-
Notifications
You must be signed in to change notification settings - Fork 449
/
Copy pathpirls.Rmd
571 lines (415 loc) · 17.1 KB
/
pirls.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
# Progress in International Reading Literacy Study (PIRLS) {-}
[![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) <a href="https://github.com/asdfree/pirls/actions"><img src="https://github.com/asdfree/pirls/actions/workflows/r.yml/badge.svg" alt="Github Actions Badge"></a>
A comparative study of student achievement in reading and literacy across more than 50 nations.
* Grade-specific tables with one record per school, student, teacher, plus files containing student achievement, home background, student-teacher linkage, and within-country scoring reliability.
* A complex survey generalizing to fourth-grade populations of participating countries.
* Released quinquennially since 2001.
* Funded by the [International Association for the Evaluation of Educational Achievement](https://www.iea.nl/), run at [BC](http://www.bc.edu/bc-web/schools/lsoe.html).
---
## Recommended Reading {-}
Four Example Strengths & Limitations:
✔️ [Group-adaptive design improves measurement accuracy by rotating testing booklets within countries](https://pirls2021.org/frameworks/home/assessment-design-framework/group-adaptive-design/index.html)
✔️ [Framework designed to assess fourth-grade level reading internationally](http://doi.org/10.3386/w26967)
❌ [For many constructed-response items, scoring requires human judgment to assign appropriate points](https://doi.org/10.6017/lse.tpisc.tr2103.kb5892)
❌ [Reading attitudes self-reported by students and parents susceptible to social desirability bias](https://doi.org/10.1186/s40536-024-00233-8)
<br>
Three Example Findings:
1. [Countries with early educational tracking into different school types by abilities saw the largest differences in standard deviations between fourth- and eighth-grade reading assessments in 2003](http://doi.org/10.3386/w25460).
2. [In 2021, fourth-grade students in Oman reporting a high sense of school belonging scored 37 points higher in average reading achievement than those reporting "some" sense of school belonging](https://doi.org/10.6017/lse.tpisc.tr2103.kb1236).
3. [The Czech Republic, Iran, Israel, and Spain narrowed reading gender gaps between 2016 and 2021](https://pirls2021.org/results/trends/by-gender).
<br>
Two Methodology Documents:
> [PIRLS 2021 User Guide for the International Database](https://pirls2021.org/data/downloads/P21_UG_International-Database.pdf)
> [Methods and Procedures: PIRLS 2021 Technical Report](https://pirls2021.org/methods)
<br>
One Haiku:
```{r}
# lascaux canary
# glyph jump reveal caged bard notes
# cryogenesis
```
---
## Function Definitions {-}
This survey uses a multiply-imputed variance estimation technique described in [Methods Chapter 13](https://pirls2021.org/methods/chapter-13). Most users do not need to study this function carefully. Define a function specific to only this dataset:
```{r eval = FALSE , results = "hide" }
pirls_MIcombine <-
function (results, variances, call = sys.call(), df.complete = Inf, ...) {
m <- length(results)
oldcall <- attr(results, "call")
if (missing(variances)) {
variances <- suppressWarnings(lapply(results, vcov))
results <- lapply(results, coef)
}
vbar <- variances[[1]]
cbar <- results[[1]]
for (i in 2:m) {
cbar <- cbar + results[[i]]
vbar <- vbar + variances[[i]]
}
cbar <- cbar/m
vbar <- vbar/m
# MODIFICATION
# evar <- var(do.call("rbind", results))
evar <- sum( ( unlist( results ) - cbar )^2 / 4 )
r <- (1 + 1/m) * evar/vbar
df <- (m - 1) * (1 + 1/r)^2
if (is.matrix(df)) df <- diag(df)
if (is.finite(df.complete)) {
dfobs <- ((df.complete + 1)/(df.complete + 3)) * df.complete *
vbar/(vbar + evar)
if (is.matrix(dfobs)) dfobs <- diag(dfobs)
df <- 1/(1/dfobs + 1/df)
}
if (is.matrix(r)) r <- diag(r)
rval <- list(coefficients = cbar, variance = vbar + evar *
(m + 1)/m, call = c(oldcall, call), nimp = m, df = df,
missinfo = (r + 2/(df + 3))/(r + 1))
class(rval) <- "MIresult"
rval
}
```
---
## Download, Import, Preparation {-}
Download and unzip the 2021 fourth grade international database:
```{r eval = FALSE , results = "hide" }
library(httr)
tf <- tempfile()
this_url <- "https://pirls2021.org/data/downloads/P21_Data_R.zip"
GET( this_url , write_disk( tf ) , progress() )
unzipped_files <- unzip( tf , exdir = tempdir() )
```
Import and stack each of the student context data files for **Abu Dhabi through Bulgaria**:
```{r eval = FALSE , results = "hide" }
library(haven)
# limit unzipped files to those starting with `asg` followed by three letters followed by `r5`
asg_fns <-
unzipped_files[
grepl(
'^asg[a-z][a-z][a-z]r5' ,
basename( unzipped_files ) ,
ignore.case = TRUE
)
]
# further limit asg files to the first ten countries
countries_thru_bulgaria <-
c("aad", "adu", "alb", "are", "aus", "aut", "aze", "bfl", "bfr", "bgr")
fns_thru_bulgaria <-
paste0( paste0( '^asg' , countries_thru_bulgaria , 'r5' ) , collapse = "|" )
asg_aad_bgr_fns <-
asg_fns[ grepl( fns_thru_bulgaria , basename( asg_fns ) , ignore.case = TRUE ) ]
pirls_df <- NULL
for( rdata_fn in asg_aad_bgr_fns ){
this_tbl_name <- load( rdata_fn )
this_tbl <- get( this_tbl_name ) ; rm( this_tbl_name )
this_tbl <- zap_labels( this_tbl )
this_df <- data.frame( this_tbl )
names( this_df ) <- tolower( names( this_df ) )
pirls_df <- rbind( pirls_df , this_df )
}
# order the data.frame by unique student id
pirls_df <- pirls_df[ with( pirls_df , order( idcntry , idstud ) ) , ]
```
### Save Locally \ {-}
Save the object at any point:
```{r eval = FALSE , results = "hide" }
# pirls_fn <- file.path( path.expand( "~" ) , "PIRLS" , "this_file.rds" )
# saveRDS( pirls_df , file = pirls_fn , compress = FALSE )
```
Load the same object:
```{r eval = FALSE , results = "hide" }
# pirls_df <- readRDS( pirls_fn )
```
### Survey Design Definition {-}
Construct a multiply-imputed, complex sample survey design:
From among possibly plausible values, determine all columns that are multiply-imputed plausible values:
```{r eval = FALSE , results = "hide" }
# identify all columns ending with `01` thru `05`
ppv <- grep( "(.*)0[1-5]$" , names( pirls_df ) , value = TRUE )
# remove those ending digits
ppv_prefix <- gsub( "0[1-5]$" , "" , ppv )
# identify each of the possibilities with exactly five matches (five implicates)
pv <- names( table( ppv_prefix )[ table( ppv_prefix ) == 5 ] )
# identify each of the `01` thru `05` plausible value columns
pv_columns <-
grep(
paste0( "^" , pv , "0[1-5]$" , collapse = "|" ) ,
names( pirls_df ) ,
value = TRUE
)
```
Extract those multiply-imputed columns into a separate data.frame, then remove them from the source:
```{r eval = FALSE , results = "hide" }
pv_wide_df <- pirls_df[ c( 'idcntry' , 'idstud' , pv_columns ) ]
pirls_df[ pv_columns ] <- NULL
```
Reshape these columns from one record per student to one record per student per implicate:
```{r eval = FALSE , results = "hide" }
pv_long_df <-
reshape(
pv_wide_df ,
varying = lapply( paste0( pv , '0' ) , paste0 , 1:5 ) ,
direction = 'long' ,
timevar = 'implicate' ,
idvar = c( 'idcntry' , 'idstud' )
)
names( pv_long_df ) <- gsub( "01$" , "" , names( pv_long_df ) )
```
Merge the columns from the source data.frame onto the one record per student per implicate data.frame:
```{r eval = FALSE , results = "hide" }
pirls_long_df <- merge( pirls_df , pv_long_df )
pirls_long_df <- pirls_long_df[ with( pirls_long_df , order( idcntry , idstud ) ) , ]
stopifnot( nrow( pirls_long_df ) == nrow( pv_long_df ) )
stopifnot( nrow( pirls_long_df ) / 5 == nrow( pirls_df ) )
```
Divide the five plausible value implicates into a list with five data.frames based on the implicate number:
```{r eval = FALSE , results = "hide" }
pirls_list <- split( pirls_long_df , pirls_long_df[ , 'implicate' ] )
```
Construct a replicate weights table following the estimation technique described in [Methods Chapter 13](https://pirls2021.org/methods/chapter-13):
```{r eval = FALSE , results = "hide" }
weights_df <- pirls_df[ c( 'jkrep' , 'jkzone' ) ]
for( j in 1:75 ){
for( i in 0:1 ){
weights_df[ weights_df[ , 'jkzone' ] != j , paste0( 'rw' , i , j ) ] <- 1
weights_df[ weights_df[ , 'jkzone' ] == j , paste0( 'rw' , i , j ) ] <-
2 * ( weights_df[ weights_df[ , 'jkzone' ] == j , 'jkrep' ] == i )
}
}
weights_df[ c( 'jkrep' , 'jkzone' ) ] <- NULL
```
Define the design:
```{r eval = FALSE , results = "hide" }
library(survey)
library(mitools)
pirls_design <-
svrepdesign(
weights = ~totwgt ,
repweights = weights_df ,
data = imputationList( pirls_list ) ,
type = "other" ,
scale = 0.5 ,
rscales = rep( 1 , 150 ) ,
combined.weights = FALSE ,
mse = TRUE
)
```
### Variable Recoding {-}
Add new columns to the data set:
```{r eval = FALSE , results = "hide" }
pirls_design <-
update(
pirls_design ,
one = 1 ,
countries_thru_bulgaria =
factor(
as.numeric( idcntry ) ,
levels = c(7842L, 7841L, 8L, 784L, 36L, 40L, 31L, 956L, 957L, 100L) ,
labels =
c("Abu Dhabi, UAE", "Dubai, UAE", "Albania", "UAE", "Australia", "Austria",
"Azerbaijan", "Belgium (Flemish)", "Belgium (French)","Bulgaria")
) ,
sex = factor( itsex , levels = 1:2 , labels = c( "female" , "male" ) ) ,
always_speak_language_of_test_at_home =
ifelse( asbg03 %in% 1:4 , as.numeric( asbg03 == 1 ) , NA )
)
```
---
## Analysis Examples with the `survey` library \ {-}
### Unweighted Counts {-}
Count the unweighted number of records in the survey sample, overall and by groups:
```{r eval = FALSE , results = "hide" }
pirls_MIcombine( with( pirls_design , svyby( ~ one , ~ one , unwtd.count ) ) )
pirls_MIcombine( with( pirls_design , svyby( ~ one , ~ sex , unwtd.count ) ) )
```
### Weighted Counts {-}
Count the weighted size of the generalizable population, overall and by groups:
```{r eval = FALSE , results = "hide" }
pirls_MIcombine( with( pirls_design , svytotal( ~ one ) ) )
pirls_MIcombine( with( pirls_design ,
svyby( ~ one , ~ sex , svytotal )
) )
```
### Descriptive Statistics {-}
Calculate the mean (average) of a linear variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
pirls_MIcombine( with( pirls_design , svymean( ~ asrrea , na.rm = TRUE ) ) )
pirls_MIcombine( with( pirls_design ,
svyby( ~ asrrea , ~ sex , svymean , na.rm = TRUE )
) )
```
Calculate the distribution of a categorical variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
pirls_MIcombine( with( pirls_design , svymean( ~ countries_thru_bulgaria ) ) )
pirls_MIcombine( with( pirls_design ,
svyby( ~ countries_thru_bulgaria , ~ sex , svymean )
) )
```
Calculate the sum of a linear variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
pirls_MIcombine( with( pirls_design , svytotal( ~ asrrea , na.rm = TRUE ) ) )
pirls_MIcombine( with( pirls_design ,
svyby( ~ asrrea , ~ sex , svytotal , na.rm = TRUE )
) )
```
Calculate the weighted sum of a categorical variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
pirls_MIcombine( with( pirls_design , svytotal( ~ countries_thru_bulgaria ) ) )
pirls_MIcombine( with( pirls_design ,
svyby( ~ countries_thru_bulgaria , ~ sex , svytotal )
) )
```
Calculate the median (50th percentile) of a linear variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
pirls_MIcombine( with( pirls_design ,
svyquantile(
~ asrrea ,
0.5 , se = TRUE , na.rm = TRUE
) ) )
pirls_MIcombine( with( pirls_design ,
svyby(
~ asrrea , ~ sex , svyquantile ,
0.5 , se = TRUE ,
ci = TRUE , na.rm = TRUE
) ) )
```
Estimate a ratio:
```{r eval = FALSE , results = "hide" }
pirls_MIcombine( with( pirls_design ,
svyratio( numerator = ~ asrlit , denominator = ~ asrrea )
) )
```
### Subsetting {-}
Restrict the survey design to Australia, Austria, Azerbaijan, Belgium (French):
```{r eval = FALSE , results = "hide" }
sub_pirls_design <- subset( pirls_design , idcntry %in% c( 36 , 40 , 31 , 956 ) )
```
Calculate the mean (average) of this subset:
```{r eval = FALSE , results = "hide" }
pirls_MIcombine( with( sub_pirls_design , svymean( ~ asrrea , na.rm = TRUE ) ) )
```
### Measures of Uncertainty {-}
Extract the coefficient, standard error, confidence interval, and coefficient of variation from any descriptive statistics function result, overall and by groups:
```{r eval = FALSE , results = "hide" }
this_result <-
pirls_MIcombine( with( pirls_design ,
svymean( ~ asrrea , na.rm = TRUE )
) )
coef( this_result )
SE( this_result )
confint( this_result )
cv( this_result )
grouped_result <-
pirls_MIcombine( with( pirls_design ,
svyby( ~ asrrea , ~ sex , svymean , na.rm = TRUE )
) )
coef( grouped_result )
SE( grouped_result )
confint( grouped_result )
cv( grouped_result )
```
Calculate the degrees of freedom of any survey design object:
```{r eval = FALSE , results = "hide" }
degf( pirls_design$designs[[1]] )
```
Calculate the complex sample survey-adjusted variance of any statistic:
```{r eval = FALSE , results = "hide" }
pirls_MIcombine( with( pirls_design , svyvar( ~ asrrea , na.rm = TRUE ) ) )
```
Include the complex sample design effect in the result for a specific statistic:
```{r eval = FALSE , results = "hide" }
# SRS without replacement
pirls_MIcombine( with( pirls_design ,
svymean( ~ asrrea , na.rm = TRUE , deff = TRUE )
) )
# SRS with replacement
pirls_MIcombine( with( pirls_design ,
svymean( ~ asrrea , na.rm = TRUE , deff = "replace" )
) )
```
Compute confidence intervals for proportions using methods that may be more accurate near 0 and 1. See `?svyciprop` for alternatives:
```{r eval = FALSE , results = "hide" }
# MIsvyciprop( ~ always_speak_language_of_test_at_home , pirls_design ,
# method = "likelihood" , na.rm = TRUE )
```
### Regression Models and Tests of Association {-}
Perform a design-based t-test:
```{r eval = FALSE , results = "hide" }
# MIsvyttest( asrrea ~ always_speak_language_of_test_at_home , pirls_design )
```
Perform a chi-squared test of association for survey data:
```{r eval = FALSE , results = "hide" }
# MIsvychisq( ~ always_speak_language_of_test_at_home + countries_thru_bulgaria , pirls_design )
```
Perform a survey-weighted generalized linear model:
```{r eval = FALSE , results = "hide" }
glm_result <-
pirls_MIcombine( with( pirls_design ,
svyglm( asrrea ~ always_speak_language_of_test_at_home + countries_thru_bulgaria )
) )
summary( glm_result )
```
---
## Replication Example {-}
This example matches the mean proficiency and standard error of the `Australia` row of the `Summary Statistics and Standard Errors for Proficiency in Overall Reading` table from the [Appendix 13A: Summary Statistics and Standard Errors for Proficiency in Reading](https://pirls2021.org/wp-content/uploads/2023/05/P21_MP_Ch13-standard-errors.pdf#page=12):
```{r eval = FALSE , results = "hide" }
australia_design <- subset( pirls_design , countries_thru_bulgaria %in% "Australia" )
stopifnot( nrow( australia_design ) == 5487 )
result <- pirls_MIcombine( with( australia_design , svymean( ~ asrrea ) ) )
stopifnot( round( coef( result ) , 3 ) == 540.134 )
stopifnot( round( SE( result ) , 3 ) == 1.728 )
```
This example matches the jackknife sampling, imputation, and total variances of the same row:
```{r eval = FALSE , results = "hide" }
australia_fn <- unzipped_files[ grepl( 'ASGAUS' , basename( unzipped_files ) ) ]
australia_tbl_name <- load( australia_fn )
australia_tbl <- get( australia_tbl_name ) ; rm( australia_tbl_name )
australia_tbl <- zap_labels( australia_tbl )
australia_df <- data.frame( australia_tbl )
names( australia_df ) <- tolower( names( australia_df ) )
estimate <-
mean( c(
with( australia_df , weighted.mean( asrrea01 , totwgt ) ) ,
with( australia_df , weighted.mean( asrrea02 , totwgt ) ) ,
with( australia_df , weighted.mean( asrrea03 , totwgt ) ) ,
with( australia_df , weighted.mean( asrrea04 , totwgt ) ) ,
with( australia_df , weighted.mean( asrrea05 , totwgt ) )
) )
stopifnot( round( estimate , 3 ) == 540.134 )
for( k in 1:5 ){
this_variance <- 0
for( j in 1:75 ){
for( i in 0:1 ){
this_variance <-
this_variance +
(
weighted.mean(
australia_df[ , paste0( 'asrrea0' , k ) ] ,
ifelse(
j == australia_df[ , 'jkzone' ] ,
australia_df[ , 'totwgt' ] * 2 * ( australia_df[ , 'jkrep' ] == i ) ,
australia_df[ , 'totwgt' ]
)
) -
weighted.mean(
australia_df[ , paste0( 'asrrea0' , k ) ] ,
australia_df[ , 'totwgt' ]
)
)^2
}
}
assign( paste0( 'v' , k ) , this_variance * 0.5 )
}
sampling_variance <- mean( c( v1 , v2 , v3 , v4 , v5 ) )
stopifnot( round( sampling_variance , 3 ) == 2.653 )
imputation_variance <-
( 6 / 5 ) *
(
( ( with( australia_df , weighted.mean( asrrea01 , totwgt ) ) - estimate )^2 / 4 ) +
( ( with( australia_df , weighted.mean( asrrea02 , totwgt ) ) - estimate )^2 / 4 ) +
( ( with( australia_df , weighted.mean( asrrea03 , totwgt ) ) - estimate )^2 / 4 ) +
( ( with( australia_df , weighted.mean( asrrea04 , totwgt ) ) - estimate )^2 / 4 ) +
( ( with( australia_df , weighted.mean( asrrea05 , totwgt ) ) - estimate )^2 / 4 )
)
stopifnot( round( imputation_variance , 3 ) == 0.333 )
stopifnot( round( sampling_variance + imputation_variance , 3 ) == 2.987 )
```