-
Notifications
You must be signed in to change notification settings - Fork 37
/
parser_model.py
489 lines (383 loc) · 25.2 KB
/
parser_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import os
import time
import tensorflow as tf
import numpy as np
from base_model import Model
from params_init import random_uniform_initializer, random_normal_initializer, xavier_initializer
from utils.general_utils import Progbar
from utils.general_utils import get_minibatches
from utils.feature_extraction import load_datasets, DataConfig, Flags, punc_pos, pos_prefix
from utils.tf_utils import visualize_sample_embeddings
class ParserModel(Model):
def __init__(self, config, word_embeddings, pos_embeddings, dep_embeddings):
self.word_embeddings = word_embeddings
self.pos_embeddings = pos_embeddings
self.dep_embeddings = dep_embeddings
self.config = config
self.build()
def add_placeholders(self):
with tf.variable_scope("input_placeholders"):
self.word_input_placeholder = tf.placeholder(shape=[None, self.config.word_features_types],
dtype=tf.int32, name="batch_word_indices")
self.pos_input_placeholder = tf.placeholder(shape=[None, self.config.pos_features_types],
dtype=tf.int32, name="batch_pos_indices")
self.dep_input_placeholder = tf.placeholder(shape=[None, self.config.dep_features_types],
dtype=tf.int32, name="batch_dep_indices")
with tf.variable_scope("label_placeholders"):
self.labels_placeholder = tf.placeholder(shape=[None, self.config.num_classes],
dtype=tf.float32, name="batch_one_hot_targets")
with tf.variable_scope("regularization"):
self.dropout_placeholder = tf.placeholder(shape=(), dtype=tf.float32, name="dropout")
def create_feed_dict(self, inputs_batch, labels_batch=None, keep_prob=1):
feed_dict = {
self.word_input_placeholder: inputs_batch[0],
self.pos_input_placeholder: inputs_batch[1],
self.dep_input_placeholder: inputs_batch[2],
self.dropout_placeholder: keep_prob
}
if labels_batch is not None:
feed_dict[self.labels_placeholder] = labels_batch
return feed_dict
def write_gradient_summaries(self, grad_tvars):
with tf.name_scope("gradient_summaries"):
for (grad, tvar) in grad_tvars:
mean = tf.reduce_mean(grad)
stddev = tf.sqrt(tf.reduce_mean(tf.square(grad - mean)))
tf.summary.histogram("{}/hist".format(tvar.name), grad)
tf.summary.scalar("{}/mean".format(tvar.name), mean)
tf.summary.scalar("{}/stddev".format(tvar.name), stddev)
tf.summary.scalar("{}/sparsity".format(tvar.name), tf.nn.zero_fraction(grad))
def add_embedding(self):
with tf.variable_scope("feature_lookup"):
self.word_embedding_matrix = random_uniform_initializer(self.word_embeddings.shape, "word_embedding_matrix",
0.01, trainable=True)
self.pos_embedding_matrix = random_uniform_initializer(self.pos_embeddings.shape, "pos_embedding_matrix",
0.01, trainable=True)
self.dep_embedding_matrix = random_uniform_initializer(self.dep_embeddings.shape, "dep_embedding_matrix",
0.01, trainable=True)
word_context_embeddings = tf.nn.embedding_lookup(self.word_embedding_matrix, self.word_input_placeholder)
pos_context_embeddings = tf.nn.embedding_lookup(self.pos_embedding_matrix, self.pos_input_placeholder)
dep_context_embeddings = tf.nn.embedding_lookup(self.dep_embedding_matrix, self.dep_input_placeholder)
word_embeddings = tf.reshape(word_context_embeddings,
[-1, self.config.word_features_types * self.config.embedding_dim],
name="word_context_embeddings")
pos_embeddings = tf.reshape(pos_context_embeddings,
[-1, self.config.pos_features_types * self.config.embedding_dim],
name="pos_context_embeddings")
dep_embeddings = tf.reshape(dep_context_embeddings,
[-1, self.config.dep_features_types * self.config.embedding_dim],
name="dep_context_embeddings")
with tf.variable_scope("batch_inputs"):
embeddings = tf.concat([word_embeddings, pos_embeddings, dep_embeddings], 1, name="batch_feature_matrix")
return embeddings, word_embeddings, pos_embeddings, dep_embeddings
def add_cube_prediction_op(self):
print "***Building network with CUBE activation***"
_, word_embeddings, pos_embeddings, dep_embeddings = self.add_embedding()
with tf.variable_scope("layer_connections"):
with tf.variable_scope("layer_1"):
w11 = random_uniform_initializer((self.config.word_features_types * self.config.embedding_dim,
self.config.l1_hidden_size), "w11",
0.01, trainable=True)
w12 = random_uniform_initializer((self.config.pos_features_types * self.config.embedding_dim,
self.config.l1_hidden_size), "w12",
0.01, trainable=True)
w13 = random_uniform_initializer((self.config.dep_features_types * self.config.embedding_dim,
self.config.l1_hidden_size), "w13",
0.01, trainable=True)
b1 = random_uniform_initializer((self.config.l1_hidden_size,), "bias1",
0.01, trainable=True)
"""
w11 = xavier_initializer((self.config.word_features_types * self.config.embedding_dim,
self.config.l1_hidden_size), "w11")
w12 = xavier_initializer((self.config.pos_features_types * self.config.embedding_dim,
self.config.l1_hidden_size), "w12")
w13 = xavier_initializer((self.config.dep_features_types * self.config.embedding_dim,
self.config.l1_hidden_size), "w13")
b1 = xavier_initializer((self.config.l1_hidden_size,), "bias1")
"""
# for visualization
preactivations = tf.pow(tf.add_n([tf.matmul(word_embeddings, w11),
tf.matmul(pos_embeddings, w12),
tf.matmul(dep_embeddings, w13)]) + b1, 3, name="preactivations")
tf.summary.histogram("preactivations", preactivations)
# non_positive_activation_fraction = tf.reduce_mean(tf.cast(tf.less_equal(preactivations, 0),
# tf.float32))
# tf.summary.scalar("non_positive_activations_fraction", non_positive_activation_fraction)
h1 = tf.nn.dropout(preactivations,
keep_prob=self.dropout_placeholder,
name="output_activations")
with tf.variable_scope("layer_2"):
"""
w2 = xavier_initializer((self.config.l1_hidden_size, self.config.l2_hidden_size), "w2")
b2 = xavier_initializer((self.config.l2_hidden_size,), "bias2")
"""
w2 = random_uniform_initializer((self.config.l1_hidden_size, self.config.l2_hidden_size), "w2",
0.01, trainable=True)
b2 = random_uniform_initializer((self.config.l2_hidden_size,), "bias2",
0.01, trainable=True)
h2 = tf.nn.relu(tf.add(tf.matmul(h1, w2), b2), name="activations")
with tf.variable_scope("layer_3"):
"""
w3 = xavier_initializer((self.config.l2_hidden_size, self.config.num_classes), "w3")
b3 = xavier_initializer((self.config.num_classes,), "bias3")
"""
w3 = random_uniform_initializer((self.config.l2_hidden_size, self.config.num_classes), "w3",
0.01, trainable=True)
b3 = random_uniform_initializer((self.config.num_classes,), "bias3", 0.01, trainable=True)
with tf.variable_scope("predictions"):
predictions = tf.add(tf.matmul(h2, w3), b3, name="prediction_logits")
return predictions
def add_prediction_op(self):
print "***Building network with ReLU activation***"
x = self.add_embedding()
with tf.variable_scope("layer_connections"):
with tf.variable_scope("layer_1"):
w1 = xavier_initializer((self.config.num_features_types * self.config.embedding_dim,
self.config.hidden_size), "w1")
b1 = xavier_initializer((self.config.hidden_size,), "bias1")
# for visualization
preactivations = tf.add(tf.matmul(x, w1), b1, name="preactivations")
tf.summary.histogram("preactivations", preactivations)
non_positive_activation_fraction = tf.reduce_mean(tf.cast(tf.less_equal(preactivations, 0),
tf.float32))
tf.summary.scalar("non_negative_activations_fraction", non_positive_activation_fraction)
h1 = tf.nn.dropout(tf.nn.relu(preactivations),
keep_prob=self.dropout_placeholder,
name="output_activations")
with tf.variable_scope("layer_2"):
w2 = xavier_initializer((self.config.hidden_size, self.config.num_classes), "w2")
b2 = xavier_initializer((self.config.num_classes,), "bias2")
with tf.variable_scope("predictions"):
predictions = tf.add(tf.matmul(h1, w2), b2, name="prediction_logits")
return predictions
def l2_loss_sum(self, tvars):
return tf.add_n([tf.nn.l2_loss(t) for t in tvars], "l2_norms_sum")
def add_loss_op(self, pred):
tvars = tf.trainable_variables()
without_bias_tvars = [tvar for tvar in tvars if 'bias' not in tvar.name]
with tf.variable_scope("loss"):
cross_entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
labels=self.labels_placeholder, logits=pred), name="batch_xentropy_loss")
l2_loss = tf.multiply(self.config.reg_val, self.l2_loss_sum(without_bias_tvars), name="l2_loss")
loss = tf.add(cross_entropy_loss, l2_loss, name="total_batch_loss")
tf.summary.scalar("batch_loss", loss)
return loss
def add_accuracy_op(self, pred):
with tf.variable_scope("accuracy"):
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(pred, axis=1),
tf.argmax(self.labels_placeholder, axis=1)), dtype=tf.float32),
name="curr_batch_accuracy")
return accuracy
def add_training_op(self, loss):
with tf.variable_scope("optimizer"):
optimizer = tf.train.AdamOptimizer(learning_rate=self.config.lr, name="adam_optimizer")
tvars = tf.trainable_variables()
grad_tvars = optimizer.compute_gradients(loss, tvars)
self.write_gradient_summaries(grad_tvars)
train_op = optimizer.apply_gradients(grad_tvars)
return train_op
def get_word_pos_inputs(self, inputs_batch): # inputs_batch : list([list(word_id), list(pos_id)])
# inputs_batch: [ [[1,2], [3,4], [5,6]], [[7,8], [9,10],[11,12]] ]
inputs_batch = np.asarray(inputs_batch)
word_inputs_batch, pos_inputs_batch, dep_inputs_batch = np.split(inputs_batch, 3, 1)
word_inputs_batch = np.squeeze(word_inputs_batch) # removes extra dimenstion -> convert 3-d to 2-d matrix
pos_inputs_batch = np.squeeze(pos_inputs_batch)
dep_inputs_batch = np.squeeze(dep_inputs_batch)
return word_inputs_batch, pos_inputs_batch, dep_inputs_batch
def train_on_batch(self, sess, inputs_batch, labels_batch, merged):
word_inputs_batch, pos_inputs_batch, dep_inputs_batch = inputs_batch
feed = self.create_feed_dict([word_inputs_batch, pos_inputs_batch, dep_inputs_batch], labels_batch=labels_batch,
keep_prob=self.config.keep_prob)
_, summary, loss = sess.run([self.train_op, merged, self.loss], feed_dict=feed)
return summary, loss
def compute_dependencies(self, sess, data, dataset):
sentences = data
rem_sentences = [sentence for sentence in sentences]
[sentence.clear_prediction_dependencies() for sentence in sentences]
[sentence.clear_children_info() for sentence in sentences]
while len(rem_sentences) != 0:
curr_batch_size = min(dataset.model_config.batch_size, len(rem_sentences))
batch_sentences = rem_sentences[:curr_batch_size]
enable_features = [0 if len(sentence.stack) == 1 and len(sentence.buff) == 0 else 1 for sentence in
batch_sentences]
enable_count = np.count_nonzero(enable_features)
while enable_count > 0:
curr_sentences = [sentence for i, sentence in enumerate(batch_sentences) if enable_features[i] == 1]
# get feature for each sentence
# call predictions -> argmax
# store dependency and left/right child
# update state
# repeat
curr_inputs = [
dataset.feature_extractor.extract_for_current_state(sentence, dataset.word2idx, dataset.pos2idx,
dataset.dep2idx) for sentence in curr_sentences]
word_inputs_batch = [curr_inputs[i][0] for i in range(len(curr_inputs))]
pos_inputs_batch = [curr_inputs[i][1] for i in range(len(curr_inputs))]
dep_inputs_batch = [curr_inputs[i][2] for i in range(len(curr_inputs))]
predictions = sess.run(self.pred,
feed_dict=self.create_feed_dict([word_inputs_batch, pos_inputs_batch,
dep_inputs_batch]))
legal_labels = np.asarray([sentence.get_legal_labels() for sentence in curr_sentences],
dtype=np.float32)
legal_transitions = np.argmax(predictions + 1000 * legal_labels, axis=1)
# update left/right children so can be used for next feature vector
[sentence.update_child_dependencies(transition) for (sentence, transition) in
zip(curr_sentences, legal_transitions) if transition != 2]
# update state
[sentence.update_state_by_transition(legal_transition, gold=False) for (sentence, legal_transition) in
zip(curr_sentences, legal_transitions)]
enable_features = [0 if len(sentence.stack) == 1 and len(sentence.buff) == 0 else 1 for sentence in
batch_sentences]
enable_count = np.count_nonzero(enable_features)
# Reset stack and buffer
[sentence.reset_to_initial_state() for sentence in batch_sentences]
rem_sentences = rem_sentences[curr_batch_size:]
def get_UAS(self, data):
correct_tokens = 0
all_tokens = 0
punc_token_pos = [pos_prefix + each for each in punc_pos]
for sentence in data:
# reset each predicted head before evaluation
[token.reset_predicted_head_id() for token in sentence.tokens]
head = [-2] * len(sentence.tokens)
# assert len(sentence.dependencies) == len(sentence.predicted_dependencies)
for h, t, in sentence.predicted_dependencies:
head[t.token_id] = h.token_id
non_punc_tokens = [token for token in sentence.tokens if token.pos not in punc_token_pos]
correct_tokens += sum([1 if token.head_id == head[token.token_id] else 0 for (_, token) in enumerate(
non_punc_tokens)])
# all_tokens += len(sentence.tokens)
all_tokens += len(non_punc_tokens)
UAS = correct_tokens / float(all_tokens)
return UAS
def run_epoch(self, sess, config, dataset, train_writer, merged):
prog = Progbar(target=1 + len(dataset.train_inputs[0]) / config.batch_size)
for i, (train_x, train_y) in enumerate(get_minibatches([dataset.train_inputs, dataset.train_targets],
config.batch_size, is_multi_feature_input=True)):
# print "input, outout: {}, {}".format(np.array(train_x).shape, np.array(train_y).shape)
summary, loss = self.train_on_batch(sess, train_x, train_y, merged)
prog.update(i + 1, [("train loss", loss)])
# train_writer.add_summary(summary, global_step=i)
return summary, loss # Last batch
def run_valid_epoch(self, sess, dataset):
print "Evaluating on dev set",
self.compute_dependencies(sess, dataset.valid_data, dataset)
valid_UAS = self.get_UAS(dataset.valid_data)
print "- dev UAS: {:.2f}".format(valid_UAS * 100.0)
return valid_UAS
def fit(self, sess, saver, config, dataset, train_writer, valid_writer, merged):
best_valid_UAS = 0
for epoch in range(config.n_epochs):
print "Epoch {:} out of {:}".format(epoch + 1, self.config.n_epochs)
summary, loss = self.run_epoch(sess, config, dataset, train_writer, merged)
if (epoch + 1) % dataset.model_config.run_valid_after_epochs == 0:
valid_UAS = self.run_valid_epoch(sess, dataset)
valid_UAS_summary = tf.summary.scalar("valid_UAS", tf.constant(valid_UAS, dtype=tf.float32))
valid_writer.add_summary(sess.run(valid_UAS_summary), epoch + 1)
if valid_UAS > best_valid_UAS:
best_valid_UAS = valid_UAS
if saver:
print "New best dev UAS! Saving model.."
saver.save(sess, os.path.join(DataConfig.data_dir_path, DataConfig.model_dir,
DataConfig.model_name))
# trainable variables summary -> only for training
if (epoch + 1) % dataset.model_config.write_summary_after_epochs == 0:
train_writer.add_summary(summary, global_step=epoch + 1)
print
def highlight_string(temp):
print 80 * "="
print temp
print 80 * "="
def main(flag, load_existing_dump=False):
highlight_string("INITIALIZING")
print "loading data.."
dataset = load_datasets(load_existing_dump)
config = dataset.model_config
print "word vocab Size: {}".format(len(dataset.word2idx))
print "pos vocab Size: {}".format(len(dataset.pos2idx))
print "dep vocab Size: {}".format(len(dataset.dep2idx))
print "Training Size: {}".format(len(dataset.train_inputs[0]))
print "valid data Size: {}".format(len(dataset.valid_data))
print "test data Size: {}".format(len(dataset.test_data))
print len(dataset.word2idx), len(dataset.word_embedding_matrix)
print len(dataset.pos2idx), len(dataset.pos_embedding_matrix)
print len(dataset.dep2idx), len(dataset.dep_embedding_matrix)
if not os.path.exists(os.path.join(DataConfig.data_dir_path, DataConfig.model_dir)):
os.makedirs(os.path.join(DataConfig.data_dir_path, DataConfig.model_dir))
with tf.Graph().as_default(), tf.Session() as sess:
print "Building network...",
start = time.time()
with tf.variable_scope("model") as model_scope:
model = ParserModel(config, dataset.word_embedding_matrix, dataset.pos_embedding_matrix,
dataset.dep_embedding_matrix)
saver = tf.train.Saver()
"""
model_scope.reuse_variables()
-> no need to call tf.variable_scope(model_scope, reuse = True) again
-> directly access variables & call functions inside this block itself.
-> ref: https://www.tensorflow.org/versions/r1.2/api_docs/python/tf/variable_scope
-> https://stackoverflow.com/questions/35919020/whats-the-difference-of-name-scope-and-a-variable-scope-in-tensorflow
"""
print "took {:.2f} seconds\n".format(time.time() - start)
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(DataConfig.data_dir_path, DataConfig.summary_dir,
DataConfig.train_summ_dir), sess.graph)
valid_writer = tf.summary.FileWriter(os.path.join(DataConfig.data_dir_path, DataConfig.summary_dir,
DataConfig.test_summ_dir))
if flag == Flags.TRAIN:
# Variable initialization -> not needed for .restore()
""" The variables to restore do not have to have been initialized,
as restoring is itself a way to initialize variables. """
sess.run(tf.global_variables_initializer())
""" call 'assignment' after 'init' only, else 'assignment' will get reset by 'init' """
sess.run(tf.assign(model.word_embedding_matrix, model.word_embeddings))
sess.run(tf.assign(model.pos_embedding_matrix, model.pos_embeddings))
sess.run(tf.assign(model.dep_embedding_matrix, model.dep_embeddings))
highlight_string("TRAINING")
model.print_trainable_varibles()
model.fit(sess, saver, config, dataset, train_writer, valid_writer, merged)
# Testing
highlight_string("Testing")
print "Restoring best found parameters on dev set"
saver.restore(sess, os.path.join(DataConfig.data_dir_path, DataConfig.model_dir,
DataConfig.model_name))
model.compute_dependencies(sess, dataset.test_data, dataset)
test_UAS = model.get_UAS(dataset.test_data)
print "test UAS: {}".format(test_UAS * 100)
train_writer.close()
valid_writer.close()
# visualize trained embeddings after complete training (not after each epoch)
with tf.variable_scope(model_scope, reuse=True):
pos_emb = tf.get_variable("feature_lookup/pos_embedding_matrix",
[len(dataset.pos2idx.keys()), dataset.model_config.embedding_dim])
visualize_sample_embeddings(sess, os.path.join(DataConfig.data_dir_path, DataConfig.model_dir),
dataset.pos2idx.keys(), dataset.pos2idx, pos_emb)
print "to Visualize Embeddings, run in terminal:"
print "tensorboard --logdir=" + os.path.abspath(os.path.join(DataConfig.data_dir_path,
DataConfig.model_dir))
else:
ckpt_path = tf.train.latest_checkpoint(os.path.join(DataConfig.data_dir_path,
DataConfig.model_dir))
if ckpt_path is not None:
print "Found checkpoint! Restoring variables.."
saver.restore(sess, ckpt_path)
highlight_string("Testing")
model.compute_dependencies(sess, dataset.test_data, dataset)
test_UAS = model.get_UAS(dataset.test_data)
print "test UAS: {}".format(test_UAS * 100)
# model.run_valid_epoch(sess, dataset.valid_data, dataset)
# valid_UAS = model.get_UAS(dataset.valid_data)
# print "valid UAS: {}".format(valid_UAS * 100)
highlight_string("Embedding Visualization")
with tf.variable_scope(model_scope, reuse=True):
pos_emb = tf.get_variable("feature_lookup/pos_embedding_matrix",
[len(dataset.pos2idx.keys()), dataset.model_config.embedding_dim])
visualize_sample_embeddings(sess, os.path.join(DataConfig.data_dir_path, DataConfig.model_dir),
dataset.pos2idx.keys(), dataset.pos2idx, pos_emb)
print "to Visualize Embeddings, run in terminal:"
print "tensorboard --logdir=" + os.path.abspath(os.path.join(DataConfig.data_dir_path,
DataConfig.model_dir))
else:
print "No checkpoint found!"
if __name__ == '__main__':
main(Flags.TRAIN, load_existing_dump=True)