCkg5ZqICIcmYY5Sz0Oi0rUi/FkLaXBiNSvIsHT/yBMaAmy1lUYgEdJSGHzgnqAs7CfJSAvNibqDSXK5L+qHBJ7TsqQY54cdP+R9SD8m9ffLhEuRszUyGs4HdtuNw2LHbDQy9eGnW6xVaizJhnibmQgkBSwfyzED0HHZH/MNAXhaUTc3l5YXIjKqaZ8+e8fLlS5bLJavVivVqLeSpPE9SK3V+humUfJ6ZDDeL9zg6j3PQ9Xu67sBu/4BzgcVyxdXVKxarNXmRMU0dt/c3fPnl33Ls9szzwOvXLyjyNblpUFpk+vf3DxwPAw8Pj7z95i1vv3nHYddTFiWLdkVRnHwrE5N39H2fPMUzdVNSVTlFkYuKRclzy05eFDNp6D9PljwvqBuBHlVVIdLXaWS73bLb7cXTXDe8fvOKvuvZ7fff63793k3GNE7JtHeSN5kzK1i6NpFNDWNPWRqqqqCqC6qqSCmOBeCZ7QiDfPIhys1zRsV6ufFMukGKXF6Yts1ZriouL2uM3hP8kWGQlY4LI8PQiwzjbEo63WRPbGfnT+tw/Z11HJxSnSPzbAW5m+uEuZU3kAmBeZ6FvFBWMgVPCEoVxV8QoyeoiI4Qg8W5iWHoqYpKHqjTJLzleSRGj3MTjolhFC58kReS9q11Su/OyBOK95RbEXw8ezRiFMSaNBlZ8qXMKd3RJbmQw4eItUOi0ogC033kp9EpYfjpsJND5+Rp8c6nku4UaHcKklFYJ5PbuiiEq51ptD5JpeRPeR/PTYZMVdIPJT8EG2vQusT7OTUaksnhnJNDYoKqyNFZLo1kTK6JSCKASIJ2VRV4CzYqrI8M3ZxMfpEQNRqfpFWybYo4CQc80YSQqcSpObJWihGjVcL3Akhw2HK54vZeDHEiBYyUCFavqhtAC6t+cthJsgtEBieBg9JgyAR0nqTRUHVCqiIPxBNW1xiFDgGTabLf3doA4LyOD8GLebcMaCT0rF6sGY9r+qJlHk4PVcBIQN7puaqTJFERyXVk3RZMU0VbZozTgFY5eVmiVMbQ91g7pyEE5wYDPpJOpYeb1klhe6YYpckgp/yX9IAGBPfsz0hQHU5Bf0/bDiFIgXeJWKbEYBhP5BYj75s808l0rJKGPIIqyJSYHEUOsGS2ARgxWQnKwKnJiJJvY62Xh3nCb8Yg5sy2WXKxuebl8ze82Dzj1fMXvHh9RZZZxv7Ih2++Zvv4iDKG59fPOeqAHSzDNOJswFlHnufUi1ZCzdJwJjMabXJMkLM2RCnsi1zCtEJMxKsQqfJKZJVEecjZOWG6HWVdCP5RVRhdYHQuNKdMdNdKSRYuwRO9T34WlwozecBDENDEHBmDRSG0nkAhxZLKUaolekUMOkk8NQHB2mot3qzoReY0pVA+pQvxkY2WrrNMk2W1aFkuKqoiJy81WSbvlXl2zHNI2vSJ/bGnHyaCh/WqYbmoKEsjmSVJIqVMxjSPzFYC9ATzLltm51wKL8wpS8ERe++xk8POsyRd5zl1XRNjoB8m9ruO5XpFXbdsNpegHLvdnrIsub6+Fvw6JJrg7+aVGQ9hItiZ6AJTN+C9RcfUzAfZeErBnTRGSqWhgRTpeVFQlYa2yblcLbhYLFguWozJuFgt2R1nHneDuF5cYJocx64ngpD+zAlFLp+TQES+2zx8TJv6+3CzHzcHH19P6s7TIES+jnPzkZ5pp+vvI4V9TKg6/Twmb09ImRfnQUo8BYwmKVYKx5WA3JNxJT2ySf92lIGR0Qn+0waCHz4KJHSyeUUGY0ZrglEUhWG1LHhm5Rn57kPHnOo9kW8/mdnPn398ajJCiAkRG/F+ZpxGdrsj8ywDn6auWCwW6f0dORz2jGNEKZvQ4woXA8fZMvQdVVOyQvPZi9eUZUVVN1xdXfHs2TOWyyWLxYKyqlOwqEjxVaYxiTyqU21gjMErj50nxmnAuoH94ZHDYcvd/S3Pn7/m2bNLnj3/BB8sXX/gcNjx7dvf8O3br7BWiKw/+uHvURVXaCoetrccjw84N2Ft4LA7cHtzy2HX8Xi/48WLVyIrLQuG8Yib57NnOkSHVpHFoqVtayFj+ZDCET129szTCUGbMNmNWAWqqkg0roFpmri9u2O33WGyjM3mkvXliuPxAN+TdPm9T5oYI0WRsVg2FOWGzz/7jPV6zaJdEELk7v6eDzfvOfZb2kXFat2wWFYiK4ou6VHFsJnnGudnlBLTlE7bh1NeghTPRSJF5aw2a9brksWyoO+PLBYVVVnQVBW39we644R3iqG3NI2hbsq0UZBaYRw9eVZKwqcWPbfRYvL1QR70Iq3Q56l1XshLE1KDsd1u+cEPfsDFxYbFYkFVJvJB8jHEZJhSKoJ2jOOW7nDHp7//z1guxZPhE/85BI+tAqCZJ888TSwWC9r2xDq2Z59FkRcM/YCz0iQtlwuyvGCeR47HTvIxMoPzE37yDCk4xmSIF8M6+q6jqgqy3BDwTM6JRCTP0VmiK4SQwrOypNOLOOcwWp+T02U2kTJJfDxPaKr0xsxzTeRELZGp2zwHpkk8Bm27OJvmsqxgvVojQUNysDxuH5imnuPYMc8TRSHbkbZdU1ZCEwlKMbuZ0QaGSRJ/8wyUMRgTKPJSQs9WhmEZGKeJcZ6YbGAaA2EC6zXxQZ3N9/WiBDJ8kG3cbGWy6GdPlRsynbZJTg6ZOXju7u7k8NZG3j9ENtfXfPLZD4lZLkXJvuPwsBU88mDpjjP73UDlFLnVaB3Y7SPHzjHOMEwe3c/44IgK+jEwjoFpSg2sVmT57/YmQ9DQnmHsedw+8PLFK1aLFcvNBr+qMVj81DEfb/FhTNvCJ9yiTA3Tg1yBxtIUOc8va/jDT/k3//3f0Y0j3sOf/vm/5PbmHff3t9zf3hDDSfsuUAMJYJUmY57GhKLNcG6Wj60UBMkiIAWqaX1KcQVI20FOxt9TGaBSERySdyftS2NEEdJD15BnedoAyvvcWhlASH6PyMQgQ+mcZ9efkZmKqgnUTYubZ5ElRcBIRv3kPOvVEt0NGDxNnpNnNW21YrO85j/5s/8Rn/7oDc8/uWSx1ty/f8e7b37Dv/93/5af/PM/Y9v3fH17w7e3N+yPR4ZpJrqMTz75jOVyQVkXPNzfMw4j3jo2F5cpAM8xqIJ5nlMejufx/v6MaTaqpKlXGC3G8WZxwTj0zOMg8lrdkusSOxq29xPWAlqhcw+TNJduDgzHnnGcGYYJXMAgXqiqbHGzUPuOe4tiTjLcjKyqKKqcoswZ+hljKqqiRkV5GLvZM845dW3ITY5B47zl2E/QB/Suoyxr9ruBw37g+vmSzaqmrQuqUjTdRUbK+4Ddruehd9jUmOSZ5tXzmmcXdZooyoxaaU1AM3QT/TChM027LLF2SlQXi9KwuVhRVYX42UaHmx12skzTyMXFJe1iCcBhv6cfhHv/yedvUAq22y3H44HD4UCM8OrFa9abNcPYs909/iPf+f9w15/+4Rvev7/j7nbLzV2PHSein/DByTAnpJyCKLhVpRRKG4L3Ip3Ssom63jRcrxt+8PoZzy4vqKsSlOZy1XB7v0dHGRqOw8Ru13F7L4SwVVtS1eKRksI4kmUV3vtzoQxPzUaWZd9B2n5MmPq4+ThdqSfiZCqS5amX/CSeaFIfNyun/3/KCDsNIVVSL5xkUuemJcqgEGTDQXjaQuRK40yB8Yp5OqJM+pPxqQFSSiiMh8MBneWs1humSbbCsg2WzyUzGjdMROfRQTwd6yajKpdcblqGo2WeB4Zkjj8FqQogKCPPT9lUp5pD1DJfffWWosjJc4N3GRebCzabNW/efMrx2GGtxdpZtnu7gce7A0WmUFjy3LBcr+gHj841WuVUdcXV1TXr9Ybnz1+IKbppaJqGLKswpkSrUjYr6dmjgoBGfAhEO4IObPd3vHv7lp/97V9StzVX19f85I//nFevPiNPfo372xv+6q//A2/ffcPD/T0//OEfsFoKOVB8qxNuHhmnA7f3b7m7/cCvf/UVRmvWqw1vXr2hLpYQNftdj3Nbgp/wXrYSF5fXLNoVVS0kVfHaOvpesj58asCdDQltu+LV65dY2zNbGdq/f/+Ou7t79vsDm80Fn372GRebKy4vnlO1BR/UWz7cfPhe9+v3bjLG6UhWKDbtktevX/KDH3xB07QoNNZGuqFLN5lltrL1qMpSOuIoMewnFrIxEqpXFuJjKIuSYRDE7DzPKQlcKFTTaCkLccATI/1xRCtN29RcXa2Z3SRTdavojkNCemXkuXDtszzD2WROLhRFIdNwnbYZKhhiGCAUNJWYLouiJs8qjCmYxonj8XgmYpVp9SddtnSzRZE2DcEx25HZ9my3N9w/vMf538P5gRAEt4cKlFXJ1fU18+S5v78jxkBVV5RlLtNv71iuVtR1jcnEvCyTSaiqmsxkTEEOv+VqIRz2eWLoJVjFzo42bwheM0+RcXCUZZNMigbrZpnIGH02z7sQsLOV6ilNZb33H8m24nmK6UJgGMW0arQiy6VhC2nLEbxO6baRcRQ5UW4KylJQj3Xd0jQty8UKdZZ+WYzR9EOfmMw9Y+8Bi8ElRLBGGc1kA+PsGW3AhYycHE2OnTLmIIntKiYZVh5p8gw1Kuw84Z2lHxzjLFNyDfS9o6kzylI0ntPkGEfL8TiRa4WdA31nib1jnjuZTAdFngvy1CpDb3uG1mG9oihq9sPE4XHP9uGOPn1f+n5IWReaGLQEEw1CNdOZwhQlaIWLME0zXW+Z5kjwkiLvXcY8fN879p/m9eknnxGjEpMgKrG4Ry5Wa4qy4uL6OYpAd7hhON5hpx7rLEQtAwn9JB8AyHJFcAFjAlWpyTNBHh+7PT/96V+wWEqz3h1LOZ+CJzpHDP6jzJN43qT6hLc+aW21SWZ/hZj/tUzcrD9J+1IGh9Lp/S8yGHlgqjRkMeeP2TRt2qpoycrJ8iQDzM4SSO89o7Zo5tSMlOzv3xOUZNk0ixqbi7SiykqKKoMcgvYURUVbrNBBScbMUeSOmSooryqqi5yiiTzefMP/7f/yf+bLX33Jg535xcM9TsHoJUV8nhzRybZFq8g49Dzc3zDPk+SRoOi6I0YLSvr1q0seH+6YpoGZFLKKSVKz7OzZU9pQFDVKZRRFjbNT8uzlKJ0zzR636+mnEW2k6PDWM3azbNNdIESYrTuTBnMdyE2JyqRIF6KeZMzEYJjHwDyNHA/SMJym+EqViWJT4F1GWWY0ZYYio3c54zxz7Hpu77ZopSmrirqtKGqDKYXtD9Jbmii0s6F3HHF0kyXPM+qm4OJyTVvLxkOrCCbHR4WznsPRUVTiE/TBCUp9sngP19eXaWse8bNnHibm2WKdY725oG5atMkYh4m7+3vyPOOTz19Qt4bZ9fQPR+7v7xNqvqYqKzJTUBWwWny/KeQ/xeuPfvCST6437A897z48su+P7A4HPny45f7+yPHYJ+9mIKQG/wSqyXJDWWS0dcbFquXZ1Ybriw2rRjyFAUVVFNRlTlPm2N4mKYrlV7/5mmn+l7CoMZkACpSSrSx8Vx4F35VBnabyv51p8duNxpPkSTZzIOHBkVOD8NSc/H3XaUsRlYIsP01DOAULkBouHz0+BgKBqERJotK/qZxkWWhvKLTGn7TPPMm9AjHlTeXUtQBm2qZNadOBaYpohLrYNi1up7EOVNQURhQPBsWnrxqIMyp4Dl13bjJQkRiTiTrKGaxUBogfous6inzNcrnks0+vWCxb6rpmuWzJcwmaOx6lQfFehobR5eSFochKmnZBXkbW6zWXV8/44osfsrnYiGfV5OfvxQlZLwMujzH5R34aeW+NQ8fhuOfmw1tuPnyg7zrefPIZbz79RLI8VitCCLx7946bmxu++ubnOOdYthueP/uE1XIj3hAU+8OWcRSP8Nu3X/Ph/Tccj0fcFHj96ScURUHwiuPxiLfSLOZ5LiGgi5q6zsnL+vwMGgZB6rpEMxS5pCLPDavVkrIUwMU4DnTdnt1+y83Ne+Z5ZrVc8/rVJynTpz4vB44HiXvIvuc29PvLpexAXhRSCFxuWK1XVFVNcAqwUji4E10gcY7LWpjwyVSUZTLFnO2EdTNFXlOVDcvlCh44v8FO5KMTVlYStTOCn5knR12VgtMqc7LMkOeGpq0TblQnX4Mjy5yY9mxIRh2TCEJPeLSoZBIt5KiEpc0l9VG2D+N5s3JOlCatra1DKTH7hOgTNm+k749M43BeeVs7o1AilUL8ImVR4N3MiWH8ZFSXNeBJfiT/Vjh7C4S+INPS2VrKoqbIC2n20iosxEhZ1ORZidVSPJVlfcb3hiBcaiEjiclQ4YinBPATxcJHTJaRJzmRQDpkomxnJ1NK82RglhtTDgTvo6AenRC9sryiaRo2mwsW7YJ2saAqm7QCFTqYczYhLE1Kq53k0IqefBZqmTac00Otc6BEE661BBt660VWEcN52oKSdPAEJEYpeT1PBrZpEn/NOAlbfZ498+yZxoipDc5LIrf1QVIvE3d90ZZkRg6hXGfURUNTrVA6Z+w7usOew3HLOI5MdsZ6m6wvsor257TxmAhWgt1ERQnkS5PyvCrRJsprnf3uyhwAjscDi1amNk27wDub3oMiS6rqBcv1FWW7ZhqPMM9oJQ+W02P1O9M/hZgujaIqMq4u1vSDY7cfuLu/AX1FWRZgILgTVSq9D0gTuZP6IMaPVQiQZINnSow2CK42eUN+S54pG1mVdM+nouHvexXk/tVGcKqnMwtUQi5HtPeolG4fQsBOAyov0VlOlqmkq45EFSjKgnIqKPKCqqhYV0sKVdAfRi4XJZcX17x+/ZrLF2uq1uDmI3/7V3/B3/zNT/nq7VvcekE47lG5QeWGfpjxDoiaPCtRBIKTLWmMkjius5wYhdJWlgV1XdMVBTE4VCxkI5r48aT8oJM81iTvWchy8lymkdpIONpsZ3CeYfLEaAVX7gLzYFPejmwPQ0JsKnSasIoESuWnbRkoL81OiEISE9a+TWGl8vp5n9LivXi7CmPIjMErzWwj1irG0VPkmqIw5wT6COfN1Um9Ep1LnhyhQamzCdbIVt5AEtfjbcQ68QOaTORmzjumcSZGkQpXVSGZQyEkiZk7ew/rqk7Pp8Dx2IFSVHXF5mJNlmuGfqLrJIDWmDo9M0T+Ok8zfdf/A9zN//+5FlVGoRoWpTQDg12y71Zs1iU3H/Y8Pu553B7oppF+tEw2YNMzz+SKsjS0VcayrVkvWxZNTZkL4dIFBP+Z52dZG4gv49gNDOOEC4G8KMjzMjUY//FG4tRAfCxXOm0g/j5D98d1xbn5kL+Ytqr67Lf4bT9GTDLF8wHJR5uU03szPMmcQGRRAamLfAzE6CBIkxHNTCRPxgx/loGBfBzZUEZCNHJPa6ibkr6bONE8tZXz8BSErpInlBAwyPtd5XB1UTAMDc4HHg4dXT8IRjcBGc6BfzGZ5WO634G8zFiuWl68fE7TNBSFbBZ9sHgvPs2iyCnrUp4TXoN6Csh89eyai8tLnr94wdWVNCpFXuD9xx4Xj1byucQYySnSY0Jon8duz273wP39DYfDHqUVy+WKq2fPubp6RlEWTPPM3f6Rh4dHHh8fmKaJsmxS7bvBpAGTdZbddsd+/8jhsOfx4RY7WzSGsqhxLhKCGOSncUpDXkOeVVRVSV3n1K1g1K0TWmrfjyKfStsh2ZprUYnkIve2duLhYWQYJRcEpVksVlxcXLLZbDBaJPbOO4a+IxAk3PnvyYP5+67vXbEM4xF0C8gKSasMhfDb52lmHBzD4MiyiqZesWg3NM0Kf9hB9CgNVVUxTTPbx0eGoWdxteLiYsOnn3xGnmXc3inGcQSe2PTW+vObe3aeaXI0dSOudw3Oz6ACl5drptGRF4WQqnIpcK2V9fo4jTLJybP0QH9KwJzGmXm2VFVFXdXS3eUVWZYD8mBt2/YcLuicYxiGJKUamaZeJp4EvLccj3uRPNUt8+QY9CSa2f4oB4KO6c+KzEorMTTH1GDMdgDtQUmzZWcrRAMvaDXvJWl0nmbadk3bLCmKEsUxmbgyNpsLqqohBoNWGYt2IWnTSrYiJjNiLC5yjFJYK69HZpI8SmtcjMkXk4tZOmnhgxMj3Mk4nmUmmeyBFHhnZycyqWhYLJY0zYLVas3Lly9ZLJayGkRjrRVZlpEDWBInC+w8o1J2yjQ4+l5oToGMaZqY5wlrJ5TRZEVJXtQnVx8hWoKzODdKEakUdo5E58lUpGqNeCCUJjMFxuRMs2XuLMM0I8huORRbCpw3DJNinB1utkTvKQx4a4il+I2uywvePP+UT17+kOByDrsDj/f3bHd3HIcjk52SFCZIYUkqjAwUSlFrQ1Vqskw2LFmeUUXJQlg2bXrgaeL3vLH/qV7/9t/+G/7kj/85n3zyOU3dyoGXF2iTAtDyimZxQbm4gv0j0QwUGqYUNBfTA0ClTBofI1oHilyjdMFP/vD3Ufo3PO56dv2Bm1sJbsyUGLNjjB/1ESE5HWWbp9GpcTBp4ifp2oqnAmKeZ0hSgKBkfR9DxBRGsiQIDINIG2KUfBqhJ4lAeRgEeym8fcliCVET0RKapk4ZHVAWtcizVEZEYZQn0xCVxTMK09wOrBdr8XBpw6pueX3xkjZveYg7/uxf/Cc8f/OKZ2+e8eM//Aw/7Lj75iv+j//1/4Ff337gGBy61AzHXr4XVS7ULCSvoq5qYphTA+YkSyTPKcqSzBSs10vKskKrQG40qizIc+T384IsL/A+MI5SPJySc7NMXldjFuhMJLV936XMC4sPlrHv0FE+F8nsieJDKIx4NlLBJjAIIb2ctr9Ka+pk0BUDvuewl4eq5Cx5xukgenTEMI4HjaY0GucUY5Rw2SyrAMU8wzSDyQSTnRdGZMkR8JHd9iDf+4DgUBF/3OwcUbWgweiARzFNgdkp6qZA6YD3ssXvuimZTZcpAdkRnMeOQhkrikLIimVNiDBOIzc3t3z6xedcXV+wWq8J0THNA8fjnrpuqeqKoshwbuR4cNzd3/Htt9/8o973/5DXPPSomNHkhss3z6CQ3Itx/iGPDz0fbh959+GWL79+z1ffvOdheyQEB8aQFYamMlysai7XDZtVQ1uX5CnjKRBZr1dU1R0x+ieiYNSgMx73BzabBddr2byG4JLsW39nK/ExKvtjwtPHTcbpz582HSdoDUj9o+UvgVLo7LvUqN++UoQfpwHGWd9E+rqCnHUyXom4GLDR46LHBpsS5b2ch1qQ2IJ67rFRn4cqMqSRTUMRc/q+x7qZi6s1Dw9bgnJ4CR6SoV4U0iY6ojPxPGlv0Mj2+dlVgWJNWZQc+plvJ8ucXgPvZua0ATWZwagckAFL3VRs1guun214/eYZRV6DgnnuOHYuDXMV6/WCpqlxztEfB4a+F7l38PzpP/9jXrx8zcXFM1brkizX6WuUVy7EwDSPmNoQvDT/VVWmQZBnmgd+89WXfPjwLTc37/jisx/zw9//MRcXV3TDSF6UdH3H27df84tf/IIsK2iaBZ99+mO0MuevZRpHrJ2YpoG333zFu/dfs93e0zQ111evMDqn7ya++eab83vSTiNFXlKVGZvNUlQ7mdQVwzjQ933KMZk5BWcXRUHbthgjqoBp7pncyDxb7u8fUUqxXC354osfcXFxJXAPDfMs5u9hGLDzlrzIcc5+Z7j8P3R9f7pUP9E0S+qqZrFYkmUliowQMva7gb5zeKupywva+pK62qB1KWSiJCEIPoeYo5QEhVR1zeZizRc/+JxPPn3Fdrfj9uaWf//v/wNDL0ngWoPR8awt64+W9TIjzxq8l6RZ5z2LImMYJsoy5/rZFdoIZWQYJu6PRx4eduRFD2jqOqdpRJ4UyemGA/1wwGRK8LK5ImKlIIwjWjmuLtc0dUlRJNSpOq02I85FVFpxeu85HnqmyZJlkgA8JyOf96cDR7Y+x+NRzH1FQYzC+u67DqNzgpO8DIVLxfWJ661RUTrxvChZbzasliuyLOPYHRNaGK6fXUJUjEMHynNxsUlr3xHvI7nJZPWnc1zwzC4wWkvU4nuIMQh/PjPMNtD3IyAGuKFzdPsR6yNZrvFRse9EX23nGTtp5gmcVeSZbKpWq825M5bVW0Hw8pqhAs6D1sl3kGmqSkgIZZHTG8009/S9Y7Ye6z2SfZWlzVdMenmFKQt0yPA+J8yGeRyx45y0olAUBVcXLd5PYmp1YnrKTUaeRUKcGO2MD7LtsD4QpsgwKeZZPCpFnrFaNSwqWRU3VcNCF1xfXPH89WtinmHtzDQPWDXRrFaUyxJwQEeIKVRyZ6lLeXg0dcZqUQHSTMXjRFkYTKZZtiILkrXt73aT8ez5FZM98O7Dr7Gz53A8sFwu+L0f/R7DPEmDpzL+6M//J2R5zs23P+dw/zVw0gNLkSrXaVqIbK5CoDKa55crfvzFp/z0l7+SR25EvEA6pg2klYYtiPNRK5OGJoJx9idjpPLEMCZpJYQTbUyfpmpp46ci0zwSYnb2i8h/o2yl/GmCKFPvshSARNO0rFcbmeYXBZuLa8Z+j5tHNJ6Li+dYr9h1M4urZ2QGMg1NUzINHdEHqrzmYrmiiKCniSx41k3F6+sX/Pkf/jP+5M//jM2LC4qrCre75S//zb/m3/3r/xd/8+UvGdoKn2fowyCGQOsYh5lxEglTURTo6Jn63Xl72bQrFkspgG52H9ju7hNpqabvjwzjQNf3+Ogo84q8MMyHAa1ELmsyxTjOeBfwLpBrDSpNVJ34KmII6KgodInmtOlBMjeUTH3LshT8cVVJQF2WJcqUyDuELpPLoCVtSy82F4IEnib2hx3eBdnEFDn9Uehvfe+wXvOw6+jHGRXhs9cvBB1O5DgMSDhr4HicuFgvCM7THQe2nWP2MnS5XtUSUhYj/TCzOzratqEqS7a7B7TJKUtDXmjJ+hgmDoeBy8tLeTZVhhAmKUAm2aqWaQhWNy1Rae7ubun7nucvX/Hs+UuWqwVZXvH+/deEoNlcXLJebuT5gmQq/epXv8B7T9s2/+j3/j/UtVq32Cni58A8TWBlY7XIShbXLc9XC37v0yv+sz//Y25v7rm52/KzX7/l8XAkBk+u4dNXl7y4XrFZ1bKdJOWVGENVlmw2a168eM7xmxtRQzjLb359yzSBMRVtu6CsK6wbcV49kRHhO83ACVv7MbL21EgA598/UZVOTcf5Upy3qU+I/+n8/+VjBFRMcApImwCxbs/zRPBilJZ8Msmusd4zO6mdnLN0hykBKTST7XB6z+w194eZ2aazLslcQ/QEIqZSdF3P26/f8Yuf/hqPF7VIntMUDfWyJlMm5RyJIuG0oTmFn5bKc7mRcEWPYftwFN+RFyhECKnhMpAZoZ5459ntRr74wUtev3lGu6gBc5bDhoS0L8uc129ecDx0dH1PXWdcXv6Iq6srvvjhaz797BXr9YbVap3OCfk8Y+D8ugkAwj1JzXrPw+OO+4dHfv2br9isVjy/fs2f/OG/EFVJkRGc5+Hulm/efiNwk2i5uJQcm6psCEE8fM47xrHn9uY9D/f33N3cMI0zdd3w+acX5KXUu904MvSTDEMiRO9lGJyrpHjJEm5/ZBxHuqH7jkenruuz1B9kUDYMA9vdDeM4QFQ8u37JJ59+wWK5pKorTCa0qnEY2O+37Pd7xmFknh1v3rymvbqgburvdb9+7yZjnj0oLZNvIxPxiFCVhkEMIyhPUWZUtaEsFTGKyx0k7Cz4iPeaGDIy01DkDUXRCDqszs8pji/eXbPd7nHW07RlCpEBO4smLjM5ioxx7PGeJxpCFCN5UWapYBUdf9u27PdH0a7VTXLOS4K20pFxmKTbxnA4dELyUEJoeri/Z7fbY20Uk7sP5JkkymZ5hsTJGyQ5Vqd1HSgMVdmQ5zkxBpydmO0omrrgmKZBpDTTkYiQTOwszGKTOOkin7BYN8qNkw6Y2UoIldYaayeGqUPPhmkaccFhlKIfeuaUwTHPo0i1AvIm7Cby2TMXgYjBOQkaOx6ntFUQM/gwzpiUZdGPssK0s2caPf0wpZWp5tANzC7JfLxsHrzPUFGSe6uipqlqlu2CzCRCQ0pG56OijGTMzzLBqAXv8Fal17iAoGWanSY0SivyTKWJacIop5TjAPgw4RxYKxPnLNNJnlGnwjKIRlrmNEKRykomN2OdZZwGmrYRaUeIuKggihxtmj1NKVONabTE3FOWFYvNGl2KjloRyHPFcrnAx5IYZ2wi4xA9Kk0l8gyKUmEyKZh1VBADmTHkRn7fGC3TtPi73WSs11L0KKVomobb+xucm3n77hvaZklAE4OSrITFBXV7yfHxA4Fkio6ggiLlR54TaRWAiRQ5rNqC55dLfvV1jpM6nxgiZVUKFcV7uq5LcpdUxKYPGHx60KSNR4ygvUm/LzIbFcEreR+cwpjkgSj3KIqz6VmKiyeu/ZOUtKRtWhbLJXUjHqXLq2uiWxHsgO33rC/XzF5TDY715QvCPGDHnv3jNnla5Ot300xwTuK0nGC1TaFZXS5YXFRUjUaFkV/87G/4xU9/ype/+CWdikzWEn0QOtXZeCmyHMm6CMyTwTsLUTJlQmEZ+555ntg+3KPVFZmBKYtMtpeUZT9h3cQ4aryzZ+moShPJeZ5QMaFnk8TDaE3dtgxa4eyMtXOS0EkTnuU5eTLDZibDZBllUaSHZ0GZ52ffFuncV1onCYXIXKuqYp4t4zjinBhD5dujCYlIhw3M0dKPEz5Elm3Fok2J5wpMfkKBSobJw6MAA6ZpZrCC9K2qnLbJyIz4dzo/44JinELKboBcK7JMQRAJprOeIi9omoqiEFmHBDZ6nI9S/NZCuYkKdrudZFRlp611TYyK/b7De9mUVWXFYrmCKMGM2+2OcRyo64brq6t/vJv+H/iKUZ4RWSby337sZGA0zZQlZFrTlBVNlZPHyKIqyYuch0OfwmYt15sFi4UUhadwPgnfjVSFkeDaQia+IUpx3g0Dt7cP7F4+482za6qyZhp7pqn/DkHqFHr325Ip+dw/Qsr+VrPx8WbjTFtK/wO+8/GVOiWER5H7RSFqRSWY7dPZNE1zks7YNJyTkEwbAuNk0/0wy5DYQYgKF8BGjQ1wGD3eIdCMxLgNBDwB3SvcDI+3e+r6HrR4Xoqi4GJ1ybBqWdY5TTaj/ISKYsbXSPisUZoYLXmuaRrD9UXL86sVENgepCkJISZgzgSlvD7OB5R19MPA4bBntb4gOH329Kq0GbLBMQw9eZHxvL1ivVmzXl+wWq14/vxKJNuVyMqLvMQHkTv6GNDanUlc0zScZe+HYyfI+TnQ1g0Xmwsu1heslivmybN93HLs9tw/3jCO8r7ICwnpM0n+6qwoYfr+yMP9B+5ubyWMFNLAWCij8zQwjoMguZ2nqSX4EyJdtxevyTRxOB7PWzPnrWzWU/Mhz9qnyANrbfq3O2KAtmkp8pzlUmBGRhvx1MyTJISPPV0vm8Asz6iqmuVyRdPWgrn9Htf3bjKslbAkkQ/EpFGTzrbr98nU7MhLQ1EFssJjXY/3s2h4dYmdnaREe4NRDUW+oMgl3TYvIo2uUSbw/OU12mimYWbRtGKKDLKZKIuKLCsATddNSfuckoFTk5HnCqXiuQFYr9fsdgfKsmC1WuNdzxAs4zSitKfvJ4ZhBgyPDzti9EzzkcIE7u/uOewORFXQNEs2G0uWiY44z7OE5jXnhzQqg6BRKqcqJTRmnAbGqWcYOrSOWJvR9Xt2+zu6fovzA86J3nMchyd8bHA47xnGDuc8Rhu6vqPvOvaHg0zW+j2zmwA4HPc4L9Kjh8dHjvsD++2Ocew57Hd4D0M/cTzIdDbPHc4LNrPveo7HkXmeRTKiRBam9CSmRDfLDejBzZFhmOXXo+JwiFgrGkitDeMseQCZySnLhrqsaatGZD8qJalrQzxRYE6VRjLiZrmhKHOsTUFAStCwKohhTX10GJdVSVnVFGWF1gpnLQ6HCuA8OCf/jTGiM5myGFOhVJ4a0Yi3DpPkN22e46Jlmkf2nWO9XoISVn7UufDYg+SDeK+wM4Qwo1aKoq6o10t0kYGKaOXJC8W6WOKDxYWRY98DBu8cMVo0StKKc1DaQ5CJmjSzmkxLQa2VJgZD/B1vMpbLDSBN06JdAHDsDnzz9it++MMfy0PORYo8o6iXtMtr7rMaP+2IwZ09LMrI+0i2CpGgo2weiawXOd61rNqGbrS4IL6mMmEIT4a4U2o7Sp0PYu+TvClJJ87Fg5Zk97P2OSXayz3hk8RHJogy9Ub+XCoYhHZ0otfllIVsMtrFkvX6gvXmgufPLqkLj/ID+/u3tOsVUzC0Q2S5uqJ7fGQ3Dtzf3mFKgVhkRjF0QthRJzpLDCgD9aomqxVRTYy7PX/57/4tP/vpT/nm7bfMRc40WkKw30kCPmnClRKTsp0NMcshKCSCxwoRxjt2u0cWywbvc8bZMs09s5sJcWacepy1aCVJwN7JpDczmtk7irykyDMyJcSZLDMs2pZMK4YhZflofX7NyrpEZ1nCplcIR9+k1O2UJ2IMmTZkRUlM0hPxjIgEs3IncmEuw5mxT9PPQIiK2UvxFOzEZGfyPGO9qoU8VUjCdN1o+kGIeYObuX/YnzfNs9PUjWHR5LSV+Kusk6TtEBXD5GF0lJWWDBAd8bNj7GdQmqZpqOsClKC17WSxNhKjJi8qqqaRIst5Hh4eyLKMpm3YbNbkWcY8W3a7HSY3FEVD00rzOvQD02S5v78HoG0bnj179o941//DXs56IQsVJXkpQ6F5Gpn7Kd1/oAwYIsu6pC5yVqsFu7Slm6aBIpNmVWuFm0+o84BRkbo0VIUhzyT7Ai9yu3Ga+PbbD3zy4hn+B19Q1y39cJCwyDmSfXSvn7IeTnXBqdH4WD51uj5G2X5Mjjr9Hf3Rz5WSMDqRfp4aXpluRycyJRdkou+CZxgnpnmWKbedmK1kbtkAQz8zDpbjcWScnp6VaM0cAjZEZh8hKPBiZzBapyZDzuDjbkqDk4yIJ88NZZVzdfE8+V1K1o2mrTSFgcxEMgNFpslzCfzVBsrCsFkaPnl1QYiefhqZZtkABy/3rclJkjJRj+wPBz7c3HD97Dl2Fon2OI5SMyADk2Houb5+xosXz/nhj35AWcrWpKzEzJxlBUonVYcyBOUJYRblTRQT+zh0jGNP1x35zVdfsVxcsFxc8Prlay4vLhMVCoZ+4P37Dzxub5nsAaULqqqiqkuMyWQjNjuGYebx4YHd9oF3b3/NYb+nKCppgJYb5skypMybaRRZvlaGxWJBlstWfRx7xmlinh0+yJZVVCAm5b/I8KUoxKJgrU3UuolhGBiGgc1mwcVmyaKVYb9QqGbCFOmGI9ZOWDsyjr2cNWXFYiHKGVHzfD94xPduMsqskkn4MLLdPtD1R5wLHA8j7z98xeH4iA9DIgRtiQ8Tu90jIUBZFmjjGYaR2e2IakRpRV0taOoVmanRyp2N3SGF3GU5XF4uadsFdp6YJ0e7KCkKTYyO7jgSnEhI+n5Aa4maj9GCjmK89oEQ52SMEaP54/ZI1x3p+o7dbmK3G7FzwGjD7c2evh/ZbXNePb+kO0T2O89kj4RwQ1ks0f8sx2gxN2qjMapIOnuVXniT9I+Ow+GWh4c7bm5v+OUv/5br6ysWiyXHbstvfvMbdrs9x2PH3e0D0zQzzZZxGHl4+JAOIARVW5SUVcMwWD58+EDf96C8kGky6T4fH7c479DacH+3xVvHNI4c9weGXsz53knAS5bl4llxvUjOnMeFEh8UU5q2Ozvj/SkoLMc5JfQr63EhJeMWGUWeEYJFpNsRrWryrKEqWlaLNW3dsmhaLlYrummmbRZcXD/j2Hd0hx1936GVUD0yrTFK4auKTCnKzPBhuk0GWHDhaUJsMsNys2J5WvFpwzjIytAfj0BOwBFwRBXRWYbORa+9Xi1E0+9h7GfcZHHWMg8jkxvx0dHkJRfLhZAoqgad18Sg8NbR77a4aSB4iyLwp//yP+fq9SfMKFQ/0z3uGLY7TJipF7m8JVSkqCqGIXJUDu9GovKoPJDXClQg+iyx+h1a5ckfYwg+wzuDm3+3m4zueMJjRQ77nh9+8WO0VsxTR1OUfLj5wLfv3mFHy+/94Atef/op25tvObgZN+/w/oCLERWzlF+hOZu4xUrBalXQtDX/5X/xL/ibX3zDu7stk3UcD0fqpmaz2XB5ecl+v6fv+7MxWAySDp1yD3QKj4xEeYin+AytPFkW0oMjpEn2JNsKLXhcbTKMklRhq2UDJ7kuhiKvzjjDGCQXqC1zPn+55vd+uGa90hy7F9gZ7rYDv373yFdff0m/Gxn6nuAmrLXopqK5WHP/7T1FVrBebtAusFxecHH9jC/+9MdEHG/fveXvfvqX/O/+6/89YwiossJPHnwU8zMyEfvYpCr+M2mWun4UyZeX7e80TUzzRN007B4eOB52zG4mRgnDcs4x9CPBI6D8qFLgpWT1FGUBzjH7Ea8NL188Y7FYoABnJ/w8MSlFVpYUpUwZi1KK7LKqaduVeGOQoURR5Dg7o4i0bZO8MZLCq01GnoIOdZWlzI+MED2P2wds2pqYosL7kXmyjPPIelnTNAVtW0hKcAZaB/JcUxSKaQbnDNZDP3pG77haN9RVRlVlVJXIpiqlqRcN728EzauUoVm0eG+x08j+8YhRBXXbsLlYobJZNtrjzDB4Yswoy4rLqwuU8Ry7I7vdgdlZLq42XF5siNFyf3ebJBiBq+UVq+WaxbLFes+3777l9uY9d3c3/Omf/jmr1ep766n/KV7b7YGqCpRVIHOOvCokXb51jOORbhRCVwyKMjcUWcayrlkt16jUqPoY0lBv4rA/puGRJ3hLpgOLOudyvSDXiomIixIL8O3bb/jw5ho3W+qiZdGu8d6x9w98/IoaY87SzBPZ6nR9jGo1xpw3E79NmfruD/DSApPlBm9T7kdIGUIppG6cJ8bZMlvLOM/0w8A4TwzDyKEfGEfHOAeGIWLnKI2FU8wuBUWp5C1N8IKgFCpEdFCYCJN3cksTUT5RdpVk6UBk6gPHXeDxw6P4srIMFR2vnq2pioxMB8q6YNGWtIuCulS0tcLoHDcrfv/zl1RFzmAdj7s91nl8iGIiDwKqyaucaXbc3+75efYLrq4vCC6TlPZp5njYkueS3v1f/pf/UzabDW3bJl9wjdIq3fcWo2eybCQEGUQolZDlgHOW47Hjy1/9bcpiC7x49oaXL9+wWm5omzW73Z79fsswHrm73aGQQn+1fp4gERK6K6noEmj99pu3fPPNV4xDz8XFkh/84EfJn+p5fHxk6IfUZGzZbGoWrfhZgxdFhbUOk5X0j0fGcWK5hOVqkbLpSlarhZwvdub+4ZZptOcNbtu2gqT99FPxfyIbm647cDh2xOQPlCGLePTefPIq5USJhP/xYcs4jXTHw/e6X793k5HnOfNkebx/5O/+7ucotLzxvRIed9cxzRPNUFIUlhiF/ACRMXis20r3NR7wPjUZTZFYvqSJtfxbfS9T/xACs+uT7lEkRVVVkuV5MmZmKJWc+XOQXImiQmkDiM7RWsvhcKDrOul+d1J85llDWZwKFHvW+RZFnozClt1uyzD0RALrzZrlUtJojckpikq2KnmB1lkqdqIUKwTevvuGn/3NX1OVJXPiNd/c3vDh3X1am0X2ewl3srOlKPZpnSWc+SJJAaqqYr8bqSsIIaMqQascrQV32x1Gsjz9+zEj0yIN6LuJsR+Zp5lpdMQg0xrnPF3XC7pRC/VknsVUOE0SBBZCSLkQlmlyabqiz5p4El0BJYdp27Yid9MaomEaNQSDUQVaK5aLhuVSQmO6aUZnglQ89BOejKhysqxCqwytZoIX8GCWacq6oF7U2F1HOBUEWSSvMsqmYLluqZtKzMPaoDNNXuXkZY7CkGcHjloxTRKkNDvHdr9lcgICqKqaqs6xSuQh1p3SmgXx66YZl03kWUZdlzRtS5YZpouKw/7I2A3M3cDN7sinFrSpmHY9w/bIeBhwo8K0gjIlD2AyIjIJNblCk5PlQtwRfPmJxJMKVqMEMRhDynT5vnfsP80rRgla1EYnbe1OpIZRvrC6avnxFz/m27ffimQgevK6JpATKNCmFQlm4mFrnRGcS0Sx+LSO156qdDSVoikM1nmsd3RdxzzPaf1tvzNFVEjC7RlJifgvSIQXlMiungqBUzhlOrs+ItGggnz/AKMUUZ0CRjO0CiKVQzY2q6bi+UXLD17mNHmHtzOj29J7xTHO9GpmP20ZppnJzkQCRW4gBB4+3OCmwKpoebZ+xu9//nu8+fwznr9+QWlybt6+5xd/+3P+9f/jv4OsIngpeoQKI/fyqQj6eIoqZ6ejHyQhNiT/Cip5hqJnGnpi+jpHOwGC9HZeshwUGqUMmc4kM1iwLMQiT5NjyJVhHGZi2BO9Y56kCa2qmrJuqMqKspRAQZPl5HlJ3S7EcB/lDGoWLadUsSzJCWIIuGApyoSp1VokEbkUdtM0UFUls50YJ880jcQwo5Rn2dYslxVVKRtrIYrJw1dFnQhNE8PwiJ1HtFKsmgKiE4T7rDl2kXZRozMlHpEMlJcGbPvoxSQfZSK7uZINRqakGLCThPo5p1gsG+q6QmeRY99zPPb0/cT11XOapkYp6I4yGEMZqqqlrmryLIeoOOz33N3d0HVH3rx5Q1VVT0Sq39FLmtiBeXbkY0ZZlrKJRgiRMlkXZKe3lmEemZ2laNpE+ZL8LR0Vmc5ZLdci0Zsnxv4IKlIWBavlIoXVpvetUhyGmQ/3D/zy17/mxz/4AcvlGm00fdfj3ZSCPf13jOAi431qGD5uKH6bSHW6PjaIi9EaBOsqzwDvJDfiVCw757DO0g2OYz8yTDPDONEPA5O1jNPMsZsZJwmEtVae1TGK/EjElzFhc5NUFLllFYLwTrl9p8/wO5+/pM+fpKuSqB6iBFQG77m5O8j3KEay3JAViqJULJqM9WJBWRRpcJTRDyPrtgS15NCNjFOSQCkjWOwka50mJUPudx8oiobMlGSm5M2bT1gsWy43l1xeXtG2DWVZoLSEMJ5kq85NTEpAPHVdJ5iE1I7b7T2Pjw/c3X9AkbNYXFLkBZvNNWVREqJnf9hycyuyqNmOZHmefBkVZZlh/Yy1nml03H64ZbfbcjwciCGwXi252KzIcwnJm+eJruvZ7rYCITGG5y+uaZuCIpfsE+vsOYQ6xEi7aGnaJmWs1WcAz+FwwLlJ6s5hIATJhtlcbFguVpRFSV5keG+ZZnnf23mSwGKVYbKKdrmgqiuqukApj51HxnHi8f7I2DvKqmS5aL/X/fq9mwxjJIn0cOgYp0HefEpjdEHf9/LJWjHwWqcpXIaqSiIR5yUFcRiP4hWwE4oSkylM2jzE6E9v68T2HQnBc+gO7A5bgveM00hT1ZwCtYzOiVHjnWwt1pul8IbViSstabOSgChyKmsteZEl3auhKCYyI/kQVSXGbqOjUKIOLoWXeFnNl4WsiRLpRyXD6MlwCOFcCN/fP/C3P/vF+fdijByPHdocJQF8nnC+EJJBDBgznhsMhaYooWkyiswwTwGjI0UhzZT3MgFVGKbR4RIpyc2yig1E5mFg6AY5gKzD2ROxS6aMoBJWTr6vs3XMk2w7IidDmmO2T4bbEwVDtNInJndEGy3hhFmBVjlGgbdAFJ9DWUlYn0lEmGTEEO20KdCZJy8jBJdufpeGKioZ3POULyFadx1Fz1kWBU1dUZT5GS9sMp28Mho3OdlOzKIRR2l8iHTDgAtielNaU+dVwuMm051SgCYzuUyIfCA4S/ATmoIsU5hFQYiNTNNtxAZNNAU6K+nue2w/4kYLTmEnh1czigm0FGpoSSo3WUFRKbI8x9kTHSuAys5BSqiEDk7r29/l61TwGW2IOtL33Tk5tet6LpNZdRgniqok2plmsURnVeK3R1lpkRJppYxH9uonbw8oAmURWbYFXVvRT57ZyfthmmcUnA2ZZVk+yRrS/SiN9JP+GX3SQD+9/meJJCTJlTo3GhHkgX0uJkTyVuQZRotJM9NafDxtw+W65nKlcXHHsT9yu3/kGHIep8guBo5uYrSTpJcT0Bii83T9gPEFhcm4Wl7wez/8A65eP2d5sUR7xf5+y/tv3vGrL3+D15kMD8IsJkz1JJMCzvfcWTaWfCkhJZkTpZmKIfmzrCMOkahgchaSsdQHj7M+hZ4iK6Yof89HUGi0zslMiTG5ELiCw9spYW4VVVnRtAuyPKfIhWuvUyZHXbUiKQzyHVmtN5zS4aO3WCt5ONppqurJnHhCyUIkLwSfa4yGGJM/w5NniqYWQmFRGPJcjOnnabKLTKNl6Kcz0rfMSxZtCXjZwvrAOAcyG9EhYkPE5Iosim+w7wZMem4UWUFdFxSlJsYZN1sJlLOyKSurkrzMCVGGQxLSZ1gulxJEFjzjMDBNM3leYow6f03zNPPw8MA8TWJGv36WnuOWof/dDdyRAMgZNTucy1AhfW+NDIayLEdrwfsOMWJtYHYW7IwJHq0dReqZjRKvy6jlNZuMQYVIVuQy0MxOspBIRLM7Trz98MDf/vJLXr96TVnltO2Sum4Z+kDwp8yscC7AlVKphP+P5SV/Xxjf6dI6Ze+E9LejOnsvrPVylk2jDAjtzDBZDp3j0I3000TfjyKpcY5p9vSDx1qFc+J70ynoxROJSu6l06nK+b/qo8//41/9j4cSJs/P+HuTZQJ38IHg4djNgscFIVHqgDaRtsnYL5wgg1VGlRXYhNIvipx8stIQKYPCyNmBIoaItZ6hnzkcD1xelJRVwXp5zfWzNYtFy2opuWd5ngudKiW1n2o3P03JgzYzzyffq2w5bm7es90+0nUHVitBrldVk1Cy0tDNk2W3e0x/13N5dSmhxFmJ4iSNGtnueh4fHtjvdvT9kbZtadsmBb/KvTgOI13f4+yUwCAZq9WCPMUYiI9YNlLDMJw9jZkx1E1Nnidvkbf0fYdzFu+lrs6ygrwoWLQtTVOL9DqePqZIDe08oFROnku8SlmUIi82KUPjeKTvevb7jql3KLXGrNff63793k2G0pppsoyjTOpNYqDnWRBdmAdUhs6WmGJDVq+olhdEHxiGA0PX8fjYs9seGfqJ1TJnno8M445+zCnLDB8skcj9/QN9L8STrv+Kh4etmIS85+XzV9T1kloVlOUCO285HkbG8ciLl5fCSlcpuEUDyhN1xtWza+q6pl2Ifk7M2gvp6mfPPEuT0i5KvJ8Zesf2MEkAlPeE+MBqvQTl8GGkH/bpmwpZLpkWMXp2+0fu7u54uD9y2CkxpUcJ/3IuITKVIoaM2Z9MzIqYGYiSLp1lJUaLOb6sLshML+GAuuThfst2tyMGz2qxxI6ebh6Z5jmRHxLxyjr5ecob8c6fjUynrYukd0sy+qmoUomyI4eJTtVS0p9HiD7ilZeArjECnrIEbQJVWVOVRjTTGgneKZ/yP0KUtGPrLLv9Hp3X1AtDXrYEO0F0TEMvHgq9w7mROSGMizInxBKbDJveeuLsaYqcrJDk8qggV/JwQXmyAvJSkZeGzGaYPE96xplxGuhHSz9MXK02EORrM3mBtg6jNIvFgrJuMMbgHNzfPXJ3d0+Wa9abNXnRUuYZZb3g8x/+IRfPXqGLise7d8zTgIqBnJz3395g1ZGYd1QrxTQbxhGyAhbLBXWT07QlYx+EroOlKJaSo6CfiCHWRyb3u91kNE3NPMtm73SGCNJUwAXHoScvK370o5/IZmnqgcBu+8DxUTH3gegGnEpEFpWjdYEiw3vOkzhDZL0wfP5pTtMu6Kb3cr85aUC8k2ljnue8evWK4/HIOKYDXGeJPPUUpKW0NH/ut1j14aN7SppC/VvFRUoZ1zE1xjlFkVFVBe2iZbV5xvWzS16+XJAXjruHR759uOPff33PrlozqobBVmwtzOOEHzrJDvEaHQLROuw802Q5nz17yYvXL1ldbijKnGm/5+GbG+7f37E7DuyPPV57ognYeUyoxhQ+g+i71SkMC1KAk/uoCAqEKOFkOkoImR2sFB8q5eik8yemc0NJG57OQfl9Y2oWiwsWzQo7O4IbcHbE2RGjM/K8pKpbmnbBME0c+552eUGVSdDUol2TFwXWWZx3XFxckyUgCSqyvb9jngacn6kqyfOQczBQlHlqMERmmiUEt9aKusqoa03bSDBnUWRSyHvJBJKQMc/d3Z79vme7iywXBetVw9XViqoqOfYzw2gJseBx6wjREVRkc1nRNELU+/rLW6Z+pMgr/uD3PsPk9gz46HvHNDlCVFw9u6asM6IKdP3Ahw/3LNo1r1++EYCJm5jHicN+R1kUZBnkGXg3cTzMjOPE3/3sZ3zyyRvJtlotGfqR7thxe3f3j3bP/0Nfkj8l27XZGpydBeGciV5dyGM1q2VNWRRM88TsRELkZp+aSk9mSvKsZNE0sslCJt2YnLy0ZEXBYrngOB0YrcUFxa++eWC7PfLh/Qeev3jND754zfXVipev3nB/e8NhvxMdfUy0w5SyjZLnIUqlZ+53A/VOPo1zw6+VDJaQeyt4lUhLkdn2dH3PNI1048AwTXS95dhZHg8T/SSbi0PXIdSlyGylSYpBGn7hypwGu162dch9m2t9bjfEPyl1QAgSQvvxFuZj70hVVamIB2+tBAh7ycUIaTgmjVP6enxg8pHdsZOtng08v7qUzKqhJ+YF1nlUUl08KSrEq2inmd1ONqivX7/ki89/xI9+9BO8l3PBuRmCDF19CORGJv2nDXVdtUnuKjXn4bCTATqOv/j//AWZMXz2+Wc8e/aMul6Q5wXb3SMfbu4YpxGinAcxisewbQUo47xI+W/v3vPwcMfbt98CmsWi4dWrl4I/D8lIfthz8+EDzlm0Vjx/8YyqkviEGCLWSb7Pfn9gHCY5V7WiyotE6ZRw6f1eJEzzLBRQ8SRrrq+uaFsJ7fRBCH6TE4BPPxwTbXQmeMt61Uhztr4UpYy1DH3Pu7dfc3PzHu8clxeXvP7kpWxL8yfC2f/Q9b2bjHaxTDKakLokh/MR6+ZEDkGoSykhOjMGZaQwDUrjY451OdYbfNA477m5+YC1A8O44+pKppcPD4/c3T4SogGEPjD0D6gYUASMFlqIUhoXItNkmUaLtRK2F6OSBxdicj4ceh4eHiGI276qSvIi0Rki7LZH+l4M5Pu9AWWJQdjO/WESmYAyBGZCMMQoCeLWOhSSRqwGmazO1nJ3e8eXX37F4+OOdrng+bOX0vnOcuhXZX3GV+pMpBnOW6ZJTN8xBtp2yebyijwvQIF1R1arBRebNVVV8ctf/JKH+wfubx4SYWBORtbwUZEj04UYQkoMPx9nRHWi3ZDWg6dD8NRPSGkQQvpY6qMwoDTS0FrjbKRzMjEpb3dJ1rDg+uo1dVlTlTIRbNuKpq0pq5I2asqmoVksaFfPmK3HO4d3E9MwMJRHIlrSdo87OO6BTjC16QDWSjGPM1s3s7lacfHsgqopUshVkGbKRvw8E4PDZFBVJev1BcZk7PdH5qThdk5xOMxkpw2NyZidMLazvCKv2vS+Vig7JkReYPtwpF5AFQwLcl68ekW7Worh1DnyEqqFohkV7/cTd7sjD8ctQTsp7FCgA/VqQV5lLNcZ7aJmGiLj4GkXFUpNxCiG8ckGhsnTj57f5WuaJ06J3VpLI+e9p+/lezzPln7ouLy0oApMtWTz8gv+7L9ouX/7G77+xV9z93ZAxRlDgOgk1VdFdJaM2siWLyOwaitizHj5bKIbrUjOvCSsx/R+6vuezWaD957b29vkdzqhKE9NuP6PqDEfXyKBlH/5BE44cWEUKiXqijl02dTUTY3ShqbWzO7Ih/uBzz+54sN+5DePnof8GtdekRVrrs2Ga/Oa/Ve/5Pjua/r5gTiNeOfAB16s3/Dq9ee8+tHnXH5yRe49vt+xffsNu8c7rJ1YLhu2U471EXduikCwyOJdCFE2nacNz28z/UlFiFKBoCJaiZwiJNyzTzK/GKMQ31KiuTE5hanluZDnfPrpD9lsrlktN9jJcnv3NcfDPT6OZFo2F2VeMQ9C41ut1rx49ZKLzTPyrMDawMWqFe2496yvrshLkclOdsa6SDYNODsJYcgIxerh/pYYfJrwJc+em7F2osgjdW1oGk1RKvkao5NgrlRkeRd5fDyw3Q0Mo6MoS66vL1i1OYtKkeWRfN2yXGYMk+JwHMRfYWfyTDDUCslCqhvxFm73DwSVoVRgtpZhGCnLiqpqaKoch3gZb24feHb9guVizWq5RivFNMokMssrqkbO1yyDaTxy/7Dlcbtjc3HJZnPFcrEiMxmP2xvm2bJarv7R7/1/qEvSn1OAYZL6OW+xViAi3idz8+wxmRJJrKqY3SwT464TP55zWDthTKTIDXnWEkLFcRiYPTz3cH25pB+tPGetxbrI9iBDiv/Tf/Ov+E//kz/iz/7Zj/jhZy8I/kq8jl7okSc55SlrQ5oFuddiutdOvgxA5JjqzE5EhnyiWrCzpL3PdmbfHTh0R/ph4nCc2B0mhjHQj5Hd0eGixQeHdScJeqKuxadtq9YprBbSQODUDD3lbSgl4ZNlWXKiE52uj/M95HsSzxjfsizIsxzFiJ1mkZjqp1pCDO4mAXRyvBf6IwYOo5NQYxuJdjob25XyZ6JmWZYopSnzknZZ8vLFGz759A1vPnnJetPivWKylmHscaNLr7VgoPMiJnWJbFIVUjN++PCBv/7rn/Gbr37N+3c37HcPLJc1Dw935Ln4oqISWVzXHYlEFm3L61fP0TojRjgeRo7HOw6HI+/ffWCYeoiRxUIADKfAZSG9PYoCaBppFw1llUu+mxE/mbOOw7FjHMb0PhGZWZ4L6KIsSsZppusPdMce75MElshqtaSuy3NYNVGavmEaU9BqxLuIc0KMEpN4lrYmkcNhJ7TRw5G+7zBGc7m5pCgLiRbQkXHq6Id/YE9Glpcy+TIRZWT1eNL3np+3MeLmGWdnnLfJfCIdm8TNR4gnfGmk7zpilJTsceyxs2N/6CDKOi+mEZn1sj1ReI7Hjm21BUBnuWBbnSMG6I6jIB39TEAxDjPH48A4zGglk05QOC9FXgiRrhP2r1YfBzVFMRn7IOjEPEuYtSat38WzEbxH6VGC5FLidvBQFDXrzQZUxqsXr9OEdMRZy2q1kbTjusHHIAedm+m6juPxgPOOtm25vBSt5zTPFKWsbAVdO3I8Hum6nqEf0+sr3o7TzauTeUuKgpgKgZgOZvX0/SKRnWI4H3Jn0hNn5QcnhJ7+6KCQwyllVFhpPOcp4iwsFzN1UZEbwUwKxUPCvfJcUZYVdV2zXq1FD+oc0ziIBMs7iqKmLBvmaWIyI3lWkpkJreez3CqESJwDYy+vawyCqA2JLKGi/FeriNGRqsyo64o8K/EOzDRDSiCWmVGatCLrY60UOstk5GMMymhMKNAmpBXryDxN5BTklGwuLqibFm0k6dQrT9AeUyrqZUYdSqrQiK5+snjnUJnneJyk2CNQZB5ijskyFotaElWDxXrDbB1az4Q4fd9b9p/kNQwDp3AgrbNz2imcJsUTSim67kBVrzCmICsbVlfPcXZi/3jH9u5rwuyICRDBaYWvIvH08yh6CKOhKmC9zCmMYkThSWGcCkBkJacH6MkvctpinPGQH20wPg7aCufJvzrLqkjY1SSjRimkyY8RHWWjIZQ1xWpRUWQR56RpmGxg8gprSqrFBU1zwbrYcLG45IPdczM8cvd4JM8LcmWo8prPXv0+n//wx1x/+pos87h+R7d94NuvvuTtu2/Y7h5QOgpSNYmrhRSY1ubOw1ku9l3t+MeYTXm1pEWWzSepCErJ9SQZpVKSRJtLKrLRJ61ySVmVbDaXSYKwIDMzxuREJJhQ6SQTRJFp0ds3tUge2oVIFoKHZS3FnPVOHqh1gzIZuS2xzpHlOdPYUxaGzMg34MzrTzjKGE9TY8g151TvLEs6fAIxKoj6rK3u+4nZeZTSLJcNbVNQliLVMToKBhvNOHsyo8Q7Q87YW1SinwnmU5NnAet7uqFAKWl6RB4qD3OjNX3fM44TCk3bLs7a8XGaknTyRJIRyQRodvtdArPMXF5dC2QgQN+NeCukmrzI/39xe/+jXH+fQVpkOSHJ+cSv4PIg8pUiwyR8efCeeRaghvh6LOPUYUwu8rUip/Sepgos25qX1xciUSNy/3jAuojzgW6w/PxXb1msakkQr3OqvKBpGy78BdtHkd14P6PUR7LK9Pmf5MdPvyjP3rRAhfQ8iiGepeL9MIj85nBk33X0w8z+YNkdLJOFyUaGSQzbInM8NQFSc51lyvLKSZAkaRiSaoYYnuAPorF4+pxPzdBvD1lOzYa1NpndnTQZSe7s46lGjOnz4BymesJYCyrYYZ1gZEPyfT7VL+F85p4GH9oYYkCK4a5nGHvmacTklUzZVc0ULM7JvSLPUI3KZIigTuF+PnI4CFBhuz3w+HCgO4xMw4zCy3ahliGJ0iZRMysWixV13RCjZGjd3z/w+PjA4Xig63uUFoBGWcpmwtlZqJWHPXaegEhVVzRtQ5m2q/NscVZew3GcmOeZGEkD8iJt/xVzknidIg0yk1FkJXme09QNZSnJ3rIxkRpxnMYkiQeQ5lHAQRIC7NzM6Gbm6cAwTAm1H0W6WtfJKpBM7CcU//e4vneToc3p4asxMaDNiLMTIUjwUkRuhqHvKOuKLDdUVcE0zoxDzzwOUlgBmZbuqu+FA/z4eM/NhxuUMkQv5s9hnCW8zmTpoBeN4+F4xAfH4binbhZ0XSdbBaW5vXnkeDxSNxnK5MyzYxxnplEYw4IpyyDK6tG7wDSKvjHPpUOWTlKjdCDqgWZR0S4aMqO4vLoUMofOGKcJKXDENGR0AVFT1yvevP6U1WrNNA9cXz9jv9tzOB4x2vDixQuaukHrjONByE52lrXZdidNU1mWNK2s+a3zmAz64ch+/8jthzse7rZMo4UgoW/BS7F/Ml4FJVIGOVdOuvXvTl5PZ4RWhqDkhlZKfALnBo8njTtw9j2cGN4hqPS9kcTc2Qe8G5nHGVoosoymOqXDpyYjkyajbRdsNitIGOT9XoufZZ4lDTmXhiDLKuq6FVO8s+cDhiBGvKEfmYaRui3JC41RkaAiRgUy6Q8wWox8bV2Q5xVEQ1HMUjAp8HYWZGYQXnqUkxNT5Om1kVPQ5JKOHqMULHae8UBRLLi+vqZdLAiJcT35iTFOqEpx+XJBsc5YdC2PjzM3Hx7Y7yV06O6uY7vteJfHhJNb0jZSTChVE2OFD03KG+jP3+Pf1et4OAjWL616IZkLlcG7gLNycNZ1zbNrTd0swBRkWUt7cc2zN5/x/uu/Y3Ajfh5QQchhTw9KocoQdZrsOHITuVgp6gxGpYha46LI64iBcRpxD+7MFZdiTfTdfpbiJfgoFBdOfo14nkSeHoSn5ilLDPiTllmlpF2V5Eik4PcMuN4sqPKJLE7YyUIiUxELVpsrLlcXvKpW/H5b8uX8nrJbMt88ct1esVlc8eLyDT/48Z/w5vc+4+UPX+F2X3N4+Iabb77mL//qv+evv/wlh6EXrr3+uGjQZHmRJvQT3oaTgFK2lOlr+7igOzdd518LqSmB4KPkPihpNPIspyxrqqomxIy6XVBXFXXTsL68pCwbCTn0Bh8V1oOPEWXkQR5jZNG01E1DVdfEGMiLjMWyZdEuUX5iHEfUNFGlUMysqHBBEVDkfYfJJOyLIIMclx7sPrHiIxLylWcKoxRlaSiLjCxLxv10LnobkvZ7oBtmQhD55ovna5payFMkTwjKoyJJW20oywIfCt6/laCtEALXz5szstq5md1BhieZVmw2UriUZQURjtsjo7Wi425qygRTOR6OAOR5QdMI/MJoRYiem9sbYoSyKlitFigUwzCy2+0BI7lU35Nx/0/x+vs8DDEGnJf8IeccWs1kucWHksJL01aWOUVR0rbyXp7nSRQG01GkU3lJnjdURY7zgZWr+NGnL8mUos4MQ3ekCwJ2cCHy9ds7tEE2IwT+9Cc/5upixWJRERx03ZFhCICFhMUmAXNkEJEKeg0qJWKroCS+J5xUDo7Zjhy6A/u9EIAe9yO740w/OA6d49hHXFD4cKpIxKcmsmgxSpNSu9OrlYZwQsIDhTYJx53qhFODcfJnSbhldn72e/+0UVdKURTFeQvqrCNU4quQRkCGkDI40HB6xsaIioGiKBG/k2V2TzCOs5MlPmGAY4znQRREhl7zy19+yeZiLZ+jqbi6vqasZFCpgmXo5ayex1kUCUrOP0XEec84zjxuH5mtxZiMtlnR7S2H3ZH9/iuKyrBct7SLlucvXvL61WdcbK65vHyWNiQzfT/wzTdfc38vUqrLiysWixWZkUbGWsdut2O7vWe7feTy8oLlasl6LRtFGdQ48XoNksJ9eo2zzFBVFctlm7ZkY8puc6npElBGXba0zYI8V0QEQjGOo2RtzBbrHD6KGijPDevVRZrHhTS8ljDow36PVobVasXFZsMigTWC95K9dthjk5rp+1zfny5lcmKiERACRju8ctJRJvKQSjkF+90j49hxPO4SiWNm7Ae6Y5e0edLR+vQNJ3q6bpIHWIj4EMmMJk/BLuM4CufXeqbZcuwnjDmQ54+i9Enr08ViAYjRe7YjeV6QZSXPn73m+fNnVHVJlimyPG0erOenf/1z9vsDZVny8uULFssaa2eOxyNNW6ZDv6LvD1w/v+DqakWeK1brSxRKKCkxYLIcozMWTcHLV69pDw39eODZs2eS8Owt11dXLFeSzu1dpF1U5LNmyiL7g0MpL6vbSmNtT9f1fHh/w9uv33M8dAzdwNBN4nuNcJriqpPBMlm3+OgwO5k5s+xkeErEiiCr1JBoOZkR07Rz9myMkgnI04F+Sow8HTpn/WgyO0oWgIQBGaWpiopnz15SlA1ZVrNcbpgethR5Qds2RKxILYJFYyFM4GeUl/yIpl6QZwVlmROCTzfDACHgU4r6Yd9RNDnoiFJrMqPR2pNlDqVntLFkeaBpDHkRKIpIWdY4X6cD3EIszrShcRpZb9a07YJnL1/I1+kc3opByijQSvS22gWKzLBoWtrlAqUVw9TzeHzkQ/fIw7ADPeBMT8x6VDbSLhYU25yyLLhcCzkmEpjmkd1W9NVGH6jKnLoS42e7WOE8+KgJ6nvfsv8kr1evX5Nl2VmrPPQiSayqirZtOeVO2EQ7y3JLWco6uiha1s8+ob14RfCOKYL1Q1r9yxlQ6AqPnCEqaKKy5Mbz4jrjP/3nL3h4tLy/HZmCoFmHccR5SZEf7UjXd/joJOwty/nJH/wxj/dbHh8fub25OXsS5H56Mk/CUxN+asT16UGpI23biiZYyRnqvYTbbR/uaepIUzuqZsWzxR7rZ+YwMW2/wrtHWF+waFf8/uuSi/gZ23c92jU07QV/8sd/xGd//ic0TY7vd/yr/+t/w9e/+jt+881v+L//5V9AlIFGZgwqytcp6b/QD6NsBL2YStEGo0u0+e79/R351JPLIm2lwWjIqgIfTllKhqvNJWVRYbIMFyNZCaaEvDbsjlvWRmRjZZahywKdl9Rmw3K1pspLirzg6nIlEIc8ozQKNw3MYwlNSzfMKWjMMtuJxkSqOqesFphMsc/AT3t297cM3YF5HNgsWh62W/pjx3DsGIeBoTsyHPe8fLWmqiRFV5uA1mnK6TS7Xcfh2HPoekbruL5as140tHVGnj8FQ5JXDIM8o/LcUJby3phnT13WZEpkJyoqQhgIwTGOBXaWPA9TF7SLCzGE+sjd7Tu895JAvVpRlRmzG9kPItssioq6qtisL1AK+qHn/v6OaYoslg2r1QKjFdvdw9k32bYLmqZmsfjdTfw+yXJOTT2If2iaJNhNxUhUgWnqme0gOStlSZ4/3Z+Xl5cyOS40fX/E2YEQLFop2QoZS2Xg8xcb1nXOq8slmQ785t0Dh36iH8Sn8+27B+7ud/z851/xv/2v/hf86R//iB98+pJnL56z6FoOx5rt9k48h3hMJoPayBMARLYWCj8rdEzmaQXj3LM/7nncPXBzt+dwtHS9Z7d37DvHMAWGOeJDmvqfvWCytRA51On/q3PTfFI4mBSMG6PHZJLBpI2AV85NgBGcegj6LIU/yUbl31LnX6/r+pzHcAr1NUZTFQ2VAufFX0AUjy9Kse8GNnlBlvxUWZbgFGnIcRr8TNP0nXpD5FtSOP/mlz37x/8n//7//Ze8/uQV/8v/9f+YL37wBW9efwZRJHHDMGBnueeyPCMvcm7u7pntLCAQ7fnih5/y+s0LPrx7IM+/5P72jvt7y9/9zVesLxtevbniP/8v/jOKvEUp6I4d79594O7ulpubDxRFxuvXbyjL+jw067qe27tb3r17S1Fomrbi9//gx+eMDq0MfScwpaHvGIbpXJO1bUtZluezeLvdMs3iu5jnmbKQWIb1ckNmaoga7wL7YcS6AWtHrOtT0yaS96YVb4kxhTQh08ww9tzd3TCMR4osZ71Zc7kRf7PkyIz0XfIsjgN5UZHnogz5Ptf3r1hihBNL3ku4kkvkoug9JoVjxRhwSQvvnZOmwXm8dehUEMsaLUshfdKRmvi0rp/nGdKbt05rKik6Mqa0JpaQIv9UBEfP/ngUIkEuiNegNUFr0aUhK7m8kJW4c544z0QcdSPO+4uLNU0rpJnFoma339PUNVmeYd1IU1eUVZVkBC5p+9I0X3Y5KB3QWcSGif1hx/WzK+wswU9Z/iJNBpIsgcApQMz5WYx884TqI/v9kf3uwN3tA9v7HcMwCaUoEYhOUo/vbimeNJdPUwvON+bTVFKoXk++jI+oPOqkIuc8uZBv/5NR7bv/VUk2FZKnwVCVVUrWzllvNuSFGPGU0jRNmzSVMA4d3jnmaWb38ICdJjIVWS1qnA30fUffQ6Yzijw//3B6FkpTlKCvoRuTtrCkKgpI63PrRI9pjKKqcopSU+QpUXV2aYIkprQYSfheR11VLBYN7aIFtKwsUYRxFIlOFJ66tjJdbVcrlMmwztF3PQ/HR8ZocQZA470ixkS0CAGlAiaPNLVivRFtvrVt8hZ55tlz2PXstxNKdZi8I4QCVEHTbL73LftP8WqbxZkEZJ1FJxqOBKy5ZAofUkDTAaWgLCR8U8LHlnzx45/wPtPcvwfb34M5SQM5eymUAo+SwYjyKGY2q4KiyGjbChcK9see/fHI47ZjnB3DNLPvRjwCSnDO8+HDDWVRs9lccjx2zHOHgC+06KxPkoN0Xn2HwJbC5ELwYDTKGJTWDONIUJqirrl9eCTLZqp85uHxJU2teFPUKBeYSkPb5LzcVKxqwxQs0zBgIkQHJstZv3xObma6x3seP7zjFz/9O3757ivePtwy+6TTUqB9wCihs/kkpuQkfTQqSWhKiqrCugFnxbsS49O9b4whJMO8bGzE5HjWXFuf/lwmhV7wRCdSQO8M4xgZZ4uPhtkHJucoq4aoAkVV0BY1y3ohZ0eWg9Yp30g8B4sqo8og+Dlps6vzyh8kwwM8zg7YqcNOR6bxiMJTlbmQmMaRvh8Y+jH52Bx5YZK8IMq2JzWs3sE4ObpOMLchatarlmVb0dQ5RS6Ss1O6+DRFrJP3XFnm6JQfMPYDeQZNXVMWJT72TNZhHTgXz1kASmlB19pZ8JJ2pq5r6rpOAYJWJCnOppDBjKLMiUTGcUrKgJnlap22HlUKnxvxLmIyCejKU1jo7+r1cdP78Y8sy6WxT1W68xaD1Bsi5XEoLSF82+0ek4lEqapKOjdIXk44gQtSIa6hrTLipuX3v3gDKuPD3Y6385bZSuq7947oHf/hr34pRVs/8Ps/+JzlakNZVgz98UmalwpkYvJexCRjSuQoGfwFJjuyPWzZHQ487I487AYOR0/XB/YHz2gjzkd8FLHv6Tq/HvIztDbp2S7NhSIiK1xzrsUUnKlr+rx1JZ0PkpVz2mR87NE6NXh5nrNcLtPUfDx/Lmf6VDqTDSfvWhrSGUMe43caCoCQmpZ5ns90v7Nvhaf641wvjrB96FOw4MDV1Yr7u3s+fHJLU2/SIDOgtGGeHZO1xK7jcbtjGEdmO7Ferlktlkl+1VPVAojITMU89XSHmfu7PV/+8lcsVxdkpsDZwDhI49Q0DXVT0dRLjMnZ74/i7+s6xnFIw2rxp9Z1g9EZ0UeGWe7baZINPkTKUvxsJ+rhqXE7HjuctxA9y8WCuhKwQZ5nxBCYZ0vXjZLmHZ1sVTXk+ZNXWiud6GwT/SDS+2kaMVnk8nJFkRfURYPRKpnEEwY30QaLPBd4Rp7JOfI9ru/dZEhCcTxjUO0kq0ZnbZIyZeioJdoe6a6tcxJKJ5qTM1kJrVLycv7R1A8gnE2EKAlwKvKSLMspcpeKXpN0a04O5tOSPwaOXUfpSqoSmRBHdd6OiEckdfVaEaPF+gGw1HXFctWyXC2o66SPDTXaPBXa41hIjkaep87SnbtDecML7cIr8GFmnAf2xx0hePFSjANaqRRaEyCeJgQ+6ebE+D0MA/3Q8+7tB3bbI/vtkeN+FJqGj4lQkXqM39oa/32BPv/x70mzdZJCnQ8gdZKtiEGMj7YfwNmsK39GfefjnTYjOmkQT1km2hjqppVAraJEaUPbChMb7xlHMavP88R+v6PQmsxoykXLNEuy7TiOsmY1gq88pbSKdCNifWAcLDobaaqZUCZzZfCJ0S2fl5BitGRS6GQ0U2LKs4DSQqQKwVJWS5qmpqorfBTOPdYRlcEHaaqDdxQukJmcdr0Go+UmP3Y8dltmHCHTqJARbC4NMUL9ingyE6gqWCxOUwXNWEX6biaEie0wMg6ywXO+Y7G8oFlUsrr8Hb6qqjq/ZwDyXDZnVVUyDCGBDCZMBl1/RGvFMkkUtdGUVc2bT3/E3B0YugP7uUOpJEfwToqM1GQrDMFDSH6upoKqVKyXGYGW/bFgt8vIiAxz4NCLN2x04Lxjmmbev3vH69ef0jYLmqYBZdO9fyoMnhruU2Px282GDyJCCAjudZwngRQEz+Nuj1ITRW552B54/sywrGuqEJgzyRG6XFXUucbOE8djhwoybW0XKxZXF4T5wMO73/Crn/2Mt9/e8PXdAzddjza1hFcGoWKZE4Y3iuTpJPFRUWQNRVXQtBV9P0OU4iScvz6N0RoXBWee5zJh1NaepZpKOXnVjdC5gnNELRLE4IUtP1uHyTpCFHDHchOIKlJVBZerFYu6Ic9yMpMRseR5RlXmtFVOlUOuPQSbCh6ZgCot01jvrCTUdnvG/oCbB6K35EYKy77rGPpecphSQeSDE7RlppBIlJi2vRrnPMMw0/WzYDV1zmbV0tSFeD0yod7ItMIw9jM+gNKGvMiSP1EgIlVZsljItu7YW+wxI84hnf/yXB2C5dhN5yFGjIqyqqjqGpNpxnESyV6SmMiZluG9k69tkHTg1XKVpL+Gfjikyb+izLQg2o1KuM7fzcv7kAYVJzABgCLP8iT7lSl+CJL+LX/H45xIAb0WU7jkdOWUVcnQTyl48yQ3Ss0jkTLTmLbEvHnBOIuvdL/v2flZ4Dde6EU/+/lXdH1PcJY3L19yuV6xKkXuGxKi/zSNf5ILGc7+i+QRtN5y6I887rZs9x0P24HH3cSxC/RD5NjLiSbkqe8WAWffZGoEtNGpTDhl+jzhKLRKQ16lUpMh0k6TFiyBp+e9eAvKswctxkhRFIQQxC/VynPpVBSfPhf5Wp+2HjoNo8/nJDJ9DypgshOQ58nz9rFU83Sdnh1nL5+DsXdMg0ic/uovfsbdzT3vvr3h088+Z7EQyWVdrRlnyY8YxpHtdsdsp5RbsUpNjiLPDU1bsVi29N1Md/TMo2X70PG3P/slz54/oyxLpmmiqS4oy5rlai1Gay1G9u7YcX9/J/jo3PD8xXPqk9wxJuO19Qz9xDhMCaAkQ0tJ6pa6t+s6pmk6e7O0juS5kSajrshMhnMB6wQsdDx2HI8dWSZfR9V8l6Qn2x/L7CTY89gd8N5xeblmsxE4BF4ajDnBiLrueB78VGX5/6Xuz39lW7L8PuwTEXvO6Ux3ePN7VV1VXT24RalliRRFyJYsG7Zhw4ChX/0X+hcDNiwYoknBFE222OyBXd3VNbzxjmfKaY8x+YcVO8+5r5rmo9hgd23g4g4nT96TmTsi1lrfSZqv3Jxoxf+m6zs3Gbe3Nyexh3M+3QyBEJzY7wWH8Rk+ask1MDJNjF68wzMjftYuOoiaRVmRZzVaZ2mj9kiAniReC9dXEqYjkSwX2sjlpaSOd33P/f0dPnH4AIZxSPQlQ13DLEy2ztG2R0KYiFSYrML5Ee8nCYRZ1Gw2AiM3iwrvJ4ahoyiy01Tr6uqCPAW+5XkhHMbo8O5BHhUSCnNze8vx0BLTBiI7V4Tg2O+3WBdQqiAvNNaOdH3H/f09L1++4ubmltvrW7rO4m0kOGQjiqkYUJ54amwepoxztz8vyhlZmBdjnj80dPNmdgKB4gOEqhL9Q55PkedJG2LtO3Cl0opMicuXKaOjGQABAABJREFU9xGlAmVZSbpms0AbI+FnfcdytWaxXFI14rLgnWc4HDgcjxSV+DZXRYVJlqJVVfH65sBoJ4ZxYBgHyqIgVDVbpdMQTry9NQZnI33ruFcddtgDEWUCo3VoHclyTQg6WQAKR1ZrL7kYyhC9RUdHdBY39lSFpqkNxnimQTz0x9EyTQHvAnhJQI2Tpsgbzp49J+qc4/2Rm1d33NzcYUNAG5myqpDjbQf+QNu+JARLlkGZF4jM3BG1wgawIeCjIi+XKFVTeLHY++CDj3AucDz8+oZoAclVxJxCHIuiwIc0mRygKEqWSxEBDoOYOpjMcHl5RZ4VpEQlmvU5Z+dP6fa3hDAQ44QyKfk7IXw6SuaMCgbv1+h4QBEwJpBlE3WRcblZ8/QqJ883tK3lL37+JS+vt+wOLbtDy+H+li/7nqpuWJ+doc0aaye6Xlw3DDI4kSb73QYDpFnph45Ja/E0z0UgajIZTHT9wMXFGVdPzrk/aM4vllw0Fb/xLGe79cSoyGzLoQvc3R/Ybgcydc5//l/+V3zv+9/j6dUZn//JT/nD//4f80//0T9m8+P/iLjrcNOAQRONS4Mbj3WJca0QVMUI9cmchkITbRvY7XaUeSbUiKix6bA3WUFR1KeMiTwTu+i58KhBLGFNhh0HrAv4yWEDbC43LDcXNIszDrsBQw6+4Lg7kGnFYr3isw8/4OP3JTAOrbjf3nD99jVvXt3y8YfPuR+P1Islz95vyMoGYwqUNmy39+goTU273/Hiy1/ippGqynjv2RV919Eej7y9vubtzQ33ux3HrsX5icn2+NDTT4asqDCZ0KSmMdC2E/fblt1xYLGo2KwXrJcLyhyMlmFMltc4D/1gGcZAWeUUpWG0A+2hZxodhIxnTy/J8kBUR/JcSZquk4ynzFRYFxiGiZ///CvKIqNpSj7++D1WqyUmE/3APCXOjGG9WpIVORDY73e8vb5Ga83Z2Zk0wwit6LBvkztOwWrVoE1ksgPWTr+6OH9NrhgEidN6RpyEu66T1jMEOc+Kokh1yByIFzjlPyVnnaLQxJCJ01AiBRRFKXWJybhzExqxPC3LjB98atgsFyzrkj/76eds25F28NgIv3x5x8ubHZ9/+Q15XvC7P/o+P/qNT/jww4+4vb1mu71nf3+PMkiLkMxJYhB7dxssNlq6YeDV9S2v3txzv+u52w3c3VusU+KOF2SQFucfmIdBhzFGXqf8A1qTaJua4BJLQQmCn2UyULV+El0EYgKhE4qhQ2ScJvIsZ7FccnV5yd3d3SnEtKoqrBX6qEzh0+cT390LQ0JTY4yYHCpTCyMmyj5kZ3GzyVLQp9RzWZa9o3sT69fANE3vNB2y/wgNTWP46Z9+zc///GtMZnjvo+f84Icf8elnH/DBhx9zvzuy3R14/eaaDz/4iPfee4/nz5/y5vUL/vIvf0rfjzR1w2/99o/oP5t4++qWn/30c25u37K9u+MP/tlf8PT5K66enPHRx+9Jo1pV5FnFMPa8un3NbrfneGjZbNbUzZUMLCu5v2IIHI57YaZMYqstOWy5oBxNiZ0ku6NtOw6HQ0KIRs7Pz1ivFyxXtej8YjyF+O13HdPkheETAjHmGFPw9MlTxvEoup6uo90f6fqebhxZnS95/vxCDHFMIS5m1jN0A4fdFhKS11S1ZJEVGXmVpyYW7GS/03r9zk3GMHTpw4yPRD+JIqTETUQQBxFPKy1CIutEMGJtj7MJas8KgotgBAkwOpNJ34kyRVoMOiUhJ992m9ADbSiLMhXVMXG4ZVIQZ5gPmXj4EFBOfKCdLQCZmk1TxE6QZwsWiw3L5YaqqmnqihBFGKONoms7nHOs1xuUUolXKFC3dNwPoiQfPOMkcKlY3GraY49ShuViRVk1ZFmOdRKi0/cdx/bI9n7HN1+/4uXLN2zv9vTdRPCymcYgGgAV51WZhKezS8OjCepjHvW3nSDmhSuLPzs9Tmt1mhgIh9KcePEhxBP3HCQtPETZEE8ErdSsZJk4c9RV/YCgJKgVo9B5Rl4WZHlBjBOgKPMSozQBTn7POjMEpbl8ekFRZZR1xnZ3LahZ8DRNQ9secMGhIlRZTdSK6BVj78izIlHwPHeHW5T2iTe951hNYkebqRT8pzEml8XpvNgzW58oE5FpHBgHCRZTEeqyYgzS+GVBc7GoeXb1Hu9//CmmKEF1IuqNkTg5fHSQeUYXmILGUuJpyAuDRu7H3b3HR8doPfujZRwDdgpEJ0jSnPa53b5N4uNfbwvbsqyYJ3oSKqQpcpO4t7mEDXWzbZ8/0QdOydoo8rLm7Ml7QOTu+gV9JyiG0hkhTmlC6IU2qE3S0Biik1CzeQ1pFLnWLOscpR2ZUfzWb7zHk8sNkwfr4We/+CXOB3yAoduTpYCipl6kA5ZEl3kQe0NafwpUlClgTPvmFCPBCfScm5yiyjgcNBFPdB3eT+z3NddvIwUkxFOx70eGe8NZ/RHf+wc/5Hu/8Rlnm4b+cMsf/n//CZ9/+TljbmiHFoIn19JUG6WE/wyocOJEynuTkNjMGELy0x9Gh9I5PiqiE7OsLCswmVgnSraIhDsZYySrAyBGpnHEBs/kBoosJ9OQRUVlCopyyXJ5yfsffg/1UYZRSkwZsolVDYX2hK7FTQOxyFg0S8a65uzsjDLP8FaKoYimPR748Oo5MRqGcSIzRl5nCEx9z9lqjbUjzg4MXct2u+X+7o6319fsj0f6YWSylkDA5JoiK+inkXwSVMQow37fcTgOHNqR5bJhvarZrGrKXOh9Rhu0KZkmGEbRCZZ1jsmQQKx+oB8mjDZcPLnA5NJUWufEGcpZMqN49uwSbSq6buTudsd2e0zoWIZCdJDeiXZJ1o/wsMuyIEQYx4mbm5uEIFdUVSV0m3FMlp+GohShd5YLEtu2Hdvt7t/ruv/rvLJMxO8R8KlxnqfjJ9quFnRKHJ7eDccDJHU6E7qbnIfIPp+JyUOMMwlZERKt0BjN2aIiU2dURcbQd7y62XG9bdl2Ex7F6CI3e8s/+ed/RteKQPk3f/MTFuszoZM7L9kEwYpBQAh45XHec384sN0f2R96ru8OvLluObQTx84xOo33DxbRJ1oBPEwL4R0aU4zhpMk0MkpID5fHO+8kkNfkxPT+FSYT44SUjK1SaKNzIlyeEYw8z3n69Cm3t7diypJSxwGKQkwFZtbLTF+NwWPdiM6TeNwFyqKiyHJm58tqucRaS9d172g/5gGqUg+Dz2//knMFnAXvBJl8+3KLGy1vXl3z2fevycqKom747NNPOD+7wFvLl7/8gv3+niIvuLq84OrqGcZo7CR1n3OQFRlRwXZ3y91ti/dQlRWXF89p2yNdK85SWSbZYB+evSd5FykHappGvBPL7P1+J45lSrPZnFOVFTEGocuPPYfjkfbYcTj0NE3Dcrni2dPnKUwQnPMnJpFQKCfRmmRGKJJGNC3DMPL61Vt8GHFuZOiPaFTScW0olkLLUlEz9pauTcwJZzFamrosy8hLeQ3ayNDcusA0WqbhuzldfvcwvpR6eYLdZppNguS0kTRVsYDMQMnh6LXFp6LVeYchQ6ewuMw4Zr9knQKbfHzUbSvZ8IN+oP+ERxZrSpFsEiN5njGO3SMGUbr5QuCUJq7kZ10uG6zz2CmgtcD+AlEVFGWBD5oQpbsMURwIqqoSmlUQCzsV0hqPQsUKKel2nGT6PkOGXdcB4qhktEFlktwcg+Vw2HF/v+Pm5o7bmzv22yNtK04vKvE0H17N6VU9YmA+gkdPn5NsPjoVEr/i6R+R6e7pW+QP4lJSp6mnIFbTNMlnYPTDwk6Ysjj5zD9NoiRlGXVVydQkCISMFitYkyUNTrpPsrzACD+BED2jkUYmBM84SvpmxAvsHX1yM/An4VmWgpfyssSFePLT1iZDIV22m+R+FWZAT9/ZdABFMp0CJbOMGAwhyuIVlwsxK+jaln6MeCvNXm4yXNRolXG5PuPcFJyvLzi/uIKUVG7HCYMCFwle+LrjZJlcwEXJi9HGoAn0vcd6i/WO0TpGG7E24l3AKHPSGJAmFgpp5n+dr7KoUnK5PxXpUhBkGKThlYK8kGY3SA7MOI5oldx/TE692BCcY3X+VEIbR0k3TUC60CYeCR4VGh1kTYWEhM1BebnRoANGa7KzGp2K7qgynJWidBgd++OIi5ncKz4jJHcN4R0/YCgxhORsJcQErTQBL3tH8KAD06gYhhZrlwyDiB6VCizf5EzjxP2NY1VqonMM/chgDYbnrOpLvv8b3+fyfE1wPd98+Qu+/OoLbvc7bGY4HnYEP5FpsEHIEVpBTJa6ceZZKkk7zjJDUVYElTFNDjcMmKwUW8lECSvLJlkdSsNbVlVqFh8oC0orcZdJuTxooVdpZSiKRmwQm4bz80vqqhF0W0W0GlhWAe1H7ocOb0Xr551P93wkz0T4P44jEaGcGpMRMRgXKEqxbpS9L5DnGcFbButO4XP7w4Fj16XmIqZDU2gx2hisdUzOY2yAEJMpwEQIkeWiZrkoqaucLJsR40woUqMMCEJMznzJ5GPoR1Ba7GgXJWiX3NPkvtdKkRcZq2WD0iVE2OfmpCnMTI5YY4p9uwQJyllVVdLo9sPAOAgqsUoUqTzPTxxua+2pec+LHK1nR8eH8+nX8VLqIe1d/v5wBsp599im/WHQ9pjXb8y7vP75/JiRDj9TdqIU9irK8KjMNWpRYYzmw/cumVXa7XgnZg4B+inwxTdvWTQVZ2dLzi7XLKuculmy2Vj2+3smq4je4r0kcg/TxP2+4+3Ngd2+427bs91P9KNnnMB79dBgfPt6pJcEQdmUVgQvQ8QZydBGHjujHJGZwpSB0ieNhsnkbFRaU6amVQHTZDFGn8TYZVkKEp3cpmbUQWt9+rugGupECYw+ErQTna4LBC10RaViCkCd67zAt3UYjweq82Pmr831HqThrJLPrTtKjlvXtSjluHz2jIurjKosRGBuvVjRm1yE1GVJXdWgIpnJMbrg6skF3dAxjAPb3Y6h9yjVc3Oz5fb2Fq1yhkHqpTyvKcuS1WqJ1pkga94zDoO4mdlJgveMoshzmkYycaZpZBg7DkfJphgnCRksC6nLVqtVolRJ0vg4DkzjlGQMITUgOXlW4OzIOIYk1O4wJqCUJ/pAWVXUtQwqdC6DJZvOmHEYkmOUJysNeW5kKFvkzBTncZL/f0q/f5frOzcZzaJOm1NAnzhxgOIUspRluWgtkkeys4qYiWYjeIFY5one0PeJ7+PJjSRtKgweg1YZIuAUO0OZwM2dasopSDSp5XJBVVWUZc6XX32eNBjhhDCcoEMXiL14EAu3MJ7SbIUWpKnrjKIssFYl/ms4ORjUixptNFHJxqPJkuQ6MI0DzjvRVnhL2x6YJkue5+x2klY+L8Zx7BmGjuNhz1dffMWb1ze8eXPL61c3DP2UGgx96ipUmqKcWrxo0qbxAI8+5jCaJL5WkLjK8jzzwvTBgxO600kepiSi/smTJ+x2W5zzGOMIYaZkCQdcuNySIq6UOk1kvfcpE6Nks9pgVI61gWG0SWxYURSFFFzGUOgMkxVkGmJw2Glg7PdMk2WcJtpu4Pr2lrZtadsjdpKDdJ685Lk4cESgKGsm63Deo7KcLM+Yhond3R4VtAQ/WkkQ9V4a3ugtTV2e4NyybORGRmFUTnvo8R7y44Dz0lRkJqcoKoiepij5D37zd2Db8vziKZcXV/gYORwO3N/fUhiFdpEwOobQ0U49Nkg+iwviWkQI3NzfyppKxdlitSLTEWMCJItl6z3OWuoUbFhX9Xddsn8rr8ViKTTGKI378XgQmh76BL2XVYHRRfIK79NGrjnbROrLBqMKVKnRa8OH3/+fMU09/s4yjYPwqVPzr5WU/SkzHWOEcxxDIGDRKkdHkzjYIsiPRrFazAd64O/8zvc4dj3DYPHO8Muv39D2k4TaTRIgKC7OSkIvk699IK1FrVNujawlFwIqKqxydH0rjklKGtKyLPjm5Zbrt4oqC6xyzdge2N3dsqq/z6efVrz/7Bkff/IRGSNfff6C/+7/8X/jy+s3dNbijOHu9ddMzmF0wCmhQ837tEoc6pjGtJUpKcqGxeaMqDP6cURlLePUi95AyWeyPr8kz43YPKNYrsRqeZymk1YrzzKGvsd7n8SdIiYtk5PcclmzWjacbRas12uaqqDODb4/Yvsd1o3URU4ITvjH1vHixddoFcmNZrlY0B07nJPBkPMRUxjKpiEvS7JMS4jq2DP1HeMwcNgfOewO7HcHDvuWYZIGIy9yFqsKF3aM1uKdNLbjGCRtuLNsDwPeB4qy4MnlmqrU5JlKSGgOymBd5Ni2oBR1UxCjE7eaceJ4GHj69AnNoibLIy44rPMMo8dOkoVU14Kcj1NIhhKWq6uzFDib9tDhgNJQFJJQXKUGT2vFsT2yPxyo64K6qamriizLuLu7O7ENRDhfUhQy/b++vgEUTf3rq+163CDN6Ls0HuFU3CqlsG7uAdRpQAUPwnEfHOM0gJLPX2jAMEx9KsIj1lnwUmTH4DDKUOWaLKv4jc8+YrVesV7fcn13jx0l9d5FxZu7PeGnX7A/tPR9x3/8H/wWn338Ph98sIIIx+5AmAbGvufQTeyOHd+83vH6zY7doefYOvrJ4wOEqB8xB9SvviGJMjUX23kurk7ORmk4kr7EmOzUECgjZgXGGDFOSIOSeeATYkTHwGLRIHb/DmenNNSVQd84jpI9EgLH4/FEo5pR6scMiVlLNIcgzmngdpqIXv49ROgT5X0OvZ0bh7npeGw681ivEWMknDLSJd8mBo0D3FHCisdxJMsXVGXD/d0tdvSsVxsuL6949vQJh8OOcRpp25ayKCENvs/O1/jwHllmePnyFf3Qsd8NjOMrhmHk7GzD+fklz599cNJJGZPLQGGa6LqOtjswDD3WjayWC87OzkSjUUj+3DgO3N9vefnyG/LC0FQ1733ynLJsMCYHJfVAP4wynHIDMTm1ZiajaYQlo8g47Du6vmV7f2CcBlariuWy4urygtVSRN0yuPS07SDP2ffkBeSZFnOkKj/pphVGGDyjlfu5GwCVEMV/8/Wdm4yPP/6UrpMF07YtXdedOtUsiULyXEJK9NyBhoA3huAVbi6WY5DJ/yC+87PYeblcPugFtIjvdJoOznQqIkRtcd4ntwCBQ41RlGXGxfmFOPRM/rSRyKR/doEKjIPnxTfXSXDnUTpS1zmrdUVgIMQswYqRYbBYG9G64IMPPuH8/IyiLFGZoSqWMpm0lr5vidHi/Jg8jG/JspyLizU3b2+E5hUVh/2Ot6/fcHtzy8tvXnF3d6DrRoZhEpFyAM3cqf/q1OLxwpqveSGfipnoCc6lZqOQjSQTK+CTiNuLAExrTVVVxBhxLvDq5RtMZpLIS0RQi4Xwe/teKGAhgjEFVVkyjYOUZz5QZjmb9ZoP3v+AzeYZ1juyImOx3tD1HTE4NosF1AtMVmCyjLHdsb19y2F3x/b+WnQXUYkv/X7LOAy4fiCMEyYCUTFZT24MZZ5TlCVNs+TY9fTDQD+ORB/JsoLNxRO67oj3MsmI0TKOksBrI9hJEzJDnuXYSXysnXWQaFJZkZGXJUqnCUdVUWzWnC8rnqwu+PjyCb5ccXn5hHK5pg+w3R95e31DP0gKetePjH6im8akt5CC77ATS83tdkvf9xRFwebsjAzxFA8+4CaLMYY8K1k1a9G1NE2yaf71vf7FH/1T3nv2AednV2R5xmKxIEahIjjnKPL8kR97oKoqirLCjhNKZRK4pb00q0XDcnVFVZ/R5TumYY9SnjnxQSmdpp0hheLFEwpmgz9pe/Bp2qdJwZriABeiQ+vAqoRFJqFqy+YDxinQT5777Ya7+z3b3RGvM9phYrIOmzqK4D0h6ddkJ3swv/BEJuvo2wlChokFOQWajMkG7m9b7pVmUax5cvUpn3zyO/zO3/k9Pvv+p8ThwB/+4T/jz3/yp/zxn/8F131LDFEM15QctPJ72gOVIdMKHyMonaInDWcX71M3S2KmCCpQrVZcvfch+8M9OtFDiqLk/Pwc7yz3d7dsVkvKsiIvCnxUHA4HuvbI9u71yb9+nnCGEJj8hBmO9N2Wwy7n9esGpZ6jfIWpC5aVoVCKkFesFk/RWYXJc7IyY7MpuL+55rjfoVXg7GxD2ayo6wVlVZOXNcoYxr7FuukUsBcTUtEsat686jkcxH7Wes9oe1Rys3r+3hVtW3K/vaPvB67fHvBedF4xKppFw/NnZxQFZGYuZlQS+1p2h8MJoVVaJX60DOKunlyxWFZkOfgwMvYD0+CZJlguz1gme0qFZnt3zWQd52dLzs6fkGWSuXRzs01cdEOe1SwWZxSFDJXevL2mHwTdqxcNZ5uV7C2HQ7IPlcHW2dlazC0my93dPTEoFoslF+eXf4O7wL/bNesQZxT/QWvhT4UuiKtOVRWYTPR18zXrBZaLJXVTo1Sg7wdikNpjvVngfKDrB6FgRQgBJq/QSijjLoj+5vx8RdDwvU+f89XrLdvjRO88Niqutx2H9mtev76m7x3D4PnR9z+jWF6QRUPfvuGb11tevb3h9fUdL14e6EZJu558Ou9T8zBnAT2+HmswZtqy0aBiQKNpqhofI9pk5HmBijBNk6B5UYLg5vt3t9uhE2OhH1rKQrKMmkaaDAkFDCm4TeqpYRBHJOfElGcae3kPEYroTFMbBnkfZ72M80JxLAsRSU/TdGI+BMUDM+YR5XvWfemk25yb6LnOO7lfas3s5CUaX0AJStW1lj/7k7/kqy+/4YOPnvGf/id/l6urCzabDSBmRD5E2mNHXJBsdRUmU2w2S4xRfO97n/Dq9WuOhyNj33Pzdof3Uaji9acoJejA/f1eUMZJQvPywnB2tqGuy6QRDfR9x2635fbmTgJ6feDTT753CtKL0eP9xDSNTFNINGKL8w6tBVHO84zCSF5a141Mo2O3P9C2R4ZJjHVMyiwqq4ZIpBt6hq6lbbukPTKs1plQCHNpOhV5Om81x+OBw+GItS5JFWTg/k6Y5P+f6zs3GavNRigNeQZanH9kket3pwkxSBocpIMe4f8yp0vPMGVKAGcOfZi97iPWTQJ/a5NoWok1Qkz2dJwOkplbKQWEZk6sloUnMenyZiQ6Q1Q4KxuFDPQC2+2eLDcsVxUXV5cC9znP5DqUDpRVyWq5ZLFYkqeAtqoyECN28ky25+7+hr47Mk4D9zc3eB85bA/s7nfYyaXFYNjdiihod7+nPU5J+BNOk04evdpvbyiP//z47w8aCE7FDGmCa4wmL0rqphEqg/MEHRKMmUS4mRRv1lryTEIXlRJHJ3Gagszk4ussfnRobajKEqMU0zCSZYa6rlhvNnz86WdYL8FlWW7Y7+9pVSRMK6rFhjJNVY67LW9fv2R3fwvBEp0FbYhBmghnLRMSThRdIDiHm2yCroEQkxPNJFktCCyrlPDGy7LC+4wYxcoty0umaaDtEo1GG5TOYc6eUFGQlVEmLcFFUBOhmMBOHKNncX5FZTRNkVNeLdmcn6PzguOx53534OZ+xzgcOQ4j/WiZnAMysYMbJ3yabtjJSipylksAZEyaoygUl6qsaBYL6rphsVqzObugrmuq+tcbyTgcd4QQ2O13vP/eh3jvkp5nkYwVZu97hdYRrQzew5efv0SpyNnmno8/+kAKMaWpmgWXTz9ARYu3e6YpnNw556YaZjHow2WUAQwoEUCjfdqrIEuhdV7Yfujs4fDSWlMVhtpqmmLDqs44X9cMLrI9dBz7kWM3pNRh4SQnOQmzi57KUnGEYhoFyY2FwcQCPwndIzMVuS5Yr654/71P+cFv/jZPnj4hzxTX37zi9ctveHP9lsNkMaYgIDaa1jlZsqkAU0oKYK1k0h8jGJWxXFywWJ9RlBWTH5nsgSxECp1zdr6BpIcpSrGPtZMhK0pQydp2GnE+JjqTIIJVcjTK8/zByjJNSGOMybGro+/2KN/jBo0rNYaAJqDxyb0EdA5GB7QSHx3vLHmRiznHciVUh2kApbDTwOTsCe0chp72eGS/27Hd7djud2z3e+4Pe4bxiDYRFxoWy5IQA1lWEMOEtWAnyYNfrSoWdUlVZSmDSD7DoMR4ZLSSsVNVeaIGe4bBAuLg1DRVEvfPGTse5wWdr5oFWVkQibSH46kpqBc1i4W4IlrrE6VHi61kvcDoXKy5xzFRuUSfsGiWxIgMSpw9NXpNU6O1ZrJC3xoGS1MvaGpx/Pt1vR7TZuYC8yEUMz5qQmZ3RHVqQubvJ1ElZ/c3+fP83IpgA+M0sdsf0/qV2kGE2hL8N8XAMEnRt1kvWe4HRhsZvRVaX4j0o+cudPzs8xcUecE4eTJj6Lojr9/e8rPPX3B7v2e779gdp4RczKe4ekdvMZ/vM2oxuywKXYrTeyE0KAmP1YjbW5bnsgdpjckzxmmScNlUyIcgQ5X5/XucQTIb3hid4eyAUJNCoiulaiN4oWKFcKpjHtcp6oTmzqjLHOprCVFQozkIN84uX48+z8damzz93POQ+7HeZg485ETvTz9MFPrYOFig4012y5dffiV1rNKo9YLgJ2J0YhY0jQQj988cL+DcxGLZsNms5fXs5OcfB8fxKBk1RVmilBanOR/QSvIuqlqso7NMY+3E4bATl7u+J88r1usNVd3QVA3gCMHStQe5v1zA2sBk5WctixQ8bKTtdM7Td4LU9P2QmCkV2mTc3+8Yx5G2MzRdDlFS6J2dUEiAal5o8nIelggV1E4h6do8wzTIADxJG0z22Bb533x95yZjsVyLiDITQePQj2Q2O7nDzK209/6h6I0PDcLphktTPREvzXz7iLWjPEVyuc1zLaFIRuxeY3o+DaScOIoyp6oLyjxD6wfthVKzi5Dc0GJlN2dBmHSTGyTxceT2dk/Xd4xTx0efvM9iUZEXeTqQMuomFw/kppZwqWDJMgcx4N3Efn/Hi2++Ynt/h7OWty9fczx09INPmR4u2Zt2+FEsfVU0jFM4FR+nekg9ft9+dXLx7byKx2hHjKBJhVG6CYzR1LVYJ07WMg4jGOGgzhtVlehjUiAUDxzWLCbnKE7dsBemhXCKy4xMG3bbrUyN6or1ZsWn3/se1k1MU0/wjpvbtwQ7YIczzi7fE9vJENjevOXNi2/Yb+84P98Qg0frjGhy6qrETZZBazRCzbKjxU3TaUpsJ8uj7VhE5AnhMiYnLyqypB8qipzKjvRjh41i66m1RiVKXpZLUJqzQuMLLuKDaG3iNBHHET2NXNULTPQUBq6uLtlcnIPJ2W1vubvfc3O/o58k12SyDjs5iqrA24m+lcmCswIRNykDBjgFEOUmo8gKVoslF1eXrNcbzi4uubx6Ql6Usv5+jS9rJ7558SVaa1bLFZOdKMvyNP1+gP3ne1+jdeDLL1/RdQeaJmOxkqIrNyV5XfL0g08ockXfvmV3P+GdIsTZglLQ04CYRqiEEGplUnNp0EYTwgRJGImJiJXpo8Nbyz2ndCSLmjJXbJYLLjY14+TYdyM325ztoePmTmGtOLN0wQnFlAe0ROXys+E11kacg+gzVMzxk0WhWS02LLKGJ1cf8OlnP+JHv/Nb5NoytDtefPVL3r55zXZ/YNIZTZHj7MTovaTWJj97czo0UlEVvRQLWcHV0w/Snq6ww8TUHvEhQ5vIxdVzQf+CT1x+sZ7M8pzJBZQbUTEyWSs+7ZkMHGYXuzzPOR6PJ/2USjavMQTsNNIed4xtYI9nn0cWdUmZSzHfLAzgiSFj7I94NwEBayfqZU3d1CxXS8axI/ZexKQh4KOYIgzjwP6wZ3t3x831Nde3t9ze33Nzf8eb67cMY4vJItatsU6CCrXKiNHgvU73jqdpShaLglziOuRMiRADEso3TaL/UoI6OytNRlVVaRhQAGI5O46WcfRoLYnT9aKRYdo4sr3fgZGmYLFYUFYZwzDh3CiFhJZ9d7lYAoZxnOj6jmlyyUa4omkWdF3HOE6nqXJdVyyXSyTwUswUvIsslxs5x77jFPJv4/W4wXiMZMBDnTHbrj6Ez4YTHfMdXVsA5x6xAZI1+jRZjm3Pm5tblCQ84L00GWKMYhmdZQoScFnWkudSD57jmCxmfaJvBcUvvnjF4dhxe7fl/PycyU7c3Lzlz3/6Ff3osQGGSZ/O5MeiZ7kSkpEGtsYIbdpoLYNdJfXCHIgptVqRNLImPU5o6TEGYlqfop+QYth7jw0+hdUV5HmBBKXmlEVNVdXsd3c4N6UBsTo1cc55SOeqD5IpM39W8+cSUgMyazFjlIwYbQxRqXk2zQMt/sEud6515iHGrMf49tfnvS6edHcwd2cRJdSkwXPzdsef/slPaI8tKka0eiJEq9TkjVM4NULjIMHIx7ajqmQIk2U5MRiG8YiziuO+5+tvvmK9XlOWFXYM5HnJYtFweXlOWUn43TgNtO2Rm5ubk3PUD3/zt3ly9YyL8yf0XUffHeg7n7JvupSjo1AqIy9z6rqhrgumacBOgpK2c7joMLDenNM0S7yH/X5P23U4b8mySPA9RsfTnl2WuTQ/VUGMhhg0wWv6rqXre8ZhEP1IUT0KYpytt7+bCc13bjKyrKCqYrKbVTgrN8v5+Tn73b3w5p1sjjEmJrSWX2SZFOTenQ6hb1uQPWwcMAx9gp9Kmkb8gmehsfUOWg/KkZucRVOhiPT9UcKVXETrDEmIjqebLYQMrbO0sLI0mQCDZhxauvbIzfU9X3zxkqrOqZuCs/MFz5495eJizeT2HI7S5bZdz+HwlpubG16/fM2//Bc/5e3rO3bbI4f9Ee/Fl1x0D/r0f4WQJfRkbrJIFDIJrpo3itmCT0RZ5kGsxa+iGI9hY3VykyBNHkQ8PI4jOvHnskwWqXOCrozTiHX2RHUr8lJgyyA0uHEYmKwEK+ZFmShZSOLyOOKmEWNguaxZrmrqpkRrh7c9+7tr/uRP/gVgKauCcWj56OPfAO8I1vHFL/4SFR0X5xuKomSynnbqaPueKWj2u5bDsScvGw7HFussQXnh0aIxXrHdHWm7Fmst9aLhdr8HpWgWC1SmyHQhSAGKKstRWcaxn8OR5D4tF0tBcNAMx4MkgzqZDMc4oYPBhIycgugi4zBwf3fLs/c/xlQlTsH19T3HY4cLjtYO2BjwShN0xldffUPbHuj7jrpqWFQNy9WauqnZ7/cne+AiL2iWa5arDVeXl1xcnLNarlhvxJbS5FIQ/zpfFxdP0VoczFQW+eoXn7Pf73HO8vf+7t+nKCrEjW0th4rWNE3G7//+f8i//Jd/yP/7H/6/+NM//RdcPrngydMrfvM3f5enl5csn37Eb6/O+fwv/ke299cc91uIE7MrlTEFMVhitETvyIxYIKNE5G0yGT6E4FApf8fMDQaiS9JGiXMYkohrjPCfmzpjuYhcnl/QTxvudwN9H9nujlzf3rPdtqTIIEweIcvQpiA3NWerKxSG0Xp80KxWF6wXCz54+oSxHfnow4/50e/+mCr33L19yauvf8k/+6f/mDe7A8dh4KyqcX6iyAxmuWB7PGB9ElNpcW4TnrpH55FmuWK1vuTy2ZMUeDXgjy3BRdw4MLQTx+2RvDAUZc5qvaHvOhHLKzg7v5BJrrWYUQ6hoe/Z7XanIm5unMtSQjgJGkWOs0IV3N1dY6cOZzvKwnB5vmFRl+jo+fkvHFVhaJqSGIw4cOWGEODi4pzleknbbvnm9QvGocc7x2JzxXK1IQT4xc9/zquXL7i7ueHN69eM3nF9f8f17Q27/V7uBxVou9ec7ZanFGjnFNMo67CsNFF5CXHUUDcVISimKXBzd89oxRmmaRbYJOSeppGqLtlsliyaioigB3a0jL1YljfLJev1Eoxntz/QdQMjkSdnYiNZlgXHw4HJ2kQVzNlszqjKBqNzjt2Btjty7A5pWrmiqWvadqBt+2Tlqri8OKeqCrSC/bFnv+sIIXJ1+UwsxIPl/v74N7QD/Ltfj5uM+e8gdUQxuyKlr02TFXQynXuA0AdNjkIaxFwb/GQF1aoq+n7k7c09v/jqBT/95Uv6YcK7KKh3VEREU7Ztj8yC42M74INY+C/qmrKqJVi0aykzzaHt6fuR129uAHFodN4zOvBRzmk5tx9oKI8n+Y+bKo3GJDpjWRR4b0Q0rRSLqiYrCrJcwtzWmw3aSN3hvGTlzAilMQbvHO2xTQ5HwhRplo1M1qsK7yOLxVKMFiLUzSo1WQHnZNoevFi8Rx9PuhjJBZHuXCn1QGNTisl5sqiImaaomyS6j2SpEZmD46Zpeud9mAXlbdueEsVnW9tT/sip5pNB8nwplfTAQQZH3mu+/uUb7t7s+PlPfslnv/ERl08uWG9WLNfrUw3kPbTtEeeExpzlmmfPn/L0meLZexMvv3mJ9xZtHL/4+ResNyvOz8745JPPeP/990VgraDvW66vr3nz9jVffvkF7733nPff/5D33/uY5XpO4VZM1tJ2A8d9y/HYYW0PKIqyYbO5wGix2B6GicNRaFG7+1sWeclyseD582dkeY7zMIwTy2VFl/K27u52LBYZ5aJkuahoGkWuC5TK8b4QG+5BxOeCHBuaZUFVFkK9R9D8/e5wCrf8Ltd3bjJmqoAUbIb12TlVVXFxcSnw2yBx5+PYPUwWgiJUtXDMnQPuqOqKKoWIZNmjZiPKVN97z/X1W5pmwWq1OoUKzUJlhzjO+OBQwSeBkRPxtRVfeaM58QFnRypjxB+fxNUmTfrDo2REYkbfRoZuZHc/sLs/Mg4B7+Anf/YTtNa07cDr1295+eJrgc37kZdf39K1Mq2yk/huC1UsSsATcuYLXJs6bSJKJ9BCiXvRjPAp4czI9DM+9OPpi48+k3j6q9YaUnGklbhCoOaUYfEPl0RuoToJ3XBO7hWLssyIN3heyMGLkk1HjyNjQp1EECvcT+/CKWQoyw0xeHa7O375s5+wv99yf3vL9vqGqi7IlEZFhRt7xuBx44jCJvcLhF6hM5rFkssnz7E+clPfk93cc7+9J2qF1zBOnqJaonWOVgXjFBgnMQJQQ0cIFp0ZjFHoPBfaShQ0bEqN8CIFBDordpJlUQkVLi84qIxpqPBWIEU79LLBG4OPGdfbAyHA88Uln/3u3yHmGVFrmAJ+HJmGjv3uPonMpTnrhyEFA4KK6mQ60B5bpnGUgy7PWW7OWG0uWJ9dCKe7aYQ+kueJahgJ/tfXFQbguO9QylBVOc5Znj1/Tl03vHnzmrbbs93d0XcjVbXgydOnkrmiDReXGz7+5CN+88e/zf/4B/8fXr96TVWX/Mmf/ITf//3f57OPP+Gzjz7k4x/8Hc7ub9ne3+CmjvZwx9QfcXbAhYfQK+c8s6OTizZNPZH399EhJQYS8rM/UK5koUrAYsqo0YpMeUoTOF8W1FmkypcsK83r3DDZiPMw+cAUQZuCplrxn//9f0B3aLl+e4P39qTJ6Y49P/zhj/jgww9YLEqmbsf27UvevvhKrFUPHf04kRmxtrTeM3kLs5ZNaRn0RFDaiE1nCgG11vL25hVFrmVY0LUiiPcyCdVKHI1i9OR5hgvi2lYkTm9IxcjV1RW3t7fihKIVVVWdiiSxrpTCbrXYEIJQV4P3SVMHPmjawWIOPcNoUd7TlBpfFSgl1udVqakK2U+HYcDFLX5/4Kc//wsxnChKPqnXTPdburbn5z//JXc314xDT9SKw/7I7rBPjWyy00QDGX3nGI1wul0QJDTLhI4xWUs/KKpBhi/eeYbRMowTRVlispwQJLXeB4fSsF4tKIqMSMBbj5uCuMUFzWotlAl0EEOLbsC5wPnFJfWiwWiN9ULBEvGu6JWqKkPriPMDx25/yiNYLlfkWUEI0LWSx5FlRrQeRZmEnQPb+zu0LqkqoV/GGOi7jvvt3b/nlf/Xdz12THzsOvQYxXhHFEx8GNyRAmQTBYqoGEcZRuiI2CB7sSS+3/W8uNmJMUCE4CAquRdj8PRjL/VFjPSjS6e6IAZ1UZDFQE5EB6lLXAj48ODKKHbwJFaUeqdxeoxizF+DmRUie1gMolszJkMmIpqyrFBG1rvJcpTOkoGOxmTxhOwSInmRYZRmMMNJ5xBikFyMZkGzaHBOUutDiJRlybJep+I7nIapMULfd/hUt8zPH+KDG+jjzwvUKV8nPnrds47j24Lux987097mxz12oHp4/sc3C6mwemB9yJBU7oW+c3h7ZJy+YLl+w3Ld8OTpkwcXPuT7q6qiqRs2Z2cYkxPJWK41u+2W/W7L8dBidEVVLqiqJlG5JGi461pefPM10zQSQ+Szzz7l4uKS9XrNcimaV3EkdRwOe9q2Y5wsWV7IsEArlM4ElRx6xtGy293hgwUCZ+crlmVDnono3HnLMIy03QB4MqOJRmMyLSwXxMxGU4gDrA8c2wPtOKQmT8KsTZaJPbjJJTzQO7y3VFVJU1dJM/1vvr57k0ESF2m5SeqmYbFcstqc4UM42XNNU4+3YjcafEhFlWgBxmmiXgjkXeRigSYJzprgvdh9jhP323vhojdLgekT51cphSMwjCP5OBKc8GPtNCUIL6AwRPUQVf8gGvIJVpxhvpmu5YRmlYLdghcfYOctfe/JzA6N4S8WP8M7x2F/5JtvXvPiq5cpw8JISrPXxKCJaToSH1n9zhqJd4uU+R5ON36icsg9Pf+M8uXTR/lX0DRh3oTkizoKtaEoxEedRJsoylJEpzPdSYsIVfi7IhCfOZtFIYndMTqcn9LUxaUDNVnHac2cWK61pLO7JA4djj2H7Y52fyQ4R75oqPKSIiuxQ08cB+w4nOgbs5ZHKclRuLi4RGFQ0WCd5y41GVEbvDIs6zV5VqFVzu6wI0TwwTNMPrm0iABe61zoXSGgtREXJycpwot6gcsdoKmqhqYRTUB/FOcEb3K0yVHRyMLUGo9ie+yxk+VF8wqngEKcOcZDhxtGvJ0Y2hbrR2kyQmByNhVmQhsR6N4xT8GyLKOpa9brDeuzc9bn52zOLyjzlNaZsjJiDMTvOD3423p5HzG5bIbTJNabWmcc22MKuevY7w/c3N5QVPmJl24yw8XFOd/7/vf4h//df8swtHLQ24EsL/A+8PTpM54++4R6cUG1uGQaj+zvX9Hu7+kO99ipl19jxLs+0aE8zkdJvyYSnE0wuXlgLsa0EPn27yDYo8IoKV1zDVlpyFSkzEsWZcY0TowWJhs59I5gPXlRc3F+wacffcz9zR1TN9BPIyStmFYZH3z0IU+fXpEZ2F/fsr+75bjd4oLCOilQTCa0CueFkqlQqbgQCoIk2wtVy1orVJBxYLRvKDKFIuBGS4ya4NPnY/ypiBlzg/ORvBBUwjuZshMjm7MzoUUZ4fPmWZaSv3WipEkBsVqvaY898/antCFqjUczjh6lBqYpo9SGTGsyo7BWDsQQtDQ5Soltog+0o+X1q5dSzDVLnn9gcd6y2x24u92y3+2l8DeK4/FIe2zp++Gk1xPKSYazUTxHARcDRZFjkhOP8zK86AdLXYnV5TBaGbCYjMxkqdCSdVwUOVVdojVEH3BTwE2e4OXxcmiLo9Hh2GGtJzMFy+WarBC9jB3lzJozh5pGrFJDcIzTxDj1+CDWmnW1SBNiT98L1TgzGXVdY7SRBOB+ZOgHVutGDBSKgr5vRWj7DhXn1+uaOfjfLii/3WScLE6Z/zwP5d597XI/p+dAtHF9P7I79tztki1+0nJGlQmzIAqaN9vcTj6idZBGI0bJ7QkOQ8q1Qon2ICYElW/tIOpdp8iZ+vMrFGkEwYj+YfhhTJ40WGKZPNPas7wg8T1lQJwMZcQd8gExeYw+CmM00SOzHK0jdpJmShtNUZaJlREhVicnz7Y9YNOUNHrJJZuzK759qykeaE6y7yLD0EfN1OPPeG425vfgMZXqsRbn29eMQpPebbknHmqwiMJacbg6tj3lvaZalLTtID+Xkoyhqs4425wJXSib84Vk780Lg8mEMpZlJUVRk2UlfT+y3+/RRtO1R/b7faIx1lxdnVM3YuuttGKyo9Agh4GuH8QpU0ldUuTymn3w9CmUr+t7ju0upYPnLFdLmrxCxZhq6D6J8ge0imRJZJhlYmkcIzincC7DWSsOWMeRKUzoTFEVBXVTpTNQXLpCcJJXFyNNVZ4SxL/L9W9Bl5LCKARLiJ68zMnLElPkXDx9dgruMEbRtcIPa4+tHMcJXg9aURQ5ZVVSFiVVCqcT4V1gGDu6ds9iu2Z9ds5qvcFOk2ycRhwNOjtQDRNTKUFn+/sDbTsI/QKhcp0El/GRIIyI0QqXZyduYEwVfJZJIFWeZ+QmI88M3skUs9t7vulvef3ylr7vsJNlGh3RlSd4UG7ZZJ02LyOFwEuzyTZSqH5bgHraROZu5LTZqdRyJyeo+XzU7/IOlU6CNcRKWCcdhkqFhc5yyrri448/ZuhHsXU87CmKQqzrUKzXG2KMIkyOiryQ6V0/tKfPFSVhieMkDlrRu5M4tCwKsiyjazt++YvPidZRZwWLqub9Z8/55LPPWG/W5GXG/u6W4Ca8HXHTgC4rsiJns1gxWHmt0zDx9OrJqfF89fYN2zYj6oJmueDs4jmLZkldVqgXX+DChPU9k+1PkOgx7GgWAW1yjM6p6lrsKftA3x1Z1EuqoqapliyWq0Qh8+z2e+q6Jq8ayqrBrFTy9LbYYWA/HtgfW/708BP+T7khXzSgFJ//yV9yuL4jRxHGicPhHustWZnjg8fkBVVdoohMPqBCoKoKNptzVssF5+dnLDZXNKsNi5VY4lVlLtzp4LHTQHT+lM3w63q9994zhvGIdSOHwx5JTc755OPvo1TgrCxoFhX/9H/4A8qq4HDccTwcWa3OyUzBp59+RFGt2O1a+rbD2pH//h/+I77+8kuUivzv/jf/B86efcDZ1Qc4O+LjwNAfeP3Fz7Bjz/buhhcvPsd19zKa9J4YXZpWBiY7UegsURdSijCylnWiGsiBZlAYNAWanKgdZSHptjEEMhUJucHlGdtFSeEyBqvppo44jZxtLviP/8Pf54uf/Yx2e2A6HLm4uEBhqPOa3/q93+P5++9RF4ap2/P5n/4Jh2OLUjWL9SVrlTNMPc6O3G5v6UehNSptqBdLyqpCa+Hwz8GaIUbsNND3ByY3Ef2EipFMl+i8Jib0IzCBkv1SG6EMxBDwVcnR2pPLyGq5pFk0dF1LVZXYaSDE2bWuBBXx3tI0FcMwSHjmokTpmv0+cji2HLuJsZ9Y1hVPP/kEFSwRjXOGjz74gK7vGYaesixASWha3w3YLmXLDIH22KNNgVY5m/UVwXt2+3tubq959fo1bdul5mneF/U7BVxMheA0uWRoAmW9JISM/WEi+IMUdSGwWq6TMNTivNwzdVNxdrY6obveOsZ+YhwsJs85P9+QlZrJTrRdy6tX17z3/EMuzq8S5WpgnCxd34nrTsoUKctSbG+Hnrc3t6nwqGlqcaYSi++O3e7A82dPWS4XFHnBNHkO+45De6RqGupFSVUbIPDy5Qs252f89u/+3t/oPvDvcs1nLjycn98uMmeUf550C5PCnWyliyScRUm4XJcKqtzkBD/SHltubm7peqFKEWT4F4M0dCg5F8TRSBpscYOSINCxPSYybkJBMKcsHRmSz9banAr+2SnqsWPktxsprWTAO/ZidlKWDWVdJX2hoaqbFCOQkRX5qamIMVAvl4J+aM9iucJOI9M0MWsdZvOevu3Y3ouV/Wq5Fsp6LgVtiBOKLA3GGppFTbNYYKeB9rhn6BXBO0xiaugQJcdqDvIN/lGDKK8/RGlMZgrUjFbMLoO/qj2Vz3vOg3ncLD1uLh/fHyBGAN7b9P2pbgsQnTxuTPvj8fCNsB+Q+qpZZpyfn3Fxv2O/O1A3C5TW9MOID56LyxXPn13x5ZdfYXSJd/DN21d8+dWXlEXG2fmaH/zwN6lTvTtOe0LwdL24tI52lNdiHcSMxbKhLCoyrWiPW/q+5XBsef32miFliD1/fsVqtaDIS/lMbWAaRvp2z/64RWvJJFssClzKvjBmQlEzDJ7uMFDX0LZ3ODdytllxdbnC5KJR1ToTwfnoaI89VZVTlzXLZYnRMelv/prpUtPU0feDwNoqonWE6Oi7ljwvhP5kMomnD5IiqY0o0e0kwWZ1syDPM8pizk6QdPAsy/HeoaaIj55muaCoSkyREYjY4AkK2QBm96CsQGlYLS/QquR43FOWwleLMZwgtQeBkCd6wTy9fwhxUdrgA2AUhogpZCpvtKHvhUdJl+DN5M4Sgkl8/Yf3R6mHYLoT5HD6JZdODcHjhXJaEIkzKPxvkrOOmrHR07PKunzo8o1JjjUqSiCLFkGYC44sL4RHDlxfX6OV+GcvFgvgYRJkrWNWfSyXS+xk6YeBuVGdw/hIXtbBB6qmYRh6NJHL8zOaZiGiyMOACh5qyMsMZTxaWzITWFQVN29fkxlFXYnmJi/F+erJ8w8YxsjQT3SHA7+4v6e3lmPfMziLKSvWzYonl8/ZrM4xSjazsipQilPCpTR1GuM8WV7SLArquhTamhI7yPX6jLqWQiwvpPjf7/ccjy3L9VpSkDNDVVbgPX3b0Q89OstYNGsKFXi62lClzT26QKEyDnd7Xnz9Dbu7Ld3YYoNFZYqiaSSIUYGzgqTkuWSyNMuaellTNiX1sqJZVtRNidLCeXURgnXpgItJcPfre603Z+y/2XF7e4c2GucCVVVTZBXT5BiGI91w4L3336esSrTWnF+c8c//2T9nvT7jhz/4Mf/1f/2/4F/+yz/iZ3/5c3b39xgU/aHlp3/x5/zub/827z//kPPNJYWp8THH5CXv/7Ai2olnfcf73/9NXr/4HDt02L7l7cuvMDqgoifTOdF3Qg0MnKbywicOGPMgdJRk5hGlpqTpEO3GXChMNtAPnqBKinpF0TRE4zgPjqoouHn5ite/+Irz1YYnl0/wXvHhZ5/w0aef8IPf/CF1qbl+8SV//od/wN2rN3Sjo7OO3WDZdy390DKOHaMTN5usKLm8uGKxWJzoD10/YCcnGgoTcN7gQkZUFW4SaphROZgCnUmQ6n6/S6I+oRUF7/EuEnzk6tkV4yBp0q9eveTu9ob2uCcGh0ZShKfRkWfiRpXnhmHsaJYNZVWzOTsTOpW33NxeE8eBaDJ8LtTXRVVQljXr9Zqzs0s2awlDdX7Ex5HgZICRYeiGjrGfWNQNy/UFISrcODGOW65vBl69fMU4zLa6hVCZ4oP96ZwQ7bwUkVFJPsrh2As3vSlZr2pu73c0VcmiEX61CxJWar3j/GJDVctkjyANxjRYxnGkbppTRpCdLNvdnvvtjufP3uf87IKmrlFojsc+peyKe1ZVy74UQmS73dINA0or6qqhrhuqsuZ4PLDd7unaDjuN9N2RzEBmNMeDiEUho6ykYYl4vnzxUy6ePOHps/d48vTZ39ge8O96PWYoPNYvAIlaIlP7E/KPaDJ4FELrUvqy0mI6o40m0xmmKEFNDNPE7nAkhKRD1QqVmsp5+GfSJELp+Qz2M/SZ6AaKiMEn+iUIe+BkQqNiypWRBqOqqtO0fRxHQSzig3uS9x4f4omeqLQmKkVelKfh5nK1Og1QY/Sia4iJRhTTa4lIgewmiLL/woOjVFmWlEVFrnMW9YLDcY9D3N2MyRN649FGksSLomS9Pj8hFMPQk2fJhS4GtHwwcoYpldgPCd0JQuEM6XUWec5sOx68TSjMg77inZqJB3rUY5TjcUNiEp302+jXY0dOTISgTwhNtIJyyBA60O0tdrjn/vbIm1e3MqAtcqqq5PxiQ1mIhvfqySWHwz6loPcUpaJucs4u1qw2S8q8RqFo20jXdZIC7iV0uCgL1uslzeJc9HHW0/cd1ze34pK33VIvKp5cnVM3BUVekukMb6E9tnTHjugdWjuaupE0+8ygdcH9XcvkLEaXTJOn7wa6Y0s91KxWJZvzBc0ioygrQON8pG2lmTZa8fTJiiwN2IIbhHZL4s1/h+u7NxljJ/Hl3kHUECaCz3BWU5biMFIkUbdzEjGv9EMXKn/XKbgvSxOGmDjPggKIoMgli7I0bdLJsYqINuok6FaJwlKUJdY5VCc8ROHcxpSE+Ah6RMn74hMfTyFp1HNfkG6w4AOBcBIwPXbLeszpm1GQmS7xQIua79z5T48nEadW4R0Y9J0bPiZ2xtxgzNxAlWDWdxobEnQraEkMKXlYpcWW4GFtFNaOKcHyIblXayNuE4mvKnkapSxi7ySpOB3IWS4BVM55XCYToUxnqeHUxCDCMmsdZZ6J6DRC23d0XUtTN+iVwbn02QRxwlFGE2JBXSc7PQ89R/quxat5I9VkZUmWl1SLBUVVQAgJVQupCAppGp1ocIiTkWRkiF1ylkkjXBUlRVljMnHe8N5JSF+MVFUjAkAjBzQ+YCeZ3GqlqEzFssh48uwZphCUwnUD3nq89QQbMFH0JzpZEZZ5SWTedD0mKynKgrIqyYtCEqZjsmTOjATiZEZuhADa5GLfG8Da7+bo8Lf1Wq82rFYbxmlEKeH8ZykQKkZFPyic9XLYJO2K1jmz2DJEy4cfv8/b67ccDkfyLMNNA9Z6vv7qa16+fMmyWbFZnwkXOUrAYrVYgfcU9YJysSSaHD/12L4lRM3+7i1u6mXgARBlQKFmi8jELxY9l2gSvARiyDr04u8eAeuFHjrZwGCDJDpTEFUhU6pcg/e0uz1VLpkzRVGi6iUffPQhn3z6MZtVw/7uFW9fveDVyxeESXjf7WQZxpEQA1E9cLvRWtxMluvkgif0RR/AaIfPDOtNQV4oslxsLPfbHX030ncOF03Krymx1iW+tbhwZZk5BXnF4B/89PseO4mDUjwd7vGECJnM4Lxokqp6cUKBuq6T1G4tw6IiyymyEq3lXMi0TtTOB3vSruvox4PA+zbgpknCQJXCO+EmKxTejxyOBw6HwykQTKw+H0Si8K7AVgdNUKlwiZIZ1PfjifKFsrIfhIBP9BCloCpz+ewyCWadE72d8+i0f0hwXkZ3ODCNso+sV6tEURVTDqH5KvK8TC4uYnTSdh39OIjrXJafAreEnjwlGqgizw0+iHWvUnBsBxm0ZEKrct7j3EiIkbOLCzZn5zSLX9+8nceJz4+Lx8fulZB6DPXwPTNlxswIQfqa6E3F2AElGTbWC717/n4FUthHxXyrhEdzRPXIMnXm889aym/TomZNqOLBevWdB5LQjZTzE9WjNGvm9HJx9mwWi5TKLftA9sjUxU8WO41paGnSGkiDk5AStpH0c6mdTKLnRYwWZKMqKw6HfbJ09xgTT8NQpRUqKEymKaqKRVgmPUBPsBM6SJEaoyc+uN3KPvDO55OQBjWb5QBRJzThxLF8p3l4/L59m1r27cf8VbSzh8fNvycX07l21urkROijILLT6HCTT9EJGXVTEaPUB3aSFHNhuoyne06nn7vvO2IQSqNzYpojKIyiKHPKspB8DKNo+5H22LG9u6M9isi9LEpBjuqSqhKNxDhYnHWM/YB3E1qnGi4XbZn8/xVai5vl4Kw0CCqSFULTQldkhQxhvZ/zZiJaiSNrnimKXKHVA0VwHrZ/13Hnd24y+lYEr6IXCHjb4nTA6EBVXNCkybTWGdOoALHqtFNIAX57YnQYU5DnBqUjzlu0qGEh+mR7OsrXlTwHxJP3tyIQ3JRcYhzK5OR1Tu4LlNEYLVSnPDPJylUxpglAVEkYHSM6LX+tFJnRMu3XKv1f7nQTPL5p5wPqXQGTLLT4aFLx6NYXOpN62GjmhuUx9/Dxc512NPlG4rw4UkPzLnAq18n7O0Z0jKg8oowharkplEYEP4ZTsZ3n4thVlBXnZxdsd1sJ88pk4zq5WehICCKWLIsSrSXTwydtg045JkM/URSjCCG952yzocgNEc3t3ZbVYkluSi7Pn6PI6fqR+21LZKCZCpQJaGXJjKbINVWZ02tFUdbkOkPnBUWmMLnkAVg/QAhYJ9StaZIk9+ilLp8t1sZxICsETYvAslnRVA3LxZrRPqTDzimjRVWRmVoSk42hqGpMlKJ3HEYUgUrnXKwWfPi9T8nKgnGyHPcTx75DK82qXmLdGh8tNhpMlbNcLBjGiWE4YnSkKLKTrXCei23rOMqGY4zck3VdEb2CqDDR0B5bfLD006+38Pvq8hKl4fz8DB9G5hTYzOSEoPBB3ifhqUoBNk0jH3zwPnleMNmBy8sNn372EUoprt9e8erlKw77LZ//4it+8YvPOdtc8PzZc/JsjuWLKB1BJUpnWfPB8hxNILiRZnXOn/zB/0A/3sg0x1Tge6Lv0FmeDr2AnYRWIE1GxLswTwRw3pHrnBBhtBY7BcYpMlqFyZYMzuB9YLNpuNysGI9Hvnr9lt/9wY9RKsdjePb++/zgxz/i008/Io8j/+pnf87XX3zO/W7HZvME7yJTGBn7nkxrqqIAPOyE91+VTQqqq9CZRk8QbCSYDKUKPvjwjCfPNpxfrKgXDb/85Re8enXNl1+8pRsjWhVkpqK4qJimXvZnLRQddMSGkf1hS1FU5HlxsrlVqdGfObtaa7quk31RadquQ5nshIS+efsmDSMq8pWhMAV1VbOoV5S5FHzOjvRdyzgKxej125d0wwHrJkL0HI8H0SdUJcfjFp0ZfAi8evUFX331OW+v3+KCAyXJ4/lpsPLuvvuYphJn/nhU9P3ENImAcrOpGXNPNkjwKzGQ54b1ekVVFukMCLiU5u2Dp2mWNM1CBOJRcX+/w2SGy7MLVqtFmrBadvs9ShnJMkpNiTEaFxxvr+8IUfaiuq5Zr1eMo+Wwl2AsQWdyvJ+IUSafx2OLD0pEo9qwXC65vn3NZEc2Z094+vw9zjYXaXr963nleZ7cbfzJjWj+JeF5Yq856wweF5lGa7Jc2BPGZIk+lRgBWhFVYCIwBo/1DqPFCSrGB46+7Adi7CKZNMjhnKQdIc7DvlRN/0o5JrXGO/VBFAvmOb9rtoaVBkYlutdDc5znhrppuHryFJS4LvlkzhNDwFtLP3RYN4GSzCtx3oLZktp7zWxsIe+HSe+VO62LqqpQSBaDtU5s7dNQUhslulSjJU+nkObYTpMgzJlCp5rJ4VJdMddLpNcz08VBGY1OtuFaaUCQxply/hiJmGlR39avzF+brweE611dx+MrItpZye2Tz02T8n1man2MQoYPHnCgJtpDz2F3oKxymkXN5uxcGjGlU+OQo5XheOh44b9htVyzWCySdlm0bYvFirPz5Uk30XcHtnc77m7vefHNCxZNQ9M0PH/2HJW62+gjfSu2unaaAEdVGvIioygyqnzOsdB4V6BiwTRObHcdi7OMqs5ZbnLevj4kkr/BBckdikn/tliW5EbWRQxCqYtpsGudx3vw4a+qSH/1+s5NBjFlLygFyiQxkENhWTUfsl4p6kYeaJRBo7i72REjeDsQw8A0HQmNBKD5MOETuqEzmeQVpdgmihhcNAAiKhb4syoySpOTB0OFojABVWf41YL3z9+TSSPCuXVjCWF9gsonJz7ZfT/Rdj0ueCKSteG8Z7JObOi8OzUDj2/Q+eb9tuDsMcox38TvhP48moTkef7O49wjtAX1KKxGpeRzmXWkyQtJzf+rXXtmRIRTmNkhyqBNTpHVVHnNolqRZUI1k8NUyZA8RibvubgSW1GFUKGMMUyTYX+453A8SsKkMjTNUrjpKIbuKDatznGcWnGJSAmZx+5Ic3nF1eUlH773nKnv6XtHexz43me/wTB0bHd33N69wvmJ+/sj/+pf/SkX58+piobNpiEzFcFUTOR88pHh5ds33O/uePH1T6grQ12W1EXJfr+DqCmLRRL/W3wU97Fje8BHh/UjTd2Q50JxKoqKzdma0U4cj0fQC4ZBmhWTFZhCDqCyqjlfbVguliyaBbd3b7DHHeOgqDcrqtUKpTP6w46qLmkaEZBblqhCQg+r9YI3tzd0Q4+1Q/Kjlklo0zRs1huy5B61apbUpZgi1FVD9IJcdO1AUBqTV9TLX28LW+cmCW3T56Ac1o7pAM857FuqasHl5TNCnKc9I/vdQXJPchGCn5+fs1wu+J3f+W2eXD3n5z/7JYfDkRjhH/7Df8TQ/SGH/cjv/d6PJR9DK5bLBXNFoJSRdFcUPit4+vEP+P26oT9s6Y8HpmFkGHr6tqVr32KHjuAGikIDko+jiDSNWLOKh34kakGrtMll+qgNKsvRZsVqKW5v+90deRhx3UiYAsfeslgtOLt8wv/6f/+/5fx8Ab7n7auvefPyBbvtDq9zejeCjhS5xtuRznV4POjIs6fPKYuaul5wdnkFJuCDox8UU7LZXK5K/pPf/zFP31uxOitxeuDZxz/g9u49fvqXb8iqirev9nzx87fcvzny9NkTyrLgF7/4OdYLKlFWJXayeBsZ9XgKLSyLkjzLOCT7aG0MuRa0RLjhBZ9++j3KsmK723F59VTc9JJmbb1Y05QVZWaw3S12PNIf7slzLfQQa5mc59hPdF3LoW25294DUBQFf/Znf0y9qJkmyx//0R/z8tUbhlHyQkyWoYxOe6o470lRmfHYqQY4IdpSbSiJB3SKSME4BrzvIQaunpyzWjWsFgskw8MzjoFulGTjplxwcXmJ0hld3/P6zRuqqmK9XrI5W1OWht3uQD+MhAjLRj67ZUIXdvsdh8OOcXQslg2LpmazWdN1HcMgE1BjNJv1mroqsXbi5uYmIVyRetlQ1zVFUfAXP/0Jzari/OKCH/zwxzy5/Ji6Kaiqf98r/6/vconfP4ul5+biwXWIE5o/c/xne+Vo5ol+QZFXZJnQ1Uq9JksBwMfjwH7Xsr8/4l1CElLDoJl1EkqGeQqCEoquzgXREpdHTvTmx2jLnE0hTYakOkcgBoVzIdHHxQEyCO0CpZQYuXwLhfPesd/fkxU1ZVnQlBW50XTOMY1inxxVTHoKGR6O45CaigKlSrxzODuS5wVFUchwrSjx3tH3LX/x03+F917cPhcLqmbFHFFAFPFzSY6tihN1/vz8Uga1fY8dR8nzMLOGVJzqJGdB4A2XqOeZNieB/swkOSEOMaKU1DYzE2NGs6ydEqo1i7sfROGPXcceU61OdVc8gVHMOST6Wxklp7oPBT4Ry1XEBySbqPcc9wP72+6ESmzOV2jtMcYzDp7r66+lEVmvef+99/j+b3xGWVSEAMfjPmlld7z45iXBSwzDZ59+SplyimIIDP3AMAz0w4B1DmMiZSnJ9kVVpKC8DHyGs55psNzcvaDrIuPkCMB6s6RqJBjQeY33ke22pywz1suSuoGqSNrrELAuIrRZYfpMzjNOgWF0dP1fsybj8QRoXkLBB6Zx4tWrF9zd3Qrcm/yWx2Fg6g+JozvhpwGjBImwY3+azusUZjSOYplYlkWiVJk0WZAgtdzIhLvQGYtCE2xOoSMmUZtGl+HjAxyqY0ii6ShJqVHhvCR0j4OkLw+jZXts2VsrSdipa/22o8G3G4tv80DnG/FxAzH/27cfN1/fbmTm9v6v7A2VOsGK334usZqVZkZnBp3l5HlBXS9BGYgZfWepF/lJDDRZK/a4WUbdNCdNjdGGtm1PnXuW5dRVJTSflK5NBO9LuvZIGlwSI0x2RHnhp2YaxqmXf9OKqm6SD3dIHOiAdYG2tzg3EfF040QIJet1YL00VMslQVXomHN18Yzj0dK3FtwNu/sdRwNlbvDRCYqVZYQoQUDSZHjCFMgKTRlyFosKENqA1rBYNpgxYxgGssKk6ZBDZ1k6wHTi30eauqY0Gcd2R7ffoSOcXV2S5yVu8uxvtqDAExj9xLE/YuNERPJbxJpUilNS4zxbB4OgFVoZsQq0nlB4hr4HJB9AG0OdVxTBJxHXr++llEr3UeRuu2McB4zOWSxKmnpJnucURc7t7bVYRE8jKKiqiqoqyfOS3W7LOE5Mo+XN69dcXDzh8uqSsqjxTuw/m8WKfhzp+yMhunSoSVhcUy+TyZwWV6hywebiGUVZE7WhXAQWIdEn7afs7l7THe6IU8fQbnFuhGBP0zU9UzHlBVLmBT4opqCYRoWNnioPaBWxY08fFdEGTJbjVcbFk2d8/zd+yHpZM7UHdsd7Xn35OcdjyzBZJjcxHkaU0jjn6YaOzvb46MDAarGWYj4vyIucyQ5M/chxu6Pbb2makrP1mvOzkrpSKCba/sCb+xu2R0uxPievKq5MQVYrfkHAh5HjcaCpS1zwQmOIQo9QKkLSvblpYrIyMJodi5RSUtwraRKccxyOB5z3GGNomloCpZol02gpswKNwg9yLmityIuMrj/iUTgfCFoIUS4qRueF6x4CYXLsDzvutre0bcvN7Q3WCuW2WSwYJ3HH8wnqn7NPfqXYeHTJFFV4q95F7OgwOkfrHJRYgpqsIC8KxnHAOqF+RhRlVVFVNVpntH1P34tb3eXVExZNTVnlDH0r+15wZEYmnkWRobRKjUTPNFnquk7DkSI1MiPOCjqzWa1oask6sNYSPIQghe/l5SV5kQm6cjtRVksWSxGMZyaHKCGQv66XR+g/KjUW8zk7i7xnbeQJkX809Z6/PjcHIRW92mhB67zj5vaetu2FGWEkJE56zyhrIGpU0BKMmu4tgRzk/zLq0XQdRbT21BicxNxxxjPm8/txjZFqjhkRiXL+z69vblZm5zGiT9bXjuNxwtrp9NpNnqO0FPImOaLFCHmuxCkqz5kSmjBnH2gttHTn3YkK6ZzFWstCK0kl94k6E+dmIJz2PzlLC+w0iT7GGLTXBAIq7ZkkyliMEY04W+rEJnnsGjVfMTFoTohSeq+0FkoWUWYDoN6pz75Ndf/2nyEizrszTYuEnDw87mGgG1OzkxoSkltVBBUiYxT60jRK09MshcofkcBHOzmmaZLg4qqiLEqGwbG9P3A47Gjbg9RiVUaeST6FUP8tfTLA8E6skotck+UKkymRH2RFQrQM7VGiFew4gQo0y4K8ytA5OCd0UJ1FcbtLBZwxmQTUEuRsnBPcIzgv+kTrAl0/cmjFftt/R+b2d24yZr6jfIwq0VLkxnz96lV6jGaRHC6k0TgyTaNwBK0l04boJ6ZROM15kQvkCDgr093H/rw6Wa7pLKMwmqrIaUqDrjNULKmURcfE7w8ZHnFEyTJDbpDFF4PYy6ocsWlU+MlzPPZsd5LiGJxPXLNHh2TqZv+qJuNf9+fHYrRf0VvwIEr6tnjp9FyPnvOBszhTuUgfenznO9S8caUNJStK8qJisT7DWfGztjZQOIUuZWPy40RpMoHom4YTxzOTpN55ypBnOdQN3lncZIVWECHLPH6eCmuNjhprLWj5XI2K9ENL29dYN7FqlpRlSUi5Jn0/0A8j3eCE/x0c/tCSFQ0uimnA+cUGrXJiLDjblGxWHV07cZffcNjf4H3HEUdTLaUAMvqEzpw2qeBxLiNET1UJtcR7aWryIsOFIGmoWUaB8CV1nslmFUm6D09dlBR1TVGUjFGR64yrp8/IioLhOHC43+NiZHSWdujZHXfowotXuJNNIgaPSrbGRom5gMD5c0OqcSn0MLhA1/Xo5HGe5SVVtZDJQgoo+nW95gPSe89uu6cfhpQmu5aJeJGRF4bb2xspLn0gL/K0KcsA4u3bN0zjRNf3/OLnv+Af/IP/JReXG842lzx58pT22AqdxgeBlO1IluVYO1GVItbPsiIVKgZtGqpmg1KGtm8ZR0tV1SwXG8qs5vrV5+zvXmP7PbubgrFvGW0HUgJD9GKEkZDUMstwMaezARccg58wZUautFgcB42OhryqKZsFT5+/zw9+8EMKpbi+v+HmzQtefPkFx7ZnsBOjG2m7o7jwRQkrHeyAi46gI02zlkmqNujcEMeIGy3d4Uh/3NNUazbrksUiQ2vHOA7c7+755s1r2smw3ryPyUs2i5KzJ4bpMPH6mzsO214m5emgBCN0ApDiygn/eJpGeUyc7SNU0jsJRco5z/32Hucc6/WaSpecnW04v7xkf+iIPuAny9hbTKYl9CwEdse9JCejmNzE5B2T80zWE9AERIzetR332/uEABxQuqAoS1arFarrmJwFZ3F2ktpGcRoo/WohMVM4hKbqfWAcRfSqzNxoiIgYbdLAxGFT0npZ1dRNg4+Rtu2Ypomyqri6ekqWGWJwbIc7gvNoBWWiOBgjQZDH45FxFD2I5GTUaC10ynEUZ5zMGDabJVrJJNJayR0BKeg2mzWowDgNVHXJerNivZHMKUC45d2v7z4SUemcUe98ficLWOYiP54K+xm1mlEIUEQNUSsZzpkoVCnvuL67p+1HjCkotRZOPhGPl4I0atmbTUYMLhlAPtQJj89/nSg388/xOMl7puaIR7poNd7VEehET5dq7nGjIq6PQt0Eye2wFvq+P9UYxhjKvCTgmZx9qD3SOjWZQSGogPMOnCUidF6bdLUhNS/TNDIMXaqn5J4TjZw/1QsznQylE2IjjaAhwxgrryW9PyrMRXo4GcwoLYNreNBZzH+Wzz1NNEl5JxqImmjSZ+pjAiEV8KDbedxo/IoGJpVTKn0eM5vkcS32+OGpLUwN4vwzyTM4F5iCRw2imbK+OYUQlk2WCnWffhZpzqZx4rA7cjgINfTsfHk65wiRaRoZh5GulVraaDGlyQqDyTU6E+1V9EYoTDawP3ZM/YC3juWqoKwLfNSoLGO0I9MYMFkgy3S6fZQ0rOmzDQZicMSo8EEzTmJiMk5iv70/tIAiN9+tffi3sLDN5mE7whdMY2w8eYLCIo7+uKeV8/YkJFFIZxuDODS5KQhFJGbkKqPMKygbQDb2LDMpOET+H5V4YplWoCMmy8VPXRlMmFDBU4YsLbgAyqNxEjinkxYhgvOKCcXt8cDrN1veXO9pR431ihAloM77kDrx/B3o7XHoy7xZzVOJxzfxnN4836CPm43HHfq3m5dvL4C5wQCIyeseZU6oxbypFkVBWRYScFhKMVqVC5brC7TKMaagKCoO++2Jd7pve66ePufsbENUisN+j0FRZjm73f3pZymKUsJfhpFpGNGmkOVtcrKqoSpWqOhp93d0XUtwAlXrENht71DBs31yRZVlTApuewmBciFifWCxPuN4bJmGnsF73tzt2R57Xl3f8P3vKarmDFMuiarmyfMnFE2NKRSrlWG/e8t+91Y8/0fLZC1FVUkquBN+q8k0wUfGYeTm5ob33/uAelHRDUe+efFVCiqC6+s3xPQZn19doZmLDUNZ5Dg70aUwr/N6ycdXz/nhj36LptnQb0GHgu3+wKvra7559YK7ww3LTU5eyrRmGqZTtoAOkUxBlRnWyyVltUgwp2SbnLixWmO9J1PyuLqq2e+23N69/q5L9m/l1Xc9eV6eisPJTig0zlpevf6S8/MNV1eX/PZv/5j9/kDfS8jnbndP13eENhICrDcbnjx9wkcffcg0jdzcvub87IyqyqiqNZeXKybb0zQ14zgwDD1dJ8nUr16/5OnT5yd75qurS2I0YjCQN/zf/5//V56//yH/0e//pwRT8vTD7/PBh99j6LYM/ZHDfsf1q1dY23HY39AebtG0KG+J3ksBqXPkvA1M40hpNRk5mTEEL7aZZxdP+Lv/87/HZ59+yuXZirHb8cVf/oSvv/gl17c7jnZk9BOD6/nm7Ysk1DREneMAG2Sq2FtHHhW1KYlkNPVSbHgnx3b7mqAd9bqkWVd03R23d2/55vqeoBYszq548uEPyEzBcf+Sw92O//N/81/yxV++4vO/fME//Sd/QlHUEgaFHETWjjg7MQ1tMgKRwneYJqwTG9jLZsn5+SWL5YppmsQC2g7gK3RmmFzL7hC5vrmTcKgIOlo++/7H2KHj1cuv+KM//TOstwSEMjVODufFDSoERV2VLJqS3X7P3d09++MRHxXnqzVZXtL1ExED0aPQLOpFmvyKd3wIJFRRM44T8xRVJrnCBVcxMA5DEsdqlsuGcYy07YTRnVD60kT36vKpNNAxcH+/5di2NIsln33/N2iahRQLw4S1YPKSKjMslzV5prF25NjuePPmDev1msvLS5qmwXvPOE5p+BNYLho2mzVlqbGTuAdtt3uyoiIrpcC+u78TO28Cf+8/+y948uSSqq5QKrK7v+Xlq5d88eUv+G/+j/+Xv+Hd4H/apUF0gWmqLDRKCX6cpikVoIKGKfVwtoqZjEHrHKNLyrwmLw1tOOC1aBo6a7m5FyQDDHWxxEUxg4km0ZXQaDLJM/AKHWTANWsaJOskOxWiZZUCcNMg0DmxzlY+kmdZygRUZEX+KzoDmcpnRPxpv1KJ0qPT+Z8ZLQYkTpDCx0F1RZETyaV+S40LERn09YPofapKwvT8LOqNSe+SEIoY6Pojw3AU90kbmCZLnudkKZcDOLljifA8SCOY6jylFSH6pI/T4mhpLTqLp0YJZIB9MmHgQXM6o//amJRRIUNBYwzOCSNBqeQcmiby3vtTw/cOYjkPzJORjtC4VKLaK0gGHnOzOl8xRtAJXSKxbx/VbPPgIkTouxHnPEM34Xzg/cUzVMiYBs+Xn3/Fi6++QQHeRdbrC5ZLMcbwYRSE2FoOuy3Hwz4NfDPqssLk0mDklZEGC030Gfv9nq4TTVZd5yw3FXVVkGc5UXmsA+sz+hQuHX3k+RNxEh0Hy/b+mi5CU5fkl0uhxNrAaD33u5777ZFhnFBElouCssjE4Oc7XN9dk4G0AApFpiJ5JqJfQqCuZYFrY9gfe4bRY0MgKpNyrJIvcUqEBPFutpPFaEOe5WzOzwXuiVFU9zN3USHBNjGgY0qYzkvyKuPqYsXU7rB9izvsZealNEpnEDMgHRQq4LynGya2+4FvXt3z4s2O65sjptgwWo9L0ZuPm4D5Bp2vxzDcvLFpren7/gEGBbGN413a1cNG96/h+z2aYHybOzhfMdF4lDwwTQwKmnrJ2eZMOMhFRV5U1M2SZrFBqUyKmhRbr3QkKMSVy3v2hx2r5YpgLcd2L5qGBKlOk6LrBpx1KCVhdtpk5Llm0VQ4O2CnQdyifBSetVKgNXYKtG3PixcvWZQVOsrX86iZvKcfJ/ZtR9v3jNPEFBztOJJpRW40Wbnm7MKzWEcRUTuN9wPejdzf3nE87Bi6AaMhUwqVGaYpCfe9uB+omdI3WLbbI2W5Y5wiWmV4v6euG1brjaA7MYgADPlsvXN0x5ZlVeG9Zeg7CiJPNmvef/KEzXpNjIr22PP29TXd2BFwmOTEE6PBWfDRyaJOgGxZ5BSZwShB+qzz1M2S8+UFzWLBcr1msVqzXJ0RUiKtwnA47Li9fcPbty/+bZbs37rLh4gfBpyznF2cpWIvsN2/5Y/++A94+vSKTz/7lOfPPiTLcpp6ppVB2x7Z7fcADINsxtJYQFWWdN2BRbORdRoF0SzLAhCb5jyT0D5nJVQT6dc5Ho/i3JPcVf6zv/f3MXlGCBMhTPjkttIs12RVjSkXkDd461m3e7rjlv3tV4ThiBt77PFAcJKmHbxjWdUUJiP6yDQ6PvvgI9579gGfffJDfvSjH7DeLFHG095LCrPJK2zY0VvHcejYHbcckrGA1hk6Q6hCifKY5TVZXmGKkrwsyJS4l3nneO+TT6kaRTuNTN4liqNYBwclvv/99IY6X1BXjuXzJc1i4pOPNzRGcf3qLbf3lslBVJpx7PHBMdlRpp3JIjMvCrx1lGXJ2cUKbSQ1OxwOkj1TGpq6Ymh3rDdneD/i3EBwHXW9oMgKdDAEHdn1R758/ZL744FxEJvH0U8C7SuF0hmZLvDeMo4izA1pmmiMWOdmWYELkM17uhc3qyLP0iTYpPwMMcNQKqJNnFkcp0l4JBK8GF1451BR07WjBCz2I1keKcuC9eUZVVljk5X2brfjydMrzs4vWKzqFEY70g8Dq/UZRZGRZxpjhGp6PB55e3PLYrlkuVzSNM3pbHlI+V6wWEiwng+Rw/FA2/ZkuaFqUj6CVnz1zRcs1w1Pnz/l/fc/4MnTS6qqIISRP/rj/5ZhGHjv/fN/zyv/r+8yCkjulMDp7H2shTxRleKcX2VTEyD28Eo7oneEKaKjpMAbo6jymr4PeK8p8irNrSMoqXGqSsIOVVQc9wdpblQUSuEj7j88TMSrqqZI9ULUUoQH78EFlA+n4Dc/Nyfqsag5EIImxCQ615qyLNlsztBaqHKL5ZIQIt75JB6XnDBrrRTfRuxMfeDkIhWSHW/0niGZpIhtdTg12lrDMEjOjp003gVevXxJnhdiZUuQ8D/FSYSvFJRVxWK1Sp9WT/COwlQPRbuCGEepcVRMWl/w3mFMspZWDwjEuw5iAOL6liWjmsefPcojEBX4R/Xa/Bzz3+dLJaoV6X5Rc2coRdYDvWS+r9I/z8/wV1HhZ0QqRjl32kPH9Ztb6rqkrDKO262IrxcLPnj/Q2oRM+P8xHEnbpzjOIIPFEWBVlrS2fPEHEmWvuMousX22OO8Q6nIZlOLc2VRCIU8wDh6nAsQMpqmRGuPCg6NpzCgckVdGY7twLHzuODR0dN1I203cThawFNkmkVTsNksRLrw191kaA2Zysi0IiNSFBqVbL/qPJIXsu5tlgT4CCSWKGvScel3ebDi7uNx1qE1CZI2ZPlDcA1KEZwiec8KGqI1QWfEvEJXjgyFspZ4sjKUFE5J2BSe/qGTBM+3t3ve3O653/ccR0epZqj5YXN6zJ38NuXpX8fx+5VumYfn/Kt+/3aj8bhJeby4Hv8fjxuSGU7V2pCZnDwryIsSnRfkeUlZ1aw2Z0gkvMekiYT3lk2wFGUpIqxMQginFBmvtT45ScQodISYaFnOOzIFmclZNCXHw4iL8YGvnZx2YuJsWuvphp4sz8jLkqGf8GhQBm00x+Mtx65jtBNegQsZRimMhrv7PdHUeJUT4oCdhH4wdAdxnekH3GRRRqY6KkqgTwzhJLwjCgrkncCS7bEjepVsaxXESNM0qBOHF0EblMIjFrghhuSq4FDesViuWa+XFEVBax1917M77Gn7PT7Y1MgZYpQGxzpx5FJKXDjKvKDIDZlRxOjIMkVR5dSLhnq5pKhrslJ8uGMQW8xpHNne37K9v2W/v/uuS/Zv5xVhsqLFWSwaiiJjHAcOxx1td6DrqhMsn2UFRsOMcI7TJFbYzIUgWGcxWjMMPa9ev+TjD8UG1Ggt7jHGnTzDTZZjrKS8S85FIMRAP/R4b8lz0QY8e/oMH8VdxvuJYIQaozIJRyxQNGiiUxTNmmpxDgrCsGfqjwRV0h86lApCiytKvI8468gwXJ5f8cF7H/K9z77P5dU5KMcwHNjvtzgfMVlJXjb4rhMb3MkR4oP2KhJOUzRjMpkWpgJK6ZleacjrmtXZBcpMdOPENDki8j0qBHHc8hNDe0PeOJoysF6VlHmgPKvRTvPkcs2x3RKJmKLC+Yk4BFyaep4c86yCRLFcLVeEtHdbaxmHDj8FprHFTgN2mmjbmqKWwL5oR6HKmZy7XeT6/pa3t7e0XSdhgs4xuYmgERv0PKCNYkr7mdZyziht0HNOSRrIaKXJTCafnZmFt4rZufDhl5wbcuwIwfs07EwGF3acmMYJrcFphbeW9aYmzytWqzO00vT9yNCPGGNYb1asNgvyXNN3nVBStGKxXEvQplF4N7I/7OkHycpo6oqylNwNa92JspJlhrquKMsCbTR91zOMghwVVUWzEBqg8w6loW5qNpsNy+WC5VJ+ht3hyGQ7mqbio48++ptZ/38N1ym5nXfP1MdNxoOGNBCZE6hnSpIwMEJwhJSRIvob6KxlmqTJ0KZA6ULqHA1ZISihODh5hn6QIaoGk2z2gXeoWUopqqpMQz6Di0LRjSEQnccP4iqotAwlHovY5T5OrIZgTq9X6zTU1cIuyXM5K5zyONef3g/rxIFLG0MWxb0PZE3MoaEqRmxwj6xJZZArekRONZpSMni8v7tj0SyomwVFmUxMgkqIh+zMeZ5TNw3OTmmPmD+Lma4lNNiQzlVtpLIPQfaumEQw366ntE42t2r++wN97OQQF6M0ZOHBUWp+7DsajUf3jZ6HvDPQEeMJrZgv9a/5+7fplqfHRU7n9zhO7HdH7GSppwKtPSFU5Jk4S3rvBSGexHBkHEfsNJFnebpvNFluUJlKSEnEDpZhmBgGyzAK0prnmWT2pEYyBiU23z6ggCLXiQUuTW5wHhXn0Epx/psmSzeIZnccBsZhxHkk16zK2axqVotahiT5X3Pid1FozpqGRV6g7ADant5MzYhyEziojcFUGdZruglGJxu+iALVr3SU4zRye3eDMorzy0suLi9ZLNeMk8UmMWHQhugVIYi4zcaIGyaG1zecr5c0izMW9YLxcIObBrwdiSTRnvNsDwPfvLnj+nbPyzd33B8cqIKyXiSkY+4+kbTnXOzeZm5sjA/Wtg/NkUviK3OiSD3WZDy+6QSBSw5Vj5qXx+4Jj+lYj69vazfm5555mcKn9PTjSJaXyde+YLlYCeS+WFIWJWHs2e+27A97rspLdCZc1Kunl2zv7oBAnkuz4twBay3WevK8JFfgo2cahYeemcj5ZknwIzE6tFrgOvHkl7Ua8VEmpeVywYeffcbZ6oyvvniBV0uaaslZUfHFV68Z+pF+7HGZIS8rdCYQ9/7YE/SWbpQm9LDb0bUdh/2RYAcInuBD8rBO05tpwqCIWry+YxB/bhUiudKMxxbbDeLostrgyxI7Dg8LTmlJcXdRkBkkXCwoKWp835NdnFMuRMTeH1uOhx2Hbsvbm2/ohz06mx0uZApqrTtNhoxWNE1FXZdUdU6zzHn/o2cs1pfUiyvqanGihgz3N/jR4a3HjZZvvviS3f6Ow/H+uy7Zv5WXMRmu7xinifV6ASrgfU7TLPjeZz/g/GLD5eUlRZFLknYUBqzWcNgfGAcRzi1XK4oi45tvXmCMou963rx+w//qv1pweXFFs1gkHYaEChWFpsgLnJVwyDyXCVwIgd1uyy4eUUrcV64uZPJbFBnjcKSpKnSRM0zJxURBUVWEaMibBYvNBfXmjDi1TMOR7c0bup/9JXU4EFQJquDm7S3dvuPJ6gnPL9/jvWcf8Py955SV4e7umjevv+b29Vu6fkJnNU+ef8rb3QFFRpnXLJYx0Q0CLnhMbjBK6BdlmaNNxPoe60cmK8MYsoysWmJdy2Hf0bYTdampq4paiSXjNI0c3nxNcTmxvmjYVA2NNui6JC41q0VBpkaqImfz5BIbR9oORjuiiSmnwtMPx4RI5FRFyWKzYRgn+r6jLAxd29J3jv1ux8uXL9LeiDRZMZKbjPPzC8gUh8OB12/esj8eZeIaYJoSXUUndyEdEv02oPMcFBSFJGQf2iN5PtE0KynyigJdFqfiyXvHdrsXUes8fAmSCyJ9nOzZcyMnqK5MdPMbw2a9oigLrHVcPbliudiwWZ/TdT3Hw8Buf+Sz73/M+cUZZZXjw8Buf4c2OevNisvzS6HJxMBhv+Pt9S3OWy4uzlitG4pcnK92ux1iwJFR1yXL5QKtJavo7dt7lFLkRc1q07BeN7Rtx9vXL/nRj3/A2fkZZ+fnRBwoS9sP/OQnf8qHH3zGRx9+xI9//Ft/01vB/+Tr8eDvMUVpmibKskxFp2a2xo/REWNgnCyZEbpOCI6I5AZYZ4lGszsO/OQXX9P34ENBILI5P4NEuzZaUVcVcf6/FmIDrPSs3/EnSvRsgS+fXUORBNhxGCnqUlD24On9IQ1EDFjR6qEep1bP1J5ZVyJZVONoKUtDXTdC+0shfzOLQkTh8tpU8JKxpUSAraJkVQXvUEqo8JI/M8nwIPpH77XsvzHCFBy3d7fYZKN+eXUlTUQIpJHzqeBfLpcEZ0WTkvQH83vjvFjkZnnG4XBAp8bPI/8eCOLi9Ij9MVPQHgv55+c8idxnTY57+PkfGxbBoyDHpEvRSqONRsfZrjYm9lY8ARnhUfMwa13mn2u2Fv729VgPElHYyTH2I2Ndcnm1QasCZ+H16+vkHOaxbsB7obA1i5oiK8QGWPIYCCEmdGpit93j3KxjLiirZJiU5cSgsJPHWQlbbCppQLJiydvrbXLhHOhalYad4pEUMfST5X53ILhAlUFVKq7WFaulGE0slw3axBPS9V2u79xkfPJ8g3IO5XqyzOGDWNhGnHgbI5SQUmtyo/CZxiDT7cmD5cEX+l0UQMS19/c3OD9i7cCHH3/MalUyOcObN9d4K+4Nc5iN3DgK5xTH1uJyQywzdDUHPklDsD8ObHctX3x9zcu3Ow7dSDt40DJZKHLhrIVUqE52OnlrP87JeNyhPtZVzJy/v8rNAB5NVKJkgQg0F04TyDkURxqw+KBhmTvsbzUrc2MxL6g8z8VXPSsAQ1EvODuXxkKcjXq893RKMRwP9IOkTC6XTaIATPTTgElSlmmcMEZg3ar8/3H3X8+WZfmdH/ZZZrtjr0lfpgsNNGwDGI5ISYyZCOpFokJ6osx/qtArIygqNEMbQ2DAGQLdXW2qsjJvXnPMtsvp4bf2OSezm6FCDDgzpY24qOqsm/fus81av9/v62qU8hRlgQ8iSEx+oNAFRHj48J6275mcB8SBQ+gXEXzC1AXVesnv/9Efsrq+QRc1VA1KVwRrGFKiXq0pxw6fIqrQrDdbihw2ZUzN2AeG/on2+MT+6R7vJsqiROuIsQpTiqbCXTjczF79KeZE1piI3tMfDkymRysR+67qBVPX8egDo5+4uX3G9mpLYQ373RPDODC6kW5aUmhLuVjTLDasnz1n+ew5EcPu/oGn+wcO3QOPu/cc2wP92BHCCFqTspuG1mJIoLVMdtu2BZ2oN0vqpmGz2bLc3DCNge6wZ7975LtvfoNFYbWmtCVPD+8Zxo4Yf9g5GcMoYWrBC53OeXFDGYaJn/zBH4kN8HKB1gVKuJIo7SlKw4uXz1hv1jw83DOOA8fjka5refPmNc+e3fLy5TOG4UjbCV0oRuHae+9ZLBqKomS5XLBcLTHaMI4DfS8BfNbYHB6qGUaHjwk9jPw3/91/zVc/+n1ev3rD1eaK7969lXC0smK53FCVYjlcLZbo9YZlimyevaReX3PYPbF7eOKXX/8a32zY6jV//NWf8Jd/9pe8+vw1y03Nz37xr3i4v+Pp8QE3eJyHoMXt5vPPv6B5qPn23W/oxxGFzgWxcINRmqQkULOuK5qmlsmk99lEABIFWi9ISfH/+ed/zZdfXPPqxYrXr54xTJ4pRMYIz7cl69qwCAmVKrpO1k9jRbTcTwE3tVKcqZxA7KNYV5cFq2YhtCMjQZL7xyecl2GMUQWLesUw9uz3e7yTok9pgQqO+x1ummjKClOVjNPE/nAkTB6dFCq7z6gccmmVJYRMnTKFbKyJU0ChtVJkpuQycuaJIdI0dR4+CH/ce3tCs0Ke4p7knSnIAE0LlSZGCfw87FtBQJc1680SGanIRPZw2HN9e8WLVy9YbRq0hq4beHp6oioXNIsly+WG9VbslNvDka9/+TVl2bCpr7i+vqKsSrqup+8OpBRPmrv1eok2ir7r5BwwLBcrmsWC9WbBd3e/xnnHzbPnfP75H7JebWnqBV3r+Wf/7J/RdjtShP/gL/8Tnt18BuHFv8tl4N/o+JR+PO/JkNE9K3S44B3Ox6y9KSjyUNDo2b44B1uYgLaiBWj7nrJe0MQK08D29prFQqxunXeSB5OgSYnlWjjtzjkxuFGemM42s/MeLSjqXJiKHf9cP9i6pNBGTHFImKLMaKTGIkXlPOych59Ns0ApQ4qS1eOmIRe+WjRCo1AMYx6OyvCwAC26VlG6Rsm5CQE/jahsy00UIwOpabIm9mKKX1aloL99z9tvvsFWEii7WK6ljgI8ENyE0RnFKUumaWKaJvq+zxP6gkR9crRKKVKUlYQHxpTdL8/3dq57LpsG0SuNJ3rYPMCeURiQmnR+ZuZBbsy1QYiSjSO0rUyLA1I2sJFaUp0GxPPPmYfElzSuT7UfIZ1k4VITpsQ4OkHQcy0cfOR47FBKU5UFy1XF9mpNUYhBjyZlZycJ+dzvjgzDyDhOWFOwaGpsYSlLk98DGFqP95HCKppa0zQWHSVLA7+nKgLTGBiGibYqUVk7fWgdj4eByXmstpjSsFpWbDc1r17WQmdVIpEIQd4p0vfrMr4/ksGAPEIRhUfJo5S9P+RQpGyUENBKC+phCjoXCOMoXvIZnVbzZF/uHG6a6I4tAMvVktvnz1guGp7dXvP4sMdNPguwCxQarTKsGDWTh0EnalMSlcNHw6F13D913N8fuPtw5HCcGKZAjPr0EMbsHpRyy3qiSikN9izkvqRIXbpDfewEcf73S7Th9FKkOYjmbI+qFESdMPl6zIuPnFs6PYyfGlGZ7ExUFAV101BXS5rFirpZsNluWa7WtF1PU4v3tUqRQYlF8Ox/LZZ0E/3Qi1tETqq0VnJC5imQsJqFmTp6z0gQ+84Llws3eRFLRZXPNc00RxLQDSMhalQhjjOmKLCmpFwsqIYlUQOF5ubmFq01x2OLnwTijjHRHo+M00gIDh/8SQyqciE/e2fP1wYSKaqMUM3UGqE9Ja0yNO6YhgHvHD55xrFjHCpS0rSthMGFJNOAxaKiKWt2MVI1Dc1qRUJx9/6et2+/4937dwx9h/eC7BiT6RhiRZJ9wmXjk7RXA1hiVHTdSN0MVJUjTB7X94zHlvHQ4pDwKF8UeDeQspnBD/l4enrKG3CR3y8vzjnDxHYj9L4UFTGAhD862m4HSKL1drthGCa0lonf9dUNdbmkKgsWTSO2t2OH82vqqj4ZOAiHV6ZBhbcEH04TsMVimYvSmDn6MU9rLNdXN2itxZYwSWiVDCXESjBGx+TydEsbUgKfNIv1BhDa4Ga1wbqSIpb88R/9Kc+f3VKVlq594v7+jg93H9g97aibBVEZIsLPjcRT2m9VNoQodpm6KDBVBUrjg9DxfBDb5hRjft4MxMgUIzEqtC7pe+i6RD9CXTWsVpYE9NPEdrmgqWvqosR5w+7Q8/DUM4bEFCL9ONGNXhzBukEQhGxQoJSmLIWuUzdNfh+TCFOLEm8L2jaimKQ4SkJRTSFyPHR0/UhwjuAjahSnqmmcsoRP8nuMzuJaK0naPiDJwymJ735K6GSobSE0UCV5SUrLNDkZKfzmgqIoxF1sRjLcNBdmWcc3kyizMJQka7OIrZ1wpHOjejjsJSHXKrZXW5bLlTRP7RPDMBB8pFpJ4GBTCwp6PBzZ73ZCX91e0TQNdd0wTkNOXA+itahLyqrEWM04iFh3HB11taJpFlRVJboVL8/Is+cv2WyuWC62FEXF0+6O9+/viGnkj/7oj7i5eU5RNLTt8O9sDfg3PT6lDZ+Hex8bqUiI3pyHIIM9m78kiE+KOZNF0SElfJIGvqwKsRLNbnfWSMifzlNsrRTBFxSFx02TWKanOPuonvZnob5ZtDrbnWolU39pkmXdUOrMt5cBAjIoyLSr+ecVRXlqGuaJ+mwvO2dGuEkKb1PI7z3Rv2eL2JRRhUynUmQ0Zp7wx/RR2vYllTvEJGYdSlHXdQ6wFapm8CG7I/qT1g6gqqrfYm+I3jZRVTXeT7l5iwS81Jkq05ov7vulVvXyWbh8Jubvk2tmmNzHqMZl3XbKP9P6jFxk3bCahSLq4/DAy99xmZ/2u55RZj1PEvo+QdaWvhs5llKDzeY9SinsZDGmkLBIo4je4yfHODmGyTGO7pShYfLzYKzsOW7KdEA0TSXJ7sYkVMp01iT1n5S+wvDZH8dMbU9Mk0OnQG3B1CV+kgyisqxF62XM6RlOABE88bc+9+86vneTkcZdDqKRiZGai6jThZTSUqsEeAyKumqoiwVmmOjDJDx4BD6Srkg+sMqbe9d1J1/85WrBdrtm89kbptHTppZx9Ght8pcsFomEj4luitjK4oKlGzV3Dz1v3+358OGJD4/CbQ4pbzwzXz5mzmIuWHTm8BblmS51GZh3GfJyui6/o+GYpxjCr5SHTXF+UufvCQHmmnFGZyBz7iYnEJbK1ywXyXBuMsqyZLVas1hsWCw3rFYbrrbXLNcrxmlivVxQ1xUhOPrWMg4CXT49HfP0uOf9+3cEH7HGUlXV6bwBQnTYoFEpUhhD5zzd6Bg1rLZrirJAJxidJ+UmY96YSYkYIof9gbsPH1guN6jCiB1xU1FVDc16xRRGTFVgCs2LFy9OXfvj4fHEy+z6Tgq7lGj79izO15J9UticAaKPWTiWwwxVPPMt8zsvYUA6O94IRUqXivYoLg5lPdL1PSEGlJXk4cpccbNc8ctppG5qlps1Ec03v/mOX379a7795lvGYSBED0RsIZBvTIJkGCOJw2UubIqipigbSCX7px6t9hRmCUHh2h7XDuiQRISfIm4c8HECwg++yXj79i03N7esVktiDEyjE8pc3xOjeHin6FC1IhmY3MD9wztihO3mlvVqy6JZi494vWBRL3Be+LqLhWX39BvarqBpFzS1FG6SGt6faDBKpUx/iWhtWGQbZ3knBmmRk6KwJX/yRz9lGIesBVRst9e5sNxl/ZIjhJGmyTksIXBoO2pbUNY1zXLJzfUt2xJW5YY//0f/AU2jGF3Hw4fveLy/5+7uAw8PO159/gZtFYFEN3Qcx45+GiQMq1niQ8DHiKkKmu2GBByPB0bn0KPJ1sARo2VyGlTgeOiJIaKKAqgYppJDKzzu65sbaXaOR8p6RVE2FEXDvo18uB/57u7IcQg8ZdvCQ9vz4e5eKAIpsVgKgqC1oawqlssVdV2jjWVRlGhjEeewwNB3KGUkgCpAch7nHe1xyJo4Q0gaP8qanJnOJ8VEkRsFWxY0yzWTT/hJfOmtLU9ZBXVTC9qSuwPJoykw2uDzwEijMUWFNfNUMcp9T4gYOAk6C5cOibKAOBeYpkDlxGSkbY9MU8/xuOMnf/gH3D67YrO54nA48v7uHV0nU+aqanKid0XfD7x795bd7omisLx48UIS1L24UrlJfn9dVyyWDUVhgcTh2IquLSSWqyWLZYNSivfvP2B0xWZzw5vPvmS92tDUK7SyPD48sXs6sNnW/PSnf8qyuaI7Bh4eP/xbfvP/4Y5P9ZKXvHih9si0Veg0ebCpVC7gCmkcsnbRGE1ZBqak8Ak80syWlaUoF9ic8D7v+0XeI22mSRdFQVEW2Z3pnGMxF49N05xoNTFK5oS4GGWdgPyFnBOqxb0ITpSruZiVgk9QgcLKv8uQVehH4zgwjoOsa04oPEWpZS3QWlyTlJLGPEYpYHNqulKSxRSyBiRxtpKdj/l6u9nWNkaur67lmW4aGbCEiWkYGYeezWZ1ojPNg575fnnv85BV0zQD02Qys8ITtc+J6ZLTBZyuxyVaNX/NSNYljSpfUowxDIMknl8+M/N5XP4ZMcyvPKhZ9yMNRsgN7Py7L1G0WQf0qRZXz5TtrPcSKpYikkiD4+npQNUXLFdNdluEcfR5nHsegvf9SNv1tG2HLSqx2y8tSiNZcvmejL3HGjHX2G5qUnLEMOHdiNTYCUVAKRmSjS5wHLpT1kWpE4siUZaGqql42jlKK01PCJJ9llT+jAlC+N0xDL/r+N5NxuIkOgGn5EFU2JxCPSdYRmKSCR8qkOhRKbFdFKzWtzwdRvaHga53aF3mYlTCP4wWj+boPfcf7vmv/6v/lrIqWW1WfPHFFzx/eUNZ1HTtiHeJlBSLxZrRCeViHAe+27c8ffjAu2+/5V/9q/+JYZjEQ3wSscC8CInAKbs1GCNT8TxlSCESRscweoZxYHIOF84wKMx2vpeUr/Mi9ymlSakkouxCiviZ23v5cM6IiRTKCtLs8S0LpC3FN16RqCpZ1JrFkpvb51xd35KUJSTFy9evScB+t0MD3739hhQjzvWM48TsqtJ1PXVds1gY1uuR/dMTzp+nJnVdC0LhnEwp5InHaHtKTjedo6pkOlIqiy8rtBIrxpSFZIenJ/7VX/01Q9vx7MVLnr9+I6F0NmELxWefv8IWisN+R4yeYZANebMRPicZUj62BX0/MVsJF0Vxcs6QBcagjGGxXuOmARxo76WBUIBSeMQ+OZCwWnHojhgthdn1coV3A4f9RNjtRExfWOqyRuFxQ0vnE2P7xM12zavXL8EYumGkXqz56U//Ef/Nf3fk0D3g3AiZTiIe5Jb1aiU2w1XJYrVitblmu73i1Zsvub65oSwKfN+ho8J4T6U0Vlu6tmd0IyF6Ri98exd+uBNIgH/+z/7fVFVFs2h4/uIFIXq0EnciNzlICq884vQVORx3/N3ffc1f/dVf8aMvf8z/7j/5P/Dy+Wf0Q0vft2gNepDgw+A14xj4+ut/yePjf8l/9p/931gt12idNxskMKquarquRWkpOLW24poUojjBlCXeO47HI9urNXVdAOIlv15uISnett9k8bhsOEX5TEK9dMDYAaVkArpYNmyvttx89pJn2xeUC8uue+Dh4Y5ffv13MBmePjzxtz/7W8Y4CV3CmFxcR0xdsry+ZmgHoo8oXfDqiy+JSSaKznv2uyfquqFqFsQE7eGAcxPWgDaecRp4eGzphyXH45q79yUhfuDVixWrZU1TVaw3ibKaMMXIrlV8+3bH3d0Tb7974NffvuN4FB/3qqwxKuRcDEtVVyQij7udiOONoagqqqom+ESMieVqy3rbUpQlKTmmydN3A23b0bZHEZOnkHm+lmACLkqhJPbdmvXtNTM0GRJgCmxdUi0ML5/fSrMXA4rENA1AymtFiTUFShn2uz3WijXnNEnuRFVXrFarjLAJhVUOef6EfRlnIgWgGHpHjC3GfGCzbaibAvHgFfpXiBMfPrxnHAZIUBTy7gP0bcv/9Lf/moeHDxij+Yu/+Avqes00eo7HjhgURSGNxfZqhTIJ7x2H/YGH+0eWyw2vXj1nvV7T9524T00Df/YXf8H1zS2L5ZqqUfggls/v7n7N69dveP7ihq5zxHjHft/y/sM98E//7b34/4CHoGjishhiEOosVkQ0CA1FJvZnzYa1BlsoytJkamGD0UKFefXqFW/v9jh/pB8TV1c3hDwwQ0WG7khKUFWN6ABDpI8DQ9dhlDohAcvl4nR+c3MxF6XzYDAEKbqFzqGE7oMU/lPwqDGc6oE51+SEGpTCTFgsznb/WiVSmq1mpYAXO1Zw44QtiywE1hyOx9OEPkwDzsugJZLAnynfl9TwS3rQPIAsrKUoC0KURPrFck0/ea7qBcfDQRCNELMORZ/0E/N1mP8pFvGNrPlojLLoRpAZ7yfcMOJTIOSG4DLzwhhzqqXKsjyd+yyaT5k5UtXSvIeLAfHlZ5zZN5wJJxdUqJysfqHbPYvJxXVOZWbK7Px1qRMRu+AZDTojIikqhj7gpoBzE8vlhoQiRMX790+iG1IR7waiF0fAwhQUZSnUO63ph072PwXLxZJnN2vJllNAHKVpCy5HSShCSLgpsTvseDoOHFvH6BPL2rCsDZtac7VuqOqSoiqp655hCnTdnhhrbq4aqsqSorCBpP4av9f7+v0tbJO4GyiyDVq+0OfOUGD5FM6wk1YeUk+MDpUmamvwtQYKJp/EMQWdQ9cQwVGShd27QIoelXoe6gfc6NhstlRVTVVpUtJZlDMxDAeePtxz//Y9j3f33L27y2nSMTeo6txkzB09Z0i1MFaSx4O4wZBEGOUmhw+OECNkgdTlC0iaO9WztZlSZ5hQqFeyAM1Nx0zrmdGPS2rVp3qOU/OSXyojgw6Zilc1i9WaarGkqhvqRtJk+67HTRPWGvwkBar34ogy3ytZAG3mKS+FpuaF61/X9WlxXCwWaMhTGEF8lBIuZN/3VFV2zdAFWmkJjtFaQq8AH+DDwwP1csHkPS4GPvvR76HxTK7De0dZWrHgC56u6yDTF1KS6z9NI3FO8M4v76UXeN00p6bOWsPYaaYZRnZjRpryNETNTV2GDRVoDNM0irVqhITFFpYqSQFjdGKzXvLZ9Qu63/89nj+/palr3Oh5+eINx13Ph7fvKMsaNVjhy2ehoAK0SsQQMNrQNOLKUVQVUSk+3N9hrOFqu+X66go/OEJdskhLntsCVVbs9jse7u/ohh4fJ0L6YWsydvsnEcE/Gfb7J5RR2ZJxm+l12Y3LyauqteXli9fwU83V1S0pwrv376hqS1kZJg8xyYRaFYZXr1/TLBr2+z3jOLJollmLsaRtj5m2aNist2Lz6D3j0J+cxIRaJ++0IBWelALD0PM3f/Mv+ckf/AlVVXFzc0Pf91lfAIU1ODcxuYG2PdJ5L8OTqHj1/BU36+dsl1egPG1/4OnwxN3jgcYuKcuKq80Vx/2BbhSr1nqxoKgt3nsGN9JNI1VVUTcLisJKYaASdV1T2GdCDZikMXcuZAtLKdxlUimWp9I8lTjfc9j1LBrLernk9pmmrBYYW3EcEg9PB47HLtMUxf51tVxRVZKq7pzPuRgRW1hevnrFarWWAq6SgUPgHHgXo5AulbYo5fMEuSSEGm1qIAltIkbx+/dCidQm01uNOjUNy+WG0ckARqMyNUroLqMbKKzJFBFBvJtGrvHQj4QwoYIgOcPQ53TekJsJ8n23smcpla/fHOx1nt45J3qLsrIUVYmxNce24/7hIbtijVSV5AaUVYHzMhTpup7379+yWi7ZbDeAomuP9P3I8dhibUFVZSFnYRkn+TsPD09sNltWyzVNU0muxvGA847Pf/QlN7fPWK+3VHWDm3oent6x3z/ye1/9iKKsqauap8eOlI7YouTlq6t/RyvAv/khwPS8855pLzGny+tMO7LZROSUsaDPKMNquRKKm9Gstlc89hFbHUnKCJoQ5R0aJ0lZJsHYeWwjhZ42muCcWPXnonXWaFZVxaXD1LyfApJnZUzWg0gC9Fx9+uDR6TzFvqTheO8/ohwBMkDMz9U4jidqt9CztLgtpiQIHnJt5vC46D1JadDkrJuPUYLLYy7ezzWKvBMxJdquzeZcBnK+RVnXEEUTQhSbVWtlyCr0KC+OeNowOk+MsxMcTGp2jUKuS1ComBuhi/O7REWkaftYqzNfQ60QV7rfQXm6/HyzVvZjHSz5OTKiC8sN5WVdllJGgnKG2adIybxuXP77/NtjSkyTZ7fbMU0L6oVQKcGh8JSlptAaazSqEM2Om0aGILT3srBUZclmtcBohUriGpVyrRRiZHKCkAyDZ3/oOB6PTF4o3JWx1IWhqSw31wvqSn6XNrBeWVTn6VKgH0YOB8M0RaxRTONI3090/fcbeH5/utQcca8URmeP6nPNTowiEkozYUsJp1oRIXoShtIsqEstXVuf8nOtxR83pWyFFvIQSZaRqXfsH3YScIXi6ragrGQ6NY5eoOrDE+/fvePbX/2Gp4cndo97dPYITpkDecbCMt8uZVEO0vEaJdQbSHmjcznwJ2bqjf7oIZRrEufLcEGGOj9I8sDoE+3nUsA9P3SXkN2nVCz5HfL/5kZFpjJC56qbBc1yyXq9Yr1ZI6mxDudHrK2zi4DPriqFFHFJXFgk3TxhTZEbH/kEZVmeXqK6rk8LlXT4Z3qYc1LsFlb83sUq0uTroaQpCJ6263jaPZEAnyLPXrzEZJ9u76KIw6oSKHh8fMzCL+F1Soia5HCcnCm8F+/ofA3r+jwxMkpJpkrehELwZz/wDH3KZxBqhY4i2pwml0WqAXRBEcWtJ/iK4BxaJZqm5IsvPhNxeFEwjRPLZklpStq2Fa1JDgdCBZJG3HfimU5ni4KqFmjZBU9/2LFar1gsGk6uGjmBdrles+97VHtkco5hlAYjqcAP+RiG7jRpOhz3WGuom4YQPMf2IJqHmKjrijkn5/nzF1xfS7hkCIHjYc/Ns22+9yprdSR8cbvdUtc16/Waoe9wyzV1pk0JJUudnhvnJIBtn7NeQOwXZ5qFiJsDKOE6v3v/Lbe3z7m9EQG69+60uTvvcG5kHEeGvmNqW0ptWVUrbm5vuVptWJQlk2tp+z379sDTsYNGpud13bDr9jzu9vgQWAfPgkZc3bwjpEBRlVm0DkQxE6iqArtYnnjZIMV2SgrvJNleaaGA7vcHvPN0ncW7wGHXU5WwWY/0o1CZjK3oxsCxE9pg33diralVdt6rCUXC2ICLQIpobbm6vqVpKgoj/PVpFH52COk0cYwRjMkbuM4BrSlSFAalYZqGU6FoJ9FKmcJiCoMm5cakYL1aojsn7zPqVCQpEsE7qlLE4EaLGFLn5sRYizgN6YyayEBoHEIuDGQll2FKmLel05qn5nTlJFqbcRBUJgRphveHlhAiVV1ilKVuFmJhbGXydzgceHp8YhwHXrx4wXZ7RQiB9tgxDCKMXS031E0lPHYt9pd9PzBOjhfPN6IfsobDYY/zkif16vVrVutNbkAL9ocPHPZ72u7IH/3kL4hRnLDu7x9Q2vH8+TOev7j+d7gK/Jsds02z3LNLXv55F9ZZ46j0vOfO3wNKGcqywqiENTKoMmUF2orleBSt0+Qd/SCJ9CkmknNUMWArS1nKOjHvTYJ++tMQbN4fL12PFIJIyDPlpG4KZzT0ku//6T/nJmOmaMJZ+DwMA8658/cYI89+OkcFhJjPNf9ZiiFrljTJw2UFI9fpXC/NBbe1BtLZPh+ga1tiiJSNGBNICGJJmJJoEHKTMwcJlmWJ8xFtLCidxd7i7Ga06BBO9zIl8Aq8PzUBnwqvL9GJS+r6Wb8htZj6hO700Wf8pDn5VOdhjZKpIeJAlX2tOUVswPnfL67b5eBYamRxgyJfT7mHkeOhxfvslBkjKU4o5Vmva2yVAwi1wfkpozwea0QsvqhrmqqUHJ8o6IWgeEIZ7AdP20rexW7fMw09prDUVYNSFWUhA7LlqsaomJkfiboyuBBxLjL0nkM7MI4FdWXpu4FhnP7hkYxAkFEwQuWQxEmFBNuIODl6cL6QRoGIVsKLTwivzaqArgyFlUKsncBHJDsh5STLpE/FcIoJHzz73Z6+79jvd/jkef3mNZurFeOg+Nd/845f/Oxrvv75L9jfPwnPHsSKNXdzKWVOfm4HjM5dqQJbZCeSGKUA8sLVd5PLSIQCzOmhvVxEFEmmI1qf7M/mVzUiPsVBRVKGxcZxPEOOmac4H/MDfRInIpOZEBMkLzEhWlHVDUWeaFZNw5s3r1ksxPZwv38i4UnJ0bYD0+RQSWNMBVplHp2IQ90kU5S+66RhqasTRWqeiNR1zfXtrbg3TSNddxBUI0Wqoj5NSW1hWa6WDP1MU9AyXfGBlKQDfnra8+HDI2GKvHr1hlevXlOUDcFHYpICpioL+u7Ah/fv0FrChZzztF1/aiQOhwOLxSLznCuWqzUosaXsug5tCwngSgnVD6S58T2vJ6fNKUTJ8pi51uJykZ1v8pTr28nTP+358M1v+I//8h9RLxbEqDjujvz6Zz/n67/7W379q5/jGVgsaqrFM3b9IyEFQgpE50+bjEDgJYf2iA+B6+trtNJ0XcfXv/olwzCeGuMUFb/89S/ZPT3iXU4Vzk3ID/kIIYgTi3eovEbpvebx4YG+71mvN6zXa169ek1ViRvUF19+RmENu92et2/f52JwdSoUj+2Rtj2ilOLly5cnPvNu95g3XLFH3Wy2gjZM4mg1W0FO48gwjhRFwdXVlt1uf5o+geQs3Fw/5z/93/+feXh4ypoEWK+37PcH3r9/L9a3tzdiIzmMvP/1O7bNlpuXz1iZhjJGXL/jN9/8jO92e+7vnzi2O/CBD48fuLt/TzDCB9dWLB2tBYJQT6+utixXS6q6gDiJhigl6sVKpqpREqxjgMI2JFMTkkZbi7EJUzQcjuIGFwdH9AHvW5SK7PeOt9/txWXLWrp+zFTRSYKZlKUoKpRWcv2yY8/Lly/pMyUoeI1K4JyjayeOx4Gxn/L7xcmthQghSlFe14a6KVFKNt3VeoHRglIOw0jXt5mrDrZQECKGyDR0HA8tWlvKomDsOupFTVEYCi/UCa0NdbNgtzvy9PjETu2RPSnho+Nw3GfayTmpdxwlq0IbjbWFTJsJuWBMeU2Y3z9xixlGeYaGwXH49h3Gik31T//0p1xtbuTn+MB3737Nd2/f8d277/jzP/8p2+0VZVkw9CN3dx9AKVbLFcu10PWM0UJze7jHu8Dnn3/BdiuNgZsmvvnmV/zo936f12++4PbZS+pqgdYK70e+/vrvWK3W/PirP+HLL37CYvGMu7sP/D/+n/+cP/vzP+Bqe82r56/+7bzw/wscYqJhT0jjJXNgsSxFtJ+QvS4kEgHvIlVdIVN4yzg6ylKE1y54hmnk0EogYqTGB493E84POWsgiY2+8ehJ0+WB36y9sNaenI5kfTk3GbOZhDGaZ7fPmKZJEAdjaZrmVBjXdS3uULkpn3++1jrTqfXJnXBGNIZhuGji44liFWOU4W3IjAslKemX5jUzRWjen2Ya92XmxPwlCE19GnIWRYm1FbvdE13X8uyF4Wq9IYTEYCZSYTPVx+ODJ/hAYSXMsAgwTDI4M0ZqSe8VwziRIK/ZNVVZ0g8deppIWp3Occp5SfM5dl33sb6C82Bgzhq5ZN3Mx6UrqIwEOVG0z8hDpChsblLO1vSo/PMyJQylcOH8HMp1OrNWQph1Xpk9o2Ww4n2g63qGYeJ47Fhv1xSlprAK6LPeNOHdxDj2lKVltVmxXi6Ze5/oBW0W9HoiJHA+Mk6B93d77h8OeBeoK8vVVcNiWbFYLlDqhsP+kckPTMlR6zNaQ4TSahYLQz9EHh72eJ9YZpaA1lCX/8A5Gav1UgpCPz90SbQXKSMSucMV5wQFKeeDZ/hPozAECmSKZVcFxZgYXKLtp1wISpKhFIbzz5bJkXPCuf3mV7/m8eGesip5vD/w9d/+iocPDxye2oxEZCgvJoqypKo0MSTh6yrxZi6rCp8fflQSoWCIcsOCeKkXi4Z+GDLkrn/roZSXOUKatRXnazWjOSeK0QVycZmNMQuWZvrPp+Imay2FNpL/kK0hq6qiaRbYouR4OLJ7eqJvOxSRrjtyPBzo2iO7p0dSAqMNZVlTVXVeGAp8kEWtKi11taVrj7IwZpu5+Tjs96QoVo4mQ7yC3iTGUeD6GAPr9VomFYVlvd5QlhNKSep1UTSMY8w/N/Hdd++Yxonj8SCBPvUKbQrevh0Yho6h7xiHjnEaTi+2QFuaorBcX1+L84q1rNdrcedQBmMtz1684LB7YoidNBNaS/CRAu/cR1DmKVsjJ6Neul7EGAku0LciBtUuUkyOqW3zuEIzHFqOTzu8G1hvGoKyDL5jmAIkk6kVQE5iHacJ03d8+HBPUZdCcymKkx2gbDxIAJ2xdF2HNZq6rhjjRLNaSIjRJxOnH9oRMtIkrhghL+SBcRp4fHxEKXF7urq6Zrlc0jQ11ogFolKW7eaKh/tHtLKURYPRI029xHtJrQ0hSEBi1vn8j//6r/ll8wv+N//RP6WqakDnnyVOUYuFPA/90GfEEYbBZf2PFNfTFFAqsF4LrSvGRN8PXF1f8cUXX3JzfcNuv+Pu/R3EwPPNlublV2zrDS+vXrKpatrukcPxnseH9/gQ0ThKndAmUC0KVtdrkjHYocAHh7Hw+PDhFDIXVMBPEwOBx9093dBl+oPm9ZsfUZY1q+WCplkKSug9ISb6viORsMbQLK/pu46+7xjdANGQInRdx+xfH4LHFjqLQAWVFYoUeBeJCBKttRUPfhRohQueh6cRo8FqLYLsQjQbQmeQae92u+Hx8Ynj8Uh7bKXB0KDINpTZ8UnrRFEYxmkSc4AuQJRsooTGh4DOSWjzvFIbeT5SIqczL7J+T/SC49CdJr1lWYizXl5zZQ2IuTjNlukfIdf6jITOrioKxlwc2NLSLEq0Eqrvh/s7lqsVVll88Lx9+x1KGwlgvH2BNYbJTdx9uKeqa+qqYrFcUdeCJA9jxzfffIsxBcvlhqvtFUVRcjwe2e12fPmjP+TNZ1/y7PlzFs2KhOS93H14y9XVNV988Xt8+flXrFdXvH37Kw6HA//x//af8OWXb7i5fsaifPbvagn4Nz5SFmJfFuFALrz9hUh/QmzEERqIUsTgGPo97RGmQolzVF2xXdZ8/vIZf/aT3+Pb9weOXU9LJHiTk+3FflSSlYVuXVbViV4806S892JRznmqPadxa60pbHnK8lBKnQCElMRyHmSvrev6hE7M9KhZCzqO42mfmveu+e8ppU4FeAzC/pjpJp9O/i+P2exlRk0+bjJCRm17rJ1d2RL9IKFxznv2T0+s1luqekFdNzw+PIgDJQarFOOQaWcAyhCyAF0bQ1U3kk7tJqHIK4RZ4qYsbA9ivqHO+Ri/RR1L6aNa6qyNILuFKuLkT8/KfH/mz2htDl3kjGpIsZ0ENbZZzI0Yt6AkuE7WHYMxlsrYj+7ZZfZZylRM0XXkP8s0sZTrXO88h33HYlmT6oIYHPfxibou2KwWvHhxK/bcGsjBnkRwMTE5SfV2XnNoO45tL659PrJaFBhdsWhKnj3bUNUWW2jaLlDVBu8L+t5hFwVoCdH2Lp6CsoN3TNMgCePTwPV2yaopWdfl93pfv3eTMXPmlIl5ynfxHy/gJ62T1N7M78+FE4A1WDQBlZOiNaVNqKQZp3RKBxcOXe765l8REz56DvsDh8OBEAL3dzvu3z3StX0OPROUQhsr6b7ZsUmLtCoXnULB0EpEX4n8MGYoay6qBakRcv1l+uPc3QpPT4EyxHgZXnNJnjo7X1z6KM/F7eWkYH4xLl/+eaMcTS90AS12e7YoMNaCUpRFASnSdZ1A5O2Brm3Z73ZyzbXB2j7bHdYUZYkIlYxQnDJvlSQ6lFk4ppVQCubpx7n5kcJ9ppWF6JmzThQ6i7AEGZC/ojLXOpCQlNS92ZNILIaB5Spiy5qh7+n7lilPUMdhPNnvxSS/F6VOUwNjLUVZERFOf1HIS3nc77NgT6ZUeT7BlM7N0yUl7XdB1EJxSngnbkGD72m9F6cqrUloxn5izBa4icTkR5mOey/PfszJpWgJJgwhh5b1KKspMuXr8ijL6mStud8d87WVRrisClwIBPfD1mQoRfYAVyeOe8wbjjikjLjJUVcNVVljTcE0OWIQ44HVck2K0NQLjCkoi5qr7Q1FUXI4SBZACIkUNcvlmhj3oBLj1F8EdQk9cDZpSCmdpo9t22ZqhVADUoRxnEgElssloJimkd1uR9M0cs+uCikQglAEal1xtd2yqddslitSHBmHI8d2R9cfGXxiHHpinBgmxRQm8Wa3imbVEGPJNA6M0yTvVFGIZqk9ktrA/cOdNAQx4kNktdqyXG5OVrxRdlZsUaLz82JtwWZbUZQNtqyl6HAON034Ud7VyQn9ws4iUIQma20CJYF1ylhZO8gJy0qdqJzeB9Q8XNJafP2LQgr6viXlMLyikNTtpGIOngv5nQsnFFXuiWMc5HlI2dEwhAS6JyFifCmgZD0zRhzcYkzYosCaQuhv3ovOB7JVuMmF0iRDE2b9jxiYzBafp4mvfAdwId6EjNx4xn6iO/Y5BbdAKU0/DNlxKNAdemJKLBdLbm9vaZqFWC0PkxQBy5qmEfcppTTD0HFsW8Zx5Ob6ltVqTVlWkn4eItaWvHj5hu3VDU0j9Kmu7xiGjnEc+PGP/4CXL15zdXUrlNP+iFKeL7/4gue3L2jqFVY3/3Ze+P8FDmkwzhkFl/SWOdk7IcnVijNd6kyjcVmvBzEauuOB5DWWQG3ger0AxFhh5Ey1mWnUwGniPhezlzTo+VykID67kyklYXlFUTBrG2au9Vz8f5q3cEmzvhxCfjqwnAvs+TxPRfbpHeF3/txLpGJmWYjT2vzszzb60mhIPkfOlglB9uYga7efJqElmlkjEbNhzrnGGftBqGkAKdcnhVC5Q0ooZWcon1IbykxF7YeedNEAzNdg/rxz03XOTcm0daWZqe6Xz8klUnGy+FWzC2g61bQ5By/bgsvQ3BYW0FnDKXVtUZSy3uaacxaOq9N1nzNHRIgtpzK71kmzmSIS2mdkDSys5IEVQahPtrAUVqGUNF4xyTA/piSI6hQYRkfXO8l6co6ykKTusrA0dclq2WBLjdaJyeVYBRTTlHCVBJ8SYBoD/eTos7281gljEz6MFOWapi5YNsX3el+/d5PhJn+aK2t95jjOHdq86oorkly+DHCcfNubpkJrQ0yKtu9pKktImnVd8v6hZ/RJeL46u5QnCeA7vYQhMfUjh6M0Gg8f9vhJ/vykG8h2ihK2dE7pTrP3dJDC0VqxwPU+F/wxijtSEPGk1pmfnYSy9Cn3b56OSLJm+OhlnY/LTWp+sC8nD2coNXwE480vS9M03N4+Y+xbXA7YMVYi4621LBYLXjx/IU3F0xO7pye69ngSNBoDnsTQy8Lqpl50AVXNvGnqzFsOeYrpphGtZdK3WW8z/Dvi3HguEIwCAtYa5rwPgRhlwllYw6JRWCOLyTQNJ1FsiJGu7wgxC0eDom5WWKPp+06yK6bxlKR5st6TNpFh8qxXG0whLgjD6Flv1qyWSx4fHoSLGJOgG0YoeFEr1HjeKC4t7y5RqnkycsntjCkx9gPH0NEsl5iyJKDo2oHRSZjhcei4e/yOhActZxqjLBoqiYhw9mz33jMM44lnqVCZq1qxXm/FajNEPtzd0/cdXXdEq0BVrQiDTOt/yIctLDO3PQSVaQU568E5xn4OyCshaabJ07Ydy0VDVdXUq4bP3nwuRUQMrFYrNpsrxnHgw/0dd+/v0apmtbS8+ezlaZLpwkBM8t4vFyucH/LGAyBUtt1uR9/3vHr1GtC4SdJsj+0RyTPYMk0TDw8PfP311xRFwfPnz1itVhTWsl2u0D5RU/P65g2rpqEpDY8Pv2bfPnDsDhy6ln3b03aDOIS4A93kGJyjVA3X19cYrXn//p08P0pjdIlzA4fHPcd2z7E9yLBAy0Tww3ffMW4HwtVNRmllYGOrkpUVG1ljhNLoQ2CYRj68e8txLyhoyHo6NRVEEFeSXKBobYlJoaKEbValOWmPfPCZa22oKklIn9Fn+d/SYBSF4cOHfUZWFZNz+CBuX81qwTh02bLb07bHTFNSHI8d0+QIPmBtIXuOD3Tjkc31M4yVvJ3oI4UpKWyVz02JbW0O6hMe8yzknvN0zuFeRouJiDEa7zXD6E9F2rwenIcQot1QyDX2Y6BHeH/LZUPT1BRGnNLuH+4gwdPjnqurK25ubri5vkUpzX37wOFwFBvmxYpm0VDXNcMw8LQ78Pj4SFGUXF/fsFyuSAkeHp6oqpoXL1/z+ZdfUtdNHhIljocnxqljtVryJ3/852zWNxhd8Kuv/4aUJjarBZ+9fklT3aJVyd/H8+Xft0PybM76h0ux7oyMzqLfmVI5m7bIdqII0ZGcPOvT3R0+GtqnRw4f3vLq85+c9qNjTBhtSLbA+7MrpAzP/GlqPe8lM41XEAcZXBTWZj2T6DjcxaBIKy3U2ovnLMZ4clpUSuqQed8KIZzcFedzmREda+2p3pn/PD+1H1nSzrXG5TMuA01xsBqG8x4jhboYN4Tg0doRgiUGSzJWBM+AdyPD0AotO0aUloBL57NttDEQE9M40JTSiGsk92bWTcQQqKsC7xx9P7BaLk4akmOmh0r9qc/1wUUNdWkAELORizHZ+EIhIdHZVXQeLp3rL01RiHOTUjJwVSmJe5gS23utNVjJuVJKUZQVzPSxqqLKeRcgzBuTNYUy0MoanuBPiKhoPOSf81eMib7rGQZolgWbzRJjSiYfcH5EK4NcykAMipQ0ISoOx4nDsedp31JYi9aRprJsN0tWyya7klqsVRk5VtSVYgc4lxgtDGPAqEByia51HNuRthsZ3cRiVbFYavbHI7ZAKLj2+7EqvvdKU9jiFJhy+bB+KhCaISGUQtny7K0L+OQptcJqgx0jwfekqKiV4WZd0HvoPbTT7JWechCjQkVF9JGnD088PT1xOByZJuHbKc5ahnkSNkOP84M4d+nzIjC/tBIO5cWrPYG2FTFFhinkQiZz+tQnnzcJt05F+d/zFOFSGD5fo0uh9GWDMf934Lfj6VOiPR4I08RiuUbZkrJsWK428pCjubm64Te//BUxim1wCkEcbVDolBi6HqFFlVitGIeOw8FlZxWZ5DTNhs12K7Hzdpm5g7LhLpcLHh6k2HVuyg2VCM8m56lqhdYFtqwpi4oUhVKRktyPsiqoSgs0OO/puvacZmkUpigBRQwBZU1GLsTNAYo8ASKjNzIpeLZYUTeSsmytJT0+0R12uKGjKISj7YoSlxIMKqMzjrquTwvK5YI+b1Rwtuyb79fQ9+hKk8YBouLlF59RrFYEbTC2wqWAKjXbqw1v736JjxPKJJrFIkPMQaa/Wp846UopvHMM/SCUKGuzQDXx8PAkXPS241e//DXT1KJNZLNd4PzA5AbG6YfdZMwZBlorVqsVbdvhnDg4uUlsY5V6zz//Z/+Mn/70L3j+/DmFLdlsNijEgagf5uJCiSaKSFlWvHj+OYVZ5AI58fj4AUg4P3F//4Ef/zhxfXXNdrNlGFLWHwmfeblcMo4j33333WmzHoaRxWLB9bWEpbVty3K55PPPP+fLL7/k4eHhRKncrG9Y6wbrFVuz4mqzxE8d7+7e87Of/0u6sacbBr65+47Jy/py7EfGmC1ZtWIYej7cCR0jOI8taoL3HA8PjFMnifJ9D0oRnDRPMcHQD8T4yDgOVE3J4Bwoze2zF2hrORw63r+/589/+heCAqrI519+xde/+BkhJl6uVqQoUHjft1RlwdPTjr7rhcaQ6UN1VfHVV7/H4XDgcbdDwjKBpCmMzvdREAMfPGmKjGPH08MHoZOUFd5NFEZjtUIRRVgexaZyco627XJx5qXJ0qKPWK1WKCVTz+VyCUbyAqy2QvN0joSgv5IdtGSz2WbuvoIU8Q4O2d5Xa0NdNUAS2tM0yQDHnum689T006nnyaISsUOfBjEJOawalJK1/HBMfPf2jqoqub294csvf0RdS67FN795y9CPGF2yWq9YrzegxK3q22+/o+t6FAU//uoPKEpB8p6edpRVxe3zZ3z2+ecslpWESybP4+MB5z2vXn7GX/z5X1JVG/a7HbvHB7p2x+/93lfc3jynLjZoJMz2pFj9AR5SUBd53VanYhnm4k3oceaUEn3et+f93xalGEY4oYJYU1LpyGfPN0zuQBj3hKmlb4/0w8hsPTs/E8ZomrqirqqTWco4jh8V/mVZ5PBFeS5nGtRlSrkx9vR35hph/h2XnP5Zg/Ip3Xf+3pn2a34HugJnJsVlM3b5NU0TdV1T5yyXS8rUPJ0PIaKUw9uCIkUWTZ3rJ8khenp8pOo6qqqmWa6I0RG8w9hS6ooYUQKLkFRuLTLCaIxhsVywWCwI3mMLyfeJSZEwlGXDNPWgoCilGf+tfVxr6qpme3XD0A88PtxjVaLQSqz4C0PAkNTZMe4SDbvabCmrkkO3x08jKQQI4g4pyE1ElwWmKDDaUiihUIoDnjkhjQol9VAO9owpURQlSrnTgJocsioicvk5KanT98cwZ2SIQ2ZVKe7vdzRNSVOVaGXp+omu73l4PGSL9kRpNcvGZmS0ZLWStHqlU16vBY1RSqGSobQFVgd2Tx3BG4iBoes57DxVVbBYNrzaXlOUkAhst4UEZw8pW0X//z7+Hha2v921fApdfcrzI6rZuhoQT+shyPd47yWUKQf8ldaQtAGjmXwkBRHmkuTDeOcZh5Hu2DH2E2GKp4nXvFjOk6l5cjE/hKfU3/zCzemYs9p/RmO0MbisSdDa5FTg+bOf4c2ZyJWSIqZcQOYP+ikF5mNx0bmp+BS6+/Qazl7XMUnBJLBiRVHW4oxhrYix273QAXy2e41BGqAYs+gt4VWQVNgQiCHgUsoppQkf9ixWYospAjYpeCHRda34sOdQoPM5a5q6OS3WSktqaYzi9b1abnGTuO4oYyRhtRB6Q1nOATsJbS1Kyd+bf4+fhFqlUjrRk3SeVhVlydXVFWVZkRBnhrJuRKQ3yucpyoo6T06OhwOgMUps2Wb4EqTJnO/rp03hCSpVGnygRLMqK65vbimqmtF5fvWr37A/7Dm2R56eHpncBCZilbrYAGIWiWW7vRgYx0k2xwRPuwcSEWvKTMuRIvtwOLA7PFHahLGapCKTn3DeEcMP211q5seHQB4IzM27xlh9KuLE/1/uaVOX+Z2T/xNLRGkyJBlZFt3CWtFMzPQ9lZgmCfori5pf/PwXHJ4d+MlP/gidrVRTlA1Wgi1XrNfr03oRMg1ABPmJ+/sPvHjxgtVqxWKxkIIhmz6sV2uUajAusdQF3nXs9+95+93XfP3rnzGFwBQCHx4+4GIi6QJTLTA+kYLgvjomxkHCkyQp2Jz4sG4a0AqqqjzB5CnTCI0Re8PRjTg/oRAby0VTEdGEGNhsaqyBru3YHw4smkqoSssFxEDfy7onm6GiyU5FQg+bTsjqTCstrWW1WpBiFIoqkeDd6b2axiGLER3H4wGNYrQWl8NWh3FkzPbU5MZbkAtPzNq6lBImUzoFoShOacdTCHg/kXSmrmaaqpg2gNKyRtu8roXQUFUl4zSd3s154xBOds7IyMj7NI2n4uey4YDz2k1Gz1NKJBcJLhJ8IrjINHl8cFJAxExpGEamcaJtO4yx1JU0TEqLTuhwOLDfH6nrhtVqndf4KQtdAy9fv+Tq+pqyKkh4QYS8p+0OPLt9wcuXr1kuN/TtxO7pkfuHO26uNywXa8pygUKorPLZPfDDpEzNBTfMw7mLyf1p7Z4HfEKfmhGPedB41tmIZjMSqAvLV5+/YkiSso5WtG2fkYXpo3OYLWG99ydK4iWdaV7jxS0oSdGXszMudQVD35Eynfaj89dnV6pP9SefDstsHgRcFtyXDciZDnR2XfrUxXI2yzgcDh/9rHM9MzMfMqUwBiY3sVquc5PjSDFluuskKN9JS2LE6hcgJYa+l5rBGIpCnYaLqCTvDKJ3UUmdBM1NI4M70daebYHnQeTcZJCE4mS1PlHJBTRQKG2oqzrnGelzzhEqN5+1rK8q4cpKBP8+SHChd/gkiI+gtxKIqJQWFN57ZnaHXI8AGKGLBUFW5uFriHmiTfqo/pzLZ6Hha1JMdN2Yn4eSw2FgmgJjKYY6bSuUWuccZaEvKFEVRaEpCp21JPkep5TRcXkunPOZLaQ5HnvcBOIWnlita+q6oGkKFkuL9PMaa2H3NBJCovt0MP4/975+r++C0wWZF//Lrnh+SE9NhsoF8iltU/5YsghGsRUVMF7+k4HCRDDiPz2MBdFnfUaMOOezN+9A1/b40UsBHVMOl5HjciGZhVMppdMUez7vS6GvvMjzZm0Z4sisH8FfaC3kU8Is/kuQZlG70pniJS9LuvjQlxzLT0VH82Y1LwKX11ArJR2yNrkAKyjKSkTcdYM1lq5r2R12uHGQF9s5iJEYxS95phZ6Fxj78eI+yH8PITBMYr0p7lIz/UnO4XCQyelsjXfZRM58dGvtSYIiVKXIYrlgtAY9DsKltwVWKayRMKEYIs57MHkxVjAOYv/p3QRJ8krmr7nRmAtBYyyTc0xuoGoafNeJBiQ5ymaBLooM44rYL2mNURFlhBphrWYcppygLqng8eK6p8yVtMZgYqIxlqvliu3VFUVZ8XQc+PnPf8nD0yNPuyfuH+5x3lEY4YY7P9NNyHxYSfr0PhDDSJlh1f3+SbjrtkIly+EgDcthv8O5iWpTnybJkxtzY/jDbjJmLU9KZAs8WeS04uTSMqN/MxXB2iJze6U4dG7Ce5lQTm5kudxQWCOBWKtF3kQDVSX2wtbKNPiv/upfME2OLz77EculTMYTME0TTdOwXq+5vb29QLfUiUI1jgPv3r07TS2FxmCzU9vI8uYFJhmsT9TJc9h/4PHpLW/ffc033/2agCIAT8cDU4iU9ZKb1RXRReLkUXFe+CUVuF40gk5Gj3Mj3sukvahKnE/4SWx2UQpTWJISJ77JDeISZcAasUyoa81mU4FyDP2R3eM9bpTAN2sauu4oOSFRxIreuew4VwMwDEItm91vYggUhWG5aGQok4AUiDncS0TWw0kj4MeeMAldqc3OajEH3M1UCu887bHHO0netdbiU8AYm6fWucHIDWAMsoZFHSnLQtDReWqthVLjvBMdYFlSpoBViq7tiNmhZl4QhbJ4dvuTgDWVUZ9M/5gLGnXm9p+YwjFz5LMxSvAwOi/DhSj0qqEfsyi4Zxpd3sQXNE2D95J6//S0Zxwnrq9uub25JUVB5Kcc1Pr8+UsWqwZtND7MRh1CBXv9+jOeP3sBaPaHHfv9I3134NlPfkxdrdCqQpHXahVIOH6oTcZZpJyDYS/ufZYJiYBVK4JLp/3scgiZ8t4o1uaCpleF5cvPXuKUWEWXVcXD454xi75Rl8nRGucd2kk+wqe0OqHaRqIXfcBckwiLYDh9z1ywCxXJEE9/zqkmmL/30mnq0ybj02HvpWZjdrOcj8sm5PLPZqeqy59z2Vifi3uhVw/DkJthqdsSCT9ldDim7GxXnCjP5M87DL1QGcsyuyfJvUqIc5rs9RWFEVvg4D3BLfBBapWY4rmxilGioHPMAJnRoVWiLoUqOQf/maJksVxl3aMWKmZuAgtrMzuiYGktLmTKpAvEcWKaBnRwlHWB1rImLZZLtJoRjDYjZhajE6Me8zkmpnyP5b+L4Uk8XfqZKjXfiHytkey5Pje3VSGOaEMf6G3A+0Q/DIQUWDaG9bKmqUsWi5rlMpsSEYAwt+CQVB7My60YB0cIgpp07cjQe+rKsN003FwvKUtLWWiKMjcqSlFYQ3sUt7Zp/AduMqRQj/mFCL/1gH5cNJt84WbnD3mj53wVmAVBotlQMWFwUmgYRXO94NBOHLuR+6cn+q7jeOzYPe5pj528uHMhf9HEzA2GUophGFgsBH5bLpc58ORMjei6jq7rPmoAZgTkfMwOI+SFas7/kAVE5QtvCnNaeGyGK1N2JRDoURaREM9uUmVZftTsXE4rjDGZr2ioiorlasVisWaxXLHZ3oA2+BA4HI45NVJu+NR1eDdKSJCbsGUlQumUN718qVJK+BDxUZqCp6cnsbNdLEDBYimQbnvsTojQvDA65yQtdxp5Zm7QWiYTTbOkqiqutxvKwnK13aCN4de/+gbnEnXd8Nlnb9Ba6CvT2HP/cM9qsaAsS/qypd0/EhCBvoITT1RpzXK1pihrjscZvg4kFLfPn5MU2KIgAdvNBjc57t69A2Pxk7xYybts9VtibMXOP+GnCWJCuSAKopTAKDQao6Srvy0bPt9e8wdvPkPrAj8Ehn3HbvfAL37xM3btI6gkrg9GCt1pnCiKCms0UaVsb6zEUUMn1psrVusVLg1oW6C0xSpBM6J3BN+izUizuqYoKx53O8nJmJv2H/AxWzFKM6uoyubUcMRI3sw9k/OMk2PyHoyS8VScEUXZqMZx4OHxns8+/5JFsyTGPjfm0qArrdhslmw2K16+fM7z51cAaBMxRlEq0Qz1fScTZaUoy5K//ut/mWk8MoGcbSGtlSyXYRg4Ho9459k9PjD1A7f/9IYXm2vqRjG2R+7uvua7u1/xsH9PvS5xMREUvL5+znfv7wlpYvA7UCUQiMHRHSdZb4ymbTseHx4Z+4FpFD1JU9aUdYNJCl8E4S6PI8M0oqwMOH7zm9/k3BrF3/2P/5L19YYQA213pP/iJ4yDl9wLVbJsapybuHu/I3iXN9qCD4c9zknI1VdffcXhcLiwjRQv9hAm3r39DU1OSJ+GRAqOlFE8N/UEN5L8RPIuIx2BXXcgKRHmJqUoS5vDAyNlUWbHFbkPqZTGpmkWbDbbU9M5TNNprS7LkvV6TbOQzJTD/oC2Ghc9U3vg5YuXdH3Lfr8jBc8wCuViuVxm9yGhSz09PYgI3jvcOEIKFDknI3IuzC4dYyCjowYkUfyANoqQIi56vvjic1brJVppfvnLr0/N9YsXb1guF9RVSUyeY9ty//DA27fv+fM//0uaukIbRdsdOBx3LBZL/uTPf8pme5Xt4gN91+aUcs0//sf/a16/egEo7u6+4b/+r/4LvvzyK/7xP/7HXG9fUhZrjBYUAzWR1Nlq/Yd4nGlFc+7KXMjLEO/jYWODycOlSytxY0xGIgJkdEApTwwTi0XBq+uGpnyGc1/lLIoRlNitWmsxhaXte5z3OC80ZdRM11udfn5M4qA0jAPqAIucadMPPfvdDj8NBDcJbchamZznCrRt29Nzd2nRut/vTwjFJWMDzsPe+e99Sqv6lCYFl2GGZ3rUp0J2ud7y/TJIEHrW4+PDCV0ZjSZ6MZPo+wFlLNpYDocDxuZsK6UoUCwWDevVWsJQnVj/Gmtl3VbyjAflBVFizTgMLBaBaTR0/RGrxVAlpERd1ZmSLHox+ayCvGq7wZYVZVWzvrqhbhbM7ljeSY5WDIngcyii1jRlRW0y5T/B/uEBXVSU0bPaLnB+kuZh9Ggl65pWhqKS8EznHVorFoslwgjRrNYLvPdM08jxuMe5UdzJM8IixX9GYfN9DklcngY8ez2ilZxncEfq2rLZNiyXK9Yr0V4UhcnNQJBGJsb8+WSd0toyDF3WIUd2+579YaAbJ4yFqpJh1KuXG+raYrQSm1zpDXMzDlVZymBk+n4mNN8/J+OTh/XyobvUIciDLH8nppgnw1IaaKnQUZzpRfL3ZaEgiYVZxLEqNKaJ9D18uG/pupa27yRoSmXoTp0UNL8FE15asoE0SVrrU3iWUuqkzTi/PGc7tODDibJ0hrYyXUqJNSxKoL4iT1pT4iTwhQx7xcRs4musZo6mV2RR84Vwbb5+QtmJJ+eFmHl6oGgWC0CL01CIQh2wAwaN60XjIowFJQnAmXLEJZSa5OELSXJE+r7LHPRBCoa8iQ99RheymGxugqpaCugQHF2bk4WVpq4q1qslhdUMfYcPgaap6VqB/Kw1tO0+UyQS6/UKo2EaOh7e3xHGEZOEioFKJC8I1nqzxZgiu1qpLOqXRuq4fxRnsZQoS0nCDSFQlAWL1QpUYuxhHKQZA4+NihNUqchuEUK18MGhUkQlhY6Kx4cHnq/X1DdbjC1QGJa24vM3r/mbv1viUk9SBpd6CX7SnOhs2lp0IYteNtkQF4qyQhlDd5hAlSQrzfixPZBSoG7EalUWHxh6x5gtbn/4h0wR54JrclOm/kh4ospTxqene97ffYstFcYGrq42VGVJ1TQiJi4ttjC4MLE/PHE8HjC6FNvqsqCqy482SmMUTWO5u7vjb/7mr/jTP/lz1qs1ZVVydXWdjQ9EAHhzc8PhUHA8Hgkh8Pj4SEqJzWZDVVUn9LMplly/uWZZNjS6xCKFdt/veGqP7Lue1jmijvg4MXlH14300xGUYXQaqyuMNixqQwoFzmdHPa1ZbtZUdY0bxbXMFAVRaXaHJ57d3GK1oexaPIJA2MIyjQPD5AnOM/YDh8PhZEbw1v6aaQy4KdC3e8I3Z2e9EBJuHGmTCPAlRM7QtmfK5DSNbDYLEcuOE0Yb9pPY2EpYX51zMjp2O0HjJC05YDI6FUNAF7MznyA3w+AEwUCKtPM9szSNDImqqsp++l6alCQ0tzkzIMYgGrBFzWK1wofI8dgyuelkK+kyhYsY8cg6KJkL4piTYiQFOceUqaUheJK2J8Hpx/vceWotW5IUJkVZ8Or5a5zzPD7sKApFP+7Zbtc8e3bLYiGocSLS9Ucp1JTmJz/5Q66vtvjgGIaWuw/vefniDc+eveBqc0VVi23wNE3sng6s11dcX19zc31DCFLw/eJnf8tnn33Oq1ev2WyuKIoFWgntLaaJbDAv5/oDPc6okhRP8/50qYeYG9UZ4SisvaBJnWlwgpgKIyICw9iTosdH0DFysyr48uU1KUS+u9sjImqPC4GkdNYFGaahz1amUnfMWRjSCAhFanSeIqP4CWgWC8a5DFKc0PRLStNl83CJgMyN1FzTwG8jH/P6d24uhDoGfNSczJqO+ZjRkbmJuURK6rrKIYei05jtr1NKvHjxAq810yiUT5UF3aQcXBcjUwhEFHXO3pJhhkWV4gNprBW9RtY61KamLKSonYaSyY3Ui5WYU+T30/lwcmUMUc5d1jRPs1xR1g1lVWPLittnzwVNGgeO+xaNDIYlnzkjQDGx3GyICfquJwXFfvfI0B0xqsCngErx5F46u1fN9H1jDEVZZGRtfsbONsRzCKkKOiMboNTZcfTiRqCQn9EPI4u6yoYVBmUjttRUtRV9VqFQOl7cZxlIhkhe28Q1r+8n+mFiGCb6QYJLl82KZBXTdMBaRSJgtM2ILqgkgnSfw/36cZJ6q/p+a8jfq8n4Lc1FPi7FM/ODLqnXeSHIj1tk7pITOn0s81ApihNMcqQ4YZTFkFBJpt7j0Au8xYVY50KPcdn4zC8hnO3c5smG1jpnJmSuoJMTmalZZyg85SC+0xkKbzAbBsxWqvKZzSmhHPJkIEoToch2sEZlW9yzPaTWGpVFUDo3LfNv1Eps0aqqzpabQj8rihKURvlAqALeGFSC6D1Gi9uDUhJ2GGMkqYRKZwu8FOPJAz/lhmgWLM0LTYwRlGLsR1kQLxYurcV+1FpNDF78lF1gGgVBUWnOPZAFpGnWDINYUE7TkAvJM4Trp5Gh72kPB3xubpS1pAwxKq8prEC9MWeZGGslky5G2uM+C9I0ZWGYxp6U5N4ulktCCHgX0Fo8rWNIhCThWpfPzvz8xHRO59BIwmdR1yxvriWlNCYsiuvNmuvNlpgmJgZ6ny1nkWmnLkREqjPXO4Z5EiqIiw9iaxdDwiehj0zTSErSOGojNLkQxb5udlBTHz2TP8Rj5s7LtErhT433XAAGPH1/5OHhLjtZBJQOrFdbNiuZTMn7Ko3lbr/LDkQVddWQUo0y2VkkilV1UVQYK2FlDw93fPfdN/DqNTfVLWVZcDyOp8Jgs9mcitjpxOFPrNdrWeATpAB13fB8e8uzzTW10qgYCGnCRccYImNMon+KDp8cLkmDMfoWpS1VKEhhkkbDVlRlIZkuQREVFGUhqIxSFLEiaU1ISWybm4aysITk0cGfxK3BOca+Yxon3OhIHSitMIXG2qcMj4smaxwHlNKsV2uhpIVM6YvCLdZKMY7DaZ1wbiKGUorwGMFY3JiDwIIkbk/jxGG/pz8VH/Ln2lyIp8nFnhLucvDCtSadh0Gz8FUcqsrfoncodQ4j6/te9hmtuNluqBYLCSLt+1O4qFicy7kklQjBZboWeSiThPdEzJv0PA0MZKgiUxjOheB8HvMxa4a0Udze3HB3d08/9PT9xDAeqaoCESTLHuh9oOtbnPcsF2tevXpJVVdMh55h6EkpcnV1ze3tc5pmgTIhoz4TKSk26y23t88pypLd4wOP9x84HHb8+Pd+n6vttaC22lycW8h7nfpBryOX6/Xl8en6OE/OtdLZkv2MBlxSpzLXgpgSLjh0prOomFjXlje3G3Hc2Q0MwTPFyJQSysiAwGgp/MosRr90O5IivQClM+1V3NIgDzm9IwSPyZqGeRj46UB3bjpmVONSk3Cprzi7X316bS51SOfP/ykj5RLFuAwa1HmwK8J1aTpmVsOMMM7ncWq28gjc+4C1mbkSpckYxxGT9QlK1xhVoObaKCZCihSkUwbFcrkUtsBYgrYZeRALx7bvqasGbcUtdB76+uBZba4osnW/MZbt1ZayrOj7Dq0KVCKHIlZ453He0w8T26vbXCcZwiTW+26aUMoIFVvNa9C55gshyf4gnVV+VqWhjSEyO53J12wUZE+ygk/1u1KHASmJfqKuMNZkxywnqIXO38OsD5PhXYoC/AcP3kv94Fyi6xzj5BknyZNZ1iV1XUKh2B8GjJFm/VSJJrJ2V9aeafInmq79hw7j+0gvoM/OSJeL7uVDeuZBzguCwvuYNRSzr7pseCELYxSBhMdPI90YOPSex7uO/W5P1zlc7oJ1RhAUHzc4lxBiVVWnF6HrutPkQtK6x1NCt0qRkH3aBSzI3f9MxUI4nepE8Ziv/eU1UBLmkmE+ayxEiF5EieZExTInjv0wirAwJCkiQ5go85Q0xshyKQ4p682WlHMnXOYXCiwoiZHt0WOsoizkM6cwbyQJoj9NRy4XqdMXZ43K/GeLxYIQIyEmunHM90Xu46krTIlpHNEqj+cTjH3HXouGZLFakXLz1TQ1fT8wjhPffPNr3nz2iqoqUFpx9/6O9nigbVuGacDla+K9wxaGwpYUpqSplhyHHh8GTCH0tOACUz+yPzwBiaKwLJuCtjugtaVarNhc3xCSwrmIURaSg+QIfoQcApaSkuuabZmr7Hil0VhV8Ob1S7740Y/5/Kvfk3TYdiB0LbWGn3z2IzarBe/bOyY10Q0tbpqoq5qyqUErJu8pywqSNHnT5Dm0HcXkubq+FYH8JC4npPNkab2Rcw/BnZ7pS4j7h3qIY5AMB2YhX1EYFs2CNvPlU/JMruPbb7/m8fE73t/9hvuHH/Pm9Rd89aPfZ7veAOKUMU2BoRf6Hmlgtcp6L6UoSrnmhTVsNuIk1CyEtvff/ff/FX/6p39GVQsX/2m3wzlPVZZst9vTdK/rOrbb7cnyerfb48eIDgWr5YZtuWVbbSjSgA8tLg5QlphmhW6WUNbsd0e0ibIhGM/gjiilWQTDOEUKW1HaBdZe0WiLi4p28oQwnVJzNyt5HnyK2OIlq9VSbAxTZLNZM40jbXvgsH/i8LRjGiaZYhtNyvTUwlaSuFuWPHx4lJyiUkT1tzc3AEzTyNu338oAwSu8N6xWa6pqIvj+ZKFsbMGiWUASauo4Djw8PDIOA8fDEa01RVVirJGAU62I3jGFgFLZ6jEpmGRAUNiPUQKTkZSytFir+XD/AOocaNo0zYkuJU2Gom4a3rz5jClFoVTGyDhOtF1H1/WsFg3KGGIU7UpInmkYxD43iIB4nrimmPV3eShw0p19MmGejxhnIbAjpsByvSAmsZ395de/ZLUuGXrH3d0HXr/+nBAi0zjx7v09r1+/4vrqhuvrDW3bst8/8bR75Kuvfsxnb77g+vqGpqk5HJ4Y+hE3jrx+9ZqXL96w3V4x9CN//Vf/ghA8b159zutXX1AWFd4nikIad8lLSPiYZP9I5wHdD+24FDLPoWeXtcn8jIQQUNYiKE7CMDtT2Y+QDJhFygmjwKdAioEUIptFwx+/ecnreovee375+IGdk8ED1ub9I1JY0QtC5OHpMWsWRRxclFXWo0b2h2PmutsTZVqNAzFGrDaMeQIvA5TyIyRinnTP+8Es1r7UYMzNzce1Wc4iStLcfIpyzHXSJXIxv1vb7fbMgoiJ9WpDWUrK9W63O9UPwzBwd3dH09SsVmu0EjqSc56u68VCtiiFpRATbddy2O8py4r22FJUJZurLb7v8VHWK6U0lIrCipbCFCVJteyPLSRNWZSUpThGLRZLylIiEnyOHAgpsr2+JnPc2W7X3N7ciF7Xb3j9WjF0I0M38vnnn/Pw+MBufySZju3NM3lHvcKPjtXmShgPyWGLSpqlKJbyWpuTe5TWBZDoBwlBNcaw3V6J+cWJsjeXUvpkRyy1ZfGR85gMu2f9skRDNE1JU5dMvifEkCn/I2w2FLn5S1GanxAi4xRxU2CcIm3rGKaRotAsmoarVUNTSvZGIOBdIyhq5wiytJNCZBgnhmkQpEYVFIXk+Xzf9ePvEcb3MVJwydW75AFeQpbzizAfZVnkh31+iM55GxF5KGJMjDFwHByP+5Hv3j3SHpxQXcI8epZCpS6r35pozJqGruu4urpitVphrRXB4oxUxIrgpbCLeWEhFz7ZlmSuneVhSLkDV2R4vUCbIj8sQmOaoTJrC4qikiYoqdMUfu5o67pGG8MmJUmznUTQOwvGtVZUdU2zEKvarncUVU2zWFHVNfv9jmaxyAsBeD8AgaqyxOhIyQPSzKV4Rl0+mrglSUAPF/dmfrB3ux0olQVxonVQyITE+ZAhaiWwWp68qJjw00gbI26caFYr1tsr1puNTOaL4vR7u+6ICwXWGA5dK/71WrHebmgPssFbI4E3tiwxZcHTfpc/gzQgw+AILuHHyDiMYtFG5MP796DEiWYcPDcvXtHUDdvNFePxyNDtGPsDXTsSmCc28YS4aaWosuNVikpCyiaoqyXXty/QZcWHb97y/t07umnH9tmCo6oZ9yMBUKbEFpYUDIVeYcuCqg7Ckcze3YvFinF0xJgYeskKiFmsv1gshAeZvcbbrmM8uZ2dDQR+yIfWhnl9MtbklGmH8xOrldjIjsMgieuxy5D6hKKgtAtevfyK9TKdxHvGSO5L3/cMw8g4OFwRCJU0xm3b472jbXvev/sOSNzcPuM//U//j0Di2O4ZRxEdxyzLWSzFVrQoCt6/f3/SaR33R27Xz6iuKmpVcdss2SxKKhsZfcfX3/6Cx/0TY4ysNjcspoH44S3almg9oXRitVqilGEaHX0nn9OZgLeBzcZQqJqCgqaxPD0NJBWxlcG5R0LS+Ah911KaCRQEd6TddZRVzc12zdTuUalhqjUpzEJNKQqmURJgJaxUbA5XyxUvX73im2++QWfK03K5OFkuj0OXXesk3Ewni3fCZZ9GJwhiWXN1dcv9/QdwAVNUJBK2rqmaGqsVRmkmNxK0QhfmhIAmJVx6Gdilj/aS29tbiqI8ISXGnqerXHx/CIH9Yc/kR/72b2tubm8xpqC0Fd1hoCobrq5uIEX8NKCUYbVcsTs84YPk9wiqljI9ICNt+U/CRZdxOW085Rslch4OTKOna4ecZyLORLfPXqFUwLuRx4cjP//531FXC4qiYru54vb2GVVV0XVH7u6+w1rDZ28+58svvuDqekFRJvquzc+oZtVc88d/+KfYwjIMPf/yr/8H+m7g+uqGN69/RGFrCTIcO47Hw6kAs0XNnBMSYoAfKGNqRuXn41InE6PkXRkjroKyd0eiOjevc17F5WAU74lEUbgqoZYELw5h2mlW2vCnX75h/WLJN0+P/Oztd+z6FmsarKlRRLruiA9O9FxBKDIpwmKxEgFxflaNliJtysW589IEjuMgDm0hSOOS8zHmz3hmiZybizl3Y67LLu2V+Ygtoi6m7NJ4zAn3cLbYFTqPOCgVtkChciioUH2mTJtM6cz8mN9JcaBbsF5vOO73p8l3ionj4YjJmq+qqoTCODn5HRk1VSiGTGcPMWKLPJwLco/GbFvbNBKWaDIVzhjHcrVhvd6wXK15eHzMGg9DXWXNVtOQUuThwx1aa1brFbv9Tiz3g+Kbb34jeoxFw4vXb/A+Upea69/7ET8PHqtB60Tb7uR+5brm+YtNNueBw2F/EsZDEuZDFls3TZNZFf5kMqE1LBYNj4+7fB3Pg+v5us6PudKwXBas1zWLZUPbBmL0mUYX+eBa6rJmWS/pOgmn9j4w+cQwpjzQh7JaStRHROrpJEyjwmhUMqSQcD6y2425OZ3d+rLOUSkURoLQ/6HdpS6htU8L++9X+CTmSPWYlAjfkeI7v9eSs5Cgnzz748Bu33M4TngPKQrpSuev/7km6hLqu8zFmF0ZxI7RyqaSIdQ555Ek5zhDijA3UEIv0mrWVMydqzpdm8vrZI09QbRFUZzoRkVhJenZCIVGmxJbVPhK6FspQ6FN06BMOSfao3VOMDfi3++miVN6rjWMbqLrumwhGU6TyxTFwUVf3LfztFAg+0skSibt00kUqI1kWnDidIo4S5qGnC0SouRyZIAtJVkAa+dOFCzJOxGnFp3pH+Tnyc8TJy10suzOmbUkgtoI4iTn6pMXCosXFEIyJgLTFACPNRVBSwHTHh6JETRBUpNtSbSlaILUTEtWYperhVYze21bVWCagi8/+4LXL16z3dyiTMHx2HL/cM/j4QMfdo887D7Q9a04V8yL4ii0KKUMEHMQkiyUM9zsQyQmD1EyIpRO1Lk5BRi6Y14ovt+L/EM5TuvI6QUWDZFzPl8zld2G8gwnBXp6nh6f+K5+y2rxc9aLP6auS4rCAhXT1DDrqJ76Q7Z/LUgpyCamNN5H2lYm3jIEMHy4v+Ph4YGyaiiKWpzbssh7zmeoqkomhF7oPMuqYVEuWOiSdVVRWY3C4+IIhSYVmsOuo15vsFXFenNF2y2ZnMeHCaMTpS2ILtFNAwpLCgqvIj5M1FVBVZUsFksKK9bTbhDaVlXWVNrSdgNumil9E270aDxGNRTGUVeJwhhIBaQzPB9QxJwQa03mImt9EVoqGxdKNqGUEn0/kNSs6QqYWibDIAXMTBet6pqb22dUtVhExhgo6hJbllRFgXcTyYvOSOicoj1JUdykzCcoxpxJIChrDlhzkitQ5mJonmIbY1Fahlp9P5BiQlvZOOuqRieZhraHI46Zy+2kWZpEqKrypHZ2hUtKZxKNhvTbyIUUcmTKhixaKaPSbvJ0bYexBct1xWJhuXv/nnEM+Djy/v0Hbm9vuLoquL4WlCwGSVvXxrBZX3F1dc1yucSHidC7XIgmlss12+01ddnQDQf2+yfa7sj19S3Pbp7T1CtSkkmm3NOYdS4GY2UiGmLEBc/iB5rH9+m9uGQypNNanq2HQyACOmpCLtpnRsOMDFwi+8qA+BUZtLIQIhp5hzam4PXtFRTQjh3cT/ioxcRGSTaMd47oPUGLLsoX/jRYZWZ66Dl3IiMLWvY6qRnOOlChN50Lz7nRmGmdc2NxOQCeufjSYajTWjsPB5m1iClx0add6KDMBdqjCd5/ZK876z9Q6kSBvKT3xFxIw8cupHPuhlZCE1Nao63Qjk4C9SBmFrO1rAilJ1LMlKN8/eY12eR8ivXGsFytqZtFXl80MQWSdwwE6rqiLAoJt+1nDZcXFEKJHe04DuJ2VRQs6koQa58wZUVZSaiomMsoiqpi7uCquslDWJ+bOLkXxpQYK0P1EF2+j+JQJmZAOjd64XRP5Lw+FuVzUZvOZkNFYVkt17RtJ4ObEHEp4McJP8peFyKEoJl8OtFBU1JZoxWJ0TEMsta5EDGFhIuGKOF8pvD5nMAqWfOVEm2p9+c1+fsc33uZuZwWnB/mjyerl/Ab/G5+oHRCAuHPlKoTgBDBp0Q7OB52LR8eeo5tICCTcH2y5RLqzjxJunzJPm0sZhFTWZYn0fcpAEdFJJojn6/3+TPoXCDOgvdATPrEqVPKUJV1piyJH/OstZCFizxNMZmPl/M6qhpTlIhHv8YUFdUJisx8Rq2om5pumEghUpTnKYGgMJFx6AneUNcVy7phaFseH+6Z3EjMRevsZjUvovPfn+/RbB37aRE7LwYARQH+ElYFialfLBinDj9NYv+ms92stRSlZYwB57NDUA47I/Mri6qQBs1otMmuFE7cZ5SRNjKmSNI6f485WZimGAh5AiL5FzNdohVfe2VIhZXgmTgyjAdsYSmKilKvsbqg0GUOo5HGZX4mtcoOJEqzXixY12uumi3/4V/8I/7w9/+Q2+sXKF1yPLbc3b3n2/e/5he/+RVPbcthHLl68YKqWmBNQXfoSFoRc8BciHNaeiGi5KoSd7D9I94PKAS9qaoyv8SBYZhO7iSQOdX/f4FkSAGa8sasED/5afKApM3bopKgn6wdGoeJp4cnpiFweDrwoy9eUdgbqrKBJBamzhcZwWxZrVZUVc04tixXK5RSYm4QIPgJrcVh42//9u/4zTe/5rPPv+RHX37FYlGz2axlYwiBmMT++rA/CP2IgmXVsCprGmVYNRVKJ2Kc6Mee5fUKXyve7Q8MfsSWJc9fvOHYvefhoWUcHVUJOrfk0SusrQBx7RiGieViyXJV8urVFZtNxdPjjndv34EaWC4bqqYUn3Inm71RmtH1jLEn+hZrWpoqkiol4XdTJKX8HhUNwxQYRi/rmVGE6Nnvd1irGYaJtjtSVxUoKZi7fsjUUIVWUFcNs1OJtSIoVrlAefP55xyPB5QRm8ZAAq0o64phHJiy4FWlbPyREj4IZJwump6yLGmahmlypDSd7of3AWMkZbxcLEhJ1ufFckVRFlnALdboWhm0ge16g2+EmtR3E0qNeD/SHvbEOOEmcZMyRovoO87ZS9leXTiwwMdcaSneVG4yBM1OUZx3pslzOLa8ev0Zi8Uaqxd8+807ofy6kRBGlssFRaF49vwaN0XGSVKON+sr3rz5nGfPXuD9wP7whPeTpKqXW25vn/HZZ18xuYH7+3vuH99jreb3vvp9tptrGbJ4QU1Brs80ebT2FIVHG3Buou17rpoX/1bf/X+o41Kr8KnGIgUxTJnpUDNiobWmcDZbmFvquj7prU7p2QpiNESdn2+jCJOXBlhB7ROvrzdUS0siYNnzsB85dJ5oONnCpyADvnPR7MS2P50F1QkZsEmStBENXmHF3jlGjBJWh9bnRmKmzM5Nxvz554b7jALmxpc5cA7Qc67OTKOSZ3Y+PtWpXNrlzjqQlMTmdv7vhRY7enk3PQro+x6NojD2hKRo87E4XwY9VuzpUVmj4jJtOGs7lATpTpklYrMudabCz4noZVlSNw3NYokxlmEY8dmienI9CtlHpmHg6ekRsZLVDENHXdcsFpamKem6iRQCKXpU8rihE2MJRH9alBZbim5kuVihFHRtiy1Log/iVIk096LLKjC2hBBJzueBhTS/Vd0wjsMpw+l3DTA+/hJDoXGYToOV5WLDOCb6XpqzGBJDnNjHicVyidKyNsugTWN0YkqOql4JbXWIHL2jnzzGQtFofIz4EOn6gC4iZWmzxXCJwgubJzjGvs3h1d+PL/W9m4z5Rf1ULHQJ0V06G1xerPnPhGMmh9F5EZ+/JwqFZ3SOp33Hbj9waB0+WGJ2R4GQWU2ivIyBvBmoE794s9lwdXXFbrfLvuTt6aUAsRVLkZwI3oNKlIXA7/3QEeYmASUbXXZXWp4mnAqVHQIuPbMXzfI8ffNnyL/rOqwxEnZX1VSV0KVQmqZe5I3ViCB6XjCNpnGOcZSHcLFYnKw0p2mkPR6JwbOoJda+MIaqKBk68aB33p8QghMcfHE/vPcnPcanwq8ThpMSMTh8iqfJ4qKpicFz3D9hypL1eovNgXVd1zK6Hoae25dvTqhLCJGiKkkJ+nGkuz9QFAWlLZnGgFKWsgBjZBqAEgTl+vZWKAW2Ino5lxASJCsljzJobdnvJwmoGT3WQgw9Rsv1NhiMKrG6YbW8ovWPTHQy3U0ymY5Z2DRz5IxOeBcoV5YvX7/iD37/D3nx/A1G1xzvjoztxOHQ8t/+1b9gsVnz7OVL/uDZc/Z5cYspcfXihqenHWM30HUDZWUwyqKUbCIPj/ccjgfGoWVZGwpriFYzOsfoxYWkH9uz+4dINUmkU9PxQz3+8i//nMfHp+wKBLsngdVTEgSwrERo6KaQs14CRBEq97Q8ofnmN99ijSyAQrfV1GWB3q758Y+/xBYlw3CUbBE/ndaoN6/f4LykM9/c3BBiZLVZ473HFsKF3R928l5mjdOiWVDogqHoqVLJyhQ0WtMYQanGaeA4HPgf/vXfUG5qTFPy5ssX4r6UDJtqw9XuOf1wpB8GuuHIspGhQfCJ9+8e8T4Kx7gseHb7gsJWvHv/lr4X2LteWvopMgz39H1EpwMxgtGWRbOkshUpOIhHykXCJ7E/TGlgs5VifJo8IXXoFFAxMHYeq4QqGoysnagEKuZEbI01Ba9fvuZxf0ApxWK5xGdqBkphjBULymni2LZoa+iHnhAchTUkLw54Tmm6Y4dzE3Uh7nWkSGFksqSNJinFOLnToEgpxfZqkx3uJlar8rTWGivFYlmUKGVYryWpN6XI4+M9d3f3Ilg1Bbe3z1ktNyhtOPQTVVMzdA1KRYZ2R3QTU1Ik78X50Ggw8s6leC5S53XycnCWUiRvQpDk76bs5mKU5vb2mvV6S3CKL758xXdvFe/fOfa7A+/fPWKMZnu9RGMxpqKqlvzpn/4Zi0WD1prHx4mu7U5hZH/0h1+wXl+Dctzdv+XrX/+cYez4J//xf8Ltzcucfi4F2qJZsFwu2O8OkNSpMDVG8fa7t/zs53/HZ/+nH/+7WQT+gY5ZQzAPxk42qOrjKfrcuJZlibGWGSuYh48zHTIB1hhGFTEEbAqYBLEbSUPCVBodEs+qmsUXr3leP+N//Ppbfja8Z5c8/TgQcj7KrGO0RgJ+pcSUOmV+pnyQog4lKPoYBfE2Sp+GeSrXW1VVnWqsWW86O059ajOb0pkndUI2UpQ1w8wJ6CkHx+kTOjDn0Fza+F86S815WSfBfK7Z5rRx7wS9ST4nZTOfg/7ovRH7aMfQD+I0lxTWyH0prMXIlJbgnSSQ1xXjMFFV9Sm/5+bm5lQfxVnDkcNvZ0Qh+kjX7Zn6nsKKTrYfOgn0y5Tk6+sbXrx4gS1qpqmjHwzj0BFCYprkHNebFbY0rLdrrm424pCXr9nUi2FIM4zszRNVVaMUfPfdO25vnwGw3z/Rd5a+7xgHWdPHUeyyQUvCd5wDZNXpWT6bLSVi0jw+HKmqhu0msWwWLJtbVBSTC2sk48waSU6fU8N9rkVlcDkQfURry2J1hSJxPOxph5GGiqh6fPQkBc6bbIkrVLaudTJUTiOr5YKyqCmK75ez8/cCTD9FLz51ebicLsCsuP/YVk7lqYA2GjULdLJIx3kv07R2pB8CzpElL+I8JWF4GfIDianXSKOhZni/l3bEz/DVLBKT6UGKUFYNxlY0izVz+iHAar0RPnyIkmCZEsZa8eWeP7POE+nqYz3IvABordlcXZ8WgIQ+hdylhETSG0mCTCriZRxHYYViNVOT5glFdSEGFztZoXw5N3HY7zBaMQ39KXHzJBq6gN1+S6goF+v0ey4ndDpzsWXSHzOnNbsUONngCyvpLEVZUVgrQVvTSHJeFh7n0Y0sGHmFQxuTFxfxph6GEZImRoX3CTd52SCRRm61WrFsVpS25LA74pOGKAuD0XMKuGW5XFOVtUCrbmTsxQ0nBke5WNIsltTNhtJWHPPkM5Htg1PWniCnGRKMPvDUHnMx1LEoNbU1GKXx/YBOirqqubl9TkAWUOdC1hXkVFAVqRqxqc02WEKVqwr6oT95p0tCqmiDjFEUdSNNYvBMPpyfOQXW6GxW8Pd5Y//9O0LwNE1NXddstxvu3t2JE5CyuOBkwmVtpp04vJ9wUw+k7C/f8fXXv2C1XrHZbKibiroSVFHbkSFrr4Y8KZrD25xzFLNTURJjg+3VFYtFw7E90jQ1qMSQhXy1VlRlKcjjdosrauJxpNSaIvNnA5L7cPd4xxAmpiFhk6eMJb/81S9J0VOVlqJqqJo1zaIjeIPRCU1kvW4Yhp79vhXxY7nl4WEnqI7y+Ogoy4JmteB4OBC9IwaHJmT3OoNRCpM8EQ94jNYy2YqR4Cfc/A6HxDQmpjEyjZH2OAEa5wOlDxibnY+MxVoJxwt5IthUFTYXPSnBNIpZgbFGaI+IFfE4DpAidVXhRsn3GKeRcbxnHAZSDHiNOKWR1/aYUUsErRMquUDxXddijGGxrLGmyBzyeW002KKkSirbOgo9dbvdUteVWEXnoC9TWGxZcX17ze4xkZKnHheMw0EMPbQWaqITa0ahSpGT43+bKgUXxds8lhGuKDOPmdMgzOFcwBqoKkNdl7ijpT2O3N09sfzlb7i62nJ785xnz6+pqoIQHcM4cTjuxIp7ueJqe01Kmr7vObYtv/zVz1itVrx+84amWWW3Q40t8v1PCpM0RVlmEbs4av385z/nw/0HHh8//Ft64//hj8uh2dxgzPslaZ4Zn5kV5+EomXaSTgXzLHI+ZUQojdV5pJOEdqeKBC7iXA+qojCata4IpeHz9YZ44/hNf+DbrmUMkwTqeYXxhpSklhChrP6oJtJGQRADEpXdJ4uyIln5DEUxuwzOFJucMP479HmXPP4Q5nop07/nuo3ZedNmh6JzvtelHmNuaFJMJ4OceYA8v38m6yaVGz+qMZz30A95EKhP7Iv5v4cQ2O/3mTYmfBytpe6ZxhGV8t6syDRo2c9DBJPREO89q9Uyu/+NFIUlBkdKAeck40blwbUbJ+I04a3oRbxzTE5CbY0xDH3P8diy3dZyP+YaMgmjIERPVZfYmDDe5Dp1Evc+56hsSVVWGGXEsjtrZJSCrmszEBqY3JjrNneiRYWQowmUzhTxj4f0H689CjB4B33nWdQBkqGwNYWpWGS3waIoqBe1FA0Ipdw5xzhOHI/HUySBcwGtQduKypQUtsJHj7KeYgXBS+DekHr6ENFJn/Q0RSF6EvgHzsmYj9+VlfG7HvjL45KmMxO9TM7GSOoC1nWOfphoW8c4JbLTG/OUmTzRnQV6Yo94RhNiEjtW573ceGPzBmSzsBqSTrnJsFmwk8XqSdT7ZVnmzIievu8lPdc5hqEHxJ6tsMUpDff82Wc+qGa1WguSEGPWU0g3OAyDWLJZQ/IipMwh4ln7INOOcILtz5MEf/GCheAZx5HD/umUdpkyBSXmRTRe3I95Ef6oCfyo57i4X5kFMAvHhKscxffLZfeu0oCxFJU0GQDaFugovPgZOrXWnOgEWinKugYmxjDiJi92u2hIiuATKarMhJNCfrloqGxBd9hjC02yBVXZ4BOZViUJm6pZkGLkcNwJncpNuWOXn7NarknByoIfP256tVLCOWe2MEwc+45jXeJ8T2kThRWqiBtGog8Ybdhsr9l3LRHxRHd+woVJPLStxlYN2pYkFN5NFIXBFoZjexCzASONr5tGPBFtFKYqRXAYvCSmnpzZEmr2eP+BIxl93wmvvqzYbtb4ccI5j7UlLnjZVLUEF47jyDSOHA7iOicc/ZFvvvkNz54/Z7vZ8vLVS6wtMzoIprCEUe7HvCHP/OuqrLCFBGoN/chyscRu19jCSBbEMAAZUckUxdIUFAtN1AX9EChz2B8qMQbHvjvyYf+EI5KmCR09LnjuP3zA+YmqFIeyulmzmCaCKwhTS8KzaDTrTcM0DXRdwBjF8XCg7wcwkaIyrI1hU5aUhSRgExRmXmsS6AQEh8qGD2DEsjoGovf5eVcQwQ0BP0GYEtMwiEsKihAVRTFTN3KgqBOb2nEcqOuFDEG0zs1IDg/VGmtm17RsiYvQT9tRrKmHXjIzxPYyCb8789KVmm1tdV6/sx6CRIietvUslyJaLmxBSqI5m7ndEt5ViO5KKYwV5EhnamJZ1ti5UDOG9WbNMLRMU0FRlVKY65nLH0WjESOmKPL6ONt8//ZADTJ9Kq8dKql83vMEMhK80KPGcUIbqOuS1XpB13cMg4PHI28rRVUVaKO4ulqjFPRDT9cd6Ycj280N65U0ITHC4XiUbI3dA3/06k/57M0Xch+TErtyo4k+zPUK1lh8cvjg6YeBn//87zi2B0L4fgXCv4/HZe1xmWqtlOiN1MX3neoOPq5VLm3tLzMjRJeXG10DGIUpFNiAi3NgmqZShrWGV8sVKkTiHp52T/RjJCqFj44YSynwgxgcoBMGK6J7lR0bVRJbfK3QRihaMw+/KMtMpZJ38vTeKXVykro8zu5FiRjz/q3mIdqMrpjcWM35XPI1N1tzk3GypE1nV6uTBkTPuld1HgrkJmY2abBa5/pK5aFCOk3sD4eDMDPqKmtd5WdM04QpTL4uCh8jbhoJMWBtmU1C5LysNUyTFO7r9UqQmhCzc2g4Zd6EyRGSF7TWFhJUnIe0VSMZRH3bs1knsPn3eie6hiBOX4qE0VAUmpSt6J2b6F2g3F5jlMmGPyXOdUzZLWoYOsjsg8kJcjGL7bNfVDYbMFLPxjwQOj2jc6OY6y5TorAEr/EuoTGUhaEqLNv1hqoqxfK7rvKaJ1Q8sfkesNay3x3o+i6bBYhLoNaGsliQXMAqhy0j+yf5nhhGUggs6gVVVbJcVMQo98R9zzXk763JuJx6wxk+/gip4DxlmLvr2T8apWRhjzrzFiPOO/ph4Nh27PYtj7uRcTJECpQWoXcm7p4pVsjCIsm+OrtDzdOAknqxpMg33toqi4QKirJisdxSVRVlVVJYI4FNU24kVEJbmewJN9yLu42aEQmh4sypnvPnE7cHqJuGuiwZRhEsiROUULVCzIshiGViipRVRVmW7PZ7hPesMLpgGEdIsnCM43i6ruM4sGgaqlLO/fH+Q06qnc7QPudck/l+nRrDC+TichH+eFonC53SM70tEX0WZnn5evHmc5rlCm1kGlo1TeaZd2K76R3RO5IxkCzi7DIy9j3eB5RKVFWRXapqDAJljtPA5Eb85FB+wupA6t/xox9/zqs3L/n8R1/w7v7AN9+95xe/+oaHDz1jG3CjY5xajE4kFen6A4cDrDZX1E3F2Hl8mghxwlgjk6rs1mEum+SUiGpEl57ttaHcgF5GYhE47B+4e/eW7779DQ93H9BLi7WKYCbGoUcZRVWISMxPIrgqqwWL5QrRyYxCiRokU8RqyxhGEgmrIESfszY8VS0e7LNI0MwwO9/Pm/rf1+OXv/zVCQL+V3/zP3B7fUOzWLJolvyv/qP/kGEcedrt2G7XxABd3/PNb36F2NpO9H3Pu/ff8p//5/f8i3/x3/N//b/833n58gVlVQoHVmuSVtkpZHGyj67rmrZtiSRWVc16I2LkvuvYPT3wX/y//ku8D/yTf/JPMdawTEuxW/QR5QM2Ja6amlqVpCSIx7vDA4/tgSF5XEpMw5TRAMMf/9FP2e2eePvuW5Su2V69pmm2HB6+oUsJ7zpiGFgtC6y5Yrtd4r0MGIax5f23H/j8q8+ZvGN/3LO6WqFcg+8n3H6UMiQo/OgZ+l5srEtx0ZvhLmMUxCAaBS2oR2EUsVA0TcVyucTYmtEFxqk/2cZ2/ZFl01BaWYf6rpPpsNJU9YKiKrFFgXPDqbDzwXP/4Xhy7WuPB8ZhyOjAXOwk3DTmsM2cnZQA5/JkQ9OUkvrtnFBdh2GgrluWyyV9P0ioVbbjrKqaomzQpqBSlqKQtbnvO7RRLFcNN8+ecWxHdvs9TVVicsiJj46oIlFFgoriJKX1qagyxqBVyk5vufX5ZJD2EQ1V5WmuT0xOEIf9ficZHVNgsWhomgU3N884Hnq6vqVrPfd3PX/6ZytWK8nBeNx94PHxkcPhwHq9ZrlacHW1Znu1Ybff8/7uHb95+w1/9md/wZvXn7PdXJGSJkYIwYnjTJDMJPv/5e4/my3LzvxO7LfMdsddkzdNeRRMG3Y3NRLZIw2lCIW+gRT6riPNhGJk+sVEDKXhiN3sbqABNFBV6fO6Y7ZbTi+etfc591aBLFAtEqWNuMisvO6cbdZ6nufvjEVjiMlzd3fN//T//h/57W9/TVFaLi7O/pM/+//Ux7RvTdQS5xxlWebgPQlkG7M73xTyODn4lGU5NxvTIO8U2Q/I0CloTVAJZRRmtRBXxjHiUBTJ8myx5KJqeH71FBL84/V7Xu7uZRxqJYPDGiO2rDHI3h9DFvGeCLWTiL8XWVswupHN2bm8h6Fnv98DR5F0n52WTlGNB81WjMfaLE2oRbaRzRSx6WMKJZbGXPRQQieX3JqUEn7O9xATl0Sg612m+Bxp8zJkMIIExiCIQMj07Hzd9ocDRVnQmAXb3ZaqKCmMxShNVZdoIwOH0Mv9bJHnRxorKb5vb27m87laLtBaJvZu6MSxr+/p2z1j1yOum4H99j4PNiAmTwxCjdopzfn5E5RqZCihDV3X5gwQx9///T2bzYr12YZquWLRSL1yGPcMJ6jHOI4olShLi9EN/TDl9IwiDLeaUldENLaUIaRk3oiZzzCjxxIeOgwOa6XuLIqC87Nzri6f8vTqqVjuF6KRvby44OL8gioPY4q6JObhaVmW9F1PPwxcnD/hw4cP3N9vud/es9vfgZLXtVlf0HYaH3pi7Oi7W4xx1LXio4+fYHV2ynKRtu/oh4F+GL/Xc/p7Ixmn7k1wOsl/SJMCmcI75x58XcrNu8DKYW4wDu2B++2eu7sdu0Ng9LJwoo+cdI3BmqMoKSnJLxURdUmzXObPCTQmcGgpWRMJmaBWNUVZoHQOA9MFdV1RVSXNsmYc+jnAyZ64UVw8eYIbJcHW51Tp6TyEEKjrWqCquiF4R4qeurAicXeOmBJVYYk+SIM02ev5gMcxtF0uItWs97DWUlZ2tn+T9yZWd9Zo1usVQ3ugjUHcW7JNaorHxfLx4qOUhCKeUqtOm8NZ+JXhzBjkOkWSiK+UJoZIdziIzWwhVr7j6CW1NylJBc30HqWgMEJV69qDWAnnXJSuzS5ZWnO2XpFUBWqCFgcSCxarFf/V//ov+ekffcLF5RpdK84+brj8fMGTL8+5vd+RxsRwcHz19y959dVL/BgoK8P9/Q0uKu52LU+fvKAfdzjfYbVQpSZ9w7H5EjpcMoq+D/z8737B7f+uo4mA0nzzzUt+/dWv+M2rf2Tf3VEVDUPsib2iHwOr1Ya6XsjkxnUkF/A+0Ue55klFFk3Noq5JITG0Hcl7fBxBB2ypWJydUdYNtliSgghJh8Ex9I7D4UDb9r/vI/sHdTgnG9VEJ3n34T1G31CVjZgyFGa+R+u6QWnN5eUFVV2SYmB0I2/evKUqa8rS8t/8n/9P/Jd/+Zd8/PHHnF2cURhDsgaVAvvdITuIaF68eCGCOKXwwWeEzmON5tnTK/5X/8u/ZBhEYNt1HXfcklzkfLGmCIkiJJamJAwDg3fs3YBXCacSjojzgbbtjgWqtiyXG/7iz54xed5D4I2RCWDf3TH0SSZZlZhJ7HadNESV5cWLK9arBbbQOD/SrBpQEeWT5G0QZIpuBQVLKYpLkp4mX4ralllQr9Cm4PLZJSkVOK8p73vaIdB2HT5qjK0oqprlaomtS/wwcGhb9vt9FqpKlkDZ9yyWS+qmput2MpXLabB92+XpZ5wpW7l+mu2ytbZCJ0mTbk3NGDVK5c194HDQGblydF3HbrebaauF0RgTiatNNlQQpFqrXNRZAyQO+wNnF4FhaDls79iGwPbulr49gA+CFGpNUhqXJ8MTAjwZYiglyEzM7/P0eEyjknVUQkNvbm44O19zfh5ZLFZs1mcURYXC4F3gt199zd3tDUPf8+tf/poUHU1Tcjj0lKVYC5+fPWGZqVB39+/56uuvSCi++OxTPvnoc1bLDdYItcXnbAUfZHAXoqB5RHjz5hWvXr7kH/7h5zSNuLJNCcQ/5OO76EITLWpiJ5zubxOAPzluTYLv47U+DkgVCqMsLkR0smhVoFUJ1SDPXFQkm4SynSKbouZPf/RT6s0F17/8exEYK0FQD/udoOWZtqmMzo5SisPuQJmLe5Ka9SLGFhwO7Yy2T6Lvx4jaqZXvVOjP9dE0YIwASRgV+shmmFCLxWIxp4lPwXpzsxLEmdFqRTA5ByZGohfUTuqDrJmdzh+yj04DYRXUzLIQvr/UfDrXTkMa8NpT52RvggzcylJyxYqyYrlYsN+3xGySYozisG/puo52v2O/39N1Lf0gugPvPD7Tr6KPQo/KyesgjBSNFKMpBbr2QEyJohRnQpvte43RXF+/Z8oaWbggNeIoGoV39zuMsdlqWxoK70dGN1kMi17FeZepfYmqWuZA00RZWMmKQyhKfd/Pg+v1WrJXmlpsxc+WazarFWd1Q1WXVHVJU9dcXlzmbCcj6/A4onOjHUPCFiU1iuAj6/VGno8Y6YcWSffW+NgxupaUHNpG6qbOlHtHjA4XpcEbOkFnlYLVsvpez+nvJfw+PR7rL77r30+nPfkfgWmCdXQlGEdH1w90/UjXe5zPfDUSWuUwuCQBabPtrJEbMETh0E4og3AfhfokEzyVxWFCByirIj8LaaamFKU8RIWyxLxYxxhRJ1zNSRDlx4E+HXmK08f0dMUoN3jIm5gGfBS3CeGMHsPCpocw5FTtyckhxSR8RxJek7MkRLRnrWEcemKUv08w5fy/PBn5XXoRZvj0u2lus5MEEzcyc47zR4wRn7zY5XpPMia7eViC8dL45WAq50YKX2aLWiklBO5MkBLOj+JYYDRihyYUpyIXmsZq6qbk089f8PGnT1ltSvrY4sfIUjecoTHLFTjPeOgIbUd0Lfd3lsP+wOF9T9cdiOmapqwFSiUgqZ1qhijnc6VAKYutagqrCUPC1ktU2RCUYXu/5+buhtvtDSE5QixJPjLGSIwajaHQFZ6UKWEjYz/QjwNo0IWhKKUJRilSpnLorDMyVrFYViw3G5rmjBAg+MjQe/puRBtB3X7Ix8xXF1yY0TsUki/w8tUryrKgKCxJw3K1oChKYlScna1lY3SWq6uL2Yb2/dtr7m5vWC8a6tpSWo04VhmCd7SHDgXz0CABKQRMplhOXP6Pnr9gHB37tiNFyYBxo8OpnlJbLBqdIi4GxjCyH1sO3tE5QadilGDRGBIgjWHTKJp6yc3dLdqIR/zlk4+JvhfqUJQJF0kDmr7wBNGN0hR1pvAk4eqqGl0obK0xpfDtE4qkkzjHBEnJFbaFuDcJkyflAh6K0gIl2lrKHg5jRyLKJtQsWG3WnJ2f03c1++09h0zBDJkiMM7J2cJ97vr9rP2KCcZ+zEW5yZzs/H8pFx4ZaRbjjsmVKc3UJNBzkQNHTd+8p6RsT4plHAdMf5gbBW0MpERZT0F/UjB1bUtwDq0kG8K7kTCOEMWxRuxvdV5Hj4jvw8FZpueSaaR5KvttBJi8B4j1r7hjiVB3tV5RFjVaGT766AVt2xNDZLt9x+3NlqZ5y2q9wBYVV5dS+K2WG5QyDP1A2+/Y7+84O7vk6dMrVstVtlEXAwI17a1RQm9jdITg6NuO3/72N7x+/ZK2O7BaS4ihOt2Xf2DHabH92Fo/JWncp3J91mRMhb16yHl/rLmZqEgKcQLyJsi9HBUp6bm+mAJ6tRZtRWk05+szLhIsVmeMbkAH0QVIs51ISolTWVBzuK8bHUYZKITapnXeHyBTvaXJcDmr5vR1Tufi9L9PPz/fn/lTUwN2SsU+FXafnt857NCNQhLRiqSPP1N0P6e/R5AflQCd6yOOdcYphXvSek3ULo8YAWmgGAVxiSlidTF1hVKwe08MibIwEIXKNI4Du+2W3W5H33e4adgacg7Pye+WEQT53lAPWCViae1mdHUKZ04JxmGc67oYUl67RUvc9/18DlXOV/HB0bYHyrKaf0aIojkOwWNNkU0AgKleDGJEo1C56axYLBds1mvqqqauKp5eXLJeLlk2C6q6YLla0Cwa1us1hS3FnpzIYllBvoe6rn3wrIi4v5zz2/IvpSgMVW0lC0krykrjRxmE94MTkUKSPDtbGKyB0n6/NeT3Svw+vQkf06Om43SCPnVk8/dkcZrQeTxjEIvTfug5tANd5+nHRESL1Dt54R2rvGRkIVIIcmJWzRoXZINTWjP0g/gj56l7UZSYJFx8SapNWLvAh1EWjKBpu8DKLDG2RE+1pjqG+o3jOPMfp4lCUdgcbCUTELFE6+np0Ye96ESmyVphUVm0LrjLfBJFcJYfnsJahn4Qj+koVptjru0TEa0rrFE0zYKhP9D3A33Xsm8lZTrESUwpD/vpwjnBwkB+0E7t0Y4NyBT2My0yKdm8SMmi6H0ghRxaJasVOkFVlqjVmoPSDOPI7tDhY8J5mbbGBGVVs1gs2O8PTJArJGL02e3rQIySurtY1DSLmmrRUK8WnF9taFaGoo6M3rFvD2wHOIwFpniGczdom/jpnz7joxdrrt9t+dWvXnPoHcPgCX3L+zdfE0Ne0BMPbP8gLzxKY3TFanXJ1aLm01XNx5/9lMX5cw6jpt17trs9+3ZHva4E6cmTEqsKSmWpbIUqatx9x6Hfc7i7p2232NKIICvaaYnD2iYbFwjKYQtN1ZQsVw2rzQqSgaRJUT5ubm4oqh82XUpc1KZNUaG13GPOe3bbHSD3e9JREDFrCCGxWa/z9NHz4x9/CShxATMFcey5u3mP1p4Xnzwl2AJDQCsR/nkfadsOW4TZarmqKhQR7xV3Nx94+vSKZQ1u8JSLBaUtqUzJuD+waVaURsKgRh3pcNwNO97v9uzbPW3XClpoS5SyKAVu9Ox3LSTFy9dfU9Ylm80Zf/anfy7To6KQjWd0KDxGR+LScDgMOCcc6P12CxpsaXC+YdEUFGVNubLoRmdPc+F7JyIphWwQlW0yopWMlrxpj75HNBiyGmlbUBWW1eaC1XLFxeUlV0+v2O/33N5cc397wzj09G0rOiHv6MeW/WE3D2pSErqE6N6E91xYGRKEdFwnACahbUrCl04EVE4hJjd9p2F8p3uMAuqypMjXL4XAYb/jsN8zjo6iFOeVJ1fPsIVkcaQIH96/o64bzs82BO+5u36XkeZAU9SEwtHqw9zQnOoN4WTfi6CjIk5Dl/wljwvclJuMcZRCtygqNusVF+cbtBb9yPMXzwg+UpcV//Dzlm7X8dVv3nBz+55/8S//JUVZsF6fcXZ2yX4vtIb3H15SVSXrzZIXz58K5QxphhNkF5hEioFhGOn7A12755uvfsO/+Z/+Ddv7O549u8ohp0X2+v9hHqf71XfRuKd7RopoKeatPVq4T9asU0N7SimWHIqBwgq6kOpEPMi+54LH+lxkEiiTIWlNUjLV10VN1ay4fPqC+8OeNAyYccBExegcPooeaegGyK+PkIjO47WjaZaUhfDpfYy8+Pij3GD09N1hFu0CD97H6X8/ZjBM6JvOiJwI0dPcYGits4udmwepMUZsPq/OOdGgZSc1GcxBCNmAwRSCRsb+WA9FJc2GCCzxKT54TRM6ObFBptcv6KfPjptKRNYmMDqPNpJzobWYJ/TtIGFwMfDm1SsSMrTuuoPknsUkQ7oUc4yN0B6ttbOOta4qQoyMY4/WEIMMi5yLTDkQzolmcLvdSUjiC8/l5UVGRcZjgxUDVVXggzS9u92O83Mx+TG2IOUsqHHsISY2qw1Ga3a7PfvDPiNQmmXdsFqvWa/XXD17SlPl7KwQ+eKzz9ms1zS1uOOdX5zRLGqU1ry/vsOHiDYVP/r8S0YnzIe7+1u0Ijd405oqNa53gZAGKlVyfnbGam3w4cDo7+kHuXfGEe63Q45qMJytappKyfD/e+pD/6ObjAdwXDra255+zcNJed4sUr73JlFQgsFFuj7SDZF+lEl5QlCJFDVRSaOhjaYoi7whKfp+oKiqmcYTkkwQ+6Gjr+vsna4Zxm6GxYa+lWLSFhitaNsBV1SoJAFR3jlUihTWZOGoeDqnJLa3Y98z9L1kGiTwo8swW4HJkwIfxtmZoSzLnJUQMMuVOCHESN/1dH2XxZMGWxSUtkAzPXSC9njnMFZJRoR32QJNeP27vVAIVP76FMUb3uYd8JSqNk9tSHMC+OmiNP33FEb2YKGar6M0BzpPHLXSFMYSFXzy6afUdU1pC77+6reSS5AX8d32HqW3lPsKkmbZLFksFrzsWlwU0XrXtYQ4UlYl69WGxWpFs1xSLZbUywXejxwOnu3o2O0Syiy5en5BSgs+vLlmdAdWm8DPfvwjul3k6dUV3aHj7nZP38m0WEIuNT64LIiVrBaFuDeVRcFmfcGPv/ySTWGwhxva9g5VNXhf8uzpBc+fPWXbX/Nhe4NBgzEkrXjy5Iyziw1nFxuqyxcctlu6w56mWdB2WxFatYGUDCCWtstlRd93DOMe1EAYSlSIFBRY7BxGiLKAoWotpnw0Of2BHTZD1lMxMD3LSmtBEAAQqmQ/ePToSSj+5m/+HWVZUlUV+8NeuKwxcL7aoEyg63f8/d9/zf32KYvFgqqquVgveXJ2ji0sq3VF2wW8hxAUQz/m9AfF5dlzwpgYho5u1/I//NV/zxeffcG/+J//C56cP8GGSPKBLjlcadD1gqfriv1XvyUpcel4/eZdnlzLRvb8xQuWyyXL5YL/zc++5G57Q9e17Np7Lp5+QtWsUbqCVNK2d/TdlrLWEgTWdlxf34DWaCvnZbfvGYaewiievniGUWWeWgd+8fOfywYDzA4liFnBZrnMa6ysa8ok0BpTGJa6IWLExzmJz78bBq7fv6frDjjn0MbKBDaHZRoj4aQpX8uULBMypbU0iCII1Me15mSfmKgYeaefp5spU2inY7o/HuT6oEhJQRQxaVmVlFVJ225R3QFrC4ah4/zynM3ZGZvNisNhJBbi5//+/XtBGLJmpOsOtG3L/rAXf/v8aD3eu1JAqCzTNFRPk/Bv5zVk3IimrqmbRmgO52dZ/1diTMFqRUalNb/5x69oWwnU0joSc/OxWi5o2x3vP7yh7bak5PnJT/6U9fqcoR/Q7CmKBmPKmYoJEWMU49Bz8+EDr19/zX/73/zXFEXBarmiaRYsFkvqZkFR1f8/eb7/Ux+PNYVTA2KypacxBnNSl0xahcmVaip6p4K3Kgoqa0hEQcuCQecwvZgkt4pCkVwihYSJYqE/kChSpFKK2laMZcTFhHejsCmKAhUN/ThkyrA0HJvVirIoKUyBHxzW2IwKRLr9IQ8sxM1oaohO3+NpQz5RrF1G0Kw2hCTDRZO1qkd2Atze3mKtpWkazs7OAGYUJ2XzAq0kr2IKJdbKAGGmYLlRjHZSECSSTIvyU54ZzKHAGZSY14HJaWl6vkd1ZGcopSAktBZd7z5Tx4w2jH2PSom+6xj6Du+GYy6JdzLIFhBpRjEmuidKkCEN7HcHQbeM4u72A4vlGc1C9FEfrq/p2pa+7/DOifFFWc5OTcYburan64Q6NI4D99tjxMLV5VNMtuve7QTxbcqSymp2u3v82GeEfYQklrTnZ+d8+aOfSP4TipubD1hlWK9XPHv6lJ/85KdURSl1cYrUjehX2qGnqBsqU1LVKzonuUCDc1R1RfBOBO9+nJk9RVFQFgUu31O3dx8AR1IdkQMp9PTtSHtwXDw1nG8amrqgLjUan6fZ/8RIRopIQTA/rMeUwtPj9IF/qNeQjS8xQYgBHyIuREYfRXzoIs7HCcFhouhMN2dUwuGdkrdDiAJJqii+yiEQsvtIDCEnbotTTAjywIy9ROVaG7A5HK3IQuCu7Rj7TpCM7MUeXThC9km4fGVVy82JPFeNLfJkPlOjYBY6hRgJOYG76ztiKJnsGUUYr4k5rEZryUxwzmc4S5wXQpAAuhgCPaO4tgz9LGojd9P5TM+Q7+mUbXKZYE4fPV6v+Rqno1j/9HPzNDFfF62O3M2YEmVVg8pBVCnb9eUraK3l0B5yI6ooymV2VlJzinKMiX3bosQUFu/GHJpUiE1lvcCYXqDIMXDY7RlxpNITgmYcbiB2FLZktShprOWzT5/x4vkVKhnuaPFeECOCIpqjWYG1Bq3AatH7aB0Y9rf4RcPFZoO1JePguN8euN/fYguZMu7diDN6diChTKgqoIsRw4H1SpNcw1BE7u41o3MMo0dpK+J0owTe9aNoBHRkv99T77bU9Yp6scQWtZxFJQ9AiB43/rA1Gae+9g9oCjBn+yilBCpXubFNMIxjdvsQPnUIIzH6vDFLo962OxKOuqnFftbUPH32gqJYcHOzpa7XMqFLEtY2JTkbY/KGZzg/u+DzTz7nydklxourSAgB50f2ccQ5iEaoAylJk2oKw9nZJutNlHi5V41QXcZACLBen7NcriTVGU1Vr3jx8Y/R2rDffmC/u6Hr7nEB0IJMGq0hGVIU60IBvRIq0ypiFB0GKc33iaxKR0qaUhmvT2GmPRilaaoS7TWBKVy0IIbA9v6edr/DB0mL1lpcm0IM4E+ok2nies9LCVOycYxemmOOdJVThMB7nykQ8s2nTnjz/fBoX2EqTjJNgQDeyVrlg0OprKmIQl+RJOAzQnSCbqeYiy/Zk8ZxZBjH7PoSZlrD1OxMSNujFyX37GnFdHx5830s5h2auiqpqlJ48JlaYoymKDWr9YLzyzVXTy9487rHhw43BF6/esfV1Ts2mwuKoskIvOLy8krcsjKFJkWhXoACLdxv74N48Pct79695te//iWHw47zs3OhQ5RlnkoLneSHejxAuDIC9rDYNjPCMdV5wBoAAQAASURBVNHcpsL8MbviiJhpoRgGGXp5oiDw0WKiQkWFVWq+SZQyaIp8PyQRFxsxNKmNZbAlqgioMhCGkaRCtillthVOScI+i2zBHCc2QopZtD4Qghg7yPp3RF6mge4pXTvFRFFm3WfM2REnzYfJzlJTCO6EXGitCX5CKRIhBdJU602PQMoBjyrrY5WWsN84MR8nJ7Z8flBTLzPTEOfrccKgmDQnSSu0mXQzKdNP4zwQPUVwqrJEJynQYwxCuc7rwmTfOz3LQm/LtWdGduLsaBqFqpxgt9uhlDiRVtWASnHWezlXzLXuOI4SBKilTjPG5qYp4oPDKHmNZVEJWh2EFqqSuExNjVvKzZ81isuLSy4vr3jx4mN+9KM/wrtId+ho25bFcsnm7JznLz7i/PxiTrIvioIQPT54UIblZo2xFbZo6PqefnD0mW0zZMvxcRzxLsy6Gq0N+EyB9wNDfyClFq336CS0tFCJxkyphDGSI5NilgX4f2IkI02ipIwUTxvDEX5Rubj8LhQjox25WBJ+XcC5wDhGhjHSD4FhDNJk5AVeTRsaAv8LvUaoURq5yXXID0SSyX3IG0bIN7AxsoFOBYp3Xri5xlP4wMXFUsLQYmLopHPVWlwYmsVCbAjHUaYAxlBoTVUJpKryTb9crfDe4fLGHFGgNMpCyF10RJxyhFcYORzaE3G1JsaBxXIlk4g0YrVAhkYrdgcRM6UELgT6fmDM05fZGWM67xwnBd/yeD+ZHHJy3SLH6+KcewBFz40GOchHHZuYaQIkIYEjfdfjnc/2aCL6Fvg1p6bHIvMgVZ46+Hkx2B9aCiPXuOw6SNmz3BRYU2F0IAVHdJ5ut6UNCW9uGMYexoFaR0rViMXoouTFs0ueP3vK0AvkNw6BUcnUIYZACifOZ7nwkmwwx/31a+p0ycXnf0ZZrWh7x/X797x+/5qkYbU5Yx0cu+jwOpIshCoSS4cqemy65erc0tgVu0Lx8pVhcClDzwlVGhSRw2Gf802kKNxt99jyFluUrM/PJKAoLyoxebwf6IfD931k/yCPojxaoD4INoNZtDxRCRLTBh5JSYRrQ3IMvSci2STbuzv6vs1Tdc/oB4rCZCtK8YMP4Zw3717xoy9+TFE2gKawDTFOltzSFBdFxfl6xVmzoQhgxkTAM3qxXd6lgaF34jRjC6H3KZnoP3v+FOcSCsOiaRi9FH3DGNjtOp4+u6RpSr76+rekGKirmqdPf4K1Bfe3G+rFitvbVwwuovsRXZRoZdHKorCyRmiISuGCbMzeRw77A0SEopmbiokOCZGYfJ6uC31MK1BGsagqkkr4ONGmCnGF2m5pDwfx0U9pTkiWazUho8dJ/slESGis4suDMWkWoE40TPne9EBoO61O3yXiheMuABPnO83Tt5kGqjL9UgWcF/qYLQueuJGp4RJ7aj//PgkPcw/WyZRzc0hHyk12lTwWTMJHJXc9IqeBWdul9FFkXFcl1cn9Pq29RalpliWbswXPP7oUW9o9eNfy1W9ecba5YNEsuXzynBA8VVXz/PnHaC2I/ZQYHYPQ6rSJEjzpfEa473n58it+9atfoFSgLA1VXVBWMrgKwfNIw/6DOk5pTzq776UkxZDRZOt6CbhNkAu8jJHqo3EMZMRMa0zKiFsIxOjwRFzWC9WxQEeFVVk7mJSgjBSkJBSfEDyB3GRYQ1+UMpRLitbdSeK3vHiapsmNXqCp66yVzM/VPKRNjMMgYZ/7nYQCB3+k96qjAc9xnxeauDdHq9eJ9l0URW5wpbEYx5G6rqV+QOH6IZ9PI7WTNfmePzbbU5K4Vsc8DvkEcwE/DTAjx2fotBbU+hg2NzuOGo1JGXFSMqANmRY/XadhOJrtBO8FJ81aV1LEZ+2Lny1iZYhhc/7YNOiQ0L7c+MRESAlipB9GjCnRRoTmIGwWresHCNIwDLSt2LB7H6kq+fzoxpmaSgJdi95r0qdNFrshhCzyF61PUZR8+tknfPrJF3zxo5/y4qMvub/Zcn19zf1+y/n5iidPr3j+0UdsMtoUY2K5WLLd7fB9hy0NZ5fPMLbCJ8P94TX9MNJ30lwMfZ8T0B3j4ObmVTJUBBUOwdEetqR4oLIdha1Z1AXWWPrxkINxI0oZEgYfPP34T+4upfLgJjcT2T8cpeduU6mHiaiPea6iB8iibx8YRk/bO3btyN2uZ9+ODGNEqQJyfsK8cAMa2aziOOKUQltDeXITdm12Zykboo8cdntiEI5qUzeslmuePPuIu7tbDocd++29CHx9jzGWRaMZ+8DYO7rDgaHvBNqMkcXiKVUtMFaIEVuV5DWIISQR3WTKQUxCk2oWCz58uBbNRBBb15SdV4ZxyN79pbjomGmhkZv5/u5WhOqleDuHEPExMuQUbWMM5+fnD7ilPtvMnjYXp1OD6UjT5JO8UGmVYcXjZPeUn5mye0RVZn5gSvTOcTi0iFWfFXFoCDlH4kilu7m5oarLOU20bVuc83MOgdjEBYy2hJhDY+53XL99y6qybBrLz//W8dOfvGCxKKnwrJTY47a9IrQtS6tY15aF0lgho+M7Rwoao0pJpywVta/EgUfB2EdikFCaoBKVLcFokoamqbl69oyf/fP/gmbzhPe3r/j661f89u03qMphlokXZxueLp/Sm5IDgL5nfVXzydWSf/b8Oe/eHHj9+o6/3t6yOVtjypJhHCHK9AOgH9rs9iHanL5z3N3eEpNnsWowz2Bhz7DGcHe/o+/aH/QEEuD8bMPh0NL1/SyoO1IdZCFLp2PyDJGLNkijsICltAXRlBwOLbvsuBWj5/31HSkKIrZZX/L+5iAWjWGg7xx1VQnf+fkzzs82LJYL+tZxtlmhsPjec1mvMT7C6NnvW/oiMJoIRWJ/e4+4RTWcnZ+Lm0+2Ku56T2FLPn7xEXfb2zxJNITg2G0PvH3zhp//4u9omobnz1/w6Wc/4sVHX7JeX3K+e87Vs8+4ePKG+7sbLp+8482rN4BiUS859Fu89iiV6EZYLDfYMlH3kao+4PqOGCT5NREQ+WuAQlNoQ9XUtG2PiRptpCDrW4+Lgi5uo6zJ49Dj+o560sBkegeZwpGIc/FxXFJS/veT6WV6qMmb1tEpl2BqMqevOUVf5+lrnvAqHk6iATBCqwijiDattRhrsaWdrRxTgqfPn6K0xTlP13egAsoIKji5y01IljQTJsPuGR1WecQ1vWemwiqhsjiUTLlUyDScAPv7LX3XEbyjsJKRJOu0o6qfMI4Dg+upFpY/+pMfc3+3482rt7SHG371q6/o+o7/6l/9b/niix+z2Wyo6gKI0mgPPatlg8IRowR87Q572rZjt93xV/+P/ztf/fYfub35wHrd8Oz5JZeXl2idcGNPiB3B/3C7jOl+OVKHhKpsjSVG0TcWpaHv43wNy6qizEG4IoC1GRkQauaYkAyEPBwzSmoVP0ZiAaZSxDaSTAIrBarPWTQhenyhSVVB0oGQsw90WVFoQxk849Dh/YBKhs35uWgthgFlFbaYmoAyW8T77MAkTmvee8nUyhBajMc9PWbBMFEaqe12Oz9jp8jNtP8W+TlRSlHksMoUIiop6kJcnELO7YghsPdeAvZSxOQGRJ61Ch8SxEBSYserdW6U8q011YITrQvysDo7a8pAOGZTBk/XHVCqnh0VjRV67BSqKd+fMkojA4bgJVMqZqTlu9y2pvMw5X1Mn5uojULrNPiQcC7Qdy1dN5AQ5srk7BVjpK5ryW8aRwpr5R4gifmGAltKcrpH8eHde/q+xfU9KrNSjLU8zUngRWm5vLzg+YuP+PGP/4g/+4t/gTUN16sbms2CsydrfvqTL1mvV3NjZ7R8dF1P2SyoN+c8/+QztC7pe8f9dk9dLXBDL4Gomfmjs94tRM8w9LSt0NknHczhfktdKqpyQVMvMFbjvKLtA9df3bNoBckAaA8Smt11w/d6Xr93k/GYVnMKVeqcuH0KH3/766RDnbo5kggQXYi0vaPtRobRC7dYHW/USfQnf8prkLRIPdODjLEsy3KGxLSSIBjvPX3XQ1L40RN8RKPoh04W+XHg/fu388YYg3DZ5HVrbHuQh7Eo0CSMyjdzcBIuV4nntM7JkeOogUAaYna22eMzvcUaTULEnilFbGkpa0kNDymgMYzeoZXHTxugkw7ZuVHoV4m5mTgVc8+F2qMJ8WmjMZ/LRxSo6e8STC0pxgKF+fl7Z8GWH2e4c4IHnR8F6SkqCmNRJQw5uHD62VNYl3MeH/TsnrFcLrHWimi+70gpElCMo+P6+obloqauLNAyDvc8uWz47LMNnzx7wuJ+z/XdjkVlWDYV60XD5fklRdGwu3e8fvmBf/zlV/hoWa/P8GmEWItntXf4YSAp4ZlvVgvJpEAzZhcIbQznT5+CNvSjcLiLauSTzzY8eb7h7NklbfMx74fEP97teHf3K1zt6JVHlz0ffbyiWdT03uBUw83dlu1ux+7+RiDdFLKwzGVx2UhRia4mBsXu/p6mXqCUZrUpGQYpIsvihy38rppSeMIZwp4mbjFOYmCd7U2nZgNIIaMNIsg7HA6UpUUbZNqvRRcQQpINJ8o0et+OjO4Oa+S5jOmXlKVM9Lb3t6xWSxZNjY0VTy6es1qsWVUrCh/BOca+5a//4W8pzhbYZUU0gtKNo+f2ZsdisWaxWrPerFmszrhMMr1qFhUeN9/zq/UZ3o8slw3nl2tev3pNWVYyODGWql6hlKGslhTFgs3mitX6ks3mmRhP+IB7J1aso3NUZ0swDUVRcvVixdBHusM9rt9TWIhJBh0hOTHFQGNMibEqD4QiihGrPD7KpjF0fZ4Gy6DADcMJtJ9mMwljdEYfEykcN/DT6eGEkE7XdkIyTieYpwnAp/bawLwpylp+bFSmIyGUqykDRScjeUilOGdpbcRmu225uLySIgfhXsc8cZ0mqo+F3iCF0BEVln1Lkogzgj/BAJnaMd2mOk10KkUMYgihSFSlwdpFns6O3N5+4Pr6mmEc+aM//inb+5ayes92u2X0lhcffcyf/rM/5osvvuTJk6c5x8AzmWS4MbBP24xia0Lw3Hz4wPXNDW/evOX1q1fsdntIiufPP6Kqmrx35GGUk9T3H+pxFHdriqLMjZ7UGMZIBksMac7EmGxbxZkvURSGYRD3LckvEh2CtlCYgtQPgmikhIqGMHqUU2g77bHifOlUi1Gi0ymUYbXeMCbFcjewv9+Di0xhexi5J/phIMacw5Vt6YuioqoryqLicGgzYhFyhkLMbovlPEwcR5+n+Pl5I9dWJyjH1ExNv2Mq9OXlSIbCXFMpoXjaokA6hSmITlglLkiCdmmtDOlMAhXpXW6c48PhgAwgpHF5SJk/qSE51hFaa3SMxKCyro2ZMSNoiZ/riPnnZWrUhGBMjddDCtyEwBypWadfM7pM/1KKVbOgriU7TdBWJxoOFFVdMwUTThofo6GqSvZdL6GAbmDZ1EjqeMKWYos91Wpu6MWFrLBoY6XGRbPbdhj1DoNFRc3Fk+eElNAqcnV1jrUarcjhhY2YCUVZYyqFIN5arndZyoB0uVwQwwDBMRzuZX3KiM84DHMNZFQiRU+MDmMKFssVZZEwxqOI2dEU6nrBvo0M48B6bTkcOkHZ+u9H3f69m4zHBavQG+SuSerblqinhWxC4CnpPCdbr0A/uKzHmOhQ+funn6Oz6diRtC0/T02NTA7XyTy+GKXrJkOoMQTcONIrxc4YuRG88NkOh3bm9sUgu4XWBpvtcIuiINU1Q99RJJnou1EoRSn7TheFxY2iuBcYL8wLgnPjCawbZz46uUlJKWUoVaZrARi9yzkWE6UonECPYt0mzYTPiwcPHsDTjfMxbe3xtTt+ToF66Dh12qzEGHHqmKYqNrUjzlmCd5KwnpPNx0HNC7/Wk2mAmqeB02uoZoeTxDDUeCdcRR8Su92e29u73GT0tHvo2iVPny1Y1AuC8/i+R9UFy8WS5WJJWS7oOs/N9Zavv3rNh7fXLDeXbM4u8WRXqdHQVhVKHVOCm6YRlCzJuY8xoY3h7OIScrPq3ECziHz8yYbPf/SC849f8EG9QB0811XNB/8Gl+5pfY9PHZebDUWx4KOt4e1tICDw6n57N2/2IcYjj3pwKF3hncKNkd12R9MsMNZSNyv67kCInqqcrOd+mIctDGVZiEucD3MxCgodM5+WacaQ5iJPije5xwd6tK4plKR3Q153k6SoyncqRudxzucpc8zTJ0NRGNr2QNNU1FXF0izRXlNcKJ48WWFyFs4wHHh/+5Z18YTGrhjDgDIylb+924EqWazOxP51uaYoall3dGSZFjnQbWS1XOP8QIye9eZ51gaA856YEsYWNMZSFA1FWdEs1piipK7XsoENA/3YZ6OHkXpxTlmf0dQ1VVEyDp79/Xva7TWETs5tirgoTk7aWExRUVFlm92IwmGUFA/jMBCTY7J2JKY82T+N0DrVV8gkFxVykzFRp45fd1oUPA4Me6zbO80cmpqWabh0+ntPp5RT8Jc2Quuw1lIWJaYoshGImrMgJhMOaZAk92f6GQ8mmyevEZjvwxlpy3+fzolCzTqiGemP0zBNjEnGQdb/uq7EVad33N5e03Yt1hY8f/4MY27kflyUjH7Js+fP+fyLL/joxUfU9RKUytoMQfukAOzmJsM5x93dHe/fv+flN99wf3eX0fclF+eXWFvm9drhRk/bjux3328K+Yd4TIJ7YzjeF/m6TLakKe/j80qSUrZLNzLASMdrLwWo2Nya0qBHhY4KEzOFLorIW+qS6b5UROOwWmGiplAGU5RUylAuFqjtgfkOym5UIYY59bmY6ITGSsNhCslR0fn5zY6WE7NA6yNKaHRAwNpJi6VmytLjwxipZYw2R4dJpVH2aN+NysJ0rWQyHyVXIsSQ+2n53doYMYHIBHBBS49rxOmzmy/Ad9YfeUoxU5akYTpa30/PvmgzHtpZp5NgzOyEPyMY3/m7OG1KpyFDnFc1eV9ajHdyYrbQh3LuFxLkiJIBTWEtTucMMMCPA2PfMrie83VNJquKViQJAqqVyvQkM9+/aI0K0I0DOkV01OAT+91BXDUXNdXFGSk6yLkudbMQxMoHjB5yqrdQl7QS18/SGKqyYixrxrJicuwLwc8U9ZARjLyQC3XLlGJelH08ZKARIUnS+KHr6JAw4HEYpEFX/8SajAkyknvkYWcqC36G8k4Czh43IiElolZEpXFJrGvbtuVwGPBOE6N4naeUbWuV2M/pSWQd9Sw6SSS0lWRMFFRNw3q1lsIth+lNbjSr1WoWqXRdJzztKIV6PwziIOD9vKDo7PgkwscsKu32rDdrCTiJAsOWVUVd1zSLBWOG0Ia+o21FqDWOI9rYeQGY4L3pobHWzq+x6ztCzg65294DzAuNNYaqkvwAHUE80CPWFpnTP8GFx4nC6aZ52uxN1+90ijd97TSRmK7f9JqPD29Ea/mcD4G+l2seNitirMRxI4G2FoLQK4QjJ9PLxXJNCEmshXNxOMG4V1dX3N7ecDgcOOx2HNqB16/fczgcGIanNA3c77YMfuDLLz+mrmqePX/BatGwWGzQpuDd+y2/+Pmv+M0vv+Gv//XfkcZIqRKlgcVqgxslI6OqZDKhjWa1XKIQjn2hLKEosMHTlDXPnn/EqC1aQaETl88NP/mj53z2o4+5cYk3dx/44BRpodCVpb0buN7dcX8GV4snLKsFZ2cXbM5a9oeBbbElJYWP4IMIp3wI2dlGM3SRFHuGwdF1e2JKDKNDUXB3K4FAy9UP2xVGK4stPDEZ7JjFjrlBMCbNVKmYxAIULc+KcyM+JIJ3Iuy0C6pawhu3u7ss3J5QVYVSorOKOY9BK9juWlIUUeTN7R22KCiMpaGicJaFtxTrJ6Sho+t33Pd3XDxbc/7snKKu+c1vrzGFoetHDoeO9UYmItYWFGWmIhiD0lCWBas8bTO6oG339ENH1458+eWPGfqB9x+uUUpT1w1NvaBZLKlDQ9U3DH7E2JKyKFkv15ydPxHNk3cYLVbHsnbUfPzpj7j/8Ir3r3/F26/+DpWEajoGzxg9xgpaUhULbm9vuL+7FaJACpACwQfaoUdrizUlJj/ro9cEmDUyRVEcEU6dKJEiV468RqhjGCvIWjMMw5EHP8ED0/1w8rWTCHQqfqY14tRNZ/pvENRl9F7sFDVUVcFqc4EpCup6QdMsSIkcYtlRFZZdDIJi990jPcZDMeq8DpLRiwzRKK3IIrZjAzYXVsJZB9EPvf7mDYtFw09+9jOUMlirKWzk66//HZ9+/jlXT6+ksDWKojQs1xVXz77gs88+5dmzF7x48QLnpBmV1ybPQYjiNtT3QqXZ7XZ8+PCB9+/e8fr1K7qu4/nz53z00ces1+sZBen7kb5NvHnzgd/84zf/pM/1f8pD9j5pdieHopQLo1ovjnWH1qQs+vfezyFuYmlbzt87IWlGS4hlWVUYW1D6hAtHJobOGoFkNUEpqkbIm0Yrki24b3t6rVGz6FzYDyk4hvZA33UYpQijI2hLWVQUtkJhCUHNCNzoxozsh3ktq6oarQ1KORSalHoCYb6HT9GLU72JyXliCsR+PkGhDYvVktF7kkJSonNw8nDoZkZETDKwXSyXs/W3LippPkJgozX7w2HWS8BJTajzwDUdGReJ44BhdhdkGlgGyeJwYjYh78HPX6u1EUF7fk5PqWDfZSQi90mYdR/TGiJ/D4I8aj2L4a01NHVN09Rs7/d5jRG66zCO1FVFU9esVivGYeDQSwq70Nl6VBworcomOIb7fUtdKqyyJJvwYyHCdq05tANaGzQaq8FrONxvif3Iy6+/YXW2YnW+5ur5FX/+R/+Ms6ahUKIx9N7R9yP7/UEQVmOogydUDhC7d5OzVcRoSYYdXdvi3AAxI9W5PpXkeYXSkvHhAjiX0EnhXWIYAm6IDIPkf4xjz2ZTcbZuWC7Ovtfz+vslfudh9ER3ORarmbOq0rc2mBnpUEDSqDypHMaBtu1o24G+CwRvSDHrEgSskbTslDJ8Pm0+YvdqrHTVtjyGi1ycX+C8pz0Izaksyzl1fLFY5aCvgv1hi+scbdsS4/Qg61yUiKDOe4/SSpIfNfRjoBojSnvGoWcYB6yRqSwkWQSUous7uin5lmnIkMO95lRueXhFQCRQ5pSerfKG3vf9cZqRb3hxE4mZ35fwXqZR4gmd5iTt74IoH3f5jykC2mgK8/Da6UeTCO+niaNcUO8Dfd9xc/0BMNT1grJqaJqGEAPjMHB9/SGjFomq9nkh9XSdZ7/fM+lCfPCUVYO1JU29ot3vCTGw3XZ89dVrFsuGxbJmu4+0fcVms2SxqNjdv2MYRFsxusS7V9fcX2+JqWS1rtDWMIwDjd3gxp4YpZmqmwpihBCpl9MCrjnXBf+zH/+YP/njf4YfPYfujmF/j04tP/3ZJ5xfnaObht53vLr+husx0ZsFDAPaBayDpS1Z2ZJhUNy+v+Nw6EhAsxDIsx96+n5k6Htx+ykMPnog4GIg9jKRN+aecYiMQ+J+d89qs+Ls4ur3emT/0I5ESWEVCkOveyR8XZG0RqlCEMUokzAJyxNKW0yCilEcc2mc82gtYkeB1ifk7ZQGI5PEhCTeIsbDsvmNgoIuliu+fPopX1w9R0XPr19/zcvrV7x8/5KbYU/x1a8wtiCkxGqzZnN2xl/8+c8o6jNWq5VYTCdPwhJTzlMQOz4Rn2vLollTVwvQnhhH7ocdX3/9FdvtlufPn/Ppp5/KhjYM9GOHT56qXlCVNUW14I//+C/ECts7lEqEKKI7pQti1BSFWJMG1+PaLWEYqYPCxYCLHjd2hKAYvScirAhtwFpFXReMMQIGU1ieXj7hw4d3bO/FhCCEI81p2rRDCESdc3/SyXoyUU8nClxeR2x26wP1wHb7VJCrtcaoY4E0/TtwNKTIE2ctCghUUtkEINEPI7preX7+MWfnF1xcPGG/P3B7e8v9/T3eDVy/e8t+dw/Bo5I400y5JHAcrsz3a0oYNY3Q8lvUsv6dIsbzPodQT4OP7A995i3LOnq/3XJzc8OXP/4pi9UC7wO//s0vOVs/4bPPvuDzT3+MLRQvXjzl/Ez2Mq2lAAzBMI4DqIjW0gTe32/nBuPt27dcX1+z3W75yU9/wpPLJ2w2a0JweC/UvcOh59XLa96/u+b167f/FI/zf5bjAdql1Ml/64zGiwmBTgmlhCYiWVQ1xkj+xWlhWhRFvk+VuP9VFdoHjApEHTBI0UYZCUg+TSBSWYMtwCboQ6C0hkobTEo0RQnBizFJiCzKigJFt99TVw3LxZqmXoq1cWExRrM/bBlGobP0QzsPWoVee6SHTYLr02cMjnv8NAiwRgrzmCQgsyplaDHpLYcgSGpUyL6DDAgVUOVGqR8kIyEpRURT54HqEHtiCBTWzq/lVI9rjSHqyGQOcUQh04PrJ4NNIKOoR3vzgDFS5CsMWsd54Hl6nA4HpufRPnpNk+lCzMOr0xyxydWr63rut/eMzs1UO8lTqinLQhgHozh7DkMvzX4QEXVK4mTatnv2bZv1uYp2v8ONA8E5Ri+uglEHdDCsyhV1WdFUJU2pWTULzlZnDM6RrCIGRwpOXLeKkmqxwpiCoGU4Wle1XJOU2N3ecx9vZPhmSrpWhijDONKPnt45xiAUZXHVG2Za2lSbdn1P0tJ8uTESnASXeu8YXYc1UBSWqtZcPVlRlRr7PZnb37/JSFOQnNBqBEI7wuey0xz5uNMFnBbfhPBrQ4arx3EUBfzgcE4eoumYXapgviFSvimNlY1Q4D1NVdfYE5Ey6ZhkOW1Q8jrzhCnIpiKLzJEO9F0fk9A8RHEVGEYnm2xMAqUl5kJca8nUmBavCW2RGzTOMfLT65l0D+MogS5FWWCLYoZ/T728Y6aRSEN0XFzmoipO52mCMpl/z3fBh9+6tHK3MeOxp//+4M8Jnsz3ATJVOhxazs58dptKedEUlGaytYSRtt2zWq6lARnF3aUoSoFzM8XBGEtR1AJZ+pEUHf0Q0CaCihjrePe2pWsVi0XkcAh0nTw0MSrG0WDtivOLUqayVUnRiPWjSjL99M7l3BVp7oy2eYqqWTU1V1dPODu/ICVNu9/T7fcM/R6rNMmPhLFHR0dFSxk8buhY+o6lhvOmYlEtiNEyjNB2I4f9ga7r8M7PovgQRNxXFHZu0AXSl03S+IKuc0CHVlsG37NaL6jK8j94Pf+gD2XQGgoQEbafqAvkBNmcy5qdVvJYQ3QX2XqQicKgElVdozWSHj+Osqmd3vL5lk6ZWiD2okacX4Kh1jVffvwZT9YbSqPZbm/5zauveHX9hrd377nvtjL1VwqlDeeXFwzjiC1LVkhxoAyUVR4QmAK0yVNuWftibpiMUWTxE1VZcXFxzn6/JQTHMHQZYRN718JWFEYsnLWxgnTU8iyl6PB+kEZGGWISF6O6Krm7fsn+RjGqHQSwIWGDF7taZXLIWI0bh8zl1RSFwtiE9zJF7YaefhRnEj0jt8e1ay6s5cTO1Lbp+C4EdQ5UnfeHaQ9hfvZOqbdwbDROByLKZHcbZY7aDWVRuiCh8THis52r9yEHjYnxxmG3pWv3uKGXKfF0d2md78FvT1nnAia/19M1Up28tmmtnW7ZpGSCeHt3z9fffI3zYkASYmC5WtOPwuWOKbFaLVktz1jUa8CzWJakFBn6HluA4khrSUmsuLuuY7fbcnt7x+3tLbe3t7RtS1VVPHnyJOvdDCFIGGXfj9ze7Hj9+h1d21JVv9988Q/pOHU9/FbRmanI0z55MvOcG9kj+nb8eRNlU/AHTVIS4qZMmunbPrN+o5ImJikFVsl6pCI+isOkz647mhNUTluwiVjVklFQVjNCkDKNuj3sGYd+ZidMCdtaG8pSqMXfpS2YjuNzmWZUcBa7K0VZViKkLk5YKQhSZiZkwAqtuKgqqZ+MfcBm0NrkvBwzPzvmkcvVw9f26Jk5eV6m53369OxWx9FNVPRjkz32w/f77frk4Zoz1VlSG8VMr3rYkJ3cOTjnsHakLGu00xhjqety/roYA4fDnq7rMnrjMx1eYUtLUhrvpV5UGDEFyNaxkZi3LxkSl4WlqSuaqqIpFavVkieXF9iqph07AoHnT5+xXKwoygqjLTGIAN8aTVmVjE6oT955gh+Rge3IYZ/ZNF2XTYdCricdo3NZGxvmJjaicd4Ru5xx4sRQI0ZHTI6qlsZaqURhE4WFwirMw8fodx6/x0qTnzCE2qFAguSsJUR58wKHHTm0RVHMxfY02Zs67a7v6LqBvpcmI86b1cNNRRZ5mdwnkzClwRQCAZZVRbNYSHGuNIdD+0DsJN9PpjglxnHIaZOthLZwtFTzPnzrRp6Kee89Qxgpy0qE3lqDMihdok0lv0tl6ksUMWdMHu/ke0LoZm94k11RFEcrWB88wziizTEk73GHHoPCZzhX5fPiw5RYPYniH054Tm0jHyMXpw9YTAlCZhOmhxSq6XqccqnF3UrPv2O/bwkhMPQdXdtDimzOzgR21kYyIoYeNx5YNA3Oedq2wxhLVZU0zYKqaeh6gRHrqslBYyPBjfhhT4wG7zV9B+/etWzvA1XtKIsFblR4b4lEFosVxdpQ5iTppJHFGiVuMM4x9h0pic1l0ywk9C4lrFZcrpdszjY0qxXKFOx3B7b3d2zvr+nuLN3NNZVJNFbx8dJjxwNv7/ZUwXOxMDxdbFguLjgMltt9oBsi93d3bPc7+v6Q+ZqTFsNhrcnP1InHuBKR4NgHUhhIcYetxF2tLH64Sb0ACRkOGKNYrdfSHAaXm9c0T7WAY+PBsZknTUW7oIzn55e03U6E8VH0UlMhm+bByERuichZNJSmwqqC83rDv/rn/5yrdYN3La9ef83f/OJvuT5saf3A7e01Li/Sg3dcPblic/6et++u+dGXX7I+P2ezOaesFLEO4mRWlPl5U8Q48fbzs50bqc3ZOX/2Z39OCPJ6h7GjWdRCnUkFhZFEeZ1DS5NSlJW46IxDh7HSjEnRtEDpc+LFM+5vX5GCBxLWO4JDDDbSgtYLBU1rzYcPHdooCjRFShRWM46OtmvpM7QuvONvI6FT8TBRiVJeu7+FAEz0DZWbwrzuGa1nJzs4Kf5O9vyjVud0aKWYXVpUXudtgbKizVFWk1DsDnsRtmpL27WQEnVpebO9ZexavBvn+0IbTaE0/qSQOi1U5gnp9N5O19KTr/vWoRSHrufVqzf863/9P/DP/uzP2GzOWa7XGFtw/fo1Xd/yxeef8/TpU842FyybDcO4x/metjuIILgUWqwxFoUmhiQNw+0t19cfuL295e7ung8fBDG+urri4uJ85oGnFBnHwH438Ob1Nd989ZLluubjT57+Po/tH9Qxux5+q8gMM93ZGC1FGaIZmhyXTNZanu6Tpz9vGvKEBIEEJohoW2nGMZsWaKGUVGiiNUSriA66seUwBrq2zbRoGTpYK7kYyiSqzVluMgrWqxUhBtrDnt3+nrv7W1wWU080KUFeKs7OzuaMhpTSHDI3HUctRJyt5o2GZdMwZTksVyuKskAbw+jEZTHFJCGfmbZcFjLEKuuKoiipmkTbdjkewM300BTjnAeT8rk91ZE8zuk61XadXrNTxzhhSkxvCNHIklBqCs5V3/r+x3/Of1dCbQxT/RSPeSLf9TrkHMnX1HWJG0dMdvfc76ewzsjd3T2HwyHb9IdMyy8wtsaUYviRnJMwQy/hmmEMKCuoq0bqjKauWS0WNGVJaROb9ZLnH13xyWc/5v31B9qh5U//5M9ZLs8kcylJgLNWUuDruqDtO/pejI00Yuww9B33N/d0fS8Ojn0nxiHe07Yt3SDxB94HykpMi2KU+yFkB8AYE8FHlB6x1nN2cc44hrweD6TkBDTQ3699+N5Nhp6nTwA5Dl7lsXY8hj+FmLKeIc2J0yjAIO5FMWYBXE/bDXSdYxjDLOJh3lCOBbfJvGytFD5EbCmT/2axxJaSpFpXNU2zYhzGbFUoxXwKkbbrGYZxnqCJbaqgGV13mBuMGI/8QWBegIqi4GyzyN/npMEpS+q6pGlq1qs1d/e3dPuOQ9uxXC4prcUUBauzCzabC9zoePXyJcFl4XdK+DH7tCcRaiY33fAPBZBiI5tbvKxvkPNiSXHyfp8C8L5dFDxuGh43HzGEbzV408REJoXyuRTVXAzHKBOThEyGv/rqK6yx8wIavGhiztYrediDp+/3wpPUhvVqSVFUtG3H4dDSLBY0ywV1s+Ts7AwXEstig1aaVy+/wqMgBBh6fMwiVaVZNGfU1YIia1uKpqQsCuqqwtqSPlsb97stfhxQKVCVlrJYopTCxcTF5gwbEyWJymiWyw3NcoM2Nftty+HQ0feOV19tWS1rjBl5/tkFf3pZ8JEtuVYF5mLNsq6pyprDWPPvfv6Kt+97bm4du/s79vstbSfUjb7vZv1M27ZIeFCSaRcTGmghaWk2BkdRLmj3Ay+/fvV9H9k/yKOupOkOPspkUBu0OQZezrJKJVkAKSYIR+MDlQvNiLib9f2YUQKbwzdFGP9wYhWlmI8Rg8Ymw5k940+/+BF//PnnPF/X7HYfeHv9jn/zi79j3+/pho592+KDZRgCIWoWi3MObWRwO7Z7z/2uFy1GVfDJp5/w5MkTzs8vePH8BdYWNHXDYrnER7HIVsogWuS8XibNlz/+CfvdPfvDjnHsqaqGprZ4L8+mc56u60U4HAKjj6ToKUvRernRUdUxB0kW/MV/8a94eb7h3atf8fLXf4uKHpON4VPbgfeoKC4zhkRSAUtExRGjEoVREIWiGhWMQ39iERmlKU4RhdB2knR9pDjtERyLnzQv6t9GJXJTKbhOID2yZp7W/umY+NPGGKxWFIWhbmrqxYqyXlCUNcoYuqGTlPKkcd7z4cN7usOOoTswHPa4ccC7kYQmpGwqgLi5iKhV6BMPaFD5eFw4na7Rp4WVNMxSkHXtyNtX1/z0Zz1VU7A5W/H//B//Nefn5zy9esrVkyesV0vKQuNDxzzJjYFDuyNGobqENDJ0nuvrG968esNvf/MPDGOP8yNt17LZbDjbnPHpp58CkdH1jGPP/d2et29uePP6A3/3t7/g8x+94OrqnKdPL/6/f5j/Mx1yfY/BiqeIvuiiNIU12Kb8FqUohJipInmAlz8nIZ1yLxtlZtSTypAMBA26VOAkU2mpLbaPeCKjijgTefbl51iv+PXhl8SDuAGmLADuc0bW8+fPpTBEZXQi0nYHuk7uzcOhldcXE3WjKUtNVVUy5BgG+px5kFLKmSziNiSgwCm1XGWHTSeC5arCVkV2X8uObMmgbUQXEjBclyWLpuGzTz9jt9uJPrJtKcoyD04QCnvwc+5GCIFhHEnb7QPdg5zro3PgaV1xakcbYiCkPCZVzEPcaUgkX8dscvO7UBw41jmThmoa6D0ekJzqcKaP1WpFCJG+77m9ucuT/wPv37/LlHufB9NKasbg5Tzm7JGyLHGjMDT6fmB/c4fJRkJlUYCSEtgkw2rR8PHzpzy5eEJTVnSHLevlmtVywTh0rJqS9aLEhsCwvWf74QP39zsgybUsLU+fvyB6MjpuqJYNwTnaw4Gy6DnsW7pDmzXPB/qhYxhGuq4TpNr1dK6V71ei9xqdMGaMNSyXDbZoKIpAVRvqpmAcRm6ut4wjaF3P9cp/6Pg9kIzvoN2k7D+SJncHudGPm8vUVQJKiYtSdhMQL2hJ/M7Bz3OD8ZiPK3QaEWCboqAqK6pqokmJPkOiOxLKqMyxFAqGUuL+JAm5wjMLQcIAgw8PHoQYj797umnlgc6BTjlsRWfYKgbRHfR9l+0q3ZzCPd3Y+/1eerGMZAQfjgLr7FCgUeSmnUSaJwLThG9+qGYHl5xRggTiKKXnxPHpdc/hMydcxeNl+44HlO9gTOXzNxV+gfjgcymzG0y2ZNNKOuqh75h4sHVdZ8qINHJ912c6W0Fd16icnBmiJJDWVUVdN9jiwPnFJZvNBltWjN2e4AZicDRNkV9ApGksdS3THltYkoqE5PFYSInRRfreSxE3dPjoKcuCqqpISbz+m3rJQmsW1vDsfMHF5RNWqw2ScSAwa8CybRWv37VEW2CaBlVYSlWzLCN+0Oz3gbvQEnTB/hA5tCO3tzf03Y6hl9yVyQNdeLNpXkhPha1yficxo8CXbkx07YDS999+Dn9AR1nWeJ/wKpFSoMiUOu/ELx09hWvJ5yd0bbqH5w2KmIVqgaIwaG2ZXEamrzu6imR3lpiwyVCrkh9//Ak/+ugFHz05J4aeX339G756+4o3tx9oXU8/9rRdy+hV1oMYtClQxuS1RAlyOmhMJ/fJ9n7HYvGeb77+ZqasLJdLlqsVddWIvqIoZzqHUiK67PuRd2/fA3B19ZxFs0KC7WT96bqOxbLCWo1SiRi9oL8x0ndDdqcRMWtSC9abK4buwM3yJf32TgrelLBGE5MhRCvaB5XQyqAbi0+WulEMTrO9P8xrYcg5IHG6F8kRv0zhcrK+az1dM7k65PUq++Z9J0qglcrhWGpeS74LdYWMYqgjFURlge5qvUKZEltWElw5NzGKYRhI2V0wODeH18WEuOhMTI6MfE1BoS4PnaZ/mwqjaT2djseUHTFHyRrFTHGKQZDet2/eo7SmH3uKwnC2XnNxfsairmStDD5rLaTgSknRtgeZUmqNcwPtoefVy5f88he/4tXLr0k4tE6UdcGnn3/BenVOUVQ412W0uOf6+o6XL19zd3vP5mzB1dUZl5cb1uvFP+Vj/Z/00LkhEL3FVGfkz2VzARnehQf323Qc0dLMrHAuh7blifvcSIJOmqgVSSe0FgcflRImaNSIFMkEaDTtvmXnI30YSEmovtF7xr4XZCMlUkg5J0nRDz0xONpW6LRu9MSQE7WNnt+Ld45xFi0/pC4KHBEmktc8ZpwRSETYWxSFNAPjOBffIaON9WJx3OcTJ3QgMZ1RuX4yWuPGgZjPqc8mHClBWZQnCMzDQefpM/27KF7Ha3PKnnjkTnryvd8l9J7e/ISSnlIfT5kdp79rYoRsd/v5hwz9+CDLR/aclN+zaBt0XsPX6yVN01DXjRgxjAHv/Pwa5LooEc4bQ2Esq8WC1XLJcrFAJ8XZ+oL1akNhG3b39yiVsEZx/e41IUw0Vk/fD7mpKWXQ1KzRtiZSonSNi47dXgbq8r6ZLcid89lEZ5hrD1vIopuQwZAtxQ63KCSHSusokQqupypLCYjGMA4S7kry/6FHFfh9hd/TZXh8Ez2GoeRVyxtISXL1Ypo3roku4n0ihMl2/NtF8HyD6mPCp7WixyiKAjPDnwqx9ptOnmykpBxDX9ckyPw1d7S6zUE2KU5BLt/ueCf7rzB1riddthpFeK33DwNbuq6bf8Zuu5WpXbYsFSux6XypE+zheO5iOkJ8wqfMLjxxoqxNTYZCfKbVA+7p6TU6PZ///gc95XrhIbQ5LT5JQR45HLnV+ZVbK9PFiZ/pxzFzsHOnrY6/c3QjKYHWOVOgsRSF5357LzQIo7MwrWC52vDk6jnGVmxvP9C1O7rDlmZZo4ik4KhqQ1UbytJgbMHoekIK+BjwQTQ/XT+yO+QmJTq00Tl1VeMDFLZkWdWc1xXPLjdcnF+yWK1BKdw4SiOsNLte8+bDwMCecrFhfbYgJUsKFftDz27n6LqIKioOB0fXDey2t/R9yzj02fpNeJQho0dpOsfqmB8yUW2mJgik0Rg6R0rudz2WP4ijLCspDnKDJXTCiDYjKeW8FpUIyaOi+ta9OnOSMwXThSC6jEzLnBxFYEKEJjtUWeQrVbC2C37yySd88vQJm1XNzfVLfvXNb/nNm1fcDx1dGOlzjo6PJmdMFGgzacEksG1wDhUUalS07cDh0FHYgpgCn376KavVgqZpePrsCev1GcvFmuVyffSwNwZQOO/Z7w8SpGWrfB5k8x6GMYvcR1AarYTeoJUk37aHdvZuL8sKtKVZXrA571msLxkOB9K0qRixabZaplX55pKUYKUogqb0WlLEldDLYl63p7lR8OL9rzhBSmXXPa5rJwMTJj0DxzXgVCtHJOOhQr+djgfcaiYkO2/uWqOMxpYF9aIhovN1sbnZlPvLu2zDOK3rSaypdZSsoxjF0cbkpsUa4evLWhsevI7Twc3pv5/en9KQSHM43XsxJPp25O3rD8QUGf3As+cfsznbsF6tJBQuenSY3qtBKfkYhoP8Hej7lusPN7x6+Q1f/fYr3r97jzGBujZcPb/g6skFi8WGcRRUaRwc+13Lh/e3fHj/gWEceP7iCReXazabhkXzw7XCVspI+Buyr05zTDhmYoQQiX6auD+cWkvhlb8nkbVyBjKtNuahIkrIlQBJ54A+FdAJtDcon0guB/gZTb/vaH1gDJ6YhAYa3IgbelS+72OMlIXQVMZxxI0dXdfSd12m4BybW7FcToJsIOYH39JHAWRSSd41BN1AnhPyva2toe06fJAw32l4U9U156WEAOp8fvb7/YOE7aIUut7kbiS24dKgkJ+JsihwrngwCJqp3vEh1enbF/R4LU6fp8dI5mmT8F0NzDyc4qEo/nHOzukRYwQf2O732FxrqZSopyR2jrWgvAZhxOjserpciotdUZT03Sh1ng9iZkKY5usYm4XkRcWiaVg0NXVVEl1kszqTtcAueL99T1lALDRjf2B0QvmzRUW738/XIyXH5iJRLRIuRYqmYfSBQzfQZRdCuRfkPXrnjrS3IMn0ZWmJKpsR+0RhSow1FNZgtDBHUgTvAqWZqK4FYx8zQvf9apH/qJyMU8jr8aTgdPI+TZwSQFQ5UVZOQt95QlCkZFAn+QvT7zidwo99xJvs1FLUOOfohx5T1lnI7bJz0Gmi7NRlmTkJM3iPAdlYjJUNyJaQHCAn/jQ4aqJaCI3KzU3GJBSUv4tPe0pSOCwWi/k9hBDk94ZAzCGDITc2Rot4JwThyxFPzqHS86oZQ8p+xBNOlJ2kclPkfaYt/I7N7xROPkVGTr/2OIWU6kAmiuTrcqQ+2JMguBCEr620oiwLKQCMpK6KeFvE9zFEykp4oAmhBIUgjdj9/T3WGnwI3Fx/kPcWE1XZ0FQ17f7AK/eG9XrN5eUzxtWa2+uCwoLRotPZ7+4ZBk9VDZxfPBG4WBusNrx+/ZahE7vHu92WoT8Q3IhJEYJiUa9YVCvau5arJzXn1ZInm3M2ZxfUyzUBxcuXX/H++pqDC+z2I3dD5O195PXNNywXjQj2jeHf/s3fcHH+lPPNE7b3L3n34Yb9/kDX3jOOHePYMwwdQ9+KhkmBFCO5zUzSVBwb2SMiZU2BSsLHdsORzvdDPKqqnt8bRIp6zEFSga7tZZKnwCqD90mK0FNUlOOUK6IYncMUZ6Kr0RalQ9YYhZyDIo5FKSQuVxe8OL/iZ598yr/8k59hlWe7v+W//u//il9+8zV3hz1jinRDhwsBtKHMtDtjLboATMzTn1yoBLl+ISTu/T5fP8UvDv+QJ+SwWNY8f/aci8tL1qsNq9WapmlYr1dcXl7wycef8PzZc/7qr/5KppbjwPn5BQqdNUsNxlQMXUfX7Xn5zVfYXKTc3d5wdnbORx99wmeffc7lxRXr8xeYYsmT67e0u60gceOAMomxG2j7nsViJfaLzuHGkcHBoXPs9iP7/R7vE5MQU9YPDcpKsxEFRbT2GGikVAY48v18mpsxNRanlM3TY7rPT+03j/+e9X2ZAjP5xRsz6RQUVV1S1YvMfRe9j3Mj3WFP1x7oM+XLVjVPNuf4GLi5uWW/38qkMdOwpn2sqUVU6fPe8l1T09OGadqrQp5yzhNyL+u20pE3r95QFImrJyt+9PmnrBZnGGU5HATZnarewoLNAxiFpj30tG3H7c01/7f/7r/LWS8F1ijEX8uyqCu297fEmGiaM4Zh5OZ6xzffvOcXP/8Vi2XJR1dP+NGXH3NxtsJajY/fL0jrD/EYxnEOFyMIAn7Mkch7mJLp+rTHTc1GYS1NU9N3B9HZJKFMuXEkWZsR7oTY2QtKH4IjuYC1MPpRkM3kCUgosAkF/X1P83TDprIsmo72bocLI35sKbRisVgIldga1psNKOj6jmHo6Pt2pkHB0d7eaLHRHwZBv1225p/co6ZDTBNEWGxtmVOqC5rlUuqTrMEYxkFyykJgt92yWa+xWlMYw6IRS/CyrBgGGZ7GbHgzibyDj7RdJw2TAluURO8xJrFsFiIazs6cp3T3x834Y0RC6xys/Ah5eKy9Oa1BT+ucI6U84vNQ+kiPC/PPOjYb+bonGW/ElDCxIChNUmIBO44u31Nqbv5SSvR9jy00RWEyQ0Znap2eowgkfT07gSoZnpSLmkVVs2oaNss1tbUsypLN5RlPn35EXUlT89vf/ooq53UMfZuT5yHFwMXFxYzWl0a0ef3o2fWRRSsDibIuuLl9jx8HvB85tDsO7Y62a+cGAxLaKJplTbmosaVFKUtwXpywRtHVhpSIPhKDZkhyTVfNOa9fvcWWI5uzf2Ik4xS2mm6M6SY65aqebhLACZ//eGFjioR4LJYneH26/jLllJ1LGxEJEo72txMSIjcQmX4lD+CUwTBx3iUhU5yaiBGfYqZtxTxpN+gY0BmR+a5pf0qn7gaCIngvi47cwAVNU2OMnUP4TkVQk0hr+m+ZQMi0LMSJdnA8pgdjOt8TsqA0c8hgSomQwtzEhZgDzWYo0580Sg9t474FURJRGqzOTeEk0swPkPzuY2poDJGkcyq6MdR1DuLTIsjfrM+kWUuJ9nAgDI7CJuqmzrQg2UCbppHX6UeIib7t2OrbDBdXXD17zmZdgxaa1TiM2KLEuYGQF4OyWooIXReZ0kHm6g+k6HG+59Ad6PpBBFgRtCnAga00q6pms9hQF5ZhHDh0AzHbFLaHHUqL9ewmnHH/dostGlRRcH3X8uG2Fc1OWRFZcns3cHv7lv19Ri7GnrE74EeHz45mEzJnMsUtJkmhn0KTtDZMjm0TwqGUkqls+hbu9YM7jNEYa4jJorzF2opQRLQdUXoQGkQeWJ1OkqbjOHyQ56LvDgzDKsP+aw67wESzcm7Eark3ra1YFwtenF/wJ198jsbx1dtX/Prlb/nt+7fsxoExRno3ipOGthRWU1RNdngy2c1Jfm8iT/cnNHJqFlGkpBnHKdUcQmjx7jUfPtxkh5cma70MX375I6qqprAFP/rRFyglXO31eoXYV4obnkZh65rSWvzTkbdv30ry6ujp+56b22u0ViwWS6pqSbNc8cXP/oIURm7efs3tu28kvHTZYIuCwUXu7gJhdDgfCUMAH7FKzGFzd5fXvWnKPg2P9DzNnKikWicZp2aE9buaidNreLq+PV6PpiJLJqmSX2CN/E55PgxPnz5jfXbGarOhG8bZXlcXJodNifFGURjGAWJ2gpE0ZbErraoy35NmHi6llHA+5ydoTTIJz8PJ6ammbXoPE7VFJsTTG53OheGwd9zfttx82JJSL1PAVKKweJfFrUoGWTFPm4WK23J9fc3f/Nu/5+U37/DeURiNG1s2Z2spbLrE7d0eHzQpFXzz9RtevnzLu7fX1PWCjz5+wuXFimXToDJNkd99ef7gjxAjKsNrMhATehoZkVd6uq+YEfUYAimfWzf0xCD5KtYeRcuiOZKSyDtHSDAOnuCi2MMrSFqo2cSE9IaSOo2Cvu3YJ81+2xO9xrtEP4iDYJUdMJWCYWwJMWaE0j2gh09NxDQ8nQa1eDV/7vT+S7JRYJTFWEVdN5Cptzo7Nk7Uue1+l/dpWVdH5zgcDlxfX3N1dYX3nm3cHXND8sBW6OdSlzRNI/dnpn/ZrKEIPoipS6YDnw6JT4e2j5uGU5RBmW9Tpx5TFE//+7SemdeR3ORP7InTbJ3TdWYibzAN85TK+6/GO48tj983jsf1ZbFcUJSWsrQ0TSU61LKkbmoOh5bJ2MJmVkJVV5xfnvOzn/2UJ+cXXKw2rKwlhUjftiSXWCzWs365rAr6vmMY9mw2K4qiwYfIdndgDGle/+52HZU3JOW5vrnn7v4elAwiu25P9E6ajP2WYejxfpxpoyihSp2frymXDabIznyjxw0j6qDo+0OGkBVhAG8iWmXNdWVR2jOM/8RNxuPp93ddZPiuJkM4sFNtJCLXDMPn4nvekE42pglmyuwJpvtDnfw/ueifkjR93hy8z6me+Wt8kI4yKUgh//55A03fueCeQnDkjWOecKSUaUo5SKkoZwg0hjBzFmfOpPyEOahQAIMIkfk8fNf5njv1+S0/OAmnhl95EJaYXGwfhuj9+440/yCVJ+hJTdd6+rUqOwKZ4wOv5FqLd3KJ0RadtRaL5RKbUzJ9jBI+FEWPkvRkMSxFSsiTD1CkGBiHnt3uluXqDO86nG8pygUxBXk4ypIYAxrQRklypnAtZGPOC7EbRxHK5UmR2L8hjZG2FMZS2YJFWbFa1JjgccHhUyLln7U/7PExoI2mKhusqdCqIAXFfteLj70xFMXIOOQQyMGzvd1ilFAyhq5lyEGN3vu8/gm+bQCVndq0VvOGp7WZvdGn+yWmAEGB+56+cX+gx1SQmWxbLDkMEhg3T6fUw+Lt1LYR4RMC+c4NQoFUSlFVNYeDggnsEW9ndFI0xYLnF094fnHBZlFxv/vAN+/e8KuX33DXtuIl7gPOB9A6p2TLhNxYC1pnt56T5ynBFL522mTA9IzLf3ofOBxauq5HKU1hSyZPfxB0pyorPv7keZ6c+Tz5lCJY5cmTRmiJF+eX7HZ7aaSTTMpiCPRDh/cjZSF5M+vzZ1w++4ToB7rdLdE7Cmvy/ZTXRDnRgqxaQwKsEVSYFAnRPaA7TQX61EhMQyKV8wmmIdH09dN1PL3+36ZqPtxLjvqklB1sjlagKD0PoFT+t5RSLnoU1kKf6Sd932VhbyRGnwvHNA+6pr3qFEE5FjDyTGqjMEkfXbQeoWoP6BpT4XJye0xTNu+hPTju7g4c9nua6hxdT25xEjIbfCTaoz259479fsftzS3v3r6jPYhoXatEUWS3RqU4tI54vaXvAn0XefP2Pbc3d3R9z5Mnlzy5vGCzaSgKQQ/zAP8He8QYJQPjBLVApXkgp/iOQdo0JIxiBS90OJnIa60I4eHaJNcaQu9QCXRSBAXKWJROMLMLJt59mhuaFBPJJwgKlTRl3VCWNgv4c/K697OWU4xnHuoIgHkgNTEb/JTUfPLepttNaWnCjS3ycFYGfpIOL4iE824efGglhi/jONK2MuWOSRqPqqrmBsPaIu9HAedGycw4uQ4SPioC6JJyLvTnLJ38NdPXw8M14MF6kBek0/PwXUjG/N4fDSumP2Ou6R4Mak/QD0BQrFyenSJgKTGvEcfvz+uB0dR1TVEJU6OpC2KYXL0ysq2ONumoRFWVXJyf89lnn/P08oqz5Qq/23PY7vHO45TktfVzoGHC+RHwlOUly/Ua5xPdEBhdwFrRn+5ubkhqJCnN0LX4tpVohRDExTIGgnd07UF0NJMmKEaMFeOMZtlQNjW6sMQotuAkGIcB2XVkfZEGM5K0nAhTFgQPw/BPTJea3V9OYKrHnLtTO7L5giuZTAqX1pOSJAeGGPFBPIUfTH9gLrqE4z/5ooubkkG6xMLkHIwkVKa2PWTYLRGicDGtKVBKkBCTu+0xCtQq3HiHD04K4RP72scfMOVs5OllEgGQMcIBbuqasihJSHIlCHxmJ2vFCdpNRypZyAvLNO2aHprTm/v04Zv7ilPh4QQLzv3QtOym+WfLA/JQBP5go5yKXZOf8TyZlO+bAtGk6DoVQ02BPkVRsFqsSAlsUVA1DUVV8eTqqXi1Vw3bD7d0bct2u6coDIumoSwsh/09/eAYs+2o0LECh8M9ZxdLdrs3tP01n/3oTykq4SWmkKiKYhaaHw57UgqElOhHx353EC69yw9v1zL0HQqhe1mlqWzBZrPibL1itarROgcYJYWuG9CGcRQnl93hwDAGlCpY1ecoHxj6gd3tDp85iUobhk6mg8EHPrx/S1OVkCLtYcf20DKGgE8SCKfn7k08weTeiFmQXmNtQdcNOV9FGuIQPSEpdHy40P7wjiShbFbsi2XgkxiHAa0zNeFEDH96v+pcyCc1YQnI5usGrNUslw3XNwqJlYPSCs1MJ8tZc87/4k//jKebBX448Le/+gf+7a9/yT+8/IbOB9phxI2yFtRNTVHXlHXDYrXO5haZnui8FDJKiomY0knBdtyUpkJcAudEw+W9oCzjcMzn+cXPf4W10nD97d/+LZdPLjg7W/PkyRPOzs5pmobFouHq8gKSbEJPn11hrKFpFmy3WzabM1bLBcvFUlxQSo/RBUY1PH3+OTpFut0d3f01Knp01jORxDKyrMocbloQYsH9/Ygx4FzEh4M42OV8I5gE4ZOYUl5Tms/Dt2lRp5v7dzUYj1HW6b9Fa6KwEy01B2aGGHn99i3dMOJcEOf51ENGgT68f0fftXg34JwU5jF4QRangg7yZFnNhdDpx1TgWIw4TyU19bYP3sfp/Xm69037BgpUUqhU0h4Cb1/f8dt/fMdq+ZzLy4b1+gnO9aQYsq115nGnnBr+6g0vX76k7fegDCGIp/1y2RCToutHhnHEvb0HRAN3d3crFpVlyZ//xR9RlhqtAiEeLSr/w8OnP9wj+ABaImeUlmGT0TrvhxnVyJO3qdFTSqPSFGSr8hBHPk7pNPN9ZwxlWXIYdlijwCSCSZhC8npSGBnDiA4GosIoz9nZCqctyzdvOTiHTRpbr1merykLaZp3ux1kGtJut2MYBlnjo1Cqp/1/anqDD7iYEa48tXhQWM+VrQZts3WzQmlDUVSE0BNiwHlHaYv5vQFMTI++72eK1NTw2OygOSWNj6Njvz+AzqGFiF6xyOF9SmuqbLcdk2gajoY6D+uO6ZiQhof5GsyOX6fU7sf0/MdN/uw8RZKCOu8PU8M4HRO9KUVQSdgfIngXA4CEuHX6EDFa7isxqJEh4NnF2ZxnppEslRihbdv59Qn6atEkFlXNk4tLvvzix5ytzyi05eVtS6BEGYutLDfbe8ZBUt4XjTyrZaVZrhdcPX9OSgZTLnn37obNZs16s+Hl2/f41IlpRoiS39H3HNpWzp1SRO/Z3t8JMuYDOslrq+qS9fmSZllTVBUYjXMRnY1u5B4zJKROT1oRotSKVWMoxhrvNN3h+z2vv5fw+3H3eXqhH1Mb5gubxXRaaayR6Z0YvwkCMTktHevp40aj80U2eZPRWpKhiySwUWEtwXt00tRFjfceowyVLYVLmZuJfnAYbTKPUGxfg9cEUs62kMXo8VStKIqZxzZBqtONOz2E1lj6rpcpfUoMfZ+Lcnl9F+dndH1HP/SMo8c5T/TC952Qlsm06TsXfvXdG/O3vuxbGxwwzXUyLHScYB4pHtO/xSDojCSYH6eW1h4pO1MzOTUYTVNTVxXrxVKSSGOSxMqQMEpL4NjZOTdv33NoD7ixZ7O6JPiBD+/u5FwWpYSjqZgTsAGVePXNV8ToKeuKP/qjP0ObEuc8d7f3GGVkylxV2OKM/X7HMA4YC4NzDNkaeLXekGKg7w5oDVaDJjK4A9e3nmHY048tV2dXlEbT1AuuPv4YTMHu0PHq5VvutjsOfUvvR9p+pD3s6fuDcBxDR0gCX4+9YxLTJRVwcXLjkWmAsRZrDD74mUIY4+xLDElSR0OIFEVJSio328L7TV4obeb7JuD8gR7Oh9y8qkwvHLHasKgXDE2PUuJsMiU8TwVACoL8qSjBV2matKTIfnsvG15hWVQV0SlUiCzLiqZc82TzhP/yj/+Cq1VDHDte37zm3/7i7/mw31IUlqfrZ9T1gRAjVdXQjqO42FU1USnIa5RWUFXmOGVTEXPs8IGJyjnmvT83RaQZmZ0a+AQQmakRKlNlnJcp9Lt37yWoMQla+9Mff5GfPctPf/pHKAwXF+f85V/+JefnZyQkkPDnv/xbVsszNusLPv34M8rqjNXmOedXn3D95itiu4fkaOqC8/MVZd9zvz3QDyKEDjFgVJI1MsoapZVML5U5RXSnyaAUTzFCDBGl4sxlno7HzcSpTfj0+ceNCSBiew0ojSkKNmvJ3tHWZiRIc3e/Zb05ZvJMa3VVlRQWhn6Pz8F3aA0qGy48KnoeFyPTnqa1OGd7H4jBP5iSn1Iwvt1YaVJ2X0loYlSMg6I7wN3dLatVzYuPnmDMmrY1DEPP0Lco3MyF//WvfsWvf/2PbO93rFZr3qrrbHcO3eBRpaPUCoVYbfd9x+h6UJ7Pv/iYz7/4hKrUGJMHUUoDogPZ3re/34P7B3ToeRov9qCyhEaZJkdxUzJa4QaPNZOuzczpzWInLToq0URm04mMaAUvuVX9MBAHn09dJHkJ+0wmkfDY3LBoW1CUlwzes/cdfX/Prr2jNJbNek1RWvb7PX0vNrZKqdnl55QepVBzgT3RZ2ZK+kmdpNLDOqUqy9wQiKi4zo2BD55uELF3VVfzHj7dp1M2xmKxoG3bjDwkzi4uCSExDA5bDCQ0ISaKsmQc+zlTBiXNxYQ0EhM6BMhrQ11L8ODhcJift1OLW3g4NJ2dMPOe+XiwPR2nyAQcrXJnYyBbSOhufp0THdJ7n/+uEFmLNGhaiUbWWIvShghSp2W3UqM1WsmAYxwGilK0K4UtGfshSwEUMGQ3KDEhishAVlxM4fp2R985km4wzYIUArvunmE8yCC9KLjd3lOYwJmuefHiCqUr+iERveH51bM5fLpp1rx/f017aFEpcHN3Q0SYHkkluralPexxD5CyiCkUy7OGpy8uWZ0tSUrMQBIBT0Qb0NYwjAND2zMOPXEcMErE6z4oujYwukRM312LPj6+f07GI0He42bi8aRqRjtSnHpFCYkxSuxmSfgYZKIw77oPD8VDQaDWUtwrJjuy0+mXQWvxuNbaEENOfg2BGL1Aq7lhEXeSDLdrgSIfbzzGmPkhmRaD0/cpeRAlZVUe80CYivO8+SSZWk/2u9FkGI8MP02/L3O9J6hxChSS38cJzerfP3163IDoR64KcxE8FQjHr5RiRkFKemKcz4hIIpCybmCCk+fvT1JcuOTyVDdhM6+xa4W2oLOvfXAJ7wbGoaNrM6phVxRFhV6UOO8zvBvoO49SQiH45rf/yPrsAq2tTP1MgdGKEARZkSmDFb/qqpqRm6IsGfpOUCYvyZwpCuxrFFSxIimBpOtaePBnFxeYosS3B3a7naRkjoOECTrHoT3QHna0/R4XOmKc+LN+umkh61ESCHXOGEkx0QKfq5SYZ/GZW5xSxCcvxROiWznSVOJc8PzQm4wYolB/tMFaCKEQRKBIlGWFDyFbIX7LLg2ZTqqsGWB+bif3jG5/oNSizWjKktqWPN1c8ez8ik+eXlKoyF274/Xb19xt7zj0HUMMeHIRmcRKWmmxxFXGZnrl6fBkejlHcX6u4HLzBCmZB5vn9PplTQx52vpwvZz+dKMnxYQxmmHoZSDhHb81Miyw1jAMA029pCxr6rphtVpCns7aosT5kW7YE5KXQKnFmifPP+fu/TfcXb9ht71FjwNFobBeobU0BiIqDCcfR5ed+WSfLNQPzslcxB6ni6fF+OlUUk7Ht/eL+c98SnWG5xNisaiz8NsUZUaopX1rmmb++eM4Zseh/KJySKw0dzp/HOkYp1qMx7SK0+ZHqbym52tMXg9/9/4H07oq963cRyEo2sOBtt0xjC1n5xuM02gv13cKXNttd3zzzUtBjTM9wViLLYPsX1rcxKqypmvFgWgYHM47Lq9WbDZL1qsarePJPSpC8sOuZ7/rvvP5/CEcEjYnbk9GKXwQi2aVm9sUxehBKTVnq0x0O1l3pNGQKXteV5juNWFNHBPqRZ8kBgEJn8RxR4Z3WqbDEVSEqqypjOTIFGUhwm1ge79lv9sy9gPKyF415XSdTvtVergenDJGZhoQiRSPaJ9QlotZ2D5RnaafMe3XU3E/1RVTntDU9M/ZGyprP0JAoSnKisViSVkUhKrEjf38Gif0R6x/JbcIlenQWnSEI0c9w4P3+jvQzgfMjJN/n97P6fG7nlWQmj+RHtSVj39OyutZ4ig215MpEBGVWR0pZhF0TIQ6ZCZMJIZRULWJQu9jRs2EFlJVFUUlDJd+HEAV+KSomyW4xNj3HLqR/UG0Mk1d0/UjTaXwEbrOYcwgVOyhJ5oTOrWX1+C8xw89YZThZVCO0Y9CGe07fHBHTXAKlKWIw8tG7GrTdB4icMIg8GNkHDxj74g+SFZdSPgw4Nwo759He9zvOL53k/HvswE7PU5RDaUQ7qNSaGVnWzZt9AxJ+ZiYUjnlex7cYbOQeRIMF5nrLxag00KiHzxMCnlQnHcyOc6zxATS0Gg12yBqY/Mk5KEwW2sRJsco4YG3t7cPXpu1lipPD/bD7sFrn5qrSaCqkE7Z2myRhsK7AEGCaCZ4a0r8jkT5e4bbU3jIBz6eHvWdf05/n2x157CidOR7To4O0wY0FXUPutOE+PXHo/PW9LMn2lTwXmgmvpcE+LKU8JpxYOs92/t7jNXUTUUYW8a+pe/2dO0O1VSoVFLagrJasN0Feh/ww0jXD5JOiuHnf/PXfPz55yzXZyJmC0Gg75hmup21hqosWSwWhCrKVDNGxqphqBpE9SH0vNF7isKSlMJWJYUtWC6XnF+cc355RVFVhLhjt9uSvCeMI2PfoZWkxu/aPYd2hw89IQpP1vuQYWqZuiot+SU6T0gmTvfUnKWMXsyTpSTTea0DWgdZqPIamaIU5sbo/z9oMqaJdk7ljbU4Z0VFUTUUXgS6k30jcNx4csGp0rReZIQgQXCe/W7PxXLB5fqMq7NzClPw4+ef8NHlFU/PVrTb92zvb/j69Tcc2j3dOND5QOxGfJDJuE9gyjLnLagJZJJrdXINH9ting484DSYLfveT8UzIQ8Njs3S6fuUdUOmS9FLw+WHkZffvGTScLx8+Q1nZ+cslyvONpdSZJQFEVitzuj6PaPvcGkgqYpyseRp+SXt9gORRD92DGFAm4S1CWOgKCT7I8Ywb0oxpccygwdrzMM1aaJ45EHKSXHwOOD0u/4+/fd0byRkSppys+6jDKOUkWklSqMToMXRz3s/F+jOZ5vweMxRQOkTQfBDyu/pNZhe07TfnVL2hDLmTn7Gt201j+9lek4TEMiVqTj77LZ8uH7P7d0Hnlw9R1slHwa6duDu7o4P79/z+vUrLi4uKcuS7f2euq5QSDNpTKKqFlR1zW67nbVoicTl5RmrVSPCZEIeHMmzt71v2e0O7Pc/3CZDBo05F0KRhf5itFCWpeyXyMBxYh1Mz6jWZkbijwWv3HMoTURRKaFjextIRqGVEw2gJTeLKj/TRqjGIcIITbNkGcWkYbFYQEz46Ll+/57ucMA7T1EXVHX9wBxmpguFOHWncx017d9zk66Oz8n03qbGwmhNVZaZwSGo5CkNbEIGpmZkYml0XTdP+a21Upz6CErs/6ecshQDh3kpVjNtSPYzhQ9CPyqKElNYero5tO6oc3n4zJ06lT7U88rKc0od+12Uq6OGSwxwHjcwpyjK/LymnLKQkmSgnCxFRWFAWVLwJO+IkUwXCjnnTejuw9BjlGSepCBGRpAHVEqzWC7FYltBO/SUpUWXFfVyzdgOhH5gt++5ubunKCx+HXCjoyhLQtLc3bY0tcG7yNgdcpaaoFl9P+SQVDi0rSBsRELvOXQHhozeSp0sNWUgYKuKorKZmi4UfjIKPQVDg8K7xDgEhsGjkljyKpVwoyeojOh93+f1e35ddhj4tvjtIZ/uoYsRKmGnTZaE84EUIEVNDIqZN6JUbgFOYECAFOfQqbKoKIqamBKlNbPV2ma1JFrDdrulKApCCDkGPkhUesr8wuw6hQIXHC4EXEz4GOeib0IsphuxbdsH07jTztk5x5B97k8pANPEIIaASwmF+NFroNCWlIVc0UcGHErJXqgy4nHspk1+Td/2a/92Ry5/nlrHnYqsHruBPX4ATzdc+Vo1F8gCTcsUU6VECgGfIs6NssjHRBh9FvEWkCRc0I2OEIfsBT5CiiwXNbVNLKrEulGkMFCqDhMTpdYsyoSKmuQNMVSQNMHJdPX+7g7nPevNGYNv6Q4d7f5AXTcUVUlRFuyqktX6jEVTU9ga7wOtugcHZ6sL+kGC8hZPV6Tk0UWNy1SIpq65vLzg/NlzPBXD+IZvfvs1jD1qGKlQ/O//j/8H/tv/6/+Fv/7bv6YLO8IAUy0T5rF6wo2j6AKM6HWUFV2OOJqpnLicr8UpDK6OdBSFyiGTMiXSj5w3fqhHXS3QVtDMgJOCXmsMitXZhfiPqyhitTA16gGlC3GHURoVI0aLdXNwDoVYJy/rms1iQXKO2/fX/MlnX/KkbtgYg7u/46tvfsNXb77m/f010YAqLNZYKBqWZUNC0fc9ympC8rTDgcKWGK1IysxrxNRgnz6Pj/nDj4vYGY2dJvCPNGDAPM10MbLbOaoyr7l5OpsdzfF+oO/fovV7jP6aX/zD31GWJXVd8dkXP2KxWLBaL3n/4RVVvaIsappyweXHXxJUQllF//P/F1WhgYr1CqqqpOsTWkcuryr0/R7aFjUe6Rynhfhp0TIPaPTktZXXikdFwekA5/E6FmPM2UeiT5E/zWyYUNc1bhzptGJ0Hp0tbK0tuLm5keIyv47JEUtpS1kvGH1Aey9N00mBdvr6hmHIVAtLXddzsFhRSGjolLackgR8igD+uHZOx2mhlHLCYEwmW5Rrxh7+3V//isurK4qi4ZNPfkJta3Sp8L3j9u5rfvnLX/L61SueP38GGbVfLBt+/JPP6btxDvd7/eoDPsjEMXhHUWhs2XDYb7m9SSh6oQgVot/Y7w58+HCHd2Kv+UM9dB4smjzE1Hpq+DVWWRFKwzxkm/b0xWIxD/hinIxLBBVzLqJtQbIFKXhUlPuw0Epsq02iiRUUhlQYdDCUpUePgkwaq9nevWcbPKW2hMHl9HCF7wZcP+BGx+gk1XtiCYQgafdRKllpMpQ0qRO6AA91S9bqWTOyWCxYLVfybSnTtY1BG8M66yJSSg9yvGKMtG07//5TSnhRlHh/T1HWlFVFcCP3tzdSO6XIOHSCiVmDD4b2II6ApS3mwYCeK/bp9Uqjc9rknNZT09p4OhAF5mEFfDt873T90MagTA5hdP5BLXaqDfkW6ji93tyE6exgF2Nk7DpxYgpB3DO1wRYlF2fnbM4vKIqK0QeqquGw23N7fT0PpWMUVMf7rGvzkaIsZV+Jkajgw80Hrt++5d3b1xy6Lcoott2Bj15cUi2X1ItVRmzNHF7djo5tP+Djez7c3XB3f0/bHnD9AZVrTh+8ZLpoTV3V2KKkGwZ88BgKirLGmkJUS8ETvMKNkf4w0HYtQz/QdSMhOGFpxEBhFLYwlIVhsShwUdMPI233T+wudTrRebzhPG46pkJ5evBVmkJSsi2qkqkZGboWKpOSLk3uzSOdRKmcsQD9MGDKkmZhqOqKMU/R4Sg0mnh5SikJnnFeKDtKzfSmKel7Ejl7/20npukBfOzzfIoQTEyCb9GUTvQkWgm/UDOdv4hOitIKXOmDksTz9LBrPz4U397IpvP++Nw/bkRinuSdFkGn1+jxcfyZwESZOhHGhehISUsjkBJlVVHXC1JMEt5DQhlN2x3Q1gCiwwnGYDAoY9ksLNFrxiIydAOFChhGDAN1Kda2EnHvGJ3D9Yl6LBjHEdV1ksbro9it9SNDP0gWQmFoFrVYXSooTYEfRjSKumoorCWGkqQtdZ7i1EVDUywgo1X94CDB4bBne39P1x44byxb79ju7hnGgbY/0A0tGAjRPTqXeeHTOocTShM6zYJTSicTg4lTmq8XAq9OG6ZkJctkOMaAzU5Dj26DH9zhXMBiMFae8bIqKQtLocGbwEI3DMVIpUbRTblA2+2JaLxXDCEv1InsmJo3oSRTQ1A09YLzesknT5+yrmtc3/LXP/93fP3+a97cvueb9294f9gRbAG2xqiSqGUDnNQe0wYnXGk5Hk+tT585+beYm8UjRWjaUOcNUQt1Lunjs/hg3UnHoCxULqisIUxe7VMwXr4vYv5dLudr/ObXv6aqK6qq5Ouv/pGLJ0+pmwV1ueCzZ1f0LjIEja5WpHabzS8Sfedou8S+FdqY8H4XlKVQKeTnj4g1+MPhBJzsA3nSmjiiddPnT6mW0zmUz00D3GnVl38/nUJrrbGFNADL1YrRHW1YJ7oHSGG5WCwkb2ToM80FaRTNQ7vS71ovvfeSFJ7SsTE8aRy0KbBJaL6PrTRP6VOnf045RkLhUASvuPlwz+tXb7m9ueb87ElGsBLffPOatu0p65pm0cxBsWWZiEFhTU8Iiaqq6bo7uq5DqcT55RlNXVE3FW7cQdKMY0SryM3Ne/puoO8HlFJUdUGzWP7HP8T/mY90Qm9SRqOjIWFmYwjgwTV9vEfKdZqunRjKRCMDoDAMOBWy+5iiKiu8crIuWE1hK3RRoE1BKPb4IuZnMrFeLTn4Edd1NDkB20/0vSj3dnAypJufkxgzp3+i9sifUYU8tU4PnrXJ3hykQDa2ELRAibYgKqFV6QRNplBNKN90L0/0UgXzM1nX9cwEEeqVZF8NfUeb91TvPUPXUZYlhbXolCisnV/naU1RFqWEzno7/96p0ZjoYikeIwkeI4ocT8V8PEZBp6+d9CrTQn3KuDhFnB84bk51UabQaVtR1lWmnllUCHg9EJ3DkB3tktSQdVVTVjVVUvTDQEpRivCyzG6Zjn4gRyUwuwkumgZjGoZOMrNGP+CJOBIajUWx3e8pjKIpS0JUJFVgqpLlmabd3nJzc827m2vutntJ8O57ghuxYlVKTBFrSpqyRFsrxjXOQRRdiVUlKWhcF4l1wo8j4+AYup52v6cfRrpuxPsRVKQoNItFyXJRUxYWoyPKjcRkCd9zTvEfnfj9eKo13SAzLJXE42GabE1NRsrcUHmBRx2CyoNgNT1oShaSBDkZF7x3s42kUkocQ9yYk6LNAyQFshtNph24nEJdFv8f6v6s15Isy/PDfnu04ZxzB3ePMaeqZk8kKBB6EKAvoK8sPQgiRAICSUHqltDNHopVlZWVmZHh4cMdzmBme9TD2mb3uEc2GYKKUIUlbrrH9TMfs73XWv/JUXNuULo81fXE8c+9n/Xvm2Xb9W142UCvP59Vi6FX73gtXt1rMqc1VhbLLVm3fPK463Ou/339+89pS9ffyfXt1yR21T6LSjOr/ex5rl/3dUMlr6FBZdpsENkqBF+5waKvSXKCJ828nLFFFipnLDhNNQaNZhgcNRec9pAN1lSMSlACzgqs32Wwc0O+ahHtztYIBGEf5CLNRgygRZRUSuT2cEPnO+gyaVmg1BZeZcB1aAX73YGSKkPfset3OF22dNRa4Hw8czmdKTljjVjmXqYLj0+PnC4n5jCj1SY93mgv21TbmJYIqn90Ln2CGG3aFtEFrYJEEIpU1cL/zVv68Kco1M/xSDGhdWvEDTijMUrhlaMoSzGe7AZcPpOjIcbKYDOpFJYIk9ZMS2kGAYUQS0vglqJbG8Nh3PHV/Wte396hS+b5+MRf/d1f8/b5PR9PT3w8PvM0XdD9DqM7fAGdXwTL19fRuhHCp03Genw6mFjXv5fr8nNL77XZ/3xwsP29XBfa0rFIoRBe1tC1xqotIye/bNbT9K5NDmWA8/qLB7phpOsGnILj45HjJZCUJ2bVkLzKHDLTnDnPCW0lG0TplzUV2HJeqKvPTTuupo3yn2uWyEuTsf7+8+HIJ58ljQN91WhcUylWtLfvPKVIsf1CS5XP1DUKRzSanGJD0YVnn3nRhvyn9q91Cnp9HrxMXluT2KQW11PXtTj7nHe+vTe9vidFrYqnpxPv3r3n6fEjfdeREpxORz58EGeovh8kwX29f4GchL7qnTgBxSjFo/ea3a4T55n9noeH3PZDoSE+PR45Pp9IKXF7f8C5nnH0P/r8fzZHbfVBWzt1K3R1Qzmvz7H13HjZt9e99JPyVX5XKyVGsi7bvm6NJbfzuWgw2mK1w+M5aU11ulFomq8AYlHrrKHmQizXBbgSrWgLY9XGXNUh63BD6qFa6kvG2GeNxkYTNwbfd3JiNO+pVDIVjWnmGPAyhNjqBj7VHmmt8S3vYn1cCdoURkJYEbzm2rg6StW0nmdCWfsUbRFUcM3lWBsMvQ5eSxG9Yq2frLEvX/H6fj/9/edlS60VSiWrH1Myr/+8pkptnycvel7X9Y0V4XBak/yMblluWmuKWqn7MvhTgHOWy0VQKWMtfe+ZZ7HnXwctkiXmGqpl8M5yfDwToqAL2hts6Rp937LMgbkPYl5TNRiPNg4/9qTnI8cl8u7pmZyq/LsyVJrzWHtOay39MGK95zIviPGSoFsKSw4wXwLD6FjCzDJLHs8yTyxLIIRIoYh+SBu6zrHbjXhnyTmQs8WZSnE/jV3x/5WF7Z+Dv6+/zOsiSqPEVxcjG2epzUotEWImpipUk6up2NpwvJwtyKTCvUyES41cLkdyDqA0OYV20cAwDFvhHRZR/RutOez3LRU8cCkrAtEWlQ15+TE/egufa6jG+l5XkVWphRAlgVXSH5vXjBJBmjGamhJFV0ypUKOE+mhZTFLj9658wj+HmPzPNR4An08Aru/P1rELrLySGfR6//+ZZkMeW1KTZYEJOOdxTiDVnCtPz888n04yOcwBa9pnf4lk5/Cu4/b2DXjfHi9izIwyBe8czgyULK42KV2wWj7zYYBUFV3fEaOBVrSLy1LCaisUpTUjQUbDhEnEZpJSWZmmCyEFqq4YZ+j7PWM/8suvf8Wr2zfUnAjTicFlvv72G778+hekAI8fnricLtzc7AlpFhtmq/l3/9O/4+PDe0pe8Kay73qCSsyzLLbaGEFwlMJ6J6485ccFzTox1aWIg1D7vFN6cVRKJaGr2prvmPwnvNGf6xHDEW9HKXS8hxyxutJ3hqo02jtU33OTIUwXKobhN99ynk6EWFii4oeHmUxlSZHf/v49fXeLMxaH5tXull9/+Q3/9JtfcDsM/Ie//vf89vd/y+8f33HOgVMphKox/QHdj9huwPUDVgnCILzsJuCrP96sPm/Cr49Nk4CCNjgIIXwyhfx8GnfddKzWkSi59kLIWGvE8S3MVN1MGIpB81I06UbB1EqBlrVauNCK3//u78XO0vf89m9/izOqTaNmUtCk4JhLYimVS4ycp8hXX7+hWxG3smY2pEbvKy2Lp0ociVIbmvvnBiJV0bIJyifv+9Nm4+WnVqGypAQ5n4U6ZYRHH8LC+STF3DTNMv8zFrd3zdlK9BneOXLfSSr6fMaYgFKRFM6gmvnHZ2vqFnx21TCtCMlaIKIMok37LMug3WcYhg31eZk6f0YxppBz5f379wy/t3z3p79HqcLz84m//uvfsiwX+l7siK3t2O1GaZpCYroswpFWmrdv3wl6I1UzlQXrdhwOI0Z/iSDgQpuIobb7tTBXJKjy53u8nC9Ka7z1cj5e0YIBoT5uRbNFaWk0Q15QqjZNhNBZVrOJTjvJXFEaqqHEhGmjpGWaSHQYLLukOKuKdRatHcsU+Lu//R1/Cgu6M6ST5BIorXDeE0tG1wxFiwattuesbLrTSl0JHZ+sLz8y3aFivGPcj3z9xT1xuRDDwrwEHo9PGNdjrCdnWKZpM0LIKTdUpWDQGwe/1JZk3RqD8/nM3d0dfd9TWz5GipFlnsT5EBl8LZczruvRTUS/oiEvjUtHBaZp2jQwMYrTp6oVXQpLyS1/oe17V2L4NQRw7TRe2DHrr9Y65tOz41r4vizLdl27KxSzADlGSTx3jldv7vH9gNKK6XjcgKVMFS2UEibG5XJmag5TNzd3pFSo1WBM1wwFxNyo6zzG6k3/M58nSnoAdeR4vHC+nMgqc//FF7zWWpDXeaKkGaUsuVqq7dH9AWpHDok/PUycoqI/3ONdh23n59OHd6RwJi4TYb7QdSN9P2xaUG0kF6zvB1LInE4L5/OJwkxMEyHMnE4XYqykBCXLe87ZUEtEmYrrDN554gLgsVqjun9g4fefF7hJcb9eJGg5EaTbLpSa0Vx5MpfcAkMqS8jEKELcdUJ7XSCbDb1IG/VAbMgiIUxUstiIOenCh36UmPssJzKqedPHSFzEWUhrTRILpVZsv9AZPtdcfI4c9H2/bTirSArkoh/GoeWAiItURZoMq2HOEd0mL84aKViVwVrPnBZ8E8KvU8JrVGV97s8pBtdWutfTmk82cpQo/ZoXeG2TOEA43rR+XK2uFWzvZ3tu5bbpjJQUBWOh68WhY5onSq2Mg8IMHZqCron9YPCu4lzG1Kdmg5tJORDDRdCRUshVeH+lmQOEJaOto/Md0zTRH17hu9co22NcJ2LYfCEukRwiKUaM1pSaSTGSYmA+T3S2x+qOkBaqymiv6fc7dv3I0A0Uo1hywCnFOPa8eb3ji6++4e71l+QIT49HPn74yMPjR0q8kCncvLrj/bsPkCv7fqSzhWQNk17IaWJJzes8CWWshhXRuuZof0qxWSc7trnmXDfyOWdK+/61XV201qTln+/hTOXmYLm77Rmco+RFrCHThNVFppHao3a3nPMHYpjJz39A55muaiyWWxNx4w7lBjreMOzuUdURzonf3H/FV/s7BuP40/d/4A/f/z3fvf+eSy28ezyypEQxA7thQHcd2nmZdW9o+7rh/5gSBC9r3/VG9unxUmiXbYr5KV3j8+n5S3HezpUKVClO+r5nHHZSVK/UD6NQyqC33VXQjdLQ4TWsTmuD9S9hWSEFpiVRc6K3mhwM0wQf3p9lI6uarvcbTzsEyZpZ9Qld1xFqo/0oRE64Uho+a75WbZrsBYJPlFqo6VMetgShSaGjipZMjhXTqCvFTEEVt5daJGgzxijTOaVfPpf1s9cag6XrB4bdDUpLSJm8r4VSM0ZrnBdKy1qMrsfaHLysq6vI8dO96vNhz6oL9N5v1qTruXC9v9UsA5H3b0/8X//r/443X7yilMz5fGIcD3T9nv2h57C/kUKtQAozl8sTHz584I/f/RGtC3d3N3jvQWVOxzNKKcZxQGGZp4VpkiBS3zm+/fZrhnFoNvLiHvZzPaw1G+9/Q9fa4a0gWUavgZ8rBciirRH7Y28xi1jc1yQ296VklCrkDN5ZKkquJ+8EbEgVaz0hZEK+8JwCJlecsmijMTXR+57BWMZhz3k5bU3PuB8x3rIsHfV0ogbVnC8F/a9VbblPayu6EiBYyWFK0bxW6fuOu8PA65uO13vL7ddfUCpMc+C//1f/llwbqloqMUooW2m0z1qk9um6HtXoNbpm9vv9J2vdOvQw1pCCBHIq69jf3EoB3eom0wYrWuvNZdNau+lic84ta6OJsyuoWkkb6iP6xdWNcT0+X3cVYkShkXWttIRntU512yT/GsH6XItqnMMZ0z6XiB1GhnFkfzigUUI9KoWSchPPS35abkuLkaKR+1evGIYdWlsu50ehRLkB0GgtYXnWaUKYyDny/PzE+XSmVIN1Pc5bDoc9+/2Ou7tbwhI4n888VaF09uMN3e6W81IppxmoTAtcTpX5kog58atf/BqLhQyvbu5598OfOD49EELmdJ44TxMVscW31m0ZQ1qJZiXVyLt3Z5ROoBIoqad3u4G+u+X5NHE6PTNdIiEGYoqiTxt3zFOk5AnyTzOP+MlNxudTnu2obXPc1luB6YVPl7fbrNZ/glZoQsikXCgFlH7ZcK+f6/r5Nv7d9VRt1UZAS8ZUmyvMtom3x10/ZNmQ16L7Bd6/njp9PpW73hRlMy/b1PE6wGl73etp/0nRz8YPlilnpGv2ZsCGGNT6aQr6ipxcv55rKsY6cdtEZOv9oDlUCZqxpknKZ9gSz4X0vVnnfVLw0ARbuiFIRYKerNX4zjD2HqMFhRg8EpgFqFLoPHhbsSajmBoFpEBZqHlp8GillizZD6olgtaKUZXOKrwR1xvxeN+IXjKV6i1RNYSslga5VpYQGhc7cK5nSo7imd4aP7QWO1lnZRqraYWYx/UDzg+kVDg+P/P09MjlckYRsYNnN3ScY+Kwv8EZha5nYqhoVcglwVRJtckp65qBoT6BvK+vpReh8Ke/326neCl0UiYRqbby824xYOxg9JXRF7ypFKXIQEwFZ4z4kVdD7XeE+UTNgRwnbJWQJFMze1MwBKBy3yv63mCUp5odr3Z7Rteha+Hh8T2nyzOXcOEyX4g5g9L4bsAPIxhN1bptvG2toU3J1I+RWjlWmH293Z+Hlz6nBf1ZetCf+V27d7OG1Ch0G+Q4FC+OerLmthexvYR145U8Iin+V9e4QkqRtBYcWVxLlqUyzxXnpDh3/qXAXosEkLXGOw+lCCqaM9RAavqY9dk/f//r32u7QaVK2u72Gazr9csEt9aWoGz0pmtbu6iai2QNrKLqUgjLDMqgjVBVrLONriqBhbQ1cBhmjNEtcTl+CppffVfXQxv5ESF5hVbgvOxH19TVFf2+Di29fvzrI8XK5RT4/e9+4P27h2btXvniy8puN1LrDdZJE5ZyZlkCx+OJ5+dnzpcjvtPc3I6M4w5q5d37hWla+PDhI6/u3hCiJDmHcOH+1S37/Y79bt/oZYmcf5po8x/jIZrI0qxEXxwhTUO8jZFMIhqatOZsbYgUtOui7cq1stpKr01xaT+5bupQWPWSVWoQq72EozZH6ooM7JYQWq2hWi4VuFarGGvQSaPKS80jZKGGwMhFwHYtt1epW1Psmtj7MPTcDB23g+V+16G0YR56Xt3smaIMU2spGNM0E7m8mE3wci4rZbDKbsY+OUuIo1ilalIRHphRGuM69jc3jb5epXlpmpJ6ZV+9XjfrdyOGDhJcnFNp6ehSH5lWU6nKNuz8cwOY7WKV8lGu//oyiJA7sK3bnyOIG/KltOz7xjCMI+NuxzCIIUDJmRQTaVmEEdHqRuM82liMc/SNemqsIwYxmXCuY78/ALLGaqUI8UIpCaUVMWXmEFFmwVfN4eaWMM/knOm7nhhkPdNKo2yHsR1oxxwLtsh5NMfEskSWObDkmZyiaCScxex2WOugfV8hLVK3KRk4ad3yP1IhLIGYZ1JZcDXiO7Be4zuLUQPWjnjXM80Zoy0oQ8rLpiEVZNljdKLqf2Dh97WF7Vrc1jbV0mr1WBdLrNWdSGw467YPayPdpDaOeYnEJE2GadaC17qK6w50RTPWRXz7XTuhV7EeLZV1nfquNrVooa8opURI19xSVvvT9T3BS8DS+nNt/yYXwMtJvFrBrdQmrcURwmgtFKAYNhOPtYTRjc4wTQuH21diqRqCICBtAdBGfzLV9t6/QH5XDQewua+sP2vDAeIItoYZpvSS5bEs82Z/tnb/pdZt8gbynfoGn4Ik/Lqu0vWGvtfc3jgG31FSbDaYq7+4xxkwpqBVpVaZPNYiKZxq/Rwr5CLhf8aa9j1mrNH01rDrHEtemC6PVDqM34k4y3tu97cs08Lz01Nzu9CUnLhczi1jY+Z8Wuh2iq4XwdI8L8KntQ7frfxTgEqqVRoQK5zIDx/e8+HDOy7TiXHv8UPHeHdDlw27cSDMR87HPxKXwtAp+k7z4Ukxx0LItVEBG51C1Q3du0bLTFuo13Puc22NWPC2HBkyJVdMMlj78y0OAF4dFPsu4ZlFB9Hg76TBuA6rjXwvKuPni8D7OWAK1JIoKXBjLDGciFNmrIYuT/R9z+3hS17t9vTGkMLChw9/YgonUlk4Pn3AuhHjB/y4xw4jMSfimjDeBhSF+uICdrXZreuSUC3XQmAdWvDJ7WBtJAXpvX6c9c/1e/4xzUjutzq1pZS4XGaM7oVmCTLVb6YCteYN0ahtrdUtrawglpKlQImVmCK1JsiZaV7EGnFJ1GqB1WJbRLHrY60FMwjVxhpBDkpua3KMUGXit6Ft20Dmxxv9OqS5Rm0lIE32ilrXdVc1nrjZ6BXyvJkcS9O0Qc2F0/GE8x7rPLNWGKuxbaK92x+ksGgWm0MaWJaJp8eP5LhOsD9tANbm6vqazW0gpo39ZCBzvS+utC7fEJJrHvjnQ6IUC9M58v77I5flhHWa3b4nRklRHsee+1d3lCIZGE9PEtD4+PhACBP7Q8frNwdubm5ROKb5zNPTE3/32z9w+N/ciUnFdMI5RK9xOzKOPVSx48w/VbX5j/DwzhPisun01u/hJSRXBLwxLFvehW7DP2qltrqjsuamXAn7taJUMT9IRVNDlKa47ZHVaCCj8oz3A3WhOfoIOjFNMx8/PHA33qKohCi5AkYbnDFCM1mbnao2m2iqOAjW1mQ0yUkTJiu0Nez3e3b7Pbux53bfc7frebXz7L1CW8uuN/zz3/yatw8nns8LpznRD2KCMBcajU92nVSk4bHW4HyjkjWXqWEY6PselGJaZozzeOvp+4FXr99IOn0I5JSYLidxwNQvtdA186TWKtQe7wle7rNGDpRasM5RU4JmcAAvA4pPrp1WZ66UKaFmv+jgpMmTKV+p12L/Fc2olJrbFElYJ/v9gWHciXNdzlAkKPn8dKK2AaXzHbv9DcY5rPPc3b/BGGkwTqcLtcJ+v+fbb7/lcjnTec80nHj/8S1dXbOzLHNIlDqRcuEvfvMXPD8+SA5SyVzOZ+ZpoWZwfgDtSUUzLYn9bQc45jAzzxPT+cwcT3x4/5a7wz1jN2KVIZck+UhhIseZcRjEKhmF1kI7iyFwPB4JcSKVhbvXHdZ2jIPncNihdU/JhrCsn5FFG08I56ahvA7H7aB+um7+p46f3GSsFoHANhV/GUhJb6wbX1W8/BWqNI5y2xxL1ISQmJZ5S9ms/Hjad13cXy/mK3Kw3rbWyn6/p+sGaqXxKyUYreSEsQZXnfhAX9kthvwCsV7zHa/Feuttrwvvz4uEnDPLsnziytB1wgWuJZO0IZuwcSHXaYU1hmF0+K5HKYEul2XGGoN1jt24a3B7syQDbNOBhLAQ2wa22+2Y53lrLlaUZ3PFqmCtYxj6q/dWOZ1OLfhOUjH3+z2lFObWXUuzWIDA4A273cjt7YEYL5QagcjoKoPSlGzJOQkMrVf4UizurDGUXJvgCFQt5LW2rooaE7nEZkNqWCkml8uMNh6nRRg3LWdstVhtcZ3DjwNTDJzizBdvXnF8+ECYFsahp/OdeIVnxeX8kRQCyY+UbDg/nXnuntA1882X31CVYomJ8aYDY+j7EW8dguomqi4orzgtZx7englRo+qCrgtWZ1693mHNgao0U4TH48zj8cJ3P3xkiYWUBS0SJE1htXxGZWsEP82CkIZuPdfkT1WVZHGkKEX2z3gCCfDFGKlhIS0a627w3Q6NIiuDsR3WGoxWGLXDqNcMg+PpYyCcjzKVMQ4LOMQ2uDOOm/09h8OXfHn/DYPRpPDIw/M7/vb3/yMP05HTPNP7yje//AJte0IGnGVaClNQJK3AOiqampuTDJ8OPmptvuq0XboU1tyK9ttPDvl+X3QYnzcg14Xq9b9tRWutON/QDAXOdcyLQNfGeMIi+i4atmVWa+x1+teADkVbr1qhlLOYJSynIx8+XghREubP5wvOSu5PSqXZflZubm62KXAt4jZTskzCcxYt0uo8hW55DOXHFr/XtCm0THhzLI12UVG5ZR5sxa/CufXagJiS+O83M4n94YYQE5dpQjWqwzLPpNRTa2lcaIc1jn4YtvAxyOS44J1QOpawULNk52jhhn7SZFzTU4Et92ndJ67/bb3fNU1nfe/Xmo/N4SdVwhIx1ZOXyuMSmKcnfvj+mf/w7/6a//K//C8Yhh05w+PDiY8fH0kpsd/v+cWvXjP0I85qwHB//wowxJj5N//mf2QcOw43e379668ZBiOfpVpAGWqupPjzbTJqrVht0X6lUKdt/9XWkFWl5khsrktWG5xxWCOW1cpotLZYDcoqlLLEIOifsRajFKVqNIbaO6yapSGwBuUcqWouKlI+PqCqQxnP/c0e/eqOMF04/PAWhYak0EaRYuASIjFKE5Jy3qzLN2OcFTlt++fqELUaPWhlcdbRdSO73Y6bm4H9rqN3jsEZKpVYC//0N99we3Pmw/OZ37/9gHYDMXqM1kyXCyhpwsdxR4ihNdGFnF4GXfMswbOV5ujpBBEZxpG7+1fMlzPHlIgxMc+CKN/e7uj6npTTVhPl0pwgU5Kcm1oZxp1kXK19VilMlzMhRnKpV5SxF8R/rVs2Atk6vLi63cZeUYoWKMGKjK7ubksILa/N0nUD3Tgy7veMux05Fz5+fCDFS9tjK53vuLm74/buXvK5tGFeIqo1D6KZhZhm3r37E0orMSZSFaUc96+/EdpoKUyXiUu9UGuVHJIoWuJ3b4sgIjmRU+YczoQwcz4+8fz4yNPjhHUDSygoHUjpzPHpA9OrPSplnqri+fGRd+/+xLJcSHlCW8UUL1zSTK6K/WDRyjTEudW3FVIsGO3o+x37/Q21akqWuu10TnRxaHlDgRQqcU70u4pVkJWC+tMyu35yk3ENof85/YLWhVqbl3sRoG+DgBp0o5MiZ0UMos1Y3Q/+UxO9NZ11Lb7W17A2BmsmxrIElDLsxn27rRKr2nYhX1OsPqExtAv7+j29nMRlm3K9vC75kq4dT1Zx9rVOoj2I0DuME3xPa2rOAr8ZQ9cgOEmrfkFCjBEOtTQVFlc9q6uVXmFLLYI/Y2Rqszo3rFqRTUBapUhyq/C6CUKHYUQti1AG2nsZx5E3b97w/fffN70K6Lqw3/cMg8dZcWnKubYTLzV+LywlodvU03cduUjuROc9pUSmyxMpzWLpRmk5AfL3F2RYGtNaZeHR1oodrdHkUjE6Q42kMHM+nYgx0flBwmGyTJU77wjL0qZUkvxumsNFDJn5MhGXmefHkbxEOucZu55f/OorlJbP8HJaQBW0gZADoTi0dRjruN3tidMTJQZMrex60QShNF1BXF5Gi3PwfApc5shljiwhtUlve7NtgZUNSBq6kgtF122yr5QSCHodaV0tyj/no85HWeiVw5SILguNaStWwkEsHlVJMoFsiGRpNEeqOLwYPNqAUgO92zF60dyoHHieHvjhw3cczw8scYaaeXXbs+8VzivJ3LAdqXSEXDjPF7L2pKKYFkixoUtX61IFalHy01yQ1LrRrTTQ9T3WFZr/cS7NenxOCf2c358y1FAwOsum2HeYpNBZdF/ZFpQSKo9SQgeU3Ew5b0TEXjFWPldRVMn0L6bC6RxITSzddb0gZ7kwz0ubEBa0MnS+2wJD0bXRHiRgchgTq9NcRVz86jqZ3T6HH3822yRXfUpP0noV21eUKsxzQBvJQdCASwmjDVEnzqfLRijRStHkKNKgrki4hlzF6rZQSSXjVoqk9c3ONpGMkTyn1mSse8zn9sLyNmQ48Ol3/enfrwdY616zIkLX6MhKFbPOCsJQCzVrpnMkLIn/+B9+y2F/g1Kay2UGFF3nGEePs93WfCkUfT8wDlH8+8OE7zw3NzuGscc5tdFOSypM08zj4+l/6VL9R3s4awXVasXqupdfO41lpD7QthlrKIUyK4Wkrgw6+bM5uikZMwhKVrW4SoWKbtxaV6AoQ1aQ27lCFceoeV44n84sy0JnOxF0G4tqiLXsdeI/Xa6aWK23qdtLo1HXtU41OrPCWt/yYyx+2HHz6hU3O4u1SZoiwFToveH+ZsAYRYiBj8eFkAOlRAmD082hzUsTlTKkkoQm1Kz9tTZEJbpWrcU4ZxjEgOCHd+8Iy8w8XZjmmRBjc7LT5JIaJTNszJZagZxZOZWVlRYl9YtEGrzkg5WrpfJHugzzEtq8rq/K6BZU3RoM1mELKPUysKjtczedE8rZfieNg9LUdv0c9glK4fL0yOvXr+n6Hue7bb0zVlg46zpnjawlfe8Zd70MaYsMX3zvWesZkByenGMbOMcXqljJkh2lodbMNF2YF1kLzdOj6FRNx7wkpvMDKU7UHDgdn5mOF0oqPD898fT0kZQXlBIzGWUs2hh610vWVlt3rXOU4iglMk8Ly5yISyGn2r5H+dysE6vrWgfCfKZkxHyCSYwAcqLUf2C6lCAFeTsRXzQIBmMUteqtMF9PEI3YeYkzkGHOmlo0MVY+r5U+bVhe+JNrMnDdFhA2yC/nwvF4QlI8/dZkKKUptdv8zq+nUdeOTevvrwP4pCgo7flSey0rf1O+/PXnGl35ZEOqKzkQnHWoalAqseiAMmbj9sXccj2MpdP9thmXIoWFTFk0OctGohBh2/ratRLReylWwv9MvOJBelbHhhVyDSFIuMwwyIWuXqhvfd/z1Vdf8fj4KOnkRqGLYr8f8E4Dkc4bSjakJAiDdRa0IiaN0VKQ7HZ7QkqM49CsJiMxXUhZghFLvdaPbDNj4cU3+lKtYBCaF1qRClSVqGUhF8lLAMvQjYRlEhqDFterECOpgLaWsevwvsd5z3y5kGKkhMh8PHN+fGY37tCvX+NbPkVMicfHB3KOVDKxRFLNeONxvedmd2BiJqoLKsHQiSVdVeAq9J3msLeMo+HDx5mn08LHhzNPORPqajJIW7zlmllTRCXFt1C1bgul2ig7YirQpuk/mpn/vI4ynbBuxDqNIaKK8IJ1lSY850iOAV0DVidpKqwBLfqWgvBktbGARTMy+AOD39O5jjk+cTo/8O7jn5imE5mEtUboIq7Q+cIwWKqxYBxFGR6fM1F5lgRPqpKcFnvQmFrS6WpWDGkbqJX1L4AUuxU+OYevp9bwaUF63WBc/25br1IiZ9FBuVrolW8bgG46o3bd1CJDnLVYqkrCTgFUQbVpk6qFksULIqXKNGeoWqajvqPrBi6XC+fzhVIav90anOuoMbb8DuSz1+K30w+jrHtIgxPL0rzaryyAP0Nvrj4wVhrE+vmUoprIW26Q8oLR4tpmjcHHJJodZYjxjLVSMKAAI8GVzjpcs/AFmuW5apTETJXOFBkWmWZJmgQQ0g2t+k80gHWrStta9Zmpw7VWcbPrbE3mmg2wUn+vH9tZBwpsKaRaSUkRlsjf/fZ7bm8v4pIVE3d3NwxDxzCMso/mTK25DeK8CE6N29Dr/WGH9xZrFBL0mQkhcjqd+fjh40+4Wv9xHtZYiiro0jRKrYhKOUuAaTN3Wc/NTROk9VbIryVvreKUVKpoBWAdYqo21JGpdlVgS6VUBUqTm7NZLaJ3uISJi9aEnOldJ/rCsIhRx3o+tbqh5CyDOhB64tqEbIhfQ/2q0M8Nmq7rNldL340c7l6zHzSuPGF0goJoHXTlMDqsVcR0w/n8A3OR6btztu3tGqcrWGmXSy7kuDYaSQrRKtTHYbdjv9/hfU+tmbdv35JilHU6RBG3N82jsC/k35YloLUVNzP1gkKg1KZXlBpSBrAS/itr2Hp8jviuax8t32zdG/PLpGe9pzzuep0CtSpyyRij8Z1nt9+zCshTyoyDZb/foWrlB2u5f3UvqG6WRnAN/jTWs7R1zlhJfe8HzzB2Qn/KiVKzULBi3OqcnGIzrAjEMEGtWGMk08u6VnMm5vlMKUnW9VqYp0BBc5kC3lficoGaOB2P1CiF//n4zOXyTCVjrNSJTktdOo4DuTlGrQPnUiI5G6bpwnRZ6IdACIm+b+nlZGkyqkVVuGgHDRyoeZZzJSVSfqHg/89erz/1wtbaIkN6DWi864Xf7r3EsNNQgZIaLLlClEb81pVBHye6706U9I5SzLYRr7QEeSyhZUkqZ208MJnoKtqGihJ4L4uVmLWOcdw1apPkFKyT/2v/8pVPthbi6/T/mh/cTklAUAjdnk/uL+ex1mwIglKK/X7P+Xxu/GLPMi9ye2C328lCZjOpIF7TIZF1kObIiBag7/vWRshz55w21xRlfJtuiCjcWLuVN866zXpOciRmcspY51DKNN6qTC21dXTWQZFGwzrLNE3UWpmmie+//54vvviCFBcokfv9iFKBWgO5LFgzgJZJknUe0xa9ftix241tETMoa4lxZpmOTOECyCYbkyZX1XKLXyYbtbYMkXVcj2bvRlJOhDiT40zVgao8StfGue3wdmD2lrNScoFTuWnWe8ZahqHHeYfWlpoVY9djMdztbvn6yy/Z70cOh5H7wy2ddeSY+NN3v+fvf/db3n94x3AY2d/fULUh5czf//1v2XeF3hSMU1LE6UrnLalNMFwtHL4YeH2z53yOfD8+8ds/JI6XhXMtYIc2dauUHKBaKWiXiDVO6BjUDZ1aiyO9Na4/DaL8x3o4oISZJURczQKdW0/nOxQFXQKKmbff/Yn96Bl6y5evvoacCdNCCYWh32FUh9YeZ2/5+ovfMI43GFv529//lnfvvuN4fCLHxO4wMO56DocOZwpGTZhlphv2pCjc5DsdsaMlVcNeK+5efct5Xvj4dOQcCiEklpiIy4xWrUg1tg0h2vrUdB1KCdJy7Sy0DiG2o8hEc11Mrovalym3XAmyQWScT6RUKblyDlOzpH7RbK0URD94QhLaaE6Z0zTJa6tCg8gpU5Oh80IRUEpTCo3epOm6gXkOeNfR930Lp5I1OebE6XzegLWUsqAcSqGMEbpEStvQ5hrxXo/Pc0OMNY0+uAZVSsOtG3pbdUW3x1hSlOfRHZ3v8U5CwaZ5YhhGnPcihFSKHBNLCDIA8B3OO169fkVcZqbLhWlZZEBmHbYUcplb8VQa3eEFibhOPL8OYhUzk/803XelT13zy6+bztXieB181ZpRJmMdGNvhzJ4cFSVVajU8PhzbaaZ5eqrbBFgpTU6KZYmUArvdAWNss8RuCBGGUh1/+P3fcLlMG//953ikEJoeM7Nk2fOo4J3D9L0ExWlNDGFDDta9E6Bqhe86QhVnqaozWiMW6UYTakSv6KrJJJoDohfqE7XSJUVsYWslg0qJr7/6ksF7nrzl+Xgml8z5fAZtsba0ayahqBgF2jlpkEDQXK3JKUk4PAXVtAPaGN68usf2I855tPEo67GD59A5ytMPlJykydJF8qgMfHU3oPmCx+cz7z8+8uHDR7Gg15ZwOouuq0JNic5aMW5p11rXDVgvTfw8zVwuF5Yg+9WyzKSYuLvZ03U3oBSXINktVBnmyqDT0nc947gTBkT7Do7HY0tqV1JDOE9GYVKifsaUWY/a9r9Saku3b5lSSihpaxRCLbXVdPBiSLRO6A3GymCw8w5QzPPM5XwhLoGuZYXsdjuenk70Q2J/OHA4HAQlrkoE35cJKNwOI84ZUop8//ZtC98reGvY7/ZMMXK+nPn44VGozkVo81POOGu3TJ/37z7gnARkprJsNengO6bLM8sSOR1PoJJoX60kbvdmwBlFjLMMLdGUUom5YipoNJ3vWCgyiDBO7q9lrTlfnnl6fCalgHdw9+q22RFXfGc3VsV+P1KaxKCgiTUyx8g0X37S9fqTm4xXr79qIhuwRmBb4drr5g9ssMbinGFZQ/NaAIlShlwNf//D3/Ph8cKHj0ehA7BOgF6KfLmf7MFCH1pf4osgXP6rgZDl6n4NZqz1BfJeOdXXGosNOmobxjV/WE5oWF0LSrMLKmV9fkFNXjrkl4JwtXqkVJwy9F2PM04gxLJaqonuYn+4IbUwG+c9/TiyLAsxBFKKUjgAqdnC6ZYgrZVqBWr+ZHMrpbCsrgilNPRF0nk1Ctf57f3J65QaJ8YoOhIrjdk8T1AizlR244AxdZsSjYPbHG+c7ej6Hq000+VM501L2654p6lmJLuOznhCmIl6QVfFXCf5PGraHjcXIaBYq9skrmM6C20JVTC6YryI94fdgWXO1HImLgsxgesMxomORZCPTJzFCtOlhLWOrnPkChaD7xzaWZQ1W+CMKVCXyOXhmekktp2+88JhD5I+7h1YLYiD07Y5kIiAfp0g0s5L2xs6Zxk6z+3tgcfjzIfnCz98PDIvkZQLmIGhF0Hd4XBDjGIbdz4dhS/bJlrGWtbm8xM3jZ/hUTGbBWqpYFVFq4yuC8sykeJCDgudiZAgLYXiB7puj8YRdUBbD9WilefmcItzinl+4g9/eMv/+9/8a0KcMAa++vorusFhnQFdcEZhtfwoAkpcIrBK4eqCRXPjMiY8MAJmp7jf91yWJHB1bzCuI8TE0+mM0p6YCymv31QrGPLq3CLv+dqhqZWhqLbI1VIEpeFTdxaQome12fa+w1lHcp7n46MUwrVRYK7NFHJoBQxEwDRr5LBE5kkoiwrNV19+QwhJDApqE6iGRAjNgapNM1OO2HUNbrlDMsBRuEaNrLxoDlYK6fqe/1yOz+fUMJk80kwSzCbufBm5yKGUaDnO00Ua8lpZwkxYFnLJ2BBAK16/ebOtycY5Kkr48JeZkqSRMNZJ/aFkYw5Ly5wwSsTtVRq66+9u/TNvtKcXeuwmjl8zGa6octcDro1PfkWpWhvSUjJFCwVNG9CmOe+pxhQgcbkspPQR540gnVphjRNGSqEhHJHzacZoePP6hqItMQY+vH/mdFqoVWFtx8/1eD4dm/5PzNVdGwZ670Vzgdqm80optFVb8Sz3aUWXNYBkEqQs6EcuQjOyyuCw6Ng4DEYyHVKRxrTbDYTTBVs1Thtc79nf7djf3qDe3PC3f/8dSivOz0ds11GNRuuImhesNdsAtSoxetFGKDnTNBFDZXXjXDfqECPdoPDOElLgw+mIUpYhB3wOQmVsKKpWFaWhd4o3NwODN4ydZfQG7wQVnJeFOWQuc2CehW7uGisjRkkbj0GsVXXLW0g54VzfEsrhMs8sKeKdY7ff0XUdOQaW+dLOabnPZZokIBcJY7XGEEsiptgcnPQ2FM7z/Ml3fa3LLWVt/oXmpI2VtPYKpjUwOWdMNQ3VZRvcriJxqVEbFd135JQIJbBME2ERm/Cu66QucI794dAssbWcV7Vs13GIla73LJdn3n94z2G353I6EeaFj+odVWuWsPD49Ei/ms0ANWdCEYq0s419kQQ5f35+2taQ0+WMqi37qwSMRthByrAsgefmMrVEaXpWQEcLXxxQTPMijIkWje28JyZxoqoV4pKY1cTx6Zm+9zJ8trLHlSoojOs9Ya7EFLhcZhkIK81ht/9J1+tPbjIOt+J0QQXnxIlENpfMGlSims1XjpkpFJZ5xmoRVMYEv//uB96+e+Dx+SKJ31c7yLXlX60KtVq6bSfbi9uUXEp1S0Jem4pSs0Sx87JRr43G9fToeuL0OWf60zyQxnxqTYZS8tq0Ni/P2RwursXXtRRUs19UsNFhQAT0vuvpuh5UaGJvQXBiSs0Vq20sCJQrsKBw7K79zT/nA19rW0rJ7TXL5uYajQwQ67/22UoB4650LgmrCtYorAXvTXMnqHTeYZRt4infQmoUlIhvdreaijdK7EGNTEcM4iC2ag+EHqWIafUJl0K6HwaMcRhtOT1fpOt2qiEnRqzWHIR5AQxKS5CS73cSyDRfCTejCP9BuLpeS2CiN/JYqWRJAHZC89JKU2Lm9Py8BVV576lFOJSUyG7o6G3FaY3TwietSjjwAvfKxKQUgS2tlU3Bdx3j2NP1nVD8zhNTc1cT2Fhob+iMDU7CJ5OMspWWadYLVeOnXrH/OI9am62v0nItyfxFMhDyTE0zOS0YJZkjmUrJPd71UBU5FgoKpy3OdvT9SK2J0+mZ3/3dX/P2hz9hnObmds/NzQ2+t2iriHnBqjZBVIpS02YVrZVFlwhK0+tCTWcsbUDhLJaKV4pOG1znWKKCZDHdyGWJTEtAGZlslsYPtta07e3TFOnVRlu6rPVaXuWfn1Oq2Iop0VfZhpYYYSAomY5uAtJG/TBa6DGK3OgZlVIkHVqhcNbQ9wNKpQ15yLkQV4e6lIRCUjI5iw6itsmxYl03JSvHOktuSet8snZ+7iz16e8/p1OtH8Cm16hr2/Zym03jgCQbi31mIcXEakGJkj9lACZ0hhfPe9GwrAJIY5ubYWpBmjR0XTfXn1ogv9ClXvYfMRMmvegDV7TiWvf36eCqfvI4L+cDm75AhLIZbdaGNYNybe+jUTsKOQehrLLSrUprUmUAlLOE753PM8enC8ZYliXyww8fWCax+BXB+M/ziCludrVaqRaEq7egQUnglr3ZtGk9tU3payM+Vmk0tma2WaIWRdMqKVkvsnD2i9KgswiyFWKD7ozQfYvsUUYXbKf4+vUrvnv3HmtfhpJFNfoT4tKmWkNdVN0sdsURLaB0aoygRtkCpmlhGCK1OeJNITBHSQ/3qojPXTtvNYKSKg26MxjtW8p2xhgl44yaZP9B6hhjxYa+osi5IQIlM00T2ojGIdfmsKbFkCKmCBoqMmQ22oCxWOvpOhlwCgIYNo1oyXmjt13XaGtjHkL4rAa7RgvlutDtO1VIrWTa7VgHuUpT1Et2znpfcX8TFzpaeGmrIIU1EIVFMIzDFoyrlRTjQvUG2gC8lsqyRJxfmCZBQzrnmOeZ6XwmhYDzvtUiUUwDuKJelkImE1pwZyqy/q76W4AQYnNubUL5WliNR3JKhDATYnihLV3VC8baxmaRdaFWcUHztrkSyidJLYkUM+fTxP4wo7WlN17ocFnWpKoqqSZizqQizn6dswz+p7UPP7nJuLm/I9cG+RRYlsg0LTw/HYmxtAZELsD3D888Pp/48OEDfTeSc2WaF/7v/89/w8enE+dpaTy6deFWGzVETmCzFfJKvXBbrwPwUGw2oevvQogYI11WCMsGb6/8uGur0PX4vMmQ87FsFB45BdeNcUVNCkq9TOrev3+/bTDTNFGTCJ1mNaOt2TpVrTW3d3f4rqMqhfcW3xyphNblm5jbczw+CkeyZLTSOKPR1vD08IxfPayvxOzA5m5Va+V0ljAc6yxd71uTIUKkEGRKIYv16lGfySXhnKL3jsFDKTPeWelw+xGFQWMxSJFjrGy6u9d3TZDctjpVG5WIthk4bGT7/JQy1KKZpkhFqAXjbsebr74CFKfTmVpmlHE40+P3A1XLxn48fiBMmXF34OZmx8fTB8buwDCOKGNQpbYLMDDuxRc+zZGQL3z7xVccxh0GzcP5Ad3BN+Mbbu5fY1XP8XLh+3c/kMn43uJGz3k6Ycn0HXzzxYDXGYUnZ8kgMa0pzFVB0c1mD3KJm2WeM4bbvWbs9+wHx/uHZz4+Hvnj9+/58PDA2+8TucLh/tC49itdr8HZ2/mpeHE0+nkeuRQwFoWBoqToJ1NyoLeZOWVSCdS8kEOhZk+pe7qhb4WY2KaOhzv2uzs6P3I+n/nuj7/nX/0//juCzezGHa7z7PY7/OAwTlPVSAozNUvGQ0yB1MT4ysjAQpGx1Fa0IoVFnfC1WapajTcLWM19t6e7ecPD8czT6cJ48Pzw4cRlSmgl/F2UIKtbfo1SVCXGDqpWVOPeAlIcU7fCc5tktsC7y+V8ZenqoUYqpTX2rUlR0kykKvz7mBZSrqSQmCeZ+A/9js73TNOL9fWLDXYkhIWcEzEuWKtJyTUhbN0onK3SkGTtJFTUcRw3DvK1Ix+8uPZ93ni8aNBegkK39VnxUjy0P7UWbvput5PgrIbS1jYxXdf78/EklFKlKFU427k2Fz9maorElIWuYGRA5oceokLlSExhew1CxVBCn2k0KOuEUrAgt1vX4Gvb2+tmw1pLCOHPmKZI4VlVQ/KTuP2hCyZVrF1Q3jSag2lD7ZXXLwMaaiHFKkMrmr6gAEvhnGb+6j/+gc57Ysq8++E9zsnA44Uh8PM7XBuKSZaMas5hsu7HeXlp4njRTwKokoVy3RrUFKOcs0kKTGFWNGdMJVrGDocuDk1FjR4QJ7SqCmb05EuizAmfDaenH9BdZHi14/HhB47Pj6QUGfqBaa6UGKE2nakS2nFqNMtWuWJazkdpU9gKpJz5+PGjNJq1MPgOpRDzAj9gSqRWKZBTSljjm0NWFk1so9nWu71c40vgdD7zdFo4z4mYMr6T4rNUCQ1eYtx0Gha5lqiQ4iLNkJPh8X5cEYzE80WSvTvfMY4dx+OpGUlIvSEFb3OuvGoy1sl914mOFtiulRckgyuEUyz+pcYon9hsty++zSkKYJres3K4uWG3u6HrRmqFaZpbnIHoVXIuaK149eqep6cncsk8Pj+z298wL4ElRLwfyFmGpTllHh8/EONCSkEMaUKg5MR0OaNqwVjLYb9jFfSXxnwB2eXneaLvd4I2h8CrV6+2gfuyiE0zquJ7R5pnGawXhWhdAzEuxOaGpZrDoO87doc9h8MdzvfMcxRa2HSm9B0hR2LJGO+hCH3z+fGCc8/EWLhBMU8zqdnxn6eZ0/lMrbAf97y+uWPoOobO8VOOn7zS/J/+L/8D03zhfD7zpz+9I8ba0rszj0/PnM4T09ROwIYcHE9nUhJpr9aio4gpkfLaka4iRr0hBXCd7Kg32pBzjnEcuVwuIu7SmtCoRLVWQghbhPw1TH0dCrP+XP/7ev8XDnFzP1qxp7ZYqVb75VRYlvDJRpJz3tyhtNJgpZtES+GA0RgMWllCTtjquLu753Q6yWa1zJSSMNaigI8fP7SmKG/ow7JIym039GJt1177KiTMOXM4HGQy2U6+dWqacyKEpU3bVbtNam5UehOxe2W4TGfQGu003WAZenGi8EajbYdR0mRQ1nRmjbZOgv3aJyZZKALzLjFguwFbYQD2IXA6nXl6OhHrB5n2e8vt/YH7+zvmlmx79+0O74eW2rvnPM3kAr7rUNoy9CO78YZqHCEaYpqoKWJsJ/BulmAc5x1d50nzTAgXZi1cx3/yF7/i1d0db2737MY9x+eZ4+XE/vWeb8eviTVivOb77/+IKhFvMnp+xnklU0Dvt5yWnCRx/MWrHVbxVgWslvPZAvbGsOtveH3XMwwa9ds/8eEh8PB84eljxHmL8w5vPcMw0nc9wzBQSmGaJk6nn68rDIB3iawURSlijSxzEZcOUzG64jQUo5hzamI7oWRqbWX6flsJp0rn9nR+jzM9Tx9/x/PTe8zo2O1Gdocdw80O17sWcgbWd3jfkUJkviw473BVaE6lyiQRoDYkT2h8gZyiUAmUoe8d5ImaK7YAz4FDrfSDCC77Vx25jJTaCTJZMlMIWFWYYyCmTCri81RYp9zyI2iF5OhU1uBStjVRBL6SdjyOI/N0EUOIredsyJcSMfhayE7TzHxZOD9P3Bzu0cqQUuV8frpqLGam+SLrZC503nN/d8e4GzmfL1xKFgSq8fhfAtDEWpvPaFIppU0j9oKUvNCOrl2WXrJH4GXqKP8Vo0wTV4S4FLGCXOaFm8PhZcKZFfOyoICbmxucdQyjpPl+fHqWwYcWPrWI0vVmBiGOf3pDjmujPpYixb4g1y/7RUqVUmMbgKlt/b8uioCtuVhfY9+L+0wIoaEf8j6dUbx+fUeMiY8f5TupWc6TeWo2qq5SqjhQqUadUkpvdDIxB6nkHJnnhZDODF1H33nO54laLy1jxHD3xRtuDjsO+/F/zcv8f9VDq5eQRq00OcpaW3KhIIW1tY5h12/FqXVrxoI8xue5UhUZ5nnnhEZbBQGcapDzQCv0Am5vqKqQ57MgBL2mGMX5ckZPFf0E+QfHP/nlG2oIPH944PgYWOZlC+nr2t4hlDzRdaCkmYiteTRNFEyjkqdSOE8T2jnGN4W8JGqE0Y1wftzqAZs1lEzRBeOMPI+uFAXP88zT8czz+cLH48KSFUl5TO8JK/qTM5fLtKF+ekNSJV+sVHEoKylRnOfDu/c4Zxn6gd1O7MhTjPzw9j3nSWhTfT+KFgzE/bGWrVlec2Uk38Tz/Pz8iZZpG0hQmn20Rrem+1p3u153YrjQmDBOlDWlGQHM08Tj4xOlKr7+5k40UctCnhOlJFAy7Hh4/MiyLKJ1da4NiSWzSnJshG1BLTw9XzAahn7gcjlJfkhsWSCquXQ2xsMaSng6nZqzVrMUz+mTdXJdJ1YKvNGa/ThwWkIbIhTOy7QZFtTaQo3RGOtlaNHop8syM09TQ7EzIZwJSfSrrhuwbZijVCbMlRMzpWhCDNJo5sLd6y/45S9/jTGOeZowVdBw6/6Bm4z/2//wbwlhYZ4XHh6eJAOgQdrHyySd3pJakSUb9hICOVWs1nincca8FPBtg1UrzKsaNxeBcdYFBF4g9q2Yb04i8MKVfVm85fafhwdei72vN43rP1fh0I9g/rZ5r6SG3IrztaHZoPG2Sa4XprjhrI8hDVXXdXTD0KaSmlLWJkHoENf0LnnMSoqBmhOlyImac5JJR3PzWjUtMmF7CQ0Umlfa6D+lRNYgqG0qaVQ7uVWbhBYqKyHYixuW94y7kWG8lamakrAzpZqV5e6GqsxWdGtjWziWpaIISQSdsklHzucLh+dn+t331BrRutB3ZitWhl2PvR2bbZ9HaYstHbqC9SKCt07hOs2r+x3Px4XLlBh7mRAJ51hoMtYKx1o5QymJnAJu7Bmcprcaq9aSpoIp+L3lfn9HVRXjDKhMDhMqTaj5AaMykgkjm/vqApVIlPxSDK4nzupLpBUIvVqB1hjjyeUOheHV/Ynv3z3x8HyiNo591VWaFx2JzcL5cxTu53iIy3VE5Uxt9oNF+AoYJ1ki1XfScFfh56ccUFnsf6zrKbrQuR2932O0Yl4mpjChnOZwd2Ace/reSzO4av9qRSmL1hIUKYOlDLVIfsk6XVptVFOkxOb0Ul+cYARckuuqZITuptdJu6XoSsUIClAqplb8qwOns4iNszIsS2oaLUh5bSZW+9aCQjZTpV6m+KU53kHFe0eKBmpu70Gm+ayFSxWEJudCXJLYPCcJGJQJtuZ0ujDPYkcoQ4mANZZ+kOK87/tter4KKang28Sc9hx911G9Z170Nq1fN//rRuJ6jf3kfKgrBbChdI2euu4E18OgZVlaUKKIfNfBjiAOK2e6NnRmoYJ43itpUrVWLQlcChpBquWaTVk+FwkDlO+VsqIsjWZVKqWoZnn6qYh9e2/t9ZtWTKLUJ8Mv09yGNGK367SidxYDeO+YZ7H/rFRyGxbVWilm1Q0aKWDMp3Sn2Kby8zIR4kTJ4iSVYhR7cWfZjSOH/Z6bw4HDYff/y2X8/9dD65d1d6PTtUZ1HfQJvSw3FGNt6qSxW7+L6+JUEGktotjmTFRqpWgl1BsyGI3SL98xJYnbWqeEfqwzJU2Ex/f0eA5eczM4nq3BaUPUhmKNRGS2waDR6kXbVyQ9WwGqhduiWyNSaytIpU4a+p6h71sBC+uwwlQjIl1yM1hRLDEzLZGn88TTtHBaEguGiAxCzRqwWRIxF5ZG4VmF2rRGLDc9q0XW7EIiJMl4MK3xs80M53y+bJqLlBJLE4annBpaozf60mqgE9dBndZkrcQZr30/Kc2N3iaFu0QBrGnuL3qp1ahhQ0BLpZZmqIGkoK+GOs45UgyUkvFOUKrKavUqeg+lVs2UsBaWeaa4jGnPX0tt3x2bTlaGL+aFtp8zrhMzmrVxWe17ta3k9DJ0h5eht7EWm4WiumamiXtXbg1fbui30KSMNbjO4r2l1sKyzDjTsQrOqZWu614a2oYEK6rQkItQ3JRewFb6vsN3HW++eMNuf4dShrMTRMUq9aM16D91/OQm47/+b/6VbMwotF6LUfGjLkqY1VUZwaWXpfGOmqh2c2CpbLg468UvaaxU0wq3RsrRBqOU0BvatCgsga7vmmXaS0ifUuISMAzDZkk7juOPOtx1euGc+1FzsSIZa1pkbbxGaBC1evHLf5nktRyK5hKglNik6RbxvgKeq9BVKcW4kzCd6ynXdeOjtWY37piXpZ0YmTjPrUgCbcy2mWttNkrXeoEnrduEwF5Nama6riOEwDzPUtg1GA4gxiC0jmbxJmROTzUDxXh0N7K7f8MXb74Wm0TlmC4n0Arne1598TUYv3X6VMW42zGMO7p+z/mysITIskRyDszLhcv5yO33f890eSTMZ8LyTEgTRVX2t3vGw0hFkzNczgHdOVQVgWwMU0spTdzeduQcqDkzOgkSA5lappY+r5XC4ZrDg6bvLLYmTI7onKlJGh3rFd2NZd+/Epcaa9nf7JlPz8ynjywPiRrFQk4WHTmHjTFSyJVCSRlj2J5XPme2xVErEfoaZ+mHV3z99bc8Hxf++KcP/Nt//1ecppklJkrOLPNMDJFpnrfG8zr86+d4zCh0XNCpoAffeKGVXLPA/NqivKHzkqZalSLEiRotRju07rGq0PkDQ3+gljPTcmKKE9pr7l/f0XuH1+CtboMQadiUFcc16zwplbZ5I81I0zuAxeI2ZIOcxHGo2cgIDUq+h6xMozBUSk4oFZs+J6JrJ6GBFna3b/jo4XRWKOd4eDqzhEoslXOpDWFsqdY1Ny5+45fXF9OJXDK5ZHrvidZA1aQcKVlthc+LgUYmxURcIikIEpFywXuZ8uacmKYLSxAUlQpjN3J7e8/usG/pw2WjZa6mH6JTKpuV+TActqZineqXUj5BNa6tXDdRu3px06JlY3BFod0Q56v3lGKiNqqC1volmRhw3gtaXgrTMrPEAPUZ2/XCTQZ0pTVahn7oyS2sTVFaiNhqVd74ylUcura9oVTgxdnvc52FaGPkeaw2dF1PRVD29f3IkKhI0rLWdKbi23qwGwbOp2n7DHOK4uSTxNJ85b0XYzHVNqrrSyjsEhbm+UJMgXleAEXNlbH37Kxhv99xOOyl0dj/NNHmP8bDaP2SVFLr9o2pRuFb6VEhzE2v8bLfb3lTV+upzH3Wc5i2P8q64ZwhUyg1YZxrNEahpuQQ0V6hvSMPFm0KJU9MjxdUd8OoMm/Gno99z5IbM8EtLI1aXpTGak1u9KFc0srXRhuNazTFojIxZsm5qaIPke9xhyLJxlI1tShsddQo3PlUIkkZzkvi8TTz8enIKRTmBMl0LfxOi8NbkrDA2FgOmxNXoyJuTI9ShKKoNLnlJNRSCDqQQrwykJmbLtVuTJOVIth1vt1Ocr5SEqrQ6XTCaN2oS6mZTPjWtAQZJuiGTBv9IxdRpRSd94QYtmsxhtjQoheqklKQU6TrO1CKmBN7NzZ6qwxxXJW9whgnZhlaY63i6enMsogT6u3hFqM0OUuuTW25LcrIZ5pTpmZZW93ByTqkNf0wyqC81c2XywVdRfe3Da21pmuDnhwjYZlJKRJbkyESA/mGtBbTHd85+rFn3A3Ukpmnie7Qb4NOBex3B9EIVTjlpunLhbAkQNAapRXDTcf9/S2vv3zD/auvQHXkLOfLuWSh++p/4CYj6xZCVCHml2ZhLZ4Kwimsqgn2tMZaT+8dphZKjuQqkFlBU1RT0bDa4+qVSodRBqM0VmmcedEsoFq4SZWxhXNuc3RyzUVlg9WnqT22Zr/fb8X82sGu9z2dTtvv105yvaDkvenN3xpaXa612C4qTdEi6HHWCe0rF5R7EShOyyKLCND1PW/f/sAwHPn6q6+29xVCwBizUZ+s67jtO2opxGXhcjoxXc7EsDD0Yi3nGy9zFZ7HGPBu9eTWWNfhu36zISslE8LM8/Mj3o90nQi3b24ODEPHPE88PT0SU8A5Tz/sKabncakka+hCx3/xy/+cm7tXDMMBq52gUEqhtRUrzqZPkMKhNVgFXF/IRfh9z8cn7HLBdSeOl4lLCMz5wumyUEskl0DIgacpsDq4UDUoQ0qF49OJznZQHINPhHDmfDm10LU21VKGUhzGHdA4QCBu1xl8B5WAUZXOWsZuZLlMXMKZpV748ldvsK5DG4fSjm+HHdRCjgsfvvs7Ht9/x+npA8ent1jTps5FkjBLEU6vs277Llfa3Wq3t/r3qwIxzKgS2Dv4y292HLp/xuNp5uk48fbDkSVmYsosIRIIjc7x89Zk/B//6k+86Tyve88XJTL0Gm+gNwkVNauDmh8GQlgQ8XHGRI93jsGN9K93jM4SLo/81d/+W/7Hv/o3THHim199zaEfJMmXFlZXBTXIVYMS6pNxhoKRSVAVfYZrhUZVUmAY4yX0LItWqbSiPeUEaIobRTtGptZEzEtrWhSoCeVabkHXc/zw97hSufMK22nufUeuPakaTlGRiiFVg4qZj08PYgfZ1qdSG+2uFpZlEvjbesGArafrHJfpUXzyq2hdYoqtwQhMl5mcK852WGM5n88yVKBgrMYVQ4hZmhEv8HvOWSzHteHm9p7L5URu9uCK1SLcMo7j1ih0XS+bZqOgnU6nbZhyPp+3ZqW2ySbI2mrbuv25beWnRha6rcUrEmGYGgXgfD7TdR3DMLTQ0cplmcVFxlr6ZkYhAwbRmznn2d8cWC5H8BbvbmR6acQOV7JyckPEHRDbO1+L0pdmBBo1yhh0mwyadg6HaW50JvVJo5JLwVRZX/pe8eZmxzh0/JNfWP7b4wx1lkIvZ5YSUCptdvHVSuKuFBnS2FwuF2KScFUZGCHflZJCLNXCNE+8+/A9vjM8Pz80kfTP81BVaNor2u+dWOVro7BGbeijoPp2o/LBi/HL5wYwwmKQBtZYj9IyPMgBTLaYWqi5wggGS5ctcRYKb8qR2UXKmsFSCvHxgfB4JpzOdMPIqDXVOsoyEZco4XmmoSdtH58XcVbSipaKXa/Qr4x2lmKEJv7H73+AOHH3zYDXonso1aKTxZQOqlgYP81n3j+d+OP7R94eFxKS8ZGLIi1BMj4oLJeJsATJ0mrFLupFG0GV688ZB6USl7B9dgDn5yOuc9vsuO8H+n5oVCizDT0vlzNd4/KXkvj4cBLGSgXnDPthzzxpjgShp5c1L6jtm013IHQuoWOi4OZwyzgMdE1sHVMixMhig9gCZ0kfN1rJsA94+PjA5XJmmhacOWGsXLdPzxepXXvH2A3c3NzwfHzm8emJlAJ91yEgeWboPZdL5Hy80O8Mucq51/mBcRSNrTWO+9evKUCm8GbY0Q8DSmmmaebp+VksfVEsITDsb9oAOUno4eXEPJ2bK5mEJqaYQLfhslU47+j7ntvDgS/fvMbZEWd7xv7A+TKxLAvzPMk+UiMay83tPaoijnshEZc22KPw6tU9N3d3DOMetCXlSs4VZZ3UIXml/v4vHz+5yfBOU/PqxsIWeGRbUFYuwmNORXghVWmqsox9L9PAJUvyIxs/5YWitG0mDco0tv1IEbt6RSutyCvqwIvrwLXOAviks10bhzUrY57nT6Zrn0Pe6+Nci8xXEZgkiDfKyjp1A1YbXa1kotg1SlcFQhHedAt3Fau69pwxRpZl2SZd6+Zg7EzfSRNRc2rTlcb9L4WhuVFprQjLQoiREBLny4R1TkK0ug7bGqBaSivCV3pa3TiNtUpGxrLM7f2Jm1LKgSUasTqbIvbhxF//7o98MUVevam8efWF6G+UEe/21mAINS2uwLQsLhmB90qk7wxaObTy7Pe3nI5PHNWR51PAGClkSnXEuEKDws33XU+Omcv5wlIjJUKOVcRM7XVDlQAvo+mGsbkWWWoxxEtkMZYy7Pji5g7vpXntfE8MkePxxOP5I8/lmeFwwHfIxFcpjO0lAOlLUG5Pt3+g290TpkdiOBHnJ2oKrPzfKv02tfKJwFI1ipWqa7KsphgwBqxVfPnFjtvbgWk+MHSWt++fOV0WtOqYY9wCFH/Ox7/6wwdeD567znNrjnx195p97zj4yl985XFaRLZ+GMg1i/i7FGqUCb9SBYOizIFlnvibv/krlFEcxgO7YaTvBtFhUCnMkDUqV0ybHipdGzdfxKK6Ja2iZE2ppaKKAgwoizEObQrVFrRuNqfKgDJ4pchpIcVKrsLjFrTKCDJYE7pEal4wVTZIlQvkAu15RjxJy7Ci6/d4vSeUEbPf8/2793L+K9EcrHQP2ZClqM9ERO1TUBRKQjjZOXE5X7hcJqz17MeBaZoJYSGERaxfQ9uAk7jwVCDEiF4W9v6A73yjOQjX1xmL9/2mtbi2ZF0Fm+swpzRO9TrQWY9PaFMN5ldFfbKWrwgxsCHItunLrukt1/QIKYQqxoml5ZrdEWJEXxlkyHRQscwXSV7eXAFLo0AJArEsMzmDFor71iwodb1vKapdJ+myL9ICRrXWG300pYQ2uoUedpzPM6VUYgzMWqifu71nHEb+i3/+K757+8C7j8+c5osg6rxQKK6F8CnFNpTS0nDiQe05Hc8NfZNTJkYxKyk1Y75/u4W6/VwPOb9aU6plgKbauZHXRrd9TitasTYatdaNlpNz2hgCQrVq1Fq10voqphtRRgaslUxOL6+BrCEXVCx0XmH3lqJB18SQNYfiuTMDHwmQBf2LFZTVWC2oxEriqs0kZWVRrPqn1Ta/VI3rOrpOptvjsGO329ONIyV+QNeCqwpyoixZ7FDLxB/fv+dxDpyXAlqcP2OKpCVtIuXSEr/XawAaPbM0e39kL2dFIq8GXbrZWVtvt0R1rRTjuKPvh8byAO8tOVvEkCJulPKus6QlooBXhx5FpjMd3h4a+loJKfN0DO26MnjbEUJmZd13XY8zwnyxRtwiU84ShmitXOMpMZ+n7bxflrkRa+QbsM4xjnuMsRyPp+1zXpaF77//XpDCZUFTsFo0CV3nOJ3lNRir2e0PrbZTpJCwpln+axnkaCf7SS5SsGst3/Xt7S3LNHE6Hun6sVFdBYmIy0JOYkSy6b6QdUmcpFSzbdYY4+i6EWdFf+htj3U9xmSMrThfGQah63ddT6HpdeeZi30mLhK2vcyZaQ50U8T6QMoXUhbXsbC+nprRP3He+dPdpUbPavPmtaLzMinyXpqNVKRznJZMKIpUFEtaPceb1Sey+G8s+KsmY7ugjEHblq5opMOtjSOrjRGxS7PWurYIfHEhUD9qMlaYdHUxWDfI60bj89dyna+xPn4puYFOn3KLV8FUZjURVNgm/E4hS10g5FHp7BscuPJoJZlcXGRqgVwm0m7EarXZQlbYrBiNdXR9j20aF7UsDSlI1JYD0Fknjii1ymdfaEWQIEamTSMVmnm+EGJoC0ptjYbAphhLjQl1vPC7P/yBKUZCrfS7PTsjU5gUI7XQPKg983LZaD2d77dNvJSMsxIMRXXc7G94Hm/x/ihBfUUuGqMcyxxaoxFwNgvsmkV8VgtcLhdyyhyPzzgntrRKQ8qTuF45GlRpUcWQY0VlRzCGGBfhKbfXG1Pmcj7z9PTIkSN0FpzBqEqutYn5O4abNyjT0Y23+P7A8eGPzKeP5JQhztLUtK9slauplSu1/katnu2SC7KiE7VWus5TqyY2y9FaEt4Zpqh4eL4QsyBCP+fj7x4vfJwCe2cYi+LbYLkdOu46xe7gGLuOzjgOnUNZh84FShSxIc1RxIgV4jLNfHz4wO7NjvFmzziM+G5ACZTBkgRpkmYzC0NZNQFwlqTkohU5h6YHkA1H0IjGf7fCYaUWlLZUKx7toPBk4iKCRF0rRgmSYbUhkRvbtaKrWEzqqqglUrJoUkyueNdjlKYqzeh6/N5QlMfsd5xPT6SsJRG2UZrEelHjbSfDnKRQOGoNgraEJK45y9JQi4TRHmMt8/OJZZkJcWZpQm/RoStsS50NIWC93+iiISUqqk3M7CeIK7w0FSEEoaG2UL1tun9V3K23vTbiUIpP1vHrgRM0+qwWWomsuS/rl26PvxaSuRS5XamgFdq2QDpAF42OsdGrKrG5D65NwIZmK3GwyjkBst62EwBBB9h0e6WJZWXNQow+ylY2tmn66kaoMF6otSEIpTcXsYU0FvrecnPo+M/+4ksJZSuV5X0glfLJGvEyic+kJA5jw9CjtFD8tLGERagvUpBIen3KhVwStTxgG/Xq53rkxi8HpD4omdLS7VX9FAW7HkKuFKmXfxO3JqBRWuVcq81SW9WKtgalpYkvKHRhQz1U1aiUUSXjskL10q3oWvFFs1eOO93RlYBpFmdFabS1oodcs7jauaSVbs8iL2h12bTGig277+j6ToZuzkoYpeuYtQcVMbpCTdScSEvkeLnww/snTrkSracg126YI3kWvU/OUSiX9Xqv+hTxsY0WqhqLZNV/yTVaxJ2t983FSdyxhmGk63rJ2FErDVuoSMsyU7XGWE3XGVTL9rnZO0qqRGtxbtiajCUm5uXEmo3hXU9KExVBOMZhwCojwUtV9nWljXxfzjcUOhLm0FK2FTEGtLG0LPiWpSUB0/McNhrmsiw8Pj7yostrVGgNNDG6Moqu77g53IgxjVI8PTyjkSEvVRFSxhsjTodVBswoEX7v9zsZIOfMrluTwiVH5JoetVL512HmyrAxrW62xuF9L5pY6/G+p+9Gpllo4dpmMQ4yzYa7yLpdcxEzJSXXUoyFy2XBdTPadsRkKEWMm5Z5wpCxCGvppxw/ucn4r/75L9ntDoz9KF67NWO05CiMux1FQUiZP/7wnr/93fe8+3jkMgUeLxeMAm8Evq1tg74eyK4Fu3WObhCBzCo8jCEQS6GoQqctWgl/MKWE9/6TxXJuQS7rJrVuaquo6JorvF5E2/TgakL0+c/6mMKjq1tHf71hrv7ylMrZOoZxoB9HrNaohsjMy8KXr15jjeHD+/f0XS9JnTEKn7TxE79/+z053aKVIoWF3W5kHY/HlNBNoLnb70BrUirMS2C/P7AkcUKotTLNF7GabVze1c1LHL0kZ2AYDqQkqcYpFfZ73wTPQndaOZZQ+P0ffsfDw3t+ePcdxhS+/uZrnHX88Q/f8fx4Yr/b883X3/D09MDDxweOpyPWWHb7PTc3t3zz9bftsRy1KL78cqRWg9GODx8/8vT0HmrFmY6Px4dWFMI0TzjtsNZwe7Pj7u6G6TLz8eMDHx8eGPqRfhikyHQ96MI8T1yWB5zpGLodv/rVX9Cpnhorv/u7v+Hb119wf/Maaz0hVI6nI+8/vmd2AbsbsV3P3inEHTEQ54i1HfvbO+rhlt3NPfubO86P73n0Bx6+h5InKAHIaC0biRQYshhqI1M2rcC082mdGpWSyUUQIG/gl98O/OLbf8ISNR8eEv/+r/7Aw+OZ59P0Uy/Zf5THsDsw5cAlZgZr+e7tB2zV7A38+7ff8esvX/ObL7/g68PIm97TDZZcZ8JcIEVsTIw7j3Iaf8j8+te/xt50dLuBm9t7FuXBWZRTqMeIKQFTIlZlonJo02P8XqbU1VFthmRRpTQffahao7RHux7XH8RooRZZzHd7SkkspyfCMlF1h/YW52rbjIXmKUm+Aumji1BplCKbuiGbWgWMnYm1knJhOT3RmRGlPNPDA1/tLGiHMZ7X/R1ZaQqaJWSojlwMVltyODEtC9P5zPH5wmW6cJnOPD0+cHvzBms7zueJaZ5YlokYFwmeSvJClLIkncnzzBIjt6/uOV0uHE8naq0MnUfXSpgnCfRr/ObrbKDrpsAZy+7uFSHFbXgBbOvkWuxtbkxt7mStYc0TeikMRWvmzGpT+aLzW29njJYg0pwxTppAQTN7UmhawFI4HZ/RRjEMgwxprAHE2Waapk2v4aqj816a0BLbYCpvr03rVswWyUQyxjJ0DoUSB7GcucwXrPNoY+h6z+kkCdDUwtBZlMrUqvGdwnUK10HXV770I8PwC77+4p7//v9V+Ph8Yg4v9utrU1SKNNzWaQ43HVp3MvVdIrvdnmUJpJQ57G94enpkbpPbac5oU37WTYaYCQjlJZcAShoBpT7VRy7Lgveeruu2AeOKaszztE3yc5KCTyFNR8lJnIxyoU4nYlkopoBxqK7DloKfZtTgWZ4y5RQJRoIU66BRvcKYyl4panWMU+RGWXI/EJaJkHWzIs040+iCkSvXJdlzx3HXKIiVzijGYWAcdvRdx+PHd+yYSIevqEpLvkeNaFvBQVnE9fPxEpi1RXvP0/HEMi2kEOhaEGkuhaUWnLJcw+TXiKNqFCNYLaMBrai6oGzFecPt7R2Xy4TWYkXbdyPDIFbJKS2cp2dyEsekXISiqmLlsN9zv+twWmGNUN/npVLPAaU8ndL02bHEjn7YoY2D6rhMC0oZfDdwc3PPdDyxzIGcK3OIGOtwnWe/2wvClQWtGbsO1aibndEYVbBGUMhlnkgmsd/v2e0k3Pd8Pl8FOINxhloS0+XE09NHcq70w8Cb13f84quvsH6gVFDFtfOr6XxVJuYAsXD/6ks+fPjAEgJdP6CnmZQLfd+zH3tSdkTvoCSOOVKTliwzBSvxxijbGmONroqb3UH0FrYHLF2/4+7uNV988Uvy735HearkEnl8+kBYogyTTMeyROKSMNoyDDtytqQceH54plZNKZrbW9FOlpxJy0IhUnUVE5efcPzkJuN//1/9C6zxW+y4RjyFtdHEWjleLpwuM8/HZ06XM9M0k1Jt/NTm0LJOq66mV2u7YYzBO0ffddAmZ0Zr7DA2DnELRLniYq5C788F3CACxRXWn+cZ59zWeFy79KyNxzoRu/Z4XxsQWKccwu0v+QUZ2ehUeg3eW5MXm6d6tcQsKM/j0xOUKomXTZwuH0jl9PyEdY5aQdUkQtK2WM7TRCkF5zu63YFUBEK88x1PxzOPz0dO5wv9MHC+yGY2jiPTZaKWjDWWp4cH5jATkzQ0cvLLZ3Z3d0s/ePzJ4HuZ5FnnMaaJrXMlqYwqlfPpxDJP/PfTzLff/pLXb77gzRdf8ep1j3eeXDLTZeJ0PnE8SpMhzYolpgXoQGms79HK8Or1lxjrKVTev/8T0/nEdD7z/kMn07gsjaA1Vs6lujBdTpRaOBw8St+glSAyKc9Upel6x+7mBjsfMcrgrSOlCatF77Pb9Sglj9uPO+YcuLm75Rv/DbGr2KGn6wa861pRBbUquu7Fz18bxeHVPYfbPV9++zXPv/gFDx/+xPPHtxyf3qFKpJaEaptYShLsZfQ6hZDzpeS1fxS4a1UmaS2on1UVdQf/9Dd7Hu8MT88/X397gOl8kU3LaHEws5VUC08olvPM93/4nn/37iO/efMVXw8dX46ef/ZqT9aZXHty6fF+AFtQpuP+l79ADxbT9ejuhsPNHUVVSl4oy4XYFkTdae7uXuH3t/S3dzz84a/JaaZmmRqRMioXdKnMsWC6Ab+7wR/uJZOhFIbbV1RdCcuEUh3JnAjzTKwB0w30u52sEUuUkE0rhc1Zf8BUmTrVznAKzyzxwrIceXh+JK5UhaQw5YKqE1EpLjnhvBMveuswLV17N44scSIXybA5nSZivIjF+LRwPE2EENnv79ntbjDGIiYnwuUNS6QkqLnV96ayhpspY5jmmRAjSsEXr99wej6Kw10RwbL3Hbatr8BGb+q6rp3TWdCEAqqIS866Tq7r5nqsf8+ZzUxk1VbJ5K6ZbTT0WNESzotDNbtf3ZxetFYs84TzHVQpHEIS5xtrLLvDgZwzp/OZyzRtQyZrRV8itFGhr8YYJEQri45Cgv2aEL2hGs7JRp9LYV4EoVqRemU2wItSC867NviZMdaSslA8Y84scSYlD2h611OHQr6B33zzCq0Vx8tCLGuoY6Oj1YTzCu9FTB5TJobI+TyxLLFpZnYcDgfGcRBh7fm55aDkT/bAn9shZUS9orC9NLhrTtS6rwMN9VkbYqHhxhhkeFDWCfX1YFLEzU5bvK64nCgxMimISRrJsCz4i6Dq1g8onYhGE1RhSQmPwnrFbu/4Nu9humCWgrm551wykUxUAZXgfDqRZzFnWalstVZphLUMLkJIeNc104ZM53qcs0Qkg6KWJHpYp3l6OPN4PPMQIq9/85dk7wnKEO17sjkSJy0uVacIFZJuheCqd+VFa2GMEa2CnMgoo+W6pOCcbxa0HUpp9vsbdNMBDcPQkPnCh4+PzMuZlOQzv7u/pe/3dJ2ls4F9V+ksGCODWFcSQ68aFbJQS6KzVZCOqnh8eMTalTpceDo+UZNopaxzdP2I8x7XdfziV79iCYHj8Qhas6Qo4vLOsYQZbTQ3NzcYo2WgrRJ76zifT3IeNARVqImC/Gqd6YeeV69fEVNi7HvuDgdGp5mmI9McG6oiYv4YF6qpkBUxadzRoyh03uI7j++65uQluq/5cuH5eOTx4QMpLKSwEOZJUNLWhKLrOpsRfcQSmE4T8MT5vJCzBuUJ8Q/M8yTDH++ZljO5QMVyPJ1lYF4rzvXE+UItgtaVZaGEQI2CglALpEJNWfLySET1D6zJeH27lzenzMYLW8/LNIkLzvky8Xy6MM8yTadtrLpBbevyvIrSjNGfNBnGmgZ1NTcnVsGP24r9pQm9V5rTNXQPL6jINRKxcjBX/cX1JnftZ/75wnvdYGz6jqrJvFC11gVNFinZ6Noa2DbKSoxp4/Q9Pz19ovd44QgubdNuxUgLBBTesrgVUGTqF9uEMKa0TfCkOAiEGCmN9jBNlxZdbzmdzkI30WxTubU5s9Zhc3PdsF58qLVYuK07ZSlC+UgtE+Ld23eUVLmcJ4y27PYHlFcYbXG+o5aW7aESznuWeeZyuTCMCmM81liZevQDh1r56qtvMUaLRqN75PXxKy7nR0I4oUj4zrcE9R6lxeITL1ahYKAqyWTRCt9Zeu9ADyLEVI2zrgpGW/qxE4qVtRhjyXVBG7GAO8cZ5SspZc5nOZdrFZGq9555mSml0HcdwzjizIDlBm8d2nq07ShKE6ZnUpyoy7kVTs1BBECtMG07ZxCIXlOES76em4gDWO8Kr+8cva8cxp+3KKPkLGGOWpHTWrIpajU8JzjnzFNcyObM6ZI4TZm9H3g17lB1oGaP1o6iM0pZ/Lin9hblOnA7THeg5ECKkWwGVNejDJQEbnyFH/ZoOzCM9+Q0S2FYKnlZULlglUbnivY9dthjhjumciSmTGclXVxbhR8Rfna2KJUYbu/Z3xxkWjotMhXXQh2waoepMgUsTuHqK6blxNPjW+KHI6fzwjQHclaY0nBe7TjHCW1mzueFL+9vsSqjdKGaQpoVS9LEajk+P3B8PvF8vLDEikLjXc9uHOn7gZIL8zSRYrO+LlWGB7U53wHr/wOSIptkjUtRrBNLQwxWB55VfGtMWzupm1hUJsKprd0WlxzOuobsvTjpfX7UWrciZ202yor0Vb3RXEzTPPjOY71j1WPJ+ZXIqdl4NnQKTTMiseLTX2SAswW6abm2xQFnfR0beEz7T+R6lbVZKVoelKRApyI0Km2buYMSxBhFywiom3Vm5cUaNyWhea1aR2sy3lV2g+LL1zvOc0BpwyWImDVn+T5ojmParA6K8jmFJtC3VoJeQbKFjDWkHDe6W87pR5//z+UoVBr9XyhLn9HtrgeJK61tpbCtVBOgUSJfHCo36jSN1q0MqIpa9U45kBPULL+zoaCK5F+hIa7cbiX0cKUFCX/zas/lYyBkRewc4AlUkvbkOTCbF3H69cCTSnPM8mgtSdpaW1baOkqhjGu0ryrGnjnzYZr5eJk5VcWr169R40hAiWGP77DzhM6ZZAx6uRDSDLHIUIAXyuJ6bMNgvVpFC/XJOrFjtc63bJp9K6wLEiorxhslJyQDqGK0uEsN48AweCyKoc90Vv4NWhq6UoRF7mNNZewsg5c8GKszQ28otenIwtIGCQZjnWhBOmkyvBPXS22ESiiTFakvU8rSpFsHlSYmF6e2sq417RrPOVFrphSpz7x3HG4OlFzYDR33Nzv2nSfHmYWAUYZYM7UkconkKxfB49PzZjlbc2YJUvtVJblG03RhulwI8ywDyhhZwvJZftv6HTUL/ZjQJmBCQLuOlEsLWX2S99LWQKpGKbNpxkSJIHoOlDgWrqNOXQqkhK6ZmrXsj+XKfOknriE/uckwWoQqqllwKkTwvMTM6Xzh4fGZd+8fef/hmWmOlLZZqhean3BYdd0mmaYV98KTNo3CY8X5Kacmwqx0TeQMiticmODFlnaF46+bhGve73qhrEff/KXX260XtWgjXu6zZVW0H+ea7WybKq3wdYxSqDhjxG9ZCX8u5URoqv5pnkkxcmx5HqsYcuU5r7a0SinGcaTm3E4OJQm3YWFeFuYwtYtd8fz8zLwsaGPY7294fHwAJamhp9OJ4/ORnDPeWglR8QZn3YbwrPaMKSdiiCwh0O8GQQaUuLAUtWYFtI4HRa1CP/vTn77j/fv3PD4+8M/+2b/g669/wZv7N3zx5kvev/tIWDK1RroucvEzHz5+4F5B31eUNigq2lk6Rl6/+RJjDYebG27u7tjtBx4+vuXp8QfCcsQ7EcsZNQIiIk85UhkwWhoWpQ25BOHo1syNH+Q1F2FHWqvpjGXvRw77A13XUZCiag4Lx/OZv/n+D3z7q1/RL5H37z8Kz1kbnPXc3d0xTSfmeabs99wd9jJ90gZvLL7fc7j/mn7/ig9vf8fp+R0hzHLNsArThS+u6vqaOsSbv5CLaHMqssGsgX6axN1Bc3voqfQ/9ZL9R3komjd3qSxTEPpe4x6H6nCdQ3WeP55nns6Jd8fEJTj+D/+7X3OwPZygatMeyaPtyGIsyvQYeyCXnnlaOB4XFkb2o8MWuHw8o0xPSoXLxw8chnuouQU8KabnE5TCOAwcrCcrQ1SGZDvOKnEuE/E8Yyp45xlu9pwvGT3s6LXm9TffcHN3I/aLSQL/1hCnN9/8Ba5qVKlMOfDmpuNyeUb93V/Bf/yOpw/PvH04EqtCaYc1jrHreZ4qy3Imhon/6l9q9j14Uzgf3/N0rpymwuMx8P3DR47nwDQVhlEsSvuuxzuHd5K8+/T4KAV2LkI5RdZl4dU25z1koruEIAMGNB8eHvDW0vcj+90ot01xc2yxTvzec0hixsFLAee6jo61ixGf+XJFYV3X709yiljXGRoKIEWL0Iskf0IZcVO5vbvj7v6Ox6cH5unS7LMhhoVgrWR/2GYP3NCU2hyenNVbQ7Oux9JwGLH1VIbcXG9YG436MqCqSMGVmypchOYSpOmclULYSlEUUhBnolVG0PYNKCw1U4pGKYs1HUYlOiev6Ze/ODBHcRt8/zRTFMzzwjRdiDW199Tox0pTUaRS2A17Ou+xxjFNE8MwiHVmJ5a/QvX9+TYZuYh9uzgzNZvytp8vy7Lty6u4eP13+W+h81yjcGthvaJxq8NSVYpUK1hFNpDDJNk5SqOcQseIqpIpVXSjWQHed9SoqGQ0lV98+5pzPjPFEwuVYnq8UiTVM6VnsV1tocPXDpdLWARpc46h71G+l31OiZA4FXDDjvjcNJ6p8OGy8PePJz4+X4hm4NvXbxjub6FzDLbnLgYuOVFT5PT9Wy5PT9inB56enyBmdPmMOt7QRWm6tJzj1gq6oUXL1fmOYRj54s0bYoxcLidKTS0nLWG9QVlxABt7jR97+qFjGHoGazn4iDcJoxLOaUIsLEvmh+kRrQydt3RmwBtp5A6DpesdISlChOcloGyPcQbfdewPB2msneUyTRKenIpQqWtCqatGvyBUoCJi+5wyT0+PrVnpGceBnASlRFWskcywm9tb7u7v8dZws+t4dTvgyWgmFEIpXZaE2N1nwpywugOjePfhHf3o8H1Hrorl6bnVGJb3Hx+YL2fJ4yhNS9KCprfvRQnldm2MjbatyRAE5f72jr7pys7ThWEYpX4uoLXHWDFAcW6RYWcRMxJhhFhqTQzO4gCdAqZkSq6oAhpHRUJbCf/AFrZYT8wvwSsKTUyF0yXw/uORHz6c+OHjmdM5kUKhZsRRpa5hIQJp01yIrtEB0wTMuciUpus7DJaSM/My06sBbcSlZL/fb4K7eZm3x9hgzzaNWBMTV9j0etKxLAtd1218zWu041pr8Xlo39xoAKtt7gr9L8tCtRnddfRd15CI2lKDhfdYar0KgGJ73LVJWm1s18laTHHbeFeRo3OO6XjEWUuKgct0olYJYFquXQgiLJdJoK2cOc0CC66PPwy7lhVSuFzOhKiIUexCjW0p3trQ9zuW1KLsKS9TvbqiNnKhvvvhB5Z54d0P7zgfz9zc3PCXf/GX/It/8Z8T48I8zYQUmz2uE1RGFS6TQJI5Z+Fuq4LtOm67jsPhli++/Ibp8szT01um8xPLfGa5nDadiXW+TXwa2lJhCak1UVHcIpRBYcnVkI1DmYH94Q2Hm9f4bkdMhaQKyjnGw4H/bP/PONzcElPkePyB169fb+fBDz98T98PdDc90zxxmSYR5g2OS8oE5dC7O379L19zuP+Kxw/f8/Z3/xPnh7eUNKFqoKZLm/wqpjjjbEU3Lr/WiM1zjXKOY5AcTyfXEBXUz5fmAM0eWoljiVaIFV9NEmzVFjljFW4YmOfAcwycpsj/+V//R77d3/DP777g27vfYEvGFsXd7ivy3hON4ZKFFsPgqdXx9ve/IziNT5Hn3/+JvHyP9SKSXboD1u8w3YDuPXQ7nLUMd7e43UhGs+TK83Tmzt8y5gOmwr4fZZNt+ggp2jXDfs9lmgnPT0yXC3/zN3/H8TyxpMw/+c2veHN7z81+j+96umBwjPQ33/KX/+x/y03/HW/Md/z7t9/x4enIZQlU3rPE2ILypNh4c9ezHwyXy4nTlJmWzPMpkrUTzdO3N4z9yG4coMLbt295enhiniaZqGVx+Kvl2jhDJrdzkIRbp2CZZ5zvcVY0Bb7rGHc77l/dE8PCPM8s80zK05am7bwTd65cSLHRBRAXKOMtO70TN7fO86BUoyTFT/QcMsV92ZJW3FuQgiLC0yJhYVzOYLUkMRtLKpUlREpKdH0v7idUdje3ki1QwKDwnVAfUvPSX9o+QRNh1lo33ZurlWwyONo61UTYwKr3WyfPxhhiDGIHnDLWWwqNTqNtW0MbQpJLy3nQmOqISyWESsoaTQ9kjMrsRsVf/MU9+9uZ5a8/8MOHEzFmFNKQUBU5aeYQWUIi18rN7Q3eDNimXzTGipYkS/NWxXprC7r9OR7OeYxebcHl/KANBEMIrJ+zVga3aTJeWA+rm+M1zXmtH1JKDMMg61TM2AIhaGp23I4DT6oQS8sTGDrUAjVHKorDuCPvFac+kS4LWhWsrpTTxH0/oL98zS5H/vrhSAxQq4dY0M00xYwNfVJKRL8KVN+h+45DtyMrQ1GG0hqgmArH4xlrOlQu5Jj53Xfv+bu3HzkvlW9+9QtmYFkuhCWxt4p71XGbPUcdGP7yL8kxUB6e+I//4d8zn06ULfCyDYjb/7z3jLsd1gmly1px0FsZBrVW3r1/24LyFE8fPwiaay2H2wPajGgtTooYS1aw5MRuHLh9/YbBVZbjO5TOeAuDq9RsCVGapxQWEVmXTO81toJVBUuBQYGuklOC1BJTCMzTjB96js9HzqcTcVkYhk6cJb1jHPYsy8I0zfzzf/4vePv2B87nM7e3d8ScRUMJ7PY75lmRU6Bzji9eveGrb77mq1/8grubjtuD4819z7df3XN8PvL4eOL3f3jgv/lv/zVzqOx3N5xP7yk2NeZFIsUKSiyyDzf39MOOYRg5PT/z4YfCPF0atVHMHax37dwGEcy25AutsM7T+4Hdbs/d3SucsS9UrSCDJecc426Pco7LZeJ8vjDuD5jWZARtqOGO2HWUONG7LDlPufIvv/kVv/zq1xjl+NMfvmM+H9nd7Ln/+s1Pul5/cpPhup66LJQa20VQuCyRx9PE+8czj6eZ8ywWb1KT1saRWr3jr3640mRcIQwvKIIkLmJXOM7irEzWFbrxKlObcDUPeyRYiT/zuGsxf+1Atb4G59zWYAzDsC08n4eerZkH10jH+hilwWwSnnTBFnFnWdX/JecNgbm2zL2eWqz/vT739W2352yNyeqWMJ3PQrMKC2ENQFxvW5rAtN3+hYIlTdfKpRzHgZhmlALrNN5bEUQqmKa5BQmuE7OWlaJWPqBqk8PE09OzOGOlzKvXr/nNr3/D17uR3e6Gi3eEGIkpo5VnOgfm5QhVbwJ/oWGITd847FBFscy3LJPYyV3OT8zTidPzI3E5gcpo1VIqWxpvrpWQAZVwHnbjYStcvR059Af2/Y77m9fs9vf4bgfW4saB3h7IyeAp7Pb7Ni2TwK+Vr2uMp+/kHFFak0phiUH41qqSScSSiXOlGM1wuOHb3/xnfK/g/PyB6fSEbpSbkiVYDJ1QWlxgKrkFUkowmzRPGiVLQYPIf0wz+Tkdqk3E0Ot1utICFEYZmaQtgaIqumSMAh0TekokmzilTNIKY0TMaVLAmQ5r1Abtzmkhz0eWD39gthVVCzqemJ4s2g8oM6D3ll034voOsxvRVLRRRKeEP6tBO40+J9QSUCkRasUeDs3hxXDIN1vKqzZixaqzwPJ9PxBSpRIbyiZK1WQrU47kWPC145tf/xMO4y23N/cU6/k3f/tXnI7PnOaFkISzH3Pmw4NkVRx7w+V8Yk6VgkE78aPv+oHed2glwaQxRM7HE6fjSTzSmwf/Cz3qhSZV6vq9tKKtrWelZpR2dMOwhWsKuhtkKJTEJckUofllpbeUYGtNM8qQJqDWiq5CabBawxX3XJDggtamDTJae3Htkah4eeEItWEJgdNZco6sMQzjyDLPgq4o1dKuFd73KG1Z5pmqZBiRYpbvrNFlV61hqRV9vgjKamT/kSNt9FehGpRP6K6lvX6hUWl678UZSlW0MxIiWFZrUimClVKbzTgbDeIFmTC60PnCfrR88WbgPC2oRRGSoXN7jAVjm1jdGxySWVSiTGe1UtRiqMi6L8O31Bwaf76hnl3XyV9qhZpf0IyVooZ8ks67lkAtjIVVl7nuN/8f6v6z2bYsS8/DnumW2+6Y69NVZlVlmTbV3QQJIChRIVKi+6wP+qmURIRIgVSIIECw0Wig0WWy0l177HbLTKcPY659bnYjAskIBKNzRdzIW3XdOWuvNeccY7zv876PBJ7RrFkblJ29N5CD5FUoVXICEEmwtpq6rvB+wk+ejDlN4Qxzt1lkNqnP1CmzsQ61MLwdRLo8+EhA0TghRqnKYLWBUvwOJJq2Y7lYcXn+mOM40o8TU85FjmcwriYeEylmSbaOoFyF0Qa7XjClhJk8KgVU0iyUwxlNnDxj5QhK4buO5WqNCpEhFC/oPE3MkivWth2r1Uqk0FnoZoJhHgmKcj9jaWaKL1K8UlbOb84V5XUiKWk2ow1Vs2B19oRVa5mamrvrK6ZxRKfIom2oGwkR3d1n/CS5M6aoWpSagxkF8SsZR1NJGqf4Qw/0xz3jcJRJaoqkqMnZiddKaQlYpXhorSvrl0UVKaLIJkvml3Msuob1suNi0/HBB+esl4blApZrQUmbZoGuGi7+6gvGmPEelssV0zRxPB7KvQOyxRolJLMi5euPvfzoB8llmr0gp+knpelZhqxp9rJBikWNczgQUsRVQrqyTias2ohnxVWBJtRcXlyyvb1hv71nGEZyebaVkWfkYrPi2aMLPn3yAWfdBtDkx085+/nPWF6es3ny77nIqOqGWBZhgDFMHIaR67sd72533O1GjkMkxLKQZjHpidQGyAqVy76hvptl8R0cbFkhZhnR+7kVtlCSfBDNa53B6MK7niDoEhCDbHLzgVuKDH8amc/dp7nImKVVbdue/q33qSnzRkh+MJu9f8kDoIhRRoV104puVytsXZOipNXObHd5dx8yOWKMgpYtf6/3nqqqvnN/5sMM5ee+jCLHEko1x8bH0qnUShVkZoIkGQCyjspEyTlLXcvob7cTT0KlLVVdJk7A8djjCi9a8BKB98jeUDI3Usr0JfDl/v6Oi9sLKmfouoZHzSPqusJVFSlrQpTwqOvrG5pGkHHSGZGDmKsqVqsNVjf4cWQcjtRNwzgcGPoju8Ut2+0VOXmRUCSRfUkATyRRidHSWZaLDSpLkbHszth0a1Ztx0W3ZLk8p2qWaFthFx1NoyDVxBQECakUXdsRS06J0hpnapyty3efGYZeAt2IGK2JWTrP+/0BlSJVXfPi4kdMU0/MmUM/0rUGPx4IfiAnL2YBysE7Uwply0MtKkavE7Ux/7A9GTLJfMhU0VGEwAaNK0GOqQ/E7KmsxpoM00hnG2yA3gtrvq4ka8Uee6x2ODI6ToQwQL8jbG+It98SdCJqRYVjOtyShh7sgqpasVBQNRXVaoGyQoOaxh6fBqwt4IPo4XgkDhNjTnB5ibGKqnGQOuZMiBA8zloUgos+P7/AuYbDYaBrF/I+G00wiUPwqJipqHn00VOmR4+5ePoElzXfXr3izfVrhmHLNAV8gpA1d7ujaIitpj8eSNpSNx0XlyuWy6Uc6AE/TQx9T9/37LY7+uORcZqY/ERVV4A6IcHntTmRCzJcpEJSuMv0cm6+NG1XDtzq1LTx3pPLYdxYS55XhyzceV203Doj06vTeL+sw0W+BLJBOiMbv3hFJPU4lcZIhoL9pDSqcpFmHDkcDjx69IhF25EzImvVSrp4KeEquVc+BFC6HEBy2YCl222cK0WRYb/bl/Vb43IWilTOZF0O61kxo1Xm6fdMzRJdvaFpJJck6Yw1Fj96KIf9GQWqAGdNMcZLQyErjcoCP1Z4rMp0jebZkwV3uwF98PQe1os12ojZMSSPqykTFctx159AEpIGDcUpI+tkQWT+UK+6rk/NthjmFO8HD+fcZKzeg73MQJf3/ZDAd4sMpcgxkY2s74lMDuKVQ4tPT2cHRoGRoGCPJ2TBVacUxa+RwCqB3qboSSFTGQmbcwvHxUI8gtsU8Eph6wasQbcOk6UpOdgRR6Lrlpxtznnx0Ue8u3pHvL0l+EnWUGMxVS1o84g8k1mIS9k47GaBzwnGRB0l46sylg7FwWeyS0RgslrIQsee0PeUOwTIWa5rO7rlgtV6hbWOfjgyDCMhyn6nlEjQc06QRAq/XC/R2pVpmsZVVgq1HMVaqk2RF0qRcblZEtdnTP2IipnR93RNBaYiJBh78SdonSUmQIHNispkKqOIyeCj4hgEtJKV+MOG/oifBplCtELzjPp98qihrivGcZLCvkAZ6kKGkylXaZxnqKuKtqlZLmo2q5oPX5zTtRljerQbsW0UqVG34emLSw695/XLe1arNbe3NxyPB5TO6KQgZ2lCp3CSoN5v79ntdhwPB1T0xOgLffK7fjalyjQjKzmXJ5ngqOMBnyNN8fQ23YKmbQQqpCjgjgqVFS+ev2A6Hrnz1/S9TKVRDyqVxxeXfP7Jp3z69AOImpgV9fMlP/2zP2L56IJmvf5e7+v3LjK6pqVuKiY/8u7NO67vbnl7fc8XX7/l9bt7dseJY+9JU+GSl0ozIaO9rJWQjpRU+vOI2Rj5poGTrGnWx86L9mya7o8PlCijDdlm8S/kxOGwJxV6Qc6JylpZCwLEICxgVEZbW1Io7cnwVVXVqatRF87x+16OXLp26HwyaM2TjhCkeLCnkD2hPWijqWmYxknY667ieDyeUnAp9yAEmcrUTU0oRm4hPp2VEbyXAEEvExtjDCplgvcM/UB/PArurmmkg1mKI4MEF+bSPdNqlmhJgRKawDgOHN/s8b7HOk2zqADBAyptqKiIyZCiLDhGF1eGmocms5ZanSY649jz5s0rrq+v+Kf/7H/mxz/+MT//+S+4fPSEbrEm5cRi0Z3G1yAbQF23tNNACJG721s+ePEJlZPAvKpupeIvVKbrd68YxyM+9OSYiOXAsz/s8H4AlamcYbXc4EyDNS1dveJivWZZ1zQZVu0F6AqfM1FNuFpBdry72vL69WsxdzcNq9WK/X7H9c01b9+84vHjx5ydXXBxccmXX/2e65t3XN+840/++I95/OgxXdtx2x+4vb2lco7u0x/x0z/+Uz747Kfc394wHfdsb9+xv7vi5u2X9OMWrSK1K6nplAOHyqUozigV0TPPfe4w/UCv5AxRO5S20jRAyQqeEkl5og/lXXN4bbgn8lfDEWcd3bGi0Uf84Z6kZAG9/PgTxvs3hOMOtd9x9/qW/vYNh+tXPNUXWDViSOAsPir6YaT3A7a7QN3fEo3lo8szlJF32Q871KhRrsbWLaZ1uHuIx4H+dsuNMYyPzzl79ojDcMQqTaUtdeVQSuSQFo1frFBJQ1Ksl+ekLMWnOSqq83Pc2YL2acdaWcKqo75csq8Tl1dfcN7fcRd71G5ETZEQEofjIACDyjKOmqfPnrBcLWm6BaaEcg69UN0k3bZ0q4v/TUUht8ym5lQmdUqLxKxykihdVRX32y1dt2C5WPDo8QV1UzMMPVdX1wzHPWN/ZBx6UgxUqaGqwLpKGklFLqGMJnjJNKqco6obUjnIV9VRgBXThLNWvp6YqUxFCJM0oazGVO4UyIkW0gy5sPjL/jHvF3d3d+x2O9brNdYJ1Wa329IuFshhKbHZrOQgai1t23Jz9Y6Eomo07WJJ02XaRZCUbD9JwTYcub8Tmo0xCvxYHmSIMZ/2gffphDlnpimcCqakEkbpUhzJ+ytYS+l4u7rB1Q3aGrTVD3kPXtOYgK0NlTbEDy84ek0fDVfbh8TlxnSsN0tUzoz9gFWGsR8ZpwBJwBgpRYZhxPtAzhR89g/z+g7xsRR5ZCkwqpL6nlISLPF7k4u5cTjLpsQLakunWiZcMSQhAKLQyuKMIfoJNUZYGaJRxBCZdgNvXl1T6Yq2qkmdxeeEj4lJa1rn0K1CBcN0CIK01lJUf/Z4zaPVxLvrnlcHUFWFqSt2fqJxFU4ZdL0gdy312RmbZ8/5P/9f/wv+8T/+77j9F/esuxXOSbr02+s7Nu0KbUZS2LO93TEmSF1Lerxk2B3RY6IKEIzi62ELk+cD1bG/H9mFgd/7LermHYwjjTNoZU5QFFs5NmcbXFWhlJKDcr9jGI6EOLFZr6UJ0VTYymCcTNVWy7Us61nhbCXwjSwYclcaEFprjkPg7NGHfPLJJ9Qa/PHIjfmabX6HiZkpeJKPdE3FatESU+Y4Tmx396QkqdfOGJkkZceKjqQ0/RToxyPZD+g04XSkMvJcCHHSUNWdSO+M5fXrlwWwY3F1dSKgWlOxXp5hlcZPPU1d0dSapoauTjR2gOQ5jlv6QRF0ZIyJ67fXfPD5I45h4l/8r1/w+NFj/BSJMRPGEbJBqSjo/zNBMKesuLu5Ybe9Z+oPNAVsIyrX+LcABfMPaZAoMImsA92y5eLyEavNOSEpzi7OSTnx9s07Ls7PqYxlVCPb21uiD1hjRdIZJ8ZpYH+4Q9WGOmgu3Zqz9QVnH35Me36OOz8jOsPgPW+3Rz68PP93vq/fu8iwVtG4hqZ23N9tOQwjd9s9d7s9Y6FV5Bhlg2GWKxWfujIiGZgTIbVME2Z+9Uz3mBeQ943dcxdiHEVj1zQNVSXotKaRjnMIsnHWpZrOORX5kIyhmsoRQ3qvCZbLvy/TGWMtBiHf/C1Dd34IjZoHLnMlOS92c+c/ZcGUCsVAjO7KFNJHVRFSOE0oHtjL8uu5FAbaiCYzJVD64dfDJJQBciaWe2a1FmJNTHj8iVKSyzh1Hslro5BZhvgphE4xJ4uKlMo6I4bFPL+IiaoS82fKEIKMC+eNMhc35OzPkMNLiRJKQqEa+oFXr15RNy37Q8/TZy9YLNbUtcM5w+F4JOdEiB6XLYtF0cKmTN/vRL5QPh+hqMimnABlLZVbkmPETxHtMsv1I66uXnF3f823L1/x/Gnk0eVT2kXN9d0dv//it7TW8R/9wR+xbIRutBuO/Plv/5xm1dKuOtp2IUb9fmC73dK2LavVmuVqSVXCtIxVoBLPnj7l4uKCT8NnNE0lh8HDkdVqJbjUqmWzPsc6h6k3VKtLcpw4u79hd3eFchV3774RQ6GKMr1QgMpkJWP6DEWiOL+JP+wiQ9UOsiYpRVRKOrdaNMmzntcYAwHilElGZHC/vn/H3eHAdrtngeaz5x/w/NEjGt9hnEabhkoNJDSHpOmiIeklul6jKwNtTbjfgo40tSzMISaGYUCFyDQMTNNA3PdMV1t6bTG1dAmXyzWLp0/wg8ff7PBKY9Yb2qSJITCVg3FVyVR0f3+HyplV17JoW7KSg7IU+4bD9T1h4WmethxcwgDOVJw/fcyPfvWH9JXmxo/c+ivwPWYaGcPIMRt0p7g8v2TZLahK0NR2u5XJpvcMveSo5PemDSHGk0xVlDq5TJMeNipAJqNJ0r+NEvlJSombm6syLczkIBkCGlhuzmjbjqqucFVDypnJi+FTK4uphdoiGG1DSjIhXi7XVPVY0JuJaZKwxTlVuYwriN6jVC5hm6507vIJLTl3rN+Xw8p+YssaKA2Lvu9pdjs255eEKN1DbWvaxVIkU0aMk7MpvV10TIM57TEhBPrjgXEIJ3CBvKMy05wn5POaPndJ50tMxmVqlFL584oEjD4xBojZFClfFh9ZVnh/FMmWNoDm8Znh9jAxbUdSOGJcg6tqFosFTVXLxKU0XWbD7jQGvI8SyOclLtY6ja1+uCjsaZpOct2Z6qjKoXAs9L85gPd97+f8nD9MMWTPjkkyi6SwyCITRKh/5Ew2iug0UUE2MmGrFw1trbDM0IooX0MCPYh8Ccpkumj7M6DrisYWCuKk6B5ZorWkumZSG/HSJEUeJqrLS1gtUcuW+2FHu17ywScfochM00RbVdTtkm3YU61a2vUFT3+8J+32HBWMd3cs+oj1QFSkRyu2xy2+3/Oj9Qp9GGF/T7x/SzwcUDFhcqYypflQO5arFY8ePybEyO3tLXe7e8iRuq54en6OqwSrK5IcW0AeIB5J2b9DoU1lBcqILygrmRWFOLHvj+yHgfbsgqcf/hRjBZ6zu7uRibeRbKkURdppnCPmJBji4MlhBniAM4GoJlKOxCqRjKWxNdME2+01IYKrarTRjD6Wswtst/c0Xceyrnj69CkpS1NjKnkzOeWiADEMw4H97o6hXzAMLVlHdv3I9ZSJ1hGy5X6fCFnhljUf/fgJ4y4Ljny5ZLfLaGXJSTEOgY2pSFlxOPbSeFWgClRC6/nJkSbY35TbC7RCfIzGaoyzSEK8NEGsrdjeb2VtipL94rTG1A2NcxLWHCNVLUGIJjmccXx4/ohPPvsJn/7qT3jyy19iVhuoao5K89Vvv2J7e8f27p4PP/3g3/m+fu+VRpGlW2+NdKUyTDEyTJ4pxFMS8bz4y1tcCo0SUKWNKYcooXk45zBaCoo5FXZeBGaZ0zze9V4c9jPmDfhOYYJ60GrmLPIk0ckWugi+/L4HGoU2hhAjzhVjWEng/s73IH+jdJe1dEz+JrFKzaLaPG+PZRPJ8oFaa0jZYsPfQNQhi5A1Bh8iplBQ0owXS5lZsKvUA9Z3FuTNWSKhdGdmROLDV11UvkqXylzwZfMBA3KRUcjnaqwtn7QcRHTRoqoMSQvHeb7fuXy2hU18WkRLe46cIcTE9n7H69dv8D6CMrz4oCphWDXDODAOI3ESZnzTOnQZVd/d35SFWrPZnEPKhOjZ7e7YHXZiZOpa0cT2QvHp2iV1s8Ds9wyD59APrGPpIqnMcTiSSm6HBM3IQnK/3XIMA4soZvG6bkgpn4xWrmgaz8/P3yPjBJqmoe0WcnA8iryFnGhb0bg2TUdVix5cuxrbLlAqUTcddbdkmjzGOIbDljDsSKFHcJwRCKDSSU891xbqB15kGOfE2pPlP8wyQa1OB4WsVEGtyu9JCq6nnjAF8hR5/KrmrOm4aFtq5YltjVJQKUelHRUWlwy5anCLDr1oYdnAMZLyiNGaYfRkPWKqkegD29s7xuGI8hNxJ9p9X02EkGhdg207ludn7LdbUj8x3G5xTUMKkTwFQgwi/8mJ6D3T6DGuom5bjr7HT4KPjTpyPPZ0U+D88hGxMaUzD4vliueffMzOT/zui99zvO8Zx0Daj0QfmcaJyUjSr1KamBIhTOz3+3KwlCnlSYaZ4kludLqKt+H9g9cJUVm0x65MecmZcRjY7/ZlLbVYHtbbqqqo6oq6bqjbTtj7eiKWdVcm07qkqwMFr2qco1Kcwkaz0VJaZIVNZhbZnnxRxpgiRZPvyxOL30023HnvmNdjbYyQCbXleDie6CyiR24wthK5aCP7hZ69JKW7XVV1aRJZdIblci1Np+Dl/cwIqaV403SRf8wH21lu+5C7IN///L3kIs1BiWwrJEhYtOvQJqKNQ2eN8fL7NBmMpyMwhkztPM7IocJVTvIUjCVHTbIRbyesjcQQ6FOQNdJHOaAVgIhI536YV/BeCuHT3i67z0zNmlUJ7xcV7xcZDwe1ufCb8czSABUpWcn2QoqMbBRJazDyvCinMTZhUtkHUzrtiTqBem8f1MV7lLUUtFWVsRgWraVaQKgcqWsI1RqNRSUFU6J78oSpqekbR8iR5WbJs/AMTeb66hqdIWfNqCt002Hbhs2z5xzqG/IgNLzWa9qkcUqTrC1yyCyeQD+Sh5643RKSNDlNOR8YK1Srpmmo6orYDwzjIN4Wq6mbmvPzM7IqhVyRYM/3VRoGxe+FHBMKEkmKjHJOyUR89PgUwVRsLl+UBu9A9EHgPn6CFAkqklE47einEWs1KTqGw4GYRY6o1ViKjUztIqZ2TCahs+dm6olJoVTxkiQtPtKYmLynztLQXK429P1Izh6ti8zTzPhXmKYB73uqKhPDwBAmbvd7rgeFac/ANgQqQvbYpubZB+d88a/eokAkfMw+jwJ6Kc3UENIJPgEF1awFcC9Sy3w60z54g6UBfpKVZqHx+UkUMNbBFDzkhLOSiq4QxV8q0rIYPVolGmdwbkmzWvAHn3/OZz//JU9//BPaZ885+sS+H7m6ued3v/2S/e0t/W77vd7X711kjGOP1rKgr5dLVqs1bbsnacNx7AVxZWRakR8wRDLVyMJlt9qe0LXLblnizTl14GdD8jxNmEeb0zQJhQZOcimAruvQWtJe94e9GDLLAjKFDNNADFGMQmWCIdQkQfpN3qO0kQNhXTP0R/pjLx6KIuVR8nYUj4c5FQdzp0o6JQ/BKDMJSn5Poi4+A22MBOGVbttisWBGxKUk2k9jJMEpZE4PmyIx9j3OWNrVmpwCuhRmManiSSnyiPKQyYRBNHkKOfe7qpJN1tbUVVMkYoG7u2uePX9cuoUzi1tyJ8ZRfA8PXc/iVQnfJXPEFB+sAkox51bkpBiGwDdfv+Tq6oa3767JKF68eMHjxx1KZe63t2y3W2L0PH32hKqEVn3xxZfEIESuX/ziD8g58e7dW/7H//Ef8/jxEz7++GMePX7E3d3I67ffcnt9y7PHH/Ds2WOaWrweh+MOHwJTHPnRpx/wBz//lEZbulQhKbGOpnP85Cc/59XVS27v7livN2w2G1arFW3b4gqNYbq7l3tYxr77opHPpeic/CgjYKM4DgM+SnLouU043ci/h0EbR708o+7WXD7+gH57w/b6LW++/i1vvvkN03gkhkE8GipCjoIRTnE+l/ygL9fVcjAPSd5NW57lDEoVCYkGs3DkKaFSEn2tgQPwTR5pw54XKvCxUaTdnv3X36Cqms1HHxFtS1KOHDWb1WPWL17QXJyRlxXfXm+Z/C3Rj3z78vdcXj7hKZbD/sCv/+qvOd5vebza8PzJE0zliMB+u+fr3/we7Sp+9Z/9H7l7847t9TW/+4t/xY9+8hNsXeOU5ni/p2sa6tqyWnT8xW/+Al07Nk8eidRz1zMNE0TNfn/k4uKSD548Z7laEA34HGjVgg+ffojKmnevXzEdB0YSb/s99SgH52kaub27ZcoBZTSDHxiGQaa2ORPCSF2KkFLLnfSN7wMxHt5fJWuzKpx+ZzHOUruKnBJvX7+RI4MxVC6T5uaL0vTDKOQmNOvzS7QPGGtpmpqUYmkIOZyrOex3+MnjoxRLOSdyygzHYymsQWtHXbtTgWTnibhWqELySulhX9FKDkPzmioypSLBUpoQItsxosYJOwxUznF+fomrK+rKEpuqBNtljFbiwVEPuQmx0ASfv/iApm0w1nLYb/HTiApCfdGK0542N86UUhyPx9OhIIQgkrG2wRrD9v6u7EklcCwbkm6w7QW2KlIVrXGrR/gk+Ewz9Aw3dzRLy7OqI5kWnzW5yA5VmQhKw2xEa5l+DsOBYwkUbeqOrluKX8b+cOVSyUdsJQ02Z90J9TmOvUiiSwH6fqPwJK+D07syn1FySiesuC5VY4yJFKSYRYtPI1UOqrmgSAwxYqNgdGdJS0Zjq5YmQsoj3mdc1ZI0RFO8R01H5TSrCWodYNWhH63xqwuUqrGmYdmt6c4v2PrAVX/k0aMNrVUMZxu6Rcuf/9N/zv3NHbfv7nBPHxOqJceqoX38mHVl0bsd/bt7HkdLV1W4RUPMjrZe0y8U97e3+KEnTAPDYY+qZBpZVRKqW9cNTd3g6prtbs92v+X27pbNZkPlbAmSW52yYJSaMzSQwtgYdBKssogq0qkTaUqjgyzelaax1F0FzrK6/IC6XbLcnFM1Le9efc39zTuJB7Dy98VsqKyiWqyo64ZXL7/muB9KYOiEtg1Wa9pasWgX7LYTcfAsGkPWFu0qrNWMfiIEmYw66+i6jkW3xNmGL9+9IufMer1itVkxHDJhykx+YPIO6zKf//QZQ3/P3f0NX796x94suGwvWC0vaLsV777NtE3k4x95/vJ/+Q1+kBy06L0UqmRMCfCr6iWV7SSXyAdCiDR18dfkjA+H0xr3fuyCZLB5xhyxLlBHMK7Hh8z9bs8UEucX56zXax5dXjIdBoE/+MB+6Lk/3DH6I3q35dnFIz755GP+8O/9Kf+n//q/olmdgW0YleV3v/0tv/vr3/FP/r//lEhPVylW3fcrH753kSG8/0zlKha15ePnT8gpc787cn9/ZCSIQQXpRKNykT5IYdA2LV27/I6xu2nbIo2Sjvr7AXuzjOpYPAdzZwzEvOKcO8kBfAjUbVs6RDI5qOrqFKTi/URlmmJIh6ZQpHJWmCI5kI2gPoUbzVrfmVqRszpNDGIZzZ0IWeUeFT+fyHu0KQFWVsw9Tjro8zU/LCnJYua9Z/JSQNRdS1M7rJbxbWNy0Tc/6BlTyvhieI5JJETv860TlLR1dfpelZLuxGq1wvuRcTwSk8dVthBZDGp21CgZDQpKNT901EkonQAloVCU7vP8mStA59NUQykt5Jas2O32/PN//r/w5ZdfnAqFqnK0bcP1teR6nJ+f8/TpM9arczGXhchquaTtGp49e8rnn/+Ud++uyRmmIdI1G376418yPO+5u73j66+/FRSv0SwXGzSG/fbAuP2Ks3bJ+WLD+dOPURimyXO3O/D27Q0JaOqGd+/e8fr165Phtaoq+l7kU8+ePi9NKyGNtG13kvZtt/cnPO/xeOT+fsvd7R1ffPF7Xrx4wXK5YrFY0TTtSXenjKFenbGxDtM02KZhf3fNfnvD/v4tKQ2lYDcPcpf3xqU/xKvrFoSS05JDRGcjDa6UyTGQxSUs/pQ5yyAKxzsnkRG+6ff81bs3OG35o4tLqmYpSGYfWT3/CO9qPI43r95At8GbmnHsGbznOA3sdlt8jLC7B1fxB9byR3/wK8btjne//4ppP1B1CrdsMZslzx8/ou2WVMZy8eIJi/Ml64s1ISXqRcVyuWJ1vkHVjqihbRyf/+kvhXJCJh0rbnpP8Ef2+wHvI1dXV/yT/+mf8g/+k79Pu+5wlUVnxcViRfXkOeqXf0h3dcVTnVjmkX/56h0uBnIK7PodfRolfZdUJEOCF1cokZ4ZK8VcMt+Zbv5N6p5RRt5/a6grIc4JOSpI1lLKtG1D3dR0bXea7ikkOCrmzDCOvHz5isWiK6QmhTWaFANTCcXzXgqMmDLoMtm2mlAXmU+RuMxdUavmoDtBlPbHIgMr34rJkknUta1kEIXANI2EIPkHrhB2qqrCGF2mHXA47AjBk2PkuD9IGF5OPH789CRhSkmQj+LPMxz2e5xrWK/PypotnUdrZ1+1Kkhg87eohHPHcZym095nnD3Jev3o6afIbozcHAJVMKBK4KwppC5t6ZYXcAhYk7GN4TzXHHrP4APH45FZMWC0Lo2iiZQEsiGfmSbaSg6DShUJ1g/zapq6hLnq0x4qhDdLVT2Y7+Hhefde8MbSGZbPTYiQEWuEQjWn3ku6dcBnOYylKEhmHQMxOple6USzaIh7T5hKLpjRBR6QiTmhc6ZGUWXLwQuWfLVZ0Ct53vsUqdsF2lYis9IBe/aYennGZnlOZRuMD+iqwg4T66Zl1bTEnPjxT36GyoaLzSUvd1ve3rzj6uVb3GHiI7ckbjru7ZrD9o7JGpplx+gnvIpMMfDNu9fs+j3HacS5Bl1VGOsk/K+uObs4p+06Qkpc314x9AesTZyfN9SuxrmKqnYoJeTDlAReMzc5Fbo0TRUhZuzsMczIpChnkoZx8Ozut+zu79ksz1HUuGbNxrWouiIkRd/3TKmkTmfQaBpjGceew/GelEbqWmG1oj8cyNNIVoasDaOCFEeMmmirhKktrmlolgtev93hnKXrmiKlV0w+cH19y7NnH9B2HYvlgrdvXhNzRhtHTBXHIXF7f+SLr17y9NECawxOid/m5upr7u7fYfU58XBNHI5MhyO1yYTs8VNA5ciirbGV4zj2DMNByFWVYrNaYghMI/IsmwrvAzHIWarM/09nz5wzfd9jjMjaURPjOKCMprIa12jq1lFVEgkhJKmBaZxQ/Uh+e8UiB/7gT3/F/+W/+s959uGHLM8uqDaPuLve8+7lt/z5//wveXd3ze3+ju10xTAeuCNS3eR/y9v5t6/vXWRkhFySY6StWzZdw/PLc3YfPePrl2+42x0ZJi+HWbkLMh62IjWpqpqqruVwrjVN29J27cm4lfKD9mzmp88jT2OMHD7KYdaXFxY4ZVBkRJ6DSgU9WAEeosLkjM6yEc9mPWOkW2S1IXjRS1sr9CpT5ALOmUKr0MSQsKWwkXHf+PBh81CaZ6QAUDMFoaTkaoRe9X7wn/f+5AORAqXkYmiNMwarQeWAdQaVIlNKsiEb8x4hBr6TJptnHb+koooMpWj3SnCOc45xOgoRxxmsncldIm9Qp7nMw4Ek54eEcKXAOlsmMbmkA4tuWGlKYaWLVCJBQa75ELm72zJNnuNxwBjpejrnePLkKavVivV6TdctadslviQUL1er02HeGMd6HZmmQChJ6lLryGcXg5DEglZYp5lUgKxIWZFth04KqwRXGaJn8iN+8iQjbRVJSh/K+NwUeZuRYMKsyngxfFeWljPOVSdggWKQsX2ZnPV9LyPSlEkplGfPoKyV/JOmY6mEbNItzuiW5+QMx/0VwR9lgjFjoH/gdCnlE1YbTG2gzsQpQpR3JRffj0hddHmm5RCXEeN/Sor9OPJmv2Nd3VD1Ex+fnXPRdJi6xTQr2lXg7HLk/mZHitD3I9vSRQ8pSyqy1oSUGXxgDBPn3YJKafrFijh6oo24rGhWS9brDV23EJ2y06jCfO+HAVM7kpYOelM7MdE1NcvzNWPfMxyPoDWrpkEtIsEnulWNdTVV25XiXTZmP00kEtYYnmw2fH5+QXN/j97dc9VP9PuRNEUmH5gKvU4jpC1VPFK6abCrJVXdUi9X3N1eMw59aYy89+xkIUo5a6VjWeQOzhomLwZ8oZqUQ3PxE0gqdslZUOrk+Zi8yBLruhLyl1Yngy3zIRxpOMk7FImpYMhlh+eUJq4okAcLJUdnXu//5pVLZyelcJLKDINom12hYeUs6880SUNqGEamccJ7oU3Zkhk0J91mZPIr65g5BbcZa0944JQSOhYYRfmiMw+yHOfc6X6dwk9jFMlKyTmS3I2MD54pBKaY5f0uGF8VEylHbElCnpIu02lJ6FX6YZKqtSohtw/ZGMMw4Vx9kgT5EIrkJWHK9/SDvPJDoveDRM5SW4Nz+iR9ej/kcTZ955xOcJh571XakHKSzrtGJFgajIagRAalMjgljUOKlFmpLER3XShjyF4ciSVhWQ7EJhtMDsRUPJBJ/g1TGaL2GC37wehHYpjkQNu0KOWwaFoBRKKdSJl0Sqw2G3LSJCPFelNXnC0WtNYJfTIl3GrNLk8MOTFoiFYxkeij5+bYcxgHpihp1FbJ+aBpGpqmxRhBuQ5DzzQcIQcWi4rVaokxgqdFP6wnMx1NqZnoOUvKkXU85YflJz/8NyMN1P5w5M2bl1ysn9BULVXVsVw/4ezRC4bjgbsr8P2eFAIqgVEG0kjwIyFMqCzKEyn6xVcTfcSrIzkFjEnixWssxhl0UankssaZSjwlzoriZFU11LXch7quIY5kL+cPYySHabcfOT9rIGecVhjviUMgTkeSGlhUCbc24DaC2w+eGCa0zhIXUNdQzqpaWZIPWKNxVpOCyEx9Fk8IMZYpmz5NQOdnf27OzEcSbbJkTVUGVzcsmpbaOPwYGPZ78jTRZjjfbPjk0SWr9ZJf/L0/5NNf/pLF6oyUNC+/eMvbb97y+uvXfPHr33B9vGE/7dmFPSnL1+L5t6/Jf/P6/onfRhPGET9EbM4sm5rqyRmLpuKvf/8VOQf8zUBIilMap7FUpeq1teh3lTEYa1iuVqeJQvCTmHhKYTEH6SmlqOu6HMwzWksH4FiQrX1/lA/IWJQxIl9BobSkpMaiF7CVvKQEqaJnA7mrHUZrpkJdmYlTYuB0JTNCiFfD4Gma5vQ1xsIuVlDaWaLvjMAUAk5r6lkLWjahqq6p6/q04QzDcAqjm79HpaUL6IzCqAQx4qwS41bITNEX46BGWzFazYvu+5OSREnpnAkyVtJMu67DWsH+xhSpm7rIpBzWulIsyOQjZ2SlLDKsEPzJmNsWHXyMif3+iEpC5ZIkSUm91VrR99JlSxlygBADw3DP3e2Wvh/55JOPefHiOT/+yY9YdEvhhSspeua07crV7A8H+uOR3X6LczXKWXKcuL+7YRp6QvCYkkAaQigTMEWsK3KTsKamshVt1WIQL04MXmg2pVgSOUYqhyMtf6eRtO+21cWo5QlxoqrsaeOKMZ5gBHNBl7OhsjXr9ZrDYc8u7gT9Ny7p2q5kLXQopbGVo3INi+6M6VHPcXePDwi2Nl1DPsonWoqlH/KVdwNu3WHbGl1Z9tstOSQqbYucQJf3ShF9aSBYPdOSCQmm/ci74x6L5t3d17g/+GPa9QWPFxuSa2mWiotsONweOKjM/tBznQ74mEnFkOisRVtDVorDcJSFuK64ePyYd19+Q/QRsmZ1ccHqfCMG4CGAAWsrXO1wvpO8mqHn3etXvNAf0q6XGGep2oYUPFOSL3rdLeiqhoTm/MlT2uWSquuwTVXoxZnjsSeqTI6eZdfxi4tHPDocOeuP3HrDF+qOd3c7IdKliCJTZegKdc0ai16vaR49YrFac2Yr/G8C4S4x+hHznjVDSHoVTdPStY3EPmolpCqfZU0OQqeKIeBLl3K/3wNySOraluPQkzKSZaMgpwajuxMZ75RPlCLGKKxtGfoDU8n2id6LyVxrnLFk0qnQcMaRcoA4b6IPXriHjI2pePaKtlhLKN485a5cRTZymPAeYhR9suijJWSwqWti8A8hsWUCYq0r7/KStu0IPkhXtYS5xRgwhtPB3nt/8gw2TVO4+EcpTLw/HXqNMYxDac5ohY8TU/QEMlaZUhRE8SDlACSO/YT3WZLDUzpheOcC4/3E8pQksPB4HFivNxKeOI4c9j2HvEMpc5Lc/hAv7wNaP/hf5h/OuSJnDaeJ0ixZewjZFcmhNBylUaW1yHAws9zZSnPRabyJaAwmg9OOKcvnSJE5Ky2SF+0qovKElAjJo4wpRYZCRSWTOZUZ/YCJFc5UtF3DcDOAthjr8P2BoO8JuuHyqSNlLfLaRjMW2bYqHs6u7dgfB75+95KJRNNYzrqnnGXL9e6eQ/B0y4bfj1sO+wODj5jacFCRvR/YThOH4AnRk0OgpqOualbLNW3TkbKsR9vtHckP1I3h7GLJ5uxCTNExkdQkTYisxEuiHpqt4stKpbkmoZTz1iUFSQlpVpqU4HA48u7qLfpTy/nZI5p6QWvPePz8M7SRlOm7q2/w/RFClDUDJEhu6qVoQBrFCis+4TAJQCWDNZm2tZjKkrXChwmjxK/Q+4lVs6ZuLE0ndDJjLDkrxnFitVqjc2Qk46qKpllj7YpjnxkGyfhpraHqB0KUQXxWW84vLjlbnrGsLlFKpKxhGtHGiSS1bVjYJWCfxonlAAEAAElEQVQIk2fsjxgCRosfVmSwmhQiRC9BycagzHsY2/KMy7olTW1XGZrG0XU1y8Was26FxnB/e2C837JUiqfdks9/8mN++qd/zIsff8rjTz7AZ83Qe/Z3B/78H/8LXn35krdvXvP28IZ3h3cc/AGPp10uqKwryYr/7ut7FxlPLi+5u73jsN+zP/YsOsGmXp6f83//v/2X/Pf/wz/jv//H/5RDCDgtiaTG1lhTkaPieOh58fyD001arVd4HxjGkcNuyzgMD6a004FNCeowvCfLmTeaogU0JfQpl2j4ECIwnXCMxhpi9PggVI9aOwwytpuGkTAJslBpJQmL6YGn/WDaE/rViTTS998pFubKfR65+SSjUlU47wqFSpk+RsZQJADakk4dWkNTtVDMgc4a4tSjdaax8OzynO2h504rrg8erEXpMqLjYQIyS7hOOMUoX58CrDZoBcYoUo6gNBmD94nhmHA20zQaZUSSIgdvucfFKoQ2Mx4wczz0p02ta1cY1ZbsA+gWDbvtHdvtDmGzeyFTzSPU8jW/evmGYZi4vrphmgY+/PBDVqsNi8WSlBTSGVHEqGjqFU214vz8iYxJD3tC2HJxcc7QNxz3e7788gt2u3uUguVyUQqeisrWWBxdu6Jtl6QEIUa0NSw2K87CGVMamMLI9c2Btsj4lFL85je/PRWgz54+RxtTDmfybKUYSSmWg4Hc37ZdnMb13geOx14WLqvp+57FYsFisaCupSgxyonZU1vMoqZp1vxRt+H4+R/RH264u/mW/nDPNHr89MMN0QJo6xamDHEkdglX1VCByYCBNEGcoshWNKfucDYyjg4+Um0q+ipxFY68u7vip/d3rFcbNjf3VE5juo52uWKzO/L62694dbdlawPHoJiSjO/XTcXl0wsunz6ht4G+BlU1mPYpnzx9KpO92pHOGmyt8Xliu3/LcnUm9JNCxDvs9rx7/Zp/+c/+GV/+1a95/OwZf/QP/h5Drki2Y6wD/+T/8//mbLVhtV6ja8vTD5+xOjtDu4psoXJWjM0e+u2B6BVqc0bzxz9nebHgeQP3dcvm7Iwvb4/cfXNLn6UjtnCaj87P6ZoWVzfssXB+jlp3WGd5fPcYFaKEWOaAUwqnRE66WC5Kt06jYijdMcluyLnCWAmSU0omEdk/kP+UUqUrLpO55aLFlBTgw+FwQnXP63jXVdJAGkZUkpR05yqWywW5dJhJSTqVujRQjJWubyky5n939kvEGOXQHzzjMOKDR2v/HeBHCEGmkUozDKNMhZFm06IVH9s8ERVjeM367NEpZ0JrTVNAENFFHj95jtaGw2FHDIK4nU3dMzJ19gkCp6mGMebU/DiFwGldioxIzAFtE23TkiKEgnKe/YpJZWzTCGHHS4K3qyqSUugY0Wr2pIx8/c03GG14/uGHtFXNbnfPdntfCqTxAdDxA71U2fetsaczw/xMSHOyGGeL7K1pGs7Pz0VeFURSmEKkcsV/iMIYJe+BVnIGSLKg55CJShFVoh+PxGyF4tNYQeb7RIwZPSqSy2ibcRnc6MkepgTTeIftHKYypCoRGInTRNj3ZKMYyULoJPPmy99R3e758Kd/wqRkelG5llorKWBiZPQTiUC3tHx2+SH/zf/w33HcD9hs+ZNPf8762XMuW8eoI58db3Bffc3vf/slN0s4pIGxAWtq0l5w17ayLJqORd3RuJrGVdzv7zn0e4Z+x+NNzZPHj/joRz9CVZfse89hHIl5Twi9yNCjFh8mpdmptfwsgzaqDD3morh0jFRmHEaCDygMq9UFx34vEuqmoapqNhcv6JYXnG3W/O7Xf87Nu2+5e/sKVESTMKUZOgVR2aiksGbG9mc4yelAF89ZSIp+fyR6xTRODNOEdoqqkinHTz//DKUk5qCpa9qmxQ97gteEMBFjxnvFbqe5vvGcrRd8+qMzFm/eMkVP1orN2Ybzi3OgZn+vef7iKYfjwP3hSO0aLh9/wPnZU8Y+Mhx7YvD444H93TVTlIY7Sp7XnJNIUHWxgCchhc4NnPkZd5UoVbSGs9WKp4+fsnEbCHDY7tl+/Xs+vLjgZ5//hF/96o/42Z/+CWaxItua4xD463/2b7h+ecXNqxt+98XvePXmJW/eveLV7beoJpNtYsojiUdM1mH0v2dPBhiaVjqv4zgSUkSHQKsyF8uGX/z0Y4IP/E//9F8Tohj1KuPwPmFrR7tc4OpapD1KxptpmshIcNM8TUgpnSYKf9PkEoIQfVKW8JmHLoYculMx8UnXIp06GLkcmGOITMOEzlDZispVp4VelwWGIFkS8m+GEy6xqh7CAdu2PY1rTxtG8Wa8X13OWuQ8+zqUYZwkLTeEKIfKWmRbm82G/ngkTCMpTGQm6q7m8eWG1aJif9wzTQPaNWAk+CoEoW7FFP6WI3g2vmklKbv5RMsQ74EpKbduRs6dpFYyApZvQrq5Qp7RmPcJQAgeTSY9BrIuo+jEbrtjnLxsZLOOsDQ53jfMxxjYbUtnNnpubu558uQxH374EednF0jYrvDKQaRc87SiqiqatgaVaZuGRdtyPO6ZprFMxRJNVUmRUdUsbEftaqy2sn+QiDkRcyAkyTWpTE1VVafncJr8afIjRvL9CUfcto0skEHIQpu6QWtO93jugsYYaZqWzIzAEyxw3w989dU3rJYrunbBelmoV0mWadPW1GoNlSFaw8JPUqzyw+1AAmSjyUFABTF4qCzKSf5D7STUTTuDn0p4WYEvy+OTiSSmnDlmjzWGs4sN3mkGEjFnQeQ6kT0sHl2wij3bxnB/3NI2irqr2awWnC8aHj97yqOnj1meXYBRTCqxWHXU60Y8AwpGokzK/IH9/gpUoG5WNM2ZHIStkSCt2qFqxxQj3/z+G9aXFzhbsV6f8+kvf4lR4IyFykkCtAZbO3yOTF7kf8oY2uWCHCrG8UBz8VRC+/qeZ/dbvvUjr9OE0hdUuyM2BhZa01Uty3ZBs1iwzIZRO3zSBG1oz87ojke61xWTzkKQ0ZqqadDWSdOn6NNTSkRyMeHL4WAO1pvX2vex3iklQpF89scDdUGKoxRd11HX9emAnbOQqo79USRSxZcnJKc5v0fIX/MoQ4AVkq3xfr7BzIwXWaumHwdiimUqPEs6E8ak06FflxTnGeiRUmKcvJBlJgkqbNpGAkKNFCXBB/aHPdbMoW5lilXVuLJOy/enT4GiwzCcfCvvy6VmIsy8jz0YkxXOOOqqoWs7KufwROasvJw5dYGtMSgDioROGZsTSWXSKB6acRTSmNaKbrFgtVxhdXW6n+M4cnd3X2So30/q8Hfxej/Q9mE/kbVXpEu6GPnN6feGEB5olOUPWCshfgl1ml5oo8peFslkam3JyZNigSuXs0TOgNVCXYyZ5AMoCeqLeFqrwSliJU29bBVZpSIPlD01m+JDS6Z8TQaMI6E47O5Zbc5Ok6kwBfbHA1PwLFYroRRp+bqfbi64SVuO/cjL6zc0m45Vs2LVVvz4o49YJljfH/j99hU3fmSfPH7dsj9KNkL0E+OhZ1AOpwz3d/cM05GUJxYNnK1rVguL0xHrKnw0hKTwOUB68KhmlYt0PZVML/F4yLliPhc9+KrIGW1E7eC955MPPmIqGTw3t+9YLJZUVYu1jm71mEfPPiWjub+/I++3J+XGTGtK5WXJJbhWFVCRZJFJM7DSs9QzSuMkifwwhYQ1jqZpabol2/uecZR7o0AgMBam4cA0Tex2Pfd3AT/e459vWC6f8PjxM2ISXHXbdTjdMgyw3w3si//LaIc2NdMUOR6PjMeJu+sr+uOW/rDFh0DMM8hbpkK6QCm0Ls2elASy9B3vsH44XyVpJLXa0WnFm6vXxJD45S9+yp/8ya94/sFznj5/jl1tuL05cn97zdXLG779/Tfs7ncc9gdu7q7xYcDVmmE8iKneZKgUQ39kVLpgx//d1/cuMlLMVK4uY6TM5D0hygGrc5ZPP3yGqxp+88W33N8PeC/koykEjK1YrNa4yhGiaH2VKlSpgkwEvrOB/M1LRuOexWJx6mJJ6iHi0tdieBStbyod5iTEJWZdZpJkx5jQjaayYuKaFyQh3SRSmjvoc4c6U1UPXbSqqk4Tlnm68n6n7bQJZ1n8MVpMURp5iAolxZgShFVVdMsFMU6QJgwRo6CtHRebNZWV7oyPAd1YsjKSjeF9CauK5TDP6WuYf5jZV/CeHrtpm9PmP3ff9UlfqVCmFB6xjGhzCXBQD5SOmOIpJRhEdzlruIehGJaLX2UOnZ2r8IfPlNMof7/bsdvu2e32IrOrKtomUVWSLSCHBcjoMhJ0tKl0YbPC1w3nZxfc3t5QogJEH28qnK1ZLTbUVX1CJgu/WzIOvJ9K0Sn6S5GxyfMjGtWGuq548+YNMdqiLc2nIEUh6ZjTgiqLgviRrLV0nQSCKS3PzhweuN3dQVLIGl06rAU7GgtJyHtPoKJdrmjqlkW7+L6v7N/JSzmZlOWYyb2XdGOlodG4psaUg3ssz5MCCdIsnoO5iTCmwGgTzeWGWFsmDTFnkjFFJ52pNytW+RGrxuKuNE21ptKBiolNZ3n0+ILzi3OaasH9FMhaY7oWVy2wWaFiYuh3hGlgHPcEf2CaLMY4aAQHjbHgLG7Z0a7XmKrm7ZsrjK1ZrFd0ywWffP45Y3+QDctalFVCDFPiI5tGT5w8XdvQNDUqOcIwUa0X6Kwwx57L3/2G5WFHFSysVzQ3Fc0YWWdF7RpMVaOcY6UqKu0Yk2aXwS06qq6jNtUpXV0bja0qlBEKEyqTc0TlWCbFBQ2qxLcy++K0Ng9TUzg9/yIn7QWDbazQ6NRDPpDWWta9JLkkOSXmQD3nqpP0yHuRBMiKTuHry6TaOiuHmeJXmKfGs6fv/aYSRXKVs/jCjAlIllH+DiJyCuLRMNOIn9ZlbXfyLhe/yWF/oG5quR9IUr05JZxLhsfcTZ/ltH3fP2SUlP86507/7vt+LlAYLTSvru1o6gqYiEG66z7IM1/QGuXeGmxWJ5qg94EpBcZp4HA40DQNi8WC5XKNwp3W3GkcOB6PZf/84SZ+qzmXqhSr839R4i0AkQ/OeV3z2cFae9qH3sfaxqxO0lwhrmVilBZHVXIUYgIvJ2n5/BICpjCJ7GWN0sqgjCIqL+oIq1BOEZOSIsNIA8lmCV1FQ0oBkuRqoQ2mbsnOsTvs2JxfyAQsCRhmluqtN5sCl5F03A8un2KwvMu33G7vxGtpLWfdCvXsBZuYubw7YPdXvMmZG525W7fc3zjGUbxT/eGIVQatNPe7e1CeqoLVxZLN0rFoDVYLqdNqjdGWnC1JO9Byf8pJS6aDMZxk8ykL/v5kycizkxRRlIwjKQYuzh/xbvqWfpiVChObzSWLboGrV5xdfsjkI/Wrrzlsr2HgZDJXZaIxY1xRuki7NTGWAoc5n0NUHzNZTivBSguyt8VWFT5siT4SJiHh1XVN21h2eSq5OSO7beDu7h5jDJeXF1xeLGi12CasNoyj5rgfub3Zctj3BJ/E06Edw9BDgvE4cnv7hnE4EPwgzU8yp+hdVdLNraCaUwZiQrtZcvYQSkrxo+gENilqFIvaYUl0i5o//KM/4D/8j/8hdbsQcmIfePXtO15/9ZaXv3nF7f0t/TgwhIHb3Q05e4yVnK5+OJJUolISzJriA+L/33V97yLjcOilm281TdugtHTqj4cjm/Ulm4UjPc782Z/8hL/811/x7upAzpmzy0uWmw1nj87pFh1DL7QLP0yMBxm3V86UA1U4aVbnTtjFxQV3d3cn1vl8Q+eCZLfbSqJ2I+g1udGJHMOJrDRMgRwl5KipGwkfaSqqpiKTqBpXNLgV+ZCZxlGwucEX/ao6yaTmjtR3Fr33DvBzkTT/Hl3oWSF4jsOeGIPIr2zFoluUA35gd/Oaxlk2ZwuWjaMyma6tqWrH4EeoW5rNhkOyTGNgmjxj3580zGnW5c1GuPdY4GKeXhaUrma9XrM77BnGkTdvr/joo3PaRUVVdyQtBn1jNGO/o6pqrHEY6+iHkaZp6LqWafIcDnuGfiBEj9YU07yjqp10DuIDr/z97ufDQjP/V5CBb99esT8cuL294XDc8+TJYy7OL9hsLnG2RmdLjJo5vLGua3kGtgcOh4njNPL4ySUhrMREm5D0Um35+IOPqZLgOrXSDNPAfjhyd9zTTz2udd9BKM9FxtXVFavVkvV6/d0Obgicn5+fitG6rkW6pxRTNRUamqbrWtablhAkEMuah+nPCz7i5uaely9v+PqrfwFqIuPxYeB3X/yO65s7QpAwuJ/97HM+/uhjfvTxJ3zy6U++72v7d+5qlzWxrcghY6eMj5GcFUygWwNWYQFTe2wtBdlxuyP5IGbLwqKPKKI26LMVfVdztBrvE9vrLfW6o1l1ZFtTPb5k/XjFJ5+94HmzoCFi48Bm4VBjTx5H7Jj5YHmOqhtoWpyyJRsmkvZRQoqU48Xzj7DVEmMatMmCP0yZZBTNk3M+/Pgzuqrj7cu3/Ot/+a+4uLzgs5/+mNWyo26sdP5ypmlrssrcHu/ZHXrGfsIPgWXTcX62EXrOxRmxXZJ1hxoUz9q/5lE7sU6ZZbfk8kefslGORwfPcbvn9f6Ot9vX/HR5yQftkrOm4zjsGH1k1Jqw7Kj3shFhhKqnjEZg+4FFpamdo3aO3keydhJsOARiBj9OpOA5HA6nrv3hcDgdsEVWVEtB3jTY8h7t93vu7+/R1hCDAC6MtWjksFK7iv1hzziN0u3U9pTjcHd3d/IynIIDnabrOoZRJpbDKE2K99eVh0IonhpLp7yk99bH4It0wxiubq9QVjrZF5eXjKOHHGkaye5JSYzqCntqagm1SmRQu93u5B9s25b7+/uHKTec1hOg4MNn4zKi4bewOm+5OFtz2A8c9oa60bx92wt5UWnGSSRSVd0SjRMPibZyH4aMc4bN2ZqL80ucbdC6wmhLt1hJAnvwIhmzWw6Hw/++L/6/z8toga+kJERJkhCznC2fgTS3TtACHu7/DFbRxpBSCalNuYAHDM41+DAQchBps09YrcBpVM5UUaNjxkwRVzvSKPkNNuti9lZobZm0FblOFmlg03WohSHlvTQnEhBlMquKKkRXC9TGMtUdL8cjL4z4nhbWFBqnBF7WraBlZY9P/OEvfsn56zcsv/2Wd2/e0DiHU4rWOtrVI559uiRfPOPzYeDN3Te83F3xv+Se7W3DMfbstz2qH/E+sTscWW+WGA1dq3l6ueZy07DeNKzOF1zt7unHwDAGSat3DcZUHPyRmN8LA4aC7Bff0cP04qEQyDkxTQGtLJWtSyBy5vr6mpcvv+Hpk2f87GeO9WpD0NCtnnKZHT8aPaRASF9xv9uVPcGgSGRikQMKRCSocGr81VXNMB6ZoiZkyzAO5GSkaRQzlamoXUPyE4tFy9iPHPc9wzCwXNS0bUX0bSE9Wfb7gRgtv/ntLd++vOHDDzd88uELLjYbhv3Abj/y9uqeX//2G8IEVldURkEMXF99K0GkveSBiAQqnRoHqgRJK1OwQjPRlITRmcpJg3ieEDfLFldXLJYdzTRRjz2LHPnZTz/jv/gv/3PW55e4xRpVdbz69i1f/Porbl/f8eVXX3J1dU3vJ169esX1zTvevnvFcmGxBpROtMuacT8wxoQPifvtTt6/7zkN/d5Fxn5/T1VLt7eq5GWOITEOspFoB8uu4ueff8yxDxhzzZu3I95HhnGkP/Q0lcFPE34cOe6ODP1IjIGjTgx9X0ZaiaYV74Mu3aTj8SgdMxT7/f5k0L27vSVnOdxGH8hdi5iMk4ymSvjfVLpn3nv6OVWx6OxdLUWEdY6uXWDMg9l7u7s9cYtTPOKnh6C+2Ysxt0bmack81Zi7J5MPEl5TO148/YC2lqlC8BFnK6pK2PBWK1QW7nrjDNaICVNpxdFPZK3BWAn0SoEUPGGcyBkCCa+yUCqUTE1OUimlH8K1ymK73W6p6pr1esXt3TumqUex5my9RptN0X4GrJVpVUZhqwpI9P2BY3+A/EABizERFUSV0VFebvJ3i6/vyMjeKzbkF3Pp4kshd3V1xV/963/N2zevubi84NMffcbl5RO6bkHl6tIBEZqF0dJ9yBt4/vwpd7fvGPoDWmWcbXDGUhnL9etvebI8p6k7vB5JOuMax7pes4v7E+P+/Pz8b3Vr27al61qePHly0nu3bcvFxUU5SM2HrUKL8tWpuDLGyQg3QdLplO0iwYias41mmhJ1e8OXv3/Fq1df8+b1t9xcXzGMIvtSSvPqm2948eI5H3/yEX//z/7B931t/85d+n5HchXJGMZKkcbyAoXAsD8KXCdLCt9QpG9TCBjmXATxU+Ws8CGxi4l3CqboeXV3xWIaWY/nrDIcD0fGKuMrTWwdTdCstWFjHMZY0Q1niMNE21VY1RBx5e+XgMhsEq6t0Kpi0S4xugaEIIeeqGtD1y5ouwU4TTCJZDK2sxzHPb//3a959Pwx7arDNRVjmHj56lvGGAnaCNNdOZquLb4sVUyTiuRHlLOYZ8+o/uxXnP+F4umX8E5rVDRgZPqzCJnL2mLO19igGAxEAitXsfVDkQZNKK1w1gjtr6mwTmFVwsWJi1VFU8zO/dU92sikQ2mRgsSQhBSXJRl8Dp6b/XNVVbHb7RiGgbZtWSyXgCLmREiJ2E/SdEhCz9JlffLjKJOqLD4p6XwmCQkth/F5rc1FZhpiZBiHkyfu/aRtuR6msvJ/5ZMue+5gz56Iufs3jhPb7X15b2c6oewlthKajjECCYFCB9KuTGBCodL1pTn1EAj3/no3f33zxKUM4olp4ub6HX/553/B48dPAI1Whs3ZGWfnS5ahFWN58SaiKLlRssZY11BVAqmo64SrpDOekhCklBLin60qmq4VmtX37EL+XbxyypJzIbPxUkA+TO9Pew0Pgb4zaEUObOL9KVGnAmopKddzvtT8GSgDXpVAvk2H6gxMkXyI9PtAzoaq62i7mtAqxioQ3YQxNWlITAQqZTgcDuQJ8hKBPVjBTy9VxeAVYVI8+fwnct5Rms61EsioDa6u6eYmohZQSNYPWVVNwetbbXhydsGTR49Yr9Y0rhSzrYOq5emf/AnLdxc8vvoW43+L362xaeDl4YbKG4aY6P2IqQ2rZY2rGrJyONehlWXqB5SpSTkw+Z4M1Ks1lTagjEghozQFTPF9aaU5HsfySkqDKJ+mkWLU3u7uubp6x3a75d27d9zfbfFTYLvd8u3LbwghcHnxhJQM2rasLz7hox8fmULm3dsbxvFeJpk5k7IusnU5B8lUVqhrbSuHZWl+avGnatAWVmdnZAX7/Y43r19SN0spDuuK1HZAYho8SmmWqw6tHN4rqmoJePrDkb/8X3/PX/3z35bmScd+SEwh40PC6JrKJVISmbgv8CIzS+21ImVN9LPHU8LztCrwgJMUW6ZDVutC9xJgQZ0Sdrcn32358R/9ij/51Z/yiz/8I55/9CmuXTJRcdgF/od//N/y1Rdf8fLrb9ntrtkfdozTBMpwfXPDdnfH9nhNUIq2renalvOzC0xXMXghn/k4Z558P1/X9w/jm3rmqF5b0iCVEgyoDx6rFbZSPL085/mTS/o+sdvf4MuHPgfmyIjdM/QD0yiH2JjCCec6S4ykEx1P/oWcJWkzesHDaaWEB4wiaVMIJeL1EH1aEq1kSiQfZDmaSU6qpAqXD3g2bqecqeumHLDtaWISfDyNyedU0Vi6KHOKxAkhywPRwnsvnHNr6Lqax5dr1l2NUQo/eYx27xUZkAo/ujJa/nfOkoRZyBIokfmcOjgZrNIkZYg5YishRBllUCmjU5GRFTlaLve273uMKx1D64iThxipraZuKo79SPCFKFU2eB+86J6L3AulTkGCSQSRZKVPnoT3C675en+Dn++t8H6gGEOIMdD3ibdv39H3R/aHPU3dyOErBjbrM4ypTyp9EA1uVVkWi47hWJOTJG8vuo7ainxEh4xAdkXlr52h0jLePo/np8TzqpJOWNFbAJSpiSSVz5r0pmlOHdxZ6ysHD3ui2SglZjhtLKaw9auqOmmxlTI0rUyWnj59yuGw4+bmmmlKXF3dnyQgMUVC8PTHI/vvmbL5d/VSd/dU6w2565gqS0jzAUwMuEWRIDrZJJQS1MOhsYiXSUkWuz4rDq7CW8fLHHG9Z7EfWVYSzmSUIJprU9FoCTZwWrPQFqMDmIAxCqUdqJIqPQ/+c5J3T4tkR7sFRlUFRSyH9so5uralqmsiiZADptbUS0eaAsN04P7OYCqFqRTDcOR+e0cEms05rrKoqMgxCrKwoEXrupKDlNbkpsE8f87i6h1nhwPNYYfOoBJY0Z3SYFi5BqsTk85EFcFpCc6yUlRplTDOYmuHMQpnodKK1jk2y47KWiQ0cj6mP5ishSIj6650I/NJ8z575t6nKFWiL5X1PEUm72HuIuuCis3F+FmyNHQpMHKQtWMuMk50oNL8AL4jR3pAa6uTD+oBEvKgBZ/Xi785iZZfKYjXYWC7vaeqmpNUC4X4O7QRvrwqnitj8eMDyer9Cejf/Dfen7R859cLGrw/Hnn35h1hEhlq5SoUZf1VQNZsNktSykyTRyvD2E9MQG5awjThgyKlQM6xNOI0RhfJ61xoOHfKcfqhXmX1lOUgwxy+B/N9LqFwef7EKd30ct/nzIW5MZhEpJL0XPzJAXUGGmfEeI/T4JBjkDIk79HWYCvBkSuTQD9o6VGZrEHVWooan1ChSJHF+kHKCh9hDIrJ1oSYISmqqNApl5BswSxbY9AFdJNUSYNXmhwSbd1wvtmw7pYsOyFFneRiShqU9YcfYztN1Ro++Oo1H29W3AxHupsaJiXPTMwM04ibNP1k2feRlMUTmRMnSXRKoez3coYyRhrPwc8SP06FuXw0+fQOPjQE8kmWOJbJZAixSBqFRDmNI8PQ44NnzogwrqVZnNN0Z7hmSaY0izJkBDcsore5yaDKuqWQokNTVR226slZ7m3VNA9ktqEXcJERSmbd1KQwkWIgJcoktwZSyd8REuKwjxy294RxpG4WJC3+WfG9iQdWK49PiRwipITRIn3/jpSsPD4y7ZWv3WjNFLw86yh0WUslhkGxdI5FXXPRLfiDP/wjfvKzX/DBJ59RdxsOx0A/9uz7wO9/+zXffPU1b159y/Xtt4QcSnyEZn84iBcHTwQimkApaK1BJ1POz/rhRfwe1/+GxO9R/lalRefuaqraUi067m9u8TGTR83lesMnL55BthyOiV2f0dbhjBjpJDzPE9LIFMbygE3fWZT9NBG8F12lMdjCZZbK3mKdHARiDCU4JzEpwRPWdS3mnapi6HumyRejjKBkjTGsNxuqSlJPldJ4H8l5IAa4vLzEaFsO10IHmkZPVVUsuo6UEre3R2bT2Rzw97BxyOGZuVuvNYtFx+X5gsebjnXnqIyMS7URT4O1iuhHcrKyESvxicSUGSNYMjqX9OMYpfOXJKTJ6QZHwOVIs1hTLxYY55iOI7Hv0TlJMFYpEII3DONIVbo8dVWRpkieRmzqWVaeaehJ/oD3Iz4FghLiRoxlo0QKtvnncuiQn8z3Yf7vXKzN10k/CIIqLqFUpwc3Z7yXPI3tds/V1Q0pCjrz6dNnfPbZZyy6DRiHygUbnAT1aLQWpjUJZzWb9ZpVt2RZd3R9os7CI8dqGTkXw/HyckM/DEJeyQ8eoRCFWy1YWtnI5q5pVVXFe5JP+MpcDl/xPRpOCJGuWojnQtnCrS/UDWWpa8OTp494+vQxP//F53z40YesNxd88ftXoANaZZSKDH3kzatrrq/uvu8r+3fy0i+/Zakr6u6MoW3Z2pHRe6ZhIqQo2GWlcNqilcWohKkU2QdSkODKCkdIEUKgtzXj+oypXfPaZ976mtxH7NWe87OGpbEsXcWzdkHSimOGKWs0hs7UNDU0zZJU1WStSTOoIGeSErlFyuCzImLQOClCVCBjqZsFG1vRNG+Z/ERKgWZTscwdaRI85PXtG2ynyTZyc/OOw27LYi2j9aQq7q7uuLu9JZiBtmtp2462qU+BaTFG9MUZy89/xGVnWP3zvyT7hIsBqzTjzT0aaCqLXrWMOhNsJFeaperw6xX35xuYJmwJyjMq0ljNonZcLlY8Xi/JCfphwlhLQPDUghIO5BSprCHqApFQgNanpsF+vz8ZnGfvnC55Pn6amKYJozVt16DLNCR4z3DsRRdtDYvVgqFIn2IpuOYCI4Twt3xwMcaH3I73fCDz+vN+V3u+5l+bCTfyZ9XJ2I5SDMNAfxywzrHolmXqIVjv/e7IZnNGXdccjw4fBBAxjtMp80dkvLvTvz/fk+9IubLowskaYiaMkeOuZ+pfl2aF4dXXL1lslri6QlvNP/j075NiYrvdsVisubm+Y7870rUdMUSOxz3jNDD5QPCZGJR0obWkxWtjCpDCkPnhXk6b4s8qUAj14L2YpulU/ColsjhjrZCklDTy5KBUshxSxiQlxZ4SAElVVxCSpNvHWMSZQPAkldFWYWtHzAFbWenyDmKmT1G4Kcl7VIK61tiuRu0NeQp4P4mRXCt8TNyHQG8qhmDZ3d6zPfY4ZXicW8zowXtiEviBLthtAKMd8yhsGgZ0ViybBc2mOm3KIYl0KGVBHptnH2DOW9qzjst/8Ws+eTSyy/Dj3YE3fksaPSok+nFg8p7DcUArw8cvnrKgwpgKXyTuUngbpoKLBs16tWGaBvYH8P6hwHfOMU0lM6dMqcuciVIrFU9oZrlYMgwDu90Oay1t19B1DdM0iGIlRmIc6MeMrpZsLp9x9fYlIU2kUIqM9xrt0i8UH+CxH8nU1PWCVfeU4/BWKIF1I+SpqhaogzWEaUQ5RdPWaBZMo2Icg+QBqTLBraQBY2iwTYuZItpb9n7LNCTOn52DMRz64ylTJAPTOJWGi8FZJ8016U4jy2qRfyklDecTdCNilURDxMnT1IYWxToqPnj+lM9+9jl/+h//Q/7wT/8edbcBXbN9d+Dbr665udlyc79jPAwiz9OJ27sr0BKgLfdGgUo0naPtpAE7hoHh9ppxCoItThlr5oy0f8/Gb+uke+x94EiPUhrXCKHp2YvnDIeBfndkuB94fnFO1zRMfuIvf/OSmKGuFkKR8pLiPEaPT17G0dacDHmzzKhtW4xz0sk3Bq0sGs3khQqgdWa9XHHsB0LwjINHaajCyOhHalehsuh+taulg+kcthYtsmtq2rYlenlBlLJUriEECY9q6o7eHqhcKPhVuLm5OW14KCWTl5luwTwRkSAcWdwM93c3dFVm1Sp07jBJ4bQYBmMK5OgJMWNksleM6GCkniOROV8vud31qBBx2jCpSAD20WNXHavzM148fkS3XJZOvGY49Fx//RXH7T2H/VbQZuUbEfOzmM+srYDINBzY3X7DovE82my4uDjj5dWeu92eKcRiME/vbeiUUEJOXcT38bnv+zDe7zLO11yA5EKlysxINpF3zQXcMAS+/PIbXr16zXq95uXLl3z88UecnZ2z2ZxhTCVhPv3A1199SZh6rNEsFg2oJJO2aSR6BU4Y2WOOZFM06UY+R11IFDK1kY7m/fae5aJjtVqxaqWLOKO32qZDnSgnEEM6wQN0GWPmnApCU6RU8uzMOF+FrjQpyzTP+4m7uy0ffvSUDz74r/lP/7P/hH/0j/4Rv//9l0zjyGZzzmKxZLlcft9X9u/kpXfvmL5O5P2O9S/+QNgCCXxOuDnQSmuapiHrzOQ1fhqkezd5fJTwJackH+cQ4WW7gtWGwxS4e7snZYeplvjFkv3K0nWWvnIcgA2wR3OXMmchceYDH2rNIicsoFSWQ3CK+GmiH0d2w5EAjMmw7hY4XfJpEDNe5TS/+Pxn9P2ByQ/EMHJ+3rG9u+Pd6zd8/ONP0MZwPB548+olT5+/wNYNv/v1b0QbfJCQvf/gT//eA7BhBkgAWSkMjov1Y/KHln6IvPriG4brO65v7hgsjFYxVYpgI8ZAZS2PNmfkamQ87lm2DVVdkaaenCbOlx2bZcuqa7g8W6Ni5v5+z7ube479SDIidbq73+Mn6d6rbEtInj55JICHqW1ZG/u+J8RI0zRUdc2i68jFoH08HkU9HaXpkRRkrYg5cr/dnpCzdV0zFm/cnJv0Ps78/YC72QOnC6XvcDicfn2e4gL/luJD4Bt1LcF7ztVYKz9fn5+xWCzZrM94d/VWDmwpEcLEbn+PAobxSDkVgFIc+74gJNV3/IOm0LFkY5bDsUam0I2rqUyFUXaG+clBSkT7jNO9HFB05v/13/w/JYfDGJbLFblAEyrbYk2idpCDZihEHG00da2JkbKmTaSkWS7PWC7W/zu98f/+rzkxWoq174buzYWmcw7vIz4iBmtj8H6EFMQHEwIomTxrC2EOAs1IZ95qycuyHk0th2Gv6EMiy6BcQDjKoZLm4AIqaYgaazvWbknsJ/rpgF0rWFpylAbXlBNxiuQ+0q023DvH68pye/cGPXrOXM14fsY+HsmhovENylkpYMpEb/YYGS2I22zl2d4fdqe9dxgnqqY6TQ6H2z0xDkTVUv3H/5CPXr7Cv3zJ103DFP8N0/YAw8gxTKUYyEwh8+3VFVkHPuyesjm7YEh37IaRcRwK/VOgCHP4Zdt0OGeIKRTlSjknyC5f1k6FzkK2G4aecepZrTo2mzNWqxU5Z7pFzWKxkHwx58Szmzwqj/TjEWU06/Nznr54znHfEsKEcZa7m3tRvCRZJ6xzcs5xDeEgTUKbIo+ePJFpDIqh77m7veW4P558oLaEOoYwlXtuefzkOa5ypJzwwctk2FY0rkalTIgJ5Sow0K07soKsIyl5wjQylDVHJm351NiEObzZlOap/F1V27JoGpbdAseeaRIVzaPNgtrAk4tz/vP/03/KL/7Dv8fq0WPc+ozUbHh3deD25Rv+5T/5C15dvebd7RVfffs1dVtzd3/Du6uXxCzQmxAjU4gY95B1cuwnlC7yTiXffyZLurlzp/y773P9b0DYqhMVKQN6MNJFsAYqWUhdZUnDiLOK1aLm00+ecd977vcT4xRA1WWspcRk7TJJifHK++N3DqPaGIzWEjqlpOqNOaOzhLfkJIcRMcsUzrrSRBI+J6r3dO+nkaHKaIQqooaBnMEojdWSV+BchTUWVxCpxtjyQ0bgcwjT+3Kf91G239HhAkSKKW/geOg59BOd1TitqchYJQSVeNr4yp3OmhNSMgSMUqiiI7WmRmkpvFTTsHjymNXZGcvzM9q6LUnccBhHglEEJVaokBMmJUISj4k2s25Xuu0+TPhpII6HkiIaWNcKcsswBY5jCSGa59Cn66HAeP/Hv42kMm/w8yWLoejr52TgWYrxICeAcfRF65z46quv8X7i8vKSx48fsV6fY01FCIHt/Zb+uKWpHU37iGHs0VnhksaoVkbLQO8nqAwYIIjkrx9ET11VFfEkUZIgLIWQoZyxIoeiIOVMqQpzRmlJJ5+mh0lHLovIzc2uoBYl9X0cR4ZhZLff0bYtVS3P29X1G/zkUUrx9Okzfv7zn3BxecbQD1xcPKLrOtq2+/6v7N/Bq3WZFAbyfku632KaCqfAKU1WCp9E0he9P+W6eCX/XwqxFKTSocup57jdwe09Gku0Fh16mRDaRKhrJiOUmWrK7DRYreg02GHABo9LiRGoY8SkiM5FMFU6SxR4gAKO0dPkIAdETHmeimTP1eQUsVoRrMY6mJqWrhPKz7E/4KdJDs/TxGH0bA8jy7MntF1Hu2kQdLbBKE3lHJOXhOZ9fyQqIEFjGtauZepWbPuJ2+2OOyKpqWDRyNgliEEwHgb8boff7VDjgBXVBLWt+PDRGYu2oqkdy8ox+eKHAEKa11v5zNSsHkRM28roB7njPLFl/r0PEz9AtMM5Y7V5kFecNCwPOT8pyabdNM2p2J/9Fv4ks30IWTt54so1rxmxFDezbGouPt5fk8qf4CQKK/oVmSoLHSulxDRObLdbJj9JUWV0gVpMRRYlvoj53kyTTCu0kgZDSqoAIB6CO7OSX1fl31Va4aoKV5DXCsXs74MiFQZQkXs/FrO5pT8cRYapjTRaymRoGsdCqEMohDmU9VM6ycv1GmvMaUr2Q7xOsqdyj97/XE/3MCusa1isV9RNg3GKMSdSOP1GkbMqkdAoLXI4oy1ZZaJKYhrWUqzpBCYpjCzj0iVHY5IWGUmOolCwGqsgF4y/sxU2C1kymYxvwKuJlBRog+oaotZ4I5P9x8Zy2TRsFgu6usMoxzQErBIqnWiPDMfDgNKatmm5ur4StUb5dpqmhiJDOlHNlKTYx94TgiGdX7I0jidtx6cx8PZuz+3rtxyvr3HHCaUdTd2yXp2jlaBTfQz47KWjnWdF8fz+Z8ZpPDVbZ/qVVhaV5deIku+hinRJlad9Jmft9ztWq3OatuH84gIfeim1Uy5rUUHVxsTQH08yqm65wDnIUeRr3keG40gcArUTZLgy5iSniikzDCP1YkOIuUj15TA0pYnd/VbQz1lw+VPwIhct93A+wlhbkOvGgNbYuqZbr9GVJeWIKlNNY10514hqQ0EpJFKBE+Qi/5O1YdaIzI91ZSser8/ZtOccjwPjNPLZjz/k+bPHPH/2lJ/98lc8/+xzfNa8u95z3O443u25v7rjy1dfc3X7tuSebBmDYX+8ox/3RCYiUQILtaSkU1QWSpdEewUZkQHOQdVNU1NV8uP7XN+7yJgfptPBWiaNaFUzVRNKJVyt8QGUjjTW8NnHz9mN8M3rG755eSN/R/mgq7pFo0lGDmdzkuzc+TG6yJvk0SITSBmsqmc1g6i3lEwBLAqsQVlDMgoqMR0pSkEyC8i0ZholMXecRlbtgsrWp3Ao5xwpRZwTMocuo9fTJpEfjN3vFxl/a9MrD0+KkXGYJIhlP7Gsayon1bPVJfguRpIVeoWmnG2KwTHGgE5GsgV8xFbiHbBK0dYNlx+8YLmQNOFGywYZYmAKgjUMJKKSIkOniImij3ZVDVkKjDF5pknjfcAPR1ROWDeyqs+oXMdhisR8lMNHWdiLMLW8HN813M2fI3xXizzruN//9Tn9c37RTjK0/LD5x1BeyNjz8uVr9oc9Nzc37Hb3fPjBR6zX55A1Q99ze3ND19VcXKzwPqOzoqHCOilcA1Jk6GCBSAoitzoc9gzDUChSc25AEEOhLohPPQc/ySRI5GMFOKcyPowitegHFt0SrTXjNPDNt18Xw2jm6dMn7A9C3PndF7/jyZOnnF9c8OjRI25u3nJzc8s4jiwWDT/69CM+/uQD+n7kbHNesMP/G/oCfwev80XNYUpMvme6vUFdXuIqS63LFCPK1Mxn0UBLoL1kKGQfxftDKM9DZri/Ib19Q5Uy1fmGOhzRTYWtPL62eA0qZsYpcTSKxiomMn7oJaNCZYYY6GLARY3LGqVyUfSK5rmuGqGGkQhZ8lWc/KrINVVBfJtKPFLZkLOnrVrW6zPadinwCh9YLdfcHY4cx4n94FldPmdzfs7F6ox+GKhdhalkLTr0Pfe7HW+u3uLaRrrsSdMly0W3hGni7faWu/0e7RRN57D3E0yRlAP94Bnubxlvr1H9AVsZVouazbrl42cXOKtKcq54hypnsVaoUrlIDqy1p7VMaSH46NKh7/v+O2vgaZpZ3vEZYUvOuBPqWohi8wF7hnjEGBnHkc1mg1LqZKCei4yZIPXQvID3lluA098xT/tmOeNcaABl/Smfb1mu5r9La5ETGW0Zx4lxnEj396DFg1W7mrqupPNaDOCzB23WlgcvnPycEe+ceshreL/JMuvyUVBXks9j5mKo6E/nAiyTyElyZQKKSSkOefceVlhQ5fN91FoX2WHC+5Fj3zNNEZTl7OKSpi5S0R/odfJLnSRn8iBI6r2szSlC3bVcPHpGu+g4DntC8IAiR4W2sfwxJZr5pIufU9KlYw54PNpkQdEmhYkKG3WZthbVQVaYJMWzcQZVya/HKGjUylWYqEkakoHYKnzwpCjTkmAdMUHMER0Sj1c1H65WPFqfsek2eBS7YSIpjWoatJUCarc7yllJO77++htyjlSV4/LRBVUlTVM/TcSqIRu5a9VmiR8mUtTExZrFcsOTzRk/tYY3t3cYlXk17AnTgHM1i27JxeYRjdujFULIzANTjNJ3Vw9nAUnHFkm9AhZVg8IUz4AhZ41XSlLuVYRU8rcQSM8wDNzd3+KqFmMtFxeXvLt+KeeBJLloCg1ZE2LisN9xOOw49geqpqatNYok5u3jQE6Kfuhp6o6spZntQ/FqJejHkWYpWWjjMJKjnOtiityP9yXcEqqmET9ITkWhoEszSFEVhQxKExIoa2lXS6quxgfPMEzlOdDi442RnOJ70ILi3ZwlLFnJJF1OFCgkQLqrGj64fErTrtkfjxzHnv/g7/8Zf/SrP+T5ixdY22E3j7h/dc3v/vpb3v7+iuBHhvHItzcv2W5vGMcj2iaO45F+2uPTQGCUqZIGZSmm/VLcRFUk4oCKMum1pkBwulJk/HueZMyL+0lrHgN56EkxEtKBuhYDc9U6/BQgJSqr+cWPPuRifcZiseIv/s2XqJxYNDWuchxToveew2EnKbOlFKicJXnRIy6tZvIHsgZnDJu6knFlEOPL2fPn1E62/FFp7mPiJkZC3QpZKStUznKYR1z6ZtFw3G3pDweRIBlHU9fE6Jm8vEzvGxvnzfP9jtT7xJP5YDxvIrKhlYpeW7RtSLrh5phYbGoqs+Z8s0ENd1S6x2qProzQtUImhgyTwuSKhoYwjLTJsjCO6+ORs0dPeHF+zuXTZzBFKmXotKVJimF/YDr2tIPB70bSXnwpdDUR2eCdq0R2NQV2tzusmbAKVssl7T6z0Y7OVRgmnMq0TnG+aqjbBX3f0/dHSB6FBWXRyjB3lOK/pav5/n2aNdV/kwQCfOf3zp3G93NHvE+EcGAcB+7v7nn18hXvXr/l2dPHnF9s+MmPn3C1lvCd4dhzfnHOxeaCi8UF/vpI1Wq0s1jVsB167vb33Nxdc3a+KdhMhzaK3W7P9v6eN2/f8OzZOSGMvHu35ze/+R2LbslqvebF8w/5//1P/4Sbm1u8n/jVn/wxVWXwYeLf/Jt/RUyB9WrN55//krZr8F66ok1XcXa25tHjDU+fPeL2botSinEY+OSTT7i4uGC32/Lm7SsuLx9JJwrPX/2bf8l+v+dwPPKnf/Cr7/va/p27/uGf/SnfvL3j7XbgPg7kHEk4nLXsjnumyQuf3HuqZYvSijAmiBqThLg6MOK1wBtcPuL213SN5tHa8ch5cpOIbeLbeCRpQzIWu+qwURZwVGLRVDwmcRk9u5cvaTdr3HJB3UgOis4KnTWXZ09IWhOVwltNmxMqZqLP0u0BKAUHSYALFkuOiVW1YPGoJXrN5fljmnrB7776kpQt55fn/OqzH3P7bsv91S03r64kofXphrZt2e53fP3yW16/e8vXL19ys73n0xef8OLyMWfasN3vGI97VOtY3sP2q9e8/MvfoLPCHwTNW8XAh2cdm8ry4nxN09acX67ZnC9Q2tNVEjwHispJGzQpy90xMCZNSIK6vb+bir9MfWeGOcuR5qJgPhRDKTiySDMra0mFHJhSIk5CDPNFJvg+Jer29vY0JZECYyLGhxC+ucmz2axPRCfg9OdTSt9B675PdzLGiL65TBKyKuF6JbCzrhvquqFrFwWfK9/3sT+yWC5YLBcMw8D+sJMu6jSVTJ+6hKkeJKE3RRSyFp4ac6VoiMiBR6uMdpZm1aKcyDbnDd8okaPGYqAtmixS1KUiknS+HAWUkbIi8B5hq0hZY0rs9wdSNmhb0XYdi9WSum6LtOWHeWldTL1IA5KS8K2RYjYmRQhQ65rDccLHTCLimgXGVeQwMWWIwZNiErWbKU2xyeNyEvOw04yNx9tEGqHaQbUy5MqQOkM+mwjRk3Jgo1oSVrrlSiTgWQWCjwy7HUlBtDAdI24t3q/JKN7sbrkCdtpg647WtqyrJY8Wa3RKEvznE9+8+Yonz56wWCz5/Vffcnd3R1t8hVfX7+gWLYt1i7Ka3/z21+y2O7Q2PHr6vDRMFXWlyZWhWS0gBtplR7M640/PLjGLln99dsZfDp6ve4+pGrquorKRs7ZlUzuWVrM6e0LUWw7+FvzAA1ghFxmb/Pz2dqCqHM46lKpZLZdkOibfMAx7YkHcKwxN07JcrthszslFMrRYbVidLcsZwtBUHXGS0FI/Rd6+fcftzUv6wxXrpaW2QAocjnt213eMB48/RqiTTF9yIJmaujmn1i0+1VKcK0PrGrbHLSH7k1RpZwW7vVgvWS1X4gmbJr76+mtMAX6cn63p+wmtHc615DBhtShUyLC/3zOMPZMfub2+Zuh7kezlhLFCL8tGkZM0m2NU5KjBRpLyjMOWn3z4U/7gRz/nP/rjv09z/phmvaDdLOgulpIfoh3xCHe/veev/+LX/KP/x3/L3f6WkDwpefrpwPX1W3KOnJ9vqBeGCYsLlujnNZtC5kqnyXxKGWcr6trhrIS3tl3H2eVj6qY9Ycy/z/W9i4xT6FrZRITAk4hpYhgKcSBG2q6VbAVr6doFTxZrzi5GmuUCHyLHw4D3kcpV+MsV/fHI9XVFU8vId5pktKtCptKax8slutMoAZ+wqRc0usYlSzyOdE2NsxZrDWax5j7B22nii7t7CLJYKG0kqCslYpyw0ZSgNtFuphzphyPx+i1VVYvWPstorA71KWgu+4cpxt9e+L7rN5hVRXMaZcyKIWj2XlNNmnrSuGywaCyKKiR0ks0kayNSnAD4TDXB2lQ86jqOg+f84ozu8SO6yzXH3Z7kRVY1xcQ49cQ4ctm1fP7iQ97eNnzx6hsGHwoqUoyNNksCel2JhG3wiqu7kd3hBmO2uMpxcVFzfrakbVpW9ZLLzRm395qrKeBTxmeZM1EOFJDR5WE9oQcUf+t6Xw51SiZ/z0T68GPuMj4UHifD55hJIfL1V99y/e4dXVfz5PFF6TY2VGaFHyL7uwN60Dw2S3xKjOPA3faOfZjIRMH43t5wd3dHCJFf/OIXkqMx9vzmN79Gq8iPPvmE589f4Jzh2O/IRD548Yxf/vIXHI8jx+OxkDQcVVXzk5/8jHfv3pBz5v7+jkePntA0Dav1ukzKLId95Pr6nuPxgHUO56rScZwAzWazLp9NZhxHukXH5mwtpK0f8HV5tiahqNoRlxy3OuOTZ8qZcZoIUyD6RAoa9Ei20ilS2pTDU8Ami04yojbGEPot094ShxVUitokXPQMhyPXKnGoFK2V0XnrLLG2UNWM08h+yLS2ona15OxQ+txao62YHY02WKXQceLqzTvCFNBIkF3wEzF62rphGHsUic2i4Xh3w/F44DD0PHnxEVXT0LUbPvroM15dXRGB7c2e++t7pkGIUstP1yitiSmijObs4pwpR7b9kTf3d7y5u8YHz9Ou485PBGf57KOf4PoedzyiU0BZw+gEdHG52PDRsmNTOdZVJRt63VAp0RTrItHMSUb4ldWsuprVoiUPQsPRxmKcg/jQEJjf11kSeOqgF5lX1dTUrhLZErO8YRAc8eSJWQoWo5QUcO9NMIdhODUfZJoYT8QkXczXwHekU3+zmfFg7H5oiomMCayRzqpSmliaQIoinckUclg6gR6UghQj93d33N/dgUakb8WD0jRdAZUIeCKrEgpZKFgZRSwdy5RnYpnsZdqCqzTO6hNgIgsaZ2asCCVnVg0YmQqplE+J3eVI8Dem6Pm0B6mcMAqshUVXk2Ig+On0J3+o16k59Z4s13vP/nDAuA5bNWSlMbai6Ra0y5rt9pZp7MVbaJ0UmzoKbKpIRVI2cm9VxmpNrAx5qdEqE8ZMPESYFMpZpioyDgNqirhsmQZPUJrcQB8HCIHkJ/KUxFhsZY9IKhOVAqsZQ8+kNcFojMp4qwmVxbUVNBXKJ3LwNG0LOTP0R+5urlDGkHLk3dVbhvFIu6rRleHLV98AkcXZivXZGZOPpDBitRafVO1o2ppw2GOKDnLZNPz4w49oholz5fhte8ZX796x9yPH8YBRDbVxtMbQjyN5HFHeF3lNKfjSv/1cJLLWwDgVgmAMxQcqsBaygF76YWK7O3BxuQBKdMH2QNe1tK3FB/l8YkwM48AwDAzjxOgDIYqHzuhEu26YhhajLV5HuddRocvXGdPs26m5ePSY4dhzd30LSVQnuZxfxnFgv7/HXhk+/GQhHgzvmbynctLIvL/fEkOSmXfek+NEbQ1OCz309u6GYRxOUnSlMpWzQC7NiETlHCSR9lXtiuMUCNMOnXpePPuM/8Of/Qk/+eTnfPjRp5j1Ja5rsK2jjwNvX10ThgCD5q9//RX/6q//mt9/8zv6SbyBIY5kFcVDpkD9/6n7zybJtiw9E3u2PMJVyMy8eWWp7q5qBTTQGCM4gvxC/uyhEWY0EOAQA9Ft1V3yqpSh3f2orfhhHfeIvFWcuW2GgVWdsqzMG5kZGeF+zt57rfW+z+uElBbiJDJAN3uhc0Fpi9NqJpcWfONom5q2qWmaCusr6qbl9PySlKUBb7/nNPSfNDM9LNzSTZIQnJQTZcrHA3Vdg60slfc0tWdzsqJqpMLuuo7b2wf2254UEtpWxFXNprUs5m5v3/d0+wEdCh7Ds3aJW3u0B2UKq7pmYVpqPNPtcEygts5Sb87YFcVmCoQkvoQpZZIyxEOlHQuFgLOO4v0RkzhOw7Eb5rw/FkoH3d0HOQ8HHejTH4eFb+5YyccVZS6+YkiMIbEfIqYL6N1Ea6FVjoUtqJzRiA4uGlBZIy9xwgGts6zqGj8lau8lhbbypAFUysRSyDnS5YmUA2vl2bQLxmGgsp79NFK0GKz7rodwwOBKImk/ZvKDsOdLloTJKZ9gtRRBy8pzWmsYHaGpGWzFPkRCyrNkYNYVIgVH4TDK/rDK+O5C9Dt62uPrfJDoHcya88eQj5VcSDEzdAO3JWItbO9veH75nJOTU9qqZeon9uOOsk9cPl8Tc2GcA8V2U4dvKpabJbv9PUPfse86pknkFoek4u3DnmGQMCxfSXijNmCd5uOPXxIjdF3P+/fvjgbvi/OKruul2zkTd6q6nn0wmjAlxjEQgvhxzPwa7PedoDyNoaqk2C0hEGPCO8dyteTk5OSf8sj+wV3LRUMCtPcMu8A+R7l/gRgCaZJiPutMtDIeV1p49SQRAhss5Plec4oSBvLYkaeR0tRoMlUY2XR79mUiWsXkYVq0jLpiRDNaxT5JqvKyaXBVjbUOpSDkg6xTg3ZHElFKif1uzzQErBHkYZgGYhhJIbHf74TypDS72x3393fcPTzQNKeszzzVoma5PqXa9fTDxLCfICuhaBlD20pOj1IK5wzr9ZIpBU63D7jK0YUBOvj48pLsK5TVnJ2fM5xusPstrtuCNwyuoFXho7M1z+qatXGsrCNPCmUdqmhiOeSNHJ6/gjWKprJsVg1T6QlpkvwdKyQbM8MzDg0nocZMRzmS0FIstfeSnKu1yKFKYpxD86YpSIExI6MPz/RT6McjQOJDJOxTv9fTcLvv+sB+n2wTDvOAg+fPomYfhjYiEyuo4x5w+LuHl2ccRsZpxFgz7xURY8Wrk3MmpzD7LGZ5b05HuWdJQkE6fC6lmF9LTVtbKq/xVqQ+kXSUUomNcNZoF0kwpohEWM3koIPs4vcWDUpJIJwuWF1wYhYg5yQkwz/SyxgzI+MP3oBZbqLU7Pd0uKbF1S2ubvBNy2K5YN93qJjARCkytAGTGYcJ6eiJ9CcXwZ0rpbDeQIv4NIikKaEi6GhJppBUpBCwGWmOOI0qjlDEpFxyxCRQVs25G55kDoWmIiklMlzj8GjQhmQtpXKYykEJkhJuLDHE+RkaWG02GKPZ7mVt0FYxxpF3V2+5PDtjsV6xuTjh/btrmdZYR6agrXh6zCDybKXAWcvl+gT36ecscPjrgS5Ewu17Up7Q2mMNGFWEtpUSKsn5b54NzxJjeX8en0clBS+JOIWZJJnwXvxsWssalAvSgO4Hzg5KmZjY73qhiVpPyeKFO9AoD6F1uSC5DUSsg0XT0qxarIlEl9l3Hc5mVNGo4olZQSqSQWHsLNeee6FFnttMnmMVRoZ+f9Dby7M3q1RiSgxDB0VTcpbCNU8k77DaMI0j+92DrBVRSAES4OkwWqTdOSXBEhtN3TSs1mvqMZInRaVb/uIHH/GzP/0zPvnkRyw2zyn1mqIVsURur+64v7pl2g2YaPnNr37Jt6++Ytff0w1bhqFjCgPGacbQo7ViGK2c15Bz4KOaRLx2Rhsk+iHRNhVtW7FoazabNdp4qrpluVwyTnEu1L6fr+t7rzTTNB1HJNJlmubchIxzDVpnYizEmPF+VuaVRA4drXN89nzNuv0xr759y6tXb/i7//R3nJ+dcXpxykd/+QOMhhBGpnGQjToa9FDo3+/AGnSlMa3BVFApg02GoCqmUb6OQoT9Pa0yfKQsJ59+zFcP97zd77nqRgoabTzOW+IApkCwkhOxm3GDm4sTYpBQm6auSGkQvjZCHBrD9Li5lRnhlcuTTfI4PJSNksKw2wqPaH4CtTbsuoG3dw+cXKx5cbamOl2hxgf0uCXHAUVA8iMUpmQqrWiSo40e+7Cnv9+RXMWiqQnDRJkSNkKfAjcq0pWB6/f3VN0k0ibjCHkgz6nTt+Waq0kCtkJKpCfdsxAClW9YLVeocsY0GsZ9Jup7slGc+gWbj88I7pSv3r7j+v6BbpYsKKXR1lCizAufHh7kGX6cBD39cfi9Q+6EhNhpxBAu3b+UyrHbdFBTlSILexhHYhy5ub5ie7/loxcvaOuaqEeGSTHgSWcfoawUm8MwcH31js3phsuLM/72b/45X3z2CXf391RVw9np2Zw2+mcSGjkMvHr1lrZZ8PHHL9ls1pyenTBNaia4nKK1YRwHhmFkt+sge+rKsNksubp6S4zC/j4/uyCXjHOWH//ox7y7egsUFu2Su7v7o95YJITuuIn2w8gUIrvtnr/9y+/71P7hXXVT4SpL3XjePnyDDiOlGKJy5CmRp0wOgkjVVUF7ja4cWQUhdagyy5WibDw2Yk2kUkm6fs4Qh8DELedhwo4DewV7AoQNfVXxbtfB0nFhNTQNL6rlfNgUCcbtMJJjQufC2mssGXJknEYhp5iMVo7FYoFSQg7p95KYK3kXBqOrGS/d8/7bd+RiWGTY54nddqAUxclqwSc/+RxrHdZYFu0CXxnMnLRqJ02OS9LFJW9eXPCw32Os46M/+VM+mSI399fs+44f/vAjprWlO28oZPo4UsislzVLa3Axo7uEdg6lHEUZSp4oYT6kO4umYIG6Mnzx6TPUqxtSvOf+4QE1h+5557g42zCNMr07UJ8ANuuNsOgBcibHwDhnw5SY6Ic5PC8ncgaVIoyjSE/nSTFwnE7Ip0nzxGJuYqh8nGQ8LToOhcTTJsUHSNs8GywPhwEt+vmmEpO5dZ52sZiZ/APATNN7LDgO0oAY4yzz0CwXG5HFpDlwMAbIeQ7QggOWsIAc9jno0Au1Nawax0eXS07WNdZ5ivZ0IUomgxx1mC0/ElKppTAiSxr93M1ClXFWcXMkbR2nOlrNB6jI1N/SNK2g56vmv9Yj/d/8aupaJjIx0g8RV0kKertYgfHU7ZJ2ueHk7DneO4w1TKlgXIOdc510ydTGY1DEeDNnq4DxWjwDRaEwtK0lWpFfRl+I1xMMCbUFs7Fot6C4wjROOKOxCMxEeUW0kBA9u3YG4y3RFHQljZaHGLH1klPbsPY17VhYmJriPbvKsWoqckwMYaIfRna7HSkFlquWs4tTMoXb+xt+9tc/5fr6HV/+9hdcv33LRxcblusG5RW20lS24vzkDFcUU5R1jCyZPqCJVlNlw8XpJevFBvX1LffdFmsKox0wlSaZwpBGvLN47XHKkksExBN0UBo8FvWKnAqxyPMcQpTJB+KvkMwWWVOM0VjnmUKc81vUPB3NdJ1Mntr2EK5cWK5XLBcLhm5BGCcxnGs1Sw4rNucV6lSjouKr33xNZQRRW1jw7mpiCoBK/MPPf4HW4LTCOMllomSMKlTe0tQVbVuTYsBaJ14vBdM40O13vH/79ugjFehHITQ13lpSDITQz9lnmcpZaYhbw3q5Zu/3xwZNU9e0dcXSwTmKixefc/nsgj/5Zz/j05/+OevNJdqu6feJu+tb3r99w3/4X/89FAmsrk3Lvt/inOLZs1N+8/UNsQyEMlKKxnr5d5VRdPsJlABVUpZptjeWtl7gKwkOTnHCWY1zBmvh7OIElEMZj9aGxaKZp37xdx/O33N9f0/GTFkx2pJmp70W/Aszp4tS1JzaXUAb6mbDbrsjkymqEIeJhUt8fLnk9G//gqqqqLynbjwxjExkxnlDyCqRlcKf1ZR9QE0JnTJGOUYb6dWEaRXGKWw05DArXnNC54lQJi5qQ92esMmKd9uebhjphxFrPbrWOFcRp0BBEaaJ9+/ecrI5oaTA0O+l41MejYOHDh4F0jzqoxxoIQoO7G0OlbFsmsN+D7lwsl5jcqBMPcPY8W4a2N/vuL1Z86/+7AcY62F6QE+3aKsprhA8lGTRrsbZwvj6Pffv3uP6wGXVMOiCDRn6gC/wolmjlifUF5r3r16xLYnpXuNVxZRF2nEf7mFO5i5JkckorYT/rTI6T+Sp4/b2DquX5GQpuWDcHS7sUO6aqG9ojUGtHF2leNj1xAwZg/J2DjxK6O+8hk+LCq3NbL4Uk5EUFE8MeUo+fixsiyIlKCVSKHPuiUZXNVZrdvuRm+tbcoxQEn/x4z/j5cULnq+fUVee4AxV1fDJ519w/tGL+b7WvHn9HlRhvdrgq2Zm3w+EEOm77uhD0UbRDIGqCoxjmL8WBURWq5blsiXGTNO0KKWZJjHG3t9LEVvXNcYqFoslxjpyVGzW51KsKpl8LZcbNus1Ve1JKTKNElAUpom2bbm4uPi+j+wf5FWUmQvoQq0LJhdMKXg9h23OZkKroLIGZTRjSqQUjgZkrcF4K1ISHYm5J00Ou7vn+uoNyjuqxYJnf/Jj3DhykeCsKF4/9AwMdMBvdvek52c0l6d01pHrGo2hzL6NhCYVIwVuCZADqRROzk/RGPmzJQJKwgPriebsEo1j4Sry+Yb3r17RjwMXL55zcnFGtVpSuh0ff/SC/a7n/bsrdtse7yXocbGosV6OoqIXjyhVaJqKf/23/4LffPkt769uufr2DXnXo/c9Q39NbxMGWKxbVI4si6UQKSSU1RSjyMago2IqMvU0eIqOpJKFyoL4z7zRKOs5XTYM/cTN3QPbUSROxhq6YUSDBG/FSNM0qKLmYmCmLZXMfrsVp4qW1PuUErlIGKCaJxGHQ/xB+pRyIh3gEkWKjCO9yxxIdJKP9JQI9RSPffBzPIVzKBD0opEAPT3nYTDLJ1IILLTBOk9Uit1uxwHl+NQHciRWzWrQME1oPFopnLMs2kbM2SHM7186pkofJrpaifSmdpql1yxs5nyp8d5IF9uvCFGypHIUTX9MWaSeOc8m4YI2Ms0tcyGHekInPLrKH0lXBQlG/PijC+pmReb7mTb/EK+SNTFkQoxo4zi7eMFiuaFuF5iqxlU1rmpYLBfiBSpF1mk1B5upgrKOlCQo0roKY7XsPUhWz+GwnEIilEhUidwU/GUtcqleMd4PuKrC1hXDpiZ5wBasSZhUME5h2kPoq5awzS6iKkt2HusXmKUYxLMyuMpzdnHOxdklrV+ilKbrB96/u8Lbiqv37+iHjh/9yeeEMDBFwbPfvH3NdnuLigN//ec/oXKK27evuP7Hn3N+/pzFxlEp8R9MQ2ToBt69fsfl+RnVshXZjCqoknDJ0r68ZPPVkrOHmr5WtI3BukwkoFVCe4NvWoYOmNUXWj9O0p6SNw9NAaXU0Uwt2TYZoxPOegmDK8wwgkOxAm3bsFgsqaqKftjTdRMxTkxDz8nmlLHv6Pdbdg83aBMZB0SJsFhgtEElhWtryToLhZwDbVXTVBXaLhkn+bqthWIUSYs6IqWMM57VYs2zy48ET2s9pWi6/Z7dwz377T05jgIvmqVWqEJfEqXynJ+do5RQ9oxSVNYdpZgpgXIeBYz9nufe0pCpxj3/7F/+LT/66Z/z0ec/oN5cYqua7Rh4+OpLbr96z93+gXcP1/ybf/s/0zZCL9ysT3noBu7GLffjA0VHjFdy3+m5EYMmxCD0qlJkulUUVSVRDheXl/NaKSAlYxTWKVxladdL6naNwtH1mdVqIQV+132v5/V7FxlKHcZiZR7ZGukmU44pkGVGrk5TwNpAP0amYSRn6cyHECgpYFVhtaiFIGVAZdnENQmrMzFHMpqsFbYyqBHUVCAU6CNUUFyheD1z20Fn0EnG27oUfAwsrSC3Kt9QtOXeeaEuKEXSEZ0MqsjYvyQ5yJUZTXhA3R0QhE8JIR/6DA4P0eHA+TTZdWbIx4geR/quEySutcScUeNACkK8eLcb8Snji2HdnFDSBDnJQSAmqDU6OJRV9H3HUDT1/RZ1sUQZxVQSzYR05+qKpECdrYEE00C1tZhxIEwjfegISvSKKI2bpRBWS2feqExOE/vdA02lUEVIXctB0+pEZSIGTaMFmeu0JoyaIWamJImr0oFT3xnLPdn4f08X8kBqObx+8PjntFZCpDCGEPP8Oj/ig1OWIKQwRbqu5+72jv12C+tnLKpKcMhaoYyitsIdPxxsKBKwZJzBWEdBSEfaFJz3QvnKCecsSgki7+Fhh/NS2UvgjxxejHGslsxc/55cJvpuQGtFVVcSFjmTgnKc/72cKCXy7Nmzmd6wmA80EaNHQkwM/XAcMf8xX4KUForPum1pUqSKcg9mLSqoophZ6gc5Yj76oo6FPRq0EolJzoSp5+H+HWMIKF9BSYShoyqBxhg+UgWTMg8ZblNi6CfoRnI3kmrASW6KouC0lsO5NocBHykXYgy4WhLbS87c39/hvaaujOi3kUPMQe9aLRqWJye4qkJpQwiRd2/e46ta8nmKwCsORQYwT0hnWWY+rLWKyjhWzYLQJkyBafvA+LAFEqFkMR82K2wJlBIoaWIKHShNmQlp6IzKBZUVushrrZX8nNNhXVMYBU3lWC8qlo1jP47z4V/WdzWnzjrnHqlGozR4Ss7kFJnGAYWa8zQiU5xEhqI4yp0OKdkHw3Yu+fi9H2SSs+Xru3fR3KSQnIinEwx4nGKoWXOutXgenPUzGUsLwlQfEKazr2zGmuYiXga5Xx8lYjlnYhK/jBS7UnTIEV5+HCl6+tAZTfNMVx3/p0vBG03lNJUBrwJeGZQ2FBOxZKzKYCBpSFmCILsIMRViViIrnCUq2RhyecxVIc81jVLzKqmODa++32Gto27+eIsMlENZsNph65rF+oRmsaKqaoz3M9q3MI17cpz9KlqjSpL7zxhKToQYSDFKaCRQsmD6tTFoJfd4mvKcmF1g3j+0V2AVug+zdC2jkhEAipYDqyny/hWrBO2f571GxA+kAlGBqioq42ms5+X6lPP1Cau6wSYgKZxxLNuWMEaapqKqLSebDcM0yuF+uWAY7jEl441Gl8zY7wmpoHOmcRavFSnI1xrGiX7X8e71O/IUWZ1uWLsLkW2lIqqIRcvqbMNpt6Gye7wXqY+GOUhZUlxQGmYk6+/zXh6mnE+bs/JZ9JzJJ4hmM8uPpklyG+QZTLNcXXKnUkpMYSREAUFUdY0xmhgnYgyoHEkZUAnnapwVal7VtqhxgjEw9DJlZAY/OKMlR2uYyGkObVZQVzWLxZKmWeBsRU6Q40SImWG3J44jOUXJMmNuthcj/ie0oI21FcO9cThjyeOEUTJR2I8jGkVlJL395fMXnJ+ccLre8OOf/TkfffFDNpcvmELNq69ec39zzd2bV9y8es9+Grgfduz6jqwKoWQe+p4xZ/owMZUI8zlOF30o2WTNDY9IfgozstvhvEAhmNdUmWAYlCoYr9mcndMuNoDD7iaaqpJohe+Jwf7eRYbWmpLlpjjwjxOQ04RCEixTFoQtvZq7BA7NAGVOucwzHSDIwzbNZrzgDHmOjde6QA6UNJ82jEN5afQyZHhIYgRfWNRaQyxgwCSwSUgpRUFMAy5LaufpaolvWm66AWsd2+2eaRyYJi1RCW2LBoZ9lOj4KAUOcxfde4+19qgXPlxlnl4Ujvvz0Y+R4bhp6pIpZeL6+oZxGGWEjxxgSwhoY/n5V69pLZy0jrMffMr08JaSerRRjGmiWIWpDb6xhIctU0qYmxs2L9YyRSJjx8RipTDO8qZE8otz9LrC1FBd7WDXk7qevFfsw5YxBUwqeNPgtKEyGmvnsX+Z6Ha33DuIqSFRs1wLXrOpoFaBpBVJOWpXEyaNHjI5R0J5jJ1/eih+2mX8bvdRDguPGurfTew9GDHnYKt5+zzkl0xDIEVFcYoYM9vdnnfvrni5ek65PODn5k1YMU+cJHGzbtYUlclIgevmYrSUTFNVczBYQ9M0xChggq675uz8VLwTVhNjwBgxlq7WK/mzKRLCQNssKGSMVXhvscZjjce3y2NaOSrKCDxJ0vI0CqbV+xpjLPtdByg5HP8xX0pjjUV5eHZ2zqt0z27MuGJIRpEMFAPWiJlPRUE/5oMEhFmmiKwd3nvyODJMex72dyzrFSa3BAX3Nze8WAoZ5cxGzpPltsBvc2bnKtqQ0Q+dBA35ajaSFxovGFfQOJCJVRbWu9ai400h8eXXX3K2WXFxdoI1hj72pDKQdIXOE7pyXLx8Tj8E+mli2Hf8l//0cy6fXUqXrqm4OD9jc3LKerOhMEnXuchCktPjYXt3dScetdMzGtvQ3V6zu7lifb5hCgXjG+rFGstEjgMpDOiYpKjTc5dbbTFJiWk+6/ljimI0/STPk0iOA4vKkNcNZ5uG2+09Y4hQKlIMx8O5t46YEmEKdN0eoyQoLU4jYRJzcSnIhFO6DehZDvV0gnFE0x6fd4XW5ShLheNP8+/JBPSAO7fWfoDK/oBepzXGOax3c+rzDEU/6KuVnosLmE9BGOtIQQIIhR71aHBnfi1LKcQQ6LuOnOJjRkqQcE2tjRR2+WD6RuRkRQMRbxWtN1QWVNyjdcSoRJrCsemjjQKTZW10jv0o4XIxQz/E49S8YJlCIkRpaOXp8TVIFGKGQiaGwJdffsmzZwOffPrHS5dStsFVC4yzrE43LE5OxENppOGTcyAMPUPfo9BopbFWfhhdMLVnLJHYR6ZpoqlbmaIrTVHi77RGC6mtC/LMG0NSc0J1UehaY0NG9Yk0TahRYe2CYizBaLSKFCPFvfeeMPbkJCnPoxYcdh8n8EuW7YqT5Ya//vQLlJNGle4CxXhW7ZLPPvmEL3/zGz79+AWr9ZKTkxXXN7fkkqkbzzff7FGVx1Jze/2eXBS+qnn54lPONxu0svS7LU47+m3H9vaeV199zfW791w8v+RnqyVxWUFIlP2IaRtOPn5OcRP77g2GHaYUDIb9MDBOSbLGDltz+eAn+fXcSADmAv1RTmWNOz7z4zjhi2WaAvf39+z3++NZy7mKwmHqGQl5IqaJlCNVXYk0tN9RciSlgE7gfEOKMgmx1rBeL3DDiDE9Q7en5ACIXNRpxdiP7Lf3OJNJUQL3Tk/OOTu5oG2XlKwZx4m+6+l2e+7vb8klYJVGWYtCaHAaQwninfTWk6PCaI9zhqaqeHP7jcivmpq7rmPhLJXxVEbxF3/xV/zJT/+cn/z0L0gYCY7Mmvurjv/l//Hv+Pab37Ldv+Oh2890OqjaBaauGHPi669/i/IObeXeVVayW3SR9UAh552YJimKlQI0zjc474Ss6b3k9TiLrypqXxFzRBt48fIzqmaDUpbNEJiGnpIKbH6PD+z3XP+EScajll6yA+Z4eyPyqAOgLyWhgoRpIEzd0VhUVQ6tPcYaMolpDMJJV4UpQUyzltUYXLOkwUCGfujRK4NeeEy09NsRkzx27whpRC0yqioUW8Bq6AzsFY4euhGmSB4CL89OaS3kqtBvI2HONkBlMcRVBpKfTTCGqqnZzRx44JhAe3iACqIPP1z5sAtqJabRItpPpAEPFHbdnn7u8AFY76m3e5q7B3a7PZvNhu7slJOzTDNpdFSQIlpJN2JZG/7ks49o6wVXDwNvX31D9BlXeypt+Uh7dmQikffaM/nCVCxmpThFc36+4ZQLbPwEM+2Z0sjbmNiaiqg0WSlymjD9RFs0f/rxD7HGEdLE/f6eMCj2XgnHv0RUjohoJfDpxYapGHZj4dX1lmFKhFSE1/6dheepZOrpz8fX9olXAzga8A8SBmhIKZByQJmAtgrtCjrIocoojbcVQx/QxrNYnTDFwLu7W7ocqNYt9WpBKYopRG5uO9pFi6u8JHAiJrV+35HT4QDE8WE8fGkpJLo4obVs+M55Kl+zaDXaFCprqKuWak4ILSUT4sibN+/Z7TqWiw37/T0xjaACL19+RFMvca6hbZtZrudYLmuePbskxSy8+z/iq6SIVgUz88B9jFS5UBtH6xz7kBmJpKwoQeRCxcj7n1HkHMilzASfzO31DdrZ2a8BfR5xUaFGzXR/S1CZbDQ+T6xbj+1GdjfXlGFkd1cYlEItF/jLSz5ar/lovcS1wpnXAMYw9r2YfiMs6lZkNanwk5/8Kcw6fJKGXnJuqmWNcRW74YH77Q2/+vVv2ZxcsFht+NlP/5LFUqR1p2cnsp46ByQxBs4dw1IU2/sH+qFnDAGjNbWXSeq2u+X5Fx9hlo5Xr19LXkVKaAqrpqJ2mrbxfPTiJ/R31yhjqNdruttXGJ0wuVBCppQBciKXRK0fC/9IQnlwruKvVz8Go3l3/cDddqAoRVKarDWuquge9ozjiDOaaRyIQSQcKQWUMhQU4xTmdUChZuzt0+f8MHE4AB6Ye/+SAXEI/Ptu6OehWCjHYgM+bE5IjsDjVMN4P3sF5S0zTkKycsnc3d3grJ2Tv+UArpWaqYcTh/yKtJeJ9wHJG0Yp+o3S88EJKIoYDiFbB7O5kwkSmUWjaBtN0yjqRouETCs0cTZ6i2k2z11irTQuRbQRuduYCnUzY9IRCZn2LTkpwpAoqTBNkTEGspKCJOaEtoax2/LN1wNv3rz+b/fQ/1e+Fqdn1O2Cul2wOt2gVZaJUQyEcSLFkRgGYpqEKqQVJnqCtYIwrz1VfYKZQw3HYTqqM2ylmcJAyQZnLNroeSoEWlkhk81NAO09uQuk3US5GtEPA6oz+EYRa0UsiWgjw13AUHBGUaxmFxN9iPRDIgyB9YXmU72Ev/8lncro9Yrmpz/j/bDj6v0Vb3/7JWHosDyntZq7vmfsB1zlaNdLPv/kU27vrri9u+b8/IzFcoWvasCRYmKcBsb9wNuvX6OLJk6R7f0d0yQern/8e8P55y8FnWwyjfL86V/9NcP0Of/w7/5n4t1AmmSaebquCCUwhsztFGZZuEwvyzHcUK6nIZh6Tvn+7hlAiHKZqg4iD+v27PcdV1dX/OxnP8OYGmOQDJ3VKUrB2A/023vatubkdMXrb9/LxFkZoUTFQjf2dP0t3aJlvVqyOdlwsnnGV19fs90GQtyRk/x5qw1N1bI4X1FVDdp4xiES4g6979g+7PDaUlnPi8tLbu9vGMaMMpY49mRk4nR58QyjhFYXk+ZksaKpPau2xo0T1kBTO/7yi085O7/k/PIZP/rZn3P67GOqZoW2DT//L3/H7Zt37O/uySHz9//4/+Hr119ydfcWX9dYV2GrmsXyhM3JCcY53HLNfgZr9Ps9+93EctmwOTnh9v6ePEtMc0jSOlMaY6xkggEoRSqZfveAc46VVlw+e0FVVfiqQps1VX2Cr2rWJ4aHh1ucNSy+ZzDwPwkxcejmCB5vXj6VRet8NOyISQ+0esQAit7eCcLNymA5zum9h8N5nikaKkPSmogEk2RnUFaTs6JYUKVCDRZGTelAGYWqoNhCWiQwhWIVcS/5EVYVbM70ux0Lo3hRG5ofvuT1zS1vr28Z0OhoJPBOy+REO4+tKqa7e/q+YxpH6ZaP43HEf6AbHA/Es+lbNkyY/+s4RsyUOZr98GFFCYGiehLgtwtB8RrDr7/8hvOmcLrwXJyfEft7coyoGDhfLwkTGGUZx0SlDdZWuLrC+oZUeUalyCrBw55lGLk0Dc9azUd1zfOmYa0N492WISXul0tu2gWjcyTnwSiWxrK0npeLM8oQ6Hd73r9/Q1R7FivHau2xqaeEScalKkOZcMXQKM2L0xXbXuRyIQs54sCMf2pM/O6M9bt44KcL0dMOpdYalBPkb8pzV1NyC7SWaUJlLOuqoTYGcmK3H/n222+5HbYszpa8+PQ5q9WGk5MNdw+DPGhRDH8xCS5zuVwyzuZU6bqMEhRpLE294P7hgTCNxBSgFOqmoeRMVVdC4eAwkjSgxID69u1b9rsdMUS811xd79jt7xnHPadnGxn527nrmQohBrr9Dq1F9rder/8pj+wf3vXk+TBG44zGTZEyjrM/I2MV2PngqIylWMcElLngkwP1rKkvRUYN0l4WPGeWg10YO6bOMmjF1lvybs8wjOiHO5oYGZMkI9/FgffWYHKmMYaVAVUKMUWUMRAjJidqNCbEWdMFrpRjQ0GKUIvShqrx5JQYpsD13T0Xz17QtEusrwhdz939HeM4SMcuBpqF5BegH+/1lITIMvYD+67j9PxMPp6VED9ONlL4vH/HMEhwXIqR/X7EaClwH3YDY7enaVsu9YrtTnG63LBZNfQPDyhqSplIYUddt2KMjjJBm/FagMLZeQqgRcqQSiGHQIgSaBpCQFMevQg5HT0Ahx9Giw/iKRXKGJlKilYekQvNcjHmaZXcMrPQ6Inv4Cmu1s7pwoc/a2bZkzYaY6VokOnknFKei6Asw0wmNE9hFHnGmKuZKFfNpnTxi+U5WVsQlHIvKgR5nEo+4mNFonPw5xnUHF5mVaauCouFpV1WUmAYC3NgmcipZL+YY+clTKxkTtYbximx70amIM0GkSsnVCrkeTol/rqAIVK0wYgIEFc3bLuJKSWmcfhv8rj/H3E9f/kR2njsLPMY+wdiGEhDJ699Cqgyh56VDFlTVEJlJeGrfTl2cPVyidY94zDNUzgp6CmCNDbWENM8PTUH+ck8MXMaagNY8TiOGhUK6j6ighUinoVc0pz1UiiqwmioiqbVClW3nHjP2mn8QhNSJNvMOOzoYqBMA6tFS3WypK0rpr7j/as3jNNEvWxQOrE4Ee8CCsaxZ9j3pDFzenbJlDNjGNjfPWBiopQEKbFsa1xbS8NjJcGe2RmUN1SlQhtIytNUC3baUVSgqEKOk0zrYpjlUvM+XmDGSsp09Mk+/vR6qgTh8DrOcs1u37NYSBbN3d0t+26Lryy1rqnrag5F1RgcbbugaVvatmG5XGB4lGPvdztizISQMMvVLH9qKcljXYWrDNViSbcbxUtBpmlblHbEDFZlUplmMqhBa2SqqAQhTM7SVECJhFbLpHG1aFk0K6xx9H3AO0NTeTbLFv/sAuM0Tdvwkx//Kafnz1ifnHH2/CWhGN68veLd22v+/j//Z3b3D0zDQOMUt9sr+rAXOpkzmNriaoeuNEOaUDmRFTRNi1GWHDKrxQm+sjLZqCoh3UXxh2ithRhqLc47kYVbA1pR1TXee+oZiFFVFU1dU9uKNAa6KVGUnEmss2j3f1AY36FDr8phrC2yAkGBzebdnMkaTJKFP+dDV18KDmNklBXjnIWA/F4uWZIXAeZYc+NnekFWlAhKO7mpU0HtC6qXG1wtINeJ4jLZK2Is+AJOKRpViMOexhnMquby0wuwmf24JxXxYMSUBDGqLco6oR1ME/2+E8Z7DGLCnQuMo3zjibkQpEo8HKTEHCoacnEYHBRy0pFPOUmhAQxdJ5hTreXger7G+JrL9hSVQesBpUZWC0VMwv8OxWCWa1RTo6uK2iwYncFYqFWmdIm1MnyyPOMjEi/XLS/WSy4az+27e7oI0/PnXG/WhKYhNi229pyslqzqmnpSpLuO7vaek2833Dy8pl1XrE5rxocbYr8lhQFKJMUBVQyuWC5WZ3hr2brAlDS7XshIUwnH0Wkp+Tju/32L0NNF6inC0hgjEggtumqRb6jZsFTEWzIXGSdtS20tJQa22y3fvnrNu+01y12La8F5w8npKd7bo39GzQchpSxN0xwTdHPODMMg04pKo7VlHAS5PIXh+H5CoWlrYpDuZz0HfBljyEqz3/XEIGPIpvUUBO/5sH0gpUhhLs6VTMdSmri9vSIlODm5ZLk4/b6P7B/sVbSMHazVRx1x7ke0xNiRFRilsFpS2os1hBSPdbuI5jl2l484aQp5SkQrfz9MA2GwjKrQWWlixHFE77esrMaGyJgyXQxcO4cF1k1LXVtUTqQwYY34iywyXSj9QFYTMQHTgHxWQe4ao2c0q5BVphjphpE/+dMfYa0j5Uw/jdw/dMQwsWhbmY4qRd02KKNmiZQc9gV9HRmHAWesHGKBpq5o2oa6afBVRQiBoRc87I6JkiOKwtXtPbEUVqvEaNdsHwLUHu823DNhjIdsSXmgqpYQAyHsKCkTciLkwpii+CqMlUaS0uQkvPgQghCmooSvxjDN/qJ5vSuHtR/sE/z5Icfi4HObuzNiSsyCuUQd1gB19E2owwxYPRYZ8PjcHgoN6dTpWZsvWF1nrchYc5oThGcztwFj/FHOAeVoJjfG4nzFFCZySeLXmwvAFA/+k3lywqFAzE8m3bOvA+l+G5WxptA0iuXSsVhUWOfRxgGaXDR2PrgpDvuG/JwKNI3H2SRevRCkGCSTSiSHiC4aVUQVrnTA2ETRBTsrD6pW/GV5iIT4/cgwf4jX+bNLkTAicuY+ToShIwy7OfckS5Fx9HRJQjUockxEgFKoKk/V+PmQOxf2MeNrP3feBe0pac1yHpnLPnHZqEJxCuZcq7LLsE3o2yjI1LqgakBDiJGYMzN/Cge4XFgulqzamqa22NMG249EpRmHHSmIV6c9O2e18MRpotvuuHn7jn7saTdLlict7UklunoWDEPH9naH1QMXJ8+xs8x92HeolOZphWa1arBNy2IlRUaKA8WIz1UrCzGiAtSuoTMOtKWUOL8WUWht8zTxw0JD3qOnJEn4cF9/+nH5WfxL/TCwWCzY7/eknBjHnmlqsNZS15JjpJRF46nrBW27oF0sWK9XqAwlZ/b9nrEf5GyZRdFQVxV1XTEOWjKpKoevV4RJ5JjWGprFUqT8MYnXZW4saBS+8nhjMSj6/YBGYbUhHp5VpSQNu67ZrFbUvqGzPa4UmsZzvlqxaWWC1q7W/PjP/pLV5gxb1cSiub+95+uvv+Yf/v7v+fUv/5EpRQqwqhTbYUsoEVdXmNphKouuNNkUuqmXcwvQNksommqMrJYn0mw3SST5Ocv6Opq5SSqTDD2vcwfPcdNIxl1d1+Jldo7aeRyG/b5njIEpRSl4tCEt/yvLpQ46OTmAKbKRZNyckeC4IqmFIQRKSWglpszDAU2C9h715G3bcghxOoQwhZBJMaFTwVce6xx6pjKUWZKVywgrUK2gbFVfUKOCCeJpJPlMXhRq22KCdC6mKbPwHlMSoX/A3bzlhQH70TNen2i+efWWnPe0as1wd0NxE2mZJRhwmAj9KCjDUtBFKEd6Dk7KZaZ8IHthhnmCY45mQTHFH3SC7niIFL63dJ/C2BP6nmgsRlu+fXfP2+sHfv6rr/jrn/6YzWJBs1hi9AOXpxe8WKz4q+ef8O3bW7q7LeF+xyfPP8afrtHLhuSTZGtoy6XyPAuStVHVFvtsicuZPka6/cRFs8K3C+rFWmgbGkzJhD6gThTpZeLyix9ys79mdbbi5GzN1T/+grtXv6W7fc/w8I4h9PNiHnFxy8oYmoVFVSe8vdlyt+vZ98LIlzOFRuvHA+LTSQV8mP79KJWaDxe5oIzGWke2nqAtSRuKsbMm0lFZw/OTE1ZNTc6Z19c3fPv+Pa9v3+F3hjGPvH7zlvOLr7m8fMlmc0rbLhgmxb6L7Pqe26trUk7UdX0sOLwXz8Tbt2/47W9/g7WG8/Mzxqlnv9/SDzuGccfuYUdV1fzgix9ijGSPaG346Z/9jLuHa6ZpYL1u+eEPvuDy8oKHhy3nZy+pfE1JQllSKMZx4rdf/oa//7uf8/z5J/zFn/8L/q//+n/4vo/tH9yVkSmEMYrlqsLoTIkD077DrU/J3gg1Ksk0oeRMiXk2Bwsv3tePGQ8hHTqPkEOgzJ1lZRNFJULqKLlw1mxgnJgYKWXixcmG/Qj3Xcer62+4SQMldpysG5YnDbXWWGepvCME8Rh0+44BQ+gDw80DS50x3qCcYUfGVjXGecLdDbqt2Kxr/vKv/pLTZy+xSqHIPPv4Ep3ke0pjZL/v0N5RYpQshVk6U5A1d71es16t5BA7H+yThqv7e3bjxOb0En7xW3TKOKWZQkbABYV9LybA/uqW1++uMNby5uqBuvaCqm5rnLc43fDTzRnORaJzbO9fS3Beitz3gT5AUpZYtBQi08Q4414PoXTkjGZGexexF+b5Z6WEPnWY0KSUqKpKkOjOMk0T6TsmUZl2iKT1II/S5kOAxHe7pcePzUWoMWLQj/PXmFKCo9lbJp4HDX9MmcpXGGPY77f4+dfGCpY7B5FCNVVNmgI5SGKxnr+WEAMpRzLz1FWr2SunKEUAAsYUqirz7PkpJydLlsuWtmmwWDmUHuVf5ZiZVObpSIqFd1dXsr5VDjcgqOdcMEamRilHYpYUX03G6kwpPVYbUIYyZlxRWDIq//EWGamUWdqb6G/u2d5ekeKIsVDSKIVuyvJjLnKzCsSYj/ekL0ogA97hjWPRtnjniFXFerUghMA4DviqJuZCyQNxiiinjvCW3dDL+6o19YljbAZKk1HZUbYJ3RdcLPiThpI9uQTu8xYVA3e7gS+/ueXP//lHjKct+2cnqLbBpj1qSoRh5PMf/RBrGwiKbX9F3das1ivO1xt+88tfYL3m048uSK7w6t0rvn39DUu/4OF+i8qGq8UVJ5fPqFyNXyz4zS9/yQ9/9CNePn/O3bQH64gk3t1ccbZeoaZMHjpu1cRCa9QQcCM45cjWUbTGNjWL5OjzRHc/yfMEoNNM//vdguLwsd8nhX4qwa/ripwzL1684H/8H/4nptBLeGe8Z70+xTmHQvy73tes1ydcXj4njveEcWAcBmKYePbslGnM3N0O1PWSUgxdN3JzvZVMIlW4ev9eMjXqCqs13nl22x3DOJBKwBaNVYa6avBVy6JpqKyjNm5O/x7ID4n6/JLWe1ZtS0qR7faeyQ5smhZfMierhs8+fcnFp5+xOr1gsTml6JphDFxf3/Cf//2/I+SBm/s3vLv6JdV6pFKOmBVfv7piIJOdFxSy0txv9wzXN2wuzsXDpjXGOnQwUDTGO5rNkqKKFIVIs0oynaLsqci5ve8H6rahqitOT09Zr9azRLVweXlJ5TwGzf72lvuHLfu+Z9vvGePEycUF0/D9/KH/JOP34cq5zMY86d7U9jGwquSDxpYjY/xpJ/qQg/CUAFJKOR7IDzdgDEIcqesao60Uyqqg7byJxExZZVCaMhXo5OCvW41qFcVpkhKpdARsTuRU8AHymzsaW3FpKmyzICzXvIuZ62HPUCZS1NhpZNG2lCmgskhlSHFeVGapxhwWVZRsQAdk48F0VFUS6DdOE9M0yUarDgZH8F6030ppcoyEcWAyFmvlsJKUZgiKL9/csFk2rBcVm8WSqUAaCzz07LqA046Tk3PONifUJ6dUmyXrs7VgQLVhaRytdmhjiNoQiIRuR46TdNGUE+NIylikUIpKkZxBoci6kJXGRIMdDW6wNItzymbCJ8vN7kCrCmiTWS4twyhSCqUmVrUlRsv9LkvS6XwQ0UpLV66IiVeVzCHQ79CyPEgcHvMzDLlwrMgPzSqR3wgiL4TIfrcXjbUypJC4ur6lGwamGAn7ia++fMXd7QMP9zsUlnHsadsFy9UKozJh6Pn21TsWywaUdDO0NbPkLaBN4eOPX0jQXlVRB09MgUJhs96wbJdoZebCPGONE6pYFP6lc55SRKttbYV3gRQLYwlMxDkwTB7RzfqCv/mbf8nZ6QUff/z8+z6yf5DX4eCU5mC9xltaa3BROrEaeTZCGOeJBpJyqjVJyzhelpoiFJ1USEUOsDlKt7koRYmZaegxlWFZWT46W+JipN8bbpgoYeRs2XB5uqSyhv0wUbZXfPObxLS74/T0jIuzC2pXI+QQQ9vWlKQoU4QcWWh9XEBtUUKyyYEyRtJ+h3EV62aJuXtANRU4AypiFaiSiGFkVTmmHBj3PcVqTNVgrKHkcsxmSEkILDYVUkhMJbFYLrBVzdmZYlMt+OrXv+bXv/zlsSEiMqREmPMEDkz2youvyGtwiyVu1t3+Y1DoEsnjntBJmJMkok/shkw/THT7HqPV0bR9KByOB4e5GCg6C8EagPKBNvtwSQDqKIGTTz522BOe+jZkP3nsiD5FYf/ee8w+UtikQZVBR9L8+eXr1OArrPZU3nP3cDdvxnPOgVIorZiC4ynONiUxd6qCZFocgsEosrbPE36pmQ6vTULrgvewWjlWq5pFU0uXUBvsYc07BJceJYWQs54n/UARoMpEQImAYB7gmbljXxCM+hwmeHxF5nyhpLC6whuFOxB//givh/1OvBEU0rTHKpHJliSFpJqLXvJMK6MI+c0ITtYaJ/KaJOcIU3naxpN8ZNAd4yhp1kL7Mvh2iXaObrcjJdmrXOVQpZ8LVlkfrHGUVsMzhTVJnsVhwtkKXTm8c6ycYcgTrjYszmp2akDXC05OP0HbRNhFcuoldbobiA4ohmFKtMuWynkx9XqPdgrtReJ8enqG846xHxm7ROgS+4eOs3PFcrFCfWoYdnf4zYLJZBZna5R2KO2w2oGq2HU7dvs7fvDpF5SuI3R7wm5PmRIkACW5ZPGw6R7k32W+Z2ePUM6/854dnmNr7Yewh1n9Mo4TNzc3ACwWS9p2RSmR9+/fcXt7y5s3V3z66RcsFyu0djR1S1MvqesVWsukUlXiX5zGgb4PTNPIb37zW1arGQ9uDc6saLxjqjQqF2IKxFyINrJcLTk9PyXnTL/rSbGw3w5UfoFWBu8qXr78DA30fSeSqTLR1hUniyXrZkVJEXIipYEXP/wRLz7+hM9+/BNsvcT6hlgcX/3qa371D7/g6v237Hdfcvl5w+Vnhuc/+iFn6wW7PnF919OT2Cnodx3TEKmUxC5o5XFUtKsl1luGMGCUI4yJfiaIGiPPhPeeGCQWoKqambInr1cII23bsFqtaJsWY2TNDSHw85//A88uLzk/OweU5JF0PVPfgSqE3Y77d+++1/P6T5JLPRrq5kWPx/wDFBwIk0/WSEIIAMci4vehBo/kDnjUzZan0D91LDLkRs5y8K0yKs7H0gCqnwFpWpNaRTLCICpZoUYglXm6EXBODMy4wkerBUbDlHrG/p6kMnEKVN4T65ocZXNRs3RCGTMjLSMUiMLZku9JifZWK0nANcZICIvW8pweNuX5NTVGYY1QsVSWMK+SEmpGRqdcuHvYy5/XmmaxYoxJ/sU+0TRLWhQrpbG+kk6vsazqBd5YvDXU1kkuA5pUIE8jyiQJkjJZGPpKw2y8VMIQRWkJE4qI/E07R86FoR9R2lO3G1RI7OsrxjKJYdEElEpoIrokVOqprWFZazYLz1gK05RkVKk4HjB4cmhQahaVfSjffPL7szdD6YPCgYP8tpQZGxwCdVXhrCUX2HUdMQlOMsXE/f2OaYrEmFksV+z3O5bLhaSRUuHn5GLnLMbqOaXYHt9PrRSVdzOi01DnmhBFwtA0C+nGw6P8RQk+NEXpgGYKIWSO6eVp7tYnWXi10egkf79tV1xePmO1WrFc/vGGaB0uuf8zWhnayrNwVoqMlGXDc5bQjxK4pxX+qJM62gSQAlSklQevhiTYcxBNk+amgDeapbM0XlEVR+osISYaq6nbhpcXp9zd7ZhCQoU9+7v3eKtZLpcUvSIrRVFCbRuHgRQmSAlnDUYbijN4ZSjWiU53CpQwokIkD5GiPUElYjJ0sWeBwsSM6ieKtYxTz27sqG1FWWS080SVZQ1RmlQiKhd0LphUyGGiHLvpimbW0ooBM5CD6KZDmkTWFAPjNJJDpDcW5yyttzQpkesWYuHdIJsjaSRPkgszDD27vqcfMzEm4mxAP2Bnn3Yq5X2ZDxlokQrNj/R3J5SHK6U8m9w/lFQcZJFPDaJPr+9inL+Lw1YznlZpRUmHPIn5y9Gz8Erx5F4RL6EE9QlT3nl5NuNTWdFhn1LM+NwP7urDVwM8hpMd5HzWFLw3NI2hqb0Ue85hlcHIgifwgsPXpiQbRIry+bMXZK1AfBcH/nDJCpEsZ7Q6xLjC02+ykKFErPI4rfB/xEXGNPYo77FKUVLAzEVjOkwwDkXG4TAyr8XKyFpt7CGf6bBxzPeUtjgrk0tVpEtclMb4SgIpYyKNAeYpiiLLtKoUrDJgHUkp0qKgRpGUq1RmqZ3IlLzxhDLnvOhCsoCTHCxFz8F3dPCeFYJM2kqmaE2xhikXsA7lJdNG6UxVt6A1Md3JNFWP7HZ7hm6gXjW0iwWnLy7FYzLfX1VVoZUlBuiHie1uz/3Dlv7ZgI+BlALTNEjeSy5yf+YZZjDTGtWxwfD4BHxXEvX7LylSlDLHCedhMiqZUi1aFXa7PQ8PW25ubri8fEFTt1gv4YtVvaCpl1hTkXKEEqhrR9f3QhgLA9MoePhcEstljVFxhmgYxjEdMeExJaxzNE3DFCJdGQnjSAgjZ6fnOOOoqobaVDhlqF3N/uGeKXQs6op1u+T85GQO3yss2obnn33OxYuPWZw9o+tH+l1P193z9Zdf8ptf/QN3t99Stbd8vvyEk8tTlqdnbJZLHvYRu+45vxq4mhQdihIHXOWxyqGLRfsK72qMFR9PKYL9TSUTk4BrjFb4ypF1QWuLsY66kjONswZUwjo504gSRxo43nvu7u7Z1g1V1eCymWmphWkYcd4Qx5H9w/33el6/d5GRUpq1XBpUkQy+AqUIpk1+neZRv3RrrbV0XcchiAw4dqMPI/NDDoW19oMO2XezFQ5cddGgJvFS+IJRBu0VVincLZQAecio5wa8orhCKgrXa3RQMMhCnmMkj1tWpfCXH7+kr17w7OUZ/zZ09PuecRypnKO0rZhIQ8A4i7HCNj7IBUpOBI10qMujDEoDOUamWVutsgQj5cMiqDV939M2LU3VYozBO4vTCpUiOkd5AIGuH7BejHtdKBDEiFQ5x49/9qdoEqHbstv2jF3HSKZqKi5PznDaSYdlRpjFFDHW0JxuUKVIWnaKwspHBH4emQAEDHdhYMyBVIFtV+y6jpu7d6x0RbNY0TrHctgT7go6bpnynv1uSw4SWpVLojI1fuE4WZ9x10Wu7nuubvZPEIxKplP6w8PG4TocKo7+l5lsJovZLDOYp0219xxWvNPNhkW7BO3oR0m6tNYQEWrZOG552O4Yhol20XCyWbNcLLm4eMGLZ+d89tmnPOy3pHIYs4vu0luHVpBmRKizDuerI25UqYJz0macJukqWyPc7BSzGHWnkVBLh7nrBu7v71mtxDR2MK3mLM9CXbVcnF/gvfvfWbj/8K9cRDZolBjQztYr7rcD1TRR9SPVpoV2SegHdkNPKYk6JSHW5TSbvjWH/rez9iiHKfPrrOdMn5QzBvCACxOLCiqv0OuKfTdJrs+U+NGnn7I/2RKnCVUy72520N3RPyxIL54zlULMGacVN2/fErc9LoK2NcU50rIhL1Y4X8s07uEOEwvdm2sevrzm4l8v2e86tnHizc07zrVjgWZVNFsyd/2O+67jzJ2gNwtU48EZLjcbmZqWQpkCJhd8KbDvuPn6G67v7rnb7umGgfu7W/ZTT5h6UpiI48Tt3S0xJ8HMhokwjNJNNIa+rngG+CIEuNuuF5mN1sRpYBgGur7n9u4GlQ9FvaJoIwbZlB7598zPrJoP/3NaXeHDe/X4HPPoxXvaYDo0og6Xc45DqNd3P88HWRh8WHhoLQc6bS0c5FwUnK/QRqPm5o/W+nHqk4UyRT5MXkTDH2cEJCXPPinxy6QYjsVGYf676bEYPkzsIGNMYbEwrJaa1cKwqB2N99TO462dz7qFWA50LaCInCvPS2OZC+dDZ944O38MQkoY7UVLTz72a5SSjI0yB8eqOYfKW0dT/ngRtiV0aCta+lDk0KiLABrSYX8tImWTRpocrAuKpERKZrSgm4tRpGkEBMlqtMbWDVOMTCGQ0WIS1zXWe8btjjB0bHe3ImEsIlWrqhpKpKSJkBNpbVDeUy0gPgTCLlKyprqwWCcI7Nv7Lc/qhmhhm/bUY48KkzTnUBgrhdPYD5QGJpWI08ib6xtK5XHLBuNrMhOUSM6KKUrQICZyfXVL8/o1p9MJJ89OOX/5gimO7Hd77q9vOfn4BGMqrrf3XN3ccL99YLvfYqzl09M1tYU+9Yx5ms9cCld5qqKockbTP2YXHd6bD7wWj3KoDyWOUvQW0nzPghTmivu7LW2zpKpatHacnV2gteaXv/wVUCQTzWiadsFyfcrQd7TtCf1+ouSBpnagMsM4MoVhbopkYkh0XT83hhpqv6TvxIfrnJfzZMmMU6DfD/Rdz37X0+06Pv3kE9qmZbM5IQ2BSnssmudn53QPmqb2nC6XfP7xc2zVUC9X/PBPf4avV6AtUyp8/dVrXn/zirev33B1/Zrbm9+Q8y1LH/ns5V9x9vIl7uyC220Hbs1i4fmh/pz36v/L4H/NEO/YnJ+wrtY0dsVuinTDjn4/CtEVCerUxh5VRJGEr8y8Cosvq24Xcu+rTL1qKRrGMLLb7qirWnwu7YJSNOMUefPmHevlBu0rXBXY9z0bUzMNPdM0fq/n9Z+EsJ1vo6N8BQ5JrLN2dDZBclA0xYR1fg4lkUXxELzkvT8WE8BRoxtjxBhD3/dHD8jh33fOYZIc3MkJZSCpRLIKtaoAjR01blRM7zN5AarRmMZQlopiCroUqiya75wTcftA+ibj12v+8uXHtP/q/8TXr9/w2y+/IvajpCrWDXVTE2Ik5SiGR1HbYgA363xLkWAeax0aKSiEtCJfv52Dqw6brNZ6Vn4lqroGBakklC4sG3ndMJouylhrvV5hnWO/feDsZMX/5f/83/N3X/+au/0t2+6Wt29vcVpTO8ez16f8d//ib6nOHBgrybN57pxPmdv9jlIyzmrq2mNVIZVEd9/z22++5ObdNdM04WqPrxx1W7FZL6i1FDfvrq4AGbuffvwZZlkz7G/YPbynS1eMqSOnkRI7VBGcJcGyUBVq4WjcKfe7gW6cmEIia4eizFOwQ4vxw4JDOuCFkhIxwpQlYObk5JTTzZpvvv6tHPqdY73ecHp2jq8bdl3iYbeXSQMib7Dezz41xcN2oB8iw5D41a+/5pe/+CWLRcNnn33Kx59+JodJLLlYqqrBOz+DC8JxATXWPk5TMHPhnfE6yPQiF6Yg6fKLxZq6EeLIfkYoDsPImzdvOD8/Z7PZcDeTzaS4t4QgGQbW/v8Z7/yRXK5eoIrgVp0Cr0caHdnogSFuibkiaUfII6iMdY52saAr8dhNyeHQlp6JbbnMPg8n0y2EDmOMEzlKgTgNTLpgneLkfIWK9wwxEYeO6+s7ytSRw0AZ9uSHPSlNTL6C4ri5eeDm6i1l3JO2HUwZEzXBNZyYhnV7xugt2nhIEx0dzfWORfLUH33Cfgp89fY1b6+vmHYdv3XyXi61xRC57nuux5Hny3P8tsZUFuM0b4th2S45OT1HVxW+cbSNZd147r95Rbfvubm+4bevv+au37EbOtK2w1uHQsyIJcoBumglOSQxMcYwZ+HAvus4ORnZ9z0xzYGHSrHv9gy96NCZmwFq9prxv3ELSodWY1DHA4g19jidFr+CPqJlx3H84EDywUTiya8PZLqnFKmnf+dQeByKkpSSSFznLquav56marEzovbwNUlY3xy4aoxkalTSFJvGUTj8McyEwYEcZ8IgCRnFKBSC281H2dJcYOhM5RWbleNkXbFZiUzKG4vTZqZuyX2t05MgQWCagkxM5iZKOZTWuZBDwiiDcRpV9FEyaq3DOXVseBBFuiUmdAmYU0Zj9T8JLPkHdaWxZ9KFnB3KzYb+KE2fGKPI4aylaWuU1rJu5AQH34syxJJJYaQEhL5zzNOQnIDKWYzRDDERQiQqTVs16JV0ep01gmrOot80TlMXi6Iw5IHiHFhQbaJZWMxNIewT/d1AqiwLdcYPPz7HssB30N73qHSPDiMlBsm+2Xdo5/He4m2BPBBzoa4aYhxBW2JRGOslEFBFvG+5fLHCPNe4H1l++Xc/p+TAydkKt6hFAlYpLk/P6bo91gbOTjcYZ9jvHxi7PT/84nOqNJL2E835itxPFETyu+8PKg0pxA+gB3j0UT6VvX/X/P1IhzSPjWkljWrIOO+w8/qltaVtlnhX8T/+j/8TTV0zDCNffvUrvvj8C5arDSkl2tUJpfQonRj7Ce8cm/UarRxX7/dopUg58/Bwx3IpdLe6amgWFnDStEwwDSMlFs42pzAWWlujT09pKicp8TnROIMrEVMXTj55zu21omkbzi+f8Wf/8r/D1Qu08RTl+Ob1NTdXV7z6+mtCGHh//Y63V294e/WG9SJzfrbkBz/aYL2mGzv66/f8r2+2DHpF1EuiX5EvT2l5TtPuOLcLKrPAqgVhNDy87uj7EVsifnEOJdLlnsVyRU4TlERV1SxaTwiJm9s7qqadU9MnVpsFRomX4+5uR4yF09NIVbWcn11w//DAw/2W25s7tHECGJkCqi/ij3uS8v6/df3T6FLziPF3N4GneFGpSEE6iQe8oHR7imx4JYu2L+Wj0/2DBX+ebBw+dhiblyyHelP0PB7KspibWb+eQJn5awmgBPqDdpDUSPbgFgqGg8YGTFboKcK+R13dcOEMab0iPrvg9dt38vXmuVOhBgiZcCgw5nREpbx0tme5kT6Mq5HNzQifkaIFi/n4UJqjPCzEIIWAUtQqs9qsOb+45PzZc97cvKOqPctly/Nnl+zbJavFBuMs1irqylL0gr6b8MZSWTcHPx1GmxIpH6NQRbytGIaJKU4SUOQN1hgOKe7TMLLbbrm9uWG1XrFcL6hrz37fz8GEjnFKPOy2aK1om5foaoEJE9rs0KbGmCja4CSdGZD9uCoGbTXOWMhCAtFAHx51nUrJaf27XZHDrw8EF5LIGaJWGA3r1RpnDXXdyK+dJ5VCP01MKZCK3Ee55DlRWs2jUumqqH7k629eU9Kek5MVJ5uVYN2qFuca6uaEOAbIai6cHzs1h/s554K2DV2/lfwLIt7VKDQ5a6ZhYrvd0vcdIYxsdw/sdg/c3t1yffWem5sblsvlETfnfcXp6UK02GNgGgNcft+n9g/xUvNhqRzxeU3ruThfcTcpkeflSDaI/wE5DDorCOCQMrkk8V8pLajm+dJaY7IYOlUWqo6ksmZiGEmVwWCw2lBXFUVFSJkcJpyR5zinkcZCySOpu2d384409agcub1+S9puYSyYyTEqy94XbkoHq4o6W1yWZPG0GyS3wFR8e/ue9w/3bPcd49jzbhooCtbKkkpgLIWgNUXDopH76vrda3JM9M6zv37DxctPaSqRuqS7LcPDPXG/I+z3xGEgDiNxFIO6QmSbueRZ6jATU7SaJ5YiD+iH4Xggn6bpSM1TWjOMIyFESQI/HBKkdTI/o797yH8KaJDflP8rBdSBypeLSAGPTarflUU9nWAf/vvwPHwY4PmhAbyU8jsyrsPXpJWmqRu895jZ63JMGs9ZTOhWiCtmJlHFGBnHgZwEWRtD4JDqnUs+IskPdcVx2iC2d5TKWAt1pWkbR1t72nkSarUR0o8S2ZMqs9mbGV+NNPA4fH4txcJBBnUE8xU+2HOVKnOaeUElSIfpSlFzscVxP/pjvQ6SFJkiGYZpTxonypzWXbQUUlkpkSxrjS/uiByWZtNM8AKBFmgjfpYEOUv6ujOWojXDjLcNRkhNaI2rapEUx0gqhXEcpEDMeYY8yHOWlSSEm6UGo8j7ROoTFmhdTekiedsT7ZYm95QgRb1W5VESx3xPqHk9U+WY1myMRemMs57oEvv9O7zzEvTmZBrebbe8/+YVz3/yBUo7ii+cn53RD5N0t5uKKQc2myUxneGNJg0j09jPjVDJIUGLR9MaTeUMTV3Rj9OxEXxUGjx5dn+f2Vv0YHJfzspXOTdpTc5pRkYDHAh0ls3mFGMU/dDx/t0bvJtDMoH1yTkld5QSCOMeo+WZU8qyfZhQRkzQh1w0tJwbfeUpxSJmcplYagolRGkCVAZnDEMnuSS5DdiqorKGxjvWqwUnpxvqdsHm9Jx6dUYqin4IvH79hq+/+pq7mxtub66oKsvDfsuu3zPEgRZLsV68OrUim0A/Ja52W0ZnidYyhcBQttg6cvZ8xSd+ydQbHrYj2/uJ/W5Pv+/QaaTRNWhD09RoIlHlmZhWsHY2iBszS0VFNqgxQm0t4me8vr5hGEZSKjR1Q9d1dF1H3+0pZfa6djtStmjLf/0i4xCUJFPx3++rOGhpRQ75OPFQc4fpaLpDEaaA1kF4vPWTDo6au/6z8e9gEkpJpBJWO1TROGXI5ONa6QxkVSQd3Gf0raLIFBFdZQbbox0ia5k3gpLBYjFZU3YT+7uvWH3yDN1U1J9+xHa3ZRgmYpRNKGWZZKjZaGatQfyDHms1IURCiOj5e1Qzhcpo6ZAVBSqIYfwp370UkfronHBaEVRmeXLC5z/6MX/xz/45v/zqV/TdDlUSX3zxBWNIaG3ZDx1t46iaDZg1q2pB7WussYRhEDMUs755HGbkZMBg6aeRfhwoJdEsaxqtZePT0tGjZO5vblEUnDdobdh2HXXWNHVFiIX3VzekHLm4OGPjKrRfoG2Lsg06RWxJpBLndXL275SAN5p2LjI0RfwwcSSrA+ddC8pYfVhgyKKVj+8d8/3R9xGnFScnp5ScWLYtpyenGG0IMbEfB2KJT7j96YnkSoa35EI/THz55ddYOxHCwEcvntP1PW2zYrk85fmzmi72KGNRyhwxh4XCw/2WYRyEUtNueP/+W4Zxj9KJi/NneNeg8Gwftnzz9ZfcXF8xTQPj2NMPPbv9lq7bo/XjJOb8/IKL8wvqSlJMwzQJn/yP+Ur5WGBkrdDO0y4XvHx5ybev9vRF/DTZaUqUQ2+Yprk7z4ygLOKR0YY0zYenIhIsc2gkF3BGYeYOWYgTsVRYxMfT1DVFi7chpIm6XWJVRTIZpp4pJUJ3x82rX6FdRW0L/f07husrSpdRQ03nLXG4Jl0rlpdL7KBolefl6pLd/Y6pKIYq8A/7LbmfyCmwL4F3YU8qmYGabZ5omppNW9M6x0ebNbYE3r1/y37q2YYwB11lFsslVmnuv37D3fUV/XbL1HdyQM0ZJlkjDxPilCIhSPEgAapy+FKz3nuYRsZpZLvdfjg91HMWxgfnglm2NcvdjuMMGQdKB9j7D2RMeqZ+jdNIjAqVEqh8RMQCx3X+aZPpsI8cptrAB7/3dOJxkDwdJFUHTfchCdw5d8y2Wa9Pjt/joVg5yKXquhakoxbiX5gmpmlk6DtSDILtTAmtZrHHnLWRZ7LgQfLEwQNREsbIpHjRWJZtxbKtpchwToLetHi90Ao9FwElPXoTn2YK5Sw39SEvRGiOEvB5DDoDKBll5PNlpZmmg4RLzX8WjAZl/ngnojFEkTZZQ0qyd8ZhxAG2cmStKDPwReTZjtpYUoiMaSAc8p04vjIYBagiIIlJY70Svbp1hCnMKGnxfRkF1tV4bSnTRAoTXddTebHwu1mikzOEDMoW7Mrga4EixLs9ZkrYyjDedoz6nr5o2hLIVlOMxjqN8Z4yI3QVYJUV6IXqH1OanScT5d+kcHf/IMhW78kugsrstzu+erjn5RdfoL1FecXFxQXbfUcuBVvXTDlwcXHGctVAiYzdnmG/E5n1NGOxM0CNNYZaVSyaVhp0T4qIp9PHw8eeKl+EJgkHeZRS8rxI4SS5EymF+ZwoOF2lFc5WWCfF/fXNFeM0cnp6yunJCWcXL0ixJ8XAsL+fSY7gvKJpt/PaEDHOyH2vClklvHeApWRD6Hu81jilicNAZS1WiUfn6v6KVbsgrTf4ZcNiKQF/L569oKqXVM2CarFkSIX7hy1XVzf83X/4j3z55Zf0QwdGsdmsJC09BoqBpBQBCCh8rQg2MAwDu25PV1VMVvPwsKUf3rI0Ay9PF/xkdcKbNz231w/cvLtme3fP2O9JY0dC0yzXLNYbxnEPSZr64zTN+UNC20tJZP3WWEqU9ybPwISb22u0vuLm+pbT09PjezcOvWTETRN9PzAGg3Fg7H/lIiOlJOFG8yHoKWrwUMnKTcYHi+NhA4gxUnl/DK+apomqqqSTnzLjMB6Dy7TW1HUtB/tDeNNs7hoRJrVRhsp7qpwAwcqlLF3QISbqusVtNWUohOuJZlVRahgrcGee3AdyF2A3YkPGBsV6KoTrB+p1y2bV8vZ0zV2IdCExPkw0TcMYRowXhN0hnM8ay6JtCDHxcL/lUKHLhshcdDAnyhpiigzjeOyeHTjFxjspDELk7etvKarQ5ZGPf/AZp2crKmtZr1ZHzNg4dlyslzjvqOuKcplpl0t8VcsoM4gudYrCtZedMPMf//N/4OLlc3xbcb/ryXPhaLVmuWz4/LOPWVaO69evqAyEfs83X/+Gj774HFLi/uaG/W5H4z2lGK7eveX8z37CyfNznv3gM/7Tv/s3GCXFQy5RukRFsktUnmZjasfGNJxcrJiy4Tevr3noA3HupMaijlLPIxQAUEUhoVWyUT57/oyx2xHGnnHoWNQty7rhbLUBbRljps+JdrOk245MU0LH8pimq2UqdlgAM4UUFG+vHvh//b//Fz56/pxnF8+4OM/styO/+M1vefv+Pft+ZLVcslqvOTs9I8TIu3dCwrDO0C481kvy94vnn7Ban9M2G7796htub9+zfbjn4eF2lgRGoVzMBYRSmt32gW6/Z7/bY63ni89/RNsuxeD7x3zFKJ0UpbG0KG1Y+MzF8pzq/gbtNGXhcLpFqVHQnjGjvRVJIgXrHTllhjA9SlRygZTQymC9xS9r3MpjvMKYgnIGVBbZiAF/uiDuFWGfmLqRnCeyMSjnMU2DHQYIDzy8+jljjCQyzy8bolqS7yfpuA1b7oY9D/mBm9/uCKPCqprXi2d89fVrqpMNZ198xqKu6fo9odujc2Jzd4cxhouLJc+yRUeNux2Ib77h4d23LFYVPz5fk5MXH1WY0Fe/Ik1nlHpJ1JHJwGBgX6QB4q2Trtu8tuac6bpuvqdEy2ysPzZ6Us7iwQJmAwtaS5CdpsxTDT441D/NodBaSGAHn5r3nrZtH9ey2V+RUoKdNGViBOKHEsjDGnigmpRSqKqK9XrN9fX18aBSVZVMIWbJ1H6//2DyfShUDuvpocCoKpHRHvaUg69pGAYOXsFDsm2aAQwH0l+YRkqMUnCMA2Ea5pweaRoRMymHx0ZIKYBgvEsJeKepK8vJasHZZs3pvK80M6muaEnaJR+YelIoHPa8pwc2EKqR5AsdDnYzbOTJAa7ATPfRgMH7hhj1LNsV4ljREWX+eJsVfT9QNY0g7oti2bQUV2FKIRQBlSQFRjusqUQpMUttrZEOPEkKNIpImsMs2yFDTBEdA9qOWOuFBudFyr2bG0Ft06Ct0Ml0VbAGSjzsbSPWabLWxCTeD2U1ymucqVHTSH4YmR563vzyPXX6E1ZtxVUYWdULqkWNPb/ANkumHOmGgTxETtYNlW8wLtAul9SNl+bl7CUy2vKjH/6Iu/s7drstr9++pnu4Jux6CIl+u6WuGyyKfR9omgasBWtw08BCtywWDacXZ8TdLft7yXAyRRFTYYgDumqQXAvFbjeIB+bJOe+x4BCFS5kr8EOD4FDUPzYKjPhap8jd3S0hjuI50vr475QCYcoMw4i3DX/zN3/LOA4UpIl5+ewzUbkoxzSM7PfXpDiSy8Tl5YqQYAqR69t3lH5HzKDMkspEdJHGdust60VDU7V417JoT1g2SzaLFf/463+gXTY0jWO5WfDxx59zenLBenNBHAvjFLl5s+Xf//t/y69/8Uuu3r+jdoZsCqFkujEw5kTJAWc9L16+IMaepCzGb9h1MOUdw+01zXbk+v0DN8GgVWHTv+f5wvCTs+dcLpbEXnO/DtyfNozbW3ZTz273wJgGmmHLKg/0fcchry5MAW6vsUazaBv22yCnU1V4uLsnhmnOPhnpuo5SFHd3d7x9+4q2qeRHuyDkiSlPhDJRgsIpybj6Ptf3LzJ0kuo/a1I6IASlw3KQNknFCqA+2EgON5/Vjx2sp1rbaZqECJUSKc1JrXMRc/jcWiuSliAlyowLVAbtzONiHGepkjXoxTxOt4p8b6ArlDiTRpaK4jVlDoHJk5J0xNlolbsBExOfVkvWNVxPE//p9a9YNK0kO642WOsZ+p6+HyiIBIAYMcOESvk49o4xzThSCa6pKo8tTrpWT0aJbdtK0eQ8K9/wvGnZaIPuOvQgJvTW+SPzWDrelgI4Y3HGUrcVddNgrSOGfNRg99NAnDXFwzhgnMLVFt9Y7KTo+50YzV3F7ftrurt7+u2Wzz/+CO0MxUAwkOJIbRuaVUvJJ+SztXTXtFCTppionadebBjjSI4Tdb2QSUouhG5C5yAIQAXaJELsKEmx9IXlcsMQC/e7QYLpjl28A5VMYQQPc0xQv3u4R6eAmh9iWzKNdVysN4DmYbfn7fU1/TSSKWhjsWpGW5bHRfAwt1VotPagYAqFu/stSjly0SwXE76y0vGZJq6urth3W25vr+eJigAD0IVhMnMgGIxDpPLvsKbi/m5OCY/TLMcYyTk++pmQg8Q4Djzc3xODBH/d3dzz/MVHfPLpZ9/3kf2DvJ4emmKeQGeMVbSt53RRMeCYtGGwllHJAa7EiMFjjcF6TyxSvJaUJaBubiDnlBgR4IBVDgdUSuGVwh4OaHMhGVJAGSUoymGkFGlWWG/xTY3SoEbIaQQr90ddOeKqpigDJbIf96zrTLOoGVImLzVaeVpn+OjjU0rlMXQsisLaRFMpfIKT1osEQCtcVoz9yLTvWKWE2W6JYc9UIrap8MpSa40rmtSJNCoPhWlGzE5FDPHTjKk9dPYfN/35rkqFlKc5yLvMBRtHnc/xMRBdq7xXPMpzgOMh/uml9UGSYj6YHlhrGYaBnBO+8iLfUXNYa+H4Z5/uE3VdH8Mvn2YqHSbbhz3mMOF+Cgc5TEcORcqhwLDWcVBfHCejqmCsng/sskanMqN/Y5KOaN9JsnGYGPuOEOfNOIu0Ujqx5cN97kmX1hoxhC6bmuWiZdk2tE0txDtfyX4wAwrKTNlSWj85pP3uc3OYIKkZjf303/6uTE2eiTzLqWaa0rxvJiIldv87T+of7mWtAwo5ibcT60QulgtGqbl4KHOHdsZbpyQFd5HXOqbw5LV+gmA2ag4FjjI1TxlthQCmraWta1lDciJl5iA+i/Ee6ytykpySFAKGgi3CxrPeY7VlKBNq06C0QamBZxdnLC7WUBsWm1Osr1GVmMxdVZGTxaeINw6lLcOMkvZ+Kc2CFGfysfilTtdLam8ZVitWyxVxc07sB+IYcK14MsIw8eUvf83zH3xGvV5CKRLOpi1aK7rdju3+gV2/I5dICKNMU7QQjKY40U+JMUxCvSoHqdNhCneYOHLcY58+r4frMHEu5YCxHdk+bOm6TsiAqszfl9Cmul7M7SVr1usTYhwZxj3fvPqGxtecnL/k/u6aYeqZQqAfRiDhnLxHvvaUBDEExm5PHyYWzZr1ckNVKhrv8M5inKGbepTRLBc1H7045+zygrNnzzk/u2C9PMW7mm4f+OrLb3h/9Z43795yd/UOmyMnbcXNzTV4y5gT23Fgv++xRoBJY0lgZKr71ast5+cLmsZx2iz5uC6oEFlE8cGcn1RcrivO24ambgnTA9fvr7i+vmK3u2McO5QpWG9Evp0mrLFMcSJMgTAOKBKqaHLSKCV+l1LkPBfDSMoRrRLWSZPOe42zBV+BrQy29tiSSRQchXHYE1Jm/J59iu/v/tLzyDaDPkwXDr+lH83fOcsI7Lvr5GMR8rvGvRDCsUOVi0bPXf4DiUp+PS+ys4kWhIqitDnKt0R7K4dePEd8s+k0uS+oVNAqw5zCWbwmt4VsLSXISVrliI4RlTLPvKdxFmMsVWWla2cMDomnt67CWNns0Rp0xFU9KqZZYyumMgnnkxGukCqkKzgMw/HrbpqGxnka6znzDWe+ZuM8K+uocqEqUCl9RMgpHvXQRsn4q64rvHcYbQSFagwhRLa7HUUVxjDRTyPKaoyVQDRFpu93mJzwFPa7B3YPd0y7js1qgfKGrGHUhRgmsrJY51gtG3wttJYxjrOsJWFUwbkF0dZkU0mjxGopvKYCZUDqUAUqE9OASrCoFPWqppvynCmiCUgC/PEApHgiFxAM7NDtqDR4XTAUvNYsvOd0tQYM3TByc/9AiBNl1n0KmV4/mcIdRr0AasbSKoqCrh/R+oECTCFRNQ2b0xXrAnd31+z3HX2/J4Qoh7dSZgMiR4nK0E8oxGAVQprNnGJGPGhQD5r5w6YXY5zhB3J43O97Uims1pvv/cj+IV4HHDUUMmGeJoFrLIuFpwmGSkFlLckZSVYOE6Y0WC0BeWXOw5gtNfMbN09OS8QgsgRb5mRdBWY+AJYsWvpcJKjOeTeHvJWj9FHletabJso0isZ6xh7GVjC1BM141eOUQVc1o1YzOlQMvdqvmSgkHWnLhLWZrBSrCIssCc+tijRF04WR3dizdBYdwnw4Clgs2hqc0lRFMUw9uSRyMhLeGUZSKZImPHuu4HG6/Nhhlw09ITQ0kMyAcvAUHJDk6jDNY5YrPL5n3yVFHeURqFlPrY7ejUPX8vB1OGcoxYofQ0tjxxiZfnxXXvHUuP37GlKHAuPw7zyVVx0KjXpG+gq90Epj6dCwKHNmxCy7TLlAAJUtMcyv4zQyjeORIiUGX3lOSy7zBEj9ztd+6OAqNG7umC/ammVT09QVlRealLWWog6wEB6LvA8+z3eem7mAOny/T8NKv2uYl88zv/FwnKo/PidJNPZ/pJee85BKzsfQ31xkr1UFdFGUnGaJm4EZRRxjmOW5j1KzI/no8MnnIkWlQsmKrDJWScaR1prKC/EspkzMCaXEy6iNwxiHyVbgCnmPKQVbIOUgSGVrRMpVV1A0umjW63OakzV2WdMuVxRlUNZhnEzLRJrlaJsF0xAYxo7dfsv6ZHF8xkT6ptBo2rqmcp7YCN6e00nu52FEezE455TYbXecxUg1r4taz7k0ubDfbum7PdM0YIvsUWUmXuWSBKmbklAp51VCqyerxfFelOw0eDz7PZU8fui1FKT1MMtycjk03YQg6ZyHXksxWZRkp9mMjY63b1/z+Sef0y42VO0Gs7uh6D0xFrTOWG1wVmTe05gFLVwKY7enth6rV9RNQ1t7fOUxvmaYMtoqjFe83Fxy/uwlZ89esFycQDFMQ+T6+oZf/vIXfPPtN7x69Q2r2lNZhSEzDh1NvcEqWWcftndYq4T2NE242lIovH2/5/31yPmJoa0cF02DziMbGwg58PxkyemyZV0vQFVMU2G769luH+j6jimMGKOkoamRRqupCUAOkThNGJ3JSpOSwTvxuIgU7ZClKEbu2ni0FsqpteAqAUsUXcjyslOUTIVyiSj1u3kov+/6/onfzpGnSE6REPJxoZPOlZHKPskB6rDBHbpVxxuJxxvrGJY0ZxqIptcJ93cemxsjgXZVVZGSkQTXkoA035SiD9aoWcZlZiZ6JudIrkFZ0MVg3mfKkCn3iqkMlBZUIzhLSk2Kmthl1AS+aCocdgi01nGx2vCD/9v/nb/76huu7rc8dAOXF2tSjIz9wO31Dd3QMTAQ6wZFmXXSCXIAq1BWE5XCNRJxX1nP9fUNMYj+cLlcUmtLaxzPVysWOfFyveSv/tlf0RWxEpaQ0d7QOE+IkZv3VywWCyrraObgv8Pgva0XpAQPD3t+9evfcPHsnFASQxwZciCMPSpPjA+3YB12GWm95fRszbjdsh0HHh62PP/0I9rVktWy5usvv+Xh/TUlZF5++imVX1C3LWu75v5hS4iZGHqmpCi2xdSZogZCCWQdqVcQHnohUigoJc5FiKKtDUV3WKth5Vg1FXf7gW03ko/AUlD5iSxAQcgRlQJWw3q94axtuVxteHn+HGNbhlC42/cULR0sjSJljkWt1nK/HQ6+0gUTUlHbNoxjz912z93Dlrq+4uXHLzk9EwLU5198ym63Z7vdc319LdrdlGQUrxQJYYsHFefDtTDtD50epQTHp1GyQJTDuPmw6MpBYJqkk/TwcM+XX37Jf/+v/uX3fWz/4C6rajKRjPgMFAqsQi8sdl1R7ifCsMedbaisYupH+pt7fNNgakflLMQkhYZKeF9TiKAihSBQBqew2qLGCdc0VBn0dODbF0IG4wQ7bJ2nXTRopakqz2azZqo1Q6fodcRVWsg/StO0NaPKBKUIqVDtLUYbbHJUy3pGN09UzuJNhbIO7cQfpZxC1WqmwGRiikxlEh15k1lXmnbZku8DaYiiEb8bxdMAaKuE1pYnoi3kbgcx4XTF/uE14zCigG6m8j1tAh0OmBbxx+kZtjGOAzFEDodR5kb8vO/MRQeCjZwnFU+9dofpQkryPu73HW56OqGTAt7a6rhfKKXxXhpHzjqMfZTdjnNz6emkYpwlqdM0HYsIYwxN0/xOEaKUkmDMWWrrnBd891xUpCQFe0qBYejngrMwlomTzblME0omzIb5FAMxTohUSYEyDCEeX6fDof/pgUkj917rvcikThacn6xY1BWVdbP5Uh9eZRQiID8UAr8rk5rfmvLoW/lukXH4/ad/T89NQaVmwmGR70GaUhr/R+zJALkvJcckoa0R+VnJqGmkBCkwwjRJBonWpCByVKXEjA3izzsAbfRMiDxkt+T5ntFqhh2kBErhqwqlLQXF3baDIsjcmCT3xyhLUy8I3YjTCuM9u/094zAxqUA/JGLSKLegPj1nxOFPTzj75CU2ZnbbPTFlGrMiByHX6NlDE3OgH/a8efsNH3/6jKp2aMOh5JXCJVtRnGjDqq5xq/m+HweGXYcK0qT8q7/550wWUsmoIuvB3e0dt1dXmLQn9TtsHlF5wtu5iFOaVBLOFmqlKaYcp4QyCDoUFY/PhlICH1DqsSnw9DpMNrXR1PWB3HjIbhDpYZ6f3RSFAlbXS77++ltOTpasN2vevn7D2eYce3rKYnXKw/ZaQDch0O2vsKbgrOZsc8o0JKz2bJbPeM+t5MWEwPmz56xXG5aLFScXL6iaBdZ6nPZ88vxjrKvJWPbbwO3tW96+fct//M//kX/8x5+zvb9n6jt+9MVn/ObtG+63D6xOTvnLn/0Ztqr45tUr/s2/+X+SUsA5jWsK1aJlii3Ot/yXn79m1SpWC8Vf/fRHfPLSYZ2i63YsfY01FUU1fHWt6cIS05wReU/ImZDF0J7zSIoQR5kImyKJAGEYKBZUMUxW431NU9csmhVWaw4ZIv00UDVLUVEMPbYSv2RWirdX10xTYBon9l0nDT7g+64g39/4PT3eUN+9hOiR52pKf7BAHjsv8wOMEU3v0y7MwaPB4dA1H/wO43nxbkBKE23bHpNXDxvpYfE9hBoBYnZJEtrHaq70elBbUJMiM38/G03dVjjl8V4x3u0EQICiTlqY89tECZEXyrI5Oyd9UrN6ds5uL4fL67v3tI2n9Zalc4wlE3MmJAnRkm6toW0aFosV3juc1py2K8IkBdXS1VRasaw8J+cbLk42NJuW3bjj9MXHhJCYQsY0jbxmKdP4itViybJtqX01jzsNpWi2+06CdmKiFMW7d+9Yna1ZLlt+8Y//iaUvtHXF7u6axbMXGDVrUa1h8+wC1zTcX1+j2xqcxTUVX/zwc9IQyZOg0SrvMVq6vKvVipQyYUpUzQJjFKQWq0bCtJe7X+/JvhIEZI6z/EAQv9paVM54HGe158Q1tJXhtnJcbUfiIbAuz6F/c5cjx8jQ78gkzqua55+d8/LyOavFmrshcvuw5+rujin1xFLE0JofzaeHwxLHXq10kccxyaalNM7Vc9cV7v5/3P3ZkyRJtt6J/XSzzZdYM7PWXm83lgEHMiD4Qv7zfCEpQpkBQWAwBOZuXV3dlZWVGasvZqYrH46ah2dWgyjIXJK3YC0pWZ0R4RFhrqZ6zne+5fHA8Rh4uH/i5uaW9mZgNWwoGY7HkXH0TOMkzQp16qReHkifEloJvU7cbKp1r4a2bWrQWWKegwh1ldDsdrtnQgg8/cQAnH+0l5WQKpk2CKqsEthkuOhXXB0MRzJtO/BcJknlHXrK5MVG1BT8yTFJnNvSQp/TmX5Ys16t2PYDbvZcOcXt4HBWoRGBtEkZZSolAhhWvbx304hSsOodxlmUsRCLBFLlRFFZjB8stJuW/FwIY2J+inTrnjY4wlEE40s4VlYyJbFDg2ktKmtKYwlkZgrYglW6Tr2ER68HuVXFZ6xq6OzAtNuhsTQlY/d7yhyIc8AfM51x6F7R9R3DamCePSEEgvcS3pZlTcUUZX81Btc0SAFj8PPMslaXBkNXE4aFAaRO1Idymhos1CaF0Fp98HgvqOWCRCoF3sdKqTCsV2tc09B3PV3f4xrHfr8X7ncFpUIIJ7rX8pwu027nHMMwfDT1+FQzAlLwaCVZRMI5joToWa9XGKNFEJ+zTB1TYqcU43Fknj2KKnatoupSC9JU912ZoL1MV07fs0gx0zrFxdrw6rLj5qLnYt0ztC1d42islQl85asvdLSF135OAVsoKD+mjb6AdOdOPsvPci7CbVpHypUGHFN9h8WU5Od6zfNUmyXDdn1JqRMnaZqD7A2l0BhNSYGYKqOh2gEvYY36pViQDBjhrokDZJZTRlsrFsb1c5PVWCXZU6u+x4ci1s9ZMpFUyZgcxZq4QClJ9JJ1Opd8IKaW/uKGr3/x37E7Hllv1jLZsopu6Mm5EKLn4f17cAbTVrdIldhsB/7Vv/7vGa7WTKYwl8haWwlZVA5dAikfIUsIZ0SaeFM1RHfv3jPvR371u98x5ZmkCq01pFmMDXIKxOOOEj1WiYYlG0fMEuSbckRpsU9urWX2C7PkE8pevV4mai/PprWuTl5TBS6E1jfPgaenZ/b7A97Pop1ZdEdGMc0jh+OR4CNhntk/Q46BX/7iN3RdxzQd+eH9e65vXnN5ccFhd83dh4Hgj6ToUTkxuAajGgiJTTdwubnk9c0bXl29pmtaurbnoltx/eormnbAqAaN5elux/39A//zf/pfOM5HnnZP/OGbv+c4PmFdpu1WPI7PmHXH7dWaN19+yd/86e+5f3zkmz9+w93TezRiBDGUFuMMwRoe7p8oZWDXGladZv/817x6c83F5RZyYdMbQki8v3vPw6R5937PcVa4thMdWfJYIxSynBRYTUlJprDBA+K4Jo245Th7QtpxGD0lBuYwk0rCWsfT0zPee8bxSDc4rBN738N+IoR4qrtLznU9/wNPMkiV+PwX+pePhTwvzlCnzb8eokvXWhbU+EcL8uNwJjgf/b+gZ58iWPWLT6P7AkIZUi8HUCwigDRZYfYGnQtlhjIr6ArZFYLN0BQIMjZEJVQqmBQxMbLVhtWqobm+YHV7yWHTMQyG6fhIPE7EcebwtOcQM1PMjCHQ9wFdClZr2q6nc62MXhV0rThUkDO91qxaw3ZwbLY965stbt3hSxL6gjboJSOh0g7WmzV9L93/i281Nb228Lx/YjxObDYb3r77M6uLFU1jeX56JIbX0Gj8eKRxBmcNuhQRng8rcXOwgpTYxtB2HWpwYpfhEypWWkMIwpWvFrgKzbDZEmdHijOqzNi2J4Uj4VDIdi+oS6rc11ILkuqgobVYjxYdWDdQigWl2U+eaQ5MIdfBcC14itDmDBqnDUPT0Tcd1jTEGuAWswirE5CL+tEaWxLrFQpjFcfjCErTtn21WXZo3VBKZhw94zgzjpOYC1TkdRgGnOvo+8jj41NtvCUJvtRgKKUV2rwURtQpnCzf/NFzZI2R0TCCbs5+FqvR8NMCcP6xXj5O1YYR4YYnoT2Q4GJo2XSR7uAlFyRXzrvWxNmTk4ZG7G9Pe0fJpyZNY2janq5pGIzlpoVtY+it0AJPFXPO5PBS0LkqKBaK2oTRksWh0EKFqE52PoTqqQ/Ggu0VKUAOGePBeHG0Yyq0RtVJWwIDxshaTSGhXME4RdMYLBFViji3qIKyiAUnirwA3lYRk0ZHiw6gE9gGXCxoLZoHgyOrwhw9FdeU9ONlWmSEnqdO/6t7+cK9FHBX/vXUFS920py2/Y8pOS/79aJngOomY841BLXo1+Ly1LU9fS9NhqqLoZQ6La8H2elAqwXzp2fK8gx9SsNd0sgX1NQHoT3FJHa0tqY9L+L45fsdj3umcRbXQxQpiSZEbGQVS7bR6SbJzeDsZojWzEDfarZrx2bVsB5autadDE1O9Kr6NYXyUcNwHnB4fp3Tsj61CD2/zu8RZ9PS2ltIkGU5s8D9GV6tc1gjdA/O1mBOSabkOUmOFlV7x0vAolKquu0sE6N6bwtS0JZyZttcbW6FmyXTk5RJSixQ7ZKUXOpkaaH6BdHsKKOwGNCOFAU0FRhBnPCcdWy2l/R9h21aTIqoqk9ISk45Va1qpQcRt6PNZk0wiqlEDn7CuQ6la5AvkLMn+D3H44FhdSn0GFWpptVkZ55naBAKuHNYm7DWYJ0lGfnZyRqjBAgTClolRxWZyH9E3T4JgeT6WC+kz/YCVanvkmYPL19WKqtFAjDVyz5U/zJG7IhjfV/naYKcTuyVlCO7/Y7NpqPtxGkz+sDu+Y4x7gBPY1qMspgCjdYMbcfl9oLry2s619E2PZv1JX23QimHnzMf7n7gh3fv+P77t/zN3/2vTHHiOB95PjwRyyxhvH1DNwwUH4g5c/f8wIf7Dzw+PXL3+B6fJpmSpgJKApGlVqta4NCQo6WkiG4SU4p4n1m3M95H3v7wxFwsT897xkmaaaVkX7RGU7IipUKMmRQP0nCngHFKqHdW1WyYgA8JrTymFHyUdHBXNTHee7wPFFUwQfbVeZbpdK5mCeeOVD/l+uk5GSmBLh/tq8t1fhici/AWjjAKQQ9YUKBFMFeqXbI6TUHO0RrgJGK0VtO2L04k5wfLstGcTzKW4o+6OO/8I8ll3MYw0KLGRPGZvM+EZmYqHl8im1ZhlFCrTqzAVDDTyKZpaPqWq/WAu+hItufrLy/47Vc3vPvjn7h79563fyg8jZnjHNlhaNYapyWR3BjhWxatSbrQDh0mZlzOrEnc9C1XFx2Xlx3rV1ua1UBQhcfDAeek6I/eY6yVwJmLi4/cVTQKHxIxZoy2fPvtn1EKvvziK/7wzd+Rc8JazWH3hFGZxmqCH+m7RgJnMnRYStNAo7m6vCFmL4WKLUzOYRK4kGE38vT0TMyJwVpKpR+ZtuHm1Sum8cg0SgLxamgp4chziuTmQNYGmx3GKIJWxOhJUaxuVS6okklzotcN7dByfbHh+7sdD0TCBEXVLAQUjTa4bqA3mlU3YJWVcCo0SUW0UTiniVM6+ZYr9eLNvwhFhT4lPtPzFGmahtevP+Ph4UnqiqzJGcbRE+J8amZFZGrZbLZcd2u0cbjv3jJXy+AQROStK51vCZr0XmwU0YqcRZR4PB5ONA/XSDr4QieU5ywQ4vRTH9l/lNfu8ERnLdZqZiJZwBYscHPV83CcaB8Dz/s9WQltJuVEPHpU67DNAAZKTJLpECp6aDTaWfquZ7COtVb87mbLzdDQmEIuAZ1rsahUDaOTZ8Z2HV3fMU+e3fOe5Oeax6Nw2kGj0Mkw+b1w+smgIv3KYaPwt80hYaeM8gpLx9r2pAJT8sRYsJNCzZnpOJNcQfWG/rrFzJnkIyEH9Ea8+tEi0C2mEFVk1CP+RtNkg44W1TYM2rNyiTYlWruiKAWqkA7P6CUro4iGWwNGqUqpqE2Bl0C+HFNFXGtxijTD9fg/VQCn5mSxbT5Dz2OM7Pf7SnECnTWtcfVLDdY2pybDWUfX9bRdh2saJu+ZfcCHyKYdeD4cTofdsu4XW+elADkej6efYfn+59OVU9NT8z+WxmOajmKPSRHNxXJuFYTelQSdyyGT84sVrpSa6lSYllMBinDJlnNGFfoGtivFzXXP5bZns+rouvaE4543Bwt9eGmIzgMFP80OgY9pYeev9ZcQZOr7nXIRDZ7SGKtPCHvOP99JxvXlRe17tTiAJWkwyEJTpmrdtOIUmGqtFZMYbUAZqL+/gjrFqBOjnGvxLLWOqVMnVZuMlJLgranQtj1t19AaS1KaMAdCSsw+4MhYZ3BOo6Nka5WMJLyj0XHicP89289/zbBeC2o/TaCi0MBQtMOK4ixYyT3RSLaB1gYfZ7wfed49Y/uMahWuMSgVmecd+/0d9/fvaJp/RtPK9Kxbr+lWK6bdyP0P7xm+fEXbdjRdR4mKbhgYpoHEwFwOJGah3cwRnRSpBIH3iiVlg/cRFpH3mQMkZ7S9ZfIpja98hjQaBq0XSvCCYqhT4Wqdk0ZEyMSgMqthqMYUmZIT8xTw88S7d+/ougZjFYfDgafnjtura97cfkaYIQWNnwqUkcY2OGVQSc6C3jVcrja8uXnN0F/StCu69QWhaPaHiXfv7vhP/+E/8O0f/8B3b7/jKTwzxomsEq5xZJ0wrkH3DV/8+lf86c/f8eG77/jrf/9vUEp+t6IKWYkmKIfAPB2JIdEPnvWlRqPJHlSybNaX7MeWnc+8/TAx2CPRz9w9PGLblmk8sN898fz8SMlJHEu1TDtKSJTi2e+eKSS0hm5wuPr+j9VKXLTVAuIt4KrQW/MJfA0+EpPoYcR8RmiXMYWavZQrHfa/fP30SYZKp4VwLkA7ffhsjPvRFOMMYTpHoEopuJq8WkoGZU9j6SVILhcRNebqOgWFpmlOwr5pmk6HSQyBFCTFVmstbk21eIwx0jeObC0aQ3KgR4M6Zng6kp/20GiGzy+InSJo8VVWR0+je2wj48JOaew4kf74Hfu7P5M7RWoVU5ho4sRVH2luBqb7zEhknwwHrUkkis4om1FtIunIWDyuKfTGsjENV8pw2Rs2jWKTDnD3R8YHjS+GP0VLv71hffWa11//krYZcE2HsQ3W1Rj5XGQhJKGPHvd7sUeNkffvf+Crr7/GOcPucce/+u//B+IcuX9/z6ubVzhtefxwx9tv3zLvPbe3n7HZXDGOE5uLDV3X0PWOq15E38oZJpcpMRGmCfqB0cyo6sxzcXlFc+zQz3u++9OeUhImgzED3XBJ9EeiH9FK0ToZieYsGSO5bvKNgVQ8KXm8f+ZVP7Bp1my6nsfdzBwi3kcO2SxHBTGKk9M8BYJPeH+kaRSXl2vuDlY0EnAStqJkC1utJHTP2QaK4rPPBvw886dv/1z5oJkUM85ZVPWqD8Hz4f17tFFYq/niiy9QqrBeb/ln/+yveHh44vHxibdv3zLPkZQCpYqlPs4EkI13sdhcDjJqYSOXFEKlhuv8nK//8//137HpB7qmIaqAbjuccQzGUszMh6cjMc5oP2KGHts0NCWjqc5FumHn9+QYIUcapShak1EEDNvGsSUxzCPxcSZ3ieJWJGswjQjbQKgt2XtCdWtTtsFohzEygtZaCQKcU3U0sxgzMB9DtT8u0EXUGEEHxt0jau3Q6454iDwFj1EW23T4w5559FLAlEKjGky0uEkToyX7gpoSx+Mzrm9QVuOrXSpaUXRksx4Y8RyImLbl5rqAVdyNI2NRpNKScZS8I8SAT+GUdLscCvrEmxb6UU5Z+iW0WKnW4pkMGCP7cK6UnDp91kpjrMGal8BUeAm9M1bTNJbN9qLW3qrmZ0hxG2NmmiamWZrlInA0zokbVfBeCkZeUr6VUvKx6qh0LoI+P19yFrehU7hglu/10rBkUownoGw5O14Quepks2qZjvkk8F0olh8lGdev0GWhwyquNpqrC8fVZcvN5cB2vWboBqxxaFNzf9TLWQg/1mEs93NxW1z++/z3Pr8v543G8pqx2kQrJTklOWWKqtbgKTIMA9vN5h/smf7/9RViqPiMpm1aqJMLjdBqKLoKv4UnJaJr0Svm/CL+X2aiiZfmopwcqqBkoXHrmmlStCWnLFNHDV7NWAXOip7AaLHZPh4PhJBptEK3lu31a6bjyHQY8VPGzAfC08j98wP39+9Z33zG5voVm9UGExO6FAqKYXtJtg1BGbIqLIGLFjAxYEOgi4nj7gEdJ3QZaStolyvt1s8zWjVY01GSYnNzA9rwN/+Xf0P3+MD2s9d8+dvfcDge8T6A0hTjwDXk1DL5SMiZkjwuz2RahlZj+o7r7Zqnw4ivQM9yli0n1FLnvThL1ang6XlaROXybMQI0zSy2z1xd/eeN687lBH7e4XDz4VpiszTxPPzkwRl5kTXtjw9PeGc4fe/+6eEONF0A/1wxddfrXh1/TnH/RN3b7+h+BGnFdthxbq75NXtF3z25pdsh1f4VBhD4fHhgWM48vD0wHffveXD+I4dz8zdhLKaVxevMI0VClGWAMcxZv7Df/w7OZOs5XLVEsLEOI88758pRUuwc4JQMrvDnjl4cci8e6DrejbrDe/fvQdrkHTpM1onch6F4JnGkcPhgFYS+imgRBEr/BhIeaYfGrpVx9XrDa7tCLEQ7vYcx0n211KwisqAedlHQPabGCO5mizFmlGXstCwyukc+Gntw39Fk3HmNvJJc/Fp8/Cfu5bJxvI5CwcVYBkSy6LML41Gqpt9LECgbWMdeYtYaeG1lpQoSp+IFCGE0wFkjWXV9tV6LhMpKGPQFnTMlOdM9hkePfnSkZ2hrDp00sQRio9gqpA3R8xxxI8TatDolcE14teMBbduyL4QtSPohtEMRJuJOuPjhOscWEgmoUzGakWL4Sq19NrSBGiOEWsdyUIhkY47dsFzPB7xznJ985rNestF2ZClqxIxWxbOrVZS+DoroUDTNGIbK7SBGPnqi69J85GSI87qUxGhG4XrHaMfCU+ZFMFYzXjYMx52MM2sLy/Yvrrh6vqa1Vb41TplVl0rXAGlOeyeiaHaFncNe+9RKdLpjmF7w3ww5BiIYdEsKHHnKFqoLDUdmFxQtePuXcJpg1o5ko/onEhkCWEzGmtEjzIMK5q2Yw6Bu4c7pmmksYbGtUJJAgqavu/rqNFW/nm9V+NckU8vh1mlMaWYUFqMDWBBOF9CIu/v7mQMPU6shxUXmzVGaQ67PX4Op3FuPqHFQpQSWl4+QxaXvyOlhjl2nYj6F0T253x9bzoevMLNiWLAZnA606YIJnI4FsagmPHgLBZLaix6ijht6IyjmWRdUMAaTSxCA1lZSznuUSrS2Mz1sMZp6kEm4Ic0CEthBxmxebZW0PJ+pQhTtU8wmtZqQvKE6AlTxJ557ucMyhVcp4jHCAGwirI25FnVCWsimiQpxWQa28rGDhSfoBGutNKGJjlcclAgzZrGuAq0eHS2lOzRRZqH1msuTMuvbq7I6chxzkxBpjWCjSmoq31Ba02ld5wjtst/q9NnUk0ZZCdVWp0KNV2D45TSLwmyy/5tLW0noI51lqFfYyrKppSqB2AiJfl+S0hrTFFcAEupkz9PDKLVOjcAOXenOS+6lwPy0yL9PMl80XdoReURlxfkupSPzi5VJwBL+jnUwL2/cK4pBBBzRtE6zXatudy2XG46VsNA13Y4Jwir0vW55z8zeajX+ff5tIlY7sOnn3f+OYsjY6nTKVUqOU7eVFIuTNPPm3IJVL2aAI/aiKNXjogbXc4n9oSmgFqm/apOypf3QgFiU7twzfVyz09rQ/bnIkUGJNEW6bqmVTQo7dGmQRWwFSzySnJoptkL48BmjMvYroeUwQfCNDE/f8CnxH6aaX/7T+mUlvA5YyhGE1HMGZIPOK1oNMQM0U8QA221QtZQg+yyBF+agc3VZzSrFdY02Kx5+HBHiJESEqvNijgHpuc9z0/Ptcnw5Ayb7RW7eCDNe0KYUSXK/TRGrLBjIKapAmdwTqGv2N3LPvOjdVrNVSgvf9Ti8FU4HI5iyoBQnCny7JQM0zwxHg88754r6CCmDIVECAqtHcNqzcp0dO1ASIn9/sCmH7harWliBD/SGMPF9pKby88Zhkv6/oI5w+N+x246MKYRu3JkG2nWln7bso4Dng1Puz0+BkoKVUFgcMbR9o7H+0ecKTibWHeaY1GEIPoniWQp1ea6oHJCxcjsJ5RyGK+YRk0MI6pm6ISQ8LMXYb8Rk4wQfAVO5mrxW0h1f1MKjFXkmGhaxbBq2Fxe0LQDMrDu8PN7ec1Ug6Xr2/fpvpNLqiyiVJ3b6vumhMq97DM/5frJTcZfmlp8auGXUvpIM/HpAvs4tO8FwTn7LrAUADUCPVUEKWdxIphnWdiSlm2wtrpF5Lox1AMjpogOchg1fXUZyZmQAoUoI+RGQxLXpnT0lJ2nOA2bBnpHvjDEPEvkvHMSFEdG+5noR2zWKGOxDVhVUAbs2mF8kUbUKUIDsVEEU3g+PNO1Fus0uoPsMlnskrj2A4wZHQv2mGg7KRGyLdg0s59m5t2B4zDgKy2qL4aSG7BWkkFLwSgtNCKraRtD8OD9xLrf4L2gl2++fkOYj+QUsFYRkkdbRb/pYaUZ94H9uKexPT565uPId3/8hqe3b7n9/A1fht9w+fqGfrumaTzHhyf60lOywvvIw8OTjKW1oR06dvMkC98O9H0HKTDtH6WjrtahShvJN6nhisFXd5qSMWSsjjTVj3/qNCUq/FTQJUnoUvXm32y3dMPAHAPv7+44jke00jRNK8nHgNKW9eaSthE//f1+LxtnCOwP+9OIXalS0RaxbJNiRFeKmjutyZQTDw+PjIeR6Thye3PLxeUVm/WK7WbLfn+s6zIJfUGr02GWSxKEQy1FDrUoE5crZS1N62iblpgyfvb8nK+71RZ1jKgg04k2O0zW2LlIoRAsMSumEFBBAIXkLGiN1ZrGGLoCBiVaHGNIWRxz1s5SdndoVxjWjptNJ+LPMxR62XOWTVkrTY5ZynLrWNmGfc6oSmVrhxYVLXhFmA5Ya8ilEDOknCXsbzDkp6rxKgW2FtVAiYXoE8nlKlQH11iUreFpIVJWBpzwxNugsdFSVCHOmsaKcYOfPFEFiAGbI6pVlKjQuqG7Gnh6DKhKf3JFYxHuckbSiZWuEDrU/VR4VGWxZM1CV1gorMBJ93Iq6s8OFVUtuBcNhVIKZx3DesAaW92fVrRtV6cdiXE8UspcOePyDFhjiNGjFsQzyjQ6hnBqqM9Ph4USdd7cnFydzhC55ZwptXGBemYpsTaVBiScPv9c27FcuWROEoyzYunTw9gopMFYGS42jotNy3YzsO5XdX+xtQiuv8knguv/XMPxl5qac2H7+c/6qcOU1ubs9zn/3lTUdeY4jn/x+/4cLjFIkCajgIiTa8Pn09IcKpQRKpvWQhM7Wd9TKg0HQMveHittZwkSrs9HrrbiOsvZX+pUWWmZcqbT+prQ2mIU9F0HJLyfmOZQASSNMg7X9hg0So/M/pkSDuwfE/EY+PxXv6MxDl3tnYNSBApz3fcHJ7bzmkIOAZUznRULbq1FI+HngCqis9hurmi6HpMVTInn93d1TRSuXt9y//xEOIzsdzsO40wOEZ0Kq9WaeeeYKeQwQ4li6a0sZMSAI0NKCx1eMmcWIf3LLiLXRxTB07NUJ3tFzn/qpPR4PNZ8nUgMMxhQStgE83xknA4cDjv8mTGDGDsocpa9Yb1e4awj58Tz0xPXqzWvrm9wQUIWG2vZbq+5uf6KgiPEwm534P3TPQ/7O8Z84NXwBt1Z1ldrQpqJBBJJJhNHyYlAW7RqaHqhmz+VUaZpOjG00mBYpdCluvLVPyASZ10yPngap8W4YDoSNJJNpmF3GKtphkLbBmsNPojBgTQZcs8WswPnDE3bkoGmtQzrnu32AtdtyEVhzYrd47HSQws5h/rz5NMbtrw3i1GGhLlW19I6+VjCuD91CvvPXT+5yRAURR68EEIdgcvBE+qh8JdQmE/HMOdCvY85qOJk4FwjCMF5A5NLpa0kDocDMUr6q/yyDmus2KxlR4qREGMVN401sAqGzRbjjCTO5kBRiaAL6lWLXTXYfSB9/4x7SjB7ygTluiXdWrgq2GRhTuSQmEOkudqQXWZ2kZASrXKCeipPeQ3Fgz0W8g8zrWpROLpuQ5lmGCP6APr1QOw1sVVYN8BzhEMmj/D4w5HSWdRlx+XmEjsHjgnM0PD+wzue7h7Im2e2t1uGzZZ+vWX3PPLw+ERMiV/+8mv6tiOGwNPzyM3VFqMvIWdMtrTdFq0LRUfuHn9AWcX6Zk3TDMzHRAqwWV3QugY/z7SbhrfblourSza3FySVmKYD+8dnvv/7bwm7UahqRmhJpm9x2xVvfvcbySSJhQvliM/fk2KpYjnJSoCCVR0GOSCTpY58xbrOGkWrPJRE9AduVz2Dc3Q28/23zzTtllW3YrNacX19w2Z7QaBw9/zEGD2piOXxqh9wbUe/WrHb7Xl+emSeReiUc6DkCCQpouoRpIoUsNpoJM03kbKmBAkwEp90QQ/mKRL9M//23/xbbm5uGFYr+m7gs9c3PO8aHp9hHGWTl/NORvtKvdAMc5EiULzfBc19fLwHZTDGCaXrZ3y9LUii9mBplcYOEkA5uI585gSUxxG37mjbhtY6docZHwJq/8zrvidEyxwjz1mxWbW0QO9HeHrPl5/f8C++es3QtjTOVfHuy2G3uB8J4pYxiA7CWIW1jp41KURKiszKSGHgLGE64udJ9kGlKMaSXKI0YJ4d+Tmjg8LmBrWSzVulTN60xNFQQiEVjUkalQtljkyHPUkpstIytdv7ihZGkgm01rEZrjiYRECRokEfIyVWTducuFZQtPwOoW2ZfEtIkVigdbJvTj4xV1ppqCLUlASlUlpG34sc/JQErl4+tuz1iwOUtZb1esVC9WualvV6Q9O0WNuwWW8YJ8nyaFuL99VRKUdpmrRGGU3MYh+9CHcVpboAaVoMqRRiDOKTzwtYtdCjcs6SXFyv5WxZfr+TrbdC8hJKzbkoAmCdp2YvTdTLtOClUF9oHsullABL25Vms7Jcbhy3l47bqwsuLy7YbC/o+w5jlYBaudqrU37UWJxPZc4pWedJ3svvtUw0TpSG/GJusgTbnnPgtZambgFESpKpxs+ZdGmMFX0dCp8ijeswWILS4tJERdSRaaRCnRgROcuEnArkpJRQJYkxR209hB3AKdl+6dEWgXipAlrjRKeQUiJMHlOT4HVjWK9afGOY55kPd/e1sVco0zBcXWL7I3PKbDbXvH2ceH8ceff+PeXihtL1GJPRqmB1wprMrBLaNqLry4n1xfZUE2krtDgy6MGSQqWYl8j8OHHY73i6u2P38IG4O2JQ/NP/47/m/n/8f5KCZ1ivuDschOpD4sMf/4bjw1v88RFFEZdMwNkGjaaxHdBxHRz+fk9IAbQFXkCBcxBgoTYuV861WVMy6aUsa19mqeNh5O2f39G1F2glRhYyeZ0k1LS3dJ1obq21FMR9y2jNdJwwGda3N3z11RfcffMtrhTWtuXmF7/H2Q6tLBnL8/OBcX5iDCM7/8S3D9/wdHxifb0hkOmdY9utsbbBB8/jwwfm8ZFGQ2OMZITkQJkfOYZ7BneAEigpMrSZx+dAiFIfVhwHbaQVywpCLqiYaFuFDzP7p0cRXLctyhhmH6A2x+E4Cl0piS4tBF/p24owB3KOaA3jtOfipqftV/Sray62n2FaA0oxdBueHvZSt+z3lGRJQTRrkiUTRP+YREuas4DA1oB1DUbbH4E8P+X66XQpFi9/fcYnf1lI55vksqA+Dd771Cf5fNMETUqFEBLWWJZzYfm8Ul4C/c594Lu2rc5VCy+3btDmRRuS5pmx7IVWo88OC5WJOpA7jdIGxwbzMAv16mlm1om5hWShLQmjFdpmycDQ1WkhabIXfnhBkVUiaRkr6cFgX/eEOYOfJKSv+mk32hJ2CRNADRauDAygHHTrhnx3IPlMfpoIbaZvW9abNdvLW/76h3ueD0f+0+4P/Io3vNGKy9WWi7ajfeUYZ8/f/t3fs91eULLm+XEPqdA3DUYp7r77nsPhGWPhi1+8YbvZUvSWogqTDygC3iemNPN83DH7mWOe+eL3v+Hy4oLLi0ts4xi2omVYrdf4ORInTzhOxOMoTgYFDu9+4OLyEtfJyHY8tkTT0tgO1fSEBKnIQ1KpspRSXa5KJqrKnc0JckYlmSzEKRLniaEpXF/0vLrecru64HJ7RdeveJ4nklFMPjLFmVgK0/5I2R/Rj4+kWoTInywTFcpHB75QNRaYxchEIy+C8Zr4SqWT1NF9zoXD8UjKiW7XstlsuL6+pV+94ubVDd988w3jeKz8cj76Onm1pbkWdNsUKsXK1NTOn/5w/2O8xucjBodRhoTGpohvA8FF/DTJrdag+wZlxVksUTDrDiZPHCdskIINNK1W9DnRRk+/f+B3v/qKX7y+4tXVlTieadl/XvRfC1LPy9+qCGqmwWole4RShCz2lNIMgnEdJgltrxsGdscD0XsSHn8bUAnUVFBPHt82YDRaZ3GLGixkQdtyUuiCTByC2F0qbUhtRIdMCZl8zCQSgQzR40MiaylShS8rkxanHF+9+oyuPWDY4XeevW2IHaj1huwX1EtcvVZtg6Iw+5nga4J1EQtplBSfIYgz2lLcLineC7C0FOT9MGC0JAU751ivtzROmoxpmupYf2KsPOoUU6XBZmJMVfuhCFWcjSrYxmGyFMl4T6uFGrukYy/Xcm4sP9eirzgv0pecpYUmunydVoaiC7oi00szcc4h/4uiaiXUB60yVsPQaS62hu3KcLV13F5fs11v6Luexrka6FgwyoCSMMS/ZDO7XKV8bGP76bm6cNvPz02ZeqaPXkc+/kL/KkVc+xazDKFP/TQU8h/jZZ0jpIqKU52yigSGLVM7mWJFcTJCaKd5MfvIMqVO+YUqJ3l2hVSEew5nTI1aIBYtzwpFxLz+eJSmQgs9sdQmw9KgTSchtKplGsXIIMWENS05K1ICu7rEtgOFiXE88Lfffss4Rl5dXOGuLhl8onVWck2GDmt03c8kj0MDyua6LsXoQX5XI7a+x8Th+3vieMD4wKuba54L+HHief/M5ddvwFhUTqybjlgmyhQgBYyRALyQJ0n6zok5ejINs/ccQuTp8UiM9T5pLdNRFkrUx5rcT5tkkoTpqqWHK6CyZh5n5mkk+onnx2emSRzf+r5lno7M88Q8TWy3mwpuZ1artWhCSsGgGFRDmy3OK/53v//v2HQbWrehsR2maUlFMc6e53hkNz+zOz6z93uaixW3V2Isopwla0NSlqtXrxnHA8fdI8fHDSnLXqJty263J8cZsmfdlhol0LE7Wp6PgXEOtW5eaKaKTHXBy5kSI1MI5BCZg5f9KMTTXpyyZPnEaqqR6yR2casrRZgUku1l6VdOzAj6jrZrZcqF5Lponbm6vibGwvEwkZTQt1OKpCB7ZKohligJjl72WIrU6J82jz/pef2pD7ZayFt8jLCcf7NPu5vlJpw/sH9pAxX3ABHwllzAvOg/Tv2AerH3W8bhy6Fy4roim6tCiYuGqQ0QyEOXNUWDXha3glIS2cqDq7Ytak5wFJQx72dpqjrRPBiN8DmNcMKlyYA8S0cKBeUKxRWKUxSnMM5SduIkpGthoJVGK4NOBeWViNV8Bg2qVeJms4dSC46SIsY4oYnsZ8iFOUc+7J643ffcbC6wMaGtpXXi2vLt2+8qegM5FVQWJx2T4fH9HYf9E67R3Fxv2L6+xDSuijBHwKF14HCcmFMgkWlWHdeffcZ2WDF0PQpJ0qRp6FcrYsiMuwP7Dw+YnDEpklQhk+haR9t2kIrkZDQ9sRmgHMkkESZSLQLrIWC0EXRVIbaECOoMkvZckqfEka6BoTVsupbr7SVd26ONxceEL5kpBY5+JiUR8cW8ZLqYyquvZgP6tMhPaxuW0bw0IHIwV053bXxUHdsLr7GyTGPkeEySMl4S/WpgtdqwXq+5urrCOss0SvEnxdyCRoI8yPKs6bop6QJaWYx1J0T353rlVNCqahrIhFmEbSVm/DSjjEZbg3WGmIRilnPBOENJhjIvaK+8K61RuDDRJ8+NU/zy9Q2vriT8TGuhUGi9ZA7IRGtp4mq9AMjoXwUla64ocaiphhMlI+4ySjZarbVMSJShaEMxhrI2sANyhpClGawsTgpCuzCKXBY0tILrVrY+6TUVKoLyVNG20JpIhbKY/SskBCtksZgsim3bk3uIfeJwLBybTlzsWsM8ykYXUgJjsFphEKGy0Z4Yc72/7nSwlSwGA6WO0Rd3p67rPgrEk0RtaTwUcsgZY9HG1AmhxwdPSvMps0OjK1qWSCXTdI0882oREwqtlVKqfbS46cQaknl+rC3Oei86hJciffk3Z60UoKmipyxnUKXc1LnN4nTzl840Ve+Lqm+aMYXGKdYrzXZt2a4d200nQu9+EEtxI68tb5i4cqlPHJ2WM1CmJC//dv7xc6DunCK1/Ntyxv4lOvPLz1+BNyW5MuKN/PO9lFbVZUg0NgsF5XTrKodcLG1rdaDLS5NRZD9f9v6cE8qoKrj+uHg63XMFKqulhIYimlJTMkVrCgp0hpJJCnTN2THWYMySObOIc5GH3nYY16CMWCbfPdzhbI9Slou+p40ZZ6CxoocqZNkLFnBKKZSyQmtUBb3w+ygC2PnIdP+En0Yw0F13TM4Sg4Qar28vQVtKNvTWEWJA/HWK0H7qc6K17EUpJZSx5Er7FZ1T1Wqpag5R6s1a3iulfvS3vN6y/oXVQJFJm59n5mlino4cDzuenp4Zx4mrq4tqWSzn79D3eCOZOpvVBmKSnC2tuejXbJs1LS3r2w26WBSWkA0+JJICr2FSiWOe2Ycjz9ORzeWWdujIJeHaDmMcSjnaYcN6IxPKp0FcH6GgG0WcE4FISZ6hdfSd6NBiLgxDRzdKw5argYYyBgMn+hQKEVbnTFxAjhJqTWKIKdZGo+rmaq1gbD3Pzuh/ujKBmral7Vqatu7NSrzQtdGs1hv2uxFjHfN8fEluL5FFz6yUqvRzg3NimxyjTEOX6/8rTcbyzT/VYJx/7FNh3vLvH4nqzqYa0jTIJmBdI80GkuStq1WijNEjzhn6ocd7f3rNlBLjOGKNpq+FrCBWvnLml1G4Y7Et9fOE0gVrTeU3RqHpGAWDIl9ZaRKeEvr5QJccZIe60NX1JKFLhjmhs1AfOCRKFHFY21vM2pKdJjeaYgGtUY3BWUVl/RBSounF4SP5TH4/odea3BWe7B59rdCzxo4aty/wNHLYB/727/7vzL//FbEzvH3Y8fvpQDruyYcddrVGuRbbD/zun/yO7797RwyBm6trVIE4TvjZ8+5P3zJ0HUZ3PH53x/bySsRGKPpuQ9sWfIiM83vW6y1d23B9cUFjV7VBKlDmaj8MlIq4j57nD/cQPe16YLhY039xg+k6FBoXwF1cYktC5cjueSaRyQpimiUAIFPFUWBMi7U9MQovtCApz1oljEo4HeibgiuBhsKvv/wFRlnGyfN0OPA8Hng8HDjMI9FXOkZtKFSN9BOrEEHFZV3zEWL48lQtheGpIjyltRsjlrmn9a0EI/Uh8vj8zONuz/XVDW8++5zf/vY3TNPEbrfjm2++4XAYTzZ+8vWc1n3T2FP6aWM71qs1F5eX/zWP7D+6a1hvsLrBaoMiEceRPM7EKRDHSag5jUMpxVwpNaqztOsO7Sy57wmziIMpmY1tyT/8wKYz/Kt/9ju+urmgbQyq5sQbbSpfOROCIFDGGOFrI62GIosRQU34LUURJ48fJwp9XeMZciZUVLzkQhy9TBNMQ24K6TJTbIIHT5sciUwoiXJMBFeITqGtfP9YMs9hJtlJkDOt0SuHixnbZ+ym4LHEqCgz2CiWsJmCDoqQZnTM6JSwe88NDReXN5QdDK7lmcKDThyUMGpzzPRdA0VAC1VRXxMiKWX6fkBpLU5KSQwScs4n/ZBzju12+xFlytkGpSwpF8ZxpGu9UB78C284RI9YNIuzUwyRaZ5lkhICF/aSphNXr5wy0UtoXEwJ6+RgVaqCOspU5Lp8dN4s05ZFGL3QuZxzFT226FafLHDPxeRLppCxH0/lPz1AF0Db6kzXFFa94vVNw+1Vw8V6zdXFpUx4T3xlce4qWRD2pmlqVskn9rRlefFSfy/ZW86nKkuTdz7ROL9+nKJ85oJV9xSZZoBrDDop4s94IppTQgvJkcPxyNA26FJIMdVAuVhpUS/6DLQ+6TVlI68TrCTMiFJzN6Rg4zShOHcf64wWyhkAkn2lpDqWohAqMpzIWmHbFlsLPqU0wQemgyD1WRloVlz2LW1rsbYw7h/4wXXMgO462usr1q3GKYsOEjiYUyQahWqEUlOMqdReAQVCVQ/E5JmfHnn4/gey9zRDi3caUqJ1juurC/yqJ2EEVzx6srNkHLujIObplDcjVMeUI02TaYxhZTte3Q58eD4yzpGYq6U4fPT8nE/egLqe1SnbQlfqYskQgljZ754eebi/o+9X3H24Y7870DrFq1ev0LqXqVRWdE0ix8zN6pISIlZpXl1e8eriSgw2jCVlR8wSgvvh6YHn+RHdaW6+eE08KuKs8Uaxm2cGFE3bM6x6+q6XmjEbinGsNltuX93y/m8zMQUKQu1cdZloICfDqpdzraBoGsvV5QVzVHx/tyfNEWEnyF5qltgBXaluWmObRrRgUbJeUskvNRYChC2aiXE8ioGIVihNtagWB6r1RgDNYTVgrQElSJZ1hjwYVusj/TDw/ofviHGilIg1SEBrZZKs1n1lWiBTEx8JMRN8lul84R++yVgCjj6dQizXedNxXqQtyNcy1j35INebrNTyYIb6QkjhhjltqtZZtNGVixY+8kSPIRCUoqTIZiN2q30/VN9fQUGVUqcDRpJPIzmbGj5jRFBsxEfbq0Rp5FDSgA0a9aDxcyJegOosdmspz4kyAlGx2mxJc6SkAkkR9gmVDNY05MYQ+0hsIskG7KzQc0EdImYMaG1plZVxKpESwa6EIqAaoXH11hKnRJplNPrw4Y5HJymP748Tzd0HcoZf/OY3DHagGRyXZk0KgXm9IvnAN3/391xdbLi+uOCf/It/znpYkXPh3bvvORwivWlp+g5nNWhF1xZc01UkGJp6aFIiOQeenr5HYTGmoW8vcY1FN5qgIpbM8fGRafdE7zTTphGnoOIwOZG0RbkV3fY1ZWpQfoee9+QkLkxFaiGZ9lTxeM5BfKb1hE8jJc1kn1mZlst+zc1my+X2Eh8S94c9f/zTtzw+3HOMnpCzjBt5QbapVAlTUaEKOH9EZ1jW6jLOPa175ODWeikUzidvy8ZRoeqKBu0PB8Kf/sj9ww+8efOG1WrF69evORxGpmnieBzxfubq6pLLy4taFIhTyavbG8I8M08z489YsAlgNysJedQaVTLb6y2kTDxOpFoQN1rohKthAFV4evxA9gHtLNoazNDKMxQTr01gdbPh9arl9cWKrrUYVVCIgcDin48SV5kC5JIwZUF4MykGMSooBV9G2qalazRWN+ynF0qE1Zq5ZprEeSTEXNF7QykBTEaZSA4j+qGIc1Sj0HcjK9egnCN0uqaeF5zXrLZbqMVuzIpcohQZCpKWjAPVWXKC2YvjWb92mH5NioWQZAqqc8Ym+M3NhssYeUgeMz1xfbXmsO656zt8Ah8Dc5wJs8e5BmuMCNhNRa9cQ/QBD2JXmAvZJ+ZRGuPr62uhPKWM92N19JNm7cPdD7UBcSLeLEkmFFqTSxGKwuOjNABty2qzkd+v0sWs1mgSxWWanMm5lewjCuPxQIxLsKWWyQucGoblPFg0CTllQpqhlIrWvVCV4OU8g/rMxxcnw+U1l9fPOWO0OEuuO8PNVcPlRcNntytury5Yr9ZsVxc0rq8CWZmmL9C6gpNT1nIunhoNtVQRQiNbqD6CqKcfgXQn7daZacr5xONcwL6cu0tmlIjgZQ+0P1G0+Y/xUhWxV0XorN7PGCU5ESUbKJXhUDIvNr4Je/aeFooMHpSEZKpU9+vKjj1Hak92wWnRE8j5Yaw50VvVGbiqlabESKwNcVEa1zi6tmVwHbuyY/aReT5w9yHTWsMvPnvNu7/+E3eHJ/a2ERrpbscqJ1ZDzzZDed6TjwdKSVzevqLpOpQBo+SPIrMPB57nI8EHusFy+dkrnj/c8eHDe3bxiG0Mrm/4fn9HxyWN6xh0iw8Th/t3PN+/JYUHMYaJHmOEAbFMwUouaF0wOhMSJwc2rYRi+peYK+fMl9OZqOtEI1AD9WQP8dPI08M9b//c8tUXX7JZtTRWs9l0KCUW1V999SVpihye9kz7I19df4ZVCqs0XdPRaEdJiikmjnPkEDzHMHPIz3z7/huMMzSXPRjF1e0N169ucV3LbvfMOE389re/IYSC0dRawVC0Q9mW1faSeRdJcQatGPqW1FpySqeQWSg4J8G7xir6vuUwy0RClULbdBQl2rdSJ0S5Us1SzmRVxMUPhS4alOxfCx6BkrT70z0lU5SEAM4+czw44A19v8K6FsHjhPFzd/+O73/4M+/ef8scR0pOaIqYFlgjxkFnVsPLvlEQcNZa/TIx/InXT24yzjeu803t07HJjx2jXqhOSqmTWO3lBkGFCj/6mnLacDMU4WDH8vE4O58QIbH7iiHhGo3RtkbXK2D5foJYL6PjfOaqIgWnvIlJJ5QDNRiaTQ/HTJkTeYroXoPV5CZTGoUpSjy1wwsqZYqgHajKl9RFigqtyHZJEM4Un1EhoVOlTxVJC06qkE3BtIK2amNQFlKR0K9VUlwUKEUzKctDmNHHPUVrmsdLrrqWlTY407JZrXHasMu70yK1jeXi9oph2JBTZjfPPD0fmFJmneDi+qKOP6FrNQuxRJcko1kVpRjzB3ICazuG9VUVwgry3Lue+XgkBc/hhztyGjCrHrfako0iaUM2jtZtKboIqpwTES15IqqIOLyOYpUpaCVjRtcUmqbQ2IBVlu2q4Wp7weXmAussY5yJaca5wsW2JR0TaYxid3ui58GLy4s6Pbjn6/tlIda+F2lGzpvrcwe35eD/aF2fvYy4Y0iQX9cKatu2DdvtJaVIGNjz8yOrVc9qNYjNZE1KfXh4IIbpv4kmI5WCOIaJg4+WwQ/JKlJjalNmiDFhcsAqaK2DVJ9RpdCqiPjOWa46x5vVDberllXfYk2VL5cizV8911AvqO6C/lT2ETlGtK1EAyU0F60VWI1R8vOqM9qQKonoxT4xVyqfMhrroDQG1RpUypAUJmpiKZLOXX+maBKFjC0Ge5RCxRQoMRFLpfVYJRMOU8C82MkaZyitQRnQVdCbjpmSCjplWmPZBoWKisn3mPUFe59QfccPd88YZ2npoGSin4WPG6M8X1Yc2hrnKCkLz7wUtBEQxlbKFCmLA1RMhMqtRil88Cckc/b+dF/6vj9NgFLOch8QtNhYARKUMpIzsLxnShqthSIg+Raie9NGjq1ctRTLuZJSOjmfGCXieqU06ewwfxH/n6eJG5SWAx4+phst1BqjFV2judw23FwNXF10XF9uuLq4pG8HmkaoZDIZzTUIccG8CyW9UHEWoKJQ+5BcP2tZtqfvLf++/BzLz/bplPVTnvSn9KnT7yJHXd3Tf8aTjBAoylRrzfwC6MCpyLfakE0VvFPdotTyHsgzluvXanVm9FHX8kc0n4UCJBtE/UacGozl817OhiLARk7kqKDmK2kla75tHVBIc+BwOIIR18SubZiVYs6ZD5NnPoysnGW96pgpmBxRdRJgYqSbPU5LiK1oFgPaJYIfmX3Aakt7uaFPgWY+MqXAtuvpLjYYa2oOggAsJUwUP1LCSAojOc1QEgojJiTZkGKgJDmfl8aGkk9mJSe9W60PP12zcndfLLWVkglzCrJ/UQrBz3jfELzHT9I89n0rKHyOlJxpbYNxlqYrxGRYGXdyG9VKE1IWl+Bc+PC8Y+9HjnHCqyOZgjUy1TwcDqzXazabDZvN5mQNu98fBWR1DU2ja9CgRpmWrC0YLRQvJeYAaFkLmkoFLgWlM21jaBoBHJd1sWgoFm2Q/P9lwrZAn5z+qOXcWuyYl72zptYvnySWztLltG2Ha2SSk+uUeZ49s5/Z7R8oeFbrFqW2hHmue+tC+14GCUBZjCoW10s5q8tPy+A7Xf+bmoxz0dmyoFJKH00vlq9Z0CbgNLIupxt2tmHqlwd1Wbw5q8oH+3jzzAtPDUgxM88BUOhW0DT5Hkt6q3Rii4hcFjiIy0gik0AZQooYrTGtpbnu8XYmHBJpF7GjBQpRZ2httQwzHH84UFJCJYXDoLOWpih5UiiUlUZ1mqwVWEHtlM+oGFFJQdHC04vCEE4kjHVoqzGNiBTJoFLmyiu6pmVtDRORez8x5sQxRnjb84Wx3KL4/OI129UaheLh+fGFpzd0gqoMa0rRXKP527/+G8z+SAiZi8tLsQ9WIoCVjRjIFqMd4InFk9PMOE7YJqB6TQyQjXDa16s1BjjuEg9/+p6GK3pdcBdXBKdlLGsdQz+IlbCzlBQEFc0JrTKocw/nBLXhaBpF6TRhjLR2YjOseX39itvrG4zRxGkENXNx6fhSXaE+ZEIcyalAMSzHSZ2Yn4DEXBGIhX7x8SiwHsuVGrWsz4XaIGvxRSj7l8aIRabqeO95//6O4zjx5vXn/OIXv2Q1rFEKvnv7LTkHUo7MXty6DoeJb7/9I5p42ph+ztccPDZnoeZkGbMrBUVlYqOJWuOVIgbJpRiM4Xo1MI2TINIBTEl0xnDhWm5XHb+92XDZN0KTKqFu3vL9VFkaS9FUoRXKLOijlFqLm11RgiYriT7CaGis8GspGaMNfdcRKIxBqFKxFGJO9M6inYU+kTYZnpM4SCWYGoNJYFKhTYqoEkqDcw79KLbKFmRaSULpglk54XjbQmkSJRURpduGZBTa6lNzPJsJQkblQt8oeu+wUYJH26vX7HxBf9jxeBxpXEfrJM9ino+SSD/PUtxXkXXXdkKvNCJYVsbQ9T2bzZbVao0/HonTRAxBUmRTEjpKyTUETP6dOnFwbYOvk+TzCUHJGed6AROUqTq6ipoaTdcK5XURbhsrzm9N0zGOk2RsKDl/ljyMruuEHoWS+1inWbFwdlblmpeRsNbQtA6lappzPUDPC3ZNobGaVWd5dbPize2Gq4uBm4sN15c3aO3IWahwS4egckUqa+dQliaCIrwlJVSbnMVEZKmSl8m7vLnptI7P95RPWQRLk/Xp57wIQ6uovX6soE5F+c/xSn4ma0su6mQmsARPKiQ3ySgrDj4hkqPUASmXjxrTspgeaI2pe/zSMC/3b9F/LVWffvnPH1/LQCpV2mUFRoQaI9ofi6LrlvUWuXs8UqyjGMd6WDHSMKL44TjzuD8y9C0bXQgl0elCYzRt2xJjossTm4IQx/wEYcLdrqrZg8eZju3lhrXVRAN/fvcnmos12ze3qKHDj5HsA1kr8nREJY/TCZ9mKEEOyKJrSG0mzvMJjTdK0VrZL3N1Tzpvbn+0XuukWLIWKoiAqhR2sRBWquDniRg7Si6Mx4m26yVU2WqyzxSVsAkG7dh2Bm0GbFGYSgnyKeFDIhSx/v3u/j0Hf2BKE9kEhlXPsBpIKXF/f48xhtvbW9brNeM4st/D4+Mj61Wm7wpaOayJoAzKdEQkv4SiUBnR6JbleTNoqnMhiWFw9AdTnZ+0AA85S5bLApSfTR5Py+xs75G9ouqRlThwlcxpcgtJABojrCFrLJuLC9q2FyB69jw+PfL8/Mjd/Xva1tF0hs+/fMV8jDw9PnPcj8w1O+e0R+X6d5FohgXwWEyWKB+DMf+frp/cZDjnThzYhf+aUmKe55Nzy/J5yya4iPGWRXdehC0fy5UrvVAozh2oJIQvvWwcdR61HBSlvsEiEha7uFSTLtfrtdABrEUbQTxESJhYwI+SC+M0yfSjRs3HIshcMZBWBdUq1EVH+2BRjxEmaA6G8vmKuNI8bZDR2T5jpoILkSYqphA5jDPbbkuZhN9IJ5oLVga7WRN3E/4pkh8ndKruALrjdrvh7vCAPxxltLexOAfqwpKnSG9GfCi4+3vK0MmUvSQO7x4IFzfk7UzYPaNdiwoTVsPXX/+Sy/UF62HN0+ERryT0pbns+eVvf81xf+Sw2/P2z++4vLlktR7qBiEHItqhKtKoVeLi4jP6PpLRHHcT2hf0MbCOhsc/fo9pJABv31puLi5ZrS/RWUvEfZG59PHxmaHdMGy32OGaXGbm/T2799+Qwij88FIwuWCthJRFLxH3Wlv6fsXu+YBrV1zdvKHpepo0U+Y99z/8NckfuGwV/RcbDrPl7sGLIDsYlE71TxXcnx0b5yEz0pQIinXeXKszupQ8a/Yja82PEC59wi3FGSUG9vs91r7n6u6Sw2EgpsT//O//nVjHlcR4HNHaSQNdOfIlv0xLfq5XOE5MVYDdtA05LPaRQilJ1JljrgGGQaNz5hgiRik6ClsDt43lVd/y63XDujVYK+4ZJEk2VkbLqLkg2SQqyZkZCzkUXOMEUdf65DcuYZaZaUxCg6rI/nQcCQtdFE1C4WNmNWxQWlMUTPMoJgFOkVcaf3+kRCja0l712FlhZo07Gq7UhgJEMiHP+HkmThPJCxDinGVlWubkiSWR8CiTUVaK8BwT3WaFspopBUIVBmYyQUNuEsUVBq2xzGxur/nNP/09f/VP/glP+5mnpyP2b/7A8bgnBk/JiekwnvbmvulkLWfhBBejaLuO7eUl+93IdDwyj5IQPM6emDO6uk1JQnvL8dFjGod2jvuHB5wS6t/Q95VywilxHMFZUMrQdYtVbSbW4D4JP1Ss1husdaewuVyWZ0GeQx+CUL9cdWaJ5cTzVqVgUYQoQkfx+C8UErmIVmdxwDlN22tzsOo1t1cdr2/X/PKrKz5/fcXFes26XaN1DWdUsqarxFJoOOYlr2IBB5YpgqlglzTZL06IyyUouRNBZuFHHz/Po1rO5I9se88K5VTzUBYoTxD9n2+XYa2hKEMCtK/NYxH6TajaKUEQVQUVOJtUvDRfJwaFrg5VtQFMKaKLPOs5lhe6bK70P2swjavBdy/7/QKuaqXRWWhSWUWSzsQkEztrLKaV8NheDwwB7vczj48jfs5020sYVjyZjrd3O2wuXBhF8+VrLm5viFPg+w+P2MZy6Ry9VRyeHnFEbAPjvEdlT56PfPP+e25XV6y6juuvvyBYJJyt20DTkOeJMI68f7zHH3eEMJKKJ5ZZGAZKU5QiZwXK4lwnv1dlLGw3K949HsnFk8/Ar1OjUf8XUqRregHoKEzjnjjPTOOBeRwJc6SkjNGK1lk65+gax69++Su8l+bw9cXnNFnTZEU3KZoC1rbY1jKnxNNhz5wSSWk8EEvBl8SRIzMjSQWaRpzo+q7n8vKKf/fv/j3jOOK95/Lyguvra1argefnPV0nYCyq1GnsGovh6tVXPL+f8WNBZY8tkl0Rgkc3HcpanC6UtqF4xarr+PzNLcdvP4iRh/o4uPpkJV7/TeklP6s6+1U8wGowtnmZdp4aOtEcalPB+mKZx8KH9488PY18uP9AQery17dX3NzeslqvGIYVqjT87d/8gbd/+p73P3yoJixRGAa65sZAte+X52XRs0oz9A/cZCzTik9vyqdWtvYUNf5CRynlRYx22nRPzQenUdvysRMHchkh5SzuP1go+bRBLEgQBYp9aWCWaUrTNlKk25WkQ8ZEIVYTiEJSGYomF0VJpWqA9RJfQNGCcBfAbFpUblBzAZ9JjzM5KMoA2RZKrymm4L1iFRvaSVFiws1QskJnJQeKrjaRLpNdwgxFOvHgKBFSSMyPEzoiI7IMpoXUKFJnmFVE5QkLvGkMRVm0sjhjmbWMIRufOLz/lmazohjNxkC77un6Bu20HO4ho0rCtop+bbBuoO0aQsxMo8cYS9MZsiqnoDgZTUvwS1EN2ji0sjSqFeqQ87RtxzHcV/EbTD5w9+EBnxWvv1iT4kw8jvjDgcPTPalrJAW962hsS/YejcUVAENRGq0nTB20KqWZQ+IwTjztdvhDwOiGod+iMBwOz4yHR3SZaNIRaxt6Z2mMIU6y+R9UlX1XvoyqIxPFx1Qp0Q0s8BR17Pky/ZD048WaWVGKE+HWMmosErZ3QhlO0zUZeSsduX/4HmMcMWZCnE+IbMqiHViaG9m067zyZ3yplIVnr+T5SLlU9QTVhlGKOxUztiZLH3NBW4srCRdnXJy4XTd8tenYDA2N0xJ+eaKjgCrSHJazMe/Jn/2MLFKWYqTI5EG20PoxVPWmd1A9+BcQpU9Cz1Q5Sw+uNaY6kZVW01w0pH0mHgs6WIopxLbAnCAkciykIHaBpf5+pQIqKhbCfjrRqCiKbujEaKoG/OUUq8tOoreakDMhi7e+bgxYhdURnRJmGlH7J768vuZyVbhrD/yn//AfZX+xlmkMuKY9rdccklCZSiYiRRXA/v6REDLBB1LJ2MayahpEVNjIRLB6ua82W7S1KG3IKqKSFPpaqYpa1mIkC1KmijjvLBNBEYiCsxZrrIRKWXeanjvnlh2BmCJNpQdAIdZzJCMNSiyiySpZ0p0XAXAhVZ79yxTh3M5W60JrC29uN7y+3fDm1ZrXtxesuh6nHXK2ZblnJaBzpXHxY1rTR2LsUl4cecwL+ns+oZCJBnXPo36vl7DOTyldp+fr7HsWxIlIVwqELlB4QfR/rldIGWUKpTrq6Po765rsnZPgBYl0OjO0Kae99MTKMOoEVC4toNw/+0KTOpsA5eqAWOQYPDkklSK6n4VaiNaIIQKEDMYDWoAOrTKtdVhl6NuB7YVjYuSQRlpdGDZbwrABa/lgLdG2HIvhUVmyKjRaMfdrmranNYadhs+2F7g0QR7Zjx+4e/+eDx8e+PYP77jbXLAZVlysN7TOoMTmBhK14U7SizlDCYpU9QAvmJsShkHllxq97DUen+ypucon/3n5qpRTPaqWaUe1qM9JQIolcyiKE47Rmq5rsdbSdx2tczzf3+PnjCoGd/MlndI02tC7Rn4uY/BG4w1kVcgBRu953O/xWYw8lC002qGTYrfbiXU2sN1uuby8PIEKMSWsdSjgaEZyycx+YpyOcm4nCGFmGLbsrYB/uSRiKidGzQKWocBoyW5zJmIBazRGi7vgeQ28RDKc9D/KntVawuQRBy8JaCyFU3P7UvhrtKaanFj2hz1z9LimYbNZ0fcDXdezXm+5vX0lVCpnKFlzdXXNPEYe7nfEsDQ/Z+eiKrVff9Fhu8YSQyaEn7aH/OQm43wicX59xF3kL49y4XwDL6df5OXTzsZDn76G+vTj8ksLL1C9cC2Xh72Oja21gmY6i2maWjgkbJExZlLSjRljZTPO1IdEVTddJU1GgWIVemWhaNQxQwqU3QixoAOovlCcImuFN5rOK1TSEjbmi9hWZo2KAeWkicmqkHRGd0VEl5MhHBPJZ6bDhLZ1c8zC61atojhIKmLmgMuK277BY0lGhPHeSHBcGzLT23eoeIEaOvquo7EKpTOphDqJF24lSdIhG9fRd5Yf3j0wjb4uphVJixYmpoTJWqgkOZBVFeEqR2NajIbSdTTDgHZSbKMyxjWMY8DsR8LoxT//eGTcPXPYPRKDpYkdvWtwTYfRLVo5UIaMkZCyM2E1ShFSZPSew3FCJ401DU3TEULheNwxTzts8bQl1DFnxuhE6DVGKYzVHOYklnGnZfZxV35yxUDVRqOuD8qpaD05bxgtLg4nWlXV/KREjB5tBEmQiZ+iIKNhawuH46MgmrEgnLhK0dCmTqjyad3/t3CpXNCVchZTrkm7cv+dMZKsmxImFayTZyCgWBtDEyNNmOjVzJWF14MkrVqrKxdWmghV9MsEjlIbyXNRYv1hykKrKsv8XkCGkit6lypFSUbVBdDWoYymzZnd/b3QMIu40y39n7JgV5biI+wCJmpSm8kGQqU+lSQuIqlIk2KsoPMqCu0pzQFrGsiKkhRt2wi1oCS0VxSfqLRg2tagsryutlXjZEUvRkiow0jMD1z/4pauszBkTCl0TUPKhnke6ZqOXDIxR7KOECIlS6K1spoYIsfnA9Z2shKNkWAw22Fsg226k5tUCdTmQ2gFWSXidKSkJLra5X2o78HyXJWUSbwAWWKza1DOMHRtdZVZPqZfntHqgLUUzuM0iQe9Ep1YicJ1ztXRpiy+wsu/VdBqodcuOgxnFKte8/rVls9ebXh1s+Zys5L9TomIJyuhxEA+GQvIGvvL5+Gy7hSInXl5EVKeU3Tk086MJuoNW0CNj1/ux+fmQo9agECNIusaAqpEE/RzvWIWfQNaJu3LfTNa9DoLSyGTlxsma+4voO2nfUE6Q07cdDgrmqXGyPWeqrSkN1fgpxS8DyRbMJlK/82ELM70hlybDLHJza2mdUYcMVctzivsVHBas1mvKf1AKo4Gw+QaZmV4LIqYFQ0W2p7sWkat2JeM6npUguQDz4cdH354z7vv3vP227c8D4+sh57L9ZZffPUl0zThjg2maQiTZHc4o1FOieX/shculFMtv+Pyx2gtYaE5noAObSws5xd1PpSr+AcFWZFUQALfPPN4JPiJFDzkKHus0fRtg3WKoetkmnqcyHPB6JYmaRpjaZTFuAafE9kosoGoNBhHMTBOB57nPSEGii4izlcCIgvTRZz1rq6uuLi4OD1jIQSskUaq63qZioXA8XjkYnsle1PytG2PPomus5gLLXUjvFCMlJZwaS224S+WwIse+CUcctGKKSW6DtmDpMkoSepQbezJwEGpdKYpLqfpmQCZRhxWNWinuLq+5OLikr4baJsV28217DEVbFhvNlxceJxr8fOSP3c25Vu2Z9TZ3qPIqVLffsL1k5uMc9u882nDp4iN9/5ErRI2wosbhtjL1jFcXcvL1+ecTk4tHx0iJyGKjL6tE4JYzoIaqKrCX74mJUlJ1lpckkoptKXQNq2giSbi55lSw5nWjVBVYox4H6oITGPQcshq8WHPJlMuCrnNKJUY3nnKYyQ/ZfxtS+odyWmSU9zNB1TymBS5Tq3QJgDnZHxepoIaNKo3YAu+KZQmgzOUGQ7HwOpiwDYWZ8SZxSoYCvRWHubSGpLtmXeKI4pJZ6ZGYTGsvELfP8HrThbJg+dwPBKbBrqOy9vXpHkWIZXP4uxiW2zXY+/37J6fed49st7+kh2FQ5h5fL6niZHeCXrZuobOrXCuw7mOkCNFS0Lp7WBxxtBYh24c+/HA4XDg22/+yLh/Zh4PhOmAKYFpLNhDA1qRxg3JB5S5oLgJTaTRGZU7SvXzz6UwJ3mwG+P4/PZzhn4gxsBhPBDmAzlM2JLYOCMP0zwS0hO/fHWD6TaMqeff/r/+wPPR4xMSSFTrgBjjR1QEpasAVana3MpYvm0dfd/J2kV8q40xsgkreQhjjIzjET8fSdlDSPR9R9M6rFMYBzlHYhRL5GHlaFtHSuB9ZJ5nYhBx8X8zV6rHlQJiDf5B1SlPhpRQKWE1xARFafquYaML7eRpnu/5J7/7Ba83A51RdK1FuOvCDTbaiCvZkoOgCtWO5kSDUws4cda4LQMrawyx1HZRiVBRaxERH6cJ14mewXYtxSihQeaC01ayGIpE6BUbSc6T7EyLxbYWOs3YB1RU6GQxxRGeJpk+LM7Io4IAKkJne8KUCLuROEqSrMoJqwuWaulqLGXOuKTQUZEIBCVOVdpq7LNHecmU8UdDMi1d1vyffvlLVN8ypsCfPnSgLVPw7OcjJWXe/XDHcZ64uL7i6bBjmmemEnm1XmM0ZCKNDoB4ySvtaHuLyx0xRYrWJ3vYoiPBz5AFsXTWSMG2IJw5o4ykhmvEltNaEceCWEVHY0R0jtDqFppu0zRst1vGacTPM97PtK7BWZl05FKYrKVo0W2k8jKBT1nsi2UC88KNBmhdYbu2fPn5Bb//7RuuL1Y1WV6mt3K+IAAGGlu6evB+DAac6w7PP1ZKgiQhWgvt4NQ0qZdMjI/P2FIPenX6nPPXXz4vpSVXiFPBTS2ypZFMTPX8+zleyjQktEwrCoRUHY+MRUxRNShDKbE2IbKGSuXDL9ogqWGELlklnyzF1anh1LlOp5eGVBgGqhihd9bU7f3k8cWAbehWjr+/+4GIQbuGVCJd29FYi82K27WldRHTjNhhYFSa2DRo17DZDrRDTzc3/MEnvMrsSubbo2fA0maNU44LIKfCOiTuU6Apnuxnvvm7t3zz93/k4e6OVAIPTweeHuA9luwP/PDdQN/3vH7zORQlk4NVyzwJ4CH4tehbcpJnoyhFqWcuZIy29NaimxU/HDJqFqGzyWrZaqXGq4VoSYkSAjkl/DwyjQeZXiDU0KHvaZsW5xqGbuD1xTVfbG/5F1//FYYGTcPQrWn7jqLhmAPf759o+o6hXYOVEEQ1Kx7f7VBO0fc9bdfy+PjIhw8f2O123N7ecn9/R4yR6+tr1us1TdNgreH9+/fs9s9Y0/A//Mv/A49Pd9w9fOBw2LPqW4w2hMZxeB+l5c+KlKOAOqWI7keF2hwsCLrkTGzWAyV9X/c6Jc6BZ2DKUlsbY86mrS+mRqUorIW27eq+ECrlv9Isc0JpyShq2oY3n7/mzWevubm9YbXa0vcbjHakCGGuk3ejwWTW6zXppnB5dSn1+ViIRSbSSokxi9ZijKGknyZGTzid3f/l6yc3GZ9a0Z4nOMILYrL899KZLQFYZ1vEyaVloT5pqA2DkRF+dQ8puXbMOaONHE4vr5+Z5kBrGopWp+LwHNUpKRN9gCxOKcZaXNOQSsY4KyMuMvM8UYpwAlNK1SBEhJXGFIwuEuJGRDmFvdJgVuTnQNpH9E5BKui2oHuFuR5Q2x59UzjeR4xX6ARNNqhkyb4wx0hJGjpN6RRzV3CtxkbFygF+Fr/vthER2050HbFE+sse1TfExrIZFK1qCKblKWTu/vQtf+8+8NXtFrYrcI0gOX7C+JmUI0/vE003SO4Ahh/evme13vDm9cD1zSUxTUzTAWM0K9dglAbXk/MRi0wW2qbH2baKLKGoQtCZo82UTcPsA9kfmJ9mvvnDH3i6f+C4e+Zi01GSJ4UjadrROUVjLWnes7n9Bdo0RNeiWKFVBJXRRcHsiSqgs0elLM1UN/DVV78Q95o0M8/POFfouwajV4SqXVMKVkZBfCaPI9Zu+KuvXvN0TNw9z9wfDycaTdd1L+taCf9XMlXsSZAq1syarm1l4lI0OQVJ19SybqyFpoG+X8v7mDwpe6zVNE2Dc0YyEyrNL4bE89NM8FmaDmSTMkZhrCH4+J8Vlf+crhwjOZQ6bpZpj6oNfSrltJn5YrBK7vXKGMzDO64c/Po3v+Cf/vZX9K3FGUVJYssJ5RRyKZbEi25rcZX7sb3iMr8qRWiRsWRirq5e2mByoWBouo6m7VDGyvQlg7OObhjwxwPRz8IDr9k+qQjyqVpDs+3IO9E9qF7jVgbfJBGlGg1tR4oZlSLBKPRKi53mJFqMPEAaDGMqTLuJ5COvXr0hTDM5JGkgXHWG6i0+Bcgam4xoqEwRFDUV4PUi/AAAxLJJREFU8vs9wT8SvGcbE0PZgrPcbK45hkAwDaHrufz8FU+/Hplior9+zZ++/zMhZ1w78HfffC8TFAuH6QkiqKxQOJq2JWWxkfWVLmEsYBOlJKIfifNRKBnUcFBFnT4Juu+cqQGYipgCwXtinYAshfriJDXPs9jq3lwjwl75txTTqV5M5cUBLMtgRWiSCz2yCrBLebGrdgbeXF/wxWdX/LPff82bV2s6p3FWY0qlnGgoqtojl49plufCzeVP0zQfoZYvn5wrXacG/p0h8x9TN9Vpqv9jd0ZOiebS/FQf1vr6uVLEYpJ04Tl6Ru//tz3I/3+8XONAOwqaUG2dFQXn9EeoO8szX6S+KB/VKqZSrVMFJDh9LJ0FpOq6VmSMVN/uBDkmjlPg3eMTPzw98zAnSruiuI7cznwYR4pz2K6jlISdI0YZbCiYhwONNfTO4HNGF4PRDZuLV7A/0iTA9qwS3M+Zh4Niv1mzMZa+5lRJ1mdmS+GxFIasICne3j/zdJyYYiQhrnmtsaybFqMjwT+T44G90+KI1q9w29VpuqaVQmkHSqbCIQahwBcxdDBKU8hEEnN0qDihsxd2B/q0jgtyVlI0fg64riVTCCWTwow1hrZxdK3jZntB37QQCr/+xW/5xedf8tsvf8m2v0SZhqItyVn+8OEtxSi2t9d4LQCQIdG3nfx3cbx+85r9fnfKogoh4Jxjs9kwDENtKgTM/vDhjq5rWa9XbC9W/PDhO+bJcxz3FGA1rPnqi68w2uCMwfUd17e33P25EY1PrQO0LlgjrnLlFJCnhEKp4eJiS9u1zKkQsmjdqNRHWM6j+jfIdIiaIacW0yRbjY2o67FaJgPYFus01hmMs2w2F6xXV/T9JU3TYo3kGWWVT99HVypydtCver78+ksOh4PYXKfI4mypzmz6xTQhcjweiDGdqGf/peu/SpPxKcry6cfPr6WZW6hRLzfzbPJRg21KTcE+MVaUPnEh8zJ+Ohv/LgLYFFM9sPKPi4iaVSATFIghsrgDaWsqi0LcR3TQJ17n0omexLt6eWRk/Fq0ojSavLWAkgN2TqipiuucJg4KGo3qFHlOglIGhQrCNSctPzMoZcBqkksklUAr2sHUlGGFigWUIN3KJ6xSKK/RFpTKtEqDzhQCaozsx8BD0/P511+iXYtuOpnG5IjOkehFqFkkFQzdNCgjsfMhBZrO0Q0d6ITSmlaLcJ52YIwBozXWiJ++1hZq+IwsXOHwZVOYS2CaD3z/p3f8+bvv2D094scDRl9hdKLkGdJckQ7FHEfazSWm31JcQ2NWkqyuC/hITkK1KcWTQqSxltXllle3b2jblpQCIYyCqFiNThaiptSwPWuMPCQpYBjZtC2qGFJqmLInZqG1aW0+omDYxmKsxZrq4FA/TkE45xhUMcIP1i/8SLFm1WgtzUmKnhBHlMq4usnJmCljVEG7hHOpIhhIc1ED44yWFFFBPX6+NAegBiLW/1MKKsFiIZ1KEkc1a0RAZy2tVujpwKoEbrqBL26u2AydCNCKFK+6FhQKfZpgVAIOS+R2qcUsvFAktPrYSjSVQokZbWv6b52OKIRT65wVcKBA0RrrHMU1QgAvldtdn9uF52x6S3ga0bM8xkYbsaW14samtJY04qxICnBaXkdJiFvJQGdIHhKGNBfioAgKspY8kKKQEENrUXPGFPH0Ry3iU9En+GkmzZ7iA71W9N6jS8YBQ9H1NTXrolm1HaGtIambLUlBO6yYn44i/HSGu33GakvJivkguo6YJT/ApkwM8VT8Nk1DITMnLxaklWrAPEHlHJ/elxr2R20QYvSo6eWMCSGcBetlQvBnIJgG6vuBILByFkmhWOoeJcfK+ZmlThM2ZzSvb2/46vM3fP3F5wxNzV05eTfWlXTSX9W1fHYGnXP/lzW3/PlYxF1OzITzS1WqyccNyTJ9+/G05NzZZylOoE5okgBUcwgc/cQ4e47VTebneDlrKVqmFilV2ojAsxWozJAVWi0Ts49pUmJ1ujj1lHrGwyJUXmiXdZxZ6UNVJ6MNsw887498f//I98973h8nRtNSyKQU8WHmeZ4pNqArOwI1o4rGZtF8WaMZnCHmTGtb+qYndTPT/oCLCdsEUrSk2OCVTLaVS0Rt0Fkmly2ZY8nscpQpbszMUYFx2LbDZYtR4PTCNFmywgrjwaG4oGkdiYJxLcpITaO1RetE0dVulXwCbJZqSCkJgJOQ0jpJrvTUXESToZEpkdFgl5TvFF+KdmNojeVqWHO53rByPb/58pe8uX3D9cUNumnJxlG0IVnF/e4JnyOTKUTE5j6NhWboKpWt0LQtXRTazzRNJ0e5xWjoRLkv5WQSFGPCNY62bSv1bWIcR5RSXFxcSrhnZSg0iz2sdWRfXaaWyTwvNWrljAHCcGhcg7UJHRfA+uXnWNgRC4CpijrlCy3NxMLSWXJfFgql1F0VjDRifiJp3x3Odphq2KMR3WLO6fTzimFSoW0dl1cXbDZrgvekGKREPdseY5KgyxA9IcTToOGnXD9dk8GL6EyrBXVRP/pzUsnX0cqnwOspEVye+Lq/SoNRSrXKrYjg0hHKxvziIpFyqqMnEQtSzInLqpQ6dapFSfelini4Z8QCzjgn/vAp485+dmtNtegSYY2ugTFKmdMhlYCiMmYtThGN0+R3I2mK4Au65mjkTpN7jb7RmFFhRkV6iIQpkHIV5MWCKeKaNfeKOc8ooFut6RnAQ5oTOQTyHCFkhvVAGuXByA7ariGqSMgHpoc9z3rArK7Ytx2d7mjbFe5yjVKZ9PxMOkwom8BNKOtwF1d88dWamCKH6chqGNherlnnHq0NThlaaxk2ijs/o42m6Vqs6yhYksxTaarrTlcKhxKZ45G73T3/0//0/yDGiZw8MYwMk6VvDM4UusbQxhkbZnwIzOk1RrXodsO6aXBNg7Ga6e6OGDKqphNPxyM3mxv+6uvf8tWXv0AZTYyeyR/EjUXJGopKRt1oMMZh66Ed/YglMugGve1JdsUxgI+AkmLSaIOua0XX/7basvB1S14ElLVV1abmCdQmQ8thZq088Lk2QTn7UzEafCSlgNGFrlVYG8RVqRRSMuLwoAzWSGJsigkffr4IJEjAm61+5uIlTy3QI5GIsg3KWtq246J1NNGTvv8Tn7254uubC764vSRGL42Zqh7edRNVypyaBii1mVFQ95Wy0N4K1fZSJhbkVB2tZOs3yx5VEaZSCzVrNMKOysQojmdmGGidZdw/U6LUKw2aaA1GyUE62QnlFWpGHOiMuNbFrSYHUZCWnMmuyO9gZLqpjKkFUKZEg10bdEjcqYlMQLmM6RVm72kUYqGbLbokihdaCKYh6cKsIzFUnUPj6MkQJkqAJkFrHBmIJXH8mz9inMNYQ+KO1+senEEd9vyrV1fQdmRn+X5XWN1ek4E//91bYlLMBcbco5Vi9/TEYR/ExMBYYtOSVSEGT5xm4jyRfKCxDdY4vJ/JKJqmYVitkLycUOlRoudanJjGcURrTdO40xRdKUU/9EzjYrkuvGpxDrcnpPBEIzoVHJz4ckZB6xy//dWv+Ktff8kvPr8lTI8EPxLiTEiRQqojkULJixXqufPcC2K+FBHx5EX/cZOxBHcqVQWXLBSJM7G4dJ3LTw78GNT7eDpX6VdkfAz42TMHz2Gc2I1H9seJ3f7nm7fTNJZUNKlUt8u+Fz69NZjqsoWK8t8+nSamy54gACcoNEqJaDfXvIdUkuQgKAGaKEKeThTmaaLve47zxP/67ff8j//xbzjalrzasvriFo8iAHMqHGZP3AdSirRNT/KZnIoUzkpyeBorlthtC23RHB+esJPHOIdtLEGvmFxPCZnpaia1lqMFlyWHxarCPiXu0swcPM0cMW7NenNL6dY0OmJUIcwTx/2OlCeSHykhctAZ2zpcGTimiNtcYfxRGiDbULI06ZpETr4yPQS+kUl+ixku4d2BGOTeZmSPTaUQ/ISyoklonZz3Oco0ZD0MWK1wSjNgeL264Feff8U//+3v2V69RtmWrA2lafBaETQUA/eHJx6eHvjTh7f88q9+S5wT4THQ9i1aLW6lhbbtTs/Zfr8/TRDHceTx8VFoWcOath1wTjQ83kfevP4cpWDyB95/eM9qtebVq1/RuQZiJiePVoa2X9H0a/z8TIy+snXyCXxcHClzrTdSNaZomoxPislPMj1lMYGRRmTRXAC1HnUCkFCnDpnT6ab02b5jFvA8gol0vdRO2rQobU9f32gj9N56blptKLZQ2obLqw2v39wChRBmxuMk+1sFS+ZpxgeP95P0AaiTNuW/dP1XTDLgZZPLWOPkIeTFdWppMnR1WVm6x5ReeJBL95Nzxmqx98yliEq/ZFJBnJ4WgQnLlLgIkq3M6Y1EI4lo4t9FRgoEa60UmWRxNIiBpmRsEheBfuhx1qIbQxiPKKWqcr9UtFgQuJLFSSUqGblpU9G1ejiFtuB1xkVHszMwZeaHQMkOdWEwbU/oj3idiDbiisYcFMyFNCdKiDSzpZsddmzQ1hB04lknYpNx1fc47+Rgyzky7w6YvkEZBSXQXGpUK8nlt1+/4f7umaf99/zf/v3Ib/K/5Pr151y5Dt1oXGdx0aKOkbEcyUnD5pJ2u6ppnpHDcYdzlqZpwTjJCMhiC7ga1pIK6RpQVprDIjPkcpww00Q/RprOUpzl4BROe5LyEuLnQDWOYlswlu3NK8z+B9T4gDnMvH37B9Tk2X65xc0dl+sLus2KcvRoP5HmkRQ883Gku+n4+utfs95csz8+Mo57jtOOrD1JJZKGUsW0KLDDQMmLwaRmsI6iHdk0rErPzmsOQTFni84vBay2pjYWi47IVJ2QPllxQj3aTwe/rF+jLbZpadpeCqC6qQTviSGggoz5KYmUPd3Q0rSRPiUUihiD0Di0OFDEkGpq78/3UnULNihaLAGZ4CUSrncMmw2b9ZZLY1jFkZ7I9s2Wf/nrz7ndruk6W9vZBWhRFTETpKmwOHcIze5FtC8bs6kBcKroFxZERakqeEwpdd8p0hTlECSMreshl5NlYc4R6r7nhhUpJqGDlczQtCL+9BFeacKuEKZEGzThMJH3GfU4YpAi36XCk0mYrpEJiFH4Xsk6LpnGlcpBl7TmucvVIU3D7boWvZAmT2saNBD2e5RONEPLcLllvtuh5ighoAoZ5xtLf7mtjiWRHDJt0JgponIkGUWOkt3j44grkBBKzlfXLfrpgaIV68GidEdQGq803dU19w/3PD0+st8f2R09hxDYhI4/PN8TcjoV7SllrK4oaynE2J5E9C/AkaQmS4MxycFszYuw8+xw1sacnkVjDWEMTNMkz121p42fahJKqeF/cmBv1mte397yq69/yXd/nDlU+omp6HaharRMIav8EbL38VThZarxqT7jxxMI2XcqT0Fyf2IQlPbkjCbXR3kj5UUgbpSuIJwUzDFmDtPE4Tjy+Lzjw+OO573nef/z3UdiiFJY1ZZRGYdyFtM1QunJQluZw1gRWMmtyDVZWZVShxdS6PnoKxtKVbqarQClYp6lgDyOM//p77/h7f0z+5DZK0f+xe/JaMaseH//XHn2iRBmwjwLhTorshVKlkIxjzPZCFJ9oLCrNs/GOTbrkX59QTesWV9e8frzNxga8Ir/5ZjEhMVIllBzONL6mUc/8stO0xIlJPRppsHSuy03lyu++voL/Hzk/Q/fMT/+mRJGSIGmjDTW0HUrNttbxt3bkwg7Z2qtI0YvKSUoEacVvbPEYvAFpulI5xybYeDgE5MXXdTsJ0r0NK1QtffHkfbmlq5tub25wZbM5TDw6uKCf/37f84Xrz5ju7mkW11y93zgfv+BD7tHbr/6nPX1NW5YsRuP/OI3v+UzP7I7PKP0Qk3KfPjwHqWkSL/YXgKWtuvYbDaUUvjhhx94fn7GOcfl5SXGGLyPONeynOvTKKwKYw3rVcPd3Qc+3L1nmg787td/BcWQU6EdLvEZphDRxkEUIbmcPwtAUPeikmit5fpiRUkeSsYaQ9d2zPMk5wd8lCG3PMtLc2J0jXaotWfKdQKslJiGKGQCpaOkiw+t5AmZLPcIRc6iTbJOLHlzScQo51xBfuyut/zqN1/TtIbHpw8cj0KNKlk0KCklyKCVpWvbSh//B24ydLXrVNSETC0PZOEFcTkXgH9KkVpu4Onv8kJ9SrUDXaYWuY6DpLOpbi8s76EgxCgpBETLoavCX/QdqvJSc5KEWXImqnByFjFKQ5txzp5Evp/y3UsuhLyMCWtTZK2g1YhwZvGRZy0Fi7IJnRPGR8pOahjXa3H1aAtpi0TNz9BNBj97oPrkTkrQcqdw20bCybQErYRZMj5SzpDE2tMqg1WQJlnkxhrmOOFMwFnPYfzA23d/z0zEdD2XoaBnYC5McyBoSwkBcziIIL0k4ZYbmdwYY0nVbk2VXEVajTh2aSPNYBE6Sk6F7CPRR3G4WaKNSsE4DUles7MNw2rL9faKq/UFnY5MwTNPAaUDJSsabdiuBxwblOoowSBe0DX8MSRI0NqW7WpLKYp5njiOewkJzFFGjc6x7a9IWQqXfrUFHAULynLi7StNoac4hQoaFdTJAUcvdn71gBAaQrUARFc3mxdkoXIoTvaT6jTO47SWc+X0pwwxlZpQ3NLaNaX4qt9ItZgdScmTs5eMmBq883O+FncKilBXXOew2pFNwvUt67ZhazWvG01PYW01X93ecr1dVa3NeTrvSxMhz26uad5KXJmW53kp6DIoLW5QL5NWcbtajCJQL/xYFJQ6Nc1RS94CYJQionCuIQXRDGQKtmuhOOZDqlkEoGzBrC1BJUpTKEGjRovOItzOQSwklQKTMioUSAIoqGAx+mUcr2rWgWmdNFO6UGxBWS2cBBSlgWTEO6i0wuvNOuNVgJWmWE3xmUmB9gmrCkl5MuI+VJxC9w6lIipkIEEsqJLRSSw0Uw02U4dZ8DpraIsC74lFEZSC50c2fkLrwsoZbjYr5lR4ioFV/JLvf/ie7+aRkD2JVI3Vgmhjoj4ZiCwmIucBrmZxdVMvANcCbr24DCZC8Kek2+D9Rzk252sDJYFm1SqAnCWx3IeAUorN5kKKxyg5HErL3pFOoY8fu0KdNxifTi5ODcEnTcjp69SCVkqBoKoDlVIfv8b566NY0nxEoJvFDTCkxDh5DseZ3XHm6TDxtJ953kd2+5+vmYQ/HrFNh9JO7JB1olQKtFaGxEKFyh8xKRba3LIvl1JOou7lIdRLyF8qhJR5Ps6MsbA7Trw7en4IhRHL7HpG0zClzFRB1FRkbeUo65ka2ZFSAbOwO+Qsz6WI4xnyvOsYUXpHSIVx8hxDxq6vUO2G3va8AiYfiWkmZCPaGj9TppFLt+bCOIxOPKy26DjjdGGFY61bQlPw/cDjY6QQKGUmzIUYA36a2d3fE48PpOMzhEmsXxFaudaaXCxaJXKIQlEqiVQCWUdSCHIm50zynjiNxOmAVQnrNI1pwGgsAgC7ruPXn33GZ1fXvLm65utXX9K1K3xSfPvtd/zdd9/xPO6Z8oTaOOymx6penntr6cyAbQ1jmLh/d8e7H37gf/+v/jWLlqkgTl+qfr++79lut2fPXKkMA33KCMpZ/7+5+7NmS7LsvhP77cmHc84dY8qxMqswE0SzQbbammxZS2Yt6btKepZkemnTA02mFptgEyBYQAE1ZFZmxninM7n7HvWwtvs9EVUAs8xaMqa8LCyjbtzhXD/b915r/acqY5LBwTCMXF5eyUR/2DOFCaUkcHNlG9p+Q9uvOYz30rzWwbNe6JplqZUFz8isVw3HKXIcPE3T432gZDE9OdU2yzqVRRtjEjtybdBG1Qa5LtU6Y5fBWM1psZam7Wi7FdbYmZAlO0m15pY8HUFgY7USR4GxirazdH1D1zcSlBuF1qorujo3Q41rxfzglE/1j1zfv8lY0o3FOlbPXMUPrscgM+E2qllA8gFftVCEX17KYjeoqmiz7gYVsizkNNOn5o+BwkDJy9QqxUghS56CQpqMKMiEqm9YUbIBiMwioUtD2zVLkzEHGYFQJGL0C8dunqjN0JYoiuUNKmtFJT9iUqQcR/I+kgePe35GaDXRQWzEFtF6hWsN8TZTlCFnRRkBpTCtYn3dsS9HyfHQhtgVKeqB7KWxssZilWWYDvKjneGYDzQmkfvMYb/n9etfMuXI+vyaTd7ghoQaMvspoNoWnRPxsBNXrFJI0eM268obt1IwxIgi05pCU33qQVUHBKH9lJgqT6+QMJWrKQLJpm85xoAB1usNZ+tLXjz7mM9efIJ/uOPN/ZZJDWASrVZsmhVPzs/R+QJTNGlIlKJEzKjEiq53HatmxarpOcbIOB4ZxgNFZUlHr7qRi7MVMUVCSrSrc5TpRUimGpk6Z3G3yTQkI9qYbOqBL7/lcgDNXF5VBVmlSLEln1yqB7YcbHr2oS/CgcwpopKhFCVT8BgJMeJDQBtJRO7XG0qWkLCcokzQUZSil1RbjEGrH25xAHUoMCNgKNpNh3aKYgtd03FmDJe68Elv6ZTh3Gr+4ONr+q6tehjhks5cTINZDmwoWGWrzbta+Nil8oRzbYp1HRYvei9tZSI+r7Ey2y8Kiie6gEjxHm3sQvlsnGNIkZhlANB1Dq3A+0HonAqUUdi1JVmIfYZo0UMDSVCxtJ8oWQpbe6zhdzmRxwEdnRwwaNFzIbbTdmVQtclITT1EnEbVFPCo6xppDCRFJBHikWblxMEuFLzKuEOutrID4MhGgzOiWdNIGnCI4mSCOO0Zq6VBzpl8mICEaa0gg0ehgoaiOO53tEpc8ZRWtP2KqDS7mPi0a/mblDg+3DEMw2PBVXIN/xKkwTkJQ5yD5pYgV/v+FH/ORZr36ZQSk584Ho8EHwhR/pw2GKdNhlBoSh0eKGIuPGx3PDxsGfzI5uICHz2H4wAxLKhBmi2TUSj9GDx7etbN14dC8N9GnZrpXHUCB0rXc5a6Lt9vMpbvwawHKoJg5IwPkckHdseR7UH+3O8m7neBwzFz+OGypZiOR0igXaaEQtIabTQlC620FKrTm+wJM71jLuTkv6KNfPSYkyEQyhBDYgqJwUfe7ifufeR+GHkdMg9uhTeO0PQckhi4hBBhRjUrPdvUXIuM2DIrVaqLlVC3Ul3zwoITXQNmT5gC2g4wBMzmks0lrC4dH+XAuwEeUmDyLYMSu2gzep5cO54oTWM1/skz4n5HDhPFZ/SUsKXQK82xBHLxJDyHUDn248j96+8w6YY8PVDCQEDhbCNaTqNBOaJK+KhFD5UzvhSSiSK8nzypKOI4kqcB/IDWhVatWDtDS8fKOpqmpXUNf/6Hf8Lnzz/i6eU13iv2g+fd/ZZ/97c/469/9XNC8fQbx9NPr7kIT1nXJKVSxC53s2qIu8Dd3Q1///d/z7/8b/4V1NowRhEmU0S703Udl5cXtG3DbreToEUtyOg0jWIsVCQEVNe1s98fePrkGZM/cnf3Bp+8lOrFsOpW9OsLutUFu9tv6kBLnj1tDLM1tJRJtczPkbN1x932SAyedX/GoEdkVMXSIH1Is5QG2LLodytYoheKv15+jtYW51q6bkXfbbC2BRS5iMRA1VrEOUdKhRjSQp9VRmii6CQajc4SUyCmKM04Baubqv0wOOuW1/l9ru/dZMRQA5TqvVPmUdx6emNmK1mgbv7z9KbazmqDUiLem6FnrTVxtpQsZZl2FhSuaQGHmgXZyCRLKYVVs4NVXuhYKWdCjFL0I5aU1lqSFzieGY5C4KA5ZGS+5vRUBYTgH2F3Yzi1G2uVqd7HEFRmaoW11RiHuYmkYyIOifJ2oqwUpVeEtUZbDTlT4iRiRRQ5JNquF+7xMXD79QPNZUdxhYOa6C8a7MZJoTEa0qQpsVBSwQTFcdizv3lLeN7QX6xZNy1WBb65v+VujPxstHztrvj07IwXfcfr/QMvnl/RnvdMcWT/kDDO0bctvZOQvVIsh6B42I+gMptNy4VS6JjJITIME2hLKnAYjuLctV7TuUu0gY3uCbrn+Zf38OYdMUTWrqPTa9I+sUt3nGmFmywmtJSy5rPL52zOPuIi9uh+xWHYs5u2kDw5ZZRqeLp5wZ//t/+C8/UF48PIUU9kE2nOOrrOslp3gGLykXjwUAR5Gg6F/qyhac7oNtdCn5hGwngg+8yq6+mbFV1SHIZRuvzM4sxSKGjtUDzqg/I8UVdG5hUl17Ad0QuRMyV7/DCRs0wivJ+IycvmRibHQPSeHAqr1QqtG7RzUCZcs0HpBmUaYhAHj8QP13oSwPa9TKiNo3eG/smKrjGsgU0qbMhcGfhvf/IJOo6o5FEIzDxPr5u2lYltrBvoos1Qy2Ry3qQFyxbkUVXtTC4aowzGUCdA1QyCqveq4jiK7B+FOi2fAs3KSWPYKPaHPYfjgXEa6XvH9mEHVdBsJCpbgqQahXKFjMIpRxwaYohMIRI3FopCFU329STJBTsYWiwlKpIvuKhIIZJiIoxZ0LxUOI+Zd+2RYixZW7qUSCsoTmF8HYDoTMiRURU619L2nWRXXPakktE+EQL0TcdVf879YYsfE8EH/DFhMqgkz76iQUeFiYaOFdkgVuFkHBGdM8RMEyNOiSmEIEJbrNI0WnNhNe1HH/Gkbfi//+W/ZUKDtvStFImuaejant1hz263Y9Y7zFo7ay3jOGKtpW3bxdo2xsjDwwPTJKGW4zgSKhqhtdCtCBJm9ZjVIQ41ZMSlMGXudwP/w7/+C169ueHsvOfP/vhLuvWGy5xINwEffLWJrZoMJSTAU6rDh2jGaXMzn5GnWR/zddqI1E6UCpa85/AY5wR6pYglEjOUmjvjQ+QwTuyOI2/vdtxtd+wOA3fbI7cPnhCp1NEf5qUxxBAgRhIKHyaauKJve5KPlBARt5dY3+dZc/moy4kp1D1byWiyyBR7CoHv3rzjmOGA4ReHwC4EDiFyT0vQhpAVfpiAjC0FYwpTkmIRbTBOi51xjJQQCKRFGypBtoJQWW3A1kJKK2LyGF1olOWiX2HsijFGpruXNN99R6JjUh3bfIlZaZq145PrKz46P2OjCioF/uT3/5i7X/6C+9ff8d133/L2uCWpwOh3MAW8T0wo9IuPuPjRFzR2xc23L7F+S86JpHvIMuQqOmKd5GFlrzhMHlsUU8xMKTCUPbpEdA7sbrcMxx2bVcMnz59zuLvls4trnl49JcXClz/6gk9evODHn31G227QuiEG+Iu//Sk/+/rXvLx9x9vdO45loOksbWPIbSJrT2YSTYHrmPzAty+/4eNPX/BHf/QHrDcbxmmojO5CivdMkxhB9F3Pk+trVqsn5Jz5+uuvubu7w3vPNE18/PHHjwGeMdI0MnDe7bYchwNt4/ji8x+jS+F+e8swTlz+ZAPaoVQj72WSWIbZDnlGS0oBbcXMI2cJ2o1hIsWAMZZnz17gJ8/r198h+ga95EelysDRGhKREiU1ve/6ZSju/YR1DpF0Jc4uxBn0xYuPadw5xvRoLa8xy0QNVTLOLVYnaCMZbajMOBx5+eob3r69kSiAmAGLtaKpqYlhVfsoe9uHeT3/0PU7hPE9TgOMrU1EFUSebn6n0LXAg/M0QbrHeWMsuVRaFChjZPJXJ8PazECQIsSE0SzuTyFO0lkZwyyCOU0hn50EpsmLO5AxtG3LGCXxdYa1qJv94XCQCPkKzS+HAWURfql6QwuCcOScOWTJCnFGVPsFcVUa24K6bChtpriMGhL2AMYrEg46Q24N+tpgG1CTEorOsbBRHb1qZKN8CCSbSTbCWqa4tlOYxhDHTA6ZcUziUGkaOmU4u7oS15qSOFM9n21WpNTA3Y4w7fhGw+vW8MUf/gFu3WBaS9/qmigpDkpxf6ApYDqFbRo2a5nOrpzDZsixkMfI7btbYtfhneVBGazrxCrPGLoYKXpNszF88Qd/RlK/ZHd3L7oNr8hx5HA/8ubmNckf0Crz/PwJZ+tLHA59v6W1HcZqulXPcXIod4bdrOjWH3PhztEoxuRJakQ5mW4mlRhHyS2IU2DYiRVdUYaoG0wbKSYQ2AMQSyEo+T0jhTh5vM+kWKAotLIUxI0jJfGMnieiIUgWwIzsAI+oVxKXKFG8pgU1SVmccFIOtQAukAo55ho4WOozoohZ9BiynqW5kSTaH3aT8fGTS5yRBPbL1rJZN/RWsVbw1DVcOcN1a9hYQBmKdYIO1Xs967okbIvaYMi9PxXXaq0lf0HrR7u+UveVCi3PNCX5bzWfSI+OUnqm41TITuz8Zl2H5TAc0dZicwNFLxRQVaQRpTaWOrdLDoZSCt2BsVrC7LJZqDomaClWcybaSKn6IV0M0RdSVOQkZgwxOUgZH4rkbqgGgyPsJ8qUKDGjosaFgi6JlEdwjkZnrPK4TsH8mqoey2vPPh5IKhBtEBrTzM0uCiXnKQQgKrKyRCOISjCZtFZkL17sBb1kgWhXCCWSSJIMHApdyTxpOz6+uOJ2DIwZKCLCDD6T01jppPL6Zs1cKWWB7WcHmfk6zbqY18p8LsgZkRcXGhToUpZmUgpOeWR9KpTDyK++ec3/41//Tzx7dsWTiw1X1085HPbVsMxX5AVkyjojIY/Xh83DKXrxmCqul9d7mil1ip7PqP78PU8TvXN1sCnVhCIVOE5CjbrfHXl7t+P2fsd+mDiOkZSEqiiI7A/zijVjQauZHqfIKeCnI2QvNJSSq/2sPNemUu5O0ayU5J7lIkOpYQrcHwb+zV/9lNStMJdPeJ0gaU1SBt32mCnitOayaXh32DJlCXWNRtAsxexYF5ml07Y6aVKEdi7rT1W7/mqtWwe2Iq3KOAXKDyiVwCpCLRhVDrTWYwKwm8jhSNh0xF5CSc2q4+yj55hGE5Tn/vYlw7jnOO3JTWTUmuA6mv6KuzHQ2YGmk32KVF2HcpBXnoXeK+ebmJiMx2NFeTK3uz1vbg4MU6YxHf35GevWce46Pv/skt/78id89OJjLjYXbM4u6PoV1q15tx95c/OKl29u+Pk3X3O7v2cfjkQTK8skE6NohqwTBGR/GHFKrKCvrp5Q0JyfX/Gl63jy5Al/8Rd/wc27Wz777DOur69Y9WvWqzV9/ziAuLy8JOfMMAyM41jrVhZbaaEHSbMSQiD4if1uy+/9+Cfst9/x7bff8uLqCeRQA2AbYj7U4EGNNo1QFlE1/FPqZqMNq74HFIfDgWze8cUXX3J+ccbd3VtkwlHRyzrEnFnWVskaMdpVIbhoNXLVXck+J1Sn9brn6vIMsdKN1ZsiU7IRxoxSxOjlFepCSYHd/sg4Duz2W97cvGW3O5Bi4fnzTwhTIIaAs1BqfS5Dvffpnv+p63s3GXPRP1tm5Xr4ploAnGZkzP+dedLz3xc+dn0rTokp1EJBPjTzkOapk0A6AhlXHbIulSvGez93OVByri426jHuff5pqk48q8/v6YRsbpTmycd7PNvyaCAY63fUgKvTUiloFWhLscJnVt5jojzAuExutVjgdhpLEfeYDCVkETdqjc+ROEayyZi2Bvcp4V1rZ6qdbxZ/fSfoSKdbnOmJMZBipk0WYxpiVvjDkTyM7JInNJofNX9E0uIb71yDQfIFjNb4YaI4h6oOF6YRJKBVSvQX9RDeHo8ko5m05q1SOGNpjeOIZpMyFoe2mv7JR5zdHSAbYrijUw1NKugQiKOnaRq61nJ1dsFZd44yDSFETPAoazDKkmiwRuDg82aNSZoYJiY/ENRIVoGC8JCzT5SYyFPAT4P44BsRos90guw92lR7Q6Wrm4YhJeR9SkXeWS35DTlVfqSO+CoejTEIdFUr3DxzJalTy5SYxRcx+GVCLkLO9EjJqbIOU+9/bsShqlRa1Fwsia1uEjekH/D1+dUFjTF0xnBhFZvO0BvN2sC1a7hqLRethTIhT7hdnse5EMs5z7cNoELWH4poWVDSuclQ5dE/X2mzUKIWQe08Ra7COgn0kg0/F2kEqNRPZcST3CZXG4oKaRdIueoHql7J5Ll4EJGwDO5lQJHz4kMijEAUJcuhLnkblSoYIcVSA0INKknYlY8FhizQMo4SnGxKiIONjQqywmZQqWBKRJeMDZqiC8UoitVAlBDIglA/kqxRpeX5oSiKESvcbAolabLRos+o+5iyimIUUTo0VDDoLDaJKVWtlAKVI41SbJzjxdk5oRzIUyQVLfco1YM0SRFvlKAYMwIwPw8zsjyLuE+1FvNaWSgI+TFUbSbq19UACA0jVzQiBhkS3Dzs+Nuff82bd3dsVj1nl2dsNudi61kKJP9YGxRpVMtiTf5IzfmQPvUblK1luf7m59YlN5++7/1uSXyKK11DBm0hBvbDyPZw5H4n6MXDfmAYoyAYxSKF9w8XycgkrNYoqzBFo0INwcwBc0JjXqhmPFLYFtG/UqSUCTFznBIPuwO7YeLdYeTr+wNlregazxaNbRuUlXNWTxGnFL2RhPFSIJRCtjWIdSlkHi0ujJEE8DJnoszv76wfq5eZzStKJsURjltUbCnWoleNhFQqzVkL3RSwPlN8Jh8GoWZ1DpM17XqNVpknYc9x+4ZAoTWa0fWYvoXeYtfXkkaeEme9k8yLkFApY2JGFTlnUpo3QBH9jlNk9J7BRw7HiThNqGzoe0ffONZNw0Xb8ZMXn/LlJ1/y/PkLri6eEFH4lLnZjXx3e8PXL1/x61eveH37Bp9HAhLmSxLqUYxJ6NdJ9F/zm6qrLgMKbdvTND191zMcB+7v73j69Jqmec563bNZr6UxGgdCCPR9z+XlJW3bstvt6u83m6k8Fs7CiJEzPniPBDYKjX+aBiCJVk7NgaFCHWeJMnxsEqivvO9Xyx62P2zJJUq2kTOkUPeD/PiFsj/UdaTMMmjMVVvxuJ4L1pkamid/vB8E6TSS5+NsL3WmcpQi7B2KaD63u3u2uy339/cMk6cUzWZzwcVZy36757A/AJ5IrYvKh7TD//T1Owi/zaMWo1AbDCnsnHPLD/0w4fv0/8u/1/uYS50eSrOiTO34tZYJcq6QYyqLw5Qi12wCOfRzToJoKFUFtFWfkRIhBbLWlJQYK0Ihr1G0JSEEUpKFN44jOWfatsU5h1KI1dpms3iyzymqSmuZxDaduFVU+pTVGm1VPew1uY1EM9FiULtAGSJ5F+BiRXaW0AeyzmhXF8YuYHWFrspBHm5lsLQU1eCrMDUVhclgq3hV9wWjqj7ju70U2iULna0MuJRxMaNbj3aGsW14ff+WtGq5sIar7pK2aQXKrU1XjhGmiU6DM0aKs5jwruGo4V4bbiic9z3Ktbx9e0979kSaq5S5VBrrEzokksmsP3vB5fkZdnXOdVB0BTrgT//pn5JUIueAGUaxE7aG0jvujyOppmed5zWttTitcRh8GBmnkd14j/d7ovJkEqlEdJLX70dJNNfOYaymXUsisXGWhJUgGaVoXIdpenrdEIshE0j7ER8yAUks9j4yec8wDHWKUA8MpSqVppBiqqJjEcaXipyVlIlxkslDFh/12Ydd1QKBDFMpUBLRS3NnG4NtmnpwlbrBlDpZ+uFe/+qLTzg3lpVWlDjSNZrWadbOkMcJqwq61JH5YiX5vhsPUCd/UtXPLnfAEsi5NCYzXDFzWWvRrGqBIFoOoclQ8oJUGv0Y6jcjrkarqvfI5BhZr3u0VoxK4ceAs5KZEUPED4fKC1dkbM0/ETTEOEm0btuOlAKzBSIqLYVm11imHGsRH1ArEaSWIu4vFFBZ1k9ai5tIMZpyucaQUDlT9gEVNDY7+mRJU4KA2NYewrL35hDlnjeG3HqaYik2gkkkpdDrhgL4mDA6kU0hOxlQRJ1JZFSApBV0GrVxEIv8rJjIvqBCwaJprOUYRcNkjeX3X3zEGF/jw559yuTaRKsittMxh2VvBpnkO+cYhmGxfTx1dfpQrzB/PNchV1qsTAWtknVk6M8uhHqTEvvpnlzg6BNv74783d//mlXTcb5a8/lnP8a8NNzd33I4VGE8tXFU8v58KMw+HV6dou4f6jPm9Tu/5lNvf1nhZcm80K7aZhdBl0MYGMaB3fHA63f3vLsbuLkfeHO/Y5pmXY1ZwiopP9wmQ6uMcYqmc6yaNf72HlQW8apt6zM4UbLG1vv6mNpdtT3AUCllP395yy++fcPWR0K/QX3xh0SluS+KkBIKOV+pBiglRY5Dpmt6fApMKUIniCu1mdfGoXJGJdEHUoXoM0qaUhY75DSzRCTgU1tDIfH6/lva44GsW5LpuPpyA9eXrM7OedY06HfvuBwnTAIOEyVkyd3J4DYdbnNO/5Of4NIAYcA6xVfjHvX8GnV5zs5n2B9xFDZna7KKxOMWddxiaaoVLeQgDnk5ZVTW7LdHdsOBwXu06vj04+dY21OKo1GGy37Di4sn/Fd/+s+5evaMdr1hP2Ve3d3x8t1bfvbVL3m3u2fKHp8mdmlPTJ5MRpsG7wPGaKw17PcD727uQLes189QlbqaMjRdRwkRHyLHYeLjjz+VvKwYauCtpWlbGtdzc3PDzc07njx5wnq9Zr1ec319zdu3bzkOR6ZxpOtW1Wa2YbWC4/FAMHWvmSa++OIn/PiL32M43jPW2tqohmIsiVz38IBCni8z54KUQkmJq4srLs5v6fqO7TjyzXdf0fc9TWsZYqgDqVRr4yzrRVEHTnJueZkSgJLfL2WPhIgWpnFi+7Dl9avXaH1XKcKKvm84O3tG02wwqqeUkVzEOv/u7pbXr99yd//A/cOeTz/9go8/es7Tp58wHI68evmKN69e8XB/s9DRVBHjpPfdNP/x63s3GU0jm7yan4gkENHsenHKN52vXClF88M9NyPAMskViLlGz1dPalR1G0HVJqJuxAuPVWBua9xCfTJGwrtylmTTFJM4GylVLUPlDdJVHBSTiGyHYVgQi8PhUGlTlsvLywWyA+luQwgVkVGMx2Pd8BTFNlWkq6rbQELZgjsXi85sDaUB9hH9aoe+03DuMGeW4grloqDPHNPkRZhkO2wUgazRhjIq1CjTWh6OUF0GrFJkFQhqwuuM7i2dcyjrhOcpTAcJLMwZoywr3eK6DuNatG3RTc9UOb7eB2zTUIrCD56yG+lXPVjLYAzfTnt2WrHvDIcff05oe4GRVcMdwtUcKbx0mr4Y+pJYPUx8qR3PVpe8+MkTXAZjrFiglYQKE2UcmfZvGMcRvbI0V2c8eX5N9EnyR44TqiRyCuymA3fbdwz+njHdoZsAFclQqkCdDGtTcK3DNI2ku6skGRTZS6GiqRxKsYlUjUKbTFEePx0ZxrjYKgs9R7Q+KYXaYFQ87oROU5JMoQtifyysjBnNEw1QLjPdSWB+aTrk/88oSM5FhHQ5omsonbVVA2Ten3L+0K4///gZTUnoEhkmKRbmCUyxVhyUcnWAqrMgOVgePbuBE+RUpttFK0wpVQBaFkqm5COIE9zMizaIlbBYwFanvNpsGKXQrpl5RLLHGYM2VgpaH4SyphVu1RIbSwiGEPZo1WKUwtmW0kjwY84JSqguVakWiZpoPN570XzUNRZTxihdTa4s1sjvkHLBhUIxmmwEgRnHkZIzRivRn+lEVgO5U7LGSsY4Q4rSYKki95mkIWpCBnxEx4xNBRNSHc4kcizYSWOSxauM2le73FL55jUoMJko+5xVuFajkzTPSWWSS4J8ZE3qi+jbisJpoWk1xdBh+fzikrGJuLean37zGp8VSlusawijNJtaKbx/1MdN00Tbtu9Rc3N93rq2W4ZGs/Xiqb2srohSyREWLVUh7LZo68hKVWtMGEPm7cOR/9v/8D9yv92TcuLP/+yPWK3OibHgp8Dkj8yhfsbo2gSK6Ymsz3JCH36kFM/n4unnzA3IjF6eCsNniuA8pZcmRVyQjoc999sHdocD99sD33y35X4b2R4S46TJRRA5rS2l/G4Fwn+OV4yRpii0dlXoOhFTwk8Tqkjei7IWdWJT/B6SVAqv73Z8/e6O7263/PJmT+rPyZue3K3Y+VCL6sRaaZSXwZJadxS7Io6etJ948vSaLnhWcWJwCh8j2RRUJ2niOSaIiikI70H278pv1yIUzlmshmeOhJldknIiDgMpT8Ry5Db/Ldze4i6eoD55zos8sckjb4c9v3yjOcPQo3h2fQ1xwuhCHPds+itoV6g8sg4Z664x7VNUmbBPrtBEVDlis0EVS1KOqWhCSoQo9OPkA2HyHA8H4hgx2bAyPavNJdeXn9B3ZxjT8enzT7k6v+Tq7IquWzEpw93Djr/+1df83a+/YjfsCXli5/fVoS5LlpWqFKOSa5ii7MZd23J1ecHTJ1eMk1gNz1RHlMZYh0Nx2O+4urzmydU1V1fnfPfyG3YPO9ruHX/w+/+EJ0+ec3Z2SSlhodQ65xjHkaZxhPWKtu2ZdVXTNHEcBhliW41xhrbtcbaj71u2794y+sAwTRjlxMJaeSxzGK+wTayptW0uhGmPKom+bRhSZJoGUhQXrDg3FRmpp5Fh1CzWnodQaQ59BULF8pWCEBL7/Yj3ie3DEWsbYh4peDbna87P37Lqz1mvruh6y+F44O7+jq+/+jWr1Tmr9Tmffvb7bDbnNE2HVhnrFGfnPSFcsN3egdKVWSAorrWWxj7W8//Y9Tslfuf5oAYWAOtkWvT4IM9Qz/uQyumDXuYijbKIulWRv6dcO7Y5Ol3NPLBHCHSGuZXSC83AGiOBXmmGykVPMReJFKDqJ2ZIe97YtdZM01QPo4KtDiazW9Ypr7eccHmFKVFmw0FsDfFZfnaXyVloNSZDOkyolLBYrIZspQmwTlGSFR73+HggyqTKM9uoSvZDBCWTVVR9KI1CrxXKCZiitEY7XZ2WFClKEUw2OCe0LHLmsNsSYmCcZFLfdmtJiUQTfcQdB0rTEPuO18CDUeysJjQOZw1FWYZes0uKYy4M8rbQlUIXM5dT5rnRZGdZrdciDK3FvdoP6KQpWVNCIY4eXQrNrkPrUaDwoojGMvjAcRq53d1he0XUCn9MdObxXmtkQkoxWGcxTgLylLUUbWqYkCAnYlMrm0DOCaUiWVtxo/EiHA1xtjCuDkVRuJCl/pwyr/uFpvG4JsRk4oQ6WA0L54+pudihMKep5iwZLUppitZkqpdV5WXPrhI/5KvXCqfEclNrhzb1YVaFbDQlCsVMpvR54aLIfXqkK8qzL0MKsdMr9VmtnKX6PgjNtVSak0YZVREnOfQL8l4sVCmkEKAmh4ck4k4NVa9R9x6tIcq+0XQttrHLntJ2HSUHgsqUMCes1sA1Ut0vcl2vbaXRJbGoVoasxe0jV6ZCKshUtNIpFm1KvTOzjTcKoS4hv1g2haAffzfXOkrSlCRoSPEFlQQtVCGjU8LERJoiyiuIWQYBSShXOitUVjVPQr5eiyGPcMRzoagi+49lYb3Kw2ZkOlptd7MqaF3osuXivOXSN7hXCR+o2ggRk6t6lkzjWL+hXDNCnlJCG7OINlPKeB/QKr2HBCzptPWQrgIZqJz8khLWGYw2tE4TUiYX8LHw8u09P//qW64vN/zky08w1tCvVrhtI5kA1cpaaxk0KSV8/1MK79wUz3SvU8rDKaJximx8aEgi7Im6p+SZ6iGDst3hwMPuwO39gYed5zBkJl9IlXrH/MzweJb+UK8UMnH+E9OCWMaYaBrJZtDGUCTiWPbXSrnJaELRvNoeeTskbpJhqzuybihYQa5zRueMpeCMIdR935z1FGdlnbtK00sJEwsqRaxRYCWvw0dBAfPC734kZoqjlIhoY4rLx1PO6Pr75JQocSQXKe7y4R26ZEqYGG1kSAEVA9FPfIViFTJdyGy3D3z2/CmbxjFtb2kuNhgrlqMdoK1kQ5BndCxToojoSxQL+phhConRBw77ozRVPhJ94PL8SmoZ43hy/THnZ8/pujO6bsPlxTVd2+Fcy+3xgFeK3TTx9ZvveH33mjGOGKeJRWzlRU+k5lxLoCzWqKXAOE4cjweG4YBtzvFTpADO2UpjkgpyGSJUFgvA4XDgzdt3/PiLP8DaBtNZQhzk51Uq0rxnuOygKGKUxqfMXKcitZ33E22zFh2fWbE6v2R9foF2jhINShnRS+o5EFYDCa1kf9RGkOmusTTOYI3UNRSp06hJ6iih6s7avTmPTaiQEuy4PL/ZVCRfhmohyFDL+4xWnoynEIkx4wdF142s1xNNaxjGge12h1aW9WrNxeUl11dXGCPBw7KXFdrOsTlb03Yt3k8S5IdQSxvXsu767/W8/g6J31L8P7pHCeFjzs9YArC0JBPOpcCp+O3UEUM4YvOGWX3YC+gs6dxKW+kItaucarUUW9SHUmgN0jlaY9GVY5+UQPGmNhqlctxmTquunGqhRcXlEJqm6VFUkzNN4xatxiwaKyVIUrjVIiTMqVIeajGooXMNQuHL0Am8hZMiKPkJhoLdKZxSJJdRTcYasKUlhsL23Q7TJrHEbQppHKS5aC366TmZEUXGKoMzThhaFnIbSUpM87Q2whs3Fm0t2WfiEIhTpDMKpzJlGnh385rjYcdhGNgdB5qzK2y7RtmW0ScCCroWd3nFXddyB9ypQr48o7Et2mlGZ3jIhWP9E0pB+YSbIs/GzLVOnBVHuWjIcaquGxnzcJB7HzxhDPjjETcqSghMtwOsVuS+xzvLm/HAu90tv377Nf/0n/0eDD1+UvSNwyiDJksKNMJZb1yDrjVnUZCVRRtFUZkpjFL0FUXJmhAGVO6IpmHYR6ZxwE9hOVzmg/80fK9wYqN58vG5oKM81kSlIhnz5OH9A35+DmojkxMxBVIQ7/5UxbDizKZPLKJ/mNfkB5QtNAa6vpEmQUFRkpeTtDibkBI55EUwufyXmflaSyY9hyWK13fOSZK7i2giYrXw08ZU33ez2NXOFrdAzdAR/q+xthZ1Cj8exOLWFKL36DITV6SIb7qW1XqFHwZSSBgUq24lKfclkGMNdmQeaiCC6oVWI1SqVDMYihY+dNGGkEp9jRBixKAxRdM0jaAqxix7qljrGlIIEtCnpGiJulKxSqHvetEXBdGjRSuvS9f0ZFWsDEKGkRgiOWZsMuAVKhTMJA+Trt1DHmPduwtqr8ixgCngQBeDbhTKKXIjbl5FQ3aiSykmkS3YBGcbx5VvWXfgU2KKCR9DPYDl+ToeD9ROcaHlgkyleysDDOcaxuPAeBxksAOP1q6z0Lp6wmltmB3g5WzItFbRNAaVHQ/HQKiW3Lsx8ne/+o4UJ/7L/+IP+dEnz1mdrWjveo7DYaFAysBL3tfTXI8PG4fT4K35+lDDcfpnaVZqXhRAiQo/ecZpZH88cL/dcXd/5N3NwHaXGWMhZCj1+ZrHcsv5+wNuMuKU8DaAmih6YI4rSjFV0xhDzvXcC0Fs1ivNJAGHlPjV7YEH5RjX12STOfiAD4k4BbFrr0M821imaRK3nQw4OVRsUdzvd2IZnDJxHGjP19imwfYrmCY88gwqHl0KYy4YZmYGhCT6EKXFLn6pU2IRR0Gt0I3GhgNqO8LhgYfhjqxgZTQXzvLTww5zGDG7kcuo+e/+2X/BZ9eXHN684axt4LzHbnpWTSPIa/IEf0TliMkelffk8UCcRhmwpcxhChwPAw+3D0yHQfa1tuPHn31J2/S0zYrPP/49tNvgmjXnF1fspoHBT9wcj/zi22+IVnEIE79++2t20x2pJAwOZnZLEbfRXEP15DmRgWwpirv7B16/foU2ii9/cs7+KGL6rm/Z7/bYSpcEaSq8n9gf7ulXLT56fvnLX/Bf/6/+Fb22aCWFMShC8AzDiHNNZbEkdvsdPggtzFqhs8oxFNnt9rTtitV6Q6HlyYtPIUde/urvOD7sUBismQfb1eI+RWbbYmvg8nzF2bqjaxqcnjBGrLmdbUjhwBKwl7NQ77WqBhNzwONILmkx6VHZiOOiAqo+V84VaUiMkX1mHzyHh3usPdD2WyARUyQX+PGXv8ez5y84O7+g6ztCSEK/KoBOdL1D6w1nZ2vGQex3KQbXtKxWay7WZ9/ref3eTcbcIX4YOqS1EX77AmPNhdRsx5WWQyElGQNqo8k8vgla1bHdHESmKmVKKSATYkArjbUOrWuYSJEFl1Mi1Clv51pCDAzTKF7qM8pS9R+zQ1XOaQlS6/t+2eBnEdDM26VOR+eNuWkabHUsEbqC8GNTDOIAYAwlKWKsC6hp0boh2EhuIthM21xSxkzcZ+I4oTzoY+Hw8CAFkVGcf3JGMlk0GEbTra7EacoUUhtpXV+dNTIBKaZKgkb35DgRUwAbKUaLUKpvOQ73mBxxZOLDt9zdvyTnQvQj+8MB0/Vcn13x9vY7HnziEDNeOwblSLalrM7h8hl7pdkWxXR+xD4LsFlxcIakGyIanwrjlMnRQGl5kxuG0fN2OFDGwE+cYVXAhMjtt6+4ebhje9ix2295+vSazWrF0K948/I1++OBIQTc1Rlv/ZE3446f377mr44HVIowHnl2pvn4qufZec8XT84heFTOMqGsqJTUhUqm5kVhSmQ4bNEFnLa0WqbLIQXu7g4cBhEE5hN+96nri2gxagNdOZf1Ez/43Eea1GOTMZcJ8zhYLRNf0Q0KlackWeMEjR/EZWPemH7I16+++pbLVct571itOlrbYFuH2/QM07Ck35aUSNqQY6CEgMZJcagQ6lilFc2ZIqW6yQhaAdS9ZZb25iL5Pmoew6vKkc5JjBTmHkZpMhqthTZ5YR0xzRtzwSGF/XGc6PUFphHKputaUIEUI/fDjkSmaI2xlujHBZZwTtyk0OIWlkJNoU6CZhhrUTkRkSZHGy2Tu+wFMk+FYRiWdZZSohhTUR+1hEJmqn67BkMaowlhQqNroOFEU6eG5EhR1YpViXtgDooc4ZgyrXWoDMornBNUgwR4RZmgBGpgKJSkULHgTIsegUPBm0hWGqUN1jhUCRWNDei258qsJYD0nzb8T3/5M+72I2OlrQ3HI8M4sri41YLZWstqteJsva6Ta4symrbvQCmiD0yD3HeN0FhDCSLQXyAuRFeYE6sWri5aLs5X+LHlu9e3bI+Bg0/EAg97zzevd/z7v/57uq7h4xdP+OiTj/Bh5Hgo+DAuNKjZbnd2rZmbjlNk4pT2t6AsnNIA329AlFKSTVKNKPzk2e937PZ7Xt+85c27I/fbwM1DYj/WXKWlcXlsyEzdB4354XYZ4XjE2AbtMofDhPcThYw2Gj8KpUYa9prMjkarlkThZhr42d3I2+6Kh5jZh8zrw4GSAhZYac1EZiqZHdB0G5r1OQ0wDIF110qujzPcOUWaInmKqOgpIVEOE7koVutOsmG6vu4XA5P3ktMldpSCjvRtRdeq5k7mlBinUSmRiMSUSCpjSOh4ZHp7z6gNjbHctw23bUPZDajdyI+6S/7jzWu8SvzxJx9jtQTTcv2C6duvMSljbUTHHTEcSWFAhz3H3R2H44HDYc/tzT377YEwBpyyjPuRJ9fP+OM/+qf883/2z9EYStK03VMGL5kZbw97vn73mtfv3vLd2zcy3NMwRs/d4V4GfShx/TT2BKkTYbOu6IU84xUeLYaL80uePX2Kn3xFMzVt42icI8bI4XAQREJLOG4ImY8vnnNxcc4nH3/MMBx4d3NLioU//pM/oiCIhfc7uq6tz6sixABMkurd9rRtK5ECfgR0NZjwZGew/Yrzpy/4yR/9E/7m390wHgcoHtW2GNOilCHnIDkoS0OZuL4648c/+pTb3S+Evqg05+fnC0VLBkZWwo2TNFx20Q/WpG8tjA0q+iMmllVnVu/nNNZ6WRtslTl4lRmPB5TOGCN23vvdLf3KYEwgpV54E3ViLTV6oqjA2eWK7dYQo8KaBucMtv75PtfvYGFbD+KKCujabc2wNSyDxuWX/dBH1xgpDlT95FJqAahVFc3VJqpOe7WuITb6sQl4TwyntRQIdUKQlKl6i4Rr3AKj6nomzi9Smp2yNA6nfNgZnprtEU0tFNpWFqQ1EgIoyedA5VNrKudSq9p9ZkJ4TOM2RqObQrATqclkk8V6VRK7hJ6lIsVCWYGxToSvxqBbK+4ttYEzFZorFBpTHwAvh5jVQtsoRtJOg4/s84CzFlowoowmp4TOhcYWdG/AabTOPL1YwW5PPkzk6YjBUGxH1lDGFa3rOXcd+wSH7V7SttsG71qSssTiyNqRg6IMcNwrvgmC9nQPO3RjuFTQpsS3N6/55s0rbndbphw5zxPmzpIMvLu/I3oPKbE6rMBqfE50CR5u7hlzYkyed0HxLnieHUfGXPho07IyClcyJQq8KF1vJmeBEENM5BigFKKKJB2JKCaKpMWWuSZ8pDAAC8Vhvk7/bfn4PL2sDUmutD9h5OSl6JWvWTA5Zl6+UkI5gUojrM+S6GoSlB92GJ9xjoji6DMlj6S2YHPClFQpNApl9IImkBzJB3JIcu+0puiKJZRHh7lSaZzkCilr0TLEmrCOUpST1xFCqEK7XKmWVopVZJhhrKse6hBqpgml4KNM760W/UaJieQjXbcCPOhAjhFV0uJGlVMtqk8OApChh7y0KigvIgydIfZ5L9SqSADh3B8p0VCdWrbO2A55diARzc88JdVaEVNEIzabwiI7Wbuq2qMaQ1NFzMZEUrGyN1eKlwAE8oBknSm2SGaPqwdePSCLSZig0EkmwiprStFkDUQjwvCUiMdJ9C0lc606rts1fioMx1HyY05E3dIySuNlq42wMVZc6Jw4BEYf6msXBNooU9PXM6lSFGbq7JyT5Ax0rYR8XV2s2bzoMVrz9mbHt+92xFQIPvLwcODf/Nuf8uT6AuccL64vWK0v5D4PsGgHT9CWU6rWb7ifLb/X47/9xr/LP1K0qlQM2StC8ByHo2SJ7AO7Q+YwFCa/GNYt7+0ppXleK4r3f84P6cpF2AkqF5wVN8KcZJKrKyVSa4VPURLkSyFE+OrhwNfbAz+/33OfYRcix8kT44QuQmadKHgFudr1+CSonypQei3PNkCI2Cjua7l1pNgKcpIL4/0DbSmoxsnwEUVrHRpFQNan6IKk+ScXSsoyHKvvi+x1ClW0kG9yoaiMURGjJDx3SokwekIyNErTrR07Cq+mI6vhyOf6KasELoAN0Lo1OURiGDHjRIoj03HH9s137Hb37Hd79vsDF2eXXDy9QHwlNWdnV1xdPeHjjz6j6y7IKeOJ3GxveThO7KaR2+OO2+HAYThyCGIPO06eox/xOVedRW0g4DfW+qxrWgbDBayzpJQZh4A2ivv7B3GbSpGLi4vl/G1cw/X1NSFsCH7g/OIcYyzr9Tladbx8+XPevn3Ls+fX9P0a5xybzRkz1SqEQNuK1W2KUoTv9wM+eHKKOGeWp8UCaCNMG9egdc1vynM0m2RlKaVR2QBzHTABEaOhaxsxFKgWzJvNBq012+12Gc6req9mW2yFhKFqbdHa1cGBqvWlQ1ENaFJeavRERqdcZQ7ivmadDJm892iTmKYjt6sVF5eXWNdgbYNzPV2/ISTP5AdyGnAW+tZhlMNqoERi9t/ref0dx6InjOhlI5VUYtFW1C5hLu5PGhCYw4Qev9XMRRRqyTzZrQ2GOvmvEQpWyXMKYlm+ZuHcVivDlER0q5RafobA7tWGUgntS1If7SPsPmsz5u+ZRWhktMamhLMWV91+jELEgTXNOUbkIFczly5JJ5pkMjmHfRmjCSpQrBK7NqcgC8SmG6FIZJNJtuAaEZtqa+WAQTrYMgeQFWnybNMQYqCkmmRcN7VkhD+eYiGGiVXfyeGrtUw4631vrKPpGmnQNKzPNpQSIE/oPGFiYsoQwpHsj7Su4cxZGqVJxxE/ZlJjGV1LtB3FrTCtofhIPASOuwlyJKaJJuy5NoonKtPnwC93N/zq7g23uweytdg44EtiFya24YgumQbF2eC4WK1prMHkwnE/8EBmR+Y2Fu78yJuDxadIenHFdedYqYzLIqQzWkuTEYM0EBW6Fn1RJObEhGdCk6gdPI+H/7L6P2woftsTctJgzOtoyVgpM2x/ctjPzXU59cWvmp+6blGKPFsJlvwP/uwfwtV0HQqIFI6TTLhtyegUxNa1sVil0FZjqomB0oas6wFsRJMkPOuEJDKoOg2c0SJp5UoUS8aZpgaPO1iMUaxqi5hBKKdqYmstXq1FG0MqcWkGxfZaPOSlgFWV1hXoNmeErMnKUrQIvUH4xtpPgmSlOjDJcoDoankqae4VaV0GLLIudG02Vd0DZG991IjlUlC5/lZ1z4sxyceVXcJSUYoYQqVuGUE/65artar+5xptHE1Fe4zRckfnSbzV4salCphazNrakVsFUV5TyBlMxCWDyUpcA4Ps4bkU8GLmUUom+QhorIIzZbleb9hPkbeHo/CMT7QL8zUj0ro2S01F+WZKo6qDIWvFxleleh7Ng60CzNo6o7BG0baWvndcbHo+ef6cFKSwvHvYs0/iHnc4Zv7j337FH/z+j7i8OOPp9QWr9VlFlAIxSmbH3DC8N4Arv20/mVfk4/WbTcis9oM526LkyBRGDsOR3eHI/hA5HDPDVPCxFqjq8fu9Zzk5//0H3GTEuofnnMXFCdEVlZzRdb8vRgvFRCliUexD5uvdwFfbI98cBnYYjtMkjIQUKoKp8KUIRbjSK2PJ4CXUL/cdKUbRR40elzLWNeTG1cRnTfSB8X5A2wYTMzhH0UVae20QoylR6KGFBp5jIqu0TEIL1aVM6yonU0SVFwRW65okXoo0DUmxbjpc17OdEq/GI81hx5fjyFMM6zZip0Rr1/hpT5oSbSiEAt5Hjvc7xsPAdBhJY+L55y84X53TuJaY4fMf/Zj15pyuWRFzIaTEFAPvtjfcHUdu9gd++eY1U13LRil0SRymkaOfwFrRm8EyMC48DkzmR2IewMhZKZN70WUM9GvFcBzwMdB2DRcXF/J9imRkXXQX5JzYbu/o+xXONbRtoWSHD4Gbu1tu7255Zgxd17NZnzFOw2KB3TRiR5tMImdBXATFyLTJLVpkoyRbZTYEYbZIr7VqqToTGWwaQZeL0OxnnUZj7UKDjTGyWq0WG25hQ5hqmSv7+ew0JdqPqv9g1iqDMTN7QoxFltT7atkfs9TFIUyUbAmqgMqkNLLb3tO2jmkcca2jaTq6bs15zITs8eFI8AeMyjhTR1RFjDNinL7X8/o7IBly8+ZMjNOCyxhbp2dJQstqYf/hRmsk/luoSpl6ACriLEKqdpUWXTu2KqoxkhybqxfxfNjmlAjeU3LBWYsPATQ0rQQ3xVRj2619DFpJ4v5jrbh3HA6HBbKOUT4uB1FmGscF+tbzwVVfsw+CHHRd90gXA3IOTEkKDFMD3WwjFBC36mi6hqbREsrnZbJolJECuUBGoxoL7kTMGROx8sVzEkeGhS7Q96TkmLRiOB4wVqO0w9UQrcfJSMQ4S9trwCFutRpjW4zr8SFxmDx93/H5+mM++/h55ft6bnYDv3x1h2lXXG5WXK3FTnefLTfB85cvX/NVAL86wzx5gT0v+O2W480db7/9Dvv0CUPneOcs//74QDvsMMctnok3XWSXwTaah+0dPgSB/6q9ZiLx6yFiw51Y2xlFso2EtNmGgcLD8cDX9wN/+82v+H/alufrDb//4gV/8tETrleG80ajVcKXRC6gS23I6mFsXINPmp3PHDwi+M610GcuTB651fO6n9fNjLDNnztTCxe7xLkRXiZV8j3mNQXSQCdSDY+TTWpulhUs1of5g6Lkh3Z1655V22K1Zbc7MiVP8AkT4Tje0/Utq1WPMop+1YslrTI0m7Na+GtS8tIwxoCvtEVBF98X16Mz2hpUQaaMpYjzW6kGAWJIiVI18bfm8cxBolCERlGn/MM4QZb0cWsNqiSIMoULPoNuMW1H0yUmDdEbkgflHMYodBZUZc7tMNYRvV9odU3TLlS8mMoiQlzyH+paSDkv60/Pw5z5OS9Fksxr46GNDD2GMaDivPoyPsgBITofydQxgDFQnMUaTVcyMT9mCc0IilxK3FOUOKtpm9kfJ6hp6ZNJFByNslhtyTHVbEqNXmlUtJgggmucwypNN2V+r/2Y+K3i19s7vBfE9ZRyO1Nw/SgWpSkqrp88IcTANHlyEeeT4hq5N3tF8ZEUBBVVRRAcaV6kIBLLTMuqaTnrOy43K37vRx+x7hrC5PmbX73DR5kUDlPif/6rvyXEkY8+uuazF8/oekvKkf0uCqWi7genOR2n2r/TaePpnrII2RcXRXGfywVMqpktOZGy5+b+LbcPe+62I7fbwMM+MoXHcEDJUnq/4bHWQknL2v6hXjcPB2JRRDTBDkSfUGg6Z1ChCNqr6wjTWIJWvAsD77Tmzhr2SvHu7WumwZNiwuoG3ViUs2jnUKagGyOJytkSjei8KIXBR9zoae73bEqkvbzCdiu264bYGMYQCSkTD4HhMBJKXIxYrGu4fvKEMXrR1lhNyBlPoFBRDaioay0yk/DkGztrz8TFyplKuaLIuTYdGMYjdtK83d/xi7tXfHv3hv/66mN+8uln/P7lBX13QRMhWcmoiWUgttd81r/g7avv6FY9l0+ueP7R58S63osupOSJKXC/u+Pd7Vt8Ggl5Elpou2FyE99ub4hZguecsQubpFmt+fyjF7x89ZppHKROTFEGf9UAYb6k4VCUInkvv/rl39C6xLq3fPr5j/jo46ekApuz8yWvqhSJIxA6fmYYRnb7ga4DaxqsdXz++Rd0Xc/heEDfFs7Oznnx9DMxhzFyBuSc6doeOrGDXa9XaKPwfuTt2zc0TcP52TkmOVQRIxBrO7HtV0q0XtWQZ6YZoU0N2XXYbFj1ivNz2XdiSvgomqpTOmVKYoVflKpOqDX0s8Y3aG3F0AcltGGtJM8jiFZY6F5dpfEnUk6VtplrOKmgGrkkpilhrcW3BWt2xDSiFDjnWPWtUHeVYRoLfojEkEhBKL8pNpTvOfD83k2GtYZQbQ4f7fdmJKPMY5mlM82nB+HJpplPvOhPpzrzIaaUrpB+TZmt3ZyuXNJcCpVjhUbRdatlJlNmp4YKW8+NRD7hxso0LS70FHjkwZoKwyv96GkOQq8ahqF+jvzum/UagdsyapoWXpzRmlTGOi1XFBJxFH5006xQ2aGKiE61lQAeozQWgy6arJQURjOVotpwto3cn+G4r25ZgWkayPdSmCqtWZ1d1oUhQV3Jx2Wqbtoe1zps06BwjFMghESIhegnQpCJ7P7hbnno9sPIfvAMPrGyFk2kLR5XRqY8MYWAHz3OH/jy7JroDHHcw7RjuLvn8LAlrBVmben6jpXtSH7HNnqOhy3jdOR+3DPEAdKBQBCrX6MhFVIU6gUYolIkFBFFmQKSJJRJ2pCSIhfH5NbcFss4ao5v9gyx8OlZx0ebhhe9orNSXGZtSUrJJChDCYo4JcJYSFPVuNQp42+lMNS1FEJ4T5/0G0429fqHwrdOLStB6C2qFpMzokalXNmaD0P54RYHAP/2r37K7//ocz5+9oxN35CTQauCMwrjNG3raLuGXDLjMJKzNAFNA03b0nYdygj1QClNW1gSflVJjDlSKasYqykEchaLazVvirksDWapE8aCeOKnUA+HSpGyRWgMKib0klFSSDOqYYpkD5iW1jbVhKJgSmbIhTCOGNdJcFuag5BEy9Y0TXUaSpSUCUGsWbUxTD4uQlBgOYDeo+yVSkE1j9kK85qai0tT7bl9FEKnrl8rDYwMQ2ZnvpIz/nhkIi8HqalDl8XRaml4wBpbm7oMs7uOMLaJWeiuWRWSAtu16FIIPgCZYjPZFnGVU56iFO7MctV2/MQ+ozjFv/vpV2z34t5krDtBncVa0mrQZIbDviZ5Q992PMQ7xmkkBk9Inkggq7QgN/OkURtBy5q24en5GRfrNZuuo3eO9uoCCtzebnn9bsv2GBhDxsfCqzd7Vv0Nv/zqNVfnV3TdmhcvPibliXFQdWJYljNPGr/He6e16Cpm/puaDVA+2COULhgEmTbKknJinCa2hwce9kce9iMPe8/DLkgTVObWYcZhVb1fsmacswud9oeLY4A5f4pe9+i+p+06Qkyk4Bn9SGzFSag4OXMHn3kYI98eR96MI3fjyHEcCYcACQwWlKYYQ9FaMl+QRlTlxOgTxU+CkkTDql3TN7DqHb0/YqZbuDuwKivy9TnOavK6Y9AWwkT0iRI8JSpiSOy5F7qnlRwkcsQpJEuDAlZc40JMZKvAyGS7aLF+12jiMIqLnJIATKMtakE/FCkU9mniZ9u3XERITmOuzthceDqgpeCywdDjtMW2ms9eNJhWBqEhKnyYiHEiFc84HglBLLfv718T0ojPnu00MZgV91NGKdFkpViIRGl+YqRJiYurK64urwnBE8PEYfsga7DuKVKL1Te3flwrw9NnT7i4uGS1XtG2hovLM6YgDlCphs0Jjd2hlMFazfnFZRWTZ2KJGC3PXtM0tJ3lYXvL/f0dt+/u+PGXv4e1lrbt8X6qZ724Kq1WPdroav4jBkLH4Sg6W2Vou54XH33GLzaXFH8kTV6GP/oRTU/ZC5KBQ2vou47zc8eqf8sQMjELwn1/f/9+qGiRcL+cI+KwJyhWTlFcnrLEQcT4aGKhlUVpMfpINe9MG9EfS21BHW7kamwk3zsnRY6KEvcUFTAGnPPs7vdY67CmgdI8OhLW4Wshkcr/wnQpmbbNh9djEu68J840EenpyuJVD/8wveS0GHuc1KmlmBJXkMojNlTBVJ1QFDneJDRLvipT6SQzpaq6FM4H0PJzeDyQ3xexCydZwXve6vMBP03TgszMnECt6+dFxSzuNbUwlTas0rZSFgi+Tvq0NkKZql2rShpdnVtmag1FbBRnNy5Vuf2mcipKyYSaB+K0w3W98POUIocEeVq8+YvSFCXCHmUMOgp9I8SJkqO4F5FJoTZqOYv7hCp0zqBdx6QVJXmGYc9Ra7bTxH4K5Djhohc6wjiByrhxR5cmzpuWUCLECZ8Vu+HIeNxXN4eBQ5jwScL0RO+lUXae2EsBKEnj8p6XosghoFRGGaGd5SSuK8Y0eGpxPk24+8QURsbQYlXH05WkS6s6KZI1UABNiBkfyiOX/TfW//t0h3ltfBgE9uHnfUj1+JCX/WHjMV/q9N/nrzlZxz/U6+EY2B0nLoeRs1ayUoyqRa5zOOtwVsRuKUmejWQgyPRGG7EmnnlPpci+oFBLgNt8T3WRP6gse0dWsjfUYcBCnZmtYQGoQ4lcUQ+loAqzdSnL55aKtJWU0SQ6bcXhTovTWUlzc9QRyhzCqOYHe3kfxd1Ek5Vwg0UPYisk//46nM0z5gEPlMUM4MPJ+FzYGiNUhZLrPgP168xysM9DCgmPjPg4yZpD7B3n7zkPguQ71IK2cqxL9a1HVYpaKQukn5HCWpcqKicvIKvwy2ugnYNOG66vVmTznNe3e5S+52F3gIpoA6RU3wZdRHsTg+x7VfzpfcAHL45dRUw+sjrVU810BiXhqtax6gRh65qGxgoKcbFe8fzJJdcXG2I+4NNILoXdYeTV2wf+49/8ii8+/YTnT65YrTasV+fL946TIEWnyKbcx0phmv2Tmc9Hsbss8/mmShXiy7BNowg54sPEcThyGCYOQ+AwREafBSVamoyTq+4b8n6Umjulf2Nt/ZCuUXfYrNERzq1FGUuJQQTSKaGylkFekqyTnU/cjJ7tGDiOgTgKAqnqMyaMlLKseUGhqn5UndYOVaukhN532WtaB9pk7o6e43gAo1mlTFaFYhS5tSgDORRKUoRxFA1RruVjjoJez1TyXEX+RSyVlywyxbKHFa2Y1X1CS7fIYFAs8WPK5FiYfOCV3rLZb7i6v+W1H7jqWi6d41wbrBQmFKBbddLgKNjuHwhxIOaJlMZqX+oJYSKELSGOxDQRYyGixfChREqW+iyVsjARQlC1bpK9sG1aUozkJIMhMeGpVvJFqKsojdaytxWkOFZKSSCnTow+LoM4pbQU5EmeLTdnN8xbJKU2Eh1a54p2HLi7u5MAv6YVIbRzS40LhaZqeq0xxBgWk5d5gqW1pmmFWjQ1HTk4UHOuWh1ildlQJMn7pIxo+YyV3xMN6nFY+dh0leWcmhVWMiwvpFIdyPS8XsFahdWPa4VSKaNaERGzCFm/8xC01jm1Xi4pkcKENjK8UUURU8IaQau7tpdBmlayVytNLpoQv1818r2bjMmLx7DS1aWn3swQYk1dlfAWZ81JbsD7U9zZGWe+mfFkUpdzRqssUwXELziVgA8B17ZY57DKkWpA3rz4tMoYbWmaBm2sdGhJBJSzw8Z7hZySxmR+HadohtFmSViOMRJjXEKRtNZLINRMjVlcp+rfYwxMw4BVSvQVICmVRdCd4+FAyULJ2pytyEWmfFlJ/oUSAjQqpwppQSqFkBNahTqtiOKKYC1ZabAtxrWYpkO5HmVNffgSOUFWokOYxiDBWz7RtmURUHl/JMUsaIlrTooIzartSNqRjCOYjm/uB3bTwJvXI0fbcjN5djFxzODHV+IuhcasOiwFu9JcFsvtwz1DiHwXJuztd/j7t4z379AGEoGEuGg0rRMUSUvATNs6Gu1IgycPnlIXtU/iUOFstVKOnkLGmB5MBJPxFn7+8MDbg+bbbUNyL0j9BU+MY1USIouqDlBYppIZMqRSSVJzc3fycJ6uow+RuA+pUR9Sq37b95i/92/7nNOPz5QpaiP/Q77Onn3OGOHtu1vsRYtJHpwFs0Ejdq9WK9bna6yB4TiwfdgTUqqBnQXbtuJ/nyJxGDjbyEGRc6HtV/JeJKGOKG0kJV0LNabUlGzrnDx/OZMKggBqEVD6MC0QdUoJQkSl6l5llCBtRpO10IdKKlyaqhFImdGPPNxtaRvH9fVz3r3+hpAKMURmK4xSIuM4slqtxIloHi5UFyZj36ecCpXTnqytqR5MNfxJvZ+xUErBOYc2Ip4sWVWETrRIztl6+FTnPV3bFqPIU1gamQ8HMavVSpxiivw+pjYeRWlcv0b7CEcv+YB1OjzGBEqsdq1zhHrQJVU4a1pMmCTkUrhlnK8aNptzkmr46599zS++fslu8DjXSAGfJRCwaEGDtYb1eoXSlpcvXzEMg7gM5VTtpev/tNj1ynMEFBkINdbQtx2rfsWq62kqbWXTt3zx2Se8vt3j8yt2dYJ8HEe++e41/5f/6x1ffPIR5o9/n/MffcrT649pmo794YFtvidH8baP8bGImDnp839zkmJEV7exGIP0Bch7prKBoik6M4xH9oc92/2R7d5zvwts94GQhXIM71veShc+N6vyvOBEa2S/Z5DWf47X22Pmbj9w1g08+/gFxhlKtsRgCCR0ES1QDoXDmLg7Bt4cA/fbiXEX4JBxyhGq+k72i4DWGatbXNtinGgoe6sIBXJMYnufgZgoPvDppz0vrs5YdT0/+/kdv354RfaJc9WAbnGdo9v0tG1DGAt+jDzc79Apk3Igh0iYNURao41G2VJ5/oV2vUJbBUYahxQSoYiYXRgfte7VRuqdHCU/hVpLpczLfKQfH7h8+4afTfd8dnnG5xfnfLG+oEkFqzLaRFJvyRn8mHj7+juKShQl1DxnLZpCLkFO+DKic6AxDXrdMulCCBOqSAZHnTsIeTUF3rx+TduJBezF1ROcNUzjkWkcxAmTImhjyFhnZICAYrfbc3tzR9+tSD5jtaM4SypVz5bEXCeUgjF1IFTrHsxjoGXf96SUuL19J2Gd04Gvv/kFf/yHfwpn5xhj6PsV0ySBduMYqk14gw+Jh+091lr6VTcrRkQvMo2s+hVTvyb4vZzRc2BeMTLxL2UJ4BU0KMrZVcTFSQYlGleNKpxzYpkcArMDInJX695fzUq07BlGy1C81OGorkMda8XuXkVBfkvV3C1D0RnlnE1CYkLrAl2D6hqMKpRsKKphvb7AaJEgDNMIeh4wfb/n9XcQflehdw2Fmyk1OVfum+mwpq1UpDpJPLHjm7mmSqnF7vXU4u+xqEIOhpkTXcSaTinqQRRq0aVFdKmKJCMmWxdYItbNfaZp2WpvSJHFUaoX/uJUVR/WVHUZi4gmP1oSzp87H/rb7VbEn/Xf5wLTWV3dZOZJfLXoVZqYUrU1S4x+rPoJjbGGs6tz4hRIIaKiWEqmKrIyVmhOzjaLe5U0O46EJhbwIWEaiD7VyRUkDCEnhiC2wLaIkGz0Ux3LwPnluXwvXTM3fBR3Iz07ZVlCsWyL4XjzwJvDwNuDZ1cM+5g4hsRuHMTH3/V06ys69YxxPDAeD2zvt0QfhFriB0yeyMlXn3y5L/VXIle3Mq1m/2slh0Zr0KZBZXnY+iQBNCWLHaXWIsIfhx1KK4w15KYwFZhi4fbg+fm/+zkfna/48nLDf//lCzZ9j0NhszgUxSkxDUUCEWspWPhN5OtD55j5z+n/nz//9OO/8TSdUAnn67c1GfNzNBcPH1KxfmjXH//hP+H117/g5bs3dKXDpZHWFPLxgWIbYteSppYUj1J8lUxvq0bLajE/WPYNyEbzcBjQCOWqwOI8VEqh6Zs6NSqQpVGZU6ABSVBXiB4CRQ4Rh0zEUy740QskLdMJlK1IoDUkDN2qwbY9ruuYBs9xf+Dty5ckPzJazXjY8e71SxRJDn6oELdemocYI9572SdzXhCDfLLfOOfq3w1d19E07aLxmb/2VANQSsE4xzSjfE1TDzdpMqzTFcHMdVKIiKCVoe96Zr6t1kYKnCQw/OS9ODlZiynlPZerUsRJN2mHLTXJtmS6rnsPvXM4mYapyK4On4zRKBIGg206XL8hYtnuDkwhEorlYT8w+oDJCatqXkjTEiM8PBzJueCnzLSfCN5jjcIUXdPjpeiRcwDIRUJJHViT6bqGxrmFlqhUoXGG87MVP/nRx8KhV4WvXt2QCvgE2zHwr/9f/2/2u3tyCvzeF1/Q9h1XV0/Ynt+xfdiKBe+wZZrGev7M9rH1OSciCbEykRW9p+zfuliZ0pZIyInDNPCwH3h3e+TNu4ntLjJMhZzfd3E8DbAF6YkFkEukXLBKY1zz/43H+/8n1/UnX/LuzTd8u71D/fRv+fzFU1Qu3O9HtFFcKsOZ61n3HcPDDe+mI2+GyO4w4Y8TyXuM1XV9inCYZY8Vvryyoi2wzjFuD4QQWF2f0/Y9rYJ27+hMS2d7Nn3HH//Bcz7xZwzHkf2bAz9/dc8+GsbSEaaO7DaEriVe5Np4JnxITDGLe5wq6BRBRZFiWFmzrmtwXUPTrhjx5OyxTaTvO1SBME6USuO02tCvGuJemvagC2/ykWa4Y3PXMOnCQW146BRDc+Dh4RaVPJ1VnDeX4Cy5UXRPHMFHYogk71EkSoyEaSAThZ5lDUPKkKDRjmfXL7i9ExtnrTO5xFolQgwT3gcOhyPb7Y7zzRqtG1Yrh1bw9uY1IQyUUui6llIyMWbOzi44O7uib894+/qW5x9/zmrds16LTmQcRw77A19/9Q3ONThncY08v/1qhdENpjU0TUvTRPb7I9vdO2L0/OjzLxn9kYdv7zkeDvz5n/+LSl+1rNdnNfwu4UJktdowjhNv3rzj808/l6GO1fRn54K0p4xYz1ZsqdIRrbEkEPc9daR1cLaGVVNoTSEoRSwGrfOimfr000959+4dd3d3MpyucH3JGqvl/4s9eSIBSWU0ljovqsZIuVIwq/GFKlUvfeJMWYQ5ZK3k0CWVcU7oZ871lFzYbM5Zr89wzmKso6CwfcNxmrDG0Lbfbw/53k2GVlXYOtNRmA9AmBsQ6QSkyxb4V39QND1+3mN40czBmwu7wilp1FpNKWlJ2jYIvUWpgjGaFCV8jkrxmWPY36NimRmGA1U9j0nzz9cLZFoKNam1TjArd/p0UvghH9/Uhmm5H1Zsy+bUYaUQKzpmd635ADBCBVKSODv5IMUTMmUV2oVC18mttY2IhHORwK0sXuhzJ5pyEaF6TdO2jcPoBmriNRVi01q63Pn+SOhMFBTHidhMWNaFmBJGOXzK3A4Tbw573g0Td6PnbgwcQqjBWZJV0Daeog3jbWKaRplU7I7kNMmUMg0VoanuGuJFKtQTJesIqg/04nEuvFRKrl9T0Lbym2PNOZinsCWjsJARkVJ1ZchKEabI24cBHQv/obF8cn3FZddw2VhcseQUyDHXZ2/BWoFHlEKezffpUqeF/ym6cbpeTq/TYutDKtXpx09RtmUd/5bv90O7nl8/JQ9HdlajXCZPEEpk9KCzl+dGJbQOc8UlRXmRg9gahWoMKRdSUqQsXPWMwPS5JjWb+mygNNaqxVmtaAM6UVSs8ghxFzLKVEtXhUH4pzkkjDop2IyIFZWRSGtjGqxrsa4lxshw3HPYPXDc3Qt9wyjCpMkpVjLnYxjjvG5KeURNAcZxlODAGZnQohP70GxjbjBmG/FTtEEQY4WyFqOS0MZQ1VGpislJlCR6EBUkyRWkALY2M4dQaqNpjSElg1dxCUWdX5v+oLFGiZA6p5PgyhNUT6y9g2hasjjkzBpXUx7DXY2Cdec47xuu1i00Z+SiUXrkOHn6tsNZi7WGlMCPA9MUGPZHEfbLeK9OFQsqy4FbKtGk1KZKG4U10Dhd7R2lwdRKUPvGwrOrDbvDGdv9llc3d4xe1ppPmV+/umW1+obNZkVMhadPr1hvevr1moKiaVu6ruFw2J0Eugo9bOZHzy4xQok88X0qyNmXE6EEHvYH7ncD231gGBM+VjtX3t9X5nUgFI/6u8jhJ9oWY3/j839IV9duUM0ab468eThweX6OU4opFcYEU9a0xbDPhXsfuZs8u3Fk8p6Y06LZ5GRgpK2V5xuW+qHUc2o2+YlTIFiPTV7sO00vjnjOce4ammwIq5bJtGSleAie+xR4e7fnqI9E27Ha9Hhdp8qUyvyQpZrjTHWRPYhqn5tCqvpNg3MWVIe1ToZsWtdaRjHTR+WS3y1pxa4EvhsfUKblzcOOpOHFsxarPNYEAoVj2KFxgEM3hs71pGjwWym2Uw6EPFFKEut+DTpnNBlyxo9psRaeh5x1tF8bZdn//FQ46oxRBqMN/aqjcS2lL5UqrpaQ1GnyWNPQND2vX7+jXV1yoS2rszUhQLKJxjk2m9XyI6dxxPc9rkmV+vzosjRTrprW0DQO5xz3d/e8fPWSH928o+9XUmfV1GsZNirapifnIDEESmzOUZC1o99ccNzfcTzcVhqixBtQDT4oSkJIsRSdcTby7EnPGAoFz26SXBXFicOplgHKOI5SjwjZSgZnFFJOS/MBs+bqcZg/7yspiUHJspbrQsv167Wqph/aoFWmcYKkzLIB0VtL7a0MaOtobIfP6b0gxP/U9f2bjBqCRxGqDZxsZEhzoCrPRM1wXuUQzwWbqgU9UjPKgVVOUoyVLEZdrTuVKuKVvISTCbd6jl13xojIJSfUzO9LjxvE+4dffU1K4UOQNyll2nqjZLgldpDiNJWF96eF1yzv6eObelogWGvrNE6hVJ2EFXEwmoUhSimcbiTFEREdiuBUHoDD/ije7tqgXFOdBCRwx3WdNCQoyQyImVQi1MKklAK54MejoEpOGhJlDG09YHKI5OyBQNNIYzE3NOkgglSlIRuZpsaU8ENAG8uDz3x9t+PXDzvuRs8uRN7tthzHiZhrunjOGCJlNOz3NxJgFhOMCUnsmigMxFwkaVeJB/fsA52QpZHrWpqbzrrQarMgNAs3C111zaGoaFHOqtrVKkksLuKuo5QI/CafeZcH/uLXkUPSfHp5jrtqWWlxw8gx1Qa4Nof1OkXiPizyTxuQ+e+/jSZ1+v8/vE7//bd9/MO//5CvJ5dXGFU4XJyTDg/EvaOEEZ8mbDggxVdEq0hRYgBhdUNRCVUM1oBtLCEVlEqkbIQLnAFm+lMhpFrUVz6NqYih0gajNAW9cN6NNRBjbfKrs0sqpBBp2kbWglJko8R+yVjQDut6rGvQxuGngf32nv3DHdPxAVImqoI2VQBd7bfFLlb2NqXUbyRDT5XLv0yhjSE5h2samUSnhPeh7kvmvXDGU16v0oZiHE49UkOpWomMJKGTNCUlNMJfn6UKst7nQZDCNU72fm0qWeARpZu/t0wwgUqp9RVpkua/vLd3zsgLyH4fK/Us12DKnDPkSG8NZ53lct1gVmciwi2KKWRW/VrcrUohTCPDceB4GBl2B4wGbZXYjYqCUoYTqjYZRQYb2mqs1TRW0Taaxmn5uvI4ILIanlys2B83POzOWHeOkAKxJmq/vNmj9HfkHLi7P/Anf/z7fPGjT9mcOVabFV3fkddntG3LNE5M0ySGHSUKH1+lZdCmFKLFkeQyGXrlRMyRKU3c3u+5vR942HmGqRCzqgjLcsIu78eCkubyGFKpNW4+G37ATUbjemx3Rh4G7h623B0mOmuYMhyipkkGkzXv/MjbceJmGNgPA1PwVQNRV7F6vFeuNhmh5MUeN5dCzBKqWVD448BoQPsBl0ew52K1bS3OCLWXVUatz2lXLbcPD7y+vWH/zTsO3pGaFeuzz2Vy7aSmUsYRQhIGQqw6Cy2NuipFBmk6khpxBXPW4YymKKF6aaPJUcn5jWhJ56bTZE2xmgORb6cd56awu8ncD0d+3F/yrBd9Z06Ro9+hi8OWlqZb0bUNJTcchoGQI4lIKEEoQNXyWutU9WeJ42Ei5wYoSHj1jB3Wsw2gWvvv9yNauRrsZmlch7MOYw2H414GFAUOhyMy+LB8+91L2tU5SlsuLq/IKWKN0OSfPXvKMIwM48BuPBBiqJpaqTNTRWKdM7hmjXDeNG3bEWLg5uYtr15/x7NnH3G2Oa922GYJrHSuIyeLMTJs19VK2mA5u3jCYXvD/buZAin7O/qxOShZQWkBj7ORTz7eMAVNYcAnGdLOQ6f9fi9rvGnEbEgOnwXNziWj0pyFNNcdsofI2eCZB97L3l0bj1K1gaL3kIG70UKdLEZ0KLNj1axRmfwRYzWYgrMK165oYrN83fe5fge6lGbuBXIWTq+uU60YxyUjbC7QTilE802aRZMAeXY2WTZIOYhiFjdwVf8hpcSsw9VKQZltCFV1h5ArBUn9nG++qZ3W7OoxF4kz7805Jwne1lbPfJms2aaTA0mLkl/rBqMbYgoisFKgECQDHqfOxloSipQK2raVEvbIodZKs1mdL9ZwebGHFL5wCp7WdbRNIzBblvAoVSAMfqF4qDxPpgS5cUaLWLFxlKJERKU1zkrWwExvG8eBEoSq5OeJToFgtDRmShHjRC6RFCCEwsMu8Oo48t1x4j/ebfn6Ycv+OMgD7Udi3dBMIwsy5oCPI1kyk1FZ4QdP0ZmsEkmL+NXYmhjZ9aSSSSWTY8StVpVbnzEoSiqV4lEwqkFnCcvxsTwWCq5dyE05BrEqrtQNXddUIuMaJ00p8M3RM7685e2U2CnDi/OG21LY1rX4oRYDHql/px//EFn4bZ//25qDfyzVd/74PNmeG5OZWvhDp0utKDSXV6SrqyruhjAcGe5ec/PNT/FhhxknlBVdkVKabMT5LU5SbK2yOEBRFConrBIajDNVQA6CYLQtPkQGH9BaMU4Zo3QVls8Fl5N9oz6HyhoGP5G0QrUdq7MNKUeZHuU0B3fjtKZpOorSpJgYjjse3n7H9u6G4f6Gq+trlBaKZMzv24guaELO70HYxpj3HMvm9eFcw8P9A6FSk6x1yxRp3tfmz2+ahlILVaU0uqli9NkaeV6jWmFtKyYLSqwMxW0k0bbtkjkUgscYJzo81QjqUNLSUM8DovlrJBCqoJr3rcvnBqht26XRmPdQKopZlCGhGEPChy1tu+Jy7Ziu13x3845N31Bo2Q97QjiIHS6Z7cMNRjnWLZQpkdIk1o96ousli8AE6FaNaGNSxvvE5VnH+brj6qxn1Rna1uCcTJhzEYctqxQle55errH2R9xuB/72q9fcPBwJRfOwD+wO7/j7X73lcv33fPT8f+bTj5/zL//ln/D06ozry3M+/fgFn15/RvCRaZiYhpH9fsswHDgOe2IUG2PySSgjUgglFTmGkZdv7vnu1Y63t0du7icOowyFHtkCc5uhltBYazRGC+1U1l5LU4Mmtf0djv7/zK6r8zNupyP3wbOLga/2SVwP/cTOGwbdsjcNf/XNK35+d8/b40CqlN1UTRzE/KEihFS3NTIxZ5pGit7GNeSQSQFyAG01XTassmadEytbsA6002gsklgrTcfzj1ZcP7/iR9NzPrq85ru7AzfHibvjLa/2I9a1PLl+ij/r2U+BYQzoTScW7qWgnKZrOrS1KOsYSiLW4nvdtRhXE661YUh7SKLjKCEKDJgVHAvRZo4OvMncMNIEz9nB8h9eFf7XP7nmonNMwyTOnCUJMyRbpiADkfPNJepszf64ZXx3FKOLmtBtdcZ0mnPb8vlnLd++2eODaIl0qeGhWhwJZg2S5OMIBdCHxKtXgxS1TcPF+QV9d0YpkUIkhZGvv/uWu92Oplnxl3/9V9xtt3z2ox/ROLH7NtqIw6i6lwJaidOVtYq+b9FaCbVMwcOu4+3bO1KWML9pmri8vOaf/OmfkYvn7duXbLcPfP7pj7GuEbaJ0uy2Iy9ffsfxsOP/8L9/irZyD5xZoXWHsS22aUhxZGH5lFSRVNHM5dijKFgVeHrV0zRrPvk48+Z24O9++WuOoycVuLu7o+s6GVrbOsSpUJr8ftKElljeqw1UZQfNKJzWMsgOQQboqeRqAPLIKMpZ0KKUCn3f45pW0GGjRUcUPNPkaYqtMRKaXI5cXjyhadr/5ZGMGMN73t+PRdEHQVcVxn/f/7j2FjPptBbIc0E3c/cE0qlQU0Uz5u4QadaBatWXc3Vxqj+75EX/MAt+5oP8dLosb8Ajx70UeS0pycRrFtoI7cAtm5AgGwmjJZJ9/tpcikwY8TRtx9WzFxyHoXaRDSHO4kMoWnjIqSRCjMzJW7qKPUvR9bBQS7gUWgSljW3QSgK1VF3Ic3iX0aJryAUUQp+KfkSFSgNLmThM5OjJKYjYfJ4waIEEM4LkJApThKMvfDcEfrkdeHkYebU/cr87MI0jwXtiCJVyIBMXgRHlRfRdJx7NKaKtUOwompIqt0+JoF3rLJPlYhB/iSrE7Dqs0vMoT3QqBXlAdAadSTFVe9u6AOo9XlxClHqvyQsx1nsna+XmOJHUjikrHiaDwaGMxWRmkpYgQOoRgv6wKTj976le53dBK07//2+gbx98/P8f6FKNEW5pVpC0YhoHEXW7nqIlkBIMxppFBzVOBxondq+mGI7bO7Ft1QYfUs0TEX3G7L+utFjWNo0E7MUg1rYpJ9IoLk4xJdATxhqZJjtJjm5NRTWp6wlxA9HKEHPB2I7u7BKUJdd1FYYjfjoSw0hRBR88KEU6KcZnDVeuaKm8brPsjzGm95qMtm1RShOCuCXNOU+lFHxNw5YJ3eNmr5Spk1jZU00waKPFlYuTxWw0U8kzhLsgIqKBU3WokSulU1BUVFr2fVMbv3l/lUCrVmhmuXDaENtqo3vqnjLr3OCx6ZaGS4w/UhEx6Wrd8mn3lOeffkrULQ+Hicuv1hhtyTVg6sm5pSQEET441usX0oOScLq6YwGbyzOO2wPT6Jl8pOk6utay7iyff/yMzbqnaZwklufq6lIbwqY1bIrmo+dPuNmNhFy4eRgpWZEoxFLYHibiyxvutwP748DlRcfT6wt+/MWn/N6XH3G2XrPuO1abM9abDTF4bm7fcDzs8dOEnyYxAFZC74ulME6J3TFw9zDy9vbI/XbkOMZlwlnfdXmtPJpESHq8nBHWWAl2NQZjnXDUa8LxD/G6enLNtVbsmoZXPjGahCoJ10SavuOYNbvbA7fHwFQ0SRtCiuI+VcQOVItdpaCcS0hwpR4WydgKPlBixidPyB7QDNNA60dcgoumZ2VaNLrSrOXsmBt8qxpMA59+8oKzy4n95LkfPc9ud4xZURrFoQT2OnNwCl9g0JakNabpBHFVcjbrMg9UVdUhWtFxlMI0O8OpWnDWQa9yStwis0E1BrtqCTGyz4H7GBmKIhvLqu/x4yCD4hgZ/YP8HK2xTU+3drTtmvOLp6QQSN6TQkApYWbEGDkejhSdUFaaipKFiloqtT2fnFvLwE4glzp0mHh4eKBtO6wTPYzRcHZxzvX1NaUYvvrqG9S3mr//+d/zxRc/QmtL20qxvF6vAYjZo1TB+5H9YctmvUFrS9MYVqs1rmnx+4nXr1/TtWu0NmzW57gm8/CwZb/fMw4TX3z5E/puhdaai8tL/vIv/5Kf/vSv+YM//JynT5+x7jY0tsM6sc+NMVXxtZjKmLmGUEqYFiZRkkLOksKmN7SNo+stD/dr7raK/RCYfGIcBzEY0YqubSmpMBzGyqzRC2UVHoeQj1RMGT4sW70SR1I5Fs0M+Et96po6cG8kwLBq44wVHV6IieDlHIhJY3QEBs7Pn5OTYj8O3+t5/d5Nhrg/6YXP+Fjcl8e97oP6Zy683mtIyjylS+9BvDOVj5NiSlWqz5JaWylZ0sxUG6/68VLhcKVFHDr//A+LtdME2fmATFXLofL7rkByCKo6nUtAAgvN3CjVAyjlDDFhG8Xm/JqQbkEpmr4jT0EcB7LoDmY0vNQplDZSBBQUtibXin2eWhYVFSkxWgsNYc7kUMI7U+TFXSDnGkfm09K4pZjIXnz6S5qTJWe0SMFJQqTPin0sPPjEd8PIN4cjb/cjD/uRYRiJvlpDxihTFmZYUNVGQNZJqtoLbYXfroumZIvRlqQqJ7yKtBVGsI+aaClTJCdrIWW8mlB51kHUgMXKmczzmlEnTaoSGHjOCEhJUr1nughKsfeBiLC5Ag0X3ZqV6+gwOFWTLZfmWf4nve5jU/Bhg/Dh2v/Hrt/WpHz457chKj/0JmPOX5gL+BAmxnFgPB6XkDmqDmr2+Y7JCxWnWJTKpJDRlVte0owG5MpvsWAsymSU0WgnuTGzJiLnRAriGifBjxnbNjSNrfoqjetb5pTlOHppwYsIREsuuLbDdWt8dQHxw5HhuCf4SfQXCkIM9QB9LLaVUgsiOb+nzrqaXVHElz49Gk7MxU+MkRDiYooALILrGQlRlRKjVRbEo2oidNK1yRCr4DlsXmlFCHEJfJwHM4LKzla5ck+VmalNRcwX9NxoWODR6EP2LnnETpuMpmneuwdN0yxNxntIjHzGcozEnGgax7ppWF08gWbFfgh0naOkwjgOHI8HUugoUQYPw7Dm8ska58QG06oWo7U4+l2csb/dMg0jk48ULe934zRPry+WXCXvRaNSsgSHpRRxGlbK8uzpFc8e9kwxMUyxTn5l3/ExEw8Dh+PEbj+wXhmuLta8fvPA/nDg+ZMrnj655NMXz7ncbOjanpgjWhsmO2CUIedILlIM+xgYpshuP3Jzf+B+O3IYIiGWkzNxvnN1f5rJAvNeWECZxxR7QfIb2h9wk+FWPU3ONAXyuweCzjRkLInVpmX0E7vhyDGCz5L4nSr9Seouvdghw1z0qoVmlKkoY4yoIAh9RNyUUg5CT6HQGie5I5jqVlZ7dlVDN7WYs1ycb+hWHZchcjV5VtZy9IkxwY7CQ8o8EDnUrIekDbpppe4AYpG6yVQ+4xL+rR41o1kjNUZtRpRW4BR4WQdZy++dVGHKkX30DLkQlWHdtKL9yFKo+ukkn6gYbGvRpmW9uZL9er8npiJGGoirXww1M2He3FXN7Zhv8skZtpxrdUCdY6qDiiQUMi3ZH1rbqmlq8T4xDEdSTPziF7/g2bNnrFZdHXxD23bVLfBMLHdTZBwO9G2LabRM55uOvpNMjOMgad+2Nt5KSXba5Acetjuef/QC1ziMcqxWK3zwvHr1ir/92U+Z/MSzp895dvVimegrpSqNtO5/9fFUSGaGmt+0YlAkoWdiaFrD06u+DpomHvZ7Yg4QAa1p2haywo/Vyp2Z/vg+9XpmDT3WdGJZPt9vTaVPznsC0mR0bUfTtqxXawm71bpqMcS5a7a7pUSSqsykysSZpsD3ub53kyE2tXKodV3HnAkh6yfPGrv3DitgQT/kQV5GwuI7PyMK9e1YILWTDXSezDB/tRaL3DlhfOabaiPhI/OUP8a4TJVPg5Dmj8/fO4Qg1JQsVIoFoagH/fx1KSWB4rI6CVCb32AJ02maFev1FcchYKxlc3GGPgxCfUqRaX8ngUitozfyNForyaJkcKaVAj2I/aIUyiI0Sllcs3K1NqNkQkrE6BfYsCgpuufNVCtpt3LOMmEVQ2vhp9dsgZJy9V4WqPcwZV4eR74dJv7Dw5a3O89uP7G725Pr66JOBk21UNNKC7WicknCkgqMBAvW39WgiEDWBayi6RqsbdHK0TYKWwXyZOiaXqjJOQnKklLNK8gknShOir7gQ52cSjp40SyCJt04Sqq5JLnATC0AxhiYpsQxBA7DRNc2rNqO5xdXPO3W9KahwwjMqCA7hakBkZSy2IGW+vcPtRjzfx91Sb/ZIJw2EafN7/z586T3Hwrz+yFex2lklmYFCnE6cvvmJT/7D/+eT540rDuFqc4qsl7F1tAHTyKRVYNtpHEwRrPqe/b7PcEHpujxFHKRCVq7WtciWdN1nfy9SB6BdZbDMLA7HHCupe1c1TIoLq8vK3qZcH1HSVAw6HZTC2ShZA3Dlt3dHfv7G3b3byVVmoKuxXPt5CuFqSyhnjFGFBprG5w1UgTkxDDU4DmjJZRPa1KWpiHGRNM86jBO6XPTNNW8jIacy7KnycDFoLKClITiUHVps6NVXChYjzTSdKzZEvVZcW1Y1uaj255mmqblHMh1RDYfUiGEpXnp+375WfP5MZ8lx+NxOTOstfV71jOgiAUFJdC5xNlFw2cfXfFnf/Qlt29veLh/4OHhHm2qHnC25LUZlAyQdHJCHVCi69LrFTllxmmiacUYQ4Y4tVgrhYe7PV3Xk3NhGAfm4NamwE+++JSsFJfnGy42HW/e3DAMgoxMSZChROFhP/Cwy7x8/cDf/P13/PXPfsW6t5xvWv67/+a/4k/+4Es+/fgZz54/p+tX5BghJm7evcWHwBg893c33N4f+ObVDT/7+a/ZHiAm6SRmOvJjwN8ceCvvg1walHCnm7aj7Tpc09I0Emr5Q73e5cTWaMa+x14/w2dYacV5q3lx7diPI+lhR9oODPsDwzgRSqaYuSgXqmSsQ4Y5YRklbj3z0JJS5LyNAVsSq5VlYy3dKO/VIQW6DG2p02zZfYjFk3I1e9FUW9NMY+Vc27QNMWTCFNn5wDdv7/ju+MC5c4ymJ6DxMTOgiFoTrOIw+oUtUMZA0IBR5JxwTUNWkYxCG4cB9OwiV1pygugz+TCRCRgC9/s7dtNzxthz2Tu6fsXEQIieTKz62YIPE8NdoVutuLh+SlMiOTf4CCl4DA2NdWzWiu39XWUbKDCKGjnxG8O407MyxEAI00IDnaaBGD2T0XS9ZbvdUwpM00gIE8fjkX/zb/5HPvn4E168eM7F5TnOOayxdG1H2zzl4eFe9rfJnxTfgta+ePGC6+tLxmmgFEXwiWmMHI9bVpueS+f42c/+ju3uTmhcVuhQH3/8nM8++4T/0//x/8yf/4v/kj/90z/jf/u/+d9x8eQJh90Tzl6fs7vfU+YBNOLwJPrSgi6SsyRsE2FuFETH+uMfXfLs6QV3D5FvX70ipCiDYqP4aLWma3r6bsPL776VfTU9DkDne6qUuLYqrZfmYv63+ZqbjFKFXG3TsdmcsV5vuLi8Yr1Zo5SWs6btePfmJe/evKSkhFG2DoAt4bhHNz1N036v5/V3ImbOC0Mi0OfJ1OO/zYfKaRF/Sl2SJMI6FTuhMRljaGqIHPUwWGguSbzYtdwxFkXcyeuZp/KnblWLor7So05hFqWoE8XqqlJREBRM07T8LqeUqpQTSmViLIzjuPx84bo2lALjceKrX3yFbRtWTY9zK1ZrJwVSClysG2IUX2hjLSVGkT7PB6CSSW9OSahNFJKX1xdzkmlMkrTG5TUX4WmmlCjaLs4MoMi1wB3HCa2qy0q9YfN0PjMLiBQJ+Pp+y9dT5OUUeDdOHPYj4TihfMQsX1O5wFne01LRAYVQnuaNWxyiavNnxMEjF8lBMFbT2k6KoKLAiKVgziIkMxwfJ5xRpjHKWM6vr9EopmnkcDjgrCbNUKFp5LBWCqzDF8kAUFYKU1N9oo/DQKh6j1iDa4YhsJ2OTDmwa1actz3P1uesbCuJu0KvXBCNomVSI29cQScpcGZIbqZuqQ+ag3nNnDYY8Ju2k6dcy3+IgvVDvFIq+MlDyXRNSxMyKzRXqzX+5g3Ggu0s6ZmIKlFglSZqCUIryhFyJviAKYXV2Tn6OFKKpB43ViwLnW0YxuOitQjHA6vVWjbhUri/e4ePSSgHqhCnSKDykoMMCbSxkruhGpRxrFyDQhN9ZBgGbt+85XD3luP2hvHwsDhyzPvP3GTEk6Y7ZwksVQtSofA+1D1FindjhMcrlqOyj81Uq1lrNgvEnXMV3RCS31g/bp0ThLSiJ75mcsxBqac6nxlZmJGWmMQUQiaSj9o62fdP1+28D8uW3Lb5vT1zXs/DMIhjS90jZrc+YwybzWbZp2frXoWqKJYIt7UuTMORxjVidtFOOBVpTMLpxMPDgwhHlRVKgkkVoNWMw1gpABBzEApMEvTX+/9Pe2/2JEmWnff97uZLLJlZa3dXd88MgAFEARAWiqCMJtMbTY/4ZyW9y0wy0kRJJAgQgEAIS2O6u7qWrMyM1d3vpodzr0dkYWga0fpBZRZnrLp7KjMjI9yv33vOd77vO0IjU9aWT6JLl1wKXGMMy76nb908GLJpJ/jJF7x4csUXT6/YbD7n7mHL2/d33G2P3G+OHI4C/MSSVMQE37/fSJfMaH549z/zX/7mT/n61Uu+/OI5P/vJZzy9vuLp1RVf/fQ3uXt44P2HD/iw4ZtfvOfvv33L/pgJUe5xndr+MVVTKaHeOlfcxUpnu6L3rmllX+J07z7F8H3P1Dfsneb7vznSdiuic9wYw2IM7MfAQ/AM2hCUJWJJSon9NAJCJbH/kXVZ6EVaK5xxZK1ojKUzjvvNB1SExnUsVIsdB/J+x3H7AeOyaJpMJscwOyiRTzNuslJiUpHLoD/tRIBsMn3j6GJH5wyf3Sx4OI48TPAwer6/fUtrO9p+Aes15skTDuMkifMYSLtIsprcaQHYsrhNZnRhZuTCv6c8oHB82KJahXWZ++2e7WHHYdWSugVOO/qFom0dh+OeySdS1th2QaTHdQtwS6xW9FcGtOOoNfthEqqfcIIK8VrivBA+j3NqsbUGchkMmhMZX7pOCoaIVobFYsVqueLuboN/2LLdPPCv//W/4vnz57x4+ZI/+uf/DcZ1GNdCHgTMKCYuVZerteFqvWIKFh9amtGRkiKGxNh5bj+8Zn/coJTi1asvSSnx+ofveff2lj/6Z/+CcZy4u9vw7s0H/o///d/x5s17fEj8wW//Ns3iis++/E12D+9kF9YFMM/iNFWBTXFEhZACYhAkjIn10tF3hvXS8Fs/+5x39zvutgdu77e8e/Oep0+e88XnX/L6+9d4PwJxtmiXPwBl3lGlDJ8VGqWxiS40fNtIN3O5WND3C7qup217rm9esFj0dG3DcNjgGFg2mUV/xcN2YBgDMQmd1lmh4/0q8f/BwladbU0nq85cvlZOpNMHU4/fgBxE/2lE9pRgFW/gEhWJhzK9oGwIhloEnP7uvOD5x6hxeb2cqR7wp6g3SzZxlR9biGZOP1MPxPqgSAIgDlF+mtg8bLh6+rT0y4xwl+PJAUtRqFoxkr2gndViMBPkUAqeFMT2MiEHnmwiBTUMZQ6H1oVGUtD02sWQGgOVymeYu07lUPqoCMspi81r1vywPfBmirz3nu3uwHE/EIcwcz4pr1JbdvXCzwLEKHevOvdIg0QV6opMOlWlq5F9Oe5UEo79WeKSgtDTFECIMiFUq7n1r8sU3LnFlxO6dfJzBdnLIc5JfyKXqcbyfsqFO/GYk0xpHqeJuyngvccZS3PVim1yyqg6yOtspWdV/lF5fKcVRc4n7ct84crXPkZ4Pn4Wzv99/sz8p37mUwnrGikKvWeKI353JB0nbNL4fSKoRBgzk5vQTqGtQjdaqD46o4ikWMhPCcZpKvMkpHsVKZtaXZ/Vti8mwjQULYeIJlVFm6qNKPLtcYrinlJQnWzSrEFQ5fk8bHcMux1+GMhRBmzOVJ+Pcric6o4mrWetC71QaWJMs5uKTIKVZ6sWFznVQ+RkcVi7D/IxBdnOSYCQGJOg8kY6pCGW6bhGl+5AAQrOfv5crza7llSnFPXYdKDui+cIuiqfpxZT9fsqSJBSmkW2SmtUCPN+bOauz+nn6s9qZQs1NBFDwk8Boz1OG8I0SpfLGJzVReSshHbpCk5Y9pNqwxiK932KEXJERYW2cdZdVD2cwjBNUpzUScznIuqwjIjhSuR60fBk1fFk3fHD7Y7b5Z7N5sB2d2D0ER8TU0hMPoJPHJXiOEygv+X93Ybv37znzbtbXn32nF//yVc8f/qMh82RDw9HvvvhA+9ud2w2I1NA3t/ZOVbv36mLIV+X54H5vrimoWlarJUBlJUW+KmGj4HkNLprsDdXBN2yU4o3ObP2sJ+i0GGNRYhN5XzSujB5qsWy7MMxlRHyxVJ9ngWWUhE6axn46zrycCRNkRxioX5mNIlAOVcyoudJiVz0RdU+VSMgS7XgV1rRaMV60dM4Q9c47G6CMPJh3BMOR7KXadOrxTO8jYxRySRn70lJQdMI4FXuey7FrZxXdf1TXC1lSBwofNI87EY2y4G0bkmo4sDX0JLIJhKTwrYdRi/QriPjsM7hmkTsE9EPjPmIjgFlojzbc+L7y8+r+Wvlj4AO8twJRQtA6GYhit41xYRtGplWrxU+Tvzw5jWH44HD8civ//y3WC6XNK2lsQZrLORKic9UD+Ldblcs9CNkQ+MaPAHvJWknnrSckBmHI+/fv2V/2IHKtF3LMHjevXlP8IHFasVv/OxnrLsFN8++oF8+Yxy2xDiCCrKGSkdJrkXJm2rtV/5YU6zIlebLz5/QdB1tt2fzsGU6DhzbPeM4Yq0hRKEQV2BH/lRQp4C7FYiYvwlqjltNQxrncNbQOEvbNPRdz9VqwfXViic3S1Re8G6Z+bDQGLdC2QP7IRCzwrUa6yymMfwq8SsXGcYYeRjn5P0MudWnv3m0kHiM3H5M+6hfq5Sbkg8WXn3dUBUhBmkBFhu++m+Ks4s6++3nRcB5CM8sz63vWt0CpCCJSIxJxMIo8XZOJ3veE0dePfosQOHuTgSfmKJmdfOUlBUxAbl4XqfEeNyBFu1DCIE8BZyWORbGymEbc8L7AZWKxzviKy/IoprRxpwiWSnapmgXciYmf76mqHoZZ7VMLK0dH5i53/WAD8AxKX7xsOU7H7mdAg9390xb4QcabcmW+X2It7i056RyN1Tbv1z4n8po2XiNFBnWGkxECpEpMU3DfEDaJqGcxWiFUkY8wmXkOcoH8iDUjOk4kdtGaCURXOtITuxFY2tJhWeeQyBN4iSSYmQKE5Vnr4yeuZxOaVpjMWRMzuiY2Ry3HIcBbQ1XT2+wSZFjpJVWRlnsdbZKrot+3jykiyHrJtWO0/kT8lFng/PXKa9t9Im697Gu6FOObrEiTgEfRraHLfu394ybLQwQ9k5mvx8zx3BAOTCtYXUlBwgmg5nmRCEneHi4wyJJdUPL0Y9MMaL0RNM6QlTShcxidaqNwTQdTdfggyf7QIoe68S3nWK4YIvV7Th5jJMCxhrpqoVpZHN/y7gXt5XGNrhFy3EYROdQS8tMARXKvlQ7a5z2Ee+9dPfm4aBiNTiO00yXq/e80o1O4nDppNX9xIcgSBaiZ2m6lrAXemjrenm9KHOFzmmjc7e2FDDKivVi3SvOC5LzNSmdNqFzalOGjZZu67nYO2dI0ZdCUGzHaxJc9Rr1cwFnSbOWXmtSqKAIHoKBYOFwOOBDxDWOq6ureVZOioam6wgpchyOuBzJaSQmoU7IAFQYBgFxFEXnVzx8FbKXTdNBugKNm4eDOufodYMPEySDuV4QOgNPVmT1Od++2XC32XP3sONv/vYbdseJ/eB52I94FDGLTW/Kmr///pZvX79ntWgw/ybz068+55//09/my88/kynD2z3/7k//mjdvt+yOIryEE7hz3r2oHaB6XyQhsUKTajT9YsFiscS6hkymbZrZuv1TjOmwQ616utbx2c9/wvvNwPY4sN3uuUmZYZTZGNE6otKkrHCmmfVSWptZjwQweV8mNMuQNWeEqhcmL9a2KaO1xbUrwu0d1oPOlhQUKmZsTgQNSgm6TJShnzlF0WEmee6zUkyTdMgkAQVtLK5RWGdZdi0qb8njxG0eebh9ILgeMwwsnz5jozVYTdM6hsORFMD2lmwNUccyF4i5yNA5k1Io88Mytmmlq4cmqyVv7waeNTvi814KLGdorKXte7JJhKTRbol2a7K2hKxp7QLTgIuQlpHQTPR2oNneYYwiphPldx6+/OgsK/lSSfaqhkjWcpllkwtNOiaGwlioFsxGa8iRh80dh+Oe7W7LT/7ub/n885fcXF/x5GY9I8oxJqYp4Kzkfd988wuaVgYstk3PzU1P8EdiSKxXa1CyD223e/n5FNntt9zevsNazcuXLwhRcbzfs9vu+bC551/+y/+e66uvePLZmqcvf52Hu9cc9veEaQvE8nkjmqplM8W5rnR0qP+Wids/++oFz58rbh+OvPnhB0Y/sd888IP+nrZvUSYzTWWnUtIdedQtyqV4OQPtKWdPjommdzK00IobY2MdXdtxtV7x/KrjxfMlr754yhev1nz7Dz3f/J1jMyiiaelG0G7BeNyiVcT92J2MGMXGEZg3NZDuhPz1qQo9r16lZRbn/4bToTYnmNoWSFgKl5QkQVNK0bY9MYbSBcilypQHNPhyyJXD0Hs/Cyvn1rsSz+kYRdhzjhIbUygCxb+ZlAg+iHODbVBlaJ08u7WwSI87ITlDjoUGZWj6Htc6bOvQVjNsNoRhT/JHdJKDlhDwh6M4KlknowS1mrnZMfgikM9SCVdRK4iIu3YfUhRBiCrXdB44KAL4ipLGmE5JQ3mdeq1CCDJs7+D5bjOyTZoxg0+B7XaHLROwfbFP06YkAOYkWpeCD5QxWKeZSJimwThJNKwxWKVpkyYMgek4MR1HTGNoOofpHL0xBVXK+BSxXTtvSLYxmMaRQmAaPdkLSmMD5GnEOot2BocG05FMZsqe1AqKkFOCtkONHhUiCsuQj6W4zPQYfBwJKbHsWq6vr0U07gzv/QEVE0yJr/ubef2eayhyroYEJ4hiLriQyct1bUcf5g3CnHUzTtok5k3hY/pU/b5POYJpCEMg3+/pjkee2I7hSUf/5DP+YbEi+wMhDYz5QBsT+QAPHw7YZUbpCCrQL5bo1pK7SLrWJNuQgcBE37kZnawdPTFWSCgMOUMYJ9pGXD6MBmIg+iMhiQX11fqaHCNDGBlixLqW5Ae2OhGnhB89i64l9B1ei5DcR+lComqCnmdARGvR9lQEQA5R0VKcu91prQllmGDGyKyPYklozqgHp++3aOVma9ta1GYlU4s/fPggz6UWZ/dUHVCSjC+lABmzFa2SGSRZZTgbQliBiLkQKt2VtluUhEHWdYyBSoOqhUOsYAECVHVdJ8VSAawWy8Wj9VHBj3p9TmeFJWTHcUxs93tC8Hjv8X7C+1HQeWtoXM/kA1llbGNotSMlS4otuZNkT3ZIDUr2B0GyM+MwEnzAWEcMYrMe0kH+bmpwtmO5usLZhujEhtc5U8AFxU9fPeezZ9ccR89vfPWSt7e3PGwP3G72/PXff8d+jIxJMUXwWeETTDuPBQ5/+5p/+P49n724gSy6tvvNljEmyliqR/rG825RLehqnPYIOZP3+w0+jDTtkr7rmMjE8KuJNv//GE2IXCkDbcdDu2K/HBl2e25V4t+8u2UZFb274sWzBW8+3BOy5tlixW3yolMwBt2WuTOpGJSUbruyRhyOUkZ5GfYWQiCkwLv3P7CII84oVL+gWyxLce1n63iUKt1t5uerKcP35GsnBoYIuyuFXKGV4WrRoVPCjyNv33zLcP+Bw8MHJucIVyts3+KNQ1mDzRnrM8vnT9nttvhpwo9eOljOYrJBMRDx5CRzsnTOoCxjtnjdM+aW+wM8aQuV1Se0tTStxekG7JqQHNJ90RyPB3IQwC/pHpoFduFZXmv6IaPHUUxhzii+uuyDIqaPZx1Tue7prJOYUpo7ryl5Hh4+kHOgaTqCL7lh1qTgUSoxjJk/+7P/jfuHn/DlV1/x5OnvYazM4BBL8FBsWiPrqyV393ekHayWiq++vKJrxd52GA9iKz2MhBD4/rvXjOPAer1CGzHlGKcD109u2NyJIYRO8B/+7N/TGM3v/87v8/Pf/W/58O5b7t5/x3d/+6fkNKIIYDUpjAUMjljTQbLklPE5YHQ9+zNdC66x9P2K/+5f/B7/8O0b7rdHdod7VtdPUQpiFCaLUTIM++MO8KPuZs5kJR0unRJ9I0L2xWrBcnXN1c3nPH/+kj/43Z/za59pnt1Ynj217ON7fvZTx8uXX/Pt64HuamS7B5VWvHsdOI57hsOP7C51ojrxCGHLcytG/v88WG/+euXuVBGMtIVyzmdWXIpqSyANDGnz1epVZxHcqpyly1DoCLlw0GpnIZYptR8nYlUhX3UbkiQibTKtSkvt7Adqq7loDzMyIj7nQhuIYplZ0exxHJnGCWUsndXC/zcyqXw8bojTEaLHFLpUCpEUfOHVJRk2mPSsjxCahHRXqsOLJC+q1lfluqvSfi1FWRFAZkURPJ9aclIYfSwMlM+wPQzcbgdePwwMuWeKqSA9SBu5DsYzoKxoK6xzVH2GosxCK3QmTcI2DlcEqjqWQixG4iGAj5isIEag0BG0ILyNVvTW0bVlhkZMDH4Ea9HJQGvlM4ZCo/CB7CeUB388op2TlmFphKlUiowUSVNA+YgOCZcVSRXrXmewzRKtBFltnSs+8wY1BqzSNMZ9dNkeU5oqXWpmytROXKZco3qf5J/SpDujLKhKfamvd3bPkYRHna/RTzRi8uQwouPE0mlcK779L1zHLQN3b/6e2/dv+fpph8sakzW6c5icUTmQk2J6mNAuoZwhDpDXGqyYGGQXZQ1qdUYXSNIij/J8aBJxGgtdIoHKpLMZD+Owl8GUlQKnNckrDrsNKovD0/pqwea2mEEYTfanbqc2ZqbqVT5u3WK00WK2kMS9KcY0D/OcvC9gQRa6UlIl2T8VtjV5N9qSTUKduTvVycVVuzVO0g3RRnp4KaYZ1ZTOW56LjFSdpDTyHJ91PXPpyFRKg/w6LRtN2STznDRQqJtpHh6YU54PP+/9PIxPKRmayfwsCfhRv3aO0OWcORy2MqHWnGwbvQ/F/ILi0hTR2pUjJeKwpFxnnCScE+/8lHIZnmqErmD0rC9rmoZsDZlIzoEDYpNcO8XWWLquR2nNYbchBtHINUahsTRW0TlN11l2x5HrzQ4UvP2w4f39nv0kg/zi7BIka2Pykbv7XelKJ8YQhZt+FrUb1HVdKcgK/fSjeVCP9qdiFJJzmME2HT5dutSA5jAGDkzk1hKzJhiHXy75/n7LE594pjQmaWy/pr/2LFViSJnJH4nJl8FmRWup9WwnLwWArGUVH9PCcw5Yp+lNyxrJEWJOhJiJwleS4iEEjDLluYFTB/tUYOQCWDJTKQXptsaWAXWKvjMc/YT3B9LuXmijjSF1LdoaAQ18Yn+/YQoTaEUqQ/mUkADKM22wTk4dyb8U6MjoB8apASqrowy0VQ6UBUwZvJzmrr3PQfbZrAnKiXuXUphmSb8Y0cbix+ERpVJBmWtU6NN5vqJnGUSecypQ5frk4tAla365WhNCZrc7oEquNPmJ+/tbrm/WXG2u2O32GGzpiCiCj9INzZHFosO6ZwzDyMP9Pf/33/wF6/Wa5WpJ3/dsNg+MgxQDxloWdknbyQyyq5s1r159zm/8/Nf5j3/p2W4fyCkxDnumaSQD6+tnKAWubZmGDZvbH5jGHSFUoOU0L4SS+1ocShUnUA1aC5WztfD5iysUifX9nh/ebQlZjI6sFW3vx2D+eZGhyn1W6tTJt1rTaE1jDa1tcK5juexZrVpaN7Bcdmh75H73gTf7DVkZMhavAyEP+BCJR89+e89h2HP0P3KRIQ/J41kAc/urtn4+Ql7nIuPEfJo/vPBL1YlOUJMsLYNcck30CxJY7asSav69okkQBC7G8Ego+8v47FBpPZU2FSkz3+Vrqi722Ydt3h904fOnLBs7hVOZUUw+4IOXQV+NE2TdIIPvhh05elQWZFWnosdIEZSghiEFdNIFdReEr25COacyK6Ncj3ReOkgBRZG3mhlFKTSdkrgrOFn+ZvXo3gFsDgO3uwNvdwND3zH5SPAiuqq0NKWU0KCMkSKjKQhqFl57LIiptQaDls3SWkyG6D3ZR8IUCIPw3a3SguKUvNpqjZhOGVpraZUhKs2UA1OKKGfBGXRnCZNH6VRctwp9LAT8OIoNcEnaFKK1UEnudfQBYsSEhK1rQSvoGvGMtpY2ZVZtg9MGkzUmQGsNnWsL3vS4mzAfQvUcqR2N6pRVP2Bdi6XwyLnkZzOJi/mgk9+jTgdfBlLVKn3alYagMDLpuG8cuW3QTc9Nf82KPT98+Dt+2L/n85efEU2D1RqrHXqfUUES2/FwEPMAA/kQidFBK8luagKmAdXY2hcFxJ4xB7GB1EqLU1p9xLO4t6Ugnb9xOKBMBRoMRDm8hzBhbUvbdmKZmDwfd24rfaUesnVuSz1OZcKu0Bkij4fpeT9B0S0Idaq+JqQYSqdT3iO22DDkIHac9WAxBh98ScAFrc4A6WR5m3Mu7nL5VLyUOUMqFzli2bAFkyhruCCNqVy4XJKY+b85nQWhdJRTPGk3cs6l++DnfTrWTJtTkVE7J+fnjNYaH3an8wDh1YcQ8WGcf17rCa3qlPaEs06uQI6lsFNlxkbGOKFMCopdO1C60OY0SsmMkBA93oshRYpRCh3bYF3LMAzElEkxYFSmsSIabpylX3RcTZ5u0ZIV4obnPVFFlJckUGuDyeKrbzQcBynAEpA+BjKonXlx7BpK5wVkThKaf1RkyE9VzKMWW7mo/T7NOCjDbkrsoyeoJF0n7ciLJbfdAhU0fZqwMWH6NYuk6ZShO2ylsPde9E/VyMBUfWEBzGKCkFAhkGIxOpnXk6YzjrWzsn/nRExqZl+Q5FnV5nROz1qfOd85o43XHArIysxiaOcM/aKhnUaOYYJhixo7jG9BL1FWi+V+lCIjW+nEoPIMjuRYuuVazzqvuaDXkXE6MEwN4kJWnSgVDgtZJj2kFGRPAkDLEF+k0xqUwSOm8tr1LJZrjDGMSlyjYtWO5UJ1V4msNFnXc6xoJk5Q6AxqnHQGst5dY1kuVkxjQCkjdPGYCCT2uw277Zbdbstud2DRLbFGQUoC3CCmPX3fsb5ast1uef36e354+w1ff/1TfuvJf0Hf92W/ESCobRucdVgngNXV1Yovv3rF7+wH7m7vCMGjlQwrDWEikVgs11gndDM/7STf2Aj7JKY9RqWyl1YMUaGUO+UMqhQhKWINPLnqsOYpy74jZ80PHw5opXDWEYuzquRzj11dH/1Bnvt6LrXG0BiLs0IZW616rq4aunbEOM0Yjtxu3vKLzR7ddNimYxcU23HH7jDhN7Db3nMYDgx++JWe11+5yGja9tHmf+7Pfv7vc01EHbyUUwItB6xWItgFQdJSTvgUcE1XlPGG1jXlsK1TC0dZVClL+12eSJwrhwnp0aKsLeR6oALzcLucKSPTC684BEmmkaF29cTLUR7gYqI1C6grMimHbymgtGZ585TF6ooXLz6jsYYcPJMf0Ih1HmjSKILXFEubXmeCkgLBxYCfJlKKdE4ORkE6BfEsfiHlACzFVoyl1Q+z2L0c9n46WdvKAqxZgAxpyoUmcDyOvL695/Vu4sMAG0b2w8A0jrRdJw906RjFLLMtghLxeczFi98akioCLqVYugaDRk8RPUX8fiwooSIUxMKYzGLdoRtNazVLY7E+oscRPWzIw1Gq75xpx5G8aqB1YJsitLUsFy1x2RIUhJQ4Hg5i0YlCZyAmXDZAZnc4oBrZPOVgViz7BVdXVySlhUfrI3o6YLKibwzXixWt62WzLaj3+b2vD3Klr5VlKd9T2pXGGrEYjGmeRi5Ikwj0ZCMor5rPB/ioOUE1WqOMKlSXT7zICIHYONJqweQDOENYOIYnPTfNc55tXrLbvGA/HWmWBm0NftzjBrBZCYr9rAVvIWiMh/zDSFaZpBPBJKLTqMagVgbtFNkkopqE1mmMiAhzFDeWDBoN4s1AjAmtA6qi/RqSH1HGiH12MzEeNrx7/S3TtBdKBLLXVX3BuZtUPkNL7ZkuLFMO3yJCH8aR0XvpAGqxqfU5E3xkmqYiX5WkVJeDqSbwrmlKtyQzeZl6H6I4UzWlczpMgjrV/bFtW4IX2lKIgRg91lmcbalFQwWGtJZ9fPZFV5KA51wPMY2t7oDIARrGOhhKYdTJcbAmwfWP8LdlD7TGzFa3IlK0sw5FG1voQgUNTpqUKJTPUUAfpWhbzeG4KeBH1fwVRC949rsdKBGVG6upph713uWcGQ6emCLGaPq+oWuXKDxT8mx3G67WT0qXdgRtSEoTYkbliCmATAiR4+Q5ThM+eJTJrNY9L18+Jb7bc5gSKMOTmyfcvXsjnbUoAmTBjgUEmedeUAENOV+H40gIdR4D5NKltsUIo+5N9VpSuvj9oitDZj/did+bbsHkWqKxbEdxVbTaSWJ4Ewi9ZzdNXG1uaa6W0GjylAg5E1NGJV3QZ0GsIwX8oeiMbCZ4TzgMJC8mCFYpFlkRxyM4RbvoWbQNTTF8INb8A4xtiPFkzQ+U4vgxXfxUaJQuQQg4Z+n7ni8+/4xv373Bp8QUE8O4g43oQ7JzMmFaa+J+wvgE1kHjGOyRFAM5h7koJp32GrFaDqACg80M057N9pY2iTuTMg0pjYUOXdxClQZryaZH6342M4iT2HU7HXETrBaZ1jpGZ0EpxmkgBC9UyimRdMZiZlChJisxllkzMaJUKGCGnJH77R6jNP1v9Ww2B1JONE3LcPClM5QJIXH34YGu/cBxiPjxIIBh4zgOA8YorBWTmGEcOBwP+DDw3eu/o+00r169ZL2+4Wc/+zVevvyMzeYOHzzWGrqu5927txjj+PzzF/zTP/xnfPbZF/zln/8Ff/V//Tn77ch+dyRnmTbuuh7Ttvx09Yd0/Yq7t9/z5vu/48MPIz4cUMFjG09WEaXEVTUlcQgjiwg8FzZQDIEnvWHVXPHk+gb1V99yt9mz2SV8UDMYropo/Ly4qEVHjIHV1RqrNCZluuWKtl3QugVfv3rJT79+ztdfPeUPfu8p337/Df/w9h1/8Yv3vFeGyWaCjaQj7L97TXw40oaOMRxJaYL8I8/JOHcLOR8mlXN+NHH2PNmfN+6C49WLkqFQWErCbi2xbq0qyeaqpK6NRfGPNkBCZwr2q2X0O7EIqypqcLL+POem1c9QbwAU3nyQw0RTbW5PNyqn2qZJsx6FOZnm7DNT/Otd0YzUz5cw2pHTNGsopH2Yi02lJhebSRnKVZxYAJELFGtH18yD+sR16VTQtZ0Ufz5MEE+6l/p5M/IQSxEt9yFmsadTaIxp2O4HdofAmBsO4yS6gSSuGsra0oYtSImus00yzjhJpq0kIUZpnJIhM3GcCL4kayUZigroHUYrGW7VaFoDXY6shy16DMT9geHuA/G4I0YZTKXR2GFJMpajD2jnsF1Pu1qRm4bgHLFwaRsj6vQUI4teOLNkWG0eZnpUjAmboXMtq6Zn2h8JYyCME4yeNInQMjaR6ATFknFuqiBPxZIwn9ZDpFhzaoNShn7R0bYt3aKnUjumUdq0Ik4/FQsZNScS9b6ez2KJqcwLgOIe8emGMRbb9cQU8YcDrWtpbIsxDdpd895e4dSC9+/usMmi2owZM2wmVJIkOK8hdhkcKNWSgiA6Fo3aH8TFIMJwu8MtG3SrScpj2wbjNCrJnBTltNjkAs40Ba301EGhSkOOnhhDMSdoyF6qSEPCGbnvKZ348ud2r6LlKsBFFuCiaq5y0ZihDDmdOrvVJOB8jxWesj71L2uHQ0vnIsRYfkXp6mUw2tCVYVX1taZpog7Bq92L07wjNbfjclazza24S51RsqzBlO34tEZz0eyFuftaheV18Fkq/PRzOmtKIuzU1crXe3HzKvtpLTBi6RxbW3C5GAvwVLuD0q0CJYX8WYcmxkgywgn3fjo7AzLTMZbkm0eAlFIye6fS2NbrNTkd8ZOsi2kaxf1LKbq+AaTL4UNiiJEYEodhZLPfsd0feb/ZcPuw5X5z4H5zYLOPxChJwiYnwjiI+6AW0W6m0nf0bK1en/86tIwcUEqKO1totylXoX58ZHfcdh1d29EvlnOy6z5h4fd12/GgDAelyFbhc2aMiWHwmHZJ0hNHFIf9kTx5lPccjwOjTwSvyF4xDRO6PP9ZKXKxWTfWyEylrGTulAKsQbWWdtFy4+CpU9wsWlJIRCVdxBAzlTdQiBGPms4f0x3PAVGxbU8l55FCpeksL18+Y4qR7e7IcX8kJk0MGX19DQuZTD7GSQrbrCEpbN+R4oHoMzkFdExoBECV57UCFZYhw1FlVGto9IRCE7CEOJKDvJ/WtZAdKYLXCb1Yo02DzorjtMNrRSzArU6hdCsiawVubJimET8cGfIIQTJBW4f/5qol0GiVybpyqQSIVkqz6Basl1cYrUVPtPDslwtCmIhR5nYFH9lv97xRb/n3//bfcrW+om1kiN/XX3+N0rI/ffhwX7pPipubp/zhH/zXPH3ytAymFBpS1wEqcfv+HcMwME2eh4eNgFHqjjdv3vPTn37F119/ze//wR/yP/2P/wPffPOazcOe7vkCrQvwahxPPvuKbrmmX1+z2dwx7CDFPXEKRc+aCTELgA6l43PWgTSqTKjXLLXiZ18+43rdcXu345vvBmLJSXyQNaPP8t2URf/ivYeURdBvLbvDkawM7WJJ3zdM45aHO8/mg+Lu7oEPe8+dXhCevETZlgZHdpZDO+LzGw4PG0xIaA2L7keekzHTQs7oR48EJuXiVC/1c6RKEvVK3KkzGsrrKkWd3pAAlZk7HDOqWy+60gXJOmtr5yTUZVW9ifml72+2wZ2pCAWpLA/d+SC+858p87OBijoXSlL9NOrUucnl86jS88vn7cn6+wqqZJRwDbMWf2lrbGnVRkiCtCulCiJuOLnSzDdE3qvSJHXiLZ9/9vkwj0moVCkV3UecW6M5K4bRM8VMdpZQ7TRVscKrdq+aebCe0rLBWWdna0rx/szFbjYSJylWqihfa0XWCttZGqPotGJloCfR5chVTFgSQU04JoY0MPkBHyapwpVHKYMaJkzbYaYRHTy5aTFti3IOGRbTlO5CZrmQCh8NtnHFSwaizeSY6Zxl2Tj0RuZm2AQoi1NGHIuqZY2aDdTI88Gh6qJEW01rnAxCMq5sVh1t19Av+oK2epxtGI4DYx6I3p8OocJn+FjkXb8WUqJU1+dv4JOMnAFrUU1LGEZcAhMzNkVcTqxcz83iKe/evSUnC1isEkBCpYyJChUgd5CL+1QMSuhkyZBHgyotiuQzacioWCw9QwKXiD7im4DutaDsViaI56RQMZFCIGv5mZxKHysnVDJQZuuonE6yibr/nFeKUIqGYm2bZderWiuqpz6y/6Wib5BbnGcBtLxMsX6FeX+r2jZtTLFqlS/GGAWC0VoShPKWdDx1D+R5lR2sitOzKjTRLPuz7Gnyu2dutS6Zk1ijlK5PtanNBZGM5Bw/MkYQLUilBs4AFUKrsmXPnbUh+TwpozwnlXYiIMGp8FFoVTrK5drV+1GvX0oZdJ0oXOi0Oom9LyeqwQkgKx0CpUrXWX5/BVdClGnubd/ikmUaNT5GxjEwjIFxDOwORx62Gx52e97dP8hcgv3Ibj8yBSk8NZppEIps7WbO7JFctwVdm5zIbCpVBMNSdJ0S1XJ26izPSgXZKo1CS0EyF5Of8D5yYy0hwTFnrGZ2YpREXZDh0We2xxEdxLjFp4wPmRAyqnQshV0hXWJKMWyMRSUlU7Xn+rteP0OvGxZO0TtX1mnJBGZ7YTkwKnPg/Ew+Z3nA4zO6RtUoaAXXV2s22z1tY1G7I8qP6MFhponYdUQlZ2oOCRUTOoFpGpQdpfOtmW2MxVRCBsKpAnCNIXGMCY+ACUolyFGeuRTJiNZE6YloZPJ4a9bkpIlZMYVM1OKlZ7QG66TYpbTXVLUDruYzCEU6FZvlVAHdYpRR9r86U4RSaGhjaJsWrXfSKSoMAYF6pLs/jhNqu+XbX3zDzc0T2qalbRqePX+GtZqUI/vdjqaVjuvV+prF8iV930nBnSQvdNaRswxuFU2Zx3thTiituP3wjq+++glPb57z8sXn/K//y79C64bjcWScBplPVAwA2uUKU+jbV89fYYxh2lvG44aSgDHlVKbzlB1BVcF8RlfcR2fQmafXLc4qnDXc3d1xDDDFTIhn+R+Fxh9OU+uDkj3SaTFAyYAympgCu90BZ/ak+IzJe3zKRNdir57i7IJGtTR9h1+8xtsH9tMdLiaawjr6VeJXLjIqvxd4VFh8rGo/dz+ZURdyOYxqe1pQAmNlQvXkE66xqDKG3odQBM2KtmkEWVSCzmkjdpLV4jNxOlSqJa3Qccyjw6O26Z1zj9w4lNIyWl6fuhu12yFo5Kk4sdbONzOlVA56CNORaRiwzYBPib4k3SIUDFSaVd3YtZKEvbEWZSyquFkVKGMW9dSBYMJBzMUFK82iqJwzkz+JKD8ecKjKIRlCwBT7wuqln7J0S4YhMIyepFqa1Zq8G3CFj3zIWSz45NaJoN1a6VwoJZoLbTAJCIHheGD34R7lE3UqMEWfYoxGO8vVumNhNUuVaQ97lmlioRLPnGHRNqi+J65fcn9vud/es9lHDtOEn+4hQRcVOY5w3BHuP5C0JbuWrJ04sbQdzrU0XYcd02yju3C5UN8UWRv2w5F+obheOznTTYPqmkIl0NjGiZWfVhjA5DL5uyAhtSOnjcG2jptnzzFGJpgv+rUgssi6dC7jXKJpAuPoSfFO6GOpIKn88gNHKUEyDmkiaUXIsVC9Pt04HiZJmF3LqDXsj9gQMZ3huP/AzaLnd376O/zZZst63bPsLcucCcdbmqjprUyPzoOIlLsleB0JUdzm6A06JHTM2JcrOCpSyBiTSHeemD3ZaOIVcK1RRFortrZEhRqku5lVdZWrBYQU67oYWKRaBJTOZM4y1BHqXAhH1Q+cz6RJ1DZ3SSh0QTSph1r4R2BB0zSP1kcoxbsu+2Eq3YuMOCS1jaxja0TzJT7tH71OodaQDUmXbgciUA8hlj0GjCkgiVazUUcqYIUPAWdlArrWluzrBPDTHgkwhHCy7eQM0S1FxbmOIOeC1sc4J3EiTLXz12JxzIOCf2hdknGNwqB1JucTtbe+rg8J5+z8Puo1TinRtu2MMstZIsVUTJHtZjMf3imLk5A2jvV6gY+iMbm7f2C3n9jsBrb7kfvNke1hz+4wcLfdchxGJp8EddQy90UDpCBnGUjSWOk1FGxuRjfPqLwf1QcnYE+hcWRtQJW5SUlsPLX2ZV1amRlSdCyfYnylFabMT3jvoAOOOuOcZtgGwsNAuNvzi93IlTN0ukc5g/cyPNaQUKaYGIQgyLyxaOfEiOKYSNGTxlIYF+MQnROtVXSNoXUiohVrWk2ZG/qoG3nevfhlxcVMtS0ApdjdFu1pjjy5WrPd7ln2Ha0dxP0yB+zxiFuvGRqHX8Hw9h6rMtpZmmVL6MSuWSWZ4WWKjX6MIgDOPhBjYmfhoXO8P4y86hc4MiqOkCymDO+dxj26MWSTpI5yGn9M7IdECJpY/R+UwblGgN6qZUPNRg1aaaZxZDwe8ZOHJICs5GxnBVmq1bUUy8NxZDgM3Fzf8O23r9ntdozTWJggjhw14yjapEPc46fAdnM/jyhYroUS3XYth/2WxXLBcrnk+bOXpdMreqacJBfNGVSQmTg5DwzDgLWOV68+58mTJ/zJn/wp1iia1rFe3/DHf/zH5JzYHyZu7z+wWvW0XYs1DmUMrl9gm47f+q/+iPt3r3l4/x2/+Os/hzwS48QUhpKwF8C2ABkz4KEla1Y5sO41q37FiyfX7Lc7bjdHNseJlDK+0GNjilhrHoFe+azYWK+X9Muepmt5f38L8QHvW25ufo/2naFtDCvT4q6uuV484Ul3xRfuKf/nm+9Qd3cceEcct3gFyv/IRcbHNJzTw6Ln5D6VCrlu+vVgqSLjWqlmsgyE06bQHEArUR3kXAfc2TIPQ2ZWlKvFOE1lOI6WE9FIsmFKtVtPpkqFAjlkRWytmdSJLkXOkiiXBZlLgm6tPdNtCJFr1peUgsU5cU+yRlwTbL+i7VZY2+G6nuRH4sETo585kXVYnkLgz5BkAqSZRVeySHyQwkRpESlmJZ0DipOIUsJNxsBMo6FqMqRTosxpqq5yVbB5EmGCxWpNu2hISkvrTRvRgAFoQdCjA+20FERZJir3fU9rHX6ciFMgHAPb7QNhHMh+pO8W9IslrukY/UBjM4aE9hMvJ8U6KdYGXqwdS+NYOM3T9YK+aSCBnzzbZys2+6fsDnt244Hd4cjhOLLdHkSYHiMxIih2PJJR6AR6cihtUaZh/+G9UKQUKKdY9r1MljcGmxVd03DdO17+xs/IUZGCJCKxOA5hYIq+DP7Ts9+5KjSQ1dWarlvS9yu0dsSYiRGCh91hADLL5UJQpJAIHp6/+IrF8pr9/oH3775H51w0JHru8J230ROZkBPHEBnCxDB9uskBwGp5hW0NSiX2fiKHDRmPjjuWtzv8/Z7t3YY3Hx4YbeRGdXzeiltQSoE0HGlcxxQ84RDYNxF0RmdIPqPf7kg547XCLhqSU5jesL5a4TcH1CFhdorjNooWB0NuNVgpEkyrGAcpAFUWtyQZXKZLN5YyVVnPtIeUxI0tFSclUw6YCnQcj8fHiYaqTi5ZDqOq2i1OUVXvVqMmIzN9LsYy1EnWS7XhzDnTuEZeE8VxGHCtFDvOOVCKaRzxfsS6du6L5iTrXt7baR9X5T2qU377KFEyxRo4lv3NWI0uzgYz1al8lmqRW4uHVLrVtdt9PshvTv4zBVByM92jdjeapp31GXJuyDvWWj0ClM5R5L4/2eXmpIqORM6raZoeXfNzupW1lqYV8OHd+1sgkVLATyMhRPbHkTe39/zN37/mMATGKbE9TIwBvA8Mx0lcbrLCKlPoKunk7qVEcZM/4ticg3cKWePVjEBboULV6/cocZ21g8JXt1aQ+/3+wHp19eh6f4rhjjvWSeMTbL0i+glXzqH9AYYHz/CQUNmhlksmDfn4jqylAFX5iDcjJlt0EhOAFGSWQY4JfxQnwpQoA8scrTMoHzjud4R1R/90SVLS9cikE2shZ8LZmjsvtuF0T+Gcbnj63rqmrXZoDdfrK7569QVv393jg4fjnuH1a9xyKed3Y5naonMIgT71xK4DBVOIqFB0pfH0TGut6KyjV5Gl0nQxk2ImGFkzunYrDWRlGLQSQDIkvv+7dxxHGIMiq46mbdFGkXMoXUyNNQ1KfliKfiWsgKZp6NqGcRgYx4lp8oUCZsqaPHMGVUL7iykwDEf+41/9FcNxJEXYbQ+gPH3f0S3Eslq0uhFjAofjfmZ6/Omf/glXV2sWyyV93/Frv/brWOuYJi96Emex1pCZgIgxmaurK/78z/8DwzBwfb2Wszgmdtsdv/mbv8H6aoWxAkT87u/+E6ZpZBwPvL/9gWkaWCx7Vqs11jbSydaGFz/5Oc8+/5Jx+xtsH7YM21vCtCsMk4mcEiFFnDtttqk4UqGkQ2lURqmAc4p/8vMveH9/4O3dlr/8m+9Fn1Vyy2mc5hxYq0KhjZE0eRbdEj+NDOPAM3fD56+e8MXLBR8eNixWmc9aQ/KK7zff0aqRJ53n11aZt+uRaaUZVz3JOqZhYBh+ZHepR/Sbs27Fx1zkU54rzgFiscfcQppFaEajlC1TlAsloKwuraVrIa2+KoY9vQ8q7aDejlza/oV/z1lCTdm+dRGdGyUTeyv1qdJ5qG39skGYMulVFVpC5bDWDcOWLgNKY2yH0i1KN1jbYEwjN7UcfvOEx7qhIIdsyBGiJFxKxUKnOvuspRipITmAOEjkUpBVp6zZa3f+XrHarS3HTCiUAqFlkGQI0e3DnqMPTMaSytCY+i6VFgTEKk2nLXH0mDGgmfB5wk9enBNGsZJFg1s0rFYL+rbDKkvYDXRK44jkYc/T3vDUNTzpHC9XLa01NFazbMXdiQyNdcWmseHqasUYJw7DkeMgRcZ2d2QcPcM4MYyT2FjGhNEKW4pOoXdGoYQh62mBpbMW1zWsmwXL9YpF09I3S0iaFBXDVISwZTKosuKUZY0TwTzSWq86GW0blLKkqPBjwIdIMJHhcCClQAyChBSAir5f0HWiFUnZc9xuhToVCh2q3G6xPJV712jLGAK68H4/5ai02xgTk8o0zhLDxOHNB9q9RyWNajvs1Q00UvyOMdJYTQqC2NjgicHL1NvOoHsjE+tVorEaHcAkjYlG6CdaE1UmtVLMqagxxwRHyC6Tp4wSJ0dBIm11oJNhWlZrEX6jUfpUPNREulKCJJT48Bdh7blBhtB0XNEZlJ2pniOqwC9nr3Oy3T5ReeprJhRKl++te0R5rZQSIQM6IZBTgSKygDsoIzqHs4IhUdZcOv2dKteiWnef6+1qd6DSQmKZQiu/5h9TRc6LpErhUFn90gSsniNaF7qFlushHdhM1RXMHfN4+ixC2zrpK+aotJa5GyCiVa0fazLqmXaiWknyeP4769+L539mCondceL9w45xinif2R88IRVRa0jkWM49paglhXQbCnW4FEv16T4vMHR5aHQ+0X2VNvP3VrG3dNjkbI7FjKJ+HmvsbAJS19WnGtOwxZiOXjn6FHg6TejRkw+eMCruQkBnT2palk1HY2HsOunsoahUxVxodolKXRQqThIpuOAKuqDJCsTQM6Oz0IpKXTsDo+dr+eP1d14E1mtf9VKPhqkJXIa2osfp244n19csFx0hjoQU0TGQD0cRgLsVurFkH/HjiJsWWK2JxhGchSw6qfoJT3MobAE0ElMAH2seFBGCqCGjGdD4STOGxH4a2Y0RHxQha6wrBW/SpBzkvStV9j6FED/kxIqxDNosdCehHiahvqZKxTxdq/rNAmKIKU4MoYjahZIpjqKmjAuQa5dSFDCqXNP7u1umaWA5HPns5cvZDjdGeX6N1iSjOBw2hCBi7Kv1DdfX1zRNg2sc43jkOIgz3uQn2qbH2obW9fR9K7RFLYL0GCOHw4EQAldXNzSuDEBsRB9Hztw8/5x3g7BfjFmIlq38b7bs5pzZcN7ZTmidWC0tiZasIu/vljxsJ8YpMBWwqyxCytTDejSUDq9on0MIhAgxaVCWZ0+vWaRIM2n6acnNsuHFQtGzZ2UTq9bSdytu1j0KQ46/2h7yn1VknP5Oz0JnuRCnFq/onqWCMsbIzSx5lNj5OTROuDgZQe6RbdZocTYQYKCIg8p7sGUYFDmX1hJU7p+uhzGl7UjtrMjC1tqU0exh7rbMiztXUVaaN22oyn1xjqmuWlpLVS4CSYW2LegGlMO6VlrSSjocj0bIl45BzswC5Kxi4XmXa6Bymd2h6rkzX9NaMEgBBaHwoEkRcjohXQgik8pCNdrOBYYu6K1PieMw8ovvX7MbR6ZW3LjcWavOKIVB47JhgWH0RQcxRA7HI6HytrMhq4xuHd3ScfNkTZcsjJHNbkevGhyBsHvgxbMVn3WWF1cLnl8vMNbBGRpHRro71rJcLuTz24yPYsm52w+8e3/Hfn9guztw/3DHbr8XGlKGtmskkaUMNUtCbGyd4arVLJaO1c01ev0Mu1jjikAMLClplJNuWYieGCca14gbQ7ckxeJOojRt13M4HKW4mCIpRBEXjhPOaY77LSGM7LaRpu2LVqMl+ETTdrRdy2LZ8vrbbzjudiIGLs8QqPkA1Igv+zgOpKzJ5tN1hQHZ5MIY8cFzTBHXNqRhYPvNG561V6i2xV33rF69okl7YGQKI43Vsg58II8jPk0EFaC12K4jW8WYEnbR0g6aZtKYaAlB7tnoA9llrFagDWYTYMgkF1FjRvXMjBTbOKFfhST3wRhZp1n2EeccTdMwTdMjKlRF1W35/uDF4hBOFFNjDMM4FB2FuBIZavF1zt+uCfgp8T7vZNT/n3PGuYZTdZoIKUBx5otU44zafdYY6/CFEiXJgKY6qKVKz1Fynaxr8NPAue3mI10bQndIKZQO8akTc47knlOiaie5djoe02/PHXhq/SS+/PVzO2fFEXAudgpdrHaVwmnwqilDPssRQ/WpT0kMSyqQBf7R56uRkgwyJUtH3RgjYEMq+pMk6+QwRu73I95HYsgcDlM5p5DXnz+LXGn5kJThiaXoUiew7WMastIanaTgNcVgonavnHNzwjrG6ZE2SM48h2samqYVzYE+L2Y/vdgf7zGLJzRO4/zAszDRD4H2MELUdCnijGe0Hc/ahsbC3WpBMI6glOzhWZ4J0UsnFGLhbBuHPwZxhLSKpMUVSWmwStFZhdOJGCahUpU1G0Oek7tzDeg56+ORTpWTucHjeTBCwcdYjDJzkXG1WjFMkSl6lFH4w4HkHGa5wDSCzMfDSLdcYlqL0wbvnNhyV3FJ6ZKmDNk1hBgZQ+QQYIoaQ8LkSNKKnC0xW/bKsT0o9kNku/PELMUHytCkUmQYS0oeY9VMjTJGS/4jSmuCb8CIzqBrO7Huz17A6BiJUT967kRPVArnFNBaChUZ+CnFtPcTCnEIg3od41y4xRTJBzHF8X7ixYsXhb5liKEMC03yXD08fCDEiLMNV+trXr36kv1+z2634e7uvehiUfzi21/QuI7GdVytnoDOGKsLIHrFbrdlvztwH+5omlYASlsAagzZtjz77Evev/kBH8V5MqodFHpn1Y3JsjnPtzPiOSeAdNeAMg5je3aHJ1i7Z7M98rCJTLEM/IW5w1Y7WLIvJqzJDOPAdufYrVqsW/L5iwVJZ66HxKt0Rd/09M6h90d6DQvX0rZrfvbFV1wvn7FcPP2VnleV/xHkc4lLXOISl7jEJS5xiUtc4hL/+aH/37/lEpe4xCUucYlLXOISl7jEJX71uBQZl7jEJS5xiUtc4hKXuMQlftS4FBmXuMQlLnGJS1ziEpe4xCV+1LgUGZe4xCUucYlLXOISl7jEJX7UuBQZl7jEJS5xiUtc4hKXuMQlftS4FBmXuMQlLnGJS1ziEpe4xCV+1LgUGZe4xCUucYlLXOISl7jEJX7UuBQZl7jEJS5xiUtc4hKXuMQlftS4FBmXuMQlLnGJS1ziEpe4xCV+1Ph/AMN5o7+WgXHiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for image, _ in train_dataset.take(1):\n", + " plt.figure(figsize=(10, 10))\n", + " first_image = image[0]\n", + " for i in range(9):\n", + " ax = plt.subplot(3, 3, i + 1)\n", + " augmented_image = data_augmentation(tf.expand_dims(first_image, 0))\n", + " plt.imshow(augmented_image[0] / 255)\n", + " plt.axis(\"off\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bAywKtuVn8uK" + }, + "source": [ + "### Rescale pixel values\n", + "\n", + "In a moment, you will download `tf.keras.applications.MobileNetV2` for use as your base model. This model expects pixel values in `[-1, 1]`, but at this point, the pixel values in your images are in `[0, 255]`. To rescale them, use the preprocessing method included with the model." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "cO0HM9JAQUFq" + }, + "outputs": [], + "source": [ + "preprocess_input = tf.keras.applications.mobilenet_v2.preprocess_input" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xnr81qRMzcs5" + }, + "source": [ + "Note: Alternatively, you could rescale pixel values from `[0, 255]` to `[-1, 1]` using `tf.keras.layers.Rescaling`." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "id": "R2NyJn4KQMux" + }, + "outputs": [], + "source": [ + "rescale = tf.keras.layers.Rescaling(1.0 / 127.5, offset=-1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Wz7qgImhTxw4" + }, + "source": [ + "Note: If using other `tf.keras.applications`, be sure to check the API doc to determine if they expect pixels in `[-1, 1]` or `[0, 1]`, or use the included `preprocess_input` function." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OkH-kazQecHB" + }, + "source": [ + "## Create the base model from the pre-trained convnets\n", + "You will create the base model from the **MobileNet V2** model developed at Google. This is pre-trained on the ImageNet dataset, a large dataset consisting of 1.4M images and 1000 classes. ImageNet is a research training dataset with a wide variety of categories like `jackfruit` and `syringe`. This base of knowledge will help us classify cats and dogs from our specific dataset.\n", + "\n", + "First, you need to pick which layer of MobileNet V2 you will use for feature extraction. The very last classification layer (on \"top\", as most diagrams of machine learning models go from bottom to top) is not very useful. Instead, you will follow the common practice to depend on the very last layer before the flatten operation. This layer is called the \"bottleneck layer\". The bottleneck layer features retain more generality as compared to the final/top layer.\n", + "\n", + "First, instantiate a MobileNet V2 model pre-loaded with weights trained on ImageNet. By specifying the **include_top=False** argument, you load a network that doesn't include the classification layers at the top, which is ideal for feature extraction." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "19IQ2gqneqmS" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m9406464/9406464\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0us/step\n" + ] + } + ], + "source": [ + "# Create the base model from the pre-trained model MobileNet V2\n", + "IMG_SHAPE = IMG_SIZE + (3,)\n", + "base_model = tf.keras.applications.MobileNetV2(\n", + " input_shape=IMG_SHAPE, include_top=False, weights=\"imagenet\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AqcsxoJIEVXZ" + }, + "source": [ + "This feature extractor converts each `160x160x3` image into a `5x5x1280` block of features. Let's see what it does to an example batch of images:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "Y-2LJL0EEUcx" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(32, 5, 5, 1280)\n" + ] + } + ], + "source": [ + "image_batch, label_batch = next(iter(train_dataset))\n", + "feature_batch = base_model(image_batch)\n", + "print(feature_batch.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rlx56nQtfe8Y" + }, + "source": [ + "## Feature extraction\n", + "In this step, you will freeze the convolutional base created from the previous step and to use as a feature extractor. Additionally, you add a classifier on top of it and train the top-level classifier." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CnMLieHBCwil" + }, + "source": [ + "### Freeze the convolutional base" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7fL6upiN3ekS" + }, + "source": [ + "It is important to freeze the convolutional base before you compile and train the model. Freezing (by setting layer.trainable = False) prevents the weights in a given layer from being updated during training. MobileNet V2 has many layers, so setting the entire model's `trainable` flag to False will freeze all of them." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "id": "OTCJH4bphOeo" + }, + "outputs": [], + "source": [ + "base_model.trainable = False" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jsNHwpm7BeVM" + }, + "source": [ + "### Important note about BatchNormalization layers\n", + "\n", + "Many models contain `tf.keras.layers.BatchNormalization` layers. This layer is a special case and precautions should be taken in the context of fine-tuning, as shown later in this tutorial.\n", + "\n", + "When you set `layer.trainable = False`, the `BatchNormalization` layer will run in inference mode, and will not update its mean and variance statistics.\n", + "\n", + "When you unfreeze a model that contains BatchNormalization layers in order to do fine-tuning, you should keep the BatchNormalization layers in inference mode by passing `training = False` when calling the base model. Otherwise, the updates applied to the non-trainable weights will destroy what the model has learned.\n", + "\n", + "For more details, see the [Transfer learning guide](https://www.tensorflow.org/guide/keras/transfer_learning)." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "id": "KpbzSmPkDa-N" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Model: \"mobilenetv2_1.00_160\"\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1mModel: \"mobilenetv2_1.00_160\"\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n",
+       "┃ Layer (type)         Output Shape          Param #  Connected to      ┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n",
+       "│ input_layer_1       │ (None, 160, 160,  │          0 │ -                 │\n",
+       "│ (InputLayer)        │ 3)                │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ Conv1 (Conv2D)      │ (None, 80, 80,    │        864 │ input_layer_1[0]… │\n",
+       "│                     │ 32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ bn_Conv1            │ (None, 80, 80,    │        128 │ Conv1[0][0]       │\n",
+       "│ (BatchNormalizatio…32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ Conv1_relu (ReLU)   │ (None, 80, 80,    │          0 │ bn_Conv1[0][0]    │\n",
+       "│                     │ 32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ expanded_conv_dept… │ (None, 80, 80,    │        288 │ Conv1_relu[0][0]  │\n",
+       "│ (DepthwiseConv2D)   │ 32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ expanded_conv_dept… │ (None, 80, 80,    │        128 │ expanded_conv_de… │\n",
+       "│ (BatchNormalizatio…32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ expanded_conv_dept… │ (None, 80, 80,    │          0 │ expanded_conv_de… │\n",
+       "│ (ReLU)              │ 32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ expanded_conv_proj… │ (None, 80, 80,    │        512 │ expanded_conv_de… │\n",
+       "│ (Conv2D)            │ 16)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ expanded_conv_proj… │ (None, 80, 80,    │         64 │ expanded_conv_pr… │\n",
+       "│ (BatchNormalizatio…16)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_1_expand      │ (None, 80, 80,    │      1,536 │ expanded_conv_pr… │\n",
+       "│ (Conv2D)            │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_1_expand_BN   │ (None, 80, 80,    │        384 │ block_1_expand[0… │\n",
+       "│ (BatchNormalizatio…96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_1_expand_relu │ (None, 80, 80,    │          0 │ block_1_expand_B… │\n",
+       "│ (ReLU)              │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_1_pad         │ (None, 81, 81,    │          0 │ block_1_expand_r… │\n",
+       "│ (ZeroPadding2D)     │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_1_depthwise   │ (None, 40, 40,    │        864 │ block_1_pad[0][0] │\n",
+       "│ (DepthwiseConv2D)   │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_1_depthwise_… │ (None, 40, 40,    │        384 │ block_1_depthwis… │\n",
+       "│ (BatchNormalizatio…96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_1_depthwise_… │ (None, 40, 40,    │          0 │ block_1_depthwis… │\n",
+       "│ (ReLU)              │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_1_project     │ (None, 40, 40,    │      2,304 │ block_1_depthwis… │\n",
+       "│ (Conv2D)            │ 24)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_1_project_BN  │ (None, 40, 40,    │         96 │ block_1_project[ │\n",
+       "│ (BatchNormalizatio…24)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_2_expand      │ (None, 40, 40,    │      3,456 │ block_1_project_… │\n",
+       "│ (Conv2D)            │ 144)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_2_expand_BN   │ (None, 40, 40,    │        576 │ block_2_expand[0… │\n",
+       "│ (BatchNormalizatio…144)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_2_expand_relu │ (None, 40, 40,    │          0 │ block_2_expand_B… │\n",
+       "│ (ReLU)              │ 144)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_2_depthwise   │ (None, 40, 40,    │      1,296 │ block_2_expand_r… │\n",
+       "│ (DepthwiseConv2D)   │ 144)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_2_depthwise_… │ (None, 40, 40,    │        576 │ block_2_depthwis… │\n",
+       "│ (BatchNormalizatio…144)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_2_depthwise_… │ (None, 40, 40,    │          0 │ block_2_depthwis… │\n",
+       "│ (ReLU)              │ 144)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_2_project     │ (None, 40, 40,    │      3,456 │ block_2_depthwis… │\n",
+       "│ (Conv2D)            │ 24)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_2_project_BN  │ (None, 40, 40,    │         96 │ block_2_project[ │\n",
+       "│ (BatchNormalizatio…24)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_2_add (Add)   │ (None, 40, 40,    │          0 │ block_1_project_… │\n",
+       "│                     │ 24)               │            │ block_2_project_… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_3_expand      │ (None, 40, 40,    │      3,456 │ block_2_add[0][0] │\n",
+       "│ (Conv2D)            │ 144)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_3_expand_BN   │ (None, 40, 40,    │        576 │ block_3_expand[0… │\n",
+       "│ (BatchNormalizatio…144)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_3_expand_relu │ (None, 40, 40,    │          0 │ block_3_expand_B… │\n",
+       "│ (ReLU)              │ 144)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_3_pad         │ (None, 41, 41,    │          0 │ block_3_expand_r… │\n",
+       "│ (ZeroPadding2D)     │ 144)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_3_depthwise   │ (None, 20, 20,    │      1,296 │ block_3_pad[0][0] │\n",
+       "│ (DepthwiseConv2D)   │ 144)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_3_depthwise_… │ (None, 20, 20,    │        576 │ block_3_depthwis… │\n",
+       "│ (BatchNormalizatio…144)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_3_depthwise_… │ (None, 20, 20,    │          0 │ block_3_depthwis… │\n",
+       "│ (ReLU)              │ 144)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_3_project     │ (None, 20, 20,    │      4,608 │ block_3_depthwis… │\n",
+       "│ (Conv2D)            │ 32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_3_project_BN  │ (None, 20, 20,    │        128 │ block_3_project[ │\n",
+       "│ (BatchNormalizatio…32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_4_expand      │ (None, 20, 20,    │      6,144 │ block_3_project_… │\n",
+       "│ (Conv2D)            │ 192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_4_expand_BN   │ (None, 20, 20,    │        768 │ block_4_expand[0… │\n",
+       "│ (BatchNormalizatio…192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_4_expand_relu │ (None, 20, 20,    │          0 │ block_4_expand_B… │\n",
+       "│ (ReLU)              │ 192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_4_depthwise   │ (None, 20, 20,    │      1,728 │ block_4_expand_r… │\n",
+       "│ (DepthwiseConv2D)   │ 192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_4_depthwise_… │ (None, 20, 20,    │        768 │ block_4_depthwis… │\n",
+       "│ (BatchNormalizatio…192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_4_depthwise_… │ (None, 20, 20,    │          0 │ block_4_depthwis… │\n",
+       "│ (ReLU)              │ 192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_4_project     │ (None, 20, 20,    │      6,144 │ block_4_depthwis… │\n",
+       "│ (Conv2D)            │ 32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_4_project_BN  │ (None, 20, 20,    │        128 │ block_4_project[ │\n",
+       "│ (BatchNormalizatio…32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_4_add (Add)   │ (None, 20, 20,    │          0 │ block_3_project_… │\n",
+       "│                     │ 32)               │            │ block_4_project_… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_5_expand      │ (None, 20, 20,    │      6,144 │ block_4_add[0][0] │\n",
+       "│ (Conv2D)            │ 192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_5_expand_BN   │ (None, 20, 20,    │        768 │ block_5_expand[0… │\n",
+       "│ (BatchNormalizatio…192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_5_expand_relu │ (None, 20, 20,    │          0 │ block_5_expand_B… │\n",
+       "│ (ReLU)              │ 192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_5_depthwise   │ (None, 20, 20,    │      1,728 │ block_5_expand_r… │\n",
+       "│ (DepthwiseConv2D)   │ 192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_5_depthwise_… │ (None, 20, 20,    │        768 │ block_5_depthwis… │\n",
+       "│ (BatchNormalizatio…192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_5_depthwise_… │ (None, 20, 20,    │          0 │ block_5_depthwis… │\n",
+       "│ (ReLU)              │ 192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_5_project     │ (None, 20, 20,    │      6,144 │ block_5_depthwis… │\n",
+       "│ (Conv2D)            │ 32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_5_project_BN  │ (None, 20, 20,    │        128 │ block_5_project[ │\n",
+       "│ (BatchNormalizatio…32)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_5_add (Add)   │ (None, 20, 20,    │          0 │ block_4_add[0][0… │\n",
+       "│                     │ 32)               │            │ block_5_project_… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_6_expand      │ (None, 20, 20,    │      6,144 │ block_5_add[0][0] │\n",
+       "│ (Conv2D)            │ 192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_6_expand_BN   │ (None, 20, 20,    │        768 │ block_6_expand[0… │\n",
+       "│ (BatchNormalizatio…192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_6_expand_relu │ (None, 20, 20,    │          0 │ block_6_expand_B… │\n",
+       "│ (ReLU)              │ 192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_6_pad         │ (None, 21, 21,    │          0 │ block_6_expand_r… │\n",
+       "│ (ZeroPadding2D)     │ 192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_6_depthwise   │ (None, 10, 10,    │      1,728 │ block_6_pad[0][0] │\n",
+       "│ (DepthwiseConv2D)   │ 192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_6_depthwise_… │ (None, 10, 10,    │        768 │ block_6_depthwis… │\n",
+       "│ (BatchNormalizatio…192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_6_depthwise_… │ (None, 10, 10,    │          0 │ block_6_depthwis… │\n",
+       "│ (ReLU)              │ 192)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_6_project     │ (None, 10, 10,    │     12,288 │ block_6_depthwis… │\n",
+       "│ (Conv2D)            │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_6_project_BN  │ (None, 10, 10,    │        256 │ block_6_project[ │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_7_expand      │ (None, 10, 10,    │     24,576 │ block_6_project_… │\n",
+       "│ (Conv2D)            │ 384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_7_expand_BN   │ (None, 10, 10,    │      1,536 │ block_7_expand[0… │\n",
+       "│ (BatchNormalizatio…384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_7_expand_relu │ (None, 10, 10,    │          0 │ block_7_expand_B… │\n",
+       "│ (ReLU)              │ 384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_7_depthwise   │ (None, 10, 10,    │      3,456 │ block_7_expand_r… │\n",
+       "│ (DepthwiseConv2D)   │ 384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_7_depthwise_… │ (None, 10, 10,    │      1,536 │ block_7_depthwis… │\n",
+       "│ (BatchNormalizatio…384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_7_depthwise_… │ (None, 10, 10,    │          0 │ block_7_depthwis… │\n",
+       "│ (ReLU)              │ 384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_7_project     │ (None, 10, 10,    │     24,576 │ block_7_depthwis… │\n",
+       "│ (Conv2D)            │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_7_project_BN  │ (None, 10, 10,    │        256 │ block_7_project[ │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_7_add (Add)   │ (None, 10, 10,    │          0 │ block_6_project_… │\n",
+       "│                     │ 64)               │            │ block_7_project_… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_8_expand      │ (None, 10, 10,    │     24,576 │ block_7_add[0][0] │\n",
+       "│ (Conv2D)            │ 384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_8_expand_BN   │ (None, 10, 10,    │      1,536 │ block_8_expand[0… │\n",
+       "│ (BatchNormalizatio…384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_8_expand_relu │ (None, 10, 10,    │          0 │ block_8_expand_B… │\n",
+       "│ (ReLU)              │ 384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_8_depthwise   │ (None, 10, 10,    │      3,456 │ block_8_expand_r… │\n",
+       "│ (DepthwiseConv2D)   │ 384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_8_depthwise_… │ (None, 10, 10,    │      1,536 │ block_8_depthwis… │\n",
+       "│ (BatchNormalizatio…384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_8_depthwise_… │ (None, 10, 10,    │          0 │ block_8_depthwis… │\n",
+       "│ (ReLU)              │ 384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_8_project     │ (None, 10, 10,    │     24,576 │ block_8_depthwis… │\n",
+       "│ (Conv2D)            │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_8_project_BN  │ (None, 10, 10,    │        256 │ block_8_project[ │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_8_add (Add)   │ (None, 10, 10,    │          0 │ block_7_add[0][0… │\n",
+       "│                     │ 64)               │            │ block_8_project_… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_9_expand      │ (None, 10, 10,    │     24,576 │ block_8_add[0][0] │\n",
+       "│ (Conv2D)            │ 384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_9_expand_BN   │ (None, 10, 10,    │      1,536 │ block_9_expand[0… │\n",
+       "│ (BatchNormalizatio…384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_9_expand_relu │ (None, 10, 10,    │          0 │ block_9_expand_B… │\n",
+       "│ (ReLU)              │ 384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_9_depthwise   │ (None, 10, 10,    │      3,456 │ block_9_expand_r… │\n",
+       "│ (DepthwiseConv2D)   │ 384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_9_depthwise_… │ (None, 10, 10,    │      1,536 │ block_9_depthwis… │\n",
+       "│ (BatchNormalizatio…384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_9_depthwise_… │ (None, 10, 10,    │          0 │ block_9_depthwis… │\n",
+       "│ (ReLU)              │ 384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_9_project     │ (None, 10, 10,    │     24,576 │ block_9_depthwis… │\n",
+       "│ (Conv2D)            │ 64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_9_project_BN  │ (None, 10, 10,    │        256 │ block_9_project[ │\n",
+       "│ (BatchNormalizatio…64)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_9_add (Add)   │ (None, 10, 10,    │          0 │ block_8_add[0][0… │\n",
+       "│                     │ 64)               │            │ block_9_project_… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_10_expand     │ (None, 10, 10,    │     24,576 │ block_9_add[0][0] │\n",
+       "│ (Conv2D)            │ 384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_10_expand_BN  │ (None, 10, 10,    │      1,536 │ block_10_expand[ │\n",
+       "│ (BatchNormalizatio…384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_10_expand_re… │ (None, 10, 10,    │          0 │ block_10_expand_… │\n",
+       "│ (ReLU)              │ 384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_10_depthwise  │ (None, 10, 10,    │      3,456 │ block_10_expand_… │\n",
+       "│ (DepthwiseConv2D)   │ 384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_10_depthwise… │ (None, 10, 10,    │      1,536 │ block_10_depthwi… │\n",
+       "│ (BatchNormalizatio…384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_10_depthwise… │ (None, 10, 10,    │          0 │ block_10_depthwi… │\n",
+       "│ (ReLU)              │ 384)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_10_project    │ (None, 10, 10,    │     36,864 │ block_10_depthwi… │\n",
+       "│ (Conv2D)            │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_10_project_BN │ (None, 10, 10,    │        384 │ block_10_project… │\n",
+       "│ (BatchNormalizatio…96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_11_expand     │ (None, 10, 10,    │     55,296 │ block_10_project… │\n",
+       "│ (Conv2D)            │ 576)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_11_expand_BN  │ (None, 10, 10,    │      2,304 │ block_11_expand[ │\n",
+       "│ (BatchNormalizatio…576)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_11_expand_re… │ (None, 10, 10,    │          0 │ block_11_expand_… │\n",
+       "│ (ReLU)              │ 576)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_11_depthwise  │ (None, 10, 10,    │      5,184 │ block_11_expand_… │\n",
+       "│ (DepthwiseConv2D)   │ 576)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_11_depthwise… │ (None, 10, 10,    │      2,304 │ block_11_depthwi… │\n",
+       "│ (BatchNormalizatio…576)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_11_depthwise… │ (None, 10, 10,    │          0 │ block_11_depthwi… │\n",
+       "│ (ReLU)              │ 576)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_11_project    │ (None, 10, 10,    │     55,296 │ block_11_depthwi… │\n",
+       "│ (Conv2D)            │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_11_project_BN │ (None, 10, 10,    │        384 │ block_11_project… │\n",
+       "│ (BatchNormalizatio…96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_11_add (Add)  │ (None, 10, 10,    │          0 │ block_10_project… │\n",
+       "│                     │ 96)               │            │ block_11_project… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_12_expand     │ (None, 10, 10,    │     55,296 │ block_11_add[0][ │\n",
+       "│ (Conv2D)            │ 576)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_12_expand_BN  │ (None, 10, 10,    │      2,304 │ block_12_expand[ │\n",
+       "│ (BatchNormalizatio…576)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_12_expand_re… │ (None, 10, 10,    │          0 │ block_12_expand_… │\n",
+       "│ (ReLU)              │ 576)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_12_depthwise  │ (None, 10, 10,    │      5,184 │ block_12_expand_… │\n",
+       "│ (DepthwiseConv2D)   │ 576)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_12_depthwise… │ (None, 10, 10,    │      2,304 │ block_12_depthwi… │\n",
+       "│ (BatchNormalizatio…576)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_12_depthwise… │ (None, 10, 10,    │          0 │ block_12_depthwi… │\n",
+       "│ (ReLU)              │ 576)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_12_project    │ (None, 10, 10,    │     55,296 │ block_12_depthwi… │\n",
+       "│ (Conv2D)            │ 96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_12_project_BN │ (None, 10, 10,    │        384 │ block_12_project… │\n",
+       "│ (BatchNormalizatio…96)               │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_12_add (Add)  │ (None, 10, 10,    │          0 │ block_11_add[0][ │\n",
+       "│                     │ 96)               │            │ block_12_project… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_13_expand     │ (None, 10, 10,    │     55,296 │ block_12_add[0][ │\n",
+       "│ (Conv2D)            │ 576)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_13_expand_BN  │ (None, 10, 10,    │      2,304 │ block_13_expand[ │\n",
+       "│ (BatchNormalizatio…576)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_13_expand_re… │ (None, 10, 10,    │          0 │ block_13_expand_… │\n",
+       "│ (ReLU)              │ 576)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_13_pad        │ (None, 11, 11,    │          0 │ block_13_expand_… │\n",
+       "│ (ZeroPadding2D)     │ 576)              │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_13_depthwise  │ (None, 5, 5, 576) │      5,184 │ block_13_pad[0][ │\n",
+       "│ (DepthwiseConv2D)   │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_13_depthwise… │ (None, 5, 5, 576) │      2,304 │ block_13_depthwi… │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_13_depthwise… │ (None, 5, 5, 576) │          0 │ block_13_depthwi… │\n",
+       "│ (ReLU)              │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_13_project    │ (None, 5, 5, 160) │     92,160 │ block_13_depthwi… │\n",
+       "│ (Conv2D)            │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_13_project_BN │ (None, 5, 5, 160) │        640 │ block_13_project… │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_14_expand     │ (None, 5, 5, 960) │    153,600 │ block_13_project… │\n",
+       "│ (Conv2D)            │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_14_expand_BN  │ (None, 5, 5, 960) │      3,840 │ block_14_expand[ │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_14_expand_re… │ (None, 5, 5, 960) │          0 │ block_14_expand_… │\n",
+       "│ (ReLU)              │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_14_depthwise  │ (None, 5, 5, 960) │      8,640 │ block_14_expand_… │\n",
+       "│ (DepthwiseConv2D)   │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_14_depthwise… │ (None, 5, 5, 960) │      3,840 │ block_14_depthwi… │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_14_depthwise… │ (None, 5, 5, 960) │          0 │ block_14_depthwi… │\n",
+       "│ (ReLU)              │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_14_project    │ (None, 5, 5, 160) │    153,600 │ block_14_depthwi… │\n",
+       "│ (Conv2D)            │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_14_project_BN │ (None, 5, 5, 160) │        640 │ block_14_project… │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_14_add (Add)  │ (None, 5, 5, 160) │          0 │ block_13_project… │\n",
+       "│                     │                   │            │ block_14_project… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_15_expand     │ (None, 5, 5, 960) │    153,600 │ block_14_add[0][ │\n",
+       "│ (Conv2D)            │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_15_expand_BN  │ (None, 5, 5, 960) │      3,840 │ block_15_expand[ │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_15_expand_re… │ (None, 5, 5, 960) │          0 │ block_15_expand_… │\n",
+       "│ (ReLU)              │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_15_depthwise  │ (None, 5, 5, 960) │      8,640 │ block_15_expand_… │\n",
+       "│ (DepthwiseConv2D)   │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_15_depthwise… │ (None, 5, 5, 960) │      3,840 │ block_15_depthwi… │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_15_depthwise… │ (None, 5, 5, 960) │          0 │ block_15_depthwi… │\n",
+       "│ (ReLU)              │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_15_project    │ (None, 5, 5, 160) │    153,600 │ block_15_depthwi… │\n",
+       "│ (Conv2D)            │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_15_project_BN │ (None, 5, 5, 160) │        640 │ block_15_project… │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_15_add (Add)  │ (None, 5, 5, 160) │          0 │ block_14_add[0][ │\n",
+       "│                     │                   │            │ block_15_project… │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_16_expand     │ (None, 5, 5, 960) │    153,600 │ block_15_add[0][ │\n",
+       "│ (Conv2D)            │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_16_expand_BN  │ (None, 5, 5, 960) │      3,840 │ block_16_expand[ │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_16_expand_re… │ (None, 5, 5, 960) │          0 │ block_16_expand_… │\n",
+       "│ (ReLU)              │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_16_depthwise  │ (None, 5, 5, 960) │      8,640 │ block_16_expand_… │\n",
+       "│ (DepthwiseConv2D)   │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_16_depthwise… │ (None, 5, 5, 960) │      3,840 │ block_16_depthwi… │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_16_depthwise… │ (None, 5, 5, 960) │          0 │ block_16_depthwi… │\n",
+       "│ (ReLU)              │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_16_project    │ (None, 5, 5, 320) │    307,200 │ block_16_depthwi… │\n",
+       "│ (Conv2D)            │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ block_16_project_BN │ (None, 5, 5, 320) │      1,280 │ block_16_project… │\n",
+       "│ (BatchNormalizatio… │                   │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ Conv_1 (Conv2D)     │ (None, 5, 5,      │    409,600 │ block_16_project… │\n",
+       "│                     │ 1280)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ Conv_1_bn           │ (None, 5, 5,      │      5,120 │ Conv_1[0][0]      │\n",
+       "│ (BatchNormalizatio…1280)             │            │                   │\n",
+       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
+       "│ out_relu (ReLU)     │ (None, 5, 5,      │          0 │ Conv_1_bn[0][0]   │\n",
+       "│                     │ 1280)             │            │                   │\n",
+       "└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n",
+       "
\n" + ], + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mConnected to \u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n", + "│ input_layer_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m160\u001b[0m, \u001b[38;5;34m160\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ - │\n", + "│ (\u001b[38;5;33mInputLayer\u001b[0m) │ \u001b[38;5;34m3\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ Conv1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m80\u001b[0m, \u001b[38;5;34m80\u001b[0m, │ \u001b[38;5;34m864\u001b[0m │ input_layer_1[\u001b[38;5;34m0\u001b[0m]… │\n", + "│ │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ bn_Conv1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m80\u001b[0m, \u001b[38;5;34m80\u001b[0m, │ \u001b[38;5;34m128\u001b[0m │ Conv1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ Conv1_relu (\u001b[38;5;33mReLU\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m80\u001b[0m, \u001b[38;5;34m80\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ bn_Conv1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ expanded_conv_dept… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m80\u001b[0m, \u001b[38;5;34m80\u001b[0m, │ \u001b[38;5;34m288\u001b[0m │ Conv1_relu[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ expanded_conv_dept… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m80\u001b[0m, \u001b[38;5;34m80\u001b[0m, │ \u001b[38;5;34m128\u001b[0m │ expanded_conv_de… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ expanded_conv_dept… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m80\u001b[0m, \u001b[38;5;34m80\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ expanded_conv_de… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ expanded_conv_proj… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m80\u001b[0m, \u001b[38;5;34m80\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ expanded_conv_de… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m16\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ expanded_conv_proj… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m80\u001b[0m, \u001b[38;5;34m80\u001b[0m, │ \u001b[38;5;34m64\u001b[0m │ expanded_conv_pr… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m16\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_1_expand │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m80\u001b[0m, \u001b[38;5;34m80\u001b[0m, │ \u001b[38;5;34m1,536\u001b[0m │ expanded_conv_pr… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_1_expand_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m80\u001b[0m, \u001b[38;5;34m80\u001b[0m, │ \u001b[38;5;34m384\u001b[0m │ block_1_expand[\u001b[38;5;34m0\u001b[0m… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_1_expand_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m80\u001b[0m, \u001b[38;5;34m80\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_1_expand_B… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_1_pad │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m81\u001b[0m, \u001b[38;5;34m81\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_1_expand_r… │\n", + "│ (\u001b[38;5;33mZeroPadding2D\u001b[0m) │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_1_depthwise │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m40\u001b[0m, \u001b[38;5;34m40\u001b[0m, │ \u001b[38;5;34m864\u001b[0m │ block_1_pad[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_1_depthwise_… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m40\u001b[0m, \u001b[38;5;34m40\u001b[0m, │ \u001b[38;5;34m384\u001b[0m │ block_1_depthwis… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_1_depthwise_… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m40\u001b[0m, \u001b[38;5;34m40\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_1_depthwis… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_1_project │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m40\u001b[0m, \u001b[38;5;34m40\u001b[0m, │ \u001b[38;5;34m2,304\u001b[0m │ block_1_depthwis… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m24\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_1_project_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m40\u001b[0m, \u001b[38;5;34m40\u001b[0m, │ \u001b[38;5;34m96\u001b[0m │ block_1_project[\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m24\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_2_expand │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m40\u001b[0m, \u001b[38;5;34m40\u001b[0m, │ \u001b[38;5;34m3,456\u001b[0m │ block_1_project_… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m144\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_2_expand_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m40\u001b[0m, \u001b[38;5;34m40\u001b[0m, │ \u001b[38;5;34m576\u001b[0m │ block_2_expand[\u001b[38;5;34m0\u001b[0m… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m144\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_2_expand_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m40\u001b[0m, \u001b[38;5;34m40\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_2_expand_B… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m144\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_2_depthwise │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m40\u001b[0m, \u001b[38;5;34m40\u001b[0m, │ \u001b[38;5;34m1,296\u001b[0m │ block_2_expand_r… │\n", + "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ \u001b[38;5;34m144\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_2_depthwise_… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m40\u001b[0m, \u001b[38;5;34m40\u001b[0m, │ \u001b[38;5;34m576\u001b[0m │ block_2_depthwis… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m144\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_2_depthwise_… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m40\u001b[0m, \u001b[38;5;34m40\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_2_depthwis… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m144\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_2_project │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m40\u001b[0m, \u001b[38;5;34m40\u001b[0m, │ \u001b[38;5;34m3,456\u001b[0m │ block_2_depthwis… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m24\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_2_project_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m40\u001b[0m, \u001b[38;5;34m40\u001b[0m, │ \u001b[38;5;34m96\u001b[0m │ block_2_project[\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m24\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_2_add (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m40\u001b[0m, \u001b[38;5;34m40\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_1_project_… │\n", + "│ │ \u001b[38;5;34m24\u001b[0m) │ │ block_2_project_… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_3_expand │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m40\u001b[0m, \u001b[38;5;34m40\u001b[0m, │ \u001b[38;5;34m3,456\u001b[0m │ block_2_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m144\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_3_expand_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m40\u001b[0m, \u001b[38;5;34m40\u001b[0m, │ \u001b[38;5;34m576\u001b[0m │ block_3_expand[\u001b[38;5;34m0\u001b[0m… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m144\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_3_expand_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m40\u001b[0m, \u001b[38;5;34m40\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_3_expand_B… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m144\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_3_pad │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m41\u001b[0m, \u001b[38;5;34m41\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_3_expand_r… │\n", + "│ (\u001b[38;5;33mZeroPadding2D\u001b[0m) │ \u001b[38;5;34m144\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_3_depthwise │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m1,296\u001b[0m │ block_3_pad[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ \u001b[38;5;34m144\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_3_depthwise_… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m576\u001b[0m │ block_3_depthwis… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m144\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_3_depthwise_… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_3_depthwis… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m144\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_3_project │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m4,608\u001b[0m │ block_3_depthwis… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_3_project_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m128\u001b[0m │ block_3_project[\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_4_expand │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m6,144\u001b[0m │ block_3_project_… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_4_expand_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m768\u001b[0m │ block_4_expand[\u001b[38;5;34m0\u001b[0m… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_4_expand_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_4_expand_B… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_4_depthwise │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m1,728\u001b[0m │ block_4_expand_r… │\n", + "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_4_depthwise_… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m768\u001b[0m │ block_4_depthwis… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_4_depthwise_… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_4_depthwis… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_4_project │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m6,144\u001b[0m │ block_4_depthwis… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_4_project_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m128\u001b[0m │ block_4_project[\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_4_add (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_3_project_… │\n", + "│ │ \u001b[38;5;34m32\u001b[0m) │ │ block_4_project_… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_5_expand │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m6,144\u001b[0m │ block_4_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_5_expand_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m768\u001b[0m │ block_5_expand[\u001b[38;5;34m0\u001b[0m… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_5_expand_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_5_expand_B… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_5_depthwise │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m1,728\u001b[0m │ block_5_expand_r… │\n", + "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_5_depthwise_… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m768\u001b[0m │ block_5_depthwis… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_5_depthwise_… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_5_depthwis… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_5_project │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m6,144\u001b[0m │ block_5_depthwis… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_5_project_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m128\u001b[0m │ block_5_project[\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m32\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_5_add (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_4_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m… │\n", + "│ │ \u001b[38;5;34m32\u001b[0m) │ │ block_5_project_… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_6_expand │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m6,144\u001b[0m │ block_5_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_6_expand_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m768\u001b[0m │ block_6_expand[\u001b[38;5;34m0\u001b[0m… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_6_expand_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m, \u001b[38;5;34m20\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_6_expand_B… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_6_pad │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m21\u001b[0m, \u001b[38;5;34m21\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_6_expand_r… │\n", + "│ (\u001b[38;5;33mZeroPadding2D\u001b[0m) │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_6_depthwise │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,728\u001b[0m │ block_6_pad[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_6_depthwise_… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m768\u001b[0m │ block_6_depthwis… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_6_depthwise_… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_6_depthwis… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m192\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_6_project │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m12,288\u001b[0m │ block_6_depthwis… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_6_project_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m256\u001b[0m │ block_6_project[\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_7_expand │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m24,576\u001b[0m │ block_6_project_… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_7_expand_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,536\u001b[0m │ block_7_expand[\u001b[38;5;34m0\u001b[0m… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_7_expand_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_7_expand_B… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_7_depthwise │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m3,456\u001b[0m │ block_7_expand_r… │\n", + "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_7_depthwise_… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,536\u001b[0m │ block_7_depthwis… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_7_depthwise_… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_7_depthwis… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_7_project │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m24,576\u001b[0m │ block_7_depthwis… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_7_project_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m256\u001b[0m │ block_7_project[\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_7_add (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_6_project_… │\n", + "│ │ \u001b[38;5;34m64\u001b[0m) │ │ block_7_project_… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_8_expand │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m24,576\u001b[0m │ block_7_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_8_expand_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,536\u001b[0m │ block_8_expand[\u001b[38;5;34m0\u001b[0m… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_8_expand_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_8_expand_B… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_8_depthwise │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m3,456\u001b[0m │ block_8_expand_r… │\n", + "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_8_depthwise_… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,536\u001b[0m │ block_8_depthwis… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_8_depthwise_… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_8_depthwis… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_8_project │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m24,576\u001b[0m │ block_8_depthwis… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_8_project_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m256\u001b[0m │ block_8_project[\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_8_add (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_7_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m… │\n", + "│ │ \u001b[38;5;34m64\u001b[0m) │ │ block_8_project_… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_9_expand │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m24,576\u001b[0m │ block_8_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_9_expand_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,536\u001b[0m │ block_9_expand[\u001b[38;5;34m0\u001b[0m… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_9_expand_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_9_expand_B… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_9_depthwise │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m3,456\u001b[0m │ block_9_expand_r… │\n", + "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_9_depthwise_… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,536\u001b[0m │ block_9_depthwis… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_9_depthwise_… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_9_depthwis… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_9_project │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m24,576\u001b[0m │ block_9_depthwis… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_9_project_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m256\u001b[0m │ block_9_project[\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m64\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_9_add (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_8_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m… │\n", + "│ │ \u001b[38;5;34m64\u001b[0m) │ │ block_9_project_… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_10_expand │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m24,576\u001b[0m │ block_9_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_10_expand_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,536\u001b[0m │ block_10_expand[\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_10_expand_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_10_expand_… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_10_depthwise │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m3,456\u001b[0m │ block_10_expand_… │\n", + "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_10_depthwise… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m1,536\u001b[0m │ block_10_depthwi… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_10_depthwise… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_10_depthwi… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m384\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_10_project │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ block_10_depthwi… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_10_project_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m384\u001b[0m │ block_10_project… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_11_expand │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m55,296\u001b[0m │ block_10_project… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m576\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_11_expand_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m2,304\u001b[0m │ block_11_expand[\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m576\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_11_expand_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_11_expand_… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m576\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_11_depthwise │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m5,184\u001b[0m │ block_11_expand_… │\n", + "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ \u001b[38;5;34m576\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_11_depthwise… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m2,304\u001b[0m │ block_11_depthwi… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m576\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_11_depthwise… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_11_depthwi… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m576\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_11_project │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m55,296\u001b[0m │ block_11_depthwi… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_11_project_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m384\u001b[0m │ block_11_project… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_11_add (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_10_project… │\n", + "│ │ \u001b[38;5;34m96\u001b[0m) │ │ block_11_project… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_12_expand │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m55,296\u001b[0m │ block_11_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m576\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_12_expand_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m2,304\u001b[0m │ block_12_expand[\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m576\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_12_expand_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_12_expand_… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m576\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_12_depthwise │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m5,184\u001b[0m │ block_12_expand_… │\n", + "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ \u001b[38;5;34m576\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_12_depthwise… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m2,304\u001b[0m │ block_12_depthwi… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m576\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_12_depthwise… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_12_depthwi… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m576\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_12_project │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m55,296\u001b[0m │ block_12_depthwi… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_12_project_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m384\u001b[0m │ block_12_project… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m96\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_12_add (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_11_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m…\u001b[0m │\n", + "│ │ \u001b[38;5;34m96\u001b[0m) │ │ block_12_project… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_13_expand │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m55,296\u001b[0m │ block_12_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m576\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_13_expand_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m2,304\u001b[0m │ block_13_expand[\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m576\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_13_expand_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m, \u001b[38;5;34m10\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_13_expand_… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ \u001b[38;5;34m576\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_13_pad │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m11\u001b[0m, \u001b[38;5;34m11\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ block_13_expand_… │\n", + "│ (\u001b[38;5;33mZeroPadding2D\u001b[0m) │ \u001b[38;5;34m576\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_13_depthwise │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m576\u001b[0m) │ \u001b[38;5;34m5,184\u001b[0m │ block_13_pad[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_13_depthwise… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m576\u001b[0m) │ \u001b[38;5;34m2,304\u001b[0m │ block_13_depthwi… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_13_depthwise… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m576\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ block_13_depthwi… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_13_project │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m92,160\u001b[0m │ block_13_depthwi… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_13_project_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m640\u001b[0m │ block_13_project… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_14_expand │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ \u001b[38;5;34m153,600\u001b[0m │ block_13_project… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_14_expand_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ \u001b[38;5;34m3,840\u001b[0m │ block_14_expand[\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_14_expand_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ block_14_expand_… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_14_depthwise │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ \u001b[38;5;34m8,640\u001b[0m │ block_14_expand_… │\n", + "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_14_depthwise… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ \u001b[38;5;34m3,840\u001b[0m │ block_14_depthwi… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_14_depthwise… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ block_14_depthwi… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_14_project │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m153,600\u001b[0m │ block_14_depthwi… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_14_project_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m640\u001b[0m │ block_14_project… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_14_add (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ block_13_project… │\n", + "│ │ │ │ block_14_project… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_15_expand │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ \u001b[38;5;34m153,600\u001b[0m │ block_14_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_15_expand_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ \u001b[38;5;34m3,840\u001b[0m │ block_15_expand[\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_15_expand_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ block_15_expand_… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_15_depthwise │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ \u001b[38;5;34m8,640\u001b[0m │ block_15_expand_… │\n", + "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_15_depthwise… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ \u001b[38;5;34m3,840\u001b[0m │ block_15_depthwi… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_15_depthwise… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ block_15_depthwi… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_15_project │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m153,600\u001b[0m │ block_15_depthwi… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_15_project_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m640\u001b[0m │ block_15_project… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_15_add (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ block_14_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m…\u001b[0m │\n", + "│ │ │ │ block_15_project… │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_16_expand │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ \u001b[38;5;34m153,600\u001b[0m │ block_15_add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_16_expand_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ \u001b[38;5;34m3,840\u001b[0m │ block_16_expand[\u001b[38;5;34m…\u001b[0m │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_16_expand_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ block_16_expand_… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_16_depthwise │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ \u001b[38;5;34m8,640\u001b[0m │ block_16_expand_… │\n", + "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_16_depthwise… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ \u001b[38;5;34m3,840\u001b[0m │ block_16_depthwi… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_16_depthwise… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ block_16_depthwi… │\n", + "│ (\u001b[38;5;33mReLU\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_16_project │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m320\u001b[0m) │ \u001b[38;5;34m307,200\u001b[0m │ block_16_depthwi… │\n", + "│ (\u001b[38;5;33mConv2D\u001b[0m) │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ block_16_project_BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m320\u001b[0m) │ \u001b[38;5;34m1,280\u001b[0m │ block_16_project… │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ Conv_1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, │ \u001b[38;5;34m409,600\u001b[0m │ block_16_project… │\n", + "│ │ \u001b[38;5;34m1280\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ Conv_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, │ \u001b[38;5;34m5,120\u001b[0m │ Conv_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m1280\u001b[0m) │ │ │\n", + "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", + "│ out_relu (\u001b[38;5;33mReLU\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ Conv_1_bn[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", + "│ │ \u001b[38;5;34m1280\u001b[0m) │ │ │\n", + "└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Total params: 2,257,984 (8.61 MB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m2,257,984\u001b[0m (8.61 MB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Trainable params: 0 (0.00 B)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Non-trainable params: 2,257,984 (8.61 MB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m2,257,984\u001b[0m (8.61 MB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Let's take a look at the base model architecture\n", + "base_model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wdMRM8YModbk" + }, + "source": [ + "### Add a classification head" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QBc31c4tMOdH" + }, + "source": [ + "To generate predictions from the block of features, average over the spatial `5x5` spatial locations, using a `tf.keras.layers.GlobalAveragePooling2D` layer to convert the features to a single 1280-element vector per image." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "id": "dLnpMF5KOALm" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(32, 1280)\n" + ] + } + ], + "source": [ + "global_average_layer = tf.keras.layers.GlobalAveragePooling2D()\n", + "feature_batch_average = global_average_layer(feature_batch)\n", + "print(feature_batch_average.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O1p0OJBR6dOT" + }, + "source": [ + "Apply a `tf.keras.layers.Dense` layer to convert these features into a single prediction per image. You don't need an activation function here because this prediction will be treated as a `logit`, or a raw prediction value. Positive numbers predict class 1, negative numbers predict class 0." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "id": "Wv4afXKj6cVa" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(32, 1)\n" + ] + } + ], + "source": [ + "prediction_layer = tf.keras.layers.Dense(1, activation=\"sigmoid\")\n", + "prediction_batch = prediction_layer(feature_batch_average)\n", + "print(prediction_batch.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HXvz-ZkTa9b3" + }, + "source": [ + "Build a model by chaining together the data augmentation, rescaling, `base_model` and feature extractor layers using the [Keras Functional API](https://www.tensorflow.org/guide/keras/functional). As previously mentioned, use `training=False` as our model contains a `BatchNormalization` layer." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "id": "DgzQX6Veb2WT" + }, + "outputs": [], + "source": [ + "inputs = tf.keras.Input(shape=(160, 160, 3))\n", + "x = data_augmentation(inputs)\n", + "x = preprocess_input(x)\n", + "x = base_model(x, training=False)\n", + "x = global_average_layer(x)\n", + "x = tf.keras.layers.Dropout(0.2)(x)\n", + "outputs = prediction_layer(x)\n", + "model = tf.keras.Model(inputs, outputs)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "id": "I8ARiyMFsgbH" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Model: \"functional_1\"\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1mModel: \"functional_1\"\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+       "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+       "│ input_layer_2 (InputLayer)      │ (None, 160, 160, 3)    │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ sequential (Sequential)         │ (None, 160, 160, 3)    │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ true_divide (TrueDivide)        │ (None, 160, 160, 3)    │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ subtract (Subtract)             │ (None, 160, 160, 3)    │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ mobilenetv2_1.00_160            │ (None, 5, 5, 1280)     │     2,257,984 │\n",
+       "│ (Functional)                    │                        │               │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ global_average_pooling2d        │ (None, 1280)           │             0 │\n",
+       "│ (GlobalAveragePooling2D)        │                        │               │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dropout (Dropout)               │ (None, 1280)           │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dense (Dense)                   │ (None, 1)              │         1,281 │\n",
+       "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+       "
\n" + ], + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ input_layer_2 (\u001b[38;5;33mInputLayer\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m160\u001b[0m, \u001b[38;5;34m160\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ sequential (\u001b[38;5;33mSequential\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m160\u001b[0m, \u001b[38;5;34m160\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ true_divide (\u001b[38;5;33mTrueDivide\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m160\u001b[0m, \u001b[38;5;34m160\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ subtract (\u001b[38;5;33mSubtract\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m160\u001b[0m, \u001b[38;5;34m160\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ mobilenetv2_1.00_160 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m1280\u001b[0m) │ \u001b[38;5;34m2,257,984\u001b[0m │\n", + "│ (\u001b[38;5;33mFunctional\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ global_average_pooling2d │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1280\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "│ (\u001b[38;5;33mGlobalAveragePooling2D\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1280\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m1,281\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Total params: 2,259,265 (8.62 MB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m2,259,265\u001b[0m (8.62 MB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Trainable params: 1,281 (5.00 KB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m1,281\u001b[0m (5.00 KB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Non-trainable params: 2,257,984 (8.61 MB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m2,257,984\u001b[0m (8.61 MB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lxOcmVr0ydFZ" + }, + "source": [ + "The 8+ million parameters in MobileNet are frozen, but there are 1.2 thousand _trainable_ parameters in the Dense layer. These are divided between two `tf.Variable` objects, the weights and biases." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "id": "krvBumovycVA" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(model.trainable_variables)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "id": "jeGk93R2ahav" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABP4AAAnwCAYAAAAF3e9wAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd3RU1fr/8U8KaUAoCYiQUANEIBQFRFCUJsUSRUDgqoiieC2giA3pV/BaUBQL6lVEESmCKIIgVUA6CIQaI4QgCS30ksr5/sGP+WUy50wmyYQJw/u11lnL2WfvfZ5zJhmZJ7v4GIZhCAAAAAAAAIA3WePr6QgAAAAAAAAAuB+JPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMAL+Xs6AAAoCs2aNVNKSoqnwwAAAMBV4O6779bEiRM9HQYAuB2JPwBeKSUlRQcPHvR0GAAAALgKpKamejoEACgSTPUFAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAkC81a9ZUVlaW6TFixAhPhwcTX3zxheV7Vq5cOU+HBwAAgCLi7+kAAADA1cfPz8+03NeXvykWJV9fXwUEBDiUG4ah9PR0p+2s3jMAAAB4L/51DgAAcJW49dZbdeHCBYdj9+7dng4NAAAAxRCJPwAAAAAAAMALkfgDAAAAAAAAvBCJPwAAAAAAAMALkfgDAAAAAAAAvBC7+gIAgGIlICBA1atXl2EY2rdvn7Kysor0ev7+/oqMjFRycrLTnXFROAEBAQoLC1P58uXl5+en5ORkpaamyjAMT4eWLwEBAYqIiFDFihUVFBSkQ4cOKSUlRadOnSrS65YsWVI1a9bU8ePHdfDgwSK9FgAA8B4k/gAAQJEKCQnRhx9+6FB+8uRJDR482Fbn6aef1r///W9Vr15dvr6XJiVkZWUpMTFRq1at0ujRo7Vv3748r9e4cWO98sorDuUrV67UJ598IkkKDQ3Viy++qJ49e6pmzZry9/dXZmamduzYoU2bNmnx4sWaNm1aga8lSX379lVaWppl25o1a2rMmDGm5/r166dz585JurST70033SRJioqKMq0fGhqqgQMH2l7v379fc+bMyTP+ohYVFaV+/fqpTZs2uummm+Tn52d3Pj09XcnJyVqyZImmTJmiFStWWCYCO3bsqEcffdT03OTJk7VgwYI843n55ZfVpEkTh/Lk5GS9+OKLlu18fHzUo0cP9erVS+3atVOpUqUc6sTHx2vmzJmaOnWqdu7cmWcskZGRevvttx3Kt23bpjfffFOSFBQUpAEDBujZZ59VZGSkJOn999/XoEGD8uwfAABAkmQAgBeqUqWKIYmDg6MIjpo1a1r+7o0aNcqhfrly5UzrHjx40JBkNGvWzDh06FCev9fp6enG+PHjjcDAQKfxde7c2bT9t99+a0gy7r33XuPYsWN5Xm/OnDlGWFhYga5lGIZRqlQpp22bNm1q2bZs2bK2eu+8806eseb266+/2l3ryy+/tKxbrlw5t/+MBAUFGRMnTjQyMzPzFXdSUpJx9913m/YZFRVl2W7WrFl5xuTn52ekpqaatn/vvfcs2zVr1szYvHmzy/eQlZVlvPXWW0ZQUJDTeGJiYkzbL1y40JBk1KhRw9i3b1++YuXg4Cj40a1bN5d/zwHgKrKaNf4AAIDHREdHa/HixbruuuvyrBsQEKCBAwfqP//5T4Gvd8stt2j69OkKCwvLs25sbKy2bdumtm3bFvh616JSpUpp/vz56t+/v/z98ze5JDIyUrNnz9b999/vcC4hIUHr1683bdehQwcFBAQ47btZs2YqX7686bmpU6ealj/wwAP6/fffTUcJWvHz89PLL7+s9evXq2zZsi63y6lMmTJatGiRqlevXqD2AAAAl5H4AwAAHhEQEKDp06crNDQ0X+1efPFF3Xrrrfm+Xs2aNfXzzz8rKCjI5TaVK1fWTz/9pOuvvz7f17tWDRs2TG3atClw+xIlSmjGjBm6/fbbHc5ZJehKly6t1q1bO+23U6dOpuUJCQnauHGjQ3lMTIymT5+u4OBgF6J2FBMTo5kzZ+Y7+SlJ48ePV61atQp0XQAAgJxI/AEAAI8IDw9Xw4YN7couXryo7Oxsp+18fX1ta6DlR8uWLRUeHp7vdqVKlbJci+9KyMzMVFpamtLS0pSRkWFaxzAMWx1n9Ypa5cqV9dxzz1meP3/+vOLi4rRhwwYdOHDAsp6/v7/uu+8+h/Lp06db/nzcfffdTmPr2LGjafn3339vWv7hhx86rEmY06lTp5SYmOh0c5L27dtrxIgRTuPKrWnTppZrGQIAAOQXiT8AAOBxkyZNUmxsrMLCwhQaGqrWrVtr/vz5lvXr169fqOslJydr0qRJ6tmzpx5++GF9/PHHThNRffr0ydd0T3caMmSIgoODFRwcrA4dOpjW2b9/v61OcHCwYmNjr3CUl/Tt29d0hFx6erqee+45lS5dWg0bNlTz5s1VtWpV3XDDDdq8ebNpX82aNXMoO3TokJYtW2Za31nir3z58mrevLnpObPEX/fu3XXHHXeY1l+4cKHq1KmjsmXLqkaNGipdurQGDhyos2fPmtZ/4YUXVKFCBcvYzGIFAABwFxJ/AADAo7788ks99thj+vnnn3Xy5EmdP39eK1euVNeuXbV06VLTNuXKlVPFihULdL2ff/5ZEREReuyxxzR9+nRNmTJFzz77rJo3b64dO3aYtvH19TXdgRX2brzxRtPyKVOm6KOPPtLFixftynfv3q1nnnnGsi+zabJW031r1aql6Oho03MdOnSw7RSd05YtW7Rr1y67suDgYL377rum/cyZM0edO3fWX3/9ZSs7d+6cPvzwQ7Vr1850NGLJkiXtdlzOj61bt2rkyJG69957FRkZqQoVKnh09CkAALj6kPgDAAAes2XLFv373/82PZeenq633nrLsm3dunXzfb2kpCT17dvXdHrmoUOH1KZNG505c8a0bcuWLfN9vWtN48aNTcs/++wzyzZHjhwxLQ8ODlalSpUcymfPnq309HTTNnfddZdpeX6m+d52222qWrWqQ3laWpoGDBhgObV3/fr1mjBhgum5vKYhm1m6dKlatWqlUaNGae7cufrnn3907Ngxpaam5rsvAABw7SLxBwAAPGbJkiXKzMy0PL9t2zbLcwUZ8ffUU0/p+PHjluePHj2qb775xvRcSEgIm3zkISoqSr6+vg7Hhg0bTOsHBgZq+PDhlv35+Pg4lJ06dUrz5s0zrW+VYDNL/BmGoWnTpjmU165d27SPVatWOZ0OLl0aTWqmYcOG+ZrCu2XLFt111106d+6cy20AAADM5H+bMQAAADfZvn270/POknT5deHCBcupwzn973//s5x+WqtWLaWkpLgtJm/jbKOLoKAg1alTR9WqVVNUVJQaNGigjh07qkqVKvm+ztSpU9W1a1eH8ltvvVVly5bVyZMnbWUxMTGqXLmyQ90//vhDSUlJDuVRUVGm19y7d2+e6zzmnsp8mY+Pj5o0aaIlS5Y4bX/ZlClTlJaW5lJdAAAAZ0j8AQAAj7FaU++yrKwst11ry5YtllNEc9q5c6cMwzAdbRYVFaVVq1a5LSZvFhgYqK5du6pTp05q0qSJbrjhBtM1+wpi3rx5On36tEJDQ+3K/f391bFjR02fPt1W1qlTJ9M+rHbztRrx9+STT+rJJ58sYMTSdddd53LdlStXFvg6AAAAOTHVFwAAeExeUyfd6dixYy7Vy8jIsBzVV7NmTXeG5JV8fX312muv6eDBg5o6daoeeeQRxcTEuC3pJ11ab2/27Nmm53Kv82eW+MvKytLMmTNN21sl/gqrTJkyLtd19WcVAAAgLyT+AACAxzibGupup06dcrnu+fPnTctdGTF4LStRooTmzZunsWPHKiwszKU2v//+e4GuZbW7b+fOnW07+JYsWVK33nqrQ53Fixfr6NGjpu0LMvXYFX5+fi7XdecUdwAAcG1jqi8AALgm5GdjDqvkz759+9wVjgICAtzWV3Hx5ptvWk6tlS4lenfu3KlNmzZp3bp1Wrx4sdOdap0lhpcuXarDhw87TKENDw9XixYttHr1arVp08b0OVtN85WkM2fOqGTJkg7lR48eLVTi1yqZbMadU9wBAMC1jcQfAAC4JkRHR7tULzw8XMHBwabnEhMT7V47S0yZrRGYk7NdXvNqWxxVqlRJzz//vOm55ORkDR8+XLNmzbLbeEOSyyMDc8vOztb06dM1YMAAh3N33323Vq9ebZqETEtL048//mjZ7/Hjx1WpUiWH8pdeekmTJ08uUKwAAACewlRfAABwTahSpYpKly6dZ72WLVtanss94s/Z9OG81nSrUaNGnrFcTXr06GE6nfXEiRNq06aNvvzyS4eknyRVq1bNss+8EqBW030vr/PXsWNHh3O//PKLzpw5Y9mn1fqOzZo1cxoLAABAcUTiDwAAXDO6du2aZ52BAwealqelpenQoUN2ZVZTVCUpIiLC6XWcTYm9GtWrV8+0fNGiRYqPj7ds17BhwwJfc926ddq7d69pn23atFFUVJTDOWfTfCXpjz/+MC0n8QcAAK5GJP4AAMA1Y8KECU535m3fvr3atm1rem7Tpk0OU3udbcIQGxtrea53797q0qVLHtG6Lj8bRxSV3GvtXbZ//36n7cxG5eWH1ai/8ePHO5SdPn1a8+fPd9rf8uXLTcubN2+u3r17O207dOhQnTp1yuFITk5WYGCg07YAAABFgTX+AADANaN06dKaMWOGevXqpb/++svu3AMPPKDvvvvOsu2oUaMcyo4fP67U1FTTdepefvllbd68WTNnzrSV+fr6qkuXLpo0aVIh7sJRWFiY/P39C7QpxNy5cwu8mcSJEyd0//33S5IOHjxoWqdJkyaW7R999FH17NnT8vzl3Xmd+f777zV06FCHcrORhLNnz1ZaWprT/latWqXExERVr17d4dyXX36pv//+W+vWrXM41759e40YMUL+/o7/vF68eDE7QgMAAI8g8QcAAK4pN910k3bt2qWlS5dq9+7dCgsLU4sWLZyOBFy+fLkWLVrkUH7x4kX9+uuveuihhxzO+fr6asaMGYqPj9f69esVFhamVq1aKTQ0tMCxWyXoQkJCNHXqVP3+++86e/asUlJS9Ntvv7nUZ6tWrQocz5EjR2z/HRcXZ1qnffv2GjlypD777DPb+nlVq1bVK6+8on79+jnt3yyJltvOnTu1detWNWrUKM+6eU3zlaTMzEy98cYb+t///udwLigoSKtWrdL06dO1aNEiHTx4UBEREWrfvr169+5tuibhxYsXTUcfAgAAXAkk/gAAwDXHz89PHTp0UIcOHVyqP2TIEMtzc+bMMU38XVanTh3VqVPHoTwzM1M+Pj4uJbcuO3DggOW57t27q3v37pKkBQsWuJz4c5dNmzZZnhsxYoSGDRumuLg4VapUyXJacG4BAQEu1Zs6dWqeib8jR45oyZIlLvU3efJk9erVS+3atXM45+/vr3/961/617/+5VJfb7/9tlauXOlSXQAAAHdjjT8AAHBN2LNnj3755Zd8t/viiy+0Zs0ay/OzZ8+2XBfOmVdffVXnz583PZd7LcHLDh486LDBSHGxceNGp1OYfX191ahRI4ek36JFi5SQkGDapn79+i5de9q0aZbP7LIZM2YoOzvbpf6ysrLUtWtXbd682aX6VubPn6/hw4cXqg8AAIDCIPEHAACuCdnZ2erZs6c2btzocpuPP/5Y/fv3d1rHMAz16dNHu3btcqnPixcvaujQoXrvvfdcjiNn25dffjnPJJenDBgwwDKJZ+add95R586dtWPHDtPz/fr1U0hISJ79JCUladWqVU7ruDLNN6fTp0+rZcuWev3113Xu3Ll8tZWkSZMmKTY2VpmZmfluCwAA4C4k/gAAwDXj3Llz6tKliz7//HOnCZmdO3eqU6dOevbZZ11KsiUlJalZs2aaMGGCTp48aVlv/fr1atu2rcaMGVOg+CXp22+/VZMmTTRv3rwC91FUzp49q6ZNm+r99993+nz//vtvPfjgg3r55ZeVnZ2tZcuWmdbr2LFjnusAXma1u68kJSYmOh21aSU9PV1jx45V3bp1XU4cbty4Ue3atdNjjz1W4E1TAAAA3MXHKK5/MgaAQoiIiLDcYRKAd+vcubPmz5/vUL5z5067qaPVqlXTnXfeqVq1aikiIkInTpzQgQMHtHDhQm3durXA1w8MDNTtt9+uqlWrqlKlSjp+/Lji4+O1Z88ep2v0FUTp0qVVsWJFVahQQeHh4ZKkCxcuKCUlRTt37nTrtfIrKipKbdq0UXR0tKKionT69Gnt379fK1as0KJFi9w+ajEsLEwpKSkqUaKEw7kxY8aY7vybX5UrV1ZMTIwaNGig+vXrq2bNmjp16pSOHDmibdu2acGCBQ67RQO4OnTr1s1uF3YA8BJrSPwB8Eok/oBrl6uJP3gXX19fHTt2TOXKlXM4Fx0drT179nggKgBXCxJ/ALzUGqb6AgAA4KrXvn1706TfunXrSPoBAIBrFok/AAAAXNUCAwP1xhtvmJ77/PPPr3A0AAAAxYe/pwMAAAAA8qN8+fJ6+OGHVaJECVWuXFndu3dXRESEQ70TJ07kezdfAAAAb0LiDwAAAFeVihUravz48XnWmzhxoi5cuHAFIgIAACiemOoLAAAAr3P27Fm99957ng4DAADAo0j8AQAAwOsMGTJEx44d83QYAAAAHkXiDwAAAF5j//796tatmyZMmODpUAAAADyONf4AAIBX2bRpk+677z6H8tOnT3sgGhSFo0ePasyYMQoJCZGPj48OHz6spKQk7d+/X5s3b2ZdPwAAgP+HxB8AAPAqR44c0U8//eTpMFCEUlNTNXToUE+HAQAAUOwx1RcAAAAAAADwQiT+AAAAAAAAAC9E4g8AAAAAAADwQiT+AAAAAAAAAC9E4g8AAAAAAADwQiT+AAAAAAAAAC9E4g8AAAAAAADwQiT+AAAAAAAAAC9E4g8AAAAAAADwQiT+AAAAAAAAAC9E4g8AAAAAAADwQiT+AAAAAAAAAC9E4g8AAAAAAADwQiT+AAAAAAAAAC9E4g8AAAAAAADwQiT+AAAAAAAAAC9E4g8AAAAAAADwQiT+AAAAAAAAAC9E4g8AAAAAAADwQiT+AAAAAAAAAC9E4g8AAAAAAADwQiT+AAAAAAAAAC9E4g8AAAAAAADwQiT+AAAAAAAAAC9E4g8AAAAAAADwQiT+AAAAAAAAAC9E4g8AAAAAAADwQiT+AAAAAAAAAC9E4g8AAAAAAADwQiT+AAAAAAAAAC9E4g8AAAAAAADwQv6eDgAAPKF169a68cYbPR0GAAAA3CglJUXTp0/3dBgAUGyQ+ANwTYqNjdWgQYM8HQYAAADcaM2aNST+ACAHpvoCAAAAAAAAXojEHwAAAAAAAOCFSPwBAAAAAAAAXojEHwAAAAAAAOCFSPwBAAAAAAAAXojEHwAAAAAAAOCFSPwBAAAAAAAAXojEHwAAAAAAAOCFSPwBAAAAAAAAXojEHwAAAAAAAOCFSPwBAAAAAAAAXojEHwAAAAAAAOCFSPwBAAAAAAAAXojEHwAAAAAAAOCFSPwBAAAAAAAAXojEHwAAAAAAAOCFSPwBAAAAAAAAXojEHwAAAAAAAOCFSPwBAAAAAAAAXojEHwAAAAAAAOCFSPwBAAAAAAAAXojEHwAAAAAAAOCFSPwBAAAAAAAAXojEHwAAAAAAAOCFSPwBAAAAAAAAXojEHwAAAAAAAOCFSPwBAAAAAAAAXojEHwAAAAAAAOCFSPwBAAAAAAAAXojEHwAAAAAAAOCFSPwBAAAAAAAAXojEHwAAAAAAAOCFSPwBAAAAAAAAXsjf0wEAAOxlZ2drxYoV2r17t1JSUnTo0CFdvHhRFStWVMWKFVW1alW1bdtWZcuW9XSoAFz09ddf6/jx47bX3bt3V2RkpAcjAoD827FjhxYuXGh7Xb16dXXt2tWDEQEA8kLiDwCKibi4OH388ceaNWuWjh075rSuv7+/brvtNvXs2VOPP/64/Pz8rlCU8LT//Oc/GjlypCQpLCxMR44c8WxAyNOPP/6ovn372l7XqVNHAwYMsL3et2+foqKiTNvOmzdPnTp1cuk60dHR+uuvv+zKnnzySX366acFiBru9t5779n9vtatW9fu58JVR44c0TfffKOdO3dq//798vf3V1RUlGrXrq3mzZurZcuW+erPMAytWbNGCxcuVHJysg4fPqxSpUrp+uuvV6NGjRQbG6syZcrkO86i5o7nea0+y7Nnz2rTpk3666+/lJCQoJSUFFWtWlW1a9dWVFSUmjVrphIlSpi2rVKlisaMGWP7Q4afn5/Wrl2rpk2bXslbAADkhwEAXqhKlSqGJMtj3Lhxng7RJj093Rg+fLhRokQJpzFbHQ0bNjRWrFjh0XvIysqyHdnZ2R6NxR2K8/2MGjXK9t6HhYV5Ohzk4fjx40alSpXsfmd/+OEHuzp79+61/P2uV6+ekZmZ6dK1ateu7dC+f//+RXFbyKczZ84YQUFBdu9Np06d8tVHVlaW8dxzzxmBgYFO/5/QuXNnIy4uzqU+58+fb1SvXt1pf4GBgcZzzz1nnD9/viC3XiQK+zyv1Wd58eJFY/LkyQ6fSbmPqKgoY8aMGcbFixdN+3n33Xft6sfExBgZGRlX+G6srV69ukD/nurWrZunQweAorCaNf4AwINOnz6tVq1aafTo0crMzHQ47+vrq7p166pVq1aWowS2bdum22+/XV988UVRh2upadOm8vf3l7+/vx5++GGPxeEu3nY/8JxBgwbp0KFDttd169bN17S4nTt3auLEiUURGq6g9957T2lpaQVubxiGHn/8cU2YMEHp6elO6/76669q3Lixvv/+e6f1xowZoy5duigxMdFpvfT0dE2YMEFNmza1m67uSYV5ntfqs8zKylL79u3Vp08fu88kMwkJCerRo4duu+02nT171uH8U089pXLlytlex8XFaezYsW6PGQDgHiT+AMBDMjIydP/992vjxo125eHh4Ro/frzWrFmj06dPa/fu3Vq1apVOnDihv//+W7NmzXJIHBiGof79+2vy5MlX8hYAOLFs2TJ9/fXXdmWDBg2Sj49PvvoZOXKkTpw44cbIcCWtXbtW7777bqH6ePrpp/P1+Z6dna0nnnhCO3bsMD0/d+5cDRs2LF8x7Ny5U//617908eLFfLVzt8I+z2v1WY4aNUpLly7NV5s//vhDTz75pEN5yZIl9dRTT9mVjR07Vnv27ClUjACAokHiDwA85Omnn3b4R/idd96pbdu2aeDAgWrRooVKlixpO+fj46OaNWuqa9eumjVrliZOnKigoCDb+cujGOLj46/YPQCw9vrrr9u9rlChgh555JF895OamqpRo0a5KyxcIfHx8erWrZtuueUWnTlzpsD9vP7665ajPqOjo9WhQwe70VeXnTt3Tg8++KBpu8GDB8swDIdyHx8fNWjQQKVKlTJtt2DBAi1atCgf0buPO57ntfos16xZozfffNP0XLVq1dSsWTOFhoaanv/+++9NZxQ899xzCggIsL3OyMjgcwoAiikSfwDgAfHx8Zo0aZJd2TvvvKMFCxbo+uuvd6mP/v37a/369apevbqtLDs7W2PGjHFnqAAK4Ndff9WaNWvsyp555hm7ZH1+fPLJJ4ymKeY2bNigjh07qnnz5rr++utVt25dzZo1q1B9HjlyROPGjXMov+WWW7R9+3bt2rVLv/32m/755x/dddddDvV27NjhsOHLxo0bTf9A1Lt3b/3zzz+Ki4tTamqqZs6cabpx1HfffVeIO3Kdu5/ntfwsn3/+eWVnZ9uV1alTR9u3b1diYqLWr1+v1NRUDR8+3LT9lClTHMquv/569e7d265s+vTpliMjAQCeQ+IPADzgrbfespvic9ddd2nw4MH5ngIYExOjjz76yK7su+++099//+2WOAEUjNkX6Mcff7zA/WVmZurFF18sTEhOGYah3bt3a/ny5Zo5c6Z+/vlnrVmzRikpKW6/VnZ2thITE5WUlOSWqY7nz5/Xpk2btGPHDo+uQXfo0CH99ttv2rBhQ55rqLlq4sSJDuvQlSxZUt9++63q169vKwsJCdHkyZNNd2LNParMLNkUGRmpiRMnqnLlypKkgIAAdevWzfRnbs6cObpw4UKB7ic/3P08r9VnmZWVpS1btjiUz5gxw+6+/f39NWrUKN13330Odbds2WI6qrFfv352ry9evGjbdR4AUHz4ezoAALjWHDhwQN9++63ttZ+fn95+++0C93fXXXepbdu2tmnDl0f9ffXVVw51//zzT9uIhcDAQMXGxubZ/4YNG7Rv3z5JUvny5dW+fXtJl74IXB7pcPLkSVv9pKQkzZgxQ5IUHByse+65x3Zu69atOnXqlCQpIiJCNWvWlCSdOnVKX375pdiodawAACAASURBVDZs2KDExESFh4erWbNmatasmdq2bavAwEDL+Nx1TwW5n4I4e/asJk+erB07dighIUHJycmqWbOmGjRooPr166tly5aqUaNGvvvNzMzUjBkztHjxYu3fv1+ZmZm66aab1KxZMzVv3ly1a9d2ua8zZ85o6tSpiouLU2JiolJSUhQeHq4qVaooMjJSXbt2VaNGjZz2URTvdW4HDx7Upk2btHnzZm3evFkXLlxQtWrV1KJFC3Xv3t1yQ5zczp49q4yMDNvr0qVLm37pd9WaNWsc1u6sX7++IiIiCtynJM2bN0+//fab7rzzzkL1k9P27dtto42PHDliWicmJkZdu3bVoEGDLKcDSpdGOeZe07B27dp64403JEk///yz3nzzTW3atMm2mVFQUJBq1aqlRx99VM8++6zLIyKnTZumWbNmadu2bUpISLBLIEZGRuqBBx7Q448/rgYNGrjUX3GV+3lKl9Zqq1WrlkN5WFiYpk2bptTUVLvy6Oho239nZ2dr2rRpDm0HDhyo0qVLO5S/+uqrDv9/OnPmjObOnasePXq4ehvFwrX6LHfv3m33+SZJLVq0sPwMf+CBBzRnzhy7stOnT+vvv/9WVFSUQz9lypSxfdZL0qxZs3Tw4EFVqVLFTXcAACg0z+0oDABFp0qVKoYky2PcuHEei23gwIF2sTz11FOF7nPz5s2Gj4+PrU9/f3/j7NmzDvUGDBhgqxMWFuZS33379rW1uemmmyzvw+yoUqWKXV+33Xab7dzAgQMNwzCML774wihdurRlH40aNTL27NljGZ+77qkg95MfWVlZxieffGJUrFjR6TWCgoKMzz77zLKfUaNGOdzvkiVLjMqVKzvtd/To0XnGeO7cOeOFF14wQkND83wWzZs3NxYtWmTZV1G815elpaUZTz/9dJ7P8fnnnzf9PcgtNjbWru2CBQvybOPMiy++6BDPoEGDLOvv3bvX9B5uueUWh7IGDRoYWVlZpv3Url3boX7//v1N62ZlZRnPPfec4efnl+d7ffmoWLGiMWvWLMv7GD9+vOnPSUZGhtGtW7c8+69ataqxatUqp8/26NGjxgMPPOBSvP7+/sbrr79upKenO+3TXX7++WeXn6Uko1OnTk77O3TokGm7xMTEAsf4xx9/mPa5dOlSyzbVqlVzqN+zZ88Cx+Aqdz7Pa/lZfvfddw7X7N27t2X9X375xfS+Dhw4YFq/a9euDnUnTJhQVLfjktWrV+frZ+fy0a1bN4/GDQBFZDVTfQHgCps/f77d61dffbXQfTZp0kQtW7a0vc7KyrKNaCvO3n//fT3xxBNOF2rfunWrbrrpJtORFVeT1157TU8//bTlqKrL0tLS1L9/fz300ENKS0vLs99ff/1VHTt2VHJystN6w4cPt1zcXbo0eqVnz556//33dfr06Tyvu379et1zzz1asmRJnnUl973XCQkJuuWWW/TJJ584vV5aWprGjx+vmJgYJSQkuBSju5itQ1aQUXoDBgxwGI20fft2ffbZZwWOTbr0+dCzZ09NmDDBYd0vZ44cOaIePXrYjVh2xQsvvKAffvghz3pJSUnq3bu35c/fypUr1aBBA5fXecvKytKYMWPUu3dv02mK7nbPPfcoOzvb9Mg5pdJV69atcyirVq2aqlWrVuAYk5KSTMsbN25s2cbs3IEDBwocg6vc+Tyv5WfZrl07bdy40e7473//a1l/w4YNDmWlS5e2HLFs9tlW2LUtAQDuxVRfALiCLl68qP3799teh4SEFOqLR05169bVH3/8YXu9d+/eIp3mFhsba/si8P7779sST02aNLEt+G023emyH374QQcPHpR0aZHxAQMGqEGDBgoICFBCQoImTZqkZcuWSbo0FfORRx5R06ZNHaYaFZf7ceaXX37Ru+++a3t95513auDAgYqOjlZwcLD27dun3bt3a+zYsbb1Gb/77jvVq1dPQ4YMsez37Nmz6tGjh7KysuTn56devXqpVatWqlWrluLj47Vq1Sq7JNqQIUPUpEkTderUyaGvV155RXPnzrW9btCggV555RXVq1dPERERSk1N1d9//61vv/1WM2fOlGEYSktLU2xsrI4cOaKQkBDLON31Xu/du1c33nijXfLwzjvvVJcuXdSoUSOlpKRo7dq1WrJkiW2B+X379qljx45au3atKlSoYBmju2zevFmJiYl2ZUFBQWrdunW++woMDNS7776r+++/3658xIgR6t27t8qWLVugGCdMmOBSIs5Mdna2+vXrp1tvvdWlKek7duzQ+vXrXe4/KSlJgwcP1ueff25Xnp6erj59+ujw4cP5jnnWrFkaNmyYbcpxUfL1dd/f1Ddt2uRQdvl3IikpST/++KO2bt2quLg4hYSEqHHjxmrcuLE6duxoW18uN7PnFxYWZrqT7WVmU2Hz+gOGu7jreV7Lz/K6667Tdddd51Ldw4cPm/7hpVu3bpZtzBJ/K1eu1NGjR6/IZy4AwAWeHnMIAEWhuE713b9/v8O0PXd588037fp+//33Heq4c6pvTo0bN3ZpClHO6Z+XjwcffNBy6uKHH35oV/f++++/Ivfk6v246tZbb7X117lzZyM7O9u03oULF4xOnTrZ6pYpU8Y4d+6cXZ2cU31z/hxt3rzZtM/cz/DRRx81rXfdddfZ6tx1113GhQsXLO/nvffes+tz+fLlDnWK4r3OOcUzODjYckp0enq6w/TdoUOHWt6PO6f6DhkyxOG+o6Ojnbaxmuo7e/ZswzAMo127dg7nXnjhBYd+XJnqe+LECaN8+fKm17vxxhuNsWPHGr/++qsxdepUY9CgQZZTs3v16uVwfbOpvpcPX19f4/bbbzdGjBhhfP3118aAAQMsp71XrlzZoe833njDtG50dLQxYcIEY/HixcZ3331n9OrVy7Sev7+/8ddff+XnrXSr+vXrO8SU11Tffv36ObTp27evMWfOHKNcuXKWz7ps2bLGlClTTPs0+/msVq2a0ziGDRvm0CY0NLSgj8It8vs8eZbWzpw5YyQkJBjffPONUaNGDdP4Dh065LSPoKAgh3aff/75FboDR0z1BQA7TPUFgCsp9267lzc8cIfcmzfs3bvXbX0XlejoaE2ZMkV+fn6m55977jm7nVB//PFHrVix4kqF5xYXL16021GxZ8+elqNYgoKCNHjwYNvrU6dOadeuXU779/f31/fff68mTZqYnn/uuefszl0eWZfTgQMH7EavvPDCC043WRgwYIDdCD+zaXS5Ffa9XrFihd30sf/+97968sknTfsKCAjQzJkz7UY2Tp482XIH2e+++07Hjx+3He3atcvzfqxc3mQnp4oVKxa4P+nSCNTcz+2jjz6ybWqTH2PHjjXd+bZv375avXq1XnvtNXXq1Em9evXSuHHjtHbtWtPPqWnTpjlsYOLMuHHjtHz5co0cOVJ9+vTRBx98oGXLlik8PNyhbnJyss6ePWt7/c8//2js2LEO9dq3b6/Nmzfr2WefVbt27dS7d29NnTpV33//vUPdy9N+ryZmI8EWLVqk++67TydOnLBsd/LkST300EPq1auXw1Rus1FqpUqVchpHyZIlHcpOnz7tsENuccazNNelSxeVLl1aUVFReuSRRxyWCImKitLvv/+e54hBs884s89CAIBnkPgDgCsodzLObNpPQVWvXt3u9eWplcXZ8OHD5e/vfNWJkSNH2r3O7/pinnbgwAG7JEZeCdm2bdtq9OjRGjZsmIYNG+Z0Cq10aQfJvKZ033777bb/NvuyumfPHlWvXl3Vq1dX48aNdccddzjtz8/Pz26KulkiKbfCvteDBg2y/XfTpk317LPPOu2rRIkS+s9//mN7feDAAS1evNi0bsmSJVWuXDnbkVeczpit1+XqNDsrMTExDknOzMxMvfjii/nq5/jx45owYYJDeVRUlL744gvTHZXr1aunL774wqHcMAyNGjXKpev26tVLzz//vGnfVlMI9+zZY/vvb775RufPn7c7HxAQoM8++0zBwcEObXv27KmePXs6lM+ZM8cy+VscnTt3zqHsn3/+cbn9tGnT9OGHH9qVmSXAzJJRrpy/UtN93YFnac7Z74Ovr6+efvppNWzYMM9+zD7jrsQ6kAAA15D4A4ArKPfIgsImBHJKTU21e3399de7re+i4Ofnp7vvvjvPehEREYqMjLS9vtIbNRRWZGSk3Vps48aNs0xASZKPj4+GDRum0aNHa/To0brhhhuc9m+2Xl9uOddZSktLs0tESpdGTu3bt0/79u3Tn3/+aTkq77KjR4/ma0RpYd/r1NRUuzW6unfv7tLaX02bNrVLUE6fPt3lmAsiOztbhw4dcigv7Ig/SRo9erTDmn5z5851+rOUW1xcnOmGMS+99JLT97xt27Zq1qyZQ7nZJgBmYmNjLc/FxMSYludMhMTHxzucb9mypdMR07nXRZQujd7KOfq2uMvIyLA85+fnp/vvv1/Dhg1Tnz59LD/vhw8fbpeAMRvdZpY8deW8s5FyxQ3PMv8uXryoQYMGqVOnTg6J99zMPuOuhj8+AsC1gs09AOAKyv3FPT8jDvKSe0MBd44mLApNmjRxebOM+vXr275w5Z4uXdz5+vqqXbt2tmmqZ8+eVYcOHdS8eXP16dNHXbp0cRitmR+utM09/ezChQt5TknL7ejRo0pMTNS6des0YsSIfE1NK+x7nTvxc+ONN7p87YYNG9o21Mk5iqwoHDp0yHSXXHck+MPDwzVixAi98MILduWDBg1yKVkrSbt37zYtd2XH4Q4dOjgk+g4fPqyTJ0/mucmIsx1Ycy9RYMYs2e/n56ePP/7Ysk1KSoppeVxcXL5+fjzJasfl0qVLa8WKFXY7xJ44cUIPPfSQw67xZ8+e1YgRI/TVV19JkunGExcuXHAah9V5Z5tYFDc8S3OhoaEKDAx0+nm+aNEivfTSS05/38w+45KTk2UYhnx8fNwSKwCg4Ej8AcAVVL58ebvX7kxi5V6bp7gn/vITX/369bVgwQJJl5KlaWlpTtegK24mTpyov/76S9u2bbOVrV+/3rbbaWRkpNq1a6fOnTurQ4cOLn8J9PX1VdWqVfOsl58vXufPn9fq1au1dOlSbd26VYmJiUpMTMxzxIczhX2vcyfsBg0a5PL7nzMhbpUMcherES7uGtn7zDPPaOLEiXbPIy4uTl988YWeeuqpPNubJf58fX1VpUqVPNvmHImZu88WLVpYtvPz81OdOnUsz7syrdpsLcMlS5ZoyZIlebbN7WqanhoWFmZa/tlnn9klqqRLiaMpU6YoKirKYep9zl2VzX4Wc48Azs1smqzknpGsVwrP0tyMGTMkXfrc37hxoz799FPTXX0//fRT3X///Wrfvr1pP2bxZ2Rk6OjRo1fVzwkAeCum+gLAFZQ7SePOxF/uEX9RUVFu6dcwDLf0k1teo4Ryio6Otv23YRim69TlR1Hdk5Xw8HAtWbJEvXr1Mh2ZdeDAAX399dd68MEHVaFCBd11112mm3DkVrZsWQUEBLglxqysLL333nu67rrr1KFDB7355puaP3++du7c6ZD0i4iIyHNKW+44XWX2Xuce8RcXF6cNGza4dBw9etTWzmyaqztZTdfLOdW6MEqUKKH333/foXz48OE6depUnu3NRs5VqFBBJUqUyLOtVXIwr6n3QUFBTn9G8/pdPHPmjFuTdUX9M+BOZlNOQ0ND1atXL9P65cqV0xNPPOFQHh8fr6ysLEnmCZqCJKvKlCljuiZkccWzdC4kJEStW7fW999/b7oJjmEY+vLLLy3bWyX3iuMUZgC4FpH4A4ArqHHjxnYJk8TERKdrD7kqIyPDLlHk4+Pjth2Dz5w545Z+cstrEfSccn9ZCg0NLdS1i+qenAkPD9fUqVP1119/6Z133lHr1q1NRztlZ2dr/vz5tk0+nHHXFKqMjAy1bt1aL774osMX15CQENWrV0/33HOPhg4dqnnz5ikxMdF0N1YrhX2vcye1ypcvr7CwsHwf+YmjICpVqmRa7s5kU+fOndW5c2e7sqNHj9ptZGLFLAHpSsJQurQ+nqt9ulNgYKBL05hdZTXlszgyS1bVq1fPaZucifPLMjMzbaMmzRI0p0+fdtqn2efl1TaKi2fpuldffdX0jzVxcXGWbaw+46w+EwEAVxZTfQHgCvL391ezZs20YsUKSZcSLl999ZVL0/ScmTZtmt0ouJtuusltU2GL6i/2+dmkI+eC6r6+vipTpkyhru3JUQg1atTQ4MGDNXjwYJ07d06rVq3SsmXLtHDhQm3dutVuBNSIESNUu3Zty1Ep7jJ06FCtWbPGLsYXXnhBd955p2rXru3SRhrOFPa9zj169c8//3RpivOVZhVT7o13Cuu9997TokWLbCOPJGnChAl5jsKsW7euQ1laWpqOHj2aZwLPaodOsz7dKSAgQDVq1HD4GXr99df1yCOP5Ls/qymfxVHlypUdyvKaNm61McXlPxKYtT958qQOHz5s2bfZ2pjFLVmVl2v5WX700UcOa/h17NjRcjd4X19f3Xrrrfrll1/syuPj45WZmWk6QtjsMy40NLTQ/68GALgHiT8AuMIefPBBW+JPkt5880099thjhZqy+cEHH9i9Hj58eIH7ys3qC39hORs94CyGihUrFjoRVVT3lF8lS5ZUx44d1bFjR/33v//V/v379dZbb+nTTz+11ZkyZUqRJv5Onjypd9991/b6hhtu0NKlS/McqWG1VpWZwr7XuZNLf/31V7FM/JUrV04lS5Z0eDbHjh1z63Wio6P1zDPP2P3eZ2Rk5Dl62GwEkyRt375dbdq0cdp2x44dDmXBwcFX5H2oW7euQ+IvOTnZ6dqB3sBs1HZey0OYrTPp7+9vW2fT6v3asmWLOnbsaHou59qkl+XcLftqcC0/y48++sgh4ZiamqqxY8datjFL2AUGBlquyWn2GWe1LigA4Mpjqi8AXGEPP/yw3Q6nSUlJ+vrrrwvc34oVK7R582bb62bNmumee+4xrZtzytzZs2eVmZnptO/k5GTThfXdITExMc/1kKRLa8+tW7fO9rpVq1Z254vTPZlZvHixJk2apEmTJmn16tVO61arVk2ffPKJevfubSvbuHFjkcYXFxdnN8rwpZdeyjPpt337dodF750p7HudO8Gzc+dOl6/9888/255/zlGNRcXsy667R/xJl0aD5nf0mlXiL/cfDnJLTk7WDz/84FBep06dQifhXWE2qnDt2rVO22RkZCg1NdXhyDlKsri74447HEaDxcfHO92kZtOmTQ5lUVFRtlFaLVq0MB3JZvU5c+TIEdME2P333+809uLmWn6WZknPnP9mMGOW6I+JibFcXsLsM47EHwAUHyT+AOAKK126tP7973/blQ0fPlwbNmzId18nTpxQv3797MqcrQuXc1229PT0PBMokydPzndMrjIMQ6tWrcqz3rRp07R//37b6zvuuMPufHG6JzNz587VY489pscee0z9+/d3qc3tt99u++/z588X6WYkuUeC3HjjjXm2ye9uqoV9r6tXr65SpUrZyv/3v/+59Ez+/PNP3Xfffbbnn5SUlK+4C+JKJf7KlSvn0rp+OdWtW9chcS5dSo5avacXL17Ua6+9Zjqa8LHHHsvX9QvKbC22Xbt26e2337Zs06NHD4WHh9sd1113nW1Nw5EjR6pnz54Oh6trHl4J/v7+dn8EkC4lNIcOHWpa//Dhw5o0aZJDec5da319fdWzZ0+HOh9++KFpMt/s/yehoaG6++677cqK+/O8lp+l2e/P6tWrTXf5lqRffvlFW7ZscShv1KiR5TXMRvwVx1HZAHDNMgDAC1WpUsWQZHmMGzfOo/GdP3/eiIqKsospICDAmDhxost9pKSkGK1bt7bro2XLlk7bfPXVV3b1P/30U8u6K1asMPz9/e3q33TTTaZ1GzdubKvTvXt3yz5vu+02u/6qVKliHDp0yLL++fPnjXr16tnqBwcHG8nJyUV+T67ejyu+/fZbu+vt2bMnzzbPPvusrX7r1q3tzo0aNcp2LiwszKUYPvzwQ7sYjhw5Yjv366+/2p378ccfnfa1fft2o2rVqnZtXnnlFYd67n6v33rrLbv+5syZk+d9d+jQwVa/VKlSxvnz503rpaSkGAkJCbbDqp4rXnnlFYfPm1atWjlts3fvXtPPqdmzZzttl5WVZTRo0MDpZ13//v3t2qxZs8a0XokSJYzx48cbR48eNQzDMLKzs41du3YZnTt3Nq0fFRVlZGRk2PU9fvx4h3olS5Z0eg9Lliwx7X/+/Pm2OhcuXDCio6Md6vj6+hpvvfWW8ffff9vqnj171nj++edN+2zXrp2tXu6fz8vH4cOHncZbUPXr13e4VqdOnfJs9+eff5rG+cwzzxjp6em2evv37zcaNWrkUM/Hx8f4888/7frcuHGjaZ89evQw/vnnH8MwDCM9Pd2YNm2a4evr61Cvb9++DnFeDc/zWn2WVvcdGRlpbNq0ybh48aKt7rRp04ywsDDT+kuXLrW8htm/uZz9v7iorV692unnotXRrVs3j8UMAEVoNYk/AF6puCf+DMMwVq1aZQQHBzvE9vDDDxu///67kZqaatru2LFjxieffOLwj/PIyEhj3759Tq+ZmJho+Pj42NqUKlXKWLNmjV2dixcvGps2bTIqVarkEJtV4q9t27Z2X/RzJpZyMvtCc9tttxlpaWkOdVNSUozmzZvb1X3hhReuyD25ej+uSEpKMgIDA+2+nF5OrphZvny5UapUKVv9IUOG2J13d+IvJSXF7lxMTIxx5swZ034WLlxohIaGOjzDgQMHOtR193udkZFhl/wpXbq08dNPP5nGefLkSaNXr152/b3xxhuWzyc2Ntau7oIFCyzr5sUsERAYGGhcuHDBsk1BE3+GYRiLFy92+lmXO/FnGIbRrVs3p20iIyON0qVLO60zc+ZMh36LKvFnGIaxbt06w8/PzzKeunXrGjfffLNl3IGBgca2bdts/V0NiarL7rjjDtNYQ0JCjFatWhmNGjWyfDYPPfSQaZ9169Y1re/j42M0atTI9Pf88rF48WKH/q6W53mtPsvcn685j7JlyxotW7Y0KlasaFnn0Ucftezb7PPLz8+vyN57V5D4AwA7JP4AeKerIfFnGJdGoJUpU8YyzipVqhidOnUy+vfvb3Tr1s1o0aKFw4g1Scb1119vxMfHu3TNO++8065tUFCQ0bp1a2Pw4MFGr1697P7xHxQUZPTt29f22irx98QTT9j1WbNmTaNr164OSYecX2hyJj1DQkKMTp06Ge+8847xxRdfGH379jWuu+46uz7r1KljHDt27Irck6v346rRo0fb9VepUiVj7NixxuzZs40dO3YYW7duNebMmWP06tXLCAgIsNWrVauWcfr0abu+3J34MwzD6N69u935yMhIY9y4ccZvv/1m/PTTT8a7775rtGjRwna+QoUKRqtWrezqf/bZZ8bcuXNtfRbFe71o0SKHL9Zdu3Y13nzzTWPu3LnGV199ZQwcONCIjIy0q9ehQwcjOzvb8vm4M/FnGIZRq1Yth9/RZcuWWdYvTOLPLP6ch9nP7N9//22Eh4cX6IuxJKNLly6mcRRl4s8wDGPIkCEFitfX19dh9NHVkqgyDMM4cOCA5SgsZ0epUqWMxMRE0z7nz59v9wcTV497773XboTYZVfL87xWn+W2bdvs/qCUn6NChQqW/+81DMdR95L96FpPIPEHAHZI/AHwTldL4s8wDGPr1q3GjTfeWKB/pEoyYmNjjaSkJJevd+rUKbukjdXh4+NjfP/998Ynn3xiK7NK/P3xxx+mfVSpUsWuXs4vND169DAeeeQRl+4xIiLC8ktXUdyTq/fjqvT0dKNp06b5el+Dg4ONtWvXOvRVFIm/1NRUo3Llyi7FVbNmTWPbtm3G9OnTHc41bdrU1mdRvddz5szJV9KqRYsWeX5hdnfi77XXXnOIY8SIEZb1C5v4S0hIsEsY5zysktU7duxw+T3Pedx7772mozYNo+gTfxkZGcYbb7xhhISEuBxvRESE6RTFqyVRddnKlSuNChUquHzfDRo0MHbt2uW0z3feeSdfCasmTZoYJ0+eNO3ranqe1+qz/OWXX5yOPjQ7br75ZmPnzp1O++3Tp49Du88//7xQsRYWiT8AsLOazT0AwMMaNmyojRs36uuvvzbdvdKMr6+vWrVqpZ9++klz5szJ1+55oaGhWrhwoe655x75+/ub1rntttu0du1a9ezZU9nZ2Xn22bJlS40fP14BAQEux+Hj46NJkyZp+PDhCgkJMa0TEBCgwYMHa/v27apWrZplX+6+p4LcjzMBAQFavXq13n77bZUsWdJpXR8fH/Xu3Vt79uzRzTff7Jbr56V8+fJat26d7rvvPss6ZcuW1auvvqq4uDjFxMTo3nvv1Z133ulS/+58r2NjYxUXF6dOnTrleU/Dhw/XypUrHXbzLGoPPvigQ9nvv/9eZNerVauWBg4cmK829erV086dO/Xyyy8rODg4z/o1atTQ1KlTNWfOHAUGBhY01EIpUaKEXn/9de3Zs8f0Gefk4+Oj7t27a9u2bWrTpo3L13DlWXjCrbfeqs2bN+vuu+/Ocyflvn37av369Za7OF82ePBgLVmyJM96JUuW1Msvv6y1a9eqTJky+Yq7OD7Pa/VZ3nXXXdqxY4ceeOAB287EVoKCgvT222/rjz/+0A033OC07vLly+1e+/v7q2vXroWKFQDgXj6GUYRbBQKAh0REROjgwYOW58eNG6dBgwZdwYhcl5CQoHnz5mnHjh06fPiwjhw5In9/f1WqVEmVKlVSgwYNFBsbq0qVKhX6WmlpaYqLi9OmTZt0+PBh1alTRzfccIPdzoX5cfbsWe3Zs0fJyckKDQ1V/fr17Xbdbd26tVauXCnpUnJk2rRpki7tTjxt2jTFx8fr8OHDql69uurVq6fbbrvNyq29hwAAIABJREFUaRKoqO8pr/spiOTkZC1fvlx79+7V3r17tX//fpUvX141a9ZUzZo1dfPNNxf4+bvDH3/8oY0bN2rHjh3KzMxURESEGjdurLvvvtsh4ZOZmak1a9Zo586dCgkJUYsWLVSnTh1JV+a9TkhI0ObNm7V582bt2bNH4eHhioiIUKNGjdSlSxe3JW4Lom7duoqPj7e9DgoK0uHDhxUaGuqxmKxcuHBBv//+u1auXKlDhw7p2LFjCgwMVHh4uGrUqKEOHTqoUaNG8vHx8XSodlJSUhQXF6ft27drx44dKlmypGJiYhQTE6MGDRrY7QTtzKBBg/T++++rfPnyRbIDs7slJSVp1qxZ2rt3rw4ePKgKFSrY7jkmJkZhYWH57nPLli367bffdPDgQR05ckSlSpVSpUqVbL9LVgl7M1fT87xWn+WpU6c0f/587dq1S0eOHNHp06dVo0YN3XDDDYqOjlZ0dLRLvz/x8fEOf7Ds2LGjFixY4LZYC2LNmjVq2bJlvtt169ZNM2fOLIKIAMCj1pD4A+CVrubEnzezSgbB+1zr7/UHH3yg559/3q5swoQJevbZZz0UEax06NBBixcv1o033qhNmzZ5OpyrHs/TfYr7sxw8eLDGjRtnVzZnzhzFxsZ6KKJLSPwBgJ01TPUFAABws/79+zuMyv300089FA2sJCQkaNmyZZKk3r17eziaqx/P032K+7O8cOGCJk2aZFfWuHFj3XvvvR6KCABghcQfAACAmwUFBemVV16xK9u5c6ftizw8Lzk5WV27dlV2draqVKmiZ555xtMhXdV4nu5zNTzLadOm6fjx43ZlI0aMKHZLAgAASPwBAAAUiaefflr169e3Kxs9erSHokFOI0eOVFRUlOLi4lS2bFl9/vnnCgoK8nRYVy2ep/tcDc8yKytLY8eOtSvr0KGD0w2iAACeQ+IPAACgCAQEBOjLL7+02zl0+fLlWrJkiQejgiQtXbpUFy5c0B133KFt27apS5cung7pqsbzdJ+r4VlOnjxZCQkJttclS5bU559/7sGIAADOkPgDAAAoIjfffLOGDBliVzZ06FAPRYPLHnnkES1btkxLly5VZGSkp8O56vE83ae4P8uMjAyHkcsffPCBqlev7pmAAAB58vd0AAAAAN5s5MiR2rZtm+Lj4yVJJ0+e1Lp163TzzTd7OLJrV79+/TwdglfhebpPcX+Wv/zyi0JCQhQdHS3p0g7ujz/+uIejAgA4Q+IPAHDFzJ49W+np6ZKk4OBgD0eDosR7/f/5+fnpp59+8nQYAFBoXbt2VdeuXT0dBgAgH0j8AQCumPDwcE+HgCuE9xoAAADwPNb4AwAAAAAAALwQiT8AAAAAAADAC5H4AwAAAAAAALwQiT8AAAAAAADAC5H4AwAAAAAAALwQiT8AAAAAAADAC5H4AwAAAAAAALwQiT8AAAAAAADAC5H4AwAAAAAAALwQiT8AAAAAAADAC5H4AwAAAAAAALwQiT8AAAAAAADAC5H4AwAAAAAAALwQiT8AAAAAAADAC5H4AwAAAAAAALwQiT8AAAAAAADAC5H4AwAAAAAAALwQiT8AAAAAAADAC5H4AwAAAAAAALwQiT8AAAAAAADAC5H4AwAAAAAAALwQiT8AAAAAAADAC5H4AwAAAAAAALwQiT8AAAAAAADAC5H4AwAAAAAAALwQiT8AAAAAAADAC/l7OgAA8ITff/8/9u48Pqrqfvz/O5OVLQHCJiQhYJAAQXbKjhIgIAiyCmldUKotVRDUYpW9IkUsUmgLihVXiijKV9mUrSLKvoY1QciCCRCBACF7cn5/8GM+mcy9syQzWe68no/HeTwy955z7pkzk8k777nn3u8reggAAABwsaSkpIoeAgBUKiT+AHikr7/+Wr7++uuKHgYAAAAAAG7DUl8AAAAAAADAgEj8AQAAAAAAAAZE4g8AAAAAAAAwIBJ/AAAAAAAAgAGR+AMAAAAAAAAMiMQfAAAAAAAAYEA+FT0AAHCHe+65p6KHAACVRl5eniilLLaZTCbx9fWtoBEBQOUSHBxc0UMAALfwUiWjQAAAABhKWFiYpKSkWGwbM2aMrF27toJGBAAAgHKwh6W+AAAAAAAAgAGR+AMAAAAAAAAMiMQfAAAAAAAAYEAk/gAAAAAAAAADIvEHAAAAAAAAGBCJPwAAAAAAAMCASPwBAAAAAAAABkTiDwAAAAAAADAgEn8AAAAAAACAAZH4AwAAAAAAAAyIxB8AAAAAAABgQCT+AAAAAAAAAAMi8QcAAAAAAAAYEIk/AAAAAAAAwIBI/AEAAAAAAAAGROIPAAAAAAAAMCASfwAAAAAAAIABkfgDAAAAAAAADIjEHwAAAAAAAGBAJP4AAAAAAAAAAyLxBwAAAAAAABgQiT8AAAAAAADAgEj8AQAAAAAAAAZE4g8AAAAAAAAwIBJ/AAAAAAAAgAGR+AMAAAAAAAAMiMQfAAAAAAAAYEAk/gAAAAAAAAADIvEHAAAAAAAAGBCJPwAAAAAAAMCASPwBAAAAAAAABkTiDwAAAAAAADAgEn8AAAAAAACAAZH4AwAAAAAAAAyIxB8AAAAAAABgQCT+AAAAAAAAAAMi8QcAAAAAAAAYEIk/AAAAAAAAwIBI/AEAAAAAAAAGROIPAAAAAAAAMCASfwAAAAAAAIABkfgDAAAAAAAADIjEHwAAAAAAAGBAJP4AAAAAAAAAAyLxBwAAAAAAABgQiT8AAAAAAADAgEj8AQAAAAAAAAZE4g8AAAAAAAAwIBJ/AAAAAAAAgAGR+AMAAAAAAAAMiMQfAAAAAAAAYEAk/gAAAAAAAAADIvEHAAAAAAAAGBCJPwAAAAAAAMCASPwBAAAAAAAABkTiDwAAAAAAADAgEn8AAAAAAACAAZH4AwAAAAAAAAyIxB8AAAAAAABgQCT+AAAAAAAAAAPyqegBAAAAwHmLFi2S7777zqG66enpVtt27dolAwYMcKj9lClTZOjQoU6NDwAAABWPxB8AAEAV1Lx5c9m2bVup21++fFkuX75st57JZJJVq1aV+jgAAACoOCz1BQAAqIKGDBkiQUFBbj9O7969JSQkxO3HAQAAgOuR+AMAAKiCAgICZMSIEW4/zvjx491+DAAAALgHiT8AAIAqyt1JOV9fXxk9erRbjwEAAAD3IfEHAABQRUVHR0vDhg3d1v/AgQMlODjYbf0DAADAvUj8AQAAVFHe3t4yduxYt/UfGxvrtr4BAADgfiT+AAAAqjB3LfetXr26DBs2zC19AwAAoHyQ+AMAAKjCunfvLhERES7vd/jw4VKzZk2X9wsAAIDyQ+IPAACginPHcl/u5gsAAFD1eSmlVEUPAgAAAKV3+vRpad26tcv6q1Onjly6dEn8/Pxc1icAAADK3R7O+AMAAKjiWrVqJW3btnVZf2PGjCHpBwAAYAAk/gAAAAzAlUtzWeYLAABgDCz1BQAAMIDk5GQJDw+XsoZ2jRs3luTkZPH29nbRyAAAAFBBWOoLAABgBGFhYdK9e/cy9zN+/HiSfgAAAAZB4g8AAMAgXLFEl2W+AAAAxsFSXwAAAINIT0+Xxo0bS0FBQanaR0RESEJCgotHBQAAgArCUl8AAACjqF+/vkRHR5e6/W9/+1sXjgYAAAAVjcQfAACAgZRlqe6jjz7qwpEAAACgorHUFwAAwEBu3rwpjRo1kuzsbKfaderUSQ4ePOimUQEAAKACsNQXAADASAIDA+Whhx5yuh039QAAADAeEn8AAAAG42wSz2QyscwXAADAgEj8AQAAGMyQIUMkKCjI4fq9e/eWkJAQN44IAAAAFYHEHwAAgMEEBATIiBEjHK4fGxvrxtEAAACgopD4AwAAMCBHl/v6+vrKqFGj3DwaAAAAVAQSfwAAAAYUHR0tDRs2tFsvJiZGgoODy2FEAAAAKG8k/gAAAAzI29tbxo4da7ced/MFAAAwLhJ/AAAABmUvqVe9enUZNmxYOY0GAAAA5Y3EHwAAgEF1795dIiIidPcPHz5catasWY4jAgAAQHki8QcAAGBgtpb7jhs3rhxHAgAAgPLmpZRSFT0IAAAAuMeJEyekbdu2Vtvr1q0raWlp4ufnVwGjAgAAQDnYwxl/AAAABhYVFaWZ+Bs9ejRJPwAAAIMj8QcAAGBwWjf54G6+AAAAxsdSXwAAAINLTk6W8PBwuRv2NW7cWJKTk8Xb27uCRwYAAAA3YqkvAACA0YWFhUn37t3Nj8ePH0/SDwAAwAOQ+AMAAPAAxZf2sswXAADAM7DUFwAAwAOkp6dL48aNJTw8XBISEip6OAAAAHC/PT4VPQIAAAC4X/369SU6Olq6detW0UMBAABAOXEo8ZeTkyPp6enuHgsAAADcKCYmRtq3by8pKSkVPRQAAACUQUhIiHh5edmt51Di73//+58MHjy4zIMCAAAAAAAAUDYZGRkSFBRktx439wAAAAAAAAAMiMQfAAAAAAAAYEAk/gAAAAAAAAADIvEHAAAAAAAAGBCJPwAAAAAAAMCASPwBAAAAAAAABkTiDwAAAAAAADAgEn8AAAAAAACAAZH4AwAAAAAAAAyIxB8AAAAAAABgQCT+AAAAAAAAAAMi8QcAAAAAAAAYEIk/AAAAAAAAwIBI/AEAAAAAAAAGROIPAAAAAAAAMCASfwAAAAAAAIABkfgDAAAAAAAADIjEHwAAAAAAAGBAJP4AAAAAAAAAAyLxBwAAAAAAABgQiT8AAAAAAADAgEj8AQAAAAAAAAZE4g8AAAAAAAAwIBJ/AAAAAAAAgAGR+AMAAAAAAAAMiMQfAAAAAAAAYEAk/gAAAAAAAAADIvEHAAAAAAAAGBCJPwAAAAAAAMCASPwBAAAAAAAABkTiDwAAAAAAADAgEn8AAAAAAACAAZH4AwAAAAAAAAyIxB8AAAAAAABgQCT+AAAAAAAAAAMi8QcAAAAAAAAYEIk/AAAAAAAAwIBI/AEAAAAAAAAGROIPAAAAAAAAMCASfwAAAAAAAIABkfgDAAAAAAAADIjEHwAAAAAAAGBAPhU9AAAAYCydO3eWVq1aSfPmzc0lLCxMfv31V0lISJBz585JQkKC7Nu3T86cOVPRw4WH8fLykrZt22ru+/nnn+X27dvlPCIAAAD3IfEHAABcomPHjrJo0SLp16+f5v6wsDDp2LGj+bFSSr744guZM2eOnDp1qryGCQ/n6+srx44d09zXt29f2bVrVzmP6P/k5OSIj491eN61a1c5fPhwBYwIAABUdSz1BQAAZRIaGiofffSRHDx4UDfpp8XLy0vGjBkjcXFx8umnn0rTpk3dOEoYjclkkoCAAKvi7+9f0UMrNW9vb83i5eVV0UMDAABVFIk/AABQakFBQbJr1y557LHHSp2cMJlMEhsbK3v37pWoqCgXjxBG1atXL8nOzrYqLB8HAAD4PyT+AABAqb377rsSHh7ukr4aNWokO3fulEaNGrmkPwAAAMDTcY0/AABQKhMnTpSxY8fq7s/Ly5P4+Hi5ePGi3Lp1Sxo2bCgRERHSuHFj3Tb16tWTZcuWyZgxY9wxZAAAAMCjkPgDAAClsmDBAs3teXl5smDBAlm+fLlcvnzZYp+Xl5f06NFDFi5cKD179tRsP3r0aImKipITJ064fMxAYWGh7ns3OTm5nEcDAADgXiT+AACA08LDw6VevXpW24uKiuSxxx6TtWvXarZTSsmPP/4oAwYMkDVr1siwYcM0640bN05mzJjh0jEDIncSf6+++mpFDwMAAKBckPgDAABO69Spk+b2o0eP6ib9isvOzpYxY8bI1atXpWbNmlb7+/fv71Tiz8/PT0JCQqRBgwYSEBAgly5dkrS0NLlx44bDfdgTGBgooaGhEhgYKElJSZKWliZKKZf1X1HKY+70jhseHi5KKblw4YIUFBS49Xju4ufnJ8HBwVK3bl3x9vaW1NRUuXr1qiHeGwAAoOoj8QcAAJzWsWNHze1HjhxxuI+8vDzZtm2bPPLII1b7HLlhiJeXl4wdO1bGjx8v0dHRmgnE+Ph4+fzzz2X16tVy6tQph8dW/BiPP/64PPXUU9K7d2+LOxdnZ2fL+vXrZfbs2ZKQkCAiIpMnT5b777/fqp+33nrL6m6z7du3l+nTp2sed8KECZKTk6M7rubNm8v8+fM1902cOFFu375t93m5eu6qV68uS5cutdqekZEhL730krnOpEmT5I9//KOEh4eLyXTnPnMFBQWSmJgou3fvlnnz5smFCxc0j9GrVy9z0jkiIkKzTmBgoEyZMsX8OCkpSdavX29+7OPjIx9//LFm27lz5zp0V+CIiAiZOHGiPPjgg9KpUyfx9va22J+bmyupqamyfft2+eSTT2TXrl0kAgEAQMVQDti8ebMSEQqFQqFQKBQlImr58uWaMcPevXud6qdv377qzTfftCoLFy5UXl5euu26dOmiDh8+7EgYo5RSqqCgQC1cuFAFBAQ4PLZmzZqpH374wW7f+fn56rnnnlMiojZs2KBZp1+/flb9Dx48WLfPmjVr2hxb586dddvWrl3bZlt3zV2dOnU02//yyy/m4166dMnu8XJzc9WSJUuUv7+/1TEWLVrk8LjvKhnH+vn56dbt06ePzecYEBCgVqxYofLz850aQ3Jysho6dKjd95xev506darw33kKhUKhUCiVq2RkZDgShvxE4o9CoVAoFIrTZc6cOZoxQ2FhoXr66afdeuxRo0aprKwsR0IYK8ePH7ebGBMRFRERoS5evOhU32PGjKn0iT93zp2txF9kZKS6ceOGU8d78803rY5RkYm/mjVrqh07djh9/Lvy8vLUiBEjbL6uJP4oFAqFQqE4WhxN/N1ZXwEAAOAEveWQJpNJ3nvvPfnyyy/loYcekoCAAJcet23btvLZZ59JtWrVSt3+888/Fx8f/audBAQEyHfffSdNmjRxqu/ly5dLo0aNSjWu8lAec6fFz89PPvvsMwkMDHSq3Ysvvii9evVyqo07zZw5Ux588MFSt/f19ZW1a9dK3759XTgqAAAA20j8AQAAp23evFny8vJ0948YMUI2btwo169fl++++06mT58uPXr0ED8/vzIdd+nSpVbXUyvuxo0bkpiYaPN6av3795fZs2fr7p80aZI0a9bM6bEFBwfr3vSk+LUBK0p5zJ2WevXqWV33sKioSAoLC222M5lMsmDBAott+fn5kpOTIzk5ObrvP6WUuY6tes5o3LixPP/887r7s7KyJC4uTg4cOCApKSm69Xx8fDSvaQkAAOA2jpwXyFJfCoVCoVAoJcuKFSscXeVolpWVpXbu3Knmzp2roqOjlZ+fn8PHGzNmjG6/W7ZsUS1atDDXrVGjhpo8ebK6deuWZv3MzExVv359q2PUqlVLpaen6x7n7NmzaubMmSomJkaNHTtWvffeeyolJcXu846OjrY6Vnku9S2PudNb6lvc+++/r4YNG6Zq166tqlevrnr37q02btyoW//atWu6c9CnTx/NNhcuXLA5d6VZ6vvaa69p1s/JyVHPPfecMplMFvUjIyPVoUOHNNvs3r1bd2ws9aVQKBQKheJo4Rp/FAqFQqFQ3FqCgoJUUlKSI6GErhs3bqhPP/1UjR49Wvn6+uoeq1q1arrH+uqrr3RvBNK1a1dVUFCg2e7111+3qj979mzdsW7YsEEFBgZatfH391f79u2z+TwrMvFXXnNnL/H33nvvaR7H399fbd++XbddgwYNNNuVZ+Jv3bp1Tj0nEVHdunXTbJOVlaV8fHw025D4o1AoFAqF4mjhGn8AAMCtbty4Ib169ZKTJ0+Wuo/AwECJjY2Vzz//XOLi4mTIkCGa9Xr37i1hYWFW23NycmTy5Mm6y1P3798vy5Yt09w3dOhQi8cmk0mmTZumWTctLU1GjRolN2/etNqXm5sro0aNkvT0dM22Fa085s6eo0ePyh//+EfNfbm5ubJw4ULdti1btnTqWO7Qvn17ze3vvPOObpsrV65obq9WrVqlvhYkAAAwFhJ/AACg1FJSUqRz584yadIkSUxMLFNfLVu2lA0bNsi8efOs9rVo0UKzze7du21eU01E5Ouvv9bcfv/990vdunXNj0NDQ3VvQPH2229Lbm6u7jEuXrwoM2bMsDmOilIec2fP9u3bJT8/X3f/8ePHdfc1aNDA4eO4S0REhJhMJqty4MABzfr+/v4ya9Ys3f4qwzUfAQCAZ3DutmwAAAAl5OTkyPLly2XlypUydOhQGTx4sMTExEjTpk1L1d+MGTNk//79smHDBvO2iIgIzbrnz5+XDh062OyvqKhIc7uXl5d06NBBtm/fLiIi9957r24fH374ob1hy/79++3WqQjlMXf2nDhxwub+a9euOdRPRdE7K1Lkzl2g77vvPmnatKlERERIVFSUxMTEOH1XaAAAAHcg8QcAAFyioKBA1q9fL+vXrxcRkcjISBk4cKD07NlTunfvLqGhoQ714+XlJR9//LF07NhRLly4ICL6Z60988wz8swzz5R6zA0bNjT/rJf4y87O1l22WdzJkyclLy+vzHcudrXymDt77C0HLygoKPU4ypu/v7+MHDlSBg0aJB06dJBWrVqJjw8hNQAAqJyIUgAAgFucOXNGzpw5I0uXLhURkZCQEHnggQdk4MCBEhMTY3MJZ+3atSU2Nlbmz58vIvrJq7IKCgoy/6yX+Lt48aJDfeXn58vJkyftnkVX3spj7uyxt6S4KjCZTDJ9+nR58cUXJTg4uKKHAwAA4BCu8QcAAMrFxYsX5ZNPPpHHH39cQkJC5LHHHpPz58/r1i+eQHPXsklvb2/zz+Hh4Zp1nLlpx+XLl8s6JJcrj7mzx9ZS2arA19dXNm7cKG+88YbDSb/vv//ezaMCAACwjzP+AABAucvPz5dPPvlEtm/fLnv27NG8HmDxO6neunVLatSoYVUnPT3d5k037MnKyjL/fPXqVc06tWrVcri/8roRhTPLictj7oxuwYIFMmjQIN39Sik5deqUHDp0SPbt2yfbtm2TX3/9Vfc9VdUToQAAoOog8QcAAJxyzz33yE8//aS5b9KkSbJ582aH+0pLS5PVq1fLX/7yF6t9zZs3l+rVq0tWVpZcu3ZNGjVqZFXn5ZdfdujGG46Ij4/X3O5MMu+ee+5xuK6t5I+9u77auqNuybblMXdG1qhRI3nhhRc096WmpsqsWbNk3bp1kpGRYbGP5cAAAKAyYKkvAABwyrVr1yQ8PFyzREdHO91fZmam5vaioiLJyckRkTsJQi1dunRx+nh6EhISNLc3bNhQmjdvbrd969atnUr83bhxQ3efvevnNWvWzOHjlMfcGdnYsWM1lzVfv35dHnzwQfnPf/5jlfQTEZt3tbaX2AUAAHAVEn8AAMApubm5usmkRx99VKpVq+ZUfw8//LDm9rS0NCkqKhIRkR9//FGzjiuTV3pn/ImIjBs3zm57R+oUp7cMVOTOjVBssbXstKTymDsja926teb2rVu32nzP3H///e4aEgAAgMNI/AEAAKdt3LhRc3tISIgsXbpUAgICHOpn0KBB8pvf/EZz37Zt28w//+9//9Os07VrV4mNjbV5jBkzZsiNGzesSmpqqvj7+5vrJSYm6p59OGfOHOnevbvuMQYMGCCvvPKKzXGUdO3aNd19w4cP190XGxsrDz30kMPHKY+5q0ycuemIIxo2bKi5PSkpyWa7mJgYl44DAACgVJQDNm/erESEQqFQKBQKRYmI6tevn83Y4dSpU6pXr17K29tbs31wcLBasWKFzT5iYmLM9X19fdWFCxc062VnZ6vf/OY3msfp37+/ys/P12y3bt06q/ozZszQHc/FixdV165dlclkMtf39vZW0dHR6ubNmzafS3R0tNWxTCaT+vXXXzXrFxYWqjFjxljVHzp0qMrNzbV5rDp16li0K6+5q1Onju6YGjZsaPP9ZDKZdNuOGjVKs02fPn0069++fVv5+PjoHsvPz0/3WH369LGq/89//lOz7tatW3WP8eSTT+oeQymlmjZtqtlOb747depU4b/zFAqFQqFQKlfJyMiwGW/8/37i5h4AAMBpO3bskG+++UZ3mW6rVq3khx9+kLy8PDl//rzEx8dLVlaWBAUFSXh4uERGRtq8ztm2bdvk22+/NT/Oz8+X119/Xd577z2rugEBAbJ792757LPPZOvWrfLLL79ISEiI9O/fX2JjYzWPU1RUJEuWLLHa/ve//12eeeYZCQ0NtdrXpEkT2bdvn1y7dk127Ngh1apVk969e0tgYKDu87ClqKhINm/eLL/73e+s9plMJlm7dq3Ex8fL/v37JTg4WHr27FmqY5XX3JW3goICze3Vq1eX1atXy/fffy+ZmZmSlpYm3333XamPExcXp7m9f//+MmfOHHnnnXfMS9/DwsJk+vTpMnHiRJt9+vgQggMAgHLiSHqQM/4oFAqFQqGULGFhYSo1NdWRUMIp6enpKiIiwup4Pj4+atu2bS45xoIFC3Sf129/+1uXHKM4rTP+RESNGjWqVP3l5eXpnh1W8oy/8pq78j7jLzQ01KHxloxjnT3jr3Pnzjb7LywsVEePHlWXLl1yaDxKKdWqVSvN58QZfxQKhUKhUBwtjp7xxzX+AABAqSQnJ8sDDzwgqampLuszIyNDYmJi5Ny5c1b7CgoKZOTIkXL48OEyHWPTpk0ya9Ys3f2rV6+WzZs3O93v8ePHJTk52ak2X375pe41+Gx55ZVXJCsrS3OfUspqW3nNXXn65Zdf5NKlS24/zsGDB2XVqlW6+00mk7Rr187qWoBbt27VfB+LiLRp08alYwQAANBD4g8AAJRafHy8REVFyeuvvy43b94sdT8FBQWyfPlyadWqlc3k1M2bN6VHjx7y2muvye3bt50+zqpVq2T48OGSn5+vW0cpJY888oh89dVXDveblpYm48ePl7y8PN0+9bY/8cQTcvr0aYeOU1RUJDNmzJDFixc7PLY2XJj7AAAgAElEQVS7ymPuylNRUZH8+c9/1p1bV5o8ebJuEk/LokWLZPDgwXLy5EnN/RMnTpTq1au7angAAAD6HDkvkKW+FAqFQqFQ7JW6deuq+fPn273RRXFFRUXqs88+01zaa680adJErV692qHjHDhwQPXr18+p/r28vNSECRPUlStXbPa9ZcsW1aRJEyUiKiEhQbOOvWPXqFFDLV26VF2/fl33OPv27VN9+/Y1t7lx44Zmvdq1a1fI3JX3Ut+7pV27dmrDhg267cu61PduCQoKUosXL1Z5eXm67c+dO6fGjh1rbjNlyhTdupMnT7Y6Bkt9KRQKhUKhOFocXerrpZT9r0m3bNkigwcPtlcNAABAAgMDpVWrVtKsWTMJDw+XZs2aSbNmzSQwMFASExPl/Pnz5hIfHy8XL14s0/EaN24sbdu2laioKGnTpo00b95cbty4IVeuXJHjx4/Lli1bJCEhodT9+/n5yYABA6R///7SpEkTCQgIkNTUVElJSZF169bJmTNnzHUTEhIkIiLCqo/o6GjZsWOH3WP5+/tL3759JSwsTBo1aiTXrl2T+Ph4OXv2rKSkpJT6Oehx99yVp1q1akmDBg2kfv36Uq9ePRERyc7OlrS0NDl16pTLjhMRESEPPvigREZGSkREhNy8eVOSkpJk165dsnXr1nI5AxEAACAjI0OCgoLsVdtD4g8AAMBFypr4AwAAABzhaOKPa/wBAAAAAAAABkTiDwAAAAAAADAgEn8AAAAAAACAAZH4AwAAAAAAAAyIxB8AAAAAAABgQCT+AAAAAAAAAAMi8QcAAAAAAAAYkE9FDwAAAMAopk+fLrVq1bLafvr06QoYDQAAADwdiT8AAAAX+fLLLyt6CAAAAIAZS30BAAAAAAAAAyLxBwAAAAAAABgQiT8AAAAAAADAgEj8AQAAAAAAAAZE4g8AAAAAAAAwIBJ/AAAAAAAAgAGR+AMAAAAAAAAMiMQfAAAAAAAAYEAk/gAAAAAAAAADIvEHAAAAAAAAGBCJPwAAAAAAAMCASPwBAAAAAAAABkTiDwAAAAAAADAgEn8AAAAAAACAAZH4AwAAAAAAAAyIxB8AAAAAAABgQCT+AAAAAAAAAAMi8QcAAAAAAAAYEIk/AAAAAAAAwIBI/AEAAAAAAAAGROIPAAAAAAAAMCASfwAAAAAAAIABkfgDAAAAAAAADIjEHwAAAAAAAGBAJP4AAAAAAAAAAyLxBwAAAAAAABgQiT8AAAAAAADAgEj8AQAAAAAAAAZE4g8AAAAAAAAwIBJ/AAAAAAAAgAGR+AMAAAAAAAAMiMQfAAAAAAAAYEA+rurogw8+kGrVqrmqOwAAAI/35JNPSnZ2tu7+Z599Vvr161eOIwIAAIC7HTt2TN544w2X9OWyxN8jjzwiQUFBruoOAADA402cONHm/s6dO8vYsWPLaTQAAAAoD4GBgS7ri6W+AAAAAAAAgAGR+AMAAAAAAAAMiMQfAAAAAAAAYEAk/gAAAAAAAAADIvEHAAAAAAAAGBCJPwAAAAAAAMCASPwBAAAAAAAABkTiDwAAAAAAADAgEn8AAAAAAACAAZH4AwAAAAAAAAyIxB8AAAAAAABgQCT+AAAAAAAAAAMi8QcAAAAAAAAYEIk/AAAAAAAAwIBI/AEAAAAAAAAGROIPAAAAAAAAMCASfwAAAAAAAIABkfgDAAAAAAAADIjEHwAAAAAAAGBAJP4AAAAAAAAAAyLxBwAAAAAAABgQiT8AAAAAAADAgEj8AQAAAAAAAAZE4g8AAAAAAAAwIBJ/AAAAAAAAgAGR+AMAAAAAAAAMiMQfAAAAAAAAYEAk/gAAAAAAAAADIvEHAAAAAAAAGBCJPwAAAAAAAMCASPwBAAAAAAAABkTiDwAAAAAAADAgn4oeAICq54MPPpBr166ZH48ZM0ZCQ0MrcEQA4LyTJ0/Kt99+a34cHh4uI0eOrMARGUthYaHs2rVLzpw5I2lpaXLp0iUpKiqSBg0aSIMGDSQsLEz69esntWvXruihAnAQMSAAI/C0GNAQib/Tp09L//79zY9Hjx4t//jHPypwRHDUX//6V5kzZ46IiAQHB8uVK1cqdkCw66uvvpIJEyaYH993330yefJk8+MLFy5IRESEZtuNGzfKoEGDHDpOZGSkJCQkWGx75plnZPny5aUYNdxh8eLFFr+zLVu2tHhvOOLKlSvy0UcfyalTpyQpKUl8fHwkIiJCWrRoIV27dpUePXo41Z9SSvbs2SPffvutpKamyuXLl6VmzZpyzz33SLt27WT48OESFBTkVJ/lwRVzKeKZ85mZmSmHDh2ShIQEOXfunKSlpUlYWJi0aNFCIiIipEuXLuLr66vZtkmTJjJ//nzzP7He3t6yd+9e6dy5c3k+BcOJi4uTf/3rX7Ju3Tr59ddfbdb18fGR3r17y7hx4+Tpp58Wb2/vcholKhoxYNVDDAgRYhZXI54uPWJAJygHbN68WYmIzZKRkeFIV25x7Ngxi7E89thjFTaWyqqgoMBcCgsLK3o4ZnPnzjW/bsHBwRU9HNhx7do11ahRI4vfty+++MKizvnz53U/J1q3bq3y8/MdOlaLFi2s2j/77LPueFoohVu3bqmAgACL12fQoEEOty8oKFDPP/+88vf3t/m3ZfDgwSouLs6hPjdt2qTCw8Nt9ufv76+ef/55lZWVVdqn7nJlnUulPHM+i4qK1Icffmj1mVSyREREqLVr16qioiLNft566y2L+m3btlV5eXnl/Gz01apVy+bzW7lyZUUP0Sw3N1fNmjVL+fr62o0btcr999+vdu3aVaHPobLGS6VVmZ8PMWDVQgwIpYhZXI14unQ8JQZ0YR7uJxJ/HqJ9+/bm+YmNja3o4ZgR9FUtTz75pMXvWsuWLa0+SG0FfSKili1b5tCxCPoqt+K/u84GKkVFReqJJ55wOBng7e2tVq9ebbPP119/3akEQ+vWrdXVq1ddMRVlVpa5VMoz5zM/P1/169fPqTH27NlT3bp1y6qvzMxMVadOHYu6c+bMKbfnYk9VSfzduHFDde7cWXecJpNJtWzZUvXs2VMFBQXp1vPy8lLvvvtuhT2PyhovlVZlfj7EgFULMSCUImZxNeJp53lSDOjKxB839wDgkJ07d8oHH3xgsW3atGni5eXlVD9z5syR69evu3BkKG979+6Vt956q9TtJ02aJB9++KHD9QsLC+X3v/+9nDx5UnP/N998IzNnznRqDKdOnZLf/va3UlRU5FQ7VyvrXIp45nzOnTtXduzY4VSbH3/8UZ555hmr7TVq1JA//OEPFtveeOMNOXv2bJnG6Eny8vJkxIgRcvDgQYvt9erVkyVLlsiePXvk5s2bcubMGdm9e7dcv35dfv75Z1m3bp3V9XSUUvLss8869Z4G4F7EgBAhZnE14unSIQYsHRJ/ABzy2muvWTyuX7++PP744073c/XqVZk7d66rhoVyFB8fL6NHj5bu3bvLrVu3StXHa6+9JitWrNDcFxkZKQMGDJA6depY7bt9+7Y8+uijmu1eeuklUUpZbffy8pKoqCipWbOmZrstW7bI1q1bnRi967hiLkU8cz737NkjCxYs0NzXtGlT6dKliwQGBmru/+9//ysrV6602v7888+Ln5+f+XFeXh6fU06YNGmSVRA+cOBAOX78uEyZMkW6desmNWrUMO/z8vKS5s2by8iRI2XdunWyYsUKCQgIMO9XSsnTTz8t8fHx5fYcAOgjBvRsxCyuRTxdesSAZVDOpxi6BUt97ausSz1Y5lE1bNq0yep3Xu80aHvLPERE+fr6qjNnztg8Jss8Kt7+/fvVwIEDVZcuXexeQ0McWJpw+fJlzWuQdO/eXZ04ccJc7/bt22rIkCGax4iPj7fo88CBA5r1YmNj1S+//KKUunPdsc8//1x5e3tb1SuvvxeunkulPHc+u3btanXc++67z+I55+fnq1mzZmk+lz59+mj2W3IZm8lksuizolT2pb5nz55VJpPJYkyLFi3SvZ6OnuPHj1tdU+jxxx9306j1VdZ4qbQq8/MhBqwaiAE9DzGLaxFPu46nxYBc468EEn/2VdbAj6CvatC6blNKSopmXUeCPhFRQ4YMsXnMsgR9RUVF6vTp02rnzp1q7dq16v/9v/+nfvrpJ5Wamur0c7enoKBAXbhwQSUlJbnkwum3b99WBw8eVCdOnKjw6498/fXXDr2WjgYqWtcxqVGjhjp37pxV3V9//VXzBgH/+te/LOq98MILVnVCQ0PVzZs3rfr885//bFW3Vq1a5XJhYlfPpVKeOZ/5+fnKz8/P6rhHjx7VrP/II49Y1Q0MDNRMSu3evduq7ujRo932XBxV2RN/Tz31lFOf7bZs2LDBoi9vb2/N97M7VdZ4qbQq8/MhBqwaiAH1GTUGJGZxLeJp1/DEGNCViT8f8RCnTp2SEydOiMid09MffPBBERFRSsmZM2dk7969sm/fPjl37pxERUVJly5dpGvXrtKiRQvdPo8dOyY3btwQEZGQkBBp3ry5iIjcuHFD/vOf/8iBAwckMTFR6tWrJ126dJEuXbpIv379xN/fX7fPI0eOmG9f7+/vL8OHD7f73A4cOCAXLlwQEZG6detK//79RUTk6NGj5mUyGRkZ5vrJycmydu1aERGpVq2aPPzww3aPYUtmZqZ8+OGHcvLkSTl37pykpqZK8+bNJSoqStq0aSM9evSQZs2aOdVnfn6+rF27VrZt2yZJSUmSn58vnTp1cuh1KenWrVuyevVqiYuLk8TERElLS5N69epJkyZNJDQ0VEaOHCnt2rWz2Yc7Xmstv/zyixw6dEgOHz4shw8fluzsbGnatKl069ZNxowZ4/Bt0zMzMyUvL8/8uFatWrq3Mrdnz549VtdtatOmjYSEhJSqv7s2btwo3333nQwcOLBM/RR34sQJWbRokWzZskWuXLmiWadt27YycuRImTZtmu6p4CIimzdvtrqeTYsWLeT1118XEZGvv/5aFixYIIcOHZL8/HwREQkICJB7771XnnzySXnuuecslq7ZsmbNGlm3bp0cP35czp07Z3GdjNDQUBk1apQ8/fTTEhUV5VB/lVXJ+RS5c52Oe++912p7cHCwrFmzRq5evWqxPTIy0vxzYWGhrFmzxqrtlClTpFatWlbbX3nlFXnzzTcttt26dUu++eYbGTt2rKNPo9LwxPk8c+aMxWebiEi3bt10P8NHjRol69evt9h28+ZN+fnnnyUiIsKqn6CgIPNnvYjIunXr5JdffpEmTZq46BkYS0pKinz88cfmx97e3lbvCWcMGTJE+vXrZ142XFhYKPPnz5f333/fqm5Fx0uVOQasyvGfiGfGgJUx/hMhBiyOGLBsPDFmcRdPnUtiwDIq50yjWzhyxl/xzHjfvn2VUneWldi6A52IqGnTpuket3fv3uZ6U6ZMUUoptXLlSpvfzrdr106dPXtWt8/Jkyc7/e3nhAkTzG06depk3j5lyhS7r1uTJk0cOoaWgoIC9e9//1s1aNDA5jECAgLUO++8o9mH1re927dvV40bN7bZ57x58+yO7/bt22rq1KkqMDDQ7jx07dpVbd26Vbcvd7zWxeXk5KhJkybZnccXXnhBZWZm2u1v+PDhFm23bNni0Di0vPjii079Xuh929u9e3erbVFRUaqgoECzH2e+7b17K3utU8/1SoMGDdS6det0n8eSJUs03yd5eXlq9OjRdvsPCwtTu3fvtjm36enpatSoUQ6N18fHR7322msqNzfXZp+u5MpvKC9duqTZJjExsdTj+/HHHzX73LFjh26bpk2bWtUfN25cqcfgKFd/2+up8/npp59aHc/WWUwlzyC7W/TOVhk5cqRVXUfvQukulfmMv5Jxxh/+8Icy93n48GHl5eVl8dmn9XevouOlyhwDVoX4TyliQKUqd/ynFDFgyfeJp8SAxCyuRTztGp4YA3JXXxfYvn27dO3a1epbrJIWL14s06dPd6jPt99+W37/+9/bvEjnsWPHpFOnTppZ9armL3/5i0yaNEn3W7W7cnJy5Nlnn5Xf/e53kpOTY7Pu5s2bJSYmRlJTU23WmzVrlu6FPUXufHMxbtw4efvtt+XmzZs2+xIR2b9/vzz88MOyfft2u3VFXPtanzt3Trp37y7//ve/bdbLycmRJUuWSNu2beXcuXMOjdMV1q1bZ7WtNN/QTp482eqbqBMnTsg777xT6rGJiBQUFMi4ceNk2bJlUlhY6HC7K1euyNixYy3OVnHE1KlT5YsvvrBbLzk5WWJjY3Xffz/88INERUVpzq+WgoICmT9/vsTGxmpeeNcdHn74YSksLNQsbdq0caqvffv2WW1r2rSpNG3atNTjS05O1tzevn173TZa+1JSUko9Bke5ci5FPHc+o6Oj5eDBgxblb3/7m279AwcOWG2rVauW7tkqWp9tjv6OeqJNmzZZPH7llVfK3GeHDh2kR48e5scFBQXmM9oqM0+KAd0R/4l4XgxY2eM/EWLAkjwlBiRmcS3iadcgBiwbj1nqW1xCQoIMGzZMcnJyxNvbW0aNGiXdu3eX0NBQOX/+vOzcuVM2b95srv/mm29Kt27dZMSIEbp9fvHFF/LLL7+IiMh9990nkydPlqioKPHz85Nz587JqlWrZOfOnSJy5zT8xx9/XDp37mx1mqkrDR8+3PzGfvvtt82BVIcOHSQ2NlZERPP0XUds2LDB4vbjAwcOlClTpkhkZKRUq1ZNLly4IGfOnJE33nhDfv75ZxER+fTTT6V169by6quvavaZmZkpY8eOlYKCAvH29pbx48dLz5495d5775X4+HjZvXu3RQD16quvSocOHWTQoEFWfU2fPl2++eYb8+OoqCiZPn26tG7dWkJCQuTq1avy888/y8cffyyff/65KKUkJydHhg8fLleuXJHq1avrPndXvtbnz5+Xjh07WgSPAwcOlIceekjatWsnaWlpsnfvXtm+fbv51usXLlyQmJgY2bt3r9SvX193nK5w+PBhSUxMtNgWEBAgffr0cbovf39/eeutt6x+j2bPni2xsbFSu3btUo1x2bJlDgVhWgoLC2XixInSq1cvh5YjnTx5Uvbv3+9w/8nJyfLSSy/Ju+++a7E9NzdXnnjiCbl8+bLTY163bp3MnDnTvNzE3Uwm13w/dOjQIattd38nkpOT5auvvpJjx45JXFycVK9eXdq3by/t27eXmJgYady4sWafWvMXHByseRezu7SWQdj759VVXDWXIp47nw0bNpSGDRs6VPfy5cua/3SPHj1at41W0PfDDz9Ienq62z9vq5qioiJJSkoyP65evXqZ/vEormXLlvLjjz+aH58/f96ty9zKGi9VthiwqsV/Ip4XA1b2+E+EGLAkT4sBiVlci3i67IgBy6icTzF0C2eX+t4tTZo0UceOHdPsc+rUqXZPIy1+6v/d8uijj+qetr506VKLuiNGjLCq48qlK8W5+uLOvXr1Mvc3ePBg3QvaZmdnq0GDBpnrBgUFqdu3b5v3a70uUVFR6vDhw5r9lZzDJ598UrNew4YNzXWGDBmisrOzdZ/L4sWLLfr83//+Z1XHHa+1UsriFP9q1arpLonJzc21Wr4xY8YM3efkqqUer776qtXzjoyMtNlGb5nHl19+qZRSKjo62mrf1KlTrfpxZJnH9evXVd26dTWP17FjR/XGG2+ozZs3q9WrV6tp06bpLssZP3681fG1lnncLSaTSfXt21fNnj1bffDBB2ry5Mm6S54aN25s1ffrr7+uWTcyMlItW7ZMbdu2TX366adq/PjxmvV8fHxUQkKCMy+ly7Vp08ZqXLaWJkycONGq/oQJE9T69etVnTp1dOe6du3a6pNPPtHsU+v92bRpU5vjnjlzplWbwMDAskxFmTk7l0oxn3pu3bqlzp07pz766CPVrFkzzbFdunTJZh8BAQFW7d59991yegbWKutS36SkJItxREVFuazvBQsWWPT99ttvW9Wp6HipqsSAlTX+U8qzY8DKHv8pRQyo95nr6TEgMYtrEU+7jhFjQO7qW0JpEn8+Pj7q1KlTun0WFRWpkJAQc/2QkBCrOiUDgcjISJWfn29zrE8//bRFm++//95if0UHso4oLCxUNWvWNPf34Ycf2qy/bds2i+d88OBB8z6t1yUuLs5mfx06dLD5oZScnGzR57Zt22z2V1BQoKpXr26uv3DhQqs67nitv//+e4v9//jHP2z2l5eXZxFEh4aG6gbcmZmZ6tq1a+Zib6x6unXrZvW7rncb9LvsBX3Hjx+3ug6Lr6+v1W3lHQn6Xn75Zc1jTZgwQeXk5FiN7eTJk6p58+ZW9b28vNSBAwcs6toK+rT+CT158qSqV6+eZv1bt26Z66WkpFi83+6W/v37a94N67///a9mn3r/8JQXZwOVYcOGWdUv/hlrr4wbN87qn6ySv2Miotq0aWNz3H/72980+9d6v5SX0gTRzKe1wYMH23zOERER6siRI3b7CQsL05yvilJZE387duywGMewYcNc1vcXX3xh0ffzzz9vVaei46WqEgNW1vhPKc+NAatC/KcUMaDeZ66nx4DELK5FPO0aRo0BucafCzz99NPSqlUr3f1eXl4Wa9fT09Pt9jlr1izx8bG9enrOnDkWj529tkRlkJKSIpmZmebH58+ft1m/X79+Mm/ePJk5c6bMnDnT5hKKKVOm2F3O07dvX/PPWqcmnz17VsLDwyU8PFzat28vDzzwgM3+vL29LZYnXbt2zWZ9Ede81tOmTTP/3LlzZ3nuueds9ufr6yt//etfzY9TUlJk27ZtmnVr1KghderUMRd7Y9Wjda0GR0+x1tO2bVt55plnLLbl5+fLiy++6FQ/165dk2XLllltj4iIkJUrV2reTa9169aycuVKq+1KKZk7d65Dxx0/fry88MILmn3rnT5+9uxZ888fffSRZGVlWez38/OTd955R6pVq2bVdty4cTJu3Dir7evXr7e481tld/v2battFy9edLj9mjVrZOnSpRbbtJYU1KhRw2Y/evvLa6mHqzCf1mz9PphMJpk0aZLcf//9dvvR+owrj2sAVTUl//ZrLfsprfDwcIvHd5dWVmaeEAO6M/4T8ZwYsCrEf3ePUxIxIDFgaRCzuA5zqY0Y0D6PTfxNmTLFbp3it4bOzc21CHZK8vb2lqFDh9rtMyQkREJDQ82Py/siva4QGhpqcS2Ov//977oBiMidJOrMmTNl3rx5Mm/ePJsJV61rtZRUfI19Tk6O1evSv39/uXDhgly4cEGOHDki3t7eNvtLT0+3G7wW54rX+urVqxbXaBgzZoxD137o3LmzRYD62WefOTpspxUWFsqlS5estjdo0KDMfc+bN8/qei7ffPONzfdRSXFxcZoXC3/55Zdtvub9+vWTLl26WG3XugCsluHDh+vua9u2reb24n8E4+Pjrfb36NFDmjdvrtuv1vVFMzIy5OjRo7aGWqnk5eXp7vP29pYRI0bIzJkz5YknnpB77rlHs96sWbMs/vhev37dqo5W4OzIfq2+KjPm0zlFRUUybdo0GTRokNU/XSVpfcZVhcRTeSv5Gpc1IVDc1atXLR7rvYcrC0+JAd0Z/4l4RgxYFeI/EWJAPcSApUPM4jrMpfOIAe/wyJt7mEwmadGihd16Jb9xzs7Olpo1a2rW7dChg8MXSm7Tpo35l+3uhY+rEpPJJNHR0ea73GRmZsqAAQOka9eu8sQTT8hDDz1kNXeOcqRdydfA1uuiJz09XRITE2Xfvn0ye/Zsyc3NdbitK17rkn/4O3bs6PDx77//fvMF1Yt/i+hqly5d0rxDmiv+uatXr57Mnj1bpk6darF92rRpDgXqIiJnzpzR3O7I3eYGDBhgFeRdvnxZMjIy7F5g2tbdtxz5XNH6R8/b21v+9a9/6bZJS0vT3B4XF+fUe6ci6d1tr1atWrJr1y6LM6yvX78uv/vd76zuGJqZmSmzZ8+W999/X0RE86LD2dnZNseht9/WBYwrI+bTWmBgoPj7+9v8PN+6dau8/PLLNn/ftD7jUlNTRSklXl5eLhmrEZT8rHTmjAN7St5QwJVnE7qDp8SA7oz/RDwjBqwK8Z8IMaAeYsDSIWZxHeZSGzGgfR6Z+KtWrVqZTn3X4kxQ2qZNG9myZYuI3AmUc3JyJCAgwKXjcbcVK1ZIQkKCHD9+3Lxt//795rtdhYaGSnR0tAwePFgGDBjg0IeAyWSSsLAwu/Wc+aXLysqSn376SXbs2CHHjh2TxMRESUxMtJvtt8UVr3XJgG3atGkOvweK/0OkFwy4gt63G646q+NPf/qTrFixwmIu4uLiZOXKlfKHP/zBbnutoM9kMkmTJk3sti3+LXzJPrt166bbztvbW+677z7d/Y58riQkJFht2759u2zfvt1u25Kq0tKE4OBgze3vvPOORZAicido+OSTTyQiIsJq2VXxO+ppvRdtnZktor1EQsQ1ZzGUJ+bT2tq1a0Xkzuf+wYMHZfny5Zp3dFu+fLmMGDFC+vfvr9mP1tjz8vIkPT29yr1P3Klu3boWj12ZxLpw4YLF48qe+POkGNAd8Z+I58SAVSH+EyEG1EIMWHrELK7DXGojBrTPI5f6al33oaycuQ19ZGSk+WelVKlu516cUqpM7UujXr16sn37dhk/frzmN3MpKSnywQcfyKOPPir169eXIUOGyM6dO232Wbt2bfHz83PJ+AoKCmTx4sXSsGFDGTBggCxYsEA2bdokp06dsgr4QkJC7J7OXHKcjtJ7rUt+4xsXFycHDhxwqBS/3qTWMgdX0TtV21W3M/f19ZW3337bavusWbPkxo0bdttrfWtav3598fX1tdtWLzC0t+wqICDA5nvU3u/irVu3XBqoufP1dzWt5QaBgYEyfvx4zfp16tSR3//+91bb4+PjpaCgQES0/ziXJlAJCgpyy98Fd2I+9VWvXl369Okj//3vf2X+/PlW+xWVPOMAACAASURBVJVS8p///Ee3vV5gVxmXr1SkkkkaVyb+Sp7xFxER4ZJ+3RUveVIM6I74T8RzYsCqEP+JEANqIQYsPWIW12EubSMG1OeRiT93nKZp7wKYxZX8RQkMDCzTsW/dulWm9qVVr149Wb16tSQkJMiiRYukT58+mt92FRYWyqZNm8wXedbjqtclLy9P+vTpIy+++KLVh1b16tWldevW8vDDD8uMGTNk48aNkpiYKPXq1XO4f1e81iWDmrp160pwcLDTxZmxOKtRo0aa210ZaAwePFgGDx5ssS09Pd3iItZ6tIJPR4JFkTvXRnG0T1fy9/d3aAmLo/RO96+MtAKV1q1b22xT/J+mu/Lz883fmGv9cb5586bNPrU+L6viN3jMp2NeeeUVzX/U4+LidNvofcbpfSZ6qvbt21skTBITE21ee8hReXl5FokiLy8vm9e/coa74iVPiwFdHf+JeE4MWBXiPxFiQHcgBrREzFI6zKXjiAEteeRSX3dw5gLNxS+maTKZJCgoqEzHrugMdLNmzeSll16Sl156SW7fvi27d++WnTt3yrfffivHjh2z+AZs9uzZ0qJFC91vJVxhxowZsmfPHovxTZ06VQYOHCgtWrRw6CLKtrjitS559sKRI0ccWuJSnvTGU/Ki62W1ePFi2bp1q/lbJxGRZcuW2f0GvmXLllbbcnJyJD093W7wpnd3Jq0+XcnPz0+aNWtm9R567bXX5PHHH3e6P73T/Sujxo0bW22zt2RI76LEd/9B1GqfkZEhly9f1u1b67pIlS1QcYSnzuc///lPq+u3xMTE6N4J1GQySa9evWTDhg0W2+Pj4yU/P1/z7BCtz7jAwMAy/602Gh8fH+nSpYvs2rVLRO4kXN5//32HlunZsmbNGouz4Dp16uSypbDuipc8NQasbPGfSOWPAatC/CdCDOgOxICWPCFmcQdPnktiwLIh8ecitjLHJRX/g9OgQYMyByGV6RbTNWrUkJiYGImJiZG//e1vkpSUJAsXLpTly5eb63zyySduC/wyMjLkrbfeMj9u1aqV7Nixw26WXu86BVpc8VqXDC4SEhIqXeBXp04dqVGjhtXc/Prrry49TmRkpPzpT3+Sf/zjH+ZteXl5ds8c0fr2SkTkxIkT8uCDD9pse/LkSatt1apVK5fXoGXLllZBX2pqqs3rxhiB1hk79pYGal1jyMfHx3yNJb3X6+jRoxITE6O5r/h1qe4qfqfEqsJT5/Of//ynVbB59epVeeONN3TbaAVr/v7+utdj0vqM07smlKd79NFHzYk/EZEFCxbIU089VaYlm8X/FojcWfrnKu6Kl4gBKz7+E6kaMWBViP9EiAHdhRjw/3hCzOIOnjyXxIBl45FLfd0hMTHR7lp4kTvXHdm3b5/5cc+ePS32Fz8FPDMzU/Lz8232l5qaqnmhWHfatm2brFq1SlatWiU//fSTzbpNmzaVf//73xIbG2vedvDgQbeNLS4uzuIb5pdfftluwHfixAmrC57a4orXuuQf+FOnTjl8/K+//to8/8W/1XYHrQ86V3/bK3LnTABnv7nUC/pK/tNYUmpqqnzxxRdW2++7774y/wPmCK1vlPfu3WuzTV5enly9etWqFP+GvLJ74IEHrL4JjI+Pt3mB8kOHDllti4iIMH9D161bN81vMfU+Y65cuaIZ/IwYMcLm2CsjT51PrYD38OHDNtto/ZPXtm1b3aWFWp9xRgn6XO2xxx6zuMNpcnKyfPDBB6Xub9euXRavZ5cuXeThhx/WrFuZ4iVPiQErc/wnUjViwKoS/4kQA7oDMeD/8YSYxR08eS6JAcuGxJ+LKKVk9+7dduutWbNGkpKSzI8feOABi/3FrzOSm5trNyD48MMPnRuoC3zzzTfy1FNPyVNPPSXPPvusQ2369u1r/jkrK8ttF6Mu+S2AI7e5d/ZOWq54rcPDw6VmzZrmx++9955Dc3LkyBF55JFHzPOfnJzs1NidVV5BX506dRy6pktxLVu2tPqnSeROYKz3mhYVFclf/vIXzW+Sn3rqKaeOX1pa1+E4ffq0vPnmm7ptxo4dK/Xq1bMoDRs2tLiezZw5c2TcuHFWxdFr3ribj4+PxT+AIneC2RkzZmjWv3z5sqxatcpqe/E7lplMJhk3bpxVnaVLl2r+I6d1janAwEAZOnSoxbbKPpciVWc+XT2XWr8/P/30k+YdHkVENmzYIEePHrXa3q5dO91jaH3bWxnPyKkMatWqJX/84x8tts2aNUsOHDjgdF/Xr1+XiRMnWmyzdV24yhQveUoMWJnjP5GqEQNWlfhPhBjQHdwRAxKzWDJ6DOjJc0kMWEbKAZs3b1YiYrNkZGQ40pVbHDt2zGIsjz32mFWduXPnmvcHBwc71O/KlSst+r1y5YrF/t69e1vsb9Kkibp06ZJuf1lZWap169bm+tWqVVOpqakWdd5//32LPpcvX67b365du5SPj49F/U6dOmnWbd++vbnOmDFjHHr+ej7++GOLY549e9Zum+eee85cv0+fPubtpXldli5dqvu6lHyvfvXVVzb7OnHihAoLC7NoM336dKt67nitFy5caNHn+vXr7T73AQMGmOvXrFlTZWVladZLS0tT586dMxe9evZMnz7d6ne9Z8+eNtucP39e8zPiyy+/tNmuoKBARUVF2fycefbZZy3a7NmzR7Oer6+vWrJkiUpPT1dKKVVYWKhOnz6tBg8erFk/IiJC5eXlWfS9ZMkSq3o1atSw+Ry2b9+u2f+mTZvMdbKzs1VkZKRVHZPJpBYuXKh+/vlnc93MzEz1wgsvaPYZHR1tceyS79G75fLlyzbHXFpt2rSxOtagQYNstjly5IjmGP/0pz+p3Nxcc72kpCTVrl07q3peXl7qyJEjFn0ePHhQs8+xY8eqixcvKqWUys3NVWvWrFEmk8mq3oQJE6zGWRXmUqmqMZ+unku95xwaGqoOHTqkioqKzHXXrFmjgoODNevv2LFD9xhNmjSxqm/rb7G71apVy+bn4sqVKytsbErd+XsXERFhMSY/Pz+1YsUKh/tIS0tTffr0seijR48eNttUdLxUVWLAyhr/KeW5MWBViP+UIgYsWa+yxoDELK6LWZSqGvPpqXPpiTGgC/NwP5H4s8HZxJ+IqN69e6ucnByrvtLS0lTXrl0t6k6dOtWqXmJiovLy+v/Yu/PoKKr04eNPZ99IWMKahCWsQsJm2Adk2BclI4uGDIoMjs44IxFcfyqLDOoMLqiccRQGFBdEEAdFBWQXkEVACAQhhC1IIKwBEsh+3z889EunqzqdpDvdXf39nFPn0FW3bj19u9P98HTdKpO5TVhYmNq+fbtFm9LSUrVnzx7VoEEDq+PrJbL9+vWz+OIq+1wqIjMzUwUGBlp8ON36ctWyadMmFRYWZm7//PPPm7c5Ouk7e/asxbb4+Hh1/fp1zX7WrFmjwsPDrcYwJSXFqq0zXuvCwkKLL/8aNWqor776SjPWnJwcNXbsWIs+Z82apTtGiYmJFm1Xr16t29YWrS+BwMBAdfPmTd19Kpv0KaXUunXrbH7OlE36lFJq9OjRNveJiYkp9z/Oy5Yts+rXWUmfUkrt3LlT+fr66sbTunVr1a1bN924AwMDVWpqqkWfnpCoKKVU3759NeMMCQlRvXr1Uh06dNAdm3Hjxmn22bp1a832JpNJdejQQfPv/Naybt06q/48ZSyVcv/xdMZYlv18vX2pWbOm6tmzp6pXr55um4ceeki3b63PL19fX6e99vZw98KfUkpt3bpVBQcHW8X2wAMPqM2bN6tLly5p7nfx4kX17rvvWiXnMTEx6sSJEzaP6ep8yVNyQHfN/5Ty3hzQE/I/pcgBy7Zz1xyQnMU7c0BvHUtvywEp/JXhDoW/2xPekJAQNWTIEPXaa6+p+fPnqwkTJqj69etb9NWqVSt18eJFzeMOGjTIom1QUJDq06ePeuqpp9TYsWMt3sxBQUFqwoQJ5sd6ieyf//xniz5jY2PVyJEjNb9E7TFz5kyL/ho0aKBeeeUV9eWXX6q0tDS1f/9+tWLFCjV27FgVEBBgbte8eXN17do1cz+OTvqUUmrMmDEW22NiYtQbb7yhvv/+e/XVV1+p119/XXXv3t28vW7duqpXr14W7d9//321cuVKc5/Oeq3Xrl1r9cE6cuRI9eqrr6qVK1eqhQsXqpSUFBUTE2PRbuDAgaqkpER3jByZ+DVv3tzq733jxo267auS9GnFfvui9X49duyYioyMLPczSm8ZNmyYZhzOTPqUUur555+vVLw+Pj6avzx5SqJy+vRp3V/gbC1hYWHq5MmTmn1+9913Fv9ZtncZMWKExa+Dt3jKWCrl/uPpjLFMTU21KCZUZKlbt67u57FS1mdciVifXVvdPKHwp9RvZ6BFREToxhkVFaWGDBmiHn30UTV69GjVvXt3qzPWREQ1bNhQpaen23VMV+ZLnpIDumv+p5R354CekP8pRQ54++KuOSA5i3fmgN46lt6WA1L4K8MdCn/33XefevDBB+1600VHR+v+wSml1NWrVy2SEL3FZDKpzz77TL377rvmdXqJ7LZt2zT7iIqKsmssyiooKFAJCQkV+mMLDg5WO3bssOjHGUnfpUuXVKNGjeyKKTY2VqWmpqrPP//caltCQoK5T2e91koptWLFigolLd27dy/3A9ORid///d//WcUwffp03fZVTfoyMjIs/rNw+6L3H5W0tDS7X/PblxEjRmj+Yq+U85O+wsJCNWvWLBUSEmJ3vNHR0bqnp3tKoqKUUlu2bFF169a1+3nHxcWpX375xWafr732WoWSlU6dOul+b3nSWCrl3uPprLH85ptvbP7yrLV069ZNHTp0yGa/48ePt9pv3rx5VYq1qjyl8KfUb/lY586dK/xZfGtJTExUmZmZdh/PlfmSp+SA7pr/KUUO6O75n1LkgLcv7poDkrN4bw7orWPpTTmgIwt/3NzDQUwmk3zwwQcybdo0CQkJ0WwTEBAgTz31lBw8eNDm7a7Dw8NlzZo1cs899+jearp3796yY8cOSUpKkpKSknLj69mzp7z11lsSEBBg3xMqR0BAgPz4448ye/ZsCQ0NtdnWZDJJcnKyHDlyRLp16+aQ49tSu3Zt2blzp/zhD3/QbVOzZk157rnn5MCBAxIfHy8jRoyQQYMG2dW/I19rEZHExEQ5cOCADBkyxGa72rVry7Rp02TLli1Wd3Nypvvvv99q3ebNm512vObNm0tKSkqF9mnbtq0cOnRInnnmGQkODi63fbNmzWTx4sWyYsUKCQwMrGyoVeLv7y8vvPCCHDlyRHOMb2cymWTMmDGSmpoqv//97yt0HHvGo7r97ne/k71798rdd99d7l30JkyYILt27dK9g98tTz31lKxfv77cdqGhofLMM8/Ijh07JCIiokJxu+NYinjmeFZ1LIcPHy5paWkyatQo813p9AQFBcns2bNl27Ztcscdd9hsu2nTJovHfn5+MnLkyCrF6k3at28vu3fvlg8//FDz7pVafHx8pFevXvLVV1/JihUrKnT3PHfJl9w5B/Sm/E/Es3JAd8//RMgBnaU6ckByFmtGywG9dSzJASvHpFT5t5JavXq1DB061GabnJycCr/onq5Pnz6yZcsWEfnti3HJkiUi8tud6ZYsWSLp6emSnZ0tTZs2lbZt20rv3r3LLQKVlZ+fLwcOHJA9e/ZIdna2tGrVSu644w6LO/FURG5urhw5ckSysrIkPDxc2rVrZ3EXucrIysqSTZs2yfHjx+X48eNy6tQpqV27tsTGxkpsbKx069at0vFW1bZt22T37t2SlpYmRUVFEh0dLR07dpS7777b6su+qKhItm/fLocOHZKQkBDp3r27tGrVSkSq57UWEcnIyJC9e/fK3r175ciRIxIZGSnR0dHSoUMHGTZsmMMS94pq3bq1pKenmx8HBQVJdna2hIeHuyQeW27evCmbN2+WLVu2yLlz5+TixYsSGBgokZGR0qxZMxk4cKB06NBB9zburnL27Fk5cOCAHDx4UNLS0iQ0NFTi4+MlPj5e4uLiLO4CWJ4pU6bInDlzpHbt2k65A58jZWZmyvLly+X48eNy5swZqVu3rvk5x8fHS506dSrc5759++T777+XM2fOyPnz5yUsLEwaNGhg/jvS+8+aFk8aSxH3Hk9njeXVq1flu+++k19++UXOnz8v165dk2bNmskdd9whbdq0kTZt2tj195Oenm5VrBo8eLCsXr3aYbFWRnh4uFy/fl13+/z5863uhusuMjIy5Ntvv5W0tDTJzs6W8+fPi5+fnzRo0EAaNGggcXFxkpiYKA0aNKjysao7X/K0HNDb8j8Rz8oB3TX/EyEHrA6OygHJWbw3B/TWsTR6DujAOtx2Q0z1dZXbT1+9//77XR0OnMjbX2utKQ9z5851dVjQMWDAACUiqnPnzq4OxeMxlo7j7mP55JNPWn3O2XO3TWfzpKm+3sTb8wJv4u2vNTmg53D371lPw3g6jruPpbvmgEz1BVCtHn30UaszMv7zn/+4KBrYkpGRIRs3bhQRkeTkZBdH49kYS8dx97G8efOmfPDBBxbrOnbsKCNGjHBRRADgHsgBPYO7f896GsbTcdx9LL0lB6TwB6BcQUFB8uyzz1qsO3TokPlDHO4hKytLRo4cKSUlJRIVFSV/+9vfXB2Sx2IsHccTxnLJkiVy+fJli3XTp093u+lgAFDdyAHdnyd8z3oSxtNxPGEsvSUHpPAHwC6PPfaYtGvXzmLdzJkzXRQNypoxY4a0aNFCDhw4IDVr1pR58+ZJUFCQq8PySIyl43jCWBYXF8srr7xisW7gwIE2bw4AAN6EHNB9ecL3rCdhPB3HE8bSm3JACn8A7BIQECALFiywuGvUpk2bZP369S6MCrds2LBBbt68KX379pXU1FQZNmyYq0PyWIyl43jCWC5atEgyMjLMj0NDQ2XevHkujAgA3As5oPvyhO9ZT8J4Oo4njKU35YAU/gDYrVu3bvL8889brHvxxRddFA1u9+CDD8rGjRtlw4YNEhMT4+pwPBpj6TjuPpaFhYVWZ628/fbb0rRpU9cEBABuihzQPbn796ynYTwdx93H0ttyQD9XBwDAs8yYMUNSU1MlPT1dRH67hfjOnTulW7duLo7Muz388MOuDsEwGEvHcfex/OabbyQkJETatGkjIiJ9+vSRiRMnujgqAHBP5IDux92/Zz0N4+k47j6W3pYDmpRSqrxGq1evlqFDh9psk5OTIxEREQ4LzBNcvHhRCgoKREQkODhYateu7eKI4Cy81gAAVwgPD5fr16/rbp8/f77bJ9dGRF7gPXitAQCu4MA63HbO+KuCyMhIV4eAasJrDQAAbiEv8B681gAAT8c1/gAAAAAAAAADovAHAAAAAAAAGBCFPwAAAAAAAMCAKPwBAAAAAAAABkThDwAAAAAAADAgCn8AAAAAAACAAVH4AwAAAAAAAAyIwh8AAAAAAABgQBT+AAAAAAAAAAOi8AcAAAAAAAAYEIU/AAAAAAAAwIAo/AEAAAAAAAAGROEPAAAAAAAAMCAKfwAAAAAAAIABUfgDAAAAAAAADIjCHwAAAAAAAGBAFP4AAAAAAAAAA6LwBwAAAAAAABgQhT8AAAAAAADAgCj8AQAAAAAAAAZE4Q8AAAAAAAAwIAp/AAAAAAAAgAFR+AMAAAAAAAAMiMIfAAAAAAAAYEAU/gAAAAAAAAADovAHAAAAAAAAGBCFPwAAAAAAAMCA/BzV0UMPPSR+fg7rDgAAwOvdvHnT5vb33ntP1qxZU03RAAAAoDpkZ2c7rC+HVepWrFjhqK4AAABghz179siePXtcHQYAAADcFFN9AQAAAAAAAAOi8AcAAAAAAAAYEIU/AAAAAAAAwIAo/AEAAAAAAAAGROEPAAAAAAAAMCAKfwAAAAAAAIAB+dnTqEGDBjJ69GhnxwIAAAAnOHbsmBQXF1usq1GjhjRq1MhFEQEAAKAq/P397WpnUkopJ8cCAAAAF2rcuLGcPn3aYt2YMWNk6dKlLooIAAAA1WA7U30BAAAAAAAAA6LwBwAAAAAAABgQhT8AAAAAAADAgCj8AQAAAAAAAAZE4Q8AAAAAAAAwIAp/AAAAAAAAgAFR+AMAAAAAAAAMiMIfAAAAAAAAYEAU/gAAAAAAAAADovAHAAAAAAAAGBCFPwAAAAAAAMCAKPwBAAAAAAAABkThDwAAAAAAADAgCn8AAAAAAACAAVH4AwAAAAAAAAyIwh8AAAAAAABgQBT+AAAAAAAAAAOi8AcAAAAAAAAYEIU/AAAAAAAAwIAo/AEAAAAAAAAGROEPAAAAAAAAMCAKfwAAAAAAAIABUfgDAAAAAAAADIjCHwAAAAAAAGBAFP4AAAAAAAAAA6LwBwAAAAAAABgQhT8AAAAAAADAgCj8AQAAAAAAAAZE4Q8AAAAAAAAwIAp/AAAAAAAAgAFR+AMAAAAAAAAMiMIfAAAAAAAAYEAU/gAAAAAAAAADovAHAAAAAAAAGBCFPwAAAAAAAMCAKPwBAAAAAAAABkThDwAAAAAAADAgCn8AAAAAAACAAVH4AwAAAAAAAAyIwh8AAAAAAABgQBT+AAAAAAAAAAOi8AcAAAAAAAAYEIU/AAAAAAAAwIAo/AEAAAAAAAAGROEPAAAAAAAAMCAKfwAAAAAAAIABUfgDAAAAAAAADIjCHwAAAAAAAGBAFP4AAAAAAAAAA6LwBwAAAAAAABgQhT8AAAAAAADAgCj8AQAAAAAAAAZE4Q8AAAAAAAAwIAp/AAAAAAAAgAFR+AMAAAAAAAAMiMIfAAAAAAAAYEAU/gAAAAAAAAADovAHAAAAAAAAGBCFPwAAAAAAAMCAKPwBAAAAAAAABmRSSilXBwEAAICKefrpp2XBggV2tb169aqUlpZarAsICJDQ0FC79v/Pf/4j999/f4VjBAAAgEttp/AHAADggTZv3ix9+/Z1+nGCgoLk3LlzEhER4fRjAQAAwKG2M9UXAADAA/Xu3VtiYmKcfpzhw4dT9AMAAPBQFP4AAAA8kI+PT7VMvx07dqzTjwEAAADnYKovAACAh9q7d6/ceeedTus/PDxczp07J8HBwU47BgAAAJyGqb4AAACeqnPnztK6dWun9X/vvfdS9AMAAPBgFP4AAAA8mDOn4iYnJzutbwAAADgfU30BAAA82LFjx6RFixYO77du3bqSlZUlfn5+Du8bAAAA1YKpvgAAAJ6sefPmkpCQ4PB+k5KSKPoBAAB4OAp/AAAAHs4Z0325my8AAIDnY6ovAACAhzt79qzExMRISUmJQ/pr0qSJnDhxQkwmk0P6AwAAgEsw1RcAAMDTNWzYUPr06eOw/v74xz9S9AMAADAACn8AAAAG4MipuUzzBQAAMAam+gIAABjAlStXpGHDhlJQUFClftq2bStpaWkOigoAAAAuxFRfAAAAI6hVq5YMHjy4yv2MGzfOAdEAAADAHVD4AwAAMIiqTtE1mUySlJTkoGgAAADgahT+AAAADGLEiBESFhZW6f179OghzZo1c2BEAAAAcCUKfwAAAAYREhIiI0aMqPT+3NQDAADAWCj8AQAAGEhli3e+vr4yZswYB0cDAAAAV6LwBwAAYCCDBw+WyMjICu83YMAAqV+/vhMiAgAAgKtQ+AMAADAQf39/GTVqVIX3Y5ovAACA8VD4AwAAMJiKFvGCgoLkD3/4g5OiAQAAgKtQ+AMAADCY3r17S3R0tN3thw0bJhEREU6MCAAAAK5A4Q8AAMBgfHx8JCkpye72ycnJTowGAAAArmJSSilXBwEAAADH2rt3r9x5553ltgsPD5dz585JcHBwNUQFAACAarSdM/4AAAAMqHPnztK2bdty240cOZKiHwAAgEFR+AMAADCo++67r9w23M0XAADAuJjqCwAAYFDHjh2TFi1a6G6vW7euZGVliZ+fXzVGBQAAgGrCVF8AAACjat68uSQkJOhuT0pKougHAABgYBT+AAAADMzWVN6K3PkXAAAAnoepvgAAAAZ25swZady4sZSWllqsb9q0qRw/flxMJpOLIgMAAICTMdUXAADAyKKiouSuu+6yWp+cnEzRDwAAwOAo/AEAABic1nRf7uYLAABgfEz1BQAAMLgrV65Iw4YNpaCgQERE2rZtK2lpaS6OCgAAAE7GVF8AAACjq1WrlgwaNMj8eNy4cS6MBgAAANWFwh8AAIAXuDW112QycTdfAAAAL8FUXwAAAC9w48YNqV+/vrRv3162bdvm6nAAAADgfNv9XB0BAAAAnC8kJERGjBghPXr0cHUoAAAAqCZ2nfF37tw5+eGHH6ojHgAAADjJvn37pFmzZhIREeHqUAAAAFAF9957r/j7+5fXzL4z/vbt2yf3339/1aMCAAAAAAAAUCU5OTl2/ZjLzT0AAAAAAAAAA6LwBwAAAAAAABgQhT8AAAAAAADAgCj8AQAAAAAAAAZE4Q8AAAAAAAAwIAp/AAAAAAAAgAFR+AMAAAAAAAAMiMIfAAAAAAAAYEAU/gAAAAAAAAADovAHAAAAAAAAGBCFPwAAAAAAAMCAKPwBAAAAAAAABkThDwAAAAAAADAgCn8AAAAAAACAAVH4AwAAAAAAAAyIwh8AAAAAAABgQBT+AAAAAAAAAAOi8AcAAAAAAAAYEIU/AAAAAAAAwIAo/AEAAAAAAAAGROEPAAAAAAAAMCAKfwAAAAAAAIABUfgDAAAAAAAADIjCHwAAAAAAAGBAFP4AAAAAAAAAA6LwBwAAAAAAABgQhT8AAAAAAADAgCj8AQAAAAAAAAZE4Q8AAAAAAAAwIAp/AAAAAAAAgAFR+AMAAAAAAAAMiMIfAAAAAAAAYEAU/gAAAAAAAAADovAHAAAAAAAAGBCFPwAAAAAAAMCAKPwBAAAAAAAABkThDwAAAAAAADAgCn8AAAAAAACAAVH4AwAAAAAAAAyIwh8AAAAAXeP0DQAAIABJREFUAABgQBT+AAAAAAAAAAOi8AcAAAAAAAAYEIU/AAAAAAAAwIAo/AEAALsMHjxYiouLnb4sXLjQ1U/Vbc2fP79SY3rjxg359ddfZf/+/fLZZ5/JpEmTpHHjxnYfNyAgQJRSmkufPn2c+IzdK6aff/5Zrl69arVMnDjRKccDAACoKj9XBwAAADyDyWQSX19fpx/Hx4ffJfX4+PhU6jUIDg6WqKgoiYqKkvbt20tSUpK89tprMn/+fHn55Zfl7NmzTojWeMLCwiQ8PNxqfUBAgAuiAQAAKB+ZNQAAgBcKCAiQv/3tb3Ls2DEZP368q8MBAACAE1D4AwAA8GLBwcGycOFCGTt2rKtDAQAAgINR+AMAAPByPj4+8tFHH0liYqKrQwEAAIADcY0/AABgl+zsbPnyyy/LbdetWzeJiorS3Pb1119LcXGxzf13795dqfi82fXr1+WDDz7Q3BYZGSlxcXHSpk0bm9ei8/Pzk/nz58umTZvk6tWrFttKSkrk1Vdf1dwvMzOz8oFXgTvGBAAA4HaUHVatWqVEhIWFhYWFhYWl3GXZsmW6OUV4eLjL4/PkZcGCBZrjeuLEiXL39fPzU+3atVObN2+2mffNnj3b5c/TXZejR49qjtlf//pXl8fGwsLCwsLC4l1LTk6OPSW9H5nqCwAAPFZoaKjEx8frnmHoDgICAiQ2Nla6d+8uffv2lTZt2khERES1x1FcXCxpaWkycOBA+eijj3TbTZo0SWrVqlWNkbkHPz8/iY6Olo4dO0pMTIxT72DtLu8JAABgfEz1BQAAbiMmJkZmz55ttT41NdU8rTMoKEgmTZokf//73yUmJkZERObMmSNTpkyx2Kdjx47y7LPPah5nwoQJkp+frxtHbGysvPzyy5rbHn74YcnLy7P5PEwmk9x3330yduxY6d+/v4SFhVm1SU9Pl2XLlsnixYvl0KFDNvtzpMLCQhk/frw0a9ZMevfubbU9MDBQRowYIYsWLTKv8/Pzk48//lizv5deekkOHz4sIiJdunSxeh1uWb9+vfz3v/8tN76//OUvctddd2nGPXHiRPNUcXtjssVkMsnYsWPlj3/8owwYMMBiKnR+fr4sX75c3njjDfn555/L7cueY7nrewIAABiYPecFMtWXhYWFhYWFxd6lKlN94+PjNfdbs2aNEhHVrFkzdeLECavtb775plVfQ4cO1Y0jLCzMZhwJCQm6+9asWdPmvl26dFF79+7VT6zKKC4uVv/6179UUFBQuWNblam+ZZeHH35YN6avv/7aom1AQIBu2z59+pjbhYeHq5s3b2q2S0tLsyuuY8eOae7/1VdfVSomvaVNmzbqxx9/1O3jlry8PDVw4EAlUvmpvs58T7CwsLCwsLB458JUXwAAYCgRERGydu1aadq0qatD0TVq1CjZvHmzdOrUye59fH195ZlnnpFdu3ZJzZo1nRidpS+++EIKCgo0t3Xp0qVSfV67dk2+/vprzW1t27aVxo0b29y/devWEhsbq7lN7+y+yoiPj5ctW7ZIjx49ym0bEhIiK1eulLvvvrtSx/Kk9wQAADAeCn8AAMAjvPXWW9K8eXNXh6ErPj5ePv/8cwkODq70/suWLRM/v+q5EktOTo5s2bJFc1v9+vVt3gHYlk8++UR325AhQ2zuO2zYMM31V69elW+++aZS8ZQVFhYm33//vURGRtq9T2BgoHz55ZcVvpakp70nAACA8VD4AwAAbi8hIUEeeughV4dh0zvvvGPzhhBXr16VkydPilJKt82AAQNk+vTpzghP05kzZzTXm0wmiY6OrlSfq1evlkuXLmluq2zh74svvrB5TcaKmDRpkjRo0KDC+/n7+1e4gOeJ7wkAAGAsFP4AAIDbq127tqtDsGnMmDHSt29fzW1r1qyRVq1aSc2aNaVZs2ZSo0YNSUlJkdzcXM32kydPlrp16zox2v8vOztbd9utG6dUVFFRkSxdulRzW//+/cXf319zW1hYmPTp00dzm62zCCsiPDxcnnzySd3taWlpMmvWLLn77rtl0KBB8swzz8jZs2crdSxPfU8AAABjofAHAAA8yv79+2XGjBkyYsQIiYmJkbp16+regbc6BAcHy+uvv665bcWKFTJ06FA5evSoeV1eXp6888470r9/fykpKbHaJzQ0VFJSUpwW7+3Onz+vu62yhT8R/UJdeHi49OzZU3Nbv379NKcXZ2ZmyubNmysdy+2eeOIJ3SLypk2bpHv37jJ16lT59ttvZe3atfLaa69Jq1at5IcffqjQcTz5PQEAAIyFwh8AAPAYGzZskF69eslLL70kK1eulF9//VUuXryoO7W0OvTu3VvzphX5+fkyadIk3Wmcu3btkrlz52puq+yNJCrqwoULuttq1KhR6X5//PFHOX78uOY2vem+etN8Fy9ebHMqbEVMmjRJc/2ZM2dk6NChmmfc5ebmyoQJEyQvL8/u43jyewIAABgLhT8AAOAR9u3bJ8OHD69QAaY6tGzZUnP91q1b5fTp0zb31bsDbvv27atlenNISIjuNr3r/9nr008/1VyvV/gbOnSo5npHTfONjIyUOnXqaG6bN2+ezWsIHj9+XF588UW7j+XJ7wkAAGAs3CIMAAB4hE8++cRhN3hwpBYtWmiuP378uHTq1MnmvqWlpZrrTSaTdOrUSdavX1/l+GyxdWdbRxT+pk6darW+Q4cO0qBBAzl37px5XVxcnOYZcvv27ZO0tLQqxXFLs2bNdLctXLiw3P1XrFghc+bMsetYnvyeAAAAxkLhDwAAeIQtW7a4OgRNemd3PfLII/LII49Uut/69etXel972Sr8/frrr1Xq+8iRI7J7925JSEiwWG8ymWTIkCHy4Ycfmtfpne338ccfVymG2+kV/vLy8ux6rpmZmVJQUCCBgYHltvXk9wQAADAWpvoCAACPcPHiRVeHoEmvyFNVERERTun3du3bt9dcX1hYaPPGH/bSm6Zbdrqv1vX9SkpK5LPPPqtyDLfoFf7Km3p7S2lpqRw7dsyutp78ngAAAMZC4Q8AAHiEy5cvuzoETVFRUU7p19fX1yn93hIaGiq9evXS3JaVleWQG2osWbJE8y61AwcOND+/8PBwzTg2bNggZ8+erXIMtzRp0kRzfU5Ojt19ZGZm2tXOU98TAADAeJjqCwAAPEJxcXG1HSsgIMDuttevX5fQ0FCr9RcuXJCCgoJKx3Djxo1K72uPvn376j7PHTt2OOQY2dnZsnbtWqsz/GrXri1dunSRHTt2yMCBA8Xf399qX0fd1OMWvQJfw4YN7e6jXr16drXz1PcEAAAwHgp/AADAkGydsWYymWzua+vuqWX3vXz5sjRo0MCq3dNPPy2LFi0qJ0rXefbZZ3W3LViwwGHH+eSTTzTv5Dt06FDZsWOH5jTfGzduyJdffumwGERE0tPTNdc3atRIfHx8dG+qcTu9swbL8tT3BAAAMB6m+gIAAEO6evWq7rbyrpVm6w6wZelNR+3SpYvdfVS3xMRE6d27t+a2EydOOPTOsStWrJC8vDyr9UOGDBGTyaR5Y48VK1ZIbm6uw2IQ0S/8+fv7S1xcXLn7N27cWOrUqWPXsTzxPQEAAIyJwh8AADCkS5cu6W6Ljo62ua/WGWp6tm3bprneXYs83bt3l48++kh3+8KFCx1yfb9b8vLyZMWKFVbrExISpH///ppTbR09zVdEv/AnIvK3v/2t3P0nT55s97E87T0BAACMi8IfAAAwJFs3A0lMTNTdlpycrDn9VM+mTZs013ft2lWSk5Nt7vviiy/K1atXrZasrCwJDAy0OwZ7hIWFydNPPy3ff/+9hIeHa7YpKSmRDz74wKHHFdEu5Pn4+Mgbb7xhtf7WdQEd7eLFi3LmzBnNbePGjZPY2FjdfZs2bSoPP/yw3cfylPcEAAAwPq7xBwAADOny5cty6dIlzemZzzzzjOzdu1eWLVtmXufj4yPDhg2rcOFr69atcvLkSWnatKnVtgULFsixY8dk586dVtsGDBgg06dPFz8/63Rs3bp1FboJRO3ateXNN9/U3BYRESHNmzeXjh07ljvF+fXXX9ctjlXF2rVrJTs7W+rXr2+xvn379lZtlyxZ4rQbucycOVPef/99q/UhISGydetWGTJkiKSmplpsS0hIkG+++UbCwsLsPo47vCcAAABEKPwBAACDKi0tlVWrVsm4ceOstvn4+MjSpUslPT1ddu3aJXXq1JFevXrpnglnS1FRkcyaNUv++9//Wm0LCgqSrVu3yueffy5r166VM2fOSHR0tAwYMECSk5M1bzJSWloqb731VoViCA8Pr9BUVC1btmyRF198sUp96CkpKZElS5ZISkpKuW2dMc33lgULFkhKSoq0bdvWalvDhg3lp59+kp9//ll27twpfn5+0rVrV+nQoYPmXYdtcYf3BAAAgIiIKDusWrVKiQgLCwsLCwsLS7nLsmXLdHOK8PBwm/vGx8fr7hsWFlbhWEaNGmVPqmOlsLBQFRUVaW6rVauW1XH8/PzUunXrKnWssl599VXd57NgwQKHHKOsU6dOqaioKN3jBgQE6O7bp08fu16LhISEcuP45Zdf7H5tKxvTsGHDKjVGSimVn5+vuf6vf/2ry94TLCwsLCwsLN655OTk2JNG/Mg1/gAAgGF9+eWXutdbs+W5556TGzduaG5TGje+KC4ulpEjR8revXsrfKzbfffddzJt2rQq9VFRq1atks6dOztliu/tdu/eLUeOHLHZ5tNPP3VqDCK/jfFnn31W4f22b98uixcvtru9J78nAACAcVD4AwAAhqWUkvHjx8svv/xiV/vS0lJ58cUXda+XZ8u1a9ekZ8+e8sILL0heXl6F9//ggw8kMTFRioqKKrxvZZw8eVKmTJkiw4cPt3kHZEeyVdhTSjl1mu/tHnjggQoVGTMyMmTMmDFSWFhYoeN42nsCAAAYD4U/AABgaJmZmdKlSxeZO3eu5OTk6LbbtWuX9OvXT15++eVKH6ugoEBeeeUVad26td1nle3evVv69+8vf/rTn5x2U4ubN2/K0aNHZePGjfLf//5XBgwYILGxsTJnzhzNMxidxVaxbdu2bXLy5MlqiaOkpETGjRsn48aNk+zsbN12SilZtmyZJCQkVPqMSHd9TwAAAO9gUnZke6tXr5ahQ4dWRzwAAABOExgYKHfddZc0btxYGjRoIJcvX5b09HQ5cuSInD592uHHa9SokcTHx0tcXJy0a9dOYmNj5erVq3L+/HlJTU2V1atXy9GjRx1+XNjP399fBg4cKAMGDJDo6GgJDg6WrKwsOXbsmHz++edy6tQphx6P9wQAAHCEnJwciYiIKK/Zdgp/AAAAAAAAgAext/DHVF8AAAAAAADAgCj8AQAAAAAAAAZE4Q8AAAAAAAAwIAp/AAAAAAAAgAFR+AMAAAAAAAAMiMIfAAAAAAAAYEAU/gAAAAAAAAADovAHAAAAAAAAGBCFPwAAAAAAAMCAKPwBAAAAAAAABkThDwAAAAAAADAgCn8AAAAAAACAAVH4AwAAAAAAAAyIwh8AAAAAAABgQBT+AAAAAAAAAAOi8AcAAAAAAAAYEIU/AAAAAAAAwIAo/AEAAAAAAAAGROEPAAAAAAAAMCAKfwAAAAAAAIABUfgDAAAAAAAADIjCHwAAAAAAAGBAFP4AAAAAAAAAA6LwBwAAAAAAABgQhT8AAAAAAADAgCj8AQAAAAAAAAZE4Q8AAAAAAAAwIAp/AAAAAAAAgAFR+AMAAAAAAAAMiMIfAAAAAAAAYEAU/gAAAAAAAAADovAHAAAAAAAAGBCFPwAAAAAAAMCAKPwBAAAAAAAABkThDwAAAAAAADAgCn8AAAAAAACAAVH4AwAAAAAAAAyIwh8AAAAAAABgQBT+AAAAAAAAAAOi8AcAAAAAAAAYEIU/AAAAAAAAwID8HNVRWlqa1KhRw1HdAQAAeL22bdtKbm6u7vbZs2dLUlJSNUYEAAAAZ9u8ebM88MADDunLYYW/qKgoiYiIcFR3AAAAXs9kMtncXqtWLYmJiammaAAAAFAdIiMjHdYXU30BAAAAAAAAA6LwBwAAAAAAABgQhT8AAAAAAADAgCj8AQAAAAAAAAZE4Q8AAAAAAAAwIAp/AAAAAAAAgAFR+AMAAAAAAAAMiMIfAAAAAAAAYEAU/gAAAAAAAAADovAHAAAAAAAAGBCFPwAAAAAAAMCAKPwBAAAAAAAABkThDwAAAAAAADAgCn8AAAAAAACAAVH4AwAAAAAAAAyIwh8AAAAAAABgQBT+AAAAAAAAAAOi8AcAAAAAAAAYEIU/AAAAAAAAwIAo/AEAAAAAAAAGROEPAAAAAAAAMCAKfwAAAAAAAIABUfgDAAAAAAAADIjCHwAAAAAAAGBAFP4AAAAAAAAAA6LwBwAAAAAAABgQhT8AAAAAAADAgCj8AQAAAAAAAAZE4Q8AAAAAAAAwIAp/AAAAAAAAgAFR+AMAAAAAAAAMiMIfAAAAAAAAYEB+rg4AgOf58MMP5fLly+bHY8aMkZiYGBdGBAAVl5aWJmvWrDE/btq0qYwcOdKFERlLSUmJ/PDDD3L48GE5e/asnDt3TkpLS6VevXpSr149ady4sfTr109q1qzp6lAB2IkcEIAReFsOaIjC3y+//CIDBgwwPx49erS8/fbbLowI9vrHP/4hM2bMEBGROnXqyPnz510bEMr1v//9TyZMmGB+3KpVK5k0aZL58YkTJ6RFixaa+3777bcyZMgQu47Tpk0bOXr0qMW6Rx55RP7zn/9UImo4w5tvvmnxN9u6dWuL94Y9zp8/Lx999JEcOnRITp06JX5+ftKiRQtp2bKldO3aVXr27Fmh/pRSsn37dlmzZo1kZWVJdna2hIWFScOGDaVDhw6SmJgoERERFeqzOjhiLEW8czxzc3Nlz549cvToUcnIyJCzZ89K48aNpWXLltKiRQvp0qWL+Pv7a+4bFRUlL7/8svk/sb6+vrJjxw5JSEiozqdgOAcOHJB///vfsnz5crl48aLNtn5+ftK7d29JSkqSiRMniq+vbzVFCVcjB/Q85IAQIWdxNPLpyiMHrABlh1WrVikRsbnk5OTY05VT7N+/3yKWBx54wGWxuKvi4mLzUlJS4upwzF566SXz61anTh1Xh4NyXL58WTVo0MDi7+2LL76waHP8+HHdz4m2bduqoqIiu47VsmVLq/0fffRRZzwtVML169dVUFCQxeszZMgQu/cvLi5Wjz/+uAoMDLT53TJ06FB14MABu/r87rvvVNOmTW32FxgYqB5//HF148aNyj51h6vqWCrlneNZWlqqFi1aZPWZVHZp0aKFWrp0qSotLdXs5/XXX7doHx8frwoLC6v52eirUaOGzec3f/58V4doVlBQoKZNm6b8/f3LzRu1lvbt26sffvjBpc/BXfOlynLn50MO6FnIAaEUOYujkU9XjrfkgA6sw/1I4c9LdOzY0Tw+ycnJrg7HjKTPszz00EMWf2utW7e2+iC1lfSJiJo7d65dxyLpc2+3/+1WNFEpLS1V48ePt7sY4OvrqxYvXmyzz1mzZlWowNC2bVt16dIlRwxFlVVlLJXyzvEsKipS/fr1q1CMvXr1UtevX7fqKzc3V9WqVcui7YwZM6rtuZTHUwp/V69eVQkJCbpx+vj4qNatW6tevXqpiIgI3XYmk0nNmzfPZc/DXfOlynLn50MO6FnIAaEUOYujkU9XnDflgI4s/HFzDwB22bhxo3z44YcW66ZMmSImk6lC/cyYMUOuXLniwMhQ3Xbs2CGvv/56pfd/7LHHZNGiRXa3LykpkT//+c+SlpamuX3lypUyderUCsVw6NAh+eMf/yilpaUV2s/RqjqWIt45ni+99JJs2LChQvts27ZNHnnkEav1oaGh8pe//MVi3SuvvCJHjhypUozepLCwUO69917ZvXu3xfrIyEh56623ZPv27XLt2jU5fPiwbN26Va5cuSLHjh2T5cuXW11PRykljz76aIXe0wCcixwQIuQsjkY+XTnkgJVD4Q+AXV544QWLx3Xr1pUHH3ywwv1cunRJXnrpJUeFhWqUnp4uo0ePlh49esj169cr1ccLL7wg7733nua2Nm3ayMCBA6VWrVpW2/Ly8uT+++/X3O+pp54SpZTVepPJJHFxcRIWFqa53+rVq2Xt2rUViN5xHDGWIt45ntu3b5dXX31Vc1uTJk2kS5cuEh4errn9s88+k/nz51utf/zxxyUgIMD8uLCwkM+pCnjssceskvBBgwZJamqqpKSkSPfu3SU0NNS8zWQySWxsrIwcOVKWL18u7733ngQFBZm3K6Vk4sSJkp6eXm3PAYA+ckDvRs7iWOTTlUcOWAXVfIqhUzDVt3zuOtWDaR6e4bvvvrP6m9c7Dbq8aR4iovz9/dXhw4dtHpNpHq63a9cuNWjQINWlS5dyr6EhdkxNyM7O1rwGSY8ePdTBgwfN7fLy8tTw4cM1j5Genm7R508//aTZLjk5WZ05c0Yp9dt1x5YtW6Z8fX2t2lXX94Wjx1Ip7x3Prl27Wh23VatWFs+5qKhITZs2TfO59OnTR7PfstPYfHx8LPp0FXef6nvkyBHl4+NjEdNrr72mez0dPampqVbXFHrwwQedFLU+d82XKsudnw85oGcgB/Q+5CyORT7tON6WA3KNvzIo/JXPXRM/kj7PoHXdptOnT2u2tSfpExE1fPhwm8esStJXWlqqfvnlF7Vx40a1dOlS9dVXX6kff/xRZWVlVfi5l6e4uFidOHFCnTp1yiEXTs/Ly1O7d+9WBw8edPn1R77++mu7Xkt7ExWt65iEhoaqjIwMq7YXL17UvEHAv//9b4t2TzzxhFWbmJgYde3aNas+n3nmGau2NWrUqJYLEzt6LJXyzvEsKipSAQEBVsfdt2+fZvs//OEPVm3Dw8M1i1Jbt261ajt69GinPRd7uXvh709/+lOFPttt+eabbyz68vX11Xw/O5O75kuV5c7PhxzQM5AD6jNqDkjO4ljk047hjTmgIwt/fuIlDh06JAcPHhSR305P//3vfy8iIkopOXz4sOzYsUN27twpGRkZEhcXJ126dJGuXbtKy5Ytdfvcv3+/XL16VUREoqOjJTY2VkRErl69KgsWLJCffvpJTp48KZGRkdKlSxfp0qWL9OvXTwIDA3X7/Pnnn823rw8MDJTExMRyn9tPP/0kJ06cEBGR2rVry4ABA0REZN++feZpMjk5Oeb2mZmZsnTpUhERCQ4OlnvuuafcY9iSm5srixYtkrS0NMnIyJCsrCyJjY2VuLg4adeunfTs2VOaNWtWoT6Liopk6dKlsm7dOjl16pQUFRXJnXfeadfrUtb169dl8eLFcuDAATl58qScPXtWIiMjJSoqSmJiYmTkyJHSoUMHm30447XWcubMGdmzZ4/s3btX9u7dKzdv3pQmTZpI9+7dZcyYMXbfNj03N1cKCwvNj2vUqKF7K/PybN++3eq6Te3atZPo6OhK9XfLt99+K99//70MGjSoSv3c7uDBg/Laa6/J6tWr5fz585pt4uPjZeTIkTJlyhTdU8FFRFatWmV1PZuWLVvKrFmzRETk66+/lldffVX27NkjRUVFIiISFBQkzZs3l4ceekj+/ve/W0xds2XJkiWyfPlySU1NlYyMDIvrZMTExMioUaNk4sSJEhcXZ1d/7qrseIr8dp2O5s2bW62vU6eOLFmyRC5dumSxvk2bNuZ/l5SUyJIlS6z2TUlJkRo1alitf+6552T27NkW665fvy4rV66U++67z96n4Ta8cTwPHz5s8dkmItK9e3fdz/BRo0bJihUrLNZdu3ZNjh07Ji1atLDqJyIiwvxZLyKyfPlyOXPmjERFRTnoGRjL6dOn5eOPPzY/9vX1tXpPVMTw4cOlX79+5mnDJSUl8vLLL8vChQut2ro6X3LnHNCT8z8R78wB3TH/EyEHvB05YNV4Y87iLN46luSAVVTNlUansOeMv9sr43fddZdS6rdpJbbuQCciasqUKbrH7d27t7ldSkqKUkqp+fPn2/x1vkOHDurIkSO6fU6aNKnCv35OmDDBvM+dd95pXp+SklLu6xYVFWXXMbQUFxerd999V9WrV8/mMYKCgtT777+v2YfWr73r169XjRo1stnnzJkzy40vLy9PTZ48WYWHh5c7Dl27dlVr167V7csZr/Xt8vPz1WOPPVbuOD7xxBMqNze33P4SExMt9l29erVdcWh58sknK/R3ofdrb48ePazWxcXFqeLiYs1+KvJr761b2Wudeq631KtXTy1fvlz3ebz11lua75PCwkI1evTocvtv3Lix2rp1q82xvXDhgho1apRd8fr5+akXXnhBFRQU2OzTkRz5C+W5c+c09zl58mSl49u2bZtmnxs2bNDdp0mTJlbtk5KSKh2DvRz9a6+3juenn35qdTxbZzGVPYPs1qJ3tsrIkSOt2tp7F0pncecz/srmGX/5y1+q3OfevXuVyWSy+OzT+t5zdb7kzjmgJ+R/SpEDKuXe+Z9S5IBl3yfekgOSszgW+bRjeGMOyF19HWD9+vXStWtXq1+xynrzzTfl2WeftavPOXPmyJ///GebF+ncv3+/3HnnnZpVdU/zf//3f/LYY4/p/qp2S35+vjz66KMybtw4yc/Pt9l21apVMnjwYMnKyrLZbtq0aboX9hT57ZeLpKQkmTNnjly7ds1mXyIiu3btknvuuUfWr19fblsRx77WGRkZ0qNHD3n33XdttsvPz5e33npL4uPjJSMjw644HWH58uVW6yrzC+2kSZOsfok6ePCgvP/++5WOTUSkuLhYkpKSZO7cuVJSUmL3fufPn5f77rvP4mwVe0yePFm++OKLcttlZmZKcnKy7vtvy5YtEhcXpzm+WoqLi+Xll1+W5ORkzQvvOsM999wjJSUlmku7du0q1NfOnTut1jVp0kSaNGlS6fgyMzM113c2tO/5AAAgAElEQVTs2FF3H61tp0+frnQM9nLkWIp473j2799fdu/ebbH885//1G3/008/Wa2rUaOG7tkqWp9t9v6NeqPvvvvO4vFzzz1X5T47deokPXv2ND8uLi42n9HmzrwpB3RG/ififTmgu+d/IuSAZXlLDkjO4ljk045BDlg1XjPV93ZHjx6VESNGSH5+vvj6+sqoUaOkR48eEhMTI8ePH5eNGzfKqlWrzO1nz54t3bt3l3vvvVe3zy+++ELOnDkjIiKtWrWSSZMmSVxcnAQEBEhGRoZ88MEHsnHjRhH57TT8Bx98UBISEqxOM3WkxMRE8xt7zpw55kSqU6dOkpycLCKiefquPb755huL248PGjRIUlJSpE2bNhIcHCwnTpyQw4cPyyuvvCLHjh0TEZFPP/1U2rZtK88//7xmn7m5uXLfffdJcXGx+Pr6ytixY6VXr17SvHlzSU9Pl61bt1okUM8//7x06tRJhgwZYtXXs88+KytXrjQ/jouLk2effVbatm0r0dHRcunSJTl27Jh8/PHHsmzZMlFKSX5+viQmJsr58+clJCRE97k78rU+fvy4dO7c2SJ5HDRokAwbNkw6dOggZ8+elR07dsj69evNt14/ceKEDB48WHbs2CF169bVjdMR9u7dKydPnrRYFxQUJH369KlwX4GBgfL6669b/R1Nnz5dkpOTpWbNmpWKce7cuXYlYVpKSkrk4Ycflt/97nd2TUdKS0uTXbt22d1/ZmamPPXUUzJv3jyL9QUFBTJ+/HjJzs6ucMzLly+XqVOnmqebOJuPj2N+H9qzZ4/Vult/E5mZmfK///1P9u/fLwcOHJCQkBDp2LGjdOzYUQYPHiyNGjXS7FNr/OrUqaN5F7NbtKZBlPefV0dx1FiKeO941q9fX+rXr29X2+zsbM3/dI8ePVp3H62kb8uWLXLhwgWnf956mtLSUjl16pT5cUhISJX+43G71q1by7Zt28yPjx8/7tRpblXNl9wtB/S0/E/E+3JAd8//RMgBy/K2HJCcxbHIp6uOHLCKqvkUQ6eo6FTfW0tUVJTav3+/Zp+TJ08u9zTS20/9v7Xcf//9uqetv/POOxZt7733Xqs2jpy6cjtHX9z5d7/7nbm/oUOH6l7Q9ubNm2rIkCHmthERESovL8+8Xet1iYuLU3v37tXsr+wYPvTQQ5rt6tevb24zfPhwdfPmTd3n8uabb1r0uWnTJqs2znitlVIWp/gHBwfrTokpKCiwmr7x4osv6j4nR031eP75562ed5s2bWzuozfN48svv1RKKdW/f3+rbZMnT7bqx55pHleuXFG1a9fWPF7nzp3VK6+8olatWqUWL16spkyZojstZ+zYsVbH15rmcWvx8fFRd911l5o+fbr68MMP1aRJk3SnPDVq1Miq71mzZmm2bdOmjZo7d65at26d+vTTT9XYsWM12/n5+amjR49W5KV0uHbt2lnFZWtqwsMPP2zVfsKECWrFihWqVq1aumNds2ZN9cknn2j2qfX+bNKkic24p06darVPeHh4VYaiyio6lkoxnnquX7+uMjIy1EcffaSaNWumGdu5c+ds9hEUFGS137x586rpGVhz16m+p06dsogjLi7OYX2/+uqrFn3PmTPHqo2r8yVPyQHdNf9TyrtzQHfP/5QiB9T7zPX2HJCcxbHIpx3HiDkgd/UtozKFPz8/P3Xo0CHdPktLS1V0dLS5fXR0tFWbsolAmzZtVFFRkc1YJ06caLHP5s2bLba7OpG1R0lJiQoLCzP3t2jRIpvt161bZ/Gcd+/ebd6m9bocOHDAZn+dOnWy+aGUmZlp0ee6dets9ldcXKxCQkLM7f/1r39ZtXHGa71582aL7W+//bbN/goLCy2S6JiYGN2EOzc3V12+fNm8lBernu7du1v9revdBv2W8pK+1NRUq+uw+Pv7W91W3p6k7+mnn9Y81oQJE1R+fr5VbGlpaSo2NtaqvclkUj/99JNFW1tJn9Z/QtPS0lRkZKRm++vXr5vbnT592uL9dmsZMGCA5t2wPvvsM80+9f7DU10qmqiMGDHCqv3tn7HlLUlJSVb/ySr7NyYiql27djbj/uc//6nZv9b7pbpUJolmPK0NHTrU5nNu0aKF+vnnn8vtp3Hjxprj5SruWvjbsGGDRRwjRoxwWN9ffPGFRd+PP/64VRtX50uekgO6a/6nlPfmgJ6Q/ylFDqj3mevtOSA5i2ORTzuGUXNArvHnABMnTpQ77rhDd7vJZLKYu37hwoVy+5w2bZr4+dmePT1jxgyLxxW9toQ7OH36tOTm5pofHz9+3Gb7fv36ycyZM2Xq1KkydepUm1MoUlJSyp3Oc9ddd5n/rXVq8pEjR6Rp06bStGlT6dixo/Tt29dmf76+vhbTky5fvmyzvYhjXuspU6aY/52QkCB///vfbfbn7+8v//jHP8yPT58+LevWrdNsGxoaKrVq1TIv5cWqR+taDfaeYq0nPj5eHnnkEYt1RUVF8uSTT1aon8uXL8vcuXOt1rdo0ULmz5+veTe9tm3byvz5863WK6XkpZdesuu4Y8eOlSeeeEKzb73Tx48cOWL+90cffSQ3btyw2B4QECDvv/++BAcHW+2blJQkSUlJVutXrFhhcec3d5eXl2e17tdff7V7/yVLlsg777xjsU5rSkFoaKjNfvS2V9dUD0dhPK3Z+nvw8fGRxx57TNq3b19uP1qfcdVxDSBPU/a7X2vaT2U1bdrU4vGtqZXuzBtyQGfmfyLekwN6Qv536zhlkQOSA1YGOYvjMJbayAHL57WFv5SUlHLb3H5r6IKCAotkpyxfX1+5++67y+0zOjpaYmJizI+r+yK9jhATE2NxLY433nhDNwER+a2IOnXqVJk5c6bMnDnTZsFV61otZd0+xz4/P9/qdRkwYICcOHFCTpw4IT///LP4+vra7O/ChQvlJq+3c8RrfenSJYtrNIwZM8auaz8kJCRYJKiff/65vWFXWElJiZw7d85qfb169arc98yZM62u57Jy5Uqb76OyDhw4oHmx8Kefftrma96vXz/p0qWL1XqtC8BqSUxM1N0WHx+vuf72L8H09HSr7T179pTY2FjdfrWuL5qTkyP79u2zFapbKSws1N3m6+sr9957r0ydOlXGjx8vDRs21Gw3bdo0iy/fK1euWLXRSpzt2a7VlztjPCumtLRUpkyZIkOGDLH6T1dZWp9xnlB4qm5lX+OqFgRud+nSJYvHeu9hd+EtOaAz8z8R78gBPSH/EyEH1EMOWDnkLI7DWFYcOeBvvPLmHj4+PtKyZcty25X9xfnmzZsSFham2bZTp052Xyi5Xbt25j+2Wxc+9iQ+Pj7Sv39/811ucnNzZeDAgdK1a1cZP368DBs2zGrs7GXPfmVfA1uvi54LFy7IyZMnZefOnTJ9+nQpKCiwe19HvNZlv/g7d+5s9/Hbt29vvqD67b8iOtq5c+c075DmiP/cRUZGyvTp02Xy5MkW66dMmWJXoi4icvjwYc319txtbuDAgVZJXnZ2tuTk5JR7gWlbd9+y53NF6z96vr6+8u9//1t3n7Nnz2quP3DgQIXeO66kd7e9GjVqyA8//GBxhvWVK1dk3LhxVncMzc3NlenTp8vChQtFRDQvOnzz5k2bcehtt3UBY3fEeFoLDw+XwMBAm5/na9eulaefftrm35vWZ1xWVpYopcRkMjkkViMo+1lZkTMOylP2hgKOPJvQGbwlB3Rm/ifiHTmgJ+R/IuSAesgBK4ecxXEYS23kgOXzysJfcHBwlU5911KRpLRdu3ayevVqEfktUc7Pz5egoCCHxuNs7733nhw9elRSU1PN63bt2mW+21VMTIz079///7F359FRVGnjx5909oUESJCQDQhhD4sIgqBssgVRBMOWd2BEcXBUZEZ9ZUYZRF+VERQdnREVHXREZVAUZd8FhYAsIiEsIUJYTNgJhDUJub8/OPQvna7qdCfd6e7q7+ecew5ddevWrVt095On61ZJWlqa9O3b164PAZPJJElJSZXWc+RNd/nyZdm0aZOsXbtWfvnlF8nLy5O8vLxKs/22OONcVwzYnnrqKbv/D5T/g0gvGHAGvV83nHVVx+OPPy7vvfeexVhkZWXJ7Nmz5dFHH610e62gz2QySXx8fKXblv8VvmKbXbp00d3O399fmjVrprvens+VAwcOWC1bs2aNrFmzptJtK/KmqQnR0dGay99//32LIEXkRtAwd+5cSUlJsZp2Vf6Jelr/F21dmS2iPUVCxDlXMdQkxtPa/PnzReTG5/62bdtk1qxZmk90mzVrlgwZMkT69Omj2Y5W34uLi+XUqVNe9//ElerWrWvx2plJrEOHDlm89vTEny/FgK6I/0R8Jwb0hvhPhBhQCzFg1RGzOA9jqY0YsHI+OdVX674P1eXIY+hbtGhh/rdSqkqPcy9PKVWt7asiJiZG1qxZI6NGjdL8Ze7o0aPy8ccfy4gRI6RevXpyzz33yLp162y2Wbt2bQkKCnJK/0pLS2XmzJlSv3596du3r0ybNk2WLl0qe/bssQr4EhISKr2cuWI/7aV3riv+4puVlSVbt261q5S/36TWNAdn0btU21mPMw8MDJQ333zTavmUKVPk/PnzlW6v9atpvXr1JDAwsNJt9QLDyqZdhYSE2Pw/Wtl7saioyKmBmivPv7NpTTeIjIyUUaNGadavU6eOPPLII1bLc3JypLS0VES0v5yrEqhERUW55HvBlRhPfWFhYdK9e3f54osv5JVXXrFar5SSjz76SHd7vcDOE6evuFPFJI0zE38Vr/hLSUlxSruuipd8KQZ0Rfwn4jsxoDfEfyLEgFqIAauOmMV5GEvbiAH1+WTizxWXaVZ2A8zyKr5RIiMjq7XvoqKiam1fVTExMfL555/LgQMHZMaMGdK9e3fNX7uuX78uS5cuNd/kWY+zzktxcbF0795dnn76aasPrbCwMGnVqpXce++9MnnyZFmyZInk5eVJTEyM3e0741xXDGrq1q0r0dHRDhdH+uKo2NhYzeXODDTS0tIkLS3NYtmpU6csbmKtRyv4tCdYFLlxbxR723Sm4OBgu6aw2Evvcn9PpBWotGrVyuY25f9ouqmkpMT8i7nWl/OFCxdstqn1eemNv+Axnvb5y1/+ovmHelZWlu42ep9xep+Jvqp9+/YWCZO8vDyb9x6yV3FxsUWiyM/Pz+b9rxzhqnjJ12JAZ8d/Ir4TA3pD/CdCDOgKxICWiFmqhrG0HzGgJZ+c6usKjtygufzNNE0mk0RFRVVr3+7OQDdu3FieeeYZeeaZZ+TSpUvy448/yrp162TFihXyyy+/WPwC9sILL0jTpk11f5VwhsmTJ0tmZqZF//785z9Lv379pGnTpnbdRNkWZ5zrilcv/Pzzz3ZNcalJev2peNP16po5c6asWrXK/KuTiMg777xT6S/wzZs3t1p29epVOXXqVKXBm97TmbTadKagoCBp3Lix1f+h559/XsaMGeNwe3qX+3uiuLg4q2WVTRnSuynxzT8QtbYvLCyUEydO6LatdV8kTwtU7OGr4/nPf/7T6v4t/fv3130SqMlkkjvvvFMWL15ssTwnJ0dKSko0rw7R+oyLjIys9ne10QQEBEinTp1kw4YNInIj4fLvf//brml6tsybN8/iKrjbbrvNaVNhXRUv+WoM6Gnxn4jnx4DeEP+JEAO6AjGgJV+IWVzBl8eSGLB6SPw5ia3McUXlv3BuueWWagchnvSI6fDwcOnfv7/0799f/v73v8vhw4fltddek1mzZpnrzJ0712WBX2Fhobz++uvm1y1btpS1a9dWmqXXu0+BFmec64rBxYEDBzwu8KtTp46Eh4dbjc3p06edup8WLVrI448/Lv/4xz/My4qLiyu9ckTr1ysRkd27d0uvXr1sbpudnW21LDQ0tEbOQfPmza2Cvvz8fJv3jTECrSt2KpsaqHWPoYCAAPM9lvTO186dO6V///6a68rfl+qm8k9K9Ba+Op7//Oc/rYLNM2fOyKuvvqq7jVawFhwcrHs/Jq3POL17Qvm6ESNGmBN/IiLTpk2Thx56qFpTNst/F4jcmPrnLK6Kl4gB3R//iXhHDOgN8Z8IMaCrEAP+f74Qs7iCL48lMWD1+ORUX1fIy8urdC68yI37jmzZssX8ulu3bhbry18CfvHiRSkpKbHZXn5+vuaNYl1p9erVMmfOHJkzZ45s2rTJZt2GDRvKu+++KxkZGeZl27Ztc1nfsrKyLH5h/t///d9KA77du3db3fDUFmec64pf8Hv27LF7/9999515/Mv/qu0KWh90zv61V+TGlQCO/nKpF/RV/KOxovz8fPnqq6+sljdr1qzaf4DZQ+sX5c2bN9vcpri4WM6cOWNVyv9C7ul69uxp9UtgTk6OzRuUb9++3WpZSkqK+Re6Ll26aP6KqfcZc/LkSc3gZ8iQITb77ol8dTy1At4dO3bY3Ebrj7w2bdroTi3U+owzStDnbKNHj7Z4wumRI0fk448/rnJ7GzZssDifnTp1knvvvVezrifFS74SA3py/CfiHTGgt8R/IsSArkAM+P/5QsziCr48lsSA1UPiz0mUUvLjjz9WWm/evHly+PBh8+uePXtarC9/n5Fr165VGhB88sknjnXUCRYtWiQPPfSQPPTQQzJ+/Hi7tunRo4f535cvX3bZzagr/gpgz2PuHX2SljPOdaNGjSQiIsL8+sMPP7RrTH7++We5//77zeN/5MgRh/ruqJoK+urUqWPXPV3Ka968udUfTSI3AmO9c1pWViZ//etfNX9Jfuihhxzaf1Vp3Ydj7969Mn36dN1thg8fLjExMRalfv36FvezmTp1qowcOdKq2HvPG1cLCAiw+ANQ5EYwO3nyZM36J06ckDlz5lgtL//EMpPJJCNHjrSq8/bbb2v+Iad1j6nIyEgZNGiQxTJPH0sR7xlPZ4+l1vtn06ZNmk94FBFZvHix7Ny502p5u3btdPeh9WuvJ16R4wlq1aolf/zjHy2WTZkyRbZu3epwW+fOnZNx48ZZLLN1XzhPipd8JQb05PhPxDtiQG+J/0SIAV3BFTEgMYslo8eAvjyWxIDVpOywbNkyJSI2S2FhoT1NucQvv/xi0ZfRo0db1XnxxRfN66Ojo+1qd/bs2Rbtnjx50mL9XXfdZbE+Pj5eHT9+XLe9y5cvq1atWpnrh4aGqvz8fIs6//73vy3anDVrlm57GzZsUAEBARb1b7vtNs267du3N9cZNmyYXcev59NPP7XY5/79+yvd5oknnjDX7969u3l5Vc7L22+/rXteKv5f/eabb2y2tXv3bpWUlGSxzaRJk6zqueJcv/baaxZtLly4sNJj79u3r7l+RESEunz5sma9goIClZubay569SozadIkq/d6t27dbG5z8OBBzc+Ir7/+2uZ2paWlKjU11ebnzPjx4y22yczM1KwXGBio3nrrLXXq1CmllFLXr19Xe/fuVWlpaZr1U1JSVHFxsUXbb731llW98PBwm8ewZs0azfaXLl1qrnPlyhXVokULqzomk0m99tpr6tdffzXXvXjxovrTn/6k2ebdd99tse+K/0dvlhMnTtjsc1W1bt3aal8DBgywuc3PP/+s2cfHH39cXbt2zVzv8OHDql27dlb1/Pz81M8//2zR5rZt2zTbHD58uDp27JhSSqlr166pefPmKZPJZFVv7NixVv30hrFUyjvG09ljqXfMiYmJavv27aqsrMxcd968eSo6Olqz/tq1a3X3ER8fb1Xf1nexq9WqVcvm5+Ls2bPd1jelbnzfpaSkWPQpKChIvffee3a3UVBQoLp3727RRteuXW1u4+54yVtiQE+N/5Ty3RjQG+I/pYgBK9bz1BiQmMV5MYtS3jGevjqWvhgDOjEPt4nEnw2OJv5ERN11113q6tWrVm0VFBSo22+/3aLun//8Z6t6eXl5ys/Pz1wnIiJCZWZmWtQpKytT27dvV7GxsVb71wtke/fubfHFVfFYHHHkyBEVHBxs8eF088tVy/fff68iIiLM9Z977jnzOmcHfQUFBRbr2rRpo4qKijTbWbFihYqMjLQaw4kTJ1rVdcW5Li4utvjyr1Wrlvr22281+1pYWKhGjRpl0ebLL7+sO0aDBw+2qLt8+XLdurZofQkEBwerK1eu6G5T1aBPKaVWr15t83OmYtCnlFLp6ek2t0lMTKz0D+cvv/zSql1XBX1KKbVlyxbl7++v25/mzZurzp076/Y7ODhY7dq1y6JNbwhUlFKqZ8+emv0MCwtT3bp1U+3atdMdm9/97neabTZv3lyzvp+fn2rXrp3m+/xmWb16tVV73jKWSnn+eLpiLCt+vpYvtWvXVl27dlW33HKLbp0HH3xQt22tzy9/f3+XnXt7eHriTymlfvzxRxUaGmrVt9GjR6v169erM2fOaG53+vRp9e6771oF54mJierQoUM29+nueMlbYkBPjf+U8t0Y0BviP6WIASvW89QYkJjFN2NAXx1LX4sBSfxV4AmJv/IBb1hYmBowYICaMWOGmj17tho7dqyqX7++RVvNmjVTp0+f1txvv379LOqGhISo7t27q2eeeUaNGjXK4j9zSEiIGjt2rPm1XiD7yCOPWLSZnJyshg4dqvklao+XXnrJor3Y2Fj16quvqq+//lplZ2erX375RS1cuFCNGjVKBQUFmes1adJEXbhwwdyOs4M+pZQaNmyYxfrExET1xhtvqJUrV6pvv/1Wvf7666pLly7m9fXq1VPdunWzqP/++++rRYsWmdt01bletWqV1Qfr0KFD1bRp09SiRYvUv//9bzVx4kSVmJhoUa9v377q+vXrumPkzMCvSZMmVu/3devW6davTtCn1ffyRev/66+//qpiYmIq/YzSKwMHDtTshyuDPqWUeu6556rUX5PJpPnLk7cEKkePHtX9Bc5WiYiIUHl5eZptLl261OKPZXvLfffdZ/Hr4E3eMpZKef54umIsd+3aZZFMcKTUq1dP9/NYKesrrkSsr66tad6Q+FPqxhVoUVFRuv2Mj49XAwYMUOPHj1fp6emqS5cuVlesiYhq0KCBysnJsWuf7oyXvCUG9NT4TynfjgG9If5TihiwfPHUGJCYxTdjQF8dS1+LAUn8VeAJib/hw4erMWPG2PWfLiEhQfcNp5RS58+ftwhC9Iqfn5/64osv1LvvvmtephfIbty4UbON+Ph4u8aiomvXrqmOHTs69GYLDQ1VmzdvtmjHFUHfmTNnVFxcnF19Sk5OVrt27VL//e9/rdZ17NjR3KarzrVSSi1cuNChoKVLly6VfmA6M/D761//atWHF154Qbd+dYO+3Nxciz8Wyhe9P1Sys7PtPufly3333af5i71Srg/6iouL1csvv6zCwsLs7m9CQoLu5eneEqgopdQPP/yg6tWrZ/dxp6amqr1799psc8aMGQ4FK7feeqvu95Y3jaVSnj2erhrLxYsX2/zlWat07txZ7dmzx2a7v//97622++CDD6rV1+rylsSfUjfisQ4dOjj8WXyzDB48WB05csTu/bkzXvKWGNBT4z+liAE9Pf5TihiwfPHUGJCYxXdjQF8dS1+KAZ2Z+OPhHk7i5+cnc+bMkSlTpkhYWJhmnaCgIHnmmWdk9+7dNh93HRkZKStWrJB7771X91HTd911l2zevFlGjhwp169fr7R/Xbt2lbfeekuCgoLsO6BKBAUFyaZNm2T69OkSHh5us66fn59kZGTI/v37pXPnzk7Zvy1169aVLVu2yP33369bp3bt2vKXv/xFsrKypE2bNnLfffdJv3797GrfmedaRGTw4MGSlZUlAwYMsFmvbt26MmXKFPnhhx+snubkSiNGjLBatn79epftr0mTJjJx4kSHtmnVqpXs2bNHnn32WQkNDa20fuPGjeXzzz+XhQsXSnBwcFW7Wi2BgYHy/PPPy/79+zXHuDw/Pz8ZNmyY7Nq1S3r16uXQfuwZj5p25513yo4dO2TQoEGVPkVv7Nix8tNPP+k+we+mZ555RtasWVNpvfDwcHn22Wdl8+bNEhUV5VC/PXEsRbxzPKs7lvfcc49kZ2fLAw88YH4qnZ6QkBCZPn26bNy4UVq2bGmz7vfff2/xOiAgQIYOHVqtvvqStm3byrZt2+Tjjz/WfHqlFpPJJN26dZNvv/1WFi5c6NDT8zwlXvLkGNCX4j8R74oBPT3+EyEGdJWaiAGJWawZLQb01bEkBqwaP6Uqf5TU8uXLJS0tzWadwsJCh0+6t+vevbv88MMPInLji3HevHkicuPJdPPmzZOcnBw5ceKENGrUSFq1aiV33XVXpUmgiq5evSpZWVmyfft2OXHihDRr1kxatmxp8SQeR1y8eFH2798v+fn5EhkZKa1bt7Z4ilxV5Ofny/fffy8HDx6UgwcPyuHDh6Vu3bqSnJwsycnJ0rlz5yr3t7o2btwo27Ztk+zsbCkpKZGEhARp3769DBo0yOrLvqSkRDIzM2XPnj0SFhYmXbp0kWbNmolIzZxrEZHc3FzZsWOH7NixQ/bv3y8xMTGSkJAg7dq1k4EDBzotcHdU8+bNJScnx/w6JCRETpw4IZGRkW7pjy1XrlyR9evXyw8//CDHjx+X06dPS3BwsMTExEjjxo2lb9++0q5dO93HuLtLQUGBZGVlye7duyU7O1vCw8OlTZs20qZNG0lNTbV4CmBlnnrqKXnzzTelbt26LnkCnzMdOXJEFixYIAcPHpTffvtN6tWrZz7mNm3aSHR0tMNt7ty5U1auXCm//fabnDx5UiIiIiQ2Ntb8PtL7Y02LN42liGePp6vG8vz587J06VLZu3evnDx5Ui5cuCCNGzeWli1bSosWLaRFixZ2vX9ycnKsklX9+/eX5cuXO62vVREZGSlFRUW662fPnm31NFxPkZubK0uWLJHs7Gw5ceKEnDx5UgICAiQ2NlZiY2MlNTVVBg8eLLGxsdXeV03HS94WA/pa/GcJj60AACAASURBVCfiXTGgp8Z/IsSANcFZMSAxi+/GgL46lkaPAZ2Yh8s0xFRfdyl/+eqIESPc3R24kK+fa60pD++88467uwUdffr0USKiOnTo4O6ueD3G0nk8fSyffvppq885e5626WreNNXXl/h6XOBLfP1cEwN6D0//nvU2jKfzePpYemoMyFRfADVq/PjxVldkzJo1y029gS25ubmybt06ERHJyMhwc2+8G2PpPJ4+lleuXJE5c+ZYLGvfvr3cd999buoRAHgGYkDv4Onfs96G8XQeTx9LX4kBSfwBqFRISIhMmjTJYtmePXvMH+LwDPn5+TJ06FC5fv26xMfHy+OPP+7uLnktxtJ5vGEs582bJ2fPnrVY9sILL3jcdDAAqGnEgJ7PG75nvQnj6TzeMJa+EgOS+ANgl8cee0xat25tseyll15yU29Q0dSpUyUlJUWysrKkdu3a8sEHH0hISIi7u+WVGEvn8YaxLC0tlVdffdViWd++fW0+HAAAfAkxoOfyhu9Zb8J4Oo83jKUvxYAk/gDYJSgoSD766COLp0Z9//33smbNGjf2CjetXbtWrly5Ij179pRdu3bJwIED3d0lr8VYOo83jOUnn3wiubm55tfh4eHywQcfuLFHAOBZiAE9lzd8z3oTxtN5vGEsfSkGJPEHwG6dO3eW5557zmLZ5MmT3dQblDdmzBhZt26drF27VhITE93dHa/GWDqPp49lcXGx1VUr//jHP6RRo0bu6RAAeChiQM/k6d+z3obxdB5PH0tfiwED3N0BAN5l6tSpsmvXLsnJyRGRG48Q37Jli3Tu3NnNPfNt48aNc3cXDIOxdB5PH8vFixdLWFiYtGjRQkREunfvLg8//LCbewUAnokY0PN4+vest2E8ncfTx9LXYkA/pZSqrNLy5cslLS3NZp3CwkKJiopyWse8wenTp+XatWsiIhIaGip169Z1c4/gKpxrAIA7REZGSlFRke762bNne3xwbUTEBb6Dcw0AcAcn5uEyueKvGmJiYtzdBdQQzjUAALiJuMB3cK4BAN6Oe/wBAAAAAAAABkTiDwAAAAAAADAgEn8AAAAAAACAAZH4AwAAAAAAAAyIxB8AAAAAAABgQCT+AAAAAAAAAAMi8QcAAAAAAAAYEIk/AAAAAAAAwIBI/AEAAAAAAAAGROIPAAAAAAAAMCASfwAAAAAAAIABkfgDAAAAAAAADIjEHwAAAAAAAGBAJP4AAAAAAAAAAyLxBwAAAAAAABgQiT8AAAAAAADAgEj8AQAAAAAAAAZE4g8AAAAAAAAwIBJ/AAAAAAAAgAGR+AMAAAAAAAAMiMQfAAAAAAAAYEAk/gAAAAAAAAADIvEHAAAAAAAAGBCJPwAAAAAAAMCASPwBAAAAAAAABkTiDwAAAAAAADAgEn8AAAAAAACAAfkppVRllZYvXy5paWk268TFxYmfn5/TOgYAAODr8vPzxVaoVqdOHQkLC6vBHgEAAMDVrl27JqdPn7ZZp7CwUKKioiprKjPAWZ3Kz893VlMAAACww7lz5+TcuXPu7gYAAAA8FFN9AQAAAAAAAAMi8QcAAAAAAAAYEIk/AAAAAAAAwIBI/AEAAAAAAAAGROIPAAAAAAAAMCASfwAAAAAAAIABBdhTqUWLFvLGG2+4ui8AAABwgblz58qlS5csliUnJ0vfvn3d1CMAAABUR2hoqF31/JRSysV9AQAAgBslJSXJ0aNHLZYNGzZM5s+f76YeAQAAoAZkMtUXAAAAAAAAMCASfwAAAAAAAIABkfgDAAAAAAAADIjEHwAAAAAAAGBAJP4AAAAAAAAAAyLxBwAAAAAAABgQiT8AAAAAAADAgEj8AQAAAAAAAAZE4g8AAAAAAAAwIBJ/AAAAAAAAgAGR+AMAAAAAAAAMiMQfAAAAAAAAYEAk/gAAAAAAAAADIvEHAAAAAAAAGBCJPwAAAAAAAMCASPwBAAAAAAAABkTiDwAAAAAAADAgEn8AAAAAAACAAZH4AwAAAAAAAAyIxB8AAAAAAABgQCT+AAAAAAAAAAMi8QcAAAAAAAAYEIk/AAAAAAAAwIBI/AEAAAAAAAAGROIPAAAAAAAAMCASfwAAAAAAAIABkfgDAAAAAAAADIjEHwAAAAAAAGBAJP4AAAAAAAAAAyLxBwAAAAAAABgQiT8AAAAAAADAgEj8AQAAAAAAAAZE4g8AAAAAAAAwIBJ/AAAAAAAAgAGR+AMAAAAAAAAMiMQfAAAAAAAAYEAk/gAAAAAAAAADIvEHAAAAAAAAGBCJPwAAAAAAAMCASPwBAAAAAAAABkTiDwAAAAAAADAgEn8AAAAAAACAAZH4AwAAAAAAAAyIxB8AAAAAAABgQCT+AAAAAAAAAAMi8QcAAAAAAAAYEIk/AAAAAAAAwIBI/AEAAAAAAAAGROIPAAAAAAAAMCASfwAAAAAAAIABkfgDAAAAAAAADIjEHwAAAAAAAGBAJP4AAAAAAAAAAyLxBwAAAAAAABgQiT8AAAAAAADAgEj8AQAAAAAAAAZE4g8AAAAAAAAwIBJ/AAAAAAAAgAGR+AMAAAAAAAAMKMDdHQAAAIDjjh8/LpcvX7arbmlpqdWyS5cuycGDB+3avk6dOlKnTh2H+gcAAAD381NKKXd3AgAAAI6ZPHmyvPLKKzWyr0WLFsmgQYNqZF8AAABwmkwSfwAAAF4oOztbUlNTXb6f6Ohoyc/Pl6CgIJfvCwAAAE6VyT3+AAAAvFDr1q2lbdu2Lt/PAw88QNIPAADAS5H4AwAA8FKjRo1y+T4yMjJcvg8AAAC4BlN9AQAAvNSRI0ekUaNG4qpwLi4uTo4ePSomE78VAwAAeCGm+gIAAHirpKQk6dq1q8vaHzVqFEk/AAAAL0YkBwAA4MVcOd2Xab4AAADejam+AAAAXuzUqVMSFxcnpaWlTm03JSVFDhw44NQ2AQAAUKOY6gsAAODN6tWrJ3369HF6u7/73e+c3iYAAABqFok/AAAAL+eK6b418cRgAAAAuBZTfQEAALxcUVGR1K9fX65cueKU9jp27Chbt251SlsAAABwG6b6AgAAeLtatWrJoEGDnNYeV/sBAAAYA4k/AAAAA3BWss5kMsmIESOc0hYAAADci8QfAACAAQwcOFBq165d7XZ69Ogh8fHxTugRAAAA3I3EHwAAgAEEBwfLkCFDqt0O03wBAACMg8QfAACAQVQ3aRcYGChDhw51Um8AAADgbiT+AAAADOLuu++WuLi4Km+flpYm0dHRTuwRAAAA3InEHwAAgEGYTCZJT0+v8vZM8wUAADAWEn8AAAAGUtXkXXh4uAwaNMjJvQEAAIA7kfgDAAAwkC5dukhKSorD2w0ePFgiIiJc0CMAAAC4C4k/AAAAgxkxYoTD2zDNFwAAwHj8lFLK3Z0AAACA82RnZ0tqaqrd9aOjoyU/P1+CgoJc2CsAAADUsEyu+AMAADCY1q1bS9u2be2un56eTtIPAADAgEj8AQAAGJAjU3eZ5gsAAGBMTPUFAAAwoCNHjkijRo2kslAvLi5Ojh49KiYTvwcDAAAYDFN9AQAAjCgpKUm6du1aab2MjAySfgAAAAZFlAcAAGBQ9kzhZZovAACAcTHVFwAAwKBOnTolcXFxUlpaqrm+efPmsm/fvhruFQAAAGoIU30BAACMql69etKnTx/d9VztBwAAYGwk/gAAAAzMVnKPxB8AAICxMdUXAADAwC5cuCCxsbFy5coVi+W33XabbNu2zU29AgAAQA1gqi8AAICRRUZGyqBBg6yWZ2RkuKE3AAAAqEkk/gAAAAyu4pRek8kkI0aMcFNvAAAAUFNI/AEAABjcwIEDpXbt2ubXPXr0kPj4eDf2CAAAADWBxB8AAIDBBQcHy5AhQ8yveagHAACAbyDxBwAA4ANuJvsCAwNl6NChbu4NAAAAakKAuzsAAAAA17v77rslLi5OOnbsKNHR0e7uDgAAAGoAiT8AAAAfYDKZJD09Xe644w53dwUAAAA1xE8ppSqrtG/fPnn//fdroj8AAABwkVOnTknt2rUlMDDQ3V0BAABANUybNk1CQkIqq5ZpV+Jv+fLlkpaW5pyeAQAAAAAAAKiywsJCiYqKqqxaJg/3AAAAAAAAAAyIxB8AAAAAAABgQCT+AAAAAAAAAAMi8QcAAAAAAAAYEIk/AAAAAAAAwIBI/AEAAAAAAAAGROIPAAAAAAAAMCASfwAAAAAAAIABkfgDAAAAAAAADIjEHwAAAAAAAGBAJP4AAAAAAAAAAyLxBwAAAAAAABgQiT8AAAAAAADAgEj8AQAAAAAAAAZE4g8AAAAAAAAwIBJ/AAAAAAAAgAGR+AMAAAAAAAAMiMQfAAAAAAAAYEAk/gAAAAAAAAADIvEHAAAAAAAAGBCJPwAAAAAAAMCASPwBAAAAAAAABkTiDwAAAAAAADAgEn8AAAAAAACAAZH4AwAAAAAAAAyIxB8AAAAAAABgQCT+AAAAAAAAAAMi8QcAAAAAAAAYEIk/AAAAAAAAwIBI/AEAAAAAAAAGROIPAAAAAAAAMCASfwAAAAAAAIABkfgDAAAAAAAADIjEHwAAAAAAAGBAJP4AAAAAAAAAAyLxBwAAAAAAABgQiT8AAAAAAADAgEj8AQAAAAAAAAZE4g8AAAAAAAAwIBJ/AAAAAAAAgAGR+AMAAAAAAAAMiMQfAAAAAAAAYEAB7u4AAACAvTp27CgtW7aU5ORkc0lKSpLTp0/LgQMHJDc3Vw4cOCBbtmyRffv2ubu7AAAAgFuR+AMAAB6vQ4cOMmPGDOndu7fm+qSkJOnQoYP5tVJKvvrqK5k6dars2bOnprppl8GDB8t//vMfq+X79u2Tzp07u6FHAAAAMCqm+gIAAI+VmJgo//nPf2Tbtm26ST8tfn5+MmzYMMnKypLPPvtMGjZs6MJeOiYwMFAiIyOtSkREhEv2ZzKZJCQkxKoEBwe7ZH9GxTgCAABvROIPAAB4pKioKNmwYYOMHj1a/Pz8qtSGyWSSjIwM2bx5s6Smpjq5h97hzjvvlCtXrlgVpkI7hnEEAADeiMQfAADwSB988IE0atTIKW3FxsbKunXrJDY21intAQAAAN6Ae/wBAACPM27cOBk+fLju+uLiYsnJyZFjx45JUVGR1K9fX1JSUiQuLk53m5iYGHnnnXdk2LBhrugyAAAA4HFI/AEAAI8zbdo0zeXFxcUybdo0mTVrlpw4ccJinZ+fn3Tt2lVee+016datm+b26enpkpqaKrt373Z6nwEAAABPw1RfAADgURo1aiQxMTFWy8vKymT06NEydepUq6SfyI0n+W7cuFH69u0r3333nW77I0eOdGp/AQAAAE9F4g8AAHiU2267TXP5zp07Zf78+ZVuf+XKFRk2bJhcvHhRc32fPn2q1b+aFhYWJikpKRIbGyv+/v7u7o6u8PBwadOmjcTHx9tVPygoSBo0aCCtW7eWtm3bSkxMTJUf4mJLcHCwJCYmSvv27aVhw4YePYYAAADOxlRfAADgUTp06KC5/Oeff7a7jeLiYlm9erXcf//9Vuu0HhjSvn17mTRpkmZbY8eOlatXr+ruKzk5WV555RXNdePGjZNLly7Z1+lyGjduLBMmTJCMjAypX7++efn169clMzNTvvrqK5k9e7ZcvnxZc/s777zTnEBNSUnRrBMZGSkTJ040vz58+LAsXLjQ/DoxMVGmT59utd2uXbvMU7FDQkLkySeflCeeeEISExNFROTNN9+Up556SnOfKSkpMm7cOOnVq5fcdtttVkm4a9euSX5+vqxZs0bmzp0rGzZsEKWUZlu2xMfHyyOPPCIDBw6Ujh07WiQUS0tL5dixY3Lw4EH59NNP5bPPPpOSkhLNdpwxjgAAAG6l7LBs2TIlIhQKhUKhUCguL7NmzdKMRzZv3uxQOz169FDTp0+3Kq+99pry8/OzqJuWlqYbB0VERNjcT8eOHXW3rV27tlX99PR0zbrZ2dlKRNRdd92lioqKKo3P8vLyVL9+/TT7NGPGjEq3r6hivNemTRvNeitWrFAioho3bqwOHTpktX7mzJlW/QkJCVHvvfeeKikpcahPR44cUYMGDbL7nAcEBKiXXnpJXbp0ye59HDt2TD399NMqMDDQJeNIoVAoFAqF4opSWFhoT2iyiSv+AACAR9G6f5+ISKdOneThhx+Wjz76yK521q9fL+vXr3dm11yud+/esmjRIgkLC6u0bsOGDWXx4sUyfPjwGr/CLCoqSlatWqV59WRFERER8t1330mvXr0c3k9iYqJ8/fXXMmLECPnmm29s1g0LC5OvvvpK0tLSHNpHfHy8vP7669KkSRN57LHHHO4jAACAJ+MefwAAwKPs27dPc7nJZJIPP/xQvv76axk4cKCEhITUcM9cKyEhQRYvXmxX0u+mwMBA+e9//ytNmzZ1Yc+svfXWW9KkSRO76v7tb3+rUtLvpsDAQJk/f7706NHDZr05c+Y4nPQr749//KOMHz++ytsDAAB4IhJ/AADAoyxbtkyKi4t11w8ZMkSWLFki586dk5UrV8qkSZOka9euEhQUVIO9dL7IyEgJDQ11eLugoCB54YUXLJaVlJTI1atX5erVq7pjqZQy17FVr6KOHTvKgw8+aFfduLg4mTBhgu76y5cvS1ZWlmzdulWOHj2qWy8gIEDzfo03denSRYYPH25Xn2x55513pG3btubXrhxHAACAmkDiDwAAeJTz58/LnDlzKq0XEhIiffv2lb///e+yceNGKSwslHXr1smLL74od999t1cnAg8fPiwffvihjBw5Uh555BH56quvpLCwULf+qFGjpFWrVubXzz33nISGhkpoaKj07dtXdx8364SGhsrgwYPt6lvdunXtPo6xY8dqJjOvXbsmEyZMkFq1aknbtm3l9ttvl6SkJGnZsqXs2LFDs61OnTrp7mfGjBm669atWydPPPGEJCcnS+PGjSU9PV0OHjyoWTcwMFCGDBlifu3KcQQAAKgR3KSYQqFQKBSKp5WoqCh1+PBhhx+sUN758+fVZ599ptLT0zUf3FC+eMLDPW5asGCB7pj8+uuvutt9+eWXmtt1795ds/6hQ4dsHpfewz3K27lzp3rhhRfUvffeqxISElRMTIyKjo42t7FgwQLN7T788EPd/Xbp0kVzm8uXL6uAgACr+vfff79u/9atW6dMJpPVNnXr1lUHDx7U3Ob777936jhSKBQKhUKhuKLY+3APrvgDAAAe5/z583LnnXdKdnZ2lduIjIyUjIwM+fLLLyUrK0vuueceJ/bQNfbv3687jfb8+fMyfPhw3amkQ4YMkcDAQBf2ztLatWulW7du8uKLL8qiRYvk2LFjcvr0aTlz5oy5Tvv27TW3ff/993XbPXnypOby0NBQiY2NtVquN5W4sLBQxowZI2VlZVbrzp49q/uQmC5dulRpyjUAAIAnIvEHAAA80tGjR6Vjx47y2GOPSV5eXrXaat68uSxevFheeukl53TORR599FEpKirSXb99+3Z54403NNf5+/vb9ZRdZ9i5c6fcc889cunSJZv1UlJSxGQyWZWtW7dq1g8ODpYpU6botufn52e1rFmzZpp1Z82aZfO+gZ9++qlkZ2dbldzcXItp0wAAAN4swN0dAAAA0HP16lWZNWuWzJ49WwYNGiRpaWnSv39/adiwYZXamzx5svz000+yePFiJ/e0+i5evCgbN26stN6SJUvkr3/9q+a6Jk2ayIEDB5zdNStz586Vq1evVlpPKaW7LiQkRJo1ayYNGzaUlJQUSU1Nlf79+0t8fLzd/QgJCdGt/8MPP9jc9siRI5Kammr3vgAAALwRiT8AAODxSktLZeHChbJw4UIREWnRooX069dPunXrJnfccYckJiba1Y6fn598+umn0qFDBzl06JAru+yw3bt3S0lJSaX1tm3bpruuSZMmzuySrsqSalqCg4Nl6NChMmDAALn11lulZcuWEhBQvVA0OTlZ8ypAEZF9+/ZVq20AAAAjIPEHAAC8zr59+2Tfvn3y9ttvi4hIQkKC9OzZU/r16yf9+/eXW265RXfb2rVrS0ZGhrzyyis11V27lL83ni3Xrl2TS5cuSXh4uNW65ORkZ3dL0+nTp+2uazKZZNKkSfL0009LdHS0U/thK9Fp6ynIAAAAvoJ7/AEAAK937NgxmTt3rowZM0YSEhJk9OjRcvDgQd36t956aw32zj6V3S+vPL37AF67ds1Z3bHp7NmzdtULDAyUJUuWyKuvvmp30m/9+vV29yMpKUl3nSPjCQAAYFRc8QcAAAylpKRE5s6dK2vWrJHMzEzN+wHqPW22KoKCgpzSToMGDeyq5+/vLzExMZrramr6cmlpqV31pk2bJgMGDNBdr5SSPXv2yPbt22XLli2yevVqqycDV6xfnq0rDyMiIuxOUAIAABgViT8AAOAxGjRoIJs2bdJc99hjj8myZcvsbqugoEA+//xzzQdhJCcnS1hYmFy+fFlEbD+EQu8ecjfVrVu3ytuWZ+8DSxo0aKB7bzxPum9hbGys/OlPf9Jcl5+fL1OmTJEFCxZYTcl1ZDrwr7/+qruuTp06JP4AAIDPI/EHAAA8xtmzZ6VRo0aa6+6++26HEn8iN56Uq6WsrMziqbTnz5/XbSMqKkp3aq2ISOPGjR3qk574+Hhp0KCBFBQU2KzXrl073XWelPgbPny4+Pv7Wy0/d+6c9OrVS3JycjS3s5UArZhItZX4a9eunc310dHR8sILL2iumzlzpuTl5eluCwAA4C1I/AEAAI9x7do1KSgo0Jz2OmLECPnb3/4mV65csbu9e++9V3N5QUGBlJWVmV/berBGQkKCHDt2THe9ramsjvD395cnnnhCnn/+eZv1nnjiCc3l169flyNHjjilL87QqlUrzeWrVq3STfqJiLRt29bufZw7d07OnTsnderUsVrXt29f+frrr3W3HTlypEyYMMFqeVlZWaXnAAAAwFvwcA8AAOBRlixZork8ISFB3n77bQkJCbGrnQEDBkjnzp01161evdrita0poYMHD9Zdl5GRIQMHDrSrP/Z49NFHJTExUXd9586dpX///prrFi5cKCUlJXbvS+tqPGeqX7++5vLDhw/b3E7v+PRkZWVpLh83bpx06dJFd7vRo0drLt+9e7fNKzwrcvU4AgAAVAeJPwAA4FG++OIL3XXjxo2THTt2yJ133qmbcImOjpb33ntPli1bpnuPvXnz5lm8Pnv2rO5Vf88++6wMGzbMYpnJZJJBgwbJnDlzbB2Kw+rWrSubN2/WnM7bs2dPWblype4xTZs2zaF9RUdH694r0Bl+++03zeW2nqj84IMPysiRI3XXm0zWoev06dM16wYEBMhnn32meTXgoEGDdJPC8+fP192/FlePIwAAQHUQpQAAAI+ydu1aWbRoke403ZYtW8oPP/wgxcXFcvDgQcnJyZHLly9LVFSUNGrUSFq0aGHzoRqrV6+WFStWWCwrKyuTZcuWye9+9zur+iaTSebPny85OTny008/SXR0tHTr1k0iIyOrd6A64uLiZOvWrbJr1y7ZunWrFBcXyx133CG33nqrboJpxYoVsn37ds11ek/gDQsLk88//1zWr18vFy9elIKCAlm5cqXTjkPvSrw+ffrI1KlT5f333zffzzApKUkmTZok48aNs9mm1vEvWbJEMjMz5Y477rBal5ycLAUFBbJhwwZZuXKlBAYGSocOHeSBBx7QbD8/P1/efPNNzXXuGkcAAIBqUXZYtmyZEhEKhUKhUCiUGilJSUkqPz/fnjDFIadOnVIpKSma+3zggQeq1GZxcbEqKSnRXFenTh2r/aSnp1fnEDR1795ddywTExPtaqNivNemTRvduhEREZWew44dO9rc3/Xr19XOnTvV8ePH7T7Oli1bau6rV69edrdhy9ixY50+jhQKhUKhUCiuKIWFhfaEJpuY6gsAADzOkSNHpGfPnpKfn++0NgsLC6V///6Sm5uruf7rr7+W77//3uF2//KXv8jly5c11yml7G5n8+bNsnfvXof3/+abb8qGDRt01//2229y/Phxh9utrm3bttmcCm0ymaRdu3ZW9wJctWqV7jlq3bq15vJ169ZZTd921DvvvGOzv+4aRwAAgOog8QcAADxSTk6OpKamyssvvywXLlyocjulpaUya9YsadmypezYsUO3nlJKfv/739udfCsrK5PJkyfLzJkzq9y38i5cuCCDBw92KNn5wQcfyNNPP22zTllZmTz77LMOJSGd5cknn9RN4mmZMWOGpKWlSXZ2tub6cePGSVhYmOa60aNH27w/pC3vvvuuTJw40WYdd44jAABAlTFlgUKhUCgUiqeXunXrqldeeUVduHDBrumWSilVVlam/vvf/+pO7dUr4eHh6u2331bnzp3TbXvLli2qR48e5m3Onz+vWa927dpW7etN9V2xYoUSEZWQkKDmzZunO31YKaVycnLU4MGDHTqudu3aqcWLF+u26eypvjdLVFSUmjlzpiouLtZtLzc3Vw0fPty8zcSJE3XrPvnkkzb398ADD6gDBw7obl9edna26t27t0vHkUKhUCgUCsUVxd6pvn5KVf6z5fLlyyUtLa2yagAAAC4VGRkpLVu2lMaNG0ujRo2kcePG0rhxY4mMjJS8vDw5ePCgueTk5MixY8eqvK/g4GDp0aOHJCUlSWxsrJw9e1ZycnJk//79cvToUScelba4uDjp37+/JCYmSlxcnFy8eFHy8/Nlw4YNsm3btiq3W6tWLbnlllukXr16EhMTIyIiV65ckYKCAtmzZ4+zum8lJSVFevXqJS1atJCUlBS5cOGCHD58WDZs2CCrVq1y6pV0JpNJOnToIP3795fU1FSpV6+e1KlTRwoLC+X48eOSk5Mj33zzjezatavK+3DXOAIAAIjcuI1NVFRUZdUySfwBAAAAAAAAXsTexB/3+AMAAAAAAAAMiMQfAAAAAAAA+dcD+gAAIABJREFUYEAk/gAAAAAAAAADIvEHAAAAAAAAGBCJPwAAAAAAAMCASPwBAAAAAAAABkTiDwAAAAAAADAgEn8AAAAAAACAAZH4AwAAAAAAAAyIxB8AAAAAAABgQCT+AAAAAAAAAAMi8QcAAAAAAAAYEIk/AAAAAAAAwIBI/AEAAAAAAAAGROIPAAAAAAAAMCASfwAAAAAAAIABkfgDAAAAAAAADIjEHwAAAAAAAGBAJP4AAAAAAAAAAyLxBwAAAAAAABgQiT8AAAAAAADAgEj8AQAAAAAAAAZE4g8AAAAAAAAwIBJ/AAAAAAAAgAGR+AMAAAAAAAAMiMQfAAAAAAAAYEAk/gAAAAAAAAADIvEHAAAAAAAAGBCJPwAAAAAAAMCASPwBAAAAAAAABkTiDwAAAAAAADAgEn8AAAAAAACAAZH4AwAAAAAAAAyIxB8AAAAAAABgQCT+AAAAAAAAAAMi8QcAAAAAAAAYEIk/AAAAAAAAwIBI/AEAAAAAAAAGROIPAAAAAAAAMCASfwAAAAAAAIABBTirobi4OPHz83NWcwAAAD4vPz9flFK66+vUqSNhYWE12CMAAAC42rVr1+T06dNOactpib89e/ZIVFSUs5oDAADweZGRkVJUVKS7fvr06TJu3Lga7BEAAABcbfny5ZKWluaUtpjqCwAAAAAAABgQiT8AAAAAAADAgEj8AQAAAAAAAAZE4g8AAAAAAAAwIBJ/AAAAAAAAgAGR+AMAAAAAAAAMiMQfAAAAAAAAYEAk/gAAAAAAAAADIvEHAAAAAAAAGBCJPwAAAAAAAMCASPwBAAAAAAAABkTiDwAAAAAAADAgEn8AAAAAAACAAZH4AwAAAAAAAAyIxB8AAAAAAABgQCT+AAAAAAAAAAMi8QcAAAAAAAAYEIk/AAAAAAAAwIBI/AEAAAAAAAAGROIPAAAAAAAAMCASfwAAAAAAAIABkfgDAAAAAAAADIjEHwAAAAAAAGBAJP4AAAAAAAAAAyLxBwAAAAAAABgQiT8AAAAAAADAgEj8AQAAAAAAAAZE4g8AAAAAAAAwIBJ/AAAAAAAAgAGR+AMAAAAAAAAMiMQfAAAAAAAAYEAk/gAAAAAAAAADIvEHAAAAAAAAGFCAuzsAwPt8/PHHcvbsWfPrYcOGSWJioht7BACOy87OlhUrVphfN2rUSIYOHerGHhnL9evXZcOGDbJv3z4pKCiQ48ePS1lZmdxyyy1yyy23SFJSkvTu3Vtq167t7q4CsBMxIAAj8LUY0BCJv71790qfPn3Mr9PT0+Uf//iHG3sEe/3f//2fTJ06VUREoqOj5eTJk+7tECr1zTffyNixY82vmzVrJk8++aT59aFDhyQlJUVz2yVLlsiAAQPs2k+LFi3kwIEDFsv+8Ic/yKxZs6rQa7jCzJkzLd6zzZs3t/i/YY+TJ0/Kf/7zH9mzZ48cPnxYAgICJCUlRZo2bSq33367dO3a1aH2lFKSmZkpK1askPz8fDlx4oRERERIgwYNpF27djJ48GCJiopyqM2a4IyxFPHN8bx48aJs375dDhw4ILm5uVJQUCBJSUnStGlTSUlJkU6dOklgYKDmtvHx8fLKK6+Y/4j19/eXzZs3S8eOHWvyEAwnKytL/vWvf8mCBQvk9OnTNusGBATIXXfdJSNHjpSHH35Y/P39a6iXcDdiQO9DDAgRYhZnI56uOmJAByg7LFu2TImIzVJYWGhPUy7xyy+/WPRl9OjRbuuLpyotLTWX69evu7s7Zi+++KL5vEVHR7u7O6jE2bNnVWxsrMX77auvvrKoc/DgQd3PiVatWqmSkhK79tW0aVOr7cePH++Kw0IVFBUVqZCQEIvzM2DAALu3Ly0tVRMmTFDBwcE2v1vS0tJUVlaWXW0uXbpUNWrUyGZ7wcHBasKECery5ctVPXSnq+5YKuWb41lWVqY++eQTq8+kiiUlJUXNnz9flZWVabbz+uuvW9Rv06aNKi4uruGj0VerVi2bxzd79mx3d9Hs2rVrasqUKSowMLDSuFGrtG3bVm3YsMGtx+Cp8VJVefLxEAN6F2JAKEXM4mzE01XjKzGgE/Nwm0j8+Yj27dubxycjI8Pd3TEj6PMuDz74oMV7rXnz5lYfpLaCPhFR77zzjl37IujzbOXfu44GKmVlZer3v/+93ckAf39/9fnnn9ts8+WXX3YowdCqVSt15swZZwxFtVVnLJXyzfEsKSlRvXv3dqiP3bp1U0VFRVZtXbx4UdWpU8ei7tSpU2vsWCrjLYm/8+fPq44dO+r202QyqebNm6tu3bqpqKgo3Xp+fn7qgw8+cNtxeGq8VFWefDzEgN6FGBBKEbM4G/G043wpBnRm4o+HewCwy7p16+Tjjz+2WPbUU0+Jn5+fQ+1MnTpVzp0758SeoaZt3rxZXn/99Spv/9hjj8knn3xid/3r16/LI488ItnZ2ZrrFy1aJH/7298c6sOePXvkf/7nf6SsrMyh7ZytumMp4pvj+eKLL8ratWsd2mbjxo3yhz/8wWp5eHi4PProoxbLXn31Vdm/f3+1+uhLiouLZciQIbJt2zaL5TExMfLWW29JZmamXLhwQfbt2yc//vijnDt3Tn799VdZsGCB1f10lFIyfvx4h/5PA3AtYkCIELM4G/F01RADVg2JPwB2ef755y1e16tXT8aMGeNwO2fOnJEXX3zRWd1CDcrJyZH09HS54447pKioqEptPP/88/Lee+9prmvRooX07dtX6tSpY7Xu0qVLMmLECM3tnnnmGVFKWS338/OT1NRUiYiI0Nxu+fLlsmrVKgd67zzOGEsR3xzPzMxMmTZtmua6hg0bSqdOnSQyMlJz/RdffCGzZ8+2Wj5hwgQJCgoyvy4uLuZzygGPPfaYVRDer18/2bVrl0ycOFG6dOki4eHh5nV+fn6SnJwsQ4cOlQULFsh7770nISEh5vVKKXn44YclJyenxo4BgD5iQN9GzOJcxNNVRwxYDTV8iaFLMNW3cp461YNpHt5h6dKlVu95vcugK5vmISIqMDBQ7du3z+Y+mebhfj/99JPq16+f6tSpU6X30BA7piacOHFC8x4kd9xxh9q9e7e53qVLl9Q999yjuY+cnByLNrdu3apZLyMjQ/32229KqRv3Hfvyyy+Vv7+/Vb2a+r5w9lgq5bvjefvtt1vtt1mzZhbHXFJSoqZMmaJ5LN27d9dst+I0NpPJZNGmu3j6VN/9+/crk8lk0acZM2bo3k9Hz65du6zuKTRmzBgX9Vqfp8ZLVeXJx0MM6B2IAX0PMYtzEU87j6/FgNzjrwISf5Xz1MCPoM87aN236ejRo5p17Qn6RETdc889NvdZnaCvrKxM7d27V61bt07Nnz9fffvtt2rTpk0qPz/f4WOvTGlpqTp06JA6fPiwU26cfunSJbVt2za1e/dut99/5LvvvrPrXNobqGjdxyQ8PFzl5uZa1T19+rTmAwL+9a9/WdT705/+ZFUnMTFRXbhwwarNZ5991qpurVq1auTGxM4eS6V8czxLSkpUUFCQ1X537typWf/++++3qhsZGamZlPrxxx+t6qanp7vsWOzl6Ym/hx56yKHPdlsWL15s0Za/v7/m/2dX8tR4qao8+XiIAb0DMaA+o8aAxCzORTztHL4YAzoz8RcgPmLPnj2ye/duEblxeXqvXr1EREQpJfv27ZPNmzfLli1bJDc3V1JTU6VTp05y++23S9OmTXXb/OWXX+T8+fMiIpKQkCDJyckiInL+/Hn56KOPZOvWrZKXlycxMTHSqVMn6dSpk/Tu3VuCg4N12/z555/Nj68PDg6WwYMHV3psW7dulUOHDomISN26daVPnz4iIrJz507zNJnCwkJz/SNHjsj8+fNFRCQ0NFTuvffeSvdhy8WLF+WTTz6R7Oxsyc3Nlfz8fElOTpbU1FRp3bq1dO3aVRo3buxQmyUlJTJ//nxZvXq1HD58WEpKSuS2226z67xUVFRUJJ9//rlkZWVJXl6eFBQUSExMjMTHx0tiYqIMHTpU2rVrZ7MNV5xrLb/99pts375dduzYITt27JArV65Iw4YNpUuXLjJs2DC7H5t+8eJFKS4uNr+uVauW7qPMK5OZmWl136bWrVtLQkJCldq7acmSJbJy5Urp169ftdopb/fu3TJjxgxZvny5nDx5UrNOmzZtZOjQofLUU0/pXgouIrJs2TKr+9k0bdpUXn75ZRER+e6772TatGmyfft2KSkpERGRkJAQadKkiTz44IPyxBNPWExds2XevHmyYMEC2bVrl+Tm5lrcJyMxMVEeeOABefjhhyU1NdWu9v4fe3ceHUWVL3D8l30hCQECZICwRggQdoSwBZEdWZQ1cFwGB5/jiiyCgywOjiLqACM+FRhFBxfGEcVRAYWwI6IsQgAlsgYJYQ8QICv3/cGhXzpd1elOqtPd1d/POXVOuureW7dvpbt//eu6VZ6q5HiK3LpOR6NGjWzWV6tWTZYvXy4XLlywWp+QkGD5u6ioSJYvX25Td/z48RIZGWmz/rnnnpNXX33Vat3Vq1flq6++kpEjRzr6NDyGL47nr7/+avXeJiKSlJSk+x4+bNgwWblypdW6K1euyJEjRyQ+Pt6mncqVK1ve60VEVqxYIadOnZLatWsb9AzM5eTJk7Js2TLL44CAAJv/CWfcc889cvfdd1umDRcVFclLL70k7733nk1Zd8dLnhwDenP8J+KbMaAnxn8ixIDFEQOWjy/GLK7iq2NJDFhOFZxpdAlHzvgrnhnv3r27UurWtBJ7d6ATETVx4kTd/Xbr1s1Sbvz48UoppZYsWWL31/lWrVqpQ4cO6bb59NNPO/3r59ixYy112rVrZ1k/fvz4Uo9b7dq1HdqHlsLCQvXWW2+pGjVq2N1HaGioWrRokWYbWr/2pqamqlq1atltc/bs2aX279q1a2rChAkqKiqq1HHo0KGDWrt2rW5brjjWxeXm5qrHH3+81HF85plnVE5OTqntDRkyxKrumjVrHOqHlkmTJjn1utD7tbdTp0426xITE1VhYaFmO8782nv7VvZap57rLTVq1FArVqzQfR4LFizQ/D/Jz89Xw4cPL7X9unXrqq1bt9od23Pnzqlhw4Y51N/AwED1/PPPq7y8PLttGsnIXyizsrI06xw/frzM/du2bZtmm+vXr9etU69ePZvyKSkpZe6Do4z+tddXx/Ojjz6y2Z+9s5hKnkF2e9E7W2Xo0KE2ZR29C6WrePIZfyXjjD//+c/lbnP37t3Kz8/P6r1P63PP3fGSJ8eA3hD/KUUMqJRnx39KEQOW/D/xlRiQmMVYxNPG8MUYkLv6GiA1NVU6dOhg8ytWSfPmzZOpU6c61Ob8+fPlkUcesXuRzr1790q7du00s+re5i9/+Ys8/vjjur+q3ZabmyuPPvqo3H///ZKbm2u37OrVq6Vv376SmZlpt9zMmTN1L+wpcuuXi5SUFJk/f75cuXLFblsiIj/++KMMGjRIUlNTSy0rYuyxPnz4sHTq1Eneeustu+Vyc3NlwYIF0qJFCzl8+LBD/TTCihUrbNaV5Rfap59+2uaXqP3798uiRYvK3DcRkcLCQklJSZGFCxdKUVGRw/XOnj0rI0eOtDpbxRETJkyQzz77rNRyGRkZMmbMGN3/vy1btkhiYqLm+GopLCyUl156ScaMGaN54V1XGDRokBQVFWkuzZs3d6qtHTt22KyrV6+e1KtXr8z9y8jI0FzfunVr3Tpa206ePFnmPjjKyLEU8d3x7Nmzp+zcudNqeeWVV3TL//TTTzbrIiMjdc9W0Xpvc/Q16otWrVpl9fi5554rd5tt2rSRzp07Wx4XFhZazmjzZL4UA7oi/hPxvRjQ0+M/EWLAknwlBiRmMRbxtDGIAcvHZ6b6Fvfbb7/J4MGDJTc3VwICAmTYsGHSqVMniYuLk6NHj8qGDRtk9erVlvKvvvqqJCUlyX333afb5meffSanTp0SEZHGjRvL008/LYmJiRIcHCyHDx+WpUuXyoYNG0Tk1mn4Dz74oLRv397mNFMjDRkyxPKPPX/+fEsg1aZNGxkzZoyIiObpu474+uuvrW4/3qdPHxk/frwkJCRIWFiYHDt2TH799Vd5+eWX5ciRIyIi8tFHH0mzZs1k2rRpmm3m5OTIyJEjpbCwUAICAmT06NHSpUsXadSokaSnp8vWrVutAqhp06ZJmzZtpF+/fjZtTZ06Vb766ivL48TERJk6dao0a9ZM6tSpIxcuXJAjR47IsmXL5D//+Y8opSQ3N1eGDBkiZ8+elfDwcN3nbuSxPnr0qLRt29YqeOzTp48MGDBAWrVqJadPn5YffvhBUlNTLbdeP3bsmPTt21d++OEHqV69um4/jbB79245fvy41brQ0FBJTk52uq2QkBB5/fXXbV5Hs2bNkjFjxkh0dHSZ+rhw4UKHgjAtRUVFMm7cOOnatatD05EOHDggP/74o8PtZ2RkyOTJk2Xx4sVW6/Py8uShhx6SM2fOON3nFStWyIwZMyzTTVzN39+Y34d27dpls+72ayIjI0O++OIL2bt3r6SlpUl4eLi0bt1aWrduLX379pVatWpptqk1ftWqVdO8i9ltWtMgSvvyahSjxlLEd8ezZs2aUrNmTYfKnjlzRvNL9/Dhw3XraAV9W7ZskXPnzrn8/dbb3Lx5U06cOGF5HB4eXq4vHsU1adJEtm3bZnl89OhRl05zK2+85GkxoLfFfyK+FwN6evwnQgxYkq/FgMQsxiKeLj9iwHKq4FMMXcLZqb63l9q1a6u9e/dqtjlhwoRSTyMtfur/7WXUqFG6p62/8cYbVmXvu+8+mzJGTl0pzuiLO3ft2tXSXv/+/XUvaHvjxg3Vr18/S9nKlSura9euWbZrHZfExES1e/duzfZKjuEf//hHzXI1a9a0lLnnnnvUjRs3dJ/LvHnzrNrcuHGjTRlXHGullNUp/mFhYbpTYvLy8mymb0yfPl33ORk11WPatGk2zzshIcFuHb1pHp9//rlSSqmePXvabJswYYJNO45M87h06ZKqWrWq5v7atm2rXn75ZbV69Wr18ccfq4kTJ+pOyxk9erTN/rWmedxe/P39Vffu3dWsWbPU+++/r55++mndKU+1atWyaftvf/ubZtmEhAS1cOFCtW7dOvXRRx+p0aNHa5YLDAxUv/32mzOH0nDNmze36Ze9qQnjxo2zKT927Fi1cuVKVaVKFd2xjo6OVh9++KFmm1r/n/Xq1bPb7xkzZtjUiYqKKs9QlJuzY6kU46nn6tWr6vDhw+pf//qXatCggWbfsrKy7LYRGhpqU2/x4sUV9AxseepU3xMnTlj1IzEx0bC258yZY9X2/Pnzbcq4O17ylhjQU+M/pXw7BvT0+E8pYkC991xfjwGJWYxFPG0cM8aA3NW3hLIk/gIDA9XBgwd127x586aqU6eOpXydOnVsypQMBBISElRBQYHdvv7pT3+yqrNp0yar7e4OZB1RVFSkIiIiLO198MEHdsuvW7fO6jnv3LnTsk3ruKSlpdltr02bNnbflDIyMqzaXLdund32CgsLVXh4uKX83Llzbcq44lhv2rTJavs//vEPu+3l5+dbBdFxcXG6AXdOTo66ePGiZSmtr3qSkpJsXut6t0G/rbSgb9++fTbXYQkKCrK5rbwjQd+zzz6rua+xY8eq3Nxcm74dOHBANWzY0Ka8n5+f+umnn6zK2gv6tL6EHjhwQMXExGiWv3r1qqXcyZMnrf7fbi+9evXSvBvWJ598otmm3heeiuJsoDJ48GCb8sXfY0tbUlJSbL5klXyNiYhq3ry53X6/8sormu1r/b9UlLIE0Yynrf79+9t9zvHx8WrPnj2ltlO3bl3N8XIXT038rV+/3qofgwcPNqztzz77zKrtp556yqaMu+Mlb4kBPTX+U8p3Y0BviP+UIgbUe8/19RiQmMVYxNPGMGsMyDX+DPCnP/1JmjZtqrvdz8/Pau76uXPnSm1z5syZEhhof/b0Cy+8YPXY2WtLeIKTJ09KTk6O5fHRo0ftlr/77rtl9uzZMmPGDJkxY4bdKRTjx48vdTpP9+7dLX9rnZp86NAhqV+/vtSvX19at24td911l932AgICrKYnXbx40W55EWOO9cSJEy1/t2/fXp588km77QUFBcmLL75oeXzy5ElZt26dZtlKlSpJlSpVLEtpfdWjda0GR0+x1tOiRQv5n//5H6t1BQUFMmnSJKfauXjxoixcuNBmfXx8vCxZskTzbnrNmjWTJUuW2KxXSslf//pXh/Y7evRoeeaZZzTb1jt9/NChQ5a///Wvf8n169ettgcHB8uiRYskLCzMpm5KSoqkpKTYrF+5cqXVnd883bVr12zW/f777w7XX758ubzxxhtW67SmFFSqVMluO3rbK2qqh1EYT1v2Xg/+/v7y+OOPS8uWLUttR+s9riKuAeRtSn72a037Kav69etbPb49tdKT+UIM6Mr4T8R3YkBviP9u76ckYkBiwLIgZjEOY6mNGLB0Ppv4Gz9+fKllit8aOi8vzyrYKSkgIEAGDhxYapt16tSRuLg4y+OKvkivEeLi4qyuxfH3v/9dNwARuZVEnTFjhsyePVtmz55tN+Gqda2WkorPsc/NzbU5Lr169ZJjx47JsWPHZM+ePRIQEGC3vXPnzpUavBZnxLG+cOGC1TUaRowY4dC1H9q3b28VoP773/92tNtOKyoqkqysLJv1NWrUKHfbs2fPtrmey1dffWX3/6iktLQ0zYuFP/vss3aP+d133y133nmnzXqtC8BqGTJkiO62Fi1aaK4v/iGYnp5us71z587SsGFD3Xa1ri+anZ0tP//8s72uepT8/HzdbQEBAXLffffJjBkz5KGHHpI//OEPmuVmzpxp9eF76dIlmzJagbMj27Xa8mSMp3Nu3rwpEydOlH79+tl86SpJ6z3OGxJPFa3kMS5vQqC4CxcuWD3W+x/2FL4SA7oy/hPxjRjQG+I/EWJAPcSAZUPMYhzG0nnEgLf45M09/P395Y477ii1XMlfnG/cuCERERGaZdu0aePwhZKbN29uebHdvvCxN/H395eePXta7nKTk5MjvXv3lg4dOshDDz0kAwYMsBk7RzlSr+QxsHdc9Jw7d06OHz8uO3bskFmzZkleXp7DdY041iU/+Nu2bevw/lu2bGm5oHrxXxGNlpWVpXmHNCO+3MXExMisWbNkwoQJVusnTpzoUKAuIvLrr79qrnfkbnO9e/e2CfLOnDkj2dnZpV5g2t7dtxx5X9H6ohcQECD/+7//q1vn9OnTmuvT0tKc+t9xJ7277UVGRsrmzZutzrC+dOmS3H///TZ3DM3JyZFZs2bJe++9JyKiedHhGzdu2O2H3nZ7FzD2RIynraioKAkJCbH7fr527Vp59tln7b7etN7jMjMzRSklfn5+hvTVDEq+VzpzxkFpSt5QwMizCV3BV2JAV8Z/Ir4RA3pD/CdCDKiHGLBsiFmMw1hqIwYsnU8m/sLCwsp16rsWZ4LS5s2by5o1a0TkVqCcm5sroaGhhvbH1d555x357bffZN++fZZ1P/74o+VuV3FxcdKzZ0/p37+/9O7d26E3AX9/f6lbt26p5Zx50V2/fl2+//57Wb9+vezdu1eOHz8ux48fLzXbb48Rx7pkwDZx4kSH/weKfyHSCwaMoPfrhlFndTzxxBPyzjvvWI1FWlqaLFmyRP785z+XWl8r6PP395fatWuXWrf4r/Al20xKStKtFxAQII0bN9bd7sj7ym+//WazLjU1VVJTU0utW5I3TU2oVq2a5vpFixZZBSkit4KGDz/8UOLj422mXRW/o57W/6K9M7NFtKdIiBhzFkNFYjxtffrppyJy631/586d8vbbb2ve0e3tt9+W++67T3r16qXZjlbf8/Pz5dy5c173f+JKVatWtXpsZBLr2LFjVo89PfHnSzGgK+I/Ed+JAb0h/hMhBtRCDFh2xCzGYSy1EQOWzien+mpd96G8nLkNfUJCguVvpVSZbudenFKqXPXLIiYmRlJTU2X06NGav8ydPHlS3n//fRk1apRUr15d7rnnHtmwYYPdNqOjoyU4ONiQ/hUWFsq8efOkZs2a0rt3b5kzZ46sWrVKDh48aBPw1alTp9TTmUv201F6x7rkL75paWny008/ObQUv96k1jQHo+idqm3U7cyDgoJk/vz5Nutnzpwply9fLrW+1q+m1atXl6CgoFLr6gWGpU27Cg0Ntfs/Wtpr8erVq4YGaq48/kbTmm4QFRUlo0eP1ixfpUoVeeSRR2zWp6enS2FhoYhofziXJVCpXLmySz4XXInx1BceHi7JycnyySefyEsvvWSzXSkl7777rm59vcDOE6evuFPJJI2Rib+SZ/zFx8cb0q6r4iVfigFdEf+J+E4M6A3xnwgxoBZiwLIjZjEOY2kfMaA+n0z8ueI0zdIugFlcyRdKVFRUufZ99erVctUvq5iYGPn444/lt99+k9dee02Sk5M1f+0qKiqSVatWWS7yrMeo45Kfny/JyckyadIkmzet8PBwadasmQwaNEimT58u33zzjRw/flxiYmIcbt+IY10yqKlatapUq1bN6cWZvjgrNjZWc72RgUb//v2lf//+VuvOnTtndRFrPVrBpyPBosita6M42qaRQkJCHJrC4ii90/09kVag0qxZM7t1in9puq2goMDyi7nWh/OVK1fstqn1fumNv+Axno557rnnNL+op6Wl6dbRe4/Te0/0Va1bt7ZKmBw/ftzutYcclZ+fb5Uo8vPzs3v9K2e4Kl7ytRjQ6PhPxHdiQG+I/0SIAV2BGNAaMUvZMJaOIwa05pNTfV3BmQs0F7+Ypr+/v1SuXLlc+3Z3BrpBgwYyefJkmTx5sly7dk22bt0qGzZskG+//Vb27t1r9QvYrFmz5I477tD9VcII06dPl+3bt1v1b8KECdKnTx+54447HLqIsj1GHOuSZy/s2bPHoSljEYxtAAAgAElEQVQuFUmvPyUvul5e8+bNk7Vr11p+dRIRWbhwYam/wDdp0sRmXW5urpw7d67U4E3v7kxabRopODhYGjRoYPM/9Pzzz8uDDz7odHt6p/t7olq1atmsK23KkN5FiW9/QdSqn52dLWfOnNFtW+u6SJ4WqDjCV8fzzTfftLl+S9++fXXvBOrv7y9du3aVr7/+2mp9enq6FBQUaJ4dovUeFxUVVe7ParMJDAyUO++8UzZv3iwitxIu7733nkPT9OxZvny51Vlw7dq1M2wqrKviJV+NAT0t/hPx/BjQG+I/EWJAVyAGtOYLMYsr+PJYEgOWD4k/g9jLHJdU/AOnRo0a5Q5CPOkW05UqVZK+fftK37595ZVXXpETJ07I3Llz5e2337aU+fDDD10W+GVnZ8vrr79uedy0aVNZv359qVl6vesUaDHiWJcMLn777TePC/yqVKkilSpVshmb8+fPG7qfhIQEeeKJJ+Qf//iHZV1+fn6pZ45o/XolIrJ//37p0aOH3boHDhywWRcWFlYhx6BJkyY2QV9mZqbd68aYgdYZO6VNDdS6xlBgYKDlGkt6x+vnn3+Wvn37am4rfl2q24rfKdFb+Op4vvnmmzbB5oULF+Tll1/WraMVrIWEhOhej0nrPU7vmlC+btSoUZbEn4jInDlz5OGHHy7XlM3inwUit6b+GcVV8RIxoPvjPxHviAG9If4TIQZ0FWLA/+cLMYsr+PJYEgOWj09O9XWF48ePlzoXXuTWdUd27NhhedylSxer7cVPAc/JyZGCggK77WVmZmpeKNaV1q1bJ0uXLpWlS5fK999/b7dsvXr15K233pIxY8ZY1u3cudNlfUtLS7P6hfnZZ58tNeDbv3+/zQVP7THiWJf8gD948KDD+//vf/9rGf/iv2q7gtYbndG/9orcOhPA2V8u9YK+kl8aS8rMzJTPPvvMZn3jxo3L/QXMEVq/KP/www926+Tn58uFCxdsluK/kHu6u+66y+aXwPT0dLsXKN+1a5fNuvj4eMsvdElJSZq/Yuq9x5w9e1Yz+Lnvvvvs9t0T+ep4agW8u3fvtltH60teixYtdKcWar3HmSXoM9oDDzxgdYfTjIwMef/998vc3ubNm62O55133imDBg3SLOtJ8ZKvxICeHP+JeEcM6C3xnwgxoCsQA/4/X4hZXMGXx5IYsHxI/BlEKSVbt24ttdzy5cvlxIkTlsd33XWX1fbi1xnJy8srNSD44IMPnOuoAb766it5+OGH5eGHH5ZHH33UoTrdu3e3/H39+nWXXYy65K8Ajtzm3tk7aRlxrOvXry8RERGWx//85z8dGpM9e/bIvffeaxn/jIwMp/rurIoK+qpUqeLQNV2Ka9Kkic2XJpFbgbHeMb1586b85S9/0fwl+eGHH3Zq/2WldR2OX375RV599VXdOiNHjpSYmBirpWbNmlbXs3nhhRckJSXFZnH0mjeuFhgYaPUFUORWMDt9+nTN8mfOnJGlS5farC9+xzJ/f39JSUmxKfPGG29ofpHTusZUVFSUDBw40Gqdp4+liPeMp9FjqfX6+f777zXv8Cgi8vXXX8vPP/9ss75Vq1a6+9D6tdcTz8jxBJGRkfLYY49ZrZs5c6b89NNPTrd16dIlGTdunNU6e9eF86R4yVdiQE+O/0S8Iwb0lvhPhBjQFVwRAxKzWDN7DOjLY0kMWE7KAatXr1YiYnfJzs52pCmX2Lt3r1VfHnjgAZsyf/3rXy3bq1Wr5lC7S5YssWr37NmzVtu7detmtb127doqKytLt73r16+rZs2aWcqHhYWpzMxMqzLvvfeeVZtvv/22bnubN29WgYGBVuXbtWunWbZ169aWMiNGjHDo+etZtmyZ1T4PHTpUap0nn3zSUj45OdmyvizH5Y033tA9LiX/V7/44gu7be3fv1/VrVvXqs7UqVNtyrniWM+dO9eqzZUrV5b63Hv37m0pHxERoa5fv65Z7vTp0+rw4cOWRa9caaZOnWrzWu/SpYvdOkePHtV8j/j888/t1issLFSJiYl232ceffRRqzrbt2/XLBcUFKQWLFigzp07p5RSqqioSP3yyy+qf//+muXj4+NVfn6+VdsLFiywKVepUiW7zyE1NVWz/VWrVlnK3LhxQyUkJNiU8ff3V3PnzlVHjhyxlM3JyVHPPPOMZps9e/a02nfJ/9Hby5kzZ+z2uayaN29us69+/frZrbNnzx7NPj7xxBMqLy/PUu7EiROqVatWNuX8/PzUnj17rNrcuXOnZpsjR45Uv//+u1JKqby8PLV8+XLl7+9vU27s2LE2/fSGsVTKO8bT6LHUe85xcXFq165d6ubNm5ayy5cvV9WqVdMsv379et191K5d26a8vc9iV4uMjLT7vrhkyRK39U2pW5938fHxVn0KDg5W77zzjsNtnD59WiUnJ1u10blzZ7t13B0veUsM6Knxn1K+GwN6Q/ynFDFgyXKeGgMSsxgXsyjlHePpq2PpizGggXm470n82eFs4k9EVLdu3VRubq5NW6dPn1YdOnSwKjthwgSbcsePH1d+fn6WMhEREWr79u1WZW7evKl27dqlYmNjbfavF8jefffdVh9cJZ+LMzIyMlRISIjVm9PtD1ctGzduVBEREZby06ZNs2wzOug7ffq01bYWLVqoq1evarbz7bffqqioKJsxHD9+vE1ZVxzr/Px8qw//yMhI9eWXX2r2NTs7W40ePdqqzb/97W+6YzRkyBCrsmvWrNEta4/Wh0BISIi6ceOGbp2yBn1KKbVu3Tq77zMlgz6llBo+fLjdOnFxcaV+cf7Pf/5j066rgj6llNqxY4cKCAjQ7U+TJk1Ux44ddfsdEhKi9u3bZ9WmNwQqSil11113afYzPDxcdenSRbVq1Up3bO6//37NNps0aaJZ3s/PT7Vq1UrzdX57WbdunU173jKWSnn+eLpiLEu+vxZfoqOjVefOnVWNGjV0y/zxj3/UbVvr/SsgIMBlx94Rnp74U0qprVu3qrCwMJu+PfDAA2rTpk3qwoULmvXOnz+v3nrrLZvgPC4uTh07dszuPt0dL3lLDOip8Z9SvhsDekP8pxQxYMlynhoDErP4Zgzoq2PpazEgib8SPCHxVzzgDQ8PV/369VOvvfaaWrJkiRo7dqyqWbOmVVuNGzdW58+f19xvnz59rMqGhoaq5ORkNXnyZDV69Girf+bQ0FA1duxYy2O9QPaRRx6xarNhw4Zq6NChmh+ijpg9e7ZVe7Gxserll19Wn3/+uTpw4IDau3evWrlypRo9erQKDg62lGvUqJG6cuWKpR2jgz6llBoxYoTV9ri4OPX3v/9dfffdd+rLL79Ur7/+ukpKSrJsr169uurSpYtV+UWLFqmvvvrK0qarjvXatWtt3liHDh2q5syZo7766iv13nvvqfHjx6u4uDircr1791ZFRUW6Y2Rk4NeoUSOb1/uGDRt0y5cn6NPqe/FF6//1yJEjKiYmptT3KL1lwIABmv1wZdCnlFLTpk0rU3/9/f01f3nylkDl5MmTur/A2VsiIiLU8ePHNdtctWqV1ZdlR5fBgwdb/Tp4m7eMpVKeP56uGMt9+/ZZJROcWapXr677fqyU7RlXIrZn11Y0b0j8KXXrDLTKlSvr9rN27dqqX79+6tFHH1XDhw9XSUlJNmesiYj6wx/+oNLT0x3apzvjJW+JAT01/lPKt2NAb4j/lCIGLL54agxIzOKbMaCvjqWvxYAk/krwhMTfyJEj1YMPPujQP12dOnV0X3BKKXX58mWrIERv8fPzU5988ol66623LOv0Atlt27ZptlG7dm2HxqKkvLw81b59e6debGFhYeqHH36wascVQd+FCxdUrVq1HOpTw4YN1b59+9S///1vm23t27e3tOmqY62UUitXrnQqaElKSir1DdPIwO8vf/mLTR9mzZqlW768Qd/hw4etviwUX/S+qBw4cMDhY158GTx4sOYv9kq5PujLz89Xf/vb31R4eLjD/a1Tp47u6eneEqgopdSWLVtU9erVHX7eiYmJ6pdffrHb5muvveZUsNKmTRvdzy1vGkulPHs8XTWWX3/9td1fnrWWjh07qoMHD9pt96GHHrKpt3jx4nL1tby8JfGn1K14rG3btk6/F99ehgwZojIyMhzenzvjJW+JAT01/lOKGNDT4z+liAGLL54aAxKz+G4M6Ktj6UsxoJGJP27uYRA/Pz9ZunSpzJw5U8LDwzXLBAcHy+TJk2X//v12b3cdFRUl3377rQwaNEj3VtPdunWTH374QVJSUqSoqKjU/nXu3FkWLFggwcHBjj2hUgQHB8v3338vr776qlSqVMluWT8/PxkzZowcOnRIOnbsaMj+7alatars2LFD7r33Xt0y0dHR8txzz0laWpq0aNFCBg8eLH369HGofSOPtYjIkCFDJC0tTfr162e3XNWqVWXmzJmyZcsWm7s5udKoUaNs1m3atMll+2vUqJGMHz/eqTrNmjWTgwcPypQpUyQsLKzU8g0aNJCPP/5YVq5cKSEhIWXtarkEBQXJ888/L4cOHdIc4+L8/PxkxIgRsm/fPunRo4dT+3FkPCpa165dZffu3TJw4MBS76I3duxY+fHHH3Xv4Hfb5MmTJTU1tdRylSpVkilTpsgPP/wglStXdqrfnjiWIt45nuUdy3vuuUcOHDggw4YNs9yVTk9oaKi8+uqrsm3bNmnatKndshs3brR6HBgYKEOHDi1XX31Jy5YtZefOnfL+++9r3r1Si7+/v3Tp0kW+/PJLWblypVN3z/OUeMmTY0Bfiv9EvCsG9PT4T4QY0FUqIgYkZrFlthjQV8eSGLBs/JQq/VZSa9askf79+9stk52d7fRB93bJycmyZcsWEbn1wbh8+XIRuXVnuuXLl0t6erqcOXNG6tevL82aNZNu3bqVmgQqKTc3V9LS0mTXrl1y5swZady4sTRt2tTqTjzOyMnJkUOHDklmZqZERUVJ8+bNre4iVxaZmZmyceNGOXr0qBw9elROnDghVatWlYYNG0rDhg2lY8eOZe5veW3btk127twpBw4ckIKCAqlTp460bt1aBg4caPNhX1BQINu3b5eDBw9KeHi4JCUlSePGjUWkYo61iMjhw4dl9+7dsnv3bjl06JDExMRInTp1pFWrVjJgwADDAndnNWnSRNLT0y2PQ0ND5cyZMxIVFeWW/thz48YN2bRpk2zZskWysrLk/PnzEhISIjExMdKgQQPp3bu3tGrVSvc27u5y+vRpSUtLk/3798uBAwekUqVK0qJFC2nRooUkJiZa3QWwNBMnTpT58+dL1apVXXIHPiNlZGTIihUr5OjRo3Lq1CmpXr265Tm3aNFCqlWr5nSbP//8s3z33Xdy6tQpOXv2rEREREhsbKzldaT3ZU2LN42liGePp6vG8vLly7Jq1Sr55Zdf5OzZs3LlyhVp0KCBNG3aVBISEiQhIcGh1096erpNsqpv376yZs0aw/paFlFRUXL16lXd7UuWLLG5G66nOHz4sHzzzTdy4MABOXPmjJw9e1YCAwMlNjZWYmNjJTExUYYMGSKxsbHl3ldFx0veFgP6Wvwn4l0xoKfGfyLEgBXBqBiQmMV3Y0BfHUuzx4AG5uG2m2Kqr7sUP3111KhR7u4OXMjXj7XWlIeFCxe6u1vQ0atXLyUiqm3btu7uitdjLI3j6WM5adIkm/c5R+626WreNNXXl/h6XOBLfP1YEwN6D0//nPU2jKdxPH0sPTUGZKovgAr16KOP2pyR8fbbb7upN7Dn8OHDsmHDBhERGTNmjJt7490YS+N4+ljeuHFDli5darWudevWMnjwYDf1CAA8AzGgd/D0z1lvw3gax9PH0ldiQBJ/AEoVGhoqU6dOtVp38OBBy5s4PENmZqYMHTpUioqKpHbt2vLEE0+4u0tei7E0jjeM5fLly+XixYtW62bNmuVx08EAoKIRA3o+b/ic9SaMp3G8YSx9JQYk8QfAIY8//rg0b97cat3s2bPd1BuU9MILL0h8fLykpaVJdHS0LF68WEJDQ93dLa/EWBrHG8aysLBQXn75Zat1vXv3tntzAADwJcSAnssbPme9CeNpHG8YS1+KAUn8AXBIcHCwvPvuu1Z3jdq4caOkpqa6sVe4bf369XLjxg256667ZN++fTJgwAB3d8lrMZbG8Yax/OCDD+Tw4cOWx5UqVZLFixe7sUcA4FmIAT2XN3zOehPG0zjeMJa+FAOS+APgsI4dO8q0adOs1k2fPt1NvUFxDz74oGzYsEHWr18vcXFx7u6OV2MsjePpY5mfn29z1so//vEPqV+/vns6BAAeihjQM3n656y3YTyN4+lj6WsxYKC7OwDAu7zwwguyb98+SU9PF5FbtxDfsWOHdOzY0c09823jxo1zdxdMg7E0jqeP5ddffy3h4eGSkJAgIiLJycnypz/9yc29AgDPRAzoeTz9c9bbMJ7G8fSx9LUY0E8ppUortGbNGunfv7/dMtnZ2VK5cmXDOuYNzp8/L3l5eSIiEhYWJlWrVnVzj+AqHGsAgDtERUXJ1atXdbcvWbLE44NrMyIu8B0cawCAOxiYh9vOGX/lEBMT4+4uoIJwrAEAwG3EBb6DYw0A8HZc4w8AAAAAAAAwIRJ/AAAAAAAAgAmR+AMAAAAAAABMiMQfAAAAAAAAYEIk/gAAAAAAAAATIvEHAAAAAAAAmBCJPwAAAAAAAMCESPwBAAAAAAAAJkTiDwAAAAAAADAhEn8AAAAAAACACZH4AwAAAAAAAEyIxB8AAAAAAABgQiT+AAAAAAAAABMi8QcAAAAAAACYEIk/AAAAAAAAwIRI/AEAAAAAAAAmROIPAAAAAAAAMCESfwAAAAAAAIAJkfgDAAAAAAAATIjEHwAAAAAAAGBCJP4AAAAAAAAAEyLxBwAAAAAAAJgQiT8AAAAAAADAhEj8AQAAAAAAACZE4g8AAAAAAAAwIRJ/AAAAAAAAgAkFGtXQqVOn5MqVK0Y1BwAA4POUUna3X7p0SU6ePFlBvQEAAEBFOH/+vGFt+anSIkoRWbNmjfTv39+wnQIAAAAAAAAom+zsbKlcuXJpxbYz1RcAAAAAAAAwIRJ/AAAAAAAAgAmR+AMAAAAAAABMiMQfAAAAAAAAYEIk/gAAAAAAAAATIvEHAAAAAAAAmBCJPwAAAAAAAMCEAh0plJSUJN9//72r+wIAAAAXuP/+++XcuXNW65KTk+X55593U48AAABQHhEREQ6VcyjxFx0dLZ06dSpXhwAAAOAeBQUFcvXqVat14eHhxHcAAAAmx1RfAAAAAAAAwIRI/AEAAAAAAAAmROIPAAAAAAAAMCESfwAAAAAAAIAJkfgDAAAAAAAATIjEHwAAAAAAAGBCJP4AAAAAAAAAEyLxBwAAAAAAAJgQiT8AAAAAAADAhEj8AQAAAAAAACZE4g8AAAAAAAAwIRJ/AAAAAAAAgAmR+AMAAAAAAABMiMQfAAAAAAAAYEIk/gAAAAAAAAATIvEHAAAAAAAAmBCJPwAAAAAAAMCESPwBAAAAAAAAJkTiDwAAAAAAADAhEn8AAAAAAACACZH4AwAAAAAAAEyIxB8AAAAAAABgQiT+AAAAAAAAABMi8QcAAAAAAACYEIk/AAAAAAAAwIRI/AEAAAAAAAAmROIPAAAAAAAAMCESfwAAAAAAAIAJkfgDAAAAAAAATIjEHwAAAAAAAGBCJP4AAAAAAAAAEyLxBwAAAAAAAJgQiT8AAAAAAADAhEj8AQAAAAAAACZE4g8AAAAAAAAwIRJ/AAAAAAAAgAmR+AMAAAAAAABMiMQfAAAAAAAAYEIk/gAAAAAAAAATIvEHAAAAAAAAmBCJPwAAAAAAAMCESPwBAAAAAAAAJkTiDwAAAAAAADAhEn8AAAAAAACACZH4AwAAAAAAAEyIxB8AAAAAAABgQiT+AAAAAAAAABMi8QcAAAAAAACYEIk/AAAAAAAAwIRI/AEAAAAAAAAmROIPAAAAAAAAMCESfwAAAAAAAIAJkfgDAAAAAAAATIjEHwAAAAAAAGBCJP4AAAAAAAAAEyLxBwAAAAAAAJgQiT8AAAAAAADAhEj8AQAAAAAAACZE4g8AAAAAAAAwoUB3dwAAAADO++677+T48eMOlc3JybFZd/ToUVm8eLFD9Tt06CCtW7d2pnsAAADwAH5KKeXuTgAAAMA58+fPl4kTJ1bIvrZv3y5JSUkVsi8AAAAYZjuJPwAAAC+UmZkpdevWlaKiIpfup2HDhnL48GHx8/Nz6X4AAABguO1c4w8AAMAL1apVS7p37+7y/aSkpJD0AwAA8FIk/gAAALzU6NGjTbEPAAAAuAZTfQEAALxUdna2xMbGSl5enkvab9mypezdu9clbQMAAMDlmOoLAADgraKjo6Vfv34uaz8lJcVlbQMAAMD1SPwBAAB4MVdNxfXz82OaLwAAgJcj8QcAAODFBg0aJBEREYa327lzZ6lfv77h7QIAAKDikPgDAADwYuHh4XLvvfca3i5n+wEAAHg/En8AAABezugkXWBgoAwfPtzQNgEAAFDxSPwBAAB4uT59+kiNGjUMa69Xr15Ss2ZNw9oDAACAe5D4AwAA8HKBgYEydOhQw9pjmi8AAIA5kPgDAAAwAaOSdaGhoTJkyBBD2gIAAIB7kfgDAAAwgW7duhlyF95BgwZJ5cqVy98hAAAAuB2JPwAAABPw8/OTESNGlLsdpvkCAACYh59SSrm7EwAAACi/PXv2SNu2bctcPyoqSrKysiQsLMzAXgEAAMBNtnPGHwAAgEm0adNGmjVrVub6w4YNI+kHAABgIiT+AAAATGTUqFFlrss0XwAAAHNhqi8AAICJHDlyRO644w5xNsSrUaOGnDp1SgIDA13UMwAAAFQwpvoCAACYSaNGjaR9+/ZO10tJSSHpBwAAYDIk/gAAAEymLFN2meYLAABgPkz1BQAAMJnMzEypW7euFBUVOVS+YcOGcvjwYfHz83NxzwAAAFCBmOoLAABgNrVq1ZLu3bs7XH706NEk/QAAAEyIxB8AAIAJOTN1NyUlxYU9AQAAgLsw1RcAAMCEsrOzJTY2VvLy8uyWa9mypezdu7eCegUAAIAKxFRfAAAAM4qOjpZ+/fqVWo6begAAAJgXiT8AAACTKi2p5+fnxzRfAAAAEyPxBwAAYFKDBg2SiIgI3e2dO3eW+vXrV1yHAAAAUKFI/AEAAJhUeHi43HvvvbrbmeYLAABgbiT+AAAATEwvuRcYGCgjRoyo4N4AAACgIpH4AwAAMLHevXtLTEyMzfqePXtKjRo13NAjAAAAVBQSfwAAACYWFBSkeWbfmDFj3NAbAAAAVCQSfwAAACZXcrpvaGioDBkyxE29AQAAQEUh8QcAAGByXbt2tbp776BBg6Ry5cru6xAAAAAqBIk/AAAAk/Pz87Oa7svdfAEAAHyDn1JKubsTAAAAcK09e/ZI27ZtJSoqSrKysiQsLMzdXQIAAIBrbQ90dw8AAADgem3atJHmzZtLx44dSfoBAAD4CBJ/AAAAPmLUqFHSqVMnd3cDAAAAFcTwqb7Hjh3jujEAAAAeKD8/X4KCgsTPz8/dXQEAAEAxlSpVktTUVKObNX6q7/Xr12XHjh1GNwsAAAAAAACYUmRkpEva5a6+AAAAAAAAgAmR+AMAAAAAAABMiMQfAAAAAAAAYEIk/gAAAAAAAAATIvEHAAAAAAAAmBCJPwAAAAAAAMCESPwBAAAAAAAAJkTiDwAAAAAAADAhEn8AAAAAAACACZH4AwAAAAAAAEyIxB8AAAAAAABgQiT+AAAAAAAAABMi8QcAAAAAAACYEIk/AAAAAAAAwIRI/AEAAAAAAAAmROIPAAAAAAAAMCESfwAAAAAAAIAJkfgDAAAAAAAATIjEHwAAAAAAAGBCJP4AAAAAAAAAEyLxBwAAAAAAAJgQiT8AAAAAAADAhEj8AQAAAAAAACZE4g8AAAAAAAAwIRJ/AAAAAAAAgAmR+AMAAAAAAABMiMQfAAAAAAAAYEIk/gAAAAAAAAATIvEHAAAAAAAAmBCJPwAAAAAAAMCESPwBAAAAAAAAJkTiDwAAAAAAADAhEn8AAAAAAACACZH4AwAAAAAAAEyIxB8AAAAAAABgQiT+AAAAAAAAABMi8QcAAAAAAACYEIk/AAAAAAAAwIRI/AEAAAAAAAAmROIPAAAAAAAAMCESfwAAAAAAAIAJkfgDAAAAAAAATCjQ3R0AAACA5/Hz85MWLVpobjty5Ihcu3atgnsEAAAAZ5H4AwAAZfLmm2/KAw884JK269atK5cvX3ZJ23BMUFCQ7N27V3Nb9+7dZfPmzRXcI/PLzc2VwEDb8LxDhw6ye/duN/QIAAB4OxJ/AACgTMLCwiQqKsolbfv5+bmkXV/k7+8vwcHBNuuVUpKXl+eGHkFPQECABAQE2Kzn9QAAAMqKa/wBAACYWNeuXeXGjRs2y6+//ururgEAAMDFSPwBAAAAAAAAJkTiDwAAAAAAADAhrvEHAAAMt3LlSrl582aZ6+fn5xvYG5RFUVGRzJkzR3NbRkZGBfcGAAAAZUHiDwAAGG7UqFEk77xcUVGRTJs2zd3dAAAAQDmQ+AMAACij4OBgqV+/viil5NixY1JYWGhY2yEhIVKjRg2pVq2aXLp0SX7//XcpKioyrP2KVrduXWnQoIFUr15doqOj5fLly3Lu3Dk5ceKEHDt2zKX7duVxCg4OlmrVqknVqlUlICBAMjMz5cKFC6KUMmwfAAAAZUXiDwAAeLTWrVvL1KlTNbeNHTtWcnNzdes2bNhQXnrpJc1t48aNk2vXrlmtCw8PlzfeeMOmbHZ2tkyePNlS5vHHH5fHHntM6tevL/7+ty6ZXFhYKMePH5etW7fK7Nmzy5TMql27tjzyyCMyYMAAad++vfj5+Vm2FRYWyu+//y5Hjx6VZcuWyUcffSQFBQWa7XTt2lXatWsnIiLx8Yz7P/IAACAASURBVPGaZaKiomT8+PGWxydOnJCVK1daHgcGBsqyZcs06/71r3916K7AdevWlWeeeUYGDBggTZo00S13+PBhWbVqlSxYsMChcXP3cYqPj5dx48ZJjx49pF27dhIQEGC1PS8vTzIzMyU1NVU+/PBD2bx5M4lAAADgHspg+/fvVyLCwsLCwsLCYvLl3Xff1Y0HgoODDdtP//79dfcTERFht2779u1160ZHR9uUr1KlimbZU6dOKRFRd955p8rKyio1HsrLy1MLFixQISEhDj3HwMBANXv2bHXt2rVS277t999/V5MmTVJBQUE27b322msOt3Pb6tWrrdoIDg7WLZucnFzq83nxxRfV9evXnepDbm6umjt3bqn/P+46TqGhoeqdd95RBQUFTj2vjIwMNXDgwFLb12u3Xbt2bn+9s7CwsLCwsLh2iYyMdCq+cND3nPEHAADggISEBFm3bp1ERUWVWjY4OFjGjx8v+fn5MmXKFLtlw8PD5bPPPpP+/fs71Z/atWvL66+/Lo0aNZLHH3/cqbquFBwcLP/+97/l3nvvdbpuSEiITJkyRVq0aCFDhw61ezanHlcdp4iICPnvf/8rPXr0cLpPcXFx8vnnn8uoUaPkiy++cLo+AABAWfm7uwMAAACe7nYyy5FkUnGTJk2Srl272i2zdOlSp5N+xT322GPy6KOPlrm+0ZYsWVKmpF9x/fv3lw8//NDpeq48TjNmzChT0u+2oKAg+fTTT6V79+5lbgMAAMBZJP4AAABKERMTIy1btrRad/PmzVJvtuHv7y9z5szR3Z6UlCQjR44sd/8WLlxo1b+CggLJzc2V3Nxc3bsrK6UsZeyVc0aHDh3kwQcftFumsLBQjh49WuoNNoYNG+Z0ksxVx6lWrVry1FNP6W6/fv26pKWlyU8//SQnT57ULRcYGFjupCgAAIAzSPwBAADDXb58WW7cuOH0Eh0d7e6ul2rp0qUyZMgQqVatmkRFRUlycrKsWrVKt3zz5s11t7322mu62zZs2CBPPvmkNGzYUBo0aCDDhw+Xo0ePapYNCgqS++67z/J42rRpEhYWJmFhYdK7d2/NOidOnLCUCQsLkyFDhuj2xVH2ns+WLVukU6dOEhkZKY0aNZLIyEjp1KmTbN261W57xW9w4gwjj9PYsWMlLCzMZn1eXp489dRTEhkZKS1btpQOHTpI3bp1pWnTprJ7927Ntu68807nnwwAAEBZGX3VQG7uwcLCwsLC4huLvZt7lJXWDTc84eYet/3zn//U3E9ISIhKTU3VrVejRg2bOvfee69u+Q0bNih/f3+bOlWrVlVHjx7VrLNx40bNviUnJ2uWP3bsmN2xc/bmHoMHD9Yt/95772nehOT2fj744APduikpKW49TiKiVqxY4dR+REQlJSVp1rl+/boKDAzUrMPNPVhYWFhYWHx3cdXNPTjjDwAAwAE///yzPPbYY5rb8vLyZO7cubp1mzRpYrNOb+podna2PPjgg3Lz5k2bbRcvXpR3331Xs15SUpLmWWkVZfr06Zrrz58/L08++aQUFBRobs/Pz5cnnnhCLl265FS7eow+TiIirVu31ly/aNEi3bbOnj2ruT4sLExiY2N16wEAABiJu/oCAAA4IDU1VTd5JSKyb98+3W01atSwWde4cWPNsm+//bbd68QtW7ZMRo8erbmtWbNmsmvXLt26rhIQECCtWrXS3PbGG2/I9evX7dbPycmRN998U2bMmGGzrWnTphIaGurwHX6NPk4iIvHx8ZrrlVKa60NCQmTmzJm6+ynr9GUAAABnkfgDAABwwP79++1uv3jxosNthYaGSu3atTW3bdmyxW7djIwMSUxMdHhfFaFBgwYSHBysue2LL75wqI2VK1dqJv78/f2lcePGdhN2xRl5nG7TS/CJ3DqWjRs3lnr16kl8fLwkJiZK3759dY8vAABARSLxBwAADLd48eJS76SqxYg7y7rKgQMH7G4v7S61xTVs2FD3rK9ff/3VqX55goSEBN1tGRkZDrVhr1xCQoLDiT8jj5OWkJAQGTp0qPTr10/atGkjTZs2lcBAQmoAAOCZiFIAAIDhnnrqKY9O4pWFvem3zmrUqJHutuzsbMP2U1H0En+XL1+WK1euONTG+fPn5caNG5rXKbSXWCzJyONUnL+/v0ydOlUmTZok1apVc8k+AAAAjMbNPQAAABxgb7qns+rWrau77dq1a4btp6JER0drrs/JyXGqHb3nrte+FiOP021BQUHyzTffyMsvv+xw0m/Tpk2G9wMAAMBZnPEHAABMS++6c+52/vx53W0RERFlug6dO6Wnp2uuj42NlcDAQIem14aGhkpMTIxT7VeUOXPmSL9+/XS3K6Xk4MGDsmvXLtmxY4esW7dOzp8/LxcuXNAtDwAAUBFI/AEAAI9mL0lS2t1Rq1atWua6rnTkyBHdbVWqVPG6xJ/edQkDAgKkVq1aDl3nLy4uzun2K0JsbKw888wzmtsyMzNl5syZsmLFCpsp2kwHBgAAnoDEHwAA8GiXL1/W3Va5cmW5evWq7vYGDRq4okvlZi/x16pVK7vbq1WrJrNmzdLcNm/ePDl+/Hh5u+e0Q4cO6W5r3bq1Q4m/Vq1alal9Vxs5cqQEBATYrL906ZL06NFD92zEevXq6bbpzqQzAADwLST+AACAR9ObLikiUqdOHfn99991t9ubnulOly5dkkuXLkmVKlVstvXu3Vs+//xz3bopKSny1FNP2ay/efOmPP/884b201GXL1+WrKwsiY2Ntdk2ceJE+e9//1tqGxMmTNBcf+XKFTl9+nS5+1hWzZo101y/du1au1OQW7Zs6aouAQAAOIybewAAAI9mb9rrkCFDdLeNGTNGBgwY4IouGSItLU1z/bhx4yQpKUm33gMPPKC5fv/+/XbPfixJ6yy28vj0008113fv3l169Ohht27v3r2lc+fOTrVbUWrWrKm5/sSJE3br9e3b1xXdAQAAcAqJPwAA4NEuXryoe9bflClTZMSIEVbr/P39ZeDAgbJ06dKK6F6Zvfrqq5rrAwMD5aOPPtI8G3DgwIHSsWNHzXrOJsiqVasmgYHGTf548cUXdadlf/311zbH6bZRo0bJl19+qbnt+vXrMnPmTMP6WBanTp3SXN+mTRvdOn/84x8lJSVFd7u/PyE4AACoGEz1BQAAHu3mzZuyevVquf/++222+fv7y6effirp6eny448/SrVq1aRLly4SFRXlhp4655tvvpHt27dLp06dbLY1bNhQTp8+LZs3b5bvvvtOgoKCpG3btjJs2DDNtjIzM2X+/Pma2/TuqBseHi4ff/yxbNq0SXJycuT06dPy3Xfflfn5nD9/XubMmSOvvPKK5r4+/fRT2bZtm+zcuVMOHTokTZo0kfbt20uXLl1023z99dfdOs1XRP/MzF69eskLL7wgixYtsvSxbt26MnXqVBk3bpzdNo1MuAIAANilDLZ//34lIiwsLCwsLCwmX959913deCA4ONjQfQ0bNqxMcUl+fr4qKCjQ3FalShWb/VSpUkW3rZo1a9rto7+/v27dYcOGadbp0aNHmZ5XSWPHjtXtV1xcnENtrF692qpecHCwbtnk5GTNfYWGhqqMjAxDnlNWVpaKiIjQ3E9FHqf27dvb7WdRUZH6+eefVVZWlsPPrWnTppp90/tfbdeundtf7ywsLCwsLCyuXSIjIx2OJZzwPfMMAACAx/v8889l48aNTtd77rnn5Pr165rblFLl7FX5bdiwQZYvX16uNhYuXGh3WvOpU6ckKyurXPtwVG5urowePVquXLlSrnauXbsmY8aMkZycHIN6VnY7d+60O77+/v7SqlUrm2sBrl27Vg4fPqxZp3nz5ob2EQAAQA+JPwAA4PGUUvLQQw/JL7/84lD5mzdvyvTp02XevHku7ln5PfDAA/LJJ5+Uqe5bb70l48ePt1vm5s2bMmXKlApLdG7btk169epV5mTjuXPnpG/fvrJ+/XqDe1Z2Tz/9tG4ST8trr70m/fv3lwMHDmhuHzdunISHhxvVPQAAAF0k/gAAgFfIyMiQO++8UxYuXCjZ2dm65X788Ue5++675aWXXqrA3pVdYWGhjBkzRoYPH+5wcungwYPSs2dPeeKJJxxK6C1btkzatGkj33zzTXm765CffvpJ7rjjDnnxxRcdPmvv+vXrMnfuXLnjjjtk27ZtLu6hc3JycqR9+/Yyf/58KSgo0C135MgRGTVqlEyZMkWKiopkw4YNmuX69u1b6nUAAQAAjOCnDP7598CBA5KYmGhkkwAAAFZCQkKke/fuUrduXYmNjZWLFy9Kenq6HDp0SE6ePOnu7pWZv7+/tG3bVvr27SuJiYlSvXp1qVKlimRnZ0tWVpakp6fLF198Ifv27SvzPiIjI6VGjRpSvXp1iYmJERGRGzduyOnTp+XgwYNGPRWLkJAQ6datm/Tu3Vvq168vMTExEh0dLZcvX5bz58/LiRMnZO3atbJ582bJzc01fP9Gi4+Plx49ekhCQoLEx8fLlStX5MSJE7J582ZZu3atR0whBwAA3icyMrLcl0vRsJ3EHwAAAAAAAOBGrkr8MdUXAAAAAAAAMCESfwAAAAAAAIAJkfgDAAAAAAAATIjEHwAAAAAAAGBCJP4AAAAAAAAAEyLxBwAAAAAAAJgQiT8AAAAAAADAhEj8AQAAAAAAACZE4g8AAAAAAAAwIRJ/AAAAAAAAgAmR+AMAAAAAAABMiMQfAAAAAAAAYEIk/gAAAAAAAAATIvEHAAAAAAAAmBCJPwAAAAAAAMCESPwBAAAAAAAAJkTiDwAAAAAAADAhEn8AAAAAAACACZH4AwAAAAAAAEyIxB8AAAAAAABgQiT+AAAAAAAAABMi8QcAAAAAAACYEIk/AAAAAAAAwIRI/AEAAAAAAAAmROIPAAAAAAAAMCESfwAAAAAAAIAJkfgDAAAAAAAATIjEHwAAAAAAAGBCJP4AAAAAAAAAEyLxBwAAAAAAAJgQiT8AAAAAAADAhEj8AQAAAAAAACZE4g8AAAAAAAAwIRJ/AAAAAAAAgAmR+AMAAAAAAABMiMQfAAAAAAAAYEIk/gAAAAAAAAATIvEHAAAAAAAAmBCJPwAAAAAAAMCESPwBAAAAAAAAJhTojp326dNHoqKi3LFrAAAAU/r222/l6tWrutubNWsmzZo1q8AeAQAA4LZjx47Jrl27Kny/bkn8zZs3T5o3b+6OXQMAAJhSs2bN5JdfftHdPmLECHnhhRcqrkMAAACw+Oc//ymPPPJIhe+Xqb4AAAAAAACACZH4AwAAAAAAAEyIxB8AAAAAAABgQiT+AAAAAAAAABMi8QcAAAAAAACYEIk/AAAAAAAAwIRI/AEAAAAAAAAmROIPAAAAAAAAMCESfwAAAAAAAIAJkfgDAAAAAAAATIjEHwAAAAAAAGBCJP4AAAAAAAAAEyLxBwAAAAAAAJgQiT8AAAAAAADAhEj8AQAAAAAAACZE4g8AAAAAAAAwIRJ/AAAAAAAAgAmR+AMAAAAAAABMiMQfAAAAAAAAYEIk/gAAAAAAAAATIvEHAAAAAAAAmBCJPwAAAAAAAMCESPwBAAAAAAAAJkTiDwAAAAAAADAhEn8AAAAAAAD4P/buOzyK6nv8+EkhhAQiJXSCAQMESASkgwRFkKKAREpABbFhAwQRK0VUVOyiiKIUsSCKgoBY6CBNihACpAABPtTQEyGk3d8f+bHfbGa2JbvZ3cn79TzzPNnZO3fOzm5mz56ZuQMDovAHAAAAAAAAGBCFPwAAAAAAAMCAKPwBAAAAAAAABkThDwAAAAAAADAgCn8AAAAAAACAAVH4AwAAAAAAAAyIwh8AAAAAAABgQBT+AAAAAAAAAAPyd3cAAIxv7ty5cv78edPjAQMGSFhYmBsjAgDHJCQkyB9//GF6HB4eLrGxsW6MyFhyc3Nl/fr1cuDAATl58qScOnVK8vLypFq1alKtWjWpW7eudOnSRSpWrOjuUAHYifwPQEkiV7Os1BX+9u/fL127djU97t+/v3z00UdujAj2eu2112Ty5MkiIlKlShU5c+aMewOCXX755RcZPny46XHDhg1l1KhRIiJy+PBhiYiI0F1u+fLl0qNHD7vWERkZKcnJyWbzHnvsMfnss8+KGDWc7f333zf7n23UqJHZ58IeZ86cka+//lr27dsnR44cEX9/f4mIiJAGDRpImzZtpEOHDg71p5SSzZs3yx9//CEnTpyQ06dPS/ny5aVmzZrSrFkz6du3r9xwww0O9VkSnLEtRUrn9szIyJAdO3ZIcnKypKSkyMmTJ6Vu3brSoEEDiYiIkNatW0uZMmV0l61du7a88cYbph+xfn5+smXLFmnVqlVJvgTDiY+Pl08//VQWLVokZ8+etdrW399fOnXqJHFxcfLwww+Ln59fCUUJdyL/807kf6VHZmampKSkFGlZHx8fadq0qZMj0vKGGG1xRv6nlJJ169bJ1q1b5cSJE3LhwgUJDw+XRo0aSWRkpDRu3FiCgoIc6jM7O1t27twpycnJkpycLEeOHJHq1atLgwYNpEGDBtK8eXOH8r/i5JPkalYoJ9u7d68SEavT3r17nb1au+3evdsslgceeMBtsXiqnJwc05Sbm+vucExeffVV0/tWpUoVd4cDO5w/f17VqFHD7H/up59+Mj1/6NAhi/uJJk2aqOzsbLvW06BBA83yI0aMcNXLgoPS09NVYGCg2fvTo0cPu5fPyclRI0eOVGXLlrX63dKzZ08VHx9vV5+//fabCg8Pt9pf2bJl1ciRI9WVK1eK+tKdrrjbUqnSuT3z8vLUvHnzNPujwlNERIRauHChysvL0+3n3XffNWsfHR2tsrKySvjVWNa4cWOrr2/SpEnuDtHk2rVrauLEiapMmTI280a96eabb1br169362vw1HypqDz19ZD/eR/yv9Llzz//LNJ+XESUr68vMdrBGfnfzJkzVVhYmNXXWrlyZTVz5ky7vwN+++031bBhQ5t9fvLJJyonJ8eu/oqbT3p6rjZr1iyrr69ChQquWO0mxviDRqtWrcTf31/8/f3lgQcecHc48GJjx46VU6dOmR43atTI7tOt9+3bJzNnznRVaChB77//vmRmZhZpWaWUPPzwwzJ9+nS5du2a1bYrVqyQ5s2by/fff2+13RtvvCG9evWS1NRUq+2uXbsm06dPl1atWpldquROxdmWIqVze+bk5EjXrl1l2LBhZvsjPSkpKTJw4EDp1KmTZGRkaJ5//PHHpVKlSqbH8fHxMnXqVKfHbHSXL1+Wjh07ypQpUyQ7O1vzvK+vrzRq1Eg6duxo8aj+nj17pHPnzjJr1ixXh2uR0fIlo70euA/5X+li6/vfE3hDjNYUJ//LycmRuLg4efzxx+XYsWNW254/f14ef/xxadu2rezZs8dqn7GxsdKrVy9JSkqy2efTTz8tLVq0kOPHj1ts56x8klxNH4U/AC6xZs0amTt3rtm8sWPHio+Pj919TJ48WS5cuODkyFCStmzZIu+++26Rl3/yySdl3rx5drfPzc2VRx99VBISEnSfX7p0qUyYMMGhGPbt2yf33Xef5OXlObScsxV3W4qUzu356quvyurVqx1a5u+//5bHHntMMz84OFgef/xxs3lTp06VxMTEYsVYmmRlZUm/fv1k+/btZvNDQ0Plww8/lM2bN8vly5flwIEDsnHjRrlw4YIcPHhQFi1apCkcKKVkxIgRDn2mAbgW+V/pc/jwYXeHYJM3xGhJcfO/iRMnyg8//ODQMtu3b5e7775bLl26ZLHPX375xaE+4+Pj5f7779fN/5yZT5Kr6aPwB8AlXn75ZbPHVatWlaFDhzrUx7lz5+TVV191ZlgoIUlJSdK/f39p3769pKenF6mPl19+2eJR/8jISOnWrZvZEb3r/vvvPxk0aJDucuPGjROllGa+j4+PREVFSfny5XWX+/333+Wvv/5yIHrncca2FCmd23Pz5s3y5ptv6j534403SuvWrSUkJET3+e+//173bLKRI0dKQECA6XFWVhb7KQc8+eSTmkLsnXfeKXv27JHRo0dLu3btJDg42PScj4+P1K9fX2JjY2XRokUyc+ZMCQwMND1//SxWW2ccACgZ5H+ljzecTecNMRbmjPxv586d8vbbb1t8vly5chaL8seOHZORI0dq5q9bt85in9dvxNW4cWPx9dWWmtauXSvTpk3TzHd2PkmuplXqbu4BwPVWrFghmzdvNpv31FNPmf1Ys9eMGTPkiSeekEaNGjkrPLjAP//8I6+88opcuHBBjh07ZvOSSlvOnDkj7733nmZ++/btZdasWaZBlq9cuSIDBw6U5cuXm7VLSEiQ5ORkadCggWne9u3bdYsDQ4YMkXfeeUdq1aolWVlZ8uuvv0pcXJzk5uaatfv222+le/fuxXpd9nD2thQpvdvzmWee0ay3YcOG8vPPP5tec05Ojrz22msyZcoUzfLffPONPProo2bzatasKUOGDDE7o+WHH36Ql19+2SMG//ZkSUlJMmfOHLN577zzjjz77LN2nw00YsQI6dChg/Tp08f0Qy43N1feeOMNzvwD3Iz8r3QqfDZds2bN5JFHHrFrWb3ikCt4Q4yuyP9mz56te4bdiBEj5IknnpCoqCi5cuWKLFu2TJ566inNmbbz58+X+++/X+68807TvG+//VbTZ0BAgMybN0/i4uLMXs+9996rubx4/vz58sILL5geuyKfJFfT4exRA7m5h/dr3ry5afsMGTLE3eGYMLiz92jVqpXm//7YsWOadtYGdy443XXXXVbXV5zBnfPy8tT+/fvVmjVr1MKFC9WSJUvUpk2b1IkTJ4r02q3JyclRhw8fVkeOHHHKwOn//fef2r59u9q7d686d+6cEyIsul9//dWhgZJtDUhc8P/9+hQcHKxSUlI0bc+ePat7g4BPP/3UrN0zzzyjaRMWFqYuX76s6XP8+PG6g+2WxI0pnL0tlSqd2zM7O1sFBARo1vvvv//qtr/nnns0bUNCQnRv9LFx40ZN2/79+7vstdjL02/u8dBDDzm0b7dm2bJlZn35+fnpfp5dyVPzpaLy1NdD/uc9yP/0GTn/U0ppbuQyduxYd4ek4Q0xOjv/y87OVlWrVtUs98ADD+jmNuvXr9ddz/jx483atWjRQtPmxRdf1I1hyZIlmra+vr4qPT3d1MZV+aSn5mruurkHZ/zp2Ldvn+zdu1dE8k9Pv/3220VERCklBw4ckC1btsjWrVslJSVFoqKipHXr1tKmTRuzMyEK2717t+ka+Tp16kj9+vVFROTSpUvy1VdfyT///COpqakSGhoqrVu3ltatW0uXLl2kbNmyFvvctWuX6Rb2ZcuWlb59+9p8bf/884/piEflypWla9euIiLy77//mirtFy9eNLU/evSoLFy4UETyTwXu3bu3zXVYk5GRIfPmzZOEhARJSUmREydOSP369SUqKkqaNm0qHTp0kHr16jnUZ3Z2tixcuFBWrlwpR44ckezsbGnZsqVd70th6enp8t1330l8fLykpqbKyZMnJTQ0VGrXri1hYWESGxsrzZo1s9qHK95rPcePH5cdO3bIzp07ZefOnXL16lW58cYbpV27djJgwAC7b5uekZEhWVlZpscVKlSQMmXKOBRLQZs3b9aM3dS0aVOpU6dOkftcvny5/Pnnn2ZHm4pr79698s4778jvv/8uZ86c0W0THR0tsbGxMnbsWIuXA4rkH+EuPJ5NgwYN5PXXXxcRkV9//VXefPNN2bFjh2kg+8DAQLnpppvkwQcflKefftruo+ELFiyQRYsWyZ49eyQlJcXsiFtYWJjce++98vDDD0tUVJRd/XmqwttTJH+stptuukkzv0qVKrJgwQI5d+6c2fzIyEjT37m5ubJgwQLNsqNHj5YKFSpo5r/wwguaSxHS09Nl6dKlMnDgQHtfhscojdvzwIEDZvs2EZF27dpZ3Iffe++9snjxYrN5ly9floMHD0pERISmnxtuuMFs7JtFixbJ8ePHpXbt2k56BcZy7NgxmT9/vumxn5+f7uU+9rrrrrukS5cupsuGr5/1N3v2bE1bd+ZL5H/5yP/I/4qC/O//eGr+d/XqVc2ZaU2aNCnRGGzxhhhdITk5WdLS0jTzX3jhBd2z7Dt16iS33nqrbNy40Wx+4Zt87Nu3T7OspSs4unbtKj4+PmaX8ebl5UliYqK0bNnSpfkkuVohzi4lGuGMv4JHFjt37qyUUmrPnj26R7EKTtaOHHTq1MnUbvTo0Uqp/GpvhQoVLPbXrFkzlZiYaLHPUaNGOXwEdPjw4aZlWrZsaZo/evRom+9b7dq17VqHnpycHDVjxgxVrVo1q+sIDAxUn3/+uW4fekd8V61apWrVqmW1zylTptiM77///lNjxoxRISEhNrdDmzZt1F9//WWxL1e81wVlZmaqJ5980uZ2fOaZZ1RGRobN/vr27Wu27O+//25XHJY8++yzdv9vWDri2759e828qKgoi7eBd+SIb05Ojho5cqTy8/Oz+V5fn6pVq6YWLVpk8TV/+OGHup+TrKws1b9/f5v9161bV23cuNHqdk1LS1P33nuvXfH6+/url19+WV27ds1qn87kzKOUp06d0l0mNTW1yPH9/fffun2uXr3a4jI33nijpn1cXFyRY7CXs4/4ltbt+e2332rWZ+0spsJnkF2f9M5WUUqp2NhYTdvp06e76uXYxZPP+CucZzz++OPF7nPnzp3Kx8fHbN+n973nznyJ/I/8j/xPi/wvfzJC/rdv3z5NHJs2bSqx9dvDG2JUyvn534oVKzTLhISEWF1Gbx9Tq1YtszZNmjTRtNm+fbtufzk5OZqrL3x8fNT58+eVUq7PJz0xV3PXGX/c3MMOq1atkjZt2miOYhX2/vvvy/PPP29Xnx988IE8+uijVgfq3L17t7Rs2VK3Cu5tXnzxRXnyySctbtRofgAAIABJREFUHlm7LjMzU0aMGCH333+/zVuWr1ixQrp37y4nTpyw2m7ixIkWB3cXyT9LIC4uTj744AO5fPmy1b5ERLZt2ya9e/eWVatW2Wwr4tz3OiUlRdq3by8zZsyw2i4zM1M+/PBDiY6OlpSUFLvidJZFixZp5jl6pHbUqFGaM5H27t0rn3/+ebFiu347++nTp2vGh7DmzJkzMnDgQLOzVewxZswY+emnn2y2O3r0qAwZMsTi52/Dhg0SFRWlu2315OTkyBtvvCFDhgzRHSjXFXr37i25ubm6k6NjaWzdulUz78Ybb5Qbb7yxyPEdPXpUd37z5s0tLqP3XOFxSlzBmdtSpPRuzzvuuEO2b99uNr311lsW2//zzz+aeRUqVLB4torefs3e/9HS6LfffjN7XHB8n6Jq0aKFdOjQwfQ4JyfH4+/cSP6nj/yP/E+E/K8wb8j/9G6aUfhsuqtXr5ZILJZ4Q4wizs//jhw5oplXq1Ytq8vobYfCd/Zt3bq1po1erimSv48rfPXFTTfdZLqZnKvzSXK1/8OlvjYkJydLnz59JDMzU/z8/OTee++V9u3bS1hYmBw6dEjWrFkjK1asMLWfNm2atGvXTvr162exz59++kmOHz8uIvmDjI8aNUqioqIkICBAUlJSZM6cObJmzRoRyT8Nf+jQodKqVSvNpUbO1LdvX9OPmw8++MCUTLVo0UKGDBkiIqJ7uq09li1bZnYL8jvvvFNGjx4tkZGRUq5cOTl8+LAcOHBApk6dKgcPHhSR/EE6mzRpIi+99JJunxkZGTJw4EDJyckRPz8/GTx4sHTs2FFuuukmSUpKko0bN5olUS+99JK0aNFCevTooenr+eefl6VLl5oeR0VFyfPPPy9NmjSROnXqyLlz5+TgwYMyf/58+fHHH0UpJZmZmdK3b185c+aMBAUFWXztznyvDx06JLfccotZAnnnnXdKr169pFmzZnLy5EnZsmWLrFq1ShISEkQkfyDb7t27y5YtW6Rq1aoW43SWnTt3ar5cAwMDJSYmxqF+ypYtK++++67m/2jSpEkyZMgQqVixYpHimz59ul2JmJ7c3Fx55JFH5NZbb7XrcqSEhATZtm2b3f0fPXpUxo0bJ1988YXZ/GvXrsmwYcPk9OnTDse8aNEimTBhgumSE1dz1uDHO3bs0My7/j9x9OhR+eWXX2T37t0SHx8vQUFB0rx5c2nevLl0797dYkKjt/2qVKmiexfb6/Qug7X149VZnDmQdGndntWrV5fq1avb1fb06dO6P7z79+9vcRm9ZHLDhg2SlpZWIvtbb5KXl2f2AyQoKKhYheeCGjVqJH///bfp8aFDh1x6qVtx8iXyP/I/8j/ryP/+j7fkf4UPtlzPGyZMmCBr166VxMRESUtLk+rVq8vNN98sLVq0kNGjR9ssQJW2GK9zZv4XFxenyVVsDS2gdxC08A12unXrprmZ1uTJk6V79+5muV56erqMHj1a01/BmFydT5KrFeDscwiNdqnv9al27dpq9+7dun2OGTPGrK3epUQFT/+/Pg0aNMjiqesff/yxWdt+/fpp2jjzUo+CnD2486233mrqr2fPnhYHtb169arq0aOHqe0NN9yg/vvvP9Pzeu9LVFSU2rlzp25/hbfhgw8+qNuuevXqpjZ33XWXunr1qsXX8v7775v1uXbtWk0bV7zXSimz0/zLlStn8ZKYa9euaS7feOWVVyy+Jmde6vHSSy9pXntkZKTF9pYu9fj555+VUkrdcccdmufGjBmj6ceeSz0uXLigKleurLu+W265RU2dOlWtWLFCfffdd2rs2LEWL80ZPHiwZv16l3pcn3x9fVXnzp3VpEmT1Ny5c9WoUaMsXvJU+FR6pZR6/fXXddtGRkaq6dOnq5UrV6pvv/1WDR48WLedv7+/Sk5OdvStdKqmTZtq4rJ2ecIjjzyiaT98+HC1ePFiValSJYvbumLFiuqbb77R7VPvs3njjTdajXvChAmaZWxdIuFqjm5LpdielqSnp6uUlBT19ddfq3r16unGdurUKat9BAYGapb74osvSugVaHnqpb5HjhwxiyMqKsppfb/55ptmfX/wwQeaNu7Ml8j/yP/I/7TI/4yT/z333HNm6w0NDVWhoaFWv4tCQkLUJ5984pQbnRglRluKkv85as2aNWbDZ1j6PsjLyzPbv1+fgoKC1EMPPaTeeustNWrUKBUWFqZpU6NGDbMb0pREPulpuZq7LvWl8GdH4c/f31/t27fPYp95eXmqTp06pvZ16tTRtCmcDERGRqrs7GyrsT788MNmy6xbt87seW9I/HJzc1X58uVN/c2bN89q+5UrV5q95oLjBei9L/Hx8Vb7K3jXIb2dyNGjR836XLlypdX+cnJyVFBQkKn922+/rWnjivd63bp1Zs9/9NFHVvvLysoyS6LDwsIsfnFlZGSo8+fPmyZbsVrTrl07zf97TEyMxfa2Er89e/ZoxmIpU6aMSkpKMuvHnsSv8Jf+9Wn48OEqMzNTE1tCQoKqX7++pr2Pj4/6559/zNpaS/z0foQmJCRYTDgK3uXq2LFjZp+361PXrl117171/fff6/Zp6UdPSXE0WenTp4+mfcF9rK0pLi5O80Or8P+YiKimTZtajfutt97S7V/v81JSipL4sT21evbsafU1R0REqF27dtnsp27durrby108tfC3evVqszj69OnjtL5/+ukns75HjhypaeNJhT/yP33kf+R/IuR/13lT/mfPWIaWpr59+7o8Pm+J0RZXF/7S09N1D4KKiPrll1807c+ePatiYmIc2patWrVShw4dMuunJPJJT8vVGOPPgz388MPSuHFji8/7+PiYXWuud/ecwiZOnCj+/tavtJ48ebLZY0fHl/AEx44dk4yMDNPjQ4cOWW3fpUsXmTJlikyYMEEmTJhg9TKK0aNH27ycp3Pnzqa/9U4lTkxMlPDwcAkPD5fmzZvLbbfdZrU/Pz8/s8uTzp8/b7W9iHPe67Fjx5r+btWqlTz99NNW+ytTpoy89tprpsfHjh2TlStX6rYNDg6WSpUqmSZbsVqjN76CvZfa6YmOjpbHHnvMbF52drY8++yzDvVz/vx5mT59umZ+RESEzJo1S/e09yZNmsisWbM085VS8uqrr9q13sGDB8szzzyj27elSwgTExNNf3/99ddy5coVs+cDAgLk888/l3LlymmWjYuLk7i4OM38xYsXm939zdP9999/mnn/+9//7F5+wYIF8vHHH5vN07sEIDg42Go/lp4vqct9nYXtqWXt/8HX11eefPJJufnmm232o7d/K4lxIL1N4e9+vct0iio8PNzs8fXLKz0V+Z8+8r985H/5yP+8J//TGz/PXkuWLJEvv/zSecFY4A0xulNaWpp069ZNd4zc9u3byz333KOZX6VKFXn11VcduhN4586dJSwszGxeSeST5Gr5KPzZQe/a9MKaNWtm+vvatWtmyU5hfn5+cvfdd9vss06dOmb/HCU9SK8zhIWFmY3H8d5771lMQETyi6gTJkyQKVOmyJQpU6wWXPXGayms4LX7mZmZmvela9eucvjwYTl8+LDs2rVL/Pz8rPaXlpZmM3ktyBnv9blz58zG6BowYIBd4z+0atXKLEn94Ycf7A27SHJzc+XUqVOa+dWqVStWv1OmTNGM6bJ06VKrn6PC4uPjdQcLf+6556y+5126dNEdwFZv/As9ffv2tfhcdHS07vyCX1pJSUma5zt06CD169e32K/e+KIXL16Uf//911qoHqXwIMAF+fn5Sb9+/WTChAkybNgwqVmzpm67iRMnmn2pX7hwQdNGL3m253m9vjwZ29MxeXl5MnbsWOnRo4fmh1dhevs3Ty88uUPh97g4BYHCzp07Z/bY0mfYE5D/kf8VRv5nGfmfOU/N/yzdUOn222+Xd955R+bMmSNjx47VFHyuGzt2rO5NKJzJG2J0l71790r79u1ly5YtmufKlCljNk5rQRMmTJA77rhDsrOz7V7Xe++9J126dDG7gUhJ5JPkavm4uYcNvr6+0qBBA5vtCh9xvnr1qpQvX163bYsWLeweKLlp06amH1vXBz72Jr6+vnLHHXeY7p6TkZEh3bp1kzZt2siwYcOkV69emm1nL3uWK/weWHtfLElLS5PU1FTZunWrTJo0Sa5du2b3ss54rwt/+d9yyy12r//mm282fVEVPJLoCqdOndK9U1pxf+CFhobKpEmTZMyYMWbzx44da1eyLiJy4MAB3fn23G2uW7dumkTv9OnTcvHiRZuDTFu7A5c9+xW9H3t+fn7y6aefWlzm5MmTuvPj4+Md+uy4k6U77lWoUEHWr19vdob1hQsX5P7779fcMTQjI0MmTZoks2fPFhHRHSTY1h3cLD1vbcBhT8T21AoJCZGyZcta3Z//9ddf8txzz1n9f9Pbv504cUKUUuLj4+OUWI2g8L7SkTNObSl8JoczzyZ0NvI/8j895H/6yP/MeWL+l56erjn4IiIyYsQI+fTTT83eo/Hjx0vPnj1l165dmj6++uormTJlSqmN0V2+/PJLGTVqlG5+5uvrK/Pnz5cOHTroLmfpxjE1a9aUiIgIOXHihBw+fFhzxumGDRvk6aeflq+++kpESiafJFfLR+HPhnLlyhXr1Hc9jiSlTZs2ld9//11E8hPlzMxMCQwMdGo8rjZz5kxJTk6WPXv2mOZt27bNdMersLAwueOOO6Rnz57SrVs3u34E+vr6St26dW22c+Sf+cqVK7Jp0yZZvXq17N69W1JTUyU1NdXmGR/WOOO9LpywjR071u7PQMEfRJYSAmexdOTEGWd2PPXUUzJz5kyzbREfHy+zZs2Sxx9/3Obyeomfr6+v1K5d2+aylo7+HThwQNq1a2dxOT8/P2nYsKHF5+3ZryQnJ2vmrVq1SlatWmVz2cK86fLUKlWq6M7//PPPzYpUIvlf8t98841ERERoLr0qeFc9vc+htTOzRfQvkRUp/lkMJY3tqbVw4UIRyd/vb9++XT777DPdu/p+9tln0q9fP+natatuP3qxZ2VlSVpamtd9TlypcuXKZo+dWcgqfCaHJxf+yP/I//SQ/1lG/vd/PDH/K1++vFy4cEEyMjJMU05Oju72qV69unz66ae6haR9+/aV6hhL2n///SePPfaYfPfdd7rPBwcHy+zZs2XgwIGa586ePSsjR47UzK9evbp8+eWXZmc67927V4YOHaoppM6ePVuGDRsmMTExJZJPkqvlo/Bng61bXheFI7eij4yMNP2tlJLTp0+bnb7vKKVUkZctqtDQUFm1apWMGjVKFi5cqDkqeOzYMZk7d67MnTtX/Pz8pHv37jJu3Di5/fbbLfZZsWJFCQgIcEp8OTk58vHHH8ukSZNs7mjq1Kkj586ds3kk4jpnvNeFj/jGx8fb3WdBepc6OJOl06udcav0MmXKyAcffCC9evUymz9x4kQZPHiwzeX1jpxWrVrVrnEpLCWHKSkpVhO/wMBAq59RW/+L6enpTk3WXP3+O5PepXohISEW3+tKlSrJo48+Km+//bbZ/KSkJMnJyRF/f3/dL/aiJBY33HCDS74XXIntaVlQUJDExMRITEyMREdHy8svv2z2vFJKvvrqK4cKfyL5+8PSlEzaUrhQ48zCX+Ez/iIiIpzSryvyJfI/8j895H+Wkf8Vnyvffx8fH6lYsaLdn/f27dtL06ZNJSEhwWx+4cfO5A0xlqTjx49L7969NcW46yIiIuTnn3+2eEn6vHnzdD9Ts2bN0gxvEBUVJUuWLJHIyEjNgZQvv/xSYmJiSiSfJFfLxxh/Nrji9E9bA1YWVPiDHRISUqx1p6enF2v5ogoNDZXvvvtOkpOT5Z133pGYmBjdI165ubny22+/mQZ5tsRZ70tWVpbExMTIs88+q9nJBAUFSZMmTaR3797yyiuvyPLlyyU1NVVCQ0Pt7t8Z7/WlS5fM5leuXFmqVKni8ORILEVRo0YN3fnOSjh69uwpPXv2NJuXlpZmNoi1JXrJZ+HtasnFixft7tOZypYta9dlLPaydLmnJ9IrVDVp0sTqMgV/OF2XnZ1tOmqu98V++fJlq33q7S+9MUFge9rnhRde0P1hYO3HtqX9m6X9YWnVvHlzszF5UlNTrY49aa+srCxZs2aN6bGPj4/VMbAc4Yp8ifyP/E8P+Z915H/F42n5n15+kZKS4tBYca7mDTEWxc6dO6VNmzYWi35DhgyR7du3Wyz6iYgsW7ZMM69evXrSu3dv3fZhYWESGxurmb98+XIRKZl8klwtH2f8uYEjgzQXHEzd19dXbrjhhmKt292DqNerV0/GjRsn48aNk//++082btwoa9askT/++EN2795tdhRs0qRJ0qBBA7uO6BXVK6+8Ips3bzaLb8yYMXLnnXdKgwYN7BpE2RpnvNeFz17YtWuXXZe5lDRLMemNq1FU77//vvz111+Sk5Njmjd9+nSbg8A2atRIMy8zM1PS0tJsJnCW7vqk16czBQQESL169TSfoZdfflmGDh3qcH+WLvf0RLVq1dLMs3XJkKUB/a//SNRb/uLFi3L69GmLfeuNi+RJhSp7ldbt+cknn2jG5OrevbvFu4H6+vrKrbfeqklqk5KSJDs7W/cMEb39W0hISLG/q43G399fWrduLevXrxeR/KLL7Nmz7bpUz5oFCxaY3bG1ZcuWTrsc1hX5Evkf+Z8e8j/byP+Mk/8VHvpBJP/MTmcWO4vLG2J01PLly2XQoEG6Z8uFhITIjBkz5L777rPZj94dkq1d2m7p+fPnz0tGRkaJ5JPkavko/LmBI6fqF/zSqVatWrETEU+6dXVwcLB0795dunfvLm+99ZYcOXJE3n77bfnss89Mbb755huXJX4XL140u1NR48aNZfXq1Tar/5bGFdDjjPe6cIKRnJzskYlfpUqVJDg4WLN9zp4967R1REZGylNPPSUfffSRaV5WVpbNM0f0jtyJ5I89Ye2SIhH9U/vLlStXIu9Bo0aNNInfiRMnbH7Beju9M3ZsXRqoN8aQv7+/aZwlS+/Xv//+K927d9d9ruC4VNcV51I7dymt2/OTTz7RJIfnzp2TqVOnWlxGLwksW7asxTGZ9PZvlsaFKu0GDRpkKvyJiLz55pvy0EMPFeuyzYLfBSL5l/85iyvyJfK/fOR/5sj/bCP/88z874cfftAcYLvlllssHmATEd274zZu3LjY+zhLvCFGVzt8+LDExcXp7sPatGkj33//vd1ny+udjVfUM7HT09NLJJ8kV8vnnZ9eL5eammrz2nWR/LFHtm7danrcsWNHs+cLHnXIyMiwefrxiRMndAeLdaWVK1fKnDlzZM6cObJp0yarbW+88UaZMWOGDBkyxDRv+/btLostPj7e7Ajzc889ZzPp27t3r2bAe2uc8V4X/pJ3ZHDZX3/91bT9Cx7ZdhW9nagzj/iK5J8J4OjRS0uJX+EfjYWdOHFCfvrpJ838hg0blsiXv95R5S1btlhdJisrS86dO6eZCh4l93S33Xab5shdUlKS1QHKd+zYoZkXERFhOkurXbt2umexWdrHnDlzRrf41a9fP6uxe6LSuj31ktidO3daXUbvh150dLTFpFZv/1Yak0l7PPDAA2Z3OT169KjMnTu3yP2tX7/e7P1s3bq1xUuNPCVfIv/TR/5H/mcP8j/Py/8+/fRTGTZsmNk0adIki+0zMzN1LzO1VoQrDTG6Ul5enjz44IO6+6NHH31UNmzY4NAQGXpDxVi6e/Z1emfohYaGSs2aNUsknyRXy0fhzw2UUrJx40ab7RYsWGB2xOG2224ze77gWCPXrl2zmRDMmzfPsUCdYOnSpfLQQw/JQw89JCNGjLBrmc6dO5v+vnLlissGpC68E7LnVveO3k3LGe91eHi4lC9f3vT4yy+/tGub7Nq1S+655x7T9j969KhDsRdFSSR+lSpVsmtcl4IaNWqk+eEkkp8YW3pP8/Ly5MUXX9Q9mvzQQw85tP6i0vty3b9/v0ybNs3iMgMHDpTQ0FCzqXr16mZj2kyePFni4uI0k73j3riav7+/2Q9AkfyE9pVXXtFtf/r0aZkzZ45mfsE71vr6+kpcXJymzccff6z7Y05vjKmQkBDNwMWevi1FvGd7Ontb6v3/bNq0yWKCumzZMvn3338185s1a2ZxHXpHkT3xjBxPUKFCBXniiSfM5k2cOFH++ecfh/u6cOGCPPLII2bzrI0L5yn5EvmfdeR/5H/WkP95Xv5X8H/2uhUrVmjutn7drFmzJC0tTTO/bdu2XhWjK+J0lRkzZpidbX/dwIED5fPPP3f4rHu9nCg1NVUWL16s2/7IkSPy888/a+a3bNlSRFyXnxdErvb/KSfbu3evEhGr0969e529Wrvt3r3bLJYHHnhA0+bVV181PV+lShW7+p01a5ZZv2fOnDF7vlOnTmbP165dW506dcpif1euXFFNmjQxtS9Xrpw6ceKEWZvZs2eb9fnZZ59Z7G/9+vXK39/frH3Lli112zZv3tzUZsCAAXa9fkvmz59vts7ExESbyzz99NOm9jExMab5RXlfPv74Y4vvy4oVK8ye++WXX6z2tXfvXlW3bl2zZZ5//nlNO1e812+//bZZn4sXL7b52rt162ZqX758eXXlyhXddidPnlQpKSmmyVI7ezz//POa//eOHTtabH/o0CHdfcTPP/9sdT05OTkqKirK6n5mxIgRZsts3rxZt12ZMmXUhx9+qNLS0pRSSuXm5qr9+/ernj176raPiIhQWVlZZn1/+OGHmnbBwcFWX8OqVat0+//tt99Mba5evaoiIyM1bXx9fdXbb7+tDh48aGqbkZGhnnnmGd0+77jjDrN1F/6MXp9Onz5tNeaiatq0qWZdPXr0sLrMrl27dGN86qmn1LVr10ztjhw5opo1a6Zp5+Pjo3bt2mXW5/bt23X7HDhwoPrf//6nlFLq2rVrasGCBcrX11fTbvjw4Zo4vWFbKuUd29PZ29LSaw4LC1M7duxQeXl5prYLFixQVapU0W2/evVqi+uoXbu2pr2172JXa9y4sdX94qRJk9wWm1L533cRERFmMQUEBKiZM2fa3cfJkydVTEyMWR8dOnSwuow78yXyv/yJ/E+L/E+7jyL/y+ct+d9ff/2l21+rVq1USkqKWdvZs2ergIAATdv69eurzMxMr4rRFXHaUtT8z1JecMstt6iOHTvaPV26dEkppdS3336r21/VqlXVkiVLzNa9Z88e3ZxSRNTUqVNN7VyRnxfkabla4bpR4alChQquWO0mCn9uKvyJiOrUqZNmJ6JU/hdxmzZtzNqOGTNG0y41NVX5+PiY2pQvX15t3rzZrE1eXp7asWOHqlGjhmb9lhK/Ll26mH15FX4tjjh69KgqW7as2Q7q+hesnrVr16ry5cub2r/00kum55yd+J08edLsuejoaJWenq7bzx9//KFCQkI023D06NGatq54r7OysswSgAoVKmh2rtddvHhRDR482KzP119/3eI26tu3r1nb33//3WJbW/R23GXLllVXr17VbV/UxE8ppVauXGl1P1M48VNKqf79+1tdJiwsTFWoUMFqmx9//FHTr6sSP6WU2rp1q/Lz87MYT6NGjVTbtm0txl22bFm1Z88esz69JVm57bbbdOMMCgpSHTt2VM2aNbO4be6//37dPhs1aqTb3sfHRzVr1kz3//z6tHLlSk1/3rItlfL87emKbVl4/1pwqlixourQoYOqVq2axTYPPvigxb719l9+fn4ue+/t4emFP6WU2rhxoypXrpwmtgceeECtW7dOnTt3Tne5s2fPqhkzZmgKtGFhYerw4cNW1+nOfIn87//2U+R//4f8j/yv8OSN+V9WVpbq0KGDbp8BAQGqefPmqkuXLio0NNTi61i0aJHXxeiKOG0pSv63c+dOq59pR6br3825ubnq1ltvtdiuevXqqmPHjio8PNzse6rgdPPNN2v2i87Oz6/zxFyNwl8J8YTCX8GENygoSPXo0UO98847atasWWr48OGqevXqZn01bNhQnT17Vne9d955p1nbwMBAFRMTo8aNG6cGDx5s9oMmMDBQDR8+3PTYUuL36KOPmvVZv359FRsbq/tFao8pU6aY9VejRg01depU9fPPP6uEhAS1e/dutXjxYjV48GCzoyw33XSTunz5sqkfZyd+Sik1YMAAs+fDwsLUe++9p/7880+1ZMkS9e6776p27dqZnq9atarq2LGjWfvPP/9cLV261NSnq97rwkesfHx8VGxsrHrzzTfV0qVL1ezZs9Xo0aNVWFiYWbtu3bqp3Nxci9vImYmfUkrddNNNmv/5NWvW6LYtTuKnF3vBSe/zevDgQatf7LamXr166cbhysRPKaVeeumlIsXr6+ure0TLG5IVpZQ6duyYxbOwrE3ly5dXqampun3+9ttvFhMRa1OfPn3MzhC7zlu2pVKevz1dsS337NljVkxwZKpatarF/bFS2rOuRLRnV5Q0byj8KZV/FtoNN9xgMc7atWurHj16qBEjRqj+/furdu3aac5aExFVs2ZNlZSUZNc63ZUvkf/9X3/kf+R/15H/adfhrfnf//73P1W1atUixamXv3hDjK6K05qi5H9vvfVWkT/zhaeCB+WSkpJ0D+DZM5UrV063FuTs/Pw6T8zVKPyVEE8o/A0cOFANHTrUrg9znTp1LP7gUkqpS5cumSUiliYfHx/1/fffqxkzZpjmWUr8/v77b90+ateubde2KOzatWuqVatWDu8UtmzZYtaPKxK/c+fOqVq1atkVU/369dWePXvUDz/8oHmuVatWpj5d9V4rpdTixYsdSlzatWtn8wvI2Ynfiy++qInD0o/N4iZ+KSkpuqfki+gnfkoplZCQYPd7XnDq06eP7lF7pVyf+GVlZanXX39dBQUF2R1vnTp1LF6i6A3JynUbNmxwKFmLiopS+/fvt9rnO++841By0aKDSDOaAAAgAElEQVRFC3Xx4kXdvrxpWyrl2dvTVdty2bJlVo8U601t27ZV+/bts9rvsGHDNMt98cUXxYq1uLyl8KdUfj52yy23OLwvvj717dtXHT161O71uStfIv8j/yvue60U+V9h5H/WP08lnf+tWbPGoc+nj4+PevbZZzWXTntLjK6M05Ki5H8jRoxw+PNuaSp8Nv6vv/6qatas6VAfdevW1f2cX+fM/Pw6T8zV3FX44+YebuDj4yNz5syRiRMnSlBQkG6bgIAAGTdunOzdu9fq7alDQkLkjz/+kN69e4u/v79um06dOsmWLVskLi5OcnNzbcbXoUMH+fDDDx0e7NOSgIAA2bRpk0ybNk2Cg4OttvXx8ZEhQ4ZIYmKiZhBVV6hcubJs3bpV7rnnHottKlasKC+88ILEx8dLdHS09OnTR+688067+nfmey0i0rdvX4mPj5cePXpYbVe5cmWZOHGibNiwQXM3T1cbNGiQZt66detcsq6bbrpJRo8e7dAyTZo0kX379sn48eOlXLlyNtvXq1dPvvvuO1m8eLGULVu2qKEWS5kyZeTll1+WxMRE3e1bkI+PjwwYMED27Nkjt99+u0PrsWd7lLRbb71Vdu7cKXfffbfNO+kNHz5ctm3bZvEufteNGzdOVq1aZbNdcHCwjB8/XrZs2SI33HCDQ3F74rYU8c7tWdxtedddd0lCQoLce++9prsSWxIYGCjTpk2Tv//+Wxo3bmy17dq1a80e+/v7S2xsbLFiLU1uvvlm2b59u8ydO1f3DpZ6fH19pWPHjrJkyRJZvHixQ3fl84R8ifzPMvI/8j9HkP9puTP/u+222+TgwYPywgsv2OyratWqsnz5cnn33Xdtfid7W4winpX/paamuqzv3r17y/79++WJJ56wmU+WLVtWXnnlFdm/f7/07NnTYjtX5JPkav/HRynn3jIrISHB5u2u9+7dK02bNnXmaj1eTEyMbNiwQUTyvxgXLFggIvl3pluwYIEkJSXJ6dOnJTw8XJo0aSKdOnWymQQUlpmZKfHx8bJjxw45ffq0NGzYUBo3bmx2J0ZHZGRkSGJiopw4cUJCQkKkadOmZneSK4oTJ07I2rVr5dChQ3Lo0CE5cuSIVK5cWerXry/169eXtm3bFjne4vr7779l+/btkpCQINnZ2VKnTh1p3ry53H333Zov/OzsbNm8ebPs27dPgoKCpF27dtKwYUMRKZn3WkQkJSVFdu7cKTt37pTExEQJDQ2VOnXqSLNmzaRXr15OS9yLolGjRpKUlGR6HBgYKKdPn5aQkBC3xaTn6tWrsm7dOtmwYYOcOnVKzp49K2XLlpXQ0FCpV6+edOvWTZo1ayY+Pj7uDtXMyZMnJT4+Xvbu3SsJCQkSHBws0dHREh0dLVFRUWZ3AbRl7Nix8sEHH0jlypWdfgc+Zzt69KgsWrRIDh06JMePH5eqVauaXnN0dLRUqVLF4T7//fdf+fPPP+X48eNy5swZKV++vNSoUcP0f2TpB5seb9qWIp69PV21LS9duiS//fab7N+/X86cOSOXL1+WevXqSePGjSUyMlIiIyPt+v9JSkrSFKu6d+8uv//+u9NiLYomTZrI/v37LT4/adIkmTx5cskF5ICUlBRZvny5JCQkyOnTp+XMmTPi7+8vNWrUkBo1akhUVJT07dtXatSoUex1lWS+RP6Xj/yP/M+TkP+57nv21KlTsnXrVklKSpLk5GS5cOGCNG7c2BRngwYNxM/PzzAxujJOb3Hs2DFJSEiQxMRESUxMlFOnTkl4eLg0bNhQGjZsKNHR0VK1alWH+nRGPumpudqXX34pjz76qMXnK1SoIJcvX3b2ajeXukt93aXg6cCDBg1ydzhwId5r/Usfpk+f7u6woKNr165KJP/uXigetqXzePq2fPbZZzX7OHvutulq3nSpb2lBTlB68F6T/3kTT/+eVco7YlTKe+IsbTw1V+NSXwCGMWLECM1ZGZ999pmbooElKSkpsmbNGhERGTJkiJuj8W5sS+fx9G159epVmTNnjtm85s2bS58+fdwUEQB4BvI/7+Dp37Mi3hGjiPfEWdqQq2lR+APgdIGBgfL888+bzdu3b5/pixHud+LECYmNjZXc3FypXbu2PPXUU+4OyWuxLZ3HG7blggUL5Pz582bzJk2a5HGXhAFASSP/83ze8D3rDTGKeE+cpRG5mhaFPwAu8eSTT2rG8pwyZYqbokFBkydPloiICImPj5eKFSvKF198IYGBge4OyyuxLZ3HG7ZlTk6OTJ061Wxet27drN4gAABKE/I/z+UN37PeEKOI98RZGpGr6aPwB8AlAgIC5KuvvjK709PatWtl1apVbowKIiKrV6+Wq1evym233SZ79uyRXr16uTskr8W2dB5v2Jbz5s2TlJQU0+Pg4GD54osv3BgRAHgW8j/P5Q3fs94Qo4j3xFkakavpo/AHwGXatm0rL730ktm8V155xU3R4LqhQ4fKmjVrZPXq1RIWFubucLwa29J5PH1bZmVlac5a+eijjyQ8PNw9AQGAhyL/80ye/j0r4h0xinhPnKUNuZpl/u4OAICxTZ48Wfbs2SNJSUkiInLx4kXZunWrtG3b1s2RlV6PPPKIu0MwDLal83j6tly2bJkEBQVJZGSkiIjExMTIww8/7OaoAMAzkf95Hk//nhXxjhhFvCfO0oZczTIKfyXk559/lmvXromISLly5dwcDVyJ99qcn5+fLFmyxN1hAECxxMbGSmxsrLvDgJchJyg9eK/Nkf8BKGnkapZR+CshoaGh7g4BJYT3GgAAiJATlCa81wAAT8UYfwAAAAAAAIABUfgDAAAAAAAADIjCHwAAAAAAAGBAFP4AAAAAAAAAA6LwBwAAAAAAABgQhT8AAAAAAADAgCj8AQAAAAAAAAZE4Q8AAAAAAAAwIAp/AAAAAAAAgAFR+AMAAAAAAAAMiMIfAAAAAAAAYEAU/gAAAAAAAAADovAHAAAAAAAAGBCFPwAAAAAAAMCAKPwBAAAAAAAABkThDwAAAAAAADAgCn8AAAAAAACAAVH4AwAAAAAAAAyIwh8AAAAAAABgQBT+AAAAAAAAAAOi8AcAAAAAAAAYEIU/AAAAAAAAwIAo/AEAAAAAAAAGROEPAAAAAAAAMCAKfwAAAAAAAIABUfgDAAAAAAAADMjfHSv9448/JCEhwR2rBgAAMKTLly9bfT4hIUEWLlxYQtEAAACgoO3bt7tlvT5KKeXMDhMSEiQqKsqZXQIAAAAAAACGVaFCBZsHcotgM5f6AgAAAAAAAAZE4Q8AAAAAAAAwIAp/AAAAAAAAgAFR+AMAAAAAAAAMiMIfAAAAAAAAYEAU/gAAAAAAAAADovAHAAAAAAAAGJCPUkq5OwgAAAC4Tt26deXYsWNm8wYMGCALFy50U0QAAAAoAZs54w8AAAAAAAAwIAp/AAAAAAAAgAFR+AMAAAAAAAAMiMIfAAAAAAAAYEAU/gAAAAAAAAADovAHAAAAAAAAGBCFPwAAAAAAAMCAKPwBAAAAAAAABkThDwAAAAAAADAgCn8AAAAAAACAAVH4AwAAAAAAAAyIwh8AAAAAAABgQBT+AAAAAAAAAAOi8AcAAAAAAAAYEIU/AAAAAAAAwIAo/AEAAAAAAAAGROEPAAAAAAAAMCAKfwAAAAAAAIABUfgDAAAAAAAADIjCHwAAAAAAAGBAFP4AAAAAAAAAA6LwBwAAAAAAABgQhT8AAAAAAADAgCj8AQAAAAAAAAZE4Q8AAAAAAAAwIAp/AAAAAAAAgAFR+AMAAAAAAAAMiMIfAAAAAAAAYEAU/gAAAAAAAAADovAHAAAAAAAAGBCFPwAAAAAAAMCAKPwBAAAAAAAABkThDwAAAAAAADAgCn8AAAAAAACAAVH4AwAAAAAAAAyIwh8AAAAAAABgQBT+AAAAAAAAAAOi8AcAAAAAAAAYEIU/AAAAAAAAwIAo/AEAAAAAAAAGROEPAAAAAAAAMCAKfwAAAAAAAIABUfgDAAAAAAAADIjCHwAAAAAAAGBAFP4AAAAAAAAAA6LwBwAAAAAAABgQhT8AAAAAAADAgCj8AQAAAAAAAAZE4Q8AAAAAAAAwIAp/AAAAAAAAgAFR+AMAAAAAAAAMiMIfAAAAAAAAYEAU/gAAAAAAAAADovAHAAAAAAAAGBCFPwAAAAAAAMCAKPwBAAAAAAAABkThDwAAAAAAADAgCn8AAAAAAACAAVH4AwAAAAAAAAyIwh8AAAAAAABgQP7uDgAAAACO++qrr2Tbtm12tb1w4YJm3o4dO2TEiBF2LR8XFye33367Q/EBAADA/XyUUsrdQQAAAMAx8+fPl6FDh5bIuhITE6Vhw4Ylsi4AAAA4zWYKfwAAAF4oPT1dqlevLlevXnXpelq3bm33mYUAAADwKJsZ4w8AAMALVahQQXr37u3y9cTFxbl8HQAAAHANCn8AAABeavDgwS7t39fXVwYNGuTSdQAAAMB1KPwBAAB4qZ49e0rFihVd1n/nzp2ldu3aLusfAAAArkXhDwAAwEuVLVtW7r33Xpf1P2TIEJf1DQAAANej8AcAAODFXHW5b0BAgMTGxrqkbwAAAJQMCn8AAABe7Pbbb3fJ5bg9e/aUypUrO71fAAAAlBwKfwAAAF7M19dXBgwY4PR+XX3jEAAAALiej1JKuTsIAAAAFN22bdukbdu2TusvODhYTp8+LcHBwU7rEwAAACVuM2f8AQAAeLk2bdpIgwYNnNZfv379KPoBAAAYAIU/AAAAAxg0aJDT+uIyXwAAAGPgUl8AAAADOHDggDRu3LjY/VSuXFlOnjwpAQEBTogKAAAAbsSlvgAAAEYQGRkpzZs3L3Y/gwYNougHAABgEBT+AAAADMIZl+hymS8AAIBxcKkvAACAQRw7dkzCw8MlLy+vSMuHhYVJamqq+PpybBgAAMAAuNQXAADAKMLCwqRDhw5FXj4uLo6iHwAAgIGQ2QEAABhIcS7V5TJfAAAAY+FSXwAAAAM5e/as1KpVS7Kzsx1aLjIyUvbv3++iqAAAAOAGXOoLAABgJKGhodK1a1eHlxsyZIgLogEAAIA7UfgDAAAwmKJcsjto0CAXRAIAAAB34lJfAAAAg0lPT5caNWrIlStX7GrfunVr2bZtm4ujAgAAQAnjUl8AAACjqVChgtx99912t+emHgAAAMZE4Q8AAMCA7C3m+fr6ysCBA10cDQAAANyBwh8AAIAB9erVSypXrmyz3W233Sa1a9cugYgAAABQ0ij8AQAAGFBAQID069fPZjsu8wUAADAuCn8AAAAGZauoFxAQILGxsSUUDQAAAEoahT8AAACDuv32261extuzZ0+7LgcGAACAd6LwBwAAYFC+vr4yYMAAi89zmS8AAICx+SillLuDAAAAgGts27ZN2rZtq5lfvnx5OX36tAQFBbkhKgAAAJSAzZzxBwAAYGBt2rSRBg0aaObfc889FP0AAAAMjsIfAACAwQ0aNEgzj8t8AQAAjI9LfQEAAAzuwIED0rhxY9PjypUry8mTJyUgIMCNUQEAAMDFuNQXAADA6CIjI6V58+amx4MGDaLoBwAAUApQ+AMAACgFCl7ay2W+AAAApQOX+gIAAJQCx44dk/DwcKldu7akpqaKry/HfwEAAAxus7+7IwAAAIDrhYWFSYcOHaR9+/YU/QAAAEoJCn8AAAClxODBg6V9+/buDgMAAAAlhMKfDe3atZOtW7e6OwwAAAAAAAAU8Mwzz8gHH3zg7jA8Gtd5AAAAAAAAAAZE4Q8AAAAAAAAwIAp/AAAAAAAAgAFR+AMAAAAAAAAMiMIfAAAAAAAAYEAU/gAAAAAAAAADovAHAAAAAAAAGBCFPwAAAAAAAMCAKPwBAAAAAAAABkThDwAAAAAAADAgCn8AAAAAAACAAVH4AwAAAAAAAAyIwh8AAAAAAABgQBT+AAAAAAAAAAOi8AcAAAAAAAAYEIU/AAAAAAAAwIAo/AEAAAAAAAAGROEPAAAAAAAAMCAKfwAAAAAAAIABUfgDAAAAAAAADIjCHwAAAAAAAGBAFP4AAAAAAAAAA6LwBwAAAAAAABgQhT8AAAAAAADAgCj8AQAAAAAAAAZE4Q8AAAAAAAAwIAp/AAAAAAAAgAFR+AMAAAAAAAAMiMIfAAAAAAAAYEAU/gAAAAAAAAADovAHAAAAAAAAGBCFPwAAAAAAAMCAKPwBAAAAAAAABkThDwAAAAAAADAgCn8AAAAAAACAAVH4AwAAAAAAAAyIwh8AAAAAAABgQBT+AAAAAAAAAAOi8AcAAAAAAAAYEIU/AAAAAAAAwIAo/AEAAAAAAAAGROEPAAAAAAAAMCAKfwAAAAAAAIAB+bs7AACA+1SqVEl69OghrVu3lmrVqkm1atWkQoUKcvToUUlJSTGbTp486e5wAQBu5uPjI9HR0brPHTx4UP77778SjggAAFhD4Q8ASqF+/frJmDFjpEOHDuLn56d5vl27dpp5f/31lzz//POya9cuh9eXmZkp/v7ar5w2bdrIzp07He7Pmfr27Stff/21Zv6BAwekbdu2boio+FyxvefOnSv333+/xed79OghK1euLFLfgKPGjRsnb731lsPLZWdnS2pqqiQnJ0tycrIkJSXJggUL5NKlSy6I0ns4ss8oU6aM7N69W7efzp07y/r1610SozcJDw+XmJgYqVWrltSsWVMyMzMlMTFRDhw4IImJiXLu3DmH+ps1a5YMHz7c4TiysrLk/Pnzcu7cOdm3b59s3rxZFi9eLEePHnW4LwCAF1Owqm3btkpEmJiYmAwxtWrVSm3YsKHI+8S8vDz13Xffqfr16zu03uzsbN3+WrZs6fZt0r9/f93YEhIS3B5bUSdnb++goCCVnp5u9bMxZ84ct79uptIzjR8/3rGdlxVpaWlq5MiRqkyZMm5/Xe6aHNlnBAQEWNyWMTExbn8t7pxiY2PV+vXrVV5entXPXHJysurdu7fd/X711VfF+owXdO3aNfXJJ5+omjVrun17MTExMTljeuaZZ5y2jzSoTYzxBwClxJAhQ+Tvv/+WW2+9tch9+Pj4yODBg2X//v3yyCOPODE6eLI+ffpI+fLlrbaJjY2VwMDAEooIcJ7Q0FD5+OOPJSEhQaKiotwdDrxQYGCgzJw5UxYtWiSdOnUSHx8fq+0jIiLk119/lWXLlkn9+vVLKMp8AQEB8tRTT8nBgwdl2LBhJbpuAIB7UPgDgFLgueeek2+++UYCAgKc0l9AQIB89tlncscddzilP3g2a5f4XhcSEiJ33313CUQDuEaDBg3k22+/ddp+EqXH/PnzZcSIEQ4vd9ddd0lCQoI0b97cBVFZV65cOZk9e7YMHjy4xNcNAChZFP4AwOAGDRok06ZNs3kGgojI6dOnZd26dXL8+HGbbf39/eXHH3+Uhg0bOiNMeKjQ0FDp3r27XW3vu+8+F0cDuNbNN98skydPdncY8CIPP/yw9O/fv8jLBwYGytdffy1ly5Z1YlT28fX1la+//lr69u1b4usGAJQcbu4BAAZWv359+eKLL6y22bZtm0ybNk3++ecfswG/q1WrJrfccosMHz5cBg4cqLtspUqVZOnSpdKqVStJT093auzwDAMHDtQd9F9Pz549pVKlSnLhwgUXRwVY9t1338nZs2c18wMCAiQsLEyaNm0q4eHhFpcfP368/PDDDxZvYFHa5ebmyptvvqn7XGm7aURAQIBMmzbN4vNZWVny77//ypEjR6Rp06YSGRkpvr7a8y6io6Pltddek/Hjxzu0/vT0dJkzZ47uc6GhoRIVFSWRkZFWz2L19/eXWbNmydq1a0v9TW4AwLDcPcqgp+PmHkxMTN48bdy40eo+7tNPP1UBAQE2+xkxYoS6evWqxX6GDh1qdXlu7lGykzO396ZNm6x+hgp75JFH3P76mYw/Wbu5R3R0tNVlfXx81IABA1RaWprFPkaPHu3211iSkyfvoz156tu3r8XP0PTp01VgYKBZ+5iYGHX8+HHd9rm5uRZvnGXp5h6HDx+2GaO/v79q2rSpWrduncVYlVJq2rRpbt+eTExMTEWZuLmHTZs44w8ADKpz587SsWNHi88PHz5c5s6da1dfn3/+uRw/flyWLl2q+/w999wjX3/9dVHCLJK6detKvXr1pGrVqlKxYkW5dOmSpKWlyZEjR+Tw4cMuXXdQUJDUqlVLMjIyJC0tTXJzc53Sb0BAgFSpUkUqV64sfn5+cuLECTl37pwopZzSf1HUr19f2rdvr/tccnKyNGjQQDP/vvvuky+//NLVoRVbQECA1KlTR6pVqyaBgYFy6tQpOXnypMvPeAkODpb69evL+fPnbV5SXxKfiYCAAKlRo4ZUqlRJDh48KBkZGU7rW29d7tjmhSml5Mcff5Ts7Gz55ZdfdNs0btzY4X5Lcr/kzn1gSQgICJDw8HBRSsnhw4clJyfHaf068/NuaXiDhQsXyqhRozT/q+vXr5dBgwbJhg0bNMv4+vpKq1at5NChQ8WKqbCcnBxJSEiQbt26yaxZs/4fe3ceHtP1/wH8nT0hQiMESey72IOgqH0raW2NtKotLe3XTqutWruoWmtXtRWttVK1ltj3XRBCkAQhgiAR2c/vD0/ml8ldZiaZmWTG+/U853nMveeee+bOdfOZM2fBhx9+KJtv2LBhmDp1KntsExFZITb8ERFZqS+//FJx365du/Ru9Muybds2XLhwQXYS8o4dO8LFxQUvX740tJp6K1u2LEaMGIEuXbqgWrVqivkiIiKwY8cOzJkzx2hfgCtUqIChQ4ciKCgInp6emu0ZGRk4fvw4Nm3ahKVLlyIpKcmgcitXroyBAweidevWaNiwIezs7LT2p6SkICYmBiEhIVizZg0OHTpk1obAoKAg2e23bt3Cjz/+KHsPtWzZEt7e3rh7965q2Y0aNcKoUaNk94WEhOjVeDh48GC0atVKsj01NRUDBgyQNBbY2NigT58+6Nu3L9q2bSu7UvH169exceNG/PnnnwgLC9NZBx8fH9mhfqGhoZrhkM7Ozhg2bBiGDBkCHx8fAMDs2bNl37857gkHBwd88sknCAwMRMuWLTVDD4UQiIyMxKlTp/Dtt99qGiDGjx+PmjVrSsr54YcfcOXKFdVzmeKaG0twcDBu3ryJSpUqSfbp2/BnzudSfj4Ds7O3t8fq1atl902ePBnXrl2TbC9UqBDmzp0r2f706VOMGTNGk+eLL77A559/jvLly2vuy/T0dERGRuLIkSOYMmWKwe/JlPd7s2bNZM85Y8YMxf+XR44cwf79+9G6dWvJvjp16mDDhg0GvT99paamon///qhQoQJatGgh2e/k5ITu3btj1apVJjk/ERHlo/zqa2gpONSXiYnJElPZsmVFZmam4rOtUaNGuSr3vffeE5mZmbKpe/fuisflZRiZvb29+P7770VSUpJBz+/k5GQxbdo0nUOZdQ31bdGihUhISNB5vsjISNGhQwe9rqOzs7NYvHix4nVREh0dLd5++22d5Rtr2N7Vq1dly/nll1+Eu7u74nnGjBmjs2w3NzfF4eP6DrO+efOm7PH//POPJG+jRo3EuXPn9LjKr6Snp4tp06ZJhurlTLVr15Y9fvfu3QKAqFChgrh9+7Zk/6xZs8x6T2Sl+vXri9DQUJ3lvnjxQgwePFgAEPv375fN06ZNG9VzmeqaA3kb6ps9bd++XbaM2NjYfH0umftchjwzHB0dFc/ZsmVL2fLfeOMN2fz37t3T3CsPHjzQ+Z5SUlLEnDlzhJOTU77f7w4ODiIjI0OSLzExUdjY2KjWa9asWbLn2Lp1q2z+vAz1zZkGDhyoeB2Uzs/ExMRUkBOH+up0jA1/OrDhj4mJyRLThx9+qPhcy4/APrcNUY6OjmLLli15eo7v2LFDtSFBreGvTZs24sWLF3qfKzU1Vbzzzjuq78nV1VXs27cv1+8nNTVVvPvuuya53tlTw4YNFevQuHFjAUCEhITI7j9//rxe51i/fr3iOcqWLat6bLVq1RSP7dWrl1benj17GtxokiU0NFQUK1ZMsR5qDX9FixYVERERsvuzN/yZ454AXjWCPHv2TO9yMzMzxdtvv52rhj9TXnPAeA1/f/31l2wZ6enp+fpcMve58rPhr3r16gbdl0LoNx+dqe/3ihUryua7fv26zrpNnjxZ9tjLly/L5jdmw1+xYsVEcnKybHn37983uDwmJiam/E5s+NPpmHRZKSIisngtW7ZU3Ldo0SIz1iRvli5dinfeeSdPZXTu3Blr1qwx+Dhvb29s27YNhQoV0vsYBwcHrF+/Xnbuuyzjx4+XHeJlyDk2bNggO8TVmJTmroqOjsbp06cBAH///bdsnnr16skOlctJ7XPp1KmT6rFdunSR3f7s2TNs27ZN87p27dpYv349XFxcdNZHTu3atbFx40a9VzbObs6cObLDSHMyxz1RrFgx7Nq1C25ubnqXa2Njgz/++ANeXl4G1Sc/r7mhlP6vPn36VPEYcz6X8vMZaA6Ojo5Yv369QfclAIwePRpvvvmm4n5z3O9CCCxYsECSlixZovPY+vXry26PiorSu7659fTpU9k5BgHA09NTdQVgIiKyUPnd9FjQsccfExOTJSalIZpCCFGtWjWz1yc3PdAaN26s8xmdlpYmbt68qdfwyFatWsmeR6nHX16sWbNG9lxlypRR7QX14sULERoaKk6dOiWio6NVzzF79myjXu/syc7OTsTExOg8r7e3t+KQ8h9++EHneRwcHMSjR49kj//7779Vj92zZ4/scb///rtWPqXeO1mePn0qbt++rTo0Xgghvv/+e9l6KPX4e/z4sWp5WT3+zHVPTJgwQfXY3Gjbtq3suUx9zQHj9PgrVaqU4rUPDw/P1+eSuc+VXz3+5GRkZIj09HSd+Q4fPlwg7ndDk6Ojo4iNjZU9x8yZM2WPMWaPPwBi5cqViu9TaWVhJiYmpuzlbbkAACAASURBVIKa2ONPJ/b4IyKyRt7e3or7zNGjwBimT5+uuO/w4cNo2rQpihQpgkqVKqFIkSJo2rQpjhw5olqejY1NruoSFRWF33//HYGBgfj000+xadMm1R5Bffv2le3x9vHHH8v2gkpJScHQoUNRpEgR1KlTB40bN0bZsmVRo0YNnDt3TvYcjRo1ytV70UebNm1QunRp2X2bNm3S/Pvu3bua3n859e3bV+d50tLSFCeyb9u2LRwcHGT3ubq6KvZqzd6zqXfv3njrrbdk8+3evRtVq1ZFsWLFUKFCBRQpUgTDhw9XXOVz5MiRKFGihMq70ebu7q5XPnPcE25ubhgxYoRiHaKiorBkyRL06NEDXbt2xaRJk3Dz5k296p9Tfl5zQ9ja2mLx4sWKvRLPnz8vu92cz6WC9Aw0hxUrViAgIADFixeHm5sbWrZsiR07dijmr1Wrlux2c97vuTFx4kSULFlSdp+uxXKMJTY2VnFf1gJERERkRfK76bGgY48/JiYmS0tqvTF0TViflcqVKydq1qxpUCpVqpRieYb2QOvevbvie1i+fLlwcHBQfO+rVq1SPDYwMFByjK4ef5s3b5Y9V9GiRRUXlxBCiI0bN0qO2bx5s2zenL3Usid/f3/ZY5KSkoS9vb1RrnfOpNQb5N69e5JJ67/++mvFa9C0aVOd52rWrJni8Uo9lJTuj6ioKE39XFxcRFRUlGy+LVu2KE6+37hxY8XeRnK9GJV6/GV34cIFMXHiRNGtWzfh7e0tPDw8RPHixc12T3z77beKdTt58qTs4g/FihVTXPgiS84eUOa65oB6j7969eoJOzs7SXJxcRE1atQQffv2FZcvX1Z9b1988UW+PpfMeS5Dnxmm6PGndL87OTkpziUqhBAlS5bMt/s9N8nf31/xXo+NjRWurq6yxxm7x9/o0aMV3+cHH3yQ5/fJxMTEZM7EHn86cXEPXdjwx8TEZGmpVKlSis+0U6dO6VWGrqF6cubNm6dYnqENUadOnZLNHxcXJwoVKqRad1dXV/HkyRPZ4+UmTldr+Lt27ZooUqSI4rkaNmwoUlJSZI9NT0+XfDlXaihUW2VZaQJ5IYTw9vY2yvXOnlxcXMTz589lj5f7jNUW2Zg/f75e95vSdZk6daps/sWLF+vM36FDB9k8L1++FD4+Pqr1mT17tuyxFy5ckOTV1fAXEhIiChcubPB7N+Y9oTRs+/Hjx6JcuXKK53F2dhb3799XPFfOhhBzXXNAveEvrxITE0WJEiXy9blkznMZ+swwdsPf+fPnFRsy1e4rIYRo0aJFvt3vhqZ27dqpLjYyZMgQxWON3fCntgDY559/nqf3ycTExGTuxIY/nTjUl4jI2qgtRqE2vKegsLOzQ926dWX3zZ07F0lJSarHJyYmYv78+bL7atSoAWdnZ73rMnjwYCQkJCjuP3v2LGbOnCm7z87ODuXLl9faVrlyZdja2kqS0nBZJycnTJgwQfH8phi21717dxQpUkR2X/ZhvlnCw8Nx9epV2fx9+vTRa4GGtWvXym5XWuCjc+fOstuzD/NVWrThyJEjuHPnjmp9tm7dKru9Tp06eg/hBYALFy6ga9euePHihWIeU98TxYoVUxy2PW3aNNWh/8nJyarDTXMqCNfcGObPn4+4uDitbeZ8LhWkZ6A5hISEIC0tTXF/aGio4r6cQ2bNeb8b4tNPP8WOHTsUFxu5du2aXouCGItanHDv3j2z1YOIiMyDDX9ERFZGbe45V1dXM9YkdypUqKC4quCWLVv0KiM4OFh2u62tLapWrapXGYmJiTh69KjOfNu3b1fcl3NFVyGEbAIAZ2dn1KlTB926dcPIkSOxbNky3Lx5E/3799ervsaitJpvbGys4kqQSqv7lihRAu3bt9d5TqWGv7p166JUqVJa23x9fVG2bFlJ3gsXLmjNj1W5cmXZMm/duoX69eurpszMTNljbWxsFFfjlLNmzRokJyer5jH1PVGxYkXFfWoNKlnWrVun97kKwjXPq//++w/jx4+XbDfnc6mgPAPN5fLly6r7nzx5ondZ5rzf9eHq6oo1a9bgt99+U5yz9M6dO+jUqZNq46exeXh4KO5jwx8RkfXR/TM8ERFZlKdPnyIzMxO2ttLfdooVK5YPNTJM9erVFfdFR0frVYZavurVq+v1BfDy5ct6fRE7c+aM4r6cDX/ZOTk5oUePHujUqRPq16+PGjVq6NU7zpSKFy+u2MsuODhYsXFmy5YtGDdunOy+999/Hzt37lQ9b3h4OM6cOQM/Pz+t7TY2NujUqRNWrlyp2abU22/16tVar5V6n3322Wf47LPPVOujxtPTU++8Sg2lSkxxT6jdg2FhYTqPv3//PlJTUxUborIrCNc8t+Lj4zFz5kzMnj1b9v+9OZ9LBeUZaC66FrRIT0/Xuyxz3u+61K1bFxs2bFBtaI2Ojkb79u3NvuiWWsPf3bt3zVgTIiIyBzb8ERFZmczMTMTHx6N48eKSfXI9pQoapS+9z549w/Pnz/Uq49GjR3j58qXsip1qX6qze/z4sV75UlJS8OLFCxQuXFiyT673ia2tLcaOHYvRo0fLfkb5qU+fPoq9Ug4cOKC4EuXdu3fx4MEDSe88AAgICEChQoV0Dk9cs2aNpOEPgKThr0uXLpI8GRkZ+Ouvv7S2KTVC5VXRokX1zvvo0SO98pnynlDqAZWYmKhz+C3wqkfinTt3VBtUshSEa26ohw8fYsGCBZgzZ47q88Wcz6WC8gw0F33uQ32Z835XM2DAAMyfP191WHVISAgCAwP1fk4YU506dWS3p6am4uHDh2auDRERmRob/oiIrFBYWBhatGgh2e7u7o4qVargxo0bqsd/8sknsg1ZwKveO0OHDjVKPeUo9UpMTEw0qJwXL17IfunVt9ej2rxsOSUkJMher5SUFK3XDg4O2Lp1q2KvOjkHDx5Eq1at9M6fF0rDfAFIGtb05erqioCAAJ3Hr1u3DjNnzoSdnZ3W9vbt28POzg4ZGRlwc3ND8+bNJcfu27cP9+/f19rm5eWVq/rqkrN+avQZomjqe0JpTrFnz55phhTrom+Pq4JwzQFg0aJFivOZxsfHIzIyEpGRkYiKisKzZ8/0KtOcz6WC8gw0F33vQ32Y836X4+TkhAULFmDAgAGKeYQQ+OWXXzBu3DhkZGTk+ly5VbhwYdnnKADExMQY9fMgIqKCgQ1/RERW6ODBg7INfwDQpk0bnQ1/t2/fVtwn1yvLmK5fvy67vVSpUrC3t9frS5mzs7PiUCal8nNSmiA+Jzs7O8Vz5byOU6dOVW3gEUIgLCwMZ8+excmTJ7F37148evRIsfehMb+gVahQAc2aNTNaedm9//77Ohv+YmNjsWfPHsn1cXd3R6NGjXDixAm0b99etkdi9kU9sig1xsbFxUkaZA2hq+didvrcq6a+J5T+L3t5ecHd3V2vxkl9ewoXhGsOvGr4u3TpUq7PJ8ecz6WC8gy0ROa833NydXXF1q1b0bp1a8U8MTEx6N+/P/bu3ZurcxjDW2+9pTiU+cSJE2auDRERmQMb/oiIrNChQ4cU9w0ZMiTXqweWLl0a/v7+ua2WXq5duya73c7ODmXKlNFrjisfHx+Dy8+pXLlyeuUrXbq04jxs2b+ElipVCiNGjJDNFxMTgwkTJmDz5s2SxVnMNRw4KCjIJKsEA0CHDh3g4eGhc0jbmjVrZBvBOnfujBMnTsgO801KSpJdXOTJkyeyQ4+//PJLrFq1yoDam4457omIiAjFffXq1cO+fftUjy9ZsqRsrzE5lnDNc8ucz6WC8gy0ROa837NzdXXF3r170aRJE8U8wcHBGDhwoN7TSJjK2LFjFfctW7bMjDUhIiJz4aq+RERW6PDhw4qNLL6+vujXr1+uyp02bZrJGoeyhIeHK+6rV6+eXmXUrVs3V+Vn5+XlpVevP7VzZW/469Onj+yQxfj4eLRu3RrLli2TXZFZrQHSmJ+F2jDfvHJwcEDv3r115gsODpYdYt2pUyfY2NjILuwRHBwsOwQy59DfLI0aNdKjxuZhjnvi5s2binn1+f/Url07nXmyWMI1zy1zPpcKyjPQEpnzfs9iY2ODP/74Q7HRLzk5GV988QXefffdfG/0CwgIUBwNcPv2bYSEhJi5RkREZA5s+CMiskLJycmYO3eu4v4lS5agadOmBpU5ePDgXDcYGuLZs2d48OCB7L5Ro0bpVcbIkSNltz9//lyxcSInOzs7DBkyRGc+pTwZGRlaPXNq1qwpm2/Pnj2qQ++UJmE3pqwVZE1Jn4bFFy9eIDg4WLLdz88Pbdu2lW2IlRvmCwBHjx6V3V6QGqHMcU/cvXtXcZjtyJEjFRdsAQB7e3tMnjxZ73NZwjXPLXM+lwrKM9ASmfN+z5LVqCcnOjoazZs3x6JFiwwu19j8/f3xxx9/KO5fvnw55/cjIrJSbPgjIrJS8+fPV5wM3sXFBYcOHcJPP/2kuuog8OrL0IgRI/Drr7+aopqyNmzYILu9VatWqvMnAa8Wg1Caq06pXCWDBw9WHTLXpEkTdOzYUXZfcHAw0tLSNK89PT1l80VFRanWQal8Y1JrlJs9ezaGDh2qd1IahtisWTO9hk/LNeTZ2tpi5syZku1Z8wLKOXDggOz2xo0bIygoSLUO3333HZ49eyZJMTExcHJy0vke9GWOe0IIgV27dsnu8/b2xrp162R7HTo6OmLevHmoXLmy3ueyhGueF+Z8LhWUZ6ClMef9DrxaTGTSpEmy+54+fYoOHTrg3LlzBpVpbK6urvjyyy/x33//KS5+kpGRgRUrVpi5ZkREZC6c44+IyErFx8fjq6++wsKFC2X329vb45tvvkGvXr3w448/4uzZs7h27RrS09NhY2MDb29v+Pn54fvvv0etWrXMWvfvv/8e/fv3R9GiRSX7tm3bho8++ggbN26U7HvvvfcUv7wkJSVhwoQJBtXD3d1dM7fcxYsXtfa99dZb+OeffxSH206dOlXr9b1792Tz1a9fX/H8H330EQIDAxX329rm/fc7W1tb9O3bV3bfs2fP8M033xi0MEP58uUxevRoyXYbGxsEBQVJrktOe/bsQWxsrKRRTK6X27p16xQXOjhy5AgiIyNRvnx5yb5ly5bh5s2bOHnypGRfu3btMHHiRNl5G/fu3ZunRSpyMtc98c033+Dtt9+WbfBo3bo1Tpw4gW3btuG///5DQkIC/Pz8MGTIEDRs2FCPd/H/LOGa54U5n0sF5Rloicx1vwNAYGCg4iIqBw4cQNeuXdG1a1e9y0tJScGCBQv0zu/u7o5Zs2bJ7itatCgqVaqEevXqyd5H2c2YMUPxeURERFZAkKomTZoIAExMTEwWm9asWaP3M+/ly5ciLCxMJCQkGPy8nDdvnmId0tLSZI9p2LCh4jFjx45VPd+RI0fEnDlzxOeffy7mzJkjjhw5opp/8uTJsufp1auXzveWmpoqzpw5IxYtWiR+/fVXcerUKcX3JIQQu3btkpxn0KBBivknTZokSpcurclbtmxZsWDBApGSkqJar0qVKuX5erdt21ax/FWrVhl8v7355puK5V26dEmvMubMmaP6vrP4+fmpljNgwADFY9PS0sSaNWtE//79Rbt27cRHH30k1qxZIzIzM2XzZ2RkiBYtWkjOUbt2bcVzuLq6qtbPnPfE0qVLVY/LjbZt2+bLNQcgvvrqK8Xz1K5d22TPU3M9l8x9LkOeGY6OjornaNmypWz5b7zxhuIxnp6eqtfc1tZW8diePXvm6/1+8OBBo57j6dOnsu9n2bJlRj1PdocOHRL29vYm+z/DxMTEZOo0YsQIkz0jrcQxNvzpwIY/JiYmS0+FCxcWx48fN9pz8c6dO7INM8Zu+HN2dhbR0dFGqfODBw8UG2H0afgzlNyXXz8/P9VjMjIyxIULF8SDBw/0Pk+NGjXyfL2XL1+uWH7Xrl0Nvt9sbW1FbGysYpl16tTRWYauayWEEFevXtVZjr29vdi7d6/uC6mHqVOnyp4jLw1/5rwnypQpI168eKF3OVkeP34snjx5IrtPriHEHNccyL+GP3M9l8x9Lmtr+DPH/e7t7a3YaJ1b5m74i4qKEl5eXib7/8LExMRkjsSGP52OcY4/IiIr9+LFC7Rp0wZbt27Nc1kPHz5Eu3btsH37diPUTF1ycjL69u2L58+f56mcFy9eICgoSHG+QyUnTpzA1atXDT7f7NmzcejQIcn2M2fOqM6hZGtri7p160qGuO7ZswcRERGyx+R1CLazszN69uwpu+/p06eK8+epyczMVL3X9Fnk48yZMzpXHl27dq3OctLT09GjR488z7G1Y8cOkwyRNOc9ERMTg+7du8uumqwkLS0NvXr1UlyJVMgsBFDQr3lemfO5lN/PQEtmjvu9Xr16Jl/l3pR27tyJBg0acIgvEdFrgA1/RESvgZcvX6JHjx6YNGkSkpKSclXGuXPn0KRJE4SHh+PKlStGrqG8o0ePol27doorXOoSFxeHjh07Yt++fQYf+/z5cwQEBCAmJkbvY3777TfZ+e2yDBs2TLHBRs706dPRuXNnxes9cOBAFCpUSO/ycurWrZviZO/BwcFITU3NVblyK/NmCQwM1OvLslrDnhBCcTXfnJ4/f45mzZph3LhxBjUCZFmxYgUCAgK0FmoxJnPeEyEhIWjVqhXOnz+v8zzJyckYNGgQ9u/fDxcXF73rBxT8a55X5nwu5ecz0NKZ+n6Xm8vSEkRGRmLUqFHo2rWrYiMnERFZmXzucljgcagvExOTtSUvLy+xbNkykZiYqNdzMCwsTAwdOlQ4OztrlRMfH6+Vz9hDfbMnV1dXMWXKFL3nHnzx4oX4+eefRdGiRXWWrTTUd/fu3QJ4NZxr3bp1qnP6Xb9+XQQEBOj1XooWLSpmzZolUlNTFcuLiIgQffr00RwzfPhwxbzDhg3L9fUODg5WLLdTp065vsecnJxUPyul4YDZU8WKFRWPP3z4cK7v/T///FOx3OxOnz4t2rRpo7PMvAz1Nec9kT3Z2tqK9957T2zcuFHExcVpjktKShJhYWFi9uzZWvMLKg2ZrF+/fr5ccyD/hvpmT6Z8Lpn7XNY21Ncc9/uMGTMU65Vbxh7qm5SUJK5fvy727dsnli5dKtq2bStsbGzM8v+DiYmJyVyJQ311OmYjhMw4DdLw9/eXXYGOiMjSOTk5oXXr1mjfvj18fHzg6emJYsWK4eHDh4iOjsadO3dw4MABHDhwIL+rquHk5IQWLVqgffv2KF++PDw8PFCsWDE8e/YMjx49QlRUFPbs2YNDhw4hOTnZqOcuU6YMOnbsCB8fH5QpUwaJiYmIiYnBoUOHcObMGYPLq1y5Mlq3bo3q1aujcuXKeP78OaKionDo0CHs2bNHdhglGUeZMmVQu3Zt+Pr6olatWqhYsSKePXuGhw8fIjQ0FLt27cKNGzfMXq/8uiccHR3h5uaGx48fS87h6OiouKpu6dKl9e6JVlCvuTGY87mUn89Aa2GO+52IiMxnxIgRmD17dn5XoyA7zoY/HdjwR0RERK+r5s2b48iRI5LtmZmZcHR0REZGRj7Uisg0eL8TEVkeNvzpdNw+v2tARERERKYzcOBAODo6SrbHx8fjr7/+Uj32nXfekd0eGxvLRhAqkHi/ExERaWPDHxEREZEV6927Nzp06CC7LzIyEsePH5fdFxQUhJEjR8ruM8Yq4USmwPudiIhIG1f1JSIiIrJiao0WGzZswBdffIHq1avDzc0N5cqVQ48ePTBz5kz88ccfsLOzkz3ut99+M1V1ifKE9zsREZE2zvGnA+f4IyIiIkvm7e2NGzduwNnZ2SjlHT16FG+++aZRyiIyNt7vRESvF87xp9Nx9vgjIiIismJ3795F9+7djbLK661bt9C7d28j1IrINHi/ExERaWPDHxEREZGV27NnD7p3746kpKRcl3HkyBG0a9cO9+/fN2LNiIyP9zsREdH/Y8MfERER0Wtgz5498Pb2xqhRoxAeHq7XMenp6Th27Bh69uyJFi1a4Pbt2yauJZFx8H4nIiJ6hXP86cA5/oiIiMgaNWrUCJUqVYK3tze8vb3h6emJFy9e4PHjx3jy5AnCwsJw8OBBPH/+PL+rSpRnvN+JiKwT5/jT6bh9fteAiIiIiMzv9OnTOH36dH5Xg8gseL8TEdHrikN9iYiIiIiIiIiIrBAb/oiIiIiIiIiIiKwQG/6IiIiIiIiIiIisEBv+iIiIiIiIiIiIrBAb/oiIiIiIiIiIiKwQG/6IiIiIiIiIiIisEBv+iIiIiIiIiIiIrBAb/oiIiIiIiIiIiKwQG/6IiIiIiIiIiIisEBv+iIiIiIiIiIiIrBAb/oiIiIiIiIiIiKwQG/6IiIiIiIiIiIisEBv+iIiIiIiIiIiIrBAb/oiIiIiIiIiIiKwQG/6IiIiIiIiIiIisEBv+iIiIiIiIiIiIrBAb/oiIiIiIiIiIiKwQG/6IiIiIiIiIiIisEBv+iIiIiIiIiIiIrBAb/oiIiIiIiIiIiKwQG/6IiIiIiIiIiIisEBv+iIiIiIiIiIiIrBAb/oiIiIiIiIiIiKwQG/6IiIiIiIiIiIisEBv+iIiIiIiIiIiIrBAb/oiIiIiIiIiIiKwQG/6IiIiIiIiIiIisEBv+iIiIiIiIiIiIrBAb/oiIiIiIiIiIiKwQG/6IiIiIiIiIiIisEBv+iIiIiIiIiIiIrJB9flfA0rVs2RIBAQH5XQ0iIiKifDVlyhQ8e/ZMcX/37t3RqlUrM9aIiIiILN3cuXMRFRWV39WwaGz4y6MGDRpg1KhR+V0NIiIionw1a9Ys1Ya/Vq1aMWYiIiIig2zYsIENf3nEob5ERERERERERERWiA1/REREREREREREVogNf0RERERERERERFaIDX9ERERERERERERWiA1/REREREREREREVogNf0RERERERERERFaIDX9ERERERERERERWiA1/REREREREREREVogNf0RERERERERERFaIDX9ERERERERERERWiA1/REREREREREREVogNf0RERERERERERFaIDX9ERERERERERERWiA1/REREREREREREVogNf0RERERERERERFaIDX9ERERERERERERWiA1/REREREREREREVogNf0RERERERERERFaIDX9ERERERERERERWiA1/REREREREREREVogNf0RERERERERERFaIDX9ERERERERERERWiA1/REREREREREREVogNf0RERERERERERFaIDX9ERERERERERERWiA1/REREREREREREVogNf0RERERERERERFaIDX9ERERERERERERWiA1/REREREREREREVogNf0RERERERERERFaIDX9ERERERERERERWiA1/REREREREREREVsg+vytARGRpVq5ciSdPnmhe9+7dGz4+PvlYIyKyZleuXMHu3bs1r8uXL48ePXrkY42sT0ZGBg4dOoRr167h/v37ePDgATIzM1GyZEmULFkSZcuWRZs2bVCsWLH8rioR6YGxGpF+GGO8HtjwZ+GuXr2Kdu3aaV736tULv/76az7WiPT1/fffY9KkSQCA4sWL4+HDh/lbIdLLli1b8PHHH2teV61aFcOGDQMA3L59G5UrV5Y9bvv27ejUqZNe56hevTpu3Lihte2zzz7DokWLcllryo3k5GRERETk6lgbGxvUqlXLyDWSsoQ66jJr1iyt51+1atW0/o/pQwiBgwcP4uTJk4iJiUF8fDzKly+PatWqoXr16qhRowYKFSpkUJlpaWk4d+4cbty4gRs3biAqKgqenp6oUqUKqlSpgnr16qFo0aIG1/P48ePYvXs3YmJiEBsbC1dXV5QuXRp169ZFQECAbJleXl748ccfNV9i7ezscOLECfj5+Rl0fpK6dOkSFixYgM2bN+PRo0eqee3t7dGiRQsEBgZiwIABsLOzM1MtKT8xXrM8arEawHjtdZLXGMPa4wuAMcZrQ5CqJk2aCACKacSIEflav4sXL2rVp1+/fvlan4IoPT1dkzIyMvK7OhqTJ0/WfG7FixfP7+qQHp48eSJKlSql9X9u06ZNmv23bt1SfFbUrFlTpKWl6XWeKlWqSI4fNGiQqd4WKfjvv/9Un/9qydbWlnXUQ0JCgnB2dtaqV6dOnQwqY/HixcLHx0f1vbq7u4vFixfr/Tdgx44domrVqjrLnD9/vkhPT9e7zPLly6uW6eTkJIYOHSqSkpIkx8+YMUMrb+3atUVqaqpB18rUvLy8VN/fzJkz87uKGikpKWLChAnCwcEhV/9/6tSpIw4dOpSv76Ggxje5VVDfD+M1y6IrVhOC8drrIq8xxusSXwhR8GOMgt4mYwGOcY4/snp+fn6wt7eHvb09+vXrl9/VIQs2atQoPHjwQPO6WrVqeneFDwsLw+LFi01VNTKByMjI/K6CTpZQRzWzZs1CcnJyro5NT09HYGAgBg8ejDt37qjmffLkCQYPHowmTZogNDRUtcwePXqgS5cuuH79us4yhwwZgvr16+PevXuqeX/88Ud06dJF5+eVkpKCefPmwc/PT2uIGgAMHjwYb7zxhub1pUuX8NNPP6mWR/KeP3+O5s2bY8qUKUhLS5Pst7W1RbVq1dC8eXPFHhKhoaFo1aoVli5daurqKrK2+Mba3g/lj7zEagDjNWuS2xjjdYsvAMYYrwM2/BER6WH//v1YuXKl1rZRo0bBxsZG7zImTZqE+Ph4I9eMTOX27dv5XQWdLKGOSk6cOIEZM2bk+vgJEyZg/fr1Bh1z5swZvP3223j27JlimVu2bDGozEuXLuGDDz5AZmam7P5///0X48ePN6jMsLAwvP/++1plFi5cGIMHD9bK99NPPyE8PNygsl93qampePfdd3HmzBmt7R4eHpgzZw6OHz+O58+f49q1azhy5Aji4+Nx8+ZNbN68WdJ4IITAoEGDsGrVKnO+uGK3PwAAIABJREFUBSJSYIxYDWC8Zg3yEmO8bvEFwBjjdcCGPyIiPYwbN07rdYkSJfDhhx8aVMbjx48xefJkY1aLTMgSetNZQh1zun79Onr16oWmTZsiISEhV2WcO3cO06ZNU9zv4uKi+EXvzp07GDp0qGT7wYMHFcvMWtihRo0asLWVhk4HDhzAL7/8InvsmDFjIISQbLexsYGvry9cXV1lj9u1axf27NmjtW3o0KFwdHTUvE5NTeUzxUBffPEF9u3bp7WtQ4cOCA0NxfDhw+Hv74/ChQtr9tnY2KBixYro0aMHNm/ejMWLF8PZ2VmzXwiBAQMG6OzBQUSmZ4xYDWC8ZsnyGmO8rvEFwBjD2nFxDyIiHXbu3Injx49rbfvf//6n9eVPXwsXLsTnn3+OatWqGat6ZCI5e9PVrVsXAwcO1OtYueDNFCyhjqdPn8Z3332H+Ph43LlzR2sIVm4tX75c9hfwQYMG4fPPP4evry+SkpKwbds2/O9//5P03Fi9ejU++OADdOjQQbNt7dq1kjIdHR2xatUqBAYGar2fnj17Sob/rF69Gl9//bXWtjNnzsg2CAUFBWH69OkoU6YMUlNTsXXrVgQGBiIjI0Mr39q1a9GxY0fN69KlSyMoKEirR8v69esxbty4ArFQS0F3/fp1rFixQmvb9OnTMXr0aL17BA0aNAjNmjVD9+7dNQ3vGRkZ+PHHH9nzjygfGTNWAxivWQpjxxiva3wBMMawdmz4IyLSYcKECZJtAwYMyFVZaWlpGD16NLZt25bXaskSQiA8PBwPHjxAXFwcnJycUKJECZQvXx6lS5c26rkyMjJw584d2NrawtvbO88NSUlJSbh69SqcnZ1RunRpuLu7G6mmuZOzN13btm0xZMiQ/KmMAkuo44MHD/Dff/8Zrbz09HRs2LBBsr1fv35YtGiRpgGnSJEi6Nu3L7y9vdGyZUtJ/pCQEK3APOfQTwAYPXq0VlAOAI0aNcL8+fMREBCgtf3atWtITEzU+oV97dq1kjJ9fHywePFiFClSBMCr4L9Xr14YPXq05Ff94OBgvHz5Ei4uLpptAwcO1ArKMzMzMWnSJGzcuFFyLtI2bdo0rS9fXbt2xZgxYwwup3bt2pg/fz7efvttzba1a9diwoQJqFSpklHqSkSGMWasBjBeU1OQ4jVjxhive3wBMMawZmz4ew2EhYXh8uXLAF51eW/dujWAV39wrl27hhMnTuDkyZOIiIiAr68vGjVqhMaNG6NKlSqKZV68eFEzh4G3tzcqVqwIAHj27BmWLVuG06dPIzIyEh4eHmjUqBEaNWqENm3awMnJSbHM8+fP48aNGwAAJycnyUNPzunTpzU9Xtzd3dGuXTsAwIULFzS/gjx9+lSTPzo6WvNAd3FxQbdu3XSeQ01iYiJWrVqFK1euICIiAjExMahYsSJ8fX1Rq1YtNGvWDBUqVDCozLS0NGzYsAF79+5FVFQU0tLS0LBhQ70+l5wSEhLw559/4tKlS4iMjMT9+/fh4eEBLy8v+Pj4oEePHqhbt65qGab4rOXcu3cPZ8+exblz53Du3Dm8fPkS5cqVg7+/P3r37q33svaJiYlITU3VvC5SpAgcHBwMqkt2x48fl/zBrlWrFry9vXNd5vbt2/Hff/9pBQV5dfnyZUyfPh27du3Cw4cPZfPUrl0bPXr0wKhRo+Dm5qZY1s6dOyVz5FSpUgU//PADAGDr1q2YOnUqzp49q5kY39nZGZUqVcJHH32EIUOG6P0L+7p167B582aEhoYiIiJC60u5j48PevbsiQEDBsDX11ev8ozl5cuXkl+Na9asadY66GIJdTSFGzduIC4uTrL966+/lu211aJFC7z55ps4cuSI1vack3CHhYVJjs35a3iWdu3awcbGRmuITWZmJsLDw9GwYUMAr75orVu3TnLs8OHDNUF5zvrnDMwTEhLw77//ok+fPppt/v7+KFq0qNY8Qps3b8a9e/fg5eUlW196NQRr9erVmtd2dnaKw6f00bVrV7Rp00YzbDir19/y5cslefMzvmG89grjNeuO10wRqwGM17IrqPGaMb3u8QXAGMOq5duCwhaioC8dffHiRa369OvXT5Jn8uTJmv2tWrUSQggRGhoq/Pz8VN/bqFGjFM/bokULTb7hw4cLIYRYunSpKFKkiGJ5devWFeHh4YplDhs2TJO3ePHier3/jz/+WHNMw4YNNduHDx+u+t4ACC8vL73OISc9PV0sXLhQlCxZUvUczs7OYsmSJbJlZP9cst5vSEiIKFOmjGqZU6ZM0Vm/Fy9eiJEjRwo3Nzed16Fx48Ziz549imWZ4rPOLjk5WXzxxRc6r+OIESNEYmKizvICAgK0jt21a5de9VAyevRovf9v3Lp1S7b+TZs2lWzz9fUV6enpsuVUqVJFkn/QoEGyedPT08XQoUOFnZ2dzs86K5UsWVJs3rxZ8T3PmTNH9j5JTU0VvXr10ll+2bJlxZEjR1Sva1xcnOjZs6de9bW3txfjxo0TKSkpqmUaU1hYmKQex44dM9v59WEJdRRCiK1bt+p9bwIQnTp1Ui1v586dkmPc3NxUj5F7xpQpU0YrT82aNSV5zpw5I1teenq6cHR01MprY2Mjnjx5oslz9OhR2fe3b98+xXqWK1dOkj8wMFCSr0ePHpJ88+bNU70G5uDl5aX62c6cOTPf6pYzLhg8eHCeyzx37pywsbHRelbJ/Z3Kz/iG8RrjtdchXjMkVhOC8VpWsoZ4zZgxBuOLVwpijFHQ22QswDEu7vEaCgkJQePGjWW7HWc3a9YsjB07Vq8yZ8+ejU8//VR1EtWLFy+iYcOGsr9QWJpvvvkGX3zxheIvdVmSk5MxaNAgfPDBBzqXk9+5cyc6duyImJgY1XwTJkzA1KlTFfdnZGQgMDAQs2fPxvPnz1XLAoBTp06hW7duCAkJ0ZkXMO5nHRERgaZNm2LhwoWq+ZKTkzFnzhzUrl0bERERetXTWDZv3izZZugvv8OGDZMM/7p8+TKWLFmSp7qlp6cjMDAQ8+bNk8zdoebhw4fo06ePVu8XfYwcORKbNm3SmS86OhpBQUGK99/hw4fh6+sre23lpKen48cff0RQUJDsJMamILdoRs7edC9fvjRLXZRYQh0BoFu3bsjIyJBNuZkzJioqSrKtTJkyqsfIXYecK+81atRIkufkyZOy5V28eFGrpwoAVKpUCW+88YbmdXR0tOyx9erVU6yn3L6cc/0A8s8gff8/va527Nih9TrnfEm5Ub9+fTRr1kzzOj09vcCvtM14TR7jNcuO14wRqwGM13KyhHjNmDEG44tXGGNYJw71fc3cuHED3bt3R3JyMuzs7NCzZ080bdoUPj4+uHXrFvbv34+dO3dq8v/yyy/w9/fHu+++q1jmpk2bcO/ePQBA1apVMWzYMPj6+sLR0RERERFYsWIF9u/fD+BVt/4PP/wQfn5+qFy5ssneZ0BAgKZ7/+zZszXBWf369REUFAQAsl2h9bFt2zat5eE7dOiA4cOHo3r16nBxccHt27dx7do1/PTTT7h58yaAV/Mw1KxZE99++61smYmJiejTpw/S09NhZ2eHvn37onnz5qhUqRKuX7+OI0eOaAVl3377LerXr49OnTpJyho7diz+/fdfzWtfX1+MHTsWNWvWhLe3Nx4/foybN29i9erV2LhxI4QQSE5ORkBAAB4+fIhChQopvndjfta3bt1CgwYNtALSDh06oEuXLqhbty7u37+PEydOICQkBFeuXAHwaiGDjh074sSJEyhRooRiPY3l3LlzksYVZ2dn2fk81Dg5OWHGjBmS/0cTJ05EUFAQihUrlqv6zZs3T6/ATk5GRgYGDhyIN998U6/hTVeuXMGpU6f0Lj86OhpjxozBb7/9prU9JSUF/fv3R2xsrMF13rx5M8aPH68ZwmJKOb+8ZwV+48ePx4EDBxAeHo64uDh4enqiTp06qF+/PoYPH64zQHzd6pjFmAuJBAYGSoJSXUPVTp8+LdmWc8L29u3bSxZnmDRpEjp27Kj1RTAhIQHDhw+XlJezTnL3ePHixbWC95zk5oeTa7CQC8oPHz6MuLg4szwbLU1mZqbWF7pChQqhXLlyRim7WrVqOHr0qOb1rVu3TDrULS/xDeM1xmvWGK8ZK1YDGK9lZynxGmC8GIPxhfz5AMYYViF/exwWfAW9W6mhQ32zkpeXl7h48aJsmSNHjtTKGxQUJMmTfThBVnrvvfcUu8LPnTtXK++7774ryWPMoSPZ1atXT/W9GOrNN9/UlNe5c2eRkZEhm+/ly5eiU6dOmrxFixYVL1680OyX+1x8fX3FuXPnZMvLeQ0/+ugj2Xyenp6aPF27dhUvX75UfC+zZs3SKvPAgQOSPKb4rIUQWsMGXFxcFIfYpKSkSIaDfPfdd4rvyZhDR7799lvJe69evbpifqWhI3///bcQQoi2bdtK9o0cOVJSjj5DR+Lj44W7u7vs+Ro0aCB++uknsXPnTvHnn3+KUaNGKQ716du3r+T8ckNHspKtra1o1aqVmDhxoli5cqUYNmyY4hCqnEMdhBDihx9+kM1bvXp1MW/ePLF3716xdu1a0bdvX9l89vb24saNG4Z+lAb78ssvtc7r4eEhPDw8VP8euLm5ifnz5ys+E17HOupSq1YtSR11DfU11P79+7WGYyr9PcjMzNR6vmelQoUKiU8++UT8/PPPYtiwYcLHx0eSp1SpUuLx48da5ck9P8qVK6da1/Hjx8t+ZnKcnZ0leX/77bc8Xau8KqhDfaOiorTq4evra7Syp06dqlX27NmzJXnyM75hvMZ4zdrjNUNjNSEYr+VMlhyvqTF1jGGt8YUQBS/GKOhtMhbgGBv+dCjoN1luGv7s7e1FWFiYYpmZmZnC29tbk9/b21uSJ2dwUb16dZGWlqZa1wEDBmgdc/DgQa39lhBIZmRkCFdXV015q1atUs2/d+9erfecfT4Huc/l0qVLquXVr19f9QEfHR2tVebevXtVy0tPTxeFChXS5J82bZokjyk+64MHD2rt//XXX1XLS01N1QrKfXx8FAP4xMRE8eTJE03SVVc1/v7+kv/zLVu2VMyvK5AMDQ2VzO3i4OAgrl+/rlWOPoFkzkafrPTxxx+L5ORkSd2uXLkiKlasKMlvY2MjTp8+rZVXLZCU+1J75coVxQanhIQETb47d+5o3W9ZqV27diIpKUlS7l9//SVbptKXKGPSZ24cpRQQEGDy+llKHXUxdVCekJAgKlSoIHsNtmzZIsn/6NEj0bJlS4OupZ+fn7h165akrJzPQQCiVq1aqvX9+eefZc8h93+6bNmyknxK8/WYS0Ft+Nu3b59WPbp37260sjdt2qRV9tChQyV5ClLDH+M1eYzXLDdeMzRWE4Lxmlx+S43X1JgyxrDm+EKIghdjFPQ2GQvAOf5eRwMGDECNGjUU99vY2GjNAyC3ulFOEyZMgL29+sjxSZMmab02dL6KguDOnTtITEzUvL5165Zq/jZt2mDKlCkYP348xo8frzosY/jw4TqHB7Vq1Urzb7lu3uHh4ShfvjzKly+PevXq4a233lItz87OTmu405MnT1TzA8b5rEeNGqX5t5+fH4YMGaJanoODA77//nvN6zt37mDv3r2yeQsXLow33nhDk3TVVY3c3Beenp65Lq927dr47LPPtLalpaVh9OjRBpXz5MkTzJs3T7K9cuXKWLp0qeywhJo1a2Lp0qWS7UIITJ48Wa/z9u3bFyNGjJAtu1evXrLHhIeHa/79xx9/ICkpSWu/o6MjlixZAhcXF8mxgYGBCAwMlGwPDg7WWk3OFOTmz9PXP//8g99//914lVFgCXXMT3FxcWjfvr3snGtNmzbFO++8I9levHhxTJ482aCVJVu1agUfHx/JdrkhNIULF1YtS2m/XFlyzyKl+Xpedzn/VssNecqt8uXLa73OGl5ZUDFek8d47RVLjNeMHasBjNcsKV7LD9YeXwCMMawRG/5eQ3JzB+RUt25dzb9TUlK0gqec7Ozs8Pbbb+ss09vbW+vhZe5FGozBx8dHa36PmTNnKgY0wKtG1PHjx2PKlCmYMmWKaoOr3PwvOWWfVyE5OVnyubRr1w63b9/G7du3cf78edjZ2amWFxcXpzMYzs4Yn/Xjx49x9uxZzevevXvrNTeHn5+fVtC7fv16faudKxkZGXjw4IFke8mSJfNU7pQpUyRzxPz777+q91FOly5dkp18/Msvv1T9zNu0aSM7wbDc/CRyAgICFPfVrl1bdnv2gOL69euS/c2aNUPFihUVy5WbX/Tp06e4cOGCWlXzTGmC/tatW2P69OlYsWIFRo0aJRuQAa++LMlNEm1MllDH/HL58mU0bdoUJ06ckOxzcHDQmvcru/Hjx6Nt27ZIS0vT+1wzZ85EmzZtJBN8x8fHS/LKfWHSZ79cWXLPooLe6JRfcl6/vDYKZPf48WOt16VLlzZa2cbGeI3xWk6WHq+ZKlYDGK/lVFDjNXN7HeILgDGGNeLiHq8ZW1tbVKlSRWe+nL9gv3z5Eq6urrJ569evr/fEy7Vq1dL8WpA1kbIlsbW1Rdu2bTUrGyUmJqJ9+/Zo3Lgx+vfvjy5dukiunb70OS7nZ6D2uSiJi4tDZGQkTp48iYkTJyIlJUXvY43xWecMJho0aKD3+evUqaNpqMj+y6QpPHjwQHbltbx+YfTw8MDEiRMxcuRIre2jRo3SK/gHgGvXrslu12cFu/bt20sCx9jYWDx9+lTnpNVqq6Pp81yR+/JoZ2eHBQsWKB5z//592e2XLl0y6N4xREJCguTLPAAMGjQICxYs0PqMvvrqK3Tu3Bnnz5+XlLFs2TJMmTLlta1jfvn9998xbNgw2ZX2bG1tsXr1aq2VWLMfpzQReenSpVG5cmXExMTg9u3bkh4Mhw8fxpAhQ7Bs2TLNNrlJtnWtsqy0X64suWdRTEwMhBCwsbFRPc/rJuez7e7du0YrO2fPW2P2JjQ2xmuM1+RYcrxmqlgNYLyWU0GM18ztdYkvAMYY1ogNf68ZFxeXPA19lGNIkFurVi3s2rULwKvAOzk5Gc7Ozkatj6ktXrwYN27cQGhoqGbbqVOnNCto+fj4oG3btujcuTPat2+vusJSFltbW5QtW1ZnPkMetElJSTh27Bj27duHixcvIjIyEpGRkZKu+4YwxmedMwAcNWqU3vdA9i9YSgGGsSj9qmWMYPJ///sfFi9erHUtLl26hKVLl2Lw4ME6j5cLJG1tbeHl5aXzWKXeX9euXYO/v7/icXZ2dqhatarifn2eKzdu3JBsCwkJQUhIiM5jc1IammAMrq6uiI+PR2Jioialp6fLXh9PT08sWLBANtALCwt7retobi9evMBnn32GP//8U3Z/4cKFsXz5cvTp00ey79GjRxg6dKhku6enJ37//XetnjOXL1/Ghx9+KGlIXb58Ofr3769ZSVLuWaHWez7rPciR++Vdbltqairi4uKM0tvFmri7u2u9NmZDVs6etwW54Y/xGuM1OZYcr5kyVgMYr2VXEOM1c3nd4gul7YwxLBsb/l4zupYkzw1DlravXr265t9CCMTGxmoNBzCUECLXx+aWh4cHQkJCMGzYMGzYsEHyS+OdO3ewcuVKrFy5EnZ2dujYsSPGjBmD1q1bK5ZZrFgxODo6GqV+6enpmDt3LiZOnKjzj4C3tzceP36s81eiLMb4rHP+gnzp0iW9y8xObuiEMSl1fTfGMvYODg6YPXs2unTporV9woQJ6Nu3r87j5X6JLVGihF7zhigFmxEREaqBpLOzs+o9quv/YkJCglGDP1N+/jY2NihWrJje93vTpk1Rq1YtXLlyRWt7ztfGZAl1NKd79+6hW7dukmA5S+XKlfH3338rDnFatWqV7D21dOlSyXA5X19f/PPPP6hevbrki/nvv/+uCczlAuPcBOZFixaV/dutFHjHx8czKM8hZ0ONMRv+cvb4q1y5slHKNUV8w3iN8ZocS47XTBmrAYzXjMHU8bqpvY7xhdI5AMYYloxz/L1mTNE1V9dkotnlfOi4ubnl6dwJCQl5Oj63PDw88Oeff+LGjRuYPn06WrZsKfsLWkZGBnbs2KGZNFqJsT6X1NRUtGzZEqNHj5b8AShUqBBq1qyJbt264bvvvsP27dsRGRkJDw8Pvcs3xmf97Nkzre3u7u4oXry4wcmQuuRGqVKlZLcbK4Dp3LkzOnfurLUtLi5Oa1JsJXIBbc7rquTp06d6l2lMTk5Oeg2L0Zfc0J78lP2LU5aIiAiD5nIxNUuoY26cO3cOjRs3VgzKg4KCcObMGcWgHAC2bdsm2VahQgV069ZNNr+Pjw969Ogh2b59+3bNv+UC4+fPnyvWAZD/m6YUYCs9i5SeXa+zevXqac1vFBkZidTU1DyXm5qaiv3792te29jYqM6BZQhTxDeM1xivybHkeM3UsRrAeC2vClq8ZojXNb4AGGNYI/b4ozwzZNLn7KsB2draomjRonk6t9IvfeZSoUIFjBkzBmPGjMGLFy9w5MgR7N+/H7t378bFixe1flWbOHEiqlSpotcvhLn13Xff4fjx41r1GzlyJDp06IAqVaroNSmzGmN81jl7Q5w/f16vYTPmplQnuXnVcmvWrFnYs2cP0tPTNdvmzZunc4LeatWqSbYlJycjLi5OZ0CotCKXXJnG5OjoiAoVKkjuoXHjxuHDDz80uLzixYsbq2pGkXMoIfCqp4Axg+e8soQ6Gmr79u147733ZH/JdnNzw8KFC/H+++/rLEduhWS1oVJK+588eYLExES4urrKDsV5+vQpYmNjFYehyc2FpRSYyz2L3Nzc8vx31RrZ29ujUaNGOHToEIBXjS7Lly/Xa6iemnXr1mmt2NqwYUOjDYc1RXzDeI3xmhxLjtfMEasBjNcA64nX9PU6xxcAYwxrxIY/yjNDuv5n/yNWsmTJPAc2BWlZ8cKFC6Njx47o2LEjfv75Z0RFRWHatGlYtGiRJs+aNWtMFkg+ffpUayWpGjVqYN++fTp/mVGa80GOMT7rnAHLjRs3ClwgCbya7LZw4cKS6/Po0SOjnaN69er43//+h19//VWzLTU1VWdPFLmeW8CruUHUhigB8kM7XVxczPIZVKtWTRJIxsTE6AyAzG39+vWSSdQbNGgAX19fxWPkVsetUaNGnp9xSiyhjqZ2+/ZtBAYGyj7DGjdujL/++kvv3ldyv5TntmdPQkICXF1dFf9PXbhwAR07dpTdl30usixKwyvlnkVKc0IR8N5772ka/gBg6tSp+OSTT/I0bDP7sxt4NfzPWEwR3zBee4XxmjZLjtfMEasBjNeAghmvmcrrHl8AjDGskWVG+1SgREZG6pxXAHg1l8nJkyc1r5s3b661P3uvk8TERJ3Dz2JiYmQnnzWlvXv3YsWKFVixYgWOHTummrdcuXJYuHAhgoKCNNvOnDljsrpdunRJ6xfrL7/8UmcQefnyZTx58kTvcxjjs84ZNBiyuMDWrVs11z/7L+WmIvcHzti/Ik+cONHgX0OVAsmcX0JziomJwaZNmyTbq1atapbGH7lfqU+cOKF6TGpqKh4/fixJ2X91N7YFCxagf//+WmnixImK+ZOTk2WHgag1wr0OdTSlzMxMfPTRR7LPo08//RSHDx82aMhlzZo1JduUVmPMIvfruYeHB0qXLg0A8Pf31/w7O6W/Aw8fPpSdqP7dd9+VzS/3LGJQrqxfv35aq5xGR0dj5cqVuS7v0KFDOHfunOZ1o0aNFIduFZT4hvGaPMZrlh2vmSNWAxivFcR4zRQYX7zCGMP6sOGP8kwIgSNHjujMt27dOq0eJ2+99ZbW/uxzl6SkpOgMMFatWmVYRY3g33//xSeffIJPPvkEgwYN0uuYVq1aaf6dlJRksgmuc/6RaNCggc5jDF2dyxifdfny5eHq6qp5/fvvv+t1Tc6fP4933nlHc/2jo6MNqntumCOYfOONN/SaJya7atWqSb6IAa8CbaXPNDMzE998843sr9OffPKJQefPLbng5+rVq/jll18Uj+nTpw88PDy0kqenp9YcOZMmTUJgYKAk6TuPTk7Z/89m2blzp2T1zixLly5FXFycZHuTJk20XhuznpZQR1NauHChVu+tLH369MGSJUsM7sVVt25dybbIyEgEBwfL5o+KisLff/8t2d6wYUPNv21tbREYGCjJM3fuXNkv8HLzirm5uUkm/84i92t8QeuNU5AUKVIEn3/+uda2CRMm4PTp0waXFR8fj4EDB2ptU5sXrqDEN4zX1DFes8x4zVwNf4zXCl68ZgqML15hjGGFBKlq0qSJAKCYRowYka/1u3jxolZ9+vXrJ8kzefJkzf7ixYvrVe7SpUu1yn348KHW/hYtWmjt9/LyEg8ePFAsLykpSdSsWVOT38XFRcTExGjlWb58uVaZixYtUizv0KFDwt7eXit/w4YNZfPWq1dPk6d37956vX8lq1ev1jpneHi4zmOGDBmiyd+yZUvN9tx8LnPnzlX8XHbu3Km1b8uWLaplXb58WZQtW1brmLFjx0rymeKznjZtmlaZwcHBOt97+/btNfldXV1FUlKSbL779++LiIgITVLKp4+xY8dK/s83b95cMf+tW7dknxN///236nnS09OFr6+v6rNm0KBBWsccP35cNp+Dg4OYM2eOiIuLE0IIkZGRIa5evSo6d+4sm79y5coiNTVVq+w5c+ZI8hUuXFj1PYSEhMiWv2PHDk2ely9fiurVq0vy2NraimnTpombN29q8iYmJooRI0bIltm2bVutc+e8R7NSbGysap2V7NmzR7Y8Pz8/ERERoZV3+fLlwtHRUZK3YsWKIjk52WT1tIQ66qNWrVqSc3Xq1EnncTVq1JCtZ4MGDUTz5s31Ts+ePRNCCLF27VrZ8kqUKCH++ecfrXOHhoaKunXryub/6aeftPKeOXNGNl+fPn3E3bt3hRBCpKSkiHXr1gnedyPuAAAgAElEQVRbW1tJvo8//ljxGnh5eUnyq/3dNAe5OmVPM2fOzNf6JSUlicqVK2vVydHRUSxevFjvMu7fvy9atmypVUazZs1Uj8nP+IbxGuM1JdYSrxkaqwnBeE2ufEuM13TJTYzB+OKVghZjFPQ2GQtwjA1/OhT0m6ygNPwBEC1atJB8iRTi1R/2xo0ba+UdOXKkJF9kZKSwsbHRChaOHz+ulSczM1OcPXtWlCpVSnJ+pUCyTZs2Wn8Mc74XQ0RHRwsnJyetPx5Zf7DlHDhwQLi6umryf/vtt5p9xg4k79+/r7Wvdu3aIiEhQbac3bt3Czc3N8k1HD58uCSvKT7r1NRUrYCiSJEikj9+WZ4+fSr69u2rVeYPP/ygeI0CAgK08u7atUsxry5yf1SdnJzEy5cvZfPnNpAUQoi9e/eqPmtyBpJCCNGrVy/VY3x8fESRIkVU82zcuFFSrqkCSSGEOHnypLCzs1OsT7Vq1USTJk0U6+3k5CRCQ0O1yjR2IJmamiqaNWsmW6ajo6OoV6+eaNOmjfDw8FB8H5s3b5aUa8x6WkId9ZGboPzcuXOq97Qh6fHjx0KIV1+43nzzTcV8np6eonnz5qJ8+fJaf6eypzp16sg+F6tVqyab38bGRtStW1f2WZyV9u7dK3sN5J41dnZ2Jvuc9FXQG/6EEOLIkSPCxcVFUrd+/fqJgwcPau6JnB49eiQWLlwoihcvLnnO3r59W/Wc+RnfMF77/+cK47X/Z03xmqGxmhCM1+TKt8R4TRdDYwzGF68UxBijoLfJWAA2/OlS0G+ygtDwlz2ALlSokOjUqZOYPn26WLp0qfj444+Fp6enVllVq1YVjx49kj1vhw4dtPI6OzuLli1bijFjxoi+ffuKkiVLau37+OOPNa+VAslPP/1Uq8yKFSuKHj16yP5h1seUKVO0yitVqpT46aefxN9//y2uXLkiLl68KIKDg0Xfvn21etlUqlRJPH/+XFOOsQNJIYTo3bu31n4fHx8xc+ZM8d9//4l//vlHzJgxQ/j7+2v2lyhRQjRv3lwr/5IlS8S///6rKdNUn3XOHks2NjaiR48eYurUqeLff/8Vy5cvF8OHDxc+Pj5a+dq3by8yMjIUr5ExG/6EEKJSpUqS//f79++XzZuXQFKu7tmT3P168+ZN1YYdXalLly6y9TBlICmEEN9++22u6mtrayv7a6MpAsm7d++KEiVK5KqeSkGlsetpCXXUJTcNfz///HOu7/mcKXsjz/Xr12UbhPRJLi4u4vLly7L13bFjh2Iwr5a6d+8uMjMzZcvM2eMKkPasyA+W0PAnxKteaEWLFlWsp5eXl+jUqZMYNGiQ6NWrl/D395f0WgMgSpcuLa5fv67XOfMrvmG89v/lMV6z3njNkFhNCMZrcuew1HhNjaExBuOLVwpijFHQ22QsABv+dCnoN1lBaPjr06eP+PDDD/V60Hh7e4vIyEjF8z579kwrsFFKNjY24q+//hILFy7UbFMKJI8ePSpbhpeXl17XIqeUlBTh5+dn8EP7xIkTWuWYIpB8/PixKFOmjF51qlixoggNDRXr16+X7PPz89OUaarPWgghgoODDQqE/P39dQYHxm74++abbyT1mDhxomzevAaSERERskMyAflAUgghrly5ovdnnj11795d9tdDIUwfSKampooffvhBFCpUSO/6ent7i3379sme21SB5P79+w26P21sbMTo0aMlQ3FMWU9LqKOa3DT8DRo0yOD7XSnl7N21detWUbp0aYPKKFu2rOx9nt306dMNCs7r168vnj59qlhe//79Jcf89ttv+l94E7GUhj8hXsVPDRo0yPW9ExAQIKKjo/U+X37FN4zXGK/l9bMWouDHa4bEakIwXpM7jyXHa0oMjTEYX7xSEGOMgt4mYwGOcXEPyjMbGxusWLECEyZMQKFChWTzODo6YsyYMbh8+bLq0uFubm7YvXs3unXrBnt7e9k8LVq0wIkTJxAYGIiMjAyd9WvWrBnmzJlj8GSsShwdHXHs2DH88ssvKFy4sGpeGxsbBAUFITw8XDKJvim4u7vj5MmTeOeddxTzFCtWDF9//TUuXbqE2rVro3v37ujQoYNe5RvzswaAgIAAXLp0CZ06dVLN5+7ujgkTJuDw4cMoWbKkXnU1lvfee0+y7eDBgyY5V6VKlTB8+HCDjqlZsybCwsLw1VdfwcXFRWf+ChUq4M8//0RwcDCcnJxyW9U8cXBwwLhx4xAeHi57fbOzsbFB7969ERoaitatWxt0Hn2uh5q33noLN2/exNdff62zrBIlSmD79u2YMWMGHBwcDDpPXuppCXU0tsjISJOV3a1bN1y9ehWff/65zpUTnZyc8N133+Hq1avo3Lmzat4xY8YgJCREcYXHLIULF8ZXX32FEydOoGjRoor5Dhw4oPXa3t4ePXr0UC2btNWpUwdnzpzBypUrZVewlGNra4vmzZvjn3/+QXBwsEErHBaE+IbxmjLGa5Ydr5kzVgMYr8nJz3jNWBhfvMIYwzrZCGGiJaushL+/v9Yy9zmNGDECs2fPNmONCoaWLVvi8OHDAF79sV23bh2AVyvdrVu3DtevX0dsbCzKly+PmjVrokWLFjqDipySk5Nx6dIlnD17FrGxsahatSpq1KiBevXq5arOiYmJCA8PR0xMDNzc3FCrVi2tlelyIyYmBgcOHMCtW7dw69YtREVFwd3dHRUrVkTFihXRpEmTXNc3r44ePYozZ87gypUrSEtLg7e3N+rVq4e3335bEkCkpaXh+PHjCAsLQ6FCheDv74+qVasCMM9nDQARERE4d+4czp07h/DwcHh4eMDb2xt169ZFly5djPZFIDeqVauG69eva147OzsjNjYWbm5u+VYnOS9fvsTBgwf/j737jo6i3v8//koREkpACE0SpBMhCEiRIqAIUrwQBYWQe+1+xZ8KCFjuVUDUi1hBRLkoCmK7gKCIBRugooLSpASBIIGEElroEELC/P7gsDebndlCNtnN7PNxzp6TnfnMZ96TyWbf+975fEbLli1TVlaWDh48qLJlyyo2Nlb16tVTjx491KJFC4WFhQU6VCd79+7Vhg0btHHjRqWmpqp8+fJq3ry5mjdvrsTERKe7CnoycuRITZo0SVWqVPHrXf2ysrL022+/aevWrUpLS9Phw4d1xRVXOOJs1KiRIiIiAhpnaYixNMnMzFRqaqq2bNmiLVu2KCsrS3Xr1lXjxo3VuHFjNW/eXNWqVfO53z/++EPffvutdu/erf3796tChQqqWbOm43+d1Yf0C7Zu3epSqOrZs6e+/vprn2Pxt7i4OO3evdty/SuvvKKRI0eWYETe27Ztm7788kulpqZq37592r9/vyIjI1WzZk3VrFlTiYmJSkpKUs2aNYu8r5LMb8jXziNfs3++VlpyNYl8TQrtHCNY8wspeHMMajJFtpyhvh5wWam5gpdqDxo0KNDhoBhxrs2HUkyZMiXQYcFE9+7dDen83deCWWmIszTEGIpGjRrl8v/ImzttloTSNNQ3VPAeHjpC/VyTq5Uu5BjBKVhzDGoyRcZQXwDwZMiQIS5XefznP/8JUDSwsm3bNi1dulSSlJKSEuBorJWGOEtDjKHo9OnTmjlzptOyli1bql+/fgGKCACCA7la6UGOEZzIMeyNwh8AeBAVFaXHH3/cadmmTZscSQsCb8+ePerfv7/y8/NVu3ZtPfjgg4EOyVRpiLM0xBiqZs+erezsbKdlTz31VNANBwOAkkauVjqQYwQvcgx7o/AHAF544IEH1KxZM6dlzzzzTICiQUHjxo1Tw4YNtWHDBlWuXFlvvfWWoqKiAh2Wi9IQZ2mIMVTl5eXpueeec1rWo0cPtzcHAIBQQq4W3Mgxghc5hv1R+AMAL5QpU0bvvPOO0524fvjhBy1evDiAUUGSlixZotOnT+vaa6/V+vXr1adPn0CHZKo0xFkaYgxVs2bN0rZt2xzPy5cvr7feeiuAEQFAcCFXC27kGMGLHMP+KPwBgJeuvvpqPfHEE07LRo8eHaBocMHtt9+upUuXasmSJYqPjw90OJZKQ5ylIcZQlJub63LVyuTJk1W3bt3ABAQAQYpcLXiRYwQncozQEBnoAACgNBk3bpzWr1+vrVu3SpKOHDmi3377TVdffXWAIwtd9957b6BD8EppiLM0xBiKvvjiC5UrV04JCQmSpC5duuiee+4JcFQAEJzI1YITOUZwIscIDRT+cFE++eQTnTlzRpIUHR0d4GhQnDjXziIiIvTZZ58FOgwAIaR///7q379/oMNAKcR7eOjgXP8PuRrgPXKM0EDhDxclNjY20CGghHCuAQAonXgPDx2cawCAFeb4AwAAAAAAAGyIwh8AAAAAAABgQxT+AAAAAAAAABui8AcAAAAAAADYEIU/AAAAAAAAwIYo/AEAAAAAAAA2ROEPAAAAAAAAsCEKfwAAAAAAAIANUfgDAAAAAAAAbIjCHwAAAAAAAGBDFP4AAAAAAAAAG6LwBwAAAAAAANgQhT8AAAAAAADAhij8AQAAAAAAADZE4Q8AAAAAAACwIQp/AAAAAAAAgA1R+AMAAAAAAABsiMIfAAAAAAAAYEMU/gAAAAAAAAAbovAHAAAAAAAA2BCFPwAAAAAAAMCGKPwBAAAAAAAANkThDwAAAAAAALAhCn8AAAAAAACADVH4AwAAAAAAAGyIwh8AAAAAAABgQxT+AAAAAAAAABuKDHQApd2PP/6oESNGBDoMAACAgDp69Kjb9Z999pkyMzNLKBoAAGAHO3fuDHQIpR6FvyJau3at1q5dG+gwAAAAgtpPP/2kn376KdBhAAAAhBSG+gIAAAAAAAA2ROEPAAAAAAAAsCEKfwAAAAAAAIANUfgDAAAAAAAAbIjCHwAAAAAAAGBDFP4AAAAAAAAAG4oMdADBLjExMdAhAAAAFMmhQ4eUn5/vtKxs2bKqVKlSgCICAAAourp16wY6hKAXZhiGEeggAAAAUHzq1KmjzMxMp2W33nqr5s6dG6CIAAAAUAKWM9QXAAAAAAAAsCEKfwAAAAAAAIANUfgDAAAAAAAAbIjCHwAAAAAAAGBDFP4AAAAAAAAAG6LwBwAAAAAAANgQhT8AAAAAAADAhij8AQAAAAAAADZE4Q8AAAAAAACwIQp/AAAAAAAAgA1R+AMAAAAAAABsiMIfAAAAAAAAYEMU/gAAAAAAAAAbovAHAAAAAAAA2BCFPwAAAAAAAMCGKPwBAAAAAAAANkThDwAAAAAAALAhCn8AAAAAAACADVH4AwAAAAAAAGyIwh8AAAAAAABgQxT+AAAAAAAAABui8AcAAAAAAADYEIU/AAAAAAAAwIYo/AEAAAAAAAA2ROEPAAAAAAAAsCEKfwAAAAAAAIANUfgDAAAAAAAAbIjCHwAAAAAAAGBDFP4AAAAAAAAAG6LwBwAAAAAAANgQhT8AAAAAAADAhij8AQAAAAAAADZE4Q8AAAAAAACwIQp/AAAAAAAAgA1R+AMAAAAAAABsiMIfAAAAAAAAYEMU/gAAAAAAAAAbovAHAAAAAAAA2BCFPwAAAAAAAMCGKPwBAAAAAAAANkThDwAAAAAAALAhCn8AAAAAAACADVH4AwAAAAAAAGyIwh8AAAAAAABgQxT+AAAAAAAAABui8AcAAAAAAADYEIU/AAAAAAAAwIYo/AEAAAAAAAA2ROEPAAAAAAAAsCEKfwAAAAAAAIANUfgDAAAAAAAAbIjCHwAAAAAAAGBDFP4AAAAAAAAAG6LwBwAAAAAAANgQhT8AAAAAAADAhij8AQAAAAAAADZE4Q8AAAAAAACwIQp/AAAAAAAAgA1R+AMAAAAAAABsiMIfAAAAAAAAYENhhmEYgQ4CAAAAvhk/frw+/fRTr9pu2LBBubm5TssuvfRS1a9f36vtx44dq379+vkcIwAAAAJqOYU/AACAUmjRokXq06dPse8nMjJSu3fvVvXq1Yt9XwAAAPCr5Qz1BQAAKIV69OihatWqFft+unfvTtEPAACglKLwBwAAUApFRkbq1ltvLfb9pKSkFPs+AAAAUDwo/AEAAJRSgwcPLtb+o6KilJSUVKz7AAAAQPGh8AcAAFBKderUSXXq1Cm2/vv27auYmJhi6x8AAADFi8IfAABAKRUWFlasV/0xzBcAAKB0466+AAAApdi6devUsmVLv/dbuXJlZWVlqWzZsn7vGwAAACWCu/oCAACUZi1atFCzZs383u+AAQMo+gEAAJRyFP4AAABKueTkZL/3Wdw3DgEAAEDxY6gvAABAKbd9+3Y1bNhQ/krratasqV27dikiIsIv/QEAACAgGOoLAABQ2tWvX1/t2rXzW3/JyckU/QAAAGyAwh8AAIAN+HNoLsN8AQAA7IGhvgAAADaQlZWluLg45efnF6mfBg0aKC0tTWFhYX6KDAAAAAHCUF8AAAA7qFmzpq677roi95OSkkLRDwAAwCYo/AEAANiEP4boDho0yA+RAAAAIBgw1BcAAMAmjh07pho1aignJ+eitm/ZsqXWrl3r56gAAAAQIAz1BQAAsIuYmBj16tXrorfnph4AAAD2QuEPAADARi62eBcWFqaBAwf6ORoAAAAEEoU/AAAAG+nXr58qVark83bXXHON6tat6/+AAAAAEDAU/gAAAGwkKipK/fr183k7hvkCAADYD4U/AAAAm/G1iBcZGakBAwYUUzQAAAAIFAp/AAAANtOjRw9Vq1bNp/bVq1cvxogAAAAQCBT+AAAAbCYyMlK33nqr1+0Z5gsAAGBPFP4AAABsyNtiXlRUlJKSkoo5GgAAAAQChT8AAAAb6tSpk1d36e3Xr59iYmKKPyAAAACUOAp/AAAANhQWFqZBgwZ5bMcwXwAAAPsKMwzDCHQQAAAA8L9169apZcuWlusrV66srKwslS1btgSjAgAAQAlZzhV/AAAANtWiRQs1a9bMcv2AAQMo+gEAANgYhT8AAAAbS05Ovqh1AAAAKP0Y6gsAAGBjf/31lxo1aqTCKV/NmjW1a9cuRUREBCgyAAAAFDOG+gIAANhZgwYN1K5dO5flycnJFP0AAABsjsIfAACAzZnduZe7+QIAANgfQ30BAABsLisrS3FxccrPz5d0/irAtLQ0hYWFBTgyAAAAFCOG+gIAANhdzZo1dd111zmep6SkUPQDAAAIART+AAAAQkDBob2DBg0KYCQAAAAoKQz1BQAACAHHjh1TjRo1lJCQoLVr1wY6HAAAABS/5ZGBjgAAAADFLyYmRr169VKHDh0CHQoAAABKCIU/G8jNzdXq1asDHQYAAAhybdq0UcOGDbV8+fJAhwIAAIJY2bJlddVVVwU6DPgBQ31tIDMzU3Xq1Al0GAAAAAAAwAZq166tXbt2BToMFB139QUAAAAAAADsiMIfAAAAAAAAYEMU/gAAAAAAAAAbovAHAAAAAAAA2BCFPwAAAAAAAMCGKPwBAAAAAAAANkThDwAAAAAAALAhCn8AAAAAAACADVH4AwAAAAAAAGyIwh8AAAAAAABgQxT+AAAAAAAAABui8AcAAAAAAADYEIU/AAAAAAAAwIYo/AEAAAAAAAA2ROEPAAAAAAAAsCEKfwAAAAAAAIANUfgDAAAAAAAAbIjCHwAAAAAAAGBDFP4AAAAAAAAAG6LwBwAAAAAAANgQhT8AAAAAAADAhij8AQAAAAAAADZE4Q8AAAAAAACwIQp/AAAAAAAAgA1R+AMAAAAAAABsiMIfAAAAAAAAYEMU/gAAAAAAAAAbovAHAAAAAAAA2BCFPwAAAAAAAMCGKPwBAAAAAAAANkThDwAAAAAAALAhCn8AAAAAAACADVH4AwAAAAAAAGyIwh8AAAAAAABgQxT+AAAAAAAAABui8AcAAAAAAADYEIU/AAAAAAAAwIYo/AEAAAAAAAA2ROEPAAAAAAAAsCEKfwAAAAAAAIANUfgDAAAAAAAAbIjCHwAAAAAAAGBDFP4AAAAAAAAAG4oMdAAAAACeTJ8+XXfddZfP2+Xm5io7O1uHDh3Spk2btHz5ci1YsEAZGRnFECUAAAAQXLjiDwAABL3w8HBFRET4/IiOjlbt2rV15ZVXKjk5WZMnT1ZaWppef/111apVK9CHhSAVHh6uqKgol0fZsmUDHRoAAIBPKPwBAICQUqZMGT344IP666+/dMcddwQ6HASha665RqdPn3Z5bN68OdChAQAA+ITCHwAACEnR0dGaMWOGBg8eHOhQAAAAgGJB4Q8AAISs8PBwvffee0pKSgp0KAAAAIDfcXMPAABQah0/flwzZ840XRcbG6vExEQlJCSoTJkyln1ERkZq+vTp+uGHH3T06NHiChUAAAAocRT+AABAqXXo0CENHz7cbZvIyEg1adJEU6dOVZcuXUzbVKtWTU8++aQee+yx4ggTAAAACAgKfwAAwNby8vKUmpqqHj16aPr06br99ttN2w0bNkwTJkzQ4cOHL3pf5cuXV/369ZWdna3du3d7tU2dOnVUr149VatWTZUrV9bRo0d14MAB7dy5U+np6RcdizciIyMVHx+vPXv26MyZM37tO5DHBQAAgPMo/AEAgJCQm5urO+64Q/Xq1VPnzp1d1pctW1b9+vXTrFmzHMvi4+P14osvurRdv369JkyYIEmKiorSsGHD9NBDDyk+Pl6SNGnSJI0cOdIyljp16ujhhx9Wnz591KRJE8t227Zt01dffaVXX33Vq2JZy5Yt9fjjj7ssX7ZsmaZOnSpJiomJ0ahRo5ScnKz69esrMjJSZ8+eVWpqqlavXq3vv/9es2fP9rivYDguSbrrrruUk5NjuW39+vU1fvx403X33nuvTp48Ken8nXxbt24tSWrYsKFp+5iYGKcrTHfu3KkFCxZ4jB8AACBgDJR6GRkZhiQePHjw4MHDto933nnH9D0wPT3d577uvfdey/fUhQsXOrVt3ry5abtvvvnGkGTUq1fPSE9Pd1k/ceJE031HRkYazz77rHHq1Cmf3utzcnKMF154wShTpozbY+vdu7fp9u+//74hyejXr59x8OBBj/tbsGCBUbVqVa9/p4E6LsMwjAoVKrjdtk2bNpbbVq5c2dHupZde8il2wzCMRYsWBfy1wYMHDx48eBTHo3bt2j6/LyIo/cpdfQEAQEiZN2+e5bDWtm3bet1PpUqV9N1336lu3bpetS9Tpow+/vhjjR49WtHR0V7vRzp/NeJjjz2mBQsWKCoqyqdtL+jQoYPmzJmjqlWremyblJSk9evXq1u3bh7bBvq4AAAAYI3CHwAACClHjhzRsmXLTNfVqFHD7R2AC3r11VfVoEEDr/c7ffp03XTTTV63N9O7d2998MEHPm9Xv359LVy40Kfi2mWXXabPPvtMtWrVctsukMcFAAAA9yj8AQCAkGN1442wsDDFxcV53L5Nmza68847vd5fu3btLG8qckFeXp62b9+uvLw8t+0GDBigrl27er1vSerYsaNiY2N92kaSKlSoYDk/nhT44/Kns2fPKicnRzk5OcrNzTVtYxiGo427dgAAAMGCwh8AAAg5+/bts1x34QYd7lSpUsWn/b300kuW65YtW6YOHTqoYsWKatCggSpWrKgOHTro559/dttfWFiYTzFcsGfPHs2cOVPJycm67bbb9MYbbygzM9Oy/R133KFWrVpZxmGlpI+rqJ544glFR0crOjpaPXr0MG2zc+dOR5vo6GglJSWVcJQAAAC+ofAHAABCzv79+y3XeVP4K2jdunUaN26c+vXrp/j4eFWrVs3pKrl+/fqpS5cuptvOnDlT119/vVasWOG4M21OTo5WrFih66+/Xu+9957pdm3bttWgQYN8ilOSFi5cqLi4ON19992aM2eOPvjgAz300ENq166dUlNTTbcJDw83vbNxMB0XAAAAzFH4AwAAIefAgQOW6ypWrOh1P0uWLFGnTp309NNP6/PPP9euXbt08OBBHTp0yNFm9OjRptsePHhQDz30kM6ePWu6Pjc3Vw8++KAOHz5sut6qXysZGRm66667ZBiGy7qsrCxdd911On78uOm2HTt29Hr/JX1cAAAAsEbhDwAAhJxy5cpZrrOa/6+wP/74QzfeeKNOnjxp2SYiIkItWrQwXffaa6/p1KlTbvdx4sQJvf7666brrrjiCp9u1nH//fcrOzvbcv2BAwcsr8QrV66c000+gum4AAAAYI3CHwAACDnubnThbeHvgw8+cAxjtVKvXj3LuwR/+umnXu1nwYIFpsvDw8PVuHFjr/o4ffq0lixZ4rHd22+/bbmu4B2Mg+W4AAAA4B6FPwAAEHLcFf527drlVR/Lli3z2CYhIcFyXUZGhlf7cdfOXf8F/fHHHzpz5ozHdps2bTIdCixJDRs29Gq/JXlcAAAAcI/CHwAACDlXXnml6fLc3Fy3N/4o6ODBgx7bWBWwjh49qmPHjnm9n9OnT/vUv1kf3sjNzdXevXtN19WvX9/jfkv6uAAAAOAehT8AABBSypcvr06dOpmu27Nnj+UVb4W5my/vgsqVK5suP3HihFf7uMBqHkGr/gs7evSo1/uymp+v4BWDwXJcAAAAcI/CHwAACCnXXnut5fx0K1as8LqfvLw8j222bt1qurxmzZqKjIz0aj9RUVGWQ5Ot+i+s4I05PKldu7bp8vT0dI/7Lenj8obVuQYAAAgFFP4AAEBIefzxxy3XvfPOO37d1+bNm02XR0RE6LLLLvOqj/j4eJ/7L8zbobOxsbGKjo42Xbdjxw6P+y2u43J3FWZYWJjb/VSpUuWitwUAACjtKPwBAICQkZSUpM6dO5uuS09P1+LFi/26vy1btliua9mypVd9tGjR4qL6L6h27dqqWLGix3YdO3a0XFfwir+SPi53Q5UrVarkdj/16tXzKh4AAAA7ovAHAABCQvv27fXee+9Zrp8xY4bX8/t56+jRo8rKyjJdN3LkSK/6GDFihOnyY8eOWd6Iw0z//v09tgK+GaEAACAASURBVBk+fLjp8pycHKfjKOnjOnTokGU/cXFxbvfTq1cvr+IBAACwIwp/AADA1ipUqKBHH31U3377rWJiYkzb5Ofna+bMmcWy/7lz55ou79q1q6677jq32/bo0cPyKjyrfq1MmTLF6c68hXXv3l3dunUzXbd69WqXomhJHpe7G6kkJSVZrktJSVGfPn3cxuKLiIgIv/UFAABQErybfRkAACAIValSRRMnTjRdV6lSJTVo0EAtW7b0OBz05Zdf1u7du4sjRD377LO64447TGP44osvdOedd+rjjz92WTdo0CDLYuSpU6c0duxYn+KoWLGi5s6dq8GDBystLc1p3YABA/Thhx9abvv000+7LCvJ48rOztahQ4dUtWpVl3WPPfaY1qxZ47Sv8PBw9enTx+/F3KpVqyoyMtKrG7sAAAAEAwp/AACg1IqJibEcMuqtZcuWafTo0X6KyNXBgwc1YcIEPf/88y7rypUrp7lz5+qXX37RqlWrtGXLFjVp0kRt2rRRp06dLPt8+eWXfRrme0Hr1q31559/asmSJdq8ebOqVq2q9u3bu70S8IcfftB3330X0OM6d+6cFi1apH/84x8u68LDwzV37lxt3bpVv//+u6pWrapOnTpZXt3pDavCXrly5fTRRx/pxx9/1IkTJ7R37159++23F70fAACA4hZm+HsyG5S4zMxM1alTJ9BhAABQbN555x3dfffdfu83IyNDHTt2tLzar3nz5lq/fr3puooVK+rEiRNe7ScqKkpbt251eydbb+3bt08NGzY03Xfv3r311VdfFXkfBXXs2FHLly83XVdSxyWdvypx3rx5Pvd79uxZhYWFKTLS9fvuKlWq6PDhwy7L4+PjlZGR4bHvr7/+Wr179/Y5JgAAgl3t2rW1a9euQIeBolvOHH8AACAkLVq0SFdddVWxDfEtKCcnR4MHD9axY8eK1M/JkyeVkpLidcHxgi1btuiLL77weX/Tp0+3LPpJJXtcn3zyiX744Qef+/7nP/+pU6dOma6z+v579+7dljcvAQAAKE0o/AEAgJCyY8cOjRw5UjfeeKPbu8X62y+//KLu3btfdEHpwIED6tmzp5YsWeLztvn5+UpOTtaqVau83uaNN97QkCFDPLYrqeMyDEN33HGH/vzzT6/6PXfunEaPHm05B6SnbR977DG/3+UZAACgpFH4AwAAtnX69GmlpaVp6dKlevvtt9W9e3fVr19fkyZNCkhRZ+XKlWrUqJGeffZZr6/aO3XqlF544QU1atRIv/zyy0Xv++TJk+rTp4/eeustnT171rLdpk2b1KtXLz300ENe/45K6rgyMjLUtm1bTZkyRUeOHLFs9/vvv6tbt24aP368V/2aef/999WqVSt9+eWXF90HAABAoDHHnw0wxx8AAKVP2bJl1blzZ/Xo0UN169ZVbGysKleurKNHj+rgwYPauXOnvvvuO/3000/Kycnxqk+rOf42bdqkZs2aOZ5ffvnluuGGG9SgQQPFxcXp8OHDyszM1DfffKN169YF3XFZ7adr166qU6eOatasqezsbG3dulVbtmxRZmZmkY6hsIoVK6p69eqqVq2aYmNjJZ0vKu/du1ebNm3y674AAAgGzPFnG8sp/NkAhT8AACB5X/gDAABwh8KfbXBzDwAAAAAAAMCOKPwBAAAAAAAANkThDwAAAAAAALAhCn8AAAAAAACADVH4AwAAAAAAAGyIwh8AAAAAAABgQxT+AAAAAAAAABuKDHQAAAAA8I/Vq1frpptucll+7NixAEQDAACAQKPwBwAAYBP79+/XZ599FugwAAAAECQY6gsAAAAAAADYEIU/AAAAAAAAwIYo/AEAAAAAAAA2ROEPAAAAAAAAsCEKfwAAAAAAAIANUfgDAAAAAAAAbIjCHwAAAAAAAGBDFP4AAAAAAAAAG6LwBwAAAAAAANgQhT8AAAAAAADAhij8AQAAAAAAADZE4Q8AAAAAAACwIQp/AAAAAAAAgA1R+AMAAAAAAABsiMIfAAAAAAAAYEMU/gAAAAAAAAAbovAHAAAAAAAA2BCFPwAAAAAAAMCGKPwBAAAAAAAANkThDwAAAAAAALAhCn8AAAAAAACADVH4AwAAAAAAAGyIwh8AAAAAAABgQxT+AAAAAAAAABui8AcAAAAAAADYEIU/AAAAAAAAwIYo/AEAAAAAAAA2ROEPAAAAAAAAsCEKfwAAAAAAAIANUfgDAAAAAAAAbIjCHwAAAAAAAGBDFP4AAAAAAAAAG4oMdAAoGW+99ZYSExMDHQYAAPDR5MmTNWfOHMv1zZo10/Tp00swIgAAUNrNnj1br732WqDDQAmg8BciEhMT1aFDh0CHAQAAfDR37ly36ytUqMB7PAAA8Mny5csDHQJKCEN9AQAAAAAAABui8AcAAAAAAADYEIU/AAAAAAAAwIYo/AEAAAAAAAA2ROEPAAAAAAAAsCEKfwAAAAAAAIANUfgDAAAAAAAAbIjCHwAAAAAAAGBDFP4AAAAAAAAAG6LwBwAAAAAAANgQhT8AAAAAAADAhij8AQAAAAAAADZE4Q8AAAAAAACwIQp/AAAAAAAAgA1R+AMAAAAAAABsiMIfAAAAAAAAYEMU/gAAAAAAAAAbovAHAAAAAAAA2BCFPwAAAAAAAMCGKPwBAAAAAAAANkThDwAAAAAAALAhCn8AAAAAAACADVH4AwAAAAAAAGyIwh8AAAAAAABgQxT+AAAAAAAAABui8AcAAAAAAADYEIU/AAAAAAAAwIYo/AEAAAAAAAA2ROEPAAAAAAAAsCEKfwAAAAAAAIANUfgDAAAAAAAAbIjCHwAAAAAAAGBDkYEOAADgf++++66ys7Mdz2+99VbFx8cHMCIgOKWmpuqbb75xPK9bt6769+8fwIjsJT8/Xz/99JM2b96svXv3KisrS+fOnVP16tVVvXp11alTR926dVPlypUDHSoAL5FjAJ6RXyCYUPhDifjzzz/VvXt3x/NbbrlFkydPDmBE8Nazzz6rcePGSZKqVq2q/fv3BzYgePTpp5/qrrvucjxv3Lixhg0b5nienp6uhg0bmm775ZdfqlevXl7tJyEhQWlpaU7L7rvvPv3nP/+5iKjhbxMnTnR6vTZp0sTp78IbhmHoxx9/1G+//aY9e/bo8OHDqlu3rpo0aaKEhARdccUVKleunE99nj17VmvWrFFaWprS0tK0c+dO1ahRQ40aNVKjRo3UsmVLVapUyec4ly9frm+++UZ79uzRvn37VKFCBdWqVUstWrRQUlKSZZ+1a9fW+PHjHR9iIyIitGLFCrVp08anGOBsw4YNeuONNzR//nwdPHjQbdvIyEh17txZycnJuueeexQREVFCUSLQyDFKH3c5BvlF6AiVHIP8ArZhoNTLyMgwJLl9/PrrrwGNcd26dU7x3HbbbQGNJxjl5eU5Hvn5+YEOx+Hpp592nLeqVasGOhx4kJ2dbdSsWdPp9TZv3jynNtu3b7f8X9G0aVPj7NmzXu2rUaNGLtsPGTKkOA4LPjp+/LgRFRXldG569erlUx/Tpk0z4uPj3b63VKlSxZg2bZrX/7O++uoro3Hjxh77fP311428vDyv+6xbt67bPsuWLWsMHTrUOHXqlGkfL7/8slP75s2bG7m5uV7/rorbww8/7Pb4rr766kCH6HDmzBlj7NixxiWXXOIxNzF7XHnllcZPP/0U0GMI1vfjixXMx0OOUbp4yjHIL0JDqOQYoZBfvPLKK26Pr3bt2oEOEf7xK3P8AUGiTZs2ioyMVGRkpG677bZAh4NSauTIkcrKynI8b9KkiU/DCjZt2qRp06YVR2goQRMnTlROTs5FbZuXl6fk5GTdf//9yszMdNs2Oztb999/v66++mqtX7/ebZ/9+/dXnz59tHXrVo99PvTQQ2rVqpV2797ttu348ePVp08f7dixw227M2fOaMqUKWrTpo3T8LQL7r//fl166aWO5xs2bNBzzz3ntk+4OnbsmDp16qRnnnlGZ8+edVkfHh6uJk2aqFOnTpZXSKxfv15du3bV9OnTiztcS3Z7P7bb8SBwipJjkF/YRyjkGOQXsBsKfwBgE0uXLtW7777rtGzkyJEKCwvzqZ9x48bp8OHDfowMJWnFihV6+eWXL3r7sWPHas6cOT5ts2rVKv3tb3/T0aNHLfv89NNPfepzw4YN+sc//qFz586Zrv/88881ZswYn/rctGmT/v73v7v0Wb58ed1///1Oy5577jlt2bLFp/5DWW5urm6++WatWrXKaXlsbKxeffVVLV++XMeOHdPmzZv1888/6/Dhw/rrr780f/58l8KBYRgaMmSIZs2aVZKHAMANf+QY5BelXyjkGOQXsCMKfwBgE08++aTT82rVqun222/3uZ9Dhw7p6aef9ldYKCFbt27VLbfcog4dOuj48eMX1ceaNWv0wgsvWK6Pjo62/JCXmZmpoUOHuiz/8ccfLfu8cGOHK664QuHhrinJDz/8oBdffNF020ceeUSGYbgsDwsLU2JioipUqGC63ddff63vvvvOZfnQoUNVpkwZx/Pc3FxeBz544IEHtGTJEqdlN9xwg9avX6/hw4erffv2Kl++vGNdWFiY6tevr/79+2v+/PmaNm2aoqKiHOsNw9A999zj8eoNACXDHzkG+UXpFUo5BvkF7IjCHwDYwKJFi7R8+XKnZQ8++KDTB2lfTJ06lW8jg9zKlSvVs2dPtWvXTrVq1VKTJk00f/78IvU5Y8YM02+/hwwZoj/++EPHjx/X0aNH9dFHHzkNXbng/fff17fffuu07MMPP3Tps0yZMvrvf/+rnTt3avHixdq0aZNWrFhhelfI999/32XZqlWrTAtCKSkp2rVrlzZs2KBDhw7p448/Nr1RxIcffuiyrFatWkpJSXFaNmfOHKWmprq0hbOtW7dq5syZTsteeuklff3116pVq5ZXfQwZMkS///676tat61iWn5+v8ePH+zNUABfBnzkG+UXpEKo5BvkF7IrCHwDYwNixY12W3XPPPRfd39mzZzVq1KiihOSWYRjavHmzfvjhB3388cdauHChli9frr179/p9X/n5+dqxY4cyMjIsh4364tSpU1q9erVSU1NN53MpKVlZWfr222+1cuVKpzmXLlZeXp7mzp3rsvy2227Tf/7zH7Vo0UIRERGqWLGiBg8erM8++8y0n8WLFzs9Lzz0U5JGjRql5ORkp2Vt27bV66+/7tJ28+bNOnHihNMys8Q6Pj5e06ZN02WXXSbpfOJ/yy23mP4dL1iwQKdPn3ZZfu+99zo9P3funOOOo7D2wgsvOL22brzxRj3yyCM+TzPQvHlzl7+BDz/8UH/99Zdf4gRwcfyZY5BfWAuW/EIK3RyD/AJ2FRnoAIALNm3apI0bN0o6P3zguuuuk/S/N/AVK1bot99+07Zt25SYmKi2bduqXbt2atSokWWf69atc8wHERcXp/r160uSjh49qnfeeUcrV67Ujh07FBsbq7Zt26pt27bq1q2bypYta9nn2rVrlZaWJkkqW7askpKSPB7bypUrlZ6eLkmqUqWKunfvLkn6448/HN8qHTlyxNE+IyPD8eYYHR2tvn37etyHlRMnTmjWrFlKTU3Vtm3btGfPHtWvX1+JiYlq1qyZOnbsqHr16vnc79mzZzV37lx9//332rlzp86ePavWrVt7dV4KO378uD766CNt2LBBO3bs0N69exUbG6vatWsrPj5e/fv3V4sWLdz2URzn2szu3bu1evVqrVmzRmvWrNHp06d1+eWXq3379rr11lstJ6wv7MSJE8rNzXU8r1ixoi655BKfYrlg+fLlLolPs2bNFBcXd1H9XfDll1/q22+/1Q033FCkfgrauHGj40qg/fv3m7Zp3ry5+vfvr5EjRyomJsayr0WLFrnMN9SoUSP9+9//liQtXLhQEyZM0OrVqx03GoiKilKDBg1055136qGHHvL6aoXZs2dr/vz5Wr9+vbZt2+aU4MfHx2vAgAG65557lJiY6FV/wSgtLU0HDhxwWf7Pf/7TtIDTuXNnXXPNNfr555+dlheegHvTpk0u2/bs2dM0hu7duyssLMxpiM25c+e0ZcsWtW7dWtL5D1qzZ8922Xb48OGqWLGiafyFh/IcP35cn3/+uQYOHOi0vH379qpUqZLTPELz58/X7t27Vbt2bdOYQ11mZqbTFRMRERGWw7O9ceONN6pbt26OYcMXrvqbMWOGS9tAvh+TX5wX7DkG+UXR8gupeHIM8ov/CYX8QiodOQb5BWwtYDcUht9kZGS4vQ23JOPXX38NaIzr1q1ziue2225zafP000871nft2tUwDMNYv3690aZNG7fHNnLkSMv9du7c2dFu+PDhhmEYxvTp042KFSta9teiRQtjy5Ytln0OGzbM0bZq1apeHf9dd93l2KZ169aO5cOHD/d47i72Nup5eXnG1KlTjerVq7vtPyoqynjzzTct+yl4Xi4c7+LFi43LLrvMbb/PPPOMxxhPnjxpjBgxwoiJifH4e2jXrp3x3XffWfZVHOe6oJycHOOBBx7w+Lt8+OGHjRMnTnjsLykpyWnbr7/+2qs4zIwaNcqn18X27dtN4+/QoYPLssTERCMvL8+0n0aNGrm0HzJkiGnbvLw8Y+jQoUZERITHc33hUb16dWP+/PmWx/Hqq6+a/p3k5uYat9xyi8f+69SpY/z8889uf7cHDhwwBgwY4FW8kZGRxpNPPmmcOXPGbZ/+snDhQq9/l5KMXr16ue1v0aJFLtvExMS43cbsNXHZZZc5tWnatKlLm1WrVpn2l5eXZ5QpU8apbVhYmJGdne1o88svv5ge35IlSyzjvPzyy13aJycnm7bt37+/S9spU6a4/T0Ut4cfftjtub366qsDFlvh97H777+/yH2uWbPGCAsLc3ptmf1fDeT7cSjnF4YR/DkG+cX/ti1KfmEYvuUY5BfnH6U9vzCM0MwxQjG/eOWVV9ye16K8TyCo/MpQXwStxYsXq127dqaXcBc0ceJEPf744171OWnSJP3f//2f20lp161bp9atW5t+41Oa/Otf/9IDDzxg+a3nBTk5ORoyZIj+8Y9/KCcnx2O/ixYtUs+ePbVnzx637caOHasJEyZYrs/Pz1dycrImTZqkY8eOedzv77//rr59+7pc4m/Fn+d627Zt6tChg6ZOneq2XU5Ojl599VU1b95c27Zt8ypOfzCbc+VivkUfNmyYGjRo4LRs48aNevPNNy86Nun88I7k5GRNmTJF+fn5Xm+3f/9+DRw40HSON3dGjBihefPmeWyXkZGhlJQUy7+/ZcuWKTEx0es5bfLy8jR+/HilpKSYTgrtb3379lV+fr7po1mzZj73t3PnTpdlF4a1WDEbzlL4rntt27Z1afPbb7+Z9rdu3TqnK1UkqUGDBk5z/WRkZJhu27JlS8s4zdZlZmaatjV77RR1XiM7++qrr5ye//Of/yxyn61atVLHjh0dz/Py8hxXtQWrUMovpODOMcgv/MsfOQb5hbNgzy+k0MwxyC9gZwz1RVBKS0tTv379lJOTo4iICA0YMEAdOnRQfHy8tm/frqVLl2rRokWO9i+++KLat2+vm2++2bLPefPmaffu3ZKkxo0ba9iwYUpMTFSZMmW0bds2zZw5U0uXLpV0fpjE7bffrjZt2qhhw4bFdpxJSUmOoRKTJk1yJLqtWrVyTAJrdmm5J1988YVefvllx/MbbrhBw4cPV0JCgqKjo5Wenq7Nmzfrueeec8yd9OGHH6pp06Z64oknLPs9ceKEBg4cqLy8PEVERGjw4MHq1KmTGjRooK1bt+rnn392SnKfeOIJtWrVSr169XLp6/HHH9fnn3/ueJ6YmKjHH39cTZs2VVxcnA4dOqS//vpL77//vj7++GMZhqGcnBwlJSVp//79KleunGWc/jzX27dv11VXXeWU4N9www3q06ePWrRoob1792rFihVavHixY5Le9PR09ezZUytWrFC1atUs4/SHNWvWaMeOHU7LoqKi1KVLF5/7Klu2rF5++WWX19FTTz2llJQUVa5c+aJinDJlileJspn8/Hzde++9uuaaa7waLpaamqrff//d6/4zMjL0yCOP6K233nJafubMGd1xxx3at2+fzzHPnz9fY8aMcQwJKk5md6m7WMnJyS5JqaehaitXrnRZ1qRJE6fnPXr00KxZs5yWjRs3Tj179nT6IHj8+HENHz7cpb/CMZmdk6pVq5pOBH5B4Q+ckiwLFmaJ+bJly3TgwIFifz2XNufOnXP6MFeuXDldfvnlfum7SZMm+uWXXxzPt2/fXqxD3YryfhxK+YUU/DkG+YX/+CvHIL/4n9KSX0ihl2OQX8DWAnvFIfzBjkN9VeDy4nXr1pn2OWLECKe2KSkpLm0KDs+48Bg0aJDl0ILXXnvNqe3NN9/s0safQ3EKatmypdtj8cU111zj6Kt3795Gfn6+abvTp08bvXr1crStVKmScfLkSac2ZuclMTHRWLNmjWmfhX+Hd955p2m7GjVqONrceOONxunTpy2PZ+LEiU59/vDDDy5tiuNcG4bhNAwjOjracsjSmTNnXIbXjB492vKY/DUU54knnnA57oSEBLfbWA3F+eSTTwzDMIzrr7/eZd2IESNc+vFmKM7hw4eNKlWqmO7vqquuMp577jlj0aJFxkcffWSMHDnScujU4MGDXfZvNhTnwiM8PNzo2rWr8dRTTxnvvvuuMWzYMMshaYWHjRiGYfz73/82bZuQkGBMmTLF+P77740PP/zQGDx4sGm7yMhIIy0tzZdT6VfNmjVzicnTMBxfLV261Gk4ptX/r3Pnzjn9T7rwKFeunHH33Xcbzz//vDFs2DAjPj7epU3NmjWNQ4cOOfVn9jd/+eWXu411zJgxLtu4G2IUFRXl0v6tt9666N9VUQXrUN+dO3e6vDf4y4QJE5z6njRpkkubQL4fh2p+YRjBn2OQX/hvqK+vOQb5hf3zC8Owb44RivkFQ31Dxq8U/mzAroW/yMhIY9OmTZZ9njt3zoiLi3O0j4uLc2lTOFlLSEgwzp496zbWe+65x2mbH3/80Wl9sCfm+fn5RoUKFRx9zZo1y23777//3ul4C8+LYXZeNmzY4LbPVq1auX3DLPw3+/3337vtLy8vzyhXrpyj/QsvvODSpjjO9Y8//ui0fvLkyW77y83NdfqQEx8fb/mB6MSJE0Z2drbj4SlWK+3bt3d5vXfp0sXtNp4S8/Xr17vMlXPJJZcYW7duderHm8T80UcfNd3XXXfdZeTk5LjElpqaatSvX9+lfVhYmLFy5Uqntu4Sc7MiQWpqqhEbG2va/vjx4452mZmZTn9vFx7du3c3Tp065dLvf//7X9M+rYreJaG4k/Ljx48b9erVMz3uTz/91KX9wYMHjS5dunh8ryr4aNOmjbF9+3aXvgq/biUZzZo1cxvv888/b7oPs79BwzCMOnXquLS1mrOnJARr4W/JkiVOcfTr189vfc+bN8+p76FDh7q0CabCXyjkF4YR/DkG+YX/8gvD8D3HIL+wf35hGPbNMUIxv6DwFzKY4w/B65577tEVV1xhuT4sLMxpXgWzO0UVNnbsWEVGuh/hXvjW6r7O/xFomZmZTrel3759u9v23bp10zPPPKMxY8ZozJgxboe4SOfvbOVpuFXXrl0dP5tdNr9lyxbVrVtXdevWVcuWLXXttde67S8iIsJp+Fh2drbb9pJ/zvXIkSMdP7dp00YPPfSQ2/4uueQSPfvss47nmZmZ+v77703bli9fXpdeeqnj4SlWK2bziNSoUeOi+rqgefPmuu+++5yWnT17VqNGjfKpn+zsbE2ZMsVlecOGDTV9+nTTIR5NmzbV9OnTXZYbhqGnn37aq/0OHjxYDz/8sGnft9xyi+k2W7Zscfz83nvv6dSpU07ry5QpozfffFPR0dEu2yYnJys5Odll+YIFC5zuzmcXBw4cUI8ePUznXOvQoYNuuukml+VVq1bV008/7dOdJbt27ar4+HiX5WZDaMqXL++2L6v1VsNxzF5DVnP2hLLC7y9mQ54uVt26dZ2eXxheGaxCIb+Qgj/HIL/wX35xYT+FFSXHIL8gv/AkkDkG+QXsjMIfgpbZPAyFtWjRwvHzmTNnnJLRwiIiIvS3v/3NY59xcXFObwQlPYlyUcXHxzvNlfLKK69YJofS+QLqmDFj9Mwzz+iZZ55xW2yVZDpfX2EF56nIyclxOS/du3dXenq60tPTtXbtWkVERLjt78CBAx4/XBTkj3N96NAhrV692vH81ltv9WqukzZt2jh9iJgzZ463YfssPz9fWVlZLsurV69e5L6feeYZlzl3Pv/8c7d/S4Vt2LDBdDL3Rx991O0579atm+lkzWZzvZhJSkqyXNe8eXPT5QUTtK1bt7qs79ixo+rXr2/Zr9n8okeOHNEff/zhLtRSZ+PGjerQoYNWrFjhsu6SSy5xmveroDFjxuj666/X2bNnvd7XK6+8om7durlM7n348GGXtmYfmLxZb9aXZP4aCvbCUyAU/v0V9UuHgg4dOuT0vFatWn7r299CJb+Qgj/HIL/wn+LKMcgvnJFf/E+gcwzyC9gZhT8EpfDwcDVq1Mhju8JXBJjd/emCVq1aeT2RdcG7VV2YmLq0CA8P1/XXX+94fuLECfXo0UNXX321pk6d6jJJs68K/87NVKhQwem5u/Ni5cCBA1q5cqVef/11JSQk6MyZM15v649zXTg5u+qqq7ze/5VXXun4ueA3vf6WlZVlehc7f3z4jo2N1VNPPeWyfOTIkV7fOW/z5s2my725G2CPHj1clu3bt09HjhzxuK27u81583/F7MN4RESE3njjDcvH+vXrTfvasGGDx/2VFm+//bbatWtn+j8xPDxc77//vtOdWAtu9+9//9v06oRatWqpc+fOatCggekH32XLlrlcCWM2yban/zFW660m7DZ7De3Zs6fE19s37AAAIABJREFU7qZYWhT+8L5r1y6/9V34vcqfVxP6W6jkF5I9cgzyC+8UV45BfuGM/OK8YMgxyC9gZ9zVF0EpOjq6SEMTzPjyoaFZs2b6+uuvJZ3/IJOTk6OoqCi/xlOcpk2bprS0NKdk4ffff3fcjSw+Pl7XX3+9evfurR49eri9W1VB4eHhqlOnjsd2YWFhXsd66tQp/frrr1qyZInWrVunHTt2aMeOHS5DIXzhj3NdOKEeOXKk138DBT/47N271+tYfGX1DaG/rrp58MEHNW3aNKffxYYNGzR9+nTdf//9Hrc3S8zDw8NVu3Ztj9uaDfG80Gf79u0tt4uIiFDjxo0t13vzfyUtLc1l2eLFi7V48WKP2xZmNdSjNDl58qTuu+8+ffTRR6bry5cvrxkzZmjgwIEu6w4ePKihQ4e6LK9Ro4befvttpytnNm7cqNtvv11r1651ajtjxgzdcccdjrtImv19u7va+8IxmLG6csVseW5urg4cOOCXK2rtokqVKk7P/VnIKjzMK5gLf6GUX0ilJ8cgvyia4swxyC/+J5TzCym4cgzyC9gZhT8EJU+3d78Yha9McCchIcHxs2EY2rdvn9PwCl+V9Lc4sbGxWrx4sYYNG6a5c+e6fIOamZmpd999V++++64iIiLUs2dPPfLII7ruuuvc9lu5cmWVKVPGLzHm5eXptdde01NPPeXxTTUuLk6HDh3y+lt9f5zrwt/IX+w3q2ZDUfzFahhBwWFQRXHJJZdo0qRJ6tOnj9PysWPHavDgwR63N/tmu1q1al7NwWKVvG/bts1tYh4VFeX2b9TTa/H48eN+TaaL8/yXhN27d6tv374uifIFDRs21CeffGI5xGnWrFmmv4Pp06e7DJdLTEzUZ599poSEBJcP5m+//baj8GeWGF9MYl6pUiXL9xqr5Pvw4cMk5gUULtL4s/BX+Mqxhg0b+qXf4ng/DqX8Qgr+HIP8wj+KM8cgvyi60p5fSMGXY5BfwM4Y6oug5MsVY97yNDlrQYX/icfExBRp38ePHy/S9hcjNjZWH330kdLS0vTSSy+pS5cupt9G5ufn66uvvnJMwO2Ov85Lbm6uunTpolGjRrm8oZYrV05NmzZV3759NXr0aH355ZfasWOHYmNjve7fH+f66NGjTsurVKmiqlWr+vzwJRZf1axZ03S5P5PB3r17q3fv3k7LDhw44DTJuBWzDweFf69WrIbc+KuoaaVs2bIe54TyhbfDloLRmjVr1K5dO8uEPCUlRatWrbJMyCXpiy++cFlWr1499e3b17R9fHy8+vfv77L8yy+/dPxslhgfO3bMMgbJ/H+wuwTb6jVk9ZoLVS1btnSa32jHjh3Kzc0tcr+5ublaunSp43lYWJjbObB8URzvx6GWX0jBm2OQX/hPcecY5BdFU5rzCyk4cwzyC9gZV/whZPgyiXbBuyuFh4erUqVKRdq31bemJaFevXp65JFH9Mgjj+jkyZP6+eeftXTpUn3zzTdat26d0zeUTz31lBo1auTVt61FMXr0aC1fvtwpxhEjRuiGG25Qo0aNvJrk2h1/nOvCV5esXbvWqyFIJckqnsKT4hfVxIkT9d133ykvL8+xbMqUKR4nPG7SpInLspycHB04cMBjgm11hzOzPv2pTJkyqlevnsvf0JNPPqnbb7/d5/6qVq3qr9BK1JdffqlBgwaZfpMdExOjqVOn6u9//7vHfszm+3I3VMpqfXZ2tk6cOKEKFSqYDsU5cuSI9u3bZzkEzWwuLHeJudlrKCYmpsjvBXYTGRmptm3b6qeffpJ0vugyY8YMr4bquTN79mynu7W2bt3ab8Nhi+P9OFTzCyn4cgzyC/8piRyD/CL08gspeHMM8gvYGVf8IWT4MpSiYFJQvXr1IieKwXKb9vLly6tnz556/vnntXbtWqWnp+v//b//59Tmgw8+KNYYjhw54nRXriuuuEK//vqrhg4dqiZNmlj+rq3m0DDjj3NdOAE0m5cl0C699FLTb/wPHjzo1/0kJCTowQcfdFqWm5vr8dv1gsOcCtq4caPHfaamprosi46OLpEPR2bJ/549e9S4cWOfH6UxMU9PT1dycrLpa+7Ct/PeJOSS+TflF3tVz4Vv1a3+Btzd4dBscnR3wyvNXkNW80KFukGDBjk9nzBhQpGv+ps8ebLT87Fjxxapv4KK4/2Y/OK8QOcY5Bf+VRI5BvlFaOUXUnDnGOQXsDMKfwgZO3bs8DhPg3R+bpjffvvN8bxTp05O6wtepn/ixAmPt47fs2dPiSZ133//vWbOnKmZM2fq119/ddv28ssv19SpU5WSkuJYtmrVqmKNb8OGDU5XADz66KMeL2/fuHGjsrOzvd6HP8514W8EN23a5PX+Fy5c6DgHBa88KA5myYK/r/iTzl+p4WuSaZWYF/5QX9iePXs0b948l+WNGzcu8odkb5gl5itWrHC7TW5urg4dOuTyKHgVQ2lw7tw53Xnnnaavn//7v//TsmXLfBpy2bRpU5dlVndjvMDs2/PY2FjVqlVLktS+fXvHzwVZ/e/av3+/6ST1N998s2UMZq8hEnNzt912m9NdTjMyMvTuu+9edH8//fST1qxZ43jetm1by2FbwfJ+HCr5hRTcOQb5hf+VRI5BfhEa+YUU/DkG+QXsjMIfQoZhGPr55589tps9e7Z27tzpeH7ttdc6rS84F8yZM2c8JmyzZs3yLdAi+vzzz3X33Xfr7rvv1pAhQ7zapmvXro6fT506VayThRd+w73qqqs8buPr3c78ca7r1q2rChUqOJ6//fbbXv1e1q5dq5tuuslxDjIyMnyK3VclVfi79NJLvZp3p6AmTZq4fLCVzn9wsTqn586d07/+9S/TK4buvvtun/Z/scwSyT///FMvvvii5TYDBw5UbGys06NGjRpOVy2MGzdOycnJLg9v5yUqCVOnTnUM2yxo4MCBevPNN32eeL9FixYuy3bs2KEFCxaYtt+5c6c++eQTl+WtW7d2/BweHq7k5GSXNq+99prpB3izecViYmJcJv4uyOwb+WAcihcMKlas6HJV19ixY7Vy5Uqf+zp8+LDuvfdep2Xu5oULlvfjUMkvpODOMcgv/K8kcgzyi9DIL6TgzzHIL2BnFP4QUu69916neYMKO336tCZMmOB4Hh0drQEDBji1KfxNkLtvXJctW3ZRQ5Q8fcvvTtu2bR0/b9y40eXucWYKDl256qqriuXmKhfExcU5PU9PT3fbPjU1VRMnTvR5P0U915GRkRozZozj+fr167Vw4UKP+3388ccdCXyFChXUr18/03ZZWVn666+/HA9v7yhYmNkHm+L6MHDfffcpMTHRp20KDru6wDAM9e7dW5MnT3YkQOfOndPmzZv1t7/9Te+9957LNg0bNnQpLhSXv//976ZXE/zrX//Siy++qO3btzuWnTx5UiNGjNBnn33m0v7aa691uophyZIlmjNnjsvjzJkzxXMgF2Hq1Kmmy7dt26bOnTvrmmuu8erx/9m77/gq6uz/4+8UAiH0Dkkw0kJJgCC96dJEFKIICNlVF1FAVLq6iyJlBVYXAUURZQFZ1xIVBVwFkbogBClfIQRpQmihN6mp8/uDH3dzuXNvbpKb3GTyej4e8yB35jOfOXcmN3PuYT4zt4fftG3b1rS/wYMHO3ye4uPjFR0dbfpZyFw4kGQ6DOjMmTN69tlnbf/7npKSotjYWL3//vsObR999FGX94wzGz4ZFRXltH1RN3HiRLv7lp0+fVrt27fXBx984HYfp06d0sMPP2x3BVvbtm3VvXt3p+sUpPNxUcgvpIKdY5Bf3OKp/ELKvxyD/ML6+YVUOHIM8gtYloFC7+jRo4Ykl9OmTZu8GuPOnTvt4nn88ccd2kyaNMm2vGLFim71O2/ePLt+z5w5Y7e8Q4cODvuiQ4cOxs2bNx36OnnypNGyZUu7tqNGjXJol5iYaPj4+NjalCpVyti8ebNdm4yMDGP79u1GtWrVHLZ/zz33mL6XTp062doEBQU5vBd3HT161ChevLitr+7duxtnz5512n7dunVGqVKlbO3HjRtntzwnx+Wdd95xelxOnjxptywyMtK4cuWKaT8//PCDUaZMGYd9OGLECIe2eXGsU1JSjPr169valC5d2li6dKlprJcuXTIGDBhg1+frr7/udB9FR0fbtV2xYoXTtq5s27bN4X0XL17cuHHjhtN1Dh06ZPp34uuvv85ye6tWrXL5t2bIkCEO6/Tp08flOqGhoUbp0qVdtvnyyy8d+p01a5ZDu6CgIJfxr1692rT/77//3q7dli1bDD8/P6fxhIeHG61atXIad/HixY1du3bZ9Wn2OyrJOH36dJb7PbsaNWrksJ3u3bu7XGfHjh1Znkvcnc6fP28YhmGkp6cb7du3d9quatWqRrt27YywsDC7v6uZp8aNG5t+jsPDw03b+/j4GE2aNDH923F7WrVqldP9YPb58PPzy5Pj5K6RI0e63N+tWrXyWmy3bdy40QgMDHSI7fHHHzfWr19v+52407lz54w5c+YYFStWdPi7cPjwYZfb9Ob5uCjmF4ZRsHMM8otbPJVfGEb2cwzyC8f+rZZfGIb1c4yilF+89dZbLvd1cHCw12KDR22i8GcBFP4ck7/bMp8IM38hKVmypNG9e3fjH//4hzFv3jxj4MCBRtWqVe36qlevnnHu3DnT7Xbr1s2ubYkSJYyOHTsaY8eONQYMGGBUqVLFbtnAgQNtr50l5s8884xdn7Vq1TJ69+5tmuhkZfLkyXZ9VatWzZg6darx9ddfGwkJCcbOnTuNJUuWGAMGDDACAgJs7WrXrm38/vvvdn15uvBnGIbRt29fu+WhoaHGW2+9ZaxcudJYunSpMX36dKN169a25ZUrVzbatWtn1/6DDz4wvv32W1ufeXWsf/zxR4eTfu/evY1p06YZ3377rbFgwQJjxIgRRmhoqF27rl27Gunp6U73kScT89q1azt85teuXeu0fW4Sc7PYM09mv6+//fabUalSpRwneD169DCNIy8Tc8MwjHHjxuUoXl9fX+P999936K+gF/7+/ve/5/gY3TllLvLs37/ftCDkzhQYGGjs3r3bNN7vv//eaSLvaurVq5eRkZHhdD8sWLDAYZ3OnTvn7EB4SGEo/BmGYfz3v/81ypYt6zTO4OBgo3v37saQIUOMPn36GK1btzb8/f0d2lWvXt3Yv3+/W9v01vm4qOYXhlGwcwzyC8/mF4aRvRyD/MJxG1bLLwzD+jlGUcovKPwVGRT+rIDCn3nyZxj2J8J+/foZTzzxhFt/uENCQozExESn2718+bJdouhs8vHxMT777DNjzpw5tnnOEvOffvrJY39wk5OTjebNm2f75BcXF+fQV14U/s6fP2/UqFHDrbhq1apl7Nq1y4iNjXVY1rx5c1ufeXWsDcMwlixZkq3EsnXr1lkmW55MzP/61786xDBhwgSn7XObmB88eNDuy1zmydkXyYSEBLePeeapV69epldVGEbeJ+YpKSnG66+/bpQsWdLteENCQow1a9aYbrugF/6GDBmS7ePjbLrz6q5ly5YZ1atXz1YfNWvWND0umf3jH//IVnIeFRVlXLp0yWWfTz75pMN6H374oXs7Po8UlsKfYdw63zdr1izHvzvR0dHG0aNH3d6et87HRTW/MIyCnWOQX3i+8JedHIP8wnE7VssvDKNo5BhFJb+g8FdkbOIefygyfHx8tHDhQr322msqWbKkaZuAgACNHTtWu3fvdvko9jJlyuiHH35Qz5495e/vb9qmQ4cOiouLU//+/ZWenp5lfG3bttWsWbOyfWNbMwEBAdq0aZPefPNNBQUFuWzr4+OjmJgY7du3T61atcr1tt1RoUIFbdmyRQ8//LDTNuXKldNf/vIXxcfHKzIyUr169VK3bt3c6t+Tx1qSoqOjFR8f7/JeU9Kt9/Xaa69pw4YNqlKliluxesJjjz3mMG/9+vV5tr3atWtrxIgR2VqnYcOG2rNnj1566SUFBgZm2f7uu+/Wp59+qiVLlqh48eI5DTVXihUrpldeeUX79u0z3ceZ+fj4qG/fvtq1a5f+8Ic/ZGs77uyP/JCYmJhnfffs2VO//vqrnn322SyfnFi8eHG9+uqr+vXXX/XAAw+4bDt27FitXr3a6RMebwsKCtJLL72kuLg4lS1b1mXbdevW2b329/dX7969Xa6D/2ncuLG2bdumjz76yPQJlmZ8fX3Vrl07LV26VEuWLMnWEw4Lwvm4KOUXUsHOMcgvPC8/cwzyC0dWyC+kwpdjkF/AanwMIw8f34l8cezYsSyfBrRp0ya1adMmnyIqODp27KgNGzZIupW4fP7555JuPTnw888/1/79+3X69GmFhYWpYcOG6tChQ5ZJ2p1u3ryp+Ph4bd++XadPn1a9evXUoEEDNW3aNEcxX716Vfv27VNSUpLKlCmjRo0a2T3pL7uSkpK0bt06HTp0SIcOHdKRI0dUoUIF1apVS7Vq1VKrVq1yHKsn/PTTT9q2bZsSEhKUmpqqkJAQNW3aVA899JBDQpaamqrNmzdrz549KlmypFq3bq169epJyp9jLd26AfGOHTu0Y8cO7du3T5UqVVJISIiaNGmiHj16eOyLVXaFh4fb3WS9RIkSOn36tMqUKeOVeFy5ceOG1q9frw0bNujUqVM6d+6cihcvrkqVKunuu+9W165d1aRJkzx9yExOnDx5UvHx8dq9e7cSEhIUFBSkyMhIRUZGKiIiwu4pjVkZPXq0Zs6cqQoVKuTJU5gLsmPHjikhIUH79u3Tvn37dOrUKYWFhalevXqqV6+eIiMjVbly5Wz3+8svv2jlypU6ceKEzpw5o1KlSqlatWq2z6azL+mZ7d+/36FYdf/992vFihXZjseTRo0apVmzZjld3qpVK8XFxeVjRO47ePCgvvvuOyUkJOj06dM6c+aM/P39Va1aNVWrVk0RERGKjo5WtWrVcr2t/Dwfk1/cUpBzDPILzyksOQb5RdHOL6S8yTGsnF/MmDFDY8aMcbo8ODhYx48fz8eIkEc2M9TXAgrDUF9vyXzp+2OPPebtcJCHivqxNhuWMnv2bG+HBSe6dOliSDKaNWvm7VCQyZgxYxw+R0uWLPF2WIVqqG9RUdTPOUUJx5ocozAhvyiYCmp+wVDfIoOhvgBgBUOGDHG4Yub999/3UjRw5eDBg1q7dq0kKSYmxsvR4LYbN25o4cKFdvOaNm2qXr16eSkiACgYyDEKB/KLgon8AgUBhT8AsIASJUro5Zdftpu3Z88eWwKIgiEpKUm9e/dWenq6goOD9dxzz3k7JPx/n3/+uS5cuGA3b8KECQVuSBgA5DdyjIKP/KLgIr9AQUDhDwAsYtiwYWrUqJHdvMmTJ3spGtxp4sSJqlOnjuLj41WuXDl9+OGHKlGihLfDgqS0tDRNnTrVbl7Xrl1dPiAAAIoScoyCi/yi4CK/QEFB4Q8ALCIgIEDz58+3e6LZunXrtHr1ai9GhdvWrFmjGzdu6L777tOuXbvUo0cPb4eE/2/RokU6ePCg7XVQUJA+/PBDL0YEAAULOUbBRX5RcJFfoKCg8AcAFtKqVSuNGzfObt6rr77qpWiQ2RNPPKG1a9dqzZo1Cg0N9XY4+P9SUlIcrlp5++23FRYW5p2AAKCAIscomMgvCibyCxQk/t4OAADgWRMnTtSuXbu0f/9+SdKlS5e0ZcsWtWrVysuRFW1PP/20t0OAif/85z8qWbKk6tevL0nq2LGjBg0a5OWoAKBgIscoeMgvCibyCxQkFP5gaV9//bWSk5MlSYGBgV6OBnmJY/0/fn5+Wrp0qbfDAAqF3r17q3fv3t4OA4UM55yig2NtjxwDcA/5BQoSCn+wtEqVKnk7BOQTjjUAIL9wzik6ONYAgMKOe/wBAAAAAAAAFkThDwAAAAAAALAgCn8AAAAAAACABVH4AwAAAAAAACyIwh8AAAAAAABgQRT+AAAAAAAAAAui8AcAAAAAAABYEIU/AAAAAAAAwIIo/AEAAAAAAAAWROEPAAAAAAAAsCAKfwAAAAAAAIAFUfgDAAAAAAAALIjCHwAAAAAAAGBBFP4AAAAAAAAAC6LwBwAAAAAAAFgQhT8AAAAAAADAgij8AQAAAAAAABZE4Q8AAAAAAACwIAp/AAAAAAAAgAVR+AMAAAAAAAAsiMIfAAAAAAAAYEEU/gAAAAAAAAALovAHAAAAAAAAWBCFPwAAAAAAAMCCKPwBAAAAAAAAFkThDwAAAAAAALAgCn8AAAAAAACABfl7OwDkj2eeeUalSpXydhgAACCbjhw54nJ5QkKCWrdunU/RAAAAKzh16pS3Q0A+ofBXRCQkJHg7BAAAkAeuXr2qLVu2eDsMAAAAFEAM9QUAAAAAAAAsiMIfAAAAAAAAYEEU/gAAAAAAAAALovAHAAAAAAAAWBCFPwAAAAAAAMCCKPwBAAAAAAAAFuTv7QCQe6VLl9bIkSO9HQYAACigNm7cqOTkZLt5VapUUWRkpJciAgAABVm5cuW8HQI8xMcwDMPbQQAAACDv1KxZU8eOHbOb17dvX33xxRdeiggAAAD5YDNDfQEAAAAAAAALovAHAAAAAAAAWBCFPwAAAAAAAMCCKPwBAAAAAAAAFkThDwAAAAAAALAgCn8AAAAAAACABVH4AwAAAAAAACyIwh8AAAAAAABgQRT+AAAAAAAAAAui8AcAAAAAAABYEIU/AAAAAAAAwIIo/AEAAAAAAAAWROEPAAAAAAAAsCAKfwAAAAAAAIAFUfgDAAAAAAAALIjCHwAAAAAAAGBBFP4AAAAAAAAAC6LwBwAAAAAAAFgQhT8AAAAAAADAgij8AQAAAAAAABZE4Q8AAAAAAACwIAp/AAAAAAAAgAVR+AMAAAAAAAAsiMIfAAAAAAAAYEEU/gAAAAAAAAALovAHAAAAAAAAWBCFPwAAAAAAAMCCKPwBAAAAAAAAFkThDwAAAAAAALAgCn8AAAAAAACABVH4AwAAAAAAACyIwh8AAAAAAABgQRT+AAAAAAAAAAui8AcAAAAAAABYEIU/AAAAAAAAwIIo/AEAAAAAAAAWROEPAAAAAAAAsCAKfwAAAAAAAIAFUfgDAAAAAAAALIjCHwAAAAAAAGBBFP4AAAAAAAAAC6LwBwAAAAAAAFgQhT8AAAAAAADAgij8AQAAAAAAABZE4Q8AAAAAAACwIAp/AAAAAAAAgAVR+AMAAAAAAAAsiMIfAAAAAAAAYEEU/gAAAAAAAAALovAHAAAAAAAAWBCFPwAAAAAAAMCCKPwBAAAAAAAAFkThDwAAAAAAALAgCn8AAAAAAACABVH4AwAAAAAAACyIwh8AAAAAAABgQRT+AAAAAAAAAAui8AcAAAAAAABYEIU/AAAAAAAAwIL8vR0AAAAAsu/KlStKS0tzq21GRobDvJSUFF28eNGt9UuUKKHAwMBsxQcAAADv8zEMw/B2EAAAAMie0aNHa+bMmfmyrS+++EJ9+/bNl20BAADAYzZT+AMAACiEtm7dqpYtW+b5dkqXLq1Tp06pZMmSeb4tAAAAeNRm7vEHAABQCLVo0UJ169bN8+1ER0dT9AMAACikKPwBAAAUUgMGDMjzbcTExOT5NgAAAJA3GOoLAABQSO3du1cNGjTIs/4rV66sEydOqFixYnm2DQAAAOQZhvoCAAAUVvXr11dUVFSe9d+nTx+KfgAAAIUYhT8AAIBCLC+H+zLMFwAAoHBjqC8AAEAhduzYMYWFhSkjI8Oj/YaGhurIkSPy8fHxaL8AAADINwz1BQAAKMxCQ0PVvn17j/cbExND0Q8AAKCQo/AHAABQyOXFcN/8eGIwAAAA8hZDfQEAAAq5CxcuqHr16kpJSfFIf/Xr19evv/7qkb4AAADgNQz1BQAAKOwqVKigrl27eqy/P/7xjx7rCwAAAN5D4Q8AAMACPDk097HHHvNYXwAAAPAehvoCAABYwLVr11S1alVdu3YtV/20atVKcXFxHooKAAAAXsRQXwAAACsICgpSz549c90PD/UAAACwDgp/AAAAFpHbop2vr6/69u3roWgAAADgbRT+AAAALKJ79+6qWLFijtfv1KmTatSo4cGIAAAA4E0U/gAAACwiICBAjzzySI7XZ5gvAACAtVD4AwAAsJCcFu8CAgL08MMPezgaAAAAeBOFPwAAAAu57777FBwcnO31HnzwQVWoUCEPIgIAAIC3UPgDAACwEF9fX/Xr1y/b6zHMFwAAwHp8DMMwvB0EAAAAPGfr1q1q2bKl2+1Lly6tU6dOqWTJknkYFQAAAPLZZq74AwAAsJgWLVqobt26brePjo6m6AcAAGBBFP4AAAAsKDtDd2NiYvIwEgAAAHgLQ30BAAAsaO/evWrQoEGW7SpXrqwTJ06oWLFi+RAVAAAA8hFDfQEAAKyofv36ioqKyrJd3759KfoBAABYFIU/AAAAi3JnuC9P8wUAALAuhvoCAABY1LFjxxQWFqaMjAzT5aGhoTpy5Ih8fHzyOTIAAADkA4b6AgAAWFVoaKjat2/vdHlMTAxFPwAAAAuj8AcAAGBhroby9u/fPx8jAQAAQH5jqC8AAICFnTt3TjVq1FBqaqrd/AYNGmjPnj1eigoAAAD5gKG+AAAAVlapUiV169bNYX5MTIwXogEAAEB+ovAHAABgcWbDfR977DEvRAIAAID8xFBfAAAAi7t27ZqqVq2qa9euSZJatWqluLg4L0cFAACAPMZQXwAAAKsLCgpSz549ba9dPfADAAAA1kHhDwAAoAi4Xezz9fVV3759vRwNAAAA8oO/twMAAABA3uvevbsqVqyoqKgo1ahRw9vhAAAAIB9Q+AMAACgCAgIC9Mgjj6hNmzbeDgUAAAD5hId7IFfWr1+v7du3ezsMAADghsOHD6tatWoKDAz0digAAMANDz30kOrVq+ftMFB4beaKP+TKkiVLNGvWLG+HAQAAAAAdnhFsAAAgAElEQVSA5YSEhFD4Q67wcA8AAAAAAADAgij8AQAAAAAAABZE4Q8AAAAAAACwIAp/AAAAAAAAgAVR+AMAAAAAAAAsiMIfAAAAAAAAYEEU/gAAAAAAAAALovAHAAAAAAAAWBCFPwAAAAAAAMCCKPwBAAAAAAAAFkThDwAAAAAAALAgCn8AAAAAAACABVH4AwAAAAAAACyIwh8AAAAAAABgQRT+AAAAAAAAAAui8AcAAAAAAABYEIU/AAAAAAAAwIIo/AEAAAAAAAAWROEPAAAAAAAAsCAKfwAAAAAAAIAFUfgDAAAAAAAALIjCHwAAAAAAAGBBFP4AAAAAAAAAC6LwBwAAAAAAAFgQhT8AAAAAAADAgij8AQAAAAAAABZE4Q8AAAAAAACwIAp/AAAAAAAAgAVR+AMAAAAAAAAsiMIfAAAAAAAAYEEU/gAAAAAAAAALovAHAAAAAAAAWBCFPwAAAAAAAMCCKPwBAAAAAAAAFkThDwAAAAAAALAgCn8AAAAAAACABVH4AwAAAAAAACyIwh8AAAAAAABgQRT+AAAAAAAAAAui8AcAAAAAAABYEIU/AAAAAAAAwIIo/AEAAAAAAAAWROEPAAAAAAAAsCB/bwcAAACQn+bNm6eBAwdme72UlBRduHBB58+f1549e7R582YtWbJER48ezYMoAQAAgNzjij8AAFCk+Pr6ys/PL9tTYGCggoOD1bhxY/Xv319vv/22Dhw4oHfffVfVq1f39tsCAAAAHFD4AwAAyKGAgAA999xz+u233/Tkk096OxwAAADADoU/AACAXAoMDNSCBQs0YMAAb4cCAAAA2FD4AwAA8ABfX1/961//UnR0tLdDAQAAACTxcA8AAABJ0pUrV7Rw4ULTZZUqVVJERITq16+vgIAAp334+/tr3rx5WrdunS5fvpxXoQIAAABuofAHAAAg6fz58xoxYoTLNv7+/goPD9ecOXPUsWNH0zaVK1fWK6+8opdeeikvwgQAAADcRuEPAADATWlpaUpISFDXrl01b948PfHEE6bthg8frmnTpunixYtu9RsQEKCQkBBVqVJFJUqU0KlTp3Ty5Mk8v2owICBAYWFhMgxDhw8fVlpamkf69fX1VUhIiOrUqSNfX18dP35cx48f19WrVz3Sv+S9fQYAAFCYUPgDAADIppSUFD355JO6++671aFDB4flxYsXV69evbRo0SKnffj4+Khfv34aMGCAOnfurFKlSjm02b9/v7788kt9+umn2rNnT5ZxlSxZUu+8847D/EuXLmns2LG2NsOGDdOzzz6rsLAw+freuuVzWlqaEhMTtXHjRk2ePFmHDx/OcnuZlStXTuPHj1f37t1Vu3ZtFS9e3KHN5cuXtWrVKs2ZM0dr166VYRjZ2kZe7DMAAABLM4BcGDlypCGJiYmJiYmp0Ezz5883PacdPnw42309/fTTTs+Ry5Ytc7peixYtjB07drh9vk1LSzPeeOMNo0SJEi7jKV++vOn6J06csG331KlTWW4vOTnZmDVrllG8ePEs94Gfn58xbNgw49y5c26/H8MwjL179xqdOnVye1/n1T5jYmJiYmIqyFNsbGy2zq/AHTbxVF8AAIAc+uqrr5ScnGy6rEWLFqbzH330Ua1fv15RUVFub8fPz08vvfSSfv75Z5UrVy5HsdavX1+rVq1S1apVs2wbEBCgESNG6G9/+1uWbRcsWKD33ntPFStWzFY84eHhWrp0qe65554s23prnwEAABR2FP4AAABy6NKlS9qwYYPpsqpVqzo8ATgyMlKxsbEKDAzM0fYiIyP15Zdfyt8/e3drCQgIUGxsrMqUKZOt9caMGaP27ds7Xf7nP//Z6X0O3VGqVCl9//33qlWrltM23tpnAAAAVkDhDwAAIBdOnDhhOt/Hx0chISF289555x35+fk57evy5ctKTEx0ee+7Ll26aMKECdmKsVKlSmrcuLHdvIyMDKWnp7tcz9fXV9OmTTNdFhYWpvfee8902bFjxzRr1iy9+OKLGjdunD766COdPHnStG2VKlX07LPPOo3BW/sMAADACij8AQAA5MLp06edLgsNDbX93LdvX913332m7X744QfVq1dP5cqV0913363SpUtrxIgRTp+CO2rUKFWuXDlH8S5cuFDR0dGqWLGiypQpo44dO+r777932r5Ro0am87t27aqSJUs6zF+9erVq166tUaNGafr06Zo2bZoGDhyoRo0aafny5aZ9devWzXR+QdlnAAAAhRWFPwAAgFw4c+aM02W3C3+BgYGaPn26aZslS5bogQce0IEDB2zzrl27pnfeeUedO3c2vSovKChII0aMyHas8+fP11NPPaVly5bp0qVLun79ujZs2KDevXtrzZo1puuUL19eVapUcZjfsmVL0/b//ve/lZqa6jD/4sWL+utf/2q6TmRkpMO9BwvKPgMAACjMKPwBAADkwtmzZ50uK126tCSpQ4cOqlmzpsPymzdvavjw4U6Hqf7888+aPXu26bKHHnooW3H+8ssvTofUJicn64033nC6bnh4uMO8pk2bmraNjo52OjR3586dmjRpkt566y27acaMGQ4PBykI+wwAAKCw4y7HAAAAuWA23PW22/f/q1u3runyjRs36tixYy77X7ZsmUaOHOkwv3HjxqpQoYIuXLjgVpyrV682vRLvtl27djldZnbFn7MrHR9++GHt3r1bsbGxWrFihbZt26a0tDTb8okTJ7oVb0HYZwAAAIUdhT8AAIBcqFSpktNltwt/derUMV1+6NAhRUVFuew/IyPDdL6Pj4+ioqK0evVqt+LcvXu3y+XZLYYlJCSoR48epsvq16+vCRMmaMKECbp69ao2b96sTZs2aePGjVq/fr3LAuRtBWGfAQAAFHYU/gAAAHLBVeHv+PHjkpxfvTZ48GANHjw4x9u+8754riQkJLhcnvmqPHd8+umnGjlypIoVK+ayXalSpdS1a1d17dpV0q17/X3zzTf64osvtHLlSqdDdgvCPgMAACjsuMcfAABALjRu3Nh0fkpKim04rLMiVm6VLVvW7bZZDY/Nrl9++UWTJk3K9nrly5fXU089pRUrVmjVqlUKCwszbVcQ9hkAAEBhR+EPAAAgh4KCgtSuXTvTZUlJSbar2YKDg/Nk+84eomHG2ZV1uTFlyhT1799fJ0+ezNH6nTp1Unx8vDp37uywrCDsMwAAgMKOob4AAAA5dN999ykgIMB0WVxcnO3nK1euKCgoyKHN2bNnlZycnOPtX79+PcfrekpsbKyWL1+ugQMHqk+fPmrbtq18fd3/v+VSpUpp0aJFioyM1MWLF23zrbzPAAAA8guFPwAAgBx6+eWXnS6bP3++7ecLFy6oWrVqDm1efPFFLVq0KE9iy0+///673n77bb399tuqXr26oqOj9Yc//EH33nuvW/fUCw4O1quvvqoxY8bY5ll9nwEAAOQHhvoCAADkQHR0tDp06GC67PDhw3ZPjnU2FLZFixZ5Eps3nTx5UnPnztVjjz2matWqKSIiQqNGjdKaNWtcPkCkTZs2Dv2YseI+AwAAyCtc8QcAAJBNrVu31r/+9S+nyxcsWGB3T72ffvrJ9D52hbWI1b17d9tTejM7fPiw3n33Xbt5CQkJSkhI0KxZsxQaGqqlS5cqKirKYd07H5JitX0GAADgDVzxBwAA4KZSpUrpxRdf1MqVK1WmTBnTNunp6Vq4cKHdvHXr1pm2bdmypWJiYlxu89VXX9Xly5cdpqSkJBUvXjxH7yO3KlasqNGjRztMkydPdnl/v2PHjmny5MmmyzLf30+y3j4DAADwBq74AwAAkFShQgXNmDHDdFnZsmVVu3ZtNW3aVGXLlnXZz/Tp03XixAm7eRs3blRiYqLCwsIc2s+fP1+//fabtmzZ4rCsS5cumjBhgvz9HVO2VatW5eohF7mxfft20/nly5fX4MGDNXfuXKfrhoSEmM7ftm2b3Wur7TMAAABvoPAHAAAgqUyZMho1alSu+tiwYYNeffVVh/mpqal6/fXX9c9//tNhWYkSJbRx40bFxsbqxx9/1IkTJxQSEqIuXbooJiZGPj4+DutkZGRo1qxZuYo1N/bv369Lly6pXLlyDsvef/99de7cWe+9954SExN1/PhxVa5cWU2bNlXr1q310ksvmfa5detWu9dW22cAAABeYQC5MHLkSEMSExMTExNToZnmz5+fJ+fEI0eOGMHBwU636+/vb6xatcoj25o2bZrpNsqXL+90napVq7rcL76+vk7XffTRRx3a/+lPf3Ir1oyMjCzbnDp1yqhevbpX9hkTExMTE1NBnmJjYz1yHkSRtYl7/AEAAOTS8uXL1axZM4chvpmlpaWpd+/e2rFjR6629f333+u1117LVR+e8O9//1sLFizIsp3Z1XeZpaena8CAAaZP8bXaPgMAAMhvFP4AAAByKDExUaNHj9aDDz6o8+fPZ9n+999/V9u2bfXKK6/o2rVr2d7ewoULFR0drdTU1JyE63EvvPCCYmNj7Z5gnB3Xrl3T888/r7Vr1zptY7V9BgAAkJ8o/AEAALjhxo0bOnDggNauXat//vOf6tKli2rVqqWZM2dmq/CVnJysqVOnKjw8XJ999plb62zbtk2dO3fWU089pbS0tJy+BY+7fv26+vfvr2bNmum7775ze71r167pzTffVFhYmMsHgdxmpX0GAACQn3yMnP4XLSBp1KhR3CgbAIBcqFGjhiIjIxUREaFGjRqpVq1aunz5ss6cOaNdu3ZpxYoVOnDggLfDdEtERIQaNmyou+66yzaVL19eSUlJOnr0qG3auHGjzp07l+PtWGmfAQDgSmxsrPr16+ftMFB4beapvgAAAF6UlJSkpKQk/fDDD94OJdd2796t3bt35/l2rLTPAAAA8hJDfQEAAAAAAAALovAHAAAAAAAAWBCFPwAAAAAAAMCCKPwBAAAAAAAAFkThDwAAAAAAALAgCn8AAAAAAACABVH4AwAAAAAAACyIwh8AAAAAAABgQRT+AAAAAAAAAAui8AcAAAAAAABYEIU/AAAAAAAAwIIo/AEAAAAAAAAWROEPAAAAAAAAsCAKfwAAAAAAAIAFUfgDAAAAAAAALIjCHwAAAAAAAGBBFP4AAAAAAAAAC6LwBwAAAAAAAFgQhT8AAAAAAADAgij8AQAAAAAAABZE4Q8AAAAAAACwIAp/AAAAAAAAgAVR+AMAAAAAAAAsiMIfAAAAAAAAYEEU/gAAAAAAAAALovAHAAAAAAAAWBCFPwAAAAAAAMCCKPwBAAAAAAAAFkThDwAAAAAAALAgCn8AAAAAAACABVH4AwAAAAAAACyIwh8AAAAAAABgQRT+AAAAAAAAAAui8AcAAAAAAABYEIU/AAAAAAAAwIIo/AEAAAAAAAAWROEPAAAAAAAAsCAKfwAAAAAAAIAFUfgDAAAAAAAALIjCHwAAAAAAAGBBFP4AAAAAAAAAC/L3dgCwtlatWikuLs7bYQAAgBzw8fFxuTw2Nlb9+vXLp2gAALCerM61QG5xxR8AAAAAAABgQRT+AAAAAAAAAAui8AcAAAAAAABYEIU/AAAAAAAAwIIo/AEAAAAAAAAWROEPAAAAAAAAsCAKfwAAAAAAAIAFUfgDAAAAAAAALIjCHwAAAAAAAGBBFP4AAAAAAAAAC6LwBwAAAAAAAFgQhT8AAAAAAADAgij8AQAAAAAAABZE4Q8AAAAAAACwIAp/AAAAAAAAgAVR+AMAAAAAAAAsiMIfAAAAAAAAYEEU/gAAAAAAAAALovAHAAAAAAAAWBCFPwAAAAAAAMCCKPwBAAAAAAAAFkThDwAAAAAAALAgCn8AAAAAAACABVH4AwAAAAAAACyIwh8AAAAAAABgQRT+AAAAAAAAAAui8AcAAAAAAABYEIU/AAAAAAAAwIIo/AEAAAAAAAAWROEPAAAAAAAAsCAKfwAAAAAAAIAFUfgDAAAAAAAALIjCHwAAAAAAAGBB/t4OAABgLR999JEuXLhge923b1+FhoZ6MSKg4ElISNAPP/xgex0WFqbevXt7MSLrSU9P13//+1/t3btXJ0+e1KlTp5SRkaEqVaqoSpUqqlmzpjp16qRy5cp5O1QAbiLHQHZwrgVuofAHS/v111/VpUsX2+s+ffro7bff9mJEyI6//e1vmjhxoiSpYsWKOnPmjHcDQpa++eYbDRw40Pa6Xr16Gj58uCTp8OHDqlOnjul63333nbp37+7WNurXr68DBw7YzRs8eLDef//9HEYNT5sxY4bd5zU8PNzu98IdhmFo/fr12rJli5KSknTx4kWFhYUpPDxc9evXV4MGDVSyZMls9ZmamqodO3bowIEDOnDggI4cOaKqVauqbt26qlu3rpo2baqyZctmK8bNmzfrhx9+UFJSkk6fPq1SpUqpevXqatKkiaKjo532FxwcrClTpti+wPr5+SkuLk7NmzfP1nuCo/j4eL333ntavHixzp0757Ktv7+/OnTooP79+2vQoEHy8/PLpyjhbeQYhY+rHEMizygqspNjcK4FbqHwB0tLTU1VUlKS7fXFixe9GE3BlJ6ebvvZx8dHvr4F5w4AhmEoIyNDkmz/ouC6ePGihg0bZjdv6tSp8vf/36nG2XEcM2aMunTpYtfWmYyMDId+DMPIQcTIC1evXtUrr7yimzdv2uZ17949W4W/Dz74QFOmTNGxY8ectqlQoYKmTp2qZ555xq2/W8uXL9fIkSO1f/9+l31OnjxZQ4cOzbIAtHz5cg0bNkyJiYlO2xQvXlyDBw/WG2+8ocDAQLtl5cqV07hx4zR27FhJt/4WP/XUU9q+fbuKFSuW5fuBo5SUFE2ZMkXTpk1TamqqW+ukpaVp7dq1Wrt2rd577z29++676tChQx5H6lxBPifnREF+P+QYhYs7OYZEnmF12c0xONcCtxScsy8Ar2jevLn8/f3l7++vxx9/3NvhoBAbPXq0Tp06ZXsdHh7u9nCKPXv2aO7cuXkVGvLRjBkz7BLy7EhLS1P//v01dOhQl0U/Sbpw4YKGDh2qVq1aadeuXS777N27t3r06OGy6He7z+eff15RUVE6ceKE03ZTpkxRjx49XBb9JCk5OVmzZ89W8+bN7Yam3TZ06FCVL1/e9jo+Pl5Tp0512SfM/f7772rXrp0mT55sWvTz9fVVeHi42rVr5/QqzF27dunee+/VvHnz8jpcp6x2Trba+4H35CbHkMgzrCInOQbnWoDCHwDAA9auXauPPvrIbt7o0aPl4+Pjdh8TJ07kqtxCLi4uTtOnT8/x+q+99ppiY2Oztc62bdv00EMP6fLly077/Oabb7LVZ3x8vP70pz+ZXjny7bffavz48dnqb8+ePfrjH//o0F9QUJCGDh1qN2/q1Knat29ftvov6lJSUvTII49o27ZtdvMrVaqkWbNmafPmzfr999+1d+9ebdy4URcvXtRvv/2mxYsXOxQODMPQkCFDtGjRovx8CwBc8ESOIZFnFHY5zTE41wIU/gAAHvDKK6/Yva5cubKeeOKJbPVx/vx5TZo0yZNhIZ/s379fffr0UZs2bXTlypUc9bFjxw698cYbTpcHBgY6/ZJ37NgxvfDCCw7z169f77TP2w92aNCggenww3Xr1unNN990mD927FjTIV8+Pj6KiIhQqVKlTLe3YsUK/fjjjw7zX3jhBQUEBNhep6Sk8DnIpmHDhmnNmjV287p166Zdu3ZpxIgRat26tYKCgmzLfHx8VKtWLfXu3VuLFy/W3LlzVaJECdtywzA0aNCgLK8QBZA/PJFjSOQZhZUncgzOtSjqKPwBAHJl+fLl2rx5s9285557zu6LtLvmzJnD/8AWAlu3btX999+vli1bqnr16goPD9fixYtz1eeCBQtMr7AbMmSIfvnlF125ckWXL1/Wp59+ajdk57aPP/5YK1eutJv3ySefOPQZEBCgzz77TEeOHNHq1au1Z88excXFmT4V8uOPP7Z7vW3bNtNiUExMjI4fP674+HidP39eX375pek9Aj/55BOHedWrV1dMTIzdvNjYWCUkJDi0haP9+/dr4cKFdvP+8Y9/aMWKFapevbpbfQwZMkQ///yzwsLCbPPS09M1ZcoUT4YKIAc8mWNI5BmFQV7kGJxrUdRR+AMA5Mprr73mMG/QoEE56is1NVVjxozJbUhOGYahvXv3at26dfryyy+1bNkybd68WSdPnvT4ttLT05WYmKijR4965Mbx169f1/bt25WQkGB6v7j8dOrUKa1cuVJbt261u+dSTqWlpemLL75wmP/444/r/fffV5MmTeTn56fSpUtrwIABWrp0qWk/q1evtnt959BP6dYN3vv37283r0WLFnr33Xcd2u7du1dXr161vTYr3IWGhmru3LmqUaOGpFuFxT59+pj+Hi9ZskQ3btxwmP/000/bvc7IyLA9bRSuvfHGG3afrwcffFBjx47N9hDAyMhIh9+BTz75RL/99ptH4gSQM57MMSTyDGesnGPcxrkWRRlP9QV06/5Lu3fvlnRr+MAf/vAHSf87ecfFxWnLli06ePCgIiIi1KJFC7Vs2VJ169Y17W/nzp22+02FhISoVq1akqTLly9r/vz52rp1qxITE1WpUiW1aNFCLVq0UKdOnVS8eHGnMf7f//2fDhw4IOnWkyKjo6OzfF9bt27V4cOHJd16WmWXLl0kSb/88ovtqpVLly7Z2h89etT25TswMFA9e/bMchuuXL16VYsWLVJCQoIOHjyopKQk1apVSxEREWrUqJHatm2ru+++O9v9pqam6osvvtCqVat05MgRpaam6p577snyuJi5cuWKPv30U8XHxysxMVEnT55UpUqVFBwcrNDQUPXu3VtNmjRxun5eHGszJ06c0Pbt27Vjxw7t2LFDN27c0F133aXWrVurb9++Tm9Wf6erV68qJSXF9rp06dK5eqrZ5s2bHYorjRo1UkhISI77/O6777Ry5Up169Ytx33caffu3bargM6cOWPaJjIyUr1799bo0aNVpkwZp30tX77c4V5DdevW1euvvy5JWrZsmaZNm6bt27fbHjJQokQJ1a5dW3/+85/1/PPPu32lwueff67Fixdr165dOnjwoF1iHxoaqkcffVSDBg1SRESEW/0VVAcOHNDZs2cd5v/lL38xLeB06NBB7du318aNG+3m3/mQjz179jise//995vG0KVLF/n4+NgN483IyNC+fft0zz33KD09XZ9//rnDeiNGjFDp0qVNY79zqPCVK1f07bffql+/fnbzW7durbJly9rdp3Dx4sU6ceKEgoODTePFrSHema/K9PPzMx2e7a4HH3xQnTp1sg0bvn3V34IFCxzaevuc7Olzj7ffT04UhRxDyp88oyjlGBJ5xm1FJce4jXMtijQDyIWRI0cakpxOrVq18mp8O3futIvn8ccfN203adIkW5t7773XMAzD2LVrl9G8eXOX72/06NGm/XXo0MHWZsSIEYZhGMa8efOM0qVLO+2rSZMmxr59+5y+l+HDh9vaVqxY0a33P3DgQNs699xzj23+iBEjXL4vSUZwcLBb2zCTlpZmzJkzx6hSpYrLbZQoUcL44IMPnPaT+bjcfs+rV682atSo4bLfyZMnZxnjtWvXjFGjRhllypTJcl+0bNnS+PHHH037yYtjndnNmzeNYcOGZbkfR44caVy9ejXL/qKjo+3WXbFihVtxODNmzBi3PxeHDh0yjb9NmzYO8yIiIoy0tDTTfurWrevQfsiQIaZt09LSjBdeeMHw8/PL8jjfnqpUqWIsXrzY6XueNWuW6e9ISkqK0adPnyz7r1mzprFx40aX+/Xs2bPGo48+6la8/v7+xiuvvGIkJye77NOTli1b5vb+lGR0797dZX/Lly93WKdMmTIu1zH7XNSoUcOuTcOGDR3abNu2zbS/tLQ0IyAgwK6tj4+PceHCBcMwDOOnn34yfW9r1qxxGuNdd93l0L5///6mbXv37u3Qdvbs2S73QX7I6tjGxsZ6LbY7z2VDhw7NdZ87duwwfHx87D5fZn9bvX1O9vS5x9vvJzuKUo5hGHmbZ1gpxzAM8ozbU1Z5RlHLMTLjXIsiahNDfQETq1evVsuWLU2HiWU2Y8YMvfzyy1n2N3PmTD3zzDMub0i7c+dO3XPPPaZXlBQ2f/3rXzVs2DCn/+N5282bNzVkyBD96U9/0s2bN7Psd/ny5br//vuVlJTkst1rr72madOmOV2enp6u/v37a+bMmfr999+z3O7PP/+snj17OgwjNOPJY33w4EG1adNGc+bMcdnu5s2bmjVrliIjI3Xw4MEsY/Qks3uuZPd/0IcPH67atWvbzdu9e7c++OCDXMWWlpam/v37a/bs2UpPT3d7vTNnzqhfv34O93fLyqhRo/TVV19l2e7o0aOKiYlx+ru3YcMGRUREuH0/m7S0NE2ZMkUxMTGmD53ICz179lR6errp1KhRo2z3d+TIEYd5t4fOOmM2ZPbOJ/u2aNHCoc2WLVtM+9u5c6fdlSqSVLt2bdv9BI8ePWq6XtOmTZ3GaLbs2LFjpm3NPje5vaeR1X3//fd2r//yl7/kus+oqCi1bdvW9jotLc12VVtBVpTyjKKcY0ieO9ZFJceQyDMyK4o5Rmaca1FUMdQXuMOBAwfUq1cv3bx5U35+fnr00UfVpk0bhYaG6tChQ1q7dq2WL19ua//mm2+qdevWeuSRR0z7++qrr3TixAlJUr169TR8+HBFREQoICBABw8e1MKFC7V27VpJt4ZIPPHEE2revLnq1KmTZ+8xOjraNkxi5syZtiQ3KirKduNbs6Fr7vjPf/6j6dOn215369ZNI0aMUP369RUYGKjDhw9r7969mjp1qu3eSZ988okaNmyocePGOe336tWr6tevn9LS0uTn56cBAwaoXbt2ql27tvbv36+NGzfaJbjjxo1TVFSUunfv7tDXyy+/rG+//db2Otehe1sAACAASURBVCIiQi+//LIaNmyokJAQnT9/Xr/99ps+/vhjffnllzIMQzdv3lR0dLTOnDmjkiVLmsboyWN96NAhNWvWzC6x79atm3r06KEmTZro5MmTiouL0+rVq203Jj58+LDuv/9+xcXFqXLlyk73pafs2LFDiYmJdvNKlCihjh07Zquf4sWLa/r06Q6foQkTJigmJkblypXLUXyzZ892K0E2k56erqefflrt27d3a6hYQkKCfv75Z7f7P3r0qMaOHasPP/zQbn5ycrKefPJJnT59OtsxL168WOPHj7cNBcprZk/Czan+/fs7JONZDVPbunWrw7zw8HC71127dtWiRYvs5k2cOFH333+/3ZfAK1euaMSIEQ79ZY7J7JhUrFjR9EEjt935RVOS02KF2ZeRDRs26OzZs/nyeS5sMjIy7ArGJUuW1F133eWRvsPDw/XTTz/ZXh86dChPh7rl9pxc0PIMcoy8yTEkzx3ropRjSOQZtxXVHCMzzrUosrx7xSEKOysO9b09BQcHGzt37jRtP2rUKLu2MTExdsszD8u4PT322GNOhxS88847dm0feeQRhzaeHIaTWdOmTZ2+j5xo3769rb8HHnjASE9PN21348YNo3v37ra2ZcuWNa5du2bXxuy4REREGDt27DDt8879+Oc//9m0XdWqVW1tHnzwQePGjRtO38+MGTPs+ly3bp3d8rw41oZh2A3BCAwMdDpcKTk52WFozauvvur0/XhyGM64ceMc3nv9+vWdtnc2BOfrr782DMMwOnfu7LBs1KhRDv24MwTn4sWLRoUKFUy316xZM2Pq1KnG8uXLjU8//dQYPXq00yFTAwYMcNi+2RCc25Ovr69x7733GhMmTDA++ugjY/jw4U6Ho905LNUwDOP11183bVu/fn1j9uzZxqpVq4xPPvnEGDBggGk7f39/48CBA9k9lB7VqFEjh7iyMwzHHWvXrrUbjunsb1hGRobd36TbU8mSJY2nnnrK+Pvf/24MHz7cCA0NdWhTrVo14/z587a+zH7f77rrLpdxjh8/3mEdV0OYS5Qo4dD+ww8/zNW+yi1nv+u3J28NPzpy5IjDucFTpk2bZtf3zJkzHdp4+5zs6XOPt9+Pu4pajmEYeZNnWDHHMAzyjDunO/MMcoxbONeiCNpE4Q+5YtXCn7+/v7Fnzx6n/WZkZBghISG29iEhIXbL70zS6tevb6SmprqMddCgQXbrrF+/3m55YUjK09PTjVKlStn6W7Rokcv2q1atsnvPd957y+y4xMfHu+wzKirK1t7sS/nRo0ft+ly1apXL/tLS0oySJUva2r/xxht2y/PiWK9fv95u+dtvv+2yv5SUFLsvOKGhoU6/DF29etW4cOGCbcoqVldat27t8Jnv2LGj0/ZZJeS7du1yuEdOsWLFjP3799v1405C/uKLL5pua+DAgcbNmzcdYktISDBq1arl0N7Hx8fYunWrXVtXCblZgSAhIcGoVKmSafsrV67Y2h07dszud+321KVLF+P69esO/X722WemfTr7Mppf8rrwd+XKFePuu+82fe/ffPONQ/tz584ZHTt2zDKpzjw1b97cOHTokF0/d35uJRmNGjVyGevf//530/7NfgcNwzBq1qzp0NbZPQHzS1b7yltfRtasWWMXR69evTzW91dffWXX9wsvvODQxtvnZE+fe7z9ftxRFHMMw/D8sbZqjmEY5Blm7W/nGeQY/8O5FkUQ9/gDzAwaNEgNGjRwutzHx8fu3k1mT6PM7LXXXpO/v+uR9Xc+Tj679/0oCI4dO6arV6/aXh86dMhl+06dOmny5MkaP368xo8f73J4i3Tr6ZlZDbe69957bT+bDWXYt2+fwsLCFBYWpqZNm+q+++5z2Z+fn5/d8LELFy64bO+JYz169Gjbz82bN9fzzz/vsr9ixYrpb3/7m+31sWPHtGrVKtO2QUFBKl++vG3KKlZXzO5VVrVq1Rz3FxkZqcGDB9vNS01N1ZgxY7LVz4ULFzR79myH+XXq1NG8efNMh5A2bNhQ8+bNc5hvGIYmTZrk1nYHDBigkSNHmvbdp08f03X27dtn+/lf//qXrl+/brc8ICBAH3zwgQIDAx3W7d+/v/r37+8wf8mSJXZP5rOSs2fPqmvXrqb3XGvTpo0efvhhh/kVK1bUpEmTsvVkyXvvvVehoaF288yG6AYFBbnsx9lyZ8N9zT4/zu4JWNTdeX4xG1adU2FhYXavbw+tLMiKQp5BjnFLbo91Uc0xpKKdZ5Bj/A/nWhRFFP4AE2b3erpTkyZNbD8nJyfbJaOZ+fn56aGHHsqyv5CQELsvmvl9A2VPCA0NtbtPyltvveU0OZRuFVDHjx+vyZMna/LkyS6LrZJM76Vzp8z357h586bDcenSpYsOHz6sw4cP6//+7//k5+fnsr+zZ89m+eXiNk8c6/Pnz2v79u2213379nXrPifNmze3+/IQGxvrVsw5lZ6erlOnTjnMr1KlSq76nTx5ssO9dr799luXv0d3io+PN72R+4svvujyeHfq1Mn0YRBm95IzEx0d7XRZZGSk6fzMBaD9+/c7LG/btq1q1arltF+ze4teunRJv/zyi6tQC6Xdu3erTZs2iouLc1hWrFgxu/t+ZTZ+/Hh17txZqampbm/rrbfeUqdOneweIHLx4kWHdmZfltxZbtaXZP75KQxFJ2+4cx/mtiCQ2fnz5+1eV69e3WN954WikmcU9RxDyv2xLuo5hlR08wxyjP/hXIuiiId7AHfw9fVV3bp1s2x35xUBN27cUKlSpRzaRUVFuX0T60aNGtn+x+n2TakLE19fX3Xu3Nn2dKyrV6+qa9euatmypZ588kn16NHDYb9lhzvr3nkMnB0XV86ePavExERt2bJFEyZMUHJyslvreeJY35mYNWvWzM2opcaNG9tudp/5SrK8cOrUKdMn2OX2y3elSpU0YcIEjRo1ym7+6NGj3foSJUl79+41ne/OkwC7du3qkICfPn1aly5dyvLm366eNOfO3xSzL+F+fn567733nK5z8uRJ0/nx8fHZ+t0p6P75z39q+PDhpk/y9fX11ccff2z3JNbM6zm7EXn16tVVp04dJSUl6fDhww5XMGzYsEHPP/+85s+fL0mmD/Ewi8ed5c4eCGL2+UlKSpJhGPLx8XG5raLmzs/j8ePHPdb3nQ8U8OTVhHmhqOQZRT3HkHJ/rIt6jiEV3TyDHON/ONeiKKLwB9whMDAwV0MT7pSdLwyNGjXSihUrJN36EnPz5k2VKFHCY7Hkh7lz5+rAgQPatWuXbd7PP/9sexJZaGioOnfurAceeEBdu3Z1+UTMzHx9fVWzZs0s22XnhH39+nVt2rRJa9as0c6dO5WYmKjExESHoRDu8sSxvjOZHj16tNu/A5m/rDpL1jzF2f+MeiIpf+655zR37ly7fREfH6958+Zp6NChWa5vlpD7+voqODg4y3XvHN6Zuc/WrVs7Xc/Pz0/16tVzuvz/tXfvQVFedxjHH7yAiKJBrBix4iVAUKLRCI4XqkmNl0YxJhE1o+lYq2MzTWJjY4xWbSeTNGYm3mZIY6yXpmOkSRm10dFUUIPXKfHCRYsSRVNR8BJStShe3v5B3e6y716AXRZ3v5+ZnWHfPXves+9h9/ze855zXnd+U06dOmW3LSsrS1lZWS7fW5OjqaQPmhs3bmjGjBnasGGD6ethYWFas2aNJkyYYPfa5cuX9ctf/tJue4cOHbR69WqbUTMFBQWaOnWqjhw5YpN2zZo1eumll5SSkmL6v+1opLd1+c04GrVitr2qqkqXLl3yyEgXfxIREWHz3JOdWDWnkjf2jr9AijMCOcaQ6l/XxBjVAjHOIMb4P9paBCI6/oAazNblqA9XV++sxcfHW/42DENlZWU2UytqyzCMOr+3riIjI5WVlaVXXnlFf/nLX+yu2H777bdat26d1q1bp6ZNm2rEiBGaM2eOhg0b5jTftm3bKjg42CNlvHPnjlasWKFFixa5PHGPjo7WlStXXI7suV9Gdzmq65pX4/Pz893O05rZFBRPcjRV0XoaVF01b95cS5cu1ejRo222L1y4UJMmTXL5frOr2u3bt3drjTdHQXtxcbHTgLxFixZO/z9dfRevXbvm0UDa2/XfEM6fP68xY8bYdcbd16NHD2VmZjqc3rR+/XrT4/Dxxx/bTZXr1auXNm/erPj4eLuT8tWrVyslJcX0ZKAuHX9t2rRx2M44OuH47rvvOBmpoWYnjSc7/mqO+OvRo4dH8vVWm+yrOIMYw5y3Ygyp/nVNjFEt0OIMYgxbtLUIRKzxB9Tg6SHerhZ/t1bzJDE8PLxe+7527Vq93l9XkZGR2rBhg06dOqX3339fKSkpplci7969q23btlkW4HbGU/VSVVWllJQUvf7663YBecuWLZWQkKAxY8ZowYIF2rp1q0pKShQZGelW3p6o6++//95me0REhNq1a1frR23KUhdRUVGm2z0VDI4aNUqjRo2y2Xbp0iWbBcYdMTsxqHlcHamoqHA7T08KCQlxa3qRu8ymSD1IDh8+rKSkJIedfpMnT1Zubq7DTj9J+uKLL+y2de3aVWPGjDFN37lzZ40fP95u+9atWyWZnyj8+9//drh/yfw32NlJhaPvj6PvWyDr06ePzRqKJSUlqqqqqne+VVVV2rVrl+V5UFCQ0zWwasNbbbKv4gxiDHvejDGk+tc1Mcb/BVKcQYxhi7YWgYgRf4CX1WbxbOs7SjVp0kRt2rSp174dXTFtKF27dtWcOXM0Z84c3bhxQ3v37tWuXbu0Y8cOHTt2zObq5KJFi/TII4+4daW1PhYsWKADBw7YlHH27Nl6+umn9cgjj7i1yLUjnqjrmiNLjhw54tb0o4bmqEw1F8Wvjw8++EB///vfdefOHcu2lStXuryhQlxcnN22mzdv6tKlSy4Da0d3dTPL05OCg4PVtWtXu/+h+fPna+rUqbXOr127dp4qWoPbunWr0tLSTEfLhYeHKz09XS+++KLLfGqO2pLkdJqUo9evXr2q69evm04xq6ioUFlZmcPpZ2brYDnr+DP7/oSHh9e7LfBHzZo1U//+/fXVV19Jqu5wWbNmjVvT9JzZuHGjzd1a+/Xr57GpsN5qk30VZxBj2PNmjCHVv66JMWwFSpxBjGGLthaBiI4/wMtqM43COhj4wQ9+UO8AsTHdmj4sLEwjRozQiBEj9Pvf/15nz57Ve++9pw8//NCS5s9//rNXg/KKigqbO38++uijys7OdnmFz9E6XTV5oq5rBn6nTp1qlEH5Qw89pLCwMLtjc/nyZY/tIz4+Xi+//LKWL19u2VZVVeVyVI/19CZrBQUFLqd7FRYW2m0LDQ1tkDqIi4uzC8pLS0tddlb5kzNnzmjixImm37mkpCR9+umnbo++MhuNV9dRPdeuXXP4P3D06FGNGDHC9DXrdcjuczat0uz742g9KEhpaWmWjj9JevfddzVt2rR6Tdm0/r2Rqqf+eYq32mRfxRnEGLa8HWNI9a9rYgxbgRRnEGP8H20tAhFTfQEvKykpcbnGi1S9JsyhQ4cszwcNGmTzuvUQ/evXr+v27dtO8ystLTVdyNebdu7cqbVr12rt2rXav3+/07RdunRRenq6Jk+ebNmWm5vr1fLl5+fbjAD49a9/7TIgLygo0NWrV93K3xN1XTMAO378uFv7lqQtW7ZYjr/1iANvMQuSPH01ftGiRbW+suwoIK95Ql9TaWmpPv/8c7vtsbGx9e6Ed4fZ1f6DBw86fU9VVZWuXLli97AevfCguHfvnn7605+afod+/vOfKycnp1ZTLhMSEuy2OboT431mI/QiIyPVsWNHDRgwQB07drR73dHvVnl5uekC9c8++6zD/Zt9fzgZcWzKlCk2dzg9d+6c1q1bV+f8vvrqKx0+fNjyvH///g6nhjemNtkTbU9j+jyOBHqMIdW/rokx7AVKnBHoMYY12loEIjr+AC8zDEN79+51mW7jxo06e/as5fnQoUNtXrdeA+bWrVsug7X169fXrqAe8Le//U3Tpk3TtGnTNHPmTLfe86Mf/cjy93/+8x+vLhZe86S+b9++Lt9Tm7udeaKuY2Ji1KpVK8vz1atXu3VMjhw5onHjxlmO/7lz59wud101RFD+0EMPubXejrW4uDi7jnOp+qTFUX3eu3dP8+bNM73KP23atFrtv67MOqpOnDihJUuWOHzPhAkTFBkZafPo0KGDzVpDixcv1sSJE+0e7q5H1FDS09NtRm/dN2HCBH300Ue1HsXVu3dvu20lJSXatGmTafqzZ88qMzPTbnu/fv0kVU+Vmzhxot3rK1asMD1xN1tTLDw83O7GItbMRiE0xtE4jUXr1q01a9Ysm20LFy7UP/7xj1rn9d1332n69Ok225ytC9eY2mRPtD2N6fM4EugxhlT/uibGsBcocUagxxjWaGsRiOj4AxrA9OnTbdYMqqmyslLvvvuu5XloaKiee+45mzQ1R5o4u9qak5NTp+lJrq7wu9K/f3/L3wUFBXZ3jzNjPW2lb9++Hr+5irXo6Gib52fOnHGavrCwUB988EGt9lHfum7WrJl+85vfWJ7n5eVpy5YtLvc7d+5cS/DeqlUrjR071jTdxYsX9c0331ge7t5J0IzZSY03TgZmzJihXr161eo91tOt7jMMQ6NGjdLy5cstQd+9e/f0z3/+U88884z+9Kc/2b2nR48edh0L3vLiiy+ajiKYN2+elixZotOnT1u23bhxQ7Nnz9bmzZvt0g8dOtRm9EJ2drYyMjLsHrdu3fLOB6mj9PR00+3FxcUaMmSIBg8e7Nbj/hTfgQMHmuY3Y8YMu+9Ufn6+UlNTTb8P1h0HZmsLlpeXa9asWZbRfVVVVcrIyLCZYnjfc88953S9OLOpk48//rjD9Kg+6bRet6ysrEyDBw/WRx995HYeFy9e1Lhx42xGsA0cOFAjR450+J7G1ibXt+1pbJ/HDDFGtfrUNTGGuUCIMwI9xrBGW4uAZAD18NprrxmSHD6Sk5N9Wr5jx47ZlGfKlCmm6X77299a0rRr186tvD/++GObvMvLyy2vDRkyxO5YDBkyxLh586ZdPhcuXDCSkpJs0s6ePdsuXUlJiREUFGRJ06pVK+PAgQM2ae7du2d8/fXXRlRUlN3++/XrZ/o5nnzySUuasLAwm89RW+fOnTNCQkIs+Y0cOdK4dOmSw/S7d+82WrVqZUn/1ltv2bxel3pZsWKFw3q5cOGCzWuJiYnGtWvXTPPZsWOHER4ebnccX331VZt03qjrqqoqIz4+3pKmdevWxubNm03LWVFRYUyaNMkmz7ffftvh8UlNTbVJu337dodpXcnNzbX77CEhIUZlZaVp+tOnT5v+TmRmZrrc186dO53+1sycOdPuPc8//7zT93Tu3Nlo3bq10zSfffaZXb7Lli2zSxcWFua0/FlZWab5b9u2zSbdoUOHjKZNmzosT1xcnJGcnOyw3CEhIUZeXp5Nnmb/o5KMsrIyl8e9Lnr27Gm3r5EjRzp9z+HDh53WQ20eV65cMQzDMO7evWsMHjzYYboOHToYgwYNMmJiYmx+W60fjz32mN13OS4uzjRtUFCQ0bt3b9PfjfuPnTt3OjwGZt+Ppk2beq2e3OXqeGdkZPi0fIZhGHv37jVCQ0PtyjZlyhRjz549lv+Jmi5fvmykp6cb7dq1s/ttOHPmjNN9+rpN9nTb4+vP445AjDEMw/N17a8xhmEQZ5jlbx1nBGqMYY22FgFqPzf3ALwsNDRUlZWVysnJUUREhFJSUvTUU0+pbdu22r9/v7Zt22Zz5TY2Nlbz58+3y6dLly4aPny4vvzyS0nVa/AMGzZMSUlJSkpK0vnz55WVlaXy8nJJUosWLTRp0iStXbvWafm6d++u7OxsSdVX+AYMGKA+ffqoffv2+sMf/lCrz9q5c2fNnz/fMhJg+/btSkxM1CuvvKL4+HjFxcXpzp07OnPmjDIyMvTXv/7VMuWhe/fuevPNN2u1v9qKiorSCy+8oM8++0xS9UiAhIQEvfbaa0pMTFRlZaVOnTqlzz//3LLuSfv27RUbG6t9+/ZJkjIzM5WQkKCHH37Ybsqep+q6efPmWrlypYYPHy6p+sYC48aN07PPPqv+/furV69eunTpko4dO6bMzEybK5fDhw/XvHnzPHvgHOjXr5+6d++ub775xrLt1q1bOnjwoN1U9fp66qmnlJqaanr12ZH33ntPu3fvdrgYuKuF6UePHq3nn3++VuWsr6SkJM2dO1fvvPOO6etma9Dd16RJEy1btkyJiYneKp7X3P9d86QmTZpozZo16t27t+mok7KyMqejZkJDQ7VhwwaFhITYbF+6dKl+8pOf2E2PMwxDx44dc5jf2LFj9eSTTzp8fffu3Xbbhg4d6vQuwKg2aNAg7dixQ2PGjLGZXvbJJ5/ok08+kSR16tRJiYmJ6tKli65cuaJ//etfys3NtVurqmPHjsrKylJMTIzTfTamNtkTbU9j+jyOBHqMIXmmrokxzAVCnBGoMYY12loELF93PeLBxog/86u+1le/JkyYYEydOtXllRxJRnR0tFFSUuJwn99//70xaNAgl/kEBQUZn376qZGenm7Z5uhq/L59+0zz6NSpk1vHoaZbt24ZTzzxhFuf9/4jNDTUOHjwoF1enr4abxiGceXKFePhhx92q1zdunUz8vLyjIyMDLvXnnjiCcMwvFfXhmEYmzZtMiIjI90+jgMGDHB5xdKTV+MNwzDmzZtnV45FixaZpq3PlXjDMIzi4mIjODjYNA+zK/GGYRiFhYVu17f1Y+zYsaajKQzDuyP+DKN6NMbbb79ttGzZ0u3yRkdHG9nZ2ab7fhCuxs+cObPWdeToUXN015YtW4yOHTvWKo8f/vCHpnVz3/vvv+9wlKDZ4/HHHzcqKiqcHoOXXnrJ7n2rVq1y/8B7iavP1phGIRw7dszo27dvnf93UlNTjXPnzrm9P1+2yd5oe4gxXGvoGMMwvBdn+FuMYRjEGWb7qdmWBWKMYY22FgFqP2v8AV4WFBSktWvXauHChWrZsqVpmuDgYM2ZM0cFBQXq0qWLw7zCw8MtoxqaNTMfsDtkyBAdPHhQEydO1N27d12Wb+DAgVq2bFmtF853JDg4WPv379eSJUsUFhbmNG1QUJAmT56soqIiJScne2T/rkREROjQoUMaN26cwzRt27bVm2++qfz8fCUmJmrs2LF6+umnXebtybqWpNTUVOXn5ztdZ+r+Z1q4cKFycnIa/IplWlqa3bY9e/Z4ZV/du3fXq6++Wqv3JCQk6Pjx43rjjTcUGhrqMn3Xrl21YcMGbdq0yW6kV0Np3ry55s+fr6KiItPjay0oKEgvvPCC8vLyNGzYsFrtx53j0VBKSkq8lveYMWN04sQJzZo1y+VdE0NCQrRgwQKdOHFCo0aNcphuzpw5ysrKcnhnx/vCwsL0xhtv6ODBg2rTpo3TtDVHITRr1kzjx493+h7Yeuyxx5Sbm6t169aZ3sHSTJMmTTRo0CBt3rxZmzZtqtWdHRtLm+yptqexfB5nAjnGkDwbZxBj2AuEOCMQYwxrtLUIVEGG4cXbW8HvzZ49W8uWLXP4enJysstbxfujlJQU5eTkSKoOWjZu3Cip+q6BGzdu1MmTJ1VWVqaYmBglJCRoyJAhLjuBarp586by8/P19ddfq6ysTLGxsXr00UfVp0+fOpX5+vXrKioqUmlpqcLDw9WzZ0+bu/zVRWlpqXbv3q3Tp0/r9OnTOnv2rCIiItStWzd169ZNycnJdS6vJ+zbt0+5ubkqLCzU7du3FR0drT59+uiZZ56xC8Zu376tAwcO6Pjx42rZsqUGDBig2NjYBqlrqfoGB4cPH9bhw4dVVFSkyMhIRUdHq3fv3ho9erTHTqrqIi4uzmaR9RYtWqisrEzh4eE+K5OZyspK7dmzRzk5Obp48aIuX76skJAQRUZGqmvXrho+fLh69+7t1cXf6+LChQvKz89XQUGBCgsLFRYWpsTERCUmJqpXr142d2h05Ve/+pWWLl2qiIgIr9wdsbH79ttvVVhYqKKiIhUVFenixYuKiYlRbGysYmNjlZiYqPbt29cqz6NHj+rLL7/U+fPnVV5erlatWikqKsry3XR0cm7t5MmTdh1VI0aM0Pbt22tVFm9w9X3IyMjQhAkTGqg0tVNcXKytW7eqsLBQZWVlKi8vV7NmzRQVFaWoqCj16tVLqampioqKqve+GrpN9nbbQ4xRf56IMaSGiSmJMTzjQYwzAinGoK1FADvAVF/US2Of6usr1sPe09LSfF0ceBF1bT4lZeXKlb4uFkz8+Mc/NiQZffv29XVRYOX111+3+w5t2rTJ18UyDIPpR40VbU/gCPS6JsZ4cDT2GIO2FgGMqb4AgPqZOXOm3YiZDz/80EelgSPFxcXatWuXJGny5Mk+Lg3uq6ystLtBQp8+fTR27FgflQgAGg9ijAdDY48xaGsR6Oj4AwDUS4sWLTR37lybbcePH7cEgPC90tJSjR8/Xnfv3lWnTp308ssv+7pI+J+NGzfq6tWrNtsWLVrUqKaCAYCvEGM0fg9CjEFbi0BHxx8AoN5+8YtfqGfPnjbbfve73/moNLC2ePFi9ejRQ/n5+Wrbtq1WrVqlFi1a+LpYkHTnzh298847NtuGDx/u9MYAABBoiDEarwchxqCtBej4AwB4QHBwsP74xz/a3DV19+7dysrK8mGpIEnZ2dmqrKzU0KFDlZeXp9GjR/u6SPif9evXq7i42PI8LCxMq1at8mGJAKDxIcZovB6EGIO2FqDjDwDgIcnJyXrrrbdsti1YsMBHpcF9U6dO1a5du5Sdna3OnTv7ujj4n6qqKrsRK8uXL1dMTIxvCgQAjRgxRuPU2GMM2lqgWjNfFwAA4D8WL16svLw8nTx5UpJUUVGhQ4cOKTk52cclC1zTp0/3dRFg4osvvlDLli0VFTqxlQAAAplJREFUHx8vSUpJSdHPfvYzH5cKABovYozGp7HHGLS1QDU6/gAvyMzM1K1btyRJoaGhPi4NvIm6ttW0aVNt3rzZ18UAGr3x48dr/Pjxvi4GHlC0PYGDuv4/YgzUFm0tUI2OP8ALIiMjfV0ENBDqGgDQ0Gh7Agd1DQCoL9b4AwAAAAAAAPwQHX8AAAAAAACAH6LjDwAAAAAAAPBDdPwBAAAAAAAAfoiOPwAAAAAAAMAP0fEHAAAAAAAA+CE6/gAAAAAAAAA/RMcfAAAAAAAA4Ifo+AMAAAAAAAD8EB1/AAAAAAAAgB+i4w8AAAAAAADwQ3T8AQAAAAAAAH6Ijj8AAAAAAADAD9HxBwAAAAAAAPghOv4AAAAAAAAAP0THHwAAAAAAAOCH6PgDAAAAAAAA/BAdfwAAAAAAAIAfouMPAAAAAAAA8EN0/AEAAAAAAAB+iI4/AAAAAAAAwA/R8QcAAAAAAAD4ITr+AAAAAAAAAD9Exx8AAAAAAADgh+j4AwAAAAAAAPwQHX8AAAAAAACAH6LjDwAAAAAAAPBDzXxdAPi3Q4cOKSgoyNfFAAAAXpCWlqa0tDRfFwMAAAAOMOIPAAAAAAAA8EN0/AEAAAAAAAB+iI4/AAAAAAAAwA/R8QcAAAAAAAD4ITr+AAAAAAAAAD9Exx8AAAAAAADgh+j4AwAAAAAAAPxQkGEYhq8LgQfX0aNHdfLkSV8XAwAAAAAAvzNw4EBFR0f7uhh4cB2g4w8AAAAAAADwPweY6gsAAAAAAAD4ITr+AAAAAAAAAD9Exx8AAAAAAADgh+j4AwAAAAAAAPwQHX8AAAAAAACAH6LjDwAAAAAAAPBDdPwBAAAAAAAAfoiOPwAAAAAAAMAP0fEHAAAAAAAA+KH/AlaimuU2FaQNAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tf.keras.utils.plot_model(model, show_shapes=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "g0ylJXE_kRLi" + }, + "source": [ + "### Compile the model\n", + "\n", + "Compile the model before training it. Since there are two classes and a sigmoid oputput, use the `BinaryAccuracy`." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "id": "RpR8HdyMhukJ" + }, + "outputs": [], + "source": [ + "base_learning_rate = 0.0001\n", + "model.compile(\n", + " optimizer=tf.keras.optimizers.Adam(learning_rate=base_learning_rate),\n", + " loss=tf.keras.losses.BinaryCrossentropy(),\n", + " metrics=[tf.keras.metrics.BinaryAccuracy(threshold=0.5, name=\"accuracy\")],\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RxvgOYTDSWTx" + }, + "source": [ + "### Train the model\n", + "\n", + "After training for 10 epochs, you should see ~96% accuracy on the validation set.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "id": "Om4O3EESkab1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m26/26\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 125ms/step - accuracy: 0.4422 - loss: 1.0822\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m20/26\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 31ms/step - accuracy: 0.5626 - loss: 0.7179" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m22/26\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 31ms/step - accuracy: 0.5634 - loss: 0.7158" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m24/26\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.5640 - loss: 0.7140" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "W0000 00:00:1723777697.379556 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.380400 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.381178 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.381938 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.382708 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.383495 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.384307 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.385069 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.385821 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.386563 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.387367 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.388148 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.388913 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.389679 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.390586 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.398144 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.398901 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.399623 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.400340 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.401051 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.401784 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.402522 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.403269 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.403977 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.404680 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.405398 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.406137 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.406922 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.407742 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.408482 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.409229 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.410098 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.411054 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.418231 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.419053 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.419850 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.420646 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.421443 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.422224 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.423010 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.423768 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.424528 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.425478 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.426420 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.427487 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.428360 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.429211 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.430086 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.430982 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.432090 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.439032 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.439741 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.440411 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.441086 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.441761 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.442452 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.443125 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.443806 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.444488 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.445180 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.445857 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.446555 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.447282 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.447980 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.448692 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.449447 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.450258 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.451207 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.457410 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.458140 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.458838 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.459532 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.460224 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.460920 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.461607 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.462287 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.462964 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.463731 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.464489 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.465297 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.466025 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.466730 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.467449 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.468178 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.469026 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.475246 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.475944 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.476622 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.477306 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.477987 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.478676 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.479349 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.480030 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.480722 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.481416 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.482099 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.482779 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.483554 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.484270 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.484995 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.485768 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.486653 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.487767 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.493620 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.494309 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.494960 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.495623 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.496284 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.496949 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.497620 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.498293 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.498959 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.499627 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.500281 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.500932 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.501604 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.502320 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.502990 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.503702 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.509585 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.510279 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.510936 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.511585 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.512256 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.512944 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.513610 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.514268 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.514930 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.515587 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.516245 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.516912 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.517578 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.518251 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.519064 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.519725 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.520468 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.525556 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.526255 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.526923 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.527603 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.528279 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.528946 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.529619 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.530283 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.530959 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.531644 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.532316 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.532975 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.533644 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.534393 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.535081 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.535807 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.541431 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.542125 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.542794 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.543453 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.544106 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.544758 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.545423 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.546090 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.546778 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.547488 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.548141 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.548808 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.549476 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.550131 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.550861 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.556884 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.557580 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.558245 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.558898 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.559548 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.560198 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.560847 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.561497 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.562147 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.562813 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.563467 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.564113 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.564759 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.565412 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.566093 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.566781 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.572557 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.573263 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.573931 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.574602 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.575264 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.575913 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.576599 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.577297 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.578002 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.578697 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.579373 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.580072 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.580771 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.581465 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m26/26\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step - accuracy: 0.5640 - loss: 0.7129" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m26/26\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 43ms/step - accuracy: 0.5639 - loss: 0.7125\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "W0000 00:00:1723777697.582166 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.582939 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.589370 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.590063 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.590736 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.591407 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.592071 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.592733 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.593421 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.594107 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.594789 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.595481 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.596156 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.596862 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.597564 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.598264 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.598968 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.599741 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.605659 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.606345 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.607015 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.607691 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.608358 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.609024 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.609685 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.610357 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.611042 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.611719 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.612386 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.613058 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.613739 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.614483 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.615179 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.615893 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.622128 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.622849 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.623524 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.624191 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.624878 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.625562 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.626286 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.626989 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.627701 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.628422 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.629139 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.629870 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.630610 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.631397 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.632127 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.638324 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.639038 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.639707 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.640379 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.641084 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.641780 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.642499 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.643212 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.643929 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.644657 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.645385 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.646068 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.646771 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.647508 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.648286 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.654355 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.655059 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.655722 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.656386 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.657055 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.657733 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.658407 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.659079 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.659761 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.660451 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.661139 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.661803 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.662481 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.663138 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.663794 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.664519 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.670260 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.670986 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.671685 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.672377 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.673122 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.673863 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.674647 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.675419 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.676186 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.676987 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.677782 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.678501 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.679220 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.680000 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.680785 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.686753 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.687496 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.688201 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.688895 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.689616 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.690343 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.691118 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.691849 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.692579 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.693346 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.694115 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.695055 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.695860 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.696658 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.697463 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.704422 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.705160 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.705852 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.706573 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.707264 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.707949 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.708636 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.709343 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.710047 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.710758 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.711456 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.712155 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.712848 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.713545 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.714244 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777697.715044 124619 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" + ] + } + ], + "source": [ + "initial_epochs = 10\n", + "\n", + "loss0, accuracy0 = model.evaluate(validation_dataset)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "8cYT1c48CuSd" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "initial loss: 1.06\n", + "initial accuracy: 0.45\n" + ] + } + ], + "source": [ + "print(\"initial loss: {:.2f}\".format(loss0))\n", + "print(\"initial accuracy: {:.2f}\".format(accuracy0))" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "JsaRFlZ9B6WK" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m14s\u001b[0m 188ms/step - accuracy: 0.4494 - loss: 1.0110 - val_accuracy: 0.5879 - val_loss: 0.6737\n", + "Epoch 2/10\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 189ms/step - accuracy: 0.6116 - loss: 0.6809 - val_accuracy: 0.7871 - val_loss: 0.4893\n", + "Epoch 3/10\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 189ms/step - accuracy: 0.7641 - loss: 0.5064 - val_accuracy: 0.8762 - val_loss: 0.3694\n", + "Epoch 4/10\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 188ms/step - accuracy: 0.8118 - loss: 0.4463 - val_accuracy: 0.9196 - val_loss: 0.3007\n", + "Epoch 5/10\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 187ms/step - accuracy: 0.8618 - loss: 0.3608 - val_accuracy: 0.9356 - val_loss: 0.2500\n", + "Epoch 6/10\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 192ms/step - accuracy: 0.8806 - loss: 0.3189 - val_accuracy: 0.9493 - val_loss: 0.2158\n", + "Epoch 7/10\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 188ms/step - accuracy: 0.8874 - loss: 0.2976 - val_accuracy: 0.9530 - val_loss: 0.1930\n", + "Epoch 8/10\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 177ms/step - accuracy: 0.9096 - loss: 0.2624 - val_accuracy: 0.9554 - val_loss: 0.1752\n", + "Epoch 9/10\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 186ms/step - accuracy: 0.9154 - loss: 0.2416 - val_accuracy: 0.9579 - val_loss: 0.1596\n", + "Epoch 10/10\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 182ms/step - accuracy: 0.9249 - loss: 0.2223 - val_accuracy: 0.9641 - val_loss: 0.1455\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m29/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 32ms/step - accuracy: 0.5795 - loss: 0.7196" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m31/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 31ms/step - accuracy: 0.5807 - loss: 0.7184" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m33/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 31ms/step - accuracy: 0.5820 - loss: 0.7170" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m35/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 31ms/step - accuracy: 0.5834 - loss: 0.7158" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m37/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 31ms/step - accuracy: 0.5846 - loss: 0.7145" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m39/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 31ms/step - accuracy: 0.5858 - loss: 0.7135" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m41/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 31ms/step - accuracy: 0.5868 - loss: 0.7126" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m43/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 31ms/step - accuracy: 0.5880 - loss: 0.7115" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m45/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.5893 - loss: 0.7103" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m47/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.5905 - loss: 0.7091" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m49/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.5919 - loss: 0.7077" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m51/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.5932 - loss: 0.7063" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m53/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.5945 - loss: 0.7048" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m55/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.5959 - loss: 0.7032" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m57/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.5972 - loss: 0.7018" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m59/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.5985 - loss: 0.7003" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m61/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.5997 - loss: 0.6990" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "W0000 00:00:1723777704.397737 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.398671 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.399497 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.400322 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.401154 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.402015 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.402938 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.403723 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.404513 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.405339 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.406274 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.407173 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.408044 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.408940 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.411034 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.417910 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.418727 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.419494 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.420256 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.421017 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.421806 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.422581 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.423379 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.424140 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.424899 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.425677 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.426514 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.427492 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.428386 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.429216 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.430281 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.431136 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.433650 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.440239 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.441208 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.442150 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.443083 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.444007 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.444886 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.445789 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.446665 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.447540 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.448800 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.450017 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.451480 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.452586 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.453662 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.454795 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.455941 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.463035 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.463784 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.464489 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.465189 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.465892 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.466643 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.467370 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.468107 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.468826 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.469544 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.470264 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.470995 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.471820 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.472561 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.473375 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.474369 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.475156 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.476418 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.483064 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.483859 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.484625 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.485401 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.486168 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.486927 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.487713 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.488449 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.489174 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.490068 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.490952 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.491923 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.492753 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.493561 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.494392 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.495227 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.496281 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.503437 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.504189 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.504908 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.505623 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.506347 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.507076 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.507815 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.508574 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.509302 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.510028 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.510771 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.511510 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.512403 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.513177 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.514077 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.515176 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.516001 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.517532 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.524799 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.525491 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.526168 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.526827 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.527502 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.528174 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.528850 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.529517 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.530184 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.530857 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.531529 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.532202 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.532929 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.533622 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.534316 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.535080 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.535851 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.536920 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.543260 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.543963 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.544627 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.545306 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.545989 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.546747 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.547439 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.548127 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.548830 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.549503 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.550176 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.550886 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.551554 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.552265 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.553250 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.553933 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.554716 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.561027 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.561728 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.562408 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.563075 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.563753 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.564416 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.565094 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.565779 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.566463 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.567187 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.567875 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.568564 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.569291 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.569996 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.570707 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.571499 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.572308 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.573558 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.580191 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.580883 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.581555 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.582196 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.582852 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.583522 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.584192 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.584853 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.585525 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.586189 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.586862 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.587554 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.588235 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.588915 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.589585 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.590335 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.596016 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.596725 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.597434 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.598138 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.598822 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 36ms/step - accuracy: 0.6008 - loss: 0.6978" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "W0000 00:00:1723777704.599494 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.600166 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.600837 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.601515 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.602177 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.602866 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.603530 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.604222 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.604885 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.611237 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.611961 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.612669 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.613356 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.614060 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.614765 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.615453 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.616118 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.616787 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.617496 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.618172 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.618837 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.619546 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.620255 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.620971 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.621756 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.628424 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.629148 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.629832 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.630533 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.631233 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.631920 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.632604 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.633280 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.633948 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.634649 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.635341 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.636029 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.636730 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.637437 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.638155 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.638966 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.645275 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.645984 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.646701 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.647391 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.648129 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.648798 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.649458 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.650152 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.650851 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.651542 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.652234 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.652940 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.653657 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.654351 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.655049 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.655790 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.662700 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.663465 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.664181 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.664915 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.665649 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.666373 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.667076 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.667785 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.668477 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.669208 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.669920 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.670640 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.671370 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.672110 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.672850 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.673679 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.680300 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.681010 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.681692 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.682358 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.683054 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.683749 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.684467 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.685181 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.685899 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.686634 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.687367 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.688100 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.688826 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.689555 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.690340 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.696654 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.697377 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.698075 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.698792 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.699486 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.700170 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.700855 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.701527 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.702216 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.702882 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.703576 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.704258 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.704954 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.705612 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.706309 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.707057 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.712992 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.713730 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.714434 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.715138 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.715883 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.716624 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.717425 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.718222 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.718994 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.719799 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.720597 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.721396 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.722170 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.722964 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.723771 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.731009 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.731774 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.732515 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.733246 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.734034 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.734825 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.735600 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.736317 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.737107 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.737911 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.738709 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.739497 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.740221 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.741014 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.741807 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.742667 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.750284 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.751033 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.751759 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.752497 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.753195 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.753972 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.754762 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.755481 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.756211 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.756946 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.757670 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.758401 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.759143 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.759895 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.760646 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777704.761504 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 47ms/step - accuracy: 0.6013 - loss: 0.6973 - val_accuracy: 0.8292 - val_loss: 0.4765\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 48ms/step - accuracy: 0.5625 - loss: 0.6844" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 3/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 28ms/step - accuracy: 0.5764 - loss: 0.7090" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 5/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.6243 - loss: 0.6747" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 7/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.6466 - loss: 0.6556" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 9/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.6565 - loss: 0.6434" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m11/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.6626 - loss: 0.6359" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m13/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.6684 - loss: 0.6293" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m15/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.6735 - loss: 0.6235" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m17/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.6778 - loss: 0.6178" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m19/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.6815 - loss: 0.6123" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m21/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.6845 - loss: 0.6075" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m23/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.6874 - loss: 0.6027" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m25/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.6905 - loss: 0.5979" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m27/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.6933 - loss: 0.5936" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m29/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.6959 - loss: 0.5898" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m31/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.6984 - loss: 0.5865" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m33/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7007 - loss: 0.5833" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m35/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7030 - loss: 0.5803" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m37/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7052 - loss: 0.5774" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m39/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7071 - loss: 0.5748" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m41/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7089 - loss: 0.5724" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m43/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7106 - loss: 0.5702" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m45/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7122 - loss: 0.5681" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m47/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7138 - loss: 0.5661" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m49/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7152 - loss: 0.5642" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m51/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7165 - loss: 0.5624" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m53/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7177 - loss: 0.5607" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m55/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7189 - loss: 0.5591" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m57/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7201 - loss: 0.5575" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m59/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7212 - loss: 0.5560" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m61/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7221 - loss: 0.5546" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 39ms/step - accuracy: 0.7236 - loss: 0.5526 - val_accuracy: 0.9047 - val_loss: 0.3534\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 3/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 48ms/step - accuracy: 0.7500 - loss: 0.4450" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 3/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.7604 - loss: 0.4616" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 5/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.7663 - loss: 0.4636" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 7/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.7692 - loss: 0.4634" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 9/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.7739 - loss: 0.4611" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m11/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.7761 - loss: 0.4616" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m13/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.7772 - loss: 0.4624" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m15/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.7778 - loss: 0.4624" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m17/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.7779 - loss: 0.4620" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m19/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.7780 - loss: 0.4616" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m21/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.7785 - loss: 0.4612" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m23/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.7793 - loss: 0.4603" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m25/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.7801 - loss: 0.4593" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m27/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.7806 - loss: 0.4585" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m29/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7814 - loss: 0.4573" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m31/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7819 - loss: 0.4564" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m33/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7823 - loss: 0.4556" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m35/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7828 - loss: 0.4549" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m37/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7832 - loss: 0.4543" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m39/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7836 - loss: 0.4537" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m41/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7840 - loss: 0.4531" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m43/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7844 - loss: 0.4526" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m45/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7848 - loss: 0.4521" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m47/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7853 - loss: 0.4516" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m49/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7858 - loss: 0.4511" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m51/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7864 - loss: 0.4504" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m53/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7870 - loss: 0.4497" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m55/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7876 - loss: 0.4491" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m57/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7883 - loss: 0.4485" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m59/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7888 - loss: 0.4478" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m61/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7894 - loss: 0.4472" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 40ms/step - accuracy: 0.7903 - loss: 0.4462 - val_accuracy: 0.9282 - val_loss: 0.2795\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 4/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 48ms/step - accuracy: 0.8125 - loss: 0.3939" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 3/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8403 - loss: 0.3769" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 5/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8523 - loss: 0.3685" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 7/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8546 - loss: 0.3655" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 9/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8576 - loss: 0.3630" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m11/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8586 - loss: 0.3606" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m13/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8590 - loss: 0.3587" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m15/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8587 - loss: 0.3582" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m17/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8584 - loss: 0.3579" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m19/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8576 - loss: 0.3581" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m21/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8577 - loss: 0.3580" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m23/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8577 - loss: 0.3579" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m25/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8579 - loss: 0.3578" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m27/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8582 - loss: 0.3579" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m29/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8581 - loss: 0.3582" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m31/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8581 - loss: 0.3584" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m33/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8579 - loss: 0.3585" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m35/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8576 - loss: 0.3587" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m37/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8574 - loss: 0.3588" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m39/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8573 - loss: 0.3587" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m41/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8572 - loss: 0.3587" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m43/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8572 - loss: 0.3588" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m45/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8569 - loss: 0.3590" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m47/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8566 - loss: 0.3591" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m49/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8564 - loss: 0.3592" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m51/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8562 - loss: 0.3592" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m53/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8562 - loss: 0.3591" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m55/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8563 - loss: 0.3589" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m57/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8563 - loss: 0.3587" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m59/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8563 - loss: 0.3585" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m61/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8563 - loss: 0.3585" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 40ms/step - accuracy: 0.8562 - loss: 0.3583 - val_accuracy: 0.9443 - val_loss: 0.2279\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 5/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 48ms/step - accuracy: 0.9062 - loss: 0.3328" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 3/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9097 - loss: 0.3131" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 5/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9124 - loss: 0.3047" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 7/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9052 - loss: 0.3056" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 9/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8997 - loss: 0.3112" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m11/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8960 - loss: 0.3150" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m13/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8939 - loss: 0.3175" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m15/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8930 - loss: 0.3186" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m17/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8917 - loss: 0.3189" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m19/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8909 - loss: 0.3184" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m21/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8910 - loss: 0.3174" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m23/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8910 - loss: 0.3169" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m25/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8911 - loss: 0.3162" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m27/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8911 - loss: 0.3159" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m29/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8912 - loss: 0.3155" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m31/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8913 - loss: 0.3148" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m33/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8916 - loss: 0.3143" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m35/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8917 - loss: 0.3140" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m37/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8917 - loss: 0.3139" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m39/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8917 - loss: 0.3138" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m41/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8917 - loss: 0.3136" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m43/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8918 - loss: 0.3135" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m45/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8918 - loss: 0.3133" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m47/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8917 - loss: 0.3132" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m49/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8915 - loss: 0.3131" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m51/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8913 - loss: 0.3131" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m53/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8911 - loss: 0.3131" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m55/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8909 - loss: 0.3130" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m57/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8907 - loss: 0.3128" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m59/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8906 - loss: 0.3127" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m61/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8904 - loss: 0.3128" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 40ms/step - accuracy: 0.8901 - loss: 0.3128 - val_accuracy: 0.9554 - val_loss: 0.1954\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 6/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 48ms/step - accuracy: 0.9375 - loss: 0.2704" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 3/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8889 - loss: 0.3159" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 5/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8805 - loss: 0.3255" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 7/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8699 - loss: 0.3332" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 9/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8653 - loss: 0.3360" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m11/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8633 - loss: 0.3365" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m13/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8628 - loss: 0.3352" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m15/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8637 - loss: 0.3324" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m17/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8653 - loss: 0.3291" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m19/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8670 - loss: 0.3260" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m21/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8685 - loss: 0.3233" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m23/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8698 - loss: 0.3211" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m25/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8707 - loss: 0.3190" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m27/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8716 - loss: 0.3170" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m29/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8727 - loss: 0.3149" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m31/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8737 - loss: 0.3130" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m33/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8747 - loss: 0.3112" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m35/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8758 - loss: 0.3095" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m37/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8768 - loss: 0.3078" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m39/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8779 - loss: 0.3062" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m41/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8790 - loss: 0.3046" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m43/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8801 - loss: 0.3031" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m45/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8810 - loss: 0.3019" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m47/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8818 - loss: 0.3007" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m49/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8825 - loss: 0.2997" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m51/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8832 - loss: 0.2988" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m53/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8837 - loss: 0.2980" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m55/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8842 - loss: 0.2972" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m57/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8847 - loss: 0.2964" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m59/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8852 - loss: 0.2956" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m61/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8856 - loss: 0.2949" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 40ms/step - accuracy: 0.8862 - loss: 0.2941 - val_accuracy: 0.9567 - val_loss: 0.1724\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 7/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 48ms/step - accuracy: 0.9062 - loss: 0.3483" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 3/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 28ms/step - accuracy: 0.9306 - loss: 0.2985" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 5/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9265 - loss: 0.2989" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 7/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9228 - loss: 0.2965" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 9/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9203 - loss: 0.2938" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m11/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9195 - loss: 0.2905" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m13/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9170 - loss: 0.2895" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m15/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9159 - loss: 0.2881" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m17/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9156 - loss: 0.2859" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m19/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9157 - loss: 0.2835" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m21/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9158 - loss: 0.2812" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m23/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9157 - loss: 0.2793" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m25/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9153 - loss: 0.2781" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m27/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9150 - loss: 0.2769" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m29/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9149 - loss: 0.2755" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m31/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9150 - loss: 0.2739" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m33/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9149 - loss: 0.2728" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m35/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9145 - loss: 0.2723" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m37/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9141 - loss: 0.2718" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m39/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9138 - loss: 0.2714" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m41/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9136 - loss: 0.2709" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m43/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9133 - loss: 0.2704" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m45/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9131 - loss: 0.2700" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m47/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9130 - loss: 0.2696" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m49/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9127 - loss: 0.2693" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m51/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9123 - loss: 0.2691" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m53/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9121 - loss: 0.2689" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m55/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9118 - loss: 0.2687" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m57/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9116 - loss: 0.2685" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m59/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9114 - loss: 0.2682" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m61/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9111 - loss: 0.2681" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 40ms/step - accuracy: 0.9106 - loss: 0.2680 - val_accuracy: 0.9604 - val_loss: 0.1556\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 8/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 50ms/step - accuracy: 0.8750 - loss: 0.2662" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 3/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8698 - loss: 0.2745" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 5/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8759 - loss: 0.2721" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 7/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8805 - loss: 0.2695" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 9/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8825 - loss: 0.2680" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m11/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8830 - loss: 0.2676" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m13/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8839 - loss: 0.2674" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m15/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8854 - loss: 0.2662" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m17/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8875 - loss: 0.2641" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m19/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8899 - loss: 0.2618" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m21/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8920 - loss: 0.2594" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m23/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8939 - loss: 0.2575" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m25/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8959 - loss: 0.2556" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m27/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.8978 - loss: 0.2537" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m29/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8994 - loss: 0.2520" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m31/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9009 - loss: 0.2506" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m33/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9023 - loss: 0.2493" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m35/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9033 - loss: 0.2483" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m37/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9039 - loss: 0.2479" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m39/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9043 - loss: 0.2477" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m41/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9046 - loss: 0.2475" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m43/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9047 - loss: 0.2476" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m45/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9048 - loss: 0.2476" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m47/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9047 - loss: 0.2478" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m49/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9047 - loss: 0.2481" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m51/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9047 - loss: 0.2484" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m53/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9048 - loss: 0.2487" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m55/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9048 - loss: 0.2489" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m57/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9048 - loss: 0.2490" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m59/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9049 - loss: 0.2490" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m61/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9049 - loss: 0.2491" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 40ms/step - accuracy: 0.9050 - loss: 0.2492 - val_accuracy: 0.9604 - val_loss: 0.1435\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 9/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 48ms/step - accuracy: 0.9375 - loss: 0.1943" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 3/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 30ms/step - accuracy: 0.9201 - loss: 0.2273" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 5/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9230 - loss: 0.2254" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 7/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9258 - loss: 0.2193" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 9/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9268 - loss: 0.2178" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m11/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9271 - loss: 0.2172" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m13/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9276 - loss: 0.2160" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m15/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9275 - loss: 0.2146" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m17/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9273 - loss: 0.2138" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m19/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9271 - loss: 0.2132" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m21/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9266 - loss: 0.2135" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m23/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9262 - loss: 0.2142" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m25/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9259 - loss: 0.2147" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m27/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9257 - loss: 0.2150" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m29/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9256 - loss: 0.2153" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m31/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9254 - loss: 0.2157" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m33/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9251 - loss: 0.2161" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m35/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9247 - loss: 0.2166" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m37/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9244 - loss: 0.2170" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m39/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9242 - loss: 0.2172" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m41/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9240 - loss: 0.2175" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m43/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9239 - loss: 0.2177" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m45/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9236 - loss: 0.2181" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m47/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9233 - loss: 0.2185" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m49/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9230 - loss: 0.2190" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m51/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9227 - loss: 0.2194" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m53/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9223 - loss: 0.2199" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m55/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9220 - loss: 0.2203" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m57/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9218 - loss: 0.2206" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m59/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9216 - loss: 0.2209" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m61/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9214 - loss: 0.2212" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 40ms/step - accuracy: 0.9211 - loss: 0.2216 - val_accuracy: 0.9641 - val_loss: 0.1348\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 10/10\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 49ms/step - accuracy: 0.9688 - loss: 0.2103" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 3/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9358 - loss: 0.2372" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 5/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9349 - loss: 0.2312" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 7/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9322 - loss: 0.2284" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 9/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9318 - loss: 0.2240" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m11/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9312 - loss: 0.2210" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m13/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9303 - loss: 0.2193" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m15/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9296 - loss: 0.2181" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m17/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9294 - loss: 0.2168" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m19/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9293 - loss: 0.2157" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m21/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9294 - loss: 0.2147" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m23/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9293 - loss: 0.2143" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m25/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9292 - loss: 0.2142" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m27/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 29ms/step - accuracy: 0.9290 - loss: 0.2143" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m29/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9288 - loss: 0.2145" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m31/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9287 - loss: 0.2146" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m33/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9285 - loss: 0.2146" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m35/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9285 - loss: 0.2145" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m37/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9283 - loss: 0.2145" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m39/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9282 - loss: 0.2146" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m41/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9280 - loss: 0.2149" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m43/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9278 - loss: 0.2150" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m45/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9276 - loss: 0.2151" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m47/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9274 - loss: 0.2154" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m49/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9272 - loss: 0.2157" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m51/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9269 - loss: 0.2159" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m53/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9267 - loss: 0.2161" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m55/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9265 - loss: 0.2163" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m57/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9263 - loss: 0.2165" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m59/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9260 - loss: 0.2168" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m61/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9258 - loss: 0.2170" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 41ms/step - accuracy: 0.9256 - loss: 0.2171 - val_accuracy: 0.9653 - val_loss: 0.1308\n" + ] + } + ], + "source": [ + "history = model.fit(\n", + " train_dataset, epochs=initial_epochs, validation_data=validation_dataset\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Hd94CKImf8vi" + }, + "source": [ + "### Learning curves\n", + "\n", + "Let's take a look at the learning curves of the training and validation accuracy/loss when using the MobileNetV2 base model as a fixed feature extractor." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "id": "53OTCh3jnbwV" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAK9CAYAAAA37eRrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADbiElEQVR4nOzdeXwM9xvA8c9mk2zuiCQSIRJC3YI4ijpL42ypKkollLZKVVV/qFuVtrTV0tLD1TqqWlTrDKWOqjtu6kiCEMSR+9yd3x8ry0pIQpLJ8bxfr31l5jvfmXlms9on3/3OMxpFURSEEEIIIYQogizUDkAIIYQQQojHJcmsEEIIIYQosiSZFUIIIYQQRZYks0IIIYQQosiSZFYIIYQQQhRZkswKIYQQQogiS5JZIYQQQghRZEkyK4QQQgghiixJZoUQQgghRJElyawQIpPg4GB8fX0fa99Jkyah0WjyNqBCJjw8HI1Gw6JFiwr83BqNhkmTJpnWFy1ahEajITw8PNt9fX19CQ4OztN4nuSzIoQQeUGSWSGKEI1Gk6PX9u3b1Q61xBs2bBgajYZz5849tM/YsWPRaDQcPXq0ACPLvStXrjBp0iRCQ0PVDiVLp06dQqPRYGNjw507d9QORwhRwCSZFaII+emnn8xe7dq1y7K9evXqT3Se77//njNnzjzWvuPGjSMpKemJzl8c9OnTB4Bly5Y9tM/y5cupXbs2derUeezzvPrqqyQlJeHj4/PYx8jOlStXmDx5cpbJ7JN8VvLKkiVL8PT0BODXX39VNRYhRMGzVDsAIUTO9e3b12z933//JSQkJFP7gxITE7Gzs8vxeaysrB4rPgBLS0ssLeU/LY0bN6Zy5cosX76cCRMmZNq+Z88ewsLC+Pjjj5/oPFqtFq1W+0THeBJP8lnJC4qisGzZMl555RXCwsJYunQpAwcOVDWmh0lISMDe3l7tMIQodmRkVohiplWrVtSqVYuDBw/SokUL7Ozs+OCDDwD4/fff6dSpE15eXuh0Ovz8/Pjwww/R6/Vmx3hwHmTGHNGZM2fy3Xff4efnh06no2HDhuzfv99s36zmzGo0GoYOHcqaNWuoVasWOp2OmjVrsnHjxkzxb9++nQYNGmBjY4Ofnx/ffvttjufh7ty5kx49elChQgV0Oh3e3t68++67mUaKg4ODcXBwIDIykq5du+Lg4IC7uzsjR47M9F7cuXOH4OBgnJ2dKVWqFEFBQTn+KrtPnz6cPn2aQ4cOZdq2bNkyNBoNvXv3JjU1lQkTJhAQEICzszP29vY0b96cbdu2ZXuOrObMKorC1KlTKV++PHZ2drRu3ZoTJ05k2vfWrVuMHDmS2rVr4+DggJOTEx06dODIkSOmPtu3b6dhw4YA9O/f3zSVJWO+cFZzZhMSEnjvvffw9vZGp9NRtWpVZs6ciaIoZv1y87l4mN27dxMeHk6vXr3o1asXO3bs4PLly5n6GQwGvvzyS2rXro2NjQ3u7u60b9+eAwcOmPVbsmQJjRo1ws7ODhcXF1q0aMHmzZvNYr5/znKGB+cjZ/xe/v77b9566y3KlClD+fLlAYiIiOCtt96iatWq2Nra4urqSo8ePbKc93znzh3effddfH190el0lC9fnn79+hEdHU18fDz29va88847mfa7fPkyWq2W6dOn5/CdFKLokuETIYqhmzdv0qFDB3r16kXfvn3x8PAAjP+DdXBwYMSIETg4OPDXX38xYcIEYmNjmTFjRrbHXbZsGXFxcbzxxhtoNBo+/fRTXnzxRS5cuJDtCN2uXbtYtWoVb731Fo6Ojnz11Vd0796dixcv4urqCsDhw4dp3749ZcuWZfLkyej1eqZMmYK7u3uOrnvlypUkJiYyePBgXF1d2bdvH7Nnz+by5cusXLnSrK9erycwMJDGjRszc+ZMtmzZwmeffYafnx+DBw8GjEnhCy+8wK5du3jzzTepXr06q1evJigoKEfx9OnTh8mTJ7Ns2TLq169vdu5ffvmF5s2bU6FCBaKjo/nhhx/o3bs3gwYNIi4ujvnz5xMYGMi+ffuoW7dujs6XYcKECUydOpWOHTvSsWNHDh06xHPPPUdqaqpZvwsXLrBmzRp69OhBxYoVuXbtGt9++y0tW7bk5MmTeHl5Ub16daZMmcKECRN4/fXXad68OQBNmzbN8tyKovD888+zbds2XnvtNerWrcumTZt4//33iYyM5IsvvjDrn5PPxaMsXboUPz8/GjZsSK1atbCzs2P58uW8//77Zv1ee+01Fi1aRIcOHRg4cCDp6ens3LmTf//9lwYNGgAwefJkJk2aRNOmTZkyZQrW1tbs3buXv/76i+eeey7H7//93nrrLdzd3ZkwYQIJCQkA7N+/n3/++YdevXpRvnx5wsPDmTt3Lq1ateLkyZOmb1Hi4+Np3rw5p06dYsCAAdSvX5/o6GjWrl3L5cuXqVu3Lt26dWPFihV8/vnnZiP0y5cvR1EU03QXIYo1RQhRZA0ZMkR58J9xy5YtFUCZN29epv6JiYmZ2t544w3Fzs5OSU5ONrUFBQUpPj4+pvWwsDAFUFxdXZVbt26Z2n///XcFUP744w9T28SJEzPFBCjW1tbKuXPnTG1HjhxRAGX27Nmmti5duih2dnZKZGSkqe3s2bOKpaVlpmNmJavrmz59uqLRaJSIiAiz6wOUKVOmmPWtV6+eEhAQYFpfs2aNAiiffvqpqS09PV1p3ry5AigLFy7MNqaGDRsq5cuXV/R6valt48aNCqB8++23pmOmpKSY7Xf79m3Fw8NDGTBggFk7oEycONG0vnDhQgVQwsLCFEVRlOvXryvW1tZKp06dFIPBYOr3wQcfKIASFBRkaktOTjaLS1GMv2udTmf23uzfv/+h1/vgZyXjPZs6dapZv5deeknRaDRmn4Gcfi4eJjU1VXF1dVXGjh1ranvllVcUf39/s35//fWXAijDhg3LdIyM9+js2bOKhYWF0q1bt0zvyf3v44PvfwYfHx+z9zbj9/LMM88o6enpZn2z+pzu2bNHAZQff/zR1DZhwgQFUFatWvXQuDdt2qQAyoYNG8y216lTR2nZsmWm/YQojmSagRDFkE6no3///pnabW1tTctxcXFER0fTvHlzEhMTOX36dLbH7dmzJy4uLqb1jFG6CxcuZLtv27Zt8fPzM63XqVMHJycn0756vZ4tW7bQtWtXvLy8TP0qV65Mhw4dsj0+mF9fQkIC0dHRNG3aFEVROHz4cKb+b775ptl68+bNza5l/fr1WFpamkZqwThH9e23385RPGCc53z58mV27Nhhalu2bBnW1tb06NHDdExra2vA+HX4rVu3SE9Pp0GDBllOUXiULVu2kJqayttvv202NWP48OGZ+up0OiwsjP8b0Ov13Lx5EwcHB6pWrZrr82ZYv349Wq2WYcOGmbW/9957KIrChg0bzNqz+1w8yoYNG7h58ya9e/c2tfXu3ZsjR46YTav47bff0Gg0TJw4MdMxMt6jNWvWYDAYmDBhguk9ebDP4xg0aFCmOc33f07T0tK4efMmlStXplSpUmbv+2+//Ya/vz/dunV7aNxt27bFy8uLpUuXmrYdP36co0ePZjuXXojiQpJZIYqhcuXKmZKj+504cYJu3brh7OyMk5MT7u7upv/hxcTEZHvcChUqmK1nJLa3b9/O9b4Z+2fse/36dZKSkqhcuXKmflm1ZeXixYsEBwdTunRp0zzYli1bApmvL2Pe5MPiAePcxrJly+Lg4GDWr2rVqjmKB6BXr15otVpTVYPk5GRWr15Nhw4dzP4wWLx4MXXq1MHGxgZXV1fc3d1Zt25djn4v94uIiACgSpUqZu3u7u5m5wNj4vzFF19QpUoVdDodbm5uuLu7c/To0Vyf9/7ze3l54ejoaNaeUWEjI74M2X0uHmXJkiVUrFgRnU7HuXPnOHfuHH5+ftjZ2Zkld+fPn8fLy4vSpUs/9Fjnz5/HwsKCGjVqZHve3KhYsWKmtqSkJCZMmGCaU5zxvt+5c8fsfT9//jy1atV65PEtLCzo06cPa9asITExETBOvbCxsTH9sSREcSfJrBDF0P0jPxnu3LlDy5YtOXLkCFOmTOGPP/4gJCSETz75BDAmNtl52F3zygM39uT1vjmh1+tp164d69atY9SoUaxZs4aQkBDTjUoPXl9BVQAoU6YM7dq147fffiMtLY0//viDuLg4s7mMS5YsITg4GD8/P+bPn8/GjRsJCQmhTZs2Ofq9PK5p06YxYsQIWrRowZIlS9i0aRMhISHUrFkzX897v8f9XMTGxvLHH38QFhZGlSpVTK8aNWqQmJjIsmXL8uyzlRMP3jiYIat/i2+//TYfffQRL7/8Mr/88gubN28mJCQEV1fXx3rf+/XrR3x8PGvWrDFVd+jcuTPOzs65PpYQRZHcACZECbF9+3Zu3rzJqlWraNGihak9LCxMxajuKVOmDDY2Nlk+ZOBRDx7IcOzYMf777z8WL15Mv379TO0hISGPHZOPjw9bt24lPj7ebHQ2t3VV+/Tpw8aNG9mwYQPLli3DycmJLl26mLb/+uuvVKpUiVWrVpl9pZ3V1+I5iRng7NmzVKpUydR+48aNTKOdv/76K61bt2b+/Plm7Xfu3MHNzc20npuv2X18fNiyZQtxcXFmo7MZ01jyqh7uqlWrSE5OZu7cuWaxgvH3M27cOHbv3s0zzzyDn58fmzZt4tatWw8dnfXz88NgMHDy5MlH3nDn4uKSqZpFamoqV69ezXHsv/76K0FBQXz22WemtuTk5EzH9fPz4/jx49ker1atWtSrV4+lS5dSvnx5Ll68yOzZs3McjxBFnYzMClFCZIyA3T9alZqayjfffKNWSGa0Wi1t27ZlzZo1XLlyxdR+7ty5TPMsH7Y/mF+foih8+eWXjx1Tx44dSU9PZ+7cuaY2vV6f60Sha9eu2NnZ8c0337BhwwZefPFFbGxsHhn73r172bNnT65jbtu2LVZWVsyePdvseLNmzcrUV6vVZhq9XLlyJZGRkWZtGbVRc1KSrGPHjuj1eubMmWPW/sUXX6DRaHI8/zk7S5YsoVKlSrz55pu89NJLZq+RI0fi4OBgmmrQvXt3FEVh8uTJmY6Tcf1du3bFwsKCKVOmZBodvf898vPzM5v/DPDdd989dGQ2K1m977Nnz850jO7du3PkyBFWr1790LgzvPrqq2zevJlZs2bh6uqaZ++zEEWBjMwKUUI0bdoUFxcXgoKCTI9a/emnnwr0q9jsTJo0ic2bN9OsWTMGDx5sSopq1aqV7aNUq1Wrhp+fHyNHjiQyMhInJyd+++23HM29fJguXbrQrFkzRo8eTXh4ODVq1GDVqlW5nk/q4OBA165dTfNmHyyX1LlzZ1atWkW3bt3o1KkTYWFhzJs3jxo1ahAfH5+rc2XUy50+fTqdO3emY8eOHD58mA0bNmQawezcuTNTpkyhf//+NG3alGPHjrF06VKzEV0wJnClSpVi3rx5ODo6Ym9vT+PGjbOcD9qlSxdat27N2LFjCQ8Px9/fn82bN/P7778zfPhws5u9HteVK1fYtm1bppvMMuh0OgIDA1m5ciVfffUVrVu35tVXX+Wrr77i7NmztG/fHoPBwM6dO2ndujVDhw6lcuXKjB07lg8//JDmzZvz4osvotPp2L9/P15eXqZ6rQMHDuTNN9+ke/futGvXjiNHjrBp06ZM7+2jdO7cmZ9++glnZ2dq1KjBnj172LJlS6ZSZO+//z6//vorPXr0YMCAAQQEBHDr1i3Wrl3LvHnz8Pf3N/V95ZVX+N///sfq1asZPHiw6g+zEKIgycisECWEq6srf/75J2XLlmXcuHHMnDmTdu3a8emnn6odmklAQAAbNmzAxcWF8ePHM3/+fKZMmcKzzz5rNpKZFSsrK/744w/q1q3L9OnTmTx5MlWqVOHHH3987HgsLCxYu3Ytffr0YcmSJYwdO5Zy5cqxePHiXB8rI4EtW7Ysbdq0MdsWHBzMtGnTOHLkCMOGDWPTpk0sWbLEVP80t6ZOncrkyZM5fPgw77//PufPn2fz5s2Znj71wQcf8N5777Fp0ybeeecdDh06xLp16/D29jbrZ2VlxeLFi9Fqtbz55pv07t2bv//+O8tzZ7xnw4cP588//2T48OGcPHmSGTNm8Pnnnz/W9Tzo559/xmAwmE3VeFCXLl24efOmaVR/4cKFzJgxg7CwMN5//32mTZtGUlKSWb3cKVOmsGDBApKSkhg7diwTJkwgIiKCZ5991tRn0KBBjBo1ih07dvDee+8RFhZGSEhIrp7s9eWXX9KvXz+WLl3Ke++9x9WrV9myZUumGw0dHBzYuXMngwcPZv369QwbNoxvvvmGqlWrmh7AkMHDw8NUC/fVV1/NcSxCFAcapTANywghRBa6du3KiRMnOHv2rNqhCFFodevWjWPHjuVojrkQxYmMzAohCpUHHz179uxZ1q9fT6tWrdQJSIgi4OrVq6xbt05GZUWJJCOzQohCpWzZsgQHB1OpUiUiIiKYO3cuKSkpHD58OFPtVCFKurCwMHbv3s0PP/zA/v37OX/+PJ6enmqHJUSBkhvAhBCFSvv27Vm+fDlRUVHodDqaNGnCtGnTJJEVIgt///03/fv3p0KFCixevFgSWVEiqToyu2PHDmbMmMHBgwe5evUqq1evpmvXro/cZ/v27YwYMYITJ07g7e3NuHHjCA4OLpB4hRBCCCFE4aLqnNmEhAT8/f35+uuvc9Q/LCyMTp060bp1a0JDQxk+fDgDBw5k06ZN+RypEEIIIYQojArNnFmNRpPtyOyoUaNYt26d2RNRevXqxZ07d9i4cWMBRCmEEEIIIQqTIjVnds+ePbRt29asLTAwkOHDhz90n5SUFFJSUkzrBoOBW7du4erqmqtHNAohhBBCiIKhKApxcXF4eXlhYfHoiQRFKpmNiorCw8PDrM3Dw4PY2FiSkpKwtbXNtE9G8XQhhBBCCFG0XLp0KdNDQh5UpJLZxzFmzBhGjBhhWo+JiaFChQpcunQJJycnFSMTQgghhBBZiY2NxdvbG0dHx2z7Fqlk1tPTk2vXrpm1Xbt2DScnpyxHZcH4jG6dTpep3cnJSZJZIYQQQohCLCdTQovUE8CaNGnC1q1bzdpCQkJo0qSJShEJIYQQQgg1qZrMxsfHExoaSmhoKGAsvRUaGsrFixcB4xSBfv36mfq/+eabXLhwgf/973+cPn2ab775hl9++YV3331XjfCFEEIIIYTKVE1mDxw4QL169ahXrx4AI0aMoF69ekyYMAEwPms6I7EFqFixIuvWrSMkJAR/f38+++wzfvjhBwIDA1WJXwghhBBCqKvQ1JktKLGxsTg7OxMTEyNzZoUQQgghCqHc5GtFas6sEEIIIYQQ95NkVgghhBBCFFmSzAohhBBCiCJLklkhhBBCCFFkSTIrhBBCCCGKLElmhRBCCCFEkSXJrBBCCCGEKLIkmRVCCCGEEEWWJLNCCCGEEKLIslQ7ACGEEEIIUUilp0BKPKTGQWoCuD0FWiu1ozIjyawQQgghRHHxYPKZsZwSD6nxd9vijMumtvuWH2wzpJkff/gxKFVBnWt7CElmhRBCCCHUYko+708mM5LPhLttT5B85hVLW7C2h/TU/Dn+E5BkVgghhBAiJxQF9Km5TD4TzEdGH2zL7+RT5wDWjnd/OjyizdG4nLHN1O/uS1t4U8bCG5kQQgghigdFAX2aMXHTp4Eh3fhTn3pv+cFtGesP3ZZ+d/+7y4Y0822Gu8c32/aEx1b0+fcelaDkM6+VnCsVQgghipqHJYE5ScZMydzDtj24/4NJYfpD9n9UMvqQ/fMzCVSLJJ+FhrxzQgghSiZ9OuhTjHMW05Pv/ry7rE/N3Jae8kD/VON6Xo/+3d/HkK72u5R/NFrjXfFaa7CwNC5bWBmTOguru+uWxu2mZasHtmW3/92fDz12xv4P2ZZp/7svK3tJPgsR+U0IIYQoWBmjjVkmiI+RUGZ3nIftU1RHCzOSwIwELLfJ2IOJX5b7379u/ZjHfkQyamEJFlLqXuQNSWaFEELkjKJA4k2IjYSYSOPP2CsQFwVpiY9IQjPa71subCwsQasDSx1Y2oCl9d2fd9e196/r7i2bErVHjf7ldmTxEQmjJIFCZCLJrBBCCDAYIOHGvQQ19sp9yxmJ61VjQprXMhJF7QMJ5P0JZZaJZlZJ5oPJ56O26e4dW74yFqLIkn+9QghR3Bn0EH/9gcT0waT1as5LBNmXAScvcCoHzuXA0dN4Q8tDRzMfkZhqrWWkUQjxRCSZFUKIokyfDvFRD4ykXrlvKsAViLuaw/mhGmNi6uR1L1k1/by77FjWmJgKIUQhIcmsEEIUVvo0YyJ6f6Ia88CoanwUKIbsj6WxMCaipkS1fOak1dGz0D1zXQghsiPJrBBCqCE9xZioxkRmMT/17s/464CS/bEsLO8mquUyJ6jOd5NW+zIyL1QIUSzJf9mEECKvpSXd93X/lQfmqN79mXAjZ8eysHrgK//7EtSMdnt3sNDm7zUJIUQhJcmsEELkVmoC3I6A2+FwJ+LecuxlY6KaeDNnx9HqzG+kejBpdSoPdq5yg5QQQjyCJLNCCPEgfRrEXL6bqIYbk9X7lxOjsz+Gpe3DE9SMNrvSoNHk99UIIUSxJsmsEKLkURTjfNT7R1XvhN9djjBOBcju7n8bZ3DxhVI+4OJjXHb2vpe42rpIoiqEEAVAklkhRPGUHHsvWc00whoB6UmP3l+rg1IVjEmqi8/dpPW+ZdtS+X8NQgghsiXJrBCiaEpPhZhLmeetZiwn3crmABrjKGrGqGrGCGtG0urgIXNVhRCiCJBkVghROBkMEH/NPEG9f4Q1NpJsy1bZls56VNXF11gRwFKX75chhBAif0kyK4RQT9KdrKcA3A6HOxdBn/Lo/S1t70tQsxhhtXHK/2sQQgihKklmhRD5Jy357lSACLgdlnmENTnm0ftrLIx3/7tkJKi+5kmrQxm5yUoIIUo4SWaFEHkjORZOr4Owv++NtMZdyX4/O7eHz1t1Li+PVxVCCPFIkswKIR5fWjKc3QzHf4X/NkF6cuY+VvaPngqgcyjwsIUQQhQfkswKIXJHnw7hO+DYb3BqLaTE3tvmWgVqvABlqt9LWu3dZCqAEEKIfCPJrBAie4oClw8YR2CPr4KE6/e2OZWDWi9C7R7gWUcSVyGEKCQURSE5zUBSmp7E1HSS0/QkpRpITE0nKU1PcpqexFQ9SWl6klLvvtLuW3/gZ2KqnkUDGlLG0UbtSzMjyawQ4uGun4JjvxqT2Nvh99ptXaBGV2MCW6GJ1GMVQohcUhSFVL2B5FQDiWnpmZLHxFT93eTzXsJ5f/KZfF/7w5LPpLRsnmT4GOKT0ynjmOeHfSKSzAohzN25CMd/Myax147fa7eyh2qdoPZLUKk1WFqrF6MQQuQDg8GYYKakG0hNN5CqN/5MSdcb19ON23IygpmcpjeNiCalGYzJZ1o6SamGu0lpOoZsSmXnJWtLC+ystdha3X1ZZ/5pZ63F5u520/Lddlsr47qHU+EalQVJZoUQAAnRcGK1MYG99O+9dgsrqNIOanWHqh3A2l69GIUQxZLeoGRKFh+VTKbqDaSkGUi5u+1h2+/te9/2+9rM++tJ1RtI0xdgdnkfK60m2yTStGytxc7KEltrC2ytLU3J6aP2s7HSorUovlPAVE9mv/76a2bMmEFUVBT+/v7Mnj2bRo0aZdk3LS2N6dOns3jxYiIjI6latSqffPIJ7du3L+CohSgGUuKMpbSOrYTz20DJ+DpKA77PGEdgqz8PdqVVDVMIUTik6Q1cupVIWHQCYdEJxCanZ04ms0gWU+5LFu9PWDP66wtyeDKXrC0t0GktjD8tjT+tLTOSSIu7SaTl3STS4t5ypuTz7gjofSOjdtbGbbZWWqy0MlXrSaiazK5YsYIRI0Ywb948GjduzKxZswgMDOTMmTOUKVMmU/9x48axZMkSvv/+e6pVq8amTZvo1q0b//zzD/Xq1VPhCoQoYtKS4VyIcQT2v43mpbS86hnnwNbsBk5e6sUohFCNoihcj0vhwo0ELkTHE3YjwZS8XryVSHo+J54WmrsJpKXWmDhq7yWR9yeTOkst1tr71+9b1lqgs3rIdq35Me5v11mZb7fWWqCRG1qLBI2iKKr9SdS4cWMaNmzInDlzADAYDHh7e/P2228zevToTP29vLwYO3YsQ4YMMbV1794dW1tblixZkqNzxsbG4uzsTExMDE5O8qhLUQIY9BC2w3gT18k/IOW+p265VjEmsLW6g1tl9WIUQhSouOQ0wqIT7iatGQmrMXlNSH34TUO2VloqutlT0c2e0vbWmRJJ67uJpO4RiWRGopopSdVaYCkjlOKu3ORrqo3MpqamcvDgQcaMGWNqs7CwoG3btuzZsyfLfVJSUrCxMZ94bGtry65dux56npSUFFJS7j3fPTY29qF9hSg2FAUiDxqnEJxYDfHX7m1z9ILa3aHWS1DWX0ppCVFMpaYbuHgrkQs34k2jqxfuJrDR8SkP3U9rocHbxfZu0upARXd7/Nzsqehuj4ejDRbFeO6lKJpUS2ajo6PR6/V4eHiYtXt4eHD69Oks9wkMDOTzzz+nRYsW+Pn5sXXrVlatWoVe//C/IqdPn87kyZPzNHYhCq3rp40JrJTSEqJEMBgUrsUl3xthvWEcYb0QncClW4mPvFvezUFHJXd7Kt0daa3k7kBFN3sqlLbD2lL+GyGKDtVvAMuNL7/8kkGDBlGtWjU0Gg1+fn7079+fBQsWPHSfMWPGMGLECNN6bGws3t7eBRGuEAXDVErrN7h27F67ld3dUlo9pJSWEEVcTFJaliOs4dEJj6wlam+tpaL73RFWN3v83I2Jq6+bPU42VgV4BULkH9WSWTc3N7RaLdeuXTNrv3btGp6enlnu4+7uzpo1a0hOTubmzZt4eXkxevRoKlWq9NDz6HQ6dDpdnsYuhOoySmkd/w0u3jctx8IKKrc1ViKQUlpCFCkp6XoibiZy4ca9OawZyzcTUh+6n6WFhgql7UxzWTNGWCu521PGUSc3MYliT7Vk1tramoCAALZu3UrXrl0B4w1gW7duZejQoY/c18bGhnLlypGWlsZvv/3Gyy+/XAARC6EyUymtX+H8X1JKS4giyGBQuBKTdG+E1XQDVjyRt5MeOS3Aw0lnmseaMcJa0c0e79J2UtpJlGiqTjMYMWIEQUFBNGjQgEaNGjFr1iwSEhLo378/AP369aNcuXJMnz4dgL179xIZGUndunWJjIxk0qRJGAwG/ve//6l5GULkn/QUOBtinAN7ZkPmUlq1XoJaL0opLSEKmdsJqWZVAi7cV+IqJd3w0P0cdJZUupuoVrp781Wlu9MCHHRFamagEAVG1X8ZPXv25MaNG0yYMIGoqCjq1q3Lxo0bTTeFXbx4EYv7blRJTk5m3LhxXLhwAQcHBzp27MhPP/1EqVKlVLoCIfKBQQ/hO403cmUqpVX5bimtl6SUlhAq0hsUYpPSuBaXTNiNe3NYw6KN81pvJ6Y9dF8rbca0APMR1oru9rg7yLQAIXJL1TqzapA6s6JQUhSIPHS3lNaqzKW0ar1oTGKllJYQeUZRFJLS9NxJTCMmKe3uz9T7ltO4k2T8GZOYxp37tsUlp2d7/LLONmbzWDOqBpR3sZV6qkJko0jUmRVCADfOGBPYY7/C7bB77bYuUOOFu6W0mkopLSEeIV1vMCacGcmnKTlNJSYp3ZiEPpCcZiSuafonG89xsrGk4t1EtdLd0dWMBNbOWv4XK0RBkH9pQhS0O5fultL6NetSWrVeAr82UkpLlCiKopCQqr+XhD4k+TQbNb37Mz4l+1HSR7HSanC2tTK9StlZ37ds/tPZ1vq+ZSu58UqIQkCSWSEKQsJNOLnamMCaldKyhMrtpJSWKDbS7o6SPir5vDdqaj6Smv6oW/lzwFFnibPdfQmorTVOdxPRUvclp053tznfbbez1so8VSGKMElmhcgvKXFwer1xGsGFbWDIGD26W0qrVnfjVAIppSWKCEVRuJmQarorPzw6gfCbCUTcTOR2gjE5TUh9eAH/nLDWWpiSzPtHQ7MeJb03iupkYynzUIUooSSZFSKvxVyGLZPg1J+QnnSvvWxd4whszRfBuZxa0QmRrTuJxoQ1/GYCYdGJ9xLX6ATicvCVvkYDTjZZJZ73Rkydba1wvi85zWizsbKQUVIhRK5IMitEXjr5O6wdBsl3jOtSSksUUvEp6YRHJ5iNsobdNP58VFkpjQbKlbI1PhLV1Vj/1NfVDjcHnSlZdbSxQmshCakQomBIMitEXkhNgI1j4NBi47pXfeg00/hTRpmESpJS9YTfNE9Uw6MTuRCdQHR8yiP39XSywdft3iNSfV3vPW3KxkpbQFcghBDZk2RWiCd19Qj8+hrcPAto4Jnh0HosaK3UjkyUACnpei7dSiQsOpHwaGPx/oy5rFdjkh+5r5uDtSlJ9b0vafV1s5OyUkKIIkP+ayXE4zIYYO9c4/xYfSo4loVu30KllmpHJoqZdL2By7eTCLuZQNiNjLmsxp+Rt5N4VBEAZ1srs9FVXzc7Krk54ONmh5ON/MElhCj6JJkV4nHEXYM1g+H8VuN61U7w/Gywd1U3LlFkGQwKV2KS7s1fjU40Ja2XbiU+smyVg84SXzc70yiraaTV1R4Xe6lXLIQo3iSZFSK3zoYYE9mEG2BpA4HToMEAmRsrsqUoCtdiU0yjqvdPC4i4lUhquuGh+9pYWZhPCXC9NzXAzcFaKgAIIUosSWaFyKm0ZOOUgr1zjetlasJL86FMdVXDEoVLRi1Ws0oBd0tcRdxMIPERdVittRZUcM0YYbUzJasV3ezxcLTBQioECCFEJpLMCpETN84Yb/LKePxs4zeh7WSwslE3LqG667HJ/HP+JrvPRXPmWhxhNx5di1VrocHbxfZuSSt7KrnfqxTgVcpWSloJIUQuSTIrxKMoChxcZCy7lZ4Edq7QdS48Fah2ZEIlsclp7L1wi93notl9Lpqz1+Mz9dFowMvZ1nz+6t05rd6l7bCSJ1UJIUSekWRWiIdJvAVr34bTfxrXK7WGbvPA0VPduESBSk7Tc+ji7bvJ602OXr5jVj1Ao4FaXs40rexKPW8X/NylFqsQQhQkSWaFyErYTlj1OsRdAQsraDsRnh4CFjKiVtzpDQonrsSw61w0/5y7yf7wW6Q8cGNWJTd7mlZ2pZmfG038XCllJxUDhBBCLZLMCnE/fRpsnw47PwcU4+Nou88Hr7pqRybyiaIoXIhOME0b2HP+JrHJ5nNeyzjqaFbZjaZ+rjSr7IZXKVuVohVCCPEgSWaFyHArDH4bCJEHjOv1XoX2H4POQd24RJ6Likk2Jq/njaOvUbHmT8pytLHk6UquNPNz5Zkqbvi5O0jpKyGEKKQkmRUC4MgKWPcepMaBjTN0+RJqdlM7KpFHYhLT2HPhJv+cN46+nr+RYLbd2tKCBj4uptHX2uWcsZSbtIQQokiQZFaUbMmxxiT22C/G9QpN4MXvoZS3unGJJ5KcpudA+O27I6/RHIuMMbtpy0IDtcs507SyG8383Gjg6yI3bAkhRBElyawouS7th99egzsRoNFCq9HwzAjQyj+LoiZdb+BYZIyp3uuBiNuZnqbl525/d+TVjSaVXHG2s1IpWiGEEHlJ/q8tSh6DHnZ9AdumgaIH5wrQ/Qeo0FjtyEQOKYrCuevxd+e93uTf8zczPajA08nGVHGgWWU3PJ3lARdCCFEcSTIrSpaYSFj9BoTvNK7X6g6dPgfbUqqGJbJ35U4Su89Fm0Zfr8elmG13srGkyd1qA80qu1HJzV5u2hJCiBJAkllRcpxca3wIQvIdsLKHTjPBv7ex6r0odO4kprLn/E1jvdfzNwmLNr9pS2dpQUPf0jSt7Mozld2o6eUsj4IVQogSSJJZUfylJsKmMcbH0gJ41TPWjnX1UzUsYS4pVc/+8FumklknrsSiPHDTVp3ypWhW2Tj6Wr+C3LQlhBBCkllR3F09arzJK/o/QAPN3oHWY8FSntiktnS9gSOXY0wPKzh88Q6pevObtqqUcTBNG2hcqTRONnLTlhBCCHOSzIriSVHg37mwZSLoU8HBE178Fiq1UjuyEktRFP67Fn/3MbHR7A27RfwDN215OdsYy2VVdqWpnxseTnLTlhBCiEeTZFYUP/HXYc1bcC7EuF61Izw/B+xd1Y2rBLp8O/HuyOtN/jl/k+h485u2StlZ0aTSvZu2fF3t5KYtIYQQuSLJrChezm6BNYMh4TpY2sBzU6HhQLnJq4AkpKSz/cyNuzdtRRNxM9Fsu42V8aatZpXdeKayGzXKOmEhN20JIYR4ApLMiuIhPQW2TIZ/vzaul6lhvMnLo4a6cZUQF28m8uOecFYcuERc8r2pA1oLDf7lnXmmshtNK7tRr0IpdJZy05YQQoi8I8msKPpu/Ae/DYCoY8b1Rq9DuylgZatuXMWcoijsuXCThbvD2XLqmqnygI+rHW2qleGZym40qlgaR7lpSwghRD6SZFYUXYoChxbDhtGQngS2paHrN1C1g9qRFWvJaXrWHI5k0T/hnI6KM7W3eMqd/s18aVnFXaYOCCGEKDCSzIqiKfEW/PEOnFprXK/UCrrOA6eyqoZVnF2NSeKnPREs33eR24lpANhaaXkpoDxBTX2oXMZR5QiFEEKURJLMiqInfBeseh1iI8HCEp6dAE3eBgsLtSMrdhRF4dDF2yzYHc7G41HoDca5BOVdbAlq4svLDb1xtpVpBEIIIdQjyawoOvRp8PcnsGMmoEBpP+j+A5Srr3ZkxU5Kup51R6+ycHc4xyJjTO1PVypN/2YVaVvdQx4dK4QQolCQZFYUDbfCYNUguLzfuF63L3T4BHQO6sZVzFyPS2bpvxdZuveiqSastaUF3eqWI6ipLzW8nFSOUAghhDAnyawo/I6uhD/fhdQ40DlDly+gVne1oypWjl2OYeHuMP44eoU0vXEqgaeTDa828aF3owqUtpfH/wohhCicJJkVhVdyLKx/H47+bFz3fhpe/A5cfNSNq5hI0xvYdCKKhbvDORhx29Rev0Ip+jerSPtanlhpZR6yEEKIwk2SWVE4XT5orB17Oxw0FtByFDQfCVr5yD6p2wmpLNt3kSX/RnA1JhkAK62GznW8CG7qi793KXUDFEIIIXJBMgNRuBj0sHsWbJsGhnRw9oYXvwefJmpHVuSdjopl0e5wVh+OJCXdAICbgzWvNPahb+MKlHGyUTlCIYQQIvdU/w7x66+/xtfXFxsbGxo3bsy+ffse2X/WrFlUrVoVW1tbvL29effdd0lOTi6gaEW+ir0CP74AW6cYE9ma3eDNXZLIPgG9QWHziSh6f/cv7Wft5Of9l0hJN1CrnBOf9fBn9+g2jGj3lCSyQgghiixVR2ZXrFjBiBEjmDdvHo0bN2bWrFkEBgZy5swZypQpk6n/smXLGD16NAsWLKBp06b8999/BAcHo9Fo+Pzzz1W4ApFnTv0Ja4dC0m2wsoeOn0LdPqCR8k+PIyYpjZUHLrF4TziXbiUBoLXQ0L6mJ8HNfGng44JG3lshhBDFgEZRMp6oXvAaN25Mw4YNmTNnDgAGgwFvb2/efvttRo8enan/0KFDOXXqFFu3bjW1vffee+zdu5ddu3bl6JyxsbE4OzsTExODk5OUGVJdaiJs+gAOLjSul60L3eeDW2VVwyqqzt+IZ/E/4fx68DKJqXoAStlZ0btRBfo+7UO5UrYqRyiEEEJkLzf5mmojs6mpqRw8eJAxY8aY2iwsLGjbti179uzJcp+mTZuyZMkS9u3bR6NGjbhw4QLr16/n1Vdffeh5UlJSSElJMa3Hxsbm3UWIJxN1HH57DW6cNq43HQZtxoOllIHKDYNBYcfZGyzcHc7f/90wtVf1cCS4mS9d65bD1lqrYoRCCCFE/lEtmY2Ojkav1+Ph4WHW7uHhwenTp7Pc55VXXiE6OppnnnkGRVFIT0/nzTff5IMPPnjoeaZPn87kyZPzNHbxhBQF9n4LIRNAnwIOHtBtHvi1UTuyIiUhJZ3fDl1m0T/hXLiRABhnZTxbzYMBzXxp4ucqUwmEEEIUe0WqmsH27duZNm0a33zzDY0bN+bcuXO88847fPjhh4wfPz7LfcaMGcOIESNM67GxsXh7exdUyOJB8Tfg97fg7Gbj+lPt4YWvwd5N3biKkIs3E/lxTzgrDlwiLjkdAEedJS839CaoiS8VXO1UjlAIIYQoOKols25ubmi1Wq5du2bWfu3aNTw9PbPcZ/z48bz66qsMHDgQgNq1a5OQkMDrr7/O2LFjsbDIXJxBp9Oh0+ny/gJE7p3bAqsHQ8J10Oog8CNoOFBu8soBRVHYc+EmC3eHs+XUNTJmuldysyeoqS/dA8rjoCtSf5sKIYQQeUK1//tZW1sTEBDA1q1b6dq1K2C8AWzr1q0MHTo0y30SExMzJaxarXEuoIr3sYnspKcYy23tMd7oh3t1eGk+eNRUN64iIDlNz5rDkSz6J5zTUXGm9hZPudO/mS8tq7hjYSF/DAghhCi5VB3KGTFiBEFBQTRo0IBGjRoxa9YsEhIS6N+/PwD9+vWjXLlyTJ8+HYAuXbrw+eefU69ePdM0g/Hjx9OlSxdTUisKmeiz8OsAiDpqXG84EJ6bClZyV/2jXI1J4qc9ESzfd5HbiWkA2Flr6V6/PEFNfalcxkHlCIUQQojCQdVktmfPnty4cYMJEyYQFRVF3bp12bhxo+mmsIsXL5qNxI4bNw6NRsO4ceOIjIzE3d2dLl268NFHH6l1CeJRjv4Cf7wDaYlgW9o4N7ZaR7WjKrQUReHQxdss2B3OxuNR6A3GbxvKu9gS3NSXHg28cba1UjlKIYQQonBRtc6sGqTObAGJOg7ftgBFDxVbQLdvwclL7agKpZR0PeuOXmXh7nCORcaY2p+uVJr+zSrStroHWplKIIQQogQpEnVmRTFmMMCfw42JbNVO0HMJZHFzXkl3PS6Zpf9eZOnei0THG2sh6ywt6Fq3HMHNfKleVv7YEkIIIbIjyazIe4cWweX9YO0AHWdIIvuAY5djWLg7jD+OXiFNb/xixNPJhleb+NC7UQVK28tDI4QQQoickmRW5K3467BlknG59VhwLqdqOIVFmt7AphNRLNwdzsGI26b2AB8Xgpv60r6WJ1ZaSfqFEEKI3Mp1Muvr68uAAQMIDg6mQoUK+RGTKMo2jYXkGPCsA41eVzsa1d1OSGXZvoss+TeCqzHJAFhpNXSu40VwU1/8vUupG6AQQghRxOU6mR0+fDiLFi1iypQptG7dmtdee41u3brJgwkEnN8Gx34BNNBlFmhL7sD/mag4Fu4OY/XhSFLSDQC4OVjTp7EPfRpXoIyTjcoRCiGEEMXDY1czOHToEIsWLWL58uXo9XpeeeUVBgwYQP369fM6xjwl1QzySVoyzG0Kt84bR2Q7zlA7ItX8HhrJuytCuVtZi1rlnOjftCKd/cuis5R6yEIIIUR2cpOvPXFprrS0NL755htGjRpFWloatWvXZtiwYfTv3x9NIXxMqSSz+WTbNPj7E3DwhKH7wMZZ7YhU8e+Fm/Sbv49UvYFnq5VhcCs/AnxcCuW/BSGEEKKwKpDSXGlpaaxevZqFCxcSEhLC008/zWuvvcbly5f54IMP2LJlC8uWLXvcw4uiJPos7PrCuNzh4xKbyJ69FsfrPx4gVW+gU+2yzO5dTx41K4QQQuSzXCezhw4dYuHChSxfvhwLCwv69evHF198QbVq1Ux9unXrRsOGDfM0UFFIKQr8+S7oU6FyO6jRVe2IVHE9NpnghfuJTU6ngY8Ln73sL4msEEIIUQByncw2bNiQdu3aMXfuXLp27YqVVebHa1asWJFevXrlSYCikDvyM4TvBEtb6DQTSuDX6Qkp6QxYvJ/IO0lUcrPn+34NsLGSubFCCCFEQch1MnvhwgV8fHwe2cfe3p6FCxc+dlCiiEi8BZvHGpdb/g9cfFUNRw3pegNDlx3ieGQsrvbWLOzfEBd56IEQQghRYHJdpf369evs3bs3U/vevXs5cOBAngQlioiQCZB4E9yrQ9O31Y6mwCmKwoS1J9h25gY2Vhb8ENQAH1d7tcMSQgghSpRcJ7NDhgzh0qVLmdojIyMZMmRIngQlioCIf+DwT8blzl+ANvN0k+Ju3t8XWLb3IhoNfNWrHvUquKgdkhBCCFHi5DqZPXnyZJa1ZOvVq8fJkyfzJChRyKWnGm/6Aqj3Kvg0UTceFfweGsknG08DMKlLTZ6r6alyREIIIUTJlOtkVqfTce3atUztV69exdKy5D7xqUTZMxtunAY7V2g3Re1oCty/F27y/sqjAAxqXpGgpr7qBiSEEEKUYLlOZp977jnGjBlDTEyMqe3OnTt88MEHtGvXLk+DE4XQrTD4+1Pj8nMfgV1pdeMpYOeu36sl27G2J2M6VFc7JCGEEKJEy/VQ6syZM2nRogU+Pj7Uq1cPgNDQUDw8PPjpp5/yPEBRiCgKrB8J6cng2xz8S1b5tetxyQQtMNaSDfBx4fOX60otWSGEEEJluU5my5Urx9GjR1m6dClHjhzB1taW/v3707t37yxrzopi5MRqOLcFtNbGm75KUE3ZhJR0Xlt0gMg7SVSUWrJCCCFEofFYk1zt7e15/fXX8zoWUZglx8DG0cblZ94FtyrqxlOA0vUGhi0/zLHIGFztrVnUvyGlpZasEEIIUSg89h1bJ0+e5OLFi6Smppq1P//8808clCiEtn4I8degtB88M0LtaAqMoihM+uMEW09fl1qyQgghRCH0WE8A69atG8eOHUOj0aAoCgCau1856/X6vI1QqO/yQdj/g3G502dgZaNuPAXo2x0XWPKvsZbsl1JLVgghhCh0cl3N4J133qFixYpcv34dOzs7Tpw4wY4dO2jQoAHbt2/PhxCFqvTp8OdwQIHaL4Nfa7UjKjBrj1zh4w3GWrITOtcgUGrJCiGEEIVOrkdm9+zZw19//YWbmxsWFhZYWFjwzDPPMH36dIYNG8bhw4fzI06hln3fQdRRsHGGwI/UjqbA7L1wk5G/HAHgtWcq0r9ZRZUjEkIIIURWcj0yq9frcXR0BMDNzY0rV64A4OPjw5kzZ/I2OqGumEjYdjeBbTsZHMqoG08BOXc9ntd/Okiq3kCHWp6M7Si1ZIUQQojCKtcjs7Vq1eLIkSNUrFiRxo0b8+mnn2Jtbc13331HpUqV8iNGoZYN/4PUePBuDPWD1I6mQNyISyF44T5iktKoX6EUX/SUWrJCCCFEYZbrZHbcuHEkJCQAMGXKFDp37kzz5s1xdXVlxYoVeR6gUMmZDXD6T7CwNNaUtcj1IH6Rk5iazmuL93P5dhK+rnb8ENRQaskKIYQQhVyuk9nAwEDTcuXKlTl9+jS3bt3CxcXFVNFAFHGpCbD+feNykyHgUVPdeApAut7A28sOc/RyDKXtrVnUv5HUkhVCCCGKgFwNt6WlpWFpacnx48fN2kuXLi2JbHGyfTrEXALnCtBylNrR5Lv7a8nqLC34vl8DfN2klqwQQghRFOQqmbWysqJChQpSS7Y4izoGe74xLneaCdbFP6n7zqyWbF0CfKSWrBBCCFFU5Hoi5NixY/nggw+4detWfsQj1GQwwJ/vgqKH6s/DU4HZ71PE/Xn0CtPv1pId36kG7WuVVTkiIYQQQuRGrufMzpkzh3PnzuHl5YWPjw/29uYjd4cOHcqz4EQBO7gQLu8Hawdo/7Ha0eS7fWG3GLHCWEt2QLOKDHhGaskKIYQQRU2uk9muXbvmQxhCdXHXYMtk43KbceBcTt148tn5G/EM+vEAqXoD7Wt6MraT1JIVQgghiqJcJ7MTJ07MjziE2jZ9ACkxUNYfGr2udjT56v5asvUqlGJWr7popZasEEIIUSQV/+KhInvntsLxX0FjAZ1ngUXxra2amJrOwMX7uXQrCR9XO37o10BqyQohhBBFWK5HZi0sLB5ZhksqHRQxaUmw7j3jcsNBUK6+uvHkI71BYdjywxy5HIOLnRWL+jfC1UGndlhCCCGEeAK5TmZXr15ttp6Wlsbhw4dZvHgxkydPzrPARAHZ+RncDgPHssa5ssWUoihM/uMEW04Za8n+ENSQilJLVgghhCjycp3MvvDCC5naXnrpJWrWrMmKFSt47bXX8iQwUQBunIFds4zL7T8GGydVw8lPP+wM48c9EWg0MKun1JIVQgghios8mzP79NNPs3Xr1rw6nMhvigJ/jgBDGlR5Dmpk/iOluFh39CofrT8FwLhONehQW2rJCiGEEMVFniSzSUlJfPXVV5QrV7zLORUrocsgYhdY2kLHmVBMH0e8P/wW7/4SCkBwU19ek1qyQgghRLGS62kGLi4uZjeAKYpCXFwcdnZ2LFmyJE+DE/kk4SZsvjs/ttUocPFRN558Yqolm27guRoejO9cQ+2QhBBCCJHHcp3MfvHFF2bJrIWFBe7u7jRu3BgXl8ebh/j1118zY8YMoqKi8Pf3Z/bs2TRq1CjLvq1ateLvv//O1N6xY0fWrVv3WOcvcUImQNItKFMDmgxVO5p8ER1vrCV7JzGNut6l+LJXPaklK4QQQhRDuU5mg4OD8zSAFStWMGLECObNm0fjxo2ZNWsWgYGBnDlzhjJlymTqv2rVKlJTU03rN2/exN/fnx49euRpXMVW+G4IvTuC3nkWaK1UDSc/JKXqeW3xAVMt2flBDbC1llqyQgghRHGU6zmzCxcuZOXKlZnaV65cyeLFi3MdwOeff86gQYPo378/NWrUYN68edjZ2bFgwYIs+5cuXRpPT0/TKyQkBDs7O0lmcyI9Ff5817hcPwgqNFY3nnygNygM+/kwRy7dwcXOioXBDaWWrBBCCFGM5TqZnT59Om5ubpnay5Qpw7Rp03J1rNTUVA4ePEjbtm3vBWRhQdu2bdmzZ0+OjjF//nx69eqFvX3WNUNTUlKIjY01e5VY/3wF0WfAzg3aTlI7mjynKApT/jhByMlrWFta8ENQAyq5O6gdlhBCCCHyUa6T2YsXL1KxYuY7wn18fLh48WKujhUdHY1er8fDw8Os3cPDg6ioqGz337dvH8ePH2fgwIEP7TN9+nScnZ1NL29v71zFWGzcugA7ZhiXA6eBXWl148kH83eFsdislmzxu0YhhBBCmMt1MlumTBmOHj2aqf3IkSO4urrmSVA5NX/+fGrXrv3Qm8UAxowZQ0xMjOl16dKlAoywkFAUWDcS0pOhYkuo87LaEeW5dUevMnWdsZbs2I7V6Si1ZIUQQogSIdc3gPXu3Zthw4bh6OhIixYtAPj7779555136NWrV66O5ebmhlar5dq1a2bt165dw9PT85H7JiQk8PPPPzNlypRH9tPpdOh0JXzO5IlVcH4raK2h0+fFrqbsAaklK4QQQpRYuR6Z/fDDD2ncuDHPPvsstra22Nra8txzz9GmTZtcz5m1trYmICDA7MlhBoOBrVu30qRJk0fuu3LlSlJSUujbt29uL6FkSboDG8cYl58ZAW6VVQ0nr124r5Zsu7u1ZDXFLFkXQgghxMPlemTW2tqaFStWMHXqVEJDQ7G1taV27dr4+Dxe4f0RI0YQFBREgwYNaNSoEbNmzSIhIYH+/fsD0K9fP8qVK8f06dPN9ps/fz5du3Yt8KkNRc5fH0L8NSjtB8+8q3Y0ecpYS3Y/txPT8PcuxVdSS1YIIYQocXKdzGaoUqUKVapUeeIAevbsyY0bN5gwYQJRUVHUrVuXjRs3mm4Ku3jxIhYW5gPIZ86cYdeuXWzevPmJz1+sXT4I++cblzt/AVY26saTh5JS9QxcfICLtxKpUFpqyQohhBAllUZRFCU3O3Tv3p1GjRoxatQos/ZPP/2U/fv3Z1mDtjCJjY3F2dmZmJgYnJyc1A4n/+jT4ftWEHUM6vSEF79TO6I8ozcoDF5ykM0nr1HKzopVg5tKCS4hhBCiGMlNvpbrObM7duygY8eOmdo7dOjAjh07cns4kV/2zjMmsjal4LmP1I4mzyiKwod/nmTz3Vqy3/eTWrJCCCFESZbrZDY+Ph5ra+tM7VZWViX7gQSFyZ1LsO3uzXjtJoODu7rx5KH5u8JY9E84AF+8XJeGvlJLVgghhCjJcp3M1q5dmxUrVmRq//nnn6lRo0aeBCWe0IZRkJYA3k9DvX5qR5NnNhy7ykfr79WS7VRHaskKIYQQJV2ubwAbP348L774IufPn6dNmzYAbN26lWXLlvHrr7/meYAil06vgzPrwMLSeNOXRa7/XimUDkbcYviKUBQFgpr4MLC51JIVQgghxGMks126dGHNmjVMmzaNX3/9FVtbW/z9/fnrr78oXVq+8lVVSjys/59xuclQ8CgeI+Vh0QkMXHyAlHQDbat7MKFLTaklK4QQQgjgMUtzderUiU6dOgHGu82WL1/OyJEjOXjwIHq9Pk8DFLmwfTrEXoZSFaDlqOz7FwE341MIXrjPWEu2vDNf9a4rtWSFEEIIYfLY30Hv2LGDoKAgvLy8+Oyzz2jTpg3//vtvXsYmcuPqUfh3rnG542dgbaduPHkgKVXPa4sPEHEzEe/StvwQ1BA768cujSyEEEKIYihXmUFUVBSLFi1i/vz5xMbG8vLLL5OSksKaNWvk5i81GfTw53BQ9FDjBXjqObUjemJ6g8LwFYcJvXSHUnZWLOrfCHdHndphCSGEEKKQyfHIbJcuXahatSpHjx5l1qxZXLlyhdmzZ+dnbCKnDiyAyINg7QjtP1E7mjzx0bpTbDpxr5asn9SSFUIIIUQWcjwyu2HDBoYNG8bgwYPz5DG2Io/EXYOtU4zLz44Hp6Jfrmr+rjAW7A4D4POX/aWWrBBCCCEeKscjs7t27SIuLo6AgAAaN27MnDlziI6Ozs/YRE5sGgMpseBVDxoOVDuaJ7bx+FWmrjsJwJgO1ehcx0vliIQQQghRmOU4mX366af5/vvvuXr1Km+88QY///wzXl5eGAwGQkJCiIuLy884RVbObYXjv4HGAjrPAgut2hE9kYMRt3nnZ2Mt2Vef9uH1FpXUDkkIIYQQhVyuqxnY29szYMAAdu3axbFjx3jvvff4+OOPKVOmDM8//3x+xCiykpYE60YYlxu9AV51VQ3nSRlrye6/W0u2DBO71JBaskIIIYTI1hM9Hqpq1ap8+umnXL58meXLl+dVTCIndsyE2+HgWBZaf6B2NE/kVkIq/e/Wkq1T3pmvetfDUls8nlwmhBBCiPyVJxmDVqula9eurF27Ni8OJ7Jz4wzs/tK43OETsHFSN54nkJymZ+Di/YTfTKS8iy3zpZasEEIIIXJBhr+KGkWBP98FQxpUCYTqRXdqh96gMPznUA5dvIOzrdSSFUIIIUTuSTJb1IQuhYjdYGkLHWdAEZ5XOm39KTaeiMJaa6wlW7mM1JIVQgghRO5IMluUJNyEzeONy61Gg4uPuvE8gQW7wpi/y1hLdubL/jSqKLVkhRBCCJF7kswWJSHjIekWlKkJTYaoHc1j23g8ig/v1pId3aEaz/tLLVkhhBBCPB5JZouK8F3GKQYAnb8ArZW68TymQxdv887Ph1EU6Pt0Bd6QWrJCCCGEeAKSzBYF6SnGm74AAoKhQmNVw3lcETcTGLj4ACnpBp6tVoZJXWpKLVkhhBBCPBFJZouC3V9B9H9g7w5tJ6kdzWO5lZBK8ML93EpIpXY5Z2a/IrVkhRBCCPHkJJso7G6ehx0zjMuB08DWRd14HkNymp5BPx4gLDqBcqVsmR/cQGrJCiGEECJPSDJbmCkKrHsP9ClQqRXU7qF2RLlmMCi8uyKUgxG3cbKxZPGAhpRxtFE7LCGEEEIUE5LMFmbHf4ML20Crg06fF8mastPWn2LD8ftryTqqHZIQQgghihFJZgurpDuwcYxxufl74OqnajiPY9HuMH64W0t2Ro86NK7kqnJEQgghhChuJJktrLZOhoTr4FoFnhmudjS59u+Fm3y47hQAo9pX44W65VSOSAghhBDFkSSzhdGl/XBgoXG58+dgqVM3nly6HpfM28sPozcovFivHG+2lFqyQgghhMgfkswWNvp0+HM4oIB/b6jYQu2IciVdb2DY8sPciEuhqocjU7vVklqyQgghhMg3kswWNnvnwrXjYFMKnpuqdjS59nnIf/x74Rb21lq+6VtfSnAJIYQQIl9JMluY3LkE26YZl9tNAXs3dePJpa2nrvHN9vMAfPJSHfzcHVSOSAghhBDFnSSzhcmG/0FaIng/DfVeVTuaXLl0K5F3V4QCENzUl851vNQNSAghhBAlgiSzhcWpP+HMerCwhC6zwKLo/GqS0/QMXnqQ2OR06lUoxQcdq6sdkhBCCCFKiKKTMRVnKXHGUVmApm9DmaKVDH7450mOR8biYmfF16/Ux9pSPlZCCCGEKBiSdRQG26ZDbCSU8oEW/1M7mlxZffgyS/deRKOBWb3q4VXKVu2QhBBCCFGCSDKrtqtHjBUMADp9BtZ26saTC/9di+ODVccBGNamCi2fclc5IiGEEEKUNJLMqsmghz+Gg2KAGl2hSju1I8qx+JR03lxykKQ0Pc2ruDHs2SpqhySEEEKIEkiSWTUdWABXDoHOCdp/rHY0OaYoCmNWHePCjQQ8nWyY1bMuWgt5MIIQQgghCp4ks2qJvQpbpxiX24wHp7LqxpMLP/0bwR9HrmBpoeHrPvVwdShaj9sVQgghRPGhejL79ddf4+vri42NDY0bN2bfvn2P7H/nzh2GDBlC2bJl0el0PPXUU6xfv76Aos1Dm8ZASix41YOGr6kdTY6FXrrDh3+eBGBMx+oE+JRWOSIhhBBClGSqPmt0xYoVjBgxgnnz5tG4cWNmzZpFYGAgZ86coUyZMpn6p6am0q5dO8qUKcOvv/5KuXLliIiIoFSpUgUf/JM4uwVOrAaNBXSeBRZatSPKkdsJqQxZeog0vUKHWp4MaOardkhCCCGEKOFUTWY///xzBg0aRP/+/QGYN28e69atY8GCBYwePTpT/wULFnDr1i3++ecfrKysAPD19S3IkJ9caiKsG2FcbvwmeNVVNZycMhgU3v0llMg7SVR0s+fTl+qg0cg8WSGEEEKoS7VpBqmpqRw8eJC2bdveC8bCgrZt27Jnz54s91m7di1NmjRhyJAheHh4UKtWLaZNm4Zer3/oeVJSUoiNjTV7qWrHDLgTAU7loPUH6saSC19vO8f2MzewsbJgbt/6ONpYqR2SEEIIIYR6yWx0dDR6vR4PDw+zdg8PD6KiorLc58KFC/z666/o9XrWr1/P+PHj+eyzz5g6depDzzN9+nScnZ1NL29v7zy9jly5fgr++cq43OET0DmqF0su7Dobzedb/gNgatfaVPN0UjkiIYQQQggj1W8Ayw2DwUCZMmX47rvvCAgIoGfPnowdO5Z58+Y9dJ8xY8YQExNjel26dKkAI76PwQB/vguGdHiqA1TrrE4cuRQVk8w7Px9GUaBXQ29eCiivdkhCCCGEECaqzZl1c3NDq9Vy7do1s/Zr167h6emZ5T5ly5bFysoKrfbeDVPVq1cnKiqK1NRUrK2tM+2j0+nQ6QpB6ajQJXBxD1jZQcdPoQjMN03TGxi67BA3E1KpUdaJSc/XVDskIYQQQggzqo3MWltbExAQwNatW01tBoOBrVu30qRJkyz3adasGefOncNgMJja/vvvP8qWLZtlIltoJERDyATjcqsxUKqCuvHk0KcbT3Mg4jaONpbM7VsfG6uiUXVBCCGEECWHqtMMRowYwffff8/ixYs5deoUgwcPJiEhwVTdoF+/fowZM8bUf/Dgwdy6dYt33nmH//77j3Xr1jFt2jSGDBmi1iXkzOZxkHQbPGrB04PVjiZHNh6/yvc7wwCY2cMfH1d7lSMSQgghhMhM1dJcPXv25MaNG0yYMIGoqCjq1q3Lxo0bTTeFXbx4EQuLe/m2t7c3mzZt4t1336VOnTqUK1eOd955h1GjRql1CdkL2wFHlgMa6PwFaAt/FYDw6ATeX3kUgNdbVCKwZtbTPoQQQggh1KZRFEVRO4iCFBsbi7OzMzExMTg5FcBd+Qs7QsRuCOgPXWbl//meUHKanm7f/MOpq7E09HVh2aCnsdIWqfsEhRBCCFHE5SZfU3VktkTotRR2zIQWI9WOJEcm/n6CU1djcXOwZs4r9SWRFUIIIUShJslsfrN1gcCP1I4iR345cIkVBy5hoYGvetfDw8lG7ZCEEEIIIR5Jht0EACevxDJ+zXEA3nuuKk393FSOSAghhBAie5LMCmKT03hr6UFS0g20rurO4JZ+aockhBBCCJEjksyWcIqi8L+VRwm/mUi5UrZ80bMuFhaF/4EOQgghhBAgyWyJN39XGBtPRGGl1fBNn/qUsivED58QQgghhHiAJLMl2IHwW3y84TQAEzrXwN+7lLoBCSGEEELkkiSzJVR0fApDlx0m3aDwvL8XfZ/2UTskIYQQQohck2S2BNIbFIb/HEpUbDKVyzgw/cXaaDQyT1YIIYQQRY8ksyXQl1vPsutcNLZWWub2qY+9TsoNCyGEEKJokmS2hNl+5jqz/zoLwMfda1PFw1HliIQQQgghHp8ksyVI5J0khq8IRVHg1ad9eKFuObVDEkIIIYR4IpLMlhCp6QbeWnqIO4lp1CnvzLjO1dUOSQghhBDiiUkyW0JMW3+KI5fu4Gxrxdev1EdnqVU7JCGEEEKIJybJbAnwx5ErLPonHIAvevrjXdpO3YCEEEIIIfKIJLPF3Lnr8Yz+7SgAQ1r70aaah8oRCSGEEELkHUlmi7HE1HTeWnqQhFQ9TSq58m7bp9QOSQghhBAiT0mB0WJKURTGrj7Of9fiKeOo48vedbHUyt8uQghRlOj1etLS0tQOQ4h8YWVlhVb75PfwSDJbTC3fd4nVhyPRWmiY3bseZRxt1A5JCCFELsTHx3P58mUURVE7FCHyhUajoXz58jg4ODzRcSSZLYaOXY5h0toTAPwvsCqNK7mqHJEQQojc0Ov1XL58GTs7O9zd3eWR46LYURSFGzducPnyZapUqfJEI7SSzBYzMYlpDF56kFS9gXY1PHi9RSW1QxJCCJFLaWlpKIqCu7s7tra2aocjRL5wd3cnPDyctLS0J0pmZRJlMWIwKIz4JZTLt5OoUNqOmT385a95IYQowuS/4aI4y6vPtySzxci3Oy6w9fR1rC0t+KZPfZxtrdQOSQghhBAiX0kyW0zsOX+TGZtOAzDl+ZrUKuesckRCCCGEEPlPktli4HpsMm8vP4xBge71y9OzobfaIQkhhBB5wtfXl1mzZuW4//bt29FoNNy5cyffYhKFiySzRVy63sDbyw8THZ9CNU9HpnatJXOshBBCFDiNRvPI16RJkx7ruPv37+f111/Pcf+mTZty9epVnJ0L7hvKatWqodPpiIqKKrBzinskmS3iPgv5j71ht3DQWfJNn/rYWj958WEhhBAit65evWp6zZo1CycnJ7O2kSNHmvoqikJ6enqOjuvu7o6dnV2O47C2tsbT07PABnZ27dpFUlISL730EosXLy6Qcz5KSXzIhiSzRdiWk9eYu/08AJ90r0Ml9ycrOiyEEKJwUhSFxNR0VV45fWiDp6en6eXs7IxGozGtnz59GkdHRzZs2EBAQAA6nY5du3Zx/vx5XnjhBTw8PHBwcKBhw4Zs2bLF7LgPTjPQaDT88MMPdOvWDTs7O6pUqcLatWtN2x+cZrBo0SJKlSrFpk2bqF69Og4ODrRv356rV6+a9klPT2fYsGGUKlUKV1dXRo0aRVBQEF27ds32uufPn88rr7zCq6++yoIFCzJtv3z5Mr1796Z06dLY29vToEED9u7da9r+xx9/0LBhQ2xsbHBzc6Nbt25m17pmzRqz45UqVYpFixYBEB4ejkajYcWKFbRs2RIbGxuWLl3KzZs36d27N+XKlcPOzo7atWuzfPlys+MYDAY+/fRTKleujE6no0KFCnz00UcAtGnThqFDh5r1v3HjBtbW1mzdujXb96SgSZ3ZIurSrURG/BIKQP9mvnSqU1bdgIQQQuSbpDQ9NSZsUuXcJ6cEYmedN+nC6NGjmTlzJpUqVcLFxYVLly7RsWNHPvroI3Q6HT/++CNdunThzJkzVKhQ4aHHmTx5Mp9++ikzZsxg9uzZ9OnTh4iICEqXLp1l/8TERGbOnMlPP/2EhYUFffv2ZeTIkSxduhSATz75hKVLl7Jw4UKqV6/Ol19+yZo1a2jduvUjrycuLo6VK1eyd+9eqlWrRkxMDDt37qR58+aA8SluLVu2pFy5cqxduxZPT08OHTqEwWAAYN26dXTr1o2xY8fy448/kpqayvr16x/rff3ss8+oV68eNjY2JCcnExAQwKhRo3BycmLdunW8+uqr+Pn50ahRIwDGjBnD999/zxdffMEzzzzD1atXOX3aeCP5wIEDGTp0KJ999hk6nQ6AJUuWUK5cOdq0aZPr+PKbJLNFUHKansFLDxKbnE69CqUY06G62iEJIYQQ2ZoyZQrt2rUzrZcuXRp/f3/T+ocffsjq1atZu3ZtppHB+wUHB9O7d28Apk2bxldffcW+ffto3759lv3T0tKYN28efn5+AAwdOpQpU6aYts+ePZsxY8aYRkXnzJmTo6Ty559/pkqVKtSsWROAXr16MX/+fFMyu2zZMm7cuMH+/ftNiXblypVN+3/00Uf06tWLyZMnm9rufz9yavjw4bz44otmbfdP63j77bfZtGkTv/zyC40aNSIuLo4vv/ySOXPmEBQUBICfnx/PPPMMAC+++CJDhw7l999/5+WXXwaMI9zBwcGF8r4cSWaLoCl/nuR4ZCyl7a35+pX6WFvKbBEhhCjObK20nJwSqNq580qDBg3M1uPj45k0aRLr1q3j6tWrpKenk5SUxMWLFx95nDp16piW7e3tcXJy4vr16w/tb2dnZ0pkAcqWLWvqHxMTw7Vr10wjlgBarZaAgADTCOrDLFiwgL59+5rW+/btS8uWLZk9ezaOjo6EhoZSr169h44Yh4aGMmjQoEeeIycefF/1ej3Tpk3jl19+ITIyktTUVFJSUkxzj0+dOkVKSgrPPvtslsezsbExTZt4+eWXOXToEMePHzebzlGYSDJbxKw6dJlley+i0cCsnnXxKiWPORRCiOJOo9Hk2Vf9arK3tzdbHzlyJCEhIcycOZPKlStja2vLSy+9RGpq6iOPY2Vl/lAgjUbzyMQzq/45nQv8MCdPnuTff/9l3759jBo1ytSu1+v5+eefGTRoULaPIs5ue1ZxZnWD14Pv64wZM/jyyy+ZNWsWtWvXxt7enuHDh5ve15w8InngwIHUrVuXy5cvs3DhQtq0aYOPj0+2+6lBhvSKkDNRcYxdfRyAd56tQoun3FWOSAghhHh8u3fvJjg4mG7dulG7dm08PT0JDw8v0BicnZ3x8PBg//79pja9Xs+hQ4ceud/8+fNp0aIFR44cITQ01PQaMWIE8+fPB4wjyKGhody6dSvLY9SpU+eRN1S5u7ub3ah29uxZEhMTs72m3bt388ILL9C3b1/8/f2pVKkS//33n2l7lSpVsLW1feS5a9euTYMGDfj+++9ZtmwZAwYMyPa8apFktoiIT0ln8NKDJKXpaV7FjbfbVFE7JCGEEOKJVKlShVWrVhEaGsqRI0d45ZVXsv1qPz+8/fbbTJ8+nd9//50zZ87wzjvvcPv27YfOD01LS+Onn36id+/e1KpVy+w1cOBA9u7dy4kTJ+jduzeenp507dqV3bt3c+HCBX777Tf27NkDwMSJE1m+fDkTJ07k1KlTHDt2jE8++cR0njZt2jBnzhwOHz7MgQMHePPNNzONMmelSpUqhISE8M8//3Dq1CneeOMNrl27ZtpuY2PDqFGj+N///sePP/7I+fPn+ffff01JeIaBAwfy8ccfoyiKWZWFwkaS2SJAURRG/XaUCzcSKOtsw6yeddFaFL4J2EIIIURufP7557i4uNC0aVO6dOlCYGAg9evXL/A4Ro0aRe/evenXrx9NmjTBwcGBwMBAbGxssuy/du1abt68mWWCV716dapXr878+fOxtrZm8+bNlClTho4dO1K7dm0+/vhjtFrjPORWrVqxcuVK1q5dS926dWnTpg379u0zHeuzzz7D29ub5s2b88orrzBy5Mgc1dwdN24c9evXJzAwkFatWpkS6vuNHz+e9957jwkTJlC9enV69uyZad5x7969sbS0pHfv3g99LwoDjfKkk0aKmNjYWJydnYmJicHJyUntcHJk8T/hTFx7AksLDSveaEKAj4vaIQkhhMhHycnJhIWFUbFixUKdRBRXBoOB6tWr8/LLL/Phhx+qHY5qwsPD8fPzY//+/fnyR8ajPue5ydeK/mzyYu7wxdtMXXcSgA86VpdEVgghhMhjERERbN68mZYtW5KSksKcOXMICwvjlVdeUTs0VaSlpXHz5k3GjRvH008/rcpoeW7ININC7HZCKkOWHiJNr9Cxtif9m/mqHZIQQghR7FhYWLBo0SIaNmxIs2bNOHbsGFu2bKF69ZJZx3337t2ULVuW/fv3M2/ePLXDyZaMzBZSBoPC8BWhXIlJpqKbPZ90r1MoCxULIYQQRZ23tze7d+9WO4xCo1WrVk9cuqwgychsITVn2zn+/u8GNlYWzO1bH0eb7O9eFEIIIYQoaQpFMvv111/j6+uLjY0NjRs3NruT70GLFi1Co9GYvYrb5PhdZ6P5YouxHtzUrrWp5lk0blQTQgghhChoqiezK1asYMSIEUycOJFDhw7h7+9PYGDgIx9L5+TkxNWrV02viIiIAow4f12NSWLYz4dRFOjdyJuXAsqrHZIQQgghRKGlejL7+eefM2jQIPr370+NGjWYN28ednZ2LFiw4KH7aDQaPD09TS8PD48CjDj/pOkNDF12mFsJqdT0cmJil5pqhySEEEIIUaipmsympqZy8OBB2rZta2qzsLCgbdu2pqdjZCU+Ph4fHx+8vb154YUXOHHixEP7pqSkEBsba/YqrD7ZcJqDEbdxtLHkmz71sbHSqh2SEEIIIUShpmoyGx0djV6vzzSy6uHhQVRUVJb7VK1alQULFvD777+zZMkSDAYDTZs25fLly1n2nz59Os7OzqaXt7d3nl9HXth4/Co/7AoD4LMe/vi42qsckRBCCCFE4af6NIPcatKkCf369aNu3bq0bNmSVatW4e7uzrfffptl/zFjxhATE2N6Xbp0qYAjzl5YdALvrzwKwBstKvFcTU+VIxJCCCHU0apVK4YPH25a9/X1ZdasWY/cR6PRsGbNmic+d14dRxQsVZNZNzc3tFot165dM2u/du0anp45S+isrKyoV68e586dy3K7TqfDycnJ7FWYJKfpGbzkIHEp6TTyLc3IwKpqhySEEELkWpcuXWjfvn2W23bu3IlGo+Ho0aO5Pu7+/ft5/fXXnzQ8M5MmTaJu3bqZ2q9evUqHDh3y9FwPk5SUROnSpXFzcyMlJaVAzllcqZrMWltbExAQwNatW01tBoOBrVu30qRJkxwdQ6/Xc+zYMcqWLZtfYearCb8f53RUHG4O1sx+pR5W2iI3WC6EEELw2muvERISkuW0v4ULF9KgQQPq1KmT6+O6u7tjZ2eXFyFmy9PTE51OVyDn+u2336hZsybVqlVTfTRYURTS09NVjeFJqJ45jRgxgu+//57Fixdz6tQpBg8eTEJCAv379wegX79+jBkzxtR/ypQpbN68mQsXLnDo0CH69u1LREQEAwcOVOsSHtsv+y/xy4HLWGjgq9718HAqXvVyhRBC5BFFgdQEdV45fBJU586dcXd3Z9GiRWbt8fHxrFy5ktdee42bN2/Su3dvypUrh52dHbVr12b58uWPPO6D0wzOnj1LixYtsLGxoUaNGoSEhGTaZ9SoUTz11FPY2dlRqVIlxo8fT1paGmCsVz958mSOHDliqlefEfOD0wyOHTtGmzZtsLW1xdXVlddff534+HjT9uDgYLp27crMmTMpW7Ysrq6uDBkyxHSuR5k/fz59+/alb9++zJ8/P9P2EydO0LlzZ5ycnHB0dKR58+acP3/etH3BggXUrFkTnU5H2bJlGTp0KADh4eFoNBpCQ0NNfe/cuYNGo2H79u0AbN++HY1Gw4YNGwgICECn07Fr1y7Onz/PCy+8gIeHBw4ODjRs2JAtW7aYxZWSksKoUaPw9vZGp9NRuXJl5s+fj6IoVK5cmZkzZ5r1Dw0NRaPRPPQb9Lyg+uNse/bsyY0bN5gwYQJRUVHUrVuXjRs3mm4Ku3jxIhYW93Lu27dvM2jQIKKionBxcSEgIIB//vmHGjVqqHUJj+XElRjG/34cgPeeq0pTPzeVIxJCCFFopSXCNC91zv3BFbDO/qZkS0tL+vXrx6JFixg7dqzpEewrV65Er9fTu3dv4uPjCQgIYNSoUTg5ObFu3TpeffVV/Pz8aNSoUbbnMBgMvPjii3h4eLB3715iYmLM5tdmcHR0ZNGiRXh5eXHs2DEGDRqEo6Mj//vf/+jZsyfHjx9n48aNpkTN2dk50zESEhIIDAykSZMm7N+/n+vXrzNw4ECGDh1qlrBv27aNsmXLsm3bNs6dO0fPnj2pW7cugwYNeuh1nD9/nj179rBq1SoUReHdd98lIiICHx8fACIjI2nRogWtWrXir7/+wsnJid27d5tGT+fOncuIESP4+OOP6dChAzExMY/1ON7Ro0czc+ZMKlWqhIuLC5cuXaJjx4589NFH6HQ6fvzxR7p06cKZM2eoUKECYBxk3LNnD1999RX+/v6EhYURHR2NRqNhwIABLFy4kJEjR5rOsXDhQlq0aEHlypVzHV+OKSVMTEyMAigxMTHqxZCUqrT49C/FZ9SfSv+F+xS93qBaLEIIIQqfpKQk5eTJk0pSUpKxISVeUSY6qfNKic9x3KdOnVIAZdu2baa25s2bK3379n3oPp06dVLee+8903rLli2Vd955x7Tu4+OjfPHFF4qiKMqmTZsUS0tLJTIy0rR9w4YNCqCsXr36oeeYMWOGEhAQYFqfOHGi4u/vn6nf/cf57rvvFBcXFyU+/t71r1u3TrGwsFCioqIURVGUoKAgxcfHR0lPTzf16dGjh9KzZ8+HxqIoivLBBx8oXbt2Na2/8MILysSJE03rY8aMUSpWrKikpqZmub+Xl5cyduzYLLeFhYUpgHL48GFT2+3bt81+L9u2bVMAZc2aNY+MU1EUpWbNmsrs2bMVRVGUM2fOKIASEhKSZd/IyEhFq9Uqe/fuVRRFUVJTUxU3Nzdl0aJFWfbP9Dm/T27yNdVHZksaRVF4f+URIm4mUq6ULZ+/7I+FhUbtsIQQQhRmVnbGEVK1zp1D1apVo2nTpixYsIBWrVpx7tw5du7cyZQpUwDjfS7Tpk3jl19+ITIyktTUVFJSUnI8J/bUqVN4e3vj5XVvlDqre2xWrFjBV199xfnz54mPjyc9PT3XN4CfOnUKf39/7O3vjUo3a9YMg8HAmTNnTN8g16xZE632Xl34smXLcuzYsYceV6/Xs3jxYr788ktTW9++fRk5ciQTJkzAwsKC0NBQmjdvjpWVVab9r1+/zpUrV3j22WdzdT1ZadCggdl6fHw8kyZNYt26dVy9epX09HSSkpK4ePEiYJwyoNVqadmyZZbH8/LyolOnTixYsIBGjRrxxx9/kJKSQo8ePZ441kdRfc5sSTN/VxibTlzDWmvB3L71KWVnrXZIQgghCjuNxvhVvxovTe4GXF577TV+++034uLiWLhwIX5+fqbkZ8aMGXz55ZeMGjWKbdu2ERoaSmBgIKmpqXn2Vu3Zs4c+ffrQsWNH/vzzTw4fPszYsWPz9Bz3ezDh1Gg0GAyGh/bftGkTkZGR9OzZE0tLSywtLenVqxcRERGmG+JtbW0fuv+jtgGmqZnKfXOdHzaH9/5EHWDkyJGsXr2aadOmsXPnTkJDQ6ldu7bpvcvu3AADBw7k559/JikpiYULF9KzZ898v4FPktkCtD/8FtM3nAZgfJca1ClfSt2AhBBCiDz28ssvY2FhwbJly/jxxx8ZMGCAaf7s7t27eeGFF+jbty/+/v5UqlSJ//77L8fHrl69OpcuXeLq1aumtn///deszz///IOPjw9jx46lQYMGVKlShYiICLM+1tbW6PX6bM915MgREhISTG27d+/GwsKCqlUfv4zm/Pnz6dWrF6GhoWavXr16mW4Eq1OnDjt37swyCXV0dMTX19esEtT93N3dAczeo/tvBnuU3bt3ExwcTLdu3ahduzaenp6Eh4ebtteuXRuDwcDff//90GN07NgRe3t75s6dy8aNGxkwYECOzv0kJJktINHxKQxddgi9QeGFul70bVxB7ZCEEEKIPOfg4EDPnj0ZM2YMV69eJTg42LStSpUqhISE8M8//3Dq1CneeOONTLXmH6Vt27Y89dRTBAUFceTIEXbu3MnYsWPN+lSpUoWLFy/y888/c/78eb766itWr15t1sfX15ewsDBCQ0OJjo7Oss5rnz59sLGxISgoiOPHj7Nt2zbefvttXn311UxPLs2pGzdu8McffxAUFEStWrXMXv369WPNmjXcunWLoUOHEhsbS69evThw4ABnz57lp59+4syZM4CxTu5nn33GV199xdmzZzl06BCzZ88GjKOnTz/9NB9//DGnTp3i77//Zty4cTmKr0qVKqxatYrQ0FCOHDnCK6+8YjbK7OvrS1BQEAMGDGDNmjWEhYWxfft2fvnlF1MfrVZLcHAwY8aMoUqVKjkutfokJJktAHqDwjs/H+ZabAqVyzgwrVtt01+pQgghRHHz2muvcfv2bQIDA83mt44bN4769esTGBhIq1at8PT0pGvXrjk+roWFBatXryYpKYlGjRoxcOBAPvroI7M+zz//PO+++y5Dhw6lbt26/PPPP4wfP96sT/fu3Wnfvj2tW7fG3d09y/JgdnZ2bNq0iVu3btGwYUNeeuklnn32WebMmZO7N+M+P/74I/b29lnOd3322WextbVlyZIluLq68tdffxEfH0/Lli0JCAjg+++/N01pCAoKYtasWXzzzTfUrFmTzp07c/bsWdOxFixYQHp6OgEBAQwfPpypU6fmKL7PP/8cFxcXmjZtSpcuXQgMDKR+/fpmfebOnctLL73EW2+9RbVq1Rg0aJDZ6DUYf/+pqammMqv5TaMoOSwgV0zExsbi7OxMTExMgT0N7PPNZ/jqr3PYWWtZO7QZlcs4Fsh5hRBCFE3JycmEhYVRsWJFbGykBrkoWnbu3Mmzzz7LpUuXHjmK/ajPeW7yNalmkM+2nbnOV38ZCwVPf7G2JLJCCCGEKJZSUlK4ceMGkyZNokePHo89HSO3ZJpBPluwKwyAV5/24YW65VSORgghhBAifyxfvhwfHx/u3LnDp59+WmDnlZHZfPZ9vwbM3xXGwOYV1Q5FCCGEECLfBAcHm93wV1Akmc1nNlZahrTOx0e4CSGEEEKUYDLNQAghhCikStg92qKEyavPtySzQgghRCGT8XjU/HpqlRCFQcbn+/7HAT8OmWYghBBCFDKWlpbY2dlx48YNrKysTI8oFaK4MBgM3LhxAzs7OywtnywdlWRWCCGEKGQ0Gg1ly5YlLCws06NYhSguLCwsqFChwhM/SEqSWSGEEKIQsra2pkqVKjLVQBRb1tbWefKtgySzQgghRCFlYWEhTwATIhsyCUcIIYQQQhRZkswKIYQQQogiS5JZIYQQQghRZJW4ObMZBXpjY2NVjkQIIYQQQmQlI0/LyYMVSlwyGxcXB4C3t7fKkQghhBBCiEeJi4vD2dn5kX00Sgl7Vp7BYODKlSs4Ojo+cV2znIiNjcXb25tLly7h5OSU7+cThYP83kse+Z2XPPI7L3nkd15wFEUhLi4OLy+vbMt3lbiRWQsLC8qXL1/g53VycpIPfgkkv/eSR37nJY/8zkse+Z0XjOxGZDPIDWBCCCGEEKLIkmRWCCGEEEIUWZLM5jOdTsfEiRPR6XRqhyIKkPzeSx75nZc88jsveeR3XjiVuBvAhBBCCCFE8SEjs0IIIYQQosiSZFYIIYQQQhRZkswKIYQQQogiS5JZIYQQQghRZEkym8++/vprfH19sbGxoXHjxuzbt0/tkEQ+mT59Og0bNsTR0ZEyZcrQtWtXzpw5o3ZYogB9/PHHaDQahg8frnYoIp9FRkbSt29fXF1dsbW1pXbt2hw4cEDtsEQ+0ev1jB8/nooVK2Jra4ufnx8ffvghcg994SDJbD5asWIFI0aMYOLEiRw6dAh/f38CAwO5fv262qGJfPD3338zZMgQ/v33X0JCQkhLS+O5554jISFB7dBEAdi/fz/ffvstderUUTsUkc9u375Ns2bNsLKyYsOGDZw8eZLPPvsMFxcXtUMT+eSTTz5h7ty5zJkzh1OnTvHJJ5/w6aefMnv2bLVDE0hprnzVuHFjGjZsyJw5cwAwGAx4e3vz9ttvM3r0aJWjE/ntxo0blClThr///psWLVqoHY7IR/Hx8dSvX59vvvmGqVOnUrduXWbNmqV2WCKfjB49mt27d7Nz5061QxEFpHPnznh4eDB//nxTW/fu3bG1tWXJkiUqRiZARmbzTWpqKgcPHqRt27amNgsLC9q2bcuePXtUjEwUlJiYGABKly6tciQivw0ZMoROnTqZ/XsXxdfatWtp0KABPXr0oEyZMtSrV4/vv/9e7bBEPmratClbt27lv//+A+DIkSPs2rWLDh06qByZALBUO4DiKjo6Gr1ej4eHh1m7h4cHp0+fVikqUVAMBgPDhw+nWbNm1KpVS+1wRD76+eefOXToEPv371c7FFFALly4wNy5cxkxYgQffPAB+/fvZ9iwYVhbWxMUFKR2eCIfjB49mtjYWKpVq4ZWq0Wv1/PRRx/Rp08ftUMTSDIrRL4YMmQIx48fZ9euXWqHIvLRpUuXeOeddwgJCcHGxkbtcEQBMRgMNGjQgGnTpgFQr149jh8/zrx58ySZLaZ++eUXli5dyrJly6hZsyahoaEMHz4cLy8v+Z0XApLM5hM3Nze0Wi3Xrl0za7927Rqenp4qRSUKwtChQ/nzzz/ZsWMH5cuXVzsckY8OHjzI9evXqV+/vqlNr9ezY8cO5syZQ0pKClqtVsUIRX4oW7YsNWrUMGurXr06v/32m0oRifz2/vvvM3r0aHr16gVA7dq1iYiIYPr06ZLMFgIyZzafWFtbExAQwNatW01tBoOBrVu30qRJExUjE/lFURSGDh3K6tWr+euvv6hYsaLaIYl89uyzz3Ls2DFCQ0NNrwYNGtCnTx9CQ0MlkS2mmjVrlqns3n///YePj49KEYn8lpiYiIWFecqk1WoxGAwqRSTuJyOz+WjEiBEEBQXRoEEDGjVqxKxZs0hISKB///5qhybywZAhQ1i2bBm///47jo6OREVFAeDs7Iytra3K0Yn84OjomGlOtL29Pa6urjJXuhh79913adq0KdOmTePll19m3759fPfdd3z33XdqhybySZcuXfjoo4+oUKECNWvW5PDhw3z++ecMGDBA7dAEUpor382ZM4cZM2YQFRVF3bp1+eqrr2jcuLHaYYl8oNFosmxfuHAhwcHBBRuMUE2rVq2kNFcJ8OeffzJmzBjOnj1LxYoVGTFiBIMGDVI7LJFP4uLiGD9+PKtXr+b69et4eXnRu3dvJkyYgLW1tdrhlXiSzAohhBBCiCJL5swKIYQQQogiS5JZIYQQQghRZEkyK4QQQgghiixJZoUQQgghRJElyawQQgghhCiyJJkVQgghhBBFliSzQgghhBCiyJJkVgghhBBCFFmSzAohhBBCiCJLklkhhBBCCFFkSTIrhBBCCCGKLElmhRBCCCFEkSXJrBAi3wUHB+Pr6/tY+06aNAmNRpO3ARUy4eHhaDQaFi1aVODn1mg0TJo0ybS+aNEiNBoN4eHh2e7r6+tLcHBwnsbzJJ8VIUTJJMmsECWYRqPJ0Wv79u1qh1riDRs2DI1Gw7lz5x7aZ+zYsWg0Go4ePVqAkeXelStXmDRpEqGhoWqHYpLxB8XMmTPVDkUIkUuWagcghFDPTz/9ZLb+448/EhISkqm9evXqT3Se77//HoPB8Fj7jhs3jtGjRz/R+YuDPn36MHv2bJYtW8aECROy7LN8+XJq165NnTp1Hvs8r776Kr169UKn0z32MbJz5coVJk+ejK+vL3Xr1jXb9iSfFSFEySTJrBAlWN++fc3W//33X0JCQjK1PygxMRE7O7scn8fKyuqx4gOwtLTE0lL+U9W4cWMqV67M8uXLs0xm9+zZQ1hYGB9//PETnUer1aLVap/oGE/iST4rQoiSSaYZCCEeqVWrVtSqVYuDBw/SokUL7Ozs+OCDDwD4/fff6dSpE15eXuh0Ovz8/Pjwww/R6/Vmx3hwHuT9X+l+9913+Pn5odPpaNiwIfv37zfbN6s5sxqNhqFDh7JmzRpq1aqFTqejZs2abNy4MVP827dvp0GDBtjY2ODn58e3336b43m4O3fupEePHlSoUAGdToe3tzfvvvsuSUlJma7PwcGByMhIunbtioODA+7u7owcOTLTe3Hnzh2Cg4NxdnamVKlSBAUFcefOnWxjAePo7OnTpzl06FCmbcuWLUOj0dC7d29SU1OZMGECAQEBODs7Y29vT/Pmzdm2bVu258hqzqyiKEydOpXy5ctjZ2dH69atOXHiRKZ9b926xciRI6lduzYODg44OTnRoUMHjhw5Yuqzfft2GjZsCED//v1NU1ky5gtnNWc2ISGB9957D29vb3Q6HVWrVmXmzJkoimLWLzefi8d1/fp1XnvtNTw8PLCxscHf35/Fixdn6vfzzz8TEBCAo6MjTk5O1K5dmy+//NK0PS0tjcmTJ1OlShVsbGxwdXXlmWeeISQkJM9iFaKkkOEOIUS2bt68SYcOHejVqxd9+/bFw8MDMCY+Dg4OjBgxAgcHB/766y8mTJhAbGwsM2bMyPa4y5YtIy4ujjfeeAONRsOnn37Kiy++yIULF7Idodu1axerVq3irbfewtHRka+++oru3btz8eJFXF1dATh8+DDt27enbNmyTJ48Gb1ez5QpU3B3d8/Rda9cuZLExEQGDx6Mq6sr+/btY/bs2Vy+fJmVK1ea9dXr9QQGBtK4cWNmzpzJli1b+Oyzz/Dz82Pw4MGAMSl84YUX2LVrF2+++SbVq1dn9erVBAUF5SiePn36MHnyZJYtW0b9+vXNzv3LL7/QvHlzKlSoQHR0ND/88AO9e/dm0KBBxMXFMX/+fAIDA9m3b1+mr/azM2HCBKZOnUrHjh3p2LEjhw4d4rnnniM1NdWs34ULF1izZg09evSgYsWKXLt2jW+//ZaWLVty8uRJvLy8qF69OlOmTGHChAm8/vrrNG/eHICmTZtmeW5FUXj++efZtm0br732GnXr1mXTpk28//77REZG8sUXX5j1z8nn4nElJSXRqlUrzp07x9ChQ6lYsSIrV64kODiYO3fu8M477wAQEhJC7969efbZZ/nkk08AOHXqFLt37zb1mTRpEtOnT2fgwIE0atSI2NhYDhw4wKFDh2jXrt0TxSlEiaMIIcRdQ4YMUR78z0LLli0VQJk3b16m/omJiZna3njjDcXOzk5JTk42tQUFBSk+Pj6m9bCwMAVQXF1dlVu3bpnaf//9dwVQ/vjjD1PbxIkTM8UEKNbW1sq5c+dMbUeOHFEAZfbs2aa2Ll26KHZ2dkpkZKSp7ezZs4qlpWWmY2Ylq+ubPn26otFolIiICLPrA5QpU6aY9a1Xr54SEBBgWl+zZo0CKJ9++qmpLT09XWnevLkCKAsXLsw2poYNGyrly5dX9Hq9qW3jxo0KoHz77bemY6akpJjtd/v2bcXDw0MZMGCAWTugTJw40bS+cOFCBVDCwsIURVGU69evK9bW1kqnTp0Ug8Fg6vfBBx8ogBIUFGRqS05ONotLUYy/a51OZ/be7N+//6HX++BnJeM9mzp1qlm/l156SdFoNGafgZx+LrKS8ZmcMWPGQ/vMmjVLAZQlS5aY2lJTU5UmTZooDg4OSmxsrKIoivLOO+8oTk5OSnp6+kOP5e/vr3Tq1OmRMQkhckamGQghsqXT6ejfv3+mdltbW9NyXFwc0dHRNG/enMTERE6fPp3tcXv27ImLi4tpPWOU7sKFC9nu27ZtW/z8/EzrderUwcnJybSvXq9ny5YtdO3aFS8vL1O/ypUr06FDh2yPD+bXl5CQQHR0NE2bNkVRFA4fPpyp/5tvvmm23rx5c7NrWb9+PZaWlqaRWjDOUX377bdzFA8Y5zlfvnyZHTt2mNqWLVuGtbU1PXr0MB3T2toaAIPBwK1bt0hPT6dBgwZZTlF4lC1btpCamsrbb79tNjVj+PDhmfrqdDosLIz/W9Hr9dy8eRMHBweqVq2a6/NmWL9+PVqtlmHDhpm1v/feeyiKwoYNG8zas/tcPIn169fj6elJ7969TW1WVlYMGzaM+Ph4/v77bwBKlSpFQkLCI6cMlCpVihMnTnD27NknjkuIkk6SWSFEtsqVK2dKju534sQJunXrhrOzM05OTri7u5tuHouJicn2uBUqVDBbz0hsb9++net9M/bP2Pf69eskJSVRuXLlTP2yasvKxYsXCQ4OpnTp0qZ5sC1btgQyX5+NjU2m6Qv3xwMQERFB2bJlcXBwMOtXtWrVHMUD0KtXL7RaLcuWLQMgOTmZ1atX06FDB7M/DBYvXkydOnVM8zHd3d1Zt25djn4v94uIiACgSpUqZu3u7u5m5wNj4vzFF19QpUoVdDodbm5uuLu7c/To0Vyf9/7ze3l54ejoaNaeUWEjI74M2X0unkRERARVqlQxJewPi+Wtt97iqaeeokOHDpQvX54BAwZkmrc7ZcoU7ty5w1NPPUXt2rV5//33C31JNSEKK0lmhRDZun+EMsOdO3do2bIlR44cYcqUKfzxxx+EhISY5gjmpLzSw+6aVx64sSev980JvV5Pu3btWLduHaNGjWLNmjWEhISYblR68PoKqgJAmTJlaNeuHb/99htpaWn88ccfxMXF0adPH1OfJUuWEBwcjJ+fH/Pnz2fjxo2EhITQpk2bfC17NW3aNEaMGEGLFi1YsmQJmzZtIiQkhJo1axZYua38/lzkRJkyZQgNDWXt2rWm+b4dOnQwmxvdokULzp8/z4IFC6hVqxY//PAD9evX54cffiiwOIUoLuQGMCHEY9m+fTs3b95k1apVtGjRwtQeFhamYlT3lClTBhsbmywfMvCoBw9kOHbsGP/99x+LFy+mX79+pvYnudvcx8eHrVu3Eh8fbzY6e+bMmVwdp0+fPmzcuJENGzawbNkynJyc6NKli2n7r7/+SqVKlVi1apXZ1ICJEyc+VswAZ8+epVKlSqb2GzduZBrt/PXXX2ndujXz5883a79z5w5ubm6m9dw80c3Hx4ctW7YQFxdnNjqbMY0lI76C4OPjw9GjRzEYDGajs1nFYm1tTZcuXejSpQsGg4G33nqLb7/9lvHjx5u+GShdujT9+/enf//+xMfH06JFCyZNmsTAgQML7JqEKA5kZFYI8VgyRsDuH/FKTU3lm2++USskM1qtlrZt27JmzRquXLliaj937lymeZYP2x/Mr09RFLPySrnVsWNH0tPTmTt3rqlNr9cze/bsXB2na9eu2NnZ8c0337BhwwZefPFFbGxsHhn73r172bNnT65jbtu2LVZWVsyePdvseLNmzcrUV6vVZhoBXblyJZGRkWZt9vb2ADkqSdaxY0f0ej1z5swxa//iiy/QaDQ5nv+cFzp27EhUVBQrVqwwtaWnpzN79mwcHBxMU1Bu3rxptp+FhYXpQRYpKSlZ9nFwcKBy5cqm7UKInJORWSHEY2natCkuLi4EBQWZHrX6008/FejXudmZNGkSmzdvplmzZgwePNiUFNWqVSvbR6lWq1YNPz8/Ro4cSWRkJE5OTvz2229PNPeyS5cuNGvWjNGjRxMeHk6NGjVYtWpVrueTOjg40LVrV9O82funGAB07tyZVatW0a1bNzp16kRYWBjz5s2jRo0axMfH5+pcGfVyp0+fTufOnenYsSOHDx9mw4YNZqOtGeedMmUK/fv3p2nTphw7doylS5eajegC+Pn5UapUKebNm4ejoyP29vY0btyYihUrZjp/ly5daN26NWPHjiU8PBx/f382b97M77//zvDhw81u9soLW7duJTk5OVN7165def311/n2228JDg7m4MGD+Pr68uuvv7J7925mzZplGjkeOHAgt27dok2bNpQvX56IiAhmz55N3bp1TfNra9SoQatWrQgICKB06dIcOHCAX3/9laFDh+bp9QhREkgyK4R4LK6urvz555+89957jBs3DhcXF/r27cuzzz5LYGCg2uEBEBAQwIYNGxg5ciTjx4/H29ubKVOmcOrUqWyrLVhZWfHHH38wbNgwpk+fjo2NDd26dWPo0KH4+/s/VjwWFhasXbuW4cOHs2TJEjQaDc8//zyfffYZ9erVy9Wx+vTpw7Jlyyhbtixt2rQx2xYcHExUVBTffvstmzZtokaNGixZsoSVK1eyffv2XMc9depUbGxsmDdvHtu2baNx48Zs3ryZTp06mfX74IMPSEhIYNmyZaxYsYL69euzbt26TI8jtrKyYvHixYwZM4Y333yT9PR0Fi5cmGUym/GeTZgwgRUrVrBw4UJ8fX2ZMWMG7733Xq6vJTsbN27M8iELvr6+1KpVi+3btzN69GgWL15MbGwsVatWZeHChQQHB5v69u3bl++++45vvvmGO3fu4OnpSc+ePZk0aZJpesKwYcNYu3YtmzdvJiUlBR8fH6ZOncr777+f59ckRHGnUQrTMIoQQhSArl27SlkkIYQoJmTOrBCiWHvw0bNnz55l/fr1tGrVSp2AhBBC5CkZmRVCFGtly5YlODiYSpUqERERwdy5c0lJSeHw4cOZaqcKIYQoemTOrBCiWGvfvj3Lly8nKioKnU5HkyZNmDZtmiSyQghRTKg6zWDHjh106dIFLy8vNBoNa9asyXaf7du3U79+fXQ6HZUrVzYVMBdCiKwsXLiQ8PBwkpOTiYmJYePGjdSvX1/tsIQQQuQRVZPZhIQE/P39+frrr3PUPywsjE6dOtG6dWtCQ0MZPnw4AwcOZNOmTfkcqRBCCCGEKIwKzZxZjUbD6tWr6dq160P7jBo1inXr1nH8+HFTW69evbhz506WpVSEEEIIIUTxVqTmzO7Zs4e2bduatQUGBjJ8+PCH7pOSkmL2RBWDwcCtW7dwdXXN1SMVhRBCCCFEwVAUhbi4OLy8vMweH52VIpXMRkVF4eHhYdbm4eFBbGwsSUlJ2NraZtpn+vTpTJ48uaBCFEIIIYQQeeTSpUuUL1/+kX2KVDL7OMaMGcOIESNM6zExMVSoUIFLly7h5OSkYmRCCCGEECIrsbGxeHt7mx4T/ShFKpn19PTk2rVrZm3Xrl3Dyckpy1FZAJ1Oh06ny9Tu5OQkyawQQgghRCGWkymhReoJYE2aNGHr1q1mbSEhITRp0kSliIQQQgghhJpUTWbj4+MJDQ0lNDQUMJbeCg0N5eLFi4BxikC/fv1M/d98800uXLjA//73P06fPs0333zDL7/8wrvvvqtG+EIIIYQQQmWqJrMHDhygXr161KtXD4ARI0ZQr149JkyYAMDVq1dNiS1AxYoVWbduHSEhIfj7+/PZZ5/xww8/EBgYqEr8QgghhBBCXYWmzmxBiY2NxdnZmZiYGJkzK4QQQmRDURTS09PR6/VqhyKKGSsrK7RabZbbcpOvFakbwIQQQghRcFJTU7l69SqJiYlqhyKKIY1GQ/ny5XFwcHii40gyK4QQQohMDAYDYWFhaLVavLy8sLa2locNiTyjKAo3btzg8uXLVKlS5aEjtDkhyawQQgghMklNTcVgMODt7Y2dnZ3a4YhiyN3dnfDwcNLS0p4omS1SpbmEEEIIUbCye5SoEI8rr0b65RMqhBBCCCGKLElmhRBCCCFEkSXJrBBCCCHEI/j6+jJr1qwc99++fTsajYY7d+7kW0ziHklmhRBCCFEsaDSaR74mTZr0WMfdv38/r7/+eo77N23alKtXr+Ls7PxY58spSZqNpJqBEEIIIYqFq1evmpZXrFjBhAkTOHPmjKnt/nqmiqKg1+uxtMw+FXJ3d89VHNbW1nh6euZqH/H4ZGRWCCGEENlSFIXE1HRVXjl9WKmnp6fp5ezsjEajMa2fPn0aR0dHNmzYQEBAADqdjl27dnH+/HleeOEFPDw8cHBwoGHDhmzZssXsuA9OM9BoNPzwww9069YNOzs7qlSpwtq1a03bHxwxXbRoEaVKlWLTpk1Ur14dBwcH2rdvb5Z8p6enM2zYMEqVKoWrqyujRo0iKCiIrl27Pvbv7Pbt2/Tr1w8XFxfs7Ozo0KEDZ8+eNW2PiIigS5cuuLi4YG9vT82aNVm/fr1p3z59+uDu7o6trS1VqlRh4cKFjx1LfpKRWSGEEEJkKylNT40Jm1Q598kpgdhZ503KMnr0aGbOnEmlSpVwcXHh0qVLdOzYkY8++gidTsePP/5Ily5dOHPmDBUqVHjocSZPnsynn37KjBkzmD17Nn369CEiIoLSpUtn2T8xMZGZM2fy008/YWFhQd++fRk5ciRLly4F4JNPPmHp0qUsXLiQ6tWr8+WXX7JmzRpat2792NcaHBzM2bNnWbt2LU5OTowaNYqOHTty8uRJrKysGDJkCKmpqezYsQN7e3tOnjxpGr0eP348J0+eZMOGDbi5uXHu3DmSkpIeO5b8JMmsEEIIIUqMKVOm0K5dO9N66dKl8ff3N61/+OGHrF69mrVr1zJ06NCHHic4OJjevXsDMG3aNL766iv27dtH+/bts+yflpbGvHnz8PPzA2Do0KFMmTLFtH327NmMGTOGbt26ATBnzhzTKOnjyEhid+/eTdOmTQFYunQp3t7erFmzhh49enDx4kW6d+9O7dq1AahUqZJp/4sXL1KvXj0aNGgAGEenCytJZoUQQgiRLVsrLSenBKp27rySkZxliI+PZ9KkSaxbt46rV6+Snp5OUlISFy9efORx6tSpY1q2t7fHycmJ69evP7S/nZ2dKZEFKFu2rKl/TEwM165do1GjRqbtWq2WgIAADAZDrq4vw6lTp7C0tKRx48amNldXV6pWrcqpU6cAGDZsGIMHD2bz5s20bduW7t27m65r8ODBdO/enUOHDvHcc8/RtWtXU1Jc2MicWSGEEEJkS6PRYGdtqcorr54UBcbE834jR45k9erVTJs2jZ07dxIaGkrt2rVJTU195HGsrKwyvT+PSjyz6p/TucD5ZeDAgVy4cIFXX32VY8eO0aBBA2bPng1Ahw4diIiI4N133+XKlSs8++yzjBw5UtV4H0aSWSGEEEKUWLt37yY4OJhu3bpRu3ZtPD09CQ8PL9AYnJ2d8fDwYP/+/aY2vV7PoUOHHvuY1atXJz09nb1795rabt68yZkzZ6hRo4apzdvbmzfffJNVq1bx3nvv8f3335u2ubu7ExQUxJIlS5g1axbffffdY8eTn2SagRBCCCFKrCpVqrBq1Sq6dOmCRqNh/Pjxj/3V/pN4++23mT59OpUrV6ZatWrMnj2b27dv52hU+tixYzg6OprWNRoN/v7+vPDCCwwaNIhvv/0WR0dHRo8eTbly5XjhhRcAGD58OB06dOCpp57i9u3bbNu2jerVqwMwYcIEAgICqFmzJikpKfz555+mbYWNJLMFIF1vwFIrg+BCCCFEYfP5558zYMAAmjZtipubG6NGjSI2NrbA4xg1ahRRUVH069cPrVbL66+/TmBgIFpt9vOFW7RoYbau1WpJT09n4cKFvPPOO3Tu3JnU1FRatGjB+vXrTVMe9Ho9Q4YM4fLl/7d33+FRlekbx78zk94TIAUIhE4oAhKIgAVWEOysBVQUENFdf4AFVwUU6yq6NkQQlHVB3UVQF3VXXZCuAkpHSuglgCQhhCSkJzPz++MkIYEQEsjkpNyf6zpXMqfNM0Tl9s1z3vcoAQEBDBo0iHfeeQcw5sqdOHEihw4dwtvbm6uuuor58+dX/QevAhan2Q0b1Sw9PZ3AwEDS0tIICAhw+futP5TCX77Yyt+Hx9AmzP/CF4iIiNQAOTk5HDx4kBYtWuDl5WV2OfWOw+EgOjqaIUOG8PLLL5tdjkuU989YZfKahgtdyOl08u7SvRw+mcXIOetJOp1jdkkiIiJSAx0+fJjZs2ezZ88etm3bxsMPP8zBgwe55557zC6txlOYdSGLxcJ7d3ejRUNfjqVm8+DHG8jOs5tdloiIiNQwVquVuXPn0qNHD/r06cO2bdtYunRpje1TrUkUZl0s2NeDOSN7EOzjztajaTy2YDN2R73q7BAREZELiIyMZPXq1aSlpZGens6aNWvO6YWVsinMVoOohr58ODwGD5uVxTsSmfJ9nNkliYiIiNQJCrPVpEdUCG8OMZbL+/vPB/l07SFzCxIRERGpAxRmq9EtXRrz5MB2ADz/nx0s35VockUiIiIitZvCbDX7v76tGBoTicMJY+dtZvuxNLNLEhEREam1FGarmcVi4a9/7ESf1g3IyrPzwMfrOZ6WbXZZIiIiIrWSwqwJ3G1W3h/WnTahfiSm53L/nPVk5BaYXZaIiIhIraMwa5JAb3fm3N+Dhn6e7Eo4zZh/baLAXv1rQYuIiEhpffv25bHHHit+HRUVxdSpU8u9xmKx8PXXX1/ye1fVfeoThVkTNQ324aMRMXi5W1m15wTP/2cH9Wx1YRERkSpz8803M2jQoDKP/fTTT1gsFn777bdK33f9+vU89NBDl1peKS+88AJdu3Y9Z//x48e5/vrrq/S9zjZ37lyCgoJc+h7VSWHWZF0ig5h2VzcsFvjXr/HM/umA2SWJiIjUSg888ABLlizh6NGj5xybM2cOMTExXHbZZZW+b6NGjfDx8amKEi8oPDwcT0/PanmvukJhtga4rmM4z97YAYBXv9/F/7YdN7kiERGRszidkJdpzlbB31redNNNNGrUiLlz55ban5GRwRdffMEDDzzAyZMnufvuu2nSpAk+Pj507tyZzz77rNz7nt1msHfvXq6++mq8vLzo0KEDS5YsOeeap59+mrZt2+Lj40PLli2ZPHky+fn5gDEy+uKLL7J161YsFgsWi6W45rPbDLZt28Yf/vAHvL29adCgAQ899BAZGRnFx0eOHMngwYN58803iYiIoEGDBowZM6b4vS5GfHw8t956K35+fgQEBDBkyBASE89MJ7p161b69euHv78/AQEBdO/enQ0bNgBw+PBhbr75ZoKDg/H19aVjx458//33F11LRbi59O5SYaP6RBF/MpOP1x7msQVbCA/0oluzYLPLEhERMeRnwauNzXnvSb+Dh+8FT3Nzc2P48OHMnTuXZ555BovFAsAXX3yB3W7n7rvvJiMjg+7du/P0008TEBDAd999x3333UerVq3o2bPnBd/D4XBw2223ERYWxq+//kpaWlqp/toi/v7+zJ07l8aNG7Nt2zYefPBB/P39eeqppxg6dCjbt29n0aJFLF26FIDAwMBz7pGZmcnAgQPp1asX69evJykpidGjRzN27NhSgX3FihVERESwYsUK9u3bx9ChQ+natSsPPvjgBT9PWZ+vKMiuWrWKgoICxowZw9ChQ1m5ciUAw4YNo1u3bsycORObzcaWLVtwd3cHYMyYMeTl5fHjjz/i6+vLzp078fPzq3QdlaEwW0NYLBYm39SBI6eyWb4ridEfb+DrMX2IDKmeX2uIiIjUBaNGjeKNN95g1apV9O3bFzBaDG6//XYCAwMJDAzkL3/5S/H548aNY/HixXz++ecVCrNLly5l165dLF68mMaNjXD/6quvntPn+uyzzxZ/HxUVxV/+8hfmz5/PU089hbe3N35+fri5uREeHn7e95o3bx45OTl88skn+PoaYX769OncfPPNvP7664SFhQEQHBzM9OnTsdlstG/fnhtvvJFly5ZdVJhdtmwZ27Zt4+DBg0RGRgLwySef0LFjR9avX0+PHj2Ij4/nySefpH379gC0adOm+Pr4+Hhuv/12OnfuDEDLli0rXUNlKczWIG42K+/d3Y0hH6xlx+/pjJyzjoUP9yHQx93s0kREpL5z9zFGSM167wpq3749vXv35h//+Ad9+/Zl3759/PTTT7z00ksA2O12Xn31VT7//HOOHTtGXl4eubm5Fe6JjYuLIzIysjjIAvTq1euc8xYsWMC0adPYv38/GRkZFBQUEBAQUOHPUfReXbp0KQ6yAH369MHhcLB79+7iMNuxY0dsNlvxOREREWzbtq1S71XyPSMjI4uDLECHDh0ICgoiLi6OHj16MH78eEaPHs2nn35K//79ufPOO2nVqhUAjzzyCA8//DA//PAD/fv35/bbb7+oPuXKUM9sDePr6cY/RvYgItCL/Scy+fM/N5JXoCm7RETEZBaL8at+M7bCdoGKeuCBB/j3v//N6dOnmTNnDq1ateKaa64B4I033uDdd9/l6aefZsWKFWzZsoWBAweSl5dXZX9Ua9euZdiwYdxwww18++23bN68mWeeeaZK36Okol/xF7FYLDgcrssOL7zwAjt27ODGG29k+fLldOjQga+++gqA0aNHc+DAAe677z62bdtGTEwM7733nstqAYXZGikswIt/jOyBn6cbaw+cZMLC3zRll4iISAUNGTIEq9XKvHnz+OSTTxg1alRx/+zq1au59dZbuffee+nSpQstW7Zkz549Fb53dHQ0R44c4fjxMw9r//LLL6XOWbNmDc2bN+eZZ54hJiaGNm3acPjw4VLneHh4YLfbL/heW7duJTMzs3jf6tWrsVqttGvXrsI1V0bR5zty5Ejxvp07d5KamkqHDh2K97Vt25bHH3+cH374gdtuu405c+YUH4uMjOTPf/4zCxcu5IknnmD27NkuqbWIwmwNFR0RwIxhl2OzWli46RjvLd9ndkkiIiK1gp+fH0OHDmXixIkcP36ckSNHFh9r06YNS5YsYc2aNcTFxfGnP/2p1JP6F9K/f3/atm3LiBEj2Lp1Kz/99BPPPPNMqXPatGlDfHw88+fPZ//+/UybNq145LJIVFQUBw8eZMuWLSQnJ5Obm3vOew0bNgwvLy9GjBjB9u3bWbFiBePGjeO+++4rbjG4WHa7nS1btpTa4uLi6N+/P507d2bYsGFs2rSJdevWMXz4cK655hpiYmLIzs5m7NixrFy5ksOHD7N69WrWr19PdHQ0AI899hiLFy/m4MGDbNq0iRUrVhQfcxWF2RrsmraNeOnWjgC8vWQPX28+ZnJFIiIitcMDDzzAqVOnGDhwYKn+1meffZbLL7+cgQMH0rdvX8LDwxk8eHCF72u1Wvnqq6/Izs6mZ8+ejB49mldeeaXUObfccguPP/44Y8eOpWvXrqxZs4bJkyeXOuf2229n0KBB9OvXj0aNGpU5PZiPjw+LFy8mJSWFHj16cMcdd3Dttdcyffr0yv1hlCEjI4Nu3bqV2m6++WYsFgvffPMNwcHBXH311fTv35+WLVuyYMECAGw2GydPnmT48OG0bduWIUOGcP311/Piiy8CRkgeM2YM0dHRDBo0iLZt2/L+++9fcr3lsTjr2e+v09PTCQwMJC0trdKN2GaZ8n0cH/x4AA+blU8f6ElsywZmlyQiInVcTk4OBw8epEWLFnh5eZldjtRB5f0zVpm8ppHZWuDpQe25oXM4eXYHD326kf0nMi58kYiIiEg9oDBbC1itFt4e0pVuzYJIy87n/jnrOZlxbm+NiIiISH2jMFtLeLnbmD08hsgQb+JTsnjwkw3k5Jf/FKSIiIhIXacwW4s09PNkzsgeBHi5sSk+lSe+2IrDUa9ankVERERKUZitZVqH+vPBfTG42yx899tx3vhht9kliYhIHVbPnhOXalRV/2wpzNZCvVo14LXbjKXhZq7cz2fr4k2uSERE6pqiVaWysrJMrkTqqqIV0UouxXsx3KqimEsxY8YM3njjDRISEujSpQvvvfcePXv2PO/5U6dOZebMmcTHx9OwYUPuuOMOpkyZUu+mDbm9e1PiU7J4d9lenv16O02CvLm6bSOzyxIRkTrCZrMRFBREUlISYMx5aqnksrIi5+NwODhx4gQ+Pj64uV1aHDU1zC5YsIDx48cza9YsYmNjmTp1KgMHDmT37t2Ehoaec/68efOYMGEC//jHP+jduzd79uxh5MiRWCwW3n77bRM+gbke69+G+JQsvtp8jP/71ya+fLgX7cNrx9y5IiJS84WHhwMUB1qRqmS1WmnWrNkl/0+SqYsmxMbG0qNHj+KVLBwOB5GRkYwbN44JEyacc/7YsWOJi4tj2bJlxfueeOIJfv31V37++ecKvWdtXDShPLkFdu77aB3rDqbQONCLr8f0ITSgfo1Si4iIa9ntdvLz880uQ+oYDw8PrNayO14rk9dMG5nNy8tj48aNTJw4sXif1Wqlf//+rF27tsxrevfuzT//+U/WrVtHz549OXDgAN9//z333Xffed8nNze31HrH6enpVfchagBPNxsf3ted22au4cCJTB74eAML/nQFPh6md5CIiEgdYbPZLrmvUcRVTHsALDk5GbvdTlhYWKn9YWFhJCQklHnNPffcw0svvcSVV16Ju7s7rVq1om/fvkyaNOm87zNlyhQCAwOLt8jIyCr9HDVBkI8Hc0b2IMTXg23H0njks83YNWWXiIiI1AO1ajaDlStX8uqrr/L++++zadMmFi5cyHfffcfLL7983msmTpxIWlpa8XbkyJFqrLj6NG/gy+zhMXi4WVkal8TL3+40uyQRERERlzPtd9ENGzbEZrORmJhYan9iYmJxw/nZJk+ezH333cfo0aMB6Ny5M5mZmTz00EM888wzZfZdeHp64unpWfUfoAbq3jyYd4Z0Zcy8Tcxdc4jmDXy4v08Ls8sSERERcRnTRmY9PDzo3r17qYe5HA4Hy5Yto1evXmVek5WVdU5gLerh0aTOhhsvi+DpQe0BeOnbnSzZmXiBK0RERERqL1PbDMaPH8/s2bP5+OOPiYuL4+GHHyYzM5P7778fgOHDh5d6QOzmm29m5syZzJ8/n4MHD7JkyRImT57MzTffrMb0Ev58TUvu7hmJ0wmPfLaZbUfTzC5JRERExCVMfeR96NChnDhxgueee46EhAS6du3KokWLih8Ki4+PLzUS++yzz2KxWHj22Wc5duwYjRo14uabb+aVV14x6yPUSBaLhZdu7cTRU9n8tDeZUR+v5+sxfWgS5G12aSIiIiJVytR5Zs1Q1+aZLc/pnHzunLWWXQmnaRfmzxcP9yLAy93sskRERETKVZm8VqtmM5DK8fdy5x8jexDq78nuxNOM+dcm8u0Os8sSERERqTIKs3Vc4yBvPhrRA293Gz/tTWby19v1sJyIiIjUGQqz9UDnpoG8d3c3rBaYv/4Is1YdMLskERERkSqhMFtP9O8QxnM3dQDg9UW7+Pa3302uSEREROTSKczWIyP7tOD+PlEAjP98KxsPp5hbkIiIiMglUpitZ569sQMDOoSRV+DgwU82cvhkptkliYiIiFw0hdl6xma18O5dXencJJCUzDzun7OeU5l5ZpclIiIiclEUZushHw83PhoRQ5Mgbw4kZ/Knf24kt8BudlkiIiIilaYwW0+FBnjxj5E98Pd0Y93BFCb8e5um7BIREZFaR2G2HmsX7s/7916Om9XCV5uP8c7SvWaXJCIiIlIpCrP13FVtGvHKHzsBMG3ZXr7ceNTkikREREQqTmFWGNqjGf/XtxUAExf+xpr9ySZXJCIiIlIxCrMCwF+ua8dNl0WQb3fy5083si/ptNkliYiIiFyQwqwAYLVaePPOLnRvHkx6TgH3z11Pckau2WWJiIiIlEthVop5uduYPTyG5g18OJKSzeiPN5CTrym7REREpOZSmJVSQnw9mDOyB0E+7mw5ksrjC7bgcGjKLhEREamZFGblHC0b+fHhfTF42Kz8b3sCry3aZXZJIiIiImVSmJUy9WwRwt/uuAyAD388wD9/OWxyRSIiIiLnUpiV8xrcrQnjB7QF4LlvtrNid5LJFYmIiIiUpjAr5Rr3h9bc0b0pDieM/dcmdv6ebnZJIiIiIsUUZqVcFouFV//Ymd6tGpCZZ2fU3PUkpOWYXZaIiIgIoDArFeDhZmXmvd1pHepHQnoOo+auJyO3wOyyRERERBRmpWICvd2ZM7IHDf082Hk8nXHzNlFgd5hdloiIiNRzCrNSYZEhPsweHoOnm5UVu0/w4n934nRqDloRERExj8KsVEq3ZsG8e1dXLBb49JfDfPTzQbNLEhERkXpMYVYqbVCnCCZdHw3AK9/HsWh7gskViYiISH2lMFsdkveaXUGVG31VC+69ohlOJzy2YDNbjqSaXZKIiIjUQwqzrrZuNrx/Baz/u9mVVCmLxcILN3ekb7tG5OQ7GP3xeo6kZJldloiIiNQzCrOu5HTC75vBUQDfPQHfjgd7vtlVVRk3m5Xp91xOdEQAyRl5jJq7nrTsuvP5REREpOZTmHUliwVunQHXPg9YYMNH8OkfISvF7MqqjJ+nG/8YGUNYgCd7kzL4v39tJK9AU3aJiIhI9VCYdTWLBa4aD3d/Bh5+cOgnmN0PkuLMrqzKRAR684+RPfD1sLF630me+WqbpuwSERGRalHpMBsVFcVLL71EfHy8K+qpu9pdDw8sgaDmcOoQ/H0A7F5kdlVVpmPjQKbfczlWC3yx8SgzVuwzuyQRERGpByodZh977DEWLlxIy5YtGTBgAPPnzyc3N9cVtdU9YR3gwRUQdRXknYbP7oKf3zF6a+uAfu1DefGWjgC8+cMevtlyzOSKREREpK67qDC7ZcsW1q1bR3R0NOPGjSMiIoKxY8eyadMmV9RYt/g2gPu+gphRgBOWvgBf/Qnyc8yurErc1yuK0Ve2AODJL35j3cG60x8sIiIiNY/FeYnNjfn5+bz//vs8/fTT5Ofn07lzZx555BHuv/9+LBZLVdVZZdLT0wkMDCQtLY2AgABzi1k3G/73NDjt0KQ73DUP/MPNrakKOBxOHv7XRhbvSMTfy41X/9iZm7s0NrssERERqSUqk9cu+gGw/Px8Pv/8c2655RaeeOIJYmJi+Pvf/87tt9/OpEmTGDZs2MXeuv7o+aAxSusVBMc2wod94VjtH922Wi1MHdqNmObBnM4pYNxnmxn32WZSs/LMLk1ERETqmEqPzG7atIk5c+bw2WefYbVaGT58OKNHj6Z9+/bF52zfvp0ePXqQnZ1d5QVfqho1Mlsk5QDMuwuSd4OblzGdV+c7zK7qkuXbHby3fB8zVuzD7nAS6u/J63dcRr92oWaXJiIiIjVYZfJapcOszWZjwIABPPDAAwwePBh3d/dzzsnMzGTs2LHMmTOncpVXgxoZZgFy0uHfo2HvYuP1VU9Av2fBWvtnT9t6JJXHP9/CgROZANzdsxnP3hiNr6ebyZWJiIhITeTSMHv48GGaN29+SQWaqcaGWQCHHZa9CKvfNV63uxFu+wA8/c2tqwrk5Nt5fdEu5qw+BEBkiDdv3dmVni1CzC1MREREahyXhtkiGzZsIC7OmPg/OjqamJiYi7lNtavRYbbI1vnwn3Fgz4PQjnD3PAiOMruqKrFmfzJPfvEbx1KzsVjgwataMn5AW7zcbWaXJiIiIjWES8Ps0aNHufvuu1m9ejVBQUEApKam0rt3b+bPn0/Tpk0vuvDqUCvCLMCR9bBgGGQkgk8DGPIpRPUxu6oqkZ6Tz8v/3ckXG48C0DbMj7eHdKVTk0CTKxMREZGawKWzGYwePZr8/Hzi4uJISUkhJSWFuLg4HA4Ho0ePvuii5SyRPYwFFiK6QNZJ+OQW2DjX7KqqRICXO2/c2YXZw2No6OfBnsQMBs9YzbRleymwO8wuT0RERGqRSo/Ment7s2bNGrp161Zq/8aNG7nqqqvIysqq0gKrWq0ZmS2SlwXfjIEdC43XPf8EA18FW914eOpkRi7PfLWdRTsSAOgSGcTbQ7rQqpGfyZWJiIiIWVw6MhsZGUl+fv45++12O40ba2L8KufhA3f8w5jZAGDdB/Cv2yGrbqys1cDPk5n3Xs47Q7vg7+XG1iOp3PDuT8xZfRCHo24s8ysiIiKuU+kw+8YbbzBu3Dg2bNhQvG/Dhg08+uijvPnmm1VanBSyWOCaJ2HoP8HdFw6shL9fCyf2mF1ZlbBYLPyxW1N+ePxqrmrTkNwCBy/+dyfD/v4rx1Jr3lzFIiIiUnNUOsyOHDmSLVu2EBsbi6enJ56ensTGxrJp0yZGjRpFSEhI8VYRM2bMICoqCi8vL2JjY1m3bl2556empjJmzBgiIiLw9PSkbdu2fP/995X9GLVT9M3wwA8Q2MxYaOHv18LeJWZXVWUiAr35ZFRPXr61I97uNtYeOMmgd37kiw1HuMRVl0VERKSOqnTP7Mcff1zhc0eMGFHu8QULFjB8+HBmzZpFbGwsU6dO5YsvvmD37t2Ehp67SlReXh59+vQhNDSUSZMm0aRJEw4fPkxQUBBdunSpUE21rme2LBkn4PPhEL8GLFYY8BL0GmuM4NYRB5MzeeLzLWyKTwVgQIcwptzWmYZ+nuYWJiIiIi5XLfPMVoXY2Fh69OjB9OnTAXA4HERGRjJu3DgmTJhwzvmzZs3ijTfeYNeuXWWuPFYRdSLMAhTkwfdPwKZPjNddh8FN74Bb3Ql7doeTD37czztL9pBvdxLi68Grf+zEoE4RZpcmIiIiLuTyMGu32/n666+LF03o2LEjt9xyCzZbxSe+z8vLw8fHhy+//JLBgwcX7x8xYgSpqal8880351xzww03EBISgo+PD9988w2NGjXinnvu4emnnz7ve+fm5pKbm1v8Oj09ncjIyNofZgGcTvj1A1g8EZwOaNrT6Kv1DzO7siq18/d0xn++hV0JpwG4rVsTnr+lI4HeF/c/NCIiIlKzuXQ2g3379hEdHc3w4cNZuHAhCxcu5N5776Vjx47s37+/wvdJTk7GbrcTFlY6eIWFhZGQkFDmNQcOHODLL7/Ebrfz/fffM3nyZN566y3++te/nvd9pkyZQmBgYPEWGRlZ4RprPIsFrvgz3Ptv8AqEo+tgdj84vtXsyqpUh8YBfDO2D//XtxVWCyzcfIxBU3/kp70nzC5NRERETFbpMPvII4/QqlUrjhw5wqZNm9i0aRPx8fG0aNGCRx55xBU1FnM4HISGhvLhhx/SvXt3hg4dyjPPPMOsWbPOe83EiRNJS0sr3o4cOeLSGk3R6g8wejk0aAPpx+CjgbDjK7OrqlKebjaeGtSeL/7ci6gGPhxPy+G+j9bx3DfbycorMLs8ERERMUmlw+yqVav429/+Vmq2ggYNGvDaa6+xatWqCt+nYcOG2Gw2EhMTS+1PTEwkPDy8zGsiIiJo27ZtqZaC6OhoEhISyMvLK/MaT09PAgICSm11UsPWMHoptLoWCrLhi5GwYgo46taKWt2bh/D9o1dx3xXNAfhk7WFuePcnNh4+ZXJlIiIiYoZKh1lPT09Onz59zv6MjAw8PDwqfB8PDw+6d+/OsmXLivc5HA6WLVtGr169yrymT58+7Nu3D0eJgLZnzx4iIiIq9d51lncQ3PO5MbMBwKrX4IsRkJdpallVzcfDjZcHd+KTUT0JD/Di0Mks7py1hr8t2kVeQd0K7yIiIlK+SofZm266iYceeohff/0Vp9OJ0+nkl19+4c9//jO33HJLpe41fvx4Zs+ezccff0xcXBwPP/wwmZmZ3H///QAMHz6ciRMnFp//8MMPk5KSwqOPPsqePXv47rvvePXVVxkzZkxlP0bdZXODga/ArTPA6g5x/4F/DITUutdecXXbRix+7Gr+2K0JDie8v3I/t85YTdzxdLNLExERkWpS6dkMUlNTGTFiBP/973+Lp8cqKCjglltuYe7cuQQGBlaqgOnTp/PGG2+QkJBA165dmTZtGrGxsQD07duXqKgo5s6dW3z+2rVrefzxx9myZQtNmjThgQceKHc2g7PVmam5KiL+F1hwL2SeAN9GxkwHza4wuyqX+N+240z6ahunsvJxt1kYP6AdD13dEpu17sy9KyIiUl+4bGoup9PJkSNHaNSoEceOHSuemis6OprWrVtfWtXVpF6FWTBGZD+7GxK3GSO1N0+FbveaXZVLnDidy8SF21gaZ/Rhd28ezFt3diGqoa/JlYmIiEhluCzMOhwOvLy82LFjB23atLnkQs1Q78IsGD2zX/3ZaDkAuGKMsWqYzc3culzA6XTy5cajvPjfnWTkFuDtbmPSjdHcG9sMSx1aIU1ERKQuc9k8s1arlTZt2nDy5MlLKlCqmYcv3PkxXFO4qtovM2DeEMhONbUsV7BYLNwZE8mix67iipYhZOfbmfz1dkbMWU9CWo7Z5YmIiEgVq/QDYK+99hpPPvkk27dvd0U94ipWK/SbCHfOBTdv2L8M/t4fkveZXZlLNA32Yd7oK3jupg54uln5cc8JrntnFV9vPoaJKziLiIhIFav0A2DBwcFkZWVRUFCAh4cH3t7epY6npKRUaYFVrV62GZzt+Fb47B5IP2qsHHbHHGh9rdlVucy+pAye+HwLW4+mAXBD53D+OrgzIb6azk1ERKQmclnPLMDcuXPL7T0cMWJEZW5X7RRmC2UkwfxhxhK4FisMfBVi/2wskVsHFdgdvL9yP9OW7aXA4aShnyev396Za6PDLnyxiIiIVCuXhtnaTmG2hIJc+PZx2PIv4/Xlw+GGt8Ct7o5YbjuaxvjPt7A3KQOAITFNmXxTB/y93E2uTERERIq47AEwAJvNRlJS0jn7T548WeG5XqWGcPM0Fle47hVjdHbTJ/DJrZCZbHZlLtO5aSD/HXclD17VAosFPt9wlEFTf2Ltfj3UKCIiUhtVOsyebyA3NzdXS8rWRhYL9B5rLIPrGQDxa+DDfpBQdx/w83K38cyNHZj/4BVEhnhzLDWbu2f/wkv/3UlOvt3s8kRERKQSKtxmMG3aNAAef/xxXn75Zfz8/IqP2e12fvzxRw4dOsTmzZtdU2kVUZtBOU7shs/ugpQD4O4Lt30A0TebXZVLZeQW8Mp3O/lsnbHcb6tGvrwztCuXNQ0ytzAREZF6zCU9sy1atADg8OHDNG3atFRLgYeHB1FRUbz00kvFS9HWVAqzF5CVAl/eDwdWGq/7PQtX/6XOPhhWZMWuJJ7692+cOJ2LzWphbL/WjP1Da9xtlf7lhYiIiFwilz4A1q9fPxYuXEhwcPAlFWkWhdkKsBfA4kmw7gPjdcfbjN5aDx9z63KxU5l5TP5mO9/+dhyAzk0CeXtIF9qE+ZtcmYiISP2i2QzKoTBbCRvnwndPgKMAIrrCXfMgsInZVbncf7b+zuSvt5OWnY+Hm5WnBrZjVJ8WWK11e3RaRESkpnBpmLXb7cydO5dly5aRlJSEw+EodXz58uWVr7gaKcxW0qHV8Pl9kHUS/MJg6L8gsofZVblcYnoOT335G6v2nAAgtkUIb97ZhciQuj06LSIiUhO4NMyOHTuWuXPncuONNxIREXHOAgrvvPNO5SuuRgqzF+HUYfjsbkjaATZPuGUadLnL7Kpczul08tm6I/z1u51k5dnx9bDx3M0dGBITWe7CISIiInJpXBpmGzZsyCeffMINN9xwSUWaRWH2IuWehoV/gt3fGa97PwL9XwBr3Z9bOP5kFk98sYX1h04B8If2obx2e2dC/b1MrkxERKRucumiCR4eHrRu3fqii5NaytMfhv4TrvqL8XrNNGO0Nifd3LqqQbMGPsx/qBeTbmiPh83K8l1JDHznR74rfFBMREREzFPpMPvEE0/w7rvvnnfxBKnDrFa4djLc/hG4ecHexfD3/nByv9mVuZzNauGhq1vx33FX0rFxAKey8hkzbxOPfLaZ1Kw8s8sTERGptyrdZvDHP/6RFStWEBISQseOHXF3L72m/cKFC6u0wKqmNoMqcmwTzL8HTh8H72C482NoeY3ZVVWLvAIH7y3fy/sr92N3OAkL8ORvd3ThmraNzC5NRESkTnBpz+z9999f7vE5c+ZU5nbVTmG2Cp1OMALtsY1gscH1r0PPB82uqtpsOZLK+AVbOJCcCcCw2GZMuiEaX083kysTERGp3TTPbDkUZqtYfg789xH4bYHxOmYUXP83sLmXf10dkZ1n5/VFu5i75hAAzUJ8eHtIF2KiQswtTEREpBZzyQNgSUlJ5R4vKChg3bp1Fb2d1BXuXvDHD6D/i4AFNvwDPv0jZJ40u7Jq4e1h44VbOjJvdCxNgryJT8nizg/WMuV/ceTk280uT0REpM6r8MiszWbj+PHjhIaGAtC5c2e+//57IiMjAUhMTKRx48bY7TX7L3CNzLrQ7kXw7wcgLwOCmsM9CyA02uyqqk16Tj4v/XcnX248CoCfpxt/aB/KwI7h9G3XSO0HIiIiFeSSNgOr1UpCQkJxmPX392fr1q20bNkSMMJsRETEOSuC1TQKsy6WFAef3QWnDoGHH9z2IbS/0eyqqtUPOxJ44T87+D0tp3ifh5uVq9s0YlCncPpHhxLk42FihSIiIjVbZfJalQ4VaVUkITQaHlwBnw+HQz8ZD4i1uQ6ufR7CO5ldXbW4rmM4/aPD2HI0lcXbE1i0I4HDJ7NYGpfI0rhEbFYLV7QMYVDHcK7rGE5YgBZfEBERuVhVOjKrNgMpZs+HpS/Ar7PAUQBY4LIh0O8ZCG5udnXVyul0sjvxNIu2J7BoewK7Ek6XOt6tWRCDOoYzsGM4UQ19TapSRESk5nBJm4HNZmPPnj00atQIp9NJZGQkP//8M1FRUYARZtu3b68wK6Wd3A/L/wo7CucftrpDj9Fw9V/At6G5tZnk8MlMFu8wgu2m+NRSx9qH+zOwYziDOoXTPtxfv+0QEZF6yWU9syX/YnU6nWW+VpiVMv2+GZa+CAdWGK89/KH3OOg1Bjz9zK3NRInpOfywM5HF2xNYe+AkdseZfx2bhfgwqJMxYtstMgirVcFWRETqB5eE2VWrVlXoza+5pmavAqUwa7L9K4z2g+NbjNe+jeDqp6D7SHCr3w9FpWblsSwuiUU7EvhxzwlyC848TBnq78l1HcMY1DGC2JYhuNsqvRK1iIhIraFFE8qhMFsDOByw82tY/jKkHDD2BUfBHyZDx9vAqqCWlVfAqt0nWLQjgeVxSZzOLSg+FujtzrXRoQzqGM7VbRvh5W4zsVIREZGqpzBbDoXZGsSeD5s+gZWvQWbhohzhl0H/56HVtaB+UQByC+ys3X+SxTsS+GFHIicz84qPebvb6Ne+EQM7htOvfSgBXvVj5TUREanbFGbLoTBbA+Vlwi/vw+ppkJtu7GtxNfR/AZp0N7W0msbucLLhUAqLdySyeEcCx1Kzi4+52yz0ad2QgR3DGdAhjIZ+niZWKiIicvEUZsuhMFuDZZ6En9+GdR+CvXD0scOt8IfnoGFrc2urgZxOJ9uPpRszI+xIYF9SRvExqwViooy5bAd2CqdJkLeJlYqIiFSOwmw5FGZrgdR4WDEFtn4GOMFig8vvg2smQECE2dXVWPuSMli8I4HFOxL47WhaqWOdmwQWzowQRutQf5MqFBERqZhqDbPp6eksX76cdu3aER0dfSm3qhYKs7VI4g5Y9hLsWWS8dvOGKx6GPo+Cd5CppdV0x1Kz+aFwLtv1h1IoMeMXrRr5MqhTOIM6RtCpSYDmshURkRrHpWF2yJAhXH311YwdO5bs7Gy6dOnCoUOHcDqdzJ8/n9tvv/2Sinc1hdla6PBaWPo8HPnVeO0VBFc9AT0fAnctBXshyRm5LN1p9Nj+vC+ZfPuZf+WbBHkXTvkVTkxUCDbNZSsiIjWAS8NseHg4ixcvpkuXLsybN4/nn3+erVu38vHHH/Phhx+yefPmSyre1RRmaymnE3b/D5a9CCd2GfsCmkK/idDlbrBqeqqKSM/JZ8WuJH7YkciK3Ulk5Z1Z5KSBrwcDOoQxsFM4vVs1wNNNf6YiImIOl4ZZb29v9uzZQ2RkJMOHD6dx48a89tprxMfH06FDBzIyMi58ExMpzNZyDrvRS7tiCqQfNfY1ag/XPgftbtB0XpWQk2/np73JLNqewNK4RNKy84uP+Xu60a99KIM6hXNN20b4erqZWKmIiNQ3lclrlf4bKjIykrVr1xISEsKiRYuYP38+AKdOncLLS7/yFRez2qDbvdDpDlg/G3580xipnX8PRMZC/xeheS+zq6wVvNxtDOgQxoAOYeTbHaw7mMKi7Qn8sDOBxPRc/rP1d/6z9Xc83axc1aYRgzqF0z86lCCf+r1Sm4iI1CyVHpl9//33efTRR/Hz86N58+Zs2rQJq9XKe++9x8KFC1mxYoWraq0SGpmtY7JTYfW78MtMKCicc7XtIGOkNqyjqaXVVg6Hky1HU1m83Zjy6/DJrOJjNquFXi0bMLBjGNd1DCcsQP8DKyIiVc/lsxls2LCBI0eOMGDAAPz8/AD47rvvCAoKok+fPhdXdTVRmK2j0o/DqteNFcWcdsACXe6CfpMgqJnZ1dVaTqeT3YmnWbQ9gcU7Eok7nl7q+OXNghjYMZxBncJp3sDXpCpFRKSuqdapuex2O9u2baN58+YEBwdfyq2qhcJsHZe8F5a/DDu/MV7bPKDHg8bsB74NzK2tDjh8MtNYpGF7ApviU0sdax/uXziXbTjtw/015ZeIiFw0l4bZxx57jM6dO/PAAw9gt9u55pprWLNmDT4+Pnz77bf07dv3Ump3OYXZeuLYRljyPBz6yXjtGQC9H4Fe/wceGkGsConpOfywM5HF2xNYe+Ak9hKT2UaGeNM/2ujH7REVgrvNamKlIiJS27g0zDZt2pSvv/6amJgYvv76a8aMGcOKFSv49NNPWb58OatXr76k4l1NYbYecTph/zJY+gIkbDP2+YXBNU/B5SPA5m5qeXVJalYey+KSWLQjgR/3nCC3wFF8LNDbnX7tGtG/QxjXtG2Ev5f+3EVEpHwuDbNeXl7s27ePpk2b8tBDD+Hj48PUqVM5ePAgXbp0IT09/cI3MZHCbD3kcMCOhUb7walDxr6QlvCHZ6HDH8GqUcOqlJ1n56e9J1gal8iyuCROZuYVH3O3WejVqiEDokPp3yGMiEBvEysVEZGayqVhtnnz5syePZtrr72WFi1aMHPmTG688UZ27NjBlVdeyalTpy6peFdTmK3HCvJg08fGg2KZJ4x9EV2M6bxa9TO3tjrK7nCyOf4US3YmsiQukQMnMksd79wksLgdITpCfbYiImKoTF6r9JDU/fffz5AhQ+jUqRMWi4X+/fsD8Ouvv9K+ffuLKnjGjBlERUXh5eVFbGws69atq9B18+fPx2KxMHjw4It6X6ln3Dyg54PwyBboOwk8/OD4Vvh0MHxyK/xes1evq41sVgsxUSFMvCGa5U/0ZdkT1zDx+vbENA/GYoFtx9J4Z+kebpj2E1e+voIX/rOD1fuSybc7LnxzERERLnI2gy+//JIjR45w55130rRpUwA+/vhjgoKCuPXWWyt1rwULFjB8+HBmzZpFbGwsU6dO5YsvvmD37t2Ehoae97pDhw5x5ZVX0rJlS0JCQvj6668r9H4amZVimcnGogvr/w6OwtWvOv4R/jAZGrQyt7Z6IDkjl+W7kliyM5Gf9p4gJ/9MgPX3cqNfu1AGdAjjmnaNCFCfrYhIvVKtU3NdqtjYWHr06MH06dMBcDgcREZGMm7cOCZMmFDmNXa7nauvvppRo0bx008/kZqaqjArF+/UIVjxKvz2OeAEq5vxgNg1T4N/mNnV1QvZeXZW70tmyc5Elu1KJDmjdJ/tFS0bMKBDGP2jw2gcpD5bEZG6zuVhdtWqVbz55pvExcUB0KFDB5588kmuuuqqSt0nLy8PHx8fvvzyy1KtAiNGjCA1NZVvvvmmzOuef/55fvvtN7766itGjhxZbpjNzc0lNze3+HV6ejqRkZEKs3KuhO2w7EXY+4Px2t0Hrvg/6PMIeAWaW1s9Ync42XIklSU7E1kal8i+pIxSxzs2DigOth0bB6jPVkSkDnJpz+w///lP+vfvj4+PD4888giPPPII3t7eXHvttcybN69S90pOTsZutxMWVnr0KywsjISEhDKv+fnnn/noo4+YPXt2hd5jypQpBAYGFm+RkZGVqlHqkfBOMOwLGPkdNImB/Cz46U14tyusnQH5OWZXWC/YrBa6Nw9mwvXtWTr+Glb8pS+TbmhPz6gQrBbY8Xs6U5fu5ab3fubK11fw/Dfb+WnvCfIK1GcrIlIfVXpkNjo6moceeojHH3+81P63336b2bNnF4/WVsTvv/9OkyZNWLNmDb169Sre/9RTT7Fq1Sp+/fXXUuefPn2ayy67jPfff5/rr78eQCOz4hpOJ+z6Fpa9BMl7jH2BkcbyuJcNBavN3PrqqZOFfbZL4xL5cU8y2fn24mP+nm70bR9K/+hQ+rYLJdBbfbYiIrWVS9sMPD092bFjB61bty61f9++fXTq1ImcnIqPXlW2zWDLli1069YNm+1MkHA4jNEYq9XK7t27adWq/Ad31DMrlWIvgC3/gpWvwenfjX2hHeDa56HtQNCvuE2Tk2/02S6NS2TJziSSM878T6ub1UJsyxAGRIfRv0MYTYN9TKxUREQqy6VhtnXr1jz55JP86U9/KrV/1qxZvPXWW+zdu7dSxcbGxtKzZ0/ee+89wAinzZo1Y+zYsec8AJaTk8O+fftK7Xv22Wc5ffo07777Lm3btsXDw6Pc91OYlYuSnw2/fgA/vw05aca+Zr2MOWqbxZpbm+BwONlyNJWlOxNZsjORvWf12UZHGH2213VQn62ISG3g0jA7c+ZMHnvsMUaNGkXv3r0BWL16NXPnzuXdd989J+ReyIIFCxgxYgQffPABPXv2ZOrUqXz++efs2rWLsLAwhg8fTpMmTZgyZUqZ11+ozeBsCrNySbJPwc/vGMG2oPC3EO1ugGufg9Boc2uTYoeSM1kal8gPOxPZcCgFR4n/ykUEehUv1HBFywZ4uGkFOBGRmqYyec2tsjd/+OGHCQ8P56233uLzzz8HjD7aBQsWVHqOWYChQ4dy4sQJnnvuORISEujatSuLFi0qfigsPj4eq5YblZrCOxgGvAQ9/wSrXoPN/4Td38OeRdDlHug3EQKbml1lvRfV0JfRV7Vk9FUtScnMY0XhfLY/7j3B8bQcPv3lMJ/+chg/TzeuadeIAdFh9GsXSqCP+mxFRGqbSo3MFhQU8OqrrzJq1KjixRJqG43MSpU6sQeWvwRx/zVe2zyNVcauegJ8QsytTc6Rk29n7f6T/FA47deJ06X7bHu2CCketY0MUZ+tiIhZXNpm4Ofnx/bt24mKirqUGk2jMCsucWQ9LH0BDv9svPYMgK73GC0IzXuDTSN+NY3D4eS3Y2ks2ZnA0p1J7E48Xep4+3B/BnQwgm3nJoHqsxURqUYuDbO33nort912GyNGjLikIs2iMCsu43TCvqVGqE3cfma/VyC0GQjtrofW/cFL/9zVRIdPZhYv1LD+0CnsJRptwwI8i0dse7VqgKebpmYTEXEll4bZWbNm8eKLLzJs2DC6d++Or69vqeO33HJL5SuuRgqz4nIOh9FDu+tb42vWyTPHrO7Q4moj2La7AQKbmFennNepzDxW7Dbms121+wSZeWfms/X1sBl9th2MPtsgn/JnUBERkcpzaZgt72Esi8WC3W4/7/GaQGFWqpXDDkfWwe7vYNf3kLK/9PGILtDuRmh/A4R10ry1NVBOvp21B06ytHDUNjH9TJ+tzWqhR1QwAzqEMyA6jGYN1GcrIlIVXBpmazuFWTHViT1GsN39PyPkUuJfv8Bmxoht+xugeR/12dZADoeT7b+nsaRwPttdCaX7bJsEedM61I9WjfxoFepLy4bG10Z+nuq5FRGpBIXZcijMSo2RkWS0Iez+H+xfAQXZZ455BkKbAUa4bTPA6LuVGudISlZxsF13KKVUn21J/l5utGrkR8tGvkbQbeRH61BfmoX4ap5bEZEyuCTMLl++nLFjx/LLL7+cc9O0tDR69+7NzJkzufrqqy++8mqgMCs1Ul4WHFhhzFm7exFkJZ85ZnWHqCuNHtt210NQpHl1ynmlZeezO+E0+09ksD8pg/0nMjiQnMmRlCzOk3GxWS00C/GhVYmQWxR4g33Viysi9ZdLwuwtt9xCv379ePzxx8s8Pm3aNFasWMFXX31V+YqrkcKs1HgOOxzdcKbP9uRZS0SHX2YE2/Y3GN/r19c1Wk6+ncMns4xweyKD/ScyiwNvyQfLzhbi60GrRmdaFYrCbtNgb9xsGs0VkbrNJWG2efPmLFq0iOjospfs3LVrF9dddx3x8fGVr7gaKcxKrZO81xix3fU9HPmVUn22AU1L9NleCW4azastnE4nSadzi0dxi0LugROZHEvNPu917jYLUQ18z+rLNUZ0A7zUZy0idYNLwqyXlxfbt2+ndevWZR7ft28fnTt3Jjv7/P8RrgkUZqVWy0w+02e7b9lZfbYBxjy27W80vnoHmVamXJqsvAIOlAi3RWH3wIkMcgsc570u1N+zVF9uq1A/Wjb0pUmQN1arRvBFpPaoTF5zq+hNmzRpUm6Y/e2334iIiKhcpSJSOb4Nodu9xpafDQdWnumzzUyCHQuNzepmzIjQ/sbCPttmZlculeDj4UanJoF0alL6wT+Hw8nvadnGKG5RX25h2E06nVu8/XIgpdR1Xu5WWjT0K+7NbVniq49Hhf8aEBGpkSo8Mjtu3DhWrlzJ+vXr8fLyKnUsOzubnj170q9fP6ZNm+aSQquKRmalTnI44NiGM+0IybtLHw/rbLQitLseIrqqz7YOSs/J50Dh6K3Rk2uE3EMnM8m3n/8/802CvEuM5haFXD/CAjSdmIiYxyVtBomJiVx++eXYbDbGjh1Lu3btAKNXdsaMGdjtdjZt2kRYWNilfwIXUpiVeuHk/sIR2/9B/FpwlvjVtH/jM322UVeBm6d5dYrLFdgdHD2VXdiqYITcA8lG20JKZt55r/P1sNGqcM7clg19i79v3sAHL3ct5ysiruWyeWYPHz7Mww8/zOLFiym6zGKxMHDgQGbMmEGLFi0urfJqoDAr9U7mSdi72Ai3+5ZDfuaZYx7+0Ppaox2hzQDwDjavTql2KZl5HCjVl2uE3PiUrPPOmWu1QNPgEtOJFfXlBnsT6u+leXNFpEq4fNGEU6dOsW/fPpxOJ23atCE4uPb8BagwK/Vafg4cXHVm1DYj8cwxiw2a9z7TZxscZVqZYq68AgfxKZnsSzr7IbQMTucUnPc6iwUa+HoSEehFeKAX4QHG17Nfq09XRC5EK4CVQ2FWpJDDAb9vOtNneyKu9PHQjoV9tjcYfbZWjbjVd06nkxMZuWfCbWHYPZicSUJaDnn288+0UFKgt3upoBsWcCbwRgR6Ex7gRYC3m3p2ReoxhdlyKMyKnEfKAWO0dtf3EL/mrD7bCGO0tt0N0OJq9dnKOZxOJymZeRxPyyEhLYfj6TkkpuUYr9OzjX1pOWSVs1BESd7utjKCbtFrb8IDvWjg66Epx0TqKIXZcijMilRAVgrs/QF2fWfMZ1uqz9bP6LNtdwO0uQ58QsyrU2oVp9PJ6dwCEgoDb0Jx2M0hIS27+PvUrPwK3c/dZiHU/9w2BiPsehIe6E2ovyfuWjFNpNZRmC2HwqxIJeXnwKGfzvTZnj5+5lhRn23RqG1IzX8IVGq+nHx7cdBNTC8MvIVht+j1iYxcKvK3l8UCjfw8i8NuRKAXYUV9vAHexUFYMzSI1CwKs+VQmBW5BA4HHN98ph0haUfp442iod0gY8GGpj20Cpm4TL7dwYnTuWfaGtKySwRfY4Q3MT2n3Dl2SwryKd3HWxR0w0o8wObvqT5ekeqiMFsOhVmRKpRy0Fhed9d3cHgNOM/qh2wUDZE9ITLW2Bq00oINUm0cDicnM/OKw23JVoaSbQ7Z+RXr4/XxsJ3z0FpEoDeRIT5EBnvTJNgbTzeN8IpUBYXZcijMirhI9inYuwT2L4cjvxoPlJ3NO6Qw2BYG3MbdwMOn+msVKeR0OknPKShzdLdkW0Na9oX7eC0WCA/wIjLYxwi4Id5EBvvQrIEPkcE+hPp76oE1kQpSmC2HwqxINck4AUfXGcH2yDo4tgnsuaXPsbpB+GWlA25gE3PqFSlHdp6dhHQj8JYMusdOZXPkVBZHUrIvOMLr4WalabB3Ydj1plmIT4ng60Ogt3s1fRqRmk9hthwKsyImKciDhN8Kw+2vEP8rZCSce15A0xKtCT0hvDPY9Je81GxOp9HSEJ+SxZGULI6eyib+ZJYRdE9l8XtqznlXVSsS4OVGZIiPEXILWxeKgm6TIG89pCb1isJsORRmRWoIpxPSjhijtkUBN2H7uX23bt7QpHvpgKvpwKSWKbA7OJ6Ww5GULCPwFo7mxqdkcfRUFskZeRe8R3iAV3HrQmSJwNusgQ9h/l5qYZA6RWG2HAqzIjVYboaxKllRa8KRXyEn7dzzGrY968GyNlqhTGq1zNwCjp7K5khh0DVGeLM5Wvj9hRab8LBZaRLsXWpE90wbgzeB3u6aiUFqFYXZcijMitQiDgec3Htm5PbIOkjec+55XkGF4bbowbLLwdOv2ssVcYWi1dWOnMou0cZwJvD+nppNwQVaGPy93Er36pbo120arBYGqXkUZsuhMCtSy2WlwNH1EP9L4YNlG6Egu/Q5FhuEdzozchvZEwIjNS2Y1EnFLQynsjha2LpgtDFkEZ+STXJG7gXvERbgeU77QtHobliAFza1MEg1U5gth8KsSB1jz4eEbSV6b9dB+tFzz/OPKN2aEH4ZuHlUf70i1Sw7z87RwgfRjIfSsot7d4+eyiYjt6Dc691tFpoEeZcIusYIb0M/TwK83PH3ciPAyx0/LzeFXqkyCrPlUJgVqQfSjhaG28KAm/AbOM76C9vNy5jntmTA9W1oTr0iJnE6naRm5Zf5UFrRrAwXamEoydfDhn9hwDU29+KvAV5uBHiXOObpXuocBWIpSWG2HAqzIvVQXhb8vrn0g2XZKeeeF9Kq9Jy3jdrrwTKp1+wOJwnpZ2ZhOJqSVdy7eyorj9M5BaRn55Nb4Kiy9zw7EBsBuMRrLwXi+kBhthwKsyKC0wkn95d+sOxE3LnneQZC05gzAbdpDHj6V3+9IjVcXoGD0zn5nM4pKNzySS/8WnLf6ZwC0ov3Fb02vq/KQOzn6Vbm6HBZgdj4vvRosp+nArHZFGbLoTArImXKPgVHN54JuEc3QH5m6XMsVgjtWHrO2+AoPVgmUgXOF4jPDr9lB+TqC8QBXm6E+HoQ5ONBiK87wT4ehPh6FH/18bBpGrQqoDBbDoVZEakQewEk7Si9qENq/Lnn+YaWmBKsqzEHrl+YAq6ICXIL7OcE3TOjxGUH4vSzzsu7xEDsYbMSXDLk+noQ4mN8DfZxLxV8i455e2hqtLMpzJZDYVZELlr6cTha4sGy37eAI//c8zz8oWFrYzGHhm2gQWsj5DZoBe7e1V62iFTchQJxenY+qVl5pGTlcyozj5TMPE5l5XEyM++ig7CXu5Vgn7NDrrvxtWgU2MeDYN8zYbiuzw2sMFsOhVkRqTL5OXB8y5m+28QdkHoYnOf7C81izHdbMug2bGN8H9BYo7kitZjT6SQ7386ps0JuSmae8Tor75xjpzLzybNfXAD28bAZAbiMVofiUeDCEWEjELvj6VZ7ArDCbDkUZkXEpQpyIeWgsXJZ8l44uc9YtSx5L+Sknv86d19j5LYo3DYsMarr4Vtt5YtI9XE6nWTm2TlVMvhm5ZGSmX8mAJcIvkWvKzNdWkl+nm7F4bd0AHYvDMAlA7FxnrvNnBldFGbLoTArIqZwOiHrZGHAPSvonjp07jy4JQU0KWxVOCvoBjTV1GEi9YzT6eR0bkHxCG9qVn7pUeDi0eB8IwQXjgjbLzIA+5d84M3HnZdu7URkiE8Vf6pzVSavubm8GhERMVoIfBsaW/NepY/Z841AWzLoFn2fdRLSjxnbwVWlr3PzNkZzi4Juw7ZnvtcUYiJ1ksViIcDLnQAvd5o3qNhvbRwOJ6dzCkgp0fZQFHTPHgVOyTIC8qmsPJxOivuHD5/McvEnu3gKsyIiZrO5nxltPVtWSuEI7llBN+UAFGRD4nZjO5tfeOmHz4q+D2oG1trTNycil85qtRDo406gjzstGlYsANsdTtKzz7Q2FI36NvL3dHG1lac2AxGR2sheYDxsVhR0k/ec+T4z6fzX2TwhpKXxEFrDtqVnXPAOqrbyRUTKozYDEZG6zuZW2GLQCtoOLH0sO9VY4ezk3jMPn53cZ+yz5xqrnZW14plvo3NnWWjYBoKaG+8nIlID6b9OIiJ1jXcQNO1ubCU57JB2BJL3nRt0Tx+HzBPGFr+m9HVWdwhpUXbQ9Qmpto8lIlIWtRmIiAjkni5sUyicYeHk3sLQu8/ozT0f7xAj1AY2Bf8I8A8/96umFhORStLUXOVQmBURqQSHw5hJ4exZFpL3QfrRit3DM7Aw3JYRdAMaG1/9wsCt5j1YIiLmqHU9szNmzOCNN94gISGBLl268N5779GzZ88yz509ezaffPIJ27cbT+92796dV1999bzni4jIJbBaISjS2Fr9ofSxvMzC3tzCNoXTx+F0QuF23Fj+Nz8TctOMLXl3+e/l06BE2C0ZfBufee3bSP27IlKK6f9FWLBgAePHj2fWrFnExsYydepUBg4cyO7duwkNDT3n/JUrV3L33XfTu3dvvLy8eP3117nuuuvYsWMHTZo0MeETiIjUUx6+EHGZsZ1PTvqZcFvm19+Nr/Y8Y07drJNlTzVWxGIF39CyR3dLjvp6h2hBCZF6wvQ2g9jYWHr06MH06dMBcDgcREZGMm7cOCZMmHDB6+12O8HBwUyfPp3hw4df8Hy1GYiI1DBOJ2SfOmt0t/Breol9GYngtFfsnlb3s0Z4z9PP6xVoLGghIjVKrWkzyMvLY+PGjUycOLF4n9VqpX///qxdu7ZC98jKyiI/P5+QkLKfqM3NzSU3N7f4dXp6+qUVLSIiVctiMWZF8AmBsI7nP89hh8zkswJvGQE48wQ48o2ZG9KOlP/e7j5lh1w9xCZSa5gaZpOTk7Hb7YSFhZXaHxYWxq5duyp0j6effprGjRvTv3//Mo9PmTKFF1988ZJrFRERk1lt4B9mbOUpyDMWjijZu1tWm0NOKuRnGauppRwo/57nfYgtDHwaGv2+Pg2MQG5zr7KPLCIXZnrP7KV47bXXmD9/PitXrsTLy6vMcyZOnMj48eOLX6enpxMZGVldJYqISHVz8zCmCgtsWv55+dlnjfCWDLsX+RAbGK0LPg1Kh1zfBuff5xmgVgeRS2BqmG3YsCE2m43ExMRS+xMTEwkPDy/32jfffJPXXnuNpUuXctll53/4wNPTE09PTfciIiJncfc2FoMIaXH+c5xOYw7e8z3ElpF45sG1rBTACTlpxnah0d4iVvfSI7u+Dc8KviX3FW6axkykmKlh1sPDg+7du7Ns2TIGDx4MGA+ALVu2jLFjx573ur/97W+88sorLF68mJiYmGqqVkRE6h2LBbwCjK1R2/LPddiNpYSzTkJW8pmQm5lsBN1S+wq/5mca/b0ZCcZWUR7+ZQTfkMIR35LBt3C/V5Bmd5A6y/Q2g/HjxzNixAhiYmLo2bMnU6dOJTMzk/vvvx+A4cOH06RJE6ZMmQLA66+/znPPPce8efOIiooiIcH4l9/Pzw8/Pz/TPoeIiNRzVpvROuDbALhA8C2Sn11iZLdEyC0r+BZtTjvknTa21MMVex+L7UzYPW/wbVB6n7v3Rf9RiFQn08Ps0KFDOXHiBM899xwJCQl07dqVRYsWFT8UFh8fj7XE/03OnDmTvLw87rjjjlL3ef7553nhhReqs3QREZFL4+5dsf7eIg6H0bublVI44lte8C0cEc5NNwJw5gljq3BtPucJviFn9nsHG6O+3sHG5uGr/l+pdqbPM1vdNM+siIjUKwW5hW0OJYNvyTBcIvgW7XPkX9x7Wd3PBFvvoBLfn7UVB+DCr16Bxsi2SKFaM8+siIiIuJibJwREGFtFFD30VhRwi/t+S4ThzJPGQhfZp4wpzrJSjADsyDemRctMqmSRFiPQni8Ae51nv3eQHoYThVkREREpoeRDbyEtK3aN02nM2VsUcLNPGQ/DlXpdIvyWPJ6XgTELRKqxnTpUuXrdfc4NuOWF3+KWCD+1RNQRCrMiIiJyaSwWo1/Ww7fi/b9FCvIKA27qBcLv2fvTwOkwQnR+FqQfq9z7Wt0qPvpb6jy1RNQ0CrMiIiJiHjcP8As1tspwOIyH2y408nvOSHEK2PPAUVD5h+KKeAYYobZ4CzrrdYnN+6xjHv6aJq2KKcyKiIhI7WO1Fo6aBgHlLHxxNqfTmBLtQiO/pcJw4fd5p4175KYbW9qRiyi8qI3j7BAcdP4AXCoMqz3ibAqzIiIiUn9YLODhY2yBTSp3rT3fCLa56WdaI4pWfCu1nWd/QQ6lVokj/iLqt1VgFDiojOOF+9y961wYVpgVERERqQibO/g1MraLkZ9znuCbWnb4LRWWU43WCKfdaJXITrm4Gqzu5bdBlAq/ZRxz97q493UhhVkRERGR6uDuZWz+YZW/tqg94rwjv6llBOCzNqfdmD4tK9nYLsbDayGsw8Vd6yIKsyIiIiI1Xcn2iIrOGVyS02lMg1bu6O/ZbRIlj6UDzsIe5ZpFYVZERESkrrNYwNPf2Co7fRoYs0fknTZmY6hhFGZFREREpHxWq9EzWwNpojMRERERqbUUZkVERESk1lKYFREREZFaS2FWRERERGothVkRERERqbUUZkVERESk1lKYFREREZFaS2FWRERERGothVkRERERqbUUZkVERESk1lKYFREREZFaS2FWRERERGothVkRERERqbUUZkVERESk1lKYFREREZFaS2FWRERERGothVkRERERqbUUZkVERESk1lKYFREREZFaS2FWRERERGothVkRERERqbUUZkVERESk1lKYFREREZFaS2FWRERERGothVkRERERqbUUZkVERESk1lKYFREREZFaS2FWRERERGothVkRERERqbUUZkVERESk1lKYFREREZFaS2FWRERERGothVkRERERqbUUZkVERESk1qoRYXbGjBlERUXh5eVFbGws69atK/f8L774gvbt2+Pl5UXnzp35/vvvq6lSEREREalJTA+zCxYsYPz48Tz//PNs2rSJLl26MHDgQJKSkso8f82aNdx999088MADbN68mcGDBzN48GC2b99ezZWLiIiIiNksTqfTaWYBsbGx9OjRg+nTpwPgcDiIjIxk3LhxTJgw4Zzzhw4dSmZmJt9++23xviuuuIKuXbsya9asC75feno6gYGBpKWlERAQUHUfRERERESqRGXymls11VSmvLw8Nm7cyMSJE4v3Wa1W+vfvz9q1a8u8Zu3atYwfP77UvoEDB/L111+XeX5ubi65ubnFr9PS0gDjD0lEREREap6inFaRMVdTw2xycjJ2u52wsLBS+8PCwti1a1eZ1yQkJJR5fkJCQpnnT5kyhRdffPGc/ZGRkRdZtYiIiIhUh9OnTxMYGFjuOaaG2eowceLEUiO5DoeDlJQUGjRogMVicfn7p6enExkZyZEjR9TWUI/o517/6Gde/+hnXv/oZ159nE4np0+fpnHjxhc819Qw27BhQ2w2G4mJiaX2JyYmEh4eXuY14eHhlTrf09MTT0/PUvuCgoIuvuiLFBAQoH/w6yH93Osf/czrH/3M6x/9zKvHhUZki5g6m4GHhwfdu3dn2bJlxfscDgfLli2jV69eZV7Tq1evUucDLFmy5Lzni4iIiEjdZXqbwfjx4xkxYgQxMTH07NmTqVOnkpmZyf333w/A8OHDadKkCVOmTAHg0Ucf5ZprruGtt97ixhtvZP78+WzYsIEPP/zQzI8hIiIiIiYwPcwOHTqUEydO8Nxzz5GQkEDXrl1ZtGhR8UNe8fHxWK1nBpB79+7NvHnzePbZZ5k0aRJt2rTh66+/plOnTmZ9hHJ5enry/PPPn9PqIHWbfu71j37m9Y9+5vWPfuY1k+nzzIqIiIiIXCzTVwATEREREblYCrMiIiIiUmspzIqIiIhIraUwKyIiIiK1lsKsi82YMYOoqCi8vLyIjY1l3bp1ZpckLjJlyhR69OiBv78/oaGhDB48mN27d5tdllSj1157DYvFwmOPPWZ2KeJix44d495776VBgwZ4e3vTuXNnNmzYYHZZ4iJ2u53JkyfTokULvL29adWqFS+//DJ6hr5mUJh1oQULFjB+/Hief/55Nm3aRJcuXRg4cCBJSUlmlyYusGrVKsaMGcMvv/zCkiVLyM/P57rrriMzM9Ps0qQarF+/ng8++IDLLrvM7FLExU6dOkWfPn1wd3fnf//7Hzt37uStt94iODjY7NLERV5//XVmzpzJ9OnTiYuL4/XXX+dvf/sb7733ntmlCZqay6ViY2Pp0aMH06dPB4zVzSIjIxk3bhwTJkwwuTpxtRMnThAaGsqqVau4+uqrzS5HXCgjI4PLL7+c999/n7/+9a907dqVqVOnml2WuMiECRNYvXo1P/30k9mlSDW56aabCAsL46OPPired/vtt+Pt7c0///lPEysT0Misy+Tl5bFx40b69+9fvM9qtdK/f3/Wrl1rYmVSXdLS0gAICQkxuRJxtTFjxnDjjTeW+vdd6q7//Oc/xMTEcOeddxIaGkq3bt2YPXu22WWJC/Xu3Ztly5axZ88eALZu3crPP//M9ddfb3JlAjVgBbC6Kjk5GbvdXrySWZGwsDB27dplUlVSXRwOB4899hh9+vSpsavTSdWYP38+mzZtYv369WaXItXkwIEDzJw5k/HjxzNp0iTWr1/PI488goeHByNGjDC7PHGBCRMmkJ6eTvv27bHZbNjtdl555RWGDRtmdmmCwqyIS4wZM4bt27fz888/m12KuNCRI0d49NFHWbJkCV5eXmaXI9XE4XAQExPDq6++CkC3bt3Yvn07s2bNUpitoz7//HP+9a9/MW/ePDp27MiWLVt47LHHaNy4sX7mNYDCrIs0bNgQm81GYmJiqf2JiYmEh4ebVJVUh7Fjx/Ltt9/y448/0rRpU7PLERfauHEjSUlJXH755cX77HY7P/74I9OnTyc3NxebzWZiheIKERERdOjQodS+6Oho/v3vf5tUkbjak08+yYQJE7jrrrsA6Ny5M4cPH2bKlCkKszWAemZdxMPDg+7du7Ns2bLifQ6Hg2XLltGrVy8TKxNXcTqdjB07lq+++orly5fTokULs0sSF7v22mvZtm0bW7ZsKd5iYmIYNmwYW7ZsUZCto/r06XPOtHt79uyhefPmJlUkrpaVlYXVWjoy2Ww2HA6HSRVJSRqZdaHx48czYsQIYmJi6NmzJ1OnTiUzM5P777/f7NLEBcaMGcO8efP45ptv8Pf3JyEhAYDAwEC8vb1Nrk5cwd/f/5yeaF9fXxo0aKBe6Trs8ccfp3fv3rz66qsMGTKEdevW8eGHH/Lhhx+aXZq4yM0338wrr7xCs2bN6NixI5s3b+btt99m1KhRZpcmaGoul5s+fTpvvPEGCQkJdO3alWnTphEbG2t2WeICFoulzP1z5sxh5MiR1VuMmKZv376amqse+Pbbb5k4cSJ79+6lRYsWjB8/ngcffNDsssRFTp8+zeTJk/nqq69ISkqicePG3H333Tz33HN4eHiYXV69pzArIiIiIrWWemZFREREpNZSmBURERGRWkthVkRERERqLYVZEREREam1FGZFREREpNZSmBURERGRWkthVkRERERqLYVZEREREam1FGZFROqplStXYrFYSE1NNbsUEZGLpjArIiIiIrWWwqyIiIiI1FoKsyIiJnE4HEyZMoUWLVrg7e1Nly5d+PLLL4EzLQDfffcdl112GV5eXlxxxRVs37691D3+/e9/07FjRzw9PYmKiuKtt94qdTw3N5enn36ayMhIPD09ad26NR999FGpczZu3EhMTAw+Pj707t2b3bt3u/aDi4hUIYVZERGTTJkyhU8++YRZs2axY8cOHn/8ce69915WrVpVfM6TTz7JW2+9xfr162nUqBE333wz+fn5gBFChwwZwl133cW2bdt44YUXmDx5MnPnzi2+fvjw4Xz22WdMmzaNuLg4PvjgA/z8/ErV8cwzz/DWW2+xYcMG3NzcGDVqVLV8fhGRqmBxOp1Os4sQEalvcnNzCQkJYenSpfTq1at4/+jRo8nKyuKhhx6iX79+zJ8/n6FDhwKQkpJC06ZNmTt3LkOGDGHYsGGcOHGCH374ofj6p556iu+++44dO3awZ88e2rVrx5IlS+jfv/85NaxcuZJ+/fqxdOlSrr32WgC+//57brzxRrKzs/Hy8nLxn4KIyKXTyKyIiAn27dtHVlYWAwYMwM/Pr3j75JNP2L9/f/F5JYNuSEgI7dq1Iy4uDoC4uDj69OlT6r59+vRh79692O12tmzZgs1m45prrim3lssuu6z4+4iICACSkpIu+TOKiFQHN7MLEBGpjzIyMgD47rvvaNKkSaljnp6epQLtxfL29q7Qee7u7sXfWywWwOjnFRGpDTQyKyJigg4dOuDp6Ul8fDytW7cutUVGRhaf98svvxR/f+rUKfbs2UN0dDQA0dHRrF69utR9V69eTdu2bbHZbHTu3BmHw1GqB1dEpK7RyKyIiAn8/f35y1/+wuOPP47D4eDKK68kLS2N1atXExAQQPPmzQF46aWXaNCgAWFhYTzzzDM0bNiQwYMHA/DEE0/Qo0cPXn75ZYYOHcratWuZPn0677//PgBRUVGMGDGCUaNGMW3aNLp06cLhw4dJSkpiyJAhZn10EZEqpTArImKSl19+mUaNGjFlyhQOHDhAUFAQl19+OZMmTSr+Nf9rr73Go48+yt69e+natSv//e9/8fDwAODyyy/n888/57nnnuPll18mIiKCl156iZEjRxa/x8yZM5k0aRL/93//x8mTJ2nWrBmTJk0y4+OKiLiEZjMQEamBimYaOHXqFEFBQWaXIyJSY6lnVkRERERqLYVZEREREam11GYgIiIiIrWWRmZFREREpNZSmBURERGRWkthVkRERERqLYVZEREREam1FGZFREREpNZSmBURERGRWkthVkRERERqLYVZEREREam1/h9rjNBEd7BALwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "acc = history.history[\"accuracy\"]\n", + "val_acc = history.history[\"val_accuracy\"]\n", + "\n", + "loss = history.history[\"loss\"]\n", + "val_loss = history.history[\"val_loss\"]\n", + "\n", + "plt.figure(figsize=(8, 8))\n", + "plt.subplot(2, 1, 1)\n", + "plt.plot(acc, label=\"Training Accuracy\")\n", + "plt.plot(val_acc, label=\"Validation Accuracy\")\n", + "plt.legend(loc=\"lower right\")\n", + "plt.ylabel(\"Accuracy\")\n", + "plt.ylim([min(plt.ylim()), 1])\n", + "plt.title(\"Training and Validation Accuracy\")\n", + "\n", + "plt.subplot(2, 1, 2)\n", + "plt.plot(loss, label=\"Training Loss\")\n", + "plt.plot(val_loss, label=\"Validation Loss\")\n", + "plt.legend(loc=\"upper right\")\n", + "plt.ylabel(\"Cross Entropy\")\n", + "plt.ylim([0, 1.0])\n", + "plt.title(\"Training and Validation Loss\")\n", + "plt.xlabel(\"epoch\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "foWMyyUHbc1j" + }, + "source": [ + "Note: If you are wondering why the validation metrics are clearly better than the training metrics, the main factor is because layers like `tf.keras.layers.BatchNormalization` and `tf.keras.layers.Dropout` affect accuracy during training. They are turned off when calculating validation loss.\n", + "\n", + "To a lesser extent, it is also because training metrics report the average for an epoch, while validation metrics are evaluated after the epoch, so validation metrics see a model that has trained slightly longer." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CqwV-CRdS6Nv" + }, + "source": [ + "## Fine tuning\n", + "In the feature extraction experiment, you were only training a few layers on top of an MobileNetV2 base model. The weights of the pre-trained network were **not** updated during training.\n", + "\n", + "One way to increase performance even further is to train (or \"fine-tune\") the weights of the top layers of the pre-trained model alongside the training of the classifier you added. The training process will force the weights to be tuned from generic feature maps to features associated specifically with the dataset.\n", + "\n", + "Note: This should only be attempted after you have trained the top-level classifier with the pre-trained model set to non-trainable. If you add a randomly initialized classifier on top of a pre-trained model and attempt to train all layers jointly, the magnitude of the gradient updates will be too large (due to the random weights from the classifier) and your pre-trained model will forget what it has learned.\n", + "\n", + "Also, you should try to fine-tune a small number of top layers rather than the whole MobileNet model. In most convolutional networks, the higher up a layer is, the more specialized it is. The first few layers learn very simple and generic features that generalize to almost all types of images. As you go higher up, the features are increasingly more specific to the dataset on which the model was trained. The goal of fine-tuning is to adapt these specialized features to work with the new dataset, rather than overwrite the generic learning." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CPXnzUK0QonF" + }, + "source": [ + "### Un-freeze the top layers of the model\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rfxv_ifotQak" + }, + "source": [ + "All you need to do is unfreeze the `base_model` and set the bottom layers to be un-trainable. Then, you should recompile the model (necessary for these changes to take effect), and resume training." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "id": "4nzcagVitLQm" + }, + "outputs": [], + "source": [ + "base_model.trainable = True" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "id": "-4HgVAacRs5v" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of layers in the base model: 154\n" + ] + } + ], + "source": [ + "# Let's take a look to see how many layers are in the base model\n", + "print(\"Number of layers in the base model: \", len(base_model.layers))\n", + "\n", + "# Fine-tune from this layer onwards\n", + "fine_tune_at = 100\n", + "\n", + "# Freeze all the layers before the `fine_tune_at` layer\n", + "for layer in base_model.layers[:fine_tune_at]:\n", + " layer.trainable = False" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4Uk1dgsxT0IS" + }, + "source": [ + "### Compile the model\n", + "\n", + "As you are training a much larger model and want to readapt the pretrained weights, it is important to use a lower learning rate at this stage. Otherwise, your model could overfit very quickly." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "id": "NtUnaz0WUDva" + }, + "outputs": [], + "source": [ + "model.compile(\n", + " loss=tf.keras.losses.BinaryCrossentropy(),\n", + " optimizer=tf.keras.optimizers.RMSprop(learning_rate=base_learning_rate / 10),\n", + " metrics=[tf.keras.metrics.BinaryAccuracy(threshold=0.5, name=\"accuracy\")],\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "id": "WwBWy7J2kZvA" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Model: \"functional_1\"\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1mModel: \"functional_1\"\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
+       "┃ Layer (type)                     Output Shape                  Param # ┃\n",
+       "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
+       "│ input_layer_2 (InputLayer)      │ (None, 160, 160, 3)    │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ sequential (Sequential)         │ (None, 160, 160, 3)    │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ true_divide (TrueDivide)        │ (None, 160, 160, 3)    │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ subtract (Subtract)             │ (None, 160, 160, 3)    │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ mobilenetv2_1.00_160            │ (None, 5, 5, 1280)     │     2,257,984 │\n",
+       "│ (Functional)                    │                        │               │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ global_average_pooling2d        │ (None, 1280)           │             0 │\n",
+       "│ (GlobalAveragePooling2D)        │                        │               │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dropout (Dropout)               │ (None, 1280)           │             0 │\n",
+       "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
+       "│ dense (Dense)                   │ (None, 1)              │         1,281 │\n",
+       "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
+       "
\n" + ], + "text/plain": [ + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", + "│ input_layer_2 (\u001b[38;5;33mInputLayer\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m160\u001b[0m, \u001b[38;5;34m160\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ sequential (\u001b[38;5;33mSequential\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m160\u001b[0m, \u001b[38;5;34m160\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ true_divide (\u001b[38;5;33mTrueDivide\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m160\u001b[0m, \u001b[38;5;34m160\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ subtract (\u001b[38;5;33mSubtract\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m160\u001b[0m, \u001b[38;5;34m160\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ mobilenetv2_1.00_160 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m5\u001b[0m, \u001b[38;5;34m1280\u001b[0m) │ \u001b[38;5;34m2,257,984\u001b[0m │\n", + "│ (\u001b[38;5;33mFunctional\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ global_average_pooling2d │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1280\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "│ (\u001b[38;5;33mGlobalAveragePooling2D\u001b[0m) │ │ │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1280\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", + "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", + "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m1,281\u001b[0m │\n", + "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Total params: 2,259,265 (8.62 MB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m2,259,265\u001b[0m (8.62 MB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Trainable params: 1,862,721 (7.11 MB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m1,862,721\u001b[0m (7.11 MB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
 Non-trainable params: 396,544 (1.51 MB)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m396,544\u001b[0m (1.51 MB)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "id": "bNXelbMQtonr" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "56" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(model.trainable_variables)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4G5O4jd6TuAG" + }, + "source": [ + "### Continue training the model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0foWUN-yDLo_" + }, + "source": [ + "If you trained to convergence earlier, this step will improve your accuracy by a few percentage points." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "id": "ECQLkAsFTlun" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 11/20\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 260ms/step - accuracy: 0.7925 - loss: 0.4313 - val_accuracy: 0.9752 - val_loss: 0.0965\n", + "Epoch 12/20\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m16s\u001b[0m 258ms/step - accuracy: 0.8939 - loss: 0.2663 - val_accuracy: 0.9777 - val_loss: 0.0762\n", + "Epoch 13/20\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m17s\u001b[0m 273ms/step - accuracy: 0.9217 - loss: 0.2192 - val_accuracy: 0.9728 - val_loss: 0.0689\n", + "Epoch 14/20\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m17s\u001b[0m 273ms/step - accuracy: 0.9327 - loss: 0.1846 - val_accuracy: 0.9814 - val_loss: 0.0560\n", + "Epoch 15/20\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m17s\u001b[0m 270ms/step - accuracy: 0.9320 - loss: 0.1609 - val_accuracy: 0.9827 - val_loss: 0.0498\n", + "Epoch 16/20\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m16s\u001b[0m 259ms/step - accuracy: 0.9356 - loss: 0.1462 - val_accuracy: 0.9839 - val_loss: 0.0504\n", + "Epoch 17/20\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m17s\u001b[0m 268ms/step - accuracy: 0.9508 - loss: 0.1357 - val_accuracy: 0.9851 - val_loss: 0.0460\n", + "Epoch 18/20\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m17s\u001b[0m 272ms/step - accuracy: 0.9452 - loss: 0.1328 - val_accuracy: 0.9827 - val_loss: 0.0449\n", + "Epoch 19/20\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m17s\u001b[0m 266ms/step - accuracy: 0.9525 - loss: 0.1275 - val_accuracy: 0.9814 - val_loss: 0.0428\n", + "Epoch 20/20\n", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m17s\u001b[0m 269ms/step - accuracy: 0.9707 - loss: 0.1012 - val_accuracy: 0.9851 - val_loss: 0.0426\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m21/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 48ms/step - accuracy: 0.7751 - loss: 0.4609" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m23/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 48ms/step - accuracy: 0.7743 - loss: 0.4610" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m25/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 48ms/step - accuracy: 0.7743 - loss: 0.4600" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m27/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 48ms/step - accuracy: 0.7746 - loss: 0.4589" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m29/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 48ms/step - accuracy: 0.7748 - loss: 0.4575" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m31/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 48ms/step - accuracy: 0.7750 - loss: 0.4563" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m32/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 48ms/step - accuracy: 0.7750 - loss: 0.4558" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m34/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 48ms/step - accuracy: 0.7753 - loss: 0.4547" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m36/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 48ms/step - accuracy: 0.7755 - loss: 0.4538" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m38/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 48ms/step - accuracy: 0.7757 - loss: 0.4529" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m40/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 48ms/step - accuracy: 0.7761 - loss: 0.4518" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m42/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 48ms/step - accuracy: 0.7766 - loss: 0.4507" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m44/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7770 - loss: 0.4497" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m46/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7775 - loss: 0.4486" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m48/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7780 - loss: 0.4475" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m50/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7786 - loss: 0.4464" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m51/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7789 - loss: 0.4459" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m53/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7795 - loss: 0.4448" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m55/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7801 - loss: 0.4436" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m56/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7804 - loss: 0.4431" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m58/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7810 - loss: 0.4420" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m60/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7818 - loss: 0.4408" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m62/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.7825 - loss: 0.4395" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.7829 - loss: 0.4388" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "W0000 00:00:1723777740.759928 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.761018 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.762009 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.763008 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.763868 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.764730 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.765679 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.766639 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.767538 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.768451 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.769425 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.770413 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.774788 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.775700 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.776650 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.777593 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.778540 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.779532 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.780409 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.781361 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.782434 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.783729 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.787926 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.788865 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.789775 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.790696 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.791581 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.792447 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.793254 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.794047 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.794901 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.795757 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.796576 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.797395 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.801075 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.801870 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.802723 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.803489 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.804291 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.805088 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.805875 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.806757 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.807712 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.808824 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.812771 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.813586 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.814385 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.815166 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.815919 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.816682 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.817437 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.818213 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.818942 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.819699 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.820444 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.821222 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.823665 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.824543 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.825389 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.826174 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.826927 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.827749 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.828650 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.829708 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.832743 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.833534 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.834305 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.835070 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.835816 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.836566 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.837294 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.838045 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.838791 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.839535 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.840272 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.841010 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.844005 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.844738 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.845454 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.846154 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.846880 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.847596 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.848314 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.849085 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.849872 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.850759 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.855279 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.856026 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.856744 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.857460 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.858161 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.858867 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.859582 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.860329 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.861031 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.861739 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.862430 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.863124 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.865903 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.866626 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.867308 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.867984 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.868670 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.869361 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.870049 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.870812 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.871543 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.872322 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.875308 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.876066 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.876780 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.877493 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.878243 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.879036 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.879780 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.880655 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.881385 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.882330 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.883062 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.884092 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.887166 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.887919 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.888657 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.889395 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.890141 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.890946 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.891671 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.892427 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.893145 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.893924 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.897032 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.897777 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.898506 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.899215 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.899949 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.900670 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.901607 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.902624 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.903367 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.904117 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.904902 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.905763 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.908783 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.909510 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.910211 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.910890 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.911584 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.912311 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.913031 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.913806 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.914530 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n", + "W0000 00:00:1723777740.915336 124620 gpu_timer.cc:114] Skipping the delay kernel, measurement accuracy will be reduced\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m14s\u001b[0m 79ms/step - accuracy: 0.7833 - loss: 0.4382 - val_accuracy: 0.9740 - val_loss: 0.0901\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 12/20\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m4s\u001b[0m 66ms/step - accuracy: 0.8750 - loss: 0.2900" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 3/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.8819 - loss: 0.2776" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 5/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.8860 - loss: 0.2764" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 7/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 48ms/step - accuracy: 0.8862 - loss: 0.2743" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 8/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.8872 - loss: 0.2727" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m10/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 48ms/step - accuracy: 0.8858 - loss: 0.2743" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m12/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 48ms/step - accuracy: 0.8847 - loss: 0.2745" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m13/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.8845 - loss: 0.2745" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m15/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.8838 - loss: 0.2754" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m17/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 48ms/step - accuracy: 0.8832 - loss: 0.2763" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m18/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.8831 - loss: 0.2766" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m20/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.8832 - loss: 0.2765" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m22/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.8836 - loss: 0.2763" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m23/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.8838 - loss: 0.2762" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m25/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.8840 - loss: 0.2762" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m27/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.8841 - loss: 0.2763" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m28/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.8842 - loss: 0.2762" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m30/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.8845 - loss: 0.2759" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m32/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.8846 - loss: 0.2759" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m34/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.8843 - loss: 0.2764" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m36/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.8842 - loss: 0.2765" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m38/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.8840 - loss: 0.2767" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m40/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.8839 - loss: 0.2767" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m42/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.8839 - loss: 0.2765" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m44/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.8840 - loss: 0.2763" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m46/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.8841 - loss: 0.2761" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m48/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.8842 - loss: 0.2757" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m50/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.8844 - loss: 0.2754" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m51/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.8845 - loss: 0.2753" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m53/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.8847 - loss: 0.2749" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m55/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.8849 - loss: 0.2747" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m57/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.8850 - loss: 0.2743" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m59/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.8851 - loss: 0.2740" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m61/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.8852 - loss: 0.2737" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.8853 - loss: 0.2735" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 60ms/step - accuracy: 0.8853 - loss: 0.2733 - val_accuracy: 0.9715 - val_loss: 0.0812\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 13/20\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m4s\u001b[0m 65ms/step - accuracy: 0.9062 - loss: 0.2526" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 3/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9427 - loss: 0.2120" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 5/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9519 - loss: 0.1942" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 7/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 48ms/step - accuracy: 0.9485 - loss: 0.1909" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 9/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9445 - loss: 0.1894" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m11/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9387 - loss: 0.1916" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m13/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9344 - loss: 0.1945" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m14/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9327 - loss: 0.1958" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m16/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9308 - loss: 0.1974" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m18/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9289 - loss: 0.1994" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m19/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9280 - loss: 0.2005" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m21/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9265 - loss: 0.2023" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m23/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9253 - loss: 0.2038" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m24/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9248 - loss: 0.2044" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m26/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9238 - loss: 0.2055" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m28/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9229 - loss: 0.2065" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m30/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9221 - loss: 0.2073" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m31/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9218 - loss: 0.2076" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m33/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9213 - loss: 0.2081" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m35/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9207 - loss: 0.2089" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m36/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9203 - loss: 0.2093" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m38/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9198 - loss: 0.2102" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m40/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9192 - loss: 0.2110" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m41/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9188 - loss: 0.2114" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m43/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9183 - loss: 0.2121" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m45/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9178 - loss: 0.2127" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m47/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9175 - loss: 0.2133" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m48/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9172 - loss: 0.2136" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m50/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9169 - loss: 0.2141" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m52/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9166 - loss: 0.2146" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m53/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9165 - loss: 0.2149" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m55/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9162 - loss: 0.2154" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m57/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9160 - loss: 0.2158" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m59/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9158 - loss: 0.2161" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m61/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9158 - loss: 0.2163" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 48ms/step - accuracy: 0.9156 - loss: 0.2165" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 60ms/step - accuracy: 0.9156 - loss: 0.2167 - val_accuracy: 0.9777 - val_loss: 0.0656\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 14/20\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m4s\u001b[0m 66ms/step - accuracy: 1.0000 - loss: 0.0997" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 2/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 50ms/step - accuracy: 0.9766 - loss: 0.1141" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 4/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9681 - loss: 0.1321" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 5/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9657 - loss: 0.1380" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 7/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9584 - loss: 0.1468" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 9/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9510 - loss: 0.1533" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m11/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9463 - loss: 0.1575" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m12/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9450 - loss: 0.1587" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m14/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9434 - loss: 0.1597" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m15/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9427 - loss: 0.1605" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m17/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9419 - loss: 0.1613" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m19/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9412 - loss: 0.1623" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m21/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9408 - loss: 0.1632" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m23/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9403 - loss: 0.1641" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m25/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9397 - loss: 0.1650" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m26/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9394 - loss: 0.1654" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m28/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9390 - loss: 0.1662" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m30/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9388 - loss: 0.1667" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m31/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9387 - loss: 0.1669" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m33/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9384 - loss: 0.1676" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m34/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9382 - loss: 0.1679" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m36/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9379 - loss: 0.1687" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m38/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9376 - loss: 0.1694" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m40/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9374 - loss: 0.1702" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m42/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9371 - loss: 0.1709" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m43/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9370 - loss: 0.1713" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m45/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9368 - loss: 0.1720" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m47/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9366 - loss: 0.1725" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m48/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9365 - loss: 0.1728" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m49/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9364 - loss: 0.1730" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m51/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9363 - loss: 0.1733" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m52/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9363 - loss: 0.1735" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m54/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9362 - loss: 0.1738" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m56/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9361 - loss: 0.1741" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m57/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9360 - loss: 0.1742" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m59/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9359 - loss: 0.1746" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m61/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9357 - loss: 0.1749" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9356 - loss: 0.1752" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 60ms/step - accuracy: 0.9355 - loss: 0.1753 - val_accuracy: 0.9790 - val_loss: 0.0592\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 15/20\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m4s\u001b[0m 65ms/step - accuracy: 0.9688 - loss: 0.1888" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 3/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9514 - loss: 0.1675" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 5/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9483 - loss: 0.1590" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 6/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9491 - loss: 0.1550" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 7/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9507 - loss: 0.1513" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 9/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9514 - loss: 0.1477" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m10/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9513 - loss: 0.1464" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m12/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9513 - loss: 0.1447" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m14/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9493 - loss: 0.1469" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m15/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9483 - loss: 0.1485" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m17/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9459 - loss: 0.1516" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m19/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9439 - loss: 0.1537" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m21/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9426 - loss: 0.1551" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m22/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9422 - loss: 0.1554" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m23/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9417 - loss: 0.1559" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m25/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9409 - loss: 0.1567" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m26/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9407 - loss: 0.1570" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m27/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9404 - loss: 0.1575" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m29/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 49ms/step - accuracy: 0.9400 - loss: 0.1583" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m30/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9398 - loss: 0.1586" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m32/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9394 - loss: 0.1591" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m33/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9392 - loss: 0.1593" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m34/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9391 - loss: 0.1596" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m36/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9388 - loss: 0.1603" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m37/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9386 - loss: 0.1606" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m38/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9385 - loss: 0.1610" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m40/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9382 - loss: 0.1617" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m41/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9381 - loss: 0.1620" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m43/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9380 - loss: 0.1625" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m45/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9379 - loss: 0.1628" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m47/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9377 - loss: 0.1632" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m48/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9377 - loss: 0.1634" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m50/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9376 - loss: 0.1637" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m52/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9374 - loss: 0.1640" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m54/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9372 - loss: 0.1644" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m55/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9371 - loss: 0.1646" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m56/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9370 - loss: 0.1648" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m58/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9368 - loss: 0.1651" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m59/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9366 - loss: 0.1652" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m61/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9364 - loss: 0.1655" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 49ms/step - accuracy: 0.9363 - loss: 0.1657" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 61ms/step - accuracy: 0.9362 - loss: 0.1658 - val_accuracy: 0.9802 - val_loss: 0.0545\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 16/20\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m4s\u001b[0m 67ms/step - accuracy: 0.9688 - loss: 0.1078" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 2/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 52ms/step - accuracy: 0.9609 - loss: 0.1243" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 4/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9434 - loss: 0.1378" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 5/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9384 - loss: 0.1418" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 6/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9374 - loss: 0.1417" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 8/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9364 - loss: 0.1415" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 9/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9357 - loss: 0.1426" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m11/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9350 - loss: 0.1451" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m12/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9350 - loss: 0.1461" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m13/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9354 - loss: 0.1464" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m15/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9359 - loss: 0.1468" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m16/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9364 - loss: 0.1466" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m17/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9369 - loss: 0.1462" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m19/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9379 - loss: 0.1454" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m20/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9381 - loss: 0.1454" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m21/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9381 - loss: 0.1455" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m23/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9385 - loss: 0.1453" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m24/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9385 - loss: 0.1454" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m26/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9387 - loss: 0.1455" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m27/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9387 - loss: 0.1455" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m28/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9387 - loss: 0.1455" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m30/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9387 - loss: 0.1455" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m32/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9387 - loss: 0.1455" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m33/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9388 - loss: 0.1454" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m34/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9388 - loss: 0.1455" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m35/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9388 - loss: 0.1455" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m36/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9388 - loss: 0.1455" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m38/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9390 - loss: 0.1454" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m39/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9391 - loss: 0.1454" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m40/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9391 - loss: 0.1454" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m42/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9392 - loss: 0.1454" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m43/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9392 - loss: 0.1454" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m44/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9392 - loss: 0.1455" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m45/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9392 - loss: 0.1456" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m46/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9391 - loss: 0.1456" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m48/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9391 - loss: 0.1457" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m49/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9391 - loss: 0.1458" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m51/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9392 - loss: 0.1458" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m52/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9392 - loss: 0.1458" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m53/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9392 - loss: 0.1458" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m55/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9393 - loss: 0.1457" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m56/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9393 - loss: 0.1457" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m57/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9393 - loss: 0.1457" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m59/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9393 - loss: 0.1458" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m61/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9393 - loss: 0.1458" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9393 - loss: 0.1459" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 62ms/step - accuracy: 0.9393 - loss: 0.1459 - val_accuracy: 0.9851 - val_loss: 0.0497\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 17/20\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m4s\u001b[0m 67ms/step - accuracy: 0.8750 - loss: 0.1786" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 2/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 51ms/step - accuracy: 0.8906 - loss: 0.1586" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 3/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 50ms/step - accuracy: 0.9028 - loss: 0.1517" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 4/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9095 - loss: 0.1488" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 6/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9159 - loss: 0.1470" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 8/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9202 - loss: 0.1443" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 9/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9222 - loss: 0.1436" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m10/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9234 - loss: 0.1432" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m11/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9247 - loss: 0.1426" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m12/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9257 - loss: 0.1418" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m14/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9276 - loss: 0.1412" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m16/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9296 - loss: 0.1404" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m17/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9307 - loss: 0.1397" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m18/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9318 - loss: 0.1391" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m19/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9330 - loss: 0.1384" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m20/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9341 - loss: 0.1377" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m22/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9359 - loss: 0.1364" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m23/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9366 - loss: 0.1360" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m24/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9373 - loss: 0.1357" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m25/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9379 - loss: 0.1353" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m26/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9385 - loss: 0.1350" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m27/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9391 - loss: 0.1346" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m28/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9396 - loss: 0.1342" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m30/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9406 - loss: 0.1337" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m31/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9410 - loss: 0.1336" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m32/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9413 - loss: 0.1335" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m34/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9420 - loss: 0.1333" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m35/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9423 - loss: 0.1332" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m36/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9426 - loss: 0.1330" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m37/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9429 - loss: 0.1329" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m38/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9431 - loss: 0.1327" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m39/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9434 - loss: 0.1325" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m40/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9436 - loss: 0.1324" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m42/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9440 - loss: 0.1323" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m43/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 50ms/step - accuracy: 0.9442 - loss: 0.1322" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m44/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9444 - loss: 0.1322" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m45/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9446 - loss: 0.1321" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m46/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9448 - loss: 0.1321" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m47/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9449 - loss: 0.1321" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m48/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9451 - loss: 0.1321" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m49/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9452 - loss: 0.1322" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m50/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9454 - loss: 0.1322" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m51/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9455 - loss: 0.1322" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m52/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9456 - loss: 0.1323" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m54/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9459 - loss: 0.1323" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m55/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9460 - loss: 0.1324" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m56/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9461 - loss: 0.1324" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m58/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9463 - loss: 0.1324" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m60/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9465 - loss: 0.1324" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m61/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9465 - loss: 0.1324" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9467 - loss: 0.1325" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 62ms/step - accuracy: 0.9468 - loss: 0.1325 - val_accuracy: 0.9814 - val_loss: 0.0517\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 18/20\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m4s\u001b[0m 67ms/step - accuracy: 0.9688 - loss: 0.1182" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 2/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 52ms/step - accuracy: 0.9609 - loss: 0.1178" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 4/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9557 - loss: 0.1092" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 6/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9563 - loss: 0.1049" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 7/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9555 - loss: 0.1054" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 8/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9557 - loss: 0.1049" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 9/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 50ms/step - accuracy: 0.9552 - loss: 0.1050" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m10/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9553 - loss: 0.1050" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m11/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9555 - loss: 0.1047" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m12/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9557 - loss: 0.1043" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m13/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9558 - loss: 0.1044" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m14/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9559 - loss: 0.1047" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m15/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9561 - loss: 0.1048" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m16/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9563 - loss: 0.1048" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m17/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9564 - loss: 0.1049" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m18/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9563 - loss: 0.1056" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m19/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9562 - loss: 0.1066" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m20/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9562 - loss: 0.1073" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m21/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9562 - loss: 0.1078" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m22/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9562 - loss: 0.1084" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m23/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9561 - loss: 0.1090" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m24/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9561 - loss: 0.1095" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m25/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9561 - loss: 0.1099" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m26/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9560 - loss: 0.1105" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m27/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9558 - loss: 0.1110" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m28/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9557 - loss: 0.1114" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m30/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9556 - loss: 0.1119" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m31/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9555 - loss: 0.1122" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m32/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9554 - loss: 0.1124" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m33/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9554 - loss: 0.1126" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m34/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9553 - loss: 0.1127" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m35/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9553 - loss: 0.1129" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m36/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9553 - loss: 0.1131" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m38/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9552 - loss: 0.1133" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m39/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9552 - loss: 0.1133" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m40/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9551 - loss: 0.1135" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m42/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9551 - loss: 0.1136" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m43/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9550 - loss: 0.1137" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m44/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9549 - loss: 0.1138" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m45/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9549 - loss: 0.1140" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m46/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9548 - loss: 0.1141" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m47/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9547 - loss: 0.1142" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m48/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9547 - loss: 0.1143" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m50/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9547 - loss: 0.1145" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m52/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9547 - loss: 0.1146" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m53/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9548 - loss: 0.1147" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m54/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9548 - loss: 0.1147" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m56/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9549 - loss: 0.1148" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m57/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9549 - loss: 0.1149" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m58/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9549 - loss: 0.1150" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m60/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9549 - loss: 0.1151" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m62/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 50ms/step - accuracy: 0.9549 - loss: 0.1152" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 62ms/step - accuracy: 0.9549 - loss: 0.1154 - val_accuracy: 0.9889 - val_loss: 0.0417\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 19/20\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m4s\u001b[0m 66ms/step - accuracy: 0.9062 - loss: 0.1450" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 2/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 51ms/step - accuracy: 0.9219 - loss: 0.1286" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 3/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 52ms/step - accuracy: 0.9340 - loss: 0.1224" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 4/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 51ms/step - accuracy: 0.9368 - loss: 0.1214" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 5/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9407 - loss: 0.1175" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 6/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9437 - loss: 0.1139" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 7/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9460 - loss: 0.1114" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 9/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9502 - loss: 0.1066" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m10/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9521 - loss: 0.1043" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m11/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9533 - loss: 0.1032" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m12/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9540 - loss: 0.1027" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m13/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9545 - loss: 0.1025" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m14/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9551 - loss: 0.1026" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m15/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9556 - loss: 0.1027" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m16/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9562 - loss: 0.1027" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m17/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9564 - loss: 0.1031" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m18/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9567 - loss: 0.1033" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m19/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9569 - loss: 0.1035" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m20/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9571 - loss: 0.1037" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m21/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9571 - loss: 0.1043" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m22/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9571 - loss: 0.1048" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m23/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9571 - loss: 0.1053" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m24/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9572 - loss: 0.1056" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m25/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9573 - loss: 0.1058" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m26/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9573 - loss: 0.1059" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m27/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9575 - loss: 0.1060" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m28/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9576 - loss: 0.1060" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m29/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9577 - loss: 0.1060" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m30/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9578 - loss: 0.1061" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m31/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9579 - loss: 0.1061" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m32/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9580 - loss: 0.1061" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m33/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9581 - loss: 0.1061" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m34/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9581 - loss: 0.1062" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m35/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9581 - loss: 0.1063" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m36/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9581 - loss: 0.1065" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m37/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9581 - loss: 0.1067" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m38/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9580 - loss: 0.1068" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m39/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9579 - loss: 0.1070" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m40/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9579 - loss: 0.1072" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m41/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9578 - loss: 0.1075" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m42/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9576 - loss: 0.1078" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m43/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9575 - loss: 0.1081" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m44/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9575 - loss: 0.1084" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m45/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9574 - loss: 0.1086" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m46/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9574 - loss: 0.1087" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m47/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9574 - loss: 0.1089" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m48/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9574 - loss: 0.1090" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m49/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9573 - loss: 0.1091" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m50/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9573 - loss: 0.1092" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m51/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9573 - loss: 0.1093" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m52/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9573 - loss: 0.1094" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m53/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9573 - loss: 0.1095" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m54/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9572 - loss: 0.1096" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m55/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9572 - loss: 0.1097" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m56/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9572 - loss: 0.1098" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m57/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9572 - loss: 0.1098" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m58/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9571 - loss: 0.1099" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m60/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9571 - loss: 0.1101" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m62/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9570 - loss: 0.1103" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 63ms/step - accuracy: 0.9569 - loss: 0.1105 - val_accuracy: 0.9851 - val_loss: 0.0428\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 20/20\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "\u001b[1m 1/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m4s\u001b[0m 67ms/step - accuracy: 0.9375 - loss: 0.1219" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 2/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 51ms/step - accuracy: 0.9297 - loss: 0.1449" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 3/63\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 51ms/step - accuracy: 0.9323 - loss: 0.1463" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 4/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m3s\u001b[0m 51ms/step - accuracy: 0.9355 - loss: 0.1420" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 5/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9384 - loss: 0.1372" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 6/63\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9400 - loss: 0.1340" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 7/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9409 - loss: 0.1320" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 8/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9410 - loss: 0.1324" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m 9/63\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9418 - loss: 0.1318" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m10/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9429 - loss: 0.1307" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m11/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9440 - loss: 0.1299" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m12/63\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9443 - loss: 0.1298" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m13/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9447 - loss: 0.1295" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m14/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9453 - loss: 0.1289" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m15/63\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9456 - loss: 0.1286" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m16/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9461 - loss: 0.1279" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m17/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9463 - loss: 0.1274" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m18/63\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9467 - loss: 0.1268" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m19/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9471 - loss: 0.1263" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m20/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9474 - loss: 0.1259" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m21/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9477 - loss: 0.1254" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m22/63\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9480 - loss: 0.1251" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m23/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9483 - loss: 0.1249" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m24/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9485 - loss: 0.1247" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m25/63\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9487 - loss: 0.1244" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m26/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9489 - loss: 0.1242" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m27/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9491 - loss: 0.1241" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m28/63\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9492 - loss: 0.1239" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m29/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9494 - loss: 0.1237" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m30/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9495 - loss: 0.1235" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m31/63\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9497 - loss: 0.1233" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m32/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9499 - loss: 0.1231" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m33/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9501 - loss: 0.1229" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m34/63\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9502 - loss: 0.1226" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m35/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9504 - loss: 0.1224" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m36/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9506 - loss: 0.1222" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m37/63\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9507 - loss: 0.1220" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m38/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9508 - loss: 0.1219" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m39/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9509 - loss: 0.1218" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m40/63\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9509 - loss: 0.1218" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m41/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9509 - loss: 0.1219" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m42/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9509 - loss: 0.1220" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m43/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - accuracy: 0.9508 - loss: 0.1221" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m44/63\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9508 - loss: 0.1221" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m45/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9508 - loss: 0.1222" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m46/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9509 - loss: 0.1221" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m47/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9509 - loss: 0.1221" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m48/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9509 - loss: 0.1221" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m49/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9509 - loss: 0.1222" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m50/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9508 - loss: 0.1224" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m51/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9508 - loss: 0.1226" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m52/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9507 - loss: 0.1227" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m53/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9506 - loss: 0.1229" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m54/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9506 - loss: 0.1230" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m55/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9505 - loss: 0.1232" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m56/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9504 - loss: 0.1233" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m57/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9503 - loss: 0.1235" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m58/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9503 - loss: 0.1236" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m60/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9501 - loss: 0.1239" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m62/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 51ms/step - accuracy: 0.9500 - loss: 0.1241" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m63/63\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 63ms/step - accuracy: 0.9499 - loss: 0.1243 - val_accuracy: 0.9876 - val_loss: 0.0355\n" + ] + } + ], + "source": [ + "fine_tune_epochs = 10\n", + "total_epochs = initial_epochs + fine_tune_epochs\n", + "\n", + "history_fine = model.fit(\n", + " train_dataset,\n", + " epochs=total_epochs,\n", + " initial_epoch=len(history.epoch),\n", + " validation_data=validation_dataset,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TfXEmsxQf6eP" + }, + "source": [ + "Let's take a look at the learning curves of the training and validation accuracy/loss when fine-tuning the last few layers of the MobileNetV2 base model and training the classifier on top of it. The validation loss is much higher than the training loss, so you may get some overfitting.\n", + "\n", + "You may also get some overfitting as the new training set is relatively small and similar to the original MobileNetV2 datasets.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DNtfNZKlInGT" + }, + "source": [ + "After fine tuning the model nearly reaches 98% accuracy on the validation set." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "id": "PpA8PlpQKygw" + }, + "outputs": [], + "source": [ + "acc += history_fine.history[\"accuracy\"]\n", + "val_acc += history_fine.history[\"val_accuracy\"]\n", + "\n", + "loss += history_fine.history[\"loss\"]\n", + "val_loss += history_fine.history[\"val_loss\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "id": "chW103JUItdk" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAK9CAYAAAAzGDRWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1xV9f/A8ddlbxBkCKIo7gXKSstRWZjlN1e5SpxlqZVmqWmuShtmlmX2K2dKWjkalqaWZk7cGxUZioIM2fve8/vjytUroKDAZbyfj8d5cM+5n3PO+14R3nzu+/P5qBRFURBCCCGEEKIaMTJ0AEIIIYQQQpSVJLFCCCGEEKLakSRWCCGEEEJUO5LECiGEEEKIakeSWCGEEEIIUe1IEiuEEEIIIaodSWKFEEIIIUS1I0msEEIIIYSodiSJFUIIIYQQ1Y4ksUIInWHDhuHl5XVf586aNQuVSlW+AVUxUVFRqFQqVqxYUen3VqlUzJo1S7e/YsUKVCoVUVFR9zzXy8uLYcOGlWs8D/K9IoQQ5UGSWCGqAZVKVapt586dhg611nvttddQqVRcvHixxDbTpk1DpVJx4sSJSoys7K5evcqsWbM4duyYoUMp1tmzZ1GpVFhYWJCSkmLocIQQlUySWCGqge+//15ve+KJJ4o93rJlywe6z7fffkt4ePh9nTt9+nSys7Mf6P41wZAhQwAIDQ0tsc0PP/xA27Ztadeu3X3f58UXXyQ7O5uGDRve9zXu5erVq8yePbvYJPZBvlfKy+rVq3FzcwPg559/NmgsQojKZ2LoAIQQ9/bCCy/o7e/fv59t27YVOX6nrKwsrKysSn0fU1PT+4oPwMTEBBMT+ZESFBREkyZN+OGHH5gxY0aR5/ft20dkZCQffvjhA93H2NgYY2PjB7rGg3iQ75XyoCgKoaGhDB48mMjISNasWcOoUaMMGlNJMjMzsba2NnQYQtQ40hMrRA3RrVs32rRpw+HDh+nSpQtWVla88847APzyyy88/fTTuLu7Y25ujre3N++99x5qtVrvGnfWORbWgM6fP5//+7//w9vbG3NzcwICAggLC9M7t7iaWJVKxbhx49i0aRNt2rTB3Nyc1q1bs2XLliLx79y5E39/fywsLPD29uabb74pdZ3t7t27ee6552jQoAHm5uZ4enoyYcKEIj3Dw4YNw8bGhtjYWHr37o2NjQ3Ozs5MmjSpyHuRkpLCsGHDsLe3x8HBgZCQkFJ/ZD1kyBDOnTvHkSNHijwXGhqKSqVi0KBB5OXlMWPGDPz8/LC3t8fa2prOnTvzzz//3PMexdXEKorC+++/T/369bGysuLRRx/l9OnTRc5NTk5m0qRJtG3bFhsbG+zs7Hjqqac4fvy4rs3OnTsJCAgAYPjw4bqSlcJ64OJqYjMzM3nzzTfx9PTE3Nyc5s2bM3/+fBRF0WtXlu+LkuzZs4eoqCgGDhzIwIED+ffff7ly5UqRdhqNhs8//5y2bdtiYWGBs7MzPXr04NChQ3rtVq9eTWBgIFZWVtSpU4cuXbrw119/6cV8e01yoTvrjQv/XXbt2sWrr76Ki4sL9evXByA6OppXX32V5s2bY2lpiZOTE88991yxdc0pKSlMmDABLy8vzM3NqV+/PkOHDiUxMZGMjAysra15/fXXi5x35coVjI2NmTdvXinfSSGqL+k2EaIGSUpK4qmnnmLgwIG88MILuLq6AtpfrDY2NkycOBEbGxv+/vtvZsyYQVpaGp988sk9rxsaGkp6ejovv/wyKpWKjz/+mL59+3Lp0qV79sj9999/bNiwgVdffRVbW1u++OIL+vXrR0xMDE5OTgAcPXqUHj16UK9ePWbPno1arWbOnDk4OzuX6nX/9NNPZGVl8corr+Dk5MTBgwdZtGgRV65c4aefftJrq1arCQ4OJigoiPnz57N9+3Y+/fRTvL29eeWVVwBtMvjss8/y33//MWbMGFq2bMnGjRsJCQkpVTxDhgxh9uzZhIaG0qFDB717//jjj3Tu3JkGDRqQmJjId999x6BBgxg9ejTp6eksXbqU4OBgDh48iK+vb6nuV2jGjBm8//779OzZk549e3LkyBGefPJJ8vLy9NpdunSJTZs28dxzz9GoUSPi4+P55ptv6Nq1K2fOnMHd3Z2WLVsyZ84cZsyYwUsvvUTnzp0B6NSpU7H3VhSF//3vf/zzzz+MHDkSX19ftm7dyltvvUVsbCyfffaZXvvSfF/czZo1a/D29iYgIIA2bdpgZWXFDz/8wFtvvaXXbuTIkaxYsYKnnnqKUaNGUVBQwO7du9m/fz/+/v4AzJ49m1mzZtGpUyfmzJmDmZkZBw4c4O+//+bJJ58s9ft/u1dffRVnZ2dmzJhBZmYmAGFhYezdu5eBAwdSv359oqKi+Prrr+nWrRtnzpzRfWqSkZFB586dOXv2LCNGjKBDhw4kJiby66+/cuXKFXx9fenTpw/r1q1jwYIFej3yP/zwA4qi6MpahKjRFCFEtTN27Fjlzv++Xbt2VQBlyZIlRdpnZWUVOfbyyy8rVlZWSk5Oju5YSEiI0rBhQ91+ZGSkAihOTk5KcnKy7vgvv/yiAMpvv/2mOzZz5swiMQGKmZmZcvHiRd2x48ePK4CyaNEi3bFevXopVlZWSmxsrO7YhQsXFBMTkyLXLE5xr2/evHmKSqVSoqOj9V4foMyZM0evbfv27RU/Pz/d/qZNmxRA+fjjj3XHCgoKlM6dOyuAsnz58nvGFBAQoNSvX19Rq9W6Y1u2bFEA5ZtvvtFdMzc3V++8GzduKK6ursqIESP0jgPKzJkzdfvLly9XACUyMlJRFEW5fv26YmZmpjz99NOKRqPRtXvnnXcUQAkJCdEdy8nJ0YtLUbT/1ubm5nrvTVhYWImv987vlcL37P3339dr179/f0WlUul9D5T2+6IkeXl5ipOTkzJt2jTdscGDBys+Pj567f7++28FUF577bUi1yh8jy5cuKAYGRkpffr0KfKe3P4+3vn+F2rYsKHee1v47/LII48oBQUFem2L+z7dt2+fAiirVq3SHZsxY4YCKBs2bCgx7q1btyqA8ueff+o9365dO6Vr165FzhOiJpJyAiFqEHNzc4YPH17kuKWlpe5xeno6iYmJdO7cmaysLM6dO3fP6w4YMIA6dero9gt75S5dunTPc7t37463t7duv127dtjZ2enOVavVbN++nd69e+Pu7q5r16RJE5566ql7Xh/0X19mZiaJiYl06tQJRVE4evRokfZjxozR2+/cubPea/njjz8wMTHR9cyCtgZ1/PjxpYoHtHXMV65c4d9//9UdCw0NxczMjOeee053TTMzM0D7sXdycjIFBQX4+/sXW4pwN9u3bycvL4/x48frlWC88cYbRdqam5tjZKT98a9Wq0lKSsLGxobmzZuX+b6F/vjjD4yNjXnttdf0jr/55psoisKff/6pd/xe3xd38+eff5KUlMSgQYN0xwYNGsTx48f1yifWr1+PSqVi5syZRa5R+B5t2rQJjUbDjBkzdO/JnW3ux+jRo4vULN/+fZqfn09SUhJNmjTBwcFB731fv349Pj4+9OnTp8S4u3fvjru7O2vWrNE9d+rUKU6cOHHPWnkhagpJYoWoQTw8PHRJ0e1Onz5Nnz59sLe3x87ODmdnZ90vutTU1Htet0GDBnr7hQntjRs3ynxu4fmF516/fp3s7GyaNGlSpF1xx4oTExPDsGHDcHR01NW5du3aFSj6+grrIkuKB7S1i/Xq1cPGxkavXfPmzUsVD8DAgQMxNjbWzVKQk5PDxo0beeqpp/T+IFi5ciXt2rXDwsICJycnnJ2d2bx5c6n+XW4XHR0NQNOmTfWOOzs7690PtAnzZ599RtOmTTE3N6du3bo4Oztz4sSJMt/39vu7u7tja2urd7xwxozC+Ard6/viblavXk2jRo0wNzfn4sWLXLx4EW9vb6ysrPSSuoiICNzd3XF0dCzxWhERERgZGdGqVat73rcsGjVqVORYdnY2M2bM0NUMF77vKSkpeu97REQEbdq0uev1jYyMGDJkCJs2bSIrKwvQllhYWFjo/kgSoqaTJFaIGuT2np5CKSkpdO3alePHjzNnzhx+++03tm3bxkcffQRoE5p7KWkUvHLHgJ3yPrc01Go1TzzxBJs3b2by5Mls2rSJbdu26QYg3fn6KmtEv4uLC0888QTr168nPz+f3377jfT0dL1axdWrVzNs2DC8vb1ZunQpW7ZsYdu2bTz22GOl+ne5X3PnzmXixIl06dKF1atXs3XrVrZt20br1q0r9L63u9/vi7S0NH777TciIyNp2rSpbmvVqhVZWVmEhoaW2/dWadw5ILBQcf8Xx48fzwcffMDzzz/Pjz/+yF9//cW2bdtwcnK6r/d96NChZGRksGnTJt1sDc888wz29vZlvpYQ1ZEM7BKihtu5cydJSUls2LCBLl266I5HRkYaMKpbXFxcsLCwKHZxgLstGFDo5MmTnD9/npUrVzJ06FDd8W3btt13TA0bNmTHjh1kZGTo9caWdV7UIUOGsGXLFv78809CQ0Oxs7OjV69euud//vlnGjduzIYNG/Q+ui7u4+/SxAxw4cIFGjdurDuekJBQpHfz559/5tFHH2Xp0qV6x1NSUqhbt65uvywfpzds2JDt27eTnp6u1xtbWK5SXvPZbtiwgZycHL7++mu9WEH77zN9+nT27NnDI488gre3N1u3biU5ObnE3lhvb280Gg1nzpy560C6OnXqFJmdIi8vj2vXrpU69p9//pmQkBA+/fRT3bGcnJwi1/X29ubUqVP3vF6bNm1o3749a9asoX79+sTExLBo0aJSxyNEdSc9sULUcIU9Xrf3TuXl5bF48WJDhaTH2NiY7t27s2nTJq5evao7fvHixSJ1lCWdD/qvT1EUPv/88/uOqWfPnhQUFPD111/rjqnV6jInCL1798bKyorFixfz559/0rdvXywsLO4a+4EDB9i3b1+ZY+7evTumpqYsWrRI73oLFy4s0tbY2LhIb+VPP/1EbGys3rHCuU1LM7VYz549UavVfPnll3rHP/vsM1QqVanrm+9l9erVNG7cmDFjxtC/f3+9bdKkSdjY2OhKCvr164eiKMyePbvIdQpff+/evTEyMmLOnDlFekNvf4+8vb316psB/u///q/EntjiFPe+L1q0qMg1+vXrx/Hjx9m4cWOJcRd68cUX+euvv1i4cCFOTk7l9j4LUR1IT6wQNVynTp2oU6cOISEhuiVRv//++0r9yPVeZs2axV9//cXDDz/MK6+8okuG2rRpc88lT1u0aIG3tzeTJk0iNjYWOzs71q9fX6raypL06tWLhx9+mClTphAVFUWrVq3YsGFDmetFbWxs6N27t64u9s5pj5555hk2bNhAnz59ePrpp4mMjGTJkiW0atWKjIyMMt2rcL7befPm8cwzz9CzZ0+OHj3Kn3/+WaTH8plnnmHOnDkMHz6cTp06cfLkSdasWaPXgwvaxM3BwYElS5Zga2uLtbU1QUFBxdZ79urVi0cffZRp06YRFRWFj48Pf/31F7/88gtvvPGG3iCu+3X16lX++eefIoPHCpmbmxMcHMxPP/3EF198waOPPsqLL77IF198wYULF+jRowcajYbdu3fz6KOPMm7cOJo0acK0adN477336Ny5M3379sXc3JywsDDc3d11862OGjWKMWPG0K9fP5544gmOHz/O1q1bi7y3d/PMM8/w/fffY29vT6tWrdi3bx/bt28vMqXYW2+9xc8//8xzzz3HiBEj8PPzIzk5mV9//ZUlS5bg4+Ojazt48GDefvttNm7cyCuvvGLwRSiEqEzSEytEDefk5MTvv/9OvXr1mD59OvPnz+eJJ57g448/NnRoOn5+fvz555/UqVOHd999l6VLlzJnzhwef/xxvZ7L4piamvLbb7/h6+vLvHnzmD17Nk2bNmXVqlX3HY+RkRG//vorQ4YMYfXq1UybNg0PDw9WrlxZ5msVJq716tXjscce03tu2LBhzJ07l+PHj/Paa6+xdetWVq9erZu/tKzef/99Zs+ezdGjR3nrrbeIiIjgr7/+KrJa1DvvvMObb77J1q1bef311zly5AibN2/G09NTr52pqSkrV67E2NiYMWPGMGjQIHbt2lXsvQvfszfeeIPff/+dN954gzNnzvDJJ5+wYMGC+3o9d1q7di0ajUavJONOvXr1IikpSdeLv3z5cj755BMiIyN56623mDt3LtnZ2Xrz3c6ZM4dly5aRnZ3NtGnTmDFjBtHR0Tz++OO6NqNHj2by5Mn8+++/vPnmm0RGRrJt27YyrcT1+eefM3ToUNasWcObb77JtWvX2L59e5EBhDY2NuzevZtXXnmFP/74g9dee43FixfTvHlz3cIJhVxdXXVz2b744ouljkWImkClVKXuGCGEuE3v3r05ffo0Fy5cMHQoQlRZffr04eTJk6WqIReiJpGeWCFElXDnErEXLlzgjz/+oFu3boYJSIhq4Nq1a2zevFl6YUWtJD2xQogqoV69egwbNozGjRsTHR3N119/TW5uLkePHi0y96kQtV1kZCR79uzhu+++IywsjIiICNzc3AwdlhCVSgZ2CSGqhB49evDDDz8QFxeHubk5HTt2ZO7cuZLAClGMXbt2MXz4cBo0aMDKlSslgRW1UpnLCf7991969eqFu7s7KpWKTZs23fOcnTt30qFDB8zNzWnSpIluEvLbffXVV3h5eWFhYUFQUBAHDx7Uez4nJ4exY8fi5OSEjY0N/fr1Iz4+vqzhCyGqqOXLlxMVFUVOTg6pqals2bKFDh06GDosIaqkYcOGoSgK0dHR9O/f39DhCGEQZU5iMzMz8fHx4auvvipV+8jISJ5++mkeffRRjh07xhtvvMGoUaPYunWrrs26deuYOHEiM2fO5MiRI/j4+BAcHMz169d1bSZMmMBvv/3GTz/9xK5du7h69Sp9+/Yta/hCCCGEEKIGeKCaWJVKxcaNG+ndu3eJbSZPnszmzZv1Vh8ZOHAgKSkpbNmyBYCgoCACAgJ0k2RrNBo8PT0ZP348U6ZMITU1FWdnZ0JDQ3V/cZ47d46WLVuyb98+Hnrooft9CUIIIYQQohqq8JrYffv20b17d71jwcHBvPHGG4B25aDDhw8zdepU3fNGRkZ0795dt2rN4cOHyc/P17tOixYtaNCgQYlJbG5uLrm5ubp9jUZDcnIyTk5OZVpKUQghhBBCVA5FUUhPT8fd3R0jo7sXDFR4EhsXF4erq6veMVdXV9LS0sjOzubGjRuo1epi2xSuuR0XF4eZmRkODg5F2sTFxRV738JJz4UQQgghRPVy+fLlIot73KnGzk4wdepUJk6cqNtPTU2lQYMGXL58GTs7OwNGJoQQWln5WTz2k3YVr7+f+xsrUysDRySEEIaVlpaGp6cntra292xb4Umsm5tbkVkE4uPjsbOzw9LSEmNjY4yNjYttUzhliJubG3l5eaSkpOj1xt7e5k7m5uaYm5sXOW5nZydJrBCiSjDJN8HY0hjQ/mySJFYIIbRKU/pZ4St2dezYkR07dugd27ZtGx07dgTAzMwMPz8/vTYajYYdO3bo2vj5+WFqaqrXJjw8nJiYGF0bIYQQQghRe5S5JzYjI0NvfebIyEiOHTuGo6MjDRo0YOrUqcTGxrJq1SoAxowZw5dffsnbb7/NiBEj+Pvvv/nxxx/ZvHmz7hoTJ04kJCQEf39/AgMDWbhwIZmZmQwfPhwAe3t7Ro4cycSJE3F0dMTOzo7x48fTsWNHmZlACCGEEKIWKnMSe+jQIR599FHdfmHdaUhICCtWrODatWvExMTonm/UqBGbN29mwoQJfP7559SvX5/vvvuO4OBgXZsBAwaQkJDAjBkziIuLw9fXly1btugN9vrss88wMjKiX79+5ObmEhwczOLFi+/rRQshhBBCiOrtgeaJrU7S0tKwt7cnNTVVamKFEFVCVn4WQaFBABwYfEBqYoUQtV5Z8rUKr4kVQgghhBCivEkSK4QQQgghqh1JYoUQQgghRLUjSawQQgghhKh2JIkVQgghhBDVjiSxQgghhBCi2pEkVgghhBBCVDuSxAohhBBCiGpHklghhBBCCFHtSBIrhBBCCCGqHUlihRBCCCFEtSNJrBBCCCGEqHZMDB2AEEIIIUQRigIFOZCTBrlpN7+m3rGfBkamYF//1mbnASZmho6+elMUSI+D66ch/gzciISnF4BKZejI9EgSK4QQQojypSiQn3Ur0cxNh5xU/eSzyNdintfk38fNVWDjqp/Y2nuCvcetx1ZOVS4hM5icNLh+9lbCWvg4+4Z+u65TwNbVMDGWQJJYIYQQQtyiKJCXWUyiWUwvaEnP56aDpqCcAlKBuR1Y2Gm/mtveemxhBwV5kHYFUm9uBTmQEafdYg8Vf0kTi2KS3MKe3PrahNfUspziryIK8iDpws1E9eYWfwZSY4pvrzICpybg0gpcW4ORceXGWwqSxAohhBA1hUYDeRnFJ5p37QW9PQlNB0VdPvGojO5IQO30E1C9r/bFHzezAaNSDuFRFMhKgtTLt5LaO7eMOG2im3RRu5XEqm7xSW5hr66lY9UsW1AUSInRT1Svn4HECyX3bNu6g2srcGkJLq21j+s2B1OLyo29jCSJFUIIIaoCjaaEZDO9FL2gt31FKZ94VMZ3JJT2d0lAS3jezLpyP7ZXqcC6rnZzb198m4JcSLt6R3J7R9KbnwlZidrt2rGS72diUbb3486E3dz2wRLFrOTbEtXbygHy0otvb253M1G92bvqcjNxtXK8/xgMSJJYIYQQoiLEnYL4U6XvCS0p8bgfRqal7Om0LTnpMrWqmXWjJubg2Ei7FUdRtPWgabElJ7np10DRaHt0C3Ig8/r9x2NsVvqeaVSQcO5W4poRV/w1jUyhbrObvau3Jaz29WvUv6kksUIIIUR5yc+G0xshbGnJ9Zj3YmxeQv1nCR+3F5eAmljUqGSlUqlU2p5JK0dwa1t8G3XBPf4wuUvPeW66/h8t6rxbvb73w6HBrRIAl5tb3aZgbHp/16tGJIkVQgghHlTiBTi0HI6tgZwU7TEjU2jwEFjWKf3HyxZ22p5CUbUZm9xKdO+XRn2zVKSUMzXkpoE6X5ugFvauOre42UNbO0kSK4QQQtwPdT6c2wyHlkLkv7eOOzQAv+HQ/gWwcTFcfKJqMzIGSwftJu6LJLFCCCFEWaRegcMr4MgqyIi/eVAFzYLBfyQ0ebxKTkckRE0jSawQQojKoS6AzATtRPNVcWqiu9GoIeJvba3rha3aQT0A1i7QYSj4hWh7YIUQlUaSWCGEEA9OUbS1oKmxxY/mTr0C6Ve1yZ+JJdT319aLej4EngHamtCqKCMBjn4Ph5dr594s5NUZAkZCi2dqxQAaIaqi+0piv/rqKz755BPi4uLw8fFh0aJFBAYGFts2Pz+fefPmsXLlSmJjY2nevDkfffQRPXr00LXx8vIiOjq6yLmvvvoqX331FQDdunVj165des+//PLLLFmy5H5eghBCiLIoyNMmoSVNOZR6RTvJ/j2poCAbonZrt8Jjrm20SW2Dh6BBR+1k8oaiKBC9Fw4tgzO/3Jog3sIefIdo612dmxkuPiEEcB9J7Lp165g4cSJLliwhKCiIhQsXEhwcTHh4OC4uRQvYp0+fzurVq/n2229p0aIFW7dupU+fPuzdu5f27bUTEYeFhaFW31od5NSpUzzxxBM899xzetcaPXo0c+bM0e1bWVmVNXwhhBB3UhTtpOl6iekdSWpGPKWaRN/KqZgVjm7bt3bWrpIUsw9i9mu3G5EQf1K7hX2rvY69p35S69yy9Ks23a+cVDi+Vpu8Jpy7ddzDT1vr2roPmMnvHSGqCpWiKGVa2iMoKIiAgAC+/PJLADQaDZ6enowfP54pU6YUae/u7s60adMYO3as7li/fv2wtLRk9erVxd7jjTfe4Pfff+fChQuobs5z161bN3x9fVm4cGFZwtVJS0vD3t6e1NRU7Oxq73QUQoiqIys/i6DQIAAODD6AlWklJUjZKXDgG20iqVtvPvve5xmbl7AM5819O/f7S/LS424ltDH7IO5k0WVPze3BM/BWUuvRofzWtr96VJu4nvwZ8rO0x0ytoO1z4D8C3H3L5z5CiHsqS75Wpp7YvLw8Dh8+zNSpU3XHjIyM6N69O/v27Sv2nNzcXCws9JdUs7S05L///ivxHqtXr2bixIm6BLbQmjVrWL16NW5ubvTq1Yt33323xN7Y3NxccnNzdftpaWmleo1CCFFj5WXBwW/gv4W35jK9nY1ryUmqXX3tUp4VMYG+rRu07q3dAHIztAsFFCa1l8O0k8df3KbdQDsHq3t7aBCkTWo9HwJrp9LfMy8LTm/QDtS6euTWceeW2lrXds9X3TpdIQRQxiQ2MTERtVqNq6ur3nFXV1fOnTtX7DnBwcEsWLCALl264O3tzY4dO9iwYYNe+cDtNm3aREpKCsOGDdM7PnjwYBo2bIi7uzsnTpxg8uTJhIeHs2HDhmKvM2/ePGbPnl2WlyeEEDVTQR4cXQW7Prm1TKVzCwgaA07eN5NUj6ozyb65DTTupt1AO6tB/EmIOXCzDGGftrzhykHttneRtl3dZrd6aj2DwLFx0aQ7IVy7KMHxUG35AGiX/Wz1rLbXtUFHWelKiGqiwmcn+Pzzzxk9ejQtWrRApVLh7e3N8OHDWbZsWbHtly5dylNPPYW7u7ve8Zdeekn3uG3bttSrV4/HH3+ciIgIvL29i1xn6tSpTJw4UbeflpaGp6dnOb0qIYSoBjRq7UfkO+fCjSjtMYcG0O0dbU9jdZnL1NhE2+vq3h4eGqOt4b0RdVtP7QFtDWviee12ZJX2PGuXW0mtlSMcXX3bYDLAoSH4DwffF8DG2SAvTQhx/8qUxNatWxdjY2Pi4+P1jsfHx+Pm5lbsOc7OzmzatImcnBySkpJwd3dnypQpNG7cuEjb6Ohotm/fXmLv6u2CgrR1ZBcvXiw2iTU3N8fcvIr0KgghRGVSFAj/A/5+H66f0R6zdoGub0OHkOo3R+udVCpwbKTdfAdpj2Ula5PZwgFjV49C5nU4+6t2051rBM16aAdqeT9W8YPFhBAVpkxJrJmZGX5+fuzYsYPevXsD2oFdO3bsYNy4cXc918LCAg8PD/Lz81m/fj3PP/98kTbLly/HxcWFp59++p6xHDt2DIB69eqV5SUIIUTNdmkX7JijrSkFbV3nw29A0MtgZm3Q0CqUlSM0f0q7AeTnaBPZwqQ2LRaa99QuSmBf37CxCiHKRZnLCSZOnEhISAj+/v4EBgaycOFCMjMzGT58OABDhw7Fw8ODefPmAXDgwAFiY2Px9fUlNjaWWbNmodFoePvtt/Wuq9FoWL58OSEhIZiY6IcVERFBaGgoPXv2xMnJiRMnTjBhwgS6dOlCu3bt7ve1CyFEzXHlMPw9By7t1O6bWsFDr0Cn8WBZx6ChGYSpBTTsqN2EEDVSmZPYAQMGkJCQwIwZM4iLi8PX15ctW7boBnvFxMRgdNvHMzk5OUyfPp1Lly5hY2NDz549+f7773FwcNC77vbt24mJiWHEiBFF7mlmZsb27dt1CbOnpyf9+vVj+vTpZQ1fCCFqlutntWUD537X7huZagcodX4TbF3vfq4QQlRjZZ4ntrqSeWKFEFXNA80TeyMKdn6onZwfRVvr2W4gdJsCdRpWSLxCCFHRKmyeWCGEEAaWHg//fgKHV9xaDrVlL3h0Ori0MGhoQghRmSSJFUKI6iD7Buz5HPYvubW6VuNH4fF3tcuiCiFELSNJrBBCVGV5mbD/a9jzhXbVKoD6AfD4DGjUxbCxCSGEAUkSK4QQVVFBrrZk4N/52vlOAVxawWPvaqeRklWlhBC1nCSxQghRlWjUcGId/DMPUmO0x+p4waPToE2/6rPKlhBCVDBJYoUQoipQFDjzq3a6rMRw7TEbt5urbA0FY1PDxieEEFWMJLFCCFEVrOgJV49pH1vWgUcmQMBoMCvDtFtCCFGLSBIrhBCVLT8HovfA+T9uHbt2HEytoeNY6DROu1ysEEKIEkkSK4QQlSE1Fi78pd0u7YT8LO3gLC9P7fMBo6DLZLBxNmiYQghRXUgSK4QQFUGjhithcH6rNnGNP6X/vG09aPIYpOzW7j8xB8qyYpcQQtRyksQKIUR5yUqGi9u1SevF7doFCnRU2vldmz0JTYPBra120YKby84KIYQoG0lihRDifikKxJ2EC1vhwjZtz6uiufW8hQM06Q5Nn9R+tXYyWKhCCFHTSBIrhBBlkZuhrWm98Jc2cU2/qv+8axto+oS2t7V+ABjLj1khhKgI8tNVCCHuJSlCm7Se36qdVUCdd+s5Uyto1PVmmcCTYF/fcHEKIUQtIkmsEELcqSBPm6wWJq7JEfrP1/HS9rQ2exIaPgKmFgYJUwghajNJYoUQtVtepnb6q9TLkHxJWypwaSfkZdxqY2QCDTvdTFyDwamJdnosIYSooXLy1Zy5lsaxmBQuJWbwfu+2hg6pCElihRA1l0YNGfGQekWbpKZeuW27ua83g8BtbFxv1bY27gYWdpUauhBCVBaNRuFSYgbHLqdy/HIKxy6ncPZaGgUaRddm/GNNcbWrWp86SRIrhKi+ctKKJqW3b+lXQVNw7+uY22lrWe3rg4e/tkzAzQeMjCr+NQghRCW7npbDscspHL+iTVhPXE4lPbfoz0onazN8PR3w8XTAqAp++iRJrBCialLnQ/q1uyepuWn3vo7KGOw8biWpus3z5lcPWeJVCFFjZeYWcDI2VZu03tyupuYUaWdhakRbD3t86jvg28ABn/oO1K9jiaoKJq+FJIkVQlQ+RdF+jF/cx/upVyAtVpvA3j7nakks69yRlN6WpNp5gK0bGBlX/GsSQggDK1BrOB+foUtYj11O4cL1dG6rCgC0Jf3NXGzx8bTH17MOPp72NHO1xdS4en36JEmsEKL8FeRqE9EiSeptx/Iz730dY7PbelFvT1I9biWp5jYV/3qEEKKKURSFKzeyOX7lVsJ6MjaVnPyif/zXs7fQ62FtW98eG/PqnwJW/1cghKhcigKZiUV7Tm/fz4gv3bWsnW8lpnZ3ftTvAdYuUpcqhBBoywIOR9+4VRZwJYXEjLwi7WzMTWhX315Xy+rr6VDlBmSVF0lihRBFqfMh6SLEn4bEC/of96fFQkHReqoiTCyL9pzqfdTvDqaWFf9ahBCiGlIUhQvXM9gZfp1d5xMIi7xBnlq/l9XESEXLenb4eGprWds3cKBxXRuMjKpuHWt5kiRWiNpMUbSJ6fUz2i3+5tfE8/qrUhWh0taa2tcv4eN+T7BylLlUhRAVJjtPzezfTnP5RhZ+Derg7+VIh4Z1qvXH5Ok5+ey5mMiu8wnsCk8oMgDLw8ESv4Z1dD2srd3tsDCtvTX/9/Uv/dVXX/HJJ58QFxeHj48PixYtIjAwsNi2+fn5zJs3j5UrVxIbG0vz5s356KOP6NGjh67NrFmzmD17tt55zZs359y5c7r9nJwc3nzzTdauXUtubi7BwcEsXrwYV1fX+3kJQtQ+2Tfg+llt76ouYT0LuanFtzezAZeW4NwC6jTUT1Jt3cHErHLjF0KIm+LTchi18hAnY7U/v/ZcTALASAWt3O3wb+hIYCNH/L3q4GJbdT9KVxSFM9fS2HU+gZ3hCRyJvqE3N6uZiREPNXaiazNnujV3pnFd6yo9W0BlK3MSu27dOiZOnMiSJUsICgpi4cKFBAcHEx4ejouLS5H206dPZ/Xq1Xz77be0aNGCrVu30qdPH/bu3Uv79u117Vq3bs327dtvBWaiH9qECRPYvHkzP/30E/b29owbN46+ffuyZ8+esr4EIWq2glxICL+ZqN6WsKZfLb69kQk4NQXXVuDSClxba7/ae0o9qhCiyjlzNY2RK8O4lpqDo7UZY7o25ty1dA5GJXPlRjanYtM4FZvGir1RAHg5WeHv5UiAVx0CvBxpZOBEMDUrn90XtUnrrvMJJKTn6j3fqK41XZs507W5Mw81csLSrPb2tN6LSlEU5d7NbgkKCiIgIIAvv/wSAI1Gg6enJ+PHj2fKlClF2ru7uzNt2jTGjh2rO9avXz8sLS1ZvXo1oO2J3bRpE8eOHSv2nqmpqTg7OxMaGkr//v0BOHfuHC1btmTfvn089NBD94w7LS0Ne3t7UlNTsbOTlXdEDaDRQErUrRKAwoQ1KQIUdfHn2HveTFRbgUtr7VenptKraiBZ+VkEhQYBcGDwAaxMrQwckRBV2/Yz8by29ihZeWqauNiwLCSABk63/t9cS83mUNQNwqKSCYu6wbm4NO7McuramOHfUNtLG+DlSGt3O0wqcGopjUbh1NVUXdJ6NOaG3pRXlqbGdPJ2omtzZ7o2c6ahk3WFxVIdlCVfK1NPbF5eHocPH2bq1Km6Y0ZGRnTv3p19+/YVe05ubi4WFvpd+ZaWlvz33396xy5cuIC7uzsWFhZ07NiRefPm0aBBAwAOHz5Mfn4+3bt317Vv0aIFDRo0KDGJzc3NJTf31l83aWmlmBRdiKpKUeBKGFw5dKt+9fq5kqepsnC41aNa2MPq0lIm9RdCVEuKorBsTxTvbz6DosAjTery1ZAO2Fua6rWrZ29JLx9Levm4A5Canc+RmBscikomLPIGx26O6N9yOo4tp+MAsDIzpn0DBwK8HAnwcsTX0wHrB6yrTcrIZfcFbW3rv+cTSMrUH2PQ1MXmZomAC/5edWp1XeuDKNO/UmJiImq1ukgdqqurq1796u2Cg4NZsGABXbp0wdvbmx07drBhwwbU6ls9RUFBQaxYsYLmzZtz7do1Zs+eTefOnTl16hS2trbExcVhZmaGg4NDkfvGxcUVe9958+YVqbMVolpKuwqbJ0H45qLPGZuDc/ObCWvLW72rtvVkUJUQokYoUGuY9dtpVu+PAWBQYAPmPNu6VBPz21ua8mhzFx5tri13zC1Qc/JKKmFRNxPbqGTScgrYczFJV1drbKSijbvdzRIEbY9tXRvzu95HrVE4djnl5oCs65yITdXrAbYxN+HhJk50beZC1+bOeDjIzCzlocKH8H3++eeMHj2aFi1aoFKp8Pb2Zvjw4SxbtkzX5qmnntI9bteuHUFBQTRs2JAff/yRkSNH3td9p06dysSJE3X7aWlpeHp63v8LEaKyaTRwZAVsm6ldXtXIFJo+qU1YC8sBHBuDcfUdiSuEEHeTlpPP2DVH2H0hEZUKpvVsychHGt13Tau5iTH+Xo74ezkC3mg02mmsDkYl3+ytTeZqag7Hr6Ry/EoqS/+LBKBxXWtdQhvYyJEGjlYkZOTy7/lEdoZfZ/eFRFKz8/Xu1bKenW5AVocGdTAzkTEG5a1Mv/3q1q2LsbEx8fH6E5nHx8fj5uZW7DnOzs5s2rSJnJwckpKScHd3Z8qUKTRu3LjE+zg4ONCsWTMuXrwIgJubG3l5eaSkpOj1xt7tvubm5pib3/0vJyGqrMQL8NvrEH1z4KKHP/xvkTZ5FUKIWuBychYjVoRx4XoGlqbGfDGoPU+0Kt8ZiYyMVDR3s6W5my0vPtQQgNiUbA5FJXMwMplDUTcIj0/nUmImlxIzWXfoMgAOVqakZOknrXYWJnRupq1r7drMucYuMFCVlCmJNTMzw8/Pjx07dtC7d29AO7Brx44djBs37q7nWlhY4OHhQX5+PuvXr+f5558vsW1GRgYRERG8+OKLAPj5+WFqasqOHTvo168fAOHh4cTExNCxY8eyvAQhqjZ1Puz5HHZ9DOpcMLWGx2dA4GgwkpopIUTtcDj6Bi+tOkRSZh5udhZ8F+JPG4/Kqen3cLDEw9eDZ309AEjJyuNw9A3Cbg4YO3ElRZfAtqtvr+tt9anvUKEDxERRZf4ccuLEiYSEhODv709gYCALFy4kMzOT4cOHAzB06FA8PDyYN28eAAcOHCA2NhZfX19iY2OZNWsWGo2Gt99+W3fNSZMm0atXLxo2bMjVq1eZOXMmxsbGDBo0CAB7e3tGjhzJxIkTcXR0xM7OjvHjx9OxY8dSzUwgRLUQewR+HQ/xp7T7TbrDM5+BQwPDxiWEEJXol2OxvPXzCfIKNLR2t2NpSABu9obr1XSwMuPxlq483lLbC5yTryY8Lh2POpb3rJUVFavMSeyAAQNISEhgxowZxMXF4evry5YtW3SDvWJiYjC6bW7JnJwcpk+fzqVLl7CxsaFnz558//33emUBV65cYdCgQSQlJeHs7MwjjzzC/v37cXZ21rX57LPPMDIyol+/fnqLHQhR7eVlwj9zYf9iUDRg6QhPfQRtn5PBWUKIWkNRFL7YcZHPtp8H4IlWrnw+0Bcrs6pV929haoyPp4OhwxDcxzyx1ZXMEyuqpIh/tLWvKdHa/bbPQ495YF3XsHGJSiHzxAqhlZOvZsr6E2w6pl2U5aUujZncowXGRvKHfG1TYfPECiHKSVYy/DUdjq3R7tvV15YONHvSsHEJIUQlS8rI5eXvD3Mo+gYmRire692GQYFSRiXuTZJYISqTosDpjfDn25CZAKgg8CV4/F0wtzV0dEIIUakuXs9gxIowYpKzsLUwYckLfjzcRD6JEqUjSawQlSU1Fja/Cef/1O47t9BOm+UZaNi4hBDCAP67kMgraw6TnlNAA0crlg3zp4mL/DEvSk+SWCEqmkYDh5drFy3IS9cuWtBlEjwyAUxkZKsQovb54WAM0zedQq1R8G9Yh/8b6o+jtZmhwxLVjCSxQlSkxAvw62sQs1e7Xz9A2/vq0tKwcQkhhAGoNQof/nmWb3drV8Lq7evOR/3bYW4i82CLspMkVoiKoM6HPQtvLlqQp120oPtMCBglixYIIWqlrLwCXl97jG1ntKt+TnyiGeMfa3LfS8gKIUmsEOUt9jD8Mh6un9buN3ni5qIFnoaNSwghDCQuNYeRK8M4fTUNMxMj5j/nw/983A0dlqjmJIkVorzkZcLfH8CBr7WLFlg5QY+PoG1/WbRACFFrnYpNZeTKMOLTcnGyNuP/hvrj17COocMSNYAksUKUh4s74Pc3ICVGu99uAATPA2sng4YlhBCG9NfpOF5fe4zsfDVNXWxYNiwAT0dZ1EOUD0lihXgQWcmwdRocD9Xu23vCMwuhaXeDhiWEEIakKArf7Y5k7p9nURTo3LQuXw3pgJ2FqaFDEzWIJLFC3A9FgdMb4M/JtxYtCHoZHnsXzG0MHZ0QQhhMvlrDjF9O8cPBywAMCWrA7P+1xsTYyMCRiZpGklghyio1FjZPhPNbtPvOLW8uWhBg2LiEEMLAUrPzeXXNYfZcTEKlgulPt2LEw14yA4GoEJLEClEW5/6ATWMgJ/XmogVv3Vy0QCbpFkLUbtFJmYxYEUZEQiZWZsZ8MbA93Vu5GjosUYNJEitEaajzYccc2PuFdt/DD55dDC4tDBuXEEIYgKIoJGfmEZWURVRiJlFJmaw5EENyZh717C34LsSf1u72hg5T1HCSxApxL6mx8PMIuLxfu//QWOg+S3pfhRA1mqIoJGTkEn0zUY1OyiIyKZPopEyiE7NIzy0ock5bD3u+C/HH1c7CABGL2kaSWCHu5uIO2DAaspLA3A56L4aWvQwdlRBClAtFUbienlskSY1KzCI6KZPMPHWJ56pU4G5vSUMnKxo6WdPc1YbnAzyxMpPUQlQO+U4TojgaNez6SLtsLAq4tYPnV4JjY0NHJoSoJgrUGhIycjE1NsLU2AgzYyNMjVUYG6kqdaCTRqMQn55D5M1ENepmT2pUknY/O7/kRNVIBe4Olng5WeNV1wovJ2saOlnj5WSFp6MVFqayjLYwHElihbhTxnVYPwoid2n3/YZDjw/BVD4eE0KUzr6IJCb+eIxrqTlFnlOp0EtqdUmuyR37xkaYmqiKJMGmxkaYmtza1553q42RkYr4tMKkVZuo5hZoSozVSAX161jhVVebnBYmqV51ralfxxJzE0lURdUkSawQt4vao61/zYgDU2votRDaPW/oqIQQ1USBWsMXOy6w6J+LKIo2QdQo+m0UBfIKNOTdJbEsbyZGKjwdrWjopO1N9XKyomFda7ycrPFwsMTMROZwFdWPJLFCAGg0sPdz2PEeKGpwbgHPrwLn5oaOTAhRTcSmZPPG2qOERd0A4Hn/+sz6X2ssTY0p0CjkqzXkFyjkqTXkq7VJbL5ac3O/8Pk79nXtbtu/eR29/duO5ak1uNha4FX3Vq+qh4OlLDYgahxJYoXISoaNY+DCVu1+u4HwzAIwszZsXEKIamPLqTgmrz9BanY+NuYmfNCnDc/6euieLywDQCY1EaLcSBIrarcrh+CnYZB6GUwsoOcn0P5FbdGaEELcQ06+mg82n+X7/dEA+NS354tB7WnoJH8EC1HRJIkVtZOiwIFv4K/poMnXzjrw/Cpwa2voyIQQ1cTF6+mMCz3Kubh0AF7u0pg3n2wu9aVCVBJJYkXtk5MKv4yDs79q91s9C//7EizsDBuXEKJaUBSFdWGXmfXbaXLyNdS1MePT533p2szZ0KEJUavc15+LX331FV5eXlhYWBAUFMTBgwdLbJufn8+cOXPw9vbGwsICHx8ftmzZotdm3rx5BAQEYGtri4uLC7179yY8PFyvTbdu3VCpVHrbmDFj7id8UZtdOwH/102bwBqZwlMfw3MrJYEVQpRKWk4+4384ypQNJ8nJ1/BIk7r88XpnSWCFMIAyJ7Hr1q1j4sSJzJw5kyNHjuDj40NwcDDXr18vtv306dP55ptvWLRoEWfOnGHMmDH06dOHo0eP6trs2rWLsWPHsn//frZt20Z+fj5PPvkkmZmZetcaPXo0165d020ff/xxWcMXtZWiwOEV8F13SL4E9p4wYgsEvSz1r0KIUjkac4Onv9jN7yeuYWKkYnKPFqwaEYiLrcwhLYQhqBRFUe7d7JagoCACAgL48ssvAdBoNHh6ejJ+/HimTJlSpL27uzvTpk1j7NixumP9+vXD0tKS1atXF3uPhIQEXFxc2LVrF126dAG0PbG+vr4sXLiwLOHqpKWlYW9vT2pqKnZ20utWq+Rlwu8T4cRa7X7TYOizBKwcDRuXqPWy8rMICg0C4MDgA1iZWhk4IlEcjUbh/3ZfYv7WcAo0CvXrWPLFoPZ0aFDH0KEJUeOUJV8rU09sXl4ehw8fpnv37rcuYGRE9+7d2bdvX7Hn5ObmYmGh/1eqpaUl//33X4n3SU1NBcDRUT/JWLNmDXXr1qVNmzZMnTqVrKysEq+Rm5tLWlqa3iZqoevn4NvHtAmsyhi6z4JBayWBFUKUSkJ6LiHLD/Lhn+co0Cg83a4em1/rLAmsEFVAmQZ2JSYmolarcXV11Tvu6urKuXPnij0nODiYBQsW0KVLF7y9vdmxYwcbNmxArS5+rWaNRsMbb7zBww8/TJs2bXTHBw8eTMOGDXF3d+fEiRNMnjyZ8PBwNmzYUOx15s2bx+zZs8vy8kRNc3wd/P4G5GeBjRv0XwZeDxs6KiFENfHv+QQm/nicxIxcLEyNmNWrNQMCPFFJCZIQVUKFz07w+eefM3r0aFq0aIFKpcLb25vhw4ezbNmyYtuPHTuWU6dOFempfemll3SP27ZtS7169Xj88ceJiIjA29u7yHWmTp3KxIkTdftpaWl4enqW06sSVVp+DmyZrK2BBWjUFfp9BzYuBg1LCFE95Ks1zP8rnG92XQKguastXw5uT1NXWwNHJoS4XZmS2Lp162JsbEx8fLze8fj4eNzc3Io9x9nZmU2bNpGTk0NSUhLu7u5MmTKFxo0bF2k7btw4fv/9d/7991/q169/11iCgrR1ZBcvXiw2iTU3N8fc3Ly0L03UFEkR8FMIxJ0EVNB1MnR9G4yMDR2ZEKIaiEnKYvzaoxy/nALACw81YPrTrbAwlZ8hQlQ1ZaqJNTMzw8/Pjx07duiOaTQaduzYQceOHe96roWFBR4eHhQUFLB+/XqeffZZ3XOKojBu3Dg2btzI33//TaNGje4Zy7FjxwCoV69eWV6CqMnO/KKdPivuJFg5wQvr4dGpksAKIUrlt+NXefqL3Ry/nIKdhQlLXujA+73bSgIrRBVV5nKCiRMnEhISgr+/P4GBgSxcuJDMzEyGDx8OwNChQ/Hw8GDevHkAHDhwgNjYWHx9fYmNjWXWrFloNBrefvtt3TXHjh1LaGgov/zyC7a2tsTFxQFgb2+PpaUlERERhIaG0rNnT5ycnDhx4gQTJkygS5cutGvXrjzeB1GdFeTBthlw4GvtvudD8NxysHM3bFxCiGohK6+A2b+eYd2hywD4N6zDwoG+1K8js0UIUZWVOYkdMGAACQkJzJgxg7i4OHx9fdmyZYtusFdMTAxGRrc6eHNycpg+fTqXLl3CxsaGnj178v333+Pg4KBr8/XX2uSjW7duevdavnw5w4YNw8zMjO3bt+sSZk9PT/r168f06dPv4yWLGiXlMvw0DGIPafc7vQaPzwBjU4OGJYSoHs5eS2Nc6BEiEjJRqWDco014/fGmmBjL0rFCVHVlnie2upJ5YmugmP3ww0DIvgEW9tB7CbToaeiohCg1mSfWcBRFYfX+aN7bfJa8Ag2uduZ8NsCXTt51DR2aELVaWfK1Cp+dQIgKodHAb69rE1j39vDcCqjjZeiohBDVQEpWHpPXn2Drae0g5cdauPBJ/3Y42chgYCGqE0liRfV09ldIOAfm9vDiJrB0MHREQohqICwqmdd/OMrV1BxMjVVMeaolIx72krlfhaiGJIkV1Y+iwL/ztY8fGiMJrBDintQaha/+ucjC7efRKNCorjWLBrWnjYe9oUMTQtwnSWJF9RP+J8SfBDMbCBpj6GiEEFXc9bQcXlt7lP2XkgHo296DOb3bYGMuvwKFqM7kf7CoXhQFdn2kfRw4GqwcDRuPEKJKu5GZx6Bv9xORkImVmTHv925D3w53X0xHCFE9SBIrqpeL2+HaMTC1go7jDB2NEKIKy85TM2JlGBEJmdSzt2DNqCAaO9sYOiwhRDmRifBE9aEosOtj7WP/EWAtU+EIIYpXoNYwLvQIR2NSsLc0ZdWIQElghahhpCdWVB+Ru+DKQTCxgE7jDR2NEPctM7eAIzE32Hvpmu5YxPUM2nrIPLHlQVEU3tl4kh3nrmNuYsSyYf40dbU1dFhCiHImSayoPgp7YTuEgK2bYWMRogwS0nM5FJVMWNQNwqKSOXMtDbVGAVUeti20bdYfuUJbDxfDBlpDzP8rnB8PXcFIBV8O7oBfQ6mdF6ImkiRWVA9ReyB6DxibwcOvGzoaIUqkKApRSVmERSUTFpnMoegbRCZmFmnn4WCJn5cT/+Rq9w9F36jkSGumFXsi+eqfCADm9mnLE61cDRyREKKiSBIrqod/b/bC+g4Bew/DxiLEbQrUGs5eS+dgVLKutzUxI1evjUoFzV1tCfByJKCRI/4N6+DuYHlz2VltmzNX08jILZBpnx7A5hPXmP37GQDefKIZAwMbGDgiIURFkp+Wouq7fBAu7QQjE3hkgqGjEbVcVl4Bx2JSdKUBR2JukJWn1mtjZmyEj6e9Nmn1cqRDgzrYW5ne9boaBQ5H36BrM+eKDL/G2huRyIR1x1AUePGhhox7rImhQxJCVDBJYkXVV1gL6zMQ6jQ0bCyi1knKyOVQ9A0ORSVzMOoGp2NTKdAoem3sLEzw93LE36sOAV6OtPWwx8LUuMz3OhiZJEnsfThzNY2XVx0mT63hqTZuzPpfa1lGVohaQJJYUbXFHoGL20BlBI9MNHQ0ooZTFIXLydnaetabW0RC0XrWevYWN3tZ6xDQyJFmLrYYGT140nQwMvmBr1HbXE7OImT5QdJzCwhq5MhnA3wxLod/CyFE1SdJrKja/p2v/dr2OXDyNmwsokZJycrjfHwGF66nc+Hm1/C4jCL1rADNXG3w93Ik8GZva/06FTMV1vHLqeTkq++rF7c2SsrIZeiygySk59LCzZb/G+ov750QtYgksaLqijsF4ZsBFXSeZOhoRDWVlJHLhesZ2i2+MGEtPlkFMDVW0dbDnoBGjgQ01CatDlZmFR6ns60ZCWkajl1O4aHGThV+v+ouM7eAESvCiEzMxMPBkpUjArG3vHvdsRCiZpEkVlRd/36i/dq6Dzg3M2wsokpTFIXEjDwuXE/n4vUMzt9MVi9ezyApM6/E8zwcLGnqakMzV1uauNjQ1MWGlvXsDNKb59/QkT9PJnMwMlmS2HvIV2t4dc0Rjl9JpY6VKStHBOJqZ2HosIQQlUySWFE1XT8HZ37RPu4ivbBCS1EUEtJzb5UBXM/gYnwG56+nk5KVX+w5KhV41rGiqYsNTVxtaOpiSzNXG7ydbbCuQtNZ+XvV0SWxomSKojB5/Ql2nU/AwtSIpcMCaOIiy8kKURtVnZ/gQtxu93xAgRbPgGtrQ0cjKpmiKMSn5Wp7VK9ncPF6ujZxjU8nLaeg2HNUKmjoaEWTm0lq05sJa2Nna6zMqv6POv+GjkAEh6NvkK/WYGpsZOiQqqQPt5xjw5FYjI1ULB7SgQ4N6hg6JCGEgVT9n+yi9kmKgFPrtY+7vGXYWESlu5aazcvfH+bEldRinzdSgZeTtS5JbepqQxMXbc9qdR7U4+1sjYOVKSlZ+ZyKTaW9JGdFLP0vkm92XQLgw75teayFrMYlRG0mSayoenZ/CooGmvUAd19DRyMq0ZmraQxfcZD4tFxMjFR41bWm6c1a1Sau2h7WRnWtMTepvslqSYyMVAR4ObLtTDwHI5Mlib3DL8diee/malxv92jOc/6eBo5ICGFoksSKqiU5Eo6v1T7u8rZhYxGV6t/zCby65ggZuQU0dbFh+fCACpvKqqoKanQriX25q0wpV2j3hQQm/XQcgGGdvHhF3hshBJLEiqrmv89AUYP3Y1Dfz9DRiEryY9hlpm48iVqj0LGxE0te9KuV0yUFNnIE4GBUMmqNIpP2A6diUxnz/WHy1QpPt6vHjGdayWpcQggAZOSAqDpSLsOxUO1j6YWtFRRF4dO/wnl7/QnUGoU+7T1q9XyfrerZYW1mTHpOAeFx6YYOx+CikzIZtvwgmXlqOnk7seB5n3JZGU0IUTPcVxL71Vdf4eXlhYWFBUFBQRw8eLDEtvn5+cyZMwdvb28sLCzw8fFhy5YtZb5mTk4OY8eOxcnJCRsbG/r160d8fPz9hC+qqj2fgyYfvDpDw46GjkZUsLwCDW/+eJxFf18EYPxjTVjwvA9mJrX3b2sTYyP8vG72xkYmGTgaw0pI167GlZiRR6t6dnzzol+NrIUWQty/Mv+2WLduHRMnTmTmzJkcOXIEHx8fgoODuX79erHtp0+fzjfffMOiRYs4c+YMY8aMoU+fPhw9erRM15wwYQK//fYbP/30E7t27eLq1av07dv3Pl6yqJLSrsGRVdrHXaUXtqZLzc4nZNlBNhzVTpX0Ub+2vPlkc/mYGG1dLGhLCmqrjNwChq84SHRSFp6OlqwYEYCtRe3snRdClEylKIpSlhOCgoIICAjgyy+/BECj0eDp6cn48eOZMmVKkfbu7u5MmzaNsWPH6o7169cPS0tLVq9eXaprpqam4uzsTGhoKP379wfg3LlztGzZkn379vHQQw/dM+60tDTs7e1JTU3Fzs6uLC9ZVIYtU2H/YvB8CEZs0U76KWqkKzeyGLEijPPxGVibGbP4BT+6NnM2dFgGkZWfRVBoEAAHBh/AytSKsKhknluyj7o2ZoRN617rEvu8Ag0jVoTx38VEHK3N+HlMRxo7y2IGQtQWZcnXytQTm5eXx+HDh+nevfutCxgZ0b17d/bt21fsObm5uVhY6C8HaGlpyX///Vfqax4+fJj8/Hy9Ni1atKBBgwZ3vW9aWpreJqqojAQ4tFz7uOtbksDWYKdiU+mzeC/n4zNwtTPnxzEda20CW5J29e0xMzEiMSOPS4mZhg6nUmk0CpN+Os5/FxOxMjNm+bAASWCFECUqUxKbmJiIWq3G1VV/gmlXV1fi4uKKPSc4OJgFCxZw4cIFNBoN27ZtY8OGDVy7dq3U14yLi8PMzAwHB4dS33fevHnY29vrNk9PmVOwytq3CAqywb0DeD9u6GhEBfnn3HWe/2YfCem5tHCzZeOrD9Pa3d7QYVU55ibGtPd0AKh1S9DO/eMsvx6/iomRiq9f8MPn5vsghBDFqfARFJ9//jlNmzalRYsWmJmZMW7cOIYPH46RUcXeeurUqaSmpuq2y5cvV+j9xH3KTIKD32kfd50svbA1VOiBGEatOkRWnppHmtTlxzEdcXewNHRYVZauLrYWJbH/928E3/0XCcDH/dtJD70Q4p7KlEnWrVsXY2PjIrMCxMfH4+bmVuw5zs7ObNq0iczMTKKjozl37hw2NjY0bty41Nd0c3MjLy+PlJSUUt/X3NwcOzs7vU1UQfsXQ34muLWDZsGGjkaUM41G4eMt53jn5hyw/f3qs3x4AHYySOeuAhs5AbUnid1w5Apz/zgHwNSnWtC3Q30DRySEqA7KlMSamZnh5+fHjh07dMc0Gg07duygY8e7T4lkYWGBh4cHBQUFrF+/nmeffbbU1/Tz88PU1FSvTXh4ODExMfe8r6jCslPg4P9pH3eRWtiaJrdAzRvrjrF4ZwQAE7o345P+7TA1rr1TaJVWh4YOmBipiE3J5sqNLEOHU6F2hl/n7Z9PADDykUa81KWxgSMSQlQXZV6xa+LEiYSEhODv709gYCALFy4kMzOT4cOHAzB06FA8PDyYN28eAAcOHCA2NhZfX19iY2OZNWsWGo2Gt99+u9TXtLe3Z+TIkUycOBFHR0fs7OwYP348HTt2LNXMBKKKOvAN5KaBSyto8YyhoxHlKCUrj5e+P8zByGRMjFR82K8d/f2kd620rMxMaONhz7HLKRyMTK6xy+8ev5zCq2uOUKBReNbXnWk9W9a62RiEEPevzEnsgAEDSEhIYMaMGcTFxeHr68uWLVt0A7NiYmL06l1zcnKYPn06ly5dwsbGhp49e/L999/rDdK61zUBPvvsM4yMjOjXrx+5ubkEBwezePHiB3jpwqBy0mD/V9rHnd+ECq6RFpXncnIWw5YfJCIhE1tzE75+wY9HmtY1dFjVTlAjR10SWxM/Xr+UkMHwFWFk5anp3LQun/SX1biEEGVT5nliqyuZJ7aK2f0p7JgDTk1h7AEwkpV4aoITV1IYsSKMxIw86tlbsHx4AC3c5P9bSYqbJ7bQjrPxjFx5iMZ1rfl7UjcDRVgxrqfn0HfxXq7cyKaNhx1rX+qIjXmZ+1SEEDVQWfI1+akhKl9eJuy72QvbZZIksDXE9jPxjP/hKNn5alrWs2P5sADc7C3ufaIoln9DR1QquJSYyfX0HFxsa8Z7mZ6Tz7BlYVy5kU1DJyuWDwuUBFYIcV/kM1xR+Q4tg6wkqNMI2vQ3dDSiHKzaF8VL3x8iO19Nl2bO/DSmoySwD8jeylTXix0WecPA0ZSPvAINL39/mDPX0qhrY8aqEYE425obOiwhRDUlSayoXPnZsOcL7ePOE8FYemCqM41GYe4fZ5nxy2k0CgwM8GRpiL/0rJWTW/PFJhk4kvLx+4mr7I1IwtrMmBXDA2noZG3okIQQ1ZgksaJyHV4JmdfBvgG0G2joaMQDyMlXM/6Ho/zfv5cAmPRkM+b1bStTaJWjwJtJ7IEaMl/sn6e0KyyO7NyYNh6yWpsQ4sFId4moPAW5sOdz7eNH3gATM4OGI+7fjcw8Rq86xKHoG5gaq/ikvw+923sYOqwaJ8BLm8SGx6eTkpWHg1X1/T+TlVfAv+cTAOjRuvhFaoQQoiyky0RUnqOrIf0q2LpD+xcMHY24T9FJmfT9ei+Hom9ga2HCyhGBksBWEGdbcxo7W6MocCiqetfF7gpPILdAQwNHK1rWszV0OEKIGkCSWFE5CvLgv8+0jx9+HUxkMEd1dDTmBn0X7yUyMRMPB0vWv9KJTt4yB2xF0tXFRlXvkoItp7WlBMGtXWVBAyFEuZAkVlSOE2sh9TJYu4BfiKGjEfdh6+k4Bn27n6TMPNp42LHx1U40c5UetYpWE+pi8wo0/H32OgA92kgpgRCifEhNrKh46gLt4gYAD78GppaGjUeU2bL/Inlv8xkUBR5t7syXgztgLTMQVIrARk4AnIpNJTO3oFq+73sjEknPLcDZ1pz2nnUMHY4QooaQnlhR8U79DDeiwMoJ/EcYOhpRBmqNwpzfzjDnd20COySoAd8O9a+WiVR15eFgiYeDJWqNwpGY6lkXu/VmKcGTrVxlaVkhRLmR30SiYmnU8O987eOOY8FM5oWsDm5k5rH+yBVCD8ZwKSETgClPteDlLo2lntEAgho5suFoLAcjk+nc1NnQ4ZSJWqOw7Uw8IKUEQojyJUmsqFinN0LSBbBwgIDRho5G3IWiKByMTCb0YAx/nowjT60BwNrMmHn92vE/H3cDR1h7Bd5MYqtjXezh6BskZuRhZ2HCQ42dDB2OEKIGkSRWVByN5lYv7EOvgoWdYeMRxUrJymP9kVh+OBjDxesZuuOt3e0YHNSA//m4Y2thasAIReHgrmOXU8jJV2NhamzgiEqvsJSge0tXWQhDCFGuJIkVFefc75BwFsztIOhlQ0cjbqMoCoeibxB6IIbNJ6+RV6DtdbUyM+Z/Pu4MDmpAWw97KR2oIhrVtaaujTmJGbmcuJKqS2qrOkVR2HJzla4nZYEDIUQ5kyRWVAxFgX8/1j4OfAksHQwajtBKzcpn/ZEr/HAwhgu39bq2rKftde3tK72uVZFKpSKokSObT17jYGRStUliT19NIzYlGwtTI7o2q161vEKIqk+SWFExzm+BuJNgaq0tJRAGoygKh2/rdc292etqaWpML596DA5qiE996XWt6gJvJrEHIpMZZ+hgSqmwlKBbMxcszapPCYQQonqQJFaUP0WBXTd7YQNGgrUM5jCE1Kx8NhzV9rqej7/V69rCzZYhQQ14tr0HdtLrWm0U9r4ejr5BgVqDSTWoLy0sJQhu42rgSIQQNZEksaL8ReyAq0fAxBI6jTd0NLWKoigciUkh9EAMv5+4qut1tTA1olc7ba2rr6eD9LpWQ81dbbGzMCEtp4DTV9Pw8XQwdEh3FZGQwYXrGZgYqXishSSxQojyJ0msKF+398L6DwcbF8PGU0ukZuez6ah2hoFzcem64y3cbBkc1IBnfT2wt5Re1+rMyEhFYCNHtp+9zsHI5CqfxBaWEnT0dpLvPSFEhZAkVpSvyH/h8gEwNodOrxk6mhpNURSOXr7V65qTr+11NTcx4pmbva4dGkiva01SmMQeiExmdJfGhg7nrraelgUOhBAVS5JYUb7+/UT7tcOLYFfPsLHUUGk52l7X0AP6va7NXG0YHNiAPu3rY28lPV81UWAjbX15WFQyGo1SZZdwvZaazfHLKahU8EQrKSUQQlQMSWJF+YneB1G7wcgUHn7D0NHUOCeupLB6fzS/Hb9Gdr4a0Pa6Pt2uHkOCGtChQR3pda3hWrvbYWVmTGp2Puevp9PCrWouIPLXzV5YvwZ1cLG1MHA0QoiaSpJYUX4K54X1HQwOnoaNpQZRFIXPtp3ni78v6o41dbFhcFAD+kqva61iamyEX8M67L6QyMHI5CqbxBbOSiClBEKIiiRJrCgfVw5BxN+gMoZHJhg6mhojJ1/NWz+f4LfjVwHo5ePO0I4N8W8ova61VaCXI7svJHIgMpmhHb0MHU4RyZl5HIhMAiBYVukSQlSg+5po8KuvvsLLywsLCwuCgoI4ePDgXdsvXLiQ5s2bY2lpiaenJxMmTCAnJ0f3vJeXFyqVqsg2duxYXZtu3boVeX7MmDH3E76oCIUzErQbAI6NDBtLDZGYkcvgb/fz2/GrmBip+LhfOxYNak+Al6MksLVY4XyxByOTURTFwNEUtf1sPBoFWtWzw9PRytDhCCFqsDL3xK5bt46JEyeyZMkSgoKCWLhwIcHBwYSHh+PiUnQ6pdDQUKZMmcKyZcvo1KkT58+fZ9iwYahUKhYsWABAWFgYarVad86pU6d44okneO655/SuNXr0aObMmaPbt7KSH5BVQvxpuLAVVEbQ+U1DR1MjnI9PZ8SKMK7cyMbe0pSvX+hAJ++6hg5LVAE+ng6YGRuRkJ5LVFIWjepaGzokPVsLFziQXlghRAUrc0/sggULGD16NMOHD6dVq1YsWbIEKysrli1bVmz7vXv38vDDDzN48GC8vLx48sknGTRokF7vrbOzM25ubrrt999/x9vbm65du+pdy8rKSq+dnV3VrAerdS5s035t8gTUbWLYWGqAXecT6Ld4L1duZNPQyYoNr3aSBFboWJga43tzjtiDNz+2ryoycgvYfTERkHpYIUTFK1MSm5eXx+HDh+nevfutCxgZ0b17d/bt21fsOZ06deLw4cO6pPXSpUv88ccf9OzZs8R7rF69mhEjRhT5yHTNmjXUrVuXNm3aMHXqVLKyskqMNTc3l7S0NL1NVJCY/dqvjTobNo4a4Pv90YxYEUZ6bgGBXo5sfPVhvJ1tDB2WqGIKSwoORCYbOBJ9O8Ovk1egwcvJimau8n0rhKhYZSonSExMRK1W4+qqP++fq6sr586dK/acwYMHk5iYyCOPPIKiKBQUFDBmzBjeeeedYttv2rSJlJQUhg0bVuQ6DRs2xN3dnRMnTjB58mTCw8PZsGFDsdeZN28es2fPLsvLE/dDo4GYm3/ANOhk2FiqMbVG4YPNZ1m2JxKAvh08mNe3LeYmxgaOTFRFgY0c4R9tXWxVUrjAQXAbN6nbFkJUuAqfnWDnzp3MnTuXxYsXExQUxMWLF3n99dd57733ePfdd4u0X7p0KU899RTu7u56x1966SXd47Zt21KvXj0ef/xxIiIi8Pb2LnKdqVOnMnHiRN1+Wloanp4y7VO5SzgHOSlgagX12hk6mmopI7eA1384yo5z1wF4K7g5r3bzliRAlKhDwzoYG6m4ciOb2JRsPBwsDR0SOflq/j57c5UuqYcVQlSCMiWxdevWxdjYmPj4eL3j8fHxuLkV/0Pr3Xff5cUXX2TUqFGANgHNzMzkpZdeYtq0aRgZ3apoiI6OZvv27SX2rt4uKCgIgIsXLxabxJqbm2Nubl7q1ybuU8xe7df6AWAs85WW1dWUbEauPMTZa2mYmxjx6fM+PNPO/d4nilrNxtyENu52HL+SSlhkMh7tPQwdEnsjEsnMU+NqZ45PfQdDhyOEqAXKVBNrZmaGn58fO3bs0B3TaDTs2LGDjh07FntOVlaWXqIKYGys/Yj0zulhli9fjouLC08//fQ9Yzl27BgA9erJ0qYGFX2zlKChlBKU1YkrKfT+ag9nr6VR18aMtS89JAmsKLWqVhe79dTNUoLWblV2OVwhRM1S5nKCiRMnEhISgr+/P4GBgSxcuJDMzEyGDx8OwNChQ/Hw8GDevHkA9OrViwULFtC+fXtdOcG7775Lr169dMksaJPh5cuXExISgomJflgRERGEhobSs2dPnJycOHHiBBMmTKBLly60aycfYRuMotxWD1v8HzGieFtOXeONdcfIydfQ3NWWpcP8qV9HpowTpRfYyIlvd0dWiRkKCtQatp29lcQKIURlKHMSO2DAABISEpgxYwZxcXH4+vqyZcsW3WCvmJgYvZ7X6dOno1KpmD59OrGxsTg7O9OrVy8++OADvetu376dmJgYRowYUeSeZmZmbN++XZcwe3p60q9fP6ZPn17W8EV5SomBtFgwMtGWE4h7UhSFJbsu8dEW7UDIrs2c+XJwe2wtpBRDlE2AVx0AIhIySczIpa6N4cqnDkXfIDkzDwcrU10PsRBCVDSVUhWXfKkAaWlp2Nvbk5qaKvPLlpfja2Hjy+DhD6N33Lt9LZdXoGH6ppP8eOgKACEdG/LuM60wMb6vhfNEDZCVn0VQqLa+/8DgA1iZlq03vsfCfzkXl87XQzrwVFvDlVbN+vU0K/ZG0a9DfT593sdgcQghqr+y5Gvy21PcP10pwUOGjaMaSM3KJ2TZQX48dAUjFczq1YrZz7aRBFY8kKpQF6soCn+d1q7SJQscCCEqk/wGFfdPBnWVSlRiJn0W72HfpSSszYxZGhLAsIcbGTosUQMUJrGGnC/2ZGwqV1NzsDIzpnNTWVlOCFF5KnyeWFFDZSZBYrj2sQzqKtGBS0m8vPowKVn5uNtbsHRYAC3rSTmLKB+BXtok9mxcGqnZ+dhbVn5t9ZZT2l7Ybs2dsTCVxTmEEJVHemLF/SksJXBuAVYykKM46w9f4YWlB0jJysenvj2bxj0sCawoVy52FjSqa42iwOFow/TGbr1ZSiCzEgghKpskseL+yNRaJdJoFOZvDefNn46Tr1bo2daNtS91xMXWwtChiRqosDfWEHWxF6+nE5GQiamxikdbuFT6/YUQtZskseL+RN9cqUvqYfXk5KsZ/8NRvvznIgCvdvPmy0EdsDSTj1lFxTBkXezW09q5YR9uUhc7mSZOCFHJpCZWlF1uBlw7rn0sPbE6Cem5jF51iGOXUzA1VjG3T1ue8/c0dFiihitMYk9eSSUrrwArs8r7sV5YDyulBEIIQ5CeWFF2V8JAUYO9JzhIkgZwLi6N3l/t4djlFOwtTfl+ZJAksKJS1K9jibu9BQUahaMxKZV239iUbE7GpqJSwROtXCvtvkIIUUiSWFF2Mfu1X2V+WAB2hl+n/9f7iE3JplFdaza+2omHGjsZOixRS6hUKoPMF7v1Zi9sgJejQVcLE0LUXpLEirKLuVkPK6UErNwbxYgVYWTkFhDUyJGNr3aisbONocMStUxgI+0fTQcjkyrtnltkVgIhhIFJTawoG3U+XDmkfVyLB3UVqDW8v/ksK/ZGAdDfrz5z+7TFzET+LhSVr7An9mhMCrkFasxNKnYgYWJGLoeitL2+wa2llEAIYRjyG1eUzbXjkJ8FlnWgbnNDR2MQGbkFjF51SJfAvt2jOZ/0bycJrDAYb2drnKzNyC3QcPJKaoXfb/uZeDQKtPGwo34dqwq/nxBCFEd+64qyib6tlMCo9n375BVoGPLtfv4JT8DcxIjFQzrwarcmqFQqQ4cmarHKrostXOCgh5QSCCEMqPZlIeLB1PJFDhbvvMjxK6k4WJmy7uWO9Gxbz9AhCQFU3nyx6Tn57Lmorb3t0UaSWCGE4UgSK0pPo7mVxNbCetjwuHS+urmIwez/tcbX08GwAQlxm8Ik9nD0DQrUmgq7zz/hCeSpNTR2tqaJi22F3UcIIe5FklhReonhkH0DTK2gno+ho6lUao3C2z9rl5Ht3tKF//m4GzokIfS0cLPD1sKEjNwCzl5Lr7D7FE6tJaUEQghDkyRWlF5hPWx9fzCuXUtMLvsvkuNXUrE1N+H93m2lBlZUOcZGKgK8CutiK2aqrZx8Nf+EXwdkai0hhOFJEitKT7fIQe2qh41KzGT+X+EATHu6JW72FgaOSIjiVXRd7H8XEsnKU1PP3oJ29e0r5B5CCFFaksSK0quFg7o0GoXJ60+QW6Dh4SZODAiQpWRF1VWYxIZFJaPRKOV+/dsXOJBPI4QQhiZJrCidlMuQehlUxlA/wNDRVJrQgzEciEzG0tSYD/u2k1/cokpr426PpakxN7LyuZiQUa7XLlBr2H42HpBSAiFE1SBJrCidwl7Yej5gXjuWVb2aks2Hf54D4K3g5ng6yqTuomozMzGiQ0MHoPzniz0YmUxKVj6O1mYEeNUp12sLIcT9kCRWlE7hoK5aMrWWoii8s/EkGbkFdGjgQEgnL0OHJESpBHo5ARBWzkls4QIH3Vu6YGIsvzqEEIYnP4lE6dSyetiNR2PZGZ6AmbERH/dvh7GRlBGI6uH2wV2KUj51sRqNwtbT2lICWeBACFFVmBg6AFENZCVDgvZj9dqQxCak5zLn9zMAvN69qUzoLqqV9g0cMDVWEZeWw+XkbBo4PXgZzPErKcSl5WBtZkwn77rlEKW4F41GQ15enqHDEKLcmZqaYmxsXC7Xuq8k9quvvuKTTz4hLi4OHx8fFi1aRGBgYIntFy5cyNdff01MTAx169alf//+zJs3DwsL7VRFs2bNYvbs2XrnNG/enHPnzun2c3JyePPNN1m7di25ubkEBwezePFiXF1d7+cliLIo7IWt2xysnQwbSyWY+espUrLyaVXPjpe6NDZ0OEKUiYWpMT71HTgUfYMDkUnlksQW9sI+2sIFC9Py+eUjSpaXl0dkZCQaTcWtvCaEITk4OODm9uCznJQ5iV23bh0TJ05kyZIlBAUFsXDhQoKDgwkPD8fFxaVI+9DQUKZMmcKyZcvo1KkT58+fZ9iwYahUKhYsWKBr17p1a7Zv334rMBP90CZMmMDmzZv56aefsLe3Z9y4cfTt25c9e/aU9SWIstKVEjxk2DgqwZZT1/jjZBzGRio+7t8OU6n9E9VQYCNHDkXf4GBkMs/5P9i0cIqi6OphZVaCiqcoCteuXcPY2BhPT0+MjORnkKg5FEUhKyuL69e1i6bUq1fvga5X5iR2wYIFjB49muHDhwOwZMkSNm/ezLJly5gyZUqR9nv37uXhhx9m8ODBAHh5eTFo0CAOHDigH4iJCW5uxf+ATE1NZenSpYSGhvLYY48BsHz5clq2bMn+/ft56KGan1wZVPTNJLaGD+pKzcrn3V9OA/Byl8a08ZDJ3EX1FNjIkcU7IzgY9eCDuy5czyAyMRMzYyMebVG0o0KUr4KCArKysnB3d8fKSmZEETWPpaUlANevX8fFxeWBSgvK9CdeXl4ehw8fpnv37rcuYGRE9+7d2bdvX7HndOrUicOHD3Pw4EEALl26xB9//EHPnj312l24cAF3d3caN27MkCFDiImJ0T13+PBh8vPz9e7bokULGjRoUOJ9c3NzSUtL09vEfcjLhGvHtI9reD3se5vPkJCei7ezNa893tTQ4Qhx3/wa1sFIBdFJWcSl5jzQtbac0vbCdm5aFxtzGUZR0dRqNQBmZmYGjkSIilP4B1p+fv4DXadMSWxiYiJqtbpIHaqrqytxcXHFnjN48GDmzJnDI488gqmpKd7e3nTr1o133nlH1yYoKIgVK1awZcsWvv76ayIjI+ncuTPp6ekAxMXFYWZmhoODQ6nvO2/ePOzt7XWbp6estHRfrhwCTQHYeYBDA0NHU2F2nU/g58NXUKng4/7tpO5PVGu2Fqa0dtd+kvCgvbFSSmAYsrCKqMnK6/u7wottdu7cydy5c1m8eDFHjhxhw4YNbN68mffee0/X5qmnnuK5556jXbt2BAcH88cff5CSksKPP/543/edOnUqqampuu3y5cvl8XJqn9un1qqhP1Qzcgt4Z8NJAEI6euHX0NHAEQnx4G5NtZV039e4nJzF6atpGKmgeysZRCuEqFrKlMTWrVsXY2Nj4uPj9Y7Hx8eXWM/67rvv8uKLLzJq1Cjatm1Lnz59mDt3LvPmzStx5KWDgwPNmjXj4sWLALi5uZGXl0dKSkqp72tubo6dnZ3eJu6DbpGDmltK8PGWc8SmZFO/jiVvBTc3dDhClIvb54u9X4W9sIGNHHG0lo+3ReXy8vJi4cKFpW6/c+dOVCpVkVxB1FxlSmLNzMzw8/Njx44dumMajYYdO3bQsWPxSU5WVlaR0ZWFRbwlTcSdkZFBRESEbtSan58fpqamevcNDw8nJiamxPuKcqDOhyth2scNauagroORyazaFw3Ah33bYS01f6KGCPDSJrHn4zNIzry/+UYLk9geUkog7kKlUt11mzVr1n1dNywsjJdeeqnU7Tt16sS1a9ewt6+8QbktWrTA3Ny8xNJGUbHK/Bt74sSJhISE4O/vT2BgIAsXLiQzM1M3W8HQoUPx8PBg3rx5APTq1YsFCxbQvn17goKCuHjxIu+++y69evXSJbOTJk2iV69eNGzYkKtXrzJz5kyMjY0ZNGgQAPb29owcOZKJEyfi6OiInZ0d48ePp2PHjjIzQUW6dgLys8DCAZxbGDqacpeTr2by+hMADPD35JGmMom7qDkcrc1o5mrD+fgMwqKSy1zTmpCey6HoGwA8KUmsuItr167pHq9bt44ZM2YQHh6uO2ZjY6N7rCgKarW6yDSaxXF2di5THGZmZiV+OlsR/vvvP7Kzs+nfvz8rV65k8uTJlXbv4uTn52NqamrQGCpbmWtiBwwYwPz585kxYwa+vr4cO3aMLVu26AZ7xcTE6H1DT58+nTfffJPp06fTqlUrRo4cSXBwMN98842uzZUrVxg0aBDNmzfn+eefx8nJif379+t9A3/22Wc888wz9OvXjy5duuDm5saGDRse5LWLe7l9ftgaOFfhZ9vPE5mYiaudOe883dLQ4QhR7h6kpGDbmXgUBXzq2+PuYFneoYlSUhSFrLwCg2ylXbbYzc1Nt9nb26NSqXT7586dw9bWlj///BM/Pz/Mzc3577//iIiI4Nlnn8XV1RUbGxsCAgL05oqHouUEKpWK7777jj59+mBlZUXTpk359ddfdc/fWU6wYsUKHBwc2Lp1Ky1btsTGxoYePXro5SgFBQW89tprODg44OTkxOTJkwkJCaF37973fN1Lly5l8ODBvPjiiyxbtqzI84W5jaOjI9bW1vj7++tNL/rbb78REBCAhYUFdevWpU+fPnqvddOmTXrXc3BwYMWKFQBERUWhUqlYt24dXbt2xcLCgjVr1pCUlMSgQYPw8PDAysqKtm3b8sMPP+hdR6PR8PHHH9OkSRPMzc1p0KABH3zwAQCPPfYY48aN02ufkJCAmZmZ3qfhVcV9fXY6bty4Ii+y0M6dO/VvYGLCzJkzmTlzZonXW7t27T3vaWFhwVdffcVXX31VpljFA7h9UFcNc+JKCt/+ewmA93u3xd6ydv31KmqHwEZOrN4fc19J7JbCWQnaSC+sIWXnq2k1Y6tB7n1mTjBWZuVTYjVlyhTmz59P48aNqVOnDpcvX6Znz5588MEHmJubs2rVKnr16kV4eDgNGpQ8E87s2bP5+OOP+eSTT1i0aBFDhgwhOjoaR8fiB+RmZWUxf/58vv/+e4yMjHjhhReYNGkSa9asAeCjjz5izZo1urnnP//8czZt2sSjjz5619eTnp7OTz/9xIEDB2jRogWpqans3r2bzp07A9qyyK5du+Lh4cGvv/6Km5sbR44c0Y0F2rx5M3369GHatGmsWrWKvLw8/vjjj/t6Xz/99FPat2+PhYUFOTk5+Pn5MXnyZOzs7Ni8eTMvvvgi3t7eupVVp06dyrfffstnn33GI488wrVr13QrpI4aNYpx48bx6aefYm5uDsDq1avx8PDQzdNflUgBoCieotxKYmvYIgd5BRre/vkEGgV6+bjzhIy6FjVU4M262NNXU0nPycfWonR/rKVm57MvIhGQqbVE+ZgzZw5PPPGEbt/R0REfHx/d/nvvvcfGjRv59ddfS+wkAxg2bJiu1HDu3Ll88cUXHDx4kB49ehTbPj8/nyVLluDt7Q1oO+HmzJmje37RokVMnTpV1wv65ZdfliqZXLt2LU2bNqV169YADBw4kKVLl+qS2NDQUBISEggLC9Ml2E2aNNGd/8EHHzBw4EBmz56tO3b7+1Fab7zxBn379tU7NmnSJN3j8ePHs3XrVn788UcCAwNJT0/n888/58svvyQkJAQAb29vHnnkEQD69u3LuHHj+OWXX3j++ecBbY924UqrVY0ksaJ4iechKwlMLKGer6GjKVdLdkVwLi4dR2szZvVqZehwhKgwbvYWNHSyIjopi8PRN+jWvHQrbv1z7jr5aoWmLjZ4O9vc+wRRYSxNjTkzJ9hg9y4v/v7+evsZGRnMmjWLzZs3c+3aNQoKCsjOztZb6Kg47dq10z22trbGzs5Ot4RpcaysrHQJLGiXOS1sn5qaSnx8vK6HErQDz/38/EqcPanQsmXLeOGFF3T7L7zwAl27dmXRokXY2tpy7Ngx2rdvX2IP8bFjxxg9evRd71Ead76varWauXPn8uOPPxIbG0teXh65ubm6xQXOnj1Lbm4ujz/+eLHXs7Cw0JVHPP/88xw5coRTp07plW1UJZLEiuIVTq1V3x9Mas7UOufj01n09wUAZvZqhZONuYEjEqJiBXo5Ep2UxcHI5FInsYWrdEkvrOGpVKpy+0jfkKytrfX2J02axLZt25g/fz5NmjTB0tKS/v37k5d395k07hy4pFKp7ppwFte+tLW+JTlz5gz79+/n4MGDeoO51Go1a9euZfTo0bqlVUtyr+eLi7O41a3ufF8/+eQTPv/8cxYuXEjbtm2xtrbmjTfe0L2v97ovaEsKfH19uXLlCsuXL+exxx6jYcOG9zzPEGreaB1RPmpgPaxao/D2zyfIVyt0b+nC/3zcDR2SEBWurIO7svPU7DqfAEAPqYcVFWTPnj0MGzaMPn360LZtW9zc3IiKiqrUGOzt7XF1dSUsLEx3TK1Wc+TIkbuet3TpUrp06cLx48c5duyYbps4cSJLly4FtD3Gx44dIzm5+P937dq1u+tAKWdnZ70BaBcuXCArK+uer2nPnj08++yzvPDCC/j4+NC4cWPOnz+ve75p06ZYWlre9d5t27bF39+fb7/9ltDQUEaMGHHP+xqKJLGieNGF9bA1J4ldvieSY5dTsDU34f3ebatkfY8Q5S2okRMAx6+kkJOvvmf7fy8kkJ2vxsPBktbuskiMqBhNmzZlw4YNHDt2jOPHjzN48OB7foRfEcaPH8+8efP45ZdfCA8P5/XXX+fGjRsl/n7Iz8/n+++/Z9CgQbRp00ZvGzVqFAcOHOD06dMMGjQINzc3evfuzZ49e7h06RLr169n3z7t79aZM2fyww8/MHPmTM6ePcvJkyf56KOPdPd57LHH+PLLLzl69CiHDh1izJgxpZo+q2nTpmzbto29e/dy9uxZXn75Zb0FqiwsLJg8eTJvv/02q1atIiIigv379+uS70KjRo3iww8/RFEUvVkTqhpJYkVRqVcgNQZUxlA/wNDRlIuoxEzm/6Wdt/Cdp1viZm9h4IiEqByejpa42VmQr1Y4GpNyz/aFCxwEt3aTP/REhVmwYAF16tShU6dO9OrVi+DgYDp06FDpcUyePJlBgwYxdOhQOnbsiI2NDcHBwVhYFP874tdffyUpKanYxK5ly5a0bNmSpUuXYmZmxl9//YWLiws9e/akbdu2fPjhh7r58bt168ZPP/3Er7/+iq+vL4899hgHDx7UXevTTz/F09OTzp07M3jwYCZNmqSra72b6dOn06FDB4KDg+nWrZsukb7du+++y5tvvsmMGTNo2bIlAwYMKFJXPGjQIExMTBg0aFCJ70VVoFIetDikmkhLS8Pe3p7U1FRZgvZeTv4M60dqB3S9vMvQ0TwwjUZh8Hf72X8pmU7eTqwZFSS/nEWVkJWfRVBoEAAHBh/AyvTev6Tux2s/HOXX41eZ0L0Zr3dvWmK7fLUGv/e2kZZTwI8vd9SVIojKk5OTQ2RkJI0aNarSyUNNpdFoaNmyJc8//zzvvfeeocMxmKioKLy9vQkLC6uQPy7u9n1elnxNemJFUYWDumrI1Fo/hMWw/1IylqbGfNi3nSSwotbR1cVGJd213YFLyaTlFOBkbYZfwzqVEZoQBhUdHc23337L+fPnOXnyJK+88gqRkZEMHjzY0KEZRH5+PnFxcUyfPp2HHnrIIL3jZSFJrCiqBg3qupqSzbw/tJM4TwpuTgOniunpEqIqC7qZxB6OvkFeQcl1h1tOaweSPNnaFWMj+WNP1HxGRkasWLGCgIAAHn74YU6ePMn27dtp2bJ2ruK4Z88e6tWrR1hYGEuWLDF0OPdU/eftEOUrKxmun9E+ruZJrKIoTNt4kozcAjo0cGBYJy9DhySEQTRxscHR2ozkzDxOXU2lQ4OivawajcJfp7UDQJ6UqbVELeHp6cmePXsMHUaV0a1btweegqwySU+s0Hf55rrOTk3BxtmwsTygTcdi+Sc8ATNjIz7u3056lkStpVKpCPDSJq4lTbV19HIK19NzsTU3oZO3U2WGJ4QQ90WSWKFPVw9bvXthEzNymf2btkf5tceb0MTF1sARCWFYgTen2iopiS2cleCxli6Ym5TfSk1CCFFRJIkV+nT1sNV7UNfMX0+TkpVPq3p2vNzV+94nCFHDFdbFhkUlo9bof1yoKIre1FpCCFEdSBIrbsnLgqtHtY+rcU/s1tNxbD5xDWMjFR/3b4epsXybC9Gynh025iak5xRwLi5N77lzcelEJ2VhbmJE12bVu4xICFF7yG93cUvsYdAUgG09cKia6yTfS2pWPtM3nQLg5S6NaeNhb+CIhKgajI1U+JdQF1vYC9u5qTPW5jLeVwhRPUgSK265fWqtajqX6vubz5CQnktjZ2tee7zkSd2FqI1088XekcRuOaVNYnu0kVICIUT1IUmsuKWaL3Lw7/kEfjp8BZUKPu7XDgtTGZwixO2CbktiC6fRiU7K5FxcOsZGKrq3dDFkeKKW69atG2+88YZu38vLi4ULF971HJVKxaZNmx743uV1HVG5JIkVWuoCuBKmfVwN54fNzC1g6oaTAIR09MLfS5bLFOJObT0cMDcxIikzj4iETOBWKcFDjR1xsDIzZHiimurVqxc9evQo9rndu3ejUqk4ceJEma8bFhbGSy+99KDh6Zk1axa+vr5Fjl+7do2nnnqqXO9VkuzsbBwdHalbty65ubmVcs+aSpJYoRV3AvIywMIeXFoZOpoy+3jLOWJTsqlfx5K3gpsbOhwhqiQzEyPdQgeFJQW6UgKZlUDcp5EjR7Jt2zauXLlS5Lnly5fj7+9Pu3btynxdZ2dnrKwqZ5VFNzc3zM3NK+Ve69evp3Xr1rRo0cLgvb+KolBQUGDQGB6EJLFCq7Ae1vMhMKpe3xZhUcms3BcNwLy+bWVgihB3casuNonraTkciUkB4IlWksRWSYoCeZmG2Uq5ctMzzzyDs7MzK1as0DuekZHBTz/9xMiRI0lKSmLQoEF4eHhgZWVF27Zt+eGHH+563TvLCS5cuECXLl2wsLCgVatWbNu2rcg5kydPplmzZlhZWdG4cWPeffdd8vPzAVixYgWzZ8/m+PHjqFQqVCqVLuY7ywlOnjzJY489hqWlJU5OTrz00ktkZGTonh82bBi9e/dm/vz51KtXDycnJ8aOHau7190sXbqUF154gRdeeIGlS5cWef706dM888wz2NnZYWtrS+fOnYmIiNA9v2zZMlq3bo25uTn16tVj3LhxAERFRaFSqTh27JiubUpKCiqVip07dwKwc+dOVCoVf/75J35+fpibm/Pff/8RERHBs88+i6urKzY2NgQEBLB9+3a9uHJzc5k8eTKenp6Ym5vTpEkTli5diqIoNGnShPnz5+u1P3bsGCqViosXL97zPblf8tteaFXTRQ5y8tVM/ln7MdXz/vXp3FSmBxLibgrrYg9EJrP1jHaZ2fYNHHCztzBkWKIk+Vkw190w937nKphZ37OZiYkJQ4cOZcWKFUybNg3VzYHBP/30E2q1mkGDBpGRkYGfnx+TJ0/Gzs6OzZs38+KLL+Lt7U1gYOA976HRaOjbty+urq4cOHCA1NRUvfrZQra2tqxYsQJ3d3dOnjzJ6NGjsbW15e2332bAgAGcOnWKLVu26BI0e/uiM9hkZmYSHBxMx44dCQsL4/r164waNYpx48bpJer//PMP9erV459//uHixYsMGDAAX19fRo8eXeLriIiIYN++fWzYsAFFUZgwYQLR0dE0bKidESg2NpYuXbrQrVs3/v77b+zs7NizZ4+ut/Trr79m4sSJfPjhhzz11FOkpqbe17K5U6ZMYf78+TRu3Jg6depw+fJlevbsyQcffIC5uTmrVq2iV69ehIeH06BBAwCGDh3Kvn37+OKLL/Dx8SEyMpLExERUKhUjRoxg+fLlTJo0SXeP5cuX06VLF5o0aVLm+EpLklih/Ws7Zr/2cTVb5ODzHRe4lJiJi605056ufmUQQlS29g3qYGKk4lpqDiv2RAKywIF4cCNGjOCTTz5h165ddOvWDdAmMf369cPe3h57e3u9BGf8+PFs3bqVH3/8sVRJ7Pbt2zl37hxbt27F3V2b1M+dO7dIHev06dN1j728vJg0aRJr167l7bffxtLSEhsbG0xMTHBzK/l7PjQ0lJycHFatWoW1tTaJ//LLL+nVqxcfffQRrq6uANSpU4cvv/wSY2NjWrRowdNPP82OHTvumsQuW7aMp556ijp1tGU9wcHBLF++nFmzZgHw1VdfYW9vz9q1azE1NQWgWbNmuvPff/993nzzTV5//XXdsYCAgHu+f3eaM2cOTzzxhG7f0dERHx8f3f57773Hxo0b+fXXXxk3bhznz5/nxx9/ZNu2bXTv3h2Axo0b69oPGzaMGTNmcPDgQQIDA8nPzyc0NLRI72x5kyRWQNJFyEoEEwtw9zV0NKV2KjaV//v3EgDv926DvaWpgSMSouqzNDOmXX17jsSk6AZ3SRJbhZlaaXtEDXXvUmrRogWdOnVi2bJldOvWjYsXL7J7927mzJkDgFqtZu7cufz444/ExsaSl5dHbm5uqWtez549i6enpy6BBejYsegnh+vWreOLL74gIiKCjIwMCgoKsLOzK/XrKLyXj4+PLoEFePjhh9FoNISHh+uS2NatW2NsfGsWnHr16nHy5MkSr6tWq1m5ciWff/657tgLL7zApEmTmDFjBkZGRhw7dozOnTvrEtjbXb9+natXr/L444+X6fUUx9/fX28/IyODWbNmsXnzZq5du0ZBQQHZ2dnExMQA2tIAY2NjunbtWuz13N3defrpp1m2bBmBgYH89ttv5Obm8txzzz1wrHdTvYofRcUoLCXw8AOTyilsLw+fbA1HrVF4pl09npRfwkKUWmAjJ93j5q62NKp774+MhYGoVNqP9A2xlXG+8JEjR7J+/XrS09NZvnw53t7euqTnk08+4fPPP2fy5Mn8888/HDt2jODgYPLy8srtrdq3bx9DhgyhZ8+e/P777xw9epRp06aV6z1ud2eiqVKp0Gg0JbbfunUrsbGxDBgwABMTE0xMTBg4cCDR0dHs2LEDAEtLyxLPv9tzAEY3x7Mot9Uyl1Sje3uCDjBp0iQ2btzI3Llz2b17N8eOHaNt27a69+5e9wYYNWoUa9euJTs7m+XLlzNgwIAKH5h3X0nsV199hZeXFxYWFgQFBXHw4MG7tl+4cCHNmzfH0tIST09PJkyYQE5Oju75efPmERAQgK2tLS4uLvTu3Zvw8HC9a3Tr1k1XiF24jRkz5n7CF3e6fZGDauJychb/XkgAYNKTMhuBEGVRWBcLECwLHIhy8vzzz2NkZERoaCirVq1ixIgRuvrYPXv28Oyzz/LCCy/g4+ND48aNOX/+fKmv3bJlSy5fvsy1a9d0x/bv36/XZu/evTRs2JBp06bh7+9P06ZNiY6O1mtjZmaGWq2+572OHz9OZmam7tiePXswMjKiefP7/32zdOlSBg4cyLFjx/S2gQMH6gZ4tWvXjt27dxebfNra2uLl5aVLeO/k7KwdE3L7e3T7IK+72bNnD8OGDaNPnz60bdsWNzc3oqKidM+3bdsWjUbDrl27SrxGz549sba25uuvv2bLli2MGDGiVPd+EGVOYtetW8fEiROZOXMmR44cwcfHh+DgYK5fv15s+9DQUKZMmcLMmTM5e/YsS5cuZd26dbzzzju6Nrt27WLs2LHs37+fbdu2kZ+fz5NPPqn3DQQwevRorl27pts+/vjjsoYvilMNB3X9dOgyigIPN3HCS3qRhCgTP686GBtpk4vg1q4GjkbUFDY2NgwYMICpU6dy7do1hg0bpnuuadOmbNu2jb1793L27Flefvll4uPjS33t7t2706xZM0JCQjh+/Di7d+9m2rRpem2aNm1KTEwMa9euJSIigi+++IKNGzfqtfHy8iIyMpJjx46RmJhY7DytQ4YMwcLCgpCQEE6dOsU///zD+PHjefHFF3WlBGWVkJDAb7/9RkhICG3atNHbhg4dyqZNm0hOTmbcuHGkpaUxcOBADh06xIULF/j+++91HXuzZs3i008/5YsvvuDChQscOXKERYsWAdre0oceeogPP/yQs2fPsmvXLr0a4btp2rQpGzZs4NixYxw/fpzBgwfr9Sp7eXkREhLCiBEj2LRpE5GRkezcuZMff/xR18bY2Jhhw4YxdepUmjZtWmy5R3krcxK7YMECRo8ezfDhw2nVqhVLlizBysqKZcuWFdt+7969PPzwwwwePBgvLy+efPJJBg0apNd7u2XLFoYNG0br1q3x8fFhxYoVxMTEcPjwYb1rWVlZ4ebmptvKWuciipF2FVKiQWUE9e9dXF8VFKg1rDt0GYCBAQ0MHI0Q1Y+dhSkLnvdhzrOtae1edHS2EPdr5MiR3Lhxg+DgYL361enTp9OhQweCg4Pp1q0bbm5u9O7du9TXNTIyYuPGjWRnZxMYGMioUaP44IMP9Nr873//Y8KECYwbNw5fX1/27t3Lu+++q9emX79+9OjRg0cffRRnZ+dip/mysrJi69atJCcnExAQQP/+/Xn88cf58ssvy/Zm3KZwkFhx9ayPP/44lpaWrF69GicnJ/7++28yMjLo2rUrfn5+fPvtt7rShZCQEBYuXMjixYtp3bo1zzzzDBcuXNBda9myZRQUFODn58cbb7zB+++/X6r4FixYQJ06dejUqRO9evUiODiYDh066LX5+uuv6d+/P6+++iotWrRg9OjRRTobR44cSV5eHsOHDy/rW3RfVIpSyonggLy8PKysrPj555/1vvlCQkJISUnhl19+KXJOaGgor776Kn/99ReBgYFcunSJp59+mhdffFGvN/Z2Fy9epGnTppw8eZI2bdoA2nKC06dPoygKbm5u9OrVi3fffbfEeovc3Fy9v7DS0tLw9PQkNTVVkt/bnfwZ1o+Eej7w8r+GjqZUtp+JZ9SqQzham7Fv6mOYm8jysqJ6ysrPIig0CIADgw9gVYaBNKJmysnJITIykkaNGmFhIdOeiepl9+7dPP7441y+fPmuvdZ3+z5PS0vD3t6+VPlamWYnSExMRK1WFwnM1dWVc+fOFXvO4MGDSUxM5JFHHtGtDDFmzJgSE1iNRsMbb7zBww8/rEtgC6/TsGFD3N3dOXHiBJMnTyY8PJwNGzYUe5158+Yxe/bssry82klXD1t9ptZaG6YdLdmvg4cksEIIIYSB5ebmkpCQwKxZs3juuefuu+yirCp8doKdO3cyd+5cFi9ezJEjR9iwYQObN2/mvffeK7b92LFjOXXqFGvXrtU7/tJLLxEcHEzbtm0ZMmQIq1atYuPGjXqrWNxu6tSppKam6rbLly+X+2urEaJvJrHVpB72Wmo2f5/T1l8PkFICIYQQwuB++OEHGjZsSEpKSqWOVypTT2zdunUxNjYuUowdHx9f4sTB7777Li+++CKjRo0CtCPcMjMzeemll5g2bZpuSgiAcePG8fvvv/Pvv/9Sv379u8YSFKT9CO7ixYt4e3sXed7c3LzS1kGutrJvwPUz2sfVZGaCnw5dQaNol85s4mJj6HCEEEKIWm/YsGF6A/kqS5l6Ys3MzPDz89Ob3kGj0bBjx44SR6FlZWXpJaqAbnLgwnJcRVEYN24cGzdu5O+//6ZRo0b3jKVw2oh69eqV5SWI210+CCjg6A02LoaO5p7UGoV1Ydoe9UGBngaORgghhBCGVOYVuyZOnEhISAj+/v4EBgaycOFCMjMzdSPRhg4dioeHB/PmzQOgV69eLFiwgPbt2xMUFMTFixd599136dWrly6ZHTt2LKGhofzyyy/Y2toSFxcHaNc0trS0JCIigtDQUHr27ImTkxMnTpxgwoQJdOnShXbt2pXXe1H7VLOptXZfSCA2JRt7S1OeaiN/vAghhBC1WZmT2AEDBpCQkMCMGTOIi4vD19eXLVu26Ip4Y2Ji9Hpep0+fjkqlYvr06cTGxuLs7EyvXr30psb4+uuvAXTrLRdavnw5w4YNw8zMjO3bt+sSZk9PT/r161fq+c9ECarZoK61B7W9sH3ae2BhKgO6hBBCiNqsTFNsVWdlmbKhVsjPhnmeoMmH146CY2NDR3RX19Nz6DTvbwo0Clvf6EJzN1tDhyTEA5MptsSdZIotURuU1xRbFT47gaiiYg9rE1gbN6hz7xpkQ/v58BUKNAodGjhIAiuEEEIISWJrrdun1rq5tnVVpbltQNfAQJlWSwghhBCSxNZeMTcHdVWDeth9l5KITsrC1tyEZ9rJgC4hhBAPbufOnahUKlJSUgwdygPx8vJi4cKFhg7DICSJrY3UBTen16JazEzww0HtCl3PtnfHyqzMYxGFEEJUsISEBF555RUaNGiAubk5bm5uBAcHs2fPHl0blUrFpk2byuV+UVFRqFQq3XSb92p35/bCCy/QqVMnrl27hr29fbnEVJzi7n37NmvWrAe+R1hYGC+99NKDB1sNSUZQG8WfgrwMMLcDl1aGjuaukjJy2XpaO+XaQFmhSwghqqR+/fqRl5fHypUrady4MfHx8ezYsYOkpKRyv1deXl6Zz9m+fTutW7fW7VtaWmJmZlbiQk3l5dq1a7rH69atY8aMGYSHh+uO2dg8+KI9zs7OD3yN6kp6Ymujwqm1PIPAqGpPVbXhSCz5aoV29e1p41Fxfy0LIURVpCgKWflZBtlKO3lRSkoKu3fv5qOPPuLRRx+lYcOGBAYGMnXqVP73v/8B2o+8Afr06YNKpdLtR0RE8Oyzz+Lq6oqNjQ0BAQFs375d7/peXl689957DB06FDs7O1566SXdokjt27dHpVIVmaLzTk5OTri5uek2e3v7IuUEK1aswMHBga1bt9KyZUtsbGzo0aOHXiIK8N1339GyZUssLCxo0aIFixcvLvG+d95TpVLp9pcsWcIjjzyi137hwoW69wa0K2H17t2b+fPnU69ePZycnBg7diz5+fl678/t5QQqlYrvvvuOPn36YGVlRdOmTfn111/17vPrr7/StGlTLCwsePTRR1m5cmW1LK2QntjaqJoscqAoCj+EaUsJpBdWCFEbZRdk66Zhq2ylnfbNxsYGGxsbNm3axEMPPVTsku9hYWG4uLiwfPlyevTooVvsKCMjg549e/LBBx9gbm7OqlWr6NWrF+Hh4TRocOvn/vz585kxYwYzZ84EtIskBQYG6npYzczMyuU1Z2VlMX/+fL7//nuMjIx44YUXmDRpEmvWrAFgzZo1zJgxgy+//JL27dtz9OhRRo8ejbW1NSEhIeUSw53++ecf6tWrxz///MPFixcZMGAAvr6+jB49usRzZs+ezccff8wnn3zCokWLGDJkCNHR0Tg6OhIZGUn//v15/fXXGTVqFEePHmXSpEkVEntFk57Y2kZRqs0iBwcjk7mUkImVmTH/83U3dDhCCCGKYWJiwooVK1i5ciUODg48/PDDvPPOO5w4cULXpvAjbwcHB9zc3HT7Pj4+vPzyy7Rp04amTZvy3nvv4e3tXaTn8LHHHuPNN9/E29sbb29v3fmFPayOjo53jbFTp066ZNvGxoajR48W2y4/P58lS5bg7+9Phw4dGDduHDt27NA9P3PmTD799FP69u1Lo0aN6Nu3LxMmTOCbb74p+xtXSnXq1OHLL7+kRYsWPPPMMzz99NN6MRVn2LBhDBo0iCZNmjB37lwyMjI4eFA7Fuabb76hefPmfPLJJzRv3pyBAwcybNiwCou/IklPbG2TFAGZCWBsDh4dDB3NXa29Oa3W/3zcsTGXb1UhRO1jaWLJgcEHDHbv0urXrx9PP/00u3fvZv/+/fz55598/PHHfPfdd3dNkDIyMpg1axabN2/m2rVrFBQUkJ2dTUxMjF47f3//+30ZgLYetWXLlrp9T09P9u3bV6SdlZUV3t7euv169epx/fp1ADIzM4mIiGDkyJF6vaAFBQUVOjisdevWup7rwphOnjx513PatWune2xtbY2dnZ3udYSHhxMQEKDXPjAwsBwjrjySGdQ2hVNrefiBSdGPfKqKlKw8Np/U1iHJ3LBCiNpKpVJVm5XcLCwseOKJJ3jiiSd49913GTVqFDNnzrxrEjtp0iS2bdvG/PnzadKkCZaWlvTv37/I4C1ra+sHis3T05MmTZrcs52pqanevkql0tUGZ2RkAPDtt98SFKRf4nF7kllaRkZGReqOb691vVtMGo3mrte+n3OqI0lia5vbFzmowjYejSWvQEPLenb41JcBXUIIUd20atVKb0otU1NT1Gq1Xps9e/YwbNgw+vTpA2gTxaioqHteu7AG9s7rVSRXV1fc3d25dOkSQ4YMeeDrOTs7ExcXh6IoqG4uOnSvKcPKQ/Pmzfnjjz/0joWFhVX4fSuC1MTWNtWgHlZRFNYe1JYSDAr01P3nFkKI/2fvvsOjqNo+jn93N72H9EAgEEIPAQJEQIoaDcUIilJEKQIqD6iIvA+i0iyggogCChZARRTxAWwUAWkC0kF6DQktCSSk9915/1iysGTTIJtNuT/XtVd2Z8/MuXecLD9PzsyIyicxMZEHH3yQpUuX8u+//xIdHc2KFSv48MMP6d27t6FdYGAgmzZtIi4ujhs3bgAQHBzMypUrOXToEIcPH+bpp58u1Yiht7c39vb2rFu3jvj4eFJSUsz2+W43bdo0ZsyYwaeffsrp06c5cuQIixcvZvbs2WXeVrdu3bh27Roffvgh586dY/78+axdu9YMVRt74YUXOHnyJBMmTOD06dP89NNPLFmyBKDK/XsrIbYmSYuDG9GACgLaldjcUg7EJnMqPg07azW9W9W2dDlCCCGK4eTkRHh4OB9//DFdunShRYsWTJo0iZEjRzJv3jxDu48++ogNGzYQEBBA69atAZg9ezbu7u507NiRqKgoIiMjadOm5PM1rKys+PTTT1m4cCH+/v5GYdmcRowYwVdffcXixYsJCQmha9euLFmyxHDJr7Jo2rQpn332GfPnzyc0NJQ9e/ZUyFUC6tevz88//8zKlStp2bIln3/+OW+++SaAyStLVGYqpbQXgqviUlNTcXV1JSUlBRcXF0uXYxlHV8LPw8A3BF7829LVFOn/Vhxmxf5L9G1Th4/6hVq6HCHMJjMv03D5pNJezkhUb9nZ2URHR1O/fn3s7OwsXY6oId577z0WLFjAxYsXK6S/4o7zsuQ1mRNbk1SBqQSp2Xn8/q/+hK6B7QMsXI0QQghR/Xz22We0a9cODw8PduzYwcyZMxkzZoylyyozCbE1SRU4qeuXQ1fIytMS7O1EWD13S5cjhBBCVDtnzpzh3XffJSkpibp16/Laa68xceJES5dVZhJia4qsZIg/qn9eiUdif9xz8w5d7etWuQnmQgghRFXw8ccf8/HHH1u6jHsmJ3bVFBf3AArUagDOPpauxqQjl1I4diUVGys1T7SWE7qEEEIIUTQJsTVFwU0OKvEo7LKbo7A9Wvji7lg+98EWQoiqqIaccy1qqPI6viXE1hSx/+h/VtL5sBk5+fx66DIAA9rJHbqEEDVTwZ2f7rxjlRDVSWZmJlD4zmJlJXNia4K8bLi8X/+8buUMsb8dvkJGrpb6no7c16CWpcsRQgiLsLKywsHBgWvXrmFtbY1aLWNNovpQFIXMzEwSEhJwc3O7q9v13k5CbE1w5QBoc8HRWz8nthL6Ya/+2nQD2skduoQQNZdKpcLPz4/o6GhiYmIsXY4QZuHm5oavr+89b0dCbE0Qc3M+bL0OUAkD4vErqRy+mIy1RkXfsDqWLkcIISzKxsaG4OBgmVIgqiVra+t7HoEtICG2JqjkNzn4ca/+hK5Hmvni6VS1bnknhBDmoFar5Y5dQpTgribbzJ8/n8DAQOzs7AgPD2fPnj3Ftp8zZw6NGzfG3t6egIAAXn31VbKzs8u0zezsbEaPHo2HhwdOTk707duX+Pj4uym/ZtFpb15ei0p5UldWrpZVB2+e0CV36BJCCCFEKZU5xC5fvpxx48YxZcoUDhw4QGhoKJGRkSQkJJhsv2zZMl5//XWmTJnCiRMn+Prrr1m+fDlvvPFGmbb56quv8ttvv7FixQq2bt3KlStXeOKJJ+7iI9cw8UchJxVsXcCnhaWrKWTNkaukZecTUMueTkGeli5HCCGEEFVEmUPs7NmzGTlyJMOGDaNZs2YsWLAABwcHFi1aZLL9zp076dSpE08//TSBgYE88sgjDBw40GiktaRtpqSk8PXXXzN79mwefPBBwsLCWLx4MTt37uSff/65y49eQxTcajagPajLZw5Kefqh4A5d7eqiVle++bpCCCGEqJzKNCc2NzeX/fv3G91fV61WExERwa5du0yu07FjR5YuXcqePXto374958+fZ82aNTz77LOl3ub+/fvJy8sjIiLC0KZJkybUrVuXXbt2cd999xXqNycnh5ycHMPrlJQUAFJTU8vykau+k1shRwGP1lDJPvu5hDT2nL6MRq2ie7BLzftvI2q8zLxMtFlaQP/dlG+db+GKhBDCsgqyQGluiFCmEHv9+nW0Wi0+Psa3LfXx8eHkyZMm13n66ae5fv06999/P4qikJ+fz4svvmiYTlCabcbFxWFjY4Obm1uhNnFxcSb7nTFjBtOmTSu0PCCghs67fH8SMMnSVRSp4WxLVyCEZfmN8rN0CUIIUWmkpaXh6upabBuzX51gy5YtTJ8+nc8++4zw8HDOnj3LK6+8wjvvvMOkSeYLVRMnTmTcuHGG1zqdjqSkJDw8PCrkOqSpqakEBARw8eJFXFxczN5fVSb7qnRkP5WO7KfSkf1UOrKfSkf2U+nJviqeoiikpaXh7+9fYtsyhVhPT080Gk2hqwLEx8cXedHaSZMm8eyzzzJixAgAQkJCyMjI4Pnnn+fNN98s1TZ9fX3Jzc0lOTnZaDS2uH5tbW2xtTW+XNOdI7kVwcXFRQ7SUpJ9VTqyn0pH9lPpyH4qHdlPpSP7qfRkXxWtpBHYAmU6scvGxoawsDA2bdpkWKbT6di0aRMdOpi+fFNmZmah2+YVXORWUZRSbTMsLAxra2ujNqdOnSI2NrbIfoUQQgghRPVV5ukE48aNY8iQIbRt25b27dszZ84cMjIyGDZsGACDBw+mdu3azJgxA4CoqChmz55N69atDdMJJk2aRFRUlCHMlrRNV1dXhg8fzrhx46hVqxYuLi689NJLdOjQweRJXUIIIYQQonorc4jt378/165dY/LkycTFxdGqVSvWrVtnODErNjbWaOT1rbfeQqVS8dZbb3H58mW8vLyIiorivffeK/U2AT7++GPUajV9+/YlJyeHyMhIPvvss3v57GZla2vLlClTCk1pEIXJviod2U+lI/updGQ/lY7sp9KR/VR6sq/Kj0opzTUMhBBCCCGEqETu6razQgghhBBCWJKEWCGEEEIIUeVIiBVCCCGEEFWOhFghhBBCCFHlSIi9B/PnzycwMBA7OzvCw8PZs2dPse1XrFhBkyZNsLOzIyQkhDVr1lRQpZYzY8YM2rVrh7OzM97e3vTp04dTp04Vu86SJUtQqVRGDzs7uwqq2DKmTp1a6DM3adKk2HVq4vEUGBhYaD+pVCpGjx5tsn1NOZa2bdtGVFQU/v7+qFQqVq9ebfS+oihMnjwZPz8/7O3tiYiI4MyZMyVut6zfcZVdcfspLy+PCRMmEBISgqOjI/7+/gwePJgrV64Uu827+d2tCko6poYOHVroc3fv3r3E7dakYwow+X2lUqmYOXNmkdusrseUOUiIvUvLly9n3LhxTJkyhQMHDhAaGkpkZCQJCQkm2+/cuZOBAwcyfPhwDh48SJ8+fejTpw9Hjx6t4Mor1tatWxk9ejT//PMPGzZsIC8vj0ceeYSMjIxi13NxceHq1auGR0xMTAVVbDnNmzc3+sx///13kW1r6vG0d+9eo320YcMGAJ566qki16kJx1JGRgahoaHMnz/f5Psffvghn376KQsWLGD37t04OjoSGRlJdnZ2kdss63dcVVDcfsrMzOTAgQNMmjSJAwcOsHLlSk6dOsVjjz1W4nbL8rtbVZR0TAF0797d6HP/8MMPxW6zph1TgNH+uXr1KosWLUKlUtG3b99it1sdjymzUMRdad++vTJ69GjDa61Wq/j7+yszZsww2b5fv35Kr169jJaFh4crL7zwglnrrGwSEhIUQNm6dWuRbRYvXqy4urpWXFGVwJQpU5TQ0NBSt5fjSe+VV15RgoKCFJ1OZ/L9mngsAcqqVasMr3U6neLr66vMnDnTsCw5OVmxtbVVfvjhhyK3U9bvuKrmzv1kyp49exRAiYmJKbJNWX93qyJT+2rIkCFK7969y7QdOaYUpXfv3sqDDz5YbJuacEyVFxmJvQu5ubns37+fiIgIwzK1Wk1ERAS7du0yuc6uXbuM2gNERkYW2b66SklJAaBWrVrFtktPT6devXoEBATQu3dvjh07VhHlWdSZM2fw9/enQYMGDBo0iNjY2CLbyvGk/z1cunQpzz33HCqVqsh2NfFYul10dDRxcXFGx4urqyvh4eFFHi938x1XHaWkpKBSqXBzcyu2XVl+d6uTLVu24O3tTePGjRk1ahSJiYlFtpVjCuLj4/njjz8YPnx4iW1r6jFVVhJi78L169fRarVGdxQD8PHxIS4uzuQ6cXFxZWpfHel0OsaOHUunTp1o0aJFke0aN27MokWL+OWXX1i6dCk6nY6OHTty6dKlCqy2YoWHh7NkyRLWrVvH559/TnR0NJ07dyYtLc1kezmeYPXq1SQnJzN06NAi29TEY+lOBcdEWY6Xu/mOq26ys7OZMGECAwcOxMXFpch2Zf3drS66d+/Ot99+y6ZNm/jggw/YunUrPXr0QKvVmmwvxxR88803ODs788QTTxTbrqYeU3ejzLedFeJujR49mqNHj5Y4t6dDhw506NDB8Lpjx440bdqUhQsX8s4775i7TIvo0aOH4XnLli0JDw+nXr16/PTTT6X6v/aa6Ouvv6ZHjx74+/sX2aYmHkvi3uXl5dGvXz8UReHzzz8vtm1N/d0dMGCA4XlISAgtW7YkKCiILVu28NBDD1mwsspr0aJFDBo0qMSTS2vqMXU3ZCT2Lnh6eqLRaIiPjzdaHh8fj6+vr8l1fH19y9S+uhkzZgy///47mzdvpk6dOmVa19ramtatW3P27FkzVVf5uLm50ahRoyI/c00/nmJiYti4cSMjRowo03o18VgqOCbKcrzczXdcdVEQYGNiYtiwYUOxo7CmlPS7W101aNAAT0/PIj93TT6mALZv386pU6fK/J0FNfeYKg0JsXfBxsaGsLAwNm3aZFim0+nYtGmT0ajP7Tp06GDUHmDDhg1Ftq8uFEVhzJgxrFq1ir/++ov69euXeRtarZYjR47g5+dnhgorp/T0dM6dO1fkZ66px1OBxYsX4+3tTa9evcq0Xk08lurXr4+vr6/R8ZKamsru3buLPF7u5juuOigIsGfOnGHjxo14eHiUeRsl/e5WV5cuXSIxMbHIz11Tj6kCX3/9NWFhYYSGhpZ53Zp6TJWKpc8sq6p+/PFHxdbWVlmyZIly/Phx5fnnn1fc3NyUuLg4RVEU5dlnn1Vef/11Q/sdO3YoVlZWyqxZs5QTJ04oU6ZMUaytrZUjR45Y6iNUiFGjRimurq7Kli1blKtXrxoemZmZhjZ37qtp06Yp69evV86dO6fs379fGTBggGJnZ6ccO3bMEh+hQrz22mvKli1blOjoaGXHjh1KRESE4unpqSQkJCiKIsfT7bRarVK3bl1lwoQJhd6rqcdSWlqacvDgQeXgwYMKoMyePVs5ePCg4az6999/X3Fzc1N++eUX5d9//1V69+6t1K9fX8nKyjJs48EHH1Tmzp1reF3Sd1xVVNx+ys3NVR577DGlTp06yqFDh4y+r3JycgzbuHM/lfS7W1UVt6/S0tKU8ePHK7t27VKio6OVjRs3Km3atFGCg4OV7OxswzZq+jFVICUlRXFwcFA+//xzk9uoKceUOUiIvQdz585V6tatq9jY2Cjt27dX/vnnH8N7Xbt2VYYMGWLU/qefflIaNWqk2NjYKM2bN1f++OOPCq644gEmH4sXLza0uXNfjR071rBffXx8lJ49eyoHDhyo+OIrUP/+/RU/Pz/FxsZGqV27ttK/f3/l7NmzhvfleLpl/fr1CqCcOnWq0Hs19VjavHmzyd+zgn2h0+mUSZMmKT4+Poqtra3y0EMPFdp/9erVU6ZMmWK0rLjvuKqouP0UHR1d5PfV5s2bDdu4cz+V9LtbVRW3rzIzM5VHHnlE8fLyUqytrZV69eopI0eOLBRGa/oxVWDhwoWKvb29kpycbHIbNeWYMgeVoiiKWYd6hRBCCCGEKGcyJ1YIIYQQQlQ5EmKFEEIIIUSVIyFWCCGEEEJUORJihRBCCCFElSMhVgghhBBCVDkSYoUQQgghRJUjIVYIIYQQQlQ5EmKFEEIIIUSVIyFWCCGEEEJUORJihRBCCCFElSMhVgghhBBCVDkSYoUQQgghRJUjIVYIYTZDhw4lMDDwrtadOnUqKpWqfAuqZC5cuIBKpWLJkiUV3rdKpWLq1KmG10uWLEGlUnHhwoUS1w0MDGTo0KHlWs+9HCtCiJpJQqwQNZBKpSrVY8uWLZYutcZ7+eWXUalUnD17tsg2b775JiqVin///bcCKyu7K1euMHXqVA4dOmTpUgwK/kdi1qxZli5FCFFGVpYuQAhR8b777juj199++y0bNmwotLxp06b31M+XX36JTqe7q3XfeustXn/99XvqvzoYNGgQc+fOZdmyZUyePNlkmx9++IGQkBBatmx51/08++yzDBgwAFtb27veRkmuXLnCtGnTCAwMpFWrVkbv3cuxIoSomSTEClEDPfPMM0av//nnHzZs2FBo+Z0yMzNxcHAodT/W1tZ3VR+AlZUVVlbyFRUeHk7Dhg354YcfTIbYXbt2ER0dzfvvv39P/Wg0GjQazT1t417cy7EihKiZZDqBEMKkbt260aJFC/bv30+XLl1wcHDgjTfeAOCXX36hV69e+Pv7Y2trS1BQEO+88w5ardZoG3fOc7z9T7dffPEFQUFB2Nra0q5dO/bu3Wu0rqk5sSqVijFjxrB69WpatGiBra0tzZs3Z926dYXq37JlC23btsXOzo6goCAWLlxY6nm227dv56mnnqJu3brY2toSEBDAq6++SlZWVqHP5+TkxOXLl+nTpw9OTk54eXkxfvz4QvsiOTmZoUOH4urqipubG0OGDCE5ObnEWkA/Gnvy5EkOHDhQ6L1ly5ahUqkYOHAgubm5TJ48mbCwMFxdXXF0dKRz585s3ry5xD5MzYlVFIV3332XOnXq4ODgwAMPPMCxY8cKrZuUlMT48eMJCQnByckJFxcXevToweHDhw1ttmzZQrt27QAYNmyYYcpKwXxgU3NiMzIyeO211wgICMDW1pbGjRsza9YsFEUxaleW4+JuJSQkMHz4cHx8fLCzsyM0NJRvvvmmULsff/yRsLAwnJ2dcXFxISQkhE8++cTwfl5eHtOmTSM4OBg7Ozs8PDy4//772bBhQ7nVKkRNIcMcQogiJSYm0qNHDwYMGMAzzzyDj48PoA88Tk5OjBs3DicnJ/766y8mT55MamoqM2fOLHG7y5YtIy0tjRdeeAGVSsWHH37IE088wfnz50sckfv7779ZuXIl//nPf3B2dubTTz+lb9++xMbG4uHhAcDBgwfp3r07fn5+TJs2Da1Wy9tvv42Xl1epPveKFSvIzMxk1KhReHh4sGfPHubOnculS5dYsWKFUVutVktkZCTh4eHMmjWLjRs38tFHHxEUFMSoUaMAfRjs3bs3f//9Ny+++CJNmzZl1apVDBkypFT1DBo0iGnTprFs2TLatGlj1PdPP/1E586dqVu3LtevX+err75i4MCBjBw5krS0NL7++msiIyPZs2dPoT/hl2Ty5Mm8++679OzZk549e3LgwAEeeeQRcnNzjdqdP3+e1atX89RTT1G/fn3i4+NZuHAhXbt25fjx4/j7+9O0aVPefvttJk+ezPPPP0/nzp0B6Nixo8m+FUXhscceY/PmzQwfPpxWrVqxfv16/u///o/Lly/z8ccfG7UvzXFxt7KysujWrRtnz55lzJgx1K9fnxUrVjB06FCSk5N55ZVXANiwYQMDBw7koYce4oMPPgDgxIkT7Nixw9Bm6tSpzJgxgxEjRtC+fXtSU1PZt28fBw4c4OGHH76nOoWocRQhRI03evRo5c6vg65duyqAsmDBgkLtMzMzCy174YUXFAcHByU7O9uwbMiQIUq9evUMr6OjoxVA8fDwUJKSkgzLf/nlFwVQfvvtN8OyKVOmFKoJUGxsbJSzZ88alh0+fFgBlLlz5xqWRUVFKQ4ODsrly5cNy86cOaNYWVkV2qYppj7fjBkzFJVKpcTExBh9PkB5++23jdq2bt1aCQsLM7xevXq1AigffvihYVl+fr7SuXNnBVAWL15cYk3t2rVT6tSpo2i1WsOydevWKYCycOFCwzZzcnKM1rtx44bi4+OjPPfcc0bLAWXKlCmG14sXL1YAJTo6WlEURUlISFBsbGyUXr16KTqdztDujTfeUABlyJAhhmXZ2dlGdSmK/r+1ra2t0b7Zu3dvkZ/3zmOlYJ+9++67Ru2efPJJRaVSGR0DpT0uTCk4JmfOnFlkmzlz5iiAsnTpUsOy3NxcpUOHDoqTk5OSmpqqKIqivPLKK4qLi4uSn59f5LZCQ0OVXr16FVuTEKJ0ZDqBEKJItra2DBs2rNBye3t7w/O0tDSuX79O586dyczM5OTJkyVut3///ri7uxteF4zKnT9/vsR1IyIiCAoKMrxu2bIlLi4uhnW1Wi0bN26kT58++Pv7G9o1bNiQHj16lLh9MP58GRkZXL9+nY4dO6IoCgcPHizU/sUXXzR63blzZ6PPsmbNGqysrAwjs6Cfg/rSSy+Vqh7Qz2O+dOkS27ZtMyxbtmwZNjY2PPXUU4Zt2tjYAKDT6UhKSiI/P5+2bduanIpQnI0bN5Kbm8tLL71kNAVj7Nixhdra2tqiVuv/OdFqtSQmJuLk5ETjxo3L3G+BNWvWoNFoePnll42Wv/baayiKwtq1a42Wl3Rc3Is1a9bg6+vLwIEDDcusra15+eWXSU9PZ+vWrQC4ubmRkZFR7NQANzc3jh07xpkzZ+65LiFqOgmxQogi1a5d2xCKbnfs2DEef/xxXF1dcXFxwcvLy3BSWEpKSonbrVu3rtHrgkB748aNMq9bsH7BugkJCWRlZdGwYcNC7UwtMyU2NpahQ4dSq1YtwzzXrl27AoU/n52dXaFpCrfXAxATE4Ofnx9OTk5G7Ro3blyqegAGDBiARqNh2bJlAGRnZ7Nq1Sp69Ohh9D8E33zzDS1btjTMt/Ty8uKPP/4o1X+X28XExAAQHBxstNzLy8uoP9AH5o8//pjg4GBsbW3x9PTEy8uLf//9t8z93t6/v78/zs7ORssLrphRUF+Bko6LexETE0NwcLAhqBdVy3/+8x8aNWpEjx49qFOnDs8991yheblvv/02ycnJNGrUiJCQEP7v//6v0l8aTYjKSkKsEKJIt49IFkhOTqZr164cPnyYt99+m99++40NGzYY5gCW5jJJRZ0Fr9xxwk55r1saWq2Whx9+mD/++IMJEyawevVqNmzYYDgB6c7PV1Fn9Ht7e/Pwww/zv//9j7y8PH777TfS0tIYNGiQoc3SpUsZOnQoQUFBfP3116xbt44NGzbw4IMPmvXyVdOnT2fcuHF06dKFpUuXsn79ejZs2EDz5s0r7LJZ5j4uSsPb25tDhw7x66+/Gubz9ujRw2juc5cuXTh37hyLFi2iRYsWfPXVV7Rp04avvvqqwuoUorqQE7uEEGWyZcsWEhMTWblyJV26dDEsj46OtmBVt3h7e2NnZ2fy5gDF3TCgwJEjRzh9+jTffPMNgwcPNiy/l7PH69Wrx6ZNm0hPTzcajT116lSZtjNo0CDWrVvH2rVrWbZsGS4uLkRFRRne//nnn2nQoAErV640mgIwZcqUu6oZ4MyZMzRo0MCw/Nq1a4VGN3/++WceeOABvv76a6PlycnJeHp6Gl6X5Q5s9erVY+PGjaSlpRmNxhZMVymoryLUq1ePf//9F51OZzQaa6oWGxsboqKiiIqKQqfT8Z///IeFCxcyadIkw18CatWqxbBhwxg2bBjp6el06dKFqVOnMmLEiAr7TEJUBzISK4Qok4IRr9tHuHJzc/nss88sVZIRjUZDREQEq1ev5sqVK4blZ8+eLTSPsqj1wfjzKYpidJmksurZsyf5+fl8/vnnhmVarZa5c+eWaTt9+vTBwcGBzz77jLVr1/LEE09gZ2dXbO27d+9m165dZa45IiICa2tr5s6da7S9OXPmFGqr0WgKjXiuWLGCy5cvGy1zdHQEKNWlxXr27IlWq2XevHlGyz/++GNUKlWp5zeXh549exIXF8fy5csNy/Lz85k7dy5OTk6GqSaJiYlG66nVasMNKHJycky2cXJyomHDhob3hRClJyOxQogy6dixI+7u7gwZMsRwS9TvvvuuQv9sW5KpU6fy559/0qlTJ0aNGmUIQy1atCjxlqdNmjQhKCiI8ePHc/nyZVxcXPjf//53T3Mro6Ki6NSpE6+//joXLlygWbNmrFy5sszzRZ2cnOjTp49hXuztUwkAHn30UVauXMnjjz9Or169iI6OZsGCBTRr1oz09PQy9VVwvdsZM2bw6KOP0rNnTw4ePMjatWuNRlcL+n377bcZNmwYHTt25MiRI3z//fdGI7gAQUFBuLm5sWDBApydnXF0dCQ8PJz69esX6j8qKooHHniAN998kwsXLhAaGsqff/7JL7/8wtixY41O4ioPmzZtIjs7u9DyPn368Pzzz7Nw4UKGDh3K/v37CQwM5Oeff2bHjh3MmTPHMFI8YsQIkpKSePDBB6lTpw4xMTHMnTuXVq1aGebPNmvWjG7duhEWFkatWrXYt28fP//8M2PGjCnXzyNETSAhVghRJh4eHvz++++89tprvPXWW7i7u/PMM8/w0EMPERkZaenyAAgLC2Pt2rWMHz+eSZMmERAQwNtvv82JEydKvHqCtbU1v/32Gy+//DIzZszAzs6Oxx9/nDFjxhAaGnpX9ajVan799VfGjh3L0qVLUalUPPbYY3z00Ue0bt26TNsaNGgQy5Ytw8/PjwcffNDovaFDhxIXF8fChQtZv349zZo1Y+nSpaxYsYItW7aUue53330XOzs7FixYwObNmwkPD+fPP/+kV69eRu3eeOMNMjIyWLZsGcuXL6dNmzb88ccfhW4bbG1tzTfffMPEiRN58cUXyc/PZ/HixSZDbME+mzx5MsuXL2fx4sUEBgYyc+ZMXnvttTJ/lpKsW7fO5M0RAgMDadGiBVu2bOH111/nm2++ITU1lcaNG7N48WKGDh1qaPvMM8/wxRdf8Nlnn5GcnIyvry/9+/dn6tSphmkIL7/8Mr/++it//vknOTk51KtXj3fffZf/+7//K/fPJER1p1Iq0/CJEEKYUZ8+feTyRkIIUU3InFghRLV05y1iz5w5w5o1a+jWrZtlChJCCFGuZCRWCFEt+fn5MXToUBo0aEBMTAyff/45OTk5HDx4sNC1T4UQQlQ9MidWCFEtde/enR9++IG4uDhsbW3p0KED06dPlwArhBDVhEWmE2zbto2oqCj8/f1RqVSsXr26xHW2bNlCmzZtsLW1pWHDhoYLjwshhCmLFy/mwoULZGdnk5KSwrp162jTpo2lyxJCCFFOLBJiMzIyCA0NZf78+aVqHx0dTa9evXjggQc4dOgQY8eOZcSIEaxfv97MlQohhBBCiMrI4nNiVSoVq1atok+fPkW2mTBhAn/88QdHjx41LBswYADJyckmL4kihBBCCCGqtyoxJ3bXrl1EREQYLYuMjGTs2LFFrpOTk2N0BxSdTkdSUhIeHh5luvWhEEIIIYSoGIqikJaWhr+/v9Ftnk2pEiE2Li4OHx8fo2U+Pj6kpqaSlZWFvb19oXVmzJjBtGnTKqpEIYQQQghRTi5evEidOnWKbVMlQuzdmDhxIuPGjTO8TklJoW7duly8eBEXFxcLViaEEHqZeZk8uEJ/162/nvoLB2sHC1ckhBCWlZqaSkBAgOF2zsWpEiHW19eX+Ph4o2Xx8fG4uLiYHIUFsLW1xdbWttByFxcXCbFCiErBKs8Kjb0G0H83SYgVQgi90kz9rBJ37OrQoQObNm0yWrZhwwY6dOhgoYqEEEIIIYQlWSTEpqenc+jQIQ4dOgToL6F16NAhYmNjAf1UgMGDBxvav/jii5w/f57//ve/nDx5ks8++4yffvqJV1991RLlCyGEEEIIC7NIiN23bx+tW7emdevWAIwbN47WrVszefJkAK5evWoItAD169fnjz/+YMOGDYSGhvLRRx/x1VdfERkZaYnyhRBCCCGEhVn8OrEVJTU1FVdXV1JSUmROrBCiUsjMyyR8WTgAu5/eLXNihdkoikJ+fj5ardbSpYgaTqPRYGVlVeSc17LktSpxYpcQQggh7k5ubi5Xr14lMzPT0qUIAYCDgwN+fn7Y2Njc03YkxAohhBDVlE6nIzo6Go1Gg7+/PzY2NnLDH2ExiqKQm5vLtWvXiI6OJjg4uMQbGhRHQqwQQghRTeXm5qLT6QgICMDBQaarCMuzt7fH2tqamJgYcnNzsbOzu+ttVYlLbAkhhBDi7t3LaJcQ5a28jkc5qoUQQgghRJUjIVYIIYQQQlQ5EmKFEEIIUe0FBgYyZ86cUrffsmULKpWK5ORks9Uk7o2EWCGEEEJUGiqVqtjH1KlT72q7e/fu5fnnny91+44dO3L16lVcXV3vqr/SkrB89+TqBEIIIYSoNK5evWp4vnz5ciZPnsypU6cMy5ycnAzPFUVBq9ViZVVynPHy8ipTHTY2Nvj6+pZpHVGxZCRWCCGEqCEURSEzN98ij9LeINTX19fwcHV1RaVSGV6fPHkSZ2dn1q5dS1hYGLa2tvz999+cO3eO3r174+Pjg5OTE+3atWPjxo1G271zOoFKpeKrr77i8ccfx8HBgeDgYH799VfD+3eOkC5ZsgQ3NzfWr19P06ZNcXJyonv37kahOz8/n5dffhk3Nzc8PDyYMGECQ4YMoU+fPnf93+zGjRsMHjwYd3d3HBwc6NGjB2fOnDG8HxMTQ1RUFO7u7jg6OtK8eXPWrFljWHfQoEF4eXlhb29PcHAwixcvvutaKhsZiRVCCCFqiKw8Lc0mr7dI38ffjsTBpnxix+uvv86sWbNo0KAB7u7uXLx4kZ49e/Lee+9ha2vLt99+S1RUFKdOnaJu3bpFbmfatGl8+OGHzJw5k7lz5zJo0CBiYmKoVauWyfaZmZnMmjWL7777DrVazTPPPMP48eP5/vvvAfjggw/4/vvvWbx4MU2bNuWTTz5h9erVPPDAA3f9WYcOHcqZM2f49ddfcXFxYcKECfTs2ZPjx49jbW3N6NGjyc3NZdu2bTg6OnL8+HHDaPWkSZM4fvw4a9euxdPTk7Nnz5KVlXXXtVQ2EmKFEEIIUaW8/fbbPPzww4bXtWrVIjQ01PD6nXfeYdWqVfz666+MGTOmyO0MHTqUgQMHAjB9+nQ+/fRT9uzZQ/fu3U22z8vLY8GCBQQFBQEwZswY3n77bcP7c+fOZeLEiTz++OMAzJs3zzAqejcKwuuOHTvo2LEjAN9//z0BAQGsXr2ap556itjYWPr27UtISAgADRo0MKwfGxtL69atadu2LaAfja5OJMQKIYQQNYS9tYbjb0darO/yUhDKCqSnpzN16lT++OMPrl69Sn5+PllZWcTGxha7nZYtWxqeOzo64uLiQkJCQpHtHRwcDAEWwM/Pz9A+JSWF+Ph42rdvb3hfo9EQFhaGTqcr0+crcOLECaysrAgPDzcs8/DwoHHjxpw4cQKAl19+mVGjRvHnn38SERFB3759DZ9r1KhR9O3blwMHDvDII4/Qp08fQxiuDmROrBBCCFFDqFQqHGysLPJQqVTl9jkcHR2NXo8fP55Vq1Yxffp0tm/fzqFDhwgJCSE3N7fY7VhbWxfaP8UFTlPtSzvX11xGjBjB+fPnefbZZzly5Aht27Zl7ty5APTo0YOYmBheffVVrly5wkMPPcT48eMtWm95khArhBBCiCptx44dDB06lMcff5yQkBB8fX25cOFChdbg6uqKj48Pe/fuNSzTarUcOHDgrrfZtGlT8vPz2b17t2FZYmIip06dolmzZoZlAQEBvPjii6xcuZLXXnuNL7/80vCel5cXQ4YMYenSpcyZM4cvvvjiruupbGQ6gRBCCCGqtODgYFauXElUVBQqlYpJkybd9Z/w78VLL73EjBkzaNiwIU2aNGHu3LncuHGjVKPQR44cwdnZ2fBapVIRGhpK7969GTlyJAsXLsTZ2ZnXX3+d2rVr07t3bwDGjh1Ljx49aNSoETdu3GDz5s00bdoUgMmTJxMWFkbz5s3Jycnh999/N7xXHUiINSNFUcr1zydCCCGEKGz27Nk899xzdOzYEU9PTyZMmEBqamqF1zFhwgTi4uIYPHgwGo2G559/nsjISDSakucDd+nSxei1RqMhPz+fxYsX88orr/Doo4+Sm5tLly5dWLNmjWFqg1arZfTo0Vy6dAkXFxe6d+/Oxx9/DOivdTtx4kQuXLiAvb09nTt35scffyz/D24hKsXSkzkqSGpqKq6urqSkpODi4mL2/pbvjWXxjgt83L8VTf3M358QourJzMskfJn+hI3dT+/GwdrBwhWJ6iY7O5vo6Gjq16+PnZ2dpcupcXQ6HU2bNqVfv3688847li6n0ijuuCxLXpM5sWay7fR1TsalsfSfGEuXIoQQQogKEBMTw5dffsnp06c5cuQIo0aNIjo6mqefftrSpVVLEmLNZNB9+osrrz54mfScfAtXI4QQQghzU6vVLFmyhHbt2tGpUyeOHDnCxo0bq9U81MpE5sSaSYcGHjTwcuT8tQxWH7zMM/fVs3RJQgghhDCjgIAAduzYYekyagwZiTUTlUrFoHB9cP1+d6zFryMnhBBCCFGdSIg1oyfb1MHWSs2Jq6kciE22dDlCCCGEENWGhFgzcnWwJirUH4Dv5QQvIYQQQohyIyHWzArmwv5+5Co3Moq//Z0QQgghhCgdCbFmFlrHlRa1XcjN1/Hz/kuWLkcIIYQQolqQEGtmt5/gtWxPLDqdnOAlhBBCCHGvJMRWgMdC/XG2tSL6egY7zyVauhwhhBCi2uvWrRtjx441vA4MDGTOnDnFrqNSqVi9evU9911e2xHFkxBbARxtrXi8TW0AuYOXEEIIUYyoqCi6d+9u8r3t27ejUqn4999/y7zdvXv38vzzz99reUamTp1Kq1atCi2/evUqPXr0KNe+7rRkyRLc3NzM2kdlJyG2ghSc4LXhRDzxqdkWrkYIIYSonIYPH86GDRu4dKnweSSLFy+mbdu2tGzZsszb9fLywsHBoTxKLJGvry+2trYV0ldNJiG2gjTycaZ9YC20OoUf91y0dDlCCCFqIkWB3AzLPEp5059HH30ULy8vlixZYrQ8PT2dFStWMHz4cBITExk4cCC1a9fGwcGBkJAQfvjhh2K3e+d0gjNnztClSxfs7Oxo1qwZGzZsKLTOhAkTaNSoEQ4ODjRo0IBJkyaRl5cH6EdCp02bxuHDh1GpVKhUKkPNd04nOHLkCA8++CD29vZ4eHjw/PPPk56ebnh/6NCh9OnTh1mzZuHn54eHhwejR4829HU3YmNj6d27N05OTri4uNCvXz/i4+MN7x8+fJgHHngAZ2dnXFxcCAsLY9++fQDExMQQFRWFu7s7jo6ONG/enDVr1tx1LeYit52tQIPuq8ueC0n8uDeW0Q8EYaWR/4cQQghRgfIyYbq/Zfp+4wrYOJbYzMrKisGDB7NkyRLefPNNVCoVACtWrECr1TJw4EDS09MJCwtjwoQJuLi48Mcff/Dss88SFBRE+/btS+xDp9PxxBNP4OPjw+7du0lJSTGaP1vA2dmZJUuW4O/vz5EjRxg5ciTOzs7897//pX///hw9epR169axceNGAFxdXQttIyMjg8jISDp06MDevXtJSEhgxIgRjBkzxiiob968GT8/PzZv3szZs2fp378/rVq1YuTIkSV+HlOfryDAbt26lfz8fEaPHk3//v3ZsmULAIMGDaJ169Z8/vnnaDQaDh06hLW1NQCjR48mNzeXbdu24ejoyPHjx3FycipzHeYmIbYCdW/hSy1HG66mZPPXyQQeae5r6ZKEEEKISue5555j5syZbN26lW7dugH6qQR9+/bF1dUVV1dXxo8fb2j/0ksvsX79en766adShdiNGzdy8uRJ1q9fj7+/PtRPnz690DzWt956y/A8MDCQ8ePH8+OPP/Lf//4Xe3t7nJycsLKywte36H/Ply1bRnZ2Nt9++y2OjvoQP2/ePKKiovjggw/w8fEBwN3dnXnz5qHRaGjSpAm9evVi06ZNdxViN23axJEjR4iOjiYgIACAb7/9lubNm7N3717atWtHbGws//d//0eTJk0ACA4ONqwfGxtL3759CQkJAaBBgwZlrqEiSIitQLZWGp5qW4eFW8+zdHeshFghhBAVy9pBPyJqqb5LqUmTJnTs2JFFixbRrVs3zp49y/bt23n77bcB0Gq1TJ8+nZ9++onLly+Tm5tLTk5Oqee8njhxgoCAAEOABejQoUOhdsuXL+fTTz/l3LlzpKenk5+fj4uLS6k/R0FfoaGhhgAL0KlTJ3Q6HadOnTKE2ObNm6PRaAxt/Pz8OHLkSJn6ur3PgIAAQ4AFaNasGW5ubpw4cYJ27doxbtw4RowYwXfffUdERARPPfUUQUFBALz88suMGjWKP//8k4iICPr27XtX85DNTf6eXcEGta+HSgXbTl8jNjHT0uUIIYSoSVQq/Z/0LfG4OS2gtIYPH87//vc/0tLSWLx4MUFBQXTt2hWAmTNn8sknnzBhwgQ2b97MoUOHiIyMJDe3/O6MuWvXLgYNGkTPnj35/fffOXjwIG+++Wa59nG7gj/lF1CpVOh0OrP0BforKxw7doxevXrx119/0axZM1atWgXAiBEjOH/+PM8++yxHjhyhbdu2zJ0712y13C0JsRWsrocDXYK9APh+j1xuSwghhDClX79+qNVqli1bxrfffstzzz1nmB+7Y8cOevfuzTPPPENoaCgNGjTg9OnTpd5206ZNuXjxIlevXjUs++eff4za7Ny5k3r16vHmm2/Stm1bgoODiYkx/nfbxsYGrVZbYl+HDx8mIyPDsGzHjh2o1WoaN25c6prLouDzXbx460Ty48ePk5ycTLNmzQzLGjVqxKuvvsqff/7JE088weLFiw3vBQQE8OKLL7Jy5Upee+01vvzyS7PUei8kxFrAoPC6AKzYd4mc/OIPfiGEEKImcnJyon///kycOJGrV68ydOhQw3vBwcFs2LCBnTt3cuLECV544QWjM+9LEhERQaNGjRgyZAiHDx9m+/btvPnmm0ZtgoODiY2N5ccff+TcuXN8+umnhpHKAoGBgURHR3Po0CGuX79OTk5Oob4GDRqEnZ0dQ4YM4ejRo2zevJmXXnqJZ5991jCV4G5ptVoOHTpk9Dhx4gQRERGEhIQwaNAgDhw4wJ49exg8eDBdu3albdu2ZGVlMWbMGLZs2UJMTAw7duxg7969NG3aFICxY8eyfv16oqOjOXDgAJs3bza8V5lIiLWAB5t44+dqR1JGLuuOxlm6HCGEEKJSGj58ODdu3CAyMtJo/upbb71FmzZtiIyMpFu3bvj6+tKnT59Sb1etVrNq1SqysrJo3749I0aM4L333jNq89hjj/Hqq68yZswYWrVqxc6dO5k0aZJRm759+9K9e3ceeOABvLy8TF7my8HBgfXr15OUlES7du148skneeihh5g3b17ZdoYJ6enptG7d2ugRFRWFSqXil19+wd3dnS5duhAREUGDBg1Yvnw5ABqNhsTERAYPHkyjRo3o168fPXr0YNq0aYA+HI8ePZqmTZvSvXt3GjVqxGeffXbP9ZY3laKU8sJtVVxqaiqurq6kpKSUeVK2OXyy8QwfbzxNu0B3VrzY0dLlCCEsIDMvk/Bl4QDsfno3DmU48UWI0sjOziY6Opr69etjZ2dn6XKEAIo/LsuS12Qk1kIGtA9Ao1ax98INTsWlWbocIYQQQogqRUKshfi42PFIM/1cmO93ywleQgghhBBlISHWggaF1wNg5YHLZOTkW7gaIYQQQoiqQ0KsBXUM8qC+pyPpOfn8ethCF58WQgghhKiCJMRakFqt4un2+sttLf0nhhpyjp0QQgghxD2TEGthT4bVwcZKzbErqRy+lGLpcoQQQgghqgSLhdj58+cTGBiInZ0d4eHh7Nmzp9j2c+bMoXHjxtjb2xMQEMCrr75KdnZ2BVVrPu6ONjza0g/Qj8YKIYQQQoiSWSTELl++nHHjxjFlyhQOHDhAaGgokZGRJCQkmGy/bNkyXn/9daZMmcKJEyf4+uuvWb58OW+88UYFV24eBSd4/Xb4CsmZ5rknsxBCCCFEdWKREDt79mxGjhzJsGHDaNasGQsWLMDBwYFFixaZbL9z5046derE008/TWBgII888ggDBw4scfS2qmhT142mfi7k5Ov434HLli5HCCGEEKLSq/AQm5uby/79+4mIiLhVhFpNREQEu3btMrlOx44d2b9/vyG0nj9/njVr1tCzZ88i+8nJySE1NdXoUVmpVCoGhetP8Pp+t5zgJYQQQlQ1W7ZsQaVSkZycbOlS7klgYCBz5syxdBmlUuEh9vr162i1Wnx8fIyW+/j4EBcXZ3Kdp59+mrfffpv7778fa2trgoKC6NatW7HTCWbMmIGrq6vhERAQUK6fo7z1aV0bRxsN569lsOt8oqXLEUIIISzm2rVrjBo1irp162Jra4uvry+RkZHs2LHD0EalUrF69epy6e/ChQuoVCoOHTpUqnZ3Pp555hk6duzI1atXcXV1LZeaTDHV9+2PqVOn3nMfe/fu5fnnn7/3YiuAlaULKI0tW7Ywffp0PvvsM8LDwzl79iyvvPIK77zzDpMmTTK5zsSJExk3bpzhdWpqaqUOsk62VjzepjZL/4nl+39i6RjkaemShBBCCIvo27cvubm5fPPNNzRo0ID4+Hg2bdpEYmL5D/Lk5pb9XJSNGzfSvHlzw2t7e3tsbGzw9fUtz9IKuXr1quH58uXLmTx5MqdOnTIsc3Jyuuc+vLy87nkbFaXCR2I9PT3RaDTEx8cbLY+Pjy/yP/6kSZN49tlnGTFiBCEhITz++ONMnz6dGTNmoNPpTK5ja2uLi4uL0aOyKzjBa/2xOBJSq/6VF4QQQlQuiqKQmZdpkUdpp8olJyezfft2PvjgAx544AHq1atH+/btmThxIo899hig/5M3wOOPP45KpTK8PnfuHL1798bHxwcnJyfatWvHxo0bjbYfGBjIO++8w+DBg3FxceH555+nfv36ALRu3RqVSkW3bt2KrdHDwwNfX1/Dw9XVtdB0giVLluDm5sb69etp2rQpTk5OdO/e3SiIAnz11Vc0bdoUOzs7mjRpwmeffVZkv3f2qVKpDK8XLFjA/fffb9R+zpw5hn0DMHToUPr06cOsWbPw8/PDw8OD0aNHk5eXZ7R/bp9OoFKp+Oqrr3j88cdxcHAgODiYX3/91aifX3/9leDgYOzs7HjggQf45ptvKmRqRYWPxNrY2BAWFsamTZvo06cPADqdjk2bNjFmzBiT62RmZqJWG+dtjUYDUK3mjzb1cyGsnjv7Y27w076LjHkw2NIlCSGEqEay8rMIXxZukb53P70bB2uHEts5OTnh5OTE6tWrue+++7C1tS3UZu/evXh7e7N48WK6d+9uyATp6en07NmT9957D1tbW7799luioqI4deoUdevWNaw/a9YsJk+ezJQpUwAYPXo07du3N4yw2tjYlMtnzszMZNasWXz33Xeo1WqeeeYZxo8fz/fffw/A999/z+TJk5k3bx6tW7fm4MGDjBw5EkdHR4YMGVIuNdxp8+bN+Pn5sXnzZs6ePUv//v1p1aoVI0eOLHKdadOm8eGHHzJz5kzmzp3LoEGDiImJoVatWkRHR/Pkk0/yyiuvMGLECA4ePMj48ePNUvudLHJ1gnHjxvHll1/yzTffcOLECUaNGkVGRgbDhg0DYPDgwUycONHQPioqis8//5wff/yR6OhoNmzYwKRJk4iKijIcuNVFwQleP+y5iFZXfQK6EEIIURpWVlYsWbKEb775Bjc3Nzp16sQbb7zBv//+a2hT8CdvNzc3fH19Da9DQ0N54YUXaNGiBcHBwbzzzjsEBQUVGjl88MEHee211wgKCiIoKMiwfsEIa61atYqtsWPHjoaw7eTkxMGDB022y8vLY8GCBbRt25Y2bdowZswYNm3aZHh/ypQpfPTRRzzxxBPUr1+fJ554gldffZWFCxeWfceVkru7O/PmzaNJkyY8+uij9OrVy6gmU4YOHcrAgQNp2LAh06dPJz093XCy/cKFC2ncuDEzZ86kcePGDBgwgKFDh5qt/ttZZE5s//79uXbtGpMnTyYuLo5WrVqxbt06w8lesbGxRiOvb731FiqVirfeeovLly/j5eVFVFQU7733niXKN6ueIX688/txLidnseVUAg819Sl5JSGEEKIU7K3s2f30bov1XVp9+/alV69ebN++nX/++Ye1a9fy4Ycf8tVXXxUbkNLT05k6dSp//PEHV69eJT8/n6ysLGJjY43atW3b9m4/BqCfj9q0aVPD64CAAJNXWHJwcCAoKMjw2s/Pz3BN/IyMDM6dO8fw4cONRkHz8/PNenJY8+bNjQYA/fz8OHLkSLHrtGzZ0vDc0dERFxcXw+c4deoU7dq1M2rfvn37cqy4aBY7sWvMmDFFTh/YsmWL0WsrKyumTJliGPavzuysNTzVNoAvtp1n6T8xEmKFEEKUG5VKVao/6VcGdnZ2PPzwwzz88MNMmjSJESNGMGXKlGJD7Pjx49mwYQOzZs2iYcOG2Nvb8+STTxY6ecvR0fGeagsICKBhw4YltrO2tjZ6rVKpDNMg09PTAfjyyy8JDzee4nE3f2VWq9WFpljePte1uJqKOr/oXtapCBa77awo2sD2+ikFW05f42JSpoWrEUIIISyvWbNmZGRkGF5bW1uj1WqN2uzYsYOhQ4fy+OOPExISgq+vLxcuXChx2wVzYO/cnjn5+Pjg7+/P+fPnadiwodGj4ESzsvDy8iIuLs4oyJZ0ybDy0LhxY/bt22e0bO/evWbvFyTEVkr1PR3pHOyJosAPe2JLXkEIIYSoJhITE3nwwQdZunQp//77L9HR0axYsYIPP/yQ3r17G9oFBgayadMm4uLiuHHjBgDBwcGsXLmSQ4cOcfjwYZ5++ulSjRh6e3tjb2/PunXriI+PJyUlxWyf73bTpk1jxowZfPrpp5w+fZojR46wePFiZs+eXeZtdevWjWvXrvHhhx9y7tw55s+fz9q1a81QtbEXXniBkydPMmHCBE6fPs1PP/3EkiVLAP2IrTlJiK2kCk7w+mnfRXLzLT9kL4QQQlQEJycnwsPD+fjjj+nSpQstWrRg0qRJjBw5knnz5hnaffTRR2zYsIGAgABat24N6G9r7+7uTseOHYmKiiIyMpI2bdqU2KeVlRWffvopCxcuxN/f3ygsm9OIESP46quvWLx4MSEhIXTt2pUlS5bc1Uhs06ZN+eyzz5g/fz6hoaHs2bOnQq4SUL9+fX7++WdWrlxJy5Yt+fzzz3nzzTcBTF5ZojyplOp0japipKam4urqSkpKSpW4Zmy+VkenD/4iPjWHuQNbExXqb+mShBDlLDMv03C5o9JefkiIssjOziY6Opr69etjZ2dn6XJEDfHee++xYMECLl68aPL94o7LsuQ1GYmtpKw0aga004/GLv0nxsLVCCGEEEKY9tlnn7F3717Onz/Pd999x8yZM812ndvbSYitxAa0D0CjVrE7Ookz8WmWLkcIIYQQopAzZ87Qu3dvmjVrxjvvvMNrr73G1KlTzd6vhNhKzM/VnoeaeAPw/W45wUsIIYQQlc/HH3/MlStXyM7O5vTp00yaNAkrK/NfxVVCbCU36L56APzvwCUyc/MtXI0QQgghROUgIbaS69zQk3oeDqRl5/P74auWLkcIIUQVVEPO4RZVRHkdjxJiKzm1WsXTN29+sHS3nOAlhBCi9ArutJSZKTfOEZVHwfF4553Ayspit50VpfdkWB0++vM0/15K4d9LybSs42bpkoQQQlQBGo0GNzc3w33uHRwczH4BeiGKoigKmZmZJCQk4Obmdle3172dhNgqwMPJlp4hvqw+dIXv/4ml5ZNuli5JCCFEFeHr6wtgCLJCWJqbm5vhuLwXEmKriEH31WP1oSv8cvgyb/Rqiqv9vQ3BCyGEqBlUKhV+fn54e3uTl5dn6XJEDWdtbX3PI7AFJMRWEW3rudPYx5lT8WmsPHCJYZ3Kfks6IYQQNZdGoym38CBEZSAndlURKpWKZ+7Tn+D1/e5YOdNUCCGEEDWahNgqpE/r2jjYaDibkM7u6CRLlyOEEEIIYTESYqsQZztrereqDcgdvIQQQghRs0mIrWIGheunFKw7epVraTkWrkYIIYQQwjIkxFYxLWq70irAjTytwk/7Llq6HCGEEEIIi5AQWwU9c189AH7YE4tWJyd4CSGEEKLmkRBbBT3a0g9Xe2su3chi2+lrli5HCCGEEKLCSYitguysNTwZVgeA73fHWLgaIYQQQoiKJyG2inr65glef51M4HJyloWrEUIIIYSoWBJiq6ggLyc6BnmgU+AHudyWEEIIIWoYCbFVWMEJXj/uvUieVmfhaoQQQgghKo6E2Crs4WY+eDnbcj09hz+PxVu6HCGEEEKICiMh1pySzpt189YaNQPaBQBygpcQQgghahYJseagKPDHa/BpGzi7yaxdDWhfF7UKdp5L5Ny1dLP2JYQQQghRWUiINQeVCtTWgALr3wBtvtm6qu1mz4NNvAH4/h85wUsIIYQQNYOEWHPpNgHsa8G1k7BvkVm7GnTzBK+f918kO09r1r6EEEIIISoDCbHmYu8OD7yhf75lOmQmma2rLsFe1HG3JzU7n98OXzFbP0IIIYQQlYWEWHMKGwbezSDrBmx532zdaNQqw80PvpdrxgohhBCiBpAQa04aK4icrn++9ytIOGm2rvq1DcBao+LQxWSOXk4xWz9CCCGEEJWBhFhzC3oAGvcERas/yUtRzNKNp5Mt3Vv4AXK5LSGEEEJUfxJiK8Ij7+qvVnBuE5z502zdPHNzSsHqg1eIT802Wz9CCCGEEJYmIbYieATBfS/qn69/A/JzzdJN+/q1CK3jSlaelgn/+xfFTKO+QgghhBCWJiG2onT5P3DwhMSzsPdLs3ShUqmY9VQoNlZqtpy6xrI9cpKXEEIIIaonCbEVxc4VHpqsf77lA8i4bpZugn2c+W9kYwDe/f0EF65nmKUfIYQQQghLkhBbkVo/A74hkJMCm98zWzfPdapPhwYeZOVpGffTIfK1OrP1JYQQQghhCRJiK5JaA90/0D/fvwTijpqnG7WKWf1Ccba14kBsMgu3nTdLP0IIIYQQliIhtqIFdoJmvUHRwfqJZrvkVm03e6Y+1hyAjzeclmvHCiGEEKJakRBrCQ+/AxpbiN4GJ/8wWzdPtKlN9+a+5OsUXl1+iOw8rdn6EkIIIYSoSBJiLcG9HnQco3/+55uQn2OWblQqFe893gJPJ1vOJKQza/0ps/QjhBBCCFHRJMRayv3jwMkXblyAfz4zWzceTrZ80DcEgK93RLPrXKLZ+hJCCCGEqCgSYi3F1gkipuifb5sFafFm6+qhpj4MaBeAosD4FYdJzc4zW19CCCGEEBXBYiF2/vz5BAYGYmdnR3h4OHv27Cm2fXJyMqNHj8bPzw9bW1saNWrEmjVrKqhaM2k5APzbQG46/PW2Wbt669FmBNSy53JyFtN+PW7WvoQQQgghzM0iIXb58uWMGzeOKVOmcODAAUJDQ4mMjCQhIcFk+9zcXB5++GEuXLjAzz//zKlTp/jyyy+pXbt2BVdeztRq6P6+/vnB7+HKIbN15WRrxex+rVCp4H8HLrHuaJzZ+hJCCCGEMDeLhNjZs2czcuRIhg0bRrNmzViwYAEODg4sWrTIZPtFixaRlJTE6tWr6dSpE4GBgXTt2pXQ0NAKrtwM6oZDiycBBda9brZLbgG0C6zFC12CAHhj1RES0rLN1pcQQgghhDlVeIjNzc1l//79RERE3CpCrSYiIoJdu3aZXOfXX3+lQ4cOjB49Gh8fH1q0aMH06dPRaou+ZFROTg6pqalGj0rr4WlgZQ+xu+DYKrN29erDwTTxdSYpI5eJ/zuCYsbQLIQQQghhLhUeYq9fv45Wq8XHx8douY+PD3Fxpv/Eff78eX7++We0Wi1r1qxh0qRJfPTRR7z77rtF9jNjxgxcXV0Nj4CAgHL9HOXKtQ7cP1b/fMNkyMsyW1e2VhrmDGiFjUbNppMJLN970Wx9CSGEEEKYS5W4OoFOp8Pb25svvviCsLAw+vfvz5tvvsmCBQuKXGfixImkpKQYHhcvVvKw1vFlcKkDKRdh5zyzdtXE14XXHmkEwDu/Hyc2MdOs/QkhhBBClLcKD7Genp5oNBri440vKRUfH4+vr6/Jdfz8/GjUqBEajcawrGnTpsTFxZGbm2tyHVtbW1xcXIwelZqNg35aAcDfsyH1ilm7G9G5Ae0Da5GRq2XcT4fQ6mRagRBCCCGqjgoPsTY2NoSFhbFp0ybDMp1Ox6ZNm+jQoYPJdTp16sTZs2fR6XSGZadPn8bPzw8bGxuz11xhWvSFgHDIy4SN08zalUat4qN+oTjaaNgXc4Mvtp03a39CCCGEEOXJItMJxo0bx5dffsk333zDiRMnGDVqFBkZGQwbNgyAwYMHM3HiREP7UaNGkZSUxCuvvMLp06f5448/mD59OqNHj7ZE+eajUkH3Gfrn//4Il/aZtbuAWg5MiWoOwOwNpzhxtRKf/CaEEEIIcRuLhNj+/fsza9YsJk+eTKtWrTh06BDr1q0znOwVGxvL1atXDe0DAgJYv349e/fupWXLlrz88su88sorvP7665Yo37xqh0Ho0/rnZr7kFsBTbesQ0dSHPK3Cq8sPkZNf9BUfhBBCCCEqC5VSQ66xlJqaiqurKykpKZV/fmzqVZgbBnkZ8MSX0LKfWbu7np5D5MfbSMzI5YWuDZjYo6lZ+xNC6GXmZRK+LByA3U/vxsHawcIVCSGEZZUlr1WJqxPUOC5+0Hmc/vmGKZCbYdbuPJ1smfFECABfbDvPnugks/YnhBBCCHGvJMRWVh3GgFtdSLsCf88xe3ePNPflqbA6KAq8tuIQ6Tn5Zu9TCCGEEOJuSYitrKzt4OF39M93fgrJsWbvcnJUM+q423MxKYt3fjtu9v6EEEIIIe6WhNjKrFlvqNcJ8rP10wrMzNnOmo+eCkWlguX7LrLheHzJKwkhhBBCWICE2MrMcMktFRxbCTG7zN5leAMPRnZuAMDElf+SmJ5j9j6FEEIIIcpKQmxl5xcKbQbrn697HW674YO5jHu4EY19nLmensvElUeoIRewEEIIIUQVIiG2KnhwEti6wNVDcHiZ2buzs9bwcf9WWGtU/Hk8np/3XzJ7n0IIIYQQZSEhtipw8oIu/6d/vultyEkze5fN/F149eFGAEz77TgXkzLN3qcQQgghRGlJiK0qwl+EWg0gPR62f1QhXb7QJYi29dxJz8ln/IrD6HQyrUAIIYQQlYOE2KrCygYeeU//fNd8SIo2e5catYqP+oXiYKNhd3QSX/9t/j6FEEIIIUpDQmxV0rgHNOgG2lzYMKlCuqzn4cikR5sBMHP9KU7FmX8qgxBCCCFESSTEViUqFUTOAJUaTvwG0dsrpNsB7QJ4qIk3uVodY5cfIjff/FdIEEIIIYQojoTYqsanGbR9Tv983UTQac3epUqlYkbfENwdrDlxNZU5G0+bvU8hhBBCiOJIiK2Kur0Bdq4QfwQOfFshXXo72zHjiRAAFmw9x/6YpArpVwghhBDCFAmxVZGjB3SbqH/+17uQnVIh3XZv4ccTbWqjU2DcT4fJyMmvkH6FEEIIIe4kIbaqajcCPBtB5nXY+mGFdTv1seb4u9oRk5jJe2tOVFi/QgghhBC3kxBbVWmsIXK6/vnuBXD9bIV062JnzaynQgFYtjuWzScTKqRfIYQQQojbSYityoIfhuBHQJcPf75ZYd12bOjJc53qA/Df//1LUkZuhfUthBBCCAESYqu+yOmgtoLT6+Dspgrr9r/dG9PQ24lraTm8tfoIiiJ38xJCCCFExZEQW9V5BkP75/XP178B2oo52crOWsOc/q2wUqtYcySO1YcuV0i/QgghhBAgIbZ66PpfsK8F107CvkUV1m2L2q688lAwAJN/OcaV5KwK61sIIYQQNZuE2OrA3h0evDkndst0yKy4a7iO6hZE67pupGXn88zXuzl0MbnC+hZCCCFEzSUhtrpoMxS8m0HWDdjyfoV1a6VR83G/Vng723L+WgZ9P9/JzPUnyck3/53EhBBCCFFzSYitLjRW0H2G/vner+DMhgrrOtDTkfVju9C7lT9ancL8zefoPW8HRy9XzE0YhBBCCFHzSIitThp0g9bPgKKFn4bAlYMV1rW7ow2fDGjN54Pa4OFow8m4NPrM38GcjafJ0+oqrA4hhBBC1AwSYqubXh9DgwcgLwO+7wc3LlRo9z1C/Pjz1S70DPElX6cwZ+MZ+szfwcm41AqtQwghhBDVm4TY6sbKBvp9Cz4hkJEAS5+s0BO9ADycbJn/dBvmDmyNm4M1x66kEjX3b+ZvPku+jMoKIYQQohxIiK2O7Fxg0ApwqQOJZ+CHAZBXsZe/UqlURIX68+erXYho6kOeVmHm+lP0/XwnZxPSKrQWIYQQQlQ/EmKrKxc/eOZ/YOcKF3fD/0aAruKvGODtbMeXg8OY3S8UFzsrDl9Koeenf/PFtnNodXKXLyGEEELcHQmx1Zl3ExjwA2hs4OTvsG4iWOD2sCqViifa1OHPV7vSrbEXufk6pq85Sb+Fu4i+nlHh9QghhBCi6pMQW90FdoLHF+qf71kIu+ZZrBRfVzsWD23Hh31b4mRrxf6YG/T4ZBuL/o5GJ6OyQgghhCgDCbE1QYsn4JH39M//fAuO/GyxUlQqFf3aBbD+1S7c39CT7Dwdb/9+nAFf/kNsYqbF6hJCCCFE1SIhtqboMBrCR+mfrx4F0dstWk5tN3u+G96ed/u0wMFGw57oJLp/so3v/omRUVkhhBBClEhCbE2hUkHkdGjWG7S58OMgSDhh4ZJUPHNfPda90oXw+rXIzNUyafVRnl20m0s3ZFRWCCGEEEWTEFuTqNXw+BdQtwPkpOivIZt6xdJVUdfDgR9G3seUqGbYWavZcTaR7nO28+OeWBQLnIgmhBBCiMpPQmxNY20HA5aBZyNIvQTfPwXZKZauCrVaxbBO9Vn7ShfC6rmTnpPP6yuPMHTxXq6mVOw1boUQQghR+UmIrYkcasGgn8HJB+KPwvJnIT/X0lUBUN/TkZ9e6MCbPZtiY6Vm6+lrPPLxNv63/5KMygohhBDCQEJsTeVeD57+CWycIHor/DrGIteQNUWjVjGySwPWvNyZ0AA30rLzeW3FYUZ+u5+EtGxLlyeEEEKISkBCbE3m3wr6fQMqDfy7HP56x9IVGWno7cT/XuzAf7s3xkajZuOJeB75eBu/Hr4io7JCCCFEDSchtqZrGAGPfap/vv0j2Pu1Zeu5g5VGzX+6NeS3l+6nRW0XkjPzePmHg/zn+wMkpudYujwhhBBCWIiEWAGtn4Fub+ifrxkPJ9dYth4TGvs6s+o/nXg1ohFWahVrj8bxyMfbWHvkqqVLE0IIIYQFSIgVel3/C62fBUUHPz8Hl/ZZuqJCrDVqXokI5pcxnWji60xiRi6jvj/A6O8PcC1NRmWFEEKImkRCrNBTqeDRj6Hhw5CfBcv6QeI5S1dlUnN/V34dcz9jHmiIRq3ijyNXiZi9Va5gIIQQQtQgEmLFLRpreGoJ+LWCzERY2hcyrlu6KpNsrNSMj2zMr2M60dzfhZSsPF5bcZihi/fK3b6EEEKIGkBCrDBm6wSDVoBbPbgRrR+Rzc2wdFVFau7vyi+jOzGhexPDdWUjP97Gt7suoNPJqKwQQghRXVksxM6fP5/AwEDs7OwIDw9nz549pVrvxx9/RKVS0adPH/MWWJM5ecMz/wN7d7i8Xz9HVptv6aqKZKVRM6pbEGtf6Uz7wFpk5GqZ/Msx+i3cxdmEdEuXJ4QQQggzsEiIXb58OePGjWPKlCkcOHCA0NBQIiMjSUhIKHa9CxcuMH78eDp37lxBldZgnsEwcDlY2cHpdfqrFlTy+aZBXk78+Px9vNOnBY42GvbF3KDnJ9uZv/kseVqdpcsTQgghRDmySIidPXs2I0eOZNiwYTRr1owFCxbg4ODAokWLilxHq9UyaNAgpk2bRoMGDSqw2hqsbjj0/QpQwf7F8PdsS1dUIrVaxbP31ePPcV3p1tiLXK2OmetP0XveDo5eTrF0eUIIIYQoJxUeYnNzc9m/fz8RERG3ilCriYiIYNeuXUWu9/bbb+Pt7c3w4cNL1U9OTg6pqalGD3EXmkZBjw/1zze9DYd/tGw9pVTbzZ7FQ9vxcf9Q3B2sOX41ld7zd/DBupNk52ktXZ4QQggh7lGFh9jr16+j1Wrx8fExWu7j40NcXJzJdf7++2++/vprvvzyy1L3M2PGDFxdXQ2PgICAe6q7Rgt/Hjq+rH/+y2g495dl6ykllUrF463rsGFcV6JC/dHqFD7fco6en2xnT3SSpcsTQgghxD2o9FcnSEtL49lnn+XLL7/E09Oz1OtNnDiRlJQUw+PixYtmrLIGiJgGLfqCLh+WD4a4I5auqNQ8nWyZO7A1Xw5ui4+LLeevZ9Bv4S4mrT5KWnaepcsTQgghxF2wqugOPT090Wg0xMfHGy2Pj4/H19e3UPtz585x4cIFoqKiDMt0Ov1JOlZWVpw6dYqgoKBC69na2mJra1vO1ddgajX0+RzSE+DCdvj+KRi+Adyqzgj3w818aF+/Fu+vPcEPey7y3T8xbDoRz3uPh/BAE29LlyeEEEKIMqjwkVgbGxvCwsLYtGmTYZlOp2PTpk106NChUPsmTZpw5MgRDh06ZHg89thjPPDAAxw6dEimCVQkK1vovxS8mkLaVfj+Sci6YemqysTV3poZT7Rk2Yhw6tZy4EpKNsOW7OXV5YdIysi1dHlCVJj1x+L4ad9FucudEKLKqvCRWIBx48YxZMgQ2rZtS/v27ZkzZw4ZGRkMGzYMgMGDB1O7dm1mzJiBnZ0dLVq0MFrfzc0NoNByUQHs3eCZn+GrCLh2En58Bp5dqQ+4VUjHhp6sH9uF2RtO8fXf0aw6eJltp68x9bHmPNrSD5VKZekShTCbLacSeOG7/QDEJGbwf5FNLFyREEKUnUXmxPbv359Zs2YxefJkWrVqxaFDh1i3bp3hZK/Y2FiuXr1qidJEabjWgUE/g40zxPwNq14EXdW7Dqu9jYY3ezVj5X860djHmcSMXF764SAjv91PXEq2pcsTwiwS0rIZv+Kw4fX8zef4avt5C1YkhBB3R6XUkL8lpaam4urqSkpKCi4uLpYup3o4vwWW3jzZq+NL8Mi7lq7oruXm6/h8yznmbT5DnlbB2daKN3o1ZUC7ABmVFWaTmZdJ+LJwAHY/vRsHawez9qfTKQxZvIftZ67TxNeZHi38+HjjaQBmPtmSp9rK9CwhhGWVJa9V+qsTiEqsQTfo/Zn++c65sHlGpb49bXFsrNS8EhHMHy93plWAG2k5+UxceYSnv9zNhesZli5PiHLx9d/RbD9zHTtrNXMHtublhxryfBf9zWNeX3mEP4+ZvsyhEEJURhJixb0J7Q8PTdE/3/o+fPVQlbr81p0a+Tjzv1EdmfRoM+ytNew6n0j3T7bx5bbzaHU14o8Wopr691IyH64/CcDkR5sT7OOMSqViYo8mPBVWB61OYcwPB9l1LtHClQohROlIiBX37v5X9SOydq5w9RB80Q3+ehfycyxd2V3RqFUMv78+68d2oVNDD7LzdLy35gRPfLaDk3Fy5zdR9aTn5PPyDwfJ0yr0aOHLwPa3pg2oVCpmPBHCI818yM3XMfLbfRy5JLdoFkJUfhJixb1TqaD1IBi9F5o+pp8ju20mLLgfYndburq7VtfDgaXDw/mwb0uc7aw4fCmFRz/9m9kbTpOTL7euFVXH5F+OciExE39XO95/omWhed5WGjWfDmxNhwYepOfkM2TxHs5dS7dQtUIIUToSYkX5cfaB/t9Bv2/B0Ruun4ZFkbB2AuRUzX8QVSoV/doFsHFcVx5p5kO+TuHTTWd46KOtfLjuJEcvp8h1NkWlturgJVYeuIxaBZ8MbI2rg7XJdnbWGr4YHEZIbVeSMnJ59qvdXEnOquBqhRCi9CTEivLXrDeM3g2tngEU2L0APusAZzeVuGpl5eNix8Jnw/hsUBs8nWy4dCOLz7ac49G5f9Nl5mZmrDnBoYvJEmhFpRKTmMFbq44C8PJDwbQLrFVse2c7a5YMa0cDL0eupGTz7Ne75SYgQohKSy6xJczr7Cb4fSwkx+pftxqkvxSXQ/H/mFZmGTn5/HUygbVHr/LXyQSy825dI7e2mz3dW/jSM8SX1gHuqNVyeS5RNHNeYis3X8dTC3Zy+FIK7QNrsWxkOFaa0o1bXEnO4snPd3IlJZuWdVxZNvI+nGwtcm8cIUQNU5a8JiFWmF9Ouv5Er90LAEU/1aDXLP2IbRWXmZvP1lPXWHM0jk0n4snMvTVX1sfFlh4t/OjRwpe2gbXQSKAVdzBniH1/7UkWbD2Hq701a17pTG03+zKtfzYhnX4Ld5GUkUvHIA8WDW2HnbWm3OoTQghTJMSaICG2Eri4B34ZA9dP6V83jYKes8DZ17J1lZPsPC3bTl9j7dE4Nh6PJy3n1jVzPZ1siGzuS88QP8Lr1yr1iJio3swVYrefucazX+8BYMEzbejewu+utvPvpWQGfvEPGblaIpv7MP/pNnLsCiHMSkKsCRJiK4n8HNg2C/6erb+KgZ0rRE7XTzOoRnfGysnXsuPsddYciePPY3GkZt8KtO4O1kQ296VHiB8dgzywllBQY5kjxF5Pz6HHJ9u5lpbDoPC6vPd4yD1tb+e56wxdtJdcrY7+bQN4v2+I3MVOCGE2EmJNkBBbycQdhV9G668rC/q7f0V9Au6BFizKPHLzdew6n8jaI1f583i80YkyrvbWPNzMh54hvnRq6Imtlfy5tiYp7xCr0yk8981etpy6RiMfJ34dc3+5TAFYfyyOUUv3o1PghS4NmNiz6T1vUwghTJEQa4KE2EpImw//fAab34P8bLB2gIcmQ/vnQV09w1y+Vsee6CTWHL3KuqPxXE+/dUMIZ1srIpr50L2FL10becn8wxqgvEPs139H887vx7GxUvPrmE408S2/77qf9l3kvz//C8DrPZrwYtegctu2EEIUkBBrgoTYSizxHPz6MsT8rX9dpx08Ng+8m1i2LjPT6hT2XUhi7dE41h69SnzqrUDrYKPhwSbe9Azxo1tjLxxs5Mzw6qg8Q+zRyyk88dlOcrU63undnGc7BJZTlbd8ue087605AcD7T4QwoH3dcu9DCFGzSYg1QUJsJafTwYEl8OdkyE0DtTV0/S90GgtWNpauzux0OoWDF2+w5kgca49c5UpKtuE9O2s1DzT2pkeIH12CPXFzqP77o6YorxCbkZNP1Ny/OX89g4eb+fDFs2Fmm7f6wbqTfL7lHGoVzH+6DT1C7u6kMSGEMEVCrAkSYquIlMvwxzg4vU7/2rs59J4LtcMsW1cFUhSFw5dSWHvkKmuOXuVikvFdkxp6OxFW152wQHfC6rnTwNNRTrSposorxP7358P8tO8Svi52rH2lM+6O5vsfHUVReGPVEX7YcxEbjZpFQ9txf7Cn2foTQtQsEmJNkBBbhSgKHP0frP0vZCaCSg0dRkO3N8Cm/K6jWRUoisKxK6msuXlS2NmEwrfvdXewJqyeO2H1ahFWz52WdVxlPm0VUR4h9tfDV3j5h4OoVPDDyPu4r4FHeZdZiFan8NIPB1hzJA4HGw3LRt5HqwA3s/crhKj+JMSaICG2CspIhHUT4MgK/Wv3+vDYp1C/i2XrsqCkjFwOxNxgX8wNDsTc4PClZHLydUZtrDUqmvu70raeO20D3WlTzx1vZzsLVSyKc68h9mJSJj0/2U5aTj4vP9iQcY80NkeZJuXkaxnxzT62n7mOm4M1K17oQLCPc4X1L4SoniTEmiAhtgo7tQ5+fxXSruhfhw2Fh9/WX2O2hsvN13HsSgr7Y26w/2a4vZaWU6hd3VoON0dr9Y9GPs5yB7FK4F5CbJ5WR7+FuzgYm0xYPXeWP39fhd+IICMnn6e/2s3hi8n4utjx86gO1HGvWX8tEUKULwmxJkiIreKyU2HjFNi3SP/a2Q8e/Rga97BsXZWMoihcupHFvpgkfai9cINT8Wnc+VvubGtFq7putL05BaFVXTecbOUKCBXtXkLsrPWnmLf5LM52Vqx5uTMBtSwTHm9k5NJv4S7OJKRT39ORFS92wNPJ1iK1CCGqPgmxJkiIrSYu/A2/vgRJ5/Wvmz8BEVPBvZ5Fy6rM0rLzOBibbBitPRh7g4xcrVEbtQqa+rkYjdbWdrOXE8bM7G5D7M5z1xn01W4URX+FgF4tLXuFgLiUbPp+vpPLyVk093fhh+fvw8XO2qI1CSGqJgmxJkiIrUbysmDLDNg5FxQdqDTQsh/cPw68Glm6ukpPq1M4GZd6awrChRtcTs4q1M7Xxc4QaO8P9iTY20lCbTm7mxCblJFLj0+2EZ+aw4B2Abzft6W5yyyV6OsZPPn5ThIzcmlfvxbfPtdeTjAUQpSZhFgTJMRWQ1cOwsZpcH7zzQUqaBoFnV8D/1aWrKzKiUvJNoTa/TFJHLuSSr7O+KvB18WOzsGedG7kxf0NPallxss41RRlDbGKojDy231sPJFAkJcjv710f6W6EcbRyykM/OIf0nLyiWjqw4Jn2lT4PF0hRNUmIdYECbHV2KX98PdsOPn7rWUNI6DzeKjXwXJ1VWFZuVoOX9JPQfjnfCJ7opOMroKgUkFIbVc6B3vSJdiL1nXdsbGSsFJWZQ2x3+y8wJRfj2GjUbN6dCea+Ve+77Ld5xMZvGgPOfk6nmhTm1lPhqKWkwiFEKUkIdYECbE1QPxx+PtjOPqzfpoBQN2O0OU1CHpIn7zEXcnO07L3QhLbz1xn2+lrnIxLM3rf0UZDhyAPujTyonOwF4EeDjL1oBTKEmJPXE2l9/wd5ObrmBLVjGGd6ldUmWW28Xg8Lyzdj1an8Fyn+kx6tKkcD0KIUpEQa4KE2Bok6Tzs+AQOLQNtrn6ZXyv9NIMmj4JaRgzvVUJqNtvPXGf7mWtsP3OdxIxco/fruNvTpZEXXYI96RDkiau9nORjSmlDbFaulqh5f3M2IZ0Hm3jz9ZC2lT4UrjxwiXE/HQZg/CONGPNgsIUrEkJUBRJiTZAQWwOlXoGd82D/YsjL1C/zbAydx0GLvqCRYFUedDqF41dTDaO0+2KSyNPe+lrRqFW0CnDTz6cN9iK0jqvMk7yptCF24soj/LAnFm9nW9a+0hmPKnIJq0V/R/P278cBeKdPC569T64iIoQonoRYEyTE1mAZ12H3Atj9BeSk6Je51YVOY6HVILCWu1mVp8zcfHafT2Lr6WtsP3ONc9cyjN53sbOiU0PPm1MPPGv0xfFLE2LXHLnKf74/gEoFS4eH06mhZ0WXeU9m/3mKT/86i0oFnw5oTVSov6VLEkJUYhJiTZAQK8hOgb1fw675kHldv8zJFzqOgbBhYOtk2fqqqcvJWWw/rZ928PfZ66Rk5Rm938DTUX+CWCMv7mvggWMNuulCSSH20g39bWVTs/P5T7cg/tu9iSXKvCeKojD5l2N8908M1hoVXw1pR9dGXpYuSwhRSUmINUFCrDDIzYSD3+nnzaZe1i+zd4fwUdB+JDjUsmx91ZhWp/DvpWTDfNoDsclob7uUl7VGRZu67nRp5EW7wFoE1LLH29mu2t4it7gQm6/VMeCLf9gXc4NWAW6seLED1lV0GoZOp/DK8kP8dvgK9tYaFj4bRhcJskIIEyTEmiAhVhSSnwv/Ltdf0SDpnH6ZjRO0Gw73jQZnH8vWVwOkZuex61wi289cY9vp68QmZRZqY61R4e9mT203e+q421PH3cHop49L1Q25xYXYjzec5pNNZ3Cy1d9Wtq5H1Z52kZuvY+S3+9h6+hoAnRp6MDaiEe0C5X8ahRC3SIg1QUKsKJJOC8dWwfbZkHBMv8zKDlo/C51e1s+fFRUiJjGDbYbLeKVyNTm70E0X7mSlVuHnZkcdN4c7Qq49td3t8XWxq7QnkhUVYnefT2Tgl/+gU+CTAa3o3aq2JcssN5m5+Uxfc4Lley8aTv6TMCuEuJ2EWBMkxIoSKQqcXgfbZsHlffplaito2R/ufxU85RJBFU2rU4hPzebSjSwu3cg0+nk5OYsryVlGV0IwRaNW4edqV2gUt2Bk18/VciHXVIhNzsylxyfbuZqSzZNhdZj1VKhFajOnSzcy+WzLOVbsuxVm72/oydiIYNpKmBWiRpMQa4KEWFFqigLR22D7RxC99eZCFTTrrb/WrF/luFe90IfchLTbQm5SliHgXrqRyeVShlxfl1sht4GXIw29nQj2dqJuLQezBtw7Q6y9lT0vLt3P+mPx1Pd05PeX7q/WJ7pJmBVC3ElCrAkSYsVdubhXf0vbU2tuLQt+BDq+DPU6glpjudpEiXQ6hYS0HKPR21sjullcvpFFrlZX5Po2GjX1PR1p6KMPtcHezgT7OBHo4Vgut9m9M8Su3H+Nt1YfxVqjYtV/OtGitus991EVXLqRyfzN+jBbMH2kc7A+zIbVkzArRE0iIdYECbHinsQd1Z8AdmzlrVvaOnpD00eh6WMQeL/cPKEK0ukUrqXfCrkXkzI5fy2DMwnpnE1IJytPa3I9jVpFoIeDIdQ2vBlwG3g5Ymdd+v+xuT3ELn1oE/0W7CcnX8dbvZoyonODcvmMVcnFpFsjsxJmhaiZJMSaICFWlIvEc/pLcx1bfevGCaC/RFfjnvpA26Cb3EChGtDpFC4nZ3E2IZ0zCWmciU83hNv0nHyT66hVULeWAw29nQ1TEoJ9nAjycjI5LeD2EOubNJsz8bl0a+zFoiHtUFfRKy6UB32YPcuKfZfuCLONCKvnbuHqhBDmJCHWBAmxolzl5+rnzZ74BU7+AZmJt96zcYZGj+gDbcMIuYlCNaMoCnGp2Uah9mxCGqfj0wvdyOF2td3sCb5tWkJDHydq19IQ8b9OAKSdfBtPR2fWje2MZxW5ray5XUzKZP7ms/y8X8KsEDWFhFgTJMQKs9HmQ+wuOPErnPgN0q7ees/KTh9km0ZBo+5g72axMoV5KYrC9fRcziSk6Udv49MNz6+n55peSZWLc5PJgD7EfjvsfrkJgAmmwmyXRl6MjQimTV0Js0JUJxJiTZAQKyqETgeX9+tHaI//Cskxt95TW0ODrvoR2ia9wNHTcnWKCpWUkWs0LaHgeXxamiHE9vP8lkm9Wlu40sotNvFmmD1wyXCnt66NvHhFwqwQ1YaEWBMkxIoKpygQd+TWCO21k7feU6mhXid9oG36KLj4W65OYTHx6amG6QS7BvyDk62jhSuqGooKs2MjgmktYVaIKk1CrAkSYoXFXTt9M9D+ClcPG79Xp93NQBsFtepbpj5R4Yq77awoWWxiJvM2n+F/By4bwmy3xl688pCEWSGqKgmxJkiIFZXKjQtw4nd9oL242/g93xBo2lsfaL2bWKQ8UTEkxJaPosLs2IhGtApws2xxQogykRBrgoRYUWmlXoWTNwPthR2g3HZtUs9Gt0Zo/UJBVXMvu1QdSYgtXzGJGcz76ywrD94Ksw809uIVCbNCVBkSYk2QECuqhIxE/d3BTvwK5zaD7rZLNrnV01+Dtk5bqN0WvBrLHcOqOAmx5mEqzHZt5MVjof50buSJt7Ncx1mIykpCrAkSYkWVk50Cp9frA+2ZjZCfZfy+jTPUbq0PtAXB1tnHMrWKuyIh1rwuXM9g3uazrLotzAI093ehayMvujbyok09d6w1934LYSFE+agSIXb+/PnMnDmTuLg4QkNDmTt3Lu3btzfZ9ssvv+Tbb7/l6NGjAISFhTF9+vQi25siIVZUabkZcH4LXNwDl/bBlYOQl1G4nWsA1A7TnyhWp61+CoK1fYWXK0pHQmzFuHA9gxX7L7Lt9HWOXE4xes/J1opODT3o2sibro29qO0mvy9CWFKlD7HLly9n8ODBLFiwgPDwcObMmcOKFSs4deoU3t7ehdoPGjSITp060bFjR+zs7Pjggw9YtWoVx44do3bt2qXqU0KsqFa0+fpLdl3epw+1l/bdvITXHb/OaivwaX5ztPZmsK0VBGoZeaoMJMRWvGtpOfx99hpbT11j25nrJGUY34iiobeTYZS2ff1a2FnLlB0hKlKlD7Hh4eG0a9eOefPmAaDT6QgICOCll17i9ddfL3F9rVaLu7s78+bNY/DgwaXqU0KsqPayU/UjtJf3waX9cGkvZCQUbmfnqh+tLQi2tcPA0aPi6xUSYi1Mp1M4eiWFraeusfX0NQ7E3uC2WQfYWau5r4EHXRt50a2xN4EeDqjk5EohzKosec2qgmoyyM3NZf/+/UycONGwTK1WExERwa5du0q1jczMTPLy8qhVq1aRbXJycsjJyTG8Tk1NvfuihagK7Fz0dwRr0FX/WlEg5aJ+lPbyfv3Pq4f0c23P/aV/FHCvf2tebZ22+st8Wdla5GMIUVHUahUt67jRso4bLz0UTEpmHjvOXTeE2rjUbLacusaWU9eY9ttx6tZyMIzSdgjywNG2wv8JFULcpsJ/A69fv45Wq8XHx/gEFB8fH06ePFnEWsYmTJiAv78/ERERRbaZMWMG06ZNu6dahajSVCpwq6t/tHhCv0ybB/FHjYNt4hm4Ea1/HFmhb6exAd+WN4NtGHg3A89gCbaiWnN1sKZniB89Q/xQFIVT8WmGQLv3QhKxSZl8908M3/0Tg7VGRbvAWvpQ29iLxj7OMkorRAWrcv8b+f777/Pjjz+yZcsW7OyKvkzKxIkTGTdunOF1amoqAQEBFVGiEJWXxhr8W+sfjNQvy7oBlw/cDLY359dmJemfX953a12VBmo10N+AwavprZ8eDcHKxiIfRwhzUalUNPF1oYmvCy90DSIjJ59d5xLZevoaW04ncDEpi53nEtl5LpEZa0/i42J7c5TWm/sbeuLqYG3pjyBEtVfhIdbT0xONRkN8fLzR8vj4eHx9fYtdd9asWbz//vts3LiRli1bFtvW1tYWW1sZNRKiRPbu0PAh/QP00xBuROvn1V6+eSWEhJOQk6IftU08Ayd+u7W+2kp/slihcBukD81CVAOOtlZENPMhopkPiqJwITGTracS2Hr6GrvOJxKfmsNP+y7x075LqFXQuq47XRt5cX+wJyG1XeUyXkKYgcVO7Grfvj1z584F9Cd21a1blzFjxhR5YteHH37Ie++9x/r167nvvvvK3Kec2CXEPVAUSLsKCSf0V0Ew/DwJuWmm11Fb60dpC0KtV2PwbqofzZVwC8iJXdVFdp6WvReSDFMPziSkG71vZ62mdYA77erXon1gLdrUc8PBpsr9IVSIClGpT+wCGDduHEOGDKFt27a0b9+eOXPmkJGRwbBhwwAYPHgwtWvXZsaMGQB88MEHTJ48mWXLlhEYGEhcXBwATk5OODk5WeIjCFGzqFTg4q9/FIzYgj7cpl7Wh9lrJ279vHYKctNvPj8BrLq1jtpaP7/Wq4k+1Bb8dK8PGvmHXVQ9dtYaOgd70TnYi7eAy8lZbDutv4zX7uhEbmTmset8IrvOJwKgUato4e9Cu8BatKtfi3aBtajlKFNyhCgri93sYN68eYabHbRq1YpPP/2U8HD9iES3bt0IDAxkyZIlAAQGBhITE1NoG1OmTGHq1Kml6k9GYoWoQAVXRrh26o7R21Omb9IAoLG9Ldw20f+sFaQfubWunrcJlZHY6k+nUzh3LZ09F5LYG53E3gs3uJycVahdQ28n2gXWon19d9oF1qKOuxwLomaq9NeJtQQJsUJUAjrdzXB7snC4vfO2ugYq/Z3IPIJuPhrqH7UagFu9Kj16KyG2ZrqcnMXe6CRDsL1z+gGAv6udYZS2ff1aNPRyQq2Wqx+I6k9CrAkSYoWoxHQ6SI4xDrfXz0DiWcgp5hrPaiv9NARDuA3Sj956NARnv0p/ZzIJsQIgKSOXfReS2HshiT0XbnD0cgpanfE/zW4O1rStpx+pbRtYS04WE9WWhFgTJMQKUQUpCmRch6Rz+kCbeBYSz+kfSecgP7voda0d9KO1BQG31m2juA619PN8LUxCrDAlMzefg7HJ7InWB9uDsclk5WmN2sjJYqK6qvQndgkhRKmoVODkpX/UveOqJDodpF25Ldyev/U8OQbyMvU3dog/Wni7dq63TUsIMh7JtXWumM8mRBEcbKzo1NCTTg09AcjT6jh6OUU/Uht9g30xSSSXcLJYoIcjHk42uDvYoJFpCKKakpFYIUT1o82D5NjbRm5vhtuk8/o5ucVx9AL3QNMPZ/9ynaIgI7Hibuh0CmevpRtGavdGJ3ElxfRfJVQqcLO3xsPJllqONng42uDhZEMtR9vbntvg4WgroVdUCjISK4So2TTWt04Eu1Nupv5mDndOTUg8CxnXbj0u7TWxXRv9yWQmQ249GcUVFUKtVtHIx5lGPs48c189AC7dyDSM1B6MvUF8ajY3MvP09y7JzONGZl6pti2hV1QlEmKFEDWLjQP4NNc/7pSdAjcuGD+SovU/Uy6CNvfWXctMcfDUB9pa9U2M4vqBWmOOTyQEddwdqOPuwOOt6xiW5Wt13MjMIykjl8T0HBIzck08zyUxI4ekjNx7Dr1eTrY08HKkobcTwd7OBPs44e1si6oSzD8X1ZOEWCGEKGDnCn6h+sedtPn6GzvcGXJv3Ay5WTcg87r+cXlf4fU1NuBW1zjYuvib77OIGs9Ko8bL2RYvZ1ug5L8S3GvoPZuQbpijW8DZ1oqGPk4E3wy2Db2daOjtRG03e7lkmLhnMidWCCHKQ1ay/oSyQiH3gn5+ri6/0CqZKhXhgQEA7HZsi8P948A3pOJqFuIe3Bl641KzOZuQbnhcSMxAV0TCsLfWEOTtaBRsg72dqFvLASu5dFiNJpfYMkFCrBDCYooYxc28EU24rX7kaveFizgoCgQ9BJ1egfpdKsVlwIS4Wzn5Wi5cz+RMQhpn4tM5ey2ds/HpnL+eTp7WdPSw0aip7+loGL0tmJoQ6OmArZVMx6kJJMSaICFWCFHZGF2dwKENDsd/BUWnf9O/tT7MNn1M5tKKaiVfqyM2KZMzt43anklI41xCRqHr4RbQqFXUq+WgD7U+t8JtkJcT9ja3fj8URSFPq5Cv0+l/anXk6xTytLde3/5+nlZHvlYhT6f/ma/VkadTyMvXmdhGQXv9axd7azydbPF0stFP27h5MpyMJN8bCbEmSIgVQlQ2hS6xlRYPu+bDwe9u3cjBvT50fAlaPQ3W9hasVgjz0ukULidnGQXbgqCbll14Og7cvJS0jdWtEFrU/IUKolJBLQd9qL094Ho62Rb6WctRruxgioRYEyTECiEqmyKvE5txHfZ8oX9k3dAvc/SC8Beg7XD9HceEqCEURSEhLUc/JeFmsD2TkM65hHQSM3JLXF+jVmGlVmGtUWOtUWGlUWOt1v+00qiwufnTSn3zfbUaa6uCNrfaW2vU+ucaFWqVitTsPK6l5XA9PZdraTkkZeQUOQfYFLUKajkaj+Qawq+zDV5Odjd/2uLuYFNjToSTEGuChFghRGVT4s0OcjPgwHewa96tmzRYO0LYUOjwH3CtgxA1WWJ6DilZeTcDqj6MWqtv/tSosVKrKiz8aXUKNzJzbwbbnDt+5hotS8zIpSzpS6NW4eFoczPg6gNvQcC9NeqrD8RVPfBKiDVBQqwQorIp9R27tHlwbBXs+OTWbXTVVhDyFHR8GXyaVVDFQojykK/VkWQIvLeC7/W0HK6lG4ffpFKMNt/u9sBrPLJbeEqDm711pQu8cscuIYSoTjTW0LKfPrSe3QQ75sCF7XD4B/0jOFJ/Eli9jnJFAyGqACuNGm9nO7yd7Upsm6fVkZShD7rXbg+6acaju9fTc7iRmYdWp59+kZCWA1dLqEOtwsPJxjCSe+dcXq+bI7+eTra4O1hXuhtXSIgVQoiqQqWC4Aj94/J+/cjs8V/hzHr9o3ZbuH8sNO4FajlDWojqwFqjxsfFDh+X0gXexNumLhSM6l5PyzUE4Ovp+uXJmXnk6xTiU3OIT80pcdvb//sAAbWK+GuRhUiIFUKIqqh2GPT7FhLPwc65cGiZ/k5hy58Bj4b6aQYt+4N1yf/wCSGqB2uNGl9XO3xdS/69z82/NcJbEGxvjermci0t2zCXNzkz7+ad3yoXmRMrhBAWUuo5saWRngC7F8DeryA7Rb/MyQfCX4S2z4G9270XLISokXLzddhYVcxfd8qS1+TvTUIIUR04ecNDk+HVYxA5HVxqQ3o8bJoGH7eAP9+C1CuWrlIIUQVVVIAtq8pZlRBCiLtj6wwdRsPLh6DPAvBqCrlp+ikHc1rC6tFw7ZSlqxRCiHsmIVYIIaojKxtoNRBG7YSnf4J6nUCXB4eWwvz28MNAOLMBMpMsXakQQtwVObFLCCGqM7UaGkXqHxf36i/PdfIPOLVG/wBwqQN+LcG35a2frnXkcl1CiEpNQqwQQtQUAe1gwPdw/Yz+LmDnt8KNaEi9pH8UhFoAe3fjUOvbEjyDQa2xXP1CCHEbCbFCCFHTeAZD1Cf659kpEHcU4v6Fq//qf147CVk3IHqr/lHAyh58mhuP2no3l8t4CSEsQkKsEELUZHauENhJ/yiQlw3XTtwKtXFH9EE3L0N/LdrL+261VWnAq/Fto7Yh+oe9e8V/FiFEjSIhVgghhDFrO/BvrX8U0Gkh6TxcPWw8apuZCAnH9Y9/f7zV3q3uzWAbeivgOvvJPFshRLmRECuEEKJkao1+GoJnMIQ8qV+mKPprz94eaq/+CymxkHzzcfL3W9tw8NSHWZfa+psv2LuD3c2f9u7Gy2xd5Na5QohiSYgVQghxd1QqcK2tfzTucWt5ZhLEHzUOttdPQeZ1OPdXKbet1k91KAi4hrDrVvSygtcyR1eIGkFCrBBCiPLlUAvqd9E/CuRlQfxxfbjNSICsZP0jO1l/ElnWjZvLbkB+Fii6W8vLysq+cLB1cAfXAP3D7eZP1zqgsS6PTyyEsAAJsUIIIczP2h7qhOkfJcnLvhluk28FWUPYLWZZdrI+/OZnQVoWpF0tvh+VWj9P9/Zg61b35vO6+pBr43CPH1wIYS4SYoUQQlQu1nZg7QvOvmVbT6fT32L3zmCbdQMyrkPKRUi+eOunNgdSL+sfF/8xvU0HT32odat7K+QWhF63uvopD0IIi5AQK4QQonpQ35xHa+cKJV3hS6eDjGs3A23srWB7+/PcNP083szrcOWg6e3Yut42imtiNNfRU67IIISZSIgVQghR86jV4Oyjf9RpW/h9RdGP4ibHU0Dr8AAAEnVJREFUGo/eGq68cBGykiAnBeJT9HN9TVFpwNYZ7Fz0gdfORX/lhSJ/uhZebuMkQVgIEyTECiGEEHdSqW5dBcEv1HSbnHRIuXQz4MbcEXYv6ufkKlp9GM5Ovoda1PogXGIIvq2NSgMo+jnCilLK55TcRtHdfF3wnFvPVSr93GdrB/3DxgGsHfXLjJ47yu2LRbmQECuEEELcDVsn8G6if5iSn6O/GUR2KuSk3vyZcsfrO3/e8b6i1QfE7BT9I6ViP6LZaGxvBVpD4HUw8dzxVjA2+dwRrGz0oV2t0Qd+lUYfqG9/bfK9m8uM2sm1iasSCbFCCCGEOVjZgou//nE3FAXyMguH3SIDcKo+6Oak3hwZVQMqfWgr1XOVieXq25ar72hzx3JF0V9KLS9T/8jN1N+qODfz1nJujvhqc/SPexmhNhdD2FXfEXbVxqFYbaV/aKxBY3PrudoaNFY3l918rra+2c761vOytit4zR1TSwpNNVGZfGpyQXHr3vl+3Y76/2GoRCTECiGEEJWRSqUfcbRxBPwsXc29M4TcrNvC7e2Bt+B5xq3QW+j5zUBseJ4J+bm3Rqx12pvTG25/ffN5wfSHEuu8ra3WfLujyvm/c2DlaekqjEiIFUIIIYT5qVT6qQI2DoBHxfevKCYCrk7/2mT41d32Wlc4GOvyQZsPujzQ5t72PO/me7k3n+fdRbu825YVtLv5+s7PZLygdO+ZeFn4/TteqyrfVAsJsUIIIYSo/gxTICpfGBN3R/5LCiGEEEKIKkdCrBBCCCGEqHIkxAohhBBCiCpHQqwQQgghhKhyJMQKIYQQQogqR0KsEEIIIYSociwWYufPn09gYCB2dnaEh4ezZ8+eYtuvWLGCJk2aYGdnR0hICGvWrKmgSoUQQgghRGVjkRC7fPlyxo0bx5QpUzhw4AChoaFERkaSkJBgsv3OnTsZOHAgw4cP5+DBg/Tp04c+ffpw9OjRCq5cCCGEEEJUBipFKXRLB7MLDw+nXbt2zJs3DwCdTkdAQAAvvfQSr7/+eqH2/fv3JyMjg99//92w7L777qNVq1YsWLCgVH2mpqbi6upKSkoKLi4u5fNBhBDiHmTmZRK+LByA3U/vxsHawcIVCSGEZZUlr1X4Hbtyc3PZv38/EydONCxTq9VERESwa9cuk+vs2rWLcePGGS2LjIxk9erVRfaTk5NDTk6O4XVKSgqg3zlCCFEZZOZlos3S35w9NTWVfOt8C1ckhBCWVZDTSjPGWuEh9vr162i1Wnx8fIyW+/j4cPLkSZPrxMXFmWwfFxdXZD8zZsxg2rRphZYHBATcRdVCCGFefqP8LF2CEEJUGmlpabi6uhbbpsJDbEWZOHGi0eitTqcjKSkJDw8PVCqV2ftPTU0lICCAixcvyvSFEsi+Kh3ZT6Uj+6l0ZD+Vjuyn0pH9VHqyr4qnKAppaWn4+/uX2LbCQ6ynpycajYb4+Hij5fHx8fj6+ppcx9fXt0ztAWxtbbG1tTVa5ubmdndF3wMXFxc5SEtJ9lXpyH4qHdlPpSP7qXRkP5WO7KfSk31VtJJGYAtU+NUJbGxsCAsLY9OmTYZlOp2OTZs20aFDB5PrdOjQwag9wIYNG4psL4QQQgghqjeLTCcYN24cQ4YMoW3btrRv3545c+aQkZHBsGHDABg8eDC1a9dmxowZALzyyit07dqVjz76iF69evHjjz+yb98+vvjiC0uUL4QQQgghLMwiIbZ///5cu3aNyZMnExcXR6tWrVi3bp3h5K3Y2FjU6luDxB07dmTZsmW89dZbvPHGGwQHB7N69WpatGhhifJLxdbWlilTphSa0iAKk31VOrKfSkf2U+nIfiod2U+lI/up9GRflR+LXCdWCCGEEEKIe2Gx284KIYQQQghxtyTECiGEEEKIKkdCrBBCCCGEqHIkxAohhBBCiCpHQuw9mD9/PoGBgdjZ2REeHs6ePXuKbb9ixQqaNGmCnZ0dISEhrFmzpoIqtZwZM2bQrl07nJ2d8fb2pk+fPpw6darYdZYsWYJKpTJ62NnZVVDFljF16tRCn7lJkybFrlMTj6fAwMBC+0mlUjF69GiT7WvKsbRt2zaioqLw9/dHpVKxevVqo/cVRWHy5Mn4+flhb29PREQEZ86cKXG7Zf2Oq+yK2095eXlMmDCBkJAQHB0d8ff3Z/DgwVy5cqXYbd7N725VUNIxNXTo0EKfu3v37iVutyYdU4DJ7yuVSsXMmTOL3GZ1PabMQULsXVq+fDnjxo1jypQpHDhwgNDQUCIjI0lISDDZfufOnQwcOJDhw4dz8OBB+vTpQ58+fTh69GgFV16xtm7dyujRo/nnn3/YsGEDeXl5PPLII2RkZBS7nouLC1evXjU8YmJiKqhiy2nevLnRZ/7777+LbFtTj6e9e/ca7aMNGzYA8NRTTxW5Tk04ljIyMggNDWX+/Pkm3//www/59NNPWbBgAbt378bR0ZHIyEiys7OL3GZZv+OqguL2U2ZmJgcOHGDSpEkcOHCAlStXcurUKR577LESt1uW392qoqRjCqB79+5Gn/uHH34odps17ZgCjPbP1atXWbRoESqVir59+xa73ep4TJmFIu5K+/btldGjRxtea7Vaxd/fX5kxY4bJ9v369VN69epltCw8PFx54YUXzFpnZZOQkKAAytatW4tss3jxYsXV1bXiiqoEpkyZooSGhpa6vRxPeq+88ooSFBSk6HQ6k+/XxGMJUFatWmV4rdPpFF9fX2XmzJmGZcnJyYqtra3yww8/FLmdsn7HVTV37idT9uzZowBKTExMkW3K+rtbFZnaV0OGDFF69+5dpu3IMaUovXv3Vh588MFi29SEY6q8yEjsXcjNzWX//v1EREQYlqnVaiIiIti1a5fJdXbt2mXUHiAyMrLI9tVVSkoKALVq1Sq2XXp6OvXq1SMgIIDevXtz7NixiijPos6cOYO/vz8NGjRg0KBBxMbGFtlWjif97+HSpUt57rnnUKlURbaricfS7aKjo4mLizM6XlxdXQkPDy/yeLmb77jqKCUlBZVKhZubW7HtyvK7W51s2bIFb29vGjduzKhRo0hMTCyyrRxTEB8fzx9//MHw4cNLbFtTj6mykhB7F65fv45WqzXcYayAj48PcXFxJteJi4srU/vqSKfTMXbsWDp16lTs3dYaN27MokWL+OWXX1i6dCk6nY6OHTty6dKlCqy2YoWHh7NkyRLWrVvH559/TnR0NJ07dyYtLc1kezmeYPXq1SQnJzN06NAi29TEY+lOBcdEWY6Xu/mOq26ys7OZMGECAwcOxMXFpch2Zf3drS66d+/Ot99+y6ZNm/jggw/YunUrPXr0QKvVmmwvxxR88803ODs788QTTxTbrqYeU3fDIredFTXT6NGjOXr0aIlzezp06ECHDh0Mrzt27EjTpk1ZuHAh77zzjrnLtIgePXoYnrds2ZLw8HDq1avHTz/9VKr/a6+Jvv76a3r06IG/v3+RbWrisSTuXV5eHv369UNRFD7//PNi29bU390BAwYYnoeEhNCyZUuCgoLYsmULDz30kAUrq7wWLVrEoEGDSjy5tKYeU3dDRmLvgqenJxqNhvj4eKPl8fHx+Pr6mlzH19e3TO2rmzFjxvD777+zefNm6tSpU6Z1ra2tad26NWfPnjVTdZWPm5sbjRo1KvIz1/TjKSYmho0bNzJixIgyrVcTj6WCY6Isx8vdfMdVFwUBNiYmhg0bNhQ7CmtKSb+71VWDBg3w9PQs8nPX5GMKYPv27Zw6darM31lQc4+p0pAQexdsbGwICwtj06ZNhmU6nY5NmzYZjfrcrkOHDkbtATZs2FBk++pCURTGjBnDqlWr+Ouvv6hfv36Zt6HVajly5Ah+fn5mqLBySk9P59y5c0V+5pp6PBVYvHgx3t7e9OrVq0zr1cRjqX79+vj6+hodL6mpqezevbvI4+VuvuOqg4IAe+bMGTZu3IiHh0eZt1HS7251denSJRITE4v83DX1mCrw9ddfExYWRmhoaJnXranHVKlY+syyqurHH39UbG1tlSVLlijHjx9Xnn/+ecXNzU2Ji4tTFEVRnn32WeX11183tN+xY4diZWWlzJo1Szlx4oQyZcoUxdraWjly5IilPkKFGDVqlOLq6qps2bJFuXr1quGRmZlpaHPnvpo2bZqyfv165dy5c8r+/fuVAQMGKHZ2dsqxY8cs8REqxGuvvaZs2bJFiY6OVnbs2KFEREQonp6eSkJCgqIocjzdTqvVKnXr1lUmTJhQ6L2aeiylpaUpBw8eVA4ePKgAyuzZs5WDBw8azqp///33FTc3N+WXX35R/v33X6V3795K/fr1laysLMM2HnzwQWXu3LmG1yV9x1VFxe2n3Nxc5bHHHlPq1KmjHDp0yOj7Kicnx7CNO/dTSb+7VVVx+yotLU0ZP368smvXLiU6OlrZuHGj0qZNGyU4OFjJzs42bKOmH1MFUlJSFAcHB+Xzzz83uY2ackyZg4TYezB37lylbt26io2NjdK+fXvln3/+MbzXtWtXZciQIUbtf/rpJ6VRo0aKjY2N0rx5c+WPP/6o4IorHmDysXjxYkObO/fV2LFjDfvVx8dH6dmzp3LgwIGKL74C9e/fX/Hz81NsbGyU2rVrK/3791fOnj1reF+Op1vWr1+vAMqpU6cKvVdTj6XNmzeb/D0r2Bc6nU6ZNGmS4uPjo9ja2ioPPfRQof1Xr149ZcqUKUbLivuOq4qK20/R0dFFfl9t3rzZsI0791NJv7tVVXH7KjMzU3nkkUcULy8vxdraWqlXr54ycuTIQmG0ph9TBRYuXKjY29srycnJJrdRU44pc1ApiqKYdahXCCGEEEKIciZzYoUQQgghRJUjIVYIIYQQQlQ5EmKFEEIIIUSVIyFWCCGEEEJUORJihRBCCCFElSMhVoj/b+cOQqLa4jiOfwe10bAQU0LKMpDEIg0pyAxEqlUErcagSJFo0SakLBgpwllMm9lIWC0CcZOIrWJalAtbDAUVBCVDmoIujbIgDInGt4g37w0PHo/Ksfv6fuDC4d5zz/2fu/px7uFKkqTAMcRKkiQpcAyxkiRJChxDrCT9ZsbHxwmFQnz48GG1S5Gk72aIlSRJUuAYYiVJkhQ4hlhJyrNMJkM8Hmfbtm2UlJTQ2NjI6Ogo8Nen/mQySUNDA8XFxezbt49Xr17ljHH37l127txJOBympqaGRCKRc31paYlLly5RXV1NOBymtraW27dv5/R5/vw5e/bsYe3atezfv5/Xr1+v7MQl6ScyxEpSnsXjcYaGhrh58yYTExN0d3dz8uRJHj16lO3T09NDIpHg6dOnVFZWcvToUb58+QJ8C5+RSITjx4/z8uVLrl69yuXLlxkcHMzef+rUKe7cuUN/fz/pdJpbt25RWlqaU0dvby+JRIJnz55RWFhIV1dXXuYvST9DaHl5eXm1i5Ck38XS0hLl5eWMjY3R3NycPX/69GkWFxc5c+YMbW1tDA8P097eDsD79+/ZvHkzg4ODRCIRTpw4wdu3b3nw4EH2/osXL5JMJpmYmGBycpK6ujoePnzIoUOH/lHD+Pg4bW1tjI2NcfDgQQDu37/PkSNH+Pz5M8XFxSv8FiTpx7kSK0l59ObNGxYXFzl8+DClpaXZY2hoiOnp6Wy/vwfc8vJy6urqSKfTAKTTaVpaWnLGbWlpYWpqiq9fv/LixQsKCgpobW3911oaGhqy7aqqKgDm5+d/eI6SlA+Fq12AJP1OPn36BEAymWTTpk0518LhcE6Q/V4lJSX/qV9RUVG2HQqFgG/7dSUpCFyJlaQ82rFjB+FwmLm5OWpra3OO6urqbL8nT55k2wsLC0xOTlJfXw9AfX09qVQqZ9xUKsX27dspKChg165dZDKZnD22kvR/40qsJOXRunXruHDhAt3d3WQyGQ4cOMDHjx9JpVKsX7+erVu3AtDX18eGDRvYuHEjvb29VFRUcOzYMQDOnz/P3r17icVitLe38/jxY65fv87AwAAANTU1dHR00NXVRX9/P42NjczOzjI/P08kElmtqUvST2WIlaQ8i8ViVFZWEo/HmZmZoaysjKamJqLRaPZz/rVr1zh37hxTU1Ps3r2be/fusWbNGgCampoYGRnhypUrxGIxqqqq6Ovro7OzM/uMGzduEI1GOXv2LO/evWPLli1Eo9HVmK4krQj/TiBJv5A//xywsLBAWVnZapcjSb8s98RKkiQpcAyxkiRJChy3E0iSJClwXImVJElS4BhiJUmSFDiGWEmSJAWOIVaSJEmBY4iVJElS4BhiJUmSFDiGWEmSJAWOIVaSJEmB8wfXhcN2ZUc1wQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(8, 8))\n", + "plt.subplot(2, 1, 1)\n", + "plt.plot(acc, label=\"Training Accuracy\")\n", + "plt.plot(val_acc, label=\"Validation Accuracy\")\n", + "plt.ylim([0.8, 1])\n", + "plt.plot(\n", + " [initial_epochs - 1, initial_epochs - 1], plt.ylim(), label=\"Start Fine Tuning\"\n", + ")\n", + "plt.legend(loc=\"lower right\")\n", + "plt.title(\"Training and Validation Accuracy\")\n", + "\n", + "plt.subplot(2, 1, 2)\n", + "plt.plot(loss, label=\"Training Loss\")\n", + "plt.plot(val_loss, label=\"Validation Loss\")\n", + "plt.ylim([0, 1.0])\n", + "plt.plot(\n", + " [initial_epochs - 1, initial_epochs - 1], plt.ylim(), label=\"Start Fine Tuning\"\n", + ")\n", + "plt.legend(loc=\"upper right\")\n", + "plt.title(\"Training and Validation Loss\")\n", + "plt.xlabel(\"epoch\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "R6cWgjgfrsn5" + }, + "source": [ + "### Evaluation and prediction" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PSXH7PRMxOi5" + }, + "source": [ + "Finally you can verify the performance of the model on new data using test set." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "id": "2KyNhagHwfar" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 117ms/step - accuracy: 0.9834 - loss: 0.0344\n", + "Test accuracy : 0.9791666865348816\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", + "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9600 - loss: 0.0837\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test accuracy : 0.96875\n" + ] + } + ], + "source": [ + "loss, accuracy = model.evaluate(test_dataset)\n", + "print(\"Test accuracy :\", accuracy)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8UjS5ukZfOcR" + }, + "source": [ + "And now you are all set to use this model to predict if your pet is a cat or dog." + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "id": "RUNoQNgtfNgt" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Predictions:\n", + " [0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1]\n", + "Labels:\n", + " [0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxkAAAMsCAYAAAA4VG/hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eaxuWX7fBX/WsIdnONO9t8aeZ7fbbYOn6HVI2obghoSglkKk/JVgsCwICUh2kF6HQNqOSaRIgUiAcJAJ8UuiCNkSRgRIZxIhfl8UbOx02+6O3WN1V92qO59znmnvvab3j99a+9nn3FvdVZ2y22Web+nUOfcZ9rj2Wr/h+/v+VEopccABBxxwwAEHHHDAAQcc8AZBf6MP4IADDjjggAMOOOCAAw74nYWDk3HAAQcccMABBxxwwAEHvKE4OBkHHHDAAQcccMABBxxwwBuKg5NxwAEHHHDAAQcccMABB7yhODgZBxxwwAEHHHDAAQcccMAbioOTccABBxxwwAEHHHDAAQe8oTg4GQcccMABBxxwwAEHHHDAG4qDk3HAAQcccMABBxxwwAEHvKE4OBkHHHDAAQcccMABBxxwwBuKg5NxwAEHHPD/YHz84x9HKfWNPowDDjjgTYrDHHLAq+HgZPw/FLdv3+bjH/84/+Sf/JNv9KEccMABBxxwwAEHHPA7DAcn4/+huH37Nj/2Yz92cDIOOOCAAw444IADDnjDcXAyDjjggAMOOOCAAw444IA3FAcn402Il156iX/73/63ef7552mahne96138u//uv8swDDx8+JA/9af+FB/+8IdZLpccHx/zr/6r/yqf/OQnx+//7//7/853fdd3AfADP/ADKKVQSvHX/tpfA+Czn/0sf+gP/SGeffZZ2rblrW99K3/kj/wRLi4uvhGne8ABB7xB+Pmf/3m+67u+i7Ztec973sNf+St/5bHPeO/5c3/uz/Ge97yHpml45zvfyZ/+03+avu+vfC7GyMc//nGef/555vM53/d938enP/1p3vnOd/Jv/pv/5vg55xw/9mM/xvve9z7atuXmzZv8C//Cv8Df/bt/9zf7dA844IA3GIc55IDXA/uNPoADXh9u377Nd3/3d3N+fs4P/dAP8U3f9E289NJL/OzP/izb7ZYvfOEL/NzP/Rx/+A//Yd71rndx584d/spf+St85CMf4dOf/jTPP/88H/zgB/nxH/9x/pP/5D/hh37oh/g9v+f3APA93/M9DMPARz/6Ufq+50/+yT/Js88+y0svvcTf+lt/i/Pzc05OTr7BV+CAAw74evArv/IrfP/3fz9PPfUUH//4x/He82f/7J/lmWeeufK5H/zBH+Snf/qn+Tf+jX+DH/mRH+Ef/+N/zF/4C3+Bz3zmM/yP/+P/OH7uR3/0R/mLf/Ev8gf/4B/kox/9KJ/85Cf56Ec/Std1V7b38Y9/nL/wF/4CP/iDP8h3f/d3c3l5yS/+4i/yS7/0S/zL//K//Fty7gcccMA/Ow5zyAGvG+mANxX+6B/9o0lrnX7hF37hsfdijKnruhRCuPL6F7/4xdQ0TfrxH//x8bVf+IVfSED67/67/+7KZ3/5l385AelnfuZnflOO/4ADDvjG4GMf+1hq2za98MIL42uf/vSnkzEmlaXgn/yTf5KA9IM/+INXvvun/tSfSkD6B//gH6SUUnrllVeStTZ97GMfu/K5j3/84wlIf+yP/bHxtW/7tm9Lf+AP/IHfpLM64IADfqtwmEMOeL040KXeRIgx8nM/93P8wT/4B/nO7/zOx95XStE0DVrLbQ0h8ODBA5bLJR/4wAf4pV/6pa+5j5Kp+MQnPsF2u31jT+CAAw74hiCEwCc+8Qk+9rGP8fa3v318/YMf/CAf/ehHx3//r//r/wrAD//wD1/5/o/8yI8A8L/8L/8LAH//7/99vPf88T/+x6987k/+yT/52L5PT0/5tV/7NT772c++MSdzwAEH/JbjMIcc8PXg4GS8iXDv3j0uLy/5lm/5llf9TIyR//w//8953/veR9M03Lp1i6eeeopPfepTr6mm4l3vehc//MM/zE/91E9x69YtPvrRj/Jf/Vf/1aEe44AD3sS4d+8eu92O973vfY+994EPfGD8+4UXXkBrzXvf+94rn3n22Wc5PT3lhRdeGD8HPPa5GzducHZ2duW1H//xH+f8/Jz3v//9fPjDH+Y//A//Qz71qU+9Ied1wAEH/NbgMIcc8PXg4GT8DsOf//N/nh/+4R/m9/7e38tf/+t/nU984hP83b/7d/nQhz5EjPE1beMv/aW/xKc+9Sn+9J/+0+x2O/79f//f50Mf+hAvvvjib/LRH3DAAb8d8EY21vq9v/f38vnPf56/+lf/Kt/yLd/CT/3UT/Ht3/7t/NRP/dQbto8DDjjgtxcOc8gBcHAy3lR46qmnOD4+5ld/9Vdf9TM/+7M/y/d93/fx3/63/y1/5I/8Eb7/+7+f3/f7fh/n5+dXPve1JoAPf/jD/Jk/82f4P/6P/4N/9I/+ES+99BI/+ZM/+UacxgEHHPBbjKeeeorZbPZEusGv//qvj3+/4x3vIMb42Ofu3LnD+fk573jHO8bPAXzuc5+78rkHDx7w6NGjx/Zx48YNfuAHfoC/+Tf/Jl/5ylf41m/9Vj7+8Y//s57WAQcc8FuEwxxywNeDg5PxJoLWmo997GP8z//z/8wv/uIvPvZ+SgljDCmlK6//zM/8DC+99NKV1xaLBcBjzsfl5SXe+yuvffjDH0Zr/Zj83AEHHPDmgDGGj370o/zcz/0cX/7yl8fXP/OZz/CJT3xi/Pfv//2/H4C//Jf/8pXv/2f/2X8GwB/4A38AgH/pX/qXsNbyX//X//WVz/2X/+V/+di+Hzx4cOXfy+WS9773vYf55IAD3kQ4zCEHfD04SNi+yfDn//yf5+/8nb/DRz7yEX7oh36ID37wg7z88sv8zM/8DD//8z/Pv/av/Wv8+I//OD/wAz/A93zP9/Arv/Ir/I2/8Td497vffWU773nPezg9PeUnf/InOTo6YrFY8Lt+1+/ik5/8JH/iT/wJ/vAf/sO8//3vx3vPf//f//cYY/hDf+gPfYPO+oADDvhnxY/92I/xt//23+b3/J7fwx//438c7z3/xX/xX/ChD31o5Dd/27d9G3/sj/0x/pv/5r/h/Pycj3zkI/xf/9f/xU//9E/zsY99jO/7vu8D4JlnnuE/+A/+A/7SX/pL/Ov/+r/Ov/Kv/Ct88pOf5H/73/43bt26dSVT+s3f/M187/d+L9/xHd/BjRs3+MVf/EV+9md/lj/xJ/7EN+Q6HHDAAV8fDnPIAa8b32h5qwNeP1544YX0R//oH01PPfVUapomvfvd707/3r/376W+71PXdelHfuRH0nPPPZdms1n63b/7d6f/8//8P9NHPvKR9JGPfOTKdv6n/+l/St/8zd+crLWjnO0XvvCF9G/9W/9Wes973pPatk03btxI3/d935f+3t/7e9+Ykz3ggAPeMPzDf/gP03d8x3ekuq7Tu9/97vSTP/mT6c/+2T+bpkuBcy792I/9WHrXu96VqqpKb3vb29KP/uiPpq7rrmzLe5/+4//4P07PPvtsms1m6V/8F//F9JnPfCbdvHkz/Tv/zr8zfu4nfuIn0nd/93en09PTNJvN0jd90zel//Q//U/TMAy/Zed9wAEHvDE4zCEHvB6olK5xaw444IADDjjg68D5+TlnZ2f8xE/8BP/Rf/QffaMP54ADDniT4TCH/M7CoSbjgAMOOOCA143dbvfYa4WH/b3f+72/tQdzwAEHvOlwmEN+5+NQk3HAAQcccMDrxv/wP/wP/LW/9tf4/b//97NcLvn5n/95/ubf/Jt8//d/P7/7d//ub/ThHXDAAb/NcZhDfufj4GQccMABBxzwuvGt3/qtWGv5i3/xL3J5eTkWcv7ET/zEN/rQDjjggDcBDnPI73wcajIOOOCAAw444IADDjjggDcUh5qMAw444IADDjjggAMOOOANxcHJOOCAAw444IADDjjggAPeUBycjAMOOOCAAw444IADDjjgDcVrLvz+q3/5z1HKN5RSaL33T6avp5TQWl/p1ljeU0oRYyTGiFIKY6rx9elnxjIRpUBBXddX9pNSIsZICGHcl2zPXNlnSomU0pX3pvuf/pT9e+8xxmCtHV9PKeG9Hz9jjLlyDZxz43HEGNFaY4zBGINzjuAjKcl5hBBQSlFVFX3fE2MgETHGjNsox51SggRK6fyzv4blOocQxn9ba8drE2MkJj/+e3pNjDGEEMa/r9+rsr2yr3K8wzCM1+D6Na7rmpTSlXtSPtv3/bgv5xx1XdM0zfh62U459xACi8Vi/Hu73UJKKNR4LOX6eu/RCkiBfrfjwYO7uKFDJQ8k2uUR7dEJi9kJKWlCSAzDDqUTg3NsdgN1XeO9H49dDlyTTLUfh1dHM6gnPzrT874OuZ0K8e0nn1MKJbskEYEIKGJSgEIrTUrgg8O5nh/9f/+ZJ+77zYCTZUMCYkqEGEiATmCSwqDylUn0NpKApCChSUqRlPyOcrVQCZoYJlfzSUj5v3D1Qwr05NknyX5NiuXtNw2mQy1fmfw7XXlDK43SMp4ATPQYUr4O5YPyHOoy32iFKtdEabQu10w99liY5FD5aoMmJUNEE5OmHzwoTVW3LNKG2kBlwHtHTBAThAR9VOwGWO8SpoWZ0bRKYYaArUBXCjWzDENAeVAROsBr+f7gEzuXCAmi0ngMIcp7MX31kfJ6cH1e/XoxXUfLmlLmwTIPPwnlvXGd4PE5R/6pxnt2dd6Gruv+mY//G4H/79/+6+j2BskecbFT3DyeUWuPdhdcFklUpQjBoZSirmtu3rzBS7dfwfkBrSLtTGGtQpHYbXvq9jmqeklVt8TdPVLcQNqh6oiPhkRFXR+xmFkIHcPukkVr2e027HY7uqCw9RJTzajaOdthIGkNxvLoIvDwKy+wvXeParWhDRblIQwRrSuSUUQLyUBbV8zqiuPZnLqpGFzPerehCz2LectyNuPGYsHp6Yx6uYDjU/7er/wGd3cDFz6yS4raVtR1zXK5BKNpZy2L5ZLBOUgRreH4aMl2uyWEgDGG4+NjUko47xmGgaPZnHnTMNMVz5zdYjmbM2taXvjKbW4cn3Lj9JRKGUKKRCIhRSyJGCLeR0IArQxaG4yxKB1QKgGJzWaFMRZjDJvNDkyD0gYTI41NnN+/y1e+8Fk+++lf5Xzb47Xhve9+L5fnj0gx0LQ1pq1RSpOS4vJyRYoRqw1HiyV1VeH6nu16xfJ4SdCaqA2z5YKL++fEwVNbi7aKIXh6PwCeKkGtNIumZbXrMXXD4uSUL77wFYbdjhQcN44XDDHgkydGhzGgjUErw1e+fIebT99ivlzw6OEFzgXadsatW7cYek90nqHr+fyvf4ZZa6lqA1azPLtB2y5o6wUP77zM0byhbSwXqwt2w0BICaMUWiliSvgEQwpU7Yy6nXN0esbb3/0+lK5YbzpChBs3n+b45IxhGKisQadI7Hf8xq/9Kg8e3OXy8pzn3/oc28st3WZL128YdhtUihiTiNGhqgpdVZzYlsuH53RDT7SaG+98C1o1hMHyZ/7M1+5j8nWpS02Nz+kkCftJczrxXf8pBr/YV092MhKyHGitRwNUa31lYr/uJJT9FoO2HIPW+spxPunYr0/Y0++XfxcHYuqAlPemuL74hBiIIdG27bg4lG2hICV1ZWEZjy2VxWx/rabnPj3+EAJVVRFC2O84GVI2EKYL1vSaTc/xioN3DdNju76YFSdsukhev6fX/57u80nHMXWESKC1QeXPlYnRWps/EyGmJxr2BTFFsVh5/PzK/Zo6R+mrbOuNQXauikGoyjVQ4m0ASsl4DFEmfufk580Ma+3oZKikUSk7GTFhQkLnR6dPxcGApMX1QsX9fUl5TBUn9avtNBtb06Et5oViNDrzmyH+FjkY052ka6+/HikOdTUdnRJEUr5Ok50kGU/EJI5ASlQpYRNona44DFqDVnnO0aCz26KUQqfiFIsDMkWNRlGeM3FxchtgmcPlzufDKjP8/rTL/KAVaHX1IjzBzd+fGIzjYdxWPl5VnKHysSfMb9fXj9eDfxbdlOl8O/17+nu6Jl3f75PeH9dfGQX53DTj9c4BDa1/S0b5bwpi1BAhpYhRmpQNvujLHOkJMdC2VbYdAl23JoSOFD0YsKYhhkDwgZQMg/OgA7NFRfAVrgM3eNrK4rqekBxtsyAGTwqRiCZgiMqSTIWpLAED2lA1c3xUxBwY2XQdmJp6viBue2JMMrerCAaxwjSEFAhJE7DoyuJUoIs922FLPW9QRhEJ+BgIEXyQtev+6pKVTwRbQ0jYxlBZK2s+ieAlEOm9z8++YhgcXdfJWqoNTdMQQmDXdWy3W1IIBO/p0Bhr8CmiK8vyaElVW1IIJK3INwJSIulECJ5hcLTtghgTKQVSUhAjSZWxbuSE0VhbEdCkmHDO01Y1ShkShhgN2lRU1mKNIcVADAGtNKvVJYvFksXiiN2uI3qPUWa0gWJKGGsh26ohSlC2rioimsoYlIbBO9wwYC3I8yHP0Hq9pl3Ardmctm0hBqKD2WzGxf279G5gsWiJMYhtohTdbodzjpSgaRqUclSVxVrLZr2DGIH9XKgAYmJzfoE5qzg7fQZbNxhrUQp26zVBqxxY0yitiSkRUyKh2G07fISbTz/DMAwkFQjBo7Qd7aO+78dVLkXZ9zA4NpsNKSXatoEQuXP3NrVRGJ2vA9kOz3ZV18u4iLVltt2ymNWczJav6Xl93U5GmdCmxvDUUHy1DEZ5vRjo4qjwqp8do/VGj9mFpmnouo62banrmvV6fSUiP80iOOcey4wUZ2M6sbdti/d+jP6X94dhQGudB01iuVyOfzvnxmPWWrNcLtnlAQbQtu14vufn58SQUEqP2ZAShZfMQyREGRwAVVWN2/M+EGOSG5+4kr0p171tW5xzOSsSx22nlBhcj/f785qiOGzFKSkZjek1LBkFgO12+9g2pigZmpJNKde37KtkWkr2YbPZXInaPenzIQRCCPK9vO9hGAgh0Pc93ntsmYC0otttHzuuqcN23VRJaT9myzUbHcTfNNG1YnqVY5GsRU5jwH5KABLe9zx8dI9Hjx7la/ybdFi/RTg6OgK1N0ArrbEJbIB0viU5TwweNQSCgaggWvDEx33EdDUr9GoGpPhu5foWpyQbY+McpLMRvHfSy9aumetX3ntsf1/jc+oJn0uv8nd54cpnr+1AATGp7KTKQoIyeSG//kn5cszjvg+enoSZPBtxdAgm2d7ijk2zdGrMxY17mFdgdHY0AFJEpYgGvAtolRcxezV7WRxFRV5Prjk946Hnn5iSGMs6oeLEkbl+kdk7GVrJeb9ReCNEGafr5TST+9WcnqlTcT2LUdaFmI2Z8qN0eV9hzP5zb1as1h0nrWbezqgaTfQbdm5D6C5pmzlGK5xXnJ0ecXl5zjB0rNeOWVuejcTx8YLV5ZbeB+azE155sGG2rHjHe2/RnztWoWO3ucB1gcpYKq3xboumpq5rjhZHfP7zn6Vua2aLY9pZi4s1vVfcfbDifLsDY1Da8k//6Wc5toYZQAwcHS2ooiJ0Hh8VprLY2rI4XtBUFRoIfqAPO3axw5vAU2dLkncEP9D1ihiPGDw8utyySpEtiZgC9AEzm2OUsDJsU5NIOUjliN4TQ2B1eU5dNwB0u466rtl1Hav1CqUU27omIXbB5t4dHmzXrEPPW0+fJuwGzrdbnr5xC53HldUGSKz7FQ8ePOAdb3/XaAvsdlvm8zkpRTabHZvNjhA8Wive+ta30g2Z6WE0lw/PuX37Af/017/EMMDp2U3qWcMLX/oSKgaapkYrWF+c09Q1bTvj5CTx8P4DBjdgtMYNg9gxxjC4AW0qjFbcu3OHtz//djSK2y/dZrmc4deOy/Nznrp1RoqJQAStWK83PLxYcb7e8K3/3LezOn/Eg7t3+OIXv0jdNtS2wjtHVWlxVl1EJcXdO3dZbTZ86Ju/hc1my27Xcfv2bZq6RaHxMeGCJwYNIaKDwgCb8zVf2H2Ff/7bPsSnP/kLvPjFz/G2tz4rGRQUtl3I/BDFaRxixNYNwQc++xuf41uXpzSzxTgnV5WlbRuxkb0bg7UxRlIMeOf4lU99irc//zaW8wWzWUv0/eQp06gcXoqAsoaqbaiPFuy2O2xqWM6PX9Pz+pqdjKmhDjxGs5lG1sskVoz98v50QhWD2FI8pqmRH2OUxWriEIQQ2O12WGtxzjEMw+gcFCPxehS9GIwl0xBCwHtPVVXjcXddx2w2E2+t65jSvebzOX3fj0Z8VUlkpO/lZlRVRVVV43GUBaLQilJKzGYztDIopa9kMcqxxRgkys4+Q3R+fp6vn6VpKmLYH9N6vR7PrZyP1nqkYpXtiDOyN/qvL0jl9alhr7Uej73so/y7ULOmY2Ga9Zl+Z5pxmhomU8qZzZGW61Su6X0p+xXDSSJw5XvT+1ucBflsJMU4Gilaaypr0UZDKtFsjbUKP8nMPE45UK9qSL4eXM/QlCiW0sXRE0NAIiIaHwLOeTabS7p+xzB0ksocevq+p+/fnBSHgkfn5/iYiAkqq2m04WS24C03nmZen2JcQDtPzwCVwcxqFk+dEWqNJzIER7fb4Z2nd55Xztf0w0C4Nn+MAYMokZ+IeizDWCI7knaP2cfLQZNstGr1xoyDKZS6ZuCNkf3y70ReE65971W2h9pH6gGbNDoInezx/TB+0CtDAnyZl7NHk645NrpE3SbfJYHRVx2ZtQtIzA1UCjlWKdmSzKCCEMCk/ByWoFI53/0BXz2GHH0vSad8b1VSoBNqDAyUdWjvUIxZDY3486THnsnreCNoUF8LX8tJeS1OzHStu84g0NkJ04YrjsV0nXyzop0fy1zpOnZDx3Jek5Rm3UVqDT4M7LYbHmnPbF7RtC3r9SV9t6Ztak5OjvG+o6oMs3bGw4eXJDVHmYquH9hudyhTcXxyg/v3X2F+PKeyht71KNuQksFHjV6cQm3wVY3H8oWvvMLldiDZOXa+YLcdWK0esekdu8sVdfTcrCpWITA3mtlRTeNrjNYYq5lpS5WDHS7Co80KYw1PnZ4RdgO+7yFE2kXFkBQXl2s++fJtVt4zKAMxsawk4u+GgaAUVdvIs14CqTkSHnzEux3aGNqmpusG+n4g+EjT1vjg2fUd2hiquiINO9L5Qxa64aiZMVvMOb+8oG4ajNEkBffu3UFrzdnZGSkJlzGR0CYyuB1Kadqm4dHDC5q2ZrGYs+tWRGpIms47Nt2WZjbjne96L5/79X/Krh8YwkBVGVQAaxRaJXzwrFYrbHWf5fJY7ung2G63whgxhq7b5syoQmnDrG54+eVXsNZydusmq8tHEpz1QTLq2S6ZHx1RNzXJSXD7V3/1V6iMQUcJeqYoFNPKVhI0UYpIEpvVWiDxwgsvcHJyNj5vxhiJEOmJvSURk3GNCSnSDwPzxYIbt27ihgGT08kpBELK5QYBhI4KCk1dVyyWC7Sp2WwvqWo70tRijFxuNiQ3oJ0nDA6tNLN2xunshOVSxrYxhuTHSRJQpAgpSNaknS+o2xnt0ZJdcMxmc5Znb7CTAV+b+vIkTOlO8HgqePp6mQhDCCgt/OEY4hWnQWvJCBTj+knUn6mBWziZ1yNA5bvOuXG7T8rMWMmj0ff9lXOZGqdTB2N6bilJrUJV1Whl2O12VxyekRqW9pG76eKSUszpTPvYdSzn+aTrCGL4h4kDNqVRjbSEfL2nmZnr2ynHeX0cTPf5ave2/H31PJ88Zq47rMV5lH8zGn3XaWL7qOqTqFjlXPVIj1FqktVS+rH9jte+mDhPfF9def31RDVlG8XIkj0VhzHGyOCcpDO3K3a7rTgXww7n+jzu3VfZ+m9/yLlGQk75GpWgTjTaclRpKiJWBaKqSZXGzlpOb9zEtQavIi55ur7DDY7tbuDSRXEwcl1UGRtlnESEShcTaG3zolPmlkCIEa00MUUSkYhCKIYyrtI+ZP+GIT1xg2p8d8zMXEtjpEL9eWx7068qMbDTE/ZyPSo+5hyuOdbXvlgol9e9HrlK+2MNSUESI0knhZAeMjEikZ/AOMnYlflgX8mxz+Jdw2MnU2J2eT4eX5VrdN1vg5LteWNcxjdiO1+vof/VvjeubTrT3gwYUxwMnefE4vW9OaGt1CoQHGhx2pNKoDW73ZbgHUZD3+9YLGqM0TjnSd5BZVBEhq7D6BnGGFarDWY+Q2XaTiqZZW1BG3xMpJCI2jBETdd5+s3A1iusUViXGLqO+xdrLrcD1cxQKcu267hYbxi8x3cdxjvaeUujydF/Gac6yfbxSehYKdJ3HSSFURarLLvNhuBCzlxqznc997qOVx6e089nBKPQRIwRp2Vco0t+NjM+YkyZOhVJKWIi0GicCyPrAcCHQAQ0kRgUyWm07tjsNrTW0tY1gcjgenSQgPAwDFSVRamECwMWk4MWPtOpDVrXYm8pyaoNQ4cyEZIh+sDgOiKBuq0xVUVEshLWaGIM+6xqDhYUG8gYi6rA9cNoE0gCW+8zfCmxHbb4EJjnesBEkrkykW1OuSmz2Qz0QEqJy9WKs+Mj5rM2U7GEIqYRxwQYA1IlSCN1ugowOSCvxxluagtpo4SlYTRYTd93WFuxWCxxuzWyQZWDkZGUlBynpOcxxnB0ciL3NbkxQF/2Y4xBJeT7CWKQ9dBqzenJCTFFttvtlUCrODARlZfBECN106K0pp3N0LGWDNewe03P62t2Mq7TnqavX8c0Wj+l4UyNz0JvKpNdiW5ba/OAfPwYrhfFTWsjppHyqfNhrWU+n7Ner0enoRjOxcvs+378dykyL5Scuq5HSlUxXIRvp8bPlH9PjePptaqqmspW7Ha70eHZbrfj8evJ9THGsFxKUZYbHF3oODk5Gx2rcn7jDcyR/XJOZf/z+ZxdJ8VWZT/TAvGynaZpWK1W470p75Vrej3CX67B9WzGV8PUMYPH60PK71d1Fik1FZMHZ3KNtQbi5JqrYoxJKnes5c6vpSQFd9fpWlOoybFddzS+3uVZKYXRal9rkh9m74Ufu1pd0g8dg5OJteske9F1W9abDdYaZrPm69z7bw+0bYuNER8iPvq9gegj1kMToU4GawwD4gDM65quUVSVpq01S3WEd47NpuPlyy2bzTaP35jrl9S4uBT6TwwKayussVS18Hx95h3HFCUtnCJD7DK/tTjHXLHHCmWrmLhfHU8aKXtzeoqpmbx3Qq9tX5WS7sfTHNOPy/NWnrGJoz45ItmK5BqmXoq6ss+p0311hyV7kibpkoDOLpJE50hiFKFBxSR1Hjq7+0m44Ve3+fr8ufw4C2UDcWRIGp0SOl6/RtccrCcEZqbvvRZMg1Nf7btP2toY1DL72rv959MTf199v5iPefspjRlday3GgrFS32LsxNAqoiC/Bdma3zRouFyfE6LjmWefIfiBFAPWVtx95SVmsxnL5YLL1bnUIGlD6CNtVdNUBmJgs9myWFqUbrm8vOS4OkGRMEpT1w3drqMfHO3yhJ3bEbuB5dkZW6e5uNzy8r0HNLOGZlahK835+SUPLjp6l2iUZ9g9one91D34gd0wkPoBFQKVXZJ0xA8Diy5hk8IqhYkKlQLeO1abNYtnjjDGMHSRzUUntJnK4qm5ff+cu7sND7YdrqqFV2oUaq6p2hpjK0IxuEm5PiJTkJ1kywUR5yQA6X0ghCQ1Hy6hYkAng8vZD2stF5sVTV3TNDVNW7Ndr4kxUjcNTSt1LuvNikSgbcUY9aEnBE9KGlItmVoiMTq6fo2xUsQdhkg/bNgNG7b9hmbe4lwkJUdlDP3Qk6Kcj9GSFRG2SYfONQvFfvRB5nVjaqy1aGVwg8MYS4iRew/us5y3WGMzMYjROeuGntOzU+xmx8PLNUopjo6OuHl6wq9/2hNDlLqcqDDYMaihlSZEWYdmsxlN05DSvkRAFC72z18C6qZBWYtuKup5zXa7whrN0XLJhevxvRvrBDUylitjcG5Aoajrhre85S1sNhtChBQVVS2OXN/3NHVNahqiUtgqEoPUtSjg1o0bvPjilzl/9GisF1YpoWxFDBKkSAqG3rNYLmmaBttULJuay82WF26/8Joe16+r8BuuGrpTPCnaXnA9+j+lDRQnoRjSQivhikELQqNRShSGiqFfHIRpNqQ4BcIJ3D2WxZhSgYrRmlK6QhcqhTOl0Lg4I9Za2rYd6UolG1K+Mz1X5xzbzQat5fg2m824z/21NFeck1KLkEhX9lsM/LKPoohUzn+63a7rqKqKGCXCUJyr4pwVp6LUuEyzDWW70/qK6b18Ev3q1cbC9b+n5zHd3vWxMv2eUjovomk87+l1uH48eUShlHxXZVqHyq+JcWCuUAymY/PVMDpEXyeVKiUp4gYRA1idXzAMjpDH0K7bsOu3dP2O3baXyDuGqprxzNMn1E1F21RfYy+/vfH+d7+H5ckJ7XwOytBdbvDrnv58R69aiQKFwCwmknWoIRG7np2q2PSeTQwsWkOrIlWItD5Q+wEfeqJOeGXpMfSxJlQ3oGrFmA47UhggeXAe7Tu0SZgqUduEd44UEhojqjAximGcijpVLtRUuQYkXa95eBU8xlnicTM+QhF/oNC2YkSb7JQnCcYoa1FGkYIsOCUzkWBSJK/RSmohYkikVKGY1mgU9bKAV5qkcvE9OZqHOFx7fSpFVD5/Z0ozYtxmOR8b/UhrUqhsTIDX4jD2SjNQkULHTClaDVZl5yBv3SiotKKqoA9SIROzV+fyoRttqTToFFA+4JIs7jomogroqPK5FFWxkt1Q2REVg1wrM3pnxUBP6bVnGK5nQadz6PRCJa1IV5bLiCflsZEprlHEDxR2dMwSEa/i3pVIKd9oJTSK/HoaM9aaytbYymCUzsXzabzlESn+TY85k28u6BpO7BySxw2XbAaPMTXz+SlHx4+wRqN15GhxxKMHl3gfgRqjEjoJl65uKqE/acV3ffd38srdLTqADnC0WLK6eMCLr9zhxtO3qE9vkKzhYe/43Oe+wnrT40KiGTxqJfcxRU3vwflE3OxwcYAUqFOgiwM+eRwBkyz3O0cPHDeWy26DchEdIurOHYxR2Mowm8/odwPBB/rtQLftMHVDRU0fDb/x4BVWfsDMlqRoQGusNlRHc7CGkErtaI5gJ8mSu0F+hmEghjjWSRaFxV3fYecWgxIaohfjOTpP33XcDxFlFCEFZspSaUNMkctHD3nuqVtAwrmB7XaNsQvJXKSBbbfi/NElr9x+yPvf9yFslQipZ9udY22m8KFZHldsd4GLzUPe/u7nefnFFzl/uOb45ITdyuOix7uBFDzEADEy9APLxRIFPDy/YDGfi+1oJGNttMYoqQWdtS31bMbR2Ql3b780Fr5rcm1FpjMVO3SxmPOt/9wHuHP7JX7t134tZwYkSGK1BDRikDoJTWLTdRhq3vrWt/KlL30ZrTXPPPMs69VWsh1kZ0MplNWkxrIbHMfNkqefucmXfuPXOTtespjPGboeF/t9FiopNBqUZrPd8p73vZ/Z8ohf/uVf5jv/X99DO5uz6xxt22KMHoPgl5eXuN0W5RxD33N6csL8+Wf41Cc/RYg9TV3xlrc+x93bmu1mw24ntqMEbyTb3Q0DurKcnTzFyy+/zOXqkn69ek3P62t2Mh6jqExe/2pRkWJcXy0+3nOh4XHHBPZRrTSJGu5/y9/T/U7pNdN9FaP5idHqa5GsYuDDXl1qasCrnIOPUaINkkHwUsSkyoNSIocaow1RpzFVjbK4wWXnQaONHrcxpRWVonOlVOaUi6KCVhpUMVTVuCiWYy8KESklqqomRDdud5o9MMaO3MKU4t4ASXJcZZtPivApJTn46MM+8pgmUcNXoSS8Gi0J9mOrnP+UonX1s+U+yd9j5Frra4bbOHpAZQMgFed2T8ooo2xvWJR/pyyQs48llliCbFVdCU+qMSKbDYHRWVETR1qUGrqux0VHCAHnBrquZxgG+q5n220k0pASVVVhbY01kt2r63qkPbyZUVUV89mM5dExKIMNms5rdvQkpSWK5iNRR5QJVChmKuGNYoiJbQjokDBWoYzCGsPMVlRA01ZEW9ElwyZZLs0C5sekqsXpgIpOKBauJ/Vr8D0qehqrMaEjRE9QiZTcvraHPDaUKE/J86JzzB5ePfaervx64scmz+7+OdqnTlSe/KzO1EYrHJiYAsqnMfqWYM+1DkHUuFQumk8pz5USNU9JeLcaKbhXeX4thv54HIBwqvNzNHUwkO9ZtTdWC32hZBYec8NVyeHIM5VSohTfk7c3eQQfu05JqWwcM0YOy3GMz93039cvMoUqef09NZnvyu+vrlQ3HvMT5rTHv6cwSW7GOJeUApFr86TWuZg9Z2Ot1hDEQIwxZWdQIoxmlKUFyFkRpfMcUZS89mNwmg3RvLlrMi4uz2lrTWUVYRjQVKSQWK+2VJUl+IHtZmC5OCUYcchmswWWR4Bj6DqSrfDBEYGq7sRwBFKQ59tWNc1sThc8yll8iNxbbbjsHL0HqMAnlB49OIZBMgTGRVAerWJ2+BOVMaRK4ZKiiwkGhw+OWlm5V8FjUqSSMAdD8PiVY+gd/bYnBmirhlppLi7XPPKeAUWrDSZqDJYqq1zFBHE0TOXZGKPnMe1/UqHqyvjyXqioS5ayBgPKWJSOJBXxg6PXinW/FSd2tkDXDeiiLCV0phhFoCQGj/NSd5qSw5hEO6sli5GCPM0qEJIjhARRo1VDVSsWy4bz1SOc7zFGHABSnjuKalaukTg5PWW32eKd2yt4InPXPqgtdRd1U6ON5nK9wlbiYJXIvsp2mqmqMQNRzxteeeUVVpeXKK2lUH27I0apcamqHFRO4J3n2WefZXl6zP379+m6jqZps21W45LD0e+PP0V2fc+t555DGc29uy9jdGK7WeO6He1sweUuEJ3QTFOMoCTg/fzzbyHGxMWFBCol6K7pu46nnm7GoL02huViidOa7fk5N87O2G5W3L97Dzf0xCQBpLt37zKbtVhtWKVLGRMpjxetmNcVxlpWqxVD3xOdw8TXRt1+XU7GtNbhevT31SatEqUvi/P+e0828gvGbU+5+Uw4ydk7L+8VpSEg3/zqSmr4umM03cf0vKa9Eqbp8KJWBWk0EPcPaMBUNjtUeR9IbwutDdpo4d7ZSgq9Y0RpqCo7qiVNr+UwDHvaFoFxkVeS3ZGHFqSQuZyX0EFSkuNumpbtdu9klCwGZBnRHNkS2oMeDXBjxDkipby4Xc02KC2yct5HFFoW7jRdMNX46/rCez17cZ1GVWpHnHOP9+9QVznmSjFGJcuCu98vXPlqtkiSL1HG67Hk/U8pApYhNrW8RtOv3IrpW0yjoVHFveEoXlfOYgR2u47dsMMFBynR9UKJ2m62o7BBVVXMZlUWFrDUtcVoIwbam5nmAIA8B1VVgzbUdUOwA11+LyRZRJzy6BQIaJyCqCXG7kgMKeK0oTIijjCrarS13DhaoKqaTdJcJoOPDRwviPMFqbYSyfQe+o5w8Yi4XkHf0dgG4yxeD/T0GGP3bqUqBKU4DvNSuH/d+L6OfU+Urw2tIElFX6YV5TnDiIRkVUldFgp874hpQCdoTEUiGwspMnjHoCBo0DZ7Ggn5jQQpUlIkZaiDx6Y4OgRlKkmjUVrO7eo5FmPX6r2Tosi5jvzsabV/XuTOydylRifqDTZyH49FvAZ8LUfx6zyU6eSTlETPx2PK5z5d68gJiiKUlq+f1gadIIQ0UiasLoXc4mhorVBSfTo6YEXs4EnBnlKH9mYOVqzXG/SyQiuDdx1tW+N94nK14caRZvCe3a5jOT+jqhqMqjhanuKHjmHw9L3DYPAh4mIgri6IaS5R2xDAKuq6ZbE85tLv8IOji4kHFxs6nwjJoLUVuicyHwQvtCM3OEJyVDaByfLQSHAl6UTfefogNsQm9Bw1R5IxCJEKqJSS6HjXsXMDfTfQ7waquuUoQa0UDy8v2WpR3qyUpkmaSluaqkJZQxjiGGxMUWS/r2f7p2Oj2Abee4Z+ENsqymRn0SLU4AMhJlyj2fYdKsKirrBR7JykpQ5BESUIqlJ24jzOO1L0VJXm5PSImAIxekCyriENpBQJDqxJGBOZL2o+/9kvo2Okqetcq7If30zMjqOjJecPH7Hbbnn26WdYr1eEGLLEttQzxJHxofEp8ujRBSeL2ZhFEYaLQVuLyTLrxljmiwW/9ul/igHmbcMzzzzL/Xt32W03eO9p21rucTY6nn3mWc6eusEv/sIvkRA6egyBpmlJPmeVYsqBIbHlzp6+yerykhdfeImnTk/YrtZsnOdt77iBNhVocWJjDGM9xfPPP8/Ld+5yfnmJUhJsA2GmGCP1HyF4kSdeLvFG4zYbTo5PWF2e8/Lt2zJ5p8TQD7zy8su8913vpV7WxBC4uFxLPTQRo6TvitaaR48e4YYBYsC8RlvkdRd+X0ehHz1OVxGIUb2n4TxJ2eJJ2y2fnc1mo5rT9PWxYj8fwzQDIVFgO2YwyjHK8VytmSgSsOVBmzb+23PnBUKbstk7hZQCSkWOlguGweH9PgJfvquUkgZAWo3bLsdSjq/I4BbFrFInYq1lNpuNNLIYI2dnZ6zXa9zgQGmsrfE+MAwO5y4kzaU1l5eXKP14fQhICtBVkWEQKdmu68drut120mAmr0HT69a2LVUzo6pb1qtLgvPZ6N3XTrza+m6MoW3bUR1rWg9RrnFRyLqaychjRFvI92RKkyrbejXZd8l67YsyyvZETWjv3D4WlXwNdoea/Fb5fymRNbplctt1Wzab9ZgF8snTDz2b7Yb79++P9TwoOD07oa4qqspgbW58pgEi3g9opbH662Y4/raAOE0VVVPhXZSUtpImQ0opjDWouiZJxSpGGXRUGA/zqsYez1FpYGYSGk9lK6qkqXxg6SLK92htCCi61SO2u3PhLBuLMhatREHVuB7f72AYUPMZVBXaKBZVzVPvfAeV1ugQ2K7XrC4u2GzWxN22tIB4YsD9OjLJ6Wt+MgVPilI/VVfFyWx4/vnnOLtxxs0bN0AlacoYE5uLFXdfvM3uck3sBwwSKPEhsAs7OuuITWI+t7TVAo0lBsW9e4/o+oALiaqpMLmtIShKSWVQ2dlQ+ej3qeQ98yv7LoHs0Genw0wc/H0saJ8m0AkMb3Yn+avjsbVMTaXarwVKJn+nXKdEEgfDKNCVplXiZJqqQsyISCIQU5ZoxwitIWegY4y44Pd7eMJa+2aXsH3vu7+VoXuIH84BD8GhkqauZgz+Al03zK3lpTtf4ez4JrWd8dLtF5gdeSnsrY8ZvETQIRC9k0xprdkZOJm1mK3Fx0R9dsZmvWO96whboRUm5UnJI8IVYmQPboNG1NUG70BVJFWhTEXVGEI3oJ0oGfXWsguR3WbgTndHajISuYYCfAxsux0gWeyqaTg5nrN2AS5WBK2orEFhiB5YVFSLhnY+w5Qi4bRXL0xKotJSjGyo65YYYHAdIXj6fkfTVIjktFxSlWu1hkFsHK3FYTL9gMPgjGfVd1yu16iYsNowT5a6UqAddx++RD1rsVWN8xHT9xA11szohoG6qZmlCgZDXc/RBoKJXF6suH/3IS+98ArrOxe85bnnOT054fZLL+KDwmAIqUb5mqPZMU+d3eALn/116RNWV5gavAqEFNBBE50mieoE7XLBvfuvEGLg+OiI+y99heVyyQc//EFeeeUOtTEYU7EbwGHxg2d3/xGNkmxYGhyf/pXP8Py738rZ6RH3XrqNShVKa5plyzd917M8euUVXvzCZ6XGsG6Jw8DD+w94/m3vwA+RhMUljYuG0/mS933g3Xzuc59h2PXMdUXYOSpt0FZx+/ZtbjzzPB7F3bv3iT208zmLowUv3X6RbuhQylGZSAoBjcXYhs998Td4y/Nv4+lbz9LvEhfnD4iu5+j4mF/69K9xeXGfupJMU1SapCzWVrz44m1OTk5429vfTv/FL0lRvoKnn32GXT+w3q7oug7vPNErEu1rel5ft4Ttk3jr04l1yvcHCGHf6Ox607ry3esZjZKFgMeLhKdFv8UwmW57WvNRDNlpwXRp1lK22XXdaOyX/ZbtT7Mh3nvqeiZKT8pircYaif6Xh/c6NawY1iEKpWqaMZnWmpQi+OKUWGvHRWAqAVxqKEq9RkqBYRAHoW1rUiIrGiRKOr4s8iWLEEJgtVrl7IWiaSpS2vP8xXFiNGqu36vgPT6I9J0mpy4jUBzJ9ORuZqUGZprJuL4gF9na6et7CkMcMwLlfpaxIlmCJ7s3cq2V0EWUNEgiX6EpXeUJ37zmbKgrHpQs9uM7KFl+iCnS9Rvc1kkjGxQhOoahp+t7tl0nBccxslzMc4TA5BoTjTUKY8Q2MEK/BJWISqJsb3Z1qTJ+yc5YeRbKfVKo0siBymrqZFA7T20bvPO4MFCZQKyA5LPCBxQaYdtUVARsiKjdBdr1VLZioQ3GSnNK7z1DGJDut5pQDwQViF7eq5qaWV1ToVjOZsybhtWq4c4dl8dDtsRTof2kx7xrGV+SXZBvTMf0/sOz2YzWNrSV4eT4iLqRAEldVZycLFks58zbiu1mzeCk6PBo1rBpK1Kn2XYeY+U7jaq4deuM6shjWk8KPRWa5COud5zcUmBEqtMruP9wy3bn6VySrrgootKE4ERakURl0liOIfUZ5YFUJFPGp1B1bIzSQRz2jfqy4WvKo+QDuirzvWjZx6D21I4y92hQoWQ8rzr+MSZS6f1gNCZpdAp7ypRWqCCf02ZPbDPaEDxSW1PuQx535Lv0Wou+r6PMa9OgTNk+RiQuyU1Dpa5EfioNxlqhw7Lv+qJz5lYnMgc8qwOqBCrmrIfalwjFSEzgoxTg76lS6YqjUdanN3Phdz/sICWMqdB2nud2zXzRohiIYcAHx/LoWAqA44a2bVkez4kp0XWOpHwOTCWCCyzamqauIQbuPHrAxvWYectmcPT9IEG9BP1uhw8RYw1tPc+BpZCpLLLuikx+LfcjF1MrJY3n6joQgzAglDIMSeTxQz8QukHumgJtpY+Wrhuq2YwuREzY2xUqr8+lpkIcUctus82lCvvMhcS/ZP3z3gsdtVCnKMHUQIxZCCPkAFx+FpzzGKuxyjC4gFYS8GprR3JeMqpWMYTA4AcGv2W+lGvtnSNGhdt1WFOzWNasdrklgNXEqIi9JxEJKnK5WhN84Hi55IF/wGa9xhrDjZu38JnCo43l+OSMlODBwweijA0E76WI/+SIoXesLjcEErWtUAoePHiA0ok29yLRRo1B1rObt3BBKFxix0WcHwjOSRNAZL7q+x0P799ntlxwdusWwXmMtdSV5StfeYlhsyIMA0oZmIgdPXr0CKtr5kdLlFacnJ0yXy558ctfIQ0Om2ut+r6HJH1DPElkgts5Tz3zNJv1GlKkH3r6ridGjybR1jb3KxFmQDIDw9CzXq04XtxiazS7PnCx2eKzetnVVrTCtqiqihAD9x884OZTt0bJ/Mv1Jrdy8PsM2evIRr8uJ+OrZTLKe1VVjU3rppP21LC+XhA8jWhfN8CnGN8r383GfNn/1ICdUqSm2xslcrMjMS2eLj04rh9H+aw1lQzASI5O5ch1lBS2yVHZaVbFWkvykRCeXDdS9jF1pqbHXBS6ynlNe2FAaR6nrxzreK5mv+BNIWlNicDItq86ZoWWtd/PHiEmvHdU1kKuQUkqoZUY2HLb907j9LymzsH1MQRc7Vb+VfAYvW6aCp44DlMGl5o8VvtTevIYe/yd/eM4TTcX2l9C4YMbOaK96+j6jhADGk2Igb7v2O529IOTY9CadtbmRoMGayzKJKH06GyQ5GhyiiX1LR1q38zwk4kKmDy/+zkkpkQgUZUARIgYtBT2Dp5UJQn1onKdkkTMPYFkrSjKeIcedpgQMd5Sa8lwxhRIbiD5AaxB1RVJRxCGIMFLp1hbVVRa+s8QAyl4Hhi7z4RFMn1tSi+6ClFQkmzB6EgpoXiVZ2+5XDBrKmZ1xenxMbaSni7WaJrKUmmVC1aTFDuGSNXOmM8akpuB9zRNI06/MZycnLA49th6oFufo70nuoBLgbm1VG2Drlt2ITJ0Ulg6uIDKDf0ykRSrFVYlGpPpVZAzHaX7uiIZzdgaXGu0D5gUr/TVGLOFILSsyToy1i2Nn5XP7zOD+9cnG8nGT57b8zVVMaJyjYjOtDBy9lCe/HQlk3nlPl3Lmr6ao/Fa6him84P8nUS9Rsd9/YvKtCcNtVGStVSIg5Y/k0BkTfM2ih+r8kZUvu4qF+9nZUoCEpBQ43V9/Fy+Xkfqtwv6fkOlo1CevMHFCNpjjWT3la6waNrFjG67JcWIrVWWyxHVrRCzDYDw91UIqCyRuvUDTiWoLbsLYQ0EJ0b5MMg8j6qzgloSWVD2a1BxjEvwK5GdYSRLOQyD3FatiQpcjDifA5HZnmrqSqg7dYWta4JSpeYfdKHGCVWuqitsJXNTCIEYyvzEOAaVUoQYcYPDu4Co6YlTFKM4JTFKY+Dr0vghhP2YCyLM0TtHNwwijoEC79m5gRQHBj9wumhJPkAKRCeqRklFipx8nAQLQxCK1RA9bpDX6qpGIT3Hdrsdp2dnNFlsRylRUEop0Xc9Rhu5LwjVfK6W2Er6o0i37JRpQT1ta2WOyzUeXdfhXOCpZ58FbSjmS0yBEBzeD7IOx7IOe/pdh7WWo6MjIbMrRQiR1fkFKgxSr6dMtkfkWdvtOppGHIGTs1Nm85kwTs5X2JwCjkrhBo/KtaAuBMJuC8ZydHomdkTXMQyd0L9SyrRJPc6ZRhuoKkDstKEfxqCC856QSxeu14QV28l7z3qz4ZnlUtbDkFitLhmGXuhapH0A6bX5GK8/k3HdQbieei00JSiT9v5IpovLk+hVxZgfhmH8+9Wi/iHzlwt1Zto0rjgS5SEp3ykZieJQlOLust0idTtqRU8KxkvEOUVkQO/2DfgWyyUpiXNydHQ0Oi7ee7bbLf3Q4b0beW1FXuz09PTKfooTUaRzX61xUoneex+wplCv3KgcVb4zm4nKgnOO3W43XgutNTGkXNux36/UcjSk3DNgeu2ncrI6TzxmjD4btBEDwYBEJwvHc9KY8DpV7Xp9xpPOdTRGc9F7uedTB0YZgxqjc0oWGpUgyUORUhrpBFdxtaZo6gDKY57VZ9TeeZH9StRHpOmkWOz84kK6vnuHbQzOD/RDL1mj8RxhuTySqKXWVJUlJXIWQzTFtZKUO2h8cHg3sMudzHVRl3gTI8S9IhvZ4La2kvOn6AFJB9siQxuspV7MqFLCGogmoOcVlUpU9gK0whnobMRUkd45XOyxg2OmEskYOqNRdikHoXItU9SoZFDBoJMmoUkmgRE5RBFbIBffV9TWEjIVRWUnJ6qYxQSKobofvzEkTBI517oWJ6dtW46XR8znc5bLJU3bjHfUe4dzA2FwYDXBdaToaWrLbFZTW52dzMDZzVNOTo8IzosjlEPj2hrayqNiR+gH/HABJJrGcjRrME0NVUUVEmcXDamP9Ksgz48MQOZVw1FrmVeaNnmGXiKOAYVXiaDF2eg1eJWIKhEU1CliUiB3i8q87n1VyiSezpNWqNe4Zj32Ja002hhM3kJAYRIYA+jcsfZ6q/QJrkwLSmRfn5yZ2h93Il054NFRGgMgwunWRGzyNAhVsLKWxuixfwgpopMU6rqwv24xSR3G6Fhp2WbSWfZWKVBGfrQU+3oSIUnRv/gg6bFGim92BwNgs7nHcrYEZbn/YCeZKb0Fe85yfsKsnTGft7StyH1612OqwJ0H96nrOSdHN9lu18SwQyXPvK54dO8ubht46umnSWenuGFNtx548PCcFDQxyDrqnSMkWWfJmX2Zy2TQlOtb1iKtwebiYB0jSQkdKqQocqyVQbcVViW0MXvnp66o5g1VU6MbQ5Wf8aQhBC/N6XKpz/HZKSjpJF3PWvrtvs4zpoiOGnLUvu8cwQUqW+U1fl/nKY5GYto3q6z/Yh8EjK1QwYNSPNqsmNctRil2rifFRFNJcGS79bSVpVaa3faSytjcnHlgsVxicp8isYfESN9sNlhbEXUihIEqKyn2w8DDhw85OjpCKcV2ux1VMWezioQVBSXvODo+4t69exwfn/L2d76Dl1++w2a3xXvHcrHADTuc71E+Zgemo+t6Hj58yM1bT9PO5qPscIoOrWXNEcndQGUUM2OxaFabNc3Jkm6zY3X/IXrwkoHVOjtwjM4mKbHarAjAt/+u7+T+K7dZr1csZnMIjqQSHuhzsCSmxHbbU2mLrnqpg7FWxo9zWT1OMp7iQxXHMNJUFYv5nLZu+MIXPk9VRaxWzGdzQqbVhhBzvY4EsL339G7AVBVzrXn48CFaVcQIq8stcnQRbSKVrnJw9bXhdTkZ142xaf1Beb1ItF5HMVinxn/Z7pM+W967HuEfJ3GmkfyrGREQp6EY+1MDthR2F+6/FMqI4b3b7R7b39TRUSqCFr1+YzS2aqmrmsENpFw8vVqtRidg6kiV7ZT9n5ycjD02lsvlaOQXStN1SlD5btu29H2/N9TIxXxaI3KNEtmNSSIjJZsydbZAUoUy9gPzxZzg5Vo4L53Nran2UrqT+1VUsYwxIqOYIm7o2RsOe4PcGMNsNrtSgD+9LtcN+68Glak0U7pUcRZTjia9Os94GtObOsuPj6snOTrT7SglThRaMQQv/FUtMpU+Bja7Hf3FNhe/kfsy1BSFMT8EiSQksFpS6CUy4JzDR0+KLkeUMo3P1nKsUQzjNzXcDuW9cIdVRdQ9wQwEIzSEymqaxjLEAaLIA+LAxIjVicpGBj/gnETx6rnQBPAW6yrUFizSPdcqiNrgsXQ+srtYSROoQp1Swl8OIeKTLCLR+1yImSNvxtLOWiIRu5wRg8fHhA+JiKi8KWWZ1UfUNKgEYdihU0dTNcxnS05PT1ksFtR1xbbv8jgVamHf91k+NjK2pMvjwdoKFxMX6w03b93CqIGoesLgmDcVqAqfRSc679i5nuXiRCKYzqJsTUiR6Ad0HEAN6NCgqoaoLW2jOFoY+g3sOkVImogFrzCDoY6WE11BlL5F2mpW0RPmc+J8yW6+xJFkrnFbhtUj0tChfYfNzbwi4LH5EYyYJBHoskglZEgncsAweIhQG+gGSEa24ZLU0ugIavBU8wZMZEiBFHt0kgBHDGCUpgLQGuclYqcTJKNJOTDii2M4Zi41KXsXNgYKBS6lUadmjD6XaEVUcl3GKCL5Rysaa6itolKGRiXseLZOjMsEpBzRzYWgI1Mwv13YqgkoUzvGCtffCqcyIWIJIJFNQ8IW5anxy3vs6Q5vXkS/Zegtyi557vl30fUrYupRladujok+cnm55rO/cZujo4am0WjnaGfHoCyX6w0++KwQJ5Ha4/lbUNbywpe/zNv+uQ+w2Z7zxZdfpu89tW4xk7UnZWdivV7T7ba4oedoPpMovRbKS0qKqqqp6xqX+37FlNj1HWiFqSxJK0wSh1JFaaKmyzJqDNFAsgpdWZSVNKM2GmMtQ7cjpUg7nzMMEtgytR3l9Ec2RllfQ6Z05bV3GIbcsFFlRUn5fJX7bk17aokCU2JwA7N6LmukNijvqepIPwTu3b1LYy03jk94+sYZ68sVp7MZrbWYmBXStFCMV5drlss57azl0fl9qcujYjY7wrme0IvD44YBUChjiAqWSvqEtIs59x8+oKor6qyiqVWpvlTMqobNes2vfvrT3Lj5NIujI4iBy/sPqY2V4KjRVDm4VQKexZECGPotQ7+TgurkZQ4kcDRvwXu69ZreG45mFVor5osFfXqIj5FAwMdIZet8fa3cd2vQleXh5SN89NI0LyV26y2gMFXp0SZBdJOz04NzvHLnDu9597tJwbNdXVIbSxo8pIipRFksKZ3rhmuMsRhjAemZVmmF2w2ihuqzkxEC2pS5OduZxuCco6pqjo9OaJslDx8+REiwnpgGfOhQyWBeo/vwmp2MEoWeGpzFSJwajMXh2Bf27g3JsbX9ZFuvtp+y/akq0tRoL7ywae3G9cj79GeqPFUa2JV9lM+XmoGpkzM9x5TlUs2o4DAwsM+qFCO4YMwAlAc+G8FTY3g/uOMVQ3da2zJ96Ms1LMceY8jd6vUYkSjqSEUKt2DapHBvbOcUa8op0cm1nGYbrjiWWSUsxKlqTH6fTHm45oxevy/T7MhrQtpTL6ZjsMgGK9Q+A3Et6yZZ7WI0fHXaw5hp4bH1+cqx+CAOno+eftezXm+kvic4IqKgJNmKeuIg5XurDVWWpa0qidaEEHAxjVbGvmA9jg61OJCvsT/Db1ck0TYnitGac01EFUiUrrSZhhAjMcsrikccSFk6sEjrqUrS4T4khiR0M6zCmCqrhEh5cwgxR87EGlTKZBtTBr0Yk3EcJ+UOKKWy0pPGVhWqqbBJ9PCDyvxWpZjNTjCxQoVEspbGzmjqmnmzYHl0wnw+Q1tD5+U7oTzLSfTVjcrN6jJtTOncqTcmqcWICaPEIMgMYaFVVLVch+hJKuH8gCJikjR66kuNQMpS2ZmugIW6MbQzS9NoQtAELNgWYypmtqLVGuMcKQ6ZMpayIIEm1g2unoOKmRvscdqSRlpYSTzmMLyQRlClezh7ClaJtav8nVGqoTzHmdSSZ9ix0FzUrNJIQRqZW8i1ikplLnWZz9X+vubtXQ01yN9CgSCPzBIQEZqAUnH8pM2NPo2SJpuVki7nWkGtFVYnrEpUShygks0MeYynlEp/LpJKJCV0p9H5KpevXDFVdMCEJlXeLBnpUvOhtKwF0oH48bnuzZ7NSJmW6nXAJBkfKI3Rir4fCD4RfeTk9AZNA1p7Br+jyhH5YfAYRI1RKyV9KNKAxpHmNQ8uz3m0umS92xF6j64CCj0GLUsRdR88fd8RvGM5a5FMBpP1PI4OXVlPTKZkQ6ZT15UY/zESe5G3V1pT1TX1rKVuW6q2loxGpif6kHu/mJzhKPNX5LH1utxplcdC+feUWizHCtNMzDQYONpRIWYGhDyazgd2u57gPYOXTJzZbKis5dZ8DkrjfSR4jzZF8UwEDlKuoXTegy/9eIrE/J4WnxDnLIVA13egWlFsmtiCskbsJce1Eul/5xzWGBRiq0itTO6JFuP43BRHzAefqeSiyiUSvF4yUHndMrYiuJQVrhJNXeN3PbvtbhTGuP54TR9BreHmjRs8dAO9c3k9y3ZfLD3bZMCkbOu1tuLk1q0J3c0zs7WkamPuqxaDbCCHqrTR1HXFcrlA58J/sQXVOMOUf5fxUbK1MUZOT0+oq5YUE9YanPfZfjFiK8JrFU78+jIZ1yP909/lM3tDNcvrqX2twvS7+xswdVYYv3O9SG1Kt0Hvtzl9OKZG7PXvT/8unvr1jMl1o7hkQsDlngUzYufpBzdmF6RPhr3SMRv2kaOy3fJ+abBXJq6REpZkkmmaZqRVFecnpTTSnqA0C5QiWpUNpkK9MsaOTQiVUiNVqxyHGNviIEjB9T4DFKPI8Ykk7lV1rrLoee8gP9TG7O+jLsu33t+/ac+S6X0p9S/TsTUdQ5Pd5fuWHhsLkOljxuR+I1kjO+0Xddno9Wwc+zemev1aC9cxRzDz3Jv3JcavSNHuaGctg3c8On/E+fn5mC1q2nakuymthNMbAtEH2rqmrWuaqqJumhyJifR9l+U9NVqJJJ2IBUiRuMRaNfpNri6lQByEEIU/WsypzEMNMYJPRAIpqynFIBSclALBu1HCECV1AS5Fel/qCpTUt1RW6i1C5quX9HBSxOzaaCOGiVDpfK4pirKA5x+tNCF5YhQDoZk1JKVxAaIKknkCFstT0qDAJ3RoODkSqoZVFtu0xJw97XrhtsYUs8yiNKQz2UpWWmU63T744b1QNGdGOL3AOGc0dc2QgshkayUcdAONhvlszs5WRK0zTzvm+VKEKpq2JiZFPd8xBIU1LXZ2RD2bc6Qtsxjh0TnRe/zQ46NDHS9kUdY6G7PCay8UwKT2TkZSewcCtDiY1zCuJPk7Okl0VSdF1q964hja50HK51OWfRW3XCfJWOgIRovj7inVGUq8iLLOlAxShteMPO6UEiomjIidoYmStdCKWpksKSuBg1qrTE8qHcdFAlIWZQm4pQQ+ZzBiUpS4Qmb1i5ORCqe/iBow1mCgchAn7uvmrgfUIGGUZDqmUuBvdudiRH4unPcMfkOKA8Z4TExcXF5AsjR1w/ve/0G224dst48Y1pfE4AkuMOwCR8uKupE1O2nH+WZFlSw3l0/zpZe/zIPVOcPgGLoekyxGSYTXe09IET0M0svCO3HuuGp75MOUvyfGfdM0sp4jjXZr3YhhnBK9k3lOaU0zn7E4PqKpJRvSLuYj7er8/GJU0Wxns5GeIzKzUYIik3UV9nZTOc6yBhYqVHn9uo1WXkt5GzE7CMXJGPqN2HrW4tzAxWZDcIF3f/itpG6L67Y476W2LO2N85T243XoPSEmlFXE5EkxUdmKfVWROB/rzQaU4uj4eHQ+YoxCYSvB1xyMNFozaxqssbi+o88CP7EyUoWTpfJjzHRrpfDO0StNW9XjuQ5dx6yyJFlEUKoar2dtK45mC863Pefn5zQpjTLg1tqRoSD2kyEpYS+8421vY1ivcduNyNpmG7l0VQehza13AwTPbN7ygfe/n89/7nPsthuCc6h5tntiYOd2uMGhVZVFbiQr1jQNZ2dnXF7cI/qB1kodURkLRhtirrczxuCj3GdrDc888wzbjeP8kTBzBicsn6a2WQVvUvP6NfCaLZaxNTpXJ6tifO2dDZ3pRypfuExtgWvf30dsyIoBUk8hUcfSLM5og6kyP9poQohjU7IQ9o6FMWakPZV+C6Vgevq33PD9Q1fkY7XWI9WpYBiGvE1RG6iqmpQUbgjM53O0NpI2RHo1pBC4vLyQc8/R8FnTMLiEc57NajtKzKKEWyfr9f6BT9mLHrLSUogJpYqilhgLPrjsictnXXLE7a5cTDGblcbWYsR5H5nPW7zfNxFcLpcYY9hut/m+kSOyLd67/DmPMeTFMS+DQZbCUbg9L9QhezpKTmTMuEwVxabjRhSx2isUseuOXjmwNL6eHttOTJHO9YTgUTqijdBcdGWIwdKFjvPLh8xnJwSf8M7TbdecHD2NN0FoMLR5chLqhqeBZGhQXGwusU1Du5hzdHLEo4cPuby/4nOff4GmbYBECI6jkzPR3DYweMe226KU4nh5zOmNM7l3Wf5FZXobVUWzXBCcqG1opcamYyiwdUWMhtD3jBHhr5KFebNADOyIzX1kSkd3EOfY1IaAlj4MqhhRiXpWc2Nxg9V2R1PXWGuoZg2qbolVxEfLTicMmuBh5QZ6VROUxVaWlExWo1LiZiSJsq1WK1wUOoGNpQFfzqTGSKm7EVpeyN2b5dmPIeB8pA/yWiThXQ8DzFvLsq7pYqBFivvb+Rw/dMToISqaWmR19WSfcDWLG3xge7miPp7TzCqsr3F9T/SJBok2Vdowb1rW3ZYYEj5BNJp6cUxS0K2iUNC8R8VAay26sjQzyzPP32J2ofCqJtoZppmJXr/3pE6R1rlrrrZ0zmfqmsYUaqaOhCJiYTQ6GkySjF4qXKivgtGBR6ENmCidNVBfW+QgTz+S5MvXUefYsYngdULFfUG7SvtCc2nAVgof9hmWoBRVpoNarbA6UClxBq0WnXopjJeIqWQfPcntexopRPYyAkN+pWROhHgBoTgYZe5RKkdo5XGQyiyhf1ljRBkvE/FNinlefjzbPWULjOsNv3OcjNYcse0cPl1yfKPOFFRQ0WJtDhopxSt37nN5cRdFz7NveYaL+49IA7S6YrlYcLG6x2pzQWWPsafHVEcnVEdz/N27+N2A3zp8HxiUR2u5zrayGMTAs21Dt9vi3ZCDlQpjMoU59zARj7RQrUTZsW0bDGRufJBO0yUoiwSYTk5OqOaSBfcqMPgedMJYw9HxnFUMEmSNErjQFlRWMSsZWGFfSBRbpWyXXTEwQ3Yi9lF9pa/S2kdhnPx8x96z6i5Za83N0zOOTs7QRqjmd+/dxYXEoBK/8fkvw7ClToHnn76BBDY0Tduy6bYU9au2bUjJggu42NP3UkxurSUpCRhqozk6PsFmFa3NdosPElhpm4bdeiUPSw5IbXc72vmc559+hsuLyxwUMNiqEmGEHIism4Z+8LhhNwZDq1wwrpUmuEC37agXC5IXKm2lAkFZmlnLM88/z50XXqRtW77tQ9/C/+8f/iOsVVSNFbspP4/GGHCO0+NT5ouWv/H/+Wne++53s1wsuXNxOztU5HlSjRkwrTVvef4t1O2cz3zqV+l3HTePT3n3297OSy++SFKSfRfKZZCeR0oydLtdRxgecO+VC+pKMi6Ludi5Rmu0tfhhB8qM9zwFz+nJCe9+73v43Oc+x3azI4TA888/j3+lY7cLaFWhcoAshOE1Pa+vKyz6JC79dIGYRlbEgS/N1zKlRu87M++ViKYZjUlqWgFIQZ/WJtcWGIZ+mx0Ki3P9eBzT3hla61ft8i0Ld0leivO0Xm9RSqTayuAvho0xEaVkW86JpxyCRDzlmHIRTDZSYhIFnfIgbzbb7KlKgn80pJVERlOSSaAuzo1i4sGDiom2nV9ZRFSOcir2Bvh4X/TeUxXbLeb+HRpr1eiASZFXOd9i4IBzIU8spat4SaUWGpXJK3scj9MHfyXDNHUUpvSzJ42n8rly36bnMkbmlBrHxpV7qrI0b8kAqawik8Sx8ily+fCcze17PLx/QQrQVA3PPfsUN26dkUbWuNALUIkhBJr5CU21YG4WnG++hI8GFyoePNqhaJnNz2hnS46OFjniLFZMDJ7BOZx3HB8f07Yz5rM5xlhihOAjptKjBLEyVsKjhWJo9s8Lai+Dub+2b+5OvZAFGhLZ+Uz7Z9ZoksviAFGJzrlSJPaiD4mUn720V2OJEZepZkYZsBZPZAgeZSoURqh8CYmAlgMZrVOhcYaJ2kbMjkVdVVgllEQbhN6mrPTgGAN+OaqfrEWbFm1kX71ymKSoUGhroRIFmNOmot+ucH2P63e5HoO8370iUUrgnHCSS3bRx0CIBmOtSB0Gaf6lTMkeiG5/MZiTttTzBTEGMYZ2vRQyokjRkYKk5q2tqBoNyRCMpBOikqaSUYUxmh5DRCtR74ouIDLpYiFbbWRhRk3oF+Rgi84ZRsZxHVXhi+c5gJKul6/pTEWSLt1FZlaiqHEffxjrFkrESuX5UyF1ZyoUWm1CKS8FtkrUnWQbmW6lVTbA5FqanFkxKtOhlNQ7mBgxSRyXxN41IUcxS/ZGMhVCfxry70KdCVGNalBSy5eVoeI0oyJzeZaPybUYaozrCMViv1ZdpzGX39fnzN8JDodWFdpEVAr0w5rlbA4hsr5cMz87Yr3uWJ0/IkVomhnGVJyfr0Q9Kso6rhXUbUubPJdrT3Pa4K3mlfMH9N1AdAHlZb4ZnHTvLrWAMQjDIChww0CKZc3MndmVymtuQOmALgIzSjpOT6k+xbgszeitMVhtiM7hvPQNMlox+AE02GQkap0j1bP5XArfVZLfk9taMmJCN92rUpa1tfSKUup6BqZ0At+L68hxyri3Rgz2uqqIpY4hidABKeF8YL3dcetowbKxXFxeMm+kB0XMmZYyDwTv6bY9PiZmRzOxQbqeYdjK8ziheJdMzq7bsTxaUle1CGWEMBrmpY9WionNai3yxIs5VW1ZX15mZy6Nc70xoiDYti0pJamnCZGj5Qlx8HTbHSoptJY+Spv1lvnZDZELvtzQKov2kd16w/Nvfyvb9YWoP8WIzc+h957jk2OsVnTrNcl71pcrKm14+zvewf27d0QiOUzrWxmD3957us2Wykjvju16zXK5pNtt8H6feTfaYG3KBfYOP0RmszlVFTAKdrsddV3TWZv7n5RsrtSD3rp1i7ptuXv3Ll3XEZP0bhpcx2w2G0WdYipMmNdmi7xuJ2M6UPeZiTE2NJnYQKkSUUkkJKVdIvx7ruL1bZV9FO38kuEwGG3zNww6S4RNMxLXaTllW9PsRslq7Cdmjff7/gzyUMarFKa8zcpKWqsUZhsjk4oMBOFT1rYSo1Np0Iahd1ib29WXJnKQpSyNGJ8hjpGC6XVIeeEqvT2uO05FqWpKabraR6TUb5RBUWgY5AnxKq2o0K0kCxHQ2kwkc0snbKFzpJzCLxPSkzIWr2UQTu99+e60JgSK2tPj713lV6fR0BBZ0cRm13H30SWv3Dvni5/7EinB0WJJiJ63vO05lDYUM6FsJXjPfLFkubjFwp7Ci/fEAEgN292Wk6Mli2XDYnHC0fEyF47Bdreh63Yk51HKcHJyymKxpLKi0OBdwKtApSv6oReqjMmNBgqPXWeyRbpqIFx53t7cPkamyAnlpIzZ8nzvx3baL5Ypc3KRxTIkj2SPgtDZkhiQIYJXmmRqovLSjVdbdNKUFip7Z4U8MQOoLK+4z7bGGNFK0TQNJiVC0PjgqeuKZDUkRUiJoCRuKFx6lQ1BTawauhTQCaqUqLUmag3WsmxrrEr0WhFdB8GPZrbQqPZzVzEmjN73uPExZCWy3IDPe6yuSp5LnIxyvdBUzVw40VVD3K6yMZNI3pGUFL8bXVFZ6ZuTyLUpQCyRRC0ZNpLIVUoHXT9mn1QSGoDWUmMTx7qLck3ZB5TINIeUKGIZRREx7v28rPs+DgF5NmIkktWLJwGqJ0Gp/b4p8yNZOaqkjdhnP4wtzgQY1L5fBbnvR5KshyaOYnN+PEH5SegsmZnrLkiEBEMCXwy+JO+FKPOUXBw1vg6MlDmjJcimcmNK4WLIF6dr3JSHP70e1+eQ8tqrScS/WZCSkUg8Ce97mvqE6CKXLnLcVGw2O7q+o9ruOHrqjKqK3Ln3MgujiCERHETnqKuapJc8WK+pmwqn4fLynCE7GUV4QhyG/dqTUqb4QG6iCcFJkFEKuJU0OtOaGA2ZLYdSibqu6LOsaBk6RmuSkQCJsYaqyjWjMQiTVBlSXv9jiPRdR1tJbULTNLjoyEQ7USQbXdVSUxTzs7W/5yH4MbBW5tB9Fi3PqSX4lRsOgvS9aO2MtqoxWuOdy/tA1PdSILgoDfdmN1ksZty5uE9t67EuQk9kbAc3ZOEcJWqL1IR+kNqIHEFICkwlYisxRJwbWC6XWGMYnJf+GaVPl/PUTUNKsF1vsFWDNYa6qrLqpcuBSwApztfayrl4T3KeYBxt2zLMF1hTQVISXNWJbdexsBL07jYbZlWDc57truPmU7eAQLjw+FxQVZ67WdviXU+3WaOBbrehnzUcv+15LteXko0IPYMbRodqeXSEDwE/CF11tqjwbmDle05vnNG7HXFIe4qq1uKIJaEda7RI5SpH9AN939G0UgcqrkyRjtcYo1geLaVPxv17cj0zNXS729A0LVVVsVqtRZGRhNKvbQ55zU7GtB/FdCKLIzf0anZjb/zvJzaZ3Mpgl0JKUSpQ4yApRctiLBusyc3WfCJ4z/HxjfzQ+DEVXAqlS8fsUtxdHqqmaVgsFnRdx2q14ubNm+MCDSJPWwzsvTysn3SWltTXW9/6dlJK3Lt3j8ViIcW6TgwBjGgsD71jVklthjUW5wf8MJBi5Gi5ZLPZkJAmXJeXlySkSFXUHrIcbd5mcbTu3r07qjxMOZMpSUFTifjryX0RapkYZCUNuI9QxIlxN62xmdY8SPZFKTMavVVlmRYc7ov7S1QgP3xdd+W1cqxTxawyJqbjqdBD9hK8M4wx3L9/bzQUpgtmMbxSjEJDwuBdIgRRavilX/q/uXu+4WLnMLSoFLn/aMXf+sTf4fTWMU89/ZRMIjnJXKbmt73t7ZyePo/vZuj2SyirmB0vObphOFkuCa7j7p2XaZuauq5ompqmmdF1O5xzLI9ajo4WOaIQaOoKZ6Qru9UaF5xE6o1EdEh7JZApj32qiPY7Bd55+n6g7wfqOuT+MgajRdK3UTWVqVB4QGgKbnAMXUfQFbHKil3GSvTZJVrbsEuO3U4Wn2TEEMFLweDE5v2aKOOrqmsWi0WWRg4oI9QTVVtsEurmEHu2g2M7DITNLjtCCucGrB3wVJgqUPlA6qS77qwyzGYNKg6shp7khtJ7ENjPs9YYqnYmC461RCdy0KZSNEdL6qYhOCfzRpbcrbSlskGKLUOkHxzNsqUh0fY7+u0aghRq6hDwLoKNNM2ceW1RXuF8EOlcI7VJppLARVJGTOxCbfQSitdGoo0mybMfZMIfHYtprcPrhckUwxAiuray2D9mHD9h+yqOwSwtSQBQUOVtisJY7qqthMQkObMwrmWSlU5jxmF0liZ7LXnQmCAomUV8zL2EEDpUSPKaBK8yRQr5W/bEWGOkEXUcq2Sut1n2s4hbxBKtjXAlK85rjyr+TsAOh9GGmaqpbUXoQJuaW295G106Z7aseYt9mtWdLQzSq2Kz6bjwO2qtWZiGRy++wOkzz3B6doPVW04Yqoo+eIbQsxsGOudxIRFy5ssYMFVF2xhi7Nlut9R2QW2X1LZGdVCRMAloLN2uxwSogmLne7Q1KGMISYtNhDg8EJkvZtSnx2MAdKx/HJtWJnGIvDSIG3Y7bjwn1JuQHN73aCNrflVpXJT6MqzK3b7z2HNZGCBFonfYuhIHVilcgMEl+iHgeqldSUnW76KSlFLk9ssv8vTTT3F8NKPbbsaC4rZpOV3M2HY9q9TR6cTKO5rU8PSzb4XQEVNivbrA2GOIhuA1D1cXzGdzrLFsd5f7QLC2xKBxyaPqwFPPPc1XvvwVhq6jbRqapkIlRe8jXhuC0rjgWW02PHe0JMZI1+1YLJfsug3bbs3NW2c8fPSIXZczDRjObpxydLTklVduE0PAGM3pySldPxC8Z9EscbstTgV88uwq6SZempX2ueZk8A5PoqpmLI9rNtstIYBWNTdOb3F5vkHhiN6x21xwetzg+ks+9an/m3e/7wMMyzn3X7pN7x1NO8POFxw/fYsvfOkFhn7geLkE7XJzx0hUkapuqSJcri8IRqFqTWMMjx6cc+vWM9w4e0po+usdwQ1Y7bl5c0nyW/rdltVqR123LGZz3vq2W7z08gt0u630fUkKT8ARWG3Pecuzb6epZnTKoqyMMccbTJdyzo1G5DQTAOJpPylVK38XI7OkeHNqx9jsPUf0WESSEF6jpsSTYpB0fkJk2LpdL1Eqva/DKMd3PbpTekaUrER5gJ0LOVJUIZFM2bfCjM21FIbZbDGq0sQYefjwUb4aimHwY4QgnzCmqrj59E3u3buHi57ZrGK17Wnrirq2XG62op2uNS4mbN2MsmlN3XJ6coIxhjt37khRWFUzn83Y5bqJlKR5THGKQgj0PuQOwTX9MGRHALrdbmzSAmKQ13Wd6WH7XiBlQivOh6yxJteJ6DFSX/Zf7tM0RV+M4NKDZJpxmcobl3ExzRSV4yj3sThMY8ovd08dYnfl/k7vsx8GvBsYBgcY1ustt+/dZrUN2PqIG/NWFDC6HUlr5kfH/OP/+5d41zvfxjd/4ANUzRGlY7ccg0RzqSJD3LGcHXHj6VPRmq4bhi4xm81417vfRVVZhqHj0fm+qN5oKxk4Jcr90o1cY00NSahrOo/dK+cyMRiuc6ufVA/1ZoTTQbpr48k9pkk6ES37Bk19ZBU6rNbUlcG2GmUaYkxstzs2w46j+Zx502BVwtiEqiLRBSK50Z7rqJTORi+kOOS0fsqUbYP2uSFa0+CLgxsTNknnaoWiqhpc8Cjr0bYSCdQcGYteo51HDaKYomwiKEUXIio3YYxuw8LUzIJDux1Df06zsMzxPH3L4FRFijIH7bY9zg3Z+LBY22C00EV1lpH0vSPMI7qqiDEx7DbUusLUGlNZ6kqsex961pdr6W6rKuazY9zsgtAlkgvUSurdUkqE3SXaHkMyxKgZQkWVpOagqipQuxytlPlcqJhyzZMWxTOjFhh9nulaOT2gSlpR/lQpTfhFjFm5/YjOSi85sm/UhHaUhNahFajck0eKzSu5pdIenGFIKKNENCBpGq1plQIjfG0z0knzcxdzV/bsbEDJMGQlFi2OgSw6KndwF9qdTypnbrLUMpKxCDGNjkRMjNQ6qaG4SgtLSuieKhfC1k2FyZlvnSV1S4ZLCltzJoOrwabrGe6rgcCrikNvdpycnbFbbRh2PSrI9a1akRF98cUHLNoFp/NT0lFgt11hasU73/Eebr/0RSoNJ4slBoVTmr4b8KrG56j65WpFCkkiyCGw7XYsjEGZiqCSSEInYRi0swUpanqfcCbSaKhsxVlbo48NMQqtc/PoAjufCd0FTTSKqCHqRK0tbdNQ101mQwA5k1Bq8zQiixucJ0XpZVVnVanNZp1rL2WeKwIMMcpc2lBsMbl2MWW5biXN3nSS+gefA5IlOKu1RiURjOn7Pq9Fnre85Xlms1m+E0kYGsaI4EJIYxO7XVSsd1taq9DGUkWorKGZNQxdZHW5JqaIsdIPKsZA0jInuSztrbTi6GjB7GjG3Tsv0+3WxBDwGl65/SJPP/0szzzzFh5dXBCRefzZZ59jvb7EOZftmYgPHh8DSiuWyyWz+ZztbktjKzbrNS+//BJHyzmkKOdsNA9XK4yyvO0d7+DlF7+CtmBqxZFfoqKi67a0JtdKOcdmu+b87h3e9vZ3cfr0Tb70wgvMmpa2aSEVertkfY1SUqQ/yP2+uLigthVnt55itdly86mnmC+XfOHznyMpRdtYyNe11F/cuXuXW089zY2jJZsoUrTS7+OCtp3L+hNitsXEqSUlXvjil6iM5R3veCcvfPk2ddVgrOH2yy+zWa9J0YtwSpKgiSaBNjx89JD5bMnTzz3H/bsPiMM+8/q18HU145s6GDBmnp+Yrr26jen7eeCrQg+Bwo3f/1s+UyRnQ+b+FxLz9BiuG82Qi7NyhmNKKQohQi52mfaOkL9D3k7OokRHJKJzV0ky7ajUORhtc1JSFpAQk3C0kW6JbTtHkxugRKibisLZ1Kaop2fptmx8ltfJBs00GzD2vcj7OJot5DNapDqL7rP1QQoUswqFNLqxVFWdHZ2SFSgNd8Daoi4xoeiUWhetGZyUMD5pXJS/r0fWiiNyndo2/X11LO1fn95TrTUpp/mv0+KmA3GzG3h0ueHe/QvQLU09Q9ctQ99nZ9ETq4ZXXrnH0dEcHwZZtNV+G+SzTCaCCVStZrFsIASsBe+kLmaxmFNVFmHC2MxZNKLklY0HyYiJ6oNCk0KmCFGUeR4/j+vXZP8ab3pEHYlkyeTR+oSkpWhRpAOR58NCTIXGU+RIpfhRZbGEEsdIJuFNIOAoUrcl/JzIEes04byngNUVbVVxvFzIZBxFJamtKzRCnbNaBC+0kVoIn4oyFRjkudNKpFmNBmUU2on75GOgdz5TiyIKhw8bAhZlA8SOqD1iuGuU9qBEilaK40uNElIb4hXBSNbXGEOy0swRH6UnW5V7gGhD1GJ4hCDZhrpqaOqWwfXSxZbcqwSIwaGMzxQlRXQydwUt9SRJGGKZslj+F1Aqa/wDqEqc50wXAvK9lexDimnseC3vPSEHkV8oU3yhk6TJfUtq8l0lmQmfyAGfhA8SnsqLS74/MlZi2fhkh0Jv0oz8KyCWnWQnxyd5LyGORUpp7N0R8uUo2Y5IGjNTxcmQaaxwv6b7z2sfYgQYLfLo47yY6YBCGSzyyonxS2UrT5gvxjOcZH6vzzFvWijGRq+mUkQf8Cmhm5q6mqHRDEOPtgk39ESnOa1vUWuLzcXTpm5w1tKFyHrooNU4V3pPqcwQSPuAmVaivj1mmrMQC9IEMaUkwURrmFeGftMTB48fBkI34JMS5bl2lh3a0qtB5hVtNFZVe8l+NQk6JaE3O+8hJhaLBdoK1TYRckNTk4OzkWjSOEeM9z5zRoWqF3KDyjTOiTkEKKpw19ajYnuVhnbG7oNjVtmJHSWdxEHhgqcbera9ZdFqGmtRJgdG+5hrHGS8x0HWA1OZHFSDqq6orNA4jYZ+tyF6qedLwUt2ISv1zWYtrheFTKVg6PscxDT7QIL3bLzn5OyMOqs++kEEV1arNUfL+TjfaKWIzhNSYFd3LM5OUCpC8gzDTupgSSSdfyexK/p+R9ftaGcLjo9PUMZgK4vLYjtSL4oE1YNIAiul2a7WMF8yn4ncubG1NHJer1kcLaiMQUeR1E15ruv6nm3X0WrN8elprm8ZcMPAfLZE5pZJ0DKPg81mQ1PVLBdLzs5OCV5kz3e7ndQSEynNWopUOErjhoFOdQxuoJ41JKNETfE14DU7GVe4/vF647OrdRVXnQ01eT8X2Obxa7JiVYlql5/tdosxCm0SttLUjcV7R9cPLJfHxBjwfpCHjquRG8mSyOCazWa0bctmsxmj4lobubn5sSpqUqWQarVaoZR06C2R9kKjUhTnQSLxTWNpmla8ZhTOOVav3GF5tBR60OB417veye3bL3H/3j3Ozs5o2zkpJYZhnc9XIgeXlxeklHLHbdF4LrJsyfsxCzNSjJBF85lnn8P7wHq9xhgrDhQJWzUQpBvwrVu3GAY3UpZUjlAqJcdsJz0bzs/PKZS1seDKWGazGf7yUnTpVbqySL2agtSTnI5yf6ZqZTFe7VFSsk9lG4UOp9g7IVMusq4sVoP2jpfvPeTlO/d5uOo4vvUc2uZakphwpiLqiqAqLteP2G62+NATkkdROm6X8ZpAe+qZYrYwzJeW7cWWlBwp7ojR4/0gspZZwlecDc3R8QLnBvquZ71ecePGrdGRi0pjvBQ9q2IlTxf8iSM2dajKtXvzOxo5Mus9KQSUFe33pBg5wYrc7CnTREIQJz1Zha1qTs7OMClBblgYa4WvoDeBDo9VgWQUUYFXwp2/LumdYmLWNtw4O+W5554eCxJnsxmzZo5Rmt1mC0lhamlsVFctrl9LbwsVREnEKCqtUSbSNMKrULrB+QAuEYPDB5+VXBxut2IXIDCwdpds0oDWFdY2aFVD1LnuIbLrHAqDMTWzdoFOhmgkq1vVtRimthIKROaDY0RJRVU1ZqnGQuna1jTNgjB0+KGTZlDkMasVXvlRUpMu4gLYCLq2RJ0j/yrXW0QJH5vk6XyS4EaloPT4kDxgNqYE09+jw8JeQelJn7s6anjMMSmfSQl8lN4lzmUJWy1yvyrq0SG1tsnF85GQQGlb+FJyvLlGLaLHzHuIAZej15GEJ+W/pZg7srf7hZq6P6ZUEjnRPOGM9mcmc6ymtlKEer3WYooyN1x1lh7PcH41J+JN7WAAq4tHbFZrhm7AzDXdMJC2G1a7Le//4Pt5eP8Od15+iZOjGQFHDIbNaqBOBp0izkf02YIBy7qPvPTyXY5u3szjUjzGYkh676UPlc6KgMpKl+SkxyLYqMAB86NjTpqG2ge+8htfodt2Qv+hY3exQVnLzeefJyiFsgbb1mPmoNgYRdUpxognZwHJgc0s/d228zEgOW8b6tpSWRHGSSmS4haFQjWNsEFyfUWRsHbBE1KiNpXMvUhQVef1JaU0HsfU7oNis12V5i+1ACE4jBFqttsN7PqOjVHcaBvq2ZIUHOcXF+w2ips3n+LGzVMePHrArnfEEDG1ZnA91lpu3LzBw5fPidHR79ZCF0ceKhU8y1lLGHoe3r/Pc889h0qR9WrFwwf38U5UQevcgyTFRPSBhxfnHB0fs1gsWMznfOHzn6fv+70tUs4zJkxMPHh0wee+/CLf+/u+F7fbcHH/Hne/8hJnTz3DbD4jIY5XTE5orE3Dnbt3WK03/PPf/p2cX17SdQPr9SU+ZLupSPgGmUO1UazOL4hBUTdLnnn+rdy7+wqPHj2gtlb67aSEjpHQOxF/yGPxpZdvU8/nfOu3f4dkuiK5nYLOWeMc0DQags6ZaMWjR49Yr9Z8x3d+F6+8fIftwzVjD40ktDprJJNl0JLZNYZhGPjcl77A+z/wQVofMeer1/S8vi4J29F7ndQ7wFWn4rGajSCTqLHS/VmMfZF5c4Mfo1THx0dSQLPdMaroKFmGnBeJsao2+NCNRSmlZuJ6V2+llBTuDINc/OzEeB+IIV9AJTSErhvkxmhN1/VSBGREP3u12uSHyDAMnrpqgcyRzNQjECPZRyc6w9GzvjzPGvyG3/j1T6ON5fjkhKqpWW83KKWYLebstlt87sCYlJYiQe9Zbba8973vxTvHyy+9SDNpHgiMvTJMXXP/wQN8rg2pKpHm00azurzE9YHLyzXbbTcec1VVbLcdR0cnVFXF5eUlu92WEFLmcqdRgnhfJJ+4vLyU+yJ5lyvFg9NI2VRNauqUFse0OFHi8OkrlKCyDbnme8cxhEDw+zFVHCXJ+hjaRUvvBn7hl3+ZL79yBx8Nb3nP+9l5hUodKu5wvaetLTrWuE6zqBdoDJvtJa3dUdlGVIBUppglBVFzfHRGZVqGrcMmS40h6Yomj0XthbPvQ89me8mjRw/4p7/+KS5Xl9R1zdvf9g6Ojo+wtpKIZEjjZO93nuAHuu2W9cOHEDxVbbCVHq/v1FHb09XevFAgfRecI/kI7T7aFlIkoEXFRylMpmEG59HZwuz7nuFux6JtpCamstS6olIGFRLReamfMNJpVoX0BB6/IJTmS0rj/TA68btux9HsiNPTU+q6lcXeKY6OjnAMJJ1o5jVdP9DYSGs9dZ04PqqpmxkuKHbbjmHQeCcBhW0KpOhoug6rDOiICpqFmWHrlqqdc3x8hlJC2ex7z3Yz4IaAc/Ld3a6n6yFZxc1bt6iMYT6fETe9qKYIx2i8nm4IeJWoKoO1NbqdU4VBImFrL04KUBlIyQm33BouNg58LmylIplEMjl74SE5h3KORhtSJUZ5U1mcMQSdI/DXvYffxBGllUXlHieFmpiUJSKOagkc+IBEf404K6FkSJJQR0IoSjw5kJTkJ2qhNSXEySpEJQMTD6Oo/TGefyye1OgaPfliiLTokwM0V+sbpahfkUA97oAAY9CubON3Ii4ePhB6moJtv+XWradAKVbrDevLHSkqlss5y6Ma11iIBqsa3v/O97MZ1rx8+YBdVDzqei62DmXbTJGV67XbdVJsm4OYzjnphBxCVlcz9LvAzAQ5jghPHx/xXe/6ICYEfv7v/wPWDzcMXkQddAoQPFEH1vfOOXrmFqaqCfle7XY7hmHgmWeeuSIZq5SlKKXtNhtA07SNRLszncmiMUmjg+TaKmtR9QynfWYeiBmVEtTa4qzFxwo3dJnCo7DaEJyTfkRpLz9fxt12u2U2a3nrW98i1yQHD6palLKc91QhTgJDEgx3w8DOKDoCL77yCrXRLBdzjBa6VwwR73oxvrWo6TVNQ+gDq8tLrDXYymAqGFyHVUJUTL4nuoFYSz3Kb/z6Z6TOyoh8S1VZUVrSShSYgijzNXXFZn2JG/rshNTYKgv1sK8NdMNActK4tZq3fPrzn+XW0ZLFfD7SvozVJO/RKmGMNClNSeZaSHz607/G4ugIZQwp7R2yFISuapLBYESx1Fh2u4679x5w6+ZNoVcmmZtNipioSEFqeFTuv9EPg8hjO8fnv/B5vulD34JWlsvLTabMi7xxjAGVYs4Ia4IvIj/w4KFIOA9+h9WWtpnjhp6+32FaU8xvXBzQlTQ37Z3nyy+9wMzOaHXzmp7X1+xk7FOySmgDuQZCqaJKziifSpoYi2af+g2TbtSCND4BRdFIIsL7EJhSKfdskKJweQ6yR6tLoz/Z1JRGI3K0UmBRNyU6JKk4RcoDuCL1ZZ3IKX2xMClUIiCnTR3G2Hy+iaoWo9F5Jym/EHL3WYnqa60xVjMM+y7nMUkGRWvJIGhjqHL0vI01pETwgbqy9LsdKQn/MuUMTFVVOYuzj3Zs1us9xahQGVLK6jg1KWdiZPHxpCxlV9QlYtx3VI+x0JjU6ABMjd1M7CKlmPnCe8di+ve4IHJdMlGK98fvpAn1Tj1Osbr69z7qLw9MJPjIut9xvjrnYn3J5z7/BVyAul1Q1Q1BOC8kr0lxr0cuY0YyWv2uI8wHoZBh92MhQVKGtlmQomK93mBCQNcVwTu0TgTX04WB3XbLS1/5Mg8fPuDi4pzLy0e44Dk7O+PG2Y2986s10QeKqL/I6UmUU1QkOkLSVNHStE12tLnaTf1NbjcYMhUmptyNVcZIVdf4uBX6jVaoIJLAAUmpSzMkhVWGkKS5YRgcNgZMSFQJqpCY5aZoKikaZXAoSDFTXgQSkFAjHcLnTGHJgBaJ4ZKhk3unJu97nFdZ4i9iDWgVqXSgUoHkAzMdMSbRu0i/3VDriCVSpSQc5aqmmc+wTUXdzmhmC+aLRR6Xic16h6VjqztS6DheLOiHnsEPXF5eUjcNs6almjjiaXBQNxTFEDGKQUdwIWHqFjW0JLsj6YqY58JMrEInj06eSieSEhWlWOoVtBr7eci0rWi0xoeISynLMJOVaAxKBck8TDLXBXnWntwLKYYVmpu68nE1/o8xgzs12kuGfBSq0EGYxMqgbIXPDqtSpbybfFxZ6jdlZR0lGZ+oxEkJirFJXkTlXhaJkPadNfYSvDk6mY8tJSXrU2Kk1nwtb6uc0dRBmDoZI/Ul7bslj9foWmbiza4e9bVgtGExn6G14fz8gk23RSFKRxrJ0tdNw8X6gkW7lLqqfsDFmqAMyba88uiS++uObR+5dfoMIQbpP1XWusl61O12DM6RlMYqg0ZjlSV6jwrQKsu7jm4y33mG3Q7bB3w34EIgKsWiksaqfhh4dPces9MjqlmDbcRIK3PQVBjFDQPJ2HG9C94za+cs5iJnL41wEipEZlUtTSxD4uaNE+q6oR96vvClL+UaJ6EQWhQm/9iiXqauUe2uBbZKhqWqaqkLIx+jYi86kyJd32FNscek1wdKxAo676iVwoXA+eUls+qUEHPjU6TWI0WomxZjND55nB84Pj7Ch44QeghRst8xUhkJusYQCN6z2265dfMm81mLdx27jawjZFpX8JJxCMGjgaaumC8WdF0vgiNZETSpqa0ic5RSQkGPMdJnOyoGqV81SRSWEpnKj6gk1k3Ns88+Qzc4fLGhvJOgQ+57JsalloL9qpZAU9PkBoEl6Jpnj5zBVeSAttsrZFVVxVO3boniZ8z9eXLD1hSkn0VM0hBUbGxG9c3T02M22zW7XVEqzfWocWrTyXWQmlF5Jo6OjqhVhXav7Xl97U6G1hQtSOlR4TMfN6GVcFtLo5eY4hgVqKtS0JtwbsjGG0DcOySkzIWUxV9pNfLXykDfF68VqpMaBwFJiRKoMrLvGAne5QyGFIS57NWjEkpFjFHUtciLiuFQtl/OOE56SkgTO2MroVulmLsgDgzDwHw+JyojFYJFsz5HRZ01OCfdwfu+ZzkXQ8INA3VVoaykOjXSATuGRFvXXJ6fS5S+bdmuNlhbCWXJe2DIKgzCzasqeU+cFEeKWopmm5k8hLtSmC0FVlobnBvGB68slOI87BsJ7Y2s4mTGLE8ZifHxRlAyKK8aZ3tVMXHUhmGvSHAlUq/IRhxj4fdVbmi+59lhjcHjvOPy4pz7F+fcuXefL37pBZ5723to5nOUNlS1BlcRgnTsLE0GQR7fECLDridGkVVNpDGaKfs2NO2cYdixXm2oCJhYk3yPwrPdXDK4gUcPH/GFz3+ey4sLttstznUsT45YzJc8desp+sGhtGTHgpbun0rJRFnZCm1sjggNIsUahMs5pqp1jmfFKwP0TQmDRsc0OhkJcSrqtmGbVkQkmyRZHy8pWyV67CoZamMZkqT+vRuofBQnQ4SSaJUVwzt5GmUYlPDm3bhwCErQJAThdrdtO9Z+iQNMdgQDadJ7JsTIEB1u8GglzRdtpVDJ8//n7r9+bU3zOz/s84Q3rbTDyXWqukI3u8kmKZLNGXIgWbJmYEiyhIEBAYbuDRj+swzDN4Y8hi9s2JAHM5rBBE7gDEcMHVjVXfGkfXZa6U1P8sXvedde53RRqpZ9wZq3cFAn7L3XWm94nt/v900meXRwpLGnNAYIhOjp2i2+MESr0YWhqGrms5pm1tAsZ9TNjKpuUEZjlBUEUc4UxMTYjZwul+w7w7aNXO+3FGVJmHlO6znSvAd8ipTU+YEV81WZ7sPoI7OqQhUV0VREWxKC6FdMkmZDJ4cOI5U2eAUqN1xG575YS8CdbI/QGMsQ3IFCpRE7TmMMRgl//evu1gNNEHnWtbXZ9vPrJ/7T4GcSsEq2xbGts4jPUQltkmi3tAFTEKKHHKY4hbmCErefae1S2e1DhDtCsUr5U2a9lugwYm4yMjp/0HJIkzFx6A+dDLmZOoR53B3HiO1hjVN3RhnT10yNxt16eGxL+/XUp2Mk+e3X/Peh+ajKktVqhbUF1+tbQdmR1PXCCr0wxIqLyw11taAyUuTfdh6nEsFWPP/qBa83e8aoeOfJh+x2t29QdsXuXc5920l4nC5KFtUClTSVLbFoKms4KRu+f/6YYtvTrzcsVIH2ogPwWmOrCp8cYQzcbq+59+4T6uWc0hYoow/ohaCqcn3HcUTZlGudRPSRpqpZzhf4QehAgi0mHpydY5XCanhy7wGnZ2fs25ZPP/k5trDiIFUoHAM2Z/ckZaVhUuKkdnfP3d2bE217Pp9TVaXsi5kanJB8LLHalYZjPmsAMWQQ0x1p3Ds3Uhc1cRxZ395y/3RGiF7WfiXDZ5KSwS0cBpknqxWbrWMYfEY9nAxprRTUU5OhUMxnDcvFnHafaLdboTFG2Uti1pME7yisNKinZydcXl6Le1Yp+R0aDoGY01BTKcV8Nofg6boetOjcgo+HdTGmiMvW9cYYmrrm/fff57MvviD2Pdpa+mGUnxsleJpsd22tRRcVVdMwWyxp91tIwrbxXmhyUtwCSZAvlxJJC1W2aWoePXwklDgv2VJCl5Lr6oM0ZiFKfZmirGvGGE5PV9zcXrHbacmmCsJkgbsYipQUShtBiBUU1nLv/AwVoFvvv9Hz+s0tbE2+YDHSdl2GlkTAbA5CNfJNcnfczXeyiwd3Uyxy6J5BY6w6fLhJJ6C0wjmZ4ocQ6fs+FwMmW8SWdF2OO6+qw4R/2gYnMWDwk49yJKWAdz3OWpS1oHPGRfCYGCibhqIUwXjbtozjeNBzlAKE54wDhY6Camy2G0EIlNjlTmnaB5g728Cu12tJBzU198/P+fKLLyjLgsV8RrffU1hLoTVhHA+5GM557t9/eAh0u3//Ia9fv2YYBuqyYTm/67699+w7SZq+f/8eEBninS2sNA+W2Wwm11RrZrOG9XqNcy43gQm406P0fccxRa6wFmN1LqalYK/rWsJb4pQ4eUQj85579+5hjGG327Hdbg8bp898SGPMtE/LbaHUAX1RSjEOIzFEYkj0/cA4drTtntv1LV98+SVfPX/BerPj3v1HzBZLyqoRrU2AgIVUYGyFD62E5aVAVPIARafIcs1Mn4CURmIciKlkMa/Y65G+77CFwsU93X7N61fP+aN//gm3t2t22z11NZMJRdK0+4E//MO/xTvvPGV9u6OoqizeC0KqMEYyY0LA+SATr5SD+ryj60e6vsuLe3YSkRPzTR/Xv7aHhrxheFK2J00xSYaMloU3KSRvxoM+JNUljNbUdYFrB5ncGUOxbDDLBvqBsO+56nZUVpKaexVoU6L/Gg/bqWCNMbHf74kxMJvNmM3nkMYDNWXfdtiyIGVPcOccvR9JGB49OkcXFUlZNuutUBZ1QVNahsGR+g6131OMI/NmzvlqyXuPzlkuGpq6YrZYcHJ2ikaRQsCNntlsJiumV+ATYXAMhSb5gbouMNUp3qocxhdpMOgpGTyA8i7zcC31bE7bd6IpcFEsUYuG2SIKVdO5DKcHMclAhOeLWc1oEtEnGXtp0c1AQqeAihGbEquqRlc1LoHShq32tIzgSmLXH4TPbx+RdKBwSNEcJRn8rUOGPBPamg6hgL98T1lsthi2BIIpSUpCE6MyFLXkCdh0FFporVCk4p2LkBRN0mSII43QLER/EUUQ7pOsEymSks5TwWlT/tqW6v/nx/bYbp08DJGhUH6Fb/gCb1OZv63HvKrYrG9wMXL/0QOuXl2hgXunpxg1ilayPmeze8Tr12sq2/LD7/+Qf/OTP6cNEWYzbm57uiHiE3z6xWdUlXj/h+DyUEfOu7VW9kY/0u46ipmgGHM75/d+6zf53vvf4d0HDyhudsTdjk1V4rYbtC14sV7zar2maGYYW1LVM2xRsb/dMrgRu7lBZTRj2jenZtI5R+r9gS41q2pqU1AkTdd2FBkFVjHywaOnvP/uu7zz8CFGKTrf83r0LEzJk0fvcHZ2zunZPf7xf/+PKZNiMAW3uy065gfK6ruiTasDlRmEmn3v3j3KqrpDNTPC7n04ZGU5N1CFAlISm/YUBckA9kPP0tbMZnOWizk61tishY0xUNhJ4yIobW1rHj16yF/+2c9JeKactZRR3n70UvgGEUP/wR/8DX7+lz/j+Zefc3Z2wqypiEF0nvVsRlWV2MLgfcHp6QnWGr747AuqqsyW+wOzJqMI3jMaQxcdkSTOgPk5jyTsvCFpCxiKsqIsEs4ntHK4MbA6bSirgr/8+Ke4ENHaUpYFpS/ASVOENuJKB6LJzcj2sqm4vXjOaj6jOF3x8sVXoCwJRVRJ1qsk2sXgI9//3vdp5nP+0T/4h/zob/4hTTMXpEopqrKgKmv6bY9gsYi7pVI8fvKYD95/yj/6x/+QBw8ecP/+GV99/gLvBEk2WpCrkCb6aCTFiC0s5w/ucXP1GqMthS2+0fP6K1nY/rIb0BGMy92k5NjffyooJzHvNJkty/KAUEyL6LQITqJkuAucAw6WtNN7mKzVJmHw9HpTFzbZsE7ey1MRPJvNMJmLN4wOhUzgmqokID+37/uD2LosS05PT0W8ow3z+ZztVkQvk4hZhGGycQYfGQdH3/fiOJTuNAmT0Hx9e5ut4OT1Jhh0og+tVisRf3Z9bjbuphwTWjAMwxtUj8nGV2vFbrfD+/HwtUVRHH7OLlOsrLXUdX04L5PT1sHhgjvBv8nCHx+8TNuPbGqHYXjjOk+L85QQ2XXdYdE6nhZPU7y3Rd7TQnucGTD2PS5/3s+/es5mu2W73fLsxWt27UDUlqKZU88W1M2MsqopsASjcUpQtL4XwXZCkKkQoR8C/RjBeqx2OYBsgNSjoqbfXRPDiFWBm8trXnzxOa9fvuTZs8/EkSEEgeOdI8YRrQ0fffQRy+UKWxQoZbLdoDSaQQXGDHdqLS4XEsInNpjpMAUVu2JpnCXMB/UmleTbeGjliTg8jphD0ZTSGPRd4JmO1ChCkcX4MVIF0bOMIRAKEUcbrfAKolYEA4MK+BixTqFVoreIWFIlUlBkTg4y+lDZRUgza5YoBd4nepeHCnlKF52X92kS4IiMDL6jcwFbFhhlMbbEaPm9UpqYAl27J3Q9JgTmiyVnqxWnJ0vmq1Pm84aqKinrKqenKkgWZaAfRwnywqFsxJZQVZoYeoypRexprWRzDD2beMNJsxQjf4A45etAYWXDCVGEhjGKTsyWNWU9J/gevFBYjTaSpB1HKh1QBsmIGOU5jcbIeQ5it6qCZ/Qj0Rh8jLTtlrbbMAwtgxMEanKtMQgdiUxJQsz9OIT/JUGXyaYSOj8DhdIElcXVCEKuYzpS8RuSKnHKEo1QiawS6/OUCyFbGgqdsGmk0IqirLLLnmX04AM4L6LwYVCMzuGdCGzJ2jO5R4W6krRHBdH2pQPyMg22jo9jnlg8+v3dPwvKEe9SjfXXNwHHaySZdnr0r3ktuZu8Tq/+ddxKnVGkb3OrsVjMGdaeMXrqps4WqDnFOg5cX9+w3nXMV/chFugUadtbitWSsO+5vt2Jxi+IUce9R+e8fvWSsRfbd6PsgVIi9JgciNaPpDLSzGrunZ/yo9/+D0jBcXH9mjIGKjWiG8v7773Lo/fe5y8++QWbP/tTxhRZLOYUaom2mtuxxatIWQr/3xYFRVEc9tjpVxoh+kiKgSfffYQKiv1mzzgMzE5WPHn0iN/8jR/y4btPWc5nFEmhk6LMVNFFWfPd997n9PScqqr52/+L/5h+GBjGkeubG/7iL3/KzXYjw7ajWm1CVabaoes6IFHWpTgj5Vv7uGk9GJSo3LikhBh4aJLJLnVK0Q09i6qWTKSqYBwHrKqkPvSe5XJBHCM3Nzd0XcvqdEXdNFxfXxGiFpc1nxh9ZDmrWS5X/OLnn3B9fYUi8fjRIza3N4xxlOF/kPOngAcPHoixDRKLEIMwUpbL1aE+DTHiY8SlSFlXPDq5x/b1NcqIo+D5O48IY4FOoJAC3piCqpyh6Kiqmqoqub65JSnNbLZgsVyw3e8z2VyRtAIjDdgYHE8ffocUPK+efcluvcaohJ412KJEGUtMkTGMB3MUpTW/9sEH7NZrLl6+EkQ2eIzWVIuGupIAQqVEmxiQNRtj+OCDj+i7LV988QXeO66vL2maGd95/31ePnuVh0+9DDK0oCjDMFCVFXVVYYD9bi9MJf3NVpFv3GQcc+2nYveYK/pXCcG/zl3omLM//fux0GgqxKfXmP5fluXh+ybu2PF7On7dKYnbGP1G8T59vWgw7ig+ZH9p5332zA+Hn2uMNBabnaAETdOw2+0oioK6rg8CaaVULjZFE9L3A01zl8p9XEAPw8B8PpcFzDsKqw98PODgeKCU6Dqmwn+Khp9eaxzHgzvUnbYC+r6XqUxuJo6vx/GkQvykJ9veXxYcH1/vSdcCd/8GHIT1b4sUD5Sx3CAppanrBpdpUwcZeZqocXeNzeFeyX/240C737HZd7y6eM16u2Pfdlytd3K+ioKimlHVM8qqEWqbKSUh2heZVyq/nB9zURloO8d2t2cIEVsOaGu5ub3E+8DQa54/f0ZS4hrz+uVLfvHxz7l4+YLN5pqqrsSVQ+uDiYG1BU+fPqVp6pzYayW1V905zAjFL9PKDlS0CfO7ezam4B0JRLIiif6WdxlKB5LyBKR4V0qhuWsyUDEXmlKQJiXOSSYkJsWt12KvZ1K2F81igagko2BMAGLBmnTK/qK5yUh3TUbKTUZVNozjgHOBfd+ifR6QhIQhobN9qNKRpAI+OoZxZL9vWTQLqrKhMFPmjrjKuXFEx0CpFSfzGcvFgvlySTNfUDayyRprpGhHoZMmKY1zA94P+DCS8BgbKStFDAPaa5QpqZRiTEIf6EbHvJ6BEgvr6HOWhBbHIqu1WG9GmUZhNMYKBxhTkMJIiv4gbE4pYJVM27yWtGpBl3T+mpB1DJFh6BisoY+RzW7LOO5wQ48L4lwlRTRy/pTQjqJSGcXIyLUSwa1Ocq2nqZsGCqUYVS7XlT5QGqWAVsRkSBR4lRskLYndKSuutVE0pcGohFGBsjQ0M0lULsqCYVR4r3FBU6eC1ihMDx0RF7ygjofcD6FkFVnLEQl5YCHNyJui7TvQUYTlX9dkCDWLiXL1NSjD8b76Nm/+za+TJkdYWXn2naKgpW8dWuV//xYjGi4MoEQDJMGXFh3VYYDUdi03N2tWp4+pqhkpjOzbPWbWEMfAtluTopwHrRRlVQKyZ48hUpUVKmWOu8rGJdk+VqOY1w1PHj7m/OSEq+sLtvstZW0Y/UBFYrFa8M7JfS6vbihipA8RYy11WQGB9eWe6L2scTGS0t3wNGRakHeOOIKKZFtqSxhl0j6rax7eu8f7777Lb/7gB8yKEqOAKDkVKoHVhlld8+D8ntipoll88AFuFHrozb1bvvzqKza7nSCd4a4eCiEIrTnBcrkU1BRAKyoryZYq03IOgwStJ+JgHrYKvXB6hiLqEE6Z8joPoqs02ZkuJU9VlvRuoO87vHOQJFOtKCuGwclnRJg1xli00lxfXtK1LU1dUZWVUEmDuIgJ7Q1QErp8e7kmxMjJ6amwZJTKNK8g4vd8TWxZUJiCQmu6zRZTaqpZQVFVWF1lBzKH1pMzVWC+nGOMwruRrt2jbUlZVUCiqkoZrDmf3RTFYayZLyhKS7fp2Nze4IaeoS8xRlPVDTGBCw4fxXrZGo21JYtmzuuLS25vNxRzycVISda+shSERqQM2VJcKwprWTQz2u0NV5eXkBJt1xFj4r2nDYvlkpQSuzCK3mZ6n0oMe8rCyqB3GPApEL7hEvIrW9i+3RS8aWXLG4Xncc7B283AREF6W+Q7FcETOjAV6GVZMpvNDna0KSVmzeKNILhja9Suk2A6k5Ov75odze3tbZ7mzZjPT+nbFu9H9n6UeFilsm7B5++Rwn0cxlwwSiM0m82YzWa8evXq8Bmc85yfl4eif0JvJrRlQmzm8zmr1Uq8rVPk1cuXeXOSSeRms81J5QuUGg50paqqDtOGcRwP1+UY2pWmp8z2uiPr9ZplvoGAA10qpUTXdfR9f0BZjpu5tm0PP7vve7lhrOgF3kasjo/ZbHaYhkzXP8ZEPwx88OGHtF3H1dXVIeQw8yZIKbxhjXegX2nDZrvlyy+/4s9/+jOGmOidZz84Np1jVtfUxYzZbMlivqKoamKU74sIHWNC4oqiwIxGqGXtwMX1lm3/C7EpNJr5as717RVu9Hz16Uv2wygPmtEM7UAY/YHeoyikmewkILFpGk5OTvjggw8wVqY4thA9gc6hRRMkLr8sbqL4TU1b3v+FricJ4kJn81RFRWnLb/rI/rU8jAoIIuBJOodHKUOhrAQ1k0haJof7MJA0lNUM7T0qSZM4+kgcRSxoi0ShDbUtBKZXvJmgnSI6esJRkzHx+ROamBTalIyuoxtb+n3P47OHQq/0nmXTQKEIKtBhUGbaIBPRyzU5XZ7g944wePb7gX63w5CYlSUnpeV8teLs7ITTkxUnp+eYrJ6WTJ4o02UtM/8xjPRjS9tv8K4HPHVt2G53jPsRgsZYS5UiKXpJ2O1qtKlIFCQ9UDUlRQ4ArYoSYmDwQ059FVe8qqpRRYH3BudhDPGg6jZxROtKKJpGQu1iUoRMWZh0dze312wJdN6z23dATwoOYhbOS++HRUwxYkadDtdHMcUxCtKR4iESUyUodWIARqZwvTvMQDKJDDEWkkSeVYBCIfEYq5lVltN5CcmhCCzOZyxWS8qqxppChJk+iuuUtuy2e3b7jk07MLkRhgi994fWpzSWQsua6LSkuIcJ9coZS2/sZ/m/t487TDLTWVUOVPua439KRzGBGyoz2w4oSR7jTA2Oktny4b9v6/EXH/8x5/ceU9dLfv6zj/n+d3+dwlhur69BF1hTYpVhd3lNUYlN68V+hz9/SCpKvAZVKCxC03397IKT+TklFZ9/9in2XFgOUgBnV82YmJcVtSl4cH7Ob/3wN/jk048JaQQrOqCL9RrVOx42K+4/0pTWk4YNfbmi6wZqU/Du46fcbG5wKnBSz2gaha0airKWgnyqn/oB38PZ+T2ePH3K5c01OgRWzYw//J3f5W/+/m9z//wMqwuinwYBit2wQxeGVBQszk4p6xJrNDGIANooaMqC8v59lss55drSjR0uZo1FRm26tkcpxdnJPdptR7sTXeKTd+9jCwNahOM+7/0207kTgFZizjEmfDLUsxm7cWRWFKzmS+IQ6PY7kmtRqsYHTUxgi5JhjASfsKZAo7m5vmHf93z44Yd89eUXdPs9WkF9ekoIgavXF1TG4pUmOsfzF8+59/AJFCPb7pJltUSZRCJwefWacRxQWjOMvdCcy4rlYkbM4XhjGPEBnrzzlO3thp/95CfYlKjnBSqNfPX8c37tt3+b+XzJ+tVIUa7Y7W/Z7m74jd/5bb787Oc8//lLEop6vmK/2/Hs2TM++u736NY7rscLkjIMCVaLOX/jD/+QP/7n/4Ld7ZroB6zV9N2eED3vffAhV+s9g4eoHKWtOFudcbI85dO//IzeD0LFqiqa2QznHM+ePefp03fR2uB9wMeREEcKYNXU/PHnn3J7c4lzPWZmUQSCD3z++We88857VLOS9acbtqNDKdGPnC5OOFku8H7kiy+/YHm6PLAvvsnxK4XxHTcEE5VoKpyPm4qpQTjw7XkT0ZgK06lwPs7JuBNk3iVFT83INGWX6VI60KAmtGHquJXSnJ6eMmkwxjFRlFYaif1w1yBlGpFqGrwzhL7FmImqJRMOnakHQ+9YrVYkONCNNpsN19fXzOdzhsGhteHRowdsNhtiFB3DYrEgJUEr9vv9gbpkreXm5kZg9xhRWFIK+SkV7uHQe2LcMwy9JFU2op8AcRV47733uLi4ODQWVVUdmpDJNer413QdJioYcEA1pmZicrmY0JH9fv/G9fEh5EAvf6BEHVPVgIOAbmoO5fpo6sayzuemqmp2uy3OSXL65DQ0cWGna+tGx+3Nmj/98x/z/OVLrm/X6KJm13XcbLbM5nMWiwWnqxNOlwvqwlIYiyoM+7YlRZ8bRqGvTchP08woygKPYdNKqE9MifV2z8uXlxAhDpHWOeEmKrEyVkG2bo2l6waUErtkYywPHjzk8ZNHDEPHsloebI6n6c1EHXM5HNIaQ4iTXbMieIF1ldK4GPEuZcu5SNcOeBsYijsHkm/jUSiFCpGUP2tMKdNaCigM0Ws8MBjo84bbExlTxCjEj71z1Eozr0rms4amHSjLFpCmBe4Sog/I2mGYfOcw5IKn7TteXr/OfvgJW9Xs2o5VM4JR9GOLxZAsWK0ptKXQBqO8iA3nM1bzhr4u2d6s8cNIbRRGJeaV4WQx5+k7j6mrgrKweDcSUkArsJnORBrxcWTo9/ixJ/kBGyLeRYLzjIOj0BVeeXFeGUdScjmrIxH8cHjGxn4PypNSibVH7ihJRNAxiJC9rmv0fMaIYxhbxuAolMUWBjf2IiAESQZSKZN/JPFaxYgKQRAbP+B8QIfE4Ed5T0ZD+J9/nwpygRRcWiaiUyCeRuGRBzIqQW5gkEFSFFMFYxVVaZjPK5QSDYnRsFgsODs7p5nNKWzB7WZL1w20/YgtSuZzsKbA0tEoi/Me5yPbtscFQcl8DJlrnlCFzeGI5pBxcIxax+ygE5Obbr67zzhlRnG3J8p+9TXn469AHY7//pfQ5186oxzaDSXf/D/jyvz1OOarhqIUm/XVYsnQDXS+5Xa95l39PsuTM6yuSS6y7Vscker8jOvdnrbvKUuhDtvc2Lne47oNWik++OAjPv/8M5TSBy1c3TQYDN3tDqtg0dQ8enBG0h0oTwgjz7/4ii8/+5TQjWxPHvDo8QM2/Y6b7S2hnrHb7dEhcDKfs2zmuOTQzrN6cAamwCfFy5cX2UUvUBUly2JOY2v6fUe/31EXot/8D//W32S5KPPMJKBNwdXNLZc3V4TS89kXnzP0PR+89x1CkucyhShumnkdrI3ld3/0e8zvn/JHf/LHuQHRJG3pxp4YpGPYbjaMzjObNSxXq4NRjNKaqO6iA3QheTRkRHL0A4mETVIfOhNxMeET+KFlVhnKsqZpVux2MuS1hQxclU+QFO2upZw1kGCz2bBarqiLgtvbK8FP8lBCpYBGKJ/zZsbV9S1FWfP03Q+4vnyNNpFEYLNZo42mKktqa+hCYHN9xdXFBb/3o9/PbmCah48f8/mnn9LvO05OF6hR8rBUDFQqcXv9ipg8j999l9glHjyac3bvPv/m3/wLyQ9SSrKDciK40ZYvv3rGSTPn/oOHjM7x29//XU7OVvzTf/KPKULCGujGgLj9abzr+elPf8qHP/hNlmdnvHj+nPvn5xDg5vKadt+CiejSYCxy3rSmKC2ffvYpjx4+YnWyIm0DRkEYHZc31+zXN7ihQ5lEcEHcsWLg9vaaoiwxtuDBw4fcXN8Inb6qubdc8friJbv9FgUEHyAHsX6T41eysH37z8dUpmM61PHXfN0U5u3G4riheJOa82Zq5Z3mIubh991rH6eQK5Xygu8PTkUxHTtUTXCf2LqKT3mZQ7PyQqxEsC0vLRu41sIJfNsB5BAWlykx4h6UMGbK8YhvNEPTBjSOY07Claarrius1bj9HqX0Ydr99vk+1jy8rZ04piulFI8anTu61piF5VPhOzVdx43c1AQe51iIcPnuHB5fy7dh/a/nFsMwuuxRXWHtIDaRQdLTxVEsHZqMvu/Z7XZ89sUXvHx9xc16x+ATwXW0fY9zjrKwNHUtxWZdY4AUHNE7ut0GsiPWhHDF7JIgk2wxBANNiDJZDl4ePJUAnxjHIKFbSqg+TVljtRW/ayZamBQZVVVIANB0rrU5UL7kuqVDwOLhmh5RF+7O2ZuheylxEH4mvr3FAYBJSvIcfFYFZy45WhNI8ksrgtLi2Jb/zosCWM6tmgxLZcfUSmUBoni1C/skU0gmkCAjWtJgZAeRFBlD4HYn+iplJJsjpsDgHCkbAiA+T+Kaoi1WWzRDdvIAlRJDuyeOPTq7rJRGMa8q5k1F05RUhcVaTc7YRlaZbCGZf4bVKdP7RuI4YlGgLEknBhekQIhCJyPJ/wtrSMETlEclCQ4bB6HplFUpmh9j0EHfTRrzOmSMFZclkx0BJ+e4FDG6QumE0emu4DfCo/bWSMr2ZKoRZDiSYhI6lhFHl8MEPT/bB+Q7+EzNgqnsPRS/R4c032SKdxLdidYkFXCZchXRpOy0N1mEy8XSJLIxiZKGfhp+TYhmWZaEKLa0ShuoBeEwUVMXltF5+mHEO4/GM2aKrSwhb9KFp+NuEJb1aVkoP1FMjz/bG3sdfD3i8TV76PF+Ox2/xAhQd23N3ZdOKUdyH31bj6ZZ4HxgGFoUVoqepGjq2cFxsW33EKFsKqFDzRr6zY5+6PM+L/bhSmWasg8Yayhy8Kb3niE7N1pboCvo8tnTGqqqgGxd6saB66vX3Nze4DpHGhPPXr/mcr2hdY44DNiU6LVi3+5l6h8C/b5lFc4kHXvw9O2AUWIvW5c1VSyojKWxBfc/+oj19U3WiwUiie1+x4tnr/jwg18jaTEn+Nmnn3D1+pLCWsqqyoicZ7/bcb2+pSpqmmbG6fk5tq4o6joLkHXWGYkrllY6G+84vPOEIAPX4AW5MCDBo+pOS6QmpFi8scUBKu/lPgS8FiOFuiwwVmxcw7QvBrFZVUR0APLA0wTZk/f7PYtZc3BdHLpe3OxQkMS8QhhYUjekpJjNkgwi8t4+ZaQZRXY4jPjR0Q09292OoiyZKS0mEM6hUqQsLCoFQFLJVQjEcSA6lykHBtd37Hd7fCfDW3WoxeR+nRgjVVFhm4rH7zxFK0W/29NutsyLQppFrXKzAJAY+p623VPP5pyenqCAvu9oty1EDzoHDUZxMdRGkP6YAvtWNCApJdw4wujE8S9JDaeURKaqONVtsN9tmc0XnKxO6dteghWtZRgGurZl6HuUOVrfvsY17+uOX4kuNRXyxwva27SpqTCdFsaJSvM2JSqEcNBefF1zcVz4vqm1EI/ilBIUk+1peuN1tNaZViXc+9PTk0yJcvnfJ+qWpu975rMZpS0pVWKzH/JEbNIvSHOwWq3oR1mgpteZkAMJmRNO9uSANb3fvu8Z3UDM6dvTdGQc70TZWmk2mw3L5ZK6rtluhSpV1RWzpsG54dAQHCNDx8LvpmkODzQI0pFSoihqZrMZL168wBhzcOHy2eJ3QkGmRmk+nx/+7pgGlZI4Xhirsda8oalxzh3e19QAHV9LlYu60Xms0tiipGoaGu/Ro2SuEEN2YPKH197v97y+vOQnP/sZl7ctvQsobbjdyGKrUqIuCxazmuV8RlOWqOQJw0DfDeyurzBlia1qmqZhu53SSmVzQCl8SPmaZMtRH6lsLdaho3DjA4gA1TtWixV1WbG73VOWVU77VsxmDdpoYvSHZm7KiIG7BTfmgoJ8H051FGl6dtLBB3/SsUzvOSXPL5di367DRvFzJ29oxmjZCBSM0aOVpdIS8EZuMmLMTibeEaOjNFpCEIPDj3lKnMRGUU8W5LnCmhZDTbYmBtAi70gJQgpcbW7RxqKMRveKhbVSjERHaZTQm5RCJ0NhK6wp0bQk74luxPc9168uKBXMq5LTecWiKqmrilldU1pFWYm9pkohU7YSGgnd0hqMSpTaEvqMFLYtdTWnsBarStp2S/Ryb9hCMnEMMrnqxkgMoyRzWxHHj95TViWzpgItn59MxVSZlqGzrastLc4PxBSIUXjQ2gSsTsRS4bQiaY0pS+bVnDY4dtELxZE7ow2y935hS6GaZlcvowuClkIQPRWFcn2mYRFf48w0hXQpnR2pjIjjk1L4OOVeGFyIUiBlCllRFoSU6J1DBUdTGkprUVlzZ91IXdWyRqIzXS5SFBpVKxZFyTiK7ma7a+mHnkQ4FEMyVIGUf+bxgO3tBiCmPNg4ajLe1G8cBZiav9rq9u6c/NUOUW82GqJR0rlBPN4//6foV3/dj/nsjIuLa7brLfP6nFAmmrrm5OQE5wNXV1e8evGSxXzJR09/nfn5GZdDT+8cbdfRti0pkfexqZB2aKdIKbBardhsNqzXa05PTwUBQFwBQxRdkKCGHcPYsm+3vHj+FbfrW4bOs73ds1qd8NXFJX0Av99jgdFobm5vqJuS6CPr21tm3UPawbHZd8QxSnNQFqxmC0yfmFc190/P+A//l/8h/+yf/TO++upLfvHFF3z/+x9wdXnFP/hH/4j/5r95StnUzE+X/Kv/x7/hbLHkycPH1GVFYS1d2/Lq4oJ/+q/+iHv3HvDk8Tt8ry5Ztzv2fXdgJfgE3jmh5lbVoZabrO598CQvLprHzBP5P3lgckcNn2jtzjmc9jilGZ3ifHUiugkSXd/n4YbUREYjwYJeXDy994zjQNgESiuOplVdc3t1TWkNRVWSYkBHD0TGfo/rB2JMmLLElIZx8DgnQYo2m4wQAtGLFXoKgc+/+Jwn777LyXLBz3/+C6yGsrSYlDCFGF6MLhDdSOETxkXa/Z6qWXG9vuWzv/wZp9VsIgK/UR9NTqG7YSAWJb/zez/iy198wu72mrktGcYWpaAopYnT2S7cWsXLly84OT/nux99wPPPvmS7XrPf7CgqQ4hOsqT8IANXLYOT+WzObrfj+vqas/v32e9bTAzcX8zRVqEMYvUtVAJUgtqWtNs9hSk5fWdJv2/xOWfj8vVr2q4jeHECU/n6G/3N2odfCcl42w1oOonH0/OiKA4C5kkQDW8Wn8BR5gOHbnu6OYuiOEzbJ17/NDUSJ407lGNaoIuieOOmT0lnrqxcYLHbkqwGW0ih772jKCzBieC3mTWodmTSJUhHnA6dqC44uAEZLaLvoii4vr5lsZBUZ+eEVlUUBQrNxetXzOZSgF5dXbFfb7HWcnp6QlnPDvHvjx8/5vzeuTxsrufe/TOstYxuPEz1nfOUpZybvu9p25blyVKyGjY3kPThvJwUBft9hzGDdKn7Vm62TNcC+br5YsE4jDg3Mo6Ovh/y9ZXrNDVF1tosJvd4H1jMF7kIDygEmZB7w7+BgNR1zSGJV2kJCup6NusNjx4+pLAi8tpvb7E5sTPGyNXNmp///Bf8/Oe/4PMvn1HMT0hK8/ryEu8GtIKqNNw7O5G04b7j1YvPefz4CXVZoLzlycPHOBKdG/nxj38uTV5R04W9pCFHUMPAcrmk63qCTxhdEqOgWPWsoIte4FgN1tasNxs2wNn8jJQSVVlxfu+UH/3odyAH8yyXJ7lAFpOA7X4v4risxYhJihSjQCeNjjKX10rCeVL26vReEDulJLBIafO1hci36bAAPpJGT3KeaESHYqsCZQ0xaIJSFEFs+5KKkkqN0KxCP1JWltokqkQulkVcT0pidfw1jZhOd4z3CUtASW2bNGTzIFRMDM6x2W+4vH7N45OVTK6TQicokqXAYFGEfuD551/w5ehhlOHCsiy4P294+uQhdVVjbclsVufGJ+K8y/B+QqOpC0PA43zPzdVrxm1L6AfU6AmxxwXoXKIwFdoqAho/egpTZzqRYdducW4kBE9VK6JJ6NKw3xfSwGjk3jnyTDcaqqZG6xmj26B9Rh6UhIGqMBKDoikaUqHxhSG5hKoKdFCYZNB1yfnZEqdgu+8ox4YwOrp2QMcSFfM6YkvcKBkwWQt+aExkin/nRPVXHdN1iloRsTgMIWlCFJvqiBT0PkZUN5LanpQ8tYV5U3ISI6u+p57NUHkCJ2hGDcry8uJSEFUUxipKbUBbBm+l+RgSMYm9qU4xW/MKygVvFv/HRbzkhtg3BnTH1NVp71LfsO6ffsbXHW80N6RsfiKZNP9jzcm37UixobBLykKzWW+xFGilmc8XnN27Tz/0bPdbnjx9h1c3l7RXr+nKku2+pR/EuakoSqyxWFuilGazXuO9px5K7t+/f6DX7vd7QumpipJ3nr5DGaSg7oeecRho6pKmOiElz67bsdv0JG8Zf/oz6rLmt/7GH/IXn3zCMA54P9J3O+4/OEdpsaXdX605vfeQ9x59h+v1HmsMTV3x+ME5v/+9H/LkyWMevfMIVRoenJ7y1Ytn/Ks/+dc8fvoIlxTbruOrl1/y+Mk7LE9WPHn3XWLXoxScnKxQWrHb7/ny2VeMzvHl82d88fIlf/zTv+DV1SX9OJCMxmAP9+Z+Ly5Jxlj2+zUPHz2kbmpi8NjyTlvrnDvoOA+hzEodariJJTEMA4WpcEYzRsN+7FEqUhqd3RkLmqrGliu8G4mjJyR3MO6xRUFVV9xc39A0Fe88eczlq1eCYI4jlZUBTgL80NOUJUNyXF6/5Lvf/3WuL67Yb7cED9oaiqSxKTHsO/wwysDGWDa7LarvsFXJuNuThg7lBkK3o5rQlxBQQyB1jr7pUM0MCqHWp/2eZBJYle23hVZqEZRy07dsYuA33/2OJIe7yHxW4mMPWmos70YZloQkiLKS5uvFi1dcX1/je4dSmmHo0aU4W5VVKagcom9smhnGFAzDyH67p64aDIl26AkqEbLeyJYGayw6i/ILbVhf3/BHL/85v/O7v8fVzTVXV5csShlUez8SEKq7yuF/3+T4lTUZb09jjqkfUxE1NQ/HU/e3YV9jTLbsTPnkiDBNOIOy+6eEdEtKgvZICmuEVzgJjo4X7OMJ+hTEp3UWkKc83YmJgBKRXPYAVjlTo+u6PN0zmEKCwiSlPC/SOjCxW2IMuRESL+RxdIemqu8z7x5JFh/GUR6msqKZzdHayHiOhPOBmANvtrstw9AToqcfWoqUkR4tmpKiKBiGHltotCnwIbDvNjgvdpJFUdPUDWVREoGiqoUSFqFu5ocGbGrcQDr0sm5AaenUkzg1KS2TYZdF8z4ETCGbefLuQDOYKEMhSpGgc5L2HZJ1l/AdfCCoEZUiVin6di/n0Dmx2nSOfui53ez47Msv+erlK17fbghKo92QE0aFGoGGlAy1lXT0LmypKs2qmzGfnTBbrHh9saFzPe3YUpYVTS2Wwf3Q08wWOO/o2j27bSX2vM5TlhXOS3FQFxWVNego94E98PoTMXQZGZqxOpmTVMw6mICLgcrOMbbE+cm5Ky/EshKjtfAwrZKkcR2Ff/7WU/fGvQxJEsO/xYdGUK002RhPNBpjUCaHoClxjtIIJWbKkbBAXVrC3FL6SBlAFSWl9TLxN4aohCcSU4arkzxn6UDImc5x/rO6+6NSortI0TMMHZvNNctS0VCLXa0pMHkSppNit9mgA5ioWJQFZ8sFp4s5lTHMypKyLNB2QmNy4rxzmGxhqLXKk9Ecwxoj49Azdj34RFXOCAlSdERETE1SDMOIMiJ2dtEzjDA68VFP2qErjU0iXCY3YlZbFIJEaiOptRqN0hZb1mgjNogxeoyR803yaAtYSBZiAamUzGCTAFNw79FjTNOw3ux4eO8B29tbnn/1FY/uneHGgegdi9mSXduzbztu1xu8u0WrgNERo6Z1GlIMoEJGSKarlt4A7xRTGFjeLFPACyNbQhczbYok2r3oQna2Gnn+8gLnA4t5y7Zec3b+kKIs0bakqhrRxsWIVhE3ggpeKGNWU5SGMhYkHwnKoLJ9rdCmpuf77l0e3q0CVN7flGQVoe6m5+M4rcU5Uffo7vza52eijr11fB19ihSJkbx2HP/Ub3ezoShQSejJkxWq0rDbb6l3cxLQzCq27YZYNeiyIKCpZ3OhWfXDkWFNyoVxQQietm1p2xatNcvlkouLi0PoW9EsBPHUsq9VpWUce9p2Q9e1OO+JgClKApoxJoxKfPfDj9hsbmn3W7p+z2a7pbAS9ud2Hetwydg5nn7nI87vnXPv/JTvvv8uT88fMKtrCm1QxnL//JzRj9zc3vDJz3/BOIz0w0jXt3RjSyrkuYhKrLA//ewzml/7AXVT8/jJE15dX7Ldt3TDyM3lVgYemU45ZZ1FWYZIuf4KwVPXlYTxZTTvWG9pbR7wHNV3B51GpoVPdGrJm0kM3lFXBZWZ6PIRlaBQYi0dQiLgDuYE016xWC6oq1KYFl70C2/T7WNM+OSxRUW9mtH1U57XFLBosjOVOQxCE0LZLsuKoq7ouv5A51QqUVZiIKS0BMOaTJktrCFEn239IxZx3zseJkwOqEYbVFmiZ83h/E0DBtxEw8+W2Yg5hvcBEyNN0/Dhhx/RbVsG1RFGTxgCIU0D3hlaWRmse+g7R9f3DMPIfC5ouEqRoB0+IoMYJbS0mB3uUg7oc14G+yerFdv9Tlw205AtjmXILoN9vj4E6WuOX7nJOP7z9P9J9/B1NqZTw3HcZNzBy5NvvegYpiVksqcV2N4cvjYlEd9qnf3Sj14feOOmlsXV5MX/eJGdio18C6cAyA3nnENpe6ARGAzJ32kgpq1PKdnAR5fQXrpJSZNO1HXNON7Rm6aguq7vOTk9Zb5YoJUWOobPN2hGDtbrNdvdhq5vWW8FTbFFQUwetEUZw+Ba6qpGW00YHftuy5TSqHSibiqqqmG/bymK6kBVKsr6wB8eRp+vh3jo10VJiJGJm2CyK9cwSGE/LRKLcoE2muRlYhjzFJLcZGilMEpneoCc5sMCE8QGMKqcPWJz9oUTyE8rxTgO7HY7Xl9e8sVXz3j5+pr1vkPbgnhI686bcZTcBKM0+3ZL17csVxX90FLVM+ZlQds7dl1LN+4oy4qyqnK6qaEqG0GI2pbtJFzPfHfnvUy5tMIaaXhVkryGycIyxRFTlFSVZrGY4YM7NKTOhzxdt/n+n54HlYsfDhQZq2yei0sBfBfolQ6/Ygx3AYfh291k3OmKpiFBbk4zhWd6VvWRja1CSVKqShSFIdYG6xLWA9netzCWwhhCVMhMPvu0Z4vQpOLdGU1vVnNaKazWWCOibkaHdwP7dsO+MyQ1o0o11Wwly3FGNvp9R4WhtAWLpuR0PudkPqcqCnEhMkbsClMQVDUjq9YUsjZZLZqgjGaqTM90zqOj0DMUAmtHnwP3UqQbRtBCb+hcOLhDiUuSp7IWnX+WbJSCkIFslElJBgZoceMpG6IXmD8GB2ai7AUwUXaJAqJXxMqKc52x+LLg/sN3mJ2c0Kw3/NYPfoPryyuMrfjuB9+ha1vcOLJarths96zXG+yLl7T7AtKIxuP7Fq3lgZZ7IWYr29xkTGgTR0X94ToKxztk56uQFC4itsBKBgUhxNyQOFK6BhJd1zKrKlarexSVAV3QNHOiG0nBk5B1WQowhS2y7W2MuOSFx5zyOVKCw6BSDnF7S5+Y71+bB3DWSpHTdS0DIqK802QwMf8On/dwpOP//dWb+2GPnihsU67B3RP4P/GE/vU/gtdoLSiURlFWhaALfStajBSpq5Lb/YbZfEbZNOAiTaYC73e7Q+M1na+yKPDO0bZ72ralruucYyU5UMF5KmOpC4sPMoSoypJx3LPf7zOlTgJCdd6rY74P3n36lMu65ObGcHU50A890WvqqiD2I9t2ZL/r+M3f+B2++533effdd/jB997HZkfLrutpSpsdKZd0fcunn39B9JK5BIlh7BmTw3mhKHXjwGdffM5H73/ArKl5550nvLh4SVltWW/33O52UtNkm9LJ2jgh844Q7rKsrDUYo7LN7R3lbtKFTo5Y09p63GQcaPD5v0BiiB4XIxEpWv3os0aoeoPWN2mxJor8bDansJqu61A6ayu0Jo4jkPcW5L1XtWaxmLPdbQjBZ+t6YQMonfM7SIf3pqd9pCgoi4IOeW6MEX0MKeFDRJtCMpGMpbCWfhTTGFNaQj/mYXbOrjmqd5VS1FVJMavZbteS+WMtEyAq1N10Vwfnz2xtQTObc3p+znyxIgVFnwbwjqQC2tScntxH64IYFd4ndjthrQzDyKxZEINc2zghv1H21xgiUx7jlHRqCwlrLssKa+TaipGPOCEqldlDJNHAfIPjGzcZxw/kdBMcCoLJdi3TeqajbduD2G76/ulnDMMgRcCReGRCQia9AnBwA5ou1jAMlGXJYrH4JRRlcqFKKWW4TwqMcRy5a2Y0TTM7vKcJ0psgvrYT1GHqNCe3JaUU/dBjrWG1muPGnQhjMlwYgjQV6/WaJ0+eyGK23+fAthGSp29vIfYHbcb15WuxPT1d8tWzL9hut2w2az797OeUVUFRGKqq4MmTewdx1ayZ4amFArXbk5zCZj9mHQK+78F7uu2OqppLXkTWqExaARF1S+pt3ZRMntXGKoryzhL3+Pwei8S1Fvcq5+ThruvqsPCEmGiau2BBhc4TfgBBYKaGdHLL6rpWKFLrLV89e8aPf/Izvnx+wa7rGUPkfHXCbrdhdHeoQIwR5z37rmfbdgzDwOm9Fc18SUjw2Ref4wIkpBnquu6w+BljuL6+putbBjcS/O3h71OSe04rTfJC9zo+B9PXNTMj568uWS5npKSwtkYbS0rqkA0yUQzlmRFXjmlaD+TsjvwYTr3ZcZHyNc/bt/nQhT2I7FGKXduiVGJmFVYZDBEdA8oGQsjhRcqgiNjkKNPAblQkVYKxMkxJEUOiBFxK6KQIypCUxQMBR1AjyeYhREpZMKjQUTHTJffP7tM0NRZYXz+ntIGUWl5fbzC3hqqqefToOyTXooPHODitllRAozVnVc1pVXPSzDg9lWY8ppiRp2mz0ZRVc+A7C295JLkALkDU1LMlpqgZBk9HwidB7UwO6tt3HbdDTx80g09se8fgJ1clS600qxJqlxjWkXq2YGE0dalIydMNI2GMlPYUU8zQqqCoxKY1RU+MmjF6jBVkaWAkloiNc13hqpKzB085vf8YX8x49P4HlPM5892W04ePefzud/jN3/u9vD64g37h8vKSx87xm9by8tmnGBXRKfCv/vk/ww+t5IOEIM1WLncSgFZZ65QgBkEFtMIgGh6XFAGL96LdCRFizjjwAbQuGcfEfoz45Kg2WwyR8+VcppPKgCo5PZ3TrS/p9mt61+FjwFjFyWqOdwMgzlLrXU+IOlO8nAxnIF9jnTU28pxaKxS+MDopxGIkBSVcauchRNGKKJka+6wZmqbFB0QnTXLtvN8eipe75+p46He3T+dCGn33+6mT+RYfr17e8N53nnByMuPzTz9mdC2FKZnPl9RGo0LWEWUrZaU1pqpZ6QI/Om70NXfnIzcZVUlMkWEUzcbk1vj+++/z7NlXbNa3uKGjU1sqpbm3WPDrP/iQ+bykrqRxvHf/AX0bePXylsJUPHrwkCePH3Nze8P3vvc9ZvPf5tXFcz775C9ptxuSG5nVBb0PuG7k9bNn/Ed/8CM+fPpEhNVKMhL2XcvibIFW0gzNl3Nub9a4wRFc4LsffcTrm0t+/JM/Y7fdAIoxW/G7ECmrhnk95z/7O/8rYoJ92/PP/tW/5C8+/hk3uw3KGhGTZ/QvhMhutwci7773Hl23px/AloJ6HmtopxDBmBJJ3zUaU32llFCGJaQ0EVSiCx52a7qdwmid9wLZV7ebHa4dBM1Nd06TBYntdkOKgaHv+OD99xnalm67RdkC1w/SqGhDUVTEBLfXl1xfr3n65H3OHt/jk5/+THQ1SlLIBUOWLI/vf//X+PLZM/avL/nu936N3asb4ugoG8u8tmzXW/ZdhylqkrVgDVVpefH8BYvZgu/8/o/4J//gH2FMxLxVK0h96DktC+al5b/9e/8tf/C7P+LsnUd88rOfZjRI8qLKqhFdqncEDz/4wW8Slea//b/93/nB936DZByb3Y6mOcU2BQ/fecz/+r/63/Lv/vQvWG+2OKf5/LMXbDY7hn5kfSPMl7qynCwaXBLUV4YkEDSSA6agdyP3Hzzk13/jh3zyySf4GHnw4AGvvviS4EeURhwSg8fkbKtvcnzjJmOCpbz3hxtrekinwvXYkQhEd3Gc5jwddzeovLxzdzz+qag/hpwmrUfTNAzDcBAUieB2duAHHv+9NCciUnHOoQ138FiKpPSmmHyiEIl7gT1Y4h6aj7aVMJT8PrURitUw9Pg8PQBFWRaIq5Xw+FerBft2Qz+MFAXEONB1Pbtd4OrqFaNzOB+5vrmh78RN6Ysvv6DvO6EaEWkaSeauqhJQrFZLFvMF5/fucdKcMGskaMWFgXE0hGDouh3aFJKQmSfHWotL1v3799jtNocE8MlydhKyD0N/yJUYhuEAHXddlxuNAEgTZG3BcjnHObHHjD4exPJaBAZ454lJU1SNuElM6e5aMzhH1w9stxv+9M9+wstXr3h9dUs/jCLeytMJbQxKG3wcc0oy+BBZb3f4EFHG0g6On338C3lNbzg7eSBcx0KEoOvtNtvijofkzAmVUmpCwO4WyKnBPeaYSoME4zDw7uP7nN87oSg01mqsrbG2oqiKjLylw3mdmiKllExA83OTMr1HnHnS4f78OuTvWNj5bT2MMfjB0/Zr/vzP/xxdl1iraQzsNhvmFJSmFrpOhETWZmSheAqRlO7sjiGgjfDoTaHxKYjfcBIty5Rp8XUDXIVMn4uiYD6bs1wsaIqC5Hbo1FFqhyESxp5uaLlM0LaeMERKLyiUToHoPYN3dGGkjo5glDQ7WZNwDM1P6yhwWDOk0LW4kHAh4oLCFBWmqEVGqAKjH9n0Pbf7PddtxxAUY1T0AYK08ugYCG5E94kQLWWh2e4HtNXUswqVU+e9DwTXEYPG6ECKin6I+BGC07KeqR5wJDWQxpLgFGMf2baw6T0vL28oT86oT+Y0ceDi4iWbq+fMZw0nqxVVVWWnk8izZ8+pSgk82+xHge+JpAAn5/e4ufBZ/ybUMiWKRECLXkbkJISo8UrAfWXk8xCEnnlne/2msHk651obUhQ6SAgyeFIKQXh0YrtbEzICrbU+WPeSNRXWWswBbZdjcvA7dpl6WxBLSujsZHXMZZ8KkLtBDtjs3CIhlPn3KTvI5Pv1mx7Hphu8NaD4tgu/z87OADFVWS7n9G2LNVBWBjeMjH1PcI53njziNiZ2+z2u1JTZ2OTs7JzdbseEMMu5kes1y3kDIYSDu9TJyQnWGi5fvKQqDGhJHe+79oAQJiwXr69xfWQxW0IINKXl4fkZN7fX7Pd7fBR0bHSOGCKzsuJk1rCYG8YIH//0z/k//R9f893vfsR/9V/+5/zRn/xbrq9ucMPI/+F//7/DVJaYpFbqu4GH9x7wX/ydv4MicXXxiq8+/wzXD9imJlkZFtxsb2mqktPZEpuZCrae84e/8yMusqB3JO99SdADfXSfl2XxBnXRZ+RtqvemRkNnA4/jdXa6v7uuo7CVMBsyja9AtHdj21KXFUZp1us1q9WCUVncbmASmE+ZZLvNWgx0CmmKklKoQmhuYWoataWoZ4x+ZLe5pbaGoW25DUJtjiqSjKZezogalqenLE9PefHsOUM3QEi8/OoFT5++jxv2bK6f4YNDGYMtG3Z7x/L+A6pZzc8//gRbVgxdxyv/mocfvk+/vmbsdkIvj4GUZP157zvvM7Y7Lj77BbO6pA8jg4o8+eBD2qstwTtSCoyD1E5lOeMHP3iX25strXPoomLbdZw+eMR73/kB7X5AVRZblfyzP/oTrq9vRVvrPe1+oGs9bgxsNx22MPRW0W73LE/vY42h392iVRKLcC1W8vcfP6QoSv7y059zeX3F2dkZp6cnbF5fMg4iEQjek7SRtfEbrke/UpNxPCX5OpHb23qN4zC96Xv+qiLp2F3q2CL2zr3gTaep48ny8cY9vX5KgRhV1k/EDOn98ns9PmLuhKf3MSEr02tZU2KMZfpWH7zoDGLMcLgUm0KbmbjGKmdk7Nju1ocCfhwd19fX7Luetu3ZZXir7zpeX14L1WCiCKlI09SHYnUxX7BcLXm867m37JjPGmbzBqML5nPJf+i7gYihLCqMtRTFRB1LiE2lOEyNo2YcXd4oRWjlnH9DeD+JxWVRyQm3xAMVRTQDoCS3OV8/nZsMmNJ9tbZ47w6bfoiJcXTs9i1fPnvOV89fcpXPiTtQPSa4VWDdNEG6SmadbdeRazW63nHTbYhRYUyFLRpJ3NTyntqcUeEzNSrBATmDKQFaUB6Vv2e6545NBsgwqyQHiy//tBhWZSOe4Uf38wEZCscWyhwKjcmFKknvcfi+r3u2vu2HnAtBPG9fvsTOKqw1VCqh9iNltUSZ3HilzB3RieBDzpRJ0syqPIdSAaUS2si0vygMOsqdmLRhDF5oRPHu9Tmc27s1ZjJ00MpQGItOlsJECqNxPhGCo9/e4kZIXmNjSWFyvJkWSo+LgTF6xugpJ+T08JnjYS08pngqJfoIHyJJaXwUEZ41FknxFn/5wQVxoRlG9i4wBIVPCmmDEHEvgeATxThZIyecT/iQCEGK6+AjznmC6whBeOE6BfoxEUahRDmPoDBEUAmTLCFpxhhJvmcIYAZHHQM31xcMvmNzc8HaO5qmod2tWCwWog1LkdevnokFo9J0bSvnONOGVienbG5uZHCQ3cSEYDTlx8ikLeUVJyTRXejSoqKFpCQJOd49a8fP3eE5SgqFkfOQBwnej9jg0DYcmgWtDSkcIEWh0k00ilKSeH3KUXd56nu4h45+TUM4uNt1vu65Pt7fyPeJijFTnNQBzcv8tsP7+qtGDV+HaPz7snZMR0qBGBzBa4w1InzN6HFZ1lhjKYtsJ97JIK0PPUUlIu/FYs5+376BHB8b10wOYs75A6JBiqyLghClGLeFFRdKayiLktlsjneXjGNgNSsg5JBNErYQ/STjiDb2gFQpVXCynEk2hU+8vLrm5x9v2e92fOe9p/zZn/2Ym9sbUogMo6MqspOmD2g0q/mcjz76kBcXn/P68pLtdpc3EPloPkVeXF6gUiKcOk7mS6wu0Mpw7+SUp48e0Y4dz65ey5qaszHIjUNZVaL9itMeLCtmTIkUAmkYZB8PgaIsSUb90nNwXKcp7mzwg0rZQZBMMyTvy0meO2NJKIwt5Pz5wDgMEAOFqdhtt5SZSrR1Tn4WWQ+Th8ZuHKmKgnHoSUHTzGb41Ao6rg26KLBlSVEU7Ha7TNdUdG3Lol5SlBXz+ZJhd01Eo4uSelFDYRlDYL/bsVwZhhhxXcfi9BwVBggjoR8hrwNNU2FUwg8dw3aD1YphFLezk9UpvgXXd3jf431PVVdUdcNsvuRy3dN5z3x+StIFpmhoFif42BG1xvnAV19d4HNj7L1nHALeBbyPDIMXHbKHkYA2FUU5I1YjKYhrnlZQVVJfuhC4vLqiazuauqKuSk5Oz7i9hWHo89AjU9m+4fP6KzUZb3DsjjbLtwux6Zgco2Rh+Bor2ihuHseTn6noO54KFUVBjJHtdpvTamVK1nXdoRCc0pSnYMDs5Hw4jn8eB154PLhSTcc4DiglLlfn5+eMo7hRlKUkaE9dvnNBBN5uZDabUdXlwZLX+2xPazVd33J5fcVXz77iZx//jNcXrzIiELJ7lKcfHP3oGIeR4GUqb5VAkD5AipJgrrVHac3V9YjRN/ziFy9Z1AVVWVDWJWcnp5yenbBYLljOl9TVhsViyf3797l//97B+/vi9UuxcEUctrbb7eEcTjzUcXS8ePFCQru05vLykocPHwoFTcQs2ZFqoOtalsslVVlRVgW7reR8xBhQFFnorghBKAFNVTKfzxmHgbYfeHnxmj/6l/+aq5sbun5gdGKPSb5mk8+2FAclQQkPNZHY7PYZ5dC4GNjvxZ6wqkZcTJyenrFYLOnHgX27zzqTIJkH1lBVDX0vU82UVC4aAkknESIf3TfHKJ3WMk0aR5ebDGiaitlskSFYmaBPVryHySbk9G8Rok3okbUW9xbH8dhG+N+ngiHGhHeeq90V4VYaXxMD58WMxVmNXVh0HyD6QwM5DiPFaChiwA/ijqRVxCmZACkVsYWirCtQlqQsKRfpMXpCyJteRi+AQyMTgpg4tG2LCy3RBUqrqIuCeakZE4ypp9/3EEDFkiKWWK0wRYEtFHayZHQj+75jtphjjcni9XRYl44n2pNere86+rZFFRWBARcC2hpGn+hdoB08+35k0zvWnWcfYAyKqIRHNbrsDBXAZi1CwojbmS4IydINgnJ07UDXdgxtK3kw2X3Kt4EUIEVDiAYfxdnMFAplpeHRwTD2iZQ8hIH97pYvP/uYclbTOaHJbm4Sr57DyWp1QBecc7TbK3mWvccUc05PTzk5OeHhoydcXLwirm+JqSRFaY40IGwjKX4CEJUmEPEusFhVmGghgvM9k13ucU7F9KyI3gpsU2fP/8R8PmO33+CVoTEli8WcaBVjl9gNm0NBhRKr8lmEkDTVeo/P70n++W4/m9Z/4C6cz4cDYjy9v2Ob92mAM90T4zgSjwozr6QwczEchlv6r6BTvt3AwJvNxrcdBZ2Oy8vnGH2fslgQQ2SxWNH3IxcXV/zWD5+wWi1wseOr6ws8FTFoNptrRmOoq4rFYsXLFxekBFpLaKe1hpQsIUh4a/ARHzzj6KnrkqaZ8fidx9w8f80YHB6h0jZVRV1UvPveu7x8dkV0ewDmizkuRl5eXrJYnTEG2XfmVYPKuUyDD7zzzhk+GjatY3W1pBsd19e3/F/+r38PWy3wzqMI9IMTbUnSbNdr3rv/DmfLGnD803/5R1zdXuNRGGWFBuMjQUf+3Y//jM+XJ7z78DG//b1fZ9ksqGxFiJEf/e7vsrp3wrP/7v+NGx3BiZ2rdyPL1UPOH5zjSfRuJCEZEzM7ByVDiH5whNRS+pJZUuhSH6jQx7ldVT5HWknStlKRArGVXs1n+GEkpEQ1q7m+XqOjmNZ4oKgbqnrG65fPMbkgHvue1xevee+993nyzrv0oyNsdyQSzXzOi5evGcceRcwmPImqSjx4/JjrW4/zjn0bqOYr/Dhw+fqSuiohiI6vLBSff/kLTpYLvvve+3z84y0uRigsH3z3A65ub+n6lqap8WNHP3o6Fzh79BS9XFGQCGwwRUkza7h//4xPPv4ZaexRyUNwbG83aFVxsnxEtTxD2YK4i7hhz8lsxuLkhNvdns3OY6oZ7zx9SlKafoQvnl1AMnSjIBeilZj2MZevv6xR4ziiKSBoQkqMQ8SahpPziqvLZySEsvnw0UPGcWS/2bC9ukIBr160XF+/5g//5n9M/7NPaIcbkgok1xN0wpj/kYf06PjGTcaELkwai+PF7DiMzVp7oN/Am+jFMRoxn88Z+vFATzn+GfP5/A0E5Pj3wzAcCoM7kXf8pd9bW7wJGXPXGCnUYXpcVVW2Zs0wVdWQknymthVngrtUbIv3khy5XM5p6gqUbFiCcEh2xWazYb/fc3Nzw09/+lNeXV5xvb7l6uaavusPmg/vJZQqpsnRQfizyimylImERakgiAwc6EMhJuLo6ftRwsmM4vJmjf5Citm6qmiKklkz4/T0lCdPnjCbzajrmrIshd6w2QiUmS2D27bN0HBJSonXr18fIOP79+/z2Wefcf/+Gef3zri6eo1WmqIsOD09JcQRo3W2lq2wtsIo8aH33hNRmKIUF4+Y2O2F97peb7i8vuHyeo1PGmUqLEYCgTLiMbldTMJVU2hSdKgo4X5FpamKgtOze4z+QhChwbFtX/H66hLQjMN4KC5TAp8CyQkNx5ryTmiZwJiCwhgKezeBnu6VcRxlMtY5Li5uMEXB/YfnnJzM8X6g63dUdXNwYJgaiMl22PmEKdUdpW8Kk8qvPR3HRgr/PjQWx8e0CRmjCGoqjjjYMu/LPXMnqEWKCucHvHH0+0S8Ueznhj52mKSIhSMqRdfvcG5AJzAmiaialKmLf3X69EFY6H0OkFPgPX3fMmx2tNqjQpDUxlRQUGEo8LoQQTYQlCJZTTOfs1rOWdQzKgw6QUqRMetzJi3WhGxMWi/nI93o2W13hJBIaLbtgHMB5wKDS+y6kX3n6caET4Yxi/YKYzmEOCFuNi6ACZpVuSCkgu2+5/b2lqroIAZSiESXcBkh0ERUsBCUTC2jAp0ylUjjMhJJYTFT4B0RP+7p9zfEWIGOeXInU+Td5vXd/Rsi7a5HZ971Ztdji4L5csWu7Rl9IpCpgzYnYSuFCwNBaVShUNlfSylNWRe4ILobU1hOT0/pexGZ3znn3Q2WkHfPfu9olhY3RL788isev/sUXdbUcUSbGT7nbdRVw+CEJtpUNX3epyY78TzuPQhShYZ65FaT0mFQppA1e9LuTfectfaAdhxyBpCclZiE9uWcQ2dUvMjaFKUtSpuDTfy/b2vDNzlOViWzWUFdlxTW0rYDboT5/ISyqAj0uOSYnSz57NMLXtzs2AaH6z3LxZIH9x/y+PETdrtd1l940JqyqijrmsY5hnGgHwa5Dj5gtaKZzeFBpHU9//Rf/BF/9z/525SIKcCPfve3+fgnv+Dqcs3tdkNUYKqKyovxgdu0uHFgPrk/1g11aanKyKKqaeY1z181xD20o2ffORZKYXWFtYr/7v/zD/mbf/gjVicLdFD8J3/rb/LBB+9TNgX74NjldaIgURCwaBbLGRjFzg18/OwLXr664Pvf+S4fPn2f+/fvcdqUnM4XWIUYmmhF0ImytDSziqIp2HR7MAqrC4wtSHoyxQEXEiEiQaGqp9HV4ZnzXnLBmqZhNpthnDpECtjS5LonZrR5zCG1sg9oU1KVNfcePyZ6z3azpjRK7GNTQkfJFtpuN7x89ZIPvvsRs5Mlu92W19eXqDhikcY+xEjUUs99/MmP+ei732c+X9D1Pc+fvaDdbolDT3nvRGovrQFLdC39PnJ9NWM+P2d1Zogq8ad//u9Yrk4pjMW7gZQ8KYJRml/89GO+884jHjx8yk3refzuexhjePb8OaVVDA6GEJjNlqhY0G4dX3zxiu/92m8xtnvGPnL+aImpC4Zk8Mry7vvvYcsZQSn27e7QPLStNFVSkxucE3tyrRSDH4jRk1KAZBi6gNWGsmzou4SxENCkcsb5+QNms5J+dOw3e7pdh/EJpSLaKlJ0/Nt/9ye89/73OH/8lJ9/8rFYmRuFqr5Zl/GNm4xjB6djdOJY4HP8d2+4BPCmcPbtpmL6vuPfH2s+pgZiHMc3cjfuOPJ3/HdQh5TrYegOAtzjQ2l14LpqL1N2pZTYlKa71xydk00iCzSd9yjIjlHdgZe23tzQ9yPDMLDb7rm+EbrTfr/ns88+42a7Z9v1tENP9GKxKBtSgMwuF0OmLIRXBjHfES75lLor07XJhQWxdgvZqShqIiJwV1qK714b2raj73u2253AcKXQU27XNwcnjbIo8fn8vn79WrzDtabvOsnWsIb9vkVpxc3tOQ/WZ1xeXmaUybJanbBcLWXCFj0PHz6irmYCXdsGrQzGFoKC5GvlfWAYem7XG65vbhl9kMlzAu8jUWx3UCrdpZxm16qisMK7jxqTA+ycF6RD3BPkHPsQZMKZdBYrZeobd6hACEGaj5jvwSm9NDuMhRDyz0twRJ/SuiT4xH7fcnHxmtl8hTYVKowUsSQEf2jKp7DDpmnw++4QzGeKUibjWkSio8/hjLmImJ6bY9j5234kZBJrtITcWQUkEfISJtTBSU2fvz7EyIgjuYjbK1LZEJOGqPBpRBkjIs/g6V0ANaL0QNQW50dZbFFCu8nC10QuQtVdIxdDwAfH6HpwA8o76lLuMxXB5C08YeT2OzyfGm2t3EcJUpAkWWM0GA6Uw4mPr/JrW2OEq51dT3yUIhotzmmDC/TDSNv17Lqe3nlhzWhzIBWpA7UoGxFmS8KIJiqNT4mUKVI6Z45oxDVJ5fvaR9m4SYkYNSGQ09jBkDDFnb1lyo2/VoY0BkJwxCBUSzGo02glLlFyiOBcpSmB25FSgzFGUB2jcxCiJUTxgNcZlS5shQ4RXGAIo2x8RlPVBV4bVJK9RBcW6yVF+Rj9O6YiKQAvwxmXaQRd11F2LdXQUegKpcSWU5WK2Mr+IKGxYpNaVZXsP6M77GV3a7hoC+V1j0JqlaS6hzD9+Y4qefdE3D0TWglt02ixNdYKQlD4MKUwy/kpiwLJgAqHwdvXHnnANl2Lb05y+Ot71E19SKNu9x3eJ4w2LE8WuDAQtTs0vbv9ns1mi5qJgUfX9bx+/ZrHjx8f0aNkjU9KTEWMshQ6gZFhgJifSQaUD5Gx3dHdbnn+4hUqJU5PV5ydnUkxbSWNuutKrN2hC4OpxFHIjQNnyxlVVaCpaUqLjlBbQ1WVnCwt7QjOJ4jZmdAaDAWff/Y55+cn3Lt/Rm1LTlYrFos5TinGQYpppQ0pSv7GvdNTfu373+fZ65fiftV17HqXB115aGrIqc0T8idN670H97DlXc6FTjFTsEK+e6Spruu3kbFfzoGZhrWNqoTyGKNQFpWgdNjsuigPDcE5UqZqNnVN1+5xozQnyTkMCVUUWC05aPv9Tug9fUdI0pBL4R9zQzK5v8Xs8DcF/I3stltc32GJomUzFqUsKkbwIy5F1tsND+4/ZL/fsr69IY0DyTmxnPUy4E0x4cdA1AXbbQ8UvPPud3EhMrhATAWjV/hoiJRo01DPT1C65up6y/1NR2UqTs7fo6whGbkXU6FRZoYPhsGPxCDDaB9k3ZZaQeU68K6ePmYXkfe7iUImAnxpnJu5mIzEqNjudgSnBMVO5hBYiHL0acdme8VstuDpO4+5ePEcbaFZVN/oef2Vm4xp4Z4W0WOUQqGYnJpUhnnfRjSm6fQ4ykn7pQYg0wimCfB0o3sv4sDVanX4HqEc3W0oEypSFCXL5RLv5aGy9q2OK0NLzntiEscGbS1jP02HZNrtnKOuxfp13+5RqqeqKk5OVnz+xafEKFHzz55/wcXFFev1hpvrNdfXV4dJ077d046RwQvkP4kBJ3H0JDoT1YFM62V6L84YWou7zPSmQuaky82jSDHfEBqSFw61TgqlI8l5vPO40fPq1UVupoSyEBFbzb7v7zZirfDOo7VM2aqyknj6BDe3a2KIXF695tXFCdvNBhDrt6aZcXZ2KpCdH/ne9zqW8xWzZs5svmKxWNEYKUQSYqkrgrCe65tbrq5u8CGKFW6IuSsPcnsqiMEf6FIJRVUUKCxECcoaRsfoRrp+EFFriNlDWkRsSplDUzshWUpLYRlSwmorHP+pQdby78aKY5nNhYvPXESlJXxQKU/X9rx8+ZIn7zxB2woVy+ybHTJnW5q3qqpomoZ9N+Cjg6AoipKQ1KFZi12ksiVlWR+CIKfjrrH/hr5xf02PlNSBomN1yvzyJNSjkIBAiAM+F6VJJVyK9NEzDhq1D+iZAUQb5cOILgqS86QQ6NpBHIbQqKKW+4r8OkqaVp2kRzVaiWDfTNoiRxr2jEMLfsDEiCqrzL9X6FQKpUIpSQxXYnGojKEohSoTgvBhnRpJhUGXWhLtJyS27zFaiui6rmn3LTEnf6MU5ERuQsTFSDuMrHd71m1H7wIhKjAGfVgxcqOUsu2vApScO6nPc05EEpTCqHz+C9A+0yqitCzT14w+HfQYhVLUheihAkLlVLZAG0MKo3jnEyiNPgwGUOSmSq55VAltRAvjxhFdLCjLUsJMs023MYU89xkNsVXNclVjhpHUDuyHcKAa1c2cPoIPSoIBtTno56amHjisa4f1LYlH/OgjIcK+bbHVjmq2wyTLvKyoZhWFKhj9eKDKWmuo65qZFwtlegnM0sYwJahP+8Vkm57v9lwwKeJkiatFgDw1tyBGDzrfj0ZLMCcktEaoYiEwjncsAK01zWJGyoWDH4fDeiaU+qk9n97H1FzEO8T2W3w0jZi99EPP7fqGup5T1RWnZyeMvoXCo4pEcIKY77Z7TucLdGXou4HNesNyuZRrUZbiiukGIeBqQaZKU1BUUh753uGHEe8CfT/QbXaM2z2ffv4FpZHneHW6YrFcUtc1u80tfd+SEMqVrUpub68I40h3vqKsDKWtmVUFBCiNppoXnJ1Y1tvEOCSsKmm9I2mwWKEu/0XBvXunzIqG0lYYXTAmMTJJMVFYS3KBk8WS9x6/w9/6nd/nX/67P+ZleInb7WWQFo4K0HxMLpApyXDu8dMnuBQYhpEUhIqTYsiugHdxBZNGdDIrIdd/wGGgMhn56Plpdm8UBodD44CktOQbhQQRwuhw40DvRRDu+xYXvWhwRhGDV4WRNTtF+q7js89+Ic5XhaGuSnwMpOhRMWIiTINXbYzYBycJU9yu1+jkKGclwWXk0RhUjCjncKNjYzd89INf43p9ycWr59Qo8I6QPNGLjX0METcGqlnBze2e3ml+/2/9Ln/2F3/BODpOVgu6cUOMBVEb0I758gERy2fPPuXFxTWP7j3myf0PMDbi0ognYKNmu4sMg2N0HdZKjSsDC421RWZEdG8MVqZh+3F9nlJicAPKSGxBcJ4HZ6coBf3gWO8ctS2JKuGVDKt1lDBCrQcuLz7n5PScH/7G77K5XWNM4mTRfKPn9VeysD0+DtO/GClyauZ04w2DpEbbSVSrJKQteJlwGaPwLr7xM6bmZLKrnW7O4387PT09cqEKeWOKjKMUgbPZ7ABDr9frA2RtjKjhY5SiZd1eY2yFLSp6l2iWc6wVa7MUs4DIGExRUM3mGKthu2GMHSoGZrZkjIN0y1rRzOdcrj/n8y9ecnl1Tde1pGxXOrkxpCScqCnnQAEq5ZRb0TeilVBsVApYM6U9g0UEZyGEPIG8o6spcnhVtm80eePzDnyQf1fDIBctieC777o80YcYjSAjatLMWHxKRJzw4vNGtetkerd5dcPzi1vZDFWWaJot+otX2V3K8ckvXrBczpnNGmbzigcP7vP44SN++P3f5PzsnjjNGMt6H+iCYzsM7LoBYpunfIqoAhgjU1RjUENCxUChoKkKdH6Y9vsdxsgU+ebySpoJHwnZsUwZmSQWxh4ethAjxERSiagk1EYuOhhriCaSTEJZg9Xi0jHst9JwavHTXi7u48YNi0XJ4wdntG1HNT+haEo8iboRAaJSith3dEPP4Eb6ocPYEq0qSBXe73B+jw9DpuMlUhpzTSpNYVGU2QAAjvaGb+XhAaUClXXcr+X+EkmuwlQKo9bcdmteB97094+gdxozGPTLOw2VLSWPxIUA3UiTxG0pKgjByQJnFLHIwZoASbocYwusLagbjY0tuIimIyVxgnE+sh40pa0ojKXUkpHio2YImvlsRd2U1E3JfLFktVqwqCsWZUlBRh1doNCisTJKMjWqSmgFfhQr0227ZT/s8D5SlTPAsN11XG9btt3A2kVuvNCkooIw+MMgJwV/MChVGT+IQZF0Ykyem/UNpYWmLOgdRCPNXWLABXdonIMCn8AriKYAMr1HlYw+83ld4vzBOcZK2GcfPIUtMKbElHOUFeG00gW2nBzmFPPC4PxwcCaxZQ2Kw4BjKn85GCFYSTLvAzEZbFHRVKPQ7KzF64JZU6GHAdqWpCsm56XDeTnSY0zal0IrnLb0GG46hd1H5rVDDx1jCli1AFNjVH2Y7Do/ZItOsfjVRqFNQnkR02tVkJK462pVChp0FGUTMzpdFpYpdHDsOqzJVrw6r+FKkZIhaplqF0WFMbMDSu+9Z7vdinHFONBetZRVSV2UfPDkIdoIxbTve9brNUNISIQjxBQOzei/D8c777xD1/VC5bUFzaxhsVhw//4D2v6KbbdmM3ToYsF+GLi6vaUNnvPze4ca5Sc/+QkPHjzg9PQUrTWzeS2GEzph9IRKJra7HX3r6IeBoRsxqkApyzB6vnz2krF3XN3e8l9+9z/n1773a3TtyO3NvyMEhxsVgzGk5Citphscf/Hnf8L90xWLWU3TlBA0KXgUI48e1NyuLX4M9L2htxFTGMq6om4qXr54weWrl9w/PyOEbOiQoCwqylEoDaYueHB2zuOze8y04T/63b/BX37yMf/k5WtA4hAmTY/Yu0t91Q8jPoItC07PzrjZ3NK34tJVlZZCa8zRsG5C56fGXobmb9JSr66u6PueDz74ICfaJ8qyYHQDo/ck7dmZEjNEtE+YBLN6RrSRNCbm1Zyh3ZFixCota5XJDp7rtQTsNjXt9obT5Yq6qWj3O1AS9up7J5RtFcW4w0WG046mmfHu06f86R+DH0f8kIhWUzQNhTXEcSAOI7osqRY1f/KTPyO2HbOqot/sCKZHFwYVwWpDU1VoY9j2UMxWeL3gX//JxyRVoUzFbtQ0J+8w9AO+G2lO51CcoDDce/g+3Zi4vG0JfkNZGcbQ4aITioMS84yYkoSwKtF7TdRtoW97QZZTkkFNUkzhv+Rk7inQ0PuRGB2JSNcKm8LYmneenhGDIzrH8nQgupFx9wrXXuBTT0oju33gxz/+H3j06AO6/ZpXz776Rs/r/yx3qcmqdlr8JKMiHIr6Y5TjGOk47mS/TkgOvLE5TK97/FryvTK1ms2ag6DymOf8ppWu8F9jyrapaOEGY7G65OT8FO8du65jt9uxrGcHcXeKib6Ta+3Hgev1JX0vmQxffP4FbSepipv1htfXa3a7jrbv3wgghDv46jjrIE0dBBzoE0rduWHJZ1cHZOcY/jo+r9PrfJ1+RaUkxfT0Wvk8uzAZvh0lpsuf5GepzEY6mv5Ph8iiwWZ7XEAaoul1U+R2u8fFRDuM+MuBy9s1Ly+uuLlc8wd/8AcsT04o64qissL7VjK1S2kSyYbDZ00RnBOKmCRsVxR5WiloUSJGocRNvOe3xZXH98jx+eb4PKrpvAqhRKa6kbIsD3Q9kCaubhoePX6HvmtQyrHfDxT1wGwVmEdYLeYHt4fZbHYnAs0UORUC0WRHG60OU+3BdVmc7w/3wnSv6OyO9m2vE0wM2BSwOdsC5NbUGS6PSNhiML9M7AgEfJCMC5U7c9d7UDKdiT7mVFYwCqyUrvK6KaIth/OqjEJbhTEJFQdi3xNjYAw9YZQMgxSh7R2jVRgTKbQgdxEIUUK3bFFRlmVe4B2DgiIFTFEysQAmLULxlh2yOJpMgVeFbIT9gA9J6Dz9QN+PjM4fwlVlzbyjo07P9HSz2BwCafOzYKzBFhpTGCxaCmSN8KsD+DDgMvIWo2STWF3k66LoI1TWYqxl0ZSU9RwXEqPzGFPhombw4NPk3icoyNTATbav8/k8r9uWqGrOzu9zdn6fupnx6uK12FhvtvjgiVGMNUhikqBtwfn9BzJpjvI8j5keCfqw70zI9zHVdvp/SikHcGl8FEH9fvBU+55qs+P8/jkRycIYhlbOpbWk/PzHEEST4f1hDU5x2tuOX+tN6q8mETNyztf6yr95l+vsahdCB3BY01ISKlddVjm4dDysKX0v2UvT1y+XS0ofGEJg8C7bk8qQS+V29Nt8bLORhjKafb+nqMtD5kE9q/HWMRaRbZtYnp5xvgt0Y89ms6YohO9fVRX7/Z5xHDk5OWFWNNick+TzBH4cR16+fMnt5S3DfsQmS1WU+JAYfaTrB168ekU/dPTdyNOnT7m93fBv/s2f5D0bxFFtf6BZGyW6Au8cbjRENWO369gNWxzuQMHu2g6zqoHEOPTUVmNIJK3o256hdzgX0VZCg402QkUmcXN7y+vZTEJ4jeXR/Qf83m//DheXrzk9OaWuKqECTiGhUehQwXuG4Fiv1zgvBa3RWswLYiTpiA3l4Xm6M9mRZ6Ao71K+p1yuuq6zBbNM3wsrQb9ECavb944FlsKW4k0ZxSUQnfj8i68gBaq6od10Qnk2BWVV5yZLXvuD9z+kdwNDP2JtyRhbJEwwh7fmWiKGQF2VpBj47NNfsFgscFZBGARtzJ9rSqRRSoYa7zx8RNjv6a9veHF9y4RQKhQxiDZlcInl8h4DFb2Twv715Wu0Vty7d8JyVmCKJTOr6P2awYkmpWrmaFtK0HIYxUY8jYQkel1tpvpsSgPn0Ez4HNCqUIdQT0GThHarlSSsT5uHMgqVVF5fI/0QqLUGDNt+RKWQGxJDioaYrCD3SX6+iz3e3fLhd+ao6LhO32wd+ZVzMn7JrSJPXKcPP4kZp+P499PPmCC340ZkWkinm/aYV/ZmoJncrBMv8PjrDhz7Cb2YmMtKCTU/Te/JYk1JVdSslifc3FyJ60gOpEqZTyxNhiw4m/Utz559ydXNNddX17x6+Zr9vmPfyuaINqD0UTjT3Wc+duH6q463m7Ljvz+Gwt4+p7/UBORGJsaI5g4pumvm7ly9QOzoBExPd+dHxh0HWtPx9U4JsVTM0Kq8B3WH0CiIo0PZkQBsdxt2/ch6vWd7s+HBo4fcf3CfxcmSop7ncx2FGjAJT5LBaCn4U34oFOTGcvbGfXTcYB171U9F3/R1x5/hjV9HTkPSaGiZdOcm41hfBCLkXq1OePToCZuNpW/XtO3NwTYuxbv02OP7d2rmxE5ZCroYp5RxEW9pLdNTcTjRh+t1aDDV9Ea/vYdJUexWJ10RuTDjsBYCMlH/ujUspYidMm4y/J9jRw7fr/RUc0/NNhRKpmEH5xNjhMKjRZDofSR5L9ctNxgpSd5FSBEVIqMRQSX5vaZJD4EheHFA80HhPSQr64GsRZPQ3RyMM6biMKWENpqCkpQ0XTeKuC8m3OjFRtNPqKY+/DqmJbxttZyOdGo6IwPa5PeNcP1NUZL0QFBSWPhctIsu6U53572nqAxFUQstpVmiXCAyoMyYtU+SJahIqBSJBJqyxhY1RVlhtKEqa+qqZrFY0LnEyekpy9Upy9UJ5/ees97saLuBkGRNGr18PoPCasV8Nr+jWsRObChFhULwYkE9BbIeNxnTWpimmywXEy5A7yL7wVG1A8sgwxdCwI93RYS1lmGQoEDvfEbD0hvP4tct68eGI9Ofj2kMTM3uUdF/vI8dG5lMa5AxRlLp873U9z3jKFpAuNNLLhYLCu+xzqP6jvEQipgO6/63eRUZR4ctTA7PGxncwOhHfNbtKGPQRcl+2FM2M5arE/ytZ3QjCkVZVIfr2nVd1vUoqlRirCb4wND37Pd7bq9vuHx9Rb8faeyM1XKVKZiath/YDgNt2/L69TWr1YoHD+6jtdjHhhAYxoH9bkddipmIrWp0Zh8E7/ExMXQ9464lFTJccM4zjA4TpSAOXmxrlRakchhGLq9uWJyccvLgHJUUOsk9FYFtt2e92+JjoNSak+WS7374oZi0nJyIJS/i8heyecG0jgzdwOZ2jbJKMmqUynURwizIGsfjwdt0N9miPNy7m83mkG0WYyQqhU4JlcRYRWlpeodxZGZLTFExq2qhekdF8hHPMxbzOaVV7DfXoptBBiQxa1dNpmvvu45hdJyeLNnnLBwxmykkRydFGfIYQ3AjL148Z7Fc0Rtot068IKfJP/l7jaGqG+bzBT4B/UBV1wzkNG6TtW8Ykiqo6iVdF+ldQhdws24lQLGqKY2hLDVaWXyYoh0gkWlPRuGTy6ZA4aB/STodNkmVIwFiPK5tpHA5ttJOUfZAVM7kkn9AqXS4R0KEYYzYQtad7bbF6qwXk/JOPpcuSYwypJcbIlOMDer/32F8v/ygj4ffD8NAXdeHwLbjCf405ZtuymOk4m20YuKvHxfWIFzXaUJzd3IDu92WaXMpiuKNYlsWbHEhkE3C4YN8rzEl8/mKs9P7lGXNcrmiLAvm8xrXrgle4uFLU7PZiPvRj3/8Y/78L/+U2/UtwxDxLqF1gVYFPpicHRVzofhmQTu9n+nvjv9/LKS/e9936M5x0/A2QjShHFPhNH3/8QJweA9KNu8Q49RCCZc4/738TTrwM992Yr87t4YUNUO42/yih5itJ5VRqAC1KsBUJFXR9Ym+27O52XDx9/4ejx4/4Dvvf4ff+dHvs99t8H4U/nclE42yrET8HWUaUVaGEBxVVXJ+LkFKk6C/LMsDRW5qLL6umTtOnj+cG0Tkl/8gDQFaFrmQSFbunYmD6r3n8ePHfPjh9/jud3/I868+4+LVV2xub0lBQ1AkH9jtdofrsdlsDj9jmjbGGAjRMY4D7X5Lu98xDAPD0BFTzAFPkRCdCD7zpDvlBeZbfYRI8vGQReB8ygLqO0QpJRjvdMOHI9dmDD4dOpM35rIJCCL2yzV1/h4FpiREsWIV1zMR2k+GC3IDWFQKOZNAyaajLVELfcehMbE4aCbG0dF1PSkFfAGLmQQLVpVl0s4YUxwKxAltm2BukOeqsCVV02CLku22laClXQ/pVjQTXjZ2nU0Bpu+Tn3+X32KylXNMgdH3xDZQN/eISuMiuKRxw0h0I6vVCpcqvIoMQQJBQ4zEqHAxUtclWmnW+466KahUDWbG2f13snta4k/+7b9FqUhImn0nPGiQpqmZn1M2S1bLU54+fY+hd8znCz744EMubq/RWlDJs/Mznl1ccbvveXV1i9XZ6a7rSCMo4zDWghUEE2Up6jllUbDf73G9w9g7pBDu1tTj5z2EgBtGCbkzGoyiTxrrFcUQuF7v8CkyayK1bWjbnhgk/0eEs/1hbXl7sHM8RJrW27thl6XUBSCUVNFaCKfcGEHd5Fm/025NlrbDMBzuk8P6No60Ib5xD0z6v+m1P/roI0Yf2Hc9hbEHbvwkEI/xbkD0bTxmizltu6frWpSG65tLnB9oZiVXN1dQW2Jl+PzZK/oRyrpmuVoc9HrDMLyxhz579ozb21uWywUPHt7HaMvYeXbrPclBGBLdfmA7dPTtSFNWLJYrLq5u6Hc7jIK///f/If/pf/qfcHKyoiwNJIUbI3038OrFK05PlizmMxZ1QV1IboJKiduuY3At+37H5c0tt7cD3QAh1LDb0DQNzWIheiYfhMocE//gv//H/PrFK/7u/+bvknwi+gAqYWclXis6FemCJM3bouD+vXuc3juHqNDk3CsvzY73DlvOiCGyW2/wLlItGoq6pKgKghuxRzXGVG9MlKlpkCLFrjAMnj9/znvvvSdOoSmKkYcTJL/KVGJjC1yIeFNSLM/4tV//DWpTEl1g7Ac++sEPUcGxv73m4uULMHuisviksGXD6uSMs7P7/A//w5+BViyWC+59+JCr568lG0kbiuWCYbfDD453H7+LG3p2bcv65pYf/vZvsbkpadsWH+VnlrM5btfSI25i7z59nx//9GOSG7Ap8vD9D/j82Rd0fcdysUDbhqZZ0tgThlSza2/ZdQOzVcFsviIEz27fY1IghC3jGNhu96xOVmhjWK+vePz4MVgIyhHChA6JJXYMYklLMKKDy8/v0N+56KUYCQejHPXGMAqQPTUjfTFTM7WxDEPAGofCc/X6irquKEoJWU4xoHWJrk/Q1NRFYjaree/pU3bbW3bbLd+0ffjGTcaEUByLvuFugT2evKxWK7TW3N7e/lKD8TaycfxzJj/x+Xx+KLSn6dTUiLRte9A5KGUOOQ7TYjxtLpLWbfLve5luTuiHi+x3e2I2H6rrCq0lzEobCdMb+4E/+tf/mq+ePefy8prdfs+63eJ8RAZShhgVIUW0KgiIo4FsIndNw/HnfrvROD5/099Pv8zRDfX29xwXFcc/45geEGPMhZuMeFXmIyWFIBlvISeHLVO/eV2P37d8XUKpaXKcDrCiygnoPgSMKnA+Ynyinq1o9x0xONCafT/y1fOXXFxd85NPPqVtR4beobW4eFV1xWJxQtcNBziwLCu863Oqtj1MhCdf+qkJa9v2l87N1CBM53E6Jr640WIgoLVwllP0FDl0SwK67h6Rqqq4d+8ejx495t6DB1xfX1JWc8pqzn7fsdtsaGY188U818x378M5xzAM9H0vAnvvKZOI11CJmBxKRbGPkHdISjEjHmLDmtLXT02/TUdKBpSE6Q0+MUQISRGVEfenPCFO5ECyaRADkN5ufe8OlXISdJRb2GS/BKMhaYVziaI0RGUJyZC8TJFSnvzEJNOpMQSGkATFmwrCQmcudkFMBpVAxch+1+VAS8u80fRdSW0VvlA0dS3UAOEDHp6zycBiGIa7IYwWflcMSdQpyhIDFEVFWSb6ACpO+rQ3i9yDi9GRi5ItLcpajLZ0uaAqy7kIRE2F0hVjKugHcF7TVCeQenDC1w1JU1crTk5O+f73/wOh6GRB8vd//bd5/Fgaja+eXRC9IwaH6/esVucHJ7vzB+8yaxY0zYyiXrI4qSjLiv3gpJkzlqQtN7dbfFQU1Yz58pT1ZkNIHnRBSPJ5GQPuZiOJ7E1DM5uz30vBMVueUltD37UMQ/+1wu/p/BTGZvc4CFqhipoxJm52PbN5LZus8Qz7Ddaa7GA05iGVZxJbahUQ0ugvH8eNTowxc6uFDqpVpsDq7IbnxfnGWjGbKMvyMEQ7pkYc7xsxBPwoQ7cJHZv2l6nAu7i4oCgqrC04WSwZ+h7nPJUtcKPLNJe/2tb5r/txc7M+rIerkyX7/ZYYHbv9mrJa8Hpzy4vba3atZxg1ISJc+xDxmVINb+69282W3XrLxYsLzk5OqZua08UpJ7MTVvUptzdrXr64pO97CTorK2ZJqJPJRz7+y0/4znfexVrNu+++w8sXV+zjgPeOGGC72eMHx+LRQ0yZkXoit724Y42+xlQPWJwn6qy1ICpBrpQYB4hBgiWkyK7t+OlPP+bq5v/M5599jio05bzGJkecN1z3O/7xH/8L/tbv/IjT+ZIiG76opEX4vN3wk49/wrbb8V//1/81/8//198nhoDVltvXV5ykU5SaE4lolfAp0rkREwK2KA7aJ6m3powzze3thouLC+bz+cGNTeiG8ix77xmdoyhKilJscXdjoBojdr4ioTFVYj6b4UeH3+9olif87f/sv6BdX2MVrFZLfrDrM/Xd8ODJuyQFtjCcrBa8+/AdsZkfRxzgxpHgHEVmQnjvOT09J5UV75+f88Pf+A0uL16yPDnBFhW36w0PnrxDjInXL685n5+K056B+aJmVBLYV5QFqIagGoY058VXW7p+PDyvRWlxbc/ri2uapw8Ijv8ve//ZbEuy5vdhvzRlltv2mD5tr5/BYGBFgpwYgRRlSEkUFXKhz6IXeqsvoncKiRQZIUiCyBBEgEGQIDEzGIy9ru/t7tPHbrtcVaXTiyezVu19dvftC44k9IQyevfZZplaVVmZj/kbus4TwiBy6x76/QbiQHCBIThAYhytbEZHDKiksKZG14WP7O/FZIzxBsB95AtKhIUKPy34mPlkUnQyWnF8dIQL4jkFIpdt6znWzpg3LYqA1ZHtxhG6W4yqePLeh9/ofv21fDKm2v3TobUEeaW6XALr+1K1Ux5GqfRMF9NpxW+afJRA937FZtpmvt9qlqBbT95DMDc6S3gFNzAoTUpgdESbhHcd691GOBZvL/jZz3/Oy9cX3NxuCDHik1T6BJ4hraiYktjbc+BUfNX4OrgU3A0Yvup57yQS3E0y7nJb0ghFUZPO0JgcwJ3zXN7loHT10HsnIEgAWNr+uvw9SqsvmVEurarqzJtQYCw+Onzn2O47rm63LOZHVFWN86J8kpTCVhVH9Qwy8blpGrbrK5E2ncybqfrY/Uoik892P1GaLo5Gg6rK+Y75nMRMij/A7wrmezabsVguqJpa/E0SKGUIrqfv9nT7rTwHaS2ON3ZRqPIua3FLsmeyA3uIB9O9EEsXR7SuJUkfr9jXzqF/2Ud2cyCRGIJniELUDors4s6htZvGHGMkNpfvC0qzgK4Uohpl0sGGMyZQWgvWNyfcKUVi8CRUVgcSkrjM/yTKUSpDBaWjL+ptGLSuiFEqRynm5HSQ+VIZkyvGjhBsTgylk8qkuOKcG71WxsQ3zy+RQBW1JK1lA9XaCLchkuGL71bRp8E0ZCUsI/r9qrTHEyRlBI4UI6H3hKhQKW8BURIpXVnm8wXnZ085Ozvn8ePHrJZLUBrnPY8eP+O9Zx+yXB3zG3/lt3n14jnrm2tiiCyWZxjb47zh6PgR89mCuqkJScy1lNastxtMXYuSXEwMg0CRxP+ixe72xAa0rdgNHQemBww+oAdHVTfyvdI0s4YmQ95CFMVAJvdsMQJVSvx1YlnntELZWkihUTo5Lt+rfvAo1ZR6y3gP+1xljL9iHS9DKVG0knVZ4H+lGylrjAC+QkxZjvcA0ZxyEafFnndgt3kNjunw+6HvJSFPmZNjRM2qrix9lsf27ttL7grRU2Ck3kfxqEJ8ExbLGT4oehcJUY16WhK7hHHtLYHaCGP1XmCKPkJIzOdz5ssFdVXTtC3HJxrn4e3bC3w/sN93aF3RVjXNzHB5dc1nn33O8dGSp0+ecnW5pus8Sksy5F1gwLHvOppqhrKCSRFpUpEOVabBKpFetSqhXcqSxRpbCc9Ka0PvHMPgubm5ZbPdsl1v8CqiNobjxyeYxrJ3PV++fc0vvvic09URi7qlaWpsXsOef/klg3csVyuefvgBACkmjNYMXYd3jhg80WfVOi1oCOecqFhZi84FP0GSGPa7DevbW26vb/jwww+xxuKdp+86gvOjslVV1bRz8vM1iopkDXvnxI8D4cyiEz4KjPrs/BFHizlaQdvUtCuBJqsIpxTOh2LW1lSIHUHnHV2WrU0hkLxn1kg8Ml8es42J5XzG8WLObC7FC20r5scnIvjSD2xutjS2EVEAC+2iZjFb4PsebSyv3m642UZ2a8e+czgf8t4VUSmSYsiJpqj4+cyB6bs9ikQMPsM9xQgyJU2KOQFwnuCdyGA39QhfD2Mns/zvK2LLEiqkA0pFOvSSdMjrBTSKtqlRLmXYfH6sFm+4ysxQyWNMpGk0MXVU1Yy2PflG9+uv3cm4nwCklMbFsO97mqZht9uNXYgyiqpDyYC32+0dJZCSxExhT+X3JVnZ7XZ3EpGUDscgk7caMz35uyQadV2LXn7uNCgSKcrFtdbSd7fEJDJhX3z5kl/88jP+7M9+wuu3lwwuT/SgSMqOG335SlmZyBqNcAgedl59pyNwL+idfo77VffpuZ52g6aQsvuBdmk3lA06hpA17DMxX2sUoHN5PKU0bp73HWXvQLiKVrYiT0LR6E/kO54I0TN0Ed8PNM2c6MqmXyMci4EQIil5nj09Zrk84ovnX+JizHrlimfP3mc+X1LXM4zRvPzyF9zeXI5zq2zCUwJkUSebzqdyXqafpyTL1iislYrxMAyjFj0p8yXSIYgrmurz+Vxwpiqx7/f0wzCe377bsd3e4PoeagmYC2a6HIf3XkjHWgwUx07fuOmFDG0YRlLegbQ+aYF+S4coP4lK0hA8fRTFqaDVOFdRCatKeCnjUKmZ4qeYuDGATmBJY/InqYHJimAqu616opIAvrIKW2nRpU+RpBPJalLUQiSNUjxI5ZWUzUlfTjQKNtnDMERcJtmGIJjuVCfgUOhISYLqYehzkiHX2qoaawx936NVhbWGqhJonRhe1tQokXEuGulFlSnGbNJWPHZUhv6R3cUFQtUPjqpqsnJNFiUwBqMUbuiJAaxpmLUzPvr4Y9579ozT0xNmszkfffIxtqrZdz1n5085OXvC2fk5/9Z/73/AP/x//QM+cwKxPDt/hnOetj3m9PQ9VqsFtjLc3FyRFLjgeHv5lg8+/JikFL0b2HedcAaIVE1DM59RxQatDen2ekwQYhKDu+1+T0SCndlsRjubwdBjjJUqb4a6UTwltPCrUFq4Uvn8JaPRpsboiEGq3W4IDNoRvZdumDEYo3FZ1KTb96NyYsrSmF+X9BsjEgU6QZndCZHNFk8T6bIJxj+MRZ8Df6fsJ9I9j0VVUJVOteDHfQg4l2FVeX3wzhG9JCztbEbdSDeqruo7cL1v49CVInjwLnK72XF0tIDkuby4xNpTlK5o5keoYQcqd5KsxfiECQmt/Vj4SaXzJCsIpMj15SU319cYWzGbLzg5O2O+WvLR6oik4PrtJVdvL0FZTp8949HZKS+e/5I///Gf8+y9p/zo+9/ns18+Z7fvMU5TvEBDDNzcXtHWiRQtxMAu9qRUoZRB2xpRaEqYCiotqAG0eCypTExP3kmVf5BDHvYDl7dXrLstP7A/pJq32LriRm/4J//s91i1c86PTvjBdz6hbecMg+e/+L1/wr/2r/8dnr73HpVtSUFIq1ZrovOkIOak0UmxyxqLQryzTN57q1rQBHVdUVcVz3/5Cy7fvGW32fDeo8f4ENhvhNfS78TYMBI5OTlBGUM7n4HRzOYz6nnD2+trmvoIrSwmaeZaYEGx66laSzNfZJ8ZRaUTja1oqlp8lLKH2WIxJ/S9kKo1rIxBZWialpsIpRTvmQanpKNkNRwfH4lYh7HZO8gRXSB2ntq2RJ2IOqIqRZsURmkSFf/wP/99Ln/+Ja/fvJTuZPAoLQXX4BzJe4zOXNZcOITEdrOWAN8oUUnLEsCDc5A8KincII+tKktdiXdSiTsLNC0l8Ua6zzuVIlXex3KM4aMIcqgYiOTYAtlj6qYSA9vgGfxA33foWOFRKOMxytPWFU+fPAHXoFSFNotvdL/+WpyMaSWlkIfE3fsQHE+Ngabdj5RS9qywY/AHB/3/qV/DNLArWPgSYMtrlgTm0AUR0yTBvgo+UOOcyB5+8snHvHj5JZuN4OOL4odPgbdvblhvLnnz5gV/8Ie/xy9eXGUDFYWiBm1J5LZoKJlkGtvNSokZ3ldByErbvCRd007MQ4lDmSTTpO6rcMDl/D5Y4UICsLGLlN/bhTBWcKcJI0qIWYdEp7zfXfKykB5lkmsl3yeCVOKTOA4H36OUJilLMALb0Pl6KS3ysyhRLHj63gecnZ3zxfMXaK05PjnmN3/jN/nud39I2y4wWiByt9ev2ayvsday34vJYqkGF9njknBMu0HFMKvPOvtlji2XS+bzisXcSPUACfSvrq9o2xkxwmYrXKOmaZnN5jx69IiTk1OqquKzzz7FB4fSkhjc3FyCnlPPFDGJ0aAYC/o7G3rJ/8q5d4PDZSdheU5JsOPYpTl8HsW9S/ytG4FI0PJVeP7l/2MKMYWF5elZfr7T5Evlz/LMBAyldYcoowxYKiyzZElB4JCVrVDWEFRW0SDSO0/vIl0snA/pnMQUUKEn6qyokjwgnc8+OoyeYesGpaJ0BaJBY6XTMXhS6JjNZ6BywKDg5vYK7weapiZEj02aytQ8PT/n8uKarutotKK2hqYRDkiP8MAiIp0acuXO1BbhZIohoK1qlLYYDDop2qpBsPw9IRsBzhojhpsxYLThbH7GBx99jNJibPnRx9/lu9/7AeePHtF1PbNKjMwW0fHs2TMePz7j+HjFs6dP+Gu//dd5/Ogpt7dbnjw6xVhDUUJ59P77nJ2estlsRFa12zM/esR77z3j7dvXvH71hvm8pm0ibR0Jbo0ftig0pp5xtBRhiJgiXTcI9g2FSonG1qioGPbiWaFsTT0zNK4wzrJ7sDUjPVGnSK0L/k6R+gEXHC4M3HY74vWWXWNZnTQY1ZKSZXBwu96x3u7Zd72s90mqzWmyfZa1paz74zqvQVXSaVGqmO0d7v/yPENER1F4EUEIhbXS8VAqm1T6OGbTnU+kIYHS6HpOW1c0GuaVpVULfPAM3on8dr/DhezloqFqNNbW/81u5P8fjourL2jrIyqzYDk/o9YGlRxq5njx4gs4OmZxckq43jKf16Rg2bod1BadEiYG4jZfpxBIIaJJoKIE+UZ8cIbg2N5c83Zzg6kMy9WK+WpGiif0uw6cR7WW9nTBDx//FutXb9lt9jw+fcR7Tx8R8AypZ9gBiBLU8ckK73ui3+d9YCZlTx3QekATRMls74nWCHwyadZXrxkGxzA4tps9oZOg2lhDNWsIO4/qAuvPr6iTQXUOfX5MfXrEjeu4ffMlv3z+C5LSROB2t+Xv/6P/lKZqmLdztps90Ud87+i7nr7vMIMYc1pVEYNi8D3oiKsMoaloqhVaJXabNZ++eoXf7nh6es4Pv/NdWmPZDR6/63jzxXPefHlFijBbzem2Hdv9jvV2zersmH5xTd8tUHHP2aO/grUrVKqojWfY7+huLri9FO+0UlzZ7bYiB17VotaV46W2FflpHwKDd6gsrwuMgXdKSYyVs0xxKe6Jp5b4exhrBapWWSrbjYWbtmlwKTL0kbfXjj/+6RtevLxlvXVi1Je7691uS/K9dABUZHADm/WOzWbH2dlZjqWkEOFDJPY+FxIOtAOVETIhInMpivEeufBgtYKk6AYnst8ZXu2CB50kNknFIykJRDgp6Sh5R7KArsBoAuCjyCJ7n9jtHXU0aJ0Y0iXHR4bH54/5W3/7r1DpSgpc35DX9Y2TjCqbjvgQhMCasjkQ+qDDbaTuh2L8uSy8U33laVA9rdzAQVVqCqsqScpU3SohMK3c4EEZhfNi1iKxsVQmUlLC43B+NNO5uXzLbrdnu+u4vLlls91wu1nz8mLHdi8qK2KoFFExgBKYVKkqHfoD5btcp0oSHEKpWcmFuG+AdD8ZuM/VmMKgyB0ZGeoQdOUfS5s8kSUas6ayzp0MKQCrsUo27VJMa3CHDTBlWkDKykfZbCrKhFbZwbZcY5Wy9FvUk9crco0CT1CjGZiXhTxJ8Ny2LW0zp22WNPUKUylW8yWzWc1q1dA2DZqK3eYW1w8MvWAZQxjktZK48ZaTMsUnS6LmDlcnCbxCsNEKaxRPHx3zmz98Dz9YbtfXrHe3LFeKq+vAMMB8LsdQNw2z2YIPPvweJ2fvY6olr55/wfXlG3a7G0IaMolYQzL0/R6lLYVQfLjeOQnNpkYkxqqiJK2l4pFIqYTcYs5YXkJ9y5MM1AH+cq8p8fCDf8Xvpj/JeT44uh/6lhkiaAzKaJQVdSmfEniPsUKqU9GQ4pA7gIeuydgNy8kheXNyzuGrCh88jbU4J5wyckGhsnYMulOMJKOpKqlQe69xLlJVDVVVo7Vl3/W4EHEhsd7ts+KJbDJidKfRRmHsYb0oXV1jDCZLzRot2G3pyslaUFUVu90uJ80i33l6tGK1XHJ6esqHH33EYrGiaedUVcvZ2Tnz+ZK3F1ecvX9GXVU4L9yFqpLN5+TkiPc/eEbbtqzXO548PkNrcN6x3++ZzVqMNYQY8MGPvKQi3GCNZj6fjfetLKCyfgXvcWGgbmtqWwk0TRXiqZhhphxcxOjH/WJ1dDTuFUVpalSdi2FUfdNaE7wDbdBUDH1HrxRVTmS8D0QfGJxIlQ5OlIBSymZWIYnyy9d0MsZ13B/2u3hvLShVB8mND0UEpWBwh+KaIB3SeOOkqLKSYUJHePT0iGVb01qD28j6ZXxCZ2GFpCOQpeNhhA19G4dKIrdqkmfRLrm+vEDhWa4qKJ5HSkl3T24b0AIhNDVUKdHMWlw/4J0iILLEWmtqbfHDgNGapqqYL5aI2k8SCMt+gJhYLpdsb2+JJJTR/Og3f8ifbfbsdjt+9pOf8oPvfo/VakVV1Xz+2SuSF1W9btfRGCVJTYqoWuKlFAKOgZBknamtQIiGwbHbb9htO7wXh3c3eFHGSKCcwo6F3xl11TDsB7bXG+qmws1npCqVkyZzN4nBqe92bHd7Li6vSFoS8gxLECnTUNbRIBwmxPer23eSKGfIqVaKk6NjZuePqJuapmnk+JUQkT7+7ndYtEfc3txycXVJ/6pjs11zc33Do11HOF8RBs/MLDg+CQg3MRCy2d5uu6WyBq8Vycgap3Nc5IPHZngpHO65UQjC+zFWSSZlY1LpRFtj8SGOMNcinJE3DNAxQ13zlCIrpDpxzN7tu6yK12UviyyZnnSGPgns3OQu9TAM0rnOHcoYI8bUuTMRxySj8LKstdR1jSmIn7EkJ90JlYPO6QokyUn+fgKhVJP/l3BUzKSNqO25g6LldrujSOCKzKIX+OC8wfuBf6+vVwABAABJREFUwsulFGx+xfjmSYat6bxM9LbNbbtUMKaHjkX5KIVYez9wniYRZUydWu//vVSqpxX/kY+hpAKdlGi/966jaLGngFTTE9zc3Gb1np7NdsMXn3/Gy1evefP2kquNOOn6kIR8So1S087BwfPi8Ltc9UiFu6DGyz+VsB1lYXPF9T5n4OvGNBEJY/cj3yz5BRNMjkmqmSGkSSLEeD3Gf1VJDsc3yi23Q0KolTrIgapyHXKQo/TB1Km8RYwQdd7/yitnObicAMUUMkg+jFyDujmiqlvqesZ8dkTdahazJbU11BU0tUYlhXdClO27Huc7QhhyAgRVZbMTaXqnQyY33BhmCrm8yLRpOD9b8Nf+yscM24aXr59zcQOnseZ2fUVMspG0TUPTtCyXKz75zo84O3+fhObi9QXrzQV9t8b5PT4kUjIoLH2/x9gKrcWoTJLEgzOw3DPy7zAM9EN/6FyN177Ao4R8LDyPb/94BzuqmKKifv3nf83fp6IGSTEmEzpvJiF3iipTS8U7atHOPbwacHBZhSJJDSomYibaeldBY0e+RalQ2coI2TzKelE4AtbWGCMBw2zWyBxBs97ucSHhY+J6u8WlzFdJKXN/srGklRktyYXOa14xxqoFOqQnMrZaIKM3NzfM53Pquub29pb5fM7p6SlPnjzh8aNHnD96wvmjJ6zXO3FEthVd19G2NYv5DOcNs1mDtcKZWR0tefr0CbPZnN224/HjM1IK7Pc7NpsNs5no/ItEsBQIum7P9fU1bugoBq5F4OCwV2TPEddT1dXY/a6skOhTEijYMLgMvcyQVWuZz+cjLHEYhnFvMVqTYkBpuR7Cf8jnUGv6bkttDS7Kmj3kgG67G+h6x+ACPi9hISByv2pMl9+ZfyMMOIqsrxRDDuv1fY+osWwlF1bgEj6Oc5Bc0VRKQSbvluBEpcT52Yrj1YxKKS79jSRPPoEXE8riIyEaAxrzDfagf1mHqLuJOERtK26vb1Eqslo+xmjhHZXipI7i+WSMgVqh8n3h3QKlDUr3IrwQSvHJEq3wH5p5y/n5OSE4/DCwud1xtbshOCmQdbvdCEd58t57/Lyuubq44ic//jH/y//V/4JH5+copbl4eYnLBK9+26PrKsuERqzKPBEFPrnxWNumxlWGXTdwc7sRoZp4KKDqIBtJ8uCiFH6bmUhGe+fptjv265rlaik7SSUiFwEhcYckRUTfe7abLUmJJ43K0MuUpLCRw19JiHRE+cA+ij9YigJRX8znPHn/GWcnxygtyW/0AazGtjWr42NOV6e8fPGS680Vtzc3bDYb6usbkgsEP+CHyMIucM8cSgVS1PjkGfqevuuoFnORY9UCFa2qSgQ4yKIXd5ALB/EXH7M3jMow8CTRmjWGylakmBjixAcrFTj1AUUyxk+5EOsTOB/Y7vdstzs5Fykd+F53iulyTF3X4fwAiJdTKVgfYhZZ1w7czUOBxFpziBlHpMMB3n4fQTP9+cH75x5CpiQ28/kcEFTRYjGXQnuKaJ1YLGa0s5btdouJFm0Vuvpma8g3TjKcE8msEvAXkzLnhjHjhYMvRDnJRh84CiklZrMZdV3T9/0Ieen7niKLprUepQKn5N4CN2qaJgdqEwJ2juSdDywWDUdHR3SdyIQG77he37DdrXnz5jU//elP+Omf/DnbbUc3OLbOk5RIW2JUTkxC5gzcrRiWrgncVfyYckimsKX7BO6vG9NkYZzcE0jTlIfxUJKilLoTYMMhsSt/L+9z/2/vBn5qJCHef14Jku8+XGPM4TOUxKScj1HqNkaULrA38QmoqoqjoyOevveIlIJgT4HNekN0Cq3rrMjTs993xOTwzmOMlU6HrnOlNNzxaJFKQIVWIh15uGkPkCk3ONbrW/qtZrVsWB69z3W34Q//+SuIicePz1gujzg9Pee9997n7/ydfw1bNVxcvCWFW2Z1oN/uuHj9HD8YfN/ih07gLq3GVgZz91TJPM7ckULiCj4wDE46geruIjCVI9ZGOjDf5hFjIoZ41xTj1/hIvyrJKGP0wyhcBWOwTY02stn6mNB1RWUNs/mcvR/w0/ZvTo6LJ0WBR9rKZpNLqdJppUSrv1d0JuHaKosdCMRFKcXySGB/JMV+7wQOpGt0pQlese73DM5zu9tRt3OCrbjedXRRIIfaWubLisFlecOiuqyFJF64SHVdM5vNRt5AMYEsa0lR6nPO8eTJE2w2Bdzv9yTknnHDwG//9m9zu9nS947f+Z3fYdhvSSry6PFZ3mxqkZWOnuWqpaoNJyfHzNqKYXBA5Pz8lK6Te+H09ITLywuRyjSay8tL9vstm+0tf/7jP2a/37Hf70GRj2lgvd3Qh4HBDdTbiuXyCGuqEdJwcXGFCEtUzOezcd/ZbDZ31scCnyiJ+/HZMUppdt0eZTp8v2fYb9n00vVMJJqZpmlq+mHg7cU1zguEYBg8fYCY7nqVMFmfH9rgpSMvCUO5FlNIBIh5ZGVAKTsWZgx6hLZC5h/lJCS7SWEUtBVY7fFux2a352bXobPyjrFa0AbIlC0wwG+z+3cKMF/MmbdHxBA5Wh6RgsftxbhtHSObzYa2bbBJeDFzs8RlCOOQuaNd1zH0Pd1uT4rSwdJa8733nrJYzKlby6vXL9leb9mv11y9uuTq7W3mL1XMV0tCinz5+iX/4X/4H3H12ZcY55mhePbkPX70wx/yox/8gMtXb3jx5Ut2mx2zasZ2vZYA3dZY1VHVNVVVjepnxhhaWwk0Z9djIzTajH5APkVRAsr8I6sqhl54jpv5jrOTBZXSXD5/zaxpWZysaI9mdN7TuUGgQsbgetlLI7AbehEisYa6aYg+MewcqlLU7WwsBrjMPdNa8/FHH/Po0SNmM1H49Bn9EKIIwASNdDNcZHm25PvH3+Xj733EH/7eP+Ply9dcXVzz5eYLXr96zdHpMWHjOH30GyxXUNkFve5RQNNU1I2VwDcLUGgtvAirzAjRLzLxxhhZIjXsOjHW1FqxWi1krUtCPu/2/dgxmMZYzrkc/wS6LtDtdyKgYMX/SuuKfTfw+ecvpPvspAgRoyhvmVwwL8XelBI3NzcYI9yH7fY2Q63VxDRY4qiipFo6zlUlcNnBOVBqLBAUk0RSLkKm4pnx7hBjwoMh9LSIP8bpOaGp65r5fE7btkiJyzGfN6yWc2Z1xX67pbFz4Ux+w+zh11KXKgfYdd1kIVeykN3LpsZgOx0gTmWTizHecUGWSaDHClSpXJULXi6Ecy4nIhkioKtRjk5rTWVFoeX65oa6aXChp+v3vHz1kj/6o3/O61evePv2Lf3W0Q+ewUV8BIxkkd57UnRMydt3OjGKdzaTMh5KLg6PKW3uw5iqapUxzSzHn6O04abHMa2C3e+MTIPT+2OaDH1VN8V7D0mgTlPp1+n3DwV600SybPj3ky4AnaVKIeFdwFrNajXno48+JKbAcrng2bPHnJ2fUNkZMQjpv6kbFoslIVY0dT1WcoM/JD1TNbMD3lnUMZqmHUlTAs9Q7LuBN2+uWF9tWSxnzOYNlW1oK4uaa85PT/jtv/63OH/0hJOzxyyXK16+fM2L51/g+2vmi0haVexPlqxvPIqI94OQOvUDG3muaih96FjcnTOHRQkOCT2QISqihPZtHjEWOMOvlVv8WuOdbqESDtYQPEZlQzxrpAoZAjfbDSEllDXoIImJOJ+mMekDhRsG7HwuRkRJkoyU1zA3OAYN+2rH9fUV80rTtpqAJSlPVbVoZXEu4lxgu92zvpXkou97ejegmhrPDUNIOG3AVIhWliF5L/eOljVRNiArUpCVFQUqY+jyppcmrfJSHavrehTfKJ2xlESw44vPPwc0jx4/IcbIYrFgsRCNfasjdaVZLmfMZhahQEXq2tDO6iwVXnF58Zah7wkxYu2S2bxFa8Xt+pbdfisJQ12xuV1zc3PNzc0VSocs7SxwgqEf6DsxSfME2TxTQCnDs/fep6pEWOTx48d5fUm5KBRGP4iD2dhhY40xMviEqqSrMFus8D7iu4794Nj3AyrjnesNNINIbe72Ay4qfMyCBSmKOzCHJX1a6eSd7wvc4u46fz8Z8TERfKLOstxjZ8On8TXG4k2MRJ8wCaxR4kLdOZLz9F0gxRqX83gfFT4FAsViNhscfotxlzFFlIFE4MWLz3n6+CneOV6+eMHjj59iFQTv2G62NFp8lLSRJLypxRBSZchMjCJQ4r0kgt4FjIWQAptNx/PPP2dzc0O32bG/7gguCHQ6wlLNxwR/GIQbRBK4YFVXrI6PWZwc8T/9n/97vHj+guuLa7brjk9/+inD4Ji1Cx4/O6auK5q25bvf+Q51U+fqduLzL57z6vVrVrbm4uKS4MWb5+rqmqQS0YLVRkjNOfD0zmUCPLSzms3NrQSztcVUFh3ESdq7IcdiAvcqEKmYxMTXJIOOkohonUnyRExdcXp6ysnpKVZbul2HGyQw9spjK+FfKqtJXlAVQUWUCqAj2iq+/8Pvc372iKu317z44iU9AsF6/fo1n3/+S548gUfnH+D1QPQelRJtU0MMlLsvZe6BiyItX7hNh4KcnkB+pHtRBB1iElnbKicXJca0OaH3RgqERUWwsqJIOvR7dpsNKVVcXG358sVLnPfZTjgSU8AYWV+7rgMOXYL1es1yOWc+b9nt1jgn7uUghXIZdwsT1tqs0hkwVSMdkNw5CyFgMiQQrXGDG+FaIu4j64bE2QfvsGkBs3iHla9hEA7z+fm5OLarRGXzut/WNLXFZCnuGANheFjG+/74tYjfZWH03o8ZV2krTRfYuwH63RNXFvypx8G0dTMlw5XXKo87kI9VVv84BHGCW5e2u+8dneu5vLrg+vqKly9e8dOf/5zLC1EnqvQM7xMuiEmMUpBUhkTkNtb0veGQZPAVwfl0TDsYB+jLw4H9u52Cw3mQllh8EE3yVRXdX/X7h/4+PYY0tioOycL9x32T97vzepSNFZTKZDYlEKJh6HG+5/T0FOcH5vMZi8Wc+XyO0Q1ukHNhjcWaCvAkk93ckyYqgLuSyXAgYhZ4lLUSJApEQj7Xbjfw5u0thqzQ4ovsscYaTWU1H3/8MWePnjJbHmNsxc3tDRdvXuGHLdWqFYUikx27lUKkku/eE2ps0+bfS7Yq864Eg4qxS3a/ewWlhStKEt/mcbgfstxzXiLGT5UmycevuNXun4n7Dy+3awLBOscgkO0sXZzy8UQX5XfWoF3xm0i5cngIEqUIITAZgXlrgpINT1rc0HWam5sbYlvhgyagMVagnUYXvo3A5YbBs9/3bPc79v0eM5ux8wGXFME2BJXngpaqtLIi7Vg6usUrRlT5pBoqm5K8z7QAA3cNKeGA/93tdkSlOT3b4n1AKbJXTCXwMgasVWgDWREWSBijcvIrnRlI4vdgLbYyqKDwVkwnRSnNE4JivV6zXt+y3W5pW4ECxtyJdE44Sm5wRCPwCKXImGZHMSM8VAD9eOULLKzMs5TSRKo0ZWlTT1JSKcYYktL4CM5HejxGJ7pO43PA6XwU51sUQg8ufJ27M/D+2jh2Tx7YAx8awmuTxGF8zgiJkk9oK0l+Q0oQE1YrrNG0dZ09fhTeK2KwDCHiQ5SENYprfS5hoNHf6iSjbmu0ES5F7zrBhitR6fIhEM0EATB6OJiMbZd1WpV1JiWirXEuiYyxdfTDDt8PDP2e/W7HzfUNu/WWtIvEqGXfQXhD0pUVArlWcq+bymLqinrWoGvLb/7V3+TxkyfcXN1yfXVL1bYMvWPWznn2wSnWGuqq4gff/37uzgv3IQ6OCmi0ptWGPkvn9usNXjkiiUprdFDZ/0UJVMeLOpGZG3zncPueMHgJVDnEcDHGDLm5uxYbY2SeDQKzc8ahss7OYrViPlswa2a4wRP87rB3NSc0qRkNclXmcWhTECeAVpycntJULfPZgm7fczNsCUS22zVvXr+grhecnJwTopeiVI5JCppGASpzt1I8IF5KvDJW6xG1rHIfxhhQKauLJsY9O6uMj7AkiWlT9mzKNIBQpORlDeu6gdv1RuZb7ljEdNj7C7qm8C+Fe2lxTgooMUJdl8e+2/ks/wo6Q6NtPR73KMqjD8p7h7htCu1nfP37BeJpnD1CO3P3e7GQjo/OcdNi0dI2NVUlalxaFZ7jN7tfv3GSUchz5YSNVXQtAd9DVXxjxPmynL/pAlsmTJGtLcpTTSNyoiK/eHA9tdaOH9470W5rTZNhDGK5HrPXQiTx45/+mP/qv/qv+PTTX+AGUT+SSQJDCJlkIxdMI5KuxhiRqp1clOmFCWnirDtJjMpnG1vf94304A7R7n7VvwTHDylEqXEBUO+8T3mPd5KEfAzTION+Z2Mq6zrtkpRJWcY0KHmo+3L/HE3hY9OuilKHwD8lwT42TcvLly+o64rf/M3f5vLyagwIdMZrGyOPI5POhIS5xRhLUwtpNBSNQA43TwnAtMqE9DQIYS4ltLIEn7i62vKz6Pi7v/s30QoGF7i67PFOqr+7zS1PHj9meXJO1OJO+vr1K758/jnDfoNWNcF5wQSbY8H1V0Zcz9WhVD914Ex5QpRbocChJDnKRjiTOTFNvI0prsHf3iGdjIJ5/eo84pt+ymk1uaQv9/8ek3QsCibZRfFDMVmnHYVA64zGZBy/3B6FK6DzPSFdh2iNVEtzJ0Tl+e68Z7fzvHrV44/mtHvYddC0DZVtsRpCcNlvZUE6qWjqAaUtPkbW246Nc/QALTg3YKuW+XxFXc1zAKNH3kFZL2RzqFkul1hbcXt7Tdft7/gKTU0pS7W/6zr6rOp3Zizb7Zbr6+ucuEhFsq5rjGohObpujzHQtgLdI0FdW0JIRC9EcKXUWEDa74tZYUdVGbp94vrqkpcvXzAMPTF69vuBlHHK3nt2uz1dJzAGZSXYkeSu4xe/+JTZbMHTp0+5vLwcYQbLpbT3yz3/+vXrcY86yHwr0C27fUc3CIlbNm+LtpUAA3ygU4l9p9GDk85nEj1/RcxO8NLllYLAIcEpY7rHaZ05g5PJfCeBnkxYgfSBz93r8lrTtbTOiZVyEbSWjsys4Xh1wmq5wvvAbrOm66Fz0IVEHyK99/gYDgWYDLv4to7Hzx7jes/Qd5w+OeLV2xcQNcdnp1xf3+AXLdVywaPHj7DJyGdtDCGq7NvQs12vxwSBmBic+BhEIn4YGPqeoduzbFe82H/J1eU1NlmIFp19HDY3a1QMqDCjrgW6N7OWo/NT7Lwl1YZoEkfnpxydnUmXI0R+62//DYKPWFNxsrIE7/DOUdsKkwsKxhguX56zaCxPz084Wy1Z326EX7pZQ59Jz8nQqBofEy4lKmto2xlNU9E2FSoqYh8Ytj2zVgR7SIhvRUxZcV44ClEHnBKI4W6zF1RJW+PCgKo1dlbx8Ycf45zj6uJqhCfHGOmGDjPTLOKCGCLz+fwAQ0qKvksEnHicGMXyZMnyaIE2ii/fvmW9vsXt1jx//ilNM+OjDz7AIaRjSOw2mzFmMSabMFtN0moMjsv9LzL3cm2buj7ERVEEOLRSNE2NVhbb2JGYfYBa6ywiJOR/55x4lZiGtm0ZfM3VWgpE/ZDwMRI5JG4HFMcBqRNCYL25pR82gKBwhEtnRn+k+3HcuH6pRI0kStJhL3GlJJUuvy+Udb4UL4t566GjW8aUQ12KMVPIVNs2KCJ1HTg/O2axaGmaCotA1DBqVPX8VePX6mSUjW3qbyGfPd2BEpWMUhRE6vG5JaguH2ZUbcljqh5VSHur1YqbmxsK3Go2m2VPg0BVgZCLIykNvL14wS8/+yU//slP+LNPf8EweNkAA0Lai3KRCmmbhDhVq4CYyN2tOpULUIYW2/AHoUjloo3625OJIpn3wf35685pCTqnE+5+gnL/+2nnA+5udHfkFL9BF6Z8FqXMO8fx0CivO/XseOgx1lbM5y2r1RHBJ7pu4Ob2ip/+7Kfsuy1//W/8DY6Pj2iaRtrZ+gAHe++9Z5ye/ZL1ek0/7JnNlnjv2W73KGWxlVQw9/s9dV2PxyTOmVKtsFY8A0riZW1FOz9mcfKErdPcXN9ydXHLZ7+4YSfm5Dz//PPx/EelcX7A9T0xBBbzM9a3nt0ObHXCEC1BG5JRso6ru5//cM3KORMMcIwZf601Ph6cOqcJmiyC4sxp7P+nQEb/3xmaKKoYUTFDsQeCUjgtZno2yb9BfX2ikXs+hGyVp5AKVWN11j5XglevZa3xKRK8yzAXjapaYlAoDLOlQGdc7IlBfDJKNw/Koi+YW1cZlKrQVY3RxRsn4QCVk+m9h+udo/Uw8zCfbdDBwCwQes/17ZrbreN2H9HNinVVsTaa2+AIWqO1xZia+XyBrVps1RJR1JWQn6VDLjAqSGy3juvrS968eTUm9GX9nRZEZrPZSE4fhoFnz57RNi1d13F0fMLqaMVsVrPdCty0rmpmzYoQB4jiJ5GGiE8BHDSNZVZZqMSYMKZaSOokUggMQ8duc8vLzz/j4s0b1reiKLO7fkPMhmq7EBlcoO8d3dbhh0TMxpMmaoiyn6yOJIFSSnH56vUY4FhrSaEd17kCJy1FqgKlANh2XkwBgW6/ozEG5QKh7wk+0BOIaFqXuzJKYWyGZpKwOhJxGC2OzEPG8X/lHM3VxOKVAnAoGef7oRQeSkczTtaKnAgpJdBLjSXhSARMpdCtpjlZ8t2/9jf48ovPub3ecbPp2Ox3DCHmL3fXQDClDO/49q4ju2FL1/VoDN/70Q/45adf4ofEan7C8HYgGQu2QlUzhq10Cq8vbum2A7vtnu16TfCeft/h+kEq/1lxzlaW1jYE53HDQG0qfvCdH/Dhsw959eo1129uSS5RaYPb7fHWECsLVcNsPuP8+Jjv/vAHpMayi5LctTbzwrQYoa0eHzF4x77b8+bmguvLC66vriHCD7//fc5PT8FUvPe9pzz2jwDF36z+VYgC6drudvzRn/whf/rHf8Q/+k/+AUoHKiV73e31BbvaUjcNp8dHrFZLdALfD/TbDl1pWlvTs5P4yAWCC+y2e1HASgljLPtdx267Y7aYs3i04OT0hPc+fsbr16/HGKfAa9q25ezsjNVigdEG1/V0MWEqgZK1TcNsvhjVkPq+I4ZADJ7lkyUftJahOyUOW2iOmC0M1zdvOVvNqE3C1JaqMnhf7qckgXSUAlLhZBSyv3QAArv9nro+SNiqMVaEYXAsF0ej7P3dLkjAZ4iR94f9WGW+zBAMMSkR6QiiRpqIuDgtZmcT3iivfXR0xH5/y263RuuKppZEQF7bjF3lst8XbrKsZwdSODGh4sGbTpT4wqRwWbodhQN2t1he4h84FPrHdXQSs87nYnzY1J62qTCGDBIVXzRtzMTE+OvHr+2T8W71/m5V/OvY7dPgaWqNXj7s/cdM+Qdw4IWUylxIjoSn6zsuL97w45/8OV88f87nX3zB5dUNWlu0tgjUVgEatGCxD5WkNKJVldK/ooRaJvnDMKeSSL0T0N97zn1o2fTcvvO4SfLw4BFNEoz7WN9yHNNrcv+55X2+Ckb1VX976LFfNaZeKRJUq0kWP9B1e2kZ1zV1VU26YEJanM1mnByfcnN0zc3tBSiRzK8qCfJspVH6kMiWz15VFUaL0k4JtqbEqvNH7/HBxz/k4++f8POf/JzLq4HT8yNsd413W9ywlio40vG6vV2z3W3Z7/b0O0dSDuehqhfs9wLD4IFE8t5ZzzCefG4piboaK5v37zPy+ysoYmff2pHyracV2QDroKxThnrgu4dfjLEzVB5bcLhKiZKY0QJnUxEqW4k6UEwEglTxlBLTqUxGt7bKa9Pd+STHnkToImOvq6pCjBD0CBkIUeQNByfABK3BuYD3meQfIvtuz2bXs94njGoYQiJlLJLWIkJROCHeB0LspdquhSCsOCzuKsMAioCGKlW6ifjDtJpWvuTec9R1w+roiPPz81Ha1rkBaw3RaGL0aKQ9HrwnGDPCTOqxa8doXleqdyPsAJEQ3262rG9vubq8ZL9b5w0WXEj0g6frHd1e1AsTGf4a03hfDP0giln5/Y0+uGIXRa/yOQtk6u7GmT0FrMlzMNF3HW4Y8hyUgCHFQDe4Ua1LkzvbGdIwcqa+Ykm8v/5O5/H9PSHHXId5y925Vp4jKlxy3DFEYojYSmOsAQWv374VBaJ9R+cGuqETKeSYcMHf2Zf+Mox2PsPYCqIQe5OKmNpimwpbGfoY6Lo93RDY3wrk6Xp7y/p6w367Z7vZMvQdJgsHnJycEBE35n4YuN32wr3wgVA3VHVFXTecnJ3h9pFh15MGcZHWCqyRgtz50/d4/8kTHr3/Hi8u3pBu3rL3Ha1WmUNVZ9Ebh/OiKsj6GpVgscru4rMaZTXKamZHy7w3aIyVvUwpw7H3JO1YLVrqBJcvLri8vOHt9S1hu8MnS0yRfVVRW0vhpKm6wlKhrHSyVEoSqaeUnenl/GpT5rD8fHR8xHw+xzlP3w34iemorUS57fj4WDpG2Qk15ETEqQFCRFeV3K9GY+uKGDQxQKtarGmIzkOY4Who2wqSIwRFTB6r0qEIG+IIW0WJul5Rj1MkvBuorKg8xmjlsxVYf7Y0AMAcYLEogQCFdJCrteZgrKy1mJyKlL/w79wge8T4JWdsPGdjPJjXpLZtGdyW0GXeprKTdfiQmMAhNhhj5En8q1GjIWGavP54bydRk5Pk4hALSbHibnF8+n5QUBUe53qqSlNXDYt5TdvU1DYrFibhlMrjv9l68o2TjIdaOSCbgTglHwLdEtDlT02BgEwXuakS0DAMYzY1DQYP0B9LSjFLFsY8sQzO9Tg3cH19yR//6R/z+7//T7lZ37LvB0K0IvsYxaNBq0xyUYaY+vHYYsZql4AADvKQ6bADoOAOP+JAbpY5IBdMgqYpZCxNZuH95ENaYRnbHYNsPOnQFbq/4dy/FmXcx/OV595/v4cSmrvJSQ76chV3CpX6Jh2Nh45zipd0ztEPDoUhoanrGTHtc9AmpEdrxXFTsOCWFDV1nTIZacOrN88Zhi4nJUa083WEvBB1XTcGOXUt1djKVlLZzBCypq5ZLBa8/9F3+eFv/m3+5n/rPfpOs76B73zyAz5/+XOuL5+zudiIHF/GQb+5eMv19TXr9Zr99Q7biEtrO19yvb/OFTTx7chhxeTccJgL6uBXUlYlld17SwskTuBz4yKQgG/GtfqXdqQpRKSw8v4bvmBSBx+Y6bKjtUYb2WASkdl8TkJgcftClAsRN+xIMoWo62rUOC8b6XReF1W84AKLxQKd5WJLMJySELsHJUmhNoIVL94KPkZ2+47Nds/tLmJpSMmjjaWqG5KWKlnXO5IaRE0twmy+hChwjbquxoB6CrUExnZ3ueeKmopSatRpL5y47XaHMZb33nuPJ0+eoJTi5uYmJx81YzdaSZ+otNRlA4vEWOXv1Xg9Vcxmqrl7WVWWvhcc8maz4fLyEu+2kgQaTciftesG8TPyEVRRFXTjvrHZbEYuStM0Y8XPGMPtbkeIgSrKMRfolLWW29tbuV4xoitRwUm5O7LZdzg3yAaMyFK6GKg6zXw2Q2lBSCXk3xAhJDJBNk+ye/vsfTjr/TXx/po+LaSVjnC8HzhMrnP5u0Z8WGKM/Omf/ilGKZFU9o5+6IWHEcHHu+IqfxnG0dERJI1zgZcvXpKSoq4qdGWoGksYem5v91wPsL/Z0u061t2Wq9eXdPueoRvY7TecnZ5xcnzMD3/4Q7p+z3q94dXLV7zdXBJcgKDwfaBpG+pZzfnjR4Q+sr5as7m8xVQC25nP53Sx48NPPuKTTz7m0ftP+enzX3C733C7X2ND5PjoiOVywdFqxeVVgRolmm7HJx99wocffczJ0QkmB5FaG9rVHFCkpEbIjtaGqtJ89wff46OPPuBv/fW/zj/5h/8lf/LHf4r7sz/nutvQeY+Lia3aYIDBDTTeodsaDOKonWE14uemqLTB6yyXn/lpVWVpmprzR49Qtebq6grlDM576f5ohUbT1DVnJyeQggT/uboulfiE6wds02Crirqpsmy3cIhMbTDzSiwXYs++TxjdUJmE93tskKJDXVVEU2TCe4E9ZZ5N27akJAWCYeg4OjqmqjRaJ7p+j80dKhJj4cLaKm/FSuA/eUiypTBG1raQ789yz3sf6PeOvusgcwuniJUSP5UkoxjW1XWNNRJuC29uGL0pYk4MpubVRfb2IKcL0QusX+X1ojh5F9+yKSlcJIcnhTcNIajxscCdrgZASgHve4Y+sljOmM8bjo8rZm1LXVVUxkBUqIzWCN+QlPGNk4xSAS4yidPF02h5mUyXpAjIGC1yjtNWVsmeTk5O2O1244ktG+HY8s6azXvnaOdHoqzQ9SQ8znVSYbPwn/3jf8zPPv0Fn37+Jbt+IEQNaY5WkaLDLhUtIEGMXhKPPEUqY/FRgoMYCkciaxdnYlRpOSlEDi+lSBhbdzrr798j8jLZcPJm4bOe9UhgD0VtKFf5J/4WobynYvwcJVAoEr8lyy7BfHnPMu53Vu50SzCU2SaFWYXWoCjk0K/mnHzVxik3WMmO5bibtkbrSN00HJ085qOPf4BzidvbLS9efUYMkY3b84/+8f+Tv/u7/31WZ0doW9MHTWXAmkRlEx9+/Ix23hKi4qc/+QkhOqpagfK4IRBDYjFvaOv5YZ7OFzSzGbPFgveePePtm7fstlt8CJyfn/HJJx/zg+8/orHH/Cv/6n+Hv/bbv4vWCz79+ad88cWn/PjPT1CmluBwcPzyZy+4vr6FSvG9v/Y9/s6//m/RDYqf/PwLhj/9Q9rGY4Klsg1K1fkcy6IuC4kkLOP1SiJTWWkDxpKcFqhVEu1uo0wOoKux8gJ/OQKFMSH4C8gzys2slcIYizWK2mjOTo5ElSQFri5eEB007Yzjo2PQhu2uZ9/1Qm5EICUx6RFrWtajEpyPbxfT6OJuq1rM9JoqS8pabN4UXIi4feDl20t8gNXSYXTN5c2W602Po2XoPFWlqOoZT0/Os0nonpubyxwkJobeC+kvNJAaVqvlneJAafkXedrdTkiMxhjee+89Yoxst1uUkmCl6zqGYWA+X5BS4he/+AXz+ZxPPvmE733ve9zc3NA0DUoprq6umNW1CChQpMmFq1I3FqUPnK8QDnAB4VQpjLWS5Fc1CkkWYugwRqGNFrJtJliXtVJrnUnsB+6fSCoywjRms5nwpna7zAFRo8LUarXCe8/FxQWla+6cZ+9umc+lYmy04f3336fbbbm+esPl28wREqe6rMyUiF72p0hWgMrE/XHKTiqNI6zigc6yPPQurPWhMe1A3U9SnHMYrVjN5pwcLyUpcZKI7bsONwi2X+i6EgiUrvC0WvltH88/fcWj8w+Yz06Y13vaUyWOxzHw3rMT+reXPH9xwy9/8Ybt5Yb9esft+pYkKsVoa/i7v/tvMlstMLVlmzzGtMznlsePDO+/9x2ZZ67n4u0lR8cr5os5bdtwenLO0PUMXccPv/cDjk+OWKwWzI5aVvOWqrI4q1icnBD3Bn+bCLuBbRrY3va8fPs6qxwpGmM4W1Ucr1acnD4BtRDYZ4qAw+QgFqWwVUMJahESGdY0LJoFf/d/9u/yd/+9/zGu6/m9/+wf83/8P/0H/Omf/hmx69n3nrhcoNBcXlwxi452NUO1GtUYijmuUhpdMPw6UC8szeKY7//Gb7Du1ridJxChB+8CIXiUSZydLFmtZjStoXeBUKBCEyPJoRswbYepLHVfs1tr8akwlqZtUG1LslJwUCZig8HGQIVjNquZ1w2mrTApCeexMjS2xlaNnJfoScER6SH2qNQQFQTl0DUoCxhIPrHvu7yGSUGp0hqLJjhP1CLzHJJn1bZyX2fFt4gUi3Y3PW7f47Y79rs9nTc5lnMM2x2uajHa3uHMJSJ93wOGtlrS7zdstwPG7ti5niF68SLJcKypKp4gOgTJYG2N1XrkU5WaJUiMUXgYo2cn+QFRkwISbxoFk+SkeHt4P1Abgx96Nusb1ptE1Tzj8ex9KqNQUVSsMApvPUpb9DsC/Q+PX6uTMQ0yC17/nap6TJjM0p8uttOTZnJ7cYqhvduyCQXJRGSgXS2zbGLi5uaaYdiz2675wz/+E37y859zcXVDP3h8kKy/uPWW95TMjkOrm0MBqmDX8qe8s6jHybHnT5cvqjoESch1FEnIQxeiBJL3N4rp+bgftD8UxKf8BoeuzoGA/6u4FtPXnWIO5VjlHL1b3TrIn93vkDyUsDzYhi9rIeC9YzZrOTo64sOPPuT7P/g+Rjf0feDzz8/48uXP2Hc3XF3dMpvPmM3mbLsBZap8nkHpSNNazs6O+dGPfsRiseDNm1e8fvMiwyeCdK2MFWM1pVBWs1ytWB4dsTw+5tn777M6OhaCXV1zfHzM6dkJy6XIXbZtS1PPidHw8Scfcna24uOPn2CtEL/6LvL65Wu6riMEz+XVW5p5w8njU6rZiovLF8RwgzEiNVp6GeUUppKs5sg6MZGFHpPBHHPnwGCUpNOa2WJB08xomvmD1/rbMjKyaBqb/Td4scyTKhVlpXLlSFq6bduyXMyxGmrtRYbQea7eXDBbLkkBrDJCBI9p7CSW5L1pmjst5XLvxCgGT5Lsy2exKmEr8S8IKWYKv9wbLiT2g8N0A0bD4CMuQtAKlGHwgcH3bPddrtS58f1UgspoZk0t8pBZDKNt27E7WJLqkhwVL5gSYE8TEK01y+VyJGdrrXn8+DHGGLbbLS9fvmQ2m2W34orr62uaR+dUWW5xGAaqymKykdXdzva7vj4pJQY3jBU9rTXeZQiXSww+ipTs+FoiztH3/bg3TBUJy5okJoEtp6enrPd7qfJmQmj5rMBIBm3bRB3IVc6aFCI6m/IJV66sawrnPcZW2GL2imDhJQnNE69MwHvdhvuQ2On6OP33/tp5X/SjCKKUfbYUy6xOVEYElVLpnHnhDwxO1LlcCHkf1F+5N3ybR7twuHDLzabnZnNFMEac4etIvw1c3dzw8tUrXrx4RdyJ2uRuv+N0dcrpyRmPnz6hzt4Utq7Yu47BdcQsqa4NLJZL5ovHfOc7n2REpMiabtdbIYUPPfNly+p4yXK1ZDts+fLlVU7yAkfnx4Ts4uxc1lmPCbfrcqCocCGybI6YVbV0ogBZy9LdBbIEQ5O2mUxDJTwSrdA5aP7Nv/ZX+V9bzReffcYvPv0l/+yf/wldt8XdBOJQEw2oylBXNcWmNqSICwEfPN67SXCr2G42BOUJ0TN4hw11VhcdsNpwcn7G2fkZPorks6gvic9YqcjXdU2yIitrjMFqndUipbvgnSMFCMoTvSahIRn+5E/+lFmlmdU189lCFCeVJoaYoZMVxjY0rSWGDpU81hiGdCNcDdez7/cZ0dAI6iHJ/qu0wjatyMBKYxZtTYZdK5IW2LayGhdLl0Bh65Z9v2a778b7eAqLKnvIYQ0UqFIp0s/aOT4Ip6udzSZkcTKa5q5CVlEAK8Z9Rf5eIGOZYZjFl8bUolTUU/bICHJgIl3uxr9rrcY1XClYb2/wbsvgbvnk/CnLRcO8qbC2qHTKeQsIlBe+WcHiGycZ96UPy4I4TTbuV73vB9lTUss00yvPKSdI5GLlZLogkopaa2yl8WHgdn3D69ev+P0/+EOub9cMPoKtSFGP+uXlaEtCNB3TZbdAnsaq/r12Nncee/j9fZna8YKbdzfZ+683fsavGA+9d9lwyzl9qHNxf0N5aDM7qBY9FOS92+Z/qBI3VT56ZyiRf1M5Yi4Qi/liztOnT/jwgw9omxVgWC7mKO14/fpz9ruetp3RtjPWOwneStStNFirmS9a3v+gZTab0bQ1/dChdVZ3SAKxMkUxgcTJ2TnHJyccnRxzfn7OanUEJGazOUdHK5qmpmkEs2ori8ISApydH3N2dsQnnzxlO4isp3NeoCTeE1NivVkT4sB80TBbHHN8smS33aERKcPDPXE4z8JHGc/mOG9Ki7lAqBJisha08EG0VsxmcxaLFYvF0VfOm2/D+ItASH3diPl+lvVCYHJtbVjUj+iHntvbDbdXG6wdhEOTFCnEUWmFSTI9lX6Fie9C5mSMBQzlcBoqLeaLQUmSoVWGS8VE7zy6z0lGiBKsKoMylmLI2O33Weo1E37z56grS1NZVOYj9H0/Btylq1mCUjnuuwWbAj0tqlLF6KmIcJyenhJjZLfbjWvGfr+nqio2mw2PTk5I1hJjcaIV9/oiIVkW24L91TqNe17pBDnn8GUdzmuyBC5RxDlS3tyTdENlzT6o50033pLotW1L07Zs+x6dTQmn/kvF7VuCf41BuFjGWPzgcEN/h6+mlFT/nY/UKTvqJuk4Zqg5IzgsCzdMk6rpfne/QPPQuL+2TiFvRWlR9PYPCYxVEWukmJdyZ2noe5yTAHHwnhAl0dbq7vt8XQfl2zTmq8TQb+m7jiH07B0k6zANdINivd1yeXXN7XqNdRoVElVlOT494cl7T/nggw/ofCfJuFHgYg6+IlWlqeqK5WrGyckJR6sj+qEXSLiceOra4ENN1Viq2mCs4vbtLZdvXrHf7/Ap8Cx9QNWK+WfX9bK2Z66CMlb2yZSY1y2NtZiUSDnaTcS7bvLjNEnjP6lgHnJxhSTSxE8/eJ9Hj064vvoN/uD3/oDL6ytevHnD7b5jO3RUyxnNcoZpzbgfRRKBiI+SbBRfrhRhc7vGLCwxBYL3mGSIweNDoLE1q6MVi5UIsTgvHdVUkCJaY6wYW0aT0FYgfpW1WG2wWhAswUv3LSgHviZpjdYVn/3yBXUFs7ZmMZuzXEhHxvdDrtVVqKrmydPHgMOoxGLWcnm7ZxgGdvsd2/2Wpm5p2znHR8dUVSMJTmWxvSM6j+97/OCgMmhrMLUl6SH7TUSCFwND78SJ/Ga9YbPdAcI+Lx2EXJqVS6YKskUuWYlBbSX3dULT1M1ElGEijJ0OZtYpV7FSEnlwldsUMfrxOVqr3GGdxJp5nz0kMNI59n5S0NSK4vAZY2K7WeP8BthzdDRntZjRNrmLXb5KIfTeGvd149f2ySgVtqKUNA1iy6Y1xZROkxCl1Lhonp2dAYwk3HJSp5tKioLV327XGKNIeEyT+Mkvfszv/f4/483FLShNwuL9AT9LEmLnQ0H3Q7jU+xja6cmbPj7ve/n7e6+vDqSh8lpwgJk9tNBPN7cCZZgmH/ePv/ztIQjT/c93n4A/TUwk8/56ZZTpKK9brstXJhjkIHJyXEodyNZPnjzi6dPHLOZitPf40RPm85ZPPz3nT/7on9I0c+bzJbOdwwVPShJs66rChx2QqOqGx09OOT094jd+9Bust2uG4IlK1HPKnHPOcX5+znI5ZzFvx+MoVU5rjWj/65S52hGlPJUW+VIBJlWYYKTyUKozSkkl18x4+eXnWGt58uwjjO7QygM5GRyvS2mB5urBeC/ou2Z9SlHVomoTU0J7hwoJjaKuLfO2panqvyRgqb+4kcrinKu6KSq0Fm6PGwaGoaKp5rz/+H2M1ay3W1bLE25ut9ysN6y3eyK5Faw1sRIln5jiHZntwhfr+x7vvDjlTgjVg0tUSmCTxkSpgkdNjAIJ2u17BheBns55kqpo5yvM4ogYB9xg6Z3HD0KqbGqp9M1nc46OjgRamhJRaYbtltvbWwk6cxBdjrGclenfytd8Ph/v38ViAQh5PcbIF198wdnZGcvlkmEY2Gw2AFnFbYvLXhfL5XL8vXPiD1NUV6ycDNlog+CRQ37+27dvuby8ZBj6vIcE+mEgoYhJOgX9EEBXFI+Ptj2Y6pXCRulwFJJ63/eoqkIZKVwVHLMxhuVyyX6/l2sWAklbMTULkcrYfH/lKmSadHxBEkBtMeWcRk8a5WtBIbDa8pzp+viVAiDfYCilRAAjw2oLeb2s3ZU2VDoRnKd3krx1Q4+PAR/j6Fr/l7CBMY5HTxsu3iRcSHz4ySdcrT9nN2wY2EB6xBACPgRWixVx62hnNR99/xM++fg7hJi4Wd9y+ugEVYkIjHMDxirqtmE1X/Dk6TOC93TdnucvbsSgzigWqyXrzRUpRpq2YXk0x4WB1282/PznP+fy7RuGvpPuwqwVgnplWV9c0tRCnq3QxJDG7vWyndOaCh0DlZF9LBGzzlkaO+KHsql0z8Re8VCvkQJ9QluFsRXns1P+zdPf4W/8zd/in/zTP+Df/4/+Hn/2sy/o1ju65ZKgQdeZK6gAo0lGEZVw1ryPhCHQdZcs4gJbW6y22dFbZFWfPn3CfDEHo9h3Hf0g1X1RAW1l79YaZWCxWAqBvpIOIblA0fc90XtccOzdFssRi/kxs+aY/U6hF5aoGvYevvxUVOo++/kvcoynse2cf/vf/R8xX7TUlaHe9fzsz3/Ml8+f8/lnn+Ojx9qKo6Nj/s1/498Snlgtyn2vXz7n+Wef88UvfikS51qxPD7iX/vd36Gt5b4bBse8nfP8+XNevnhFU7WksKAfdC44RMjw0RCT8O8mFADvPT5kiHsMuYASM7k+F4kQUnmJAaeIE+GSSrdea4R47gWyWhmT96pEiC6vOxN5W4Qob0YuyDBOIaE1SKCTUmSz3XB18xZrPKfnDe89O+P0ZMm8qlCUjq8WbyESKU5I9L9i/AupS8EhiC2yrW3b0rYt2+32nSC9LLalqq31wV0QDrCREgRWuQKJ0uz7DqVFim+7u+X//h//x3z2+XMurtckVWXJxAyTStMA/N1sa9qafijhuA8JKhNlTH5QY1w+SojlyXAwqbrbIq/r+h0yXwkI9vv9g+/7UPfjflv9frckpYMCw/TxZZTEoAQkAbKwxMNJz/0xPf7p8b7zfKVJ6ZBYFpjDfD7j/PSEk9WSpm3RqsIoxdNHT/B9z259I1hPHzg5PeXtxSUpVw81OrtxZsJpSJng2jBbLAgEghJDJJS0AH3wLBYLqsqO56iqqlFPu+87oMKaGmlFCjlKqUR0HmlMFSImkBInpyfstx3OBULyfP7FL0gEmkYz7K+JoRfDrEmiJUFdGpWF/CRBU+V8Qg5yyKQucfiWBFphjBJyO4GR8PQtHS6AUZmob6DWCRcVLmVJayJaRVKBQX1tIixwozI00CjFcd3y5OiETz74EKuhspZZMxdfDN2gTcPZuefi6oq3V1e8fvsW5zpIUIWKqqkZUqSPgVDWFsAE0KmithWVFV5G6Zy4ENkOMFiNUw2OmjoF6iDVsqQNSVn2yeDtEUPUhCGQutfEKFXoft8RvFSevAtYU9H1HcOF+ATZuqWyhqqaj+tIVVWs1+sMc5ANbLVaZRWbHiHzBWJMdF2XTfsEHtQ0QsC8urrk2bNnKAWvXr3kt37rt0gpsdttefPmDU/OTvBKoKriMi4O391+oK4akdVVFToOqMyQDiGgAhifiLc7Nm+v2N7eEoEhQO+hdzLnQwiEFLPmgQcFxoIP/bhOV6bB+VzVV5r5/GjcgN9e3XJ6dkbTNJk7IyUCkmUxP6brOlLXsdtvIXgMZJUbS/CRvgvY+ZxhKwFnbUXC2xjZh0RMgryp6jtr73389P1C1f19ZIoAuNMtVgltkkhu6ogPPfhDVz8E6bYmo3FKse8dg8tFkxDzWqkIsUAIDUmJiEBJouTtzDetLf1LO/abPW19SrVasN5Hjo/OcXHHenfN0dEJ7eKGqm5pm8AnH/+Qs+MTZsfzzLPx6MpgKkPvBnrXQ4qcn59RGYMbHBdXbySYztfIWuHGXV5fkFSkXbScnpyw77fC9dnv2e22orzkAqbWdLuBhMHUgtjoc7W8NRWqqkgh0nUDrne4rsPvd5iZqCQmlYgqoLI4t0IQHCJ7rkeIaCJB7nYX+ySlwA97UhiwFo7PFvztv/3brI5P+N/8b/937G/XtPM51awRT5DkGXpHyGtc0ion+QE3DOy2O0ytqVsh1otLtZyTJ8+eYGsjUKnosVWFtSYH8XOssdlfQuKNkd+GdHVSPi/DMNAPHTfba5azmlAltGowppWkJyqGwdMNHls1fPzJJ3jn8EmhbMPNZodXiqq2qBjxaFbHZ3z3+610Z7Whnc1xydD3HhOBqiUpw2yx5OzxE/p9xxADpm7ZDx4XEikGvHMMQ+L1m0ueP39BUzfM5u+DnlMaBlpB0pqmnY8Bfekuh6DxffYTSYdiZd3MqLOhqvM5PkygzUERr0DjlRIifgzZmBBJDmIWzEkqEWPpgEOOLDJ/OCFecoxxRUyBHCrhg8j17rsdy8WM5ari6bOVFPWjyAxXTT1eP5Nh7EkpQQJ8g/FrJRnl5E3HQ92Ch4L5KVxnJD5PAtWHq/Ny0mIKbLZrfvnFZ/zis+dcXt3QD5GobJYWLBl9AUvdDYDvQ5Ue+v4+Xrb8/S4B76tXZ3Xvb1NY1f02+rTzM+3e3H//+8f2VUnTw9Cu9M7P0/cqCdNXdSTuH8f9950mGu8eq3pnHqQohj/GqGxNn6hrzdHRkmF4zHbzId4JQXN5ckR9uxF369wTLjCMlKIs+kmRosKqiqAlOPXBUdy8QzCZyC7wFiEFF4M/nTtRZd6Ucw9wwBqmlFUlciuyqRuGzuC8BBvb7Ybr60su3rxk6KXTYkxFgYpNz/v9rzGryA3W8juVj8aYTAJHj5UMCUaHB6/Xt2UIkINcHcmJFWQIQB7TrOtXDlX+g4wVTVGqNComjBYMcHkfnR2pEzCfNRy5OYNb0vciW5lcIA6DXJUESpmc6kjyqqK8kDYaW9Uj7DPGrMAUFb2wDgW2mSLBJLyJoCIuJYYIvY/gepTvR2WRaXckqoPvw7g2Gi8yt7lQU+6vaRcY7nYep6hMY+yYaHvv77hjxxjGbo1shB6lLHVdM7gB53q22w2PHz8az7vcZ5I8WwtGaYJUdxicIzonhMreEQZH9IGIQGBdEB6GQgQRxvXlXpGobJgpGyOmlEhaPGuUBp3M6NSrlGI2m2U1QkUMd+WDSQmbBRSMVlgrwbi2hrqdse8H4oRnA6KeKF/vJg9lTAtvv2pM95bp+llQL9YeEAIxhQxRUILOyufKxciu73MBJIji1XjMUuhBFW4iuQBX7q77O9W3bzS2pXNK5paP6FoBFkXNrnP0LhCV5uz0hNOTU46WK6gV231HMop20Yq/QRCvlvl8NnYBXRBvCybXR4qYQry3laVuaqq64vryir7v6bJKmfCfIiqC9xHlAiZlJU0UUWmUj1lJKUkF3/nsHO4w3klEphDolEqUDobKWaJSE/x+huOM0ZKSgocPgeAcQUVqbTk5OeIH3/8OtdGEbqBb7zg6P5U0JUUpbEQ1QrDKXIpRjr3fdyiVaEyDrlTmqCjmizlRJWLymNrQmGpcX5q2yWpYGquNOGanQjIWPkEK0i0WSVj5GvSQ10GBjMaU8LH0bDR13bCctYI4UIaoLT4EeudJWqjIShna2YzFbM6w8tJZqmvxtvFe+CveE4HZYsmT9wzb9YYheExd5U6BrPfBJ6IfCF6EhJpaoE5hVJiLYwBqJv5xpaBbCq1aa6KWfUEpJfMoy/qKa036yrUBcjEmBnGqL/EDOdUc40m5/ofYq7y3PF/UFpEuc5YAHlxP1+2JMVDXUgzZbrZ88cVzrptLFvWc5clbzh49pp0tQPWACJzo7IH3q8av5fg95TZMT0L5W9dJu6xgg4sCS2ndT6FTU+JyqfSUCn+MBaog1vA+9Lx4+SX/+X/xX/D2ci0ui0kChYJnQ01Pfg4L1EEWcHoBp8FvOb7y7/Rv0w4EHFpQKU0s7scNPS8Ek9cr0ISillKgOuV3pfI27erc72bch0Pdf8z0mKe//6ouCGSMuWKECHxdUlP+LQnR141DIGdG+TRjTK707AQ3HAaqWKOtwlaak5MVdW1oa+g7x37f8+zDI7arPb7fk7y4u4uHibQbm7bG+8TQ91ijMCqilJgImUyCCkHjfY9XBqUrce3VYKxmVrd475DVPCcsozO9zJ+UUu70yA0ZU8RYIxWe3oE1BBdYX1/x2aeObrehnS+oqxaligrZNDk7JBHlR5mbRR97wtNR5PtIuhlKG0gB5zpc7L72GnzbhipZ1a9qWjw4EqSQK3yQUmBwkfV2h0qJtqk5PzlhZRaEKORF5wf6fs9u36FS4GjRcnT0oWB4Nztev3zLxdU1yRh0husYLV4Y0eeEOb91VR/w/1OemfeBlHqSiSgbaRQoHQgEBjy7fceu9wQXaZRwfEJKo9CEnBc1ErVBCNcRLQ0tGDkV+/1+XGcL9LQkHNNua4EPiZu33JPGiGv0fD7n5cuXPH36lI8//pj1ep1dX1s+/PBDttsN/X7PbrcZIVjl9YvaU+mqRJXAiRxt3HXs9/vxc2ijiT6Oa+C0gPNVa1D5V2QfD0nV1dVV5mDUPHn/w7FK+P777wOavh9Y3265vr7IMNRA01Y5IZH3mJrKrlYr9vs93X4v+GvviVH2Men4mHHNf6h49ZUz9F6h6iEeYvlea3XnmsHBuLbssaXyu9vt7jz38JolKH3oZlL3/v12jqen7/Pp1SVXry8wsznbzUDSYPURn33xmjeX1/iQ+OEPvov1iqEfCCnQec9sLlyLV69eoVSkri1PnjxiuxaDv77rmc/noFQuTmnpFKkIGmaLOXUtEso3tzd0XUffZVlrL+a/Jgm0WrmIDxHfDxhliErhQyL5iFEKncQjxnuPih7cHvHyUkAQ8nHmE1l9qJCn6NBaspGYJrLdyH7lvJhb+n7L8WyGMTWLRcvxYs71pmd3cQtPn8r+pgIqRHxIUikvGP4M59UYdmspoM0XM5qqEqM6najbhiHIfbk4WrJsZ2Oh4g5KRCmBWiVZP/thyAmirB1+cEQXMCj6vqPr9gx9JzKpKUGIVNlrRDcV87rio/eeoquGIWk+e/UmowSiFBm0oW0sq+WcdrZE24qkFNe3G7rBoW2gcT0xBU5Ojzn66EOury4JUXgpnRuQpFWTksZ5R9s2PHn8iGdP3+fFReJmG6S6HwRBkWJE12LcOd0TpmslSaCZSkuyUjeyv4jZnkbpu8XtO1D9mHm0qXia5MQCRUiBqjbEqPFOiqcHs18/JhgST0DKLupKKzabWzabNculyCXf3Kz5xS9f8OM/D5goAApvDP/df/vf4YMPP2bfDRCEI7parb7R/fprczKm30+zNO89fd/TNM1oCjWVNrxflZtW98smNF2Eywn2vucf/Kf/KZ9+9jm//OIl+70iUpMURHqR/iJlLsBBKUop+yC06CEo0HSj+yrynsClJJt9ECZ0qMOOxy6t1ummIb+b8jSmv/+qbsb9xOH+c8vn+6pjvz+89xgtUIOHnLqn12AKd/tVlboSVBt79/glAKmZtXMW8wVNXedKZWQ+V9T1jPnsfTEcqhtub9ecnz/m9vKC9XWPtqWroPBhYN95gTK0Na7fE6M4a/oQRQ0jSHuybVpUVaFtxWzWEkJDXTfSCkxRvFNUlSVny7wotXaZt+1sRu/27LZ7dK6gdv1ArQxD79gTMWGgtZa2bqmqdpwj5brGsRvCWKUfCWI6XzelpXKpRCVn8EPWS8+dl1z9id7xl29Mg59fJwBKwJDVvKTgMMSAckCn2bjE+8dnnD5+xKyFbrfFEzCVwQ5IZZCIG/YctzPOl4/4+P0PePnmLRdXN7y9vKL3jhgFThCjki6CMWhrx8D3IRU5CcYBbYkWMA3K1BB0rpD5fI09KLn+Wps799yBtJy7wMZg8/sPw3DnfnTOjUpSKTEGo6V4U9R0CpfOexEyuLm54csvv+TRo0fc3Nzw2WefjYWP7XYrwfbQs1ws+OijD0beQ5GRnc1mY0fEeU/fD+y7jqauefv6gjdvXkuVL/OSbm9vGbwbz9V9VaXxyk4qgSAbd1HEGhUIc2L28sULVkfHMFe8ePEiE+kT3keOj4/oOlED0kacbJWC3W4ncrrxoFxV1FsIsN/viFGKYkXJqyRVX3XMXzXuJ1P3nyuvbagb4fzUdT0qm5XP3/e9QG7yNZ5yQKbzcLrX/RqH+K0az3/+JYtqxY++/wHz0xlvNzfs9p7tznC7fc18dcQnsxP+/M9/yuPlMfNZi15ozEzgN5vdlqMjKW4Zq1mv1xTT18VcVNWKy/J+v2dwPSEqTNUyny/pu44vv/wlKpIT2RtSSvTDgELTNjOBOmWOqPcJZSSYVCi6biCFiAqB682a0+2G1XLBKhvGKZ27pVaJ7wxAOpi/GVNBEryL0rJbJaTxoRW07RJrGnxV4YeOodvSbQf+J//O/5D//L/8fX780894+emXPP74Cc1CFKd08gxRRCtiYhQjMcrQ73fUdYVVlmHoaWcNi+MFi9Wcal6jM/m9MXZcvQU2lMb7S3yCDsqWMcRxTisfqZTmZHlESHMUkdvNFcZEfHKkAaKCR6cnLJuaudVcvXlFM1/SLo9ZzmZ4NMklNsMakxJHiznvP3nC7b4jIvAgiFS1FFj7bsfm8oK46Km14vT4iG3Xse87tIemqlAofBJ1vEXb0GpFW1f4ODB42cwTSYpXzjFbzIXcP64RApEq9yZYlEr0gxslxiVpTGONrZwvYFxzRGgDYepEgaMW9a+QBOLpg3RcjTWYpATS7UMuRj2E0og8/+JL9v0GCFi7xLsBheXk6DFVHcE7kvf0WvP8zRXbaDC6prEzqs5xsb35RvfrN04y7ldfph2HuqnQRmUSX5ZHVbm6P/mKKYwVy5RA6Ux5URqFJWa8WtsafBy42dzwB//8D/jZz3/O2yxTG1OVN5cDxIQMeyk3ofz+XUOj6We53zE4bACQcSry/DyRCuGPe0nL3Q5JTo7SYZGXLwWpkHfk5pNkI9zZeKab6vjuagK3iilrn2csXIp3NhLp8h7UsuQ6FJLZ3c9/R73igTH9fO+ewwSqCODlBKTgA4kodai6lLlSXFFjrtobYzP8IcMWkhX1Dp3wrsfqlZinxUDf7dApklJAx0pkAoPDGFDa4AepDr99+4a3b1/jncNYQ1PX2LrFNjOOj4+khTqfY548oW6aXKEmBxPFybKcc6CWTsPNzYYvvviCy6s3rNc37HZrQjQ0q5lAE4zKZkM11lRyfZK+cy1SYlTtkCQkX+t0cNoUgxuByvgQxCnVBJpcVYpZKejbPHROyBOlhaukOq+yA3gSVZNfxXAXeIkCFVHFoTBjCDzQhcDzt2+p5gs2w8DJSjbmGARypq34WWiv8ENHcIPc20bT1jUnqxVWG7b7nu2+pxscfRSVseQ1JlbjBvJuRTpfezRRSTUyYEg+0XvH4B0hBnTG0kqSUfxpShfrkBCU+ygELyTByTwoSYk4ClfZhM6MvLaSaKQkJMuyxhT+mzESXIEE3q9eveLo6CjzPIRDd3q0ommaMTAvCUuBJ41yuMbIGpD5H0V2MaXE0A/0fSdJS5Yo/1WV/fuFoQc7tzBWD4scZNM0OB1wbj+usaVT4L278/qFo1aI8X3f0W3Xo9HVtAhzv3s8TQIe2mfK+FVdaelU3CWPl/ctScXUSLH8bfq6D52r9E1upG/hiD5SzTWzVqN1T1snnAM/CJwpDgP7vcBAOttgtKJqLEezY5q2paoq9tst+/2AKKYNNFVLZWtsLRKpZGdjYywVYEk0swY3eHbbPZv1jkU7E76dz/KvTkjGla3GtV+RC614iKJ0paK0OpIPvHj1mrPjI54+Pie4HhU1SSuS0mIEZ8RwNqWQ9xJRNBpxE7GEG5JwRxdQyWB1halnoMFrR/TwG7/5Q37ys8/46U8/Y3t9w+y4pYkzQiUyu24QKeTigxPDQZo1ZePSx8+ecHR+zPHZCbO2xavsQxMCXkyeSClR1/U4L8saALL+d9lQr6xNRQwFlaiMIUTH7fqawXcoo9DWiCN38HiviNpgjcIqcaKK3oMRN3SrNVEprEL8inKMlGJxwj7EM8PQ4+sa8jpV1xUhRXZdhw8eIvhhILoBgxj4xeBHTIKo68k5KsV2xaEj7bJASEqMCdbIjTUGo410QgpnClH6gsO6MIU9TZWrSEmkqkPABU+lFQeZP8Qg1pqsdBlQKmV53kTX7bm5uabrO0BUv5TSWFsz9J7ttqd2CYIjRk+vFJ3z9C6glCeGgSGA8X/BErbjhytPzFWd/X5P3VjJ0lXOzOS0ZKhHDiZKtT9DQRIRo8tGodBUhATBe6xRrPcbXrz+nH/4j/8h+73HeQjxrpQkTBSdcrx8P2i/P6Z4t4cSBSHn52CzVJyTGvGP03NxN0GJOZkSHLR8XJUhNyXRUCMxKGYcduIgKfbu+ZZ/tRJGf1QFs1+Cj5I8yPNDmHI+CsQo81ri1JfjMDmmVbX7m2G5ce4mZTEHdoxVeaMNqajK3Nv4UhLCtbGGIoEp1VUhiBe5TWMV6ERKxcwLZrMZWhvxDUgeg0jVDoMn+UDQkbad4UNgv+v48vkLvnj+y9ER3BhD3Sxo50sePXpEO5txfHTEarmiqZt8fkVwQBuNRksFKonjqraKbjtwe7vhxfMXvHr1nOubS4bhluA1R4sKdIOqLJWx2LrG2ApVbqsUx+RSfizdoYPjdwm0vPdiGpQSBPB58dEhYG0l3YwoLeFv8zBGS0s+iqqX1hL8qZilV4u861eMwz0t96YRkOqhS2QMEUUfI7dv3+JQvL294dHpjOW8zUZ5iaPZDGPlOqgkAYp3gWTkGh0tF6wWS25v1lzqNZo9iYFu1xES6NLOztexQFoOHCxEH0ZXYKx02mKgG4oTrsdqRjWmhL5z/5XAfdoFDT4QssxueVzpVJT3lufWo1TtZrMZuxylw1ygWM4NYzKSUmK73bJer1kul2w2G/q+Z7FYsHjvPZqmYrvd0jSNSEhn1+3lckldCzelUgeIYFERrKxs3F23p+/6UbLxPoyofNbyue6PaYBfkq9polCSDKUU8/kCNzj2u34MzOV5WjwLSGOVsMwpUcSZ0XUzht1mDJYeSoKmgiVfdbz3j/2rvh/JnRN46bTbXeR/CyRuOh/uH8/0tQ8FDglIf9UxfpuGVqLdb6vE4HcCmdUJ53oW84aL9Y7bmytCcAyupxoMapDq9KxtqKqa68tLdtsNQ9+hjSK0kaZOGSJTFOUkEDTGoI2mmbXcXF6xWW/Z7zuaus3FIxi6ISME7MHPJcl+HYNU8iMRvMCCCJHoPc9fvuL9p49x3uGdwsTc1dYaggFboatceFEapdJBYjbpEnbK+4WI73qMqfNxV2ASNgfg3/n+J5ydn2CtYrPdsr6+YYieatXQO88wiEcPOXAuxnpkuI2xhg8++pAnz55wfH4CVaLvt/TB4aPDFD5cjDRNmwselrad5YRLRAm8F08NcTHPAidKIEFtpfCD8Eac66l1jVFSgPTOM6RIUJa6yr5ACcLgSLXCKI21mqgl/gxuEAh9KRjE4r8mEtwFRil7QKS2NhcXsupTTHjnoO+xWV3JDY6UROVHZM/jmGhopSU2ymuVyPq6XDSQPT54R0IguMboDLWSWLaoNU2TM7m3JZFVWo5b/C3y6wXxf6rIxescYxhrsJRilwcl+5Vzju1uy+XVpShv1dJFFThVzZBl3kUvx5MIDApc3ntC8GC1eAw9gIJ5aPwLEb9LpaUEkN6HHCwcJGzvQ4QiB4zwna4BElguFrXof6eBV2/e8P/4B3+fP/6zP+ZyvaWqWpKykHR+za+qwkuVWILuAyfjvpzrQ2P8+x00a6ls3w3MH5KZNeZQiUxJMHEmm88Ugp5zgQPOtiIlkXKM0RM5WMpPg3upgqR3zufh85bjZMyUgTFIybc2Wk/hV4zn/qFxP/GY8meUevc5MZWNW2FMfYe/UYKYWTvj6Oj4QLBzHu9DxlVLwoESTGTwiVlr6V2kcx5tK7QKhyQtiRzb4Ho2my0kQ9vOODk549WrV2w3e9a3t4TgsfWaup2x3W4JIXBycsL5+XkOKuY5SfHoWLpIhegp3QyN5fTolGdPn/H3/i//ZyI7jA24ueHkZMEsNChtqVtxH9Xm4KReKM7T86wmsJg7o1T1jQV9UD47PK4ECn/5KpN/oUNJizuExGx5ys1u4Hr3kl++HDg/OWYxm7GaN7jjxLy2NFqMl2prMNaiq5q+c6ik0GjMcsVivqQPgXU/8PLtW3Z9T++lMjaFNxUJ5d1ul2FELU09EwnD4PB+YNeH7GMAEDE6ezAg8KhiqjctYowGnEiVrvArlFKjpGvpbCyXyxFmVdTrChmzKN0Nw0DXdSPM9e3bt1xcXLBcLsXcbr0eg3BrLT/72c948vicH/3oh1xeXrLdbse/lU6GMQbvPbtuz3a74ejoiLfrLZvthvXtbeZkOVkP71XA7kOISuIw3Uem56PgvgsUcb/fCzdPiUT6ahXQOWmQIsWQZasVy6XI+G42mzt7wsXFxdjp0doQghulsJ1zY2IFh+4C3OX1leTn/nio2HU/2RAForuyvbvdbnRzv4/Rvj+mClbymf7yJBX3R3X+lNgaOg27QYlR2yxwfDTwo+NjNuuX/PTmc1JoGUKNHTT1OrJ59ZYbEttdx9s312OAppTHWENVWWbtjMVCjN8WyyWnJyfU7QxlDPt+4M2LN+x3OywiOR2SQlHhN4noFKoSLwilEgYhfhtlRj8khRJicSY+f/H6mg9eX/Dh2zfUZ0vmVYvVNZoar3uiFWK4OVqRlBLysNKELKcsq5TGOI8KHuO2hM2VJOSzOckKF6pZzFhVlvmjmuYIehTr9ZY+wHGzYHADPkoBEb8nEYk6ECtRujs+P+Vv/86/wm/9rd/AhYFdt+fmYp2NNhPGWqIxWNvQ1DYXXA1gJEEKh8TlaLWirir29V4kpkNOaKLHVj3JB4Z+z3J+TAg9fhio7IrFcsmyUsxSR0dNHzW+8zgf8X4Pao+vFZUOrPsN/YsdT9/7AAK4FEgY8TJSoJwjDZkEbg236xuqdkFMGhcg6FzMNQu621e0tUW1DW87SXZ0iBBFSlarRGVBpYESk1WVIDVsrHDK40InfE4/UNkKo8FqGELI6cG7xYeCFiKrgNocV4XC+0NhqobVrKXrOrwXDx2j63zuFSG43MF3OJ/45We/ZN/vcQRsU4vreV2BrpktFuy6PZvdFnCC0tAaWyn8douf3RB8ZHF8ntfjv+Ak4z4ev5CVm6bBh2F8zHQzKOOhzoJ0MARLjU4M4YY+DKz3N/zf/v5/wi8++5zNJqLVDO9zsKZL9f6QZBSZrvub1PR9y+9KJeyh6j1knkhM71zw/Nexs/AQrvZ+FalskHdkyCYJWAkkJECxktyog866zoSvQ5ZbNo9DBe2hMT3H5RDvQzqmLcOymd8/F/d/Lp8FDiH0FD4/rcAVKEWBFBQ4kJ9gsQEOmHOyIkwUzLlWIpdZt8zbmq01eOGkAbnLoKXKNDiHzjf1o0eP2O0+YT5f8eb1W9abNZWtaBrhXLx9+5br62uePn3KYrHIBD5EIhYhfxcStny+RNcFNpsN6/UtZ2dnXFx1aAW/8Rt/hZPjI9pZjTU1pmqxpkGrapKmvpuQSTUnQ2rGAKUkHwUCdIDcgFQPQrCir/41Vf5vxYgKlaRLqCPYFDExCYwAjUq5SzYRcLj7/HudHHX/h5RTu0h0u1xNjKAC6+tr9us1N9Zye33Do7Mzzk9POXv6vnifADiHH27pe0c/dOx2fXbkjmz6QVTStCVW0JgDRAkO9wCQhTDEo8GqiIgWRAYfM3kvifM1Bq0t2hwC51K5nnpgyOYS8EmKO6Ur4ZwbSeBKCX9A5Q7jyfEx19dXGcNvuL29Ge/LtqmlGodwWbRSaGupmga0xoXA4D3PX7zgvfNzrq9rfvHp5+y7PfPZnOVqyXy2IiVDCCLVbYzCBY9RGtf1bDYbbndb7NEcV2l6BFYyQicmc/z+Wq2UIvqBygoPJYUg3JsQcMnjdC3Fh6rGKqncSdEvcntzmaF3Mqcq5VEmsNuLio/OG/h0HR3XIsSnotu7kWhdErfi57Tf799ZM+8nDffX0neTgPuwCJGrLoWiIhIy3XfHhKZ0lvOcV0pxkFksj1Hv3jv5fVVOpL6tY+2uSE3LzNYs6hprxYysquDk+BHH8y+pkpbCQZ4bs+WCfujZdR3XN2vBrAeBBaEcNpos9avG+2u73bLdbDC2IgLb3Z7bq5uxoHB7fU2373GDk8AzFxyKcqGY0uYCYQ6yTVZMKk7LQ4CXby758c8/5aT9PqkK1MZhTZTgz0dScND1qFyc8knUqpS2aFuDys4aOuBMIFTyXjZ1aGfQXqOVYaENT1bHfPD4Cc69ZdMH+q5nv9kRbEQlpJMSpdss1dLEh9/5kO/88BM++OgZLjr2Q0/nBknkmyXaiLBNZaWwOd37Qwz0WbUt5mp+WS/LurXd7vGdY7/bUkXFoppxenbG1ReXQMBqTVXXWTo7EgcHZPEalCRISYjMTVWBgtVqxftPHrPbuwwNDUDuDpAIg/CwtBIIZV3X2KqW7oUPxNBhlMUqy/XVFSdHK2zd0vcZsjV2bcKoVKaVwNykQR3Gz1nuZxMNKRncCNnUpOikIDBB4kzXxSkMcgqVLsUonX8/m80zNKoUNmUu20rR7R3rzQ0vXr2U46gr4Y/k7m7phBeyvyCS/Lj7HpoD8VDgIX5tHDod/8IStu9sCA9U96fj4QSk6DFFOrfh8vqKL56/4M9+/BO2uwEfNCq3sJJSeeH8uk7GYYH/OrzqVyUhDy3K91+7PO+rWuD3E5n7jys43vvnqxg73X/eZP7deY+vOq7pOXjo+MsxTD/D1yVe9993TLTu93y+olM0hQMVImkxq5memwIxUQkMmn7foY04HdeVJTotFhGpdMwKoT5REsDVasXTJ8+o7AySJUaNMoeuUIFwXF1dcXt7S9O0NM1csPGqBIe565WEQ3Rzfc3tzTVdt+PDD95H6QFrIz/8wY9wrs8cFIVWFuGiPLx5l8S4QCPksx86UnIOMyabQwB26CSFMRH9dg/BFKsEOsnZMqScXEjycfdW/OqsSmLpkRk0LooqwzKJbkxYVIrijAx0SuGGHqUM2lQsjk9AWZnTyWeHbsdm37He7uh9wPlINzhQJl8HpGVf2TvFg7JJSAW6CChkvglZLSUhcJwIURkptqgDRPFuoUGNvwtRYsmpIl1Rjir3k9bSgg+U5PUgHhDz2jNi/5mYayLE7WEYskeRHM/gRIVtcI43b97m825omlaSch/xLhKqiLU5wU5pNO3yKRKMwivwKeIyDAjeXY/H6zouMgJBMCoRlQRoqJQ9NRRJa9BWHGnH+0lgEkkrgSRksR5V+DchoPLaO920S+emrmvSbIYbuhFqNSViFkXAqeFW+dtX7Qnl568qThUZy5QOBP7y3tMxru/IOjnCxZSS7liZW+UeeGckSgnNfE1X5F/2EXSPVzKnKlvj/UAInspqZtWM09UxT88f8cXrTu4Branahtvuhv1equckkwU5pHqfkhnvu2GQoLTve7qul+QvRnZbUXKbzecsl0u63Z6+d2MyqI3wOKRLAUHJGY+5gk8USLVAWDIvE8Xl7YYvvnzFb333A+GnWTC1RUch98YUxVTGSoKYkhRotIloNMkakbzWiVhpojakqOT9nSc6UCFhkmGmDMeLBUpdCIzIB/p9BzMJjlUEFQS+qpLsVU/ff8LT958wP5oJ/0NrtLW0dYWpK/EfMhqrzAH6q4pbdlb2zNCrMq8LaqOqKtrak7xnlxL9fk+jKuyiIpAwGapli4x7cLiho16c0keNG/I9mtIYZNdVRdu2zOdzdrvrDFXK/NcYxVM9ynqlc+G0rmuiKgVcuYYhe/bs93sW8xkJMSoM4d7enAsDSss5i/nWLwWi0vWNyRKTIWQuCkxgjemrY6gySgw97TJLPBepqiZ/fjI6RtBDwQ9stxtubq65uLiQ4uqspWnb/Krv8gq1NsR4+NnaaixqFHi77L3frOL5jZOM+0FP2Sj6vmdqXDxtc8txTDDF9zMfXTZez+32gn/y+/81/+g/+y8Z+pqQrDjxeoWpDEkJi79sJGPmx7vt9TIeCvTvf5b7QzaDw8/Tx0xb41M4U3nc/Q2nVDbKxnH/fByqW3HUby/PKyox5FD+qxOju4nfNFh56HNPla9+VWJYfn93EqpcMD4cwzRoKISv++d333V88cUXvP/+B+NxlAxZKYU14rQdcyAFgeB6nIKj1Zzke1II0lI1NdaKO7ZzPX0/4L3IEX744ZLHj5/x/rOP+KM//hOubt+y3V8DUjkpmfinn37KMDhmsyWpKlGtfNVVnXGPij/74z/h8vKKMHT8G//t3+X1m++gDfzu7/yr/N4f/NesN7ekJCQ5neU9Rk7OZA6VNidj10LDhCdDErhZQTlMz2vBZWqtMM23twIpQ73zk1ZC0tNKZPxSyufvGyVUU3jaQ+PQ/ZnMYPp+4MsXL3j95g1vLi44Pj5m3rYsjKHvB3b7nvV2x/XNGh8TIUOa8m4guRJS8SybZxmlGn1YJ0ZquhxRDganUKuY3W/L/CyOzzFGhuzUmrQlcXC+njqRl/cVR3I3wm1Wq9UowWqyKlWp0oZcTY1J6Ibdfs/15SUffPABj588kXMym3F+9ogYAleXV6xWq1FCdb2+Zbs9QmvNbrfj9OyIbt/T7zvhciyWzOZzLq6ucN4RoihTFVhZKXaUr7tBOuiqlvtJKUxVjUGBMhW6nhPRwo8ByIm4UuLMrJQi+EA7a8dwe3FccXt7y3a75ebm5s77WytSvqvVEref44ZulGTf7/ej4tNqtRqPtazt94+9jKmi4n3BhvL8AsFyPrDfb+n7blw3Dw7uk+fdm8fT79957L1fpjRd5b69Y3k+J8XI3nVEF7h6e4NOluPlGcO653sffo+jxXv87/8Pf0+CepWIBjbbDbt9J8l9nivGaFBmIppQjXv7MPhMIO8ZnJOqf99xdn7Oo0fnBOcZ9h39vgcOQaUxBpdEphUnqA/pqik0d+HiTlne3Gxww5Y3l9/HnkI906jkSMGQFxribo9uGlSV0feDJ+EgBNSyxWgFRmPqJakUYmPAX+1wmx391Ybtm2v6iyuqpNjv9oBFJRi6HoXGao1RGuUMKsd4VWP5zvc/5ukHjxjSnuOjJ8yESYpt6gxzEpO90A0MfT+qz5V4r65rZnWD0WHkhpXzNZvNODs5IS5XKCIvX74kOI+KmmrWYlWirgxKJdx+Qxh2xPUFf+WTH/LqasP1mzfoymATI3n78aNjLJEXXzynapfEGIXz4iN+GNAked26oqlrUb6czXhzdcvNZk/TtOLe7YJIWgcvcrVoei9yvyEUYQjZ10vilHJwbq0d+acg/FKUJ8R+TIpSihNlqUPB5f5XEVhSSo3QV8ixt9Is5gsY+RwJYzUqesLQ8er1c55//jmb7YaIEM6LzLUo2IknifgKyZwU6oMV/yKlaLOoiNa50z4MIn/+F23GN/W4KIvfGBSbQ9A69ZaYBp/3F2KtNSF6MVIZ9vz7/8H/lS9fvmTXBVKWcdO5wk+pRJmKbvBjBUJx96KUMX2/X6fyq3IAmNLdwP3+JngfYjWtZMJdwrSorNz1FCnVQzk+eZ3SRpwmQClnt/dff/qZp689JSLe58YUCFOBPX0VRKo8v/ztvkwuYxL01TKO97tdJRBbLBYPX48SdFGcTEVJYeh3ONdxtDpm1rYoFJvNmjHx0loUHyIo5RkGcepWOrFczfibf/Ov0g079sOO29tb/uiP/ojLy0t+8pOf8PTpU6qq4snTJyznK7QpcAlLn1XQonf84Acfs16fsl5viGng+9//BFtpfvnLT0eZS23Uobw4dtoeOCfSdBkrzHDPcC3lT5ZP0bRSWqpD32aYw4Mj39tjUpXEzCp9o0qr4j5H5d05WThV7z47JYEmvXz5ijdv3lIZQ5udtY0VCFO1XBG9J4aEVVU26oqozMcoSfXbt2/fuafK/TPF6t9PvqcV8Km+/HRelESApFFG34FHlTlS7s9hGIh5Dfbec3R0NHY5drsdXdfhnKNtW/a7Ld6Lws7JyYlwK7Th9ZefM+zWbI5PeO+999BBIFnLVUuMPYNT7PaRftgxXzRoIz4Tt7c34zy9uLjg4uKCzWbD6ekpX3755RhUlI2z7BcPdTQSSoRAXET7SFtZjC4E7kBjEnVb07Qz2jZL6VYNSos7c1F/QYknyL7rUHFH1+9HI8LFYjGem74Xr4OYYQ6LxZKU0ihzW+ZKqR4W36Np8jC9XuXalL2ynJfpPQ2M7xuCI0Q3ztfyev//8e64unEM+57kEkftMcO2JfrE/nrD2dGSRtUcNZZHqxPWzuFdx3q3Zrvb0XU9ro9oXefEwuRupHzJ9VKjsd4wOFEzdB4S4mRdWfZdh/OeFAIqiqJQuSeHYWA/7PBBpNW7rqNtWpq6BlXiIkU0Cu8VDs3ORX762XNqpWiN5Xg2JxpQRqONJSrFEB2xD1RNg1oIBDiqRAhyLmIIJOfF+0Il6iyr3hxZGl3xz/7pH/DL51/w9vICq3Um8kbivqcyFdgKpRV+kCDYVhWnT87YD3u2+w1Hasmu2+W10Uhsk9crYw3NfMZ8NhvvmzK3h2FgQFFZy8nJCdfX12MAvt/vMT5SGcPj8zPm8xbfB0IXqWY1sdvjB8/Z6QlLBP7Y68TN5QXrzSCdVlvle8gTfUW321EbSZrqpqEeAnbwKCWfyWpFYxVUmsViQVVZrq6uSFGO8eJ6TUpSQNjv9gQSAfBJ0bkiylLuc5mTY6yVGGOjwgWbWjRALkJ5geslEEi8OrzWtNhcYsWyZk0LxbL3SCGqshVay/7S9RsuL99weXXB1eUl/dBLp2n03NFjISvGDMOOyHwNAcGSGOnIKMbHVlUl6orkbslfNCfj/pgGvPdVQsrfpz8/tJGEOHB1dcWf/+QnvPjykvXWE2KNMlqkywCjxKhKYrB7UBx5oweP61/889zb7O693hRaVBaVQtCZttann3/6++l5OCQZalRc+brjnyYU0yRjei2mwUd57/uPm074+59t+pnvP0aCwHchYQ+fx0OCVwiUUxLjnecqNXJrSpWtpBtkOT1jLVUVM8E0K3JRMu9Cpo6AtKS1gsWyoY2WeZhhjOHDDz9ktVqhtebm5oZXr1/x5PUjdsstTdNSVzVNPSPGjKPse7zvQHmqKuGDeIBA5Ob2mhAcIlus0Bl/q1QcoWTvXs+78CjSYUZLAnf3XN4PWqWy/c1u7H9ZR7nGZWitpS1f5nX+37/YXfxQR+5X81i8l06jU4pBa+zgMLZCmwqPGjsZSotKiEpSCSsB5vT+eqg7+FCweL9a9dCxT/9mMCSdzRnVwUOj3O93Cg+TeTM1RC2PL19GI+JnMZGCw0VPHyNuGNht1ugUmdWW4MX/qG2ajF3WKFWz2WzY7Td0/ZymrRmGTG7MZntN04x8hkIOnxY4pp/5/tqj8oZttAT0p8crZm1FU1W0bUNVN9RNS920NO2cqqpR2uB8osuEXBCsPhkW53w3SkbeJ1EfgoQIIYwywEW4o6xf+/1+hCpUVTV2re4XY0rxqXymqfLYFIZ14F74QwW6zNyvWWen5+qbjofW5m/j6LcaywpjLL6znB49RmMIg+d4dU5MGq0df/U3fpM//fRTLjZZeMALL6AMKZBqjJmqw1U5SRdsvnce7wLRB1QSn5XKVuy6/aiSV+63ci/KfBEfHOdkzlS2utN1SuV+1QqixqfI68trPjg/53Tpigc0WiXpxKhSvoq44NGVkHJR2UQvRPAJ7TKUWRduGihtMHXD8vwM3dS4GAQSGTQ6wRASvndYNKauShsZrSUI986J6WDfM0RF3TRUTU3VNDKnFFhjMUq4JgJFsmMRpq5rVEyYjF6YzWajj4/3ngEF0aBrQ9M0NBZSBW4b2bue6BxWK2qt0UFDpfFuwHs38snkXAAk4eHoLENPgawdkv8CH22quXQcRs8d/t/s/cmTbVl23on9dnOa23n3/LXRZ2QmsgEBEmBBLKEkylQ1klFmGmiukcykmVSDmui/kEYyTTQqs/oHqmRWAoukSeyrAJBAdsiMjMiIeL13tzvN7jRY+5x73N+LRCQAGRmUdpqnx3O/fu9p9tl7rW996/vGZzKlAUiNhGxw2PtAJPcrTPf2ydof423V0SlYNILwYfjZ9Hl/M16eVnuHMXzuYd0fYlaRve+6huubC27W1+z3WzERNlqukT2sRykOgI1FK8TRfKypKIZILE8FhqpfSnZUio1fc5f+2knG3cVuepGHxu9pcAt3VJhy0HWIryJtt+PzLz7lv/6v/xvQK1Kay8VW8pAoBZo4lqa8D7doOkxu5t1k5zZH9jYFajreWKjVmz+/GwgMX8PCNDVpesMlXB14z9PKzlSeTCl98LiIco2mhzWtpkzHsGHdvfbTZtFhTKkBQyP03U3s7v2dXttbxxLTKLn468YUle27npubG1kY7iRdWg1ocxLaELn6p0UtzPkeoyqsFcpEn7W8Ga+zxhhFUUBKnhgzpzlFCmuxak4Ige9///t47+i6nn/4R3/E0y+/YLWasZgvWK5WLBYrjo6OcX3A9T3tdk9MnpQka6+qkq7d0vcdm80N4NEGjAF0RKko1YwUc/vx25H1W2Nc+LKCUBJUjHQIfN6WUH5zxxTFz5hJOmwIBy5H4o1r9db3+stfdwAO3v46lRfNlBIuePrgBZFKgqYnZUAblC0IIWGVYmYsinTrmZ7en+mGdhdgmP7uK88sHUQjBmphSIqhLX6gd9xNMKy1o4xkSon9fj/SsKocFIxImDVYDI5A12xH1anjo2Ncu2cbHDoF9s0GkxH5hw8fUs8KlJ6z29+w263Z72dUlZXnJqvGLZdLzs7OxrVoCDa6rrs1h+9eg1sbdIrURcVyMeP9d59wvKhY1BWrZW5azL1ZtpxLc74LbH1H53tShJAMLslrZrNSvFAmo+/78Z4MFI4UE23ToHKAVFXV2Og99JWtVmLYNvRnvG0+DRWMt1WSB2Ry2nshvV1fA7RJt2fxV4F5d49nui9O0dBv4oi7itXZA2bVkqvn17z3rR+ymM1xbUthLU3bUVUtf/9//IdcbtZcrq/Y73bSH8CUzjwEnGqsZBhjJbHwEedEETI48XYxWnO0OiJpxWa7FbprjBBkDx+u6zBXhJoorverxRJhSUh/KUhMJL0xGo/ixeU1F+stZ0fHOHHEQ8WAUbmyq4TV0bkOZRUakVkneJRP6KAog/SWESMa4eWnBMlYPvrB9/mzX34OP/0F83pGkbSYynU9u3ZH1AZTKaHbeEnAZnWN73ua3Z7dZkOgoV7MmS+XzOcL+tzEbI0lRZFUHXpU6roen4N2tyfkZ2VgNIwO9kj/o04Ka42Y9h4tCduE223ouohWkdIqbJJkJEYvaDoih6+TyTYDiaoqKY2CGMa4cSplrXNz9Hw+QyWhcBZlSdc4nPNjD01M8t7OOzrnaHuPUgWDzP60kjE81zGK3PBU6GFYA0TC1o9qo0McNMgmD3vjdG8YXjOl5w/ryRQYj8nTtXuuri95/uIpfd8RY6Cua7wSqmpUh+MczrOwFcoYiA6tolCiDodyq7qitaGqChSGkBIx/A0nGaORHjBtUk4cNsPhogwHBZC8y2oWFp/kgYopcHH1kv/2//lHfPqrz4kIHx9lKK3G05Ny06CLg1ITOQBTWZlBNNhjVpsSWcTb1QFGhY1h4U2Z739IAu4igcFLAjQN7qavfdvfDZNg+BooUsN1GDad6fsNN3s4XmskgBGpX/FqUEpjjc1B9duRzmkyMc2WhyBlSGamjYS/rjozvYfTcdiY5OErviZtZ1hkmrbh6bMviSmiNWidfRIYgkAy3ejw4EhzXIAgjZ8g6jnOZf37/JArLRWBwlp8L0o6VaFpWyl1xpioC8v15Qturq64ub7iD/7O93DBs758wc9+9BLnIjEpqvki+3Ikamv4vb/zdzi/f4/F8oif/+JnaD3QV1wuZRtMYYlJgRFjPhlvJgQp5SbUsVZTiEqcSWAVKWpBrZIcszWCKk17mbR6M4j4/4+/mTE0yw4uugZwEXwS2gO9B20ISdH4nhDL0UhqWlW4iz698Tlv+Zvh53AIHIcgeAQ1iip7pphb1ci+78dei4Hjn/I6cOCaC7J4fHws6klty9yeYbUgaj/9yU8olGJ+tOLm5pq6rolVybXveHnxXFI5rXn+/Es+++yE09NTnjx5wk9+8iMuLl7xh3/4h2OjbNf1PH78WNy9+54f/vCHPHv2bJSNvb6+fqsySUrpVh/C0azm8cNznjy8z/e//T7vPzqnMortzRXLec1ysWS5WuGCousju6bjs6cveX2z4WbXcrne8PpmR1HNqWcLVsslKgX2+zjK8B42XZeD+JygZb35+Vwkb51zbDab8bWz2Yz5fM5sNhurEW8Dg4Y1ekBth9f5MdgY9ss72cP/l8Z/CEnGH3z/f0rXeJp9zzbB9iqQek9ZFnQ97LaO7XbP6ekx3/noQzCK5+trvnjWkmKAbHA3VvSMpijES0J6oEQtKnipaBidPQeInJydyr6xWRN6ByFRKI1DjYaYg1AHOak7OTkRYE+Ll8MIjinQOvtrJc26dby43rCc33D/7Jx7pcXqBCEQe4cuSrS22BCookFHS3CRmCsQVleoWBJ9Qwgdnetxbcfg+2R0RYrSM3h0dMTlzZ7gxX18XlbolNjvdrQJghZku9k1FHXihkjfNrzz0UdE59mvN1xfXHB2fk5RFWxv1ux3O1HRSmJtMDzvVVVRTtTzQgijJLSslZ6gIrqwvHr1kkpXnM5OSF2P2zc02y379Q33jksqA/PlnGdNw75x7DvHoqroXY+KiVZFjDJYo0VkI0b6vqNpG0w5z6IYCazl4uKC1WLG8WrJvm3lWPK9iV4SkrIouLq+QNsaMztDFytou/E5D2FCd2ZYuw8y28OaPlRCvQ9ZWlsTR0Oo7BWlDjSowYdoAAastTRNg1J3jVojPrQ8/fxz+l7izrOzU7quH2nqVgsI3ns33oOhr261LKjKCgpFYRRFUcEEIFUojo6OWCwWzGa1sEiiIuZY/uuM34AudaB2pHQolExVLO6WvCFrvGf+g/RhBDb7Df/yv//XfPniNdvGE9WgqyxIsIoDOjmkUXosSalbUM7hNQfprvFwM7VAkKwhc0xj8+3by8ZjgnLrZ7erGMaYsVQ+uOIO5zxs5tO+lGmj9zQ5uY3qTahTcShV6fxZ5RsVkuE6T89hmuBNN7sYI2VZjsjZlH4z/H6aaNxtap++Zrhuh3+rW397tzIyqNXEFNm3OzbbG46OFswXtSA1WufAO6LMAamLaaDVqIzwDddTSQ+Ej3jfY4yi7faEGDg+PsGUlhTE2bkuSjqf8N5xc33J9eVrmt2GeW0oVEARqbRmVddctBv2+5Zs18Osqjg7PeL05JjgPc+fPuP66pKqNhgrzcbWliitJfHNxWml1QGIv3OvxqqQZEa550gJij+qNqhRJSMO8sXxcJ+1+uYGBwAkaaGTISLWRUqUMaujCKbLoPY0JmsDm2xa5UiKhB2VclKWiR0CeKVs3vQiCs/0UR82g8lP5NPG5FYECGKSz9KTSojKfxi8J95JGODtvgjTcfeZkW/DM38ogYcgyFJVVtKMmCR50Kag7/oxKFdKYbRhVs0EdMlymSqBSYq6KDhaLAjBsapL5os5vi44mZdUhUETKfHsd3vatuFsNaNpWlzv8Y2TZ0ILN7zZtxCv6TtHaSyL+QwdHH/x5/+Gk3tP6DrHzWbLxcUlRVmyPD6mms05Ojrl5npL21ygVSDgEJlEcaXVmeJQFVKOVyS+9f4j3nn8gEcPznl8fszRvGJWWs6P51RGC2JZVry4uBHTrBi4f7qirucstw3GrHn83kc0vafpvdA5QsSagqIQhZWu79nvG84fHtENyPP2ht12g4+QlMaWJWiDDmIittvtcN6Nvh9TasPU1Ve+IikGCW7GCq6g1Bpx4T3M67x/TmflNGHJk+VtnRry519RqbsDeBmtKd7SVP5NGTZaMBZdFRwvInWVvVpsIiXNbD7HGsN8seBvff8HzBYLfvWP/kj2FnXbwNKMSb6IL7jeEfzgzpz3bW0oCk09q4X+1EkjuIrZ7yIl1ESEoe/FO0JpEUJ59PDhmLjK3pmfdq3QA9CoDcTI9WbHq8tr1tuGo1pcmyG7f2uPMlbM9XY92IixClXn/UKLrG0yFSppdGlRURH7gO8C++stuEihLU3vxCk7imz8wyePxPAuBb58dUHMPkCbzYZqJp4Ivet58oGsK4UxLJdnqJRo9w27/Z6+O/SDtTobAWvpbSi0uHaj1NgboJRiPp/T9vtMF5Qm6qZriDtPXB8anl3fiwmjFsA7BtlniwG8lahhlKAfPmvwGCNJo3PyfnxO5rOZANX5vgzmecYY8clQsjfff/CAoqhpu54mdGMiNWXOjLGTUqSR5XE7NgtZ6nY2mwOTPufhuZ9UuAdRiWFMe3YPcXak7VqeP/sVz55/hrWWs7Nz5vM5WlsUMhfRgWACSQ3znzEW9j5Ij1tVY3QuGAz7kVy2SQ+gZjar6LsoTfRfk1XxG640eVNk2gj99oVt+L1Rdrwhymr2zZ5XF6/4sx//hPWmxwUlG40WNCeliMpa3ylnA4pEUlO1pMnmnPJNeiOAyPwypW8F+vLCt18c+Rv9lb+HAzI17cO4G3RPFZymAcV0Ag2TaKjSDMd2OEc1Xt8p4jZN5N6mIHX39yAT6mBe9WbD9t1KxrRCcxddnf5umqnfpYIM/z00LKURUdjTOynliZmL3L8x6cu0ujcSzSH7UCk3WkdC6GnbjvX6khg9p8dLUCIhl0hobSB2uK7h+uqSZrsh+I6zoxPRHg+JShtWszm7XUurOwpjKMqS1XLB+f0z6lnF9fW1mPztdqBLKlVibCUlYqVxea4xPg/Titqd+TUkZoORkpYcWio3kizrMdm84zac1G0e3TdwKIZnGxIanRSGRJECLo11LJLKsp5M4I3xek5qubnipwbXb/IzZgxaFbjkiQG0soc/SWk8guk7JgbZyaz+MQCO6vAsDgmOSozOu8PzM2wA02fgq+grb3tehrVqDHqCQyuDtSVGF9kvJZBsys6zWbEmI12myAFOGNbOlJvZC5azmug1p6s5R0dHxOC4t1owKyyKyNlK5vnF5QUpJV69vOD6ek3beOGCp8Hbw7EPEdc75mVJWC1QruMTFfn4ezURMQG8uLzi/P59qnqGLSpWRycsFte8fnkhZXnlRSJyPG9FoQ2VNXLMheXjdx/y5PED7t874/xkRVUYZlXJyWpBCg6j5H60+w3OR0Bzuloyn1uqakZMhpPH7/P6Zs3rqxt811GXVQ4aa2bLhagNKcvp+UPW2w0pO6SnfUNU4nasbIHVBhUMfdPQOSfyvM6PDZHTRvAhyZD9wRN9/8auI0Hmm08Hd14X7yQZ6c7vp/P3qwohw+8OAJdUyL+pQyVNqQ22LDk5kup2WWhMkXA+UVaVNHQbw6MHD9h1LX3TDiuzVJTHPj5RLiIpYoh0vcv+DvEAMBhNURYcHa9EYappCL1HBUEiBhBEW4PSGh+kimFznHB2esput6drWwFLAXLfnlYZnlLC9mj2HTfrHTfrLeczQyosCo33B6rPfDYnKFDWomuLshWJQFIebWLuTyjQVmNchOTwvTyzRIVVhr5thL6UIkYbzk5PKeqSQOS62bPZNWP1brEsSRREzJhg1KUorW02a/qmoW32BC9yrj4naIosuRsTXa7gK62Yz+YUOdGrZzN8EqM4Wb4Vfd/R7RrSNuGdB6XxvkcxA0QWl2TR2lBYDnRrMtCawegBrBmG1pqgBspilLXJ6LE/IUQBjWVupDERvHf/IW2XaHov/TB3kouUhp4PGGTo5VQO1YlEBhtiGKvNMQaMKQ9rwyS+GkCL4b1CCNmLyKCU/G3verbbNc+ef8nLl89YLBYcHa2oypIUNTGIQmZKYtQYcxI3gByDa7g1gWJeogkZxLy95hyMnaEsK4LvUSFLK3+N8RutNHc3zOkGefffKt/1EA0pRQIO5zb82x/9KX/2459yfd0ABVZrlFVv7WeYrpp3g3c5v18fcA3vNbzvEMimO0vyrWx0RBXfHMPGMZS+BxrU0OQ4oBhDqauf6CEPk2Yw2RJH4PKW6dJQ6bBWKFLDe5RleTtbnlyHW70N+nZD9zTT3u12bwQ3XzXe4AFP3t8YQd9j4lZQ9bahlBqPfUD4BoUE5xzeWEExTUbYlB4Xiil/WJBvQShidBSFIkZN1yX+9b/659y8ekZpFI9OVoQo8mtVPeN6veHq+pKr6wuuLl6zWsyZ1WfMZjNePHtB9AGjNBrFkwf3efedxyxPT6jnc2xhsAX88vNfsNns2G33FNnBua4qlLXYspKSrAv5uHMl/Nf2q+S5FrP83aBUwTDvDuHItAImwXHAu2924/fdK6MAnatWw50WFCWSJvS5saIxjoQiUKi9eG4AtlCsVrMxkAihZ586XIrEVNz59K8CGxQkLcAGmYJ5t0Kabq8ff/0hPivz2Xwsg3vvMVkysOs6qXoqhdKaXvWTas0h6QehQRhEHtn3PadHK+azikrDB9/+iHefPOLevTO262tWlcWkSNfuuX//A/bNjovL19xcr3l9fsbN9Zqbmw1fXlyzaTv2nSMSQMsG9eWXX7A/WrFbLQh9y+vrjifvf8h3f+v73KxviEpRVTXzxYIH9x+wu9ny9LMv6ZRUJK01EgxpeQYVCe86zlZnfOejD/nuRx9yfu+Yk5MV946PIXlScGzW1+zWN+NG+fSLL3j46Amnx2egCkwP+mhGVc345OmX7NqO2Dm2611uhFcUsxlaW5bLFbPFguvNhsvLK/b7HfO64OT0TECR/Y5mG0ApisJS2GwgmyTYaZqGtm3HhvbbSKMEoQfY6OvOhtvja8EKv8F0/Jucuf8uxmJ5nDnlicdnJ6NHQVFadrvntPme7PZbnr56wa+ePUUnj1WWpJMYtykzqkkZK02zznt61497ryzHCl0Z7Lxgeb7kV59+yX7bgkv0TV67FVjJ4lBG9jBrDLNZzWq5pN82ItNdluzbRjxWEpQoiiC0TEsSc0EK2Ac+++VTjq2g7UpJ8pFcjwqBhQWzWmKqkmJWUWxFkKGsKky1IVhN1BqsZTYvUfMZnGrsakH1p39KFwObmy2eJKi7jlxev+bB40c8fPiAelHz07/4hOcvXrLd7biaK87rMx6dP2Axn3N+dsbyaMGr16/Y73d0vgflCb0jRamcdTneMMagQsreETKTvZdegaqumNUzjuZLvOtomz2VLUna08SerunwMcc7vsf3O1oV2TYd1eKcGo/tO3ARHfPzlhIYSDpC6CiNpjQKoxSbqzXWajSRPjjmKaJnFUVd5kqLrPkhCgiilEIbw/zeY5qLLU3TMS/EEdyTq5QJvE/0nafvAmUpVCbvoLAVMSb6vkWpHmU8toyUlcFaoewx4tqRGA/Ml4FOOo1NtRZlKKWg7TZ8/vlnXFy8Yru9JviW7brj00863n3yPoUuCEZDOaMPe9A9lS3o+07AXSWeJFpZCm1J3hFSIOUEWSsRRNBWhG1CEPNY74J4joSA+ZuuZHwVJWYYw4WYottaaww1xiiULfjTH/8ZXzz9nNcXF2g9l7KhhqIwdF13K2hNSfo9pknMLVqQSsT41cHytAF9+r5iahZvBc/T95jSIqa0n7vJ1DTAH5pwptSpIUi+WzkYEoFBgQWEYjVwdYcGoWmAP2S0d5VZptfk1yUQw+9ulXMnVZi7Y0r9ejOJkYdQsunb1/FtY3ivEALbzZbNZkN/71yqAPKC4Shz1erNPhlpjJRRlprUi9JBWRW8/8G7fN5tWV+85P/9j/4IlKaaLTm594A+Kly3p+/3VIVhMZszm4kSzWJ2RN91RNdjjabxPSn1nJVybDFGrjdbQS8imKLi0eNHxNCDipRlDUocqrVKomKT7pwPd+8DGUQQozLCgHrnhVSZ3ENyWwFH9LfD4W2/weN2LfKrRoLkD4xPlUZaw4GJJAhgZSDFRFlajk/mzOc1Oierzb4H59g5j8PzRmXsDi6sUOiUpU9TGjXt1ZhoHDDIOySWv/YYqIXD+nkXLDC5wmaLgiLL5hZFMfo2DEDKbDZjUc9QKXHx8hVHyzn3To55eP+UH/zWx9SlxepIMSuoVIDo0SZAv6VMjpPakCqNOZ6zKhTLQqGs5nK95dXlFZvOiwGf8pAs291OmmKNYaXmXF5c8KvPf8Wjd9+ThMcW/PKTXzKfL7h3fs75/XP2n79CIc+NMna8vkaLX0o9K1itava7a9TZgtpq1levqUoLKdLtdxA9wfV457i3qqlNxISWqipwsSe1jnbbMy+hd5E29RiNBDNdj7u+wlS16MZbizKWk5MjTk+PKDRcXrzG56bWemJclYImeIf3tyVt71azh/uWUprM4183A97+SwHrblfcvvJPfl0p42u+9Jswnj79nJubTVb6MvzqV59T1xXf/va3ubx6yXw2Y3W04vHDh2hrKOuKZDT/+s9/zPVmJ5ShwmKsQRmR0u87R987nOsZ66wajLFUdUVZVxklz+DetO9KqTG5GHj2RebVl0VJu9+TlMLHyG69ZmYriND3jrPlEUeLBavFnNPVio/ef5/ToxWFVizmOosNdPzi6XNwDhMDZfKoqqSsaharFYvlgrqqMy05EZRUEMqq4vjkHihD2/b8w3/4j/nJj35K0/bSSJ4ERNFotpstR0d7CIHT1Yq6LJjNat751nt8/L0POX90j/PH9yirmtb1NJcdymgWywWzVBNiZKfFI6NtWqyxo1Sro0eZAzC622yyLLBDJyiMJGVlWbJcLsBF2ptWnp8AkIVyjFArMQUuHCRgC2sIMYw+RkJBVriUsFoQ9+AD2kolIAYBVjhajdT3zueYaAzuc5wXEjFqQpRAWxsBO++CO5IASC+INmasShgt/T5+69EaSlOOggNKizeFzluLUoe1ZqBKDbFgWRagpMLmfODTz37Bfr/DB09dV7T7MovatFxdvmYxO6aqZrjg0EnUAK0e7At8ZpKIE/3Q0zevSowWk0plMmU9IQqBxhLjoQdF4sm/YZ+M6QUd/j18v0XpuDMGukMIgS++/IKLy0vatkfpOUbBXUWNMTDP5UTU7eB52PTT5LXD7+4e710K0PTfQ+LwNuWX4d9ve483zi+/z1AiHwLzISmYelfcDRzunvfwfne146fI/t2+i2kwPq123KVt3L02bzuHt73urcnDHSD3bgXrLq0qJVGKcc6xXq9pmkaqSV+RIL5ZipygSmNFRSQkz87ucb1asbu64MWzLymKkmq2pfcBUy1ysBo4WqyY1TWFLSCJ54oxIkdaKI9TAYzm+OQEbWo679i6Dm0NpjBoFVmujmn2a3zo5aHL7p6KKGXSzFu8ew1v3Sede4fSZK7lMnJCiSzinTko1Te58G938v0GDsXtauRwPfI9HmhVSg3mQPm/xxK4EnQQKWlX1jArSmbFUIqORFNQaI0BPFE2oUmxcqhp5n8yMPJ0GrpBbh3uOBIQJ2DEMKaJoRz7r18/xt/l52kAKoa/G3njxjCbzSiqCluIGECMkaqqODs7o2masddqtVqhEwTXyzUjYXSiKjQFAZwnRE9pQIcegsPEnnbbAQmbAqVO6FlBbRUmRpoQ8d6xWSuaPmblpkyD6MXbYbNr0OWOerZls17zjtZZ7jZv7EmuzdHREVpZtBLRA5WrNSoJMliWBWVlKCpBFnVW2PF9R6GFSht9j04RHxyua7AaCD2hb3AYfNvTtz3trqX3Edc2uLal7zxdKyZ7bddTeI8pRYqzLgtsUQhSmA4u6kJDy7KmQQCqMOlr+yoganKT3/wZt/eZu3Nj+p5vA9EUjKadf9Xx6yrZ/76P6+uL0Wl7v+/Zbm7wrma/2x76kWJiVtUcL4+IKbHvO/7sF59g9i3KT/b7TCERUzJREpReSHm+y8qyWM6p65L9vj0kGgOodGf/HQLQqqoxtiCmhHMebaS6qEMiuA6NolKGB2fnHK+WrFYL3nn0mA/ff4+j1YIUPH1oadYbrtoNP/viGbFr0SFgo5N9rqpZrlZjE3VZlPjgEV8+RVVWrE6uiSmx2e7583/75zx//pK267McrpyjRhFcILqACiI/W5cFx8crvv3d7/DgyT1WZysWx0ekpLJ8rCeplNdjCaZntQA8isO+P4AfGvLETfgQxLE+JIrcW6O1ALxlbmpOHAR/VNJZnc2QCIQkZqrCWtDytkNvjEbUpqTRk5jDjARjP2OMgbZtROBDH3rgBvldlZ2zU/YRcR4RdlFvSsjffY6nwOmwiygN3gs4WdgMIg2MhnRITBUH2esBaBSAaWCQQN832Uz0moN8foE2FpWvwfXNFdZWLMsapaKAblrJeyhFTJJoyJDeGe89KquOyvkg90gJHXHY14ael99k9fjaScaBYzptrLyN4Ewbhod/h9jT9T2b5oo/+/Ofsd42pGRI+QEmRZzrbpn9KaVQKetE69sX3jk3cvekaee2odlw0+82LQ/ncIsn95bERHS03+ytgAPCPpUUm1YlptWNQTJyqhBz9/OGpGGQJBv+e5qY3G0inRp2DbK4w/tP5RSn13KgJx1oY7erQ2Pypt4MmqbJl5y3oAQh+lGWcXq808++tUnmb8+fPef++TnvvfsulS0Or8lfMS9Mw+eNSVc2bIsqy+UViZRm3Lt3n8t7D9ncrFlfX1LWGpU8NzevWZ4aamuYlRXvPn6CDwnnA23rhE9vDWUxx6CxqaKY1Xz07d+i6xSbfUtvSrwLdPsO1/VUswXed+CSyB2iSUGj/MC/LTCmYMib715nrQ3W6nwPDT5JQDmA5IOq2XSujV/kAPitbZ/fnDFekmFaxKFqifBFjXCpcw0PpRDeLAPXNl9LJclZdJqyMJhUEJ1GxSLLRwYUBSYVmOQge7ZKM7cIgYnh5+HYYkzgJ+SWYfe5M6LKjZrD68a/P1Sg7q4dh/N/W5VU/ls8YA68/sViQVmW1HXN/fv3saUIDTRty3q9xlrL+fk5z549GxG5hw8f8uzLL7i5uULrQNus2W0iu5nm81+01IVmXhrun50QfEcMjuAdN+tLisIyn8+wyTObVTCbUWtL4x19t+eiUNTZ8ElkcgU8iMlhdi0+XWHLGffu9wTvUUpT1zUPHj7g008+ZbvdcnJ8jDElJim0NRmAcnIc0TOfL5nNC4wJnKwWWJVw7Z5CK1QMEAMmiwck39M3O9knY6RvO0LY0jrFtnFsbxpe3mxZt45t61jvPfu2wzmPCwFbFhhVUlnLoq7xMRKcHMtQKZrP55RGKu1d2xAx4+Sd9spNqVK37rlSb60kTIOTu3PlbqX8jfV6mHV/hUTjIPbxzU0yrq4uePDgIYvFfV69esF3f+tjrC2YzUvu33+X4DzJB5SPLOualCKX62uqohCkWQmSG1KmFfoo6pkqoE32Fcj3cj6vOD+/h7WWn/70Z3h3aOonV6CVyYFuOigLLZdLUgo0bYMPHovFKMWqqLl6+gJdVNx/8i6/+/0fUlYFRWn5nd/5W1SV9FIkEjdNw3bd8Onra/7Zv/0x+/WG2HUUKXI0m1OXFVV1qGoOAOfCWkqlBcQtKvZdx9V6zfXNDdvW0bqIR8RLMndAZMSjAh/pwp7FfMby9Jg/+Ht/ly8uv2TnOtJux2qxws5m6Fjx6tVzVJJEwyhYLU6Zzeb53A/xIgAxjrRTncC1Ha7tsFpDrCgK6csd1s5x/4+grGIxn6G0xftA1wc23R5vasqiIkSRnI/Rs5rNKKzFGKQ/xosiqRok4kOk7zq2mzXWKLRO+ODGxCiECFZcsQdgdN/IcZRlhXNhrFIMY4idBpAoqgPw7KOIkXRdQ1nm/rpcTfHRI9yuXFFS6lZMOEiPi9hNpCgMry+u+OKLLwihp66l9yjGiNIWbSLawMvXzyjrmtlijjY+mxxLlcUn0BhUUWKMeIGQpHIy9BiKrwaZMqXGVgAYrBBkvfVf07PrN+rJmEqiTilBcFgspyg8gPMbnj5/zo9/+lPavSaGGlCk5Njvs9Rrim9svqihIfi2/4Nwag+JxFchMncRxVvSfcqPwfxgVjV8tjF2LJXdrTYMaOGUKz/QG+7qoA8a0MP1uKs8M/RxDOddFMXYwzH8bEiwpu85oGvDZBwUqqYJxfB9SFy6rhupVm9z2L27MU7v6fD9cK4JVH5w7yQyb0tWptdd6/zgei9ymxm10MNmypv78bBwp6DFVMgolMqBaCnmSacP3qXtE4XRXL78EgU8enCfs0fvsapnLIoq05kCUecyeKlIQWXlHIvGUM2XPH7n28CCXeeYXbxit9lwffma9dUlWpcyP6KlKEpS9i3Q2mOLSoIWY0leAuLIbfrEeG2VNA1773PgnNEUhmX/drIGQ+lSFGn+QxoqN9lZE3GRUUMeH2SjUEAU5It8jUwaeO7DWgFJa5LyKJsgRiIiZYyJKJNGQSulZZMTnOFO0s/XkwiOCpwa/kLGb4IMT+dDUYjuOByolUqpW7Kzw5ozNEo+ePiQX/3qV4QQePXqFZvNZlyTbm5uSKEnpUAMjhQMpYGTRUWlI2UKqL7j+tkGtCakSNs1xOQIwQCR8/P7aGVJSVGYkicEIHB9fUnTO3wbcCFlBR1NUpo+RMJ2R3F1yfzFCx6+es1m11CUJbOqJsVBBnbLfH5E3O9ou46kRLK7rmtmZS2eM8mRUk9daGalZV6VFIWC4CEmSkqeP3tK8D2l1ey6jraXDdvYBbqYE2Jis9uy3TVsdg3btifqkuAdkFgu5hyfHAvNY7tm1za0XZeBmuxrgQSMq+WSsijQCi5ey7Uequl3KxlfWdG4M6Y+Gr/u6+u81/+vjaPVkuB72mbD44f3KcqSvuu5uLzgV598wtFqxfnZPfp9Qxc8bbOn3zZ898MPqKqSn3/ymQS0IEaguT9I60MfoICEJY8fP8E5z3q9IXho2+z+Dbf2PmOtNJtbixmoQTGrJbUtlbYoF3j5qy84mx/x4cN3+Ht/5/f5/ne+Qz2fUVQFs/lcovUsgvMn//TP+Zf/+o/5f/3Tf8HN9R5iQEeDS7IQtj5mJ2uF1hGjHWjFi/01yXusUfTei2O1VvTOyXOqFFVZY4yhKkuOlktOj085OT1mUS342S9/yjsfvU99tOSf/OM/4uFH7zI/WRETtG0rlVQSIUK725G8qEclb3KlXnrDAGEtpETo3UiFBqQBO0bapkHwmpKqOoSjOitragPLec07T97lbGHYb254+vIaW9YoVeKUxgdHVco6qpHG9MIqOmPYdA6P0PVRBt93okRHouv3zOcFs7LiZrOlaRqa/Z5oKpEaRqF1AcmPYNgQR73NPHmMrTSYrJgagmOzuaEoCspS4oayrCDpEazRRtaDsqhGurxzYhA7n88pSkOMjpevXnN1dUHT7JjPZ9S1BP/r9Y6ynGNsQcKx2W94dfECFJzfe0wUvYExjpN1hayyJ/NfJT2JD6U7Up4Dk+e6XA8BxEuw6Zax5a8bfyWJiTdLvaKUIyeiESlJuQFtt6Prm3xjzIgkgiAGcqFvozd3KSfDOFQrDjd1OqZNd9PXT4M1rTW2qIDb6kspyUWL6aD2dLeKMEWWpgnOYbKJykCME/8LKxy3lNLYuzGlP929ntNKyXCO08ThbvJzt+9jer5Td+1pU/hXUTju0p7yT8ffScY8KDccXne3qjU9nyFB8t7Tdz1Xl1fsttuREzgiHilhBvSY25twCPmcchg+0mqMhQCzxQnLox1f/uJH1LOaorSQEvNZzayaUWpL76XMqrWIpKJAG03SOrf3JpQpQBcoVWNtQV0f4fuItVtQJgMOUsnJOwFjaqB01l43xNzIdcvJeph/SiP/k5RqOnduA6B36HUhYnJ59Js8BoaUSnI3DWCVojKapMEhz09RaKraoo0mRo/N1RxSIqmUpWbJxp0RrQPaBBSBGD3e9cznltWyoCih6DzbfUcIgkBmVWwyIJmPSTZ3WcvkOhurRRVkbMwzxFxRiylvKkrlsnwGP4aMJtMqps/IVMZ6GFPq4ACoDOIQQx+VyTxf70VqVmWEfLfd4XpB4rRW7DZbYnSk6NHJ0TsjVcwo/Og+OWLyaAtBFbgQR267ShGHEx60zapdRrFaLrjvPdsnjwiq5HrXsW4cN43LksMBH8U3Zt/sePHyOU3bEIDSexbzBcenp/ggvUwXV69FTlErnO9RBEE6Q2JWVCxnM44XC8rCZtpKom16dIxZjlURgjQhhujo2o6kZK6YUtP0Pdtmz9V2w7Zz9CmiCsvx6oTFMkoVvKpBKdqugyQeAK7rcM7hvKesSmxhqTLPHa0xtsDaUvavJGj5dNx6Xse9YniWRUlvvONpWOrSCGodvt8OXm799/AfX6OUManJHb7G+f7NBSuqUtRuUhQwpzCGaOSBPj45oc6mk5vtlqQVyQcKbXh0/x7Oe26ubtjspXE8qTB5Pi1Kyd4rFcQZKUHbduz3zRjfkBV4Bl/kYQwocEoqB4nijSCqTg5cwARYVjUnqyPO751zfHJCNaswhcEWBUkn+SLx4ulzXjx9wc3FNV0nTtZWKSIa58nePeFWnKK0JrkOorjW++AJKRJI0jeiFURFIrJYLJlVNWVVsN1vCMnT9gIMFIWlLC1HyzmVMZgQiU2Pt9IsHpT0ZnofiM6TksfVjsFwcGByGGPE3yE7ow+xiEKAM+893rnc/8KI5g8Ai0H6KkSi2FDNFtx/+JjLTaQLIgccYxBqpVaU1uC9o7AldT3n9XYje3+IKJ3dvKPQlhhJsRMwUA3MnITWFmMKnOvxQcznQvSjJDTcjgkPErPkyrv0ePR9L1XzTOMa2DQpifw9MILC0/hwiAFiCEQcl5cX7PfSUF+WVfa0EOllbWwGLxPGFDRty+XVJYvFCSQr6opK54SC/JlGjBdzkkGuUEg85klGzAUFRM9GlV58goIKX8uQGf4Kjd/D11QfXA3mHZEcFBzoLm0nhi/WWlA2G+oFlE5YLYuFODKGMTkZb/6A4k6SAflvxZBVTdH0aRPe1BzpLp2ryKUieU/xUZCAPI10KcliD94bMR40+KXacTtgH7h6MfM7BymzorD0vSNkruOQGN0trw+TaqA2Dcc6GGpNj3+gE02RlGlpcvo+0/ee0piG103v7eFeS7A1nN/hPSQhlAfwECiNFaKUSOr2fRmOF8RV99XLl1xfXdH3LaglKUVizJ0GEwnPKX2MQeUnJ24hhoz+C9e7ni2p5yuubm548mBJWRYEL+iGNRaSKFiZlNAxjB4cWmuwxWjAI0ZrmYaDxdgSayqUsnlhzomgzhuNHDRZgFoeYmUEOQ/T66nG66qVxqjsu6AkREtJFqSU9KhlPS4w49wPGJ24m/h+00ZEEgySQidJMkoFyYqOeusDfQhUlWW+nGELjXMdc2vRKUGIOBJOQSBC64GA1gFrRYUsBU/0HmsSq1XJIlrKnce1Dh+D0BssxCDiEaJOpVBGjiclnZEmRV1ZQujxIeKcqG5IkhFx6dCLE6NkKePqpdKYTA1jeE6ma2fMgRIcnn9jDFVVMZvNbinOxRjpmpbNejtyw5vdnugj1hqMNrje0bmGGB2lga43tJ0ESVUVcW6Pjh31qsYT6X2i63qMkoAqEvFdAAwqa9Iv5jNpZlSaQMXsZkex3tG4C7qcgIWkKHTFvt3TvuzZ7bYkBopgwYNHj6jnC1ZHNzx7/iVJgbGG7XZDcA3JB2LyzOwxR/WM0+Uqe2YI0LLbNvLcINzklDQuxGwA2GNLecYxms12z+V2zdVmw9ZDMgV2NuP03j2MthIoGs3lxaUEPjESu5bkHNE52qbFuV4UcIoSH7JTtLUU5QwfkcroV/TkjPeVHHhqnXtt5HUDLXJIKuRnjInt8Hd/naEhAxmCeg8KbBqhIutvbo4hvPIowdfBQTmileLJO08IztO3HdvtFltKX0RdliyOj1Aoml3DX/zySzofCD6irSJpoW6LOZ6lLGvquqbrevb7lmbfZpDBonUipCwFCuN3kaGV4LXvWlGq6jqCc4TOY3xkWc84PTrm3skJZycnLJZLiqqQxmgLUUmCEVLg4tVr1pdXhM7hu4jSJdFY0ND7RMKPkqsHEFBjdEbHo3S2hSSUoMpWkCmiKTgW8xmz2Qznel6+fonWmtl8xpP3n2TzZc87Dx+AsSQXia7DF4lgwKuIC2KIG0Oic466F+PlYc8fzCpDELHq4MRnRmstvYcIRdY5ByphjOz7WotksCQZETNQtBMU9YzH77zH9tMXcl2cBPLySBuqqqTvO8rSUNUzmv6Svvc4HzHm4GFTlgVaS7IV09D3kKlakdFPzWhL3wX5nAjO9dgJCD6NryROOwDNMcVs3tmjDCMdTBKtnGhM4il7h/4/xHXOJ3zouLq6wPuQE7h6VK8KAZSSqo9KiVJpnAtc32w4Olozny0oC1mvlNYMCN3I8DEKlWTeJnKcHRwpOWzISUZZ5uZvkXBWJmGqrxeLfO0kY0r7mSLeKSHGKOrwurKs0FrRu45ZMaPbd3z6ySd0nWgpJxjNgCSTyxlVtBMUJ47NMcMiMqD64w2e6NgP6MMQnA1B9tR8bqAcgVjel2XJrJ6z3++JAcrCkOwhsYCUJ72ggV3X5EQoc4IHJFQp2Thy56jOE0ppyQiHRajv+1E9YFgUpjSoYZRleavPYbphjVy/rGQ1dReeVjWG3w2fMVXvGj7/LmI2/pwDAqfyz7x3FGWNzQoP3nvZuNSEU6y4FRANFI/h2LRW7LY3/PznP8bawD/4B/9AqglJfAyGcxnu3XAuRSHUDWn66uhci7UVZTHH2pLLiwueP/2c5aKibXYEX1AvTijyouqCoIhC+lCgS4oiV9Wi+DQoElZZ5mVBUpoYe1y/pXNbnNsTUs9ieU6iou9Fk1/SH0PSZkRmtclmS0qj1EEAQBBpmx3eIkRH325JqRckXg3o+dvviTbyfiNK/o0fsujpwTyvMBzNl0QlTdoO0XbUJnGyXHI2n1MpjUHhbUGvkgT5bc/N9UtCcKgUscaymJeUdgHKsdtf4foOlSqK/NyvTo44u7/Cux19t4eoWZRHlEVJUcHV1Q6SwdqKk9Oa3u1puz1Xl2s26542bzhSGo8yx7wfHnqUMoQUUEkK+AOtZqza3aFhKmUyPentQg5KiXHnYNC42+3H4KKezaiyV0NZllgjFDEfHdvrKzrnePr8Bdevn/P73/uI5LbEbsNuY5mtzrDljOVySWUtdVExq2qiDzR+LwlhYej6BoDjoyMengeiMrQuoGIciH2AwnmH1halEz/56U/44MOPeG85Z75c8MFyxXqz5dPPPscUhqquMNbgfU8bO0BRlxXdvqXd7HH7lvLhCa7v6duOuppDEK+d64srNFI96r2nKCtsVZGU4sXr1/ziixdc73v6pJitjknKkpRhvb1mu91lV/KOrhPjtRgTtijQSkuf2Fyz3e9JtNT1jAcPHuJcL3/rPCENNbg3xxQQA0RBSw2V2WEOTIGe36yooOBrNn1PiZd5Pc/J9AhyfEPH0y+eUhQls9mMk6NTPv/sc2KMLJcrfIy0fU/btZyfnPL64jW9c5ycnVItSt59+IS/93t/wP/t//5f8uzVBZtmT2EtUefqZIzMF0sKa0lRc7Nes9s2tK3DOwmoUxLqLnpQMtLZ7VuQbO8dTdsQg0elyKyuAcd8VvA73/4tvv3BR7z77ru88+H7OKJUHYzcrZTEBK/rW+rKiBqcEcW7QEQTSWi6viPEDFBxqISVZUHUGpXAeVGPE6tYRWhbKltQaIuPjhQ7bm52/PyTn2PLks45Ouf44uo53/7Ohzx+8oDz02Oqck5hK2xZcrPd0upApyP70HE0X5CU5eLmBS685uj4mNPTUzabDZvNBmstjx49YrMRNbCw3WLLUpKp3GTfexGjgIh3jhgidVVL0mAM86pksVzQ7jcCAquCy6sbeh9JStG3e1EAs0L9UkT2ux1X6w1X1xtckCqRNhajaqJNBNNhC4CA9x3aWEKM9L2jjwqrIEahYrVtB6rAmgIXXAYmDkqgQ4xpjBGmRwz4Nozmfr3rsARgcOrOwGsCEHDI6MH/Io10qSHh6l3Lq9cvSYksu1xidElZzggh0ncRWxvpO8Giomd1tKSwJZ9/8ZTFvGS5WHB+fp+yrFBKACMfWmIS9oU1JVUlimh1XYtk8sjUyPE/agTISmtZzOu3PJ1vjt+okjH9uo1WD0hzysh0yIVEWVR717PebkEL/4skpRrvs4kJagzWpw9MSlKKv7vhjvwwdQi+b1utHzjMQ1A+GJlYa6UZ8cF9zs/voxR89tlnXF1d5f6Gw4UdTFPGEp9KY8XC+9xln6CqahJitDLIHt6lNA2B+BAcTJtpQDYh7/0YhEwrG8OYltCmFZrh38OkHCbF9H2mf3+3ojEdWmcH7lseBUx6Qwb/Am7NBYZXT/auu1UUrQwhJNqmY32zxvUOYwJaiZzgtEIzTZ6GN1UKjCkwtZQZfS/UDt83uL4Vykc8qFQM5U/yw6u1xmhzOPY79KRx4x2Sr5TGbXq4viMKrZX0EjMonk3YU5P3fLNCdHi/AY0+BGqHS34XyVS5xDxm1t/QoSIcFLJijrIUhEjs9viYcDESrMKqAm2FJjS485oofF5jRPJX+ZCT61xF9CEHAlBXJU0nz0NZGBTSM9a2Hc3eUpbiDtw3HQIaOHz0OL/H6AJtDD40xNSilMPYSFEpUm70tJWUrLUt2Ow7bjZ7nA8YY1Fezk1NJsUUAJiuUQP/ePo1AAbee7bbbZ5H6lZQKq/xtxLZk5MTkk7oqFkuj+g2a7q+wbcd633H8XzGcl7j2jX9ZotSDUZZHt47pw2JrmlZHR9l/XyFyRUNMcaB49MTXlxv2e4bep8I2pC0JaYSqw7y5c+fP+fJO++O4hcnZ+fYomS92fG97/2Qm6srbq6v2azXlPWC6Az7fsuiNqiiYHlygnchyzsmtts1KVedve8wmVKiMERbsO8DTd/yxYtL9p1HmZLFbIFTFbu2Z980NM2G3vW5cu5JWZZSmh+l6qK0FpOzFMAn2t2G1y+fy7UOQYKPFLirMjMd0wqk0kOF41CZvJtkTp4O+f9fkwD8RgUINXwbkMsMCt3ZV75p49HDJ5NqfaDvBHBbLlZ0RHRhmKkZprAcHR/jgicphVEQXUfrPL/zgx8w++VnfP7sOVe7DUkNDWAGkpjfheBomh7nAoPZ2rBea63HeEYbPREBOAg3xCD0Pp3EXLauS77zne9w/945s9WCxveUZgZGE1XKXjGSBJbGst7esHc7dGVYljXeJ4IP7HpZr4Z1dDBslH3poPikEd69zgbHJRqrNNYoisWCvtsTSDx+8pAHTx7Tx0jT9axOT4l+z8Wrl9REypUBk/C7nmpWCbimFUfLY1bLOaF3bK6uaNo299hpjo+P2e/3OCcJV1FX4l5uZF3T1lBUFX3XoVIYBTiG4NsYkaUVVSR5v/msYrfb8fLlFQktWXMGOq21zOdz3nv/Xfz+mq7vcc5RVjUqGmKyxEy7tmVBUR8jyL2Aw23TCPWuKNCqwHeN0NFioOsynatQ8twnPS7CU6DWOYcYtwuou9tt6bpGFKW0+FyMwgspSeVMGVEeU6JkNQgFDbGcKKjtub6+kdhHS5KRkrirQERpI4wNDSkFjC2oqgVlUVPXLU1zQ9tu2TdbHtx/RF3PKQtJNtQgp3snxhYKL4zASAjEHHcPMZ9ru6/1vP5GPRlDUDs0v0jwjdzwyUWPMQjnLkaapmXftPTOAVYmYU4q4pBMTD7jdqIhJau30Xskq8oo+CSIHwLa6UYtHLZSKhfZBO/4+IR79+5R1zVtKyjh5eUlIaRxw572BUjl4BD8OndwqxWJL2nm7bpWaEpRJm8Mtw2ahgrFQIG6y9F+W3VhGNOAfXq9hgkyvJ9S6lYFZ/r76XW8Ow7c1DFFvJXsSJVjqHQc3uPW/blzbFMKgbwWnPPs9w1d5yjLlPnft89rWskZ4tBBWlBhxkCh3be4viX4TmQwM41huHdyHpIIS2lQT64j47y9mwAcHrjxJLGFHc9F5uCE8pDPfaj+3L1vQ5A4/owhEb17rycP+nQejH/+zUUgQfoaD+dyWMhUSijvUCGhQyRh0TGNtI4RXFBZo36yQEqfyu3kTZJKQaeHCtOQbLre0zY91pZUZUHQDoiEmIiZOqkQE1EfBo6sBIpFYVEmYXWirAsxwLIlCdjvGnzKDr5jjn44rmHcpVpOE/9h3RnW2L7vaZpm3HxM1pOX51G44dNn/+hoxSBNWZY1vhDxieAc613LvFqh5zWxb+m7XlzFk8IdHROVBEb1fCZVGaOxdWae50tcVpVIgu47nE8icq8sMQktapi3A3LpnCRBhZVq5Hw+56OPPubl7AUkRVHWonEfPa6N9DHRp0QXE23vRCEHcTgXGVkvwQcQIkSl8cqw7RrW24bL9ZZk55iiwpQz+jbhusB+13GzWZMGp9sQUAzJqSQa0lelMWUp1UYSwTn2m40AGNkXR0UJ2u5WIaYb9YFGm4gqorW5s67cfY6/ek1+42cpfa1qRkqD3PvQO3AQQPnr0rH+XY7CCgCgtcb1Hu8jYPAh0fs+B55S9ZvPF0QS+67BKk3wgla/9/gJfedJEdzTniYmMVhDEXzI/QYe13sB1obK5RjaDwuT/HxwUI9hYCdEUna9TkFR2ZLlYsnjR49YLheUdY3znswcfQOcMlqz3e9o+z5LqFckevH0iA5DylLfCrKEutEC9AquJvLThZFnr6wK3r3/UJT4rKFaztg2OwKJsq548t4T+hTZ9Y5yecTLLz+j3dyw2+5Y2hUUoNCoosDYhI1QlBWlLQjAbL5g34uS6G6/5/79+/R9RwieZr9jcXxEWZWgGAVuUkoC1nmpQoM8T4OqUfCBaGSdL8sCo6NQj/I1kyf04EdRlpbj4xWtciit6ENEqV7Ag6zipI2m0JbVvETrNPAUJV5C6P7KWPouZSdw2S+0VaDFJ2xINoe95hYwisS/zvU07R7nevFjUQNFSo1/L+ebchVD4YOYQVprM8074VxH1+5p93uOjo+ygmWJQii9kvCKseTgHWdMQWErymJGWVTst06q8W1DVZY411HXM6qyplSzvH+aMeFCqRwz5QQjpczaGOKrvAb9TatLTctCgyrSEHwrhl4IyaR8CEgvX+CTT3/Ji5cvMdoSvEJbcXnuuhadA4UUD3KAd8vNRWHHfw+fr9TgSHhA7gda1SD5qJSibdux7FRVFavVivv372fqU8ezZ894//33+fjjj7l//z5/8id/QtN0rFYrzs/Pefr0KfP5nLquJSNv9oQgxzB15T47O+MoG7vsdltubm5EqSB/aR3QWmhQUxpQmQ17qqri+vr6jd6R6ThsWnEMoAfJ2uEaDM6zg5zlUBn5dYnL28bb9p+R9qRUpvYcaGyD7bzORjTOufE4hgqAUpq27VguZjjn2Wx23Nysmc+PMtcPiqJEqaGvJdPzjMgBFZkTTswVmgApBL78/FN260vwHe1uhzWRspSy4gA7aaXovKes67Fv53CeYxTLKDgwuV7SfyGLWVVWFEWB601e3A/B4iHx+BrXdsLFvjuGpGVIZodnLAUvpkXFNzc4AKgHxlhe30O+DlZBbXTOQjSt0gSlxyAupkhUklDsNzui0ShjWOaAe9BG10rjgqdte6qZBOHC55VyPFhSMrg+ETyQMgrpAyEoSAajlygswRX4LHWrksVqS10a0BFV9NL0HDtc5/FtjwoRHaTKOdbg8pSaJtFTdTqlxCyK3CB4dHTEfD4HYL/fj3TKgVI5JCLGHJKs4MM4Z169foUpyrFie3R8Doue0Gx4/uoG3/c07YL7946BPcH1ROfY7ffURUlVlPR9T0gJZQ2z1QIfBEgypmCzadlsW/b7lr4XXwttajya49Mzgu9Z32yIBL748ktm8wV/+3d/n7Zt2TcdMUZ+67vfpzAll5fXLFcn7Jo9rQuYsqJLmqevLvmXf/yn/P73v4vGo1JgtVrS9j0x+wD43oshXjTs+8DTqzXX6y1OWWl2VCWtU9xcbtm3jthDaVconfnSOXETmm0BpBGBbvdbjBJO97yqMUrhu17M2ppWgo+cHA9j6KUZ1q5hLR8WhKFPcXjt3aHUQWzg1w0FDLDvr1vRB8AljLQtaRYdkthhD/kmjp/86M95+Ogxxyen9C4QsDR7x9VffMZiITx6owvCQvHw4X1m84qq3xIjdJ0juZ65Mvzt3/oB3//4Y/75H/8zfvrZU652DU1I3FxvheKoFK6HKAbJ1Fbhk8K7hPOi6qijyL9WRYFVIj0bvSf04oqsUqJMlkePHvPxu+9xdnLCcjETsCvPuaGfChgDxRAj15s9TeexuqJpPdFJdQ2ErjnMJ1G10hRFrtIDOkSqzmFsYPXoHu9+/zv8H//3/znHywWFUTg8F5cX7Pcb2naD8zua0LMNjjUlD57c4/rFBZ/82U8JasNyGTk+XsF+TTTirl7Pa5zfkazm/MkjvFW0Tcu+a+n7lroqKHTi4vVrTGGo5zMWi5q6LhhoXsfHS/rtjr7t6FyPUYUoM0XoO0ddGrw2rDc3pHaNVvDhBw/50Wdf0HY9KaS8ZwRS7HFdwzvvvYN3novXl/zsl/8DqVhS1CuKQuhn86Lg3qomxZ6UIqF32FIa8rwK+NTRxR5FRWktrfMUKEkWCJAySH6nBzaEQEyBkE3x2qYhRk81s+IJpA69e8YUkAzeBapqTlKRpm9pvfQflrZA49ltrmh3V6TkpA+jEIXLITEBRWkLrC4l3VQJIhS6oC4KSpula50iOMfnn3+S9xDDgwcPOD09Y7U8YjE/JjLPQioW0LJPh4CLgWQ10Wi6Tio+xhrq+ddbQ36jJGMIWLvuTpkkVxwyPpsnUCSlQNu29L2XhlqtxwxJZR4YqHETnVKF4BBs3UV1BzWisizHnw03OsZI27bjhj4EwH3fs91uM+3Ccu/8nAcPHnD//iOMMaxWx4Bhs1kzmF998MEH1LVIvW23W9Y3a/ZNw36/4wc/+G3h5aXEwwcPOD45Qil49uwZzvW8ePGSn//8FyPaCILODwoEU8qU6Pr3B9rRncrNKJs2ScCmicPdazNNSIC3Ji3T97/7b0Hmb6Osw89jksD9drA+BNiKu0ni0F+SUkAlTV3PKYoqP6SDspiaNOIfvFimniAxSelZ2mGkee/i1Ut+9ud/huu3BNdI9h+l92S+WICRvxsau0MI+HCYYzFlHiyC/IznqicBYXYtDSFi8sYcYsTqXIkjjSoLw/UJITA4PQxzcjg3pexQXmEqYjAoXAzvM00y8kUeA5lv8ihzkhHyl9KQJeqxKZKJ0RhlSSYRDaQQCTkxiQOoPtLMbo/B1DBEoWIaqymVQaMpCk1yZKTS5rknwIhMeY3WJTH0JIR2INNdobRB64wwqYA2Dm0KEpYYDa0Bi0NHRYwGjQE9KKHlY/uqCiK3KxnDmuWz1POgl16WFltoQujo+oGe6UeHc6ksK3yyoAyVLZhXFSfLOQ/PzijTgt3uipvPnnKzXvDwdMWskIb6NEgqx0TnemxZYgrLy5cvWR2dEdCs93v+/M9/wa++fMFm16GswceAJbBcLUbDvcViTtM5UZO7uuJnf/EXPHn3PY6Ojzi//4BPfvxztruWsl7w8Mm7uBjgUrG9adk2DTF5ocnGn7Kaz1guak5DYr9bk2KgLiq8C/Sd8KVfN8K/7lxgubxH1AWuT6zXDXW9JMZO7qmagVJEAtHuCW4tFRQXKEowVirzFtkjJJ/0LBdLmkZ07X23z5RShTWGmIOLt+1Tv27cnQtSDP3Lk4zbVf9f98KvADHu7LHfxPG9738f57zEFiEyX8w5OauYL1ckv83CEoa2cfTOUYaCxWzBvm1xvmGz2fDeO+8RU6RKhv/Z3/9D1L/4E37+qy/55MvnJMDHlCtsB+psyg3CCYONhaiyjXFG9vIKUQJfHwT1jYmXL1/z7r1H1NUMqy2zei7PMZH6Dm16qE2EGKirGVpZmmZL38dsAJjkGOJB6lpn7xrnxP3Z2IJSG04XM37v977Pd373B/ytP/x7nD88x6BQKWGKxJNZLZXB0PIXP/83XF9ccb2+oji9z3xm0OfH8MPv8qtPPye2sDxZ4doGZQ2GRJmU9IfpRK2W3D+/LycRI7v9luV8TlGWKA2bzZqQAlV1xnK5uFXRi4XF945d0xIdxD4IFVoJNTsEx+vXrzirpQetntUi1kPCFAXtrmE+K1AIXe3F82f5WZQA3GtFjAKS2yKhyoKqLml2LQPV3znps7SmJClDYWuCV3RNLwG/0tnoMaCUeIzAQdF0pMt5AYt2u53sIVaMg5UeQOWaFC0++22UZUUaZP37jqos0UqNjedt29L1PUVRjvGCMcXoqO69gE9GmRxXZKA6V/CtNfkzJAYL2Y/IuZ7nz7/k8vI1s3rO/ftPeOfJh3mOq1GARhuhczkv/nRVXeNiP9JAv874jXoyDhq7d+g6HLJwkJubkso66sJ1HKhRIaVc6o4YnWk5kzLy4cClpnS3HH0oSR/+7m41Y2gQn5aFB+rBfr+nsBWu98QgN16aJivee8+y3+8wRhKAlJLoFBcF+/2exXzJdrvjZn3D40dPRgOc4+NjFos5CfHZaJoG0Fxfr8WZMngOiiIHNGsosU2leH8dVeptNJq3US+G6zF8nzaB3+4ReHuSMV5+dfv97iL1d3tCUMJRnX7GNMiWEnbMZkUrcUU1h2RlOg+GBGMUGkjS8AaaGCJd07G92dDtd3i/J4ZOKA653FoUBai30RPSIbi/NbfepDscvrLiQzgkesJZHOg+argZYxUkvRFEyHweruF4XPmz39ZqMZ0rcVJO/iYPk3tLVL52A2Nt2DQValT/Gmri8tKs3DS57IeeGjX+XCkpm6dUi/ypExUplJS+D3NiZGrJZ6dMM1ACkiQ8IRqSkjK0Iss3p4RWCZMdZVNGtRSDtKUmptwAjnyAypSfWzd5kqAPJXatFW3bMMwTAR4Cg2yxD4FIyPNxEI7wgoohbx8i+BSI+dhiFHWW5XyGnVuSLvAYrtYNs8KQZiWVNUQUHqGiGWVJMeB9IkWPVzv6ANebPa8ur9ns9iKmYMrhrlCWViikUQytwkj1akeqV1lY6qqid46koKwEgDBWKGAoTYjQOc9m3/KCG5q2p+l7Aomu3ZFSpCoc0UPfO9qm56ZtaF2QJBQReuh8ou8DtoAYDVW15D/5j/8TXr2+4OLigs+/+KX4dISUpVAzAqwVprK8+877ufLcQ6bmDsHckMxZKyx6rxDzR5V/z9AvIiMNa8Q4cW+vPcM8YKiP5vkufztZ6w/TfZy7XzmGZ2vytzGDIMPXN3XYspD1VWsIEVtVlFVNVRYkUxF8JHip4rRdS1IRtQ9oK07HKXmCd9JbqCLzWc3R0ZLFfJZpznGMRVI6xCNTj6np/qQnYBgpz6cIyYvM8n67xyjDfLbA2gpblNjCSC/CwIfnkDSKS7ij7Tr6rs/064OC5F2aJQNBMv+7sJZ5XfPo5IjvfPfbfOfbH/P+u09EFSnK5FFGZdpNJKWSe2fndK5l1+zo9huMspQzy+JsRfFS4qXLyyvOZkJv7JuGzdU1TeiJVmPKAjvLx5MShT1Qi+u6pg2Bru1om2Zs6pZbaKRqqqCMkaAizkW877PCVSI4z68+/Qx/uuD83hlHp+fjOaM1Lgi9TfaNSIoOELBHoYRmmcRsLvgIlCxXK/p2i3MeHyIhaJTSWF0QyApMUZGisFbkvuZ9Qx3iAmCsGsNB8cx7j9FaRIDy/R3vX05ch14S+bkkpbrQIyOo971UlWOkKCpETCb7uBSW4NPIJJkKMg1fWh38zSR2zyuCOsTKbdvkPuGS5fKYvnckAkrdXh9iXteNkb5Wfadn99c+r1/3wR7QtbtBp9znIROXSoZcpIgPTjJZIxPp1pcPKLLTYrgdrA68tSGRGMahzJw3XedHlH/690MfwFQycqCd7HY7qjKx2WyZzW5IUcqr81nF+b1zIFJW0r/x2WefsVqtmM/nxBhZrY7ZbrYsLqVT//j4mNVqlU1jhPe/XC55/fo1oOh7x+vXr+m6SAhpLKkN13P0j+j78TyG6/pVScV03E02hkRw7EdQ6lagfpcv/JeN4f2G9xd968wCnVCayrIUFFRJSXG4/lN6h8xtS9v2lGXFo0ePODo6pqpqtB4MEA89ClOjw5CVuxQCffu+o901bG9uKDSEFEi+IwWX6VxyDYYAKKVD346KgzycubULa6UP0ohZyniseMSUjRs7bql5cEC5xvswuR93r/Whr4B8XGn0e5jc1Tfuj8jq5RJt+OYGBwDWFrKppJiDewnyI6IwlvQwr02eE3KBDslFng8JpGyds+EMbhgjvQiLpSD+212i6zzGRAKiRoLK7NMh7g8RnZMQpQIokWb0KfNwdQA82mT1M5UotMYHAUt8gBQzr1Wl3JIpvU1msFMZ5u+YvWcAROusVOJREa6uL/JcHdY1kXP0ztN20piuVKYmDpr9Wsz8ZH3UYwOzLixd03Cz20EK2EfnFGVNbRQ3ly95eXVD21XcPzulUiIRmWJgUdR0KRB7D0rz4uY129Zxs9lztd3R9k429LzOKxJFYWi2O6Ec+ZCNuzq6VtC50lq0UnjXgYkUtaWeV1yvL0kpUJT5eY8WHyO7tkcF6Pqe7X4vwWIQUQ3xDFG4PtJ3nl3siUoUf1yI+K6j7xUuS2s6Byenp/wf/vP/gn/6z/8Vf/zHf8zry0t2+w0xBVIc7qvCaMVstuA/+h/9AVVV8avPPuPps2eoTAVVJstMa5jNLFYZ+g5UEB54lzJ3eSi3wWSu5kBA0Jtbz8VYzUKNXk2HxHqyvqivCTQMwe5Az8zv63MT8GCA+k0c+2Yv8sLzGh8SphBVSec6Cmvw0dO0HSFFtrstm11ks7nhyXuPgICxsN2uJaCz0G49VWWpZxUj+zwL2AzxDEi8MQytBciyRUEx9kjl+52FBLwLtLuGZtdhTclisaKu5hRlLfFC9MMOxaAFljIa3zQN11fXrDdriQ90LZTx4EkpYDjEXCmBNpL0Ss9WwfHRim9951t893vf4Z13HlIbhDKqLSDA7yByo3Ti/Q8+pqwKVPD85Bc/wxwdYaua8qjg6N4xF88v+PTTz3j/P/p9tpsN6/Waq5sbmBWYeY0uDKnvxj3z3ScPxzl4fHxMf3VF17bcXN8wn82pqkquXVFk7x4BhwIRt2/p2gYfe2CG7zr+7Sc/Yv3wlI8//pgPPv4tTBpSck3vQpbTlQbyWWnxPol6XIg43xOUBOOyfmrunZ+z21zgXE/fOUIs0GQaUhDfz+DlvhQTUZ7BYEniAqkOFEXJcjknJQF9fAZ0q6rAWIXSUhEbKtOiqVGN/XUxZpEAhhhBkozdfkfb9cQIs8Us92OIGlRZlDS+JcZAXde3KJqHuE/65MTvQ5rEhXkx7C+eEBzO97x89Ty3GWhCdCg9SWYR1gkEfIIiyzjzNZUuf2MJ2yHofbsCkhzIECiFGLi4uma7b7G2xAUIme6ikfKT0EAODdUDonx4aA8IwjShAPVGMjEE7c65kXc6/bshMDZGULebmxt+9KMf8c477+Ym8BnGSkLinOO9994bz1nkbhf0Zz0PHjzk5OQ4qwVIU5LwK6Vp9Pz8XBbBqmLfNDx7+iWvX4sz75DdD/SoIbGYOo+/cZNytntbcekwpsjGwNcemquG308Xwdv37BAQD0Pl5u/pe8MQ7B6kd6cKCMYMC9ehujQkO23botDM6xkxBO6fP+Bv/+7vcbQ6pihKKe0pJb08pHEBHz4HLQtxTAl8IIZA2zRs1jccHy05osD3M159+QXWFtiyGKkqioMSiLYGNWiq66GvgsPDbaRiEFPIpfIhoYgE77i6usL77CQ9VNLGRIPxvQ4/P/w9Q4CpBGGLQeguMZ8PMRCDhKFDgjZVIdJaZzeav5xS8e/z0EUFMaBiIEYHShEU+JRIVU0KWuhTaJSVez8qvrhI7zo22x2qLCjrkmVVSm8XluAj3ovUdN/3FEUhTaKLFZiA7feEPuJCz76PzJ1lHix4T1kqjAWvFEVZ0TtwQYGpsoFg1qBHKMBWa8AQAnifaDtH78XDIxpNIKBJ8lqjspFvgphNsZTOXhGZI58pENIs7ZjNaubzmpQGmmVBbDw+RmxR4If1AEOyFmtmGFujdUlSiWJW8tGH7/Plp78g9h2x0Pz0l59yfnLE6WpBnyqeXa95ud7y9GZLkZvG752eUroNIOv3frulUxW7znN5s6GJDqcjUUtTYlUsscrgd47j1RlJSU9K10lzobUFXdfiXcduE7m+vuHBo/uUswJs4INvvcfVq5dcXwbWVwUq6rz5eVIplY3eBa6vt9SFFQntpOl9IKHRZc2cmj57WSgsjx48Yb3teH3xJV2vcN6wbS/43/xv/3f46Oj7hm2/JyjxOwg+UBUWBRS25L33P+Dnv/xkXDNvthuh5kSpEM1nMxbLmof358y0wbWO/brhxc2WPvS42IEVuWUVE8EFiFqq+VH4zGastOssNAAGWQcdiZRCpmOOK8et8Sbd6g7ymIEZnenJCUkwUvQQFeav5sP778coal5fr/G94/z+A+4/OEVp8VwBqGqNNpbNektRF1Rlxb3ze9Rzg0ZxdnpGqUuSARd7Pnv2Sz7//Fd8/vnnvL54wfG9c1kLkjRvDwIdtirxzuODxzuPLSymEGVEXVh82xNcwPeB2Ef264ar15cUGH716Rf8eHXC/+QP/h5KWYy1YqamYfBK6jKItd1u+eSTT1hv1rmvNGCqQSJVEQJUtkKlQbmM7J1QcHS04smjx5ydHBFUYrdf025X0ByhipqkAa2F6hkG42GNwvDg3iOO5zP216951m7Y7Hbo1Qkn909wveP69QXb/Q4FHM+koX6HqHtdv7rg9PFDdts9r1+9ZHN9waOHDzk5OWE2n1Pu9nS9IPOvXr1itVqxXC4lNsvzXCHCG81+z9XVFSkl+raljYHV4ogXLy45O33Ao4fv0DUtXVBUts5VAtkzFos5lZbq7vFpDf/mF0BEZx5EjIkQEwnD0ck9zu8/piwq/tm//Df4PuK7yH7X0zeBvvf0XYtKIglMFCl5OFQCnHMsl0tWq9VEBZBMjSpRWj5PpGGl/7ZtBkBY9vk2qzTNqgrveigKQoy8vngtwrdlTVkuKMuBWicVOO97QnDUtfS53u0HU3qgVpUELb8vC0sInoDD2oLeJaKT+b3erCmspSggph6lEjYnKkVVynspTWg8pPQVIt5vjt+ILjVc3Kk87IAkCjozBKZxRPF2bU/be1AGo5I0lqhEVNm0b0T4DsgNeZEdgrS7ahgpyiunicQbdKDEqD8cvCcGCQ6rqmKxqIHAbrfh4mIIlHtmsxmnpyvKqjw0M09oV3qmKEtDWRpmszKrBSBZXS799b1UNWaLGWfn93jw6DGb7Yabm5tbQeP0fKbctmmfwzCmSkt3E4Jp4jA0vB+Uvw4PxFRta0onGxKS6edrRW6QPBzX+HfqUKEY/r4sy8NxiNyYoDI5iSpsbtBXkW999BHvvfcux8cnDDCbbKiMAXuKIfOXJPceuoSFUxi43t6wbTe40InxkLYoVaIKBTaiLaIEpUw2Q5MHnZQkqTV6RNPVRI6OnGikpEhKBAlUTBilsNlkkphQSWV1l4gaFzCFThqd8vVjmOuStIi3Sv58Lc3sGoXVmpB0LsFqCP4NjneMghaHAZ38Bg+ZkxI26TxXoppUebTOev56pDcxUEm0prAFy+WSPht3ykJ6SMimtMRbNLw4oMNIz82dqC3FSAyQjIhKCLgRielApdNaixIakhQ1XaDpIvs2sm/FKXowJA0ho54JrLEURmFUQsXIfLkU9NUUbPbteHxw23BTrpdCKcPDhw+4vrxkvb5BKRCf7ISPCpJB25KiXqBVRWk1987P+E///v+c/7btef3iGa7doU1FTJreR5QpCL6QakwbqQpF2vdEvZNkKA19Gg6XPJ2PQiuIaZR9TUlLk20WbijLKs9vN4pwWGvZbDajAEdRWFAKWxQsFku+853v8qlWxOBZXR+xubkmBiBJguFiQoUoTseFyBajjKhcIZ40ro+QsnTm0T1OTs4J8YYQAz60hKiIsePFi88mSLUjxg6pUMl6p5CK0tXVJYvlEqUEQLkNeskc0kpR1yUzbZiZgrmp6BM0oWfft1ijMTFXe7TsjyLiIsioNfbWszCsmTAWOt867tJjp+NtPR3p7vcYs3v9N3cdKasFlY8UZeD45JQQEtH3iIfMLu/xC3l2hko+cHV1LQ3wtsSbACYRdeTk5JQQxM+gqkpSCmhjqE1F43YHXqaW/cEo6beyxkiskGl/zosvVwxJxCA6T/Kyzjf7HdvthrIqpYF44L1zG/hLCbx3PH/+XMAFYygKddizlSbpAU0fAELGfeHevXss5nOssXTBc319w9nxiti09CGhK422QgEl2wnIvNGYoqBiwYfvf4B7+SV+u2bftxRGMV9UHJ8e8/rqklU1Y15U7PY7IgGfArvYUy0XkCKrxZLddstusaSqKsrSUpVCP+/ajr7raDJQF4NQU1MIJOfxjcPtWrpdI2tpDnKTL4jKsu8Dz19eiFFuShASKQxCQOLQ7X3AhYiLPS6riaXkJElQkabtef7yguR7xKdC1i5rQCuPNfJ89tHTNQ2FXRCVGCSSBuWlQMhgiPM9zmVafN7X6lqqVSA0SjtKkxvAj9X5A01SqvrWSEWu6+Q9pQgq/YDydYhHY5RjSOlQbZtSpozWVGWFtQXOWSDcqqAmIkZbsGmM17x3xOQZjQrHlSPHUSHTdYOwc77O+CsnGYPxnXDM9OTYB16+LGRN5+h8AG1QwcsGppIgOMkLR5I4CRIkaYlDEMGBsjMcR0zCobWFnfg3HJBn0Z5X45c8+GLUVVcVVW1p24627bBbOwYpjx413Lt3RFkWo6LU4I3gnMuyYvLQF0VWs9GiHKKVfGZRaFRQVKoiKc29++e8evWSy4sLttvN6MI9TQCmNCngjSRuWgYbJ8idzUZUUspRIWVarZhWMoaEbKjwDH8z/QylE3f3qzG5tAdN8OE9Bi384TiSOTTBee+ZzWZjMvjRtz7kyZMnLBaL/L5RKDAxjg3UQ3P5lHokXMuED4n17pp9uyXiKMiNcMqiChhspG1hhVuuxGslxICmyEmGoffZLC0phsdczl0fPjvv/1opjNVCqxDit3hxZV6iLNGCB8kXOV2OQs3JcxyVRkUgdMrrvATWYbhH4cDdvH39s8JS9HzTx20aH2gVGeT9yOVioQLdpqZprSmMYWEUsWtxwd96r+kaBYzvL0IRb68Cku97TEF41HqgKGYBgny8Kic55OfIxcSu69g3nn0TaFuP84mY9Oi8qhSQhIJTWkNhFDolTo9XVPUMbQq8e0XnAj7Kmjicz13u9YMHD9AxkLqW3jsx20pCzVIotLZYW6GUKKAdL0749off4l8sjrlWFzT9mllZY8saU1RE3ZF0QUzQhYAyBvqE3zSozEVXCHfbB4+PonojLum5Vy47HBtTZLphrhjmKuZQ6RwkeGezGfVshgtQmJLl8oiTo2Pa3Y62abi+vGRzfUOMiKdOFGdtrxVJ5QRDWzCWoqyJSShR9I4YxRPg7PQBR0en7PZO7mFyEhQo6FoJBJSCstSk2KNUmCQZspZfXl2NdLa2bUeBkWniqpSirgpm2mJLDbVh3XSUa41OSe51Bgcy6kCOKrFaJDr1OF8F0BgWvK/sx/hLiphfSYOdBCCRQ6LxTR27picpS1nXzOerg+pjhN12J6h+XWOtxnmRuPUhsN3shU5TRVKBsIYszI8WGUgQLwttNLYqMbag3zcEwohDaZMlsTNwN1B+nHNS5XCe6BN90xP6vMcYJTx91wu1ysp7RBXHvUf6OYU3H2Lk8vIyg4MWayNde9jTR3B3mmTk9eb09JTSFqQkvU2XV1fcO17idw0+gi0qtJLJluPb/H9CuzS25MmT97jxHU307G/WaArqquDo9IiLXz3FHMO8qPC9Iygx/my7PdubNdWsZj6bcX1zwb7ZM2tmLJZzMQkMgSY2BO/p2jYDO6K8qQDtE/vrPbvrHfv1juDiKAzjA0Qsu8bxi0+/AAwKUYaKIYqaaYCmDbi2w7lI00fa1tG1naxZUXrpNts9n3/5jFkB3dzR1p5BMYqUsEZjjUUl6LuOupwTVESUpYT/Km7eTgLxGOhdhw+H2K6qbGZDCFVq6NuZrh/DfZQ+FvlsYzT7/Y7tdouPHq0LxKzVjDGmvM8hHogpkEv+MkdHdo+ojIrams33OScaRhGCw2ib56DJCW7Ah27cu8hAnhpominTyZFE4+uMr51kTC/QFJEXLuu0J4NMB/I8e/YlzjsGnpkE2DJpQFy/Y1L4cJB1fRtSM9yQg8SrfN4gRavUwYxvQOz7thuD52kCo5Riv9/T9y5TXzRn9+7x4MFDVqvVqA6UUhrLeZAD/4xwDhd9sKIPQaomNml8VeFDRGW38cePHkL0LOYV/+QfvXojgJiOaRIxfO6AYEyvwfQaDZN6oIQNErmz2WwM/FVOtIb/HnT2pcRa0bbtreORz5j6VKhblZ3h50Mi1HXd+P4AR0dH9H0//lxrzXw+5/j4mA8//JD79++PTfPDOZIDS50bxqYKUzJfIjF4unbPfrsW8z2tsapAjBAjRTE4pcscGXNwdbB/m264U7RQa2lokgA/jXrnh8sihj0pOlBZUvf23bt9j7itljYNGG/TDvPr8u+NMZTqttTxsIFopdH6G0xzgLdcB0Z0Ranc4+ACqjTj9QlO7kcyEoh7fzBtlGrGpNqYk4C+78dENoaIxwvVL4APHqNzQ2CMzKpKzABTynzaQQ89ijO10ahkCNkRt3WRnU9c7zxN42i7QNsn8e5QUo0alnSFeC2Us5LlvMKqxPnxkqIs8SFyPC/YtopdJ9W8qSy0mIOmHNDWzIqKSlu6bifzlYROEZM8+A7X7VA60G0DP7l4zf/pv/gzunZPSh6jE20MfPR3fsB3v/Mx/9V/9V9Sl7UkOn2LLpcEBfs+spjNsz+FqKslHEKDjXgv6ipVNQNdZT32ktPTM66uryWILizL5ZIQAvv9HqUU6/Wasix58OAB+zYxnx+Lil9dEn2kLmfcXN7w4ssXeBLWGKlUDnKOVUVRzyiKMnOrpY6YtKIqC5p2iy5Kvv3tHxJiwtqb3CvnqOeilHV9dYPvG1kzU0lpIaMFOSHJ9F9gv9+N+8ywlnVdNwImZVFwdrTibD7DJkPoIj/9xS+IvqPQkUIlyI2rw/vEjAD6lOhbWdfniwWFzlUpP1RyJ/sgk2Uq8RuxJW8FNOkgf544VMe/ieP//H/5v/K7v/O3+O53vkNhRWK4KgvxxFAaFyKdc5SVlopokmv7+Mk7WG3QSaGiRlmNS45ffPIzFvMlZ6enfP7qJR9+8BFVPQNtKI3i5mpD07TEJM7wSqmxcjDsgW3b0Dc9bt/Tbho211t857DJsJhV3Ds75vz8lLIWqdSkpKIGEmGPUJeSvkfnXC5wSVA37VMty4LkUlY9FPp3VVUsl0uWyyXdrmffdmA9v/jkl5i+40G94OEPvyf0HSX9sDCdTjIfkjGY+THf+uBjVqsVl//8n8oejmJxvOLnzTYbpzpmtpQehmxb8PL5C4qqpKormv2etmlp2oZ927CYLUghooEie0B0bUuz32O1pdCWMhn+7F/9Ca+fX7C+2qC0ZX+1YVZajIpoBTv3iov/5r/jpunFO8d5UvRco/Btz269Z7+9kXW6D2ybbHsAtIWl7XpCDPzspz9jWRdUhaUsLM4loipJqsBUM1KUZnHv96DnoByJHoUlJY33PU2z5+hoSVUVtO1e7BzU0LWa97MQaZuW+WI5xme2MMyqOVoV7HY78V5SGhUDhMTN9TWvL19TVDVlOaOs5mhbMDZ+q0FoYOrhZIQJAbfi4CI7nQ+VkJgcSgUISvJKpUgm5iSb3HvqpJdEDd5LR7ROqi+LxYJ1cy1N6l9zMfraEcvdppJpWUZmp3xTWo3Bd4wxl8SE3yYo0mAWl1HedGjWvou+3x3S3OU4NM4dqDvT3ouhxD1caO/9WLp3zrHdb5jN5mPT9qDSotSBkuS9Z71eM5vNRkRONgtB2eu6yminHzNHUqIsrNxEGFFUd3aG73seP37Mq1evaJrmjcBzOOehr2Ja3RjOEQ6bwzRpGn7Xtu34+ymFBA6N+yAB9WKxGL00ptd3pK1MXnsoz01VNw6fPzSbDz8fEot64kuRkvAST05OWC6XYyUsSc1QFqsBJXbujkIY7HdbNps1L54+Z311hetaSJGiruhdS4qJqqppmn0+Fz2iE8OxThML2ST0uMqqXFonDZSbAxd3mOJtK/SsQW737tycfpHpPm+jMNxORoZDOvR3jL0o05HR/G94S8atIQvycI3kengf6HspS4ciiXv1mGQjyagxmCjldq3FiXnw8ZnKNg/zsKgKQZeLTszyhjL1JAjTRloplbaEZLFBY2OkLEqR9IsJ13WiaNRHNk4Sg96DizrHfwdXdoVQoEJKRGMprWE5n1EXhsoqDBGlAjMLbXauFZnachSDmM/n4xr24x//mNC2eOcQYpXQUSsLMbUkH4n0WDvDd312y85roNUj/3e+POLew3f43d/7j3n62U/Yba6oyhpSNu2aFSLPHIaGaHmWUlZmEXMyAYqUhrquqas53kWhHBSGqq7GDTelxOvXrzk/P+fk5ISiKFjais12z/pmy6y+TwxQ2JoffO+3abc7Ll6/YrNe44LDR6SBuw8Y7QhJkbRB6UKqDWhCalEajDUURcmD03u0neP46IT9q+fZaCtSFIoUxGTRKDCFlaA/eIKPlFmHviiNKGRlI9VhXSuKYhQBgYTvWmJhcB7abcd+c03sO3QS+o6OET1Q//Sg+GIorIVsFGl17kXLEeTflLzsrXVnkpzEGBFM9pubZHz2+TM224Yf/ehnvPvkIT/83m/xzpPHvPvOExbzVTZ9SzTNHmMKlFaiItRHlJV+jZTI/YWJGBLzxZxHjx+h5jN2XUfTNoSQKArLYjnHWMtu3wBybe1EPr/PdOxBEermZi3eX6aQtSMF3nvvHb73vd9CCMAx17mTzA0OiaSomZGFUY5Ybxqa/R6Tj1kaiz0mHdY/YwzL5ZLz83PW6zXKG2KItF2D72+oXeBEFTz44fezjUAk4lAM65ZCEYlKKrGqWjLTifMQ+N67H/DTL18QosfXltMH99H7jl3TsDqbs+32dE4MP12QGM97x2wxk56u/Z5Fu6CyIs26mC8E4c9gSt87Ot/R7Ttef/6cV09fE/vA8ewIlxSF1SKZa4S6uG09zatLkq4geJR3lEbTNx2bIJRX53t8iLgoLAlptGZCwxbKZUwFfR/p20aSOeVJyhC6FvFLUpycLjE6IQJTgvZL5VgRgmc+l2bpvm+zM7jKlYdCejuDH9kL0i9rcX2mkqshSdRjsXO9vqHvW1DSu2VLUSOTisbBfLbrpGeiKEz+TI2Kk8rnCFoeEgytFc5LQqH14TUKqd7Us4q+39O0Uhm0VmOsgF3aCM11v99L75CBqvh6XRl/bVh0DOZucbekwabrOkEiM21m+N2whsYxoLtdtZiWpYcxBIlCYcgBQlJIv/GbPhpTzvX0/ZxzOOeoqoMT9dA7MKDRw8/flH0dkoJBmvVwzir/who9SgSW1uKLksViwcnxMQ8fPmSz2Ygs2eS9757rsLHdvs7q1u+mycVw/kMFZkjUDvJot+ltQOZKlqN3x61AfBJY3/2Mu5StN8p+k3OYUlmMMdR1zXK5HHtHpuc5HPO0Qf/QX5PEzGu3Y7/dsN9uUClSGi18Q99LomIO+PHh61D1GX8yHHf+38CHPkjNTYQN8v0lo0u6PCAVk7szzo+UhmvFG+NWP01OQO+SpqdJ3K1rPfmUb/ZId754+/fxfmky1CeVhlxq74MnqkOCArcT71GtLVeAQuabaJXGkrNW8r7C/DH57ywmGoxRGKsw1mJ0IiqpkHkf6Vyg7RWti3gvNKLBdU+SjHxu6nDftNFYoymtpsibSvBBqhEkBnlbNR7T4dmKMXJ9cyOGUOOVG8ADMR9UCVHJMqBTj0qBGMGYKqNvFpTFljWL1Qkffvxdrl99QbO9GbzdUEpjTYEiolRkuANpPLPDMzUEJ1qbbCxGlgO3o3LesC7sdrtRlGO73VHUNieTokRVlTVHqyOid5ye3aNtOjabHUpboXFpO/mSf4eU1x2VqbUEvHe8fvWao6NTFssl773/Pp3v2bd7ur4leocmCmspRTSWpKTptSwLqrIWVFEnUvSZEhFGE1hrLSYjiJJEBogR1zu2mzV9poAYrbLUMSPaJxUSBWZIhgS4EprP0DOUxn7DX/v4fN2F4CvWIFGvehMo+aaMXdPS96+5ul5zc7MmBri8umG93jE/WnB8ssRkD5dZVQCi9NRn8NFqi3eO4JM06vuI0payqlksAtv9Pjd4SxxhtBbBgZwkDmgy5OuZZUv7tqPbN/RNi1UFRmuM0pwcLXj33Xd47713DvGO4o19f0h6pLfomPl8SVFckdJ23I9TEgqhUoIkDzz/+WzG0WrFdrNmZhaSfDsxrNx3PZebjcx1JevpYZ0CiCQVhUqnFMoYDCX1bMaT8/t89uwVmyx8MV/ORFa662QPy8Il2ogp4UDRWSxXIqITEr519IUbqdW7/U72+RAJfc/+pmNzteHLT78gNI7KVMzqGTpEjJUeSmMtLtPe+tBhCo2OAR0jSSu8z0IJKpvIpYSPEaP1qOCY0mFfIXdShnwcqCTsgywGoXWB1om6KiQvQWN07kdD4aOmLAxlITFWHzwxOGJQKBXQSp7jODBNrM0JnhxbyP1ao8plBtw3mzXOuwwK2YlABBzgSEavutFLbAD5J3Gh0O3EDdxksFfHwdAajIGYNCkKXdkMPT8p02G1KOrFGKT6BDjvCfmaf10o5GsnGVNUHKaVDQ7lPiW0lhACXddydXWFc35cqK0txgBOKQWTsvBwYYYgc1qdmCYYQzIAIn07bcibBmchI2nDTZhuFmUtykX7/Z6yrPLfHVCBAbEaqgrD3wcvzbtKS7ICh6A8JSnnWSMTNxm58YW1LOZz4ukp3/rWt3j58uUtJ9+vqgxNz0uunR2PDd6saNxNSkIII+rWNA2r1WqsEgxmhWVZslwu2Ww27HY74ZV6j/D2Dn0c0wRgUMOZKnsNlKmhPDdtBB+qHANd6vj4ePQgsdZmhZzsyjwxZJxel67raJoG7xyz0vJyt6YqCmaLU4wtMKbA6AKtLGKUM2ygekz+8iQbr68tLCpqdDwYpg1o463Gaw4PrnOOsiiyS32cJEgqJ0YSnN29L9Pq3KDOFWOUxYQsXzipIA3X/PazMSChf32U89/lODSppQOil4ReZoymKLMOiLKkfCt9brZz3tN2Hc9fvMABpix5cnYqjrm52jfQI6uqkvmU5L60rRNn7Cg9EuKcWqCVwUVBtbUxGFNio8YWkSKlTN9T4BNJWXofabtA00HbedlUkr6d0iokOFEabXX2U8hrmw/U5TGQ2G1bknek3DMWUo8P0vcj3G0RrWj2DScnJ1TWohM0riMEQc3qwqJ1FhZIiVL1qMJjVKB18l4uGSKayhiwBbPlMd/+rR/wix/991y9fibqZkblACZm4QeLQYsxXgokpbFFSVkHUh9EGdBofBCqxGxmmM1qUctJcXzGtdajRHfXdfzFX/yM0/P3cslf0ez2gtoul/zJ9TXL5Qmz+RqlDGU9o64L6qpkXpcsFzVlUVCYgvVmS0ICHx97fHC0myv+u3/8D3Ep8ejRY/6z//Q/4+jkmJ/+xU/49NNfsF2vD27piGs4WoCK83v3UErU5bpunz0yHLvdlt45qrKkqCqc69AZmTRaY7Ri1zS8fPGc3gnNoLLST1JqIClpzldq7Dsy1rBYLtBac3l5SYii8x+iGquZf2mikefZr39Nmvw3kJM+CXK+uT0ZFJaoLX1UvLrZ8ekf/ROM1pweH/EHv/8HfO/73+Hj735IvbBYbVApSTCbTXfKomDdrGm6lr3r2PWe1ge2+5YXz17SOZFiJUaCS/iuJ/QOHRNFKRW0LHqIGGJGXNuxubimWe8IrWO2rAQ3UInf/e0f8ju//UM+/vhbhOSzspdGJy37xVDFChGNpipqjldnHK/OqMtLgr8g4HLgKwi7gBgCihRFwXKx5PToiM8++wX3V4+YlTO0g+XpGfXpgnC6grLAYlFBEi9ZfwNJeRIiQS8ahpFoEqYueefhY8o//XNS2+IKS1VatjGwb/a41oFLWKWZz0QJr14uWZwdMzte4due5AJxG2hUSzGrqOdz3HYjbughkrqeV58+5fWzCy5evub87Jx6PqeazaDvcyCeK82Z6pdCIPRNfqY0XZCqrUaRnJxHilm4QyW0kd7ZA70IlEqEZKSPzJYwPndS9dDmoA5ZGqDQpJTjyFRQWA33VpRW0TvpGdUpEaIjxkTAgSnz8VuJM4n03uGc9HQUVlHVc9CelBwxOV68fkFRllT1nLqo0Sqh0sRwlUSMmqbZ5epIKe724TbrZYg9qqoSP6LoBfCPcu+lF63Ee6m2EDzBdXgnCmcKBcZCaVEKrMqedlIEAnswUP7LxtdOMpxzY1A5BLpDgC1pj5LvajD56Li4uBh7Mm71cUTRy/e9H7now4WZJgzD9yEAP9AmMkquDoHYNAkyxhAnkrtDY9bwXsI7EzUK5zxffPklXdfz/vvvc3Q0I4RA0zSjRNlw3NZYjFZoM5xPyElT4NC5pykLi9EScNZZb7uuax4+fMj5+Tn7/Z7Xr1/fStqmgfwUxZ4mHYM7+N0xrSYcGmoF/a+qauyB2O12Y4IzvO92ux0rK4dEx+Tm78M1h0y5SozJ2uBY3vc9VVXdSuqGa+ac4969e7z//vv83b/7d5nNZrc4g8M5970T7X99UMAakg25B5H9bstPf/IjCgLz5Tlnpyf0PubGv6FCU1NXM4qiItzZhQeKjGy0iNPxQHRRh+sWJgkE+ZwKW7DdXlBXx1l96O49OOQyd8e0SjQmH1m84PYhqls/eCPJSN98upSnRyuhSfnkxLciN2D61JG0wZaiMLXvA12fiLEgeYOtNNVCM5vXqADKFsSU6HpH1zmcEzpm3zuapsmUzeH5FE0AUYkXRMf3PRsSfd+yWM6Zz2pO6wWmhKOzGfXyhO//8Hf49NNPef78OZ3r2DRXbPeezilSECBBqg7ptmp4RtmJCtdJ9cXVltlqwXZzTWELzs/Oif6SPnr65Lna7DCVSDD33tO6Hq00s0UGPIqSqiyp52L82XWyxpalcKONtZTVjIgThNY1qFLkKotyzv/yf/W/5nvf/21sPef1ly9Y73t2nYfkicoQdSJFmNW1bD4qYKqKkFJWaunpUyQaRdLiaeJ0pNDy2qRifo4koTg6OqKua/b7Pa9evaKqKj744AOWy1P2+5bNesPLlzesViu01rz34QfUiznVcsmLq2t260u813ij2bWJsjJCddEQkjSNppRonMcrCBqc2/AP/8n/A1CEkNjtZL2zaFar1QgciZLgaaZzSiLU9z3B9ZC8yJD6gFUaZSw6RaJrUMqzOjri/GzJ+ekp1ieij/RtL1WlKCaAPipCFKpGsvLsKrIqVVXR5P3IIw38Wdmdsf97QCa5/cgLzebrjQn4efs90pDefzOHy9LXCkXT9JT1HKM1nY/883/1L/nXf/LfU9QFDx6f891vf4snDx/y+N59Hj56iA+Gq+sdRVFhYsSiePj4iF/8D3/Ky5cbvDMYKmLsCc4TvDwfCg/JcX2xFbO4CIUpUMYQU+D1y2d01zu0T6zquVTFMxL+D/4X/4BvfesDytICOcGLArKUpc7ncohhrC04OTnl0ZMnvHh1yRdfPsO7OAJ2AjBK03hMkcpKX4TrW06OF2ijaINjvd3ww9/+Wzx4cMrp6WpSWR0aeWN+n1xJTUMLesIlR0qBeVFw/959GjRdu6ed1zgV2fQNyhRo3WFyg3AMQ9Oz+DZ450ido0+OJrTopqDc74Ty2fX0u4Yv/+ITPvvZU7p9z4P7D0YqtbaaUmVvtjv3X2K/QZpeZ4Wq3N/oJvslApxIvDLI7h+o390QTKtD/MWwlgckiVGKrm/RSEWrKgpUVumqzk4Qj6/EyWrObrun6dpsQhoYVEcjMQMQEkfYeY13AtCYGNA4mmbNzdVrYgZOBFAu5dyjxJBCvzYUhcRcdV1PemTz0acDiD/0vUpzt4EkalID7V9YLFkuH8Pl6+e03R5RzgKrkEQDaJtW5JxJ4n+nLaKe8JePvxJdairBOuV15Xs00qO6rsvGTEPCkBtpM0Ksx3L37UDsbWNKB5pGZ7crHIfXHkqRb6o3DSXGAYGfzQSZv7i4YD4vaLs2u1Ivx88dGr+TPiCmkxoVgwQZmeaA1lgDsbBUmZa0WCy4f/8+u92O6+vrN/oh3tanMRzvNDu9qzxzlzo1RXSH1w1J0xDcW3s4/yk1SSZtPBCAJklfVVVZEeJNKtc0GZlWaMqy5Pj4mLOzM87Pz2/10EzvmfeeylQjgjd4bwxIaLNv2e/3NPsNx/fOmM9nFNbiwmHDUVnhRqgwhq9SWBvKgXev95A8pDvXeEjw2q4lxpX0brwxDvPtq8bt3pD837f+bPLzdIculSLo20pr38wxlHwPlKKhCCo9JweqXoziHB28NP+nBImYKx9qXGsOssq3DTjlZ1H86iikD8wnfIhjH4fSCpQhkulERcXpySnVfEk1W7He7Oh9JGFoXRTBYmWEKjOl4zG9X9PviuDF7bbZa5q5ZlnPpIx/q3qZk2mj0GQTyhhJShRmxNE2r2OZvgGKo6PjEQjxIdA0HZ1P+GAwesbZ2UNmiyXVfEm7a/jlz3/B08+/5PPPv2B9cz06rQvbKuKcxxg/PiOudyMtdOiZisIvYzafj2arUgHosj58NVZNhypw13Wj83fwHq0Us1k9VgFTSszmc+rZjHvn53z87W/zo3/zx6QI3kcxWQuR3nlMZET7UxKvJWst0k8qwJFzga4T5RmjDWVRgCrHdWmsaCi5h0Lr9aPcuc99YWGy1inyc5hiThZqgt+jIEuNFtgQ8bnvQU22CFSWUzXSexajUD9GB+4o13VYE98GNA0//zojMzD+gxzzWQVR3KsHNDXGiAueHkfYB+Iatl3Dbtfx2dFTzo9PuX9+n7I0GJO4d28lXP+q5MH77/Lk8UfMlw9Y73Z8+fQzQtiC8iT6O8G4AIrJR5yXakLIFChjDFZr6vlcvJ+AxXzB48ePpXJlDMomUHpcz4Z1/27so7UWNbYsPCFMC5l/YhKYpdWtwRAheKL3LOcL+qiJUbE6ORKqlzbM6/lI2ZlmrrcC+JTE10UdgDdlLKenJ1z3Hc/2W5IGXVh0WbBtG3k+lEJl2mDX9fRdTwrg+w68p7alxISteJiZpOm2e3ZXa159+RrfZ9nYiUv4CCxPANRpPHMXUCVfykOsJ2CHGOxOadiyv4gIwuFC3KV+M/lsbaTfIaUkPhYUaHSWqJXzN1rDrMZaRV9ZjHE4P4hJIPSpGIXmmSImq0bF6Eh0tO2O9fp6Ekcd2A2HhFAmzDR2uhv33Z1Hwp4Q48UYRYVwUMU8xBma/w93f/ZrW5al92G/2ax2N6e9N+690WZkRnZVxbYINbRMypYgCgYsGzLgB8M2YAj6A2y/yX+IH/zkP8KGJFuNLcmCKFJFiawik5WZlRmZEXG70+1uNbPxw5hz7bVP3MyKLBqwgitxMs495+y9VzObMb7xje8rTYV3HucdyoiyozZJSTRkTohKSbckpbIH/vnH7yxhC0fFo+l7Zcg84rxgZylV7/2kxCB0kmMmqbSoP3jnvnZz5jcOHst6Zi573iCYAujcsGumhxMZxgE70SlIfFhJNMZx4OzsAmMML1++pGkL6lq0hdt2MfHmffB4bVBBHpY8HHnwWumEVB3L3CpRp8ASKzndxWLBixcv6LqOX/3qV1NwnyfM42bfvCHOk4zc3DoFxzrpUqRC0nzi5WfU9z37/f6EbmUTDeTYHyIJ4ERPI8htVseKhjWWgD8GJuncH1clnHOT2ldVVVxcXHB1dcXZ2dks81aPxpEDqul5j6NL5yOI7ebhge3DA96NnK3XLFtBr5TK169ERcGLo+fE5Z8NqdyHEUIaqSlQUSkAmBq/w2wCkpIMaybZPQnKMnSQ3zv98/HGPrtP819JnjFL1lT+2bHxe04BCkKwT30n/3weU6Emxe55Lud5ItKpLo1XjVaisGJtQVFIdTIHkFlBTZrrBfEaRie64i6koNJjgsXYUkCHJOH4/P0Pqds1ypT8wz/5CcPgUKZgGL2g2sYldZjjMW1Os3/nI/en7XaBhzJwtlxiiyIZKB0pdKMb8X3EhAJblSmZVzg8OiUr3mb/DEngr66uePv2LcMwpIbxkTGUBEps2fLk6QdcXF6wXK34/Gc/5yeHP6bveh4eNqj4wLHxnhOwISezh8MBo4+fGWLm6yLqe2WFTmtG13VkUQkgGYmJMWo2SZWK8p7CSq9a0zQi1zgT57i8vOT3fvxjfvaTP6HrDuJhVEtDPDGg9ayHIQqv2Rg1IYA5yTBmSFr7Mn8zNpCBowzy5Iqr0EXHqfHee1Gay+IV+W+dF+pBWZbsNlsisqeURcmgJTEJRPTk78N0/7Ki3klVM2RBjdMg4TFt8nTA/bmz6Wusqsdj9Nt6PLk+Z7fp6A8OY0qCGxP45YjFiCfgXODNzR2vXt6hvMJGw9l6RVNbmqbgu9/7gKun11w9fcLF84/4/md/iTEaXt/c8ObNHcPghYbIgWyWZ3SksCI3HDy4wSf6jABwwSsKDO1yAU6S2/Vyxdn5OVXyTVCiLkFEpcBVYog5gJi/mmTeZm3qpYgRYU94mbfWUJVHDx4dI4umZRhlzbtePsH1I6F3tEUtylhaz4CcDBAj5TFpZhCTUK1R2oKJXF5dcrPfob5wBAKmLikWDbfbB5qyRJQioDsMqOJAudmiS0UYB0yMmKogRs84Bvyho4gF25sNty/f8vbLG+p6Qd020/Odz4Ecz2RltPk8nKtqzl/jkyeaUjrJ4s/nWJzmfxYhyvf+xPtNQdQaZQzWWCLSe9IPg7SF6Sxok6j9aJqqpKylF6gsBx42O0bviEphtIBb4wgqDrSJ0TGMB7w/cOi2PGzuaeql0HNJgicJgQupb+Jd9+eYjJzuScexJDFyjKR7mMC64IgIlayu6gTapHVeBayVXrUYIlZbYgx0vp+qXnxDhbrfqScjH/MF+jhKmagDwyBGIlprSmPwOhJ1wCXETHwQ0uTKb/EI3X5XRjY/YkLbtdEYA9ZqnBsTsgXGatlUYpTFB+H2WaNSz4BsTp9++j3evH7L3d0d77//AVpZ6mrBen2GGyVbMwbqukFAAAlcg09oOFCVJYFBTMWQhCQH5r4XtQhrDWdnZzx79ozD4cDFxQVKiQ57RvjyPZ4HKHCcUPk5yIQRmVmr7eQvISZZSfKybrm4OMM5l3pjxukeG2NYtBVuNNzfvcG7DqI0xGaamVYqqV8cG6THmWlfWZbTxC3L8gRl8N7TNA1t29I0DVdXVxM1QRR/FGAmOhfAYX+gLEWpIfhI3SwSiunpu46f/ZP/jvu3rzlbn1G2K0yzQJcVfneA6FFJc8dWDdoWDGMv3NWYAoWoqGyB1qmPQql03yTLt6agslVyoncE3wNi1iMJlmb0G6JygkR68E7mWcjIasyuBZxUKobgcUQwRrwJgKgcphCDIBk1yRdipkg1H/PSeKi/nsR8y45joBOxVhyzY2qCG8eBwooi2eGQEgZtGMnmdKJLv1qteDiMyVsiSzKfIlJZSS6EQIiO3gnNIQjwRNu2lJVIuG42IpdY1wrbLDmMQcyg1Mjq4hqUZhxGXFDc/smf0PuYAtvjOvWuJEOlzLFuSqrKYK24eu/3exSKulrycH/P/c6x70W9KChJuH0v6iK5ImCV5pDUpbJwQh4nV1dXEzLvvWfTjRwGR9f1fPHVT/jqJRAjJshaqGJkuVwQIziv6fqOoigmEGNqmkeC55iC8K474NyILWrKqpaKhC3QhaCuMaH+9/f3iTZRTT1aGejw3jP0Hb6UDT9TLZumoe97PvroI7766iu++uornj17jy+++DX3d3doBaVdoxX0fUd3EOdho7X4fkQxOsxoqJim1gR/nE/9cJjGiFA0hyng2O/39H2fEo0hrblGFLOsTS7yB4oS3ChJyHa3483r19y8esvNzQ29GxljZAiRYYwYl0BjrSdU9HFFGtLeqnJF4/jzOaL7Ox+Cosj7zKrMeV/6Nh//zr/zv+Y//n/8Z/y3f/QnjH3gB9//PstFAzj+6z/+z9nvO4YAWleEaFHBoLBst5H9vsPaA3/4N57x1/76H/K9H34fmhX3u8jgInXzHtpeom3AYAnDgWhiWqcdWoM1oApNoQq6rsePHlsX+BIsBltYrNEs6pZnT55IYIeaQKt8RBTZtDPGOFH2xnGkaRo+/eRjXn71Ff+oLohBqJ/eizJa01a0dclZ0/CdF+/xnU8+5r3nz/gP/uP/CH1xjq4qHg5b4v0NrbUU3yuJHjFey1WMYyE2JcQQlUp7TURFAxYury45v7vB9B2qsBRtgV3VvP78nucXVxQY3MHR7QYx9wyKqlVo5akKQ7FeUmCIY8QNnptXt3z5iy95/atXNLoVenNS65qUOtORqcvzcZsp1HAMpDOFO8dQUnUQ/4sw2xNAQIq5RcCcmZOT+tz7QAx0w4HCWKkex0j0AzEK8BS9PEetkj+SChgD67OGpi04dAfuHu7xrseYmrYqGXqI3hEV1KXmT3/2Z2y2G2KMVFUJHMV9dGrUj6kiMr/O6T4pETeZV3zyPbC2kF4eVaCMpm1rYvQ4P1AUNS50KBVYLhtR/oqeIQ5EAlVZsFo0U7xLhMqWdMNB/MK+oXjEN04yHgf5v01qFqQh6eLigrcPPd0QUgaeaA7Jb0Lz9TLPPMB6V2Xj5JwIxKi+hsAZbaYgL3PTcsN4VlIKScnh9vaWs/MzlosVIEHtsWJyDMrrukYl90a5/jTAk5+C0SpVdBQ6a06nREal8nrTNKzXa548ecKnn37KH/3RH02TZD6x5hSoEySbI3VH3j9Mmbqg/jo1GZWs12sWi8WEID48PEzvkzf+LDMsA/aInk1VEuBxleLxRin3zJ0M7HwNuX/n8vKS8/PzhMwdUdP560LwEgApkR5FKbrDgfv7B/7BH/0R3WFPU1e0bSPBy1RazUVEKUNnJQopMb9DUUoJHzXk32XX00SxypSImDizMaTNWYvjt/QURWIUVbXHR3jHuJ0ygyMHbZaUTE8dMn3oHUemgv2FAo7/Hh2yiM+CqBCJKplaRj0FZFNJIyZX2Nm4atsWpwYGl13Dj0pxcBQbAHHPjUEMsYwhVT0zaCJVLZUUY+q65cWHH+KDAmOxZcNle4b3UbTOlw9cPXmKsRV3D1sOh+6kGjlPNPIGYZWhqjRVpShL2YhyFbYoCsqqohgUxnlwbqKCabJ3iybrwfhEiQC+tmbM521pNUqbxJuNicqpCE5QNTFS96kfLk5N2XnOZn+O/LyIEngPyedIzM4qjLXpHib1wKSSlM8tV+MAzs7OprVke9hPXidFMjPLgEvXdTRNww9+8H3u3nwlSmJ9NyUF3sE4dgxDj1EKrE3c8DlNLjW2RsVuu5/uUb7OXLXY7/fTdeZK0BwhFbdhe5zPSvyGmrahbRf0fcfd7R2bzeYon5yeuzERmwCHoI6JTQ4ScoVuUhl8R6PFb6o6TCvAb1sL0hR6vJfkZ/ptXkeev7jivWfXXF6d88Uv3/LixQs+/OAFF+cLPvzBNT/56Z/xk3/6OTc3A0pVYDS+cxRVxY9//Bl/62/9C3z3ex9w/d4TynrBzdbz9q7jMATGoHj69BOKsuH24SWj7+gOG4JPBqpGDPZU9NgolSkfpbol1XBxA1/WLd/58GP+0u/9AWVViAGfIQFJch1aK4YkNT2neOZxsl4vWK0WNHWFVpbRedwoIN3V1YX0Yowd/9q/+j8Uf4y+5+zsjJ01jH5k6Du63vP27R0//enP+dG/+NewRaLdKAhBKhOKiAl5z5Z1kSmmUiJeoaGMnlJJ7FBWFbdDz+AdymnGfuSw6zDeo60Rag4BXxi2zZ5QVoQxMmw7fv1nv2J7uxPBDF2gtDlhbMAxwf5N7JZ5BQOO8+sYo2iMPvavZDhbkrqjeND8fU8ZIpaJjpt7Nac+3/R52ZKBLBgjPcZRK6J2FKVG6Qql1yhrcKOoYIn8tlQSnO/Z7bcMQ4fWInErvmBHPlvOBfNamllC+bznSqdT9T6e0qpErMKilAgXFdoQCfjBy3m47Kkm7KKoFavlgqfXVzRVg/KiJOYRVFXWlv8fm/E9PuZ0qXf9Lge61rwGZuVh+QfomA1Q30kVgm9W3p2j51MlQCuCOwYyj6VSgxfjK1A8PNxzffWE1Wo9Te5xdBPlJw9oaXpWZAm6eVAdQsBoeUBS3dLT9WqtUT4jt5a6rlmv17z//vv8o3/0j96JWufznm8Mj4N3+Zmf/T5gjLx/2y44OzujThQD5xz7/f7EbTyjW/OSfKYwPX6W8w1pfk7vehZz1alMl1oulywWLUp9Xao2IxLAVG3JPR+H/Za7mzd88evPuWgMbdvSti1FUgI6OZeY0WOmSR8j00JJKoEeOZ7HhUeemUp0qSNtKUahssh9yC6r8R2cqNlYfMfvIlNc+fW/f3TkwODkZ6nqktWvvs2HjLVMFVPkngmlZmM+XaeKp6XufL+EDoVs+up0s4DjHJFxrsSrIBloHr9UqrxCVYtQQFnVLFdrHrYHbFFSL5YU1YKuG4holqszLi6vAc2YnK9PaKE52UA+z2hDYQrqylJVmrIArVNgmTavsiwoyogZgT6PO6bxLAGrBh8Jzie5QZlDOslqzoEIlS7QKtJmL0GRVgov2XUakMe1Nfc9zTfvfM/lPgahaqXKhUkUAkHgVaoWh5mDdTwx4lTMeg2yN0H6jOwMPj+Psix58eIF19dPuL25oev2bDf3yUE3pmTDg9GYvOakXocIJ9TYE+8Uw7Qe5p7BvO7l4B/yWDn1B1Ja+O8hOJpauPL7/Z7tdkvfd2l+p7E4jWUtFFqxLT6p0uf/zvdF9ZsQhjgBzmmA//nzTPL00wQjf+m81n1Lj7Ytubxcc3V1wZe/fMP52Rkvnj/nww+fcvXRgtErvvzyjvv7DUaXQjfpHVfXV/zwxz/gb/+P/zZtY4hGM3jYHw7s9iP7weMCnJ+/x+gDm8OBth0JXuOcImoPZpQkPUR0lLmpvciAojVoQc7rsuLp9RM++/S7mCIBdSpXrY+HUHO+nmTkYLawmqauaJolfZ8M6CJcXlxQFRrjOn7vRz/AjSO/+tUXLNoF3djRjT1+GBjGyN3Dhl/88nMe7u5Zs6QsDRiRfg4k3wRAvJ2E+h0TdSqktbnQmoUWXawiJd9j8AzOo5Q4nfed0KOKssM7IHp6o7gxBbZdMAyOh5sHbl69JYxgtQVjkqqfOaFDTVU83h1zvCtums8vo8UhWxKDCOpISZsnGfP3noOoKkJUch9MOhcfAjZXzNPnaCK5x8GHMM3jGCLGQFEatGkIKA7BMQ4epaSiIgJDWwFRvKcopCKfMe6YgwYlPb85Tp6LGOU9IszW8vkh15Ql1BXClIjC8lGK0UVClPfM41BHDVazWDScn62pqxrXOaFThQhRFLq+adPXPxPB+zclAE1ToxRcXl4S459KM10QYxvnpJmTeNo8Pd/c4N2l4t+WcMw32nEcMUqfJAJ58Hjv6fodVVVTlhXb7ZbdbkddCydQVGmO1LCjnrmf5ENzdSS/d9d103XEvIGn0iYT6u8Zhj7dn4bnz59zeXk50c6yAV2+F+9OKo4eAFIRsFirZxWKkvff/4CnT5+yWq3Y73c4J/SKu7u72SSLbLdbFEduci4nHgMLSTzy5pu51nnj9d5PZns5OMgB13q9pqqqSVGrrmuMEUWXjODlSSL3Tnw7bm9vMNqwWi44HPbcvH7J669+zdV6wfmyZrVsubx8Qkb1M+9e571dKYZxZBhFOSzvzHkT14hD8ISSzLZuQZNUWjykyTaESPTS4DuNiak08u5xGN/xi0wPglTZUseE9PGf53/mZ3EMDPKHf7sPNZV102JtUlVJgyEh99pgpib8hPo6RwiSePTDQEwoojYGgkLrI0VRgIIBN44J7M19DynGFqQDgMIWPHnvGdoY6qrl7dsHysWS9dkV10+f0btI378Fpfn4k48J3lOWNWXV8ubNm2ncd93hpP9Ma0VhLJUtWZ8taEpFaSL4PZvdHh+k0bksLXUVKIdEmk1014ig68EYilhgOWqsj05QUwNgDMM4irxvmktGyQarlWF0afxay3JxQTb16roO/J7ISESkqfNGCqT7HVJCJ8/COc/5+gxlhIpWNkvpUbEFRVFSFYmnHCK//OUvKYqCpq65vLokhsBuu+P29panT59jjfTFFUVJXVWy3vhAVVbyvGKkaRq+973PePbsPf7ov/l7xOhxYy/mdWRZy2LqhAshcOg6ChtQCLq3P+xTUuJACbUzAywmKfVk8EUGXJK+TCar2begLEpMVRKiZbVcYLXhi1/9iq4fkrxvQRHFmC0mufOYeiSDEopLDiSP1fQZ8hpE1/83LizpeBdY8e5DT/16WTpXK415BF59G4/N5i1Xl2s+++4n/PJPXxK9GEcumopf3XTc3z1we3OHtTXGK5SJmDryP/m3/nU++/6nbA8P2KohUjJ4zegVtqpFJa13tPUZxaaDeM/777/g5ctfEviKXefQRQDdyXqsDcoJFRutiQF89HR9j70Qp/pCKZSRKH5e+M7PsSiKqbfw2FcqIOYv/uxn3N/ecnV5wXe+8yn7/YFhcFxfPaEbO64v1vy1H3+fSnke7m/Y3L6lMAXjm9f0uy0mKvoRXvc9d5sH/ov/5D/l9370fT768AWm1Ki2RFlD1EL5IUZccEQXMXJRuMTKWFQlH15e8ermjsJ5TARlDd0w4sfA0I+iSBcjO8ANHftk6vZF80rWqX5gd7ehUiXWFmAtsdKUdUldVxPt+oTap9RJsj+nOj4+5n/jBWGQn+ssYZvZHkdD6Jzkz/tDJUZK2VUIBBw6kwwCRGMSlqBERCS5gyvAGomHNKLQhdYYU1KVNcF3ODcy9gci0PcDv/r8l0Qfk+qTTmCVZp4ryFCTRHW32/GQpLgzqApCx5/Hy3ItEueI7HJE60BkQORrBdyrMOjRpOb7kqoUbxEKy3K5YL1e0lYN226HGx373Z5xHKiK4puypX63JCM/wMzfPUVkZgghp3KsqFQaHNyUpU1UiRjIngzvqo68i4aQ/zsfVHM0PlOm5q/Lvx/HEW2KFBAHqsQHrKqKtm25vb3lcDgwDANPnz6dqTFZnOsnaka+B7n/IHpHjD4lFzK4jZGBEKwG5Sdjlqy49PHHHxOjIHNd152UuB5TpaZgc0o4jlK9EVGgaduWJ0+uef78ebqfTDzPeSUnU6isEVfu3PydJ1q+rjmyAMcELC8EOVnIyKBSajL9u76+5uOPP+ZHP/oRT548oa6rqcqRr7NpmsmcsLAFy3bBYb/jV7/4M7rDnq7bU1lNW5UsFi1Nc6yG+OAn5/S5qeMR107/nu3ZPogDs9zAhFQgqIdNtA0Zt8dk7MSYTyUkdHRJPnWGHs/GJPm5xaNjcAgyD4wR+lymqSgv7tZK5TToeL9PKXSab3twAEC0hCBBnbEKCAlZUSm4C1KFjAqrFIUG40FHh4maQlm63YFdFwhRs7KSaEeymkikrCzLtgTvGcaeru85dApravGNCA50gbIlylp6P+JdD2WJKtecnT2laVYQLYWKnC9X1LZkGHpevPiA5eqMdnHDsxfPefvmDW9ev0LjGDuHj44YPGHwBGMYY5U+u6WwJVVTEOyBojRgHO0q0OPZjyNGOwIFMWr6waGNgBMxREy5wJZmGttj8LjgMcFMQbOIGvi00ckc1Yk2OIw9DCI7XRYlzdqih5IQRNVlfxADMu9lHgcieHAxEDvx4KjKBZqKGDQ+Kg77kbqRpnnnFLWJBDfS9z3nyyU2e+oMI74f8MOA7wfu3rwVKceiZNEuaMsSWxoqa8A7xE1c8fy993FuZBh6rLX8V//V/4e3d3c4N2CtwrvISEBRct4sqesmre8iazmMA70b8FFMtsZxwHH0URrGcapw9qmSo5SiUIqqqKnqhuX6jKouGfsdY7/nYrlkoTW6Hxj2jrI5I9bJ/Gvf4YcB5RwqDkSdFLCUrCluFOUqn+i7U6KRvFEIorUPx4KTc2l9STSWiAKPNBFnKgCkqPW42EWl8ICKkUJbCi3GcJVK9Lt38bO+JcdqUfPsvSe4TiRBb29uuL15yzC+4N//v/+H/PwXX+J6jwri1Pz+++/xb/9bf4ff/6t/wHK9oCgUKOGlj148DGK/YRw7dvsOs1yyWFzx7D3Dy9e/pF08o6hXbLuO/W4kBAfWEVwgajCFxkRDcFGawhWcn59zvl7T1DW7XUezKCkKI8kwTABTTjAAMZxLKHVd13zyyces12u+/4PPeP/FB4hCUGQcPdvDhn674ed/+k8ZXn/B7c0tX756y9BHfvjhx0Tv+MlPf8oukqp2Hf/p//M/Zri7Je5+j+/9/vfTuFI4JWJdKo05M2NfYEQwYdHUfPDkCX/vVy9hGNFE8YtC/Itu7+65u7klxIg10m8p65Jmv5UEXytFoSussRRlgalKaAzRzMRRZsAanFb1cyyXY5AMzE59FClukWTNYo34ZqmZmpIon2ZhlSPNMoOfE/MlJuGbGIX2ldApD8n/RMu+lWSMTU5KUoU45ApKDPgo31utaBtDh+KwO7DfHkT62pQCLCVLBfFwSlVo9KTAWpY2effsJvp5RJIo704p9bkSJveLtKZCUZaM7kDfH5A8T6Ew3N3vJabUBm0r1ldnXFyci6SwLbFmwKhCnl3Q1HXJ8mz1jebr79STMR8A86qCSihrzFyT6WdSplGJhy0LK6mdeE5LCSeVi98WSL1r8M3P8XG5DY48tfnrMrqcA/W+H9B6z8PDwyQ3mwfc9F6zRGeeZBlj8METo5r6HE5QaC3KD4qjC7dzjqdPn3Jzc8MXX3xxwqXLSdPxPI/HPODVWuET0lYUBefnZ4lOVEx0r7kJ4fHZnYJh08RKyOW7ziEH0/n7uUpKpiSUZUld11xcXPDs2TNevHjB5eUlTdOQtfPbtj2Z1NkAMI+DYei5vXmLGzrhPPqRtha0sywL5oZ1071AHYPzFOTPRsXJ+JDnePxVjBGVfE8E5T0mLNMkTomNNpIE5GTmdA7kz0z3mDRc1HGsCQVDibFbmDUBpvkzL1bM50FO1L/1CQYAxypGXgiPlxUnOtqc6qGPiwW5KiG04kRJ0RodsxoHaT5YjNXE6BidLP7SRJebv42Yy1W1IIplSdU0lFXLYimGkST996ZuKGzBZhNZrlYUZUVVN/T9QdydCRAcnYqMgyJ4cRMWtaN8jYK828IQcEQCu8MWhUPrSFUZSmsIo2woKkZIoEUg9YrpZBSlj+tABi7moARKpboHGMyxujtKg3EksFgssFHmcFVVk1gFY0qkZxVOQeikCbooK3HVJQ4smzQAAQAASURBVG/GkgjpaI+GUSFQzJA2BRJcjyPj0DMOjqqsREyDyGLRYI30V5XFsWdutVrig2cces7Pz7m6vhbTvW7H6AapbPiINcg1G6Fz5ObZfhjEjDH3UnGcs2G2pimljtr01nKxXFMUFXXTsj4/x7meXgcKE7k4W6IjuGGQK1OGiPjehNlaZLQm6vQ5yag1r7MxJRV5T1FpHSLGVJXN9I14pErFhDaTqX6ZRpHpG2mxOTmONCytpEpYaIsB9Lc4ySiLgrKMlIXMr4fNA1989RU/+dMFX3z+mu39AaMs5+drPvzgBd/77sf8wV/+IVdPzjCFAQKjD4k1E9EGikL8B7TW9MOI0pbF4ozxV7BcLkRa+eoDiCPdwTD2gUBPVmrSSoQ7jFYTnahuaparlewbqaIKiU4zXc1s30DAJJ32oquraxbLJc4HLi+uUGi8Dzzcb/AvR3Z3N7x8+YruRtF1A9t9T+8MbVVTWcOTiwv6t7cM0TMGz8s3b/npz39B21S8+M6HlLUYyybzchGYCpFUI5W1VKkkfqNYLluU86iAmPYFeZX3jt12J2CmjzilkgS9lfZbh8iIW4stC8qiwBaF9HTlOII/P8GYx4g5OZh7fk13NK078reZwpT39WO1cJ7YzP8tfWiZk3BUhyMm49hEv1IqjR+dv38UJ+bVLzKJm1ijqUvD9uHAOBwgRoyy4jSOuLmbRJEKclLi0ZHGifduorZm9/ZcsZjH6Mcjpv1H6FuS+HhCGNFaFEZjULihxwdRqrBFwaJpWS2XrFcrSl9xMJ1UYQuL9gkMfRSb/qbjd0oyHgc+xyBepGNjSAuqZlq4i0KMomIc0saoYOaKLIv/sRqRKxHTZjBrxsnHbxuE+fv5kek8uYrgQ5gCPq1FtYW7W25ubhiGfiprT7xupU6SFKWO6gbTZ6YhmYPvzNGW1yfVIa0m07pxHHn//fd5+fIlmX71uOKQ32feF5E/V2slJUcfKaxltVzy4sX7NE2Dc47dbpeUCkTtJU9MKRdm1D7O3k9P1KfHCU5GB7KTdy7nzt3Yc//Fer3mu9/9Lt/73vf48MMPaZpm0s3fbLZT8haCOK53XZcSoZHusGfzcM/d7Rt09Kjg0MQJEbJFeYJa5PGRAzidXDeP1bRT8lIOXuR5cTJJROdezJJOFp8ok9kaK5xJYyY1r8djcgqaH/1uXoWTKkyYql3HP0rvk5OURwmzVr+Rsf2tOvI9micafy5FJK8T6ctaQ60sykgDotHgERQGjpuQQaXxLpWiqGSjkWY+RV3XNO2SqCMXF1ecXz6hbVvW6zVKqWk+ZgNJ7z2FEzO2F++/z5df/pqyKFgtFugYuC8M3WFHcCPejSg02lhxqbYGYzRlUTAGyzjseXh1z6IpiEaohYtmFGUp7ylUkHUyBrwLdL4jJhW1uq6m+zKXOn4MrOTf5WQ+m5J2XcdisZhkpuu6PpFzPRwOdF2Hc056JqqCorIsVy1l3UJKMpSxDM4zuIAqDMbUEO0JiJBRWWDqDTscDrTtknUMDGNP3VRoLWBN09aEEOi6jtV6Iedr5Jn+4Ac/4MWL57x8+SVffvVrDod9Wq8NMTKBH/f399P553MZhuHEG2MOomgtFd2ylMrKZ9/5njS3VxWr1Ypf/uKnWCpMU3J5seb+5jWH/QFjSw6HntGNDONI1w2M88qzZIOEwWMTEFQUBYeuy+kCqTCRxmfq5Un31wcxBYtRpQpsfASgnO57Jz9nXtU9HsYYCq0p3rGGfVsOAep2DO6ALjxv72542O342Z99zu4hYGLFojZ8/7OP+Df/zX+dH/zwe5ytGqF3KJn7Giu9SkGjtWPZlihtGEfFze2WwrY0dYt2lpKWtq747ic1RhfcvP01b/YOgktgh+zRRkUKZWjLiuADRVVx+d4V5SrvRRE1C+Ah05RIyTkYW2AosLbg6sm1eOKUJUoZoo+43hFGz/b+gVcvX/Hrr17yy8OetlnQtCu2h45hdKzbmu9/+glv7m85HAZCcByi4h//2S/Z7Hb8+C//AU8qS6UabCHgwxgig888f1AqYJWncz0QaJYN4mytsBTgPCp4vBt4eNiAIwXikVKLgidBqD6FthTGUpqSuqqlT8VKLKJhSrpPQN13HDl2eOyZMVWDUtwmQJ94tAkwCNnqUmJMidMeN48f3y8/I3lqCgVKaFgq/T6SG8ml2Z8YpF9HfsLU46LECE8pqRIVTUkMA248YE0Cv1JS4SLSQ6gUIe2NiuRvgTSOy5qnSPIgyMA+VkbzcYxjQkoyNM7tcL4nMlKUpdx753HdQdbL0lI1NYuq5WJ1xvXVJXpj2BcHDkVBESt0bwjOM+y7bzZfv9FfPToe902I6ZJw2sXiPMlsac2iXbDd9xySlGtGh0UuWhSZpsBvlonNkep3HXP60LuqFLk/IH+ff+e9x9iS3NhXVSXB+8Txk785BunVo56MY6A4rw4Igioo3jgmvrDO1yXfG8OJac9yuWS/33N1dcUHH3zAz3/+89NyXdqo5g7aMUbquk6Jh1CTbKFp25aLi0ueP39GCIrD4cDd3R3n52f0fc92u53up1Rp2mTO504mVlaemrt/zxsn5zS5eU9K27b0fU/f99zf3/PRRx/x7Nkzzs/PJ76zUoKY7vdSLbq5uZkSK+899/f33L55jes7jNasmobSKAqTEiOrp/1VNOkrrC0pigO5LGatld4LLX8bHlVsJtqSnDkglD2tNKawk4xeSCo5GUI0WkNZsFwspA+lKPDvAAJ/YxUu5nGgJ8rUu031Tnna7/iAfy6qGTkgFMll8WfRRnPYjaiypLCaGFzioT4CGlSiwgw9AY93CzDHoDFTsVRCnY7zyWGKhNwggYq8h+L5i/d5++aOYVR857u/zxdffMFyueTs7GxSplNK8Z3vfIfdbofzIVFZBs7Wa/onV1gDL7+o2dzf0R/2dAeRqS2MYXCO0hjq5M9TlLVwbk2g67dUtmG5XPD+i5bq7QMPmx0P2x3aKFyIdEOYmgKzO/X8mFcy5kF113XTGlIUBYfDQehSZclut5sABefcRBHNpnkgMtXX19e0pcxDbQz73T2mKLFlhTEGdzjgQ6Qwiu02q46IAlheu/K6czgcePnyJXVT0xIwJqJN5Ob2Fbv9PU+fvsdyWWNMRdOULJctb9++4c2bnqoq+eDDH6E1vH37hv/gP/j3RZ4WndSkmIKPufrKdrtFKTU5JR8Oh7TuVydNlD/84Q+5urri/PyCD158RHc44N1I9I7DfsOyrTlfL7m7v2OzP9B3PaEfJAHwkhT1/cjgHGMIeKCoKozS1GUl3HKliD5Q6qRCmJ7NOI744HHR04+DOLdbSz84cQGPkmjEKMHqHF39jQFZRDyOyOGtrGNCJdYi7/0tPVwXaJuG9dmC++1bFAeUrrCmxrnIH/71P+R/8K/8i/zeX/mMxbKlrIoEdB69Erw3qCjS5G0TME4Szn1jafpA3x04bLa8eP89Rjey24206ws++c5f4frJh1xcPuPn//C/BGOwqmAIkdHvCT7gwsAvP/+cn794n19++RXfWTzFmCNQqGe7UlTHpEMZRJ0qVb3ruk0RqyZGWRNRQke6urqk6/ZsNg/s7ze4ELgfR+62G372+S+4f1jy4YtnPLu+QBH49es3jKbk5tCz/dVX/J//L/9X/rf/u/8Vn/3wu2LqrIQaSfTYqsIfOsahZ9jtsTFS1TX1paLQETV63C7w8Pot5bkXqo6PGGUSCn/aU1hWFdaaqUerrkuMlSpUUZSpiqmm+ZhB3ncdeT3Lcx1O1S2PPmJHT7Ycz8zZF5nRMT/yeihfOZYUoCD3fSmbqahHOV15rIlePdUODdIJEFHKkU0jFeLv9OLFE1bLBT/96S8gZD1SGIJUNIJSxCQmlFWnjBHfirqupkrGlLTOqjtzeV6tNWVlZY3qtwzjDqUdVVVgjKK2FTYYwtBhy4qiragWLWEMlEXJ5eUFL54/59Wr/5LtbsPG7fEeFBZjym80X/9CScZjlFVpub3eI5t7qhQ0zYKqsBQa4SnHI76S+zGynOWckpMRpnctoI+756cS9KzSokgu4mTaSkKVlCFEBT5XW3Ti9UmSFGKkqVvquqGqGrQuiFlnOfqp+UYpQaWcd+LBEb00dc0qHunkpgYvtEBW+b7lv7Np4JSlJQaPS8mMD2GS95SsWyJmKelmedgSRcl6ec715ROKomC72bLbbukOO3aFJBzejZB8NWKMeDdOn5835XwvjzJt2QBmtjhqLdSAIAaHWQbUB0/TNhRFSdsusEWJMpaoxMzGxQhBHIn7zYaH+zse7m8ptGYcB0EDIrh+jyZSVQWr9ZLSGoxSQo1Q4vqsEv1I6Ani0ht9SNKZMaHdMWn254VKIJUQcl8MadJL2S+EMFEK8nCTrVzofVp5rIriGoxKJeVcqDzi8NMCo0njSWgNCqmySKUyHJOOrIGNIEdhNtTnVTRjDApRsvi25xgTuqoyAypOVY3c45LphILbJ+paGv+5iVXWC5/K8uU093RGoJSamsZjosqQytuKtEaFiHeBt29vMckIbrPZYK1UzJbL5deoSJPmelHQti3WGKyRHqQw9lSFZXMvvg4hm8dNK5EkyCEF11G7xAv3uN0OFRtKrWhLi10v6N2B3kWCPZpOHqt4p9TVxyhWXhfnLro52M/+ENmde74RF0VBXdfTpty2La3J6nlAmXxekieEzj1qRuNGcdjOn1MUxbSxZyplXdepYij9MsvKUtdlcv+G0Q0oFbFFgS0qFl1LPyz58MP3JSHyjuVyxUcffUJdN9ze3tJ1nchqluXE085J53K5PFEAIz37vhcRjqoSw7Pr62s++ugjrq+fUBQL2sUCN/T0uwfO1yu0ioxDn3rIRnwaUEVRpAZ0Q3zYoK3FhEDvJNkV9R6NDxE/p27m3kTvhAoXgxidJYRWQKzA5HQf5lXZY2X0Nx8RHgVRxz376/vot+n48otXrNYXtO2SqiqoqpbLq2d89tmPuFy3fPzxB3zynY+5OF+jrYJE45NFXarcKtNbFAkEjJSlZrks2OxH+tHjGVFF6iX1kUadoXVF217w4oXmalHz6stf8PrVr3nY3KFKhXKeLNM/JOn4YTinqsppLkCmTH3dXyf/NsY4JSMxnbzWGltY2lXL2cWafXfGxdtzPv7oA3796y/4+Z/9kjE43j48MAw9ZSmgRlUUEoMh8YSLkV+9esPf/Xv/gF3X8ePf+z5FCcooSq0J0YvbIAFtDVYbjJeG8CcXZ2zGPW83O4L3wkRwkRC17KazPQuS0mgCasXVWyRwtUmy4vOelBSLzGXzpQBxpDXK/TiC0fNYcd5fIUBWnBq95TU8eo/TOTT/fk5dVymOi9PfqJPPzNX443PMVavjs40p7sjP2xpL2zY8e+897u829Mk6Qac1KkEJOVoGYorT1MQoOca+p6NnDtAL9cvgvWIcxVldGRFKMel5UMi+5BP1OFe/y7JktVwxHsZURE2fp7UIHeh3J4KPj79wkpFvskp1pUyVwuckRNO2C+rSYjUQxME5FX8gSkAY4nHhz+/9LkR4/vN30adOkgylxHhmosxIyUopTQikxRvASzOgH9FGEClbnFFVDU2zRCvRSpasOVcksqazlKiG6RomHc6vV1Y4Xk+uikzVAi3mN1VZHJuFMqI9lchlIGulqOoS72TjqqpaXEVX51xfPUEr6Lodm80dXbcHfKoUJJPCJKXo3DgFa3li5wEkQdsRgZxP+GmCKc8wjBT5ekLgbLGgaRYs2iW2rKaETpKMIOW1sWe/3Qn6stmgoxO0MKRys1aURUHb1KxWK1moYsTtIzFkLn8OqpL3ik/IxeRrEQR5CCEF5LmcEackAyVmjSJgr04UgdJom14Xowc8mswzl7GujUKjksq4LN4hv9Yc1VxEL1w2OQ2iViWDUJBNRUpESDTr44Kbn4+1Vhb9hDR9q4+0XjxWv8tcVqEzST/ASKrAT89bqk4ivylyprLwlqlyFSZOu1bgp3LxkZeqJMZIXiwFIXrevHnL8/ffx5qS7WbL+cWloG6NKM7lqt12u8U7Jy6wSY5aK9BELi8uCWNPYQyaSPSOoT8w9h0qj71UgVTaoHRBVDXWDXTdyNDvqMuCwiiWjXCWbx88ehAAwAVpxo6ZgzA7HleWc6VMkK/yJInIgXYGFnISAqcePFlatqoqKkZMune2Ngyjox8d3jmsFk8aq5ikv8dkVpf9eHL1JFMnjZW5Oo4dxqxoFw1t06JUZBgOKBUoSukBadqatV9RVQVv3rxh3I+UZcVHH32MtQIC3d7eUFcVRTL9m1PGlsvl5L8xDzAyYrpYLLi8vOTJkyd8+OGHPHnylPv7nqq0uOHARnsuztYcdhsOh71UOOTdJ2d5pRV1rOkHRxGjIMKHjjEnfUpNVWziUdwjf+UkOiLooYsB52JKTY9S3CFRLv5ZqpkxARzf5orozdsH2vaStlnx3tOnrNbXfPKd7/G3/tbf5rsfP8MUsu8rI5a9AXFTV+EIOgp4mIAOZG2wVrFoC4pSoftI1AGvA2N0SAuHVJOqasH52Zqn3/8u/+SPz3BO4Z1moCK6Ees9thShk+6wx7lRnJNncdPjY/67CTBwXvYgrSDRPnVpaFXL2cUZ3bDnyXtXfO87n9D1e/7kH/+JVDQOPYfdAWsMZ8saY0Q8xfjIqDUuwN3+wN/9b/4Bu8Oep9dXXJ63lG1J0ZTCzUcQY1MUWGtQ40jQA08vL3h178Dfo5Wi73qcRwBFjkh6TqjmQEcWghB2CKIoOEn2MlX15vFcfNTfmu/VfI7n+/a4mnuUSRdw0nuJ4+b3+zcdc0nyeVXl8bP7bfPoMSvnqKwon12WBe+994TReeK+ww1OeguV4pjWpH0xRPp+IMYwUd3fFSfPQaecZESviUGaw6u6mOSrtTYYa1GFAE6DJ0mmG8LQS1xaV+zf7CfAWUdN0OroCfMNjr+whO3jC8wl+YySGWNZrSpWi5a6Et5dWRaMLkx65yGeIm/v4pc+HgyZZ/u4KTn/bspuo6Dsx4GZmppmzsA5iM7ca6kEbDg/u6Rt2sTBPwYn2ugpwRDJMEuIqSzIaWY7XzRCGiRKqcl7wzk3bb5laVmvV3h/NEXJgQ2IsEhZVlRVzfn5Bd5FjCmEjtQ7rq+vub6+5tXrr7i9veX29oa+79lsHibE1xjRXw5TP8CRmyyN2XI/hUblp40wP9uMEuYMu6qqiTK2XC65vLykblradsV3vvMpZVngXI9SMKR+i7u3bzEKut2Gw+6B0hqqylIWFYumRSlZiJqmYbFYTfQNKct9HaU1CUHMY7GuarphQFSG9PSKPOGccyITmanNSiXAL1GmdDYGlIZatCZEkfhUBKpC+KR1XRODnCtKNjGjM9Q7nx9S9ZKGWNHbNlqnasY75hQ5Tz1e3zQftD5KzvxzdMR4+uV9YIyjmLAZy6BVCkilGTmkao73ntGd+jkURUlwglArbQgxyffpSNsXoEUQwejIdr8nxIGIoapb3r65A1Xy3ouP+OCD9ynLijdv3vD06dNpw1ksFqmRWOZzVZbEIPKZT55cYwjUZYnVCqMV++2Gw/aeceh5uLvl4e6Wob+kXdbY0ghSv1xh7IAxDuUD1+dr6rpiuap5c7fmdrPj1e2Ot7dBPgt/cu9AlJJ02thz4KuVou+75O2QgQUZT8eNXhpJx3Hk4uJC+qKyq3iSoLbWoIcOq6T3S5cFPYoCwFSgNd5H9rd3mKadNikfPP0gAf/Tp08n+eo3b96wWlcsli2NKWnbihgdXb/DOAkO2ralKDVN01JVBeNY4r00kuak5fzsguChKmseri4T3UuEJYSKuqPrukRbleSurqsJ9VNKsV6vuby85Pnz5/zgBz/g/PwcYyzNsuC960vC2PFWB15/8WccNneM3Z73nj3j7e0dzjmuVucQI8MwcugOtG1LVIqoFOvzC/phZPSOwcvzCV68Rrq+JzpxI9bKTs21PolghFTltEVJiEqomc7jQw5c/plm3Le+kvGX/uCvk4h5/Hv/p3+PxXKdqMOGwkBETOZAhAlGH+l70InC4n3kMAQCFo+mH6NQL6PE9XXd0A2w7wL7zUOSIdU4Nyb03WB1yegqFqvnfPBR4MP3P+btm1co73lyvuZX//Qf0Swazs6XU6L/m/pn3nUE77l5+RofPLo0LC/PsUVK6EvNk2dPODtf8OGLa4rg+emqxFjHuBNhhW4M7DYbFtbz/L1r/vof/Jgvv/iKVw87bvcdQRl+9osvuLvbsL3f8L/8n/4drt67xGqFXSiRFkelqqVCjcCoeHZxyT/8yRfcvHzFarng4X5D34vHg4WJFpWp1QDWasqywiR5VwFAFHoK+MO0P+f4aLpXSkrec8rsPOjPSUAWkJkq/0oRgsjUHuNFqZrLM/DT6/NnzROLk2cxY3Rkqvpvi1PnyU4+pD9NXmuMJfhRQFNlePbsCTd393Qv30isbI2YOyOgpCcSfeTu/i3ej/mWTJ8zV8CcEosZoOS9n4Q9jDYYq5PqoIgoxKQGWzc1tq5Sxdhz//DAy5cvGd8ObHdb+r7HK0nciqKiWa6/0Vj+CycZj/sn5pSlo4tz4Oz8jNXNCmMNVil8hBBFdvVx2X9+5J/lgPcxj32eXDyewDEeg7E51WFeTZijdvv9Hq2lt2G/G3nypKcsy9T4KE2bSnl5QLNrU1pNzZRqasQ53puJN6hAaXVUa1FqatA+W6+5uLhkv99NTdi73W5qkHZeHD7bxZLlcsXV1TUxSNP3er1i7B1lWbLZbPnyyy+5vb1lt9tNCgT5XPJ9nJds5/cyN2nOk5ssYZtRCFGuQZBirVmtVpOa1O///u+zWKwwpqCpK6qqIIbAl1/+mmHsGPuebrfFDwPEwNnZmkUjQUxhLW3dEJHm3aIohNWoDdYWYryViEn52cUYp+Qw82wlwRVuZFZ8URkhRwKt0Yu0rGTzsojlipIY/DFVRkD8AhQOEq+yTOisd5wmGdYmf4Mw8Z7yZj6fG1pPfvDTOM1VjDRiT8anyivKbF58mw+rhEIiJfk891Npu6iI0eB8SvpixMZAYcCh6LF0umSIKr3eEcaAjhodwbuBGBwxGkJ0ScdbKgfLtuEwyL89CucVaIvSJV5XmLJhsTrj+Yv3GYaRXJaeq6rt93tB95Mr6v39DovGVi1uHCjrFYu1JlKy71PyE/cMQ4EL0iA9xEgZNMZLImzHgipotPGM3tN3PeMglcfKNKxK6AvHoO/Y4xliwAWpB8vViDSpJinYhYDrDigV0WHksL1PlR1FWRaAx7mexbLBVi1FUWHKCms0OnhBF5XnsoRVI06/GAPRE6OjsIraKFxVsOkGBq+JUVHWJaY0hCiSw4dOEpfVeo2tNA+7e5ZqyfWTa1TwWFNidMFud2ClrRjoYShLg8LSHQaWizBRtgQM2ZHRvYvLMxbLhusnF/z0J38CbkB5RVs2uK5hWUkStdvtJvrcYRy4vbul6we0MhRVxfXTZ3z2wx+zOrumbFq0trDdwuCIg2PsBnwfKHTFsj3D+YgKYh0/OOlvC0oRhw5T2ARQQHQBg0Ip6SuyRUm0EW89YXAs2lrGUl1jjSV6j+tGyrLk0PcM40jVtmy2O7q+Y+8EXfaI34tS5pSayynwd1wnkhdSBK893hbSUGq+vevIanWOsVYoakqoi0LTiWRjNICAJ5Ik6EuN8oqgEripUoLtI/3gcV7AgzEogleUtmG1sBw2B3QQCt72/rVQ50xJdJHNfYcfPU2z4PnT53z6ne9JxdkdePmLf5ronAJ6zIPXOS18ro40Byd1ElIJMaBLI9z+GEQzRwV0cJQ6UtQF+5s71pXl46dPePXqT4lOJFTD2PPJJ9/hR599yl/+gx/z+S8/54/+yZ/Sff4FvVdEZdgdOv7Rn/yE/9fFmj/4Sz/iR3/ph5SNVCYwiELa6GH04AL3dztubu65vbsX3dso1LDCFlRWWBk2xRDG2Mn3yFppZs/0QmlpyPtkVv0LJ34V817Ux0yWxwIw+R4+dsKe3/N85N7MbGb8uEpyojo3+zqCfsfPyp/zWCwnx36nzBt5rYDgR7qWMYa2qVkvl+ydS1UhmMjUKve4hAnkLibqdqaGnXrMzc9ZnoP0kkzSu1roajn+GceRcrHCpOQwhMBuu+Xh4YG/9Nkf8PkXr3lzeyeV4r5jGCtc+Gasit9ZXSpfxON//6ZjsVjQtI3oeh9jVOaQ7Pz1jwfOXDllnjDMM9t3ncdj1GD+8HNW+lgFJYTA/tAxDFKyG8eRqjp6RZxy/hJ1I9GNdEKu8+fOH7j0MpyW9iY6Ql2zWCxYr9dTZWC/308KN4fuAEqxXK44P7/g6vIaqdBoqrISjXbv6TrhC+cGznmz+7sm6fxeHiVk48nEnPPRp69UKotRqhnn5+d8+umnSUlqgVbSWBhDwI0Dm4c7xuEgTWT7DqUiZSHmO8vFYkoeRTJUFpwjz/Ao05YDhfkxfxYxSrYv3hdM1aX5Ic860xbS2JuekTrSpWZjMMYcFCdEJDVORp3GQzwig0JnmX1gPJ6n3Ft1bMSMxxM4vuZYwXi8KZnsgv21q/p2HYoIMdHatFA3YsyJniYGnRr21URG00oCN4/CkXp9FGKOGaWzRpOpKEKtCtHjQ258TXMwCFoZ0PhwbJzzUVE1LU2zON3o0/iaI0PWCvKsY4QkHy0y2OK5I0FlwfJ+gwo92j+w35cUo8eRmoKDUDZUtFi8VKmMJZqB3olT9m4rzdNWWRZlyb5QeIfQNqbxm0aDPt0knR+TD4KY0mmlRNjA5iZBTVlYqqqUNcgalB8xUeR0F23JRWNZVqJC5IxJ1BKhlESkIX0YU1VHSfP1ke4n1MeiMJSlRWnF6EdccBIYjnGqWu33B8qymoIQawpM0reHI9CRBSu0lnV5vZZnMw4Lbl+uYRw5WAFDVDj2X6iJoqbRvWa/y8IWiuViwcXFBU+evMdisaYsK1nTh0CRKmF+dLjBpXtWMx4O6Z7qRO/XqCTTrpLEsAqRGDxF4i+XSrT0vU/eDdpQFVKRaeomrSMKVYri2Wa7Zd91LFYr8S5xI0aLwlR+9qe6ebP5Na2RmXKRKrNJyjNXor/NBdGmbkTEwZgkJ6rkv+S1lfQ9CeDTmNSfF4lJTjWBTz4DUAHnYQwQg1Sc67JkUZUcgqP3I/1hi1pYSgVNYQWIWtQsGsOTJ1cURSVCAZu3aFNI8Oc9WTEQ5hL0X1eDe8yAKKsaiKgijV+Q3r7gUd5hgvR7bbsdq9Lw4vqCUkUiHmsU68WK73/6MZ995yM+evYUPfR8+eoVL9++YdPt8Mms883NHX/8j39Cs2i4eu+aF81z2ROV7HNE8XcJw8Cvfv2S16/v2G47tC6JMfVVFJayNBQ2uYGP48T4UGiMPbp6ayWKm5DjslNFxxw7/Tbhn3zM7+VpQM8xjpBthiPVOgusHJOEx++Zj3clG3m/+m3Kp4/f4/jf1HCewDWh92qapmS9XuI2W1z6fR7FWuUeUolRsipg/pwYT+l2X7+WHFdYNJJkTOwcJT4cOfbTKYYVYFZ+//Tp02SSOmfm/PnPJh/fOMnIcohCSyhmqkGnlYsctCslcq2r9ZK2rYWX7BNPLiHLWn+9w3+eSVprWSwWk3lcbvDLjXzz5th5NioKQqcKHPObP88+h2E4qZJ0h47ucKDve/b7PWVlKEpxqtEmo8v5jSQIKopiomfl8l2+ZyE1nb5rkckPtq5rPvzww9QUWXB3d8dHH32EUopXr16BgqurJ1xfP+X99z8gBOE/77Z7louW/X7Hbrdl6Iep8XE+ed41EXLFYhzHSU1mjiDMn2e+x8vlUjh8WrHdbrHWcn19zb/xb/wbHA6HtBFXBO/Z3N+zebjj4fYNQ7dnHHr6/YH3P3ghpW1jkxN4kgpWRjLtdL5imCOqFaiccR8d3cuyZLlc8urlK0LwUkGAZMyXOfhifCcUGwlew7Q4BJQyIhdYHM3LZvnHcewkTfqpyUupo1qEUhgrzfhH/wZSoCuT8Xhf0/j2geAD1hich/knZqRnt9tN48R7T9vU4lj+bY4OSIleRl1SsBSCwnuVboOgkV4HfMIiI0hzv5f7K6piFSokEEKLOVlZFpJEIvOj74ZJ5WS3d+w6xzBEQjRJISOg8PSHA1eXFyxWLT/96U/5wz/8w4lCmOdwrj6O48joPCHJu+YxUabG8Uz38W7ktoa37NkcBppoQA/0XY+vamIh6L0xDdp7lDv2pg3DwGazmdCwxWJB3/eEQ0/sHUY5vE/3JW0STgvgoZSSICQGjNJcXF5O94AYpz6LuipZVJqqUBQWHm7vUd7TGMUHHz6lLkTq1BpF33mUEqoSRLp+pBtGztoSdRgZfAAT2Y4DURu0EfnX3W7P4EaunjxhkZrJb25uWDXtBIa0bTuBHfmeN03D+fn51OCY11NjzKScJ+pgA4f9nk8/+oTr9TmH/Z5xHPng2XN2ux1vXr+h3+6nNbdEcblas6gbhmHk4/ff58X1E87qhifXT6ZnWDx7znDYcfOmx3uf+jyEcuq90HULXVBV5aSOJ+c6prRPYYxwsI21VHXFIan8dV03rb0+Nc4Ow8CiXvD08sm0JyilaOqawh6VZXT0HPWlfnNgIUc8xlbznyYU96iy9+076qaUyoN32MKS0ye5HZqYQCFJMmZ7vxZAwihDaQALykZGpRkcYqQb5B4ZhKb8/HLJ27d77vsD+/4W6zSrQvHi6QV1u5okzYOP7A8DfR/RRS19VypxG2bnkGWh5/v/4wqUAGSKZrWSWENnwCDJ5g4DZnTgRlS/h+09V7XlBx885++uFtz5DYu65l/5F/4G/9rf/BtcrBZoP3JeF3xwfc7D5oovX78h6FqoMrrgj3/yM/pxYH/Y8b/4t/8tqrZCl4ZCK0IMuLFnu9nwH/5H/zn/9KsH7rcOxUBdGOqqRNUVi6oQfyJj2O1EXCet8ImVIHRObTIgm/dzN6H0c3Bv6g9V6iQuzHvi44TtJM6LELIEpMr+Vgn1j2J6lylTc+A1szbeFTPNf/b4+8dA9xygyvtEvobc3K6UUIELW7BaLWjbNd34KzrnEiVXGBxKRYyWmMMYPdHv5LOnM5zOP4NhIK7icp8kHtcmpARP2BrGGHSmqIXE8ogyJs/Pznj/g/dZrdaTKMtqtWLvhYZrvyHj8i/c+J2RIq311ESYb/xcsUQ4epaiMKheFAtibpeNx/fLA+Rxw3FuBMobTd7Q55P26wMi6U2n12SZwny++T3nDyX3lFxdX2GM5osvvqCqamyhsIWmrqU8HdTE9GceHMr7q5PAZLpPSoGSALLv+xPqVlmWLFcrhl6kFcuy5Lvf/S5PnjwBhBZVVjVtu2CxWCZFAIs1nhigqkr6vgMUozsmfo/9NfK158Gen1lZltOAz/c+y8CJy7nc3xz4FGVBkZo4z87OuLi4mL6PEdzoefP6JZv7G/abe3A9lYm0bUV1tqC0mqYqadsltpCARKWmseywGYJo64cQGJODcEYeQghTf8j9/f3Jgp3RcP3OTTfT6EImND4aM0dljAlNyQiBEn1ra49CALlZe9q/UpBnMCifS+KB4I/JSx6ckaxEdSwVZyWJjDFmhZ8jHSxMyOQ/T8c8WBJNcyMbdFuCd6gYsBZi8PRdx+Zug/cRW1RYXRCCYxxFShRyg7VwiqWaJwIE+x52Bzj0MDjFEANnbcv67Fx8Lozw4q+eXE9JbEaMciP6nPNbpF6uXMnQWk+eL7KOPKGuLYtlwRAURb1lvz/wcHuHG3oOIaBDkF4kbaRCkIKOPCd3u90ECKxWK3TVUPeOXddx6HtGH/BaEg2P0FBNYSl1gVWFYLfRYZSmrWt++Nn32G237HdbLs7PMdFhCBTWUZRRHKErS6VGSrzIUbrIshLpX8EAFFZpSm0xSuZS7yIjkfveEUKkNJZnz54JjzdRGnOvSEYz8z2r63raQ/b7vTjMluV0HyBXUOzE9dZas9/vp+D+00++w+3bt2we7tlutthCtrVPP/4ObSM0TOdGXr99zeCcKIRpwzB4Smu5f/uW1WJFuT6TBvW6Ynt/k/o69jRthR8VPjiMVcIeU5LU9n0/XUeYfL4URSH7jBtH+qFPRmdhArQyoDQFBYUkZq9evQJgvVpxeXmFj5GiqsAo/GYjwhEqSrNtPBUYyfcqH0odd6gctFXGTK/7th5KgTGp1hn9yVrugyE3y3vlU+AU8UGBF6qZDzAEhZdyNE1jMIVmdJF95zGHAT8OBNfTLgNXqzOsuWC5/APOF5ayMOjCMkSNi4rRw3briDoQEOrV+uyMqm4Y0/6ZwdftdstyuTxpjD69thQ85u6rVKExePBSwWAY8bs9od8R9rew3bD76iVvf/2Kz158yPM/fMbzZ9f88LsfsS4Matjj+gO+3/Nk3fLDj57z6vaGz28PbIeA1wUdA5+/fkP/d/8+xej5w3/pD/noe59QVjUqOu5v3/BP/uF/y599ecPbbWAIQo8qipKiEKrwYtFOifqccZKV0mQtS0qZs96yDPrNRWZyjOS9n+ZOjtnmseC8Jy/31x6Tb5NU3I6gtcQSXmIEpae1PScE86b1+fnNQdtsSTBf+7+W5HAUb8nn+phJAiRRHodSBUpVnJ+fcbeRSmZmXEQCzo0pSTuKeghAl0Hg42fM9yWApm5xfuTufoMtpLJEzDGH3AeAYRyxRlNY8QNrFy3rszXOjVR1RVWVPPQ7YhSvqqYu+CbHN04yHqMlc575HFGZP6C8MUgmpzIlLUG9MK82zB8EnHLo5iZxj3l68HVqFHAyYOclybmj9WMO4DAMtE1NiDHpnguSpThmpn5qGPIoHSd0OoOwJzSbcJqdz69vrtGeB2ldi6oSHBO18/NzmnaR6AQlpKZAJp+MYjq3dw30efY8v4fzyfmuSk+ewI+blxgl1M2Bz9nZ2UnSFEPgsN/THw6MY49RkaosqApLU9dobSlKUazIDVRKJ27nNLakqpF7Ix5T4x5XhebnzW+lFc3HzdeTDJ2qFCErwXCsikyIhMlyoJLQqDA7J4VQKfJ4Vbm+8vg0ZnQXlSZElL/V6RpyMjxdV4xCR3nX+33Ljvk1HKuN8l+pNDm88ngtqVhZFThg6HrufUyKXBGjoNIAwrE+DbqkqVZ8DCKD0wyjwgWNspa2EOdurUVBwyauqxhH5g3xWLHN75sVz6I/iiLMxSPy35ZliTm/oF4U3G932OItRt8R+oH+cMCNA7sQpCEyzbG5AWgIYoo3n7uFMTS1QumI0iIJ7VFCwYpR3GI1VFZRGqF7XJ6tWbYN68WC51dn7CvNvtKs2hrCCEGEgnVTIlRGg5naakX9zBjENCrTPUnS1THS+4gLjkPfI8LucYb+M1Enwsx7J4M62bsiByPz9TAnIjJGMu0nTCZ5OTDwzqEhKYFlyp1UyW1RsFws0xroWZ0t6YdBjO2U5te//oqmWXB1fU3b1JRlkSqUEe8lee2HjrIsGKLD91E2eavJ8slzCmzbtrgxSdKG4xoTQsDNONM5WcogTt4zJ2NS7xmd4+3bt+x3u+lzyrIgjoroPMofe4Xmx9cAtzS5jhSROK2p/3wcQt+b4y8xKgKyHmSFrpDwpZCqFd5FXIziT+KjyNGHQKGhWmpULDAoWpMM1IxlsWhoS4nJQkT6I5xQBpUS2XnnxTwTpNl5sViilCS54yiAWdPUk1CI0qeCIdNVKTVtibk6RgxE5/D7PX67Ydxv6B5uuLt9YBw9i8WSP7j6iOunl5yfLVlUBaHbwzgShp7oBkoFZ03DX/7hD7G/fMmXtw98db/FlCVjjNw+bPnpz37BYr2idyOf/eVP8Tvp9/yv//4f4bEoI6aCxiYTXGPELyTJ0+a4LwOZQheXHohsDCd7Zkb7swfMqVIeMCWJ8zjpMa07ryH5dRnwzfFl/rs5DTmKiYVU9RJbIquOZVpSTiwer/85vojp2vS0/5/GUacg7+k155/JeBX6ktZQVwVVbxlGI+clcDwh+FRFBdTRoyzEMI3rkP89I0QqpVKPTMT7ANFOv8sN9zFC1DpVMTwWYe0UtqAsSqJKyqq2wHjNSIToEyX3zz++cZLxLlR8fijU5GidN1wpIVdp8TaTIZE8lIj3efOIJ4s1MFUbclIw5/MN43DSR/Cu46gwcCypZQRpvjlkqUWloO87iqLFJzrWOI6TKtQ0eNPHOTdgrMI+qhnlAXR6bsdkKgcRfVJOcs5J0BIji+VCehNg2mSrqma5OsP7Y7mQxNETtDVxloP/WladzyPTzfLnV1V1Qm2bm9TMqVbZJTi/b066ck9BrmQM45ioIpG+69hvt/TdgeBGSmNYthVNVdE2wllHm6l0nUuZiVOW+Jo5EYuMo/Crlf76mMsoYC4vK62EI50W7mlkTBWzPDGz/vRs/M4W/GkT1qecRkn05Ll4N6Ok5XkRAXWUEPX+NPmdJz95kdNKHDACiWql9NGcyDmCOiYiMX69z+TbehwRVvnv0TgpiKupcngVUEZcoLf7nu7Q0z/sCEn6sLSGWlcovUrJfpYJzI3zBSGKS+roNYPXBAxF2bI+v5rmtDWaorBTU3+Mx3ny8PAwBb0ZeQ7e48bjBprVTeZzvyhLFvUC2zyhdyOFLaRvZOy5Gwe6Q8f20NEulkKJUcdenLyx5bU0r3W2KmkqS1EqrAXnAyHCvutxwROiVF2rQlNXlsvzNZ988AEX6zUXywWLosBVinFRomMkBksIXgLpReJ/K9nQZE3SSRBByaajTeK06yQPGilGjxpG+m6P1itClLX77du3NIuWqqqEYpZpnKgT9+1MHyrLcrpW4ESRB04lnXNDfoxRKgWHHba0LO0SU9ipAlTXNcpK06xRlifPrun6TpKzCG9vbrm8vuC7n31KjCb5IGXTNo/zI33fUZYWlyoZWsuaP7owOafncbRcLjjsD4TQTw2/Sit01Li0duZryyo6Y1o7Y4g8PDwQgnh4HPqe13c3E+UHI3trVIYQB5x3MPP9+DqvPM+r489CokMI9eHbK4WdOfEyXs3EKch5XSQlFEJ6Iv3ptPb7lAhIchHoB8cw7FE6UleW87MzmqqmKTS1OaqHaw1WpeAUJT0czokkORbvI875Kcmsq5rry0u0VnTdQNcd6PuO4BdEK0IHjwPTOWCa01Sd9qAYImEcGTYPhLsb+s0DdzeveX3zgK0anr3/Hh99+n2UDoQwMu63sN2BH5Osu0ikrpqWf+Wz36NY/BOqP/ucNw8/wdQNjCP7YeCXX7ykcyOvbl5z/XyFP2z52U9/xn/y//4vMO0nVATGwWELjbLSk6StSXQeM8UMx2dkIQZCEF8gYww2rdHeM/vbYzO1eEMxUWsf05PmYPacSXOsFqQKBMcY8Nhkr3BeZHNDIjZIH5gINWQflexHNq+UZDaDAITzCsUMiFfy9HKiEkIGKzNInsRpjvSGaZ2tKkNVWobR0h2SmmeEEDzD0KFUSQgFmWomzesxKbYmQZUE6KvkB1ZYK8maT8mxBELTexAi0Ro8kmQQPSb1t5XGgjEoY9HaUhUlnUqfG903mq/fOMnImWmWCpuXxMRULEKIBOflKwT60DGGgbIqee+9p+z6lxBHiLLIK3VUA8rHRGtS0ubkndyz4D19NwqCrJi+Ymru1Dm7TJlZWRR0fT8lK03TTIZQw+Cmh6xUxGQ36ejoDgcO3Z5h3FM3hlevf83dwyt+//d/hFfSyDeVomJkHDL38FihmJfzdMoQ83Uao4mIPvHoBYHEiOP0WX0uA3VqTpYM25hIiA6CGNV5L8FU267ohx3aQlMXNFUp/Q8x0FQlLsSTje2kSXo2aefIYnYUz6hh0zR479lsNil4spSVxRiFcyPD0EOM3NzdMxz2dPd3HDZvUTFQWsPZ6oy6SqZcpkKbJJCdJ7TMIEARvDRYFkVB12UpXUEPY3LU1Fq072OMKekRigYpIXXBT4ZgII2WKgSMUjiYdiMVjwhVN/apwdJBGQgKSX6iQauANYqqKPBjJYlRem/nB6HB6RI9K9srUkUvypiURTT3ZIhKj/hdRKm8RFErCs4lI8HUcwTSlIuojcgc+/ZKTwJTQj3toOqY/MlibrCV0IekumCp6pqIAdUxjCNjF3Em4AuHa2XtqaqSpikZhl42Jh+TX4Nn3zu2+xFbtASn2O9HgtqwWCw4W7e89/Qp7z29Zr0+o0prBIjqXJZehSPQYoxBp/mUg9/lcjmBK8YY2sWCoqnQTclnZUlb1bRlyU+3W8JqxCjDOG65eXsj76mOwWcOwC8vLxmGQVzG3YjWAWsD6+WKEFq884z9yJu3PUZXNE3L8+fPKWpNvah4/8V7rNsWGwMMA2elEVlmo9k9POAxjCEwOEdTlYQYGJ2jHzviKMlE2zYSrCmLMoayqqThFoV/6DBDQI+RsvYcvAZ/XMOHYQClOLs4n8QiQJr4nXOTAl6u1mRVvPw1p83OaQw5YCjLEldVDD5Vh5xDlQVni2vZL/qe5aKZxl3vBxyesq149uIDFudndN3I/XbDxeW1VIWVJjrPctVS1xXD0LO7v+Nw2HHoDtw/PFBWNbYoKFIlBmSt32630/4EqTIV9YTEAlNC1ae9yTnHYrEgehH82O12jAk4Kdt64vxHrejHEaUt2li0GafX53P4JkdI4Fn/zzSJ//97HK1QhVKUrS6DOqoK+sQuEHbsZGsnCk0RDLJv10ZxuWxp6wWFVRRGxNKViuhEjS6ssJYUMel7aaLShFHeO0YYx4hVBaWJONNzfXXF9fUVZxfnmALUIEFd3+1ww5LSaHT52yGjfJUmV2OIoszZ7elff8n27o7X2x3Pf/zXOL++ZrVe4R7eSNVi7IndgRLNGDSHbsBVNS8+/pDzq/fwg+cPgbNFxfb2DT9/vcEFhbI1N95x/8UbfvXmhl9++XM+/eQjvvziNX11QR8jRQFnxgiFT0lJp7YwjgMm+XlYa5J8diGqfKVNFQs3gUney5oXw1F8Jld1Ywi4R7HK42rFvMIwr2bI74RVwKwakaufSimhEDlHUJkCH5kEHVIhJK/18/f13mOUlhGXQMUcjBalTc8oTkmOJBrZdyMQoyFXyjNDQs7PM4wbQtRUpSKEkqFzkgjHEe06guvo44gPDmtrtBV5/6KoU4KTAFEDQXnG0NP7nia6FINKMgUe73qqUgwUXYwMCJAbVSR4uHrylPWipkAzBghRS6XaBYyOnJ8t+eSjD7/RfP3GSca8vDpHuyfUPCI8wlmvhk50kqapefrkCb/4/GWaLkrcj6fylBynVYkjEh9Czu5zw3ZOMHxCgk9lcFUUftnc+RWYVIzKsp54bOPYidzlBHdkS/nImzcvuby6oGlWQlkgdehPZbuUSBg9ZavT2c/uj9ZamocBH6XxNcaQHHLlXoosqiCIdVUzJm6h1hD9gAqiMuBdT2HFfGwcDhgNdV2mBvuGcRwACcC1seLOODunYzB3+vP8uzkim5vsc8KRg0Cl9Im51jAcGPqB3eae+zcviV7Mh+rk7dG27cRtV9qSS4DpAU+ViMzBzpMzhGPwmbaMCembAj5tUoI5G6NqFrTmZG1WvTh+qbR5yISPCS3K5dRcphRkQ6g3RgsvcvTSbC5VDwcUCcCICck6NvznsZsT44wipILutEjlxVOQNicJWforlWR3tfkLq07/9+KQBctIvjTmQEAoTWOMjG5k8CN7BVVjpfchRoY4EuKIVfDifMF6uWK1aFk3mvN6QWWkgf8QFId+4DAOWK/ox4gbIkMoiAMorWnaknbRcLZecn6+pmkXaFuhTElZVl+rPuUjJ+MKBLlTxXEN9G5SGyrrCpucs9vlgr2KjM/eR0XN7Zs7QjQEZXDBs9tvZQwpLQlkMCIgYGQDwFqKpsZ3AW0VtrAsmxqjQAWhTyxtZLFoubi44PrJdVqfYREjZ8agosEpRxg90QW8VzivcdHhY0Rbg4gkaPFyUUKd0lqJABjSx+CCx0SThBAsoNG6RKuAd50k0koqKSZTBiP4fmS0Hd5YzDIJcwQRRUAp3Dgyak1ZlOnniY5mTimxeU/JCUcGTkoj1avu0DE6j9YFtqipmgXj6KbXeAKmqlC24H5zIGApKkvVGMpK3mv04lp++3DP7rChKhS9dpQ2ECwYLX5JSuvkIxAmg0g3ypodNehCghPnnbiYG0WhhYLQtBWRgA8jrh84dIKWD+OIs5FoZG8ZwoBRRsCzIJKTWicFLgxDVIxBMfgkm0tyFVeJzBGzW3GWjgcdvQTGfDMjrf8+HgmekcRi+l4qa1mBSwRmlEi/5qBTO9CRqoioaCb6qTaR0ogimsnBmjpyU3VUoGSPykz2iZKSUO0MIAXvGMee6+tL1usVSkWIyVS1kH5Kn/q75nLx+ThWMXI8kn6e/18JHfe+6xmM4dmnn7K+vsI2FS6O+DCCO8DYocPAoXPsB8929Dz78Q9pVitiVaC1wyrHyhq+c33N7sGx6XsOweNyr0kf+dmXt2xHw/39jl0oiSYHsxJIOy8BbFEUOO+mpuZ3XlOMU7/A/He5Ujx/bWZaPK5iwCmDIR85AZgn3HECd/Us8c8xa/5eHrVzY3pNqojMmDsncdy8NPjo2kIIxNnvQ/BTfDv1ec6uQSk1JVdKCyXJDx6jFKW11FXJdp+A1OixxuCjiJpYm6IYJQlxzH0jRuTMZ2dBVs6cWD1pDIcIzvf44KlK8Ays6xWffPg+f/CD73O2XHB7e8v6ww+SOlhunk+CRUlx6s87fuck43FPhEoBXn7cc2Qnc9Dqquby4kK02FUKMSNk0mEOcKckISUt6TFOg+nYUyCLqE8ZYS6FHl/PxKWe93FA7u8oqOsqNe4d6Ic93idH8lBONKTdfsv1k0uappkGidaniQSAViYt76fXcBycakrAgg/TBHFunAJqowuhx/hAYQxByYKmFQQ3IHm5IrgBZcRV2DmPKRSF0bSNBPPD0Cc+8Sj64bPej3xeGSGcX0d+BhP9KJ3/HFE8Tj5DVTe0bUNVFRx2Ww5dx357z277QFtX2ERrKMtKmseUwoee3GR0zDFyECGTPkahoh0n9ESsmf4+UwymRHZmsIiadWPkcZFrjifJRmK6xpRwpIUnq1OFjIRNi5RCId4GWmW0JU6qC0odz/GdPSRKNiJRysjqVlnNKpU5SP/Oi2u+rmQspVEp8fj2HuLCLc85uiBUsShypsLx9xzGwC4Yoo1ECyYGXBjRKrKoCj68uuTJ+SVnyyVlETFJfcNqkYzxYaQfQQVFcFGkX2OB89KwVlcFbVOxXLas1yvqtsUUFaYoKVLT8eN5fFIBVKkvyR77vrQVpF/FiC0KacAupLqoQku8fIIKhi+vv+CwP+C9w7uOrtsIjztG8A6USOpGJdVClMKWVnw1jJTwS2OoC41VChMDywLOz894+t41y7MVrpeEgqhYGCsovrGM/UDw4ibtopI+AYJUyaKAN0SNZkCnJEPF3CMj8F4ZS1BFQvms+F0YoYuomBRQEq0MpDQfnSMMI2EYwc+ChyCbq3cepx1lkaqtOcCIUV4fj1TReV/ZFKTZQmgqHga3B2WSAlnBZtxAomj6qCltSdSa7b5HKTWpbdnCJvrqiPOBh+0D+8MWayNGe6wWvxaTqGPKJInbADHtCZOrN1BUhRibRo9PlAYJNE1q3jzKZjs34kNkiB5lZc9UHGkgWRDDKqELG1ugS4XxESORAi6KFwaknqWEfRPVhPQDDMFD/HY3f+eKRZzq2/OkI8n8cqQaCa4T0cajdUSbvFaQpG+jgHgIhVcpkZwnMgvWUkCHTvuKfJETldQbFqIjBMfV1QXr9RKtSUIDR4f4eWXrtx85WEzPTwkLIETFoDW6XXD9/geUqyUhCp0m+hE19jD24Ed67xlQ+LLh7PnHoEecO6DUAL6nIvBsueLuouPVdsub/Y6HIRCCMDC29x0P/Rv6g+MQLOVs385ofYQkjOFxxk3Vx8cUpzyPM0idKxAmgQCPe1jnoidzKtSclgrHmOZxUhLzc09xKDBRmJQSyWkVQPmIc5Cb7LXOlP53f82INyfXJxTr41ybx8LyvkfFqXnMlUFWuXap9FirKasSte8I3hHjmKi6EecjU0ySY6QoFVQzzf2UCAahfUp8m6RnM/EoRJwfCGGkroVW9ez6jM8+eZ/vf+cjjDW8fv2Gjz+KE7APYQKT3uW59q7jd0oy3kWpUQhvTs3+bh6wKm1o6pbL8wvWy5Z+GOnHIU1SLxNZz252zgTTQNCcBlVC05IbGeORkzoPorXWjMlRu6oqrBWebtd1yehuxfn5Oe+99x7ODbx9+4b9fodzjqY+4/r6Cc+ePadpS9brs0kJxOqjZvt8oOTNIJfX8vGYJxtCYBykDyOGwDh0ED1VIbK4owIfPePYybUFQbRDHCS4TdWXw8MBbQyL5Yq7zYZhHInBc35+xn6/w1rL06dP0dYmK3opxc8nbZ7omd84D6zy/dxsNsn11058aasqlC25enLN+cUZpTV89etfcvvmNQbFIlU36lqcsXOTZr4f8ybxfM9AFuLD4UCuVs0n4PxvM00PclKRfqdVQisTCoXIw+XdIMJUxoSkTw0JiUzBizG4xFnO41KeqTRdNo0oPg19f/Qi0eprC8bxUNM5RwSJNFqoU8HLYhOmv2QKOqIx2FRFkfdLJomzRObbemS0SRLuhEDG48KsEp/04D3+sGeMI1W9QvnI+XLJ8+trfvzRZ2gXiN5jawhBaCP9OLA7dOy7gW50HMZI5yJjSGNv9AzjKIF7ksc+OzubvhaLhXhTzKmgKZjNzxeYKEyXl5fT2G6aZqrWhSju4MZKz0HTNDJ/UXz8ySfsHm7wY0f0PW7s2R969oeRh/s91rq0zoqqUVkabKGoW03fDxwOA3dKc7VeUjY1bdNitXx+WQkN52yxoq1bcSRPoEZZWt6+eo3L/WwcxQ1EwEIBmmjAb0a8j5gAWlv6wWGNpioLyrJI5mcl53aBoyOogsMQcYeeMc2BvhdCjrWW1Wo1JQSbzUYCw7TuZKO9vC5kSW3npDKUXzc3Bs3PJH8/ho6maVHqKEnunONwOHB+fn7SkzZMTdTlFAzlz860rRgdw2FDf9gyjD396MRHIXh8EA8NYw3eOYahn/ae3EMTY+T6+pphGCalMlnb5Dpubm6msfXee+9xOBzo+p5AjydS1/WkoJffo+977u/vqcqatl3R1g1WRwojJpTKg8q9JFmediqdfn0O5vvxbTwcgJJx5mHS7I8gFUGlUCpgFFgUVimqKW7wBOWJDOndZntJ1KAyNZUpWQEEoY4QVE5mNGhQOmJMxNogAgmFpmkrPnx+zZOLhqIs6NweYsQaI272xkqlz/z2alKuuMshFC0X4c3NHc8++YyyKjFFiVFaYon9nnG3IXSDrHVDpFiueXZ5zdn7H8FySXd4Szds8HdfETcPmP0e23X8rb/5N/j85i1//Is/47/9x79kHCNDiBwCvHnY4MaIdwqlpUElU16zIe04jgyqn/bSrI6YY7oMDDZNQ9d1U3yQhXXgGB/ME5J85P7QHFPlOZvjMTitKuR/zxWeQKTOp/5eLap2fd9TUkx/X9Ui1a31qZLV9D5x4mEcgQASwydVOee/e6xY9bg6k0HK6KfRiCLSNgXbDQz9SN/tUvxpsbpAK5OSZ08IYJVJMY1HHKVARcV++8DD3T0xgi0U4+jkGSoYek9nD2g1cr4u+Nt/81/ig+fPeXp+iQmaz1++5Kb7FT/8wV/lcNjSD3upyioxWDT6mwGev1Pjd+a1zctSxhiMOnbif91IDApTsFouOTtbst3v2Xcd/ZiKnkrggPlAyCWdR1DC6TF7SBOiPTsPlxqa88afk6LD4YC1BZvNhqqquL6+5Pnz9wkhMAyO87MLzs/Pub6+5vxixXK5mAKIjIyHIEHf44kwRz2n83AO78TQzYcksRkcwXmGww7nBmlqJhJdL70MRomzrNWURUvf57hZCVoRI95FbrodWlt0CKgwEtyIVkrcN6uajz/5hEPX8ad/+qdTb0puyM/3OTfBzxPDuTdAvpZJ61mDdyNuGNnc3VHg2d6+wcSRqqioq4qnT5+e3Pt3KVhNz3mqdhUMwzglQDJ2wslCBUwSoXMaRQwB7zw+eEGUyfurBvy0WUiFIqEgHJ9lzAphMaAoUpVaKiASdIhB2JTIatHy74ZjIHUcBJLl5wQ8j1JxMj8ueCFC9NkFgnS90hxmrSYosFpc04f+MJ3ft1nfHlKSEXJFLxCVSXidVHIUCbAzatIz391teLJa8uzymk+evY9xAYMWmiIjabcnAIOL9A76EQ4u0Hnog1RKsh9KLs33KVnMSURu9s4l/Tx/s7pTVVWPmhqPa0+eU3nsSgIKOnkcFIX0epyt15ydndEftvSHB8pSmtNRBd6rJGox4INFaU8IhgoDSihQ2mgOhwNbAzFJ/J4tFpRFgRtGolEMQ48i0h221FWFc14kX8OICwOjG3Bjz+ClZ6LQFT44vBfNepM8R2wh1Q1toSgL2rqWfjAdMFqudRgHxkT98Nu9SMQCy+Vyuj+516RpGhGKSFLAuSdDFL0i9/f3XF5eTkF1bfQEeORqbJ6zc2CpaZpprcrS1zmByT1l3nvhOqnT5vF85OeqFBw291gdWC5qeHpNU0qyeOh6RmVplmdoU7Df7U7Q0wyqxChN3HN1OKnqlicAXUzAylR1N3qSCgcmcCcDfNJDdM7F+SW7hy1WV5RG412PGzXOO6xXjMmjZx4k5yOv6/Pg6Nt2RAUxcZ1UzAlC+lKCQltrKVDYCCYm2p8SupHJlYFZsIhO0p5ZiIQ5ECXruMhEg49StSIZxaJytRlA3LaP8dJIpu+GGRpPjLhhxNTFtMd9nY4zQS9EFNoUVPWCpy8+xPYd0Ulz9+7NLcENBN/jDjtePewJpuTT7/6AetmKpLPvCbdf4LY3jLtb/M2WN198xf3dDlUoPvz+R5wP73H27Iy3X77i5W2HH0YII77viUFhVSl3Jp2jCyHdrwSgupHCCyhwOBwmpak5CBvjUdDicDhwdnZ2SnXOV57GbmZW5EpH/n6uEprX6RyX5Xn3WAgn/ztXlPKaYoxhv9+Lj0Rib4j65dEIeg7OFsZMbAY4ximScJ1aBMwrMVkQ5rHCKeTqSWL5BOkptFbTNgXOFey3DheZaFy5iVzUrYQyhZLXhejZ7zdJ2j2yXJxR1w113SSwUvbWsippWs3FWc2//C/8Va6XCxZlTaU1fTeQLQO++vILnO+n/WAuvf1Njt9JwnYe2OWfzX//+HdSqjKCuBSW8/M1b29vUVkiUQHxVAkpPloY5wHmsbR0el5f/+/X1ZXy9+M4cjgcxPOhKFiv16JbbSyjC1xdXXF2dsZ6vRYqRaJVaa0Fxpid1/x8HydJ8+9FIcHjguhFB+8Z+gNjd8D5QcxpRIcMq8VlVxcaayxN3bBoq0na0ChBxEIMDMNIjOL6abWCeKQUROD84oJyv58m2Lzs+K7znAf0k1nM7Gdai4pEWVlKqxn7jsNO4d3Asi5p6pq2bajriqwWNE/8vkY7yc+Xdz/30wH47ns7B/aPv5tVF+QX08LO7PqJwv8+9nCcAn+R1B+ixK/k+Jlfd2w9qWYkib5cfoVUadH6hJqVS/LzAX3chHSi2XHyHL7NNAfIVbJjc1yMgahE+jQVeKfbEUMEH1Ahcr5ccb5csaxbjAOTmjkDakJmD91AN4x0g6MbHfve042B3gVC1CdjMlfycoKYG65PUK9MhUpjNx9zMGHu+/DYhBOOErfByCZUVhVN01A3Uh0tykKuWGsOXYdzqbk0KqEsBPmvMRI8RQ1uEIS70BpXlRPkmWkLoxtEryx4kVEOAe8HvB9wfsC5HucGBAfOvGAvijsuJJnWzMH1aCMUH0mkTp2Jc5I/beIhTIHspOee7tOxjyqjzerEmCpvXLnyUPgjdW2+drzrmAcPOUk89pEJuqhtVpDSZOPE/DwzwDJ0HW+++oLDfiMVAgWmKIj9wJiCqtGNkBKXuSntHBzJCdRjEZD8d/MgSv7OUikjSdosmZqfX13XNE1NVRW83u+pCkthNcumZtA9gwOGAD4i0ianx2/bZ79Nx3GlkCPXQVVa941KvUWopC8ltD2ZJCKgMQeA8rtkQZK8Lsfp84601mM/Rn5N3ifitIeE9FkTcVcJj95nfy5SXOIdJmZa7tefh5ptDpFM8THYsiLud/iux3Ud3WaLd0J70XHEFC3FYk198YSq1ETXM+y3mDgQd1vCZs/m7QNffPkK5+H5p99lfXVGFUaCGnn/ySXb/Ws2u47gHDoGNCLJDmmP0tIEnAE5mT9hWvuykd7jteKxmmXeX5ndg3mMMK9y5s+e/20GTqd7Nptnee5JM3pep49reaYtyxoxjxkDzHqWvhZzPH5O6mjCHJU8q1yVeXw98+s+ueYQiCH3UuVG9EBZGurKJoU7GRViWqynUSyAavYkGRmGjq4/MA4DxhrquiEE6eOVmEIjqba8V1lVPHv6hCoGCvTUiD8OAvbc3t4kcNsTQgKNI0LJ/QbH79RFOt+A84Y8BQTpJuZNI28KpS1To+HI+y/e4+WrV8RkEBUyofHRw5J/8M4qhgRxTMHau85N3COPi3l2tM7fZznFcXQs2hVNvaRtGsoS1mtJMFarVWoSL1PmJuWsPECyMdcc0cwD/nH/g/CFHaPrZXMaB7b3t3T7B7x3iDZ7oCrrtHEo6qKmqsQ34+zigt1uz263xXtp7I5RNrI3b25QIaB0MSGdGMOYVEu8FxRzXq2Yl8rnkzhvlhnVy5vd1PCqFIum5vx8ycW6JY493c5TWcPF5SWLdknTrE4e3GOaQ0YD5p/pgpMynjoGFPn+TckJ/p0TPMRjw9NRAEAGkAT6SoL+vFHEOFtkZosHiU6l0iLKsTndJG1+cQ0PMPXUSPKaqQ/TeyWvgBji1AimUj+Fgknqb96UL2NIEP2cZORFMAdq3r8rdPh2Hc45ohcFixDSBqWk/2TaKiJJ3UgUwJZFxYvrp1yt11gUZVFMCmJKG7q+Z7vbcb/Z8rA/sOs9u95zuxvoArio8CpJJnOcl9lZGqBtW/E5SFWL7E6bOfvz0npGxnNykeVW8+Yp64tDqSNdM/qIMfJ+7WLBol0k5+0GYwfMOLLZRQqvUC6fZ5bjzb0f4hY/+o5hEHnorKJUVQKEjF3HYEFFgyKwP4xpM4FhPDAMXVoDB2xZgJbqqMTHCoWmqmtUTk7CgKWeOLhlWTE6GL1Pa44sxiFGmqZGWUs/a2zNiGFenw+HA0prykRlnVeK1uu1BPpJXcr2x8bYuW/GXHgkxsiQKKGZjjFVC4OIRExOw0qay7U5cqPzXrXdbtnv99ze3vCP/9EfoXAE79K5jNw+PPDm7Q29cwz394QQKUzJ/f09cBTJmK9tc9pdXkezitZjt3htLNoW9G6cxlMO1LJR4eXlJWVpCW7gq6++4PrinIv1kqvzFbut5tAJ5yIGWd+nfoVHwN+3Pckgn3/ee8lAlhIaiVKoqFJtVBQko/K8K9yZ8CYgN49PH5O/z827SKO/JBo6cy2kD8SD8+K/EXxM4KnBGIuPTryj+p71Unyw8jgpZoCVXNrXPb9yuhFSQj8MI+Nmg9/t8H1Pd3dP33eM48DqfM3zTz+hfe896otL4vaW8bBjf/uadaVR2z3+fs/nf/Ylf/yTn3Px7Bl/52/+yxTnS8qxA3/Gjz/7Lq9vOl6+vcc7J8IKGHTq4zJFAk6QvtjcYxJUmOZvHrs5HsrxUj7y2tp1HXVaX+dJxTwIzzHDYxPmPH8fJ+NHvyGF9+7EvyMDGV23P1FLresyPYeccDA9p/zexzX+6+DixOJJ6Hm+thyDzhOMfO7zQ6j0Ar5rlYZc9FSlIbYV43rJ3e0OraUqLucgEubZPd2NI4fDnvuHG5wbUQrOzs6JwePDSG5EV0IVwPtA8IrgYDwMVIX0Afc+su8cm92eu4cNr15/xW6/YRgPODdQlCKQ44ZvRrn8xknG44VpMkri67nAvEmcoLC6YNEuePH8Pf70p3+KNVFIDirRRmaf8ecd8tCktPT47+eDOiN0+XzmkzibZ93d3fLTn/6M16/fcnl5xfe++xk3N7cYo1mfrVNyIchHzOXWvO7EeLJJzTXe5xm8yKoGwhjpup4wdOw293z55Rf0h73w9G1B3dS0dUPbNFycnRO9BFAKhQ+aul1S1DWbzR2RgDWG60VDXRRs9wc2uwOLtuXuYUtVlXz/Bz/i7OyMoij4/d//ff7+3//70znPN/18f+ZJSEbhzs/PT5rGi6KgKQ3rSnO9alKgUHK2XHF5cU1ZVmhTMK8kzEuZ89Lp40k2of+zezuNCQUKPQU+841SfDskPAoxiLpCCsj42mL97mPqqyA16aVEIyM0sriIc73zbqpMzTeEOc+yrCXgcPhJPUKuQU2koPn9OSJjWZFCmoqDS6oo03V8HX/7th3DEI/Rz284tFJUCmpjWBQFq7JmVdY0RYlWisPQy/pjFPv9joftju1uz3Z3YNf17MfAbpB+jCEqXAQfHdYeN/Hnz59zcXFBXddcXFycBHW5p6hpmqO/g1ITFSc/677vJ8Qso+dlWbJarRjHYdrQdrsdWol+/MXFBefnF/SHDQ/3S/a7B1wMmGLk+smSw37EDQHvs167JniD0ZkyJXP3cNjj+o4w9JT2PcpSzLGU0dRVSV1ZusOBrtsDSKV27AhhBCXyy2HwaGMpyoqSghy31XUFiK79oROJau8dXZcUpIwkTvtdj7Hi5bPr9hgjuuo2zc1cVu86SWzyRt8sFsAs0JqZ02WaxTiOdH3H6MYp6atmwcjjUn1+TnMT1hwUTMFFCNNMm1NTcqJzOBw4HPbUhZoUv4yu2HU9VdtybS03t7cJqT3SjfJc3m63J5ThnHRkP6Q8HrKR6WKxYL1eC/DjHLtDP92ruUmhtZbz83PatgWgGw781b/yewz7g6DjwLJtqKuCpi7Z7CwHH+hCMpzz4Rvtrd+mQzBI6dg0Ov03reET8EmikUzwhVTuZiWQ6QhIVfRYvThNNnJ9VYz+ZJ74CM6LsIRzMHSerhPZ7HEMeBdFOS+KuWJOnktbSFVbqYQMn/YN/KYLjihQlrJuiXXJ2G24396h8Fy+94Sz6ycUyxWqrVDaEe5fsru7YdztGHcDb296fvn5r/jpz37B/+0/+c/43/y7/y6//9f+CvWTpyh68JHKRzb7gbcPB+53A9XyjLIQ5DqO0Ich9c0JzXG73wnDwghHP4/7bHmQwRzgZO3MMVlmXbyripFjj8eN38CJ+Ms8JgBJ+PXUTynqprJ2+2MvpRKwbxwDw9CxXK5m4cJpdQROq9lZgXK+zkwJPJKglElAJAMLcKxqP+7j8N6jFRRao40wLnQqrOED1ipWqwXdwYOqsLZCG4uyEaUD3o9s7+7l2saB6BxWq0S/7ARUiZ4YFKvVGmNEvKNpDRfnLRfnLUoZ9vsDBo01NS9vHugGj7UFd3e3gKduSpyvUSr8uf1E8+MvXMmA44Yd49G45KR0laZ8JBIDSdK0oioL+l4lNsmxgfubfK4MzlQFifPfH7/yeppLYepRcCabkSBjh8M+BXZBGjm9OHK60U3IdwikasPXz2n+37kywrwcfvxy9N1e1Ji2D8ToaZslFxfneO9ZtC1N3chGZQvJOLVUJaTRLYhZXyp7KVTaoD228BRlzdn5BSsUT5++R1lW7PZHx9hMEZhn0vPNJ0+KzPdzTtB4QTENTdPQ1hVNWUxyf1YbFssltqhl4Kv5Mv+u0nx+FvOJrCZDqneWFWeZ7OOSvywws+Ahob9x4iKRUKWvn8tEz5lieKkk5N8qchnTyyQlN5uJrnWulJxW0Y563OSFMf9PJTNKLUFjNAaCSYhxpg89HtPHfyv17Q8WfMxJltzuuRKMimFCHpetodCK0opySwiR6CMoTYEmjFIa3j7s2Nzv2XYd286zG2HvYO8jfQCXcpo8N3MjchawWC6X0qSdgIG56V7++3lCPKe85KbkOcqWX5elnp2TAL0sJMGMWmPrmrJZUi/PKJoH3F50yw1QWZF97aMYeh2/wJggwZQpRHEkSHCqotDKonMsy4ZSGwxZNltjtMbakhBgdIFx9EQlrsgqlc7zM4BELUleMpUuZf2McVpPZb3WqXfDMnqFtbKeq3Dc6PNGO69A7Pd7ylTdscaICl1RYI145uQ558aRGPqJqqXbFpGDzOZrfkJ28QMKUXBCaerkjaES2hdVmKiPYRxRPkAAUxp8DIxuoNvfM2xvcds7dAjcb6TfwhQVZVEhzpyK2lqcUeAi3g2Y7AysmKgOYTJOFePGYRwxRsQfnBdX6CxFaotSqiiHA7vtDhUDhRblsJCqmGVRsmwbuv0uKRA6SmPpDweC8yzqhkVVU5oCW2r0GCi8w0bPbhiTVwfTfqZI0t7f1iOmkauS93yM06o941ZMRKM40VbTTXhUvQBp5D5JJkDG/PFdpvuXkWyhMopprHMiI0wUueHtdk/XGGKs0EpN8szGFPSdgCQiJDK7rCmeOn02x5xIKDLD6Nm7kYduz+v7G77z4kOa1QJTiCw23Z7QefaHPd1ux3Do6Dc7vvr817y5vWfrFP/i/+hf55Mf/Yizp0/EwO2wp9/u2dxu+Ad//E+53exRtqKoWowWCl40EaNk3gV/VBkyKt9XNe1/8761zCLIyUBeN6e9PATCLI6aB+2PpWrzfcpUyMxSOe3JzZQpWSvLsqAoLMMQTv5GzfonspGrvH8ghKNFQT6vDFATw7TvT1TPWSyglCJ6AYKPxrzH3tSvDed4JAAe45Z8jsnLzSjKqiBGm9Q0ZY30oWfodvS7ncRqRiVfsTRyVWQc++STIeBU2y6o6wqjNcHL16I9A2MZ+p6H7R5dVtAdEKf6gZh8Zaw1+VF/4+N3Ft1/Z1kvly0fcV1z3B8C+DTB6qqiaRs2+1Hkw6IYm73jk3gcZOXjOOZmq4USz42YJPsypYgYUbkakV7hfSA7Zvf9wLgVU8C3N68JwbFer1PDXbJiR1MUmuCPZbl3lTjnJb/HKJnzjhg8/WHPYf9At99iFCzaluurazabzUShyBNRaUNE49yQ7mmgbiqh1cSYmsaT3XsRqOqWq6LGlhVXl5cUhSX4wGa7wRbH0n0/DEKriqcGNzmYMsndse9HrFYYmze6Bcu2pG2qFJ4orClo2iXG5HLjaVn+FBHIi0d6bKkfIo8b7/xJeXGOeujUYzdPFKYEI+bCNUli1hCDOvn7+BuSjEDAZBoNmszZFd1IhH6QZAkjaXHRelpUlVYTshNjkrQdpLGZyNQgpqZxk5q1jHiuxEk6OaQg6kj3mo93ua8R1LfXqRfAB0EcUUJjy0mGTmQEhfTnrlsRWrBK0BrnHW6Uja3UUorudx0Pt1vut3u2w8jeezYhcvCRg4chSNcBCqyWTa8sS87PzydkfLFYTIZ78yblie75yMTyMUoOMsczynwcryKI6YJiHAWttFoTlMKUNWW7pF6eU7YPjMOAO+xQ3mGVAgN9HInRELxUMkcnCVdppD/IjQOQ3e4jhIAaPa212KhSl6rCKIPRlsKW+ADD6GVeW0vS3hEjyHCUdtap8VBHMLok4MhYr0gYyppti4IiKgovqjrGR1zyf8k0sUy/zBXNcRxp21YCr1TZyAlHDPJaMV7tIOyxhXhY1HWem1bmtfIJJfSY5NGhUERdUFdtMv+Dbr8jEpLcbJDm+OjBR5QqcXGkGw50+3v6h7eM92/xw8DD3QYfI+1SUVatmDvGntpavLGgRjbjIL1wSsiVNjeqz+h0MYrAQVFaotKMXlBt5wMp12G3P7DbbtluHqisRRepbyh4ylLEBqqy5NWrV4zDQPCe6MNEe40+0JY1pS2wuqQYAzaMmCjVHZfmXYiCnGdrt2/roYNIVhtkLYkxr9VTKDDDHHMScdrLmYO6U3rU0bfruKM82q/IwaASV/EQ8SEy+kiMGjDEoLm/33K5KIhxnZycK/FYMpbtwwZrNE1Tp+Q9Tn0J+cOifHT67zxYV3TDyHYcuB96bro9f3B9QVUI9VBUyhyD67m9vWUYRvpDz/Zhx89//jmjsrQXl/yd//n/jOvnV6I4dLgnPNzzcPvAl1+85u/9d/+Y0bTYakFR1qgoQSYhYpQljI7gRdXIJClY512Out5Bd0p3ewroT5vcs1S1XKSaIth5FWNizqS/s9YyjiPjMGILe6IilalS2RRwLtbxOE7LicycFiVVRD0lGfKaOP0erab9XGiY8ohC+plCjIVLW6ESyPJYzW0eh8h5S+ygsrx7Aj9zNKu1rKPe6wkUH8Y9Xb9js7kFFyitpSlrtCrwyb9EKTFJHJ3Duchm8zCJYhAVfe/pukBdrQgx0neOze5A0a5Re4MPDufTmpmoZDHKvT2ZUL/l+J3oUvP/zjNujSiFdF3HcrmcBofWmmjSYuY1wxA4P7/ko48+4m73JS4O+HH8rdSJ334daso+QahXR2RZFFDkHWYO2pA67evEwxN5167fcXv7mrP1Od4Huq5n87ClLC1lVSQKgUyWea/AbypznvBwg8MHh1KBw/ae7f0tQ7fl/Q8+pCgKHjYbrq+uE+9fiRtsEJfqojAYBC3xPuD67tHnaAIWZRUXV8+IgLEarRRN29AsWmnsef6c7XbLbrejciPd4YB3fkIa8/MsioKIkcU2oT4Z379cr7m+WnF1scAWFav1OavVmso2mEmJIU6+Ffk+HEucLoFJeQlPvQ8Bhn44kXrLqiqyWIknyLHn4jTBQ+UJKWZVSuUFKavQiMN81vLOh2wyErxLw5YGrKCj0QkSHD0hCGLgg/B6w6NROaEQU+WEaayFJNE3pcwZtYhKAjylk+MoBB8TdSstNLNkekI41G+ZLN+CwwdARdHzjkfkJm/21srG0C5lEcxsh9E5Nvsd23FHpUt2my2b7Zav7t6wHQcO3rH1jgOaISRFqRBBCe3IJUnr3Cfw7Nkzzs7OMMbQ9/20EYkSVDHRbh5z7OeUzLmxVDaIzAt43/ep2bgQSoSRpsN2sRR38O7Aar2mbVp8V+P7Eh+GdG8UVSWl/FFBcH4KyquiIPoRygKC0Dtu7+8IwWE0DN4z7vfTZp9pC9vtlvv7+2leFYVQNnSaq0VhUmXBYrUmGgkOxBTSgIr0Q49SGmMBozh0jsFrQhAq5aqoqKOozmQeNXCiZpf/23Udh8NBmuCTw3rua9gn/nppRparBdYY+kNHYUVtzQV5X+9Ghq6nv7unMAXGFlBUBA9lVdPULaPaE0Ync1fJGjQGiC6iC83genbdFqM1280DX375Bb/6/BdUdYstS7z3vHnzhtevX3N3d8uPPvsuTVGw3e142H9Fu1hMVKt8nSCBTlEUaB+onKCaOckKIfBwfy8VZuDJk2vOz1bc3dacnZ1NFKsvv/yS7XbLQ2ouN8bQ1PXECBidY3Qj/aHj7PKStqhgGEVARFUsVWRZtvSjZxi9CAsERYhe5sa39KhTxUzrlDhMIUDEn6QN80OR6x15rc70qLQLkNpup7+f3jhmgAqiE+8RjSI6cCMMY/ZLsTgcu94TDndcrEvx9AiOwlhUtHQHR4iaqEWp0Y0OG0FbJY7LU9kiVe2OhA2U91KFK2ri8pqzZs2zT39IvWjp7m7Y3Lzi/quv+Go3cnsYuXnY8PnPf8rD3Q3DYcv/8f/wv+f6xUe055eYRQls8Icd4/aeL774ir/3D/4J//nf/Yc8ECmtx9oekis3RuO0ZzyYVCEwlCl49jhQWgwnS0tRlERP8ndRjIMwR4CpZyNXOSElIrOgO/e+9cMwSeKe7PfpfbQylGXu/5X4oCgsxf+Xuz/7sWXL8zyhz5rMbE/ufsY7R0RGZFYOVXRn06IeumkJBIgHJF4Q/IcI0W+NGgkQIJAAoSpoOjuzyTlvZMSdzujDHmxYEw+/tWzb9nMj82Z2VXde7IbHOcd9u23bZmv4Dd/B6XktrwWkvu/nNal+7fd7hmGYzzuOVY5aYXRbOriS9KSUC8wqz10LrRSm8D2VAqf0nLimOuK0KEsmYokL1LwmL42rY4xMYxBT5rLnxCQFX2ctZE8OB8b+SD+IXPsw9cXnImK0RVlH03XS9dcGUsJPHrTAs7xPvHn7DcPQ0/cDNzc3HI6J02ngL55+zauv/orNpuPnv/g5X/7qVxibefHyKUpFkdfOA5GBtm1oOkfT/Rs243tMdFn+e6kissTwZxAXa4p2ctPy5PqaZ0+eEMOvJDv6uzIMOAdX8EFAX3+2rBAL6fus4lMD/SVmvsqRVhJnHeyn02nOkF+/fs2zZ0/RRmAPvmBfl9lyvRcVHlMz4yXvIOeMVZqo4c3bN9zdvmcYerquY7PZst3tWK83FyokSxnG1WrF8Xicz7cMci46JjESc57VE2qS9/TpU/7wD/+QP/qjP5pJTlOphnn8RWWhaZrSgoyEFGmcwRhdlGUcbdeyXq/Zbrf4WebTlCSlEFNTpqpcfdB9umh7qsWzOz+n5Rg7Vx2EcK046+bPXYk5GpeOU+kRztUAOZ/wOeZ3vmjNFtWM2ulYqIRoJYlWXRgrvCfnJHXAvyeTr+c5f6OsM4WIVOFW9US5vECgVrW7ouZ2c85/32z5p3+kBEqXylUu/1aSC9QuVwqR4+FI23QYpRnGidM4kJNCZ83+cGJ/v2d/OHI/TEwkxgRTzASViSjyvC6Jr8NmvWaz2bDZbNjtdrx48eIDb4w6X8dxnJMNpdRcla9rhdYiZ7s0laq/VzG/wg9K6Kzw0yThixPc8mq14ur6ihhe8PD+PSmcCNOe0fcFTyYBlGs0tqhMSVIamCbP0B/ROWGUqPeNIdJPHjeOqLs7nj99Qtc03N3dzslShXMtq3cKge1pI924lEVyM85jXzhCukCF0mJeZ6rfQmLyWa4rJQL6wgej7g3b7XbGI9cqf4Wmybg48w+qv1EOPSRNDFJFDaOHmDFW44Ngj1UM0o/R4qkUQ8I5uW8qJlSBkQXvGVOgURaDcAVjCLJeKY11DZOPHE9C1jz1J6Z9ZH868eKjT+i6ls16hdJSUJtKUtl13bz+1/V1yXGLSQog1pqyxiRyNmit8NPImzevefvuLX4a6U8nPvvss3lfev78Odba+d8piYHhMAwoI74+rWnRSvP0xTPWTUc49YUcLERg7RrWOhFMoM8Jn2Vt9+lH3BEt66as+FKsKoi+ec2f18nFgqkXSUTp38/7xXLPiFHeQiuBmZW68kIRj9IZU9IdylIE6fvAOImPwPvbW+7v1wx9wLhc3r16LjUYK4FrTn7ufta9fe7+VXRGUd5Da7SzbG+uaTaWMA1M/Yk///JvuX/zmvvXr3j79dd8+eqWtw9H7h8eON6/42dffMr/4D/6HwsHTSX06Y549Bz9nkN/4vXtHf/H//O/4i/+5iv+5qvXONfMHCm7sCSolfGmcTMqIkbp3igFrXM0hV91GE7l81rgvLdXSeka8C/jqGUCsIxtvq/ALXtnhYQiBR1dPSncHAeFIIpIMaZCSJfYTF5jF7DWWIaVLp2XiirQMxF8GZfI+1NHEVBI4kroASFFjDXi5F15YiXJWCrm1ftYiwhLPnONretnH4ae43Hg1Mv+kkiCJ1EJypdS0LbdDOObpr6MUYFkex85HPfCEQoTxigOB8sf/YmnNZ6QE19/+x13D/d0mzWrlfDnUrcq0DhJLFOkdJb//uMflGQsg8bHOPS6+VZSsSoBWiajcoHhaMt6tWG325JTbcH/fUoXl4Ha4/f9Pm6E4JAXZJz8IVGw/rs+XK014zjMVbbbQvBbvl6q9ZeD7TGsZ97AF4GzyNYGbt+/5XQ6kGNgtVqxWnWsVmtWq/V5IpcqI5x1npcQrA8+f3WFXsCe6sBVSrHZbPjJT37CV199NQfLQtIyJHPuOC2JTcZIPm6MOE86Z2nbRuR826bwJ1IJFD4krf0Q3sD3YU+X0K3ln+dOqrrAerJoeeZSbTqTqmswf258l1ZCOZ8q/7ts+1V85PxvIKYzeWtuy5f3rOPh8ZEXr7n4/pxp5PmS6q8vE+qUpe52mdQrcv5xO35D2aT5MEeTSmKpoI8eq61wkrynHwdAY7E8nA7s+wOHoecUAlErfAaflUBDSgFKK1kHTOkwVAOopmnmCnrtbNRu3mOi3nITrMTw+rVcB5Ywv8qByvq8tglsJWMbS9M2omQ17dhstwynDcNxjT7sZyy/McKryFRYhiRfIUZ8mDAKslaSxKSMzxmf4TR5hnFC5cQwDBdKcUtxipQSWUvN7Tx+y9jPmVylasv6XOcVnFVuZH1LBC/nHmIUbLu+NMtbdoiWMsF1basJRp3f1U8iDAIzy1m6fNEH6TUaJ1I+IaCjdHkqRj8rjStcD6k0anFQT4lpHDE2oZQVHoqiODE7dAJlBaIaS8JwGkbuHx745NMvBEZXqq8StJwTzJoYVcGMpSBIzgmVBdImf4ohmDTyEuM4FLlIUeSpPhq1QKS15nQ6cTqdJInxnhAzk/fYeg+VAqNRVqOcJRvhe7RAo8W0MiiFjZGQNT4bcf7+sR5Kigg10QBKUUaSgd+0+9TltYLFVEmkz4K2Z2ltKMH9oo6VFl8xM8PdMooYU4GkSNHudDxxOvWMU2BlS7GozGvXuFkOVoJgiROWxrXGmKKUdQnFwRqaVYdbGaaxIfjA33z1LW+/+Ya7N294++13/Or1e97d79k/PNDowO/vrvl3/r1/D9s0TMOJ8TCRwsDbwz2vH/b89dev+c/++K/47u099/3E6mZ3sfZdQqovlSKrIqIgRxTWGJy1BZa3WDPSWRGunm+ZjNfzL3266jOTuXIZJ9YCIbmYpqoKkTKLa2dOMkKIDMM0zy1r3XwOpXSB0NdYpn7eM/yp1gM/SDTqBVLjHllD65qWsvCfzmvs5e/XeGYZ550/3/J1miqZHXwQyFZhhwvUToq7VY3SaNn7csqEpCAFxPcil31AjAONNQyjwTDwi59+hOtWJKVwbUfbdaxa4Q0JNN7ijOV4PEGCvp/4Icc/mJNRb2aFtSwD10rGWQZG9YNG79EGVt2Kq90V4OXp/F3wjxoM8mGSs8xu6+C9+GD2nAE+TjBqZahmiRU2cTgc2O/3hRitOByOWCcmanPVfPFeyw2yftUg5SK4CCOHwz2//tsv6Qxsupbr62vW641wWGJiu91wOBxmOEPbSiuqOsUuk5Dl5K8wpZyhaeycedejbtj/8l/+S/7kT/6E4/E4d5uUUrPR4DLoX69XKK0Z+hNN41ivV1xd7Xjy5BpXKmvPnj5lt9sVDeZUKnUyIf9ONRPFo8XnvOAsA7dl4lYdiiv5vv5OLJP4HMznUtGobfHymhDAmrmTINdRKhXLC0M2/seZQYpnCb6avMhCKATY5eJwkaDkCps7n19ec+YHVdne+gu1bWyUkmCkkEfl+M3wvB/VUT68MZqs0gc/y0m2rTh5Ip4QInf7PcMUcLblrj9wGHv6MDKgiElcgIMx+CwEzKykTRKTQDJrW1xrzXa7vXhmKaW50v+YoFfJyvXvtcpY17q67lWoqHNursgrY0FbGmeYhp5xGmmsVNra4pex3W4Z+xvGYeD2/oDKCqM8TdtKcOgDY/CFNK7QVtTLYvDEnJliYCKRG4vdiPHWN6++Iww9Vp8N7yrsp3ZhBK7gMRlAYD7GWBrnJBhWasagVwBKVdHKKpKyAVpiiNLFGEb6oIhIgHt1dTXfQxHYELjCzc3NPLdrV7XrujkJrAlJ27ZY4kwOn04TjbagE3n0KB8wKQqnzwjREZXZ7Da0qzXGijLgOm1QKhOiJ0xD4QZm0Jm2bbBGoaNj7Pc8efacF598yle//msOhyPj5FFKs1qvGAYxxJRn79DGkLKY6TnnWK/XM2Sq8npy+Xnf94z9cd4bnHMYa7HWzZ9dgtTIZrNhGAa01nzxxRc8e/aM+/t7vvzyyzkYsc5xOB5I/alU1CNffvUrtqsNFsXt/Tuebq94+vQpaRzw/YmgMi0OcERVXLN/pEderO9wWawIc8T34e9VOFSqiUYGVC6dt7Q4oXQtUpBSSK1VhZiL2ZmEoTEXRSqlRAK6/N5p6BmGiWHwjINnu60Q3tpdzQhbLDH5iRTPcMxKZJZOhgTKWS8+o1Jkq9EIFC/blv/8z/+aX3/5K969ect4GgkoJtXQZ83Hn3zO57/9O/zsd3+f1199yf71K4b7O5RK/NW33/AXv/qa/9t/9l/y3X1C2Y52c4MpXeWK9qhJc9O4Ij0usvwiD2vIWTOOgegndOvoGosxCj+JwWfbBSGKl4JFRUwseW4zIqMkajPyJOeZFL6MfWrMp5WRjl1BXIiJnty3lCTJGMeRcRzZ7/czpDVnhfepdNINISSMseU5PUJiLJILKF0TJbGDmPvqmVOTSmG9qkamkuAvO2s1saiffbnnfJBk1XjA6FL0Nbgmg3KlwyWiNCmFWQHQ2g7nhKOllcFHR0wBr89JQc6R4/EebV0pREV+8ovf4Wc//YynT644nY74aSR4KX5UxbsQAv2mR6XMr3719d87V+Ef6PgtY1zN0AH58IYcLwPF5WF0CeaSApVoXcNm1fHsyRXv7gbSeOnZUA9VNo3lElIHWQ2Qa4KxhERJ1idBdwh+fmjL9lRevF/FydbW99dff81nn33Gb//2L/jqq1+j1Oc4Jy0/7S4D48ednZqNVihFNWp6++YVr777NToJTKBxlt1mM2fQOYtBYL239T2WGMLl9df367qOcfDouVK4wvtpriJ479FGgor1es2LFy/4/PPPub+/56FM5noflnARpRVt2/Di+VPG/sRms+azzz5hu1ujcyDnQNO0M3FzWYkUJYSFs3XtBmVptxp9aXi2vH+/sS3KOaGrm/Q56SxfChTSdalEsEQh4OqqSJNL9wN0PichqhDT6vmW7U2lq672QO2SPX7uy2oP1K7SmWio9ZkgLgI4tb2f5wVMa32RgCklLU5RspCqvCxMP+IK5A88asVRID1yFx+Oe47DgDaOh/sDow/4mPG6ISnhOftSYSyxwwyl0EpLZaYRadoaAC+LE6fTaV706/iqY63CfpaVuBpcAnMVsnYL6tg0SqBIIURiSkQfeLi/p3FiCtd24oMTpkAMiuNx5HS8Y5pOxDAQi665rWOxwJpEYUS6CSpnXn78EU+ePuXm+prVqqVvLf39HXfv3n1Auq5rtxQvOoxWpCRa8rVKmct9r9LOMZ3/LdKbApNUqWykpYLnXEPrWpquK5vdGQ5V1+jKf6lrxm63m9e1qnpXvUkSFFJlZggTwXtUTiQNOYyE6Ikh4NYbUbdzDbp1mFZ8J3JWJKvJzqJbh7OanAIhgXFG4DNaY7TF+Ibr66d8+unnjH/wB/zlX/0Vo59Ybbbc3z8wjCPGWA77A6tipBiV5WEv/hr7/Z7j8Th7ElUZ3ipP2ZZkwjnHkxtRE/QhcDgeodybYRj48z//8znRev/+/RwcVfnTGjAZa/BR+DIfffIJgcxDf4CQ6MeB4/HI16++4elmw8vrHU9319gUiT4I+f8HGmn9UzweJ0hqXiUK7Anm9b6uwecOxbkrIYbdpXuKnn8rhFqFly5ajAI1ial4YKCgeNH5kPEBYlZMIeBTQFtF03W4psFYTU62JOq58AUa4cWEQPAnkbYvCXgtLqYkEEFM5YoUHklM+EnmUDYW061ItiU2HbHbEnLDqe/xJNzVE9z2mjf3R/4v/49/xXe/+hvevH7Nu7fv+PV33/Dm/j2ncaSPQNOibULbSNOs5iC4cgSgxhwNMQrPUVAMJX4wHVYFGmNorWXddZzyKOteCrLfFajfspu5hJfXfz/uWtT19Bxj1G6hRiuN90pgnyV+qSTrGDMPD/sZxjqOA9aKVLdz5+LR2RPsMvaQc0Rc05a1cTHmlHRtdLpMco3WpakmqpwZSZyUqVI5zElUfY+63yzj2RpLn++FqBSq4ridscWjBFQuYjfA5GWd0MphmlLESNJZ8rYlU2FhoK3FdR1N07LedHz17VuUNVjnaBuDUR0YR2wieX1+LtY6+SQ/UDviH+z4/TgQfJyJnpVV6gARxnx1CNBK4axht1txf5hQ0/dDZ5bvez7Xh4Nv+WDk9ee221LlYHnUwbjMGOt7ee85nU48PAgLf/LVXl2JzvqcWZoPzre8HmDezO/vbrl7/05gUt2GzXpdBkoJnhfdlloZrfexbds5wP3+4Fzw08ZojLWiKhCTTO4FF6XrOp49e0bf9/z1X/81p+OR4MN83mX7rp735csX3N/d0rUNq3UnExuDUapATIq8Z21Vl0mq9OVEXUKQHj/nx5/p8TOtr6+KER+OiXSxmUh1oxL2ZDZdJJYf3MFH11mvb+6gi0zoMAysVqu5Y1LhS9/3mWb4Fssuy2Ixqp8RLhbNOo7O9+zcValt3B8CRfunfGSYDYsuGjypkOSQxCtm2ZSk9QyTD6gkxYohpqIcleeqbMwZge7rmTxPlE6fNRK0VoW1EAL7/X6GTNXgryYTy07lEjZQjzpPHkMNl1AZeU4JrbKoR3kvIgBKKqNaW9rVhs31k4L8Sdzf7Qi+J4YJqaCelW1SGS+ajFGZrAUapFDErEBZbLvm+ulLXDYYHKfe40MkxqHAciZyjiidsVaTy3iKKWKSJsaMz0JSlmejMM6hYxQZ5ynTdCKhmLXCJzmXcQrbGlzWaCsQy5gzxll0+TLlvsQcpYnN5byrxZSzQZbHOANJNtd+OKFVpG0cXeNIRc1HmwbXbXDdCuNalKmqfAXmmAp/Smtc0xAGDyqjWycQI63ROeOsxTaOZrXi2YsXfP3NN6RDJEXP/cMeX2Atgw/s1lvWnWYKAXLgdOrpw8TLZ09mxau+H4h+wrmGm2fPJNGLkZjiDDGJUZFCwLUtpd7A69evZwhfJZRXuFSMsXh9KHxIuEZ8ipxx9MeenCIqU/TyvXgtZXAG0nrF892WpnU4n3DTj7eXcakTBTWxgAJfyhXmV5OPTCp/V7n6GZSlNVV/jPRorilZp1Mm5tq9qPp3wpXwIYkxZShKYTNXMqGN5XQa+Prr12zWn6F1SWoQk1GV5Bs5M4/7JeerflLKPiPrYFEuC7HwxTTKWLS1ZGOIKIJSJCEnYKymD5FfffuK+K/+X9y9ecXt/QN3+wPfvntLP4hAhGsbjMtok4VHttiH6lo3cwSsQesofJSUCq9JuvpNIz45RmuctRjjSyAs6zB8WED8vuLi4+P7Yp853uK8uZ7jLuFahepInkty5gNKGWKI+ElgRzPyYT6NQutqlCkdkbNa1SVkSmu90BwQFAWzc3gunXpFiFF+viiaL/eY74PE1xi2oieUYubESBG1Y5gmcqQkTnqG7Q1DLwmN0iLkYQ05F950KaZqI8/Vth2ucVjX8nDoeXg4MU2BxtpicmkWQj5VscsxtwR/wPEPSjKW5OZlQGYWScWSMQ9FXScXY6ksN8toxc31lldv97JxKk3ZCi6DvHJzyzP8oLJ9EZDND0hubvDDRcdhec2NNYQysWWwLHkMsN/v+eUvf8n19VWRI0w0TcFdLzoK9VqWA2Y5GYwx3N/fc/v+Hffv32PwXF9teXJ9jXV2brUZqneHTOb1es3hcMAYI5XOkunXAGnZWqzvb60YCmhjUClKULPohqy6FR9//DFN0/Cv//W/pmkE6rCEm1XcdIhSefj4449pnMUU+TRK4LBqLV3XltakQmEWVYBEnlWSFolCZnGPP1w0Hj+jZUavtZjUPE4y6s+Xi5NWFUqW52Eks3SRnD56X21qq/O8SdTFPaXENE4cGWdToZylW3Eem5fj8PxVv5fOiVbOhfAnhjsycTVaZ6w2cyBSthXUPL9qt+XHnWSk0snJWhFJmPJocspYDVbJa0ZVMc8STIp+hCSwExqvEhHItlYS5Yts0FnwzCSPNQ2NbVitujl5PxwOvH37doa2VGLyarWaq/41QZ+7nyUQXhKW9/v9DI1ZcgrW6zXH41GCDRLT0BPrHG5bUi6k3W7D9bOE0hZF5v79a/rDLV6pOcdVQJi7BdK5MDmjlCYbhdKGh8PAapt4qjqevfwZrdlg7ZYhKN5/+xXHQ89hf8s49sWYybPenJ2xYwgkBUQJqOx2W0abxrQNrp+KvPSIW63RWpGMEg8GJ6oqnXbEIYNOKBVpuxXGNRjrsK6R7o0SudFhGEQpa4FBB1nPhmGYeRnbm60IVATP/f6O4BvWqxXO3RCTwtgO13Q0m6e065VI+xYPitpV8j4KzAWNa1eMUyArsLs1NMUbJSSBVxmNcoabp8/Zbjccj3tub9/y5uFENg7XrOh8pG0bdqsGpQKty9zfK26T53d+/lO89xwOB7788ldA5mq94he/9TOOfc/79++5vb3leDgibsSRGDyrri1GhCOv3rymdpavrq5mpa3ahVLG4tqOh4cjL6+fsNttSSHxcHuP+LE44uQpxU/eH470w5EnV2s2V2uebjY0EdrpxythmxYhAlA1MmQ/QM1rb8p1jZXfWYTu5eeVU0HpIufSYS7dkJyIMZOVRJe5FK1yIXuPITP6xOTT3K1MSdQklVa8fnuLPx742U8+oe00mkxKcYbWKM5rS4UO1k6GwG1YXLHEUtF7cohlP9UobXBtizKGkCM+S9XcaIsBbg8n3r6/5Y/++E8gejFpjDAphVUttkByjQali2LXosP7uNBinSElkbkWtMZECJ5pHHm2vaZtxPPGOoMxChUFLVBh3fWo8cb83CosehFoy0067/mPixJk2UcuYwmF96EUKyLWNtgQ8ToQfMSaRNSiHhpjQmeIFbKbC6dDqbmAqvWHScZFUcnIhpVLklHl7E3hO6ScCZWvV1fVRUGxeorAZTxXOzK1Y2NMKdgrsQ1Yb3fk/RGmEW0NZClueB84Ho+lCJNpGou1rXRddINiKaFvpAhkDdpYDseBw2HAj4HkChclq9IgkGfQmEZ8TdJZPfDvO35wklEJ3UvYVP2qbe7lhjxj7XUx/1EiHXvyHmMafutnP+XXX9/xcD/M57vMZM9NULnxNWg9v2KZaFRzrKryIcTv6tadi5qAWLI/7A/zOeXB+Dl4ePv2DS9evORnP/spz549Z7XaFAKWKaYxMkgqLGIJNapf/Tjgp4mhP/Lnf/pfcHy4RSt4/vQJ19fXbHc7XNsyhkzbirPwcDrNQc7t7e0svfb69euLCutjZanVaoVPinwaxcxMCaQhxijXW5KpoD25tOCeP31G8DK49/s92hi6Vcf1zTXb4hvQtC1v377jD37v91ivO8b+wNifcNbQNu2MSa+8kFQkIo2RAH+pmADMBj4Vj7kcoHMXjLoBCOl5GbBXUzJgXohnmNIyyagTvSzMpclcFuSzIEHNYBV1TJ/bf+dWe1EN8hMxBJ4/Pye9yzlQ3zdngbCcKWvVVyDPO5nI6gqO0sA8YVOSyts8ebME3SL1KpW2Kon3Yz5i2eFzzhgKHEbQY9hMbc2Jd4kr1T5jSUozhsjpdMApMX9LStMDVtdnoclZuDcxJpwuDu19YMgeW7oV0zSxWkmQXTHQS2iPc26GpsC5cFIhUXVMVhK5c+Lbsew41urkNE40zpEWyiG2vM/+cCRlhXMt682a7fWOw35D9CeGcBKzRhIRjcqyIaKqJCJCftWGU3/i7bv3aLvipz/zXN28YLe5ImeNHzwZzTR6jsc3tJ2iaS3GttK5UJGuEVWYrpUugbGOKWSmmBm8RyHXuNnsBEle5nrbOMYc0CVBVBSOWgy4EkSnDMY6Qoi0jWW72RKbs8v3MAyzKlNVrqvQwf3DHnIkhomsMv0oXAWFottsca6l6Vasr27QtfsSxwvBjPosvBfvDV04Mbl0aVQJLk/jSTpOkyej+Ge/+7tcXe/4kz/5L4CDBAuFNFk9cJSCz7/4ghcvPff3D9zd3fHkyTOub54wTuL0bp3j2A98890r2aPajofDYQ4o2rYjpEzTdXz6+ZZ+FGnfEEqwkM7+LcMwkAmgLbN5WFYcDwdZU0KgnyZa50rVHazVBJW4P/X8l3/1N3z24gU32ytuNtf/tqf6v7Xjg/RosU/EYtZI6T7UmkwG1LzBMPvnoErDu8CllMoY60gFEpQTxFovV1KZjjkzBemcjiFyGj2n0UtBRMEUA+/ev8ff3/F1nPif/k/++1R1thQ9VtlSDJWCRH3GVdWuxlgBKWRVkQJTficn6VJFMikG/tnv/ILj4YG3r79lSKMkyxU5ojtM06LXGzEBHAaaccTERM3AQsgoY1GmwWZ3EcstYT21yFKLKcsCZde1XG13bNYrXNuK4pYP+BDEyDZLfFU7dPWoHeG6xta4aqm2uZSxvSSji3KpbOmSwIkk+UBK0i2uHQ3v5bU5K0JIhCAJpJxH+J6pCGw4Z+ckSHiuZzEZpQrPsnwZ15ARDx6NwlmHtgXKlDKxFBhjkKRIcTbwq8cyhlh+zsodzqTCOVGMo2cYIrurp3z88ceknPju1XfEIIafxjhJ+vyJ8f4EOrLdXhfbhi1Gi1+L1rZ0NiLkRAqZqQ+cDgP7hyNdbmmcyOc2s3midG58EEnw/L3+dh8e/yjH7wv8+aKKWwPgM5ToDGSJKjKESTZVu+LZ9VNa49BZYZQlxOmyxJwzuUhy1cBQvNukFVo7icv221LhReRMS4u0+GXkLK0rqVzLamOdmN0NowQaqEjTyOQ32qGVQykrWXHhegghsF5HJsREY41MbmMZxoFxOHE63BP6e1QcsEbz7PlLbLMiK0MqPhQxBKYSzNSsdqm3XhOnx8+gHtMo/iTjONKartx1+X8xbYpS/dQiNdc1DZ9//hmJjG0aXONIOXF9fc0nn3zMz3/+M9q2lQnqE0+fPCEGz93xBGnEthu6toPSjhNYhxi1zPH74jqXieB5cZCjBgIpJbJSM4xGFSzjsgVKkYKspKtYWrXL1vfcCqzOnWUEZpVQpVWYyPNmUU6MELfMvChVlYYUiztpNuQkBCg1m9HoxeKz6LCUCpR0EzMpB5FnNUoMwpIsGEZr2fRUdSbVoAKllHa+d2W+VR6HmFf+eI9UJWspSaVGeEON5dnNjZBxXSMeDsZIVVprfMr048T+eOLh1DOFiI8Zm61UE2eH7wJ10FUYQaGtwRVscU0Olpt53/fs96LstF6v547e4zb24ypb3RTquZZ8qsp9qLyOpfJc7ZKEILroabJzYK11aWM7R0pBeEUpynKW08zpUUpgI7mOd5UJMdD3J5za4nBcXb/gcHPHNIzE/JasLDEbfNRMPqMc2LmKOmJ0xhkt3QBdPn+IuKbDGi1eH5oZqmWSlpZ6SsRxwuoWbRtct5ZZZYx0aUrZOIWIH0d56Lj5ntV72HUd6/Va/IJQeD+hkM1cK0UYJ7yZQCm61YqmlU6G0kY29CSVPOGX6FmCeJomeR5W1mbZuJk716kEASkJct44R9O2bDcbnj97ztv9id4XeG3OHE5HrE403Zq222CbhDaO1XpD261RKFbrrXgnKIUPkXHyM0cDYJrEZThE6aLYSaAb2+125nNUfscSfiyO4WL8J9yZzCcff8Tr76Trudtt8eNEP030o2cYjkJSTpDSRH79jkMfGPyPtyP6fStgRW+kWs9Bil3nbrMQt1WpKMdcssTCy1Bl/9K5StkqUEbW7gQpSbEphURGk3SDMZLwhhDZ398TScQ4oYDr6xveHQ/cvn/D3e09Oa9oW4VxlxBYrc0FRynlVApQIgWtsnRXqtKgVgqVZW8f/Mjt7Tus0bSto2stBwIpCR8xo8C4stcZsnU0LmJzEofobMhKk7Qh54aMIyuBcS8hvI/hyXW901rhvZXETGnJWcpnc41hu12TNdw9HEo3X18UZeEylqyFbHmfD+FDH0CJ0GR1hhvFmEvRW85ptEAmU6yQrkQIflEML8T+FIuozBIds1D5s7qsyxI31sJmJXfXuNU5B0pdrCvLqn/tLi6TtcfQtOVXLXYFH+Y9xZiE95n98YBtWtq249mz59zf3wtEMkewImebUuBwuCtJUBAVvMYuEmpRjaK+J4IomIYRfd2hUGJCSiWmC6QwRhmj6d90krEcaI+TDLX4+/L1tYArkP3EFEWtw5qWm901jXGzc/SMiVOVuFUf3qIiXRaGM879kmS+JCjl2gl51PoLIc7VdhAVqpgCeUrk7GYzMF2C8pw1KSpyjmh91nxeLvwxBhQJW6qo4zjRn44c9nek6Yghs2o7rq+fYl1DQlO48gIHKOpc9fqrWYtSZ8WJx8F6/bMSAr33NPly48gpzuRQXQL01jk+//RTQsy03YrNZo0PE0+fPuGnP/2CP/jnv48xFrIiTokwjuzvbxmHntZWp/SOqookicW52vF4DMx/l298MKGqzBtKgheFDJgZ7lQyl5pAmFLJzCmXimK+CMrrhFnchfK756Bd6SINWiFIyGKvS7CSa5KRFNY5YhC8epiNyT6sRFy852IMz4myZk4UtC5t1iwJldal7lSVphbZWk1WrDrji///4aiJmCymlt12y4uXL9iUILM1Bm0tSotL9ugDp37g/nDg7ftbTsNAPwWIDSoHSBFPURsqzychiiHG6gvn7ktCnWxufd/PgS4wdzarIEPd2Orm8HgDPJMHZX2onZKzKtl5fFRYwHnjMGWAKJQxaGswzqKCQB+lO5dlvGRxXVVa1riUVenaIpvKcU+jG3S7olvv2OxueLi/I2FIypCyIUTFGDLOyjBLSVRurFEEa8kobIE9aB0xjRCpJSnQRdEoo5GOk8mgYsJZjXUW1zRMscAHTFF1KwWVMSeMabA2zs+idpFqV2jufoaIQvggBoVPSea8knlpncM4W4L1S439msDU9zD23N2INaCLsRQNinQpJe60FmMNbddyc31N6xpGPxFKcnjsTzgDT3dXAtlDY1zLxnXoornfrTYCo0miYONDZBjLOt0088oTYuJ46tF6nKGyzrmZrLqE4Mp4jbIXKQs5Qkrc3Fwzng44Y3nx4jn3d7e0k6cZRg6nB5FcTYoYM32/p58kKf+xHkmpS1HKsgUsk4xcq1TlGxJoUfaSogokyqtSLKuu2sXJW5ZZ6X5rpCI9+cA0eJS2mFYS2FyKXdM0iglbCuSUWG3W6MZx9BPfffMKo59hblZSMc8F9loclCuMU9akKMF/+VP2w5o2lf9TihAD4zByf3+PUpmucWw2HbfvKF5PNWaSpEhuh6y1KidCTjPHRGBbBpQFtKjKGXm90WfJ2YoyqEWx6qGlVKaxwhGpXjtKw3qzAmO4vz/O68yyG7FMJACm6cMkQy57Ucy7+HmqPaZzYJ9MSTbKs05BijVJknpxwn6cZORyz8+DKlcZW10VwSonNKNULdyac2yiRUwilkRRFaGWVIvvWWDkKeUZkTKv/YtjGavWdSCEQPIB6xqsSzBNHE971pstbddxffMU74WL4acBVEQU9TLDcBKuCJm2adDKkU0pambZV7QqIh9ZkWJiGAeUeUIu3kmU4osqxd1clcIeK0P+huMfJWF7cZSAv260dWGvNyzGCrOqkB8AjWue0HYtxipyCNIFyLnm3/KAH0FTHsOpJGD7cMB++Frm6/L+Q23fOrCHYeDpk+eEEPj1r37N7/z277PfPxDCxPMXT8vmpWZn7nqIvFcgx4htNWEaOe73vHv1ilN/5KMXH/Hyo09m/PdMolpgEpeSwFWVqlZU6/crb+Nx8F7VXkIsmD6lBc2fz5O1tiittfze7/0en//kZ5z6gcPxgWHo2e22fPTRSzbbFUobyIowRn795ZecjkfapmHVKlbdira9dOv8cEjki0TUGCMDPV8mIhd8itJcyqXKfYZI1ddk4Kzuc4aNXT7Hyz7P+VjCXOqLJD9JpbIiicFSfrgm0BXfXX8ppyQwnJIULlvKj+/H407fOUE+V8PLClzGQEJp5u5WfU3O1Wznx93J0FogdVoriNI5ePbkhp9+9hm7zXqeHw5J9lUBwnbO0RqNJRGHIw2RBkiTJaRASAmdEkYZskoiYWsVUUWmDCZ4VmuBIN7e3rLdbum6jpubG66urri+vp4TjFr5XsIUc86cTieur6/nv+92O3LOs0xsxc43TcN2u73gblTFpFrNrlDHFMVEE6NEl3yzJvieaTiI4RpGlEJQpDgJ/rfMBVX4UCpnYpw4ng58+eVfY37eYm3HNIyYtqNZb7HdmliS2qQtPlUJz0LsLEWhlDNXV9do05C1QTcC68zG0W3XNNYwDgOxHyBnGm1QTYe7bnjwlpAVfpgw7UqCvhDRhtI9yMW/SfDDVb62rqfH4xHnXPEQWpGCEK9zFKb4er2W75MZ/MiYIrnvcd1mntsVyloVmmbIQRY52VwKLtMkm7exVsIsJePNOkuKEdc0NK7BGcN06olTIivDw8MDK72ibQzZOP70L/6K02kgeNHhv7654erqmt2TZyQlwiFRSfd7GMWnRGnDixcv5jHyl3/5l4TgWXUdz58/5927dxwOBz799FPevn3L6XSaC0kie9sWDxjNNA58+9VX/OSLz2gaR5gmcgr87ItP2V7f8J/8J1+hlCFFOAyS8B76B759c/ffzALwb+CoXYvlUis8CcWYz3uKU9LtyVGgLFlJAi3BaZo5ohAYTsLdyVkRQxa/B+dw1uGcolEKg+VwOKBMYq1WnE4T+/sHxtOR3/75T3i433P7/pZfvXpLjEf6HGmfXvO//d/8p/yP/of/Ef+tf/G7YBuCimSTSIULoa3GoqXLli0J4avZ3ImhZDoXm7JSqFXD2PcCNRwnjDY8e/acn//Wb/P+3R0+pAL9qTyHIEGxH0XIYdORxlVRYUpYG3E6SDCYMpMXySSL7Kk1uZYKfhV8MWid0UaKdptNx2q1oR9PPLx7h1t3PHn2ku3umnevb2WN4wyPuizSicpmTaqhxmTnNQklqo9Q1xKIFEI1tUut0MYRo4EcMAwoAuSBnAZQXlKH0tVojBEPkpDxiqIiGkm5OLTrREoepczcYY4x4kxTxHYM/XAEldAGhjhIIVrpM7+zFHlXrmHMImixRP3UfaB+b9nVqjHrNHmmKbDaXDGlDOMRHzzvH14zJc9nn/+cT774KceHB95+9w3RZ7IT5/VEYJoOeH9i6I9cX51Yr7asVjuc7ci6wWqLaww6Rqah593te6ZffETjLFqJZHb0gRQDxIQtUr/2N0Zbl8c/OMl4XE3PgFtU9y6ywRKU51yD5AJ5URnXiF65NlmCpyyt5apUVPGS54F4qehCqaMtg/P698fXUSdbbXXFQmxeViiX76G0JqbE4XicoUtSrbczN6RpzoF2SonopSUVTgeG4wOn/R2H/R3GWJpWVEDqIKrJxVK6bBmM1j+XvIVlkFzf13svygWcyUS6ZK26iOYtfTuW3JH1ei0baWtpGodzVqocShUlCEXvB1zT0K1WhKnj2bMtbdt9b2Jx+czPid/5eaQ5yahHhZRUmEIik2Mmx1SkMuszYh4My3tQ4RBSnSyeFb/xyi4aYxfHrCRR7/Pyh+rScDGfu6MXcJn6jP4+MlT110glKI45zpulMUaqLEmC8Gp4RkmslE6ivfsjP2qeZ53h+fNnPLm+mvG69Z46ZajqHsLn8cQgvhHBe4KXNjKTQsUoCQaZpIvjN5BVJilmR/fNZsN2u2W327HZSGB6PB55+vTpHIDWavr3cc/atr2Yq0t1qUpYrv8+Ho/z73Vdd1FYqFrwAoeRdn3TNmx2W07HNX480jcNMXmRztJF1SZQTEwjqcClKvwjRE8eTrx+84a2/TV9P7DpWjIJ21q211uUFRiFj0Hw3KWyN3lYt2u01rNghHGiVofT5KCJKXN/HFi3DpUUtsgh+skLsTMrVm2LV1YM3wourlYU/TRhVKYxLU3hntU9ZEn4nPlxxpC8l8+bA6ZUT3Xhm4Uo93AKiXUWFb66ttZnUJO8EMJsmDeOIyllhnGcpapj8AyD+BFZ5/DKo6OVKuHVNTdXVwzvHjgcezabht31Fe1qxZe//BU+wtWTZ1xfXfP1199ye3fHq9fv+PijT3j16hWnviekwDh5XNtxdd3xxU9+wsP9Pe9ubxn6gX4YCcHTn/pZk76ucXWsaK35+OOPscYWyEVgu9lgtObdu7ccD3sGrTkeDvhp4N3rN+zv9/z008949/6e03EoksMCb40/UBnmn+JxRlafu9Qy4ZPoWJeaVFAgE8XOsUUJdYGSZCfZ22PWpToLYxgZpojqPev1BuMLpNVahmkiRk9IlvV2Rdc6ht7NflZd1/Ls2XMeHhLTKD4mf/JXf87nP/uE7c2G3/1nPy17jcE6DYUIrpR0ECTwz4ADLXj5ut7MBcayjnQlKa2+VwC/+tWveH97T9+PH8CszwW6zG6343g8znFT2zZzdf9xEPz4HOJHIQG5MQayzLWr62vUXnE4PpCmEZcDrXVcrSyHKRUZk4Uo0KKAWOOTh4eHOb5a+mbV96/7fWm0oFSNoygy0KNwxsiEUpkPSRiNSptzdyFGsjLCS9EatBY1uijE+Zwv4UzLuNcYMRwUhdBICBMphcWadgkLh3NcZIvPWF3vauF4GUMsY71hGDieRPFptV2zKjDOUy/GnH0va8Zqt8XePMFpxZvvvsbHiZyha7cEMxX5cM/Dwz3jODEMI6vVhs61NLZB6VWBv8HheGQcBXXktCFbW5I5inmpFEN/KHL7H5RkLLHJy+MSs3cZLFdUUQ00VXmmKSVWm5b1uuXYj+Ss58Xh3Av9MFOaN/2ShTzGxdfg/DF+em6vlUGmOHdHlhhrEP3jrmsZ+gG/PUMbRCHGXATrdfAkrcgR/DRyuL/j+HDPcDrSdaLN74rZ1/Jz1KRpbkcuEo5ll2O5IT9O4qph1mOOgGka0ZEv96K+57wBF8y7UrBadagCezpH4nKepbxn27YXGtffNz5+0xjh4rovx8y5ZbXoalz8Rc0/W573nIDIK6pe/286vg/Wx0X7dkHquhg/JbFRgpvPuTZpL8fXssOyvCdLaN15ATmbDeVHVbn62c6f5uzh8eMNDeQoRal5bK1XG1bdBq0t1nZn91JlJE3OVT5Sk6myj4qU1JmcWcbtedjk+U/ZlOt7X86Dx2vH932/zlHgAnL1WIRhWT2vgXA953q9pkID57VkoW5nFDjjaJsWZxuMEfK1MUVcgYzRCawRKMTCN0wDOmdyigQ/Qjxwf/dOKm1Pn+JUQllDu1oJX6hW2GIUFS7ULPVrEBhKigLDUSicsfisi7mhIsRye7NUhrUFiyEp8clQyqCzFu8kVZ4XlGRPknmj9dyhkvVaYAtkFvcmlkBCIfwv5L4Yi9KSgNaJUzkb4nJbZGm1mjfG+rpZfapApWyBQIScCsRD4ZoG8KgU8daBEWVEMZ0d6VYW41q0a+nHE0pLtc/ZBqM0fpx4eNijtOF+v2cYB0LwIuNppTp+c3NNfzoRY6IvxnuNc2hgvVphtBbZ7H6YpY+1NjTO0bgGrQ3DOJJR+CjyqZOPaCLjODENI9MwSYdbmRmmkVVRSFqsWz/GIxbqGgisxZi6D2Sskq5GzTlqx0PlxTqAvKb2vdPMw5AkIyPyxCEEIhPWFh8qq1Haiqxy4fCYGjhOsSgG6tk/StTADG8fHvjyq6949uKGzz9/wWq9wiqNMmcxk2ruFryHLNDDlNO8J1Vhm1pIrUW2zWbD1dWVfK6c+fTTT5m8CB08FldZ7st1X6/ok7q2xXj2zloG13VdlO5uIQ1nipBLFSdo6dqWtmlIacQSaXRiu7IMMRDyh+NuFgiqxp/l32e1zUecx8Xnqev8OVERUYpqaCveJuJhUiK+suee1R4VkuABhBQhKlTSpHwuANd1/lJSVs38Wa0z3teYTfanx/tKvYdmYXRYv6p3kLX2Al5b37OK95DF9LhrWyafSVMucHtJCLq2o7l5wml/z2k4knxJxqxGE0jRl/P0JS5MpGYkugZtEugG4zPDoJm88AUxy+elZvEchSb/wILnP7qTsRx8yyB5uZnKDZaLq1AXYzRKifb5Rx894+G4583tLTkudOFVVZ0plQoeDa5zuAicvSWqSsky2L0M8BYScqp+L81E0FzgOU3b8vz589KmHksnJDJOPV3XstmsL6rbSqmyaUqS8eqbr7i/e8s47Pno5Quurq5Yr9fA2UiwwqCWAc2yerB0IK6fsf77sqMhxkHGaIFSFJxn13Xc3fcSgD06tBYYRgZsKwtc5SfkkIk5kLUslk3bMg1ufs4KNbfxlhOpPv/HmfjydYqqDibfr6Y5lZJTM2Wl9d+pwVzPu8RfK0xhBD7aPOs1zve55lGF+KREvq1WcUIICz+UQrQr5zTWSCUwVv7Ph4tQrTzW53XuvPFo0ZLgaInIzFl4JuKnsOzKCGckl+rzj/0QQp3Fmo6mWePsGqMb2uZK5pqfCFqwvTElgQ0pi7Ytrolo24H2JDyeKFV5VYIooK4Lev6SrlAld+ecubm5wVo7qxmt12vW6/WMj4YzL6NCbjabzWzgVOdvdUIdhoHdbjfP2+U6tOSATNN0sW7UP51xNLaVcawMTbNimkbp0KSIVVkKGcoQAUPVzhffjKpVj40c7l9Dmlg1mt2mQxmH63Zk5SCL30gaRpp1x0pbLAmXFU6JfKMfJoxu0TrRNpaRiLGObn3DYb9nnCZJAlyL7VYYNMRIwmKUplGGJgo3JmctELJWoGhaGSE7IxKPMYpsptHIGC9wFa8j7aoR7gEy141rsU2HdWta12FzxhnR53dGC8m/wPGkKjwSvSdMI2GaMLahLQmDwNqsEDODJ8ZQ9OdXtDqTrGHoew7jxN3xxLE/MU4D4+TwaLJbsd5GTvsT/cORd0Ng3B9RPqJC5Je//JLNbot1mpw14/GEURBXHVplus6xWXeSGK5aVk3L9dUVv/jFL3j96hXffvstr1+/ZhpGwUBnGI4n7JVltd0xZXjz/o5hGNltdkzRSrdHtzzcv2XqjwQ/oUzDEDIhKZIxhQOpcf81zvd/08c0KowRHHzKWZIMDVYbWqXISZESIgbhEzEWQr89F5JSzHMQK0ULTVKgjELbljhljuPIw+mBVdfSNY3s/dsnxCjqRPf3IykpurZjHHtCFBUj7wNC6G5o2o5RK/7Lv/xLRt/zz377p3z80UvWWaGTIqkoSA5kHx6HgWAUbeNQRhSRUlm7uq6bFe2WnKOXL1+yWq1o25Y//MM/pB88fT/OsriwQJ4s9s4KU6xQzgr3rEfOZ5h17Zy0RfZbkh2FMZu5eKyMqEw9vb5i7O9oVaLJnme7lvshE3xNKC7J3jX4r0H88u8VKfC4g2wK1yvlNHcG5kJdln3SBxDnJQn+IVN5TNLLYi5sSxE5EXIAA10U2NVyHV8Keugik71atXivOdsgiLgJXMbGEjsxJyaVa+G95/7+ntVqxXa7ZRiG2bup73uJ1YxBqYngJ4zRbNYdp2GCLNzOYehJRaFuvdni+553d++IB4jjgDUOqzPGBEKY8MHTDz0xTgzO0LgGn0a2eUPWHa6FcQps1gs/OKVK06fE0+pSkOLvOv7RnIyLKmC+rA4v4TKhGEtVgmsSiShSijx/8Yz7w57mr/4GGdsKUdupg/D7qy01b1GcNe2XLorLjBCW8CkJHK1zhbR0lq1MBWe/2WyIIfDVV1/xi5/LQ7+/f+B4OvDxJ89nnO9ms5lhWPLesuH3pwOHh/eEsWfTtjx9+pTVei0VvkVHovIuHrcCl1K19dpr0Pr4oc6V/HKbXNOI/JrRqCLnBnluvy+JV1VHOWfRyS9xOG3ryIVsG0JkKNjP6lFRb/4ygXvcSqx/rz+77DzleaFfLh6xuJtW74hlkiKVEjU/p+/rnNWOw/cdNalIhRC35GRAnv0+6nOhXlMZW7mcXxbckig96qgsO0/LRen7Kjdz8vU911rNgbyf5JlQOymUufFjDg/qUZM+EVdQymJ0g6YhpSD3XU3FeAwsEggobbCuJfiEn6KYYKGJGqJGOlCqVq3kkAq3mqWT67w6nU4cDgc2mw0vXry4gLotychVASrGyOFwmDf3mkzUBLPKTy+T6rpBVr3zZSexJqG+mKaFJJru682O4CdyDEzTADmJy7XRqKyLYpkuhQFQhaeTdC16TOzv33I6HKUg8MUXWNtw/eQZrunQwbNqDFfrLc4qFBGITMOe3DS4psVExeRHMAabO6w2KCMJhNYW4xTZNLSrrajTJNDes1uvSUrWFjGwnPB+onUNUUmw58eAzjAhgUFVcXLWQE5E75lSxE8D4ynPWOj1es1pGAhJ1JjqPM4ZrHFkl2bpspRF8CIXHptWisY5glIY40hJAphf/+pXQmAtxS+B80p1OmhL06y4unrOZ59/LotjfkMcJ/70j/8M5xpZb03pFITAOAwc+xOT92x3a3ZPriQo1Ja//eUvOR6P3N/d8/r1a1YFQifcniuStQQ/4see66stzn7K4XCH0Ylp8mUfusVHj4+eKSR88Ewx8vb+nvvDCZUSKUx88vIl+InQH3n/9pY2KToMBqk6y0744y1WhFABD9LlCqFIwKiMVUn2ESs/140ufjvgg3SFUo4MIdDqDqcbWVdRpBAZjgFtLGNI7E8T1na4ZBgDnO5OtE2HNo7GKPb7u3NXRGn8FOcEXGuLcx2r9ZaXX/yEh3ff8cd/9uf8r/7X/zH/vf/gP+SnX/yEjz/+BLNWGKslObeOceiJXlQhs06oImIhe4LEDBVNUNeomnzsdjuMMbx5+x5rHa9eveLt27fzXjtN04zWWMJ3KjSpwhHrWlj3qaUCHNSYpPjmuNrVEB6HMZrWGoZpwBBprELpPI+3+jmWXWOJ4c6FHTjvt8tORoWx1vhOm1LwLFNfioSl+l/OkcjFL0Vzs90Q/UQMHj9O6Byg2ByM3oMx6GyZvBcSetlHKmdiWWBPSawSXFNhmophGMpnOSNRasep73tikpL5Y9WuEIL4qd3eknPm6upqVplbrVZYY3h6c4V14qPlQ2bddQSrSdky9CdimEi5RWnLx598gnYCBUt3d8WCAZocCXHA+5HJj3jfExP4YPDRM0wDm3FNypGvv3mFyqI2qJpGnDKKSMbkfSGL/1tKMj6AwcAc2y0DvvnvWhdoUh3c8gs+BA77PcfjcX4YOclrJCj9OyrZSJxYYQmPq9p1s5eA4vtgOmfzF2AO4Nu2pe9P5KwxpiWlUEy1Mk+eXlHVf5bk7CWUahx67m7fMwwnNInNesuqWxWizCXc6XHrbxmcPA5Uv+8ZnDsZNfiX7kw1WXncwajnmZMapMIr+vJnjXCtDWku94OfJqbpssJRn8DjsfA4+L/oepV2cP2Vi89fOjGpBNOqdAgySzjRhwnZxfvU+/rB3Tpfz/naz3/mTOF/LOBSy+rGrFpT5ZkpHZnLJGM5/r53jize9Xy9tX90/qliMR6oncB6xxXi/fL/P4eQbnVRLzLkHAhRuCqyUUDFUCulsAZW3ZpTP6KLe3M98m96+Mg9bdt23pCrVGolGlco4Fwlg4vNth7LDWI5T5eGfF3XMQzDxe88PldNZLTWqBggCGmxaVa07ZqmXWNsgwlepEq1RaUkSUftzLFI5gvMT4o+mRg9h+MDDw/3WGMYh342kBR4jjh3Ky0Ke9qaoliVyn+RkAPjNGKarRg+IYUM7TIxK2IufBnEC0PWeoEx1Kpo9ImkEFO8EEVeMkxYJ8FNY8SkLMdA8IgfSAn8ceXPIg1qtCFGxel0lK5FLcgUicoKuU0pFwUsMbvTGiFFl4RRKfnMPkwXxRJZ9qQYkkJCY7jeXfHTz79gu1rz0bPn7B8eeHjY048j+34oxS55Ft5PDF78Eq53W9pVB8j17rZburYjxjDD6mo31xhN2zZcXW14+/Z1EdZQPH16jTXPSClxOvUMxUfBaJiSJ6eJGEeOfRB9fqXQGfbDRKvBNB3OtRAyJikcipQ1gUxQP17DHR+LQ4LKpByxGUxS2KRRxVsiK0gFrmesGN5mpdBWY5IEn1pnEp7JR1Bu7jSaErxeXW05noSvobPwkoYpimmodRjjRCI1CdFazBUF+peTrO3aWNZX1+xv33A4PPA3X/4tnz7/CJU1V1c3rNsWpc57vzXSzUsxkczZDLTruov9ZSkgU6v+NS5ZdSuur685nU5z8VVrTd/3TJOfK+h1HM7r0CL+WMYLdY1JKcGiMFiTjYJ8LHKtgRQCOSSil07K6Cuh+1Kgp36elPJFUgNLlaXLZ18LerWbcEYpxPL6c7yQlXDVyBlnNTe7NVOfCVMm6MjkI1lnlDZMMZKTIqs4I1qWTuzL91fGogofRe7998fFy/tUj8cJXP37kotVBUcqhEopcEbL2pylI9JYg8IQk8anwOh7QmhQqqFbtVxd7fBx4uFwQBc1LaVFj7kWbgMZlPh6xZikMDSO7A8H3r2/5cn1lhiv5DNq6YKmFOc47u+Kc5bHD04yHp/w8t9qrv4uf6aU4GRlQxSsGkpeN04Tb9++4/37WwFEKTVX52qoqHIJwB49xMfB5rI6DEtiUVEc0KXcr/Kioi2vDSHQdSustXRdx+GwBwzXV08JMXA4Hogx8OLls9nZvC5GqlxvyolpGjkdDrx985pp6FmvGjbbLU3TFWw1VHjNMouvfz7G8S8nu9FmzqrltRKaivSl3CC1+D2pxJ0TkNraOycmJSdRoqgy9wyRjL9W/iHh/cQ0CtxAFVyT6I/XrwKDWpzzEi7FPAmr1O0HCZdWZdOvvhe5juJzSlAG9bICsPw+OaP+jo0zlfOeQ/vzIVVlXcZGKq/IZfEL545GWShFni6Vgvy5GlED0Lqo1/t1cdTPJdmU3Pf5NXk+5/nn5x/lZdvqx34s7kvdOCTIlYXXpwi1Q5RlDdFKJFTX6x2H44A2I6SFWtyje6ZK4l2fUds2M9xgu93OiUZVM6r8iyVXamkcVat5dYOvGzgINrmSP9u2vYBFLQm8y/lfN5EcPElrdO9wbkXbbmjbE851ZewFUXvCi24+l4WcJb7XWltcveF0OnJb+BnD8SSQICOcOGsN6ARGpBdN28z3HwVJiWzn4Ee2q2u0tdJVahzOWDKa2/sDIWcJ5Fxb5BtlfRBSqZADUwwluEnSsVSZ7VYgT11j0TmSQiKkQPIjWpfARzmUNeiYCJNCNQ0xJE4Hj9FS2bTOCfcseVIunJIFZDNEUQprnOV0YoZ6tG3DMPblecwjpiRpmhgyRlturp7w85/8Fp+9/JihP/H622/45S//lldv3nD/sOfkJ7TRNG1D8AGfRCmxW6/QxjANI7fv3/PRi5cX6oLVvHFJvN3tNvzlX/4Fu52IEzx//oSbmxuMsQzDwLt37xj7gWmcmIaAxpPTKNyNpsFaR2Md7/cHdquWTeOke0XAhkxTgusJtfAJ+vEdU8zFY0iCXBspiQEkU721AJPRRqGVQKqsMYDAbJRRAo8JgdGfaN0WMsTJE8vzXG/W9OO9JGZR5tQ4BKzJdLkQfz2EsPAPiLIPxVj2Pm1Y77YY1zCFwNffvuZP/+wvsabhiy9+SrOR9U0XGeqmqguVwpZSee7kLWGWj5OM6quy3+8xxswCF0tURO3enk7n+VED2vPeJvf4caIBssc5W0NG+XwhBFAZoxUhepIXPxiVlDhHM3IcBlIqZPtSCKnxweOCTrUHOCNlLp99XTuttUX1WwtsLp33xkzhPEZRE200tI3hydWWUUeCE+jW/fEkQitaMZb1LidVOExpvpaaZMzxZXmnuj9ISFU3tPM1PybeVz7cLHaT87wnVGhbSom+70uSe1Wej6axBu/HUoBNNE7gajlA8p5xOjH5hphWaNOw2a6I3PDNd68gSWxtrMDr51hPK2KW55eVJNHjNJEOgXfvb/nko+fz9Vpl5jhcF5+xH5Zi/COSjMcBvuKspVxv+lLhw6BKi18IiCEmhmHgm1fvuH2AYexQakcIh3JeXQLGulJcVvO/j0R7+UAzOUeUjvXpoo0VvHKtHufqvqhpXYNGEX1mypHVas319Y6bJ1vu7t/y6Sef8dHHL/nZT3+Oj0e897RNRwiSKaecCGni/u3X3L7+hvt3X2MaTbvZ0Kx3pNwRozAgsjpX48/Xfa7Wn510W0IoXAstRKuUEtGXCVo+6hwAqaLMpMXltTqUdt1KdLxjzco9SmWcE2RuRjFMfoaMAVhl0NkgXpATOQ8oNdE2hhQ0sVQsnDNzUJ9hrtzIx5NnWAnUsRrpqUsd6HlspUya/AXHyKdAzuIqWTqa85irMqCVvFS7ZbLYX1YOZGYUPeuiky5XLGpUShvW622pSkF13hayaSztZEtOFmvLglbUbR67ntZxGH0gG3GIB8ltNSUAmiRQNEZuSKwLT8qEVCSIy3lDjIKzbso9U/lHry4lCWclx+e5UmSUQEf8JB0zXZU/OHtN1M1nGAZRlsrn9LimjikL4ViCeEvbnAnU79/fcjyeOB6PMw+rbVtev37N1dUVq9WqcKcWG8oicUzp7FRdVaIqb6Nu1iklHh4eLiBRdZN63OWq7tEpBKKPaOtYb64EUhAnuuMDIYliijFN6ab5i8SnrntLaeuUouDDo2xY5MxxvxeTL2OxTjaspjEENGPKNDlhMYL/7TrsaoVr1zSrLdpakpJ1eAoRlRJZafanIyEKRM26iZAhpIwP4nY9DhPeJ0R7X5XkwdFYRaMVloSOXp4bYpDmnHhI+JwZTommKYlEijRWPDg26zV9v6dtO1brtcA7cyKlVelUrQCpLFcFHRAoaO1k12KIMXp+piEE6Ya1HRvbQIrkGFivWk739+xvDfHqmvzxx2zbluwc9yfhaxxOR6Yo63dO8Kd/9mdYrVm1HU+ub4gxztK0j5UJvfd8++23/O2Xf8l6vZqDsM1mw5s3b1mtOl68eMlXX33FcOrJMfHkekfbNWyHNd1qz/39UQoiOdCgebjruUuetdZsjMUaDSkxTQOeTNSPorcf0XEoVXitFClb7u97IGOdk85YDR2Sp+sy1hms1bi2dI9CpGlamhbUSqSRw5CZxkjerIjZMYTEoR/45JNr3rw58P7uRPCJtnFYkwlhYOUcKksFXCrPDamR+dw0LSEKn7NpOnZXN/jTkftvf81f/fKXjD7gU+Y//A/+kCdPrths1nSrlsZYspYK/DQMJCfze7vdfq+gTUoST93e3vLdd9/x+vVrxkkKXpvNhuvra/q+5+7ujs8++4z7+wf2+z1v375lGIY5hloaRVaoUs555gc458QgdV4LxYuhwoxzSrx985rOKLq2xV1dk7SlHyNvDxM+teT8GAZdZfrtXNVfFnLkc14WY+eOjxWuFmrBxagIiApjT4EcPd2m5WbTcrO27J68hDRx3N/z7duJ0xgEJtS2DF7WL2IieI+CeZ2vyVFKIklLliJHDJFshAsm5Hc9d7WWsUHTNCgtfK1lIQu4kDWvcLLT6cQwDKXYgnhVpICfRob+RNNssEakf/t+T4w9+0PiePeOaei5fvKU1XbL9fWW4BM51XGTZQ+wVSo3SFdPVShcwk+B/f4BX+B1cl2SqKQa6ygtncIfcPzgJGNJYF3Ce7TRBcd+CWmRC84zBIbMHHSmlLi7uxfS5CJRWA6U+e+Ln5zPLQ/5MQl2nnj5stV3kZUXbfna5m6aFqXM3Hq7vn7CZrNFKc3Ll8/45JNPePHiOX1/QhnJdPs4MXnhMaATp9Mdr1+/4u7tG6Zp5OrqipvrGzabTZGFlYcHxYhtAbeQBEOx2WxmKbpcBnFpuF5M/vocpNIuWEapqqu5tyitMY1zDcF7pmkoAVGtGsQLbPgSXhaqZ4lSBO85HU+Mw8C2BGXGmBmmAAXuonWRYs0XY6C+x3IM1euvrcb5WdeqPh+Oo/LNi06Z3Cch5FstFZ/5PBe/uoSlLcZEzcQz8+fNi4T23MpMc9W5BihzzUKp+Z4sx2DF//sYiSGUCtqyy3OG8S0/f628kypvJhSDJ4GQaFVkbH/kR904aoIh+P0BGgTrGyJpNsqqv3NuPzvXoo2YP1VVIa0zWolBXELWAFHSyFibWXUNbduyXq9n7LLg3O/5+OOP57FaO1I18KxJLTDLWS8rfHXuLD1sltC5+rpz1es8J6y1IrGIhiQdSmMDxraC5+62hHFisCemJCTQx8dyTtTOYb1fMQXGcZB7qDJN67i63vLi5ppta9msG4xRBD9hmxWQCSnhlCXjyFhQDca14qqdYYp9nUiknJmCFzz1FBh9YJg8p35gHKeyrpY1JzITZjWKccio7Bn0uRurjcYV0z+lNdhEiBbrpQoatWaaDNGPrFYroh8JYSQbI8FGURqC816ldS0oiMqXQPIghGkmcZ5Op3ntTTFyOvVoBVYpnNG4tsU4i7aa1lnWbcOpcdgEOiRa43BXN9hVyzCOhBi42V2zW4v79zhOrNdrnjx5gtaaX/7ylxwOh3lcXV9fC9ypXZOT4nQcmMYAWTw/7vWBw37geBzJIQt0x2ectmw6yMmjpolpiuSQMOPAVdOwWa3YtqVTFjx+7Es3DOwPM+v9J3n0k8dZ6cY1zmJjR0zihH44BFFczIkUetbrlq5xNK2mW3Vl3CqGMUCOxTSukQJVyjROAmMxsFWMQyJjMNbNePscA5FA9rKWqyzFQNnXAfJskjv5QE6a9WZHunnKcPeO3nve3L7nL//mr/mtn70kZ5HXh4xzZ0UlXVyoZ08mVYRI1Iewo2ooClK8GAaBK9aAVYLWEe8lcLy6urpIVM7og0uYT/0ZCFTyElFS9+qMMZqcPVqJt8gYE/fHPYfJM2UJvOv+mx/t5bWDWNfMJSR1GUssC7QpJVDVx6oWB88w65wFKumMElWlSbHqHE4VgfOV5fNPn7M/jtztR97vxXwXpQkxXnSil12jmmTkYqpnbDdvUnJdci11bi+5LDUuq7EPSKIyeS9Ii3z2S5umibu7O9brtVgMGIkrGj8xlsRHYpiI9yOn/kB/2jPsT4z9wPv7W7a7K56/+Jj+OMi6qzViSlh4jiaTkD3NGOmMKJ0xJhYDz3gRb5ILB6aY8f1QUMV/JTO+eaAslICWg0EY9erD18NMkll2Ix7/WV9bjw8CT6mdX/w8Szmz4Nc/nJACY8mlMq7nBENrU2AUu/nrk48/5sWL5+x2W8EBm/o7gb4fSrAYOfX33N/dst8/EGNis9my2WxLe1ygNefN/0wKrclE/fdj8vDy2pfB+jnJKAO7Jiucb4fWWiqQ8dIJtz4Xrc9t18f3vD6zWCbb3J0ysvkv7+vy2S67XctF4/Gzrd9//Du5RP2PqzWPf/c8vhaYxxqMUlWsLsfGB4dScyKndakC50ufjOXYnBPDedwtunmPFs6qdPZBVyWfz5nn01zeg/ocxVCRedGHhDXg3I8XSw0F0VTuWUxiwDSOA4Nt0EocU0MJqGuhJKUah9aF2J0rXVoCTKmqZVQ+w9RyKgwDJTucdZambehWnSiFlc25dgYewxaXYxDOxEO5pksoQa3CwRk6t4RS1WO5gWqtiSqKJG2SIFwbWxynG5xrC9dBVM3kBi6S8Dq26uZaqm2KwoPLmeCnErRknJXOzWotMKW26yRBU/J+KUVyCuQsZHylG4xpYVGxSpVlqSDmiA9e+BZ5oh89/TByPPXEkETW1TZolUVoAiGaB60YKzRqsQFbY/DFI0M2s0wMmlB4ZqHcs+BHco6E4PB+JBdXd60Vq044F2IWpgU6loSfsVo1AomJiVg2z1j8NmKUTnfKial0ELPRGCzGWpEUthXDbnCmmFHFiDMau15hWifnD4an19fsVmtijNyWqrBzjs16zWrVcX9/P8MiKjFdO4f3E+M0Mo0e55pSbc7s9yfGaUJnhUX2K20VzhhWrSV0jgmkehs8a9VwYy1P1htCGJm84sgIyZRh8+PtZExTImdZI7rO0rRWCLGTp58SwSdSiIz9QD9kujaw6gxr36CtRhkZu+MwknPiE+c4PZxIIdO4TtSHtMIqTR9iEZxQBJ9JIRJTkqw5nHmROZcZWhLwWLrTIpXraLsdaedx6x3TcOTheOTb777lq6++wlohfRulYdWKMZoVERTZ5yMhSRdS6fM+BedYoO7V4ocwMgx9gWhKJ3QcR/b7A3Xvqt2JywTjwy75MsmYi2Qsa3mi1NRYLWUJI/wBHwL7w4mHcSKupDv8QfQ2v+flfloJ6Mui4OMkQ/5SUrNcESq1mFvWwxgF5plE1Mc6i4oBrTNtY9h0VzRugKQ5nXpiVqSg8CESwzm2aNoCc1SanGVvBoWePG3XSEy0kEGuBaUaL5jlnl/GyJxUuEu+rqpGfkGERsRTJePWDmOLYaixHIeIrjyNFJnGkRgD+8MdYz9yGntGP/LF5z/Fj+KtZLTF+4DRBfKtkow5pbHWlXUzY1yt7kkkaApSpI63StL/IBz/DccPTjKWQe4y040x0nXdPBiXN6xmlQpV8L5Sya/wAiFMx+8d5KkG4FpdnPfx8ZiUU7Ncpc+E3hmSUSvwc3ZqGPoBax2rlePJk2fsdld8+unn/Py3fsEXX3wxq8M8PNxxPJ1QSrPutozjQH860PdH2hYO+wfGQc61212z6takCNkughGVLxeHnEuCoy8gFvXeLDsw9Rz15wC54NZTlhawXbwOpbDaFFJkusCPy704VwSW1YO2bUlZF53totZlzkZpinOVf/kMlu2+5fXWAO7i2aazks8S4vF3DtoySWu2X89hTBXzLJAsLVLC4oWiH53inJCRkmwAirn1Tu1kpDwHcyGGi85Y/fULeFQ8O3/nnBeKY+kimUo5FffUPOfHZ36QcA5iCjNsThavJMFPinRty4tn67/jJv3TPzKalKSaqMnc3b0lRSFbKm1ISWBinVs4xC98IXLONAacFgnvrBxZC1SQAs/UKHLWaGQOGG2pkMKYBerWtA276x3XV9eM08DkR9rUsl6tZ+WoSsaDs0pIlY1cbr7LMQ+SZLRtSygdmipt+5hcWeeGdaYoh4xgFViNslagjykLEX4KBX4nVdq6ZatSwBBSuAxOXRItazVED1lhyvuOfuLheESlDqU0q7blantdzAfEP8dPsLtasd3saNZb7vZ3BT4BPmVi9oQk1dpxGhkmzzh6joMofoWYmXygHwM59zjrytoghZxh8IyFwFhV+mrFsHImnHMoK5t2pmLHdcFhwzQKlMA6y3acSONAHAY2qxWr9RZtLDFlmm7L8XhgGEa6thAei4QjCJZ8ve7wfiD4iZQy6624jUtPROCLtutYb3c8vH1LTpGcImtnyTGAka7Xr3/1FQZFYyx7e8ur46/IZNpVx+vvTiWocPzu7/0ux8OeaezZrFe0jWPTrdh0Dd6P3N3d8bDf8+bNG4HICYKDYZxQCZy2/OQnn6JCImePAa7XLV5rxiTQDTf1xHFkt92we/IEbRWH05HTqcegcfbHq1I39YowBFIT2a4Mu40k3OM4cPINpwP0Y+TN7YS6nbBWs9k0PLla0a4tbi0Gbd99feR4GLCu5a/++EviGPns48/46JMtq87QWcOpHzHK0WgDUXGaDoTJE30Ae+Ywjn4ixYA2YDuHGjpMSjRJi+9M1+BpcS/29N/+Ej8e8K8P/N//n/+Kw/4IUWOzSEgb3aCNwqVEVhBITNnjlMIoC0HkvanwYyWw22EaOZyO3N7d0p96jHH0/VAMKOH29gEqMT6fOQdL+GXdg89ogXOcN03T3E3RCLfLmUxjM6tOsWs7Gm3QOXPse46nnn6MOLcTXumi8LiMb2p33xhZR2siL/vnZYIBlxDWS1iSdCiNAaNBJTAYiY9yJlpVQdK0xrFeN7isMaNiuA9oHcFETozE6EhBrq0fBpqiIkVGIKJE0IE2BNAObWxRyY0kkqhVITHDVNQFU4ZQimijl4SwaZq5eJvRjJOfP6s/9oSYCaljtd1I/GwU1jRM4x7dCjTeWFV4Fwa7dngtY3GKo8h7O4fCYnSH1QplJ1KeQHnQLUo3WGPFvV1FlPY4K1SClWtp9Fnxq+5/KDWLgfx9xz+Ik/G4qruEAXzfa7XWM35tDqpixE+TuN0qPQfMFaO2TGBqRbfe9IqBln9X7OVlZCrxtUbpfBEIVsy01uLBIAPVlAC6Zb3esNtds91csd1IJ6MGycMw8P72HW/fvQcUV9srVM70pz396YG2ifjphGs0z548Zb3e0HVrmqabseeoy+r93FUoGXcN1JdV1Xov62dYkorldxPbzZqI5jge5tfH0tKLnBOA87nOLbnL1ufiecZE8OFcmXeW6+trcZuldhwuK71LTs7jlmd97eP3O//77IVSH+fjsbB8r2UHQZQPBJYXglQj67nmnoSqbeZzkkRJfI0W/W9tDDGK5nZMwmoxxpC0RmZfaXGWqu6ycr28l/W9tTGYfNnJSSUQ1FqTjVRFrDU155FKdCru46qIJtSqYxap4XE8qxb9GI+sqtdIJpJ4f3vH4XDk4eGe1fpGYFDa0DTV9EkcZpWqY0oxjRN9zkTjxFMEMz/xea1ZcGuMNbRNw6rr2KzX7K52QqZrHOvNipcvX7Lb7ei69qxcski66xhcymIvNd2XZMaKt63nWK1W9H1/hhw4d9HFdc7O7vYxTWhrsE0L1oqkojZYrTl5T4zFAbtINMoNzecxXWCTjTaobJhCYJyOsjE1DuM0ykiHbAiRdQaFGLZ1q5YQvFTRYzEWw7DuVtKxiIEQI4e37zkNI6dh5P5wYn840Y8T4zThc0NCk7JimuIi0TZYJx0KnwKJhFEFOjoMoGTWTN7jK8/FucLRlf+cNRij5Fm2DT54UY6ZMmmaGA4P3L9/z+k08ovfN2yvrrGuRRlL027QusFHCZZiko7ROJwYo3C/Zk8VlTE5I5QgjTWWlXFsmo603uD3e4b9A6fDkevdlpvhivtx4O37d+SUcdbSGkcaR7quwTrLar1hvVrPyn+Hh3taZ7m52mG0Zhp6VJogWjSZ7aZhu32Ba9e8v7vncDxx/3DENUUEAc0vv/mG50+vuNqtWLcdXh1hygzhSBwyV5s1T7cb2lWRRZ08p+ORzWbDarNhvd381zfp/40flhQnxjFwf79HqZa2VaxWa14qx7GNrBqDyjec+oFp8jwcT8Twns3UcqVaTNNQ5GjQ2XB1veP23Xv+iz/5I357/BlPnj9l9/SGbdcxTDCmyKgmsgpkFUELSVZrUySQDcMY8aM4MWukk5hCwKeeyISymdWmY9qu8IeRvu/57u0t+k//gof7I81/9z/AJ89mWrO5WoHV2LbB2YZx6EkxYU2DRYlRXzoXtOo+//79e169+o6H+z0xZrbbnUDu7h7wkyflCKQ5yaiBo3OuEMgDTVOLAmcYdY1NtDmL8xhnaVtH6xSto9wHi1GGbrXGHSZUmISvqfOMMFh2T5adisfQajjHkrWw+LiQXY/69yrVS6bI26bScc2Mg0cgcop126KVpmszXDfcHB1MhjwE3j0ciVnWZG1gnDwoUxzDa3FVYiWBqElHomtbJjwhnBWj6mdcr9cF0ncu9FaESN0Huq7l9vaOJUJn8gPjoAjDhu26I+sRryZcTvjBk1Bs2y3jqUdZ2KxXGAt+EPO+t2++o11ds11taNstWSlCcKTcgIqQRQzBaEuiGNvGzDQE/vxP/4y3X/0tNzc3rFbCd9tut4DsY65pf+Bs/UccHwTAeW7mX3xfKSWbvXyzuGmWgGtR+X5cCVxCYJbwmMtzX3Y+loGnVLQ/lDydA1UlUqCCo7Ss1xu22x3r9Zqbm6fsdte0rdxAHzzD2DMMJ8axl1a7D1gNKY6QPUN/JKeJtnHsdjusaRAjqnr939+GnLH8+Zxk1c942UK7hA6ldFY2qu+R5mCj/t8ZavMYYlRbkctOxgfPVyliDKUTVb5/fsFceayJz7Kl+Rhm8vhYJhjzM1SiUfV9Ldv5JqG+9+fSql78rqJUwfNc3f1NbRKlKEHsh3Cp+d5r8Si4vBY+uBZpj9YlmO99TW2Tqvksy89Rgqo6xrUugmgCO/Q+cjyefsP9+ZEcOQucUSFt25IQ+CmgVI8yHm0cPrdoFcpc5QKSOeOMh5EQMykkiJJYK8r4NRqrzrAqUQnzpBjISdybp1G+hqGn7x3kRG7PRnsfXvolZ2fp87LcLOuGWDfwWjhYcrHquSpcJudE27VMU5DW/oJQbq2ICFTo4/d1OJcO8mjpdCiKV0QGZWTEhRAYxonWOuFIxMjkPV3r0NagoyGFqcA9kqwrBR4QonDp9ke59/0UOA4j0xSYfCBpMzsmzyAIpeZ1vMrKBnIxWNSElGdz1Cy1GFQClfKM+1VaEXMmhoROiVjOJXwoxRgHpikwDJ5sWj792c/p1jtcI1ApVYtZSs37TyzkzpyFwCrLQ+mew9wdLXeYnCunpGL+pZPctg0uBtI4lmdZCdYTXduhtChJXV9fz+t9CEGcootMZdM0NE5Io4Zyn7Kocq1K4tu4jv3hwFSkgH0InIYB6xSrZoMfA3EKmAibruNqvWa7XjEOJ4F2WcPVbkO7WtG0rijN/FgP4V3llDj1E22nUNqxcZZ1Z1BFZSyElQhlGPBHz/F0JOURdMvm6pqudbRmi1Gam5sd/enAq3ev2F5fkXWDada46xVOZ7JT2AZsI549OSsmH0RPF0lQvS/rS0zF9LCoPhKglAWsc7TdCnzPNBqGceLN23dkH/jVTz4Tfw8DxmlMK/NWN46cIklFEgGMLeOvVPILIiR4STb6vudwPCBAB800eU4nKXSIi3gh/KZ0sV8viyWPv0RYoSj+KYkfRM5UTDCd1aXKL+tNP3h88YVIOeMW5m2PDZN/41N+FEs8jonq3+tRC9vyWtlf5tkcE/uHA7kB01hStiQvvBxnE+sORjR9MOgIIUdS6Y4LvFIEbFJpqytAzPrk86SY5jkdS0G7wtdyLl5lFIQO588kRVLhFlpjsOYsDlLjBJUhBdBJBDNWDawcxCGIR4zpxEA5ZYKPvHj+gv3dA/3hxP3DLS9WG2yjaTtH0zopyibhc5Brwd5IIyaLLLQicHd3z+H2DW/fvWW1WtN2osS4224xxqL5YWvIPyjJeFxBhkvFlN/04OtyXXnaFatWW+i1sl6POYh+xLeoE2A5MB8PUjmfRptLovFFZV0JUUtwaIbrqxtunjxlu9nxySef8fTpE5qmJaUkBkvHA+PYk3Jg8hP7h3tao9isHKtO83C/F2KO7bi6ukJrK4ZUWTTal9X+ZaAh35fraaybM99lO3EZzNf7LouB3PtxmObBrIoMXq0MVgGR5eJxrsCfE5TlM5P3MSSbLwj93nuMdhfPuJKep4UKwTLwWnIaftMh96H8ffG9D1/HHMB/37PPVEWyR7+3OC+PkhiJd8/3V9SlkuBeKVC8fHZI/0FHPn+G2tlZEsPn51oXLNK5k7Go8pCZJZND2cjGURLeH/OhC1FSo+lcQ2sdtqhdnHkHiaQUU5BqzzhN4oRbVJhCCPhSvVPWFaN3gQQlpI1rrKVrV/OmOvYnFAlrFJv1CqsVeyueA0ZlpuHEZrNlu7vh6up6vt4lDHAJY8w5z4WIetRxZIyZjfucc7PctVzmpXx1162oJMXr62vu7h+Y/CTuum1L0zY41wh0pwa5+ZHb/WJuK6WI2VNcZ8hF/SaEQMqZvh8Ik+dqtWWKCT1NZBKrTSedBWfII0wx0PuRdpqYQmScAodjz1fffMfD/kA/erRrCEkUWWLMYCVLqMZbdV2/gImlVLqDFm0diXNlVBJ6B1pcelMqLtxW3O5j9EzeE089Q5EjXq86JiZCHEANTMkUHoNs3mESlZjauZYKbmAcR8ZpwhpF0zhyrD5AtXcClGJYyJ7peOR4d8vt+/cF7+4ZjiecsXRNSzt5rLbkyTMFT5oC3fWakCO370XZR+vift40vH//npQSbdtyc3ND2xickWLJfn/gdDhweLjl2YsXPNnd0LZr/uZvvuR+v2fvPa5xHE8n/CQqR/u7PQwjLZrPnz1nt+lwVvP117/mo5cvubq+4vpqx1Dc60MY/63M7/9aDiWGmzFlpuNADR9Wq5a2ySXodfIMTUYfNWOYOB72DEPieNJ8lBVPrq+5Wq9pFKxfPOV4euD2eMtX374i4TBmw/OmwbYa3Sj8WhODLc3syKmfGMeJMHqIImUqa3uS3EYpnFFMOhbX9oxSjtVqi4mePPTEKXB3e8vx/o4/+qM13crRNGKMZ5J4UFjXSByRIiQNxkrykoQjkrMYx/ppwhlL8IK+UBgeHh6YJs/x1ENWcxFrKRdbOYSyf1/CkC728xwhKqwt3KjgyaXzbp0lDiNTCExj5vW7O04hE5WG2fvGXKxdj4unj4vGZ4Wp708ylr/zuNijtHiiFPYEOUdev3qLerrDKo33oHzAqgnNyKqLjNkyjJomK4YovB+tBXYZc8YnWQ8wqShEGrTOeC++IyhBfYC6cFCfSeBGuiFaa0kmkiYWWeBa2OhaN8cHMUaclU42AVSItDrTrBXTRjOeRsYhgbM0rWJMnsP+xL//7/97fPvrr/im73n37jU3z1+gbca4TNNZlIEQBJqtssTZitKpoRZm4HQc6A9vSa/SmY+o4Gc//RkqwXj6YaiKf5C6VH3Qy40tpSS66YsAqW6+wzDQFDyuQuZHDnHGoqXUgxKpvrEsfsvNEq0uEo161Iqd0tJyr1Fq17ZF977DWsXheGQcx4vKeYoJjaMawFxf37Bab9hutrx8+ZLnz54XGUvBZD/s73n79hVff/1rBi8Eqv5w4mrTQVqhc4MfD3z0+ec8f/ZCpDG1m6t/xkqYu0zEantyGIbSdFCzl8VygtX7uWwtnicUQMJYUWfxU1WmkjjbOUfyYdbYXiYROdfnqWb4Wb3vs+KPDxLcKKlE1IB7+TjGcby43pqMfPCs+DAZXP5MnifMJYK/51h+lvrvRdr5+NUFRlIIj/nxz2Tyi0t6TYpTMRZKaFVco6vE2+NTfHh1VPLXB6S6sgHVxLteey1AS7VajB1zzvjgEfO1koSgyPq/klbDf+PHbr3mxdNnPH/6lC8+/gSdBLLmGjfbwNWyRCqJWIq1+pYKsXHi/uGBh/s93765Z0yJKWf6klAEH/FhJKRA24kB383uCd1qxWaz4enVNZ9++inb7ZbtdsvHn3zMbruj7Va4bi2EaHPWj1/ymZa8qeWx5D1VToaQ5GIx+DLz3G/bFqUUx+OxfM/hrMF7USGyxtI6w+H2DUdjSVmcsWMaiEkVWVg5KpSgbmaNa4Q4n0UhJFXlOQwvX3zE6XBk6gdyVlxdX7NZd0Di2PelhQCqsRzHnuleYddbNtsr0I67/QnjOkI6cRombBa/jIR0GvwwkLKiNp0qRBUWhZacCQmcsijXkVPCx0COIuucE6gcpUKsEjqkUlzxNI0rRFfL6JNAV/BMSWArSkM6HXl42LPeHtC2wbqmpDGqyNROBXY40jYNIF2NrpHXKQVTP8ziA0ll+uOBw+17Ht5KVa9/2PNw/8CbV6+w19e4puH5s+e8fvOmiDVkfAyM0XPz5Iaf/9YviP4sK/r111/P3a3D4cD79+9RJJxNAj9pOlrX8ulH1+zv9zy8ek9/nGhsQ5c02Tju+j1ZwRQV3379ii4nPn7ynN//4idcKc3D/S0P93e8fPGc7W6LMor3d7fzfIrpxysv1bSuqJUppimw3w8EnzC6YbcOOGdZN45848gmYxqNcobrbs3xcODu7pb//D/7//DR82e8fPaMj58+pd1pdjdP+J/9L/7n/Mf/y/+U97dH7u9P/I7/CTcvdqx2HbutPJehD+zNQCwB9ikljsdKqi7dwzCSpkAOABY/RaYxw6RpaWntmm615aH/luB7pjDx//3jf41KJ96/+R3+/f/Ov4SwJpR5vbm+kS6ZUkSlIFV4nyTum9WKF8+fc/vuHV3T0LoGHwT+WwsTKVYPqDMfYgmLWiYfH8QbSaSoNZLENc5xs7smxyMpRlprOTJyPI28vztyChnVdNIxLR3UrM+8qyq4sYxzlsfjJONxgXa5Hj/+Xa01SWtyyhgNGotG8fBwYt22eB958+odv/vFS1SjSTphbCKMR8KYeb69JvZHhphIYWLKWQQ5jCNlSW5DyKQ+Ycwa7z2HwwFUKgmNXEfbtjOnVz6vJzPNnWulMjFMdKuOXGgERkPjxPNGPotwvISDONE1kcYpNusrrFG8eTfwfn+C1GAVbNqO48M9v/Pz3+IPfud3+D/87/93vHn1a47HO1arHTfXL2gbR+MaprH2eYBcxgGKlERxU2+3dE2a+YQpiVzyp59/Rhg971+9/UHz9R8UsSwH4vKIi4ecshA3tRYJtkpRFDiKBJHWGq53W96+fyj6Y2dYClnw9edW4xnLd5FZk9AqgdFoI/j166uOdduwah2TnxhUYsoJsnBDKs5dKal0uqY9K78oxWqzoVs1NG2RVYyQUmDyI8fTQZywAWe1tFDjhB8Tm9UV6+6Ktt2ildzSSmbSwqY5B6cpk4Ng+5WuWHJFSHGG38fS1pSgP9I2Z4WXGZqmpM0VsxCTVY6oGIUHUHXpVVWtUjLAcyPXk6uZXC6EIwVKCy8hSYtQOyu8AmdRKoLRZ0fl0i2pkylTFqHFwvUYYzV3GqBUlx/3JSiEXeaAMsU8K+9Q6qOpwAlSTrP8cSqL+xlRo8TxNUHOkZQDufJi68iaX5vJOAnekgQuqkDRauVbZ2knKqULFOSy5XnRYq7XyKKygrQ8pSsUz19JPrW0u8/B9TzzlZrb0TEH2VV+5IbfL5894eXz5zx/8pTr7TVO2ZnoF3MgEUlZKoG1mpwp8ymlIquX2bUr7ts1cYK3hwcIAbQlxLN/hgTNGa2hcZbtqmWz6lh38ueqdTTW0FpDY6S6JNfi5s5nNUur616t6NTko27Sy41yKQsdY2S1Wp0lLafqfiub4TRNWKMLaTGIoVs4u7/W+fO4G7sce+fuZpVYlE5YSEKmzOX73osztFtbxsFze3fP5Ec2mxVdYyHL/dXOChjZaNCaEDPKWK6un4KyQuyeIqbVxfUbQoSUZR2x5lJhsEJD5wTNNWAMMYM2Toj5db4YR4UdpjihshSRQsj40JekrHJlFD4kDCLioFXClcqs1pWvFWfuXi1e1SQxhFEgICQ0dg7oUkrznhOiwNeGYeR4PDFNIhUavOd6d0V784TJaI4xsttuOcY9U4hc31yz3mww1nLqe/rjCVeKS9M00fc9fd8vjCDBmEQME8PQM54GTvRkHwmDZzycUE0s6l4eE6J0hDKMcaIxlnHy3N7doYzFj1PpGBr8FJimQF9c6MWo7Ecsha0VZI3G0nZrTgfPqQ/c3R7RWbNaadpWiMmrTmByPgkPKbMmK7i7v+Xu4Q4/HmHwbJ+uWW1XrLc7fv+f/x6vvnvDL//2b3j+dIe2mZgCXVqhVEPjLFe7NSkaUhSfE4zIg6YQCdOEJpV9KpOTdMItllYZbIoYFbErxfXzNVZ3mJy4ff+W2ze/5tcOPvroJS8/fsFms2EaR7SxNKsVthXBhro31m22a1uud1ds1hspdFrL8XTA+1ogqRD0SxgUMEM6z8XLS9TKsmCmXVXnTOQUxWfGlkgtwzB57vYnPBqrtMRbhT+SF++9LEzW96vx3bIoDFxc7/LrMYz+cfKBkf1UWEyGlDXHfmKaNDlM3PcjXfRo7YlolHU4lzE605hiXBkDxjjhkJXiYUwC/ddRMU0GpcT0cRzHItmtZlf1C5n+Gj0Uzqwmy9qvQFmNVQ3WqOJjYYtHiaExlpVzXF1pnJ5QDJiYefJkR1YNJ3/HKU5kBcoY3r1+w4ubG56/eMYf/rv/gq+/e8P+/j1+7LnabLDNCqMdtrX44Iv4kkAAJf6IAt+yFkXDai2JlLGW3W4n6A9ruXn25AdN139wkrH8sx4xx3M7HFmYdRbGfJF3llYisnhbY9ht1ziji+ZwOiciaq4HzInGchCdryVJ5mjAWEXTaG52LZu2oTWauxgxRBngGMnU0FhlSEYXWUL5SiWQWa83NK3FOj0HujkHQhCZTdN0aG3ouobWZlQKRJ+4uX7BqtvR2BVgy7XWymtJnnQNsKWbklmS2M+wDKUk4ahV25hSmSay2aZ8lgVWSuFjmewqoVJEozBocmJOMLRRTNNISiu0FuWdXEwIapJR4QTeVxWuounsLBBRpgbXi6MmEDlDIUTNHI7FYvV4DD1+luUHkkjlc2IhykvMiYfSpYqR05xozFXvLElIVuWrwLwkoQnEkmSU+s/8WaS7YQkZfIpEPLYQr6Ulqqn/SUNTXXREvu/zVd7FzM+osWLOkGqSkebrkWC0bvpycjmtPPNzgp7R9ge0ev4JHy+fP+X5syfcXN2wale0tsUWbH3InpQDKUd0tnMyrZTMmYopNtrQ2Y7WdZwOIteXknT1RpJ0QEDMC0VTCpUjjTUi3eqMSC4ajTMK2RayBOeqGA8tRAuWScVyI6siB3AOppVSM6djmWTUatY4jnN13xT4TM66OOaKJGzwAe8DoOb2utLiTFuvbZ4/6oxxFshfRGfhN9V7AopYTFDXzYqma/H9wN3+gSmOaKfZbFcSPHhPQoQJlFFkJepWxrZcXa8wxpESeJ/osnh7hIJXzqo4yy64WmfI6rmT45pOIKXKlG5p8QMIAeOcbBg5kwvkSRV4TD9MkBNtJxAycVWOOFNAV0rPCavWkrznlEglyagKWaooHPZDT4yelAIqi1lpnF8jU64mcDEGplJ9HUp1eLfZ4dZrdBZlo91mg+9FpWq93eDalqwU/dAL3M8YpqJYVqEUq9WazWaDdQpUYDgmpn4UUufU0ypL8ok0eUKse2jAJUhKEZPwjZKyDMPE6zdvsZs1BoUtsN1h8ISUOPQn2TtSwWf+SA8xJVUoZXHacqIXcvP9ica2KBzaABq61sj+FxJp1ECLMg7Xtpz27zk+DJjJ8Cw9J2XDenvNH/yL38P7iV/97Zfcvr/DNnrec7qVxtqGZtXhR03wgdF7dOsIYyTkVGB4zPs4UfZkpxQqJ1Y6sGozV2uHtVdsVuKD8Gd/ds9puOPdK8XffvnXaJMZhyvGfqBpW1mbjBFTY18gtVYKlW3Tcn11xW63Y7Va0xRzSVlfoBrn1izicbC/lFxfFjCWSUbOuUheIwWJ4Gk7hTWaVD7rOHn2x56ISJLrIsG6XDfrOrk0s338nh8880XM8Jg0/lgkpp5H0AmlW5MzWVn6PjBq0CpxdxroQsTahDUG7Rq6FXS9Z0OAKZPzhNYZq0oUVoqbqezR4yhiJNZagY2XJKOu9UtolyqRLZniwyLFL1OK38ZZbJB13hrLbitKh644fm+vHSr1JJ9QIXF906FMx/v9if7uUGI+xft375jGL1ivWv6df/77POz3DP17cgBnPJ1tMUYRQ0FPKEGpCLilSMErXSS7G7rVCsrzevr0aXF+d2yvdj9ovv6jOhlLM5GlLXx9uHXAioxjHcjVXUv2kLaRjcJZh9ZeAuiiYPKbBlq9hoqxNYBVmdbAtnPsVg2ddfKhsiKEhA8RVCFVK8EOp5Kxp5SZVhPDMBTo1DWrVQdk+n6ctcyrVKo1msZZNs2KPD7MUJabJ09YrTc4J+33OrCcc5xOJ2zjcE0zS/0uO0LLCVMhGLWN2BXYxunYi4qFObtsy8QPDIMEWE3Tlc21BGU5Y42VyotvOB73QnadJqzxQiwruu+yCBXcuRGjutoWkGssCUTKoBNKmYvncTGxF4oU9Xv1dfV4XIGYFz51rtg+rkwsu2cXFQ3q5J1/KAFKZk5AzgHi5fXINUkgAxLInvoTXdPIWAyBbWdQ2CJ5m2uPQs6cv6fKMv/sXBWaOz2lu/VhNeacaMaU5UYgWuvk0oJNiaYxUpn7ER83Nzd0TSdpm7JSJSpJrUkiMJiBrFegi6qUkRRPoGSyPrSbFVu95vrmyE1/hMOBg5eKbiRJwhg9k0+QPe/9RGM1Viu2Xcv9+3e0H33Mqu3wU+CQjtgp0mkJetu2neVU9/s90zSx3W45Ho/zc9tsNlSI4NJxO8bIMAxz5f50Os0E3+DDjKMmgzNVmjWTJ1lb267FWU0ce8I0sr99z/H+vpgOFogoqsDJMjFKQiKdl4yxGqMtysIwBpnKSnM8DOROw8ry5MkLsu5BR+73Dzx/9oz1Zo1rLF/+zd+CNjQ+cFw/cH2zK1ABzc2TZ7x+e0fiXsy9YiQmMNrhCSgl3dfVasXs8F3WvgqfMrbDuZamFSjbVCt+Kc3wjxBKN1xXIWpFCJFx7Lm7E3WnphGDxclFIdS2mVWO+GkghgltVmhTOqM5E4Ki74/4aSKlyGa7ZhgUx8PEME5oJaZUxmlO/ZGUElZLV2SzXhFurnj/jRQuhmni9u0Dh+9eoboGt1uz2m24utlinOLVu9eog+P58+f8i9/9fVotkLbD8cgvv/yS3W7H8+fPCSFwPJ1I0RPDwMcfPWf97AWNafC955d/8Tec9gectRA8tsAnWuPwSjGlxN6LclHwgUPw6OfPaI1DJ3h3e4fpOgKZ/ShV9xwixB8vXCrGM/k2AbvdE4ah5/7uDkVm8hmfoO0yzUqxcjLmp9FyGntuH/ZMKaEcQOabr1/h9I7OKvJTzdNnV/zzf/e3ubpp+Zs//YaUYRwSfgjsrjVNm7ANtNZwfbWj6Tqy0bx5/YphGhjjxMP+CEmM33LqMSmi0olw/Ibf+0nDz54/5+cvG4b+AecMSis+e5r55k3P27uRP/5//yuMge12R2Mb0c/LCmscyllSENKuKvv0pluxaloOn3/Bt9+9Yn84cnv3MMPCQ0hzgq3gHNMUcYlaGIVLEYuaCKSyma26BqNkPRZDyxVaKfYPD4xT5jAM3B1P6NUapx1KOzR+Rjk8hkgtOyb1qAnIbxIEqh3k3xQnSvwgCBZrDAbQOaNSZoxeVOAaw6uHE+uVY71e4SJc7W548mLDb/32hq++/YY3797zzes37PsBrMO0DdoaYhAor8SJPSnF0vEWdS2l9FxUqsUfUboK5BRECt3Ziz1DK1AkGtcIgdxa1p2TeM4oslMcJ3BqhVErYMQ2mu115Cc/1Qzx1xz6SSTGx5HTYc9x/8B23fHf/nf+BZOfMCbz/PlzjGmIUfEnf/yXGGNZrRzBn+X0JV4JdF1Lt1qx3W5nxI/3nmmcmEJg0NMPmq8/OGJ5bDn/dxF26gVJu/rspl1CSZRSc8Bd29MyCM98jL+rXquUKqQquFq3rFct23WLU5lN17JZb/n127sCAXIMU4EuKVAqnze+dsV6vebq6orr62u2223JPtPMLRBjm6GoRlkUSUyksriDrgvOWxKED7Px1Wolqi0lMavts5zFnOkx7lDkzNzZewJRN6i3eMY4Aylm2mZFCJCSLxPQAwrbdFL9h2IKWNuQy6pGvdazbCqI2ksuEyUVnoAvZEOdlZCfFscHXYnFsVxIlt+7qGAoUQOJIRAWicU0TWf4guZiTFwG9pTk9aweA2rBfyjytmXsldRDEs189tfQRdmhciq892i9KkjUyv8o8K05mbmsDFETj/pfPpv9pfLZ6nU9vn8xRqnYR3FzJ9cOnwSWnbNcr3+YbNw/1SOEDNpimw6cFXxxBpMyp9MISMcqWY9RgtiZa65FVjTlhFYapxpWz5/R7m9x0wD9CaMdWkmQnXXEqYRTEW3AGYXVGUPkydWGdeuK3rul6ba4rqNtWiGN5jwTtpummR3AHwsbLL/qHJu5GT6QY8Q1DqvFt2MaBpwVKGJjLWQJDlOOTJMXI6gYCd4zhijV/tUGbEM2iqwS2sYyBzMpiFJTiuKVo7QhK0tSBSRgtEDPshalvEGUQ25uWrKOKJOwbcP7hyNjzOw2W54+/YjD8UD0gXDqiddS9Tr2J9rNFco29OMExs7JOy7Tdlty4ZZ5L10ho8E1BqWdJJTWCjG/MbjWsd6usV5kP33wrLrVfO+NUgz9SSRYc8JaA7nFaKlM6pyJ08gxRlZGCJIxJ4HcpQk/nkg5zHMyTpJg5Cw8lnEYSDHhmhaji8FpTIx9TxhDUfMa6ff3PLx/z/3bt0zTxMPhyGkYWV09YdM6fA4MccDhWa80yjgeBo0vrvMxZv78r/9KuiRktrsrETTwvmz6FqvBqYwzisP+wP3hDf3hxLE/EUk0NtO0lqZU73OCKUVGAtpYTJHnPZF5cxh4urVsGsdpmrDWEVCcfKYfg1RQ7Y+3WDFMI9Vwt3GOMAUmnwFL3ytiGDmdJm6eWjaxoW2kg7ndrZii5tDD5moLIRFHy+1tz+vXD3hvsJ3l4/Waq+sVn3z+kv/r/+lfsWo37NbXTCfPIR/QdkAbS0iZZAT/367XPHn+jLZt0EoC8OE0MfZHbDpAGGE64rjjF59+wc+eG553B0adiEnkmF9cWVBXNK3nNN3z9de/ZrPecr275su/aggxkzV8dC3xRoqXAhBaa549f8bPf/5ztJWO4LffvmK/37PfHxjHIJ48BW4IZ1VLiT+kYFEhoVXYBYT7IeuiOEFLEVmU8RRyHcPoiSmLBHeBQ6qYaIzGGMSh+nFRblGgXKry/abXwIeFzboWz0W7uv8XJ3KTFSZDdpqAIqkkyYJWDMmQRsNuvSLQkJShW7f84mc/4eXzpzx9+oRv3t6z7yeGqafttsQse7jSipjiLElurEJrQadUDmtNrJq2FXnsWhDNiZysFA9K7OKsXsQ5iXEsZp3ZgXMchgw+w5SJIWNsAC18vU8+/oj3dwdev7vDOMfD/R2/+ttf8vzJFZvtDet2R2YiTkdGv8f7zB/87m9xd+w59CNDHxh6L8mTgt1uzXrz/+PuP58sS/P8PuzzuGOuTVNVWdVmzM7srAEECASxlBgIEkEpQi8o/auS3lIKESTIABWAIhgAFju7O7M70z1tqrtMZl53zOP04vecc2/WzJK9FKnY5pnIqew0N+95zmN+5msqmvbMH37iB8YM5vgfvf5WxO8ZEvXBQ/+wav0kK4Uz9OPiqutaAuUZyzzh+s6cg78p0ZigVVYb2sqxqCsWlcMZQ1U5mqYhhkTK4mYYU5CKQikaT5mlK5XK1WrFer3GGFMChDNcqe97uq4TEg/i8xGCx6hMXVWS5dW1cB14CimbMvJpsk1fv6xiXy6cSwLT9N+RpxX882vISOhS7T23EiMxBZw6g5s+dBI/D+J5RJ9AQ5TAsmbSWLowTCx4xMu26m9D2Z6q3nx4fZhkTMlPusAvTl2eWaEq5VLZfroBzeOSC6zs8msX82XqbkhyMIPwyvvJYuJ2AZGR8Y+lii7a/3PngqdwqCfvZfpeynMyoUsiNf3FyxF5spmm83/HGEtLVd63ItHWFc+uvxsO8u/q5WMSHL9SYjg3JWyA9yInqo0mqTgbK06bsFJK0G4J0KIi1ayWuOLIOrn2KSafkYzVErgt2oamcTS1paoMdWULdyBLe9o54Qqg5nUxkQ2n5OHSBOpSOe137nvqDFlSGXJMJJXnKiIIXCrFSMxRYE5aYGMZhYoJtMFYkby0TtyzjbVkgrT/SydVEp9IjnkWwijih2htCjKmiEvEzDh6wuT5ojQYRx8yekgYG2mbJWYMxDTgx4SPMteHkHBNi61rtBX32IkDA2CbggjMyN/PU0N0csMVkrsyUwAjHihT0cpoUamR4gdU1hH8SJcSox+LAICsrZgiMUqBIJuEdhFXF1hnOdj9OJDU2aE3Bk8qAZKKFIluZg6OFLviXHQhR2IIjH1PdzxyPB7wBerU9wPOOVZtTY6QvWc8HaEyOGeom4rYe/w48vjwwOl0Os8na8vftTgnXZ7aGhqrSX7E9yODMvhhhFwETozGVharHBVGAsycsCjc1PktS2N37EW1TSkiSrwaMgxjIGbZv/13DhH+7l0ppBliHVUpwpGlkOczfRrxIWErJ/SNVNE2EtC1bWazjpyOC3KE2DseK8/+dCQpxeKtY3MH2oLRBu8HutOB3eN7Tkeo6gbnKmxVibFbVaHrClUvcCgqa6kn1ELw+LEn+0gcTyh/ZO0i25VluzQsTaTBiYdDUGyXDp8UISqeb1veno4cY4CYaKoV6+tHlldX3OXCXSgiF7kUyjLQLlru7l6QyHTdqShICV9gGDzTYjVGeFBTckH5jnQ9KfDMCTkhhTJxmJb+USbhzFnEVKFKUSWL54IS4nVS8vdVgbBcErVVeXaTxP8lR2O6PoyLLr8+f84UO5TXUhen7GWMYzU6G7QyVHUFOpAxxKzJOGJWhCwKhZvthma5wLYt1WrNt+8euH88oLQRI8ZcqEEpkYJwN7RXKCPk/FSS4JhEfSplcMaAUbiUyTEI9FFPcu66GMea4iEkHC1jFcoYFIZujMQhkUbZA3WMGJNxzrDdbAlR8fh4JGtREXx4fODmekNTN9RVRcqG4DuCHxkGz93LjwgqC5wUkfxNSXhf280SWxms00UpaySnIO9Pi9rfLF/6P3L9rc34Lqvul+o+078TmXHG3BUsvGRoeobeLBaLmZMwyYbOh/jvCEyf4vZEDq2uahpnaaymMYpF01C5GjCM4llFTEKAtGbiKMjBJvAFR0qJm5trbm9vS4Ymk1WY9AKZenh4YLvdkseOHEZiGKhrIcG8eHFHVTXFVl7e94SRnqBjqWzsVVXNbsJToDGpOQFzMDNBLUBaw5fdjstOCBQISfkg56KKFMTYS9kZWjb9nYkEprWZK+zTgpRqgsHHwDgMPEzOofqMpZSJped26+V7ml7j0szsw2Tkwzk1/5uBUg12ztF13TyHBEYUUWmChMTZhAikskKKZPU7eCOUToAxQHkWKQmBuoypH0dM3Za58dSo0BiLzhm0dLamJCJdvPffuo/ynj4cF10CqRSf3vvUNZENUcbMjxGjk5DlksfoyHa75o//4A9+6/6+T9cYPN0o0qg315Vgz1MiK0Ukzw7WKUayUpgyTrPT6MWltWbVLqirWoJTXYRbFaClCOGsYtHUvLp7xu31ls16zdV2jRyXEYV0OK0RnO44jnMre/p4St6T6zw/zHmvu9gjjTFgLao67wkpJRaLBYfD4YmBaUjiEntzc1OKIiXBH08QRtLYiTloOmKUpzspcvLlvU+HsAI8EmZOe4RARZUGUqZpa8bBM4wdu/091aqhMhVjMtT1Cq8Mj6eAri2q3mC055SgGiK2jhhX4eqG1WbL1fUtb968OfNBQiTqE6oIXTRN82TuTyp/6/UabQzOiOJLCpG+E0y9c444CvSsso5V2zAcDfucODzuyFmU14YiUSvwToN2pQahLXXdEkJi6Edy1kK0tVWBhpzXWtd1M3zrssCilWK1WtFp8EoxlOc2jiPd6UTXdYx+5Hg6sn/7DXevXoBRDHHk7bsD69sr2s2Km+2WEN5zPOz4+c//jJ/+3k+ZJGw///xzrq+vaZqGYRhomoYJNmm14+Xzl9xdP+cvh0g8SZendg3WOgwasiZGT8iJUOCbiQLLMJbd4yM6eMJygWsajl0nholdR7MUWedh/G5Qh7+LVw6liEMmKo9SCWtBtZYh9+J27CP3957oNW1r6JtIvYHtUrOoGlTakNOWcQi8e+f59ot3HHd7/Gcn6oXGWhjHE8+uN+z23/Dw/gse379nvVyxXm64un6GrlvqtqFuW5qmxRefChcjt9srVs2CY7vi/ouB4N9D7LjeroongaGtW9xqUcwuPephxzgeyU2iuVti3x24P3S8//bEdvsJ9w8d9bsdP46e1lqihi56lNHiIxMVtja8evWC9WZB21oWq4bf/OZLMpGQCj9jLj4kUoIQJGHPIK+lKIm2SEk7p7Cu8JxMhUojhiSeJGSIGasb0niAmDHaiEhLDKjiyxWR17TW0nX9nMhLQU3EVibo1hQ7fJh0fJhspDxBvMB7QaDUzpZEo/yMKsiEUrS2zlI5y3q9Yhz3GK1xtiLHRPCZQScej57mqmGxbdi8esGPgG9ev+Xrr97y5W/eYHOmH0eB7lK8f0IQiVunSAZSnIRnFGQt4jNWY6oKqw06D5gUsBGsMlhtpTOvaxaVpakM1dKC2xByxbFXdONIDImA+Kj0Qw9jYK1bNusrcnYcdgMPhx3d4NkPA69+/EOWdolVGnLgeDCMYyLlgf3pAWsd23UjhopVTU6JwY88u73l8XBkf+rYrK+ozAAarJEELREI6qmS6N90/U/yyThX/M/VvEsfh0s4QU4yoU02QsbifOhutltu+wDmkbQT1aHR/81vfHpdnxUpK05jIkaw2rJarri6vuV4HPni6y9Ebz5pQpEcWywa6srSVg5r69k4SVj8k8KHoetPvH37hq+++gqt4ds3b3h8fGS5XNIf9iTfoeLI9fOPWK9WuMoRYpTNX53f5zzA1p5FOfMZggHn7tA0fkCRj50w3iXpik87HBdPhIwmhgRZiKMTrdmlCNqQyHg/PiGv/k1jK89rMvbTM6wqp4KnHAO6CM9cPusPORaXUJJLs74POxuXX7fW0NRLdEk6nXO/VTGeKvyX4yBY7izO8tN7zSK3d34vuSz48ntKCb+kZPDaGHJWs1rV1NmZWq8Tj0IriilfnCVuLzsP8/u6SDYuxyST5+QjxfNzOK8ZkY9LCSH+2gw6o03GWsPN9RU/+cmPf/fi+J5cu+6Irhpc3RLJZD1ptyd0UTiaekRT1XmaT5f7j1EKYhSN+vIcYo54pfFZ4WNGhRGXIWjY7x746O4Z1kDX7QuMR9b+OJ7IeUXllmw3V+Vv51l+djr0JjzxdAA650qFcHhi4DcVFzRglJ7bzZOU7UQYd05gWTprIonj8VigYcJhq6sa3wg3ZHt1hc6DEA99xugiNR08IYxIVXI6sM8GoGV3AabkVqN84uHhPUt9RdaGZuHYHQZWyxXbqytUtaZtpeKntSFqy5hAacOzF3ccTh3744nPvvxSgvxidNePQ1FGcbx7927u/kwa/E3ToLUWSe1SiX54eIAsYMTueERlgZFaa7l/9y3d6UgK4lYdCncjxEDdNKw3V1zfXGOMoutOWNfw7PYlMcA4RqraMPSRaANaRR7evcVVDuds4Yzo31q7KYk6kB/PBO3D4TAnQofDoRR+NMpp3u92ZCCSuXnxguVyTVXX1DnCteZ4PPFwv+P+/j3G2DlQev369fz6dV0L+TPBplnQOIdFsXtzDwFMtoy953gaJGgre1TMSeRBo5j7ifpaEGO4EOmHwM3NujipexqnqYxIDk+I2e/jlWMqfB0h+ZvZaNKTxpEhlnXgLQ+PBw5HUfHa0FLXAv/45NXHch76SGUdv1p8zts373jz5jXjn+64vt6w3SwxVjP0Pf1w5GF3TwoRP4oCXLPaYE4VrnK0dYMYzyXGUDimKWKSZ7Ny6FSThpqUI199dU8THbc/rLHK0CxalpUmGk0/KHLuSH7gxdWSyo486IHHd5+xXFq6bcvXv/6SF3cvqauatqnxMdCPA/3oqesKlKJtaj75+GPG0YuB2nqN/nd/ymF/pO9GvD/vZcAMz445YGs3F1islUKNtRqtM3E8YXTGWSnM9KcjmUxdN/T9SNfLay82C/wwEMeBrhtQVYFKavEym45JrQyJszP2ZTw5juMT1MMlYmbq3GUopprnrzN1hZ0jzHDWUhSdCkHA8xcvpevpPc466bJqS8iKx/2RSOaqWuOM4sWL56xXW3Q2vH77hv3xKGauY1EDjZbj6UTOAUISg9gsUHStDMREzIEh9ux9pLIDjcss24pl3VCpgMuel9sNbe2oa0uzbTj6ivt94vH9I/0YUNrhXI1xhtNpR/QDTV0xjmI5cPfyJW/+/B0+RVyt2R+OJJuobcWiceSUePbsOT/c/Jgvv3lN8CM5KxZtLTw4o9ku1py6IzlH6soxjgN144Qn6D1KQciK8B2bof+TiN+Xn18GmB92Nia8/fS1SdZ1gkVVToh7M955LBV7+YXf+ffLZyKbmM6teVF9WtINMPhETAUDnyV7nT600XPwbqxhuVyyWCyoKgkE7t+/582bN3zzzTcYI1r2IYi5jR97CJ5aF+J6SVSkzVggOx+Mi1Rpfxu/9qTCfdFCvAxatZ4C6XMH6ZIbo0rVM4TIMI4cj0eatqHSNXN3grO2v7yfOA0h52HO8zOZ3wN5riqo6b6UmNGk37HoP+xWnOFb6bfmye8ahxgTviRgU3IxdSwkMRCZysugkwJHKZgbmMY5X8CW5o9zAjD9bwrBJtO7S67E5A0SUzrjKC8HDn7nPf2udTeR7aZOxwT3m8bn4ieZhJvlAEhondE6sVovaJdtMfv5/l67wwFXtbTtktPQkQNFfWuSIp7mYkIlxe+aNtOcCiHSH0+MBdY3yxurTEacafWsChKJYSRFB9oJDC1FYhzRYWQcOqnUh5VU4zmvzctCwOVzm/hjU4dymqsTzpmUn+wHlyZ8Z2daeebiUBxASSe3O0ml2U5yhnWNb5bEcWTsB0LwBD1OgD+U2GQXmKma0KeoGf01SURSklkxGhVFKM3m6loIroNns61RSpKMumnoo4A2M4pT4WIsNxva5VJgAaVIsGhXpHTmUk0FjRDCLJOptSaGyFgPDMWHR3hSwofoMvRlDwj9nu505NR15HTujtq6Yr3esNpuaZdrDrsHrK1ZLtYsFyuMcSgEYpARJZ6zoo1+kij+FvStjNPUWZ+uaV1XVcXVdkvlHMchFmK9tOoHD3XQuGjw44jNhkpbjLEcDsf59bqum9Wl5k4QCovGYUhDwGaFigqdii5/KsDZXJztC1cpkUVyvCTeOisJaGJiDJHRh6JWY7BKunVK6e+1386lWtlUkJpCDV+5C9XByYE6o4ynPjlIGpVLZ1QnjFO8enkFKbK9WrLatOQUWa8WrFZLfvCjH7B7fOD+/TvefvOalCMhjvRDj6ocOgd8MOR0NnNMWRy+Y4zEcSSEHRlJPMYRxmjw0TBGhc3gtEY7R9M2tMuefoycToErbWf4zEN3YOzuOT6s6Xcd8TpA4Y+dug4/SsdLa4UpCBFnLcvlkqvR48fI7e3t7Arty89KHa1IXaMhCYdWvKHKh1FFwjWhc8YqcEYjyCA507Q29KPHFx5uTpIIKmtIfoQQy4l7RjikVM7Bi/N6uqYY6HL//LCTUU6KJ8qcKckZr8pZm9OZzK61xhmDs6bIsApM0lW1cHy0AW2ISQQzjB1pGk+zXRYlwornz6/pfEdMAT/2aF2KkCqxaCsCgZgjI0Fk6XPZOXOSAmXWaJtY1pp1a3mxXbCqHJXV1JXh+dJROztDlbohkLxn7DtiAu1kPhhrcFWFKmWpSeCorusSk0rBuO96NlcrqsoBCucqUkocjyfadsE4RnyZD7JH2hlx0TaWRim6k5iOWiOmfWmUuVNrx3e5/lacjClYg4n4Lfi888LXT2ANWkvVhBLgxUK+nbZsaV1JZalyrjDzpzBLfkeVWPBJgiOzcoZDSQtQUzULXBfRVvwgcpRDt3JOyJfWFFdsSUqqquLm5obNZo11jt3ukS+/+opvv/2GN2/eQA50/ak8lAMMPZVKxV+jGE1ddC9iCWIvuQaAVM6LSsoTohJCqHqycPLT4BhEflIbPRv2TeRlVar0fvScjifG4LnWV1R1efhKDs1JRUKSlDOJnGk0iz5ySqkczLJJi/qUhjTpu6g5uJqhUKh5TC/nAdMzvEiePryU1oWXIxtzGD1TsqOUmn0FxGgrlwV9JnmlNGHey3ybEh3OOeoEbRLlhFSSQeYgbJqnCumCUH43JwliY4gonebXnJ/LB884z7948bfLx/lAzPP3PkxQpvUkQaEuqksBUxKNq+2GxaL5XptoAdw/PuLqBc1iyeNhj85mPszIwp1S0yBmhVLpAookB+J04Hgf2D/uOJ264ish7XGhIJTASmesFlWpcejwztDWlroyKBJhHNB2lIo5GqoFi8WiwAnPgSic/S8uTSsnhaOqqui6Toonk/CFD6Tyc5eQxwmSN62VGYKXZJ2nlASiuWrRZe02TUNsl2QfGLqRUXeooMt4RLQuiQaiNJXzlFqcE42UMtqALYZR49AL2XzwXN/ckmLisD9y99KKqR4a6xqMFp5aCIHH3Q6fEu1qzdXtM47HI7EQG1+8eEk/DLx7+5acM8M4EkogPXV9+r4nhUhVuhUTrEopUeMb+6HAmU74fkd3OuL9SNMuaZoWV1W4uma12dI0C6yreXzc8fz5C662tywWa+qqxZhK3Ii1YfAj3o+0TUNdV0Xp8EJEo+zJl0Uxay25FFmMleKUNlKUcps1XTfw5jTy+O6RGDJaWXbHQNVmjIX944m6Fm+Epm44HA7zmt/v9+XZqLmQY5TBIPBigYZCZSopmAVR7MLZgjsWfo88YlU68g6DqA0lL14yPkS6ri9dMYsfxd0+G4X6HicZ03qaPldq8rVRuCL1SqmEx5QgRkbv6Y7ivK0S0GSUjhiTuHu+YrVecjrd8cn9Kx4fdlitqZzj9tkt337zNVXt+Pyv/wplIJEIccT7AZLAlXIeEDR/Kjy6kehH/DAwjjtiHMgp0Q2QaIgYupCosoA2s9I0bcNi2TCMkeNhxDUtTeWoq8zw+h3j8S27txX9w4lw58ltQjvH0A94L4ppo4IaZs+xpm5YL1d4n3jx/Dl9P3A6dZxOaU7MRBnJoBSYpDFKYyj/aiXdB5XRKWGIOGWojMLqIl+bZV87DR4fxUMhFCU0ZS3eS3EzeeEd1nVbeCAlNuCcVFzGEZdIAXgaG00xUMoin200kFU53/PMh0s5zxKxzjmaot4UM8SsqKqauqoYu74kO8VJfoho5XH2xM31FmdFqOPu5TMO3YFh7Hh8DPOem5JnuVwhcvmBQemZLJ2KsadWGqMUjbXcrBc83y74+PmGVkFtoXWaVWvFW0RDUIk0jvh+II4jWZvS6U9Ya2kXLcEK98V7IZ4bJ9yjhJyfh/2RT158xGLR4oeRuq7ZHfbs3r7lBz/5MV03cjr1PDw8SHe2nK1VVVE1FdoYHu/fY5sGZSzWKkYvSWlVN99pvX7nneb9/eO8CU9Z4XSdq3I8aQnbMczVO/mdKTERtZy2rViuHPU+s1xUDINhn0FlVVr7gFZCrMtSgVPF9VJM1jqGsaYfW2K2pBhZrxp+9MNnfPb613BKhFhqfUMC5Vis1hAdV9tr7u7u+Cd/8o9p25bT8cSf/dmf8vOf/5zT8UCKHmeEOFrpTHh8j7GaerPi7uOPqDfXZFczxoxRfuKcFrhPqZiXisnEf9Bak0t1bxqzkOQAN/YsCzxhjVMGPw6yKFIkJCEAzhAhpfBDZrd75JvXXxNTwtmfslptIGW0lqyUpKiqxbmLxACpRUVA56JznUoSWCRsEW5HzgqVxUpINKClC6C1xbnCqYmlpqAQqT3NDLESFYYz7EpeQhJPeZRn8phoassVY0CHKK3HnNE4Mg6ocFYJIbUPWAwoMdCp2xatZdGL1U0kZ4hJ4+NYKo6TUZ6VZDXJHHEGTNZUtgIN2jqqakk/dDibZBNTleilp4SPERtBJ4WOFHUTZByCIngIQRGyxmf5O0Qho3rfy/09IcEpoh+KcVbkGBI2JpyObOzIdW25qmsW7rst7L+r1+u399h6gXWO4/7Adn1FU9c01mFsCYrJpFFMJae9ZnJAnZKNlALjOPLu/oHd7sCpG4kUbHKKiK2fYOU1Ch9a+r5n2bbUVSXwhpzohw7tGlIYSX5kOB1x1khHoSSdE3Sg7/sZN7xarej7fk48DocDwJN90VUVbrGgO51YFmGJ/W43d8lG7wv512Iq8eupq5oqZ8bVCq3BWcdyvUElgWRO5mpdrzGjQPdMTISQS9crS/t+Lr6UvVfJgSpVq0DXDUX8wnF1teXrL37DYrnm6vqWv/rlL3hx94rt1S0gxaCcFZEk0BxrWW+3/OEf/zGfff457+/v2e2PbPsecqZdLLh7+ZLdbsfpKFKwD0UOfCo2tXVFU9dc39wwDAMpJZqmoW1bkY/2nt3ugRCKGlSs+MmnP+Hlq4+4e/UJ/6//8r/iN19+TYyJ682GT3/wQ37yk5+w3V5zdXNNCJH7+wd08UHSWnN193xOuow1vH9/L/dnhQQrIhdJ3NWDqOi5ynF9dYVNiQrFX3zzDbkc4qvbW3ZRMXaeNCRyNIynSB5P/ObXX/DRR89Zbpa8en7HF/Frjt2Jvu/JObNoW5q6oV0sxPSrGzjtjuyPRzbNgrZusSFDJWeq0paosihnXfT8UEI2tc6iUiZGj7GGlMQU9+7VS2Ihey7aCuUs2jqUq/7/st7/l7gmRETOci4Kxh+kQAXaWOpGM4wTjw5G7zmkSAyyF6cwEtMJowPb5TNIAVdrnr284fndLTnKPN0/7Kl3tXhlMErSbwJaK2I4orMiJ8WhD/SnHdH3kDxDt6OyhsWi5tMfveL1113xj1jym9eP6GzYrltWq4YQLd5nmvWKet+xGAPPXlpCp9gfj4TgqU3Hu7ef8/b1e0y+ZiRw/fyG5XqJMkbO21L8SBMUqhRv27ZlEzOffvqpGK+FyMP9Q+lkKGK8OLuKEaoUZuRstgoMCZUDTsHCOlZ1hTOGY4Ld4cjbz75kSFnmlzLkHEhJ1OUW6xUp57Lv9NR1Oyc4mSnJl47nVHSYuqCXScZlZ8NaSywWBQL9K8qZ5YFPqk62clJkNhK8ayR+VFpx6DqUMVTNgu317dwNEkSFYRwC37x+Dznx4vk111dbrq5XfDS8wFpF3x14uL8n+kD0HY/3fVEwVCyritbIGZNSQjx8xJtp4TJXqwWb5YIKaJ2itZnGBsLuHUlrklY83o88PMAwGFaLhh5XDDgzIQXa5ZLc1jzeP9I4S8qR/nTE2ITBoDP84i/+koW1vLp7ye31NUPMNG2Lq+siCd4zDB0pBRaLVYHwRuH4JkNdW374ySt2ux3H44HHx0de3t0RU+Z0OH6n9fqdk4x2sZizzCdVep7CpC4P2UuIwCVhXCaNFoJd3xGLopMEzhQn5DJxyucyz85JylR59z7gx1B0oIXcaKprlAJr5OeHEIs8miirbJYbVqs16/UapTS/+MUvefv2De/evmO33xG9l4xtHDCVVJrGvmO1WWNdjXWNMPVDIiWPDnlWMEnprKwEAj9IeUSV+x36USpVc8dGjgsxmiuLqhCg4WlnYLouq+F+TJxOJ7q+Z3fYc3d8JepXxpSMWIOS95cmcMUEL/rgksXtSUrjQxB321NHCp57U1HbWqygSnfAugIXS0I9ZEo+VSFlTRbcpWuQS5t/wjUpfa62XsKIFIoQPcMg2OipHWutJURPbS1DPxJClE2GQDaKuoxNKu9nxm0WeMgZ659E4lPlYlx2OQjnTtPoA/04MgkNhCj+C4KDT7Pp3jSmExwrlMqjDxGfAjEl6WIVnP/0MXWFpo9QyGQ+JHyEpBPKZpSTIFers8v69/WKKB52O1KKbJctVaXIuWbQin4YiEESwxfXz8umn4hRKsUSOHmMNgxeuBDvHk+82/ecxkgfoVeQtFTsc0xErfDZ0I1JYFK2Kp4PCmMd1tWslmtSUgz9QFQH6YBUFaZyVHUr3glaC0+JSa3otz2CBLYhJOdJ4CHnjKsrMuBDQFuDzRWqGGW5qpLiS8w0VcM4DMSYWNQNOSXGmMlU4FboKmCrgK1abByIyWOCOB8bMhZNTJago4Si835c1pvK2LLXJBRYhzaWkZE+DsROEZViu33G6dRh7QGNIehAyBLAVEbRx0QIHuccn/7gh2xvnvGrX/2a3f5ADHJIZ1XgX6ULZatKyP1BiOeoCDpxGo7zXpBU5NgdGMeR0+nIGAvXxGhCTrx++5Zd1/M2hDaQAAEAAElEQVTZF1/z7bu3ZDTL5ZI//vt/n1cff0K7WHI4HdkfD2W2KTbbLcumLcFLMR9V4EPGVU3ZKybYkZXPtHTDjDGsVys2dYUJkWF/4O72Od1+x3g4ke4PNMcRN0QYM5UeyWHHaGBTN1xtt7SrBVFlrjZXaGPFQC+K9PCYBvzgsYsG5xzPnt/iTz1hGHgYdrSuQldIkchawujnbmjSEJW87xgCQRupPmtbTETl/HvcvSelQIpB5NnJoE0Rwvh+XlL1lg6e0uqiOAdMymBIUh1TkZJOEaNE3W7wEesUWonCHEkxObhK3KA5no483D/w9ZevuX//DbvH98BI8BkdDQRD38k5k0jkIPBmZxSrlaO9uWOxqFktFyw2Dffv3rEnoJymD57TYDj6Cp8cLhtsFn5ls1gQI4zjnmwyWsXiryAmpDknfvGLv2BwkbuPX/LJD3/Aze2NGAubmjEEOYNilM7DrFqkaaqaq6sruq7niy+/pK5rcs6FM1WQAFqq7SoL98dpTW2VvI8oErjOiXjO8dRxPPUcTj0P+45sG7QWXkMsyIEYMxqDMqJONcEmpz1pQmZMHeLLOPGym/G7+JkSwEeMtqULAQUgPs+R7D1WGzFtNkYQpVAynPIbSgpbdoJ3RTlrVemOSaV/DzmzXNQsFi03N1d89OqOFD1KZXIKDOMoXD60rPVc7AQKukchRn7DmNnve3TKMDrGxrKoYFnB8DhgtRRqD6kn+xaTa+lAhpEYxWzWBFeKwEmSTCWcj5RHQDgqKSZyrLi62vL8+S3r5ZK//PprlNE0iyW73V7kd2MQr5DKlkZAEshbDIRB01QVJ61x1nJ1dcXNzQ3j6OFp5PQ3Xt85yZgOUHkoT19cF0mrXALiue38AXRo+nouE6ttW9qmLYmFBIGCif2bic7ADKEiZ2Hbh0nOUFHVFY1taZqaFL28Vr4g9hW1prquWSwWkIWE99VXX4rRyDhAzljOHRld7qVpFiwWK+pmgbP1/JpyeJWqfj7jReWtT3AehZjYSSY68RoEP51JUVwWyWcsIkgSIkRsuc4tRfnwPsy61ZMTbc65kKzE5Iysn8CDprH8kIg9tSyTghAS4+Dp+4EwDOyUw+mRpBQBpKJpBH5GkhbyJYRI5CDL7cqNkOPUyShV1uLgzcWHjIkWzHlRkJIOh8BfjqeaxhlSjPhxYPAeM3Uu5pc5E+2n25uCifmZze4LeR6Py3EIMYpMpe3LYVQTU2C8cP4NMWIL/nkadyETBkYfGKPon4cYBI8Z4oX3h0AOJ1y2954UQoGA5QIDzFglh49Ayn732vw+XTnDqetI0aPxLFpHjLXAktCMScZAt4KtDjEzxowfRnwI+HFEa8XxeODQnXg4juxPA0MUmc6sFdoKjlhkqzUJTUhljWpbxhMqbaic4Jp9FH5XHEf8OKCMwiqp9BstBkumJNSyjakL75n8Ae8pzZCoGMUoboJXaWPE+VcLcVdbI9yNlHDG0gcpurRtW2CJUZIj12LrgaoZqZoFIfWk7PHeArGoK01yuxGtJIkVrDWzeISYGwLKgatI2hJyIKmMjyOn7kjbrjmdjgIptRVJB0laUsJqLTDNEEApttsrmnbF4djx/vU3DONI153EWNOIG3Eozt3amAI18egAJiiGUbpDRhtZX4UM3Y2nQtYUB9yQI+/v3/Pu/gHvI9pVbDZrnj+/45NPPmG1XoPWnE7SLXDOsV6vqSvHctHStK10MvWZm+aqZk7wBZOtiqSk3Js2hsq01E2DPxzplivG6xveDiOndIT9kaobySGLq3OKxOCJOtO2FZVxaBRh8CzaBZGMz4mxHwWyEyVBoIo4a6mbmspqHh9GTsNAVgpnFK7AnVSOpCDBGHNcLNyiECJoMKro7msp6DzuH6W7npMk7aVC/Ddx5L4v16SM5KwtcBTZN6WoJgGidQ41eqb1kRDZXzGQlPkoMqrSjRCEiZwT3ntOxwPv373heNwxDkeR/1SDeH8ZQ8gi95lIqJipFzWLumG7arm93rBaLliuFiQVqZxw7JQFHzMnnzn0im6EqtYkRHykbiTxPRw6wjhKbJCkU5my7Cdv3n9FqOHYHzFW1H6WyyV101A5hS9FW59SKZBpnLG0TcN2s2UcPdvtRmA2wTPVMCeep0ajs8C7rRaDXo0Et2I4Z1BGc9r3HLqeQzdwHAOVlTHVxpK8F3GUnIlKXmcS2hFxirOwzG+FJuW6hEd9CJ86GwjmOcFQQFZKlD4RaC1JMQm3KKWKyum5u6ugxGd5jpWskQKk7PEWP3qOhw6VM9aAs4bVcsmzZ7fsdo+l8yqQzChEKZG8R2BPZ5RKgpwISXHsPDmCHyNda1k1mrFRDIcBp0W6flQDKItOFlIQyWUE5hUKV0BkcDWJhDGK5bJhe7UScQSlaZuGm+trbm6uccbQ9eLx4uqGoS+xSI5UlZNkKZ8lkVMSwrpG4GZV5WjtgrqpUVrTjP8zq0sNwyibVwmML4PTS0y+0Wfew3QQX06aCYMaY0Q7w3K94ubmltPwDbo8+ImL8CHZ53JjVPkcaKM02lpc01A1Laay/PSnP+WzX3/Ju3c76lpuUytFXdccjntifEFdNyhlZuLY/f07tC31SiVtpemQu7q55Uc//im3z15wc3NL29ZzcKm0kD9NkYWb7s97z3K5pCnV0IfHB54/f4VSin7oqZzAb2IMDEM/JydhhlSpi4TlQuq0YLin4DTkSB9GdO1YbzfUTSMeIM6WXGwKMJCWXSHAT9elSpRgxA05RXa7E/uDVNZIlhxPUj0rMKcYY1FymqR0Iz7+dpvzshoxXSkXEnnZiNJ02E+t0QK1osyF5D0KiiFXZL1ccL3ZAImqUtQ4lijxYMhTR+Pc9ZmUznIWqlRMqeTBTw9b4XCIhOj7+3ecTgc26wa/XqFIDNEzBE93PIGaXLojh8NB7iVmwhg49b10PJJnsRCPldD3vHn7Bu/7mcgKUvHtuo66JPK53IfKUvnvR3j7uOPQyRz5Pl8hCAQxhsjDu/eMpyPr1ZLnz5/zn/6z/wxtHD4mzPaaoRcjM2Mq/uqXv+J06oSHsXvk/rjj28OO+8cDvng+mKrG1rZUzBROU5RQLM46MT4C+n5gu6IoIVn2+x3PXryiahYMUT3tGmVRHFKAsbqsyWJyV4jI0740yS7fFAjQRAp/UjQo/04KSiEIbyNHkbet63pOUCYFq7quhaCYE3VxB693huOhIsZAGDWZgZwGsBTCuyUWRZWcM0k93UfbRhFwhCz+CcvGobVDa8vu4R2+7+iPO1pnsHUlsALrBLKJRiUYTiOnw0i7WPDP/uk/4+d/9m/4/PNf86tf/TXvH97Ne/3UsQOK0WcpnpT9bCqcGGNmp9wYYhlbWSPjKMo1KWVCgH/2f/g/8tOf/j4/+PSHvP7qy4Iplo6f8Ow287/T3lPVtejYw/zspvdw7hZnwKNzJAePLgnI7e0ztu2CeDphydis+Ornn+PHQNQG2opejnyyApfhm199IcmAg2e/9ymb1RrXNhwf92xXSxZNS93UvN4/sDseeffmWz7++BW6qbCpIRSISWUs7XJB1dSMfU88nfCDQD20NrN/U0wQC08wxcgYA904iOuxMThXCRQ5SUX1+3wJRyhRNxXWCjfJ+5F+8DRNQ1M3jCEKqVeJMlzSEc8IOeGiI+RMzHA8RZISqGXIiaQCVlm2K1H6cboldJb3b3/Dpm5Y1g3NouVqucBVjXBLtUAo67qiqh2bzYq6bmZ+1qKtaRYa8kAfIw+d4vPXR66bButuWF+tCHnA1RqtLcHDOL4hkOl8Zn+Et/cn9l0iqQV//atf8sXrL/nNl1/wJ8c/4ZNPP+Xlq1dc3Vwzjl5U0bqD4OiNYbvZ4FxF27YsVy1df+Qv//Iv6PoD1mlJUlWSij6a2lgq6wT+gyQXtmlprS1Keop9N/Dt/Y79acQrB1njspYiyqxwJ0lbiKL41DQNu91h9slRSs7rias2FesuhXAuu/5TslFVFbl0LdKk4K2khpCzKJWmHGkWrQTh5ffrqinrQVHVjkpDDiOuqQsnNVM7Qx96UtYY3aKUY+gDYdyjyCwXDcZobq9u6O86dFacDic0omw4RkXY92y2a6rKYaxG+RGjFUYrsoeTz+z7yPhmR+1gvbBcrysWGFzyVDqw3ihUjCTf0Z1GcrWUDnGEYRzKeaTRFkIcubu75Y/+8KeM/R8x9gHfew6HEz/68afc3tywu9+xWq44dh33949sb2+IB/EBenjoxbtOTQIhhnp7Q+NqjvsjtWuoqpoxRt68eYcxlvZ/bk7Gv//5n89JhlSd4pw+zsH/BIHJ52DtQ7hUqS8SQyRmX0h+/ZNK4Bl29dvVdijVOD15KGT2hyO/+uwzvn3/BlsZjDOEJO+paRryKMnA6Ef2hx2Les3Dwz1ffvkVdy9esVws2W63vHv/DVmL+YxCcexOeKNxWtP3A//+z/8C6341L5DJyVwb0Sef7jWEMGfWctDambQ9dYSmn9GK0vKdOgO6tBELWUhPRnvnSjz5rEBlrSmtUlnAddNgKydVUq0KtGPK/HWRojPzQr7U9wcJbPrO83j/yF//1a+4v39P8CP3D4+oXPSvL/CUIOpM4WID8EXeGEQzu/Qn54rFE/LWVKmY7vGDDWbqPukyVtFLNcA/7tjt97RtTdsaVnHBi48+kip14Xzk0rLNF+MVpcQ682aCkn+nqsuTv4tAXEJRmdL63P+QFuXkHg6U55RVQpXNc6o2+ijKGjmJYZRJ5omh4dRZu6zOVFqhckSbDNZxGiL9GPmexwYYIMdIzInKgR9GdiHQHTv+b//X/7tUCa3j5Y9+D7LF2or1+godKWoWmev1lsPjI/tqxzsOmLomAUMMEEQGl6TQNkPRLZCOgsUY8eo5nU5ibucq6mZNd+oYfAJTYbUiakXSimY2eUpYY3DWleQ0P0kyvPfzJj3JVF8WBy73hinpng7Vuq5xxjIW74KJbD4F5hNOWTcNWkMoDsEogUN+8/ozlIF64TgddySmjp7I1iqlMWaaW+fuqzYamyFkUTdSOaFzYrFoSSnQHR748jeBql2ijQNtsFVdnHwzq7bm2A2c9nv+7N/9G0Z/5Ec//IS/9/d+xr/9t/+W3W5HdzpxOo3UVVX2TSsqSKp4xqQ08xSqqpr3oaqucdriC3n3+vqaT3/wI25ubrm+fsb25hltu6AfBu5evJjH7erqavZgSkmKBRNvRqp/AVVIoJOiCjDvszFGhqGjtobKWSqtiafTLFW8Wq2IfU+7aFnfrGm145Qyj2Hkm3fvRI1Oa16sNjxbb3FGM4aB0+Met2xZtDXPb24I3cjpcODxsGP7/JblcsFhV3G/e6RpW1bXW755/Zq2qgkKvt098MOPPmFze41Jmdevv+Z4OuFHjxXAqLgP5wGQbpMIF4u8rs6JMfuioAffFerwd/WSNSTrblLOkThkDkqw1gm8JEuQm3QGFckp8u5+j+8ECny9WfPq1R1VXRF9Bp1x2nG13vKjTz/ldHyHSUfunl9xs1hRG43TcHOzZLlcsGgXLKqlQB+tQRmLcQatLGBp6wXPnt0yhgOfffYV13bDEDTfvu/4un3AOYWx8OrVQjqxGlbLNY+rE+HbB968P/Ll1zs6r/EYsu0YfWbwnr4TaeyPPv6IH/zwh/wH/+Q/ZLWS4LYNDd0wCkLEaNlHlHRrnj275de/ruY9zPsga9K5omhX5GudQTGgyBitWCxXpJQ4HHtO/cgQMmNWjNmQQwIt3cfJwHfqwKfo0UoTrZuh696PGD0hZJ4qR04wqkulyUsBjnEci0GuOs8HJcVnXeINkA5eTlLpDyEwqhGyxGQpjkSfCQq8NbOsfd3U2KZBa4vVLSlADAMxjHz7zTsWbc1y0bC9umLRLNmst9xe96iseegCYYgMMbI7jVgfqSpBlBhAp0wcFSEYvFf0g0MNkfs+8M1h5OVqQ5sjCxNYbloRM7CayhmyVkXWg7n4moGUIx998pJPP33Jj37vE0kKlUUrSwiwWrUYbdhst/zJf/QnhJAIOWPqmlO3Yxg7QgjzHnc6ndBa06gKPwS+ff2G2+fPUMbw9u17Hnc7mqpiu15/p7X6nZOMXSE2KuRwmtvvekocYArOJ5OUVNp1E7xgQr/PSUYamdRipDJ4IWH7O64nyUoh8UiWnDh2HX0c0Fakadt2KTdoLXbC8s2VZ5Gk3e327HZ7rBXn7sWipfOjtLxHqcinjOALU2R/ODAthqnqrwv3QV9UNkPx+tClq6MvcKJGT8T1s5rMtChNqfzB2RV49pmQAZgTuin4ds6yWCxYrlZsrq5oFq20iZU6JyWcK6gzSb+M5/T1J0pJKTGOA+/eveXUHUiFpGxw8t4vHpBSEEpXQwLzPOtWQyYXIz/m559n+NTM1SiQMNQ5wJ8RYeU30lSqEHD5XMnKOpOUwVb2HPTPkf/59WW88+xoKnwR+bvT78wckvLrWSmRjrzgc8jXoUiFkQUtdv5eudfLz8/3cO7QTV+/nNvnu82Xd4tPif2pp+sFk/l9vpRAPsmqQCNjIkTBTR+OHUobjKvRrqVtVlR1SxoiTb2EjFSWc8LmTMkh5oxX5/M4Crk6YcpBFaKQDitrxTS8kEcpv+ODF7yuU1TLJbZAoVJOkCVRnw48cdU+S9pOf3Pyypi8NT48MKdrFsYoVcEJMz11P+BsoHkWzdBko4XTUdW0SzG1y0DdromhR2WP6i2qOKCedwCZsGoafzVJbjNjr1PO8lwiYC05JGLKHAsHSWlDQmHc5AegGJPs48EHTl1HUxucrllUFZtli1PQ1xX7cp/GnAUwpOsnRY6Jv1JVBfZR1zRNQ2VEwz6mxGqz5eNPfsD19Q3X189A2+JIfDb+m17rUnnIez8ndCqKI7h0d/OTsb2EYuSUikdICcBKt2MYx1nIwjpHvV5gTUWKka4XB/o4ZnLMJJ/kIybGsSdiqFpJJleLFfvhgTEETmNP7TdYJ/yPb749zCpaaEVSEEs3bUyB1ja0dc1muAKt6I4n/DCiChxoCrY00qXNSEdXnvNTuezv6xWjl7NEC4x0gr8YYzBB5n4qkDJtNDYZgjEkVQqcBVo9BvHZCUHEEmKMjMMoxn7OFn+aG1AjdbugbRuWjaU2BmctjXNsVyuuNhsWlRCwMRplrJwRyqC1pTKO9XLJZrUk+o7s1oSc2Z0897sTV4eW65Nn7CNVJQm4tg7TtIzKcn8ceOwCIVswwpFYbpYkNCnD+8d7tLNoa9jeXPPy7oV4eDkn8yJnyFH2Dq2pSqI/rcecEyoL18wag7ETikJhrBGJ8ZTRKaNyYAyBYzfwcDgxhkzCoNCk6EkhE43M13lNJZGoj0iCa627KKIoJql+eLoufxdM6nK9plwU8yYpXShKVxKXVlqc140qUr1kBj8QoyfjaBYtxiaU9mgT0NZitJDlk5mKw45sFX4ESBxPnug9wQcxYUbEYtpWvNb6OOLTSBcDIQYyETDUbUNIkGNiHDMhakLIjAUWPZIYVeBKQeUc2lmMbbDGoZNh0JZ9tqRkCMlibFXiMHE5v3txy93zZ6wXC5xWVLbGmUoKTaWwYOuKRbOa4x1dOUa/wIdxtmkYxoG+60gxY7KGkPExsr2+KvuRoqoanLOsVu13Wq/fXcI2n4Nb0jkAngJ9yhuXgzmXDU5w8go1B3VThyKVaoOa8fauGOuYWY1o/ns8DYIFT6fLIpafzyjpQhiLthYfPGDlMCj4YIH2CDyp7wcO+xNfffWa7dWSq6trbm9veDjuOewPnI5HmqpCz9FjucsZpXUOFNMkLZWF7JwLng9dQlOlCrYylqETTPb5dSRa0mZaQOEiwE7y/dKClD+knyRtKQue+OOPP2Z7dYWrK4w1czdpIndN0o1TYne5mOekSUtSGIPn3fs3hNihtaJpW0Q7X2EvMoBMJkcxHstKcmv9xMtBgvvS3ipjKPc/Qa2mIRJSooKi3z3PKTIxFXFTLWaDSmtI4k6ZVaAaHClxJmOncsjOkJcz2T0VV2lKoDuNyYc63MDcxcicdekFTp1LVUiVr5WPch+RiUxayKYpEfLZ7G+ax5ddFunkJFIWmUVT5AGP/UiKjzzujwT//ZawnZfP5XLK5+dMzhAjx3f3LJ/XOOPYv3lLXgUxflOKvj+Rux7jAy5DCqkQ9Sy1tVA8MITsL10j7wNv374hjAPcXHN7dVMKIILZTTGKyETWPG8bbF2Ri5KbLQWEGCNjFmKoreyTPcnOMALmwPayGwHMa2yCB01KVaRc+Dhn7HBVVU+CX2Ceg8pY1lc3NMOSnOHq5gVDv2Ps99i6IUcJbiMXTuX5nLxM7yEWXK9BEf1YSMWKXII4pRQ+Cn8okfExkLH4mBhDImZoFmuUMaTQoauG0+MDh/fvqJXi+tkt1joeHh/ntZ+zdOb6YaTvJalq23b2Svrxj3/Mzc0Nt7e3VCYVWWoRmzBGiOrGVHOSMSUt09gOwzBLbE+cmSlQsXVFXbkzXPcCMnX5rIwRc8GURR586Hv6rqfvOk6nk/yuNTTbJSOaOiTWRnO7WNOnjth78n7g0N2Tkmc/7Lj54SsMEuCtl0v6w4FTFnPWt+/ecrXdcHd7yzdffyVJDpI8RS8+HJWzPDw+YpRi0TY8e/GcqqrYuR3ffv21FLGydC3kzJHCVir7n8oi9fl952IAeN9hTYXVVanwaPFyMAVWmxJxGKSboTXaWTIVPiRCjISUpCMVBE64vbpCl47TsdvhXC0O0c6yvL7lFDp0vcS5GqsirXMslxs0hnWz5u7mOZWpiGTQGldX0h20FmMtvgtcLdf0yy06jGid8DlxOHne7kZuTyv6MXF4PLFa1rjKiI9Ju6HTNd+cArsoZ7czitvlitXLj1FVgw+JN69f0/meb96+4fG/+5f8/u99yscfveKHn/4YlR0qgg8jrjboFNBFhUgr8bcZhoRKkmDU2uBcQjnhj1hnoJcup/KRODzQD4ndceSrN/fYeoMyFVZBjgeS0gTlBLI0SbZrSexyEli1wEHFQyIUUR6tz/Ny2hsn1bnLRONyz03JE6PH2jzv5bHEV7WtWLYLbrbXhBzwyeP9QHc8oVIiJcfHn2yxLoPytItEUzXSuYhGImMl0DWlLb4ydB2E3SP9/sDp0EFCoOfK0NSTMaLEbGEsSJ8IPguxegyJvk+cun6GdEedISeySdhaoRaKxWrNZlHRtIZNJRzCNmm+6Q16NKRQoZoVYzyRUsCZxA8/+YiXL57jlBE+TRJvE4CkrHjpFG7IlJC3iwWZhszTRC6lRNd1RXLX8If8ET4EYoafacN+vyepKGbB3+H6zknGJW51qhqdg6NzBfpDdakPryeB3FTtJpNimCdRKiC7c0x6GQArZknYYhgliY4EdopMJGGVQzuHQ4xNxnFk9CNdf6LvOvwYGftEVTX8o2d/n+cvXrFYaX7+V3+J0qWaf+pLFwKCj6jJJVoJQVBKp6UyX4ywUEI8naqISlNUCiTwnZRppsejTcbYEgSrWJKKVLCFEnSWQRBfCaVI0Yt5XQh4LFkr3FDj6qokXFItUOkcWMjzq2a892VX5PL5ee85dQeOp0fahaUfxDcjZqkoVkpImtMN6FJuTyVxmaqrsVSKFZosfPZiknQOMA1TJ0w6RqH4WOSURCokl/eVMihbklZReJIUFkCLYkiIZG3KRlaShyDVWmnNemLWJDVVmHOR0GVOQi65KdJtKMZisSYpMSOauiLTz12O3fxeKZjQkgxpa0hequkTJOvDBEMUPs6yksYocg7kpEQBKAo/4/vOyfit68N9KmdSCtzv3qGMom2XaFUx+AHnKqqqpmkqbp9f0ywrwHAcBsaUCEjRIiJOyD4Fso9kLMumkmeuNE3TkoHRj5y6EyErmnZN07Qstzeztr4xZm5LKyXcmaQSMWlivii0aD2b8U3B+5RAXFbtMuJmPcEVp2taF1fXVwxFvEFeW+AAcjAIgRDl6PpeiH3GcfviJU3jOOzfsd+/wdWGMASiF5OlWPbVabCnT41OROXJJlE5cYL13jOGkaE/0TRtgaGUbg+gEIKyKhW0bvScDp6YwQfP0l6Lxnw/0PUd/W4nh1nTknMxDe17lrcvWN6IM/ZqtWK73bJYLFitVmw2G6pidEoamVqeuVTQMpq+ExNCYwzOVqLJby0Z6PteIKPWlsLS5JMjAg37/V64eU0zG1eZ0hExRgQlcm3QREzOOJuxqzUmREwIDMsV/VESjfV6ydAHdNcx3p+43UXSYMArdMo4Bck5mvU111c32LaVYkwMXF+JdHP/laeLgX4YGLqeF7fP6YaOx/t7Pnn5EV9/9RXjMFK3FeMw8Pb9O47HA7dXV2xWK5btkvF44njsRB49ZbLJc8dVgj0pouTM3En/fl/TXi0dc0FBVCwWFbWp6MeRYfTUbYMPgYx0srr+xOgDoQilLFcrzGrFdrNCOxH7UBa6YcDHyDB6FqsKZR3tesP19TP6N5+hfKCul2w2axSKoRugYpZLXa3XKGfm2uRoRlBrvL/iarvm/uEtpIqm2vDluwPNoqGqK1btHdoqGqWxztA0K549e8GPf/J76OZEWy1YLpbcXK3IyxWqEpfqP/r9n+DKfpOGgDGe9+9e8/7tG+r2CucarG0wtcZVjn7o+fnP/z37Yz93FLUSFSpnDXUlcHCrJZ5ylWZRNVyvHVH19DmgbAbjOPUjqETbNEX5SHiJ1tXFawdymmT9paPRdf3MNeu6rhRAzQxhhOl8PMd+H3pmyPMHPSlLJSnoTa8xDMK98anDVE7ga2T+s//0P+HTjz7iZrNmfdWyXDqaWvGLP/85f/2L3/Dtu29YtDesrpaAohsP2KpGaUNVO25ubuiNxQ899/ePVI0jBM/ogyTxRlFXjvVqiQ9SLNbWiFqnlzhlDBNMU35eKSVS5VXD9dUz7p5veXWz5NObipUJUnTrItuj5tt95pt9Yp97iD3GZT7+6I7tek1lBe5njBX7gygWBNpWKA2R+CRuPx52xXdLPNFSTPM+6IxlQl0YbUUhUSlCEl5zJJJ0+E6r9bs78pQKrZpbT4nfIs1SeBhTlX8KqJDJelmRmyuNpbo7tXpl/ysBW/llUf0oATvSGlM5Y9QU7JaWacoSrRYloYDIuSUSVWVRKuO9IYyjSKSOHY+P9+z3j6w3NTc3N/zY/4ir1ZZ3i7fcv31XJODEJfRh91AUBDJKu/l96+l95JJkqHMydg6iShvvAhYzDU4qr5NTlIoUZ8O8eQyQg8JoaZkqQOdi+1ouU5QhxFmyDPz8d2UAMxrrqqLCcQHpUefnNww9XXciBDGSkWRB3k2gkGzLwUyWVvP091Sa/o6k6udWaC6dA+lsTZ0aNbUxKHKyCnIhfKr5NpJIYaJKAqHPXREkiQgTZ1zlWUEiT1W9krAWAZHyXKRy7UuFSDoRpWNxAZuIUeQfc4rSmUpJntM0eBnBgZbuXEEDlVsufZKMaLP7UCA6Z7WwD2X6pmcm/PnS0dGZHAM5enL+bgv77+qVyhpOClIWR25Zv2VMVBFajuKSapWibWvqusVZV4h0CqMsKjtuNzVmP9L5yJgSaPA5M6pIRJGSJkTFMEYOxwHnOha7E02zQtka4wI1GbHEChKRxVQcagO6MrN7rClB67QPzt2Acl12WgGUNljjGL1HM5EPAWXmvSDGIFUmDWMcicg8k9+H5APD0BUIj8Ji0aVyO3V+XF3RpCUJT9aK0faEYUSZkZxd8XYpMuGlcJGTaLfnpEk5UTfNLO9qJu8OK10Ca2WN2AziPZPIJkMl7rgxgzNOIFtKYStYGoFVKaWp6qokx4r1esvy9jntckG7WLDZbFgul5JYOMdisZg5FBpJ8qRAUZI9oKpckYUW7X40xftG4KdTNzQXT5yYE2RFDmL2SOmCRi9y3UoVxcMsoLKcFNEH/NBzOBxJxwP9fs9x98jpeKIfRsYo0pGVU3g34qwihl44J8Yy9J5sQDmDrWtOuyPxeCCZTL2qMM5RtZZmWdH3HX3f8+5hx3a9pg+B4AN1VbPdbOmOR/pTR2U0IUWOwaMOR/yYcFlU0Fpb45SlMpFph5AEIwnWoOzv1kzCBd/fYoXEBkmeYYgFZgh1bTEF3WDMuTM9w6l0UXgqcsxWi/JSCBGjp/hDC98JhdYCBcwZKlfz4u4l7w9vcEr4HlNBNIYATSPcyOIdlctrieeVZrNdY91L/uE//Af863/9b9jvehgNlTU8HiPfvD9xszkw+MhqUbNaLcgVNM5xe7Ul5A11JSIyq2WDXi7QRTwih4jRBmuMnDOxF9lbFIlEjKOgBpKi6+BwPHI8HPEhzvDbSTRB6+LGoxXWgDUZQ0apRIgQVKYbPKeuE6n2ctiN3hfIlBQ/Ha7EAXLWT0mGLhC3UCR/pw7EZC8w8RKnQrOc3b+tMnX5XCdYoIqZkAMhRJTVZV+ILNsl19dX/P7v/Zg/+Q/+ES+fP6d1Faf+QGYkBc9HLz9iPCWsfsubbx5AR5qmYblYUtUtIUYGHzBazDljsPgYOJ462Q8RCKkcH+IenrMUFXPM+LFnDBnvJ5PA4gSeYLlYcLXZcHf7jNurZ1xfr7m6WfD8oxWVOoEfWRw9IYuwwUFHHnZHYuxxuub5zZbaOen0o4pLvLi2K2XIpbB6iQqSdXT+XKsyXqXYdFnYn+PYkoDkXNAks8PZ//D1t7D9nMtZ5b/OVXZ1cRNalWBrcpydJkSBJaBK+JeCVI1KkJpI5yBrwk9kSTC0ngLlSeJURsiqM74WKG2iLK6nTLjACGjqeo1W4EfHOPZAIqaRfjhx6sRV9vmL59RVw/Vmy3qxoC7wLWsMRoP/rGe384QxkJNglHVRWrpo9j2BMZ0j+fI+pzHM52w9zpV1CX7Lt6dfOidsWboksm41OptzLpHzHOyWDhyYM/5faYGuyQIoG2FJLib+xkTAlo5PNyu/kJOQQplgQOBc0fdHMHvTe5606PXUDXhSqT4nFHMlv3x5XgBMz/tCMCAHtBX3eJ8Tkw62TJEChwhIe5VI1klUVM55riw0Jgf6jMqRmDNjKOFtnoe45KkTvK3M0xgFrpbiHPAV/NQ50cjltVJ5IabpnMkxiuxnSTIuOyLTvZ+x+0VdSkk8pJKkzDkFcv5usnF/V6+sBYYySfGJ/0QC4gy5g4TKBqcNbVWxXS1ZLTelM6CJyWNVRJckI4UDWkWUH8FkVFLSGUOU0mIyjD6xPw2gTxi3o26WaFtR1Y3M6uxJcSSMHusqsiqVMlehckZlMM6SYihwPvWEjKiUmkUdpm6uVloI0yGVjp0mxTivD2MMIeaCf4ZT18trMe2pkRhHxqG0rk0lDulZ4YxBKroiV103C9AQlcHoI950KN2hdDEnDAWLnMUNOiYw2so+ERJ1qwVTPnWLzRQgGdyUGGbNWDDvGoWzlphlzScUox9QRlNVNc5WCJdFY22FszXWVTR1y+L6isVyyXK1ZFWw4xOEaYKJAThTz4GFGOUJV6tyViqeOZYtxcydVGudKEhpSpIhe8G0Tl05iHNM+DjOAffcYc+Z7BP+NDIcDhzfvCHuHxmOAqE97Pf044hPiay1JFsGsk6MeaSpLVhLH0eyFvfv2loOuz0+DkRGnpkbtF2irWaxbtmPQt59N+64un2Osj0Ug9fNeo3Tmte7HcpWJJUZYyQcjoxqoM6GGsPCNiSdCCkyJPE1iTEx5lggZzIe1qhC6v3+On5PKkBJicP2MIwoBePoqF2Zt9ZKxwLmrr2xBpMSMUvn2DgHRjOMI5XSZCUmszmN4qieIQQpRjlXcXf3kvj2NxACVVWjC+Q3xCJ5rEUMRviSGW1UcZuGum1ZLhx//Pf+mJ///Bfsd0eG8YC3z9gN8O3DwPrNnjFErjYRZeriUeG42azJWuPqNVUtZqL1aiE+VcYQhoFJqtZaQ4oVOQmP8nCK+CD+Qilkun7g4WGP94EQCwRJq1madu7qaY3VCqMTTmW0Eu7cSObUj+yPJ5ECLiHNOI5UTs4t7yNJBbSxKGUEy59kD9Xl85xjKUCeEwnvPXXVlEr7yBRs5sxvnZNw5sTl0rITpU7pchmrUEbhasPtzZYf/OAT/uP/3T/hZ5/+iO1qhcmKX/56x+FwwI8HPnr1nI9eRkiaLz77mpA85C3X1ze0i1bUIr0XhShrMM5hUuR4Os5d5pQ1Iebi2SaxViwF2q7r8RFCEiNpgaxLcXy9anl2c8MnLz/m2c2Gq+sF25sFtx/dQNrB0JObnuPxgf0xUOtAPO2IeUS3mturq2I2aGZ+36TUaozABC9RE3ORQTGLF13KsftiEnsuhE1xu8SfknRkLhBu/4PXd95ppDItn18ShsnCbp+qsTHyBDenUzEiU5qJC0CZPlop4tzdKBU25NDNF69hzFQhLIkGk3hZFFUnAzkHnK3kcEQyOF0IFSlliFK52KxXpVIhij4//vEP+OSTj3j27BlaW9YrwfK9ePacP/yDn2GtqNG8efMtzhlev/6Gz379G5nI+SyxyNS9SJnwJLGiaMyXBXLRkkpJlIg0Zv5dOGP4p0Bags2iYjOeXS9zzqRRpF2H3omRl/fkqiKNAVo9K09lpIJxOB6pKvEIqapqltibZA1FczkXcnyHNTKZNMXNW8niTaTZt0HbiUx+YZ4Iczfg8poSSzgnFswz4umsnTJpoJC1KNmTnuegUorKNqSY+f/863/NP/2P/yNurq8ha5yuS2dCkFNhqojmUqlWSNtXFV5FluoTOcxJQIqRFDwxeKy5cDFHCVVm+gOlq3FmgUtQqdVUcU6QouTPPK3MnGGCMvenUTDKYNTkuJppKs1i9f12/P4ul+D0G66vr7m9ec7V1RWVa2e+ECqyXLYEv6KxFp8iea/wh0QsXUcQ6dqqXWGtwzBy6gfG8Eg/jHR9z7HrGUOkG0autluWywx6DcZQNw1NIStPfjAhhFLdP8/TidA8waUmjwxRc4Jx6CRxsVK1NJUr1UOZ+41zpDQUczuL73vxhtGa/eOO4AMqJcFUt2IgqLSYkColUJGmbgonpKZtVoRhZBxGjscTIY6EMDAMHVJYERzzOI4YZJ/p+4EYA42rqRfLuUKopmS/dPJyDCJpqQwoQ8hK4ApadPO1E8MtbQxNvcTaCmsrKtfQNtKtqOsGbcv4Ng2T8ta0v00GYTFG7IUKnrV2VoN6AsvNkAt0TVacFZ35AvUwZHSOUuzSAPKawzAAzHvgBFmMIRCHjrE7MPYnfBjojjv29/fsdzvG8mxcbXnvI189fM2bb9/yzVffcnV7S6pr0Jb3KB6Pe8YhEpTmhx+/4nr5jLV1fPPZr7C7nrpt+fjlK05dZJdP9P3I/fv3LBcty7bhF7/4BT/6wac8u73l2c01v/ns1/RdTxoH6moh+4FxLJ0jFLfifkz44vmRnSaVBCynAhnLAR0iKn2/ixWX1SvhWEZS9jy/foG2hspoLI5+HInhDBk01lDpmlTuP+fMfrdnc7WgqkVEJQZRY6sqR0YgJ8ZU3L34iOX4B/i+IwSoq4bKiN/Nbr/neDqxWCx40dzR1PW8b4z9kfdvH+i6Pe/vv2W9bDhtFjzc7wm6ZR8s+RCx355IOJJqaJeKV1crrpeZ55ueX//6L7i5syyvr1ltb9lsREY1x0h1e8UwjIzjyHa7wRjp9AzjSNONjGNkGCI+RkIJGF3VQJICr/ceZ3SBXBmsUiycxVmI/Y7bl9c0tUGR+Oybt+z2Rx4e9zJ+0ZMIaJ1JyZGzcGW7fsA6id20Kx3JlBiGUIQeNDP8QciNaGU5nfr5uaaUZwgWnOPKs1qfFDGETynxYwiB5XKBcYpI4B/8b/8Bf/KP/0P+4Cc/Zdjv+Zf/4p+Tx8BHdx/xX/6Lf8EYeprG8qMffIJzFTFk7u6e8Ze/+CXv37/ndDry/OUrjBEO2GLR4oxjHD3mdMTHAoOOCVRFCCfG0RdFsyIo4CPjGOVnUy4cP+nIPrvZ8gc/+ykvn93y8uaG7XbB3d01dy+ueP7DVxgTGQ97Hn7zG7YvWx78e9yjl0JLiNRVzUevPibFzDh4TGMxRiC6IWUpuj4p9E5+SjL+k0XDlFzknKnrunQ0Ajl5SeK0lgJUKJ37Unj+Ltd3J36n9CR5mBbo5fc/JOdMBO0JVZU58yxSPjtcy+bHRQDHE/L3h5cq1YGIR1nRxT8Xj4uOTwrl9SUrH8YBa22BXQjrXisJ7o12pdpmkYEHrRuMbZEkJXB9fYs1lu3mCoXhr/7qr4lFez5lyWLlsDxXMi9l2C5J1tP3cs4Qpy5DnmECKYQnbtJK6yddn6kSLhVF8H7kcDjQ9ScW44KmEQfZCbYFsNls+OKLL3jz5g1t284YyEuFlekgz4XDAALnyAq0EsNFBaXrouaqxxky8tuVh1nNSp21pWZznN96xtJRmMZrgqMIhEq+n7N0OihVEYCYIjFIgvr23QPaOG6ubmZZ3ZiztIYphkYhYHIiG4WZIElJ+BTz7C7Zei7qJVrr+b9TSmhl57XwRJlm6q7MBkCly5VEDeyys/OU1FsS4ixdKsWl8pdUHFKGcfh+BwdpGmM1JaFl3Z6bP2itWC6XrFcr1usVbbtAK5GOhYyrBAertWK9XrNYLDiNPaY7Ibw/mSM+FgKb8XJIFuJwVhZbt2hbkZQhKkNSQra0BYKg9SRoMXXjSoetbNBuKhKUOTAFrSBVvaaZII0RnQM6lxg3JXIMZ+hADATfMfqOvjuJmlIMRB/Y73bkJPtC9IEue0ZjiGmY36PR0qJ3Spd9LZMayWm3V5GYPD6MonAUR0IY5b+HgRRGUoxsUmL0fl6Xk+oLyDPSucCMUKBtaa8Zkft1Fdo6ke+srPDGtMKZStRZjKOuWpp6IYRqIKUw73XGnKvqH8LPLoOLaX+cfm8ihUJm2baMfiCniDMZlQIQUdoU+OTE4XuqEjb9zXEcOR6PwoXJidpq9odHut0D4/6Bbv/AMJ7I2TOOXSG+j4zdHvxIbTVXV2uq2uIqC8riGoMdFTko6qTxb/bs3x3xaOpoeXb7gma95HEcWF5tSc4R73fsdjusNWzXK169eiWu9uNAZTQvnj8jRPA+cdwfOAwDh77DZWYCvFk4Fs2KgMhUXtXCARrHkW/ffCtO9qVi/X29pFAnhmWJNAdJ4zjS9x1VXct96mK4ViqyWmvp8utMSophGBj7hB5GmoVwN5uqZrk0c9Aak4iGKjRKGdpmQescSld0XQ8FPhhixFjDGDxvvvkW6xxN09C2TYG+NdSVo3KGP/qDgbr6Ne/f/in90OPskqgcx6C4PwXQHSG+R+uE1nC13dA4RRiO9McHbp/fURnp6qpCLnfWkRatBIg5CCHYOrT28nPaokMm+EeO+xO1a/BDV86ySWkKpDijqZymdhC98LfIYsBrjS33O1JVLap0fK0ufEbEC0LOsRLgRkFooKSIFuKIShdCPhgm9c2h61BaUxWkhKB4CiRqQqzMccM56RBUTcZYxeh7nNLUy4b/y3/+n/OjT3/AdrVm9823/OW/+Te8e/Mtu8dHPvvsV8ToaRpRiKM847ppUMYSYuRxdwD7lqZZ4qq6dJ5N4VxC3S5R40DX9Rz7gWEMhCDfCzHjQ2IYhwLblLjNWkPbOpaLhhe31zSVIcUTh27k9u4HtOuGZnNF0FtMVVNvn3Gtrqm3B/b8hsXOkL850jRLlpsXVPUKUwSUUiy81ixn7eiHmaM6xXjSGc6z+M60PiYI5aRsmEuFu3LVLNkfJwERNFZ9t/Thu3cy8pns+qSTwfkQuGxpzV+XeVsMmJBA7YNq7kTEndUILpKZ30WynfgZiSgtsUoUpepKlGVSzngfS9Qirfw8t4k0ddNgtKNplqzXG+q6lkxVmbIYSqbpLMK812KU5RzOShb79u0b+n6Y4QcSAEu9v2C45IAurrfl1gt8qwQYWaAdecZTacjnwPMsQTlheZCKYp66SjIJZCOEEEolrmx4lwnhVK07HA4XBzRzIjA91ymon+BcQjCYODIX8KZ0TiB+m1h6EXDP00FxfuHyIhSp2jMG7zwWF/NjQotRMIZwOR/OXZOU4N37B1xVcXV1PVeMU86EmATqlSd5YHk2U3U8l3ZrKZWX10zzDfwWyZunc/LD68N5m0qC+LtgUjICak4cJzWxc+ohU1m4J7/9t75P1/y8KGNUvjgPxZxoGFypMtviryDPeFLH0JClG1lVVWnvzisNCowuZiHDKgO1k6p7npy/VYHPaUfWRuRzrZ1JlJOMLdNhWIomU4v58iNORHGEIB4L/j/HiMpRZE1LxT0FCUwikpyMvmMcT3SnY+EARcIYBCaFQuNQORGD7EUoCT6kwzt1bac9UwHiUK6UPncu/EiMAzGIx4b3I2HsyEkSnmEc5yRDoEgy/2JKkiSVbqp2QoJU2n6QZNSYSqARisLZ0uIVULkGV+QeU8qk0EvwcNHBoMyHuQOuNXOrlKdFrstiV84Jq4uqkspYpVA5orK+1OJAl/uZsN7T602H6dQl0UpMF4ex43jcMxx2DKc9cRgI0RPiyOjFcwk/4ki0zpCXDTEjZFkFjdU0WmNVxkWFO0q1s4+J9WZJpWqsrgljT7tYEJWi78RPY+h7hlqCVD/2UIolrmqwWaNtoi/V0qgCnuI4by2mrtGLlgqoMjRtgzYi/BFIxYulSKl/Ty8pdskenJK40IMkH8MwFq8dO0NAJp6jcCQkwVBK4X0QFaqhZz221LFBK0PltIiqeCExT6dxSmBtVVytHafjSVQhtUY5UbmMIfJ4eqRtW8I4MvY9xmrqRtQzl4s1H330McfDicoZxrHH1w6fKjqf2XVCZs8JbrYNy0VF5SpurtYkbTBE6SYWGd1JPr8YbuGcZZiShwKfUtrgMOQhMY5i0GaMnTbhkoBNio7i5eUsOAOVMjPyXinNcrlku91wGiNB1wRfIKM5M4YpuAUbBTqViVJYyWF+DTn71AwbB+GiGm0JcURnQzSqoEN+F+qhzIPZA6tAj1QRnsmBpm24e/GCP/jpz7jZXqFS5qQUx+OBN2/ekOK39N0R7z1937FcrRhDQmnD3d1LQswMYyDRkY2l9Zm6iRjrcE4KKcY5zATR14GYCi9jitwueLAUFI5R4sNxtV2z3Sx5dnPFatFQVYDxtMuaZrmgWqzArsAt0Q5qvUTXHVcHw+37SPrLz1ms16y3N8DsQMgkcAEXZ+wHMfkUl6tpNZVvPykIq+lsERiw2AOcmwS6FN2+y/W3TjKmN3H5+VRdugysZpjLHFWkaU4zT5xidDVVhz+cSB8mLzMGryQsCSH6LVYLnr94htZihHU6nXj37l2pnitCAGMcDmmjX1/fcn11y7NnL/jZ7/8Rm80SW6psEsQW5r8SsqLW4FxN5Rxt2/Li+XNyznz2+Wd8+eWXgFQycpAs1SQrmLjpoWlTsIhSWVRKYZTDqLNsLXAmwSqEL3FOT2YVJqPN7IwthKeZFIBSlL8RMIY5OLrsMFlrRTvanJOQy0NbsKsWV4kcpyRJReufKTFhft3LIGFS0Zmevzy/SM5qnifnJPXp/FIKlJYJr3U5QtJEkpro27psUkEWbvEv0FqBFlLuZ59/yTB6Xrx4KeNbNrWYEr5sgDFE0FAp0UIXRa6zCeA036VVW/72RSCUcsEjlsczqVLJ/J06E9N9abmPGIUgyBkmNb2e/KAkGvJ5KhLNeU4oQwzSifmO1YO/y9e8D+TzWKkn389i0JbOBOvFQlq4fd8Vs7sscpHF2f7SyFPa7DAbNeXMsRukeOAUtbX0PtL7xBgR9RBTQXEAb9qWummo6oYIM3fJGCPJO099bCZ1qUkFJYTA4XhEpYjOkcpaxiHMgW3OUhDouo7Hx0di7Imxp+u6M/QOqAp8QZzLjeDssy9eEFO3C/RkaJXLfmMq9KQOgsXkCls3SKA1Va4gReFpxBBK8CnjPfTD/ERCCJAkYdLGULcLrKvFmT0DlKjayB6n1dTRFWnHYkFVjMlKuFKbYiIq3aBxHIkxztwMSeZkk//Q7RcuDsosBNKx71A5lQ7TxZ5JKiaDkGMmRiUcmWKMKoGmnxPEuq5xVmONJGZdd+T+/Rvy/pHsvZhIRhFvMGSWyoCtqSuoEzweOlwW/t41FqeccF8GWDYNQ/J0wYNqeHN/wAwj9qopWv6GuA6Mx46Hx0d2jw+8uL3mRz/4hKauOO523L9/yxgiMWsWyxVXz26wzmGs5Xg6SZLlHMM40tqKhavQSCK1alt++jMxSZy7Nt/jaypOpBTF+bgUBrtSCTfOYlwx7dWaEJm7kyoLTKT3ntPxyLjfsdkuadqWEHIpZpUkPUoyE4MULhfGQhCTx8PhwHbV0iyX1OsNfvT0p46HhwdWyyWHw4HHhweePXuBNsJ7uL5e8/LFR3THnufPbvn8iwPdSdAT5JbgPV3rMNZxOGbIgbpS/IM//iMOvWdMisoknNHUVU2zaOXsyiKm0bSNqAr5IJ2XRQsYlLKM4cR+3/HmzXuyNXMGLrxSiagAlos1lfY4lViuWgwKowx12/Ls1TV3H33CofO8352kq+E9x8Oe/XGkH0f6YcSHxKnv5b+7URzFy2WtnVEMwqMoZ3vlsE5iBh86fKCgTc6eQZcoEel8im9RVVucMyUBsPzkJz/iP/lP/im1caRuwJ86vvz8C774zZf89a8+43H3yI9++DGHw4n3D49garrjgZgiVwHu90e6vqeqG7qQcceBul3w6Q9+hHHCe6jbJW/f3IOyVM2SullLJ6N4gjitMa7CNa0gRFRGG3h2e8OPf/iKZzdbtsuG7WaJrTK2jtx98gnr2+fUyy2uvUbZhfAXdYNp4OOf3VKtX/Ff/PN/ybPnd7z66CO6rqdWCpwT0YlhlIKDlWdGzPNZOnkSCRxWVlK+KGxPscnk6j7FbaEUSK11pQ763Yudf6uI5TIQvbwuiTiXErZyC+rpv6XKDxJ8q6LIpHyeI40Pq1WXf2c6yKeGfkJTNUs+/uRH3N7eYqwmBs9/+9/8V0UeTarW1krycOo6Pvn0I169+oi7u1esVmtc5WSCVoYYvJQRlGCVrZ3a+har1VTj5p/8yT/mxYtbtts1f/qn/26uBggucDwPsHVzlfEcXKvCC0EMT4yZuz1zNh7PVW+tCkcFZjiZjJMYEYYCM9BGYcvGejweaRdLtDEz2We1WvHs2TOWy+UMlfrw0lqz2Wy4vbk9B83T+2Iii5+/Nj/n0nGwdko6VEl6pkmMPC2t5kDwnHTIDJmevTaKcZSAXGkgTspLklA5VzM9ieCTJELaFmiJ43F34r/7f/8r/uP//T/BWkv0gk+NWKk0RJmNlTJFppOSBExyzALbO3trlGBfXXQbeBoYnyFTUwB98b2SwIQLOdFpw5xbwEme29Tw0SistsIrUmNp/pw5L/9rvnLKHA4HHh7uqeuWm5tbDofDPFdiiMRcFL9CwI9eZBgnOEQIRbLYkLUhIR2gh/2R3eGEff9I3w9o52iXSxGqKJ3MYRhLd8GT9zuycTSLJVXTUjdW4FY5EYsSynSllOYO4SQZrWJAR89pHKSSHCLBj/LahcTc9T0pjeQ8opIEu1oJr6Ry4guiCoFV6A8aVwnfQ+afgywHMaWTGlHCC8sZVKmrKUAVScksRQqtNMbW2KrGVoXro8A10t2Y7skicATxh3AYV2FdLRDDUq1T2mJzcQ5XCs05wSArMfkjy886QyxY5skfY1KVmedAWUiXCfklOTHnPEPGUhhwzmAN5DBinS37g5gxqlLtjFhUaTRf+mhMa1Gqmj1B92w2K0K/Zv9G8dgdxcgvZ3yKoDWm0tR1S7WqGX2g7UeyfWTVrrHK8eu//DVVzkRjGGrYtZrsVmTnOLUty2ULWnG8v+c2JraVpbl5Tn88kVOc98lf/vKXaCXcnbqybBcr2qqYACqIITGOHZ/evSQrOB5PfPyT3+ft62959+0bnt3c8vZhR7Aj7pXhZrMlDiNv7h//F1/H/0tdRhtS8UTS6iwCYowmDGIqhgJb2TI3yx5bkgyDIedI07ZUxqCXS26ub2mahmHoiUFdnFdGEssknIGuGxhPe46njmEYyKsGlOLLr77keDhileb2+obHhwd2jzvevX3Hv/pX/z13dy949uyWm9st7cJyf/+WxaKlNg+kcOS4T0ISXrTUTUW2juMowgHWZmoNbQVV1rROICzONVTVAuUMIUZ8DEQ0Tbumdg0peo7DgWEM9P2J+/eP4kvhKg59V3wyxLNC1mZCG8X1dSvJcg44JV0GjcEqh+972mbJer3l7pXj5YsXLNqaHANDVOyPRx4edxxPHY+HA/vDkTdv3rE7nDh2Hfvdga7ritx3KMnChG7x85kqxb2MwpCzxo+Buq7notP0kXKauxcxBjLwn/+f/0/8b/7+3+cf/r1/gArw5W++4MvPPuP/+f/4L/jN16/pgifoyO2LK9bXG5r1mqQMIYvx5qEP7E8Dp67HDpF3uxN101LVJ754/Y7b6zVGwf3DI22zFoI7mpAyxlW0WlG3NTGLLPIQiieQgcpprq62BdJuaZqKpjLcffSKH/70Z7z4+BOBZrkWY5qZ4pl0TY6Jeml5/kLxez/8hJ/9+FNevnpJXVdINQzGYRSPFqPRVowFZ+4osqdPEFVzaZR90TiYEjhb3NmBEosi54Y2M7H8u1z/PyUZl/Cp6b+n7z+FhKgPX2j6RD7Km3/a0biEyzwdgAnfb40rMCvQpmK52tI0NZD45JNP+frrr9ntdjP5OKXE6Ef2hyP1+3u0rlivrjFWYZ14bqBFmlcqhIZZ5Yhpo5IgeOM23L28Yxh7vvji1xyPU0LzdLwmdavLVtSUPcqYFSxQGSdp+jw1R+GixfXkIOYSUKMI3uO9QCHGccRW1fyAp7ZX0zS/lQjOr1e6RW3Tslqvik/AuRUJMrGyvoB4Xbz+OWE4zwH52vSzUxA+Pd+zTJ1chdiLwGEun7lW0xMov1f+lja6BP9IhTILZvlwOPHw+Mh6tUHrCh8iRfRSFtrkwF46WJPj6zQOM267LKbLMfsdM/pivk/Szue1QJ7UqtJFh0P99r9qur/SPSlJxoTjBMX4PTfjkycuyl+pwJXmMkTOs/5vUomH3QOurths1yWJEGk+70vnKGX8MDCMHh8TSRtGH/EpI16rGcr/gyRoSYkqzanrORxO7A4nDqeBpg1UVZr9NqzWKKMxtprJ3imKj01KWaBLOcyY75Qi4ziQk1TUg+/J3kMQyIQvMMYQvCRFWe48xgBZIIrWGEmYlZIAPp9XmTRlDBmNj8L1mTx8mEw6Z08dGU8oFcrLDmkJyJQ+/76auoElgTal22wUaCcO4imKxKszVhRMlAajyMrMSYY514nmIsCUcaf5KYjstuxl0n2ZOyspnTuPORY4rMZo2eekejYRDmVfygXnraciSIENUM4IVWAZKmc0HpWKz1IxdlQTZNKYYp4JOXnqdsliuaXdXLN7e0/ou9mk0BRn5Kpy5TCOGFMx9h6rNTkGmkaDc4SsyMnwMHpiKTfblFhXNW1TUSkIY08mkJymXbaEYSCHQKU1uRiVtW0jAhtKE1LAezGViynSjyN3L+6kazGMVNqyXCwIV9uyfjZopfHjyHF3oD+eSOP3l9slCRhQzugJLDEZ3IYQCvyvCJaUuTCdXab4N9TOCcxaK5q2wVqRRvaTMSq5yJUL9zGTOXW9PJ+yzmOMDGM/dzhTivixx6AIfuBw2PH1t9/weDjw5evXXF1t2KxbMgHxrdKCc1fCGxxjpPclyG1GKpNonMKtpELtfYLjHldv0Ko42buKrCOxwMJcVYG1+EGhvEVpUa789ttvRczFarQp3ZqcyYUzYZTCGU3lHMaPmJSojSIVRSXXOGzr0E6jTaauLG1l2SwWbFYrPHDsB/bHI6MXQY2uH7h/2DGMA6eT+L8cjweGcWQYRw7HEyFIsdSX4pD3Ujgax4EUIAZQKSL6Mud5n0tX1jrLer2gXTQsFhV//Ic/4/d++CnrRcvXX3zBX//lL/nVL37BV199zak/yZ5LpKocdW1RuuJhJ9YEKas5lvM+Cnk7g48JM4zyjIYjisxuf2C56DDGSac5Fnl7BSYm8cMonAfnjIxX61gvFzR1hbNS8bh79ZKXH33C7YtXLNotzjXSceXMm8oFnmRMoqoMH796wc31NavVUpLnICertgWGrzWqwOXydJYk6RwJgi2jw5SATzDksveWrnGhuQjEcIrVStI5he3f5frOScYlTmtqq08B0qXBx2XikdIFHkydVXPOb658ZQ7q4kxwnoLwS3LlJWaXLA8uRhi9WLUb01LXLdYqfvaznzEMPafTkRTPAxlD4PXXr3m8P/Dm23u2m2u0eSZBXOFmpCzO3HUt+P+c81wNAzXLez17dot1ml999ks+/+xLhuHApfzq9P5/F/b4fC/n15/uSzTtzy2s9Du6OjkXoFSe1Ko0p+5Ec2qx1tK2C8ZBNtoJhjAZ4HyYHH74nBeLls16g3NOsOUF7qQoijMTnOkiqVTqrFpwmWBezoUPp+WTn0HN6fZUpZyC/Zk3Ub4XU8JowaIbq4mJ8mwsKYiKjLKar77+mrsXsN3eMvpYqq5SCXHq3ArMWWAZIQaUOicY87Mr+uFz0pcv5vXl80gTvGpKHGAWwZkcxUs+OU/jGTI03Xsx/FBSc1NKsMbO1aAUw/ec+J2VZtICCkra8AoJbFUKc8Ul1/Du/i0xB+7uXmB1hVWWpCxjH+aA+XA40fWewWeismJsliEojdS1ihKYMuL+q4U83Pee3f5Ee7/j/cMeVy9QtqFZJ1Za42qBsVSFKCvQmoE8SlEjJgUEJGJO5OyJfiyHTBbDzHHEDz1+HOf5JPM3PCEfGw1Wi7rLNDEyqRjJFZ61EjnelA1hEN+fyStDVPRiWc+lS1HG+7cKQlnWmnTJrOzmMZT9TfDTeC+vq6Ax4jMStUJlQ62l46Omwom2oIr0LWeO1rQe8gSxVOf1orPjrBCnzwIVWTDP0vXLZBVL0iUKMgQv7y9HEW5AkgylrbxGlvuTbTrPCf508pg8oFJEKYtVlXR5VBZlLKtxpsIkRxozdQuLTWL7/MTD+x3h4Z7xsKcm45ShMpa2XuC9pzKJ1iby4Dl1J/rQs7mWqqvHoqj54rOvGIcB/MhSG4xxrFZb6vWWL371C4YwoqpMu1nSPwR839O4hvVqhasrdG05hp6xHzmcDoynUVzdU2IcBsb+ByitOO0PDEXlqG4b+r7nxeoOEpxOJ755/TWnw/EJ3+X7dlktiWoq+0fMpZBQ/FFCisS+l0Sg+LNYNFErSBp0JuRM5Ry1cyxqV7xcNDpmxkktkyiJpZL1lFLicDrC2NNWNUYrfBg5nALbm+fk4q3SnQ5cbzaoHOi7A/vuwGdffsnQjyyXC57fXnN7e81HH73AWIvOFowTU1kfOfYjbx923NaOSltaq6j0iuRPnPYdqVfU7YambcXMzQq532hN9D3WOXSWjq/SFusUdTZ88cXnHI4D1oJ1WjyiJnn2JGpurREVvNwnlPc0dU2wClMbmmXL4mohhRzv0TkwHk9E17C92xBMZrlccHO1RVc1yjgymsEHaqvwQ8/j/Xu604FT33PoOr55+54QNMMYeP/4wOPjjuPpxPFwYPfwSOg8vg/03sydgeA9WZdg3miaheXZi2tub2+4e3bDH//sZzy/vSGOJ/7i3/8p/+a//7f88hd/xel0IDAQk8hfW6NpmwVVpfjy618Ro6STu92REMSlPIaRjGLwXoTWc+awvy+d3cTheEQbI75NWolUt3X4GOi6oxQIlg2VM6wWNdv1guv1gmVbC4pCaX78+7/P85cf0a6vsaZBK4fOtsQRJTIoMZ7OCaMTP/zBx2xutjSLVjy6gtxPVU/KXedoK8RYiqiisiJwYlGNUkqc10c/YE0FiOS51oYYEmEMWOdmI2g9F/1VOV+/w3r97kt7YvjL258kxKR9lUpAJepM52o1s1eEvsh8LmvxOYvkayrSr2OMUvG5DLqnLoKS6lcqB2WKmapqqVzLMHiMcWQsIWZcveD2+R1jiHzx+edygCoxxjn1B4L3jGPPv/yX/w0/+9kf8urVS+7uXnD1bDHj7XOelCnAGpFLAwjin4W1NVdXt/zTf/rP+G/zf8Ov/vpXnE49MYoxjTGOqqoRvH/GuafDfSZOTxVeuWIsZm/T8Vg6PRNEKYQgiVBOYt6VFTE6Pv/8M4xxLBYrBMfokRxYDlPnDG1T0TSTx8UHT7gEJE3bsr264vb2ht3DO0IYOZulnQPiM9kUTJES1hpiOAfhkzs7MBPEJrjUh5ArSqadZinjs+b57NybsxBy5QUvZpPCaYhOFmZIkV/81a/wEZSp6LsBW2mUsaK6kAJJQV3XkA05FnldYtHaTpDEn0MZQ9YaohY1pJRmrtWHV34yy7MEMVlDKqTXXHgZJQGfseYZUpgScgTaEjOhtI3b1lE3xQPgf01XzlPN8NzgzDB0kZxG3r19y3/9X//X/Oz3/5DN5prFYoVxNUPfc+qOvHvzlofdnuM4MKYoZL0sBpmTetzUIZxW2DTuXdex2+04nU58+eWXvHv3jrdv35JSYrvdslqtWC6XM7RmUuYQ8jLE4JlN7uIo3j8pkIKQqIMfGYeeGOLFeji718J5/seUIZ45TkqZ4kh/LlrkoiDStu2TdfOk+MI5yIczlBWYCfLTmoqxVP2NmTXmJzzuRBAfuhFb1WhtqCorazMESKCtFfltXRLvi77UJO07dTSne5aikZt5fBOUE0qiX4jYCnDOlmJGwQhrJZ3VlIQj8UEh47KwczkeUxEkqyw+GbMymJiH5eQxCF/DWosyC1SKLJcrPvr4Y+6ur3h48y3vX3/NV5/9NT54VE5cNQ5XiUu4D4HVeiHuyIsa2IpXQ4bD4LH5mlMf6IfI4+Ee/1Cz9wcefeD+3RuM0WzUFtc4nG44VYmv3rwpGvgG3/eQpaoasgTCCulItZsV1UL8BbJR/Pkvf4EfxfOlso66qlFAfzox9gNGCeTu+3opoLLlrA+ZibGntMJVDj8GQgh89eVXXF9fzzLtjasZg2ccBmpXEb3n0PWcdOZqvaZ2VYEryn6RCjQ5hUAIIqF+6nts9Kybljdv37G+WlIvWt5/8y2ffvIJL1485wc/+Jh/8c//Ocoqrp9dsXi95NQPTKaxX33zhn70tIslMYnPjcAVLX3v8YMne8/XKpLGijpXjNcZS6Qy8MXb1+yOI9ubd3waEuvnL4WTCJAiqUjwbq+v8amIFOSRx8dH9gfhOiTnLuhfGUtg1dTcXq3ESyRKElHrlqqpabZrNnfPabdLxiEQfGK12LBsNtSu4eHxgF3VpUhiMFbgXFoZNCPWRqyqMNslvtGEsCRmxZ/8kz/BVQtCgvf7Haf+RHc8cHjc0R9OxCESfaAfR16/fcv9bse7hwcejjsgF4l46VJ1pwO/+Is3xGHk/bdv+fM/+zN+/ud/zmk4sbpa8Xb3ltEfyTlgbWa52HI49Xz+m6857A9o25CV5nB4ZBxK51JLBBVTJKYLxbpSE005kEIgKk/T1Iy+px96VIF2Kw0hDbz66AXb7ZLbqw2LRcNyteLm9oaf/eHvc333MdVygzZV4cBKsJzJdF1HUgrXrhhDTwojKgZevnoBzgkB3VqcnTzjEiH6eT+01pYursRilWuwtsIY4VykcmZ572f4doxicBmTFDFOh8PMXcs50zYtGE1Sih/9/v/4ev1bdDJM+XcKvvXFxl5a8KXTMUFGRL6zBJNTCF0ejmDbSyCtDTEHzufhpXrVRbANUOQ9p36NmFRZqqrGuFqwwmRiUixXa7bX13z++a8hFxJyqU5nPKPPPDy849e//iuOh73IoNorFssFTdUKDIupd5NQ6izRKAFyxmrDzc1zfvb7f0Dlav78z/+iSNvBpOOspbtEDHL4zZ2NEvyk8zZZbrngnMtY6Tz9xNQhiEza8BT4Q4yR/W7P8XCkOw0MvZdANSX8OEqCU9zYVZ6ct/P8MUG0Zjx5zvzjf/SPiXFgt3vk889/zf27dyKhO2XYk5yZLpCoPHEwprc2KXtQKorM3QqlJ7NECUzkfZUxUJKcqgJ9SGmmt0OiiC/pUskwqBilmpXGAn+SRNS6ht3+wOe/+Q0xJkySoF+qyXJAV1WNuEKLic6kziByswljz46kgCQHH5DBufw8i8lcLgmGURQfFMEDp2LOo8rvXFa4zz4ZUzAsT0dpTVUbmsbStvV3WK3fnyuXJGOaNFMi66x4OMQM2mXePz4yhETTD1jXcDqJGtPpcOQ0ejofOAwjIWaS1uLdMBVF8jTi5wB8CvbHUeSfV6sVdS3+MXVd07Yty+VyVq2anpW0nRMqZXRORW52xA8dEGe4BFla5x8KWnzYAYNzUTnHLDNFq5KY5/K+C7m6vI+JtDu9r6eCCk8TjsvvXX7MXbeYZmNUlbOoQlHw68kIX6xcWmtiymQte4b4/JTdYBpXdU7IpuRh0l+fXuNpJ/d8TYciQEqarAOTGp/SGoWBdCaD/w+N67TPPklAtLgKa5PEb6TAsbTRwp0zRaEsyZmirUMbR9SG5XotrtBxZP/4IM88eJwte7k2VJUB5TBGBEjq2tFqRVtparZ0vacfAt3VEm0UIRx49/4BHQaMcuBHujAQjULVjkErTgoqBUlramWojKGpDM1yKeR5Y6nrmucvnjOMI4+7HW/fvZPuWQh4H2a4qZBnNcqI2eL39dJKyx6dfSk6xoLrt6Vjb0vn0T+Rlo5JzButsSiiKOYoRY6BGCLJpLmDPvHyRB59giF72rbBJUtdVVxfX9MsnKhQ6syL5y94/vwZMUbe3r/n8bgnkFktF+zcjk5LNXoYRDK6H3ts5fAp0fdHsqqpXYMzlpz1XD1WSrFoW+lQWM9Df2R3OsHDA+v395h6STYifEIcoF2iazFdXK1XhBA5njrGEPAhk3LhSxUzS63AOUXbWpaLqgg9iNIaGlzlaNoF6/WWxWZT5Nst1tY01ULk/12FrgWqE6NAc1SWfcxpSyRx6Du+ff0aFTzWOKq6wWRN7SoaY0kKNuuWrq3ZGU1vjUiyJjECvH1+xegDp2Hk0PeEFIgpEMLI2I/4fmB//8j7t+/5/5L3nz+2bVl2J/Zbbptjwlz3fFVmObJJqUlQoAhKaIloAf2vCvoiQAK/SIIgAWqg2RRBslhVZLGq0j577w1/zHbL6MNca5994t2sekmxoXrUTkTeeBEnztlmmTnHHHOMaRj4+uuvsJXl4uqCetWgHazXFXXjaJsaW7U8vb3j7bv3DF5ivYjiOBxIBJE0bmpMJRKuxhratp3XlQLUlvWsaSRRlN5JL/LKOdHYbFbUlSEpAUB//w/+kJ/89Ke8/ugNrlqDcqArlJLeUpEhTsQ0EdGEFLDKEAPEaRJKbsjrYxKFNYWwHoCzdV7nOQ8nNojEGwKqSu+RxLOStMgaJmefqMYaP03ElGXEtc5z54etIb9VJaOc/GnzW34tig/zeq+BwOnyTkEkafETpcX1O6UZtD+Rvpa0nhKEL5IOJY3SVS1lKmMrFBJEVnXLerWWgJVU/NCyeV9BM+Htd9/QH3uRWtwEXgDOtiKBmKXd5k1RlQrOiQ6zWmm++OInGGO5ubnj8fGRGCLGiEFWGYw+87JLn0pKM96NBMb5PpUkA+bPXn7F3Okvt+ik1HQ8dux3R56e9jTNE5vYYo2oSKzXrUh5ZlRPlcAunRKMks32fU8Mgf/q7/5drNPc3b7He1GQEK5rSSROieBJnSBSql7zkeaOFkq2oRE3zFPQtwjYEX51eT+php1TMaRPRAIEUyRCw5Ql+yRQ0Kbi2A0cj+9YrV5k9DIH9El4i3Vdk6IieFGqKcY+RU3L5J6P4u+wVGL4Tcfcc6uS0LrmxPgUDD1Hnpc/OyH6Oo8xQ9M42raiqd1f+9k/piOlJY3mdO0KhTOKKSu7aK05dEemBHUIaNdzOBzojkdiP9L7wDAFumEi6KxvLdaROck4fWYJPosaVWluLgnFer2maRrqupYqF4uqbIxi7JWrDsRA8pJk+HGErE9fkoz5gs6u+cNjJyU9u9KL5KFhxmgzDagYiYQSeD9LHJbHstdnSdVcov2ymUkwRSrqc0bUSNSpIfps7UmnulD5R+XFMOXq5JIeuqyqlNcWtbnn92L5d0opQgp5ASygzlxPPXvf59+X93p+vxWi0qaieGeAQmuRvdXlHqoT8KW1QRlLQOGahioLg0Sg2z8RYo/F5gZaJco4yqBUYpoS1mqcM2xqzdquGYaJYfD4pDl0E7tDz0PoWFVaFJKSeHaoVY2ujCQaKhKQNbt2DtdUVG3NZrPBugrnLHXdYJzDpsRqs2F6+12uCAkSaUN2cs5qbEIj+vEmGSlJD520zBmRho7ism1ygm6tmhODkojHSQgeIo8sbAGFrO3ee3xWGIM07wEiRy00a+89TVPjkqgvXtXXoDwxTsTJU7kKow33Dw/cPtzztN8RYmK7XlHXTuguufl88p798cjVtmHoBg5dj9KJyjUZzdZYZ0UUIdOcbVWB8WzWkYfdnu545OnhnqrdgBXar9WJSjusLnL9NVoHjt2QzdlycJgKvRCMgrZxrFrHeuWI44AmYjSgEsY5iaXWF6zWl9T1CucaEkbim2w+ihEvKD8FxmFCJTFGtsoQdG6q7jpciNS1pqoUaYpZDlXTWItxhoqImUae+oOARknjo+Ly+gLrKoxrGENiDCODH+m6Pf3+SH/oeLi5Y/+04+npkbv7e1xVYSrNqmqw1Rs++/QNl5db1qsVv/irr9jtjtzdP+DaVfZdUUTlqVtHWzdcXF1k4Y+Kuq7Zbrezz4yWZjHZF6KXZ6eNMEu8z0Z4pakeQhiJcQKt+ezzL/iDP/wjqqalHwZAkgzQklhk5VWVK/wxSU9iTBJHej9KDwiyxunKCcCZAYWyjsYY0cbldZz5fJXyeB+k4qLKTsMMMOlMu0pa4yqJW8kgUIxhBkB/yPGDk4yl5J1ZoFvPZT+f//eHNtXnvQnkstAwjFnj9xSk/qbLSGTp0LxgbrdbCTjzl/cxZ8HpPNBQ5CqAyjJqE12/Yxg7dvt7hvRf8+mnE+FTy8sXL9Ekkg6APGBimh3Iy+eNY+Di4gVNveajN5/x61//inEccga7pjhXBh/5+c9/zt3dHbvdToLlzPkvgfrpdmUFrZRIOWMt1YvEsvk3/21UjGPg7dsbDoeBL7/8ilevXnB9fcVHH32Es44QQCuL0TVwKo2lJDrxx+NREoysbnJ9fU2MAWsN/+Sf/BOOxyM3N+95eno8e46ncSCUCb2QWZVJdqKtkKsWBa0WidrMr15cl9KlEgQqCPdaotLINA0z5SNNAWstlTYcp44QPEbJgpCAYfBM44g2XeanilFOVGCsZbvdohDkses6WQxyMgjpLECb+1BSLpcuArbn41ImMmevm5OpZ0HXLGGsi3xylkc1Ir9onePVq5dcXW34LyHHKKMmppTN+HJPD7nyKVwFjJK9cIqexmqiUfRE/NTzNHR0Q0eLnuVofVLieYEmxdMmKsFxwDlx5i5JhMuS1KvViuvra3EWzz0YIQSOxyPAGbWn73vi5NFeegNi8KQQsArGUZzhNTJOUxJkbEYL8lEAixOdSBGjpiouwUrN61VKOfn1iag8mDTTP8qx9JBYHs/7wE4orQRVxc/CWIPVCmPE5LR7emSKAe8FDY/IXNQhgLYYbXPTdNbhN7mXxOTX5Xu1rKycJLMVy4bGpcKaMeZUpSniEou5Mk1THhcKlalrZa4t5+DyvWGZjCEN67OErZghjsMwK8NobUTNK4Eylqqu6Yw05ypt2L58xXHowUQ4ijmfyWuRsQIUxZiwlQIdMEbTWketEq3VhMoQQuJF4/CXa754eU0/RfbDyG13JAye6BLJwmefvOLdzQ37fkChqNYNrq1QTc1//PnP5v2jaRqqv3RcXV3xyaefMqUofGmtqCsHzmJsxbpt0c4yjRNh+vH2dh0Og/DgjUEb4aNHLx4Qyp7Ge/GG6rpO/tAMuSdLyb5epOBD5Hg4kGJks9nIvM0JxjAOEL00GqckamhRxvGLF9d89+5rvvvuK959+Q7rLOvtmtvHW97d3fLw+MDxeOQPfu8PeHx8pDv2HI8epRWH7shf/ewX/G/+m3/Crrvh4eEeawfwgdCuaS5fsl61XFy0XF40KCxaJZxTbLcr6sdAN0TefvsNT4cDddPSrla8ef2GcZA93HuP9ZaHxyd+8auvUKoYFxvG0WM0OGOotOazjy55fb3let3w67/6kqtVRVs7fPA0ylBVDavVBev2JSY3zFfteqZphVSq9glLRGOx2mIwGAU0LR9/+imffvSG2HWokCDCMAoyn1LED0eIipXTXLy+4uHrX/D49MDucORpf+DyxWtevf6I3/uDP6Ku1wQltOfb23fEfsD3I4era/re85Tnxr/7s39LXVWs2pariwvWqy+42K7RyvHd2xvev79jtz+wMgoVeoyzvH5zxRcffc7rV6/4+FNRIK3rKity6lmZMwQZI9OUfYi8VNRkzB3n3t2Yx04kEJNnnDxNu0KbCpT01qEcETvHD8GPKCLrVU3SDh8tDoXPa9qvv/w1TQbCXLsCtQEkTtda07Ytrq4z2GkWlReR1C8KqCFGSr/osvKsjUFZqVgpazJ1Ncc6BXiKP0yE5gcnGYVeAHxvQf9NhkpLL4APNRkDpBiZwsQ4jnmDERrOMjlZolKlSVgrnWkNK6qqEjUlawkhcjgciBHu7594//4GP0lTk0KjldjNiyt4pq5kg7dx3POLn/2K+5sd77695R/8w3/AxbalbS3aJAzSVDhNgmiQkAAgluAdnPVcXb2QvgwNm00rpXglE/vi4oJvv/2Wf/tv/y2HwwFtbFYS0HP5cqZmkFFdV2VqUUBrspt08a4QOcukRYXh4eGe+/sHpmlEG7i+uuKnP/09/sE/+Ac5iFV4H6mioP+F0xpDRAOVNWjtZDHygdFPgObi8gXt+gL3+CQZbjoNsKVfhlI6S8EWRMnlQa5nZ/PyZbP3R0oJPw3EqHKJWgI0PVcrzFxNWHK4JciQoMQaQ1U76aJVCR8mXFWzWq2h3XA8DvhqlNucgyubVVhkwfBM04iqihKU3P1ivJYHIDnV+I3jGc6TitKHkktWElSFeHYfyuuMsYusOi2LhLy4vmTVOMZ+9xs/98dwLAPo81/kf2f77zQH5iFFRu+J1qOjJRhD0BCNwk/gkyIqQf+1toQc6KmMMiciIYUzoKQEviDjyFpBDcdxzD4cgoQ2TXOmOjYnhcnjx5HgxVNBKBcDMeZmcBkl0kehi3fEeUVhRpcwJEzeYBIocWidxwbMTuOlQl3oQiVIX3pIlKP8vvy8oLpKidJcjEBGcfPKDtEz9QPjMBJyAzha5l9B+stHlEDGoLFVJRSJD1RUijZ7OWL8zVW9Qk+TvgyT3ZyFnmaqCmJxTE9zRWpJnyrPtfxO9N5lfCkNcYnA5Yqy0ovqDgqnhP6ETdA0wp2fDNGPaKdpNpuMSA7s7jsK3cBaLRWpJBUMY3LFxlToSqP0JFSDcURZQ4qKSitqo6kqjVs7XsYtChkX3TCybkfu456b/RN1ZXjaPfLlV1+yWa8xVgJtZx1VXfO43/H1v/5XvHz5khAjwzTxeHeHmQyVdUSjCDqRnBZfmB/p8f7dey4uL1mtV4TY5/Go8D5QmfPFZbm+6iRN3wQlvYwxknIScnEhCHXXdRyPxxNbACXcdC+SqeumRU8D47Hjf/wX/4LBd8Q40a7XfPv2LfpOE/C8fv2KzcWG4+HAw91NVhxzHLsxj2mV+wvrTFGMBN9BqDCpoTVQO4NWiWEc+e7dLZvLS3Td0KWBershGM/hcEQdFNYoVKq5v7+HJD1RL1+9xIWa29t7fvnLL0FZQhqYxgFSoraatjJcNC2vr9dcrR218UzdI7Ha4k3k7u6Gv/e7f8hqfYG1taD1rkJnql5AKpgh0y+1QhrQKQBjwlhNCpNUj1Jk1TaMx4Hj4cC3377n0y8+p2pq7m/ec3G5xitIfsTZipcv33D9UnyOXr/5mM32kraqcM6QrKFSNWm8QDUjY9cRDwc6P+I0XF1uefPyBdPUE6Yj33x5w6urFf3+Ca0rjIKPPnpF3VqihfXFhvV2zctXL9k2W9q6Yb2u0CoQwgBJ1OVUqsWUz1iaqiFGxxQqrBa7gpgih/1e4p2yvobIGEZGP1AHER1QJPwk8ZXWGoMhJgGq/NijSTjrMFr6xmIIGAJVZfHTxFPfi5pmAoxUKo02NE3Der0W6m/TCgXPip9OjKc9QGst3JKkxKskx2+FvZG0uHwbY2aFVq21VPOzwt8POX5rdakPVSd+EwXgQ5SQ5ffCjY85wSilpUKJ4gzNO/tbxcz7LT4WBZUPQegPj4/CTb27u5cYLxWue4aX54p/zB8ltu/Ct5WqwyeffIJWr7FugzM6k14y5SelRay0vE5o2xUoKZdXlaGuZFAWrWfvPdvtdkZKhSFV+hdOlKYTYp6bQJGNUpfm9yT81JiYdfe9F5m1oe/xYWSaxHH08uqStlnRNC0vX74ieIXOWW3MRokaKTebbKw1G+gkBVpzcXnNw8M93N2cJY4npF/O+fnv5kBdZZ+NHHRrk3+e0iytllTMMsJpfk+hjGSe7KIsVRTJtBa1Ia2LjwdkDFkCu2RA9dLkFEQRJ0VJfIwtgUxGIBc0Dp37b2S4PB/zp/H4ofGfeHaeRbK4fH1oziyG5swLTkK7apoK60xuHP/xHnn6lv8inU90+bcUe1Sa/yPkRU0TiDkRUYhAbdAJr+Qrd45J35FOhWU30wNj9PigmCab1xBH8FHkCqeA1pZpChgjdIGUTs+ioPMET/IjMYyEMOH9JIh/mEhR/Dt0lndNJkum5rEkstinBV2hSMoChmL8KBUzZgf6soyKslsZ9ydZ6eXXrMSUx1LxXinorNzSPDdlwkK+tykGqZqGieQlcVK5CqMoc7g8twRKZ6plqdwVCk6ax/Cyby9/2mKML/JNJYAKqshRk838dJ4Hck1Jx5yAaTnvlI0x85gQYEPut1YabeV+p/LBZz1jSUz8JB0UkCcmgjKzep1OBlPXFG8gItimwU0tcagxWhorDQqrDV55QGG0xSonqjO5CqJMfropyXVFqMrdSnKPE2o2DzymQNw0tDpSKc91ZXgYI/voqa0Rjn5W86srh/cjj0+PXF5eop2l1jWr7YapnwgJhnFivVoTfJBA80d6PD7uaFcrQALZMi7nMb6IU5b7UEGUZQ8K0m+pwFk3CxUIpTnOAXIsZpClaqYCfhg4PD3RDwNRiSFw07QiWhIS2sk+XjlHalv293dZbtbIWFYSjyQS3aEX/wNrBUHGY5WncQpNIEVDCIrH3YBqNtSVgWrF1esVqzFQPzxxf3eLfwj0Q0+9ukBFqJzDVRYz1Nze3vH27TtCylRRG7EoVpVmXSkuGsPluqE2iTh2OB0hTXifmPxEVdW4qiYlkRzXSp3ohihReJMSnqjMKek9kXU7MI6eSU+k5AXsiZGx6znujhx2TwzHPSTP0B1J2xafEtMw0a632LpGW8dmHLm4uKKupZmcGFFJaEu1rdBE9KSxKmBVpKkt11dX/MHv/YS+PzAMRw4Pj7SVxaRAmEaurza0K8erN1eMybO+WLParLi6vqatVpK8O8c0TqQoKkxGG6xROKtxeZ0JUcBQZyROSwlS41BZXjl46RMdfcUUKgEyjCGFIIbSVhKOGf5IEYIYpNZuBRZMCAzdAYUnJc9qvWIc81iNMcc9Mg9iivRDT0zS+zM6L+uUUoh0sp7NR5cebhJ75r5QneX+IfdQl4L8+c9+yPFbOX4v/y0T9/mEft50WP5m6fswv1cuSYo5SzGo0gsA98OIl0wUc2rKzJ91PBxRWtH3PT/7q5/x9u1X7PcPOGvmBZxcPiqNuYBwOlPMbonH3Nwb+au/+kusVTSrBlM3kB2nbaZjGVuQtKydH3xGP1vquqJta6ZpyKoujsqJ2dbFxQWffvopDw8P4t+QN6lTr0e5r/neI2iscLZVbhRX0oykjcjQpYhxet6glTKE6PBh4Je//Bn39/e8ePGKjz/6hM8//5zaJQm+F4dSCmu06NAHWUyctYyT57Dv+PSzL3h6euCbr389P5clIhyiz5UFfe54noOKQoXLkQsxnl4jvTQKjJQ5BSUNmRM75eGeKDpcyyDc+5GUQi5jWknEtBYE24csASvSxFMYMUrn2LMEZgXZnAe7bD7OYrSfP08lzsb4kqv/PBFOUSheGs3khf8YZxnb788hrUsXSnkT8WGIOak1NidE9sfLpQYo/HqQvqmkUw5iT4mcUkJnU4BKERUVUUWSCigdIXl0jLiYmHRiNIk+Rg6TZ5UiFk2lFVF7vIWoEs6I8AJIY+I0GYIP+CkyjpGH+x2Va/n00w3jEKmcxtoGkkG8MaDreoxREoAPe1RKc5IRxjEnsWK4V9dOegC1oMgqL+Y6+7KcekMkwUjKolRRIMsBTXG5VSbLKyu0SkxeKIhKSTBLBj+0kvUgKQ8qO2A7h9AhfR5Twl2f/EitNWIjVSh6co9DGFHlC7KRuEIpB8j5qeiFjpIiPoykiVlmOc2gR25UD+eAkzIS1qPUfF0KlWmuJYlW1K6SHIiEZ8LnCoi2mqiyGVfwmDqh8+Zorc3UrPwuOlMFUKRk8aNIv6pcmdfRo4LCOekfjBH6pGibVp5HUuimEoaXVYx9QDctZpqYTIM1K3TwmAAKRx/lPI1ZUasGlzQmBtmVtSapCrQ7VV6MxlqPyuN5Bl1iwsTA6kVDvK4J8RIfAveq5dJYBi2cfVA8HQ5sm5cYIqva8f79d1xeXXN5fc1HH/0hb795x2F/YBgiv/M7n9KPHTc37/+nmuH/kx/39w+8ePVidr2f13F03mMAJOYo9MeUEsMoCKwGSIEq9zxcbNa42lEYBOJ/IXNwnMZZGCGEwK7b0z3ccvfdW7743d/Fp4ExDDidJXCNwjjNr3/9q8yHV1gjcvsuU/xkF5N59N3Xb7EWrjYbnp5uqPRIbScuVpoYBryHEGoeux5WI6saqss3fPzJFzhj6fc7/vn/6f/M7Ze/ph9GPv/pH1EbR1NVElM5w6+//pZff/kVU5QenraxtCaxdpq1g4sGXm3WDIcH7h9uuL5o8EF8LNrViqaV5m7vI/04UWsj61hMWKMy6JkT/iRdZbayeD/SDwM3d+9wBggeP3Yc7++JQcb4ME4cdvd43xCnAWtE9W70ihdvPqNZbXBVI/4UfSd7ftT0U4/yCW1rTDKYJHGcigN1lbDViquXV/yjf/h3maaOaTgS+p6xGxn7icNx5ONPPgItIO2QplkEwtU1l5cvqasKazSP94/0XYcfxzP2jDFi3ipCIKJq6MM4i1W40tdVOaytZjUvYw1t5Uh+IiZwRqGTFzVLEpYsl3z3RFtdYWrQ3nO4fQ86oC188tlnhJjBZqVQVtbOYRjwXgwpD4cjj487NBUppkzhj1grFd6rqyvqusqxaptjsUQIUNtGCtshzsCg7D9qpgCH31BceH784CTj1LAsx4ljK0fZUJ4HXL/pWJYxp8nL5kic46+5CS+dJxklC1tWLxIiRfru3Ttu7+749ttv+Prrb0jJU1U1JD8bixBLkUctELpUfoLRIyEE9vuRr74ScySM5Qv3GcloKifVE+9L1UXoWX13JAZP09YnbX3EcbFyFldZtIZhGKjrmp/+9Kf86le/4ulpL+Zc9tTwKA1iJp+iEi+IkDfgFBF6lyB54zhkNCfnmmoCFbAu4bSSIClZqhrG8cDd/Q3397cYtqzaWs6vquYEB2AaJoIPaFfhY8QHSMrSri5o2w1N3bCfxjlBKPQSVOFYn4JwCapzt33R019WuMo16pqi26+0xk8T2oCrEn7qCVOfqSiwzKFlTxbXUGttyb3zPZEXCLqpmXIim2IkBEBpqsoJIu6FLmVTnXt9xFl8vTGzgWH0pccnt+qX3CSdvDVS7r85jWFmk8ngP3T+5821Ip8l1DgrLBUmP6KMJmmF/4Elyr/9x6KC8Tf+OtPkYsQqBWjWqxW6bumCZ39/D14JypX0mcPp/F5kVD8n80KPqqnrlnEUl++npyd++ctfYa1lu91weXnBNI1cXGxZr1c0bcU0jRA8RhmsM9iqoo4xO8ZPTOPAfr8jMwZBw+gDrqqweQ4ULx1jDGHup9BYd6IVFRnBksiLiopQsUoDaalkFCUn6VOSErckRpFpFHqhs9JUqFC54ukhisuwj3FOkgh5s0zgYyJMozRvJkBZtLW5giAAkasatCkUtYAxNm++w3xOwzBIs2T+GvphTjLqup73DKlMn9S8TDr1N8n72nnN15q8gQt1osjOlc8sFShXSZIVQ2IcR0Blh+C0ULKSym8Bg2xVZyVAkf01GrzReK0wKjENI35wwkdXxXtFM00DddPimpbpMBGGCaUV1aaaK2opiRmk0gJ56lxNOyXYJ8lfrdUsHTl5T4PD1TWbbeIwjgQUU4ikAX75F3/OGILQgSO02rI1Db/+D3/Fpx9/zmdXH3E4dITDSLfb0909/n83ff9/eMTAnJSSFeQKkI5Z0HEX1LsQspISIndqlBGq4DgxxMBu94Q2mtV6jfeBEDw++PwsCn1WlqT1ZsPFT1ccu47VRcPV9gqU47Db0XVHjo9P/M///v+Mw27Hd99+w96IEVtTO+q6YhpGSfbRfPf1e/7O3/ldfvKT3+frr/6CSsO2dVw0Cac9fozs4shqteIYDFq1/MN/+t9iVGTqjzyoxOai5dg1DNPEv/h//0taU7GuG16+fEEwhl03MIVIVTVYE3DGs7aJF6uKbW24rGGl4Xjc8fj+O9aNFZlnY0muydLSEbRlnKaZkqxiICqhOKdpRDBEqbZiczXVJq5eXzLc3LK7u+XtN1+xWTVcXl2z3lzweOzodk+MxwMv3rymaVp80iRTY1YXYFp8dCQ8yllUCmgdSWHMwIrDuhYdB7S1vHl5xWqYUK6mai/QOnLYD8Q+kOKES1GqDZVG6wllZU27ai5p12tcU6OsrGcKhdbw8vqCY2XouyONq1lvN1SV+OCMlZupqs45yL4TwzCRYhEViASfiNngT2vhwzirmA57TCNu8sQIoccSUMbQ2orduwceplum4yPvb77EtY56syIZh48iFuIqR1UZGq3YciFSuxTw0kIQVaoQRrQpsYq0JgzDQNd17Pa72c8JoM5KWQqpDNdVnfvOMrhvFM8w6t94/BbqUulZaUV+ViYxFIB2ieieJxyn0mXmHi/f/TkFi5QDhVPT3swj0xqtxVTtcDxwe3vDX/7lX+B94nA88PT0RAgerSUZCv7EqZ6pU7k8f1YxSJDSCEkSqOPxwNvv3qK1ZXt5gd6u0EpJ01Q2cfNZA99aA0blxvPiDaHo+xGlkabAvHEUtG21Womufz/OCdoy6FRKgc7NsbnMfzK4yiV+VSoyguzrXANOMSGnUBKNJCW0+MDbt99RmYhmC3kxlmZ2OQcfBHm32hBioaEF+kGCsXGUBCPFk7pBqSiBmmUsZ/t5LRWgZGZiAhS6WRLZNK008cREk0pNzpiVMufO3iD0gnnsyZf3XsIok92hTS5DKjXTLeQji3IDEnBQ0OOTln8iYayiypNLaCjfr6o9p0slCj/++fg+NaeW2fO88rekgpUXKi0eLdeXV2zWa+Zo5Ud7nNaO/5S/iylilChchMkzTNLLJZS0Up/6zQlMaYCz1nJ1dcXV1Quappm/6rqmabL7bwizpK2sB8ccoCi0dUSVJa6toXI1KkVCIw13xERUmmAMOvd7mKKBni8nKZWlUx1aO4r7fBlTBYEtf3CiR52vl8/XzuIGbm2p3OY1lJNUsnBwM7ChFdpGdDRCJdQ6B3GWUWXVqzz2pT8l98XZAvIolLEnWtiiulmuo4zzGONMG9O5ylB+X9f1DGbJXDlVOs8S+fyeZS8wuohGCORW1g1SkaVe9KzkiuGyWb58ttY6V1fCjCDM5+8chsSYPFVdM1U1pq5RzkEQKpwfOnRlxZU+Dajcq2a0Ii3X9MVz04vnt/T3CCHM97Bcp/ceR2SlIlYZfEwMCgan8I2jGxW9D+i6pjYWQqQ7HLh/uMe5jsOhQyno++Mss/5jPKTakylzmFwhTqQ0EeN5SFPGi/celbLL+zyupFdrf+zocpLZrtYZ28xS1bnqKpQ26bux2mFSwowDdeVYVRVP3cChO3A47Dkejhz2B1JKbDcbusOWY/dASAFXG9SY9/OQGBiIMeKsoXUWpyKVTsQwYLTQrLW1bF+8Yf36YzZvPsVULYaBaUgMY88wTcKdd46u64laKi+uqehjZPAlidc4I8p9So8QAxpFW9firxE8KXjapmWM2UjSbTC2xdqKymhsZUXBKyVS9LmaODEMPUm7bExncNowTXJtq1VLsjqbACqMUyQCUxhEujekLBFbMU0hw2gabawAlpleSAzEOBLGURgXSs2Ax263Y+weQSts21C1a9YX1zzevmMaRqa+ZxoGNA5bNWxXFd4ktLVY52g3WzYXF9Rti7aWKcdbCog+UrdrpmGU5KASFakYA3UjIEkMnqqyoKXKbKyFpAlBhDvGwaOVR6MxWtPt9hgF1pnc++bRNjIce3SYRNBGab767huOux2h3+HDHjtVDGHENGuScijjsM7IXFBFTrsYCGs0BhUNJAjBZGVVobiGMIpUbRAfsr7rcoIdWLUNKGnhTzEyRS904qDQk0jxRv2fuZKxRIkkwD+VJSVoK5JZYd68ysZQEoTZiTCBUkvRLGmCWiYrpzAhzZx+pUrjZS7bxMDhsGcchYuakpppCYosH6o0IZUwFCJxTiLmBWs+RJ9YAlPLOHa8e/eWcfS8evMRrXmDyde12awELcw87boW6dwYkyCN+Vq7rkObKNm3KsGvmEFJYCPa/iJ0kZ5tfgWRDcRQEHhPuRqtREI3PyBB+Iyo9IQQ554HlQfKOIwM/cBXX39J42SCXsEcRBWPjHGSHhmMNNIXSbrHh0d2ux1931NXdg7ugFkxSppNRRXJGDsv6EprkjaCEOQEYxYGmFMKnRf3VEoceXTkptfMN1clUYlljMjfyUYCOka0iWI6oy1KibpQedRSVg2gpHSJitkEMMwJhyDGShqmjJBKymYjue/z5GD+D5kPOeApCjkpyftqTovX8+P0Pik3+EoSaY3mxXVOMtSH/vLHdiyy+vws/7rlKiWZy/K9BKneiyvyMZeHYxDVsDkHS5ye1eL9ZS0SLf2rqys+evMRMZITjIa2bUVxLAcXl5eXGGuI0bPb7WibhspZqkoM61DSbOfqCmsMWsEmXQhtKsEEs764uMafqmEpRUxVYY3DaFEuKYpJS7BBzlsyTsUJvFlWj5cUS5VpnZVzMxAghwQSIcRsAmZy9TEnB3nDxluMcRg3glIM0zgbYaZFkmEzRTQi5mgl8FdKmr2naZqb6pf7gTFV1mK3czBtjJn/5qTOdr5GL5OMkrRprYhBKI1zw30BKhL4sTSFn66zjKnSGG+tpWmamXvvvRfdf2SPcdZgnFD4YhipqgrfNNimRdc1KvuAhCjKV9InIYCHUWC0CBMk9f1RfpZ8zc9QXndunJgrOgQ0idYZRh9xKjFVluZqy74buXs60DQrSTKi+Dy8v70hJDj240wVSvHH29sl8rtCFUna5LEpPPbwDAgtY8Z7T21sloJOaGtmgY9DJ0lXnOcaUGiByPdJOIAyFpLsxdoonFY4BYf9E/vDjsPhSN8P3N7esVm1bNYbDqsLlHrEhwlba9Qe6Q2aEqOemKaRMA1YEpUCkyLj0KPUFcY4bN3y4pMvePHZ77B5/ZF4BymRYz4cduyPR8YQULkyF4iMMXCcBvEOSgpUhdVgrRHH9ORFsCJCU6/E3DcLy2w3LY97z+QtmC3oFqWkl6EyEpfoFLMPizSSD8OB5NYyb7Q0QXeDXNvFdstgFa7S1KuKqq1IJjJMHcfuicptULZC25ppDESViOS5GqQvxlnF4HvG4cg4dlxfXcnzDZ4UPY+7J7r9I+vLFt22VOsN68tLbt99xzgMjF3PNI407QrXblhfXtN7USmzVc3m4oLN9kKoYc7hUbOaqJ+m7Cck/cMpi/B4P+KMzT4qCeuKQIYoZ6IMKSapJqtBBDKUVJYf7+4ZuiMfffwxUz9CrKiIDE8d+AnChB88X335S+7vbtCh4/KiwYUGGzzGJ0k2ndD2tcn7nbU59lSQhD6vZ4DezsIhkBjGSGWVNMEbQ1dXOf6TnuGkLR6dlV+HLP+tiGkkEvEL8Z+/7vjBScZqda5GYZ2oeozjKGVKTtrtsjBqrK2yJGqpaIQzWkipjPhQVKvE+VZujMoIvWgQK5VpASYCnpjIjr5T/lxDXVUiT6d1pjOdVILkRSW6C/mcISU9l80lSJeAsjTiTH3H/c0N//L/9T/S/4O/x6effcwnn37E6L18lhHahCqN2DorAlhJxuomcf/4nvd3ns8//5yqrZiiJ2lFQIxZpiDGKxJRJ+kbMGIpnWJET1IG10qdxGCVzgmGoUhCii9LDruVyYNLS4BsxGshhMif/dmf8ouf/SWffPQR/+yf/TNc3dA0CmcV949PdNORQGDrDOMIXTfycP/If///+H9yPNxj0ESfRJ5OC9qqYk6KtJJ7EYAU0UZk7BTm5GqeA5FhGHKyICofBaeNpOywLsGAdQYfcx9NNqtTQcxkpHH2lEJKP0mSxcdavAokZTDWUWZYDBORPcoEVput9KtZuf9+hDCNEAYqMxFGw4QhVZCUGDjFpAh+2Xx7XtGQAKdQpyY0FqUlcQjjmPl66kwZR36STbKUOzVypUjyA8Pujn7liPX6h07Zv7VHiomISNQWjnLi1OCcMiiQwehs8BQEGU4p80QXFVKt0SahQvaQiAqTkvCeF/4rUkk0M53x9uaW/e7Iy5ev6bqO29s7bm/vuLy85OrqkuvrK/78z/9cNg1nePHyml9/+SXOOV69fA0p0TY1q7bC1Ks5qVQpYZ3kOwYgKyTFmAjeY6sTyp+AyQd8ikKbWYyjgvJba2Vzy0vEMlgGofSU5MRaS/SyAXTHkaapmQUlsDkJSPn+RJlrKivCZC8AMbyLwsGeZI0nwTQFmtUKawymcqLKc3WFq2qGacoBxsmDpCRAywqtNB8KKj+O0xn1dRgGrBVzuaqq6PcH+r6f+zQKbbHcO+Ege6bxKIFPFq3ouiMgVUhJzATBXq+buVJS1zVd180JxsPDg8g+VjWVUVSZupayuaJKokZkrZVelKbBrde0L17QPz5wd3dL3daEFCVoSJEmU2VLf9gyiXje27X0Byn/vV6v5/VhmqYsXVzolFEaZEOiaTcMU2QKkU9eRnb7Dts4zKrmD/7OT/nVt2/ZP+3o0gDIHDK/dSXxb89hIKv2gK4bEh2izDjh/YlOvewDLXzzlCmtk7jcglGsry65evESo4UGPU1TTlxD7jMMxBAgJLQVgGN/PPD26y/x/SXTtuWv/uNf8NHnv8P6o0v2hw7tHMPg6fdHvv3mPcd+kH46IxUAYsRiicpz/3DDr3/hqcMRt6oJaB73By66CXSNbhw/+a//EfXmElVVjADB03cd37274d3tPYf9ER8i6+2a9WqFsZZ+8gxJ+sk0E77f4/QarR1hQuguOpF0Iiio1y0v37ziJ198xn/4y7fcPo1EZ/jFL99ye7PjcuNYvXzF5ZUAXv3QyVhEfBv6fU9diaHpcNhzeyOmkK2umEJgiJGnbuAnf/R3JXGePEFbrLukXV1x9fITxmlg9JHJi98DAEpEOL799pfsn+5FpSr8DrZq0a5ita5otluCTuz9xMqu8bZlwLC5fMl0PBL6AWNqPvrd32N1+RK3vsogbKl8ZxoliskryKpf2mqaVjyXyPuVZhRZ4+BF7j4nicZokddOiXEY6bpBmt77kWF/nOPbu7tH9oc9Tdtysb1k990T2+0LXr9puX17w83b73i4fc/7m+/41Xe/xvuei7Xj0Le8fvMxby4vGP3IGCNp6NjtHzCVE8UrJ6BVkRKvXM2qbk60+EVctdsdUWlAKxE8qZ2wNlBGYmtjUUYTUwUqzYDRZr2Z1/Yfcvzwxu942hQVOf5JmcqiS3CV+cPZ12HZx7EEYOdyesoVidw4rRAp0kihM50j+0tJXGmqWlBHUqEM5YBEMSOGzLQboQwsz2PZRxKzQtMcLKgJlSKTDzzuPH/2Z4Hbu/f44Pmd3/lEDHaspCOmuPKmlM3dIKiIcy2kI9M0EmMu7xvHZn3B7unA8diJQkuIi+bfhQZxKg2ZcmLz+adEjCz6FPj+piVvRdGs8SHMhoDHo+fdzTv++E/+mH/8j/8xl+qS0Rsenh44Dh1TCBz2kW++ecv9/QO3N7ccuydCnIA0q9QsqRFyEvIoQorEqLJaVELFjOAuKAqlybGc8+lRxrOfKeGWlJFX7tC8gaScPC436Rgj4zBgK4WtLCF4UcSYA67E7fsb/t2//WN+/w//fkZQPQoE+RgHKiXPREv9/ESliqdzXaKr5fchnAwovffo3GNBRoPLc3ne51RK+CRR3iKeaDPOOawxH6yA/JgOVe4lcyFjTiRSrtzNd2RxsSlD0ykmlMuyekWCNgSZu1pLDKakmocT3mjSYFMi5iA7RuHnx0Cm00g1zxjLu3fvaduWV69e8vHHHxGjNOwrlbi5fc/l5SVNuyImaOoGnfm7h2NPXTtcbiZN0VMon6OfTkBLUnKOWcFjHMfZbG/u91lQiFKSc3XOyYUswJxyFBPN0uQtkogmr4EAKQfhhcYpNzeSVc9SIBFJGpRJJCaUSZikMM6jw5R7libq/NlGGy6vttLEndKZE245t6V87lkFgSI/e+rPej6PUhTvpMKtHxd84WWgrrXGmmpG6ITOVQxTs6hErpQUPrRS0pPSti0xRo7HI+v1mpRETUfX7awwFIOXgDNK9TNFqTIZ56jXa8bjXvTks/+CiFBEcebWFc4aYgZHyvUXWd0PUYmf08IKAFaq3yHJFxFJFlSgsgpnwIfIqAO1UgSlCH7kdVPjPnpD9+KaPgemcRyJ4/hbz92/LYfJgf4w9LS1y1RbLcht7s+LUc/PHcgghZoV2pRmBr2quiFMnpTI4yTlCp+MH6HRaWIItK0jEOhVR3/sODSO2mqurl7w7rv39KMnxMTf/f3fYxh77m/es9qsiBaUMzztD9lPIpLiyKsX10x9z9dff81PP33F+uqaqnI8Pu25fTjiqXEbQ0onqnEi4n1iv+v58qvveNp3pARV01I10sfTDz1jFAqhyhfbdR1WayqduFg3XDSRVXMCLCYf6Xrprej7joeHJ97d/pwxWabXL2mqa3Q/ke4fOeyPGKOYimy3StTNVijaPtJu1qKg2XXc3j+QmDh2isk7hl5j1i1Vbbi4tBi3oqpX0oStDNoaGmdQxmWGS8CnwKs3b1itG/aPjzzuHrHVgGvW1K1jc3FFs94whYBdbbFVDalivX3BsD/iRzGe21y8pN1eY1cXlHgxppjXWz3HtTGdenmWEv2yO0nFQiuNqSxRW4K2TNPI/umJ8djhpymPQ0g+sbI1I5E+eMY4cv90D4/3bNcrfv6Ln3P94g2/94cH/vjf/Bue7m857J54fLyliwOV0yht2V5vWF+01CvLutliqhplHRHQts4UKStCIV6UVhVKPI/GSDcNBH+qkitrRQ4pBaYQsYgssbMKtBNqV1RYW+OSUPDFm8yfUVD/puO3aPw+BX6nm73gv3Je+n2OziyPskkUxdrl5qFyKXT2iF5QBsqRWASgz9ChskkpdUKXl1zY5/8uEY/CeU6ZziUCmUKjCePAd28nxmlivV5zeblms13TNBVC5RVJ2BijOIXnpMeYCm0qlJqIUfSIY+ZD9/3INGZTpIx8S0CdqR+IllRUMVcKzu/jCdE93avvX6Na3IeY6WyJKXh2hx2//NUv+ezzz9gf9mijefv2Lf0wyqAzO7788ivu7+95eLgXtJgiGXj6Ko2USQaIbKopE2Ei6ChyolFu7JLj9b3xcaoGnIguks/kigzxBHU/O5ZUA0D6cuLi9akoUiVSgIf7O/7yL/4jX3zx+xJI5JK4n0amacK5NFO95LE8G4eLc52/B9GULtAH8Lw3Kc3nct7PISiv1HK0zsFofq6FY6l+5GlGoZqprDJVRq8s9kKYgzkWn5OQFKVCUK4/iSD7KVlJJ78exYmfarUiaUHutZIAHASAiEroh8fjQah2KnvgtC0QsfZEkZO5LDSgthVvlbpuJJBPiSn/fQmQjZEVLKbT2ikzQmg1Kcgi3fc9JDGJK67MWi/6lgoSO+vplnFSxAekh6AkEEXZBNSsoHRKMPLdTeRg20gfic/PpSQZMSAiDRFjK4ytBNAI00wpEZTMzQ2SzjqK/8Ry/VlWXJaDoNBe5VnEs78rm3sRlHj+tawEyN8U0YqUfUZMpqWKh5AkXJoQhjnJKoFDAQWKfGmKIi4QYnFCj/PaIeINgRBlHEnTu/CitbUonfu8lMI6J7r5RhOLTHoeqFqXPaYAdeq0pqJELRCR052rQtoImp5OFGSdEpZAZWUjtSZimKi0YgqJKYnbb71ZMaXEmAKHvWXqe0L/W7Rj/i07RDbUi3pSvpHiXWPmwE6p8xgEkHGHyvMr+2AkpIIRveyzi9eWI++iktSlnBBnWt/QD3SVo6la3h4fOXSd0G0mTz+MHPuOVy9foCpD0gqVvqOpLBZNcpqrzZqx3zENPUkbMA6MY0pw7ANuTIxRQ/YsAEgpMPYju92R9+8fGCahcVnnWK1abt/fMg49QStO7YEaH4QipaKlcS211dRWC3iVjTQTKoskTByOB94+eEyzxfsJnSYuPFgnAg2Xl1t8ECM9pRROBTwTY1L4ZoUxjqqSxF3qTxXWrhlGuUwqg6s2GFdjnJPgPspYt64i5vUyKVEyWq3XGC0iLcfDAR9FDCShcM2KWil8BOWa3CNmsY1itbkieKEIVs0GW62wrji7R4gB6+wcL8WsInACqU/rBSDeR0llxk1x/hZ2wzR4umOXYwWJWayxNHWN1RHCRHtcYx8cY9/z8HjPN19/zf7YYduWX3z5c7r9E0N/5HjY4dY1tW2wtWVzsaFZ15hK06wrqqbFuIqkDNrUFD+ylMQLbTYqzXGPj8KcERDO4KpKvGNSQOFJypKUQWkjyo9R6N1KKWk1QWFQjOM0v+8POX7wSjNNfqY3PQ+OlqjScoNpmiZv3qffOScW58fjkWkU1aeQUfy8bVJyGK0UxlUz9/9549xSaar8d6lMhKwM8fxYBrVLFL68dzGKkkVfuPmyEyQmr3j37q2UxhvLF198xps3b7BOE5SWhCBEfJRN3FpB09pmi1YV4xBQKnA4HHj79l2+pkiKgqAHXxbG0hif8jmcmv/K97IRezGlSedJ1+n+iMRh8ZOA4l4sPQrjNPHt2+/4v/zf/q9nyVZEUKG5bEbEOoDTAC33UWuNWlC7QslulZoXrZBER1st7vXzJPF5AvXcZMyYGqUs0Xek7BVR7kcoPRCcuM0z8udHJqWp21YmXoz4kPAx8s23X3P/cMc//af/WxQJZw1D3zP2HX4cSDadKhn5MFqT7HlCvaywLXen0tzvu1PApRC5v5nWtkjERW0oEdNpbGolSE7ReP9g0PYjOpI2c8+N0dJUHEl4IjqS+4zEHbUUr6KWwMuEhFMiCRwM+NrQHxRo4UmDkmZ/pUmiiUSlbF63TiBEjBHnGqkOZb77NIlKW0yBul6D8uz2Dzw9PYqjcqZYff3116QY+eTNR2zWjXBYxxFrLPv9nr7vGceRzz77DGMtPkoAWDfi5t33PcfjkcPhwMPDA8MwzM/68uJCPsdajB5ngQhjSnIgCVRpkAYZY405uV+jVJbFjnNlw1lL3bZZJcbnRlmFqcSQKmTRA5RGGUuYhpNMtnW4ZkvSA2M8MPhAhaxvx/2e1Woj9NCgiEYqHGXulV4Mub9SbanrmsGnef0q1bzyuxg93guHPgxSPQF4+fLl7HQ+DMPcv+G9Z/QiQwuJaQpUVUVVVdRNI9LRMV/fs8r44XDAOcdqteJwOFBVlVxLlL4HZRSmagh+YhhgmDyHbiJ6SQAcDVpVOFsTV2tS94hVGm3lfVAVUQGpB6SXTtb5aUZOc+d3RqktxjqiCoDH6moBnARi9CiVcCph8r6AsTht8JPcS5f76uq8J4QYqILPvSaBJnm8ToTqxwtWKFVUKeX5k6XCjXFAzJLy3zdnHMYeEG56CEEqQloCMp8pydJHJO/vs9FrCJ4UAs5aut0Dh90DN+/e4WxN343cDndU2yuuN5e8uHjJ9mrLu/dviWGiXbWsNi1bu6VtG/7yL/6Sj16/oqlb1u0a1U8oNqCE4vj29gFbWVzj8Kpiio4xGux6i6kzsu8D79/d8u3X77i5eQRdk7T48nz8ycfcvn/P8bCnXq0JowdEXdEah1UJkzw2TeADxIq2rtEWVtstfnqJn2SsDMPA7cOB7+7/mMpatm3F7/z097m8vODq+pI/+qM/YL3aSm+VD+yGp4yKCe16vd2yWq+4fPFSxt5qwNZruiFw6B9RSrHdbHHJ4BCzynGaME5hlKYfBjS59xQYpkBAy/tuNqAMSVck7UBb0BpjFMY26Gw+R5i4fPUJq+0lT4+PJNPik0FFea3SSZTG5uqnKErNYOQzkBqYVaNiCMRQEg1L01r29Q4zjaxWG7wXGlJTt2w2WyYbGZTn0598zutP3vB098C4P7JZr+j7I3/18//IU/fA6Hs8EzSGZluzuVxz+fqaq5fX1G0rxstpIiE9gdZVAgqJ0zApJZqmzkbICp9OfXkzhTWrrRElTm5RjP3IlOeCH6UvhDCdgUBlDQbm6uzfdPzgJKMAwgVwScWZl4JEnR5E4dDOGx+nwPIkMZiYRs/4PVOgnAHqUzVjiWDNX/nnS9nDpaPv8jOXCHe5yctznZuXv1cJyOASORFSkUQgxMgf//G/4Re/+Bnb7QbrLJ9+8hkvrl9ydX0tNCoj3D5tNPtDR3c8EkLg4fGO7777ln/37/4tj093kGJuak0olWEHlTnm6oTCLc9fJoEgkcv7c17JEYSvHEvuc0oigxkzSldoC0pnt+5Mn6isJCkJMbSzzhB9zPKO0thd6CdyHkbkJJVo+wt6mDHXhDRPcfJMEclIeY/nzZ7lkGsiSxDLRuKjyNBpEiH6GfFdNp6WQEcpaQydhh5tHEYrpnHCWVHC0MA//+f/nBcv3rBab+n6kWka8X6iH4Typ/QC/U4nWtQpATJzMCQj+LxKUbw6CtouykPn43T574zwJuHNF/qV1rL4/piPFAcZUToTdhIElZ+lUmJUpZIojZW/yf/mGoWYJ8aIT3FWD0qk2VxLhCIMdd1gciNcStmrID+bwu+XikQ9qwvF6Hnx4gXeex4fH/j888/nZ2mMoW1b4f0fDxj9mnq1IrUtfd/PlCWA3X6PdQ5XyTgrNMW+73l4eOBwOLDf73n37h1aa9q25fLykt1+D8DF9mKmhJbz1Pkax1HNVJATnaa8DlwtalDLdfhwOMzzQ/xkJPlPCaqqRqs6V5EiXQokI1WR6Ce6mFBKFFMKfctay3ZzkYNmT4qawvRPnPcclIQDRO46JlHlkwrMSdCh77uZjhhj5LCTwL9pmjPAQWstsuF9PydppTJS1yUh1DN4JWuMwk+SREKa3d1LkiMO6JFpGlmKNYwpzc8uxoS1jqgNhIhioqlqUlUTnYNQo7xHh4gRk5QMfuj8lUrqlpNgGdFKizN8UoIgkkR9K8VT1SOh0FHOCw0REa4opUCdRQNOFRr5RQgBa3LFxkWcVoTaSZDxIz1i8ngvlNYpS6kro1DaopSoShY1riKiIGMne1TETKvL6+zDw46H21ucNXzyyUeIKE0BjBRaIVXPaeR4OGCU4rNPPuVP/v2fMcSJ2lmu6hXH/R1JBSpzxXa7Ypw6hrHjz//iP4gB4hRorMNq6I9P3Lz/lq1puLjY0q4avn77Hmst7arhzUevefHmUz7/3Z/we3/0+/hcSdFa0VjHw/sbbt69ozt2VFVD1x3YP71Fp4G7m3d03ZF61dA0FSlpoWMrqJ1l3VQ4DZXTNJVQk0LyOK1pq4rNZsunn37KIVb8fPeO3SgrwxQi3759y89/9XO8H/mLn/05q/aC7eaSzz79gs/eXOEqhzKGzo8cuiO2qqhub7D2BB5XTSW9agkmf4RRFKq8n9jtD2htqJqGhBahjcoSQ6ZpK4N1NX23o2oc7UqqEtpkBciYMApSmPBhmqW60Y71xRXa1SKRPw6QGRgx5fXJlAqvOpkUpzTPqTku1LKeaGNE8jtLTIcQ0KuWqta4pqVSWbJcaXptCAoi0oN89eIl63bN7u6B/8U//scEBdSO/92r/47JS/wRU6ZnEqlUoK4EQAOFT+IzpWPpUYqLuOscXJ8r2Iv/LuCP1vWsAGrdqvibEkPIYK6fY7M5tkTBLNz0Nx+/Vc10iZgvEduC4D6vHHyIr76sagz9wDCOiEJInCN6rdVMBZDysl58Dmefu0xezhOKZzSU31DVeP7zZZVDgNTM4VdC+VEpgNLsdg+MY8fT7h5jLH0/cHN7y8X2gs1mLVUMLZzF7tAxDgOushz2T9zd33L/cIv3gwzWkrCVc0lzTWeR6Jyf6zIWX57ziUpQFAYkIdH69DcpCYKmiuSnPTlvi/mZRPWJKLyVci75gxOixa6zi/rZHZxL/xlNVomU1OzBVsbEcz7fklpRNoXl841l882GY7IHnFDJZbWhHEUvnxgJfuLkqRnzNi//9e7td7mPJmKqOvfIBKYchGhrZ7rDciw/T4pSprOkHAigzqsbJTGW5vjzik75e6nYys2SKkpJ6tNc3fsxH9eXmxmZIgaIHpUiOuam/SQCzcWM7/khcyLTBspYysHyMtkuak5GG4o/hjYnnu1zadRSMZgmCb5KMH76nXw1TYMxhnEc6Y5HNpvNjKqXKm1d1yJ4kbJQQUZdQwg8PT1xc3PD09MTj4+PPD09YbPb7+FwyF4OzODJMjHQecymJL4bKVNv5MZkJ151ItQtN8YzSupyjVNKqF3BZ66/z9U6iwoQ/STzyxicq0BFipyzyINHIGCtzl4ZkeQzdzePbe/9syqzeMaEEDBVJaBGlBBc5LLl98PQz+v6c1Worutm9aoQAnUtyF1pHF9+rtxLQ/BHjCrO6+d+S0vke17nFgkGnMxlpRqU8nOp8M4xGSO9GTmJ0EmjojR8RzQpJxwlyVBJFKe0EjqmrNc6m3jmfUdnsEil7Boue5EoRJ32ugLcLdfWD4F6MQptq1S0fqxHymaV0vuZHb4zqy3Miav6XuxRGr5E6l2RlCLExDCM2aurKLr5xdqc5vU4Ro/vO4xKVO0KVzcc9j3D2PNRDKyaBmMNTeV4Onr64cju8EhIUskbe6mC2bpCKUPjDTqJ0EsaQNmKkJL4UiXNm4/e8Nnnn/HZF5/LmhgjxMTUdTgNTkP0I+MUmMaJcZx4ur+nPx7xwyiSrS6DjUmkU21ex2QNln4sPw1YJypZTgtt8/r6mpc9oN8TETd7Vzm6sefQHxnGI9+8/ZbNuufYT2jbMI17nBPfCWU07XpF3bY0TU1da5wz4h7uToCID4NI+toMIOSeRD+ODJMnTAPOWVRK+fmAVrnnMUain0jGEchxUExMowA1GEvCSF9VzBTkVCjTSJKZhBYZpkiK4uOlTZZFflbFSHmf0SpXfTMlVaUE2VjYNiL9qm2VK2tCpUopF3kSGAu2tVS2xiTL1cW1VKKs4erlC5GLDWIQnUJApYBKU+7TlXMZxglrXVbpc6DyZ3Fyti8JdlKnzbSYXUMG7eZYUWi65AKCCOoI+EGIqMy6EcDzN2zOv+H4LZKMRSUhLrMYQSXL97Dc7E+NivMrFplh14ncm1KnQLUsuBJcnb9f+ftylA1mSSVaosLl78rNLu91fo6nu/W84iH/ZoqSMiQtPQlaK3wYCd3IMVNh7u7v58D+5csXOCeNl3f3N6I6pQrlLJGSJ4QBlDSbxZgR2kJAL265WpOSZKZyOimjsQudzmdP+xSol0a4dEoU1CmIjVFcr7XWGKdPzxcjak8xEtMISQavzm7EKWnhy8c88JTQXkLuQ8jzeA6rlcqulHmtLqXoJdfxe9zZxfMt8pOFxmaNRVlp1k0hCZ1LnUsgl7+dFUVIUoGJiVkGVOqcKBJj33N7c8PQTXz+k59AErrdGCXJsDGe+k5S+t41LMfLvLnntCyl8+Rcgk6NUgvfjMXfzuMSQadtDpLivMD9uJOM3/38Y5nbJJE/HDqCnwhepBCDhxlknZNu+Ue2S+GFqjxPQvBZalLNCUhZD5ZJq7UG64RW5L0/WyfGccw/k+TheDyyWq24vLzk4eGBq6urObkQDw3LMAw8PDzMdJsiA52SKBd9/fXXhHGUvogk0od93/P27VvevXvH/f097969m5H6aZq4vb2dz7+8TwmEt9vtHBQwpSw5KfQQyAGwEQ5wiCEDC8X9+rR2l/syjiO2rmeFla4b8X4kBs/KGbnpUc/zyDkxE02EufqIyo7diDRmiJIgEJk9Psr9LddljGEaB9kIY0LjTvKsxhD9hJ8mhmFgGPpMZ2tm6ld5fofDYU4gyvNqmgYQFapiZmizR0lVOYY+0+m0ypQ5N8+9aZoWyanm+X5Tksx5TcrztHIOn2l3Olqk5hAlwUiKlMQhNykzV0hQ0pgtvUPSrJkXZqIfZyCCklCn3I+UA7NTXvn9taBUZpZfS++RkiD/0KbNv51HIkbpL5h/koRuXFS4lrK/p7U6ZdAuYo0oHgXvmcYJa0Q1zDlH32fT1gJeZIDOR89wPKKIjBG2V1c8PN1xf3fL73zW8er6BXVbo52hHw7cP95w+3DDFx9/waAHCEee+gfcxYr1uuXysqF/6jn2I099z/bqFePQi+GZtnzxO5/zk5/+Dp998Sk9gm7jPQ/fvWfbVry4aNEEDvsdMYgHw/FxJ3KtuW/BVAFjhNLnSoKhDdKzIv2H3XHHi6stTmc1vKS4vn7BG++Ywp8QoqWqGlbbS94/vUc5RWUrnrod2rVwPOC//Y4vvzqgjTjRG2t5+fIll5eXrFcr1itN09Rstxva2ol6m5E+kaQjLnisQpywUfgY6PY7OhJaKeqqxhmbkwzPdluTgue439MWHx/AqMj+7j1KaerVBtdcMpYeS+twThQGJTmQJEPFwOSD0FKN9INk1x3gBNbM4CLS16q1wmmdwUqhKyWjMTqiksbYSsCKmPuPo8HEQKUradarE5v2QhSptPQRDmHKfiMC9NbaYo3G2sQUJokrlBZfklTqbQrjGlKSGNNPJ9nuOUnKa0WpKJc1peQLsVRJyVWcCDPCWQL8knxkELzYNPxNxw+nS4WyKc/z/DTBYzyLdQsiay04V82c3KqqKaZkx+ORrh8YRkGYvfeC8aggTTszghulIVLlRTXJTT5HxsIZPaYcBYUqSUbZKJ7TU5aJhbVmDiRB4b2gSs5VGC1VF2tlksSM3E1ZJ10hhjdPuxu5ziASpkYbrDG4yiCGQTGrUpXWIAWhINdy4SFzp4mgTVGeiTmoPilMlRu/RONA0Ek+pGMse1cOGFRubs2/UmRjFwkAgs8No0p0/EG0uZX2s/xq+cMSzEhSV5qOmHmBwLyxp2Se9TGcnhecq3oUupQuDZCEHGbKBJnCIOMho47LMThNwn022Rgx5nMV5QlNTImhH9AWDocd3geunq7pO6k8aTXMG/TMZYzZyCZ6Ygpozk22UkaayT0AJPB+YppEM9zoPLEXCe18zpBLl7IJiNeB5dXLFavVCqMVY/+cXvjjOrZNQzGRTLVDbVv5XhVkUqhl0wR+9Eyjp+9HfFDzM+26gTEGpslnGuNJSahsNlLAkgZZ7yPjFKhjlV9zMpgEWK1W4meTlYfevn3LixcvWK9FIaUkFku0u6oq6rqeA971ek2MkWEYuLm5EUUkP/H4+MA4jjztdtzd3fEnf/InPD09zZ97d3fHZrNBa83d3R3X19dYa+cKh8vSg4fDge26Yb2qcy+JVGgKXSSPHuGjJ6l5VO5E3yq9cUu0e5o8Kmi0zkpOMaBVovMjNt8LoR7FTCEcGcYeY1ZYa+n7HmNqjHL0/cAQg1RIM1VlmYifJzoqN1UnyOi6Som+O+ZNWYI/icdPKH1xZt/v93O1AuDi4mJBd5O9pew5J1rsJMnhKL03zrn5+S8rASUBXSYXpSKyRMW996hpymt/FM+RKYMdUZRafJQm8agVPsq8NtYIuFGSCmBKsoeGFM9MR1OU5m0AZUWGN8Usm5nPaZlMl6Ou6/lch2GYx3wZt0Wt7sd6COM04kOgNLqWYCuE7GWQlo7uhTabjd60wfuO0Ut/3mazobm+zv2NMtaVEmrcMI7EmAgpMviRp8OOx/s7bh/3/OTv/VfoWkwZH+9vudqu6Q4Dv/zyF9yPd+gKPvniNd3hSJgCBnixvUTHSH/YcZj2kCy2WbGpLohJc3n1ijcvXvCP/v7fY7uqMSahtPivKB95vLvn//i//z/w9/7oEyqr+F/9L/8h//2/+lNSTDijefj65zhtGOPI4+MDF1cvqeuWi80WQ44tknimXFxVbFYVry5aVrVheJro9zv26xXH0HF3/8j+sCPYK3xMHIaBZKBZt1TNBlLku29viDf3vH75GT7uJfhWGo2iH0ceH594enri5eWGy+2GFy9e8OtffMOrV6949fJVbiLv0AoeURjrqJuW1WbD62uRl5d90bJu1gQ/cX//jjDtqVyNcw03u/3sQq4ZGXbv89yuePX5Hwq9SUHf96hUS6U2JZKpKIpSFiVVBjTWCDjAB+ZWjBFtc5U8z8dZ3RKVFZlkLCYf56qlzmIU5e1mCpKKeIQVooPCKJfppgJUmqhQEWFahAGfolR1zDqD80lEC6L0/jlrUY1mqSQYJ0/IPTald8t7L/0v1orvjBJDWREfMTTWypzK6kxZukIqG6rEOT+MMPWDkwyl1SKYynA1GSXPD2q5IYCg3vmvKQ7YII3K4+iZgkxyQWl1jpdzJpUzrFLVgpJcmLliEOdMjhlJn6sTi1LXMgCer+fsv08/D2HZOMwc9CeClBiV3PKYsiRLSiiClPBKEoQMBKUS2sS8lQRIhhgmCUJzdhuy9ohaXHfKzryo7IQtEi5STUlZgYE8kFOUjJxlspQX1izSd1JxURBzNps88Fw6N9OLZMpJmbJ4cKRseDWrreSSPnIdZVyUKpQ8N8nG5+paqcbk+79swqQ8Q6QXYRmEy+WV3p6iaiCEp6jEbE/UP6TMqbOx1zhOUuXIgbtUvg0qo4d52hBl+WWME29vvmP0Wd4xJazJkzCmU2CUSjO2B63z+D1VIFKaoKh6JMPQd0xjR4xeeO+luKRKeZJs1JdllxFn2ZQSPni6bsz0kqx28yM+nMoouYq5HIt8r1XW5BaETVtFVSViSKzWIkmJNihj0D7B0DP5Iud6ev8TLXNRKcpBXZGoTulk5laC1+12m1HenvV6jXOOaZpmKpNSam4AX/YSlcSieFUAM7q+2+95eHrk5vaW3W7H4+Mj33333SxJa4zh8fFxBikuLy/nALC8plRQRFEn4P2Ec4YQJmJu2hNVKU2MuWqRkYQY49wrUkCBZUVD1ohC+3Fyj6MneS/3NgWi97l5WoAcm13JvZ/ynJKqyjRFJjLV5zcIhJS5Hn3uMVIwjcP8TFSKsgl6LxQBhDpbKi/7/Z5hGGY/kLJulHtZPqNc55IONU0TKU4zIFbeoxxLCmdJyMr7Lc0El7LTKWU6XOFJe49O8jd+8kgzqZJqhStGaeT5nymepdlUgVHn76+MgCfzPVzsb8V47TfRgMtRQLVy/mUv/DELSKj53BMmr78g/Y/yrOS35TkW8FBV0otSALBTdUMxeQ8pYoyAeUKtKntT7qyxhsEPaKd5/fErvB9Zr1dU+hX73SPv375FGcXxeOA47WWce4U/KMIxEvtE7D1r7UCLuABGJLDj5KmrFoVUCT75+DN2T3seHx55PUzo1jGMPcdjx+iFGlVhsVrjh46+60UcQxuslf4pnwJTEGl2dMIqgzMGZy06WTEBjgljLAaPTh6VZJ7tg+HQjzRtyxCFQjYMR2wrzAcx3LW42jAOieN4ADVhtBLTP1PRdT1KKdbbDd4ndvueFB8Yho6vf/0NdVWxWV+wubA0jaWqG65fvGK93hC9p65b6VXKdKOx60kzjXkkBQVRYhZrRfp2lvvP1cBpHNG2MCpE5SolzTR6sGKZIP0ckIIXz7IU8dqitFRk5rVGKYxFSls5YioUxoQAJUZB8eWR+KwoqUo/UFBqBs21VmKtOVcdZU20WkvPZo4FYkiZvpXDryg9tcWUMoUk4jpahGnOqrBlHVRqsQbEfF2O0uAeUxT1wCDgztHnqnmSBvET7XsRM3+gkvqh4wcnGVpnaa/yEao0pCVOXfkyyU90hBIoZlnG+c8V4+gJeZD7ULiwhbuWZkQShJ9deNUqKx6VLE50r0/SkHPAvKCiPF9Q5TxyssQyoFW5pFz+Ji3uY3EuB0jZrOf0O61TVgJKs/u1fFZetJAmnpT5ciQJoMrDM+ZUTj9xg0uwcJJSjSE3/JUNO2YdmMWmSE4+5JxlEqqkSTHfX2tQBAluwyw8mc9XNkWlRAKSWS+6JADIzyLz+S2rWpJ8CIWqcIBzFnIWeJyCwXwdpRIzj7dz+lRKp4CyVCQSRpDTrAKmLaQgCYV1lRg7FmR7XhiERqZ04UKrmf4XUuD2/k648ApJyIzJCWCcS+gZJ0e4uzr3i5gytEkxS/YlQSDGoWfyY379aR6kMkYoYgZyH1TMfSzIfS+GZDHF2Yzxx3rYueKjSSrmZu881nNjuzRxK5TT6EyQAkNMMMWE8okpBDoG5vF3Nt9Kz0xGqpV4MhQublkTytgbhkGCe2uZJri42FLXDSnFXIWSIL2qKipXvDBsXhMD45jEtTcHiNYannY7bm5veH9zwzfffjs3ej88PMzztu97drvdHAwdDoc5AQpBVJKUUqxWq5wUBEJQ83mdNpOYAZ0ieSoAR8wVAWMtxjTi9h1PjtllbQYJwmQzy5BI9ocQN1uPIgl9z5YkI+BsIiCyqpMXQ6+U0QRjynwrc+bUnJ2C9H0oo5jGnqK6pkhCmctSrSUPh8Qw9By7I37y86ZfUPxyn0rAHTIYoI3JlFOpTPtpRBsJ7kvAXcZMOZZ03nIsqV/fo0lm6gVkgCqvfz5MaCqB3TXZBTyr7yVEAlPlBMVIBdtoRUrDrISlF+dekEoQaoXRIrNLPAFSeXCfnd/SaHbZwPohqtWP5Ui50kM6tdOjpNptbK5ykyXMdeaaZ+WulCBMYXbLkjgiitKlUbhKIdBxmtfpmAT4wiiShqpxrC8u2Q2eprI0Zs03334rrARjOI49ve+YpoEwBugr/BFin0hDpG40xkkwGZTBh0TyE5uVRTIOaJs1X377NbZt+Xh34LJ5SfCR0U+4psJ7oV2PgyeOA8fdE2Pfcb1pKfLdioRPAZ8EkLBWYVT+MoYQBUwISXpNnUk0TtF1HYfgGKbIut2QBnJlcKS9WEnRgKxsVzsSgSl0OJfjM60x2jJOE6pXXL98Qfd0xPcjfvI83N8xdD1+9Fxur7l+VbPZ1mwuLokhMXQ93UEokGgHStzZy5qgVSIpj68SMSqMtXPMgXJoW6OMUOJENS/OvTYxG0J7L+7VWJfXGZECL6IT3lbZMyiL7+jSq5WB2JQEGNPS4yUNbDHvV1mFMsceUaVMYYWkcnyYfdWURmJCsY4V0Cevk2d9qUvRnBxX6QziRx8lRiYLp5TJgSQ3WhvpqVNCaxczTktyso+E4HNCI9fvQ6DvRlQMYn5beljOYmWpfvyQ4z+rWHYpI8MJTXnO/Sxo0PF4FIRsgQqVv1vST5bvsVQOEhWjE2/5OSo+L7qLz11+lUpLQbRMNvYrSktzQ1l+7Yeaz8vnSaYYsw4/Z68rykmlNH+iFIWzZr05sVAnTna5lvLfz9/j+Uax3BhjHjSSyeq5CdXkqpMpvQkl4J2vKzcD6XzPSqA+v+7D6Nm8wYdwFgAsN+bftLGV3/kFfeH7xymDNuY0RkRFZiTGCYXB5PMeB49z9Zy8yLmVACHLsllD1uadqxMkcT6WhUkWgBDC3POxHKcn3qNUeGKudsQY56SjVCNCXsB8LP1B30d6jdHSK5JEj7+qGyqnMhVE/VDg4G/3YXNynpWeDCUBjDlxlISYrPxVkghtZAnWUSSE9VFyV2tqvA8ZdRQ1NFlgAz4MWOUwSpxQC6pf1zX7/X6mT5aqhVJwsV3z+WcfzzSZ25sbtquGy03Lq+sLaquorWazaakqAVS8nzgeT0n0MAz88R//a776+mve39xhcmWj7/t53IYQ6LpuTjK01nOPhnOOuq7Zbrc452b0vrIN1PYsQV+qTJVeEaWERlKAEj/17MYdq3YFSqQ5948PbDaXWF0RB0933JGiRyvpsYtaKIFoqWIGH0hDZL3OZfoo5l4xHgHZiF21FoPDyVOvVjP6B4L4hRAYux5tSmN/ou8HWSuMPJfD0w4Qyg/a4/2BYyeSmpWrqde1KMz5kPXnW5TVDLmvxlrLOI2SZGiNraq8DkUJ+JIkrQUMk3PXWOdm9axl03+59+WeF9nUVKr1RhGtIViHtSvoR+I4obAMOeky2QxNozN1kxOIlHJ8olKuKleoAlaVdVAFQW6zekZx7ZX+PnGRB/msQrsqn1HlvpMy5paBy4/1mLxHmyhF3RAxVsaPJGvlVULLC4U5QKKuW5QV+kmcJrSVpt1pGglZbtQZk31jsuSxD/hJqCXdOPK7f/ATHu/e84tf/YpXL9/wdHvH4+0N9+/fM42gjOH+cI+58iQdiGlEZbNArzWoCmyNNh48HMZsuqg1V+s1u/s9N2/f8z/8i3/Fl199xRc/vUG5Nf/r//a/wdiGarXmze9+yrELHO6f+Oabr9m0NcNBcdx1vL/v6MaBMQW8Vawbg1eRp/0jF5sW33X0eLYbR0iKbvC8v71n80nN61dbXl1W/IefvyMOjqgdl9sXKLVnGDrGqcfSYrxCZaxz1VRYF/Ak1q7BYtHR0HcjMWhCCnz19husqqVRe+oY+x1OyRr3cP/AlBSPe4O7uef9u0escRJoq0jVbnHtirpxvHolRoUhJLp+Yr1acbndstmuaIeJqq6xlaO9/ELU9hRoKrQWGlzvH+iGhFYOpWsOXQ+pm/dyAOscV1cvSEGA4agNu91BEk0k/qmtxVkrCoWzwqedezWKtOvcQwXYGPFBvCqmZ72YZJEHUT8LIvIQFaLyGVBaGu8JQRROlYB1yY+nXlhdRCmW3mkSiwxpOot9S9wEoKy0AjSLfjMXI66xWRNPzdTXUvWfpgkfAlP4YWvIf3KSsQyIl8eSu7osNQMzLeDEfWUuxSyRqDOqzLPfScAuyGS7qs8C8bPzKCWzfI7nShMhN3NJIB4yh07UAsTAJuX+gYKua+NmZLRsAEsur1KJqMrDPR3LBb0gSeeB5SlAeP7a8vdLBKr8d7lP5Xen8zghhmTt51OPQ6ZfxUBUMjgFzcsZaQKVfTFIy0qUlPhizNUafX6Oz5tLl89/eR+eJ0nL+6OePcO53+N74+1EfZHPEDUIJWDVIimK0nCeUWzvwzwmQHpltEpSYi2VrVwdi37Cp0BSIzFEjE25IlRKh3CSFT7diyJxuwz+SpJZVJA0p/MufgdnzYn5FI0VJAqlcJX04WijqKqGH/OR9Om5qlJmpvzfojqmBNkmCSo//zajvyGGXD2I+ed6/veUhBesQdab0uhb5m/TNLRtO1cKFAmrA+u2paoqUkqs24br6+tZRery8oL1epNpTBqlhDa13+8y3Wri5uY9v/zlL3h/c0ufN7+ihFTWlJJkXF5eSoKdA8VCzSq9GWV9KBXRZfBZgt5C1Vr2IWitcaUfSsn8GoYjhYNc1Y5+6FHDgLGWpnLEIIIW4zhIE3jyed6fZF9L/1uhXy1BpOBHpGoN09jntUcqi8HLs4rBS1KVn9E0TfPcT1EC7fk6KsOx2zNOA227pvgWKQXOWUGti+lipq8prXC4LFyRE/x4ApyGYZzpo+UoDdGzUEB+DnCqBJS1dbmHpQw+iPCdFhMx41BW6DfGCFXz2ZbwPZAoFciTHBoUVEdlsEgaCSjutWJUWajCST4jrxXGOEFYC7Uzf16p2pSx9ONu/M4SyF4U3fyCHXCizZ3ijXK9pVej7JkleWzbllGNWUoekUdXC1AxV56M0oz9QAqRTbvi7uYW3/VY4/id3/8DDntRyzRVzWqzpo97jl1PExNGW0xVIU3+UnVpmhUpNgyDJ/jIw9Mt0+QZfc+//4s/ZTp0XF6sebp5h+8HrNKs6pbN9pIvv/s53371FT/7y78Andgfj3TjyOF4wDaOZDTd0NOyxcfAwff4TRSDPqUYponKKal6GE2MCtu2tBdrXvbw67+84d3dE/3U008DymguNy9wruGw3zP0PS9fX8t89RODH9k0NUN/5PDUY3ULXmGC0NR6P0k1VCcwBh+ROMRA3dQ0jWMKcm4eWetGPxD6AfVgefnqmsfDA8YY6qoBLE/7PfdPj3z05hWvtCSZPi49szyV3VCYHSLk0pGilt6MeX0SYRuZexOPTzt0VWGco0KqJSGKcIxSajYHPEwTRuuZUpUHDCiZZ6rwxvNGZK2oeqVi60CWis2xjE8ir7+M9VKSCqesT0XeRJbCqAMqJaxWUkWGGUx4HieWsXxad0oVJdPAYX5NjJGqqnKip6jSqcfrFMtowg/kVfzgJOM58rEMIP+68usycHweWBaizofec/mZHwpYS7l7SRNaJil8CDkvgUxOMArHVTK+nKzMHLlIzBz/UvWQ8zgpIpVDFi3y6+LZOT2/d8vvy2B6rmZyViZ79vrl8XwQPX//UjKj0HGSUFSeHypHeSWAK0F6KsF3cUWj0B6+9xa/4fOXn3GqPiyrHPPA1zpXE86v+/zZC4Iq7tflPklipExG63KCpJKeJ52ghnFWbEFB9EGSkCiUsrLJq7KBx0jAi7J6DlhJad7az6/5vFJW7uP8TL83kWeAd74fp2RLOAC6eKdwGudKnOp+883/MRzPNLzVB76bv833Kd/FM1pfeQYq00coyQnnQdwp0UhngEebE4miDmVMplmEHmtMbqzWVJVju92y2Wyw1mYVo/qsB0BrNVNE+77ju+++4+HhnsN+j49kupI8w2EYZnrUElwoQVBZxJummedM2TRKJW5ZZV0KW8BCVS2DKfPaokqVsYASRoL+zE1XnAQxZF7JZ4UYyqz/AO10OU9jbkaW+1Ya0qUqANM0zPM1hgDlvFKmKoYAWfWoVAsMDkec51+ZMzFGrK3Oki2lmHtBtNaEHHTOwXQ6rV0ppbnqUcbJ8zV6uVaV15TKxjRNxBAwsbgCI+eYkxyd15O/Dudb7pnx2SZfgg6tF/e4rMWUz5O1qCQa88zIe5o2gtKncJKNX37Gb9qvfwyHUmJoGoKIwpzIT2VPPb3u+5XnE8NgCZKZ/HcnWtqpfytmqiwJoa0E6WUc+5HaVTSrFUlb7JiYUsIojzIWkiNhSUFRuRpbtahJY0wAFUhKY5zCJYPSMIaBMUzEAMM40CbN2B/EAbo7oLTCT6Ic93TYcf/0wONhh3WGbpoYQqAbB9pa+gi1tYKNJ6n69H6iDh4XDDYkqEqvqni0mKqm2jRsXybCz27Y90eOw5HBj7JWNjUxJEmEhjHfE9nbfJhABwKewfco64TmGjXT5GfPF62UUJmnwOg9xhpBxSdA1xy6DpQmqkQykRSkInEcB8bhiNKKVbNCaQGBlFZEAoHEZuiorGO9WqEUYkTpQPxqIiEdc1+jJOxG6wziCDV8nu/jiIW5P1BpV/L1HCtECtd5pjaWzSrlcaeTsBKWgILOuqB5MSugolYCUgQFqijNqUx5V4mkikKdXqxX4SwSWcY6SyC7UNbTYi6UdVlpTv2tqYCzC7ZG/p/OVY/EScY7ook/MH34T0oylpnW8wa65wHiObquzwPjyPz9X5eolNcUxGqJRi7/drkxpIW522wImB/L0qzE2oI0lyrFcvE/SV1Ko+Op4Wf5EGMsnLjvJxTPN7Hl9Z/Tm05o9lLhJKWTUVT5frlgLhOU55WOcv1LJDTGjGrlIHZZCZHS3ynR8L4suOQNuyzY5+f/vILxfMwsaW7AGRI6P38tfMGifPD9DUKQb4U0eUmuIIu/WjRv+TBBrgR4n1XFtCaaNE9qiJI+xADB41w1V0Ag08tQop09g+gnHnC+unk8LAOt0/M9fx4ppZn+U5DUgpae5oao+0iwkASBVvl+WUNSMPqTbOP/fx05iUgyj6XvxuEq5vFagu1lcCj/6rP/1lrPhnvleV1dXWGNpj88zCZM5fWFunRxcSFrkDk1fS8BDxAK0c9//nO6Y8c4jow+0q5WIkGrNT/72c+IMc7vuc/me8YYHh4e6LqOzWYj6GouTe92UiVpG0MI1Vy9eL72zRSqfI3e+zM61TIpcQ5RyIuiutL3R4xVUiEwBpTww8dxlDufx+yZV0Q8jfeUEoFBvCpcTZ/N/6y1aJPoh+OMkC3XhUJ1TSnN1zsMA33fg9dcXl3SrtanYAhp4q7rllLRijHO2ehyvp3/G9EJ6roB0tysX9awmUqUr6dIEpc1qiQ/9/f34l4ObOp61tOHAm5JEuVDwMtFSqPn89G82O+er5vlvJf0pnIIQHEeEJR9oOwdQO7bgMmH7+0zP/bDWie9SYskQaoDWRI4r73P19fShFuO0msjVFZpGC4+ACkJ0h5CIGTKVJiEohd84OHuHq0aPnrzMS+ur/hXf/wntO2GVd0wHCLdMOGVoXIb6APbiwtWzSXTcSLGIzF2HPuBVCtMZXF5vD0dOsZ+orI162pFCgOHxweebm4ICp4OOx4ed9w+3rEbDpi2oh9Geu8ZYyAoRdQKV1ku2w0hRXwMVMZwu3/KCWukqVqZfzq7Rdka3axxFxs2qkE3v2QII4+7R9FzrAxJK3YPe4ZeKkLBhzm5h0Q0AVzCVtJD4Zw0oA/DSN1UGCsCCE1dsX/c0fmei03Lzf17jE589PHnfP3dt9J3VxlefPSCy80VTdUyTAP9NECSfryYDPvDnsPxwP3THV+/+47tes3VesvHr99Iz5lSGDOglABIU7inbVqMrgDFMA4Yo2ewqfzrnCNkNcgjiVW7xjjx4dFaJGutFuU976VyEsIIiUzFMoTxZAQ5q5qqRMqV2OK9BQKaRg0GSUaBs7UaBVEpYsr+PEnNIiCxgEBan8XH8/ryLCaE07oLQoeKsbApyr+JccxVGqVFNKFU9si9L2hier6q/Yb5+kMn9vPFbi4tPwuk4ER1KcFxuWnlwsvm46NfBHfM7/eh4zm6pI3+nhzt3xT0Mgd+8ez9yvnO+u/5PMqDeH7+5fqXSFRIQiN6/vNzmtbpQZfPXT7wci/LdRUKRPl5+dnS6Xcp2/o8UROXTT3z7xZ3UxIGxdlnyag/KYLJ5MwB3FlydO49Mk3T2X1blqLL98tgqJz/WRCQ0c3Ch37+7MrC//yaE0CEQGmOt5mNCEklERfwYmLjfebnqoRzZaIkkveoogSTK1kS3Vu++eYbrl+84CoHpYl09nzJ5xVioTbkgCOXYOUcUz6nBDEgCmkFCTn1oVhjM30vYEwDURQj1usmGzvVoCNf8F/6capcqTmry4EVzMIPCpVRKOmrKQlqmVPFmdo5S103XFxckJIEqcXJu4zN7XZLUzuqV5e0q3amURUJ27qu2Ww2M6qslKJt25na07YtXdcBsNls6PueruuJSLC/3+/nvylzt5jv1bXI0r57926Wxf31r3/N9fX17PnQdR1NrWlrS9PU8xxYXu8cZD5TWyoIfKnmlHsTcuImczQRfGmWF9ClzHnjnIjtxBMosVSrKp8DCe/HLAFaKJ6RcewIYaJUlihmVkokVZfVmHlexMBxf+Di8oKmkQBsHEeMsbTNRlC+lJVxjKChKGYjxCWoZbNMY3c44v2IUszUryUgU87DZ5pNuVchBDFf7MSRvO97odMqRYoTfpTKy3A8YvoRPWbAKiaKlIVRhdKXR/MzkGp57c8TkOU6KRRKUDqd7RFLwGbuhVt8xvfW078G0PvbflgrzfbWOayz4opsFM4Zxn6kND4vKbdyj09qcsu9fr/f83j7gNWK16+vaVaaEMQMstAPrXPouuHL//gV+6c7QLxrxmni9v6eerthzMpo2li01fgxMPbwcnVB9Injfsdhd0Rrj7ERV1k++uQNh0PHfn+kbjc0bSVBZRBe/N39Df/yX/0PVJuWwzhwHDqmNHH7eMP9/o7bp3t2u466qmm3V+zHDtc2VE0jEsqZO9+HAXfR0sfAkBKursXLS8M4ebopMmJJ1RZzsaZ98ZrNi3vsNw8oNLqyJA2P3RNWSRJz/3THizfXrKoGfYRJTSQH9bbGhAZrHKA4jD0bt5r73Oxmy/bSsFpv+fijN6ThJWN/5P7piEcTdIKkuH18wnu4WEVevrzi0Asgs1mtuLvbUTctF1cXIrtP4nA8cn9zx8/+8q+oKsdqvaZeXXF1cc1mtWLydzwplSX5W1AiPe2co3KOthW/oxjGDOxZbFXTHfdUdaCuG6LSdMHT5TnrF4nExWZL0kno/ErneEMauX0IAkiQxEGe833EOIex1Sz/nWJEq6wPqhSucoSgJRkOkeDFI0wbYWyEGM7Wijm+nanypySk/M5aSwyiSijrr5mBUpFCz5MnMQspoRRT8KL6pf8zVzKWaMg5Z+wceV8G5s8veKkKUlUVwxRYKr7AX0+3WS6Makm0eFYJSSnXLL6HqueEZGG1IpULecclGljO/1QtkdecPo/Fe8dFVz/fSybK9T/fSJ9f84doUnNp69nfPK9WLF9z+uyMemWR3O/dz6Xh0+IQlOx0PSmX6lVu0F1+Zkm+yr/lKL97XqZ/LgwwX6vKqi+L+1Hu1el+qjzW0+l5qNKfUT5k+R6aZfO7MTonV4KEk2kNQi85uwNiVAMcj0fqpqFpWzmPVM7rVJI83a/z5HWZWMkXs5ne88Q8xkgyKaPQ8l5aG+q6kmCzyoHWs16V/1KO5dgpz3I558p3sqBbKicmdslYMVlEzdr/ZWy2bQsI4vTq1auzwGOZ7JZgt2kaNq3FVUKhuri4mHsxlhXUAlYsz7mMUe89Dw8Ps8N35ORO/RwEKVXgEsyW9xnHkcfHR168eAEwm9nF7AEwjtPZGFuOJVGpO+//KvPueWIgCYWex/NJd3lZ9VVnc6N83nIen9a2RQWPKJXgrFiidaaapomUsl+HOlWaP8Qffk450voEUKUlkr9QPXy+Hp6M507y6+Ucl69dSruaZ8+piAPEeGp8j5luVXj/IQShgQnakFWtFntQOtGalmvlh0CyDyUA8+vK04nna833E4jvMwrOf//jPT60thY6mV7QVJdeIPK6U+VjCX5672WO5XkfUzdX1ECYMUkpAjB4z5gVmfosv1wHx2q94rg/AJFNveLoD+L3MwSmEMCMGONYr1d0/ZPQsJVm6DuGvmMceunXyJV0pRSdHzkOA/7xiT/90z8hqIhPEdsanp7uOXR7xmnEVjUJRT+I70GZ/4BIYyXpAZy8x8eITynLfy8kr40j6opJ1dQXG168+YxXH++ofv4N4yQ9nJ0fUVbUnJwzgDS3ewKBiUTeU40iZCEN6ZmElDwqKZxxIh+bx+0w9hgSpqq4uq4J+kAAtLOYRrOqJPB31mGtmI8aIy7eyoqkdt91JC8S8P2xY920TDHwuH+Ew8DuaUfjHIonLrcXVK5BM2ArocOqWDF2R2KYCL4mhJGqrqWR3FmhqMWUvXYc5MpXETAqc3DojrnaYXM/XKlICNARctXTOUfIzBmrDVOm0KIXynl5LdLWglZYbcXCIEpzODZlA3sxpPX4eR1cghZSqTrNm2UFvoCkWhVmSyBFLSCQjpmCBShDyk7sJObk4zfF6s+PH5xklAyonGz5kBjPHXSf9xeU1xREqfx9XdccugFywD+/d/nAxTflhhW+5YcWyTM5wpT5qvlfpVTO9DK9RodFkqDmSb1MeEoQqVTp3Fdn53M6TgFkedMywZcN2TGJxG7ZwFAS9i83gMJZLu9ZMuSlC+3zysgyKfpespX/p2IpnRXSSb6X+iRHVjbg+aqSIPPFa0N6JoqZV6bI5WtYJhvPKWzzRsBpQS/nvaROKP192tf5tZT7Ikm1fFbm1oaANKWfzh2kea/oSzttACl3xhQy8ivXbI2dy4SCnZ8mzzAMHI9HqrrBuKo8OmkUS6dz4hl9oQTE88kv5kcJPp5zsUlF2cYQo8dUjrZpePnyJe1qhTKWrv9xJxn/6QGOyuNNzcoe6wA2VByOPSkxe1iAjP1VKyZ71lrefPSG/W7POI6LnoEmG9tZ6rqmbRs2mxZjNZvNhouLC6k8OFE7mSZ/Ns7LUaoj5d+3b98yThMhRmISc7iSSCwDHBDkvSQxpYF7HEd2u908N8ZxZLNZz1ShMTtmF1ndEziiqSp7ti6U70vVtKDe4q2x4KRnyVlJDsJ8z7XW4AvqdqJhlZ6Gcv2l38NYjTGW6KNspEHmh6tk0w1hJCYHQeGTn9+vNJQvEwetBbmJIZK09GE467KQQwbYkvDjy/pRqJYlcTj1wOT347Q+lXuyRPiA/KyFalOobeXZlWcW/ITynhCGvNFn0858v2fDr3Ra/8q9KvNgGSQ/TxTmsfWBmXBaZ06U2eWeUxLD5xWMAub82I/T+npaRwt4s+zJWM4NmQMepfSZYtvy/jgr/VcPj8ecZEiVkaSICXxMBCTZ8Cmx7zuhVqrE6vqaaejRKtGuarqHI3FK+CHQDT2hgqYxvHpxyTjtpGcI2D080nUDwyC+Dynpme74NBwZu4mxm0j//k+pVzWucVRrx9Punq474GNgs7qkO/bsD3uatiJlap+zNns3KLSxjN4zRUmQhnEkkemCGrStCbpmUjXt1cd89PmOT+57mtW/xx87fIocx6N8vrW4SiS/vZqYvGdIPRXr3M0SmXxPyPussYboJ1CGpm4ZuiEDBpqn3SOVhbauefXmDVE/kJTCNjW2MjhtxelbKSonaxuFMSB4D8f9gcmNMm/HkdevXxOi5/Hhjr7fEcYIIdBUA7/7+ResV1uIHat1g0oVKk0cjx3R94SxJU4j0a9IMWCtwU9BHLbRNG2DTkgfih+5v7tnGidiiux3T5lyVVFn0ApS9mG6ICbBIKzWswyt0oax70W5OCnquqKuG1xVidy7lcRNoUVVUyWSMlIMzsDmkCIqlD6lE4Nkrjg/Xxs4rdlG2xxnyvofkRjUWjMzMGR9UTONmAW/4Iccv5W61BItg1zGWZTmP3SkkpGxwMm0pm5bml5K+MMwyW9PqdMcpBX0ShAsTQyeysmGPHTjfB5eF+5sMY4SkyiSNF7GKM6dAMmfNnlrLSGUZKI8gFMHfghp3tBRuQIyI605KNYJtBZlBL+gEMREjFN+z0RCEUvzDpBQ0gcbk5jClDJ3LJ4cat6Ey6BZlsWBuUejbLDls4VCAOTrCotr1lqjo6eYG2qVy2pKqD8JEcIu1B3JrLPbN4CWktms0zzfELJvyYIDvNw4FbiqkuZIrWepRRB9qzFv7M/1601u9D5tCKfEZKbMBSF/kM4IX2AMSlvEmlAawCKBRC1SzymhdIXKrxDqGyKrahpMgq7zhHDPmzcfiRqEUtCSn2FOyBQEBV4JTSEE8UExSeOMxRsLXprGlgk5y3NFEQNMKaKdormoWG0qjFV0R4+pEsWU8L/kYwkAlCMhnGqFpnEVqU04bZmouNyu8TEyeY+1jqZZ0bQrRu+5evkCO1c4Em1b07Ytr169zlWBkapyvH79iouLLRB5cX1FXdf5S+hKIq+ssK7B5AZGyBriJKyzTH5i8hM++Kw/PhGSIg6nhLnI2Drn2Gw2OblpqetaKFFNM1N5fvGLX/DmzRt+8pOfAGVeSDVO+o00Sp2qMUKNrIihn2mVBaF/Dk6kNGG0w5i8Eqkl2qtQ2DlJV9k3QMwMZc0wJjH5idLvEEPEWVGJV1GQAJHCFhdynURsoe96TAWiNiy86BgkwZ/8yEN2SPfBM4SBvu/o+mNeNyR5FKWwijLTwzTgqiorYcU5yPbjRApTfhYBhZ+Dm6WhYgF+ZiGRlHKA8AwVzBUNQVIDYRrY7e7x40gYJ1RM+LwGTkFMVlOUdTOWfTBv9GXPUaWKDmfrYTnK+Ip5rCmyB8qygqOU+HXMgEwG5awmslxPT7QK0m8TJvztOiSh0hlwyqIIMSf68x74/eRrGEROVvb8E6vg4uKCV9evqF0WYcjIf1UJP58YSFiqdUvUkIzGrle8efkxw/HAsdvT308kP0GMHPc9OkZqa1lVLWEfqFcNjWt4f/seW1WYJCj+ZVsz+ITvJsZ+x/byGqUtD4877g5i6GejZtUfwUSU8TD2tI0lpZqx6+j2QusyaC42a4axww8jzhiE+S9BKglCEF+ypl1jrcM4Q9NoPBrcimr7Gt2+4dPfNTz1GuP+7+hqZJoG+nHko9cf0Xd7uunAq88+4bG7JwVP21RUzZbpGDh2Hd3YUVuPxWCNxqhKtIiibJZKiVrX9fUF4Ikh8t3791hdY52jMo6hG0iV9Co+7Hfsdzu8n9g/7bnYXIlXUYJVprNqYwgpSQWo23O/u+OivSIMI8GPXLzaMHR70jjizIpVFTkOOx7Ggf1+z6tXr9FXV7SV4hc//xofEraquLy6xlU1xlVYV2EQCpS1lujlvYdhRKXAIcP9BZyQGDLkvWRN3azxmw1wiu/KOA0xctwxrzNXl1e5z0gTMQRk36isJfncR5SkGmLX67nCvqTpw6nfbAnwnQDQNPdzLBPu569dgiL5h8vt+a89fnCSscz6l6XyZSf7h47n6MmyqiF8XNlgngfPZTGWjeD0MOb3jSHrFi9vygnhidHPNyGMJTD7MC/19LNT9eJD11H4sB/62yWKvTyn5xSJ5whoQWXghOItEX25Z8Vc60QpeE6VKPesfB9CICo191Q8r3LM94DldeSqhnzIeSUhxXlDFEQyfO+5FwZ9XCCEKaW5YiLeHWlG2T44eJ/d82VF40MoeEnISjVK6/N7UuhTIbs9q3x9mTUliV88qcSIpjZZVexU1Qghcnd3x2q1om4audK0PM8FLWpJO8mVH1J2p5UU7iz5WiKvxohkHTowTiInKvlf7j+wP3Y7vg8f3xuXeawBma+g81jVNLaiuWy4SoouabphJCRJOrWt5JkmjalkU2jqmpdXV3SbNSmlTFEyrFaXOFehtWK73bBer7HWcP3i1YLPXwEToEjaYJwVfn2KhOhJM3pUpFdHdrsnQjg3JC0VvLJ2Pu/3Anj58uVMx3l6ekJlRP3h4SE3pjvhXrcbiopdSkIfO1XHUhZBUGdrdkk6lih+oTQpLfMyzq8tIg8KhQTUqfQreD9TD4P3Ev7mtSOFrOWhkQQ7V0tVUsQg71e5CmVEHWWagjR457nj8/uLL8FIP/Xz/Yoxb6pa7ruJNq8xZc4HUkhUzomsbAjEMEkFQ4YPRlmhcMWcNIWT6Z/LFTDgbM2G78tpy32Y8NmAkbKuGwM2z3+fUEll4CyrasU0r6NCH3tujPfhSkZMp2fzvUlSqra6SDiXeZPr2KpUAMnV1gwJ/YgrGtI/mCmHPuTkS6NSuVfyfE+VKpMTY3s2F5ZVvkO3Z3KWutpmt3ZmL5UpSPVw6DoxULQGFeBp94RBgrTvvvmWj9+8pGkq+qHDGU1TVaiV+DpJwAlD33PoeoxTrNa19G2FSO0q2vUFg4+MXnp/VDZpVEHhCWwuNly/uCDqkcev7znsO1JIDH3POEz4MJHSiuCDUGh6SaBDjIzTiNKJyg709SgghRbBlIjC1mtcu8U2l2izYrUJbDaXTN7LuRvFlALd0DFOA8EP3D/eomupUqaoGLoJPwqYapwhpICKiU2zwY8jcUqMQ8C6Fp/7v7pDnxuaIzFodF1JEpIU67qRtcgHKldxsb0g+EkSdJR49yhYr9ZyjcPI434HSiTq/TgxsKeuK5rtBZtNzXDo6Y4d3j/yq68ObNYrLi62HHY7NquGsakJw8jt7Q2HfgCledn3OTkLVHXNqq6pq4q6rmezO2stfpwQ0ktiHAbGUSpdwec+WlPjXMuLFy+p2xaXG81TlBgkzCwPWVP6bi9j1zqsa+j6EWctdVWdeuRSYAwjQUVsZWlXLcbYDB7LfmUrEcwQytd4Yl3EQApgVELb05oXoifrZZFQ2dRUWAQxJjEcVOdg8l93/FaN3+Ukni92f91/L/SJ5vcpfGGhBwhnbbnmSbAnG5l0tqu8mUDReV+Wi8smF+MpQUj4eQEvn7c8ngetz6/reeAryZKc3HM62PL7JdWnvM/yPZ9/nnr238/Pb97AF++5PJYZ69KvAiREeE5dOkuOFo8tzZuVBC7P79Hzz39+LR+6trMy/eL4UML1/PfP//v7CWH5Xfzeszx7PoXOhIwdcqJRKAyqVG8WiaHKydnyBqWUOBwOkhzXhZKzuFbICdSJ+ytId1aIoVTKilLW9z+zSPyJVK00qk9Z1UwhLqKm+nEnGb+JLvWhnwtuoEgLOp9KYkzUNC2mqlih6UdPUgpXNyRtGSdPP3gwYsLXNi2vXr1iyFWEEuCv12tWqxUpJS4uLlitVlnSdj3TlrQxInOcS1Y6KwUVZbOC5Jf1qDRpz/NyQekAzoL9pYiDc471ek3btnNSUnpK9vs919fXc8B0cusuY2gJsMgGTPbDORNJWCTsM3KFyNjK70/JdpkTZX7EHCSL4p5BmgRzQEe5tgwzpEgKZb3MgXCeSsYYKclHQVSnaUQSMfE+KAH8OIwch+PsL+K9x5qAUtJHEk2usJD3gyh9ceIoXp5JFBft7H2klSrKk2drlGy4iyrCIgEsCdnyHpbAVO6tgGhaKZIxM1Ibyf0u8ldnzye/M6fm+HOK5vI421/Ke0mWUN4mr9fnPXnzq8s+Un72I04uyjHvm2VeZUU+rU4eC8Ul3aIQNUmVKYJhXgPKHA0h02GiJYR17pfIDAkvdLswTfhxFMM/Y0kpisBBVjrcP+3RH7/BVY5Dv0dpqJ3DGYe2JzqeVppxnLBKk3TDME2QEtZYoXc+7hgnWc+aWlQPVQDtDM26ZbXZ8LS/5Xic6I8TKTimYWQcBkL0hOhzQh4I44h2NcFHhm4CZWnrSZSyfPF4UURlcO0Frr3E1BvQjrqWarAAeIYQDRrN0A2Uhulu6FjXrfQVhMhwGEVyVhuU1fhxJIWAc5ax86QQ0SqytqLuFEKi7ydQmU7uI5XL88tHqjoDfjFirRGqpJZK7jglkWcm4apGek18YDh2BCJGQ2UsYRqwTUXbOqFxBU8/DRyPIzd373gVrqjXjjH0+DAR/ETfdTzunth3vThltyu6rqfve1xtWTctTd2walsUmso56rpBoxEF2sgwDtnaJvfeKQP0GHXE6MQ6XFI1LVXToPJYDJOHGbwK+DihUGjjqJo1+90Bow21q2bFukikn3qiClRNBSpQ1y26VKmNwjjxZokhoHPbAGU9yeIUxfSvrJslwSgwdPle/lsqYz+U+vxbVTKeN3yXny85xt87lDotdGkh56k1q9VqrlRM05jfVza7E7JbTlE+s6psRq2RW1zKpfk8ivLUMjAvG8WH0PDlpl+aI59XG8q/KXOVP6Q6VV63rOwsUcRyjmcUmQXK9L2qwOI8l2X258H8srpR3r8ELT6mM8S8bI7OOak6JHJTkpMAPLvhJgridu7hsDy3wjFPKXE8Hs/Oryzgpdl1eW+W42fZeLk8ls/t+XOAc+nX0jhbnl95z3kTISOyz557+Yznz/Kk9qTmKsfyXh+P4nC8uVjLJpfEpCdRFF3K84hAIITprLKhMtq4PJvltYXgCTGK82z0xOhxzpIypcX9yCsZPzSxPE8aJeiVYEn6q6yzrDcbXmwuadcbXN1QNS3D6OnzV0RRNS11VXOxbkkxzb4YcAJONpsNm81mph4uy8vf7zGThT15zzAOZ+tKWUfGcSxXlWUGmelXx+OR9XqN1ppxHLm6umK73bJer7m6upopj69evQKkH6P0dPjg6fojbd/MkrjFt6Ec3ntIGaHXp3FeaJdLQKJc03MxhuUzEb8KQXUr5wjBM00jXd/TNLUYieV7oHPgsEyel0pz5T2PvWjh69wLJcmFBM9+muh7oS/c7e54+fKlVDtQxKioXKSqFNZIEJ+SSIyWCl/xGil7zNL8MEwBl/ePGOPZ8z4ej2c9M2UfKIo4Zf7PyWNOOq11BGvxGdlT2oAhJxlk+qgYnJa/fz4XUkpZ3vLDicbzZ3JaH8tcOgEp85z5G9/px3uY3B9YvG+dcxhrsMYwTjGvyZKA9sMEBOpazbQ46c04X/t1Dsg8gapxDP3EMA4M3VFcxcNEYwxVXUOYSCqyXrf0w5HuOLGtL6ialugUu+lIZSvWqzWbds3+/khTtZJIrGvePxg63/F0POBUxBoJ2qZxJCGosrOO162YSg7es7q4RNUVD4eef/2v/pzeBxSOxtRM44Hge1KaOPZ7rFVYo/HDhMYRR4i9pg8DF21ATYowRvaHAWs19cUF7ZufUl1/hmpfgALnNKu24vWLF7x995ax61FD4tgd+OiTF7x6s2V3vOX/w96fx9625nWd+OsZ1rD3/g5numPdGm4VRVFAgYrQCQoFtlIOjakESfhLRPkRJzQB+w9tbQua1oSE7k66O40GW40aYyARo90t0ppW+bUR+KFQUIhFDbeGO55zvtMe1vAMvz8+z7P22vv7Peeee+vcuvcU6537vWcPa6/1rGc9w2d8f0zQhAbYRFYvL6nmc46uX2PTtqz7VkInsbS0RByFAa97ClNhdYXrFVViizu7uENVzYBI3zd0fUFlZxS6oG8azpYnoBWHR9doVy3BO2LwrJuWsijQaA7rA2azmllVMCstL77waXANm03Hi6+cc3hwDFVBHz3l266jj+b0R1DoiuqwRhWGF158mdPNOdFYbt54jGI+pyegQkcTNqzOlmg086rG9Z6+7em7nsdvPg3KgfLownDzsRuJfCAyq2t81+Hac+6+tGa5PMNWNbqecXT9JqBxfaBMHq6qthBhs+novcM3F7TNGu8CZ1681fW8wpYWbTSFAWsCMbaEaPE9dJ2CTlEf1hgrVMVFXUv4X/BYSqIzRCf0uK7viHis1WgrsqDUFImSCx41BaIgiov1webra87JyP+O8wfGVKxjIXIQTkcehfG5tFaS3a/mOLelMhwXStoKqNvEu/FmOb6OUik5xQeM2bWY71vl963v4/Ce/Y1gfE/Zi7LvqcjnHydD7rdxv3igUvKwFJdjf+UYsb5vLeO7Avi+gJ7PnQV8z9ZDMe7LvElKfLVFCtHIwr1vFc1/40q/WUDKbchxyvn646rD4401xjgwfow9MHJ+J1W59S53/vi+x8JLfp8FpPyc9LCRpETSkFzoI6Fi//nn8byvQEe1e60YY7JupwrihuH5yQ/SP0G41nPcvlKgU90LHyW2f9/zokbHkhRohSgVB4cLoVEtKqzaMqY8iriX9WNf+cjMF6Q5InNTXhe2ELYRY2UBjBKdb1AcLA44Oi7QpsBHRT2bUxYl1qihLkIWuMfMTrnuxDhxOK9ZOdFZ2Jmc5PGwJcNwztE0Dbdv3+bu3bvDHNFaFtg++iExfH8dzMrF0dERxpgUsiWJ6NmKP+o9QGpxZAE6r5NjD7EwoyUSg7gl58hJ8fm4fePQeD7uz88Qwk5BJ7Ec62Hs52PyvWd2rfxd7t8QAs57JLpnm5zufRjWvbZtuX3nDp9/6fPcuHGDxx5/nLKsxL0fhX3HpxyZHI42fmZ5/cjUs3m/EHpRNVhnx+vJrud4d33KOTJ5DZdnGdjWV5LPfep3VKJZRSyISsv6lsMex2vKQFGOKBqvNl9ihOhTEruKw2dKxfS3LZx11e+vMrQ9apAxI+EfZkTKkteMLbOY0DDncVMW4oHIOZa5L0SR31AWlv5oMRgqM01uUFJkLlqFLixFVaJN5KUXXqAsFNYqFgeG5eqEsAm0rsWHSNN23D054/rBdc6W57heCAjWbUNQATurKEyB23S0m4a29/goeU3BedpNwBaSY9b1Hc999jO0TSu1oGQg0IeeWaU4PFhQ1orFcUGIluAVDofvAs4HAg5blFL+xsAmBPT8gINbj/HUu97Bzbe9g+rgSAqsxYjSlnp+wLPPvpvz8xP6bgNlJLSO0miMqjk96TGl1KSyVZGUaymNtzicE0KP73p6LyGZeXg3zZpYBCgidTnj9OwEHwKHhwuqqqQsLFbLeh0d9K5j3awoyxpbWqF6j5tEGOE4PFgQvKdPIfI+ODatp+sixzdu0nYXbPqGo+uHLA4W9M7Rr9YUM826WfLCi0vefusZll3HxeoVPvmbz3H0xE2q+QFKKV588cVhnpd1icKJfd9aLs7OaZsO1zk2zWfoXUuMgXJR8+Lt28yrmmsHB6hrsm8QIzceu045m6NNQd873MUKH6BpPGsdWJ0pilKYJbWS0KdYGurDGRKWrVHJCLkJPe2modAS9VM0LYVtUarE6JL54ginPCrJbpJPFgh9qqkSpPyC85JLGEWbwIQUFqwT+xSkRSUCehsG/gB4TUoG7Ar1eWLvC3/jxSC9uOf5lM7sTjZVbGXYBJRSaZEQS7BU4Q5DRdRBqUhWJTUUPRottqO27bQpYWyp3FcAxn+ptTu3MlZarlq8c39cUixGfZm+uWTJle/zubfH5408t33/d2MPU1R6COnZ985IONDWBZYifYbr5nvd92KMLXpjRWcssI/buC/QjwWCfR7zq/ptf7yN73F87PgZ7H+vUDvv988xxjaMBODqwl6u71mtliwO5gOrTQw5NCsJeFk+TlU7h79tdMtlpSaGJCjIa6nqKUJVVZUSUxwebQHhXtifFznGXDS97VhVWg+eBrKynL4lCoFCUZTYsgJtqesZRVGi1LaQZRZEc+GlLDzCrrKTBdXxGpcZ11QKRer7fqhQffv2bV566aWtQsHWmp/HThaq99mP8n1vma5mO2FR1lqsBp28E2PvxZiVCRiN3d21b8cYcx8FI/+FEC7Rww5nj6kg3+h4jR4UmnE+yHiuOye1BKIhPdccGkv6vqdpNlxcnHNxccFqtaJpmkE5Md6lPIg0HhJXfGYX2s9Dufrvsnd7XMQq32t+dmNvzBDHn/6k30brTtwKUzAKNlCKLWPhbvVpMcRdPS+uihJQarRuIwqGnGe8P+UMua3RaN9w86hCa72zDm7FDBGK1HiNjMn7mObyuC/GhrC+7xM7YQ6fk7+0VBMQRqnOOwqjuXZwwEuf/yyL42NuXD/kJd+z6ld0wYGKdK5HYTHKsOkamk2D63oRossSrzxRBYIGR6CPkiNBVBBSrgkFXgWi9jShp+s7et8R1DjnL1KVlrLSlLVC6yjWZwzaanzyjqACs5nFlkbyKwAzmzM7vs71J56mmB2gbElIuS1KRWb1gve///188pP/ifXqFN93LGaG6D2r8w19q3HRY2JAFRFthZ2u7VpMabFlYuXzydOoETIc7+hiI+E7QNe3hAjWGZq2QauaalZvFfEgFMNlqrthjNT3EONdNspGYlS44JgVFVqJx0oXBUaVWO+JNhK0IxpPWWtUKcxRXd/Tx8DFZo1rA06LR9TYlqKYsVmvZR+2mlIVKCMFNuv5jFl7AGpDjA0+ePogrHraQ99HQgHWFLhW6gc556hnc5yTXA7vI91yjYuK3oEuoCg1ZWFgXkNSKKROiUbrEqVLWe8GIyhSjylAaB1d4yG2aCV5Io21aV8smJe1GF69GEKDyqQTnt73RBVRBowT5iljLEUh+3CMSLHztLeE+JCVjH3h7ZIgpy57K4Qe7XKBvOEcOYxEyQMkWWJsMarJEQ19n6oRejc6vxIrRhQLDkolAU1tBRQu5xHsC/rjgoFZ+NgXnPeF1/spD2MvS/7sXuFXQ2hPsgiOFbexAKr1dvMYb9xjV37+Xb5WCAGMGhbYy+FW2QoojyAM7TGDBX+fnQMYvE3jz/OGPVx31M79fs8ehnH/bjfLq/tsv+DgWKEYe1CuglIq0c1u+33cD7kvc3uzpyXGKLzWI+Ekn6PvHS+//ArPVG/bUqbmjSkJDCI/JUEv5k3hKkVy++yCUghltRzrgyTwhSDsFFoZms5dOsejhAexom6fT1IyRuQFYGiaRsJinGcIeMhG5Ljt58KK1UvG267gOK7wmr0XwI4lfv+5y9hLnzk31L/IYXqf/exn+eQnP8lqtUqK6laIhu2cyHOkLEteeeWVIT8t54fk9uVCfF3XsVjMUdGj4tYLkStkl2U58p7oocDpeKzvC9VXhb/uK9P5r0gaQK6FkftXig+miF7vKVKBza7rBkU691vuz7brpNhkhJxcaG2BMZG2FYvyxcWSs7Mz1us1q9Wa9XqdGPZ6FIbC9gSThWrDrBJ63HztsTI1GAacQ5HvS9o0fu7jGk6wLXI49nDnwovZsyVr7zBoR89YDGN68E6ES2uOkgE5jPmtgWIX+58plZLp9/axYd1Na6lOXnCiWPO3Qvajb6QwRoRxpVNeE2bnWcm6m/emMChh41ou2bOXvV6Z0EBrRdvKs+1TMbUQAz4GWu9YrlfcWNQ89dSTfOo3Psbbnn6cZ9/1DF17yukLd1h3LcVizqbrmdU1i8URpy+/QrfuUCFSVAVHx9foY8/Z+oTG91JnwkTmZUlopS39pqU2lj46XNfRxI7ZYk5ZF6xWZ0JLn3TTWVVhCtA64PoWdIlYuy1Ke9DiRTs6nlEvSlSh6ZSmPDji4Obj3HrbO8BW+GgBg0lyweLgmN/9Td/ML/z8v+X0zgu0Fytu3bzJct1wctLgKfAxoAlQdphS44NntVkxt4fYsoBEnXtYV6gIXSPhw5tGWOW8c0RtCRHOzu7Stxvi8TGLWS3REjElN/etFDsewhgVFEYEb6XRZYHSkeWmo57fkOfYtHTRU8xnlLbkbPkyoZN17/DGnBAirY40MbDqGvpmA0Fz46knuPPSC7StKBmu71MJAs0MUEZTVCWH165Rzw5Yni85OznF+x7d9DgfqGcL5lXF0cGCm9dv0p6ecnZyxsXygr5zVFVJYQqsNlLnQ2liUTE/qpnVBdQFVtVs1p2QxZQFrY/YckFZHVLO58wXNdamnD47I8aAdz3tZi1J8T5yCgj5qaG0JUeHxxhdkAmBdKEkvUArOifrtk6hp9YU2KJgPpN8JpHvxYvog8P5B5NFXnPiN+wK43ny5mN2hcdtpegrz5kYTsTdLAwpcqq8GeQkrnE+xViwF407C+LG7LJQZcaf+6Hv+8GNNLYchhCGcIitZX67c47ZKfJ7YNi4xr+7ysORK17n2F59xaaRNz1rt306rjMx9ibkTTCfP/dfpnmFbDHMAn6BRlg3pN/l+KIwoAJb1phdwf8qS+i+lWxcBClbAXNb8z3kPttXAsf3vu8Vyeer6/qSlfkqT9LQtrhV2sbXGXti9tvgg6dtW6kAOnrObdsK65PvuP3KKywODlgcHu0IpDnhnmRNGbWGrStj93pZIVFJQSm01INYHCx45pm3CVsRikLPL93jo4UHYaTI8ebqiveRojQoFfG+k+TCJHhXVUk9m6G0FC3yzuMLjw5bw8E4ZykLjWNFM3hJiFTJiKGVloQ8FHVRslytCMEP8zXPqXzO7C0JYZQPlO5iLLznseicY7Vacffu3Z11tK7r4fySAK5EGFdCiSpK13aub9mswFphKNPa7KwX+d7HoULb9W5bGDWz8+V2rtcbVERotq0ebOguWX9jDLiuY2O34VHWFgMrko8BawpRCjBUdZUos7UUBYvQdx2vvPIyt19+kfPT2/h2zcG8Ioaei/MzmmZDXc2EttIqpCK5QnuNdxpb7O5Hue+2nqaesshJwBkhWeqk9oYk83p65zg8PBTlKClyvu/xvZMYcxeIThQJsR/IpPWJZpmQPTtSzCMGLwJsNsRlRXVoSsrHuEL+31+z8uu8vqSfD/kcajRnUAqieG58EI7+B9Dx3/LI3qjgxWpeGrGgOy+W/m1uTZ/mo0YpTd81qd/DEDppjBEq6aKkKCzWlqQafFLrxIALQXLBgLKuOD0/49///P+L1vCbv/kbfOpTH8OFhmg8dqZxOOrFgvn8gPnigOhaTuMZzbrhbLVm5Vq0BQpLsB1mXmGriuV5g/biCSu1YbVq6YOjDR2d6YlWwnW87jFmjhb1CuetyFl9QM9LWudwwaOxFFZhsSgVMCbQdWuiMjz5xNM8/c738LZn30t1eBOXCulpjNSBAIypuXXrCf7At/0+vuztj/OffvX/RwiBz3z2lNurFdXhASiP6zec3j2nMItEi22JHqypRBFsemKQvfPOK3e5ee3G4JH1ocMHByrTSms2mzXPP/88Tz75JNFLMvR8PpcQNhTr9ZrZrGITApumoSgKur5BG8073/VOLjbn1EXFY08/zic++XHUpscUAVXAnfO7aK25fu0GSinapuf0ZMnh/HGiMRRVxY3Hb3FQFaigMWXF0dGxeC2T8nrtxjExRv7zx38TnGIxm3Pz5k2WqzNmh8cENJt1x6989NcoFHzZ25/mzuc+RWGlCnlpNQdPPE6lHXde/hz/6dd+jU3foOuC3/47v5rDZ57i+uI681nksAx4rwh95OXTFSt3zkm4QzlbUJVimD9frZgf3qSqZszqCnzEaFBGSRgUkeh7mr7lztlZKssgxp3CyLHGpkgio9HGEKKiLAoJNS5K6nomr20l4WHe4UN3n1m6xYMrGYy2fK2FGi9hP7l3/Jqx9yKbEciCZKKlVOLqEoaMLJSSLHIKYrI0qyhu0pF7NFcrzBZrUIOlKruMhw1ZIuXFnaV1KpjEIMB4F4lsma7GFr5soSKfdd8rM9oM8iaeBdss3IwF8633JJ8v9UfyyGzPd5nudXyOmGJQRRvNz0Ulel+5X6PtyGoJrpdienGw7hqEYz/1oZZN0/VuRPs3EsRCSBU/872DUv7ShjgO9Rj30751eOx9GisaYw9Tfn9VkmriFgEt7C4RUSyCC6D0TqG/cTsuWwnVzjOrqnJ4LW2IFLZEK0MfWtpNizFWmCVScmdMCnHusxD9tohNzM+aIawiKyQ6WR1V0GivMcFQaFkAWtdQljOUtuit7f6RhFJXt/+y7LOlUr4MhyTYhTRfVZonUnXZaGGmE45xEcBEmb5MWJHHWAgh5RkovHMobYT+MW6ZbFxiglHs5gCN17shvCYJkXF0c1tP2DY/o6oqvBcq12zkyLzquWbGkAuFzM0YkH9jVtjj8OdcRwiJiWzI7drmiu16LsZex1TvIgaIgYgwnPgQ0ClE1QU/CHc+eNRobUT8BHI+JdVo4rBhGHxmmdKWEJUU6cPjfaDvnbDjeEdZaOaV5XBWUClLoaQOhiKgDGDy75KfyBic79FmayzI/bgbNhUHo5XsM+LR8F7trI1ySjPQouY9LKAgBHzT4tuO6BxaSkHjA/Qu0rpAdB6cRwWPHUJ2JWQyjNaXe+0dWZGWYxjalPewGINQg16xnimlUhFDqY+hktEuJK+R0uPfPLphUxLGp4k6G9bGCtZWyZJnN/Ieqd3XeV+t65rSFlijB+Of1oqqrMTogMLHHtWKR65rG0KzplteoFSHtp5yVhK0KNEAR0eHRK85OTlBqwBWgZFaHZ0HU2oKXaCrtCcSUaWW/BFkDvZdICix3kMvZAI6cHR9QXMqco4HnAdjhbLUjQruaRzReULf43tRlq3yVGXBb/8dv42n3vY0B0fHUtwN6avIlp0OZdGqpLIls7LiYDZnuVyxqCtuXgOnI1VR4FRg3QkVq+TOlhhVoKIGD6F3dNrjneyfwcsYLY2R9Q9wPrDZrET0KEqsNpydnaERhrjDoyOath8MospGjDXUdS1roBLPVmZa6nzH+fIcH1L9K+9QyqO0VERfrRqaVUvfeayu6drkpY09Z2d3uVHOKG2FsjWbNpG4xIDrPa6Xgq7zekZ0mtlsnpgJFX3U9C7i+shTTz9NAcwPFtzWgc41sPKcmsCi1hwuZizmlqeeusamXRO059qB5qB2zIqOqlAUBoJTeKdR3Ybl3Q2vnLUsjm5wuCiwVtN2HZaC2HaEpkoyaKq0ngglsjzYeY/zAe8jBZbgkTBcLwZnZUyqGi9j0SX2v2a9xhYlZVHhXZRaY+oNyMnIy9LgKWBkVQlb1qixRd2MrPo71voYAZ3WgDhYhBQ6hUUxLBiZUlUUFjWsuMLmkTUO5HxBBEwRrLMCk+9AFqEYSAVIjCgkSfBzPqD0rpIxDv+RIj1c8hrshwaNLYVjq9rYejgOV8iKxHiBzL0d98Ie9sMAPNLHWollMFXzSKXfZRPMBbRySI8kWIe00W4rnkt/JTrGpPhpkypUB49WafNVcWD92g9NgMu5FDkUYdxnQ4VctVslfNzv441h7LnIgtwwlkb3LnFKQYpX+UAiexnOO25zPm9u076SYaxOhSJz3LtQ6Wkd8IlRomta2rYVy3P0oigoEai2dHAivKk01rYyYbp/Jcw8MQq3vg4G7Q1Wi8V+021YHB5gtIX4YNzUb1Woe3gyLnmhZHHZO0a+EBpVYfEghaXJnHIicFph3BDu72w42B2T49j98bU1Kk2egDIGkvKhSKxmycsxCDYjT5geCfb7dz0ee+Ok6OPjY5xzA0NbVnyyBy2zUsUYUUETU82g1BVDCIhOMcrOdeJlUFvmtTFr0nhuxThmfQqEmOgNke9ClFA9ncaq9wHXb70xOwQNETIZYgSZB9kDlXPDkIaGEAbF2wWpPpwrsc+qAj8rcfOSXisKraTIGak2AkLx6H3EKA3e450ijHIqcghs13V74V8RWQ3i6Nl7vJfnKb/XGFuKcqXTM02VngnQt+I9y7WApAYIdJ2n7Ryxd+AdRSpimMxc0vzR+jIe9yGv7+TvGZ7J9tCsdFydcDlev5TehsH6GNO6uK0hBFfnejwqiHE/Zy7PQ4WO271Ea03w25ovYsSSc4y98bPZDIwZjBPZM6qNxvcKGyLGG1RUwq7meoLrOV+fY4ynKIFZgVc6CXNQ1zWr84bTkxMOrtUoqzGFpV1vCD5gogarqOeSk+GjRxcFsY9ELcYq3ytUYajKki4KoxXKsziqaZcNvvMoDH2wqGjQ2hKixscGFz2F0bjOEVIelHMeWwRmVcFv/21fy+NPPCH3HkfjMgQwVuSrRKcRUs2XypaswpLFrESpgosmoKsSF0H5mlWLJApjpDJtUEQfCV2kjQ6toK5nkn+hhGyjrquhAvlZu6YqiyE8c7VaUxioS8lT6/ptHlT2DppKCiuaQoNRbNo1uoz0vqe96LZyWUTyIJR4WJerlvM7FxS2Zj47pGsD1ipU7Lk4O+XJpw5YzCqirlBxlYyvmt61uL6nKguOD45wLcyqmrqqmM8Mmz6wbj3GtDzzzDOURlEZj6k0vulwvWe9CpyeGjRHPPX4DaryadpuTdevuXlcclArKttTaohKaj55pVF9y/LkLi98/i7Xb/X0hyV1KeQSrTJ0pmSFxZQFtjCYwmCr5OFVYoD2yZDkY4DgJLk7QIhS2FUHMSqjDcH3dDHgnch7xljKopY1XUcpQv0AeGAlY5/9ZQxF8m7sbdo7YQhJSNwJT4kiCPajECMRJHcbPxbQx4vEOBxA2D3cVrCti0TNqmjblq3CQmJTUuR1dnw9xVYIzRtf3vxzYvr4uxxSldsE2+TDcbLgvgCdhWVxGe5y6O/HSo8F7X1BWSVPQxZcdr0I0pddHwhNHBVzE0FNQge0sE+kZDNjClCj2hFuu4F5n5KY2VqCx/eeGVfGSkCMWwaosbKUQ6py8qxzfhDQsnC177nJses5D0WqsKfELzUKAckbSurfHMI23nzGis2+lyiHNEh/5BwXSZZ3iYO/KkqcdzRNi797wmNPPD5sdnlSQ1KmUnGdjKFv2SMeSJXJ+xDQXkRZazSVKSgoUGGXs/9RxFXryL5H6V4YK/xN26LthuPZDUnaNB02jQ1tHNp4MIEQhRKYEKmqahC6xyxSg9EgQpHm+ngNGAuq1grX/nq9keTA0XzNbE85uRltEn3p9pmP52/btlxcXLBcLgEpxvfUU09R1zUnJyeEEAa622zkMFqxWCyGuSRFvraeiFwcLre9ruuhwvG+IUTmURiN+92+HvKv+iCeh+RJzP0xVqi890Tfp3xsRVGIl1lMHg5jipQvIlkc+8/dWsvixg3c+py+rjg8PGQdPMZK1fHe9Ww2G3yAwjrqcj5c17didCrLktlstmPAyPO/7zsJ9xqv56Mb3nqLI6HvsUplO4BYgp2MI3m2ooxZrSmUonGOZrlieXKGDh6bSAYGQRgIyYCz790eG7JyG8bKcH5e43ZeNV/GxpLxOrv/+/ud41FBURTEVEhOyAdSfqDRzMo6jVv5LL8OIQ6hfXls57WobVsIEWsUKJ+80uKbWy6XOCc1MVzTcnR4hOrX3Dm9QzGvMGXEFIqVF4YeUBS64LlPfEoE7ahZtRvqsmamC9bLhlk1J+BZrzaUC0XvetreYVSkLks0ms1qQ1UfMTtYML++QLWaoDo23Zp117L2GySA1gIHeF+g+4Ljx29wfrKi9y03btzCHsyJvcc3PcYWFNqwKCxP37rBoqrE2xYi0Tsx7npPOZ9DNESVKO0d0IHqFUZXlEWLwnF8PKN3nq5XVOGYzeqCru3YLHvWG8eiPqAwJevzlnIeqeuSo4Nj+qahrucs5guIYghURnF0dMCsrlABmqbh3e9+D4UJxNDx0ksvMFscSQ6kBhfFg6u15vjgEK8dXjk0Ea9SnlzfE1zHrCqp6ppNt2a1bmg7R9cFZvUtqqKmKmfoECmVoSoMhzPLvCogBM7PT7l75w5HN29x7fp17pzdYTGfMasqYl9ztlnhO0e/6ZnNIjoGlO9Zr84xB4eYWc3RtRnrsOJ4MePJ45scHcx4/oXP0Pd3+cDXvoODxU3xFvc9SjkWi4qqkrXTB49z4int2hXLzQVnq3PK42vc/uzz6Njx1M1rvPS551itek4vWg5v3GRxfMj86IBr1w44WhxSlRWmMCgChYbSQpsYSMUoaiVVQRlsKeGsIQSCDxRFiQ+K2CnWa5kPkQDqwQwVrynxe9/qC1sLf8Y+F/v+gpk3rhxSsC+s7rqRr2YdyseNaVTHuRHjYleX27HNr8iL/Y5gngrxjMMhtrkImhzKJPU9tnSr49CLsTI1pnEc/zumus2Txezkk4ytbdvNYtwHSqm0Ycv3YwFO2p/YF6ymj04slS7nmjhxOypNDlMrSollDynMQ+d7Ex7YHaFi7IXYWkd3k1z3n81V9zGuUZKtdWNvxf5zHysMeeyF6MkVYPP58nMZKxBj5W/fdb7fruxkzF6gotAUdpaSfSNEg9Jyz23Xc36+xBY2ubaTEoPEjodUr0QT0coM8ajjvhSFURQkEdQkiS+0HUVQxMYTCLgHpI17q2Jfed4xOuxhPAfGa4gxhq7tUGrD0fVt2KF8J/MyIjUqjBX+dNgNwQMGBWKgs2Q7d/fHiUpCrLQjsXOkMZUL8J2fn7NarYbxt62dsh1bQoO79ehJDQjByckJh4eHg7KSFZG+76XSvLUU1rDZbCgKgy0shbaIFV48eMKSsx3HmcJVqS2DEohglRNd5T5yYbmssIB4QtPcTkma4/V6PycqGieWzLQG55w4YajykIuksWt0KcuSGAxdsxaFMJ2v73u68wua3nP98TtU8wOqWvJTtErrpRH2lawA5UR52K0vtOvB2RXeJfwz55HJPfd9h/ZavInpWJOMHKIsSSGwLmzwzktOymaNiZECUH2PyeNdgSmLYb8YKxZjBeCykehq0pCrMF4r87/jdS8L1vm7qz1ujwbq2RzfR0CU5+DTvI5mGDvDfA0Qo6N3ncSba4UxxbDu5H6QNUC8odZafFIsNpuNhGSHmEQD8Y5smpaiynTxEUdJ6zxagZ1XtM0GnMKagqcff5LNecN6vRa63M0GVEQX4IOEvChd0PaePnopJLeY0V8ElqsVa7/BzzyL4znV3ND7jRi5Oo9vwPgK7xXOeW7ffhllI/WspPctpZFQ3sJIfQOtlBSxC0E8HMahlJHyatagCi1F5JK3jwDrdUvTdKJ4eCiMwerIanOGNTW1NlDMqLSsVa5zzMoF0ckaW+oSo3N0icG5QNf1lLanntU4L/P14PCI48NjoYNdbjg7O6OuhCJ4vliwaTq08cwPZnRdi6FAYVht1uhCKHvPmzNsrbPwyMFiASrQ94HC1hgTWcwXPP3UDZZnnXhaPLi2B9cROrCh4ETfQSvLpoO+b1muLvDJfXx695SVNdT2GN8Hzi6W3H55w9ueuUXjPZ0LXD86SobGiI+Rd77nXTx1cI2333ic46M5tx47YLU+4xOf/DjvfNczHM0PWNQLCA4C+BbKwuCzsbHSrF1DG3qcjpxtLmibFTp0HC4Vjx3f4nhhOFw4Xrh7wsnZbYJRvO3pJ7i1OKauKoqqAKuYLWYsjhYY1+G8p48RbUvxZmhNiKK+btdJqWUUYkxzTBESWfGD4IGVjH2haFgcR4t2/m7fcn+vPz8SzvetfOPfyo1ejkEdKwn7wuI4MXqsZOwnEu/cS4pkUVdcL31NdrmON7AsaI/bum9FGlvWrjqvvsf9jX873iy3574sLENORN8V5LJCA6SghhzPmhUGJXUcBnpICRvJyplOOS37yt74uvd6XhljBWL/2HHXjK2RYkHe1gPYsfYh1qlxnk7GPgnB+HfjZ3Z1TlHcyVHOfbjdvCVJLlN4tm1LRFHmPKOIeEN8DidJz1Nlgfhy/2S5Di2T2BqJW7VRQ8oXCuHRZ5caz4F7jZMxxnMhIyc7j9eO/XUjhohJHq1xKNJ+btSQLxVjYlaJl66Zx4lPieHZsJLzhM7Ozjg9PeXi4kLuS2sZAylUY3+eZGSjTIxi/d5sNkM+RlZghn6qSohFavMMa+MQPy7HpPGeFKa8Vuwr7ds1JA6KgHgpJVRUFGMvic2jsTvu6/x6TOIgtV2UJMkmmtmY8hbSaUToU1eEfyqEaSYzYwWhina9w0Wpeu5TkrhSKhW50ylMVM6fayztG5euGiP7Y3IYm/Jq+7tcC0SNhPMIQQWC70GJ17Pre1brDTYGCqUIVlNoEWrRGqt2c9PyNcfPZPzvfvtebc7sr8FXGTHGRpdHGcroVIhPieGMPJbFOhbTnBvyspwa1l1RgMWoJmk2kl9kktJapLkU0pwIIUqdjBBQpoBoiVEPYzkgc1wqTounMTghdDHaUNkaqwzRBVzXE0NiZkz1B3ofKax4/trgJTfDaKrS0sQe10vuUGEtRPmN5AFa8boaDa6g3Xi6rmezWXN444BqVhCVI5oIGJSymCgF1aIP9F1HlUNGGdUSy+Gn5DHj6XpH5wI+SkhfoQ3oSLOJGCVe+1IrClNilORAFKZMxr9AWRiCYhBcQ3B4b+h9T6VqfBBDjClKTFEBhrIKeN/ROU3EUJYV3ndS0yFIhXCtIuhUeyomAptejHXESHSBqqxxoRfmJxSFrSiKksX8gM3yXHLLiJLXi9w7IeDaDmJP2weiCjjX0naW2WJOcC2u90Tt0SmE0znPeuPo8PgQKZSldw7Xg/MlN248xmPHxzx+4wYHhxUu3OLO3chnPvtpytmCzWHg2hzmlaVWmSXQ4r3De3BR0bgeR0BZxbrdELzDRM9yveLm0XXKsuR6UbJsLvDrhtZ1+G7F0vc0yhA0zBcLNNeY1YUUB+w7QozYStF5IQoqo6cotnVkFD0hCGuWcI9rEjXQA83X16RkjBeusdUFtoL5viVlrESMz+V9otaLuxax/cV033I/FhRzO/J340rTeaPJ1oodz8vIejkWOozRKRzosns6xkSfplTK5dij6mXX+5EtR9kiuS8EDRSJSix/47aMaVTzvzksY1zh11qLKUzaZHf7KPeF/F4NIWL5nrZV03N/56TIKBs4ariHsZIz3p+ygJG9OlINuL+kxI2tcfvW4fw8RInYbrjjmPnNZsPh4eFO2Mf4uSmTYqmNuXTO8fPLz2asfOSN99L4G+41h1x4XL8iJ8DnGM0QZbL1nQeV3OVlqj6utvUMotzYkFA67hsRbkRhEuFJ4aPj+rUjbt64IewgvUKrTPr56CKHE4WQ2Tru7XIdC0ewq+iJYK3o+p6y7zGFow6yeUqyv0VpmdM5N6FpGmKMg7CXx22MkdVqRfCBWaIkHq9l43bIXy7CJvDe8+lPf5pPf/rTvPDCCyPlV+08rZ0xq7ahPHlMX7t2jYuLC7z33Lx5E2AIg9Ra47qCLlHvzmY1MYqlUPKERKjKrFlhLzwqewbyZ+OiciEEyrIAJUKFVCn3W6/uPYZcrq4t1wClY6ovEFgulxhTYLRBUUAyUUgeXn7molw451PMuBv6qe97oaM1Frzn/PyCrtsygWklzF9KSS0llCj2bdsOYySEMNQhGRssxkaL/fAprY2sx/melEoKVxzaTJqvnXeo0uKBi82aOyd30dFTas1BVTArU3ieNfi43Q/216ExYcDrxTjkavzMx9hP/n9U0boehSS29rFDadm3vPfogbAxYkohSlAGdJGY1UZFffMYW61WqKiYzWpu3bpG13u8E49+UdWsmg2995TzY1Z3SogVs2pB264JWhOUpm97lJIaFO2moy5rDmfXOJzf5PSlF9hcbHCbjsIY6vkhGEMwinV/xmGtqGepiKY3KGcwvqOLDb0PEBSmU1zcvWC9hGKuCa7BaMNsdkDoLG2zomsbXNNybfYkB0dzztrbuCIIq1g0HOkC1fWE3nGxXFIfXaNQIMRSZpAHRAKSHK2ua9jEwAZoohJ2Nx1RynJ8aHF9xLmIipHKVsxKTaRHKU05MxgNlsCyCzjXC8UuHT4q+mjZ+A7nIzGILHTROEprWVw7wsSe4AOdi1JTJNGubrpW2ms1yoK1JURN9JZ5eR3nWvquod30LG4eSkWwEFmuN1y7cURRFKxWS5r1EqsNdVVj53PKQlFYmBWRGVYotTcXFLMaVQSU8RxfOyT6GTpKeFWnO+r5Eco8xul5g7eGiMOd3aV3ClfPKMoZh4vHmM9LijLi44bFYc26m3N20fHiL32Ksqw5PDzi/e95B08/cYMbxwf0DjZNoHWexnnWbQCtqWcld88vqBPZxd2LJUo9z83r13n6iSf4bY+/k9VmzabdgFbcfvEV7pyec+fkjHc++16U1ZT1TMZ96CSMkIKz5RptFAeHNdcOjykKi1IGFx0+tITo6Z0hRktUmvCAxorXXIwPdhWOnIQ4FqTHAtxVeQT7f7BrZR5fZ2xxHsdS7i/I4/OMcyViFEEvHz8Wvvddxt6n5J89RWmsOEgozFbAzu0et2l8z1cpTxlDAueo3eN7ya/z5piR6S0BsRCk8+9S2EZyQldQAWulkA0KZrMFwQtftUnhPeKhMAh1pSdGL9b6xEUufSjW0pyIn6+bY9Nhyzc/HgM5XCMz5eTPd0PGYbAROgABAABJREFUALbPLseMZ0EmP/exgmgSE0LvYkrU3Ian7Vusx5Y8rfVOWN9+/YAYY0pgG48DTfCjsQyJZSH5hGKUxC7nuTk/kn5ISZoxWcmBoWbHfqE08XxEjBg+KTR85Ve8j69637uYzxbgalq3oXftpXH0KEEZLdY0cg2R8bzYjoPx+rAvnEtSpjAWrVYrqnrBDGGJ0YWEpQQise9plJawwHq39sG+sD+bzYjeE5xLCoxY1J3b0sPm8eGdhGhk0gnvPS+88ALr9XpQYrq+T884W9p3Pan7HoE8DlarFW3bDt6HqqpYLBaUZUnfWjZaGFm0FqGoqiux0GqFtYbZLDHipN8XqT+UUoMAnhU0qxOjm7H0rk9CNVhtcTERXUTYqy4nHl/FQPud+0DGr6YwljAQaiQhPbHn5SV3MMKUFYUt0CiaCOv1iqbZ4GP2QlsKW9B3neRAWJsMPflP0zoxbCgY6oaMFTgFGGV2vFn7a/vYsLNpG6mhoAuKtL5E/KhujYSeoqF3jqCgrGpiYWk7T9N3bNoNh/WMKimFougaisJSWEmiNMmabk1BNAweqTEuKx5qNE9GM2dv782f7RteHnUFAxI7W5C9qCiq0VwS7/zgaUzWaWNMYilzeLbyw9h4Rsz7UIqD95J7kwlirLXM5wW3fZDK3UDf9TgViBqJW/cMyqnrHbdv3+Wl7pTFkWa9bui6Hm1LOhRt71itGh5/fIHrW9bLjqKsAIuO27C8XOekaRp0iBRoqoP54C1crpYsTzrwirouuXXrJs51nJxs8EUv3pi+I2wa6vkRxnt613F6csKT73gn9awmKIY1QcbWlnBAa83J3RNOTk5p+47CewpbUJQWpTpI5BFFoTC6E6Wg7ZgtamBbY6Qsi4FgpixLDg4POTg6ImhDs76gax1FlNDjuixhUXNtUaIrQ9v0fPSjH+Xmzceo5zM8BfMDK4U6Ny1PPPEkq1VL8JGDgwOWp2dUleXxt7+dZrOmrmrqWU3vPXdu3yESqcqKRVUJDfJmia5Keu9RhaKaLah0iVKamet4/uXb1AfHLJTl5ZdfxiioC8uNw2NeeuklyWXQFbfvLrn59C2OjhfoouDg8JDWeT73uc/z3nfdYL1uues7btw84PxiRdv0PPOOd/HKy2tefuUOv/HxT/FLv/gLvOedb+Odb3+Sdz7zNu7cvYstSp56+9t56qmnOHpM80Tr+Tf/338vYaE6spjPadqGu3fvEPqOZ599pxicSktU8PVf/9uJPvKJT3+Wi3XLplnyym3Farnknc88zfHxEa+ctpyfX9D2La/cCdy6+VWUpqawBQapY4Lq2DQN3gvbnn9Ah+jrrpOx794dC8t5oRvnI4w31PFnD7Lg7YfA5L9x/PRVwvy+0D8WJK+6F9iGS43bmAXarcCz+5utx+ByvYaxMnbVRjC+zvj9Vd6f8ea4vbfLXpLcJoW4WNFSREUhlnKiML5oFEZnK2NiZ0KKGyoVUDrLgApjVQ4xHPptXwHMlr9xO8b9u2+13n8/HhP5GV0VU72T/Oz9jtKzPzbvFz61/4zG7RLhauyhynHvo98MCkdqU5DQrRzrrxOzWQq+GvnH1E5fDe1TCq2E/8ZqxcHBgsPDA2xREqMV1qlHO9JBLH/ZAxQkrp0YU2GykZLBrmA+Hhtaa3SIqGTNzkppVtKM0Rhr6bwIDMrrIZQmW/T3hTehdBYPUsSTmxWHcAx5ttnbp7UIiLnWxvn5+aAQbxWYrQ61Hx6TMR57m81mEIQvLi6w1g5e2bqWsAtrLEdHRyh1Qdc5jpUmBoexhqIQBjSjc4HMQIy9sObYLatSSMx9GlEiYsq5itvJnehZt+GBwSh0jMQ89yLCvpW9cEERo0nUotnLkNeVPAMC2buTQ2VdL7kgvu9p1huaphW2KddjJJ6F6Byu7QjOoaJUdR+YCpUaqIrHYWzDuAkhcbjuko9kIe7SeqAUhS1om56WHqstVucCh1HGhxL6xhBF6VAoyqpmfnyDTbOh7xv6pqHxcnwfIrbwFMFSxoiPYH2U56IMSsroEo14kOU/lcJ54mg/Iq3ROTE5PYikEMu6ooZjx/8O2uHIcPKoQsg0hjq/8qzTGhKjHww/hhTJgGyDMcbtc0xGK2utGCfQlGUhZCHJAKSNFhpbBT4YtBavoutdKvoI1hqwBu8CKPEGhOAptKEPgbZx1PMSpQzWaqItOLh+nevzBeXBgusLw2b9IqvVy/RGqkSrEDBGjCYRTdeneh82DOu/zLmYjIESBlaYksPDBavNkj44irKUfCHv6VsPqcRSDMlzG7a5XOP9SUKA5bUxZifSAiWJ97NZJca6fgMpNr9thXkpAl3fYwsxKsgat42wIIjYGUKgKGtMepBSZTt5klMkhU7GgaIoJActKe1lYcSY4kUh6vse13upmdF1mETP752nqkvKqsAuLzDO4IOj71oOD2YoYwjGoAloPDoqKS6Yxk6RPNvjsFMVt3LIrK6FstaLwabrOrrO8tT1ayhVETYtIUROTs8Iy0BXRIrK4FxEm4KDg2OaTcHJ6YrWBeZlSeMC58sNpxdL+pDC6npPUZTU1tBpuHH9Ohcnt/G+5/DwkNh1GCJt14qxS0WCCpjScHAwp7CWddsyW264WDWcntxhvW7Y3LwuTGirJTGFFkcC5xcXtG2HUZaghNWr7RzL5QZrF0QtIXAPgteckzG28o8/zw8lf5cX+Yx7xU7n4/Nvrlr8xucdkjRH1v2rhPJsKd+P/R+7xjO2ikFesC8rELKhZc/I1eFfY+F/fE851Gnf2zDGfpvG4V773+8qMrvhZWPBTPI8EvWeE2uFimKBz/S/xpSQObKjiHfGxMFKK9fV6JQsJ8fpnfsbC3BCARgv9fm4j8ZejvE4kH0iDOfbT64fKxdD/zuHMoXwX+9dc4yxcnqVYntJoYtRAm7ZHaM7Cs/o9875FFoSWa/XHB8dUpixZ2pf8bnsMQOwSvhCrJa43KqqsEWFDwYbDEV4dBM2AYLR+Cj1J4JSEDwqBPBuLJEDJtFBbufMWMnUOqBN3nQqjBXPly1lYyzLEtf2QzhmZjGLMQ5FFseCv9ZCgaiiVHTPT2yom6OykiF5TLmWgvdStHGsZHjvR0XABvPLpXEPu4aJ5XIpHpUorDZlWQ7F5IyxGAxWWwpb0zYdbdtTVTXed0nBkA12Xs+GsCnn2sQnny31I2VOKVQQhr/h+eT2SFkuOVRrtJKaPFFpglMQHMrkMEOIwlpADIbgxfKrBoE2pr6Tf31M+Uox4rsO76ROxurigrZppJZA12EQ4c2FFte0+K4n+kBpi0HJUBqMtkLNmOZkyAaAGBMrlrwe11QYe0THhgmlFLN6xvnpK7Rth1Ka68fHOcARTy+EDwR86AheEu2resHRrSehWRGbNf35Ge1yQ985lHOUwVOGQB8hBIXVIcXsK3RSaoWgYKvAiieIrfKXxtFAyq22o1TGUd5XtkLiUOBTSShYxhcSmvVmI4RArn8hz07GtTBPe+mtXDvLGNFGPKA0Pq0DY09fURRYLQnYxiQ5BIWx4kUzZUHvW7r2jOA9XU4I11BVNaaynNw9GwpChuAxpkTrpPR4KGyNLTUdihtPPMWT73gHz77vy7GbFZ997qN85rMt525D41twEWUKDg4Wsq+t17IuaAc2hZYPRgFFVRVoCkpTsjio6VxLdIG6LnBNQxt7ut5LLZmUg7Var3eNdcljOcgP2ZNhbKrXUw59VpYFs9kcrQ2bVQdRwl/X6zVdL4qBeE1LbDbOinAhSlkQBaFtW2YHR0kxcGy6HltUKULB4Hon1by15ubNm8zmc6q6pl7UVLXIgmVRDobjrutYr1fC/KlkH3Z9jzEHA8vefD6n61vWyxWVNZRW1unN6gKlIkZFVJBcEqWgLMuhwGqMkfl8ju87VDIs3rhxk64PrDc987WTsdHA4+98htXK0flIUZS88spLLEPHuYkcHC6kTko5A6U5PCyZLZaYasaTzzzJorYELBfrlsOjY6qqpu0dSpcyLjU89dRTbJZndH3DteNjcD1929Jt1pyfn2NKCaUvaouxUM8KHnv8JkfX4ZPPfZZPf+azdK2XWiRKc3Z2ganmmNIS6blz9wQVVRpnAVuU+ADny4ajoxJtIZoHW0NUfNR9pxMmTJgwYcKECRMmTHhL4dE1Z0yYMGHChAkTJkyYMOEtiUnJmDBhwoQJEyZMmDBhwkPFpGRMmDBhwoQJEyZMmDDhoWJSMiZMmDBhwoQJEyZMmPBQMSkZEyZMmDBhwoQJEyZMeKiYlIwJEyZMmDBhwoQJEyY8VExKxoQJEyZMmDBhwoQJEx4qJiVjwoQJEyZMmDBhwoQJDxWTkjFhwoQJEyZMmDBhwoSHiknJmDBhwoQJEyZMmDBhwkPFpGRMmDBhwoQJEyZMmDDhoWJSMiZMmDBhwoQJEyZMmPBQMSkZEyZMmDBhwoQJEyZMeKiYlIwJEyZMmDBhwoQJEyY8VExKxoQJEyZMmDBhwoQJEx4qJiVjwoQJEyZMmDBhwoQJDxWTkjFhwoQJEyZMmDBhwoSHiknJmDBhwoQJEyZMmDBhwkPFpGRMmDBhwoQJEyZMmDDhoWJSMiZMmDBhwoQJEyZMmPBQMSkZEyZMmDBhwoQJEyZMeKiYlIwJEyZMmDBhwoQJEyY8VExKxoQJEyZMmDBhwoQJEx4qJiXjEcZHPvIRlFJvdjMmTJgwYcKECRMmTNjBpGRMmDBhwoTXjOeff56PfOQj/Mf/+B/f7KZMmDDhEcW0jnxpY1IyJkyYMGHCa8bzzz/PD/3QD03CwYQJE143pnXkSxuTkjFhwoQJEyZMmDBhwoSHiknJeETwcz/3c3z91389dV3znve8h7/xN/7GpWOcc/x3/91/x3ve8x6qquJd73oXf+kv/SXatt05LoTARz7yEZ5++mnm8znf+q3fysc+9jHe9a538cf+2B8bjuv7nh/6oR/ive99L3Vdc/PmTX737/7d/OzP/uwbfbsTJkx4A/H5z3+eP/En/gRPP/00VVXx7LPP8qf+1J+i6zru3r3LX/gLf4EPfOADHBwccHR0xB/4A3+AX/7lXx5+///8P/8PX//1Xw/A93zP96CUQinF3/k7fweAj3/843zHd3wHTz75JHVd88wzz/Bd3/VdnJ2dvRm3O2HChDcA0zoy4dVg3+wGTHh1fPSjH+Xbvu3beOyxx/jIRz6Cc46/+lf/Kk888cTOcd/7vd/L3/27f5c/8kf+CD/4gz/Iv//3/56//tf/Or/+67/OP/7H/3g47i/+xb/Ij/7oj/Lt3/7tfOhDH+KXf/mX+dCHPkTTNDvn+8hHPsJf/+t/ne/93u/lG77hGzg/P+cXf/EX+aVf+iV+3+/7fV+Ue58wYcLDxfPPP883fMM3cHp6yvd93/fxFV/xFXz+85/np37qp1iv13zyk5/kp3/6p/nO7/xOnn32WV566SX+xt/4G3zwgx/kYx/7GE8//TTvf//7+eEf/mH+2//2v+X7vu/7+KZv+iYAvvEbv5Gu6/jQhz5E27Z8//d/P08++SSf//zn+Wf/7J9xenrK8fHxm9wDEyZM+EIxrSMTHghxwlseH/7wh2Nd1/G5554bPvvYxz4WjTExP8L/+B//YwTi937v9+789i/8hb8Qgfiv/tW/ijHG+OKLL0Zrbfzwhz+8c9xHPvKRCMTv/u7vHj772q/92viH/tAfeoPuasKECW8G/ugf/aNRax1/4Rd+4dJ3IYTYNE303u98/qlPfSpWVRV/+Id/ePjsF37hFyIQ//bf/ts7x/6H//AfIhB/8id/8g1p/4QJE958TOvIhAfBFC71Fof3np/5mZ/hwx/+MO94xzuGz9///vfzoQ99aHj/f/6f/ycAP/ADP7Dz+x/8wR8E4P/4P/4PAP7lv/yXOOf403/6T+8c9/3f//2Xrn3t2jV+7dd+jY9//OMP52YmTJjwpiKEwE//9E/z7d/+7fzO3/k7L32vlKKqKrSWrcF7z507dzg4OOB973sfv/RLv/Sq18gWxp/5mZ9hvV4/3BuYMGHCm45pHZnwoJiUjLc4XnnlFTabDe9973svffe+971veP3cc8+htebLvuzLdo558sknuXbtGs8999xwHHDpuBs3bnD9+vWdz374h3+Y09NTvvzLv5wPfOAD/Nf/9X/Nr/zKrzyU+5owYcIXH6+88grn5+d89Vd/9T2PCSHwP/6P/yPvfe97qaqKW7du8dhjj/Erv/IrDxQL/eyzz/IDP/AD/MRP/AS3bt3iQx/6EP/r//q/TnHUEyZ8iWBaRyY8KCYl40sMD7M43zd/8zfziU98gv/9f//f+eqv/mp+4id+gt/xO34HP/ETP/HQrjFhwoS3Fv7aX/tr/MAP/ADf/M3fzN//+3+fn/mZn+Fnf/Zn+aqv+ipCCA90jh/7sR/jV37lV/hLf+kvsdls+HN/7s/xVV/1VXzuc597g1s/YcKEtwKmdWQCTErGWx6PPfYYs9nsypCl3/iN3xhev/Od7ySEcOm4l156idPTU975zncOxwH85m/+5s5xd+7c4eTk5NI1bty4wfd8z/fwD//hP+Szn/0sX/M1X8NHPvKRL/S2JkyY8Cbgscce4+joiF/91V+95zE/9VM/xbd+67fyt/7W3+K7vuu7+LZv+zZ+7+/9vZyenu4c92oGjQ984AP85b/8l/k3/+bf8G//7b/l85//PD/+4z/+MG5jwoQJbyKmdWTCg2JSMt7iMMbwoQ99iJ/+6Z/mM5/5zPD5r//6r/MzP/Mzw/s/+Af/IAD/0//0P+38/n/4H/4HAP7QH/pDAPyX/+V/ibWW/+1/+992jvtf/pf/5dK179y5s/P+4OCAL/uyL7tEiTthwoRHA1prPvzhD/NP/+k/5Rd/8RcvfR9jxBhDjHHn85/8yZ/k85///M5ni8UC4JLQcH5+jnNu57MPfOADaK2ntWPChC8BTOvIhAfFRGH7COCHfuiH+Of//J/zTd/0TfzpP/2ncc7xP//P/zNf9VVfNeRIfO3Xfi3f/d3fzd/8m3+T09NTPvjBD/LzP//z/N2/+3f58Ic/zLd+67cC8MQTT/Dn//yf58d+7Mf4w3/4D/P7f//v55d/+Zf5v/6v/4tbt27tWBW+8iu/km/5lm/h677u67hx4wa/+Iu/yE/91E/xZ//sn31T+mHChAlfOP7aX/tr/It/8S/44Ac/yPd93/fx/ve/nxdeeIGf/Mmf5Od+7uf4r/6r/4of/uEf5nu+53v4xm/8Rj760Y/yD/7BP+Dd7373znne8573cO3aNX78x3+cw8NDFosF/8V/8V/wy7/8y/zZP/tn+c7v/E6+/Mu/HOccf+/v/T2MMXzHd3zHm3TXEyZMeJiY1pEJD4Q3l9xqwoPiX//rfx2/7uu+LpZlGd/97nfHH//xH49/9a/+1Th+hH3fxx/6oR+Kzz77bCyKIr797W+Pf/Ev/sXYNM3OuZxz8a/8lb8Sn3zyyTibzeLv+T2/J/76r/96vHnzZvyTf/JPDsf9yI/8SPyGb/iGeO3atTibzeJXfMVXxP/+v//vY9d1X7T7njBhwsPHc889F//oH/2j8bHHHotVVcV3v/vd8c/8mT8T27aNTdPEH/zBH4xPPfVUnM1m8Xf9rt8V/92/+3fxgx/8YPzgBz+4c55/8k/+SfzKr/zKaK0daCg/+clPxj/+x/94fM973hPruo43btyI3/qt3xr/7//7/35zbnbChAlvCKZ1ZMKrQcW458+a8FsSp6enXL9+nR/5kR/hv/lv/ps3uzkTJkyYMGHChAkTHmFMORm/BbHZbC59lnM5vuVbvuWL25gJEyZMmDBhwoQJX3KYcjJ+C+If/aN/xN/5O3+HP/gH/yAHBwf83M/9HP/wH/5Dvu3bvo3f9bt+15vdvAkTJkyYMGHChAmPOCYl47cgvuZrvgZrLT/6oz/K+fn5kAz+Iz/yI2920yZMmDBhwoQJEyZ8CWDKyZgwYcKECRMmTJgwYcJDxZSTMWHChAkTJkyYMGHChIeKScmYMGHChAkTJkyYMGHCQ8WkZEyYMGHChAkTJkyYMOGh4oETv3/pX/ztS5+Nq0M/DLxaekgkEgFUehU9PgRCiDgPLSUtJY2q4eAJYnVMKBb0ZkaIBpRGaQUhytminBWV34f05wnRs9ls+MQnPsHLL7/M8dF1vuzL3svh4THWFgQPSmnpAxVHbZd/Vfq/dNHud3ILavfzfE9E1O6Re30ACgVKpaO354toYkxXjg4THMG1uM2KFz73Ke688jInd26zvDjn4PCYo+PrPPPOd3LzsacoqhnKWO6+8gL//l/+Cz72Sz/P6Z2X0WVFfXDEjSef5ru++7s5unELXdZ4ZYlaE5HrKoZuHFq8HR6vb5zE4Q5fZVx8EdKKvpipSzHG+17v//ON7/uiteVh40/8me9HKTWsHUVRAOC9x1oLIRK9zAU1zB8IIcgLpTBGY4zBGIPWmhACMcq86ZxDaY028rnWWzuKUooQIy4E+q7DoDBoyqIgaDBFweLwgJO7dyBGjNZ0fU+MAVBYY6hnNVoXoCxlUaKNRmuN0QZjLdYabFHglSI/wvw8lVLMZjOstcQQ6dqOg+NDIuBjIPqAVTKXvPegFdZayrLk7OwMpdRw39VsjlIK59zOWBkfU5Yly+USpRRVVdH3/c6zcCGgtKIqS/q+x2hDaS3RS78prUErQgjDeYuikO+Ukjam+wshUBQFMUa893JMBK2Q9TIEApGoFOjURmsxmOEelFLM53NijPR9P5x/vHpoLc8+P1utNd7EYQzsfxdDQEeFTn2T266U9G1+7ZyjLEuMMcO1c78qXVBVFVVZEro186qgLCxVVbFqHD4qgrLE6FEENJHKQKHBKEVhoNAyPpXaHQ9a63QdDXHbtjzwYwh472n7nrU39EHRu8inPvM8n3vuOV584Xme+8QnuHv7BZp2RR9bnv2KL+f45k0Ojo85vnadw8MjZvWceT1HKzP06bd93Ve/zln85uI3Pvbvdsb8+LW1dmcMZuS+vgyFQg/r0b5Mo5TaeV75ejHGYfyMP8vzJI/HGOPOdWWMFsNnIcThOnKuvPZ78maa2x5CwDnHxcUFbduilKKua0IIzGYzZrMZ3nuMMTtrbH49jGelhvU0f3cvWW47Phnm/Pj4fM/jc+b7zu3Y77v9/r2qD6VvRvN41IYHxVV76L0+G9qRvtZRXscQiEqhjczJznU453HB47yjrCuKoqIsa+p6gVYWhUFmWP739csO++3t+4auX9N2DV3XEoKnKAoW85qiLCjKAq00MRTEYIgx9/GrXomt8BaBMHyutMYHT4hRvBJZPolQ1zde9R6+ZNml4o6YPppwKCLbCbY9fvxeBlge4ErJBA8hponAsCAAqBhg50zpHGnMxvF5txfb+00AFbbH3OOu5P9q53REiCoiUk1uUx4okajCVlxXavunQRmd3sv5jLWYwmKsJSqNj+BjxEcIKIL0pvwm/xtHbR41Le5+NGHCIARkGCNCT96UgTR1RpufSuNp+H77ndIaDYQYCD7IgXkMXiEwKNgKmihMElojAZU3dKVBgTYGG5OCEyNaG7QyaG1AGbm2Nmijk9AqgrMI6EbmW9rAstBqraUoCoL3uF4EEpRCxYCPDq00Oq9VRlMUBWVZDm0eBOukTBkjQvpYiDLGDNfJ922M2QrteROXrhwEd61krYuEQVHxbDd9rTU23R+wcz5rt1tJfqZKkfpIpw1KoawZ1loVoSi3ikkWSvK1BiEjCTC5D/L5c7ujlueTz2vT98SIVhqjFDr9biwIZuElK0hZIBoLRwBKW6wxotxaQ1EYykJ+rwgopbEGYsgiKxgNRiv5MwqNH8bX+F5Go1PG1R6GNVQprNaikKqITc+isHl8yHg02OHZGbt9nRVhrVMfP8J8L/tKdX6fn+X4fT5m/3fp17JUXLFe5PMOxo3Rte9nBNpvQ37eecyK8rMVpreX3D/nnqkxrSFd17FcLimKAmvtMM/HCs/OHY7WyrEAP27v+Pv9vh0banbW6L3zj40943PvX+NefXZVu/N391JSXo+Re/+84/al1gz/KoXE+qgoRl0VaJoNYbTWFEVFVdXU1YydzWd7d6+5jTu/3lNe67qmrCxxGQgh0PeRruvQWgxoShsKq3d+Nx5j97nSFcck43vaA3RqD0nBeNA15EtWySBstS159FvrkGBX8M9TWgab2m68WqO1TPAQ5G/vQunfHb/CFQ1Kgxu1VRIGbL0fisD9satl7l7CYyKo5KnR0UP0aIJcVSWPiVLDvWpjUDomBSdQlQVlVWGrErTBBeh8oPeeEBUhahR6uA/RbdXOne+pQhMmDBhbpcZWqvwaIGpRRrIQa4xBmZAU/YASCY6oFS7NRx8Cvet3BNV8jbzBW2sJMdJ7DzFyMJtTFxUnd+9iqxJrRSgvynLreUivcxurqkJri9J2aFu28FdVJYJ5jChjh823KAo2mw3ee9kkypK+62k2zXBeaywahUEEwCx0l2XJbDYbFAZga6mFHWE1tzNbPPu+31E+9jdlYwxKy+Y/n89lvgZZXeq6xljDarOhqipAhIysTOTXuZ/KshyKfFprB8FKa40PAVPY7fOGYeMKIVCW5dD+sZfBWjtsZOPvxooGCiwanzzBmq0yIX2oKYwoCVrrQdkbe0RCCBweHtJ13WAB3ypNsiobrTBEtDXMqxJjNKvNGgUUSqNVBKOG1d0osFphjaYwydObVsaxpXtr5b5itUxKtFUaYwtshM4BKjCbldRVSVVVlFUlWk1S3Iw12MJSFtKHu0qneuTX5f1xnAXcvF6M5zxcFna3SL7yGNDsej0yrlIIx2vV/do1/nzXQu/lmqN5OVaWrkLTNKxWK5qmEU9mVVHXNQcHBzvtKopixwt3PyF93OZ9ZWp87Hhdyf26f57s7Ry3ZWxYuUoxGyti+16XvC/st/9h4159HnDoJB+1fU/XdnR9T4gRtKaqZty69RhKy5yK4ar2Rb5QE+uwJ8aI9w6tQWvDrF4wqxeE4Fmtl2w2a7rO0TQdBwcHlIXCmLxWy3MwV3ry9tu7+xeJBOekHVFexyBrnH7Ae3sklYw4tthnTS0GWTIUaKXofIAQhuNiDGn53yoVGWoIv8rfbCd9XdfMZjNOT85xzuUWpGNAKQ24wcORQytUNpEoTQzIA0KO10M4h7jjQnAoenTSg7TSQHK3ykHb+x3dt04W3pCOUz5glBbrrIYQe3zsAUepgigdvkd5R6EDVgVi36BcizEKq6GoLPPSSthEjFhrUBFW6zUky6/WmgB4LyEQg9dnZIWVZj661rI3G/fbcB5ljIXevHFloTEmC1HyVKOScKatITrQWqExMu9M8jBm973RqJBCfPYFUaCqKtmsAGXMYNnOw3VQYJRCGRFuNQrnxR0tC3akrGqUMvj0eCLi6ZMZmz2IXLLsZyVhs9kkoQXqpJQorYlKBInS2MG70jbbkIixYjbcb7Ju5k08C1rjkKDcD1mQzwghoEdWrhCCzG2jCS59H/TOb51zgwIx7rMs9PR9PwgE1lrUqB3j52+tIYZIiNtnP3hovN85f/ZkqL2/cbiRjw5j9PA8iLIH2NIkQX77m7EXZOwdGltsY4w7ng3nwtCGWVkSQ8QFh45iStEqYnUQg07ymoTgKYwd2rVrymJHSM2GrbxcKrVrtMmePBMCVitqq6jLgqKwGCvPpyorXN/Q9p2E7RmLTV6OoigpiiLdk96GOzyiGAu0Y0E9j6OxF+JeFnTx5kD2IO2HNuX+GYcejfssj5erLPfja+4LyLvKTw4v2v0uyzcqrRMxRk5OTgaP5bVr15jP5zvnuup6+56c8dqw/5vxPeyPzbGCkMOl9n+/f46xopCfw37/jPtvvL7l/s3v76Ug3c+bNG7fGPvnytfr+14MSMaw2WyoSwNEWteyXK3pnSNEuHb9BrPZgqIoQWlySNQg770Bac7b+5QQXO8jRheAeNcPD46Z1Qu6rmWzWXN6ck49c8xqMeDkvh6vm0qpYTwNZocc704kLROy7hiTVi4FRvolhiCy6QPgkVIy1FbEhuzGv2qg5c4Etnb1nf+92oXEA6JyfLNNG2gYTaiYvCPjM2ZFJaQHlE4U8gImG5IiomJAx0gkoAkQekxy0SkUwfcEL9ZI33d45/DeEbwTb0qQ38YQCN7jvSM6L1YvpdFGEZwbvC9nJyesz07o10twPfQdsWsI7VqUDGvE4qYipVEURhGDR8WQ/BUxeVkCKsYhLIAkGGqQexv20cjuTvnG4SoX8IS3NvYtV4NgkDcIPfgfs+aNJguEaaPTCgISKggStpRn3d7mvvOaXSHTWiuKR97QlE4GhGQZNgW2kEXdmELWl/1YasVgeSZGCmtFARlZV8cbqEJhrJWf6VEfMBZ2ZIPuum7nHHKsHjyz+5t+xtgbe5Wwn9s8tqbvKyhZ2B76aSQc7Av+2UKfr506cbsmpOsbpYk6ooIawqmytX0sxGQFY9x3VykZMWwF+ZzZppQYRPxI0BwruGrnvncFn7H1Wl4ngxLyXFXwyfiTw7HAqIBSUdoL+DQ8xyLHVhC5AqP+2TkqdV6Msr5aIBhFDE4MSzCERal0Pzo92529auhH88grGXD1/N73LtwvPAh27cz7wu699pSxsLx//quE4P3fqWEyXO7/OAq7Voq0dwf6vqfruh3PZjZiPKjgfZXica+2P8h93U/wv0rpuJc34kEViFcbr1c9t6t+M/5sXzEbtzPEgPeOtutw3qGN5ODN5guqaobWFh8DKuqRb3BrxB5dcXy3972HV8P23vJ6L+c3RmO0RcL6I23bEnygbRsgpjw6M4w9WRLidrlRuY1pXA7vJUVAK7X9TUx9+BrWkAdWMq4aIK/l2Adp0KtdI+dZDH2j1M5iPM69eD3Y/el209laRq7o2AiDHTMrskkwl+cVRVgPgVIXyUsBsQ+EGNBKdOHQb1J4U8B5R7fZ0DYN6/WS1fKC9WpFs16xWS/pmoa+7+jblq5rca7D9T2u69FJudFKYvS01tiyoLClWDpjwBYVvVF0KtIdzOFwjtGBQgcIngpHpQHfERToWHJQl1tPSLBYXaC0BAcMAhkAfgi52PMXve7n8iC4asF4I87/anhY1/1CxvFbGftWvbE1OcaIT4qGMWarcGShMwmiXR9AKxHOjR4EeVsUonyHsKME5JCd8faeBXWtJc5VFQad8yPSd8ZYlA7YstoK2+kYY7aWsOyFMTadA6hSQmbXdTtWs+wJyIpOhMEtX5YlKuQEYYVNidSr1WoIyxrCleTuLikFuS9y/w73n0IXhvGpFDF5EnSyVGVvpB3F8pvUv0qpwSo2vu+xYH4pl0FJrlc2xgzPI6/TBhh5MYqiGPorn1MpNSgaGbuJoGDGIXhqqwANXovkPR6HZeW25Pvct/aO57HR4jXWSjy7sffihSGgrZHQKDxGK5SS52e1GGwisjE/2PJ377VDESQiKlkzm/Wavmsln6SsYFCeGO7Re0/TNNT1bFCcjHn0lYwHESTvpXSMv89Gy3F40TgMcP9343l2P+yHDl0SstVW8Ruf13uJlJDnZGnWDZvNhtVqBYg3drFYMJvNaBoJtRx7P/aNDVlJHl8jv79qLozbmj8b98O+l2e/f8bvx8aC8THjZ3Ivz8/+ua5q4/j9PsYKwz6GvWIU9um9p6qqIcy0LEuaZknbtjRNi7YlR0fXODy6TlnW+BCTJzsndt/Lg/FwFIyd+4z5XNm6ncdSpK5nzGZzNps1m82KzWZN33fM5/OUtyWGshw+tR3ne0oGIuuG4IkhpnzfZNDP+2t6/SB4pDwZMDgZBq1MaZ0s637YnB+WgDYWgrz3O658lR602PZT21T6C+mBEFA4LAGlAjZ6bFI8vO85OzlldXHBxekJv/lrv8LZ3Tuszs85uXsX53pRVmLA960sIlE8HiFITHn2MORBEnxARZWYq8CFmFK/FWhhnooRXAyUZUVRlEM4WFVV1LMZi/mc1XJFu1px69ohTe8xJmJw4vXwHVZLvoZRmqgikvrRJu9NlORYJS0Lj3wE8IQ3Clnwy5ufG22ysN0QJA9iG6M7ZgUaH2+MwYUebQzayrl3NkljhOAAxbXDQ9pNw6Zp0dZSVCXKGKJWzBcHSbjVbDabgXXo5OSEsiwpq5JqNiNb960xbJomrf+yLslCvt0ghuRbY2iaBq0089mMqDXeB9xIOZAoS4VRWwEiKzlyCZUE162AP/w0tWmchzL22IQQ8Ol4awtQ4BLrlCpAWzsI/lliLUbKxVjQEiFHnkX2GGhjBhNx9tBEndob45CDoZSskT55jYxWlIWl0bJGWWuHdqYLS8hSUtQU2egTZBVMx0oSf1IyclJ+UsbKshzCYrMiMyid6GQ5jimPY6swBe8oraa0huhTPL1RzMsaHxU6MUoV5nJcv7TvQUSMbUu27y9DkT0kEdf39H1PWRRYI+FpMYI1FmPkuQcXUEGUnrouKYtysI5/KWBfiM54NYv+9ngR1pTaTW6+6lz7Qve+nLEv3I7btCP4p/Dnq4TrbLBYLpdsNpshT+jxxx+nrmustTRNs6NE3U/mGbd3zNaUQ2W+UIz7f/96+/e936f38hbd63z7hsTXgxy2Ou7vvJ9kEo2TkxOc77HWcnztFteu38TYEqUtzoNSNhkzxm3YH29vlBKvRn+gksLqfQ9e9sKqqikKw+JgxmazYdOs2DQriqJksZgPHuLIONwpKeBEQso/zuyedsi+EE87af8JD3iPb4KSsa/dxdf+OFSyoLOrXMgZ45CWLO6dOHyeBYxLLYrb8zIK81FKrKWSue8TjVeKoySkNihUoi5UQ7iTJFxH78B3uLahbzZcnJ9wcXqXzWrJ8vyM5fkZXdPQbjbc/vznaNYruqZhs14TnAOyIhGE4EDsLqJUKYYcDkXaNCODIhFigKjTd+CVgphob0Og63p6relWlrYssUVBWRScloVQtDlP33fiXneKzdkJv/pLv8D1W49xcP0Gxzcfo6xn2KJMsYwWo3JYgSFiCMoAZqt9p0V91x81ehV3X6jxR6+ypuysba9nfr+W33wR9KYvVU+GHjH8kIRGpZSEfqQE2shWmCRZxXTW4AEwIwE2McCobLHesj5hUjx/sqRrYwgRoo+Uszk+KvqUXBFNDpnaKi5KqYGWNQvHWovQatAQwaDQaEz6s8okuWW7IIe49ZxIzojkYPgYwXuxhmtLcB5lthbWHP5CjEMyutzrNgZ4LPSPlS4R+DMpQ5pPOgtUDCxYIIaA7NWIIIn1YronamGQy2Pex63ZQJ6dSfcYkkc3Jk+PEeN6luOyZ8lolJV1KYQU2hMjRsFBXdCsFD5EjFagjGyDKuVxeGFo0iYpHCHgPakNSdG04gHL3g+lx+FRRljIyAxAMuaU0kSVc3kkBdiqOKyvECl0oNQKi0pGS4XRoGNO9DaDlzpd8HXMjrFVcfdTVMr5QcJuH795RLO+iSbymc+9iNEFVpcYU1DWBYcHC46uX2dWHnLr+IjjowNuHszkWYWAKy5d5pHBeG0MYRv2kT8X5XP7CMYejN1QH4BIDFdb2PevmWm1tyFoEp++/7uxN/2yYLz/jMeeAvFm9H3ParWk7x3GGI6Pj4e1J9/DOJzvXthXMO6VtH3Vve4rR1d5FO51rfuFXl2laFzdT/c+91XRCsMvcrSJkrDMnDOa5cyrlKLseWqahq7rCCFQzxZUVc18fkBRzohREQJ4z5DjtWsQuJ/C8UZhW4Zhy0wXEUpmjVaGWT2HuMG5nrZtUEq8WGVZXLqHrRicme5G5D2D1yTvKA9O7PNFVjLuZZ15MEVjK3rKZib3nZUNEtNYFsojxAAhomNIAq/8fDs25c1lHTTFFWZrg9YEPCE6QvSgIj4GiREHVOjIIVKKQPQ9oe9xXUO/WbO5OGN5fsrzn/k0n3vuU5zcfoU7t1+mXa9QMW1mzm8bFiMqxfwSQ0q+3i5OJm2EJikaMeaE2axgREIQ6yDJ25JdW3k6BO+JztG7Hu09oW1xWosmm87hYqCsZ8QQ2HQtv/Lz/y9H129y7dYtnnnXsyyOjpnPFxxeO6aezTDWYLQwm2BKoi5BVyIAqPTc4oiNSuWEorGikRTE8eL9aqP5ysGj7vXFhDcRWcmAJKTmzT0rHOk4IS+QTdU5h0mbLLCzyWLAk+spqEHJUNaA1hIKpEaJ4CFC8BTVjN5HtEuhEmZ7PISB4GAcYzzw0GuDTtZzFVLdDmXSX76nrESRktP1IPTmPvAxQASrRMF3iQ0KtonZkMKsMmtM6p8cGpotmuO/vMnqzGKU+syatI4kb5BONTmizoqcHp7LrpKxfX7jECZZuNJ8HtbR1GZjk5Aurnwf0zPSRmizU58arcE7rIJFXbA0ij4L8lGS7aNWFGVJ37coIsZKHoT3EhanjZUcD0R5GsgE0no2Dp+JQe4/5jw5o9N9i/KnVMTqiFWkf+UZWhOxOtde2FoRhT7/avrZbW88AJIycy/EmJUM0DryxM1jQu8gRj73uRewpsDaEqsLqrrg4HDOjWvXOahvcOtwzvFBzfXDGb1z+BCI8VGuw3v12r4VOq/+7rJwLUJa8Je9CjFulRfx6uXzhEGwu8pAmj/Jv99ec7fN8rhHMoZSQMC5lrZtWK9XKGWYzWZcu3ZtJ4kaLlv6rxLOxwnX2RuaozGM0TuGua1CtqsIjJWAfY/p/ZSVSyFi9/nd/mev9bWcI+0d2XighRWUyGBcVjB4y62VUCfv/eDVWa/XdF3PbL5gsTimns2pqhlKmSRTBUJmSd9JtrpnN7yB2I71EGK6H4jRI+uxyFt1VRO8jPOu79hsNsQYMEYlUgpZz1S2Rse9XDvAu61XI8ZMRPTgdpTXlZPxBcVzqsuNE/n51c+ZlnbS3iwP2yt0AB3A5kRoAlYLa1MIPeCFQQKxKuZBkftVCuLkOhWeSCBEh3M9WkfKEozyBL8h+jWKCt93gMKoCKsL+rahbxs2qyV3XnmRu7dv89Lzn+eFz36G85M7rC/Oib7DIq5uHQNV8AOTjClKnN8mvm7pxwJWbwsooYQHXictNMfXxZDoxjSgo1Bhpt/7vpcEHp3im5XeCSE02VXsc0ErS2k0vesJmw0RWWgv2g0XL36O543m13/x54SW0hpsWVDP58wPDrh2/Rpve8c7OL7xOIfXHuP41lMsDo6wRUVQBa1zYvFUBq0tWXeSx7JVFnc2ihR6dX+MF3OueP0geHBVd8LrQ13XQwz02PKeaVLHQn3e1Mb0rUNcOdt1KIcMbYvDiYU7I7M7WWuxKKyVRTnH4wMD/WwIAUyksEJJ2zTNJf53pXTKCTFJmVFUsxpjLWiNSsUCGQkCY6FA3PMMbvr87369BpeoA4uioG3bQYnIQkIuBjpWNAZhQDHEGee2V1WFc27YVO0oFyHHKA/nUuKxKY0dZtGWkSoJRZGB4Q5Swap0DqMY1hulGBIGlVIUxgrFrnOYsgCEaa9pelnbjAFT4qPCRVnPDQFTFGitKI3kwJmosdYwq4q876V+yR7bSNs2kstjNIViOB/WkAuvxhCxJlBb0IVmURUURqV8uSCGrD1r+f3CZt5IZEavoigoylIIBmKkns1ou5pNA0VhJRwiPS9jDdYaCm0oEuNWeMB46rckkhEMGMZhjAx7WpKVBq9kxlXWefHqKaFxRxTHTCyRQ6giYW87ykrBnqCr93afkaE7M1+iFJrMBicGy6IQgfjO3RM2m7UYMmzB4489QVXVO+xxsJ+TtJt7Mv58YOxL4Vl936bjhxk9bi259eOxPc7x2nkEVypt234eKyfj+bF/vn0SifH5r1L87olEpqGVwpBqFLkgzzKtyRHQUswGozR97+i6nqZtWa0bDo+OOL5xi8OjY4yeA4YcGSJrXaTckZjvN4feqDVh1wALMs7HyqzYmEpUMsSU5ZyymnF8fMxydUbft5ycrjDGUlc1VVFRlKXkmviATyyC+VwxevJMiMP1L7fjXnjNSsZVrqoH+/3Vn71WfSWHD8UAOtV2CAR0HMrEDcLqVtfLQVSGsGNdiAQ8UXkgVWtVHh09Go/Wnkr1lKElrE9p7r7EKnbo9TnnZ2f4riN0LauTO1ycnrC8OOfk7h2WF+e0mw3Nek2zWeLaDiW8kGI5I8XEqWwt1Dgv4VfaaMqiHBL0nPPgw+D+zzHgkositJIh+BS/nJJhU7hI73pc78RaciWdXxJQxlWLc9EpYyhSReNIxHlP07b0Xqpd9k2Lb7tkWlNszi64KO5y8sJLvPLZFyhnc8rZnMXxDW49/iTXbtzi8afexvHNJ7FVjTYl3gWikuA2FASVJZZsE91r6z3GRLzkrnw96sXlc+wf8SB4EIHjQdzVX8oYKxf73on8erypjlmNco7BDuXsWPDNf3r386G4nE+W7LjblqE4W4g7m+Q+K1SMcSiCp5IApxNLlLFWyBD2rI35XoEhsTALGeNci7Ish/sqy3JHyRifryiKQUgcJ84PdSnG9UVGa/WY8jKfb3yv++EQCigQWluUEEl0fTf0ce5qiCgdU/5Dvt+UMK0VVhtc7ufkodJWqHqLckZwPToJQVVZpOen6RwU2oJW4iFSYigpkodWeLqtMOApUf6KInnKxCQrNVeMoiwMValxxkoOjHP4kIgxCkthDTF4IFCoIB4MtU3Cv9cY/qJBIWEQOius23E2m9VYaySMzKTnorMwHIlRrNcqBED2DfWq7uG3LnKmoUA8TaJoDNmR6CscNfsJ2ZcNp7vjP9eqGWNMtHCvsKrLH+7uLFmJMVa8pk3T0HYNq+UapSJlWXFwcDQo/pk6fzw/r3q9ey+Xlarx9zFenZit1GWFJZ9jfL4Hkf/up5Dfqw+v8tBcdc9XIUsNeWgrBbawhCwcK0VRVoMBZ71pcF7kphs3bzJfHFBVtRh4Y27H5ba9Ot7AuaWuenvZsLptqqwH2Y4/n83praHtDd551usNGzYsFgvKohIPhx4rpzLfYpa/smCt7i2P7eORS/yGmBK9xRuQKWCl4JwelAySojFy8A3hRKhtOJRXHnCSVB09MfTE0EuCdd8RNkv8+pzu7A7nL9awPGVd15zcvkvfbOibhuXJbc5OT1lenHN6cpe2bQeKQ5Xaq5FxO3gutBncTihx2WqdOO2rksJKLLhxDt/3QpWoNYXdVvcUwWZbUAqlxZKXQjLatqU3farJsaXf3RfMBuXFWsqylMRRa6UgV7KGdK5nuVzSdVKUhibgwrZAmqOjU7DRmuWdU5QxKGupFnPuPPYEN24+xur0Lm9715rF0XVmB0foag6mSNWRt3HREYZZolCo8IZO2wlfRIzH33jDviqBc39DGjMa3fO8Wqfq9VvGqjHX+v75x0K61pqgwxCKND5+xzqXw57SvzmvJCvrfk+5GFfGHrPVjQtygShT4wJ646TtscWvKIpEqb1VHPaPG18vY9yHIaSQgiuErnwuk6plWy1eGR8j/d7x2SoaI1gzUhhTPoxJYQsmpuRzYzBKEYdEeI2KBhXFC10XdmCti9EPHiMJvUreBa0w+flEiM4NVszCqKSAyc7qjRIlw2pKI7k0XoGOiqAkZKAoNMYgBbWi0Iwn00e+00vj7c0wBMgmr3aKYCnFTkX4HJmqtCgcOrOwZcFLFlfUAxpN3qpQatAj0wdxZAfKAurub/aF1KsMplcxKF0V9rN/zPi8r45tO/re0TTt4MGo64q6qpnVM8b1O65SCK5qw6t9fs8W3cd4fC/F7F4Yn+eqPtr3UFylQNxvjb+y/Wzl3+GKaR4MQ0NJJEsIga53OCcyU1EWHBwcUdZ1KsiaZsd+RMVr6IO3KnK9JxT0SogjfC62h6KwYmTe8VjEK+bTaxhfD6xkvJZBe99j1aATveaJMJwicTppIkQv5dTZJnxvw21yAnhy9IyuJzkWHuiI0YkVy7X0/QbfNrhmRXNxwtmd29x98QXufPo/0730WaxSROc5vXOX4HqC95Lc7ZzEO3qpui0Wlpx0qAdLfVEU1HXNfD4HGGICs3BhrWU+n1MYO2jc3mc2KTDaUNhiiBkfC0hZsMp337btEIOZGUVy8a59K29RSOGm2XzObD6jGFHcee/puo6qLEXJaDtWq5Kmaei7jrZvR25Qhw8tQQVQkfYEzl/4HM8VJb/2Swve9q738LZ3PMs73v1lvO2976NeHGKqmj4alLZEZYhak5Pq8xxXr+pp+NLGFxSi+BbDWPjNYzHGSN/3g3ANu8mY+Xf7XhCt9ZCsp5P3L6Rhc1UhLW00pSmGc0ihPTMI9FprCNvNbHyOgfYRhmJ8atTGTLFbGUPf74Y6DeFa1g51L8ZF9rIyVNc1SqmBVjHPvwwJZzR4v6WiHIeYjfsz03Hub+i5HoXVZifWe+w1MamwZoFKLHIi9JuUPB1T/+U8D+UDs5GVsLBbThIiKVdFDQaWGCUnpes6FGDTofNZjdYK52QtDYixxmo7UMlCoEznVzFCfp2YqhhYnhRGlYN3FoJQEmuobC5OGFOoTADDffylb75wsb8CGqMHwxCk54vCWAkjs4XBFgVVWVCWQswhHfRor6M6Jd5njJV4yHtWQGu797tdT2l+nX+bvZ05nPCqMKRx3ZvxNcd4NYu7lCoJeB84OzujaRqc65nNaq5du05d12R61P2Q0KuE9nt5Crbe4N38kn3P5bZPwqXcovE97NTA2cO+EnQ/5ecqz8urza2xF2pcOHPbAMhh1/l9VBIWqJL3FKU4OzmjbYUmu5rNmM0XzBcHFEWJ0ilPI24N2W/UXHm1MfKQrjK8ku6RdVVrS12X1LWQJmWa5L7vknxaMZtVO9EEGSEEos8G9AfDFz/xO+bQlC8ASqHQ4glQBqUDhoiOioE4NXoIHilf69DBoFKRkeAdGoeKDtctaTYr+mZDszpndXaXZnVBc3FGc37KZnnG+vyM2rVcvHAX33WS49D75P0QisOoJdehtJl3XYOW4ijaWowtKIpShq2WTVsrzayuB+9BTEmaWimC97jeDYlKqffovUsbhZFQDbVdOJXRkGKSg/di0dUKbSyVtcyS90PpHJKlk+dLXGQ28fzrkYu4KCQ2fT6fU1hL33X0XZ8S3qXKeLQejAgufS/fCdOVuGW1AtV3+GXg+U9+nDsvPs/HP/arHD3+BE+8/R08/vQzPPu+91MujtBlidEl2CopSBE18FG/mUirmMr2ki8evpQUjLHQC5et7YNXbg9jr8cYzrlhk9JK4RL70v5mOuQsaINSW+v/uNZDfh/9tqbAmNJyOGdqNyqzKIlg4lJSnOLe+RgqjR+l5PrOuUHJyTztsA2dUkoNuRUZMUaqqiQnk+9v/pmaVZutwnaV9XN831nBA4ZQTSJYJUoXWgwcin7wAitlhlClojA416X7UsTgCKhEXZuuE5NXMopH12ojDFOQBH/JV1MxoKKjKiS8LcRIoRWF0WiNEG6oLbueJO4C+MHCnUYXojOF5Prf9j05dlndS7EYCzEPVtn2iw2tzUAhPJ/XrNYl58s4hKpZrTFWYQuDsToFPbz5K+kXCud6yrJICoEnBLczx8dC9RjjeTimc81rzr7ycdV6k9eUq0Kp9o/N59w/jhQaeHGxpG2zwWHG448/AUS8j0mRulpY3xfK78eMtfVshkvtu1f/jM+1rxRkz+zV93V/jD2t+2FQ+4rDVaFW90JesyNRDBvbRDGRtYDeOU4vzvG9XGdezblx6zGh7EaBMoPvMrMzvTrjzMPBvTxIDw8pnpCt4i1BNIbF/Ji6PmCzXrHZrGjbLtVeqylKmwxjBcGFnb1Zp/32QfC6lYyrBuQXggfS6PICgEZCnkDYejVRpU0kFQ3JuRvEQIge5XtC7HE+0LUbXL/BdRua9Smb1QXtZk27XrJZntFtVrSrC9qLc9rVBZvlBf1mTbde4bs+MVZt26QSfaHWWixuKekzoojKU9hSPANK06YCSl3fY4xNBfOkIJhOCd1aa7q2BaVwXqwqMchmG5zLEYZDyAYp7k6ZrUdDxTgUaNJKUVSVJFWmSS5VILchGJIcaXZCNIAdSy8ROtvS6oa2rul7N7QjhIDrndBDej/ayIQiMEZR/FzTEJyXQoObDe1mw/LsDIXiqXc+y/zomGp+IKEg6FRv4433Yrz6+Bs5ZO9z7GuJVX0QfCkpGMCgwCrGSdxCgaq1JsRtIadMWzsutjZWGnI/jpOW86YihgjZbFRS6JUSF0eIfmeTyzVw8nsZq9lqJmwd40eWc560GYVvqZTXkSz2OemZKFWi89y2xhASqYNRmjDyyOT72notk3cyzc/c5kxHKewpW0unyffOaLaMhmuMpLbpIbxIcbXQomLiHckbbTqPMckrG+Pwe536JAvvapxwq3YT001WFpF+qoyB4MRIpNUgBNucXBt9qvOQczxIa+9WYN5PuN1Wv9tfN0bWtySHDMb99OFORMD2hG9JwXy7/ue5JIQeOYxN6n1IzY9iRHGZd1Ex3jx6WK2WdJ14BrOHELbKg7yGnSeo7h/Cs3/Mg6zR+x6EqxSU/XNqrVKRt4aua4iRVKtqPjJq3Pvc+9fdF/b3807u1e6r95XXX6TxflS6V10fdvv4XkrF/Y7N38coslEcaKnTOmwMvXM47+mdhAbV1ZyqrJnVC4zNodo7qwlRKVn37mmAeH24V8jbG4O492++l9zP8p2E4RuqSgiQuq6h61u6rsd5jzE9dSU07WOCFbEdvcFKxj5edWDvRM29PkQ1qrEQIWixjEEgxG0UrWx8kUhO6HYE5/G9p11vWC7P2FyIl2J5+grr1YVU0e4aomvwfYfvGrrVks1yKXUtzs4JXSfWPS2u54g8LGOEDlKEgTH/vChC1paUZcV6cEv1RKWSl6Cmdz1lXbIopeZEURRCvamlUnEMgeA93oeBklLCh5XkPmQPRfoNKYxgWOiMpihLKdpk7ZBQOn5mxhiMtVR1vTOt8kJelRVGG5pkiW66Fh8jprDYsqHvHarvCRqaptk+hZgq90YxMJgoHpDQtaz7EzarFbdfepnzsws0iieefhsVmmh6bDXDFDUtXJYXJjySyDS1kqQrSc8hBoITOtPoPT4GoYM1Zshh6vteFG0fiEoE26yk5PN471EpnCcXcjNaampYLXNUvAV+J2k8zwdRLlI7LYSw9TTEqAfxTCWFoiiLYR4VRQExC/sGbZLvPkRhzoqyRpaFTTSy0gfBbBUmrYWamhghhCFk0YeATUpGVsIyYgyDVSkLI3maiBchEULEpBggIU6mKPCpH2LY1r6IUZ6DVkLPrb3aFl0KgdJYgomjEFWZlmbEdKWSEiKvxXuktTzL/VDNRWXpu0SKkSxuWmlUoSXsNAY8EuJks+KmtpSKkkOh8pYg953eDEvG9n97ysj+i/0F5q2l4CvYaVI2SA0CixKFSyvJjymsobIFtTUURjNQg6cCXjyiSsb5+Tkge9PNmzdZLBYoBX32/Ke5Np7j9wvTucpj8SDI1vfx78fW/xx+lZnhspKxXq9SiJSjKErm8zlHR8f0vR+MITFESF7BsbfyXqFOV70e3elwr/c/dteYkq93VUjWOFzsfuFRO63YC78ZKxD3e0b5mHshW9iloKvHKFkrrNa0bUvbdXQpAuTo6Brz+QFlWdN3TgiEUgHP8Yr2xRQ33hiF4/Kz3bmjJLzmUqFlMU/7qcU5T9d5vG+JMRCPNPN6PoTod05kvzfck/FaIalmX3hnZpaoqLQUwVOaTDs75pWK3uG7jt5Bu2m5WDUslyvunpxw8soruPUK36zw6wuc64nBo1XEu462WbNeLTm5e5t2s6bvOvABa8rEDGWJMRCSd8H5JOQrhdWKKoU/1YVFGQl3UFpxdnHBarWi6zrhc3cO73q6rqHtWm7cvMHR0RHXjq9J8ndRMJvPByXD9T0XFxeS0O0dcbMePBJaKXyT/f8KbQ2dd5KA7iGullv2KCuCWVEU1FWN847ee9pNR9d1HCwWEi/uA33b0TYNS7VMseAeZQ3zxQJlDbot8SuFW68Rja8g+B7vghTVwmBK8ZLUZUFZCWOVNqlOrtKEGHj505/iX718m5uPP8l7vvwr+Jrf8XWUR6CjRqniLbbdT3i9sGU1uNujkkrRIUYJrVEaW1XouqDfNBJbnoo8BqdSzoDFK9msvPNUZZXi9hmsuFZbrFFSAwaNiol3zm9zEoLvh3woCGiVYnAV1FU9JHHP5kcAQ4iEMEsV2LLahltpSeD03qWaGBGrg9QuMBWnp2fMZnOqskIRsUYNlNOlLYY5K8oMQJQk6pjDqhTBu8H4sNlswDuIGqMk/j4rGSaHXe4JUCpdUymhcbRKY60mJqa79Xotip/WVIUZmItsZYewrvV6TWlLvI/4RJ1tEktUzvNQyXNkUmgaOuViJCXDKHmGVhup49OtMMFhtGJeVyn8R8aKUlBVJRLqAUIznr7bCWe6QoG44v2rY8/C/Zp//8Zivz3BSx2ow4MDbpelUNUaTVkYZlXF4XzO0WxOpQspIphyGd96d/ba8N4v/zI2mw3r9ZpXbr/Myy9HjDXM53MODg6EVAVN1209lvvKQN7LXk9+wP7x+d/9GhbZQ5pzr/q+57OffZ4QJUTKFoannn4Kong3lBKr+tYInep4XMGkl6+zrwBcFcI0bttV+RS79375830FJx97r5Cy++FenpZ7Cdr3OvdlpUcIIlQhkSRN0/DK7dsoK+tzXde87elniMLxL2Ga1hJCFOXOWiGe2ZpbHvieXg/2n8Mb79lQe6/l/dg4Vdg5emaxpqRpl2yaDX3f0neOi/6CwlpmsxmLgwOCcyIXPwDeBHapRKl1Rade9dm+G03igVPuAhGdrDJRe7SPaCWc6jpogne4oGlauDg95/xiyfnduzRn5/iuIfQt0TVSejYEfPBs1ivWyyXLi3PWZ0u8l4JHxthU2Esnd6Zs3BYFyZporaaaVZSlhEeVVcXB4QFKKYkJPD3FliUu36dOBaC0YTafU9c1VVXtUFlaK1RjJI+C936wbEhMswgULoigZVJYhopgshsRJUqSTVSNQHCOLgRiFvjk0aC0wgUvDFkxDoVYcgx6FobKsqRNSZtGa4pCwsEUiq5pxeqca3d4j48RnwpfZQVHa5O8Lwa0wQVw53f57H/6KHMVeOKZt3PjiafQx7fAFsTEQuVjZqJKqf5KJo1K8dwQpRJv3FIdZuaqtwz24j1lc7lqockLwpeKmjWypiphR1NBatpIvKiYoIud3I1t5W3nHEVdEpQeWe1HbujgZRyq7M3L+Rry+LMXhBSeUxQ2JdCa5A1xON9TaBmfEu8t59Y61WHQEHyPilIjw2BSPlQlQrzREHsyfeh8PgPEFW1tykvWSOEoDdoWGGvxnZcKm4AxChfckCwdg070pFFoXpNAIMxIo3oZCimgl6QVY7ZCQMgW7JS7tq3erajKIik0WvIijLBCFYm9TiuGY3KIb4hRLIZWQreMtoMHQforpj+Y1aKsRBcoTcRoKWQXrQaKwWN1qbZBMs8n05F8Np7HWyM+ez98XXgLrRD3xDAr0oucTyMVzRmUQOd98lZFYs5XfCutga8TMUSMNtT1jBvXdbpPJ/Hk7V1syn+0tqJM3sYQUl2KZLkVITlcISiPhWjxNl7FODUW9LffZcHNpJDMnJOhOD+/YLVa4oOjsFLjZDabpVDi7W+3lZTj8KDv533YDwHbz3VQaW/U2ia5K/8OrvJcjJWAe3k+hvVkRCxxL6Xjqnbtey2yYSK3S96ntqd9UkWdvhRveM5fFdHGY60YaDZNI4qD80Q0145viFHIFhCLbVhU3EbFaL31fg6u7IeIbYFGn2RJxcX5OU3b4kPg+vUbWGPT3NwP0NrzQDwwrpIZxueJyfu7F0aoDEVVScFTW9J2Da4XWZAo9ZlC8MIcWN5bYR3ji6hkJFap5PN9tRg8uJcWG9O5kgARA0oFAh6lAjp6VNREH/Cdousiq2XPxZ0TLi6WrE7O6JsNMThicBDFVR98oGtbludnrJZLlufntJt2cFcabQeqyogIGzn5MPYtxkBhFfNZKnxUGupZyfHRgQz4TSOJmEWBSYxPEmBs0MZSzyQBPAvgbqAVSwhbK2xRFLLQGkPXtkOcnFEaHUXAxntUEKYtrRU6SoG+whjxgsRI9IEubGPRpZiYKETe5cJmadFTarj/HPsOMieN0iIUpnZaYyWsRYcU4uIhapyX4OmBISvlehhrKcuKpm1p2g13nz/hOTy+WRLdhkMixcEhuqxRukTUS7E8hFEs5VAjJUJUAT1sKhHS8W/0JvtAVp3IsJVsP7u3g/ZqO+2jijj4NJXaVqUHtjkGkVRzQRZKsVJZEZx6J6GJRs61vyiHmOJy02+VynmAaQNkECNSDoACoxNnPYSgCMFBFEt7TsRGqZRoK+3yIaTY3ZDao7C2SC7kbOlXRAJlWdB1Hd73GJtzEqJ4/rQkeZdVyca3pBahjDDgaS3Gi5iLpylJsg7eo1FYozGjmiCorb84QqpInXpKb+ez1gzeFKMMpjBpfZZCesbqwfsQvJA3FNamAmJIfZ8Qh7oXkPI12ApoRqvEux5ZVFIgroue0oBJNLHRbtm79gW34Yb3N8svFX37C0TOBZJq7ZJ3lI07zgd65+hcjw8FIVxdO+JRhHMSwVAWJXVV4ZwXpsP+nM1mg7UO5zyzmXjrRHHdKhVbgVjOJ6+3uY1ybL5aCjdUuyFL+wK4nAhEgckCunzofc9qfcHF8iLJBnNm9ZzFfJFCH8eC5Hb+Ki4rGK8W1z+u8p2Rw5uuDmvalcOyAXhXSRnd4hXhS+M+3f/uXu0cfctVczz3oSynCh2Ff0IlQ2iMWQnbmh8CISkZgNIUVc3BwTUKW0kYrU/XUiAV7xOH5diw8ZDXlm0GlOQHx+jpNw23b7/I+fk5reup5yXz2QFGZYKb/fVv/O9raeB9ZIYrFNisxGktyd7KiGx2ceEkMsgHmmaDDz1FYZnZ+oFa8ZarkzHWiGHfYqBSLkR2a4l2FYOD0IN3hAA+wGYNpxctZ6uOl05WnJysaJqWrmmlboVKFb4VdH1Ls95wcueE0zt36Lue6CR52ZgCaywa8L3DFAUHhwccHR1BdHjXsLq7RuExwYOzxOhROmJiycXJHZbrDcv1hrZpUEBhi1R8T2hblbaSve/DIEwopRItowITWTUr1qsVF+fnKbF6S0UZg7jNHR6X6Nn6vqcoxWJS5+Jf3tM1LWjFfLHAFhYfpBhQDgdp23Zww4+T6kI6Li9YwtMfB++Kdz49jkwvCd4YEa7YLuiZgSov1JnWUytFaQ0qFkTX8/xnP80LL71A+asf5dmv/W28+31fxY3Hn2B+fIMQzRC72gNhsEpAMhETUQSlxZvxJWC9+1KBYbuRFVoq1uMDBlIBNHmWzosyYrShLIW9qTB6yGESQgKb5ksckmD7PnnmggjFmYEtiPsxMUwpSAWxsvVIx1SnJlWVlpAeqRS7E2ZBxFjNzBTJm7ilXy2MbFjeB6qqJiZX/Gq1xFpNWRvm84LV8gzftxA9h9ducjAvWCzmKBeIfUzMHx5T2qHugRBFbIvt2XS/VoHCk1LzdvYVUZyS7U5rUGZQMmZVSataIFIVJb1L9TmMYZZCGlHC5GOMJAV63w2VlrWOKBUoCoWxiq7r0JgUkmkxVlMagzUKg2deJPY9VUi/kgYCJdmIeBVCSubUWnJ3gBQOMwHU4BkW2TiKgQ1F7zxN27E2PY3rsVYNdUy+lCDTOlLXNQcHBzjnaJqG9XrN7duvAEJecv16pobdDf/JuCqcKC8P2esh17ss6A8GU2T/c85R1UVigIPf/MTHEaOGhAoeHV6jKEphTlSXa2Fsr8XQpp3cm9G1t23d0tHn764K5cphY9sE+bhz/bGXYr8/xtfNx/d9v9OG8W/32zjur/x5WdorGAXV0EZFdi5IhIZERjiiSvQ3ERaHB9w9OeFiuWbTtFy7dp3Dw2OOj6+jVQFRE4MoinLdsRo3vuobgxTPgdHgXeAXf/7f8dxnPs3du3c5W624dvMaTz35NPPqkN2V8KoWXeWheDitZOjfgEeUjbpeYDS4rqFtNpyfn6E0dJ2iaTYcHD37qmd+yykZV7noxq7MbAeNRPFaEMgJbb7r6DrHsnW89PI5dy86ztY9J6uOrosEF7a1NNIp26bh/PSM1cWSs5NTurZDxShMS2lTV1EUDBL7CSGyWa+JriW6luN5zZOPP87hwQGmKDk5u8DYgtnBISfnSzbrFeenZ2w6JwJ8csOGEHG9g6i4e/cuIUgMZ1WUyVUoi8PZ2Rmb9VriNiNCWxsjXdfRt902BpttFdjcbyHEwRo7n89FOCsL0ArnvcR3I8lPJikFwQeC8yyXy6HORt/3uFRuvigK5vM5i8UCYwzr9Xqo9SEVyLf0gPn3sI1RzSFeY47+nGALW5rTvm3p3F2e+/hv4HvPk297hmff+z7qwxvEKBYtW9TCaKW2ioZw+ptUlC3x+KfnPakbby5Kq/Fe7DvWaGKiJo2lxRqbirJpYXEDsawbMwiYSkFpjMSE9v2QkySbURSBX2m01YOASggYrWnbBm0MZV3Rt73UErCFUHwma5YPHucCMXii94PnTZlUqVqBClKbx3Udpq7RVhIHcT1oLRFPUa5pyhLf90Q8wbXcuX2H3/zPv47rWm5cu055+w7z+SHzgyOOD69TGanrEBCjAahE2RoGT4zV4qEQT2oYCnfG4CiLSuiro/RvDpGIMVCVFXmDKq1GR1n+y9IIE59K9NmulcJ0yO9syhvRGLqul2cRI7OqwGph8StSYrYxCmsVRWEoCkthDCb6gYnK6pRNkS1przJesiI4hGwytvVeDi74rQXpB2OsGNdcJPhI30niZts7mq5n1XYYo6jK+nUHX7y1kMem/BkjYXyyzSjKssbaktlsQdu2OOc4Pz/n7OxMciVTnarMDJf3oPzvbujO1RW19/MU8n6tFBSl5EVdXKxYri4gQlFKHaqDxcFWgB5Fc+yHFeVzA0Okwj5Zy6v20ujYsSdjP3Rp/7pXezwun3f/t2Pa8KsUuf3fZ8Nmvt5V9ze0Q2ePEkCqFRRFbnjplRdpmx6tLe94x7swpkiK99abNMQDZO/HF2sSRCBGrNXcvXubl174PL/5iY+zXF6I961tWS9XtJuWeXWwbdul7n+tnoxXucHhNHlFSEolqfSC9/KRVhTWUtoZZWnRWvHK7Zfo+w7vPW9/x6u35E1QMu7fSfuu8+FXeRIS2cbNiQuK6PG+p9tsWG8alquG09snnK16lm2g6SIRKRUvp82CeKBtGlbLFcvlUliR0uTP7uccvoASTViTCvL0oLxDh4BFUReWeV1R1XPhvlYaq9Wo8rdKceYBHRUmSmEUiWzytG0KUQpJ6E6F81zfs7y4oG1aXN9LeJHWEKXeR3CeEDJLzO5CpZTCwhDXPXabur4XQck5qqpKCazCxuC6Htc7NpvNYGXIHohx8aehvsfewjXUJBgtwHlRzefKis94wRknuMki4uhdz/nt27xkC0LfMStLbjzZY6s5upxRpJAzFZUU8stCFdvoVrLBem8svRpey4I+4cEgoQuS1ySRUrLIZQE6F9I0aTOQ8KNUXCGmPAAlVu0YAjGYwW0uNVUGPzBaiYtdCoAmY0QMBC/J3koZiVhUA9szIUg+hCTE5Y2P5NVMSoaKGCRxXYT9tKkGabs2Wk6UqGyLQpSkrnfcvfsKXdeA9/iuZxOWOCdzqzSGYApKWzI/OCQ4QIG1mhAyOw2AxqY1yiidqlxDQFFojc+bthop8j5SmK2nwyhQVvquMFIFWzwZCtf3KEasdWnNVci9kqyIZSGVuEWh2tauyEn0+fFqbXLsRxoFcdj3c+Xx/PpBuPdD5sRPdMG/VTEWzkIK+ZVQKS9jKv21vaNzZrQiPtp9FtM+LopFZFt1PqbvJMTQWjsYzoDBANa2LbBLz36VwL+9HsCupX8/pEh+E4Zrr1Yr1us1m/UGpRRVVTObzSiKauc6V4U/3SsU6arwpfHx+16C8ev7KTH7178qD+Oq465SUh5kbx0fE7In+j57rUShhURTm+R2JbUv2r5jvd5QljX17IDDgyN82Ia/5YUmn/4Bt/6HjvV6zUsvvsAnP/GbXJyd0bbCLqaItE1D3z9YEvXDwhWjKGvV2yi0tGb3fcd6dSGKhXNs1g0+uLceu9SDIE+Ke1XTlPEhGq1YFAMEJ4xQmxXnJ3c4PV9y53TJKy+csuwVbdAEXaLLuXgPSBM2JYKtVivOz89ZLZe4rqcyhRR0iWnT0xqlJecgC0R92xIpqayWUINuydnpKYTAjVsFWml8iDSbDb531GXF9WONV4b1psH5iI+aTdts6TQjzOqag8UCozUnFxfivWga+q4fwqJc30ul3tF2EUMcjsl9li0fxlqqqqJORf+00WzaVmLGkUTxuq5RiUHm/PyczWpN27RsNpsdes3s0ej7fkj6qut6W0eDXSVRKamSnCuN5xAriU+XyuOLxWJg6cmF1WKMlGUpOSCuZ3lxykvthtOXX+LOiy/wrvd+BTefeIqbTzxFVWiUlqRwZUtC1IT07CLjhfCKJOH7LLhfbLxarO2XCpQSIR7UpSTf6J14D7ynKuxQTDJ4RxyUCqkrQ/JGhuAQpSUOVbKFx6EfKCSVkrFdlgUhLZqiIEuisfcuvZY43aqqLo17AJvyNozSlMZSJSYTTZSEcx0TPW0kRp0ICQJlla7rIs8//1ne9tST1LYitIGN61Ah0LdrTu++DM4xn8957Imvpl926DQ/x0JOjBJ2ZrWmSJTZ0QBRS3hSIoSQNUA0JCV1OgcK4Rg9ZbGtiaOQ3JLCaNpNL8XcbCFU2dGn8zn0kFQOZVkkS2QYKUBBPFUxJEXDYgu5f0JMntY0J6PUIRElTg1r1s6YIM8HUSClxpBUeC9sQVkmi+V4gMXdTTS+7mROdZ93bx7y3fhEVgJC0CFV0sU73ruernd0pQhibb+tNzSOv380MfbHyHjL4dSkMRJCoCxl76uqiqOjI0IILJdL7t69y927d6mqitlsxtHRkew3Vyga4/Nu319WCGJMZi0lhpSTk7tDWLAxmqPDIw4ODlLxvW0bx0r1vpJwVTjUVbkW4zbvKwD7VcLHx+/XtniQ6wE7bR8bE8fV0Pf307GHY9xn/3/2/qvJtizL0sO+JbY4ytVVEZGRkVnV6AIbXV0FEN18ocH4QJjxjb8F/wB/iQYSxm4ARiPQCo2uyhKpKzMrVURcfV0cscVSfJhr7bPdr9+Im1VZmRlJ7Bse7n78yL2XmHPMMccw5vgZ7pUEziwVFBLkxqOYTT8MdP2AUpqLi0ecnJ6jqInRZbApn9tjIYN33PBrO+6OC5WRs88//yXf++63+f53vs3JeoEbepz3VHVDf9gLlf43NCHv9mFIUnEccykbrColceTVm0t++MPvst1up3m0Wq1Yn5681+v9BpOMe2tAf6dniDGQUgDXE/odrtuzu3rD6+fPuL7Zc33T4TtHShZFhdEVqhhwZQ39oe/p9h0vnj1nv90SXKCpKpFWzAjhYrEQ/rDS+ByUa62xdcV6vWbRVCwaw7L6ADc6rrvAm59/TjeMhBDxMXK13aONxVY17WItG2XwjG4A72mrirZd8Y1vfIxWYsL3y1evubq6YnROmi7T8fNrbcDk5q5MM5qbiUWOC8g4jpIgjVI+HMcR5x2Dc9iqoqlrNicb6rqmHwZutluurq7oDh1uGG8tgmUClMb0Dz74gNPTU0lQlEhglgRkGIYpESmPLwhS4XCWBGSz2ch5tpau624lSqrvCd7TAO6wZxgGboLnMxKXzz7j880pm7MHnD18xPrsjNXZGe1yQ2UrotL4IJk5SpF0JZFWDnDu0/n+VQyF/iGP+0r0vy9HXSliDkIrLQIC4jEjaL8fBlyQQN9nWhJo6tJX5ANhHGnqhspagg9Ulc09OjCMowTTxsyuMTSNCAsoBaqqOPQdqu9EklZpNGpCPf0wTKZ1bd3IlqQVSQtN0QNByUZWVRWmsuz7A3UlVCcC2KrGKJEU3W63GJ3QMaJT4tt/8ZeA5vzsAesTkau2wfLm8lPOTzcMvudf/sv/jn/2z/5UApPYE3zEVjVKVzjxAyWqRDQJlJ/eb8xobYyiwRcyUKKtZcivj1JSDs8Nw9ZaglL4lHDjSNQarxQxRIbRTf48IQSqqprQR20r+sHhvAROlQ2TOIQoUYmMltaigBRDIIXEYrHIFduAV5IYkaAbHAtj5fqpRN/vMQSC6/jOd77NX//1t7m6usrN8JazszM++OBD/uv/2/99Al0qnRHMMn0KgvkFe8+ccvWue/1uxONFflbejQ+J3kV2/YhLCU/CBU/vBvpRvjo7YFTAaBj8miZX5nJt/yt6HK9vARxKtUFEGDTJJEI2sp3Te9brNYvFYtqLnHO8fCm9GzZLdK7X66nyf7d3YU4DOiYIR2ZF3w88ffaZVA4rS9O0nJ6eopSm7x113eCcl/f6jn6H8vx3j/soSHOq1/xvXwag3ZdAfNm+M09i5snKu9gn932ut13S336ft99Drlppha1qonMMma2yWm/48MMnrDcbrG0AQ4pgdJVfVB5/fM5/+P29XKOSgI3jwNXVG/7Dv//3XF2+ZrFo2W2v8T4zSWLEuSGDZf9wyc99h1DsJR7T2dE0IWDe9dUlr1+94s3la0LoWSyWnJ6esl6vefLkCdbWX3i958d7rzN/3yzrXYv83Qnzrte5XQaU54vRMw49/WHPfndDv9sxHnr8MJRdWALLFFEpkZRwtGNw+HFk6LuszKHRVoniUU4wrDZSMShBaIwUObvaWtqmpWlr6qbC1hXVUtRWxtHhdltwnhQDbSjEASSI9gGjFMumQS8XU7Wh7zrpaxhHDocD4zCK7n6MQEYGVF5UQpDAOZfISQmNmlRRSxAtZWCmcnFRcqqaOjt7iz73brej6zputluhMc1K8HPjr4IKFT7r3AzN2mMD1yH3jxRKVErHvpDyuFIFadt24tXPObIqBz91XRFcbjgNnjj0hMOOkQR+pN9vGQ7XbC831MsV69NzmsWSZrlC2xptLcpYVL1B2fp4DuNt3fEvC+rfd/y/PxVr+une5/htV1b+oY6Qq1UqI6opRGniy0pPWhtsJb4oxopHBkrhsi8DGckP2VU+OC89NyUBKA3MWuPGkaquJjqE0QqFRlkNA1Oz+DiMuXRNrqeryftBaFmJFBJdFP8KrU2mTSmpCAYJRnwKkOQziI9OOFIDjQTtfnBC69JJaE2Qg3gHaEmESIzjwKe//BmbzYbNySntco0xFjTEIE3dSSlcFJW9af5HCT5TSmhjyC1gIpgRs9Kc1C2IIftPGPDpSAuJaFJIQKAffQZnQCmRjg4p5gQk4GMiptx/lZQo2gEhKXT+CvOvGKnzNfQ5MPZOjLKwhmEcMLnq8r3v/jV+PDD2B37607/l009/zm63R2vFcrkUDXfv+NZffotvfPINHpxfMFn6ZUQqf6TZNCs/zCghfNHW/vcHx349R0GaVP5wipClOkfn8TNaa6FLCWXK4zyM3jF6j7JHHxL7Fe0DV7knMf8GaVbLmi7vMRm7WxnQWkCLsueU3sEQRKUqxjiBabJPHpH5u1SkUlkUUK+j6w8cDgeWiyV1NtelGLwlhXe3KwvzIP2+475kYb4/3KV3lX37bkL0d9lPfhU61999vzo+7r5YsMQ9w+joR4f3gRDg9OxcetmWG6xtUcpAElBD3apc3qpp3nPbr/e4e112ux1/+5OfiGRt1+FGob2H6PM1Chk0/20AnIXiJxU47x2Hbs/l5RuGQYyjY3CcnGxYLMReoW1aqqpGa3MLnPmi4zcHZvy9IKLZRCv84CTScMPQ0R/2HLZbhsNBEHjv0cmIslDKDZxVQGgVwsn2bsS7URKJppGmUW3RKfs+GOl9EIpGJIWIsjrLRtrsnl2jTU2qWtbrjVQLnCO+fi2IYIzUi15cJ/ue6+vriVrUNA1105CSuFS+ef1aUNRcmdClrB0Txx4USSyCUkLJyPQRRUZa1dGVuPROqCzD6b2nqmuatuXk9ARygFQa4vq+p89yuFoblFVTQ3ZKGUkoTXOr1S0EpSBAotevubm5oe87hmH2eTLyMTmINw2r1erWVS5KVcdyrKauKoI2BJVRAjeSxo6gEoMb6J3jcP0K2zRgLJvzc1abE04vHrBYbbBNi20W1Kca22p0JShYKM3ppdIxLzWj3h6X71q3/vfjVzq89zkJMNMiK2iVSB8rJcG9C2GSOY4p0Xej8PBLT1GWWQ7eT8FyDNK7IcmDlNO1FofrmOR6S1VLPFYkwDB0XoQLSkVDehOkKdx7hw8+04IG2rbFGrBFSSrKehKTVA2UjmgtyYmPAfL71JkO5AahahlrRTZWaUIQP5e6auiHAyl6bGX4+c9/ynq95oMPPuDh4w8xpsaaVuaBMqAUPjihaOQ+loSSJINIVYnxoUqSxOmQhEBghMoVkKVFBfAhBxEKUpT5EaNUMibQwliUNiQCLiS6fiRkWUhrqgmQUBpMVOjcSmNiIiRJZAJJvqcktFENIUqCt2hrut0VpIBKnr/8iz9nd3NJ3+/ZbW/Y7Q55/EBVWXa7HcMw8m/+139LVVecbDZCby1SkOr4mY4VgONaOgkaz+b2LOR5d+/lb/2QNxJinBKJkAIhhVv9GMdEQ/jrvZMmnxI0L367H+LvfIjjR5qS33Lr7UBXejXm1el50F0SjbquWa2kQbzPe3TXdROVStzEb/cYzo/yu3OO/X5H1x/w3mErQ11Xmb4ZRQIfMe1U+l3B0NvPW46y7r2rX+O+asLd5GOebL0LDLub1Mxf8+73eSLzLpO/d/V9yN+mn+597PSYCId+oOsGUgJbNTx89AF11aK0zUCCGDCqrC555xm+8Pl/ncdczCaEwOXlJd///g/o+55xGBi6juQ9MQViisI8KQDaF77NNPv+5cH03XDlvuutyCqrCO2y78WA+uc//5moK1pRQ3zy5JH0E1lRdByGUXqh1Pup/P2GK6Z/X1RIGgrdOIhL9n4rvhbXV9xcX3M47HEuQlLUpmaIQAhEHOiaZI6Ty1rLarHkYn2Gd45xGLi5vs5OuJa6qok+4GdKSCY3KDrneP36NcoYbFXz4MOPqZcaYxoW7ZoP2g1KCRp3c3PN61evuL66FGWbqsI5x9XlG9wboRSFGAk5gNJKQUwSAOSSbMiBegzxFuJfhpRsn0JLKPSTqqpoFy3aSDBXJP5W6zW2rvj86efifn55OaE1RmtC1iBPWqNUxGTkS1tN0oZ+dMTtFhSYymIqy5KlXJ0kCjcximrVbr9nHEYJzKzl5ORkSjhKslESK6319PfdbsezZ89kgcucQZUghUDX7dCXxdNDc+g7QpQmXNvU2KYhZOpFPw4s1htOLx7xn/2L/wtPvv6HnFw84vTsLDf2AinlhsnIXMHmN1y5/P+bY7lcMWQ6YV2JtGyMMm6Cyb43ArnLmJ+qF0kW5RjBaEIWVDDWTn0GOmVCiTEy15QWtLyXRk+tpCl6CEJ97HsHybFcbggh0fkBEoy+lwpdXaNLtSIVTXVDtIqYFOPoqBox3hxdxKpITIHRdWigrhsWjSUmGJ1nGB26qkiuJymyapOoV5UGc20MkcDoRqqmph96fvy3P+Ivvv1t/vP//F/wR//4n2KUwo193qWLadgxoIq5QjKGw1SRMSRBsnOfRoxRaEsJtvv9FHgZI9dEEHGPK6pvSpBzEZIw2EpeZ3ROKjZTsFM42SOjc6ihx9Z17h2Qz9pdXU7X3dYLghPjQqMcb1495Wd/+yO+81ffYrNcoFPMAYRlvToTquvQsd+PXF8fCCFy7iLf+8H38CHwX/zpf8EYxOm9MlXekzN4oMlUveMecNyT3q5wqDu//84dSXxhvPcEFzLKGySYGXr6vqe1I42tGEbH1e5AUwkSWTcV78eo/t075k7ddwPf28dt5P8+Uz04msptNhvOzs4YhmFq3N7tdlSVGOSu1+up97D0FHrvGceRV69eEeKAMYrz81PWq/VEKdFZpjbEIPsxgfc57qsclL6FecIwl60dhuEWI2D+uC9KCu4LQt9Vobivx+NXP47r1t2jJHTOOcZxZBgGtvs9Dx8+YbXesFqtsdWChCYlhdZVNjUsiUt5T7/56sBxHTV861t/zo9//CN++rO/JboDKobJeFbkdzMknNI/hAfgW8ftfh2hqikiQ7/nJz/+MbvdDSg4PVmiNTx4+JCLBxeCc5PlbWPxmnk3O+nu8SskGX+/C3a8+McJMX1PgrzdHujzE5KmkmSMnjiMxL5n2O3p9nsO/YHO9wwq4jUEFCkIYq2jUJ+IkHJjYyBgEuIb0V1Pga5Vicoq5O6eQCAoLz/FSEriok0ELYQDkkp0uyv2VpFCT9M0YsqlNSmCIopGeWXY7x2H7iA0KBK6sqQQUIE8+IRHnWZUnkhGFVMiZW5iVEcU4Jgg5EBFiwoWWuFipDKGdrFgc3Ii2Wgj6KaUmOUcGW0mTt6yXSEmYprFUkkwkCIxSQPrarVks1lzfn5KU4unwOvLF6hY+BaR3XbHoRvohpGuH3PZuGWz2UhTbXb5joCpKvnShpAS/eg49L0gcc6RYsCmJJSSBCEB2hAzAnzopRkMpaiTwugKowwNhqH3DOMNl/uRvzH/K4frNzz+6GtU3/gD1qfnaFMTlUEpK2NEa3n+EnAoyfbVLFAplLR7kYH3pl6Vze5onvSu8vfvG20qljGdEoMLhCgeD6aqxGQrhpxoSGVA2BBqQi6997kykcUbVOZe54UQraWamRKL5eJoOKfNlHCLYKs0OqcE3gXIyblSCm0rIonBearKktCQ16BuGOlHj0pCcwwgQIRSROfRIaKNyb0PHsXA6D2mMDyUxoWIj0KLbOolpjLZ8yYrdmgNxjL4XnjjfsBaw09/8hMuX13xJ//snxO0RhlDVR83WB8FIBCH50QgEQ2E5IXWFCN13VAbSyQxOkn4m3bJfr9H69xQ2Q9MDa/KYGwj4IqP2FoSLB8S7nCgIOM+S2VX1lI1jdB3kiTuyfmpCT+RhMka5LosbYULju6w5Xs//Tmvnv6Sm6vXWB2JbsSYisWyxgWpVNmUqNsFb16/JiLXwI29yEO+OuMQRoJPkmREhS6VXrLXR6braa1ZLEvAGGlsdZRJJs/7knwo5rDrb+0oc0Aq9DnQzI7RIYa8b+TfQ5AqnPeEoPDBMrogSXBw9D7yZPHVrGWE6Ka5eqvKf2vZLeh+6dmY90CU2GP+s3yPEaqqZr0WTx5JIgacG7i5CVn22uYq58gwjAyDqAO1dUPbNpwsNxhl0EmjIpl5kV86hmMMXN7NvIo+2wveVZW4G/y/by/hXZrV/PXetf+8i651X4Xjzqvd+n53S8wsKFGnm2I9PQFKPkRudnvxPUJx8eDrnJ1fUNdtpsYKQKBmT/72u/j7zNm75/RIvyPHTdMHoQThAVLEe8f19SU//uF3+PTTX6B8j/UOneTvKUksGhBqa2UXGFPnjzE3hbxL9creIPe+t9vfYxJ6nlaQsrKiUjGLrYgp4PX1G66u33DY7wkpYZuWuq44PT1ls1lnMQSLzgAbSeaYNVbe63smRu+fZPx919hZWfOIHkmJKKVy8u59gPyWSj9FIHpHHEbGrmcYhI40ekcgil+CVkSfJJBOYBCJx0LWTTERvSe4kfGwl6bEjAhYIwtXTIGkJOiPCPVBJS2LegCdxF1cZHAPDH0tzZ05OwyQ+xN29H2Hc7npehxuB5ZRjONSOk7eglaQA635xE9K5aArm/Rkmb65RG2Z9CFGTEZ7m7bFVhVKqQkJUqjJfbs8rm2WWZ1JAsHi8KuNZrFqOT074cGDCz7+2ofEGBj6A08//5TDdivSoDGy3+8ZxsjgIt0o0p3O+UxBsZNcrsgPSqNebQW1DbncL3G9VBmmBuAyCbN61+A8/XBMMkDR1i11ZamqBp/pImkYuX7xlMWiRseBpVWo6GkWa0yzQFWLaYETydPjgjKX70y5qvJlc+tLE4OcyMwNno7j/HcYOf01HD4I6h0TuDwOtRbFJumZSoK253EaSTnWPfYISSJ39IaJPqNzSmRdfRQKYpuYIewp+zOIO7dk7EglK0tJk1H4hMmJdRL4exZshihKUil6Gq0hBJGytQbvRWHKgqhMKY9SZuqRCDGhzdHc8m3PGDHMUyoHu86QlBMaFprXr15y9eaKD598zPLslHq5oFL2KNucynoqFIOQx25E1rMYI6aSRCImMWwzRqSoizykionReYyVZnpJsCQ58CHgfKboOE9M4puTlCFFAQIEVFX4EKeKSkQAgpikFj1vVNUx0u2uefP6Ob/82U+4ev2U6EeqSoAhYy1a17TFrDTvFUpfY1TCWENwI9vdDZc3V3RuJIaETpagNSaqLK+r8C5M66mKiTqfM+8jWudrnIR6JlK9HK99oVVNlc7ffN9U3gGmDT7GlB3uM20GJpBDxlfMvQZSFXQhElJAR9Dhd0Pk4u9ypBRl+mawRr1jVRaaU0Ff5Z53nml2+7G3QvoMa6w9UgDHcSAEn79k3SpI+ziOxBioq5pFvaCp2mltoiQZMO1pGUbOn+XtasV9FYR3VRredfv7PPaLkoR37UO/WqJx6xnvPtME4pXfFRKzuBAZR4/zAbShti0npw9pW2nIDyFSZIzLnH0rJr/7Wv8AR4Ev5iF+DJ6+2/PLX/yU588+5ebyNQSPicXTLZKURkhKApy0zZK6ajnGxvOE5vhq0/d7yx63K7Kp7ANquiWD9SEnxx03N1dcXr6h73tO1hvW6w3tomWzOWFzupE4OUhiNH8/KidB/wCVjF/HISfhrQGsEJ+DOV2FsrnPHp1ElcY7l8vBB7ruwDCK5rB4UugslRhEyjIVjp5UCHxKHPbSw9HvdjCOMCtxKSXofbiV6Wsg5E1Oqg5HuTaDthWr3KdgjKHrpGnm+vqaly9fTspLi8ViUskpC1QJNLy/XUKNd5KLkkDMk5C5hGxJHsrP5TmO5y1NvRlj7hdRSk2c1LquqaqKk5MN3juGvuPp089wwbNar/jkG5/w8PEDHj16yEcffch/9V/9n+n7Ay9fvOBf/8//X37w3ZeMhz0pRoZhh/OKGAy1XeCco/NCSbNaozdr6soSnAOj0VhMLUZdVmus1rR1TTRGqFfXN5CEY1vVDSklUcPa7djtd/ggk2DoBypbUdmK07NTzs/PZZONgVQZ3H7L5z898OyXv+CTf/RHPPnoYz78+BssTrOsp4qCSGgjwaUyHLFNZLNQ8a1x+SvPglkyOU2B3wGk9DdxHA79lGSFUAQGpMzfti0+yBhdti0+J51JK1IIEzXEeUH8xfFajOvKipq0BPK1rekGN53jAU9dSzO0MgZF9r/QitrW0nOFoDQxiEyuNUI7LPr6hSoB+eUogYwBnSWYSyk8Zs1+LChDP3aMw8ByvWZ/EIOu1WrFOA7T3G7bJgfh0gC92mywQ0VKkdcvXqGUQaWR//7/9f/gv/qv/698+PVPUNYIgJIUKRW5XfH3KYCbyWtbyPPez31qvGd0bgp8Qv67NFYoQk4GQSo21zfb3KcVadsW5wMqU0fK4/thYBxHQXwroZ72fY8bR2leh4ma1d+85q//47/j01/+BBiIKXvxNEugQpkatOX07BRtLMF7bm6uWZ1spkD/5voF19eXLN684nJ3AxisqlgYhU2aphG54sGNmOzr048jTYIQEqOPDMlTW4vVCoIXKWAlFesY8z6g5w3Hv/lDo+S6aI0byT0Xx8Z8ICeDXq5xprv5nGT44CEodDDv5UfylT7Kkj3bN7/omJvVlb4xkD7Bi4sLUor0fc9+v2ccR66urm5Jrgr9cMlyuSKlonp1BKbmlbAQpEL7rorFbZGbtysWxphbe8fdx8xlYu8+R7n/vI9D3lO49xzdrczfV+mYU7byre84y28fKTHRMX2I7PYd+8OBfdfx+PEHXFw8ZLM+BRZT4vzbP9IMJ4+TOam1MPR7nj/7jH/1//5/ZiVNUUzUIGBH9ipKGdzq+4HHj59wfn7O+yVDdxOQuz/L71opYZkWVFwJmNf3e16+eM6zp09RStQRTzcnLJdLPvr46yLz7j1jPzIZKqc40V3hOL7elyr3G0sy0q3/3T6ZQnOYbO+mR0jSP0cpZPMujAJiMeOLaCUXUQCnJGV7n4jJoIwlGoVHkoPusKc7HBj7HhOF3gBMiUOCiTPsw1ETOiUpt4dsficbZeL6WihXL168oK7rSVGm+EPM1ZeGYZgmdnnOu4vChPLl4EAoWMeGaTurXiyXy1y+tZM6RkFXCpUqJVE5aJpmCpqGYZiSoXKbtVYqPGEgBsf52RofAtpotlev0cpz2F7x9LNf8J2/+hZEUdBx48jji4eMqzXbmxu2V9dUuqFdLKmXp4K4ZcnKGBxddyDFQN000iQbgjSK9z193zEOHYfDjuCcmA0Gafa0pqJtW3RV0Q3DTBJXEsGU5PwOtdx+enoq9JMU6X2PraWPox8Gfv69b/OLH/0N9XLNH/yn/5QPvvYNzh99QLU8kTGkIYmEkCAWSsqMmluq/H+nY6L6zBoR38V//X07YgLvfN4sdB6jBq0tw+CkKS5Gbm5u8MGTAFtVjPFo3lhkUmVjCkTvJwGE5CPaWrQxDH2fe4oUIYjpm4pC39FaC1qpDW5w2RVe/CIG71BGY5Ul5ObxkpwI1RBULmv7CClEaltJU3SKOJ+bsHNAOHSdGOeZCh8i3TBASizGkYvzR0I38p7DIdA0GnQWJjAabQ1t2/DBh4/YbTv2NwcO+y3/y7/+n3n04Yf88Z/+KQ8uHqN1jcKgVZ3BlURSCZ88PkRsVQFK6F7DiDV2gv+0jllWk3yuElUtdKwwjqQsO51S4nA4gBL1LZfpUSjFmB9fKY2leIRoiArfe3RUqCQyVn3fSfUE+Jf/w3/H2F+hY0fSUsGwlUZXFms2xBRFzSpGdjc3BC9KVOt1m9fYkaa2JCI322v+47f+jAcPP+BkdcbF6oLWNAwhYCpZL7ssra1QXHfDNCZNkuDcxoQmUEdpWNczKod+K5j6DR5JKkIpplw1kl4hn/2HnM8+SSiRKh9HfJZo9U7GV3IiUBC1IX2Fk4y39k317kB6/vsXra/z+xYwobxGzF4kVVWxWCymeTD31litVoxuZLuXCsZqvZr6rArRZXqtUhXjthTs/Pt91Nu5n8T8mN/vXVWQec/Wu5rH71Kj7r6Hu0nIF/1N/v7WTfccWqqjIbDfd7gQsFXDo/UJH3z4EVXVyroabyeC+RXe5wV+Tce7kpuIybH286ef8Rd/8Wf85Mc/xo09h/2O4AT8XjQrrNUYTabFil9UVVc0bZPX5/c5FCRzDInvPQUJrXyeF9LD3B32vH79gv32mhg9bWM4OTnl9OyCdrGSJElrAfMyk4AklZZCMy7JZBHmeV/WxT9oknH/m5hPnPcp9c056xMvgFKZIAl3Vnqyi1is3Ga1JlpzVLOT+lRupC4qTjn/m5cB82vLiSyl1uP7O6IA0gMRY6TrulsJRHnPczdRuD1RxnGcMsJSyZg/rihELRaLW3Kxxam0KGSU+6YkSk/DMEwSfYWfO09cbpfUj7J9MUaRDM2bsK1qlMqUsM5xrXbsTIc2iuB9phWIk/mibgjeMQ6JplphqgVVs6RerSm0p3EchYbiPT6r1fgY8fm89r00K/Zdjx/HrBwUIBb+fFlgykIMlOuljopaVVUJYgBZPUpjSCgvvTBpdLjBETjQ7/c8X66zmlfk0YcG064ARYgQtZlQ3pTev0T4RYdUTe5Hsu5Djn6vjhk9IcaA9wqtE0bLnE0pTX1IUk0UJ+8UsrkiCm3FVJNpvkugIbSgKAtl/tlSAudc6UScsQGRgNY602/k7RVqni4bLzMXcfJGnyDlyitEYpLPkmbVx6REsjYE2UCNkWsuYgxaAsBxIKWsrqVF0SopAVuMrSDPryLlq9SBEB3owO7mUnpRSPzxH//nrNan0t/RyONiHqexnLccgE7jV8UJ90pJ5+TpNhJqdGlYzU2jWR5Ver/0RNdRmaurjKym0sel8FF67UiSdCkiKXhct+Xy5Zab60suX39OXSWqCpQxmKqmqlvadkGM+aQlcXgvCabWmrppSUjPijY2J4SOv/nO9/ja1zseP/qA6okhLtbYWGNjRV03jD5Mho5x9NMarjS4LMBhlIw0rQrdNjuZp0REGufLP6YRWEoJ9+xtKu9bX8zp+FLwwqc8L3wEZO0MMRxV1qKM+xQUKWRPmTAyBs0YbO7LCajfBTD473nch/bfDZK/bO2873F30dk49bnIXjkMw8QYaJrmFotAU8QqImawWGMEKFBHUERijfK/28d9NKe7CUP5XF/22e47F1+UiN29/7ve0/w+77pfaSy+733ffbzzQWT/Q8CHyGKxom5amuyOLk3zvznfqNvvcbp1ijuO5qwpX0eRGz/s9/zwh9/jl7/4Oa9fvSD4UcBvLY3ppsrjQZHpr7Lm6CxSIpWvL0qa8joz2z9Ttj9Xx4U8s4HEpDYmJ5YI+x2Hw56bmytUirRNw3K5YL1as8zsmphj6RhFTfXWO/mCStb7HO+dZHxZaeRLeYDveF9T0JhP0DwBEQ5ZutVv4AqX2QdC8JDdCY1S+IIQZOlaYy1VMtluRFDKefUjpYjS0h9wS5Gh0I3uZM2l9FkCfpMHSEIG3tzJuqoEdV8ul1PWt1gsqKqKlBJd101JATAhiSVxWK1WLBYLlsslbdtOtKpS4ppfj0KdKknIcrmcHLaLOV6Rzp0axXOSUoL78txeG6wRHjTRoBD0dnQD+8M+m34pKmuOCV9KEK5lQ9aazeoR9aKlalqqtiElcEFkKruuk2unHE4d9cnHcRRKRaaR+VHMu2KMaJV55DlRqbJTdKFoFBS7aZqsoLWiKQ3u+fEmIf033uNCpDJCjUgp8OqzXxCcuMafrFecNJKg9cFDbFBGZ0d0N03iv0/VQSklyZw0CXzBvPj9O1IUtRVx8s7yrwGi1nm+S+AfUwItYyzECAFZBFNEKTvNh8pajLEoyCpQpX8qoLSaZJVT8KgU0QVETCKBnVUcICcbMft2CNXouAHL2iSUqQS5wpmbcKNwtudHVAbvIwoniQvijXFydkq7aDn4kb7bMwwHmsWCum5p2gVFM71tLX7sQBuCtkSfPRDiSN1qvItcv3zGj777HU4WCz782iecP3hCu2gmRbyElQSB4/pdQAYffCFViejErD+kIP26XIcMVAhIIL/rfC18TFn2Nzd2K5W5/0ILUVmed1FrVPJ4t6PbveBvvvvX/OC73+brH12gbY2xFVXTYpuWZrFktTpht+slyNCWkCLNYinN2yGgo8K5SEwDippat4Qu8t0//3P2r67pv/mHLKuacOZpmiVVWBxlehE/j5QCxohpWmTmOaQgVjKmYow0STZKreV6G5v9XLK6jdRsyr5SQDAJTMmJUZxcdO/SgAvQUBKyclseqHl5SAnGpBl8ZBzErd0lMfPy3hHCiA8OHyNES/KQvCfEniEojBczxuTkc3yV84wSMN9nqFp+vy84/6Jj3ic5px3NqUi73Y59VmIrao1lL5Z9dhS39TEQDnussVR1laU/iwyuvvf9zcHLu7e/6+eUjpLe71Oluc8d/F3n6S7len7bvO/z/gQPmNZOuW1efSqPU0rR9SO7fUeMkXax4OLhY9p2gbW1mInm+aR+4/vhFLkjO4GMBaNNBqtyE3UK7LaX/OLnP+ff/pt/jRsHYqabV1WFrS2VtlSmwRotcWoKGXNQoANKy374fvileD1JyCzsDXTK/XOypiml8L6nH/ZcX11xdXnJ0A+QPE8eP+Lk5ITN5gSbhU9ipsuW6zONl5wMlwTkLmD9vsdv2fSzDPC3M9xycWOUTDcE6SXYX13S3VzSbS+5evOavt/i3UCMbmaYB8lH3NAz+JE+jdjFGrQRGdoY0UBlJKC2M3dgYEo0KmtlU4sRl5VwCupYkgxjK1brza0JXBKF5VJcEktANNf4N8ZMSUCMkeVywVyP+26FoZQ7h8x3Ls8n/hTm1oJbEoqSkJhZuauY5M3f41EzvKFul6gkA370CZRGactitZyQShBlrkW7oK4rKmNpbUVT1SzblsN+z/awZbff01+/YRxEznIYeg6HbqoiyXu1GHNUW0rZ/EzUUgTJPT05lfOeF7QwGdjIuR7dSHSe/f7A6ck4TQTvPQFZoAyJoXN0vXA+dWWxdUO9WNBYw/71M4b9DSk6/uif/gmnDx7TLNeCdKvCa4zvuRD878e7jsPhMHE979IS+r4HJQF9zHKcCoSKpI6iBkqbsjxkze44jXsxmT4izELNkyTUOem/8iFBnsNCmzpWBlGitgbHwGNq0J42XMGcqyykUO47/yxVZabgvG0WOC8KNCF6UJqY4NAdpDQNVNkTxgeV5XlznwMJ7wPX20uU0pxsTlCbxPXllugDZ6cn/Nv/5V/z9W/+AX/0f/gn/Gf/7L9A25qk4GZ/g83nbhyHjKqZrDAikr/lvLlMiQIYR8fVVcRYw5ivg3OOrusmTxxtLKMfMamcqwFtqwlg0cpktapEcgNow9XlK77/7W/x5vlnqOT4g08eY61is1mzWCypF2tAekz2O1GuqqoKZStiVFgrxn0Ht2e322e6ZKA7dFS2ARQqJJ794jP8GNDa8Ad/9EecnF6wTAatckKaN1Q3BpK1aB3pbnYzemotFQ9KoCmggNVQNUZk0lWkqSGMUqWpcqBZElOh4ErzOgFCEvqb0cI9V7mqkQFu2cRjkGA0V19DEn+mmBIuBA5eMbogQWw0UzIHSDUjr3td19MeOuq2oV4uMM5inaPrBwwGE3Py+BU95sHqHIScH/dRg96VjNwNtueBtbWWrjtwOOy5vLxktVqxXC7ZbDa3nlMSjwWphRUCpnnvOXQd0E3zYrlcYjgGdO+qZt93lOs7KbXdqUTcXYvuJhW/ynFf1eHu39/1PuWhtx/vnMMYQ13XeO/Z7XYcDh2jg3a5ZL0+4Wtf+/pRslz4KTBVDH/Tx20lMq006IRzPaiYzVg13/32t/nJj3/MD3/wQ7Y3N8KmSQnQWFVhdYWtaqqqwRpRe6pJHIYeZQyPHj+hqlu0ssT05Z+zYJPCOoGkEsH3KGtQWoGKvHj2GYduz+AGAbKV4eTigq99/BFWSf8pmVIbZ59xeo3yyWeAiVJS2Z3Hsb8TdKlbx6xUPKe+lMW2UCHg7UkmtArPOAx0nQSq3f7AMPSC4kQp9SuOWa/WpWQnKF2KIVMRUkbjcxlT66lycWuia8nyRBtT5MCKvLXSmrZthZpT19RNeyujLyd/HEeur6+nhuvS81FM7kqyIMH/eOvxZfOvqoq+74+qTPcshncXyxJg3+VulmCpVAxKkF4WLWsNTVtP5d2YEsqITGSd3b51CcZimgIzlaBSZkra6FVu0nUMfT8lNsE7qUooBMkuDfpFZYmUE40jFS4lxdD3FPO01lqauiHERFX18hkyWlgSl6qq2aw3ksSNA24Ys+OtiAEYLY2/xIgfRpTqUJWcr5effcpiuaLvOz74+jcxC0jREFFY2wgdIXFvufvXebxPuf+reJRkufilzCl93ntBczNFSapYb9MDTNadL88HRd46ykKrkTleqJkpoZPMR5QoK6HV9B7unVezOaXzehGVmuhHISPq87k3rxIKPStRqO8xysZT2YaUsvt2Au8cfSdIXkyaummoqwqlKsbeM0lNI+PaGMN+e0PTtoAoV718dcnTzz4jJnj5+pJPvvkHnJyes+sdy+Vymrvl/ErtgazSkm5t4QlIKTC6iPJKZKX7nnGUiqgIXARi9PTDQNMIldP5QKXyOdKaiEcjnicmOf7mez/h8tVz3rx6jh8PGBVBaVarM5Qx+BhR3qN1ll8Eioqc8mIQejjscKPLFDRHSgGtkT6soUcpTcwJ0WG/59Xr1zw+7KmbJdYOKGWoKrmeISRIWvp+hoiPwq0WJW43JZxSUBDp86Q0fpCmd6U0kUDwkoB4Ky7nBQxJfh70iYikiqCUqAnKIiI0PaUE1EkRkdxVMSPeUimJMeKjNODHpFDGMjjP4EYGN9INPWNwk59L2W+8k75A411uABcENWqpRH1Vj/v6FeZB79214X2f8+5jU0rZK+NmEqZYraRKPg+8y2vHdNy/m6aZRF6GbHJb9vu6rrGzRGGe/JTnfdd7n1Od58e7gr77KiFfdn7ue653JRXvqoTMX2Pu4zGO4ySEo5Ti4uIBq/WadrE89syhKGTO/CySjP9Wkg05UpmgSvakw2HPz37+t3znr/6KVy9f0fc9KVNjydcmaLE5iDoRjIjTGCXeNqPzKGM5Pz/Plc4vGa/p+D5ikh4hUS1LaKMYXUc/dOwPO4ahw7mBFAKnJyfUlaz/laklAUpp6jlWRzwuv0AZW3kMqvmfvrha+K7j15pkfGFQlP90fGNH/4u3P2kxSpM/lSBEqDQiW9sPQy4TC71gUvUqQYWAQZn2kDXbY5iSGZUTDF1O1nTSsjxXLmvnHEOQV4SfbzKaJ4lGQ94p8oZ0LDn5TFWS5jvR20ZlNq9WBJ8HCwrvMqc2KyikzP+z1jKO47RolQWuTNwS6JeGnLnaxVEBSwK5Ujnph0EmA9wKjARtEUUYbeR5TGWp6pp2sWCxXE6LIzA1L/vBiU9GTAy+p3cdo+8Z/YgbBrwbJyk0m9G8Uq0o52zKmiXKyexx+df3fTYAq6hnTfDWVoJSq9xgl8QlfNG2XJyf0fc9u60iOMfg/JRkFQJ+DJGYRqKCKo/d69ev+LwRetrp2TlrIYuTkvSolLf46z3ue8aSgP/+HfOxOTe3EiRYxr4p8pQFNZk3muks0HAnsIhRqEtokVyed1PEBDE3DaOO/Ne5LO78/ZU1IQSRUcSIuk9U4Si/m+domXPzueRclxPSoggn89yYSqSwkyBDwXlGhtyTZaWyam0uxecAM6PqWhmUkupNXS+pakH6Rzfy5vIN/Tjyox//hMN+x4cffUwXFA8ePuDk5IS6Nng3TNRQozXjMBDvJEpyTnV2OheN+v1+P1Vc27YmBIcPmmHoxFCQaqrOphiIXhGiQ0UHwRH7HT/+wXe5vnyFNYm2EplYlcQk1CfwMaG8mJWp3DAPWvbrJO6yLic68l6jbLK6mHa5Y8IaA/0wcH11JT1ew0hVjShl8zovpqPG1CJEEDwo6b3TMU2qZxN6JyRJcmaWXzsSkiEmqQx55JpKwqDkvOrjuIy5WgFHRTUZ37nwliAlqcSAJCNlbsSoCbFIPsu4HEfH6D2jdwxuxAU/JRmFgjp9ZWpxiDEnMiKC8FU93oX6340/3kU9elcycpdClFLKpnwdMQbOzs5YLBa3VObmrzXthyHQ1HXemwXAGIZBJOwHQZdTroLermSkWRWgMBPmr3G8ZnfFYu5+/vsCwC/7+/x+83MxPyeFY1Jkg9PxQVmQYwK/p9eR2CRNbBSpZhuapuXi4gHL1RpTWUn8KaW9SXKB9FtMLma4/kSVdm7k8vIN3/nOt/nxj34sfWH5+gcnc84aQ3CSZBiT97ukSSqLn4SANZbN5oS5lwvch1+Ws85EW5L7CD3Ku4F+3LPdXvPmzWuWqwVaK4yuOdmcsFqtMdoSnZ+A23RLJHN2wRI5piqvfPSoYjYu5pS5Lzt+83SpeByYxe7o7lspuexUqkoREwM6elRwpDAQwijPoBRgSFEJtzuCDxDI1KZczUgpEAL0LuC9NCZiLFiDNnbiS5bGHlmc46QQ5b2f+iRWmzWLZiElcaXxIaIRvwdlNE1VZyRMNsBSyu6HfuJwKuDQdaK04z2xiUdVqnHEeVECSc5j6gZCJDhH570gk23Ler2ibduMXgkH3ebPElOaFAu01vR9jw+Bru8BoXrUdc1qvZ4WiPI4YzRN27BYLlln5KZuGlKKhKkq4zBKo2JkGA9cXV6xu7nh6s0Vu902B19KfEBCQJGojFDQyjjwQVRPRDaTbOBF9qoolAPxQQi530UbQ9Mv8M6TfEAnRfBC9bBVxcVmzTe/9oR//if/GX134PWrl7x4/oLPPn3Gy25Pd+i42t2grMnKDi2VUpB7cypT8+bzZ4z7EYPlj//5/4lqvUJXhhBGkrI5SP27H2pSwpzDBG/98Ht5jOOxYgfIAp3HXtu2UrWMnpAVoGJKOO+E957nZ6nCzb+geFwkARZSyg12eaMj06lKAKvU1NBcqEKlcpgyNz+RcMOIV7mSUVUwjAQSPr+m0AzrKfE+Jvpa1o+xJyVREtFaFIGsaWiqBu8GEVDIn3/ohB5pjHB028ay33c8e/oUTcpzzxFC4tnTZ/S9KKwpwBqNIvH5p7/gZz/5sXhytEv++b/4F3zzm9/km9/8A5SCupL327QL3rx8SQyB07Mznj19hnMjKSVWqzWfP/2cy8tLAoq+76mrivPzc0wKhPWapmkJMXGIoLUFIjZ6tDVoq+n7PX44cPX6Jf/Tv/zvOTtdiwqUTpws1qyWLYuFPIetG6ytqZsFzieUspiqZrfbU9U1lW0JMbBarrKwRc9i0dD3kXHop6bwYkiaoiCm292WYRzphx5T9Zi6Bqfypg7BC5oq8XYiZenSqqpglnxVVStiFcGxaRvcIGuR8wNUNUSN8oGqMqRw3IRjkOQy+JiTJtnbtIq3AorgRT3PmGwoV6oco8PkMe2cw4/iT+Kcy8pGRyEQZtVA8tgvDuA+hKzmlvBZilLFry6CcbeCXwLhOah2t4e0JHtzQG7eczE/Cr2n6zqurq5YrZYslwtOTk4moK6aqQFN7yF4BufZ7fdoZSZQcLFc0K7XaAXej1y/uWK/37Pf76eeS1GHjJkGLEmmfIbbSdTdpOpuglTG3n3n6b7nuHvcrXbcOs/l9zTnnshYFaz4OKa1PtK5CnvicOjFQd3WPHnykEdPnqCNUC9TAh9clrg+AtG/S4esszV/9h//N370ox/yox/9DY2pUQ4Ou302xpRkUGFwQXo5lEm5j0sq6EY3GDtgTKZSZU+iwuj4os8v5zZXI2Jgt9/y/e/9NQ8fXpBSgBTYrFZsTs5YLDekEKRuHQVE8S5T6RCwPEQ/owHLtS6UtslPTeerPEs0pn3qPY7fKF2q+Bsp5oJg6pik5eysZPQqgUlyu1Zg80IsrpuaUWsIhXpVnlmqBNHnkhAiQxvGgTEq9r2n63qhMihNZeuMNpAnuZfydqY0lYVruVxOpdI6m9cJzcjSNiItazICOVeTENnWLJ3b97cma2XnsmVpej1fTH6c0I183vC0VjRtS93UGKMZhoH9fg/Iwto0bU5gjn0dZdGZ+KDZxwN4C30tfOumqaVZTYvJlnceEuz3O/EY2e8Y+k6oUcDQifTsMPR0/YEYPSlBDGpyLzdGUVsjSUZK4kmRogTvSaNcdgfOzt4xCs1AIVUpbfRE1RIKQaLMSaMtpIgbBn7xs5/hugNuv+ejDx6TUmLdNjw8P8v0G003dOzdgI8BFyOn2aiwbRc0zYLtvmd7fcXP//anPPz461w8+YDV+Vnmixak4de7AE6pd7oPyfj9O+7jQhdllvlGSZJm7CqP0/kxp1kVZC/NFhmVskiD1tOmJ9OyoGTH57jlQZNylStGlotWjOdiwI8OVKbZKyYJy7uUBEmCctVUqckbQlBsy9nZBSqMPHv1nM3GT/QJrTUaWT+0NTjnMcZy8eABeM/V1SX73Y5hkGrk/nBgu91RVRVuGAjO8ejijOura3b7A4fra77/l3/Jz374N7RtS1PXuRG1pm5qtlfXeOeo6nqidJSqkcsS3Ifs/m2NpWkb/mO7YL1esViucDHwzX/0j3n46DEnJ2tOVwuSd/SHHT/58d9kryLPoq0Zx4GUHMtFw2EcCSnSjSP1MtL4iK2EohUxmCrRGCu0oMHRHeQc+SCgz+GwBxVIKaB0oq7qDM4IIEQWlHCjBIqL1UgdPSHlNScPkBglwTO5QiS5ZSSk4pMgG6r1gUobaqOhrqiNJqTEbhik6mGFKuq8yDPHEIRmWhLPJAliERIpTZoKJlBLIRWUsg4oRLTA5+q2Gz3eS8ISQsIkhQuBwTkGP+CiI6TsZ5ID4dGNAioZkWsenSP60jT91ZWwLcc8IL47B6f14E6wXOb7Lar21JQva9Fud5OVDgfWa/G+aJqWGIv/hew/ZupRlL0o+sTQjbx89oab3YG6alhv1nz08QcsljVVpVEaNpsTkSJGKFRdt+fQSdxTVRZrxQxQaIkpq6HZqUqQYlngoMRL+ZMD8UiDQWIGMa7Tb52Lt7+X83m7Z2iKyRCKp576JHLQSU4wMoCcSBhbEbwY6263B8bBobXl0YOPOL94SNsuMbohYYg54TW6ojQ1H9/Nr5skdVfyoMSNt38PMeQ5aEhZPn0cB/7Dt/6M733vr3nx4jlhGDnEfppr8oZ1lh6XPccYg6kMtpaYTecxUzeOZrHgwcUFQqH0QvWlnG95LxO5A7DGEMPIOAh4WirOtrZUTUNT15ydX7DebLBVNQFu0rgtn33CR1MiJp8Tw9sGqXO6/l1anrh/53cX3w8Q/QdNMm5lzLfez903d0/GNrtVoXKjDdP3u8+dcrm53L8U9VKSno7oHEOAvh+ltI5CGQPMUY+UE42Y+0DCdMKrqqZpWtq2oa6bSS1C0FU1BTMFDZ33UBT0A26XaNv22MuhClqVN/fidWFyFUKMoJCm7RnyOqd6+OBRXnpJjlJr8ppF4haYDJzmqlTz3oyUimdIwimhcimluLm+Yb/fst/t6A/7qWw89gMhiixwcQgXqoFQ0uS8aOrKZKqUJBLCCJHS3XStM7IYoySfpU9DLrpc5xAjxXujSElK4uHZXl9jgUVlOd0sWS+XrJYLxiEyjFI1ud5v6XeBkKJQJTiqlRRE2I0Db16/5vL1axabDevzU8p0l/X37770HTe48vvsj7/nCca8zH+X3hBjpLSiFcqfNKhKf9CExhTn5xk1ZFokpdIusqTpiL6YiWOqMAgvdk6Vmosy1MpMycuiaeQCxSQ7bDnuoIPz7wUlLdrZxlhZg1JCR0VTt1TZjd5nKqW1AZBGZEHMLGPw0+OHfhCpx6mXSgAOrcUBN3hJ7DebNevVghQj2+vXvHn+AqUkYS+oadNkpMqJJvpEI8znve+7Sbltfzj2gxljCFmkYrFclhY1tjdXrFcL1m2Fip4w9Fy+eCZynzFQNbWsD1E8MJpQoU1ExUSFNEInFUgqZF8TWTeEKidBtVwPuSY+eIwRta9EpKqrKcmY0LZ4rLqWQD3EiI5RPJmUJuRKQ0pSXTw6iuf9JUnApZUixISPCtcr2qqSgCBGQnBEovisZDnZQtuLsciXSwJRkoyk8muUsSKRo1Tv03FsCf86HaWQvexPISRsTgTHvGf42TX0IeTPLopgVb7epaKhsqT3V/24r2/gi463151C2S6xQkliD5keGFgs1rnSUFGohOWx8wglZXDEjSOXl5e8enWNrWrW+45m0XLilyyWDYtlRVXV2Wo4ZhqR0IllPZPAL4SZCpkqz8/0morj/qiOXPHpe8pgVfmoKd1Gq+8/V/OE5fh8U6x1RGamCGteOZ7zUkSNzuWvQGVr2nbJ6ekFm825JGsF7MmTQd9hCPxmtsLb5+H4WWPe40WB8ub6ipevnvM3P/w+L549Y7e7EQqic3ldyvuIgpRmVDc1S3ozTVyIE9Lnulwu5bylyNsMiZJtyZmW3taecdhzs72eAOLNZsNiuaTNPmh1XQvAnWJuQi/JYBSmeEnK7wyBMiaKRPOtMTK75mXsvR3H33/8Fhy/7x631cEL0qjI+usxZ+zqmFWnmPsrUjZ5KyftrZxG5Q020o89hzGwP+TgPXNWQoiTAsvRdj1MNCnJ6CQrbdujpGwZOCHEqTHSWkuTB856vWaz2WCtnUqjpfmrJBht28p7FeLxLa+NUn2oqorFcskwCjXi6uoKU1W0i5aLiwtOT0+n4Kjr+8yNlorE8ZyqKTMFJkOhUsmYN5MdDodpwWvbZkpOxnFku72RRupxZOy7Y6/HME5tKeU566qmrqosMaolOSQRvcM7R0hZRSiWDdRNyYTRBmVkY48xEn2kYCQ+BNzocU4SBqUMMQWKzr9zgf2h48Wr16QEbSuUr5RqkjLoqmaIAW+gK70pUjYR5DUErNE479heX/Li+VNOLs549MGTO4nB26jQvSP+HRvfl22Iv+r9virHnB4FTEpnUBquJUEoDbwpJQKiZlZ4oN1wVEIq43aaj0nMI40xeX2WxTSQubK2QmlLiGFK6uF4DYP3JFsTMm2xOIuXPgZpAEd85uLcw+do5jn9nIQ2VZdKgfeMIaJVVrXTmr4fiFEkrJuFIIjWKCq7IsWacRjZbnc8/fTTrKIXqG3Fyckpi8WKtl3w+eef48YBSNSV5uL8jJP1mme/fDo1WGqtSdaw3KxZLRb87Gc/48njJ9TWsr254XAY0UZT2Sqb08l10G0zPd4YoSqlccCRqNsln/38p/z8Zz/msL3B9ztOVguePHrA//FP/phffn7Dq9dv0HVDXVfUtZz31WqFqVqa1YL1eoNz0mtgTEW7XIlJoq0ZxoCtKowWdaw+J1qFekZeP5aLBa9fX7Lb7sugkOpBocRMoETud0vkQC5Nlad5lUyFOP1e1rPoHX03cn3Y0VxcSEXIKPowEoPCZ9WWAix55/Gu+CAZUkElUyKQvReY9SelY7BYxpS/RYUR4MV7MU5URkxF+6HH+QLwxGmOuZxgDX1P3TY47xnGEdE0UKjw1UUz7lYt7qsmftFxnLNpAuRAqJyXl5dst9tJRv709HSqXpT5PadoldcTyl7E+56XL5/y9OlrtLa0yxXejTx68pCLB2d8+OFjhGWtUMqy2ZwSoydEl+OIAdcPdP3AYtFSWek9HHqHUgUMs7IfJqSaNwNd734/NvHqW7ffV+HJZ2/6/e19rezCaiaAAhQMpqj7AYduYHuzYxwdq9WaDz76Gqv1hrpeEjNl53djBN5NrCQz0AZIIhjkfc93v/uX/Nl//I88e/YpikDKkt5u8FN/ldZWTHxTImoBmVIU8Y4QIsZKvyuA0nqirpa1QRVFK5Wm9yWhbySmwIuXn+b+Vk/f91Nf8MNHj2jbhSQ0eYyW/iyVOPYrI2O9gC/FILoAzgWYniuawt8/hvktSdjezZaPlYQSLESiIENuwA0dQ99xOOw5HPZ0fUffS0N14bFprY+NxBlxkBNXlB+OJ09n+oTShnH0k1ttjClzYDXaVMQkCYa1FdpU+JAy6qa5uDinrhu01nz++VMuLy8Zsjtw6bsoTtqXl5fs93sWC+F1zqsG5agrO1GWyjkoAVBd15LYkFiuVvSZO10aMkslYrFYUNe3E4NbfPX882KxmJKou9x2OVeCyFxfX9P33UTjKvKKRjFxUlNMHEO+svnLtSwGaJU1ucE+q0blhCeBmIvNk8XSxA2lPCVIDhASjD5SxyhqLcbSLtfUQTb07c0NPkZG59gdDmz3B1brgbptqZuGzeYEXVVQaerVgu1hz/5wAMC5gd3Wc9juiFgGL/S255/9kvMHZzz58AmL80cEwRv/fqP/9yxx+FWOGBwpigoR5CqjUhTfGjeOuNFRV5UEThldHihVrrIQzzjCIEhQFDlYExPCbKkmX4dpXcnzylhDcl7M4WIgjqME1UoxkBNgC97I+I0aujBSaak0KB9p2hZRsZO+IG0qikRsCAHRVnf0w40kxblpuDYKrWvqeoMxdU6eAinscG4AKmLYE6Mi+kBj4M2LV4QgKktNK+hn3x948+aNSJ6iGAfHUCcuL/eEEDi5OOf6+kboYEmx70fU1ZbD4DHVguubAwkY+kE2wajwRMaoMRGZywtDDIqYNAmDriuaRU3bVljtMEhiuFk3+FZzcX7B1772Nf72pz9nf+hJPuHjgIkJHxJDVLx69gZ3Gkhek9LA+YMLlssF2sjED87jhkRj1nRhYIwjqlIYq7BBoQJUCYILqENHMg1dt2W3u0HbhpQSVV3R1jWqqgFD8pE4BrwGpbP5VdJTZdRWWWc+FgniStDA6KEv4zPRJbi5vKauKtabNd5J4hJx2LrG+YJIR6wVGhYxEmNROiNveQIz+ynBEH2BMp4LS0XEQLJ/i1c4PzLGkRQMPlTE0BJdQgePDo4wOnRIKBdIo0M1DTokcJ5ut6O2TfaE+Wofc0bA/Hv5+T60fn4fCaKOf7u+vuZwOLDdbjk/P2exWLBYLDjSjo/PUQKzsn+X562sZrNu+frHH/DZZ58xjoCCp58/5XDouXyzpd8HLi7WLJcLVqsFLhRnZkvTrmnaFSkb1naHPX0cJ7BMGBPTGZhC/hKu36WNHSu0x16xLz6Pb1eG7m0gz/ebEWfQ1uJCxA2iOrc7dKyWa84uHvHg4iFNK87dzjmsqbK6kRefst9oujF/rbtx6By5d+x2Nzx79jn/47/6V+y2Nwx9h3c9TWWJ2YRPehwy6pQrqEmTpbKR2yn7QZrArUPfkxQ8ePCARdvmavf8/SUgcui2jGPPOPZ0/Q1EsNry9a9/neVyia0q8TgK/laioMscL/2FeR+Uni2mBKMcc9nj+XMAUxz6dz1+C0nGPVoB6ogIyBA+IsshOkY30A8dXben7zsxvYvHbLgMDVM63qPCJCPN2DEHqbcavSTJ0MagTJ6E2cTLhYxsoqiaelJ1aptWNmTn4HDA2oq6HsXtOlcG+r7n5uaGruumKsThcOBwOEyZo9bS7Hx1dTVLApLw7WaNaLfkMHOpDaQ3hF4SqrkfRjl/BRnzXrLdwlcv9yvJTxlUdV0fr0xeOI3WkO/jvaC9wzBQVVaoAwpUipOreNM0hFiaF7NJYbnKJcDjqHqNUlmu7kjnkpN+B7lL5ZqRNaQjITnSdj9JD282J4zjwNBrtNmDEtlN5zwvXr4ipcTh0GFVzeAC/TgyDLJwlx6UmD05VC5lpuhRKVEbzfb6kpurS/a7a5qTc5K2JI6b9PsqLPw6Eovfh+TE5+ba8jVHTGKMBC/O2UUVp4zTuXLaHGUWjrsizZJooTFmtHI278sh46tQmlKmrYhjL8YwqWnkKqiPAZ2kkRaVJZPJPHuVUDqixa4tI+Py/PnVpuSCLGYRIyijWazX+ODAGExVkVTE+UhIYzbyE1S8rioePLwghIRC+PX9sAcSdV3hnIhchBDZ7faktCelWZUlJ+k+J84xgbUVzmeFr6pizMpeSgsNJ2AwCkzU0vMUlajmNLU4kBuD0Ykw+uk8GiPNq9vtjv1hoB9EwAINbV1hsxeIc47tdkeMifXZhSSRoyRN1tRoXaFVi6pKUJ4I3hG9iD2omM/96CBE1qdrFEqoQcoSUZiUUMYcKUopo3sodMo8dbJWfKYeGWOO5yocFcxG51HqaLQXUxYxy8lZiEHWaBOmpBZV/E7KOjj3NShmgKUPMApKHY4AjFZHCV2UoMRulOcXmk2uzoTcPxTCZCaYYvk9TLSx4AXw8T4I8KZ/k4Hdr/d415r7ZWtx2VvnSH1Kie12O+3RxQC37G1pNn7mict9/R5KKRZtw4cfPGa5aNjuOvrugDE1ZnsgRYM1rxldz8lmhfdnLBaZem0U1hhZXxDTt+BLI7jMA5/VKK297Q0yBxDv+8zzBKncNv9+/CwZPb9zHu/SZki5P8PYIwAYIv04ThSpzeaUk80py9WaupHm7mwgIH1zeX2VN/CFl+3XfMzPwfErkdfLfJc3b17y9PNP+cEPvs/LF89EXCbTj7xzmSrlIc2UCoMY9EUSwQcUGqPlWlprSUqAVGvtVCFfrVb5/Isfj84y3BL3dhwOO0bX41yPtYraNizq5XGMGkOcVdPLZ5Mhk8/zrdtL/H3/Sb9vfN9NNsuefV/Set/xG0wyZFDddsQAueWYRaa8iJZSVQheGoq7PfvDjq474Nwo3P/8+Mymyk3P0vjtkzRRFg7a0b1bFliVG4lVqSYECBn9l0ZHw3qxYb0WTqbSWiRpS0P2OE60oA8eP2GxWDAMA13X0XXdlABcX19PjaVV3mB3ux2ffvopV1dXRy400DRSsbi4uGCz2UwoyqHr8gaJuH8nyYiPijyCzsYQ8cpPcqCHw4G+7+m6buq/qKrcpD5zAJ/47/m9lCCiqkqzmbidihtyTsjcOCUYTdMwimnkRBlL8ciLJpd2c34xu/6zRscJmRZ6XMo9FyHmJCUnGsF5DsNIVQst7eT0lEOuRlR1JcpNmef99Nkzuq7jZHPDarGZtOb3Q8cQxDOhaRpIkeA8KSSsscR+xChYtjX77TU3V2+4ub7k9NFHpKoiac27FKa+rMT4ruPuIvH7epT5NffIKOPvSBtRt9Qt4Pbip+4sqvNNtpR+5xTAOY2p3H6X+lDGv7X2aFSWCk9fanWSrETpMdKKYRiR/gFDrbPUYlA457H26OybbusFytw1mvXphldvXlMbg20XQhELjuQjRo0YLUIJTdPw8cdfkx6xmADD/lBhrcjIXl9v5XlDpO/3k0zmer2anRtJQkSrP3F21uKdQ6FYLBZCk8x0otE5TJJqMqamamx2aHdUtpZG6ezfMboeN0o1crVacTj0dP1z6rrKMqtj9gpZYq2mbRuRsdyLnvsf/tEfZVntjpcvX7LZnNI2K9rGoJUX49QUGboOP4jppk4w9lLxSgHOTk8xxmYakacIQ5R+FamQSpJkVZY2DrIWFVpVioUam5WnZuPDeyeUFEoSe0zoalsRkyQpyh4bJauqmtTLZG07CgvMA92ydotQQLglRT6XR5bGXancpzzOp+Qij/Hy3CFI0hPy7SKh7gA10RPfVxnmd/GYn795Bf6L1tD5/Y6fXYRZLi8v8d5TVRWnp6fCk59dH3mq25WS+WuU19YIDfqjDz/g7PSErhu4udlRVUuM6olBEzz0/Y796RrvEw8fPaCuK2wyGfxMoMHqiuUie3Uhfh0hjNN1lj38bSGMt4PNHG+p26pa91PMBGR7J1VmHnSS110lqPcwjhy6IVfy4PGjDzI9qpkqsHIWc7ynssHdr/n4VfdRCcSFjnRE7h2ffvpz/uYH3+fP/+zPMEblfkDpOynO7tEHRFkvn6t4jGODi6IiZ6Wq0bSikOeDiFiMzlHXTaa1Z4ZHfrs+iFXDdnvFMMp1j8mzXq9YLzesl6fINZWYqTBXypcwgXLfV+lbnf29nJuy7906H7N5ku48Zg4Gvm+CAb+1noy7Zar5z6LwFJwjuJGx27Pbbdltt2y3N9xstyTnIPhp0JeTHZOUqX0AHwwhKIKX+xitscZiTBITNueF2z8GrDWTprW19YRwP/7gI7mAMfHm8g0kQerbtsHYmphR8u985ztT/0Ypsxpj2O/3bLfbKbDf7/e8fv2aN2/e8Pnnn09N4lVVkXLSZIxhvV5zcXGBUorD4SDNfYM0hHstqlI+HDeL4qS5XK4ks42R6+vraUEp1KlxHKdKSmnmFHWLbhpYFxcXkwHafr+fjJ2qqqJtGtqmFvR0OLqRh3T0OwAmWc2yEFmjKVQp50ZplsrN7S5viCC9GElJAB+I6CRSwwqRsZ0mUYIYEt5HumFgtV5zcrLBVpax20MMWAX94EhJUTeiGrWwFVFB45dsDztRm9HSrEUUZav+cEBFkX1r6gY3jnTbK55/+kv+4I/+mKAmT8bfyPFF6NlX8bjbc1TmTVkoBTC47Sw6Fzcov5fzUMQP5glF2fRLxW7e1FyewxgzJTJlXmgtqkS6vu3kPT/nehIxsCgV0cZiUNK/YSWwVUoSjdIMul6vJ0EH7z3WCOVwebbh5U9+xAP9gLOHjzDGMg4jwQd0cjQW+r7j9WvpLyqgQQghI1kVDx8+5NWrN3gnSPzDh4+5ubkRN93RTZXKlGDRriYxi+VyidXHBve6rqfPaq1wvmNIqGRxg+P8/IJ/9Id/wI9+8H1cPxAcsz4AQ11XXO+6vF4ETjZrlJYqj7GWN5ev2B+2jG7gG598A5TQlN5cvmZ9coKtKpaLNSebc7S2BB/o/A6VIsGN3Lx+TQoeUsQQpWndC2LXDyOxmOu5QErm2NQds0cKCRcDRJMbMKV6MKfRlYbH1Wol5lp5nIgqHRP6L7Kwci0fP3qcm84PU9GiSHaWajRIglJ48UV4oxzS/C2VrpJ0FFAohDABLjoV8Y6EzwZ7xXtB+pmOCbrPa2ypaKM01faGi/OHxJgmhcGv4jEHDeD9q8lw7IFpmoY3b15PlOCHDx9Obt53g6siJVt+nwdmt147WjGfVPBP/tM/YhwcP/vpzznsHScnD1itTvAugFrhXKQ7eC4vb9hs1iLYsFnRNNLHqCtFDFLK0tpweno6iVx0/Z79fjeJsxSp3KZp3go259XfeTxwH1gz54XMA81p3QSKEAJa4WJgv9/TDwOHfYeuGh4/fsLXv/4NqqrNgHHCzpLv25dK1o7f5lFAaZN7O69vrvj3/+7f8K0/+9+4ub4mxsAwSA+vUZq+c7hxJAbpB9Vo6SFVGl2Z3Lyu8SFg8j+FYrfbTuqU5foU0FeVGo+K7PeXdF1m64QRlQLr5YKHDx9kivBREGBeoZqL/EiSQcFrM+04EHNzOvMi0j0VifuSi/t+f18a1fsnGV8W26Qvu48M4KSOdKmUykPe5lOWwTh30UyzF0rkzDEjO1KwmM66bPAIv18pha0MVYpUAcYw5qY/JvMnpTRVXbFoN1hb5ZKWJCbKKk5PToEjZ61pGpGdVNBU1aT/v1wtWSwXU/l+yJSoEjCVvozdbjfpbTc5eC8qVK9fv54aNstzaCNVC22MqCJ5gzaapqmn85c4IjV1XU+Vk7sDIoQwKWDVdT0FWaX3Q+eNahwHSQRm/RvaaNqmoans5OStEhijiSkI6oeaaFfGWHH5TrmM749KQBNlSjHNGFnANJn5jlJSzUAdA0WjhdYQQmC/lypGU9ecnp4y1hWkQG109uSQptHN449oFgswhj6MnIYzqaMoePPqBdurG/a7PWPfk9DYnPzVmRazvb5mHHqUat+eNWXc36W13smpb+UHX7Qvqi8qaH61j7KglTFZyv7TmMhrQtlQ76KUJUiYo7zlKM8xDw7ubqrlfuU9lO9lcQYmv4QJdQNA+o2U1pleJcaP8vzSiFsUrOT1mILK8lmdc7lyKDQINw4ZAHDs9/vcZKrRlWazWHJ1+ZIYI6vVisvLS2IMVJXlo48+oO+lETqEyGKxQGtDDImzs7Pp/V5fX00+Hm274PLNNSkDAqWPq1Q8SzJS5nrTNNKkmOD8/Iyz0w1aRaraYJSlsobdYS8boYKmaei6jnbRcnJympu1O3wYsVaxWp2xXC45PT2laeuporlaLTh0e8IuUdmWN2+u0MqgtaWqGgie5Jyo0iXxQvJRqg9og81+GqLuIuZ9KaN3ddXIbTkxXSwWUtUIXgwR1ZFGOx8XczGClKRqHBXoHFvqxKRctt/tMNawXC7pxuHWWJ8HddyDMs/HXjnm7shFkZCMpItClscnT9MshOMdsrtwVrby3lPV9VTFmCuvSQISbiXeX8Vjfh7nwMF9AMzdc14AjVevXrHfS+/S+fk5q9VqSrTnz3f3tebB99uHeLQ4F3n06DEffvCKhw8u+Oyzl3gXxddm9EQltOziCSXz/8Bqv2K9XrJoWzarJbUp1V5wThq8jdEslwuMURkwOFaryro4p1rnT34LaJnTVOcgjnzW29WNu59VqzzWXGBwgWHwKGW4ePSY07MLVqs12ghlMaaYgVlNWdjvO2u/yX3u9mWTODOlxOs3L/nBD77HL3/5Cz5/+inXV9e4rO5ptSWGyBhEkY8oCYcxYp6qczVbzFJFcbRtFwJqZ7XAFFOuQso5LaIUAkg5nBvo+x3O9dP+0bTioWGs9A7L3sHE3CnvfX59juM1U6bS9EmnhELUod4e38C0p5ZE/u1q19vfv+z41SoZX/ScSc3+/q5hk2b/SrpQNvL5YzRFrqjch7zpy0lRU1IjwE4OBVJCZGzT7ERK4Gq0xlpNbaHXYYbC6bKGo7SizjJgVfa8KAZ3q9UyX7Rj83hVWSprUSTsUAHiYCsbfhCFj1xx8DEQYqBualasefDwAfvdXhKCpma9XLLf7ybd7JTESMyHgNGayi5omwZjjaBYOeCZa7HPA6mSbJREoiwmd4O0OeKhtcZY6aco1JAYvFAJICOzIhspQYqauO+CVkAITpKO/PpG5eubGyrnzs3lWk7/1JFigi6B9lHPWakkzahKoXQiJDE4LEozpydrKqvRKVJphUoi2RZjpGpq6qZBWQNBU5MRXiJXgBsHusMeP3rqhRgtGmuoEDS8O4hxoq0zz/ot9Ey9tYimMi+m8X1Mk+9Mi1u/FDT/7Vn01a5iwG1q07zsOlFJynyeVSzmaMuc/lQ2wNvc6duL4ruCj3ehNCklMY/MFJWY4rTuJFWa+xKBgHhv5ADOGmwqC3tBrdOUYNxKmFCMznN9dS3VluDZ3lzn6oihsgZrDd45UhJqhFRmREP/4sEZT5++wLkR58acIChiSFJxbNtMyywUyZqqqhmGHq3tFIQkjnSdqqqm81Cqo8ZYfIys10tWqwatApUtm5U6yncbTVVbASAWLRcX5/R9BypgAjSNYbkUf42TkzV1Xcn0UZqqMtzsR8bBY1YN49CjtfgEgAI/krzPgYolaoVzojiW8jW5vr7J4h1FslzOv/Dqy/ooG7pIvZbKAhP4MR8Xc7Wp4t2iFMIll1EzJRn90NMg5qgxCAfrbjIr656sAWUsv4WKZ0WZu8nHtN+VsZ+rHionSPM13ZfEfFaZCbk3o7xOAZ2+ykkGHIOpeRB8nNNwXwxSHuO9Y7vdEmPAWstms5lEXITaqGbB6BHFv++5pmMWj8SY2GxOePDgIU+ePOZvf/ILUtLT2EPLmlAqVOM4cuj7qV9wuVwQQ2SzXGCNVE6VjlnlUk3+WraSaz0Mw1SRnIO0ShUPFkXpey1rWRlDx2CTiX1QKhBy/9ueQmgYvfRdDIND64q6aTg/f8DFA6nGiqP0sRfkNpBc+gLU9H7my3M5rTO8ePa4u7fdThrU9MfjK6Zbjzv2nsj1E2ZFPxz4+S9+xne+89f87Gc/FXGFvs+Iv9DgYkj4MRBCEi+jzHqRPuBiZVD6Xg1N20qFo/QHai3+S0kqOwlh13jnCDHS9Xt2+2sgUFmLtRVVZWmaFoWo1Qn4QjbzncdQx+tTrq+K6fjZk5yXCZgDSLerH/Pnep/K4K/CqHjvJEOXu04Tuvx4RF1VqRfn4SpBVrlJOL6Sy+UPl5OIMmrSVJIUx0SlLGBQukLrGm1aTKryTD5SZ+RkxnzyivKDBu+JPkLy6KSptGHdtjgnjcGDH4gIsueDJQyRpJK4XLenmEok2ZKKVLVlHAYxOhpH/DjgituqVqjKQEp0bmTwjpiDi6ggaSnXb7uDOIafbHj05Am7/W5qziN62taKPOww5OAeKmBRVyzbhkXbgFEkXzOM0l8wjgcZ8FXNYtninWcYxgmladuW8/NzQd32e7quo1BJiqby1dXVtKkd9nvZYGNkuWiwRhHDsc9jv7uh291Q56BEa8VisaRtK0iWykqwbZSSBCM/rpTrZAFXhAjORZGHTpIMGWuntUgFMc5SRLweUdpL3qGtkOqSoHrReXwaGX3PYmG5ODnBagjjQHIji6Ziuaw5uI6dG/AhMnQHond5cEb2V1eEYcBo0G2NbVp01RCVxVYVKlWEIaGjKNIU/4O7G1nxpilJwvE4LrDTfWc/K9ItmbkEmHkeI+W8WWr+1T7KuSlUJZihI1H4LfOEuSDLc4SlHDHGKYmGY/WifN2lXM1V3eYIb3kPMUZSuJ3YFNgoASF5ggK0GHPlt5udlBU2B8eLRSO9Bn0PcCv4V1pxc3XDd771V/zxn/wx2901n/3ipzz75c/4+JOPOTnZ8Ozm1fQZ9vs9j588zNKtEOLI06efcfnmGlDTeewOPc5JFWK93jAMPXXd0PcDn332qRjTLY59Gl3XMQ4jbdtyc3MzVWgvLi6EpjkOoBNVFWkbxWKhMMazu9kx9I66XdKuGqqmolpYTi42UlWpFds3N6xXLev1hpPNklevXqO15qOPPpQgKgfB+8MWYxTtokUpw2q1yP4fmnHsIHogoitF264hIX1m3jE4z37f8dnTpxx2B5GnVSqbtxqadomtalGUs4btYZ8FJKDsMTon835009iUKpWZEsSmrQXzmm3GKsr4tdowDAP9MKCsmapczL4rpfDu6DZdxnCMcSYxDErLNSm9cnMkOsRIzGZ9KlNenROfDOccwyB0WO89znsq5xidQ/e90EGyYeHe72+P7a/kcQyMSwwiPx8dk8taMe85bNsFV1dXfPrppyilOD09ZbPZsFqtJmljre2dQPR2IHtMM/P3koxG8V1KKqKtGOI++fAD/uRP/pRv/flf4sYDezcwdgduri9pF0vWJyd8+LWPWK3XtMsl+27gxZtrjNGslws+fPSQ9WrBcrlgs1mgU8AASVuoLJWyGMSEt9Ca+6zCWQDPlMCaiiZXKqfeM2MgR2NGickxJIjS3Cx0G4W1OpvjCqNgGEe2O2mUb5oFn3z0dU5PL1iuTlEYJs4gs56LmWqSVlr8vFSR1b1b/r+7Vx6vbcxrrFS/y3W5nWDq2Z487Zflb8YQguz71laM44Fnzz/lJz/5Ef+f/+l/YOj7aS5ZJeILyQd6F3IPRp7PpkIZK2t92aeUynGq7C+2auQ1rbBKVLBCzc4sE1sZLi4ueP78GcbK+3LOZ9C6QqmKFA1uzE3WygJWUp6crFBiBJUmFcbpLMY0Cescz6piMkx8B/A290y6e/xd6drvnWREPUzXfV6GmdDb/KFTPgkTijtllglFmEyAjrlmSTTk1oQ0MJIimoghYUlYBVXOCB2akLv6k8rPqBI+BjwRFwLdGBgCjEkTsERTYUxDU69YnT9mezhws9/x8s1rCZZzY1TxmhiHceLnWmsnjXxx0EyTFrkeBkxlJ9naGCNjRi4nlClvJi5zcZ0TJ9qzszPapqGuKoZujxsG3DDQdQf22112He1x48j+cJCG7MowOEcoZjEmU0bGIasmyTmd+3mUwbFaraiqiv1+f6tU2nXdhHA55yCKDnQILs/RrHKRXU6NNcRcqk0oxnQguazXlxJ1bUFpkhKVhZQzaaU1KYgkozSY+lw+1DSZ+xxyBShmtz6ltBiXJY3LpjfaGKwWR2CjsxJLhMs3V3TbPZVWGJWoK0NIipgUvX9GUlmyMjiil8QneEfXHRjcKM7qpsLkDcZooV9oEjoFdBho44BOCqJQtorB9FRJuzNv7k5KlWQeqDQTw03TLKBUMsQUMK+kaT7pv9pJRlE7g2NARzoqXpRq1zzJKJW38nuhWN2tUpRk5F0l3oLazw347iLLBd3TeayQUT8Qx1WqjCr7yNBLZUAZCUy88yg0TdvSHTqcGyWIXyxETSQnOTolKm1ZLRYkH2htxcOzUzYnS7zruHrd0TQLrClAQMViWdP3nXhmPPucw/5ACMIXBlm7FosFz5495+GjR6xXKy4uzrm+3mZ+r1RSCg/4xYtnDP1IimkSa6jrSkCQ9RJjFd7XLJY1btxz2CfWy3NWiwo/GGJwnJ+tOXt0ga0tNzfXWKtIyTP0e5zv8cHgvGW73XJ2dsp6s87iFhk1Bjo/cPnyNc7BN77+R5yenKKUFtUtAkZVGF3GigTbymrG4KnahvPFgm/9xV9lV2RD3S6pm5Z2saCpGxbtQpDfBKMPuXdMTc3WCjUlGlMFUalpPQQYvMtqMJK8xFzZ1cqIMEWUYG29WorXUT/I8xo9BUMxHAPfSYFvSjq8KIfNEt6yFh6pfOA6T1KRZCID0qxqrQRyVluMMlNVJpXPQz5vWSGwruTWiYr1lTyOQCfcU1TO91HqtpfNL37x89x/KHQmoUg1FJ8DuLvWqAnVv0tJmVMxyxFVVhqb+jOXfPThh/zpn/4Jzz5/xvX1Fu8jOnnC2LG7DjxLnvXJKeuTU04eXKCMwcdA96pje3XJYtGwWi25eHCaK4oLTs9PUFkNyWpE2x2NsRXtEpZK+kqGoZNKPyNuDFLZy1WOFNMk2Y1OeCd9lBpAHT+/mzzDJMm43t1gjObs4oJ/9Id/RFW1WF3Noeb8LNIvctzXjo3KVUbyhUYYbq31ZeQez2+WcE5e3quSNaCqqlxVLhRZ6UOIznN1dZlV1DSPnzxG26NFgrWSXMU48u/+/b/m+9//Dj/64fclJnBiVhl9JBlRqYxRYqKUVUqNthLH5HNjqko8j6yFJNfAWgvGyL6uLcbWqLoYskZCiqwXa1abNVVdZwwr++mkhPcJHxx972jqOhtBW8R3Q8bZLWAsxGNqNhuPb8EIBdS/M5anGZOO4N4XVf/L437tdKmYo6mUV6+UJ2ZSalrR5ulDSSDV7Hd9HMY5Ucl0qMxAKfFU8HJxvU+MPjF65CskRq/oncI5eQ8hDzBI0kQcIi5EBpdIpiJqi2k0IVrQFVEZkVMzFqWP/NeQAjEdda/nqOekh10oRblhOkbBo6skgVIpzU8Dv5jJhSjmLIi6TjEW65uWFCLejngvFQw3jPTDyOgKUiU9D2p0aGNoFg1jbpaORHSuAFhdYWxFLohK9jwLxMTB9Kg+Un621k588RgCuyRSrnJR4qy8lidyAtliM78QcLmyVJKw6KXhM+UMP3MNpLoTsnNvVn0RmlecErAQjyZZAOhEijoXLWUj1kr6Laq6obL1RAkY+oEwjFitqK0mxQatRpQyBNVBbuAjRYJ3YrjmRpyXz0V2GhY0QsrUEWkQ1SSq5GmSw2KAwuueYzGzUkaZEOr2RFRETPJoAjqFWUmzqEvIWFZRFCFIKSM4Kf/3FU8yZk3bVuvcV1WSDGm+l7HJFIhOvPl09L+B46JXNnuhBnAMzEIQJblcnC/Snt450Ref3z8KTUICjCyfnCt1ZX2LWcZVkab5bSwiiaoAK+VqozTdOOLGUWQOmwhBJAqjz5sliPOvlqSkbixnp2uur6/E3TuNmKXwcdtFi3MD19fXXF1f0nWlqdhwc32DsRV13VLZmqqWL20N/a4jpYCtDOv1hhASVWWkImISMYkkaqUlWbeVQVsYxh11Y1hvFpyermgrw6Kx1Bpaq/CNQaeKplYsmhpb14x1T8oIaV1ZmmyipxVsNptJkStEj9aJhFBWF7WlNproZU6mEGTOh4DRKleSIamED17mgopYU/jFx4ClBBvGZpqYrQQtzaauSuksBCIXVJo3FUkpTIYFBYSIkzIUKMj300lhdELFvIsZJfEdcv1H5yXpyAlRDHEafyFKz4gsMwqVTWbl4XkFUaCNzoCjzHtBnqUJP8QEBpQyjM4RoicR8ueXCrGA0ZmWmr+Kq7v3nspmasxXWML2y4Kb2/SPbFTbdRwOhwlsWywWkwlvjG/3HnzZ7+/kwqvj30T9ccHHX/saQ9czDlJtlEsciX5gv5VkMUSPrgx106CNJIv7QcwUhYGwZ3OyYnOyIibpzaqzGIshgyUqoZS40acUMaGiblLeUlIGYY6VOPH4AW1KAlBSU6Z1NySRzpVkI7BcrmkXLev1mvXmVMySU4nr5GdVdsSZE1x57pQHfVH7VHnNpcSR5d6pxBilj+Eouyznt1BmZZ5c34jPSX/o2O12k/9MTGFSCJXEJdB1B56/eMYPf/gDfvmLn3N5+YZF25BCIoUksUrel7wP0zqhlJbYMffwFho/uScjljgW8t5hxJNGMfXyqShga5ulkkUo5Fg5n/cVFmWzlJOdEMSDQ6vcu5XerkpMP6fEvaHCeyYG9433W8//KxzvnWT40sSY/59yk3uaXAolvC0LdbmznLDMEUx6MjMMCXF0TsWdNSuB5AU1hoR3iX2X2HWJQ5fYdpHrLnHoI8NwlOYTLWkJXENM4j+CoV2tqJsl9WJBGDyjT3RjIPRdduE+HJ295SOwXCxZLpac5DJqkXuNIWTenVB7StNzQZtCzpytMVJxUBp0IjhP1IZkhGfthhGfE5hXL19OfNmmqRmyB8g4jCQfps2hXFhjInXTIg6SiW4cMHVkYSzLdsGDBw8zciWVk5JoANzc3DAMw1RSL4okxTAwxogPgWG7xSqNnVCHYxVHmpVC1tEvvE+hROkEylqUsgQXSFqhzdEtPUZZrPphzNxhSdBibojyYcilx0w6JI+NUJobNQaICiptaauG5XLFYrGk24t/ymEQfqPX4vMhSg+jKFTZJjuSZiWymPBRElKlc5O6nGQJ1qqKqiAgGqyKNHiWaqQmVzDUrGoH0wQuC8qxijdNEanORYeJHsWxKTPFoyZ6TJEQPEQ/413ngONWVeOrd0y8YUQ+Mq+iU7EmhTDJM0/4REz48egUfjdAmlOuynPGGHHZS2YuaVuSucrYqdooTr3yvuq6BiM+NIU2I+7hCh8DafAokowVpYkhYYws9nqxpsoeMa4bcE4qBYSI1FglaEh1JUFAU2GaiqapqWrLZrnCO00KO3b7G5plwtaadtnwy18+5+e//AWvXr3iww8/ZLOuGYfAy5evaNoFJyen1GctTz78kPXJhhA8T59/zunJGev1ivbBkpQidW2xNZyvVgxjzzhEbJXnhU6kNPLq9Qs++eQjnnx4ygePLnh8/hB8YHt5yY1K2GXNZlHh8agYMUlzutrQWOkZqZsaP2QHclvxB9/8Jk+ffoYbe7rDlni2FIpR3/GNb3yT8fyU/X6k392wM/VEVaoag4tRHLJJBD9k5TjFqq2ILjEOI8v1mrHv83opkrl1pamtJXoIDtCKqqrpuo4iAQpHJNpn8CKqSMhCGDKmIimoDKYpKnFTEcgjJxhoBRpudgepeldClfMhoBJUlSUk8d6RnEUdZZLJ64US3n0ZpwXA8kGCnBAiZIqGqSz9uMPHgRB7YgwEl5llMFFTgwsE59BGE5woTsUmZhfp35IP7z/AcZ96HBypk33f89lnn2Ua4Zqzs7NMsSTP/9tu2HePeX9Oef63KtRK5epnyoCEbAxGaz755BOuLq/ZbfeMg6OpxAHeh8BwGPBuoO/2eDeyOTlhsVyxXq9xQehzV1cdz5971uslm82K/U4qg5v1Bn12xrJtp4Sq9OokoG4kGQg+0ncDw9BnKmgGZjOQU9eWRdOgci9FoeaFDAqGIF4x+0PPH/+j/4T1eiO9Askc50BJMqbvQKErTddE5kzpQ0gp5d6rrPg2VZDvqhsx9V2SJLHwfszxmCZGz6ef/oJPP/2UZ0+fUdf1RCGVtewTnjz5gMWipR8Gnj59yr/9d/+a73z723gnztneOQgl0dE5Fo2TeV2hQYnJ3rFik9CyNuR+npDjGasSjZXkycc4GaYWRdH1+oT1+mQaX7INxltjsCSqhbYpNDfpLZ4LRNyVlE1pDtzNbpv9fHf8vk8Scfua3FUme/fx3ivNdb+ewqU4K1OFjLQUSVgfZRMvKP6ECCXwOYOVBANBs2PEx3xxQg5i3YAfBvw40B920gdw2HPYbdlvbxiHnnHoZcNOEvzXVUPbNDk4Uby5uia9GcVR0jTUi5VImS6WIkHZSFN269pJFrIg+vu0l76IGHn8+DFnZ2cs2pbn2+d0XUfIKjHlxPthxDSNTJCYcIP4eAQfxDyqSlilWdTtpNZ02O6m4EdpLahnDpDqukHVElw750g+0LQtVS1UJxnUiuVyRdIqu0Umdvs9KT/m8vKSR48eTaZC5+fnFInOsvD2fX+racw5Jy6nOVnTKJwLeBVnZc/c86J1RpYTRmncWNSrFG1TUdXVpIYweo8LHjc6xtHn5sWUzYXIFZol3nmhvAUv6COKRMxmY7LQLGzNom5YtC3r1ZLHTx7hhjOGfmB7czPR3XwMYsonhHnU4YC1YsBoqxqlDbYx2GaB0ppxHHDBY4rBUJSqCdGxbBY8OFnzaNOwqJJonseYr9kRLfS5oqK0npJHH7yMg7JAAqk008djg12ilKrlPjGV5PK4UMvkft8Z+7t7FFlOlzdtjcKWCoUqMrHmVrBQFlNZL46Ukzm1xXsvLt/5elhrJ857UVorz3c0woQipwtH1ahyzBfdcRwFfVIQnZMxlBVECiVJ+qEOBCK2rsSgDtnUU0qMMaCjmO89ePCAyhisSlQqYFSgaSyKJadnLdomtjeX/PQnP+Llyzdst3uGwfP65Q2H7Y7D4cBmvaJdSAJxeXnJyckpVhvapubrX/8aKSq8F8Ox16+v+Kf/9D/lD/7wG3zve3/NgwcPGQfHq1evePDgAdYqNJFPPv6Qb3z8IR988JDHD07BCTXy7GTJ5bJitT5jfXLC3jna1bn0L8XAq1cvuby84vOnlyyXbaZs1jx//pymaYix4vrqhuvrK1arJaenJ4Bivd6g9cjr1zt22yuqWuQ4g0+MIeBilObxdomRMhPuEHh1+YZnT18KYjXbb9pWGrGV1WgrDe6lP6YgmoWvH3xgHEYqWxFm4tSF/qq1xgUva25UhJjwMRsyVnV+jMzjuV59Gb9CWxlQsYAHYRpztzfpBOposDqvogcfGEfHbj8QO3EKLvLMkwrbjDFQgiPnRqyvUN7gg0gqF0+h3/ejzNunT5+y3+9ZLpc8ePCAtm2nPbEobU1FiAz+3eWkxxBugcLzZKYg0NJ47ydgwtpcnUuKTz75hO3NDu88r1++ovdj3vcNKURG7xi6jnG/Z79Zs1itOT07Z3VyOq0bu92O6+srtFY8f/6CxUKEFB49fMTHH3+N9TpXZyoRpDFa6Dr9KBXB5WpBu2yyua5jt9se2Q06sVxkNSRsaQFEG8NytSGkxIPFigcPHoKShmelqnyOy1r57gQDZEy+ePGS73zn25PxYYyRzWbDxx9/zGq1YhwdJycbSOC8o7IVJ6cn1HXN06cvGIYBa63EY4sFVzdXvHjxgu9973vcXF9n8+GR62s/gXdXV2/4q7/6iykQP3Q9wzgwDNkk2Un/K0BjW6wW2lPf9xNbRymF9zLXxqGbqulVXeHHyOBHDl1PVTVUlQh0oBAHdB8IXaRdtrmCrKm1wcdIPzq2+w5jVabTHg2l518g4FzT1BNL4m5vYhmL08/35Ap31RfnY3k+Z97n+FXu+95JxmdvxomuITKAcVrUY5BA0DtPmCGTU5JBSTJEFaQkGSGWykOcuK0TFzUkglO4wdK5mt579n6kCxUuOHzQuGjQysrAsC1jUqQxq7mkSioaQQKCqB3oinpBNplbYisNSjiBQ27qLnSmaMLkcRFj5PzsbFJ5GbpuQj6ttaAksYohoqIYz2i0NIeqbAqY/1W2ktuOK1su2UPy5VzEqQqklKZqpAFZ58HZtC3aGpICn0SHvm6aCTkD2cS222LSJQOyGAUKitjfMmaae27IYpGbF/NiociVQSQQdFGasnVSKKuPZeIY6Mc0ochKwdEYSno4lBLqkzZZIUsbjJHrJe8/zdYqhTFq4h1ao2lqi1ER3x949exzQfp84NB3U+m7ri0JRUyB0QmqKs3uVrwNqiqjh4Iw2KpB2SqXkKXcHLzDjz1Ow9jvePPyOW1tsUZhtZk2lTld564EYozHALPMy1joYBFKc9pUqM6fW245ukZP//4O5crfpWMu6QlZErrMDnWkNt1CdO+iJ+rYTzE/57IZuKxsEqfko4ztcr95gJfS7Wa3orBW/jY/35MMrZGK5a1OmZTynAqgNVEhPUVaqFdkfwplNIGEMob1+oTVokbhSH6kO0R22y0+RB48POPq+hVXl5e8fv0G53ymIhi21wdev3qFVoknjx9nGqI0a56cbDIn2bFer4lBsdsd2O+v+frXv8Zms4GUuLi4oOsjxo48SBdYI9Sn9aph0UYePzrnyaMLGhM5dD276xtevXgh1EET0SayqCoGtyX5jvVyTdsYzk5XNHWmkwbPbrdlv9+x2awB6LoD5+dnDL3jtbtiubikqltZ52qL8wPOj3T9nvXJmoiWJu66lV6pPAdqW6MSjN3AfrsD4jR3ikqdiEOI0R7p2EtX1jtgmlNFUWrul1IopTH3vykjt2eOE065/FoFbT2KDszV+xSKEI49HvchiQLeRIIW0M6aYzVDKtNCs5v239njb0nVFirfbO4UkE/mnzTPfpWPu0lACbDKHC8o76tXryaZ+EKZmRvSzS/B/NrcfX6VAbW7x93KSblNG42YQSqp7gMPHjxg+8GWH7Y/pD/shVqotSgNpSwe4Rz77Y5xEKPJkJF+YxRN1dCFwNiPvHGXNM2B3c2e3a6j63pOTk/YbNasVkvW65XIn2bKYtKaZCJGK4yVOGK1yrFcDHgvwGf0CavFyTspJfK6zrNYrVgspddJWCkm0xCZYruYEsYA6rjPOS8y3VfX13z22ae8eXPJ69evJ58YWTOFXVHkg6XCWMAeUfW01vLmzRu8P6qBGWPougM3NzdcX1+Lv1CmYofc91kq2+MoiVVKia6X9UWMDf3Uj6PQmSYFwefK4bR3VMTMsimMFaWE2RE02KqiaVqpMtrcs5FKIiDJpK0qbFYHrOp66vVw3hGSlgQDCFpN+1URLZj3D6ppvN1OQso4nMax3DCtYXfH+fznOTXqV6FIvW8s8t5JxqevDtOgmnoNptJaJPiID7cXtUkbOEnI5JGNMKJycpFyc00UHr48COGWGojiwt0TGEgMKjCoAY8nKE/USaztTQVVIw3bbmTsA0rXmdca8SlhfMBmOUJjDVXV0jQVKflJTk6Q9lHoTVZUXUAQTJOVV9qmQaU0NU/bHJSnJBxwAF1JEqGNwWa0lVz9EW6y9BTEGEvkPgXihR4zxdlKUzeyOKYchTZti61rXAwk72ThsBVD16ETpLzJbbfS9DkMA/v9/tamMzcwK8hZSahSft2YwsSZl5JhaZJUE8UsZbaAUtLGHDKirEOYAvYjtpGbv1PprSBv+NIfo1SYqANlkgCYTM3TWlFXlkVbCZocBq7fXFHu2rsRY6vcfFXhU8pUg1wVyO/TxiiBrVKkwme1QoOQUnKm3ISRMPZ4lRi7ijevntPU4hHQNg0p8/ZTuY4lCY+hhMrTJxcalDRwhoDwN6PK2tm5GjJLruZJhQQWvx90qWOCcTtxOCrTMd0+D5bKQjlfcMvzlaDAGIPzPst8FQWaY7Ii91MTL3k+F26ZAt55v2UxndSAkqWqq5zMHP8+DuJ42yzaSVGu8MBiHoNVVRGSVP+WixWrpcGNnqEb6V3HfndDBJQ+4+r6isvLS3bbLVq35M4BbrY7dtsdq0XLwwcX3Gz3Qr/R4qj99OlTDocDHzz+x0J1GGVTf/LkMW0r6+SDBw948eqamOD07IzD7oa2rXj44Izajjy8OOXB+YZ+d4UfDtxcvuIXP/9bPvnkE3GyTY7KNtzsdoQEm1VLXSnqasXF+SkvXrxiuxU1u9ELii5gzsiDBw8F6OhuaNsTTs/Ocn8KWY1OVJNsbajqBbauRR3HO5k8SZrwRdpRArOqMtjKokuCqCRF9ymhQ0QpCQ4Kelt8QUD6E9zgpk29XOv5hq2MRiP9FirltlYvvkFaSb8JMAX78wBBGYV3swDgTvKcR1r+PcoaYRIhq/CkmHA+r40x7yXlCyZq3y0+d7r9/Im8jOe5975Uh9/F4z6qx10Bhxgjr1+/pm2lorZeryeZ5snzqew16TYKXL7uQ5TvSxCnpCRTxkWwI/fxGPn9/PycPicDw9gTvUcp8WNKyDXuuoGh6xmyB462ltVaEodiDDvGkX13YBwch33P1c2O3W7P6emJfJ2dcn4uFMnVakHTCP3QajEQtZW8puyR2a2773hz+UZYKFEU08gx2nA40K5WxCTKUgojPc0Z8JgDw96P0xhLePpO+kk+++xT/vKv/orD4cAie33pbFGw30uiAIUSdVznSwVaK83+sEdlulHdiIt4yKqXcl0kaSxx6fE6lqukbgF+Zc2XuaDRWNmPIfdhpFzhEqYIxFtgFEpiHUcUARpTTTLISh2ltLWRz9C0rTi7V5a6kiTOhzixOqbWP3Wsgpbvb3tC3QHdZuNyAtxIb43l+VEAuvk+eHd+fVmS8b7HeycZP31xVd7ehN5QGreRQSfwXYmSFHeWAsgpRlkcU6aGKA1Gp+MAjQGVIqiIqgx1TCQ0IWZJVK1wxuBUJwgAisFBippARdKymZWFxyowSoJIYiBFT8jO4sXdG2SD6A4HXFEeyry+7XbLyxcvWK/XnGw2PHn0mIcPH7Lf79ltd/g7uurFUbuu61wGHNntdux2u1smeAX1UFnJJoZEcBHv4pTA1HXNYrECBC148PAxp+dnNIsFpq642W3Z7/e8fPmKV8+fE7xwf+u6pu97Cs98jtKVz+uc482bN1xdXU0KM1prUWGSvWyqTJEiKjOi5Dkrgvf4EETbfkYxMfl8ozRGSdm1jAtp/M39OFEUIXSC6JSc97dQqsg4jjR1xXLR8PDhKR88ekDb1jS1eJmEGBhGx8vXr7m83tINI9t9T1RGmsObGquy+hdJ6FtxmJq8tZEGLaVA6URb1xiVSFGCmsZoTpYLbO4zkQ8oyXJRnSAvEiUn80FoYc57xr4XzxQvlML9rqPvR5yT8eW8y6aLPT7KwtkPPS7I+XXO4aObzHz+m//mv33fafs7dxx7MiSgTEloeXIuY1YHPooT3IcqmnTsoZjTUmKMBO+nJKb4QRRkGo7o412vjUKPKcfdCkZZ9EsgMwwDoupUHelYGRWzxkiSEYUTT25SNlqShKGX3oKgEo/OT9ARonIYkzg9bXEBri6v+PzTz+kPPTppbt5cY0wFaLrtjn/8h3/IYtGw3265vrxktTnhZH3Gj//mB5yfX/D1jz/k7OyMm5s9H374Af/oD/8T/uW//B/55JOv8c0/+ATQ7HZbrq6uCc5jVeTh+YqHFxs+/vCczbLBd3ti39Nvb3B9R2s0m+WCzXpJs1pwtT+wbGvQmuAlcAIxqvraBx/wXL9Eo7hYLVksFqQE+33H06cvAKhsRYqKT3/5OYMbUFrxx//sn6G04erqmv1+y6PVhouLU2JwGCNIrEHxercn+IEYBrrdjl4rqrri9ME5IUk1abFc3pJYKS7vxfS0ODw3TcPL5y8nmtE4jrd6eUIMJJ8Bj9LLoMja9+IFFLXGbbdHitWsYjLvL5pXPe9u4kXyM4SSiGtRu4kC7Png6Yaeru85OTmZBC9k/McpgPLeU2VJVu89yhcFK0/IcqJf5STj7lHmbaHTPH/+nOfPn7NcLnn06BGr1eqtJAzkFJfTcG8FoyQu3J/YwO1+EAmcgSh7Xsqu83VlOT87wxrLf/lf/pf85V//NbvdDqMNddUwDI5+GKgboXF659jvDsRnz1mutqzXazabE6yu2KxOqExPCFF6HEdpdH716jWL5QJjNZv1muVyydnZCWdnZ6xWSzZrUXZbrVa0bSvmxJUInFTtmtNzw9j3DF1P3zsG7+mHgRcvXlL99OdZ4aihqRc8uHjIxcUDzs/O8d5x6A68ePGcn/3sZ5mSqmiaBX0nydJ+f2C/7wUI7EW1sgirQO43KCIzpUKSE+Um9xApamlAd4G+L5S/I8ofct+Sd4m+dyhV5nv2JsEIHT8Itb/vhfJczPZIiuhFNbAAAqVCKfNRY43OzArxsWgXC7xVNO2C9WpNXTc5eYl4L4PL2Jp2seL09Jy2bajqClSiaWrqtgFlptcpNJQyFkvPrzFG6KO5N2yeVN93CEviyBaYj9cyVufg230Vufsed/f4tfdkxJJqyUuXegxp/lmm11RTFnjr/gLf5u/HvxrURMuR/4vCDllRQKzXU5Z+jIy9ZqwNgxXviug9vRtJoZgexSwkdCSjhBiyIZ7QbrQ2on6CIrZCMwqDE9UFpaiz1GO5oG1VY1GMXc/LZ8/RWrNcLHl0dsGiqo+fNAcjpXrRDwNDribsDnuSD/gYpcE1ox1Ka+H3xgRKY+ujLFplhdpjbKY0VRWDGzlcX+FCYBhHXBCKyNnZOYftHu8cy3ZF8AnnRg6HLnNy5WKN48hquaSpaz7+6CNurq6kbNkPVDab6SDnb8qIIXPL5WIHclN7iFKRCByxe63BJDCSyZeGJ2MtFbnZO6ZsTpTL1mUQ5Q1zqpJFoUH46Bn9yDAO+ORJqkIZcXK3yVDV0gfy4OEj+tGz7wdeXd6IM/L+gFcVoWmpqgZtpGWrlFNVyO7jKoledd+hUiCGkeGwJYRRDAG/W1SHZLSO4yDl2ZxslQbtotNxm6qQKVEpFQEp5FQdk7/aahrToLTiXG/kPWWzs1IVKiaFX9VDZ+rBfJNO86pPKmfqHiRFieLW3cRC/pQRR2sl2JrRVuYlZzgiN+W2uVrV3dLxNJdhChqN1lRGJJVDCJD7Pkqz5ziMGKuP7yMkkbnVkuCWKxi8p9tt0WnAqMD25pqgW3zU7G8O7LcD3gWauhJK6nhAKc0nn3zM1z58CASePf2cs7MzQoxcXb7m7OwUrRV913N9fYVS4to9DANVJdXT7nAg4un6jpgSFxfntJWirgw315dc/JOvo3CEsaPb7rm5vIYQ+cbHn/DhkycEJR49H374hOvtgdEdaZfBJ8beESuNGwOjc8Suy+dZKAD7fYdWGhcj/+F//XNRzTld88FHT3hz+VLMA+uaE3tCXRuiH+m6HU2l8UgPXEoORYAUiC7kZCKxvdny0EkisTvsUYs1lU1YI14qxVPlcCicbJErr+pK6L4h3DImLApkulCwQpywtCMKKMmtno2n0itUxp4fxnvnw3yNCIiZnw6RoI99aGWPLRX3ifqXE52JOZCRXKsz7XN6kXkQffSI+aoedwOfefXppz/9KQDn5+ciEZ+bou+iuXJdyrZzu2oxf/6JbXDnmK8Jb6HAicwAkNvGcSR4SXA+/OhDnr95w+Xlde7VgaQMaEuwEa17Rj0SGSb5+sPugBs87aKlqRtWi7VIvQdP5yTp3B869ocDTVvTHTrquuLV69es10vapmW5WHBycsJ6vWa1WnF6esJ6s8p0LVF4HPue/nBgfzjgfGDMFcVDP+aETICSZ0+fSRP9aoUPjmEc2N5cC1siJYR8tEApYXk4FyEZUtJ4J03kEtuIwIYcOgPJOd7ILBijpf8pRpVvY1rb86WjqEZJYC7UQrmWhhCYErJhGBmygalzbmrGFhZKEoGHKFKyMWbxmUxVVByFHkrlRlRDBVAQBbAelChhppQNinPVZLc/COiblb+WywXOrTk9OT1Wm6yiseYWwHEcq0flQ6WOe+c0tmdjM8YoQjx35stcvWr+3OU+ZazrO9WN31gl4y6P8xgT3v8G0vSIEiBI0lAemMXMpntnf1yZ+LNkJWl926RNxfxVsj3JHEPymXubX0Mf7c4k7cgIUoKpL0BptBWlGW8sta1IdcIaaZxctkuWS5Eae3DxgJvraw77PbubLQ8ePODxw4c8fvCQs+VqVsKO2fVS6FO7w56+H+j6ntdXl/jo8SHiQkFc1UTTkEDFCrpgq2OAZDQ2e3EobejHQbw2hoH9YZ97HRKNsZIMZ+5gCrlfJpsDStCTSGnEGqF0LVYrVu0CLaRQVAgUszllFFFBVIqopDEp5sTSVFW+lEFobV4QaaMVWleSpNWWtjE5gC/0pKOyk5428qNc43xzj1lpCK0zQHRUvBBEUpFSQfJkUBqlqYyhNgabFPhIGDxJIwEXGq0s2qSsqCNaMWQkIQaPwxOjw7ue6Ae0BlsZXrx8IeMtq0A57wRpzBzQog5lq0pK5koSVmOznKcWiVxrBO01GqytJPmylrqp0dmHpKrkdmNFWtRm6by3xa+/Wodw3OUaa1Vod4ICFvpd2TzeoiZk6PGuRv3bi6ZAQ3PU+BhoHBfUiTM/Cyym59EKo+yt9z3Lgyi/xBhIPr+nVJCvMG0EeVdE5YQ9+oCtZBympDjs99RmRCO0haBhDJrttiN4qc7GLA89jgMpwWq1yCaZ4luzOtmw2+05dAcuHjxiHKVqdrPd0dYLqlohweWxP+Ww30n/SK5KXpytqXTAuwFSDt69p9vtcaPDGsuDBw9YLJbshw4/jFTG0jQ1Suksj1uhVSJ46U8r89SnkKu3DZVtKBzu/x97/9UsW5rm92G/1yyXbrtj6pTvnu6ZAYGZgQCJBiGGyGAoQJC6UEg3+hC6UIQ+kK6ka4UiyAtRokJABMgQQHAAcDCY6e6q6i5z3LZplnudLp53rcx9qmqmBhwSUxJWxantMldmrvWax/xNJHI4dCxWCzmH93SdVCnLqsbaghSz78bQoqORNSgGghsZ+o7DYS9FiZCtXoee3XZLfX/H4u6OcrmBSiqQWqssKsGcBEzQ3ynRlIReP/KomHlCx4E4rzcpRen2BpHvnQRRTk33tJqkj5mLStM+eFzz5oFF0nnMagmuprUzhmn9zgFBHm9TEYgTiGD+SSqhJ1X8+b2/gzP4sR3TvZn4F957DocDbduyXC5nkz0ZmyHPIThFYhwDrByvvJNkpLzeTPf++67YvLbkxevkbjB1lryTfWO5WnJ5eUWIiru7O4LzaFtgk0aknRUogw8JP4h/lR891hbyOZoo+4vWaAw2FlgbGEeBcpIifnT0RqONpj3sKGxBWVScnU8wqqUIvwxnFIXAQ4tCOhndoWV/OAiUJ0RGJ8nG1E2TD7ZFKagyZNgHzzD0oog4BeLBUxS1CF+EQMichpRSFnKRop732bPodIwncqFTE6Moaaag8l4rXiTpRDRFqclPQ4qTzofsexazeI7YATjvCZMiaEziq5sSMb8PosQCE5QrpanQmY06kcRlmn/GWGKSDklwAvPQ2ooztzFEb4jBy5oYxrlYGLzDbVZolYjeoUp5jihHZdEHrefk9phkqAzzlth5Khozjc3p52k9+Y45c/r9PNYf7Wtpng/H3/33O35wkqHeKXwc84CTpTedvrXvCBBAsFE6D47pgky1zOlc+rQ6YFGxQIVA0gVRa4ocHI7eoQYnLHLjIXkxeyNIkjGb7KgMAdJSRFaSNeuUUAjOVSdNZStM0gJzWix47+kz/id/82/y1//63+Bv/dv/Nv/w//33+eM/+iP+8J/8E/5Xf/c/5f3nz3lyfsZZWYq6SYh4N2bYjAzE3vXs9gd2h5ab+1vudw887Pe8vbvFRS8BtNbYomb0XnTrC8lsfQj0fUdIR8Os/WGHtYZaVaQYeH1/T9f1+BCoTCnShT5wf3s3kSVO9KVzIkfi4e6WPYphseRis6FeNKwLy/b2TroopkAZzYhU7qI26KogKmnZLVdrxsExDiND29M+7EkojK5YN2vOzlesN0s2F4vZEXe/3zNkCVuXDQ9jxiU674/DSQlhe4ILKWPRRY0qKnRRMrhAjAf2h0iKHj+IlLG8ThAliEheoMBIIQU3OqlotKPwZazgI6U6IXwdcTh1ODdwaLc0TUlalGgrcC7pchVUZXY6tvKvrivxKyksy2Yxk+iLsqDM93OuUMQAMZCZ33nGHOfKsaqm58VlOuJ3rR4/okMSR6nwazOp8QiBbvqUU0fgtEtx/PrdePK5MxL8vJZMweIp50Jrg9ZqPvdpEjLBr1RWDrHW8nB3LypR+ugcHnwgKlGXQiVSzAWDLHFoFLO3gkIh4YBsEIXOMojySbi5fcmyTiwqGEbHru1ou8D24CnLOnu5OOqmZhxFhrLr9vxme421ivV6xdOnVxijaLsD55sN+0PH7tBxc3NPYQ+cbc54+mxB27YsFg3Pn7/H63/+UooCStP3Le89+wTNyNDf8+rlS87PluiUuHv7gC1qlusVm8srgfh1I33X8/bVG1bnZxTLht2uZbVaoFQByXBzfZc9SUZc53InwLBanmOMFTW6FPm93/t9lusFMQV+8+sv+Pnv/FS6tyiCGzh0e2L0lIXG9wJlvLy45LOXb3n58hs+/+Jz6ax4TwpQFYZf/fIX3Nw/0LvA5uxcTO7qxHLVcHN7Q4xw9eQpQ+7wkuDQHkQ+tG5EthLmARmz1LpWSgQ3JshvjCSdYX4hiBhAlKRjgvtpEL5ZHpPT+DqFA06V29PCnVIKq0W1TClxRBeSrsMFn5Ws4jxPTrHo8rtcaBpHMBrrSun0h4kH+OPuiE5JYFmWOOfYbrd8+eWXPHnyhIuLCzabDTHCOLo5iRRPgiPM5DQZm5KW9M51mRNDOBZI36n0zo+bK6GAFq6MiyJlPLoB5zxBRS6vLnHec3N9LT5YymByh12ZClM4KTD4hE8i0b+739Ie9hRVgUPk6Y2xlNZSl+d5XTjQ9S1h9EDCGnDdVEBTPGzvqOuaullwfXvL5uyMqqqwZUlTL+jbnv3DQTpimW9IIsOaJk+zXAyMga512FwMNbrBj8NJoO8YPfNYP71vMQSB/SiFH8I8L6SDIIWgea9E410UVEaW3/feoc1pFzqP/1xEdk44WCgyJ7XHeekkeu9JXmS3o48EEpFA1w0ZMmtIBOF05QQxhiGb6Gbp9RAzJLIXYr82MyRyhugXxUwSL6sS553AzeqScezpL84xaYTwEQQtCJqkRUo37yUT3Pd4fRRGyb+YC8an2cS0JqlpLL8zZ06LKVMCPam/Gi0GHCkl/Jy8kQuAj4tw81z5gbHI/7hi2e+8p3dbNqfff9+H0EocM0mOuq6zuRX00eeKfTZCYary5PNFTwyOGMTRuijFMIrocGNBmhyYayEZLhcLrp5c8PHHH/LTn37CxWrB//Tf/tucn2/o2wPOD6LVrJWQDnO13TvzyNtimUo2iwU+eD795H36caR3I/u2paiFnO5CYLtvub97YLffs9vu2O53dLsd27s7hnHkDkDBMA6s1mussdKibzuKccTEhDKZURwjmlwhzgoWMQRGP+K9o7Qli6oSvXc3UivYrFaslkuGJ0+pqpqyrFHWsu97Dl3H3X5Ln8QMBmMoywLvHUVpOTt7Rri6ZOh6Drs9zWbB5vKM8/M1zUJgYLEbOLQtw+gyGTvR9RLsG21YLCpc9uAQpa9AUhpdWKq6oalK6rKAmOjaAz0h37tWAvaUzY9Kg6okoKnqhrJqKKsFy80laIsPkf1uz831DW3Xsd/2EjRmvoPWogqyWNT81qcf8Pt/8Nd58uSK87M1fvR5/1DztRXX1El+NVe7o1QHFJLgySaVoYIejEpiMpZbwjHJ5n+snsZs9nhC/p6q8j9y4re4OWbybmkI3k/FLxLS0rWaXOGShXF0TvTUE3gfSe1kyiddM5MheUqBG+V5RpuTxOIYVAjPys3E39NW8lTdtkZhkpDzAsgak2UstZKkIWbPH63EGT54L5yEGHEKmPD4GU4R3DgnjsmLckkKAWzNrj9wtz1w/eaetg84LzyzmEAXEmC63nF2eU6KIkNaKQ9K4Yc9RjnONg3aPCelxHa75+Z2y/1ux9/5O/8um80K5wbOzhu+/uY33N/f8sH7H/Hm1QMxON7/5EO67p6ryxUff/RTnl6e4fqBw/2W9mHPxacvaM7WDIXCdCNxHKFtOfQthU40qyUXq5p2DGy3t9zc3HN/v2e326NT5Gc//ZRd3zO4ka9efU3XiSz0sl5yd39PN/QYa6iKFQ/XO0IXSWeeRVOyyon8fr9ndCP9MHDrwXtNNyTutgOxKiDzsyKgYqDf3vH1n/wRZux49uEnXL3/IaNrSdqirGV7eKDAYshqQwTa7oAPXrgc2KlWhjLCEwyZ9xCTFMWsMQSfVXuaSmBjTKazUFo5RwrZxNR7fD8QYxCviqKgXizEnDRLznrvsUqqmYMbiYgD8f6uxQ8h+56JGuLoxtkZXSnhME5Ybu0FnqrJvCSlpBjnsi/Vj7hYMfO6lGK32/H69Wu891xcXPDixQtsFlVJ6RiInvqCPMKi/5BkKwdkp8e7hY7TyrCf+HeZ+zMJdigDhbJcPbkiRbi7veflyzfSZVEJa0smq9vVeo3VinEU9aV9u6MfAumQ6IaOxWpJUy9YLdYsFksWTcNquWC/39L1Is0aUqDveukco3BjxK/EsM/akoeHA0r3NM2CB9XiBsfYjxkuCFPAdsotilFl9aWpcDOilFxf8eByooRmKsrKzMWZ6TrMHewYwTnGYWCSEG+aZuYhACKnr2R/deNwcn7xfrFWz3Av6ZYIvEs6vpFxHGi7A86J8pTWiuiccHKDWBhMncyJd1cUIjs++adJUek4rxXqZOwkaruQfUhJQiuDQ+LAGANKG0KQ99t1nr5vs1mooaqEfC9qp8wKd9P4PL6fCR48qcs95ip+V9I7jcl3x+wj6VutZu7thOA+fYY0ayVpNHkP9d4/8uj4Ice/Fkee00TiuxKM6W+nv59JWFpjCksRK2KuOqUUZVK5UTK5mFHxE7M8cTQ7y4oCMQZ8AIPwBow12GDF50AdKxghBJx3mLLk/PKCDz/+kN//g9/j4e6O3X7HjTWUFxsWVU1hDVpLnD9XPhRYI8GFJqGqQoIYDVVTgxIcYl1WrOqavjtjt99z2O/puo7D/ilt1wkkJ0RGN84B1H63I242kLLsnIbBjQzjyP5wkAA4JxnEAqoarRWX5xesF0uasqQsLOerTTbdU1zf3OGjkJpdiBDBGst6uWJZGAm8VKIbBgmytFQ6VGGAEqVXbC42NMsGbQ1d10vitN/T9UOu4MmlsUVJWVWZTKkY+56QAi4qUt5orbVzZycBw9CjkqK0UBgo6gKjC4wSorw24oRsjWWxWtPUS+pmyfLsCcoUxAR923F/tcktY3FZnx1ITaKwhsWi5urpBe89vWS1aqhLQxK82EyqSkRUkrGWchcqpSx/dzpdJ+gPkiwYJXUhSRqOScQpXMx78SY4rRr8RaoHf1UPcSE+QkXm389fU75eU3X2FOZxVImaEotT+Mf8NUJIx0T/FBoFx0V5Ok7XHcHg51b5pIo0uUrHSMyLQ1T6cXt6WmeSQAGNMdJFnDYAyBtsmg2eZMswdL1nv93Tto5hjEQ0RV1z6Ft00tkFWt5PDIGqKllXFZrAOLQMfUtZ1Ty5vCBScX19TwiecRgYxwGtV5yfranqSrqPbhQd/tWSsW9BCeyqMIbSWiprObT3UuAYOuqmZrFssIXB7xwEjyYRlbi2W2MojGU7tPSHA+1uiyJRWgNZ5CK0LaMbGMaI1qJiN2Q1LvoelMINHVZLAF8YzWr5hKEf6PxISHnDj4G2u+OXv/qK16+vCUE2XZ0deEMMaMR3aL994M3Lb/ARumGkH3pWF5eUzSJ3IQqsKShMQbNoMnbb57UWJijr1G0/3fwnOIXAGpj3ITHnyt0FjoUG+eHYoZyw2s5JUWWCLdjCHgUGVCJ6KX7E3O2VosbE+Tvuk6fE73cLEdM6E/M4jCfP+7EeU2B4f38PSEB6fn4+JxNTknHaoTx2fCaFoBPeCtOvjrHJ9DVNY+Bk/Xj3OIX5nqoQTZyu4/ojxZCmaVivV7x+/VbihdytNhnGrFIiupKpx124gjCGWZwmJuFEqpT5jqbB2ipzUBKj1QxDj1dS+EhJEXwiuIR3keghReEZjL2XYD0iBrbTnpbU3LUQiLoscjHzzEKY8P0Zsp6dwb0LWPUuyX7qssn1nAL1o8rTUYr5VPnSe+FDTII60z89u4xnqWCZDLhRfC9ijHgiQ9/jvSMEL0XElCDvLcFP+4nA6UJWoUuPuoNHVULUY7RySokYHEolkjYCdzvZc2IMqBTwJErbiHJolPVvKlKSsmqnnrr0PPon+9okt5z5We9U60/XpX/VGOH7OFrqBAkDR17HX+T412r7+X3s9O+7SEpl4yxbYFSC5GdCsx9H/DhCjKiM2UOlIyQrelIQjBwpEvxI9FAWBp0D1GQNYx6gIYq52na3lYWsLFjoJR988AGLsuT/+V/8P9jtt7j+QIkjrDc0dU1VWBIhv2acs86YVYKS9LLRMaJDwFhNXRYUZsWT8zNAScY+unlSHnZ7wWZ6jxtHtncPPNzf8/Kbb3i+WlFVNU3TMEbPvt2z2+949ep1Vk8SoqpVWgzsFgt+8sknPH/6jLPNhrP1BpWECHl/d4caAtfbHfeHjl3f44nowrLZbGhWK6KCwTt+/dWXWYZWEbPyUVlZ1psll88uKYwY0t3e3XN9fcMhc1PIeHm0oV4saJZLjLV07YDvRlzQ+Cg8HFMUlGWRM33hS7TDANFQLEqaRS0E9kJT2Oy2nmWDi6JkvTmjaZY0zZJ6eYEpapE8JglGNuPGh3aY24bKQFVZytJSNyXBjwQ/0G47KlsQvSjNhCyHPM33KQAKUeTvmBZXjiS2Y4AtHiOPxvYj1O8j9PdJvvLjDgzgsTTodxkKxRP52dPN+nQTf0zkfnzOCT4yFTDeDRqmquaMa4eZDzW9htbZVDN7G0jxWGXPN6kgBJuToRikeKAnPDaEFLHqMan8UQLpRD/dZsx9exi4vXkguoAPCW0NVVXzsNsCKVfQEOjk6Hj28cdcLAv82PLy5R19u2e5WHBxdYkt13z99WuUSgTvhAx+tuSjD9+jbmoSiqKsuLy64vLqgt1OMfiRpj6jNAXJeWxM7O/uuH39mtENNIuK9XIBJO6GnhS8KK1VBXVVU5c1YBgPHf3uwHDoWG3OKLSdA9qh7+n7gZgMi2ZBGAO7douyVV4fPQ8PdxmXLiafz54/4+7+gf3DPReX56A1w+i5vd3xT/7JH0olVp0QIDNUaar8hRC4fvuWQztwe3PHYb/ng5/8hPXFBdViSbAlZVGhteJ8dU576ERT3zkJ/NTkrJvmIPN0b4pRdP198Iz9kLmDx8f5XAG01qLSYxGCKVgKIXA4HDDWsFg0s+rgdEwB1/QcrbVw9GzmaOW3M+0zj/bO3B2cAqWQyGDZd5Uff1yHUrJHtm3L3d0dV1dXnJ2dcXFxMZtszv4HSj267tO4EH+ebycVfMfvTr9+F/piXptm8Y8jL+c06ZHHAilQNxXnF+cYq1GBec0xxoARAcPoS5QGtCKkhSTaMcxVdjcIodyYzOMsDFVVYq2mdJO5qKw33idIhugVwSXcEDFW1OrcGLC6wGqFLc0cVE/JrT9Zu6bgNyVRXZp4iCDd6UnlSWdxF0Pu/p5EzjFG0gmvbjLmO+0ezGN2+j6IpLP3Hh9EoCdGTUohzxnZNV325wlBkC3jcEwyfPBYbWaPMjn/EWYoSZPH+4Q6LXIxyZEnjD7xrlDCr4CIsiJtLwVUea8pBhJysbRayP4xzdGUjnwwNfFA0pxwnCYeU5IxCfLMUcLJOH2Xz3q690zH46JeOipjnozx0z1z+tnmtUcSIv3I1PaHHH+pScb3dSKOD+A7nQhPj+/KxKaFIkYh1kSVB3tRYcuawgdMVWJ6Swqe6FWuQDLN6owl9JJsRI+yBdbouSpljEaVhWzkQVqd3jm6rmO/25G6DlVVVKsVz8uSv/t3/y73tzfcXb/l+uVX7A4HmrrmgxfvUduKFCM+S9cumwWrZklvRmmbaiWGcDaTorWBKlewMulHWtxiVHZ4eJihGTopbq7FpOvVey94enlFU9fYouBP/uRPePnya+5CYnnhuLq4oq5qCiNys+fn51w9ueKD9z9AJekKvPnsN/zJL3/Bbr+X1qqx9FYTteLgBtZnZzSLhnq54PX1W0bn8DFQaA2FIZGwSrG+OKOqBXOoVGR/ONAdWh5u73AuoLWlqqQTVdU1zWKJrRp2+wMP9wcetjv6UcytysUmt2AN2mpCcAQ/QnIQRxyaQQU6HWmsSH5GlXAKrM0Le9HgrMFED35k7HupMqJIkeOkTYKxZOpeafBt5JCJukJGkjGkkkBl5t378cj9M8f17Is62XrPoIp3Jsg8D+Scac4xvo2x/DEepwaQcFwzJmgTHDkop7yKqZ0N0yL+7WrhVMU9EgK/DXGY3FqnKtoUoJ7yP04lqQ0CM0lRkg2jNEy4VpVV1mKg0DbDaWSUVfk1p43yFENe1xWgiD6y3Q9sHzoe7lpU8qw2a4y13FzfYDJpdb/bcb5e8ezJJYum5oP330fHDlLF1ZOVwB+XK5rScr9/AB1oFgWbdc3Tq3MWTcmh3fHppx/zxa+/YrvtKBc1i80aWxo+fPGMTz5+gcWRhj39oafbHwje8elv/YTz83PWmzVVUXD9q8/pR5F/PN9csDq/YLFYkVygTBrlPL5tKc7OMGVBRMuaESIqFzq6rs9wqQX/7J//Cz79yU/YbDagErvdgdF5PPDHv/icdnuPH3qqxRJtLYdDzzffvCYmhS1rtFWUhcwRlcdCWZZz0rffbhm7nnb7wMPtW15+9Rsunj7lk9/6Oc8++BCVOwDhemS5XLFaN+weDhSFENqFwFrMY2PyEpqqrDGKJ8ZqtRY8dYZJBu8xZQEp0Q49Rj92A5/GbIzi2ZEQ1b++74FjMgxZ2jb53H3RM7zEWiMws6rCGvto01dKZZNTc4QFaYNSFkKG6v1Ij7u7O7bbLeM48vz5c87OziiKgnEc50qrTP3H8KUJ414UxWz+NgWRpzHHuzHIaYX4VPXn3cDOe5Eth8eO8e9W6I1RrFYLPvzwfa6vb3Jy62nbgcIWgMIpha1K6Z4bRSCQVKKsCpwT6FD0nu32gXEcuLurqeua9XrF2dkZdd2wXK7puo6+GzjsO2IAjcWPie3DPhPIhS0WXBAKJ3GGeE6fd0oARCXLY6w5ErqDJyVOEiqBKo+9IB1S8JRVNUONIPNksrHeaRGm7/t5zPsMm56LPyHg3Mg4DvRDl6HaBXVV4v0oyBTnGftOFCK9wKb6rmXiW6YYGBHzw2kfmu6LvBceCQmcJu1G5+KlPnIrrTUoLWNNaUnyJgnbELIoSM4Kko+oBAaNilI43j9ssyu1wCAnwSOZrqcqiDDFICkJHeDdvW2CCB730Xe6cd+RRJ/+/G5Rbn5eTLh0FGmartvp+f+84wcnGT/khNMb/e4EQ0yMfhgE8lh1fPfnSEIljUomq+8U2KLMkBpLzPjTlOFJx+dLdppiIAVPCoqoclY7GaIl8fEQB92Rrjvw9u1r6rrkn/w3/4jLp09Yrzecn51R1qUQo4PjZrvFDSPWGPZty/Orp6wWS5bNgo2xVGVJaQvKekHKGHwfxBRQagC5hag12lrKuqFomkwSznKv/UC72/PP/ts/ZP+wxY8jRmk+u32QapkxPDzc05Qli/de8PH7H4o52OgYup59Vt64vrnhzZtrIV47x6FtuX64px9G4UOMA51KDAqoCh66A3ftjvAmZCdyqTQ673LFUapoh12g3UvbMsbJBC9mHKUnISaCy81GIGIJbm7v6fqBfnSMPlJUC8q6FvWLYSR4R+cc2nXo5FHJo/GEoIlBkaIQaK3S2YVbVLoKYymNRQeIY8RH6VpJcCizWWWpOcXRfV0KMlK3yDJd+es0nqfg9S8m8fTdQ/7PnghSLcpt6+l1/0Kv+lfzOA3q31WImhzip2AOjt2O041+qkSeQiFASH6T6sjcjs7HkUx/XEhPSXWnFePg/UzitsZkxZMMyUlTu1208CWWmeAQMheCD48W/AmqMX1G5510Ob1srH0vMtdGBcHYZ3rPJGGt6or3X7yH8MYSKY4432N0ZFlXBOfFNLIvuLq85IP338NHEXcQmVdPCI4PPngfF6C53aKM5ZNPP6W0hg/ee87SKkoTKZXj1Ze/ZJHFIGxZUTZLdFGBgrYbcD5hy4KLZ+9h6waPyPa2bYvRmufPn/LigxeMEVxIjAnOR0c7DIiglfjD+MHz7NlTttt79ocdF5cXAkVLidu7Lbt9i2sPqOi5uN+hjGG/b7m+vacfPSEkxJfjmCQWxmaCs9z3zWqVqweJMHTcv3nF2LZYpambmtXmjLpZYhtN3x2wrmC5qBEZymySGjxTFWLIGPJpTAFyL53PhSBRLhpDQE3cgXfUqk7H8+k4UeY4Hk89PWTsnBQb8jgtyoKyqgQ6M1dlpWM6vb9JVtdoQ2EMzmV4yI84ybi/v6eqKtbrNYvF4lGRAI77/aTKdlrIAObHz+T8vH5Mz/1WkfPk+9Nu6ruP05nUP1WSp7Xm9LWU0mijMh5/w4sX73F7e8/2YQeI43QMUtE21ghEx4jUq9EK7yxdBylEfPK4GHLQPdL3HX3f4X3I3hpnWFtSVeIBIZ3EiHeOvm0xRYnWAuv0oZASXApzkKaUorCFrGnO47MErLEWa+O8R6WUcG5y8c5FID8Z2oq5n1GagKx3wTmULUCnowFwOsKMTpM5CXRFIdN7h/OjrB3BCWKEwOjU3EXymafk3MiQX0t2BOmWSkKZOzze5X3CzP+mxDSd3G9rZR8orKXQ9uS9SRFqSuaDE1EQUa+KklAYQ1FUEq/l9Zwk5OxpvdBK1CYl0cjvNXlCAKUsiUntKkjMctKVOx2z3wlPe2fsPvqqmD/ru926IzJgUrL69hz4obCpv/Qk47u6EBN+dJqt3xcsnbZsTr+engsiKYoikzY2s/jF4dkYS9CTZOopBCXl0rWQolMIxKAl5tSahPgbhOjn1lTwMAwdd/e3aK0oreb9F+9z9eQJw4v3IUT6ocMFjyoKQpZIe3t3B8rgQqIoK6qiwhalWM4rlTeDAGN2x0QyL2ULdFmgy5JiscTWNTGKdvXoA+2h4/bmln/+3/0RY9thlebi7FxUpGLMAVri7EL0r9erDTfXb+kHkc/d7vfiS5ESb27vaMcBFwIRxZjEu8PHSOcdPQmvFUXTcOg7gTp0HU3TZGdbmaCygQkO2vWdwIW8tCVl0lq0KcTh0xiquqZuGkYX6Nqeh4cdY5a3QxsW6w2L5ZLFcoW7u5+1uvU4YpXHIPLFU5VfKyFflkVBaQ1WK+GWGEthCtH0CRniIoxrGY+cGuCAnjD3zJxtSaby7JpHofozBu9f6PghJ8kJhhLS+CRg8Od1TH5Mx3dVXabjNDB/V9FiWty+sx08neekGjSd/7tea+qqTJ0SpbJ6iNIoI5tAJMPcDDNsJjKR4dQUw86669P7nt5nWZaPOi/SmfNELwHC6EbBA2tJZpRKFFbWuMJamqri/PwsQ/dG3DiQ0ihKZ6VlDF6Cg+A5P1vz4r3nuJD48rNfUVcFRWmwVvPk6VMGlyjrFc1iycXFBevFghdPn9Pt7qgLWJTw6y9+weLsnKq0hAi6rEnK4FPE+URUGlM3rC6uiEoxDp592zEMQhq9uLrg8skl+27g0DsISZzGU8J3buY+EGG9XvHq9WtCDDx99hSltfDK+p5+dISuR0XP3f0DxhbiB3DocC4QY+5KcZyjkyzydC8XixUxhQy1iAyHPftx5G1ZcH55QRhHwpnH6oLgHEVRsGzEY0i6UsxwiQnecDr2Js5GzBW+SYpzgimprNoS3WOO0PcJnJz6bEwVePksOhd0jvASnaursuF/P3frFN5B9KQgUp4/1sM5x9nZGWdnZzP08XRtmDqik8v8aedhOk6LHH9WFwMexyPH6rL61vOkuPm4kHEakMnzMgrDSCX84uKcYRAvqyKbzaWUneRt5nVpTeELclMD54b5vhN9hgMJ12ocR8SbIgCWpqkBgZh763FeYp2h6zBBEixJhMQAWaXjmqu1JpVyzUSGV7oZZoJCmSkwnzgyx2sWQ8DnSnhVVkImj4mhH/K10iRrHnWhJVlx31qrp0Tfh4lQPxKTqDNO62UIItlPEAU2Pzr8OEoynRdoKfAGSYyy+prOybeeTACnOT5tI1OSbrNvmSkejaFJft1oyzi4TIqXBExriUWMtjgXJBkp9DxWtFKzzYDON/foXC4qT9qojP7RcwfjtMh5us98V5QWfD4AAQAASURBVJLxbndifl7+37GE+e34+5hofHtufNc8+b7jLw0udfqi38e1+Fc9TjM3IVQCWlEoyXKJ4MuBoiyJbiRqg09CdJs4GfnOZSWigEIITglxZ/bOZYk0kRBL0TCMAw8P9wx9x+31W/6p/aeURcGibnj//fe5urriybNn/Ed/7z9BoegOLZ/96Z/y6199was3N3z1zSueXVzy/Pl7XF5cYjUMvUiplcWCN9dvMIWlWa+4fPIMu1pi6gplC9qbG25fv+Grz7/g+tVrrl+/4fbNW27vtyQnGvZvXl9jlATWhS3Y93te3l+jrKgelUVJDFHI12NPXddUTcM2BO79SOccI9AHJwEAYoNY1jXKaN7eXksGXxZcLhe0+z3DKFjDKX2LJMYUIEVR2jHCAclgNamonJ2jjaUfRl6+fMPu0NJ2PQHpJhlbcn5xwU9++jPKqmZwnq9fvRUlqhgxKWAQ9RSlwVpNVZWsliueXF7RVCWFMRjAKGn/asysdy2JRR5L+aue0ckwZcCJHCjOpLLpGUkWKUS7+394s4p3svGkc9XotKvy4z1O8aJTMjHh02NW2DyFVJ3Cmr4r2ZhMz4Cj83w6qtCArCFSyRS88WkwB0cIVkqJQht0gpSrcQSpPDGNaqVkBIQ4vRQuRoGwGHGAJqVvJRsTllw2TIdzLQ/bG7zvqasSGFksK5pFg/eJ7fZAUdc8e/aEdr/j6uqcRXPO55//kqoCayuapuZ8ucJqiy0qNqsVzdkF50+uuH39kr/2u7/NerMhGgW2omxWvD9Gfv7b/xaESGkKztdnVEWNUQGrPR/+1m/jfIsisqhX7MaOvnfURlMsN5jCsDxbo5ZLxr5nP/a8fPOKqBIXFyKO0UXP26+uef32huXqjIeHLYMLhKS5u7vDKENlS9q24+rykmaxwNqC6D3L1YbLp8/oB8fu5i3t/S2fffYF55dXJGWwRSmXXhlMUdL3D1nS08xu3XPXSmsx31SwMhX9ocONkd2bN/zjf/D3OXvylPc+/ISf/O5fZ7VeU9cL7u5uxfdHCzfm8uoJh078A+q6nsfLPB7zGCBD6rTR8jgl66MPQQLGHHRNY2Ea4zEHUeM4zpKsIQR2u10OpItcpY20bcfD9gGtEdM+L1XTPMofJTg+eEwSWFDwjrHrGNt+NkH9sR4ffvghZVnO0JrvCqSOJqdmnvvvQjRPlXy+r9gBj+qj82NOuWFz8piOiIspSZwUg6wVeNEwDBKGxIhzIa/rMUOBRrS2FIXF2EQggfKQg/epI0JMWGVIJomBYzyiB8Ywcn19zc3NHS+/ec3V1ROWi4ZV07BaNPSjCMO07YEi+Bw8FxkqhaionXRgp3UxZE6pc8JZcCbMsvqylmuOoVZ6BINq25amaXDO0ff9scujNca6OQlr2/YRnPbIyxBlUJeN9Lx3KE3u3ElSEr0jhYhB4cZRlNfcAIAxuRCkNL2TLrR4cMheEyM4F3JilqGGBqzRueMk6AjpZhTz/Zc1oCBFUe4KXhGDoCPKrAoVQmToxlkSFwRKV1U1xhgeHh5AJcq6oKgKMMdO5jQmi6I42ccgfE94ffq+ps/xQxOB6TjdE8njPp0WWk8eN82nP+/4wUmGn5wZT+MflThJgzJMAYnJTjJ6ucEZZjL/TotlRs7oVIY4TCdXuRJ5krPlL1HKzTHiehijYwiaurIUdcmYSgZKOgY0OThIihDFYC3291x//TDVH4lJ5XapOPaW9YLVas3Zmei592NkGDuGGsoyYl2gHTxj+JqX17fUX37Nf/svf0FZViilGLoOHx11WWGrgn1lKXUgxIFSW3wBdVWzev6c84uGlCLaaHxlGdsd/vaa3cOWX/zRH3N/fcP+7h7X9tzd3rK9u8fESFWXOK+5PuwIKVCkglLX7N2ADkba7lqjeoE4jc5x8J673Y6429KODk/CxSBwpMJiy4Kils/gxwHXDqShlYTNGLrREoMXUzlbUVXVsUKWEwuY9LUV2AKsJVnDQ7cnjD3DYUf38IAfPMklolkRixJTrmkuP6W++IgYE/vDW3zILp9Jga2JKhBVBCMif4NT7A4jdw8t+sxSLCq5j3mYREDbrO+tQGW1HxEcm5KgrEpxQsKWztK7o18Sj6Tk/aTED8P9fc8h4/+7Kwwn7+I47PX0Ln78CUYMAa9E9jXGJNCWJARCCRqmjVplqEjAWoP3x8BsChym6q5ULWV9OXoFJJQ5kjsTau5SSSUJMXDLCmrR56oU+pGcIZloO6mVGGuJMeGGkWaxmPlTjxIfBS74Gacc8hxXSjGcSBNrzQwlwGjee/EBRalnV/eyKLFGA4GLqw2bswVFYVksaz7+5APONmuasgKXYRjZR0hZw9nlOf/Rf/y/5OJsQ/Ce7XaLGwc2iyXmfME4jlxeXLJcLGnqhmZVQxpJoWdzuKJvLUO35+76DZunz6iahcBSz59wcXnJ8/eeg7K03Z5u8DRnG37yW78FKbHre7CWiyfPKBcbxjFSLNagNLasWTQrDrsDfddTJ0PbdbRdx2qz5uLyitE53r56zSeffMp5UzBerXn95jX9MDKOgWEUw9DgPZ1vZU3IN9dYmyt+Mk72uwPKJIxVJAtKGeq6wBYV7Tgy7O559RvPcrmg25yzWK6JV89Ybs7n+//y65cUZUFTluJb4r24EedAwGpNoY2Yeo0R5WQDK7JMeAqCw49RKqniwyFQuxn7DQREVGPa35qyolSaQml0WWDWhuW6IZFYr8+4fn3Nrhs4DANBeVABfCAMI94YnBHorXeeQTnafYvVFnP0AvxRHqvVIn+XcqB4hNVopYTjqCU1iP4IC/MTSfmkiCFBZsCoKQY46X5Me0nmd34X0fW06HHaMZmKJhNEa/pZeAbmpO6ZsMZSVxV3tw8zF2gYHcPoZY2K2fspV8ljSOKtpSy1gX3nM28topUhpQB4vA/Y7QPeDSQ/grkAUu6CiDJSCJ6u76nLksJarDYMvUhKR21IQSBOzjnxosnJgdKaYKygCWazZJUVpkTRauINee/oB7lWVVVmc7yJ5C2qTyGIEhQ5Hpx4D3KNI94P7HY7hrFnHHvKMgfe2ZQ5CQkCkxTDIP43MUqy5MOxXh9ikgJFCjmRCXSde8QDLLKZrovCA1kuFhhk/5+U4OZ7Hie4lEASSVIU67qJXzIZ3h2h/yFzRJwfeXi4p6oLQnIMTlFUpXDKsGhjCF7ea4oeayxeidw2JJQ6OoNLMqEw2s7XbFKZmwoK7xYW0kn4cdrNOFVinAr1mhMfKXWEAP6Q4wcnGVUxDaRjVjNVgY8KOLlzMP1dUmP5Pk3BnARsCiExK8hfT5Qbpn9J2oOnh4op49kCGvHLAE9UgVplvXAdUSL0MV+9EI5VJcELKkjZxt5YlDIobVgtFmzWGzabM7GhH0fBWDMQU8IGS7ARdWjpnEd3PenugcViSVmVFFY6HdWioVot0U3NCOzGDgbw3mG6ln1w7HdbvBPSUr1o8F3L2Lbs7x741b/8Be12RxodOiba/QE3jmijcMExeEfnBwY/YmJBkTy9G7K8oRaORx7QzsvfxhBk4oSALiwxB0MiwabAG2nHjgN+GDAzj0VquLJoCERt0SwwxZGsfgyyRMIzKIUHOifJhesOuPbAOPSEoEhYki5QxQJTn9FsnqLKNaFv6Tppcyqyag8i55hU7hdrUfoZXGC3b1lUNaUtMXWuIufuQwJ5vlIzrpF3R++UU3yvIoF65/vTf/+qx/Sevrvr9ygAePTnv9wO4b+OY3L4nqBH0zI1ORkrjhjRNLfup04O80Inx1RJPBYlps1ElqOUE0NJ0CZMtMrtcoWU72Z4DRJYCJZ76szmk2spQohKCnJemM00gxdDvklFxQugFsuUVJLxtmkuouT+/GxwtWgW+DjiRkfbCbmzsJrRDZTlhtENdP2Btu9JKGxRUjcLTK3z+mWhKEiFYIc3qyWlMfRtS98eSC5SlgVlsyBq4SQ0q4aqrCAaglP4wVFVDSlIYLLzI0ZrjC1QpuTs6XucXVyw2Fyxa7dYU9HUS6zSLM8ucONI7wIogy1q6tqgTWBZlqAUzkfW6xVudHRtizGFYM+Ra1cWFu8dQ9fRdwdKmyjrks35OQ93e5wfSMnNFeCUErY00wAQl/ATyEGIEYsELj55CivwzbIQrLmLgX6/5eb11+A9OiX8ZiOBmQyOuQsuRnYCZVFZs3jywIhKYLeEE9nUPAZSykGhMaKqk8+ZUsrfZ55eilj0LJGt83hMIeJ9IGaOmM6O4MPo6Hrh0qXcTVY5cY8+irtxltZWCNQFq3KA4/7HmvJ/6cfkMSTrpJrn7bxuyoYlnee8viul5LpOK0ReX3KQctIllvXmtKYpp/9+jDsc1/Fp7ZpVkvLaMiUZWknhK4SYzWE9SuuMOgh4HOJp4bPDO0wcQhELMVg7kdZF0ckoQyBkE7Y4k89TSgyDdCQVCVvVskbGzKHI71cEDwOxKIi2YHQjOkjgnFKiH/rZCI9szIciG/ElYlGIJ4vWxOizgiekpImZsxHHmH8nyp0gcR/jMQAOeUxGpQhefJCm6zo6keN2o3he+JD3BLLCVTgWlIWALwqjMa+zSaXH+4O0HiUYj16KmXkPMVERkkLlInpwHpcgZnfyuVMAoCGaSEJEcGIS2H0IEZ1l1qdOmPjTRJS2jMHRu0EK2GNHTEYMHIP4LcWypKxKkhZofwoRVUDSUbilKsscJ32SEEuZLJ1MhkcII47vPb8heUxOEFHMiqjTeqqUFAaNzYnXqffLXzYn43K1gElxJ2dN0/cp25yrXE2Ik2lRZtoTJ+KNfOU72i8yicl/i/PGfMyx5NAJtMgWoMYB41qM67D+gPEtxh+wrsUo8RmQ1CKSVAKrwRpUpVDKgDKMIeFCIilNWdV89OEHrNZnVPWStze3OB9wKbDfHwg+y6UtKlzwRAcqRlSe9EYbVus1lxdnLJdL1qs1dVni3MjDdst+t8veF3uur6+5u7+ja1vGoWe9XOCHnjCOxNFzeNiiEzRFSWMrjFKowkhy0R7oxp7t2LLvu7lSr5VBJU1K2d8jSifDe4+LonwRUxKDu0LwlNZahlyl0H0nEytEdEpZ9YS5KrjZbCjKkqIsWDQrluuVPCZB27WzwdMwOA59y9Dtebh7S/twjxt60XwPmqAqgl0Q63OK9RX1xTPOnr5P1AXdsGW73RLdgEEcuOdilFZC9M8+WYNz3N1vKYz8wpgNTe6wpJRmU0apUkhSOQX309Ca4AUKPS8y33VMC8Xk+/n/A/H+v5bDO9mATErf5l3kLgB6kkaU50hl5dgGLopy3sSPxkAAUmVL8yYrLfXp0CmbXilLCFF8VbKC03Q/JeGIxJgNo+Y9VZG0EilDrbBlQUjieZK0YgxiomaVdPXGrpMA2FoWRSEV6/z+jdFEtCTjIZuwjSNaGYZuZLff8ebtDSiNd0vqhQV9xeu3N1xfX/PwsGVztsEow6pZsVpvZBPQhqANUWvQRuaqMWgFQ7tAdWJqWBYFulrQLGvqRUVZVkSviGnEd4GyrDBpiU2RfVGgEgQXGUPg05//NSGjoxhv7zhbX2DOLmi7ljFEAgXV4oyhz8ZZPlEvl5xfnDOMjq+/eonVhpQi3dCzqC2bzZqyLEX1p7AMPajk+fKLz1lvalbrBU+fPsXoEm32tIdR8r4cCxbZWFFpRVVXTNjuruukCKIsVovBlsnqbtpolosF/dDT9h0vf/MrrEo0dUHyPfv9A1EdiGh++slP8aOj73rKZUNTVyit6NueFAVe62Ng7tLnNWTISlFKKVSh58+Y4lGJaOZ0hCDwpqKYu23eeyGSJk97OBCMIuAJyVHVPQ/3Ww77Lvu5hBxMks8XCS4w9iNoQwyKsXR4lzI0a/gfYnr/j3I4P+RCpUFToPK6rkjoFEQNDvGbmYIlnRNNWSOme5RmqJlg/DNRnsndGoFECrJ6Dt5Pj5m/YMTwNk3E+xwLTVBPkUVO4ijvEqMfOOyEx6RR1HUt68YwiJRqTihULmpYU5IMqGQobJP5OiNxiFSmFMWwmZvgmYCcvZOq/jA4kjqSlp3LcshKY4zGjwO+KCiKQjp1uaDSNA1t3+bg3gFqju+stQTfUFUVTdMcTRBjQGkrSXHyEL6t1iSSvYqUEwvhP03S8Ee4z6z2NIx4N2YRhny/EkQmfpfI5qqkJCGPIWMUMrdyhhspSYyAEJ28lkpzkTElcD4R8ue3xgr8KnNJyqqat/6EeAFNHWutNYMbZiWzlBPKmJS8r9xxKcuG1nWYVjGES7puyzhIQif8XVE/25xtMt9DE6yFKmILMQjTVoxsYwRORGyUlu6MnopuJ9fSWvNI/GAuriUkIcpj3HuHKQuMlk7f0DuaSvQS7++33N7eSrxrDJ/+gPn6wzkZ96/nTgZkAU4FqJgDuQyZydU8mdsJVRy7FpNPwNTaFPpk5lUkmBSeVJLMe7qZcdIJjpO/gCcmjxp74tBTuJ4UW9a6ozYOV0ZRFdBJKhpBAgF5U3IjfAIfE0ElTCEtVltaCq2orGFRV6wWjbTHc2tPSFUCcwg+YItCNOdXZ+gE/aGl3e558803sxNwTJEi36z2cIDsRHl//5A/u7QMX20fJEkLkXEYGPatYAyVkuDeFrPB1y55uhToC81hSBy6lkPXCdl6UtVPKmeoacoJ5+Ba+8R4OJJuyRm+FNikIjB1BDabM1arFeeXFzTNghgiwzhyc3vHrj3IYpErPzFvbte313SHLUO/pxu2xGhIWIJZsIsllBtMc8mTT36bp+99xPnlEy7OL7h//SWH/Z7hsKNUDnxPciPGQJGdMauqRBGJwdGPI2M26dofDoQYeXJ+kbXCLcowV4A4gerlD/0I8fTn8YhUHvma7JL5gyfOvznePb6PPHnaZRKiu3SxgNzNOFZnTmVE5e/flt87xVrPr6WYjfNcDKTsFi9mj2J4Z/L9jYBVhTwnSXAWQsAaS1lUs7TulOyccgGmln9ZlvR9T1VVs2xmWVr2u4Fvvv6G+7t7XN+hgufNm7c8bG8JMfDhhx+zWK64vDrngw+eUVaau9s9wWtIJd/85mvu3rzh8z/5Y55cXHJ2ds75+QXnz56x3GyoFg1aw2qxYFHV1FXDN6+uGR2Mw8DPfvJziqbEGiOQhih4Y5olVfLs7qXSev7kBdXinKJeUDYrirpB1Ik8H3/yKbfXN7T7A0MPX37xJddvr3n79g377ZbODyir+cnPfsp2+yDwDVOyWKzQSrFaLijLgn7YE1PFRx/9jC+/+ir7RsDhcGCjGupKlPaquqaqRiaH64lEm2J28w2B67evZ/lQazS2OLb3lVJUVTXLnVZVhTGGwhqa9ZKbt6+4vbnm9Zs3vP/pTzi/fMLZ5RW3d6+xZYOtK4bg6Q9iEFZZy3KxwXtPP3aUOfmAxzwipcSZ+l1u4QQH0Vpjo6UMUsQKmfBNbQR/rcA2FbETlb2YAq9+/TXdbsQdWnTIEKnRZT3/iI8evKfwwrRTSAdl9KNUjeMPgzr8VTwMIvMqYakk7Lk0K0qNubCoKOYgKug0F4pUViRTaElW4kl1F4XzGVaViwTpZN2Bk65Fevz7d/eECd458QxSCtzf3xODrGur9RI4QoNevP8e129vaNuOkBSS3aQ8XjTVaolCFM72u51U61N63OFVSqr3eW3yMWCMI1jP7V2gqmqstSdSyaLIaIyBTt73YrGY4TeonMykMI8j790jY7yu62jbdg60jTEoU5D6fo71YsqKWcbMJPAIROfnNXwSyDj1Fzld643WJGMkoU9IYpAL1jGjKEJIOThWTKa4KcMRUWoOnFMKc5NS/nQKhctKqIjc/ThMJphajF5PCmMeEV0Q89xTz6apSCbxR1mVc5y1221pGktpFV3bcuuF5+rGYSbiK63Fg6iphXNbFFRlha0F1t40C6oyJyRFjdY274dB9kp9Am/SOpuVhmmI53E3bYYCM/VBnM3JnV7yutl1Ha9fviLFyHq95sWLF7MT+Q85fnCS0TCe9iOP6BKV0e2zQ2ruapAbRbkjoUEYNvPEPPoP5P7lnP0Lsfi023GURgPhVoTowHXosUWNI3rssL4jRfFTsGoaWBD15JSYXz5GlBYPBhcdKGnNGaXo2gNFUVFVDRfnZ3ITM44weE/XiX5zYaVSWFUNVdnME7WwlhQEXzvmz9RHIWofDgeZEBmyFbxgzmMU51fvXG5xC5xJGWn3H/xIoaDQiPoKiVGJApSqSlQSZ8kY547wLJOk1HRfjldTaZU3w2mxjPNjyqKiqkrqqmK5WrJZr6nqmrKs5T0GMSlMgHM+Q7JkknkfGN3IdrvFDy3B9fjBEbQhaIvTDa7cUG2es3z6ES9+9gecX4jPh/cd2+09h90DhIEiE71T3hys1thJnjhmB9soyOZ28EDPw76jaZbigVIa+ZzTZ1fTRqSO1wQ4+d+jQ33PD3Pj8d90Mv6VjncJk6eVLXi0FMyQlzm9U1On7FiFfbdaMwWUcKwynr6W/C3kfpSaO1uTjOVkOpRizObuJi9RAnlJSSCXMYhXRJGrf9PrvZtATWop0+erqgrvBbrSD5PefUDFwN3dLWVlWTUr1usVYKjKiouLS7RJWPuKlBTLxYbzy4bSJNzQ8tXXX8rcOezofI+9KWmWKz745Of4skZpQ1HWLFdr7BgBS2mlKKTz+myMRRUVOgoHTZsSZSt0taKqV1TNknqxImmND0LA/PVvvuDV16/o257G1ty8feDudsv24SCqSkoTgSF3csui5MV7H3BzfSc68dsdVS3XYixHHrYPVFWJ1oqqKmcCaghSNauyx0jdVJmQmdv6JivIpZSd4CNVWXJ2ds6hPUgiZew89qbkUO5JoiwL6tJifMTFyPWbb1BG0e13jEPL5bOP8n5h0ZnAK8TdRNC5A1MV+BQyFvwxkfhd+dqjLr+eA6wUEypE/Ojo+k6w+1rPHf4UAt3DAzE5IoEwKsa+x/W9BMlzISnl+ZPVdIJ08WPwjG4QjP8EFfqxHunIjZsDe5X3ixxTJMiagfOTTjrQuQAxuTdEM1eyFUriFOTcIYYMuT0mE3Akjc/Y9ZPYZn5LJ50tgU5lHPss5KEyJEkC87quhPRtNNEnlJ60agSDH6KHmBjHQaBSpBzUaxJW1rE07fuK5D3KyN+l/hsYXY/z4gU0dfREUKXICUHCezsHqjEqlBZTPaXletkkYeOpad63PEOcZCynZGStNUVZzIpt4iXmZh7b5GdRFiVFYSVdnHgt8WRcB1mbZTvP/KtcsA7ZcwIkpospCLpjHgu5gzV1vqfPNe0j016izTF2QKGVwMeme31UmStIqIlGxwzthewNJOImzomqGy6hDdT1CoXCj47WObwb6LvD/BpKqYwYWVCU0n2uygpdGLCaoihzzGkpi1IQHsZSFCV108j7zzLsp8Uvk+FuSoFVJnuxaXEuR0R1tLHsDy1d3zEOoyB0VlIYmiDz32X2933HD04yFsrl65/m7BpSrgKcyuZJF4IkScZEBk9pQh68y+nIY2WaxEn0jCfPssexXCIlL7hlP+Bdixpb1Digxh7te0xwED0CbNAT9YI4QWuRAFWcoTWjQojSRmO0ojscMMZSVTVPnr8n5njGstsd2O92DOOYFSNEvamuHVrLjS7KkvVqxSRwM202Q98x9B1d20o3Rkn1YMIXpihGO/0oCgoqwWK5kEHoHZ33Ys6jQCtLn0JONCCVFkNFocTZM0VZKFIe4Ewt4hl+JlPrKF0XiS5l+IG09NfrzWzqs1ytEJdHz/6wFU5LjKRc8fE+MIyOfhjFY6PvGYcBHQaIgeAVo7E4VeH0GhbvUT/9lItPfpv3futv0JQFKozcvbxne39Lu79HhRFLAC0LdwQKoyjyPYpByFsxCuxtdAGSY7tvWa9GiqKiWZh5wucw6ngt5vE0fX+68LwzOIHMFs/H4835uzogf5ZSyf+/H6dJxilx7HTDlk6GJBgpkmF4x2RhGIY5qZ8MleCojPEuVvpRkkEk+iTzevLJIScZJ8+TzSycVMHkMRPOenSiEje9h9ON5zTZGcdxrmiqDD/o+z6rTAWBUXiPilLl/OjjD7i4uBCYQjeAQoLgpqQsa7SylNWCJ8+eYE3k9u1LXn3zDYd2zzD2ODw+RprlivPLZ2ilKcsFplywXG+wQyBF2RS1BqMUOiqUsaL5nmCcpKdthamgbFbUzZK6XtKP4oq92+/4/IvPePn1a9zgebZ5ym7b0h4GxsFx+d4VZXJEFdHW4ENgsSj56KOPuH5zzdgPDG0n18iJ/OabN2958uSKqqpnI1RgdpgtCktdlywWDXVT5qqdIiBmYVElmqokpcRiUfPkySXu5SCS1racCf2TuZjW0ukoi4JCG2xdYH3g1dsbKQo93DN0BxbLMxkfRrOs14iQiJzD20BVlixWDbt2j/PS9T5NPL1z8/IxwaCmMTq9j5SVooJztIeWtmvRxuCD4LujDwzbe0IYiXgWzQV+HBiHXngjea+NOZieE94YJdkLYYZIPZ5rP74jxaxkhMqw8pg5exF0mtf8rLaeCxcxe0JMcUmWKU0KFcVtGZVyYeqYvMQU0Jg5wP2+4/vw6Y+SzRgQ6VeQ/SZkQQCpKhdFgS3EpNf5MReyUk4oMvHbe4ahF1Izaa5WT9TmlOS7iTOmrJj7Gi1COz53smKMmR9iCFmxcYIYez8KEgBDjF6up5nsY6cgVc0J8vT5Tq/FOPTTX4RkHkUudtJnnFSjnJs60cJXlQIN1FS54ybu3XOBOkq3eUoApHZ4LKKGEGe/GaWkS6WUGOFN+/9U25akU8+kbzFyzWNiUsDKf9fZC2N6jWnPEdK77E9TJ0lN9zv4nMAlvB/EsT1FysqgWIn6lPei/NYfaA9bMYjOb9Bay9gvRKK/KKnrhqRT7tYx34fCFlhb0jQNZ5sNm805FBaVLR6EOyOfu8iEeaUgmZLCFCilJQa0AtHT2nDY73l4eKBrO168eMH5uQhhnBok/qUTv9V4OMZZihnSJD+maTzl79P89fR41+P4kVrO6XP1UVp0SlwEZpX5HuNAcB1xGIjjSBodZKKwye9PCjWiGBNzayihskqAJpCIyfPs8oyialDG4qOic4Hd/S1v3rwl/Is/plwsaZYrnj17znvvvUff91xfX/P69WuG4cBu33J7JxKK1gg5ftHU4iA+BRrDQPAOa8wMmarqmqap84CMmLqhWmhMqEXmzhQU1rJYrXn99g19djhNWh2rBTHM3heAwKWKfJVTenS9T0loCYF7kR936lcwjiP7w55IYrneUGSN66IM7DrBZh4OLfcPW8ZMXBvGEZdNaGKMOB/FLC8V6PoMV5wRqzPM+n0+/YP/Oc8+/CnPXnyCNRrXPTBst9y8/JJ+d0Mcdpjk8K5DJSfN8MJSZaiUMYZ2HEUlIm8gVluc0tw8HDD2DhciRVVxvl7NSj187/4wbQLfO/QfHX/ewx51jL4FB/o3Bzyu+L+7OYlZlSH4OBcGjMkcKrLSy0mFcML6ToH8acv+2LmQQ2sRLg4pUWqd3XQ1i6Zht9vhvaeY1IlSVr47aQmHOWhTs4Tm+fk56/Wam5ubGVYJzF2PcRy5urqax4VzjiFvwJcXF9y8/IZhHAjjwHJRS5BhDM4PXF6dMQwH/uv/+h/yH/wH/z7Pnj1hGAb+m3/8h7z45JLqbEnpzlk9e4KKiVFrzp5estysiDHxX//Df8Dm4jnvf/gpv/Nv/QHNssYWjhQSVkGRsbwAKSRJ3gGURRcLylqjG8VqfY7VhjAGvvr1V/yTf/qP+eUXf8r/9n/3v+Znf/1ntPue/RuBTvo08ubuJe//1ntcPXvCcrVi7KVrc7ba8POf/QyL4f7unu39ltvdnrfXb9lud3zx+Ze8/OYNi8WCzWZN33mCF0jcOI6sV2copTk/P+P6+q0EUUrRlDXOSdHk6uoq48MLrNWcrRY4n/BBJDIniNRUUJHKXmT7sKOuG4y1XG3OOBw67rs37G7vICRW51esL6/4nd/7PUzKFWBjSTqwH/Zsu+1RGMNObsjH9TZlDLMxhr7vadsWpRRd1wl8JInB6TA6qqrkatGw3+8Zuo72cOD+7p6ff/oRu/09r69fok1NTJ6kIt3Ycuj2+HEgRuE0Jq0FRuW8FFtQEAODGwE1+xv8WI+JQD1jK1Ik+hF0pKosdVWyNMUcDHVdh9VI9y53xZyL+DHlYFk4DTFK90LiaYmuv4vw/Z0wzRykn1bvhf9w7GZqc+ywzjFCinivsiRsyTgWUrQbWia1PI3CWoVRFl8YvB9n+KZzflYsmirv6uQ6WWtmSVXvPC4jKNSMdDhdjyPDKMUNq2Tcjk6c1IuiyNf9eLwrd3vsbPhH12AYBGo+jj3L5XLeG5U6Jt1Td6jr5PnTtU4pUWBJPpJ85vj6lBNLshADeS2TQJk0qYIJ9GpSxJrinRglsTq9p5IjCNQ1DKICqAwiTmHk3OM4IltAruTni6iMxhRHSWVjDG3bMo6O7aEl5k680hCVeLo1VU1VVvSDuKPXhc3XSEj2Xim6/Z58UjbrNXXTUFa1EM4zzcAb6WwM+3vu376U91NW6KpmuVyxWi5lvyoKKagUBUVZ4MuapqgFJqsUd2/vObQ9bdfz9OlzPnjxAc1iIeM6Q5P/PFj5dx0/OMmwaoI3TZ95SiJOzcpSvtnpdPrL/3MLawZTPZq3J62sDF9JpFkdKqUjDl7mu4FUIrAHP7+eYloc5gceg8c0DQhp4xdGyDPEgB97IpoxwP2+ZfCRMSh0UTF4T9t1eBe4uLzEWsuTJ09omkZMYmLkcGhnRYMQIr7diwu3tULaSTF3VBRVI/rphS0YnGOqQIWDJAtKK6pFgykLXAhsdw9048AYHD4G3OgfO7oineKUInH0gpJS2XnWGDH10RJMRIVUcPJ1OXJjcks+BvAO7Qx2dLR9R9v31EgCk5LCuUDbDez3B8YJPuW9qHSllIsNCq9KgrZEu8GcfcDy4gXnH/4uTz/+a6zOn0CxIPmWfrflcPuGw+0ryjhidSLqhNMaopCx66pgtagpqwqSEjypmgJGGVwpQAqe7aHFFpbVvmXRNBRmgoTknsUjeNRJb0c9TjSmrt3cvZugCOrkaX/G8W8SjO8+TgP/U0Ozubqm7TxG5W85mEjSTp/hJSeb+bswqT/v0JkrpRAFtm7oQQkuVRmNCkeX8RhChv5kXL+eWE8CdZm6Kn3fP3ofafqax8AwDHOFWzoYnkN7AHI3JC/+KUoFzBSGcTygdKKoFEkFLq/OiTHxD/7+P+TgHAtjWT19igeSDxRG4YziZr8juEBZFnz5m9+gbM1f+72/TYwGlWElk6qVQCCsYHZ1QkWNtSWmKDAJgUnVS4HrHB74z/+z/xxdwieffMzbu2uwEEwklVHkZIvE2bMz7FJBGRliz9ffvOTF+y+4PL/EOceiaejbjoPRDINjs76kKBbsdh2Hw8A4RIYhUNe1BH0hYW3BdrfN11TlAMvnRFM07Y01hODoOqmGClba43zCuWPnYHKM7/t+lt+uqxI/ihdFVdXQgPeBEBNvv/6K++trqsUSkuPp+x+yWJ+hTAUpopSIbkznl3Gs5/FoMnRsMuoTsYxjQDaOIyElXAoUlRBvh2EQKIkLqCgCIL/56kvQgXrV8LPf+Tm//JMvuL2/l6JRrpKeQjfm9SdByhKhn/z0U9q25+3bt3/xyftX5AgT1DpNoh2JQkFdWsbxwMvPf83Lr7/i7VdfsVwsMw/HConXe4Zx4PLykvOLJ5ydX/H02fsUZQVK42JgcFLAyrvsjNqYjne5GZDXsjnmeGwmN/O0tGa5XDKbwc2JqHBI6ro6wmW0qDdN5+gObTZuE7+KqWAI0ukM0eROichlixGtdLhiTOL7okAbS6mmivXRE2EcPSYb6JLk8aQoUCtlZT+L0jWMcXrd8pGk6eRXJOtmNpjTMPQD3o/5ahZ07WGOS06vX1EcjfmGQYQzimyyHF2YCfXEhA8+d5+AZLNzthDorRXoWAiBSfoHBTYn8/GkqDpd32nOTkIM2GLmGusstx6je5xcaj3vVAqwZZafzcWD0XsG73BZiEBooQobIsMw0Pcdwa2yMpaY90HA2txdSAlrzdyZFOl0R4rCpZFQRqGTISknSXESKFmKAeUdOnp8t5cCtNaZGyjE8rIQ0Q9rBPJli4pFU+dkRmSih37IYlZq/tynRb0fcvzgJMOo6XKeBk7vJBk8TjBmoma+CTEdH6GYEo/8vJSDuLlZmSepkvYoOuavoLRF64RWHqW8dD50QqkgNzIij09y4qkFlhCtYzJEymhp47txxPlI5wLtoccnRdQFSQuWLnYDoxMeQrMQNYWqrpikYsnVqXF0ROeAiClLlsslwXtRBCBSV9Ws5W1tIfK4mZMxxiiYPRS6sCQlmunbw57BCbQipAnTmeZ24XFDkWpkyoFNVAplkwTqGQqi0hESlE6wlHG6j/HoMisV14Ehk5GsJUOjRvq+YxgHRudz6zA+AsElpUmmIpkGtXrG8tknbJ59zLNPf5fN0/exZU3EkMaBw/aO7c1r2vtrmjhgVMSrRNDSWNVKUWeOSFFOOG1RxVBZpWZqm7sU6fqB/aHlYbvjbL0klRWltTJR3k1wHw01NY/blC/o1H4+DuJ0TDASxwVpHsTfn32czpo/L0f5V6kW/GiOIw5hbtknyIu4dC1R8RF2dOpwzNW2nPxNzzFWzjGp9WglksdGZ/Wq3H1Ik1GGOvZZE2mW8zzKHcsfE4mQMh45v0eV149T2E3f97OiyAzNIj8mRZwXt9rgjzCaEGOu7uXWvBFhAxlSInDhxw5jRPt8//DA5uyCp1eXfPD+C6mQ7fas1guWm3NUioJLVpq263DDSBVLbu8eOLvf5Y3OQCbQT/NfxYhOMTvLp+wrkiVxjfgG6cLS9T2v37zh9ZsbLp6eY6sFD7sD1TJjlwtQFZSrknVxRtFUKKtx3vHy5Sv+4Pd+n6dPns6B1SSoQUzUdY1WBo3Bec8YPaiRpl4So0AqxlGuc4ii4udmwr1cc2OFD6eVwmUH9UmhzHnwXu72aeLnvUcFTdDirB6DjBNViaoMKJLz9Lsd/X5Hu73n9bpBK/DjwOrsEmUrjK1Q1sz3WLg65TxWlVJZblLW7MmleiK5OudwKTAmSX6cd/hhJDopoJksf3v7sMMUikXRoLUipUAMTtbA2R8m4wjmJHyC1cg8KqwVSMYPTMj/Kh5JRVI8Vh2t1qgYCWPP/uGGm5df8/KLX/Hqiy/YrDcsl0tWq5VU1MeBtm0Jhy1pHNEpsFovSWmBMpaopi6PnP/7Eo1vvSep2smjcwA2jbVTE0AxaEtZGSjO59VaURSWsiwoSpvhLcf76JxI6aeMGEBl1cRchFExomI2HcydiWMSMXFYssKWMUw+LRPUKKU0d3lEGldIz9P1mPakac2dPtdE0J7ihjm5CkHWGqQ4JDwXcRZ3Y8RYcatHT6aJRw+GKf6YPoN4KpHvBDP6I+WiLPkaKqWxtphVMWMM2ZRZCqmy9iZCmBQJ08k8OSYZKUah+CAFAtlrskfJSVGLpOauN0oLNCmv7y776XgvxeMZbaLUibGhKNNN3i5KWUHb5J/9yfo28WZDTKgxoIppTGVCgpkkgk8I6CGIwbKa5PthyN2MsiolwbAlxgg8dnN2SVmUNLUYBcbE3PWZ7tFp8fSHFlF/uLrURIz61nnVyf/TO2bIx7+JDrGetrEMcz92O1LWJJ4WSrmAMkiTSbkTITfUFJFClcSoRakhiUSfMhGVhNQsjf84D8C50p7fZvL5hinN4dCyb3vudwdss8BWDXVV0ockQfXouX24F4dua8UB++KSzdkZ67WoujgfGJ3n0PZUdcmzZ8/4yaef8OvPfkkKDmsUlxfnDGMPKMq6wRYl/TByaFtC9Gzv7zm0B9quY7/v2e/33N/dnVwPJa6TxorWf4ZAScJhKUr7SPnBOSeLkcnY85PKxQRtCpOPycnCOAyiEd+1HV3bkQBtLbt2x3b/wHb/wOjd3KKdulNz4K80ptpgFlecffoHfPy7f4vz9z7h7L1P8arEuxHXtfT317z8zS+4/c2fML79nOaswqYRH6Q9q0yJtYr1akXT1Ght6ELIXSIzt6LnREEZDp0YB43DQFkWXJ2fc7bZUKqcUbw7fk8ThWl88HjTmDsY6XT8zy8qieY82k+ef/rbNP/vtCb2+DGPzvtu1+XxM3+shwr5c+WOo7Y6B4K5Q4GSBzEF3ClXniVYK4qCdhDPAJ2mbp6cI4SAUVZMGHWEAkkAMmEyAVElks2bk84d0pxQTGtYyiRDIYUyCwiQ5RGnezupFE24epgSiwRGVrcYEtvDDmsMZVWyuTijHztQEHxOkHMHt64rysJSKFDjAH7EIwIP/+wf/bf8wd/8m/zst3+H/+P/4X/P/+n/8n/mj375OU/ee8rv/O7PqMoCrSNWgQ0Hht7z5s6x2we2e8fd7Y7lcoMGjFb4MJKcqMKJiZQT/6HcFvdBTDW1LYiMfP361/zf/8v/gr/17/wHfP3mDf/sj9/w+3/7t1DJU9lEVVmefXLF4tCwO7SsL55RaMu+3/GrX3zGf/jv/y948fw99vdbXr1+yc31NQ/3W5bVGqUSLngKa0BV2Qm4RNlSvIoOB+63exaLJQpN37ccWofWhkVZslqt5oBktd5we3s7BymSmOTCltLZrEqqcZOE8gRhWyyl6t327TxejQYVEsl7cD3ty1/zxy9/w+r8kr/1P/s7lGdPsUuNqWsedofMd9HY7AsaYsCHgTBI58xkKfApIS3LkpvbG8LoGP3A0B7EkyMmYu76mEKz77Y0ywXD0HHz5o5/8Ob/BT6iwijcoWAgaLLuquy1yuHHac0vWJiGP/0Xfyxdux+oDPNX8UhWOncE8QVZ1AsO2z2f/ekf8+UXf0p0AxsDP//bf1PcmouC9Xo986AmknbUnsPda/7kcIctG8q6Ybm54Pn7n1CYCoOmH7MU/sneAMd60mnSClOsc0wsYoyzS/y0x/b9cPQHyuO2KCwpOS4uztHGsN3tZ4dtlx26YyZAGz0VJMRfxnuPjgEVJIFVPntXAWiF1harirzOidJQYWURNsbM1W3hSLg5iZA1Nc3VeekeukdE7tN1b1oHtdaE0RG8XCeDrCMppbzmJYyekh2+dZ45dsl/IyZskgJCyjHMMXHLz5fVGqMt1pYCZ0QKtSFKR6MoSnSuxB9N646Q3el7hWKMXe6cqFwYmaBfVu5xJDuyg7WGqqyxpsQ76Uzudy19N8peoDUhBQgShxJc9lUSREtZQwgWFw0Rj84FoDAMeBC1T2MlfksKosJS5IRCDD7jxCuJoiYX8rUKILLY+XO37Z7eGKwtWK5Wsi4ay2p9RllWMs4T1As1JyBS4D4mG8eE8y+Zk2F/UHyjsmb1d/0ly3++0/eYnwdHqbhHYdjJ5p8hK1qDNQlVWwrbEH2BGwuGVizl3Si6zyGqvMhPErnTGQ0+avpo6By0g2GMJarW2GaB0oYxJtphIJDQhaIqStqxx3Utfh+42d1SmJJSV1RqQTIlumioN5eMOF7ev+HrG8ewu2ZVaVaVZmz3olWcoB0De28YXKAfBvr7N0TXEcMoKk650lEoNU9CnSta2kjyFUKcXZEnGTWXxJk4SEwkWTc5YA6TilS+tlpaoJOrY0xJdP4xFMhk6seOPg6MceT1/Wv23Y5DODBR+rUylFVNMtKdCFjqzSXVk0+on33Ks7/273H14hPKxRqvCxQR/J6wf82bL/6Q8f5zSv+W2rYY36F1oq4V3SiLpDIygY2SRaayBU1hMSkyhkkfXiLFECKFNURl2A+Bz75+w35MPMfw7GyFVREjy2w2GUyZVOkZh5FxHOmGXiZVDJI4ZpiayNbFjNMXstV6s6FZLFiuVhRFKaZcKeUFPicgMuTgZOwf0cTHJPvx8fjnacF/d6P70R4pz+WUGL1nIi2eErRPF/7johZPTnGspk2HUorRuZnMLaTgLGiZK19JqyxrHebqVVVVjza1oDI1NCXIeOGpyjYFpqfwgOn38zxF9NqnzxQFAEwCHrbbWXpyHJ04gAeRzS2qks1mzWa1hNCzXl4QY2DoB1CKh7ev+UrDz3/+2/xv/t7fY9t13O/2fP6bz/nq/o7DYc9qsaTb7fDjSGFqrjZrnl+es24a6Q7lgMmHlJM5RUo95M8bQ5DAPFclizgSxgf67S3b29ccDp4R6ei27Ui/21GawNn5muViIQTFqqFWBf+f/+of89VvvuI//U/+Y7xz/OqXv+TNqzdsb+/Z7fbsDy2DEfhFiInLqwuGbES4P7Q8ff6czdlTUrrg5TcvWTTLXKlsuL6+w7vAOBy7rhP2frlcYq3Fe09ZlgyjZ3Sevh/xSQioRVHStgPGaGxhsYWh6zu6vmOxWOC9OLYvFgusLejaPV07EG9vMYUhhpE//qf/iCfPPmDz9AXn73+EMRX1UtaCru0FPpvC3DFLUWAkd3d3s8LVMAy5C1NQ1SVDPzAOgxgHlgWjHxkHGSNKKxElKSqePX3K9cs3dLv9VOLJ3ewwY9ula2Jy9ZU5OJ3G+Y/1CLlQoayiKBQ+djxs3/LZr/4l53VF1dRURlFET7fbMihNlX0FUGCVxrtReKUx4MaeYulwbs+b+9fEfkezuqBZnlMtNrgIIem8XuRo5FEVdyoyTfGMqHrFkCTpzPyXRMxFCjFqq2qprMuppHB2c3ND2+1xY0d7EJEFN7oZ1pdNH0Ry31qqujxW7hOCMBgd4+jY7/c4LxdLKz3DmkMeDyF6UWAioM1Sxqmx4v0i7yx7tUgByAdHGMd5P4qIgqbK8tHODbnDIskPQTpowlHy83NCiMTBEwIUTY0PkRATznvKooSkUUlQClZZSlsLD8oKJCwB+EzWz8PYmoLCFizrpZh7TntJVgZDKYqyzJ2JmEnm+a4pabT43HkYx4GyruX5MeG6FpVhS9673HWQrk5hNFVVslwuQME4DrRdS9d182torbEn6ITaWszEkzIabQoIiuTAB4VSCa0ihYnzewguoqyYG5IUu32LMZLgLJqFIKWIKCUoH5vhaBYFXjq0hVEUVSMQ92Fk7x9ExVQbDrsdh/2eul7QNCvOL59QNwuRPC5KMYzNnOiyrKVw/ZcNl/puAMe3f/u9UI8ZkvL9Zzsp4j7+3fSn/DelxXdDFwWF0eJwazU6eYxWGZoWiN4x4TYn0mdSihAReFRwdF7hIyRlsIVBG5uhA4J1TEoRlcL7CGNPzI6VKmpUEnhTDIpkErq26KgYdQFOw25kOHgOnefBBBoTqEuRZuvGkSFZXEiMzjMcdhCdKDKFOAdFesI4xqM8n4inp1nlIOYAOCakcqEsSWW8J48DNanKHO/TXEvPAZK0zo5cjpRf3/kg7pK6zGZ4CqxFqQJbrkjlimQrUlmzevoBi2efsHj6MWfPP8Iu1ihTQIrEYUf/8Ib711/Q3nxFPNxi3B6TBoF2zUnQsdwdY4bMIJVXrdSjf6dt5wnu4kJgd2gpyi22sDQGCiUeLNFLYhEns6ssH+ycy9A06fC44HFhMjGMhJS5PznxG3xg4wPalihdSJIh7zh37DhJqo8JwiSme4RaHR9z+rM0X05UQ9LpY368x/QxYpKrNfGt5uT3JMmYn3NaLXwn6ThNPkISZRWlRK0kZIzqhK6QF47oqOaxQjoq4HHSPp9e95RDciRtmkfSpLOk5TRL5/7+YxWtrm0lkJyCydERgwMjyh8+BAY30JSGsrYEnxjHyKpZYFXEd3vu37ykWm54sl6yXjSkMLI/O6frOuqypt3uOGy33Lx5zWK1prYaFT2acm7diyN5mBOhubN5gvVWKRL7A/3hnvHwgHIdr958gaprzKLhF39yzaJINJVmv9vRNGLYlGLCeM3Fao398GMuzs55+/oN2+2Ou+s7Dvu9EPsT9MOQJbItWIuPCaWEdOlGUYozGRPd9wNaB9zo8pqQSOkxtGJKGpXSOCcBkTYF2jjG0TNhdCWgiMJT0YqitPPnn0z8JjKrMgZTlhQpSjddQQyO3cMNZWFRVlMsFzSbK1IoCUoJWdYa0eVPomoWMnRv8lbx3tP3vch6BoXK0qKnTt0xS50rpWY4oM1miAIbjMfufzqqt33fcXzej3kdka4UBA7djtd3t7z5+msetndcLT8QNR0Su/09kYQtCgbvMo5dERTYqpR9P0QIntBLkXMYe+61wg2D7A8hoSuBUpH9uqaLndJJTDK7hCcUOlfYQWRqTV4nVK7iH3kMRZnlYpHg1xgRqdGa+Z/UUcRod9oTjTYYazG2pCjrHFSDENUHYtRY6yFrESklkqpT9VuR1ZRiwnkYnJXuVxIieraRQ6k0k7CJgZTCLLAonVqPigLniXHihAZ0PoNWgmCZoc0pyWMSgiSJEY1mygW8mgRkpm6yznNovvNSQIiTzxpz3CJiD3ZOMmKMuRUp6BZbFBIbTm7eJ2MpRTKvQzw4dMnMmxm9m+GIpihmgZ8UI7aQc4fgcYOjbTsp0uSigCYrC6YsFazSjEQJUYps1kih1+cOpsoQtcKWc8EsxRxJ5E6GyP2KoMXgRmwyIpBibE5SstDSFBcBKebYSqqh+OAk0daaEBOH3Q4/OoIXrp4bBlzTCBdWBvnsF2KSBfPD0ocfnmT8GQvXX+xxf9bfJ8UB+WmaxKeTeRq4yWiMElISKRKsgejnmzK6EYLAKiKi/TuRSL13dKPjMEbGKKoD2sqkJROFQbFqGlTGpu0OrWxiSgjdi6bB6gKrLAxGqvRFAUVBUW1QtqTHsvMFN4cDadyzNI5FgbiRB0dZV1J9ihEhrSvQRj5XDl4mkmjKuELSEVc8uRlPQbkxBptbY+9av09BkFzX9Cjx0HOCId4f2hSSudsCpYt8ywLWrKiKGkPCeYPSNcrWqGaDWlygFyuKzQWXn/yU5cV7NGfPqM+e4p0n+JECz7h7y/bV57z57L9jvP0K1d6i3R4dR0iWlCRbT3PUKe6kVmuS0Y+DoBOI17va9KJS0XGnIISRWgUKkhBY+56h7WRDd46QZfTmgB7pSIQk5k7TOYM6kjWdD4xR4aOmaFbYajkHrSE+TuDk+4mkmIsv77TYp8cfh/m0QEzJlryzHy+SWo6pqgsSEBkrnc+E7F3ftXyckichdxvyOHhXPSqSsraDpuvGqbYxk/9SIsOCspEbSbDOmcwYQ3w0b05dyaf3PCmtnL7+9Pv8chIQcgzgJ9Ji17b0hwPd4cDQdjg3ikZ5UlR1zaFr8WGgfnaOKoAYiHHgfHPFsrIUceTl579gdfWE9eUV773/AS+e/T5KW5S2JJ94uN3y6puv+fv/5X/GwipKFYljj6pq6dDElLuAcj2tFTfsKfgFgVSlGHD7e/a3rxi2N5Q4vvn8F5TrDfX5hi9ef8GLJ0/YrBZUlcGoSFUWLJsG9STyN37+25ydX/DVq5d89qvPub6+YehHdts969Was80Z/TCyXjTUdc1235LaThRjtGK/3xNjoCgkyXh42Obkw+PG43vt+5GqEiz2crmkaRaPEkFbQFFWdN2Q4Q8xK7hMwgGJsirm+3g4HFiv18fkyxYUTYNtKvzYYq1IabthT7dTmEJh65qyrOhjAlPSj5FluRL+RdQ4/AwFOT1iFEJ2TBEfnSRUXmCw3jnhKkYxIutHP0MGu65jcj+epXlTnMfhKdb82B2cRD5+3EmGStJNDsFzffeWP/2jf87tmze07Z6kBZI9eseru1s2F2csSksXPU1VSzU9RDaLJaEficOAChHXtcTkCa7jfhgYeoHd1r1n8/QF5WLNRNieMzqO65J6tF6TeQx6hnnOSUaS9WlavyZTM6VkvKMSxiqKwlBVBq0S3mhRKRbgEWAySduAtiR1lGvXWgRwFBGjSzBJgnElY2fq0IpNloyZ0Q3ZvM2CMpAiVh9lrmP0qCTFGZXX0SmhihMmSktQH3Lwa3QpSlS5qy+kZtk3BSKakwof0Ua6bEZpRhdychfIbK+MxpD7lhBCvA4BH2T+lKX4RBidlQUzFFE4f1l9alKCIkPq1cQzkR154nlqHWZ59EmUYczw8xACpRFfHDm/xxiZV23Xcjgc6PO4iUmMNaWzrYVqmBWmClNAUngXaPuBorSk4AmjdNeKXOgtipKqlCKLQWVlqwy5UuCjmC0OhwNNU1NVJVVhJTmUwFLKnUJIFSn4lOWz46ROFSUgMdKt9W6cOz19s6CuF5R1hTHCN2kWDSNgYkFR/LA15AcnGT+kNfLfd+GaFKum0yj1uFog34uZiWR0cdYZHoaO/UEk/yYSdkiQtEEVloDGhUg3erbbljGASwp0QaFFfswWduZpCPeikspoEKfEyhZYYzBFwXqzpioqClNS6IbDqHCqRK03NFfvU68vWZ494eLyis9/+S/58vM/5frVZyxdT6VGGgbY32FUwiiIqsKUdTZVEdLPFOycul9OMKrTaz2ROHV2GDZapNZub29FpSQ/Z/o3kU+noG2q2hVFIeoMRYktShwQBk9MCuctKa0lwCoN9eocXZ9hmg32/Dnl0w+w55cUV0+xF5eCf9SSAJrk8P2W7e1LxpsvKLaveG523Lpb4niH8i2VhUVVgjG4pBjTVGXNVUebW7Ack4vpukw/T9XY6bOAPPfhfsuX0WOVVGe990TnZ7WOyXEe5kKnJBW5Ahlz8hGUOrqEaoNXBV6XOEpcysoY8o4ez4vTMc4kgHDaXp/WbTX/dAot1NPfflie/1f+iDnQMZjc/c8VPnusWE33EZiTbaWO/i6n0KoJJyqyzl5IxGWBLcs58Ar+mJBPgVtSeoYSRp/TSZ0eSZC+S+ieXus02ZXzTgMHQGE4USbxA+1uT6tkozRaU5cVq8USN3SUxYrNuub84oK6LmjqgovLmsvzJWEcqEpL122pdGBRLFhvGmwx4g6v+NW//JpyuaZerlmsNpyvnqJUx2Kh+Nt/6w84DIHNepWJzVmr3tpHZoDjOM7XfPYcyWNwOBz4xb/4F7x99TWbQvHpe+f85Hd+zu/8/l/n09/5Kf0QxZ8n9GgidVnSVA3ffPmSP/6TX/BfffkPudtvSQj3o65rlos1i8WSxXLFe82Ct9dvuX3YUmYDUK1Ewvjh4QHvR5bLhufPXxBDout63rx5K4TKnODtdweMPqOuCqpywWEvAbiboG5ZwrIoCrybukqKqirmObvf7x8VyE5JrPVigYtBoCv9yLKpKIuC9bKiUJH27g27+y2VLVD1GlUuWF09x40jXRcYuh4VIsvlksuLC/b7vZCPM/FboCQSGAx9D3MVN0OMc8e2WTTSdYu5W6Ql2JyUDTkpHE3z5jTJmH73aLz+CI8w9Pgh4MKAGx1/+M//OQ93d7x3+YTrw566LDEKzJMLusIyasXCag6IZGpSkV9/8xsqU1IXJcumIfoB0Cyamn0/cPfwwPVDy9/4g+fc3L4l3t2xOTufA8zT7uU0b3JIfGKoNtWSUq705/ml0txx6/uew+EwwzWbpmGz3lBVFfu9cINkf9Y5ySErpklRUnlF1x04FqOkwOj8EeEwdVe1UVIURedzSgfC+RGtbQ68RWHKakmkjVG40ZGCYP2NthnCE/EncUdRFOIu76S7YfLaNxU8567gSbEoJiHtT7LjKmYStDGSzAXZq90o8v+nR13XOO9wGdYoHZMJAXCMD0xZ5KKh+PFMQbQxOt9LSS5iFLWsspRzTOs/wGq1mou2dV3PpO0Q4ywlPCUh03OE51KiUCIoAUwCDNP+Mgwjh33H+cUZCkNKGjeMOCaDzkhZjPleyHgpypImd2wmYYeubxmGjq4bORw6yrLInmrkzmeapbX9icR6YXVOQOV9uRjwbuCwF6nhcezouj3WFhhTUJYV/vycoigFIl//sJLnX1on490B9H2P+bPgHscFcFoQ4dT8TM1xVs7Sose7gdGNdF0ryYUbcSGrCmTHWRdhcIHBBdphpAui9BERRQeV22shinGRNvLvCFFCCNeFRecBE5yXJMUkdFWAFnnIGAbGsYe+g6rH9IHl1ft8WC4wVc3h7a859PeQIs73WDxGJaI2JB0gVyWkM2EpineTu2NwNcvFnVReU0yCA05pDrZPK/xT0jItAKfVYZVbrj4kogowBqIfiUnjoqJsNqzrDXV9RlJLqDaoagmrK5bPP0Svz4nrNd4K0Y0YSMOB4f4N/cNbdq8+Jz18RTrckg43GHdARVHjiglcFL6N0oayyFJpeWLK/f7+RHZaWKZrMgWlCggqsT+0s5mfSJcK3CKEyZRJzhtOWuJCocwbREqETIS1ZclyueLs8gnLzQZbViKlG5lb08e7xYR7Ohno8noTLI/89dHcUScpyOn3P/JDGZ0TKEhalJXQor6jtJIkIx7119911k0nc/JdpYuU0pw4CqeAWRDMTJtQPEoYTryQMLoZgjLNo0ebYf7dNG+m1zvCINIsTTu5OUP+LElkGGOWl1TAfrvjsNsRvaeuKqpKzD998JTVitVmyeXlBjceKKzlvRcv6LcPWBIueoIqSN6BEUUl8Y+RJPvQ7VEGmuWCs6vnrHTB6uwKjBW1kBx8xJCTsRwMDMPwqOspZlQFUVeEpDC24OLyjN9KlveenHGxMDw7qxhG6LqRh/st3nnutg98tWu5v93jR8d6taaoK/rBZTI5GU9eCiESgQwEImdnZ6Qo+GrnPEM/ZPlLRwgRrSxD5k4FH+fEYbmQ6911PSndAwox0NJYY2fYp6wPEWMsq1WZcdiBEBxlfZSVPQ2KUkqUQ8aaK01dL6SA5TuMSqiV4JWdH3n15eecv/cxqyc1KQX60RFDEhiGUaLWl/9NHY3NZpOrnwPDKFKWxpi5o2HUBNEDN/qZ/Fu8C1WQXPk7u9UqJymnY/nHnGQURtMOPbv9li+//orBO5JReA2/+M0XfPrxJ3zyyUfs3450o4PUM1QFrhcz3BQCX/7611ydnXO2XMPNjXTjSkuBpRs8UVlsVZB0Yuw6XEQgdanBmuKk8CfvadqjQILnU+Tr1IOepGonCPSkTDd1n6aiSlmWWehEg8pFsLw2eR/Z71pCmIRspDM5mcWVZZ3jARkzZYZnh+QJcVpLBV5U19XMpxAo0cRliNlFPmbehgYsNnMtvBPDzylJnkaSnuZYEPSBdGke37tHMO3cXSNfL1kuj0XmKSnzXhAqMxQ1Cddi6upN6nI2F6BO946JsD7JQgefIZSavG6XWGuyObOgXU7hrdNrHGHpx6RSK42fYJu5UyHWKho9dZcQiJLKhn0CgZNkLs1CIsJtVdqI/GwQWGUMUhzT+TzeRYoyUJSJqlIZ0m5YrNZUTZMV+8YZJkpea1NSBC+wN505KdLhzeaU2Ww4ei9F9XFkbdaMg3Tay0Lgp72xjOPA5uyM4N3M1fnzjh+uLvXnHKeL1rcXsHfx5H9Gx0OlR1CS4+OPoBKVIgmR73NOXE/7vmcYZfH2MeYAURqHY4wcRln0u9Hjc7VxgkmJGhX5wk8YPtHSRwkGrSxKUXpQuSvgPD4CNqHtSExWXtO1xHaHx+JNg6p7lptLnl08IyTFV87R32uGUeHcARsDBV4WqBBBSbtRpNtMzrJPM0aVp5qaW6QiSxlnqbYZP3hSPYDjxnNqWgbHgE4pBRlbGgOMPhIIop5kS5rNBav1JcvlJcNYEk1DtDXBltTNEt00xLKiBXT0onxyuGO4+4bu5iXtq89Qu5cwbKHfolyHyh2LqDQ+gUkKozSlFWUeUpLK0ElCdZponG6a0+edfi8Ljazy7TBQ5YWoKEpEJFQhcuApL3jZlXXqapBOsPwizWurmmax5OLyCeeXl2L8VZTZr2NKME7Gr5qkcU/nxEm/Y0qc30nQleL4nHcSjh/1odWcZEQlP0/3afr8SjFvYKfjF44bkTzumHDDcXzHELP8Z4ZGpWOSEedoDNCyOQQfqIpScKgnMKfTBOfdIsppJRMkMJ9gK6dcKmKWQZy6ZQm6rqNvO2IIIidYSis6xCj8oUXDZnPG7dsD2hSsz87RMZDcACEQVIRksMpSVEuaeoWyBUkZBj8KOXixYBUttllRLlZgCmKUDTeGICaX+phkTPNq6giJe60GU6OLhrJesCwtq3rN+cWKZRGxoRWioh9w7Za27bm9feD1q2uGLmGrivVqTR0FFuBDAi0dZR9E2jdZQ1RgCstyvSY4UTGp6y67nrcMh44UE2VZ41yYq4pWS2BQVXXeXIX0WhQCnRLStpX1XeX1UGwAsjLY0UD0NKmA45oIQuYUrLc4h+8Hqa5qOopSKrB+cNy8/oZqdcbi4hLvHU7IfpRaOAJuHGc4xcStqKpK3kMKGC9QXaNlnQrT2EkJHzIcJUSIkaoocwCbx/70X0rfOWaVnvxm0rfm1I/tKAtLO0SGoefV61cEEqYqUaXlzatrnn3wAXa5or/WbJ14kIRFw+GwF+7d6Pj67pagNC7B4faOTz/+kFQY+n6Udb4oKKoKF0YG1zK4AEaxAagQtZ+TQ+WChYQ5x7mkTuIWIeYeO7OnynRTpTmlhC0sdV3njkgiJuEJCCnZs9/vhU80mRNHUR+yRcGKaY1SOXGROEbI8qd7jKgHFbnLN0F7UJrgHTEHkXEMoj6nDJoTvprniLJQp0VmOftUbHkEJ5uv1VHmO8Y4C8+QTvmHR7h4CJ5k7cxTjWRUi5ZisEDQ9Gyc+m4RdhJYkEKKGC+KuJXBmGNhxVjx25jWwOn5p0aDU4FAIG6iajiT8dVpF0sxGZ0yJxoCA52eC0qktZO4sWsjcLWQguxhPuCZOmQSIlofsT4R0RTWUBSGuhK/C4Fxjxx2O+kKpVwwyolo9IGyzpK8KUvG5waYzmtDcMJDbZpaRE8AwlR4VfRdh9aK4D0+S7//ecdfWpLx5x9T4PVntFiyjC0ngdqMQkgxVzGFqBWDo22l7SzGJr04X6bsEVEUuDHQjZ6HQ8+hH3EBIhqKkrIQWBIpK9xMk2TC7mmNLUqKopy1rbUW9ZpZqi0b+oXk6LoWF0AVI653mLal8pHL5x9ji5pyseGTv/HvsHn2Afdvv+LVZ/+M3UuFDS0VIyVisjcO/aMNf8rGp4RgqrSBTJKmaWSyWEOhpM2pSLRtKw6d38HFmJxpgUfmMkVRsF6tMLYmYrlveygKlucXvP/JT1hdPOVh2/Pq5obdzrPvHKNPJLPgk37LkxcfcPXRRzRGEceW2O1oX3/B+PrX+Ie36Puvaa9/g+92xEEcb5MxYEqKqoailKCTSK1TrkZa6qZCoefPPhlqnXZwHg2jdxa1RE6YIhQmEZXJMARNVIYxjI+Sl0ldKqSIKQqquqJpFqzPz7m6fMpmc8ZmcyZVohTxzpEQ4xyTA7YJ7HT6bzq0Od18OPlrnNJH+bs67d79+PMLyNN76qJNVax8v8ST4qjWNCXCU/A+XY8YHvNvTvk4CiXdDAJGSYUoEAhRFnidoZATIe/0UOSgLld+T5OYKSg85WqcjrNhGAAeJe7vcjbmynhZEuua2LWgIkXukm42ZxR1JSRTDC9efEjX7vj65Tfo5Hlycc56teSwu2e1eI+6XFPUC0yzQJUlyhaAlmo3ivXVEo8hKUPSUtE0IO33zFWbjsViMW/q19fXWVmkwSwuuHrxMVVpGG/f8PTZOct1QV3Dl7/8Z7x8fU/XOaqq5vp2S9t7vIvsDiNVAGUCb27e8NFHn7A5P6dZrfj61Wu+efWKN2/f8vTFc86uLsR4TEsncfIy+J2f/5yXr17x6s1r2raXzkoUV2atDRMZnDTkTVzWsGEYHsmWaivBiLUlMchzbm5uiPFYpDjsD1R1RVVVLJfLR4mAH3oMlXSWVcVmWdAPHW9vX6EKS5ECDD21KXjz6mv2IfHsJxWr9SVaFYRRyJ2LxYLVapVhYAKxePXqlSjWKCisZr1cCWRiED6RmJ06DocDUUemfbEoitx5m3w45j99K/EWLqEEOlqpHz2vq17VrO2agzuw6w7oqqCyDRfPnnF2+ZQRxR/+0R9z09+zbw9oa6gvL9m5wP3dAzfX1/z0k09JzvN6u+X+/obf/Zu/T1XXfPHLX/Hv/bt/Bx8CD7s9L199zeA9g/d89c2X/M7Pf08q0C7SNEupUGdThWkFepTcqclbQtaouq65vr6eY4imaR5BMKcx1ywaisLQ9wnvR8Yh0nU9XTdkGJXOUs9SjQ7RE4YgXNFs5gYirOD8yOjHmf+RksAOtTYsF0vOztZS0S8kkSYF3DAwDiIlH7yTIkmMeDdgtMCyXfCPoKpzkeckdpnW8enzwbEAOHeKJ8hylueVCn44JmTx6DadFJBEuEKGvLxmVZSYMsvzVuXMqzj0HW3X0Q89wzgKkV5rTGlPjASTSPOGeNIRKr+1t6SUHqFABGKZCdfZGX5SGZS1dIophGMTs6qgrF1IdyEoFBZrDFZpVFQc0gHneybkj1bZ0y0m+rYn7juGwUtxylqqfiSlIFK6Vcl6cy68kyj+KjFlb6IYGXOCZMuKcehFBEVrlsuGaBMpjjgX2G53FIWlKCxjTtRS7pgF71gsl6zXmx80X//SkozT6vL3QVq+dXy74XESSB2z4slhMiGtJD8O+KGjO+zpu47RSTtd0j150qHvaQdPP3gO3UDvc4JhBHPok7SHYvDZTCUTBdNkSJUD/PzC0hbMcAsfiCqIo6ZXBK2kLZ4UadwR+pEwOmJU3L3+Chc1dbKYesni2cc0l0+4ePEed199wt3Lz7l/+Rmqv8OEQQIvNMYeZWvLoqRuauq6pqkbMXPxLsuk+axSMuLGAZ2z9Im0NAU7Uyt2qpo0TUNZltSTVNu0MSUNqSBR8PzJOWa5IhaW292WX715gw+QkqGoFjw7W2GU5bDrefWn/4jD618S7j7l2YvnxH6H298zXn9FvH+NOtxj+xus2xNDlnc0JVGVoAuSarDGYq2iNIE6ZYlBJYuCkKbUjGc8XdhOE4RTGNjpOJyC2BQicXSi8IAiaSGmxTQZ8kztx5rVZsXm/JyqrqnKCpuJWLJoRiHsoiisyclAQqVAcaLirDl2N46pxTHFOHY+TlIRxWyyOAXW87N+5IlGyiUdpWYcASTQScnGobUYMaaETlEso07I1yolrH4c/Bt10t9LEZ0XWGsNSkPUUrE01gKyaUndV+5IIuERbpTOCk+nHCYAlKIfBqmYnXQ5psNn6dCpaCGbv57b0zE43Diw3+7Ybe8Z2gPusGexqDC2oC4L2t2e3f0NrwvL4f5DPvroA5rmjGfvX6DjQPAD9weHUhWjsdiqpNmcEbUlGQu6AFOgmwJlLC6JZ0gMnmFoJUBAyTVNilSKYV5QeU3LVdHF2ZqUYEyOSisunr9PURbcJEWnHJICKdwYaeoGpUu6YaQdPR5FsWh4cfaUh92OQ3dgc7kmmkg7tPQh8LDdobXl6ZP3+OiD91ksJcF5+/oNRaE4O19RVRYXB5abmg/LF8QY6bqR/f5ASoHFshHJbudIE+FeK1F/sZaQEi9fvxZIiBKqaUrTvdQ8fXpO14pkpfeBbugZB09wkeVqhXdZaSv2rDcrYhQvF2tHfAzE5DHG0rWeYBSlLSXp2d2DUpQffID2FaZcoBelFCPIEF8VUKUkRDZogtcwOlQ74FUemVlkInlP8h7x5A1CircarRJJib5OAJIxKK/FO4aTZUIrgkpoEiGrKP7Y1aX+r//5/40vvvySV29f40JLs2zwUfEnf/oVD7e3XJyd8eTqEt0Y3BAZDwO/+sUXeC9O2at6xapeQ5PobMtnX3xGKkuqzRmri0t8EpWesq757PPP6N1IRFFVS9r2AMlgTIXWFmO1QIKyh5csbyJUMAWJdd0Qo1TTr6+3KCXeFFVVPeJ1TOtZWZZcXV3y2WefMQw924ctw+DwXjpZdV0COosEBeq6ZoI6C+k4ZQd6MaZ03uGDw1qBUxVFwaJZ5U6mxXuoKosxBUVhESRmMfMT3NhLIhCCQKiCFH2noktMCWXSjPowRgvfLW9cxggXayoMnoofTAVTa62IzihFIMvmpmOx6V0BDq11lpVPc5HVWEtpCuqmmc/ddR3D0M8QyIlncuRwJsAxQcissbOoBxxROVNMcSpVbq1Fq4IJfiSFCQ1ZXcxmHqkiURVm7tZPxVKBqUpQPxW1TFFSVhIDBuOFbK8UVkv8aQsQzzmTPTcCDJx0UAJ2UWW4lqLUVrg3JHwY6Ps2wzs9oElRE6Oiax3KGApTQaXphgODD7jB0RTS/UlAQIq8fXeg3e9+0Hz9CyQZP2RR+v7HnIR780/qO/76+JHyWElehWwUvMcPI2PXMw6DVLV9EI5FkiqNj4lu8PSDoxsDY4iEpGccX0oZR6dSlgbL6gXp6IqtcvaotcnVzRz05wrBUWViYu0jhl9hyFJvmmBKtm++JGlDAKrzZzR2jamWLC7fF73lak0qVhR33xAOD4ShxfuBmETRwSTxFYshQUyU1lLUDTEm6qJiyIuIc46ulQbdJO06umOF/v9L3n8165at933Yb4QZ3rTiDr17dz59EkCAYBJJ0SYlir6wXQpll6t0IVkXrvKVyx9AvlD5zlX6DC7b+gAyVSWXLLEo0yYAmgFEOEQ4+XT3znvlN8w0gi+eMeY719q7cRoUQLOBec7qvcKb5pwjPOEfjDZJplaqKVVZCaygKiGKGo73jq4ZIAbRaS4KorUMyrAZAmunxahwfsDBwSkH9RwdwdgzXr9+Tuw3XKmOY71laLd0u2u6y5f06wtcu2Zo1gTXJ9ItRJEBQqmsxGEwBoxV2JAUtxCoiwSQjBW5XOEfg3uYhI13xlLMi1IUWJMX1/D9xLaYQtrGdVWzWC6ZL+YcHB2wOjwcK0DWSAUcxIgmJxAyLvLbJfLa2MlQt7sRk3E/7UyMicRkUZtOEpVP5GueZKgJpyF1yPdV2JBECVWGroUxIQmTdcEoSQpjLkqMMAX5ymsFcd8XAkbn7xEKuf9UCUaVnMX3LzW+a64qi+aEemOlk48vJ6Ty55ETTf+IYkfTbGlbCfgjAeeHEUbjXY+Knr60vD475+DwCFuULFYrcCJK4QdxbVZFhSordFURlSUiXTmBetQYW+KCqNvIuUaGvk3rmJGEZBTaSPKTXmRWdZJUFEhbpF4cSPLUd/Q3r3AaXFREZalnNaYIDHFLUXYoFMZWDC4QdUBZIbP64Nk1OwbfMAwDVVlR1TMWswVGa+kGBnl/YzSrgwXrzZrZok5kS0ffXwG5w6nROgi2OojMrNJGnp8qb0PyYFFijIIxMkmLomS2WBK9psONvImcuA7Jm0AKNImDJwQOIVirKF45RYH3kSF15PTgMKpBG0u3vcZWc+HqGbvv0iPwT5XWixAD2toUwEX8uKZkHEOSKy0KumQqppBuVF4LJ8P49vIwTeh1/l58XMIbI/jrc/zuD36fL54+5fLmmqPTBdWixg2ei4tLLIqyqKiqmsvrK/quB62obMVytiB6iSEICmWkm325bonaUs8XHB6fcrW+QSuN947zizPxVjFCmN5sN8RoqSsJEMsov1c67zUKpfarR4yRtm3ouo6+7/DeMZ9LgW+vUhTGwDUnHKvVSnhWIUgVvhuE8hH1CLdRRAg6jSepyDufPC60QKi0Fq8UEjJAiqeGejYjxuzmLaUHMbIrRMVJS8FHuhEFJitFBUeWtN13eqUYmMebFuzPpJuzN8/LQXoely7sZbStFSxjyGN20h3JHRJJwJXEZJCgYntH8iknM0OkMkm7tJa9dG3uYmYovxl9bKYJXz6yOE4+H2utdH8z6V+5tB8pbicmMvUKu0el9P1ATAqawUecC1gTMYaRK5pVpISNkZWxVOLN7DvQMWaFLjt+75M/iXh6lRgrY9JYJQmnk/MkpNeOGlFRl46M1WCUxQUpwHTeY4zEjhGV4Fz+TwIuFe/8q97yc5x8O/l5+niVQ6/83Dg+d3SIBwjJC1cxVqK8H/BdQ9/s6LY7+qaVi5o2PAcMPtAOnvXO0Q6SYAxegTUpQYgE3ydDFY3SaWBHCC4NUisX35rcdpPJXtiCYD3O2KRZLpMJpXHeEYLH9R1GR/A7Yhu5+Oy36XeX9OvXHH/wLVx7jKrmqGrOwbvfZfHud3n8ix39T37M+dOfcXP2nIvLJ2xvXkDYUZqest3RbLZstYZdy/17D1jN5xwe1cTCELUEA7vtTgZWGprOTzHiJkl7yiIw9CJZ2TvBhYbkuXFzc5PgGyXOKrbe09oZbXnE/PEHHNx7l6MH7/Lw4WNi1+I2N6jZZxRffE5/fc7rz8448md419J3DbtmQ7O9Yehb+nYH3kn4baxAvpPxTGU8lbaUWlNoDaaC6JPbpQQPJCaFJss1iq+IImK0VBqjNoyB5UjiFrxj1qoPLhARBQxrLNVywXI+Z7FYcO/0HvWsHhOwvAmEECiNFow/MbUaVOo6TKF9KYBIIzwnJYr92qCYdjjkN7cTjrxI3Z17X//jbuVuemRJvRD1rccCtyAIGZIgr3PbJ0ObZPaUyor5NZz3xGEYeVi51Z43wOnGMq1iTb/y5nUXswuMcql7CVHEqyd4rFF4J52MrmuJXlzry/mMptly2Xesb65QBN5/713qquL6+pLXZ6+whebw6EA8HlRBUVtKa6lmB5T1EmUKyqISAqIXk706mc3ZYPC+AxS1MVzvdhLwVjWFrUTlK7mhMwzCM/MOrMGWJboQecyiEMOv5WLB5z8agA6Hx1QHLMqFpPbFBq9qhiB+Mt/7F79HPZ9zcLDEmJr1est213B903B4dMLB4QGHh8coPK9evBzhneubNWVZcnx8zHw2Q0VN8JHr6+vx+hZFMRpdGWNxbmBWVBhtaHYtg90rQ223O1T0KBWYzYSQLfNNUVblyPEwRo9Qku12Q98LXKqqytRR2JPCq6rCGDPK/g5uoGulO1v6ANry8sVz7tmaGQqDpjJFCiQNuqqSKqInJrWxaAyusliV5I+jFJSMAV0E8J51H+iHHu88s6KgMgarRMmM4GEyD1QqNBkjnEOjjUhjkoKor/Ga8tOnXxDwLA5rVGFo+45u17JrL/hbf/1v8fDeQ6pyxv/9v/q71PMZ9x7c41d+8c9zfHzM+mbN86dPuTw/RxeKXd/x4nWLV5bF4SGlKfmNf/yP5d4XBWevX2NrS1GV+BB5ffYSdwj2ZMZ2u8OHkloVaKMShxIgjPc6xsgXX3wx4vhPTk5YLg8BNaq6ZTiR1qIKqRQcHR0mdSIYhl6q/1EkUIMDa2V9FIW0PVdiGESOuyiKUeEoJqlagZ2KIeDydIkiJUip+q61pSwrCbaTIqX3Xopr1iaEhIgc+LD31YFkwBelsGZ0VqnadzOmkNOyLPc3M6hRicoYQ8iCHciuJy7kwtOUohN7qf4Q0EGPXBbvPdEIVLzve5qmYbfbiay5ysXBXInK/M2Yki2VFKLknuwfH8buUlEUY5ejqirm8znb7ZY+qfRlCHo+MkzRGFBRigghxL2fhykAgxs8LiUwbduL10bT4BJX0GqTfDyE82Fsdj2X8eCcxDIoGJyoVjkVsIncH5AkQ5uCIo0HH4MIjagCo1JsNHjQIsAyr5c0XUPrWnZ9Q1VYCivFDqMEnjfs/riTjJ9TQVV3/67e/DELeSlSEQ01VtNULkVmGMQkCIvJ7r5rG5rNhn63Y2g7gkvVUBQ+KtrOsesHdt3AtnMJh58qnlH0qXUyyIk+MATPNCjUOlUDXKDrBmA3ZrDGGKpSiFKz2YzdbsfgPD5ETFFhMLjoiDr7WfREF7C+Yfu8YXP+hNfPf8bs9D2K1Sn18SO6pqVeHVEvVoRPfpl3vvPLvGccyl/Sb5+j/YYibLj54sdsz85ozs85f33O+uyMMuHvTGXQhUEXWjasoFGJzDqVu93DiGTi7LY7nJeWv3cuKbVYjk5ORHElRAZdUB3c5+j+B9z75p9n/u63YXZALOeYomB3dc0Q5xSnjnvvf8KmNHRnn3Nzc4nFE+NAcJ1Ua71QmIytsEacy21hU4asMRoK5TEBVDCYohLJPaOY12XiYvTE4Ol7yJKAEmzsSWLKgjYmSd5lQzzYdYPcY0AZqZw6oFc9i+Upy4MDjo+POD09SR0SuVbGCEE8orAqld3jXshATcd0rjbo/eB/g/RGTI7Q6flv6WbA7SrKn6bj7OxCEl2tJZH1Utm1tkiG9AI5y/czt6Uzptc7R1VWor6Rx3V67QiQXH0VSgjF0Yzto+z+Kl2HpMY2SWKyhPN6vR6rUneVRt5WncvPzZtu13XEVghyRiuuL9d07U7ktZstJj1/GATOWFjpmIrjas3pvRNsqVE6cHl1Tt83HK2OODw8YrlcMZvNWa6OKMoKlBbpaxSlUvK9KdKmb+iHFtf1dOsNw82GarHAllVyMpckPPog8E7vwHuGxsNshq3n6OUSW9ZYDXq+4uH7PUN7g++36GGHNiVd13O9vmDXDbR9y+B6fuGXvg0UOBd5+fISpQzzxZLl4THHR6d0fc/Z2QueP3vGdrsZK45FUbBYLPDOMZvNpFvdi3O3SJP3LBaLlFxKYLXdrhkGqSQul6vxXgH0fU9ZVlSloaoLgdApxW63oSoXWCtBQNv3eK9S4FYCkswcHByw2W7RSfLSe89msxmDuhCCSO8erTg4OpAKZITr8zNOHj7GaphXBcopRFPdMexaCmux2gIDM1vRRdjpBhAp51JplI8UVhEGx7bZYLVUGoPWzKyhRFFE2cSLZH62H623D6UUVimsFh8iH7/skf/6H3/73/mbtJ0oSUYcT54/QZeRT+59yNpcoL1jEed88p1HHB3f4/HjD/ibf/N/xE8//5yrzQ2boeFHX/yQw+MlRyeH/Cf/yf+U2apk3Xcc3bvH7P49wtBSmsi/8Vd/iacvX/L6/IKf/OwF3//BZ7z76AP+wi//FR4+fBdlHBGDd4JrN4UonfnguLnZcn19gzEF9++fMp/PhTTrMweUhOcHCXZTxVhZtIp88uF79M2W87OXYozmHCEolBYTPqUtGEXb9wn6ZPDRQfDoaDFlSVWWkAjKIl4zJIiRxRiLQkzxun5L7zasN1AaK9xQ75iVhagSKYU1hgYHiZjs+l52PqVQXvwodJQusbUFVSXFOqWzUSGjO3kmfivnJRbQGhWl26CJROfohg43DFIUVilW0wILrc08Vf7FC6LrHb0baLs1EOn7nu12R4iRoqqwZYnSHmk6aoJPniJKoXVgGDZ4H5NSlEilZy4ISLLjfUUIkmAUia8bXMSagqr0twpo4mkhRXJrNdomUfqYYoC0f2gTAQcYIuJLVtVLbDFDx0jfD9IlNVIMb/sBt9tRz+qxWKCUYghJMTHCdtdQFSWzuqKayf33PrDddRhdYowkk12zposBawIHyyW7ZiNj00dmVYUqNSYarpqOLopxeIlKvJ0A8Y9ZXWpadb3zly/5/s2f1QQssu9kqPT/OG7sjK2q1L4eBvpE7m66Fj8MgpuOJJiUSDu2XU/b9ew6kbFNxob7dxtbbxIeqtw+npCrp623qerSdABlEpI8NqHucuVIIc3oGIk+or1oGQc34JRm4xz65pJ2e4PyHcP2mHZ5hDl+gNc1VWmZFSvq2YDfGZqrLRe7nn4IDFiapKccg8YEhe8c9ANReVw3SCYX2WszTwKifJ4uuclamzZ0v3cu9lFI0r2LNEOLYourG45dpCprVFnhi4KAqHxQGfroiCqgdMRYTTf0OAbwQzIbS9hCGKXmCiva3yYpRJS2oCqlc1RYm4IBxkx9qkM9YvG1Jlo7EoOn93CKq4xAFWQxDZP27giP6EShbOg6+YxmL4Ur76PSeGGUe9tXAnOCMUlWx8mSx/Yex6BuDfvbycTtxOJPZ6IR0n+k9T0Q+yFttoayTPh5tQ/8879j10NJISAkWFRwSQUoXWenfKoiSms4GIEJhCjStWiZo9Pux1RJKPOcpknGNFEcx8QdbcYp7ykEn7qyUlncrG/omh19JxDP6AVqZ9grvYn5VsUw9Gw3W4rasLSrlGxF2m5g4UHpAlPMEo+pkEBBiVuvKBPZUfJQpc/gh4G+aYjDgI4Ro1SCVaRzCBHlHTEpyjg/YMpCNhKV1fZEdvbw5AF9U9O3a/p2I9CKITIEhS1rSqWIWjairnW0rU/B+hEB2DUd19fX6f4HVqsl81lN1/ecn58DMPQ911dX9F2HVgID2G63bHdidiUVUUkERMqTlAzmJH/PZxM/DZHlrsiqegrnAm3b0HYd3u8rcrl7UZa3oSzTTtZ+jGRSdYmvCqwtBBrT92gU280N5WxBUS+wsZQ1IoJVWhJNlKhE5fFtpOuhgyR+OjD69hhrIDqRvTay9klXXszLYswGPm8eYzdXK7nXihG2+HU8iqIArSiqgojj/v17mEJzfHLM9//g9/A3A71rsaUBFVhvbvit3/ktzs4v2ew2aKs4uX+KNhHnHba0/MH3f8j9exv+2l97xOdPX/DugxM++uQjfvbD36Wu59y7V1AUK64uG8rCst3csF0sUCwwusYrxTAIudelAp9znqIsWC0Pqev6DR6XUnuhiD3XQIE2aA3vvPOQ6+trnj17wfXVJvE8pECndZLd9yFV58MoqIHawznld5rMb5jGZDnZkddILvN+oE/kXkUUmWYVxeQwqnEPDilJnXbtVRQnau+8dFITgVobLRLwCa46qkDJGWN0hhJp2fcJhMLg+ny9JIaSdwroECF1H1CKEJ24mXsvfkiRBBky1KUgEoqiEL7HOE2y9K98nyWGQ4gEj3R0Fft5HwQeZG2ax2k/MEldS+u9fG4EbFEkeO7+PqcePDF4UaorRH5cBHryfpIgbIgKY3aSz+7dxhhCVVKUtw1U8z5ljKH3Dj+If5x4f5Rkt/sQkMKUKZnNFnjv0LkgZ4sUb4vCVEyecWU5I0RZR4ch5A7BrbH0hx1/7I7fX3ZkdLT8MIWHxDRSJ1j68Y8ZWyeY5aZpaNuOkPC7Ap6JuAi9c7RdR9N2tG2Pi7kCneVPEcx3nASHSo9diryRjJhBGJOKvNlkzeac3WolGaoLcR80jFjMILKE3hOVl+pso2h2G4Kpaa/PKFxDszxEL46odaSMS2pfouZQa0M3eF6+vuKL5+eYoafwCmcqoi1RxoDWRNcSXI8bWjbblI2nzS9zCUZ5unRkebm6rjk5ORkz76ZpuVlvaVpH2wdueo9rLK2ec3h2xsn7u+QILuds9IDSA5fNNW7YEXHY0tC7FlwHvsP1XVK7iYl0JQuJtUbcOJVg7KuyEKxqUSTHzijQGe/pk+yjc8MbCcXUeXmqZpFbqOOhDf3gEkxh0iWL4sK8LcUt07mBoqjRSTpYy1AhGjV+r6IkldPhqnOPl1Ebajrwb83L/NCRBv4licbXmZz5ZYdKEAIfIy5B9kAW4QMrrVil9q7Fd2FVWuuUYLCHSuVCgBJ9Lps6CH0/EAGd4FdDcKiwLyAA49zOUJnNZgPcJpZP504OLO+KCkyVRfpenGZFprKj2W5odlv6viM6T9c2KGBWlcxnVUoyLGo+p2lbLi8vqecF88UShUAPmm6gHwLOa5Qu8Mn915oykSxFbWafi+UBnkjnTUP0wvPSStF7h1YJ8xsjKkqS4fqOwTtKXwMh8U8UoNGm5ODolL6u6Jqa3aaibTbQDVBU1KbE+hLTizjDrmlpdgPWzmSdiTC4M54/f0lZlSyXS9599AhjjHR/grht933P9fU1TdOwWKwoi4rz83N22x19nwicppiMj8Sxi0LkFOiTrAFd1xOCY+g9ccZYVLJWs9lcy17hnDimKwlcMszEe89ut6Usi3HfCCHQtu3obyDqQFB0EiQIKbKh1IbN9RW2rCjnC+riAKstWou3SU5ci6KUc49p/VKa6B3Bedn8JSxBFwVh6EauhtY64cFdgpF5wpfoRsWEENBaE/Ep6Pn6FjD6YYAE/XUucu/+fY5ODnn/w/f4rd/5DXatjKGDcsXgBl6dveTHP/sCEEPDw6MD3v/wfa6uL2mbht2u5zd/8w948OCcX/rlv8wPf/RT7h0f8f4HH/NP/7+/zsnpKaf3D3jvccGL5+f4IdA0WzbrK8oC6koTtaZrJbgXaVpHVdUsl0uOj4/HYHCqrPRGl1vtC7BKK9555yHrmw1PHj7nRz/6qRQ+tHR9tZWEwbnUjYxynzNfI3NHpei1XxuyOlJOmPcBasQNA30vcE6lpBihoqcoLRbxtNmPt6y6tOccxhhHZSiQwlFhRaCi73vZCtM4z0/K4G6TpF0La6VQ6z1DEnnJyTRKoUkqowmapZTw75wXX4khJ2tKUxZzlvM5ZSnqTTF4epWh1rmTGyeVP/nX+yBCHkakfUNQ8h7udvfPp8coXWBs6mxGcRQvjJgB5wQl709KgYshJRklVV2LR8lkTxEOlRQkyrJKrXfhfRlrMIVOBVgZL865kUgO0PdDkmruyApmZVmOctmj+M98wTBIfOZjxBSiltn30jVLlTaq2Zy+b5PQRuKzmjfVGb/s+FcmYbtnYaQEY4RLpd9OJ5vOhiES/LZtk1QCpKWeMfEhWUs4H+gGRzsMdE54GG0f5EZpUR1QMZON8gRMd5x9IJNvdO5mTB0cp4vDVE7WR/G1CE7IMGLpnoiAMRB8T2EKYvTs1htqWxO0xbVnnF0/oVwcMTu4x82zl3zwyTc5vP+AZa0I7Q3q5pLy9Y7Dfkahl1SzgnL1PvPCYoKj31xj2FIUHrsIvA6v2PUdjshiuWC1WjGbzZjNZmMlJYTAq1evxoGWk6x8PtvnL2gbCWiIBX3TcuM6nhWak2XJ/Xcfc3jvAf3Q8fLp55y9eMazH/0eZXdNpbZQOnabK6IbiEGk6axR6EyetmLeI7rYpIw9HdETgyJb3ofoidEnoudE8i4lfHfdbMeXiXvDnNyWjen1VSJt6qDH+9sHz/X1Jd4PHB6uePTwIUVdyWIXpMIhLU5ZEFNRYTq4Ey9DkRz5Jn9To3pZmgBMoYB/1g4XGKt8Odk9PDjg8Xvv8bOf/RRrYFYVY4APjHKiufM4klaVGPmZJEUdQhBSeIgMbiAq6J08t0wO8FnrfOqLkKveOUnwfj++pslqni97/PMwzp+u60assXMO37eJJOlZLheEoWNom6TuIfTdoe8xy3laa8RNtu96rNE8evQYHS3Npmez7lgsD7gobwjaUC4WrGYr0AV9EFCgtSKg4F0Y11qnoZiVmJ2h7RuGrqNptujKYGYzYhgIgEXjglR/d+2OITgqP6PCUxmoCkNhCwptwQeUKrB2RlkP9KFnbg74c/d+hVcvX9DshNi+2dxwfLRgVjn+4A9+xO/+i9/HlgXvPH6XX/kLv0wk4tzAan7IbrNlHW84XK7odo345ShFcJ6b62tZ570E9FlSvOu6USXPaMtmuxWOWTdgjUjVdq5nt20pC0tRFzgnnSW5dz3z+SytiVu6ZGDlg6ZylsG1VFXFg4f3uLpej90tay33798fkw0Zo4Fu6Li+usYWlsPDQzwwtDva7ZrYt/SqRpUmKc4wBoFdP6AKi46O2Hj6vqXQhiKpGQ5Bqoq974iuSxw1yxAHMUzVEV2Ab1KAw+1um84iBxIPQjaZjW9PSL4OR9/3+Oi5urnh7/23/4C/+bf/KhGpxL773ge8ePaci8tr/t3/1b/H0y+es9u1HJ3c4x/+w1/Fb3tWhwvqWc0BR8xmc5Quef3imh9//wmff/4zHr/zDj/52c/4P//f/gui2/Hpt36Rx+9+wHbTUNol7XZHs2swOmBwGAY0lrPXrxicp6prTk9Pmc+XzGeLcb3Ja8ndPWuKlMgEZ2KkLCpWqxX37p1SJviw1gVKWbyTQHUxX6YKlkrF2ySgoqUIUVezVGzUtG2LTjTSojBAGJNzHwJKC09pe7MGAh7wQ0/li6TwKIaS2d1c1kISxFzW2RgkuaiqGRFN7yOlKZgtKukOtC0hm8UhnyO7i2ulhPeqLTFAa5qEHPEMLkN9wBqPG3boYEArhn5H2w4JelsnzlrFwXLB0WqBNaLGNnQNXXBisKsqYhxSMVjWTPHOEJ5aSHFh27YyRhJ3JccMuVChlKYopJCboZwqdZJcQtwM3knckVbmMniKwmISN3C3242csAwJ9t4TnU81eIVR4k0Rk7tsWVZp37IURYW15ch3yciZ4Hpev349jr26njFLKqXzuew72liMLbBaeINFWVKUJS4hUERVzGFtSYwDfd+x3e5GudyvcvyJJBlv63rcarDEnMV+WXt3HyQOvTi85kqAypMRUeLovKPpBzZNS9N1DE70RKSNtWflj5GmqIOl6k52JgjjRB8X5kl18+655cplfo3cFtNGU1CkrDMQg0eVQhjzwVEZ8FFs6HXsUXhsB2oLRs1Yfx7QN69ZvPsAqzxVcMyKkgfvfYipKopZzcHpMbNaqlpXL57w4+/9c4btDfQ7upsrrEJwjVqPrf22bcfEKcbI1dXV6JXRtu2tQEurSKECSnksUs2gv6R58QO++E3P9ecnHBwdM1/M2d1cEm+umHevie0N9C2x31Ez4JUnalBWHDXz6ytyGVomS4ZMqVyhCCnRIKn0hDj6YgC3FutpsnG3MpTPKYTknhmknRrTz0Th/RgjEALvhPOzXa/pjw4pE6wratICsx/AUkF5c4RPlSvGFvLYqctVimmTUb3xOn8auxfTo+97UIqiLLl3eMh8PsNaQ9s29G2LqiyqLscFN8/DvbliHM0SYZL8kyt5BRDwSZN8fN/U/Ywpub274eeEFPYJZO5y5O/zOMxrReaKxBhHCKVUmGS85GB2u17TNI10MhJOV6eEqe97qnLBwcGKe6dHaA3zWc2jR+9ii0rU8nygqMoRz7xttig7o/aKql5QGpOChWwSZZLLNOgosIoQohhXaVnzgpfuqkCsFIEUZJSWrunph55y6DksLEUiGAs8Sb5ciJiiBKOlsrtr6Z0DbannK7re07cDMXoODg5ESjZVBp8+fZIEKBQX/oLtZkPfifKOTdLSXdMKFEwbAnLty6qkqkWsoW37ERZJVNi2TQZRDtReJGC5XBBCkvnuPT4OJG9PFosl8/mcoig5O78EGM29gKQGtmNW1+JR0LbsdruxYGOtFaKuhtIWUk00qVtrRDrYDz1D1zJbFRgrEun9IFj2GMVtvigEb10aSzQxQSMQci0i6tEHB94lKKZAT3yMKWCSyvetLih3YIbpt1IUCyP85Ot4XG9uePL0OW3X8h/9J/8hg28ZnOfl69fcv/cO0Ssu9Bm/93u/zzA4lDIUuzXvvPtQ1g4NL169xHmBai5XkdWxoV4u+eDDh5weH4l4S/ToQvPi/BVRWT58/2NigPmsIrgVhRFYU9Ns6XaRwopiWj2bCT/Ce9quG+VEcyJxFyJ1N/HIO4f3AaUNs9mC5XKFjwqlCiIGnVzHy0rWhKyECQqb+BYmud37IIZ2SktLXQq4Lq2R4j22h6fLHit1UoF+0SX1xlRYmRb4MlxLoEfSZSnLino2l2p9WbJcrnDBoweXFECVvHeIWG2pyyIlRZHCCuSMGLG2lGugPDqqpD4oUsDiEaJRWtF3uyRyI3GfKUgdhp5tk2T9iWgV6XwQt/IYQfnxnCUsMWOi9rYCs+a25xGIiag2kuxUsxnZODj7UgjkzMq+kGBa2oi/iTZarkWGQ6XCgMkclrBPfjTymi65l7eNdDVVgmEZW4yJZVUVmLpGE1itDpKruKyJXdfTNB0XF1coBfWsTnLK5V6MJkZ0VtMCiuClfBrFd2O33SS43FeLVf4VmvF9tSMvjjmjE8KvG0nMGZIiqUFk8GIw0vY9vXO4IBAplTCLqFwrl0w/gjhiI0HJmPykYCEHpvnf6fF2KEsCgmWojDaCo00KmtqIljUhCLkpCDRBBYWKCu00sQXMjCZ26P6Gbh6pZxUmRubzGaujI5jN0Is5p++9S1Eahm5HVxvWP/pdbm4c/WaNbRsWaWCMhoEThYf8uTMpaRiG0Usju89qoDCKIulwl4BXPbG5YPsiEjZLhosl/viYoW+hbaiGNa7bEAaptpVaiZxmVChTYIsER0OlAD+kjRGpMuiMUc5937C/tncCwCl/Jt+zW+NnsmDvO0/S9dL5bsXskpDuOwLLGvqOJqlFuKpMFZB9YpkTkzfyizuZQu7Z7b+f/i0n2H82D5U00+tZzerggPlMSNy79YbgBqLd4+CD96OxU7pxiXKUAWkxtbzDJJGTextTgqr0HkuvR4fW3HXaH/kx6VOOiUtIXKKo9o7zOUjISUUegnvInshlDzEw9APNbsvQ92lDj+K1YixGiXKSYKoVVTWjnpUCG6xmFGUtCUIMYDVqlLTsKKsBYz0VktRkIQThKgg8VOacVDatKWl8GH0hbBkn4M6koBZlVkQ0URnQohtvjRl5HjFfC6XRtsKWM5RztNsd3SCbYmEKtCpBBbQxHB0fSpEoBDyBy8tLUEIkZRAejHdOYI4mSXKSuk9KAvMQA7YoES3/Iq3NcvGLJCChtGDCQxD5TaUUtjAMQ1LWGUTj3xiBZ5qEbbe2oDA3AsfQKu0PAecibdexXJSpShtHFZkMRfXei9CGMTjvmRup8LkgXW3xR9mlgkkQyEnYiw6E4LHZA8gYohGvkhiSn4vOe6LcJ0k+4giLzX/LHJxcBSdO9KOmhbGY58zXt5gRVeTq5oqu6/nFX/oOn3/xOevthn7oOT4+omt7mm3L2fk5RVGiraE9azm9fwJK0/UDP/zxj6lnBYvlnPmq4v1PHmLQfOOTD3FuoO8a8abwHS/OX+G95r33PkRbcXC3qoAgfL6hdxilqeoFRT0bfSuyMIk1++s/QqIm9+Mu32s8zyhY/6qqmc8X+KBAG0JQaFOJL0QpRPOsWBS8cC0lySj2fIvgsTap3kUpeobgRhdtWcdk3BhjCEo4pQGJw2IevxmaFwSauOeEpEJGqakqSTJ0Enepqhlx6AgRTAgUIaDT84ushJf4rVYpvFcE4/f8slSQiamg68LAYA0hKpQG59okY60xxlHPCuZzy3JVoGIQ/yMlIjKFi/TO0/Z9ur+i8iaJYEy+EXtRh8xR0FoUOqfFTWMCGvGd8SFQlkmFK8HBlNGoqBNSI2cZKe5I6qYSo+pbUcWeY5gKvymCNckLJ6JGoQsVRegmK3qBSuu9xiYEiBtk7ZUuviQKGaLpQ2DwHuc9dVkIjDJGrJH1yGiNQfYBpYTHI/YIHcPQf6X5+seeZPxxkFUzR6DrpHrU993e9VfeRDZfFXEhMvhI5wJDSDrD+08zJhiiByzxq0cqRON9VXty9C05zAmBEPaJxW3FGakY5gngE0EmmxlHFEFJgCCDCzFMCqkt129xrqPHM9OHmPaGZ883HB2dsjq+x4PH7zJ7/CFdVeNnc04++Zim3RLaLUfzmuMf/YBd33N+cc6htlKx7Xu6tuXk5ITVasXR0dGojOLSZt51ck37pNE/ZuYKZvNKuiFKJT8LCSyqWaSqHbVpYf0S5RxqGDDdDtd34BwqaspqhTI6xQAi0xgTTCgTvLQSXHB2yc4BhvCw9t4o+b68zeFbCKB2HDO5opyTkrIsU2XXYu2+DTkMUUz5YgrwglQdCJ7N5obddkNVikFaDmfHr0m1SeWx85YxfCuMnW4eMXc2/mweJ/cf8N6H77E6XPH5k8+4WF9iIqyqklpHcANd09KxTyijT7AllDiUmiy6oNFifJJgaIiLKXtCpcrM2QC2tOMYkYKCwRgZP7fgC2lDzTj82+g3RdAK7yWwF6WRAqX25ELnBuKgCcGza7Zsmx1GiQziMDgePnzIYjZHBcXF5SXrdcPV1Q3OB959/C7KVHz25DnHJ8fUs5KysuBVkqEMaF1zeKgpiyyQIB5BEY1NCjL4yNxW+CFS6orT4wf8+Ac/5qD1qGh55/CIIRbEqIjB4wZFs+vZbHeY+QEHB484OnoIqgKTOGDp/E1RgJ8BgVW9xMw2nF8PbNs1MXgK62kHhbIVi8OSk/tHvHr1is1mQ9e0HKyWI/T18bvv4J2n7waurq9p2ob5vKaqSh48eIeuc2w2Dbu2RyToNKa2lL6g2Yos7un9h5SVYXAQgqNpNvhkNNq0jXhoFIa26TFGU6mCspwDKmHIHaU2co5KpLC7oUcZTa3g5mYNEYqEEQ/O45H76fqBwQ9smx1VfcrxyTGnp8c8efoFRQGGnmZ9zm52hrFzlCkp6gXaSMnDK5iVluA8rTMMNsjrx0C0UpTRKGpby/7mHG6IDANEb9DBooNBhUlthlxsyfh3uW/eB+nKxjuD+mt2vPf+Y67X17w+O+Of/+Zv8dHHH3Pv4cMETRmwVzfYouLdh4/YbTecX1zwvd/9Hv/Rf/wfc3x6j13T8//8b/8e3/nuN/n0W9/k0299wF//a3+FwljqquQf/sN/wM1uzcX6gteX58zVBecXa2aLBcvZjKqwVNbAEIguoNEc37sHthiRFkK0BaJAiTLExkzm0fSYiknkYD8XB8qylm6Aj0QMIWqUFp6lLUzq6JUUtqBpOkmai5LZbC7+O14UxXIhQtbAwDC4lCzsB04MiS+AgRhwvabrG2KC4gn+34mxYUoy5POL8RxIl/rk5ETMb5USH5i+TzGXoqgqqhxXeVBBcP51XQn+PYJTydgualTIMVwcCzVuaFOyFXFDgynStSi2vPPoPu+885DHjx9zklAXZVlIzNNHdk3Lq1dn/OAHP+D161dcXV2jVZGM9TRuELBYjjc2m026F5IwjRzdEDHeiaqW1gzOUdf16H9SVRU6QTtDqgaoyL5Qpk3aM6Q0NiSydo5T8CGR/IWrtZjPMcZS6SySohKU3NxSEu3anj6K1L8oSRVYU2BKy+HhsUDEu57tbs2ua9lsdmzWa45TnKhVpO/Fj6ksLLO6HrvzRVFwfHIySgR/leNfGfH7qy5q+V2yitMwMZRLH0Qw10F4GP0w0A+DqIikStzekEAhErWZuR9HZ2diFDM+tVcjmVrI3z3nKcnlLukpBsZMMTBRtNKiP22MhKo+GazEEEGFfUclOGiuIA7EfosfOtpdw6kt+eRbv8Cu9+xcT9uDe/Kam4szNteXrJ8/w/3kJavzjsrPMTFiSiEhGWMY3MDl1SVXV1djYqS1YrlcjcoEfd8nomNBWZYsFouxajEMYlevlSQDs/l8xHdmTL33EY8BMxPLEDRoi9EBrTyEHq8lCMxJhU5QCWJAZD6l+mHUvuo8uH6c5FNFqWniN+023e1eAKNcH0j1Mqa27ti2VKCMKJTl8SGQi4EQfGpVCvEyBiGeRZ8llvcdjrcR+KYkvrtjez82/+wdn376CTebNZ//7IKub5nVM3Y3N3zvBz+giIqqrjFpft0lZ4/VQLN3dZ8qwmU4wts28GnlEBhhWEqp2wUMoJhu9vDG/ZU2qpAch74XPlYINLtdMvcMNOtrdtsN7WZLqQwffvA+x0eHfPHFZ9gU3M6XKx4tF3g/ICZdNeW8FmWnENnttvR9Q1lZytmMEHq0tixXx3RtR1O00u2AETqUxRBC8LRO+B3VasFpofn0u9/iZn3N5XZNdb3AkFRMYuB6vcb5iK2XPHrvY1Yn96gWy1tuu23bjryTXIUfvMMN0gndbneU1nC4OuFwdYjCo1VgVpcsFiuGfgCEXJ/vV9fs0rl09IPn+mrDbFayOjgAFP16lxKPJUPwBCJN2xGcp6xqZpW4hedObPbRyHA4MVXVmKIQWUbFqPffdeJJQMikaAmSrLUCA0vnXJiQCkdxvNbee7bbrcAbCoOtLEfHR6w3a7bbGwY/0DjHzAfmqyPBqltDWVX03gu8KfGJMtSuXMwIrUZZjw6eru8F2hYVWMOwHUZfjazBD3Hs6mQsuCj2ZfgM5M7/rc7G11hd6re/9z2ccxRFwd/7+/89v/TLv8RHH33Mp9/+Fj/83u/QNQ2rg0OWqxX/+B//JhdXF/ybf+OvUs1Ktts1r15f0vQNx/ce8K1v/zk++cZH/Df/j/+adrPhu9/+Fg8efMDldcf1+oy/8Ff+x/z493/M2fqCm+6GR+/fozSWrmmoippSl5S6AlXJ9c1dU232qIu030wREtOEI1fHs4hJFrWJUdF3PeubNTFmAneBNpXApQpLVVeJp6oJgSREYBNcK6C1BQQ9IdxpCdRFolkT454ELgbFCquyuawEql23Sx0Om84npL0/x2UTP6JhkGDee0xZSoelKJnNwQ4lxg5ChE4FpNANolyXOtz9riVGUcc0pqAoC8Dj+z7FdmC1oiwsplCpwKu59/CUh+884Jf//J/jo48/oZrPUdpwebVGzxaUiwXHqxWx6/H9wPvvv8f77z/i5ctXPH36nB//6Ge4QdSTbq63KXnKe4kajXvbtqXrOpHaXmrI3aEQUV4xeCc8QW0oylL4wFqM/nIHUSFu4EXqemqNwMSd8CDGMTCqHorMdtd1ZCyFdKoEoRGCT7AynYquEZ38xJRSNE07wr8Wi8W479XzBfViQYiitDckVTSjpYDiA/TOw7alKGwqjAj/L3uGfJXjj5Rk/GEt1rtEpre+RswLXf7vfunbQ2XyBXbjV54UCjHqClGkVgcf6H1kSNrk+1a/IpJ8Eu60H/Ok2ENW9hUH4QkkuAWiVpAr1pG9/4E4OqvUURHSb0weClHF5NOW5MfG66HAIFV9H8RlVqv0iZPsZRhQXjO0a0JhmBWe9+4tOGsHusvX7G42XH1uuLi6pFmvaa6vCNevsUODsRpTlBgb0SaOhL9MnAohD1hDiKIwYoxgsGezapQ6KwqL8x5PHA3NBP9o923dEBIxSFpD1mh0ub+a2VVWkTCDIbf0GT0SssyruFLuvQ7Si9wK3nNVOXMrmAb5TBtSb/Iyxq+w/5mQIW65dS2mNjpBIqLMXBmTIea9IuFi8s/qzhf7TzIdc9P5kB8Tc0fkKyQabzzk652cOJ9Uwoaevmnpb25othtJdmfLUX0K3kwcxwRhIiv7NhjC3eNtrzf92y089CQZyfDJt8IkIyKZGBFvnEhKTqWk3LcdhEBdlLi2Y+g6ul2DRTozXdfRx5gSA+EmZT33sq6YVRXBOUhy2NZaQlAoJUu2LeyYVEw/+yiGAPiY3Oe1QZcVpw/fIWi4ur6kaTuKCGaEekVsVTNbHLA4OqGcLcSrZhKMTpM5YyRA0Upw2PP5kqOjo9S10+LEm7qUbdulNUhWVq0ttpAW/ObmhrYf6PqewXnKWoiqs9mcXSPu2UVZYUPE2poQ5dq5OMgarFVq/ccxGaqqauSkTQsTef7moEha/0nRKWGzlVIS7DiHCw6ckM5j8luSa7WXtTXGoK2mKLMyyyBrYmml0uuk+5Q7byHJQoYga6cKEgygFcqK55EpEixDK2LfE5UHF2+NyymcYxyzYb+75mr4rXnAZG/7GhO/t5stMUaatuXF81d8+9sDTdPw/NkzfvD9H7JYzHl4/x4Aj997xL0Hp3z48UccHh7w+vU5T598wfHxMYuk3nZxtuanP/qC7XrN0eoYFx3eG4piwdnZmrYXk8onL55yenqI1Yr11Q0fP/oIY61AFEPiGwLCxwx712v2RZH8kDGuGOGb07VIfuW9dBvatpPnKoNOXQttiyQFqxJiQoobomCW1PSGAe88IQ4EhOQs43ifLKtkUNz3Sao2OWgzPjYJsIRA0MKJg+lXOuUoia5zjrZp2Gw2zBZLUDqpK0nia0JAGT0+UymVvCPkquSx6zPHw1iiLVBBYGIola6BRVvQJnJ0fMAnH3/Ehx99wKeffsr9h48IaNa7hovr59yrlhzODzk4fYgZevA9oW+p64qqrtHacn52RdsMNLueK7/JG3eSik5cicRxyfAt1B5CG5VCjTCq7GrOyENzLvNYRJwkx4gp2EGptAakeEtpna51QvaE7NkhsW1RRJzbCxABqYsu4jZWqwSXmqiMTYqySol7uE5rdFFUuNimWEtCJIF1aobkvqO8wFHLssQWexGLn3f8S8Olvizh+NIE486/+9eQrxjF5TTGrNk84Iee4AaIHiUUN0IM+GjwQdF76FKi4aImKFLIrkGZMevbT4YUNKcq+r7anCd/HEnBMWpCdKiYvN5NHPF20ypQJGJUQKlA0ElZyuQuhzw2EMdAQTmHcimpMPskKAw91oBSgbZfc6ArVqvIR+8vKJ4+48X3/wUvvvc9nj57xrZtpVVnK7SyonY/h6ooKYwaHagl6FEEq9C6TPAQIwoNVmBExhhRaDHyfTYIc8Hjg0sTJksmiopWxNOnhU8rxawyY5Imm172s5CKhUaeu1d7SmRFlXCLWuOCuzU2smpPJq9nuNQtqBoTSFueaHkRuDPOepexo6JcY3TWrdZEFRNuEyHt+5D0UWW8mdSWjNKOGeVr7yY1Xzb294lGhu5MxuPPOyKTccrtCfQ1PF69fCGYdmO4XG948cXnRO85ODpitlim6XCbYHeXMPlHCZCm69RUvi//7W3rmA97mcQpQTx/pjS7JfFVgZDGQO5oCPxooNCG5eqAzdUVz58+45VWzKsSU1Z03nP+6iXWWubzmtXBkpMHp5iyoF7MeffBQ3bbLX3f0vdN6jCmtQ1YzOcslovbfjBxDwWLCrCaIa2rSinuPXpE0Ekwo23wfY+OUZIQW7A8POL04WPmR0doWwmvjb2wQl3XtzbRGEkVec3J8T2sUmzWa26ur1lvNsznJdYoXr56Pop3DMNAXdejrPbF1TW73Y6u62ianuXBirKQCqjfNlSzOaaY0V+cMz9YERWs1zd0O4F7usHRNLuJMphnPp8D4q2hTarqK0XTNGgNRWGZ1xV934rnhDVjYqaVkud3LdqLs/DmZpeKJBN+jxZpyEz2tsaw220prHgAWVNI9wNN34lqiwK6vqOarZKxmkMFhykS5E0hnej0eXVZwHZH33WigJM6FbnLL9DQJFAS9h36EVp6d2wrgdz5O+vo1+3QSnOzvuHq6prtumW1WBGc5zf+yT/ln/2Tf8Y3P/2EBycndF3H3/k7f4vV4YrN7objoxOePnnOj374A771zU9ZzZdcvL7ih7/3U373d37I0LUcH5yIcheKw4P7/KN/9M85PVwwqwp+9/d/F2ulQHR1dsE79x4xq5YCkdpbyoxJRgxBxBdGWfxpd1sqrnEM+iD4tDeme+m8o0twZulKWbSxyXuiIBDp+24CWVIEY9Fa1quua+jansAAehir8VJUExlokyCCAqULRBWxVif4jcOHnhAd2UPCGIWxCu3TWpih5DkgdQN+s+Hs9WsOnWMRVxij0Wav0qetqFJFH0QqPiZ3cefT+Jbk3BhDLMTRPKiKMHo8GIq6ABVQJvLu+4/4S3/5L/HpN77B6vAQVVSsty03644f/vQJxfKUx7NjVsePmesBE3qGdsNsNsPaghjgyRfP2dzsUHGT5HKTDYARmK5JPKzZTKBDxkj3JaTkXqFwCBQ9r5G5o1WUBV5q0ON+Hsl8iEChDDoqxCXdYGyOS7wUsrxPnkGSaCpl8KGUok3i1hbWjmuD1opZaalKkcnNPkzSORMZ4mEYIHhMtCPJG1sQQxKG8B5iVjzLEuGRfuioZ5HKF9T1V5uvf6QkY1pNfFtn4w+FVKUIScXswpzhD9PnysTbE4tSMDFu8nFfNU5Vu6xsAAgxR0mj6KscdyuguTJ1F4aRK4TDMIyPHTNEBS64sbIkgVHOToV0WdYVZSVfmQfgBj+pkkbavmWzWdNtdlL925a8fPY5v/XP/hGvX7/iyU9/zM3Zc7rNVQr0pcVm58sxwyZJFSqdSDtmDx+Zz+cjRyFX/qbVMO9dghB02MJSFuV4/pCkP12LSa3NsixvdTZiyDT6XP2VyoNK2XhM7po2ydgWhU2VHAnKMsl/SvJW3K5CT+FT+fupUd90bOYkZX9f7b4KE8I+vI/jf/YJ6KQ/Is+XYRdjThxvj/PpZ5yOpS87lGLvm/Fzji+D731dj8pqnn7xGWcvX9FuGw4OjyirGluWYC2EvWzfFP40rdrmbtj099Pk4a5+9x+WCE7nfB5j0nHbS0pOD52T0/jmfc6fo57VLCrLbnPD5eUl2hqCcwzOc9XfcHR8wnK54OThg0TSlLb/q+cvaLYbrs7PuD475/jwQOCFxrDdbRl6WVuKcs7z58+5WW85Ob2XpF0l2ZCqWfaSMQSkfY/W+NgzX6647wOvXzyj32wYnEOVM45PH7E6vk+9OhSoRvDCL+v7W7AOY8yYMMwXC7pdw9D3gKIsag4PLQerA/wwMAwtbbelqGrQGu08uhCuRNu1bK+vafsBU5TMbIktHHU9AwQS+977HzD0nsEFHn/0EU+eP6Mfet7/4CO6pqfd7nBdj9Z6hHFtt1t2ux1VVbFcLtk2Ihncp83aGAtRZCMfPDiV4KAfKGyBCwK53Ww2DF5kLFGK2ayWoCjJL+fr0Sa1qbK2LKsZKJuw8Yb1+oaiXhF8ZLtpOD87Z3lwzGyxEox3IqoboO86GDRYS1WUBO9wUfT1CUFAbcZiDw+xyWcjn8u4D6u8JzN2evVkzOfimLbIAvQ19sn4lW/8Mr/66/+Y62cb/saf/yVe/+QLXviBprnhf/Pv/7tApNluebnbURpD27b83b/7d+mbyAcfvMff+It/hV/4hV/gd3/7e/yDf/j/4clnT/C+5+j0GGMHfvv3vgcaVqsF/8H/7N/i+vyK9fWadVWzazyLxZz3P/kmry4vWC1XrA5P2Fxek8tWIQh2XRMIw4ApLEYZiU+QIpzsQ05c36MUQzVGOEIJKtMODkfEVDXzgxUKMd6MweBdHGOoqrJjEhDpialIo7QjqgbnGoZhhy1qCltjdQXK4hMky0orFQhEP7BrtyyXNYt7c06OHlCUJsGbI+dn51ycXXBxfsHr169HaLhWJeJ8Dt4FNjfnWBsw2lFZef0QofeR2kjMoqyMw+ClcyJcWYdXnqA8RkNpClRl0YOV4p7SoDWmMmgbqZclf+tv/1t841ufcnJ6Kt2eYoZvBy5u1lyvG37/D37M9cbxN+sj7h0fUFdLzHzGolzQY9i0A3Vd0W46bISZgj55n1krhYJCWwpTYLWV+5mSDJ+Seh88WgnnTrwCtfjhRIRYPTiZdlriCU32ZtNoJUan1swZip4yxTjNdsPgG6KKlPN5Kj7IGFDJGwmgShK8bnB0XStu5VHRD6LipYeA1k5U7FTEGkM1m2ONJL4xQN93kER2jQoJap5gxDH5MKWwqN82qF3LVw1H/shwqSkU5W1Bzx8aCMUMK8lVoT2yZA+lYmzpxRSQ30llABIJ8naAGVUcK+U/r+L7ZZ/97jl+2XNuQTAmnzc/Lre9slpJmEiwai0J0T4YCvR9pCotdWU5Pjqkrip0DLx++Rw3DBwsFzx+9JCubbleb3AhYJQ4clpNqqYVe4O7SWCQq29Z1905tyfVpurnFBaS5dfy73NiYawozVhj95WwKdxkPH+BHyklwVM+ghaFnxw8ZinFmJTEpuSl6d2ZJhVTb4wcFE7vTb720/Pbj7NJYpzQSmPrU9/uTKj8WnHf/bpVgfqScfTzE2355o+yxf9pSjQuLs7Zrtf4YWAxmzEra4wtQUm1CwX4vYLTl60zd7kVeSx8VYOg6RzPzx+LB1/SpR2fi+iWpxcAkplUWQp3YdcQY8+ua9l2DUprDk6OqasSP3SiDJSIfU27SZ0Z6Z4ZBXiP9nCwXAgsQCuqsqKuLcaIiV1V1xSp6p0Tb6UUm81mVD6KLvGZEJdW17Wy2UUoVEHrFSEa5vUSZSuCMuKMrSUQUiSSN7fXu5zQ+bQ+WFuIJKaX4on3A812w67Z0HYJ8qQ0thCi6GazFrjY4JnPF9iiGCU4nQtJWSlycXmFtRVVNWOxOmB2fU1/43h9dk5Vz4g+go8c3r8/rmO565kx+2VRJHhtXoP3a8Ll5VUSm9AMg3iGZBJnocvEhxCjr8znkm7v8MZaH4K4l8/qCqNlk7dlhSkqyrKSqqVzmGGQTpkCg3QWNKnoECIkDwKNrKNDgi7omAijCQ/fJcnf6R4VyXuQemN9mhZpQnxLl+NrdBwcLPjgvXeYlZpf/u43OX99xtB3FIua07LCe0elHV2Es59+xm6748Pje6gTy+nhIeXgOPvsc2w/8O7xMappWA8ddi7mkioOuCHQtobDwyWzsqSuK1587zmP33uXxWJJWZRcXa1ZH+7YLjq6zo0qilpJQB18logVOJ7NSWFw+7a0ghzcyc8xicPsvXsyL0ori9YFioKhd8LxRJSlYL9WmtRlNCapzSkZY0VRY02J1qVUw31gcDIPh76F6CkMfPObn3B8smK5nDGfl0DEOU/f9hwcnPD+YzGcfPL0C548ecr1zZpm11GUwnmSPVrUGru2JXiXumiCIAk+oHXqTGszuteToDqQuj+k+kiC/6ASikApPJ75Ysn9d055/4MPWR0cJqPgCmVK5rM5Jycn/J1/528zBEXE8sXnP8Oq9zg6WFKVRhALSSyD7GYePLYocMOkc23ehAXJdI23ipkJAwV5rsUonWK1h9rn4nPeazK3wWiNinHkfPR9z+b6Kt2XMBYMMsc433NgjNHyGNBaDAQ9SXHPSWemH3qc6wX+nq5vXdUj7FYUqoAUR4coUsIx6FFyGBXHrsZd9dUvO/4HE7/fxsW4+9jxMalZMTYNJzbIAllSCRKVWoa3KolpAsZ9YJ83k30V2yRMnwyMOK1S71/lS8/pbtUc9lXRaRA+XbhH+M+d67C3nt93QQrvsRPS3v51ZFtYzmdUdcm9k5ME2/JcnJ+xnC84OlyxmAvJ8fMnT9lsd5Itm6yjHCkLm173TaJ6NtHJwUiGK4zV28nnyW3bYRiS2kCeFCZ9STs15o7ANMGaXOl95i6/zVwWKYpMfC7yV04g0uvmJGGqy333fr0tuZtK945J5+STyWK8/7QSWCZ+SEoMcxv4drU6kmWQpwPpTyoJ+HkwrK/jcX11Sd9JsrtarqQjZiwOpKVOIK1tP7cjFCdrQVTx1u9ylWd/pMWH/Wb8tvGUH/m2Ms2Y8OTYIOaXFKNGozUuOjZti6enS4aA1loODg85PFjRtjvOX5/TDwOm6dhsNzg/EGJgMavpjCS2FgkUBJesRfa3XlBVSd62qihT92KUx40yZxeLhcj1uqSHHwNBefqmJXZCVFdBiZBLNBT1ApTFhUjvBmaUCSetMMVsnH/5GuS5NQwDKMFIh7S2DIPwbbbbHZvtln5oqWelNKlCQCnHdtcQUiX+YLlIQZR0AZpG+Btu8Dx58pzFwjKbCy9jsVyxa1uun79ktVgQesegOw4ODsRpu22F9D7RuDfWivxjTEFMyFAIxXp9I4oxZSXkayNwNEmc9p4W2Rg2RkY4RE405vN5WmsjdV1RV1US3YhgCmxRUJYCsYgxiiEZ+wQ6TittPuCj25s+MlEijIyBi4tuXM9lqOaEN43RybBWKikExgQDjBPxk6/poXTg0aNTTo9mfPDuI0zfEfqKg1nNzAeij1QYnDF89vQFfdPwi+9/SD2rJXjtes4//4K6qnj/wX1qA1fNVnoAfmBRl7gIZVVJR+NwSYyett1SVSWzukIHw/XmmvPzaxbFkmU1T4GnAjQ+xDHYRCnRolEBYw2TBQ4VJJmUAFqnBCOBvo3wFcWoLo1LIzCn4AOBiAoRrYuxQk6CfocopG9jSkE2KENR1EmqVdSmvHc41+N8y9A3lIWhms/51rc+4eT0iPm8BiUeOLtdw03YcnK8YjlfUhYFD955hDa/xZMnT+i7l1irgYB2UtTwbhA5+KEX80klymZ7x26Jk0SyOuIHl+JDnfxyBMZstKLEgE4QeAXR96xWBzx69C737j9gNp9R2BJbVkTEpPPevXu8/+E3eH1+yYtXZzx79owHpwfMK4NRJXiXJNJF5MGl4qopCnT6mw+BZK4+fo0FzigSvMZKopG7nxHGhB6UCP+YLEGau/FJWtxabFkKL9fJvN5utzTNjvX1NdGLWIZOxWFIyUlZSRILWGOTjLf8G4LGaw0BTNxzc2PwdN1eSTQGz3KxZDabi/dP6q4KB9dgsuh/1PS9oF32Xkke54avNF//1flkpDbunTA//Tdt3gnxE5LpiPeO3MdQijEJkWckws0EorQntSkYF/O7Sj+K/U9vBhl3yYJT6M1dKdswmSz7gH3ytxDGU1bGjPbxxt4mk6qkuvTpp99gNqv5jX/6TyisYT6f0+x2vP/4ESen9/jGN97jP/0//mf8V//l3+Wf/dPf4J/8xm8wXy5pu57NZkc9q8fPlzfB/LXZbMaNJasCvA0GJqQeMY6qqop5atMRIuub9diGz5NIKUVhk45ymnh9L6otSkkgk9WkpBqz795kghlBVLnuBn45eZz6EkzvVb5POQi6qzw1PidxK+I4BvM/+9dQCFFqPl9QVfWIxc+KCuPz1d0x/C9xxLGR8mfu0EBV1RSmpK5qbFGRBovMHy/YXAhJei+RG8nzLspmlS5e3iRU2jxzsWLsVKWdQWb77e4pTDaMkJ3a98Z60w7Hlx3jaNWKru/xziV4BBwcrFh88gkX568py5K273h99pr1ek1wgZ3egWI0xfJVyTD0olFuBZJY1zMJbGZLVgcHFFXN2fk1CzRd1/Pq1SvqumY2m7FYLJnNZwxDh3c9SvZsBtexbTaoGOibHf12y83VNbveY4qSqA3dMOB2W1z0rGYFzvWEECnnWsyvlKIoCumGplPe7nZj19Eo0iYIRVlyeHzCfLVIRP+Ofui4ubnmyedfYIuCBw8f8uDhAw6WK27WAnHabrbcf/CItus5Oz/nF3/5z+NcZBgC15stj9//gHsPHlDYgouzc7q+5/rmmmFoksxiIoGndW4YRDbTFoJjn89mtK3Icc7qEq3VWNyYzWajqZb3XhS+nKNrO4bej8Tv6bjoe9GJz2vIi2fPODg4YDFfoFUh5oTGJ0OyBdVsga1qnJcxDBC9IyY4hRsGCIGTkxMOlyt2ux27FJQF5+n6gb5rGfqeqihhsqbq1O1QSS7dpmploQ1BMUI898HP17eT8Vu/8894dP8BRwcL/uC3fpOPHzzk4PCAuTG0N9coH5krw/H9Y9758BNCCMyXS4Yg41NpUQHyMTB4h10t+PY3PiBYw2XbcHKy5OF7j3n0/nv8N3//73O4OsCgeHD/Hs1mjY2axfyQ6DS/+c9/j9/VP+Y//z/95zx79gWXl2dcXp5TeBIW3oKJROMQSlUWPUkIBxwiKyzFQpW4GyqZ4XnvGNyA0pEQHENEkgerQSt0tJI4pP5XUYhBpHchoacF6hTQdE1Irxnouh0hDoiGrKPp1ty//5hf/O43+ejj9yirAhRstw0vzy45P7/k7OyKx4/e4xe+/S4ff/QRjz/4kHceP+anP/kx/+jXf5UXL14So2c+k65LjJ622fL69SsOj+9Jp8NavO+xQaOwY9FSioESRBtjUaVKEqzSJS51xBjxAHIEjuanfOPTT/nun/sO2lQsF4fUdU3nHIP3VHXJ6ckRV1dnfP7ZT3n+7IV0Q2tNWSqi7yF4ht7R7Dq2u55h8LLHa8BognOi5lbJfcv8UaUT6RuEz6YlwHdBOhcRJd3qMKC1x1jhZYSkSBiMoiCTv3WCcIYUf1Vj7LZ8NKMqbVLdlHmrJ87gbdsk6Kofu2RKKQbf4YMRE0BN6ugayqqgKKQDLWNkoG97rm9uuLy6ZD6vKYqcsBhxB59JZ7ZpGoZ+wPuBzWZD37d0ffuV5utXTjLuVv3e9rtphfButV8OtU80JmLdY9pw9z1yA0SNseGkeiivl1tRGiUEzCjTbQq4eVugsK/g364YT5OLu63mW3Ca9FghA+8hPdJZGVOjW5VPkSADYx2FFQxxhgx1g6Oezzk5OebRu495/vwZm92Osqp4+vwlr84u+OzzJ1xcX7M8OJIN94unXFzdENEcHB6Ksklyzu77ft8+TQmStXvliSn8aAo5GoZBkow0kDO+2yip7sUUjE27MZnImwlrU0hTdjbOknVyPSWrlk6GG69dbg1rLUZsGQ43DMMtPsbdDsb0nt79W+5kjIW7VE3IkX4AgUrFgE8Vxuy6KcidMELQskPn2Jj7ih2GNx73Zn77pc/50wSVAghOoXWBKcAB3g2p+KaIg1RXxFtP4bwkh1qpW5crz1n516KTaVMMKnEpBBetlBJTtgl8JBX68KmlOirAsb8lmSic1TjeVvWNSvwwRinlGAlEdGE5OVqh4kDft1xdXHBzdc026eb7YZAKZwy0Q09Z1qLwYTSHJyfcu3fMwcGSg9Wck+Njjo6OWRwccnZxSdN6ogmUMyE9EiOl1VIZDY7oe4Yu4lLVszIFXd/jvMMAXT/QtD1N1zNYS3l4gDGGXd9SalFDccDV2TVlVWBsIS7sOUnzie2WKuY6BIahTXyugDHgvejQL1cHMGi0Lzg4OmazvaGqFxyf3KdpdpRVgS0rOgdFNWNV1CwOTri52dD0whO5984jlBLTLTdIVVQFxcPThzz77AtcP0jysDqgKgoKY1jNFrx69QIUlNbSDOIcXtcFVVmJrr4TEzJxy06Q1ghtkkvPvJOImIMNca8o1/f9KJE7+q0oTVXUGB0wSjD2IZJkRiuKqmZ2sKIoa7SxmCCjzftIHzzVbIEb+lEOeL3ZMAwi355dkTFQ1jVFWRJ9YH19M6pehdRlkQLbgI0y4nVK2lUK5FQQN+iov97E748++Zjr12dcvnzFzAVwDu08JsK8KDGVVMK188xtIfcxRuxEVrayIhTj8VgDbhgY2oZht+WgqGivbvjR5vvsrm94dO8+s9kcY55g0HS7jubmjF/5xb/M5f0bolPUi0M++mTGe+4j+qFlfXPDzc0V19eXbHc7qjpSlhCUwuRiiFJE7zAmySJHMXBUStQcQ/KEEDPZMKIAskExylCU2adH9oYsLS97pRQQBzfgXE/fDSPyw/keWwQWi4qH7zxg18549M5DHj68T11XhBjoh4Fd2/L6/ILLqxuavuezL55xcvKA+w8fsVzUHJ2c8J7r+JX2L/CPfu0fsd1sCT7SN04SDQLtbkdRrim9w5Y1poBYFMmFOxeHkrlmMg+VTqxI8wpsLGKTOadRiuPTexTljO2u59XrS4qqRtmCoqyIbkiBfuDZZ5+zub4gho7H754yry1GSYzkh4H19Q3Pn71ktxMJ1+yzFkJIJWspCESkq+FyPIC4rDuXIZjsUQ4pxBDit0S32jKeX4yijEoqiIe9xzSzWQ2I4IjrWunQeodLBsqkUvptSH8STlIZvcH4t7br6PoObTRFK/tM+itVWVJUJdqY5DHj6YY+dSygLC1VVXKwWI6IlKIsEDiV8Ka/yvEvnWRMg7i7x7QifevfmDbzfCfI/8bx5vCW13vzs+yJxrdeavKKGap0q14cGZ/ztiD1bgIxPdfp4+9Cp6KKd4JBxveWVmgKbLwXmESIo3FSxr6FqOh6UbX4+Bufgta0TYMPsNk2RHaYmw1Bab77i39OMmtt8YFE6Cvomh2kAH5vOKbfOK8crE/hU1Ns8TSw2idX6ZomyTuVMr99EmNAxUnSlpWm9td1PN8xYXCS2U+6Inc/69ueNx1Xd+/V2yA2U4iWfHN7rIzjL93brEijtNorQeXzyLyiSXKa3/fu8WWJwltG5luPP42JRt/2AmExRhK8KElrXjNC6v6Jl0FaG9IpT2FreX7voYl7qT5gstDeuY5Kni/1JjVpa+RUZDLWJ+85HW/jnVO3/Qds8pAxxhC9Y+gH1jdrmqYRhSdJpURW0gfB7ReFmGeVIrZweu+U09MjZqXonfsQ0FqU4JwLdP0gG0NUqKDQhSzhPnjarpWqpxJcti8K2qbF3SqAeFAaW9fY1B4XoYoo60bfs1lvmPk5ZQ06TojxIaSANq2HIeDdwDB0DM5hbZkCIzCFFTiHMcznK0nCajF42u7Wcg+1wjsoi1Sh9IHADm0LFtWMg+NjsoCE6wcuz89QSlMWFSrKJj+rZ5R1TWkNhdIUpU6qLwGtEZnKUsj1zvVoLfCLfkgu8SrNfS0qU8pLByTDOKy1mHSN4ltm7HS9nNUVSmkJ7nyPKoWgWVQVRVlSlAVKC2k3PRujRUdfaSH4m8LifGDXNGKcqvbdc6mc7jltucOX5wlRgo1JFST9oxMHUILsEBXqqypP/Gt4bHc7zs7P2V1c8eHxCSGhHrySrpXWGmWEKKxSUOWDvyXDDkrGgoJQldzsdvi+Qw0Oqwq23ZabrkW5wKyasVqsqOsZrvfMFhUPHj7iW59+m83DFu8Utqwpi3kyVgtU9YVU7rVh12yxVqBQbuhlnyTDmzTjyhAjqUieMPyJwG/0rcJKNmvTZr9XQkZiiOJYyN3RxHccup6hd2PS4X0vY0Ip6QJqz2q54GC1wlozqjE672n7jl3bsm1aPvnwPZYHBxLwa1GcOzo+5sOPPuL7v/99Ygg02xaj959XXO87MiQsuxcLX5V94TjmeEnkdD1ZkUuNHQQlcl34AG3n2G4a5ssZTdNTzwZsEqQxxlCVBYVVrJYzilJz7+SAutRoRD2zbRquLq959eoVfe9wTpKIkOKE6dqeo9QQg3xOckGdVNCCkRwNae4lmGP6ypzkPD1DRIJ7JyR3o2Q/KH2SDB56MWCcFG0zp2oaH0lBzKREQKOUJGyyNogUv6zLAe0QSJTS2CLB3eXD47041He9uIF3vaZpDS57qRUFVV2SDRGzCuTPO/5IcKkvSzS+0u9SAhHzZh7ZdzNi3I+zt619d37ng2cY9hm7cDcSfj9K1fr2gjJ9jZxkhPTFWxOKt53P286NCIPbV9plfGbITsY/JsWIGAl9z6AcvRr276vAViWfP31OUJp//9/79/iF16/5/LPP+J3f/q29Wow2FLMlz1+ds9nueH1+hbIFIcK2FU1sTZLRZS/vOg3gQGANGdMbvBfiUeogaC0kSB88dYIg5OfIwrwnLU87RIKrVOQhFdOGF6NLet5ybwUv7UY1qxD8aDwzQtUmiUP+THcrb9NJlpOj/Ptp4iE/B5SWxSBn/ip9oLzZaq0StrHYE+20Tn+PKUmBEYLzRuD7R0g02Me2avLftx13k6aveY7B9fU1i8WCejYD9nNvCoubKoXd7YrmsZy/f2tS+SX3IWuXRxVuJXshiKvybYOy2/4ct8ZX+iwZUpf/dnR0hFKKs/PXdLsb1jc3XF1eyLkED0H8abquk3O3FYvFksViTlWVON9wenLIe4/fgeB5+sVzLq+u2LUdhycP6Iae3bbh/sE9EEQZKnXfuq5jvdlASjAEJiiVzL7v6bqO1WpFVVUsVsvUqdw7nyskOO67jqbtafuOqp6xODgYk4xp4SHGyODktfu+o+17jJW5Xs/qtP7KZyuKOQerYtyc6tksNRQDu90umQcGXr58RV1VHBwesjw4ZLlcMgyBvnd4J+tFNvuaLxZCcPUeSk2hNSp41jfXAtfU8vqPHr+Ld4622fH8+XNWq5WQ5d1AYQw+SsegrOvx/v3kJz9huVwmAypDGasEf4jMZrPRrXwYhlGtT20C906PCcHRtg3bXU+xiFRz4dKZJB+ujcENkghKAlPQ9z0hiqv9Yj5naDuBaQ0DLo3G4D27rhHYaSZuGtljIAUyZI4goBLu2xjxJLHig9T3Toib4asJJPzrePx3/93fJ3YDC1vw4cl9OudohgFjNVVZILPLs6hrKWJ5MV5cFgab529IakwqYrRmaDt83zMzlvPrhl2zY9M2rKoFR/MjVgfH3Dt5wPPPnvPtT36B/93/9n+PosbYGm0rpB2uU2zhWa1OWK1OeP+DT4jRs9muWa9v+Oyzn+JDGPeAqqqJhImnTYbjkIJlRZGgLjGoZPybR4VUlJ3LxcpUSAhZKCUtEqnwaDR4FaVrPwyYRYlWhr7t0UqgOov5klwcHRXQrKEfel6dn/Gf/h/+M44PDone8/rVE0xRsDo8ZLVc8PHHH0OAJ9snLGZzfJTOZnABlzqDATBWDOis1XRN4qek0MrofA0jWsueL8VBkZIlQWOfPH1OOwxoazl9cI/trkMXO2xZiAiONZSl5ZuffszHH71HiJ6qqqSb7Hpc33P2+owvvviCH/7op/S9px8c/SAwOmW0KKH6pASmJBH0Qf6GUhhboKKsnUZbga/lG6s1KhH+xSskFbBSt8MqkT1u2p4QoCoMs9LsjTazrGy0FNZg5vMRRhVCHKGpEpPtlVBlb3TkroYo0OU4IqKM7I0hBnZtK7YDo3dKilFT/NgNPbvWcfb6Fcv5gvl8xuHhCucGYkzX5Sscf+KcjDcD8xSp7dOK8fdj6+eND6+kFRVj2pxS9S1mQlT+nRaqyhgD5vd641OlrM+mrE7Cjf3N1fvMMAWUY0Cjp9CN3LqSINuOJjPyevnsslKENhoXUtvNDZiY3yf7QbR8/sUT/i//1/+Cw9WKqix5/N4HfPzJxzS7hpvra548fcb3f/Ajdm2L8xHXdYL1ixGTVKa0NhLAT+TwRpJgTI65QSa3Sq28Qmmq7FKZNldFZGhbqTooQ1kU43XVxoxJGiEInjhdcm10qqp5qTK5Po0Fxs8lkp69VA1ixE6gKZnPMt79O0HjFDI1fczdjtO0o5a5HzHuk1pyshulBYp3rLcbrq6vUxBgqBKZHsRkMaTz2NfDbv97a8Slz60nf/vKW3sew1/zpOLu4fselVxHp2T+aZIxVmgm3BqYzMFJIjmVKf6y423FAYFhpWA8xhEitU+O9128/JnGhCeNsaIopMJTlgzDwM3NjUBxfExSg5rg4WZ9TWktZSEbRl3PqGdzTu/dx3tRJTo9OaJr17x+/oxue8V77z/m0aMHRGXx3mG0Fryud5y9vuT+6T2qWUXmkVVaYQo7ykD74FEhMpsLqW8YBhbL5Xg9lBJS6dhh1prSFtQzQ98NhCiO47uuST46cp3zOhJjZLu9Ebgbwl2aLcRlF6WoqhR4RYXCCtQyQUOHISVsGIiavuvpU9C+PDjCFuW4DmgtLXqVi0FKsO7WWkJhCQpeX55RFwVFImCjBPJUVSVd14ialjG8/957eOew1nDw+DE319dyjruGxWJOds49ODgQuFlVcnh4yGbbMgyBYRCX72mCa62lrmsWi5qYKoxFUbJYFPhkLOmcn3DFDGWpRiW9sqiliOIMQ67+WospBAYkevWyXtnSUpU1s7rmddeBVkSdFMC0EuUdLdV7nRIaZVOXxBpsUWKLGW5wI5/k63hst4G/9df/Gt/59CPWz1+yPD5Ga8Xrdou1geXhitlyydOza6zWWKuxtmYdIzp6dABcABXQSsxrVVTooPFD5P7BCTFo1tcN56+u+T37farVnJcvXjF0nuhgGBzWiDhLxOHRhGAwSe5T62pfAIue2cxSFCuOjh9h4kDXNlxfX3F29gpxcBbcfl2XaKXoOukQ9gm+EkOg6xzDEIRuGjXKO1zwKZqaVLpDLowpqtpiTAQGht4BolZnrWaxWCbRAykiRqeoipq6mmOCQxnDbD7g8ZSzgvc+eMxqOQcd6LoGVGTwA8E7ams5PDhmtbygKi7BK4ITjx4jBlTJ1drRNVu21qLQzOoDgCSDD0VRQfJp6J1DayWxVSlmpERZN+aLFf3gefrsJV5HPvr4fd4J95jPKxbLWdp6I3UpErhKRQKBdtfS7houL9b8zm//Np/97Cmbmw19P9D1TiClXTuSqrXSeMRl3BaWej7DJk8xaw3R7QtRMURJTtKeEUKQhM9BaZJ6U1aZSvM1dycj0kElSqG1sJZYlqjSEr1nGPq0BsvXbZVNKMtqtAcYBjGP9EESgRgDPji6rhceRYxJYUpoBloZ5rNZ8k6rWcR5mmkRYmBoW3yC3D19+oSuE4jsPtn9w4//QUnGNIj7sk1+fMwEgkCuJqcoKpKzqTCy/IXpn2FF++RCnp9xZynj1owDMEMoYg4gx5QgwSBglCWVQZSqB2qfCCi9/z7//TZ0Z+yHAHkS5Y82+Yzju8tzbWFR3osZn5eqZm4NKqXwg2NQCl850WqvKpYsWK83DH1P14uCynazYdc0KauXrFoD+IiPYuqUr3E+ss51BAqt0VYSLKP0OGm0EmUblbgqJhOyYoTo0dixop9AU6n1mzCB+RqEdE6IC6m4jmYZyH3S0w99kvmL9NzpKOW2Zdybscm1vw2bmla5p8HkPkCcdNGyJFsKquLYXZPx4SNs25aziwtCTMTjg4Vs2rkjwaQL8dZuRup05AfvfxrH3/iZ8oPUPjXl1nNTqvq2htzX9XhL9+EPgy2++fTbf5v+fJd7lWWc33iPmMsDcf95Ju/xts8zfU2FzJP8+lPoYU6AxSgu/8yknqKYzWasDg44Pj5hs9ninePm+oq+vaG0S9xM0+w2LO8fYGxNwEoibi22KBii+Dm41PlDicKT1VJpQyl0CEQvUqnKaKwSh+A8d3rnUHoPd8yJhrEW7cWIUuABXgL1NHiDD2ONyHuPSkUNU8hn08aOwa2OUs3TZKfZDNeErIbVdT2D60SpRAm5vCgrdOI8OBdHyd+YiiLGGB4+eMDlxTkX5+ccHh4QhkGMW4MfZX+dG2SdBUgQ0fl8hrWWvm3oe9ksc6WvSNCzEOaCeSeOpPc8LqZj4S7UtO976eiqxG2b1ykhMlR1ibEFEalMy/vs1cq00RRViR+c+MBYQ1VX+MElFSAv+19Sf+n6HhcE7hBUWpCVYjrUIsm1VzlUkORPusRfb7jUt7/1MR9/+iEffPwBN/MZh4sFzjn6a0O0EXOwoj46ZDd4ms0O13WYqISrEiLKB965f5+hkzFA74SbYywhBAotcL3D+ZLPn76mudmxOjjmb//Nv4PF8smHn2BtwevXr1msDliujtBWIH8xxSQ59EiAJ7QuU4dcoxmwtkgQOUsIjoBAD4syE3gLVPLN6Ps+df8Hgo+AyODLfNwHerkDMBb/uMORTdbaYiQ5F6W6ssTaCu883kPbO46NxWoZV/N5zb2TE5zzXFze8Nu//Rvcu3fCfD7DR+GAgoxl8aKyEpdMx1jcw/hyF8l7gW1VcQ9/jpBkVMULZtyzVULAaCmMlFVBaSrW2w0XF+fcbK8RA0KHtZrj4UD4BgkupRDUSte3bG423Fzd8OSLFzx/9pzrq+uUdAtMqBt66VYoJZ40pRSSqlKkqDPSQSc3dz0iOEiB4Z4foZUSeNjk3PdxRPpfnrMxQ3j3R4yi0OW9Y+j7tJeIAp4xRYLUJZjTEAg+Mgw+IVEc2Ucl837DWKAHfCBkkTOkuGKyQpkS2J01kqBr9pDkEEhr9jByN37e8Uc24/sqv/uyx6TkcgzQ94HCHtvqvbTE3eDFAXI/TpNagsr3MgWLBpWIdBmnKq8XR1lLee8xwpNAOf0v+1VkeMwIMZq0rKZGX9PPmV9rbPHlD5pONgMychJTFKlzQnLYVClQVYITjsGjouX0+Jibmxu61EX4/LPPgQnMyTn8ICSuKkkmai1umyFFwTYRl/MGaOw+wLBlSVVVe6nECc6a/H1QmKoSx/LMmUimL5KMhMmEmHYH5BIYLWhTENlG79yta+e9Z0imXuPnShVKO3GvDCFg4m3J0WmScVfx620wm5zsqASRIy38SqmxM4HSBGCzawjB0/c9VVkynxVoVSbIV5zoVe/H0vRXP6+qTh4n6tZPt+bClzzjT8WhrEVNWrsg5/6HSWp+Gf/mywocd7sPt38/4WQlPfC7l/xt3Kv8fGuFZG7UXl45CxPkMReCQHyGQfDR1hTpc2usKZnPFyxXB6wODnHOs9vccHF2Qxg2HB18iFVL2t0GYzSzeY22M5yHyhYUVQVWS+DRd0L6TOaEBo2yDksKYgc3JtvaWqISSE0gJoEH8b/R1uJ9GKvgpCoXaR3N3hN3E7mc9BhrsKXIteYvgRuYlGLoBN3IczN7HA20bUPbyZyzRZm6QyJFuV6vU/XWj7A2pSXJePz4MW4YePniBe8+fsT1xTm7G4E6zGa1JEd9yyIugEjwjt12y72TI6y1PH32jN1uJ1r2SiqtZVkkEi1sNhucc2w2N5TVcly3jDEjfHXaUc0y4WUpm3/bdawWhwJVKgoxGUxEUZ3MU33a6EldGltUtD4kjp2hLqxg6QeN881470Lw7HY7Mf4i4oIf/QMi+3vs89obI2gtwY/WoOSvX9fjL/6lX+D9Dx5xfO+Yo8MDjFbsmoZtEWn6FrNcUB0dsugdV5st17sdQ9MzKypJMkLgo29/Slgr2puBZreTIMpIcm6UYlnP8Ufgm3+BcpEHRw/4j/7D/zWLaoFCEthXr55zP8JitqS01ZhgKMHqjUUy2fET/DZCVBZbag7LGYfH93Cuo+tbrq8uR56FrkQ4wPtI23YMrhcVOhjNd2OUAHMsTylATVUuI9mkj8l6q7WY81ZlTVnUVGWNd5HBwc1myyNlMAZKo1ioOe+99y4xRq4ur/jVX/t/8d3vfJtPv/EJVSEysxqFD3HkHoSQSfZS8IghgI8oI2iA3KlwbsC5IV2vtDokI+HCCtS871t8GPBR4ixjDWVdUtU1l1cXPHv2FJ5BaTXeDYToadt7LBcLFosF83mJQMoGNpsbrs6veP3qjB/8wY95+fwl263EU33X0nXiURFipDAmOXzPqeeLxKkqKROHTmnpUhtjYBoJxQBB7rhO3h4qjPmdJB5hX3QXTpxcu2khPkRZo4dOCjA+QVO9l4L6bJY9lDTOeYLvCIExdpE3JUF697GSNWUi/u9tA0KIbLcNMbhU1IwMQ0eViN+LusYkeJdS4mXUDz6R3n/+8T/YJ2N/cd8eCN0Kum49ZkpYygGESu0x88YGnzO9CInj4BNRJV2wIPC5iCiGCChXcSuCyAnLtIKZAocsUztNNu6e96gkkwLiXC8KwTEl3O1dMNUYvBIDoRdTGmUsZZWgIek9+75nPp9zdHTEO++8M8rM1nU9mi8Nw5A23o6sghLjRK4WadfdPQ9rLVbvW2w650Hp/IvkmZGTLZ/P586R3W7vBm9vu9c+SckFP+y5MxPyaQ5a8nlmNaypId+YlNzpVkwD0il04Y3xxu1xaYxA19AGpa1sAj5VHdL97p3j4uqa7XZL27ZoBaenxxweHmLzJjI53y87/z/suJsY/Vk6lglLP/oYTLoNU3jSNPGYJhZ/2JHnMryZgIzJJ5CZYbmrFELEhf04+rK5nz0SlBFccZ6Hd+9jCIH5fJE04SXsG7qOqrD8G//GX+YPvv99Ls4vCVHx7OkX+L7D4Hn08BBroDCKhw/uEZJCValL6noh+u2moKwqMcALHh/EgC5/hoPVKvkMBXRZ4gY3qsT1yb27TEUG54exip+7vzmYFuKoGPlNu4bTtXK5XKCMFFFsWVKW4uwtMY0RB+QI+Cj4637g5uYaYxS73Q3r9Q1lVTKbScX/5OSUqAwRPWKOy6qkKBRt0wjxtuu5dpdcXVyy3W4oy4Kub7DWsFguxMl3MaNpG16fvWa2qDERcIFCG4aux/UDdVFy3V6ijKaczXDOcXFxgVKKRaqMhxAoioKrqyuUshgja1XbiupLVVX0fY8tNHUopDvbJ9f3umaz2WCqa+G5NA2zhGsOXjodSgWwYsgl+1ZaF7VCJ0nbPAZd8KjEl7vuerZtQ9d3o/u6D0H8UBBeos+wU0imieLo7P1AxN0ySf26Hb/3+7/Pdrfji2fPODu/ZL3doLVmsVrys88+48MPP+CTjz7kxc9+jNEV1+sNv/r//jW+861v8/DhfR4+uMf3n3/GR++/z3uP3+HX//tfRYWAVZp5WUEK3kpf8uDBQ/7cd36JX/rur1CpGd5Fbm4uef78OX/xV/4SxhZAUkPK6kJh2pmWY9SwU+mnqIhKRC+MqZnPKuazA5IRGN55VPw+Qx9omm6EQcaoKHQlHRFlMZXB+/39dgkKI2qImTPmUxHSE/CS1FqLthXa1mizpJ5ZNruBn372hA8++pDlwYy60BSD4TuffoOP3nuPX/mlX2JWF1R1QVEYhj5QWk3Q4hjw4uVLzi/O6V0PpSWovViC1VKYIXgikaFvUBrm84OUUEjhL6Hgiag0jiNuCDL+1UAdogT91vD40SNWiwVfPHnC9cUVP+xaXjx/xocffshytWA2n3GwWmKM+GA8e/aEz3/6GRdnl1xfXDMMAiFq247tbocfxKPJIN5gWflKK0VpS8pqloQa9BhL5iRh3G/yvhIjMQXyzntsKmzKvc+7UCCGPWQ1RikKOCdF2WwtYLRGWZtiPknr+qEhxAKBTsWEBs+GocIX0amwYG0FJO6hNsToMdGn6w5E6YgNXYMPAyE4CmPZbXZcnV2MaJLBOW5ubsb1yr0lRnzb8ceWZPxhx/4GTF/rTjAo7YUx0LxtwHY7OYlxUs2OcTSO0iPOTRPRk86FGjNJYNSjVomM98bnVHs8eP7KwTAwCXJj+rzJ7HE8ydQ2zZ88JT0hxJFcamxMEmcykLfbLQcHB8xms7EymhMta+2E9BNGWde7hOgcAORuwDTJyKFxSB2UqZxt9PtAYp9EMH6ODKkwb6lA579NA0HZ3DQ6Roh6vI9ZknYqc5uve8Z75wl7q4M0mcRT7P70eFuSsedjSBtsFIpS450ZB0T+yRTicBpi4PLmhhevXoM22LLmcLEY7/HbEo3pZ/jDjunj/qwlGmLYJBufwPF8aguHpKKyV4rKcJK8aCuZ+GO7J/8tpMDM6CSxfOee5OucoQQhBLRN1f+kZiJqdWnuZ5ikUmPAHlPglk3S2r5PmNd0P8eKVOJcdS3d0BMVzGczqrKAGPnRT34CKqINXFy+ph86NCLPeHB4wP37Dzm9fzq6eY9ePVbM6mwp1f6ySgu9EznsnLhvt00q2si1FhUURsiQLFSp8EGEIEFoTBt69J7gBlySpYUUtFipIhbGYpQYhCkRWgEla8jQ97LWaUWMAzr5lYTBjd5HSnnhrnhHWUqlUGuDMVaIlIng6WOksqVsnoizsYkewoB3O8oiMqs1i4VhtarpbcR1EbwjKofSgbouUV4qc0oFytKMUCVtFIfH0mmo65q2bXBe9hbvnUCVvEB3F8slwQuJFfYdrhBC4mMsWK2W6OyU64W7YedLjFVEHXBBrqn2Fq1KMsyXGPEqk3MjbnAEFwgBht7T7KS6utu1DAhXJrgAQSf5Wk90g1TgI0LoTmNdCnGeEBRu8LRtokQHf2vf+LodZXXEZ5+f8cMfP6NpG77zC9/l5PSYxWrJ8uiEui7xKA5OTvnis6e8Prvg4PSEPnpenJ3x+vKM+/eOeH1xxaKaMzs55frinD4ErNUiClBWHCwf8D//D/4XfPO7f5HHH3yCUoXsI0HhXETw8QUSPFoydmF/qLd+O/4QM4douiclMroRf4MsJw/7Gm1MhZGIoD0G53A+maRFRnh3jk8ybj+P3+zFkb+UUlTVDGJks2558fI176hTVocLZrMaHwaK0rBYzoSXmDoReV3suoHzs0s+++ynXF5dYa0ktFmUZxSiIMUGSYHNOSfrXyosp6XjVsE5o0oiATd4Bu1xTrrDq1XFfLYAhPcSVaBvOl6/fMXluUlIFYWxEmxfXJxzeX5Ns21odk2KcSSWMtqgC0tR7JdJiacK8aDQOsWYQjxHizqZFG/3ROwcO1priSkx6L10L3MMNS26xhhH5EaOa/M9U0olWWvxx5EChEFriUWd8wjUXo/ryThGgnBQ7B0BJGPE02OPxsm8YkVVlYDIDhs9wy/miXMnReC27VIhpb+FJvl5xx8b8fvLKsh/5CAqX+i3JhggO9qeET8i6lPrSWAwOsn0MQlI9lmmVnEviXY3IJ2czxsQqgkMIz8nf0al1QQ7syeph1RZUEoqCXmC6+QiG1IA3LbtOLDatsU5l1phbkxwpoF6TjJuJURGU1hRSCrL8tZ9mV7KqWeGZM+3B0te7qYQkLuJxEgevfNa+XqEjB8O+wBvXyWdkpb2CcTd5GNaVb4Le3lbgH63Cj3qSo8V5fz42//mugKk5NMUBDfQtB2vL68oqpp6vmBezyhTlehtycX0+6+alH/Z+PvTesjpBmJQAuEIWeUt8a/0vrsph7jfopQEzDEkWELmUmTOUJYPTH33NBdV+lenSn1Mq7nRdlTyEP7PRD1q2tXzXoSc8rjMc8aJ38W4hqRIXipx4qarNFR1JXOzsHg38OLFCw6PDogENtsbgQlZS1GVLFYrUWo5OMQWJcYKjt+kokEOOrRJRQ8FxnisLcY1oW378TqHKMTLGAIqhJFzFaMEIzH7LKTiR+YsZdW5mM7PFBZthUhcFAUGhckQDfbrnfcOgQckKeyoIER839O2jThOa+i6RlSbqoqqnsnGl0yttLbpHgWskUAhhsBAxBAxBLTy2EqxXBbEOKeqDFYV+CISnRBOY9DUVYGOERU94DFGYa1USYvCMFcztNUU1jAMch4+RHxwSWJZeHJVVeJ6gVxMuzq501FV0hkiZPlQ4XKUqxW2sJJoSE9IKo02w2oEc64ydCnmPUXWK+8DbTfQNr3AxugkkHRiPhuSck90DuUDKoBGqqwjDjvItQhBAqqsHpNNY7+Ohw8F55eXXF1f0buOT78D9WzJ6f37mNIyDB1Nkky93m642W5YHB4wBE+76wQKMivYNh2lrfnkw2+wcY7oHaWaUxlNWdcsjk75y3/5r/Po8TdZHZzSDwPEgNFS1Y4YiAbIX3/Ua/rmHrHnkirKSuA52dsg7+MSqHtJTH0QHoELwl1SUsVGKYyavm7eYxJnJGZBbXlNa0siA23rePXynLK0aKOp6yVKkUzaCrxzwgdKMtx9JzLdT58+ESnYrmcxX+7jszCR0c+fJQe4KcAXd+/9vp7XcandJMPdKFCgzD+IUVMVFaaeczo4mm5H37c0TcfN5RXeiaS3yFbL2rxrtvStcOWkS6DHwqYxBcoKh0xWNQnQC1ukLmA2cs1Vlfw51bh/TdUuR0W+GFFePE0khlLEoAR9M8ZFnqg0QYdbMZBSKq0De76fQY/qMTm+saO5s0Il5UQZR/GN+GnarReJ48zhCdLZ0AalIoVVUJWjAE+zaxD42r5z+lWPP3F1qVvBVsz/uZ2AxLQR5oseY87ux1chBw8RsX4Xl9yxNJ1uetrw2BNq3vg8Ogcce0z19HO+DXqTIUnTzsD0pKpZKRtDlLa2LOxpMUcRfSREgSuIQoqQjNu2HXWs+75nvV6Prrr5OlxfX/P48eOxg7HZbNjtdqKhbsXJtigK6roe1Q+qqmJWVbfN7Jx8LgXMFotRfrNrOwkk0nmFEFIV049dFJOCi3yvpt2NuwlXJnhm7kx+/9zBmF7P7Kz8tkA7f3ZAVK2+QtV/mmSAJFPBZwy+mN8AqVSRKxOKYVTMQbT6vU8PtTx/dc6uHVivG6xSnB4eMK8rWQDfAqv5lz3+rHQ1MikxL9CQq+5qP/8BfEgEVfl7YWUTDzGOFaW7alQ57EXrUWYwqmlCIgRbnSQhp5K5jiwTnfTqUxCcKzckeN+4AUzvfb7/WgQVbIwUqyWzumS+mPG93/ptISUTURouLs8QBSSNsVDXBcvVgsXBEcaWoC3Lg2OUramqBfPFIeg5phBCdIgZ8CUGmdaWGOPQeuDhw0WaWwMudGyvbwjdgPaRxXyOCpo4JKnaQfDHJiU5uVujkOtd2FKkYquSoGDwnqKqMBFRJUFBYcbzN3pSXc+VTh9wfcfz58/oh4H5Ys58tZR1q6yYzZbySmo/b4mR6Pxe7StETIyURjGvLafHC/phw8nxPcriHX73D36Xw+WculoQ/YAKis3NDpwTMrz3OC9V/Bgstqg4Olrx+uyC9fUN2+2GxbzGBbmu1lb0zuOCFEuapqVrB7q2e0OVSRJOT9e2CfNsKQuDSlK+i9Wc1dESW4rCk7YiHCBk+5j8RQCkq7aYzenans53aG1xKRDLK4P49xT0fkvbO5quxw+DuBOH1Fry4hCePRO0KcAYhgA+JTFf5+P7P/ghhyeH3H/nAa9ev+BXf/3X+Ob5p/wvv/Hv8t/+l/81dVVxfHTM62evRYSklK7futlxsFzx/jsf8PDBfY6O7mFtyb/43u/z/NkzrIE4L/juBx+xXBxwsDjmo2/+IoqafogoSoxVHB/VHB3eQ6uSGAwjDEZl04efd+QuQuJTTIqlIC8RQ+Tk5ITlajU+XhTaFH0nKkQxSBd38C7dUwVanLZjlD3daHA+EcRH7oPCJ3iN9+K9I11ETfSaH/7wM65vrnjw4Jhvf+cjqspQ1ZLs9P3A0HuGLjAMgWdPXvD555/zT/7JP2W92WBzNxmR7p/CmfNaOTgnFfK+Z3FwTD8I7LtKHhcQx2KkNpqCAtcN0uWMhr73bLct3ku3R+sKoxwmOnCR66sr2nbHrtmhtUqxYhCPh6xQpaQ7JBKvBlHAs8m4s94XEuX2iHhN6DCmIAQ3wtPMxMemqqqxOLVHoqT4ZZKA+Ojxrk9IFk2oClzM42GfaDjnQAtktK5EwVClQkzbtmOSAfsYZFS94vZYzPFa13Xj3ilrl4gKiHKmScWjiBtENSwEjx/C2L0oS5HCVlqhvqIM9p8YXOqNx+eE4ksem/kFIVXsssGbGieutKcimrIoqGtoukAYBvBSBVW5dz95n1sdlYS2CMRkgKRHEtVUDhP2VfWcVMhg3ntOxFwRijB0A23f0/c9u6ah7wep2uVgIAW00slIVSxtcW4YnV1937Hb7UR5JunZey8Ev5/85Ces12tubm64uLi4BaWadlhycqNgHPBj0G0EdpQDgrGjwJ74mkmsojNtx/McJ/ydLkFeQKbwLKWgbTuil8pQhrxkLkv+/rau8z5Bucu5ULyp4nJ3jOXHv42vke+71hqdlLhQGhekmusCgMl9WqIXt1CUEO+Ci6y3Lf3wEj/0vP/uAx6cnvDOwwe33iMnaBnq9S+TePxZ6GpMRRb23aY73SByI0LunXM9wedxo8WpOUHylLZkEn9EumfoBJHRahR/CPsyGjEE+v42l+dup2wK28xf03OYzoXpOAaZe3FI3hXrGzlXayF42ralH1rqWcnxyTFD71jMhIv17rvvcnC4TJK4nllVYm2NNTPQdWqTG8CnPHnfVr+b9GujwAUOjo9hcIR24Ob8nKooqeua09mSZj7H65SMjwleFNfcvF6qRLg0Gl0UDN7ROU90Hqs1rpH7V1lL13TCcQqRdrdL69vAptnxzrvvUtVS+KjmM5FYzWtTujcZFpLb/LIGC9RqPq+JsaYoAsuFZbM+Yxha3NDxyXvvQhRzz223ZegGDJH7pwf4IeCdJgZLUVVi0hah7QeODxYcLGucO+b65oaj5RJblFxdb+iGFqJUcDfrVroA4XbFUmTHG5SOAtFK+1QO4iKasqq5/+Ahy6OHEpRGg+8jXdMSQ6CwBUpLQNG2Lbumpe96uq6n7wcwovJzs11jCwnymqYTyFN0+OhxIMUsFBkXrEjfKqmOuyBuvtMu8tf1+Lf/nX+T45MjZosZu2aDLRWL5YyoGmYzw9HxknffeYCOJZcXF/R9T11VvP/BBxwdHHJ4cMgPf/hDFof3efDgEccPL/js2eeUdc13/+Kf597BKa4LbLsWaV4atJKKdojCq8xCDiS1H4lGeVtz4i1HfpBmn2hAin6BDBUST5Xr6+tUdZbKs3NJ0c4J16tPkBalNWU9l24g0s0qUudTKymm+RQruSQRix6kONJZURLShmbX8vzpa64ur1ivrzk8WrFczliulmhlGBL07vXL1zz5XDoY203HyfH9EXrthl4KfDE7Xxsp/uSCcioa73ZbrBWit3MDMUjnWEX5jDHFNKOxYH59N1DXtay1MUJ0xOCobIkrxA/DpPuVeWl4MUwttElIjSQQFCJVVaN1hpsXoy9PiPmmStF0t2tTFV+lYHsPT7w7p5xzqealKUz2GIvE4EW5KZspEqQ3nK6PiNHI/tM2DcHL4/dd03ny68nxY+ZvyJhp25Yc6kx5sFNOXlkWDEMvEtxVKd2QKApmw9ARgySCbuhpd60oSg2OPvkuufHa/PzjT7yTsT/Ufm7F/eYIOWPcZ4A5o9Q6E9/S4p1OKleMcuAoicj4LglaMYVcME5i2TsTvvttn3LSTpp+TTfwfMOcdwzO0XUD7dDR96KW0g8uvc++0hlRIiFGqvMn10vnhaXvnWOz3Y6DIBO+d7sd6/Wa3W5H0zTSXhwDenXr85rR40OPyUFOEHI7Uk8ShHHTnGTj2RF4TNbiHso0DWjy8+9CqDLuPZPrp1nz3WBsetyF143/Tr5/W6Ixjp/J69zqCqSKhEq+H7AXEACS2lfizMjoSlUAkmKLwYdA03acX14yqyxWK46PDqXiMYGJ3e2k/MsefxydkX+dj7uJJaTENcGclBKFl0xgzMGSSm102XBSxyFhY2PU3BIriAJV1OikIrUnesO+G/e2e5Y/1114Xz7uJkbTdYn0XGs0XedYb9YCvYnJ6CiEEYNcFAUaQ13XI/k5dw4BqbqRMMBKghlRd7Nj80SpNzt4xoizs6XAWAU2EM1Av2sIg6PbttSmFAW4qLBRp2ReXG9LReqWiEKK8fLOKEV0JIhOmuPOiey1jfj1jug8ygfcrqF1PUMMzJYLlsslZVUxuAGTKntjB5rb3ePpeiE3X/DnWoMxChU1mohRSfp1MadptnTOU1mNbwMxOHEnD6CQa16XJWghgfa9ECS1EYnZzVYKTkVRMJ/PcUHhnEDziM0bY3bKM+uHHtOJ90AIaR1Na74yktwsFku0KoQzUWr6osQNA951RERCMwTp5hVFQT2b0fUD1WzGbL7Dp8SrH3ps2dK1La5vGPoOj8IrnZJryJd2PLT80o9r4h/POvX/r2O33fDg4Qmr5Yybm3MePHxIPSvp2pblckFhLW4YxFNkthB5Z6N45513qKuK4ANFUbHdNpxfXFLWNfPVguVqxuJggcdzeXXF+nxL1/ZU1RyxfkpMy0koI8cfcb2OKaZRuSg6yU7Gb7OcsyAVnBtSkhFwQxy9LfquZUhy+Cq5aRubpEuDJ8bEFTGGoihROuBdTII5ATXkpMkSYyHSsRhRtBp6QnRcXa2ZzSrmixmFrXDO0/cD52dnXF7c0O4GrK0prWLoerqmled6BC6t0p4bk4yrMejgRRltLOS4VABK7NEg8Ms4msUpKTjEiPNCTh6GjmGopSNsNJq9g7XWBlsUaZ/IlzaK0p+1STUzJxkkeHkufMl7MsKj9BjDZX2ffL3z3YOcTCXObSqag3TvVczgNNmvcsw1BqoxQJxI9ZPXQiP8kPR6bnBAl5IHiR2HYSCG3NHfd/VzkjHdx/bCKGBtFjtSKBWTjHHyvwg+7QcuGa4OYitxB+7+VY4/tiTjq7zhfkrtfSzGzUWLorq1lqqq6IpWFuGUvUrnYE9SmVYTczVeZYyVmlQG7nwCgeflDPJ2JX0aKE7lVKeGX/mGbZJXRdM2bJsuYezkbynkINu8i/KHOOtKm00mTZZL1FrResfV1RXNbsdms6EsBb4gOOv2jc7K9DPlgKWsSsqqwlhLlxRN8iSW1qkhaiG6uoTPtck5Fri1cSp1W9Vn+v658mnvXJcplCq3B3V2dYexGjgmPz6Mi894hyYJwvTfu/yTvInGuH/OmJDGfXdGKQUGDIYQXMI4yiqhtMFqaZeGKPjHmBb+iMx7pY04rcbAru24uLjAEDg9OeZh6hblMZy7XWKqc2fsqTe+2Z/Al06Yu0TCr/8xHSdT4QKdqkuk+amLAmsTjE+lClCGWQ4+Bexq9CUQZQ2PVtKxU0qCUXLHJAoJMBO6vyxxvZv4ZLnSux2LzJnKzxHzt4oYAjc3N5SzEu8D282GeT2jH/rR16IqK6rEmSqKgrqqqKqaruuIcSEbpLFJFSqtJzGvaSJHrTUSgPNmwpPnSaErrNISe5aReTHn1dNnXLx6TaULfBCnc2MK5mVF3zp2ux1mIeIQGINdlRQhonQyp0IxeI3zARMCVR+EdKyhX3f4XqA7puuJYcDMSr797e+OBPGiniWlGFmng4u3koycYIwdSRUJytN1O4LvCa6nazfsNjeUVjOflYQh0Kx7Yt9yMBcFqma34+ryGmtKrBYSvFZgrEYHhTWaoe+Sdry8rxsGlNacHB9ji5q262naDmsNbvC37v2UvOmdFJ1suSBGqRa7mNYSpYkoZnVNYWsMBfNSJHGHoWd9c4X3oh7UdNIBt2WJNgVN1xEDbHcNi6cH6KhxwTO4nufPnyLLduT89WtC9jpJ+4lCjWIGxlq0tQkimiEV/wrri3/Mx6/96q9hTUTh+PVf+3X+J3/n30afHLJtdtw/ecBms+XFs9fMqlMOVgf4MOf/R95//diW5Xl+2GeZ7Y4Jc23eNOWrurqrp5sc2xhyhCEpSgRkOIIM9CxAEvQoQH+N9CCABCFKgkRQEMGhNCTIoZnm9LieqbbTXVWZWZl5XfhzzjbL6eG31j47bt6qyu4pNSeLG4iMmxEnztlmmZ/5mv5wy7NnTxn6kQ9/9BEfvP8VXr665MMPP+Fr3/ga7zx7ynpT48PE7vaGP/qnf8xHf/Qp/4t/85oH5yuaRlzpbSWKPFLQWMpf/0k7Qyqv/Xoxj5chK3Rdx9npGY8fP+ajjz6c14Nx9JJkOM80DQUwI+tVn6ibNq9dLhccZH+rmg7lPaiADwnnxYts8p4QFV0DqjE0bYvz4iuxf35FCK9l3FhDUzfzWjtNI1ZpjG45P33MNIwkv2dITrpwUWK6pPW8zcn6Z8FLZyVG4To5rfFI17S0GfwMARQ1rBCnjLbwTJPBuQbvO9pODFG10kKED5JsaCMdHT1nBQlb2yyV3WZuU9mCVYZoB9wkXUljhI+WksoJnBR8dC6GHbvZzJ3Nsq+1bTvHmFIbixCl21TlhGGOe5IUQ6Sgel+EZ71ezUnG1dUVwzDhw11GdxhSEgK4eJ1VaJ2yrLmMyYICWcLeS5zUdR0Cz/IMQ48bB1IKKJ0ghcyB8XkPlEL1jNgIqaR0P/P4ua40PyvRCFm+jJzRSXKQBxFAtj2vm4Zu05F0wsUJF4Q0VyZiZQyrSnOwionMz0BhlSZmzoYotKu5aFA6msdERyqLOhliBKWkOiCwCwT7FhPkzw4qMvXSNtrvd9zd3DG6ickLt+DzVx6R+ClzR5Jct86JTkqRFMbZvM9aTdKKKXqud3d5YEoCZTgGQqWLYbSmqWvRcW4buqalacUzQ2V3dCXC+KQSVCup1qWZkwAYgyfloC0QtVSUY0iEyeWgpZDFjeCxc5afTIYGpAgL8niMxySClCAqUtIoZXNbMxD9UWe+4NiWgV+ljchjlgU9eFKU6ozJcLqiWiGKNMxSnTFDYigBJHnyhjR3k0R2MLdwlT22Yr3wMeYkhVxwSuBi5PVuTx8Csf4RuluxWa+xGmprSG44juNFS3wmx+afmOyVEuOxwrM8lCop87Gq8YtyLBfXZYCvFJyfn1E3rZCelbT7SQkVRW1FgmdQtpqf9eFwmKGJMUaUK4IOWvwaKAQ9iLnzueRVzd27fCyTiSIh+OaxhHcuk/xSDFh1HeNwQCk4PTvjs08+wSiZ99571psN682G09NTLi+uuLi8ZL/b8eDBlsePT7HW0K06tG2paosAPN1iIJS18/4xkw1jIdMfk/hAQleax++/y9nDB/z+b3+fB7qhwxADXF3doWOi0kagZdaCNQy2Yl+kFK0lGoVtG6q2IUbH9etXuGHA1BXtyYaQIv00kSrDV7/xDc7ffcpotRCjlcJHMYYTeJbwUchwkWWX4PgsElpHunXD9cU103iAMNFaRfQjh5s9RumcLFkG52hXKwKa0Se8A5Vk34ko7m53hJiwdYPWEaMNxlqmyTM4z3C34+rqltXmlHGc+PTTz2jqDlvlinC+vwWG0DQNVV1hK8Pubg9KY23N03ef8eSddzk9PycmmIYRXVtMZWcuXgyBtq6xphbYbVBMPuBC4Prujv/wb/7H/IW/+Bdp2o5+Slx89hm7wx2HYUfTWVSlOX14zr/48De4vbjk8vULPvn4j3HA1mi6jI9PWkGV/aA4Kqd9WQ8L/PEf/DGXry55evYOrdny+rMd/9Vv/h3+8l/5DVo9chVvuLvd8d3vfotn7zziZLvib//nfxurLc+evs+PP3yBMRWbds0//Ht/j/WJ4bBX/BdXn/LL3/pl3nn6kLP6hP/Hv/1v86/9G/8m3/2VX6dZdSTCPLfyKo7sEn+SztDb7n2BTulshBk5Ozvj29/5NonAv//vXzCOF1k+OQEGYzWtaRfrl0ZVFV3X0bYtdSMy+zEEfMxVcW2orCJYUTATladIVQmvyI+OagBbKaytWXVdrnBLcXAcEm3bsOpq7IlGIx3Qvu+5Gi9QVGhlCT6jRVSGO2c55qoR6KiFzJcT8YMQXY6RbM65osBkC1wqO5/77BfRNC1j9nsJ0RFCK0Vc7xmmMVfkxftG11JoUICtGqqqoWtXjGOBD4JzAaMtKQZAuKApJWJIkjBp8RNqmioTpHMROSM34P5+NhdGtUJpmCa3KIymRXFNYhifP1UALsd1cJoG3DQyHA4AVHXLarVis9lIZ0oZQohUVnjBIUSGoZfOjlH3oOZLvogUe7MB4dhz2O1wUy8QqTChSALxysnTNGUrgnLuWn3hQsWfbTljrjQvJ5n8bIYRUSot2djJWpx2MrFzt4OkiAa6tsGFgNaK3gVcFDlbrRbh2dx+PAY25Vek+z87BkC5m1HVOelI9MPA4dAzDMKdGKYp+3OknxkEzg+5VMlVWpDc5fykspeT+BSLCfTivh2Dm7oS06imrsXZ0lYzTAqOAVLZrJfV9qV52PKay6YZY8zVN5EtK1VhmVhqbnmqRRcKJQpARXIuJSMdg5Tdvr0kHdKZKm6kSrTFyf+/2PTKOJgNQ+eq5sIdM8Y5QSv3NuXkiyQqG3OHijQrWoi6isLY/Fy0Kfkf5C5ZRIJbgZItEg1EfWaYHDe3d9zcCt5+s+5yMiTP1ZRxPicKah7pqFJh/HwHbTlW7o2fnzG+vkzHm+o8WhesaZPdZ02GE0lAlGIkZDUTeT5QZ46AMTXlmZX3TiHN7W6djk7RKHlPtBCVl4ndslO27Fa8+SwKr6j8TZmPSqnZ56V08ULMnbqUqGwl+vDZKKlUhuakIAScdxwOe4a+ZxxXtCsHxpOSJyWH0lV26E4oXbLgxZxZVNaMyd23qBC7tgRWi2xvED7a+1//GvHlDeHmwO31HfXBYdFURrDQynrZWNOEz2RnrTVBQ6wsU22wXUU9RXTSBB85HA5U2zUPnjylOtmwOj8j1RXG6tmYLCWp7pfOVCzrCerePV+uSyEG/NhjjSZVhslFKqtRpkZjubnZYUxF02oOY48LUqlNSuOTKLIoDYdhIipDJHK7OxCK8Z12HPoDEYGNbLZrfDx2dN0kSjQlOS3d2NLBMkacm6tGIFZozcnpKQ8fPeL8wUO6rqPJRl6VsSikQII1GFUDXsi5SWGUJ2iN0TVV3fGjjz4hAZeX14y7nikXtMb8TJS1aCps09J0HavNGnc4SAcwd5yJmYifC0Ypd/a+rMc3nj2T7szoOH1wwo/+6Afs+wPBBT780YegND5Jdy3FQL8/cHt5yaZZ4SfP60+fM+52TKNj6EeuXj7n8cNvsj1ZE3GsVhuiijD0NBh+/5/+I276K37jr/7LaC3JZlKldJT3Qko34t7GzbJcVX4Tlw0Llfe5HKoYLQRyHzymgvW25dGTh3TrlupWnOxTSjSVGMQqFXGZkyFrnHhYiMR0mjdR2cMKvNTQUM+cCVA0TZWLkmIkqnUFpsKoCmXEnI9csKnrKstPN+LnME2Mkxd+nNbiU4b4gEQCLsO1DZqIcGgVSTqMKkKYSCpi1HFtTiFlnwkpBssyHAvGgJQCKSpCUMRgZgSJj4mIJimLMmBrgaIKMiRmFbv8ZSIxZa4VSLySitS2PM7khVdqFdLFUInsVwoqEUpXw1hQ5PUqiZiM1ghIW+Wu5nFcSLcgF3CNnuXZUzrGNzoXkq0Wc2VjDE3d0jYrTObMxiCc3r7fzd0iUcOyKFWxWrX53sl6670nqUjK42YcJ6bR5QK2ISVPdAFiEDNVJdp3gUTUispWkiDys+Pecvxck4yfVR3J+i4klRZB9LLqC6hjklHZOutET7nynyvyiKN019SE3Hr3cSAU5Zo3qsP319P7n/d5nP8x8TAZSx1C5ND33O12jMM46wWn3OP6WR2cEgAcN9CMfsgygnMrkfvnskTYLDsZheHf1o1sXNmFWOU3i+loarcMhApUZSmXu4Qv+XnjtKA0k3OkUPCdZnYrVyjBzKuSIGoqoymupiL9KcGY9wE/OXEpn6FvkpAksnfIoi5b3n9+WvE+fEVJNH+vIj4HJ4t7veScFKPEI7bezJ0drUXzXB7KcQjI6wrG8/gsYkq4IPyZm9tbmrpivWpLrpwXjrf4eMgFQL7npGOwWo63qVV9Udzjl+UoYxKOwX1VVayz4tk8pnIQnhT4Gd4nm7iuKmpT53ViNd+3mBJh8gQnMoVoEVsIJUGJBiwobWb87BIS+Ln1qyTSy81hEQAvCf7TNM2SuIpFNSoEkX50oiTknMNNbnZL1dmngwSH/YH+0DMMA6tpAl0RjCUGR2WTJBlaFKrmIsmbCWlZO0zu0CLBBVqhbQVervuDb36T19MP2B0mhmnC+jzHfEB7l7luAe3BOumiKK1xKjKpyKTBPDyhrjW2aXBWc6c9q23Hw6+8R/f4nDFDF6w24kotE38uNikEuphDEmk45zlSxkqRYh2nURKLaHFErDXUpsJqzcXFLaa4l08jk5+YQiCg8DFB9l8ZnKhjxei52x1mKJ1Kkf1+L/yHtuP8/IxXF9cUeeFh8BhlMFrcu0NWvTuOIUkyTFUR0ghKsdluefjwIQ8fPGCz3tI1gme3uoJ0hDZZrfB+yMUPIaMGf3T1/fjHn3LoZb0W2FrCWsPoB6wy2Xk4CpSlazk5PeV6mmaTV0+BYIQ5wbhf5PvyHd987332hwM+Bs7Wa/7gB3/MfhhQtuKjDz+k26xZbzd0dc14OHAxjXz2ySe8/84zdsMdP/7wY5qq4e7qhrubO8LYs65WnKxOmeKIMTVRjyQLXVfxBz/4J3z08kf8yr/wS3TtFqVrSFnsZE4w5krV4igFpvv3OwLLKmJ5ReExghKCOR5dKbpNS7dqxTtHS9haV41UknVA2yOHyZpqJiMHH3JykGVZVYEa61z1ly6MMeLsnGIkOs80BVIq/h/i42UzxE5n/oP4y3RM00iICVQW6tF63ssL+9FFMTqMyhCTQ8WIUkZctVVCRQ8hSREkq2alkhwXmLZRMxpElo8s0RwyVyOGXBzVoCok39E07Zr1Zstq1YmvBEcSOUpEXkJeZ0KUBMNHP6/zZY6bki6ohNbyFZN0R6UofbzmmJEd2oLKnLOkTI7jMt9Dq3l4SEekFHyPkGJjDLYyIiXbdVJgtg21qRkzT2LyE8M0sjvsAIHfrjdbRF4ZqqoGBMrvvEj9yrqa6A8HDvsDfpoQ8dAc8xTIVsqxlFJS4Feaqm1QSu6Z/4JeO3+mnYwSfBUmBeX7TNiUzVZrM5NqY4xEHxkGWYxTDJnMpzImt81ygBD3I2MUQpO4n5YAfplUyOeUjQFKQJDmbD0GcdgexhGXFVL2w5CrkCFrUodcuY7cbzu8/YjxWLlcYsJnnskiwTh2W0rwfDTDq+uapm1pFkmGTH7Rco5ZOlepo5s2cEwkcqAT5srWEXcOUNV1xhZmws8wygRGMHxVZamspa1rYor4oDFeEbOO9pzMhKPXybKdKJXAIFUUlXWcZ0wb94P9t46hIw+lBKWCb3bzorDES5c303DEIyoLpiJCfp5ZbauMw3w6avE/y7w9xsju7o6XL19SWc352QnRKuG92GLuuExc8zaS/19n3Omb1fJlIvom2fgX5SgqKVpruq7NY6qShS3FbBoZefn6kpOTE+lwtCvqdpVhCoGqFnPK0U2cnZ3NzzWEACuV7608p77vOewPXFxe5I5czao7JjgF6lQZMayMKQlZESgbcxkBMs0lKVBG/BS8zwmHErimFNwCWkcE++y4uHhFZSqsMVRVQ4yafj/x4sUrKt3QtR2Nrbh+ccfw2BG3CVYOlfYkH3EedKpQVUK8v4quPHmTWiRZKc6JTkS8MaR6V1TmJBDwCc5/7Wuc/fL7uJs9P/g7/4DbV9eY21ue0mGdwkYwyhJQUBvMqiHpDMFSkWscrqtoHm746re/xa+8+4RoNWP0DCSStqgIYw5m0HrWvZfuYiLgxdQwCW8q5G6H1lbI3RiUstTdmvFwTcgu5XW3IqXEmAJP333Gj374A3b7O776tQ8Y3Gt2w8iYArQN3kdiUDx98pirmyuGaUCZRFVJsUolxU2YONuec/7wBNto+tGQqEFvuL46MA6B0TmePn068912hwPWiYOHTjVYMTyLBlStOX1wxpMnT/jgnXeo0xqjLEpp+snNztyTlELpnePm+sC+H/j05Qs+ef4ZH374I5quYbOywkfZX6JjwkbDSVtlqWBPUtB2ibVZs6nf4+7yiqQEC99Wmra21I2Mv7ZpKBCaL+vx5MkjmrbF1jVUFZd3N0yffcbHn33Ct7/7XR48fsT2ZMvL55/ywx/+kOAcbhi5fnnJ2Pfsbu/47re/Q/f4Me8+ecpXvv41fvj8Q373dz/hcn/N7//RP+V8e8rZ6oTf/vifsD095ZEO/Gf/5X/C177+Hdp6DaHim9/4pSxheuxWv/243904AmElRNUZykOEFCcSEa0Tnz7/Mbe311xfXdG0AsnTRrNedaJKphQhHSGdR77QRHF/rusGZWt01dAaw1Eco8QUltVqJX8fAxgtnZAsPrGU+C9qlCjAe+7u7oA0m3lWdYW1lQhdZEUoVMxVf6SzYBV13ZCSKHMZrWnr5ihmIwRKIWX7SAjSIXZ5X5eutFgFKKNBC1w7xIi2mm61ZqWOvFopXhUlyzgXueq6ZrfbMQxidllV1b3YYWkGXCDdIThCyHw4ikJVlupP9w35WMRVMWlMxmslBJkRc5HaZJl2knRuZDwI1LfuWrl+YaiLeundgbGf2O122OJfZDWnp6diXdB1mZObGMfAJ599xqHvGaeRYThwe3fDNElcOw0jfpxIIchaaAKV1TRNTde26Oy/0bQtq80GlJpjRx9EKfGLHD9XM76fdhy7gypXcUrbC1Amqz1JlmpMkWOUwRqDGE4ppekPh2PxLkUao9C1hfUKF4HREUcnmMBSeWRBJgbB4mdIUGkjmCwRJoGrEFIn55jcxOQc4zTlG5zuVdflLd4eDL4JwyoTd1ltL+3Wcpfmrka6/z7LbogMUpFsDAsolMqbt1yPuZdYFJ3j5USCo8RZCcqdE7dTY6RjYpTOiYloxAfv8MZglCIG0bFOSQytli0jpVVOfEogfyRLkjGtkKuYuVNTWsazOVs6dpXgPuyrnPdy3C1VFI58D3n/QlQ3xqBMhfOyME0hCIkuFvWfYxuzBJhHOIcQYjPLQxZ0X6otgmEUqMoC4/9GglGquCndnzPLxPNNuM6cbP8CJB4xRpqmoWkaVqvVcewqRX84YGtRVBHMqSTJ4zTleSnPxI2TSAymyPXlFTon1KvNmtVqLYt+LLwcqJuGswfnQMK7wDRMvH79mqqqaZp65jAUctwxN11ga9VRm+wnZcHzfObY5YghcHJ6Kj41Ps5VIBcCzgV2h2vOtqesTluIKeOki2y0znApT/CjVBGjmbHOx13r88VppfQ9Q05ghh0cFd+k26PPNnz9L/4aenSYwbP7+AWHqxv8YaQzHevTLVErbtwAXcPqZMPD0w3N2ZahSqRK06w7ojUkrVDKYHOXIpSFrCTTcwFl/o/8Lp936ezErPRCysZyXjZbqw3b7Ybr22tQ4s5+e3PJerNitW5RwHazxsXI3eGAtjXuMBEmx/7ujq6p6ZqK081apBozTOHJk0es1iuR+pwG2rbB2JputWXonwOe4BO3t7f0fT/7ZZRuVfAOlM5wSRkl2+2G9XqFnwK1TiSdRAEK6SjEmHDZYKyfPIMLTDHw+uI1P/7oQ8J4oO6M8DZsi+7OaOpKkvOm4fbmlsPhINXn0eFRWKQqao2mrispyrmRqBKmaYluRGfH9i/rcX17y7eevsPZg3N++/vfZ5ocddPx7Nm7PH78hJOzU1brFa01/M4/+T4Xry9Ydx3dySmb9SOevfMOu92O87NzVt2K3/+nv4fqDO2qYWM2PH32lKaSQFitaj67eM3V3Y4HD5+yvxupq5bKtHz9K19HVSWEMj/hbN80LVOobJgIoFURH474MND3d+x2t7x48Rm20UzjiJ/EC0WhqIwlYSHG3BGRdxQXbsHZlwQjRqiqRqA2GT9/LLzpWeGocM9UUUFSR/VI59y8jhR+RMyu52TvIp9jjJCJ3DEG8fOJkFIgEkVwRpvMbahRiCGgXRh9am1zIVqhksIEEZUgRhHFiG+uvdJtVWiUCaA9tpL9pRgSd103F1adc3Mno++neQ7bxb1ZypUv442yJxeOAxl6nVR1RGGoozBNSZogc5F9pLiYC6RWzUbF0yTnpfPeXpKTPgaBQYUwF2c0mrqpebJ+kmOWiNJSPEsR9vuefpwYpsToYr72ieADPimUqTC1QtmKtulIzkMKVBYqm6hrQ9s2rFcrUfjynpudKJuSi8TL+PGLHH/qJOOLEMd+ekB0fDAlqMuhHEWGy1olfhGrtUyIhGzWIUilHNFqB02sFXVlcD4w6dLCPCLi03y+gsPX5uji/SYeOwQv75MTjAJz8D5kObXjtaWf0cVYBo/l/+99lfMr6cHytUvY0OfuZQ530kLRCeZAqFQ1yuQqScaSB/AmF6NgE8VDJFc/bZZO80oCu9I5mBxBh5xkZKjC4l6WYymhdhyc0r3SCyjKfP9jnPkU5TrfTLLevCdvXs9PCsYLXr58TpHOCyEbE5WkZPFUfsqDlQqxMRkb+/m2eHlKb5spy8Xr3uvT56+3JIxwrCx9WY8C92uaZiZPl7GaYpr35Lqq85xPcwWtPBdxdE6kCM5PUhGvApWtcWYCLXLEWmmqqqau1bxRuslxMAdWB3GatlbkGlP2WShShiW1LOyBcsz/TnllKUM4B81p0ZVTShLt1WqFGycmJrQvY6V03aSNPTmPJTGME4d+wPkO4xHp5eDQYYRopaMhsmfyGYu1CHVUz0ItZBLzuRCPsr1lk0MbaDUn7z3BJIXxkcEm1GmD6ke06agenOFJsN9h1x316Qnd2Qkn56dMeHwM+MyZi3kd1xRvkjQnGPdhqczrF7l7ITDazCNTzPAEgVUJ6ZMYqCojvBEtpouTc9kZWea10Yq6snRNS0jSHQkh4KaRul7JGNSaPsleElG0rUhhSpdb09QWaZBHjKkwWrou4zjOnLZ769EMx8zKMDbr0Wden+xpWYY4j2uU8GZcSLgAU4SLyyuuri7Z725Yt5baRFqT2G47okvUVcWq62jrBj+ORO9wKZFCFOhOSDR17m5rJQlzjKgYUMTMLU7onxgU//N/TD7IvDCWy+tr+mEUsRcj0vfBCw/DkohBCNqnJydz4LnqOva7PWiFMorBDaA0QcszWa3XGG3xLhKtEZihMhwOA274jHW34dGDx6goaPUyn+8fizUjP+sZEkUhjct4D8Hh/cDN1Sv6/o797pbXrz/j4aNH2Rg2YQpkqTIkpQku73nquCYVeFJBbwhP88gHjSHk8yj7i4xd7/1ixbvvEl321PL/2uSxm82Pi4DBm1Lf4ikSs3jHAqCgRKFJKelqGmNFzl8X9abiPyJzpsjpx5Ck4wlzAD87cediUOG5HuX8jx3cEoNoBSH6WXzhbbDxN3l3ZS8uR/m9jxGVuRhvxpH3kpPS1cl3Wc8Vd5XXjXCMOPJaFUMguIlxGLOfjjlet9HUbQNOZGUTiKBNTPjgOQwTwxQZfeauJkhKo01F3XRUucBbaUmWVIpYE6krcQ+va+l6umnKXYvsd6b1vFe/aV/w045/JjO+z93Mn5RUfO7HBYiyxKWo3M1QM5YYROFguzF07YrVak3b1Bzu7hgOewkUlZKWmYFKg9Ug8L2Yq3tHzweUkJ6MFeJSVR0vP6WUA/ID0+QZJzc7ViYQBZu4IGu/cSVv0mDeBoMpA385EGNKRwfzsljMQQOopGb4U5kEJXixy0mUEoSsopKO0rclwVi+b3mfeUDH+yZ4zkhFQRmdq6tLbWTZSPf7fcZnGqrKEJxjqqu5ZRezGoXPpjaf70qYHBBJEG4zzCgljfJvLNyK42Kp73uXKKUWZNrPdz/yYz8uAiBqG16Co/BG0vjGg50DoRL8oCQhttay2W7YbjbSoiTL+sWAUcfPlwp4gdosrynfh5+QrM8+Cvlal5KpX+bj9PR07hiUhKnAmh49eiRJK8zEfoE4WYElJPm5ShqdRK1JGzVX2G6vbrm4uKRuGtpVN3dDtJaKoNxTy6NHD3n33WcMfc9ut+PDDz9kHCVobZqGpm7nTqoQ7O4nrQk1J0OK3PFS5PVBunZCHtSsVmvC5HBGDKeMZt78Yoycnp0SXeDVxWsenp7y6uI1ygROH3QEFHWKtFoTjKaxStrutGjqYwcjpizlLolvPkmyy8Pn1iGQTd9k2GmqLQLSgKg05pc+4JH5OpWxWFXNhZIueJQVdZIxJW41mCidC6OMYHdzN7A4Sy+DmbIGlmeeQoKc4JcbWuDKosYVMDqRNITgOBzuiGGkrjTBe5FlTVC3NQSfu6WOw34PER4/eMiLV5ck70h+QoWKMIwkraS44N287o2jdIqsrTg7O6OfIrv9wN3dHTp3cw+Hg5hXtS0xwxcK1M4aw0TmDSk4OTkRjLrSrFYbGjoge8HkwJ8kQVWMCZ8iY9T85m/9Fv3dJZWOfPebX+Hq4iWVnnjvyTNevRIX3qHf4ycxPK2UwsVAU1VMEXrf8/jRQ9kHgqeuxYFcjNbKWpgHyJf0aNYrrnZ33PQ9ry+vubi6Yt/37PYH1icnAivZ7+kqTVN1fOdb3+XPfe+X+P73v8/dbsfNzQ3nZ2f0bmS4m/jWd3+J3/x7/zVXd9d0pxvenxxtU6GMpfeBX/qVX+XpgycoH7l4+Yrz7Qm//r1fwegI2ZwPZRbtxGWAIAmyMcUXpkBCkaQPT7+/4uL1C/7hP/i71I2mrkTGXyjmYJXi9GTL7m7PNE5Mgyg4EiSoLGuTtVZcy5ME4E3TUoRp/CTdCp0hUsZI0kJSuMmRZijjfWh3SolxHOe5u96sqSqb5Wwt+73LAjhxFrooGLBZQRLp3Nog5sUhRay2aGMzYVoTk3R4QiqBdxJX8pw8KGuZDhNaa1Ztx3qzmc9PKyVCQcbOhaulieoyxgkpZZ+P6V635hj/HaHk5auu67k7MXsY5XseYxA+Vr5fyxhtWe036rhPhZgkpypDJCcbIb9ejBaFUN80DZU1VDPRW4w1d4cd3kd8kK+qriVZU4aq7gg6El3ETRNGq/krpZAhtFJm0EmKD1p5rBEIV4yeF8+fc9jtGYcR0zRsT06zCt+xA7SE4/+0489YLFstvtLiZ8vfLyjASeryxhxNRoKbiGOPH5DqWpaQKzmtzgGp0eKjiJKpXDJjrc29CVQq3/LFvUy28BtKIlCI2mV4lOp1UpGijlJ+vgwylzj7N3+mQKqK6Vg1LYlMwakbjvAqaa/l6q33wvbPyQtKSeCcB3oJvu9hBWGeVG/CikpCJTjFaa76S6XxKDerUkJ8OXOr1gguskzk5fWVoGN5n0mRqMiE9VJx0Z+7fylXh+UU7ncqisdCCcDfdAW/f/9lZJVxJFK2y66HmStNpQorh3RcmIPMlGV5wTSGzXpN13U5EDazm+mRY/SnO0q1oMDBls/+y34U/sSbz3K1Eox98MKNGYcxq3cpvvKVr/LpJ58wjiMxBA63d2y3W9abTSbmDhhjhJ9hJfge+p7d3d0skiDVSVGr8n5CqYQ2sNmu+O4v/xIpSdB4fX3N7c1OKjdKs16v56TAGDPXDFECSwkpQUxYrUlR1i65RjG9cm7MxlJF3UzU1tqq5WS7ZeydgBesYTccqPeG5tCIwRqGEMGFCRVGSB1KxTmhFaEFKbKAzBc3TfP4t9bK+hePKnPL5JzKzuAvrchA6MjadlTGYrTG5+RFJ9Fqj1mRSZIATVQZ9qmZK14xK1eXiqpeQHNmLlteK0Q20s0dAJ0VgSbnspSnR+lA01rukrjRamU52W4JgA+Ruq2IU8RPAus83W6ZfOJ237OqK+qTNaxbVt2K/X6fje8KqVNRVxXt5iHGGqq6oq5bdoe9SIUmy+SCyJ1uNkKm9v4IMVGiytLUNbu7Pba1rLoOheLk5IyT7RkkwY6Po2MYHbbpBJKaFEEF0pj48OOP+I//s/+cy89+zEmrON02tNrz1XcfE6Ln+Y8/4sGjx+x2O64uL6XgECTAOj89Yb8/kLxi07U8enDGfr9jHEca22K0wioxCxyniTjFI//sS3g8f33Bp68uGJ3jxevXaGM5O3vAB1/5Os+fv5Q1RSmUi5w+OeF0u6KqKk5PT1FKsbvb8ft/+IdM3pGU4uzlS1RV8/jpM1brDpzC1g3GNHz/H/0RT07e42wTePXZZ/wv/8bf4Prikn/n3/o/8z/8H/wNzh48Yb19yLvvfZ372IPjYYwiRgeIh0EKjhgDoxv4R//wt5iGPTE6Tk9a2loSgIQiTOI4XmnFw7NTpmGCqHj56hobLEpJTFKCPgCSyLyHEHEu7/vaonRFUzdoozBK0zaNdBQQSwA9E0Pu8wTf3HP6vifGmpo6+7QcC3glgalsTUmoIxLfJDQ+JPphJGGpKqisJGc6RZTOqppa9mfvPOM0MU6OyXt8EEl6YyvqpmW73d7bF2Vdq3JH8hjjzYqZlHNlRlyU/VU4gXLdXdfN71uKpCVxKUnIvB/YCo+aCw7L+CWlNHcT3+zglvsq3fZjUhGcm2X5rbU01YYYZG0snx2zuJGxIv1d3ndyspYZq0VlVWuarmKzWYuzOBC9ZxoOmByvGK1RSYxLp8lxfX3NOPZM04h3DmMt67VlCpHXr1/nbqG5v4d8geO/AUce9cb3dPy3WvybkhDrvIcmVNSzDCylqp4319IQyXoIWK2IaBE9S3PhmDlo5Rhkl4EYQvlZwfanObicTygdq4Ig7xtZmsHdr2K/GXAXj4qioiJYPASji/QUC2yqfI8wB9HLTFmBBDD6qJJTgv0Cg3obfm6ZqS9bnCXJyHeH0ma9V/1Kx3t3TJ4WXhDpaLrn/X13yBnatfiUkjzK7VVvPS9r7lfwlwEqHCFZb07m5b+LdJ9S6ii3G49SmsfjJ02cQtACow2rrmN7csJqtcrKXsfEuSSfKnfS7vEylM6SvD89YXgTCva2a/qyHsuEs2wIZSEvULyriwsm56iqin63Z7/bM44DMUTqrhXM/X4n1RsSNlnuDvsMKbACKwhRHFKTBP8+V57rpqKY+Gkt3IVyLjGG2dXWB+HbTJNg921lhRuW2/oC9SEvR4njQqMyr0K8WebOagpYa7JDqyTpKTEv2m1bk5TCBY+PsDKNyOGGkmhH2Yx8EEijylr0aVmcuC/p++aaJJ+Zx1b5mSqjVGFQtMpgk4Yocs4qV91mYnzuIhXi2BGKaubOX1k7xYRvsf4t5nbK72V0rgInX8APoEV/XyrFQh6ta4tKVgIlW0mPWkdcub9kE8Eo2HKjNOuuxRlN8A6loW4qlNF4F45dMyWdVJ2TyP1uz9XVDXe7kf3BYW2V5T7TTBAFjrwKXu2BAAEAAElEQVQ6pcSkTcNq1XF2fsb25IS6brC2pq5bVNSzdOw0OXwKTD5ytx/40cc/5qOPPubu7pZVU7FZadatYdjfMhmFD4HD4UDTiVT26ckJq64rbdYsoQr7eOCwO5SnTEoBsg9VyrLc6/U6J5tf3nVkd+ixdYWxloePHnNxeYXWmkePHxOSoj/sGfoDu7tbKiPu385NHA4HxnHEe8/mZIMLUUplVc3D04cYrZjGEbwmTQlPYLwb6Xcjh71I15+cnGBS4mSz4u/+5t/hV3/9L/Dd7z2SvQydl4Pj/iawYGbXa0Xk4uIlh/2Ow2HHYXdNih6jobYWm2ODGCUoFF+C3IXI0t6S1As+32r7RqHwuD+GINwwrVJ+z5jXQglis+hijp3yfvVGgvFmwhEz6Vd7jzXHWKiqKqYFXAglkFVpsqqZ7+ijdDWUjiidqMjgsVJQTLl7kXflpGRF8D6QksCdra1o2m7uKnjnkGKGmQspy8LuMhEhFSn0+z4PLu815XpK0vA5uNgisQkxiITtImaY+Xvz38lcm59PLtLGGPKzKNxOTwwerY7oBa0ghaNsP+SuuV4UXZMiZW8eW9XYuqFKELKejqSRCaJwQkxTSwdDaUIoVICR/e6Wod8Ts7KWtTZzzUKmCkhJv65r1us18MWh2//MScafrrpaMv77f5vyDZnRa6pAXDIuIHclpLNw32tCJkRptUNlpPUWUDMujdz5KEFyQjJmt5BXDSEHQCmSFlArnYN9VIFIlCBSIE3L2FTBPFnLdah83vL3aa6ul/+KtGDO/BcJRgnqZSHJAUmG/ajEfZWQPDlj3nh86S5krsUSLvW2DR9V9q2FcZwqwRiL683irlmm1kSTFylx9hwyjnB5L8uicX8YZGx4uRl50yxVhPJMFUX+bbHYLTsjHKsHyw5RWuavhT+hNUQxFjMJTDqSveXIIBN1PMeiKKQR4mlbV5ydnvDw/JztZovNATKxLEQmJ2Yl7c3nUxJkxVG+eP6Y+8nRF4IhfgmP0qUpz61t2xlrmlLCT45hv+fVZ8/ZnJxQGcvlxQXD4ZArOYlnX/mA25sbbm9viQk22w0pJa53O2pjWHct1qyo86YRfWA33qGUomkbtqdbMZbMkKhy6621nJ2d8eRJK4py+wOvX7+iHw7ZAKqmbUW9QytRxCrmftGHHKbL4VzAOak0KitYf2m9W7zPWNdcaSxu4afnZ4Q44lNi8pHKdhgDPgpMIIZcrTdeuiUmHVsGZSNdFDVmaOUbnLOSfBQ9e7QoY4GYhbZKVKFSSgSTvYdyCKUis0hHVBCMFu5FzBsgScjGIc93xT1O7DJ5lhhMCPeKJEaYGW5kDITJk/A5WA60bYM18v4FMmqUYhcDIUmrv7IGNw2EqKiNoV6vGSrNMCbc5GnWHQ0wHATH73OFsOwPwQeuri54/ukF+97jo2G13hK8VCuXFbyjkIeYqVprOD3d8vTpE548eSq8Im1o2xVuCMLdMoZ9P7I7TOwOIy9eXfD3/8E/4uL6kkrD00dnbOpAqx23l6/YTwMJRd2tuby84OGDB7z33rs8OD1DIRyjy8tLrDYE5xnHHu9d5poFQvSgjCQ5KXJ+fsZqtRJzxC/pcRgHHqxXnJyc0rUrLq/+ISEmTk/OODt/yKsXL/j0k4959eNb9rudjP8/VDx+/FjETIzhvQ8+ICpNAPoQeP+dZ4TJ8aMf/AAVNGFMRO9ZV2uSh2lwxBBx48TJdsOv/9r3+D/9H/8tHjx6h7/wV/4qOaW418so0GJjASXj1vvAxx/9Ea9fv2R3e8t2s6KpbC6kidpUCjLnUn6Gbhrx3mXYcSYmKxE90FmkZg58c/FV9sYsWsFRPGROio0R4nAutKrcmZylWBfzVMa8IDuKiItTUFlZP6wxpLqmX3IStCElkZC2WvylQo5rQpB1xZQiRC7CxRTRyczdVTI3VOT0/byfCty9naGwfd9LorQoqJQ1b4ZLZWEP58KcLCzn8ps8ziV0arkfL/kqwXuRyC6x3gLKfT82ERWquVAbokA1o6xZIfi8ZoZZNUwSovvFYeGvyBtOk89Qb4XSFd1qRd101O0KpRUueXxw4jHlPMSAIdE2mcQfAsNhpB96+uHA5cUrtPI0jWWzWeffHxgmxzCO4lReVaxWK87Pz3HOZXWxn3383DoZPzUQUjlTXmzDP+nl4sgcCHmoabKxVQwEAgc3MYSIU4agqjlbFuGBiCJidKRSCZKXwHyuMshmHN00Vx6VUlgl2G7hxQWOuteZ6A2QCpIySSYTE6gSeYtJ4ByE6zJt5EuqE5KZFq8JSNmZWvTRKzQhX0cgEErCkL0aopKzcjGhJo8PCaujEMK0fKEEh/tm90JpBTnZKOTEog19b3LlinzWrcjPSuBoKeWOEOQOzOI5JkhRy1cS2Ij3gkWdvBdSqAJlsjSlEoyirSzKaClipoTJG3XdNlJxck6k6cqky4cPXqp3Ofi5V7nVx2VeKaisqBWtT3L2HROTc7QpYqzFes/oZcJK9yUnRLlIHUupEwUqcr5e8fjBKd/79jc5265pq7xQJcQlXlV5ccjdjGX2GQun5YsnDb8InYvlMQzDvMAXdany/8MwcH15ydXFJVVWoFLA888+m+UIV9sNP/7kU6q6psuB1na7ZbVec3JyQppGDNI9cE5M70BR1TYrsARubm749NMfs91uOT095dGjR1irZ4hh6VI0TcWzZ+/wzjvH5/Xpp59ye3vDYZjYrjdHnG5YBPtRqsdCNLW4cUfbtVSVpj/csV4L6VySrZzQa7i+veHsbIOtan78yUu26zNW6wZtLf1hoq4tqaqwOmF1OoJ688SchRQyR6NU6soYWgo8aKWpMWKIaTVjhkskBWOuZiktJkwqb5AadayixUhI2XskBzLEeC+Q0VoKQ2HRZZHTvZ9ohKxfL2omjuAnvBtwbkQZT4oTl5evqIikEJjGARd66rqlblpCDBKkKUsYPbZtCZlQPYWEqTS1aVht14QEwzCxmwaci8QgFcTUZ0OumNj3jovLS6pqzTe++R3++Ac/IgSH1prPPvtsDlQL1CLGyN3djgdnp7zz9AkfvP8e3/7Wt9luT1HKMAwTMYCpKtam4nb3muvrW374ox/z7/8H/yGPn7yDtYpNZ3j68IT95adcXL2gbTVN27E5PeOr3/gmw35HZQwpeH7zv/47aBS1tZyenHJzfYObPO88fYJW0O93HPY7KqvZbNaifKcVt7fX3O1u/gxm+v//DmMtH374EcM48vjhE771re+w3x/4//xH/1/+jX/jv8+zp0853XTYMNA2LZC4uL7myZMnbE9O6NZrvv87v0MyFtM0tKstYIjRc3dz4GvvNDw+ecw7j97jf/+/+T+wOlsxuAP/8O//1/y7/+6/w/l2zZ//tV/jf/I//R/z9W98hf3dLU17+gaEJGV5UkXEcXn1ipcvn/M73/9tVpWmaxuePXvENA4UxaNl8VJMFKXqrXMx0TuP9yGbpmnpdqTjXq2UVFiV0pIMhHEuLHjnWa/XWXnJMgzjzKGQ9U4gOX70iIN0NRdiQuZ9JIQDEqIEsKQwX2MJ3Ju6gbWoNjo/ClwUZN/P6lFzuJGThlIA1SiK6mRBAhRUQOk0F+GQssaIx8exUFW4cgXJMU1TlshOIi8fYy4KCMehVOnL35Q9YGlY/LYusNKa2lqG/ZihtWqGApeCWYlZtNa5oJTmTuthf2AaB6ZJZGBNNtyzxh6TmiB/k6RVLufn4wzht7bBVg1tt+Hk5BxtROlqch4lrTCCm6RzYTQWcOPA0Pf0+x23u72oHHq5B48fnVDXYrU3HA4znLRrG5Qx1E3D6ekJ4zjk++q/0Hz9ZyJ+/6n/Jh2r4j853jq2l0q3Ql6fSsH73nfKHj+/XjB8WkmVLkaTm5VivS4vzhCbHORYW9HEZiExmTfllMRBN6Xj+wNSulbHrALZWHW2Yy9fJdzMbQmKwsTM/E/H6rVCIARKFTm5Zb9H2mzFYAkVZ1WGlN2zQ7yvkFBaJnNHITtxx8XGP2/6c2JyXChjWlQHZNbfey7k+1kqBiaYjEOU67rXKVmE3PkpUrDYqSyqLNqDi5ZnuT/LSsHnRsyiSltafuXZap31rlXI58Xcwi1B01EdJhsmpqVFoLQ2rTU0jUis1gtfECkwlFbpMpH+/AD/aXPpbdjNn4SP/VIelZ7V3cTHQZOUuKReXr6m3/ckRM5vGg/iNltZVFWTqhpvK1JTk4xBGc2D0y2rrqOqLVpNJB3mBVkp2biFFB1FIjDf3q6uUSEy3O14Pjq69Qpb15nonZNqBSrjdcUMNHJy9oDVao3PkqpS8eqZxukelNMiqkKJhBsFehmDwjtxTZVNVxOjGGZVlRDMp9GxY49KitdXFzzQZ5yenbA7HKi9pmsNzWokYvOozImCUnMuTC6qwHFOwP1qXSTmlrooOElBRealT0W2V8ozykjvPeZAqEBI5aOyJ05ejOUzpCusMlTAKCnwxCRJglTwyutlfdJIBTc5T5h6psMNbrojpJEYPbVK2b9KSSepkirl7u6GFH1WeROqrJsCUYG2mrHfEVOQElP0DMPIODqsUvgUBEpiDf04UFUdUNEfRtarM1CW66srqSBngYiuXQnUTishwBoDWuGVQXUdZr2m3qw5OT+hriyV0tRKY+oaH+HgAxc3jhdXBy7uBurVipAmGhXYNiO72wPOHVCVIVmLripiilxcvEKrSKwa6bwGLQGSEh5MyB4HxlhW6xPa9hZr7/AhElUiEBncRCqKPG9ZP78sx93+WvhUq446aXTvODMN/+I3vs0DY3jx8jM+/fGHPN1s8Hm/e3J+Tlu33N4d+PjTl5w/eUrddHTtmmfvvs/HH3/IcNjz7gfv8f7XPqBSDYdhzx/+4R/wy7/6XU5ON3zl3ff4g5MNkcj17orVtiHEkd3tBU/feV9I00nMWkke7wem8cDLix9zd3vNfn/HemVYVQ21rVAkcfiGuVC1dIZOOQjXxmJsWU8iSiVE2jrhXMyQUZmjWmliCigdMBWg8l6WuxBKiQw/TMeuhrUkIj66o3s4kYjBREPK52kz12yOW4wiatmvY+EVZDGVtrK0dYWrLd6PueCridGitSBRfIi4IIImKhckJJRSYuCZHElHMBFrde5cGLwX+W+thZdmdIUxOcnQ4L3DZyfscRzJGBRMks4nSbpULnMyhAAvQYFs2WmOdRIJa/Qc34zekeoaY6wkPqVAjcrdCCmNgxJ5e6Wy+WDuZhMZhp6hH7J6kyR12ihqa+Rcs7iMsobgMnw/cxVRgNZUtqbr1rRNR9etpQAVE5Pz+LHH+5EQxfhQz0VwjfMQggIqKSqbSG0s2+0TmlpkzZ0bZzI/SvzjTKUQnSSPmw5450jx6NHy046fKyfjZwdBbydG/Qk/JScUCxhJKlWxknHkXDi3AJXODpexVOEkwSAJtMhohVYmZ6KZUOylCxJiRMWYOybHzXR5vcItKG2MQjBXM4uf8pn5tcUnYpk8KaUkqYC86TNDouY2G6JmEEmopIk6w5YyN6V0JkIsA6Sc0zHAiClmnON9GE6ZXOUnKl9mnnZzMlZ+VxSvShDjg0d7nfGZdn6Tt8XTOd84Xn+a7wyS2CzuySLJWJLDv+gx50VJihyFw1NgdzPsKn1ePUzN/yjfEloL0bMoTsj1pHsXWu4LizH6k7gi/207lM2yijrj/VGikOEct3e3AjtSCqOTBPJBoW2NbVuSFRKabuqsKGI4OzmhqjRaJXGTFZzPXBGTzQsgZR6BzM+qbmTjHRz7XY+PiWYVaVYdKUjLPqREsotENCSabs2q69A4DocDfY/gWHWau2iC35cNJ0bhhYgBZSAlnZPQkjQLzlqUP6TiFYK8/vXlBboytOs1wxRIOLSZSEwk1chmprJsrFI5KMljUR3XqKV63BFSAIFIUglDml12yxpRnH7l+7FQ8ebIPRpulvWpVNoCOiYS+ujWm1ImGuYANyUSZu6K4CPJB+I04ocdbrjCh5FIZLVaZ116gSkprfFuoO/36JwUaS2VSrkuUbALYp8t1xsCrh/xzksFlpjXKHGGl/PUDEOgrleEmLi9vVms99C2HQnBdc/KeigcCtO2tOs1m5MTtidbVk1DYyyNliDx9jBxdzfwyfMrnr+64vpuR7tqiGlE41lbx+3tjYzttsFWEjyFELi+vGRzuiIlcDGgkyZEhY+eXdxjG4tWorbVtB1tt6ZpVjg/SEdcJbxzKFXLGP0SJxkhjLS2pbMtJ3WLHT2b1Yqvv/8+jRvxN1eMlxd8/Tvf4e5wYAyBrq5pVyvuXl/xyWcv+fNf/Qqb1ZZVt+bR+UN+73d/h77f89WvfcDmbMO0n7i5ueJ3fvcfc3q+5iv6fdZtxzvPnuGmPS55KmOIeEIYRWlKJwiIl5TvORxuub254PnzjxjHAyl6TrYdjWokEkrp/p42FxSPBYOkBHqks+yrynN7LnykhDIVYCAZVNIo5XOVX9YhUTQTuF8IEWOOQjBF5jYS8V4cpMUsM0pQnqHA1maeW4qQlTBTtHNMVbitwsNM1JWlbSqcq9jPJsolBsnqUUFco60W0RsJoI8wMJ8cPmpMEEEGKc5opskxjk7uB5qmadFqYTjqHSEGMaAbB+GUaXFRT0oSigKTtFZMhEtBMz8GKQ5rRYwSx4WUZqleXTo3KaElkwOYC5QiMiSxWshwCJuLnDF6hkPPOA65gyLFbBM1xmT4eJZWViiSEz6LD7l4ajSmsjTNitV6Tdu01FUNKXNEnMOPPSFKF9+gZpnzQGQaxUA2otG2okLq1NvNOneQj5zkNHfjEtYqMatOHu/FoFl/ARNq+DMnfpeI8p8tyFqi+0vFuQR05ctaK8onswJKhgPEiIHcmThCiCDkbLh0SnK7Kwe3IXcYdDpKjcnHysZ+L2BPkZgKgSvKfj9H028kFqX6SW6IxGOCcS/gX3R0kpaM35jjYJ5J1txPwNLifs1QBmukNalEm/4YXLyRdHBMjgrPQRYggUDo/HdKKYZhnDkY0OYFzMz+BCWwEAWe4/mABFjW2pyQ3Q9clBLTv+Pr3+yOHO/jEmc5V/9zBecwjplcj5D9cgcoqiLpGzM3g7nysbwZKmddS2GAojwhn509H0ogVs6vJL3pvurW8gn/QnQovuAh4yfLJGohQR8OBy5evRJZUiVSgWfbFbv9jtFNROd49O45fT/w6vkLtk8fsek6tl3HdrUWdaKYIZZGgZIgc1m5l46GxmiDMZngF2VXtwnGybMbbxhfX3K2OSUCk/cUxpPRiq5pISSMUdS1QddrNt0Jp7mNn5JIBl7fXLO7fc049ExjDybgw0SKnq61BN9Dsmi9EuEALVXpruukMzI5hqHnk08+4W53x8XFBd/+9rfnMRaL2eM8xnMRJBc7dBZKeFPWuXAIyiHYbVhKTJfDhQAojKkpHV84rknLLiaLn72JbS4ByL3zKJjllLAG3DgRJwfBEd0B5wZJLrwEAdqKEsw4jqQEVVUzDj1uHEjB0bQNIOTQYRhBaQmelKw/fhLzxnGcZjUpl5PZcs7GNhz6kXHs6YeJ0Y0kJDixlc33MmCskk06Chn95PSMEDyHw54Hm4Zvvf8uf+5b3+KDB485WT9AJ4vbe26j4kcfP+e3/tHv8rf+0/8KbQEdiNM1MKCsoTYr4uhZbbez/LJ3uSrrHZvNCbfXd7z89BOqZGnqmspY+qnn7u4O7yPBKR6cnHOy3RDcQ/7pD/6A80cipyvqbIesAPTfgObLz+n45cfPuL26JQ0j3/vGewx3vfAwp5Ef/PEPePDojF/56/8dTEpc3u643u95fnXFN379X6Dbbnl1e8W+H9CmZRhu+S/+9t/h3a+8w/bsjB9+9COUTiSfGPcDsfdc3H7Gk8dP+OD9d/nr/+pfxxrF5cUrfuvv/hbvvfd1PvjqV3FuEFJ2TEzDLS9ffMLLl5/x6uWnPHv2mHa1QSvxMElRjBjfFEUB7u1pcUY6pHmvaZqGuqo5uAGUom1rXJAuulYWMPPfqFjM8QQment7K5LLVUXXrWiaehYBGMcBH/382inL1lZ1lQ1mJVYSBSSB9hR1pgIzKqT6GCNtU7FZb1AqzZApkaqWCr/RuXypLCQDSQoa1tTZrLVlvT5hGAb6vkeT1fsUTNPI3d0N3q+IXcRauSadiywxesZh4PbmhhBdVr2Sr346SDwR78cUcISTyv0/xpZLWdsl162qapHRplgYHL0sQgj5OQfc5ElqzHYCI/1wkEJSyqt2jOiqpmlEHavAMUMWLZH4Q7Fer6jbmrqpqZsmO6fD1c1FlgKX6xndhLGWum7RwDSMTNNAf+i5vbnLxSY4OdmQkL3p4uKCyhjZO5NwUtqmoa1rDmOPNXUu2iS8F0+atm2/0Hz9U680f9rA6IumGMtq79HiHqr8AMo5lBDiTYLj0cxFguMwu2AWvPzxPGImfLusUiDJZwH0HN8/xaMyTu4zACmrvxSnzDjDhUKBS823Ki2SjTfxfibzUY6QrPLa+Ma9jkEEZIPSWWVGzRK29yARJekonRa1qLKX/188jSUUYr5H6v73mBKCxTzKCgtW0M93RKBnZlbuKZMueE9IYa4MzhUAwOffkySxWS7ABf715rkcFb6OPz9iNbNMMYLNH1I/E10TGeKV+TBxFnuSdmaKSSAc6uigThIqjnBr9L3PLKZnxYejEO0LRG65gRQMrNaL5PItnY23VRp/ETogOpV7JuZQN9c39IcDfpwkoc9yezc3NyREo3x79pDd7S1JGc6fPGV0jvak5XRzAhE0mlIISyoJdFAlIn4eawU2Z7KEdW1rgpdqmky1PG9MpM+5YVAGlf1bAgqXNCoJ36gPnspYlPKAJ8YhB+2BycHm8SPOrabSGr8/cLi9ZdjvGQ8HmCaatuHx48es12tub2+5ubmZfRe0EeWYvh9EVrWqef36gqdPn9B1HcMwYitHrQyKYk6VYZmldVd2Se6Pm2NAU2BSxwTkzY6E/L+oxxUpRnmP+d1Kg+JznwFHRbzl5y7hf0op8BNWBZKNxOTxYSDFCWNANzUYqepOhwNl3XRTj5smiIHaLue8zomaFACKU7xG1uKieONDJPYjVV0zDAOHvmeYEoeDZxgCk09YW88t0Kqp6ZR4Y1xeXlDXFV3XsFqv2G63GKN59PgR/8p/91/ne7/663z1a9+kMlt2u8jYH7i52PN/+5t/i5eX19ztDnQ1eH+grhTf/aX3ubz4MUwju5s7jDJEF5iGkdpWshb6iJ8C0xjQWFbdBhOyL88kRl6PHj2SLvwU2N3sUSrRtg1awTgMWa0rYm1NVYmS2Zf1eFa3fO29U5qq4cwa4laUhrquZf31r0qwZiuSH4mNxdCJF9WhZ9t2/Lnv/SrN6Skvnl9y9eqas9MzhmGibi1P3nlC1Vq6tqZ6uuWPfv8P+fGrDzmMB9774Bn/r//gP4AUWK9aTh88YHNyKh4FJvHq5YdcX13z8sVnwmcg8PTRAyoyaVcpwhSkwMWxODbvyXDve+lyxBjZbDbZeE3RD6K0JNVtw3SYBGZtJO6JSaSyrdUZ1pOIQfbuIu9PhuUUaI7MZTEGnCaXlxCFz52NfFKEELDZGLCoSpXi3jJIT0k6iTLeapTR2ErkxK3tqOsVTdPRbbbUOfFp246mlg5eZSumacSYA1pb/DDQ9wOTc/T9Aa2kWKAykiN4kQi2thQb5StKtYkQA8PgSC5moqW6Fz/ItfqFHP5R8nspJT9/zTFo5GgseCxkpxjymiyKVkN/wDlJNEieGEWcwQc3d7HJip7WWpq6wXSaqa6J2QRaa42txZDRu5H+sMf5wDhOWFMJJ1Qb6rYmRgQ6NY0EHwhOrqtu6vnavA9MfiAER103KAqaAx4+eAQpc9ZiFrNBsd/1NE2bua4/Z5+ML4ILfxue/Iu+7/x6lRaB73FTKoO+yJQVvDNzsfioiJTSIpFZdAoWn4rgGgv0J818BUlcslP4LKm0PMdltQEKar9s3IXImadx5mSoOctmfvfjYiL3oCQui05Grp6nxc/KPxKlXfq2AKLcvWMXIy1vyvK5vDVwPQYBan6ZmhO20phZdpRCjJAno3PHRUoMrmxO0iJR3b9OWUTzPSmV/2VF9I2q6DJAefPf5fdlfMgiovKdXajpzE9I5wVCoGc6kSdU/q1W85hQSKfJ6KOvx3wOqnRomBMbheJNSea3zYe3JQ7L1/0iJBb3jpTxrgmRlBwEm5ryfSff08k50EKW7bqO28trlKlpuxUulupVkz1m5K2L9ClJNs7aHuUdtdLYymaXdg1Ko62SAloQAQVRTAsEbVE6J49GzOdSjEw+UhvZ2FIK+CWfp3yPUUQZosZgQVegPdq0GCs4Ym1AKTNXJ8tmJ/NGYcg671qkcIdhxHvpLMzkyfxZdjHelF5IaSuRfizD58214X6v9PPHcW5lyEVUbx2LsUjuvfG3bwua3kwy5BcBgsteGRMpTcQ44f0k3iN5DTTGMk09MTvUElyWqV1e3/ym4iOUlfeOXU5I2QF6ed8l0RRcuyz3pQgjb16UmIIPEgx1DW3bsF53rFYdKEVIME6Jz15eM/iPQb1Aq4bkNcPB8/t/9Mf02RCyqRI6BWqdWDVwi8OFiWkqBRqBSQ39mAO5Gls1eAfD4Oj7gSpBVQk/rOkaXHBApGksvVQ6BJ6X4XrWednPMlT3i8pP/vN4nNYtm9WGVdNi0TPEpjYKverQRmGRPamzloTiMHmmwwG7WvHu4ycMWrFpGqauITrLi4uXKJtQ+pzNuqFtDcoofBrY3w0QNc67TMiOOB+wts7BmuPFi5fcXV9x2O1w455Kd1TWYptKinK5EFWcmcuUud/dluPePM1zpmka2ralm0RqVTqn/g1ocVGOFN6GFPf8Yu4FvJeEW7oIKfONIuM0EqLPSkde4Iswc0bmLmWWzPfZ9NNaO3+VzqlwzY4FDmtFbthmz6KmFiWkplnRtWu5T1VF167E2NYINKw4uNe2ApcVK70XQRjvKOpLotql8rUoghfTylTmQPa68sGRfO4MsCiQLvy2ChHc2qOX2rIjPBdbQ2BKCRXirJBptJkLxDH/XDySHNPUy3kHLyAKlUgqYbXIZ1dWz4WeEjdVthJPMh3yOcj1eCSxmJwTBEuCqK008Y2oEKKFf+KVkMfRGm0tJldUlZLiddnjtDKkKDK1VknRyrsM5coJckoyvsSLxHJUHvnpx5eoZ6rmm1++QIJCSRIUR+m2kAlui79Wy3e6v73OXIZS1cy/Fz8FkyfjcZBJhaHExMfMXb6XQSxBZ0DUpZTWx614eS6LE1N5c9P5fdQcZB9J3OL3UPy3EiF5kZsM8Rj8zwsPiyTsfgNh7gK9WWXPf3hMLo7djmXSUbokc4BPhIUDd0kylC4LBqRcmRO4fCGny7VJl2COGObADtK9e/e2RXkZMCyhU4W8itKopiVqTUgLOeAEJlbYOs5tZR2P3BgAX8hgsFgQBMe5NHUkRlKGAqn5xksC8mZw9kXyhl+45CIfIYRsihd4/eqVPPN49HvQHJPEoh9urc1z02GCp24abFWjdSUO2MFJq1ilmQullBgrLd3gm6aZx0V/GKiqhrqpmQZH1bQoFMM0EhGYQN00EjwOI34cGaaBerumspoaacmXLps2ap5X3gdevzpgtaY2FbHfo0KEYNGsqWydA5MXoqCVz1VMMEeMN5yendB1a5RS7PcHqQYqgUK0rQS284aeXYSNNkfJRV24HwuY5GJuHBsd9+Eab3YHocCuOP58sYDGCCkd+VJvdhvL8abUNCAJJ4lxOhDcAEyQenzYsz/ccrJei3EmsF5v6Pd3TONAZTVaHUX+o5Lx4bOm+xL66b0kJeV8nHeEKB2yfpryKq2p6k4C1TYRb3ucF1nJ4n0xTRPeOR48OGO17miamrq2bDYr9oPj6nrP3/xP/0tc/E18NEze8u47H3B2+pAHZw+463cYo2gagyURLWgV2N28Yn97RXCRSnWs647N9oS2bfnwww95/OgR2+0Jp2fnPL+45uLihheffMa61rz//ns8evSQJ++8w9/9rd/E+4knjx7QtTX9bk+/3xFdIDpxV7eVIQRxNy9mgl/G43y9pWuEPG3LUCKRwiTPGgVJo0JgXbdYk9iPI1c316yt5cmzZ3x6ccUHTx7x3oOH/PEf/YB/8MMPuT3c8fT1A5r6Vwl+pKoUo+u5u5tg0vSHA7/xl/4KisTV1QX9QQQfbm6u+S/+9n/G+emK7XrFk8fn4v0CeW0zpBCIIWLQIi3/RpfxfhxwnLcxz6m6FijNME1UlcVaI1y2yeXKuqx7gxuBmCv5hnF0OOdxLnI49PM8LFDmoo4nczdlCLbCTyMxxlk97Qg7VYRkZrTBlM0/i6HdUTo2zrDyumqo24aqkSJR121oGulkNO1mLh4bU9E03Szs0nWr7BXhWDWKGCUJKOIR4kEiSYDKyVTMidI4Dng3MY3lmmVvKPFHSnE+Z+89dV3jnGMYBpxzNFnqtSQeRdlqaSbqnCMtUA1wv5hTEj+IxKGn8AS1ttRGg60A8W2qm442q2Yt1+KqqklxZDqI0EgMnpAJ+imjdaqmxdpKkghr2e3vWK+3dN0aWzUM+70UbSrDzk+ZI+gFetes5DrdSPCSpGhdc3dzyTCIHPbJ6SmQ+clKfEqUEtjbFzn+OUwy7le5558qqT4Vd2td8PtJ6njyuwprIsYEXLawjzESlZYMPitNlAq5mmFJbz+Twsk4nstyYThCBUrWzqJyuLwaMpBI5ValDL43YTRkFRyypGtO1KNUIOR1Kmf3GqtNrginueUp1fpiPiiKAolFFSIVMFZOpOICmiUXls9aujlvC3MTHJ2tFwtkQohHyR3brzEGqihVDq1ypm6ttG4zOVaCx6NBHymbS5X3lqu61zkoz//NNueygzFDKKyozoRc0ZrzNW3QRnglJsq9TDoQAjlyyklOhoZZazg/2/Lee+/y7jtPadt2vq9aKZHxLNVPeQD3u0D3/v0nk7H9RTqiD7y+vsZNjqePn7C/vWPoeybv6dZrUoz0w4BRig8+eB9bVXz04Yd0pw+I2uJ8oN2uGGLkut9zGCJtLQZtIcGm6disVqy6jv1+PwfBfT+gdCAlh/eOfpxo6kDdQr3aMhmLqWqePHmHpmm52++4vLpEKUNEY5qOZ4/eIY2eTWN49qDh5vaGcRikqjSNgldVCSaPtY2M45ioqoZh2jHsD+x3O4iOqtJsNjUvX75ku93y4MEDVitZ8EM2X1MYvBO8//f/ye9yc33Lu++9x7e++S2sDSQ8aRioc6V9Xk9yV1AtYXxvBDMS7B8FKJa/u3coMuEzzZv18jjKUt7fXN8c328mL8KD8oTDjmF/i5v2hLCnP9yQUqCqtCjPmAql4OLygqquIQWuX79kvWpIIeCdY1CWqqpnhZlpdJkcOs0FgOg9+34QiCSAEvJr27Ro3fD8Yo8xdYYcaLrVSuR6VWSYeg67PYf9gbZrSHi8r1FqzW53x+4wcHdzQ3v6hHp1wqrd0Ky2aB3ZuwuGiyt+7c99wO31JRevXvDo4TkPH3wFW2levX5BtzmjtjUPzx+TYuTFixdc/PCH1E3Ny+srboeB237kxcsbog88evSEpw+2nJ5ugcRv//Zvs9luGPo9H/7oB3RmQ9d2fPUr77Pb3Ur3OCa6rqMfepSShOPLeoSm5qAiYxgxUYjDxsgYcL3HKvG/oWrRVUWVYNN2vPeVJ7gEN88/pQ2eH/3wI168eEXTrfjGkzPGsKVad7z/4F1ud7f8+KNPmIbIv/rX/jq//r1/kb/6l/9lKmMYhp7zzSmffvIpr5+/4OL5C775tQ8E4mK0FD29wNgkQFhW/kAp2ZnflniXeXLs5MufjaMoJU3TlNebKROHRfo9xcDkBmQrkg7G7e0dw7A/evbcm58huzurGfZktBKxiiQeECmJxEHx5jLZ0dvmDkMIx6QepOM3S3qnlANhMYpru4627ehWW7bbc4yp0VrMTY8Qq8gwDDN/4nA4SDE1edw40u/3TH2PBpqqwhpxrDb5Jo1u5NXLF+z2O0hxVoErCVfXNUAFWY5/Kd7iczGrFKK8d/fWsFJMMrmzXTgo5d8FUiXXUXhewjO1WuPdOHdXROxDuF5t21KUAGNK87UvuaWSEFbs7na5ixMIQcxhdSWJitI13gd2hzts1ZIwTJN0IhJSWL27u8FYTVu3WKNy9yJzmE2HShXD0HN7e0M/jNl0WJ6PyntIVVU45+Zi3Rc5vnCS8ScJin7ya39GdVYV6IPOWZ/IfgmmQULjMsilnVVUAyTIVRlGJN0MRSryaillUkzK871IMYoOfJz7EeUU1TLVmbsBSS232AKHYfEdhHRYZGvlnHWWX7RZRWa2mqcoLQhmsCQE5S01As8JSd//ec6QtdxsuXZ9/zxzGiRXkKvpMePtkpJqfVFYmp9bAV4c86n5N8tnVO5Qucp73RIEfqCUDO4kIHyRQdMaY+0xCcmSbLIOxxlypJU6+l8oFh4kpYNRMjCpQipKbF8I7GQX9SgyqUncRY9PTmG0FRNFDSGfa4yKXCCRm4ZGqUKUazl/+ISzB4/ZnJyRtOE4QtUbHijc+6x7LSwlQe/yhV8URvWLcOx3O4Lzc4I8Fw9sJVW/vCjbXDmq6orNZk23WWOaFbrtWD94SG0MlQIVHEZJ8GtUwkXxmFFaU9U147wZk838Is5P0tFKCR9EacQnRUSUP1yEyQe0qWjalaiIpCRGTj4QdCBOAdxAGA/4YZDfTxPReyodEc2hPA+TaNaP055Df0dlEU3zJJhW7z1938+Os2mh3GaMYb3eZL16cUPf7/e0nSzeUSHSkumNhELl9HzRwaDM7zyXdMYCC4k5wyKW5YXcLdWqSDq/2Q4+ihgUqFb5nVJlsVy0T+f7kWYiqcCkvHwRsNVRwU6gBn4GN07DgM88C6I4KdeVRdmWtJDsLfehaOFH70k5SEoq5nkv/h4oKY7UdYvz2SE+r55lrwhRoA9VbY9r97ymBurK8Oh8S7JgTMRqT6U9xqb8+kjfvybGA10Lq9YQ/Ug/RYZhou02WGNxmZwbUmJzsuX07IyT7QkhJl69vmB/GKi0om0tVSX7X/Ce3W7HWomAwHa7ptEdVtekAKenp+z6XS5aRcHSGyP48S/p4ZoK8YFL4ISYq3zAxgi2wiOQEY1UriNQWQPOURnNWW1pXOLxqkGdrFC2wq9XTBGq9Zbf+Yf/lG988+v89d/41/h//nv/d549fo9vf/3buHHk5esLpmkihkCtK1ItBaquaUCLT0FJ3lXeGIv5LupYNIP7fgoFugOLGCBv8qW7W4JPCeQtOsTsASGw6ZTnYwg+r3Vh9kdQytyDyL1ZtJNCoCAKlFKYrp1jhiI0UZTwShd1CVNOGSFQfCxUUkzu6DnkJo/SDmMF4oMS8rEPTgyFlRLCPWlGNNze3uGmATcNTIdrrq+vGYZhLoyIQExEaWbkg/BDs69agLq2xCzTHWOULqi2c863vNdl/Z3RMOkoInS/OHNEtLxNuW8u6jpHVIqodI7lbC5KOxGgURE3edoGFMIXLH/rvZcYKHFvXTVann2yYKoabQxJS0IRSSgt8ugxgouevh/wfsRnbzhjMhpIHwuuJa6aRsc4jAzDMEuQJy18DImPpEvfNFJgnab/BiRsf9oxB0334qn7gZS692s1/172KglKjBY8YmXNrKksztdCZCpZW4yigpSUyXhpjq2y+XNE1ivm+n5aBNAsuxWo/PFFjen+6aeZ2Z3hGlpnLkYCQl4kcpJhZHO3WvwkShYM8dhliccgXmuNicy/U0ndC8TJXQRUDqxLapHy93Ibj6qRKIVgrBd3fZlXFKO7opx1/znKf+bgohRp5sebB2MIct91ytwWMNZgtZ31+SWilzA9eEkcyr1X+jiplTZHOVmkMiQJn2zgCjH38zmJRGVJ3yBBpwqJWtdZujenJsrkSRshqTnB8L5wdeRztU5UVUfXbTk9e8xqe0bVrvGRTKAjd5GWY+IIO1sGWTkdvJefluO/LYnG7m4nOPKqnjkI1kpFJ8aItQZbSzVMGY2xhkePzrHdhnZzxvr8EavHT2Q8BI8b9rixJwYPKjENPaP3uBipmoZ4dyva70qCeR8DLniUFvW5kJDkIIk6UX840DaChbemYtWthBvgPDcvXmFTxJEY9zEnGHv8MIiKmh9RIdBVlWz+OdB3wRN8zzjtGMcdWjekpO5hgff7/XHt0IJHDl6gYScnJ/OGPk0Tu90OpaUzF5WoQ+lk7gUsJRAu+gHFcEv+rXIAIXPN5LmQSJkapo6DWuX5m1KGHR2D05SUJBo5yYg6zMNdEp28VpaAJCcdMQruWxIMSTIgoHWiaWvpPMSAHyPBT+LWqxX7oSd6R9e2xCCVtqqqqOoV0+Sy+aKshcZolKqlY5LPt2oSygtpVmmDT2Spx0DdtIzjQaqTCYFkqERSkRRyYCdl1WxSZueqZtvUnJ9uOYyeZBNoj0o9na0xVqOIXF19itWaVVfRVIrhsKPvRw6HkfXpKaTE7rDn4uqS7WbDo4cPeHD+kIePHnG3O/BHP/qYcXToyqKQgDD4Cec93jvGcaRrLQ8fPkRHS5gibgycnp0w+onJi0JOZS3a6Blr/2U8XFOJIJFKYBNjmIjOo3xgvW5E1SdEKoPAFJGgejrsadqW8/WKDtAPTjmtDftxIrnAEDSq3fBf/ee/yfe+/Wv8j/57f4N/99/6v7JpTjjdnPL65Qt+9IMfQkxsNyesu466rsXjJgZc1LOvlOynCbXgIEqyoeZqZVnelwHsvURACeg6aeaiS13VdG3D0A/iWJ/drFMuikHp7Du0UhlaBbFSuMnNaAaTua1mgQwRtW8JqlerFdZahmHISZVESaI0dV+YZMldELO/CqMswzgwqoGYu9M+ROlsVB1tC6lWkH29gAyHmgAIwfP8s+fc3lzTH3Ykd8hKl0XJURKMIqsds5JWKeSWgNjYDOVG1tnKquwrxFx8KmvmUWAocITep7yWHBMI4ZbKvlUKNLMU8WIfF7gbxORp62a+59NUnN2VFDWyv0nx3vDeY7QWCCzH4o1SAosz2RNIGQtK4VJiGh3KaKq2BTQhiOTuoe8JwZFSQNvyrGWoCMQ+F4lTou8HDoeecRwFphalOG+MxXk/Q1KtrTK0bPxC8/VPnWS8LQD6SR2MEpDm//si787cxYCc+ydAstCywJd3OpKSFtlsyAmFhqTsveRFIbrQkbef73wKSjBviqw2VSrl8UgSj0k6ISm3REMMpGSlGmutGMUojcnYPaMNlTW0TUtlLTHIguCCw8eAD6IY4jJpL8UEPqGiwIi0FlMZqwy1NWIwNntuyIKWOE6gUnxUunhDSFVSingK4tH8braeK0FGYH6/+RlzPxlMi1+olEhaSFG6gLUC2DxpAAkc9VENZ5oksBcjHcn4tcp8CkrXJic1qSzdKStEZIhGOV+EKyMyqDVJaw7DxDBMrLb3yZ4uE8icc4K/zvfQhzQvHJXRKGsJ2tL7yIvXV0xu4ux0y7vPnnJ+uhV+QYr4FDEqoXVajPCSyt6/h794qcMXP3QCFRJJR6IPggterYRQ21RUOoib9eYUpSNWRzYmUrcdqu2g7bibKh48ecxq0/HjH39IagcIHuU9o7sieUXoJ77y7lPi1WuGcHTVjdqgqhZMA1UHtkEFjRsHqWjrxCo6FAKTOuxy4Okmah052bZsalmsT89OOT07BZirW+Xfu7s7IRE6z0XfM+x69td7TLIor/EqsU8iDdh2DdYarq+vePfdZ6zWK+7u9nzy6aecn5/z+PFjxnHk1atXXFxciOytqVDasNpsUUmJAkl2sRcFtJSLFCDzxIvEZl4ntDZEpe51AJTSmEof+VYAmOwKoUDbN+a9BOFkv5Nkll1RIZ8qEsnHY2AVAmHYoeKEjRN34Zo+7gg4OmuY+jEbSCXC2JP8SIri2ttWoJuGumnZHQxBG5Sx3N4dKHKfWmtCyjr+KjG4EaMttlmhapnrMSRCNIx3E5eXB168uiLpZpbgLPejrmu22y3TMAHCq0MHupVweZTROJ9QydLYLacnnRiUpcTdfk/drLFVhY+BxmgIAe8iVxc3rOqObb3GJEv0kdv9La8uXvBL3/oWIMpBl68vefnqlmEKmGpD4gXBDYTDwMZuePXyU/b9gUcPHzClIPr53Yb9boepDU1dc8YZN7fXRD9RA5XSEBMxfHk5GVOruLq7JfqJD549od22JBdxg+PV7Q6FxeoaFSBFjyJhgPPNhhgTt5c3nK3WBFWhbM26ajhZnfH84pq/949/j+989RHfeP8pj84e8r1f/jX+k7/1t/jtv/+b/MZf+vM8fvQum80Jm9VWAv3g8ZPPhmx5T4pkzmiUgHyuRhfSrRgiwjFAT7kiOFezUyD6IAW1CJVVrNpG4gqlqRRcXt8yTRPEJN1+o/FR4KO1NaQkKkk+RibnCGGai2dGZ05H8MTkRV1IicQ3Sdy3rTZ0TcvJ9mQhThEzx8PNRaLikg0lQE9064ZhrOh7wziM7Pb7DAeq2GyvOD0942R7Sr1aC0/Ki8fDMcAXONLd7Q39YYdJDq0FEtd0LVZLIqOVzhCykeAd626FdxP9kBgGx9QXx3GNThqdBnwV0boiZPiTmNSJRLa4nTdUdZO7Io66rqS2GSNj3+OiGCU3tpIOdkrgPcMwzAVYa6TILQXuJFy7rLpZZ+lXlT23UDZ3wBIuE/tBSPUkiYGqpiHc3kGUCMgqQ4guxxaGpm7QpsLoin4aZ06KzapdIijmUSobkCqBezjncX7i7u6WuzvpHMVcxO1WHZvNmqq27C8ucM6xWq/ZHw6M48DhcPhC8/Xn7vj9ZqJxj6Q7w0Te/l6f+9vFRDy+h+AHm0ZIS9GLw+Qyg5wnbolLSYuJvAj60oKT8NYosAQNzIF4IYjPGtbk4L1AbKQMRtTSateVAaNneTHJmo3kqEoULAxScQgZNjWZwDBKlUolqdDGnKdZrWmspa0bVm2N1aLaFKJ0ROQ9Fn4S5QLm0kkCpY9yuVmmNakCrlLHL1UkaxcdEjKcQjFXRu/draTET0RJB0dNgSn/XmtNU4mEWqnkl8RNz9We5bPOhHtdOCc55UlH0qfwSvLjyzJrtqrZbNbYpoXraw59z6uLV0KMMsIRiUWpITt/lvPwPsyV1ykFbAxMITC4icmPXN9c0TUVn372GU8fP+TsZMvD81NON+tZQlC/4bMxm6TNraWffbxJbv9FOepMtpsmad+WxbdtW7brjq6uqWtN6laSZKhIayKqqsFURFPz7le/JqotKtKdnOB6I3KmWgjPKkXQiqv9xKQqVL2G4CB6jLIY1RJ1g7IdsV2hqpZqmjDeE90EVXGVlSp3igGtIpuuoqnAaCkmqCjPJ8ZI3/ezMolzjmkcKMplz58/Fx8D5zFaqk9VVXN6upEuxs7R99J5ePXqFevDmm615oMPPgDgk08+YZomuUfbLfv9Hls1jNPEq9ev+Ma3vknbtRhlsRnLW0oBRaSiHEuIg9K5UpavYUkM//w6ngsMc7c3JyYc1+3leg1qhl/EFMTNO4UsdR0lOHMjRIGV6dw9qOuaaei5vb3FDSMmb4oxiTY7SjM6R7da40PAeY/WIvMLgl1XStRtihJKDGqGysaQVVWycpWxol52d3BzVbc8U+F3TKzXa1n9UmS1bTJsStbQyXlZq+M17TRi60zANIa6qlmvV3SrFRcXr/DOgQokJ9evDNja8vryiimOnD7YcHq+4frqiv1+x9mDZ9weHDE6gp+ojGbTtZxuOn74wx/x9J0nPHj8mI9ePGd1ssFay+Qctq5YtSvausXYmtevN3L/tGWz2QDHItSX8Wi3a/7x7/4+L56/4PzpAz756GOC82y7DdfXO042p5ydrlFR07UNVWWpteJwt0OHSKMMt7cHpslDVEQCbVVzul7x7pNzfvT8Ff/R3/x/8zu//wd871e/S20mKhO4uHrJN7/5bVbdiml0oMSNO2mRXyYFKY3O+9ty4mlIRRGz7K9lLqW5Ay4V+VwwnLuC0jVva4vViuAc21WLdx7nEppB5Eq9n8VSSInghbM0TiOHoZcxl6vuWi2hPoE95CRD1KCmaaJpWpqmBWWzHK7JVX09E8cLEqNU4Mt3kZe2rNqWpmoY9Sid2wS4iXF3y6136MM4ewwNQ8/ZyZaubWnbhueffcYhB/BJBSkwK0NtG4yWIkvKsKxxHJjGUbgbBzG6K+uz1hqNIQU1d1/l2Yn8rtImu6RbDEmQE1qhUyBkJSd5PEkkXUMghQCWLDQARolcf0EwaL2AkWnFmPeGKWrWlaGqsp9GTByGgZDFAKqqorIWbytCnb18cuxlaosbHN4NuBhyHCtE7aauUECYPMF5KmtpaotCo4uXmzYQHTGKdG5KIXMKB4ZxyGqOVswLjcY2DRjD/tDPKJFxdISQiec/rUi/OH7ucKmfHBip+yXwP8H7lU1RcGRiA19VNdYaXMx674o5QD3ij49HKoFy/g7p3ua77HSwCHRLclIGTKkElp/HpCi05RLQ+yCvUUSsNrnNnh1ppVYv3hqmBPACWdBG8OgqCaY0pUTwEWn4Z8iR0lTG0lQVXdNKxSJP7FFLJc7lakJY4CVL5V/wTdIlKpyC+MajEXhYjipimg377t+tMvjv3zkynItMuFUpiq9ErozY7BFRJi0cE47y/PTyY8o9L0/m3vBKchXpCA9JuY3ZrTq61ZpDL0THfuhJGY9srZ2DI1kUS8s5t4FzkuF9JJDwMaCDZnITe5WwSnF1dU1/OPDwwRnBO4xSdF1DU9mSmr5xnvMAuQ+v+hnHL1qiUe67jG2PD17ayEoxjiNWWYypqIyhshVWJwyepC1RS4t4e3oqMn5upO5WsnmmSNNUKGXw04SbJu6miNc1qlmRxkFa0MlgsOhqTWxXhLYlVC3tegsh4HZ7YvRERL0j5ZZ7rSybdYNVnhQcQ4izGVFKaVYmmaYpwwt8rn4lrq9vctVT1FCKGVKRRvWhuM8ahmFAa0W3WnN2dko/DLx+9UqgLjlBG8eByY34IEaGh92TLK1sZohFmTDLDgtwb13TKuu6c3zdTxpvb/v9Ep+8XB+OWPMs3a2ZIREyl8URPEbpcFql8QiW3CiBukiH0RGVmN4pECUxJbK+TWeluON8DnpE8cRlTkVBLoiBVMweA0d+njKyfmtjqOoGcpJRkqxyvtpo6qae4Rh1XWNrC0o2dIGCigN5QqGNoa4k0bBaY5ShsQIPNCiSEteskISMjhGsvLGa1ckW5yfGSQi+1hqIgv/3zotkbW2pKsvF4YAyhrbtCMHT1A1VXQl+PjAvlsZYmrYVI0OkWyXX+CfciP85Ouq2wyfFbpi4vL3jk9evISTS44qbaaA1Z9jNmjBFQl1jrCVZzf7qGhsTxlaMwwFSgemIFHJTG87PN4zA5d0d//i3/wF/8a/8Omcbi2Li5YtXeO8yT0jNqocpieePytjhY41sAZtN5ftyvyzzRs2VzLT4Ws5VhXAalVW0dcV61eFDYnQwOdnDQoa0CD9C1qRxGBmnkXHo5yq7WpzHsXAaxEtIa+o6dzoTkhyhM0zGHgsKC3jRkktSyOAhBKyxtE1L13SM9bFLaLWCGMXDIUiBSSmFnxxNVbFdr1iv17x+/hyjsuJgvl9Gi8CPMRYy5DRE6UKMw8B46GdkgmCCii+VdI8EcmRkTJS1q/xcG4HgqeMOnrKCVnko3k0E56TbopKoXOWurTULhcuy9gEhh1yF/2qsydxUNRc5UcwQ8dIlCiHM91hphbGWYDzeRWKQLgZoEobi3RZC5v9ag7GafHpyH1DS5c38ZDEHnLITvNgO6FwQt9aichI0ZAGNmBLDKG7fMfk/+yRjucn8PAOj+4SbQuirZLGvKkyQCQX5weoicSuEG1SBqmQr+wKzydX7t39muagceOaNaZloqHlzLgVqIeKlKFJfMbc8JTkQbD9Z4tQFaTnqyQmZSgOqmPgpjBL1qKAiEw6icA60VjnBqGnrhvVqJc6tMRKzE+dkPMbL5lcUIsp5Frlf57OEK5BUypkux0SpXL/Ka0y6/3zT/VfPP1z2Osgkbh+QRCUT8VQi+0wIKU8DcxRB5prMuO8sFxfCrLxFgWHlxEcrmbQ6EzmjMnR1zXa9ZnN6yt1+L+OkrphCwHnHYRzmYELnzw45eSyTPebPdVEmugTCAvXRJOpx5DAcePn6FZ89/4zvfPPrvPfsHR4/fCh67SodeSQpLsZhmCspbxvnP01g4Rch4ZiGA7aqsMYAEZUJ/24a+OjDH1JXhvW65au/tGXdndBYgx92eIyQdauKKQVcikwJbLcCJ0ZM1XrN5vQxlxdXXL18hdWgmhOMrgncsLYJNQXCPvLk0ROGtmNnDc/7nmcffIWuarh9/pLPPv0E3dRsthXDzSs29ZpNY3iybbl+/Rm7u1vu7nY8fvz4nqJKcWptGlE+ur6+5vnzF9ze3pHC8bkOQ4/WME1bnj17Rj8c2O93tK3gu6uqImSOSVUZulXLarWSdv3Uc+j3nHNGXVlSW/P8s0+I0dOtWnGJLap46k2OxlEeuAQVLCpucL+o85N4QstxWF6zlMktr5thj0ZUxZJKGFuq6B5tEqumw6TIEAP9oWfX93NHQ6WUjfccdS2cKqUMxipcxhNXVU0MPgcJmrZdczhcSEKnLePgGcYR5zxt1xJR+Bizk7ZARE0mq5bzbnNQbq3l5OQE70WRzLmRcOs4PTtFG8O+H+m6E7anZzx8/ASlFKv1mqYVqMXl5SV317cM+z67+dZyb9dwdXlN3x9ISXNyfk7dVtjW8o9++5/Q1i2b1ZbDztHvPcPeM/We8wcVSgXu9nc8evoOt3c7bnY7Nqs1D87PqOqayTs++fjH3N3uUIhXS5W9Zm5urri8vJx9Db6sR2s3/OW/8Bf5xte+wvd/5/scDgOr1YpgG0I10T54yMP3P+Dy5SWvLy6YpoFVbRkPd6ytpao1N+6WWhtqY0gKejfgYmSz3fC//p//z7jbD3zy4hW7qwvee/I1zk6fYHXN7/7u7/Hw4RN+6Tvfk2AvZR8GJeOwwLXhfhJejiXBG46B+TKJF+XMHMCHgOyDJS9QdKsVjx4/pu56or7h7tCTDhHnJvq+uGtHMa8bvXRdlcrrSrinxrj8EoRIkw32DCCd5sN+IC6uq7yu8OhKgQUkQO77nmG1omka1nXNWQioBb/j5OyM4qWxGwQWLn5ahlXbzVByPzms0XRdTfDMncbjGhnY7UaUFs+loe8ZxoHKVugMp08pScJfVUSgbhqatkNnXkFJsoqM77K7471jciO7/Y7gnKBmwoTKBZQQjBRMYiQRFtVS4Ve0bSMeIVUtMdFi7VyqVYlSWGDI3L5yL+u6nn1DtBajUYmhtBD7C784BQ6HPSJUYzh7eE5MHucdzgdUhtNprQU5oIV3c3N7OXt3KE12VJfCRF1XRylg7+axutvtsFbna/28YfDbjj/DlWauRf/EV7ytkva5jU4dkwml1CzBJYNEgg2dA3JQ823Q2mBzGzMlJXCZTPk2mPtVhPy5b97CZZKRT0bUrbLjIwlJbOTFAn3ygRAd49jTDyITp4tDZFaaMgpqHbO8rbTvCozZWIvJfEqlFbau5ixzyrCMFIQ85byQHwWyMR3/xlqqjLkE2Peikx68wBjioquT0hEGpjJHgiRwhpBzZ0VRkMoqV+rYyUmAAVEAK1rcRqTchExrRT5Nq4xtzM8EUdFQHDsZKcMujGKuZAjOWz5IIUR8MZ6Se77erjk93fLg/IyQBF5WW4N3jlmAUx2TiGIguGyRpDc2iQIlsbYGnUgh0TtHUqCnyP4w8YMffiT60yHw3jtPso+JQNlK50IrkVl927h/279/IY8USD6TlU3mvSiZqbW1KCXVkj/8gz/iZNWxWXU8eniC2m7Yrs948JVv4COsVhu2TUU/9WxPzmReek+YPCcPn7I6fcxhv2N//Zow3HHS1TxqE2kY6e0OP1xR1YkTs+Iuej76/d/BaMPZestqsyEFD8HRGEWjwUTP3c0VD88f8PTR47l7sZQvLBuCMYb97o6XL1/x2afPJYDQoJAKf+lIvH79Oi/ahrqp+NrXvkJKQhhv25bDYYdSiu1W/DKmSfwqjIHr6wtWXcfp2SlVZVEk/DQRA9hcvVX28+TesnYJ3Ec6nFJkvZ+IlMCnHD9JrvCnvWYOTGaenMePmYhIADyHu4mh76Vlf+hx45irkJG2a7GVyHEqFE27RhsjvAqUEF99FLdbtBAVCxcviUTjOA5oXbFad5hKOFbaB8LgmfxIUoq261C6nuFu3ntOTgSHLpu5QARiCpyeP5Q1dpwAha0bhtHx8Y8/lQSzbmjqmtVqRT8IhOOw71lv1+IerzQ+V9NpNwy7PcPdgLs6MIwO51YYagZlaCwkZ1DRoCK0rebR2Qln2zOuLi4Z+h5SYHuyYRx6bnd33NzdMUwjVhmRzkTgsy4E+n5EqUz8/IJGWv88Hk295dHDBqUaXr/+Bzx4fEq76dh5z+/98Ie8ut3z/PKGX/rmd6CrRaq8rrm9fEmzOeXB19/j/e98hRcff8LlixeEwWOqGm8SUUc+/exT3nn2Hn/1N/4Sd4eBVYZcvffuV3nvmcCcd7tbxvEoc1pV1azM9GZnD7j3szfjiDmxoMyndJTfT4mY45iCG1BoTFXTNInVaqJta5qmYqgM+72fVSSrSoqxx4697E8KRABAS1V/6ftk8s+L901d15jWzrHDm4WKaZpmSdOScIQQWK3WmFwM3mxPqKomxydOCgMxCIJASTcpeEd0jpubKw77uxkW3TY1lVGE6AiBWShjHAcxVzVG1hItaqIhRvwbRUQfA5ObaNqWm7tb7CAeSVV2Gm+aRuRy9dGfSXxxptmrybkp+24MVBk2FmKOR5bJoTxFvJ84HBxaG7kP7YYqF6FijLN8brme0ildyo2XQkcZX0W1SydZn6u6kq5/3fD85WtQmtVqzTgeKCJIxog58uREMryyoog3uAmT14eEuJNbW1OiOG1U5uxIgrHb7Y5mscbKGqL+jJOMt02st7xqhjV9kePNVvyMd1N64SQNcD/wRxWZRuZiu3TtpYKc0KgU5up7UVz4XPcnHQPn5TnNn5Wjx2KihwIVS4dEYDcxSRVfnMADNitPGaUJ2UDHaAmWRR1OyO2xOBBrhbbSntda2vE+HYlcsZCWM8xH9OfjrAahkiaqbARkJImprEWjCDqijRW5t8w18SERUshlk6KGIRPecFxEixlieZ5HKJqoaNXGZjJvK23egtdOaVaniBlDWlQZCpb1qJQ5940F3531pVVuzQhBrIwLOd+2qQXT2dRMIVJXlroSKIU0F4UMG0KcnZpJ8t5HGU41P96Y24x6NqGRYMaNsviHlHAhcugH+n5gGEZ55hR1Me5vJuWNy2j9RU8q3jh0xtKlPA5k71Jzi5kMJ/L9yC5GovMYDY3ZUvuI0pWQFifH5D2OgNEGowymqdiP+yxjq6i7NdGPBJOopsDptsasasYK9qMnxgN+iLT9AT9ORK2ZTKSpTwWIFyZIEZsUJkamsWcPs3z2EgK01A2PMXJzc8Nud5cVXZjHX6Js+LJGFMgVJIZBdO7Lmqa1QHWapmYcx2wAV2f4hGwOMXiqlYYUGYeeqpFNIOm59Dkf9+AXC0hA+d3b4FBv+/vyHj/puPc5iazqVzodougU/Eh0A+NuT3B+rhSWcy5BS3H+pcBTtMHWmimTYtGJ5I+fNwyjBFkRQki5y2lR1uYgTQm2eHKEKGo3KI3WaTYnKxXbkiQlBVVdUSnxY1FRQVSEFOmHEW0CCYPWQiqPPqKVYRpGYoismo5xihAUymqSsQQkyRuShpBwU6QfAngFdZYU1QmjA0YHrAmcn53SdjU+ekICbQ1ZY5D+cKB3E4dhyJ1fUd6zWlTaJHgKcn5Rvr6sx9/9zd8mIBy5d997n/NHW3SlGCfH6dk5VdMweo+yhmbVobViGHu2Z6dMKfH7P/wB3/jq+4wGfF0x9COt0SRjUHVke3LCar2irio2KyFDawy6ys7IKeF9zDLAGX6mxHuiQI+WyTzcn19vyp4uY5yYZVlDTMKtTCCQmIiPsq97HxmGkUM/CgyuCJXUFltZgi9zTfgTMYr0ddmgFcdOoynrUo4divlfiUOsjbkoWFTvzL35XeA8WussL5vmLooYiMo5NG1LFesZAiSFUE+IAqPyKRKCoz8cmIzOhQkvMNC6IiGqTCnlJGCcQClqkxU6QxAS+xsd1QLdjPl8nReom85+OOV1s49YSnOhwWdRHpGzPRr6FVjT8ec5Nsuc2zlOyXtaKWIueSulc1KktqU0m+aO0uw3ks+7rEkSh9iZqK+y4l2Bkkps4wQpBqTMS1GazFFJOTHKIkJGk5KZ95zjGA05lgy4sUCqyrNzwtv4gnWKnzvx+yceP8c1TWX8cV1V9zb20o5Sc4D3RudkzjbN3O2JLIzq3naOc/XhuLEeX5ckm1OQ5iQ2ZtOvEjhL1JySBLaFPxAAk3TeTCVk0LnLoXRCGSOkbK0wtZkXBZSQiCY3Er1U2MpVVrq0CBcDs6huJZEi08VnxIhmcwdCoMw4wHFMIisXhWlyDEbKAMzBvjbH7kVW20IJvrEyhqauaOqGtm7mRKXwHYqOtWg3y8+Kb0KcqzXyqXMXQAsprbLy7GIMOZHieJ5K0bUtq66lrgw6+1usukYIsagMuVB4vIhnhTRvErqQ4I/DBRTZt8FSVY2oVqV8R4LHJ+nI+KBwmSwcS6KiirPyUu5vMSK/wJT6ooHdl+Uoi75sap6U9LwwQx5P+VkEHzkEqQaf1udUh5F+mNhuzri8veX2sKdei0NsWzecnp7i/I59ft3DB2dsTs6gNoSLW862K1Z1Ip5XvHxxQd8f6A97urueqq7xSjMeLlg1J8IjSJEUA1XSmCieBi9u7mRzIbBarWjbLrfF7RxgTNPExx9/zMXFhbShiyqlrPFCVo6gVMVms0EpgVa+fv2apqmzFj2sN2tsJdCWu7s7Tk5OODs7Y5om6rrCWs0wHjg/PycGz363Y6srom3QRjp1bxpUynnkoEaxzOjn8ZjeDEDT8dy/8JGOfhvSMJE/tpXlcHBMY8803LG/vsEq4TGp0q7XAnf13lFkfUGI1kopqrrGhTFvkiIDWSSB9/u9rLMILKttWynYJPDBE6L4newPPSHqXD+R51agIkopbm5u5k1VK0W9WlG3FT44jDUkZejHgdu7O6q6ZbXaiMuxDnjlccPIuB9omoZnT5/yg+evxdSxqqlWKw7DIOt4VOiYpSKUwYWAMZq2q6jbxOgnKj/SNI7Hj8+ZxomLVxc4F2mzIZlzjt3hjjF4vGhmEhA4XGM7TGXR1sxw2RSk4/NlPf4v/86/x5QOnD7c8L/93/2vMLXm0O/57PkLvvOd70o33VhsbVibNYNWvLh+zTe/+hU++vBH/O3/8u/w1/7ab7CqGlTXsb++y1VmS60tH3zt6xhjuNvtaNsOUYOyBI/cVyWFhqZpxW9JCeRlHA6z8EMJIJc8n/L/S5lauC8HW2A0MQmPqJCsQw7Kp8mx3x+4ubmj72WdEz8KaJqarmtxk3Qzjh4V4ZjEZ/QAKQmqMkEKERfG3DWRw9oKa2sJnJUhx7tSTVdHD5+yrpR1LwSBZu12u7lQ0DTNXLkvf1fuk/eyxvoUcdNE3x8ydy4RovCQrDFSaEWI7tM0oe2IMgpthPg9ZaNCKQoej2WX4dhBOt7r0pEufJHSjfF+wjnh9oUopodaK5qmzoUy8dWaJjfv71VVZ6iZwI3kmYvcrDZipSCd0Xiv+3OE3Oq5e1TX9WwMWBKfAn3X2tK2XZaVDfhppFs1gBRjY/Q5BoTgk/Acq4qqMvhs2Gi1ZpqgqqSz6T0zLMpYk/01JryfuL29vTdGx3GSzkf1xbKML55k/IyI6IuSQH4eR8n+qrqeK+ql4lyiOOcmIoaoDGibSVqarFCcSUSyeR2r14urUPn/U+ZMI3ts2SzL646BtgxEVEIbsNoIf6I2bNcbmrrm9uaaYX8QvDUZPhEVHkThIOZSfkzk3qDwOJShCO96L/JpKQWCE8KOyM1pvDEil6sF3yhGW+JyPgwjSk2Z3GUxtsLkNmlbNZncKBWPkMltIURCzrxTFHlMm/GQta1mI0HnnSxieRJXVYZIqdIReGPsxAQhZrxp7jJlEl15pTFGnFy1wuiIWUCOSOKyHRElq/JElIaubWjqihQjq1XHo4cPSQle3ezwKYttKnWPpFs+T2mV3TTlvKyx6FrnhkpiHAbMpqbOwcj11StJLLTGG8Xl9RVaJZ4+fUjqWupK1EDUT4ImHLOptx6/iF2OJSzgmGyEmdiMFk8aZZNga1FMzvErv/YvEFdn/OjHn/DVRqqTJ5stzWbDD37wQ5z3PHr4UFxKNxvWp5bf+f732djI05OGv/aX/jwP7UDyOw59YtM943CzZ3d9YMVI+/CcSWt+fHXF1fOPGfuB0O9596xDO0gqYauGx++8h62sSGOqnOAmMi54z36/5+LVa16/uqTf91htmAq3KEnBoarE4yeEwPPnz3n48AGPnzzi/Pyck6wS1A97bu9uSSnRtq1wN/qeFy9e8P4H780t9tpaXjz/jJOzc87OH9L3B1CamoTVtYg73INiHDvCnzvKOpg3aqXU0azzjbH6k3KOUrAxxZcjCW9KJfG8GIcd07gjRYdWcHd7x6pdUdkKpTVdXedKrufs4YOZxO9DIClRc7q62bFabwkx0o8OFWOGKgoMYZomUAI1bdoVh14CkM12w2GcMEFTN07W8yJQoUXKMpKojeX09HQmsUbl0Ub4dD5EhmkUrpk2bLotxohM+cnpBsgQSxLbkw1t3WCVQtU1yhgxi/MJoyqsgtt+x+l6iwsD07RnszZM/oaL6yuU3uBCjzKe7UniD/7g99h0GzarE26GHacPHlBZyx/94e/RrBqRRE9iNliZitoKjIbU4QdZ55qqpqnrWSbzy3j8tX/9X+Li8iVKS8D6u9//J1xdX2Y8fk2IkcpW/NqvfItDv6Mx8C/95b/E1eUl3/rWt/nlX/4Vbvd3XF5cs+t32IePaB88YrPasOnWXPY9XdPSNB2HYaI2FUbnprqOuYIr3SCHR5QitUhL6zXGSFX/GEgL/GaeG4tuwFxpX0B0tc7dcufxQRLg3d1BjNLGkZubW66urjj0A4dhxLsjZyMlL0XKFLMkq8iiTnkele6cUiK0oVCZJGxzvKFmyJD3kXGcMHo382Cbprm3bpdrWXI2UkYf7PsBFxLnVU1yXrw+qorRh+yla9huN2iEBN4fDqzaOnO5VCZz5724trn7K/43zjniPjKMA9rAMI5MTrxBCly0wLVLMqSUYr2S+SpFVzPP8bl74T3D0DO57L0UA85NBCdiHkaLEqjJhbG6bqW7FALeR2IUrsRqtWW16gT9oK3wwPI+V+CoPhtpDsOAtSZ7mtj5+ZTvBYIrcCXxjgIpDscYmbzDRT+/VleWaRJCuTUikCR7gGLVdTjXM/S9IDViwHuJg6ra5iQloPN+dn11hZvifB9jjBwOwjFr2vUXmq9/Asfvz7fR7+1TKcOGftKhlh2AtwdPS8zi299DUh2ljWDRKrGmJ2fszC0rS1KOhLTCyapOCSVt9CRtjJRy3Twek6hSyZbkQgLZqMQdOJLN/XSuiM/wrzRvzJXV1Nk9U5F4eHrG40cPON1s6A9n7G5vhaB0ODCNA84FCVQTczJktCk4EsEZJ8EkK6WIWuUkI+XfletSBLIGcoyYfD4p389ZPThFdArokNDJM0WPsYaiOqIqTV23KFSegFmyLbf4rC3GVJKFhxiE/BaFIS4SsmYmdwvW0OdAvUCjxGO9OJdLcpHueWIU00JtBFutVMq8jJQduckQspxgasV609E2FU1taRuBG6zaigfnJ3z9qx9wcXPL7jAwDD3WKJI1xCh8nIJFJZGrQCqTt1qKAlU/TaheNPmbumKzWkHyGCLKGEbn2R32jJP//5H3p022Zel9H/Zb0x7OkMPNO9XQ1WgAjZEASEo0TUmULMoyQwor/MLyN3LY7/Ta38IRdoRDQc+2xCBlYSAIggTQ6LGmO+ZwztnTmvziWXufk7duVd1uNAAWuCqyMm/mOfvsca1n+A+sWrW0imeoDJwiodWXPQZfeB7+Jo1TMuSbEEsh+SPPbR7xKWGUQWGpXAvNilYFbFOx7zqGcUTXFeeXF+QMTdtirKZuV5iqoVpteLR1vHdRs3ZS5TFVg6sesb+7o94qlKtory7Q9ZoxZbLVVHrkYDxDymjfYa10F8YUef76mUBsoilwFI3REMOIMZIAn2236KxJQWAV95CYSuYfnYspp3NkJVCPrh8BRd3UbDZnHA4dKSTGfqRpazGZiplXL1/QNi1N01C5mrPzc+qmIiaPIUqXE3BG45xI5ooAX4FLKJmrZ47TfF3mDnAqsoxAKRSU6t9JR27u5sn/S6klCxyytAfmSZQYPWHqCWNPGDvwnhwFg22sIetMVKLw5kxhZiWKM7DGupqYhU+gUBjrmEJgCrFASDw5iq9A9BLQZSXyvNFPUt1XhnFKHPYT/RhA1bhK5lmlFeM0Yo0pJlhHt/Cmrun9gLKqKEnlJcBwrsjjBnEsj1OFLmZ3SmUwIo966A/sxx2ubtk2DhuE06GniQudYTqggsdZDUS22xXrtSP4jqapIVcM/QAJYoDgA9tVyzT0DDGUhEpUDFNInG03qKxRWbFpWry2MEy0lYXkMdrRNt/cJGN9tuHF9XPubm/4vd/7PW5uXrC72/H69S2/+ivfQZGJ08Dnn/yIYd8zdgN/8od/hDOWB1cPef/DD7nbDYwxk4xjyJFn17d0U6JqN4wxYZO4hDftGqJb1re54CRrxJywH7uFWh99luzMeyhfc+X8CwF5GQuiQj6JEBPjMNIPI9evr+m6nr4f2O8PdF1XAkkvvi8lGRnHSQqLITIMEylRPChOoEQllrDGYI0oMepCgE+w+MWklNHaElVe1sRTiNepgIAYqc7d3CTbA+FDTB5qQTnEPDF5v/iKuQJRViUmG/ueXMl2xcYSUk6lOyRxRVVVYrSaheclQjZ5KYqE4iButC4Qy7IGL9A1UCfXbO4UCwFbjC19GAqRPxKDF7K3kuc6BE8o94GzDdZWVLUpJtEO62zpTkgnYkbYzAnlqTjGnNCdmgvOSYVAZOvl/rHWkiPkcBQLAOlApMLlyzkS/FgK47pIFqsSjxlyFLU6UeWKJ/AyWGbynHj58iVddyAUUY35GsfSaa0K7+xdxk/ByVBv+flYzxJYyFuSjzJKcvu148sUTcpfoWBztZFqvC4VqCVoK1r5uUivoebQVDSSU6koCrm30Knmp7ocUz4JCuY/zUlGUops9CJfB6BSXILm2tU0lUPnBDny4Pycp1cPeXB5TvIX7He3dPs9dzc37O5u6fqRfvB0SQjkuSRD84dnsrjPlomB2al7noyUPrbGojiMKqUEjrHgAeW4yn0kD3SIKCIoLxX7kkAYK+fVGouOEVWy1xwFgzonGpS2u5r3sbRe5TPna5lIBR8q51m+z/s/q2nNScYMxZK2spZ2rp67HHMgIzCPU96GImO0Yr1qaWrpHtXOkEg0lUHpNd/64L0CIrxhGjrBLBpFsoKNtOWa5mQK3EKqm66qCizLE3uB7kCmcoq2bSAFgu/RRhNzYgxiqigHIxOtGBwVOIhcivuP0Ds8A/efg2/2eBP3f8QjHzHzGS8KQtphTEVOwolprUNXlnjIhZcU2G63pfAgeH1Xi8les9pw9WDN44uKSnm5T6yjqtd0/YRBU9cNZ+0aHxXWR66UQeUdB5Po9ISdBmqL3C+j5/XdLX4CnRoUiaqyVM4Qfc9q1VBXjvVqBVkSglNYytwMEGhhwdc6R0qZvh8xpiOEyDplHjy4oireD33fUxVfIMjcXL9GXT7E2Uqq/6sWY2dzJlGZiQmoqhIYK5SeoZry/IsOPCdJx3FematBRx4Jpep1cl+WQscSaZWE4phkyFdO0sEI00DwA9EP5BBIwQvfxopXUFaZSCqVVHnefdF7ly6jKPUppbGuYvCBkBIxq0UON4WIH0eBMGjBlE9MYjiaFKH39L1nCgllBEIp850hG4F5aq3FPDAW/XutiTqTileR1lWBVOlCzhcOhEoCn9ROpCMBjJNz7+NESB6XLCZ52mQI0eNSwFjFwfeolHBa42zm7GzL5eWaly8m2qYhp0wYRaYkZZH63LYr+u7AMPSLuAcqE0Nm07QCiQoJi1Rs28rR1o4UhciuzdvnmG/CiFmqy4fDgR//+Ec4i0BtDgMqZ6yCqDIvnn3GsB+4u77l+3/6fR4/esK3PppoN2fc7TtS6TCFcWJ3t2cKmauHj+inicrVZAV12+K7+TnOJ8XSTCYWJcS8zOmytApkyFh75DFqhY6mSKLKc0o+8jKgwHeSuETHLF2Erh/YHw7c3u3Y7w/0/UDfjYsn1gxFDCfY+TnJmKaRnJXcC4XfMRdGTZkvq6pivVqTsjx/YRFpiCKHqsEcK2NLcnHkDcicFELAWluCX4ECZcSfxoeAsbZwgUTZLc2wLavFc6IUGcXxezYFKGtFFsVOrcyyJld1VeBMiclPC5dkRlcshqJqjoGkeJFKgiiu4Ec3+OC9QK78VJTkJulKxAApLYUFFKRwdAN3Vox/q6pmtVotFX85T4aMXJuFyzvvX+lCaK2IQbg2ojwtRG2jNVM5x7bwN0yBXEViMX2eYXUFSqWkSDeGgDZO4jltOIW5S2Emlut05JQYa8oxiarW9fW1qJJBsWA4dq+stTS1qJu+y/ipid9vBjp/ncVWyQ5nJSmEax1PZMgQTfb5wZUk4+1t/nvb5RgQzF2KXMydlFI4a6nquuggZ/rDgUzGas2qFoM85xyrpub9997j6vKCs80Kw4ariwtIQtjsuj1d17Hfd/zos1fsDj2HYeBwOCxkLsno572Ck5bEsr/HnwwqmwLPMcUd8jgWuITWxVAwlmMKxwTCGLQ+oJXg9WSB10tnQuniKO7lQZRW8HgPZzoyLombNacEKyFr66WKYhaYlOhNn15XXboZJzH5ArFJC446zxO6MWw3G9blQZ/NBo3RrKzjaeFq3Nxe8MMfa168eIHPUBtHTEfSuqpsIXxJu1kZIZ4qY2UyThGVIslPKF0zT4hGZdqmmADacq7KjZTSsTL8rqIHX7gn/4YlGG/vWsrPWkv6H6MnecElv3r5ksZY/HrDfrfn4uKcx48fM/qJm12H1obLy0vOL7bcHjpefP5Zmegd1jpgXvhEBrZerenvanZDJEwNY4wENFGvuHxa8+TpA6r8EVWY+OyTj3n58gV53LM2itwYLKLMUjUi5bhevyeuscPA65ube+7Rp2PGapPB+8DhcGAcRw6HAyklHjx4gFKy0Dx58pSuO/D69WtxFz+/wFrD4XCgqVuRYtSaly9fULcN7WqNqyJaizmhn0bp/EWRuZZAVEnFK5VlXMnTNc9tp9fkTSzzafV1SQxP6z+FczV3bnKMECOaTE5B2vLeM4wDKU7SgdAR1zQCXTgIr06CJgm+cihtSyUO7EprnDYCV7IarR1Yza6/4dD17HcHKUBVFSQYuxE/RvwkIhHtes12VQGOyQdxxG1rNtvVApfweeJutyPnTFs3rDcb+nGgGwfaViqXAjeZWK/WWCMGqe1qhS1O4F3X8ejRFbWrSKPHnZ1xd3PH4eVrLh884urRFZnMT559RqUMaQx4P/ALH32Hi4sN603Lk0eP+OTjT4s61QP2d9fkGJlS4vndnqoqXROgqhwpJ4YhS1LqRAnvj//4j9isBca1Odvw/OULutuBu37/83ic/1rG7//uP8cYxePHD/iP/uP/kP1BrlVdW/7Zf//PODvb8uTxI0IfePH8JV3X8eTbH6Kd4yYN/Pmzn9BstqzaDXXVso7wKj4nqczt/oYUejSPudzUWB2IeIH25oR24m9wLELGpZPXB0mQ5zUPED6k8rKGKgVFinspuua8qBd57+kPncjGjiM3u04gUV1H13vGMTJ5SFSkXIjCJHwY8aNnGCLepyX+AVs8hFjgcfOza61lvV4vv9/vdwzTxOiFV1FVdZGJlWB6mnr6vqdpWrbbM+q6xRgHyDG3rUBnZB4xUvpT8rxGH5gQgvo0jNjiap6zyFrHEsivynwG4v0hQ4F2VLWY71lXYVcVtjZMwDQGDuMEKpVAWsjMAu+qSxfaFvNBmMZEVB7nMn6ShAYylTVMKkHyhGmANKKSF9h6VkvSIsRsQdAY7ahciy4O6pvNdpkzV6sGcS0f6A49M/fDl/kPxKOnbVfSbZ47I0qTp8AYEo2rGLUhR5kX586YaTQqihT6OI3SHY/FfDEE6qbF6hpnGmpTY5TMxaPvmPzAFHp8HktcmbFGsd1e8PGnn3B9fcP16xtCynLurEGbgppJkZwmLs/PuTzf8nC7eafn9Z2TjDdxvac/ny5Ky43xhfHzzkZkcVwgKVqR47HlNF+0jLTi5edZCu40bJ9hUqf7efyXUhmdc4HEzMpK4MwMJRDYjbVSaWycoaoc51uZ6B5fPaCpRd7OaF2sbRUYTWXP2azXXFwGzq8eM4wT4zhx6DpRWZgmhmGgH3qCD4v6w2IGuChQlCAAt5x6rWa1HphhZjOAKhfnTV0gQUuHIIhCg9ZiLhP98b1KCbRjrmJsN1tGoxhHipZyKJXO+Z6QH4MKCyZSEplj+1heNweWM9RtlsgrHZJMqUKUfdG6OPZmMFIpcM7RNo1MmlVdjHoyyiwAKyyJi3XNyl3SWsXDszWHrqfrR65v7xgnj08J5yrq+rx0lBBH11IBMVp4MUYh3SoEu1jXFdtVCzkQxoFp6Il+VTpexWOj3Fqyha+WfntbQvE3JcmYVTXgfrAqQ7qIKSWUKc7rWSSMP//8U7bGsG4aVus10+Tp+4F2s+by4oJcKkCHQwcZNpstu6YjBE/fB7z2tI004GP0pOTQdoVtK5I5YzzcMsaBbAzn1ci2tZw3Femwo20/4v33H/Ly5Ss+e/aSvh8JYyCkSBg9d+MBpRU+BLqu5/mrV2Kw9CUjlYQ6gyjBpEAMibvbPW2zpm0KwXO/YxwHvPc8f/acu7s72qbhww8/xE+Ru7s79vs73nv/MW1RHQkhUFXCb8hZKl6icCDzxtLdRC1Y3VPo2ikk4ssSi+NxnPi/ZFHRmzsaAoGIkCLT2DEMHWEagUSYoQFyQ4hZVQZTVQWSqsEWLlOBNcSQCF66z8qImWkqEJE0eaYpEjO023MhVMdM7PpSNbagBQ9OCTZQuSi0QBg9rraFKyZwsfVmIz45PuBSwlhDqxtSlLkqZ4SA75oSeIis436/YwqedtVyfXONQaFCwrqKrTU02xVjv8NPB5IG4xQPLy6Kk3Lm/HyDc45pmPizH/yIumlo2zWbzRaix48D2XvW67X4bmgIKXE4HGhXKz766Be4vb5ZlM0ePb7ifHuGUopqVfH5y2copWhW9c/haf7rGd/+9gc0Tc16s8Yow9nmnMlP7HY7fvNv/Q6bzZrtesXh9Uuqj1bc7nb82fe/x//sP/vP2Hcdf/Knf8rlo4eMvScFeHz1Ho8eXZDixJ/+6R/z9377d/g3//pP+H/+t/8vHm1b/v6/9x/w0QffLkWDEnCRRWJdC3pAFklb4LuUuav8Whexklic3pUpEufyzMjzJ8/iMA7c3u24vr2lnyLjNNH3E1034KeC+4+6VMNTgfdM+MLLUKWzEkKk6zpAFBUjaglr5mf77k44XyFGxnGUY9JqgejMHU6zqCZJ8J5zLnCtaSG5O+dYrVbL3EJ5vZqJy1OxF9C6CFKo0uGXedIYw/n5+UIKn01JjbUCZ0x+kZw1xbQ0BOFKiYytwGGbuqaq5KtpRJhjlg6fJjH/FFdzw+SFqzWOI9M0CLc0JyJJiohZlAslkdflXAjpuqob2mZNXa2WIreoaQmCY7fbSRFA6wVWNI7iYdL1HdM4SVGg72maZpH8F88QsyhyzpD0mcsxX5O6dkxTTYyJYdgz9BNKaeq6pq5qtBI+Y06JKYrLd0wTKOm+OVtBimjlCMHz2efPeP36hq7vyEC7XpXYGlQOKCNdG9fUPHzwgPOzM87WZ+/0vP5U6lKneLK3LTrz398VS/6293/1G96yT+U/+VyW4Ht+Q547ESdvn2E78yZPEALHB7F0QgoCC6OLV4OWKrwBTME161rMxay1tHXFdrvhwcUFDx9csm5bea86SuhCLsoIsvDVOdM04EsmOgwDfd8zjiPDMND13ZJkLDJtJbP0PhyVobyYDSYB7jFLXi2U6pJ0HU0tT7oi8/Gr2axeFAgWAxxrqZpm0Ws+Oz9nvz+glVoUXY6tX7VUNJM6+mnAUWHDlOBmgVAp9UYCMrc8M8oU9NGSWMp5NFrcLq2TzlLTtov+t7RKj8mkyonKGOrGYc/PsAr6YaDrR6zW3B0OdMNIzIjko5aKU6IkP8ZgNy1hHEjBY7RIDlujqV3FwwcXkCPOKGonnBxyLkC9NxFSincVSvibklycjjfnEpjnDgoaLpeErDynObO7u4PtHabrcNYWUqRMvLm0wmdooMg0Szcx5VBcoAE1q7cZIhZtHMpWJGXJtgKV0dbQ1Jm2saxWDTFPrGrLqq2ZppHDocMZTWoTVd1wu9uz23eEIIZv49hzOOzvqXG8OU6nuRAyupBJpynQ91L5GrqxKJyIAkvXDRJQx8Sjxw+FgxWFDxVCLF03w2bblAR/7vhJpTWWe/FoQKlEaIIjpOA0sfhix/qL9+vp63KWqq2an/sQZA5KEhgHPxLjtHQsRfsho4wlzXOGMRShbFRR7Zmf4ZgL2Vr0rxmGscBLYoGGGoyt0K5mP0jHREizGeMc1lWYQsKkQEy1PjLxSqt7uUBKKykGaVEgnCuUsXQ7FuhHCGgyQxZN+W4c8VFgYH6a0BlMVmwApxS2MkxkshYpSU3GGqhqQ1M5msrJfdD13N3tOVPicBxjEMGBYJeOi9JN4b8Zpjgtgdqrly8XnPdq1VDX0sFarRpcZRfIyzd1vPf+E+q6ZtWuuLy85PXra1KAyracPzijaRqcNUy7nmFKZAxGO/rDABkenF+gUkKXezVOExSVnruba4buQLffsb+74+lZWwDMpaNW1tCZA0pSRQUySlKcFFmlpZAJFGSBPH+5cLHm+26OP0DgiOPk6YeB/aFnDJHJC6chhFjgUbND99GpWwjekdn1+Xgbl84/CGwqz+hGVfD4s+mc8KFkkT4V5pDtSeFvNqyUwHeOTeZu7ZwAzNX2OaBYjjOXWKokGTkJ/FBEZkSxa1ZZOg61FJBTKOiFoszU930x0C0wojR3GWrqqsVVlahBmqoUrmS9LvxnYpJYavQT/Sg+PTF4gSEVvu4SGGYKbNvg3DF5adsVTb1aEjtrRZ0ypcg05cVXYv6a/ZGGQe5D8S0R0QpKQjonE3I/FGXQdL+IPycasynhnMxZI9doNjMWaNpU1KaEBxtL/DhvKKTEME28vrmhH4XL4WonBZlyHxgMRgvHb9W0bLdb1qs1Vf1uhYqfgvj91UHR15K2Obbf33z9T01wLcnELAEmKkUSuKXl4bj3crnQFKnAXFSjyl/fhAPM3YwU5iq8Qhm5wMZoqlq0qFUSvNp2s4KcscZwsV3z4Yfvc352zvl2izNqIYHLpqViNdsEHjGSisoaoOK8bO9+UiT7PfppIXGlnDh0Hbu7Hbc3t7x4fU039IzTxDiNCDVAMqS5QpyzVOtPsoqFGzFLrpGF5LRZbzg7P2e9XnN2dsZ6c7ZMJkobnr98yYuXL7m+uRHfiZyFr6HU0fxyPvcnRCtTEjIQ2JUEmMeERshQc0IVRb+8VDSW7WkFShSh6qqmbRvWqxXW2aIEY0TNZV4QIjikpWrqitWjh1JJRnF5ecGz5y948fqa5y9fE6dQ9PjlIWraNWdn57z3+CHPP/2Uu5vXTGNPU1Ws2pqz7YZf+e53WDc1dWWpq0oc2svCQorFWLAsNhJJ31MP/XdlvBl8nz7/CymxwKU0QkyO0dPtdqTr18TNmu8CztmlfX1ze4exjqdPn6Ktop88YxgLFEDuL+scmVDw6TU6aLooi1zvd7jK4MwaoyMXK822gkoraBshD0ePD562rlk1Dc2m4Zd/+Vf40Y8/5s+//yPu9geiH/Fjhx+6xdDxdHwxYdR4HxdoYEpwc7PDe3G83m5bQBMKsTFG4Slcv77l8ePH1HUl++U9r169Ir1+xW/91iMoEAwrgHBEgz0RJsFN62LmOQs6cDIvv7mvXzU3L4o4UNoyJShRimHypDCQwoAf98SSZMQiAesDTCFgm4asDLEk8xEx1hOunZNnOSfG/UiM0gWKwXPz+lrEKLTiYntB02yxVcKT2fXP6QtR2rka19ZU7VaKBVBgtQK1FIW9ihQ8OqvFN+Aw9GREsjNrtSQVMSb6fi9Bi7F0XcehQCjRGdfUuMpxe3stKk7aUmlDDBLhGGO4uDrD1Y6QIp+9fMFhf0uYHG6zxjQtu5tbXr68oa1X9F3PMPTsdjecbda4qkLlxMtPP8dVlo1doxRYK2TT1UreY43M38YqxqmXTpGGy/MzSc5/7siCv7rxne98G4WmaVb82q/9Ov/t/+WfMAwT3/nOL+FMJUl1iKBWfPzxD7i5vebxww/4v/+3/w9+8zd/jf/qv/ov+b0/+D1Wqy1NvebVyxtuX72k73foFHn26cdcbc75j//B3+Ef/Yf/CWPvGQeBPyqrjwXLNJOJEzqWSFRJsp2NK/+ei24y/4unjxxHSkeyd0qZcfQMw/w10XuB7cYgEEhrNJG88C5SIe7OUMvZYwFYglqRlRXfjdP5Z+EtzEgCe5SkH8dx4bpqbZdttW0rSItDR9/3hBIfzWv2sVAhB5eUuGCbkxhjrm1Kouzx07DwOZqmWTqp0zQdu6paCyTbB5QeQXX0wyDc0arCGlMMkTXWtFjbYI1DK+GBSAFEpF9BigHT1NMNHcPQ0w+H5RzmnDFWEgoixWhVDD9NpWjbFZvNhqZpca6ickditrGnTt6a6+tXhBCWRMA5kSyfuzXTJLyi2cBwTsJmmLz3HlPWufmaznLvMzeibZvSvW7Q2lC5iqGfyn5kIGFsgZ4bzaEbBPKtwFaGu8OBm9sbXt5eS2zX1tSuWrouWmtqp6mcpakqLs/OOb+4oClwuncZf8VmfO/QrfjqD/liZLYUoE6ThbkCWmoFb75lKdwf33O6X1IVhco56tqJo65ShWxTqupGXDPbuuLh5SUXZ2ds1ivOz8+pGyEV6hJQigfDrE0/ty3VUn3VcnfNh7OUNr7Q6UEWk9wc9/f8/Jz05Klkz2GkH3v6oefm5kYmghiWQGI+utl9ezY0dFbcPq0T/4zK1DhbyVdVixycFciBKnCGmJBjLFVkY4UwXcKMUjGZ3df1cZJ5I3jRau7uHIMWmbQkM89GL1K4KWW0KqT9LF9GIZj4zQZ7Yro3m9Tk+cTluUpefp/E6MsZxZOrS863az761vuChb3dse8O3N7dYazh/OKMBw8veXh5wYPWcNhd8PLlc/rDnrayPDhfcXW+KW7uUFs5J5pZvFYqpXNvTCru/w5mGF8ylvuiQAzmDqRIn8rkOA0dawVXDx/y6tUr2pW4YP/Lf/kvefL0A2pt+OSTTzi7OJOEVAnvZnVm0Y3DWQs54MdA6Cais6zXDWZjuPnkcywrdHRob7m8WNOYBHGiHycyCVfXfPdXfxU/Bkminabvey4fXPBbqxWvXr4SKd1uz+OLDdfPKrp4VJH5YoLxRQfgWU6x7+X5jXFeaKUS2bYr1usVIcjrqsqxXq+IyQsZsml49eoV69W58DVSEbtImZk0LYZhCltUXWYI5cypeluX6XS8SVRV8xOVs5ClMySlivRsT/Q9OY6FcBzLZyWpNDYVCQtZ1P/AYE0FiHfQ0AdCGvFxYhgCfuxlOzFI5VJJ0DaNAeUsMWV+/Okn9FPAupptuxEYwmqDaVqpHnqPNop122CLUVmMoZBPZT5q2xUhZyFI5sy6aUp1UrPfdaxWm1LJbPFTWLoRqBlGgyS1KZNDJAyjqGepRCCh9cR+vyflxNXVGevVBmccJhleXd/R7UbCFFEGzs5XtJuGs7MNJmuGQ0cXI0+fPiXnJDLH5bq8fv2aw+FQ4KMVTV2J2iASaKmYef/JY+7u7ri5vf15Pb5/5eO//+/+O37913+d87ML/vf/2/8dj66eQlJ8719/n+/9yQ/5R//oH/GP//H/gs+oePngNcPB86//8E/4r//X/yt+4dvfYlOt+cX3f4Hf+70/4oc//IRvffSIy8stj54+5eo3vsvt8+ecrxqeXl0w7m5ISZe5PKJiLI36jDEOnbMkxShy9FDou4YsMCmtRLK4ND4wRrqLRUxl7kIeuo4f//hjXrx6xf7QMfqAn6Ryn5P4VkyjmL32/Vg4BuItMc8f4oQ9K0PN5G0xHdaz30YMUsALYVmTKVBTCUskoQghorWoS4UQUUqq8nPw2TTNkhyIOVy1uGYba6iahuQDecoMWaDiwXu6wwGVcpGpneGrsj/zvdv3/WLspwspM5HEFyLlUstQgl5ImdV6C4U76ezcvVBMo6dp7FJADiGiTMT7kZu7a+7ubguv1DOOQ4lTwIdEq3URnZC1RLxCLFpbaabGjHKqdAbmNf3oiRIj1HWD1hLw73a7JXlo23bxDqnrWtSsvF8KrvNaME0TxlmUER8WUbybpTXnzoqmbVsUE9PkuevvSpdWroO1VZGoDSW58oTirzaGiX7omUJAmaLopVThpE4Ld9YoS1vVbNZrLi8u2W62AuWKXw37nsdfqJPxRbjDzxY4vZmgfO123vLnGSaVs2BqlwV0TjROAVOl5Vl+XNqL91Ws5hZZaRcWV62s5AJu1yu2mw3n2y1X52es2pamrmnbtgTJx1bhkmS8cRBzknGSd8xtl7I/J9CKPO+TLoTz5ciX/9dUQmL0a1ZNy1gI2fO1mbsmEoSLyZQpCgSLopMyGG2xShSnjLGL0y7qqNI1J2jielncRXU5CDWfT32SZJzwMJir1vNBztfheIYE8rRkg6J0kGUBJxejwFKhbtuW9Wp91B8vnZPMHEjNp1Ckh7W2ZNKyn1ZrmmJutl63rJqK3b5C5YkYAysHa6fYNIZGrVnXltop7m5rKmc536yxWmELOV6XRKd0Zos838m9tVR0/t1MNL4AFVuwZIumSHla8/IQKK1p2hWXl1es1muU0vgQBBu7WlFVDf0w4GMUjxZrhGwcYfIaH2fomvCQktFMsecQJ3y6IaWBRq84qy8xOaKStJeFd5CLop2j0lbEAJxlt9+TFVRNxdn5lg8+eErb1jhn+fz5azKZw74vx3zsWhY8E/fuCfICPbDWEFICZeT5VI5h9DSjx1WBCocPSbogJhYJaovC4L0spi5GcjaLASg5F4O+jIhdl+6sPtkFjs/mfI+eklzlOZ1BpBLY6hn6lynJv7w6FeWTRBLVEyXhV0oJZc1yFxjdkpIuzrQK7+ekC4Z+YgoDPorsdAoTKueF2AmZlGG325O0EvK+l+KBdTVNuy5FIfEdUCgq58otlVFWF/iEJizwM1HY0Uaj1UzWDAsefbVeF15RxAcv94LWRewBfBTVnximcv6gboQrZ52jqitW6xWuqo7CFaXzNI0T+90O70e0zlhnWK9b6toy9AcslhQD1hpSTkxenI5nfkBMib4b2KzXaK1KFVZkeJ011IjgxxzQfVPHhx9+yO52x/PPXzB0Hbf6GmdramNZ1RX9bsePv/8DPvn0J2QfeHz1kEcX53zrvQ9QKfPnf/Y9fvTDH2CAb3/wFE1i0zRcbNY8ONvippFt22Byot/v0MpJAJkFyaBKXEHwcy1TlKqULd0LiRW0cxjtyDmJb0yBGk1hDvRnqKOn70eub+7Y73vpAubSgcwiSzqOHu/jghiYwkQMUczi4lGKNCxwvpMuhdaFeykqmSI7Lzs+dxbSSSFS7huBLaaUCPloICfJR1F5K92H2Zl6hgfZJIHxLJGqEN+wMHmGvhcvr4V3cCy0zPyOeR48/RmdC3SodCXMcX4Sg0CxLpiJ3sI18YToFwWwcepJacL7ET+OosIXpAgrs8/RP01lUSfVSi88T2scdV2jCnFf5pZj8XQ2zJsnUzHkU6UzpBeY2RFSxj2vkVkI59R7JISAmqalIDwL8MjnpGMiVs6XxHtyfoQfJMlFLKiQaRoXqd6YRQwDjBSadXH+TgmDGB9XTiCcbdPQ1jXOihpiTong75tKftn4mZOM06r0TzPetp3T71/b6VBLRCKvR5YrWd9O3LvLthby8DFsYcZU5mWhn386TXRm/LIEjVYJh2LWtn/08Eq+rq44a9slsFw0mQGytCl1gRDkk2RKlxBUKciL2/H9rstpbDofzzFYn8/XEbKglOheN1Vm1awXRYT5YUQd33NMcNSyH0uLp3zXhVQvrRtdID8C9ArFTC8U9+6ZJLSMpXOhF8jZojI1d4+QAPwLNd75nkBLUhGF5Jbz0ZRPqYQm46qK9XrNdrMpmX55p9Isj0CWSm4q53x+kGdtagUYRfFYqNmuKtatJU579vsdKwcrk1hXClxLWrWcrVtuVzVaw3oluF1JNGy5vuqYaC7Xcc4mgZ/h2fmbMI5SeTNYce4unSYVipgtapYyzInaVbSrDRfnV6wvLtgdDvhx5Pz8kvVGDJZCyoQoaGgxcxTX6ykERi9iAcZobOVINnPob3nVXTPlA3rqqJzn8vISlUQSkSIYMc85MQuXyliDc5UkAkmKCE3b8OFHH3JxeSEV6s9fEGIo3IGTYy2FhGNpAOauhpBCIaYCBXMVtpZW+93tNd0wig+DsoxjQKmJEMV00miIugQ8USAWom0vi5E8S1KAIUOKEVvp5bbkdM58Y/Gk/P5YsClJRpREXSmKZ09aSN8RSSySgqwhaU1MCp8STd1IAhITlWqX7nNO0PdDIWZr9vsDk+/wcWAcO3TORZVOuqupmIXe3t0xhkDIWebAIilZNa04CmdN9hFtDXU1K0MNZCUQTKPtIgnqo2ecvHRFUSIlOk2ize8qtmfnjEOPj54wBNp2JW1tJd1TlSCnyDQNxTPJ0bQNPibqtmGz2dC2KwmqpolXL14wDQMpSlK1O9yJXKdRtK1js25QKvPi5UucqnDG4ipHHyeRtEXIugpNLn4JVVUTw8QwiTPvEdrhClF0oHLfXOL3L//Sd/kf/vn/wPe/933O1mfsbgVa9v7TD/j2h+/hhwP/6l/8Pp9//hlP33vMk6dP+PXf+FU2q4aPP/kxf/D7f8APf/jn/PZv/w6/+ku/zA9/9APaqqJxltoYVlcPcGiyD3S3t1SuwVgxeDPKlrVeLQaQs9CMNiXJMBqMw+QGowX6O/8t5kz0vhjkBXwUH5yuG7i53dP1kyS52jFDjFNK9P2w4OmFxDyJwuPkj27Q+SjfOsOnVIlbTBGFSCmVAgYFdSDFgTkuUVBgUMfAmZzIeVqKicbYhZtZ1zXGmHv8jJmvEpIk7RrIpnCJYijGlxJjSeJWzOXKccz7fno8EvKrJa5AgVEaawxNXZcugl06KzEGRM57lIKEgmHoGIcDIUyk4JcEXyuFKx0TDTht0aUoAQprHFXV4FxFU7fLWh5jwtpjXOO9L3KyqZjruSW5qOt6OUdz0jEf38JlqapjAfkk4csAepYOtlh7aoA4dz6OnNiZ36h0Lp2aaSkGzybEIXjxMslSdHW2wui5ICpCF01Viblx7Vg3DW3dYLQuhs0J73/OnYyvGz8N4ftnH/PSPENPStaYjybZMQmhMWVIxeF7llnMpfIVOXYyFMel/vgZ8rVppE293Wy4OD/j4nxL24oUqtGFDF0kZudseSZll5OCcW4JNJcK7kmiNHcYUqlySj50rOfO+za3NiWhyiebMbKlRMFpyraNcdgZ/EmpQOZj4nWaIN6TVVUJXcjfy4ecdqyAjBJFiqLMINXStJzLpWtycoynKjbqje1BIcafdDsWbGfOUFrLOUeSkkCxnBSaVUu7WRc1BHUM5Dgp0iqNdWaZTFNOS7tWJhElk3qRgEoKLtcrzr/7XXKOx/1LCaMtympq3bCqnghHxxlC8ChOkj/5YGaS+nKmS3nzL/tJ+bd1/MZv/iavXr3i9vaW/X7PrAa3QIeUBmVIWRMSouxmFO1qDVhubg7EdYsPAkuIKTOME9qkAjEI1GSanGgrQ1NXWFcxZoWLGasiKRuiyYxpovcjrtUQJyo9ctFmVPTlGZHnxWhZpLU1+BiZglT0Li8u2e/37Pd7dnd3GGtFm95qzh6sUA62F1s+/vHzkoxnIJINYsaXjwZdM1eqqiqapqHZbDBNQzbS1Xj05CkKIXDf7Q9c39xirWG9XtO2LVdXVzx69IjtdovOiugj0xRpWscsKZkKhjxnKQh4P6GiKLjM4wjhknvYGHePRzNX6qRznPBFr32BnRbugo9SKRO/IktSSbrAVoOppJppIQ6G/d2BvhsYxoHnz56XSqpiv9+D8hid2GzW9H2/iFxst1tRmjEan6MIXqQMBq4ur9C2YkiZs/NzcsgkYY3LQqGhbip8mGQlUJCddGhz1iirCUkCprZtAEMMmZw8dSOiF7NDr7EC2dJKs7u7o6kbMelUZzSNmDiKYowryi8NMQRevnjBYX/AKM2YetAGXRmqxhCCcMcePDjHKOEf/eJH3+bm5TWrlWDC/+RP/hRbWWor6lbDMIDOGKfpdnsJSHOkbWuur295nSMQaeoVh67j9u6bK2H73/w3/wesEQ+kTbvCTx2H22s++dEPeHx1hY5nOAZ+8f2H7Pa3fP+Pn/Mn//L3+Qf/0T/gxz/5Cb/3u7/PP/xP/iE/+P6P+YPf/Rf8p//w7/PP/7//FKMSv/1b3+Vv/8av0dYNLsPrzz/n/OyC9WqNqmqYRN0wxShrUpL1yU8TIUkXoZ9GlHG4uqVq1yQtPKOqbnn/o4+IweFHz+FwYH/oud3vub7dMfoIyqJ0JmYKCEvWJ2fls3wKdF0nAWsxyvXeL+dm7mScVrjJRyO1VJ7vU9fxGKOs63PhpxTl5G9ZOqHMr/UoJc/g7P49wzznZAFgGHusMzhnsIXnWWmDc1uIc1cio5VZFCvrul66IXMQDpQuonBhUoIQElMMkIXvUVsn5HulgUhMiEFwjnRdL3FVTgzjnqHYA9TWsXENubwuakWIhb8HC8dBa1O6fxGjZxEbOTfDMJJSpq4rmqambmooaps3Nzvq+qjGuS4d0L4XOdu5mxGCCPrEpYttF57LXJFaYtWT+Gnu/IzjxM3NLdMkSlh1XeNcxeQ7uq4r11kUFff7/ZLAGWPZHw7L3FUphyEJwds5ztYNbVPTVBXKFHXZnBi6HlBMU2IYj/fdV42f2SfjbR2Ir+psfB0h/Otec+/1p5+vtUiVal3qnpqsLIlEUsWxu9Dc0lxd46iyZI0lxwK1ArTOVM6yaho+ePqEB5fnnG23XGy3OCuQImcNzpYqgcpLWKko8oanMbuazf1KZvyFc6RK12DR0jmesxK2S5IyV/fnlGDulsyvnZWw1FKRPB2nkLC3VifzfE6PkJWlBJ9lv+fcKedMKM66IfhS7S07k4/7qDICO3gDLjVvQ2u98EOsUfcmPtFkli8VUjkuXYJ+eW1dO66urmhXK3SZ4I7HV5S/yjnXHDtGIBXe46UQvaeZDyA8EYPByKQ/n201Q9VKN0QVrglanIqVQp1c/NlYTvLHua1x/4K8SzfwZ4Uh/ts4nHNcXl6y2WzwXia+w+HA7e3t0m2TAF/cc3W5L10lfgZt2zKNoh7U9wM//vhTNpszVusKUmK73WCcJeXEq+tr2rylJfCT7gUfPagwjSWohK1qbATrE8lHNlXLWdWQg1/kROc5bZ70J++xVYWfPHd3dwuPYbPZCEG4LLiroj//+WfP+eTjz1mtK6YpFLJwXVSRsuCHfKnik1FaoFftqqFpazHw0hrjHOM0SKsc6LrDYnp3c3PD7/zO72CMKZK2ey4uLlhv1tgs0pHZJpx1x+eejFK2gMS5l+Tdv9fUsTO8JB/H7/eSw7mSWmBSMrcUaGWW6q/Rscj1yuIafMBmuLu95ebmlru7W7quL7AMLx2N7MkE9vtOgqwQ6LsDz5+95OzsjIuLC3Z3t6AtxlYS2FuHcaKyEudJS0vXJuVcMOElWFh0RkElg84Zp45GXUorDMKvSDHRdx19FhOtpq1Ll1Zwy5WrqSqHcyJ7OXvoKC3QukPXCzcoZVxVc3HpGLtBVNCAqRiXzgHX5eV5Cd4Uq7ZlqDqSD+xuboneY3WDUxLEDV58Tuqmou8P1E2Fc5ZhGCSZVJlVgfK1bcvFxcVfyvP9VzH+9t/+TX7y4x+xv7ulbWuuLj6ClJn6gdvXN+wPt4xDh0nCnzo7W/PRRx/xr//4j9kfDvzid77Dt7/9Czy+esT+9obPP/mUv/Xrv8LlxZYnjy9ROeOHEbLi/GxLO3tfqUwKgp0fh5Gx64k+lABR1pSsCnLCZHxMhNGTtSUpg9I7drsd2dVMMdF1I89fvuJu37Hr+kWSPmclXi/KiQpZElNcCbKLAV+MC/H7zfVhfjbn+ak8iiij0dkUVczCg8xi8hjL/a7VvA7PMR3Lcz0XELQ25KwRHwjxaRC1M3XcZk74UKBZWu7R2WMCI/DAGGJBS8iaXdf1oq40JyzzHCOxgqikJQd1ziJvq7SoB5b4L8YJyIV7MjGMfZHOV6WAWuawmEi+OGUjv7dKy35PE1qZkhQJPEiVfZkmfyR6G1sgXnKulZ7lyRVt2xZTv6PEL0iwPhUeTSzX8JgMHrlxIPBKIfyLvK1bTBBnuJYS9TxjcCcdlRBk/vRhYhjTIsUtn6uWRNRojdVWrBVSxBlLZTVtbXEacghMKVE1cg6Syvgsymby9W7P608lYfu2cRrMvn2herftnP79y5ONmbb7xj5Q9PUp1ipzQEqBKEHpbEgXQzLbOXZWJcSUobWiqWsuz855+uQJlxdnbNdrtm1LSkHSGJWXLsHxmN849iz7S/ns+xHmF/+tSkCq1OnxzS275Z/lM06r/bM83NxmO3n5l5zHU3LnW+Fr+WQf5jwjn3IbwIew4JW/eEXuH+WsWqX18epJgqYWTWit73uxzPJtJJHFnCei2UDZWkPTNGzPzgpOskChTrtEc+eAGbo0J8Ynxzof5Ml508v5PU1a5m0uTIsTzwGWJOfNkWG5v9QX7oGvHl+W0H+Th1Jq0Q2fJ1/7Ris/RDHPnBNVpSQAt87SNDWv+wOhSP+Nw4BCjDCNng0eFSlCzJCywofIq7tXvL99SK41OQZUtFRZ0WqHTYata1i5WrTDi4BALAu4Lgvk/KzM2NqUUoHRCHRgXjw2m420o7UplaadwKaCGFXJwiOVShcLQZhMU0tyUbdFuaMkXfO+UKru3ns0EmjMRM++7xfFEVvUo7Rz8rsoZk+n8pDJZBZE9EkScX9OkM7o2xKM+fspBnkeS1cjQ866FDBm4nkmTJnJJ6Yp4Bjouj37wx23d7eLU/Ew9OSspIWvwPsOYwQGsd93dF1PSoq6XtEPE67WGFu6MrooOWkrKmVKi2S4YpH0zWVOLtPD8qyj7ndejTE47UghEQkkX6qwGcI4EZUcm9GOylQyd2YFJ10qpWB/6FBajFx1hs1alKJIEkD5EEkxFn6Hoa4rNusNh8OemGSu1Urjw4SfPDlEsMIdqqpK3NuRrl9VpC2ds0yjJKdGK5pGsOV1VbPZvJuR1r+N41d+7ZcwJvPyxXPq1lE3wo2rH15grGZ3u6Pve7rQ41zFurY8ef8xv/sHv4vWhm9/+yM2bcN5WzOtG/709Qt+4cMPefzoAavaMu7vRAhAadZnK5y2GK3IxeByHEb6/YHD3R4/CmxJa42rxLg2ocXnRxkSI9rVZK2JWTH6G+z6jKQ0wxS4vdmx7wa6cZJuXJTun9MGpUwJVIoaZj7xu8yzZD8s3fO5/VjWp5SOvjc5Fh6DmovB8zNaigIFUolSRdGtFB/JUrDNuXRBcimeJWIKZC+Q7JhiMdmb9yORQjHrNGCcUOe1Fmf6nCBrxMW7zHFHRSuDtTKnzM+QLRK6SptSbEQKB4WYnpXso49RunglyRinQaRerZUYrUhgxyTk51y4d+KOXbwpYlj4vTDHZJJoeT8tRSdjhdsZo5xHVQx4lRJVuligUwKryqL+VIpRcwcjpbhA0yjncV78LHZBXCy8WW0wxpV5Wi1rkNEzUiUVYRBRJhOj5KPDuIRUIghgjRVoWIG6185SVYa6MoSpFziqKteuxICzUbGYud5XJPyy8TPDpU6rW/P4uuTi6zoVX6dsUl5Viv9y0896xyFIRSEVLfnltV95EEXKrQSZWgmJ6OLiko++9S1+8TvfEddrJc1DkXMrNm053suyl2j8rcf1Bl/hjdfl5bd5gRstf3vLObsHdSoP6NsqGl813nauj8HsvFdq+TqK+0rltet6hmFkmsZj1e9e4H1s8y3eGGb2rcj3yOtyjG8GMyWQV3MHYN6WKu1Gx9nZ2VJFPnZJZuMcfW8bajmutySEiBP0rAs+Bxyn5jdzYlfYFl84l2+O+dz+RRLu09f8TUgwgKWCMx/Per1ms9nwwQcfcH39mtc3N9zc7fABVCqLgtJM0wA50rQ1Lz/5Ie1qzWq94e/8zt/mfHOGdY6L83Oev35G1dS06xXf/ZVf48wp7Hjg9ed/zqpp2LQ1TgUOhx1rW7F68BRlDGn0WBTWSAKbymq+kO2Mpqoqdvs9YfLLPTcTImdMrhD5NO+995QHDy758MP3iTFye3PH4dDTdVL5c9Zxfn7BarVaWufTOEml0JRKuFL4GOjHgfPtGj+Kw2u7XpO8RwHb7ZY/+IM/KJK3W371V3+VV69e8fr1a64ePZSuSlXh6orz83NRPdIKSJgk9/pslnk6TiFSaUm27ncilVKFiHofTnX8UpANMahS5VNM47Qo1IDl5asX9MMBCDSNZRgCefIM44Fnz57z+NETLi8eFJ+QWSUmU1WNJGwhUjUtTbOiqhusq2TRVwnjKGozoppnNKWC6vFjT8GkyCh/89MkxHlrcQW6VmmLSuKjau0F7aohk7m9uS7JEJAzt9evj4mhNphKEsWYIl1/EOietUQyL169xFrLRx9+i93NLUM/0O07ztYbCTxQbNsVcZq4vtnzgz/7CVeXVxh1vAZDJ52NB9tz6pKAxXHkyeNH7HZ37O/u2G7XtG0jQggEvJegZE70v4njW995j3//H/wOkPg//5/+j/zeH/4Bm82G/+Af/D3+5//wv+B73/tz/tUf/xtCvWa/39MP11y9+oSHTy54sD3jF7/1Ac+/968Z9j2VcfzX/+X/kv3uGtWNuAw6GCpjWdUNm2ot8KXk2e3uOOwO9F3P/m7H4e7A2A34yaNQNOtz0JZ+mAARijCuZnt+ibEObQxKV3TXI900cbPvOEyBIcAUNP00krN4rGhrSVi8j0xToh8jU1CEbEjZArUkBdnLfR2j+C1gCwRGquu6iBRE34M/DZw1OZVYKSWqIrmbtZG1XknAmmI4xiCzua+BbGBKvfhXILf9NFGSBI3BkuOxsKYrkZQVJTmFMhajMrYkxlpr+n4ogbhBqaaYCUphonG1cO+cAzQ+SDEZpZl8xKeJmAMxyzOcQiiqSiNNXaOK+IGfhPTNG7yPnLPAGWtLXTfElEgp0vcHmqYBKLCpkbquUFoUuE6dzoElsYOynQIlu73dLdL9UuxJZALjNLuVl0J58edQGXxQ4u+DxmBIUwKjMJXF1eI6rksyOk0TXddxe3uL92LuGoJiGudkUVNVzQKZslbT2BqLKeI8oraodCakiZd3t8JRrSt0aAQJkjLjOJVERRLFdxk/dSfji1Ws+39/l238hUZWy428QJFO4/CvzmNOdkaelzxvoDwps4TkbrcXgo6qMU6kW03xXSCLI/b9hVm98V32Fd6yj29JRt4M+L8u2XrbaxdI1l9gzAF52XLZ/vFfc6Vimkb8NMkNHZNUD0/2adb1bopUmwRSinsmNyw1mEX15HhsxcROiUrCLMM7y+1uNmsuLi4kiz/R6ea001BcOkG2sVwh9eZ9m5b3nfJV5LNPE4WSdOX7z8Pbku03r93Pcu8vXaqTBP1vQrLxtsQ2pcRms8XWFWeX54wj7F+/Yup6Eplh6Hn16iUf//jHPH74kLZdY13F7W7P69evivqZ4eHV5UI69D6wGzxrnfit3/otzrYa56TdH+8CSosKlTMVnohwHuK961lVQviMOXF9fY2P0uKvivOttSJvHUKgaRq0FlPJEMTh1jnN7/ydX+fli2tub3bc3hzYbi7FHdZoZrhiSrL9tm0LpMCiq4YYE764w0qXFg5Dhy3xcSz8haoSPscf/dEf8fDhQ87Oznjx+TO25+dsz7dcNlf4GEUSOkEM4IqoxZxEnH6VqwPc74AcOSTz4nyETM0qN6dyuJQkZpapHMeRnAW33HUdzz77uMynsFrVxDjRtBXaCKfB2YoYR25vX/Gtb31EXddsNg0ocQzOSbwuZs38ulkRUtGJMZaMZgqRKUSc01TGUJkaqw3JT8QURM5xGNAx0WqHW6+Y/IQKiTSMJJtIXuBdMQXMzTyvxGXtyCnSVDXaGtAaHxJTlOr0rOgzTCMxJy62Z6w2GxTw6vVrpmEkp0TbtNRO5kpjNZ98/Amvr1+x3+/ouk4gfkVGfL3ZMPT9grG31hBTYJx6/DRCFofeyhmur1+RcmS9WQNmuW+/scM4fvf3/wWfP/+Mm/2e9z54j6Zt2XUjzWbLr/7mb/HoyYf8s//uv+ewP5DchDWGJ0+fkIaRH/7wh/zOb/wGFo3KcHv7muFwR/QDNy8mLrdn2HYFyRGmUTgQ0yRQvcOIn8Qp2dkGs3KkWnhbSVmMczx8+Bhta7KSrkZImX6cmIZReKLaMYTI6AODDySlMNbBJK7NCgMJIYh7zzSOqFRgfgkMmtpaolIErRZZ2rngqbUI4ciSrEpH3xRoUAkQc5Fwd0WAhhn9MXds84IQ0ScRgdR9EhEWIndO0q2bO7/WGJxuBIaeKfDHgLUO5yrqSgxDc5rlWAUFcBpPpZyXdT3njHJW/L60QN89oXRzFD5G+rHHh4mQJkhxiTFske0dh4RbtxilSFp4NXOSsQjSIOerbdsFmua9X5KQuagyw8REaCYvPIp5bpRzLPNyTAk/+RKcS1S+XrdYZ6h0Vbq2QzlqgTrNXZ22XRW/D4FmGWOK5Kwn7+8XdGYD55nYbbTI7zZNwzj2jNNA1x2WYq+1BYalDFZrnLP4MDFNA4fDHeM40poGpTTdYVgQHDlBVdWM48T+0L3T4/oXmmm+DkL1ZX//qvd9fRVfMlh5GI9B8RETPC+AlBaaIqmjC+YRVVQ6Iif7Kh2Bo1b9NE3UtUMpaSmhjoHv/OjlNzc8f5/T+y8N+tXxZW/8+vQ8vJncfdk44q2/tn/zhS7GF7atWNquubTh1cn+zqSj2X38uF15zxyci1bzrPgwKyJwT+pyhmvMGfxxCCyNwpXIuaQAmaJq0SzyefeDo+PXrKB1ckD3OkpvBlPz556O+9d3JsS/W1fuzZ/f9Vq+OX7a138TxgJ/W3DDGa3FxZSyOOrtllA5gVDVVekWTJi0Kl2DuYtgQImSyMXVRhaVcSQzw+sU7WqF0WOZPzIxJ0zOUqFOSvg4SoL4BX+cj3CDEALDMBScrP7CNZ2hNXOSkVIU/Puq4fHjK5x1rFdr1qsOrWpSFmNNpUVlXxvNarVivV7jqppsLKYkGZMbUTngnCEEhzoc0CmRQ1q01b33dF3HNIlL+DiMdH5P3TT0B0NKmQsFTW5w1CWkKMaZb+lSvHmt4IiPPk2s54Bl/vusza+UKqTYXGAeaRFemBfWvu+I0QuMMkM/dGTEyMo5S24qcqIYWhnxJnIGY1bSISgwAGMc2poCpSicuNJNEHx4ub8STKmEUsWkK8VEnAKEWJRVIPmAjrnIxHpwcVEIVMZgtFr4MqL4I11b5478QLSYHVIIrtY5jNXFhT6JL4Y2IhdpDdo4nJJuhCjCQN9HxmGEjEijV07mU22Io4dxXIovMYnfR0xzIifncRx68e9BDMBWqxXSUA5/Kc/1X8V4dX3LGBLWNaw25zy4qokx8eLVDS9f36CVCDRsN1v21zf4yfOTH3/Cyhpa69isViLaYiw6Z8I0QA5oLW7HVWXQGmIU/s84SDFtmr0rQibFIhSAPPOuqsFIYKeNEUnhAi8ZJo9PgJZq8phEmGGcPMPoJehViskHco4oFfABYhRlqmmaiNMkSW4Iix/Nkh6c8BpO1/b7sRQcO/uyoC7vYUYYSHKOmjlJx9ctC2dKgoFSpciwqBoVt2qliRmUmpZq9xycWytzvdGGec3VOUviMBcteKNwNx+T0SQ9f25m8AUGlLLwmcYBHzwhyRx/LDVSYLiR4K38TeuF5D4nGqfzfCjz16xsNfNEjoXtWdEpMo49KUnypFSBIiVRzrPu6NEBRwNE6eS6Y6h48ppT0r5z1fIeMV/OECMxp9JpOSY/wo8NS+cEq4odgSRwucjOKmMllivrrdEi05uzqM4NQ8cwjEUWXSSUfQioLOgQZwWCGxaH+a8ff2Hi9zy+KhB61+rr1yUYS6BYXjtDc46L4JHwlBJE5OFNJSlI6hjHHgnUx0RFtMXFbfLQHeiHgfWqRRUsXCqKI4uE7Bf6RW8mFXMn46shT8dOhDzLXwa/+UqORTmmd2nlnJ6z+5XyY8viXqV+PpLycKYUmcZpwdHPk9BMgT9iBwUjP6vAyPZkUVzO3BK0pJOfZV9KXYVcOhHAUjFerVY0TbNUkk/Pt0CbjhPn/fPy5vk5/l6O9ZiMzLjyY6Jy/P+XPQdvTu5ve91pZ+LN183n/MvG35SE43RRPLrPFklhJc/i5dUlVomB2s5eFEK1Zb/bk9mTlUAS2nZNBob+wNB1TDFwGAa0bgS/aqSSnWIi6URWMlHrlEHlonbCAgOIJTDMSQLUGDyT90zTRLNa4YwtmF2WwPk0yRWCt8HahnZV0TSWpmm5uPDcXYx8+vFz9nd33O53rNpW8MDGst1uWa1aXF2jq/aYZIwjKgUEohm5q2viMOD7cTHjOhwO7Ha7YtKW6fuOw92OB1dX3Plbrn/yE37JKLbn57Q545pKkqw3oFLLMzAjJLQ9SSi+SAKfF8jZgXjuWCilFjnblPJCVNUamVs7cdsVjXuZc1+8fM52synnElASpMUYuXxwAURS9my2W1LOTOPIMARsVcl1LtwGjCUrjVJGVGiUAiUSul3fQQw02kjnaprw44hldlWPdONI2zSklOj6juBEJnu9WRfFmDnYSHT9fqnmOidrElo8NXSMhJTxKZGComkqmrrmcLdbCJzO1hKQKIPD8uLFs0Xq0lVGFMQ2K6qmIlcVVV1TWcf1i5dS2UUkbEcv+veQ6A8HqsphjeH29pqnT5/gKsv1zQ3n5+fEqLD7gW/q+PMf/Ihvf/sjPvzo23z22U/YbDY8f/6SP/6T3+XBv/keuTwzHz5+Qnd7y4vPnvE//g9/wIePL/iVX/xFfvHXfl08dQCrFZXOWKdp3IqryzNMhjQJ/+LQ7TC6IifF1HuSz8SgCB4mL4IxGkVjBKKZlWLfHfCxYwqRMUSmkFltz1itt1xcPuDVXUcaJg7DSDeMBKWJKPphKPKqgeCvMboCJED043hM2mc/hkLSmFEWb0OXzOu3/HouzHK/2Mr8vElgqpAUNAZRcFIzSiGfIBCyOqo+luSAJDDFmMQ8by72AmgVcC4u0ExdVI0K06zwOo4BdUwRZ4UsnZUiKIhKXutTYHfYMY5+cdQWg7lASkJozsUYV0mWIU7pg1oM5vIb3VuUKGbOPjdfkNDV4lOxWq3urfH90BGiI5NomoZYCNbDMNA0NVqL0agUnoSn1fc9KQW0UUtBZu6GLwaKKNr2KFGbc1mPkDh3Kt2hOf6akwwp4kyorDFKJG8pxPXKFVh5zqSQUDVFTEQxDB27u1smP4o32HqLtY6cFcHLVbJW46qG3e5OuLjq3WKRv7Se6V8mrEMufiwXJBS2fCys+mJGk82iMJW1AYop1YkCAhnsHIwq8TjQRVWm6zpubm9ZtTVNXdE0MuFLZT2jOJpSnQah976X6oEQntUbk0CpOCAvk6rpu6QIf7Hx1ddF9iYjE5vW91+byiLsg2AJ55tctquXY5mxh660EeFY8RRlnXRMxeZzkvO9ICYXIy+NKA3lDM4a1psNT5484cGDS7bb7Rv7/mZC8LZjvZ+IyeU4kUNmDuTf7G58NSTtqyBS75qQn77+XasE37ThnEw5x4qODJkoA1lr0DXGJFIaCUVNrK4qzjbnPHzwPn/+6jPa9YrVaoVzFefn4kDarhtGP2FczeXFlrvXHY21tA4wI2orCQdxYr0WnwVykVX1sniHHlZnLUorUrb4yXP7+pphGHj08KHcpyqTncL3E7lgmm1WrDYbaWl3HVXdSEHbZFQVqeoNbgWf335O+/hD9PlIvbsljXeQPCpOxGFgTInpMDH4W+66PSGKAeg0jjRtQ11XpJwwWWHrhqt2xe31NeM4EKaRjz/+mCePH3Fxcc6jp1f8yz/6fbSxPHr0mGc/+pj+7I7N9oz1ZkParnG1VNTXZ1uMVaCK/8VctshHxZM5CD+F8QnUQZGzL9XekWkcQIlx1myUMXc+ffSMfsSnQCSxm0aGocP7iWQMz16/xBpD2zZMYSJEUFQ8efqU29sb7g4jwxSpVuLCHY10R1OGmCBMAeUMUWXSFNDK4DQ4FAaLj5ppzNylgZvbl+QUMAqqrIlJZF+t1Rx2HSiwVnN7tyNOPYwjvqmo1yu0NYxFa75qhQuiFNiqwjpHXbe8fv2acZporBWJWjQ2KK42F6XTa6iM4+X1S6L3GER9rWnPhAwe/Ql/SaNiInQDMQ/o4gLdT4F/8cd/TNtUtLVj3VjGcSCmCecsjx49wvvAOE4oLLevb5h8ouunv8rH/uc69jd7fuB/wOXlOX/33/sd/sk/+Sd47/nP/9F/yt3tns8//5yXz57DkwOExPtPnvAf/Ht/l4dnF1gUL1++5Lu/9IsMuzv80HNxcUF3uCPHwN3NNQ/OzqVjHTNOV0w+EXwi+cw0hKXi7lxTOuwaZR2hVHiHfmLXD3TTyBgiv/5bf5vN+QXKGD7+9BmfPH/N7tDThcCYlHjfaIMPBw77XtTAEqTYl+2L8hH5uCqlEIkpCryzrBszZAeOa0yMEVQ6qdjLWj1DfeYhwWepuSQxY1PFWHDhASlFFrk/gfAoLQn00rmc+RkCSZ2l9gEyUYzhgi+QHelgaD3DoKRifgoBHMYJbTXKCAF+ikXBKsM0DWUuSoyjGBKST/ixpThoFcV0UwQRpBGjxBdLm2Jup9nt98vcFlMS2d1y/uZOxgz7mr1BpEMjcHF5jfgnWeuYJs/h0KG1oWnaRUxGTqNiGEdylvhVirBmSRRP44VQijbzPmR1nIdnDiBI8dWXQpgp5yt6T1M5Vo34tXQldtNK1jxFxvuBFAP7/Z5hHBC42Bpn63KeI4d+oKlbjJIO3a7riDF8gcf3ZePn6pPxVb97W/X2ZxlL1+8k0DttsaWilz53BOaqWM4nLb+ToY20rCGfBMzH1uBcVVdFg5k84xm/LmC/H6h+EUJ2bG2iVHEYfusu/qWMN6+H7NeMGTkS0IVHcVLvL9ADufFn4rsqOZVaHnRTJNdO3S3nrPzeZ77tfMwjzwmYqD9Y59hsNmy3m4JddwtUQ6njNpbt3YNOzeT840eeVmSXGZbjNTq9FvcTyePvTpOLr3oG3iXR+OL1+Js3Tp+D+54ouUBJipqJLpU6JWZIuWpAacZp4vGjh4xe3GOHcYDyLPb9gG0qko9MYRAfhzEQMtR1RcwDPgayj9ze7bDGUDtHiAFXOXI2JO+JKWJ00TGPYXG2ndXQkgJPwfKW4t7+9pYUAnVVY52DrMqio+jHAeMqKmXI2mEaR+tq6spx/fxAHEdS8uJEnhIpe/wUBCtrjQS0RlM1NbaSdrXJCpUE62+chUkS04uLczbbNU1Tg0pUtcggZhLj0HMTI92h4/z8gmHoaVYt680GVUxGjbNSWSyJfyAui99pACP/Ft+YlDL9MKBKguJ9wIeRVDT2jbKkJAHYFCaUosB6huIcGwiTF2MspAKpgfPthv7gGYbA82efLwuts6botZd7pxYYkzKWWDxCUhhglCTAIAudwohDcoiQI2RRH4spk10N2qJyIqWA0warwSpF2ygaV2MVjEOPthqTZe5xbYuxDmU0zlbFh0S6b03T0NQ12gjuOc1dHgp0IgT2w0Caj8tZqrpaglV9AgU1ViBhGlkr7g7XWKVpm4bdfo91hmbVcL5dcXOTCmxPAqWqqoohm5DiYw646ptbxHj+8We0K+nmmQjvXT3icNhzuL7hx9//CSlELjdbtqs1TBN15fjWBx8Q+pEconS8iliDc5YYgpCDs0OnRAqZHBUKUUtKRW5ZlzUyF6fkYRhxhQulrS7wzcAwTYQY2Z5d8MGDB3z47W+z7wdudzvuDgfpYEyBKSZRwCsCF7NYydwwmAnYlJ+PS4IUSwVoaUhkdNbLc3lcb1PxW9BoPcOa9AJlPvXbUmoOzqXrCLM/xX0PHYGNF6lbrYtqk1o+6xRKNA89O0mTi+qeJoQiaV+B8nqBHvoFhiNxnM0WAxidRDI1iNGoQK4jpIgqJr2zUZ9RMocYxaIaZXThdmYKRNXM5lzSeawc2c/nzIry3knA/6bM9+x/MSti5SxfxlQYrVmvInd3d6QoKnrWyPYkOZGKiFz7+53wpmlKR+LomXEq6au1RmmDXZTr1JIIzdufxY9iDATvIZXbKCWsFmiuMUq8XlIkeOm8zMdVVRWgig/HiPeBupZucIgJH0Q1S5u/4iRjHl+XbMBXV3K/OhGZgS9zcDe7a5cgt7T6c0n5TxOBI6TozS1Kg0MWnIRSgptYvB3eUqHOOQsvhDmBmU1s3tjylx6LOomtVcm6T/sIbzs382u/5O8sIfSXfCbLK+5tc3l9UYMpFXv5uGOClnJG59mzg6UjwfIgqmWjRmuMNfK1eF/MAT0n2z4mGV88rPKLkvAYramLgs5qtaau6zIx5ZPjOCYYpyfmi789/bCTwH558awwdXquyvbz28/v2zoZx/e98XNJLL9qHI/pbwY8ah6nKmiz5Op8HzitlwkzaaCoshlXkaqapAQWcvHoitc3NxyGrsjUyiLpvee8qQkxME0jBNBhICioXEOMgSkJvvnubsd61VJZg4+eddtATnR+Orawi6b5or6UxfdFKcHAG62huCx3uz3RB3zbcnl5VeYog7HiRO4wRW2mAiy6UtTriuHQMqlAnCIqCixBZVFjWtWNYPArx1hXEmQaI5jhJAZz0+Axzi0T/tnZVjo8lSWkidW6lW1qGKeevu+g6MEPfqAd1iiE61LVNXXTiM9IEmlLlSnJfD5WyaD8O1A5CZKGoS+wBSHc98O4dIqcqaSLmSKTn8iIas3kR0iRHAK5uAxXRiqkJmfWdQ0+E8aJF69eFXJ7TaiEX6C1xTpH1ILZxmhyQuQbYyYkUEZL5zlnOb/lZ43IZ2atxCnetVgyKkcYe2prqBTYnKmaGmNVSWQn/CSJWDLquD4oCepjSkQfiT5Q1fWiJlMbyzSO9HkgBoFXRR/ougNaa6rK0awarLPEricGj9UCM1VaY53DlqSWDH4caZqWanZebmqapqZtG/q+WpJ4pVRRzWlwTcvd7oDJ4P5anv6fz7h9+ZqpraiB/vaO964ecqMtn3zyKdfPXvDo4UM+fO99Ltct036P04bz7RkvD8+kYGUs4zRRa42takLwrJoaqxTEQLFOQGVNjongxSxNF4idrJUQgsfVFcaJ4/vkA8Mw0Q8jyjkeXF3x7V/+Lg8ePeb2xz/mdr9n13UMPuBTImRFBFQCVEYbi9IWpQKJuAhDqJP1YoYlqSL7DizF0NNAH1iCTgrqQmvpQCh99PiahU5UiUNSvu8WLkFrWl5n5nWr3F/z/O2nqSTYIsMb8qmJQkkysgS+pypUuiiyzIlKTLPUanFSF1lPtM2F/xEFPorEIzkniUuMdF1SSTB0KZAaI3LApojOLGYFBUuVy5JunRPIVoxY6zD5GKfe2x9YBGqkAyHO7FppyBqtHNY6VivouuKu7aMUW8o6olQmZc3sEj1vV7y/6uUaWiseFvP7cs7izWUNqagbzkacc7JijGFKIlmcs5DOtWaBrkpiNPMGkyjtec80jcXIzxVvEOkQ9f1ITgqKYmcs0Nj5HniX8c5Jxqmb49vGV3EGftbxdjKiBLHKWHHIdStcNYGeCFmRlAZrCVkerURCZNNEnnQJEqVEzhjGch+LS3YII85Ilnp2dsZqtS6Z3QkXQyng5IblmGjcD2VLgnNSUT+O05/FB+CrfKDnyuKX5xDyKRJrnCYO9wP4L78vTjoA5dyEGIv/hBT5nbGkWBbo8nXvriiLbeUczkgL+H71My0kzxljeLqDx4e5KGWoLI63VrHeNFxcnvH06VO22y3GGELIBTd4ihOfE7g0Az7unY83d1e+6zd+f5IYLOe2/HQCIfsqHsVXdSIkMHn3Z0U2/WXp5zdrpFItG0dReXn//fdp2xY7V10NKKsYTU1SDTlnxgjRGurKYpzhz/74D2lWKzarNa5ZM/qEMobN9hztHCZFFBMvPvshD1qDrRypV1iX8FPP9YtrnLGs6pa2aZn6HlUm6LZpUFkx9iPjNLLb7UvSIeTbGCPaWYyzTKNnf33D4XYnAUqSDt+u31Otz1FoLIbDkNChJ+vEg4dXPH/xmpgizbrl7/+D/yk5DBx2t/yP//x/5NHjh7TtlrGfGPtROAkpYk3DMA1Mw0izakklua5URU4WYxVVU/H5y2fEHNhsVigjHBRrHa42fP7sc5yrxNAwttAlxr7n1bPPefDwIc2qpWlbtucXEiwUDf26rpcC0LzAzmMcB0IQtZXD4VC8c8ZFaUplhVGJvu8FN50m+v5ADp7GaK5f3RD7Dp0T7apd5HWZep79+AV103C+ajhfPeKzZy+4u77l+bPIe+9/hKsthgofE2OMJBMBjbYCy6uMQxnLFAI+BirVEPsRQkBnIb7XrsI0DaNbo8KEDp5aa4zvxYNCQ2WMJK4xYo1mLCouxhq6/Z7VZsP5gwe8fv1ime9WqxWHw12pljuyDwuPJ51UIVd1zfZsS7VqsJuWoe/ZNBW1Dxz2e0xZ9J1zTIee8dDRHzrOz7bc3NwyTAObTcvjxw/J0fPpp59ydna2zEeXl5dFmx8Oh45dd5AgQX31ev5v8/ju06dSTU/wT/+v/ze++8u/xEppLlzF/+a/+C/58MNv8fDhQ/7wX/4Bn//kY25fX/Nn/+ZPxQ3cVUXeNHB5fs62relvb+i7CZMztbXSOU2Z6CNDHxi6QSS0SWL6aDSuspxdPCUp6YTt9ne8fnVH1w0MYeJ3/u6/z9MPvsXl1UN+/MknfPLsGc9ev+a268imwjUVqlJMhx6UVMOr2tA0EYVhnPrleCUhUEfyLqCNhG6GBG8oIJ0a2QksKhGiR2EWlSKlFEml5TmfiRsqg1Ei0z4b5aVS1Z+FMGSnIJdih0ryPl1gJkopslZFEEGUllLSpSg8i3UILyNnFnWl04r9/Dk5C0x7hqiRkpC6M6ULIZ1KVcj2YxDXagnAFcRMykGgm1mc1IXcrpeOy5xUtW27JFx14d1N07R8zfyP41BYUx/PKY4YJI6zpma9OsOagWEYlnlBjPTuQ8NPXc7fRjBfYhtKITyJSIiYA07L9me41DCOqFj6XEYzq3rOKp9zATXnLEDxYscwzzNaa25ubhiGkRAiddUWGFgFJJqmLfzkd4tI/sJmfD/NmE/c2zoW9zoOb8BGlrZVnnsRM8lYvkulXbCEPkaRalRmCfKXVgFzIF+4EPOF5XjSQeQgz87O2Gy3VJVbKvqwFLqP+8dRueq4jS+8iGMd4svO430oz08/jp97WjCXzsQXX63ePJDTv5W/69lACwU633sIpFkk12DuTMx376zqpLgPSVqw3PMel4eNUmG4f91Ld0ALpG273XJxccHZ2dnSwp2J2ce9fvMYjxftzRTv/tG+7fy8PZn4ur/N4+sS7iVp+drrrb7yWn3Txqvr65JAKj769rdxlbSXlegUE1Iix8joKqIGV9U8fvyUZzvwKjMF4XHklAiTZ394xfbskso6FIm7F8+oK8OqdlytFL/w5Jwn5w1r63GFUVNZh/fFCXXyCwxAoQiTZxinxWyyshW6knu+aWqUEgGJkBJ58uiYqdCEyXPx6BHVekUfwyLpnLNCK0nOUwrUzrHZVNTO8cGTK2z2jFHhjOG3fvtv8er6lsEfePjwIVM30vU9u/2O7dmGKTRMfmIYembH2batGbqOqlqz3a4Yhr1oxUdPZRSKRPADd9NA24obtbOJ/f4V63qDMxVKacLUcQijkP/GUXDRSrE+E97TXGk8nZ+ttYsK3zQVXDQZpUyBYwRiTkxBEiU/jRz2twQvBopGZR5dnBE3jZjkpUj0QI6orLh4eIV1UrnLGFK64Px8S0yGbByi75C5uHiAKZXIfhhxtSz82jrqdsVu6Il9IvgRZxVGW2yIrKsWreS65MM1OQdIniEOGOUxOhOtYmVaZviGlyhCKskFbqdVpjvspbpbzs9UqosgUqQmCzxBIDUToJZ7qusOdGEkjQecsYzjSPSes7OzUgAz0rHAkH2UrlkKBD+SU+Dy8gxrlfgFFIhD27YLpFQCKZm/V80KH9M9OMs3bXR3r3j48Iqrq0vef/KYhxcXTJNntBWtgj/8//0LPv74OR9+dMGTB1ek83P2t7e0zlE5i9WKq4sPcVoL6V+La/usLqZSLgIGEyLWGlEklM4Yq4k5M00Dtq7ICGH49c01u66jbdf8rV/7bc6uHjGEie99//v8+PkLXry+ZneQzusUkwgChOKeXYRKlJZrLV+FM6GOLty5VJFVLmTsnEkxoFRpvZyMY7Ihx2S0dFtm7P8pDIjCaVp4DNadxEti4idE86PKkcwBpSOihWOxQGCVQkWBjMUUBZ7I0dhUYUS0R2dCnJbKuDGWSlcFEqRFXXKOqXIuHcBEThFn5ByJclohjpc4Qs3F5AhJ5SX8W9zMtRLuX1ZzbiVFm2VObVjVLZQEYBwH+q5jGkeqqiLlKEmYFl7ObMiqtV18lSDTthuMkes4jAdCFANAVF66CUpVi1CGwMgSdS3BvtFOkskSgzlXYZwU2mbzzuNzXHw2UqKuGuIkjuo+eDabNdZoQpJuaiqCJ1rNpsrhHiek6zpilOtlrMHVNbayKCMQwUQkq3zspH3N+CsXy/6yoOzrfj9zF+TGkJAxFRiPZLqUm79oOUMhycCsT7l8why0qZKtL+nILB3mWLUrgQ5Yt7QXl2ryCeTnmBycdg9OA8ifX3D4dXCynxeO/3hsJ0lVmYDmYzrNsI/4erVA2QBmkvRpgpGSyMDOizHLdk6TkZMuA2pRddhsNveqqqd7/Oahvwlfkt1+OxX8S8/DW5KJt3Es3vz56xOMn258FefjGzfme0lrVpu1KKYAaNHgzkqTjCbYBt00uPWK9uoRFT26ciQSVdVQVw3GOfphonaG2hlijrgc0NNEjj0XteKiUWwqIAwMXSRMXnTds5CpcwxorcQnQcHQD0xhXkwTuirtfEp7W1MgfEKOrLRFWccUM5V1VM4xkkBJH5VcKn0qYzTUbUUMwsc4W7dMh0BA4ICPHz1k8CN9P4h+fWWJ0TLVjvW6xXmPnRQQMaYmI8TARMIWOULrBFJljMZZTfATwYtLtHUarSq0cvhpxKaErlc07YoURPI3ZNjfivymthbX1PeSi9P7O+fMMHSM0yT8C47PnVJyPWNIKCfKKdM0MQ09KU5oBdZAW1uyU6TomYaINrmo6CTWTYW2CmUUMSs2m5Y6QsIyRvGiiFngDUrrBVbZOJF6VdrQVIZARSQR8FRaYWJG54TR8l2nQJ0DSiVwiVQbXG2lu6wSKhuB3umEDqXYYuRcmyIG4qepOADnAjs5cUhOUimOoZA4CyREJCEN4zCQgsZ7SXRzTBIQKU30npQDafLFnVdcw8PYk3NEK2gqS05iMvgmr3C+dtYajLLkPKEITN9gYYltYzlf1VyuW55cXLCyjjEkzquaKkPsOg7X19gPL9hstmQSL18+J0wjOkeMFY+UZK0Y66ZY3J4zOkOKci5jFKM0bTLWztzEtMQWIiWK8LyMZnO+5fLBFR/+wkcMEV7f7vj81Wuev3zF7b5jmALKVkQEJpWQAlpePAhy4c5IN/boIwFKCYdAq1zgUkUiWhXJ5KRBHWXgFUXjJhfZdYVAB2dDvTKOKy9l0ZXX5Hxci8uGJOBXBR1BAVZogbRqXWBXWhcZ21TgTJmsRMZaPqIUeZXsV0xH82Sli7CKVqWzfUSO5DIfC+pDyODqREo6pYSKUUQ0tFkkbHPKYGY4kxSTtNFoZ8lZS9yYynzuHK5yVE1Lu9qKSlVKHLpDSfzkWK2akytdqv+SZMyJnS5QNqUkcQzR40O3cK0gY61ZuDHH7o0+AXZorK1EFMBKsmGrGussygrEkyRGtcILmXU0ZZtZJ5IqksFGrARySsReVP4k1p3NVEV5SnyHsvgyLckkMs8ZOfYQfOl8Jb4mzFnGX8jx+y8yvgy/fkq2Of2+LG5KkdNscqOYYmIKUTK7rMpJh7Dc4CcdDHVSfdeC4VueFubs39I0Nav1irZpcO5IXD4+kceOxFxxp2zmlMdweoq+vIfxbufx5x1ofh33ZXndyWuPyUJx+S1dCTV3N0qf6Hi+8qJIlfOMaTx2kebtn+7TvY6HlrZ+27Zsz87YbrfimFsw86cVmXt7/0bQr5af3z3A/7LuxbskGV/f6cjvtCNv4wJ908fjJ0+WDtbk/f2qmtKoqka5hlg/4PyD99mcn6Fqy6ULJOXAGC7bp6zbFmcNzrzicrvGaEXf7Xn4+JLbF59z/eknfPTtx1SjaOr3vmMcBkgZo4XcdrPbMY0DZ9sN3W4ni17whCgYXVdVdId+WVDGqpLOplEknVnXDW3SRGUJrWijD8OArg3kQI6T6OlPE66uaRrHg8eX1EYqbi4F8UwAkjLU1vD+00f0/cDt61vSBNZori4vaNdrdvs9OQXOnzxmtTmnGwa+/4MfME4DfRSN/bptWG9WbNYrVk7R73dMfcfQd9ztr6VDu1njpxHtB4y64OpqQ4g92lgaV3F3+wKUwbqa6kSycW7jz1AEHya6fs80eaxxOFeXjodEId6L54N1LV3fMfYHmQvCKAlYBO1qYvKk6CEHyJ4cQ4EUVSglZlQ+BprG4TCEbNiuttzc7Xh1fSuSrQVPfLZa0bZNWbAzJgUuVjXnZyvG3cC070ijxygYux2WhDOKi5Us4q6pOHt4wfpiQ8yR28OO4XYgjYHkIyslKoQKCS5n2UhUJobZcEvhKnesjCsk0fOiwNXUNd0o0sNtU+G7kWg0kzM8f/aMB+eXXF1ccLi9o9sfmIaBoet58PARTeU432543u8xWqAt5EjfiaqX1gKliDFye3tLzpmHDx/Stiu0drx8cU32kRC/uXPJ3/utX0EjyeQD60iDxwT48OwClRJ/97vf5t//9V/Ch0xIgSlMmEtP8CNiWGH4yQ++xwfvPeXB+Tl3w4Ftu6bShuwDw3AgTBMhBtBQN4ZkFUM/iQKPtdTtijGJ14VPmScffsD7H3zAxYMrLq+u+OFPPuem73j26ppX1zsGnwgJ4XrUIubgDCU5L1VoBbaqycpIBTuFRTVIlgwJ9ATmJEW8hELbSmIZpYnBQ5FjLrOqgMZzpjLCn8jk4nMwF2H1sh7Nq2Us5OOyCdlHdJHzL69VIoQBIqBQflmA6RqjDMqoxathHtI5lldJvHrkgVotRoN1U1O5SirtITJ6D3Nl3VXlMxMxZ5qqhhDJaSJ58YfRqvQ3csbZBuccQ9+jtATN9aolJ02IEGLGaRFOEHNfzfrskrZZ0dY11zcv2LUN+7uKm+uXrNtmQVM0TVXgUnJStAZjhAeVUioy1BDinr4PiyJUSmbpHpg5ocpyfb1P5BxYrSpcXeGqmnq1pt5spatEotJGSN1aUzct6m6PVhqnXYF/KVxlqesaFMV0NDCMPfHUxR3hPLauQlOME0dJJEQ9NFNZg7MC8Y5hIkeBSqV3nEJ+Lp2Mn3fwc1ol/yIXRBGyYgyZu65n1w3cdQN3/cAQIj4W86Ullz3Zx9LVmAm+Sx+iZACygB4D06Uqx8mDoEqGusCQpLIIlOTiS4+q1PXVvf2a/7a8/2c7ZW8d97pAP8WQCUqqX0ISFTKXKdrWOXPP1VcSi0IILduYM/SUZgnGExWm4wcVfoJ4kJw6ZkpHSNq87733HpcXl+LEWQLUd5VPEzGAWbn4m9sJ+MvgPP11jJgL8VsrMHpmSqGRtazdXlBfPYX6ioff+Q7rzRp/uOZinfBRMUyKm9uefpxwWrG7uaY1Ck3i9vol0So2TvH0/SsubcTf3bAbDxy6A7HIrWqlCH5anE99VZE8kAXKEjHoyaOHWVlDAljvIx9//Ck+TqATzRSh9zB5lDHYiy1qVTE5hTUKqw1OOw63O+pmxXDYcX3zHOssxMz1Jz/mbLUlx4ifJj779GPqdU0u8Jvd9YG6brh88IDusGMsUq96hJAlUX/6/lOGi60obfUdMQSByVQOS+Th+TkPthup0qtvlUpUZLt5SlVZlNIcDi+xriVnR4wT0Y+ik95Ybm5uCnG4ZrVanRSBlAQ0OWOMBNV+moq6nyKGVCqdhpubG148f8Zw2EMYsDqyXbesVytSDoyhlwUzR4wz1LXFWUNTOZp2TdOu2FycM4RMP3le7zuyMZy5DW5dCQ66aNiGMNIXBaecC6es0ijnuNycM8UKXTu2qwadHtDUlmbdEIzGT4FYlK72zwYq43hUP+HT6WPQYFaOuq6piu+PLkpS3nvpgE2+VPxESSoVnp5WmrptpJIYAqBYtY3gq4HNeoNpW8x2w+OrK4Z9x9j1JDUJIT5mHIrb19fsAE3CGpk7Yw703Y5+GNBKc35+zuXl5eIh1HUdIQT2uz1hjFgsOoLvvrk+GX/rO7/G65fXjF2P6iM2QaUstlphKoera5RzfH7zmj//sz/j9c1r6rbio299iNWKOI08evyAHBK3Nzc4IwpEKkP0AtU7VtEtEQlmA1Cvt0QUg4+cP3zItx8+5uzyEmUcu0PHy7s93//0Bbe7gevbPfsxMAZF0hVo8cNwyohLvbEEHxdFzJnvpJUCY0R6tajLTcUPJ2ep/gNlsRXYjTGivpi8JXhDjF6MKkvXTdsiQlHgMTlHcj7yJa21S3QyE8hPPSLmcaqEdFoEe9OgNCV59nS+/57TkTPkNMOtLJWr2azPaJpmCdK97wh+XOY1Y8Rgs+86kXtuGpw17LuOse/xwVNlqcpXlcxZUCReg+dw2+Nqx8O6Ybu5wFUNxlaMPtCuarRWXN+8JoSEVob1esPtrXiWVFXLxcUVWoEr6IrKrUsnQxKfcRwWXpouErntqmXrtwjkUqTbT9WqZjWpnBRtu8I5R1XXx3NUoqqU0lIpNUUVVTnHdrtlv9uRQmAaxiKKIap+4lhe/m1nfsaRjzJ7mjnnSOX+UyUQ1VqjjDh8G21PjK4zM/ztXcZPlWScBjlf9vOyk18x3gXHfg8zePL3rMCHSD95bvcdd/uOfTcwTJ6YJLMXx1ezJAqnXYTTAHdONFCSpQmx8Yhr9d7jrJCL3rq/UJKNN5KZ5RjuJx2nVXU4gdWoo0LWm9v4qvP1deO0K/S2/fuq96WTz1Xcvx6zbnOefz/DqE5d2JeE7LSqX7Z20hmRXx7lg0/3r64rNtsNl5eXrNarN0hXx/G19xssE+jXja+CSP0s423n+6fpqHzZNr6pQ6OPHj5KkQveNCqNdjXYmpw1NnrG69ekbs807LBakzGEpAm7Pcpkss40sUf3Aatgqw6sYmZlLa22dIcOrTO2cWyrM0IQJShZsDYUNiAhelKS+9U4V7C7DuuswAB0IhMwRrNa1+Rk0DphfCK5ieQdxjmq8zW6qfB6Vi+Sal5et9RNg6sqdHGFDt4TVCTjJYB1irp1tG2RG8Vytt5inWO1buj6Dlu35NxSt6uC1RW3nsNe0XWKviuVwKrCGo0JE9VK1Ki89yijUN4TQ0BVLTFN5OQZp4DyCetqrKuJKhF1AjzdcCDRkvFonRcXWTHTMqArIIJywr2IsgiNoy/zX6LrevGrsI6UPGN/oHaGkGrGYUeMntmh2s0qSauWpmlo2w11s2K12WJ9pAoRtxUHZR8i4xS4vfZyOyHkfecqyJniJQY+o3IgHDrSOEkgNWkUkSF7Jj8QrcAncsxM3YTTFq8SfT8RQqRqRf2pco5pGBlHzxx6hSQQhPV2tcA/Y5RK6owDN7nAoEqVVRfn3RgjShtQluwz2WdUkuqvtU4CU21YesApCik5i5GiyTCOgZwUylq0caANCeEp2qpe4FvaaIFmEama6q/2wf85jn4IVFWL1RV+isKb0hZdxGD2h47b/Y5PXr0gFefv9ablbLNBpcSYEo11OGexRmRYyXmRZEcptLEY1MKdCDFjqoZmvUW7CoylXm+p2g3GNZiqZrzruD2MfP7imn4M7PuJMWSStoit7BE3r1JC67etDW/IoiMqmpWr5gUU7/1SCBQlR124Cgmvi0FjCUy1Fs8qWzmUMuSkSOYIoztClec1+bjeHGHQXxyn6JJTxcD5u9YKkj4iSU4KnkYX8nOe5e6LAlvVUDnhU+WkmMbANAViKNKrSpFTZBpG8eZwFq1gHAamSeK1PHteKdkHWySKIQu0sRDQrXHUdUO72lK3LYdDR7tu0FqJ6h2zUI0u+5Ol4FS1OFvkpitRjxMVTYWrxCtHm1klUXx3Ug6FE2UWD41Z3Mb7UM6lwJ7m5CMVXpA5KTtP41jMPgUCNZPWQTxzZqUv+Z7LPR3Jucj3MndbjhLH8zWRhC4s3mdaaaTBIugerUtSg2aWP/65w6VOITOnv3tbYvCu48sq7W/ewKeJRlIwes++G3h1fcv13Z67Q08/BlLB7804NU4Cd4qCwvJPjjf87NwtSYZnGAYOncAramfIJwz95WGUNzCTxWVBnTHLJwH16XGV/ZvJ4vfP10xfup8Y/Dxx+O8arM5cCWH2HD0zQLLucZIKLzkf1adKp2Lmr8zVzuN9cz/hOlWWmrPqeUglRbNar7m6uuLBgwciy3kClXpzfF1CsCSZX3E63w3q9PbPfdfXf9X7f56v/bd1aBwqCyrZaEVShqgMSVns+oJsGqYpoKZbbrud0C5zxroKY51AVXa3ZBXAJi43lqq/pbaaq8ZhQ5BKYdC8unvN5cMrNtsNq7Yl9CPjMNJ3PVdXVwzDwDD0jOOIyqKZ36zXQKKqHHVdMY6GsRgnVbVms73EGoVTEpSIRKHH1TX1eoVxVmT+4vF+mjbrIr9a0TQ1/TAwjgOaIBM5UnV62F4uCiD6YbX4wPg48Pq6qES5mqbdoJVU6n2YuGsSXa8YB6muzYtIGHsi0I8Tt4eelDUqZnSEMYKeRrKXgD34AYeirSpUbYkmk5iY0k7UaxjJOVCZBmsqnHXU9QqlazKJiGMMA75ozfe9SCfmHNjve9qqpTGGSSV21y8YK8vkG/r9jqoyWGewtaM937LebtlenLPantHUa5xr0NqhfaDJikvrFgOuyQd0eimExBiLQlgrsrq5YLVzQk2JvruFHElK0YcRcmKaBvppwNQ1rlpjdIWfEk3bkFLg0N2xWlWs7YptK27k+9d3HPZ7cojSiXUa3VZsz7eEAomyFBl+I+7fsR+FTBk1RlvqeoU1jhgTwzAK7PduYL/fS3BkK+qmJecCyTIKw0we9wx9h7FOkrtpVo6pUMYSEsRBzPa2262oBGZxJL/d3ZKAet3+tTz/P4/x2YsbHl1dsd223L24xtaGbC1JaTzw+auX/PkPfsCL61f80i/9Ig8fPaRuKy62a+I0YWKk0pZ101LXpQJ96Ig+FGiQLmIUjnHoGWMiZcV2c876/Jx2s2W9vaDzgag0u95TK8fd4LneD7y43jHFxDglxpDBOXIU3mim4OCRjlZB9JzIxmqUTpCKmlRWKDRV0xQFIwoHSqrQdV2jjSiWxUIgjsUnIackyZJ1WCtKfcZIcO+9X86nUghOP8/7c0wy5jhsjsVkG0cFqFP0wZtr4YxumGOBuZg4k6FVyiRjqEonoK5bUTDKimnydF3POI2kFFnVNRrZ777b4wq8R5E57PeMg0hDl/CZrBJFJpMkvSjqpiISi7dJQ1Ov2Kw3rDZbcoa6qdBGcZ7PGA7il6SUWsQTxmFgfXkp/LgCl5o9QFJOOCfKTdYZ+r7nMA54PxHCVM63kLeVEqUySWpjkbnWi1R4TBE9k7rz0fy3HwZB4mgR3chFJCXFhCu+HTP8KsVQHNAltpVGb1juM1HnlBhuhkaN40gocC5dCflfujGmwOKOydAi2vMO4+fSyfh5jtPq+0zoWbT0gX703Nzu+PTZMz757Bmvbu7ox4mUNUJnkbDYKLOQkpSi4GNnPkGWnGPOBmajDOSBmKaJ25sbXr56hdEKZ+VByDkuXRFJFOZ2IpwmFMeH6v6D97ZTdnTKTgtk5G0P7V/lUKUFI9fieGTjNHK33/Hq1Sv6vruXGMwciRnLfrrr95PRfC/jkIkryUJYXqG15vz8jA8//JCPvvUBq4ILnz/vTam3Lxv3qjA58VVn81716GsSh5/f9fnZkvJv8pjULGUoU49bb9huLzl/8j43h4nJZ2KcJaV1uY8y7aql3++5ef6M71w94MHlmu22wjIy9ncYlTlbr8tzLu5D33n8SwzTyP5w4NOPP2HtGtqm4fz8jN3ujmEYCCFwcXGxkPjOtltinPBFxWm73XJWFJbmDt4YE2MhgNu6olmvlo7oTO41pbJkrWW73d67Z52zxFXLZr3CWrss3lqLL4cPnhgmfBhBZYyBB1cPhAioLH0X0U5a3tMYePrk/WWBCcEXZRBoKs1hHMXTx9Vc3+6JUyKHhEbzYG2xSjoNSZdKK4qYNaOfCCnynari1ctXgGK1WrO7PTDEkSEqkvFCbs4wTR1KefzUcXe3o21XksBNPdO0J3swOYGKtJuael3RtI5fePwrtKsW11TYVUt9cY5ualRVYdct2meMzygMMcPQj7x8dc16LQG/0YarBw8ZhoHdbsf3vve9koxZnKsFEqflq7JGTBbLlB/ihLKatVsTDXg/MsYJaypiGnHO8PDxBdM08fL1Kz757FOBlpQueQqBddPy8OFjPvjFjzh0HW4r1x0lZPcQPNM4sdk+JPhA13V878/+HGsrjBEzr7PtOVY7shUZzcNhz2G/o+8O1LUjpsh+t2Pq+pKAyHVerSVINkbz3ntPMcYIJ0inpdAVoyR7BfTLZrvl9asbfvKTH/01PP0/n/H92zvi2TlPLxrOv/tL3L6+wY8jyY/8f/7f/xRnLQ8uL/nP/yf/GKVk3Xrx4nNUjqzrigcXFzx59FgSOD+x3+9Z1cLjGfxQRGRErbIfA5vzKzabC548/YCqXREzdN5ze9fTDSP9ODGFyGHyHPoBn2E/eHzIxAQ5K4yt0CjGUQJOFSXZqFy9VMslaNN4L7ymmBJZCUnZ1Y34GhSyb9XWAoVilkQ+FlhnXysfRIBCa7BJOh6iCGUIpYKeUiCEVHyvkEKsOvId5wLgXOw9TSzm3729W1+ipLJmHf07ZsKwyKs2zXqRgJ3nvxhFEnsYhpKki0R334tENirjKkNMnv1+4tB1pFigZsbioyeOYvzZjR3r9Zp21VK5iurQlHNkWK224tqexATvs88/ZX+4Y7td01YrXKUwNpXnKS7iFRfn57RtA0jHdg62X716dZTuVmrhYKUUiSGTotSzrXGiOGgkuDdausNz50iM/opSlZV4arVa4WNk9CPjOHA4HArUSVMZi6tEmjwVOfFUeBfr9Zq+7/DTxOQHtFY0jSQkr1+/xhWxEhlzR8NLvGQ0tpLJMoYZwZLpuxGUGCS/y/iZOxl/FRCO0xs4ZcEsXt/e8PnzF3z86TNe3+6YfCRncUHMId9zyZwxi1rBbPics0LluZl4VDhSSlPXDqNr6rJgT5MYlYQY77kXSbVBXEHvj1O50eNDtpyrOb5eWmAz96MkF0jyfS+YVPdhPqfQr9MrsKRJ8/bzGy+auzgnEKg3t7dsqyhQpPlal6QjhMgwjOz38rDHXLSrlZJARouKgTKqOCGfQqBOVKTK+VfzZyVJBmJR+qmrivOzLednW7abTVGaOAb2b8KmFqL4lyQH83G/a4h+mkS8DXL2pZ/zjknAT5sq/DxgW/+2jPr8wfJz1oZoHftsOVzvUa5FWYexjqoS4mPOgRwmQtdhUuByVXNRG1ycSIcJqsi6qamcoakbvJ+kLawy+8NeqsApcXl+jmV2sM103aEkABvOzjbSQrcWVzmmfbcspMMwLJyMuuBkY074JE7g1hT4kFKLgonRAetcUXky9+4nay3jOBRdcvEvsFZ08p0TnLYLIkFrKlF60UqctI2p0cqis/QOlKpYrdasC+44poRSBq1EaCGnRFO3ZKWJSnO2OROiaYTaOCpTOkpVA0WzPmcxBQuxBBBas23WxFJgWa9axmlkGEf81C/BxjhOGG0xZkLRy7wZJmKYCLEXuFuKBD9wdrFlc7ZmfXHG1YfvU9W1OFo7C1WNsg7lHFZXGJPQKUIS6WHTGpxxDMNUgito65bgI5WreP/pU8ZJFlMxqasIkxdX8RSJqSSwWkiks1ymIuOcQSmDQpS5UJkURqrKYcyKqqmFX1FVwk0rhqRTjHz+2UtQ4KwreHvpgIXg8ZPn7tWeaRwZ+qEYdtWA4vb2jhShXTWs1i2amuQnVIpstxsmP6C04urBJXfFTM05yzgNIlCyann48KrAe0e0Vmy2krzORRapemaGQy8qU9YKFOsbOv7ohz9i5yOvu54Pnz4l+ElgKUR++bd/i48/+YQ//fgTbIbVuqGuK1ZrCdJiztjK8er1K0k6jcIYhZ88RCk+KiXO8MPkefT4KXV7hqvXeAxhFKfu/TDw6mbH7tBxGAZCzAw+MIXAFI7V/cypL5IULFU6LsuCi5d7UtY2W4oRhslLeCbzvl4gQM1KOolKQU5R5rwEKovamS0dUKU1bS2dR2NqRNFJFMycq1ERQsgoJXAiWV5mrtGxUj0X4Obfn0Kk3uRoHNcqfRIjnsKnj2pKUGRgq+M8OflBCjUx4Nxs6FvmVaXJRpSjSJmYi9N1DEsMp40WDvVMbidjxgFlFE3bcH5+AWixOJjjwwL/rOuaQ6f4V//qX/H08RMeXF6SgjxTymQgstvf0jRScG6ahhl5ohRYq/F+LNwsU+wPoO994cFkchbVKPkZypIiBVor3Ajp2kuSIR3rkow4R61FUngYBjF/9RNj7BdolNa6zL1hSXikcCWiFFVVLddNa33fMLlcLq01ISdMgcaexqvHxDIdlSG/ZvzUSca7vvatFWDmYHj++xzql/eAtGhmGNXJ58YYGcaRV69f8/zla56/umbfDcSUAS34YPHPpIB3TkN9pLFWFA2Qh1YpwckCpWPhaGqLM0d8XCqL9ewMqZDvWol8miqujbNsLcsRnfxrTjSOh8z8UMuXEpff07eenO43w+P7Pm75/s9zMnEPm/TF/fryvS3EM0U57mOAO3pP3w90/VDkI+dzIkkGs9+BKoH/nFgs3aJ5V94wlpvPaxYjospqzrdrNuuWtq4EqlZuaH16f+TTrZ0kVvO9N9+H9877Tx+svw0S+EWuyfFY+PJ/3v/bsptvf7b+JiQVbw7drOW4tEFZh1can2Dyie2mwaoGS4XRmTAGcoioFIlTjyWyqgwVgTx4xjFAC83ZFlf0yX04djP7vl9MJLebTXE9TUVdI1JVLZvtmtWqFWxswboKPJB7CcKpu23IiRQLVEGJ1KjALrPISyotUoOl03YqkpDS3CbPizGTLsQ7Mc6SD886Y2sH5BJMJzQKqyy6MoxRiOvrTYsthM7sPVkpsjbyLOWAM45U5p9VU5GKwk3ralIcIEesq9FKCJUpJnH1daK8F3LirJUkYwwjcbOiH3u6oWN3tyfHwn1ImboyGF1BEl+JsYLJKyqbaIyGGBiHzNXDC9p1w2qzwl6cg7EkrUkZUgRDxhmFDRpTUJsSrGmcUTR1S/DXi99DZS1GaSprefjwAbe310Ciqh1t+/9n779+bcv2/D7sM9IMK+x4Qp0KN7GTyG6q1bAsSAQBW6BlQJJhGJD9bD/4xfI/YMB/jyDAfhBgGQYF07AJyCRBukmqyQ4331vp1Ek7rDDDSH74jTnX2vucOnXq3rrdfS85Crv2PivMNdcMY/zCN9R0SvwEUkokRPkRpYX0qUvHO2eRcSx+BKYEcKNPwm+xlkppKufm+TjFyDCM7IeBbTfS1I0ELEZTVzX9IJ2yFCPdrmPoeoZhYLFYlU56YhxGdmqLUpm2raicpW1qjIblsoWtKJAtFi1hGCRRdQZUoq4rmqbh5GTFy1cDMYqPg3OGuha4nbi0ixO6cY4UVUmOf32TjE9fvMI2LaqqaArPQilRYnvw0Qe83G3pP/2MZy+fs/Yr1icrTi9OigyqwIW6YSBXltpZIXyHKA1QpedORkZxdn6BdiuyrhhCwsdA7wPbfcf1Zsdmt5f1MGXhJBV0g8SvRepFFjcyqUBED1KlU9A+BX0Cv9GFp1OgyGXemByibSlGAAUiLmahaCQ4LUU4Yy1N06CVhezISV6ntRC9M6FU6A9rmpoM+I46F8CdxOMYmTAlFq/7b7y+rk3BuDEHZApKCMnGaGIQKKAQ25N4KBmReiUHtBIxjYRwMyaI2BSwSyOnxB9MBn4JHzzGm2IsKhLeIYI6EgdKKVNXNdY6vvjiKdZADD0pDDx48ICcAxRT0e22QnFwRZcYLs/+GCkFcvksMIyjKRyGyUvEzMdt6mTLeZE1xVhXujulUJCliz4Vv5WuCiQukrwQyRXMMdKUYEyFshBEBAAl3I1jhJAtXaS5OD2d61gMAueEUHA2IlJA+f0rgEv9wmMOlvJ0n6DImAlSxMGgTQHWWDJieOWzx6fEvu95efWS/+HPv88XLzdc3fbsR6lwa62x2soNptSdkz+PBDmpYpFuJDBGEUOgcg5rHEZZnKkpptRUdY11olWctaggkRNZZdGT0lqOYJTv9qbxGm9F3w9Qy82ahRT7rmPqwEwT1b2s5PjX3Co//P0Vo+yGUYqQMyiN0Y5XNxteXt9yfbsjoAnlsjTaYJ0lOY03GfIowZagVgTDp4y0fyfIWplIcogSWaiMNYqmUiwXhicPTzhbVVT6gEucoDN5UteYAv4jKNaUWOr55p+e+WaGnL8ve/beeZB3HP0qE3bpqnzdbuBvAgF820fqtqWqWtxixXq5pKprmrYR9SKvGPaBT372Q65efkHyHQ9OFyjfo1RGG8Xt/hmJIIu2gxQvWSxXNK1U9P04Mg4dJkNb19RVhdMGW1m6vuPm9obLB5es1+uZw/DJp5+QUuI73/kOy0VLzg3ArNKjCvwlRjFiamyNVQUXmzOudWKiVqpJGebnmkakEUFa6lUlhlMhyERfVaKmIoITnn4YCCniu56u23N7c01tLGcn56xXp6yW58QcCsm5KUmMRmtLjJK8GF1TKxhL9RatUEbPLVOtAGMBi1VaooJxxPcDr16+om3aWeGkWS2pnaGpl2QNp3pVtO8zOglsaLvbYVTRczeykO37nsF7cRBOiRQ8Y7cDnRnCwN73fH/zijFGUoiofWCZLGvXctmuWZ1e4tYO3driBC7mhjnD5fk5Nze3XF1doVKH0Zmmdiht6TtZ1CunIEe0UdhKvqsqBNxEpl6eylpRCjzOGYSiF9A5QZKORtePKGOxtmLRLvjpT3/K1fUVMUYx4VIWgwP0nFCen5/PJlvWWsYhEIIob202W8ZxQCk4OT3B+4Hrm4HdfsN3vvNtLi8vMEbT9Tvah5eE4Lm5vik8ESGUGqNYLFqapuLpF5/z7W9/G60Vm40ck7ZtWSwWUsX0HmcrHj18j+tXW4zpvrkJ8a9g2KqhXZ3Srk4ZA9xcXdHUjg8+eJ9PPv+cx++/x+/8zm+hbm7xXjD9QwycLRfEmHjx6hW/8+1vE8aecehI3lO7BmMtOmu6bkvdtJw/OKFtVwQqhqi43e7ZdB37vud2t+dqs2PwgSFm+mEUozWkW0CWNd2QISdCDIIM0FMhQReORfmtJlKuSMVqo1BHEBoAH/wsaTsWToVBlUDdopQr3g7MHVtrDDlCGCbjtkRGlSTFoVSefRMEzXRcrX49STguvMDB3G/ikk1jghF9GW938pqR3U+li6MRZ3AJZOvGHWKFGDGlk5NQ9L2fA20DhEL4FiXf8h2yzIsZ4Tlc3VzR2UDbrrm8fEzTLMhZsdt17PstxhlOTk5477332O9v6fc3XL18ivffIYwebRJdv+HVq0DXbRl9z4PLR2gtHQuZDywpOa6vr1FqRVVVXFycs9vtZvla4Iij18ywXbmvi6ytFW6ZKgqf3nuSAldZrJPkUeIcTQyBvuvJQTqrWmt8gT3JZ4rpY9NWtG0zw9HqupbinDLkEAoHKM9J5tQNFuL4gfAthbKJnPAO9+s7veoN421V1tcgJEeB3pzATj2Ge1X2TJZ2Y1Gd0a7i5nbD85cv+dnHP+ezp1+wH1Jpex8+K2chUk03qzxWPi9P+yJBfS6ttVJQLXYZkWHoIY1UlWO1aFg0TVFqMYcNFgwyWtpFKSXMUUb8rsfq7mOHjs7hBV+6ubkbcPhO0zG4+4p7n/jW/bm7/RIsFwhIRjLfbt/T9QPjOJKiYPaMMUXLuUJbicBjEFKXzqDLJDiRwkWJpfiXTJWclEgx4LSiqmpOiidGXVWly3G4hubE6fgaK1WW+8Ttdx3vDHMqu/G217+WB8wFmze/55tSEvt1GU/ee5+qaXFVg2tqxqHDb6+5ebHlOgykkMkRbBi4rAbqpeWD99ao1GCNoraGZW1wTqOtJkbP7e0WPwp5e3t9Qw4BlRJWaarLitpq+t2e1cUpi9WSunFUlQMSt7fXPHv2nLOzM5bLhWicN0tZyMeRuq7nhbKqKoa+RyVoskEFRdUsxE/Dj0J0LAt+Sn5elGOM7Pd7lFI8evSIzWYDKFarFSlluq7n6upaFFOUKG5pU+F0g3UL1utTCJ7aVWiV+eLzj/ExUi8aXO1KUDAFETIH5pQJk5OvVmiMVLpLJ9BqDdSQMylE8Z8YA8PNDuczmhEVhMw4XF0TcmYgc/boEcZZslFAwipQ1uJWtdzXCFFVOgwV1jiq2onEbIqk5YpkEttuR95veVSfSvU3RPLO87A9oUoKPURubq7JHeQKgXNFKXhY49jtdgzDwDCMUOf5GPR70YG31tDWC7QxVE7RtjCMnq4fBFZmLJsuYI3FGUcOgapuWCxqKi2FjBwjyUdy2OK9QL2uQ+B0teZ0fYKxhmEcCT4RfSLHzDCWRJPEaiGBqzWGz25u5yS0XbS8994HrNZL6tqVrnEmx8R+u6HfbxFI35Z9tyMEUROq61q65wratsY6g6sMJ6eXRRYzE4Liww++LYmsMfjRs+/29H3PT378U957/BEn61Nultu/uknglxzf+egjHl5egoK//w/+n1RO09Q1P/zZjwljz9/9O/8Rf/Tv/SH/6l/8MT/7i88Y9h3f+9a36HpPraBxhuvbFzhrsFZjrXgmjDEx9gNdTJxUFfXJCbfjQO8HxgD7IbLpPNu952Yb6EZFVhXGQvYC51EqixlczMQsFV/vA6WBWDr8xVwuJZpmQV25AqGR75czhJiw9rAWyByUpBip9MF7Cor8sxTYohe/MG0cdVWMa5PCVOLuHIMXnlA3kjFkVWGdBgwxBFIWmONh6NJlKZL2SAGYfJCtNUpLkh2VzCcpQRTDU3L54rq8qdynJju0KqaZ8dCtVQl0IaCvmgVdt2fwI8Qs3WEgEKWQUbw4YhI+qzaahWsZvUdnjVEaZyyLqpUuo5GuZcqJwfekAisdfc/Vq2e0y5acI+vFijTsCOPAftjx6c8/xln5PBKMoxwfbQz18oS1q1gtlmxubtl1wiVR2rHfD/RDoKocp+enXF9fcX29FQM/5UgqM8YRW1uSyvTeM8aMM6XLYo3wW6duRoqMQ8KPXhTgUdjCW9SS0YqpbQ5SkNMyR08hRYqU5CwUhbLSjbESJGcl3bYQD52Y1UqEUChEemUg4Mk6vcFe4s3jnZOMX1QF59AWO0KtTIHjhD+a68+HGD5l6WR0w8DTFy/54tlznj5/JT4YUCbbXALY0lmciEWUDzqqHh92qDhgkhDlhkzOUW4ao2gXDW1dsWgbyfLKjSQ3eC6ciUNHYFJV+mXGL1Khnqr6R48IKinPX/wt7/2q/c1zb+lA/sqlKhYKRO2gb22tLYY7au6uSAEnz23jaW/vKFUUV1OZcDPGWaq6mola1goERem7+/s2gvaXfbd35VW8bajDZfqW13x5Qjk/d6cD9ZbX/QaOlBRkScp91zN2G3LocLGn37wiJ1lEz05WGNVQO81Jq3CmxllDXVmq2hW8bpkcs1TOVBapULLCZIUBYj8wpEyXPdTCuXBG7uf5eiQVTPxCMKrWFIlmuX6PoQPDMGBCpiaRtDhRG4kSiVHujayYtevNpD5S3i/KKqLmMg6jdGxDIMSpCiUT9+gzUQn8pbL1PEOmFFBZoF25qCNNkocpJ6yxxZ9BkZKeg5p5kafc0ymhKDyMEhznMVJrR9IBkxU2ZaqUGDP4GBn9iE4anQ05C2dBF8EKY3QxCStzehQIZdICByNHxOBPk0zCxUgVIwtTups6QXJYU/gtlSbGBHoSb1VCeiWSlMw11k5qKpDRIi1sipuusTR1U86fwFpjNjTKSVKDIkTxbU9oYhJTLj9GfOrRWYokJAVRuu4Coc2iIlOkQq0RjLtVppy/Ij1pxJTLaIGnLJYtphC2rdVYpzAGYhqZ8NA5ZYa+mxOJcRQCJ1kq0ilHkbc1EnxMwgJNUxK8rDDalY4WRV0G2maBUZZuOxT/knwEg/j1G3UlKkAxRXb9DlOt6HzP7ec3OAUff/IpP/zRD0lasRtETS5lJTAUnTE60Q8dilpclG2FH+QeHEPEuKrI1Bq8j/Q+0o+Jfsx0g6cfA8NYCqFKFQgWJckApsIaCHdTyb2SOVzLslQqYgyMheidsyqiARMS4yBsEmOUucQquTaVms3oUllDiZMSZ+FyaSvXlZI5Ca0mAakpSuIAHbeiahUPaz7lFVMwpdT0veQ9uhT1tBJZ5ilOIiP3w+TJmzIpF57YHFmIazRlviQfuicKsNoIJ0AZNFo4aEyfJ87dJRKUsoZSUtCwVSn+yn4743C2orI12miUERihuF2L4eLQ7xmGDqXk/FhrqIwjq8AYA/vtvvjjFBPA0iXouo6b2w3aWDHEM0bQMQliORc6RGKKLJYNVV1TN7VIiocgdgxRC7dDK4xzhJQwpRo/HfkJvq4LoT+mJE7pqZCxgy9qnQlNRs8173KO8+H31E0JIaHNUZyhjr1OCjrIigO6H6R7GmMs5zHOcfy7jF95J6M8wLxP81PqKGqbuhhK2vrIzdeNns++eMmf/eDHvHj5iuvra1yzIIdE9gGCL1g2ybJnjeEcjpSF1NE+5LmzkZJUntR0AyhHUzd8+MH7NHWF0QprJ3t4UKlI4M5VQMilzTdVt98VW3+/hXjYzXdLNo7ytqONTn+83lX52rAc9J1AOKXMOEaGfiD4IIGgNmhtC3bQSfUUqdwoNDlNxCOp7FBSuzgFYzGQUyCHACkWuIJl0S44PT1ltVwClFbf6wH425KG+//+Zojb734MvzL5edP5P3r9L5IA/bqMly+vWZ9E6qpne3uFCjvWteK9iyXX2wFlBab47ffPhHxLwvue5WJBXTtcXRGMlgVBw7JZYLRl6Dz77UDlE8p7VAjEmNhvtgwpEGrLje+o6op14fo0TUvV1Dx69IjVakXd1LKQZ8gkIXhHMWhLRSrw9voaPUR0qkhG09U7bFvTXJyIXnvwKGu5vDwX0zZtZu7FsRHTMIxsNztcVYu+f9WUQFoCnZvdgI9gnWLZGBobiSlgcubsfE1Ak5SiH7rSsS3XjRU+RkwahyNnuV+JUonKGsFhp1yA06BS5ur5K5ZVxYPTc/YJdE5olbEZjHGijDJEHAKziEnjnIYwQo4opdGYEiAr0JGcAiDHzQ9jCZYtKYPWjqZaErsbzARFrSw317dY4zhZrWlPl5icy75oun1/aP037bwojn5TsMrimhsiBJ9EZ98HRi9y2cZplqeiSrXb7xlHMcFSaJRJ9INn6Ds211/QWEtlHbVtCaOnaWqatiYmcarv+z232w1V2+Csw1kHWBEsYMKDT3Og4sn7j/E+0PU9m9sb9vstXb/Bh7EEBwajHCH6ws8RLPrp6akkvlpxvbkBwFhx+a0KhlxrkcBMCaxR3NzsispYpHKOJ0+ecLI+x9qG65fXbLe7d8ZT/3Uc4lzcY5zh4fuPOTs/Zbfd8OMfPGVVt/zD//6/55/9s3/K//p/818whMgYEinBerXGqQTDjuB7gjEk63CuYuy8qCylxOn5Ca5uhPOTYQyJfvTsOk/Xj/SDx4eIqRt8ivjoCQXqwpwMqwPoQWuiyZNnrwhEKIH+dV1PivvSLbAsl6sicypwomPC9RRj5CzSr6moMmqtSSES8QylSCOJvcwnISV8gRbFJCaRUyE2z67fag7irbWzX8Ixv1YpcQtnVgiULoZ8XjHfLTwAbV1RB1QlKB/Kup8nqgk5ReKUiXAo5giEVLxujDY4W+Hz8BoPRPgGoipVVUVWuxJxhgna6mxVEg0nHYSmxVXixTMO0uHb73ek4NlvR1KKqJyoqxpiEnNOH2Yj4onPEIL47nTxC3xKuLpmWSCm4+jpdrsZ1pDHjGss7VLEIz7//HP6oYehHIecqaqG5WpJ1w1UMFsDHHww7GzAl2Kg67pZPt0P3cy3QRUC+ljiPnXYRkpJOl3TcXauFHAn82VLKp5KzrmZJ9jvB8ZRYr8YRg6CPgd10beNb4STcYDrvI69uxNQqwOcZGqsl38wJRs5KwYfePbyFc9fvuQvfvBDrrdbYlasLh4QM5iUqTOsTpCAjSkgnjCAU9B/wASqucognxdDIMWAlfI/i0XLd7/zbX73t3+Ltm0wWtHUTlqBBWKgzTFVqKgZlJtoGm9S3zrGVX4Tx/nNTx6O4y8L3ReTLUUOSVxCB89uu2Gz2dH3npwLZq9AM7QS4tCUZSuYE5QcQmm1lUqHOlwTAiugKEzBcrHk/Pycx48fSzXEWrQVSb4vOw5fFyL1dbofX3d7b3vs3gtKK/PfvHH23d8l7W/x/YYVPY3u0ePA1RfP+PBbT6grCfTH4ZZxEMxv27asT06ExxAju+sNbdNgq4pN15FDIIaIyp52VUOypBjY725YPTjjom0wTQVW4ypH27TkGBm9J0RPe7YgmEiKPVZpwmZHNhZ70rKzCodFx0z3xXNc1+FSos6RNDS4FDGM7J7+lG3oGZRCt6fsX0bWyyUX6zNCN7JoW6xV/PTjj1mslixWSyyKfTZshsi2C2AcMSoyFfr8CX7wKBPIdaBpMiYLCd7oWnDIKdKPI03R0Jdii5UOAKC0xWZptWfK/Xak7qLJhNGz2d0KfMAPhGGgyop+tyPFwMXFCf3Qo+qKj77zbeq2Is769xBTLrK9g9Q7tS5VcgkmDJLf2GI+Z6xlGAaI4LLhvbP37gQNF6tLJpiZLvLepIwPnoWuUCjRqFdT1zSTUlMQ2cKVU0mJhGUe6ICgIVjpjIdKlMgenZ3S2ESlBZ6gdeDm+ppxGPhbf/OPZnOvYRgJQYK0LgQ2m1sqa3CV4nK1wtoJTppx1pEpgZk2QCpSzJbd7hptLMvTiuX6McZIEWvRGLQSY8moMsNe5EhTzuz3e4Zhj88jycLJ5ZKcHTk7hrzE5BqdK1oqbq5fsd91bLc9J+sTIatrTR8j3/+L76O0ZrlaE1SmWjpOzeov+9b/xsb//D/9ezx/+YKXV694FB7z53/xpyil+Jt/+Ad8/09/iMoZQ+af//G/ZNjtWbcLzs/PxQgRhWuWLE/WVEZjlWbsPTkqatuwWpxxcnZJxDAG8aQYhkA3BDZdz34I+JhRRgtcKUllt3IVOcYiO1uUjbKEb9ZWCK9ROkgpK7lvYpRuWxYOQgipSJ5KbFHVhzUihFCkTSX4E+WyWeWCqLMoLxmNSpBCpPfF+yBGoshmFfNBg1u2xMID8OOIIklioCehirFIMAv/R8jKpsRWJdiOcU4YQjhAvidhAWnQTVDGI8nbQnQOSjp9x7Hi9B2rqmK73c7JguyDnl83cQQm6VvhOBTC+1GXbppXphht2raxiv1+j/eiunRysuZ2c1N8OSSJSAVONPHsJpK2JGBZgvlhZHt7y3Nj4fIBKkNTVWxBroEkxaGXLzyukqD95OSE7XYrSULhbTVtYqGE2xJjpO/72eH8+HtP30lrQ/Be4GT9Hlfmf62k6+WDSNamlKgb6fg66+j6riSZSYwctcFqRSRgyne01mKcwxkjJoTDKNdUinP36p50z1vHL5VkfFU1+XjMu6SO/1EeUJqY5MYcfeDFy2s+/uwznr18yfXtjqg1yliwhhQS4lUPOabZYEQUW9IcYM8XoCkY5TtkpeLymSJxFInK89M1jx8+YL1eFgURaYVLUiHCb9PfavoC+csD+i+rRr+9q/Dlz01trPvbu/PWksS9Ken7OmOCXBljiCnjR892s6Xr+2JTL61dmeAKD0YxexRINymLAVGM0iaeWr9a3blZcvGvqCrH+fkFF+fnLJfLuUqptRI1GN58PN/22P3nv6xLcFwhessWyv9fT6S//v6oQ4PtrXv9mzeshaQjWifOTxY8Pj2lMokQ97z33iNCFMWduq5m48WqqtjtdnO7flpEZKK3uKomxcheKYgRpWqRHWwrXF1jnQWj0c5gjaZGg1HYDFEbUdqZKnlJoXNFSoYc5Tm/3ZA2O2qfqKsGB7is6PcwRo/yHrsATSzY4EKwLAWQpmnouk7MlKBo+huiNoxoBp/pPWhlpQqfM6kXgrRSkTFJFXVV1zRVTexT6RjI4nqAYrkCE5CRpopTuWanBWtatFQWrfPlYoE+i6QxEEKU6pgRPpw+P8H4gHIOvaiJRuFzFNhqiOgshpzaiVGmoNXyDJ+gdIHzUZFlItKnJPjiuq4L3LIkI8cFqiTHUB+RY2fxEIliMNphCxQk5ITKhpA8MGKtlu64BYfGWi2GZEnUWpzOGMRgtGlq2qaZ5YpF0bAno/EhMobAcr0UcRGEPm6tBmXJ2QgU6ei85wItiDFhrBcYhrPEAKREDJ6uG7i8PEFbQ8wJSyIl8VAI44jVLZDQRryfwJGpCVmStqlLpLWmbiqy0azP1hJIGcO+67l5+ZIwRHTT0Loaa8xrMuC/TuNkteDZcwngfv9v/y3q1nFze8s4DozZ871vf4vf+63fon91QyyB4bNnX7B6/wlKKfwYqJYnmCzrUxgDKqtC7F8DToL+mOj6wH7w7PuBfTcw+ERMQs6eOvJTojEhGrS2pCSPhygQulwKgOKJYDE5F+japNST0RO0EDUHs1PgfexbMQWnKUUJLGMWJQdraOuKFCSYTyEUFaZQuiuIyV/B6qeifJbTwUPqGNJ8WBMPaBMAVcgWKcUZek5Bn6hSkJWGx+E9kwu1cMdSKbK9jv447lBMnhk551lNaxrHxPRpvhBOUpj3+7i4O70++oBXIylnxmEg54QxaqqKyn1ZOC5T8jKO4zwnhBBEPjYmTDHEG7qOa3WFM8IDSSUWFW+ujCkJWfAIrAnBmxilUdZK4F7i2ayybLcUGY5VDQ/fV5fkpYiOWFu8LjKxmElPa+ex+V7Kh2M2o0NKUV4rgWuRwZtx5rmmEESB1ZZuhzEYpeV6esf48pfmZHydgHZG+SlkpZhbdJoQhZS32XV8/Nnn/PTjT3l5dYWPmWa1BGOJWRGKnbkQqiTzF13lg8X6lE1XtcYqkemazElA4UwxOyGxjx3r1YKL81MeXF7QNlVRaChSjmV7B0jz9C2mC/PusXgbbOrtx/ar3jPpWB/vw/FGoNCsjx+40+5815FLG9VYwzCMdF3P7e2GvhvmSouE29NEIcpYSmWUMqQC0ZiI8RL3SCVFFZm36XtPLb22Fb3384sL2rZFk2a/jjclGF+3m3HfuO8XgiTNwc3RQ79AN+TulP1v1tCpRzHibOJs3fLRhw9oakMIe5bLBbvdnhQTbdvOLXvnXCFLg3WOdrmYIY9VVdHWjUziZWESGccKt1jM10/KWciAEUgJ5wzWVGCUBIlFJjUnUBh8UvhB4bJiuN4TbzesayfOs6UFHXTEp4E0Rk7rBh2jCB4oj9FLbKnEu8rx6tVLrq9vaBatEAezwmAZrZlVh3LW+GwYo6fztyxWBqsiQ/Sosad1BmMafAgoI8T3qqqKAZt+bd457rBOMIjjf2sUyliqlcNpMXLr9nvGFKB16LpCX55ifQCliMaQlFT1fQyM3lOXlrrVllQIkSiFtgc5y2N9/UmRaSLEbzb7uS1//z4WDPABQpGNJB0hFpGPgsV2FGiJVpI4aUeM4j+iMdgsoZAxQvYnB3L0aGNRJElQdz3r9YqmafDes1i0gDj0auMIUWAn2pRENolBl7O2eIw4un03J3QxesToLDAMPU0jXWFnK8bsiSkRosCuLi/XUtDKGl1BioqgIr0yuNYVCd+AzgqtazAN+y7LmhQjofdYp7GLmsY0nJytqeoGYx1puyPvN/h9R+dHls0CXaqVv67DAqSANfB7v/vbLFYtP//4Y/7kT/4EbObJh0/42//ev8v3//hPeDmMjH3Pp59+wrceP8Qag/ceaxwpBGIIhDHgbI1zNU2zxCctxY6Y2Q+RfV+SjGEgRACpGocpwUiRlAIGgyo8xZwFm5+TL/j8gt1QWnwsUEQdiTHPScbUJcgpS5JZAubjezcWOMuk7mO0EthKzmgylTMEIIZcrDVkMU9RtCBzEn62/CE8CVKBUuZpX+4rS6n5P9QkvZ9LJ6fw1go6RCkl8VM+IoYXDwiJYcYyFxxzSI8+6SjJEHLy67HOffWr40TCe3+noHgcn8rz0rlQQTo4unQUY/CQijGwYI1KpV/Pa5Bz7gDJnxQuSQIlCp7KCNFcoeT5UkAV8RxR0MtBujgqI7B7ZbDaokvClQFb9nvyaJqOi1JqNpiejgEUP6CqkqQ3+Pm4idfbWApLinDk36K1FHCVHByMEs5STrl4Y4g3UyiJqkKSRqslKZK18htOMo4vguPfx3+/Nbgu1e3joDGVbCjnzKuXVzx/+ZKnz57z008+Z9f1DD6QtWGz64m5tLtzJoxBsGWFXPMmqTQYsHaYqwDTzSo66A2mNphKc356wre/9SGPHj3i5HQl1QHA3VGUOgSF6uj7TBWrY/UjuOc0/cZDke/9fbzfX34M3yl3UYrJk+JNXJB3CchVVqQsZLSrqxuePX/B558/pe+EOKjgTmUlBJGRQ5XgRWm0tUJmUlmUWZIs5jmKXO1E/DJAXdd88MEHfPDBB5yfreXmVlM7OgHmjdfb1wnw39SpeNN23t6Nm9Pkr/35/3bISJtPqYg0RuaD5y96KqNRJD79uGOxXLNanzAMA23bUtc11lqePHlCSol+HFgsl9ze3LC53fD06VPaqianxG63Y9/3oh2vDbaQfytbYQppV65Pw8npKXUjZDztHGglSi0hMhrPZr/j1faW7dUV6xQ50WAaxc3NK3rfsxkG6vaUbtzThz37pmKIIyFD3O759nfeY9UscErz85//HIDlakVVV4xjT/SeEPZoJZ2ExtY8vdmi6hpnxPm2Xih0DPih56SuiNHT7TuaZsEQPCg1t9SneXBSw5ogCjHGGeN8DBuQYECEFWKMmLqirR3N6ZrKOWLORDK9SrhFQ05F+GHfUVvHwjp0jMV8UzqelMqhOzKCg8lw7JAETRVGYwzn5+ezktckuXqMP4e78Ae0kiTiqFKZhkwYPEor6mWDKmTPVbti8KKIgpYAKpTOqtVrTBrIwZNQLBYLUoL9vqfve1H9qWuWy6qQMTMuUwQBEtpA7RzaaG5vd7x48ZyL8we4SrDoOYtRVs4ZfarxcT8Hk6wEZptToNvf8Omnn4lL9ek5p+tL+ijFnGVRu0opcLt5xWJxQt0ssfWCOF5jrQR0xETYDSiT0bXm+tlTMA7XLPgbv/fvcPnwIS9evORP//mf4LfdDHn4dR39q1f8/ve+h6kdH//4p3zyycdsd1uePHpMU9X89Kc/4yc/+CH/5f/2f8ff/2//b3z62U9JF+d88skZj84veXByiveRNHrCGAgJLk4vaeolSTl8gj7BbojsR9gNgb2P4s+gpESUEFnUXNR79LTuZjm2bbugbhUhJXbbjjEMIsxgK6raigKVEiED6YIkJkNQAJSaJWunZEMePgThKQZiHEkF8uSHscjiKjEczhmjhacTSr0hlg6IyiVJpRDSo3jkxJghC9QPKIG2LXK64mE1Vcmq2sr2ggTQIQQJqI0pSYQ+qsQLhv+4u5DzJDOrDvfy3JU1d+YQSdYPvIzj41HX9Xw9hxDudOmOk42cc/HiSOShx1UVMXh2+wHvR0Y/EP3A0HfSkdYHTsw4jnMSM3U4FFC7Qq7Pmd1mIy7sWmB4zjnpJuSEmTAQpTurpq5W6Sq6uqFuW2xV34mtpo7W9J2O412lVEmSbGnEyDG5uLhgGHqGQWTf69oy0QW6LswJSNu2OK1F4KKcQ1OK8Lu+Y7C90AGiEPQn+KrVhhxTKfZ89filOhlfBy4l3YAJZpTpx0DKCh8Sm13Hj3/yMTfbLbfbPbf7jn0/EHOmXtQzLs570fzOMUkLJ2XIkp3FdLjopjadGLNIMiJeGMURU8qgkA0PHz3iweUDTk9OiqmWxpYMNsdCjCwdQ50PPgzTl5o01yXPuJtsvHFkykSVp4PG3BV5a4JRWvD3XiOfOX2oPjyrjp4/PgvzC/LR/493rwRbMfLy6oZPP/+cFy9f8er2lj548cbQkJXosoCYfk2VlTQxyVIqcnWIad98EwjZntJmbeqK09WKDx4/Zr1cUZkKUkJbQ0YmobfBnI5/v23cSRLvb2967PABb9hCvnMspx7XdCqPj+Nc5VDq6JpQ82aVun9e/s0ZTdzTOsOysTy6OKGxGpUTcRx5cP5QiLTFYfu4wj0tMCkmXrx4wX63x48jp6en9Hv5O6XEcrXEOIeyltvrDf3Q431k0Sw5PTsjZMNtl7i5ifgXV8ToBWaS4lwxTDGyHzs23Y5KgV201M7QM3AbB6KO1Cc1w+hpT5acLc7A7VjZJRmDHy1+v+NV15NSZvCjzDtF2hYiymScUwSKwolX9Ptr4mhIJhNzD1WL04baGRZVi1NCCB2Dl8W5BP73iyyH6uddg6xp3IEalNdHkfVCac2YS7VNKSrlyF7uZZMUzWJRpCkFTkqZa3OKIvWdMr4fqF1V4OJl22VM+zklGZOkeM6ifHKAwhUjsFgmkDmoA2Wn8EggLa5UkFEQfcAUcKvVBuUAFcXbSKmZEKtUFi8frdDOUWfLxOdbLAzj6AHFYrGkchYfEznGgln3IoyTpIsrRUtF3w/iGeAcasZyS8CZVVuSvgxJgj3vB8ahh6zxg2dze8PYy5w5FdDGscNazenJKRbpyPfdjrZxSC8qk4pzs8jtJrRzGKdQKvLJD39C3basTMW/+7f+gOeffS7J+H7/K7rDf/Xjf/jH/5jHH7xPvVrwpz/+ET/6+BOGGFmdnvD3/pP/hO3tLU8//ZT/6r/6r3HK8+DhGYZIzD1KB+pG4Ewhidns6fkFpq4JStEPI7d9ZDcmtmNkNwb2PtCHKM48Wa51CulVpvayamapAHufyDmgnaOqavRaIJ2+VPpD6XjmDF3XE8OhKj0F3JmDgtD9zoJSapawJSbGYSCW7oYfx6KAqagKVCyX+zkWeNSUZKhy+wovUhefBCm0TCp/2pm5UGutETftXLgGMRC8L8XDNFfHJygUMHcvKfDBlJIk2Efz1TQ9TUnG8ZDXTdyXw3teh0up+bOmNWPynJiSlYOKn8w11ona2zgMhDiWrqn4dilz6KxOc9LkoD35HEmwXli6ORP8iC/Qs9rKmjIlKsdw0ZSEsD/tuy7x5sTxnQprfd/f6erookKUp20EIaU7rQqcVBVOi505X0pN+y0djsPxki6XsxanDdlIVz4bQ1NVImBSiioKmY/Q0t1x1ha41rvdr79wkvEuCcbxQlY6bXMHgJwIIdP1A1c3Nzy/esV237HrR4YQipu0Bq2LS2uS1qb3RelpqkqWz1KHQLw0CZkcvpXSVM5SOdEst1pTWUNTV5yfnbNarWibdnaTVuq10PxIunZKmCTszFMGMn3Hr+rqqNf+oPRJ7z722ihn9LXNHlQh8pREvLapQ4A7Zd33cg2O6/QxZobR8+rqihevXvHq+pp93+FTJCkFSpPniVWhjiaAlIJ8dMozZGr6PFVuxmn3FEKSWi0WnJ+eUldScWZSqELasrNc8FuSi6/szhz9/rLk5N2re+poe4qDLF8578cHd0o0mM7UvS295b75TRyNCqzrivWyYbVo0JNHApbV8gRltZB4c56NxO4sPkpxfXsjeNqUWSwWhcAoE3rbNJjKoYxhb/cCR0BMQKumIUVD33uudjv6viP4gdViJIw9RivWqwXaWCkcGCUdh6gZVELj6XMAnYTnETOmdtRtQ1ZeKkLZ4HRL8JFEEnfwHDFqUl4qXUADOIWOmhwFK+xUqdSljDOZVkFrDK12NLYWOEbWJDVBIOUYTVWvaZE9VO8OjsH3R875jghDuTFQWh0KAll4VaG4ZeckRM9c8MBKFxM/jl4XAslHbC2I2KwgGXWni3oIFg7YaTh0PO6MlMm+8O5E1q7I3JYaEwe8O0gSqvVEUDyq4ZRrRwIcICsSsggrrUlm2k4mZyNcBx8Yh5FqUh3TmnH0KGVKcUGSkRCEqDsHhTlh1cHV11gDqlQ8rSQkQXsUmsr1WFPjY8d+tycGI0IaSnDcaIFZVXVNGmX7UWXaxbKovaRSDa2ZVF+MdlhTYbRjf7MVX5em5exkzf7mdpbf/HUd4+2GbfOSfrfj+tkzdEgs65rz1QlnqzXLqkaHyD//R/+Ib33wgIuTFXWO1I3FWFlTUhSFJWUsq5MTUJbRJ3b9wLYL7Hxm7xO70dN74eNIJ0pNhhfSRZpiguLgOwXFsRTZdBaX5QoJBOU+glTck/14pMKoJv6h+HfF4modYnxtTcilmKdSmBWd5PovUthKkZQoXaXpXi4Qv+lDVLkftDqsOXmeZqdOxLGL9xTwB1IWmPoB51/I2FOwNN+XBbGi8uwNMt2TahJ0uRc33RfSOXRmD49PpnbHjdlZqwABAABJREFUpOg3I1q48/h0frwPjL4k+6F4gxR7Awn8Dx2QYwPC+12WqfMkfA8/f8eopACgTYHPcfc7TtyM6VzNXDl16Oocf9cZBqa1zFfp4I0UY0lSmIyoKYqGFqUV0cc5UZmWgpm3giSTyiqyDeRsySnPydEcWxbY+xQ/Tc+9y3jnJOPrqCPdz7qnC06XLD6lSGUt3dCx3+95dXVFN47c7jtud3vQina1EgZ9FiLohEPMIZQWpcK6CmMNuWT2ohZzyBJjErt6VxlW6yVNVc046dP1govzNY8ePmK9WlG76hD8ZlDpLgdiUpU6TjSAg9WHfNk7C/qXBYuvnZp3CG7zEQTqjdtVBynd4+29CTI1tetkgZ8en19B3/dc3Wz57OkXPHv+nM1uR+cDQvOaNL9lotMJopdAQy78ADmJi26ejlqWyomSa0Aj7BGjNKvlgrOTNSfLFVabcnMfoC1KHZRs7n7dr9/yP75Bvuz4TK97p+19yeff75Ko+499zf3+TRpro3jv4oyLi1NyHBk7T/QRkqZxSzq/52Z/w2azmSs5bdvSdZ14ArQtN7e3xCjKKl3X4bTBWUvbigNyJhPDyNnJkpAQOrY2BANDTOy852q/x+lMu6hZryz9dkulM++dn7BcXRK1pvOeP/vn/4Kn+y3XKfLofEWsE0ZHBr+jXT0g5sjtdsvZ2vHy8xekIfPw/EPai4p6vaReL3lxfUXV1qK1rmWBylqJSlNpesWc0AR6RpLOLJqas+aESlfYbDH5qEtpZC6OIc6SuMeL4ORSHuMhsL8b3BcogBbs8Dh64UEd3RvjIPCLbjeCgagSQxzpbgdi4Utdnl/ghohJci8///wp2UcqbcjLJamQUav1YiYgVlU1z+Xy4+drI+c880umxdv3PWEnghPaWVxdU7UtgYRKeRYMgVKVVRliIquSaCDQkdn1dfY2SBhTQZqIr3GW3AwhoK1g97+4ecbFg0vWJ6csFwtevHiBNXVRKtK8uL7CB09VOZzThDgyDBFrl8QkvinD0JOSxtoaZ2shWVY1zrRoNN224+bmOdfXT6maFRjpxKQYODs9pa6cwPi8RxuDdY7zyxOurm8IO0/dtpyeXYCy+CCeAnVTUVUGsxXFnH7o4eaai4sLcfr9NSZ+/9Hv/z63ux03ux0XizV/5+/8XS4fv8fq7Iz/x9//7zg9OeHx44f85//Zf8yw31AZ+O7771FlcFmz7zes9brACBtOLy+5utqy6/e8uNmwHaELkmRc7zqGsScEMaAVfwhR5dFGz1yKyjp8UqQkyAaDIvjIOHZUxRRvOuaDTwQ/EYjDzNmwtmIijBOZOT1TBTpngZgGP4LShTyccFbgyVprDAo/jsQQ6EJX1KykCxhjgBLkG62onJ15p5NRpHQZD4lFJhcsvyT6IXkyARBPnilAVlOQXLrNEFCqPD6pxKlpixwC6klOR8lxm7gJIR54ACQ979s0jru2B55EuhOg3z92E8cPhPgsBSyBHIkUrhjYOVfNsLPDjsvcaefuUKZpWtzknRGLTPZQigOlM6tjhLr4EpVjdNwdSTkXDqF07mPK9P1QOqkHuFTXdaIw5hxVXaGRpC+mRAjSRZ7CCu89qITSwg3zQRTGUHI8c0k8c4oEH9AJKmup6+YATc3S5Wiamj4WDkq5jvJc5H+3+/Uvjf017Y81hqhgu93z859/zLOXV3zx4hVjNhgjlUgJZIV8tdlsGIbxkAFrhVKChXVNKxXFwrbPfQ9BvBfC6EsgDLMDbogklVg2Nev1isvLCxZtMxvbTGlUlrMx7/idKjh3/6HKZ9xPML6yo/F1j99RoDCNX3bbx9tTSroMGcVms+XZs2cCS+k6YkrSIouFdB8TGD1n7WVvEHWvRE5BNPPJRTXmGAo2JRvgKsvp6QmXlxcsV8tyyDOm3PRKSZJ4v4X6iyQYf5njm9q3v87f8RceIfD5Jx/z+acfoxDjI2crFtWSH/zoJwRGkvKcnJyQc2YYBq6vr0XOWOuZlDspeDjncLp0KK0hhYCthIsRUYSsiBmGpPn+T35CFzTBLKgbaIyiNWBSx/c+eIghcP3iMz77+DPGmAkxs1SG5eKERmUqsrTDi+dEU9XELMH+/mYgj4Za15ytL+lUJAbP2PcYp4pyUVuMljQxG2IWwp/RikbBe5egKgVGpJ8bGlQSTKwxIueM0SSjIEJ2iaqqiXFydc0Fwy0QBq20LEhKjOMGP0lGG6pKeA3GyOKigXEY6PZ7NJP8IlSLlmwyIQxs/IhvDXs/0vUdn/7sBd89+5BTtyINI4tmgadj2O+orcYtFhgruG1npaqWiuPwFIAAM+Qg54wtPBEK0Tr0A2EvCaZGFiybIJdihdEa0zazyk+Mo3AmlMGULrNSovLCTO1QxVuiIKVTJuduDh6qSgKHqqpo25a+HxmGF2hjWa/WdLueruvZ3e5YrU6o6gYfBqY5LmepngqBMsu+Rctus2G3e87HP/+YygqkIcWOEDtyHrF1LYaGSbol69MTxuDx0dPUFlMVQYOq5tXNlsuHT6jfb/n8ky/48599zrYfGTFYo6idoa4MbWtZrRZYWxGHkWfPnmGN4eLs/C/phv/mR32xoq0VsdY8sJnLkxVnjaPKkb/7h3+bV1evuH72FEPABfHS+ehb32N3fUMeAmrMjD5zvj7h5OSczmtu+8xNl9mMcNuJ/Gs3BnabLTl7yMLLUUbNHQClDNoYoUAqIe3nIAlETNK5cNbK60pxQSmNImCVwSpNr3rG0TN6Twp9QUkkUXjzoq6UiqQpTMGyl7iG4iFTgnsprhyRe5VGFf8EpbIk4BpAoY0oesYCQxx9EHEMo7HOzkF7DJGYD9u0WgEGlQ/FQm30HXGHrKSzl0vFVhlmh2kRc5EuyxTPCTdXOv3HzguzWIvOXxr7TMnDtFYaoxBlvwlSpOYuiNzfMAXv0/nQyrJol0ddE+Hf2CL7Kp0YOW4pRgQiLgmSKZ0PjCYbDVYxMRVmvxKQ7ueRAYJ1TtTwYiBkqJShcq2oqCIFXB9GtrstY/ACnyNhVEIhqqp1ZXCmRpd9JUNAuBN+9AzjKKwAbSEXaeIMSmR6CGPEpygGj0pTVRatnVxTbqIajOTssVYgoCpZ7KgJ8d1jk29MwvarAl45t8XqvLSfjDHUVcVqteJ6NzAtNKE454ZCJoKpIietbTGAkx8t/U/Jjq3Flv0SSJQVzNlkUBUlj7ampakrFk2Ds6ZUvKa8oWD+srSx5KxM3610E8gTt/pwHNSh0zAdj3cNEt8lWfjKbR1DoI7ec58w9mX7ePhbVDOGYZTqRggFj1dwoEqBPhCT5rab4s625W+4m2AUaIXsLlqLdG3dFJnRHJgIY5RulVKvf/evw8V486F6/Zj8Mtt70769y+d/nc/8TYFQLZcLfPT44BnHQD+MWBtJSbpXxmSsy4z9UCpyccaBGq1ReXK21pji3mpKZdE5K+1pLctfzsUlVxnIFcY0GBTK1UUJKhBSIBnDGMQl3EeLtwavIKlEax26dOh2fivbJxNDYNj25CwBeQ6eGCBa2A97sqsgJNIwoidyYBL1NaUEPuOwoDK6VJhq1aBdwdHmgMlFkQVdCNZTxRByngxBM0r5sg2ExxQjKXuMzozDBKdSBJ9E/UZbcrJMOm9hDBhVWvdaC7/CGtC6kOIh2oxJFVs94g0kZ1CpokdjkiJHiyFhmpblosKZClPVaGdJCNSKJADWSV9/wmZPc+0MVy2wyuDHYtSZMEbmk5wi49ijq4rDfJyg/Mh3hZTj7HyuVC6BSsaUBVWqqSXrUBlX1YUUKwRcY+U5WY9E7Sf6yNWra4Z+xI8e78PcAc5ZkUIq3RDLOAT6wc/FsW4/sN8N7LYdt9dXVJVFvLV6FktLVYuTvSkFMRAMdFM1In1rNSGKV4KxNcEbXt14Ygq8uA1ce02X5LpdFinjcUhgFXHrqWxiUVdkRlFk9IcO0q/buNl3Yi5nJOn+7PPPeHl9VTp4DmM1q9WCiszoHVXl2G53dPsOmxSNFiPOpl1Q1Q1diPRDKE7eYt7oQzzEHylIwaxIlKImhZ+yiKFIWRL5mRieEyrrUuRUc5IxX7Ol4m6tnddQSR4k8J8KdnL/51nRLhcBlYlroY+gyoKKmgpyEydBz+uw1rqsvRKYz3yBXOKqwqWYlN/KZuYOTM6ZHCUVUPkA8Zm+y3FMkNBSLS9JTCjO9VOl/CDlevAZM+quC/1xRHMHanRvLTzuzk7FqCmpCGHqZBzU9o4hWUq5mWMxKdkF71FMsCgzH1t5vaho6gJPkjxJYKYTB+SYdybnXeb7uVBMLrAn8S1J5OJtEWirulwn+fA505xYuhXC+ZQCHcX7RU9wzRgJXq7dFI/8SXIuZqX5gKzIh+M5xc9KZ1zpCOWUSvGmXIdKzzAyrQ9z5FeNd04y7p/YXyQgizFibIUrpL/TkxOMq2nXZ+x+8nMYxmJEMjKOhaSj7rLnhdziMM6h7eQ0LUG/KYvipG5SWYvTukjeFak5Mo2ztHXFoqmpppYfgkKYMt2cywIOCKa38D3maJpD7Hw0cRwfn7clGseZ+LuO6SK978R5fOPlKS96Q+Z/HJzff//0PeYKQLGRl59U5MwSylisOSRVxwG73HIJivOpXMwUOknBaTJd1JJAWGepKifdC1+cSNHM3hqaA3bzDcfincYbKiDfRILxqw78f5Fr5K/7OLs4xQeRP72+2Yg0su8JxSRuaS1WG25vbuYK1Wq1msl8kPHjSNWKa/dUddZaU9cVxjayqBVircwTGmcdpycPqKJiQDOOPWMX6cZIbRpeXA/FWXqNuTijQqqSZszEoScMHfv9hnVd4YKCPrAbN4BAGBKgjcGnyPPNC84WT8QxthtoqzXZZ3z22FpM5qwRz4bJsRaVcdrJDZzFEDNlaXlrq2dinyoFkaSsBDQKIWlaMBZC7MXAKgwk5en7Emhng6ISGVebCUpjrSOnyH67LUGvFifcscfVlVQ0dTHVSorWRJ53L0hOY13DctUyhAYfLFo5VEqcnSy4eLgiFNNOEug4En0vDGkyZEVW4lAtBPZSGDKiQqMLJGXYlwTDgrVqdivv+j3LypUFm1JpFsnISWkrFkljFGAK9phI6zTaOGLM5MKTQGXqeoHX4j8Qk6gAKSXw3rbRhAJN+9lPf44EYpambvEliInlM52rUVj2+579vp+hYVevntHte4Z+JIZE0F6um9zRLC9ZrVoWbUO37/BjLJ26wNnpRTFsi2x2N2hjMaZB5ZYf/+wZz683RFNDvSJViazEAyIOo3SmvOPV7Z7aGr7z/hLnGrrtDZvrV3+Zt/03Oj599oKqqVBaswuBn/zZn5JSYrVa8v5HH3B+fsb5o0uaCN2wI4SRTz/+FHxgVS9YnrScnpyyWCww1jHs9/TDQN8P9MOID5lQyNgxBnIMIg9rSgCoxCB2CsQF0nsI9EGUGSXpTYfOB3er6nDA9IMkCHNwP8mfAmhN5Zx0O8r7UhIhgpTCrMh2Zy1Wk+yt+CdApq7r+bO993NALqRuW2BSer5/pu01TVPijkjwAoNWpYMywZ4AkXMu++YzUJKhg+Quc6A7Fydn+JLEcW8sXOc3JxnHMcD02KTolHMusUuYv9sc181JXaBpGlFZKvK0IQS89XMSNBVeJ6XLKcCeZGE5+veXJRnGOJR2h/itxKtKC1cYwIdAPwy0i2Uh2ksxqaorKRylWGCywnu1JcifoHvej6QgCZJAaMN8rmNMJATqJWztPIsDyLHj6HphJucfe7VkOXDzsdZa48ra+1XjF0oyfpGATCmFmxeGzGq1kgXsZsOL60/ZbLd4H6mcI6ExNhGTkDYnAiNAjGE+mc5ZfJT2u+97qsrRtDWLthEreEDlTBwHKm1onGO1WPCdJw95cH7CqqlwZsrOOMLOH5Scjr9pniBS04unB9+RZf9NjbdDsd6uxHT/fcaYQ6CD4Ai997PTpi4SZzEdiG6CL5TtTVm3vD2Vvw+dIa1LVYc8d4yEeCYumyfrFcuFGE4Zo0ruluYLPoSA4nWFnK99zOZv+Pox+CZhSV9nu7+RcKivGLvNDbaqqCvLk8cPePDgEh8i/eiJITAOe7pNdzRpi5KFcy11XVHVFcvl+3NndFpUtBbJQMFBC/k2DSMvnz1nu+vYduBVS1AVg2ow1uBURqfAx59+jMuRReV4dHnO6emHqHpJthWbbksKI47Ed37rt9k9/5xq2HLe7lg0rRiIBk8/DiitcFXF6vQU1zT4nBi9kLm994x+pN930oV1FbZppcgxVQGBo8qF8MfKd8uFIzbfd0BIge1+z/pkAYiyzH6/Z7/fMY49OQ2crE/Q2hBz5mS9wGhRqAoh0m23QKZuqiKFKxrvQ+/JUZO0+E9IkUVa8WePHjAmUTWhV+jlQ3Q+IQ0VMXQ8TT2ffdHhTENNotGZ89rSVC2WjEaIqjFDzBltGkIYCTEyjHtyiHNQ4Yzl7NEDKmu5ub4mpIxxFSenpwKliomYI1aZuXp5TAh1zpFliSamSLfvSBGcq7DW4f1wwNcrg9XVjG2XBEVcoAMDpERQUFcWreU4jUPH9dUrqsqxXC4Y/ch+tykJb80wDOx2O66urnj/ySMuzs4IIfLyxStiGnHO8OT99zk7X6M1pBDAgVNC3n/06DFKKbwXBbL9HpLO5H7gBx9/Tp8MsW6xyxXVoiHEyLbfMyzXxCYSxoHtzS0uO7KHz754yQePT6lXK3x6N/nJv47j//enP2C1FsPWH//sp/zO732Px48f8ODxJWMY+dnzz9j+8M9ZJSvu7EZhFbx/+ZDG1rR1y8nJKWRN33XsdjuGYWAYR/q+p/cZHzNjmLidUg0eVSTrgDZT0KrJUTqeEqg7rFVYcwjOxLtng1KmdFsdGTHIm0zT5sB/PCSlwXtyFNfpnITQrXPCaTDO4JWIWYSQcMUI87CtSThjKAH2QR722C9q4gY45wrcSbozY/G7mfxsJlls732RbM2iCHhfCYqJHC7E6WPrgCnBGYZh5kkAc4B+HMDfXxfvdzSOi6SH12ZSjvgwYK0jJuEi5CxIFKsOiIop8ZkMK6efuUJvDH3XzZ8xwXSn/T5wxirIHHFZ9HwsJ66cFCQk3m3blqquiun0KHDVcu60lsRiHHti9OV8RIxSOK0ZQygdXXVQ+zKSZJAzvo8QA1qJrG6M4MlYY6mVmrtKtqpEndVHxn5AVwpXtjH0A4qD38kktiTJ5+E82GJPoN6x+PkLwaWmg/+m6vjxODxWAvepTTU9Xnb8cINEMsUdMURSBuMszlWHiym7uUKuSJACOkUqo2grQ+U0Vmeshca50s1YcrpasmxbThYrHj98wGLRUjlTOB5ykarSxYADbGruXMzM76Nko/zxZbHi/cD+tZvn6Djef/1XjTe+duom3HvufqIxXUDTPhyfN18IaX3XHWERJbHITI5l+Y3f52g3pGDJQUVmgpzFGLAanLOcnp6yPlmzWC7QasJjTq3iyfTnuGX0Cwbl87XzOrbz9Zd+2WfcaV299f1vug/edp+8bR++Duzu12GcnZ0weiE7ZgVt09AqzYqMHzykBToLXOfYGEopGMeRYejp9tuyNTmudVUVGIkVd+39ju3tLVplnNIsGyGE70dFFxTJR1xWYp6kDcYZWm1prMZFz+6zz8j1AtqWPYJLNQTMaLDjgFWKVbugbhp88BivqZuaviwsu82W5WKJriuWi6XgZUtxJRWlj5gyMWe6ogOosiiCmAm7rRXTzEm5fiaZQyFxyvd3RjP2O1kEsiwKVmtJYOp1gQJIZxGlCEV+0/tAJpb3TQZfCYV0FLUBZRQpBPqho0uBrBLbTSfqVih0UCgtBYQIjFljbEu1aCBSFqHIGHuayqJ1RieDVkGEIFIi5omfIciTPCVRSpXkCMacMAshSStjZJ6Y8FMJMQK8U3k8QCJSSgXWoMgOSKICQ5IOlKYEOeZYmSbTdX0JLEb82AtOO0bGocMa4QFGn6icwVmDUYKl74ZeDCGNoalrmtpyeXGGJrPf7dhut6QYWK5aVssF69WKylaQRYlMurmC97/d7KmqiqpuODk/Z0h7XtzseP7iFYO2jNqSbUW9XFKvljTaUMfMre+wTUO1XBMCqCHhh54vXj1jta5YVIaT84u/lPv9VzH+8N//D3j56iVffPEFn35xzW/9TYdrF7impa2WnF6cQYh0T6+Jw4DKiWVlaZuGRduyXq6pbEU/+BkWPLloUyr2MU5BdLl2svDDYs5oGzGmwjonpphaoyjdAKWJOpfiXSzmtQJzimpKAgIhesaC3JAh3B1dKtzaWUKRqI05Fy7AHIIIQXoyVDu6f2Jkhsd4L7wqOECZZmloDjKowJxkxCiJ+hR4V1V1J9bLUALOwrmYCrFKESdJaFRRzzogLqafySDuTcW4qaj5WkH0KN6YkoBJVe9O/JQnR3GOnNhz4baEQuY+EKQnifRjqNek5DR99qTqNLtmHylV3V+Xj1UQJ9uF6fW+uIZPP0pL4K+sKQmKxdqKrFTpXBQrgBjIQQSPqkrg/7YS6d2c1Iy2meRoa+fo9ntSgac551BJoGsxiuBSQuLr6EMhuBXjvXEs14Dw+VCpdDkK7C9LkUsKz4eY7qvGLyxhez9AftNrjl4thyHdz0oPqgTzhV8ORi7JiFQHbAlcs+D2imV7yhFDElikNjSVpa4MdW2ojWPVLljUNYu64vLsjFXbsmqXrBYLcZ7WQgqViPh4z2ShkY5FLos8U2Zz+GEKqN8eBN7Put/MhfiqY/jmbd4Z6tC6vPPw0Xumz/iyboj3nqEfGIahvHfCEb7++cdcjNc/b2qtCUl2Or45J7Q21HXF2dkJq9WqtGMP72F+/wTBmsOtX3hME+GbjtvxJPjLBvT3E8Zfdru/SQkGQNM4UhTVlBSk8i8JgnQarSnBv3Nz9agfBnKSyX8YBrpdKM6ncnWEWgyMUIp8ckLX7em6PatFS1s3NLVGuYa6j9g+EnYRqxOVAlda0q1VVFphkme8fk50NSxbxsoS84jKEZMT59ZinCqTcDm/RtOUCtUwjgz9gPOepq6om5o0dyqEvpen6uQo1aNciI+VtVRWqocYXe4dCSKsNUXdLZdOY0Ibw3K5Yiz+DNYadAZtHNaKol5WMs9qbRjHUAy3BAaitdy/KYkH0UTlTEmQTTEIwXC/2zOoBLVmHDow0mWwyaCDRzFClKTQOkNdO9IYsTljciTHgNKWcsiko5kFShJDKMZkGo0hqXj0GghZ+BDKOYx1oDQpI27dSroex4v7BKubAqrJNTznjLZFpSYmUvaizlKmnCAOQFKZTJH9vmPoe/b7HcEPc9EpxUgqxxTEi8BagTYYrUjRMw5SBbUGmrqhWS0Zh46h37Pb3rBaLVkuGiFkGyFl5igBXk6IRr+2DD5ha4eyDaZaE1RiM+54vhmoLk5RyqJchVutaFZrrKvRtubq84+xdY1ralwX0GYkpMxmiGy6EecWLJfLv4K7/5sZH3z0HfbDSEhfEJIipEzvA7fbPe9/+FggKCmj9onbly8hJE7WaxbNgkWzYNkuCy9pnOcU7z0xiDHcjFNPB17g5Ggds8LEjKs01klXUOBSk9+BBLFSxR8Lb6eYME6F1ihBbwpyDU5hBVm6/RiRlY1zvbDEIzAvg1puEpQtUu8RYqnWKw1EwfQXLMgdiNZx3HYM7Zk6Gfc5DsfqdZOMKYc9KquzRukJIqTJYZzvwWn799fB+3DglNId1bP7z0/bds7NydG8PTXVPyMhFJhbue9DcSKs63p2q1ZK3fFhOk4wvPcCSS1J2NTlmPkk+VAwz0eJzrFp6OEYly6Y99hR/JIa26KNESicmdSmLMY6fBTYZ87F9ax0jTRZikdGflJUJQamSP6LgIa1hnEoal5ZjPNU4ZtowBpRHYyo4uZdYrOUxKGe0jVTxRJhKrrfixcnCOC7jF+JutT9ADqXQF4VtQ0AbTTLZUVSmof7nrMvnnOz2bHrRoIfaRcLmmZBu1qx3++lndn3NLXFGY1VAqtZrZcoBcGPOKc5O1nx6NFDvvetj1gvF9TOQQjU5aRqspjElWxcAs+yhKipej6RpWS/57v7ONEoD4GCL+ENHB+P+8nYmzgRv2gnY8INyoG9KzV8jKUjT5yICeZ0N9lIKbHvOvZdRzcMkgBahSZCiGi0eJegiCEc+gtHCZcqZ3g6TPnoUlU5ozW0bcvlxQXvv/+Es7M1de0gy02ilXBrQkhf63h8neN2/1y8eyJwmF6/bHwdqed/E8cXn30yk5h9SGy2N9Jet5aPPvpIKsNG4ZymqhtyrmkGxwQ9GIYBnYqrvNasVitub2/puo6+6/jR82csVwvOLk45X5+glSXGxNX1hkePT1l2I+qLa7zvyd6TU+TstEXFANETg+dsYfBxoN/dQDDEouixcJaTekH2kZ893VA1delqKhbLJcpqjGswCnFbrSyubRiL0VPOGWKeiYYRCQScNThj8F1PzokUNDEnfIy4qmK5XGC1mk3U+r4nKY1xAvlxVrNYLKhdzclyfSBSYpmUYFSE2mh8HCEf/ChyFhnYcZyKCprVes3oA30/MPienGJxDs6cmxrI2Ki5aJf0252omOQzKQnEiO9HTpsWlTJGaS7O1ug0oHIs6lEIR0QrsJaYJCAwSpOPsOC+H0BD0iKp67LCVTWL5RLQ0A/42InTeqk+ThCPKSDx3osqXoGBBDyTHOOiqRj6gc1mw831zVxZngIOpQSaUNdWgsScWRdpdUkyNF3XQ44oNE1jybmlcnJs9/s9fbcTt/UQsUbx4PKcb33r/eIB03P1sqdtloTk2fdbLi8eg3FoW3F69pCzi8f0Y+DPvv8j/uUPfwbNgsV732L56AluscBWFUYZls2Sumqo3IKr3V4Cu6S5ePCE3c0N2ToetJbtcI3aRzDHOj6/XuMf/r//P2y3G0L0/L3/+D/i8+ef88Mf/Yjr61v+y//j/55/8Rd/wr/453/Mf/iHf8SP//wvqJXi9/7z/5TL0wsuTs45Wa1JQyZFkVsdx5F+GBhGj/fpzvQu65hBqBiKwQvaoqo11ji0tqA13otYisBY3LyehiDdQj05cetSt8xKBCHKyFkI3hOqYwyeGIqqJllQFxzWc2tErU3pevYTyjmTTZ7h2xPMKcUkUM0iD31w4T50FwAR0tEH7tc0506fOwXdU2UfCvkdcE7Ttu0Mz9rvbu9wO44LrU3TzN8TmD9j6hRMXYPJy0UrSeaPi9HHUCylVFGmTHPnaPKRmLYviY5CqYhSGucEIlrXwrMRmOmecRyl6KX1PA9NHZZpXpm2t9vtWC0bLAffjOn4TvOHHCOBZ02wvIX3WOfQ1mCwwjnmIMU9XSdOKZq6ojIaYkVOocjORpaLlr7rGIeBoetx1kqy3QWJc0sBblITVNqiqpowemI+eJYE74nGgJPzJjGhQORDEE6LdgrlHChF33eShBktokvvMH4px+/74xh683rgrAgKVKk4DkNA6UxMAe87ht01NicerB3rSgh1Om05rxo+uryYb4TKGhprqa2lrpwELEiL01ppUS8WCxaLBXZSVjhSkMpZHUkZTt9tCpSPAvdcgs6pi0FmImUeXsS7IGheO373YWbAnSrDlx3bN21rfr7s0PwyBRQuxGRNOL0tl8+b6yOFPB+BPmaGrPHKEnSFT4GoFMbJTZfKjz76nMK0KN2z8nf5HVLCGYNWYhxUu4rLs1M++uB9Hpyd0liLKoRQUbAVQyKlLIfz8eXVj+Pjcf/38ThGjx6qH4ffmaNTmd9wUlURoDuagF9/yZc/93XHG8/xN7Ddv+pxfnFa1DZEonoYvVRjtObm+koM33Kiruv5PceLkR9GalPNC852s2GxWHCyXnNxfs5FvMAnUd3xk3sritPzNbuxJ8WOZT2gaopbnEExUtcOZ2sqZ+m9xxiHqxrQrlTgMzH0KJ1RIVLVDuucdC78yC4J/CEDzaKFPoO1VG3L8uyEfugJ3tMuF/Mi5P3IarkgjYE4jqiYGHpxYnZtTY6RsevwfV+UQyRRqZ0jFgzybnuDUprtdnvgEpQOoFEG5yqcFSNSbUXkwmpF5WqSVqU9LxX6SUt/s72ej71TGm0USYEOmTEL4VTHTLj1pCQkZGMizlVoLRW3h22FVQKd0KnHkdBFSjYXrwqlNEblgitO5Cia8bnAQ1RdTMuQbZMVYfBs/C2m8CIaW1FbCIVbttvt7sAUTk5O0UqSgqZp2O48fd+z2dyAEqUeIYdmXFXJWnIk2am1pjJWKtQo9iXwyTkx+oDTBm0UKkfGfiQFjwHqpqZxjhCFmJuU4vTsjNOzFSCu3TEmHj/6QMz8smZRw+r8HGUbUrY8uxr44c9/xL7zbPY9zYP3WT96xNnj9/nJ0y/A72ibyHeevM+ibiAp+u2e+GrLz3/+c25vbvhf/Bf/Sz5VEKwibyPd7pb9dsMXT1/8qm/1X9n443/6x1w+OOP0dMXm6pYqGx6dXfDBoyf843/4T6ibmr/5u3/AT372M97/4AMen53T7XtW761YTV0MHcWboBZcfp6C0qkDVtSlRComz+7XEY9W4o/hQ2ASJhWDN4FCBi0dEe/DLEAwyb8bDSRRzLxTEb+DDMkYDabEHakQwsXsTuFM6fBLnouzRYVOZbyHGBWT+lwIsn4rZWauBRzWqik4Pu7+wSGWm5KXKcE4hltNsrUTr6NpmvkzlTokBBO/c/q8Y3jSfXn6Y4+LsUCMjLU46+4cry9DYoiEd7jTHZneJ27gwvObYGACwRXu1MSHmT7XFkL8BKkC5vkFRBlTugFp7nYcd30kZtWlIHHYzxgjKIUhgz4QrlFFgnwcSTHSWEtlDLpyqGTYbUeJQ4pRp1aKyjlq6xj6gZjDHKOYInwkS5x0u6b9dtbhFoYhS8fD+0CbM5PF9J1jqlRxEC9qYUfx1/1z92XjG+1kvCkAfB2eMlXd5WbSGhpnOV0tyFkwZPtOFmFnLY8v1pydnc2EmrpyVFoqf1V57Di7nQkxR60rlOLNofvx46+/4m6S8YYtvGPM9y7B4VclcW97Pr/pH3eSoYPLNsi3nlBiKec5yA4ps+97eh8YYyZmRcwSiJjSNqX8TBr3077NYLP5c48+TU1KU4qT1ZrL8wsePbikqWuMVqX7cbSPuZyZKWngzVK881c+mqDflGi8dvyPj+VR+/SNx/OwEQmMeP06f+tnvWH8pkGgvs4wzs1nurIOVzfz4iOGUEXNRXOnIiX3tiJXhsMVI9yAmAImaVAGbRV4SW73fYczDmcszmlMzFSVwqwqzNEdEXygrhucddSVI4091lS0VStSrEb8FPrBMcaB7DKmEidfHTzGe0KKxMGI5nySzoctKlqLJJV0qYYzK5dYY7DaEFQU3HXRRgeoVM3MaSqQIRAhBescilQSfknKYwx4P1UMxcytWGKLmlGIGBuFkFlIxrqqS5VLH9rfWjHEMGO9J4OvpCSQapImxYQKCZMTKgXAQ+pQJJROaB1g6IqcsIIcOVQlkG6oUnNnVZduUCRJwjFVfK0iZjFdFK+j8p4kx8pokejMBTtPmSfKX8QYhL9TjoOtDP2wZwgdPgssIpPRZNrKzV0QRS5B4QRXKEFdFgUdhUB/dc6oHMkxItZBClNL8OKcYxgGchY33mbZ0CwanLN0/R5tBPLlKoePI1pb2qYmYvA+M/jA9W7k6rajGyMhQ31yQnN6RrVek19cS9IVFJubHcl58hjYX2/55M/+nM8/+YT90JGCJxuLaloqrQg314Reuii/riOHgZNFy9l6zSefPMXVlvXpiscPHvPZ06dobWmqhmfPrvm97/4WH330Ieu6YdkuqVxVQg9VoNpTFXri8Ez3qgT2ESmoyf1hsLasl+U1Ok/IgKJeVOCMxti5SzAFrykmslGSZExV8nRw6xbYn3BTFZRrEZJSswEaTNLPzPfB9DnllkIV7geU4mVW8/bgsP4cB+wTLEwhLtXHz01J+xSkTtCvg9yzzElaa8IMOQp3uhjHkKlpH+6v2fP5Pd6v8tgUwB/8Lu4maabEINM5nFbx1+OGA2phPscx3jEjBEFTpKO4ckqopjHFKaRSe87Mc6/WB3lspSbJ7LuS//kQMR22qNQMXY3e41RD1UiMFIdBeBYoMIYYDomeyocistYyP+tyTQjMtsR5GdCS4Cht8GYQEng+wAJl/4qymZLYb/ZASYdjmhNo9VeQZHxVYGeACW8m3T+Rk31wfsrf/N3fntt+z58/52S95uTkhEePH88JhlaK5WIpJOR4dNPdy47nheZNwZw6/HHcZXnr9/qK579q/KVWoO+QccrNlg+BswKYyFkZki9V4iQL28tX12x2O/pxxIeDbNuUwB1jO+93rnLO86GcPs9MNxuCl37//ff56KOPeP+DD7AFe/qG9O7oz7udkV/luF8dudstObpR72X796Frvyy348uul9+E5KRPiRiEjLtetazXa5rKUVVlkS5S08M40vWDmJH5kbppROkIxdCN+EFkBterFTevrtjvN1irGXISUySt2W13XJyd4WqpQC5WFZoKm9aQZfJXSkkA7opEboZxFCnZhBaH6ULUy0ajvEhCWi1E83VVYY1hu9sRimnW8+fPMUr8M4a+Z3O7kU5ESmz9FuekkrZqlwxDDwhh0iePT+JCaypDzlIRdMZgjZ0XJ+0sJk9qJnUhrcYj4mSpeGIYQsLHxGYIMEZUDpIY+J52fUZVN8VtVpcERGEnw7FJE30qS2TFAkuKsrDWVUUcM9GPpPEVqTfCxzZw3d1QOUtVWZbLhlAWQFvMyybYZmJA2fIJIZCLj4XRRgw9k0JlVb53ceHNqrgKAynTDcMcqDV1Q11ZUgoM/Z4vnn5Gv9/ixwHT1GRnUc5iT1qGjnnOslVFVc51ZSzRR2IIBO/pu4GxH4ghcnlxQfKBFIRz0nUdIQaSSjx8/JC2FeO7fhjYdVvGMGKc5cH77xH8wPV2Qwx7lidLqqoh4BmSp6oXrFcPeH6z4+XNDbf7kWSXqKrC1sLPWZyv0Y2jj5H12UN0UsRu4Pt/8gOWWUHXMbx4xT/8b/+vZJ05e/yAZ59+wn6xgnrN2eUj8maLM47ULP7K5oBfdvzWt9/j93/vt1ks1/zDf/BPOX+0pqoaLi8eMQTY77d88snnfP50y3p1zne/812eLE84X64xWRHHKMF4Lt2+AuFLKYtiWRJJ4pDiwV9AKfGysbW4bkdRv9Q5YxTF1Vsq6Z3vMEbWO12SDF8k+UEJmbfwsEIMTDDtpNTslWGMwboKbFm/8372LLCm8NpiYEyBumkwxolhmrKE4OfgWesSMOpDYH3cPYFjBIB4kB0/NnVHp0RD1P4OMYDEZoa6bkhZYI273a6IcxySp2No03GiABOUTMYMM8oiuUsSJSTcoSNyXFSck5EJ/nknBmX+Dm9aO6cuzdQ1mbY7dRaOYZPTv6egPqdM9IHK1mgl6nSKUvTQGWpF13WIotMhyYhHzttKHwvClEQqTknGiFnULBcNRiluh14KAwFMtqRSZFdKiVFjioXPoxl7gb46a6nqiiHKdYy1BK2kKBJEuUzi8cM+pJRF3UpRPFbk2gzFmR4Q8ZBSkHqX8StJMt6EewfELConMglbVFK0Vpj1kpNFS87FNOT3fke+UKk+WVOgMxnIwnxXpYV1nM3ezcr/+gRk3xSE5q2fwf0K/Js/L2eE+JMEtuDqll3vub7d8uz5Cz7+5HOuNzuGfiTEPGMRp0TjGF85HfdjeML9iavQvTHGsGgrTk/PWK1WVFVNjoNc4F9xqqSr8aaqxK9mvLlbUo5x2d2/jHP6mzjc6bc4Wyxp6xarLESPDyPdpqOtLEY7tFKcnjScnQusJuaEcRbIRCJD37HbbOj3e/q+470PnuCMIUVPxJLQZG2onSX4kRA8YRw4aVcYZUhR4YdALIEpCox2eD/y/PkzLt/7CFfVaC0BQrffkWOkqSpOlqeCZ3aOEDzbzZbdfkfTNOx2Ikn56NF7dF1HjJHtds/V9a1UlqxhvVoTvcX3I/3tnrOLM1IlcMXNix2PHz9ksVwwpMRy2UoiUTCypdRI1Aozhf4pl/tP7r2qEOm1Fn7EzdDR+UwfNbayrJoFi0qjRgla+n5L7qYKm9zDi+UCsgQm7XrBOI6zX06IkcpVVO2SlDInFawz+JCkZV8qYzlbUhLy/s11R4henGld8TUxGmss1cKQhCBHDBJQxBAZRk/lxEl79D3D0IvaTz7iPU3zTc6k6Mk5ovCEMODHjqHfsFotaBvNcqHZ5oGOgTFqwq7DtWustqisud7tuahbKlvTDSNx9EQfSKNH4VifrDDGcPX8Oa1z6JwZthtqa7BW43Pi5vqKq6tXooqmpdrcrlpOz855fvUMazVt6zhrHrJYLEhZ8fkXLzk9f8yuh3/1gy9IrmagxrcLdNvS+YG6bfjWtz7kaj+w6wOh23B6+oTxesP2as/NTz7mn/yT/y/D1Rc0YcOSDWOOjJsrvvjkX7P67u+Dtfz0k6c8efg+Y7Pi9vmzv6op4Jce/+Ef/B5NW5N14n/1n/1PeXp9w/r8jIsHD/n+z39Gu1ry3ree8D/6o9/nyaNL0hB4+P45agiomLBZMcRECokcErVyNK6mdon9OGBrK3LLQYwfExmPFJlWqxXGWowTlZ+mcbiqIiVwrsZVDcZW7PcdMYqvhasqYkpklcXoLUCKYr4XomcqiU9qbwK1Umh9KK7WzVJEB8pPLkFgZRw5K+E4KV1cquuyzoc7BQhjrMRYKc/dFal+GyYTvxQ9WjkxwoR5f2bYdSEQi+JQYrlYsGgXGBQvX75k6HtGLyqAszWAOpCsnXN33MuzmszlpsOQ566qiGBIgWeS1Z/ijCkWmbYTYy4hokVZUzqQ0pEwxUROEreCfoEZ5mSbRsxVSzdjMoueEA7jMJBTEQKIWeZeM6FcLGL8qouylxwb5xrA4MtcpoxFW1OOmxjJGmtRRUGPlLAq0jiHbltyJXSAq6sXhHGg391S16K0evACEbEIgyZTuG5orK2AhFbQVI5GV6SUGcaBIWuGGBijp1pU9PuOPvbc7G5YLFuMUZhKY5MmDrK2mByp6koUyza+xPAKld4t/vmVEL/fDGehHIRJJeHgdKuVkRNbXm+MlgUni4Sq1hpKNSvPsrF3YTHH2fLx418+5j15+6vesp0vw+W/6bmv2p93CVi/6jVyXA9KUOVIlei43JBK4BVFkouQM1e3G168fMWzFy8ZJ8m849bevQx/2pepfXoXT8p8g2YQjP2MTDm4T0LpQB3lGBJDTWAHec+bjtrbjvubjvPbOBT3t/tVsLQJ83j/tW/a1ts+6xcZvwlJzc+fbjBqj1GWylQ0laWpLMu2RWdH6iUhiFcbYik6JAXtYoHWIo1odSZ4R84NIXq2u3HWw6+aCrQ4Mvi+J/ggqjAhMWw9SkViytR1I4uNhhg9u/2elBJn5+doowV+FALOWqJRhJjZ7LZCnjRGFg2tGP0IiPmWYJKna1vmF6VlURFHWIFDDGNElyrq9dU1WQnsYbla46oWtGP0PZWzojqiNCpNancFvplzkVQdGUchPU+LuDHCQdPW0C4yaQiEIXKyXtM6Ta0zyhQfomPYQS4LqdYEH/AxEm49TbMQDDMa76WaabRFk1BG5mWlxBVZ7u9ihhc7Rp9JMczteMY9Ut2UzuhKLcpcIph2gYBIRa3X+yI/6WmKMowq38tqM88pIQ2EIDKMKQaMCWQnOIaqVvgQ8EMguArjHCbDvh9ResRWYnTWhch+tycOHt8P2CmxK6ZqonZYPIUKcV9NuvhI9Vs7S/KeRBIcuZNAYgwdq2VTnOs1Td0CFoXm/PwxV9uBTZ/olEK7mmxrUZqxBo/CuJrkFqxOH9D3gf3ek/cDm6ef8/xnP+XTv/iXbF/+lLB/iVdb6ipR146mrbj5/EdEW1GdvUe7vmA/jLKvzeov/+b/hsaHj5/gYyYpw//4jz7iX/3gR2TjqNCs6oamqmido9Kak+WS9WIpBp6pqCeFjC9KawqJN4wxEpBqzRhl/dLlPpvXr5TwXnhXrqqPAMFTMJ7ngNrogRjEw4ucpSsWPOM4oCPkeFyck59YuphSyFciupKLy/hsaCvQPaVKhy/nwtWSfbkLCZrM4O7CjZRKs+M3TIRrNcNkJuO5aV44Vk2KoUhOF/NUrUSl6Obmmt12OycCQPmsg0rVcZESwFhDTlK9n2ONyQD5CF40ieocF5Kn73rgBuQ59tHmkGRoVIFtyj5YY+/ECsdmhAc54fmEkindlfm/o5cgkLUJLnUMxZq6QjMjtpwLPXtyHAz8UhYOEClROYvTLTlVQvz3IymG0v12OCsdqxk6BgIVU2WN0YamqcjFnFSXuDoSy/UtECoXrVz7VpOSrGN1qsq8JQWiEAI6Cr/FlMRsgmWVE/BO9+uvhJPxhmcOrauSGU9Y3KwU5AnPKLeQ1hpT6fKegl3LhwQj5bun+qsCvDePo0vmawSAv2ig98twLuBADP/Kzyk4dQ636tSLKzdlCYOUIaPoh5FnL17y7MVLnr98RZJe3hzdHxv43Fdtmcb9YzIlEmWqRhXadSxKHr44lzpjpB03n/npOBwu6C9pyNz9zvc6V28L/o8fe9Nzb+rAvSlh+LLzdTyJftln/Js8fvLJFd2ux4+BZb3k/OyUy/NTPvzgBKKj2wW21z23mw3D0BNiJGs4PTub8fLnpwsx0aQmppGbTYfTsF42uFoLYjBHtreb8rdg7PvQkxBTubpZYiZC25DY7vdorfjoow+56Q6SlnV1grWaFGC3286CCUqJ4ZosnpYYA8vlUpRV9p2QgUsgnappYRMN9HEYUEnhdMW+2wsZ21nOH17M0qX9GNBOklqjQWd9JEaRS1vd03Wi9uGcm1WrpuvTGM2ibcna4/PA+ekaqzI6eZRJ5LIACWRIVsqUM2M/kEJg9IHQ9ZJkuAqjHdZAmaUlIDCi1Z6zKt4eGaUSu92W3vf4cSSMI1VdQwZfkrJp/5QuBNuQGMciH6nEoT2mRCxykieLBRQVF1sWQlWkeroYCEETg8b3GZymSo5Ut9jKsh0Gbrue2lYCc8uQwwCjx+iaujIMOTPuO3zuGPuBVbsQmV5tZM5MiZRFBWuaCydvFlTCJoWtKhKQtaJta6q6JuXEvt/y3sMnkkyFQO1axgAJy+nZOT/6+M+4jZBWp1SrFdo2ZOOED4cl2pouWs7OnkjwOlyxf/GCZz/5IZ99/1/z6Z//MaRrbNVhmh5jNCdnDSdnFdsvfsroE8uHG5787h+yGxM6a9xi/Vdy/38T470Hj7jd7kkofuu3f5vdbmTbD9iYOW8XKKMwPpKj53Sx5Gy9ptt3Ih6QhIM1+iI4QZ5VDYUqpMipBGiSZTDBDxNpFneQbQlsO0WRmk4xIlLGpbvlJSgXSI4ooPlxxIp1PRIXpcLDSPgQjpIMZg+XXFy4J3jnhJWXAngi5gP06D734Vj16Bj6A3eDbHkvBT7zOkJhmlNiiJK4WDXDp4eh5/b2diaWK3VAHkzvPVZmmiHY2sj3uIeCkGX/LsH7GLVyv6AJHPgC+hDkqynR0Ac37vvH5jBXmjtF1GNoV87Cn5sEAlTpnh5iqrvqWdN2tdZYJYWmmPKcYEwxlNbymWPpKsWQWNQV1knH6eZqBzFgFLi6wVpB9RijiUhHSimxcHBWC2fIOZaLBamIeIzBEyalPGOko5bFUJEsBaOoizhBioDFOoHjeWvQQZdEWwQOoHi0fA34+q+kk/H6mMjTHO3cceB2TII5hMl3X3f39f92fMk4HOhDF2MK4pWGMmHux8Bmt+fjT5/yZz/4MWMIaOPI2oHyaGWIhPnGmW+aAlObtOnvy9TNMnclYNHaoBHFoHEc2e62dPs9fhyoFvXXuFSPv+JfIVTp3+YMv9SoL0+JdYX2idXJBftxZNhvufrEs6odu+trttdXuEpUkUAz9iM3X7wqHg+R7374LerKUllF25zx+NFHWAN9t+XF7RXb3Q27/S1PHj3AaofJmhQShkRWBqUrvnj+XIzOKiuQBWUIMfDjn/wMVVeslivOTk/YPH8p1Thj+OD999j3HaMPeB/YbrZzgO6cox/2sxrJcrmQ4EXrOxjfzWbD9nYghUi2kfcePgYtJnnXVzf0KeDJBKWIL67IIaJC4smDh6jMXL0Sfz0JVKYF2Hs/Q5tSkvtNG4e2jlXTkMaebAU6gHEoqwkp0vUDTdNgjRVBjbah8QtS8DAObLdbbl5e433i8vIh69UpbbukH3uwkmygYL8f0EbhKkfeB5H5tI5t6DBG9tWHKMcjZ3L2vHj2FMWhMqpyCaYAq6FpLEYp+u010xxmrCL4KLj5GNn4fTEqzIz9HoqSlSYRc080GlMt6IbA/uYVRjsenD1g3a4FSuEz333yIc46ka6MkVTcno0xrBZrvA/FoG8g+BHvR3Rl6aPHVJZ2seTl1StR+3GOs4sLnr98jlKKy4cPyVoTfCJlh2sfULslt7uB/9c/+hfY9QnmbI29OOfi8Yc8e3nL9abj8ZMPIEMKidvrnpef/4QmK1wY+Cf/9/+Gn//rf8bts59xYjrswvP4W+/x+//BH/CtR48gZPr9yM8/uWZ3c83Tz57zD/67v8//4f/0f+bs4hFhfLei1V/HsXQNulVc3275b/7r/wu/++/8AWfnF1zdXnOiFFevXvFy6Pn3/2f/E56cX7KuWzS9SCSX6npTWYahmC32A8l7wjCw220x1Zq2tjgb2W020v1AxBKSECQYlCXYTAgRO440bYvPQsydiOTOWRaLlr7vS50vUzcVtZbr3/uA340Cr0uZ4NOc6KA1KgTpFGiNVVqSHwopOaUSMB4gzVMQP6kr5Zzn9XpapydEQl3XB9nbqSufmTubU0dmwvxP21JaoY1Ca8g5cru5nosdTdNIIp0SSh14Hznn2TzvANM6KE3BpAKV8D5J90FrbGXuvOZ+we7ONvQkXiMBs0JhtRQrXOmiALO53uTHcUz+nuZNaw/qUykl6qbGGTFKNVqUncgZZYwImWTm2Od+MmSNcH789J0L9NxaQ9s0nJydcrvdMPQdY99x9fKliJ+kSO00bWWlGB8DcRxQNqBwYj0WPCkEVILVci1CJFpgbCJ3G+YkxVjxLzKDZhwVKie6XZgtA3yUjrjRuhR/S+JlLAkYOrkGtFJUVQVKo/Q9mdYvGd+ohO1Xb+SQZExpRZ7/dahma3GzeO05+VcqVbe37+tvArTkeLzr8T90Z/JRQDxVUeUnZej6nqvrG37+yadc39zgE2jrGL0n+JFYKgNThj9hKid+xtRanC5GuNttmboSU4VG5YjTIp9miyzdRPB627c5oL1eNzD8Js/x27Y1dz54txzjTZ2PrwOf+k3ufixOWmztxCApK3HOtYZq2bDp9+hFxbp+KL4Nxoi/gR+xMlOis+Xp9S2ajFYZrSKvNqc0lUERWa1a6pOK6vQc5QzDIAGESrHg5w2VqxlDYrffc3UzkHJisWixxpByII0D2xTxux3jzVbmJKXYVbf4HNHW0bQLTk/XjMW8KUbPMCS8n9rv+qhiJeTyEIJ0HsKAURpjE313i1JaJvJxwBsYcmLT9zR1TVtXLFc1YkAqd3BOSeCOSu65qqpe84eYCI05U6qeCt/tGAvZj5yo2lpc0m2FTpBSIIweP0rwFcYR33VcX18TSgVzv9+yaBc0TcO+H0Tr3Vqq2gkUREkLPpPn6thyuSxSnmJEqPVEurcs6qUEGEmqure3N8QCsTRGzAkra9HKzPOLGqUrqpR0ixbtqSgKaoVanBGTl0p0MQJNGiKZbd+j7IhWhkY51lVDCpGh69kMA1Obd4IHgPz9Sl2RYiaGiA+TyktGZ/FzSQqBG9S1BKFKcX29JeOwtkKphoBD1RVO1Xx+PXK1ueW2G8mnl9SXl7iTU9zFOTf7AVcveNSccr444ebFC9IwsFKKp5//mM8/+5QXn/yM65/+Gap7ztINnJxWXDx+xOnDc6K3bG8jBPAjmOwwKbBqLX/rd7/DolUYm6Rj/Ws6VMoYFMuq4be//V1MyqSuZ2Ud33vyhPDwAVrDd997n5O6wZXzKh31XJTrCsl2HOm7PePYCzQveHzazZ1+o4osfFlzKiPOzM4IqdtZR1XVOGMF5jcFmByq4Vop6qrCaE0MAZ3zDAefkoA7vEYgK4q6lYxkJNkWHlaBIRldOi53je6OuwLHiknHzx8XCo/fM0OZjiRZj/kPsmSnAm8cRZ65cGsPXT41k4Sn/Zr8NQ6E9EKmR935zBzS3KE57qIcm+9NCc/UFbHWylx49B31UUdh2t7xGnxMIJ/+fcd0sCQMh86HmveRgtRIKQno0RwnSnch+1Mi5LQ+lMungmw+kOdj8HgQiHCRcW/blkVdYRTkEGTeLsgP8SYKQCqfn4hxxPtclM2yqFJpCLFAWEc5Z9Kl97Rtw+TmTdczDgO6+DYxJbRGE0YpGk8Rel1VpWD91yjJOJzciS9Qgt7JCVopJtfsfJyIHDU98vQ2yVT4JXZn2uQhvn1DgPk2CNavMoF5l2D3q8adl6kDR2M+ximLc/K+Y7/b45wjR1HTGMeRVLSfJfMurUY7tfruhtrTTQSIuVZ5LIOwoEpLWI7xgQgm2tGUbb0tYzxKnI5HvncRTMdtSly+4lgdJw5f9umHHE0d/fvrnfsJ8nf/s+9P/F+1n78pY7Feou3IOASCV+issJXDtguudxsWVcWirhmvr6FM6KpyJKYF27DzgeSL1K1KKCu8DkUk2jVNW+FcS9DQx0CKgdbVZKNI2pZ2vyPRMxbzpsVCoYrKSU4Dvu9JIZH2vVCslQI/oppKXMkrR3biVG6tuQMfPMAgkpCaERJmCJGUoyQgCjKBvt+VhRbGHAkYApkxjrhs0VbTLhtSNwpHYA6WDvfhsQHksVCDKkFELtwLH3zxhYgz7MtVibqqSVHa6iEGMaULQYLqXpS8Uo4ol9nvdvhxx35v2e17jJVAul00JXiZCJa2tN8zdduw3W4LnMQQQySbLApSRYJWiKcZssBcIokUPSpHyBXWOiZy6gSn0AUbbq2b5WwrY6QzlZJ0RYzAuKQCbdDZkrPCZo1JSFDjAyEKQVagKxlbjNLEEXeCcCq0AVWCu5hjIeDLialqJ8pEOeNDpmnX1HWDNQuuO1/mUMeL246nr3Zsx4A+WXGyPsOu1mi3oB+vWLYLls0KGxP9qyv6zQ0uJ7af/piXP/kRn/7o++j9NRUdi6Xh5HLJ6YNz2uWKsU/cxB5dXMTlmki0Vc3pB49QBjyB8S8LxPArGDllNIraVXzw3hO2uw4fI1ZpqqZiubhgvV7yYH1CYwwmTwW3DEqSDEH0lPhjuvYQGGKIo3i5UHy2SvBhjCnCCq5AoiyVk0q5FCgkyYgxHt2hEs3Ywl/wZIiJrKVrYZ0tTuPCqUpRPLqzVqRU+A05k3RiKr9O8J0p0bivnjQFsa/Jrip1JxC+D/s9XqWOnzuuzsv2U1EhinfUsGAKsF9fs6buxXEyIxyQIyl8rckcuh/3JWuPIUzTvs1J0tF+A7NZ63w84M777vAvuJuE5CyFnNnNm6NOhQQwM1Rq+sw3HWulDpB8c8Q5PiR7sh+mqO5ZrcXQVVmMgrZpqJ3FlOtBhJFC4biBtVoUD7NCqcO17KyIa6QI3jPPT9LhOEABrRXBgpQkafMhoEZRDSxIQYnTci5FIFB5MoKcnO6/evzKZ5o7QfOhIVFGqVTfvbqPehp3Hi5Xkgb1dkTYlxF43xzA57nd9WVY/fv4v/uPfxnu/8sShnepwv/CuH6lSi4xHbB8QEyRUTkTg6ff7wi+5+JszW8/+m02u47Pnj7l0/2OWOTKTOlcSCA1OUJSKhaH/TLluZwz0QgWcBiFd4ESK3tZ8RL9MDAOo1RZrSucka/+Wnq+MQ8E2DlHPOarlARDTYnGdI7uHKKj85zfDOBT9/9+bR/ftNP5jc+9KR96l1P6tkT313U8uHzMZ599Qdf3VNUahUG7Glev2Q1PsXXFenmCv92jTYVxmpVdcH11BRkqW1Gvavr9njiOrFdLTF3Tec/Vyxue3o4Y66jqmu99+ISxC1hV8/iDx/hepEz7/UDb1pxXjvXJCcPQUTc1WiuR7xsj2Y8welwQDXbjLHW74MGHT1BVRVe6Euv1iqaRipC03gN930kFPR0CeucWEkQUDHO/37F99ZKQReQixATLlgFLsIbFuiWGkZgcWmf2vsMAVmmctSVolsBkgknlLOpSINdKSFLNslpjjcLpjLIOdMMwesa+Z+w6On0wwBKH7ETbNtTOUWtHU9elahYYvSXGkRA6YrhF0xLiwPX+lrZtqVyNsTW3txvaRUOzEInHoZf9Ozk54enTp6VbICH6sO/IKbM+WbJoa6AmpcBuv8UHKX60Rs2cE5BFO8aID4E47khJWvmrthWXWsBqTY6KxrTUrmZVrbit9gzjSBwDNy+upRCSE1XlMGhCUHS+ZyjE2KqqaNslVVVjnUNUgMTP5OrqFdv9nrqtWJ8uRd4za1I2WLvk8eMPcVVN33v+5Y//jCFsQFcMqcHrBX2d+eLqlpPfXhC1Y/PsmsY0LOyCFsuLn/yEn/7xH/P0Zz/mi5//kMuFh2HPid8Q/C3L8yXL80vWH16STcUYFf5qz2bcChSwdqAiuonYJbSXS65DIOxHOv/r6/gtAaumripOT885P4ns9ztevHzG7uVLnpx9j9/59rcheHQQnoS14h+QFORidFc5S9vWrJdLtkNkPyZyuCaRCVlk3XNJF4wRiJGrnHjLKMN6uZLCRAnyK2vIZMZRZLpTTqiUyFF8MSRAk/UyWhGdCD4zMsmnalH3UQplNTprUWs76iaklOaVXWlDXdboaQ6AowBXCSxo6mrCQQb2GII0dwjlgdeO93FyIB2KQzykSmB2n5B93CW5L3uvj7qwqmxDxH2Kf4QEZHPhZupWTOTsXBK5427NFPeoY07GtD8pzR2h6ThMjufH4w7BvRRhAPw4kopKlZhyTqI1SqBh5fxP8LLjDobAWEcat5yhUs658loYhgFTktRFW6NVzaKpaJyTgksYIQWUgZwVIWQSiUVb0TQtWmn2+54UJ48Oy+XlJeMw0HUd290W5xy1Kea1e0V1dC6NdThXkWPi5asX9F3AKMV6eZC4tpPXSzpE5labomL11eNXmmS8HhQJEWdG9Bw/pQ6vmV97f4PqtT/eON4UxN+H2MitcUgw7pN3vs64n9R82fu/7DXvknC80z6p6ejJt7t/SFVOmAy1tXz45DEPLy/54P09z6+uuX61obt5Rfb9TJYSqbepRXsw31FKUVUHR+apkpJSIinBl+YkTqnOOsIYpMWI4MRDUSxIOZeK0pf0EyQHPap1vPnYJqVmxao7z37JeVHH21FvNgR660Euv18/h4fE7t+ON49PrwN6cclFc8HY9YTg6cLA7bM9uAWmOYPqjGS26EbM8RbOsFo29F3HvuuxruLy0QnOWLr9lj5nvIrEpsXVFaAZUuZPfvBzkg/UzhGMx+qK00XD44eOm5efk3NAEXEV9P01OSfq2qDTyBg6+n7P6aKVip2KJDQ/ffpjTFXjFmtiTAxppIsjy8WKytXUdUOzOsXkOHczxnFgGDpGP5QFf6RqKj78G9+FKCpFSluSdgwpEcoi221uGYeBzz/+lEXTsjo/Z71eo63Bj2JSZysH6BLsKG63W5yTamulFX3X0Xcdt9uNdLeVKgpzCVfa8mOBX2mlqZwhqcTY7dlvE30C5xRGZ4z2XN+8kEWPRFNnUANKBeq2Yrt5QacMddPQNI5h2NDtM9bU4tgL3Lx6xcXZKf0w0u33hG2HLfPA/vqW+uGldLaqmrOHj6nbVgL8wmvRSuGsw4+jwGhzFm8RLCorks/0gycjhZDbzRW+C+hux37o2fcdMUhV1VmL1ZZKG/AenRNOZdyqAV266hpsldntr+mve07O11xf35BS5vLBe9T1mrZdsVyu2Q2eVzcbbncdQ1L89OYLQlL4mNlxTq402lgW6xNGoDGGR8u/wXsXH+L0gieVo/Y9n/zFv+YHf/6v+Om//qc41bOIHe8tO4Z4i3KJ5tyyeP891uenLNcrlhenhJSIY8T3nkpryZ2IaGvx2eLqE84uv4VxJ2jTYr5iDf3rPJQRsQVna8HO55FUV5wsV/yN73zE6cmSNA6YJNwllSly+Vp4Umi0BZWlM9r3I6frFf0YWS5bbvZD6YRJoup9wHvB4WutsU66l8F7dM7oErAmNQXIkVx+JnO9aU0wWhdYlsAHRx8KtwLhQc48R08yeUZwCM9ARg6RCdJnrJ1jl+kemSBJEz/rWLhlCq6PE4FjlchjA747x3zuIhzmteMOkECo/ExoBnWnIDAF3DPMGjX7LMzQrJiEE6WkgKLVYf8mr7Rp36b9nw00S+ISj+LHGCPa/P/J+68f2bY7zxP7LLtNmDTHXEeyyCKrqqelHvUAM5AEqAEBkgaQ/k+96XH0oKeRGo2BZkbTavV0d3WxuorkJa87Jl1EbLecHn57R0bmPe6St4pF1rrIm3kyI3Zsu9bPfI09qubBPQxqGaddn9NkaDlmrTUli4/R4vMT86Kel9hsz47Q74XvsRQnYowURCJ4+b0xhqqq0CfQ8+XaVXZFZRRN5fHOQgmkSZNjlDm3ZFTtjnGRvBdUXc/HKJ20w/6WaQyMw4RRwgtRWhFnGeNZu0OESYaAUoa8TsQ4MU0iejKMI2ZOpJbzllMmF0hdR1U1v58k4zSTfefr3vuLd/39/ZPjhwSNj2Es7+tivHG33pDMvC/Z+G2r0+/stDz8hAe/f7wHMmkVvPMobZlSYugHITXGKC6oSiHGMgJnWDL1YwK2VAyQjsKxmlGE9JXLPX5PugXzcar7CbCUMm9D9uo+8FcPOwfHxODt11MtnQvefP4f/+70998twXj4mY+38aEQqA8dfwydi8fji6+vudhuWLcNdWPouwMxZWLIrNdnVI2o6zSrLdYi6kVaU7TFVjUr6xiiEhlOo2g2Z4Rpkm5I3RLCIFAGYznsJ6bYkQK8uu2xupCSo60MN/tAThNaZdrWUjVbrBEjujHvMB5cA7ZpBOuvIWqwTmOsx2tP0aBmIyaNpWRNZg5inD0WMoz1aGtxsSKXNFe0wFcehWGRhBxCxqLFRThHMA5jMzoKFCTHxDSOEBQ5SoU1z219bew9z2m+//RMpvaVB1ZYp4+YXwA3V1dTziQli6GZ1Zeku5KwKaJUgixQK60SqIiomhSMlTnCWkOcxMtEqyC491k4fgoj2TrQWhapoNCqUHnDVDJtXWOtZQiRtm5wdYVylnq1xhqHVpaSFSlJoCXKWpJECHdixs1nIGlSyMQUSCWJLK6eOzrWYU08nhdjjMgDK8XYdxgn6iyu9igjQWOaIVq+8Rhn6IYe7TzOeky1oo+K8RA5TAPdGNj1mW5SjLnQhZGQISvNpC1N01CvVnTjRNOssL6mRIXqIjHu6K4O3H3xS775m//Ii1/+nP2LX9I2mbrVPH9WE5SbDbQKdV3RrlfUTS0u5CmhbCGbWZ1cZVIqhAi2brGuJoSCmzKmgsr84cKlsrUY69De4+uKYehRqnB+vuH8bEvl7VycmjvZM+xDoDlLhJaPSYf3hqayNLWj9oabfRS/BgyCnFBkpGvmUsI4If0u0tNlDiZNua/qL941st4gNCjKsWBXyr20q1IiKwuzydkS7JYCMzSJOanQSrGkLAuMZ0kOHv8MHKVqzWwMuEDHSi5iEFrkSykluP0s8J1T8R1xrJ6T7pJnU8Aoa/9yPpG/FQS6Y4y7L26qBXYkVXjNfTyhtUhFZ9TsW2SOyIuF2yI7IeRuUR9VMzS7IKap4t2x7I90RZh5BAvsKnGvuqkkEVKz2dxc1S9zRvcYRZLm8yLrepTitGLunOi5UMl8vWXn47K9Y9wkc7zSBuM81guJvhRR2XQz4dqpMnNfpQtbtEFZUEVj5rxMLcmsWuLYIFBPXWZZ4xmK5y21rkTSVy0qVzMETTISjFJ4Y6CumZoaRWEcEjEEsBbmRGi5KPfJlEbbD5tD/s4kbN/28+8DY/6+ROHxPr1tH08z4Pdt97uOxwHqY/ziu87baR9geUDf+BnzVy7ykKRSGKaJq+tb7nYdMRWMqzjS742QOo01YiRz0k6Udu19SyoleRBjkodQbur5GLhXD0spiqFQlqqFPum4LFPAw1bXh90vj6/N75o4PB5vg8y9bRvvHu/vXL3pc34fz873Pf72b7/gh59+jH5ueXaxIUyBGAvOaJ5ePsfXFcYaLp48IYw9KU4MKdNNiaqqOLvccvjyJf2hx5iJH//4x/R9j1aKdtXy5ZefU9cVm82azaB48eU3HHY7ru/2kCeG3pHCxP5mIoUBReLj5+c8+/iHrFcNaRq5Sl+DmfBtxGvDetVgneZmf8vmfIvVHhUd2mrKvNoU5UhTIpZEJqHWLcbKBO2bhqpdU5S4qQ6zuloMkyhoZSEV97s9qszuw2midp6mtdA0TDEy9R39fg8lywSvZidZpea2d0XVNsQpkFUSUrbSVO0Kf35O5SxhltLUCkjznKA0Yw6CQTaG1lVoJQo5Y+jpDreM/Y5+n1m1VqQ7cybnQNuusK6iFEPlNlKhDROqJLzJZBJd7DkcIkobmtWG3d2Bpl2xblfsbhQXZ2fUTUs3jpxfXODqGrwlo5iGRBxEyniagiyOM0xh4X4oEykRVFbUqqG7GximniH0+NpgKou1ju2qxfvqWBmV5yyRcuBmd2DVbPArh1+1aCcY6hAT4TBxfnFB0zT863/7/+PjT39Iuz5jDJovvnpFP0Ri1sRYMFWFsp6oFGPMZKVR1tCljtVqy/b5Bb/5N3/Jjz7Z0BbHN1++YDMq9rtrPv/bv+Tf/Kv/FjMdqPKIVXumOFLbFZ/9+BOa7SXTFOi6DjipEKdZkUdJMlxILLNuP0w8OXuCqxpuru5Q5x0rVeHb+vc4C/xuo9Q1xVjwDtd6xpcDWhU+fvaUuvKzsIA41UswBUZbyPeB+QK71koJbKqyrCrNqlKQRkqSinxWBlSiqExIYp5nixdejpYAtKSMLoU8c7pSytJphFmRyBBzFDSAEgl+pQzOGaxTM7chonRAp4ROGWIRnmQStcaF02GUJiv1AD4MHFUdT9cNY4woW2mRwa1mErHS0pGYhomYI5mIQhNLJKaA0k5igCVJ0Pq+R5+TwCVTmNWmzFxMhEXtDiV8mSUKvic6F6wywpeYk/sloclKEUqe+TKSKIzjNAca6ih0gQZt9TH2KMyeH8Wgi8DYlg4BRVy5YxYDQ6UNRkuwrWe/jAUCPk39XJxZzuv9/ZZLJiQpxsDscm4k4SvIGrDAU5UCXTKpTEc3dElmDEUZsraYqpmhjJmh2wsE2Bq80ZBFDWq5jwqiSOW0CO9otSSeafZgkvOdGNBljhuPnLL7e2vplOUYGbOo55Us170yhqptidOALgVSmhXFABR25v2k2T0+joFUMiF/GOTye0syHhKD3p5g/H0FSu/bl8cx3OMA822B3unrl0TgQz0svus4rY5/eJX8XQGsOCjLMiRt/H6MXN3ecbvvGBPEjJDb5vbkvaLUQv6CBeO5QKru1SekWlifrF9aKwYNKUyUKDJpwzAwDD1xVWG1xixVCTnCN337rceHdtd+H+N9l/L77oz8QxjrxvH6xZe8/vpXrLzlpz/9Mc+fPuHi4gm3d3u0imhVuNrfUjctVV2TCijlmUrhaoAAVKs11lj+5le/ZrNeo7Xhet/RnD1lf9jz5edfcXF2QXu5ZX2xhjjxybMn7O52/NUvfs2Pf/QT9DQQp56bSfGv/j+/xBvNZx9/hKkuKCWS88SQC3mqaLTj7PIJShfilAm7iKsqppgYQ2RMB1IpKK2x3vHLr79Ca5FzPex3VHUlC8vcwXPGUFcb9vtJdNCN5+nTC2mJK1DGoSonFccpiLcGSpKDXFBVxRACL1+/Zrs5o6BIqfDyqhPlJTK1zfiZZG5Q2JIoaf7KGW2kuxA1RJWPmGZRdbI4ozEkchzQKeBs5vL5GYoATBij0MaRs+KwD0yT6LYrnaXSqRO2Llw8XTNNkVI0Wjn6QZHzxNQHphj45tUrqrrh/OlT2tUG7SzjjLuvjUF5qQQnL8aMWRWUd/RDz26/53Z/y7qqWVct67MVl2crComQJg79jkPf0XU7hn5/xF0fxk4gnbqgneLH/4s/xXov/JEp0zQbnPUo7bl+cU0fMocxcPHRn/H17cDu65fc7ALV6oLsNFNONJuWLggctG1rfFVmedKJz372Q8Yx8/nnX/IXP/wLXvzi1/z6m3/H4cVv+LevPqcbX9KHr4ldR9s2bDctZ+cXbJ+eUa1qSu04DB0pJNCKzz777MH6oLUoscUpQhLFs34YuP3VF7StJBW7MKJzZOgOHPYd8E9/X9PA7zT+9//n/5r/7l/+S/7n//Dv+LWv+ezZc843G9qmFl8KEHlRW4lPwUnBjuXrmIgJPr+uHOtVzeX5hi9evCYNiSmMKGvn6rwGXUSKdBqh39O2G1knrZWOZkHw/+lerUiGmHXGmAhhOG5vdqk5genM8OGlUjiraOm565SjFDCAI8THe3/0nTqVhl1eU1XV8ee+6+ZjL6ASzsx+Nwm0kmdLzSpI90mFkI3V3Adysy+MSO2K4ZzwExbZV0kgal+zKEfFKM7jqgg/s2kaeQ4VwEIIz8ToHig6WTvMHhIS4Et3WFALzllEO2aGRc0qSSHko5KVdH0k5c4KUSic5bJP5fiVUmLaetINgvvk6HEBM8+BPUqEcZzzwouJ9zDwHGZoktWiPlbVKCOdjFwKvqpwTlMZ0CWicmLxF01xIgZJJkRUQGONZr1aUVce7x1XV1czHC7ivZ9N9dLxPjBayNnDMGKMP8ZtpSQUiAdQZUkhiSmlgicX5zSVh1IY+l58i1Ji3TRzvphnKWK5v6fQfdDz+sFJxmOs2un3x79/2+/elmT8XVRtH3cEHn/eg7D2HRXs9+3X6UP9u+7rsm+nP39IJwOYs+rjO4GFFwELeGmxvUMbhn7k5m7Hr7/4kkM/MYRIPwUJVsqEiRnnFsdKJRPLbCJUiujdK1XQOmPyrGQhOCqEpXR/v2gtju4g+NF0MiHeH5c62Xd1kgQ+vFZvOmeP3d7fNx7Dm0639yF8msf//m3v1Q992x9TkvGjT1tU9mgStVXYcsPhZsew/5JhSjTrLe36jLONIxWRMq1rqXIroPaeyj6BXJimwPX1FU1TY4C73Q6/aslKk5UmlhmWlxMpDLy4fkXfj4waXnV7VE7kELk59HijKcZy1Y/EvuCcobIVX3z9FZtGnMlzCYiTqkEVT93UhJQIKaOckYoZ0sbOIc4FuIBSjr7P6HHCWsfd7g5jPRdPWkii2d9ah1aesTswhYmJgPKVXPuUKVH02bNEMOjGkLWhN+dcX4/SxahakhcSuqXgTE+KAyhZVFIIAstQiXE80FRK1GpCoFk3wobVQC44VYQcaxvGIphrWxpudtdYk3EevFZ4VVCmYJzCqVl9SRdKkaAMVRinEaWF/2C1ZZrdlksuNKsWpSzKGqYQ+eblS9CaVAqubtEhoWPBO0eiECmEkujuRqYYCDHRtB6rIauRQ/eaLovUIwrGOKCdonXiuM0M23BJyIzKaIEV+BZrPVo7KmPRuiIF6PuJl68PjCERM0RluRsUXXCM2lG1F3NBBpz3pKEjTyPFGwwFVTJERbfL1K5lvfZ8/pd/zdWvf8Hh6mtK/zWM37D1mY+fXfLJ8/+MVSswKN/WmKYiG8UUIwyJoe8Zx5G6aY74+nGaCJOIdeQs0rr7/YGb21suzs9FSfD2hpE1/W6HqYr4If2BjpAntFVUdUVTNazblqaq0WVRFVLYWfnmFMf/eM7WSlN0mSXaM01dc7bdcH62odCLh0WMkkxbg8qzhHRK4uAdhGhtChgLKS9Jxr186xKkHuVUSyGmxFJlXvbtFOKktVT4k5qhouWe6Hy6zj1WfVo+cxmP10Rx1l54FCLKssCPTrmqx1hPYA+SfKgFbCTphsJgjQhseFdRV+3cHZxltbVAJ0spDzgZSqmjB4Xs773kNuUkHpgr71plshLoGXNypvWJ8d3xu3QUUgr3JPOT5HJJ5Oy8L6d8iFIKznvKzGE5XZgfqE4tv5yvhYhPZIzJR+WxZXsPPEi0nGNtLHrm0IRpQmNpvKekQo4T+90B8izxraXDZozDe0db1VijiSkSu3C81kf38AIpPZT6Xe6lEGVuSClT1zXN3O2hKMa+FzXBnChZeGpt23Jzd3s8zmmaHji5M98LSxfofeODk4zTquqbArrvGnR9n5XlNyUSp+OxvNjbkprHVe8PDe4eSKW9ZT/eFby+Keg9TTDeNr51DR78JFJ4y8iFuXIjPhn7Q8frq2u++OprumFkDFKRLUqjYkbrSJU9GYXLRRwr5ypHyflIclJaY20RXLCasYlLd6cUTDl5GPT98Z7iVY+HUR58O/68VFbedR7eda3edL++6x5+JzTtPX973zWbX3k85nfdYn9MycUyPn3u8abCafC6cPX6BV03MIwBrMeYkaqCtt2y7wdSVPjaU9KENgIvWLUt4zCR8kQuQRRZjCKnOJMBPb6qsc5AEq+GkCNXd6N4NVjNIU2oJKZFIU5ctBuyd9ylyKGfaKuadev55vrAoQ84q7nb3Yr7tqtwzZYqiCFWyllgSiWRciRMgdZaNFBKYr3eEqaJlDNto3lxO1F0YXRglGZdHMk2xFGxP2S6buKQAsUGtJ6lDVMhToEYAiUnVK3QvsLXLa93A21rOK/WaKeFx6AzhVtikufeKjsjlxOlRIao8Vbur5ygrlq0k2JCiWnWmTcYt0IlIcEa4HBzhfOKWhuSEoy1Uohqj1LiuGul4KC1FchO31PXFUZbtHVoFaR7aaDebsmzRGxRiru7O8GcK00dMjpGdEo0TU1EOBJDjlzvbgQH7xzb86fonCkp0A2DVOa0xjpHVNKZrbwQRBd3ZFWYzQo1znu8bTFakgxta8YR+sPIq9cHrm5HhpQJRaGco0+eoDWlduh2i6m8KMRURvDP2lA0oIoogvmK3aCx2rOyNZ//1X9kuPo1Zbyi0q9p6wPbsw0ff/oJf/bnf0FVN2jrKc4xKQg50Q0Tuh4EgtF1+ErUrpYCTIqZRCKnwjSO7Hd7drsdP/jRE7ppYJgSwTq6uzvcSuGaP1zH73EaMFaz3rSct1vWq5ba+7nqLxBBPcOK1MnXMpRaZFAlYDXGYm3B+4rVaiUk8DFx6AJTztKl0LJulhnfn2f5VlnA5nl8lgN9U0JzinyQhIEHicdR4ekkgXjTmnUKjzqVd13e++aCp5Lk6BhTiKLawms4JhZz8TUnoU+rouY5LB8r90uCoTU4V9PWK+q6Yb3aohfFtxCx8/sW74zTGOzUnHRJQISQnR4cG6g5aSyUMkvQzPNSKeXoiK6YoUAZlIrfOvrTRAPhpH9rrXbOHY0M5T33kreP48FT4nnKJ3LgMwTzsZqWmmuvix0AFGIIWJWxvkYpyziTrnOMWGsknnICndUzZKlkIZunGUVijRwzqsww20JS6l5OOd9f78VVvW1bnBNfpTDGo7reNMl+G6OlW+IsQcm9kE4SDLlWZT7n33OS8buOv2+4yumN8SZo0/e5N38Xx/amAPjDoFL3+7LgqmdfPXJRxJy5vr3jb37xK7746hu++PIF+z4QciHM5DRmNYwpBHTfP5i8lgdzmqajSV/btlRVdTzHwzAQppEcA5V31N7hraZ2nsoZvHMYoz+8lP8HNt6X9P5jHud+T+U0TkEOPZ+cJfRFhfNnJOXYT5nd8DW3/Qu6bmKaMt9EhMBqHWPTkM8rpikChv/T//F/S4qQYuHjjy5p11umEBmnifPzFV1/YOh7DoeBFAp9P8Dujj/7s59xfXPFbnfHn/6Tn3J9fcUYA1SeGBO308B+7Ln87AfUvhLp2SHzk5/+BNM07OdFKM4O0FlJC9zkTHd7zSSag1LVsxW7LjBNGb/dUG0N3RD45Ze35DSy3a7YbgNxPMxGT5kpFe4ONyitqCrP3c1uVoeRgOeb37xGW8+nn33G0yc/oFpvUU3LV198hbcapzKvhp51XTONA7fXLznfrOm6A0PXsW4aXhwGKmc4e3LO5dmnkqjFEa8EqpEz7IMlFQcmgYtcfvqEohI5T3z99a/J6UApkVIMYQozPMCRcqapG7z1jKnC5DUkC0XTrNcS+LsKrVdMkwRr6/UZISammJhC4OZ2R1KQDHTdXqCeSlF0wbkK7Sy+qsRnQCkxBWwbqrrFuBrjW1y1QuUIMUpQyD3h1lpRpFIoar9hmCLDlDiMkRev73j56prPv/iKj3/yY6zzaG3R1YY8RXQGby2qrZgKTAk+OnvKbR/Zh5515SnasF2v+eFnnxJvEr/+67/iX//7/xevPv/XPL80XDwzrLdPaTYfU/stK/+Mz3/zkhDFZ2F7cYlvGuq24eLsDL1qubi8OAY4t7e3hBC4uLjg4vIpYz9x8/KG/+kv/wPtqubTTz+l7zuwDmcUSRWuXrxg+9ywuXz6e50HfpexbirONmvixTk/fPoxW1Ph0bgCzuh7w7fKfkuqdZmXzcyfUEpWTG0SxhrapmZd1+yrns6PuKQZUmAKkX4YAYV1njoXcUZ24hJPySzY/OVrwcOH2bBzqQbrWazgNMk4etuoe0nZYRiOr7/nED1cV0IIR9jPqXz1MQhOQrxSKJqqnvcjkMmi0DYHwSkmSaJKEbf7WRLaWnfcJkXgoM56amM5P7vk4uJihmQpYsxMOZBRNI1lmkYJnE8SqOX4FtL9MhZYFXA8b1oLudhjCaIhMStNKhbPHCH0L8Xhh+pQi5HgA+fxEKCAd/5BTOO9ZxzH43tFxp8jFO3eWFUfz60xhikESfa1IkwC00Itqn/itI3WxJwwSjq+CgQqFxPdfsez8zXrasu2ren7Du/FeyWlQLffcXv1mpQC55s1q9Wa9XrDdrvlcDgwDD390GGMFKy8EXj7NE2McWI4HHBOuu5tu8K5+zhtN+2wCpLRmKZCDcIZLDlytt0wjuMsI6yZwjR34OD69pZchAf4IeODk4w3kZ4f3/DvqwSfvuf7gJu8a7wJgvSgrci7E413HcPbXvumz3nXtt603dNtfVhi8WAjLEel5m0tjb6SJSsdp8BvfvMbXr56JRrvdct+2lNKmmsas89GEdJZOdHFnjcFiCRgyoWQMikLgVzPBnuLcyo5oyhYrYS45BxNU1FVlUxeuQhE449wvPu6/eNNQD4620jQlyQwzUoIbXW7YkwZ76FdQ5gyvTf0Q+L2pkN5S90a1lvDVHoqp6BkvvrNf6LrJ2LIpFjou4ixIiX7ojFszrY4Lx055Wta27BqzglDwaqGttWE5Ng+/ZSUM/3Qof0BbYv4S3gPxmG14Qc/+xlXwwAZ/Nk5Z5u1OALHwFe//hWkgi7SNdDe4n1F5Wv6fgTnIMPPf/ErVs0aZy2XawtFUQh0d1c4JwmERYKfy3Uli5kzrOsLxmliSgGl4Py8xThPXWmuXn/FzetvsMqQQibFRAqB0O1Yr+o5Mam5ue5mZRHPdZe4OP8I7ytupsLrL3qsBkNCxwlTBHaj9dKhTIQ0EmLg0B0Yxo5Vc0mJazRQ1w2rc49SmUJgGndkU4OrWG+lDa8opChkznFCZEHpZv8Lw26/Z5jizPXUPHv6jJAhpBmeqaWKaZ1l7IdZy76wqmuapsJoTdf1jMETgyN0Dld5Uh9Iw8iqXRFzJIbIOOxl4Zyrl1XVsB9G+hDJ1pOtZ9Ie/dGnlLMnpKKIqeB8ezTEyirxyfNLinYcpszNbo/2NWdPPxYSZ8p0CX7+q6+4/ff/X66//FvuXn7OX/y05ZNPztmcrVCVJ9sKlRRM4lJeKYDCbn+N62/pbg37qwpVe6q6oq4bvHOs1msJ2krh5vaG3c2el1+94qPnH6GtwhiNq2r8Zs2UDZ+/7Di/+Iymbh96U/2BjZdf/obYH6isonZGOpKSKsx8B4M2UlA7DXAfKzDlcq+ISCloJfxi7y3eGowqhBTIszGlQrwIoJBTmD0OZkf6Gc63rOPLfbUkGcvPaSYgn1bSH0Kl9PF3yxoSY8SeSNWejgVRAA+786c/S59QJExVLkdJeLGRLJKEFFBF/qaNBS2Gh2YmnC/xhPe1QKSqmrOzc+lK5Fm2Pt3L/k7TdDzuRUp3Ob6F5ynHipzPnI5wP0E+iI9EzlIkFeO3Uxi1opQFInVv9Lecy6WbsECzlBJVpKJEgWkYhiM35E0do1MX9XEcj5C2hdO1FFqVdoQYmWIkzoIYKESyuxTSfH9JT1f2zTuLm4nebaXx1uCdwa5X9K34EzknnfDusGccevruQMqZ/W7P0I/oAlVd05xVrFctKQVCmBjGYU6iHM4atusN1jqJzZSWAnCIxJAI00gpCV0Q2O8UKCnhrGW7XjHOfJ+UwceKKUyz6MSMlEnfM/H7bZCj7wotOn3/95lovKt6fPpwHj9XCWRYqulqxuPM71cI94B7mM5DvsPj7b9//99X2X58Hn8ryNn8wFIEurA0Q8t8fLFEhiny+uaWfTcwhUVOU2zpj3yIeWOn7punmE1ACKkqk4t0PUTtQKqCKUZpk5ZCynOpSN2bAy2Vl+UY5gbwcX8hnXzS4+/MuOr73/5W6+WjbSyn763b+0AY3Addtzf9v3wbJvbHOFSM0inLCasNzA7RuhR0yXgjFa6Jgp6727kuGKOo6kJdJcokqhilJA6HHVM3EEIixUy3G/G+Ruc1pVhiBZoWsiZjccbRrByagi9WANUarPOonIhdwdWNEPHQUDWoWYK2Mo67dAPW4esVxtZ4o1HWoY2lzEl15T0YURJJyjClhDIWWymmMFH5gDMKp+UejEmeI6WtJPhzBVFFMe7yVcMwBZyx6JKxzqDGhDKOum5IIZFCZIoBhSLOClKhJIaUcFpcsccSQBmUFSfjUTsSlmma6PKIVgVdEjoEbClYBY1zMhOURRY2c+gz/VDAeiweoxQkh6ZBkcl5ohsnEp4xOZz22CSytRpLZUTmUpVMjplpwYXnwjAK9MAYTVaZsRhCMShVoTKorFBJESY3wxZmL5KUMAam4OhDZkwTUym4yhK6A2k4sAlaVKpCoNt3lJQJMTBNgWpV2HU9Y0rUZ5aq9mAsVQOlboghMZYkko61wWRHTiNFW4z1VGi6/ciqanDGUMJI19+w391y/eoF/ef/M/lwhdcHnj69YLutaVcNql4xFUcaA6l0EmDNRm3jOKtfpcw4iWSwnq+lMXaetxUxJnZ3HftdxzRMrGpRrikqo6zDOI/KhmIC508uses16Q94gtlfX6NSoLHihqyY+YJ6gQXP614ux8n9dK08JWQvWKelsu6sFaflyuOtmEhqJAExSom6kRIIinCkIimKP0RO9xCV03HE5j9AVNwHaEsAe1rIfRwsP67QL9s99blYfvctyFRB1q+lCDl/Ex7nDNdmOVWzROwc02il8FbUlIw2eF9R1zVV01BVXgoaeXYAj7OXQkqkEo5J1WP40PJdAnZ1coz3sdQ932TmY5yYSy/nWEsAN8OnHsLH3gQnK/Pxl6PEcD52JB4XdJfk5zRpO038lFKEGFBhQhmBSeZyfy2MscfbKzMnwUs3iAVCrqmdQyP3lrWGKju8s7OaGFTOQY7k4OauikCtrq+vadtWSN8GcpHuXYpp3k8wRtEcjWKFwziNA2GShDeXNEv/F0pO5Dz/jiLSzs6gVCHl2Txxhr4ZrY/wqw8Z35mTsYy3cTM+dJxerLfhJh8nMt9KFOCt71le97augtZqVlp6w/GVcrwpvnUa33i4D/flTZnxu8aHdkfetP3HScBxklMKpUXnOwkgkCkV9kPk6vZAN0VCnsN5de9XwZFeGUFBOfnv4VEJcbMgD1FCFCjukzN1bGWKc7ilFMQobFaGUHq+wY8k8SLBxzGv0EiDdAZSvuHkf9Bt/r57VC0u8/eJxjtf/q23f8cEm4f3VSk8+M277oc/9PHyq69xzuK9ZdWKeV5Oidv9nUBenHS8VMkok/GVYvWsRVshFca8Z7NwCXLB1gGfRoILxJS4aBVKjRgTqdfnpHxF6vY4vWbfd6iqxjUbzs7WHLpI1xe0i8TxjnGcGA+3nJ9/RMowThO5aVFNjTKGruvZPv8Y7xvhjNzdkHTCqEzTNkzDgUJhe77ltk/sh0i4u0WVxGbV0jQVzz+6JPQDKfYEHCFFbCXurcZ7xmmiKFhtWvZ3d1S+pt0+5fXnX7HennN2tmG7XXF1fSAnWLdrzjaFGEbC2NF3O3IUt1jnVqANKYvqyqrZUNKEKpHtpqbfdfT9XtyNW09MmTBGbAaTM04Xtk2g73syGWOteFjMAcbdNLFpW7JWXB/2NDFIwoji1auBrBLoSNERaxRt43lysWFb13in0RqGu47htifnzGq1oh8W2Wv45j99TrAefMP55oIcCnEM9PsDkLFWY61iHHfEGDHO8/zTH/Li6pYxJIq2uLomhh0p7HG7KzKalCAOicv1OQVN0IZYrRmSJpM5+/hTVpstKMUwTSTn6FNiR2SjE+16I8TWrufFTUftCq3fcOmfsG0aGmvYvfqC29/8ipef/5y//st/w/PmhmeXa54/u2S9WTPFQjn0bF2NmkbyODKNg8wCWjxPtuebuaIqFtVaSUJOLqhsudv1hJCoqparlz1xjLTVmml4iTIJZWEiM44rgrG4izN+8Oc/Zsier15/mDLMP8TRX1/R+oq6bWAa0boS1TWtyUj1eOEjLjP7YygS3BvOLkmG0ppcFOfnW7puZL/r6LsJry3KFqagyMwypUp4dTEEBpg9JwzlRL1oqXovnYgl4B2n+CD4XYLxthWX5QU6dBqgn/IDFljRMhanb7h3x35AbM6CZFDH/4BSsFr2N6Uw4+ulUyAdDH1MVtqmEQd561BGizJSVZFTEFWmuQORUiFGcR7PRVSplv1e4F7C2Qjzsctn3neYZvjT/FVmj5A8oym0lnMTQhTPHCXqfU3TMgz9sXty6tx9mnBYa9H5Pq5aztvSVVmuWc6ZEEYWLukCOzuNtQoFlRVT7JiicCXqur6HxM2me+pYTJ2PQQmiRFmNUYbKOnSJpCnOnQGRho0oUg7kGEhRRERWbQsoUkz84he/nI/JcHFxRl17CkI4TynhvaOuPXVVMQwD4zix2+2ZpnD0aam8l3iLRMmBkoNc0xiPhXajpeAzxfvE0HsPIRLi37OE7YcGQW8iRH3XcZpVving/i7787uP7+9z3pekLInGmxKOh/AqSaCO4KkCU4oc+p673YExRIZhpB8nhhg5HHpSLsf3oEWi7kj2ecMErbRQwJYzIHO8wmhDilIFNtZxtj1ns2pxVkOesM4dYSQlK2lfqtPw/rRz8ebE4ruOUy7Ocs6+S8fodJy++u8z8P9dEvp/SKNyEONIH3pKHGhWDQrIMeC8gxSIcaLvBskttcZpgyoiTWk0aF3JIkyiaSxPN0/mRULNfi0iVJBQTHGuFKqJtmqJaWB3e8fVq0k8EJJgkdO8SIYUCFNPVdVUVc03X39FjJFxGnn9+jVPnjzl8vw5Hz/7MSVDFwUa2DSXfPTRT3DWMAw91fkcxCj4/Je/xHiP8Z7LZ40E+gq8M2C0GDuh0M5T5QxaUTcVdykQUYxl4mf/5KdQxLTLmIBXA1OY2L++oqRADJN8Td2sv+9QppbzZw3OW4ZhQFuLVoa7Q8+63rBqHUkp7vo9RhVc61j5lhwmSghMeWJ9fkFIkbv9HSlEITcbR3aKTs0O6xaUq2WuKLD97GdoZeVv4yQdH+BuH3n16qXMFUZR4ihylEpx09/MAYt8mXYrcBYl5OdxFAx5dbFhGnuygWwVxrZSwlaau3HArhsMokufkmLjV3jtUF4xhI4YR1IzUtQkcAGXwCqqjSbjeHFzxZn2WN9S1BrTBz6pzvjZxuOs4+tvvqEfBs7blVQPp2/Y9Xd89etfc3f1msPtLd3NS9oqs1k5/sU/+4zLpz/FOXGLruta+rUpcX17J4t6QWQoKWQNsRR8XYvB4qziotGEKdL3e0pSEAuEwNffvKCECU/CkYh5kHs+acz5OVMxmHrNn/3oZ1zvD4xxoKTfTRHx9zlaY6iVwWXFNI1UjUPZWRBWIaT74+IHUsi6jw8WonGZfw/MAiaGqvKcrc+IT0Uhbb8biMNIyBnnxZtGilbS/c85EpPC4WczzHtZ1MfkbQmQw8x/eFg4PSVDvw0qvSQeS9LymGcKHKFJC+coxSiQ58TMgxQCMrMh3hLgCxwLEYWcg0kzk4srJ/e9tRZtDahMjIOYWzrpug39OHseyT5OcTwewxL0L/t5nziJolHK9wVLo4XsHIM4lpeSxWNzFvBYTomYGkpTfOmIgKzJC7Rs8cM5lfbNk5jymZmkvnA/lmtgrcyTj+OOxYfkFH5nvSOmANPc/VHqgVeJ9x7nhbOqnZ59k8B7J0ldFmPDxgmpexoDaARO5Syb1RpjpFCrSgFVmMZA34/8yZ/8CXd3t3RdxzffvGCzXUn3zQupexwHdrtbfvOb38wJmxTlnL3nZMSoj+fLZ1FXs9bO3V4RWtHacBjCkWQvHiECURQDyfeP37qTsZzod/37fX/7bQO9x/v0LqjU7zIedxPe8Irv9XPelFy8qxvzrm1IVeb+70M/cHd3x/W16CuHSSoO41xV0EaSAulMhGMVQgIljVEihcbJRC1YTeleLGoHzjpCmcTh9KRdKdWUQk5lVrcV7Ky8f4ZqLUDhouaJ/PtLNN503r7T/XeaHD/6099H5+GPIcEAWDf1XHGKpDCRJqlGbVYNSsE4BcI0YVSeu2FF1I/V3DUrBVLAMFdZdMHNLsfS+JoBFAWmFLCqkKx0RWLsiQqszpTKkoslpszrmxupYlFQJUDaQ5zATlxuDV0/YVVCnXtqF8jTDTcvf8l6fY41Fu+FRBqjaOTv+4CrrSxKKXBx+YSUpNMiHAzxhsnWoaydNf0trmoZD3vhH2SNrdfijms8+8NezJNKwlvIMaKIkANaZ4yVzmvla/Ksub7ebBnGCMpgjWcYBqyvsM6w30WmlACNqyvWZi0QqxjQKlNUoWgYp0KZIlOY2PUDT1YbqRbnjKkaxqIpWYGrGYoSHgcalGCCNWCLIoRJKpKloLQlATkrmmY9L76FHOKcBIh2+1m7wSsJMrTRKG8kEPKGzGxmVlnGQxEFlAIlJ1xdURAORbtZk/rCYZDPbtZbnIrc7a/IOmNNReMdzdkZMUFMkJLFuYaUFF3Xw+41N4cdud8xjgMpSSW5qrwEP7GnhDv62xtsipy7zLOPa5pKsWoc5+eVJNNzdVgZJ9Vzk6laMPO8qpSo9amZHLAYUy7BoMZidMIZT4qBMAamYSRNB4HRGahsIQZFyIaoDblYXLWhXl9yfvkRXdaUoRDiHy5eyqsKg0WVWYVHSUV+SSqORnUnEOCHY4HjyFIDevaJ0OSi2bRCfs4x8uqsFWnqIZO1OSqfofWcAIqbcilCvFX6ITLjGNzOa2FKae5ay86KDOiSUMxKQOW+m3/vGXEfOB+PQgnE62j0J+0KgTbmIHDlch/0ilTt/MlajAqLmlWm8rxPiyLaLGHtlMIgUNaSIlnlOaEXme408zHiDNksWWDS96iGgnBl7lFbwvOaORbzNSpq8XeQQmee4Tv3iWARPRqkg2StGOtRMmM/SHcA8e24TzjEo2I57zFGlJF9SzP0JyO8nBhl3ynIucz3icljyBRIkTXNUsQFURXMOS5HeeTiVKlCW+lMGifGxk1V4TV4A5RMCHKsIQViiaTkiNGSU5Dop8wQrxxJUV4/hZGYovwuB25uruauTk1dVZRcZp6NEmgcYiUg5wwy5SiEAaCtodYNvoj7+TAOxxgsZUWc+RrFLMaf3Jsxv2d8Z5+MxzCnd43fBq++jLdBpd62ve+aaCw37kPYyv2/PoQvUh5US94+3nce3lSlfhe/5PRY39TNUUqSjKUtVkqh6zpurm949erVUTUgBHkQtLZY5/F1LQ9cUoRYiCXM1QzBCB4fslIwWjCaSilyEny9s47aV0cPg5SkGjFNDqxBk+Uz5yBCz1WL+3M4W7IqNc/+9wlGOfn/43P4tut2Ok5VRk5f+10T3QVa9qbr852S3nd83Ifce3+oo21qrFaMCvp+JIVA7S1n61aIgrNpY+Xc3B4TEyVZeAoxZ1KaxC1ea1RJqBxQRaMyaO2EWGk0qmSsKxQFzmUOh56sDco1VO0KpQ0xJvruSiQqc2GcEqn0mDKh08SnH33Kfp8ZhoJ+WjMMI0N3x83L19Tmh6w3F9T1hrth5PYuEXOh6wbW25oQJ8ah5yd/8mNub2/Z7Yb5+ckYDAqDKhZna0zdUK02hMPEYerJVuHqrchyKsVXX/0aVRJWSVK1qhtRtXHSvk7JkJKhrh2H/YGCYrU9I97soKgZu2twvsLXFV0IjEMgE3GmYbNqGIaefBfIaaKoQtaFKReGfmCcRg5j5KOqJcRASCOrekXfjcRUqOuacZrEsEtroXjlhNMFbRP77kCKGWc8q3Y9FyEKft1g7Fx6DoHYj0wlUZRC1w1az5h7ZQQTDyStBVLUVFRNzZQyaRyIMZEQt9tSIMSR1fmGm9Bx2+/IobB6fonzmjQcsF5UVZr1istnnzGOE2GMqGxJAfZ3HTffvCJ887e8/vxveP3rv+Hq+iWffvox6/WKXJJ0Qgg4PdJUlidPnnD55IKPPnqKUlLpnsJEnn1YitYkJfOmNpb1eSseFzlRchIoglKgpLJq5gp9igmrHXqual6/esk4HBj6AfKEVgWnNXVticmhskbhGIqnac5ot09ZbS7RsaBUIIbh9zYH/K7Dq0b4OVrPqoazZPKSZKCEn7GsF2UOdMs9dApm/kaZfZwoEkCXhGln5amS+ejJhn4YiSESlJ4Dc1DWoJ2b1xDhxnDS8T9NMowxxwp3zsI9XOZ/Y067HQsR/H7tWGA8zrljsHzaKbHeUwJEIiUVlNEUhNQecyGWuMAMMDPcqGSJOhd4jjYiHrB0Sq0S9T+nxAvHlgwpkjLyXM/O3oLzl66MUpYc5fwapXFGFJWE15nIqCOJ2xgxikMpMmFuCmVSDmK8WhZ4UTp6fSk0Oc3JixJZc2MUqmT6Qzcnd8JXuu8GaapKnIFTSux2O5hl+FPJ2Jk3kWeTuTQXQSgzREvxgLMht9J8bbJ0lrQ1QCLnQC5e9qPIPTBNEyFGlDZo6zFWRCua2otHFAUVJ8aZgJ1Kph87grVYa9jvMjlJcJ9SnEn+4kQvhbqJXCLGKq6ub1Gq0DQ1Z9szGt/gjMfW7gHpHiVu7yVKFyXP96+x4gu13Mu287O3RkIVTZoCZfbaOCbPHyja81slGb+r+dyHjDeRzJfxtuDwiEH8gGTj+Jq/oy7I9zHeFkifJiXvgtGIW6eYBPXDwN3ujuvrG0oW85nWGFSweNdgncA5+r6n5EAqUt1w1lF5T+08cZpY4FiV9VSVqN+kIBOoMxZnLSMySaScCHGkHyA7Q+0sd7tbbm9b7nZbtpsVD++k7797sZzH3xaa961R3sDT+a6b+J238Ic7vvzyS+mEKUXTVHgvkrFfffWVqH0A29WKXERuMKci2PIwCckwJaxx5FiIWf7dNA3OOZQxTKNwg5RWFCaslUnZAJtGZBBj6eivrwkpE1KmUR3jGNAotnXNer2SPLcUUv8CnyNaC7G6IlE3hSdVYRj+Eze9JWHoo2HfJ8HaY0i/jKxWK84vLvh3//YrzBwonJ9dMqWE9xXn20usqzHOo32FtjVn68KqTmzWa379q1/SDz2UQImKtmqpneNwe4e/vKRet2hrcV6qnFOc+OKL3+BXz1AKfv6LX3O22eCNkLufPnvOrh+57SJ/8mf/jDINhHGg2+345uXVXDmTDkZdVzitGZLFaM2Tp8/42ZNLUi6M04QNgaapydyRYqDymk3dYpS408YQGccdQx6oW0N7WaOVQSnHNCUhIyvDv/rX/4Yf/+RPOTs753AIbD/6DO+F2PzVV19DnDCq0Kwdo7Io52jWK7aVE0dyrfCrS4a+p+8Hrq9vyVqUvdrtJbb2XP6oYvODLa/vdryOB0pQ6PVTPvvRT3j54op//R9+xY9+9ikmKZgS4for4s1rXn/5G/763/1bCN/w53/2Gf/l/+V/hXWG65vXxDiyXq9o2wqrDKrA119/hdKaPh34+jrjmhalDSkbfBZSsbFuhubI0rvvOpEqLQmtC/W6pfYVzs0SmLPcaclFKva5CGTNOqmoK021WkOJaG+x6xXn2+dkXRHwfD0o9tkR+sRmKly9vmHsRqZ+eusz+g99GH2PoZcEAY7V65N/LV2CUqRodQ+rkSDQYGDG/98b4sn766qibNZ8+ukn7PrEEDJXu+7I4yxZOhLOeZz1GLQY9JGPnYuFf/DYy6LA7ENzzwE4hTwtxbRFknZJVJZ74lROVWvxeVFxTpyyyLCWAmGaJOjVUtCIOR1VpOIiwCEsEkrOWKPwxmFywWuNN4a2ksA55sQwu6mnLEFvjBFtLApNyROVr2fIkWMKipAg5tlfpEhyZWZvjpSTFAdynN2/BeKdtUYUtMvRFycX4WPkLP49zjqKFvZoSmKAquaG1bHrp+85JaffFx6G9/7obh5jZMjD8T11XYOe9/kkUVy8NJbrqVAiOJI1KWWsdVRVjXWOFGXfhmFgv9+z1hpvtHSmET6M09KdsVWFQsQ/cpR1bpoCMYysmhrrK7SqjgltVuIn1DSVwLQ0XD65oOsO7Pd3rFYNbbWaJcL1bKYnvi7Ch8nSOc4zXBjwvkZpQ1171qs13omk7zROaDSjH4WzFxOUdLyeHzI+OMl4U8D7XWAif5fV2ceV48eV/neO7zHB+NBuxJve9zZI1HflmCyGeSCVHl2Ycdn2WBnLg2DCH2s/xxAYhoEUA2WWf1s1Dd75WQscIR0iCgMSUBi8sVIVmbsa8lBqlCpUlcFacQYvBMYpM44HxqknpXAPcaUslLRvjccN77fdS79Nd+27jg+59z+IP3G8SN/Pfv2hjHa9Ph57YZ60lLS2D/2Inu+pumko2kqFTWkh+bq5yJuXpHHeTrmv0Dk3V4Ip4mZNJsdInH01lonSOYdzmmwNtW7FvGiukjmnjzwkgGIcFEspNSlFSk7onCjKHL+yqRhDIaZMTIWxn51n8w3N2ks7PQ3cvr4FbQnGk7srpgy+avH1CtesGcZACJn9ywLjSGsVde14vn0yB7OK2ho26w1+1WIqzzfffCPVRKPFZE0JRvjZJw1r78kxMu47rHFsz1tabbk5TLRNRVGK/m6H8jU6GVRJmMqCs6At7bZhvd3iK4+rHK9eX6G0pVrXVHVNSJlpGJhSYrtZCZ56CoypgG+pbINrHJWvQWliBqcN0xQZx4k/+2f/XCCWiJt21JacNSVF2vNLWu+pnKdYz3V3oGhDsz2HGMklo1PB1xV1c8FqmugH8G6FVpoYCvu7Htc4tLNYpdls1lAU++s9X/31L+n2PdUQ+Nv/8b8nDnvK1GHjnq3LuDzw0x+tKTnRrhR33bUQQZ2i8g3KGm7udihlcMajqxVKi0PybhxRMWOsx1cttZbEuJ8JpUtivG43bFZbqfiSqJwXOEeYZVWNQBPIhWOpHsXN3YFcDKZZY50XGVZfkddnTFNkCJk+FnZJY3wNdc2UoRsm0hT/oCVsc873Ts/zOqSUkq6f1gvKgzh3Kpbqt3QxRPZUAs/7DsQp+XcYhuNaUtc1282afTdxu++EQ2UNxVrxm0iZSQeccWjjZ7GVe/7EA7JwkY7fUth83PE4VUMSnoR7IKX6WCmpzN/FIfp+HVdzsK20FogQ5dgFXN4r13+ZQMU3ovWWde356PKS1tdUzlNZSyqZcZo49B1jCIzTxDgO7PcHgUepgjYWQxI/mtALJzOluVUkSkmJQlSFohWpzApdReBZpQhsaYFk5yxAKoyWq6T0nJgplDGSkCznaz6u0xV0Ob/jOL5RFvj+NXKTLPzSJfkTovo9h2QZp0V26QzM15B7pS9hq87dJiUcNY1AXCcKk9fUpsZpQ11XqLmLqVJmu9kIZKtk4jQek7KSE0YLrFZZkVR3Xjge0zQgyLHE2B/Y7/bkKROrSF1XJz4t4RibWGtZr9dMaZYOnk/iNI5cjSNhjMd7TBuFcxYbNDFNAovPYtr6IeO3SjJOx9sC6ceB/vdJyH4f9+NDSbLLc/a2V/42HY738zgevu7xa9/0+/cdy7cSFBbUkZrxqVIxETKXOWb8sECvmDF/4uRdskwO3gv8yc3KGGqBbXL6NTtMLpNgzhg9O1Qa8JXGGJH9OypHKem7lhLnStLDfX/4A8fk423dq9Of3wZ/+i7X8o3n+1En6V33/Xcd/1gSDICqXjG3CZjCOFdVQBlNnCbMsqBi5tZzFiiEkX8bY8ghHu9nhTpC83IWt1QBjDLDTCZyEkdkpUTjUqWEnyt0BY2fCR0ZSDOcQZJwNbtHL9VARdYKsoYsplzKGNAW7StSFgJ5TIm+Ey32YRioW8cUxKMmjAe8rtF5IPZ7hjGRqpYyrQlDSy6KlApjP9FUnko5apOpKktOmRQKWidSHEnB4rxjGkdQGq8r2mZFnJVX1psakyJpmghhFOMoX2N9zc2+p1q3Us0zDuVEPUqTUAaKtWhjadyKs4snaKMZppFUFNZYTNWgfYWpI6popsOB4mpKyowlkY3HWI22RiSAK/mslBLOe6IZgJGPPzqnPwjsxyRQvp6vW6TZblg1KxrfMCTQ0cyBx4qpu8PM8PCYZTEFR86aGAsU0ec3xrBShlprdCjoMZJCpHv5isPVLSoVLIrx618TxgMlDlg1sNp62lpz9twT05pcEvvDHq0NTdNgnWMKsD9MGG1pGo+rW9BZkuexY8HXe20wyszuuenY/dVK452n8tV8v4rjWI6JkiUwzFn8i0opZNIciEmCa+sGbRxFS1ATbU2n1oxl5BBGDlNgtI62alBVTUIM00ou+D/gOWcJfuQ5lblBz0nGfdB+/yzP9IAjFGSpCCsURd2bqy3qOQIhlqDde896tWKzHvBWMylFVlJpD1MQ2VU0bdXgKoOZCeFLZwQerlvGmBn6+VB69nhc5d7rwdqHhn2nCcfpa7V6SDQXEjJzYjUHi+XehFjNkKC5ticoBOtYNQ1Pt2t+/MMfsmlaauexWhNTZJgG7g57xnGk63q6rsMWjsdgZz5nipEQ4szXFN+gMsvTK5i5XgtsLD/al3J0G5f7/dH6PidTxtq5o3J/Dsu8jVMfC7j3ETkl1D8+32TZp+N9pe45O3Dv8H16LY/Xc4mn5m5QTplMxlmBdy7cFMUcY8VMDIFSxNyz8p4Sg6xRZOnIz+ciGjNLyyZSKUforNaapq7x3so6pWbzwDAx1DVD1zPMXIy69iyY9FIEor7cI03TYJPA16Vzkggzl0RM3qVTqFXBWoN1BmNEICEkSV4/ZHzvjt+nnIHfV/D0QZh4+D4ROb/38a0K+ynJa37Cl5vLOUfo7+EnOU8SZJ1sQwO1r44qFilEcQEtEnylmAhqlqKbP0jN7/fW4awCU6gag8qCJa+958nZhqdPz7i4XOP8Yp8EFCH5suzv/MPxxyO67dsJxuPk4k0JxofeE/+YAv7fyzDNnCBofFPQdl4QZ53zkjIpRK5vO7Q1aCPwG7mPC0yJNAWsLRhTiHM1Ra6aZZgythIzo5RmXLayeGcw2uOcpaoMfb8jpkhMkRwSIS+GXmC0J2cETjXjYE/nNI1CF01gxDiNNprMHpZF3kDFQNXAeetIZSA7RVkZfvDRs1mKMDMOAyAk5pgjV7dfY2yNqTxqZYnxwDQN3Lw8cLfbEcS4msMhUTVnrDdnfPTRJzzZntOs1jTtij5MHLqeaRrpDntefvEbpr6jhIC5vqVULbrZcPbpj8B7jFZsLp+xe/mCyhnWbcXL1y+k+1nXnLdPcXVNP/S8eH1Nuz6bIQYwWk32GzIV4wj75ET9aDJ89tkP6HYdh36iKjVT8mgrxoIxaGx9xuXGohhZ+4bVeSaGiPeLCdesOJMN+7Gw6ydikevy6sWO/YtvqIDKKH711S9xXrqtYz9Q1xU5J4a+55OPPmWjNzSq4er1C/793/xbXn3zJddff8FKZzaV5XxV8b/50+e023OUV7y8e81UJkKJ9GkkTpEyFUooWGcY9wMwYW2FtRva7YqLyw1KJ4zNKJ0JqRV+EBZVHLoIzMdXlspXdH1Hv+/IWYo5xhqMlxC1RAnKLs/OZJ5OosRz6Pfsup5uCPzn/+X/miEW9sPI16+u0NWGbiy8+mJP4x39CGNSnH3yhGp7hmtXpFkAQFtF/QcM2TzKs77hb/dzvKLy1VHSPc3GIIrFYFLfy4uevHdRJFoC0HEcOduumabA1+uW68OBcQwMqbAbJkLMAji6MChTAfpbCcbCpygzTGkcR+KJudsyt5xWzFPK0inJ9/Crx/4Ysu8LeVo+S4wtZU4VDysk8A2yTpc0c8IUoMpRnMVqw5OzC372Jz/gn/7FX7BtGiprYe4GhxjopoGUMof9gd3dnpcvXpDK/bx5KigT+sxut+fQ9/QxkPXsM2IMRRckihUjuDInCl5r6XDIhSKWtMTHpHwqLmNnk7j7ZK7MXYqFe7aco2maHsD7T/25lu/Le0/voRSFdL50kBbi+OOCsDMW5mRC5TKrLpUjR9VoTQ6BEgLKWaw26ALOWuq6ol01lDCRQyAFgXKlIOaPzF0pqzXWeaZxFHjTMIJSTM7inCiilbrBak3lHV999dXsBTKx3a6PnYxphruLQWJgmvrjOYxToO8HSpHny1aVcNxiFLldq2nbho/sc273d6ghC/b4A8YHJxmLDNhyoU6DuseV3ceJxvfZxfjQ8cGf9Y6X/UPjaryLo7EMvWB4lToarUBGlQwlUnJgGjup0CqovQdtybnMusdLcig4Q5Fzg2kU7WuttUhYlrljMSs8eGNp24bt2VbcVuNIyhNVa1Ekau95ennBp8+fcXG25Wy7Ic8mRoKZgrkewIP2UpmrAephUvF4nLZC35bgfl9dtDfd8x8C1frQ8aG8oj/E8Tc/D4Tckym4tmKzWZFzYne7o/KWmCJTnNDKsl5v0Uqzv77GlCjdMA0TCaXEGbrvR842Zyg0h64nW4t2Eectf/HjT7h9/YLD3R1xitzedUIWXXus07RNzaptOD9bUxtRWKsbTxcOYsrlK8pUoIjfjFKamGRy1TlIi1lritJMMWO8RxmLNgpVCcY2hURTV5ACKU6M/S1KjaAM1WpFjIpSDCkqggana4xxaG8IyVBaj9Zr/I9+8KAaF1PCWsdm44h5z6F/xeurjpdXN6y3W1ZNTes0F58qoEaZhm9e37Lvd/R3r7jrr+HyDF9VGKWY+tekSZGiYxiu6brMTYFvws+xtpqLEIr+ruL11Q1X1zeip28lANofei6fPCWmzKHr+eV/+g+olDG5sHJ+9oaIvHz9msvnTwBFLKLYs1T6nDPEMDJ0HYfdHZeX52x0TZU0r158w9lmRVM5Gm9x+yv6vuN66Ciqx282VFVFnTJ3r29p6pqffvwxjX6JOhzYDx41XPPTzyr+9NMfkMITchxQKaBj4Hb3mrvxmmKlA1utWrxRVGWFO/fHYMd7gSooBF4quPTCEAfGccQahZ0hTm2taCrLatWyO+wwVkj6zmq0saSoqJzHWk9Mhi7M6kRGqrYHVVNqqa6v2gY/3NKGyBDgy9cjV/vAbkgcxhXrizNMrbn4NHJzc4eqKlbOU63E3b7kA6oYhu4aNwZc+rAA4R/i+LZ52j3U9kjSVRKoLzUwisCHpOo/vx/B6ir1ME5xzh07GeM4UvkO7zTeKtI0Mo2BMQvZuaorjBEFIYFI5eN+LJyLhay9/OxmLyDgGMQuCcjyXmPsbLj4cL1Zui2LY7kgB+7hQDmnY7Xazs8WSrrAcQrSU8hKFPsyzB6GOG1YtS1PLp5wcXbBpmloKk/tDTFFQg6McUJjRV52jPQ/6YAyE6dHuv7Abrfj5uaGl19fYTRUlWU/9Iw5kQoiK54zmoxVRVSussiIFyXV/FyKeG8lKfCIk4PGG0dlHbX1hH5E5Tw7aKn7As8JbAwerqVLUrdcC2MMOSZSeeg7IhcGTrPYxan8NHkUTyD5/KX4JJ2MJFBypTEoSexyxhlDW1fUlYMsAbxWCtdUmLbGKnEX12pR7syEaZxNHxP94SAu9gWqqkJKaHLNc0oYrVmv1mw3W8ZhoJRydDav65qcM13Xiex2SozjgDGS+LiVyOqGIApW09jPxO9MydKRFl+VwqppiGOYi2TvH9+pk/E4ePttOxZvgwd98Pu/9e9vB2Rq6ZN+8Fa+PT4YcnWyqe8Ck3rf7+/bdg+TtLcTv0+ULgBFnL8naq84W9c8e7LGGrjddwxTJALGGmKet6/For6UDEZzXIq0wlViT2+1KPdoVYCIKpLQeNtyvm1Zr1q6fs8w7CklUNcV69Waj58+4cnFBW1TSzUiZblQ6hSAJXu8PORKPehnvDHReFuCe//vk/e+7ZK+73ZQJy8rszSfevT35TXvuwfe81EPX/HHlWzs+0QshUSmhJ5YrCiE9JmShNMQUsHXnm4olBw5DBlXxMhIG5iUOSrDlNLQTRqKZkwV2lbkrChB8fXXe/q7wNRDjIp+El+KMBhMUKSiySiM1xQt5MIhyucbnZhsgKjmiroio2acd6LkUUIbiQiJRaHHjDYJYxQ+G2lD94FnF2vilEgTaDz9OBJzJgJxTmJKMcRkiDGjdMBMovyClsSKWDB2Xhy1EhxvhO7uIBCEFHE60daFVZVo60xjFI13ctJMZpgM3itCsGjt8FXE+CLusucSiFgLzs5VrJTJ0wxtpFCURulE2xSmaTGHk0Xcecv2TBMTWC+LUQqiCausIumeYiK2ijgXhUMQI4ZWPitncoRx6JjGgRgC49BhdCAWRdETWRkykVQUWQ/gJnGJV9UxuBQSqVzXlDOHviMPQbpFcRIIijHoZsU4KnT2GJ9IUyYJpgbrHMYLrC+kiLGVwBZSomQjCmWID4vxNalAPxVSqTBZKpoxTAQMQTly5diXCosjqYohKUKRJDREhckwTonbPtK2KxE0yJm6KLJSaKPZAyU3pJKZgF0XOUwwJg3WEVJBVYZq1UA3oIzFVDWubgXnjhaSsjbk0NHt97/HWeB3Gwsk5hQ+xKN14uF6Mg/BwszrqjlZe7J0NUpBzZ0DgStZnHNU3lE5hzdSBFNKnhllHMp4lBGjUIFnlWP34pR8fOqDsRCdTzsYSxF3CWKNWdby+zVNHfddz3wv8QR6ONQpslfeoxVGyRyQikCWtFIUlVBFUebj1cpgbUVTr2iamsZ7Vq0X76AU8Clg5y5vjohHBIWUIsPQ0XUHVm1LU9cYDPt9S98P3O53HIaRKSVCymJwWRbkRBFDv5zl3k7ycykZEwNoMztqe5wROJrKWboGRZJLcS6XhOVNxb7HKIflHC6/00ofA7nC4m8kxpyn7zvtiCyokKX6cHqtFpjk8S4ssq9OK2ovQjreOZy1OGuovDlyXAtqluc1UCLWSWKaQiDliI6JnETdE6WgKBKCEpFkNdHWtcyf48B+v8POxQ2UEN6XfYuzyZ9WonLW1AKND1OaxSik4xRjQixWZsEELYIbWr0/koHfgpPx+CJ+SCD+OCD8ru85DahBboVvhV5vnk/eOj4ITfWOyvmyjaVZ8Kbq8/ve//h17/vbu5INOSEapUQnurBIy0kysF05fvjJBedby82u45e//oLXN3fsu4ivLTELGWjra8YUmOLEFIJI9QHaaqnAKTBKYE5xGskxYY2CpHBmxfnG84NPnnN9pbh6PXBzfcNm/Ywn6zUfXzyhqRqMMpQowcyDBEEO7gQtdb9QPOZlvOu8nV6LIxFOL1t5y7n+wFy3vCHBUMskd5IjvWss3BbZ4Ft2RT3c2B9LZ2MyGWMNWmlubq8pRCrnqLzFGVkMrYGmbbg7HBinAEaRtZiSFa0oiOEjCi7OL9kfOsjQnp3TtluUghgm/v2/+/esWtEN16aivTxDGYPShnHs2U+KPhXuJtFZzzmRcqB1QjwO04QqlpyVKLTFiHKWqDJjmTBKFgNtZHEWvX0RRdhsasZ+4LDb86d/UtPtd6Qw8snzM15dDxyGgf10IAapPBrjWa+2jENPigkDNM5CETJkN440qxV126CUxipLDJHd/o6zi4aLyzVPnzznyfMLlJ6x6EljLeQSmGLP5cUGa1u8XVPVFwxqT2Si5IxzF8egR6szYszkBEp5IWlPE90woK3j2cctKT/HWkMugVwyqSjqphHS+xRQ2nB7t+fQDRhTkcKEVg3Pf/qMuq5EEnQK1OqSbj8wDiPD0OOsQm83VN4T0ijzmC5cfnaG1TKfjTkw9RFnN6y8p7+z5FQIS0dEb4k58+VejB9DlqCmbluGsRf5Sm85DHLvbdotZ5fPhP9QwFWO5DwpJ/qpp5oUaRyJwyAdXCPEY43l8vyCKSXu+o520zIWCDHy6uY12+Sog6OJlmQvqJSn0p40jpRoSTEw9QeMKnRD4HrX89kPVuwPI/0wcnHRSEKepftnVysKwu0osVBZh201jbH0YSBljWsusXUv659xVO2KMo4457k4ewJXO+6ud9y8uvp9TgO/01ggvEtSqU7m9dPgTir+M3ehLOiOgjEKbd19USjPQTyIxPCJeZtzjrauWbc1tbM4o6mcw/mKpCsSRgLmOTmQZ/n+656MfU8uzyfr+ALRWuA4Aslhhvzcm8DJtvV9Ig2omMgnPhjLPis1nwe1QJ81RmuUdQI9moMW6QAgylgpic9PUdTNajYjdTRti00jLgdiiljjEeltkZ3OORFTYBhq6qZivVlxfn7G+faMw+HAvut4/fo117d39LMBcNf1x/gr94HJiG/SMI1iApoSKid0mlDWoXUlCnxaizLWOEkyuByzkmS8KB6s+yXnYzJ3ev6WxCLPUC+l507REnuouSNWHsoRf3sNVlKMfXDvzS7lj8niJeOMpq48q7Zhvapom4q2rXFOzwF8wTcVbib8h2nAGY3NiWCNqBxOkRQS0zDivBVndmVZNTUhBg6HHau2la7SfuLV61doo0W50RhWqxV1U7GKLbe3tzP/C8iFVdtAkW5GmeGqKYq7+gKKCyHAzKO0H6gy+52SjMdfj8fbguzve/yh4eY/qCPyniDyvUGmUpLsKCG4Lg6NS8DdNA1VXXFxecmzMdCutnz14hV/9Z9+yevrV6SiUMZzc3uFthptNW3thcCokGpOU0lWlWUSSMqg0LSN55PnH/H8+XN+9KMfsF2tMTpidKbEiWdPnnJ5eUnbNEKmcw7vPfv9ngXv/u3jgfsI/N3n723QsfsJ54NziA8ab9rfUwjhQznCbw/hsXy3z3jzJPeHNyYL1gEKdO3ow8A49fgCf/Lpp7RNjbGaL19dgTH4lcM4izYQQ6AbBly1xc3bG7AMWbp3znq+ef0SUkRT+OxP/5SiyswvqKRLEiL9MJJtLV4MxuDbc+5ubijZcr5+zrS/QhWH0SvGMdGenaF9Rb/bsX32DFM7sknsbu843O0Zu56n7TnjoaekTOU9r15PaOWw/hm/+uIgCjh4Xv38lejVU5GyYr1azQt8oD8Iob3yDm+kPR1CZEoFV58RleMwWTAOFYVLMgbY7zN9f8vXX9+wfbKCIvCM9eqM9baFEplGqJzl9tUdd7evoHyJXZ2D9aRY6PubeeHXaAwxQghw6KbZq0GREDI3s2xizAHjLUVlur6nqvQMuxQXXW1b0FsOIdLtBGusSk9TZYFqxITOn88wOCmpjUNPLoVu0KALIa9IrGjTmsppUhi5vn7Jx89/yk3Xsfv6jietoqRyH1BmI50a56haj1OahKIPAX+xQTsnjuVToO86ru86PrrcMvQ9OSee1k/odz0pQs4NNgVqv6XeXqKAaRpRFOq64ovdQea09py+GDHTqywf/elnvL664W4oNLoiWc90NxGmO1aVo3YOXTRjP3K23aDW0NaB25ixq3M2W0/RFoMRBaPDgcatmMaRvhuwVmAusWRuD3dszi/Q9YohaJ5+9AN2+x1dP1CwrFYVWhluX+3QSUFIjN3u9zMBfA/DOjMTUvVcVdWzf8h9gUk8GdJR5tYaQz4hs1IWU1jx0VkKO6dBfM6ZqqrYbjcopfjJT35CnzJXuz13QyTEKCRwCsMwChfReaytHyg3niZEWmuRtT2BPp7yBE4duHO+72AsycZCQlZKfAp0EbiRUgprNd43LBBp8ago6KKx2mCcQyuYEGM9pTULs6Xre25u73h9dY22jnq1oqkrlNFU3mCLmMUZ7dDFoIu+D6pLwtee7fm5SNuGQPfswG6/Z7/fc3F5wW63F28sZXDe03U9h/2BcHcgTOIVcb2743a3YwwTQwjc7O9Aa7IyjDmSppkUrtQ8/+vjup6KWHgkENO4LPwTYwxamblzJbyQWReEFIU0b6y9J5zPGzya9OVEiOHBer10h8STUWO0xRg3m/jJa5ZrVXlPUzm8s1Te0VYCEV6vGvHLqGv0rBpXciEvUECtOTs7Y+g7IWKjWG3OMNpglWboe/b7HePQE8KA1jVaKdq2JaXEk8snrDcbxnGkrZuZH2I47A8zed6wXQnXKCyqol3CGItzns1mdXSIP+xH+l1HLoXKVzN0zGDt95xkPOZhLOM0c3yspnD68/eZGCwqAO8b/1CSke8rOHxvEnf8t7xOHD7VEVqi5opGVWmeXj7BuRptPH/9t7+iGyZiljZtKhFtC88u1uz3UHKmrjxt5efJOUmGrTXeWjbrlo+ff8T52RnbdYO3mvOzLU3lOFuv2Ww2omRg5pZxlhapXmRxl+OSEswRgibNaam6LCSs06rN98n1+ZBr9LbXfPcEYGmzvvuzHj87/1Du599lXDx9QoiBlBMfbc8IQ0caJlI/ULUtqWSGvsdV4h+RlSbkTLtpoSBu0EUInTFG7u5uZ+8BRTeNaKewlcMajWkrtHPEnPj69Sva9UpIy4CyBltX2KpCtw1q6CXojIGSIwaFMwrlHWNOlDhh2gbd1GRV6LoDznkxn4wJchJ+EgqjClErtLM4V/Pim5ecbdc0dUMXenF+VRqbFd55+tgRponV+RnGyAqYc+YwDWTANJ5sLK5qMFVFRmPzRAqQ9ERUsgslQbpOR0nP3e2O9nZCkCABaxLjAONoCVNExwFlssAfZh8GrS0hwTCMooaVC8pWM5wkY51DLHQKqIzWK1Aa7zQlKVngoxaYkSkoE9Ep0xpNwZJDpGIm+xs1m+dJUNcNA21dizO2MQxhwpSKgsdrhSkFYyxPzi+ZxokUEt4aau/mTlSecdd+XvwFS2y8p2hDvJ6orMY6C05MqnTT0FY13mqiNaQk7vHeWZSXRGXq92gN2Shx+VYiL+tXLVkXchI53XUj0Kk8T2BN21BmQ7DDkGiqik3boHLEIJCPum4ACW707O6dUpDA0dVYA97CtrW0aYfNE+gJ37SYqqIozZAL7dklzjfErPBVDfsD0zTRd50QObWhNp6w26NS4GxV/16e/+9jCL8QoBwTY9QcLheZW+X2ui/mFArazoTvxZ1Jz69UZq5iS0FCFdBZFBG1MhgjnYvN2Zb1qmHfdaSxR+uaojWLY4DRGqsVqogkKVqhZzilNgqUXHN0hEX5Cumyy65mgeAoPXcyHhrvnXILjmiGLC7ZWi+F34dwHaPMPB8AZLQWaEwqpzAgRc6GMfZc37ymHzuKWmOcdGqzymg0zliMtqjEcpOjlaWogs2iipRSZDKBpBTFWFzdULUtl6OQmp2xlKLou57+0BF2e+JMSr69u6PrOqYoCc3Lm2v6Ubof17cHkp2PWYk/xbwHpFJICpJSGAVmgdJisGr28UCg314Jd4IssUaeYW4CdZg5CKWALgJDVeWIvBMWj7qHoBkNOqOMwlgDWXxsFPI3ZzXWSHnGWbBGpPyNBm9FWcr7imOsnstRZrYUMQQ02oKV+ygQZoyKfGUlHJZ+HAkxSJdk1bDZbKjqmnEYuQ7X1FUjggBKQ1HCsRmDWBMYUeoyMZKT+JKUKJ1o6z1VzphOOvSLKEvlPamqZ1n494/vlGScjlM+xu9CVH0TBOj0329+z4Kee/t4HPg93v532a/3dxk+bFvvGx8aRD4m1s/v5mHbbv6bEgxjPmkdWm04225pV2tWmzMO/cj1zS2HbsA7TcyCXf7o6TlOC0HJO8umbecqQKGpK9q6Fh3x9Zpnl0+oK1HvoUDlWtRmDU+fAurB+V+qNVqJk8Hx/JwmG8g1Vrz//H8YfO8+GX7XeX3f9j/k9e/72+nWvkvi8EeRZDx5yv6wJ8TAxeUF4+HA1HUc1B3K1wzdjn3XUa3PqdoVWRtiP9Csz8WECcVhL4Rbpol+fMVms0Yp6PsD5+uaunL4yjIVRbVaUWLk6ld77KoRrxjniaVg6ppqs0b7Cjc0FCXBtVaLwkmmWq0ZciaWhFuvwFviNNIfes7WK+rKY7J4ciirRN6WhPEG5y3WO8YkyiJu1aBHj7IWg8YWMdIaxoFcMlUlnYJcCsM0cogTxjnazYpQwK9X+KYRgYaYKVPEFU8YBdpUsmLcZWm3oxj6Hf52xDrxGdFqfrSKZ5gGVJlAJSgzD8FIZbDkRIwTKQ1onzAuCS4acLVU+FLOlDTzQ7RF+ZowjfJ+hbj9pgCqYLUSB3cjpM/K5GOjMliL9VY4GV3kfLXBzImM6jRKiWmfMCAy1iqq9YpvXnyFKom2MjS1Fa7EjG2v62au/op3j68s2lp2t4XKKKwBpQsTmbb21E1D6A5QSQdHlUTlBCrTtA2dEfMxyChn5KsUbO2pjcBG49CL83oWg8cpTtS1VDi994zDgdrXrFYtY7+XSnJRWG9IOaJUwWiLLrMkc0i4OWKyWlM3GjfcoGeH36r1UNVEZXCp0G7P0doRDwMoUWMrORPHkaQEblhViu7uFhMnzrft72kG+D6GYJ8kAJRC1T1Iai7gqNlkjrkouUBgmKVJ1Qk8V9+vTUrNxTkNWkuSoYzBOEu7WtE2Nd4acpjQzklisPh0KElfSorCc1hiJjXviUIMFHmABEZn+TwQXxTptsyJOPdQn9Mk43i0ZeaHqFm2N80u2WUJwaXLQ1kkTKXjkReUj1Ioo7BeE9LEze6KQ7cj5SfCXbJWEiZlROVIa4pKlCidkIVfsqCFY4ygJoIqaF9RpcR6eybHNnsgTePE2A+M/UDsDuQYCePE7m5HHCd5hkri61cvub2743Z3h82JWNIRKt91I6lI8jBNhagUGchKOE5CxhZYaUGTivDpKiVSx6UoFJYpZ0IRvtuSnKWSjkgKCaHU8Xxr1CylqzBGJM2VEeSHLl7MDhEJf2fVnEBErC4YvSSu4KzBW4e3Mu9qJHkOSpEWw780zwnKoJVwMVKOpBwJcxKrjJH1YhznTpZ0R2KIDG4UQRVXUVf1sai7SKtnXUQMATPLAgsPL4aEcxXGiqmpt45gonSfU8JbR/IVkw8f9LR+LxK2py3G33Z8lyTl9OH7ux7vhL4cd/lkxvh7GG9UNtIS3MyKzMcOADMpyZplMpbqj1HyYJyvWz59fkmJA7ub15xtVnz66Q949uySzXrF57823N3e0ncdnzw94/zsXBKUpsYYISuZefJRcyvyGEEc8YrzKjBjHj8UCnTc1HuC6zcJEpz+7U0/v2kbj/fpW/vzaLun+/0urtHpa+B+svrHONrmDOtahmnkm5evWbU1VC2mzbzYH8hhIha42x347OIj1uszlO+p6zXOGCjwxc0vADGh+vTTj9ntbumHnnEaqFZP2WzPqNqWX339GufPac9W/PP/6mNUTtS2Yu03/Pf/0/+Ibiq8XqGrhsuPGsbDgasvvuLs8mN2d3d8c33Df/Wf/TMSYiIXjGY3jBTlOD9/xjj01M2azfaCHEYOux1D39H1HRfnTzBeOiw//Sd/jnUOpQptOedw2DPkRGUNq7MtTVPDZsNNTGxXa6z3MEXGeEWzWrH59COKuiePDvs7fv5Xv0KVwk9/+qeoUfwX4hSZ+gFUwirNdiv+DrkUpghV0xBSJORIsJa2yUJwnxJjiYR+IoZA3TT4laUxHuuecbfbo5Vhe3bO9c3dXJl1WGvY778mpUkUU0rGqIJ1mXbjGbqeME00VQtqIMRIomMqchxKaZrNBTEmVC48fX7B5cVT+q7nxTcv2azOqBuDMYHbu2vxl0iJm1d7LrcrSsnEFCm2ZrVaY52jO3Q8eXJJTpnbuztiinTjQDwkVusVVSUmW4e7GxprcVpRlZGzlSM2hnGaePHqG1abDVNQ7F+95mxzRtO0gOLLL75gs2qpvKfvOtq2oW1bjH3Gi2++md3KDf3YkYeMtQaVV3gVmHYHhtuX1E3F2fk5dVujtaKfJrR12HbN9etXuGnEpMCUAlMMaFVwQJUT2nlcVbM+2zKIGCAfPXuCLoU4TcRp4uvXr6m84wcffcT5dkMYR8iZymh+c/UNLQMXZ+5tj+g/+GGUOcJszSxHyxw4ypA1J3O/RM+FfGG5LkHjHGRj9MyTK7INlRFeuODkU8nYFPHWst1sONt2bG/33HYRpRJGW5yCaRwIk5C+XcrYJMRs62vhXWRxVxa41ryvSoEumGKhLAZzM/JA3Qe+C8cDOPI4ZLmp5k6EEHTDFI8F4aNaFeBO/KiU0ljriGk2DJ1XpJQLwxR4fX3DJ59MFK3FjXqGEiktEK1sNDiRFz8S6Odhs0Mlj87NcV9Lns0T5RQThokYxRzOhIk0BcI4sr+7w2gjDtzDQN229LP5349+sqPr9oQgnj+73Z5xCIxjYL8fCSHdw8uyJJhWa3TRpDA7hwPZIMmfcTTGEg3EXAgUilFkMmMaGYdphqAZnHEPEzclUD0Ab+ZOFxatNM5KF12rgqGgSsJi0Qqs0VSzwXFT11TeAUUkfOfOq3KOMnOOjDEMw8A0TUcInS4aiySVq7ZGlTM+++Rjhv6AVgJrr+sahWIcJl6+fCn7PMOvmqah6zr2hz2Hbo+ak9qqqlBqAqSAF0KQzo1RnJ1tqeuKcZw4HDr2+wM5hblz//7xO5nx/b1XVtX9D+/65O/SOXgcAD7+vrzuQ7f3u44PqZq/kQifTxMM+e1ChzuSpuE4OS9EHu0MF2drYrhEkbi4vODZ00vOthu0Vjw927Kadb4//eijoxya9178AtTsajlDII6fVJZPPDk22fnjHh1ToXKyj3MCeQrPKzzson3381nuP/ctl+ht3bi3XY/HnaTvAt96E4n93fv/xzNECchjvGdqErvdNWGaBHJiNLWrOVttabaX1OtzURXxGutaSimEMNA0KwpC4FytG1brtUB5rCInzTQpDt2IZU13nehvDqQQef31l/S7A9Nh4s//l/8Ut2nQ1uNczfXLb5i6ibrdcvb0GfXmkmp9x36I9GNgjIlsLEkrgQqEQrM+p5RCnxPGtdhzx/byko+bhnHqMMrgTMU0JsZxIlPYXjzHNmtizhRlKZszbFE0KRPGQF9EYasbEqunP8J5y2EyGA39GGaHW8/Hn/1M2vLVBu0iIQzgBp5sPfvdLXEcKbamqQWyE2JGOYspGorD6hqdpFLXru1c881zZRb6fmCcIqkMQsh2sy5/FhPFlArWOXzVgm2Yhp6zswvs3A1ZNTVO90yT8L9iTNQUVmdqJl47XOUpecDOJqFaa65e3xCmwGazoUyRsStoY6j9uRwL4OxBjP6MxnrH008+oet7xmFA1y3ROJTVtJeO7WYrCVgUrsz11Wv2uztCiLROvDUohevrG84vLzm/OOMwdpw9OSfkRH9zzTBNlKJwxvHk4ineWSiZvjtgVWCKmWIT1dkF1ew9MuRMVTk0hTRDIPLscNxutiQ03ZSEK2Q8qRhSn5iUZ/P0nHVbE6eOFEZCGMX8bPNDtBZIxi5mrLV4Y1DKMO53xKygKJ4+eyIBc0pcvXzFJx89hxz55c//Cm8StVUY/WFuvf8Qh8rqvgKl76vWResjz0JEUKRlIUuRIc1FMGVExWfpcAiF+aGcjNLio2FyRkdzdEg+356xuztQGUsKHeMYCaVnyOooOyt7oBATUYs7QRssykWLCtGisAQFYxw5i7LjInu7zP9LwnDKzxChAjXDHZFKd8rzGi+O5jGGWVEqz/smqZdSeibDZ1IGoxVTDOy7jt989SUff/Qx281WOANmMTgVFb4yE6W1syzy8/dghIIqGZOyWGEAs1KtNKBSRimHnTsutkiCMQ0DOYvHVkqJqhnJxhBLJubCs2FkHDrGsafv9nSHHd2+Y7/v2N0emMZEiqCUZ+pHiBmdwc0it6Cw1pMdJJUZUmKYROkwKuhzEENhrTFKlORSyeQ4O7DP94YxVoxh56TNaYtVFqsdTntJMK2lrizOKYwGa6XIa7UWGdumwTs7dztmvsys2JRmARLpykaM0dR1RSn+fj+UxCpxGskpYrQip8g0Dez3e1FFM1LsqKqKlBIhhOO/lyQ1REnYwiwVnEIgp4SmiHyY0hilWLctzhqsEUPYoe+J6u9AXeofw3igTPA94v2/r/FONaWT/46vf/D/eWIuM2lpmdwKbFctpVzgnGZ7thU9+rqGUrjYbFhVgsk+22zwzgvkRJtjAqPVo7p8ebgH9/9S3/75cQdh/suSuBT1rZf81uN9l/J9CcW3ukfv2ODjvz1ISPhuicYf0/jm869JcwV6P+y5vn5FzhHvLXfjQDWbFG26wtkTS9Wu0RjygqHNitrXTEHMJMchkEOCkikTXL26pu8mhiGSmQ35klTTXnz1JYfbHf3dgR999hmV91StJQcEboRG+wrtG5yy1EkxhEhIEgzElFjUffI0UdU1ShvQhqkkbO1xlaVatXSvAihD7RrU1JOyBAfaeHwtEMYhFbKr0dpiMtwNt7M2OQQcF6szrFGUFOTRnXXLMZbt2VPhnVjDMPUo5ja8Az12lBRIGqJihnt4ipJn1pSCsoYyiBuub1qpKhol0CqlQR8w04SyFj/GWdEHwYlTUEaJ0s7sVp1iwtctRhupXJoG7RSGiLINiohC2vljiri6wjcVZdrRNDXWGIFMXe0wVcVmW9HfHUTlKpeZNOtQWlPXkg4Z5/BNTbM9l3M5JZTVKOMx1mKNotlujwFYW1WM48g0TdJx0Pck0CnEWaa7Zr3d0m7WhJLoc6QqBq8d3jh85WdJ40yrNbWArSlOMMzWGpSCVUloLeo7aQITFQlIU6TMRHSFVJRz0aAMRjtc1VA1K5p1S06eHCemaaQ4j11fSrISAiWOmEqgDLooYhgwCuzcPStZAmyVocRIGge665dsfaZxoM0frk/GskrMCHkJqJfAWpe52Aay5M3ZyAwhy8fgaCZCcFrAU3NEvKxnC3RJfCvqSqTYN+s1m/WKlzc7xhBJSTwz1OxrIcWQiDZ2VnhcFI3UvJ8z3Gte3JaA1Rhmc9H8aL84Jh3L7xcTOjUXz8qxqHcvYSudkHneLKD0DP9ZSgpFvkQCFmLOjNPE1c0Nr2+uuby94Oz8XKrcWktyoef7SimwlrKsX6eQ56LRkrlBmSFGSIFCqwTaomdTQIud96VQ1TXeiRSrtpak9UzAhjZE4jQwjT2Hwx1jt+KwOrBv9tTGM46z4INZMfWDGFomqI0TiX00zjiyy0wlcBh6dvuekAohF8q0JyotfCvjcDqishJoaBLYpVxHuc/UfI8YZbHG4Yylcn4WtXGs2oqqMlgr/Iy2aQRObo0E7MuXERiaOHnfZ84Lqd7ahwghtUxYwKAgRYHpOe9IcRKZ4BAE5qfEnHAcx+O9Yow5SjM7a0lxkqSiyJdCEs6cy1G9y1hDzpbiM8F7kcuN6WiE+77xwUnGh3QH/t4CpnL8Hw9/evN4416VcpSSk3+WBxt657G88QPfsRfv3cH7z3r3ef524vMgMaIctZ01i0vyCTRnhkupJJ4AqRRCmLi8OOPi8oyUPyWXNMvDFZx1+CdP50V+trCfFTJIp8nMSSKzHOyDw1AnE/794SpEeu5BFiF9YmlPKmmBv5/mf9qheHzd7ie/R7cNjy74gyTgvXd74QGW9/S7UvfpVOHker1ho98lmf1jUJf6b/6v/zdCnMg5AmJktlo1PPvoCX/5l/+B/b5jHCeMrvnf/R/+a376T/4pTz/5lC5FrLM4a1n5hu7uwOuba25ub4j9yLA7cP3iJd/87S+IY08KI/vDYZ44pe0LQqCrtON/+L8P/Bf/4l/w5//8n/Nyd8embUlNxb6/5a6fyCEyTQlKYLNpcd6zHye6MRLHkbG7ZZoGLp8+Z3t+yVcvX7NuG6IxfH1z4PV1x7pu8JWFYrDKkZXmcNtj2pqUFIdDx+ZMXKFjTvztL79gvd7Qti3tak3rPZU1OFWRYyRqx5Qyuz6wedJSVRZlFNdf7kF5bLOiG3twl9iyYoiBq7uBujZcPhFlJBVFmtAbz2h3YBR+u+H1i2+ojOe8WbNZbTl7KrNGIHOxPxDGgWnoKGVgs2nZrqXgMCSpBlabc/yqJcREfxDDsqygOIjhjhQF3+40BERjf5pgY9b4eoO2mru7W6rZR+fZxSX711fcXr/m7u6GvttRcsB5h6trxgLZQjTQT4mUtVRItcP7FVXtMd7Qx0hBcPXFWtZnW6xReKs57G5RyOLr6oakNFFpLj/+hKqtUFZz8fwjrJgCUFLm0Ee6fsAZyw8++xQ7BwLeOvZdzxQmYkmcXZ7x5YuvmKaC25zhN4bD3Z7p9o6b/YHN9oymqqmaNWPpaauKpxcXHLq9mJsNI1XlaTcrtNZclMzNEJimkVyKQB+qFmc9BIPxA0oXXG34j3/5N1jraesVH3/0KVdf/prD628wwzVPPl7hHZw4IP3BDVWEZC2mcwal7TGJkKr64ncwr1fz0S7rfUFw9AoptpUiz4QE/Oa+I1+gFAnMnPOoUjjbbsXVepy4vtmT815kr5saXbUUZQgz3MRYe5zzF5PcDEeX7VOhnOVrqThba4/B4amozjIeF0IXcvhi+AcCr7TGSt6EvF4gTvoo1wwKM0tlp5IZYuTq5pZff/El3nkunz7D+AqrNVkrsPO5W0yLOFlXl3U7Z7Q4WhxhYWXWEFY6YQqi5jS3OkrUKGvwq5bKioiDtgbbVKRcSLngQ4ISSXFk07XEcWToB7pDx4vqJbF4MA31+iM5/gwqw1m7QaVCiZkSEoGeaeq5293y+uUVwxikY/s6MepIUAmFpnGFkBIxJ+IoMupqhofJfTcnhrOzd+Vr2rqlqauZgF1xcbGhbStWbYNS0FQVbSPqX85qkW23lpzEXXy5xFovrvT38cViJGislcLSMAh8VGlSijR1I/K+YaLrOijgrKdpmmOCuvB6tNb42a8DEjEKTymnjMliYClJyey5VjKGgjOatqmgnOOd+7vpZLwJ3/6+iu7fxTgGcAvWhpPvslP3eMtlzE/CG9/7lu1rlGwLHgS6S4Pz0cY/YJRv7af8Wma1D99KOf60mC7c58BLteP+1XmGTsnhqOPnGqWpq0p2K8t+GGWl4lFAJYXXlRR99ILpVKij5t/pody3hJdvpxyEtw2lT7ogbzgBc/PlvWfk5K5444bUo1c8/kg1J5lL4qAf/53Tu2ce+eHxHY8kl/vT8ChxkdvwYdr0XQj/f+jDHX5DHntyENLxZz/6jCdPLE/PDYd14Tok9iGhdeLn/+r/yd/+D/9v6tWarMpMttNMwyjcghQYh1HOe8qUKVByD2WEPLGqH85XWglG1xTH669/zn/733zJf/cv/x/8+X/+X3D5/Bm+qog58qvd50zDyDQO5Nhzt9uTcuGTH/4Jf/rnf87z82dUzz9GmYq7Xc/d19d8cvkE42UB0M2GBqmoXb/cURWRS6QUnLGMVx0KzXO7Ivzmhj5IUPLT5inn20u0Unz5+ed88YsvGLs9d9dXfPXFr7HOUzUrnn/6Q67PWzYXZ3zygx+wsRdo51HO8csXv8Dqhsq2nDWBVR1kMRgi+/1BiHy+IvQB12yxlcdUK0kqjKY4x92UCdNACIGuJGprMa7GuJqPmw1D33HTD9i+o8y6/ljLzYs7nPOsmzW1MRQtcJHVys8dCUVBU2/P0d6DMexv94RYMErRNCu6YeTQB2J4xdh11G3LJxdntFXFqxevyCmxWZ+xjwFtHdp6/uNf/opVXbOqazbrFTkVhj6gYkE7w9XdDbf7Heu25mK9olqvuKgdrrZYpam9Z3Pb4esKpRXXV9fkoUYZQ6IQQuBse8Zme8FYehrfknPh69fXxLHD5ILLijBO1O2Kqq7JY2Sjt9QuEnNic7mlWW/YXl7SVi3DODCGSH93y/Xdjtp58iiGW01T473l5tW1qAFZg6/ECb5CU1nP2jXoBISJMEamQycGgNMA+zusd9g8MJU77HTFeR34wY8/xeuJkidi+sOFS5EkWLbagpp5CoBAd2byNYBRM2xpnqqNkdcbIxnI8sZ87ytVkpCj9dwnMUtlXUmhrW0atps1lxcCaevHgRQjlMQ4jqSTADTnzDRNuEmUlUQwYeEoCDfDOSu8BuBwOGCtQyktkqKzXO0y7y/di7hIRGs9dysWRSk5pCWhUbNKlRRXZH+KkoD+YnvBbnfHOP7/2fu3UFu29b4P/X2ttarqvY8x5nXNddk3aUuyJVnakBAnATuxMBzwMSQQEIZwHgxOQBByeVDyFEJIRDCch5CXE3AgIYHET/KDTELASR5yOCaBYxPbso9zchzkyNG+rrXmmnOOMXrvVdUu5+Frrar1Gn3ONdbaU3trbtV/MdYYs1+qWrXr9/+uR4b+CEScGCKGb3/ve7z39BlPnz7jxasbNhdXbKy2M+Z+1uBnM6XiDUkrWosxOZVrttCgxMMnjxh1NyKqJZQYkRwgbrK1wZmSTja/HzW2ods0qhgNI4duS3880u1Gut1ASFukvWBz9Ziv/fwvs9ntcE7dhSyG8TAyHgeOr26xDPj+yKvPPuPwYs/+9sDt9S3f/eT7vOyveXm84bvPv0d69RmGAWci3nmttO0jownqRmRBjCWgKXbFNbhO63mIcwQipjFcXF7w0Yfv82B3QdM4nLNsNy1t4zKZEFrXqZUYnS9lIJ2zeewFsNmSHBnHmOupxOmzMep6brJrewiB4I9aXd45jecwhsvLy8kSdnGx5Xi4ZRh7xnHkYjsyDCP9oOdqdnTRe6FySte1X1jm/8KWjHOCzpuCXt8qKsGZVGmcz/nSv1G0vXvJ008XjXvVmZOC/o6oea+7nDd+pCzwn9Oyf7GrFgLw2s9KyTbFZFUo2ZvK1eoYjoky5OuWQKfJInHmVucCo6f3Tj9Zc5E3PF/+6JeYWuW78x3r56xblU7+VTTfhVzOV6ue+T7CftkbJhL85mc9+erShexM3Me7Ct+/JI0DhJEYPceb57xiwB9fMhxeYeLAxkVIA3HwhGFPf7whEae0gcehV9eaFLGgWqukVVWtGXPqQVFBSnfvrAkCk8BEj/gbxpsjvr/hB//7lv0PvotrWmJKXN+OOc+5J/me/eFASAk5HhlfvmJ7uaPdtbhmy+Ew0g+Bx8/e04PFGraXW17dHPDjCN6zaxz761ccDntSCvhB3Z+caYghp+X1gcZ1bLdbYox88skPkNgz9gcON9e8+uw5tmloNjuGVy9w2452u+X//N/+AdtHz7h6/ISLx09wQRM8+BA49kfGvscPA/1hYL8/cvXgisurh3SbLdIosQjHiIlaqMvHRAyJoY+MPjJKJA4jEiPJexoR/BCII2x3lyTpkQTN9gIZXzHse54//z6fff9jQugRCVxcaIYo6xrabsv7X/0ppO00c9gYCYcR44xm2Qpa7OlA1Aq4Eglp4Nh7GAKESH9zYBwHsA6xPW1MXP/gY174gU8ai5iEbSzNpuPZhx9iY+Sy3XDRbiBEfIyYEBAf8WHkdn9gf71nfy1qPQWwDtto4KfBIV7wh0DsI85pVrxh8Ny8eInfH0jHI0aEi8srdpeXdLsdZIuwA8bjUSsbjyPH8VYDOseRPiY2rqEzDSkktt2WJmvfu7ZD8pxqXYNtOmKwBC80WMa+Z+wHfD/gj0ei9xg/cmmhM4FNOmL6PVtzxLaRbWshqiBp05ePc/txwxoVeMWom1RMMu/iWYkmpweYanGzmwvlbwDKuVifXfM8mNylTCCJ1njadhsuLy548vgh/egZfeQ4BnCnMkPRCJd4inw3VXZkq4NIjhmYhEkA3ec1je1cEbyQDH2sWS5J1Q9oZiojMsUOFDeY+fwQrq4eaF9aq+41RrPHJYHb/YHnL17wyfPn3OxvOQ49pnG0VrM5TWqz+nyXeQy0uF0k5uS+KdfB0eMw5tTB5T8tsIoxWijVagC1zWRMYszjoNn6QlBLTRJDMp5AS3sRaC+uuHz6Hk+/9h5tjiORXD8lDJoUY3d7gY2B0A9cPHzE+LLncLNnf33L42fv82q45cXtS5p/tGHwA/E2kcYBQdN3F+HcBE1LjIExRKwPDF6D+mMpGCtoTIdowPbFhcY1GGNonc3B4XlsRBBJWRyc41Gdc9WYz/OjyFbqxqcZt5zTuDojqhRJeR+vCUaxcKnrqbpSgWarU/f0ua5LCjHPqZQV9oEYdc8wUirVv2V3qXN4kw/77yveIGedCrbLdtRi41zl8z6YAn0n4fz+WOrZly1Kyw99QZwPyv8czfepfA0wmb9qrf9Swlcf2M9v6JeaA6/5ipxpx5e5lKTT65TxPMGCT5Qeqcf8TWL+6zJblfcETtz0vije9RiOcbjWwyNFYhj49JPv89nz708bluYXd5oqr91hRSBoqjy1ZCSM0+q4KUa6zSZXIVUzsE9oPnzrcrFHnbMBclCyYGIEesQkiPDx//73+b40JAwxqDuPMYI1Qi57DWL47mef8r/9rb+tfszOacardkfbbrl48IBDf0Cs8PjpY26GA03TcLnbcrlp+cF3v8MnH/+Al599AjEQg2rGnOvUapjPEe9VmEh4NOuravJaK2Ade2N58d3/gyCW0Sduj55v/sIv85Vv/hxf+5mf4+qDZxz9wDAeGW5fcLy55fbVDc8/+ZQY4Omz94jvR559sEEGNWEOPldVJ2XiZoh90ke3lsPxyHA8cLy5YWPcVJviydUT/HGPRbh68JQudnzn5e/x7f/tH/L//uv/L4bjNSkObDoNdtxdXPH46TP+6C/dQrvBi+Pq4RM2ux0IvHz5godPHyJG8H5k9+ghcX/kZtgz7A90rkWS8OqzW/pRC6GJszx5+D7/6z/4//Gd3/tHjMMNbWtpNx0XD67Ymn+CB+99wHtP3mO77Xjx4jn9YY/xI2Hfc7i9YX99zWGvbnoYw4cffQXbbWldy8ZtCUZ9nw+v9vjjSLfVrFAxwP6zV9x89jH7F5/m9LRX9IcrHj97RhTN+tc0Lbef7RkHLVQWjiMxZx4aYuJr3/gpms2GhPD4wcMpTeXDqytdK0Zou46u7ZQwAk0SDocjx5sb/NCTvMcmrQOw6QzORBoZYTzQ2IAzYEW9/cUYjHl3s0u1TauuOrkGhQZxw4nKUKoDzhiMayiJXyVr+mfzsoFcxPY0x4hMGvtkLTYo2dtsNlxdXPDsvfc4HEf2h4FDf6sxPlYLVxI09Zdqnsc5iFsMzrVTYT5AY3wSaHrdODW7bduJYNSWjVMSkwmGhjjkuh52up815MxIAQ0E95DgwYMHWvncCPv9Xms+xABBszl9+vw5D65+wPXNDfvDAdtoUdQ5DuZUEVdXNtcXyMlotKutU4E6eq+cKieZ0AgUFcylpMyViI36UDFXngZonFa4HsaBKJaAxyaH2yZ2Dx9y9eQRD96/AqPzPKLToEmONjUQtjAAfeTBw0B8OTDc7OlvDyDCIQ58dvsCWsf3P/0ex14zO5XMYzElkg+IyTEaVl3jRAxie8YYaEkaQA6MweODJxJp20ZJhmjWK63UzTR4eouUiafkgnduIpVT32YCba0lWYvkmBasQOPYbjpub2/xYyBIoG01GF3jhFR55qbsVeo2ZYy6SsFMcGLMadFTwkaLmJx0JFUV5+8pxkh611WjK1asWLFixYoVK1as+AOFd9dmumLFihUrVqxYsWLFij+QWEnGihUrVqxYsWLFihUr3ipWkrFixYoVK1asWLFixYq3ipVkrFixYsWKFStWrFix4q1iJRkrVqxYsWLFihUrVqx4q1hJxooVK1asWLFixYoVK94qVpKxYsWKFStWrFixYsWKt4qVZKxYsWLFihUrVqxYseKtYiUZK1asWLFixYoVK1aseKtYScaKFStWrFixYsWKFSveKlaSsWLFihUrVqxYsWLFireKlWSsWLFixYoVK1asWLHirWIlGStWrFixYsWKFStWrHirWEnGihUrVqxYsWLFihUr3ipWkrFixYoVK1asWLFixYq3ipVkrFixYsWKFStWrFix4q1iJRkrVqxYsWLFihUrVqx4q1hJxooVK1asWLFixYoVK94qVpKxYsWKFStWrFixYsWKt4qVZKxYsWLFihUrVqxYseKtYiUZK1asWLFixYoVK1aseKtYScaKFStWrFixYsWKFSveKlaSsWLFihUrVqxYsWLFireKlWSsWLFixYoVK1asWLHirWIlGX9I8Z3vfId/79/79/jbf/tv/7ibsmLFincQ6x6yYsWKHxbrPvKTjZVk/CHFd77zHf79f//fXxf2ihUrvhTWPWTFihU/LNZ95CcbK8lYsWLFihUrVqxYsWLFW8VKMt5BfPvb3+Zf/pf/Zb7yla/QdR3f/OY3+Vf+lX+FYRh4/vw5/9a/9W/xrW99i8vLSx48eMCf/bN/lr/zd/7O9P3/8X/8H/kn/8l/EoC/8Bf+AiKCiPBf/Bf/BQD/4B/8A371V3+VDz/8kM1mw9e+9jX+xX/xX+Tly5c/jsddsWLFW8a6h6xYseKHxbqPrPg8uB93A1Z8MXznO9/hn/qn/ilevHjBr/3ar/ELv/ALfPvb3+av/JW/wn6/53d+53f4rd/6Lf7cn/tzfPOb3+T73/8+/8l/8p/wK7/yK/z9v//3+cpXvsIv/uIv8hu/8Rv8u//uv8uv/dqv8c/+s/8sAH/iT/wJhmHgz/yZP0Pf9/zr//q/zocffsi3v/1t/pv/5r/hxYsXPHz48MfcAytWrPhhsO4hK1as+GGx7iMr7oW04p3Cn//zfz4ZY9Lf+Bt/4857McZ0PB5TCOHk9X/4D/9h6rou/cZv/Mb02t/4G38jAek//8//85PP/q2/9bcSkH7zN3/z96X9K1as+PFi3UNWrFjxw2LdR1bcB6u71DuEGCO/9Vu/xT//z//z/PE//sfvvC8idF2HMTqsIQQ+/fRTLi8v+fmf/3n+l//lf/ncexTtwF/7a3+N/X7/dh9gxYoVP1ase8iKFSt+WKz7yIr7YiUZ7xA+/vhjXr16xS//8i+/9jMxRv6j/+g/4o/8kT9C13W89957PHv2jN/+7d++lx/jN7/5TX7913+d//Q//U957733+DN/5s/wH//H//HqA7lixU8A1j1kxYoVPyzWfWTFfbGSjJ8w/MW/+Bf59V//df7Un/pT/Ff/1X/FX/trf43//r//7/mlX/olYoz3usZ/+B/+h/z2b/82//a//W9zOBz4N/6Nf4Nf+qVf4vd+7/d+n1u/YsWKHzfWPWTFihU/LNZ9ZAWsgd/vFJ49e8aDBw/4e3/v7732M3/lr/wV/vSf/tP8Z//Zf3by+osXL3jvvfemf4vIG+/1rW99i29961v8O//Ov8P/9D/9T/zJP/kn+Ut/6S/xH/wH/8EP9xArVqz4sWHdQ1asWPHDYt1HVtwXqyXjHYIxhn/hX/gX+K//6/+av/k3/+ad91NKWGtJKZ28/pu/+Zt8+9vfPnnt4uIC0AVf49WrV3jvT1771re+hTGGvu/fwlOsWLHix4V1D1mxYsUPi3UfWXFfrJaMdwx/8S/+Rf67/+6/41d+5Vf4tV/7NX7xF3+R7373u/zmb/4mf/2v/3X+uX/un+M3fuM3+At/4S/wJ/7En+Dv/t2/y1/+y3+Zn/mZnzm5zs/+7M/y6NEj/tJf+ktcXV1xcXHBP/1P/9P8nb/zd/jX/rV/jT/35/4cf/SP/lG89/yX/+V/ibWWX/3VX/0xPfWKFSveFtY9ZMWKFT8s1n1kxb3w40xtteLL4Xd/93fTn//zfz49e/YsdV2XfuZnfib9q//qv5r6vk/H4zH9m//mv5k++uijtN1u05/8k38y/c//8/+cfuVXfiX9yq/8ysl1/upf/avpj/2xP5acc1MKud/5nd9J/9K/9C+ln/3Zn02bzSY9efIk/ek//afT//A//A8/noddsWLFW8e6h6xYseKHxbqPrPg8SEoLe9aKFStWrFixYsWKFStW/BBYYzJWrFixYsWKFStWrFjxVrGSjBUrVqxYsWLFihUrVrxVrCRjxYoVK1asWLFixYoVbxUryVixYsWKFStWrFixYsVbxUoyVqxYsWLFihUrVqxY8VaxkowVK1asWLFixYoVK1a8VawkY8WKFStWrFixYsWKFW8V9674/av/1/8LxhqMMVjncM4hIgDElEgkUkoYY/TfKZGARCKEiA+eEAJN02CtBWMJIU5l58u1AKy17HY7uq6jbVu22y0XFxc8evSIZ8+ecXl5ycXFBQ8fPuTi4gJrhb6/5Qff/w4hBKy1NE3LZrNlu93y+PFjLq8e0rQdrmkQccSY22stRiwgxBhJCNYYnH27xdCHYeAf/s7v8t/+t/8t/9//9e/zO//7PyD0B5xEWgsXbYOzgjNCZy3Wudwm+OTFS16+fMX1zS2H3mNcg3EOmoYjgcGPDGMPPrJNwkYMrXEEETxwlMjRABFMgGY0tG1Hd3nJg5/6GvtvvMdP/ePf4h//0/8MQ4L94Ug/DKSU2HQtzjmcNRgj2DwHjocDKUaMMVzudiAJUiKmyO3NrY6rCJvtBTbPlZQSfd8TYwSY5oK1FhFhHEdCCIQQcM5Nr4cQdGxihJSQPF9EZPpM/ZNSIsZI3/c6X/NnYtT5JiL6njW4tkVM5toCxujz1dcq9/fe67yuSsuUe4kIzhisgBk9becQMfgQCSmSgJgix2FE8vWNWIIPWDF0rsEkwQ8jYfC01tK0G5Kx7EPidgyMIeB94P/xz/yptzo3f5T49f/bH5/G3Fo79bUxZupj7z3GGC4uLthsNux2O2KMhBCm98r8cG5ep2X/MQJGBPJ4l9ettdM9rq+vGYaBYRgIIZy0sW5TjfJamXcAY/D4vK+VNoQQSCnlfahht9vRtu3U1nEcMcbQdR3W2mnOH4/H6f5t2+Zr5vkVA0YEYwTntN9CCPR9z/Pnz7m5uWG/3wO6rsraKvO4PEvpj7IGy3vGGExZi0YYhmGa723b6vuIvpa/27Xt9J73ns1mgx89h/2eYRjYbjZsN1t2ux3H45FxHOn7nsePH+O953g8st/vcc5NbSj3FBG6rmMYR3zwXFxcEJOOZ0yJ0XvGcWQYR1JK0zV8fl2MoWkaNrsttnF6dlk7rd2UEk2eQ9ZYiJFxGKf7d103zZNtt2G73dJ1HeMwsL+9pe/7aX8p++Jut2MYesZxpGl0/FJuaz/0IIKxlrbd5HkXETHTmBtn6TYbmqbBOUfCTHMJwDmn8zfE+RwFDocDwzBgrWW72RBjZL/fczgcOBwOBO8JIRJDmPZQEvzf//Lf/GGX848Fl7uL6e+6f+o5Xub3Ur6o10L5XdZjvfeX75ZrlTlZvl+vLdCx8d5Pn63bUWSSMl6KBJJIKZw8w/I8izEyjqPewzpsbrNUVxrH8WQd1+1fzp9azooxTj/lu6WN5dnL2Vf23BplLwVo2/bOOJX+OHfv0es8Fpn7sr5vfa7W31vuXfV5X/qv7udhGE76soyjMebkHK9G5bRzK5TrTOs6j8uXRTkfyhiVc6r8u23bkzaW1+s5Vq5T9xuApIhJCRPBXD1DmkuS3fJLX/8qj2LP5eEzNi+/xzD03A4D/8f1nq+6jq+J5RdEwBmCEUYrvGotv3t7w2c+cG1a3OYpRjYYWv6fz/8/n/uc95ak9fCWk8kgoBunEVISkiRE0E2MvPDFgIWEDnz9/fx1YJ4sKUVCSAzjQEIH8ng8cnt7y+3tLcPQ8+jRYx49fkTXdXRdh2SSAHoNFUTm+yUEHwLiPWBouwZrhZQgJojoZDdWryNJCCFizOkE/6Eh5Xn1t0hp9ZtRL4Xlwjj73ZRfT+SNTA9mSXq3+pF0E/T4MDKOI9FYYorToj25bIrEqNe21hJhGjcy0QSdK4k0LWzJm0VZBKVP6w2x3lintuU5VjZCUOHRVJ8tB8W5g6EIj0uBcRIWy6Zs5/eWm3RZ0OXvqR0VEakuTBIYY4BgEJMIMRLygCSBZA1iLYjgA4Skh03Ml4miP0HAiJL0GCOUn3QqEL9rqAV1mOdzfXDUJKQQkYlAVAdp+bsWJIwxmYRCPdHrw6je1M+hnqOyuMZ0LU6/Wws1NalZkimYiWz9+eU9p3WlH0LEIEYo07gQrkIGgOlwPTs3F89Qr5vpp7Qn3iXSKUZiVsRQCVHLMYwpkkjT+kLufm75zOfW/tze0zFI1ffr53jdXlKeq+7P6Xd9rWr/qoUra20+F06FsvmgT5RduJ6HU5vPPNP83PP5x+JsVYUXd+ZGOSuX16rP5zsCRz6jSUafMI/xTzJO1s/vA0q/179XnMe59a3nuJkVbnkdx0pWgHldn5vT9TXrz4QQpnPkLJF4w94/tfBHMKb1/jff9vSZ6s/Wvz/32kCShGo9E8lGcPo7mURqBbNriIz4AB79iZWMmlC50Y+RFKIqqUVwYrDGYLBvaMGML0Ay5g2bFEkRogjGGkAQI8g0RHnDFsFYwWAxRhilbKABJFI2V2OKhAUx6vt9fyQEr9q8AQ6HPdfXL3l1/ZIHDx7w8OFDbq6vefT4EdtNR9uqlsdY1Whtdxd0my2uaRlGjxyPhBBpW7DWYawDMZBiFmYT1hhSQrVkw8DV5cXZvvhyqCZP7qNCMmb2cUo58tk3Iy1+5w9J1kxN5CJ/RiRbmIikWEiGQcw8gWNm5MMwMIwDNG0+4MpBPDOhxCxMOaeWkpQSkUScBPqEGMGabIWIEbyHLAwmToV8FURKj8yLKMQ4+fKVx50E0DcIJfD6TWSpiTbWYF3W3FTXi/kasRJGY4wkEYqUJ1mzkwCZNCTa2mAF0WXBoL0/3cNbg7X63CEFghWSEbUUAT4afDS5L8JkHTIpoLTu3caSKJwjFy5bSruumywEZbyLNq0W3JdayrJHYYyuDWbBsQjny8PqTZv3HaH1zOZfawzLszjnJq10LQTXGsGlNrH00XwP3UetUQtrmWPDMND3fVa8qNWxaZp5bpvXe8IuCUb5WwlBvGNhTikRCvmoxqs8f/nbe0/wYRofawxGTCYf89ov41AEipp0nev7+r2aAJT5sBzDWStbzTXkZP8SkUnYDnmd1Qd50VK2bUub+zWEwDiqtWPWKibd86RoSku/vqbz0/xcJ1aM3Ff6fDHv+3HaGycyLUznZU1AaotwrRjRe6m1pYxFipH0E7CX/DhwjuCVv8v7S4L+hx31vjn1x0SyT5VOhRiU/bD+bm3ZOEcyinUYONlTXycnnG/s9L/fdyzJxJuULfBFiUYiCbitJbSJ1HiwI730jM4TnXD15D3ii5fsXwjjzR7vVLmpm0+EJKSQGH0AH7ERGmvoxGLFIPec2l+IZABT/6es+UkhTWy0aGWE7K5gKgIhBgll8PN3jJ20OSJCJGEQVF5VshFC2YwTwSeur19xPB559eol169e8eDhFbvdlsuLHZcXOzabDdvdVl10jCHExLC/ZRg8befZJsE1rbIxa5Ro6BNODxeTaqAn4fa+nXQPTM9brpv/carZqlFp3erXJsKRMtFABStM9Z2KpeQb6i8lhcXcEVMkpmwWrYiOfg79rDEQQ77lrL1JKeFDIOX3ynDrwxhiyprPeCq41MKDEhVUW5r73kyXyW3JmrqlRW3qkcUCLObd+netZZapsyWbSOfrlQ2qCDMFtRnWGjNpOIsAkkgkEaKzBKfWigiETDOSCIEI1iBiSI3eOxlDai0pCTFmISPquBSduRiwCcS824dWEYCLe1SxNpns3lK7QdUuIfXGujw4TjRkxuQ5nzXYedxrd6vajF9v6p9HTJfCbrHWiciJm0/d/qZp7rS31s7VWvFa4D7RXE/9pn+Po7p5HY9HDocD3ntE5KS/ls+ztBqcs3YUhUH5rKvcHJfWB7UAWp3vzIK5WjqyK6RzYISQ1MJR9qUyDiGEyeKzdF84FZDLa5WWPyqJdFm4LsSl9G+xQOhzmqzwOCWCZCs2EdXsV9r94uLSdR2NaybXkGI5qolOUSDNc8pgspIlpWzhQnfV2gJWPACmMTeZ0MWQ+8vcIYwnaqqKSBRStyRxRfmhz1uEvLMHzU8MlgT4bQr6tbBc36doz2usBGPGXeE5E4lqfOq9Bu5q+pfWjnMW8bL/lj2m/lx9li//XSMJZ9tRvvejwDlCcU55+tr2CIgTLp9uuU0w4IkcOaQbeiukDh599T3SVcN+Yzj+4FNGq8rdEFK2euo+IREkCQZoEToRTErg7+dVcW+ScXKol40y5W0za3lVrqzIRq2hyhMqi6kqGEt18HEqfJa7KRvN/0gpa8s8Q3/MrlQHtrsN+8sL+ocPuLi4IMTI5dUDjLGTpj5GFXqb1hNiwp5MbE6YhIjMfvq8rY2iuo4+7Onb1WsTrZDyr9LfqbJsqPVlpgSnNERVasWSkcpQzfc6addMROZm3LWuyJmvL82YtTXi5MkXC+ScYBfTqTBzau6vyEVhaTPjPbmfPkf+jrUTCb6jeSpWCkFJWvVejFGFkjiTltr8Wl9z6oesBYhSSJxaKVKhTHmupep9SUq2sVYtTTaAFWLScZFUja/kn3cYS21NPf61cF5rt5ea2fK9peA7jTFM+wnV7zrmI8a72vpzG/ZSKK/bXLTWNYEt/65dpZbXrf+9bMc5LR3T/fWmRaNetOoppRMr0NJn93XjsCRN5aGWzxxjJIa7MRzL5wpB18tMihauDsyHe2ljTeCWrhKg54lJZhrXaexRdUpRIiyVAYVgGJmtCmctnJm4TLEKFYzR2BhrDHGId4T3uS85afcd8lYpigQWcy2PtTldE0sB+RypXs45U83zE5cukRwyV5ROr3cXeZdxTuB83bp+G/c4d58flRD6ruPcOb98f4lzmv56r6rJ3jKO5nXfu3Nf0slnfj/XyYnscGadv+nMW372DgSMhe1VR9+LxobGkSA9qXHYnaN5sKENA/awYTAQLARR5b76v9gTCVMQLEIjoLrO+/XN/S0Z04F3+iBKMmb3KJk0MxqgKGKKLnYe2KK5zw039T1kdsECCN6TJvO3JeUDtgRKHg97uq7jerfl5uYVl5eXPHz4iG6z4epBoG071bQnwRgNtC0DFdPcLkQFOyPabmjv3YlfBELlViZF8i99Meu7FLVQWROI8ru4SqXJLURSkcFTvnR9jewyQHaHyhJsIYemWDeKEFzdcFqwqIB96pdcDk4ookDKJOfc4VgLhPWiqa9ZH6Cw8GM//V95tHp7AHIQXU10RTWLqi2M+iwhkATEmmlcTg7pmA970iTMFL/zeR5ld5C8DkLpBRHi5OKi/zbIJAAhecSNxbhGh8NHsCG7Deq4GgEkkiQS5d12c6g16PUGWoTFNgcT13OiDsxezptyqNQHDVSEuPp8IRhLd6nXBQHW77/eN9hgDSdCcnH3KoL2MoDxHHk6J7zPz6V7F9niWBOMcu1CMOprF5zTDL6O6ImoW1bdFg0sLS6zBmvuxpkAU2yIM/bERazub2PMJKiXmIdzQkAZRCPm5N9FSOdMn5V72Jw4w1l34o558ozWqgtVKnFXcdomSx8659hsNqQYJwvGeSvYvG+U8Zqepdb95L/nfa3a27J/egJV2iVIEk8CZlM+r4p3QFHKlLNRRFTJUe1flOsBMdwl6z+JOKtQesvXLtf9vHv8pPf1fbHUzBdFwVJJRPVajXpPrN09axfBEMLZRB5L1PvGHWVV9vL4Ua2TczLQJFcsZKEv1CYBcYarxxccXh4Zjx7vI0kGbGfpHjTIhcH4FnPTcRDUXSrBmAIpRJKo+9SsqgaLoRWDLZvxPXBvkmGLH7+oJrYgZreOSTPlLNYanDU0OVNJTIlohJQc1gohWtTarQeAHhxV5iD0XNCODtltxCLW0DqLEQjB6OYZAsPxSPAj1zevNJvLdks/DLz/wYc8evyYBw8e4JqGtmtpsgDjfSAkMLZBspMQJoFRIbpt37YlY77aGd5OPlWKSn2SofU8jdOiLEM+9VVKmEwyUv4tKWmwz3Q3JRMxH6QxQoghu4QljU2wBmNNph9zC4v7EujAWKkOuHx1ERWc67O8aB5tDnIury0XTq1xOOmRBdGo3w9xDuh+LZsXDWLSpFpp+l7Mi3SMASFCNOrWFyvrBDoUSraYY0dMdmea2hynZ/DBK/tPid6PJDGYnI/AGJs1lQZJYYpXAU2WYMVixODEEk0kmoCXpAFaKeJjJEggSlT3jp8wFCFps9lMWZVqIXopHBe8TgMmMmuN69drd6n6ekVQW86311kW5sNQE0YUd5xCLGq3r/r+y/ssrRjL2AQ9RLPLjID3kXH09H0/KVpqUvM6/+OlpvUcydD9ZSYCkwtTsaiKzt+mECinczZVz+BDUGHZaayTuq6dWmuMMScxDUtrz0k/I1PfamYpZsKweI567CaS55wKDDApBep7FJKRsoIAmZNKlJigrusY+oGUeC1BLaSiuFidENJqDPJDVaRSCCGPS3EhTEtF02JuZwtofqGaJzrXQu7b2uJSAvmnuLlV7n3rWMnEm3GXNNRL+byV4dy+f+5ztaKoKDXOXXfZjnovnoiJ3M3W9Dq3qh8GZ/fffD7U++UPc29rDFdXO14dRwbvCTHgnGd75Xj4/hW97RmbQGhz4pnWEiXS20To1ZaRMIwh4QViEhzQGv19X33nF8ouNW1wC/aeUoLcOec0TJI162Uj1rRs4UTDVFLKkpKSmLxB15quFIIGm8PkD5xiFsJiAMO0wX788cckEYbsJ9x1O1Ji8tcDwYrBONUiIdl/Pmu4S7rIt4e0+Cna/voTtWiUJqvAa6+R0mSo0JiM0/dm7f582MUU1V2sBADWxA7NwnUi+OdDKuSsRmItIvOBXeIkwCD59AqVsGOygL5k4kvC8SahrnxW73PXhHiymSwXbtXWzFzzn7MAM5Glcj0jWLEn1z+n9SiY3j8hf0zebiblBSkpB4mTLUUGfAQjiE2IAYNgMWA03WoEgkR9jvyVnwTUQmcRzMuPc+4knfEyAHD57+VrZRy0y0+tZHddXe4eRG8iGSeauLz+yuFQu0m9zl+4aN3qw+t1B2l5LmstKYYTN6lyKNaxK+ee403/rp+jJhmTMglVJkxB20awrlgJslCb1NVoimGTKg00QqSKOcnXiNX6OffMdwQJIyS/EA6meIhTzWfdZ6rgyM9QXW9uH0tj6CSwN00zpR0e+kHjxYpLVSYjy/YWgjvtK+U8o/Lpfu3Y5GuhFqNYKT1O+uM141oTrdpSdFdTO+997yrKnrxcx/Xver/+vO+fU2SVa9XfLymwy2dLKtNyv7oNdRbCN2vW71p163aeJS8VeX1T+78Ilvtbwe+XgD1JHK8hAufGtn6/jud8k4Z/uc+Uv5f7zRRTI+fXVz3O5bXaSr28dk16ltbbJWpiUZ9PdTKRNz1fOSMLYow0jaVt1e3YimBJEEdaB11n6LaWZCNjGuj9QEzQXWzYbgw703Lz2RHfJ4YhMlrJmadURiF5hDQpnD8P97dkZI10GYjygCLFfF2Cjpm0QfOA6MZbNn412+qDkTdiX2v1YNI4u6bRALl4mprMGUMyZgo2jCFi3BxM+vz5c0JMHI89KSUuLh/SbbZZGxU0jzlC06CuMrnDvPdZQEk409y3e+6JmQDMk6ZYLk4Jxunv89eQElRd/+SMJFnEYiIYhZWnnG44hZl6SMl0lQh+JhmzUK/B+lAWl0wazlqLJvnU1jmim4iphJ/a9WW52M4tzpMnTtqO8vf8RSVH6WxfzT0oizlpsvAi+RmL7lAFIc1KVB8WZaOpN4qSUW0SMkhITFgEI2C12zGxIpNeM6slMYhExAeNlrcRsQmT9HuCIUgZQZPvlXjXWcZdjZackIw6SL9ovEvWpOUYLpUZ00GfqjUmsyl96U9fHzSfZ8E4e4CnYrGbBdulVWFJoosm/3U+w8vnLD/BjwTvGcdhDrBmJhmlfXXa5vrZyt/nXj8Zl7K3o/M5xJIZKqlSppAoayEfcIWMTGNiK8VCrDSBItklaEFoqvufIxnzATr3dd13S+3klDnOGiUXOXtUPUdmoX8+08rr9Xw8l4O+EIzaijE/Qxk/qJU7SyF4ftaSlS6P+fT+nFDl5Ht5/43x9JlLP7yWYJT5VtbKO0wy4HQfOUdUa5xbu+f2oVOyeJ7w12djcZ+tFSHL7xYB9jVPcbZtJ2dfvVed24LOEPb7vHfuuc+14T4E5j7k5pyQvtyPlp899+9z79XPeC4A/1xblxbj6W9O23PurCh/l73h3JlUCKkxmtCkrjv0prlXy0XnCMm5Ma6Jb7m+c5Zu00H20zEpIWGkawxda3CNkCQyhJF+HAgR2osNu8ctu13kaF8yvPKMN4ExgTcqurQEYhxBfh9IxpQ2b346SuCxc5aY5toI1mpBrJhKxiEzpR2NiCpvUTk0CVAbNVLSwzt6Usp1A3KHB+91k2waXM5eYqUhxEg/Djoo+QB6+fIlL1+9wn7nO3z729/mk09f8N57z3j//fd5cPWQ3e6C3cUFDx895eLykrbrcNbROIfP2sJN8zZJRjm2c/rAFCAL+ir0x/xbAJuP4do3sPycQnt0/skUjTnLVCpKAx0bYxBb+cZPgrYGJQ/jSEgqaLvGTSleY/B4EqRAiaKJcyOm34LMgyk6bzRdMBAChKCBRUmfb9qc0bFOwh2LGaDZrSQ/m5ze9xw9A9X8i6BCvGTNSUKFnTognDwPKUJC/gylBkwhaDFbE7JLRSXcxVK0SBK7dkNrW930UoDARNTMEPIhnxCxpCHooyWPOMGMATPOFirNL2WIqHtKfMd9HcqmWGv+a61xLSzVhaBqbf25Df1EkxPUYhcrgWsYhrNB1gXnBNtljERp/6z5h0L4i9BR2rk8xGriUNq0fH0pBOvz6nWG0dMvigdaa6cYliLsvI5QLNuyhMnxAIhMCQxqoRWYUl+X5B7lrCz9YYwWaq3TUC5r1Zwc1uY8SZgOeDgRrPRomF2ikDmIvCZdd1P4lrV8Wvhr0rHk/cAai8t9utlsJovauOjzug9rkjFrr8u/05Tyd26PUO9S+rxmikeU8poBOJ2Dpxayu8JjrFLsnovJERHNxmU0rmbFF8fSxaZWFiytaa/TXK/4ycLyTAImBdndveFu/F99DtREtSY6r7NkTHshp+t8s91xefUQH4RxCESf2LqWxw+v6DYNQ+g5+lsOw4EhDACMLjFeWOJHHU+fPmL3cuT6syOvfvc50Xv80XM93HK57eialsbcjz58oexSGjehBdnqjVLdS7Tw0pw2cNaqzSxWJr/oGD0iOYWtEawsUomWdHtJA26xlpTrEhjJ2XfyIBojNI3Lhc10cPQeCe8j1+aa73z727x8+ZIf/OAHPHz4iO12x2674/LqEU+ePuXho8d88MEHXOx21QDX4usPj8IVioAyafQSk8By6iJ1l1ykKRVkcXPKcRgzLam+C0VaNdZMBXBckhw3o/n35wwsmj6RXPjLlZSYJeYm+mk8Z8uCTEXz5jZO0kfWXmYB30ximQbZU2l7au0bszVMqoNXC0rNWtOahKTlvat2FkF18h8XIcYwWcwm60gOVDfp1NWldvco16iFQiUgpWhe0vTIWSdShislMMqgckyGIfqU08XFnA7OQIgQsitbLAH6cXpIrXXy7mJ5EBfNfx3gWghG/Znad7/+Wfr0x+zuWBOV4mZUW6WWWGq4lgTjhFyc0abVcRinlX3n6y9N/EttXv252tU0xcg4DCfZpOrPLZ+pfpbXPWt9oE2VsAu5dibP2aU7V05WkBIxnfZJjBqk7LKVYyIZ2RListvksr219m12iazmSfXZEptmJoWDrvvSJ4WMnhIVtRQY0TPpxMIUs/24zDMzZ+gqYzgMA6Mfp+sna0/2uqXbkUh5JqZ9gVTiD/WJ4rR9VWOY9zkqsqEuqKca1MmyFeZMXBMxj/Ek3mXuRx1bI4W0nJ+jKz4f9X5QF/VcarVri8aKPxyo966iYBGRU0VNNX/qPfjcder1Xb5zDnMIwLxPbDZbLi4eMERh9BCj0Fi1zvroeXl7JMWeox8JRJwDbxO3duQHduDBZQuuo9tseBANH/ee3ntMiIypJ5IQez+F571JxinSrMYqG2LWcunmVYTM4t4CUA6ekH9yRe2sblYBMnc6iRSNZtLJnVxygGsWH61+HEELmxU2V/yCqYSBFBiHgZcvX7A/HHj16prrV9d0my2bbsPF5QNeXV/z9L0bdXPI17KLw+6HQxWLULk7qeafrNyqtei5a0tfT7/Ld0vXl3GYg+bLtevrpBQpeduNCCbOGWRIcYrJKIKtcbYSdE7tJ4UckZtcckqXf584fsmpVQPIBpbXu6CUe90RwKaPqv2s/mqq+uTkWgvBcEqRW8hGFlqK0acQibkRp9eK9TXqQ3y6boKYM1Qw8bsprSeAzQHeIoInaBrOlHLp+Sz4ZA3onLWN6ZrvOpZa6zoTE5xmGKstFeeK79XWkFpYzXeaNvpa8Don2BecsyzUn1uSjGlqVmRnGRtxzppQ41x8SbneRLrinHo3hNOK88t+XV7nHAlZPq/2Vv6MEcTm+jZRMCYfjlRZsRLIlIwi/5cFrWLJKPFtcSLKC9ez+t5Vv9YkQA/mSlNff6aQ+9p98aTfZDqiyGRt6cKWFvPM2NMK7cUC5seZxGDtZJ1YjnHdpylVmWJI2VKRe7JaA6X+CXJuzpxaw5Zz5fR+83xfZv1btk2zlb3b7lJfFLUwV6+VL4vl2XKun+t7rfjJRa00Ovfacn4s58py717+/aY5tFQYge4pTdvSdhv6OOKTENG6RhEY/Ig/HjAmMKaoKfwteIkczMgr5zFupDEOMQ32wZbQGryFRoTASMjXvA++QHYpyf78Gpw6LdipX7O1QpiCbUs6VSOiGvZpY485WDBv8LlMuTVzRhNhzpRBihhRt4qYIn7Mr8eI2KzhztqgEINqeUjYokFPcDzsOR4OXIvh9uYGax3WOjbbCz7++GMeP37M9atrfv6P/hGePn3Kk8eP8+FVWwdOZdkiSJdKraeTRT9TNNwhen1tElaj9g2zJcFkq0LJJFvfVa9ftSK7zaQYskAa5gbmDMBK3DKjNi0Wg0GJg3Xab8PQY1KEEPBDn8datXmqBc7jRvHnrZ4//62MvTStquKb43hC0gJdYdJUCilr9orLhGCmWirAFMtR+rT4hadQqvPe1QrAXE25DqQSOXWrmATOMob5YYoYP2n/MkOuSVhJA0mCYPzchhIUOo1bppMnsUYyJRQwYogmzgUGTSmDmJhHvrhNCU3WIpt6AN5hFIGwdjGqSUFK6SRb01J4rwWupU96QtdYXTytzjhSF/hbbvDLGI/6c3c+r+phzOI5zh0c5bVl0b47MQJVv5Tn8d7T57pAywxGMFuMYS4YWQvcn3dgqdCubpNG8/FqVrkQMEZOamQkgUTETxa6uV+m4oN2Lo7nc8Emvb5ubCL5XiVzVEUUSv/PJKNa5yFnw8uZo0IIuXhUmPqsbdvpOYvKyRijcXeFJGXSFn04nYc57W3pQ+89+9tb+qGHlFPjirBMY3var6e+0SnGk30OIJQkJ1SuDhWZWpLb8u/ZnXB+vUD3pjBVfz8VajJJzEVA4a729Ccd5+b/l+mDus/PKUTedL8VP5molR1LV94lkU3pbqD269Z7UXTAmwPwl9aOrutouw2m7TimQI/FY+lsw03fM9oRE490W/DOEp0hAEfx3DSRl7sRH/a0EYwNvJSeWxMZGuGi0313pGf4nFTBBfcmGc4ZUiqZWzSwWGWtNAmAZMG+1CmOohubak7UR9UYddGJ1ujhlYXuxmqAt8tatBLYrQJhBGah3NocrCuaUlUKDagCoYXZdC2VejqlxDAMwDgdcGEcuH71kk8++ZT97TVf++pX+cbXv8FXv/IR1p5qme6ouVMR+GvhsBITa3+Zyc0pTYctknLa3HL4LjX3+bkqYlG/Z81MaFLU2tKqAHQYa9i2Le32IZfPntLaBpcs3I4IlpDgxTAgMZCiFjm0aAriOUBVCYTWPDnti7uLKLsHlEPVGFKKhBAnLaSIYGx1CJev5rlSs/FioYgxVwyOiViKj2UN9nTnSmtwbmHXizDGuHDdmDPNpEKG0/xdbV7265Y4ZdSJPsxFGwvpyZafIEBM+By5UohkDClXAE+aecfkjA0GsEKKQrIo6TEWEpiQXR2yG9u7jrKB1kHSMFeCHscRYBJaa6G9oJDH2se1DvAOPlSCrpKMIqTVAZx1m5btW2o/72gts4BqM8GoY0qWmKxplXC6FP7rw8U5lwlJZBxH+jNxASmlXMNitn4sNdRL7Xf9PCfEytqcOcriui4L8AE/jJN2vJDzWPbYYkDM162tOeM4ZkvGaXawrHXSekryevcxY8w0D6YxT3HaL4wp6V7n6tzlJyV1+0whTHUyxMzBmNNciXGyWFtrcXa2qsXsonY4HPCjn0hIkmV2sMluuxzxk/2tEKv8JGX6YMxc4DOmbIFO+U1O58asQLm7xxVSeNY1I7dx2vte0+IVn48lgSuvFQFzSS5etx+s+MlDvb/DeaKxVECdu8Z9XqvfK/sf6L622WwQaxlC5FbgGNXq4MVyOwzELtJZoe0sfoBREqOHI4FbE3nVjYRxoE0OM8CnwzUH8cTW0Fx0pGNPiGoFuQ++UOC3Pmv2N82/Y4LJ9jBpz5VozDJpFrBFhWlrDSk5omiFWPXvjaSooctpEsZVOLPT4ZMHJml6RDEpE4ziXhKz1QOwMptZMuko7kmTuVtMLuDS473neOz5vX+0Yex7xmHg4cNLuq7TYLkq1kT7YT5ctI7HwrWnCKwwvVdv/sYYmMIrZg14Stn8c4ewzH04I6pwEDW2JeQYiZQtGV3X0j645PKD93j0lQ/Zths20uBfHjnuj9wcjhxuXhFEMxCcCD6VNk5f0xS15b1i/p/CGSsN2/wscdI2ppPPnQps5xZb6cOlCTLEHH+SZi1lfa3Sx0uhRYxB4pxu7kSgKW0v45YXT2IeG0GDJks9l2nh5y8Wq1bpt5BJYSA/X9bkavuihl4krQFDEqIkYqmNYci1aASZ4tyNVgp/x7PC1P1e1lRNMoqQVISqWnB+k/BeNtuJYMQ56LvOtFPaUH6fE7qX/64/U0NdtU4tGEuiW37XpOacK9a5/lGN+xxPktJdrVd5rjoo/tx9lprWZRHDUo+jWAN88JhgMMhEOGywc2asLKzW/ueyELJOlAiLMdP9+819sLQkLeX58udpDItM18+anOmzy/GTfK8S8G3sbFkJITB6zzCOpJiweV9ePt+5cePkXnl/EDmxTk/kztSp3+vrTFvPnbErvbok2DHdFYDnfqr2x6wk+cOK1ykXviiWiqtyUpgk2YN5to5LklwlWVOBFpXj6d1r+ieLT3w+NXztWfo5+LIk6IcnT2nxdzn06/cSJwvnC7TtfF8srl/tD/fp43zxE2VrWdv1vc+uw1oeqfel8j6vJyDT/gek05uRUsJZl+WPiG1boliGCD4ZoteU2MEmBjxOEk4SSYQgRVaBZIXkhNEKxzEQ0oiJsA8j3iSSA9MCHoKHMd5vUL6Qu1TKwdixmhC6UZfMJGCsQBQkqb8/+aCpM2+IaCaPEDSALXrVVIeQiFGvm6IGBmvxJ82IYco9nEWSkEwiBtWU+zCqwAb5s5oqtxQKNMZOB1tCg2zVhUvv670n+AP/5z/6XV589pznn37C17/+Fa6urthut+y2u5xGFKYFkQc7hLnA2iRUsEyVKVO6RxG12HifSDmQfjK5IUTRyor65cqCcYIsXDiHzdrCGCMpEyER4eLykicffMDXf+HnePL1r/Jgd8mF2zB8essn3/+Ejz97zs13IzfW4YzBWavjVhaNyOxGYUyxF+k4OjtXGS9uVIXJhVKgMT9f/lpNCOpUgOdIx9kNTIolLU39eBJ4nYXM8ll1yZCpmF5JTbt0tTFiSKIVtsvwTuJRtRcVFxYoAcb5EJHs7pV5bUgJjF7PG031JkZdxGIImnEqJkL0+BRxCIGISCIYCNlH24rRJSSJFPVe73p2qTqOorZk1CQhpdlVqrYOvG7zLntLCfDWtexPrneuHYXMLIWO11nFlkRFXblmklE+U65fvlu719SWm3NEo9Z+FXevvu+nuJ5zguzJXK7W0zJ4vXY5Wz7H/JNT4pp5bZSaOieBjCGcKEiMnQOY6/W97IupD+uDdnHw1mNUxncKbKyUOWUPqNtfdeQUuzHNnzMKCGstrnE0TTtZNep+H8dRT4rJrWkp75SNL1XPKcx1n5izaFX9Prc5EwXJrrO2FC+VSTu+HNcliZ36e6FFneZxZiwlPuY00uUPB76sRaH+zpvIyZTCOQk2gkS1ShsMgYRJgg2CSGKwuqdHA7bievM1i3dGEUGz1vCe7bwPXkeW3/TZL4vz61vlGpkKfZGVh6Cq5jxLTwjHksCfv9dJZrVpfRbpJfeqlFgz7dv5NmplTVIo42tQr0GY3J2X/TlZDxfKnpO9b27ByfeoascVZ5mEyhhT3WaAEDGNputOYjDthmAcxyDEYIneEBMEG+htwJlEK7oThAQ+i7PGWbBCMJZjTIQwIjFwCFoc2LqE6QLitWjzMLx2GE7wBQK/0/STmLMAlXmjmz9aTpqykda5jubtuXSoEd2AkzX4EoSb9HNGBHEm5zvPGs88X2w+/DAwplFTVY4DMUUtFJUFfp8SPhMNSSWDSI6xLQfn0GOswxhL2zhIkf3+lu98d+Cv/tXf4qOPPuKDDz7gZ3/2Z3n06BFt294REmpzfePUvcOI+i+XoNNyYE0+ulKE4xwYmWzWogtgJg3568ZCRC1Ch+MeH4MeViTaruFiu+XBw4f8Y//EP8Z7X/2Iy/ef0j64Ytts2ZoWkS2X3Y4nT56yefKEf9QFrh4+Ytu2HHycDybyYVhck9JcD9wuAiAlvy8o8VP/aTDG3RGCzqVXXP79utdMJg7OOYxzmOzaIDkZAPXiXSxqY63OwBBmEpJdU0iJJLmoWBFKyBXO80/rHCkEUjTzHK3vYQzRwOB7xlyh2xNorIBNGlzlI2HMLg1GSI0QnYHOkpzVomMmv2csKUEYAmFOKvZOo6SqLTEMpaBVEexAx3i3250EUtcWifIZUwmFJUj3eDwSRq0pUcdhLLXd9Vwcx/EO0S1Cek2CYBZQrbVsOs2+0XQtKaXJ4lBSy5Z2H4/HyQ/30aNHgO4/fd9P7Vu2E+DVq1fs93vGcchxPC5P71Mhvu7Psh/VfVRbOwppW2apmq1KmhQi5sQb1llNx5yffejnGBfVis+xc8XdsS4WaKzFOJfrY2iaVe894uZ9ocyBOjaj9OEY1H1uGAZco+u9jHnZhy4uLqZnLf3sjAHnwGjmuuADgx+n52yaBlxD13Xstlsudzudg/3Azc0Nh8OBvu9zPFtOWlII60LYtJNLsJlIw5SZqygxKuWKiEzVxLXdWlnXGINrm0y41YpVk/H9fq9CWOUqOlldsnta+Xyd6EDvX8WjhfhOWzLOWTbvIwgvCXa9zsu/z1kKa5z7d0oJsYYQNNl44y0pWmICr+ojHIZWDEKgN5HRJnwjbI6Q1HQ9Z+Y80auXUgEyu8tWZHnZ5nNkffn68nfp0+VzL10739QPb8JZZQoJS8JKwkjCTOrbmP1i9Hy1pEm5HBYC/Inl8syz6XuGlL0AlMxE9fSYZCs9VCWporAmHQlNIV/aNlksUkUOKoPLtNei8l0o8bL5PVIi5EQ7BsEZS9u0HI9HJRJoYpgTEpKvb40BHwmS2yXaSoOhsw025iKpuyu2H30F2WxIYnnwwnMcXzC6Hh4eudl5mtYh4giHAylsQbRUQ78/MNw0hJuWTi7BeLx4Ymyx9kjbJXYPhXZzSf8i8Ont/VjGvUlG8H4yx4Y0H3BFY1S0+z77CGPMZH4ucRsh5Iw5KSEp5wY3mhPcxOzrGhM+ljgM7cSSWUoPulxPQlRrMFlLcnpdQWsVGKNuQynpmjQiOAFnBcQSQi40FdTvORmLuJbgIUbP6HueP1ff4ufPn/ODH/yAi4sLttstV1dXfPjhhzx48ICrq6uJeIgo8y4aozL5nXXEJk5EIIaYD/lptUyWIH3OlJVjy4V8RsoUDaju/ciDhw/YuIbLyyu+9cu/zDe+8Q0unjzCXmzx1uL9yN6PmIMWHOzaliePHvLtw6eMxyO319fI9rJijsVfuwhkdxPsqnA+f36y5JwcsrNAP303a67h1K3jdZvX1Jc5A9jSxaYWmD7vWiebXl7c5aMG0fRsWZs4pfcVDYAtGaRM2ZLyxm/EgNXPWpfbEDXts7VmyuZlrW5ZMUjOFCTT85i8a6UsRMasufBprro8jc07irJWlsHXr9MAwWkw89IFqHy2drVa5qevSUL5fH3vc5aAeg7VAn0tlJeK0kVQWdZQKJ+vXyvEp/RF/ex1DMrhcGC/32fiVbv+zdctz1bfp37vXBvqfq2fY+7LU23c0vJQSMoU35AgOEsMYbL0+TP9VS4+xdJM6VRP3btqqPUhzYd69Z26+N/rnrUQm0SaAsTLe9baokCdiOacwet8vZEEk3C+1EieojyPioeF2GhfMq13mWJS5u/U11661envu3tandDiXMxPsaqX87WeA+8iXre334dovOn79TWWn/ncawtT/N0gWaFlLGKFmAJDVOnQJiGanEBBVc/kwjQUC4bem+m1+qdYzuv1+UVw3z56W9+7zzXm1XV6Js/fm61Er7vu+X6orBgpu7VLdqU0qQgwWZAvlqMp2eR5vEn3u2jT+e8XV87XoyZN055x5wa6b6h82eR9Fdymo3twSbQOHxIxDSoPS8KIp3MNW2u5ouHKWIiWm1H38ThGxj4x9IKzCZtDnH0UQjL4BL0fkNQQRIj2LdfJ8H6cTMCBu4tvEi5jwBjNwjEFT5KmLDuT/ymz9teKwcZcQ4OAhHLIzSYrHfiU03qW1KMyfe6E9UtCE04JNinZMFLiO7J2TSLik0bIBx3IZLy6+aDBvSKGw+HAp59+yne+8x3Veu12PHnyhHEc+eCDDxARdtudCr+2pHicn9VZpzUnnFOSEZVgjN6ru9G0rk6DBO/O5nTyd7EoICoUhxi4uNxx1W558vgJP/tzP8uTZ89wuw2+terGM3r8ccQcR1xyWBEutlvSTWA4Htnf3OK2l9Ndy0FdxokYTlpVtHplpKSaB2raO/XVLptBrdUrqAXJJepFZ6YdZrAAAQAASURBVK2dClclIIQsFMR04uMvRgi+FP2bF/ZZTdX0g87NmT9nbYVkYhCmLFKSUs4EJlOWHETdmYyZ75OCTLUADWlaF0nZ4VQvROen7n2lLgnZdzekxOz++O6TjHoM6iDaepyXAXT130siWROLpW/6cn+qtckFk6VrQWDq+boUzJ0rWnVVjhT3rvo79fVrl67y+a7rTrT+dSrfWZPup8JzRQlxrk/qv08PqHQiDNcC9AlZyjhHMKag1kpgnmKfYiQEdQO0xuZsUn7W6FFqRMhJ30/ui2fW+3KfqBUI01o7o9E891OUPTHNlZknkpsXlcbllYrq4x1SWQK2l3v03NfL9gIoKSrPbzMx0m1mJownBIb5nufSzE59lfeT0gXLNXAHFXFczs0/LDhHGt5mP4gIXlTZOZpIYyzSOppWC6jG0TOMARsisXhCnwxVVlFPgvE9pdm32P4fP+6hVP0iEE6UhPe6JfIj6/b7rMVaxpI8JSauJfo/Yy1DGHFGaLqWZtvhRfCDJ4oSKysJg2crwpU4HpmOSzyHIWH6oHKHT4QR+l5wDpqktDaX7kJCoveBJkWisWopvgfuTTLqzXeWdyRbK8hZPLJWbcqWlF9KWcgSJuuCFaGp6jEEr1YKCQlSNjMhJBcg2elCKQZ8UG2gyUK7IdJYjaC3RrSEeko4I1ixOYWuWkxSTIQ4IGJosoZ5HrGEH3uGceQ4DvT9gGsanNOKxNZarq+vefHiBc+fP2e323F5ecnP/dzP8ezZMx49fMSzZ89OMgCFOEf+W2endJSHwy2dVcuKYAjB09h8aL12kp9OyJgiYoSua3CdQ6zw87/48/zRb/4Mj58+pu0c5K5rG0eIiTBGUhoZ+4GQEsEKx9s9crHBDwNuukvKftn5kJX5EIRZWFKypweoqSe/QEq5aGIR0HJwnA8BnwPCi4Z+6U9d5pkKCLrQjNG4HD2s46SBLO1oBBxu6r9Qsh8kyFEyU1pLKFYxQ/Q5LW6JIVkENNUCQcqpkxHRxGApL/7cpkQk+V4DvUmY0Wv1ehGCGPABi9HvxEgK4EykCRFLCTqN4AOx5KGaioZRZah5N9F13R2i+TrNarFQ1ASgdieCOR1pyUo1z8s3p/yrrRVFs72MYSjXrzXEJaWuun3ZKUV17dZVXJHKvYrWP6U0ZUwqAdZ1ooJSSM57z+3tbbZ6pMnfN/NYyML+ORIBp7FP5fnqlLg1qSnuYJoVLhMZYzApYbEn47N05yj3cFGzNKUEHI8MfZrSVS/jMUpfWZctKFCSLd0hR2rJUD/BKQmArbT7rxH6a6tykVPqA31ylypKsxA4hqDxfdXYlXlhzV0yVN8LlsTstJaJtrvEsEley+dcUGYSjQguztc8iTWTWhDV92srTN3GqU3T73Syj/9hwDlFw9vAdB0pZFRPlyGC61o2FxsePrji4sPHfPrpc15+9oKXnz7HRXBi6MQCgfslAv39Ra1UgbfXRz9OCOCaVuU+SYQ4K0BzLm7dy6ZHLYf5j45wLRUataKtatWkkFalZ1YwpPxcRLxEXCN0Fx3iEjEFogykZsS1CWcT25R45IWPZMvPtI84fvo9vv/9A/57B7oANjqSt+yPgtjExhqaqCUIjmOkiQEMOGthsNyz4PcXcJdaVO9G7hp9BHBtM03YmCKEaoMX9fedvYH0EImoBaSke9UD306aZBUGZw3/LETM2u+mcaSU856Tt/J8KmvQd07BmyLDMGJdg3Uux2HMdhBSJCZDk7SoYDkYiw9yyLnID4fDpNH85JNP+Oijj3j27Bk//dM/zdOnT9lsNpNrSP39mOJkuk/GVJVzzy3sc0y+WD/UoiNGcMbRto6f+umf4qtf+wrPPnjGxeUFQ1I/YmnngOUipEc/EiNY12KSuv801k3MWXtEtXHlYKwXQ60105gSHcfp4DdmsghMgkq1yS8FgvpJpfr7VLOqWZls5WKx1DrHlDQ+Q+ZUkyIC1XdStdeQspUsd2soz7DUMoimVC0NlfK5E028usnZHCNDioyjWuaKe1UKat0ykhdwTLiQaMeIE4uJalL3aHBVSGCCWtgoWpl3GG3bnrik1FVzJ6FuoS2v00PW75Xv3yUYp1YEONXK1+/V1zwVHE81xEWYryuUG6NKjlgIcG5X+amFm7oOSB2XUrs7NU0zxWrs9/uJuFhjMTmFt07l86lfl8+7jM2oCxOWYPWpP4On+H1bazVYOZq5kj1kRULuoxJTltda0zSMo9fq2FKsmKfPXopZTvfNLkuTZTrjRDNfzo1MMOr+0vU7k6w7LkZ6eOTDeU4NXEhi9HOK4+g1mH1pQSvXPOe3P7t76fmkc3XeyVTwlMmdMpKwVit+z+08TZU874kGa3P673ou5f/XAvOcVc1P1prXWYiKxfUPG9Go8cNYMZZERc9LlUQ21qmnhE/sUuAyJh5geHL1CBcikhL9sac7BpoAbYDDHwiKcUp6fxIIRkHTupzsJxKDU/1gcZGqHnO2uybSHcn27aPscUvXzPLem8bAJIhptoB6Am7j6C43bB/sCKnHR8+Yerx/geFAazyPreVJn9gNe/jYM/7gE9JnAfsq0AVBgiWGhhA3HKNBcmHgKBqbEtDU/J7AmBLjPV0uv2DF75q5Ly1QOmp20noX4jB/r2jhEEhBq38nBJk6W0nGXb96/SkbclZiTQc/ArYQDspGXNLW5tgPUXJTisuVIOXpGVK2pGSB2xpDlHoyeFKyk+/bOA4T8TkejwzDwO3tLaBWn0ePHvHo4UO2ux3FXD+5XEj29Z9uPbPnsmndF2IMrnNsL3Z89NFHPHr8mN1uN5WPx6ivmFT3k5Q0+C+p+w5pdv+ZisoVzWZpY9JsSSarVOdFUDZbXbzTgoHJorN0e1ge0ucC+c7/u4zT6YFcPntCNJhdbmrtwFkil+YFLqloSXVc5nTHMrlNFYJBTNkylwje5wZGGsDl65oQSUGzixSS0SQ1X8YAfoyYGHDW4/L7KUT1h0RdpcRrMceJCb3DWArIy/fqIOTl+0vtb71R17E5KeUUqffoq9e62VSkpLYY1IL5NI+rdi0PiiVxKWSiWBZqkgO6d5SA46KkMEYgzHvVOa3j8v7l/VoALwHuy6xFpx1Srq9Ww2IxoR6vLMBPLojGaHG8eFqMSoVsc9qfKdGYufAqUWO6zg3Vcp0bc1cgXyor7lgI8l5grMGlmSBqIotcT2NBds9d+9ycma1Xp5aMOi6iash0/llj7rRXTm8wjUFKZ9q16J9pDcTTgmDV5eY+ImdO/8mRI++F5b7xZYlGPZen1wCbElfG0lmLlciVaXhgGh5Lw26EWxyHpuVV1+GOAy4GnE9FT/pjwbnn/0kjGqqUUfmvJK9R+UZyseiyqdas40f37K/r56VFqUiIkyt3Istn6p3hGoPtHO2uIUkA8QgDKewx8UgTRy5SornpMWMgHvfw/IA9GppBFZskS6IhsWH0AZcCEhMRQxQNng8kkhGiRMbozzX9Du6fwrYqlEZ92JnM/orQb4uWMU4ZQGCRGz7BGPykEa43Td0MBZuDSorrQbn1HJh5ek0zZQzIwYL5nyIpm9hzYTMS3goiCUkxV5BWDxjdqPVAtSYHDeYUszEGrI3T4aLt1TZ/8snHHA57nj//lJcvX/Dq1Ss++ugjvvH1r/NBdoGAkurW0LSNFkyJ43QdfZbcDzmnQfnXWeQD3Dnh4vKCp++/x0//7Dd59PARrmuwjaPDEqzgnZ3cLdTqoG5npJy1oGQbiWmqNQJM2bwSOWNUVOvLaavKoX6qKS7ChbVWMzbljdlmP/Y64PTcxn2yiZ8R4GrhKSw0kDW5WAoNZ7tymjmlJoshmYgEtWwouZmT4ZGJYJSIRO2fEAISIyYlNs7QRpCoRW5SUGKnfo8RZwNGtK/644gYjwmaHs7FCDFQXA9TjLijFscp1d3fZdTC+7JWQ61prrPnnAuCLYLhOI5z2trJpaQIYzIJx+cIy5tiMJYko7ay1KSgjjdYPl+5T/lc+d52u6UUrKuJSwiB29tbbm9vEREePHiACAzDMGUlqfe9uk9rYXj5XOeIXR1DMiVOKAoD5uctY1Cnfz2H0zHKBCanaAUmi0jZA4qbLdWYLveBss8jVbXropIpwvZCWVELj8UVU4yhMULbtnRdN1eYD5qGulaMsJgXNaGc+lnm4H9tZ50tL046GnXvnFNsl7NNTtKdF5IxKxCKgqacdWV8Tms1zX1Uk+za6lb3q7WCWDvFlSXzmnPlHcDynHjdvv6jRBMT79mWh23L1lqe0vG4ueAxW15+7yW3ZqSPhpt2q3GnPiBjOEsy3iTgF+vdl8Wyv5bn7E8KuSiUQVPD65p11s211Cp3hlnu+tE/+70SMFREA1S5IwlNsytCLDUsOqHZOYILuOBJZiSEG8y4p2XkYoT04oC/TfhbaMbIzu64wELyJGlI0pHY4scDfVDX8RAtSQzRGAIB0zqSDfRvn2TUNoJayCyHqta4iHHe7EL2PxajpmIjJfgt4cchZ/eYzcNSaciKL26KYarDYK3RiuDOzoslD4CRqDU6kgrKPsSpfQAuEw3nSmB2lhVD0YTGnAYwzzpr8Cm7C4nJ7i9zMF/JIKTo8H7ks8+e8/LlCz799BM++OBDPvn4Y/7YL/0xHjx4gLOOoe9pu46rqyseP3nM/tVnEANComk7JUoy2Qam/j7t8XIgCq5xXD254sOPPuQb3/xpnr73jN1mS+MajHM8uNzigVfjEWeEYB1iI8kWVwedAGPfI8cjY3/ABK3hoD6AZfXldL+5EJ7YLDzJrNlPuWlloZoilDmnaYRjCfrUzF9LrePkfpWYs46V94tGNPdACYqsD/6CEIIKl8LkypS/lPtt7lVJKcdFaEY0U7shiKajDdUzuTSn540xTrEmACYX7LIp0o6BRlkrqe+1oF62gvh+IJVilQjx9kBMEW8NrmkoCUesa1RDHiPt8Ug8HjRw399vYf9BRRHAa+G9/NRpbYuLzetIQHGRGobhxFWqtiwY0kkQeE04i6vScg7W7SzCXRFg67YVFLefqRp2RajLdYpAWmvRU0oMw1BZKwy3t7fs93v6vp9cerQdkWRGJbqVVrrGkswsSVRtWSnxIOV1rd+j612yu5ZduHKVWgunez/THjGb/lVx4ZzTAnfGTlbtknHOlOQNZWnKnOq8Ho+y9o3V64VsGU+F8GeCtxzLOXYwC/cGjLG0OW1sGb85aURJm3mq0FiSNlArwJQNrlJ4FcxWjUp4C3EmL7lv6iQBy7WR0mxdrefmSdwanLi/ld/nhBaT79VYN5OMexbS+klEfW6cswZ+4esBNoG5uaVxA492F/y02fIswlMfeL73mK0g1vHCNOxtSzTkrIyn7lJvake6s/jO4/OIwhd91te3527K3y96jXOfq9fgD9vOYRxANH4O0RSx2odFrSho8WiY0s39CHBO8VVeh4XljdxaZRbqLlWErpRIkhjjiE8j2AFrGwyeRkbSeM0mjTwywgdtB2HPgwEeHME5w9G1vEoNngPStBi3hbjB+wEYiCEwRouPCUPCdMKDx49J4wEv+3s9671JxiR8cSr6UvxmcwfNsQvZdJsHVVK1icYIMTOyLNwVtydAA/By/EKKEdNonvaSycdOYnghI7qJq7UlkiRnKDvRYme3A1SbVIJ7jQhGQ3HzteYaCko4VKlsNUNpNllpAcGUnzmM43TgjePIp59+ypgFQtc4nj55ym634+bmBhGh22y4vLzE9weiH7AkXNsiKQBzxqEkp3uKTD/qtuSs5dl7z/jgw4/48MOPaNtOa344x/biQhudYs4MlTeEnLc+WcmZtFTQLlr4eSdLs9a+uA3ltMIwB3kX7WpOVJw1/rMwVASFRD6gJy2xTAuETPbIKXJL/ELWRU/MXYUdprmm0y+eaPCssTPryYc12XojZWPJfxvARNUqTfcsQll+9lJAEcD2PXYYpuBveyLEaU5vGwLDy5d6mHvPeDzme+nPcBy0vxHapmO4ucUX33nn8pgLTdvo9VNChoF0PBCGcQocflfxOhN9EcLPuSMtNW+15rbW4JZrTUTjzH1rq0ktSC6tX0trRN2ueq8qNQtOEmMsDpBynyLc11aYtm2n+/d9P+2fJUB+fiYDuWDjuX6pn31JQuo21X1d7lssSsnonj0Mg7r0LYT3hS1oshiVfX+yiJi5voiYvM+UPpnafbfty3GSvA9PMSV5DzqxZC7mysn45fuWdLkleYeI5IKNc/KJ7N14QjSWfVqUWsaYykVOv1V/J8Y4vY6AxIgkUz55SlrqOXNmrJbzl2xvSnFOWzvtf4v5V7e7EL9ojCpW3mGSsVQavAnn5tXnXed1mv7ldSZCl+edRXAR5DjQmYGdsVxZC63jUxO5cIEuJfrGETpN1a/K1Xh2vOu2z54O55+5nv9fVDBfrpv69df1y7IvzhHmc31+7vv3eU//Pd9naalbtqespVLMuDRBcsr54oEgZT2lePY5lqj75c5edWcPOP/5+4zRcm4WJU/ZV0oG3lJWzThBXAKJEHtM6DHhyGXyXLWORxvLVeNITcOGgPURZ4TWtbTSEgxEqy5RJmgxa6LJmaVyLTcr2MbQ+5Gj94z3WH/wRWIyqkMmi52QyEHbc4cGHwmxbHoJbBYak1HS4HMgW8oaaTH5p9JGx4jP2kkRoXEaJyFJrRk14QnlD5PzkmdWqh+Js2m91p7nqSXCZL52pgi4eUCNwaeQD/WkAV1kl4I0+8CGqMG9bdtqbuyUePXqmv3+wPX1DSEm3n/2jIcPH2Ktw+egy4uLS/p+TxgcEgOubUlhhOgJqcRKZKJRC0hZeDLZ/P/Bhx/y0Udf4dmz97NW1WFcw/bigsM4kIJWO09+1MlpDLF1RGcIKTImtaTYpNqYkIXwQhbIGkHVvc8wUm8ESj4EZbvkfpRq3qRCNiayWe6hA5hyYJwRwRrBITkvtmYLK0KJahxmYbMOqieBbSoLU2KqSm4yqSjWFkmCTREbgpKHmCZaU1tNJGgMDiJa5bjvwQclKKUSvdGCPw0g3vPy+5/gQiD6kf54mGJ8rBjN6uWjzufdJUPOIpRSBNFEABFou0Y1wSlnqBp6wjjih3ebZMDpAVTHYSwJRkFttSrjXiwZZezrjbsWCJdYkowTzXclnNUko7ZEnNSUIE1a7ZrontNSlWdrWy2+VKeuLd+bir+JTJmnTg/qu8LvMnbl1IV0Ds6uXW7Kc9TB88YaVY/FSBiGrDm4a3HMA0iS0t9ZmPclJiZOxTLLd6Z4B8iB0GZaw0aZyjQvahhjkKoYq9RKl2oczxGqEgM3ieZiTp67pBEvBfaKdWT+fJlD85yRsvdW/RvjLMAYY07mY2ZhiGQlTlZEzfNbJmVcsSSdzsPTdaBt0lkQKoIxJxV5/Xy3Rsc95X33XXa7vA/J+DwCcl9B/HVk72Rc8uu6x0Pqe4w0NEbYGM1geTUEdtHTEDGdI5EYQpZ9OK3NU7fxVJCeZ+jyc697ptdZG5ZKkOVr56597hpvEvbfhPt85m5jTtt1TrCfxqf6ziQOJDQFNmWt122IqIsGUzcvx3p5z2WSiPr3657vHDFZko/XXWPam1IO/rZZZjFgW8E2gjGJGEZkPGDHPZcm8niz4eHWceEMdB0b2yMhIMnQuIbWtQSbSFa9diQKFk2IpJ4+qrgXKxhnuD4cuD0ODPdUVNw/hW3002Y4+eqGhM9ZOabc8aJkgqRiZ2saTPZBDSm7XRnwo8cmNA7Ae47eY5xeY9tucGInQV4QDRQXrWFRNmvQgNpS0THkINyYEjit+qq+wc00SqGqp5CS1o4w2f/dCOoPD6RkaFJk7EeGoLElm82Otm1puw1RDEMK2T0nC7xZU9c0LTEmXl3f8Nu//feygOHouhaSZh7aXF7wCx/+EkSP74989tkn9Ptb/Cgk73HWamFCrweiGKFrm6lQzG7T8fWvfo2vfPRVHj54hIjh8vKKtmmxxnEzRCKWJJqdRlLChwEfIoMkxk1Db+C237PrOv3MoWdrHclatYKAEp+8KDZtq1oBIgbD6Icc8Bzo2o4mu7uQEiGpdvPgD/gI1jZcXFwx9oMG/IdA9Jq2VfLC6VxH1zg2bYvNwl8MkTEEfBjxKTKSsLsOH8JUMbkIk8YYLnc7rLEEP2payjwXN8YQQySGQBgHJRkx0sXAk2HA7/eMhyO3t/vpmupHPlep/uQHP+D29pYYI5eXV+y2W0zTIE1DCknjVWJk+M53tPjkOHJ9fY01dvIH33Vd1mYKHZ6mNaSmQRD6oef2cFQh9AZoW4iRw80NKQacMTT3zE39Bxm1P/syy9HyQF9qx0p2txKLsczOMV2jOiiW79f1KAqWbk5lsy/WhxKsXa4f8740admrwPOaiJRrlB8R4ebmZrJiFHLR9z2Hw2FqW9M0fPbZZ7ruNp3GvqXZOlMf8OcOwXMHcHn2Umm6tgClohkrfy+IYK25rQlYDIHgw2SFIabJalBr2kt7ixUoZbLP4lA9iYFxdrJUlPcp7xVSWmI1KuF8dpfKqO5RUr3u93vC6KdrLufaRECLT3dpuynphEubISWp5t55AaOeV3VigynmUD+le30WKK2bCficJvk0e9hJ9XW40xdT20tmrmyEk7tN/EOP+wq+54T5ANxIYOOEh5uO29sDtzHRG8FGwy4lHqTIVhKftZbYdMjGshsdx/2e4/H4RgFzxZeBavZLHBdFSZBljumdHNuAZM+KHzPO7h+UKt8zyaiJEKKy9abLySL8ETfs+eplxyZZulYQk9hd7XDXgnEecZo0yFpLILK57Nhd7mi6Dfthj/eBMIwQ57Tat4eBfX/D4Qj+nvTh3hLLsw8/YBh6zVAS01wgKkLf99nXM5FzV0waYeeaOcDXS9akRNXcFyFyzP7GWZsUczo+LeyUwFkKj5urpeYUuZPSOpHlSb17ziiAzJVWYw5sLpr0lC0mhQRJyil2EcSq3UJSVHaYwBnJbkIaBK3P7CGJpoBMhiSGFGerTznwvA8MwzFXRIeua0jhIY2zWAOb7Y6ubYje0x8PxHEk+JFhHHPaW60PElLg8eOnPH32jK9+7WtcXT1ku93RthuaRt2lEKMF3PLiMmJoXEsKSgyTM0RniEHwPtEYqwIsSetkVJqu8ttawRk7F7cZR2wI05i5FLExakxH7m+bEiaixQ5NrqruPSZGJEVCsQiI0FiLzW5IfvTYplE/15RIPijzzn1uxeIEOlHBbZaQEpshYESzgdmQCF7dCDrx2U0gEgJq2g4JNw7I7S3mcMAej9jDHsjabe/xgyc5x2gtN9/7HimlLKhtcdIjoydKT/CeputwIpNLVRpHZBgZ/QGaBhkGupRocvpklzNdxGz58/s94Xgk9j3Gau0Unbh+tvi8of7Du4KaDJy4IFU4EZAWGvllZeZz2raU5rlbXjtXC+Ocib++XonDWPr9a7VvFQbrdM5L4b4mNUWwL4JlrVUfhmF6rWlUKaKB4UKMDa7SZJ6zXLzOdL8kC+cI1mzhzf9eBGuLSC6aej7APaSotW+8psGdrHveQ0Vkyv2LNTGh2rHasa1ur6bSrQiOmqURNO7DLghIHesDquQylSVksmBkC1ixDOt+F+6MPzBVyC5jLnNDqz4/JWP69TJ3T0lfHTNTz1+ByRW0xK9ZTi1Teq+8JVRroVjEJsvxch5P6lkmglR7DqyY95s6O9c50nkWogLgPnlexcguJZ60hpcSuDQDD5qWxjqurOUpDTddA6KWdHcbGYuyjHsGAq+4NxKQDFovDJWFTJJcdi2SJBGzzMq0dtO8GH/U7a3W7bQXCpNbV2mVemWo105IkVIbr3GajdLaRNsYrjYN/hjwyXMArh48QF5GfLPXOGWrCghSorMWR8IfDoTjkTD2xHGA5CghCa5t6I9CHxLH8JYtGU/fe8rhsKfvj/gx0nY5YBHDfr9nOPZ6UMZZgyRyusmnpAOaoloNavOuFu/Lm22J20g57iHn66X4+lM+q/mPJ21UZGKiIrOJUbU+afJjhWLiLIs6V22GqaJsCVhM1ua7aOE8a5jciGSy2KjwF0O5f+bKIvM9UiIET388klKk7y2NFbabjq7TauHWddA2IDAkCD4fHlmgSag28OHDBzx77xnP3n+f3cUF3WZD27RZU2pn317tMYApZaTkVGRR1DXKp6AuSpTg5ezbG4rWMk790hgmd62QA8RtNkE2CWxUywSkKYYqoqZ9YsJYD9ktSmAqmmgQOutgIigJiWkKDo3eI8Grb3OI2NFPftE26vygHMz+oObQGGEcEO+JIeLGOLtwAU7AhIAMHo5HdYPqB2QcVGMcI2kcCYde54AI/uaGpm1praMDjA9aNC+BH0Y1xzYOGyJh9DB6LKjrX0oEIHYbxFiN36AWLCLRjyQ/IsFjRMlTyp97U4XkdwlLget1Li9LqwbcFayWgv3rrCDL+923D2uh/FycSElIsTSb1ySldgWrBUvghGQUobd8drYWZHeoEgSVZpeJ+h7nBOS6H1JisgoUt87ErFmf9myY4stS0hSv1rk5BiGlKWtTinNcWoxKNNRlJGePCjkWK87WgOKyk0gkqQToTCCWGvhSfLJY0Uv7TEUYz1kxajK4tByU+dO6ZiJokVD3KqUbTywQZe5kJUxIxfZTj/vp2Je4FH3fTEqyubfzOZUFnKk/00yWTkkxU38sM0oVAnbS7sVcKGfsu76P/H6g9M8XtSIkdFmOBnqTuCVwbRNbGdkaoTVqObwQxxMaPjMNwWp2wnS4qww4t45XfEnI/FPWYFkDhpwhEjldKH/QkFSuVNd5mWQrQSbXdmPAWnAGrCQaC10jtMHge89I1CoOuxa58LBtCEk9PWLQGOnWqMv30PekcQSv7vspe/eICMZZBp/ofaS/Z4mXe5OMr3z1I273txwPB8bR03WdFhUzlpvrG/a3t+xvb3n18hV4DQJWx5psgjKlqrMKW+PotbpqTIg1NFkARjT7U0lxqL6nIyIJGwyxPHBKpOyuFFMmIQ4KC5m2+/xe9H6KA+jajW7SBEZT/O9PXSqsMfiohY2cUc2ia2bXr2gM1jqaBD4kQqy0zAZKnnllmjnb1lQ0zNP3EZMC+66l6xq2nWPbdbTOat8ak11JnPZVUNedxjo+/OgrfO0b3+BrX/0azeUF7aaj22xwrpndHSBnP8obV9TMSCEERq9Fs4ax53g86iQKkTSMmH6AnO5XN7qIEQ1676IGpIsIY6g0nCbTqpiQktZMBMRy4Rr2IefH11yuiIDB4A0kr8L/Jmn/xOBJIWBCULkqJew4YlOiy+53bogT0TseX+EHdduyqPtbsVj0xyMxeEiRuN3SNC1t02gaS+cgjvihZ9gfCcORMAzEYYCobnVxHEnjQAw5Kwxw0W3YbXdsrJsO+Bgi4/5IMJo9zZlSAV243G6J4zgf7iTNkuacWs2ydjRFDSRvrEWy5ryk/m03zSRsnfqRvptQ5UOOZ6m00csDvo43KFrqZeG98rla+FeSHCaJrBZwz8VinENx/yyucnW65UkbbQw+BC1Al9IJYSr/tjav5+zm1vf99BnnHMMwTEJvHS/R9/1Jquyih54ca0q7K5KxTJtbFBzldefcFMxdFB8lSDvE2SpsS3XwnBHKWAtGptoSUtxYK41bTBEfPOBojI4vMqryJcYTN7D+2Ot1sobO5H2fnGShaOys0fumlPDZZbW01+X4MzF6Jmh7Y3avLeQp76GNy5ZBdbVTZVjENS5bMlC3z8lqof2gdvmKjGWyFWMuPJrTn+dhOLFcGDNX+jZW3aysm8dX7zOnRBej0Wy+xIjEU9JYE5iEFlmt1wLMsSLTuTd9r1Kw5cDXP9BC1Y8ZX5xsaP0Au9lgGsMYR75zuGUvwl4aGtOwicJVEr5Byz6o0/MhBW4OWmMrhDC5U34ZorPiNZBJJFTrUdlvKmNFFN371KqRMG+63o8AS+u6Ys5IWRTHOaYdUlSZwggNkYZIZ2HjBIwnNImxhbgR+p2jeXzB5gO4/u73uL695jY6nIcLa3Ak9v0BG0cETbXfJ68yYN7HXt0cuL4VDuP9irzcm2RsL7aYRuh2LcmnLHCrxt46y2bbsbvYIlY47I+Mg9eDQRJBTQykyQuuaLKimrHE5Ird6sbkh3HyUU1oAHkI4IPBejCm+OEGfC4qlyRhsJPWCJsP5FRqPORDNWlWppTb7pybgg8F8D5OmqUS8HKijTQ5pW3S3tNNPCCSK9pOLmM6McgCT4wBgvrVW1Hzk/cjwQ8cbhN7Z7jYbdl0LV3Xsttu2XQbLnYXOUtVw+XlFQ+vHvDRV7/Gs/ff5+LyErvZ4Fp16TAma0BFSVip9SEpIVLVJJA5gDyGQOOcxq/EiBs81nmMsTTOknKKK0OiIcxagMHjnKaoNKi1oQgU1ogGoGtiDSR4DXiPalVQN8hEPB6IuYhdtC2SIi5bNxiGHE8RMTGqS5dYNhJJx1EDkkbP7SefMPZKlNq2U0ElaiDq7csXkCLOGtKDhzS7CzbbLVdXia5rCTHQj4EY1dIVfWQ8DjkTTvZjF8FZi3UNjx89ZndxQdu0eogHJXHWaCxG8J5o5y3KOcfl5eUk5E1xS1nQXWrklwXayHVmnHM5S89cxfldxewhq9p5Xa/ze8UhpQhi9YFfa27regAn1omUCXW2hBYt9p2g7UprWFDuU5OAOsVs/bkyjj74KeNXbe2oYyCappmsGIfDge12O7lhHQ4HiptUSStbrDVXV1d5TwwaeKd3z22uDpsspIvkzEFoAoySyjtlhUFRCoHgfUBM1s67hpTXW0nNXPoa0dSnzjqaSsgOeb5rTBocC7mTvM8uiE6Z041zHOOBmFTzJrZKBUtleZHi8jpnryqWjZJBzxibswBGYlLFgMbc5dgJY2m6bOG1wuFwwPuRGDzGCJscmxJjZMxW+EhCrJvIQ4xCQMAoqXFGVJEh2ZU3BSQXdjVSWzCsJoawLivMJP+t89D7MPdJ2yKie3VMvfZZysqiaS9KUzVvbZfGl5WfiViJmS1rSRV4xT3Nj6P2xTRz/nCjFuaXVoTasnDu83euhfDBsw/48NEVT7eO2+ffxr+85nuvbvm69Fz4hm1wfC0Jnw2B29Tze/6aw/H2JGPgcn9a8TZQ5DvRfSEXxg0JRBKGEsdXWVV/TFi6S53DZIXJf1sxU2rqQjRCf+Swv2FL5CCBI6rofdoJlw93XDzrePHd72o80GjYeDDHAdsZOpdT/dIQQ2AvkIzGWt/cHnl1ExnGBuM293qme5OMJAnrLK3pkFbzjheXo27Tai7zRnOZN+2B/thzOB6QVAVi5sBsEhhniMhsOi85W8kuVUUlr/5I+pkYKVXEC8lIoRCWTE2jTiRKTAGiFoZJva+vArO2qWiJsnZpuh85w0c5NDLBKJq2SWOVU+PWaZYTeZNKGn8g+fB2RoBivi/ZQUbimF3IYiDFwLbrsE1L4xzdZqPECuH9Z+/z+MkTdheX2KKZrIQnRDKpONWI1Lndna2yIqWEs1ar8MZEEyIuJlxKNFlgU6ISNQNTHvQ4jNiYsFYF7TBoTuUYI8ZZxDVYF2lsg+t7yMHrki1KMQT8fq8Zm6LGa7hsQbLGTmMmJKwYnI04CZjgGa/3xMHjx5HjJ5/gh14X2O4CcsG64EfGz56rS1XbYFu1vHXOsg2BNgR8VPLXiDBm02PI7ZvdD1Tz0ViL2W7pmhZjVNMcfMiWnMqFYspDH5EspHZdB8xCKMyxOqUKcxE4as1zCZKd3FlSeOcPn5jmjG8TOTBZQxNjTuFbuQ7ApLX1S/eQJSYNcF7vxaicx7H8B0wL1YjJwb053XMWxpumoW3ayX2yuPPov1VwU+tkONFCwhxkXcdX1KliXWVNOBlrTjOkaGB4ZBzJgd+ZgEch+5eiZtPi6pmycJomwg8yFXZTK2yONZtclYo7T7GGZKvwtMfmpBbeE0th0SwFT2lT83qZ+urkORZEsIx7sZTqRnqybyL5eXMfhVxnonYZTClnqouVW+h0fRXum7aZCHohKilqtrjGWUwpJBvL2WAQSSCaNSpEtVK3SbPHpdk+rn0QAgSPoFXMhaqGz0RKc19mS/2JZSL/nFwXk9WT2dU2ze9r0Hduc5r7v5xF2qyFS1TSvRaR7B5yek69i3jdHri0QCw1wkt3SuDktXPXPve9u65Mqry82DQ8frTjgyc7ri+OfGoDz19dc9N7HvvARYpsDTyUxIMY2Y2eT+J8zk1BpQDZE6TIIbM6/svhixCm133v9+Ps+f12C5Msl5mcqTKf6JVNwEy/y/uK18+dH6o9r+n3dOZ+6fQDuYXFbSq7+SMglhRAKyAYXBTGPuD3A+POcgiRA5FwhCCAs9hO+yCFBCFiBfxxRLYNtA6TLMa0JANGPENQZdf1TWQYIATB3bNLvlB2KWP0ALZSa1MiTdvQtA1pt6HbtNzc7DnsD7x8+ZJhGPVBkrpJpQjJgLOOiGYm8SFgU37oYraaqk5rsLXk/KMhekzmcCnHd0wjUAYvBlIy0yAVN6Zinp8KtlFpH/PXR58LU6WoOYPNnP6vqFznHOMqdNvqkE5GXbz0kIpI1nQZIiEFrCluAwbvR4aoVcaHMKqQEDx+6NntdlkL2tG0LdvtBbvtjq9//Rs8efKU3cVFFnDtLDwU0z2iafFEmbpmfMmpYW1OW9Y0DNZCirRNQ2MNNkW6FGkjNBHa4jYUtYL7lNI2JaTvMU0RlgL+cNAsJyEgXYtpW2gaTR17c4OMHgyEnIXGjyOH29tcH0OJym6zpW0bmqbTNGzoomy7jiY5bIJ0DAyfvST0A34cOHzysRZ2BLrgdexD0KD5l5/RNg0m7mjHgS6MdMGzTREXPSbq3Gusph4kJUIY8T6nwzUG6zSVbOMcbZMzvYTEcDyqa5R1NF0H2YUhjELws3WiabS6O6ggWafdBa3mXARP59wkjBbttmRLio9zvMq7jJDUjaz41Uv2Wafe3lN2j8mC/DD0OaNUTjtaCeK1P/5MMlImBMViV0fjqMZfdRrZApoMKfpsAYQuF21r23ayjCDqvmPzWosxMYaRYVRXh81mM5GG8u+6oF4JNi6WkZPUyzBZP+qYgqZpJk22yQqaFDWltrrG2Eljr4dSIkVPyJkAvfeT9axpWhWq8+FlXc64J/l/uQ6Hkoo4u4wGTxhHRnQeStMQQglW74n57+gDrvQP6rZYrJa1FSnGqIqRxEnwsWrx87gayQGJltEHBu+zZdRmNyytYRQzKUxqbs6KoIR1DU3b0m06VXyFUhm+J6GW1q5KPDIMXokMki3VFp8CQ1Df4y2WiCUmU82zSPQDyQ/qltV2hEyorHNKfDJpQ1RRUtyZlP8aNH4u12ySueaC5PFIWfxJKHEy2bWyWC9SiYsrrpRRz4+SsU1EGIdhcrss5xwmkdKP2ynky+McETj3+jLjVv35k32D+1kQ6uxqS4gENl3k4ZXw0Vc2PProfYZ45Pf+z+/z8nrgKZ4LE2l2kUdOeC8I74nwbZMQowlSpnhIAJPLA6CKl8Khswb0jf2yTKJxDuee96zw+wZCdx98Holbvv5GYf4et1x+30TBRI0Pk5hjZXNxCSFmq4bJKVsnAao6Loqya37vPoRjaSEvv+/MXU6Vaue+D3ouFWE9ScATsSIYsVhxxCDE0RBHQztarep9HRi3jtsxcTsm0itIqXgPJGxyeV/SvfhwO+K3kbTdQRyxVhDTYMytllvwnogw9qrsSuZ+SQruTTI0k1M2M5Fzn2ctUtM4FcSt5cmTRxwOPYf9gYvLHTc3t+p3PGoGlXHQw1arGQ8qRPQDSdQn2RqLaQw2qWBQ3HqKCJJIxBRyCr48McsnYpgO0ZTC7E5gDEbmzCD98Yi1ZrLGFJKgRUdm7aK1DdYVN6mctrcOuEtqXicJNgtOAN4nAll4loizQswZn0x2wTHJ0LmGxhg2TYOPXnNsp8jNzQ3WWm62GzbdlhgDjx4/4f33P+DrP/1TWWBwlENRysYTF+swZQ1fJge19cXke/XHA03TQvCEw4HLJLQx4kaPjF4zh3lP8CNSlkRKjPs9yTpEYPQDN9c3k6bw4mJH27WktmNz1eNfvcQPSgSOh0P2iz6yv72ddAcpRczFBXQb7KYjpUjXtmy6DZebljgc8IOnvzlwvLnWNgVP9PucASFxvImMQ0/IcR3JH3GtYdPApjW0LTiXMKLve+8Z+yPSaHC/Iaq7lS8uSQ5RPwyiD6TkCdmdpT/sVZvaaFrhse9VlM3CnQ8B42dXmmKpKFmETI65qTdX59zkEhFjnKsTi8A4lB3p3UcWIstPIe+CWhNitigBxBDZHw6Mw6gVn89YMWqSEXNdk1KATcTMe0dkcqesD+IYI9HMdVK2m53G7TRNjllSkmGcxmGB7n/Hw1Gzv8WosQZ9PxGFJsf+dF1H3/cTydjtdpMv/X6/Pxn/4iYFTIXj5mecBZwUZ6KGmEpLTq5TpG6fMSaa1tG0HdvNRslAtvA0TZMraKf5cM2rIIVE0+Z9r0+M3kMc9FgucV3jqDFP2SqZgq5XtXTAOKplU0ROiuDFEGibZj7H836te2l2mcs1LcRqXNzgPdvtdrIWqetQFX9SxtQ6nBiabkPbtXTbLYmgcVfDkWHoNe7JOTZdwzAM9P3A8dAz+oSYBjEO48BHwSeLjxZMS8Lig2bMI1uliR6JI9Y5Wge3Qw5wdzaPg7pxOakTBYjqVCRbTWAqxjmtAynnjclB9gaMwzm1bBV30OTVCuyyhcRHJeFdk2vsGEN/PDIOwxQXU2K/7iOI/kHF64ThZWao4qZ37nvnsji9iayU16ZsazLHdCkNDBCeE8PIGD5j+/iCxx/Ah1+9ov9fLbe2o3MO1w50G8f7WH6uu+TvP3/JIaqlsGkdKoFoStyQPCFp7CjSZg+K0zo+5wnPmwX7On6t/szrhOel2+p9cB8L0LINn4eYlbev+94dYT6BixYz6hluklUrsHYkkhyGiEhk5y7wyRMIRLwG5aOKKM1AarKl1pINhMDdGk7lWV/bptIfMMeE1PPyRKZlsvKbhAZx28DoNE3FhRVaI6RoGUNLvzc8//6eJ9GzuQF3EG4H8IATwyUtWy+4IUA/IntBSugBR/reQdhhuiekKCARSZ5xeIUfhLFvSb7DxEELR8fjvcbt3iSj26rgVzRdSZJWAMya8ckUbA2udXSp48JfgMA4dvjR0xeN5DAyDgMtHaaxuLYhBD2sh6AVkdumVR9iRIXGbNKehIxYMfsstJeq4omi0UQ1Qynh3By4mXKtjZLXXMnBvHB9DkA0YjDRkMzdCSTFwpLIRftUmDHGaN9IIhmt46HuFULq0L5LCT8MmgfeCK5tcUlTlpaMUvvDnn4Y2LsDDx5c0W46Lq4uaboOaxySfYRnf/TKTJzbWQr5xaJ5i5p6N8VSL2LkeDjqc44GfzxixxEjlmSyO9J+zzBqXQIj80bRH454q5q9fjhyc32tAh7g/Ahth3QtfUz0L18wDsP0vXEcGIcefzjkAE5L1zQ0MWD9CAM4a2hF2DpDK3DbHxkOR4ZjT0weH0dGPzCEI+OoKZSH0DPmdMpEDVgPtEQJRBNIEpV920iIiTH0HIcjY7SEUeM8rBjESRb6G6xpNHUv0A+DBqMCrWvw+aAfYs9w7LVwXqeug01S7W2pBF1rcss8LKQCToOcgcnVxlpLqNxv3nVMFZorYaAIm0WrXq+1SRAuGqQFQVgKS/UBWhu/1WXlLsGotX+1K1OZ5+f+nkTyHHNhkmHIgpyITASlDmifg7jvplqtD6rynWUWrPmQkuk5SjVsVSakaa2Xz0/a78nNU6Z+VMGe6TDGGExKmvUsH6hFGJ1oWkrEXBdJf5d05XMmrlr4mttRuVEltaoWkjFZYPJ/U/xLtVZMTrM4+U1rakJ9hpit2XoxXNHiF1erOKo1JobsHqtnFjBZVMdxpB8jCU8Si3UbbNPRtJYdFtduQET3jBhyRj2hbRwh6d7gx5FhSPiUCKk8p8GYEhBealzM7rb6LHOmL/3fPL6Lic2kxc7nYJlHk2UwK+SKImyShLIAVJRAYbEG3jWcE3bPCc4ne8EZAfeLWoVrQfL030rUw3BkPEI/9Gyj4aqB9y43jLbnJh1xIXFFhxHDxlge2R074whNR3Atm90GcaqM3B8PWRguBHQ+y80Zzfck26Tz7537+3XvfRlr+fK759rxtqzwX8h1qSjmssw4rTFyZsD8MWMMJlpVYldtLXtUuW/Zm8qaehM5e+Pr+S1RIeXMh8ovXfOSymmWs4w6cLbBScPogQBxGBlub0nSsyFAa3kZEy0gVnjYNnQi4D3DsSeFpCnEs8IjHkfS7YC7DhAdhIG+9/i9hyFiQ8JKlquTKvvvgy9EMlQI9uq6YdT/tAQwgmoKQ4rqx9VY2m1HTJFm1JoXzdhM2T32t+C6ucbB7f6G4+HI6I8Qc1Cis6o9i1lATJpRKs+CbM2Y/YspQ1C0a4VkoJPGZP9jN7kY2ekgKxOmbNyRBNESTETi6aasBGOyX+JHzWBUBJtcN0tdcKbPGqTr6PthOtxEEia7T5lkiSH75xuh73tS6hGEB48e0m46NrudprPN7Vd/4yoegznYXQckTYthWmjlrZxtyg8DbLcanN4PpL7PcS5CfzxyvHmVyeGY3dZ0Mxv7AWPUj/5wPOSCcRFrLCMJaQek7+gjHD97wTAMgDAMPcGPmlms76FpcG3LbrOhE8ElrbXROMPGGjprsTHgjweG/Z6+HwgxMISBw3DgOB7px16DMQctgJeipsndtC0ejyfgxeNNINoIDUQf1SXCD4zBKLmLRYuqAlrTtIjYnLrSEEaPeqgYWtdASPgQGEa1iFi0MrxzFmc0iLe2ZMApSa0FXpE5ELy4SpX0lzEsKz+/u6izNFEL7MzCL3IqRJ30WY5TKShrN9vrJpeQO4KFcHLf+pAAVIhlrttR1rYxBl0NC3KS33Oi1Xv7vp9ISskmVWeZKgJ4vcfA6Two417ue4py0E0Pnr9r8tKeXTQLEdM22vkzc09X+90pGUA0i0gRWDWWa7YoFwVFCTQs7S+JMeCuJm9JmAqZLOTkDuGqSBcyE1NyTIIOYZyErhhjJiJWScZEdsKciSzFTDI0A1TJ9ldS2g6DZwyJkAzGJq4edljXsNm2uKZDiFm5EZHs/tQ4h0SNHwujx48RD8Ss+CrPXrJMlZiKmOaMxGKMuj3lfpsImJSRmjH1alYaTS4/eZxivudU0C+7V0me71MMxxmh+13ClB2twnKeFeHvTSTjy+KsVj5BHHr8UT0zzLDlQiJPtg3faw7shwMmejYYNtHSWMtls+HStEQnjCbRtC1m0xJi5DgOc8HE7Coek6aCn1x43mDRqQXj5fvnvvsmgfi8suM8sSvXPkfI3kR2lu17e5gJfLYJnhKHnCLcYDCSP1GakCZ1QJb5igVQThcmpySv/Ps+z7L83uufohbhBGMF6xosLcOgqf3xntgfMG5gYyJNa9jHxCbv6VfO0SSBcaQ/HmblXdlaxxHZD9iXPdYJxz7SHwbiMeLycmuJREn4nGTjPrg3ydhdbPF+xPtx8iOz1tK1HW3T5Orfnpuba2CmiMYZnHGYxipRyYXHHviHUyrRxjV88skP+Oz5Zzz/9Dk3r14xxBHfe43/CDmQs1pgWXeX/yzsSqp/F3MimBgJRtmao6Fpu/Kx7Po0ZxOCvNEX96lcOKteUNZkVw9R0WYcekSyRjbFycetZHfKY4lrNZB0GMapFoVPAzFoEHs/9Bo437TE2Oe4FOHBw8c8ePCYi4tLRj9qVhajZvlJw1UWQ/lfUsFI40rAbroTYaHfbDhuOtq24cHVpQZbx8TNxx/TOvXfHoaB480NQ98zDFowqCzO4tYRY+R4PHA4HLJ2ryFai+9Hkj0SX13zySefqBCWLUfGSC7+BxuErXU8vrxUa1Ouq3J5eaHuQiLsr6+5vb7m9vaWm/7I4D23+z2vrq95+fIztVwkcI3T+i1YUgwcbcKagGFgE444e0G7MfBwixnVTBp7YTwMZNnspAJ12zSQ5mDLGCIhecjvxeDxXhdsfzhMaVOfPH7EZrMhpcTxeDyxQHjvp9iLFy9e6BrJ2tvD4TBZPrbb7eSSN4zDiRD2LqMoJApOZ2/enCVli+miFgZQKh4DM5kuSoKYcra62oIxh9SVwGEgu13Om2QZ96Zp1O+frI22VcCuFFdM3Sca1+StTl0cC7m4vLycMkqVA7+Qjr7v7zxXnfq2jG8hY+dM7+X9KV0uaiEt1xWRnH3pbvG9+h7l83otje+wlHoyWYOGxuFNlojKXbRcrzxD0zR34kpqK44OR5qK2pk0vzYFwBeyUgnL85hIURpr35QYmBimLFXFNSulyDCUmBkPsSJcMTGEIRMQ9TEdBs/17YHDcWQIwpPec3n1gAcPH2GbFisJSY40aApwHwMuocVPs/COsbkGkKbwbdtO02bn+J4pRXslIJd9dy6yqWePKfN8SoDBRC5CCHMShBAwmVSVca335prolBigty/I/WhRnmlJ1GuBt7YMv04Y/jJ9sVQ2gnKABkjHEX8bOF6jFZT3Lc9Mw/NHhsN1zzj2XI0G8YnYGpoL4etX7/F/vPiY71+/oDcQw5AtuAkbwQStGZVEHXkgZ0NatKtWXtTPWZOKZSzb69zA6ud7E5F4E1Fbfqd2Yzt3/ftc88sgRvW6SSZLjFKHWE8tmRQqWoAZKAWV00ww5rbOqcTvXOmeZLYuKr38/OvmZESISYjJYOwW6y4wyUG6pQmBTUxcCTzZJR5EwY7CZ8eRJxvN3nqZLM0YGW+P7D97odZetJgqApsQ2F4faY8vGJqG43Dgtu/Z0PHkYUdjInHsOfaJm5gYxrPNvIN7k4wQA8mAWINrNQVfQgOxY7Jq2Sh+1kjOFqUeZqVWhjUWcaoZbKSlcXogOGt48vQpFxcXPH3vPV4+f87LFy/Y3+zpD8dJaBdR1yeN2szXT2WKFM56usBSSviQkLzxFq6iSv7IMAxY6/IBoAcaIoi1HPvxNMViWQzl/3kyODen2ySnEwSN9fBRNeQhEwZJQmMNsukYRiUSwXtl2WIQNX/kOguGtu24vLpid3lBu91ObmAxMi2I8tTzop34O8V9LGRSk3Klc0m5EF4SuqbFGkMYRo4vX5G6jsY1GCJNitOGFKIeeBHo93ud+EHrUfihn7MgZUEZEYJrNEi7HxBj2Gw6OtdmlxLHZrul61qsGFJQ03/TOrabLYhWPb5+da1+xWU+ieYlH6MnGsk1/NSKIdmHMUZPMg0HP5COe9rbW7qLLd2wmYoQjlEzTDVNo2mSfaQXo3EYRKLJfYZuVuOx5xjVNW633Wp80ZCtMlkzOg4qvGy320mrWAf6Ho/HPGcct7e3bLfbSfCrBdKu6zgej9m64Sc3kHfdZarUi0jZyrbUuBWrWygCZFW8ri6kpFqY2SIhom41UFlF4pzJqrgWSVYhF7dFQXL9goamcTRtqwdT1hw65+Y6DqkKThbV8IvRNV1iaZxzbDYbSpD/khwuBb0y9mVcayFpstKcOYhqUlLIQvldiMUybW9tcShVx8uPc3leJUPJYlaE+dr6VH+vbj9wZ26W75bYo9LGKbsUc5Xl0id1GuBx9LmYa64tUTJJpcURn+Y+KRajQrqCL1W15wPcx0AYK6KU2308Drx4dcvL6yPHUXh09Iht6doNXetorCEZh49Hkg+EGOickjOIGKMxGDqnGlzTKsloNSMdqAU5ySwIaiKJkDWUuYZQ/pnzZmmmIVKcMq1Fr5akuq8LJjeqPK/qzGeFIL7LqbDPke96jr9OkD3ZY8589r73Lr8nEkfCYmAEGWCLo7s9wvWAf+UIduTQeAywDz0bs8Uly1ZafvH9bzCExIv9LTcx0Q+jJowZA10kn9meKFZ1rJNO+67w+np3rlPrQk0s6r/rDHflO0ulwTmyUFtPPq8/P4+YvG1orFecMgim3IdzV1Y2XhENATcNSUKWN0rMjbpYvYZbnLT/fl4Hcqc/X2d9mppqRAuYAk1ziWsucNFgzUCTRi4k8cjBVePpjiNhGJHriEvCxhgeyhb/amR8eWS4GblyHYGoyYcMXLiGR3bDZdryySB4LKnb0myvuGh6OjeycTv6MfH9z/YM3395rzG4N8nwwasiScj5y1V49TFgg580jCUvt0R1+ynMMYESkeyyVFcCN8awvdjSbTouLi9pyoGbXaWmCocpISFNWss627cK1jock+ZSZneMcjjFNFsnUko5GHL2m7XWItm8Pfp4xzI2++HpIQl6UMybdtHg6b9MUoFY63QExLjsfuMIcdTDKse46EFopuAfYw3dZsPl1SVt1+VUjKems+nZs8w1b6j6wSTqs5wys1JyQbG76YEGGrhuDXEciEayqwVaZTtFTAk4TDn9bN9r0GcMjMeeGINWps7uFClEogg2aZpi1RRo/E7XdWy3W7WCbdSaJZB93JspA8/oPUM/cux7fNbqp0QOPo2TFlJZQA6YyzEtMYYc8xAZR8/heNTg4RwQO44+F74Cmy0+SElSlia3EMmpMot7SBiVrI45132J/3BWkx8UDeRSm1Q087WwVQJ9a/JQax5rDW8RFtw7TjJqwl7cnE76Kqa5/xfuUsXlKf85EZKiZJjmfrmYnL5eL+RJmyzaJussNmf4GnL8UGnvpMVPZw7cTD7KZ0tdjKWmkNzemmQsBaBzmr/S/ho1yagPtqV1pCYHdZvrg+2UwKFKhGmepjttqwWV8nptzYgLwbe0o7xehBlNxcvda1bWJnWDmknHpNzRL53s88WVocyvyRI2CREqJqSka3Ycx5ypS+M4jLX4EDkcBj797JohNgxB6LY7zQ4nO6xtwDhCEmJImdBlEndS4C5bI3JMzFTANeYUwTJbGEw9L6exKHt6TllM1p0mTeEeKrfK8vyvEy5rkricJ+8qzmnqz+FNgtuXIRjL+8/XUAE0emDUKsvtMBAPIAevikQbCVE4hJFAwkVogvDh7hHf3j3nst3yIgyMRGKKmkkxu4Urcy1nuio1zj3rsn31Or0vzhGG+ne9vup7vinIvvx7KYSfu/fbJhopr5uibJ32j2nfnmMdTBb2rDSaaRAhEKb3tY3TsXJynpyzAL1xfsndz71xLkupMicgjqbZ0TQ7bACDpU0DGyIXJrIxAZsVKRzAOmhawyY27K8HxltPGEFsR0Ldz5OoHNQh7KLGIjdNy7azdBc9O5u4aOHxRYenxWP5wcvDvcbg3iTjOBxVUyhqKorkzSoHZposYBmr/u2JmLXykCUBLWxnc0Cik7nyqBUa2+j3AWvV52y71ZS4Y9/nbBqRMcc0xKj3YBIgakKhAS2lUBySg/1EpglXaiHowT9qOlgbaRq1rmj9CdXIq1VhFkw0a8o0/DRN1s7GbK2Yzo3stkWsDpB88GIYg0FDAdTXUpyZrqvaxYYHDx/w5OlT2q7NAmlDoTcnE54idOWDHwNG8+YHwpR2t1iOitGvtRr07ETYtC2j9xrAnAIESH4k+RFiwErOLjOOxFFdEUbv8cM4kzMgjqMeqAli0LiTtrU0nZLI7XbDdrvVwztrlmP0Wkl7u2G329J7z36vbljH0TP6iPeRMAaGfa8uTr1HSl2soIlK/TFX+E4RcR1IIhI4XB8Ij4N+doR+3xMGj8NmEpRNpmjaXp3jnq7ptPBY0honUZiyH4XRT9lari4vNMVp4ya3EZjdgwoJ3Ww208binJsqQD948GASxpYCZ9u2bDebE2HhXcaJtj6/Nh1ckzA1a+ZPcObwKtecBO/8uTqArxbIC8GrNfsltqx8bimwL7V6JRNeiHOdjLZtJ3edMt61VrBkZSrXrbX25Wdp0ai1XQWTn39NgCpXiXKdYjWqteYlVbKfLLuVRSLvjypAq9Kjdrcqz14LA7VFZalRrq009YFaSEZxEZoClSErYCS7gAWaXHFdL1os0CXOLJOE/Ex1O4slI+VYuRIDEXzQIO1+yNkDG6xradqemITDwfP9H1zz8WcDj17sCSkSk/D+s6dY+5DWOAKWMQqMkca56WyZC03q7iq5pkpp85QVqxIw1HVMZtlHpq9nIpVrKGSF2+hH+qGfKqDXxKqMTz0mtdudtbOA+C4TjTcJZecE4/J7KeSeE4TP4fP23EQiYBjHRDgK3UHY+UR/G4k3QWsYOE1s9PJm5BEJOya6feB9t+Frl4/43qOn/O7zf0RwgDG4xuKKujFGrLMlFBUTdSGci0tZ7he1W2P9maWAu3zG1/VNvQee68dzfRVCmJRmy+vUBSbr9+70cTpvvfk8pJytMBIxUrUzaxRzhn8M6o2j2ToN0SSI6oYdc/2SVBXE1L0rMpfdPsXnkQzh/DicPu/pNzyRKBYxLZvtQzq3w/hASp/QpchFEh5IoIuDZp4bwOxVnnZOaI6O/fUN4VXA+Q7jLohJ8EWu9Z6YPCkFfDLY3Y7d1Q6zeUnDS7abxEfPdjS7JwTT8O1Pb+81BvevkxG81rIoh7hoTYvgAzGkXK9BfUlDVEuBNZqG0EgiJZnynGuu85StImoZEaPkJaSEcZarh1d0m47Lq0t8P6hQN3hub244HA70xyND32fhUDVZpSpqKeY3Ex+b3S9yPvSsndbBzMrwciChpnbxo2rss8bINPMGFULIh6FeRIOi8wK3Rg+HHIipft2WxjiEBmNcPizjlHffisEn1XAKBuvUv3l3sePJkyc8fvQYMZYQIm3X6PMaB6Uw2MniK+Jy0a9kq4RonntDYizPGzVn/P7mhrTZ4HY7GmdxmksX70dub645HjUjlHUNo/f0w8DhsK/yr6vrSEpJ402SakaNddim5Wp7ocWxOq0K3zZaV0WMTJtgu7vk4tFDjamwhpc/+AG3t7fqMpRgjOr25odAf33EHwY4RmTUHONka1QYxykwlSZAskhM+NDj9yPhMCIjxGPABmHXbjgeNb0uuTiX1gMBYqJxDryautummQUelHDpmMHl7oKmbbHOEVMOis0+4sfjcdI8tsUdJyU2mw3X19cT4YgxTj77Jd1tjJoOVZCpcOU7jTMa8Nq6E73Hj/5ONfRZl4RmFqqEpdqCUfz9y30K6oOsHHBFUG/yuNZauvJZmIXr0qaJeJCmdLSXl5dTJe9CJorVorZajeM4xWssrRFwXku7JJ1LglF/5pybVP29QqaK2175rrZFNUEhmNx/MzE515bl/c8JuoXE1YeptVYtnVn5stSKTn1O0eDOger1TyFGTdPg2mYid9r3I5Dm819ytkCxaNB47pOc4KHrdrTdBtfqs97eDvh4jbjvcLPv+fSzz3j/2Xu89+gC8YOmlDQduE7PwRgZvQo0SQRjEz5ExAeQOrNYym59JzN6muNzbRemwoHFtyP4wDj09P1RYzFEpji3mAuLiqjSq4yz7leFGFqsNcRoCOHdVlYsLTdwV4P/ps99WStGTbIniyQQjLDvYX+T8N8f2TzYsOsM3VPHx7eJ5wn2PjGGwN6D9QE3DribPe93W/7Ih1/h7778Lq4xmv1rjKRUFXZNs1eFETe5gZbnqUl+7fZUv16UWLUV8pwyo15v9fotOEdOlmSuXqe1JbN8Zkqws3j93JhNpIa7e2PBMkFIoiitIpiEGPXWSFkmS6IubkmyBaMQBrSPnbHqBosQcw0b0Uqxp89+hmDU86Tuo+V75yzdr4cqPcU4XNOx7a5wbkOk13pdKdHFxC5EXAiEFDEJNgFa7zB7y/X3evrRYodLXGOJ9ooYTZYrbrk+9MT4ghfDgc92T7GXG5rkiYdrHj42XD7acPmoxbgG62RKM/95uDfJyL2lE9NobIQhaT7hWKWatDnvbzr1k4Z8kOXsHunksiXIpkwMEGto2kZTiu52Ojl8YLPdsL/dczjsOe4P+cpKMsbBM46D5qUfxsmHPyWZAs59UM0CE5PMmWTyPPDekySQRhU3g1eteHGDKZNDD2Qd/BLM63LqxJAzmvgca2GNwzmLhjrrAgzZClEqxJo0uwNYa+m6jt12x9X/n73/7JYkSe87wZ8pFyGuSlFV3Q0QAMHhztkl98z3/xI7s1zukOASgkB3l8jMKyLChal98Zh5eETe6s7CNMkunPY8ce7NG8qFudkj/mK/xzUNoIkxFTOwkpwYg1ZmdR4LHI0K18oX5ycThY8Sz5MXgJ9nNGC1Yts2cjrKwjXPk3QTip9GSBFf5IirC7oxMumllJi9F9Jj29C0HZvtnqbrFtWXtm2WIGkOHrQsfJvdDteKVOQ4e07jxOgDczHJSlkRE6SQST6BT6gAOiohaeUsk0XSAp2KkTgnTI7EpFAmM59GptNEDgmDQNYwiuRWN3x55CVVY1HiEsK6XRK7eZrFYLJWVI1UVI+ncfG4UOrS/+A1WFQNyCpnowaiS7U5SYBRJ8+f83YdrC4TcEYCz5RKwLSqmtfVNUvVkPXCUxfM8plLgMbn1TvgYmGr1+Darfs6GLleFNcJS+1kbLfbiy7G4qVTuDg1wbhe5NfnZf239bGtE4p1cvLa+bzuLKxfcx301+1c8ZYLITLNaXmuJl/XEJ3XAo+LzshqH9a8DVUKVNfnu37O+vd6XeV1ny/e2pylnin32tkVvnwOl8efdCrdg3pONcY4rHPSybaGOCemeebp5UgspqQhJFK4o7eK1mp0a0iqFI1UIFd37rquLP3ieo1Z/na5SUKX8+qZZeyfz0mIYVEmzDktSllKVY6RXDNra8eqqHJx9pAwRhPjvww57Lpdj8XXnr/+/09JMq6D3+uxDpAwzBlmnwmHiDeJxlisdtxYyxACXifitmF8zjQ5ss+JPBzpN4Y3bcdD0/EhecacljlMhkwpFubMa7v9Wgfjtefra9bQptd+rhOo6/ev56RacHntHF/PBT+2T+v//67O1Pn+//yarB/L50FBI5S4yIgAUZrzcm+VUyv3K+cEQim1mBlnlUuMdVngy8ubWWKf9XH+WILxY8d3/ftn50NlKPd851oa1wKGhKB+nAJHxhVfr8rdNWjiCHNI5DkQTIvJLca0KLsjh0jSM2jHlDIqRWYVSK0mq0AKA6gB22ra3oBV+OSJ6csSDPgpSUaZG5VWhbsAlGpSXORiz+3veqIEviBvvgioYm3XV57BmWshLWppXbWdE5MnpVAZNtsNx8OJ0+nEcDwuU7bWhmmcGYYBdTjg48sy8WqqfN+5YqpKO9tYW6pbshiEGKUjkhPaWHyQ/6+Q3iU714tjrQTWmqxKkpEScwjMk5ChbSckQJ3dkpBBXhSojNVkRB9bKg4W6xzb7Zb9/kaqUVk6QlprrHHSJTBWboa6iJbJSM475BxrniEShygoRPNFghJF8DNTiigS27acay3HOXvPMA4cD0dcMwtUKCWmaabtugIRcmcn5pDotaHpOra7PbvbW7rNdpGVNPZc1fPzJBW3rmV7c4syGu9nDqeRYZqZQyTUSlGGGIWcnUOCmFFJWseCXS3HjkwIMSnSJG0/lSXJGI8jw2EghizSo0Yw4DQKH84B4IU5Tgl664TqnJx3EDWoEMKSmGijsdbgZ78EP9cV+XUwaYyhaZoFUuW9Z5omxnFceCm1CiRKO198t/7RbvX4L/+ITPxJHJirZO8yUZfX5NphemVRgXMVuG7XC+eaE1P/vk704AwvqM+vE4z6/vUCV5/r+35JMmpSsSZk++LHsN7n60Thx6qD10nGNcZ+/XnrLsd1QFETjGsy+DkxUaicyNaQ8/k9NclYb+ugo3YVronu62ToulJa59P1tTgnnJ8H2PK5eZnPlmtn5T5T1bNnpd6lFIVrlc9drgzJpHJMsv6QxchPlKAamsbBMDGHyMtp4DR65hCZ5pkYPfe7nptNR+O2RExJMrKQMkthTVuZo5UWh3LJIEqnVOnP74HVOTgXN9LFeI5RoF61eLU+pxUGrJQqvCB74VtSXydJteGsZvXz3a7v7/X2JUHedZL/+7b13HX9uUkbPIYpJPzBM+oMbYbGsqPjMU9YAnq/YTxG2hBRKhGPL7TNlvut46t+x+nlE7MPqCKiIuO3QO9yFV5JF/HIa+fgs6D7qqjw2rm4Prb1vHQNh7zukrz23et55yIhuxqP1wnQ9TlfCj2rJGs9r13Dt+Tv58I1SiRcrXP44BcLhFpKVAqJo4pqYBY8SYl5M0npQhxfn/PVOpbzEr9en7vfNTavz/Fn69lynepzGWc1fdfiXEeIiagy2mmchgZwCXLIpCSHadBMY8aTCDYRtg2N2aDNDmV7UhqJDKBb5iDzmGnA9IaoPcHPWDvQdDe024aoM8dhYPLzF4PXvlxdKiaqaYcuBO6sDVqLbq4suGvcscJqUcVQ+mzspJbKSqHhpIRWgqFNUcziYojFWA/G6AlRsK+ta2g2W4xr2Ox25CxeCG3TsNluUUrx/PzM999/z9/8zd/ww/cfOL4cSDGy39/SbzrapuHl+bksRKsKlxboUdJi1BZjwifxkZh9YByGi4Gw2WyWBbtpOpwr2GEljughyfuzFlHIjChNyfcWOA/F+dkKdMiUgesaS9t23N7e8ubNGwQ1UHgluWTlRjoAVtlVBr4emLH8nXPwFoQMFLyHnLBa07cNYxR4W5g91jnpPFiDMZbN8wuzDwyTJxcstVaS1eacGb1nmGeBHHQ9+92er7/5htu7O/rNlilmmn6DLvj1BCWJi2Rt6XZ79vsd3e6Gl5dnXg5HfvjwkeeiXiWBDIyTZx5nptPEPHrClMgBVFJiZpMlATbaobJgKnNS5AipkKYOLwOH7QkFdK1IzMacGKahdMDEFVgmMI3WzeLr4v1cgshzFbBp3DKxVGNFrTX9pme/32OtXdzba0LRtu0y6cQYz1VYLhcCYwz7/Z7GNefKy0+ovv1ctnUAH0rH53dJba7Pw7pKrleQnPV2TXJeE+krpOQSyx8vFs413Ok6cKnJkNaa7Xa7JITe+wXqtv5/5WO8tqBcEyfrdl2FvO5Q1MeaW7LmJ6wDh8pdWC/mNWmxVgQpZE4q3kRFXUupSw+X9eeuz2n1pIAzl2Md0Fx0YDhXKC+eU6oEE3nZ1/o6iYsvuxLOyjVMORNSWCknrQKjEpI1xpG1FGZGNzH7QIgB5aUL4VxHt9mxu9tz8EEM+pTj5TRzHD7y3Q+P/PDDR755d8+7hzuU/prNdkPXlC5Il5YuQt93y9haKsNF2U+aHa+P1dc6VNI1z4R5IswT0c8XY6NegzoOqhlk7apdj4HfV/n/0/bj2/X9KNdJkbRl0JZjDhxP8ETEdxHXRuLziMLTdpbtX7zncfxIeIFpnFBPLxh3z87e8L/ePTCOA8yBY4KgNMlostIQYimf1R35n3cOft92Pb6uixTXBZP1mK9z0zqJAVkr9YrfdN1duZ5TZZ1gUT015b7MVmIBlWp5ep2uSffRyM6J6IsCsi9F6NWcpYoyXC4Qd3XJW7tOvtYFqZzPXZHrufX15ETJ9ynonGPfb9l0PUOY8cGQSDgNDoX2EIwV/obNZNNBsmharLolhJ4htRjtyMryPCZexkhGM+aINxndgvOfUDFjbOL2bebrN3vubh2Pn37D3//9M7/9dlz8fX7f9sVJRl00F0x66TrAahDlszQk+YyXNtrgVpjnKk8JIke6YJerWk8uHA9E/tbHIOQdSU0X9RNrNNo5TNtg20aCdWPQzjLHQNtv+PThIx8/fmQOsgCO0yRVnzqsSmXHWoc1dhkMMSaGOTD7AD5cYKzXgaW1jtuul5b6LM6y3ifRMrYNylpihjlEUqhyaGCsJmGqOGFx2FWosnC2rZCjt/22ONpWrCPnLoy2WHNOMsq9IZeHvMBOzhCUldRl8R5x1orMbBSp3eF0AjJt04DSdH3PJgR8FLyxwD7CQqR0WtN1PfdvHtjvb7i9vWW326ONIStFjqIrr5SQp8V1Vm6ytuvYbLe0bccwDDw9PfHy8sLhdALOQdU4TgzjxHgamE4D8yjme7l0qmJMZMSQCyOVn+p0nOuYJDPNE5OfYeHpFCnLVeDZNA0xygTXti3WNMskIRNgJuewBEFK6aXrkHPGe48pxNoQAs/Pz8zzvJCK1xNhjHGBR9XJpo6tyhlwzhJ9wF9Jh/5cN1OqTGTENTpLAhyCGH0ulaxcp//LFriM71rdUxcLVZUihbKQ1QcslTBKcOCaRh6VmF8XAC4NA2MIpbt5NrlTuvrfyBhwjbsIhmslfb2orJOE+pqaCKyrWevgZR2AXycZ60Vr/dyavF5ftw6K1ov2uvItSUY5V0YRgyeleLHor304rj9//TrgIphdBwxa60XZ6fqYFwhPOR/re0YWZrn2WosPSL3uKcncsj6mGpwrZdEqLUairKCyOYviU4iREIUPSOWS2UbEL7TFunKv+sinpwFrLClB1zqs0ey3PZu+JSdwyuJcS9dtVteiJkmVpxeXzsO6AyGckXINkhTcRJ1K7pfagQbOr7saJ9d8nXWwcobF/SnJ+Odur507VTpmQWsmYxit4RQiaoykMDM+ZVKTwWTm6YXdmx5lPB//8QO/6ntMmlDTia9dx3vbMpiJIUwCryqjvsksKIU/RvHh17pC18WQ+rfXAun1a18bu8YYyOck47qAUeeQi6QaRSaWLiNUmdJl/iou2mtaRX1nhchoJUVV4Y+VYlDhEFtrCoxJofLn4hzXScZ6njSrefzH7sdzIQggYQ04o2m0RpHIKpF0xDMjO6dIQTPOFp8yU4YJUfnUyqJsQ9INc1K8+EBMnpdx5uQnshXhCnIkJc8mDuyM5qY1/OuvHrhrLPjI82FimCOzP4uY/L7tyyVsQ7gIZnUJeOW/q4msXMTrIF7MiM5EX8lK83Lhgg+LNJ9CoawqXQ9RPIkpQrisZBoligBZKcHeGUXTteyN5ivvJQBshUdweD4we0+aJ1rrOAMeBWpljVkq07UjE9DYeUZrIREuXYiUmecZnYx0PYqUq3RxJBgUaJkBZYo7YoAoiVF9pJxIORITS9JSZTTbpqFtO9q2K1KLSKINKHRZkHTBT18PyEyqMLScS4dIFrgqzZqTSK8qxM8jJyVOo+NEVURpmg7rGrp+Qyiyr9M0kTILJ8Q5x+3NHV998zX7mxtub25RWjPNM5P30sEJEYqV0DzPcjxac3vXC3fBGp6fnzkejxxPpxKUm8I/kUBvnmbGcVr4NsIryUBa+EAqxXNQqShKUAkVMyorbPACf1PFKDElQkoLuV+pYvylxQtDAi9TpHDPlYaUJUk7K/ic4VYppQL7kqT2dDotHYuaSKwD0rVcak1kamAlk8/5tT9W3f85beuqVcqZGEWM4bqac55yz9Ca2qJeP8yqi7EE4MtbP2/hZ5BEviQYxhY+UU1CYPHUgHPykeq1MabMfZIomwJNqcH09WO9oK6r2tekx/Muf45VXh/bejGtx1XP65rwfb141/ct5/4zyJgunQzk5inQgXVCsw7i6zhdd37q8a4ThvredaCbUoKKO8/njoPWWroY5dilk7GGH6iy8F9yS1K+VCK7TDIolcbXYAlFnjolQpWXzTJva+vQSRNRaNcQ80wMidMYeHoZUEDfOVrn8D4QU6KxGqnNmMUjQ5uaNJxlgcVp3C/JxjLKlVrOiaxzAvnSSjoZ62O8TjbXY+C6e7feroOfP21/iE3mnGQU0RlC75jGmcZnXIjMR4/WBhM14/GZu9t3pBA46CPatZg8o2fDm27Lu6bj2U58HyZJnKXaAikvhnB/jEnG9fa7xtf1mLye715LNGScX3ZHrue51+bUfPVv9UXUU7teX5Y0Y0n69dJBoUKmyhyktUZnvSQZy9p1VdBZJ1bL8evL5L/+/fpx3q+MUWBVRudE8DMhyyMSpFiRDCloZuWYgSlnZjWJuJLSYC0YR0jCNUZFpiSQdDQimJTAJE+fFHfK8M5q/tXthl5pBu85jZE5gI/5i712vhwuFRI5BiFCh1VlavGHlYCo61pAlHeqd0DTNGz6vnxOLJXbSxOpXCBKIUiSobURRYBV52S9ANWbbY6RNE8EMoOfluD3/t1btjd7vvrlN9w+3PF3/7+/5eOHjzx+fCR4j1GiPNXp2oSUh1LFK0FpNq0lxYAiY60sbL4o36QMKSR8mPnw8ZNUrqN4XlgrnArXtugsxnfkjFUK13SYxtI4R9aKkCMxzGQytiwSjWvYbLYi6dp1TJMHLcRmjQRWtnSHpPsCpURHqbGWQZcXmJSA9MRcLgVJ6ryfxeSuJB05Z07DQEjCKdlsFMY5tsbQtD3TNHEaBuw4stls2W53bLZb7h8euLm9K4G05jQMTD4yFbLy7GcyEjSI8aCQzO9ubmmdSPM+PT5yeHlhniY00JYqYEqJ6GfmcWAeTozTgI9zcSOU0eBTEIlZn7BlYU45CWKsdHEAVGuZVMTrTFaROc0cp4HjMGBtUappGtI0kRFIV4pF1KBMUZnCG0qpqElJMjQf5pJoZGzTLHyNeZ4vlIuOx+MFtGUND6pGblVpKoRAsGHBe/5LSDKkCixiCpUMXYnxCxyndBwkX153MtTCu6hB7tpjZNnyxXKy3N01ibiGlOR8JjUrfSaC165rTJeVYji3xZuiAlc/40w6Pl+zmmDU947jeBEcrrd1tet6EXoNLrX+/AqVuv7s195X97MGpmu4FGhyLhjEcqx1nNYq4jqYrZ+7FjeoMs4XLuQ1cYuxCIec1abqY/Z+gQc658gUSemSZGh97ryoAq8KoYyfcp+bJekURT1RmM0CxS1rTEw1oJBEI0ZRg/IxkRFOhYqKMEfpaliFSmIQ+HKay3iJ+DnwcLfn/Zs77m62aONwbSZjUMaehU+Mo87LSuni+xOoUt8aikJhwYaX+8CURLrKZq87SXUuWJ/fWsy4TjDq39YFjD9tP327rtLXv2USunOYvUHdWcJvB/IExgM+snUd1ln+yz/9hv3DBnWbye9Ap4gOI8pH3rotf7G9JSjNfwsnUpwJtbBSx0hW+B9RNPpj2T7v9HwOn1oXlNad3B+DDJ0TjfNrf+w7zh1CmQNjToRcOtJFQbQm9aXFIcWIrClgqqVrhAKvjRTYSyGYstzEKIacGrN0Fq+7E9fJ0roQVtf16qtUt3oOFmRDhdGbgIoePxwZfviWg/GM8UTWiZgzMYKfFUF1zEYxqcRsJ0yBcWfn0E2Hzwk/epxTONvRpZ45BcLJY1LGqMwbB7/E8kul+fOcGKfAnCN+VvhoRJ0uftk4/OIkY62utMBtpKZeMmyNNuCsI9pIUkmUeHQ9saU6WC6qsVYW8Bjws5AiqzLS+WSz4HNr4LCuomEMPgt8KoWAbuwiids4R9dYXNeCEjL120+PPH565PnTMymIN4UEMecLauuxKC3EmQKhMSX4rxKuMYocXYyRl8OBWCuhWeRWdUxoH4X8R0YDTmWUSqQsCk4+hrMql2Kpmi9mdQW/X4paxTDFSIk+syR4teK4zsTrCZSKcVpkXVMJzlWpFtdOhtYOW26sFBPjNKPNJEZV2tL3Lc61Il/mGm72t/SbLV3f0bQ9ISR8mIhRFKZilqx4mmemeSoVuR7IOGPp2pZN3wkX4nRiOp5QKdEYTWMamupBMM/4YSTNMzlIwqf0GTohE7C4dGeVCTlAIden0rWRIDFxZ++xrSMRiTnjo2ecR07DibZxOGsJURSeQgxFDvVcoTBGgjhlDBDP7tEpSoemuLqvg7/NZkPbtkuAtSb/rgm4KaXltRXHX6szy4TI55Prz22z1i7nYJ1krPH+UEc1kmzk89/gTEauwez6HH4WuCu1GPvVIKveYzWZqGThun9rVbALeORKzjWVzqBrGrbb7eLOLgT9S5hA7ZDVBeh0Ol0E17Kb6rNH/TtcVu6uk4wa8Nfge72Av9a2XydV9TvO8IOMypGwCgquXaLX33UdvNbPW/9/3b2rY1oKOXx2btc+Itba0ikOy/XX6+tQvtv7eYG0nTscsu+Nc1ijUCpzPB6W+Uj8KgyqqPXFFJnmyDh5phBAW1JOHE4Dm53INrbGkt2MSp7RB377/TPHw8Tj4wvD8cDp3QMhCuSu325BmyIUIfw5iVkyKhTFvCTJTS4BDPXBWQRl6WRoiDFQfT8q/6del3rcFc68Hu/r636+Lf6UZPxztvU5XOaagh5wvcXdtOS3Dv9Bg4cWTde2BA1ORb6+cWQO0Dk2/2rH03985CZ1bM2ebvL8crvHdy3/X3/gNwdPSKVT6BMqSbKMeXXXZP/+ux79j2+vjaffNcZeS0TW2zrhWJ67Skiu57R1V7dQuQl6lqZFzmRigUsVue5SiK8xZwbIRb7bSIJhjMEkI0VuohS9NcQcCPOMj1G6pPoykbpeh9bFAemIS4FkXSy4nv8Ful05vDOKQJxnxvDMy9Ez9opkI9utIzwPvMye704e2hbvNN5CTBMuO2KcUWFgtj0eCDpziiPRip9dmCc0CZcVu2T4pWv4JnvuTy+c/vZvOb654dg6VGo4nk74kHD2yxTqvjzJ0HoZweJNkktMWw3xZOK8OFkoSJCjVNSrzrBCiUKSjigg6ijGVvpszFIvespn7odSrCZiVdynAzFpslY0WUzztAaMFt6AUvTbDfdvHkQWdrOlb3v85Ik+MA0jfppJUQI7bR3GlKpbPFeIjCmysdaC1ngfyT4QM4QgsKBc2vlBdGIhZJQWPLBWmZAjWudSWS/ylzmVJEgXF3S7EIQXM60aXmWWqkaJwFY3WLlONSgpWksV4rbAN2pVVmmM0mKwpyvEQhOSBM05STKVs8JaUE6gItY4nEsFCiYLpXR3UoG/JPzKxGYaR3yYpXphDSpnjFG0jcUoGOeZaRykuwQF/iLpUwyROM3iLu49OQZxIJdDXzD6dWjK+nyGhFUoTipJhrMirStwslTkRwW6YI1UyGOKzF4MHwUaUySBtUJzhjPVikoqHaMYw6tVaOfEwbwG1WuoTIVK1TF/TYKDosTBuRX8pS3KP9btNUjRuvK/dDLqWIelzV1Vea7b0TIVXbWYy3PrbukSHNeAnxLgrRas+rkpC1Z/nucleKv8jfo9bXe+R9fbddepJgE1wK4B4rrDsA70rzsXF3PiqkOyrpitX1vH37pTUeGqVeWqJj6VT1Q3Vc5dPbWVsL72B1kfo7xcLcnVdZW9Hkd9/aLwJR/y2XlTWqPLGKiJ3Dp4WOCEV+f5OvioEDDnLFoJXCkVg74Y5HONtajiN+R9wIdILOahWifQ0rEOIRVhB40yluoaHkLgpMBZRdvI/B+jSN8qY3nz8MB2u2G33WKMAyVzk3RMVh5M2ixrVYhn5T9jLbrAYaVLJNXZVOabXApkehXgnBPMcoyV0wEX5+h/Xjj6P2a7HoPX22vPrTtArwW9192LqxdgDGirmFvLycKgwauE0SISoZPidteTOkNsNNnAMzMuOzY5o/1MT8uN1dxvNmzCvsQ3iRQHQSYshcQVxEetfuZ1obF2Jr/sfP1znqvP/77XrAPp39et+B2fwuJ6rs5nodpDK6q3T0kilCIRlvfKZ+uLOqxkIJffknLGrDoZNa4g105kuddKYVmRP9vv1/5fx5AkPLkYQFfoq1rFAaqgeTRJZRRFiEYZdIrYOOCyxxsRGtKtZsqZg498SpkcYHIaXxRgmzjjGJjCC8fsCFETcuIQEgc9MmpPyAlnhKJgrFAHKjTr+HTkWSkOfQeuI/hMjJmFmPt7ti9OMmyp7CzBQFH6SAm5wEqRTVFcSXnBKKSUCAQmJqyVRVohWt4qQ9Y1cDPlUasDZ05B3ZRShX9RqsULIROCSrR0wtMwqiak4jLuLLd39+x3ex4ePHf7G6ZhYhxGHj984vnxiXEYmCdPqnhfrUle5Em1ks6LdQoTE8pYjJkLAVThQwItKhA5UxarJDK9uSQQKqPCSEwT0+zwfsa60tY3ujjbSjW96zr6rqdxzUrGUC6oKXKIOdWKZJVGTUsSppRa8Jv13k/FO6KaOBljxNfBaJIqg8sY4hwLZjiS8khwSRSnYsYW+IJSRqrRaOaQmINwGOrCX7toKUWOLy8oDdZo5lIZcFrTN44cvECgDgdSmHFGEhljDMF74ixdDn86EWZJNIixJBqVMG/I+ixdmlLhaIRADKInXyeHvm3Ydp3AxnImx0CKgZQCIcr58sEzzhPBB6yzGG3l2pdOnrZl/wqZPKdc4BelomxM4eikpRq7ri7XCaeSvuEcPNVgtgaIOYs/RkJIn1W+8ue8zfO8VPzP7WDZcuE2iQN7IfutFwF1KecKQh5ffi+CDjL+FTFn5uAXmeGu62ialrZrBe8cqtKHKJDUezErCerGaeQ4nETlq23o+p7T6SiBYE7c3N5grVkSkXUgHZcAUl8E8tUDJWcxZlwnIOvfa9JRH+sAfR1cL8pQqwS1dkdCCAs0bLfbcTqJ9PfxeFwSjLoPItMtpMZawEgpcSocqdrWr+e+Xr963OM4XnSY1klQ7f6suyEpChdq3YVaJzEqC+8tlW72+l7SWstcVt4nuGmBDNTExxhD17U0zhCDJ0Qv92mIS/LSuQa0YJSHYWaaPTFlunbDGGaMjhhjmeaAyYh4SdakLJGH0oqsMpP3PD4fORxGPnx8ZLfreHo58Jd/8Re8f/+OfrPDNi05JXyaGOeZYZwJweOspmtcqbYmpmlcTPi2m02ZOwLDMJT1MBGCJ0bpztckUs5hZBxPZU1YyaGvuC216FIhpD/H7Q/Vzf0stlj9/7VEoybt15tCHAtMFjLuURuSUzib2PmIzRk/RXRrubt9wN/1jCbxdJp4MqV6rAzbacKNmo3TfLXZ8oYWZs9xGgnBo7UXMQLlyhcLhiqTpKu3pCASl0hNt0rL/Ph5u4Y9fnZ8V0nElyQV1+d1vfat54b1637XlnOWGEpejFGKanEGUsjOReChbep8aBbD5sWYpxSpU04oZZYu+VmIovB7Aa1ViaNr4Uu6pla74qGhy/mXzzPq0tX8tW1xDyeis0YrVzr7cq+CIkZJWJ01xLDiiWlHnxM34USfMp9Cy+AcmIYj0plJIZHDxHGEQYF24PyEy4GOwHSaSMYRtWEMgWc8g5nxOaOdIWtLai2hbZjRDNEwHo78MB85biLx7YboISVF4vN74bXtJ8GlVM0Zcyqt7stBkGNiGqeFvI1hWaC00sXsqEBOFEXVI0pXIEul8rxAnZOXCovJklKWSrvgpSUjVKSgGOZJ2lZWo5MmBVGsmudJuAzWsm0abrY74hyYx4nvt1u+axqeH595fHykypjVQUblN5DL/mmcKoFnE7BtRDeNLIYJfIwkZgl+YuGRxChnzntCmBiMZhwGdjfiErzpREmqwj82mw23t3u22w1aKdqmIRVyeNO4sn+SxcUQF/ND68wSiJHTkrxVAnVN+rRSOGOJq9a65CeKGCIhxKWyNwxCBLfW0fbdgpH24SRus1q6L86JLrwu2bUsZIFpOLHZtOSUGV5e2Gw2uO2G3lmOT088P37icDiQg8fYVngpxjAeD0zHA8PzE+PLM/PpiJ9nwhwJPi7H2TYNOteEQ7pIOSZUTKgYpcqnNT5G9v2G280GfFigWDlIwBii6HiMxacipoS2hqZAa2rrUhsJLipJqkxBoJQkY03DPIezkV4W7f46+fR9v2DcX15e2O12CzdgHaTJ58wisZkzs58XWOHPebtOMpaK/6pokEvgmFVeIGnXUCFgVdlbVWmhFPAuJQOVEr5NDaqvF7tqLKlKkF+TwJokNG27tM60kY5m1/WkFAl+XhKH6zb/OnEECc5rsF73pR7fdQK1VgpadwjWsLBrfsR1F6U+XxPdaRLxhNvbW7kXV2pUdQEOxTHbe7/AwGrno3ZKrgMu7/0lGXsFF3htv1GFg7BKrKDMXUpBTapKKbFeh6roJpDVszKcNmZRF1s4JsaQ81nxq/o55QLZdVaSDCIFuivy5cpIQck2GesmhjnIvZ4yOiVyFZJAo7QhAoMPzMORx2doPloOx5nTGPjw+MIweb75+iua0lWZQyKUYoxFCXejdFtAoYpBqWscMUXGaRRIbgql0JfIWZWCnCoJylk+viZydfyt55dr355/adu6Kl5//r5g9nd2KK62dQW+/tRKYRSE8chwCDyOG5pfvmE+eA4fPZvjgMXADM+fTrz/t++xbebD/D3f9w3mZOhC4kEn9PDMNjv+6vYNzzfv+TbA9+PA08f/gzR+IMwnCIoaHefSwajJREZJ4JsVOdZS3DnJWM8jr3UTXjtH1899SZK3FoS4/o46P1WoZ92X2vH8fd0MENuDYlEohcQUF5Ph6EXURZsIWRfOhPjVZAVRCerCIkl7yqoE/KYolhpiCigDbeuIODKaSOT5dCAV5IwuAkIGhSsx43pufPVYSoJR2cxyXSR2pMSYMWb87JlUIEaZV3e7Lb98c8PXYeTr4QXnJ/6hcfzWGH7tpaveG8t2iuSsCUoxKxjUSE6aHDU5RabpmckaRmd41IEUJZJ0usFrz2MMPB4f4fDCQ1bsM5ADg1HM7Yw/Jp4nz+gTPn9+L722/TTH77JVuEiJ+Vftpor1TaBEPSmkUORSSxankLZxLrr4MQiGP5aqc71pcnVslbaSorhi50L+yblIvtpifiRZZIhRyINlUcgxnd9TuBGNbTCtBLMP9w/4KUCC02mQ1yMJkDYatFQEhOBTYDlaYY1GGYOxMtHPIeKDHI+iSHUaQ1RngjLGFLPBTEhpCd6rz0bJtGiblr7b0DXt4vBdoydnjbQLNZDOC6csNFJTkWuklofRRRpxNSYkWZTzMs9zaZM5oamUhT0jkKWMXKMES/cmK1WIiJmYxqLII8GXK5VbpWSM2KLIM4aJVKrKCsRQcRiYxrFAx4qLPLmMi5l5GvHzRJxnwjQzzTN+judKb53EKj8jZlRkUZTSiGpOzomm8C5SgSTE+tOHMp4V4zAyzbNMBu1ZKec8GZ6DFsF6l+dL90sqx7XyHPD+EnLX9/2SgGit2Ww2dG27CBxoVfGYrlQs67FpCbi/sIL0x7qtE4zayahJxvKTc3u5Lj5LEF4+57WFqHYlyIgEaJZkBbPybTD6YqG8hhrVxaGS0TebzYWT9zoJLF9KhQutA7hXk6JV4F/H7/Xz64rfNeRo/RnXEKt196s+6nO5dAUqF2bNqagJkBy7TOjeB+aS0F534K6/vyYdv2t7LWhRlae3Sq6uA5jl/Klzp0fuw/P5WjogqwR9fdwhVe+VYhhb7iWtTJG5tkSkOyuSttL11cUQ1ViHCvK+VIQ0SKAz5LIGaCP3ZsoTKQiU6YePzyj9G46nsXjteG5v9my3PQKNsGCyBD6lZKSUdLSliyfJ1jzPjMPIMAxL11rGwufcnDN3JiznqF6/KiZR1+d/SUnGj1XWf0ql/J+75ZyLkmHCp0BSDZuu5d2+580YuNlP2PmZ4/MgSeIYIIDtHP12h+mOpFExpcScIklHVNR0KbIBdrph7hxzd8/gRzy+fnGhlOZlbS/DewnHvrTfc52Yvfbc/9Xtn/M518WV81b4uQt0jAXBASV2y+KFkXKSAH5R20wlT5H4VGDlAnMzZY1NBJrGstl2PDzccDw2hOiZ/MRxPJBSRClL33aElNAZTJaCb50T14n+a9CpUq+6OKbl9VRp/uL3Y4TbddvfcT+fuA8icvOcHWM0PE2Rh9xxrzJvbSJ4RYeiV5knIru2o8XR5oZRGyZrODnNfHoq0H7ojGHOGa8UM4pnL+vYKSU0iTHDrBLj8cCLT6QibPEl2xcnGdcLjNZr/OL6daXqjxBlRKK1uEtr0FGjdGHCl0XZBy/BbBasWs1bKrZUkdFaFDsqcRlVAgfnyiQvUKVQLrRKwl1QZZ9rtT9myCYvHIub2zum0RN85PsfPpKULNQ+JXRjUKa04orCkCyOBmM1Bk3VWoeZnCJzTigKD6Mom1Tp2Kyl1a4UIqPpRKa2a8U5OwRPTmCto++6xelcNN5FrrZxhlTwSDlV3XRZtHNJvhQUYzrhXVTMrsihlkQtF0I4ch1QGpMVWZWqq5ZqQMrSDfKlqqiNAWNwTUtKwjMYxql4EIiD+na7FcKjlcC7GjDWVr1owGfGYWAaJ+l2aYXPZ1xlyDIu5nkizp7ovahMFXNErTQuO4KP0jqt8LCIPLKMAW0koHCWEjRYFuWJcg6EU+GJOYsqlA/LQm5KJ2gdyNWOkLLVKIvFbFIrhXGWeRqJoQaruhi/ScKolJCR26K61m96mqZlnsYFylFlUSXpViijIWq+sHjwR7utE4wLNSkoVZ7z9lkisA4mVp2L64k8pQxKrq0uBo21g3rBP1hVz68D3VqRWhP31/yMruvOSQ18ppC1Tl7WgT+s1Y/OCU99rgbN1wtT/Zx11X/9HfU96yr1WtVsmqalC1b5JWuSu0CsZJ46G1D6i67IdfJ0nSStt9fgJhfHU+ali2tar/m6Wqz0IimszSUfat0xqhDQyj1ZrmNJMGKIpfNY9l/Xe7EQsgvUtXY0tLYYU9YXf+Y4pJBRKZdimS7dW+E9KKPJMRMSPL8MhBA5HE6MwwgZ3r1/y7u3b9hve1lDKhpQBjEoLbK3ZX0FEc4YxpFpHC8SqsoTq9dlLVJwTjZZYFEy57kF8ry0Yf+0/aTt1eIGxc+LRNaw3/a8/2rLfUzs72bSaDj9fSA8TeQpkKeE2Rl2uxu67hMYxRwjExGdEipFXPS0cWJjHMF2HNt7/OmZmRPksIqPfnxfaw34X+q2HNtSjChQqCppnxUxp5KMreD3pRJV40vQGKNK0VAKqLubnof7O7755j2Pj45pFujstz98i0eKAPv9ntkHcojkGAj+zEtbw5o/S5SWYsfnybHSFBGbRMpB+MFG4pjWbWgjNGpAxxOdtvRK0w+RW9fyBnivMx5oUbQ5oRm5dxt619Ppjsk6Jmc4GHgcT8xR1Px6NDpZQBOUYc4zhxiYCzR91DCFyDCNTAGscTTGfdF1+nIzvlG8IpRS9H0HyMLqU7jQqW8at7R05zCgbcZYjVLS5o55Js6TVAZT6WSEuZBgpbVXF0etFCFIVd4Y8dsIocKWBGucs8CmpmlCO4G2KFsgWeWCqhDkQqGwShNTEv5FTOz7PbvbW16OA48vR969eUNMiWE8kYrZSdaBUKTKjLI4q4mxaF8bi3NFITZmVAqk8YRCYa1bqgvJZMYE2lj6vuf9u3d89f49XdfirOHjDx+Y54nQyqLQNi1WW+ZxIoSZ/e6G3WZDqymJgefl+QW0wzUixxljICcFRtE6S5g1XokqSZCSuATAL0Gs4SdP128YJ8E+YyxKWXRW6KwIYSajCClxGk7yOiThuX94i7GmKC2VNmGO+CAeFyFKwnFzt+MwDqgMbdtBgjAF5uOEzkYgZimDNRxCoLGajW2gbQlaMUWB1OhUQGwKdC8dHqNE+cpkg0lSkbDJCLYci4+D8E2M4fbNA03Xo5yl6TsZk1YzzRPb7Z7j4chwOjIeR1oryd+239K6FhKMx1HGO4U0qw2bEmgKXjqSUiBFIa5qVf1HoHUGYwQCMowncQTuGvZ/9kvpiGjF7X7LySgOhwPTeGKz2ZCiyAxT+C5ibv7zXjZSiIupWC68FmCpxpnSL1TlbwJFqEISsi2TtSpjgnOTTiGShbEEgrZAbKpk7XWAvg7U4exdUmFN+/3+IvGoXIa2bYVAjSQAwzAwTdNZpa7MYZWzUPd73X2oz/1Y96Jur3VF1t2xa/hX/Z7agUkpMY5SUa/ds6ped8Zjy7GLet5UXj8tCUvOeelsrB3Fr4tPP7Z9lghm6QjUUHedyOSyQ3J8pWNpLfM0M+VpSQbqOZDPy6iSGMr+FdibFx6CL7K1sUjGZoQ7l4FxTgzjyPF04ng4chwTui3deq2xxi4qL1KFFHidswZnW6zVWKPod7dFdCIxjQPDnJgejxyHmckH3n/4xNdfPfEXf/YLdrsNbeukmFBw9eQoiY+RQlQIkmCcxhNz8FhjkIBoDcurZzChVEYbhcFw2dUSQvvZdex8L/1p+8NsCUgWbG9597Cn24BrNM1bx2635RAHnucDcZiYX2a62xvev3/Lb3bfw9PIiOdIw9ZojIJmOrLLT3inSDg29p6pOeGbjPffAmfYn9x3q7lhVbe5fObnsf0Y1O13bet5DygiOgbmVIzyiteF0lAQFsrkcktEQppxjWaz6Xj46j1//dd/xZu3D9zf3fAf/t//O8N4ojs53N8bGue4e3jD/+P/+b/x+PTM0+MjHz/8IEUofZYpv4a/njcNyiCoE1X+SWk9pYCgdzLKJpSBoGaew4n/8OF7vvMD74cnmuMLT33i0HRMXctLCDQx0seEwYn3GokNma1S9NbQdC3dds+BzBhnnHXFBFeSpDYZbHbYpOiTReOBmRMjU4aq8bd1Tor4w/RF1+YndDIqmkcWrFR0xkXBQ3Z2mqZSjawnLILKS2Vmfb61oVSpDChbXl8zc6kNgKZtXZFyrc6poSyoRU7RSFUqw4VRVgiByiJZKjy5qNZGqaRZYyUIcQ2uadlst9ze3pPJdFPH8/hEazpsaxnLCVVa2uOZREwBPwlu2c/SjWmcIfftYoAXQlmklVS7bePo+w39ZoNSspB5f9Zt18rIoefCCwH8PDONJ6yRwD96cSI/DBO22aBQtI2ja5pC3IzMcyptvbNUZg1EjHW4AvfQVtNNsyzSxpJSUUkpVVpJBMW1W5JF2S8xMhP4ly+qO6F0PlISAmlKkeMwkFPEKo1xCpctwUemaWYuZn3GOKLRzIgWfBxHjuPAEAIBhXIWvIFoSMaALRr02qGUkwp/UuQgVYuEQVlNoyBbhWkN3XYnj36Dto5xPDGcTpxOA846Npst1jZsNjucszTlOimti6eIVIHXLsRrXPzabNL7M4a9BmO10ljJsjVJFhiEqBhdOxZXGFZIGeMMrekWhaOf6/ZqEC1h21K9BelA1gr1OcFYYQGu5m6lpHNZORrkDCvDyDX5en2Oa6AO54pw5dBUnlSFoawThHr96y6vOSavdRjWXYxlf1eB9+/DR6+7K7WjUff9eiGrz1W+R8Xqp5SWBKmOzfWxhBCFj+FFca0mTHWrcLGL4H6FQV7v+3Wg8Br04frnkmCw7tKcye9TKPCtogxVjRhF/ENdfFbdhCu3MtpTFeIox+1jENnaqXKeAtMUUHliTlWKsnZKU0l+DNpIx1nI16X4YZtC2k7YJgnXMCWGOfD9x0d8FL15oxVvHu64vdnz5s1dgXwWtTOkk5LIzLOQ1VOSwo50MLiAUpTBXvhENcEwS0e0OoQLBDmXY2Hpgvxp++dv68p0VopIxKeJYTowZuFpJAvufo/fK0IL44tnfJlopsxtt2Ozazg1Ayc18ughzRmTFSpbbpqOSItnQw6GmBpSbtHaFM+fhaLMzy+V+PLtS5KNNbR2SbBBvC+SIkWxDEhR5PtNlhjHKI3Tlvv7G96/e8ebNw/84s+/4uHhDms04+mZcXyBLMVCUmTT7Xj/9i3/7t/93/n08YlPnz7x/XffMU/zot4Hl4aZn0FB65xykfAXnwJdemNKuM+RQAgnwvDMGEY+zUe2KnLEM2MIbYOeBqZ5Zg6JDsdEZs4ZpzzH4cDJz8TTCT8cOGnFM4mJSJAqGdo53vZv2ZgtneqJ8cQUT4zxxEf/yHM8AR6VMn/5i6+wAcLhv0OSUX+KZGksVbR2IRVKJcyXFrAkGlpchqTqqHNBf6gC51FU5dtMCcRiqb4g1eCmcXRdWwLytCyWFbKlTbGa5xyM5BrMKVU4oELWI4saFkkVHWTBBaui7rTb7bm9u0dpRT9vUEeNjzMhzkCFvDica/FzYBwnxtOI0Zo5CaRKKVFSClmqZzlVid+C5W5b2k6cvJXWhReRzgtAwf6uW2o1OPXzLJAvHxaHdKWl2j1PhUBZjlEhHYw13KFuupC1s5MuU9O2QnjUoppkUsJEXSAnZ88JnfPSmjRGOC1Zi1JYTGKwVVWvUio3iJ/l71oTjSOSpVo6TUxeukmomihGfIqEOXGcRsbgJXs2Downm0iO1bnSooxFIYoMIlJbqpSqjDntBGvZOLrNhrbrcW0riUMQ3HnwAeeqAotwJur/hewtlckL/Hd5/1rWs2maJeCq1d5rGMg6OLwOAtdJRn39GeIm6l3OKVTz804y4Fy7WX5fBfxLcPpqdTxfvH9574LLlSpzjb2WRK1g+eEKYnPFw6hwo6oA1bYtcBVILyo9cm8nLYWMOv/VSvo6yVjjc+t3/S7883WSUeeAdZJx/fw1tGytNlXnj3o+aodjfb7ruPUhkNLZF2O9QK4TnNohqY/Xkol6vl/7+0KeqVc2n6FnrM6DVmqBSy1cglwWcC28hRjjRXIinyefLx3WIsCRATRaS4eCTBEGEc6EcOqEW5fzjM/FGXfVJ1vWHV0MY9WKtG6UwG1JaNtgKRydGDgcR1JS+JDpe7ecy9u7G0lUFCh0mT9FNMN7fya2L0T2DCmVNfZ8DivXaH2t5Lpfk/Dr419uUPo/YruunIPAM30MjH5kQqNJRJ3Zdz2hh9hp5qfMOHi2U8RpR7e1DB1MZubgwcZEozLKGFr7QpcamrRBZUPOlowTqF+FVa47GNc/1/fUz2z7DEZU7+vy/7z8rfYAKHGElsrCsj6svKhKbKkonY4sZqp91/PV1+/55S+/4e3bB959dQ85Mc8Tx5cn5mkQeKkBlRONNey2G75+/56+2bDdbOnalr/9279dPJDqPl/P5ecufI0/SzeKWsUvR6NSQZ4olNMkZ5gLNDtb0AX25K0i6syAx2ZPkyIziUAmknEqMwVPiJGBmSHODEYzaEW2FqJgNpV1PNze86a5517dcPCPPPtnnr3Fp0T0CpNGQvQ8bHqchzB/2ej68iQjgdYGVCaExDwHrJVqX9O0S8AlP8vEV8h9irV6yCVcYa2OEoIEzyGeuxRd37LdbdBKl8paXAhwTXNWENFFaaR2MWIMWKWXSqPKQMpF9U3IgykVkrjWtJuer775hl/+2Z9jnSUkz5wHPj1+5PH5Ea0/8ItvfsHd7R23N7c8Px/44fsf+O677zkejnz37XeFlCyBcwjy2QowukgNOsum37DdbdntdiXpESPBKtOIUovMImRp+0sZSro3WYymrLX02uEjjMPAOA7s9juRy9VVf1kcp0Uhxi8ESKA45p6r8AIjUCh16cewDjisYxXAnKuZ1lp8CCgVl0Ct9EFIs1xzRTFfRCrFL1k8MuacyEaJYVGcmaJnPA18fH5hHCfmLNXX5ENRE0qoxqGsQ5sGMCQlZHGvk6g+lSQjIgottu/Y3d3R73Y0bQdKyYRTEqJ5nhYMdnXcrkFYSvMypqZpWirAa1hM0zRLN2+eZ6bJLwv7ugJeuxDrKnQNaus9UavhMcYls48xop3F2HPg+3PerjsIQOG+lCp5+dsSHJXu6GvBt2LVIV2Ei86JsFkpDa0D9DVJuM5bMhYEutm2LdvtVuBT3pNiZLPZYLRZXkcW1+qUz6Rb4OJz1x2v9TX/feflPJeek5rK+4DLzsd6W5O6jTEL9CultNzrXdddJBmVLOx94UDFs3N5/Y56X9fvuHY3X3t8nCFY6uL9F/9/zbV4VcRYOiP6MmGpcCVjKnFbvi+Wysp1hyUUOfFcijZaFbK2bfBeSO6n08g4jHgvvjohRqZpwCdEQUW5UiQrHC2DQKSsFRW0XK6HNSIlqjSmsVgnCYaf5fOH6cDj85EQB47HI8M08u79uyJ9rUuxrQiieM80TeIvpQxt24koRorE/Pl98JoZXy3KXXNrru+9n/P2PzpZ+lFoYElYffAc48hBKYJONCQ6GoZNJtw4hg8Tx+PI9jihQ2J33/J8o5h7z3P0GCKbnOhTRk8JTRBOoHoQXp5tMKkhB0k2UYFqcIzSF/CoL3fJ+MOdmz/k9bjufmalS5yE/E7lUGioFgjGyN+1RlmHiVFk6JUBLYUiZw2btqE1htubG96+ecP/9u//He/fv2Wz6Zj8gX/4+3/g5fmJ0+G5oEi2wr8iYRQ4o9m2HebBstvvuLu75T/+x//I4+PjZ0WV17r3QlC+7ECJ0TBkFQU+qaG/aWh3G8zugY/pnnY8sJks73rNKTuOAR6fTxidUCaTIkxJ/NsE3WOZVGJMicc085wmZudITcPtwx0cR9Ic0Lbhqzfv+bP+Pd/kO34zOH47QJgDeu/Yqh1TGBgOT/R4XEpkvkxO/4uTjBTPgQBG4VVAZQnWlDJY29A0YdXGzUuwe1Yuudx+rMVez3vF1mqtC7HWkXK/VLNcY6nEa12SD3G3LtVgdSYEGiUwJ6MNfdOL/nCUUHiz2dK6HmtafvXNrzBGi1KE9rR9h2tbnG35t//2f+XNwxt2uz2n44nD84HHx0f+4R/+G95HxnHmdBwuGmCiUy4qJaZr2G43bLdb+r4Xn4QYBftbDrsGSLXbgBaOSiqBTYpiXKi0xVnLy/HAMIyM08ib8GbBWvd9t6rSplXQIIFx3/fkksTkLN2FEBPjOBcM9OW1Wy9kxhhpw1sr+1s6Sjqek8laZItIJ6mqflkDpMw8TgzTBM5iu0aCfDLJB47DxMeXgzh9hwimwTdOWnsGdCcOvMq0kDRRBaKO+AyZwqY0Cqyi2W3Y3d7w8NV7+t0e4xpygsY6Nv2GHDLHYUIXt/WqGrTAYVZByziOdJ2c17VUZJW4rRXnNUl8nuelKr7ZbC4q23AmDOecL7ohtbORCm/JRLsYKf5L2GqVuvzvR1+3dB1qZaoEehfvSFVVqkjaKoFOusaJH4854/ZTIdIbY9DWnCvaSXxtYk50fU/Xd7im4Xg6Arl42RSIYBaVoRQjKrJU2H+si7DuYK0N/dYL0XXBJa8STOCSKM9lB2Ptn1FJ3TWZqTwRpRRd19F1Z8jd+vuXBLlIkL8mxbgmpa//Biydu+u5fJ1g1OOs4g+1G7T+vPImVElk5hDQei7nU85fleTOKS2FpdplUkqVRH/idDrh5/ncXS0dRmsMbdMxTUdOw8Cnx088Pj9zGk5Ld3OcPD5rYhH5qONrKZvmXOZVGb2ZjHO9FMGyrIHONFgrUFxtLMHPhDDz6fEg12aeePv2Lb/6xVfc7DdsNx3KauEUTRPjOBNz4YVoeX8snRk4r581sVzzc35srPw4Tvznub12LNfcph97zY899/u2z4JGqaeRp0icI5POfEoj25jYGRjyxLwzxHdbXGh5nj3d0wH/cuLP/s0vCGlmDkf2x8ytytxouHPQenBqxOsX3qoH1HbLZlAcP37keBCFE6UMKctyd44h1ufn3LlaJwGvBr4/cg5/LFhed4SvO/Dr9/2U83qRVFw96hZjwrnSxcgUoYaz8M92u5M5LSZ2257NZsOmFxVH58Q/5/72htvdljf3d7x/94avv/qKtnEoEpPPDMMLIUxsNh3PrVl4U03r5H6PgeBnUa8s68n79+/Z7/c8Pz/zm9/85jN47gU8VLHEiVrrIoaTsNrgs6xVtoHbh1tuH+7Z3r/j4XRHO79wE3v+b798YIiGD08n/l//+3/gV2933OrEPkbm08zh4JlOEYcmG0u2ijZlbAJ0g9ItbdDkoAhzJk0TYZjwemQwJz7MTzyqE6dNQL1vMCqix5lpmvn7H/4JPSTM6Q/cyVhCYGUwJmO0eF0ssn5ZOh1yHiWYrZja4mP22aBdLzw1mF3DDOQiCRlGIa1pazSpBAbnwVi0w8v3UlpPKSN4s1zwqsXPoe83+Dng5yCVvXaLQmNdKwNUg42SZHTthq490feem9s7bm/vy4Dt2e9uuL2753g8sdlscU0jlVNj0VpkUW0xczO2QKXalsY1kqwt+342mbmsShlyQhSRqhSj97RNh3XCUQmhSL36eXUjyjk4QyGuHYhN4VfIOWxbCZAzQaq/SS+LseyLXRI+swqga+WxJoHGrKrDiyFiJJGJWaB0AXFSj1k8E7QCFa0EUSUZmbxnmD0+inO41ZpoRGrynGQ0KNNA0QJPqjquF+8OZ3CdY7vfsru7YXd3h2tbKEGO0Zau6dA7XUxlzud9ja1fRv/V5Lcez+u/XWPl60RTP+MatrOGwKwXgJrEpFK5PePmf95mfDVoXo53madWCktKSau/nld1rvKr2kGr574UFijVZCnqFXNPYxffC7kjyvyjryrkBepQu4lt3+KaZnl95XrVyjkFAlnvgYUftqrkrxeVz+c5fRHAr39e8ziWc3JVib7+jteeW0vq1gTnLAP7+cJ97k5cqta8FnBc3xsXULfrotHVJmNZuoM5XcE563trFyVD0pXI3i4Bdb2mS9X2CspWk6ZQu4QFVqGKWId1lhgT8zRxOp4YhwFfOBA1KckpkahcDEkmSUk6p0mSoMK4I5GxmcWgS8lOyQFk0dRXKaKSxofI8TTy+PTCd99/z27bY4ym6zpaV1y+lV6uRZ1nF3W+TJF1vzz31x2f14K064Dn57j9rgrx9d9+V5C7fu6nno/rJEWljA6QI8wZTjFiU6JNitM8MWmI2wbzdkP6ID5M4/HI7V/ecvvVjpenLfaHA72x7Izh1il0VJAMQ4rs/cRsLFk51LxnGsciSb0cjMQPsCTBcC5afmmw/1POw2fdyR9574999/V+rd//WrIilCiR/pfxXxMncalWSpFi4u7+HqUU0zRjXM9uu2W72bDb7rBW0/ctb9/cc7ffcnd7w8PdHV3folWZZ1XGOEubW7pSIDRGeDBaKxG48Z5xGNCuIUQxOX737t1iSlrjuHUhph5XvTIFoLJKCkuSVU6DbTTdpmOz7dltOrK3dLrhVnfc3e9wk6BBVJzp+h27vuG+UcyjR38YOXyaicfCU1W6rKMZXZQ3TYAmaUzWZB8I88zgTjyReZxfGNqZuFHYnRaubPToPqPmgCqqnF+y/YQkozL0FVo7UU7Kgv/3cyjzoEHrM3lbqdI6VwA1kDoPsOuf8mBVQTekFPF+JhmBswi5TS3JTEoikRtjYeUj8Jy8csJGiZSlLepT292W8TShmOm6npubO6x1bDYzjZVqMlGSGeekGtW2HZt+S7/Zyu+bXakWJn79T78uevqSRHRtR/BRFotc2tPW0nc9XdvRNK7cELHg/c8BrdZq4X5Ya8lJAtPgxSRvmqalLWjIxUtBzA/FrOpcRV0PbFmcJAkT8nId5FlUukB8KsoinnIu++EJoXBRrARtWp0x4sYIBMEYi82S0DTWgVEknZliFL+UnJhiplVG+DNRAmlrDCYm5mlmJjHPnmkOjCESEiilccYQG0dKolJm+g5jHNo4spc2ataGbFNJ6BxN17Lbb7jZb7m727O7v8e2LShNChFrDK7r6ZqOmNVCOjXGME3TEgyvidbXPIv1or6GllRoVIUrXFeCa1C5hpvItT8HamLEJwFPvZ4xJvz88zbjW0OAoFSBS4U4qRW2v56v8pp1gK5r0nCVpAFQZFGruohWtYuRLgIDtTrX688wxhQJZrcsdJXsv0DoEOGIGBM5Sbdp3Y24hqJcP7eGHa2DwGvPi7Uk6fX4ei3pXY6tPK4hXGvC9xp2JZ9f4Vjnjud1ErNOlK7n7fUx/66AZunQlKJJJSZfFJ60cC1qoE85xqb4Bllrl4ZCHT9q5X+ylnSNsdxziqVbaa3DFjW+cZo4Hg+M48A8hwKtUrVOJQloOR9ZMDEkIJKIRuZMSnlL1MQLjKsM3FzWvSpyorQhhcgwzmh94De/+Zab/RbnDDc3O7q2F66Z1gJhjcI2U0q8g8SoUkRE1uNh3TmrSda1VHRNZK8LKD+37cdih7r9vkTjtS7HdSL9k/cpgg4KFWCMiSFFmpTZRs3LaWRQmrBpaN0N+GeyUbw8P/Nu/467r2+Y5lte/BNd07B1jpvGsjEGExrmGf7bpxOT6kgYzO09z09PjONQulrVQLjy00qREWos++p5+l3n6Ke85ned3/r8awnE9f6sg/H1/uoyH+ik5N40uRS0y5g2RuYGY0gp8/79VyilOZ1OtP2O/W7Hdrvl9maPMYq+a3n/7k3pHvZs+h5FIpdYBQX9dkNuW/q2pf/wAzlngdYrgZD7MHM8HWj7LSFK8e8Xv/gFp9Np2f/qTXPdAUYttRRxHkeuYMxnCr/S4FpN1zd0m5a2dcw60RvFpmvo9g6vA9ZGUh6x/Z7+vuX2viVFoD+SzIHj8wFvEJVRpWUOSwrlM9YnTOnWjtEz+4mX8cAcT3wKT/gtsLewVfjDTLAT3V7ROwunSDq8Dvu93r44ydhubhZMvzEKazvIiZwjp9MEZTK2rgwWlctimVGqqmZUfHqtop8HXUqfB1xaqwWmUhcIU4jeMiiLNn2pPFknMrmgSHFVbQchODu7QAZUsXTf39ywv73FmAZnR4bDICRoJZ0NZcTtcRw8x+PAdjvRdRtMU8joceJ4PJFSpmt7vv66Z7vdMk8Tj58eORwOKK1xTcvD/T1tJwuln8RkKcZQ9lESrArzkGDZQlK0XUuu2fM00XY9NmcM8lxbIFK/+MUvSrBQSIMxMI4j0zSWoEImH2Ml8wcKH6BMSCWx0CWhCz5IUomBLIouqRATJblp5HwrxBfDSKepa3swikDiMExlsYykeaLVBqcMOq0Cjhh5/PSIbwxzimjbsLm9kyqhET8RW8iOrpFgSQz+DHGOhQQvwYFtJCHc7fe8eXNL3zj6xrK5uy1ViCx2han4iDSG3SYxeS+LeOkiVKf6un85Z25uborSmYytCm2pyUTdpOraLAHZ4XDAe1+kbs9Jw7U52pkHIpLMCUmy2raVynnOTOP4pbfsH+UWQjgHqlwFBqViy3rhL8+vA3VFqTilc0BZz6OoVGlc6b7V6vY6gFi3sWuyt04qb25uqI7faz+J9futs1LcCF4Cv6truN7W5PProBC4SCCuK9Jr2Ms6UVlLyK73qy5mNdCsXIw671XS99ptvSYXZzO3uMyx6wRa67Pr9qWJn744p+vtOrhYJwEh+MI5kGO2pYhRE0Ctz0Z18n6WiGmdJJ77t/liUbfWniu6StO4hrZpxYtCa8Zx5ng48fJyYBwngT7lui+GFCFESYjIWTDDMRCSGH15lSS5AcGBzwHbtoWkrYnF/ynMnuilK5uVAW0IIXE4TvzXv/0H2taRc2K327Dp21Kcs8QsHkY5RbSCaQoYDdqJpK8qlevr8VI9TtaKZyyvq5CpfxmcjD+KLUuIb4JFTYb5lBlPik4p5qzRumHQmdEogoU/+9e/hNPA3/3jP/Bu+BX7Nzv67hv+j7//LySniDYwa0ezbbjRiq+j4ZfxkWGAxwN8elZkZXBNV4qrvtwEqxk1Q9UrW9fK/0dvv6vT8RoqoP5e54haiDFlrZUChHjcVPlm5xy73U2xNEi8efOWrutRSrG/2YuaZ9+x3fRoLWJCt3c3dE2DUeJJATCFGe9nlHN888tfEaaJ4XRkjgE/S+zlvWe7F/VJkCJr0/Zsd3tSljW9do0r8mDdva9QR2oxJYkKHIAtQhLaaKzOuKZDWUtUionM0XjoM92t4cNu5nEe+MENzHeKj1uPubGYNw7XdJwaGW9Pv42M1uK1ZrCWYU5En1Ah8KZpwSSyMXg/4m0i6IANCddBs3WYncOngTuraG53fPPnX+PGCX84MTwfvmgMfHmSsd1zOLyI7GhSOGdAGXKWip4E+4Ema1LBpFqbzhWdLNWy9WItJ/5MNF6TDT+vKtTK7+qCpdLaR7ofTVuC3gwxVkfqREmEC9lQAsIQxfm0tr2MCYRZeAnGGNquIxDYbXfMtzPjacb7yDBM9JuAs5mYPMPxxHff/cA0Cvb+9vaWrutKC16cWl0jePybmxsyLEHkNE1LZQrEV+G6alsJrzmzYKxPx2M57lqdbOj6nrZ1SKybl8FdF5rlNF4EIwnvz9j/nJNAjVSFVVka50ixBNFakZIkL372WDMvgaAuhnU1AElalNicdaK64hVxErUUrSAnJb/HCDFhu5Zut2ffWO6s5k1O4CzKWrKuijzQNIbGFfWerIrsZr1RFa4V9/S2a+kai84RkyLJGHyK6JRptSHFWQIr5RelqxAlAF5PDHWs5ZwXUvhybgoPo25nKdRhGcfXJN/1+K6JzLqifkHwVQpj1TJhpRAukpmf45ZqJyOLwgfrhee1ivyq3b/8H6TzccE1YgkObUnQtXo9wbjuYKw7C7WDUR9rqdd15+m8EEo3o23bC3O7a/hSfW5dxav7Vl+/Ps510F4ThWs41vr9a4jeulhTk4J1F2Nd8a8L4QLbXAJRqa9VvlBNjtak9uv9vZ676+/nTuolj0O6UmeoT/XDqMFENVhN+dxt8bOX7l6Brqna5UsCm1tzpc6wMAm/rBVlnpQz4yjFoaEQvp21ZG0xzpC9Is6JSEaVbuI562IRoIgxEXP5fhThdMKljEstrnEyv/jAPM2EeSSnCCmis5zTqDKH48z3P3yibRt2uw1d48TAVdoixRwwYshSuFvBMUXemWUsyzrsl+527cDUHZfrcsmd+dP207bXqvbyJ0F5EC3KW9RsSTYxorCm4RRHhuBpe41qLNOU+P75hRA0usu0TrHdWNLkGefAQBZJdhtoVOB93/Op1TxaxTjpReEzhCiqg+qcYCw/c/6fmF58vv2uhOP6uXW3TSlV7AasdAq1xGeUoN0Yw8P9PV3XEWNkv79ht9/Rdx27mx1t24rEf9ugFFhn6ftOpKNLoTyEwPE0MJxEkGHTtgQ/8/JyWMyGU87EHNHW4BqLdQatRaBIW0uc/CK0s17LL7pkUCC9atVlyqtjp0CCpevpU2YKkTRNRCxeR0YdeAonjmlmVh5lFcmA15lJJ8Y885I9Lypx3PRM1hCtJTUt+TiTtYcpFuQKZKuIjcGbjCfgYsT14gdineU4Tqh5YmMVD8oR88ykFLgvK1R8cZLRtr1U7KNkfq5xGK1IGeY5lgEf0NoQU0AVKS5ZMKDyJl6r4F0rlaxbS5dt0EuSoPy/tIy1FjiPqgHp2qhILmQlG07zVNyYE+M0gTpiTVNs6DNNSTKI0rXYbGaa5hEfYmmpy3unceTp8ZnHxydilEDjzZs3S5Xv+VlUXLq2ZbPZsul70TIuikLBl+5CCbY0ZwLVshCoutBIsjCOY6myTvgI/Xa/wHPW77XW4v15AbfOlucr9lsRo8jcrs8nBSoAFNK8XgK3qmIfY0R5j3e+OFArXKOoMr3iIyJcAuccuti6eMQoTWdJMlLKxBBRVnw0uq7H7Tbobc+bvkN1Lapp8Fkwz1orWmdESq78E0UY4d9oZbBth7HiL0EMxGkkTQNBKULM2JzLGM1LcCUu4kKqvD6P66BuXYG+VnI5B4mXUKh1ALsObutr1lsN+pYqTgnmrDGLjsN1S/nntuUizywQFrXAYmrXcZ1UnOeK9VKZWfgX6RwoVxiVLfwnY8y5VVq2NXZ9HWQvkCKtcdYt167eR+uAP5b9rPj4hdhdgm8pDCBcA6SCLglGJXSz7JfwBOIC/Vn66Es35/KxYJG1dGvlfedxp8sxx9LlUUrMUa21uKbBWre4RWdYlJSCL91gZN/y8l3C05J7SwoJxtozN6VenVrFuZiry8JaYUdLslCrecUTSK0SykUStvgnlePLBYbp50DQCeODdBBKYUOOWWCz8+xLwUT2IybKuYCcFSEId2+eA88vB46nAT8HUW5TDRZL1DCmwgkjsrhjL3GRHFCK6ewnlBUxTyRlhB+mJFGIMRFSkTOP0pUwWTr9WsGYI58eX2gbx27bc3ezY9O1i/vwwnlUMpa0OvPfatItKIJKRK9r6Zr4fc6RlKrz2h9T+Pnz3mSYK3Iy5GQw3mK8Jc+JWWVOjeLkI2NIaGdJNjMReJ4nQtCQIpbEtjPkwTP5zKwttsjiOxN42yq+7xw/NK508fRqHrlUlTqP0z+O7bWkYv3c9f/X839dd5umwbad+GMpw83t7UVx5v7+nr7rSDlzc3vLzc2e/X7PdtfjnPBbnXUoVQrSzpFzXDw0pmnicDzy8vzM0/MLd7c3pOh5fjkwTLPEEwX6r42SNcbqC4uSdRexiri8Bs1jNb3XghvUdQlEZhvxLcsKHxJp9mSlRZ2TwCEk5iQiE6rgrbICT2KcRw7ec0wJv9sSjCFZi2o7cjyKkV70gjIyCrQmW03UmaASgYCzhtZZnLGcTjOND3RZs8uKU5n3zBdOIT9JwrYu6lDcralW7efg33vpaFQORjXhq6TsM7ykYoIvM77rrbp9n6thn0+YEmRbjKlBHPJdq4UvxoTHk9OJeQhyPBnGyePsia7tub99g3UO1zY0bYul5fnlyDxLlrsZJvb7RNdvGMaZf/qn3/C3//W/Mk4zTdfTtS2/+MUvyRmsbTidRl5ejuz2N9zd3tK4hnmahawaYsHVigzm7Gci0Di7qMGIQ3qUwf/ywuH5me9/+J7npxeBZ213/Pm/+ivuHx64u7vH+7kYjzn2+x1d1xaJYUfK58WnLjr1mlVyt1ae42ko1yUvXQ5JDoGkyKkG0CPaStdKoTFaiLFCypWEMuVE0zZkLQHcbE+FnwE6iv9G9l5Ghhtw44RqW1os3f4Wu9ui+p5DEJlhYxTOgM5+CV50LAFVVjIBuRallZDEw0QkkrLIIs9JkgyMJSeIIRGDL/wHkRHuuu6i6lsdn6sM5HWSvK621PFc1aFA4EG161GVq9adknVluUIc6vdYKwpiWhtUPhODf+6b4szjASRoJ5LVyoF7VamvQaYiSSKO/D/G4uwNoLRwcZoO4yyqwAElJ/mcTyDOzKVr5MOSCFhrOR6O0tVoGoyx50p6ZnmP956UBZMvnACDKnCfGAKREhRqg3HtkjDGUqFWiLdLzFq8XXJGZYMpvi+y1jjQSgomSpGVPT/quUGgNdo1GOcgZ0IoKnS2od1szmaErltgd1k55hiYZymc+Cj7krVU9JVWaDI5BER/QeQzlRWfmazq+NegNAlDUmJSmnIqCVBaABsRTcyZkBMxaWI2xJJAUJMOidZRSqqLiQplEynaWqtNOeNDNZkrHJUChZSiQ11bRG1Grr1hu4lQigsvhyN/9w+/4YePjzw+D7S7W1zbY3XDnANmSigVIceSFAtOGqXRhduWM6UjDiErUIlpnsTrJ8pCrbSh7XuM1oR5IswTMUyofA4KPz0OpPiRFDN92/D2zT03uw05l6CjfL+1DmdN4d2JjLgqx6lUlRy/6hTpSz+T+rfl3vvT9gfZYoaQFDkYutHRDRmlA4OK/OPHD/gh0aqO7XbD8+mF5/jC3GdOh8xWzVgG3t4YPn3IzFPGt8LtcS7R6JmuU5z2t0yh5+/T17y8PHJ8eeKjyiQ/8Flm8UecaLyWWMBl13MtVtG0LXd3d1JQdQ3GOL7++usL6Gc1Gb29veX+/p7dbst+v0ObJCbfSqTRta7V9yJhX+bD7z/8wLfffsvHj498+vjEze0NisQ8Hnk+Dtzd7Om6FtM4KcSojLYapbOYMoezWItzjr/+67/mn/7pn3h5efmMoxdzqo0Mck2q5ERARCS2tcG6HigGyUGgmUnBlCInH9FZobOCOdJgccpAzDx9fOL5KTPMDTd/9ucMWcRmM5rpGFFW0VpLG8XiIZQifdTgNUxGYTctrm2wCqanE7dOsXeOxmdOs1hNTFdF0h/bvnimeXp6ZBiGBVM9zzNKiQN3Fag3pspIVXxoISyqUsEkoXXGmLzCBEubF85wgWs4gEBhVtVlQ4FL1FEqS1mK8VyhC758pyxgKUV8ztJe1AljHEa7AttQuMaxvdkzDTOTn5g+ToQcGYYBUNzc3GKMYZ5mPv7wgWEYeHl+JqW04J33ux3ffPMLKrQmxsjT4yNdUSeIMa4gXJqubZcOwul4FPa+gsfHR07DCWuFC1FhG5vthvv7B6bZ8/Jy4LvvvmN/c8dmu6VthfRdIVDDoFawGyALPOrswyBdkaenJ4wRWMQwCIRAzjvS9stcJYDSEVLG1PIk1dhAl+q0EO9zSWxYyLeCSUxiwJhZXGx1VWEISXgg04QOoSQPmTFljFUka9BWi0FWSWwDmmSUBEHaEA1UPI11Fk2HM5omeJQPpJLc1kAXrRfyaD3GdXW7nkPv/eJRcQ4WWY3RdJEsVJhK0zTL51boWg12q2rFunu3huy0bStJr7Myvgvs5ee8aW2XRw10JFg+K4VorbBKbnJJJgIpq9Jlk+p4SLVsUSrgRgj/1jUoK1W+2nmruPXqsAoUCdqzMp4pFWKtNNM407QNvXGAJqVa6deLWds8BxIKjIGsUM6BkSp2AHwCpTIWRM2jSN1Ok1/dT6osTFI8cTbinOCQU4yMY1iMMCWYzhgbsSaWCr8slK5paHymaeR8TdNU5iWNcsj+5IhPc0kOMsNp4nQaRe51nohBEvEYEt5DXYtPHkLIGIN8UJAkgBJga50xOjPnsPBkloIQVTpWOiaVQxd8IgYptFQ+XYUhZWq3o3RZQiDEgPeheFJkgg+cxrHI1wom29jSxSnvyamY8MWELqqCu+1A9IFpmnl8eua//fYDh+PINEfMRmO0w9gG1xr0cUKpLIkWCV3GpcoalWs3KFIp4SBJSIgzOXoyCWe3NI3D2R5vLJPI1zDHgFa5FNAU3mdeDhPkj9zebEQMJCY2rSlJtXS6nXU4K7w3Ufmj8EHk/JFL8q5N6aLJfBwl5V1EJNZd2D9tf5gtK0k0o1fYk6afO1SfCSbjeosm0iaDnyf6XUMXN5injt/+4w/svoGHW02bZmxMjFPiww9HtHY0bcTZwE0beWg2vNtq7sYNm77huN1gjOLD9/8EsXIuy3hUa1n8/4tb/ZBXEpcv+2x58zm5OH+YiOKcBS+0NqXw49kXDmTfdbx9947bh7c0bYcxljdv3pQ1ViA9lSP59s0bjLG0bVNk+ifWokOqnJckhMcl3vz46YnHxxdOp5G23+BjghRJCU7DsKzBgjCQws/xdOA0zIggTcPtzT27nQgC/Zt/82/49OkTp9MJ59yyvueciX6uyxjGiNIhCQyaRC52Cw5jGlI2pQDksZ14Z1irQOi6ZBRGOVLIDIeZOQSGo6dz9+zvH2Do0TlTQmwas4GcsfPI+7YFFHMKjOFAayy6d8y9Jd+1pBZynPj1xxe4baW78v0HjmEgOU2+3X3R1f/imWaaRnF1Vmv8rQSrqlTbzifyPPxSaVXLoiNu0rEs7HUBlaC7GCXp88VYkzplq6S1MkDSJZSqmvid21TnuyLlVMwUMxrRl1YqY2qV01S4gZDt/OwJKcgCXPYhpYQPgXEQM6WpVKtvbm8xWrPf73l4eFgqSS8vLyJtW6rish/n7kEyNZCSbk8q7bbT6cTpdKJxDqPPaiDWOpq2Ef1/Z1HjvLTczuoikVh9QnKmqm7lXM/1Wd5RCOGeEFj+Nhf1KigV91XgkLMkDM5a9IJ5L0lHueLSyZDOhcEQwkRjRbK3cQ6tisdBkk6GVW659jmJylQ6HnE+oHPGKC1dCS0JQdKSzS9oRqtJWZEQiIJa9fBURmAVjSsG4BadqmLNAkIpeIJzsnBNSHsNU15J2+vX1N+vMfJrM6w1SXntibCGTymlzlwApSXoSPl8fn/Gm7WNSMsqIfVS6ImUBUAXSEiF42iVlwUho6jw+IyQH7V1QpSzDi1ukYB0BxKXTtRQ3rtwKaQD5owp3huq8B8sWhUn+ZSAagyXSQU+FDNQIFCojLKWVI36UmaOUYI+DVHN5CwSpMMwcDoNpZsllfdcJGNdUT0SVTqB9KTSGatwQW0uu1k555KIOpqihOaDSFv23cxhDFhnz6pMJdEfh5GhyGDK+CwO5ikQwiynkcw4STfT6MQUNWOQ5AjOSmE1UFjukepanSuk7UwsDyEQQy4JXi5wplRgQWKomlIqyZwv7wt4H6V4kYqBXil4pZxFBMJW0YR6j1Uom1q8Q7YbgTJM48TT0zMvpxkfIClLSApXgnTnihy3ku5pzjJKFQIbU9X0LEMtsMlUmJbkRtFgrRh/OWsJs4Ysc5UoUCnh4OmMKTCJcfJ8/PjMpu1onaN/e4/WhqzE1E8ViJnRggWnFKhS4Y0oxMsK6y6S0Fza/wusrjx+rttrEJRraPX1637ftv6cL3ntxeuUJHopS3JoTtCPPbrXBK/wqmPSAxA5pZH9psNmS3fT8unxkdPeoTaBhkhjFFPWPD8HNq2CTcJ0Ad3OdM6z72YeusDz5AhNh22E4CxSyVJ4EcdhuU+Xf9f7/CPHeQ7/z+pU19mFWj9fP+uVbGP17RdIQ+mRFiXRyhdrHI1riuqbzBO7nfAq+r7n7u6OhzcPdP0Ga0Wco5rgdl23FO/2+y0p5bK2CldLEpyS1JSDMgZyKsVPbWSfSuDvXJHIVpCD2DLEWCCPKGLKTD7w9PLCp08v5GxobM/93dsCL3dsNtsFIlsLiRenvq5xKSKyvBQvOA3aomhIyRGSFgGKYtFgdUQZKe6kLPOh0g3jCJGImgJZ9VizQdETk4aUZTgkza3tSHoik+gRF3myEQiVjuAC2YDdOKLyDIPneAg8o2GMTHZgUgG37+i6zes3yNX2xUnGPE8l+GlK5VsCp5gkeK9ZYsr1oq7dV88Tf9RBJFBVrW7JJGmdQRohUiGq0oOy6NcsV0ayZJJcXDwx4vPniwiCVKx3SpYAX2UZeJlSidRFX10pQvRSQQuBYRqISYjW4zTyfHhGaYV1jmmemMaR4D1KKX71q1+hlGK33fLu/Ttp0WvNy8uBm5tbKiFVSOmyc87aQu6rcKVzYP/8/Mzz8/PCM6kBrdIKtKJpW7a7TNNu2O9v6Lqz4lFt2U3TVBSkzkFxJQRK1+LENIkq2DRNeB+YZ888TTSlwl4r77XCXG9Aa8X9ssqCikJWWuBrOSeBrynHp6eDJEa24ebmBuUTaQ7ENDPPk7Q8taE6lE/HI4fjkfb9O2yUACJqTS5JhldFNrIE6sqKW3mtbAtcXSRQlWiNYtCAxbYtJoGf/FIRB7VwSH4MtrdOIOr5PZ1OolK2gkvV32vysO5s1M+t16l2M9Z8jpqMKKWKUkYuldx5SU61emU2/xltzbIoFsnPZfmpfImK7y//z6IMJ92OTIgly0Aw+a4t3g/Gop0jUcnCxQGa8llFTrre39GXoA1N2zZLohlmEXsQ5TiY5oAtXamYEsxhgQaZYvSnjUY1LbEEwEOInMZJOrBZoRhlkfKBw+HIb3/7LafCBfA+LfOVNW7hTUhxoSS+JHytVCouPD7gHORbczbzq50yUTk7k8bX84EPYZHQlk20nHKuhYm8SCwKLPVUEkQ+6/5BLaDI5+QVRKd2JKSTK93NXDpTKRZCfZQCTigdFfH/qQRm6bDU+ykEkZ6Ny/wksNoFq845uK6dwQoZq8pxzy9HurbDuBZnHVMEHTI4aLoO56zgkq0lxwgkVEkatVIoDGdPZRmbMQcJGtC0ztK3TVGh0QQv3a/ZJwxynZ0xKDybpgEiKcx8+OEJpy1WGd4/vClcwcwwTdKJUMIb0jpJVzyIrPWijmblWFM5h+M8LnO40QbRX1vkE36W25qX+WNFly9NFtYcrfXj933/xf9BEkEyOXr0U+LmcIs1LUkZbvrE9+kHXnjmAwfudhbTaG6PPd//+jueH1viVrPVnrFrGQ18+OHEloy9he5eEe9mmvbErXrhz46P/M3pljiDT8VYk4wmMZPJRuIclChDanW+2vVejqvfFzlkOSklryjIE4GhlPFSeELkhVSusvwec5KRVc7luXtcoAWpzvQy9oyWgmDb9dzc3LDZbNjt93R9txTcxFS4p+86Nn3P+6/esdluadq2GOvJWN9ut1QRIK1Vib8yOXvmecCYIrGda0FWeB1SRMrkBDc3tzy/HJhDRGkxLs0hMsSIdS1ZGXzMoCyTjzwfTvzm2+/59tvvMbrldnfP//K/NFRlz3n2Zc60aB0vpOxlYTIoY8h4UAFtNG2jQW8JyhGzZZ4cZhbPseAy0XgaN2OaCasDPmlyjGiz5ekloU4Z7RTv3rwnzBsmLx2OHEQNT2fDQ7MlNCdOZsbFTNIdSmXmpAjmRHITtsnsbx54epo4fRoZH+GHp5EXFXHKk1vYvdU8uC8rVPyknqnwHmrgGs4LynLypLWsSrWnVsSlqlQrWtX4zErLvFSxlMpknaQKryqXQ5OzBIiSaFSt+srzOFfYZfERfKwMJBbb+SWPLmiLUBSNVIhkBz5MTPPAy8ujBBbeM4eZEIJAp/zI4Xhgs9kgCkyKphX3cecc33zzDTln2qZhf3dHnD3zNLPpN+x2uyVwrMo6laA6TWM5JpGG9LO48378+JFf//rXBO+5v7tdoGkxBZ5fXui6jt1uX5KMO9q2LUlfXHD9mUyT5fJWOc4YQwkwJMCvvAFRuprxPpQFPSxBwrnynlHaSPvfOZQyS6AS41wC5Iy2AvfYuh1t09C5BoNIiu72t6TZE8aJWSlJ0oyuJUFpY4bAMAxMp5HeB5okQWJCEUoVWnDWLN2RFAKBKDrTpTFRCZGQUCniY8ApyFoxB49NSZyikyzS3odFwhYuK1u1e3E4HJbEYBiGhXBfA5maKM7z8ULlZj3BVBxpXRzXSjhniWdRDRPX76IopSpX4edbgQT4zbcfgFqUWCkUaS0V6QKhs1pw9nWxSst9XuYLijCBtbhscGSICmyBWlZTNF0TFyvJRkoYrcnm7NTqGvGJEaUlT86aEDOzn5hTWDovcwi8HA9M88w0z2irhTNhRClrnmbGaeLx6ZnDy4HgS1cx6wIBiByHkeE0Cok5REkyCj9Ma4vRJUE1WhbmLKCcUBT7ssrlvEikr1DLMWqlsVaXJMUs8ruLmWBNMnImeDGQSkX179z5Fe5Lae0hfJZiZqrP8rI1aMklmDH6nAjm0qVMsShChVDMnEphKQDKID1/fSaEp7NamHQ14kIUr+RtEFhViNIBzsmwkN/12Sx0SWRD4hQiDAljStISIyFq9pvbogrmOI0jo4/4NGCmwOl0YhwHfIGSLZVbYzg30GvCK4+ICEe4pqFr631uMMrQFu8k7wM5BlzTsek6Np1j2zeQAn4ciP5I8JHD4cjL8wtdI+faWcduu6VxFmsUwQsuWqCcawUwuS9yJdArJd0NhNPRuAIx+ZnDpX5Kl+J3besi0T//MwvMzwiHR79A/7in8T3hRXFIn4guMPQzz+2R++jYN5b+fsPf/H/+nm8by1Pr+KWJ3G57wl7TNCfS6FB9otOZaANWD+y14l9vNhz9DUlvGbCE02/xwzNxOpFVIpvLQqvirEJ23e1ZzsPV7xrpkill0LVRoYQ/mpc5IqGKB5lA9IogRa5QKCmWxJDouh5jLArD8XQCnTHO0G+33NzdcbPfc//wwG63W/gVWosBpytCOm/fv2G73dBvOkF5GIu1hq7rqZLYFd4+jiMfXp74z//pP7Ddbri7v+Nf/9Vf42ePUgHnWoxxpXPZ8Bd/8Zc0bctvv/0t/+d//k981bxjnE78+je/JlTvHAzGtKRsmKbI4+Mzrul4uHvDL77+c/b7PZ8+feTl5VD4GAfmxdfqDOUUHqFw2VAJ5RJOF8Ure8+ULFPWTHMmBo3F0HSKbmvoXMClA27yZN+hg2IcMjEb2n7D7faGabyl796x2z1gN3v80wv+ODK8DPQpM5BIauRwPJL7LSdjOeaEzy9Ya7nfOux4IHx84fTbF8xBXM6VTmjrGE8nnscT0/N3X3R3fPFMsxQYl8F6fi6XrDeTPw8e1tCWrEhimlra8efsOGcW7kUNEkXKu+LmDMa40hGQ701ZTIrkvdJJKQCeEojUFtllYJZiAKXRxeBo8jNKjxjrIIlikfezEJNJZbA7nDOFdyJ4/62R7kRNJKrHRDbpjDEsii8KVknG2sxKFgVxCRfg8zAMfPz4kaZp2G43BaYmAekwDNzd3tH3PW3XL74hdXGWQSyVtxDOkKl5nku2L5AsqSwGQvALZMJ7jwIxP8x5ceNdKgurKql0AAwmJ7RSeC+JhiQiDTFEbAu7zVaqHBmssWQHqgT3O/allSoJqFOipGSNIcweP834aRblhFSVfcTYT5XulBRES1CppJtRSZUJFtk5HyMhJUyWwCovnbfM7GfWhmo1kbjkBaWFa3E57rnoRNXXrT0NaveiBlG1AnPtj1DHTIV31ATahLgEctcksp/b9u33Hy8WvLUsayW01vOmS8VeK7MUFAT3n5AKvhJVoLa0zdtIMzuU1SIraMprtMLaKPNAzuI4H0V4wehEzvL5VZ3IeCEWT9PMaZ6E6IwUH16OJyYvamTKiE6zCLIlxtPEMIw8Pr9weD4UErIsUJX/Mc0esiInCDHjfSyQIlBKYE2LslOSpCrmREKcaNH5wu15qTyWMVRb7troFfxq5WWx3M/p3CUoMMoaMCtpU7AkHYWIX0nDSr58aULVxJhcEoKcCFGOPcVXkowox6qUtOpzhcCVzsnC66gGillYD+fECnLWct9X8kiBN6TCSVClsxGzSG7HGKEUtcgI3r3biOeQtYzF7HT2AVVkrX31zklx6YjLvFBHc00ygAL96LqOru9oGltWNykgbDabRTRjGoZi8Npze7tj0zpS9MxGMx5E1nqaZo7HE1Z3NFY62k3T4oxUltNVEaheh7qWngPmIodZ5pWaYPzc55Ev3X4sqP5Dfm7l5NQAO/tEGCMQCLNiCp7UZlRQhKfMdDI0XYNVLccJjqfIcAS20JhM32f2dwp/8IwhE1LCSU+CRim2jWffTeyjpR80SndkNZC0mE6uu7lZJUk4V2nEjxGvlVLn8Zzr6F29LtcAUB669IKrGtyiglZEGADxCCsojhqdNU1D0zm6Tcv9/T13d3fs93t2ux2bzYbNZsN2u13WQRm3hpvbPX3f0nXtRcfWLoiNyv1MjOPAxw8fOLwcORyOPD0+kaMk2tutcGdrIUIrxX6/42G8Z5qFj3c6nZiKP5v3sczPhhgzzrVstjvu7kQoaL+9pe83DMPAhw8f+e1vf8sPP/ywKIHWc1vnz8YojBKhi4SibXsa7dCuwblW1qMEcx4gJkyybEzDzil21rJTDjdFjk8T0xO0uiEoQ+N6nN3Q2FusvUWbG6bJiKxnSNgETjXMypGwzCQgEBVok2gMuJzRY+Dp8XuevztyenxBeS/raIamwMzyFAmPwxfdK1+cZGhdq9m5QGNyqUBLgpGKotAirafPPAHBw2mEgFMnwfNgVZhlYpSKnhBitDovjpWs5ooUa0oJtZ7gi8FfWk3AC8yFFZY952K2J5GoJBmT3ABao7MpeOBAygFFxjrDdtsJudqJgoq1UilsGyF9C8/CruQl1fK9daGsgWttX6osVYazjr7s4zRNfPr0ib7rePNwL2QjrZaOhH4wNAUKodTZlFAIyTXJOHeYQlFQqknGNI0LfGqapkVb3fsZox3zNOODyDpW0lRKZz5MPQ6JNeR6T/O0tALrfqicudnueTkeqDwUAFIi54a+65mGEe+le6K1wqFprMNPE/MwYscRuqZMYIqsir4zipgrBlWV854r4AOdi3IEkmiEFM8cIGl3ycjNZ36FKR4frzkqV5hG7URcOxyvX7MQ7mHpWlToGUDXdat74zzB1++tY72qqYVy7P8ikozvflgCNlUqYLook1ljF6duW/gotcCQqfjzop5TihnWOdqmoXGOrutpOodx4ndgrSp8H0leKyxACBuF46A1bVN8C1JknkTJbJ4DwzhxGE4kJWNomj2H4cRcOnjKKATMJHCm4TQynkYeX44cX04lyYhlwa6JcqZvNihtCBGCD6WKDxDLMYtUYi58hZgjaUkwanfmkmtSt3XiVpPZC9+dMieuddyX8VoSC63V8jsU6d+i3V47BUuSoWoF3Z65GIW7VoP7s/N0SWyiBPlKO6DAKWpss6omX1eW18e8yBHrq3OgzlAEYwwxiQhFTGmBDWmtaZ0kGd1mg7WWl+OJMM1lnkylEOOF71CLGoIjOcdhS1Im+9C2Ldvtln7TgzK1hlygWh1KCWckzB5rHW3bcnd3T2MVyU9MKhGnAymLzPrpdGK3cSgn94azVjw0KgIgnotA1/LMdY2s16+uMXY1x/1p+8Ntdb3PSQmEbfDErJm9ksQ1KFw08FHhD46JlpAco28YpsgwJGjB6kTXwt2D5sNhZggwBeiTpBkOQ+ci++7ELmh625FpiViCUtLATWIkmXMi60xN0X/6QZUYLUsRr9zuFR8mnWElxo5aG3xBGOgyzgUVJF28nCtET9NvHNv9lv3NjjdvH7i7u2O73bLbbWnbTty5b28vjD/btqHtBH7Ydc0FTG499qH6kI18+vSJefa8vDwLRPL5wN3dA19//TW//OWfXRR6m03Pze0t4zSx3e54/vSIn2da1xYBIwBNTBlrG7bbHW/evMU6R+NkPX98fOS3v/0tv/71r/nw4cOFIuVajtcYizMC4kZp2m6L0Q5lGpSzmKxxKWHmGZOgxXHjLPdOsdGGPrek08T4YWD4mNmYW7w1ONtidEPj9hi9I8UNh9NIc5rRs8flTKMaTrQEGmYFKE9QIjjSG02bFBwDn779jucPA8PTiIoBg8FqRauEq+Z9lALwF2w/oZORQadaRiJTNMSJS/CacsQYMcSrRMoaDNRg4VxpAbLkwqKOccYmK6VxrqVpHdbqJbmQ1rYu5Oaz2ZAkIw7bOqoazdlk7mwQtRTfVOmWlCBhmgfB0fkJa9rl9dpoXGtpO4cxis1mIwpTccIqQ9vJwBeJV+ly5EJeFHMoGUSVECZGdIqs1VJtt4V3UWVTaxX8cDjw3fffY51lv98KUbxAD6Z5pplnVOnuKH9efGP00oEpC2BVkjqdTsuifzweztyM8VQIltLJwOrCQ5kWhSzhg0g1M3iP94LNlg5SYp6FTCnJnnBrdBay0W6zYzwOxJxobUPEE5Qnkdne7CQwjyemeSQHgaY02jC8vKA+fSJai364I9OQs0LbktjUG1drNAqrJV2NpVNBwZLXWUQZLeTQaFBWC0E8SpBijcM4SdwEErdWPztjdDebzaIesfZ4GVcEWjEDur2otIQg5//l5YWcxYRvt9uJ+kW+VFVbjLbKz5QyzpzdlX/uwcHf/Nf/Jr+oFdxndey1OKG1Wa5fFSxIJViswgYgWPxFB9012MbRtI62b2k7J+n+cu5krOgsFTWtZZ5qXEO9V2YfivfPzDCOwq1QiqTku2fvCYWIbXRJMlJiDp5p9MxzZJwiwZ+hnNaIDLckiQ1ZNwggoUq91kCgKOaVmCBH6dCmnMFcGmutFfjgMiBfigDq0udjvditoUnV4LFiqe0ib3qGPazHX60AsoLLypws+yv8k0gI1SAuEWIq8KlcOtkJrWtXQHGVT3x2TOvjPne6zhjwWliSoXUucJ2T9TM3CmSe6vue3W6Hc47n52cOhwPjOC4mma9913Xhob6maRy/+NUv2O/3OOf48OkR7+W7NpsNb968YxxGnh4f+bsYaBvpwL1/944UJuZRk4sU6TyNxDlxPBzQ7+9oGocmijSxqtnn+ZysYZta60VdbM0DWySxl8rwzxsu9ce2CdxSFH9iSMynCRVhdpbebmmiYTM1nD4Exm875rEnmA7ab/DpmdPwgruFnAN9Y3j3lePb3ySOKfM8wu3Y4JoGbQzbbuI+fsdhOrJTDyjd4VXHmA1tnDABVNQiW6qTdPx+6vGopTay/FTq/PelRqzV0jVcJyTGiHqgc1Y4F/0W55oCK7a0fUO/aXnz7oGHNw/sduJr0bYtXeFguKZZOrYiJ67ORexyH9YiCXCxdtY5ZZo8v/3t93z//fc49w/8+3//77m5ucP7QN/3cnw5kXOgaQ372x2//MUv8aMnelGCe7h/U+6rGWusiPMch1IMfiJHOe7np2f+7u/+jm+//ZZxHNlut8t6n3MuiZSYAz4/PzNNI4mW2/tbYoTTKTAcD4XrBxs789AbHvaOX71p2XaGNCXmTyO/+S8f+fRPM4ejwW1vMUYRAxwPgUY3HI8wzRMvw4n79MJOT9y6Dj1pUrBMqRV6Qj4Sc8KZwI1p2HjwP4yM3x6Iw4SbA63JdCrQZGiipglZmgVfmD58eZKhqiFRJXcXMpwWqa+MVHwEpFJdvet71eVCV/DDSVXlC6Eh6VKZqpg8UQ8oShwrVZV1e10m0Wq+VzoDSio/wuk4Lz5UbKItJDhtCpQhEbMnz5nsWFSuUhI1AWUUXdfQNLYM3BmfqpqFwihD03QlWFHEULkR0maLQSr1Ir0qgVUNBIwRk5imObvxKqU4nU7FfG/gL//yX+GcXKqbm5vSLlwHm+vW7Rmykxb1rsg8T0sicTgcqETncRzPC2fBReuS+FTpVq01nRPFkmmaOB6PuEbkz2qSkRCJxb7vadtCRA+RMM0QMwaF1ZaIKFZN87yQo6yzjNPMPI1kYyFCGGA+HjF9T7PpwSiUEiWhSgqGoq5Qmmqi0qIgsRBaVU5C+7Yam6yY8VlLYiJl0bNPJFTBzY/jyOl0WiqaSimenp54fHxEKSFnd11HSmlJDF1RxKgwlOPxtAQg3vuC75bgxRUFIBnH5/Nd74315CkV4MvA6Oe+zUlxGTqueABLpXrV4Skdj+V+T8V4rLxXRZhjQuuI1mLSZqzBFnhjLp9flYI0unQS82Js5lzRPs9FFCJnfCEeT94XZTPZ71CKIVmJjG69R+Z5XjgYMt2c78mCIigQUE0IUveMBTqaklreI9DOqmWUyyQqsKxaHFknC+tE47rSX01B192y+qhzzdqRViS/RdwDapB/npfNYn53Pr6cCpQrS1Ykn6XLI5GTEhWXXDvJFbhxDgSWkbAK3uFz48l6b9QkCVigjddmruvjrBKS1d8EznLS9f6rVdP62dcE4Ne6KuvugGtc4RYKxrvrekCU+irfRBXY7c1+x3az4e5mT+MsUxhQJLQB5zQ5iqa/UgItabuWHMYyFxe8vCwky36s3dzXSeP1dV+Pjz9tf+BNCSc1xkAKAesaLJo2K0zo6KLiKd1w+OQYo2HoLdncMvqBp+eIv1MYRKik6wzNDlKAwwh5tkVZLtPZkTsXOLWZt5s77u/umJkY4jNpOmLSIi61NB2+/Bjkxwosybq8oV578epeqJ5CVZSnCvj0mw3bzVYM8rY7XGOwreX+4Zbbu1u22y3b7XZRjHJFmrYWXKzVS+f5unu77uStC3TOOUJI+FkKIF9//Y6/+qu/5le/+rNl/hD0iNzzjbN0bYNzDU3TkfOBp6cXtFI0TkwQm6ZjGCa++/4H/vN//i+kKPy2efK8PL8wjiPOiY9HLRo/Pj6Sc+bNmze8e/uWru34h/j35BhAW9puxzgFfH5hCBMOhcsZow/YqGlCoAsN6cPM+HLk+PGZj393YnhSQMvu4YZvx2cUQoI/HBIhZmJUGKXZtJlbC287SxctWjdE3XJiIqmRjMiiu6SwHqZjxgaFjaBzwqjM3b5j3xjalPAHT46anP/ASQYlySgUJ1AJpaVaLfyVUpPLq9rc0qVbtberhJ62EgSqKMnBMmFKdd4UpRVrzdKSl0FbDYdKmLEkG2lJVmTcm1Jp1Ii5U104WNrs2hQFl1gIhohzL8aI/Gr0mFgURYy4MKYk5ispJGY/YWaLyjWLpwzYvEAq6o0WglRi6+tyhU6tFqqqAlOrcpWsfToNCxelaZqze2+pxNYErLp4V4iULKK1WjkvXJNpmkDlBRYg1b68EC61FjWsaZ4F/16r6lGSl2maqCZcteqvzTlgq8FwjJEweVQsJJwaM5WJwQe/QN20glTI42QNQZOmmTBO2HlGtw5t5bpklOBDcybHWLLqAiMppJ8cxdCLAqur/h2qVMtTgfgtEphl0a1BY211AguZXmu9VE6qC2lVrZnneYGjvLwcgLODd3UBBZak5LqSeL3wL/yaKJ4Ia6+Rn/OWlGj4Vwgh1B/1uPICSwH51VhLVTfJFA5EPi+DMVGEz4vLttGYWeB3qeDmNapAMGXiVUCVTrauOk0Xblgu8JoY8CnJnLCMmxJcFzzT7DPzFJnmQIqiVJILnKiKD0gyKQejMqUTIy14kXCVDoZiEUSF1ffkevTLn89Jg1bnoP/cEbo0HnwNKiHCHHIKk85oXXhKKIxxy6XIuSg3rT57/XlJre7FnCS5SAkhZUvSLw9dop1SFFpZ5S6w1hXE5/p3OENeBT56ea+sk6U1XHbhxpWEf1G8Kvd5hTBWCNEaUrb+7stzd5nA1Dlg6aRo4cMEE8/zeYwoRFVwt9txs9+x320xesHFla6cJQcx31RazFkbZwnZkFKQIa8vE4hr/teP8RCuk44/bX/ArUjIihllhBzQhc/pMLRR0QK3ecvzi2ZQmhc0xm6YJsvTIXJ4UbQKsgW7N9jOMJ8ipykTZoVY8SSsGtlZw23TcN8FbnZ3PE0bzNDBqJeim1LXBZ3fv12/fvl/TVhQy2OZlFTpXliHKkVNIW4XKWhr6buO3X7H/f099w/3GGcwTnFzsxNVqeI1VuOHtThKjQ1rAWo9X9Sf647dGl4fvMyzWllubu548+Ytd7d3S0FLPl9RjUNrkKKLrG1KuUDBKapuRlQE58Dz00FgtOPE6XDieDiy3W65ublhv99jjFnsCJRS7HY77u7vaZ2jaxwnrdHOYkwDOhOzIpIwOZGJGCYaDJ3SbNXMy/Mn5o8nhg8D46dEnltM0+JcB9MBlMXYjtOoClwu0zSJbZu5aeCu17SjyARnYxnjEfEAinQqwRxJXhFPUrxTUeJ6bTLbjeWmb2h8ZBgjKWvElOz3bz8hyYhLSx+VF33vqtwia1kgZdkBnauUmfwzWr5KJn3Bj0EkZ1EyQimB/2iLNQ6tLeJlUUg9MRG8h2UwAFQn8Iz3IymM6OLa2zRVVUW6MCHWgFveaxRUzFLKkUXhCiHZYmAcjoQ4YX0NDOvCJg7YiUSIvlTBA0FrwikQQuZ4GBiGiRhrkpFEs7OQnoMXKV9TiK5rvOz5PEkALqZ4AgN68+atwHp2W7QyRR3B0TYtlUA9e+kSeH9um4/jVIjeQYJ7Lv0egpe/K0pwYgxjjAJDKW7V0zSVa0CpqBYNeVVlHeWUpphIOpF0YHg5kn1EWwjzhLZlf7uWKcw0xmAbQ9c15BTIgNWWBoWJCaaJeBqwxZjOQKlkS8IYp1kCtSzBKFnUpAheXlNgfIKXLWTJFGTckcAo9vubM2wl58VPoHYQuq5bJo6u6xYISiWBxxh5enparl+dvGpnZBxHAPq+5/7+nptiMrTGa15DoWonI6UkVVZj/2UEBrZjiV5X3cg1f4rV7zKvrCvytcNBWdSLPHYRBki5RO7hXA2vMCBR3tFYdV68tFKFB1JUnQr/I+UyyygxX9NZ5q1c31juNR9h8pl5hlz8bkzxkMm5SGsnSX50CRBT0XOMORcFKaQTQKaiDij7XBPoWvVXq1W/FnGk26MvxlKFnMnravW/dn3r4iqJRoXlSX6nsaY5f365EHKu1otKXeDrcUIqjxgVKSpSkkU6S+ZWLy71EuelUHQ1Bq4SjOtgQvb93A2Gs2HoGs4EXAQr9X3TJMp6x+ORrujwrxOG+hk/ttXzWyU2mzI/ClQ3kwrB1NoAqGXtMsbQdR3v373l5mbHpmshR2KYyTnirGHTd1g8OSqc07StYNBn5QnzmWtXf9bxuBD7a4K7SoSWv6/P9Y8e3R//9s8ptNSx8d9lH5aiSCQTyMwYPK1OuEbjIuy8RseGmVv+8XFgzIpnp7lvb3g+WP7xaebvomKnIu1G0f2rBucUAxOfnkdOB7B6RquEdSdubENoZ95tR+5vDI/zlufxnvD8AVtUn5QSYnH6wlZGros5qw5GSVRq/zGvHjW5oJC/275d1q3dTozajLFsdzv2dzfcP9zz9t1bvvnmG2xj0Aa6rl2gfpIkn/MWgaHri3s6vmIyve54KnVGwjjXcBpGUIbNds9udytmfk4K2BlK50W8eI6nI08vB8ZxJsZE07S8eXjHf/pP/ychJLabDdPo2d/dcXP3/2fvz7ojybLsTPC7k4joAAVgZm7u4R5JJsnqxSJrrf7//6Feml18aDaDzMyIjPDRzAAoVGW4Uz2ce0VE1WCe5pGR3enJFF9wAxQKVVGRO5xz9j573/Lq1WuOxxPT4IsyZ+Lrr7/mN7/5zYxu55znouJms2Gz6dCA01pin25LSoqYFAmNdRqjA0ZPtNZzt1G82Sre7gzv/9sH+p8mxodMExtMc4fa3oK27G/vyO0O1WxJpiUmjSKwaQfubybedJHXm0zHnh/9M/FJcww9VmUaLftx/zCQRsV4LAWwKD2EroHNznC4cWyD42mIhB7i+BeWsNUml4ErFBVrC4XBOnQIEqCv5BDXVJBlwbOF3yuQckpeGhqL3njOUv2KIeMnXyo8wpeOKRKjlwxvxd/OWYLOEBJ+TFgrG2V2Nb0pvy8SpRXKC6FyeUuSQXF3VUWRATBWIT0nlVfcoLXFWnC2w9pGYD0tlSyFYehHTs89x+cj574vZjByJj6In0S9NmtqTIppli6tfQGCcmjO5zNZZYwV2VhjDc4J+jArVRV2RSj9KOfzaW72Fl7gQKWOKbV4l6wdreWai6GTBA6RTaEE5Zzp+34OepVSM4XLh8Udu/pztK3Qx2If0TGTU+D09MzN/YHddku7aTmfnqXtM8N+t2WcoihzW4t1jejRxgjThPYeHRwmO0INNFIWa+V6jZX446oSLDmV5PXn5CKRchAJApXJhYLi/SRux4VysVaFqItfDUbWcO2aDy4yw2pWkokxzpSrmrh0XTf39QAXSclslHZF1ahc8lCcyn/1h+2oRTAoPhbroyLw5ZtUkLIZ2ShiEFJEkyqw0pK4q4paGUkchJZYCwuZ2WBN6SXgVVJ5VsaIBKoxshZUtNOWQB1JQmMJ7mIxmAtRE5MhRqk+o7SUIlUhteRICPXcU0FWPBXIkXhxCfpVeR6aouYi1VFTzPFqQpJTCbS1GItqnTEmz27nRfKqoKfM1y9npGeqyoBXl2hjy99otLIl6al/leZEYkEiS/98ysSQGIeiVBXT3JMRS3NyTDWhrDe4JnGxvNYSsK3nVv13nUisG8nXKMW6B6UmC9dV0XUB4Pn5mYeHhzm5WNZbe9HHAR/3uFTkYrvdFvpqh3MNj09HUpTKZohC0FdKkaM0jm+7jt12y3bTsukcOQZ+/O5PTGOPIrLpHK25YWwUKQy0zmKMEqqn2UDXEGc1wImY81yg8zFSQ62YhIevjCmFQElCK5l5DhL/BRzrpHMdd1z//iW6218q6ZDXTrPKXGJAc0Yng/GZRm2Ey540b+0OczqRrUK/aXEbMet731t+/73nEDT7neXVzhGmHcEPjJPm+JRpXMA2AZUTXc7c6MCr7sSr3ZmHs+LY7TmaDVafIQfwoHRT5uzHifr1Z7ikXhZH+SpEsWKjVHQyxjD/PoTE4f5mDu63247tZiv75nbLb776iru7e16/ec3t4YCspkn80a4oTks/4rIX1nN7qf9qff412d7v9/zmN1/x7/79/8bd/QfGceT27hZQhJhoCgVWRHM8p/OJH374gXfvHnh6OuKcY7vboTK8ffsl3nuGYQQUt7e3vP3yS/7NX/1b3r1/L30awyiS4Enk7Z+enuZYAtYobEIbkd5vm4aEJvjENAaGacLYEa09rgnc7SzffHnP12923G1bXt/vGJ8yD8PEdvOW0ByIzYaT96jDjmRbzj6C0TidaEzgi7tHXu97bl3CqTNTOOLzmeQCMUxoI+I4McDx6AnBkDCitpcTWGg7UHoiIzFf1ymGkIij53OOX6QuNY9BVSpuNdvNmhiFjjLP77wMiLlSqw1KG3F9rs6+8yCuylO5cGflRbQWulRVUMo5kU2WqiRVGjTPrrkpLZtZrQ7OVKCUiClSvT6W/9L8uerPiYyxWoIYyXlJOYoilKJMDpHKrHQbcaMVrea+75nGaT4vKJvV1QRf02JqdbxpGmY3XaN4enrEOost1vaV7iXN5PK8ikhUI5hpGkvzu1DFvJfKPnNFYAmqY6wSk3GuCtfTlB6aGkxHlKqScWWRVtIvUyuWlaalQLwOlBjlxRQJ0bM97GialqZpSSmQQ4CY0ErcwTWlomHE6TulhPKB7D05BHIQWWGhilCiHRmJOucC60rCYXXRKsiUz11oc4t75FwJr/dgTbVYBx5rRam6SNdEZK3UI0msnVGIucfFuZU52iV/9NNzTs88+Vyr/lc89V/b4dOSYahK8yk/zHuhWlfOMhlT5qiaq/v1ubmarwm0JnN1VdHNWQmEkDNZafmqSUOJ8jMih6pRcyCmjSrrlJ2DslTlZJME0pNP+CB+DSnVooZU8NHVNwJBfqGgDYsJ5yqjKv9bZV/l+1oxXFf4LjdchdY1uLpEBOY5ujqWNbdSoCqKUiqSaKxxF2vpYtY3E8BQJdmSf3VR/Vq+aiJUTfdE5KO+jPTgpKSAl8fzS/PisqIZ5/lZn38tnHBNnah0opwzDw8PTNPEMAz0fT9TIdfUrGvkpK4FtVJaG8e7TvrQYPH8CF6MDnWhida1fbfbst9uUETGMDKNvdBuVSZZcfJ2TpO1Lb5UQvMzWjwGgpc1yxT+ey3srpOiteDJGtmoxzz2f8XHeiys58P1c176vv68TjTq6/xDKNYnj5rMkEkqQB5R0aCmTDaRHCw5WZrosCFiJoX2Gb1xROMYaDiOBj12qOTYPCkUNxjVYbTh+fTEfp/YpIzJikY7glHs7MBt13PTaDbW8JzFe0HKIWYuXMAipXp9DT7+HLIWrdHj9XOFMmmk96QgyFWwo2naWSnqcDjMvRavXr3i5nDDbrelaRoyQmc2tkqVX87XNeV6dddWRY6PCxNybrIetG3Lzc2B3/7Vb7m5OTCMPTc3e7pNh/TiLnFhCJHj8cjDwyOPj0+M04gpfb1N03Bzs+d0OtGXc2nblsPNDW++eFOo65Zckovz+QxIEaMWGsdxxBgz07CtaahUsxSzyOsHmbPb1tDaSOcUu61j1zU4bRj7QWLDdoNtDNPUErJmShmfMzFr2SeVQZmMzgPOThx2Z/abiU4Dk2f0PWMcCIzsb1tB8nNGBfBBoYPET76uLUpUwmU8eTAK7TLKJJJ6AVZ64fhFSUa5veSLzU7QB+EBL8+fn51rwCo8t4pkLANXl5suz0/FNXcd5CnNPBjWm1Iq1bFYVEuWTVXNSU6FlVOqMrvFzEqvg5ha0QRJJuRtrNN1RS6Ph0JX0Bhb4emlITcm8Vx4Pp84nc+M01iQDDmllCKXhAPx6WDKM6e/bl7jOJaegUQ/DOzs7spJWvoHcpR/a/VtHAemaZylaWug6/00BzCVJlUD4eqtUQNuSbEuzd9ijEJ7M7q4H+dVkmHIWQbcLNWapNlWG8sYR8LkOcWRm+mWbrdhu92QEc345D0WjR0kW26slXJrzuQQUN7DNJFHR/KOrHNZ1OQ+16FpMhJYKmkCt0p4lR+FK3OSIfGPaPqLxCZwsdlcK8zUQGRN1bhOMrRe6E713jRNM1Mr1oHMepO7po1oraEgc2vaza/5GHyQjULVPoOKNy6PXQTgwNwkDEI3rGtAud+U12GlB5/y0l9RaTkkVWSNhSdPrj1aCR0RiVikImydwaHBFB+XXEzs5vkUGScvcqIRCbRrwBPB1gIMYKwrPUEG51oCnqV5vR5lM6/fl34JqT8Lral+lUu1QkM+phRd9zHUa3QdgMvfCJVMkgyD1W1JMmrv21J0qH8g1IoqZFEKPTUbK+t9/W/pG1m9BJFF2nxBSOZ7+cJxHRiuK9ZrVGONbNTEoKrWVOGFtm3ngtDpdMI5N/sHpZQueqbWr3udYNzc3LDZbCXR6LYcj8+cz2cp6qQ8N8BaLdXLzaZj0zWcTk8M/Zm+PzMOPVZnjLK0VpBmUbsTWXNjNI2TvrUqw1x7vNY9fJlCK75SxrtGfOT6/9pXkstx8nOJwXUy8dJz18nFn5NoqLJkZZUJKpDTgPIZhSeaET86VG5gtLgQcAPowcNuQ3Qtk9tyDuDGDSZqzh8G7OGWzmhSe8Pj8YHDbWIfEHM2syEpx871vNqcuGtb9gZ+SpDMkmRodJlb8eI6fLJv5+MLU76kcJOLuIGxCh2KgS1gWwuoGfU/HG4LNfiG+/u7kox3dF0rKHN5zerztbzVMtcuGTHLnvxR4WTu3VjGeNM07G9u+A//4d9zPJ7ohx5jNPubm1mkIRbFzykE3r37wPv3Dzw+PhOCsEqMNbRNy83NjRQ2SpG76xpuDjd8+dVb7u6E/ty1LX/64x95enri8fGxiPYMq5igqHYOA42zJERAyYeAz4LWqxzZ7zo6k9i4yOEgkr0pJR4eTijraDaabr/h9MFxmgJjyijVECKoQkXPOWLSGaefeXXzzKENtEkxjYHe9/TTM1M68dVXt4QpE4dA6jVT0LJHpoxHvG1nFWOi7KlKo21CWaHDf87xC3TsKmFgHn3zjZWm8KLms6q41cGzJBl1YxOzEan+aYwWeD6TVhubHMGm4re0BB5zpUblWW0mRcmu6+YYQsSsMl+ji9qUyWw321LFhgKZlM8iiEpFR7QypSgqwWwInqgSZE0IXuqeWUNQaOXxPvJ8euZ4PHI+nZimkiiQZtWFa36sVNMETdhsN3SdbGApJc59z6k/zYo3NRAZBmm8nkZP8EuFQgHjOJQejjQ3sKYoAVEuBHDvPaeiXqW1SOxqbbC2kUUEPfd6SHKUUFqzv9nNQY2uSVoJtq0186IQfGAcB0bXsrd7UnxiHEae+yeeHvfYzrE9bLk93HDSirHvyWMsFVKR9R2DFzPAlNDTRDr3BAXJZlJrUdIFVxyI87w6SsIhYajOhYuPEsUGNLYQdFJOhYIX5nsvVUNT6HThIvGrDtx1/K3RpyVYy+WxWFzUpSemStdV+dt1xXRddawcThAqlVZ67heowYP/lccGIdaNvDhJ16i0VPNrYYCyHggtz82/k2tcUSkZqzVpqagbuiIeCKpALiiFNEVm5vYoCvhFVahDSddXUhrlFFY7eS8yENCmNGLXBgv5MMyNn7k0c+d1hV6RlVk9X1OFNNTq/9eB+PyzqoESvER0SaUqIgnTxxXeWsyBdRIif/dSsCGJmaDS1RivHrVvqSrR1eQ3zR4meU44ckVnrs9ZLSnIekdZJ0o/l2hcN2ev/77OwfrcighXTnRVvtvv9xyPx7k3w1p7IV/70rGmdKy/Zodi0zAME9DPxns5JQbg+PSEM5rGQBo7Hh9+4unxA09PH/DDM1YD0WK2jtYpurbl5mYniYaVYMyaQnEjsYliIij02MAs655nKbMlea9jYJV8/dqPT92jz6ECrYtEPzeefukhik6ZUUVIAyZGXB45pUe8t+jUouNIazPbEexjT7rdodoN8fY1Pw4jhi3WBx5/+Im77Q7X3rNpHD/+4Q+8Pz5BO7HLCnNvwWn2pufr7SPj3S2h3/Dw3Y7n/sTofSnKlMKU+fnr9tE1UyLHq8v31fQ2qUxTxvzN7UESaOu4Odzx+vVrbm/l32+++Zq7u9tCMab0JQgiHaPHuorU6RUKl0uxshaeL9XnpAd0kaZeHtcXiUb1ohDDyx239/fzfm2tKTR7uS6jjxxPA9//9AGfMt1mQ9MpWtNIgpYySkUap2lby/PzI92mYbNtil+HwphX7DYbSJlvv/2W9+/f8/Qk3hx1LTqfz7x//77ENBEfEzErjqcTPmuUVby+3/P63uH7IzmeadyhiI44sBpaSG3EO89PpxO91iTbsDGKrBzOtOzaDh+O7LtnXm1PfLl74mBb4uB4f8w8DxMn/0zMD/z1v/lrvv/2gfeniTHAcxQzPqUjozX4KGIdzihh4CTpMTMN6DZB9xdGMurGVGGmNeSeUnV6rZrqVZ6wNu9V6sASYNSqcUU4hPIEOZUm3VxUDLJA73UwrbPbyreWDa/iaLLni9G2xVgj3fulSRwFbbMRdCRLY3pQoQR6S+CcUmLKYTbxUmhCihT5GKZphCxyg0FHFIYYE+PQM40DPkyIGogoh+RcJH5r06kWqdtaRQepUtnSJOSaBus9OUFT5GLHcRJH4YcHhmEsidpSfVEUJKHwdOtXRByMpcE94aeRfhiJMZb+Co22FmcaQohF2lO038WlPGONZrPZCBVrnLCNK/zrTDYyHnKuPgaRfhiw2rG/35N1JhKZwsTpdGRz6vDDnt39geAa0hQY0lScdYvyU0hkIxumDp48jiQDuVUk3aKMImaHUpoyYtA5z54rQu1K2BgxOS+JRgZi0cyfPKEozlwEUqtg5WOvlTrmLzX5Z/8AKpws52StVHbE48XOyFHOeeadimHbUp1Upepdx2OapVLD/Jxf61G5vvK9KvFnrYIXXLFIn4pEtijAzUlDQS4r9Y0SVMn4Xyr0yqwDKr1U1OXtClxf1hdEdQqWQF5pU0QkKrSfyJgZkbTWkkIiEIgECcpLUJlSJuaClJTPrZUUGELOhTIp76vmYHC9ocrf6flZaV7fPi7gyDcpqYIMUBC3UiipZodFhS6lWumPzKhvvTeFMgWpLlsfz43rJCPF0u9WPnvOMwJbE8GUPw5sauV92SM+rjJfB0RrhOIlTnadW/X1KyKxnsPOubm/6nw+F/R3nOVtFwppnNeA5Rov/XT1ObXBUymDD4K25yx9bbUwMI0jKUycT088P+057Laczo/0pyOn4yMpDDij0Bg27Q672bDbdhwOOxEwKf0z9ZpprYtngsZGi7GB4D2hJFRy3pW3nmfEVokKygI2/UqP656Ll9buulaviznXCMX1fb1+/JccojAp8yYa2eYdiTZljnnCZ01OHjMZnO7YhsxmTKQpoUyD3t9w/HHidSOmlpqAywattlh7wLZfcho96cNIVIptG2k20DaZQzrxpm04HRpev97T/3iUcQholdHXKOJVEeL6c2dVUVhd6KiiJKm0FGnQGm0MN4eDxAlty93dK968ecvtnSAYt3f33Bz2tG1DCH6mliulUHZRiVIaTDH6S7HGKLqstYXrrAQ1rdT660R5vS4sezQoZUioWUk0BM+ivucYhpHgI34KONvQtt1MkWq0RWVFDpFp6lFkQvRoo3ClJ1b6pYyYvWrLX//1X88Ixg8//DDHBTmL9P/xeCTFYgocvCRtWXoF285xc9ti9Qmffek/zvioCNZiXMvj05H3zyPvngaGmMhNi240WYHTDTZblI+4+MyrzcTX95kbO2HzjmlqeDo5hqBIGtoN3N9Y3n+XSSGQtcWLvCBaSV90ytKn7JRI/5uixIpSYBM0nzc3fkGSsSilpFjdvyVgyFWZpARHsmGXPgkUFxKyVEb0Gvqum1utgNWgo3DRq/yjhAoF8YAQVs7eeQkmYgj4oppi0TRObNdT2dBa14nKS86iepsUMRe6jC4baIhQKuFS4FTkHOa03k8TJEUK4AlQKC3j2BP8KIOk7tSzfwhzxRaYA/IYI9aJGpa4hpuiTiLGNZ2Wm+99YBjEAKZth/m5ulSpdH3NFGduecwZH6oDbyQmMfMbJ1+q7hbbGJS2GGcFAShJhinu6rogFZtuIxXhGGmbRpIknVBRFXO+TIiRyfcM44gxVvofDKAl+DifT/T9Dj8W3qO2WG1E/lNGGtKsnqTXIkVUjGQ/kscMg4ZGk5MVWpfKxOK3onIq/ReC3mQlErY2ZQzgMjQZYshk74neFwhUzWOvBg/XlIN6n+pCVlGgtWzk5aItPUyVqlF1+P0qqanJRv2+urYbLclHDT7lmiyV41/zoWtF/oVqqszjpZgBFDW2EiiV4LZW11PNOnQN1KVnJRc3VWMENZS3K71fZX1JeYVkKKh9PBL01yKKKZtEla4V6mZOsqlZ58gxk2MuIhGi5pILV7mueYKOJFTSIlG4ugaLPEWVqi2ftbyWmpNmqEnQy8GBbK4hCLVV+jRA6wL9zzzNJQH++AaI5LdU25aC0qeCuHWwLXOWizmTatIof1lfYb4H9bGXqF4v0VoukZmPr8Eaxagy01Wrfqlk2llgoxataj/bWqFqnVC8dG41oZkmj9bSEOqDoLjSlL/Iew/9mfPpqSQZHbf7HX46M0094/mI0RGcEolMtaVtHbv9lv1+Jz5RmjkBl61TCZfdaExKGGvxxmDKmoRS8+eNMc4IRr39NVH8NR8voV7Xn+l6HL1EFXopIflzDlWVLlHivK1k22tzQuGZkDjBxgaXGjYps/Vw8hljHew2PFtFcAqVoXUJp8ColmhucZu3DON7Rv9A0xpOfQCb6Taw9z13ruO023J/t+W7pw3p7AEva8HPAFfXc2m9MpSrRqW0Ck2qGO1Zx35/Q9t2bLcbXr16w5svvuTm5sDt7UHoUZsNjbNARpuSDJTeXIpQkEL6L+VeSJyYakF2Pkfmda/Oq/WxRjLWvUhSbFaS8c39X4uvTN+P1P6x7XZP1wljYbfb4rSGmInTxPt3P+KnEdeLiqqxYv5apf4xFmcUX375Je/fv+f9+/czC2Jp+I4zfcoHz3a3nT+Yc5bdpuV2v2GM78nRS6ypFD7CFA3OtHx4fse7p573xx5Pi7UK42Q9N0qcwpkCTT5x1yneHmCnA2o0+LHluW+lh1ArGqvYtRpDIocIupFG75yxWglVCol9ndK4lDExI7wsLeawjs86PjvJiB6GYZqDJFEBMLMSkVRhhNYgTq+SIQJka1E5E4wBl1HGYW1b4oxICCOpSGatOcDCg8sE8a5EqYxrRNpWqsWhVDVzce7VpeKZ8OPEpt3QNRtuD7ccj6dCYZkwdxusK028QZNCL/0U4ySc+SSqLNtuI1MtCRJAQXCscYz9sGCKiNOv957xNJDiKJUIK8lKzlJVN06Ty+TKZMZpABTWNRzubnFNQ8owjFORDmt59eq1JC4lCD2fep6PJwlGnWN/c6DbSKW8bmp10z+f+7mxsVbpFofqIoc4TmzNFmM1MSu0dcTSvI2BthVKQOcajIHNpqVtXOGXiwv38XRGGUPKmSkEHo/PqDBhg6XPA27fsNVbOn/ieHxku+2YzvcwBnREJkdWWNsQU6afRnTT0jmLcpaMuG9mFVC9wtxIkpgdjCYRSxA+qYAKojaVYsAVeliTMjbCJkE7wdhPpJP0ggA424ovQojS4NX3gEjX7nY7gNmxu/ZUPDw8cDgc0FoX5YlhbuoWTvYEJJqmo+uach3NRXV1miZxVQ+R83ko0pfiEyNKrNJov9lsJOjVBi5kRH99R1Vonbe1VdKNqcolmaxXgVCRNgZRDnNG0NHL6v8qyMiRHBOh0DGVUtKwk/SSSHoxhcwlOK/UQGMdJEn2VC5GmrH2LMWS7Igk6dj3BJ/IcUEQVKkUa10TjHmrLp9AfHZAKsuqbuK6Xhl5Vvm05aJlYpZijvR2vBAcrIKuutFeS2OvDdteCualkFR6vdLHQdr6vZZge0EJlBIUr9KwlFqoUpcvkWeilCRzL1dWL+7p6rOtH1v3Z1R61HXPSZ1rOWf2+/2FctzaX6NSJSviONNb4ZPXUCiU1Z9IEWIkRaFa9uez0EaHMylOjL3mdNQ8vlOlMTxCCtwdLJum5Wbb8faLV7z94jVvXt/x6u6A0SUbNgprLN4HGZMpzV49tS/jQimwJFYVpblO5NZowP8qx3qMXTf2r49fnnCUFS0pktZMGMgam6FJCdfBlDznFNjkCRNGtr7jPlj62JC7lti2TNvMyIRWnjf3js5mEpYxH2i3f8XT6VuG4T2vX+94HiNmE7jTllt1YtJwdom722+wzQ1ZZ7R5wplUsMlL6tzPUsTy1XwtwbBS+sKV+/XrN9ze3nJzc+DVqy94/eYNm83SdwFCS3aNkzVLi4iBKlCsrKdupl7L2nE5n9cUqUvBioUedX3v6odQWuO0gSiB9IJ05LmYt+m2GN1wuHlFVfPcbB06S4LRn880rQOVizFuwDlD2wqS2DRO7ntU0MI333zDNE38l//yXy7Gl+zhcu7vPnwgG0XXdrRdy+Fww3ZraZ3i3bsfyflM22g2+z0+GT4cPc+ngf/P777l3Y8Tx2fF3f09dFoqpzmjg0KFSE4Dh/3AF1vFb24Uh0nx01Hz9NDy3L8m+iM+gzITOp7RaRI/l6ZhHHoCkVZJTKUBh6JJ0GJocoLJg45oDab9vNnx+UhGkmxdUWUWF5Wo9QAQmUAJjupGta7+gipIiKHr9mw6x+2t4enpgWE4MwypVIjtTBkR6oRQYZSPVJRf1b4BKElGUxAHLipaElBrjHa0jcYoh1HioLnpwGqHbyasaTAFVptQxFi3eVFykuoykKX6rWqSkQVySj5II0+RGJymiXHo8X5pAjZaKoUxF5lBpWZqBywb6VrpaAnLlq+YMmGcyOrIMI2z67SgFQKTj+PINE70Qz83bisF1rUobQXZyVlQjZSZQmS/32AaaVTdbDa4QhfT5V/IxJwZxr48bjEGQgoorWm7hlev7oscqOb903tRX9CiiX06HfHjSP98IvqAMw7VKcZtwNqJkBIhJWJxXUdBigE/9oRekfxE0wqFgNYSN60kGaVCZ+YmR4UmQojilRFENUuFiEPTNg3K6JIYLYhYDSRgaehfow313vR9L5zoEGbTnXEc8d7z9u0bhBIYBW0qFJtqjlgXnhrQgJoDm4pgibGi3PvaYxRCvFLb+PUdjVVzxSoX9JM6D6AUF8omVzajlFafuaIA8oOINFQX7lL/z8CsaKRE5lnntLx+irMTfKYiJNJfpRDRAI3wUHOU8ZNTLNWlEujGUOhRxWOHpblZGSAuCYY8WJKNnIpsd/1dTS4KjiELjHzGrOef9YyWvXxdr6u5a0RhXcldBxjXVXrx9BG380WtryDPK7TuEsmQPgChlJX3m72MCiVqhWfUWmmunxGWcbD6HC8dFflb8+mvj2u0oVKalFIcj8d5/lT0or7nWkWu0hsqGlLnaVWIq89bZKpLD6Bp8ZMXI9ZrGmahcIYAKuUiGBBRRBrXst9uuL+/5fWrV9zf3XKzExQjRV/6A1Xpzs8frR/rhldgrtTW61U/6/Xzfq3HOkBeewvB5f3/CGFe5fDrhKOKwKgrNcpfnmgIIyMmI8ZqSfoPtFZElRlzQuciye4mtimza1vOdmAEzM7SDyf6PGDaCaV6tPJYrUl6R1S3xHzLNGnOwyPtCClqOqXY2cBN07NtE41rMWZHNgMhPpf5a1iWnUwMYly8MEl+Dt2qKK/sU/v9DXd3d7x+84Zvvv6au/t7bm/vca7FWiNKmHZeXVnMQVXpH89obTElzqvvXfsplgSi9FuW73U517oOLqe7JNAXTeBKk5QYRmujaJRjmvx8f7tug9YWrT1tWwrKJJT2ZB8L7TMKNarEPlpD00jBUGVhghhjUNaRU+b2cMNXb9/yn//Tf6Q/95xOZ95/+IAPoRgqa/pxQBtD1hqfJnyQft5pTHSlyLjpNFoZHh7PvH838Dd/+46z7wmpodnu2Oxv8CaSrZH7HSOOzM54vr5vuG16XBjocJweJx4/eKbYch7eMWRPjonp8ZHp9IwfR2iErq9CIPgJlTNOaaGNRXCqCKFMI9nJpdKfWe/8BY3f6mKwzRXCC+0eVVAGEQeKhfZRZ3ddjIVj6tntTDEo2TBNQ6n+ZqRCuWwm8hpppkkpvaZAFBdfY2ZpVVaw/QwZoxEn8YqEWIzSONsUnXhTYG6JcIKSzUatPntFV6QuUJq+MxCD8JJXgWCMiVR+FlnXEiBeVZI+Vnq5DGYl2ViaKWv/S8ql6XIEHyO2VK7qxqKU0KvksSL3WKrG15DoHNQVMpsxGls2KqP0rOxgtAYtlJecEk3jymZrGbxw9bTRbLdtOUdEntFZjDO0XSPX1nuGvif6iGsMzgpPWhXIX4VAisUboZxcCoGQEz5nOPeYTYv2gdw5qfjOTILCr1dK3OhTpnqdpJjna6OtkSphRuRxS6BTg4lPwfDrSuHabKc+r6J8Mt5XSmgrnvdLlJd5BhVoGNaBI6ux9+s+GqslmE1pCRaL0IBs8TVIrZu/Ej+AORBd3ZcyPgRar8FcmbM14Cqva8qel0t/lFKSTOS6vuRUEo0kaIGSmZJTgJTQuXpcpNlVXq3fvwbM87812Fk1eCtAVdPPsjGq0j/FcuOVyvPr1FGiStKt1IKKXB/X46MWKdZfLycKaV5nBIUudK+y1tQ5JZRMNScNIukbC5oRZhrOJVXqhSSjJE41SlBrNOvPONbB5EvJx7owUK/ROI4XgWilVlUFv5qMVLSgNnhXs756vQUhlrW4be3cOxVLYmy0+FxENJqE0RmjlchMFkSn6xz7/Ya72wO3hxt2mw1N40ryW5K12tdYkunrfWOdVNbEyBgzi0/UAOxTydmv6Vif/zWat743l2OCmstf0MVqv8v8Gixr8C9dbut6lZN4gXoSnoizDqMtWkOKlhwSOUzY1GM4gU5E7dBty6BO9HkkuoTuIllPKD2QMGBvwN7R94/YMeKnRMpSkHIGWpfZNbDvOvZbTWgCefLkOJFiWbOKfw4Rsq5JkWAdEuwXifdV4O5cpW6LOfJmu+Xu/hWvXr/i/vUrbm/vONwcqEmLCKhomQO5KjTWJEPJGlsKl0oJ/b3cjCKxXd693LQZ7V31ZCwRjDxj7vuq932O2dJVMpLnWMdYg8sWlDA2IJOLH1vIS8+vdRalFSknoSmqwgBHjH+1MTgrKHwKIzmOfPXFa0IInM49m02DgN3i0XEaemzTYlyDddKTIYmfR6NojaOzFp0Mw3nk+NTz/v0R1Uh8bZoOszkQcyBpaGyLGgcandgaz+tNYqMn8CM+acbnnvF8IjEycCalidYnOPXkcSTHgFWKBotKgTxJEb3S7GIGimy8ykXYRGp4n3X8oiSjys2qgiKsE4yqcOIsM39PX1AAqoqAKo3OEtDt9jvu7+44Pj9xPp/mhkVRIVDzhBeIC5JmbuCslZmaJFQDLlDoILy+WskyuilUFOl7qHrx1oibsjW2ICAlKEcVvncNsGvfgAT8sQY2WRHGUBy2I36ShCLFqpSVyiYUpclYL1xdYK6gLdK0+YLatE425p8LRSEUi13lPUrrWYKxbjTrik79OaU0qx7U57Wto22bol8tlDBtzOpeq8I/tAUpgNvbA644XjeN4XgeCv0EusYIohMCSVGgRVNKlhk/TZxPZ6ZpwliLsZbtZoNxjtFPxHNPnEZqRVdpI6FN6ffgeMZ1LfZmi9q0IlKbS8dOURjSSuA+yr0MORFyJlBUyayGZGTfUV5iPNRHCcI6cKvUqEpFGIZh3ryrUV/TuIuK6FIljmVxq3NjGQOxJId1rGid5nMQKo+dx8mv/di0lmlKeJ8JOaCqGZyyKCjyyZXuI583rJJgVQLUuUKf44zI1YKAosqm5nljs4XGk5EkYdnklBQAUiLHSIpR7qGW7q8cPCV2wFTkBAkQrRa1lUhBp1TdxtIssiAoTB3HMo+UWYfUUlRBqTnAWQDLXPAN2bi11nN8DkvV9vpYj7k18lXXl3XxpvYWCM0yEQryO8uiljVCVy41K/GNLD1eMUVCKmo2eVEHXM4vLx94VU1ejl8W9K6rlWt0Zu2ZsU4eauW7oo0VqUgpsUYqqopclZusf7/dbi88bup1lbUglPnsMUYU6KapvLYV9NyYTApZ3Jo1dE6R40hKHlLm/nbLm9d3fPXlF7x5fU/bCDrs/Sjru5KoJs3N3IvSldZ6vn/1qy0Gqkqp2UC1orT/EuhSn0Ky1gnG5byQ+VoW+dLLVWl1ajUkJXGuNfhfdKg0Fz9zzAxkTjrhdKRt9ux9S4waz57BD8R4hvADcZxIu3voDuTuhjPvecqeYweHOwWpZxq+I5Axm9cYIo9P32M3Hr/LBSkxaGvZKMvrTvOb2w0p3zCYO56PivH8wPj0CD5gskZlQ0yKiCUpS4gaCGQi5FLcK2p4IUS2O+m9qMp9u5tbvvz6a77+7W+5vTuw3W7oNhKkr9c1oY7q2UesxhFg5oUuo6gLYu2jm9coSqxXXkdpjVEGrUoCU+6S+HgVafkoQXsGckz4VExBUy3eVvNSucvWKZEY12kuBGUv9KoUxEjUNi1Za0LKok6XM8SAy5k8DegGmjLfPvzwR779/d/w9v6G29s7EkInb7Y7Tv3Ih4cnns4nms0GbRyu2bDtHDqNpEkct53p2NBiRsd0SkxDKFQyTbYN2u3Q+6/Io0flwLaxpPFPbNWJezfxdrNlw0Aceh76zPB0Jp49qtvh2/e4vucwZZqHHjuOODIbNDexQ02JqY8MThEyBBJTlvgpkWl0dVyBz7UH/oVJhqAUUlXUc4W1VsFko6+P14yx3LkZTiyVS2OL1viO27tb9u+2PD+3RXGnNq1VAzgZfMZqXFOkPbUqwXamykGaYuoCzJX+em6uaAg3TVsg5uUca5OnwkAuDYyxVjlEZk2SZzVXrarOfU6ZcZwkwShfIuVYq8+lyp6WTX+90V/D9OsAYR0EXBvFQVlUV5WsdSKy5uDOd2H1fjXgWPtupJRRRbqymuyIKokkck3bYI0WFSytmcI4359NpwkxMXmPVZ5EIKmMbTq6TlQbNIrGNQsflnIdStXPOkPCXrhfqxSxGKGreaE9pX4g9gO6n9D7WHieEoBZVnFMvQZIc3hQYlyTSAw5FAUgqdDKEMpzwLHmN9fruzYL2u12s3HiZrNht9vNG19tMIVF7jYlMZCUPhYu7mF1mq6Jd6Vi1N87t7gQ/9rpUv/267eE4CUJnXzhl8eZehJCIoSiopMK6lRLKOWolJxUgodcVUjQVNaSFCkCMU6ARtkGYx1GZYwS35joFZRig6mqI4BRC4lJyxtSQhBZGJJw6VWOFOWIsmnm5UsllErUfoOP4+hVGFN3t4ugqXyeigJnaUSs4/xzUK16TdeB6NpHYo1kVLQzpcVwcA7WolTSIZKNmcdvTGFu0sy1SlgTilJQYHX9lg/7T1NJX1Nz68+VKlS9aq59aqraFAiFqiYftXBQ/TDW87LSrwCMqfuc4uHhsfytkX686ItnD4VykUWJ0hUfH92xbQ1vv3jNq7tb9rstTZH11CoRLz4bM6ItqmGXXj3X42FNm1v3l/xyGtCv/Fhl5eriX2FYVBGaZe7CLNLyuW+hIKnCtMiJHC1eGUYT6RWcj0fa9mvebF7Rxx0/ffiOqE6k4R35/RHTWdz2luy2DE7zaOA717HfgZ56+vEdg7th8A5v9+zsa1QeSXEiBHAtOKPZOcdfv93y/uzIGv72aSTrDUoPWHdGZ7BZo7MmZ8uIJWDIGOpom3kOMzpsOJ/OeB9xzvFv/92/44u3b7m7v2N3c4PrWrQVJSjNJfpeEcqlUMw89Wc0X+nVlcxc9l+UZKS8jpBiEsqsXwiJgZJ4eyUgx0gMInDTTwO+xFzb7XburVqzBSo7Rda7UsD1XnowglDt6/tpbSBF4jjQPz1JUcWNME6iHHU+0uTIl4cbNtsO7Rq+uL/n5CNfvv2K8G/gv/zX/4p1De1mw/2b1/z2668J44mHH//IT3870uqECvDw08i7H048PQ7kpMnGkrIhJsOUt0xpQhNpGsWYn9g0I1++bXCtRzcGzA3ZOKx6TxOONP6PONezj4EvUoOJVmIfm2iS4i5YdDAMohjEQCLqBNaQdCEiFyQjIMW/zzl+gbpUpSgtg6h+I9B6Kot6mJ9fj0qrkg1SNjlrqjRfDXaF7mStYZpCgerjHMTWSuICly1NnwnJCgT5qDz2GpRXyJkZkVhzkqVRUC10pFydwuX1pSpqilsvMghjKElEQTViJoY14pDmqpME6/mqqT3PVbT1pr++Xmve6fWmoJUuhog1y5fqzLW52/Xfrjm5dcOpz6nKScq4ZTOLUp1BU/waqgGhTMZpODMVk78QAz5MDOMo1dAQiVnRGCsceGNpnWO73WK0oevaWSdboaQZtrx+ba6s1ypGkWiM3kMEFTOERPYBFRNaCedSoYoSWCFoVGqZ1GjkS0lPic9StVqg2Mvrv6APl9exKtOsdfLX8rR1TK0lbWWDB6gNo2kOiOZxWavFxs7StvV918HEr53q8Pb1/exP4qfA5CdpovYTQz/MKBG56KKDNMnmCufXayLXMek8hw5a6aJUIvM3lMp8SkVxabaZFK1yCewTSrtidCZN1VUBS5OLyVaFUjIqJZRou0JOc+AiiUV5nirnWh67RC3W6UU98/q/+mj9m+X5UkwpCmqfuLbXY+O6WFEDzaqidU2Zmn+m0J3qY0Vxj5nGVdfKOPsAzZ+3nnNNrih/c7WGqRe++5xjnURcf9aXjnldU2qu7tf5VtGLzWYzX6c1GvCSU/h1sScX5a+UYBzDao1UUGWWqY4hQo+SYotl01rub/fc3R64udnRdU1JMFZXZl6blsBKkuwaFl9S09b7AfXezshTKrSS/GeU6v95Hut19JPHJxP863/5aJx+8iXXNK3VmJf9BkJWeKQJXGPI2QCWdnPDPopR37E/0hwhjxGTYXIW38LJww9Bc0gJmwMTgcEmUqNQ0ZH7W4J/ZBo045CxTUDlgCHQmoltE2ltJnlP8tK3IcG7KbKpqqyEtRCQ5iIqtZhAAmVw1sp6pBRd1/HFF19wd3fHdrub92kZ77CmcS4JxtUXyz6m5sxjqUusf/dSXKSK3G1FnaQwuqKElnE/es/xdOL9w/siEytS8mtjXbnd8qaVyl79ZkLpbc2AsaU/uOQ7KhfDunHCaU3OXpChEOiM4267Z99Kf5YfAxGN3ewwKCLgjPQDO2fZ7Xa8/uINvu+I4zPpzZfE/kQYe96/f+L4PDEFTdMdGFIkZSN9wKtWASWbFrpxNDd7RjUR0KisCNmRcFgiXfDYMNKg6TY3nLNl0pZkEhaFSwmTI0FlrIrYsl4ZlWcpZNmLJJZKn7mG/ILG75rxLzKQkOeEd6m0eGpzjp55xEuDkVpVg/Os/7+4l4rM57QsjLXinxM1SKuD9yIAVBQJUOZqstFVhnDpaUCBVoYQIyGIc6/REpbGmIvirEy2XHrsVTGHkeoRUHTzU6y+EOWr6KQvX5JsxLAgGLOUb750k15/nvp4/WzXtIA5uy9ZvFQV0zwp15zr+f5dvd9akWQNndvGFRO/YiynTHmbhQuZYgSVGAZxrKVUhkc/Mgy9BIYpC4/UtIRpwhrhNFdDut1uVzZyWxK1gNGuUI4anLOSOGZx2vTThJ8CSlnptYgZfIAQ0aYkoGhIZbFHgsC6sVYP1EAmqkQoy6xBGp6yzrNKUL12tfK7ThbWHO16PWsfRx3LMfoLSorc8+X+XjcWrukeptDU1qhXPY9P0WN+TceXb19T+yKqJPM0jfT9QF+ckkMMkEtSnxLnfpA+gXXgVAO9lOdNcKb46SrjmZhKr5RI1mZ0SjMCkRHxBl0KHtJLVhONmmwshQFVql2SYMS52qcVZJXmlCBT/QlKMHeVQNRi/8XjNfhT64drKKnmIFFdbuXyf/Vy8L2mS9Y1ceE2L79fj6uKRKzXX00m6wTJFL42paJVmr5z/cwl1VCXrzejG+URVcgr8/l/5tj5uQTj54or1x4J9XqsncBrcvGpJuk6XyvVdCkolEJSTAXhaGcqhvi9FORLi49ILg7ujXPsdhvevH7Fq/vbkmS0WFO6XkqBC1Xpn+Vcao4wJxbl3ECERPRyHTJSUKnnPj/vV76G/HM96mxNQEDhs2bKGmtbQhJPrX2348YmOEWO776nfUqYPhJiIjlL7DTPCr4dYeMjbZIUvnel51E15OM90/jEcIbz6ZndLqC0weBx6kxrFY3J5CmRp0z2Wirh0kUgsRKBrIr8ui7iDhmqwUBOGaWXfkM1IMENAAEAAElEQVRrZc/+8ssvub+/Z7MVM0hj7eLgXS8CyxxbF8de/Hm1r10nF9dN/UsfsLxNzJcy8HMinRLnYeDh6ZFvv/sOY6T39+3btxdiCcDl3MhJVAljwCdRH0QpXOk9nVdexZxkNG0LORL9SPCenW1xN3dsXcdPHx449QOnyfObf/vvyEHo9M5YKH0qm82G29s7psbSHx9ov/qGp3c/8OHHwPfvnng6B5Jq2BzuGJ+P5CzG1VplQdxVFtsFZ6FzqO2BE0+QZKXx0ZJVg1OBnU/YfsR1jvaw5zElBt2QbMJmhcsBnQNGRSwRp6Q4alXGqsooECQj5dKr8RnH50vYxqWSuB5MUNUeZIDMvQZKoy0ojATphUsnilRCDXp6esQHz+n0zOl0moMp1JLV1qahGnxVilOMadbPVyUNFm8KGQUxJpIRJESk/ERqUHw8LNPkGQYJbqwR3ebqUyCZvynyhBGVDRLzqvIF3seSVCSmUV5/Gj3nvmcaJ/GQKO9bG7CBi41u3aC3/l1tQJzPZ0WFmrnHRXmpGrroq4ShUqyWa7gkM9fHegGoGb3KkJwwwoWPLapbfhqYxoHtxhHCQIoD09Tz8PiBYegZJpFynULER9DHgRAS96++4Juvv+Gbb77Blkl/OBwAoSmchnORnNM0jWY7bRjGqXh6TIzjQPAJ1zlcGelpCjBFtM1YI9djXiyKC32K0rsSUiRmqdFkACOeBwZdJHTznJlfJ1/rKmY11ru5ubmo/i4c90s607IA1nkUL3pnrLVzkr70PC1Ulio5/C+lafPf/ZvfUDzBiDHRDz3DMHI+nzife1ISFTBjLVopfPD89NN7xnEQdDIjpk2xBrgANYGW3iptLdpYQsoM48QwTjw/nzk+9yIokAJGJWaqlBFZXKMVVsmiauqiWo6KjqksTeB6pVBVY7/aPHmRaCwv8OloOn/qd0U0IysSEZV1STKW5ALq2PkYyajJ7Gcf5b4orYQylZfeIC2pBiqri/F5Tb+ZG97nEPilj7v2gPnLHOt5uE461p9/rV1fUZ1Ko6oUzfVaWf++7/sL+uQ6qKnCGiEkCfSSQWdFToEQPTl6yPKvzpGoIp1t2HQH7u8O/NVvv+bNmwO7bce2a7BaFQS27BElEBSlxctkSoKqBXmCshcrQfdFaTCKkmHOxTDuX49/qkNkqA0pa8YI55J1hGnCbBSNa0lmQ9MoDiZh4sB3j98zPE6Mwwm/MZzvDcej5r8+Jp42PYdmz94YTOv5YnfgkO4YP4AfJ84nzeO7I/d3ga7JdK1iyM+8udUcg+U3D3viqDiHyKQ2ZD1JaS0nsoGMJyvx+CqfAI0RlQwV5+lZVUH3+z1ffPEFh9tbuq6b44KKCnx0PT5CIV6e7+vH14IG69fNFWVIqzGuMkllxmni+HzkfD7zfDwSY2Loe45PTzw8PnB3d8d+v597quZiLZdoboyRGDxjCGQlLtxWw353Q9O2IiGfFSopAaujGNQ1WtNgeHh6oo2KxrboBHGceHr/gd9/+x1v3n6NtS0OTfZFBtdZurZls92y3TQYleh++xv+9nf/nedz5Gn4PdHtMe0Ou3+FGjR4RY4awgRpJCvPeco0hwN5p3nIDYY9Pmd8zJxOga/Njq3z6CnQPJ5o7CuazRv+x/OPPKYNwYKJCp0GVDqj6WmMFNiyERdwZ7L0W6cyWgpL+HOOz04yasCrSgKQCyxQm7tNcX0OIRUEo/Q5FOShBv/1+8lPPD09ce7PPD+35T08Ve5MGoBAJMZq06MuGxtAoRzZIrGqIUVfHl9k6EKIjONECCLblhPEwJxg9P1QpMUk6HHOSibro5i1xER0CWfs0sAd4pxkeB84n3v6XuRiz+de6B2lyio+HgAarYR6UI+KKFxPvn8w+6+PaVXDkIukZU21qX+7TjDWfRsVOajn0g+DXHtrCa4hu6W6MY4D59OR0/MT52fFfrdh9+oWa+/Y7xyTlx6NdtPw9Nzz8HTmD98+0DQ7Nt2Otml5+0V3Uf2vAUnTNNhCZ8gw09oqX75rWowR46mchcqVQiiKQHn+yrGgFyrJ9S5UvhRTkTsFbURmD8BhhPtvFWsW9JpSUa/lmtNeudlrGlVFN0KYriqry/dLw6ifF7caSC5y0IppmmYBgPr66/P5tR7OFGUcpUlakZMVne7c0hT3VGM0TdMWGmPi1d0tISzBXYyLs7YE2LmYPFlRmNOarBQ+Zvp+5HTu+e77HxnHbxnHRM5BxBaMfCm9CC9opeZAXitVAmvmwkfx4qQKDFRBCqBURhKsE4z11K7Axj8UW78Um9c1t6DI15X5l2gjn1uxzhff5NXX5WvVwHyNFszvodavsTquPv/62z8nxfiHkux1olGPutZVdana/1bn4jiO83PXClN1Tq+LZx8bdVISVY2xFnImTBPVjFVpScx0kqS1MYbD4YY3b17x5ds3vLo/LL0YpeFxXlOKD1Vdc3KOoHUxTL38zPXaXCchnxoDv/ZixT/nIwIexZRAZ6FOKZ+IPnHvWlEiThs2zY4uNkyjJ52OmP2W5mAJquHxOfI+NiTVwqZlsw3YO8VWOcxhQ3jak3ni9AxhVAQb0Lmn6c5sjebQNLza7ninIx4IGKZYFPeBqUSJYqitAENOooyVi0w3pXDmmoa2bdhutzI/jC0iEMuxLqTVOQY/k2hcDb81ivEShbw8iZxFYnvyk3iADT3HpyMfPnzgeDzy9PRI03QzbfHmRuR27+7upGn7iuVxkWAUqnskSTN4rmuHEnUtLVTpKn5jlCZMvuxfFqs0GMsUPD98+z0/vvuRKSa+/uYbQDyYNp0rvcGOprE0TaWMO1y7ZTh+4DxGTmMmqhbb3WO7PckcwJ5RMaGSIowDMQwo7fHJsL3ZobaW3jQ0TUfQCp8gNp6g3xGJ2Jho0Zhs8dHxNFomJQqLWWW0y5iUcQGsXspEhoRRxdjQFjn4qxrazx2/CMnQ5eJCVZOSQ8+UqDxDWqpSq1g1FRfqgVKpmM4NaC+KPdKQt1SXZACkkmCo1fvWypnA0RY7BweUClXVVk4lGBWetygPgCEECj1DkgPrzFyJbpqGlKIgHf1IColQkozqflupUbHQosZRBvw4TPT9IM1CNamqiIyqxjJQK1LXTZgvbt7lWNOgro+aZLw0Oa/pA+vJvKZn1b8ZpwmrNaRMbGOhqNQxIFX4sR9oTMNu13Gz36INDP0j1gi//e7+wGbTYazlb3//gaGgO9YYbg43c7XeWiM0r2xwTVGgQlzLZ5pdSTBd41Ahk1VVdwniTZLizB2n3O+ck9A7Kkd+FiWQUWm0KF6AmEgqFS/GT71O66A+pTTzs4GL4KRWRZbmUH9xzcudmAOb2i90cT9zfY4sapW+sVb4qcHPr/mo/E6B6MFqyEaRnMGVnqzGNXSbbh6jh8N+6Q+4qqCvq/jiRGsQYpPCx8S5H3l6eqYfBr77/vtCRUk4qwvU7wolsvacrTfD8ui8nqnSD7VQWHSRpC1gKiDrlnyzMKaAy0BcsfxCXT02P289j5fhfPki9fvLokL9+eI9XjjqelSTn3yRX8gJzWsHdbyuT379OsyoHPnq8fVpf/p0/iLHet6t19ZKm1rL1K7purCgvi8VGa4brWWtyOU1Ra0slSJUTh6thete2tpwxtA1htvbG17d33J/f8t+v6NrndD0FKu1TNgAc7FFV5lOGY95hp0u4LYXzu/yUEoQX/VPegf+Fz3y0lIeAI94gPqMqBX5SCqUJaUsjdvQmg0mQh57rGnIO8MYGyYV6FVHZzdMXUezPaJ2EUsgdZnca7LX9KdUkoyI0SNuM9JqzdbC/S6zd5lJZyYlyniSWlQieNnrcolLsjBSluKNjCNr7Nx/aPSqN7OOoVL4WCcZ6+O6UCp/kucV7FNF1PVYrtQqsiBzk/cM48DpdOLh8ZGHx0eeCyNmpzQb09J0HRvVcTiIA/lc1FzFV2u6VBW9yIB1ojZKiBhbelK1oWulSKpLv0qaPDEJdcgaaaROiHpdP04o57h79QrTOIxzKCdxTnUNNwXW19rgmpYha3zWBCxJd7hmj24OYHdgNqAn2Qeih+QL4mTQ3QZaR3ANutF4JMlIemLKj9iYsSli0ZA0ftIMkyM6i9IQc0I1wuywxmAKa0Ai5tqTITGS0iWW/0snGUuiUI31pHHSmOIRhCqJh5q/chYX71oZE4WdUsk0ThbgGb4S9SrxugAfplLFlWm7DIrabCcTJEapJBrDHLyKj4VUsUMOhDCgsAQrsrgxnAr6MDBNfuboxSgKCilFMdPzZ1EjMFJRqslTldBNpeHbT6KUM45jgdbLxqMtRluhjBmNNTUAyXMydd2AVDfDtXzt9ZFyLoS4QglYTZbrakCdQOfzeZZo3Gw28+PjODIMgzQ6xci573HWEpuGrnF0rSMlMedT1mCNpmkd//t/+o+8fnVAqcTf//5v+Lu/+R19f6JtLXe3/5kv3hw43N7y3//nT1Ld8x5y4vZwwNiSsAFhknvcdo30gqxkN7VCLO6NprGOnCO9j4x9T7IKto6mNGjpKD4HsdCQ0El62JJUa4zSWDROV8nUqrSSCJOY0+S4VDUqlamq0dQApSYZfd/T9z1KKdpWkDhBMhSn03HF2a6oEcgSL3PDWiveIEoVxGtp3K8oXEpp9uOoScdms/ncKfvP8lAIzUgl8VohiQyfNWBLU33bdSIJXCkvq6C9rmvXNJ3qlaOMEVhbG5EPfD7Tdg3vPrwrKmRShDBWi+a5EQi80lNYfUkoredwTAJG6TkwStSCdKopDfM51uSi/rj+XU1kPsoRlPyN/G5V/UPN/79Y1K8SkOUt8sdVwp/5qSYY9XXmc7vOeHIJbq+eU4R+55PL6/P8mU3o4rr8Ex7X62rdv5oiv10fh4VaVXuv1uspLMHQGs1Y1tpCufVT8XtKNE4JJVNLs+du03B7s+Gbr7/iqy/f8ub1HfvdBmclu8spXIxrrWov4GLYOLMCykBaxixzIFb3x1QCpvq76sL8L4F2+c/v0BLEJ+n7m0hMpZASAR8D09hz7HtsPtOqwK7bs797w6kZUdHj3BnTOmLa020CdvsWtXtN2u/Jhycm+8jgP4B9IptHwvDM+OzpnxxWg7GB1gQ6EjcW/voLy+M7g0qGcdCcCyMhAlhFigGdssztnEjJlsZiZvYIMPcgAqCqp8yi0ARIgS8zL0Y1Ib9OIFZPL8XASxfv6z6MiyusSy9XiiQyISV8jEzB0246XNtw/+oVu500pTtjMcDhcJgl5teJ90Vv3yrRQGtc1wjrJY3kXH3WDDe7PZ3r6FzHfrvn7J/k8ygliI8ztHmLN4qzUeKu3TYcvniDcR2ncWJKkY3WWKMLbRqMcbSbG/xuZHvzms3hGdP+RG5uoLnBdAeSeUAZjVFRnNwNmNawudlC15I2HXm3ZQJ8EJPh6Bse+8Q4jOzTJAwCrzifMirs0TqRCfTpjL5xNKmDYcPp+YQKGZKo4ylVvKAMqGTk5/xxEeOl48/iXtRFVpKN4tpYi8bzwlubpOuxVM+NMaRcNZPlecNQez4y4zgw+alsCtJ0VBENowy5KEClFAjBAwmtxGVSNhEJJlKSLTSlUCAuadQ7nfpClRKHZmsWF1htdOnjEJBRa1EMMYUCZrQRV+Yi5aiUZrfbl/NRDMMoUHnMhBRmd1+loHHNcjXUpbtlPdZJxpqKs+7NqM2WMaRFCSbnC6nb9Qa5VlZQSs2JxTRN87/1NQBUzgRdJkAqlKquY9taGidme/UzSHAHmUiME+MwMo0nDre3bDd7fvPlW949iGLQ+XxGKVW4keKlEVMUeto0FR64rHmbbiP3kszT8ciHxyfOw0QfE+lmj24UNmwJiCGYTiIdzGrBQIsngkWxMZZOadqaoY/SYJxCoj/2yBxSc+K1TjIWFbIFZatO33WB7Pt+Rjb6vr+4nzmLupHcSzsntfW1Q66GjWGm+B2Px7nC2jQNu92OzWYzy23+Wg9FnAsWwXsReSiUN2sNzilap2ncknyrmC+CJYBcpC6kAl83KcQTw1lM05C1UB+bswSAWSWyzlRlRHmB0v4vf7wiCynh5VLQ2fJf0kswbVMmJEk0Yo4lcaJs2vmTicYcfOvlcTVDCRW1XdATNSOiCzKaua4Yrvrl6muqQm/l4+rg+syqGEU9GTU7BVxnQ/Uc1PxYNS+dDRFzrT4uKMlLo+Afk2L8YwLkujas0cG1O3ZFNuq6WQtP9drV59f1uNKrjHEM4yiN1ypjNFgrhSWnFbvWcH+358s3d/zVb7/m9f2B/W5D21pxgS9JQUqxDuryntWPSgmdJddkUM0IB6peUxn/MZRejSSBgdKSKKtK8XuJivIv5PiYnlNT9PzReLyurl889rll2vV7F4p49ImkE9FGovJgxBBNp55N52DUpJg4hRFzd4fXP/L8/MArmxnGkSYr/v2Xbzj7hjDCmDxNfEKZTGsi7vA9j8cfmfIT05B4/KBQOpFtYjNONNlyYxVtM/HwJjMNgW+/e8ZqiEWZchrEIXpeR1JVQDNkAsYK9bRpmtJbKjFDTWS1NhirSoygsI2d5YauGRnrxCGXKoU2RQTowkNj8X65Hp9CjbcSzLfNvBd3XTf3R9YEYu5xTRkLbLfbuaB3XTD4WJFTEPEYZXOxxqIcJdm3vLq/l/4O5/DTJHu5hpQUtA2qNThnePtqj/vintM48jROqK6F4kN2mgb2eYsxVlS62hbXdBibUId7Xr3+kuOz54vfPNPnLZ6WISi03ZJ0IscBCKQwgAHj7tkcbnHbloDchxgyjAH//sx5DIwhcJrOeGuJSRFOHhsdTieiglMK+MOONitQZxjOos6epYCvdJ5NGo0WU9bPNcr47CTjpaxUFry6aMsJrTPFZaDIJK9VpJQSWkVyXgziqitzjGIW54MnFSMirdeLLSWhyXOwMitHsdrclBi0pZTFu0JrUtKANHyP44SfPJP3RC3nH4JfBfMebTJaJ0JQUgm3FolHrCQPGYSv1+Ccx7mAtQ1+itJglbL0BqykemVgf0xtWmfVF9WsFa1pnggJUkFrZqncqwjjOsmok6tSnoZhmJGXmSJUJm7dSOXLYstG6lwDmy3GrBrLjQQYVV9b6EtB9OBbx3az4eFJKELTOErSaAzGOoHiVspa8wKkNSoyCwUATOMoGvbWYdsG3bWYxpK1Iim1OCTXxQMFsaAYKJwyWEAnSKGa7QRR/gpBQrn8MWz7KV5z7Wep3y/qYYs8cf3dmq9qjJ3vzfr3QKH1xYvXqrSyGsz82nsyjNGCOOVl3CjENM8aU77Es4K8aBZJHLXQJuvPzI9XOb8l8I3RM06ieDaM/WzgJIWERCJII1tVR1H1bGa1+IVWoqDKcIvy1FoOVsZODU9USTJqTPNSOLdGLJZVsqyxM5KwJBr1dWZx29VGXo/rcTrTDK7mxvL78jerf2WJre99mWDkYng5J3ZchGwvfMpPHf+/SzBeCiCBuWjQNMI1jzEyjuOMGq5prHDpqbGmni5GqpoPD480zjJNDVolQflVwqnEzb7l7u7Aq1d3HG72OGdQlYLAkqjlkpxeNsYvycV8zyTjXvblgmzAsievm8Hr+Sr9Cb77r/z41OeROZUvct1rOt0nXnCeN5/qa3npyLmIPtgENpJVwLYNTZIYQvoKNT4knp+PmO09umnYdA2aHpU8DsNh33D8diLYCXKLShM6Baya2HYPcDvQxMjTs6HvM90IbVCkkLFZs9Gatpl4c4APN4q7neXpsZc4CEp8VPbtLEnVsuzUBEDPiexMsU7CGEg5YUr4OGOhq71sTUv66HpnKdzo1fhdx0PrZGD9dzJ+hSFSqU9Ga7q2W1TuVkhKDAGdmYUdPk5AXyi8qIURo5RCWXGfq/2S4rPmhBqZS0KjRMoiW+ll1Y3FbRr2XYMaJ8LpjG4dWWtRuMzFgyyLwIlzDusakop4bWi6DbubA4f7V/gTTF4hxCFxSBfUO5KzBwzdpgPj0Lah6TY8/vgepgznyPj+mTgG8SJLRU4350KfMnTaEq0ma8fZUMgWmmSscP1Ic20rFYh+VSP7rOOzI5Z10LTwVpfkglyD/aVSpPWySK6pO+Uuz4lKSqK5Xikh0yQJRn2NuqiukxRp5F3J05bTqHKCWgmykJKoiigyRksvRX8eGCdfKE6iOgXMsLnAzQHrFp620VLN1MrUAmh5LgXdaGmaRNt2TKMnR6nSa70oZFVkRqnFgG8d/F9TpOaJvZqkFSmqyFGuTtErvvD1ZKowoVTJA33fz0nGOI7z/bTG0LUtu+2O3VYM5jbbLV3b4Vwj1Q2zoW0Nw+mBcRpxVqQsKdx0ueUJYxSNNbSNUIhySkzTUMaSpmlEf9v6qkMvG4LWGmWMIFtZNmFbuM4xRZruhpvXr+DuhnjYka0hG0Uuzs66RnYZYsioLM7fDoWKEXwgTx6mCCGQYpyr1HN1cBVcrBW6LsdIvhjT15tVrXZO00T1eqlBTUUsZmSqvKa4xguiUZOJinjIePmzvGj/WR3WGCI1qJX7q43QlprG0dTG23IPVF75TOSlyfr6eitqVUrmrw8Tp37k8fGBDx8+8Pj4gPcTmYyxpqBYImrcdFpkBZUQn6pQrF4hJfVd5kVe6ZIEXxCaUDNSUTfTeu6XGxl5QSXmgGaV5M5ogarBZt1AX+Y+X3+/TlKvK3jXCW6toqNA54Vrfel1xPy+FS1eikfrKvElorJ+jev79fnb1D/uuK5aVsRCKdH+v7u7QynF6XSaaZDXEuLOOTabDXd3dxdGnHVt9SHwhz/8kWkaiGEihklousljVOT13Z63X9zz9u0r9vstOU4EP0HelM2keq8siZ3Ky/Wre2tOK8T5hWBMnnvpi/ISjfbX3tv1c8dF4PiPyKUu6T0/t+6W+ZJEQjVrhWkT2kaUCrQ3iWbT0qgOGNg2mlMfefjwns3rPd1uwxevXjHyB3QMGDT3W8V/f3oCZTHssMljpjNWn7hpP/Dqa8t506CHyKmPtAPsoiF5hcOBNuim58vbhr63vHu84e/efSAoSzQWpR0qRVTK856pcp6RL0kA9IwYNE1D13XEEkPEEAtlSjMbjl4F+fWYY5bVNZ3H7lWi8clkse7JCZRWuLJHOLvY72ZE5EVUoiJ+mmDVS3lNl3rpPTSloKxLQK8Vk68FctDWoaVJA7QUnFIUCnu0RabQWnAW1wk1PW03aNsyBXEgz0qJ4uVc6GhpmgavAiFnrGvY7Q+8evOGB/8oMZ5a+rC0yqjsydmjjGJ3uGHIoHTDYX/P3/+3v8UOCTMkzt++w55HiJEpRxSJDZltVjRJ09iW3GXOqud9HjmHgIuZYBqwGc1UfF9EDrsmGQrQnxmK/CIkYz04qpxsDepTkbhdegjk+WZlulcfSymhjZFgft6UlwpMjGE1qReakCpVn9o4K3/DnOjkasYbM7V5dpoip+czKWq0tljb0PcTwVeXYX/xXouPRSpNpBlSFrqUMsUszaFRsqCkXJyjM1pprHE462TBKVSjhVeb5iCpBvz1ula4/noSvNijUTIfoxc1qTX/v77Gui9jGIZZ1ahqvSsl/QR1w+y6jsPNDduuE2m1zYbdVvwsMhBipG0snWtQBCYvCWFNmna7Lbttw/3dLZuuxVqF0Zq2kcCRlEqyp3GuIeUVXFkCLaVVMbaLpdItfOa2acjGsnv9ivvffEW83THuWsK2wzYNxjggoUvWmiXjhCiSqD6IM3saB8LziTgNpBxRwKZr56CuXq+K+Kxlg6sEZp0Dzrm5AlpdgOvfVtRB3MMTokAjuvz1ORWGFsNISYbre9bAR+taLV1e+9d85BSJsVLDqnKWGBM1jROlN63I1ehtjmxXwMXVaypdhRVAW0NIGe8njqcjD08PfHj6wMPTI8Mwyb3QhhiE05tSxmTxS9GlYpyQAG89E1UhElCQDrHqE4qVLrSqi0TiZxZglReelKpusnXlXiA5Fk8i5kLO/PI/g2BcXO+rSuI6uPwIpZtpqBUZXL/H6jlzYLD8Tf0AeV6M5z94+WL8E+fKn6JDrJOMtZR00zRzb9U6+arPq/N9u93ym9/8hvv7e968eYMxRgo3w8DrN2+YxoFpHHn48COn5w/k6GkdfPPla17f3fDqbk/jNFFpTM1IU/nKtfKulirvfK0UKENGs5oS81ELHeuG9qqItQ66/1dIMv7/dkQpohxud/z7//gNbw6RXXfi1evXPL/vOL63vP+ff8Nvvv5rDnc3mPAVf9ufMcFy37Xw+sCxGcijYp9H4umJYBLq3PBqA+7DkTC8Qw+P3L++YacN40PDjz8OnHzEPifyJmOdpms0rR6I20h64/DxwP/rbxL9GIihxE2ImpmuqKtkGAh3WIQIjJFm581mM9N1nXOFGiYNwzlmogLiwsBYq1yu45H6u7l5/ApZu6QuXR4hSk+jtRan5Us1UvDJpQiTYmKcRjyeHCNqZai5Zh5cv/48JwrrU2eNVoJSekKtNtG0LdrIHoXRTD7I9DUKhZjZaRQGB0bNjf4+BlAG27QY52iajqbdYF2LMW72CwthApVoWsvrN3d89zjgMWzslh+P78VZPgcUAWuV7JlNS+scFkM8j+wjqH6Epx714RHVZULjOAaFU8KkyGEgRcVGd5hNR2zv+e7hj6jzyHbM7HRL66C1Ct1GklIEFkM+cgE6PuP4M5IM5uBngW6Lmg6pjM8aHMlgqpSCtW77TCHJIuEpkrWWnBPTtADxSnHxNzUInAdJXaeTaCbnUv2JITOOnmHwnM9yQaWxPOCnxY17rZJVq4ULILSqNlIng3xVNCOlRPJR+gtKo3pFBrJdMmDh+AtEXilZ6yRjUcu5VIipG8Y6gVCFPqZM8a8or+e9X6hPSl1Qkaokan1OhfmrIVXbNLRdx/3trTRMmaUJK6bEOE2QDdYZtLFsd3um4ZkQAk3bcTjcktOWw03H3d09m82WhCH4IHaGSonS1zQVupwqvTalmqEVOaaSPxXlqRhn0kDbtECm3XTYrkV3LXnTkZ1DW/FgwShBKorLu8pAzOQQCFMkDCNqnEijhxglXNQLBWSu6qZF0m59rDfytdIULEniPIZypTpZrK2VmipMsDxHAh3pJ5H+hMg6ianV+X8p9IYQw+whE1Ms8tNyv2uCQU6IXYski2qlLlcu32qOUsZP2SiMRpUExQfP5CehTI0jU4iEKI241HtOje8keUjI+lHXkVSivJnCkuvf1ZFZcQw1/3724luHgRdIxkLNW75ffcBMeaw66eZZ5W0O4v+BY43GrY9PJSRqncXVPGF1/qsVcQFXVLmOeZVg5fpZV4nG+nf1RebsqT7wic/00bDPL/5SlXO5nCaXdIj1WluLA8MwcD6f5wR+jWDWNTmEMPPRp2mazUS/+OIL2rYlxkjf91jnmIaevj+T0gh5guzZbxrevn3DYbdht3GkMGCNxmqFqnvZ6r4uiYZefT5xKplRrpfytryoaF37/FxclavX/tfjL3DUPiwyxioO9x2vX2cOe+i6EiOcE3E6EvsnWtvwxX7Pj6dHwjCRnyOt1thGxGr86UTbZDRn/PMD+xtF8zTA8Uj0ibPqUabl1ZstQ8pERo6Dx54SNzfQkGmIbDXcbQxfv254+2rD8X3geE6kJP5lKmeh3kAJdy4pTktwLsI44zDQdA3GGVIS7xaq5O0L6EXdU68pe7WwCFzEPNd0q+vf65KA1yQcpUrBuiQZWuhcqhQZX/Inu379GUmRKue8omsKg0XV+AC0kb6QXJKdfhil6GIcUQmioaMUylXUxAS5rOnee/rTmRwz1jY0TYuxTujozpJSEKWn5PF+IMYJrRPOKWzXSA8MiRTF9NM5i20swzRhbEOYAqfhkV3K4D1x6NmpTDaGmA1Tlpgwogg5EfOEcYqmbWi3O8KxxasBnye5iSrhdMY0jqTF40eWjYwmf3by8AsI3teOjDLwqtqTIAxLgqG1mrPVimLU5+WMQGwsG/HCmcsYMxZVqsuNoQbH5QqsKk4FUZmhejWjFNUPI0UFGKyNcwPdR5/wo/1LrX4om35JPOZgNIiyVAiBUBCYOcmYe0Xk/KrTrrxXvtgELmlml1z/Nb1GLgZQlCvWk6YGumuuMHDhzbDmIlf0ous6Gudo25bbw2HmXVLOSRKoQM5SbUYZ2m7DOJyICbqm4+7VazSBm13L7e0dTdvRDyLlVmUZvfcM/VDUV6QhTFfXs6uN0BhTJrgs3E0j1ZOmbdDOopzDNg2T0aVpV8ZcKsFNXWhUzuKd4QPRB0x1CS8TJWc1U+9qMlg36TU3+xrJq74VFRFaO7qvE+HFBLHKOV/23UzTxDROeB/npLP+TU0ycqGy8PFl+tUdMSVxik6JXJI8bbQ0axsReBCxhnVfkpkTrZyX9CLLQiIB07zuaJQuqGoq9zFGfBAZ6xgz2iJjLjFHzCWGlwSDJfmol1twyPq+y/OhBIWrhuclyGZ+xkW0nNX8vrVCVlGL+fnr38Mcs6+TjGta5HrTXFft57e9KmBcv0Y9T9HKrxWrXN/+4mlZUTbl+QqsrseyDr8IZPxsjvQ55bFMTUyW03+p9+TjybKmc4zjyOl04ng8zvO3zvtpmua1eF3kWZvGbndbDjcHKlKsjWHozzwfn/jxxz/RNxaN4nCz5/7+jm1rcRrO4zONMzROApqaZIi62KrhW6lV8rdQOtdXSUGhVS0B2ZwgpVQM4so1mREQ9dE4+NfjL3DU66sT7VaxvVHc3Gpy6nEuYY0iTU/48wOqu+Gu7TicFMdxZHoaMNlim0RKYgi32TZEBvzzA5vB4o4j5qFHoRi1x20NuxvDbrIcz57zCE2f2GyK4EmKdCpx0zT4g+aLVxu+PZ9RJ49IL5qyR8YlwaBQvnJVkqvxl8QQwzjS+YkYRbSkNgPnEoWv153rr3rMrJartfy6ALIu8ilVmBtaY5We++iUUihj5vdOSpG0AZPI1s3zer2fvLQG1uRHl0K5piY0eikelcQCpcSx2zphsSB9hJJnllgvJnSI5FpgTTCce54+PBDGgDWCZjBfXymKxeiZpoFhODGNZ8geow3OaYyVeCjmACRs4zDOMk0T3QbSFBhOZzaTR00jcRrZGRiNYYgGnxSdMSSl8CmR0oSyGesMrulItmXULSMjLoMl0amMspqsBxJprvJpPj95+EVJRl3chR4jiYasj3WBTii3NM1IcC0Q15IMVMqQKzc4Y4yi69oSiFqmaSQENScV6wozXPLjUzHmCz6RdN1gFdOUOJ9HTs9nzqehVEalmmxNS3UQX2Bj2bByrn0Yag4gK42iBusAobh4B++JJXiPMZFyRBuFVRat6gYVSDkRohEzzVWgWq9Vfe11IlU3jDWfNueiHJLF3MfHQFg1CtfXrdD/WhmiVuK7ruP29pbdbjfrR1traKzlZrdj7IdZdSqmSlNLdK0TQ6nGkVsFxmGbDbZR/Mf//f+APJHCwN2rN4QAT89Hfvz+e6bosI3np59avv3uT9jGst3v2Ox2WGdxRT1sTmKNVLZ96elRZNoShIoOdZoXRO89KinQmQ5L3YJVFlqW1QZnMq2DLiTamMA1ZBJjlob0D48fCOHlBbE2XAMztawGHsMwzPdnu92WhSzNY7kq1TjXzIl5CJHzuRdVM2s5Ho88P5/oz8N8P6qSlCAlJTAuudgLcdOv7qj1WtEGl2S3LTB8TdTqmiJjYu1UX4PEj4NnrYXKaDJYF+m6lm7TselajLZ4rwgxoUzCuBaUIiUx+cyouRCX85JgrBWikGkgFMmKgs4mijUyr1WE60B3ff6fupHrpOPqms3j8vNQjIqWrmkyLz1v/S+oYimTq1BM+cgLKpFXr59XRZPLk51P+vNyho/+8Od+v8q65jN8+VgXdF6qqD49PdH3Pe/evZupjVVxqqpK7Xa7GakQQZKAcZaQInev7uk2GynWbDd0/Zlp7Alh4sP7H3n68J6uNbjXe/bbFqMiYTxzenrk8NUb9vsdcRpXSEYhz5UEo8BzUpxCED89Fapdvvr8VdmnCoGURMPUhOXiKv6im/Kvx2ceqvR1TWPP+4dv6dxETEfaRtEPW8bB4PtHHr+3tLvX3N2/5ats0YPn/eMT4fnA9iuD2Wl+/O7E7pWjP/WcP5yYdId9GtmPht++bZlc5hwC3//4JwajiY1B0fDcJ3Z9z8Z6sIrOWjCeSfV889WBv/sQMe88KQsBVGcJGCNcJBohRnQQ5E7pHvPseHx8lCKlMjjrkGJuQqlEpV7BJWqwLoLObI2UqkOHJNKrpKQ+d80GqDFNYx2uzM+KhtT+kdqXmkmlD1PRGIsvBcj18Sm6lCQ9SpIYZdDIl9DS5Rz2+xuZ822DbTu0cygl9G+MJhtJQBSKEISu1bUt/Tnw/R/+xP/1X/4vfvjjn/h//h//icPtHe/fPfDHP/6JyY/89OP3DMcPnJ6OHI8nfvzpib4P+CxN442B6MSJPOWAUUKzsq6FICqHbVL0331Pez7hhpHOBKYEMQSiB7VviEoTlCdlmIzHEfETKLcnNZneROzQo7PCKhgj2JAE2TAiXGSNpnWfNy9+gU9GmpEHNWeFQnWSe5jnf2vFLcWp/L42ES2GYsZKT0atuldpTmst5/MZkOxOfCsWCkuF7y4qNjnjESlVVTir0xjwU8T7VKj5SXSPyei2KcVvNeuhy2dcGq5rYF0eABZFpXEciUEadmOM5BU8nZJQfrQCZTUpKWKCFBMhJHKhONXNriYPa/5irZTBx67g0zQRp4nJe0Y/ikpPeZ22becJ6Zy7kKmtkqtN03A4HLi9vWW73c760UIx1OQUSVm+xmlA+bJBKalmWOdwrqHrDhjbknPi4emBV/dfs9vc0TjY7Tb8/g9/4u/+7u95eHhAmxts1Dw+PPDj9z+w3+25v7+n6TpyWmDZVCpvWuuPmBUxBKYYyeczahjJXYNvNGc/EWygcx2b1mK1JelMyp7gPSkkyPLZjJYkJeTE4CfGFJhSRHjlJUlM6cJdu7qhr1W3auWyStY659jv93OfwXa74enpae6D6boNzknz9jhOs9xt0zRLMhdj8TDZst1uV4lmTZyLX8TnSVP/sz3Og0CxShczItugjS0a83FOEuuir5TCWc1YrpEk4a5UaBU+RLS1wr1tG0KSBrWYxESqa1u2my03uz3OPYlcsk80prjKz543qRg/mqJ8JZuhLZldBRukYKLmSr94uwiKO1fvZwlYOZaNFup6WH5TlpaXkgqYg2pVN20pgrx0rKuO9fWUMqvzWPVRcP3+9XNVfOAyNap/oj6KTZcHZmGS8txqmVRRjevUalZevQpILhJ9laHIB+eqp7hOtFTVxBEcpX43T5Es6eMMvahKdwVj5HVSSjOVtCLvtd9QClyyJolv0sTDwwPff/89m82Gr7/5htv7e272e/ESsFIwMUahckLrjNVgjTRrahIqJ6wWHjw5Y7RhiokUi+KOFXn3nMvnmKusdQ+WfTbW/VCLeZZ1VhDZQjHVugqVLCo+uqAZKUR8/JUvJP8MD1XWjGkKTM+PTDtP6M6YDCqCzRY4E+KJYXA8P1oaNGYaIA8w7oi5J5iR1IJuPapPpNFz/NOZr1Jko1uM33K4bekaT1bvOZ+8mKzphuN7Kaw2GHa0dHuNMR6rzvz1V/f87Tv4/mj46dnCNBSD4lVBRVOKx8LS6PueEAVNPp/P4ndFLtKzqqjqfTrRr3FaPZbCrYx31NLjdY3G6RIbGq1pnJsdi+o71nOWfjwjyUYI85KpkcbwdHU+L1Gllu/lHaSIJTL4EpuJNPrdq3v2W/HkCGSS1gVJh7pWgcQaWQmDbOonrCp9vCHhJ4+zDTEk/t//9b/y04f3jGPPu5++JwynUtRWnMdMTo3M2xQxOtC5RNMpcjgRJoXxO5RqMDmjpoHw9AH/4T1mmDAhAxZFxKrExmn2O0tMkWEa0caibUCpyDQktGoxNpBNz6QmThF0TnzwmaghGkGRnAZjM137ef2hvyDJWAaAQigPWq2VeCpstkBtcyaqZABYZ7DGoo0s/Skt9Kt19X5NUbn+Wqha+aPzSrFuHLnQT1LRO1alf6JSu/jodWXgvQyl1USgThZRBFqy8hwrnF7kS+v51/dZvVb9aa0itX6vWoFc/3zdGFWb46dpIq8a+dbypjVZqTSpdTJXk4u2bWdlJ4EGKciToE05JUJpzpWNNjCMI6dzz2HalqDd4kNinCKbTYtrO0YfeP/hke+//4Fp8jSdQPfTOHJ6PnE6nSTx8X5GeQTBMDO8v4Y3yYJYjCmRmwbnPXhRB4rTRMyGpAKqKRQOlFAI0hKcVaWIrCCkxBQ8Uwz4LMhRVSqr17gmatcu22ue9ppOtW7AB+ZrXxNTYyIpmfnvKjVqprYpw6ZURSt6t6glKdbJ+6/5GH2QoGh23DZlU6vS1jJDjFKFVSQN3eKJI0mcMXaZKzJpUdqgrSWN4ywPqLW4sjZOmnqtkdeuGuiq/F1CEjidpK8nz2MhC5+2wEhKlZ8VhZdbenar8s98ay57A2qSWB+7Tixqcab+7WWlOZdkq6CsP4Nk1QSkvv46gVi/53qNW79mRZ/XHgFzbvVRILHKHLhc5+ZnX1UKVL5IbyQVq/cPmbs1cat7iszduu/UfrkX5kBFLbi8D3n9jvXFoJgwrhtTc9mPmMdjCGI41rQNIQnqeR56Hh4feffhA+/ev+f4/LzyyjClYFOaZpXCaCVogowyFGlRiStIQ1WMknXcFpUi+ZLblkviVugpNeFIi99HpeemlFGIQk7WK1UptagMrqm6v/ZjHSTCZZW6jufP+bv1Y+uY4rOOGfXMqCS+XGqc0ENEjYJu6+CxZIwNjOnMORhOgyGaBrIXxaDBo6JH2YBy4BqwKjH6kekMOIVuO6LXbJWV/o1G8xAz51F8s4Y+0rvMRmdG09BtFNokrBq532m+ut/z1VvHYAzD43viGEixFAkUJRkHco2jBPWoRUvxtrqMTygrRjVPXbZt+WZN/17vkSpn2e9VFcuW+ZmyJMvGurloasWMa3nu1dqDQhgNqs5hNRdfKYXYT1G46hxJGaGhJylUC4Kb5nmnjabbbrGtQxlDyBDLmpJK32Cer8kSA5IpRUrpvzDWYYwjJ8X7d+9JOTBOPU+P7wnjmbbd4FzHEBzKbDDaYbVh6zLBeqLqabInxg05KFRqUaGH8Uw+P8C5hwkUDq07SEe0Cmy7zN0N+ODR6oRiy6aBxhrUlDHZYLEYHBHNWAoTHyKkqIlR0aoGrRNKS3LyOcfnJxnF92EeRCrPA0x4b3WhrhQmuehGW4zVswSgKwOnH8Z5YV2jE9cQ29oxeW66XuphCGdfbmpKmRQjIWTGweN9JMZMzpUjL68zKz4p84mFaBl81pTNQ6k5YKyUKdG9NozTKMHyjGTYOQGrp6u1om3asmEuCUCtks8blNYzbeqaVlWvSYg14FocZ6vKyRrdmY32UpoN3fb7PTc3N3OCMat2aYUx4gJqtKJxAhGG6MlZVDNSygz9CDnTbVoOhy3WNhi34Y/f/cjpvOOb37zh8f0P/I//+Xf87e//Hq0NjWuwzqE1TNNAP/ScTidu+jPjOOCnEa2ZZeOUUrPyCwUZ6k9njtOEQrEdPcZHdJBFXaeMlqJDcTCVESJ9HfJ7EGGAkCNDnDhPA1OKZK05HG4xw4hSIum7Ri0qlW2NMNX+kjXKVJWh5N6FC/ToUjpzQctCCGy3W/b7GxrXcnNzM1dRh2Fgv9+Xvw/4MF0Fsr/OY/CervBqzSwHKOFjjBG0OKGamiyWuDCmQIyeGBNtV9aJinhpjTIWbR3+3ONjIqZcnN2lsNE4h3OSsMQpixSikddIqSQWhWuaU0ZpCe7FW28xPcs5fZRgxLI+1a+Zc7w6Fjnvl466Y74UQF8jIss68OljncC8JAv58s/LplvDhqtnf/QRMkt/ScFvSkJQbE5KzFLGrVpeoob/marVtSQZkistKPly/teB8fq6XT5eL0/KkkgufQjyWkaLnlhNZupeU/cI2ZsmYvRs2cncQ4xiPzw80HQdf/zTn/jmt3+Fc462aTBWY43CaDBa4awqP2dIHqUSWmXaxknwEgPONqU4RaFlOBIFHc9ynbSCrDKRJL0wRWkuJ1n/nHOkGMlRHJBnEYxyzIpSSkzgYoilIv3rPNbFt/Vj6+RpKcwV2s3V33/K9G1dTHxprn08l5YEw2RoSBhgP2h2Z0XbdeRhpBkTJE97kzieHghphOBJwTGiaHQLj2fMOJFtxLWK7bYlmEQ/TuSzJW+2JGt4Hh7ZxkhrEl/sITvFn36aOL6fOD3BTjW0SfMYYX9v0Srh1MCBZ/7Db17D/oD/o+Nvfvf/ZQgTzkOXIZbJJ4IXCnIkh4APCa2FYVLR+Rp7GPSSJBuhKy+iOhJbdJ3waqQvVfZAVfzDjF3EU1LKRVlQXs+2HY21IldLTSBkEZG1uqwPRs/FCpACQgYRd5GAay4MXo+T9Xiogj4qa2G+ACEFfJxIOYIG2zVkLVTuBIx1v3JSOBBhH3kNraSIZpzBmobu5sDNq9ccXr/G2A05WZw2/PDHvxdncTynk/S5umTpJ8vuZkfj9rRNw+FG0fcn+vA9t53mnO4htGi/R+Uf0acf0cc/0QwDbT7g9C1R35DCB7Q+8eYu8NdfB6bhzOOH92hluN0bVNfx6DPP4yPOa7ap5YwmOstkG5JKfIiZu2iw3GL0gOGESufPmq+/0NmrTjZBCeoUm6vOBU83pi4ClecqbtxaZ1CFdqXBaTcHc7Wy772fkw0ZJ4tPgTGiibweJFWvXilDirn0IIj/xTR4/BjwPpTzFdqW0XaGuJbkozbjLoPPutJ0Wx1XV5m4GH/V6tAS2EOFtesGn9GFZuEaO2fWldf/UhWmJhDy+ZbelLowtm1XBq+TAC1LoLOm3sCihrTZbLi9vWWz2cwoRm20l81Umm+10cSpLxU4ud/iMC7B1jR5qSQ+wfPpzF/91dccDlsyln7oGcf3fPjwnj/83e/47tvveffhiPeGaZxIWeNywzRN9Oczx+Mzt+NIiEGCj1Jtqwt7LI3aoXhZjMPA0A+gLeE8oPcBEzMNAjnbBMl7Qu9J5W8a6zBJqocpBqJCOJPOoTctNicywtP3K9Sn3ouaUNTkbb/fX1zfpmnmZKEq1OScZhpVVe7yfpqlaqfJo7WgFvNmp6SCKQ7g+aJRX5AOAzhJ9H/lWYY2Qm2i9iNpSj9ONalUM5UmFwnbOIaVEaHGWlfQh4xzDa5pUdYw+sDkvVCf0MSQOJ16nh6fOD49EUNCa3BNSf4pQa62qGp0tIYcqAHNqmG6DNEFu60P/mPvy1/+vr4UEH3e8UvORfqfMldqVvP3yxW6+KtcaG0hSHKhVUnxVkFdKQPWwB+UJH9Q7pFavp3frVb/YfYaqdXZl9CYGYG/TPDSjCZ4zDiJSqIW9nrf9zw8PPDd99/xww/f07aO3aZjUxRiYvQEP5KCJ9tMip4YPFpnSTLapvDIV8FsqYKm9RVTUtxLFHGDMle0sRiVcdZi7ILqVSxp9jhQCwpfr2suruK/dinsf/rjEtX4nCNpQQMiEPsIJ4trGlyrcZNiDInWgXmzJQya7z984HX7huRh6hPqCM10wGydOGi3G9ou0LaR8JA59xNPydC0nrEP2C7htokthvsO/C3ELyD2gf6YiU1Hfx5ptKbbWF45eGUTP5mA0xpVO5xF/V2C8ZSkqVkbGmfZbPbs97e8evWa3/72r7i5uZHiZEXorUEZDSFcMDbWMVz14qqxTC2aLh5oBeXIeR6zxhiZwoUdklTtL1MFfVVcxm6Xhri1KHC9lr94p1Vli1ABRshLj0nMmSkEzsPADz/+yO3dHV3bgrZk6+SpShImrWV/08aitSMjdPkszbhEMu/ff6AfBrabidPTE7ttS0jQjwGy4nTqyedI5Abb9AQfOb478U33A5twRAWPjZbGglaCavmnD+SnnzDnR6xxmNSQdYNr95gp0zaR27eG/d6jd5m7bcPTY+T24FC7HdvkyU8TOY00NvNsFMk0ROsIu44+TNiceRgsNyaw0RrrPm9/+UVJxkLZuZSVXSp4iyGW+AJUFR49BxJ1CW0aVzwnJLiSAD5eNDpX2siSqIjnQM2kpWJWG+Oqj0ChSvlIKH0QErQXasqs9iOfpSYWiz/GsjmmKlFbmtWX51bQPs8/12vB/NfXkBySXJQKbH3+NXKz7j956fdKifcEReUg5kRYeWjUrzUKUlGM2rhsVtegBrpGF8GdnOeKY71fKaViliiGeEJNizw8PsmmGnoMkZwmnsYz3//wjuNpIGXpV6hqQVVmdxgGTqdnxmEgIZCpzvM6J41hKc4qRJXOQM7i0j160uQxPmCMmMLohMgETp4UA+RENkaC1BzxKeBTxGQRCMCagnioC/Tnuims/lwTtnovrjfvqtqllCalSxrV8/MJ76vEsaLr7NxALs3dqpZv58qtJDdeqj2mQWtVuNq/7iTDmMXEboYpymeepWrrOlGue4gBZTSq+MKAFjocCteI+2pFVCmog1YiRNEPA8/PJ06nsxhWUuSyqaX2XNDGVVChFsrQRSW9Br2U8+NynLz0/Xru/mOOayrHP/S8nzuuz+963fpzjut5M7/+/Lry/1VJZd7EK8Up55k0wZraVJ9fq5jlxOdXv/y4efUuar5FdX9aEhi1vP/VaStVnOnnX1bar7yu9xPn0zM//fgjf/jD70kxEKaJm03D+fmJD+/f0fc95DTLbcYY0VnkQqVxdX3+6oV+l5po5/kzVPRO69ogvlDU6rp5TQFZU2hjjHLZ08v36l+Py+NzkwzJfxVZQ1DgM/RDYDhlvFF0m4zxCjPIPuW2Gyad6R9HYgikAEkn4mhh3JH8jkyLsdBue27uG8IPA2P0jD6TvMIPiTAk8iCSuZ02HDaG502iDwEdkf6/Uwbj6FzLThtureLewaFVOJPpVSrFNwTdzTXOAJmLRSzHivqktRZyLlRghzP2Cm0s1+SqUFyLdsu1ZUaQl4Qhz74ZF4lxykQuBXDkSOS8GA2v47OLQslqrv/cvX6p4LuOC2KMPJ9O7G9uQKnZw6nuXdpWc8KVXK/SIkRiqseawUdfCmpw7s9sNjekmJiGiRzzbFGAysQwkNVI8s/sbwLBidqTSsVoOEdsGpnOz+TzCYYJrbYoY8hak0wSKrlJbHYtaDHkM40i6wQmoyxop1A2oWxEuwyTIitTHOK3oJvSpxsIrRA/lfn5faYen51k1Gr8AkHW7DGtHpeKuGwSlcajMUbN6EatWLqmLRbtkjxIhXgx3asJhlKKtu0K79VJ81Gp9F8G4ao0eGdJMIK4e4cQmaZQJopMFlGVKsjERYJRE6dqLJhXeszrAFQ2RalELUnJ9d5eX6c+Z02Bqln9RSY/T5RlgK8Hfb1WNXhFS6NTDuEj9EMr4VE2TSOmervdjIasE5BcqwcKlEpz3Cf3XM1oT4yBYZQqvsiQBt5/eGAYenIcubvdEL3n+enIh4dnxJCupTVbQjRzlcR7T9+fOR6f6Ice2zQoo9GIq7c8L0qiUZOm6h2hRG42jCN2GNFTwLQGk+Tcoxe1rxzFgTwlcdb0MTAFj4kBGyOBLIhGFu5l9JWO93If0Bqev7huK47zMk8UwvpZFsvqrB5CxFrHZrO96PdIScaswMkLDUCQDHCNrREHa6Tt13hYYzB6WQvUvJGVn3XlsS5zwHuP0w1GqUInA5Dx0DSNCBawTvRKkhZFyev4/MzpdBaEQ8lmIAlthiRIoyp0ppwuE4yKXNSEO7NsQMtm9nkB2y8J7P58FOIf9/d/zl99MsFQi1R43efnIPjqPHP9XwlYjBJ0Y379mucpvZyjWpLShXxVKpCZeSGrt2kJntYUmstzX+b7Ii5SH5dmavDTxInM9999x+92W54eH/nw7h23+y0pDAynI6fnI9u2qtII2h1SQuVAu+lmOi2KgqqvJIdXSUVm/XM1Ar1MSnJZW9f7h1oVOeC6KPivScY/dNTx+lnzSEFSYsiWlWKKcBw8Rx3YR7gZLDpm9JTJE9jdhmghNj3hOYhwhEsMvSX2e/JwT4xbrDnR3Wxo3m6Y/vszQ5gYI6RgCEMi9Jk4ZHSr6bTjpm3Zdx4dFHGM9Oczp+cGZTJt17JzhjujeNMovtgaOgdHAz5oYqnGq1jcgorvhxQtF+PUuudVpF1bXYJNmbwXSEIZY9eo2brwep181N9d93Gsn3dd8FuL7tSCZEUyaiL+qfu4TsrVsph89DnqV9/387ksn1Gt5poWOu1qDltjxGzW2eJQnnCNwTjN+Xzi9mbDNAXOp4Gcoek01jmS1pDOZDJWPXO7yUydJjWGc4rkFCF5TDiRT0+k5zN5CGhlycqQDQTlCcqjTaLdNsQcyESylsQtEDFEMAllE9pJvzUDgCHjSHlT4o/AOD3hjaB1+S+dZACLS+N8xOJnkamNLnLnIJdGN1GQMqXpuMUVdaLt7sBms50b1t5/+MA0eVKCxnWz0kvbNhwOtwX5MPzwww+zfOjFYEEUpAS5kIbvMCcZE23bYa1hs+loGicSsDGUBu4FpJaRsbxqTqKyoIpDuVB7IKf4kUv3XPCsYgNzUCj/hhAw1mAwlxV0mGXY6gZhFKgkMmihBPaT91QTxAo1TMEzTR4/eWxBLbQWBau1F0bjHJml4bxrW5oS6IYQyDGQU6JrG7mzMeKsOG2DJ45+lspVWpOy4vsf3klWrBLDcMBqiAH2h9e0TUPXbNh1r/jw/sgwToTy3sfjM/rHH3nz1Zfc3N3RdJ1wOWMsjfSrxvMiD7xpWxKKc1KEU8/0fIbtFpU7VCtO4qiEJpPqPcqlKT8EpjBhwkQME95PDNkjKtaKRgllz+jF/6IqS8HSxD1NE13XSTWinFfOeZYMXpr5LxemEPxFNWe94Ml8WpLRKqtsjHCDpwmaNoCqzea/Xi41IBKEJdGABTFTqtA8Kk1klXQvHibL6xij0cbStK2gVaVnxjkHiFRwP4w8Hp/58HDk8elMCBQo2xCLYWNWRfKwzKm54l65tatqMeV3EsymQl+7pFj+Ux0Livzp6uo/NjFZvRKfmzjV4yX05h98l7n3ZvVYoU2qItJwncSv3mROAOdzmP9dIRlycqyDoNU29WJSJQFDFSO4pGAoDdFHhiHy008/4qeRv//97zns99zud7RWYVTi9PyB7qtXM2Uyp0RMHpLH3ewKEiHvp2sjOOoCZVCUPYE8J7par8bjxRoTLlDsaxR8fU/+cuPkX/JxySD4h46E0KWUhgCcsuLUZ85DwquEyZoQIYxgTEP7esvb7g7/f/6BhDiEPj1Gpr9N+A8Qoma3DRw2jtd/9Zr/Yb/jyQeO3uCHhvEYcAo6q9B7TWctSjls6Pnq1YHg4Xf/7Tu0mSAZNjqyP3he44lN4P9xr/jp33xB28Af/tDzPI3zWqwVc+FlzUKo16IWC6TILBQfS/UpuyyQ1mIqLMlBfbz6GsFSlKuF1Fmu/+p11r00awTk+hyRunChYmqhgc3nvxR910nNRaFcXSbm9TkxxjmmqjQwrYUeZbQVdcOUgYiKCasMzlTjY0PbOm5u9tjGkIgMY0/fFxGc6oHXgFWZdgOmiViTaHXmzU3k8RkesXx4CgR/otPvCY9/wh6fMKeR5mwgt+S2ITSaUzqi2ki3N9zc7oABUiArgz3sOGfPeHzPt+9ODPGIzz3B92TlQXUo3ZDylqw0EU8fRp79WdzG/9J0Kdlw9QoFKJPrwvtCBl5d4IRHJ4u6MZq2bdhstnTdlt3+ju12h1KaafQ0zwPeZZpGEYNw/ZxzInd6d0fTOLTRnE5nzuezNMhEXzZ7iQ6qPngN3sWMS6r8m42gI03r5FxzhcFhDVtnAYLImeJpUTjHWT6jRmZgiPFiYNct7kW6gqpKOIXaVCZFP/bSTF9Qh0QGLVJpM0VHK+kpiQt6k4qIvzFaArDSI9K0XVEnchhbZFeNoDei7V+oTs6J2pcxNM5JlS3Khtp0DYpM1IZttyn8RIX3ESsrT5EfzgzDSIqBTev44fsPOKfZdg27/WsOhxsONwfevvqab7/9kcfHI0/PR5GO9Z7j84nn05lms8VYoXCpLFKiMcZZiUYr8SlpnMOnTD94/DShhxE3TNiuwybQEdAJZarLfMaZjEuKRkEDIvNWrle9D6oY+2inyCXBWKMQsMjr9n0/N8znnOf+obo4juNYHlvoV9ZKUl0FC5qmnatB4zjOibtrLIpLP4iKtPkgClw10fk1H7ZQJ7WqnU6l6XfGNJYEIxbJTqF8VFf7IC6pxmJcg9am+OrIvO+6LWJ4Gun7kf48cu4nxpKb1fcRECMviEmWPo6FsLMkPzX5UHOF7KooUY6XKsTrStn1Y+vjcwK/lygJLz3nzw8if3mi8LkV8RmxLT/rwvtWZqH5ZCTJUEXmO1ESzOtrPZ+bmqVy62tfJ6MzCvDR/aqI9PrxJahcm3hV8YyKIrvGzZ/hfD4z9D0P7z+waSzb1tI2Gq0CX31xKHryTuiOqXDeV+cvH6co01xdT6UVuSihkSvaVsZqFF8Aveq/q0nGGmFdB1TrgG1No/rX4+Xjc+lScuR58OlGk7c7YlmzwxiYYiakjFWK0U90hxvuf/uKx999z/l0Ykoj52Pi/MMj8WTQJsHuAXfn2dwqwo3jccz81Ht+O7Rseo2zGt+BVQqajDYJlxNORZRRbDcKP2XG58joAkmfaa3loC3fbA7853/7Ne1ux2kcePz+B1JIIqSiakIu+3H12er7HqDEUc28LudS5Knjdz321oyNNRtArwp6dc+txb1rZGONXEjwXz3D1IyGrAUbVClWfer+XSfe1wUSrQ1JLSjMdeJU+4iFrWFLL4ZGGYMiohOgtBTGrZt7WCBhrWG3286u3m3XYl1TWDeCIp1Pz0xTj9J77m/u2HaGrTPs7lvOzx2p6RgJoDUpR/zpETNMtB661DGxwWfLmDLP0zPmYGi6FqUMCkfEEnDQtHigD55+6klpgjSQpmeIoqalVYO1kGLGZ/DKcowarRzadp81M37xSlNvgrW53HCQ3L0u7isagaoqMHIzdamuC31nz253QORlT7TtlhQ1ZKFEiSJMy253w2azp2ksxii2210JpEUBAFUGV1F5Wb4iIXipIqdQlAwkm0ws6EWlBHHBd6/0mFxg6UWVSi3IoHyT66ZRfqGWX2eJkkX3GE2C5fyiNKlC6bFYl3QVGCVGOUorQRBiXvUo1OSo0J+MbNhd2859F85JolF9AIZhIMco55aFImVKdm28Frg3C3Qv2uuZuKX0tUQ0RZLRWqxz0rBdpIHB8PR0xFpNivDm9T1Ne2B385ovvvoGHy3KNPTec/ae0QdyP3A+D9xMgdxltFWoLJW8WLSuqwa8m2leQiFiHLGTR/lIpww6K1RC1FcqiqQyhoSlLLxkHBVzQxyaa4WifGZlPt5811SpqnhVvTLqxr2Wr10W1jyPG+eaufdCeK3VZK+iG6V3pYzBFCO5/FfVi0IIjJNnHMZfOmX/WR1zY/dciF7C+jqlJJDKJcBUy2aGzHNTeMKiELQkpjmXhDBIEtn3A/0wMY6BGMCsb201zlMU571M1pLw13Mp01cOtVrX1hB6xT5WG9VLVf1/KFh5KRl56Vi/3kub6F+uSv3LkIyPjnozL0CRNVpcxCZQcxO/NOGX+WZ0QWzjnDzMCMS8wDKbq7OmssHyi6zmMTa//0cfbVn351cqiScIklmPpm1mU1AQ6tRYaJq9MfSdoWs0240tqAIieqJETytT7lE9lVzUEdUyjuZKbL2/SR7XqwtwSQ/hIrD71FcN1iqF6l+PTx+q7MfrivnPPh+EJ6+ysB66DSFGppjxKYGPhJRxneY8TjQqs3t9YHzdMXAmniay1+TTQE4ntDOEdGR0inFnyYcdp4eeDzHRe8UwaFqnCX2hsscENuByLk3YisPB8fTomfrE6DzJjdjNyL7teNspzvtXhGbD3/34gfPTienck2MoyVJJaFO6QPLr+LHWCdqnVr0LMNP2rtezuciQ84otcJlk1K9PX/OlT3ah7dd1YSkaz3uLWheMLs/jU0UfQQsLspiXObhO2Nc9rUYvCYbWWvxvyChtpF+wqEVO0ySMGMA5yzj25BwK26QlTEG8clQiDB7vE5stWL1lu2m53Vu6O439sCG3G4IZREVLKeJwxo0B5zUtLUG1JDRTSvRh4NZZmtZANuRsSNkSsyEqh08wxcjkPTl6CBM6DOiYQRk0DdpEUtaEnAnGcowGpR0m/YWTjBhlAqUkDt3OtVibMSbMijuilgTis6CFh1aQg8mPnPtTMRozbDd77m5eE0Li+DRxe3jLzS4xTZ7f/e53YBqM3rDb3KGVgyyD7+72nvPpyPl8JMQeCKSsCP83e3/WJDmSZWmCH28AZNHNVo81O6ura2gepuf//4d5GKIhmirqrprJyIwId3NbdBMRLLzNw2UGIGJqnu5ZMUXlmQkiNVWTBQIBGMz33HPuuUETw9JleRgHjqcjfd8TY0JbjXVSJdz3Yr2ltS7yFzVnlnMqWVatIMc5y6bLAlg3rVQZWPLYWtpBXmoItJU8LbnIXWIQeUcIqJIBr6BgHMcCjkIJRh2NakVmlKWBk2vbuZmfs46u6dBaAtiUwtzfYV8aRKUkrlPHw1GycNbQNg5rFqvQ1jl0jugU8JOn3e1ou5bNVjqbD/1AmEaMEk/ltmmIyWHV0vchZ8fz88CXL5+YvCPkDdoF/rfdLbfvFZMy/OOHjwyhFIDHzOnYE6aAymCVxZlIGCeGw4kcAq1zdE1DYy2H44HhdOLj5x+57jqa3RVNhHfbO4YEfYw8jz2qlbZgOYy0BnTwOO/ZhkwrMwTGtkSt8LleL8kSmlJYXK9lDS7WNUJPT08Cgq09MyAYhmGugWmahsPhMAcAu91u7pmx2+3miS0V731rDU1jSYnSVXgi54j3EyiFiRYfAn0/cjgcf+4t+z/lJoXfUrjK7NwmdV21L0BO0jgzJ7lHN91GOmxn6URdrW+V0vjJE4IADGtFKjWNI0+PBz5/eeD5+cQwVImZOJOEWJIlxZUOEAYzn2fa5joRVcFEJOVALM0qcxk7/yO2S+nL2vJ7/Zr175+fhf3vObCLvhozWly/hovkzAIYpAZHo1KaO/jV4klVcjjS/2hhz/PFvqDERTPgqw/ICy8Fb+UdL3yX+kuV71UTULI/hdjPtkUySYZBa7ye8Aqudh0kcbebhkDwU8lgUtxyDFlZadQ1Z0iXa5vT8h3qY3PNIE4sMVcnOK+SGnWrQdqlpn3NctQ14t+3n9p+GSNoMhAriLNMu47D5LHjwBvjMDkRs6JxltPTCfPqhL3WvPu/vSf+t4nDn4+83jW82llym8nhicf+SDw2PJ46mj/8PYf7vxLuHzkmx3ZKuBOcjCdNAdVkYhPZoHn8ciA7w9//h9f8v/6fHxlOgUM8MerETjk2zYb/ZW/Q2z25u+KHU6Y/eh4+fOA0fCYlj9aQtZYGGhfbmaFADcBLPeW5umNpJgwypp1zs+RYazUzF99iYNegYDaAoTTJnOe5eDEPzpi9zN9LQnF5zTmQqXVYte7JaEkErGVbFSCt6/5SmbO0tSKZQqENNE1L17XEmHh+PnJ//8Dz4yNjf2I4nfjrX/8y98S6ub4Vx4D8Y5lrAil6+t7jvcU0d7z7/Vt2b1vMwRFvMv5hpGk3KOeI04QaEs5bNvqaiT0xTgy5xxPYbLdsOk0YgWzxuWFKkcOYSQamKImUcBrQ48guJQZ/IqqASh7UBlxHtpZgHZ+fHKecOf5M+PAL5FJLDwOtbaF/E7r0NqBU/xvjVsXFZpV1V6sBp0gxk7NCa8d2s2cYRjwBrTPb7V4oKdsWt6gAGLQuBTRNQ9t1tFNL0wgA8ZNiGk5k1lq7Bd1KVjmSUmAp8BankBgvJ2lY05/y+kXPq1T1KgcwZzfVZTH3jIBzabZUz421RO9ndkOVuovaXIz1TaP1/APiA+2so21att2OxjVilWdNkUkZKRyqVqjThDUGpbIAFErhYM4YpdGNo7Ga3DZ0zorcCOmmvN1u50D8/vGJafI8DQPGtaXYPKOUZbu9wrqOafLEbHh46on5I//v//J/lOLngd3VFadx4HQ6cRpGfvjwI9vtHlfkUimITMoaATK1i2dOic2mo9t2NG2DcxarNTomDl8eCE1DtAaMJhedpzUWmyMuKlql6FTGlWyiVwqNroaZAvRcMzMmfd/jvZ9taWvmomma2WGjjvE6qa4bckmRd5gzGOumfNXedp2JXGRwtYZJgnFrJVMhQ1GcZYz9dQcHVldjiJJtynnFKgmIYDV5KyWWtaQkGtsMxjgEVOeFDTQGZxtCiByOPZ+/PPLpyyPPx55pqiDDCFsUMxTnu2pfm1kWOpm7VrehKj2AciSW5kySeU9fS3l+YvvvCfovF+GfAyh+mdxj/T6+Bgrfei0l3tfL/9dAQs3HuM4c1sZdpUC5PlGlREqhtJEgGuY5UeSs5/BA5RkDyL6ZhxLnAOOcrTj/BqvvfXYeFNbKg7LuOLpW6gq1ElmvQnpiKKfZblrCKA54tkhtJdta72lDVk7qDRGQkuRkyD1Qxn+tA6pzn/SoSgXoFHMJxdl4WMtP1rKUJRiq8k17Fvj9Grc1sPqXAupLh8kXPuUrJmi9nd2LWWq6HBqTFCpk/NYSdpa4UXz58MDtfk+jNMQJ7SfUNJDoufoPG367ec/udctf7p/YXHs225GrpuP/+KK5z46n05Zw9ZrTVWDcJj5Omba12Ana54DLTiQ6MZNUIE2RFDNTP/Hd+xsOXyYefuxx7zcon4nPR6L5kV3zjluz5brZ8B/+/j/xTxH+8ctnVGHxdM50Xcf+6pb9fo/Wmr7vmfyEOIEqKSROEYIX8Lxa09br5FoSdenKCJyN1XpNvmYb5DpMfiyS6PWcXZMvEuegMplIysvnr/d5ybasZcrymEZrOa4qiwZ4eHiYwXpV5rjGYWwDymBdtZQ2eB84nXo+fvzIxw8f+XJ/z+lw4HQ80p/6eU4wxpBy5NSfsDrRtJm2s+yvLJutYbszbO82HDcd9+bEp5QZnAOtmZI0yiM5UnSk7IjGYFxH2yiaqeP+yw88P50wKtJ1G65e7bh69YrvP0+01x1Gb+gPE43PNB62IRNMwtuR1GS67RMhe1J0nLxD7/ZMk+dx+HnS7V/gLlUnraqkXlXjy2WRxUOr+eLnXNvIry3JlgUhRpGTpMJ/G21wruH6+rp8pik1H7XWo1x8Iw223Kx3L90g6UtAdl4wJAHDur9GnaRqsz9Wg7XS7AUonMkh8hkgXqg05tdcahLXf4t14XnhbyryKUqNQF0fU86zrKnenGnldDJn3q3Qcpuuo+s6rKs1CWqlJTYCxshnN3P1oNam3uRSpKjm763Ybrdy7bLCx8Tp1DOOE9Y5yCJRUtrStMW/3TiUNkw+8Hw48pe//sB+v0VpRdO2ONegzUAcIs/PzxyPwjbtp53U0ySxWaw2p6bIpbqumztia6UgS1Op0+EIu0xSLcqIDzWAMxoVwtx5V5o2SwCjSxZbDNNKXYb+emF+SY+5nijXWcOalQA4HA7z5FmZnrWsYT1W1vuXItOVU365h0IQdiu+uBj+ujYp7q5gPZeUU54lKnVcyibXa77vy3xT5xJxo0volcX16COnvufx6ZnHpwN9P+BDLBpdTS7No4wtkitrBXiUeUyv5guRUi7JikX7W7PL//x2mWn+pds6mHop2/cS7f9LAq6vXltSgGuw8NPvr8exPqaXj/3seMtplblMo2py5eL1dX7VRWN3+c3yN/4+e2B9bF/9VSgRdf5wPZxqBtE0jrZt5t44tVbD+5GcipxUi42p0oqmsUUOcp4trQ5VxhrIijjFchSln3nOVKmU3P9pZjNYPae1nvs0wbI+XwZzl+NlrX3/17KtJS3feMHMtv1zt8a8jxUz9rOOIUswZTLSaPSqo9k4NnlHYxUb2+IyqA+fUNNEDhOTP8GbTOcdhC1fjg9c6Z69DrxuPB9NpE+KL6Nj3F0xtnt0u+VhHLiNmjZoNtkQOw1K3Ia0A6I0qxuHwG6zw7vM5+nI8STGOjoA7ogdehrl2GrDze6a++2e1jaE4OWblyBYxn07s181eQmGWChnVWOdywJsljF3Dgjlvvup63Y+d+aFrSyunlov5gYLaM4sUvZ6cb52mLpkMZbPrC9YjmMdwy29q5YCddNYtLVk1Pw9c4JhGDkejzw83PP582f64owaSuNeV9oJ1FpOpYqduhb5+HbX4BqFaTSmdRyy5Zg1PTARaZUkoGPSJBzKNJimAwwYqctRKjMcR8gnTI5MrSSFbbPBT9BlhzUNSgympIY1KpxKaJPJTWCzCwxhxIeET4C15OhI/uetaz97pjGmIrR1BqQOmuWnyqlqpjHGUg9h7Py8+NkrfPCEkBmGEzlJhnK7bTDmPeM4FLmKTL91kFSUKHUhDY1rQWkpWlKLG0IdoOt+EHXArP8f4yKJcc6Vot5Eimn+hpIdWzStXy/ml8FiOvv7W6i57q9mvdf9Gta2b9baeT8xxrOpTynJ2tdeGNaZmWWqx9A0DbvtbgZYtXC5Nn2zaLSSAjJxtiqLWGtouo7NdkvTbkBpDscTfS9MxvF4EkewrKQY1yaci8Sc8cFzPHr+/Oc/8+bNK7a7LV3XCeovmuDD84Hj4cDpdGIcRsSBa3FiqptrGna7LVfTxHa7FeFKcQ0bnp6wWqGtQXUtMQUWO8jVeS+N3qgZv5xLk6tyBQvgqse2plPXcoP1BFpfY4yh6zqq+8TpdJqfq7KrOTC42O96/5fjJSP1GGPf40PEh/irBxpG1zsKtFp8gM5AV8loq2I04GMszY2MMDlaE0LCB+mFs+scrmnQ2vL03PP0dODTly98uX/gcOwZJw+aAjKkOZJR0tzT2YaM1B5R6qOWzBjUextSkUjVn7SAotV88C9lKy4XwJeAyXoMXb5ufQzfdGS62C4X8X/p9jL4gZqIWo/7+ncMkRjL/VbmpZRWmUmtS7JFEi6mAoyvTsuSEqnJr5e+yyqMuNjJJQJZ3quULgkccZNpC4sxjSPTOPL89Mg0jRit2DQWUsSojHWGq/2WTdcWy0oZF7okhihrjcqK4xjm7yWjLK+6GyNBW46Qa3KsSA6zmfXgcA4eXsoYrwO+6nj1b3n77wX/l5sCTMo4FJ2z7N5ec/Nmz7tNw+vvbrgzLWrw/PX0gP4CafL0pyeGxtDsE+2NobWeNvRsRri2hldqz0O6IvaGg+/o7R6z3fP56cRVNBg0u+SIwUCeSCGKIUYWI5fTwfP6VUvTRFJOfP/xgeudNORVdkA9P+OMZYdla1t2zY795orn00CaezUws/ibzUaKmGdGvgFd5JIZMZZZ1SnWcVdrGOuPMAHn9S7fuh7nc5zMubPVTj63fD+3lZWLImLcl2vXvmbzVjzpN6bD+t3q+YgpitmMdQJQSoI9RM/hcOD+/p4ff/yRH3/8UKYXWeuncaJxHqUMDw8P9P2JtmswJggKVIn9zQ7XarCK5Bo+j5qnqPAaRn/kZvsGZx2+1yTdot2W9uoaNVqSDXg8yQd8P5GDxwHTc0/0itFnvLlG02B0h8sGlzQuCshQKtFojdtm9jcZxok0RoaQCWFDtpbcbn7WvfHzQYa2hRIXqVMMcQmMo/SkSDEjtZgaraROIOeIKl16m6bDlCLOECbu7z8zjp6np2fatmO72dF1jv3+ltOpL4W2nrZzRQqkOZ08qrAe2+2uyIIyfR7E/i8tg1lrXSxz3Qwg6gCrg6wGd2stdu3XUY0FX5I/rYPNlwLQl0DFmmZbez5fWrvVLFldEKoUZ/6sEAgooomkUgtTC7NSLnIntRTaQwUqNZBdsuwAKYulaFKKGA5FFtTQNQ2tc1jXoLUjJdhsdwzjxOSlsZwxIyEmYmIpUi4gYUoTfS99CjKLz7VzjciwynmrYLJmsXPOM/DKOWOsYbvbcZMzr54OfDqNjEPPcDyitxoVI+SIquAqJUJWhJRndkgrjTYiS7BNpLUag0xYcfIF8Ib5ujnn2G6383mtlOlacxpjnBf29fWpNTWVoq2UaK3ZqNd9bTdZr3llPrz3TN5LMB0FEAEvTIy/rk3XFHkJ4pdgfmHwMuICVesuhtHTbUTLro0j5CyyJRRtu0EZy+QDx8MT33/4xPc//MjHHz/z+Hjk2E+MPgKarE0hKcUHXqtCVaPEKxzmQHAO5kv2LOclS5fOwMW/PDh/absM2NdA9qXiyMtAss4xlyzqelvPTctzK7DxC2Ovl4KDymhXO2Zj1sGvmov1N5utAPEYGcepBNGyaPswLXUxpjJZZzBgnp9NzXRmmIv0C1H2876OmoFRZROt1ex2W/a77dzENaVImEb8OBD8RI6LmcHp+Zn9tuXm6pr/+B/+yO9/+1tev76hbSxGU+rgRAKltTSlrEzNPKZSLoCYlYWo1G6RE7qsfWnFzq+v9SUQlWtx7ubzEsPxb2W7ZJD/VuchA9oarNVYnfF6pLeG59bT3E3SQO0U6LeZcB/RcaLvTzz5wJXStE2iazM6eFSOtE7xtt3yaUhwikxHRXI7uLrmzx++p0sGrQzXKPpR0ZgoBjKNwibHROT53vP2lWZ/3fL+91s+fhyYcuYGxd0G1P0zxmi2054dV9xsrnl9+47n0+f5WwUf6Puew+HA4+Mjx8MB64yMzZwwTpwcdQyl59ACYuu6WM/7eu2sLQnWwPgyAVdjoTqmZ5Y/L49fApX1XFeVAOu0w0sMxvo9uUwiYk++PF6TheM4opSaQXrKiaSkP0pNUlUnyn/4h38QqdSPP/L09MQ0jPR9z267JfrM89OJz5++iOoiJzbbhvuHT2z3hmbX0e1boklErVDNnocvkcfnwHB64q4N7FTA+MjTc+aP739LZy1DzjyFZwYXyMoTphPKR2xUbLRmHBVHP3D/NJCvM113oNm0pFOPH4+44qOrlMIacDYxTJ8x7Z5Nu8F0Fn9yjEcYDn9judSMTFMmlEzekl1fJviaWa+LSkoRYy1dt2HTbWiK7eQ4DpxOE+PoGccJYzQ+WCZv514W0sTI0bbyt9JwOj1TddrdphWL1ykAg1zwCxZDK0XbNDRuqRW5HGDrLI+CuTcGmlKEej6gLxfvy4lrvf+63zUwWR/DepFYMxzrAHRdODW/Zg4qxOK0ejY7ZzH2nJ6UxdGUgG7J8M/FzSpJd0ilmGIo9HxGG4MxjtmWeA5yShGWEo93q6QDZUqZEqsRrSElS8rMoKEG6jXzP42jSCBeAGT1PCilMBTJVNtxfXXFp9NACJ5pGtjsrymR4+yvj5Ii4lRARFaS0lCpMBpFj1+D2TiFGSxXYADME2QFH1VjWo9tzWytXTick+6oFcRWq7tqgfmt77ru2J6SyMFClPsLJRlQY37lIEPPwoVV/ZNsdU7PGdBVc6sL81nqJ7QhhyBqeyXySqGmJ758eeDTpy/c3z/yfDgxTJ7JR0KkOLjpMk+l+bNQxf2tZM7r+BZ5nRxnBcBy35cFs0q85mN/+e/zQP7l7VsZvMv/18V2HSiukxX1cy7/Xm/rwOplJqNKxH7eVt9fDTDWj6+D23rv2GL3WI9xs92Ue6cUb5Z5xlhJlmitZlnQfNzzEVfL4/pdasBeajsqyMjLV3rxm9W5vXx9rQzGNmw3HdfX12w3nSREQsB7MWaI0aNyxmiF1RpnDVbDbttxd3vNb96/49XdDfvdVp6zBmcU1uh5/l2vCVXdsQZ9y/pw3sn4MrBazxkvAcr1erhex/6tbv9StvGntqhhIqFVZmsMSnuSGggofOt5VpHkIvHKQKdJSsxC9lMmhQw50XaG9KzwHvyU2WwV25Bo0oSZAmhLbjueDBy04qQ0fVYMPmOwWJ1JPqKNw2Dwky8mJZq7t3v++nlAB9B9ZncKKDdgbIOdDK7d0WnHbrNHa4vSWUAwsnZP00g/DBxPJza7zZysVKm4W5W1qSbTnHPzPbtm6KHOZedsW70u65/z59aJWOBs7q3zci3rElihVGU2oVra1u2l8S/3SZGqX6Qm1onAs/spyyujKkYiyJz7dHjmy5cv3H/5wtPTEylF+v7Ew8ODsJtZEUNiHDzJgLVgDKATrmvodi1u07C7ben210xRE0ZNGhJ67PntjS3swong99C1eJM49Qf8JuLVxBR6CAOdlnrUTbalZkWYrX6Y8P2AUj06BIiBlCOTUvhCI6uYyN4zxSNReVIGazO0SFO0n7H9gpoMswQ/cdGPn9dMSJbF2trN2JJzxLmGTbeh6zY0jWR4h2Hg+fnANAZyhqZ1TF5jRk1MO6yzOCct65tGgjNZ2ivl23B1tSXnTM+Ayk9nLIYgMQPGzDS3OHx8NbLmn3WQH0KQQuJCAV4i7W9JJOpn19/1JgPOJvj1ollvwHVWcmYZSib8cnGQNVRsbb33QiOmhHNm7jGyvtHrVz0PmMqxYkhabpIYpjm7po1YFQNLAJwSIaZVj4hysxV9fK3lsMaSbSarJQhagwyjFalYPK717ZcSkEqR1oZ3V1dX6B8/iQXwOLIv8ptcAgtVuufOEw+r6UgDuQQtyiBGspVlEmC5tqu8DOjcCqiur1m9XrWzd1ushGvRWN1HBRmX8rn6XdfBQq3Vkf/ncsx6tiT+tW5imCBjZBnTy/M51/GtUdoUYBBRyqC0AI2chZmQa9LSj2KH/PnzZz59/sz9wyOH44lpCoSQialq+nWRpaiKS2f1TJVjarVIpeo9lnM+/70CGH+rcOUSfL7EZqyBxbrAV87reff5S1noz98WqcFPvuoCSF1+TgVrNfCwdmH8asIKEEazzrcsvYG0rll3NddmsZ4X5jDgpfmYkvEqiQXyT4OM8h1qvYM1mu12w9XVnru7VzirGfqek5+YxqGYhYiTotEKawVkdM5wfbXj9es73r9/x+3NFZvOYg2l66/BGo2fBrlWVBBY57AVfJoTQkvt3MwylZ91dvhSlnv5ez2u/q0CjDW2eInh+xfvt0jdJqLM0RpQstaFHJlMYsiKoBNpr9FbR7aKYZzAa3IIpBxoNpbjk2KYYJqgvVZ0JtEy4rzHaE1sG54cHLXmlDV9ygw+0mmDsooUBrRxaJVJIXE4HLm66bh+vWUyhhwUOsOrk0c1I9YMGG+wOtIZx77bY01DmjX9ak6A+WliGAa8D8v6l2Uwyn1jv1Je1HXtcr7QWr0YU11elwVonLPfsh+W+GEJ46g3iFa1ze0lZFiOo/5eg/sKNl6K7WoMs8y9C1tS62ZDCDw9P/P09MTT0xPHw4GuaxnGnufnR+kPhCJFYXR9kphDW41x4DpLu21pth3Xd7d0u2v6IZMGhxoSzTTwx+8aPn+YeO5P5HSFt5qsPYf8RNg5punE6A/oNLKxmU4ZuujQ0aJ0JJnAcQqEYUDrAZ08KkUSiVFJQXlOoEJGhcyYBiIeYxSNzZgGbP4bgwyQxT6WAPOlgSOOOA3OtWWgSROiWi+w2+2lUBvN4XDk+fmJGBPb7Q5ITJN0Puy6jqura9pOunQbLYi6BmDGWLbbHe/ffUcInkf7xIcfPpOiyIfIGWsMuSzGm81mDvpCCPNraoC4GkWkXJH7RNRKnBNKFnu9qF8O1PX2rcnrMmhdZ8HXwSgsQX3dV6UUZ82tlh4YwXtiCIxUSYWwC7Urpbxe0fd9WYTSLJuq+zZWLZIerfAImo85Y80oN1eQQu2+H+mHEe+jZByNpWlaJi9Z/Jgi1ihwFms0yuq5sFwCHy2+8Vo6nueUmSbPMAyzm0o9V+UMk5FMdNs2vH59R/eXP3McvFgRK5ETRO/RKWEbI1U8KZae86JzDoCO4uIVYiIaSCWIrFKpFFcSwHJ+akG3c27WpK6zkHUCDiFwPB7x3vPq1SvRXJfgaG2FWwOqdVF5HTPra7KAwzyzTaa4iv3at0uwDSusTwEBSqRRKI0yCetajJW6i5gnKFKnttvw5eGRjx8/81//2z/ww4+feHw+8fx8IkTpvhpTmei0wEqpy0gzY6fKarUcUwU+C7Uige0SxOa86tP+PyBmu2QxLmUv6+RG3S5ZjLqfl1+vVr//5cHXJeNS7516H1XL7jqXXV1dLbVhdrlX0IphGAoo8TJOVkmZUsopGPEsKSHXN+csfQs0Yo9bbKiWEuCvz0mV4W62W377u9/w+vUrvvvuHafDgQ8ffuDLl4HHhwdSEtvt1mka52gby27b8rv37/j9797z+9++5z/8/d/ROIUikuJA1za0jcM5zf1wYhgHVJY5UBs7j6GapKl6+DWDVscrBXjEgpQrg7p26llnked5/lfuKvXfv70cyP4ttqQgmIx2iWwTOfbEKTOqgUfnGZQmBEW71bz6u/eEKfJ8OpKPDTEPeD9Ad8PjpOEZboFXbyOtnbiyJ3b+QHCW0Vn6XcPjCFc+8egzp5TpFDgDnkw20sfFoHh8eEQ1if37LaHd4YMjT45xyGxOE86ObKPUAuxtR3r9jtvrO07hSFQBoyW5t91uub6+lriKTIiBadIoI7W0bSvS6poEqz011oxm/XudbKts/3yFVutf3c4TMHIdX7y6Z/Eo1ESUysv7v7Ut4Ft6deWLz6jHfpkc1EpJIrUkKcZp4vn5mU+fPjEVi/tpHKWPzunENE6kqNhuNM60bDd7jseP0pwvJbbXHe3W4TrL1e0NN6/fErF8/5cvjJ/fsvOabmf5jzeK/GFkmgyYhg/P9+imJzfP2Js9py8PPE33vO0Ub/dbdgrs2PCkwKoAWvE4JNI0EPUBNfUoPEElppw4pEwTFDla7jZ3tFZJc8nR49RnrEsY9/PqQ38+yMgUpoDCZCyDQahyqcGQC7FkDdYLYkqJ4EN5nZICcSU2gdUpQDKOi91sCJEp1aAuzHSVtY6u2+L9ROPGJZOXqs2fDLC6qFlr54O6LMxeZ3cqUIkhlmZMX3dJfUnK8NXpuvisSv/Vz1VKnenvqxxnLY0CARu1B8O6D4PRGp01fgzzwlODUpRIDrq2FdmB1gxDXxiDfOYAAaCNNCp0zvHuzWucKwGBE6lUiJFhHJl8IOaMMZa225brKszV4Xhc9JNFLpdyIqs0d8SsmUnJzknWp36/z58+yfdX4lG91p/rcn2MVnRtw7brGKdE7yfGYQBryFbDNKJdM/czSbk0ZYwJHxLZBwiBcZoYrSoNCDOn0wlSQiuZAGsNRoxxZsHWIKCCwippq3KqCh4us8ovAZN1sfel9GVmR0pX35w8mXhBy/w6t5Q8xtS6IV3OhTCh2lhpXGgdxlip88kZ13ZMITL4nhAOPD4fCqDNNO4jHz584Pvvf+Af/+kvfL5/oh8D/SQFtcY5lMni/lEYFOucPF4+f333Slas3IN5Jc/JS4F+iHLfBp9KPe7LhYWXrFz9vWYs62vXdVrrIOgyaL/UMNfXX5oI1B84n4PXr5kB1vItAbHKrtKcy+0ys7f+Xuv6pDrnVvnEGhxVx5rtZsPbd28BWVP6/jQfk9KGH7Yf0N9rAYRpacoHGa0LyzGvLSIdDcGLZmJFyFQZlAASZoCyBvr1WJu25ebmhrdv33C13xNj4uHhoejRj6QQ0RqkV5T0HNpuWq73O96/fc3vf/sdv/vN+8LUBpSqdXhSDBqCjHdrLQpNjEdc02KMQpEQ8xYrLoElGYOCEDyKTuSSzpJCnJn79Vio9WD1MXEB4qvr8K9ry1//vShlvv2us/H/37clhUgulSJmyFFqVGNKDGFiMJqgDEFr3v32FdNh5OOf71FjA1aRrUJvOtBWehwcM4REk0d2KrMNj4x6TwBC0/E8Be6JPKTESWs2IdMMoLqG5A3ZKByW0SuGIfB07Et2WmEShAjEhNWJndK4lGmbjquu5c2773g8fWEMA0ZLz62bmxvevHnN23dv2e62RRIvUvS2ddhSP7de29bM/7qm7NJp6iVAcbb+a6nrysSza305F8Gi/JCdIcoFVcF7WljA9LUNsiRdKHqZospQNZ6SOEmvZF5aa9GKKVXu5cAwiqPU8XiU+EBr2rbl/v4Lh8OBYRwwuiWpwq4ESVhMMXAMPTcbi3GKzdZxc7snpMwwReJo0U8nboDtzZ6WHqcVxsDIwEPqaY2n28HTdE/vn4jxhM7SaNhZQ5PB9BETAzZ4OtvgVMbkgIteGj8nGHJCNaICijhybop0OBDSiZRGfE7EnxmM/GyQsc7gCRVVAiNjik5cTpouFrfibJbLAqxICYKPRJXlomglwWcqOnMl10ts/0q7dD8hmdxi75rj3JthzRunLEXHKZbMZCnAmbNpdYFNac4CUY6jBud6FRBUVlqcp749Eb0kcVhnBy+z03Du/7wOCC6zTev9VXcipaTgqNoq5ih+1immGUDF0gckFv1gXTynSdybIBWkLptW0jzGRAmEtbXSc6MRJsp7sU7NgDIGh8JZxWa7K5OFBItjKVpe2yNmMiH5M9mWMaVOgcXlapomnp6eSoBipAlf150HaCVA1FqJS1U/0U8D0zig20YYiuCx2VFHY15dgxAjhEAOpchblS7npdeCQWGcOau5qCCiuntN03T23Bo0XAaFFXisAfYcQK2u/2VWbX3drQml4FRLN3b965c6VCq62gnLOSwgwxbHp6ZBaUOYQrGbdYw+MI4Tp1PPl4eHwqYFQPP502d+/PiRT58feDqcpMtulPSA1mL1qXTtIK2W2hqlZgAxA3QWuWXOZZ6Y5748133FJNJBlc41xfBtacpL2dOXWZ3FXW4tk3ppv5cyg/WYqgv4mgFdF1R+a1skbT+9oK9/18+qziuVRa1Mxrro2BjDbrfl+uqKd2/fyHHlzDCMAgK0RmsDCoahp+/7smgvcswZmM/nLZFXlJI43qgybxR+rKKNZZo/Y6dqLYjYZW+xzjFNI8/Pz5yOJ6Zh0WNXuUfjDF3bsN9ueHV3w+u7O+5ub9BaHPC0SmgrgU5KkRi8HIuWTj0plyQDmmQUOkTphD4HMuW9RVqqUGSj53F6CTJq0mI9ll7KKP+qt3WRzRxAglo/Dizj96fB8kvbL8vllIAxi9V7UoYQND5kxmjQGaaSrPM5wd5CDkSVyH0idJnsFKYpfSWylg5pk8eR2evIVTyikmPMDXZ7x/H0mUcCzxZOObMLig2GxllSkGSJQzElhfeZ51NAYYgp40PAp0RMwu41aBptCNYRWsPtmzfkx8QwHjG24fbmluvrK7bbLdvNhq6V/mRNY2idxZXa15qImV1BV3NXvV8u3T5fmifr4+t571tM67fmIpSaI8Rc7/SV3CoXmVVBIKvjqXsW9lOpXI5dsVYqK1XmSSWxMEozDNK4+FT6bMUosZjSWhotF1fVSCYQIQeU96gMMcNIJqqM0hFrIk2jOIbEMCji4LDPB7bBc9NYYjBEpQgWeo6kZoQu4zYwPPb4aSR7j1EGox3aZIxLKBMwMdDFRKMUhoRKEZsyOitSltgbZchZE7MmBKkZSVl61llVtFTp590lPxtkSAYGyApTmvFJczyHLs3b5gtAta9NaJ2JIeGnwIlBnteK3X5P1zXknGlaCyRsaWjUdQ7vR4bhiPfCZkjNR5qzzACHw5FxnDgceoZ+Igb54tIHoejgtZGGcwWMkKT/BIV+VlnsLK02GBQojS2BcvDleC9uiHkYrqQ9dXB/i9W4fG6d+V6DjDWlWBeF2lEdeMHCVhWnh3JMRc42FS/muq+Uz3swrJkeoDTgyVjX0G7EbrZpHNPosVY8sZt2UxgFWyRukjSMMTIWEJNywprip01GBWZ5RF0QYwx4D6qT45+midPpODfh224EYFQnJiXolZQTISdurnaMPtAPnv50pN1ucUAYJwiF5SkUZs1JxBghBnIMAsSSJSs1F/nrYtG8BkTrLItSShiPi3NfA8L63qpFHYaBnDPb7fasjmPNagzDMIOUCm7WAYKxBpsc2+1s4vzV2Pq1bdUiVoL7FQCvWWlr0Vaa7WWVpO+AcRyfn3h4fOTTp8/88OFHDscTwzASY+J4PPL4+MzHzw/4KK5TEUPGwDwWxL5W9P21AG5dOzUz3uW4asrrXF6RqotaFLBOWajX2z8XxF0GOJfyp/Xza9B+6bhSX7sGGOv9X0qWlFJn7MbFUS3ZPiRg+1YcdslgrI+tZsxl/mhm9rUyglKv1HBzc83rV6/4zW/el7Ffkinz+Fd0m5YYPdM0zpbmOaW5gV+9K+ZGdUrsXedzUiSTOi81GbMkogCOOREhT9bogZzAT57nwzMPDw8cj0dC8MLAa0liWS0dnHebjtuba969fcOb16+4vbkmxIGILMbGiDNjrkzLfMYFAy2BFtS6EKMr21+VAiKZ0loaia4B5Ro4rIOzl9aU+v+/tVzof+wWS4Jzaaq7gIs1OI7zQ/WRnwP8K8BeS2a+pV6ov41SRC/jP9stw9Shh8ykNY1OxDCQvCeMmc/qgGoiZqcZH0bGfSDv4dUus3MGrS1XU4LHnq41vG8sUT3x/eQYkuPtu/8r//Tl/4FXI++vGj4+jDTRsU0NxlkSHm09O+tJRjN6zZd72Jgdx3Rimo4ckqLJV6K7z4rrZstoLH2OfPeHv8NtLGN/4OrqitevX9O0jQTaRLrWcnW1KwyGGMrkLBbrdT2zxbihGj1UoGHt1w6fl/Vll0yuPJbQpvp9yrYuJq/z+ByT5Yw2SsbAzH5CTVBUB1GZCNbqEYW2eZHSGmg6h7ZKYqgU8XEi5ohxBh+kz5Y1luenJ+7vH3h4eMIYg/de6jT9iI8B1zVcN4b7pxNDGnB4zNhLQ1rryO0e3ERKPXG6Z/KPPA539IeG8LBh9+Uf2Kh7bBv4fOq4Bx7azL37gbs3G+zWMmrLNEXiMaAOnu0+Y5wFm4i5J3cTm6jYDYYvKaFCQBnPNhlM0GgSvdL4KZKCJng49j0uKVL2PB0Grq52JJWY0t+4JmN9QbWu1rBF3lDpKcT6c8naMtPm60CcBKfjkUzEOsd2uyk1AwEfRqZpoB8G/OTJWZVCo/ViKtZqnz5+ZhxHnp6e6U99aVb3dTaxjML5/dVBaM0e1MW4BrchNATvyiS+OHPUba3br+9b3zjrxb/eBOuboX5uPdac8xzg1tfUrGD9vBjjrHVsXEPbtOyvrubvJtl2h/fTGc1ojCHMrExtsNPOGcemXWQN2+0WlGgqMxnXNDRtx9X1FcdjzziOBRScSmAk2crdbieslrXEmOau19XKrjIWTWlAY61kP1Is7l0Ii6WLe1LVZgs7ojFBitOHlLi93hFTZvKBE5lN19LtdvR1EUVJh97YCPOiNC6JoI+S2TZdQ9aSxRivenRWpbmj/KwLsMdCgf5z2cCaIe+6jr7vZ4tb59wMjOt2yYJcjhVVMywglpUyhH/lwYHMB8I8ilEAShe3L2nkKPd7BG3Q1qHQZGV4eD7w1w8f+dOf/ol/+Ic/yT3fDzOQDD7RDzLxU9jUmFVhtJSwW9X7nfMs2Qww6t9QtDXFQCAV+9q8ZNKVMiiVZiYE/nlwUV9zmfmvGf+13WMFrjU4rI01X2I9XwIXdcFeJyvWx3iZTZTMuEh5Ygqss8DLkMtn8/BLP/V4K7Co9XjX19fs93vu7u64vb3mzZvXvHv7hpubq7P7SWs5BzFFdvuNAL6UeHp6LNLSpX8RKRGzJ6wyaqacwxgyISRy6XckTSB1CUbVPL+SSjPUXJz6fOB0PPHx0yeUyhwOTzw/PeH9JEWPxqFIEpakROscV/stb17d8t2bN1zv9zTOEiOYMqZq+1phjaW7bwgBZjmeSFhjsaqVZFB5rxHAIcxMKgqBOFsAr0FGTWBcAsi17OTXPn8s20uMxeXf/3/65AuW0BiDM47kI85aHB122IskNHh80Ix9lDgmZ/oxY0ImpMz0PGFUQjnATRgFWSkeTxk3QFKRxiSuw4FJX4GOPEVP11pUanjOmSdt2CdNB2RtUcXOtsWgsyUHxXhS+MOEjgqjLE9PT7Ruj242YnXaDyi9od02uNuW7daS44jRmtu72xLHafb7vQAOsvioFGY3BH82X9V4aWH+ljnonKF4eTufnwDEFVOtmKp1rPXS9ckpklXNAy1sdH250ZLcWNYDXaiPTIpyT9Yi91p3WRU8AmhkgfbBM/USG/3jn/7EX/7yZ3a7LcM4yM8wFCZD5lVDRg0DORtpRdAYkkuoLtK2iffv3/P7P7xj9A19rzkdItPDM/HHHxj1Jw7dM0e15UvvOCTo85FbJ7bWPmaO9wf0aaKNoElEP+GT1KkqK4k+GxO6gUSAHDAKnNJSh0smx0AImhwtIUKaAkpldts9zrX4GFm6XP309rNBxlq/urYpq0FjvdDrhfJysMjjspBllecC4Br81p8YPTF4QvSU+bag5RKcRbE8lO7TI0ORTlT0eZnBWWeP6+Swlq/UG2ABUrloDmsrel583XqSv/y+64G/prIvJQ/1+C411VViYK2dA9Qa+IYQ5iLFxhYNuxbtstKLrCbXW6iAdVWOxTpD24kD0m67Y7uVJnnONbNvvXwvQ9t2UsCvqmRHNNt+CjOdn3Kas4xaKSLiRuYsZ8CpZvqlT4deGIfyPsmUMNfdzOPLdkWiIkXadrejaxzbzYb+5OcgsPro13+r9WVlNYT1EYCctCKWwGIZm3mmNet1Xddn1OCvZoPXYLBmitf3Sn3NepK6vFfWbMg6YJDfS6BRpXHrIrlf42ZdkeDF4k5ijYBTJ0XdGS0TPLkUehsymmEKHE4DD08HHh4PPD+fGIYJlIDTnGXyUNqIZXGWn7y67uJYpQrYWFPjJfBkCbgluC5yrvJT6y+or1NKgAhL4Drv8SK5ML+HBRxYa2dTigrG6/09DMMMLOr9fzl3rBfZ9WdfZllfOp7L7HfOa7nROhv8tTRhHRuoMrlorVaJJzezFmLiIeDi5uaaN2/e8Pr1K16/vuP1qzu6trmYXw05Q4iRN69f89379zw9PvHnP/+ZaZw4HkV2Ih3C5fByEvAnDHosNRl1CSyzYM1O53L8SuQPGj1/2yqr7IeRp6cnIHE8PjNOU2EkijY8SQMyrRSbtuFqt+Xu7oabmxu6TjK+5FiARZ2PK0MhxbJ1HRPZRql1TNKDZX1u9XytoQLBxT4+kvM5i7S+7nONnD6vi1yvkf++/cu2tTpB7mWJDVxj6XRL4zuawWCnhuk0EIeGEAPReIZTxqZMjIaxn9g0GTcZzBTRKILWHCN0QyIAyYFNA1s7MuqRTerZOoXymtEHBus4RsVTzpA9LZFWZTbKoLNBRwVBkz04RH6r0kQYPUZ5TKPIIaIVIn9qDLtWo9iRc2K73c4tBTabDbVOqPajSWmxaV+DjDWYuEx0fJUEXm1fJ0LUPOfM9y+8+N6vWN1aA0rNBa3nMLX6WeYFrTQ6KbHAT7VRaFmvZmZREWMg5aXnzziItPLx4RFjNOMgbpO+SMlT7VSeMjYmVFJ4pciNxnaK/Raurxuub67ZXr1i8C1hMsQxEYeB4/FEsANBTYyuxWNJgFKpWGhr8pgIx4nWZxqlSzJE4m0KG2SMOOJpo0hEcpZ2DUqLykfVZJqCjCJlKX/QWtFoh7MNikA0Py8W+QVyqWKzpZcGcTUIXNNca/rrUrteg+mYIjkqnGuATIwercFaKQIP0RNTIMVACAnnmjJgM+OY5oVYJEF+bsue03mmrR6rtfarDKBc9HRWDFcLsXNaihhFV3cORtYDec3u1N/19ZcOXCGEeR8v6azrAhBCmG/YdQO3eo4lCyb3S+s6nNO0XVf0uEJJtl1bZGYyARhlUaUTtnWWpm1pu47Nbsv19Z62LR1tm0bkWSGuuog3KCQot87h2obj4TR/Zz9JUBRKATtZBj3KYpydz4GADCO2orEsunbRc8YYCX5iHAeOx6OwKsB2tyWRRGY1jrjNhtZZ9tsNX44TcfKEcUJtu9VkUiepWmAsE41WGmc1E4EYAsM4SU8UZYhEjscj4zjO41Us+/wMLqrErV73dUFl3WpwWMGD936WsHVdN5+P2iX8sq5jGRsFIBlFSgLi4s/0pv6fdXOukQxzLiYCWqOtwzUtGYOPee6+7VqHsQ0+JIYpcDwNPB9OHPuJfkpM5VTkEsgZI4AFFCkp5mYXBWTM956pAI6ZuZjD64rMLzL0KWeWMgYJrJWCuSCfnw7q1/d5zfBvNhtub29F67zd0pR7bxgG7u/vub+/nyn36mx2aWdd78F1jcV68V4vuOvkx3r+ybmCpHrwLDrm1XYJLnKujIAuCYp2lkN1Xct2u2G323F3d8fbt2+4u73l3bt3vH33mpvrK66vdsxZJMTmVWkjznYx8erult/+9jdM48j33/+F0/FIDIHj6VQPEimxyAVoCKNVslFSrFh9LKEAkeV7iTMMq+7iMrf2fY9CzEeGXhzjnJG5ymhISRWGUbPbbri9EWbm1asbGmeAQEqS+dN6ARlalz4ZRa4RYgRFGVtLoiHXpJtclbn/Tw2SUqqJizQn/ZbEhDpjt9YAYw0yfqom59+3n7et721jFE1j6JqWrd6wGTu6YLEZxi9HUtjIuO7g9AxWweQNp5OnazXdaLAmYlBM2nDMoE4JHSE60KpnszkRzZarpLh2iskZxjEwuJZnFVEhMKSeq5S5ynCVhckQ9sLABE45WqNowkAcPEpNNJ0RXb5SdI3DWM1us8GVWGyz2RTZk6Lr2rL+LfLt+rNOjL40Jl9iMr7FamhdC6prQmc+6+V3TQaVwu68iNtSkVRSXKKqJFKu2SItvyjvmB/SxhQ2d0kA1HtG2RpTUGqFIZZ64MPxMBd9N23D6dQz9MMqcZlQZEzOuCANYSetyB1s9prdteH9uy3Xr+5w+9c8PDviZMmjJw9HjqeB0Hhym8idKsBAbLQ3rqFVmjBNhKNnGzOdMZgUxWWvnEJjNNbJj3GaSQkbnI2UGuQUQQXQGbQk7WLW6Cysb0LhtMVYIP08+PALLGy/ptgvFzqQwVG7HYcQOBwOZ9KXECRgazqLsdLRNMbAZrMRiUsrC+049YzDREp55ZYhhThKy8lKRU8fvCcUu7BL2cklILiUvNSFG5gXdKUoWlgtwcrq+6/3e3lzrBf8+pnrvguXgcDl++aB/MJ+awb8LLDI0icjI30UFIqmbWhat3SkTAkf/EzH5/L6OhFUR5Vu00nDxMJkpCw2wNvtDluYkgpApmlit92XwNkT4zNCY8pgjiFgrJ275I6lYHop/qyNbFZyAgXeQ05mZhAWyZHGWCN+D1GaxjTGcrPb0d4fiX6iPx2xVxvSCClrLHYBG0XvbwGbi61lkJteCrRlYnHOzee7XoPT6TQD0kvr5pkqX/UkqSBzzZ6tO7KvQYUxS++ZWtxfx8Z8nqzUFNUg5Ne+VbmSnEKF1gIkjGsISQpcQ5L7zzQdxjYcxyPPx57nY8+xH4lojGtwykoTNyMdaNFSQBeBWPpsqMK8Scd3szBm9RqX45oDBiRAFXp9kRCVuJWUJLNTY9W8xLrl+y0SgUsWo/50Xcd2u+Xm5obf/OY33NzcSNO37ZZxHDmdTnz48AFjDI+Pj2fsa51DqhRv3UF+HViukzz18y9lNJegaA5eU7Vc/jpbWDt51/fXoGK3283MxXa74fr6itvbW25vb/nuu+949+4dt7e3vHr1itubK7rWYYsJBLn40qNm844UM7vthu/evUMDh8MTfvK0bcOHHz4wjlMJskudQqnF8CGQ4spcQKsZMFZGo5IgNUBRJUBJSeps+twTwgREUpgEqxqNKay70QpnDDdXe96/fc1vvnvH7757z831FcH3jIMnB48xFAOSErxohVaSPOr7YQ7UUspzc9V63GfnXdXxUwbbV2Pz607fl5K8dRLk37e/zTYn/MgonSEZTFZkIjpnTNbYYLgLb9maPb3u+Rg+8fGvEYwnnxS7J7hyhqZ1cDihhoaUGx5yx/AY6Zx0ArfNQNsc2eiGh+TxreLRO55JnK7uUNHT+xNOPXGnEkPS7DHk1IoUWFlcyBgkyfbm5jXHp56URzY3YFLE5kBWiaaRHmRd15BSpOvaeT4Zx3E2l0EtRd6XBg9rowc4t0+21s7ZnZfmpUuWtZzt+izlieXxPEMJAFJWKCnGkhzG14THfP0kKbrIn7SW+gqtLErFs7lc2Pe6Diz1sePoeT6c+G//539l6AesdfzTn/7EcDwxTSPTNC6JrLpmhEBSiaGNvHu/4Xff7fhff+/4w//2ewb9ime/5/EHjf94YvzxC09/+v8QB4/tLGa35+r9d3z5cILjQGc1OzR6Soz3R0yfabVlow0NA40yNAYaFF6Lk6htpWmzxzOmiLYRHyOBQMRjuwbVbdGbDdk0RDyTH3h4vqezDmsz+uXT+tX28zt+l4IdrQowSBEd9aoHwDl1Xt0EcpYgVyROYam4txk96TnY2my6Im9RhOAZx4FhHDHaUlo1k5LYylYQEKMcS4rSHblO0usJugZw1apSrwbvnBmkyCIKIld1NLDs66U6i/r+6uhRB+Ma1FwGhpdZpPX+6++1TeU6eFjXjShksU/l/A7jMGcVbQEOztqyruYSUHt8CIRSs2Gdw1i7BGLlsRqMKSX/t6YUjmoJ1FAKaxyn03EOdrquw2hDTJFxlCLwmCI6LfKghdI3M8ioSECrAsKcozYPrg3ung8HmtahtCKmQJhGtFW01tEYyxATcZpQPhCdAm1IRpWMYDEosA6nNDpFMlWeJecqGCNuGW4pUH+Juaj2tPVn7Z6zzhiux0B1+KosWS0Ir2NhzWCtpVWVybBGgdJEm0jREPXPvbX/59xm6lqVugYjYw+tybHmmhXKWLRtUMYy+chpmOhHjw/CpiljsQmmccJYKT4kZUYfSEqRtUKXsa2VEvOHeu1KZlgOiLPMfYpzBCpzy5IYX/2ouUamLhoKln1yLpOq/19LV2rNQq1XuLu74/r6es6kay2OJHUeqGzYekxWaarW+oxdWycp1la1lxnEr65LMW6IMZXMO1Qm8CWZ1vJdpIdMrfESidTVDCrevn3Lmzevubq6Yr/f4ZwFMiFM5BTmhGKO0ocpFSCgtWG7bXn96pa/++Mf+PTxIykGhtOJz18eCMETYqQxEtxkKIx2cY0xSrq5z0Xs5XfOxRllNcfXuZ1MCJmcI1pnNKr0aqpnKmGtZtM23N5c8fr1K17d3XFztadxhjglYphIMcr7CqitCRhVgpg1CE0sbJkc0PqYZADWjup13pf3nyem1tniek3X89JLTNu/b798uwRytXeYyhmHA51oBthkRRcMSu04KiPOPeHI4VmRbUbFlgdveH3STBboR2JuiJNl9C0uW6JKpNK9ebMbaNKJa6W4spbBOT4TeTItuW2JumHXOE7jCecDh8nQ4mQOmxQ6F0fKlOjshlGNxJQJ44huEjrLT9c2s1W+UtC2tS40AGVNZzGOWaSS7ix5+ZJEan6sgIzLcVlfezk/rbjmGV/M6+h8Tc4TO1+P8EUWVe+dZQ7Pczy1rMfrRHXdoZqTMfID/ann8+fPfP78Ge89WilOxxNhEoWNn6ZSG1YXC0U0mmgUuk3cXife3MC7W83uruPQKw4nT/8M7dOAezqhHp+JMZO1QTUG3TZEjmX+M5iYiKeR8f5Alywua3RAXDOV/K4qN8ikYpc9xYkRRaMTxuTSWFKRjQHbkE1HwkkTXKWI6USMBkik+A30drH9fJBhzBwQ1iBMKYWJlQquWdwq+6gt2ovMxXt0LDayZGw0RV4jGtM6LGowPE0DfprQbUkDUZvIia5NZPZLM7uYatF3WUzrHgt4qJvWpXahLvjFKpFcsoGFwl4WoMqgrBaFtNgE1gDgpe2lot56TGsm5DIAUEqdafzrcZ89XsZrjInJezJFbqAcuEVqZWztSSAL8FTkSAIUTLGqtWgjAZ8pFrbWiDa6ZoBtCdhSufZZZ/qhB2QBXHe4VmpZ/IIPkqk8k4lJoKZA2Awky5dKXYWzZr6JpeZmkEXfKEKK2L6n6TSmdVgNOQb8OGGiOCIkoyRQkSso58I2GCY0mVDqbHRxEqvF8RUs+MKKVYC6Bhl1Mr30nV8Hcmt5Vb3eNUj03p+NncugYA1mTIlsMqrYFi+P/Vq3hQkqgX51AcuLUVMuLIQ2FpSRHhmjZ5wiPmXpaGtLdqlIG0GmTmlRpkAJe1VBhlZ6Zi+0Wk+OSyFgTVIUDc782Bpg1Pa+8/H+wljtJQmBtXYGHDlnuiJ9PJ1O8xh7enpiGIZZvlfHSQ0wL4PGy4Byndley6TWiZGFvVnOw9KZV381bquBQ62/EJDRsindsm9vb7h7dcfr13ezLKzrOrSBnDwhBrSqjfUko1+ZxfrZjbPs91vev3vLb3/znqHvub+/5+n5yDRJ8qrOQZQ91fWn9jspV7TASNEd51K0uT5rFYDEWV8lWT9TWPRcElxt49juNtzd3fLq7o7b62u22w1WSXFl9BM5xuJwKONNutarOTCr16VGPDO+qABxlRySz63M2xrsUc7buTvdvG/Oi75fkqX8+/Yv39ZgI4SIQuFzROlE4zNdhl3UGNsQY+KkAjk0DD2kRqF05iFaDoNmJJO+eNROQXKkZNB6jyGg0pHBn+iCxzGwU5atczhrCMrwrC2qc+jdls1+y3j/meOh5zBkjHbFtCKL5CVKwrXRDmcsOSsBGVcZrTKaRNc1NE1d56rLYyZGRcqBlMTlKaV41gunJt0ubWovlS6qJnlWYGI9Lr89TheQUM/7T817q7fM/6kAQ8lEcTYB5JwhreuPC8s4OwjKPLgkkXOpDT5x/+VeWOcSN/hJZNixqBhqcK+QWCgYRW4UroObm8TdTebuSmE2mjAm+uDxz4HtYSAfetTxSM6arA1YS7aaUBK5G23RIRMGz/TU0+UGmxU6JjRKlE9zTF4Z0EDIBh9hUgqrM0lnEoqsDElblLagGhINunQPUaojlMRxCD9v8fsFIGPxtJfO3wBS7S8DRkCIHycpKMm1gZmwF9V9oP4EL/KQXBaISj0OQ8/h8Mw4DsQktrbGINZhYWCaemKQDGNMNTsvwRtZrOSqHanQXoWu02YeSH7qIWWMKsXHKGna5kM5LiBLgUwN6tYLs5yPBa2/5By0zkyvt0tJ1zrQqPubmwdyDmhqMFJB3jhO9OOA9npmE9AKZTSjn0ArWq1wbcN+v5vB3uTHmVWQ4GZbJpWm+LOXAK9+H6UItbiyHEc/nRjHQaxryeI4UcCMsYYQIzF6+n5gs9vOXUOVosiHJhSw3WxoXFMAkhRTURiAGsRYa0rxlKcfToxDz+7Ks73WJD8xhonBR9w0QWtQuVJ5sigbpbBOYVMkB7nOKUVUTmIVqc5lBrWOojpp1WtYF/Nah1TlVSklhmGYbTtPp9McDIYQ6LoO7/0s/6pZ7CorrOOgAvc6NpbOqJmgA9Zokv11yx76YRQ3H6XEqlZrYobkY+ltIV3iTdOirCNG6KdAP3kGH/AxQ2n8pDJkFcnFrlobsFmRlAJj0G7l+ka9zlBXlrxCCSnWe7ICoMKwsMp4IfJ+6cmT5+akL23r8VT/Xx8bhmF+Xdu2s5wOYLvd4pzj7du3tG3L6XTicDjw/fff8/DwwPPzM09PT7M5wjoTeGlIAczF5Gs3vPWiX8ebAOUakMp8b2yVAlZHuCWIsEac5KSvkTTk3G63c5H3d9+95/133/HmzRvevX/Hfr8XAwmtiGEkx4BKgXbbyhydM+M0SauBUsRPjuQUICeur6/4uz/+HcaIEcbpeCKnpZtunY+dM7PsKcdAWgXlcj1EZkoqySRVmDPhs5nTXZkZEBitoNQImtZwe3PN+3dv+I//69/zh9//jlev7nDWEsOEnwYmPwBRrG7LnBhiKc5Wwqyux4aEHrkwGBUMi8NWrbvQZa2qUsP6fdcAGZa/689auvLv299uOwPxSMIh+oyLCW0SGxe5Uolrk/BpgGkg5FGsteNO/Mlc5GO+5/Up8OqYaf+cuXrnMJs9V92ed6//QKNGsv/I4/1nYkoYJnYM7Nw1jdN4ZfiUEnnT0b67of39Bv8ny+GHT3x5OrIxFp1E9mdNS/R5dnPcdh0qGL4MJ5xVRKtRTnF1taXtOpyzaA1NU9chUZXUeWYY+tmmuq6La3XHJQio95OSDN9ZPPitc3tx1ldn/OXr8W2Gbg1iyrSvSurhAmhIonRRkYiL1OKaVxUm0+QZ+pEvn7/w5z//WXr5eFGK1GRHjSVERSNKGmMdwWnYwM0bxW9+p/nuneH2dcPHPBGCQY8J9+kLm/sR//RMGk/Q7smFATnFwBA8MUW2bo8L4E+R+OS5Mte0MWBCwqBQSRpDQoJG2hyECSZlGXJkVIpWWZI1kjhTjglxLzOphdQRQ4RkaLvMOAmrNY4vJ9cvt19sYbtmHSSDJDImXQrT+r6XCTIurlPCdCwDZEb+ZYGMMdMXCzCAh4cHcs7FUrXDWs00SXB8Oh2lZ0cUi8Jh6Jm8FNbE4rahUGeTa5VD1e9RbWDrxLsuXprdpJLQ9evxvgYM6wxiLej+Wr+sv5rca5O2dWfoegyX6L9mO+vArhmDmiG31mHtYnUr7ibSKKcGwc4tLlm1XqbbtHPmQeQNDaZ06YbSYXfy2PJegNFP0mW2AI2aTV3AVGSaxOq1L81oQozkrNnstvO5en4+cDpJgRQ5c3t9U7y4X7HZbObi7tPpNAflV9fXDL1Ip758+oi5N2z3z+xve378eM+XAGPboV/fYE0mqw2dM1CaPIoUQ1iVNE2MpxOTkoaAqYyXGCJDkr4Vtfi7SpzqWNFal0ZdG2Dp5F2v6XLO3Qww1pr4eh3WIGMNXi9fW6+/eIsv+vdf8zZOUwngpUg7Z7n/paeBFP460+CaDpQl5sjkI5NPUrNBZT+qK5BGaVs08xqbJVDMFSSomt9mydSzoiFKNqtmoFIJ6JaGcLpIozIpKnIxL0qVYl99t8oMrLdLmREwS6LqPTkMYnQwTdNZxl8pNddWvX//ns1mw36/p21b+r4/m0vqOF0nPBaQmmYWrR7npcxGjs8KULO5AAx75nxVpYHf6uR9dXXN9fW1uEe9ec3NjWT4gdmlLedE8CM5elQOxDgKWExJ6iwKAJWO77KQ+xDICbabltd3t/z+d7/l/su9JCC04nA6kUIkBWlMKnb4RY4xO2ap+d8KNJSe6YP5t1LM4HFmY7OwpaSI3jTs93tev7rjN7/5jru7W7abVpJgPhG9J0cBGLY4uShKM71SAC4yvOpWI2tMPYRlHVHkHKjKgNpxWJq9rdeW8yL/9ViERQtf2dZ/Ldt6Db18/OW/l8cugXa9D+pWpWjn///2uctZMsBKW5SxGA06n8ixZ/KZwzRxUjAaRXIWo3YkZRkIHMyGx5Tps2ZjPOMB8LDf35L9Dtot7a7BjH9iyhP9mGg2mV2r2QdD1ymO4wlOjnxq2eY9brOnuxp5bkae0ojNkUQmGM2QImoaeeyPbJoWYx1pKA0jDaASTeNoW1viizrOpJHvel3a73dnibL1OFyzZ+vnq9mOSGSXgX8JK14EGqpykSXBo8o+EIKZjIiAKlNBLRyv13ndPkD6deUifTpLvKySS2Kxz8xeg6LvB04niRV++OEDf/6nv/D9X/7Kttvw+fkjT09PKKWlVjiIfCrHREiS/Nk3W7QxNBvN69/v2N2NqH1gbBU5NeiHnuaHkd8cnmmPA89jT0JxdbNjuwPTZJIG27Q0TqGi5vDxAf9wok0KFQO6MGp+8mw2wkjlGMgYlFGYRkv8QyaiiBqM7VAJcWpVDp0sKRiUN6is0Flh1J4pDCi1wXZ/48LvStsuenKxPKzuRYIOSzF2DMRZr7XUSczWe7noT1WdCBSnk4CTRSZgC5Jeso/yWYHgIyEmgpd6hBjKZJyKj3gZXOsCurSSvHjv56JkKAHGStN8/p0r8r1wm0mLBe7lJLWWQl3KYb4VhNTnFypuYTAu9Y3z4leCjJTO6zcqWJKgtkoHyo1vdOnW2ayaZpVgwVhiksJtQe+i/61lVal+L71iZBCAVLvyPj0+cTwcmLwnhIixjlPfkXKei7m9H8k5z9egfi/XNNhk0GWflUnY9lt8yViSEzlmop8Y+57x1DMm8GhyTHPGrzpW1YAihkDynujFTi6qKNr9Io1Zy6Oq3OlS414nzDpu1lni+lzNdkzFtq5er8trvtZJ13FxCUiXTNC5FfOveQsxluaXhXoGkajkBNqitcW6BuvaIs+LhChgMGWoPTByyehmJaBDqcLAaZFNJonTgLosqbIAlWaca5Cx1tjmDMXKL0sCS6wM672ZJdNeXUoWkU75rBeu9WW2bs0qPD09zU55Skljyv1+z/X19Zl5wGazmeeZKrmrQLYCjPXcsR5jlwzHMocv85Eq97pRUpRpy/xbLXYreF47yNS/6zx3dbUvP1czI1OPdwFEgRgmSAVkeFvmXwEU1SbbOksofStiiGhjMVqz2XTc3d3w7t0bYbEnzxQ80xgIUfpHzIGFVqhapC/fslyvUhBa7q35DVVTVTKccz+XnMR1JYtuu2kattst+/2ezUY6m0tTT1mjWAVZ0p8jz+5XtbHezCqZCvDKtVDLmKlF3etxBFVeutj9vrStr+t6nrl8/te6rcfwz3jxVyBjvZ/L8yLr2i9sWJgVUgGkUWRIPSlE/DQx+olRGXx2qOYGkkJli9IO3245jpFnr7g1e3y0KK8hW2IypGzAanRzTchPjH6kbSNWBVqr2HeK56eBcWo5jiOHkLjdbLC315jbE6f7Iy5Lf4dkJQuedeLoB1zrJEg3SP2Sk4Jg6yo7KfJcSSCvZd0gCWYzx2jrAB7OZXqXdRmLJLA0Za2/6zWgzOsXWwUOMvFeuqPV+zcvMkh1NjPP1/uShaqPVxabUiwuZis1JltARq3BGYaRL18+8/DwQF9iVl/mcpDkY4pLD6OapNcoTFa0RvP6dkuz89AqRqNJA5jnie7hyLY/EacRwkgk07YWYyMpB7Ga1RatM2lKTNNI6j0mgUoRrRJa5WK3LeeutmJWSs3jO6PISrqeZGXIShRCOUlCLfuMNpKs0cg6m7VB2RbbtD/r1vgFTEa11xOkKK5Llc2gaAgX7apkZeU1wmSA97G4EUWxxooJrQPjMJVFVt7bDydxm2qcdFmUZR6oxYmRGGRfVUYTywJT9XPZWpmMkUW9Bn3ee6ZhQNUmcWXxjTGSi/+6VuJ4lFOeCfTLzEctJq+Ddi1/qtu3QMY6YF2zHXXwrzt119/1+fodxnHieDwyDNMilYISEEgdxtXVFTlnaYCWknSQtkt2cmmYVYIFY8ko/LTKwOtakJ7BLjdqVmp+bhgGPn/+wsPDA/dfvuCLA1VIic1mx1iYnpzzLM+6u73l+upaXGmahpwTjXMYLUVsWmv6vufh4QHvJ2FsNFzttjTWol0n4ytECUyNoW1adtst7WZDYy0qCNsSYmLoR1Q/kKZRQKmR75DV4sSTiyb8JXBR5UyXcrnL6+icyARrYFXP18IEni9ca+B6yYYtwSNnAceveYspFWtRXexKi4UnSTIsztF0Ha7pUFq610oXbwRMGEuuDh9kycwoU/SjxVGKxNK/AsiU7ssZJZFjARqUAKQsADUQN8Ko6CzJs1kOUbp8S0M0qAvbnE55AWCs/14DAWAGF8fjkaenJ/q+5+npqbABr4snvdxjld0AZsa3gvD1uFnXAq3tuy8lU5eJjVpzYYzFOkXT2jmYriBjLY1YW1XWsX99fc3NjTCTlYGpDEZl9WIIxOjRSLbNGQEeKUqzMlWOwTlHiLkcc6ZtOpTStI3j9as7/vD732G0QQHH44H76ZkweXKmMAhL9r66g0nvTQn6oWQ2dWGjln+WQDOlYrdc1gZksW6cpeukhqZrW9EzT5OM01Ib6KyR41CqFJOK1XEqtWdSX5hwjdRtVBfDS2kX5bBqXcwadKzrsy4TZPU1l3K6XxSc/0+6fevYX0rivfSadTJv/VjdUmHTvkqv/+QmIENgRiCFgyTTphOBzBBhSC12t8ePAeVauqsN+vqWw33Ph4PnffMGHSNkC1NAt4gFLQ7TvSHkiTgM6HaE2NOZxJu94scvB+JgGPoNT/3Im5srrq867og8Pf8F5Sda02G1ho0lK8PTeKTbdSjbQKPJJmM7S3O9wzV27mEmpFpl/GpPIqnJMEZ6LSgl0Kqyapc/6/hmZtW0ehFIwBzqv/C4xJO5stlUYLC8Ual1Iu7y9+qlud5rSwKpPp7KczEkYqyuUmtnv8w4eh4eHvn++x94eHggpcTz87MUeackpjjeS9xcE7J17s1gU2anDb+529HsBmLbcMoOfx9oPo24zz27wzP3w0QMA5NKSBgYmKYBkyJgUWSm04DzHsaAjhmjItZkrK21dZnVUigxsmRzyEqMeFIyBKUIEWJS5CmTbQTtMVisWnUUKp3em437yTuibr9Ae1FxUHFUSBkVIQRxg9JlUq9uUCEajJY+E9IpN5X6jInJB7RuiFGGU86Jzruiv696t5HTCZ6fH4F6oSPWaVLSxJgFbJQCQgEzJWt0kf1JKdH3/Wy/mnOeAUaKsdBaYc4AngcH1S1rAQNa6zOpQs3YXRYxXWYNq7SmLvazPnG1reUP66z55b7qcdR9hBCKzGfAWjPbZCqlZmDRtM3sBLOWOoiu2opWMIM2lhTlnPVFP16Lw733jMMgYKf+lMy/UmLP+fb1m3LNYbvbE1JmGEceHh6YprEg/panpycOz88SoFxdSX1G27BpW/74xz8CEjR9+vQJpRKNM9zuNjRKMU4nDv0zHz984tRuUClzPBxw4w3GWbwqzetCwPvAcDyhhwEVPUZJF90M5JgKE0aZpNRZA0GR/1WKdSloq7KRtT1z1drHKP02TqfTHBBWBm2dWa6P1+tZQWW9nosz2ZLV/DUHByAUr7UNxjiRPGUK0NN03YZuu6PbXdFs9oSYUcajjME1HU23oWk3AoJDaUaGzJchJnxMDOMoJWoatNWzRIpq9bkCGdWuVuRSi4WrBCsJpeVHWJAik0q5lMBB5TFke7nvwOV8crmtAWm9h7uu48OHD/O8knNmt9vJp5T6n7U5wVr61DTN2ZhaJ0MutflruWOMlY09L+Ksf9e5bQ1Y6hxVmwpO08ThcJjZ6PV7zpq5qozTGasjfjqJlChnacpoHWolV7O2wVlHbANK9Bw01vH+7TucdXRtSz8MaPVX7nngeJRkFUpq/STmr8GILu6IwiagmJs1UsIkAacCSFNOhNplOAsDUt3uHh8eeLz/wqvrLZvGopF+TwDW1FoVjdKQgyTHYEkYxCxOLlLXZVCpstJfZ9aN1qV2DEIpNpWkhLB3a+BYx1o992tJZ+3/869hHnnpvvqWrEmtMtrrtfmfAyRrlrm+59tbxqVAkzRNtpAiMfTEcOSkIWqLsgbDyDZOpOCIwaEax7jRPEyZP4eRaxfpnKXdwlGNPPeedPLsrq6IYUsMBxgOZGfZmg2/27R85Jl+gPxo6R+uiFe3tLctf/f6N/zDw3/l9OmJ0zHSkMhYsA1fTp/p0pZWd9h9C1cd9tUVzbtX2M6hlZl5v3r/iPW8oyaOZT0sKgckVrpMoK5B7ny+V9cjv3AJfvq6zHTjy0+tXiHXLJ4/SQUYzAxMvbbVSlowpprnZFm7J8ZxmhM7/anny+cv/OUvfxVw4T33Xz7Ptranw6G0FZA1ZlFGSEfta2V4RcNt3GDMaxSONG2Jfxmw35/QH0+Y44j3E1El2m1LZyPd1mJvd0ybLdZOqKzIfoKgMVlhjaKxiaZRtLLESuxdQUZCJL8+E51GZYvWDlBEDylktIfOZfQUsAxYH7BV6qkU2jY43eLc9ieu07L9fCZj5RoV09JtlLo4FCmONcI0GKPRypRs4tqDvS6M8v5cKGltMmBRypZJ0TNNcDweZ9nPNI0zozJXya9lXFUecUGHrhfF2uhuDUDWUoKzSWhlxbsU2i0avhow/lQg8bUE61xutf65BCffmggrMJBaDXu2bwlMl94MvugCc+7QBXCss5FzxqFq2GOSmyNLM8FhFMvVxjU4I45gvjTdSwWkQWkspxRd2/D61esyZmQhjCj6AkxSSnNmtC7kOskAlgVVgpbXr1/PdRGHwzPDcMRPidQ1GK0Yx0B/PNGfjgRlMAUs5jnoKoFFyuQySdgQMDlhnUGpRK52oCFQA8Y1cKuSs3Vh/mXDofX1rZnpynSt7YvrxLvOBr+0SK6lDTkvGQjpIvzrd4exTjrUKy3F2yIP0SgjDfmarqPtOmzTkH3EWsdmu2V/dcX+eOJ0GjmqHvCFopd5R5dCvZq0kcJfSW7MICMtbIYqQltVKPCcqhyqUMxKXqNyoZYpCqs6W6+FUmVVO4tBFLNV7lITwsycAOfXGRjHgZzFmcT7aZVgkGy9LoW/kgVfF6ovi+QS0CekBcUy98LS/0fm2CoTlALj+kV8EEmk1kuNh9bSu2Y9+mRulHvBTxND30uvo0aAgdbqLMCo2XenFZtW0zWa/vSERow5us0GjcwpfhS2W3cZjCZFj1IR4aYVzoiN7PV+y5u7G4bjkRwjOT2RYllbUtVUF6ZQMEphJGo3+Hq96kUsf6uVJE5r0DK2Rh95fj5yf//E5y/3vH/7Gqe3dI3F+4E6h0hxt2RbcwmK5FysZU+qrCkrV6z6wyIzrlI2GWNrILwEcJfuUetMcl0XptKv6Ne+fSW7+YnX1U2vAMPluVqvs/X5Wm21Bi7fAjGS00hYPC4rbG7QuYi2SwxkXUPbNPjsafNEjpZxVNg2EK2h3xjuA8R0ZGs8+7Yn6xE/ZXw/smkNRCvBv4LGTFgDViX+uIdP08jj4REzDuSpl8TtteLV76+xDh4+eqaT1Jtp7fCTok+enCayAdM5TNdgOicgoBI5qn73JeFa/2+MJHHImdo/Z838XwKMF4Fh3dlPXLuzU50X5chLCVqRAlGCe1b33vo19W/me+o8JluSAUt8WNb0IGysgPZplmzW/kbWWLnrKyVSP2glz9UKbEo4n+lOHdOnAQqjmT8PhKeR3HtGMsecCCqztwbDhNOWtrX0IZECYiObHTobYRuswrqMbRS2URBZ6YCK6UU5nBQVORthzrIiB4WKmdr62aSACRkTxiJvVkStUEGjQ4Tw8xp6/qLC74xM2Osi6ZwzOhYdvDEkm9BRzxNtma/JWSrSK00McXUxI9NUfcSF2RCaOq0WV2l6IoEqzDUiKc1/1wX8kj247HdwGczVx2tQWYM7RdEpm6U/xVrastYbXm754ljga4ZjXctxmYla76dul4VUoGiaRYIhx72ApmmaZgvY2j1bqwUwrSeCWr9SbklQihBL9iuKZjo3zQxclFLzOFBKsdtt2Ww6ckq8f/ceEGlM3w9gDG3XzUxS14lcS2osMkZXp5rFY/vu7m4+Pz9+/DAXi+aUMNqQswQ1Y99Du8WmvNjlyoCVJEwJNPw0QQholbGmQSPBpHyfMGcF1xrz2ouggoNLucjltasFtrBkkNc1NUqpWeO+Zi0ur+96jFCwcw0wf+0eMc51s7VszqXztpYMtmsbmlaAhnENMXucc1xdX3Fzd8tpGOmHiZhysRqsIHDpGq+URqU4S7BqAiIXORRZ6i1UFu1+vc9z+Ttl5PnaXDKnGWSsMN8cqMqWZZJeBFql+BiWCZB5fqoB/xyEF3CTZtnQhPdjKYyX9xyP50XWl3PFnACK6Yw5WIPgOuZk/sjUmrM0z6GKlCN6yvPzlbWd5764rs0rzausY+xPs3uX0jX7Ltl8kVq5Uq/kaK1B71qcaghDL4mPRtE1Yj4xec8UJjlvrcOQUGlJBIBGE2mMYrdpeH13w9ifUDkS/cjpNBJK7yRxDZvPkgRKiHx3vpZqfna5uMuVlV4umeJ6F3l6PvH5/oGPnz/zfPgNXduw6VpiEimHaKUNitozp+7tHGBUljmGVDDOso6Rl9fXXiUz41Ydp/SSvLg0DqlfbL3G1XmbVSb517itTVHWQOoy8JyDUWrWekkIvsT6nD9+USewmpcvN4VYvzoSTRYXQ5Ok2za6BRJNsyG3Hb33bNNEjgo1TjRtIFvLqWt4RBPGA6OaoDEYLYXj/TTynd+hkyNrJ3WVxqNdYp8C/sahv0wMh4gbRvJ4IPkJ0zre/uEa21hGep5+VNhssBGm0TJkT0oTVic2ncN0Dt1YYRfqGJnJB12YjJU03KiSzFNLc9MLoHHJYnzFDn2DkPgmZzTP8+U41ohhvrfqLST3nrn4jJyX+fISYFQ2QymzJMZjIoRICItB0FK7KeBjHAb6vme32YjlNTUhtQANqY+Q3js6RYzPtM8d/VGjmoxuE/HjifFpZBoDkzY8qUzImRujsWnEaUXrWvxxwntIQaGUgAyNwTmFdhnbZkyjYICsvgYZUk9dQAaGnDREMAlaMgZkHHtxAXTagNZ4rUi+IXtPmv7G7lIhhnkxCiHOHbZTzlSrUVMbOWlWA24JWtMc7AuIcG4J0iVALNpVmdHLIC1uUkkKh2VUGnJSZ6BFLG7T7DDiQ5gZFn8BMOYCxiqZeqkoMmVyyF8Ffmupy0vuUfV1L4GMGqCu+ye8tM91gfdlx94a8KaUcDYVR6iykIRyPrJoSqs7U7WD1VqdOVW9DJDU3AsjpoSfSh3LOBKKfW4udGIt5E4hsN/tUEoK7BtXAoVx5OOnT+yursk5F5ekUkBqBfHb8n222+3c0AuEGfnuu++4vr7i6emRv3Qt/eGZVme6zZZjL9mEHBNWaZy2ZF8KorJkqGvzmZwEZKgoNrBGG/HpD55hGEg+Yy0zyKgLktZ6LmBdus4vnZRF1jfNzE4dQ+tamurgVZ+/vr4+u5bnmckFMNZJTClFS/t1F+Bf6dZ1e9GoZyms1UWm12y2bLd7us2WppN6DJuhzZm379/xx6dnmraVZpHK8KAexBxgUKUPhswxYkddMvSqBtIyP6RaTJGLXEpVW9si25pXPI1Kah47czBaFg+l5kdkXVOS9Z6zKVRgshQ4rhkHCdopLOSax66BsSL6cXU8Uj8k4NbSts2SJKguW6uEiozN8rt8T+mzomT5qAErIjlNKeCDn/FQSp5pkjl9HMeZ+ajSwlT2rwoI0aUeyupyrOIBRuMcbdNwtZeC8K7rcNsNqpNu7VuriDrTNZrttuHNzR6lFH0PeewB2FrF1kHMlb0p8UQIOBXYOcVv396xsfDqakNnEz9+fOB4HDgeRR9dKqyg1GBorTAo0qobsFKlDk8hpiXGQCqBjLGQxfJ2mCKfHp5JZK5v/on3796htKFxDT7E0ntHo62TgsoUZX/ZYrSVfj3Koot+3yhFVjXzmqj1RErJMihztDiopazEtr1IMubxlbM0VS0XsNYUGEEhAjBCYCz1O7oAwH9N27dYBrUCVC9m0i+C4PnvdULhG/s+2w+JjswGRZsiJjaY7EBvaBuLahuU1Wx8j+vvIUpPq9tXGx4zPKTM9rsbxsfPHH1PtCeut1do07HJG27bG3x/zxQspECTJ9oETYLt9g6OMB4Sw8M9vPX4QfPlqef372/Z3dxw9bbj8KVhpw0uTHz/nyeefvzMMQwYP7BpLaqxJIk5USz9hCoDaa0l5+rimUqSeF2z+nUvnXruLtkjedPL5zKr+bY8f/zri1ueyOf1HTKJyfxZQP75dT9PQl8mpSUUCzOYmCYvzpRR9jmO02x0U63u+74nTJ5gHcxKCHHjrA2sS3SPhGwJHRT7hxs+/umvhNzjugf6j5956BPPWXPc7/HBs/ETv0uZPo1YDEZF+n7AT47oNTFnfEiYUOYPncAalNNkX1ejCr4yZE2NoYkalIGk0Smjc2KjMjZO2BiwOeJypGtbQPPsE8eTIehI+Kr4/uXt54OMkGbJVIiJkPJs9acUhCiDw4h5fVmIK36SXxUVxpiIAbSOM1tQM78hBrSuATxMKpDSUNxHJkRXK1KLhd5KpWdGmC3HZvZCKXGgqhfcLJ2ujTHS/yGLbCeR0TmXxVeCVZM0qTQfeamAEhZJ1CVdvd7WgWXtr/CSZAY4uzlrZnz92nWmwNmayRV9pFjHBnwUZwuRN03sSy+MruuK9d+ip4ypSkgyVhtiykSkM62zbs6ujoiswWgZ2DklUgiEaWIqDfSGYWAcpNNlPwx8+PAju+MRpRVDP0h2IQax+VMayveypXjdOUf0npgCTdNwfX3Lu3fvOZ2OOCM3mG06lDmJ1zhassgpEydPnoIMRpWlX0q5ufM8sVSJSC34gvWUVoFXzeCui17HcZxB35qxWFy+BCxedgCXyTnP134NKGthbh2va5CxdhPKaekq/2vemmZLP0ijzZgV3bal7TZs91c03QZtbel8nFBW0SjHtb7i93/4HZvthm6zIYVEDJ7+eGAae7EWVQIApmGUrvYxiCuLliBDXD4EcKQUIYnME1Okl3UsIYG7Kixr7ZujlPTgMcUNKFNYAiPF5ljptZOiuOtl8pxJXtfhLNeVWWog7FtGG7kPFBBSIHhZHIyVppFKK7SS3kOinhOaqy5imUyem5QajK1zpASxIQVxIvGL9XZMqdTNxdlVhalkvo1iqtmqKnMNBaSRMUbOiUIzHkbevt7TdY7GyX3XOqmZuL294vr6iu12w3675eZ6x9V+w37j2KhJwEjbsnUlIHEatWtxTUvbNlinGKcgzJSSZIB1GZMT2ib0VcPO3fJq37Jxkettw8P9E5++PPLw2DMG8EFkvjbLmHDWEH0owFMKxbOujmUIq6AVKWammKS/hdJgIz5HDuPI95/u+T//9E+cxpHT0PP6asOuWIg3bVfAW2IYEwqLsx2bbisFuAlSEKc8lZnZFWPkR5tagKrRxtG4tqw7CpQu0i8l83BMtF2LQgBFP/Qze5RR+CAgI6YsYya/HMT9WrYzyQwF13/jC6l8/r48F70uWe/5tawCWVWSCTPYKPdq3df6fUqhspg0VamMlyfQymDbjqBApUynFPF0gqCxbcfebuhToFcwuC3N1YbkJ36cjox5oNOabdeRW8iTlsxzkgZrNmccGW167jYN768a/r9PH0nHgD81PDwfuOkczhm6uy2v337HznQwTHz4838mPE+MozR4e91KE9+6vusZZIhk3FqRaIdQDXhqln5hMspkBJrZolZA3orpqNLRSvW+eN1qYuarC19P+HINZgYjlUNR9ZCW15TvIWMmzbtaM4y5DKKM1EvJ/RlJXtzwYg5EoiSzh5HhcOTw+MTpeGIcRuIUxPUyRsQpLkOKMk/qWjYAWSmSNqAsKhvsAHehE3fFaeJzn3hOlifXMuyuUacTmxRxyQOanW7ZmSt2BhqdOKnIafLokCRuK4mpasOepSsBTsmPjoqcNBFNyuV75ywN++Qs4dDoMGCTx2XP1ma2xpCNpo8TedKkIZNeSLC/tP1skBEzRaYEMQvpk+tiS7mwsdxp812/oouoGrc870uKKBPaaEGPJfirtBwZPHHOTAYfS7CmMLpmtRYkWjOkMrgyMYkjSM3KZ4orkJUFWBsNQZ1RdrVQNOUklPoF23ApFTuXP5x37b6UM1REvy4gr8/VrdLf66LJ9Wvr60sCtfixG6xxGCfytDwmARneA/Jd+r5nHKRoKfiI1nGhE41Bq0Q2EnhlRJLUOJEIpRgFpYcgBbUl0+GMwVlL8l4y+tPE6XTEj9LsL4VICJ5Tf5QFMATQihAtKcbiYmHnzL9zDmvsHGw3rsW5ht3+CudajGvYtBasIykze5PnlIk+kH0BGCGiDOg5n5yLJbeMycl7khbphJ2D2iXjImP1/JrOQVlhK9YSkvkeKddqDTrr76+lbgtrVaVnFbjUsVbHUO1Qny/Gwa9xU8qR8yQOFkg3XNd2tN0W65q5qzxZaqKMMnTa8OrVXXETUjx8eeB4eObw9ITRkEKQgjQlNsY5RrEzXoOylFFmYVizKu4oVjL7OdaCYAniZAGrC1GeF12j1AwQ8hyBKDBa4halSmF4uX611imleU5C1WtfM21loldLgW/O4AsjqUtzPFU+m5TIuoACPeeoZAHNqSzqkpmPSs8df2P0UqcBsz98KvLKWT+MuKfklFABoomznb3K0npGI9/VGjFQUChS0Nzst+x3HZu2WYGMZgYZm27Ddrvh1e0V266hbTRpanHW0jhHZ6VnirIKWstmUzz4FSQisZxTY7Vo3k0GC85Y9p3leteilceqxK41WC334eEUOA2RfpJzJLUQCuVrvJLmuGYJSop7jZZAvgxeslL4lBkmz5fHA3/54UfJWOaE+913Mm82Ddo0xAwZAQZGi2WpMU4ATF7m8fqRujIYS4KWGhxpbcW/PiMgQ6l5HylnrHUz6KhmJMaIHbGwH6kkzi5X5V/vpqAElIIMtVpJnNYMRn3d+ktneVtNGKgSoC4kpSCxOZClgPplj/PnyAvFWROlCApGJQYRRmWyzsUGOeGUuBYlImoytCbR6IBWkWgioetINjGUetO9ChgXGF0gOUhZk7wSG1yKc6fxbFrDzRbU4xPp6PCnjuOYOMWJbTvROs/1tWOjOsLRENstvr1izIpoG3LboJyZmZ/6XbSiyPLksWW9W86FUgpl5J5RqgINVU9LUbKU00StVaks7y8Yi3NIuQZ7+fz5y72phWUuwjl5X5aDq2XrFXSIyUcuhfuB5IssKkfQIu33w8CgLYfHR6kb9aKoqEZCUfpmo4v0UaHEEp0CMlR1ddLEaaJLiVCkmEPSDKZjdFtG3aDRhJzJRFosbbTY0GBjxBBBRTyJPisihoAoW1QWe2ttFehMVmAV2KiJWeFVlbpJYr2Y2FJRtSPTEGkIbDRsbCAajQ0BlUbwhjw0/Jzt5zMZuYZsWewnlS2oVBYrn0Sq1DS2Xu0yMJdgO0lZnzAKFrEITFkKf1HkrMWbN8uyHrMihoyxZcHGyXNJkShuTuW8qIKatSlFR7Z8VkrEHAlJgkLbFB9oZyUoj1LkWKm7rJZC8XVn1nXDvrVjyxpk1O9aLWdr4FhvzNPpdNZLYQ1aZhrbmFnOtQ5m6/5DCPNNZsqqWOnM/XbLNA6E0g9iGoeZJQgFCIzDSN8PhLQ01lHlBBiTaazo462RwIoAVllyzIzDCe9HApnddsur2zu6puXx4Z5PHz9yOh44nY5cXV3x/v179vsrTON4en7Ch0DrWlJOtNbSWMPN9RVdt5lddCoAtFFAx+5Knre25enQczhNvP/Nb8VFC82YwLqOaUqkQw8+oHxAx4jNGpPrjZ4wzmF1JMfA4/MT+mpD03S4dsPx6SiUaHGKqjKmGvQPwzBnoeu18N7PndlrR+/6s2Yn6jiQpofdV2xEV2pVKv26lstJsz5dQHLNWv+6QcbkMzEZUA3WOdpuR9tuaVphMeYAH0rgJxH3ZtuhlQDRaRgxgNOa/vmZ56eDTPQpYo1GKQGrzIyDTJyNdVhnsE2xVCyrZwiZYfCEUF9bFsJMATYZoyhAQ2ZBKTJPpTFoQDknr9Ua1zhZzlRNmBZHqgI0Nm1TCqRtYRslCEkhFhCvaIwmO2E8rFUYW8BNzSCmLIFKrL1+ilyvpqmVKsde2JvCWsycXi6WvGcJjhKvlUSSLMlGGKSuYbvp2DQNVuvCRArQsMay7Xb84bdv2G5bOifuOtZqGmfZbbdsSgfhxjmu9h2NE6Z6dBrnDI0zdNbgcxJbTKtorSqBTcBSHE60kkx/zb5lcbxpmoacYdsarjcNT2/ueP/2Ndf/9JEPn5/4+OWAvz8IqIpKGg4aYUBTln5LrKVnqyBKYEk9byL7jcnD4wHz57/wfJAu7CZHpvdvScD+5gbjOrLS2BDJBeBNQ0D6ZAgj45wD788StzN4KLVFZeiUZFtJ4BUpsq7Jq1XiShUJW12H1om4NQv+a92k2kV9NRdqpYllnddKSWKhZs8z6Kzn9VIBBmkypubFvwStud5Dsq6v8DcUtgulqXeIKo8nrQjacNCKRgdc9rL++BM+KxIGZ7cY2xFyYDxNmDyyIbEnodKO2O7wm2t8+5rj4zMnlVDNwAd3z2YXMM4xPUO8sUSbmLQnOY/ZWvZqYvvxiXCvOXU3jO/e8hw1WvV0XSSaa57HPaeT4lFfcdi2DE7j7Raur9FtK8FwCGSjyVpYNKVFVjmurO3r+HElMYRZGkPWJqgzsCh24gtWVyIZrOwH52P0W1u9RZYEz0JHLMC8zt25JFwkbo25gp0COuQSQhQWO8RAKvd6NJl0mvDDQBgG+uFIzBHlNDF6hqdn8nHgxz//lTB52UfIxNIXJTuFMxmF2Ncy18UpsrGMSZNNR8qah/4HDB8Y4onHMfC02TN1r0hmx/H+AX06YUPPY5P4Q+6wB834fWQ8DNJvyAbCRnNQG1R06Bg4ac1TzHQhsG97dsAuKzoMnTcMyRCtfGdDwupIQ8QqI06gMXHbtWxzpiOxbwOm80xG0ZiMjQkfJvLh8M/cqbL9ArnUeZ1BzbioOeuj0DozZ4Aotbfl4iu1MCHyqlKzsR4+JdNcO/rWyD+lJSsRYypsidB4NUGhVkNwnQmuw3b+f85SXFoCxFBqN7QxZyxIJhFCnot0u647CzbXBeQ1w13/luOMZ12x4Twrvi5Gr9lxrZdO2nV/c/C9crfKSTTPlQGQbrMTflpqB3wIc3dwpRSn0wk+fxbkHSN3r16xL42zmkY03rEwTaqomI0yNG07L3pGKYKfRI+Nwk/irOBcw//lP/2nUhztJJNMkSdsGg7HozTUUoaYxV1qu9my2+1wTYPRUmSliv2LNY53799J9m7yWOf43//3/7s47ljNx//ynzmcesYpiJe+iuQQmPqBqe8JQ0N2EKbEOPTE05GmP8qYSZFhGjGjRdlEVooQFpBXHaLWNTwyNNVZ871L+Uu1p63gcM3Q1K6oFbhUpqbuTxr7DPNjEjDlWWY1DEMBgvzqO34PYyAljTENm+2Obruj3Wyw1pVcimJ20VKV+hXWTG9arDH8/ve/Q+VM6yz984EPH35kOA3kUuRbFRGpsHgpRXyauLre0m4amk1DiF5knyFyOPSgeqbR46eEyiKXEnmSnpkwI81zCmMg1HnOEGFmDiRRoJfsP7L4VNBhTQ2qLW1j0SQ0GZ8lklRIQ0nrHE1THM0ax2azRRWJR4rpLIOXUyqyp6Ueq86rIWYCtWA7zHpnSdzmOXNvbemYbozcj2VR3nSOt69fcXW15+72mqvtFmtKEJcjVkPbNLy+e8Xb17e0jcVqRY4eUwrA28bNTKIwHBprJHPfGE1jjZwTq+dzn7RCI+5eKUthrdJGWB0FkgtOGJ3pGkPbNUXqIf+/u7vlzZuRdnPN9vtP2PYTp8lz7GX+IheGhir79NJBWC1yuMrIq4q+yNSCyZQyz8eRnB44HXsOT0dao+n7gWGc2O53XO13UofRboiTjG1fQKmsjcWZq1hozwCibLEYbqBqnZxYUWYkcQQLC17BwzpJtXa/WxdGf6uW8F/zNo95Xs6cqxcee/HVFeTnRM665L2VSDatI2sYk2eyBfTHgJ8SWVu0adFux/Xta/o00fvPJN+jgMYqgj+i20aakW42jOOAiQKucYEQRmIa8EOAYEUypWEMYFSi1YlWJRgGwsExHgLRS5GFdY7Bj4y94vEIn44Dubthe3vN7vU7TNehrcUZcSmypc7WGkOI4UUQMDPxuszbSi/MDpU5WJ/CGuct4EJO6T8PMNavnfd5xk6ViQ11FnMVrFFeGAq1UpPa1ZEv4X2xQ6eyFZ6xnzgcek6ncU5CPg1H/vGH77HK8OnhnlPwxDgR0wQ6oYww8EISKAyaVluiMhxDYJwCxMQYBg5Enkhojky5p4+Jxt1iUagQiUOP8iM5TSgy/vTMkDzHw4GnCKEUbWMbkmvJ2pJ1QCmNz5kxSPLf64mkInsl4wQrCao4ekJU6BwgNKI8iR4fevTOst0obpoGowJqD7YxvGs2pN7w1EPuw8+6Zj/fXSqs/bXlREo8oFCpFM3Vi55KoJ4LOabk9/z+nEuWkZk2W2jJ6uSyIjvTMpZStZeseLaAREHQqtjVL3KlbxaDrRiWM1nT/KJV1hDmCXwtcZp1oSvgsP7/+vPm/a9uqLXP/ZoRWffI+FaX5+ojr2sxKuIcUBcY7z0oFokPSy+H0+nEdr+jC93qPKgSNMf5/xmkMVaTaGNL9GWw+8zpdMKHAEqy8dvdrgA3w9j3TN7L8/VYDVjt0GSca7DWzZmMepZDLXIvN+k4DJyOPTnDbr/H+4mHpwcenp54PhwZx0mKlwrw8t7jx6lkFxpSlGJ4FYJocVfXvOpzU8my6NKMrFrQwrmcrRaCr0HGWjY3juN87S+tb9c9SV5yMrucZOs+1oCzunr83Mn4f9bNe5FHWmtpuw1t2+FcK93m5zBgGZMopHdOyAjnC/vdjtevXhGnwP0fvuCsoz/2pJjQ2s5AI+ZMbeSZVOTm7opu0+A6x/F0pO8HTv1Azg/EmIsMKEmNb1KzpELPBbmpAAux4AYp6rNKF8nlPPkBy72ek+h0pZ7DFqlSBAzOmrkeKoZU5AmKxlmaVpIGm82Gu7s7jBU55MykFnlpjNLtOoRSY1AyeSEETn3POAE5FkkIq/tdHtBaSx1B4+iahk23EWkNiu2m5bv377i5vuLVq1v2mw2mBOep1Fa1jePtq1dcX+1wRkBZClMBZhIQ1/OWUgEMJQNsVsGMNZoUtdgkruQuwiwtM0XOUYrPixsXhWNX5fPathW3sqbju6AJ2eCT5uPnR7yPDD4UiVOZO8r8gVFz4iyvso9a6wJ/E1nrUschAUo/eAG3IfPX73+YWa7b2xtSgu2mLe5ZRUGicmnSVeoZjei1Z6mvqsm3KoeScVWlxpegYg0e6k/tbfLS/LK2Y/+3ti2QIS/ZTy4ARr58x+rBSnBQyY5F7qZVLnnRTMyRKUnNkMqRqEBbg7KWqAFncUazVzcc9ITN0BiFTxNaJUzpvh2dBIWKLMhaRzJR5FY+yjxlKcYXIofZNAYfA6EfmU4DfrDECVKy+KQYQqb3Ca807XbL5vqWV+/e4YqZhNG67E/PcqZ10A7n8ZMkQoX1yOh5jZ2lncxkw/zeekbr2F4XXv/0Vu//PN8bZ/tGEiOxZLLl/qifURLN83HoOWaLMUoskZd9h0kKvodxIoREDJkYMilGnk5HNIrDODBlYSkzHqVSiU0hxVxsZRVOOyS2T8ScsEqRcySgOZmIMoFsM1oZWhQuJXScYOqlrxcRp0DlQAwj05jJypX4WVijbCy5pKzCyrXQBIXVJ5ye6LWnVYloZCnNOpGzF6KlyKtyDoBHW7CNxnZyDnUHemPYblv2VhN1Jsw9SH56+/kgw5+7LykjX252IChLACEvvQrKgndWrFoHlKYU/6xAaaXTUrmBC7NRmd1qKabmTyuDKcvErJUm6yX79FNAYx3UvxToaV303S9M0DUDXd9bg8d1MLp+/foz/rmCcViaV62Pfw1IFEtm3ay/J5m2aReA4oSpmbxnnMQSMsTIOI74acmoL8cFKU+laEiYImM1IMXKfhoRdzHP/eMjGilm3mw2aCMZuVN/4ng4iANZjIxhoh8HUobW1UyawdqAnjy6NAHLSbzEs2tw1vJ8PHI6njg8HwkpYQvT8uOnj3z48Ufuv9xzOvVk1ZVshQT64zjIcaaOHMWBTIU49wgxZGz0oo1koVerdKw2zzPGiM1uNSQo/VXWsrnquuO9p+/7swW8FotXJmwNbuo1X1vbXo7NKr0SUCLSivWY/bVuPkRaYzC2odtsaTtpwKiMKYG3UABaKVL5bYzDp8IcKMWm63h1d4fTFj9M3FxdM5x6UswYI8Wulc2gkKLGwd2bW9rOoa3ix08/cn//wMPDI8GL1anVFmci0UswnKPsRGUBHClW9iKSciz3oANjKdU44khURKHVMSrnUtNhNKa19MdeJujW0jpLYxTBKvyUsVrGadc23L26Yb/fc3Nzyx9//zuaRpixyYuhQ4xyj0lfjYAPk7j7IfbRx+OR+4cHTv0JqxODEvmVVlUiKXVJxso9vN1sudrvuLu9I2exVdhud/zmN++5vbnm1e0NXdvId4qR4AVItI3l1c0trTMlyI5i0VkYIClIlr4dUowXy3VRpQGrxTkrDJDRxQJ9CfDOAupSX+KDJDEWa/KIdM4uPZqsxbWG37gd2m5QtuP7D5849gM++lLsrktiLJcxZ0vyRsmlY8nWaiXSLFRxLUuQY8L7TPKeMET+pP4qiZHTic12Q8qKV3e33N1es+k2smblSBr7Uq9B6XqfFxa5ggwlkUANpKphSm0etpY8Xf5dWVRjzMysr1+3Nh/5t7Llb1EYSEJ0hrRq9YZy38+JxvJqVaSEqoCVKqc0FpSBGCJTithcapisw3UbtOsISeFNxm073t3u8e33wk4ZzWnwWJ1wJmFMJLiIyYEcvdwvJqB0InrwUyROgAOrNAHpLn+1bXgsIGN4OjEcWsZNh58MWlnGoBgiJOdorvZcvbrjzft3qNZKrWpNWpa+F7X3TobZrWwNMITJMGRlzpLG54nVizWr3HNnbGw+//vbgOPlx3OucR9zL6PK/i8xTgaKQxE1oRuZJs/pJE1BSWAxTMPEME6cxlFMIwKkIJ9/mAZyyjyPvcyn0aPzhNa5+gmQArSqoVWGTrecwoDLsta3hcWNJnFqMsFFOqPY0bI7wRA8p3GC8YiJHqcjnTZIeVoipyAui/PYVCLjK2xS0kqaPyrDFHforDH5xDFHOjVJjGwUmEzGlyROV65TQGuPbTSmzegWfAS7UZi9xu4tV9aSTQb1NwYZ+JWHN0oW4MJdF9A034SULFu92FlVi8kFSCQjOj8qOFBpZkI0kHRGq0xtxFeRqGihVcmEFZ1fYTGM1eSs5uK7SxeoGtit6yrW3XHra7Q2MvmrRQozFfs/5xy73e5MJrWuwYBFFnUJMOqEX2/AtfTlJaBTA8r6HWpg65yb+yXUm9+WRWMuFi6ypLbr6IqFYT2mGjyfTifu7+/ZbrfCLBgLKq4CZTt/htJa6liSw6UW17bkFEEJYeyj1IrMtqRolLGopkFZqblo2262u6xdx8X/PeN9EJtGFD5mPn3/QVgJH0AZ7p+e+fHjB/7zf/kv/OM//iOHpxNTH2i2bXHaAT+O9P2J3bgVCUkAHcVqs20cu25TdN0wGY3MGRnXyKKRUmIcx1k+1nXd3M2zWnmuJ9d63c4AYHm+bVu6rmOz2Zxd25TSDFa892eShkvrvzp+hfmxM6j5VW/KoF1H023ZbHY0TSfngGIdWFzHbHV+SxlUwk+DBNJTQGXNputorKNzDX/83e/FBSqLHjiExBQiCbCNFSlOa9hdb4g5cDwdOB6feX56kjGcIgaKgxD4GIuVbJp7apATKUzk5JGi7oy2TmrAjCLkXORVCmt0yXSLO1GKCaOlfqFtDFfdLV3Xcnt7zd3NNdYYtIIYvLheaUXbNrx9+4bb2xvevH7NH3//W5pGGtxVBzmZx7zIvIJYMicRH5NS5PnpwKfPnzgcDjwfnjkeT3IJtMIUaUO1xL7aX7HZdGw2XQESkjzZbbe8enXHtjwuDSxFqtRoRWMtbdOwazU5BVIMpZ9NELa6qBhUihik3sI1Zk6KrG2j+f+R9+dbkiPJlTf40w2AmfkWEZmRmVVZRXazeWbmGeb9n+H7eiO7ySpWVWYsvtgCQLf5Q0QBmGcUO3lOf+dMsFFlGe5uZjAYoFAVuXLlXlgkxVsVudaNIEN7DU1AQ9R2tveGVHBF8tUFz5uHO3y3oz8c+PD5kULlpw+feHw5UqMuksaC9QKcWQEfrJNqgsigA4uviiU4SSxNUDqT3qdPLzMxPvL4EpnmwqfHF77/7j0//uYHvv1GqGTBG2KqON/p17HEJI3ZWSZaFQtoJ06r5EqJo0qlaztPvAYwtudjdRpmqao28OP/rE0asAttToFihZpYa12buus2pXBAUaacuuWUJiaianOmLpWE3aHndui484F9gd55+q7ncP+Gp+PI8RLJ0XCmcNM5Ht498P4uU7tANoHuwwspGCBigfu92gLMF2IpDKHSHTzlVuhzMUvvlPcDREfJltvdHceXF8Yxc3wcefo4440kL4fbwMsIz7Hg7u/ZffOW3dsH/O1eJWotDkmsGjVPFD/rL0CxllwY61U5yqq55aZCpD9vgbFrgPXaBPHXXMPX2xZEfh0/beO+tokMbXuvJaXMOE48PT0RpwgF7rodp2nk8eXIh+cnTmeh0tZUBLitLKbSdp6wZSKUCWecAGi2xwE3/cCh3/P25o6/fPgTlzwyk8jnI+HujvDguTwYnqbEQzbcm0D/aaSfZvop4+cX9i5x1zneHnqGXrx4TCoY5zBl09NiWBTT6LyUHuiZ415ooNXyxMzBJ5wtFJnyFmNa58BMCUeiD9APFdNncq/tCTeG1Gcu8Rnjbxj2bvns/9X265MMVaNdyk+gHfNFJmkN+CWTlNcuHVM6WS7lM+QiCWpZFDSoy/5bjiuiAA1Z2pSL9XVFJ11JOrSaYUV6tQVvbaKFtbKwRYRfG/QsnGpnyFoRaUlJ85hoSNGXaC7t3+3P7XXbZrvXFKptQnR1U7z6WytpVusQ+gEU+ypj1/21YHlBrmxDMBE51rKi8l0/0PU91rWry4ImNiWaFpT40HF7d8ukLt4pZzHTc44uBJx3OklVMuDnDgwM/Q5jzBXC3waqDx25QEwFSuLleFoSzjkljscTT08vPD8fuVwu2pStCa58eXHinKMEa1WdfjXhNVZoGUGTtGxbuVWQKZE2LOs51gRxqya2VI82VIP2t149RLZVjHb+W3LZxsA2KGiTd0s8tkaJDdVsn9loVF/zZn3Ah056cXyQPhz1ExCgQu9DYyWwz1kcVcdxMVfrfIcLAdv1DDZwt7+llrp4RsSUmWOiGOj6Dq9JRr8LXMYzMU0anE8yhmMU9H2hIKkXRC4ocUV9NdCHqKkE70SdylqRK9w0QxsUDReeIMFL0n7Y77i7ueWw33N/f8fbNw8MfUfwTtX1mteK45t37zTJeMMP332rctWGlKKi2qJZP8+JpElG87AptXA6nri/3UmS8fzM8XSUedtoU7iR6krf9dze3tJ3HaEL1JIkiLKW/X7H3e0g97U1xJyQLo+Mc9B3lr6zOFv18xV5rYVmPNGqOiLTK+ei9Rhs+48lmG7z4DVFQ5KMBUvWSqtVydf1nlo9IiTp6/uO6gLFOn744T2Pz8+kLH1ZsaiqVEMCDVQNKmUtMEt/jcwlbKoeiGy4ziGlFlIxnMZETCd8+AkbAuMk9MuYZva7nqH34idiLM57EUNpvaGmNc02ynBd5qhcWkIEq+FZC/hYALpGE6FyvfYZi/GG4JtP0f9BlQztPaqKhDbp50pdmpJXGk8bc0qM0tiCRo0yiMqaMQTfTCdFFe7mbs+buxu+2d+wNxZvHN56auhAg1s/dHR2jzsMFG857G/pbg64/kB1N5yrYQYSGbMfIM8wGVIR6WRLwXSemcSYoSueUiVJqc5TXcD6pMnPnpJ64txxOVtcb3m+TDyeZ0rocPsdbtdTnPRkGWMwpYLTIqzGdI2W3QxrjVkTXRqvxLTz1M7dGiuuMVC7ICstabsetp9f07OWd/3iT608ZV7NF+v6mnNdaXJV1OvW/VvmKTJNM6fTmXmcIVdMl3m8HPn4/MTPnz9jqiFLRkfKM5eXI1SRI965wM7B3hqMH+h3dxg78DRP7N3A/c0dP7x/z+n0RB4TuSQ1zCvUUIh7y7x3zGMhTRFzqbjJ4GaRrd2FymHw3B52zDYQ58RYI5OqtIKApkbjnTbPGhvAVIr3zDiM8ZxxXIwnmEo2BpiX+U/ivkSt2mdYM6lCpEIHY83EufI4Rm4Og9g7/G9PMur1Q2J7TQdsQ510oLRkpK43p2mTuW5FrHVhfdnyKK2a1cSj2uepSkx7/ZLM6MCSwX9tNPfXzPNeB2vbgS6BtAiVv+6XaEFhq4g0nj7AX0s42vtfe12092z7ORrd6jX6vU1crqQnK9jN55eqzZK62NoWsG5QQMneR8wsqKixll2RJuiuc6tSV2mI7HoOjXMEY7i5vZF7eZxEUUFOHqELhC5oEFQoRqgLAH03UIEQvJT77Dr8fOc5HqXPo6TM5Twuydw4ThyPZ1GVmmdSkoXTuc0wL8KXzCmKVC51TRz0ugj1RoN2I8mYLVX08JX+sh0/rfq0HSstudw2/2+TjMaJbrzotp/XyWIbF21ivVLYukoy1qTn30NPhg+9NDb6NcloeIQsFysnnVLJUXT/pf9GAjvvnChFuQC+VydVgzeOwppkVANhCPjgCcGKpxoiXzddLlwuZy6XEzHOgsAXadSsjRZVsiB1jfajeo7WVJxXRN46pUwARgJbr/827XhvLUPf0Q8993c3fPftezGou7nh7ZuHpUpgjdFxJX0Gbx4ell6IN/e32nCN+HCUutzvMWZyTkoBYvHNGG9vuNl1HI8vPN/tOb6cZL42Bi861FrJ6Lm9ucF7aaw+n46SZDjLbt+x7z3OGqiZVCOmKk/Yefpg6YPF2UKqCUqEKklK6wERsEnlZ61UenLOZFritpnXNNEqtenxy7ixVrnHrMn59f1qFhDK2Lp8Vug8Nghs9/79Oz58+sw4TXx6euQSI2QwUj5T758GCDV3dKmY56Lze21hqFlMZ6tGn8VYUszMc4YPBR8Cs6oLphS5VYnfu5s9+6HDukCtUjmRVkKhO7TvWV6tAS0g2IJi0rvSQKY21UmyXXJVBTFJTLwTd/b2+D9pk3G/rret32D5u17VLYUHNGbZ/EnEHSS5CN6K0prOz/vDjpv7Gx7uHzjYsAANp5hgCFgMwd+wCwe6ocMEz25wHG4e2B3uqWbHMRcuOXGazrjOkHIiXU6ixKmgm+k6oqlMGGZ6MAPFdRA66mxwoQqY5m+BPTn1TLMnRMd5hnMsuN0tbr/D9J3EW1ZBYI3bSq2i7HxVuTdX61KTrN12TG3+s55Ds+2NWO/pLQ39S5ThX7fJsZSyJuVrbNV6eDVNrKtyqPh9GKZ5ZhpnLueRaRyFIj8nPp2e+Pj0yIenz9z1twI4FZimmRmDt4ZbF7i3gRvrufMB2+0Iwy3VDLhLYN/d8Obugfdvv+UfQtCE0IsZn01kl5h7SIMjRvGBM5eCncHljCfRe9j1jv1uxykaRipjLUwFklwquftrxlSpytsqRo/GdZRgyKreesZyqV4tJwy6h6UAUE1p2SW5FjKQjcF4w1wKl7nw6bkyDFkoxL8S7/zVSYbBqEGVBvq5UrSiW3UCBBYun9UqBbAZpLLJX/PiT6CCkss+KkaVPhRNWFYXAFV+aWOwIllJy+o2N0IbUE1GtgWEr8t4rzmERqsVJTUE+zopaMh2q2o0k7atglW7SbYc/uvgcT2G9t4WuG6rJNvG8CUh0fcs5XP9ju1mNttES9Ex7700h8bE6XxinqXRqes6rBe6irGO0A0s7bLL5+RF5cR5L5SQIAi0DyPj5bzQGTJCGTFOA2bryLUqP16qS6mASQWQBkhjLYdd4OV0ZpomSs6M80xXxSjwzz/9zKfPnzmdR/phx+FwQw4ZSyAVS86i4MM8k6aJkuKV7nMtIgGbUpPBFPfjUorq71/TnNr5P5/1eDRBBK6qGK1B/zUtaqsslbUHpiUUq2ywJBa73W4JrqZpWsbnOs6+7qTi9bY73DLsdoRuhzFeKEVUYmpUO+3zqlLansaRn//yF6iGvt9xe3PLzf5A8AGLZZ5mMFLFCE4krr3zhE4qd16T5komxonT8ZmPP//Ev/zLH/jLn//Mp0+fuVwm4TjHRJyj+G4oaT5o34D4QTisDVgLIYjqk9yPdZF3NCXLfWScytQG7m7veHi44+7uju++/Ya/+4//gdubG0E/1el+v98xdJ2qj0Wm6cLQ9QxDz81+wNUIc6Yg85HTviljYHBOzmNxS6JqjIH7G76533O5nDkejxyPpwW1tVitFEtj9n6304RlIl8eoUofiSsWZqhGzQbnUVRtjOHQOw67gPfS2C3JRcarqzYgIAWJWgvGWIL3eCc9M1UbB2styz0Q4yy0L000Gvvdeyt9Cy3grvV6nnEea+vSixb6wG4/aGLm2DnH7378DZdxxJjKh88fuMwzcywUrCyoswAcOUMY3EaCWH1ysphzOSNItndWkL8ioelu1zOPorj3eJyJf/gLHz595s9/+Qv/85/ecH9/4M3DHX//H/6W3//4Gw63nSjqG6fKWc0pWOijKZeFltHkswU1byKummAsp3oN4EoWBZkUhYPunNcK8kDf9XTdvz+61K8FYerClVjBnu1mjPlSrIxB5hbvLF3nGIJXNTaLD4biYCYTbSU5iHPkfJm4FAj3N7x7v6frbnk4vBFmgSvE3Zl9f8e+v6d7/4bsPVNJfHj5hCuRuL9lDAPD8QjHF1I1uH0l+Zk0WMp+T+3vMLXHx0BJE52Xdf3m7TvC0FOsY4yewRzwu44bV3n4/m/o+gMmBIoFo72sbQBpaCaA64b2/Tp+2VYNXp/5LUBgmhzwqz7Ydr5fA6lfAmz/1WtaV6aL936p5JVcXsVuAspIz2PmfDrz/PzM8Xhk1Kr2c4W/PH3i49MjP334yPBdjzOGwQfmx2d8rtwPO37/9nu+C4FdudDlF6rfUcINUwlUX/jNd79ld3PAAqfjkcObA9999x3/+Od/II8j4/lCip7oLVMuvDxduLtYXJLm747CvvfshgHX7fk4zjzWnpMNjBhiRSmWFZcjNc/UMuGzwdeMswUOOxGQyYXnGR5TYF8CnQvEMqn/qvQyG59xtdB7JHoyXpqKQuXlHHk8ZX5+gm/fWHxFjFl/xfarkwzbSmLVUjcpjFaPlyBfkgsxORGDFg06rVmCYKgYHVRYC1qCM/KUJgrCG3bOaeWkSTOalQO4TKrtBlkH3NbTopWMXw/iFTmTYLoF3tYaihfk2DlJkLpOjEdSSiIDm9IV/Wq7/y/xEtt7XwebV+f4FZVmi9g1yswWGS8aCLRFqB96nBe6zs3trX6GIBBZe0vGaeR8uYjqkrWErttUi9YJRjifSQxpinCPnZdEwjhLnirDfk+/Gzjc3nA6HhmniZfnJ2oRMz9RENoTc9ZJywnaWlaudXPePp8uPD0/y3k1lnGaGUdpZP3LX37i6emJcbwwDAMPD28oqUA2PD6NQjNJEWIUJ+kYMZUVaTKGPEcxFNSx6KyjGCP+Lmra2BKGdq0ul8tVH8zWlXuaxNiwyc22Skbr4WmJbUsy2j4aLQr9vG3DZhuH7fObupSMy1832f7/+9YPe3zXibO3VitEWae9QhOMlInTxHi+8PL0jPdB+gjKHhbfB5guowTDzuHQ4FVRbOOlEVmahTXQRYQkLIBWLnKMKh9bVUbVKT1Ueg68FUpKk7ITZaVImtfGN2+hC149IwYOh4M4XB8OfPvtN7x7+5Y3Dw+8//YdNwfhQFMy+6FjN3Ts+0AXHKYmTIVswQvTCmsrNc6UkgSpsoaqAAKmUUllHItJmwAAxhociWBFNrYMgbp8B6FUNQO/eRTFrJRmvKlS8SmVPGViTaI6Yw19kB465yzDEPDOQMmM57O4r+v86V3QBGOlgBmD3kOzUN+uuNpNKWtLG2WZ0621pJKWno1FsrcUYky0YKclWcGLWpZrcrvWcHe75839LZ/uDuyGgLeQjVInqmXhBGuZ3NSqNQIxhazWkWxe6BfiYSFIbqli0lesBe8pKTGlQr1EKidyLrycTjy/HCVoMzDnROgCpRqsC/iuYIxTYGHtF6y1LF47ov7TuNjXVXE5j3LCtuDUdg3briNf6/bXEolt4LpdO+X3chUgv5aThxW1b1LRpmqVwwjAagHnHcPQc397YLcbxDzTGnaHgTff3HB3s2c43OKNJxwsu7cWt9tDN2B8j/c7Dt2NUtYcqY8iqR8GqnXMphJr4XC4oeZIuT+TH76Fz49wOVPnMzWeKfmCtQXTOexwg7MDgYEf3gVp7Hae4faG2/uerrP4AK67434XuLGBcPOA8x3eBYILeOcICvhWJxLSy/wiJ2d9NPCyPYfBmGsVzFY5EMh4ZVEYvRbbmGnrJ7Vlmmyvn8Q9IPLm0IQrGj2cKlWjnMvafF1Y9iXVxHVuybkwzxPnswAwst6PUt0+H/n49JnH52eePz1y2t0yXy7UmDgU+Nv9HT/c3fN3794TzidCTITaMUZ4mS7EPHMwls5WyJHTfCKbhN87htuByx9G3j3csrvby3yZDMyQLwlTehwGZwXI6Hd7TOj4fJ55ToGXWjmbwikmJmTGciXia8KQsCayc4YQZkw/cnSPGHempkg2gfOxQu3JZSCVA6lGsJXqKk7ZO8VU5gmmAC44htoT3MTQJ273iZo9ca5Mp//djd+mlVhaDZxf/rsZdG0AtcHYLOoXy9HNgG0cbLP82Wxk1IQgaFqCYSyNi9roUywB2EpNaoP2SyhFG3jbBGNrnuacpZSg710Th20Q2VxVX9OfXicabdFrx9O21/0ZLen4Ugmx7W/7mobo2UY3KRXrvJ4zS9d5TRzktJfaPAP0O7Uyb+P7Nw1+pBGoZshIhaBJZRoLxcqEi7XKEd/IulZx0851VW9qqimN5iAJjFIBilZlUmYaJ6I22+ZamaZZlLGmyPkycjpfiPOEC4Zht5MUPhtejhFTE03JpzS6VCl4G/BWnd2rmltl6c9oDecNgTGb67AVBWh/237PLb3tdYLZrnNLRpIq4LQKRavqtQpbk8yd53lJXLdNnbAmxP8ekgxJMAJYh5gk1U2CK3NMrZCTVBXmaWIeJ+gquY9KaZLqU8mVFGdFdqE4bepTeqBd6BESQBsjtKfFTA5EpELpR1RZP70+aarRIJXVWFvuNlqFrPWMheDpB+k1ursRysTNzUGqF++/5d3btzzc3/Pu3RtyilRVDes7T9+JGd3yWYhTsHdWXbVZ1arUO0Jp5TIn56z9HM0bSCXGsVgKzkhFJntZqGuVxT5rL0ApkrTJ/RHxtqoXh/TElAjGO6GqeVGBapKzaBUizhMpztor4WlD1dRWgm73ikjuZu27YGOoJrK8r9DotcC9oJOvH62Ho83VTRY3NLqiMXgsu13Pfj9w2A/s+p4+COW1JJGnFUXDltwodYC6gl7WUZUOvG7K622XAUkAqzGkImifmSLGVPFmUdrUbj/gg+fduzfyfa3FubB4DpTN3FJhATusdYsJ6zaQ3gbX239BOPWt7+trTzDgX08y/upmWKvEek1ro+9wPeaqoJoY2piSoNaaSgieYddzuL3h/u5O1NGC43Cz5+7Nnv2+59Dv6XE4F7C+w+33mH7A+I7gB3rb462XCmAnx+Wdx1jPTCGZys4Uco6wO2B2N9DdUucLNU3EdCLPF5pPTdftsG7A2IHO7pmyIRuLH3bc3HaEAN5VSujpux5CB6HHuoAzjmA9XseVw4h6miZXGLM0dLd4bvtYo8EtGb6th2uT9bZK0u7T9rrtvfy6knEdT63vWUVQJF6RpKMs81vbR/u9SUBvH01hs3lljOPI8Xjk+fkjL4+PXF6OxOcXptORPM2YkrkLgd/sDvx+f8tv+4EaZ0wJ2OSpc+I0ZyiG3u9xJlPyxGU8EZnJtpBdZSbhesew68B65miwE9IiUZ3EW1RM77G+oxjPcc5cSs9YYaqGOYs0cgUsGVcSriacyXTWEFzChpnRn7FmJJtMKYbZOGz25GgppZcYrWYSpQVBUA3zXLFjBVvwt0KX7UNm6GbGS6FcMuMp/i/vVfi3SNjK5ZTgsQXC6EHRkgkWZ2K5yvo0q6J0CzDRQNVYi3FOyv+bgWqNINDONWOoSpOpbYG0oSUZ6gCqk+e2WVeQHPeLAdzQ/23VoyHHzltSDsvgtPZ6QdtKmLZJe6v8sw04G23GOcfpdFqeb8fRfu+67osVkNeKVa+P3wZd9Iyh73qt8IjCU86LffoiJ+y9Z7ffL/vc7/d0occ7UXpq7tKSuIhUpQQlZklWfK0E75cEBeD2ztDvduxvbhb6WM5Vy/ZtcnArV126lQSlK4XzZcT5AFi52c8XLueLNPxWGKeJcboQMtI0jMVVh/cnXClYRZ1yErfzkhLe9nReVGaMnZYFxRhLMeKjUErRJuN1kmvX2lrLMKxeItvEtD2/pea1926rEM18r42DRq9LKXE6nZZxej6fFwpe13UMwyBSwzH91b6fr3HzvbqeWycurFfAhY7vIhz26XJhulxI84w3hhIjOUbSPAOi3BTjDC7o/LHiF87Kb6WK5F8l4bRZu++8jAtjMLVQsqoyFSvNvE4mWkEvG10SoAWgmmjUiveSYNzeHLi7v+P29pZ3b97w7TffcHt7y/39Hd9++w13t7ccDntu9nseP31knjPFWobOMXSeLqiSDWIU5yz0wdEHR3CG4oyUsKvKJJrmbFvIagxIKQoqyNJjahHlEFNlH95Sct1IPEIxlUxh1kpJyYlgIRVR/xNxiILBgxPk03uL9+ImXpZkeSSliPOOilLUNlS/LUq80gDrkoysyaCMhdZYuu6jJSuKTRkjXPLlOdkW4YUgwgtY0fAvxrIPjpsb6Ym4vztwOAwazEdyEmO/ulEupGa0k17OubOYGpZgyYAkd2rMlpL4aGAdxWpvSa6izMhMTJF5nghB3LprqXz3/lt2QycJZehw3kuCWMVPpnk/tbnBOaEil7zOB9vq9nouV7CqVVGbEMWXKEJf2/b6+P81NgFGEq39zZ5OxQ2a6WqMERvtUq2XdSthkKRSqGba3O0su5s9h9tb7h7u+eGHHzgc9uwOO/Gdugl0ITC4QFcs3nf4fmCkEPYHwrCn7wasCNRJfNR3eOsEDDOWwUI2ldlWSo3YUnCpMNxnTI6UEhnTiTzP1CJGnkK1CxgbsN0NsTpyFd3uvjc4V/E+gw9UJxW5omwQibMsHos38j1zq/62AM6soOSiILU5v1uQbru9ZmVsr5Osm7+8rl/qlV2SCuXnb6v/bc1e74+V2iXr9NqW2X4uSq+e5wTIGl9rFcnvz5/49OlPTJ+emE8j5jwxPT9hKngyP9zd8Pd3D/x+f8e7DHUYyDURp5Hj5UKdIhVD/2YPTMy58Dx+ZiwXTumMTwPJFWzvGIaOXXfg8fwBf6q4SRq05zJxKQV7M5BdYKyONGXOxnEplUsuZERch5qpJEyVKoY3ic5aOjdjHPRd5mIS2UDOjug9ZTZwzqQ6kE2lMnHJMz4nbDUYAuMYmefE5ZyxuwP9/Q07bxjdhc8fTsynmXT+323GB+qgWzW/Z0Gr24CpwFzymrEacTxs1YnKSvMpFqh1ReRo7FutYlgxhVkb3cRd0zuHt9roRytzrg3b2zIxsCA4W179620bLFrlvHrnmdO0cKRhRUK6rlu4+vM8L/vZlqq3N1xrDNvtdstntWPaotTtdU3atlGzGsq9rWaUUoSPXliUjLz3TPPMeRzp5m75zlKSF0rPze0tdoPWg+R7RROqaZwprH0fBpaq0oqmCR+50/4FZ63IjWJwPrBzrcIjgeA0TVSgC4GYsl5TmGe5ISuWd9/0TPPMzz//zH//h3/gfL4wTZEcE7v9Duc9day8vBzpO8/QDfjQE4KjpxNk1ntMzuRpZj6fyUPA1IK3ls42DXAJPqdpYlT62O3+ljSLXG4bO21RNsao/8bE4XBYJrZmsNf6L7ZVqt1utyQncF3BmueZ8/nM5XL5RYVkmxi3JDLnhDEDYJZE+GvejAtgBDcuoP1YzSFb0tGaM/Nl5HI6M10u0mypf4/jyBROSzJdcsb4sASlogqqOGVLILSK0YWO/TBweziwHwTJdgZKnMlZgA9ngqBJVZOdktUgD3yweIvSNYXKtN8N3BwO/PaH3/Cb3/6Gb775ht/+5ge+e/+e/X7Pbr+j6yQwraWS4sg0nkgxEjrP0HuG3tF3hvESKUkcXoMz7HcdQ9+LGINH+x4EYV84yKUwK5JfCuqBsaEZmNak6kV9rbRZUyo61QiZIVtE6AJVfPJQFCoz2jthqtDPRMkkM6dIag72SB+XCCcp6IIGIDoPSb9EYJ4jhSq0Nm3aXpFNVapVpcCt5KhzGuxU7T3JstC2e1DGRGEYBvqh1yRDaJHFGAqW/b7n/uGG77//huP5TNc98+nxhfl4EbqIky8/R0nacooLvc5bA1235DRCxZM10ZTK6XIGbzDOUkzG2CosLG+x3lKMGKH9+aePjOPE+XLhNz98x/fffcPhsJP5tAtYBV+6vsdPk8zHuQlTCCBX8nxVyXhdJQUWgK3RNLf9Xl+7St122yYYr7eiNKmu77h7uGO/3zP0/WL8Sq3M87wAOo2lQKmYLNXvEETMZLfbc3t/x83NDW8e7vnht7/l9vaG3WFPGAKuD3KvFYMv4qHjOjGdNcFjnKcacJ0T5SnnyNYLQAoELMUbipW5JVZRnDNOwAxrqjTnmjvpgy1gC1Q2Cpl+h69iylZqwAVwtuJsFiU8zLLee1WYo4LDikiME3NIV4QuKLFJq663+KkJXXyphsHVtdhWE9ZEg1UU4tVrX1/D11UOs1Q+1/miVqk0yWMFg2WMN4BQ6FIpRWIS4HSeJ1LKm7gtk+aJcn7GfvzEXYSbbk/vLOckrt439NxfRu6ypaeQbz25RMaUOMaJc4mMztB1kd1bT0ozp8dHwp3n8HbPzZsbIpEpiVni7oOl+2lk9wT7sifZjtFkzrYw+46X7MjG0hlLLCLhPk8ztVRcu55zoZBIJlNN5jIlki9SSSGKmpqzmM7g9h6Hp1ZDvkxCFzWVaGDOFZOkkj4YgykwXwrGvPAm9/j9gM87yjxBNYRu+FX3569PMqoy9q0G/q3kZVVacBkoLQXRxEKbExfcwZqlwmEaRarCWvYQ5F0yaSNPljX7FaqQ8PG3A3GrB77dvkQ/ej0ptQRlcWZWzqy1rYdkvQHagG+T/nY/7bmWELTn2me3huKWLLxeJNpCvM3QWyC7/exGHWs/WyvHnHJZTPDa+c4N3bS6QJUiPhbe46ocXwgdzvnNDSwTR1XuszGG4D0UMfOrSiPYa7B9fW3q0sAIghwXOTnS11BnHQaW0EmFy1i5ec6XkePpzOl84fhy5Hy+kFLi7v6evt8xjheeX2aGoRNq1jRyd3dHOZ1J0yzqDFUavk2RJlxKEVm+q8TTaxUuCRVB+3ZaX067blsfk62s7TbJ2HJ72/6372v72r7Ge7/4uLSEs+/75bO3SYmgL3JPbSl9X+1mFhtNvbe034E2F6gcaIwkNZ1roIMzTS6y9WRBRNyfGy3NGGlqbvQ/5ZVgjBhmWStVjuZb4b2lC45EUTaSLkw691SjTd7Bsd8P7HeBEBzeG4be83B3y5s3D/zw/nu+++49bx7e8M0373i4v6frO7pOEu6cogovzFhT9XM9nRcUUwolWZSrbHNtlurGPCXE7q+uSUbrw1ABCKEfZapx7ezC1eK/Jq4pRUFqda5x1hKck2RC6WreOXBWg24WaqVvc5S1Ivmr19QFR65F6T4rTTLnQipFqtZaxU5Kv0QrEisyqfdKC3janKKwbwNC0NeJ+eoKErV7qR0fsFQvq1bb+85ze7Pn+/ffcjqPWOuIKXM8TySt+jYp4nZ+BVVrtF6VKdGxi/4jymNevVO0bzG1gKdqdbhia2EqlfM4cTydeXx+5v7+hr4PGDOosAYI9aPQdZ1Ui/IKqL0O6bZJxutqeFvbtj2A27nqa9y+RA37a8Gpsa1q09TKWuWp6PztcN7R9Z2M1RTJKUvPaJbXB22Yv7m74827txwON9zc3nD/7i37/Z5+GHCdxwa/JhlVgUvvpG/Jiw+LQ6oGwWpDtXFCj6wCuFgnlGRR1nTUYkUtzTqMEfqKKHhKtdUWcY82TWzBeAziH1PpMF7BGyuVMYvMsbXWBXSrGgeIT4zMRRaDohY6rlaK8QoHvz7n689rtWyVr63LPaO9tK/G4bZCsb2OLa5zVvow2j5eby3m2NKjtkqdAuYVoeLGxOUyLfu2CkI6A2Ya+c537I3j4HccU2JMkVQioWSGlNiZSKiJyzxxnideUuRYM5Ov1MFz+/0tZSiML2eep0e6g2d/t2N/u6daSCUR54k8VbqXwjBa+tIzVke0nkRlroaxGGyVMcqYIE0QJ52/ezCWmJQ6pfF2LAaypWaLSQ7rlUviCjZk/GAx1UvVxWYxxvaOhMxrDjBGqHSWQjwXjp8v+KmQnRMgzoemivG/3H51kpFbX0QzC6JNbqwlNWNoklMGNqZCevGRsdGqFQvPriAyuC2gZ+XJiySjXRbDqhN/o181hDAqt+6ar7dONls50del1TYRNx+MFkxuX/8lzv02eWiftU122r7bvrYo03ZB2O5nS83Z/q1l5gs9SxMNt7i7iuN2aoi4TrC2iGunCx5jkqygqtHuQmuQlIqEbd/bWIwVhHQJ3JQrnFLUykqU6kTfk1Oi7wehQgHWrb05znt8o62FAJNQXbCO4DwiEmA4nS48Pj3x9PzCNM28HE9ikJMSf/ef/p5ht+MyDsQknhw1Fy7TzLs33zHlymUWes1t1WCy1tVIrbTArFFcPN5UbJYG2Xmel1L5+Xz+RdlVErFwlSy069tes9X2buNhS9fbvq+Ns/P5/Isksl3rdf9r0rqVEv5aN113lgVouQeN1LSEoqdJxjxTYsTVijdSPQvO0QcZN6VUZuXVUkXe1jmHpxmrtampce4LivHhjPRe9MGzH3pmm8mpkOa1cdBUgRR3Q8duN/DmzR339wd2u45h8Nwc9nz37Te8//Yb3r2RnovDbs9uv6fvwoLSl9ZgnmbSPCptyzN0QZ2u18qL1eMa+g5rxbF+Gi8MSrERQ7BNklHyYsxXSgvyV4rR8r8qvRApRmKcsbYpUdlN9VQSlZyTqjXp+EYAIeea9LSsAe3zLJIs5EY9xEjFJGedj4qo11hB/Jus6moqZ5axYK0GTzpfbmmIRZOT2o7KrHPsVoSjzY+1CuWjVlmAcdIDc3d74Dc/vGdOkuSP08THzy+UmkUm2bbwqYq0cRUalDVOx5R9lcLpvBfEv8V5STJKLmpQWElWqC22CgIdY2aaZ56fX7iMI4fDTpI1t44HawxddxH0damYr4De8ukboGq7TrW5ZyuLvUWGv+btr9GltmyCheZrIZdMTBGfhI7WJIGts8t8DMIeyDFhq9CCrbF0w0C/2/Hw9i3fvP+O3WFPv9tzc3cra2fwmEYfto6uGlxVKWJj8B7Q/kVvDAEj1CQnVTZbwdUqVV0LxVaqFcWzaoxSjD2YAkYMLY0JmGrFhb5mrC2SoNSq4jweYwLVmvV91sjnKBCnUZykX9YqtdCtMRpGQLtGUacBRA2EWdHjVq1od8WaUGwVpdZEpGrcVkq+isO213X7s7AqHE3w55fjYd13SzBqvX6ubOakGCOXywVgEchx1hGsoYuRvz3ccpcDtnj+cY6YIkasviZ2ObMzEV8i53HiOSaecuTFZObe4u567n/7hsfpzHN65HH8xO7bt+xvd+wOA1XHYxpn0svE4ZjZTR1d7ngpkGwgWcNUCpdqcXj2ocOcz9g0YtOEwRE68R+bktChqjVk4+S61gAl4HPA2oS1hWIzhIgzkuTWl1lMsG2leqfeGUC1WNvRmYqrhXkaOX0+w3nGHQas64RS/IXK4Ze2X51kpFp0sJllEV7xstr8t1UzHE06WKhVRpe+NjxkP2s2bNcCyGbgKLLk1ten3Ey7rnssqiKQW9rUa8rStj9iW5l47dhtTAsuVaJwU73IG9S0TdyNd79FU4GrhbLxYrelvNfJQ3vddtsmJ81dvOt6WTiMZeh3amzmpdfFCKUg54xF0Q9FK2LK5DIJdWpQN9tFbtXRssCSi9wEMYmHQK1M87woJU3TJH0TpzMhBC6XkbvbO3UY73m4D/o9tkmXJKjWeZ0ECjGLX8fpdOaPf/oT/+Mf/5GXlxMpFy7jyPF0Yhwnnl9ecD4w7PbSa1ILDqnMXC4XdsPAgzH89MdHbCkEA513OCMTt9ekt6RMsomcsvDYVWlHMa7lGocQ5Lv0PdM0LRWl19WpbXKxnfi2yeWWL7odC9vFv1XRtslsmxBlbDU/lvrVVzIqOqadBKPLuTMaqpVCijPn05HxfCLOI2hwZmuVh97nBeXma7BdSpb9FIPNOiPVDFoFiHFkni6kOLHf9Tzc3ZKmiWAM0xhJMRNjwVkvpmVeKHP397fc3t7w7fs3HA79Utl4+3DL9999y3fffsvN/kAfGuddv6wRBLWWSJylv+T48sQw9HRdYLfr6DsPVHKKxGnEUOiCYzf0xFkkFeM8YfHKDVego5YFjGmAgvdBKhGogAMS+KeUmGMk5aK9We341kTZ+9CwIlIWoEA+r30fI4CAkWb9kpL8a4SKBOA7pQgaS1T0vgA4TzHCbydXinTVg5FjttYuvhjo+iJu3ms1F/RYjQpGtGqtWefrFlR3IYh4R5V5rLloW2PFcf2wg+/eE7qB/W6HMZanpzOPzycuUxSELjjmmLmMkUVcw6h6jVJHFpBEK0lh2Elya8C4gAsFipEwziAJXJXh2KpPkpgJot7AOGfFr6Qo9dga6Z2rVbyAjF0BsNe0lO3FlcpOWKqua3Ps151g/LVtSz1u56WUSkmFOok5ZQOMtj2ZWyBIEmdD7zz7ruPNmwd2+wO7w4E333zDzcMbQj/guw507Bpn8d2gdE0jvV20JAOKE2qLcxZvwIrpCrkkkgO3QKaVZu2Uq6FYqXQYY1XbW6oazlssHaZaTQUKxiSMyRgywQjBtGLJ1lGMVANNLgLYUAkUBRMtxVqSlb6l3CoY2g/UwOQGEreejLogMSyBYM6rZcHrZPaLiW01V3/bgmhf6nGV/V97Tq3PreDude+kHFfO0h/VetLWOE7iyQ8fPjCeRzrj+X//5jf8f7vv6V4if/7nP/OHccTZGesKnYOBwpATJZ15Go98NpanznOxgTd/+z2H794y7gr/9Z/+G3/5+IHZR3787g2+N7ycnpT+mMjTBB8jdy+e3WyxBc4Opj4QveNcRwY7EH3HbAx2PtLliT2ZjKfTOfRUoRpHMuLVU0yg0EEJhClgOFPdROLCXGe87XChx4QTtRqqdWR6snVIIdxhnSdYy2AgGEsshfGS+fTyUb3PAi50v+q+/NVJxqLEUFecbCuzIeSm61quKBWxBBFVg1iDSKUpSUAQZ1hSUSmZt89l4WQ34b7l49Gi3TLYrhGt7bYN7Fo/xGt0+AoFaW7Rm6TgS0jyNhjcemW8bsZrr21bq4Q0etX2xtxWRrbJkLV2CX69k8TAW1GUkvLn2nMSU8ZpUN9katspbnrSTcklpUzjw2OsNC43qd4YSaWQcuJ8vjBOozR2p8w8R6w1PD+/cH93z/5w4O72lr7fKaXFkJJQkKxK/eWcmGfRkn95eeF0PnN8eeGPf/gX/vSnP6tU4056RrKUtZ8eH7m7v6PvOna7HSkmrAsMfc/x6YXd7R2H/X7hvlOKlPz0X6da5tSiny9KDy0p23B3lopW3/eL90VTknqNEm6VprYJyJai15LH7Rhojy3No332lnLX9re5Na4S569xK1Q65whL47DIkmIN1huhPs0zl9OROI+UKGOHkkEbkxv6hVZE69InsVaaUk7SO6Du1NjC5TJzOZ+Yp5Gbw463b+4xFIK1TONMTpVSDM56hn5gvz9we3Pg3TdvuX+45e27eyAr8JB493DHm/t7bg8H+hA02M0bsELmsZwkURgvZ87HF3ZDTxc8fecJXkGKODONIyF4rFKlXp6fyCXjrF1N9qxVaE6SeOssdY547wkhkGYxWCpFKkMtkI1JFJ2sddjOYq0kLRilhLa5wgkFA6Qp2y40QZEHjikqGrgGq6VCSoX9fq8VjqrIu/g/uDafATEXKbWXTKXgg1BIxU036ecqQLWod2kl28nak3MkF5GtFREJQUSBxQjTOCtN62UFg5paVwiW/a7Hh28wxhBj4l/+9LOQql7OpAK2Oh1yE75vFCapmIsJqMH3HrDkmkg50nedzJVFQAETAhaHo+DI0keuFVVjpIo87KXy1XW9ACElU6ugxs23hVq5vb1dVLmMAjbGrCBGQ2phBchW+pjfBNFoAvP1VkQbml7rWmm7em6JJxCiRBUFnfNllPN854TGqNFEStLP5L1nGPa8ub/nsOu53e94eHhD13eEvudwc0sY9tKcHwK41QW769TcsNb1CFVGehgci9ldA4msVMycswqcsE7yyLIkdKb2aDmo1BjWL91iJovVedAaj0jKas+fgYrFk3GmqTGJ5KvguNtoqwqHv7akfv2cJYZY/rYmGtu4sCzzggJ3pWx2oywV3XdpVZElLtF96M/tECxCC6MqBbzW5XxA+3z9vJrJSotzCR0AoqYnaZj2oE4j+XSmjBeGTz+xizN9sPzw7h3fTJ6xXJjmM3OfiVZhG2OJKXKpmZjPXIaJizVMvuO3//FvcG/uiMHyX//xf/Dnl0cml7j//o7bb26ItfD09IyZwZ6lZ8LMhQjqQp8YnSVqNQvABEtxcEwTqVQwVoQ3ilB+qyomSiIJpRoBiaLGzKaSgKJIay6FWBMmgzEFW5309WQDiEt4VfUqXxHAw/d4U+kp7I1jroVcIE3/mxu/lzFlNj9/8TXXTL3mqVE3I1ToC2yavusXdrlm0ebVPhfUU4+nTbbb0vk2INz+/UuNuq+5qqaIhjy1Lmj3NqveBoZrg+51cLHdtpzAtjVN6Bakbo/ldYKyRdJbAOxUrlYiLFk8jDHC3awAUYNcoTik3PD6dSKWz66IOoHc1NY5YhTVjaju2jElLe0/M14k0bDWE6M0j3/6/InxMnFze0tOmbv7h+UadKFjmkY5J1WkaS8XqV58/PCBl+ORl5cXMUb7+JHgA7thR44R8TWA0+nI3d0tIXh2ux3TeKLaKs3588yuQvCOXd8Let20OdWIx7XKQq4Lf7/4TVJQ8jIhbsdI43e/vkbbbVuJ2qIqW8rddgxsk9Zt1Wqb4G4rXZKkrIjl60rX17gZa6SSUUQZyWjgVIul5LQE3DmKZC3GgrqZon022IZ6rxKLbWueC7Ukao1UMtlkxukkDt/zxE7dt52BYBzzpApTOIxx7HcHbm9uebi/5Ztv33F/f8vd/YFpPhPTRJwn7m5vOOwH+s7LhL+AEjoPoJWBFElpXh7OSq+S16pHrUVfE8V120hC0bxWwuA2gZRR7i0yPxlBF7EO6z0mlc3cJQt8oyzVqlWk5j9krnAijKLdpkCpWZ5cmkElWstFEoWU0lI1rRhyEfReeiEypeq8bQX1kiZ8cS3urDSX1iI88aLJusx322T+2hHcWgnI5Cn57ivSyub+lZ6Mdh4MLDLEzkgD99AF9oeBksWj593be87ns9AoJjFjtPo57ZYTYCaLUaxVGhYbzyLnlvNujagmLv2LVaSHa7FYB10XGIaB25sbFQfoWKkgEh0va0qFYeg5n/U81Yq/qpSuaHGrWhtz3atyrcizbaD9GjezPhRJX0G0Bq1v/l4lqJzHyLxL5FTp9z0tGc8piYKldxx2N3z7/jtxZ98P3N7eyToQPN0wYJ3IbxtrqU76gqwTP6ZaN+pu+jCqaNdoi8DiFG9cU8uUILualeuhsJNcp8Ubos1xy4CUe1DjIUMTr9G+DI3QrZEqhNDOhVUg88ZKPay6P8N6/jRHW36msvS6baBm+d2svXbmaq1TYYQlhhMaY233rFIP5bQJkNG+T5WTIj8blGrY9lmWNth8vwABAABJREFUoVA0aZJcpZJqVppkxWUBMEShzYgpby6UlDHThDm94F6eeXN65mDhxhl+GAZuIswk5jpzKZWEIP4Vy5wzl5qYysS5TszeYXYd7377Lc8VXs5n/uXjI0/jBT8Y7t8dGO465ufIeBkxk8FrYzYFJguTq2RTmIN48YjpasU6yCZzjCO2Ch3KKJ1SpZQUfdcEUTI3apGK9GwKOcm94qyn1kKuaP9ZxVYF+5NC/0aq07FWYq34Cr1SZz2VvjpqTdScFiD0f7X9ejM+azYPlgxyyTk02PduWypb3//6dRbhIaKT5nUSYVZkkk0Foza+dPvsxldclQ9eo82vUeUWPG6f3/ZatAw5Z1lUt8lFQ8SaWsdWznS7n9dGe9v9b4PObULUAtr22JYZtzK5TbnIWlHASbEsVQmjKj04bfL2AR86fOioxM25kECqVMMcI2XSPpdSCMELd1spFlJ1SIzTxPFJnDHPlzP3b94xjhOXy4U//enPfNo9cnd3x/lyYdgflqzy7cMD59ORUgohBOZ55vnpmU+fPvOHP/xR9nc+8/T0zMvLC3d397y33zKNFyiF4DyX0xlTK33fcXNzw/n8Qk4FAvRdL2j4DO/ePJCNqAXNlwups1QvyZh3FjEC1GZ22yntpjLHceG5b/sn/rVEtFUbtv057fl5nq8qGq9Lxy2R3NKislLHtmXftVfjr2X0X98m9/+K9kmkVhTJrsRpJE4XcpyoWfxOXGtYbIACm4cxy74qQiOy1WBKIaWJcToxx5GURqbpxDSeGS8nhi7QvXnD27t78vvvkFNuMXhSLAz9wM3hhru7Aze3e/pdj/fgLokYK8nDfi/UKYP0kVBlTvJaUGz0tnm6kFPEIMpjvTaE+6b4FEWlqaoPhiRJmRBknmriCtJZgv4sj5IzBUOqBZOTNlhLQi8Vyaw0SW2+NjKHm1b1NHWDABlAfWTaIm8MWQNXkbUVVBTTqhNCCxH1JKt7QM0C7SJXXavQjQSxW2vSdTOHbgbIX63YWZ2HnfeSZKoHRKMcLSpKzQjFFO0hrDKeamus7+h2e2qpXC4Xvv/2LefTmTnOzPMz53mi5ETfS79QqeJr4psiXK2czkdt6JbjSK3K1oK0IhLAtSZApIR9sOwPgXfv3vDd99/xu9/+yJuHB/rOa9N/a8bV46UuViJd6BQEa+HEK1huA7S1+Wf7+NqroOtmwTiWE6NjuILKpZs1ed7MudOUOB1Hnocjd7cPC331ki4459ntDnzzzXf8zd/+HcOux4drYDJ0YfnMdS6X/r9WcTXtehmU1mYwNa9BtndLPFOwWNYqXwvZ2qFbBQ6bh9iyZf2OxuA0HpLqhqEmVJ62gblaVVHALmvinVuloiUVi7iOWebRsswLLOfQmzVkXJImRXqrWcVfSCvNvOSC3dBIc0ViqyWW0yfa79rHm1u1tMrxBQtQyCUt1YxaC1OaCSFglTUQS9KTaPARKEYwqgjzeWbWCsbufGT38kj39InfmJm7ktmVSsDjiuOTS1z6yuc8Ee2Ovh9I1XAylcdauBD5+fKEv7/n/X+4Z//uwH/5L3/gv/3LTyQzcMGw6xz797cwAGcwxmHPlr4UBl+oxvO5L+RQSFTYB9IUSWkkdGBcZKqZjy8fuaETcM5YShHVuUIGk0QcwxhV0gw4I3HPiIgkeZQ2iVSHizOUfMZnUeujgq2BiqhNJQyTaTG4Q6xuKx5DMJZqnND5fsX2q5MMrxm3MeC+UMZYh0rrzTDLjd8GYpN+tMYQsKr6I6DkgvIbg3VGEStBoc0GbmsCutJ8t1HcsJu1kmtEWF6zTr7m1SL2S5RZJuioNJ9GoWlu0N77xUitodbl1WK5pW60z9q6hAdtoGwJz9aNtR0TrPSdbXN6C4SlCrF+Xq2Vpv4VQsAr7WKbzFgrLt9GVWNijBLcpkTJmV4l92qt0pMxzdJUr3K2bQubc3A+n0VqN0ZKhf3uwDTNgkr/7rd8+vSJcRwpOTPHyNPjEx8/fuJPf/rT0nMglC2Z8GqtXMYLtcrCaq1QHyqVw80B87PQrmKcefPwwPP5zDSN3D7ccmGipMTz50+8CZbD0FG8FwRSeexlIxUrY8fg1GsBVj5oSxaalG1LKF5LzsLaz7NNLPIGoW1/3yaTh8OBT58+8fLywtPTEyEEkT3d7cg5czqduFzGRabz9bj9GjevKAxKOaKuQXXJkThdmMczeR6pKSoCLEGi0CrbY7MZDbhpNEAwFKZp5Hw+MY0npulEThM5z1gKN/sB7zyuqQVJlw8Gx+Uy0XcDh5sDNzd7QnBYBylPNAWoLliCF1M/Yyo5rgIJ3jpVQsrkWRe1JIZsh8OOYej0erJUMHLJov5ihWJRahF1KSPiCblkCd4VJa9Ib0TOor0knKWMN15Q1lpIuTDHpK/R4N01UMYv90NrnDNGkTCDoqKaZCgimYoERtXUVVlEAxXn5d+iAYwkGE4WReuptSnelSWRqEgD5Ot5ejFbbfenebU+NEosGsQ1NLdFb9pQ7o2jEpbFqbmbC3BV8QaGPnB/f8tvf/iBlAQIMVjm8QMpRryFpuYl3oFez1kmJTEONU4oSWm8iCKXtez6DqpThbuEJeIoBAu3h16SjO/e8/3333HY93Luc1wC1apzjMRbMi957ym5LA3qy1RgNueg0ctoSljmrzyuA8ivajPm+t/lq6yJ1wrymCV4rbUyjpFPn564ublntxsIoeP29p6HhwfevHnDb3/7W+7v3xA6j9Xm1iZQ0GiDsEky7OrdRV1uJP2b07+bq4ph3pRYWmXh9ddr19xsP699HWP1ElatSgkI0GKNnLd9KXWJ3bcUaasqn1JR3AZOrHSizT7bObWtCqP3faveGK7jqG2Suyhcto8Q2sVSfVgqJ+2cVlWOyzo/6ZtzA09yqx4KYDhNkYr0NKTNmmxxRFuXCubhEinHI/7pifzpI/3nF/oxsjeOtxh2GHytMBVM8bhsSFOm+iIa38XxOJ75aAqFwimPpPuem7f33H/zjv/7v/5n/umPn/n0eCbtO+Kc6asnhIEc4XKcOH4+s+tvMHVmnoWWXunBW4zvoPPkSeit/tATU2ScR56OJ4xD6PHOknLGpLw09tvNvBeME+q8tcQqfSimVHKtuCCCAiWL4XIpkqNn/VkHncikGMhG6GUSy0vErYWhzQT0r2+/vpLBWpVRn6vrTBbl8JoNz9dKwiHHYheevjPiwGoUgSia1ba9NfUSa6SkaHRB2lY8qgYnos6+lhm325eQ49dB2r/2XNOI3iYmraKxlS9t+2mfuV0wtzfdtim867rl79tKRUO32/u3Ccn280qpCz+3ydPS0BJj1mY/DZil2Vak0LyXhbJs0PhchCucYlwmsRaMl03Z3jsvSlIVVWSSBTjVzDxJwvH8fOR8OjLPMzf7HT/99BdOx+OSlL28HPn8+TOfP39eK9uVtSEvqmu3UYUYVcUp2ROCOKWaVKWpExZE2yKZvKl1odtkb8XiLIuzeMVQUiRGS0Impdawt604LbJ5em221amWZLTr95oS9Vradtuott2aYV+rZG39UeZ51vOVBP14dQxf62ZbM3RFA76y3MutdyHOEzlFKNqXoqZyZuPC3GKlBYwzZlUSqhWDaqJPE9M4Mo0XKhGD+Kb0vRi2BaUdtiSDKlK5Xddz2A/s9wNQKEWkX0tJ1JpxbunFRBJjUT9p86CpQq0RY8Z5uc7D0KuilIwZGWuSQDf57OWe9Uq3MWalF+iKXjVoyrpgl1ohF5zXuaga9bopCyLYZCilurBBfBeESBYslO+P0ikkEVCaglxFTUg07jGiiqQApdJ3VLfeKuXDrMlFSzBAehDyazBoGyC1OLJqAtTm9OU/ev7bv7W5f0vGYa1dvl9rHDWb1zpr2A097969ZZojGMtlnPn86YV5FjnTVEpTh9BjEbljuW6KXhuIccKZDu8dfd/h8DJeS8QUi60Zbyv7Xc/93S1v7u+5v79TZ+C0rm8tOFu8MWRxtMu503UFPZ36Bdf/bdasK/hvfd2rNP0r27587O1eWX7fAon6ipwL0zRrE7gY5t3fP/Dtt9/x5s0Dd3f3eN/hnNWk1bD6uEh6ukT7cHV+G1XLmvY6paXVNura/LQe1VrVvT5uxRp5zQjBgLW6E7OKitQlaVn3Y7V/S4bNKu3akq92H5TlM+TvxaAVy21U1dY+mfPa9676otYP0SijdbP2vV7/2rhuMtPtXCzxWjFUo5WU5bg08C0CnjQaVi5FPG1swmalhmpcZE0hFgjF4FLFTBe64xH7/Ez9/IQ7jwwxsS9IBUMB75Qkiq5JqjA4Mb9MMTEly8llAoWzqfQP97j9njEnfv78iTlnXAhMOeNDTxd2OBuYLjOX08R4nuh8T4mRWAoGp0qfAdd1zEZMgivSm5tiM43MzMh8Y5GEwdZCE/poY1+omVqZKqoDpnlszZXSlPNyFUprRZlWdT3VppL1M1LNzMVgqzTIx5JIppJrIbMdmH99+/VJRq1YHWCW+qpKof+WShfCBlgwGghsgvMlyXAYbVgTKTNp5KusaJuRrGUJiFHkvujJaIoypSFyGxSjbS0I3Abp24x7K3+4Vf/Z/gxrYLlt0v3S/rbB53LubGuCTsuNtN/vr3wStgh4e117ru/7q/1lVdgSpZPVFK7xJY0RiUy7of5YTVZaU2TS6kTjfVsMWCfBfZXPL+06ayNnLTD0gzRma9BekqijVAM5V8bLxMvzC09Pj1zOZ3Z94I9/+Geen5+4nC9YK47eLy9HLpeRTqU+5do5SoqMl7Mu5JUUDfM8MY4XQufwg1RzcomkVBjziLOW3vfkHHFBKGPzNFJSJEcnCEiURKViqM5yqYWkKO3eOk12y9X5r7UuFaZG99omk9uEsyUM7T1rtSlfXdutAsb5fAaEQtOqF/M8czqdOB6Pi7LVfj/Q98PyWV/zZm1LMloJX38viRQn4jwyKV2KhuQWMaWiyRHTaAAIXbIKZ7cYFJUrmJJJaWaaL0zjmWk6qy+GoQuem/2OvusJPoivhgYFYvKcCCEw9B1D3zHHkRhFSjbFCUzVCiGsClJFUCXlT6OVjJjETNNq4r/f71XNbW1Qz40e1wVckPu21LXPB0WpymbZl0+FlEUlppZKzBnvBQSqBlIRBbdSioBEVqsLtkFGsA0jlhgKs1QFCpUcM7lJzy6Z3RI2gbF4VUdrQZGxzetCPSuKJCZLgmPkvaL6svYgSfCh57AFxYp2XgVcegwtWRBwZrMmFKMB4ibJSEJlkkCvkNOMMSJR/P133+J9YL+/IcbMzz99Is6RFJP2s+luaqFU+axaq9J15RjTOAmQo4lLcBZLgTxTk4WS8aZws9/z9uGBb9695eHulvP5hVoilbUBuNHIGkpeS8F4f7UOyEv1y9Xt+WpJhga66IAwa4JhsPx72rb01L/yCkBi8xgTT08vWOvZ7w58++13/Pjj77i7u1UTVQnazfI+DaiL3hdsqbAsY3WpnLQEW3smSwtYaAn4Oo6tbce8HvuaNLAgyNuv0Xr02mPbk9OO5Qqs3CRfLcmQsaV/28QvoD1fmIXOVBs2gJjrmirDCQO19a9S194qTZaXJCPndpL0GPRev6pw1F9evxY0m/Y+ATbnxTRX1OPGSRgU1tpF4ELebkkl0+VKHzO752f6z48Mnx5xnx4Zjhf6muhNJaeCsdo4PVdsqaQo86ephjxnMhOz3XOsFWdh8o7773+g7hw/ff7Mp5cX/PCGu/2Ol88fONzccdjvMLXj6fMzx8cL4ynS+Z4cT0wV+uBxQ0/od4R+z/l4kXlevZKO85FxnCkFYhZfL1stmYLbVHkUE1LT2kIhY4rMT41sV4HSenKy9NehrB3bskoEzEtUBcosuealdSBTVCpXnOl/zfark4y9Nn8YK0jfMvSrlig145fmW53QTEOmhALg7FrKdS3DqmvpC1ialTRdplAX7wcZiNrzQUs4Sks7lAaw3lBbRamG7MshX/dqtCC/Icmr98QapM/zfLUQNsQ6hECM8Wryf63c8TqBaBNAo0+1RvT23BYhb6oxW0S8qYmAUW53WKoAoEhIdx0Q912H13NQayWnVRFLnHjlup5enpnGkZSSnhdZnM+nEzkVDocbDjc3/OWnnyVoL4XdMKhZoyHOiePLkefnZ06nF/ZD4Oeff+Lp8ZHj8chut1MjnFGTLJmtmkxvjKJqtd/tGEcJ0Gp9YRxHhl2PDXB3f8+xvnD8+Ew0M/vDDUPomEwmFWmmCs5RUpIHBlc1wNhck4YGllqYx4k0x6tEoNGmWrD/7bffXiWs2wbxLX1qW6Fo12M7Fppr97bSsa2OWCva7Xp78bqa9nVvVZtnwVB0ka1Kl5pI80ieLpgcQcMhala/gUSpSaoJBEXIDcbRwjNVRlEKVs5KkxOqXxccfefZ7Tp2Qy/GcgZSjFIcqQZjxKhR5I8lEJ0uZy7jiXE8Yl0RkYFBTPmsgiBosNkC52meGKeReZ4oJeNDRwiB3X6P9U5mLXXNzrVgnJWkp+vE0Vm4OcvrGvq/pBh1bar0zimlScZRqlLlS0lpgcgYskpXbdvVGmEbICQeD4u/UUkLYph1rm9zk4ATKxjSAAtYm47bHNoSnzYGNA8TKteW4vCqortFYXMuC+paFrEGsFZ8P6wV8MR3HT7IeuUaXdQJ1aPvA7UaUqqMlzPShet583DHbrfn7Zu3DMOOWgz/43/+gf/23/+Bl/NM0kV5nFRW1hpcCFhtdjfGqIeIgVqI44XqFDYrCVtmnClYb7m5ueGH77/nN99/DyBSzXEUalXvdX6WqplXgzcoC1WzrhGwnM1ar9aHNk98SQTl/5TtOulYKwtUSRaOxzN3dw/0/Y53b7/lcLil6wbA4l0HRjxjjMrBtoStllZVa0lDizVYQFVJOKwmug2MX8GB6+P6ZW9Nbgj1JugWNkeLKM3yT1sb/to5oLYYzLEIYuga02jocj+tyY5pPleaSCxVHKtJii1SkW6JjJ6P1JQC9bOvpWTXGKiBq865JcFpz21/3oqptGOIKXO5jJpMiKfP08uRvu/EkDgl5pyWuXF2hW6KDJeJd3/6zN3PH9k9Hbk9njjMCVMzlcxTrmRvyVjmUilz5ikmjjVTTY/1AdP1lDBwrJYweO5++JZxf+AYj2Kq+c17arjnUhw8fiJOiePzyE//8pnpmDC5437fy/wzH8ke3nz/A87uqDhStjydjqRa8SoEMY4z0zRjPcw1i3JU1fnGQPMyWrZSKXOiGhGoyMZgPWLKaEVaueRCnqWSoVecrAlKowbWagScLVLVcBqnpYL4fCC6jb9m+9VJxqAeE8YaNVxaS2Qt2zTW0jt/NTDk9WazyDXmsxGDpipBnvD0FKPUMmVByzKZVtPBGM3WjAQF1qoLsLMsknZ1pSh9ieqyrTjAtQrHcm8ZsyCObUFtycS2v8HpwP5rQeD2WLZBf1uQXxv/bRfn1w7gbSHZlsJbOb2h6vIFVgrP9veGikrzc14C24YGW1T/vjWiliKylfNMmiPbSlFRehUozalW7a0QN80U05LIRKX+TOOI9061qRX9KFkVV5p8q/zde4ezkBDZ2ZyTNMkmo+aBF5lkMCLzWQtWFX7ALW7JBilfO9O0vVWNyKosYBUEJqvHyetru23w3yaPX1rA2/lslZDtc69f81rquI2JRl+z1moFy6ox2vUY/Wq3qr0r+l/TVFh07JUcac2zLTSoRZKMWjI1a2+NNF4sY9eIJqR2FaJDdUXoBO1eJ1HX5iVkDFAFqXOmKT9JRaykKBWWOFJyxAcZWyH4BWGnipiCBBcsamyt38gYMb/02idlTPNwWM3ljLGiDtW8KHLR10n5vFEfGigjQYs82txnWJWO2j2DnkOjoh2StLU6SF2CEBq4Y9o7dO/FLP0IVZGx1+N2Qdv1+AwszuztHGtXzdKrh6KuSyVaf7f6HtgGYyy/t2rGdj5sc3kL7OZpkh4XCz578SgoTrxEnNfArDLHScaFLXS+xxhpIP/m3Vt+/PE3zDHx4eNHYnlimhM1ytgTEE37QdCqA2qSVgslzsTZ4YLHByu+KK7D20rnDLeHPXe3Bw47UdGL06SqY4BKb8q8WAhLpVeSc41Y2dJ0tuDTdl55PUdt56J/HfX/Orft97teh9tMsqLrXdex3++5v7/ncDjIuMDirBjqVSMURGv84ud1dd5qazpviYskgsL71likIsjvL061af+Xe+sLwdq2T+IqdtDsfKVv/TJA354LVEms0coXoZrCkqxcva9BcWb5w/KoVenvpaxN2w3wrUXn5rokwa3/ozYQud23pVwLWLR5Tf9t9aCyxDnyOmscORfiHJlbb6SCKcYmXGleZqsHzZQrZZqpl5HL5cwwXujmkZJmFXMozLVwrDBnkXudK8wp8SlnjrVifEfod9jdwHlKnF3HvgvYu3s+nk7MJEy3o/c3zNVTJ+nTOp9fmKMhOE+ZDHmy1OS4vbnlkp/xZqa/vWO8JFISGtiYZooB693y3RpzJVWUNlwXWXNTpTfXN0+TNrCoYIqsi8Ys59R4K0pb2dAsGetyzXWc2Ua70p+rVKtrrfJe23p2rsH0v7b9m5KMhtg4a5fBsfDoGvLeFpbNv5JYcOUU7qpZpNtKhWq1OmJ0+dNzJf5a5Wphavuz1Yi7anXYlBuFm3bjbYPFLW++BXnXzYbXycE2ydgizm17jdRt0aPlKF7d+Ft6VUtY2oLZKgzb/ozXSUajb62fZ6/20ZLAFekwy8CRhxzHsijlhqCrMo6RRCEnCbqlVwN1xM7iOtoQsyJ0JuraS1FyJef5CnFb9pOF057zmmC0IK3RHdpsbGDhZWtaIEotOZOSFXTPiSxgbkF7zhqRCqYdnNOxJsGAs5Zq5VYrLTEDjLrFt+B+24PRKlXbhu+/1txfFe1tJo3b55fk1VyrScFWQWpNMkoparrYsaqm/TtBJBdqo16bVhOthZoTNUujbAMTjNEFrGRKSRqUikShbRWEotfBWDAZFmxwrWpsx9wa+CrSrMFBGyudVjEtUnlMcSLHGWrCWY8PjtD55X6qKA2oSpI7p8ajlaZro0pvIXSLZwRZzOpyrfLZ2vSNSjqWIvKFMs9uTp/Og2wTJ2exuQEIeZVpLlLBWRIMI+dTLwOtotAWp4ZeLpo0Xwjq5bq1uaeq54Oe7yVZQ5I4uxq3LgmjMeu14BqsECBKjnP9ymvzd0uqlvPe7rtXogtznHElL87OrghYELzHdZK0G1OxTHr+69IvaIzl/u6OH77/jss48Yc//pHjeaSUSopSTW/orozN3OjPuOCgyvyZJkP1O4ITZ/jbfcCbSrCSZBz2e4ahI6eZOE+UHLHBrclCzlDLAqAZY5ZkDK4Bq/9VJeN1otFe87VvW9QbvryOyxMsyXTV4KjrAofDgdu726U/clmzirAjpDpfqLX1YUADLoSytMYYq69DUwO8PrZ2fOvPyzK9vO76+evrZO1G6nVDi15jgPLF84FSQZdKRr4eI9v0piVSxq5/vwKMXwFma9Il90HOeTNGvzw2lzjGuUV8Zvu6dbIz2A0bQGIfkc0fx0kbpusCboIhuxVAzqUIXdRU8hTJl4nhcmGYRnyc6NMslNpSuJTCI5WxVGYMscIlRz6WxMkY6Dr8bsDtdpzPT5x94OIcsev56fHP1FA47DsqlillxjmScuV8GkWu2gds8tTJY5JjuN1T0g2WGbvbMR4fiamI5GxK2M7jrCHmpCweGVtZARxTK1UBKA15NKk1oqy4DiqRL9b3F6BmqeSVYjVRtqIKZnRuXhaEtfJHrSuFLtf2J36t6uWvTjL6pZJxjTSVur3BLSZLqd3WqlKIq3FWbaV7VuSvJV6SuW5v5bIotKR2smtWBElt7p2Uw6OX0vklzaKZXIwgQe3YLMvxNipLyoI2+6pBnga720CyyUy2MnyrPmyrGXIDXE9y2z6O7Q3XpChLEb+Ivu+Wz9vK6rbgtlG2VoRcONfeK7plrCZMcuPudjvRajfNuXSl9ZRSMNksqG1DGUoWyoapEnCP42VBzMZxZBwn5SQLlz0XpU7lvCQM3jtKtkQrlBZqIXhP1V4S14KN2lBOB16DOq1wtTFljVHlqln27SwhdEpDmjFeOYTGcbM/8PL5mTiLAlXKhXDo6J0nGEdwjqDSg85YckWan8qK+M4pcX56pqaENYbdfq8JhiQau91OzcxEhWtbpViStSqO6M288HA4LPfNtjzc+nxaMtGeBxYJ24ZENkUxa5uB1ooMf91bWmUsvODb1ETNkZwmapkxZIJrSWdbwGRs5awUv1btMEbFIUTDvBZxwJVVnOW+RuVhtX1Qkw9ZWFtl1FnxUAhDRzM7i+OFOI/EOIOBrvMMnafr3GZ/0gVesixa4zRxvshYKbXSDwP9MNANA8ZqIFlFWnb1QBFkqeh4SrXilolcE4QqFYhaGioovGpvLdXJ8Urz/KxCCWlJsH1zC6+SeF1HF63OsAk6FtSxqu9MVc6vVLJdO+am7gSL+lc7JqfAhhgJrkFVLa1vrcpQ0HvAWm1WNWaZn2AbPGr1RkGC3O7jstIuc85M46gN9IZ5NngVu9gN0k8mjtpyXshajUGaxb0xHA4Dv/vxNwD8/NPPPD0fiXPiXEcFzqTjvwIxzUrjgl3YCahSMlNN3B96bvcDP/7wHT+8f4uzFVMT+85xq6pl83QhzqJaFhwqsrFKGntvCUHm79zwX9OgZT2fde0jA66AqtfVz22i8TVvW4bAa7DwNXugVkg54n3AB0/vet6/f8/N7Q3GGD5++ihrbaPwtEzZsKyhr5O0rRcSsHlNMwN+jfKazWvX/VhrNjGAAIrOOfp+YJ7nBfxqa3ilErpGjV4ZDFsq1BbAstbhbKDz3S8k0r9EpWvA5AoEXYNk7T3OOYZh4HK5LFT2XNISQ72+VtskYxtDAVrJNQvg1qjkbuM7E2ME40k5c76cSRvAdZynRQDDaT+bTJiWKRXmx2fK4yOnjx94fnlhf7mwHy/0tZJKZaqVJwyXKj9PNXOZJj7nmZeuI+97+ts9Yb/j04cPPNaOMl14+eO/8H/99EdimXCuMEaLDQMZx8enF7DisTOfP8Js6MyOnbvhs33EBYv3gQ/PL/zl02dKrjjrSUZc2WsuxEvS2NJIH5hc8QXkz9p/uJzENXiW9QsD1pEaOJfK0tBfSsG5gKkqfaxrZa6KmKhfhq1CpWpAU4MIi5HHr9l+dZLhrBHdZ7MAA2vm2zJbUHUBWXqNLYv9vKEFVBp0O68eBiJzuBoryeKZSiaWzJwTsSYyhUzGeTG/cdbhjCIK0ZJTZrpsOfUr6nWNhCGIqGbdpWScbaK8KjtZZLEKak4lgXrQm7iVoxvq1NKmtq2VhTUx10BClV1M1RK/fqbBSHIAqriw7q/CFd/fOgmAUARDaBUrSk5mSTKWRnsryYiwziTZk+BOezNSFJpUSuR5FilXA3OMHE8nwHA4HOi6QC6Fy3QmpZlaEoYiSUNpxTfwFjrvsLXDWUfwHX030HcDwQfA4G1RRNFooGeWTN0iPHlTK8EH+r6n5kyaI8Ou53I+Qy0cbm94/PBJqTSeabqwP3T0xuEzdKajcwMhDDgSNbaktWgwUMhx5nw6LcmNcVa1qI2oysDixTKO52Vxts6Ra6GqU3FWnxFjzKaHpqo3R10AmtcJaaskSfJbF4pWq6CIEkczblupil/vtlGEU1SxqgFfjjNVnbq9uNuJqVDNSF+G0qWaHHFDWEwLxHUuqkivlvbhOGPAObzzeOsE3alZUT3EmEnqIhhTcU6uyzwn5nmUYB1Re+q8IwSHd4acdNHU3uKWQI7jyNwEFayl66XXwge/rAWlSmN2a6SuxhIbv7kuQt1aDRA/l6JljZqbqppwZY2Rec5ZowmsJrG1rMGTtbS8TfbTaJdNObDRHvQzgNbX0sABa/RYWCuNVZ+jSOK29GhoD4RMu9pPp/PwnDJGXQKg9YysKnuNhrsN5IyROdJUqRq1/oxS6lW1uta1z8oo1avkRJpnSko460hDUoNA6XWRNa1VvSRZ6oLn7u6GH3/8Df/0hz9xOo+8nC7sd6IEU7FMMTFNMwDOGXKr1JYKLtN3nvvbG378zQ/8/X/8Pd5WSpoZT88MwWG0cuc0XzC1LrTQvHE/XymcKqW7IIiyEl8hwVyDXdtK+xXV9isGK7Zy3q8D5CUYr5XdbrcE8F0R+mGrDD49P/GP//Df+fOf/8R//s//11XA7dQ8r9SW0K5sgv1+T62VeZ6W8QaIulptgXhTmXt9jHJNpLlcqo5d1y2JRN931AoheB4eHnh+flZxF8PhcCO0v+YRs9kacCpz1qTIPvR9x3SZsdbTd73IzM8r02B73pZK/QLstO9uf5FM9X3PMAzc3Nzw+fNnxvFCjDO5rNX+12DrltLX9tMk452udzc3B7z3XC4Xnp6epUIMUEXhDutF4CJFYtaKtVFVQQUfvBfJah8Cu92eEPY8/fQTpw8fuLkcGc5HQpwY5knoVbUyl8oFRzSGaGCsCVJhyoVj55jKDLqWvMwjHyoc44Xy8oEP52dyTRhbiRl8nzFOVKGqZTGLrXOhmkh1F4bzkbm8kMsEwOXlAhWc9cwx4ajY6shkQtdhQyCUwmmMOrc6AUisQCNGS961VIRAvqmklUwWyF5iaO31w6i33KanqDXum1rIVtWn0BvGtAhZpY1bsP5r7tdf9SrA2Lr4ZMgqLsG13dxE2/JeW6TqkmhVLYvrREjFek0WOqflGl2sa6LMssgkEsWKQYgxYL1QpJxzOFTCkUryDu+t9G8UXRCtKC8sC6S9LntShEfYJBvb803ZIxuDaQu62U7skinCqkTVfq+KML6e+AEWGcgqt08rfbfye9t/42q3RbTWJkPJWvEoBazT4zY4Z1ka6Nvk1o671kVaztSG9CiNRAO3lJIoSKVEVVpbUzuyzuoEZ8klKYVkdeS2xqi4WsVaQSidFRUni3hdDP2O/W4mODUWsxXnPU37oGQJsJoLvFTspBLhnVOEL+GsJc4RbyxdCIjMpn6PlHC54kvFFfDVCcfWdVAMxiVpjKpVpSrK6k66DPR1csw5q5zcqsmNMVcBVq4im9ccf1daXqtiSOCw9gW1RagFCO1jjSYYqhRmVonnZQHk6w4O1k0R+apJfYqkOJPivFTCvBOlp9IMpbZjdnN/AZsBs06E7TVSNTUYL2NJglGz8IJNkWpekwkGuRZV1alyShjEZDR0rcIok3wxeUXnqwhUpJylKVF7naxbzTutXRsdSxUOblX0s1F7FsqAemFgjCa9zaemLvfdOme13qMGoCRqSWtSYLWaKGed1kIuCb3BmqYUxVrBaOhjuy/1vEiSoXQz006+zEdGX+e1IqQjHFPrSoszUHPWde6Xza3GtubaJgayQVRNozqK+o7dUAidk0VzaRbXfRZNfnJF0eKOXCqh67WaKE3hMl40WQWcs+yHHd+8e8ebNw88Pr3w/HKiVIcLQephVdHg2vpiilabEDWWIvr1fee5v7ulD5aaI88m0wUv14s2R8t3zilKsNYM3Dbrq7VGPdNksdzWIrYI8XIuX73/30MFA64R+Pad23hdjCtrpe97ETcpWRBb1tfN88hjmnl+eVq8pNCKoVOQKGvwYp1beo7u7u4oRZQBTasMIkmGxM/X1OmtsAwItfhwOGCMqFx1nV8AyRAC0zQSgiQbP//8AWFUdMSYGIYdXd/jQ9bERz5+NZFs1fZIreIq//z4AlXYDzHGRezlNV28CdsI+Kn3qqLm0kcm59QaS9d39P3A/d0dnz5/5nI+McdJzSjL0rtlNa4qChjUJYkBp75rcs06+r7j9u4O7x3n05nHx0cBCnRyr7WCFW+ckrMmGbqpATRGrgMWuk6SoLv9Gz7++SeeP/zMrcmY8QUbZ7qSsbWIA3iBiCNbRzYwmohH5proDYnCDgF+xpQ4mokpwjidmWqi2opxkHKFrJVyBFspqHdiMWQKqSbGaeSSLsQ8iRJUlO/pjIJLutZlKsY5EUa3BWPzYjwtEstWVZ80HKeiZB9Ae5w1IZBWBPXMMCxCTC3pXre63D8yga9VDv0ENunpr7pff32S4VpVQL5RU0BoaHS72VtvQa1q796UXnTBqGILRS2ZzgZsb+lveik/Gy0JlZnLyyzVjBzBNhRNGi5D8HjngUqakyBAnWPoe+IstCIpMWcNftHgTTLynCJtiOYscpXeOboQuLSgPBemmIg2Yq3Kpm74jCEYjHF6M/eKWosUb0rx6tw1F815jqQszwXfifykXuxGianAqFKIkvw0RR1FEYYdl/OFnAshiN9Ge0zTRJwF1djv94JyIkolVUutZG0+Tkn7HJIo7FTpnygpEdv1K5k5zQQThIPeDFIozFPLvsWQLNaEMRnvwNQISJXDAIf9AWccwQVViyqK8qppDDDmcUFxa630XS+0i+YdESPBezrfkWMUKc7eqVFepeQZVwpmitgpEZLBVYvDY2ygOANBsvyaZkwpeGNwXcdeKVFyzjeLTIrMSbw95hiFUqO9Gt77hQ6zqgPtcFYUIWBFtmOMKn/bFKkGahWnYRlLjhA6QlgpD2Do++HK7dUZi/3KYwRhqAjlp2QoeSbOI+N4VunaGeGiq0worWVTqEmtQiRJcwE102uF47L0cMjz1gpdxplOvTEc3hpqTYI4a5IhTbdS+bOKMsZ5plaZS6wPDPvAbj/Q96IsVWsDG4wsfNrwPc+zqD4Zh/OdBgYdxjmSokUxZeaUxEHaOTV5U4olMl9VAKtVziIcffEKyYr+W5wz6mSdJZDPCUqCIlUAb4UG5jSRaJK7GBXwM2iFo1ypTZWcRIUkNUSdJWhoFW0Hi3FgijIPW2sI1uo5bgmVKrsZ6X8RJ2uLce0cbioZRqgajQa1XVdSzmuyo5X1BrIItdQvCCy6n0qTyc3MM1AN0zQR+kHnVIdzBWODgDY4nINqLPv9jh++/57f/fijqLzMkTlJU2cqQvW6jIJGeu9IcZJzqRSzy/HMy9MzL0+PpHli3+/oup4aD+zV+X0uSQQuciGlzDxrklkLwXlaPxpyxsCYRdtgXeTN1c9NPrWNzetgwCyv+Vq3ViEEQfEbDbWZp7YAv1UJSpbGfFlLGguhKOJfSWnte8GAK3GphtUqSLtz4lkTFXi4XE6SQOvYNThd/yU4b3Ln1loOh8PiDSFgk1ziRsHe7XYMw0DOmY8fP9N1HX/3d/+JnIvSknbUatjvD9zd3eFDYBiGJdn6+PEjj4+PzNMz1jiKUkpLrnz+/CiJh8q+bunfmzNKjGsjdQMhgU1v4FqVaN/l+f6ey+XCPE+LF9CXehattVfVFtBKaBVKdotfnh+faNSoaZqWe39RmzPCEikK6rWqcIUlwWnDvet6XvYH0s3M5w8feHl+grsDxzlSchS6axVJ3maOaLVNYXSG3gk7I+eCM7qumMqUIydTsblwOl/oDwOh9/jOqZWC+HL5AHFO1CrAgLOe5qN0ni7Maq5qjcUFvyRdAk410IkF9EkqpSvggow3az1QyKmsle8NiC6S4Wx6LRo5uCFj61xFlWr2Qm9/RbVsUugb4XKu5Qn/+vark4yuC/Rdj3OeHDOn45mYxNG2lQ0b3SMVQfTmNFORhV4QPXHRbLrighCLaVa2ZuFiVQO+93SmI5EX0zXZjwFTKDVpUCqld2PQlGxFMbfKI+N4Wcqs0vOgFAPl3wOr0ZsuYuMY6bqOEBxd12Ot2/QitLVsLdU3xMj7sJy3UlY5zZhmvdGdlr3CciNK2d8spa44R7UFkLJv6CSDnefI6XQm58wwDAtKsk3w5LtI4gRiOHc+tUlRPqOUQklJKgdGSnDeOV7O56WSk1JanM6bV4cghpKcLd+5FjRiXFHnlMgxUXwQE7xS8c5TvVRlSsmaKLbx1eFKoVOZ3RZwOOeU1hSl2asUaaQyUE3lcLMjjhPzKE7fZZ7J00w8Xzg/nSAWTscz1hlinJnmiefjCzhD1/f0+53eNCL7Oet4btdS1IFYKFANlW5JhnBFWfoujLF0vb+axNuC0BKLdp3O5/Oyr+ah8HostepOzWVJdr7mzaBzk96jKc7M04XxchRJ0ZxwpuJDR8xgjDY3N3S6luW9Qpdaa5PQKqh1VSyy4L30JPRdR3AGqxNzLaVxh7BWKaEacKcUGacLxsLQ93S7jmEn3hk+WO3ZqVAdtRpiikyz0hFykuA1BKFKhW7plWrUuHEWacJwOOCcqE6lGBdk23lPTtInYJ0jpzX4FPqRIu56L7YqcSlSCbJa2bBG6VAGbGVZeFq1VyoEKxWrncXWPJ5zknOv/UHOLI4ia7N0gTlFSQ6NIzhJMlrQIo7Xa5VJekU81vgmPq4Lmoz9XJrC0kqlWu6JV3zvVs1xbiP1XVt6IU2OgM5nmVrPuHkmzFHOrXU4FyhYfOhEkhahz/ad593bB/7mdz9yGUfGaeLD52dSAVLWdUFoMs45ao50XtaS6RI5Hl/48LPhn//5hr/58Tsob3lzf0vfd+z2A7vdQJrEKyeXTE4zpWg1U/vyJBBQYY7NKL+mTK3/tr6ARvO9fs1yB3J913xd25aO45zj7u5uQeP9Uq20nE4npmkUpTFviGnlr2+p28ZATO38SRXROqFxT9Os0sQSF4giUWacRiSQW2nLVOkN894zz6t+0jSNum/Dy8szz8+PgFE64CqXvw3Cf/rpJ/7whz+QUlqEVZpnE2btXwCuqhPA0pPRdR3Hl5elBzDFyO3tLbv9QYR3rFNRCMt+rxn7wuSQBMxYqcS2XsCUM+NlZJomPn38gHOi3rYbbpfYKJdGs5STK6CwU/NeSVC8rvEtrpAYbVyusdN4pBn2pZQkWDVQtWJZzTr/OyxFNFjp+l7mi5yYTo/UPOEcnNNM8oHsxQm8AtUUqi1yPhRkTE4+z9SCxbC3jlDBl8Ld3S1odfe278kl0/c7bm5vqSZxPJ2Y5okuBPqww7lAH3q8cWIKezkT64gLnmA6UVoVVEuqGqUo2K6CNFHjkhjlWxpxQrcdKpxUSQoQXc8EFWsq3q1oUqtgyPIrwKgaQzXcaaHXN4+1VhZ2xmGqvTZmfTUX/7Xt11cyQANjv/SaFEVfVnUFVdjRRu05zRgjtKhghSu3ZP46aKX5WMpWbVUUakOg6om2eW1watx0OQDRdDa1EILBuUjOqwzs67Jqm5zaDfq6oWubuUkzXcb7qgnF5nh1Mvhr6h3XQerKyW83f85rs1d73WtlkKZM05IJazeLzuYYtqXP1xzVRS1jo2bUtqaYNM8zzlqSTkRRXbnbvreO44s7eG5Jn7q4L4Nk/XwpkUoZsKGPa0KUyJnl920Jf6UGreecWnURTktDmKGupeRpIuYEGhQJAoo2x4tbZ5MkbNvS+6DSokZ7ZF5f20qruNilpLw24qercyL8/MrQ98trYENxq3XhvlorevlfkpjcXt+WZFA2f/uKtzZvNaSwqY6JGtOM1epDmygbiq5znb5X0fhGLdLXtT4PvUkWClE1m/uX9Tya2saljAWrUqFNGGKOM13nBSDxQfm+gkzVXMilNTSvzYpNUEIQIeFPry7eLK9rFa6VJieiClalMZ0Tuca1fL2hUlXANGqh0T6VlabzpXMmVQyWe9TYtQF1PdcIQIDcv6IgV0Bpjws9admVgDG1Gg1K1r9JRcIsjrLLtGQ2Td2m/d3ocW3Q96r9S5Vlv0sCWX5JR12kibXqo6dB5x/Zt1X6YS1FEzMDJKxNYCyhz/hQsC5Qq3SYWWO5u9lzd3PgsN/x04dPzFOUKreis81VnVLEo8N7FR9JTGPk+emFp8cnbnY9+6GjD9of5LyMRxU2mOeJWh3GdCqjrJX30mjH2nNStnNmq0y0IHnbzGsWMOz6HmwKSF/ntl3j2rqylYJvnlgvLy/6t5ZUbZHx1jAEkrS1/Uly2j5ClAytjnNAAc0Q/BIwy9hzONfhXSfVqrpK1wqdWYVzFLAyisrvdgfu7++5vb1dA3DvGYaBN2/eEGPEOcd+v8cuweK6lrZ1p61B8zzT9z1933M4HPj08eNSZbhcztL87j05X/tqrWsPy2fI8SuwoSfr9mYvog52FZdpc0KVjB+DKonr4BMJebtKIbXPBHo1rgWR/g4hkDUuqW0OQqmOCpAutEuzHJZ4e1QJjg/7nVCxciE42O0cxnZMuUhFmUpsUqSmYEyW5FIFQ5x1VAfeGAbn2IeOUA2uFN69fSs9IKVQUuH49IL3PSEMFCKYiwDGTuSypad0R+ec0G+rMEicEWZDikm+h1bny7KWtV5DdAK3S+y3uKq30VvbGrG5RxrMUgVIa72LZplSDcY14E7mFMlZTMs5lsVauijR+F6SyNdx27+2/eoko8mVNuQIlFIQxT9hKZEVDb6yUJ2cW02gpIKhTWzNRKaqT0GVJnHjBFXvvAS2MWVydsvk4a1bfTVyAQvZVpng/byULGutCzqwDd6Wi7AJ7FZe7+r6XUrzZ1hVqtqN3OgvW6WFbYKx/X29GPmqlNgmlLY1BYn2vnaTWWu5v79fgn1Y5XO3k0sLaLdJS1Mc2TpYt89qgc7lfKZ5fUyjIBRbCdrD4bBMijHGpXFsO7kvZc3No6Eh63kxWCuynynJ35pqSmvUr3Wd3JcgSe4CPeYo8pTOgY6Bvu85n46aYafVQdka+t1A38l1KqZI30oVB/UwCI2l7wf6/jo4fF0Zarza8/m8BDmtBLyVnV0Qmp0j29UdfqF86Tlv5+3t27dXQefrBrnGY6XUhTa1HTNf42bVIEjQFE0c9TzGNONQ1ASZKAWRMVdjodGmUJUoWQRVVapqYmbq0mvQkHcBNCqUrJOq3QQlglZK7w3SXBgjvnPCi/Ue45wgOLUtfKtvxCrTrEmk9jGtyQvLYtm8Y3JOtOqg946UnVzvJRBq76prgoHMYy01aItprVX5uVWqBvaVnPYVnWadq1rGV03WnE0RvqV3SSofUmjX/64ZixxH5WqeZUlG2v9YM8sWJNB+fn08K3e+Lh4i8rrtIrtS5tagZdu7tPaftATDNk3kdiFEbaVxmksRiliXCP2OXETasRjHYT9wd7PnZj+QppHT8cw4RWKpMnZTIedK78H5wG434DCcTxdizDw9Hfn06ZGb/cDNYcfQ3cha0/roisxt0zxREWEBjEji5iLnIWeVo9Tcukmotu++JhnXIFcbL3q6X61JX+e2Xc+333O7HkuSnoWlYC2ltgZ9e2W0C1Bq8x+RLS/nS/oP1mykLvGP9/1Cz2rr8dAf6LqB3W63qWTL/d33vQg/lFWm3hjL3d0Dv//93/Ljj7+VNbyKBPPnz5+ZlXppreXHH39ckuxtn0ejFTWK0efPn/nmm294eHjg7du3/NM//RMxTlhjeHp64nK5ME1iEDpNK6AIZUWnFd2uRYJKagK9j9+//0aU6pyhC90yT55P4wqU0kAGvVbr8FvGXwPQWhO5tY4YZw6HA9M08fwspsC5rYm5UJVl0sAj6cdEkiIZADjvuNkLzTjFyOAM3nWEYIjPZ0LohVY7adXGNAnuSNNv8qbDBMfgHLddz94HQq3YmPnu/bdkK6Iw82ViukRNLntibvdqFmVVJ3RM7z0+eDCVmIUO3OkZmcZZaEpV0Bjj1NrBGDXPg2otDkOdFShewKb1xLYf29xqKCokkcUeooEOlAXMMVWq2wVkTZRMUQH/slSJWpdOYaXzvr73/rXtVycZ8zRLqaYIsmtdk2qTgbpkv1ouq8jNNOx6ul4UglywCyK3BPd6wCXJl6zFaJNxEBWFvZxEHzx912EQs6V5nqW8potqC+6dW2+WbcC/lUdrN9aXUHRY0eyWELXAYFaDrS2/stFmXvtbbJuHrRUzLmngisuk0BIYY8xCSWr72KKd4zgu6AQg51IDl+332VZh2ntbIrJ9bZuQxnHk8fFxmZDb39u5aUoSjdvaJqhpmghBrmlz+t02uTXeaVFkZdbqyPZ7tQm6HfviDGx/ST9bkiOVz727v9dFeRb+t5Ny7KzmZ83IrOs6+mHAOcvpcpTmbE3arBdOuDGw3++WMu9WbjaEwDiOS8L6+rpur19LOr1dx1t73eIjUsoVPcp7vyR1Ww7qVTWqVpHkRNDtsKHifa2bUaHteY6czxdG5fVi1uU8prj0L3jXNNWrJJrjKCpr1oOXQA1bcGEQJKg1FQdHiZZchWfffHlyrlBVElibCVNOkBMQpRpuYHdzYH/YEfoB40UHPdem8CP6+aUULHFRn2v32tAP7Hc79rsBwwoGXM4nLuczpRZubvYY0xSFLME7qbxU6QfaDT1UoQoGH8TJNldSKhq0dIRux+UsXgtyH0oPUqukGCcN5NJQCGDAegzCcZataiOzassrLdFgsM6rd5H2tm1AmVwKcxTVt2lWFDJXYswIX9iC9WDrwpnOudAPB3xwWOeJ87xIylaji3dKTDFhNblz3qvhlsOUulQPwdCFnqEfqKUyT4LYNkUXSmHSJDbnjDV2CW4oma7rBRmtlZRm5lMmjRdSd8GGgVItMVc88Pb+ht//+Bv++z/8I0/PJ6ZxYo4y1oKzBGcZp0kSjmoIw0CXZB59ejnxP//pjzhr2Q07fvj+PdUY4TlTsMHie0eoytd3UhE13mKViVpzJqvTr3GIaWUWJFrO0aoAJOdWkPpSM6IFIsiqC07m5Dj/P36f/z+1bUGzUsoyR5dauL25XQA4UDCvVoxX/rsTpbacpYrY+gybabB1FlvUf6kkKoaXlxM5Fd68vefnnz/irOHmbk/roRQAzDDPCXhe1rVWRWrAUlv/jCaLOVdqEbDp4eGBeZ5Fht5apmkSqXgN6v7lX/60rAtZVamo0jweU5QwsFaOL0f2+39iv9/zcP/A8/Mj1hqGoePp6Ynz+SxS6VWovwahQFFlvyXnBdwRIYKMcxKgWmO4u7vhfLlwGSe+++47LtOZ8/nE49MTzopyZCswtPZxAX3WdTymrEpGhXmcoEp1J6UsrIRpIo3yaAZ9WMjTrPLCGmtSKUZ6/CRmAVTkolUBR3MhxUSKmTxVypQxOAYEtDW2gBX2Q64q3DFGjLVEY7i4Eec6srfMwfF0PsGuxwSPM57T+ULyleB2HMdnTqcLl3Ekn844dxYqrH/icNhzOT8xxQt9F1ScA2rKa69rY/PUa0AcPavWORZ/sqsnNwtnWasaLeFoiYH8XSAYaxymFwVA6bGWHh7ZnzTdSY8ji2ztlpr8bwE7f3WSAWh23hyXA6GrhDmR87R82bV8LVKgfSflw77vMa5qw3FRCdo10WjJRs1Cn7K5Yj30QaQfg/aEFEV2c8zCYctFeyLXxW9LN9kG321bHWKvKxtbGcScyzIxwJp4tO/WEowWVLeft7KL7TNkwZdz0fbT3KXbZ29R7C1S0QLyeZ6vGrC2E2n7rO3PW9nblhRtS6rigTEufQGt4tGOpx1D44G2Y25BVAjhika1PY/tGJaK0+a4XqP12+rOel43cpSb5wwr77bpcWekUtD3A2kSn5RSy2JKaOzWTVzGaAhhzdKTSvBiwOTlJpZgRBsLF+1zrTWaFZVx2rzeVIuaxGw7f41z2r7bqjQkC8nlclmqIdtEtZ1L6SuwC3p73bD39W0S40lFIcZNH0NKMpG2yoBqrkPFtqZMKiWJ3G1JURpiSzN3lKY31yqm3lKcI1tBMq1ty5807NqV9LNWJ9oYQegRw27HsNtJid2qO2ptVCIk0UAEee1m3mlJZghCx0PL6ylF5knUX5xz7IZB1hQVYOi6DqOJS0yJ3W6gZIhTpuvUDbxKQ6AxCsS4QMWQcmWeRaLVqlR2q1QszIW2QCO0hsaGkHvGqAIT5CyLkrVq0tQ0qVrUpI+cM3FOxCiOtc5VUq6YlLFO7yvjMLaSYyLlSk5CWXC+ARGN0iaUgKKVyJyzUM2sw2iFqVGpGj3JK63We6+VFwk+nXfLmrtWegvWN9da0YsPWmWvpZJjpJRIngUoczlTqtVG746bXc+3bx94c3/Hzz8/8oIhp4QLVvsMLWWEmCTxCk5NrkpinCYen154ejlxHmdC1y+JbbUVFxw+e0LxoHRBlF9uJFNYqzLWqnv6rCizAHBrX2RRyW0Z3iUXJV9YQW2tyLPG9PX2dqWUVpqMFRqsQdaB/X6/AGbDbmCeJlIW4ZN37x54uH/g7bs37Pb7TXVUej2tsiikmlcoJfH8cuKPf/wL4zjz/fe/Iad/5nA48Hd/9x/Y3+5BezRSUr8cvX9iSkvlbpqnJSie40wpmXmcOL6cmM6zyGHnyPF05DJelGbjub25pWoQTbCL27ctto0Ggpd+r9qkwc2O6XJh+nhkfH5hjlHmNiOJU9f33NzdC2sEqYjZlFpUimYb5LrKhJNGaorUGHn86SPFdhQ6/vjHz9R4ZJpHXsaR4C0ug4sVTybXSCFhXROVkB6KqUjiYCrM88Q87EkELnNhvHzCjmf8ywtdrmRjxD/NZkxjPBhDsoZs9OEcSat7JcMQMxWHt5bTmJhTUiW/IMat1eAqpDRjTcaQiXUi17iCSFY0+3JyvH13J03ZtfDh6Yky94S+5364ocsGSuJyPHKZLup3EShkvdeMskQu5JQRKRpLHSOmZLoqwE0p0hqAtcSSKAZiFQVRrMEHR81JfS42VFazVo2WrBb0X7tWjZekQ5vnm1pmlQrFL6OKutK1UMphq4LCsnr+mu3f1JPRAk3h9TlKkYZFplmzS20kMUJvkIAxLAEpZv1SYiwmE2bj7bY8qWaRJDVV0JemPtD3g2jAO89kDFUXrVKglF/2I7zue9g+t5zKTSKwRc8FdQ5Xv78OhrdKQ9skY0u5ukq6rP3FcwsqqBSmbQ9Eo3ttE432ty1NoH2P7fdpFYPVa2H9jFmN40alR7XzsU2iGpLfKWdyW3kBflFy/tL2+txu//aL8WVWytrW5bw9rGbrMSVJehoXtYgqVNd3XKxdJEK3gfpyXc36e6UsZl42WEU/14TSFrlOOSai0mpyFnWqpu8tFAy5sVuvUEsYt1WP9r2vKz1m0S1v53Vbxamb7yEGQ5oUbcbu17ithpdZaUNR+4+y0KIwC+pVWaVTpSQs7ytN571k5ZwaMNtmZ0Fr/ELVNMuEWAWkk6CZNQAX34WN6pkPuNARul6b4NRNQt+gd9uKjG+QOrnOa+Ip11LFH6IEPNZ7ui5Q1elIEER0HMp3bYuHSOwGRd3lYYwTNErkQ7TCkXFduEow1mhMe8vQxUI1u6QnQACwlkAVTWyNzuPXQ26lLkn/XdaGatlPLhWTCslJYGSNGhUiyVEqVVSTrNXPXgv8bQGsegxeQYLXSkjr/KfzhXXEHNd5fYHtJIlple1lIdZ/m39IRVS7lnFV9T1YUgI/OIYu8HB7y5u7W3bDgHdHapklWKIhtSIUMc2R4vxCdaolc75MXKaZOWV86GRhb0GCtyLL7p1UHZb5qlEcBIFsgUNzfL6aS037ylsaQ10Q7kYxNDq2xIfj69xaUrEFFbEyFrq+W8QXRMJ2pkQZTzc397x//z2/+92PvHn3Rs6FhkzWN9piwJqCMYVSIv/8z//CNEVeni/c371jNzzy9u03/Kf/9P/h4d0dlUQukRQTtnpqgRQz85yWoXYeLwvoNseRFCOn4wsf3M8c6wtdcFhbiWlmnkU4pru95c39PcY7EgW7D0JYqRVfDaZ4bLWS2NhCMZlSE110fBhPjJcT+Tiq/05mTDO73Z7b+wfuHu4lcK9NzneGrH2IxlBiIhWVZbeGePxEvmTSGLk8HXH7N9DteHz8zN7OQlOuBZPBzAY3FrwBiBgz4UPEZJ0jreGsFThbLbk4UhIA4JwN6XxkPx65H48MBJJ1ZGfIiK8FGIq1XKplNpZoHTGIL0WulZQgF4P0Nnnm7EjGUoLB9QNkh8lGVDaniVqNJhCGWGRucSQxvzMGTCUMHbXANM08n8/S7J0KQw34BKUmpnIRYR+DXBMVEJA5rei8L4Z7Ho9NBZMLnQoPxVq0gVuo5rkWEhXjxXjYO5HXbequW4n21nYAbCJ/nSNYyw9NDErmExmPaFxRNu81Zn3dsrftWlKb2uCvSzN+dZLRAui8GMfsMMYxzwljzzRNd/XPXQ7smpMvCFOxlqDBWmsbFiRQ0cCUKNaQEd1jh8Uhr7XVYqrBFORk50LJlVqum7xbcN3Kky3ZeB2gbwP9lijI38uyuLVqwJbzuVV3GIZh4dRvA+Mtf3/btLUNvtvP0zQticAwDEvzWksyxnFcgtNtz0erQrRjfF2taM3JwPJzo+e0RAO4SrBaorPf7xck/nw+L4t4e36bgG0rJ8v30wHbdd1yTbY9HNtkYks1a5WgbVMbSICUYhSlCidjaZ5n+i7g3Y5j8KpMIx4cG7BaErdqlxto4bHXRtUzC5pTSiZpYtOqN1HR9r7v12pEq5Rsql0tON7Sx1o5v9Z6NW4agt/ur60s4TzPy3f23lPMSi37mreixnvzNAnlRN2pqy487Xq1KlEr21OMKo1o4ERDaNfpFMSfxSEof91UIrNWPZfJGL3c+msLrkE8D1r1VFTOVtm/NicYVp+CUhLn83Hpq3pNZ9xuTS2m6zqcsVS3RsSlBX5VZRPVJLOpvcmCKKp01jjAklMhJUmYK5bWv3C1QADQ+uJWoYbWQFxqJZcqzq6sxqBtW6unWs0rer6KLmLWYtSMLGVR/jM2Uo0hBD13xlGNBNW5IsmV1EtoXTPL0VYDVfUka2tevp43t4Ibr0GL9nsDIkpLKjXJsoZVsKIqKqjSv7UU0lxIl5FqHLgOH3q6buDuds9vfvieP/30idP5wsvxQi2FGMVfyAdRGUsvQgcRiqOhDyJHriRt8dkolUrGepUwdkJRMNZjg8Mo/aklgM0Yyxkj8t3WYe06325Btdf9edvtdQ/f17i1JAu4EvPAmMWzCKPmjVbkoV11fPf+t/z449/w+9//nrffvAWj1faaME4U47rei4gMiZJGXp5f2PU9z2Xk86cT41jp+3t+97u/5+GbAxJZR6BQoxXAA8s0iQhNSoWnl2eadHTKMzFOPH78QLpcmJ+esYgIQa4iiOKsY9f1/Pib3zIcdtRgMHedVL5K5uACNnWY4qBaXDDMZWKMZ07nT6TLETPP2BEqHmccOMf799/z29//jnfffsM4T/TDQAUulzPTNIknhnPkcSYVBc+Gjs//9F84//xnTi+PpALeHDDhHV0H7w87rJmo5yPMA3027IE3wVO6nhpOhP4JnycBQ2zgv73MTBFEQdiJolt3oNaecPmZ733h/3WA27pj9D2zt1T/kT4FLIESeo5dYAyBS9fx0vX8419+5tPLmYzB+4HQHQi+Y+c6dvd37G5vIPSScE6JdDxTT2cBqshM5cxlOjLNR+LpM2HvcX1H1+2x+47T85nn85kYC5mJOieen2cOp1nAzzCTKUovgqRFBS2ki0w6luAGDr7DWek/3O934s1hZwwFtx84TyNxnihk6aA3FVADvk1s1RryrQZaVas5ejPQAKHGCNggEXLvtLmjVvHy0HtovbvqZi59HXf82jrGvyXJcJ5mDFe1WY7aJjK7oD9YgymCUqVUmGNUyoql77zKknqlSuk3ritlyoKU6+KqY29KJXeRNMsiECfNCp3HVEexMgnPMzibribX14vT9u9Xp8yYJXje8idbkrBNVGCt6pRSlqSgBaRbPuhWPahuopr2eW2BaBWFVrFoahJtILQScM55qS60fYAsrC0pyTkzjiOXy2VJKowGzO2xrY5saV/bY2sJRkt02nNtkW9JXEPkt5WTquhuKZkQpJekNbGJVPCq8LWtPLTv0npKFgqZE5KA8m3EQ8M5LikxdN3ihqoEZPnd+4V+MwyDyA9WbYhHeLjeOMY5XqXvVQOPxuPOWVS35rkhl9B006XxVSoqLWnonLR1tes7TdNy7hqf2Fpxft02l2+rXO09dbnRrhPBr3XLqmA2TSPj5cw8TRTtHWrg7Wa+A9RQ00p52BipCCxgwfImCVab+/WiVKRBd1F1HmPAuUpVr4kkZdDFx8dYgw9h8eOxG9QYrbRgwCq9qN2bx+ORWoXnvNvtlvHd5oBtEt4qu+1+bV+2/dzmj5QSOWVV4WrHZ6/u1aZo1d679vTIY00qNtUcWOQSrwCCZj72il66BYuAqzmpPS/VtgobYGdbndzSAKWHxigitsrXCh3sKg+8SiC2yP3rHqnt1l639ExhlkSxCSiIbLmMrS04YqomTVYSk0b5DFaafb///j3f//lnTqcLnz49cZ6jqHcjwEZtIEUSylQ77ykl5nFkPF+Yx4nuRuVI6ZknT3Li82EMyhQIShPLS/Orc+LzsE2y2tbmlW2S8frctOvd6Jlf6/aLObABR/rdtgBj862wznG4uWW33y9KT6HzGGeZ00Q1YvLb9T3eVUo6SfKoXgnzPHM6fSTOEQOELkh/nJXKo7EQTSFFqShe4sx4mRgvI+fjSQO9gqmZ8+WFzz9/4MNPP3E8HbFzhwkdp/NFVMli5uPHD3z4+Wf24x7XO3zZqTJRodiAyx0US86Grg/EOjGlM+dp5OUsAXGXxdU+lUqshZoSvbEcnGeaXshZKKllnric1GHbIu7UOLAenwdejkfG8SJ0R1OJ5wslPRFK4k3vuRssP9wY5k+Gzvbsuh2H3UDdH7G7E3d3A/s6UQuc5sDz//0Tn2rkaDLVWPI8gT1j5sptKbwPHf/xJnCb3zK6A7OTefz+ZOmyg7nnM5ZjdTzh+HOqPE2VGIsG4TOxOgqFWOF+t+f24S3ZOM6nC7VCt9/R9QFbMrZmwu4NL+fPvLwEfj5/5uH+lsPdLYfDA+l5Jk0Xynimn2byrOIa9SwVZGuJ2ZMNiyeFLVBVwa5gsKrwVEyl2IwzQnPc7/dc0oyreQFZGzVYxrqM7ZwT3opqXdu+xNLZ/n4NpsOaaPySSbL9MKGmrhWQLzFPaLv7Fdu/WV1Kyj9VFr+yTvilKYFYVQ/RA2g3e46W7KQkaTYGYzIoyhK8meZkqg7XsVYtQSbiLBPjPEfltwl3Wpp/DNauDcjbx+tFbv3oa1nQba+FtVYNatb9vKY3vU5evkS5ajKVS5JiV35/qw6142gLBfCLoL99VksK2nfZLi6td6J9bltMvhTovKZztWPfVl62aOyXFqVtc/prKVejAZkcb9Dv35D4uhyPbI0is5by22NBLs2q698CIkFtW8kbrHeKeJsFDWdzbdDS4Wuqmsgwmw1KrVspBO8lsS2SZFmlTi0eAazXliqVtVTTcj7bPbB+VrqiU70Oora9L7+gmG32+bVupSRx+J5VYSlFcYCu6t+gc8cGd9HkXJ/TpsyiFSu/JBmbWm+71kuw3Tbpzai0+arqvNbu45Xq1OhOy+eDHOPyOSiwIuN1mqalf2kLAmznmDbet9W67RjY/tvGeePdN68EK1nSsgiIJv31eG6b2ZyTJcXQ7/r/Y+9fuyTHkTRN8BEAJFXVzD0uee3pnumZPWf2//+V/bZzarq6e3sqMysyLu5uZqokcZH9IAAJpZtHemRV75ZHD+NYmJuZKpUEAYG8Iq+80kB06b6rqjXMO2xcRxGGdk9H29HbltRojWUXdehT7qVpzMJH1308+nHps6Cv2fR2bHa9Zi/uAKJYVt3O2d+/PVjnTNUFlY1GYI1BPV999Zavv3rLmzcPjGPgtibabN2orGAFxJV+omr71zIvXJ9feHl54XzyjEPYHF7nrI7GO+v5sTe5bffdJp3s19jRKntQ1Tsf/dgeM96/puN4b/v8rPMl+C3TtqZsXd+lAtVK8fbexEDAirZLN+8MaCzbntT2AattEnNoc+K2Rp4+vLDOK7eXG9fnK3mNbPnFEvnw4Sc+/PQTzx8+sK6R4ALOWzsAX2tnNGduz09oWXGjZ9B5z+G6AVdGNDliVKbLUDMZL1Z8fJuZYyJlwWFU24JCKkhMyBrR65XslILRwnJ8IZZMJqNzppSASkBuE08vL2jMDONATs4UHJeZc8icnfC1L5x9YXUQgjDKiJ9G9DLhL5GvLvBGBE2OswtciuOpCE7FunWXDHHFJ5i0cPHC4xi4rBO4CfCoTkzqGNUjjJyLkIpjyUJYF4Y1MaREEBtjLYFShKIBVaOHZotng3f4KTBkwRdHwPHmqwtZbyw3qxU7jSPnceI8jryUG5oTPme+rrLTFMXlRAiO7KApXbUA1xSCicvA1heq5Wubap6CFVhrayx7z7TZbbWamMnBBr8WgDkCAsu499mN1zOc/z2PzwYZOTbKikMLxnWsNzWO45ambI6dDVyLKERiNCMtCC5o3aPbhsWWphFpD0XRnElrYmW1bEhoevPVkNaGMlbXIXfOcVPwOdKgeoe/p1U1w9w3W7telztnsY+4H4vH+383ENAchW0MaxSzpzo1p7OvH2l0p3Y/1tV6d1JhnyhNpandM+zg5qhg9eok7N47DMMGivri8wYU29HGrqlRLcty1xCojZM44fn5eYvaxmipYhubQKwKJ5bdONX35/q6dXPObdOtG4IPW0ahUdCyqnXwDgNoNh5r0a24u0Wsd/CSbZLVsGmqWuTOVSk53eLAnE8nUCWuK6dx4jRNnMaJMezPsU4Asktk2WVM27zoHc5dW7/L+NTn0LJVDbS1TFLOOz/W+S8bZOQUiXFlXWfWZSbHuDXga46wpXCLpYE7AEqlTuUKVi2zUTXspVGE2na+f21PUxq9TdBkGRHdzmPFbVt9lQ9456omuEWorCmdNHxh15l3VbbT6bQ1rzyCjB449iCjz3Ie12c/j3LJGw1vA6jolpk8OvzH7ENz6PfraV2Bd/BjzrSt2/46+nvpHdn+84Bt/TdRi3tnz87fn7tRUpuU8NFGHTfD/nP7TMbRppkt1Zr9adkc25es34fUrADb6zaaQe1pgLP6EqOv2N4ThsDXX33FN998xddfv+F8nni+LrWBomPwnuIcXhX1YiIE1cYsy8rz0zM//vgTP3z/PW8fTzxcRnwYttoaVwUkgh8IfqDvi7ENYP3/MfDVB42OEc7++fW9fX6NxzGIBm1/GXm53Xh6fuHy+MLbb75mKNbETVyoXZZNWCGWri/JdmZ7jjnZmhGp4hFqtO4YI0/XF969e+Kf/q8/IUW4vdx4+fDMeTwxemt6mdaZH77/Z36oXaidmxjEmYpbjax4J0xhYHl+It6eKK4w3k5IcIjzzG5A8kCOsCyF8TKw5Bsv6zM/ffiBp+cXlpTQqIxhwiMEETRm0otRtPK79xQiRTIpFFRnUlq4pYX4IbKujpQdUTzr03vOorx5fEt6Gcx2loUpwIXCW438Lr9QkgcdkAAvosig+Cnj5QMTCSGQizAlCKXS5X2oPaoWQoFBMoMreOcoCmuGmwqxOJx6RhdAPC8IMxCLqS+WdUHiivdAWiA71IMWU518uc1ETG3NhBo8Eq0J3+g8X7298PRsNcUCTC4w4ChrzbJrYRT4/ZuvTH0sRZ5uz6Y0hbAqLKvZveA9p1Ptl1MDRHmN257VpLcbMF3iasqBWHPaVg+DQkkFCbUjffk40LMFOOEju2zONB3jiO11/XmO9rb//sksxi84Pl/Cdl0ZhtEiuwjJ2vEShoG3pzOpbi5rjPjO4DmxAjtVIWdFpOzp6lK1mDun1NqsAfW7sDcwa9zhBm5sE60FmeKJq8letmh8L1/bekw049o7yq2guknI9kXd7SE049xHj3oJ257e0zvt7bMAk2T0/s5hb9z7BtYaX7uPzPTF0I1W1SZCfz93tCz2KGlfJwFsYwLmyDw+Pm61BrfbbZOnnWpTuZ6i0PeEaFSpHig1gNHu/6q37b7aBtCivX1x9jRNG7Bq196Kz9u1tYZm1+t1y2ps2aCc8FVWLoRA1sIwjpwvRl25fv/CstxQLZzPZ7x3Fp2KkXVZN7rVceOepml77g8PD5tsbxu7dq3tPsx5vKdgvHnzZptLraGfiGzSv43H3wO69+/f39XGtPFrNKov9UjLTJyvrLcrcblRknFRTRq1JQisc7XW9e29r0ko0/CWmIgpkdWK/qXyFQoYXU6zBTgqr1icN03wMJjGu7NiXKMMNSBoMtNtrhmYK8R13ZxIaxK4iwhoycR1YbnNGw2ql5rus4qNUtjP+5bN3MbmkC1MVaHGiSkqWRBmp0iWUljjukn93qfb7w9V4wW3urp1WTfaGfW8DcD2NM32c++kHm1Jb3N6kNFsZrODjV5ory8VZFgE+VMUrX4c+4DJawIR+73eN0ylUedUaxbD5lVOhRTzdk9SaVtbt9tccJo5P5ysKaMTzueRN48X3r555HI5Mb1cGYAwjsCA+ID3poS4Vsnv28sL7989W3F5Xvh//e4tD5eRx4eJ06kKoNQvA7lVMUv3Qv+7sd7GyOHcxw5Dn6k9gpFfM8AA7vahJiNrQNPz5z/9haLKeDrx+z/8gTVl1FvNhqtUvbhabwgPiHhiTKxrJMWIEBCnOAfBWdChqDmQP/74Pf/1T3/hz3/+Z/7hH/4TXz1+Zdmr28xXj2+4TAODE9blhR9++o6n5w/kkhmmgWE0OWqlBi104fb0gXfzFe8UJJN+VKMYOoe4EyV7UoTbmhhOHpxSiPzw4QfCeMaNIy8xWx2r1IzavLL8+I7bujLcXnj//ANRF3SC0x8eYEpkv7DkF5YX5bbAizry/EKZBr46nVlLMUedzIODB114XK+8ef6e8uSY842ri8R/9zvO3wrTtxOkQp5v5Ci8zJlbXoiVWj+5Vv+lVWVr5kbhySspKO9d4Fkmov+G/0tr7aQfyCgZJWrmT88rH7BMCgJBCoNYkOolFeKSWJeITsEyT5Ut4QM8jBNvzyODg+X6zPXDBwtErJCeFl7iC8NotZKj9/zHr37DlAsxrXx38rx8e8Yr6FJYv/+R4CyL8fZ0ZgwjIkBRZjdv9YcAeGPg3NaZNRnAEO+Y17lKCtd1XcxuTsNIXnshh/vA9msB5HYcwcIRcBxBRrMV/Xv7v7Xff25G5PMlbCsiK63N7XaRVphmm5RHsqFQ3y4Gk+Tzta+GcWLrhdeL9e2GNoMArQhcUyHHmhEpmZR1S/+0CBi10dIxU/GpwegjyG1DbY4A7EW4t9t65ywe0/XtXBuvuh7NcWwbZwMfiNUG9O9pm2XOeeNqN8e5z660jb45MP1Gcfy8dg8N8Byvr9VXNMe50TsacDoWX7fPUtUNBPVgp41HG/cGklJKjNNYKXRmnFrE2HurzbiLajqpzc0g1MJHo9fVCVif57qunE4T59OZ9x8+2Pvr5uu8N9qUiPUIaBHfkvdIbctk1cjwNI5b3VC7z56S4b2v6mZ7ZqHno/cOjY2P31SjjnU9rXanOQMtw9YczD6j1a6lP8+XzKUGWOcbcZnJ60LJJkPbumZXlhvQGz4LNQhGXdGipJy36LM4h1Oh9N2Qt/9MhUm8R9QoJ4UagZQ615yltEMIjIN1aJUKIHJRy7ZJpddosNBHTX+35nvNkW5r92ig++zU5XL5KPrUg9T2u+2Qdp7y0WvavNAuYvsaPabZrVxVvFLtHdFHevuv/vi5jaTPYhxtTB9Nvqt5kEataj9/fM3t3K/dR/+5R1vfDrvffkz8JgPt2GlbeaPeVTDasmJqcpKpgtDT6YQfhjqfYBg80xQ4nQLTZOpZp8sDWgJ+mAhh5Dyd+IDtmauzRoY5JV5ervy3//YnfvrxPbc//o5pPNXrBdQaUTbAsTd8b13Uq30q9wXwx6N3HHq62hGA/BqPfp/eshpqe8a79+85P1wsMJZz7b2SCaM3iVNtttfqJzQVUiymXJQz3o/m+mghp8j15YV5fuLp+R3/+F/+ke++/5G/fv8jP/z5L+g3KzlZbZ3GlXkMBC+UsnJbb0a/9TVwUhuKmn9kcq8lJzIFcWo1ZHmliFDEWfYhe3KCNRVyNnUs8YWpKrdlcWiAXPsdoJDWleX5hSUnQloIy0LRmbUkzsMFPzoogZsrlBxZl8ytCFISRQYIA1lXlIKXgicz6GpfOVLEsfqFMsyE3zrc7wLyrTKUr3FPgegz1xd4cspS7frJD7gQ0CEQvWUPb0Ph/ahcVfnJe57DiTzBPHlKMPEEUkZKRuPKhw+eq3csTkwrQsVo0wWTjHVm19V7siajLglMITANgcEJTx/es7xcKcvKWAJDqsqnEbK34DaKqWRFo/eG84Q+jJAVVyKgBAejc4ziCKq13l/xCkbEq4dY7caSE+rAHNideWEqVWIKtm7fT5r/0gd+XlvLd5mMbm380nX/qWDSL6kP/XwJ2yqTCLlGoyoXsdTIoavUhG4ArPmVOREtWmXStXVz3aKXsvEf7bItVSbFQEaJ1iQllURMe6Gk9wZymi54z5U/bko/N3DNeWtZhdZ3YRx3idfeOPdZjlaI3X9Onz1pEyLGaE6w2zt1N6e9RfFbHUaTjG0bRA8yWkF4ny7rMwPtOvtmcMdNuN2n934rWgfuMkB3haXVse1BxnfffXcXPW2f1cYj50zwgWkaEWmbW23rUud/CL7S6iwiZApkUotvd866LT6jMrmaTXHuzOXhwf4mjVJjBeKuFYRWgJG11kV08yNF01o3RZHpo8XYAEM/vg38tfHoo8Z9BieEcQNDfVS1Pcv++TcnoWVxet5+T7lrIONLj0IutxfW+UZaF0pKSI1mO6n2oD5nY0x2NU9WiWuqRrnUZlk7yLAi3SZvWU21NCWegLpCxkQkXHUyEYd4xYtYIecwMISAsNeSxZZdC5Yyb3FkLcW6ladIzveqY8ejz3I2W9HPAfjYiGtnD51IdYT3c7a5cASxva07UmhSq52qX/3nmu3caVjt+FTNw/Ye71/dvPp5f0eZogV2ZMsgNaDxWoakP1f7+2v3evzcu82wFpXbEMpGw2u0qtJ1f5fasG9dTWFH8ZymCfxQ9x4lBMc4Bk6ngWn0uDDy+HjBJN1PDOPEZTqxzjNxWQjeM9R9b10if/rTd/z00zuuLzfevplqNs2uqQEMwYGWjey3berVVirU4Mv9GPTj2ObFltFhD7B9ySDjtYhtP1f6+y+lkIvJlS4p8ublLXMFGTGlLbiU1fbJmBLTCKBolYVOqRb/h1qrU1JtCPzM+w8/8sOP/8w//B//B9eXmQ/vn3j+8UcGtfm1rCuaIi+DELwQBljyQnYFCWZNUs6UHAmDR5KYVKsWNBvgcAKSYt0HHasqqRgIbUHvUIQwOB7GiegsC4Z3pnZUMFrwvLCKsMSVQGLIEdXIUm5MoRAmB3jeeYVi2Zs1W52F1TGMZF1QCs4pTiOeyEAkkEkOxGX0Ehl+7+F3gfI1OPkGGey9159uPHlYksmNn30wAD8OzCPkCPOgPE3KjyL8OASex4l88cxvL+QhoE4YlpUQI26eeR4HbsGzRocXtQB1lXlyOIILjG6w2gnr4cnghGkMjN4hWnj/048s1xc0JsbiGbLJb8dSiAVr0JqVGBOyRIpX3JuReAnkNcMsgEn3jl6YRJDc6ukUVwxwSL2EUhe2lrwVi+/1AoAatdP82vtM5hFkwB7k6dd1y3ruQfnPW/PHrHD/2c12/HfJZGyp69o8CWcbeiqFWKyJCGK1GNT03OZNitEMfP19U2hvGyh2OgMM9idrd77RZOvkEb9FphHB1cIt8R7xAedtIxlSvqtPgPvi2/P5vG38sGcCmgPQlJJeK97sB7lt9H1aulGnmkPZnEoRIdaIZ3/O9iBjjBtQaLSY9oBPp9Ndp+ieRtCc/la30W/svZpU77w0ak5f79FPrAZ2VHWruWj32carOd/tentkuwGpkhnHoX5udSadRWVTStZlVfcCdptn9tVT3Xb1q4APY6WdTJzOlfvenEonDNOJ0/nMdDnVTsV1odQuoN5X0YG6oF2VSYU9IwNs9Lne2b9er3dz4na7bePYXtvoUseIYZsjbbwbWGj0hWVZts9u99sDzVej3F/g8fz+J9ZlZl0WyNEYAEhVm9MNZFCB425gAbXGVBoTKdVMn3OImnSkranaAUIE563XRVHrqh1TRl3BGpNZkWfwjtE7TtNoHbedI6XIui517q91zSmo1f6omrxsimvNCGTevHlzR6UD7tZhe96n0+mOMtc7g319wZFba5lf24CavWj9bu6okgANVKS9PqjksnW+zjlb4aKr9rgC6tb0MJX7uq/e3hyzCc1ONOpfbwd6h/+YyehtxWt0qT6rcgQqR2Wp45po4MGodsE49xWktrWvao04rfGgVF6+R5xUGmUyKezBM4wDBWHNiohyPo+8ffvAt9+84d37d6h4xuBw/sRQQcZpOhG8NQSbhsDDaUQwVbM//+l7/vrdj7x7955vv30kp1z7pVjmzYnJtGve6RJSG4aaumMG7vehdrQ51Z5zs8+98mDLWP+ajuMc2PbsNveKIOpYayftZV52QRLVmtmwvVvenDiPgTCcyLVmKaeMhkwpifl25fvv/pkf333Hd3/9M9999xf+P//4jwwENCuP4uF626iJsxQkgB89X50fcS4wjI5wmpjfm7oTatQpH5SQlSFndL5RRCELAxY9L2ods5M6Cg6ct1qGDEP1ba4IJQMU2//EgOl6W1hSYh0CJ5cZ/QqyEvTG+u4nhIlw9oxecVJwWM3U6Xzm4e0jX/3mLf/83QfbLl0hlRtOEs6BMpCDRy6e028d5Q+Zl4fE6hM3HUmnE7dL5PrwnuvlBxaFKSmnYGuuOIgBytmRL4Hrm5H3y8S7cOJDOBP9Qi4nNAdchgcZEFZKUZboyCWATOAF9WeyG8nqud0WLreVMq+kmDlNgdN44u3ouaSIrAvX+cqPf/kL84dnWAunPPDIBe9PBF/4HlOriiq8WyJvLA3C+tXE9e3A+jyT3l8JDk6D52EMXJwnr9Ey7igBa3jXcE7GupUDINWXzuYT0SlINantdVkIMt35KEfHvx39v3sRpv7vzW68Vjv8mq/xqX9/zvGLQUbjhKnqtjhjMiqQbo2nrIi2iOKw2o3i68Wp7EiC5t61C6+bWvu97g4IzrTGRcrW5tw1FQ7vET+gCs7nj2ow+kHpAUGPCvuIfHPy+s3wWNfQn7N3CBpNKMa4RTY3qdpq3Pu6jnYMw7AVjMYYN7qTiGzgo11vr9bS6j9657XflI+RnQZ++mfaztNAUr+5945Ku6YWoe83s/5+mgMUY2Tqrv10Ou1jpuVuzPtz9M5Iu78GMky1xYBFy5qkuFqTOhHLOlZ+/fZ8G2jx9wo3Ng1tEaq2Zl0tLVkXqoXUUVXWZbG6He9JMXK73UBtvgwhkNQ4tWGY7rJePZXtGL3uZY/b8+k7sLdx8wfQ/KUeL89P1v8hJ9AK0GsBpTlZNdPgW7Skb0ymWyTXunSz0S+lGuqWKcM5ggyUcUS1sC6OmFayCOAJjtqtvUa0hsE2Sy0bwGh9ZpwTBq3yyK3TfI7kZBKQzjkul8sd7bBfc72kaAhhWz+9ce+jQ33wgt7uYlSAJhDQJKj7SLV2Tv2WQWlytb0wA1Qlo3vZbq0R3N429PdyBBnHyFr7d3/049HfK+wZ7v5zepu8ZWFSuvvbMfPTO9c9DcxspashLV+DC01AwOhQYMXeratt6y7e7EYpuWZDzaF6fLjwzddv+c1vvuGf/vxnbrM1V3t4M2HqaY5VxLTuc2IIgbdv3lp9YYz89ekHnj688OH9B9bld7WhbKVjUPXutct0SesZQ+0JVRBKzQJ9HFHs510fIIO9dq/tAb+m4/Uoq62cnCPBDSzzjR++/yt//qd/4utvvuHhzSOPb9+YHxMT823m8eFU9wS4za1hqqmIqRY+PH3gH//zf+K77/7Eu/c/8uHDO+Ky4kvGKZzxtd5L8WrF3sEP+OA5PUzomsjJfEnvleLUsgN+z7RNYYB1wWnBKwRnRcm5RcWpWa5auHz2wskL6XplGE+M4nAl4vxgtR5aCMGCtaIZXzLj4PAuWB7iesNNiguTddZWC9xZr0+7vkLGjZ51yeRYWMJKEiU5uJWBWJTiYDwV5JK4hsKqmZfnRFkfWKNwLQMpVH+wANam05qqquCHAT8pbpyIM+TiEA1chpG4Blg9QRxnjbhVyFclXRMkj2PEDwGGiewHa6ZXlIAwOccgyllgyoVhzpT5iisRSZFQgxBk5czA2+EN6gLP8zM6OIoL6DjCV49ElDIJ82VkDkq2+Dqn4DkHz8l7hlIqpauQAYftHZlCLMWyxrCxNIoWslqjarrft3ltTIyPWSmvrf+/FZA8+o6w0++P9rT3dz9lw//W8QvoUvWWRTbHrGhV5yhl2wDtioXaRguldjUVqb1DdDuHStOT2Y9qU3f0pV2UeQtB27W0Qj2LQLlKhdgd06Nh7TemfrD6o89qHCNz99e5n+NIYWmOd6uz2KhHOd9twEfA0yKhfbS8RfP7o9Gn2vv6aHt/T8dNv1e3OUZRmyPfo+LXNu3mvLymy97GpDnOzWlu19ZoVD1V6CjT2z+HIxhsn4HanEsp1XMmNMctkt06Fleyv42B94h0i677p4igRTfn1T6vNvNyvtrbfrOWKqkct7qiptSDCGGY7sZ+b/B40OSXndbX006OEdp2/aoWSf+Sj3W+VvtRqixxD/b24uYGMFpB90ahohnlY6Gbbg5Zq2NwzoBp9gFESLngRSjeIcG6cfv2fIxsTUqZdd0d+OZt2HVZJNpq05JJ78JWs9PXJR0BeD8PjoCiN/rb3dT3CPfAsne693W4//342S1A0Hj8UDPDbt9kjvaDu2fwcSb3+JrXnP/Xjs0uNZAvr8vj9ufu7/l4Xa+dv73WxrMBlQpgKxht58zbmHT0A3ZRD6kZypwNZLT6odNp5PHxgW++fsvlcmJZE/MyM51WvAuoC2jOOGpX8RpAEpS1ZvPXZeH2ciPFVIHDdhcbxSLnQqvJsLnSwF7Gyb4vvuYQ9MDiCHqPc+3XerS9woJEBdSxrjPv3/3EX/7850ofjIRhsKzgGrldb/z2N1+j6shFWZZ4p/ImwO165c9/+ie+/+GfuV6fWapN05RAheDcRt0MwJISoubgh7otqaP1ZjQnXoplq4rVJnrxNHfJKXiEpGIy2tsaMYXNAcfJOx6842WeCaezZWmNRGq+GoVhDARxpnpWTP7bOc8kgXlZ0ZtDBjFJ7KKV/g5mcTOpRKigqGRlKcmc+SCsbiBpwgkMXhmCFV+TM7dZeYnCughzrD2LqhlR8v5D7YjtvRDChCcQ1DNkzzl7botdyeiFkIFYyGshL6m2x/I4N1IkIOLJCpSEKwVfCoHCmJRRIJSEm1fQZL0yCkgx0HbyIwOBWLC2CYMzP2AYkDcXYo7EQVlGT8R6bg0URu8YnWMAJCVczRibn7sH5nOxysAW1CwVZGjb43Z8vH23v71uf7e5/guPPlvc2/H+3Meg+hF0fM7xi/pkaGfYd6NVjXX7Xfd3032yQnGrwyio+s7B69m/LRLRX7yd3yZQBSpeus+xdKHULAfkzYD2NKUjZ/nl5WWP6NVoWavJOJ/Pm0LMu3dPH/WraJtpHzWZ5/luE+yLHftNtDnx7fP6LERPz2mZmHZ9wJ1z2l7fnP5+kzluNH1EfZeEve9G3OgSTUmp/e0IFhrYaR3I22e0eoL+3nrHqs8Utdc3Ra92zt7J7oFTu0e7rlzlkw0szeNQqW8Ly2L0rGVdiKnWv4Rgsn/t/CWjWrbOzva8YBpHlnUlR5PPVVVSDBZtEFcjh8IQBnLKxGJZjFyfoWA6+G3sHh7f3FHKxnHcwFmrh2lHiyq2CHd7Ns3Rcd6aCopzeCD8Hcbk39KxzFejrbnaE0AwuptWaUi319S4CvCWZE0Ri27EuA1oWMdea4wHVebXCc4pIh4fBkLOiAuUAuIMgI7jRHBVZlRMIrbkxHy7cb1eWdeZGFfGYSR4kyUUDHi2Wo1Sst3LQUmurYEGBNr6agphPYDu1Zp6W9EoLqhu9RMtItMkrtdlIa4r3u3Zk14iuYkPbDZA9s8d3C7wsIFgPpambdf4c9kE4G69vna8lr19LStxzGa0Me2zQUcw1s7VwJW9v1KlxObQfSdcywhkmzRGSeiyJqpGKR1PJ968/coypdXxd85zPk18/fYN/+6Pv+cPv/8tMSaen37g5eUDzvk6Z4SHy5nRm+N4GkdKsfD128eBkiLXlyvrGinVGZHW4byYU5hr4bkhI0cpcZNvrjXg2/j3tr4fxx5ctK+eGvxrO167dxvQjBbHcrvy/XeRHCMf3v87fv/8B5xzvP/wgdttZl4W/uf/6Y/mPOfM7TaTYq4ywhbZv12f+a//5T+T80IpGVEI3uNirnVbjX1hCnXrmnDRIWsk3a6QZ5yCyIBI2QMj3jIgqkbfq3e0fRM1yld/n87DgPDgPF+PnjArl8cLyzjx/fXGTLUdXri8feCswpAy+RoBy5BNfuT5+kymoDESX2qmRSszwCWKrqzpSpZI8Z6iwktR0vlEOQXSaSbdXpgUppT4WpVrzFxz5sNNuF6V+UPm5UOivChEs8W5RHy9x5KVaRg5ec/FX/jaPyBp4hw9w5LISyQ7z3g5w3pD84IukbxaMboEh4SBjINSa1FSRJcZvb4QRA0AoYw5MWJ2f8krZU5oUjyet+OZtNy4lsTt9oJeLuAFxoB8+8jL7YnZJW5DDdwmAyrBCYMqPhb0FnGrzQUJfiPvFFVS3cEKvaJg9dsEdu+kPnegUTzbs4dflk04rhG4l8HuVU+Pwab++39fkFGDAlYEXyMoClIpTDXgUtGavUGkbhA4fFZq3sjOdwcwhFevt5HqS4HqfLSLyQpa1WGcMx3zDvjdSab2G1TbuPpizFb83DIEbbNqvzsWhfeoT0T48OHD9t7mSB8fTnO4m+Nxu902UNE21H6D74vG+4zM8eFukcpuc+6jnX0k9RjB6p2d5gTDfXFgAyan02njky/Lso1j4/w2sKBqReeNPtLO2zI1fRS2HysbH1+/dvpXA0fm4NhcsXu05/rw8MA837YaFudrU6shtKBgBRX3Cye0JlghUNRtDd76zubt/vpC+NvttjlvDey1Bdrm2fv37zdn8uHhYQOXwN0zn+d5mzf9vGq1Nj0trp9DX/JR0gIy4v3AEKQWthrNrKggBLTLYBnVIYHzFG0ObEch0pbVsJ+9H2oCqyCu4IOn5FADESYq4BuwFxCsn0+K1hzwer1yu11JldJ1mia8t27ATirYz1bw3brZT5XmCLsR7ud5q9np5ZDbV089bIGF9v4WsIg5bd2jG4CJMZr8coxMwx7YyBWU7Gtmb4zZ9wAZu6wK7Gu+df3uQUafGYGPi8EbmD5ueMegzLZBbZa69jl65Xz9Z7fP7wHJMXr/2u/2LuJ7HwzZWXc2Ntge5py3JmPVBpzGkfP5zLe/+Zanq0WqnUDSls0Y+N1vf8P/8h/+PTkVrtcFJPD120e+/ea3vH18y2/efm0FwvMCJRHjQnDK9IffcLmcLPBWdGt0KzXHY/drWbVSC0Adlm3V3BQe76WK+yxFDyyabe9rY37tmYz7PdLqvDwFV8yRTCXzw/f/TE4rz88feP/+Pd9//4MFC1X56uHCt9+8YRiF9+8/mEgItfFtTqRSWCm8fftQ51aGFElptmypU8bBeoJJVk7ZEWKCl8z6fUKcAT0/wguV+imO8+nCUoUkYhZUM06VUmwOVLYmWqranIDTwlAyY4qco/LV44Wvvv2aWxj4T3/5C0kjRcR8sJM1mHujQswrWaxB3BjO+HVlfY7M1xvLC6SklZAFzinOZVQXYr7B8ICbTnx4n/kpZd6q583jgNwCTjP5aeH8IfPVg+daMv/nX79HX56IL4XbdSFks9cecN4yczEmrklhDFyz8H5OrBZXxKVCmT+wkohjsGC1XMGt5GFhHUxAJISAD+Cy1ThJghEYc2aKibMoXxXHWeCcBdaV5+XGPD/z/O5pa8rrSDxff2INjvObgUwCIonID/mZOCWSN4D0gEIuSM54zbCuVjN1zYQaBC8IzrUMrkNdJlkDDVJJm322/e5TkxqcNznrf0n2Arizyc3fab8/BoF6+3r8/rkA5xd5LA2N0X+/+6F+cPuipty2V+kGVvRwikqA2sBJ/4LWKMf5YA6E2ldxQghDjfZ6VJqi0McNiPrBGobhjlbQR4P2vhN7H4zm8PXOetv02nuOVAi4j6q0z24P+Khn39MmXjtejdBwn3Fon/Ha649qRv1ntXv4FAXqU05wv6H1kcSe95tiK3Jt52pyxiYXadcCw2AdOkOjsfg9+wF9hA7oisWbk9lqMpwPhCFsdLmUEqKW5aCYUXUdDxwqL16N2nCqEsFhGDhNE8H7LZKcUzJnwznGJlfaxrPNuRq13iLGde60Z9R3bO8j131n+Pa+lNJG96IaoE9Fir+Yo2QErZLvsjUrs81acK52P4UtelNKMaU59mafdqjVZ7UASM1kSAv9UGs6mlNfaUIhBMIwGA+4aK1xSDXDtlh0uZjU4bZeG+jRCoiy0ZS8d4zDrhgF3NmFvg5qqLSMYyayjw6179uaAnLKFWTUIezWfM6ZErqaibqOj7U/bS01ezb4+/W8fWnZ5MCPtRJ98OR4fIoq1f+uBwLHv/X33b/3Uzb0tQ32PhOyiwbcOeDmrtnr2iSTSqquGY/Wd8QHz+PjI9dlMVqHQknJwLDA48OZ3/3uN7xcb7x7/8QaPd9+8w1//MPv+fbrb1lm66Hy/PTM8/t3zLPgRbm8PfPm8YFxnD7eCGlzudQu76auJ9v97WPz2hgdx6sfm36uffF25BcdWukqxYrpgbRmnp+fbO2vkXfv3rOsEUT4r//lP/P+3SPTKfD+3XuWWveUo1FyUXOMLQFR508IZGcUcnXKGJqoiWNwVg8wqnDK5lzTpFClTgAxaeToBU1KzJHKn8DqsMpGl1Pd4KjZUs34DD4plzBxKpmUhaEkPJYBtlqAhIQLQxgo0wh5BTVFs1EmllwoayKtUIoz5oqoBVm8mm2WhInrZsI0sHjP1QsyKueTI6VMnCM8JU7TibfjiW+/ecNVFM0RRHHVvA9eOJ1G1gJJC4sKgwukMVDOZ+YXx1IgO2VwoJIprhDFEUZbH0UzJSTbH5wpeFH3CxK1iZ5w9p43AhdVppQZlki6zWicKYsVhZcadEj5xvnNW+Q0UCbP83pFiCCJ53xFTw68EZ7OuVBSsaLtokjJJnObi9UWVvMmIrX1QwUaNcCQ1dQNaX/qE67dEpbu//DLMgnH4zUf9fi7PpC+Xf/h+786yLirnihlK/IulX5i9XNdZsFJpUHs6UA77oFHiza3GJdseSF7j6ugwTlvHZ2dq41YoIgjDIMVgAePlIKrDuGyLHsksOtGLbIXUjcFn4bq9iJKv0V7WkakL8RuCLDfhLfbOTjuvbPeR5Ca89EAy2sgo98IXttEenAQqwE8Rr/be/vGce062r9vt9td1+Keyw18VIzcaiH669spTWxF70ZRcuy1ECZZaf0xytYLoz2TNs59XxUDN+0+LKlVKs2hZRRiisSUcN4RhsAwjIQhmLOQjUOfsoENnI3N4C3zlUsxpSOMNjFVB7AV4ouINdAp1pjNidhrWpS1PdtGCRuMwtWiiK3BYymmmX673bb7an03WlPDJk/cxuPO2Wxj8Muzo/+mDgMY1tDKb4EIi+YWbPMuWlWWWno5J/C5Ai5r2tmyprlmQBp/2NTrTC6wgZKtyZozcDvUQn0tiVwMrC7rYl/LYr0xqqRyH1UXdqWjnA0s9UIK/dFnUfseGrfb7S7I0Dt/R5BRf6g2ZKgA+7V6i64nRbrvON9TFTeAMQyE2vG6LxS3sSwEHz6yH/3Xa5mHTwGMj7/3gKHDi594D9xTgdrzaNfVXtvbxDbTTI6230i7eVVfU1MZWE6rgYxkm7/3PD4+8NOH9yBiWaJloakJPzxc+OMff88aE88vVz48J/74x9/zv/yH/8Dvf/cHcszMtxs/fv89//TflOcnYQ2O3//mLd98/Q0P58seuFPZgE67Rut/0nkb2zNo9/d6MOsebN0DreM4/5qP+3FRKHmLUKrC/PLCcpt5enpmWdZNaez//Id/4PHxzOk88P3337MuEUrtL6U1wqkNBGKBUeeI3pzlwQslCE4Fh/H0T044ecfbMBDEinznNSJYraCIMowBHxxphSVGLuK2a02p+lkVCJswhs1aVwqSMg7HFBxcX1DnGOKCDwNRhahwizPZvcGfRsLphN4ySsExMLkTc7RIfFprk1IsgxK8EIIwDFabsZSVRODtw4U4TtwGKHkmPDj8MyzXSPxxYXp74Zu3Z/63//XEX//6wg/+mQ8/XiFLVWIS3jw+8NOLI66FWTxjGCgPZ+Tbr7h9CMwIRZRwcrZ/h0z2N07nQEnKqgkdEiTb2wcPZU1oAkkguXDynsdh5CvgPC/4JcHTjfLyQikrmpPR1MRoimt64bff/B4uZ5ACP/wErCCZl/yC9yeGwTHkwmVV4prIMeFVkVwg2XfnnBXUaGfrREC8Baoq5ddy1PWQ/of92N56sMt/79H8v5610rNmPvr8V+zF537+Z4MMJ26zhbZea2o+ZxuwauiHYM3QvDhEM+A3mUR3GEEzoWqp4HreO05avYfWtVLE4YaAE+sMXpwY775SIbRTKOo3V9idg+bcT9PE6XSilLJRYK7XK5fLhfP5zOVyYZ7XLevRwAbsvSMaVaZFrtvA96ChL+TOpWx6+qfTaYs4tpqORjHqMyUNOPRFpS2r0KRPezneXt7xOA7NkWgAzHu/KVr1tSl9lLTf1J+fn7lerxvN5zWKRAMbrRgW3etLRCCE4W7M2jU+PDyYWlMd33me7+hB9hylyk7qDkDr+IRKj3Leg7MGRzFGYimUZB2ORQveCa4opVHEUiKuC8hOpTsW7Lau5kMFEC0zcb1e74DdvCzElxeWebWMxrg7n6pGh3l4eNjuvZf97MevzbN27+KcpdArmPySj4fz2ZozlsSy5ipha0YsdPPwdrtZszS1IsOcMn6wDMQ0Ghhbl4Xv//odb77+lul8YThdWOaFXLMQg4dSdqA/TiOn0cBdypnldmW+vvD8/J4cLc0tIlzOZ3JO9SvfAYt1XVnrMzhfHu4koNu/53lmnucNNDc709ZdA+xPT0/bWmlrpK2/Ng5Fba7nbIWXOSZeXl42hyfUdd3UsOjoh20NWqPBgXHYr7WvF9uoSag5Kl33+V74oX9vL2pxbEDYK8KJyBYAaZuS2ZdU7zfTmuDBfQa6SWf349irofSf1WxTjJGvvvqKYRiB2kyRll30zLcrOUdE4HQ+tRTBRql0IXB5eOTtmzd47/nuu+8A6+ljOveWLUOMovvt128ZQuDbb77l//0P/42v3z4wjo43by6cxhOalT/89jf89puveX56z8vLE8EVfve7b/jq7QM5JYttOuvXoGp0t6KtR5DVMN5usz0f53AuMI4Dw7BTntq4eW+NQBvQ7KV+gU1c5Etv6vna8anobtuhQq3nLDEhweNNV8LUn5z1iSlFef/TO56e3uOCFeg7cabuRME5tqL868uVJok+55XnFMkURhyTKAMWvHYlMzrHRRzf+pGRwi1F1vlG9h71DhhY42L9OlBUYDxPDKlATCxzJClExGij4nFe8Cii5mSXpFzXlRctPHuPpNXmqbe1+P7DB37yI6ekuFSgYi7/EmEYcGVE4kCOpsLX2KnT6Kzx5NmDK+Q1EXMiTWfk8Wv8N47gBh5eQP70gdt/Xfhv//gXhiFR5A3xN6CnRBoX3sdnCI7JC4/jwO+//oan242YE/PgcZPn+vZC+uO3DNMbnt4FXp5geVKGIkwoTlb+8M0jL9eVH5YF0oxXYcQxosSSKdnGY5Rg9Cgt6POV9fkZd5txLzfyGmu42uoB1Sl+dPzmN498+8e3PJXET999j3MJWMka8ZOSmJHi+IYB9/0P8HSDZWH0E5MERhH0tloxd6kqdtW3bS6w0tQQ2XrMVVNUg/DmEPcAxHr6HHoAycfNSP/W0QLvjZ3Tjh5w/K2M8c9ltY/HLwAZsknHboPTIgUYTLNoX71AR00XmiSlqylpwSZ2JwW8c3Tlo8wxZtbZPs8iODUK7wwVtsfQG5m2wbbNsDmDPdf3WK/Rg4Xm5DeHYBzHrYajd6T7XhHHlHSTmuy5sToMyAFF9tmIIx2rXVvv7LdJ1bIPTWWm59n2jsGRmtE2mLZR95HC5hC0wx8cv5Y96J2T16g/FjENpLhs5+qpae1eeqDW6irac+kjcVTG8pbxcZ4w2DM+n88U7LmMXa8CxaKB27lahFB3Baw1RixgeK/n355Poy01oNmoLj3Puc+ELevK+fxwBx76IuC+KL4Bxp6O1kfApVFQnLM0/yEa+SUezrUC47pWRUxu1h3UhHIhJVP1EefZuM85Gy96nllTZi1CGE3id5xONPWnrUFoKVvRZuvdo6qbOti6rsTVOo8LWgu8N4tDo9TBx+BzHEd82Ndcu/6jIlsfgOg3hrbW2hptv+9rsFDdOj332VGbewD3jUcbYDs6+72ARbuWlsXoI1ntmvt52G9q7ec+i9Bffw9wjnSr9p6Pa8uqg99lePrP753lfiyP2Y42bnavjpwt095UpUSa/LFlqfzQZKGzZdMExAmDs3UuzjEvixXwOrfNC1uTpkw2DoE3jw+EMPHTuyvn84Vx9AQvxssfBC8X0tdfMQ2ey2mk5IXHhwdOp6lSNesyqPtjU130PkClu1B0i2S2ovaeStqDjCZ93f++jVG/v/3qDqUWTuuWYdhcC6nZzupt2FjL5s5VywCilJJIESS3XUcQ2lyujdmKWkF3tVtLyub4i0eKJ2c7X9CCeLH9KSfIEe+EAWXA+llo9ZlchoDRO8WrLeZKsclSyMjWY0Fq34zg1WhVKiSEW4G0ZJ4dlGLzx+FwxTEmT7kpNxK6QkmCFBgEAp61eFY8sShQ8AijLwTJBF9wwa5F1EF2rIvyHAszgW8fHnhUJY8LNwLxw0L88zuQyPnyDXMWQlHKGnG1p8epCGWOaIxoimiJlDIyl5UPuqCXCyF6xiToy4hnYQgwPgjuIZHjzJyfoUDInpGBk57IOlsFhYu89RNTSozPV8LzB/T6TF5XcklEBwvKTQpzSXjveBwGfvvNW3JcmePCkhM3UWanROB8mshkfCyUeSXPGWImZMX5ggvWfymeE3NU1FlvpuhM7apUybCmZIUKrlRfts3B9vsqvb1R8rrjGDz4uTXROdBV2oyqkHhvy7VYbbVr9pKOwdRsdVtTXYL1bx2/oCajGXS9u2aqwW11E/tlmcqLbZIVeHSZjB4gVcbk9k7dvu9fLa2kNQ3unDcnQmTLfmxXWqOFQy08bmDjuIn1dCbv94xLc/x7elPLaACbw9hvarA79m0DbGBkc0TrfRzRYU976q+vbdB9pLDPlPRZjGNNxpFacHxvm1ytoL3P0vTUhx5ktL4BzUnvVbd6p6I5BcE3SVyLAjVHYAd6bADjmL47Hv3vWndeXyM003SiUIgpMo5DzWo0Op/Va0g3JiKygY+9oLzOofrM+nHMOaPstLF+THqamIGJOs9qYzd0ny8NZLS56JzbnKAWVdhoH1rwdLLE3dz+oo8armlOruvuux13UXTY1JMsYxoBR9aEyoqLhcvjG4Zx5HS+VAUx62KmWiMxuuVG67kLmuvziPV5cHC0taDaF6B3juxh3vbr5QgE+6BG+/k4b44g/eiU3wVFyg50NtlD3e+tB/09wHAHp58uKrYBokpFe51+9PHcO0a9jiCj3wj7ayxV5a2drh+/dq998OM4Rve24L6u5P51Ve+/pxls4yUff5ad0K69ZWFSYjgoMQm2V7f6HucGhkH47bffWpZh8LWDfXVmh8DDw5ngYBwcab1xOZ8Zh8C6PuNEN/tkz6EG7SrdiwLF1QAbTQBib/zZ3/NrYK+fl8dA1Zd4yMfbg/1eGtVsn2vNI2pO3GYJmhdFbS5cD4d1hKiCVN3eKxjgaxFlZa0ZR8HksaWKiYgKOddeFloIzsBtLgY0BIdTJYhDk2zX5wsEzJfCZ6w1j1GuijOxm4yQi1qRsRpAaLUbGaEUYYlwc0omAB4pBjSmEtBVWFFiFmLyOIWTKpN3rMURcaRiXp4XxUthdEpwigt13IpDsiOtykss3LKprgWniDdVxnKNpO+fUYk8/k9vGUTwUSnRaha8A5+V9TZT1hVDdQWyEHPkOS0wrITRMY2BVayPURhgenSUcWWRG9f8ghYIOTDJwIkTVyJFIqvPjEEYY2R4ueJenojLlZITBYhuYBG4oswk3rqJh2Hg8Xziw7qyxJWkcENZgOyE0zBABKKizwslKiQIWQkecFBEiKNj1kwRRYKyipKKzZ0WaJciFWhUwIGVGIg2mmSDvq1pMNu87veLv3l0a6IHCL19FTq72uxyvZ6eVYSyXf/nHr8IZOxbdXX2a92Fd4benLd0Y7s8MPqKqwbdIrNNe8/Vm28RhqobbNv94bP2z0ca0q+dIqmwR9UKwDF6yQD46hDOtaGOCHebXg8w6i/NOIsYOg6mTlIqzak55b0ylYjcKcb0jodz7g5kuBoB37rwlr3m4Rjlbo5uc2rbOXtntUnJNqejd1T7SCqwOdQppS0704BKfz2tMLXxzHta0zzPiFhBd6M2tUh8X+zcaCFSC/N9BRuWqdmlM4GNPuZqR1sR20DHcdo45FZkV++tSpS1+ZQqGBuCXe80nhjDiJf2TG1RhBAYvGfwntM4bMXca4xkTCLV1aiRlK4BXP1qDkcqdTPxARVhjYlU7wvEOv0Gy+K055Fa47R5YZmX7Rk/vnm0eoM6h0suVpwcPHFrWOesc7UPjHzc6OxLO0qpfR204Y3eKagESt0BotZ5ZF3iIylmYplJ2TZcGc+M4wlVo6O1fheiimbYJFkA6ztQmG+KlkiMVYbW+a0xn/dCzqlGi3dZadjBplQHfppOZqt0j/K3rz4r0DvjNgblLijQAEHvRLd1KghhGKDSi7TsWdLWXE/YzzF2WYtWf+G9SQb3mYC8Wh1TW/ciYoII3m09NXpnvqcm9sfxNW3Ov9bvx87ZZ49bNtTjvfvIdrWxaZ/bb6r9WLbNsv88K5TNddxr0a8q4up9tnnSsEc7r6t1fs5tjmix0F8dp3bdNdtQx20Igf/w7/9ofRUy5LSyLCYbrNWpOp1GxsFR0sj5POCcMl8zEqyYF21jGHDOZEJTss8UJ9ue4LxsSnztvptNPwKLfk718+7Xfghsa0UE0NpoEjZhgx3A1gxHnZ9eao1Y2XDI3dF8k5itb5H5NB6fg+0dHkqEJIVCQiikoqwqxBSr8y94CZAFhym++eQY1CNVz6g4k+wnCHlwpKyk2vDOmvEpwXmCeFBhLYL6gVlGZhyZhJRgDY0LnBjxeSClgReELILXgicjBVYdWBhIIpALHuUk8HYMPE6BcQjWs6MILjnUCS8x8cNL4hJfGG6e6bbih9FUsd7NRr36/RNpCuR3K2VVikBKmflWePfuPfMtU9ZCcJlQRjRHrusVCQWnbxjcBQ0TFNBBkYvwPr/jx+VHfrq9R1SZysC5XHiQR97JjeKFSEbzirteCbLibk9EZjJK9J7Fea4UnrSQA1xOA49D4OnDB26jJztHOD3y8vIjq1oQZiqOYfXonJifEySHFEcocJlOLCnzkiM3MjxMFBfIIsw5s5RMKZatigUrEtcKNEpLVlRw0Wq0aD7zve3r7d/dvD8AjyMM2eCyc9v6aH/o6647eHF3jt6ef+7x2SBjlbpIVa3+QuwinAihOf7OoZr3jIXIHqFxjlLrKiwwMLBfpzkTjbSmzSiKUqRUQOOhOnc+BCTUDuBAKyx23uOL6YsLGM0C4XQ+79HRUqpD6RnHfYexyHaqwKkBhIz3bNSItpkZYJFuQ9vpQ300qY9Ieu+3zEp7QMdIphYrCEvcU5n6DTtWTnhOaXMS2sM/Hu18cN8gcOtArcq8rnd9PpRdKtWJMFaq2bKutqlW5+V2vd45Sk19p7QobYxE7zmdzkBL1VvxvoGHQFGtEqGBlGJ1Lq1KJ4SBUJ2k5sdYoz2LQqgIqRSertfqbFlkx+PwEvA4XI0UOAmcRwMZwXtOw8DKSgoFF0xj21VQQFHEmxLROE5WQK6ldhXP3GIkqhWMx6wsMTFfZ87TmfP5zPl8YghjvZ6MC460RNIaKWukROvhIcEoQGtM2youqgyN1iJ7kac4YZARH5ShHHa8L+xoXHyhgnnd77N9B8hdc6ItcStWiOhNexapjkNOK3GZWZcb02mqGUmLNGuRKolrG3PJhWXNsHXsrnO6Op7OVblU37jvE84FtFgzTePKe8I4MYyTNYXM+S5Q0DJ5vZPcR5cb2AfuqEyvZSsN/DjmORq9K65dJsMiqsG7jcp3rqCor3s6Zjf7z2jnmqYJX6Pja1WE62mUsAONdi7YnfxmU5qDe8xs7vaw2TYbxz7zcsxmtc/pgxj9Jtf+3WhnzU7b51Ra25bAKNYt2QkW+y21DtDQbqkepfOecZpqrd++57XieofNK2vkKGTbgHDOcTmPNfizsC5Xcoy2WXdqM40BU3KyusacGAYDuCItC+/xfjDRg2RhNKujiFQLvXUE7+uFWqaiz9C37xsFs3v+v/ZDpDpwNXDYN638W8Eam1/7z30m7gjALUsP4uxZlYwpTZFxWpictyCSwpqF6MSUMEUQzQg2r+K6kksVqckFptoETgUNFmzLqL23CepgQSiy1a+pViZIBT4tmIPUvgxOEcksOTGIMDjPlB2SM8WYP5Q6v5zCQOASzlzCmbMfmMRx04JowuFRXZlz4U/LM+laeLMqb0S5aETF6iKe//w9fz0N/OV55aclcQ2e0QvrJKTTQLwqkWKZmqikJbHeFkpIhFR7KY0WNMpeWLLw4brw8mFhfYkExbqeh4HH84RfDPw5sf158YnVCUMp9lzMp2fVxFwSc16shjNH5uh4f8sQHigCUpRJA2pVwLjris4rzBGfEilaU1aA59tMVMs4+XHCTyeiCssamRfrtWOGz1fe1MGB/wgS3M/H/mhBg4/n4n//48iu+FvHZ4OMJBaxoxapaMchkxqBBmvuYtQoV32Disico0ifyvUVuTVudi+BKNiSKKizSIELA2EYCeOIC94ix0721htijokUa92oWnCq1ihrHDc9+lxyBYmVdiVSlW2wxQtGJciZku7rNfooZc8R7mkHfaagbYJ3KfxSUBF8zQY0B70/2rnaeGw1BdSiyXTfgbSBufpmu2YRUp2A7X2NVqVlrxHplalEZIviee+ZqoJU+8wm/TnUDEOfFWpyqy0b1MDGOJ2smZ0UwgDjMDLUAl5TmBpApGvoaBHnopWX70pVcqoBJec3bj00xQ8sCmiJaDy18VjBZoeDMUx4sc6pILXLbuXnDh43GqUkLaupRlbKE85RUFIpDNNELAY4YkwsKRFrwyxRT3AD4zAxjiO35UYuheCUuEbSspKjqVCIE4qYOpZ6tuhq1gIlWbqecueAidiVf+nqUjuYNe2SBiN6gLE5dn1ut0ZafB0LV0y9Jdci8pIjOa4wDdV5rY6FGJ3S5kyNpCeFktDKc3fBIulm0tq6s0ixr/PTnLpGvajRZu9NaUj2nhYNZDTn+Agy2no+vqa97kh/snu3jF3KB2laGxQLrlRQ0Qq9e4cf9g2hAbyeYrRRa6rTf6RhbefoQMr+zO5pXX0G5/j69p6ciwHFw3n7TEYPcHqaa3t9f74+A9zq79rXpigFFgAT05sv5Z52VWCjy4ZhMMqKWHZhu652PdKESDpqkxNCcFZMjIJmVB1aTIKYXPDiLYDhqJmVjBUThz07st1v1UPFam+c28fHOe3U2Mod2OjvvQ+AHbNEv+bjHlSDagMM8urrXj/HPevhuB6Oa8OCJAVLkxigcFo2v0LrPExFiFnMj1JnzroqlEJeI0lb36vq7ONqViNQXKvTaj6SXag4X/n0ZVfaq0HexnURjHKXRRFv+9lIICAMAqlG2VPB+mNUn8IVh0tCyI6hOLwqXk0212TICzhlEeVdsf7XxQtlrBnYk+MqwlNMPK+JWywkHSjBwdnDeSIP1rlbi9nmHAslFpIWyAtKsK7bYsFozco8J+KcKYsSMgzOMQbPGDxOSwVv5u9lKSSpdHupIEOUbJUyFKy5ZdZijXYzuFKINZPoEgylrvs5InNE14hLBU0GCIsqmjNSqZZ+mijOVKRiysSUUOcQCcfE2C86+uDO/z8Axt9zfDbIWBo9SqQCAmyDk8pIUIWiW/+E+rLK83UbyKA69t6HjhRlm0GjwIBF4ckZitGMhmlkupyZTuedN4wQhKrnLMSSjBIhhjDFKd4HpunCukRKUWLOeNrmZ8pWtOtU2xByyqSYWFPGZZPHbRGyFqVsSjJtY230qdbvoI/kQU1dVwfDe8/5dOKnH3+0vw/WXdS1XhsVGFC/lwoM2qaxAQLvq8whG4ApdcP2VXJXu3Osy3KncCMid12BnbP+D0NVo3l4eNiiruu6crlcttT84+PjXXFm38l6CME+sxSGYdyAwDCMnM7nSuEIQANmmRgzqgY2Uo4sS2SVhF+jUdWa4fQBGQYbn6KkZLKyviqAuGKFVAMBX0DweB84DRMlWdQh5sj8MjOnlVQK4XEijDZvl+uzZUHE0sFFlFgKS85cLheWxTot315uzHNEM4gbCWEi+JHgRs7nC9fblZwSkx9ZbzNpXa1J2roiwVO08PTyxHiZGEaTYVYKS1rRnBl9YBoGgh+t+6v6HWh9wUdzekTENg32e2qd2HuwQXPuGrXGB8SPZIyvHhXQTI6riQyUM857grMsZ22iXBvvUSPSCbBIl4hjCG5rzFeKOXQt8+jDsAcQajG+1QINBvxkd9raWml1YL3T3Wc6+6hzX5B97xw3u2EjYUC/dkVvgRrzaDda4TSOnE6nu8/dNiLdC3+t6/19vYP3fusf00fJ2rUfM7PH6+0BQX8cX2POcK7O/+4I9pSeT4GMdr7juXub2wQk9gxv3WGqcIDzrgLO7qifbUo89bl7UywsJd9JBDtntsGyErLVGxq9SvEevLOeB06kqtxkcko4X8AN1fGt44BJZ9t+UWNyzihRm6RzUWCq1DjdmrHlvKun9cC1p+L2KoVtzPpn+2s6+nna/ZbGeXqNbvdz52qCC+34lFN3vwY247Vx2bX2tC6ixOxZxEFxRARXrD+Q5ExaVmJVlxJxpFIDu0VJEkiipvpUsxVmLR14D6VKMEMlUjW55kooVyX6zBoKJRRyqUGb4hgzpGQAYy0WUPa1bkRWobwk9JIIjxBiwZeEJ+CcMgzCePJ4N3F7iZRQSEMhfzVyfjMRHkbS1yde3j3xrJHbqpAEP04MX51xXz2iT4W8FPKi5NWoZpqFopnEasHfoQaJRGAxqlVcFF3BJZjOgcsQmLxlh0yuuArrSP3yFhxXV0iaDUy5mnUlkCksOXHFIylxLZnrHCElBoXRCe66IsuCLhYwLDGSSq5ZJOVyPjOdL6gbeFoWlpi4LQtrTjgZ8TVg9S9dfT3I+LdOof5skGHlllI5462QsBVhf7wYAYsOdvr03u+8Y1LaOZMIoUbg7Muzbd3OMU4jwzgwnk53zn7aUoY1/ZUzKWVSisy3mWWeKQUKN4sEpkxOpXYalrqDW8TcKD57pFBVzZHoGre1Taz1kmj32StLwd4krtEW2t/6Iu1eRjDnvHUAH8dxq1Nom2y/wfafJSJ3zszT09Pm7J/PZ64dpQmsW/U8z8Bea3HczJvj00tFqpq6Vn/0Rd+94RWRTtpyqJQTK1AEYZrGqoziKr2ksCwrt9ts1I8wMI4DMVoRtZ3bbY3v1Hm0Ur22jEONwo7eM40TYxhAlTVGHMZtXXzNYSgohTmuLGkl5sjyfqmA2ByH82kiuEBZIm4YeJgunKYLSy7VKZ3wjyOn4UJZE2VJDBIQNYrdX3/4wWROVbktC+8/POGBaRp58+YtMVk7I5kG1mQUrPT8wcCrD0zBmqXlmMnrjGoka5sDX3Yqo4+c94c5grp9L8Vk/2AH6MF7y2aezihCLjCvEXIkLjfW6wv6+ADB8lkOo7Vp3Wi3ok4tltXynuCEIZjjrbWg0/vqtE+T1f00GpRCcAHxAxKGDiDZM2lZwWP0vb/n3slrne3bWuoFHO7UprKp1OWy/63RN0spTNVmTNU+Ngfqjn+vumUXLWJ4LwFrwhd7UfDRoeoduD4a3r/umLnoM7w9cLDPbufdX9vU+Pr6tHbeEMJ2P32WuNnVZnOGYdjq1Nr7yKUCq0RwIyKunksNYAiotHoNAxnOuc1JBCh5pxu1jA9UJRZnuv85K8EL0xR483jGy0BKmataTwSLxiWEYF2Bi0WDQ/AE70BKZQYUWh1JSpGclVGNzmsAyexp2w+Oz+sIxHpQ0Y/pr+k43s8doPj7zrj96+cixvvvrV7QBGosgwqmxLTEVoPmWJzHRQsORNQauKUMiNEyaz8MnJCKWk+wXFidJ4pihKmyUZpigSIO9YILQpoNfGaqe5PrtWlhHRPeF3Somca1IAU8vmYOrG4kVUaKV/DJkd8noszM4mCJuCz4qnN1mYTL5FkjlMmTnGd9CJQ33zBfRnQM3AL8cLvyAWMJPToLZMbRcTsHbkFZXCHj0BSQeGLIDxS/UtQTtSA+oTJYQX6BuHp08fjoGLMyiWMQyGmBEnEl4lxGndbMBWRRVldYycxaSN5TnGWCWuF19o5bcPghkGsWR5aEpILTgrtFfLIGfDEZ3TEDhIl////4X3EhkLLy3Y/v+PBy47auzDGSK9gVRw0a/LLjmIl8Lbv2b/X4bJDx9quvNid02BRLaorduz11X/tpCNUB9G4DIsFbR2QnYrSmyhd0IvjRuPqhNtYzt8AG0wfrg9CAyMb7r5uuJZVhyNZ0LcVYe3JYJMiK5AK5Rve9a6QZTI2GbiNsIINKw2J/oFtx5ThuKkE95eAYRWpH+31fMN404Nv5Xyt27COa/bn6a2oZk8YJbyCjSa+2z2ubdJ8JOUZZW4O4RrloxeLtOltDwj0i+rFz0dMk2u/6rE6TXmx0td4Baa8dx4lpOuF92j6r3TNai3rVeNKVDGvFbb7NE9ORlzGwCRe6Op9qs62X9Wb8dgqDD4x+MFpWzPgITqwY01eqlPUpsKiisQY9g3iKUxImrVpSIkdhLrk6Lc6MvUgtKDWqWFI1RQw/EONKzkpMBRk84jxeAkGGjUokzqQRbbi/bOeg2QaoGUj2dV7u/n2kJphDKDWNXx8mOUVysTl+mybiMhOc9dBRrOg+xdW69ZZcs4PWFDJ4c+6cg5yso24uhXEcLOVdbU0uhVSsNsx5b9kUcRXAmKPcz+Oj4hR8nA1oDnADGI1qdVybzW5oqVKsbpezto63uvWsadH3Vzcgka1QvAGNY5agaEFf2QBfq+t4LaPQH73je4ycb/NaGs1kd5hf683Rf33Kge4zRfe2s2XH2uyqk0caHW/brWxvqgImlhluf7PsWim2FzXb1bLErt4LlUISvGOaBqsNc0IMjkXYgINlJxJa8kbRkiYtWQvMc9nlinOx96kWqEXyznn2wvZ70N6revXz8GiXv9Tjtes/3md7/v2c+aWO2WvUwONc7PdjAxiFog6nUmdO7dYtLUA2UrYme9aZumXlRx/MzuRCyqaOR/WningKBdPbc5vPk9SkUII4aFK5NBXL7eJRClkL2RX8AC44NNY5pUbVzbk2Oa5ZEod1Ah+yoDPMH2aIBZcLTjJalEGE0TmKCEwBAiR1xG8CyyBEl3kphae8csvJ6hUEiissrrD4wuoKtVIRKQEpA5JHHL42IKx0/BBABSlCSUJJQBIL/KhJD6/rDTTXdSkmWU22PZrIWiJRjPERTiOegmbrT4ILEDxlGmAI5CzW2dt5BG8Mk6y0Ju1ZC0mB4AmXE+F0JqbMLc68zDNLisRczAfoeDv8nevvtUzyl3B8Nsj4zW9/s0VwrKvyQGgyhd2mGipVpg1kv+FuxZBSi8V1Nw4tOxKqapTCRlEw3rF1UxaxRmu5bZawfcWULWMxRKPraKbkxDAYMNDOkW0go9S8Zh9x6x+d8fa7KFZVnOkd8JaSbhtjjzZtKOweG7AopWzdxfujr/XoN9lPTaZGvWp/b2pTqsr5fL5rrNcDlxY1bMCpB0/n83mLrjbQ0heot8/qz9eu9+gQSPUGe9nX3hlo93ZU2mlRZO/9dp257B1WrZTHAEbJxgmV+lzDEGrWy4ASdVPPaTVHQQpLiTyvV+vS6RyP5wuX4cToA8t6QyI4Sq3wgLQm0mLFYVbm4RgGA9a5ziHNBc2ZnB0ryQrJnVBc5fyHgTBNxrWOK1oK3g2I5HovghSPJxCcOSiNVutCME4vwJdhVz559OvVosgGBsrRedTq4EnjIWNGXrBNU1v2MbKsJkU7DgPr7SsGJxjl37q0pxhJqylJoaVSVHwFGdYXIxOrc5dxfqrKdIE1ZWI2dRhTtQuI96g4Ui51A5e7iPKnAEYLNsAurtDW7y6nvAMQW6tGc9SKZlzN3DXAraoMVUxhW5OHQEdTCuk/R5RNZKCX4L6r+egc2HY/n8pi9PZqe4YH2pMFb14DJDYjenvVg7XX6AD9hnsc8/vzN3ds/zJFsFr4ze6Y9sp3Ntxl+7tqFWZo4iXsdtkCZYAaBW8IwjgEvAsmVVqB7D5vlZwiqokhYDQpqmNY6WQ5WyY318BG0RYcorIC/B24Oqp+taMHG0eA9qUen6KHvEqXEl6V2/xbGR0R2XyY15y6196nWigIUizjrGJrLxeheI/KAGFEnTmslFS/W0Zj9MGc0pKqQIgzkFELxTNCVsu2W77Lir1TKQxitqxItCbJWkt6GpiuznaRgvqC9wN6TbX6zxoFJ1WSQqlFroJndGdGVVxMrE8LRJNYdZLJuTAAo3Ok4FA3VIaJEt8IC5m5FJ7mxHNcuOVoUX/JJOdZXObmC0utmUA8DmsKSJ7wijXWKwVpGWQElz05OXIUNFrxutVfRNb1ilFhqaXaSqIQSfZ3iWQPDBPj5YRPK3qbTZAkDLjBU04jJXijpoXar0ZSpWGBKaJi9ZlgPsf5TBHHLc4832Ze5huxWAf4UqPpFkCzjJZSXpk/9xP1uId8zvo9Bqb/nnV+fM9rwe5fcnw2yPiP//E/3kW8ex30fhPtDcBrg9YikW7zNLAHUMEHUNGrOftSu3rf8ZupRrvbWEqNfoozTmzJIykZGDidTuRLJNR0emlOLZDQrQkSdI50dQjMgWTLBoiI0ShE7lRi2r0vy3J37726R8s8gFGX+vqIXqb2tV4RR1oCsGVGWsHnPM/cbjdU9a7Wor2np1n043mqNIvz+czj4+PmDK3rukn2tnO08/VyuXcA0vUa+Sb9eaSO9O/pi+L7+g7nrPNwU0t5eXkhGgkZ0VKVV0yhpThBgwcBPzhcMKdqzWsFgZHr9blGISFpYtWEOBiHAZcgPa8okeA8l+kMqtzmGS/K43Tmcnngzz/+UA12nSteQD1lMAnU8Tzhp4EZgeCq5+G4PD5atmSamG831piIOTPmgpOBaTA1mckPBAlIMq310GgZzpmqiL5mmr7Ao9vAobmBVszKR0axZflMytNXVR8xXIZ3oDmx5szLB8fT4zs0pwoq1UBGqkpSteGec1jgIZhyU87JIselZexqzZA41nUhJqNBjONIGEarn9FaX1IhU0zrJ6lg/VrrgxWNstjsyLFoPFUFuWVdjNNf+xHBvp4E7kCGiIAzcNzO1Y62vnLOhK3XzH3foJj3tX4MCry2YfWBgt7W9ACjf62TY6ZzB4wNAPVZzb4nzTGS19vUvt6lv46WAVCMolVqf4Gth0btqeuDq1+79PV+6dXZLLrfA1KlfguK1SharU+lgmmipCYbvtrfaiYyp0RcZ6AwPE77fVGMf5+TFajmgmCNA0HxweS9W1Cn1WP0Y30c795B6MfxSz5ey8Yc50QLfrVITY1N3L3+NSduy5yLbO5JW7s9he/Vcay0u01tShw4zzCaQmIUR3LButGrkqJRoXBVdQzZ5GalQF4TOAMSMRs13HkPKVsgVoQEvCwzEkbEDVa3gQGMVnTuXM0elEzKCy57xsuAO9ke+uFlqe8zwLKWyElMQOPiH3hwjiCRrC+4UlsPSLKC6zUx5oF0ORHLCnmFlJjnd7hxZJLAmjMSbV3nAd77Gw8nhzxYT4voC8WEsBjcicAF4gMue0gLpWSm8wNrMSrqaZzQBBoFzc5AO4VE4pavFFqT44JKsr+oktYX4qAM5xO//eNvWWRCnyLzuiLV3xjPZxYHGhwJIQeIpUoVFyVmJWlhTZnnuBJDgBBIzvOXn37k+eWF63XmFpMFnzawZ2wLLdSAQd4yusd5/Ck724uItN+1ow9eHe3vp9Z7Hxju5/XP2e+/5/hskHE6Tebw1+I47/bGTXf8xWqdlX7AdMtKS/3PV6lYYIsKZd2zC9u91cXReIhKSwVqRekdyMipdvi11LiI6ZiH4BmGyoPVQryL8tGy5fYQt4hbHdSyN71qm3KL/LVNsD2sBiCOfOJmvGKMXC4XgC1L0DbG1lG8P2+bAMeNpHfGm5pVn3VQ1a3/RQ92RKQrzN9B4fl8ZpqmrbC7nb+fZMfsTLu3do6+bmXPXOwdh489PPrsVnMSGmhq19syKv3YpJSgWNZAU7K5YV2LcM4cfxdq6rhkkiZiityWG6EMVixLlan1QhgHwjAxiMerkNfEGtNG9xPviFpY12iSygBOrTlWtbcMDhkcMnncFJCckVA3tlKQ4O+czJLNAMY1mUMo3uownMcjaKr87iC4weR8k7MIaMlfNsxQ2IQaaC66GgWu6A7ghLpJa5OerHNNqu2oBm8cPLMzSkKKC8t8Jfgtdr+BbbSYMECVtg21J4QTIUbLiPVrXJyJEJhMtAUdfLAC/dYYqajWmKJJPDeHt6/DArY115zxHogDd+sNdmPeHP+UWhfzOqdcdaLEshqtYLu9117zceF3v+G47n3NxqRsxeXNnPdr+7Wj33SOzv3x2BxcdNszbEx2qll/jj6ru2VBuuvvbUl/jU0pb7+OnRZlvWFLZ4McBl5NvtjXOkO6dx2jgpvjWp9b6yZPdS6l0qJKSZSktb5kpfWGKUCudk6kgEyV8ontm6KbnHopWvu+2L01gCHNYezA6WvU3aOd72vwvmSgcXSyXss03L+Bz8oAH+ftp4DMa0fze9oHFjUbJEVRbxSkLGL9FtQsXxbZ2iFY4rUg2ZzZAHhtNDlqT4Uq4kKBun/5IKSSrbC4qmQ26f+ixSiAzls/Fy2QIroulDJSxkKZCrNPrMXq15rfZL6aAw1I8Th14CwD4osJrXjNyHXFXQcupwG8tR1QCiFHXLK6EblGZM1IsuyhnmB4nDi/eQMSalamUKTSsAvEOZMDqFhT3yADSVa01PkeDbR7Fygu4c4j7jyykolqFENRh4iypitXhWmAx6/OjI8PjOeJ9x8WbsvMmmIN0njzRQXGaQQHt+ttU55T51hU0ZJZSmFGKMFSkb4o6xyZ10xMltEqKkav1i1fas+vZubRX+a4f+q1/xpr+ecyI//S47NBhvNdBKra2X1xl7q+dFvQd5GnLvorGI2mVCnSDUmxQ5U+yVE/ACkCNbuxnRM2NSrrpplp6WjqgrTOrK3w3PisSbrPaoCC+1oIVbU8drdBtxR+o/T0GzTwEWVq35T28WjGvq91UNUNKKjuCl1HvnZflN42l76ZXv+ano7VrrEHSb2TfzqdOJ1OW4bmNTrVzzkR7R6P+vyuUlJ6CtgRMR8dro0elfNHf/feGy3JUksVUFYKjFiE2jfn0bsqxacUMmuOFKd4DCDTRAuCr11KAx5hWSwS07jSeHtWc1xNkaJGk4urKVCvaOuEOlh6FUC8bGplDXT384Ci5Gh9NJwXggTLXBSQUhvROUW0zgMnZCmWXv+Cj70Oo4KMuvDb+moGuWU1WxDAnLcdaEjdmcfBGh9CAi2ktBLjsDUqs2LqYsBk64VR51R12Da+u1Idb8vAbXUSiPWQqJROEddRbex5xjUismct+ixf76S3jOgx4tRn+GAfD5NHLNscamvTbKbWKO3HztHRMd8bk1UpxtoL5vh5qrr1CuqzGO01rwUZ2n319qG/hn0MzLLv77s/77EuradZHj+7H7O+BqGnnLVMRlPYEVc52tpqNFqEWzeAIR0VjW18u7Gl1h/WMW2vbZDZOwBzbrTkuifVIvPt2m2foslqUvn37PupRTPa/tHsq8Okf7UDoDvA6FXL+pqeBnp/jmXwpR0/l824//nT2bfXMhnbz/bLz7qWbU/bf2HzuQYgSju/CLEorhitzpTv9vWr1k4cUcUDnkYvNDlc7QAz1Z75wUGyGo41F1QCWkOypc5fY115XMy4lJC0ohrRAHlQsk+sCTIZRCvoqeuzeCgDqEPIIMH2WhFcLpTrSnkOhNOZ88mheFQ8pawQq7R0Kkiy7IwAYRSm88T58si62AZgtqxgPXTVRHhWYPQm/azUepdEiZmSIrVpEeqEcB4JDxO35Wp1KqoYgisbFeztZeD85ky4nBAvzMvCsi7WD20aEbVMg1FJh83+NqZNEWFVo26vqiRndTZOHKmoqWSmbA0Tt/CT7XUfzaS/c/0d5+znzMt/zePvyWZ8NsiYl/mOGtUfxyhT/7vXLlLEqCCmaFJTgBwWdoP3XSJkc9RgAxl9hNh4rrYod+ezNU+qDobUWoH+0uq/N0e3bmA+BFvMeQcS7R6ONLEGEprj3kcm24YYQtgkJttm2DaHpjblnON0Ot1tro221Iq6mxO+rivLstyBlvZZrSN326xLKVsH4Fbv0MDSw8ODqdNME7fbbaNIiezqVS0T00fE+ntsDsFRp3+oP7dx6OdGn/lowKTd1+1221Rm2niPwwC5kKI9W60N76hqLM7vxd/DZBK2SCYlczZSipSSYQhmScSKXbNACUZRWlJiLYXgPefLBQ2eGBdelhtzWpHR411AfDLFCBSCRY6SpGo7EoOfoCi3dSEuCy4UVFyV2vUWaUq1ezkGigYZqlkqaFZKtIyJUHs+8OU7B3TGt/pRFuEtpUZ9rLDO5o/iRDexAF+jd1KdQYc3kQg1al9O1q0XNVtQVGvDPa19dqzjewieIQxGtSp752xgy54VVdY1EddIGEfrtxMGe/bVWXW1l0EuyjzftnXrvf+IRtkARUppW1N9sKCX9gU22eiU02YXFVO/iiVuwGGbGy2IUW2R6wBMa+7VO6BDGO5s5zGAcAwc9CDkCCja9fY/N1vaztNsQFvzrS9EO/oMRrM7vVLWHoFn+7n9rilLAZuNlGrnc6kgDcV5R4q7+AXaZHTbHAt45zaq7haXFnP0rd/CTr3JucmD2lblBfxgQHQcAiUZfVcEfBCosqHZCcMQ8G4flwaC2og0BZoQPFQoEsKuANbmR7PVWw8k3Sm5bc6145hN/r+Pf91jC3zWAAUiiFNytRXqYCaRFIIIgzc6VW34bIA0Z1zJTM4x0gqwC0vpZOydzRU/OMYpMAzAvLLerBY14yjUwJSrjriAz5mQYIiAzug4ErUQT4l5TSxVMSqIVpl/h6qnlMnU1UomqlF3S1EkJpa/fmCJC8PLyttvz/iLQ04TT9g5c8oERgZ1DEUYCrydBr55eMs3j7/nh/UZqWpp4hIuZMRHlIWS7b1BQNONIAu5rOR1oSwzJUWDU2Ng+s0D5zcPvPywsL6HWARVociCBOEUAr//wzf4r04k53h3e+Hp+sw8L+RSmGSALOhaCFE5YeqFaVlsHJwnl8ItJZPZx5HHE8UNgINcWOal1lEpWlk3+4xgqw36zMTar+b4bJDxcr1+lIIFQBvNoQMV295RB9fCkLbBVSOdiLXz9p6yb8feLE82R98+qkUMdIuAbu9RrZSHKkWZLYLsMMqU6yOgNK5u4xLvfDaaA6TFjLo6cnUa+g2vN+S9fGL73kfkew3zt2/fArAsy1acfcx+9BtBKaZENc/ztoH2MrZ9xKpt4G1z6dPKjVbVAFEDA9M0ca69K5xzd5Sr/vXtPO1ZXa/Xu+jrMeOwRyPvCxKP9ANgK6bvQdQ8zyzLstWYjMNQ+6sIOWmNpmhNmbZmWB4fHIN3jCGYWoZzDN4zOGdc5yYk0MY2Q1nhWUwRpKSVyzgh3rEma5bng/DweOLpxycGmQheCc6KchHF+Rp1yoWUF1Qz43kCVa7rTLy+EMYTeMfoHSn4LcJVcjaD5DN+qp1/vaINwhQlr4nkIjmnjTb2RR/VHkCjRmqlguU9wuPECgy9Z5zGrUGa0XpuUPvvhCFYka0IedBNuCAMgTWmGvm1QtzTNNkcqXNFqIWTXdZuGEac81s9RC6FsQL1lmFki/IH4z2nxLJGTucLrYdGbFG8mjFrWZseNDeQ0WcNW0Q11W6yJdsYhGGw7J3qpoCXS0aSRdW3yH3N8PW0RwvAWDTde6MfDE2SumXZxAqfDczcK0/1GdpPHX0Woq1/O/2uyteOPoOyG3EbpwYox3FkGDq58gpi9s/TDZSaVLbd77rGLlPrtgyOUp3spdHnBG8IwyLFzuid7T1WHN5ly7fYV9sj9iy9AT6z6cM0EppEp0u1IFyN3lnMXuVs83IYDCS37L71k6rJ8/rZwfsKymsvqaro2EDpvqRke059rVv72zEb9eUHK/7tHc15tCody1BlBY8zimMwGVUL6RsVt3iHaO12nU3WWKrE9lTnltPMkKM5+qpGhRTri5FFuLy5QAhkmZmviaSFLIILnlmzCVQAl5iZAkzqwCtpTEQyt1Pi+nRlpmV0W0bDEfwJmEjFumEXb/UkrihTXvHPBRcX/F8Tw7cR95VHvhHGrwTCiBsGgnvgLE/civUe+0pGLuXMEC+4NeJ0wIsjuwUXZlManTwyeUQWU37OiZSfkVwYskfygpaVrAl5PLGOwm1QllFIzgR2NQth8vz227f8z28fePsw8C7e+HBb+enpZjYawbuhVrsLIkq4Luj7J3QtyLyCBEql2ScG1FugTNSRirPnkhLzsm6BkFaztSEN7TLz/4MtvV+QyVi2NFqTUWypZoU9Rdg2o2r/XDX2InuKvjn8zjnrKOmtIFe1AghpaX23NaZpUYKeKrXbSa1gpzrppViUqSuGaY5o++zSRf/aBtdzrdsNiHN4OYCcg5HuCyRhjyA1kNGARMtkNOrS+Xze1V66qFMPuo4Zg/7ze0pV+/dxU++do77AvM9qtE35SFfor6P1yWgbVutWvlFYOoekp4iZA7Vf96coFn1tBuyRUVWrL1FV45/XDET/tV+vVDyqaEmsy0xaF0qMOFVcNbZBlQFTnqBk1O8UEQRySVsWTMnEklhzZHBwGjzjGPCDI8VS07hi56vPymthKOZUSIpIjpA8xIggeC21PVOlRtTkqnfGdRWB4rR2VLUaBEvXfnYG/9/u0YPMGizQGqjo5/VmV6RSlXyjNlmdhEUJjT7inUMGIQDjGAhD6+HTOoRb5HgYAsF7q9txjlJa5q/aAGdObqlR6pQ61bNDY64WKacFA7bftbnf7yW1gVbj51ZH1Rzl+6Z49t69aR3YvB+89YfRmvrvncZNnQ22QEpTKtplULOtH9doX7V4uDm0UjNE1jTibl1/FFg6Psd6DnGucsDd9jPlvhi+FdX2lKlmg6FXeLLMwrH4UOv/tox1fU8bYwsg91Sstk8IJgcqXUq8B4zN3rl97rGdZqOPGXXifh9q15NSMgXEbq+R7ap1C4BZ5/HQfWYPBLrzst9Lqd3p968WQOLu/Ub52u9no0l119yCV//38a90vGaTqy8jolVG1eoVnLPv2ZkCUhbFyvv2YK2o9a9wJWOdwQuhZGKp4rIim+3MWvCDx+tIKZDTTN5SxPZ3UVNBDEUZVBmLya5nZw36ljGxSCS1xqJaagbOOlQXPKrWATtjUrpoIagjJGFQYVzBlQhrIifFOc/4MBGGkVsMhOQJWQhagwzZo0uAOOA14MVRJOFCRII1rA0hoK7ujxrR+IJm8GWCklDNthYHx42IFM8qhexcLcAXxmngcpm4PJ5I6cptuTIvK3HL3gpWe2K2z2dwa4brjETFp0J2OzVSq9qX2Q5X2ym0ovrSvMZGy4EKOFomo8nf/o90fDbIuM1GvzluPEfH+xhp7R3wRo/yNV2/OZZ0zZW0chk3ELJHbH6ekmXGu3Fkc66AR9WKv70nub3Ar73fDjPMoXX3rZOvFEX8fr/N8W1Zgv7zm1PfHPz2+9ZgKufMNE2cTqdNVerx8XGjIbV6jEYVaOfvsyC9E94X+B3Hu1EI2numadpATgMXjY7Q6jDaZx2jju2cFlkctnHrG/0dAcwOsmBdIyLpI6flSLs4Fnn2WZK1yo967xiCp3r2Zkgc26YuJsQEWojLwsuHD7VPQsQXyzQ4YMKKuGKx/gfDGDiNJ4I4XlI0RaJiBiMuMK8zt7jw+PUjj+eR8TQhDhbNSE19jzhiNE6mpkRICc0FH1dCyfgcIa7G8czFMinOurk4PM4Z3auBcAnZqFWDqZNI3bD4FTgHzfFrsrVHZ5vqPDbH13mPdPMqpqqq3rJXPhCcOc7T1BqpiXX09lYcPY3D1i/H+1ZnlEg5k0vZAIYPAylnYqUx9QB2uziotTFWcB5Tsii4sz5ApTq1FpCpkegW+GCv2zA64B5A6OksppxmdSKWHfFbAMXGcLd7LaLf1kt/rpjSRrMQZ+pJIYTqqFRAI2bnUIcrbNdJAwebs8zu1XbPjoNT7Hp6VbfuG2hsYGwDZOxAwEBKqApfrTfMXpfQ7rfU2skWHOqpVCIm/VmUCqJaJqIGTZqgQHtG0gIkvQ3agyINo7A59xszfsNapVjzz2GakPo59TJo6lBQ68kqvVPqXiS1vqtqnm7Pd3+e9v4tyPeRzW/UM0G17bO7EMe2V7OD15zvM0O/3uP/B+SUzY2QV4NApeStFki8BZBEDAC05aOw+StSqqpYSeaeloLXjKvy24JlSzLZxHKCMHprcqsqxFuEVCszmp1CCAXGAkNRcklkcawhMw+Jxa97cFf3eSbia4+OzFrEgIZVl+PxnIrnoo7L7GHNrLfIel3BnznrI3IZSFchzA4fHb6uxxSFdBNkHTeQEV3CDStumJGg+HGgaEQ14ogs6QVNNdWXI1DAQxkcz3khrpmFTHZSa34dp5PjdBkZRse7n97xNL9wywWR00ZPdDhEHV4doUBYMzzfIENoNXE1QITztaeNUGJrllogJSu0p6pI1cL/PQ5utqbqxZA/nia/2uOzQcb79++Be5ABH6dfe8e3/34XLTLsuDml1s25C9N2xvE1/ujRyDZt8VRlK9HG6d6VQHpaT4vcw879hl2bPtfPuy3zRitqn9vutS/a7qN0bXNvP1sKf93qLVrqP8a4ycXGGLndbtv4HDnQDZw0GsGyLHeN/fpxbtfz8PBgD7hSovpn1jIYDTj0vN7z+bw5c73Mbut03gOSnsvd6FatHsVAWeb5+Xnb7MZx3M4B3BUs5py5Xq/bl4hs930+n5nnudZUBIbRMlz7Eq6af2AGGTiNA+7xEU0ZLZl8PjM/v6A5cxnPvKyFW1q45shochYUhMca7Y63mfc//EApCR8cX4+Bcym8KcqYM2le0ZcnnJq++TkMrMvKEqNlJF6eSDHhb1e+8sEK916e+emnd6i3pj8MI0wTbggMweGcNWKKySgv4+lEGE05K6bIui4bpezLParGe9tc7yLNO83OVadvdxabk+wYZbS5o4WYV8I4MIyhduhWUo7WMT5mxnFiHAPT1DJxNldRkyh+enpiiZGHhwfGaUIRfvzxR1tbqrx588b053NmmW8MrUO3CPMy8/z8wjzf+PY3vyH4QC7KGld8bSxqtVq1viJGTHGt0XsWq8sRCM4zDuMGLjS3fh7W/NTkd82mDKfTFj0/ZjpTzhv9qwfw4zhyeXhgqPVSt9tto1C5moGgBlhSKZa5qQWj3jtyLojPeB+24mhFWFMyx0hcfa1JdMbWX6TSNP1gljiX9loHYgAsZwNgRU0xS5xHxJNy66pb8GGw9+dsTa7SHhBRpIJFrZQ1k7VclkjObOChqCMMF5BMXCOlWDF1CAPBD9YI1tesbkfPMmla3WRuSzHrg5h9Fe9q3YfHSdhAj429Y5oClIGchBRB1DrM55yqbdw7wcd1d0gBxMdtbK1ruRWWrnEhptWyrkCuxeQGmBwl27iFwQBqs8c5R9a4/jpol599NKAhh999Ki38c3/7mU+RGrzcIOieeRVvYiNeAjizZ2s2adVWdVMqkASj0ZJzdUwzvmS8ysaq2KLjzgqYx+nE5fHEdH4g/vUd8/OVvC7gK81YHKNzDKUQ4opeM5wn8KCjkgJG+80mbYAXioeVlUk8Wms7SiOIqPWMuYwTF+cJq2WG/VwIqbDGJ+Y/Z8r0xMoj5Z9nWArOBa7iGBOMS7GO2mqBjCxKmGC6wPQI7mQ1l6qZvM74y0CePfHFGt+Wkikoc0y8cQ4dBsqaKc6Ds8BRLDfeX9/zz/mZH358T54cDCPT8EB5msl5JcfE6eENAY8XOGG2J2QDZHNcEaHa7WBBqJxZFyPGlVTIa+ro+GzPyAGqwu6J7rPrf5SExmeDjGWe678aveh+QHfHukYgu9dIjUhub6cpPu3dqjcn+C51vdOO+lQv9BGdRtNqhd+Wkg6DbfLijMOfU9w433vXVev+7YYW2aLKvolxuud5+7yWGWj0JtjB05Hm1Gol+oxJc/7bOLWGfg1oHTMKvSPf/uacaTn3gKn/dz+erT6kL8ZuG1n/Ob0MYkqJaZo+eqbte7vP/rqPmYgGpMz5Mb55r8TVxqYBlz5b09d1NBpXKwZvE6dQSLmOZ/AW42w1IMAYBoJ3lGhGeesQqg7vBkoGrjP6MuNLMQOJWKGbguSMWxMSE2+d0fi8EzyOB3FcshKWxDLPuNuKA04BhiXjlgWNkTI4RufxuXDKGc0JEevafQkONw5oCKwiZKy2xDCHJ8VsDmYQEglNmbVGnn4NFAfjsmqN3LVfas1csAUaRKQqgB2CGVsgwmyAzfWw1f6s60JO5rSKePyWiWQ7zwb0k2Uy+sBJKdYAtOgeKBDZqaG0bII0aelWT1HlD2tU0lVH2rra5y3d3iiZfeR9G5t6buPv79mEFllvO1Oj9bVx6r/6oE+f2Wg/bzSqrSDaDkeVAa/XpduOWCP/slMdpaknKdt1bntBi/z3z6wDPDsV6ePrZbPp1RaXRqfrroUOlHavZ3tJy3rk+iyq0IA6SrFsjVQKLvU57RmM++BZu6+U867UI+ZEFkrNpNq15jon6N5vU1i2TIPRHXXfC6liFFqpgG2+4WrZKN1nUiOqbAClzT3E9l3VFqQyEPOxF/PrqMc4Xr12X/3Pd56cs1obYxIpTvw2tk06uyjk+kZXX9eOI3Oj/a59zzULAS3LWa9FwImnJCVLRlOt19BCjhHXMWvEm7qROuuRkmXP8mm9HlHBqTeFqiJIduQMMStrUMbRU4KiLiMkPK42/CswgJIhFR6zw2ejmEYVXsAEUESsqV7wZF9Y/DOnEgkCJymMudWCFKJfYQzIYP5evq5oiriYGW+OmAvrLfG+3LjNmZhsvZwXxzlFpvLClRtZFqIrJO9ZsnBOnqGMMCdrW6AeLWc8E7nAfF1Iq6DJIxnGMnHmgQd3ZpgmPsiN4gtygpe88N2aSOIojyfC+YK4kTUPXPOVmAuuKGdVvGSKCEsYKGG0viFVOh5nWWnEwD5VJcxXAZqC1sLu7tlTAWelePd6Y0e7aI9X7/zd9rve//rc9dv7zPevNjt7Z1Klm2Oyw/G7bK1IFSioSnqvpew+cXw2yIjrsven0PvsxHZTmLpJM7RW6N3109g2sabmUTm8smvWu6pZLjXjsQ0sxotLee/9sPOkmwykRfa16EYLMidVSVXKsmU9St4LJKHTa6/n7ilDLRK/jUWlPzWn+FPOX3O6WxajgRTYQQbskcY+qt+DjMvlso33OI53Hbjb914tql1TU5FqoONObaY6Wo2acSwmP07k/n3t3u9Q+8HZaa+DvXdAAwxt3gzDcFdQ32e2WsajvaddjqreOYatX0v7W/De+J0x4nLVHc+KLzCIJ2vmdr0it5XghGEa8V00SXNGY8TnzBQCQa2Ezyk8FmFak03v60JYM0FgKg6JyfTHUyIlYRwnVOGkhTXGSgGxTImbRnQIXFVZxbpTi1iPD5IpVQ0+kDWTk81Xqd0rf8ni/rd4mFPUOe3t99V4NUet1X3dOVmdK9Hmma9qUbY+lWWZq3MqTGPjvTdngG1dxRi3wu72WQp3WYCeFgrVGagbtkrX+K063tp7NdVpRXbqDWoSuXdUwe5xWur9vj/N3dPugrHHefBawOeYdc6lWHS0OkXHZ/HaBtavacDGqhR6D+64Kfbfj5e//172e+7rYmSvvdnGrbsv5WNb0x7L/UfK3Zci1UHf/2bBr73gW6qn31/nFuiqmYu20e6beAUdpVubKhsYlAoApBGy9+0RMOXALchWpbele2alOQlqKkUU2+Z7h6Mfiz7Y00ueH5/TF30cTWAXItbu585aAI06V39ua9P+0lHrLPKsIh99zN1HHtcf7dzNW9uXaxMTyDGjsdCq+0vKeJHN5ROxWtEsRqfJbW7TzW0VXHFIpsqkO0qCGJQ5Z/woJo3rFCTjMSVGU581FSRy5iHDkE3X6VoMJFQWFMGNqPeUAdbwQkorQTwTgbEI0VmddHIrZRjQk31miSuUhItKWMU6XkvhQ165xULKNuynRTitkTE9IWWmEA3guIFldaTF49ZATqbgmMQTXcCnC2nN3F4WUnQG2IpjkjNnHrjIhRBWy8RIhqFw1ci7nCgaeHz7Fnd6i5bA9SlxrcGooDCVbFQ2cSxhgGG0LuFi94YzJTDE1eCK4muRvGrem+RuNlprtr4BjPZf7RVS9GPb9srXzzGG2u/7OXkXuPkIYNTLke5z+wks2+Xe/b5fU3e3+JmuyGeDjHVZagFhh9g3kNHqKaoT322QLUrUGlztEIrNodjqNkTuUk4tstffTepkalvU3AY6o5q2TWscJ6YqPQlCybuhjWuV+yu6NRdUhTV2SFHh4fJQB17v+NlHh72nYPWgowcfzXHvZRdbVqGvszgWX7eofjtaPUWv4NTGr9VceO+Z53mTymxHc+AbXaun3rRrb4Co/a6P3jQwklLa6jOOk72vpbAeJnuG4v55sY1le18bk+NCW5algsvC4Iwf6moIKBWIMeFYWKelNunLrCkxFHApIzEzAQOeLJ55jjzgKWINc9Zlxo8TYwj44HYeuTic5go8MqN3lOdnA6cl8XYY8AhuXVmfX3gQGEW5LTPD6YTzgbfBEws4HwjDQHCCBodMA1+9fcuHdWFViHHmen0mVdrIGAIUKFmJORJahsrdq3V9icenHJ1tU67Fq62QGPYobjvafGoZL9CNdqgqG6e/r2Nqnx1j5Hq93vWlQbq+GLpnB/toZQMZRY1SmWIChOAD98b+46j4Dop9zbLsv6fauVTrs1KM1sSRz4sYHcF+/+/NWa20zWY3tt4+9fOzaqXY5I/eezxfswmvZbObjfuoYFt3mql2QapGlbofc7fVeux2pdXt2fl2m/Lp9WCf0Rd7t3oOm2nOeXz9ksMcKblswbFYA1tS61Pa82+bb1G9C7wozUGo9RLNAy32nG3bs3M3CXJXbXOYBnM8e0oye/NAG8ePx7c91zbnewXE9kx+7tl+cUfDj7D5FFIDEh9ncI4gVF79rrWY9++6nLqODNDeO37mx9jXuqw1AytMfjSaW629asCiOKE4iGr9FlChVWM4nNF6VAjFETSQknKdIzFnCANuGhjPJ7jNOM1IcXgcLlhGzQPuFnmYCzI4zskR1BFVyeoY/EQYB/zkYFzRZYU84PSEz/WeHKxjYRkT8wBFZ/wbJQyCv3lSUrQIUYS5QMSRBXx2hJeE/PCBEhPDGDiXgYVHbtHx/KPDLwV5iaS4sqAsAksIjCWSb4nnnyI5Wh3F4AIPwyNnuTCWE+uy4or5gxkLCLqHB6ZvHxkvv2G5wu155ad3L9ySZbQug+BLQslE52F8JIpjFkfyzsA9IKUQiwU5S86IZnxJtSnra8fu5rd/5S0w8cuPHmC0Nf5aUGj/9E+c5299UB+f+dSLf4H9+HwJ2+cXclNjyblDMy36U6N/VNUe9sEI3leO8m7My2ak7wsrRalgZTeMjrZxy64gVT9/i/yVRCFvNKhhMJARfNiKGhHLmljPm4IWsERGLQByru4Fdi+n82mrp2i0HxHZnOGW0QDuIvK9o9yDjj5j0Bv6Y+aiAYYGQtq/2/sajahlatrRrrHVRfQOxVHasHcGesDSF5T39SH9vfUbFvDR/dzTx/a/9Zten43px/MYdWugxq6tLtBiTlH7XC2JkhIvIbAuKzkM+BopImVczuZYqMNl5eQCuckGqloPGC8Mg2OcRjSZlF+JhRITVLUpXePef6XYNQVxtTNrddSowGaNSIARYRhGpI79rC3jB+fTSPKC5Mw1Jopm48GLmcicrbNpjCs4k1aVXwHIgNcj3r1IRP/VAECbEw1Mt+9tPjaZZ+8DwnDXzK31omnz93q9bnOwV1drXPWtVuwQMW/Xkfq1Wml/wN3aaYZY6ybUghGmGrXfs7Y1VcH/saFcy7K8Nn79Zx6Pvq6tV7lrNqHZAaXPKNz3sumPj7MH92v1Lop2uL72umMQpZfwbs+rP0///t4G3lFsPzE2VodhQao+M9L/fQOismd0mhqXY88ItOtr13Ecq2ZvgZ1C1s9h9j2y2XAR2eabiBC9w6U6Z2v22VUlsBACQ1UEyzG9+syPGZ6jze7tcp+Z/9KO47z8Wxkam+NHYNEff9th+tT5j6D+OO+PQHtdV/MhQmAYrPaoiPk8uWjNqAhZnRVY1zrnwi6cUFveWV8W8ZRkzeniojg/AIFhPFnUvVj/J+s9FBicMIozZseaiOrRbH6bA5xCECV4YQhCGCySVyjWcC4IyQurt/VyE7hRUCmcRzuL4Cm3TNJMUiHnSquudjAXRRfwT8LJBy6rskbhtiin8wMhTpRlJCkkEZI4ogZ8jJQYoROmUCckzbx/+cB1fWFeroAyeFMYfHMpvH144PH8Bqee6zIz3xbmuJKrBH3xDgmO4TTih4HZVeU/3eFAA/cpxg1k0Nnxzw7r/wuOPrjTU9X/Znby75vyn3NBn/WyzwYZOaUKMvIWedqOZrxRQm0uA1Z3UVugbpK1Fm1odQzancC+WVSoZiSq/nAfBWyGGuqmVQuAcjEnrWxdVhVKIdfCPMFS4s1Ra5trPZEBjWaY6/0cMwx9RL7PIAD3kawt+vbxRnQX6e82056OdFRa2pyBbnN0zm2ysu2zegftWDPxuUfvMBxBRn8vn3JG7pzG7pm38x2jav149k5gf097NFor2GjXYNeViilyWEO2mqFqWTMF666dyDgkZQLtOuzva44MxTiYEjwSHMVL5eru/VZ6sNWiiyZcY7StUkzazyOQrdEeqjUl3igUbWwtwjkMgSTWtwOjvtcMTSKlSK51A6GpW3zhx2sOAuyb9c85Sm3+tHnZO2otOwf3PPvjmmwAd13X7Vz9vHytid4xWr/RGkutTTrQC/s6ju0eu0DGkeqi0vXGeCWbsM85Nkf46MD0Y9jTKPt12zv4fW3WFnBo18TH6fvPea69M/spO3cET58CDsfXHkHHa8/meNwBtAPA6KP+PZi1eynb+IAFslrdV3+v/Zw62v/t2nuQUX/f7GJ7Jtv4ZqwmzFtmo5RCUCWwy92iUNzH6+P4LPpxOwaG+oDPl3h8yoa8Nk/NueUV4si/7LOOR78ej8+k3zc2yXqMOkmjaiukrQbJ6H3Z0IU9c1r3aPNrcDVwgbMgW1Wwmm+RcTohLtTu31XpSI3S6b0Vj69lJa/JOlhnk8ytYo04FCfFKLoOilcyShYlO0jO6jeyOKJzRO8Y1CoOSgA3CJqMPVJyk8kuuwGzKBqyKkEKYS2EpIxRGNUT1PqTORlx4mq20ZqnikTLvgIqioqSpbCkSNJETLE2rjVgdRknTmFkcAPLnFiXuDFZipqMMA5k8Pgx4AZrxNr65LSmmO24E7zRqvj4d86tv+fo98kv5fhskLFJA4tARXrQGe66OXlnf3fOZGqtMdbAOAwE35o9KWty2+ZrxW6yRfQcalrw1iigNmHbnYptoauSRMhZSNlS2HnvZkTJiayKFA9SMNUPU3JR3TcH6TaszTiX+6h9nxnoHfl+w+m79rafoesk3qnA9BmI/jPa33o5y2NEqn1+K5zunYceHPRO2ac262O0sx3HzEN/n+21/bn6sRJpDQqtN0Hv7PUR4xjjXffx9oz7zwOLII7DSNaM97WPRamNF9t1iTUtzDXLFkKArEi27WVdIxSrzRAVq3UIZrhnTQQygxSyA7x15V2tpQ/BWfGejIHgrHnSPFsXVkTwg0emEV0jORXGcazZlkROBXGWNSti1xsqYI4p4afRmgc6wQ2BUmwer4t18y0pG21Km7zzl330FMJ+Hr72dXTa+ihwy2Q0VTKTObaxH4dpk7LtN/dGzWtd5fsocwMY/e9951i261W1LEasNV4mexusYLuzDdLd774h2d9jMupfe61lVUttwBfv6pbuovVaM3mvgIv2+n6MP5bqvne07wBG2etB+mtv1/IpwNHbg7a2W3biNaerB3a9Deyd/vaM2u+P9QUf2eqfcQSdc1v9yWvR/LuMVX1v3x1dxAq/wyFIcpzHlimr1E81x8O2yh2Y6Pb7+3vPVWhgy+5XuuA4joynE8Nodn50945svy+070dKavvs/lkeKYRf2tFn2+FjO9J+t81zdGvK2F533Ft/7jiC+n5se6fv58B4v/et67rNZ1/LJEpRlpyt3kkB54lZTSwAo01lbTWtK+LC1qMpF8hJSSmjLKiMFHFkRkqFJ+avmVLc4Kx2bb5FbmsigmUzFDwgpVLPVYniSL4KWZRCcoXoCtGZ2lIZR8rkIUTivKKaK+MgoIupCDaGiaqA9ybY4jCGQE6wrLiUGTVxljecnXLyak1DfSD6gSmMjCKkpET/jLTsD9n6jlAqiLK9tSTIS+RxfMvkRojw8v7K/DwTlwiqZM1W1+uFcB6QKaDesd4WCEZRz6VYgLD2NlpjtEy02riqNiLUf3+n/+cA7r/l47NBxv/zf//f94Urxj/U5vh0RnKdZ6Qa7/M0cardpFuquUUA56UWkhvmBKphKGqKG7nUCLJYx9+qFX9XjqW6KRilbN0fc8mb0W4FeGDgvzlpqS7IthmmnJEaFXfem5Yz8Pz8fKd81DaTZuRacXlrFtc2n3avLTrZb8BwPymOUc3euWjnOEa9+r83Gdu2iRwNYL95Nwcgxrhdv4hsAKfRknrnpt9Y+82qv492jlbnsRehjwzhXj63jYlJ0tq1NCndtvE3J7CX1hURhian6WJNf1uxb9FcZ0UzYgE3jIxhZCnPLFfrXSF4Uspcnz/w5nwBD1eJlHFg9oJoJuQVsjX6yQ7c4KHKXA5v3zDfXliXSHLwcDoBQiyFXBLhPDEOD7hlrh1clZTZmneZtnmlu40jMoxMl0ekZK75iZfrtcpMFhye8+lsBrMUhtB6Bwyfu2T/zR7HzfqYxTjOwS0CfHCM2oZ9u922uWvSzNPm8PXrsv27X5PtNW3+NoW1HmT0zkvO2bJLG1Cwvj+xRif7+2jnbmt7BxX5/n6qHU3bee/FEo5Oev+dVz7zOE79346O2RFo5Jw3x7jZut5G/RzQ6KP/R5DQO2EhhI3y2b+mD670AZeestTOcbQpr23ABhy6rPchu3I/xvfZhmMApZ3vNZDRxs37Ks/dO/j1y4DkXkv4WrRbtRZ318jzuq4UgVQz+2tKd7Su4zNse8wRZDT7XkrZ9uJjL6Rfy3F09rdx6sbrtfX0t47XAMkR6L4Gel77jH49jcNg86P2V2DLeDvWopsoSBRHkUq11oKUDMmRlwgIkj1kJUYoL9FUohhQUqUMqgXWvEfFAwNxSayuEEUosSBZCCoEr6hLJFdYnOAnDxrw6lgkE1GyCGE8cX78isvZ49MzSRLqC8UD3pNrMXm+rUCxgLGzLuc3Ikkj2Xuij+SSiGlhmQMiI1oGcIHiRsQNeHcGEmVeSIsJrKjU2j0Pw+QZx4GBkevTT5SYSGti/rAy6kKZYH1eiUsirjXr7SCcAqeHCwyOl3gjLZksI67u1wb7d9sQY6zPxB6MBTo/awr9qx0isu0TX8Lx2ZZm8E3yzTZVqAa00Xyq8R19MEc9eM7Tiel0qkbNbwVyuaafW4F4y2c3kFHyWKknEJzbQUZVgmoJFWg1GZlUIkoma1VAKjV6XNomUIs1S2GeIxDrpEnkZOo9riqNEKpc12qyvX1m4GjE+k3wGB1phdRHENGOfpN4LQvRn783WH3Ust9AXnMKXjv0YHDbe5umfZ8xOQKM3qG4oxpwv9m1COEwjneRoD5i3DIPKaWtZ0j7ak7fPM9WHCmmJ++l6ng7X50hc9wRaidja9yGd6zLSlKlOCGhOArBO85v35CzUjy46UShECsdy+fa9EiAIWzqVeI9T1q4aSFqMcpC8BbhrHP2dDoRhqH2KrAur9r6YdRoUsmZgiOroKlYh28HPgz4DKoO0YwTj3fWpMg2IYt2ZfmycxlH56hfT8cIdTv6yGV7fauBWpblzjFvNUn93D06h72D2K6jOfhH2uHxdfv6uq8taOul/a4PxBzvTZVNXcQcRjab1SRmXwM4/XX0x6de1//c24w2pkcndVvb3TX3YOwYvT86471t6O/7bly4b7x5BJZHh+1z7u010LO9R7kPYnX2cwMZ3qSqtXv/0VFtn/kpu9pnPrRmyRtFss2DRtl5DRyJsIOdtsHJrmCWc0aWhVBrHI+Utv5aX3tOPcBq1NQv9fjUnDgerz3Df8lxnAfH9fXa9XwKaEDLTkulagNb3YXx/zNmGxwmLVtqJa7YCdFcyNFoehRBrFKDGEt18E3YxFXJ6ZwhZzHFJPXmQmejHElRk8RVUzmUAGVQ4qBEhQGlqENd89MMDDsJOB9QPHIK1nfDK7koOQglQalSz4KAFxKF1TvblwWWrKylCkBIpmgiRa2jUWmm4ikSSetCjlYj6cTqLpyvnb2niaHSpCiKV0i3RPQRyY60JjTrJiDivDUn9aM3KphY5qjtHbZm92efa52wDy3D/f9t71u7W0dy7TZQRUq2z+npm5tv+f//LStZN9PT3bZF1gP5gEIRLFE+7rmdpD0h1tKSLVFkPVHYeIomhflPr6w/Tl6J81cHG38gJqP5irKmCAW1LBqkk1pEqynP1ydwVJBxmS8NIARYgaJChMyaNUa1PKJZN7y2QbYDOHDA3ASHyEEPDdoOL81mVVAkA1R6ekHNWqKCXS4FOavFYs0ZUrkf7OuaUGsGKiNGVisMb1ltPFP2h4x/mfbdCzUeJNgiGN0XjnyvvRZXRHaH76iNtHuMIGM86A0QePKHk7/HkVXEf2b39dm2RubaAcY04XKZkVLeARmzeJiby+Vy2RUMNOCTUsKyLHh/f0cMWpQssoIMJgterF2oC3FCiBEUAiqzWstqgQRGZrV7hBDw089/w9//538gBwI/XTXeiAlFAKkFE0RrY8yT+pUCSCR4T0mZIQNCGm80BQUaxAF0uaDEiPW2ICMDDHAMoPmiQmXOqNCUfCKaWSdWQDiAw4x5ZgQqKFzBQt2tL+eitSXCTkn6JckEIM8YR4Fy/LvW++QEFlOxLEsX8ExLG1iFsK6ZH9xcRsHf1r+t+SN/fy+s2cu7WR4J3B5k+H4awBCRZuUa3Hlk7xI00hHI2N3/4PtRiPfXHVkqPG8YlQjjWPjnGf/zQveRW5T/zr/7PvvPfBv8NaNQ7cfokVLH7t3dNF37et8fjOF4j208t9ob0hQKoVX63o0b5LDtTKwJSloMI2jLYpWKutAVEUwx4nrRpCae13s+7C1Ko3LIu6V+VRrPnB+BDYvHeXTtPyOk/fCZjjz/2X7bipJChe+e+p/Q5CpBEU0py9LS2TZDhxWQt7S4mtiGWtA1q0sRKiq4BYyr0FQqK8hgQq1RAYNVoW8AI4AQIoNmgsxAmiqSELLVxWFSYFIqUCqoMiCaOYqvEZgYiM0lLIrGNkKAlnEPobkhx4AyT1hBWDJhLUANgARWBW8poBpAVetYoBQsYUHOq8bpiiZPCUyYAuPpMuP56Yoo6kLGzRqUbwUrZbX6rK2f0LaEwAhTBE1B+8cEIk1OtOaqMTFklkhxab/Rq35LU5B/5C41KtU+os+sRb/njQ4BLvAQAI374aPnPmrzZ/fN57NL/fYbQlT/4zrPW8o/QXeXEmhVVClqMZBUsC5LC9xRjXAfcN4CmUzzA9lyQHC7d0kZt1x6elsxtyZqGTpE3WVSXVFqgrQFUHqg7KbFlCqgClwuU3uu4HbT4l2CCubazfgxRnz/9r2bqoEtW4sJwOaqZL7eo0Bh1bZHDYh3OfLXe+2p12D5RWrCvR0Y/rejD7m12wtP9jLXEB9H4uMzRncA76oVQsDvv//erwshdJ94q3FxuVx6XEZtGgBLMXq73XC73fD+/t6tPb6uCbC5VGxWnZafughY1KoRKaCCEFstlmm+gEJEAfC2LCjMyNDYiPh8xXy5IoDwy/s7+PsTihT8crshR2oaREYBECi2rC4EpILbuiCtN+RS8P2nb5gvE3LJuEEg84zp6Qlcgbd1RVpXlKcnLLcVUiqCMLJw8x8NqHOETBfw5QlPf/sbhNXd7td/vOJ9XRVYU8D352+YglZj//v/+gey5AbctnTGX5H22tttrfq1yYPQB2w1VIgIt9utr18AeH5+7tXhc87IomlSQ5h2lg0Pcr2gYnvZBOojVy0A3bpmaVi1eraCd28xAdTCey9YmEC/D47OWV2w7grbDWPwEf1I6DqyFIygqMcFOCHV8ypvBRqBigcC3hJ6ZMnQ1Np0Bx6Nv439HZ9l99oBM/fZ1j/r1956NSpzcCD0k+PDfux8XN2oRWTeg83iFCs+q6ABZd9XouaqG2MXNqtoTQOUzXUtNZ/wOrj7+bHyAMvPsQcYXxlkAI+teX5N9DSfg2XHg7A/an3wn/ux9uT32bj/+z1Jz5xSBSGoW1FaMwKrVUNlI4Ca8lZgdcdUNgrQKt5B1NUJxAgcUUsDI93qoXJWKgKJEVkYayasiZBCQBJgKQk1CyJFzNOkAd8TAxegXIAkGn8Y86JuSYsARRDXCr5VZE74df0V83fCt6crvv/0hL+//k+83gretESHuh6RgFhQroxlvgDxBbcc8FYnrJKAUEDzz+CL1lDjNCGUJ3CeUVLErf53lPSGsiZQFUQRPDHhv/3Xf8e3by9gJrz+9nurcK41sSgTZFUZsZbmZWGgLkZU0srr10nds1CB221FLoTkMt/lKirTkmbHggi4AQ4FeBvP8GvjiHcdrbVxbXkltcmc9m5r7shtfcePaEu/Oz7vqF1HfOTou4/6c0Sf5jR2oAMabK3MGXdaAjYk3pg7ioBEQMLgVlxdIMi5bgBDbwvAVU0UgEQPa0X5DDC12hYEIYawuSRo0GKuWVFm1cB0q/a6TULLW47GbENsk1h6ytyNcQAhhm7i9kL9kfbea9088/EWBFskwN71wMhrnR65Knn3Be+3DGAnlPu22PO8pnBkxv6g98+ydh1lxrL7+tS78zzjqcXhcNhrQL2blKWrtXub65Rvv7m/TNPUhG8GCRBBiGBEDlhz7RmbYowAMyqhucYVNYEGXQ83CCYiSAxY1ne8l4wFBcSEIBERAVx1vQYw5hBaFfmEnACKEypFCM0I8wQKDGHGIoySEkoBKgWUwFiDAtcAbqZrbRdPMyTOqBRxWzNqgfaBI+aJIUX3gGTgvYGx2/uCymZa34PTr0Yj8xq1zaOW+siyYevI1ouvD6MgQPlKDNtatSBxc4saAX3XKA/uib7d3poH7FPESrV82Erm9jQy485jYAK9piq2IoCEvcA+jpd9dkRHB4jf7x9p9k3JY220a70QP1ot/N9+LPx3RxYAK5xYa9m1aQwyNyHRH65jP71W737t3I+TV8j0uT7oj+dvfk14oXGvSbS4DueGZhZgByitjbssNe1+1O/VBExiMAmEm3LH1k1RgOKVXgZc7N6+LtHY768e+D0mB/kjAs//DfLrcDyHt4vcW5N5RCo0CrUpvZp8VFqx4YCWAgoCzUDV9imsoLDG8jAAJpV+oAp3LR5aCYWDJscJF6i9AxAJeuCQCs4TqbmkBkLlVrgXGakmlLJCMygKkHKT7xgUJqwoeG+VsMs0YZEFbylr1iwKQCC1GrTMWBqwERAQEVBRpSJVTXSSY8B8fUJJAUBAJkISQm3jNjHjGiNe4oQrEfLrm8Zyvr1rvIbttcpAASoD1CwPBv4RVa4kDhAwRHSv5pKRCtR9SyqEWlZTnVAdf6BZaKi5t6FboIHH1uajtfLRNSOg9dceAZnxHodr74COrvHnxn+GPg0yailoImcrGOMKVWmLNJ2a1OaG6jSWsoFrIgUZJed94HcDLAQ0fz99Fqo0gCHQfGrqoiXcrmubs2ssCLpBGvgReFO8tUHT627a0QxgH8ugvPl+AYzMw2vrjjSEj1wvPtJW7rSLjol6YDBq1O4OzuFw9wtyd7AR7dp4pK2sHYBtn4ewBW6aL7u6R6lGOcZp79vY2m7B3KPG0qxCBv5A+wwwkMZ+RRF6IK1RkUwxBLVuELdgMxGNnZAWGyEVXDMqB3AgvJWEW8lIEFCcoKwugqVAM/cxIkWAKlAZpSjorBI0SK/FfVQAtyJYkwJVK5y0clDuzgFSdc1XBHCcITyhgLUORy3IAnCYEEkzZ0mpqFmw3Fbc3jXmgCbu8/CVaVznRyDio+tNA+wzvvmsRJb1qVYAE+1qL3iQMQJle84YezUC9S4sMu2EvCp7Zg+gWwaswGgXlntfNjet3ga3H+1eyseU/Aj9WcJVbzf2fPuI/xw92ytT7Df+u/GwUuF3S6BxNA8jYPGvkZceKVC23+376nneOM42BhjAyggyPG/392UmmIG6K1BGXo2tr+Ne1t9UQLQgaGvKxt+BFmvY0m/KBkT9WbApBO/B3pEL21cjA59+/EYA+mfQI0D+GRqB9Z3QqZ/at/qJAf2mUxVpCtsqPUsUNVcqvZ/KT5EI0pRZKmuZerW2NK8NZDRll1AAeG58q0CsAGETlAPU5aiSCucA9ExqIIMqgYUgpaCsCTUTwmXGGhISMRYBMM9YseJWirohUwAFAl8iSmz2lVJBRWMnAgRZCioSMlXUIOALtSzwFSmoNcZUbCzABMKFGKFs2RjzskJyaQoTFfikEqSopcFkxVIrAkUdaApam6QBi1IKUhZkK9VgliXZPG3G1fBZRdD43RFP89f470e5zX9vn/t7HbVgVDwd8fbxXkfA5Y/QH7Jk6MYuu2qomvO7aUZY07BZc5lIMzWxbp5auZmBBWtOLesBwKyBd4RNK1hrBWoLjAyaNzlIaJOsO7DUAgL1QEXm0IqZ0RZEKdLARQMyDXUScdeArinDMtxVp11KOW3/N/VS15yRpmKzVbdpHu0A0cNp2rn8oF1zP/3+oBi1mKMbidfuAdsh333SneAlIr3Kt8hmkWBqGZPi1Mfdqhhb0UWp0sdwO1j1gHp5fgGgc7CumuEixgnPzy/46ftPEAC5VKxr7n3zWaNMm+yLB5omMwbtQy3qsRqYtf6FVIBJA6JbpV6pynQBjd8xEKvaiKxa4pSw3t6RasEcAiYK+L1mpFqUMVfGJBEXTAp0c9OwxggmrYiUCyEtGfEJ4MpAFg0ka2OTVicoMqEKI8SI+fIERnPzKxWIM0qIapUQZfrEwDwHpDVjLSvW9xswCdY1o5SKwLHlzv+6goHRkbb4COz6a8eYCu964jXo5o5XSjX1Xbd0MDOWZemWtKenpzvh1twkR/92b/EoRdMWRwrNTXIveFq7dwK601IrH1Wf/Z6pKm1ZpTwg8fcZpeWj543ff3RwfTQ/HlRpatb4oSaOiHbZAx9p5/x8lpJ7Cmvrq7cy2Tz4sR2Fcq9sOar70Lt5ADQeZu5q54W3OESrCk73loyNR48xNO0cM3epdlbZuWmud/7ZtQpqzr2yOJpwSESIU0QEkHJGboo5e9YYi5dzxjzPuFwuuzmy8+ErAwxg64/fowAO18D/C/IgztbMw/0Ds2aYhUKtFNRMHCLqEaIwQ9dmoVZSABsINnzCRcCsrt8gVcJWaLB3pYAaIipPEASUmrXoq2pm0YIPMKeKmAEq3GSqilABSIHUDBS1mKR1xS//+AdieMLzzy8I3xRoVwH4OSLzglu5IQNAIITLhOnbFXmuoLWClhtCzoh1hciCjDdQqMB1hnybUb8lrK8ViRhpIchtRa4JOWXMVd0Yw5JAv72hLjfUVigPbS9kmEwJLbzMBIgqo6VY7KzWTctFsCytGGpKuC0ZIgRQQI+TacqeKpruF6J82fjMZ/krgN0Z5l3Wj5Q8R+fh0Tk5rkEzAcjAAB+B5xFUfAQm/gjQ+DTIuK2pH4CBswa+QDdDiKp9DhyUmfIWmBuqaEEiypvPWgMaggoQNbP5ZryQokDGAEIVzfwUNG6oGzYKROfZ3Kti848W6bmndQz1OQoANhBgxdzU1K0CTHKVu1dXgTqEgFy2Qy7GqQXCE263FSG0RVL1sKxSu7DDoVVq7ui6TxU0ZzqpYF/MkmLfNa1f+50Fz3cLDDNYRLMktAwpXiDw+fYJ1ArjaJHDwFGrVceAmrMGZxfNZV2yjoNZFwzNBwqt+mzA9+/ftF5FygghYZoYT09PeH5+xjxftT+SIZJ2Bca84GQAY4oRpWz59bOsDSC1A0TUGiaimjxMhEqaOlYFuA49QbVqOmLRjGg1aVGgUiuWlJFS0cMfQBI9tK8zgCqouUCSCvbUamUkJixV8JYSmCLmIkCuWBcFMQaUbqni/f0da1rx/P1brw+D+aKHQakQrhAOWNuh+Dw/b3uhavySCcLTNKm2PAZMMahwAoAGH8uvRkcgw9ORxc8YsWfMlihgmqZdfJS+qxLB12swFwsT7q7X6+FzRu22/9tADhF1S0Z1SSt8+71VtEmt/fldeKhabHS0So5aqlprF0bGg8wfTKP2a4wr8e5IhxYx14+PtLBHc+ZdWEYhcJxTE859XNoIMgwIeLD2CDg9cqUiC1bF3rJ8ZF2+V6a4YqhhH5Nhz7E4H/3fCe6msKou9qYaeNkEzzs3L8Iw91Bf8jZWRTYllIEz7666rX+9ziucHgGrr0hjkhLgz7Vg/LN0xNtG5eLeS0CtDZDmsmeeGLWqLULMe6BlO2zCrsYNCoq0YGRY2mPR7CaogBQQmfI0ohADU4RwRKWAJRWkSsiVIMJNoAYggviacLlAawA9M2gOoCmAp4BIQCZVPpYA/JregNcV83/c8MTfME0RkQMyCCUSZGJkVFAI4HnC/PIEeiqQd+1Jvr2jyA0VK4gXXF8i5p8Dws9ADe9Y14pCAoQZElZIEIAZE4ArBzyDEd9XxGVFyUnloWYKEmSAue05Ua+C0rLnMSOECUQRtTKW24L324qUVtSakJIW06VA6qbYwB4ErXqWzh93Ef5e4B8VNrYujixwn1lLR/zP80kjv8eL1K5EHn/3n/GKOLJwPKJPg4yUshn1nFadAEgDGaUfNJoWkNCD16gJik0LTkxbdql+sNkgUDPNNe0iKQMXaLErAYFrVTNe3kAGQbSwSnONUZcJM1l3Q0RLQ2bZp6pzi2qbugkyClSl++JpXIkKDFYckEOLS2lgQQPbAXABCjWgUbZntGvF/CfbqaMft1L2RYvZEIumnmPaCVd2oId2gIAEobkAcdCAKRtNrSzaniOtP1UBmc5hQKCAKqV/r4HYqhnJpagFAW1x25xWmzudMS26N2GaLwhxQueIuBcQ/aFHDSBYdg0RgZSigbBsYK8FaTE3rYFAmLXmRM2gwMqcRVSQLxVUq5p8OaByQGFGCREiQKoVeV3BHFCqujldG7AtVeuukOjYZwYyBIsULLXgZXpCAbBkzVKma0HNrWsqeLspQLi8vGi2KQ4ootnNpAWLRQiyVAVN5ITXFvyr+0mtFlKLprcNau34Ixv7r0peGBxfH10/CpLmSke0uYeMgujI8L27k93TBEm770gjyLDPQmfk2zN57Ivd17XF87tNOHTJHVw/ep8GAPIIABxp0j6jmepjY3zPjeH4vPH+41j5343aObuvzoGNzB5MjZo7P2cjiDpqx+FcytY+71Y6/m63Nttnlm5dlWr7fvpneJCqKgwDAM3ypgeg6//QfvIZhnz/pdd+yrVqYLDxfuwz/xlI82NnSifvUvjRHH4F8pkcPf2VeOO4h8b91P+HSgTtV6ppJ2pnXdX/xVlCyMCAWhNQjaegK+NIKogqSFRQlmbNEGIIacapXIFcWyFAsS2i6z4mwXwr4DdBvQVwmDRjUwhWMUIT7EwBMjNKAG4pg1e1ikTW4OlbKshV1LJBpMl+AmnROxEgM3JYFbRA09dOE2GeCfHCuKUMqgVUBFNl3BqvBIBIjIkYFzB4TaBlBXLqboZqBUTfT0RoMoOOZ5dhBShZPS7SqrJHbQUFLUalDntVx9MDjGM++dHn3grq14gX/j2/e+QJc2QBcV/uAMYjBd8jYDS276hvn6E/ZMmww0FzE4fWAU3lOPUqvBMmYgQSgDVITWpFqaW56GjNjHjZ0sgWZ7Vo7L0FTQK1BXezCLgKhKHov6hP8wYygFCbW4WUlgGgDRTU5cV862rVjC5r89+2Ie7akbawYquovWmVWhtDQGgZpczH2g4QkIA5QtPCCVIpmNyh2sUOUrTN5AOu7dW08QEgCg1VQwVXIsyXix4eDM1tTeS0bRo8XGtFWlcQmpbROIkABAaTvtRyJKgtWHaaZ+RSwQ3sqPWmaR+DMqQq0tLS6jVxmnF9uuJyuSKEqH7IdRMqcilITeO3c+lic39DD8CsVZCbBSm0nPAxRmDaiglKCMhSkFPCPMdmbtb/pWhhxQidJwkREiew6BrOJWFZs7onFcGaEghQt6oqqCU3IVBBxkKCGyoWVPz88owshJoSUil4fnpCnGaEGHFbE94byPhZVHPOIWBp7mEQBcvXa+gMKpvwUKxGQ0aMAfMUMV8n3CRrvu9AYHZ59P9FaBTWbP+NQcSjUHaUqMA+NwuYCO000D7Dz/i7EZiMYMauNQFOBdW4u55bvYWumdYb7Prbte6tT1ttjtKBhBe4fc2a4IRPf6iM43ek8bd+ePejUZAvpfSK3zZGJpD7cQfw0PIyPm+cVxs7/VtUISKbleU4RmGfQWo3jjb2g3vpowPRFDRHLkOmgFEwsGn6Ukp4/vZyl8DDu6/aVPfPabNymPuFKVwI1DPxdUuJ+w2YupAJ2TJjmSWDKHbFkR+fo/Vt8+bdbf2cfFXy8/9XoiMFQFdA8BaY374E0FKtkjQZRsEppClhxVSce7dvjgyWCK7cgpk7Smia/KIRGlL0e2gqXAUYhCwa35CK1sBQ1RaZEx6uWXB5K2AqWF8SQlQX5sixtUEgTODLhPmnK6YLYUXGLRWooaHgl3/8it/eFixJpS8izS6VUEExAtcIEcL6a0ZJWkagNBfjKU6YKOC2ZvCtYLoB0wK8r1rTTEhBxoUCLiDQLaG+LSg5oUwMsFqEhPcgr7YkG7VWTdMLVeyWNeN2S0irFsKtaBYlmPXCQTDyQrnKqiBqb7Tbc0cgwmiM8bI1YnRknfX393zOkpr8CBQc0bhej0DOeL8fKQZH+jTI+P3tXdEdNGiajemKDrIy7wyiG2I77OM06fjXNllQn70QGNenaz+DfTYMY7iwokSAonAx5gJF9+13PWZCROt3oAnqHRy0lzukQaFV/G6IVaQvpFJKE5IrNGeyWilCiI2RV+S87CZ+nmdtZzsM5nlqAjdjXbVadSm1CYv3ecr9YrGFZALTNE27+0sTYC3IGaRAL5eCsq4afN8sIj4AcAqT+lcKep9L8wVf1xUpq7BLQRncPF/w7dtWWXLbPDoeb29v7WC1wk4tc0OpWuCwPf/W4i9KKZDm3/309KSCIlp+eCgDCFA3qNI2aGBWK00TrCkEUGDEpwtqyVrUp2Qs7zdILbjME9LthpUIy3rD6+sr0qpB5tM8gXjCZbq01KYz4rQAAC7zpWumiQi//PIL1pIV2CTG93/7GdfvL/j1198xTxOYzWKkrmy5VEzzBd9/+hk5Z7y+voMo4GIuU6zVzy+XC56fnrvgYOmRidRf2gQtAmG6TIhTgNRnUK2Y479G6klPXqvctcbtMJ7nuY/HGKht19rftk+en59b1qmKWgTXBsYB4O3trVeOf35+vhPIbd+ZdcF40eVy6dXpfarly2Vu7ofK/6xqve3hfsg4YXLLNrUlQcgN5Jqi3OIvvNtjLgVsGmnmO4HbC46+fo2RCdfetcz/vidiMIugbPEu06RplO0e9uzR1ce7Ytm1PuDeA8FlWcDMuF6femyG3wfeVckARkppxx/HuJw+dhi0dLV2faPxHnPT9KR8X9dUiBuYen9/x7/9+38Bt7ixo/i4NsqbOxIAauO6LDcs64rY1jqY8Prr733t998bSAnRxEqYm1zfL6TZG8m519o4GK+PMfa1aGPhrRh/Jfeif5b8+hhTwf9VyMseNvb3Yy5AL65qcoiB1dB5gbnamScHxQmRLgiFQFUL6qlSw3TsTTA2XWYr+HerGTMRKlUsXLCWgiy1Wzk0P27ARQLmlIDXDPkfK1gY8TniOpEWyGMFDDkI4t+ecHm+gMpNE6kk5T+vt4RbqVih7kVFNNmPLAumwuA4A89PSM9ALQFVJqSlIqcnpLcZIoT6j4r4D0L8jfH0FvEu1GNnIwRcC5Cz1jpbVkAK0JLGiACpChJr1XQQYakFS07IIghTQCkC1IxagbQmHWdh1AqESYtPS1UPCZLm+iZaD0dD7ZuFRkx5vd9bXvnheeWoHPI0CvBHAr3xXnvGkTXjozigcZ36Nvv/vRLnkWXuM/R5S8Zt6X8bg7RG2UFi/rS5Mdup7As5aQtVUO3v2IpteaHDd5prvRtsr/0SUVemSk6jhf1GV4+lNki8CexE6vLCIfTn6D2AXDIY+5R/xtCXZQMafkKV6c1d28ls/qMFllN/1PTZu69zYQeDFyw3jZ4FM9VmSs8oOWNdFg1kAnfBXodc80arsK5jmLMKU2ldsa6pxVCIBnG34ESrdeFN8jYGy7K0tu192W18bD2Y1s4qw3tBIqe8ATxBM2tuPoZ7f2VqoIYQY0AhYCoRtWjQZVXF0DZGzWpjRA28SjMfrmnFsqy43RbcbrcOMkII+n8IeH19xevr206rO01z0xxIE9A07sSKw/mxrQ4smtC1rAve3t56cKYH1zZmtVZwaH66IqgpoYSAOGke838F8mvmiGmNmlgvFI4uLx6469wXSC0wLcUjTfn4rCOt0+hiRUStCF8zlrf1S24/A9hcQQftk8imANl4EJQpQYXTB43sAODRONozxv141F/Pe/rv7RCVzZLhfzP+7a0II+3GYmiDAS1g70olQ/+O/veff0Zr95nxwkFbd892gMfu4Q9hP5529qApq2o1AXBbT2N++7G9AumZF7vOlFpMVuNjZs3wr4+EF/88396vSGNCgKO1ttP+4j6Fu9H4twlU/n6PPh/Xlgfgo9Dnf7MTBoHmOtsUqyAQBUxxQikauizq99MUhND0/xMAZvBEDfyqHCO62NS3QxgsjU/VgnrJuIWKTIR1yki1qvtwrghQy0IB4T0qb40UcVkA+o8MeV1QnheEUsGi4LeKoBBQWJBKQpKWxr1ogb0kAQka1ziFCeAJUhi4EWrIqHIDB0Fm0QKBYcKaGWFtubFugpAZUQIuRJiLKlNJMiICSCpKzUhVUFl/s5aMwqHJA4SVNX6uEOE9VxRSTwJUQk2lrQ00Dw+VM7jVyyCz/oFasLfNm60xdnLGsfvmuI68UmRcH+OeHPe3/3zc60f8UDnsMT8YFWzM7IrEtnOp/V6ztrb9pD/effYj+jTIWNe1/23ZgHxnR2uEXWPap77psAXAsfNzNS3R6DtqdHRwdoatoB3VDzqwu66tIx02HoSYEBAA1NC0c037lXNGxIZIvRDtGbXvu2+vZzSabeo+DZmfbC90jcLpeDBoeky1PpSckFoF7RAimEIXrFqPUcOWEcwOTAMB6oeo1qG0ZkQLyHZFBn0hMvvb2jlq9uz63K7zLiJ+jmup3RJli9rupQKMuzcpMAVrLAkRIHVCJdXeVQJiCDAXud0GtVggbK4vKRcstxuWZcHt/b2PvdVaUIvEK37//bWn5mU2d78JRLXXarACbzqHm4bNg08b92VZ8Ntvv2FdV3z//h2Xy6WvdwOvppUMLd5kvd0QWYOcL82q9ZVpZJ5HjNQzXx/HY7/3FpCdFZQZxPtDfnyNzPmofUY+wNT2qMVeeF/du7Z7YdV9bkzcC0ne+A66V0CMfRnbeu+6s/fv9YLz6GY0ukVZ2x8Bv6NxeiS0HdHWlvv2HAr4B7//6LvDtnascN8fIupzdfSM7rbiQIa/7pH7meTceZsBhPE+fp67a2/jw1UOwC1UkCTag3M/V4/A+rj+PxKIvio9Ftj263Pcq348xrGxffKRoPYRkHgEhuza2tcgYN4b1BSUel6ZFrkJgQBSrihBEBmaRp1afTBublFNPATUncoyIdWQsQRgpYoMad4LogUBKUBAyCC8h4g5qMv7tQDp76+QeUVabuAsWoODBVoGTZCkIMmKLBm5AGllJIlaKRwViQmBZ4AmoDJoJRRKKEiq1+CKygIJE1IhhJUAIciqLvATMSYSxFoQSwZqRmAGUFCFkNBqeoCRSkIxYEWEtZ3/hQm3oiBDCMgFQNWiqntFACNQ1ARGQprmtgGJ7vXSLt3m817ZMK5Jv0a8K9WRYuDR5+MaegQwvAz86LejwkRlrCZTZ2eRIWyxvMaq2t9y94Rj+kMgY9SYeLLDyoMKE1S9JrLW0v0M/S08sxw1aF4I90HDfrAYhGCfHyC8LNLPkirmLmDX7QMC7eDJ2WIh9uYir900U/7Lywuu1yvmee5AxAvjzFtmEt83T77/3i/dV/k2AVakIuWkmyq3tGu3G2LQKttj2snSgo+paUu8ryGzMqMKwe9vr5hK6Sb3aZp2worv+6bd31wcbD48GNGR3g7gsW6B1Ko1MFzfAS2+twcZ1K0sHCIiM5guuF5mQCr+9tML5ssFRFrR3CwGIhpfw7SZWyHqR29ZWnpqX+ae3tRqeqwNwDFHEDGmSauHmpXGu3rEGDtA/e233/D6+goiwvV6xcvLC6ZpwtPTE2KMvSChubL4YoWlFATW4O/l7R1TUNed4rIifVUa9/EIsIH7OgKPhCjggeBJ23obA0VHgXyncDCg0p6zxU24jD1tb9W2D+0+I8/pSg4RkNs3u7oYuzbT5pvv+gbcGeZ2z3wEMsZ22HO9Jt34dG93rSgOuPl2HAlMfrx+BBr3IEKTbozC2I9AxGfcAO4EazdyRwe3fu5/vwUXRwe+dtn6Gq/bFAJb7YbSXFeV99TdfPjxt98BaMACgGUAFGluf7XHiYRhbXqyuTJA/ug6G58fjeFfnT5aJ3fX0DG4GN1bHq0/755yBB6MvOxyBP6Onu8/2/aRxZYCUqECd4W6M7Vg7VvKEBYIGCHquVbRNPNQhSsMlELTmErIKFxRqWAtgqyyPDRetcWsEiGFiBxUcXfNKtznW8WtvGmfuSmKKyBF9FU1boxCAMcJSwCIE4QKKoAs0FjJLJAkoKhgRSCgVhMcACoCSlW+O4WIKTA4AEu6QcoCkgSGJhMSEpR2jyKapEWYIdxiRytQIyO32lkJBsAaH6qP1pFagSCW3AgdtsF+/a+H0R/SI+D0WR7yaZDhGexIhsyOfIXNl3YTmregGm3kx6bvEWSY0DsyUS3S9viAK7K5KZQiDYiYSxP3U2anbaK9RcQfFiZE+5SYIrI7sI0RGdMvJe2Yjpl9ex8ODv0xyNKCJksDN6Vq3n3YmLiDqKcubPUkSi0QKbDgYRvP0g6y0lK0ma+v19564c/c4rylxQOMDkaKZkwKMfb0xdYncw/atH33RaLMLcD6BWpWCQMjMWKOjKfrBYEIP/30DdfrpWtivVAZg5YYgrR+zxqwfZlnLXLlDv7n52cQEd7e3vraL6Xgeg0qVAhaTE/u87IBsIIQuAun67p2wGeFCs0q8uuvv/Z7+z3T94ozwZo7ziP3lK9Cfn/eWSBc/4408DanXigwAcDWUxfgqwABd2vSC8dH9/Tr3SsL9lY4TTtdk7WxZQZqNAq5aK9eATrvBU1qx9fIvz4Soo4E+COm78fRW2UM3O74TW0Z/OTeXeqjA2Ucs0dAcA8ktvZ5BYbv+6PDbZwv/50fj/HzI4Bx9Bw/ZqFZR/0+tfsYYCDaUviaC2paFo25asoMBu3G/+6cautDSDXLRTaXyz7GLsvVI+2ltxSPgNmvkx8J6H9l+gwYBdyalXuhH9gHvx+tI/vfj9cRGB7X4tF6+mhfH4GcuqV82vcbglqAta6anpUjrqyxr5BNLlYRi1QwQuMtrF4c6ojrFZ5VZQIiEKlrea5V61sQI0wzihRUVJWdQOCgBbOjMCIinsITKDBqjcgU8I4FVDOktvIDMSAGVssFmvcJARDNBqmIoIBEk+SkkpGXjLQw4kJAUleobF4RpPVCSlMmldAyj6Ipr1y8i1SVbUb5dLRMbvPm5EpzufWKCvwxGtfQX33vfYY/fAbkG32+4nc7ZP2hbQ2yd6JNI+y1Zzln5/ZzDDIe+Ut7AdsECZ9dRhcUVHi09tC9NrBgM0/mbJt+Q6o4WATmGuH7Z/31KQNHgejoANCJ25vZrA/+oPPPsEPLX6tjooHddghJw+easWk7VDzYKNV8hCs0uxR1DQ+zpoRlwW5Ojg4x6/d4kPn59kCtVk0nS+0+3s1OmeZGvt2w35iFgwgUuB+0WrGdMc8TmIApBnx7ecY8zShlq3Xi76ttsvnVe8QQUJu1ydplMTBe8+i1WaVu2VxGraaIIMR7QOaFKWuPgRTvw7sHdXvT7Efaya9Eu73rXv4zv/5s7EchycbU1qAHBCLYrUMPSKwNo6DuP/fP8PPvLWsmLPs9fSSkdAHywBrox2R8jd8d0QhojrSuI1gbn9vHtl3jNeaj8H40lz9q7xEAsI/uANkn6E6IPBiP3d9yP772/a7d2JRK/gwQUXcB410jf/bj7WPRerYnok1YedBf1Y5Kd4NVJY1ZMcxNbx8Q79/9HhpfnwFWX4mO1uSj/Wf00f55BFj9+yPAe3T/Qx5w8P94X8/bjn4jTWsvIshVQDUgBkLl2AACwYVvtD3W7kMCIov/0vArBSDb50R6Lgoa0CUV5kMDySRaR6vdTrN9ZgFlYOKIyBOqBKzE4LoCRYCihYtDS/gTAkGkFaYUaAyaAQ1pGbZEINLS1daCWglUCbmqrYaYWhY2aA0NhqbHtbHsGxltT+k9R97owd/RPP2Z9CUABu3PMuBzgONH9IdAhj101AB4JucL5RggMJcareugHck5gfme8Y4uDf5/EyRGLc0IMgxo7IRLvaSZoXUzke04QGtcYBMKAGCa5l50a9SAWJYWC+AFsHMP8r7Oewa11+QeTaC3DI1pCfW9jW81AKKa7mmawHFluz4AAAnGSURBVBRAtGlprQ15zR0UERhT2LtTkahAP81bYPHo3mVCs7mH+XgRr42391K39MCdCe4YqPTc8F6b278X2T4PTRsyTwhxQggNJMSIeYq4zBO+ffuGaZqBdfB7BHo185QLlpTU3SpGTK6ImJH9X0rBui6orX6IuVFZ4UAbE6ItRSoI+P79BURbusx5nrum06qdm1tUrbV/Z+u5VzsuRXOMc8uy9S8AMoxX3O1h2mvDPaDw63D0Z/dCnrm36VTuE074RAjAsXBsn4+WDFMkGC/T1MueD/KO39S6ZWmyNphlD4AmWaibu6J7eFds+HEwHnckvBs/9m6Ko/baj92RJr0DjXav3s8hK84jF5GP/j8iHQ8VbEbryggSPHmeZuSFBnu/F+SPFUX7+7eDqfF/7x6nQlfZxRjaWHvgYfx/TUldHnMBRLqQJsOc7+dTgZcVcbXnSePtmxupAtZc1Fo3KuG8ddn+H9fDvwIPeSSI2/v+rDFlwP1a9XPg3x8JVj8Cw/adVxz5z8d7jJbZkcb1KlADRSoCoYIAYIoRkdTCCqClQG4ud7Vl9SQBBwFH/X2oDKIMUFVPKXOB4qYshKa3XUVwnQKYAyaagHXRc1mAshSk3xMSCNeLAo1SA0oGkCqQCiRX0CSIkTFNjDgzsiwgaQpQAbhmkBQEVDDVlqClgoIAgSAsyFSQoBXKY2AgMmqLtQAAhNCQkyl0BGBqdTHgMvvdz8GolMGftD8OgeJfGWQMNO6Lf5Y+DTJG5u817ObCZAfeEdCww8syS6EHgNPdZjQhZBQ4Ro3kTispuMslvzuQbSFtn7TzpB3k/iBiS185Q7CZoH07TKCpteLl5aULJKUUPD09YZ7nnoZzcz2ye22uIaMwdbQI/UG2S3soQIWmV7N7cxOA1nXtcRCBQxOYV9xuN0AIU5xa8JTV+iBQ0NiB6to0zrm3ZPgx9sKCUbd6NUYaQthZfkIIEBag6jXeauQtZkQboLhcLmrRIGoywbZe5nlGYEZxa8PatC6M9/cVy5pxWxcQ6/VP1yvghE8RwdvbW5/P19c3XC4XvLy84HK5tLovWwpQ678FbYsIXl6e+sF+vV5xvV57IoRff/0Vt9utg42UUgfPfh8RkVYfzRkolsryscXvK9EjAX/UCO+UBA9M3d51bxOC94K45x22nh+1wbcD2OIYbJ2Z656tUf3sOI7CnlOMJ7Y+edcb/xvC3nran4t7fuZ5o7cOjkqY8RlHQvyOD+nNH1oyHglC/v0R7X9/H5g/tvFIq7sDXgfj8Yhs7rxr3f4C105sZwyRqoX9cz3tAV7tQGNZVvVTZy2sGag907XjaLz8uVlKAXhzxWPe0mX6No3r2iu4/hUUEyM9Ahn2nb1v/AP9LATu1+s4Pv66H4GyIz4y7n8P1se1/BH5e2s7GEQC4dprViUR3FJGDIIgoi5LoiChdnfb9qKuaoVAXaellRYgkpbcijQcoep9shSspUKEUGIAOIJIhfiyLnj/5Q3xfUWOBct1VUtGZqy/L5AkiNAYjXmKmOeAeQoIHAGpLZajaMG9mgGpYDQFCAvmb1cgaMrd26+vyKjNskKoMaAyozSZj0JLf1+0+G2uCrJSTQigDu5HnnE397Zg/iR6xDe+Cvk98BEY/oj+UNJ9j769BmU8EI4Ohg2xK8jQyo3bwe3Ju9/YM/y9vJBhz7V8xZteaNDaNISqPv6AVtzerrV7jdo9gHp2Inv+zvfb9d3nKvf1DMwCME2hA6vxEB/75fvr23PkY1ubiTEMbbTNMsVpZ4WoFqjFFoyvY8MSMF9n9YvEPh/5OK9jO0Yhzs+5bdxxoTK3jBnkUqTtxmSbT+t/jBHSAIYqMfoV/e8NzFlQZQuungGB5gMnZsytdsXy9rZj5t56ZMKI5feXVsjRtJreB9rS/dqc25hbxiivBbU1Plbo9QdfWlfUUhAIWunXrdWvTEcH8yNlw/i7kcE94jnePcVf95m2+Xe/rvs+JOrLTmQUaPYCHz4QpF0v4C2cdwfSME4f9f8oXmGkkbeO4/LoQDniyY/m8qNnbn1+fP9HAuTY3rGdH93jc+3a5vTDed19ZtryTdGSS1HQKGqJMLdPwrGroMDfx60X2dren0ub0OT75s+JcX4e9fUr0riXPlrnNj8yWDI+Gp9RqBr/9vQIZNwDhP2asdcIAo/21TbvYm4LanGQBjSa2zTXloq2e2UYZwG2dVW1WHHJDWDYmracVK0ApJC+AJQqKsADzTGbtV6GECgLKhWkJaEmDdxeCyPdMqS08awVtWSUoiBAuPTTmqS2l7T03RUQVosetNhyrRVZioImgrpKMWmQNym4oBbcXSAKMBrf1ibQLt7t0dz9n9wfX2Hvefni0Vh5+myf/qnKXl6o9Bp+L5AebUz9Tu+hwpX+c2TS9b/zHX3YyZHRNFCxawsRLA7DD09r5d3GDqzpzjwQMsFwdB3wVhYrrGZk2n8FGbS73zYuewFhPEjvfWybECQabCxVK2kGVrai2aRcpqdWT2MDGQpK7DHMjAAB8xUQPfT8eD/SBI/feSDagUSbi3FDB1Zmor6URwt2Wy+wMQhBGSftUyD33zc+bG5KpWjGjcv1Cg4V80ULLYIYc0tNm5elj4GNF4DuxmTfWSC4d1Mw4GPB3Ha9zfmyLFiWpWfqul6vPQuVWcJGNxajdV2BWnGZInJoxYEORukr0hHTOjqIHwreA90LlPffHa3fR0LD2I6738F4y33bH7Wv88hqQs/BuGBvpfD3/lHfx334IwHsIQ18e2zP8U8eA5vHv/sYAH4END5aEx+19fNA437sjxRAI8/rr1IUjBrPhs3tvoCWa5neC+h+9woyHKgiwtj6RwDxM3vmq9NnhRyvnf6R4DTGzX3EJ+zde1QcuSIegZgjOWlcF4/AjT4TIBFIEaRakGsBEyMSwDGo8N3PzrauGsDYQAYa+BV0dwhqroFCrW54e45Y4hyAiNU1HQwWAmWgpoKaKjIYa2WkRVBbEcBaMta0AmsFTQEcAPW30OJ+NLwA3T+LVEgSlLyBDIKCdgSNyaiuqrcComYFrFUtOg1cEt9bD/9/2CN/Bh0B5o/Olrvfy1eAWCeddNJJJ5100kknnXTSl6GvnQ/zpJNOOumkk0466aSTTvrL0QkyTjrppJNOOumkk0466aQ/lU6QcdJJJ5100kknnXTSSSf9qXSCjJNOOumkk0466aSTTjrpT6UTZJx00kknnXTSSSeddNJJfyqdIOOkk0466aSTTjrppJNO+lPpBBknnXTSSSeddNJJJ5100p9KJ8g46aSTTjrppJNOOumkk/5UOkHGSSeddNJJJ5100kknnfSn0v8G0iyF5pE0IuwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Retrieve a batch of images from the test set\n", + "image_batch, label_batch = test_dataset.as_numpy_iterator().next()\n", + "predictions = model.predict_on_batch(image_batch).flatten()\n", + "predictions = tf.where(predictions < 0.5, 0, 1)\n", + "\n", + "print(\"Predictions:\\n\", predictions.numpy())\n", + "print(\"Labels:\\n\", label_batch)\n", + "\n", + "plt.figure(figsize=(10, 10))\n", + "for i in range(9):\n", + " ax = plt.subplot(3, 3, i + 1)\n", + " plt.imshow(image_batch[i].astype(\"uint8\"))\n", + " plt.title(class_names[predictions[i]])\n", + " plt.axis(\"off\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_TZTwG7nhm0C" + }, + "source": [ + "## Summary\n", + "\n", + "* **Using a pre-trained model for feature extraction**: When working with a small dataset, it is a common practice to take advantage of features learned by a model trained on a larger dataset in the same domain. This is done by instantiating the pre-trained model and adding a fully-connected classifier on top. The pre-trained model is \"frozen\" and only the weights of the classifier get updated during training.\n", + "In this case, the convolutional base extracted all the features associated with each image and you just trained a classifier that determines the image class given that set of extracted features.\n", + "\n", + "* **Fine-tuning a pre-trained model**: To further improve performance, one might want to repurpose the top-level layers of the pre-trained models to the new dataset via fine-tuning.\n", + "In this case, you tuned your weights such that your model learned high-level features specific to the dataset. This technique is usually recommended when the training dataset is large and very similar to the original dataset that the pre-trained model was trained on.\n", + "\n", + "To learn more, visit the [Transfer learning guide](https://www.tensorflow.org/guide/keras/transfer_learning).\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "name": "transfer_learning.ipynb", + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/poetry.lock b/poetry.lock index ba1019e..a79d73f 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1626,6 +1626,30 @@ optree = "*" packaging = "*" rich = "*" +[[package]] +name = "keras-tuner" +version = "1.4.7" +description = "A Hyperparameter Tuning Library for Keras" +optional = false +python-versions = "*" +files = [ + {file = "keras-tuner-1.4.7.tar.gz", hash = "sha256:6befd25ee81476e6207d8ca7ed7dc674b8194437cfa0b127294cd00da905ff22"}, + {file = "keras_tuner-1.4.7-py3-none-any.whl", hash = "sha256:0bcf0220eccc74e7a6a9bd7c8e58531a1af8515019e6bc2dc495833155c07fe2"}, +] + +[package.dependencies] +keras = "*" +kt-legacy = "*" +packaging = "*" +requests = "*" + +[package.extras] +bayesian = ["scikit-learn", "scipy"] +build = ["build", "namex", "tensorflow-cpu"] +tensorflow = ["tensorflow (>=2.0)"] +tensorflow-cpu = ["tensorflow-cpu (>=2.0)"] +tests = ["black", "flake8", "ipython", "isort", "namex", "pandas", "portpicker", "pytest", "pytest-cov", "pytest-xdist", "scikit-learn", "scipy"] + [[package]] name = "kiwisolver" version = "1.4.5" @@ -1739,6 +1763,17 @@ files = [ {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, ] +[[package]] +name = "kt-legacy" +version = "1.0.5" +description = "Legacy import names for Keras Tuner" +optional = false +python-versions = "*" +files = [ + {file = "kt-legacy-1.0.5.tar.gz", hash = "sha256:dbbade58f12c6a6da6062f4b045a6395a8d4195815e3e064bc3e609b69c8a26c"}, + {file = "kt_legacy-1.0.5-py3-none-any.whl", hash = "sha256:8d5c5b3dccf348367fe9ca5b006e7ad2d1babcce62976cfc199e831ea699dcd3"}, +] + [[package]] name = "langdetect" version = "1.0.9" @@ -4991,4 +5026,4 @@ test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", [metadata] lock-version = "2.0" python-versions = "^3.12" -content-hash = "ed7c67f1a3000c96536df6568c55b990ecb8de84e119628745456f83a7a3f243" +content-hash = "9f45e872798dbe6194f27e3c998d90385fc956766566e4bff5b031c97450e261" diff --git a/pyproject.toml b/pyproject.toml index 8a95d04..22623eb 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -26,6 +26,7 @@ sphinx-autobuild = "^2024.4.16" tensorboard = "^2.17.1" tensorflow = "^2.17.0" wordcloud = "^1.9.3" +keras-tuner = "^1.4.7" [build-system]