-
Notifications
You must be signed in to change notification settings - Fork 6
/
part7.c
761 lines (705 loc) · 24.2 KB
/
part7.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
#include <errno.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// open
#include <fcntl.h>
#include <unistd.h>
// 对第一个字符为 '.' 原始输入命令的解析
typedef enum {
// 对.exit .help .btree 等命令识别,成功则LOOP
META_COMMAND_SUCCESS,
// 不识别报错
META_COMMAND_UNRECOGNIZED
} MetaCommandResult;
// 识别InputBuffer 类型,成功则转成Statement对象
typedef enum {
PREPARE_SUCCESS,
PREPARE_SYNTAX_ERROR,
PREPARE_STRING_TOO_LONG,
PREPARE_NEGATIVE_ID,
PREPARE_UNRECOGNIZED_STATEMENT
} PrepareResult;
// 操作类型
typedef enum { STATEMENT_INSERT, STATEMENT_SELECT } StatementType;
// 执行结果状态码
typedef enum {
EXECUTE_SUCCESS,
EXECUTE_DUPLICATE_KEY,
EXECUTE_FULL_TABLE
} ExecuteResult;
typedef enum { NODE_INTERNAL, NODE_LEAF } NodeType;
// 输入原文的结构
typedef struct {
char* buffer;
uint32_t buffer_length;
uint32_t str_length;
} InputBuffer;
InputBuffer* new_input_buffer() {
InputBuffer* input_buffer = malloc(sizeof(InputBuffer));
input_buffer->buffer = NULL;
input_buffer->str_length = 0;
input_buffer->buffer_length = 0;
return input_buffer;
}
void del_input_buffer(InputBuffer* input_buffer) {
free(input_buffer->buffer);
free(input_buffer);
}
// 指明username 大小为32字节
const uint32_t COLUMN_USERNAME = 32;
// 指明email 大小为255字节
const uint32_t COLUMN_EMAIL = 255;
// Row 代表写入的表类型结构 |id(4)|username(33)|email(256)|
typedef struct {
uint32_t id;
// +1 是为了给'\0'保留一位,下同
char username[COLUMN_USERNAME + 1];
char email[COLUMN_EMAIL + 1];
} Row;
// Statement 对象为操作对象
typedef struct {
StatementType type;
Row row_to_insert;
} Statement;
// 便捷宏
#define FORLESS(less) for (int i = 0; i < less; i++)
// 查看属性大小
#define size_of_attribute(Struct, Attribute) sizeof(((Struct*)0)->Attribute)
// 以下描述字段大小,ROW_SIZE指真实数据大小
const uint32_t ID_OFFSET = 0;
const uint32_t ID_SIZE = size_of_attribute(Row, id);
const uint32_t USERNAME_OFFSET = ID_OFFSET + ID_SIZE; // 4
const uint32_t USERNAME_SIZE = size_of_attribute(Row, username); // 33
const uint32_t EMAIL_OFFSET = USERNAME_OFFSET + USERNAME_SIZE; // 37 = 4 + 33
const uint32_t EMAIL_SIZE = size_of_attribute(Row, email); // 256
const uint32_t ROW_SIZE =
ID_SIZE + USERNAME_SIZE + EMAIL_SIZE; // 293 = 37 + 256
// 缓存按整块读取大小4
// kilobytes(极大多数系统架构的虚拟内存的page大小都为4kb),如果每次都读整块,那读写效率是最大的
const uint32_t PAGE_SIZE = 4096;
const uint32_t TABLE_MAX_PAGES = 100; // 模拟有100页
// 页面属性
typedef struct {
void* pages[TABLE_MAX_PAGES];
int file_descriptor;
int file_length;
// 记录页面数量
uint32_t num_pages;
} Pager;
// Table属性
typedef struct {
// 保存页面数据,方便上下文获取
Pager* pager;
// 记录root页面坐标
uint32_t root_page_num;
} Table;
typedef struct {
Table* table;
uint32_t page_num;
uint32_t cell_num;
bool end_of_table;
} Cursor;
// 通用节点Header Layout
const uint32_t NODE_TYPE_SIZE = sizeof(uint8_t);
const uint32_t NODE_TYPE_OFFSET = 0;
const uint32_t IS_ROOT_SIZE = sizeof(uint8_t);
const uint32_t IS_ROOT_OFFSET = NODE_TYPE_SIZE;
const uint32_t PARENT_POINTER_SIZE = sizeof(uint32_t);
const uint32_t PARENT_POINTER_OFFSET = IS_ROOT_OFFSET + IS_ROOT_SIZE;
const uint8_t COMMON_NODE_HEADER_SIZE =
NODE_TYPE_SIZE + IS_ROOT_SIZE + PARENT_POINTER_SIZE;
// 叶子节点的Header Layout
const uint32_t LEAF_NODE_NUM_CELLS_SIZE = sizeof(uint32_t);
const uint32_t LEAF_NODE_NUM_CELLS_OFFSET = COMMON_NODE_HEADER_SIZE;
const uint32_t LEAF_NODE_NEXT_LEAF_SIZE = sizeof(uint32_t);
const uint32_t LEAF_NODE_NEXT_LEAF_OFFSET =
LEAF_NODE_NUM_CELLS_OFFSET + LEAF_NODE_NUM_CELLS_SIZE;
const uint32_t LEAF_NODE_HEADER_SIZE = COMMON_NODE_HEADER_SIZE +
LEAF_NODE_NUM_CELLS_SIZE +
LEAF_NODE_NEXT_LEAF_SIZE;
// 叶子节点Body Layout
const uint32_t LEAF_NODE_KEY_SIZE = sizeof(uint32_t);
const uint32_t LEAF_NODE_KEY_OFFSET = 0;
const uint32_t LEAF_NODE_VALUE_SIZE = ROW_SIZE;
const uint32_t LEAF_NODE_VALUE_OFFSET =
LEAF_NODE_KEY_OFFSET + LEAF_NODE_KEY_SIZE;
const uint32_t LEAF_NODE_CELL_SIZE = LEAF_NODE_KEY_SIZE + LEAF_NODE_VALUE_SIZE;
const uint32_t LEAF_NODE_SPACE_FOR_CELLS = PAGE_SIZE - LEAF_NODE_HEADER_SIZE;
const uint32_t LEAF_NODE_MAX_CELLS =
LEAF_NODE_SPACE_FOR_CELLS / LEAF_NODE_CELL_SIZE;
const uint32_t LEAF_NODE_RIGHT_SPLIT_COUNT = (LEAF_NODE_MAX_CELLS + 1) / 2;
const uint32_t LEAF_NODE_LEFT_SPLIT_COUNT =
(LEAF_NODE_MAX_CELLS + 1) - LEAF_NODE_RIGHT_SPLIT_COUNT;
// 内部节点Header Layout
const uint32_t INTERNAL_NODE_NUM_KEYS_SIZE = sizeof(uint32_t);
const uint32_t INTERNAL_NODE_NUM_KEYS_OFFSET = COMMON_NODE_HEADER_SIZE;
const uint32_t INTERNAL_NODE_RIGHT_CHILD_SIZE = sizeof(uint32_t);
const uint32_t INTERNAL_NODE_RIGHT_CHILD_OFFSET =
INTERNAL_NODE_NUM_KEYS_OFFSET + INTERNAL_NODE_NUM_KEYS_SIZE;
const uint32_t INTERNAL_NODE_HEADER_SIZE = COMMON_NODE_HEADER_SIZE +
INTERNAL_NODE_NUM_KEYS_SIZE +
INTERNAL_NODE_RIGHT_CHILD_SIZE;
// 内部节点Body Layout
const uint32_t INTERNAL_NODE_CHILD_SIZE = sizeof(uint32_t);
const uint32_t INTERNAL_NODE_KEY_SIZE = sizeof(uint32_t);
const uint32_t INTERNAL_NODE_CELL_SIZE =
INTERNAL_NODE_CHILD_SIZE + INTERNAL_NODE_KEY_SIZE;
NodeType get_node_type(void* node) {
uint8_t value = *(uint8_t*)(node + NODE_TYPE_OFFSET);
return (NodeType)value;
}
void set_node_type(void* node, NodeType type) {
uint8_t value = type;
*(uint8_t*)(node + NODE_TYPE_OFFSET) = value;
}
bool is_node_root(void* node) {
uint8_t value = *(uint8_t*)(node + IS_ROOT_OFFSET);
return (bool)value;
}
void set_node_root(void* node, bool is_root) {
uint8_t value = is_root;
*(uint8_t*)(node + IS_ROOT_OFFSET) = value;
}
uint32_t* leaf_node_num_cells(void* node) {
return node + LEAF_NODE_NUM_CELLS_OFFSET;
}
uint32_t* leaf_node_next_leaf(void* node) {
return node + LEAF_NODE_NEXT_LEAF_OFFSET;
}
void* leaf_node_cell(void* node, uint32_t cell_num) {
return node + LEAF_NODE_HEADER_SIZE + cell_num * LEAF_NODE_CELL_SIZE;
}
uint32_t* leaf_node_key(void* node, uint32_t cell_num) {
return leaf_node_cell(node, cell_num);
}
void* leaf_node_value(void* node, uint32_t cell_num) {
return leaf_node_cell(node, cell_num) + LEAF_NODE_KEY_SIZE;
}
void initialize_leaf_node(void* node) {
set_node_type(node, NODE_LEAF);
set_node_root(node, false);
*leaf_node_num_cells(node) = 0;
*leaf_node_next_leaf(node) = 0;
}
uint32_t* internal_node_num_keys(void* node) {
return node + INTERNAL_NODE_NUM_KEYS_OFFSET;
}
uint32_t* internal_node_right_child(void* node) {
return node + INTERNAL_NODE_RIGHT_CHILD_OFFSET;
}
uint32_t* internal_node_cell(void* node, uint32_t cell_num) {
return node + INTERNAL_NODE_HEADER_SIZE + cell_num * INTERNAL_NODE_CELL_SIZE;
}
/*
在内部节点node中根据子页面索引获得内存坐标
不能超过该内存节点最大元素个数
小于child_num 都是在left_childs中存储
等于时是right_child
*/
uint32_t* internal_node_child(void* node, uint32_t child_num) {
uint32_t num_keys = *internal_node_num_keys(node);
if (child_num > num_keys) {
printf("Tried to access child_num %d > num_keys %d\n", child_num, num_keys);
exit(EXIT_FAILURE);
} else if (child_num == num_keys) {
return internal_node_right_child(node);
} else {
return internal_node_cell(node, child_num);
}
}
uint32_t* internal_node_key(void* node, uint32_t key_num) {
return internal_node_cell(node, key_num) + INTERNAL_NODE_CHILD_SIZE;
}
void initialize_internal_node(void* node) {
set_node_type(node, NODE_INTERNAL);
set_node_root(node, false);
*internal_node_num_keys(node) = 0;
}
uint32_t get_node_max_key(void* node) {
switch (get_node_type(node)) {
case NODE_INTERNAL:
return *internal_node_key(node, *internal_node_num_keys(node) - 1);
case NODE_LEAF:
return *leaf_node_key(node, *leaf_node_num_cells(node) - 1);
}
}
uint32_t get_unused_page_num(Pager* pager) { return pager->num_pages; }
///////////////
void* get_page(Pager* pager, uint32_t page_num);
Cursor* table_find(Table* table, uint32_t key);
///////////////
void print_constants() {
printf("ROW_SIZE: %d\n", ROW_SIZE);
printf("COMMON_NODE_HEADER_SIZE: %d\n", COMMON_NODE_HEADER_SIZE);
printf("LEAF_NODE_HEADER_SIZE: %d\n", LEAF_NODE_HEADER_SIZE);
printf("LEAF_NODE_CELL_SIZE: %d\n", LEAF_NODE_CELL_SIZE);
printf("LEAF_NODE_SPACE_FOR_CELLS: %d\n", LEAF_NODE_SPACE_FOR_CELLS);
printf("LEAF_NODE_MAX_CELLS: %d\n", LEAF_NODE_MAX_CELLS);
printf("LEAF_NODE_LEFT_SPLIT_COUNT: %d\n", LEAF_NODE_LEFT_SPLIT_COUNT);
printf("LEAF_NODE_RIGHT_SPLIT_COUNT: %d\n", LEAF_NODE_RIGHT_SPLIT_COUNT);
}
void indent(uint32_t level) {
FORLESS(level) { printf(" "); }
}
void print_tree(Pager* pager, uint32_t page_num, uint32_t indentation_level) {
void* node = get_page(pager, page_num);
uint32_t num_keys, child;
switch (get_node_type(node)) {
case NODE_INTERNAL:
num_keys = *internal_node_num_keys(node);
indent(indentation_level);
printf("- internal (size %d)\n", num_keys);
FORLESS(num_keys) {
child = *internal_node_child(node, i);
print_tree(pager, child, indentation_level + 1);
indent(indentation_level + 1);
printf("- key %d\n", *internal_node_key(node, i));
}
child = *internal_node_right_child(node);
print_tree(pager, child, indentation_level + 1);
break;
case NODE_LEAF:
num_keys = *leaf_node_num_cells(node);
indent(indentation_level);
printf("- leaf (size %d)\n", num_keys);
FORLESS(num_keys) {
indent(indentation_level + 1);
printf("- %d\n", *leaf_node_key(node, i));
}
break;
}
}
Cursor* table_start(Table* table) {
Cursor* cursor = table_find(table, 0);
void* node = get_page(table->pager, cursor->page_num);
uint32_t num_cells = *leaf_node_num_cells(node);
cursor->end_of_table = num_cells == 0;
return cursor;
}
Cursor* leaf_node_find(Table* table, uint32_t page_num, uint32_t key) {
void* node = get_page(table->pager, page_num);
uint32_t num_cells = *leaf_node_num_cells(node);
Cursor* cursor = malloc(sizeof(Cursor));
cursor->table = table;
cursor->page_num = page_num;
uint32_t min = 0;
uint32_t max = num_cells;
while (max != min) {
uint32_t index = (min + max) / 2;
uint32_t indexKey = *leaf_node_key(node, index);
if (key == indexKey) {
cursor->cell_num = index;
return cursor;
}
if (key < indexKey) {
max = index;
} else {
min = index + 1;
}
}
cursor->cell_num = min;
return cursor;
}
Cursor* internal_node_find(Table* table, uint32_t page_num, uint32_t key) {
void* node = get_page(table->pager, page_num);
uint32_t num_keys = *internal_node_num_keys(node);
uint32_t min = 0;
uint32_t max = num_keys;
while (min != max) {
uint32_t index = (min + max) / 2;
uint32_t indexKey = *internal_node_key(node, index);
if (indexKey >= key) {
max = index;
} else {
min = index + 1;
}
}
uint32_t child_num = *internal_node_child(node, min);
void* child = get_page(table->pager, child_num);
switch (get_node_type(child)) {
case NODE_INTERNAL:
return internal_node_find(table, child_num, key);
case NODE_LEAF:
return leaf_node_find(table, child_num, key);
}
}
Cursor* table_find(Table* table, uint32_t key) {
uint32_t root_page_num = table->root_page_num;
void* root_node = get_page(table->pager, root_page_num);
if (get_node_type(root_node) == NODE_LEAF) {
return leaf_node_find(table, root_page_num, key);
} else {
return internal_node_find(table, root_page_num, key);
}
}
void cursor_advance(Cursor* cursor) {
uint32_t page_num = cursor->page_num;
void* node = get_page(cursor->table->pager, page_num);
cursor->cell_num += 1;
if (cursor->cell_num >= (*leaf_node_num_cells(node))) {
uint32_t next_page_num = *leaf_node_next_leaf(node);
if (next_page_num == 0) {
cursor->end_of_table = true;
} else {
cursor->page_num = next_page_num;
cursor->cell_num = 0;
}
}
}
void del_table(Table* table) {
free(table->pager);
table->pager = NULL;
free(table);
}
// 根据打开的文件,返回出Table上下文
Table* db_open(const char* filename);
MetaCommandResult do_meta_command(InputBuffer* intput_buffer, Table* table);
void print_row(Row* row) {
printf("(%d %s %s)\n", row->id, row->username, row->email);
}
// 读取用户输入
void read_line(InputBuffer* input_buffer) {
ssize_t bytes_read =
getline(&input_buffer->buffer, &input_buffer->buffer_length, stdin);
if (bytes_read == -1) {
printf("get user input error: %s.\n", strerror(errno));
exit(EXIT_FAILURE);
}
input_buffer->buffer[strlen(input_buffer->buffer) - 1] = '\0';
input_buffer->str_length = strlen(input_buffer->buffer);
}
void* get_page(Pager* pager, uint32_t page_num) {
if (pager->pages[page_num] == NULL) {
void* page = malloc(PAGE_SIZE);
// 判别原始文件内容大于查询页码
uint32_t file_page_full_num = pager->file_length / PAGE_SIZE;
if (pager->file_length % PAGE_SIZE) {
file_page_full_num += 1;
}
// 超过则将文件数据拷贝给page内存
if (file_page_full_num >= page_num) {
off_t offset =
lseek(pager->file_descriptor, page_num * PAGE_SIZE, SEEK_SET);
if (offset == -1) {
printf("get page error seek: %s.\n", strerror(errno));
exit(EXIT_FAILURE);
}
ssize_t read_bytes = read(pager->file_descriptor, page, PAGE_SIZE);
if (read_bytes == -1) {
printf("get page error read: %s.\n", strerror(errno));
exit(EXIT_FAILURE);
}
}
pager->pages[page_num] = page;
if (page_num >= pager->num_pages) {
pager->num_pages = page_num + 1;
}
}
return pager->pages[page_num];
}
void deserialize_row(Row* target, void* source) {
memcpy(&target->id, source + ID_OFFSET, ID_SIZE);
memcpy(&target->username, source + USERNAME_OFFSET, USERNAME_SIZE);
memcpy(&target->email, source + EMAIL_OFFSET, EMAIL_SIZE);
}
void serialize_row(void* target, Row* source) {
memcpy(target + ID_OFFSET, &source->id, ID_SIZE);
memcpy(target + USERNAME_OFFSET, &source->username, USERNAME_SIZE);
memcpy(target + EMAIL_OFFSET, &source->email, EMAIL_SIZE);
}
void* cursor_value(Cursor* cursor) {
uint32_t page_num = cursor->page_num;
Pager* pager = cursor->table->pager;
void* page = get_page(pager, page_num);
return leaf_node_value(page, cursor->cell_num);
}
void create_new_root(Table* table, uint32_t right_child_page_num) {
void* root = get_page(table->pager, table->root_page_num);
// 生成left child
uint32_t left_child_page_num = get_unused_page_num(table->pager);
void* left_child = get_page(table->pager, left_child_page_num);
// left_child 内容其实就是root内容(root 内容之后变更)
memcpy(left_child, root, PAGE_SIZE);
set_node_root(left_child, false);
// 开始设置root 内容数据
initialize_internal_node(root);
set_node_root(root, true);
*internal_node_num_keys(root) = 1;
*internal_node_child(root, 0) = left_child_page_num;
uint32_t left_child_max_key = get_node_max_key(left_child);
*internal_node_key(root, 0) = left_child_max_key;
*internal_node_right_child(root) = right_child_page_num;
}
void leaf_node_split_and_insert(Cursor* cursor, uint32_t key, Row* value) {
void* old_node = get_page(cursor->table->pager, cursor->page_num);
uint32_t new_page_num = get_unused_page_num(cursor->table->pager);
void* new_node = get_page(cursor->table->pager, new_page_num);
initialize_leaf_node(new_node);
*leaf_node_next_leaf(new_node) = *leaf_node_next_leaf(old_node);
*leaf_node_next_leaf(old_node) = new_page_num;
for (int32_t i = LEAF_NODE_MAX_CELLS; i >= 0; i--) {
void* destination_node;
if (i >= LEAF_NODE_LEFT_SPLIT_COUNT) {
destination_node = new_node;
} else {
destination_node = old_node;
}
uint32_t index_within_node = i % LEAF_NODE_LEFT_SPLIT_COUNT;
void* destination = leaf_node_cell(destination_node, index_within_node);
if (i == cursor->cell_num) {
serialize_row(leaf_node_value(destination_node, index_within_node),
value);
*leaf_node_key(destination_node, index_within_node) = key;
} else if (i > cursor->cell_num) {
memcpy(destination, leaf_node_cell(old_node, i - 1), LEAF_NODE_CELL_SIZE);
} else {
memcpy(destination, leaf_node_cell(old_node, i), LEAF_NODE_CELL_SIZE);
}
}
*leaf_node_num_cells(old_node) = LEAF_NODE_LEFT_SPLIT_COUNT;
*leaf_node_num_cells(new_node) = LEAF_NODE_RIGHT_SPLIT_COUNT;
if (is_node_root(old_node)) {
return create_new_root(cursor->table, new_page_num);
} else {
printf("Need to implement updating parent after split\n");
exit(EXIT_FAILURE);
}
}
void leaf_node_insert(Cursor* cursor, uint32_t key, Row* value) {
void* node = get_page(cursor->table->pager, cursor->page_num);
uint32_t num_cells = *leaf_node_num_cells(node);
if (num_cells >= LEAF_NODE_MAX_CELLS) {
leaf_node_split_and_insert(cursor, key, value);
return;
}
if (cursor->cell_num < num_cells) {
for (uint32_t i = num_cells; i > cursor->cell_num; i--) {
memcpy(leaf_node_cell(node, i), leaf_node_cell(node, i - 1),
LEAF_NODE_CELL_SIZE);
}
}
*(leaf_node_num_cells(node)) += 1;
*(leaf_node_key(node, cursor->cell_num)) = key;
serialize_row(leaf_node_value(node, cursor->cell_num), value);
}
ExecuteResult execute_insert(Statement* statement, Table* table) {
void* node = get_page(table->pager, table->root_page_num);
uint32_t num_cells = *leaf_node_num_cells(node);
Row* row_to_insert = &statement->row_to_insert;
uint32_t key_to_insert = row_to_insert->id;
Cursor* cursor = table_find(table, key_to_insert);
if (cursor->cell_num < num_cells) {
uint32_t key_at_index = *leaf_node_key(node, cursor->cell_num);
if (key_at_index == key_to_insert) {
return EXECUTE_DUPLICATE_KEY;
}
}
leaf_node_insert(cursor, row_to_insert->id, row_to_insert);
free(cursor);
return EXECUTE_SUCCESS;
}
ExecuteResult execute_select(Statement* statement, Table* table) {
Row row;
Cursor* cursor = table_start(table);
// 简单处理,select时打印全部
while (!cursor->end_of_table) {
// 找到i在哪个page的offset 偏移内存点
void* page = cursor_value(cursor);
deserialize_row(&row, page);
print_row(&row);
cursor_advance(cursor);
}
free(cursor);
return EXECUTE_SUCCESS;
}
ExecuteResult execute_statement(Statement* statement, Table* table) {
switch (statement->type) {
case STATEMENT_INSERT:
return execute_insert(statement, table);
case STATEMENT_SELECT:
return execute_select(statement, table);
}
}
// InputBuffer -> Statement
PrepareResult prepare_insert(InputBuffer* input_buffer, Statement* statement) {
static char* token = " ";
strtok(input_buffer->buffer, token);
char* idStr = strtok(NULL, token);
char* username = strtok(NULL, token);
char* email = strtok(NULL, token);
if (!idStr || !username || !email) {
return PREPARE_SYNTAX_ERROR;
}
uint32_t id = atoi(idStr);
if (id < 0) {
return PREPARE_NEGATIVE_ID;
}
if (strlen(username) > COLUMN_USERNAME) {
return PREPARE_STRING_TOO_LONG;
}
if (strlen(email) > COLUMN_EMAIL) {
return PREPARE_STRING_TOO_LONG;
}
statement->type = STATEMENT_INSERT;
statement->row_to_insert.id = id;
strcpy(statement->row_to_insert.username, username);
strcpy(statement->row_to_insert.email, email);
return PREPARE_SUCCESS;
}
// InputBuffer -> Statement 入口
PrepareResult prepare_statement(InputBuffer* input_buffer,
Statement* statement) {
if (strncmp(input_buffer->buffer, "insert", 6) == 0) {
return prepare_insert(input_buffer, statement);
}
if (strcmp(input_buffer->buffer, "select") == 0) {
statement->type = STATEMENT_SELECT;
return PREPARE_SUCCESS;
}
return PREPARE_UNRECOGNIZED_STATEMENT;
}
int main(int argc, char** argv) {
char* filename;
if (argc > 1) {
filename = argv[1];
}
Table* table = db_open(filename);
while (true) {
printf("> ");
InputBuffer* input_buffer = new_input_buffer();
read_line(input_buffer);
// 对原字符进行识别是否有辅助指令
if (input_buffer->buffer[0] == '.') {
switch (do_meta_command(input_buffer, table)) {
case META_COMMAND_SUCCESS:
continue;
case META_COMMAND_UNRECOGNIZED:
printf("unrecognize command: %s.\n", input_buffer->buffer);
continue;
}
}
Statement statement;
switch (prepare_statement(input_buffer, &statement)) {
case PREPARE_SUCCESS:
break;
case PREPARE_NEGATIVE_ID:
printf("input ID is negative: %s.\n", input_buffer->buffer);
continue;
case PREPARE_SYNTAX_ERROR:
printf("input syntax is error: %s.\n", input_buffer->buffer);
continue;
case PREPARE_STRING_TOO_LONG:
printf("input variable is too long: %s.\n", input_buffer->buffer);
continue;
case PREPARE_UNRECOGNIZED_STATEMENT:
printf("input unrecognized: %s.\n", input_buffer->buffer);
continue;
}
switch (execute_statement(&statement, table)) {
case EXECUTE_SUCCESS:
printf("Executed.\n");
break;
case EXECUTE_DUPLICATE_KEY:
printf("Error: Duplicate key.\n");
break;
case EXECUTE_FULL_TABLE:
printf("Table insertion is full!");
break;
}
del_input_buffer(input_buffer);
}
return 0;
}
void pager_flush(Pager* pager, uint32_t page_num) {
if (pager->pages[page_num] == NULL) {
printf("flush error by empty page at %d, size: %d .\n", page_num,
PAGE_SIZE);
exit(EXIT_FAILURE);
}
off_t offset = lseek(pager->file_descriptor, page_num * PAGE_SIZE, SEEK_SET);
if (offset == -1) {
printf("flush seek page at %d, error: %s.\n", page_num, strerror(errno));
exit(EXIT_FAILURE);
}
ssize_t write_bytes =
write(pager->file_descriptor, pager->pages[page_num], PAGE_SIZE);
if (write_bytes == -1) {
printf("flush write page at %d, error: %s.\n", page_num, strerror(errno));
exit(EXIT_FAILURE);
}
}
void db_close(Table* table) {
Pager* pager = table->pager;
FORLESS(pager->num_pages) {
if (pager->pages[i] != NULL) {
pager_flush(pager, i);
free(pager->pages[i]);
pager->pages[i] = NULL;
}
}
int result = close(pager->file_descriptor);
if (result == -1) {
printf("close file error: %s!\n", strerror(errno));
exit(EXIT_FAILURE);
}
FORLESS(TABLE_MAX_PAGES) {
if (pager->pages[i] != NULL) {
pager->pages[i] = NULL;
}
}
del_table(table);
}
MetaCommandResult do_meta_command(InputBuffer* input_buffer, Table* table) {
// 模拟退出时保存数据
if (strcmp(input_buffer->buffer, ".exit") == 0) {
db_close(table);
exit(EXIT_SUCCESS);
} else if (strcmp(input_buffer->buffer, ".btree") == 0) {
printf("Tree:\n");
print_tree(table->pager, 0, 0);
return META_COMMAND_SUCCESS;
} else if (strcmp(input_buffer->buffer, ".constants") == 0) {
printf("Constants:\n");
print_constants();
return META_COMMAND_SUCCESS;
}
return META_COMMAND_UNRECOGNIZED;
}
Pager* pager_open(const char* filename) {
int fd = open(filename, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR);
if (fd == -1) {
printf("open file: %s error: %s.\n", filename, strerror(errno));
exit(EXIT_FAILURE);
}
// 使用lseek 移到SEEK_END知道文件大小
size_t read_bytes = lseek(fd, 0, SEEK_END);
if (read_bytes == -1) {
printf("seek file: %s error: %s.\n", filename, strerror(errno));
exit(EXIT_FAILURE);
}
Pager* pager = malloc(sizeof(Pager));
pager->file_descriptor = fd;
pager->file_length = read_bytes;
pager->num_pages = (read_bytes / PAGE_SIZE);
if (read_bytes % PAGE_SIZE != 0) {
printf("Db file is not a whole number of pages. Corrupt file.\n");
exit(EXIT_FAILURE);
}
FORLESS(TABLE_MAX_PAGES) { pager->pages[i] = NULL; }
return pager;
}
Table* db_open(const char* filename) {
Pager* pager = pager_open(filename);
int num_rows = pager->file_length / ROW_SIZE;
Table* table = malloc(sizeof(Table));
table->pager = pager;
table->root_page_num = 0;
if (pager->num_pages == 0) {
void* root_node = get_page(pager, 0);
initialize_leaf_node(root_node);
set_node_root(root_node, true);
}
return table;
}