-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dropout.py
236 lines (194 loc) · 7.61 KB
/
test_dropout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch
from torch_geometric.transforms import RandomLinkSplit
from torch_geometric.nn import VGAE, GAE
from GCN import GCN
import warnings
from encoder import Encoder
from decoder import Decoder
from matplotlib import pyplot as plt
import time
import numpy as np
from multiprocessing import Pool
import signal
from tqdm import tqdm
from IPython.display import clear_output
AUCs,APs = {},{}
# device = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu")
device = torch.device("cpu")
print("reimported test_dropout")
def set_AUCs_APs(AUC_value,AP_value):
for x in AUC_value :
AUCs[x] = AUC_value[x]
APs[x] = AP_value[x]
def get_AUCs_APs():
return AUCs,APs
def get_name_from_tuple(t):
is_vgae_dropout, decoder, encoder_out = t
is_vgae, dropout = is_vgae_dropout
output = "VGAE" if is_vgae else "GAE"
if decoder and dropout :
output += "_with_decoder_and_dropout"
elif decoder:
output += "_with_decoder"
elif dropout:
output += "_with_dropout"
return output
def fit(model, data, epochs, verbose=True, test_interval = 100):
tests = []
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
model.train()
for epoch in range(epochs+1):
if epoch % test_interval == 0 :
with torch.no_grad():
model.eval()
z = model.encode(data.x, data.train_pos_edge_index)
tests.append(model.test(z, data.test_pos_edge_index, data.test_neg_edge_index))
model.train()
if verbose :
print(epoch, " : ", tests[-1])
optimizer.zero_grad()
z = model.encode(data.x, data.train_pos_edge_index)
loss = model.recon_loss(z, data.train_pos_edge_index) + (1 / data.num_nodes) * model.kl_loss()
loss.backward()
optimizer.step()
return tests
def fit_gae(model, data, epochs, verbose=True, test_interval = 100):
tests = []
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
model.train()
for epoch in range(epochs+1):
if epoch % test_interval == 0 :
with torch.no_grad():
model.eval()
z = model.encode(data.x, data.train_pos_edge_index)
tests.append(model.test(z, data.test_pos_edge_index, data.test_neg_edge_index))
model.train()
optimizer.zero_grad()
z = model.encode(data.x, data.train_pos_edge_index)
loss = model.recon_loss(z, data.train_pos_edge_index)
loss.backward()
optimizer.step()
return tests
def loop_func(entries):
data, models, epochs, file_path, test_interval = entries
AUCs = {}
APs = {}
transform = RandomLinkSplit(is_undirected=True, split_labels=True, num_val=0)
train_data, _, test_data = transform(data)
dt = data.__copy__()
dt.train_pos_edge_index = train_data.pos_edge_label_index
dt.test_pos_edge_index = test_data.pos_edge_label_index
dt.test_neg_edge_index = test_data.neg_edge_label_index
for model_val in models:
is_vgae_dropout, decoder, encoder_out = model_val
is_vgae, dropout = is_vgae_dropout
if is_vgae :
model = VGAE(Encoder(dt.num_features, encoder_out, dropout= dropout), Decoder(encoder_out) if decoder else None)
else :
model = GAE(GCN(dt.num_features, encoder_out), Decoder(encoder_out) if decoder else None)
model.name = get_name_from_tuple(model_val)
start_time = time.time()
if is_vgae :
AUC, AP = zip(*fit(model, dt, epochs, verbose=False, test_interval= test_interval))
else :
AUC, AP = zip(*fit_gae(model, dt, epochs, verbose=False, test_interval= test_interval))
AUCs[model.name] = AUC
APs[model.name] = AP
elapsed_time = time.time() - start_time
model.eval()
z = model.encode(dt.x, dt.train_pos_edge_index)
AUC, AP = model.test(z, dt.test_pos_edge_index, dt.test_neg_edge_index)
with open(file_path, "a") as f:
f.write(f"{model.name};{AUC};{AP};{epochs};{elapsed_time}\n")
print(f"{model.name};{AUC};{AP};{epochs};{elapsed_time}")
return AUCs, APs
def test_dropout(file_path, data, models, epochs, n = 10, test_interval= 10, average_on = 10, pool_worker = 4, show_every= 10):
try :
open(file_path, "r")
except FileNotFoundError as e:
with open(file_path, "w") as f:
f.write("Dropout;AUC;AP;epochs;elapsed_time;\n")
AUCs = { get_name_from_tuple(model_val) : [] for model_val in models}
APs = { get_name_from_tuple(model_val) : [] for model_val in models}
pool = Pool(pool_worker)
def handle_interrupt(signal, frame):
pool.terminate() # Terminate the pool of worker processes
pool.join() # Wait for the pool to clean up
print("Main process interrupted. Worker processes terminated.")
set_AUCs_APs(AUCs,APs)
exit(1)
# Register the signal handler for interrupt signals
signal.signal(signal.SIGINT, handle_interrupt)
i = 0
for AUC, AP in tqdm(pool.imap_unordered(loop_func,[(data, models, epochs, file_path, test_interval)] * n)):
i+=1
for model_val in models :
name = get_name_from_tuple(model_val)
AUCs[name].append(AUC[name])
APs[name].append(AP[name])
if i % show_every == 0 :
clear_output(wait= True)
draw_AUCs_APs(AUCs, APs, average_on, test_interval)
# clear_output(wait=True)
print(AUCs, APs)
draw_AUCs_APs(AUCs,APs, average_on, test_interval)
return AUCs, APs
def draw_AUCs_or_APs(AUCs, average_on, test_interval, values = None, revlog = False, percentiles_base = [0.1, 1, 5, 10, 25, 33, 40,45], output = "output"):
if values == None :
values = list(AUCs.keys())
mean = {}
median = {}
std = {}
percentiles_dict = {}
def floating_average(list):
return [ sum(list[max(0,i+1-average_on):i+1])/ min(i+1,average_on) for i in range(len(list))]
percentiles = percentiles_base + [ 100 - x for x in reversed(percentiles_base)]
if revlog:
f= lambda x : 1-x
else :
f= lambda x: x
for dropout in values :
mean[dropout] = floating_average([ f(np.mean(x)) for x in zip(*AUCs[dropout])])
std[dropout] = floating_average([ np.std(x) for x in zip(*AUCs[dropout])])
percentiles_dict[dropout] = [floating_average([f(y) for y in x]) for x in zip(*[np.percentile(x, percentiles) for x in zip(*AUCs[dropout])])]
median[dropout] = floating_average([ f(np.median(x)) for x in zip(*AUCs[dropout])])
val = np.linspace(0, 1, len(AUCs))
cmap = plt.get_cmap('rainbow')
color_list = [cmap(value) for value in val]
colors = {dropout : color for dropout,color in zip(AUCs.keys(),color_list)}
fig = plt.figure(figsize = (15,22))
ax = fig.add_subplot(3,2,1)
ax.grid(visible= True, which='both')
ax.set_xlabel("epoch")
ax.set_ylabel("moyenne")
for dropout in values :
ax.plot(np.arange(len(mean[dropout])) * test_interval, mean[dropout], label = dropout, color = colors[dropout])
if revlog :
ax.set_yscale('log')
ax.legend(loc='upper left')
plt.savefig(f"output/{output}_mean.svg.pdf", bbox_inches='tight')
fig = plt.figure(figsize = (15,22))
ax = fig.add_subplot(3,2,1)
ax.grid(visible= True, which='both')
ax.set_xlabel("epoch")
ax.set_ylabel("écart-type")
for dropout in values :
ax.plot(np.arange(len(std[dropout])) * test_interval, std[dropout], label = dropout, color = colors[dropout])
if revlog :
ax.set_yscale('log')
ax.legend(loc='upper left')
plt.savefig(f"output/{output}_std.svg.pdf", bbox_inches='tight')
fig = plt.figure(figsize = (15,22))
ax = fig.add_subplot(3,2,1)
ax.grid(visible= True, which='both')
ax.set_xlabel("epoch")
ax.set_ylabel("médiane")
for dropout in values :
ax.plot(np.arange(len(median[dropout])) * test_interval, median[dropout], label = dropout, color = colors[dropout])
for i in range(len(percentiles_base)) :
ax.fill_between(np.arange(len(median[dropout])) * test_interval, percentiles_dict[dropout][i], percentiles_dict[dropout][-i-1], color = colors[dropout], alpha = 0.1)
if revlog :
ax.set_yscale('log')
ax.legend(loc='upper left')
plt.savefig(f"output/{output}_cinf.svg.pdf", bbox_inches='tight')
plt.show()