-
Notifications
You must be signed in to change notification settings - Fork 1
/
util.py
226 lines (178 loc) · 6.64 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import torch.nn as nn
from torch.autograd import Variable
from sklearn.metrics import fbeta_score
from torch.nn import functional as F
from matplotlib import pyplot as plt
import pandas as pds
from datasets import *
import torch
import os
from data.kgdataset import KgForestDataset
from planet_models.resnet_planet import resnet14_planet
def save_results(models, dataloader):
"""Given model/models, this function saves the result of F.sigmoid(model(x))"""
for model in models:
name = str(model).split()[1]
# create
model = model()
model = nn.DataParallel(model.cuda())
# load
model.load_state_dict(torch.load('models/{}.pth'.format(name)))
# forward
N = dataloader.dataset.num
result = []
for i, (image, index) in enumerate(dataloader):
image = Variable(image.cuda(), volatile=True)
# N * 17
probs = F.sigmoid(model(image))
result.append(probs.data.cpu().numpy())
# concatenate the probabilities
result = np.concatenate(result)
# save the probabilities into model.txt file
np.savetxt(fname='probs/{}.txt'.format(name), X=result)
def optimize_threshold(fnames, labels, resolution):
"""This function optimizes threshold given dataset and probability files."""
results = []
for f in fnames:
# open the file
with open(f) as file:
lines = file.read().split('\n')[:-1]
N = len(lines)
result = np.empty((N, 17))
for index, line in enumerate(lines):
result[index] = np.fromstring(line, dtype=np.float32, sep=' ')
results.append(result)
results = np.asarray(results)
results = results.mean(axis=0)
print(results.shape)
# optimize threshold, labels N * 17
threshold = [0.15] * 17
for i in range(17):
best_thresh = 0.0
best_score = 0.0
for r in range(resolution):
r /= resolution
threshold[i] = r
# labels = get_labels(pred, threshold)
preds = (results > threshold).dtype(np.int32)
score = f2_score(preds, labels)
if score > best_score:
best_thresh = r
best_score = score
threshold[i] = best_thresh
print(i, best_score, best_thresh)
print('{}: {}'.format(best_score, best_thresh))
return best_thresh
def multi_criterion(logits, labels):
loss = nn.MultiLabelSoftMarginLoss()(logits, Variable(labels))
return loss
def multi_f_measure(probs, labels, threshold=0.235, beta=2):
batch_size = probs.size()[0]
SMALL = 1e-12
l = labels
p = (probs > threshold).float()
num_pos = torch.sum(p, 1)
num_pos_hat = torch.sum(l, 1)
tp = torch.sum(l*p,1)
precise = tp/(num_pos+ SMALL)
recall = tp/(num_pos_hat + SMALL)
fs = (1+beta*beta)*precise*recall/(beta*beta*precise + recall + SMALL)
f = fs.sum()/batch_size
return f
def evaluate(net, test_loader):
test_num = 0
test_loss = 0
test_acc = 0
for iter, (images, labels, indices) in enumerate(test_loader, 0):
# forward
logits = net(Variable(images.cuda(), volatile=True))
probs = F.sigmoid(logits)
loss = multi_criterion(logits, labels.cuda())
batch_size = len(images)
test_acc += batch_size*multi_f_measure(probs.data, labels.cuda())
test_loss += batch_size*loss.data[0]
test_num += batch_size
assert(test_num == test_loader.dataset.num)
test_acc = test_acc/test_num
test_loss = test_loss/test_num
return test_loss, test_acc
def get_learning_rate(optimizer):
lr=[]
for param_group in optimizer.param_groups:
lr +=[ param_group['lr'] ]
return lr
def lr_schedule(epoch, optimizer):
if 0 <= epoch < 10:
lr = 1e-1
elif 10 <= epoch < 25:
lr = 0.01
elif 25 <= epoch < 35:
lr = 0.005
elif 35 <= epoch < 40:
lr = 0.001
else:
lr = 0.0001
for para_group in optimizer.param_groups:
para_group['lr'] = lr
def split_train_validation(num_val=3000):
"""
Save train image names and validation image names to csv files
"""
train_image_idx = np.sort(np.random.choice(40479, 40479-num_val, replace=False))
all_idx = np.arange(40479)
validation_image_idx = np.zeros(num_val, dtype=np.int32)
val_idx = 0
train_idx = 0
for i in all_idx:
if i not in train_image_idx:
validation_image_idx[val_idx] = i
val_idx += 1
else:
train_idx += 1
# save train
train = []
for name in train_image_idx:
train.append('train-<ext>/train_%s.<ext>' % name)
eval = []
for name in validation_image_idx:
eval.append('train-<ext>/train_%s.<ext>' % name)
df = pds.DataFrame(train)
df.to_csv('dataset/train-%s' % (40479 - num_val), index=False, header=False)
df = pds.DataFrame(eval)
df.to_csv('dataset/validation-%s' % num_val, index=False, header=False)
def f2_score(y_true, y_pred):
return fbeta_score(y_true, y_pred, beta=2, average='samples')
class Logger(object):
def __init__(self, save_dir, name):
self.save_dir = save_dir
self.name = name
if not os.path.exists(self.save_dir):
os.makedirs(self.save_dir)
self.save_dict = {'train_loss': [], "evaluation_loss": [], 'f2_score': []}
def add_record(self, key, value):
self.save_dict[key].append(value)
def save(self):
df = pd.DataFrame.from_dict(self.save_dict)
df.to_csv(os.path.join(self.save_dir, '%s.csv' % self.name), header=True, index=False)
def save_plot(self):
train_loss = self.save_dict['train_loss']
eval_loss = self.save_dict['evaluation_loss']
f2_scores = self.save_dict['f2_score']
plt.figure()
plt.plot(np.arange(len(train_loss)), train_loss, color='red', label='train_loss')
plt.plot(np.arange(len(eval_loss)), eval_loss, color='blue', label='eval_loss')
plt.legend(loc='best')
plt.savefig(os.path.join(self.save_dir, 'loss.jpg'))
plt.figure()
plt.plot(np.arange(len(f2_scores)), f2_scores)
plt.savefig(os.path.join(self.save_dir, 'f2_score.jpg'))
plt.close('all')
def save_time(self, start_time, end_time):
with open(os.path.join(self.save_dir, 'time.txt'), 'w') as f:
f.write('start time, end time, duration\n')
f.write('{}, {}, {}'.format(start_time, end_time, (end_time - start_time)/60))
if __name__ == '__main__':
# a = np.random.randn(100, 17)
# np.savetxt('probs/model_1.txt', a)
# optimize_threshold(['probs/model_1.txt'], 'data')
pass