forked from weidai11/cryptopp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchacha_simd.cpp
1115 lines (909 loc) · 36.2 KB
/
chacha_simd.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// chacha_simd.cpp - written and placed in the public domain by
// Jack Lloyd and Jeffrey Walton
//
// This source file uses intrinsics and built-ins to gain access to
// SSE2, ARM NEON and ARMv8a, Power7 and Altivec instructions. A separate
// source file is needed because additional CXXFLAGS are required to enable
// the appropriate instructions sets in some build configurations.
//
// SSE2 implementation based on Botan's chacha_sse2.cpp. Many thanks
// to Jack Lloyd and the Botan team for allowing us to use it.
//
// The SSE2 implementation is kind of unusual among Crypto++ algorithms.
// We guard on CRYTPOPP_SSE2_AVAILABLE and use HasSSE2() at runtime. However,
// if the compiler says a target machine has SSSE3 or XOP available (say, by
// way of -march=native), then we can pull another 150 to 800 MB/s out of
// ChaCha. To capture SSSE3 and XOP we use the compiler defines __SSSE3__ and
// __XOP__ and forgo runtime tests.
//
// Runtime tests for HasSSSE3() and HasXop() are too expensive to make a
// sub-case of SSE2. The rotates are on a critical path and the runtime tests
// crush performance.
//
// Here are some relative numbers for ChaCha8:
// * Intel Skylake, 3.0 GHz: SSE2 at 2160 MB/s; SSSE3 at 2310 MB/s.
// * AMD Bulldozer, 3.3 GHz: SSE2 at 1680 MB/s; XOP at 2510 MB/s.
#include "pch.h"
#include "config.h"
#include "chacha.h"
#include "misc.h"
// Internal compiler error in GCC 3.3 and below
#if defined(__GNUC__) && (__GNUC__ < 4)
# undef CRYPTOPP_SSE2_INTRIN_AVAILABLE
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
# include <xmmintrin.h>
# include <emmintrin.h>
#endif
#if defined(__SSSE3__)
# include <tmmintrin.h>
#endif
#if defined(__XOP__)
# include <ammintrin.h>
# if defined(__GNUC__)
# include <x86intrin.h>
# endif
#endif
#if (CRYPTOPP_ARM_NEON_HEADER)
# include <arm_neon.h>
#endif
#if (CRYPTOPP_ARM_ACLE_HEADER)
# include <stdint.h>
# include <arm_acle.h>
#endif
#if defined(CRYPTOPP_ALTIVEC_AVAILABLE)
# include "ppc_simd.h"
#endif
// Squash MS LNK4221 and libtool warnings
extern const char CHACHA_SIMD_FNAME[] = __FILE__;
ANONYMOUS_NAMESPACE_BEGIN
// ***************************** NEON ***************************** //
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
template <unsigned int R>
inline uint32x4_t RotateLeft(const uint32x4_t& val)
{
return vorrq_u32(vshlq_n_u32(val, R), vshrq_n_u32(val, 32 - R));
}
template <unsigned int R>
inline uint32x4_t RotateRight(const uint32x4_t& val)
{
return vorrq_u32(vshlq_n_u32(val, 32 - R), vshrq_n_u32(val, R));
}
template <>
inline uint32x4_t RotateLeft<8>(const uint32x4_t& val)
{
#if defined(__aarch32__) || defined(__aarch64__)
const uint8_t maskb[16] = { 3,0,1,2, 7,4,5,6, 11,8,9,10, 15,12,13,14 };
const uint8x16_t mask = vld1q_u8(maskb);
return vreinterpretq_u32_u8(
vqtbl1q_u8(vreinterpretq_u8_u32(val), mask));
#else
// fallback to slower C++ rotation.
return vorrq_u32(vshlq_n_u32(val, 8),
vshrq_n_u32(val, 32 - 8));
#endif
}
template <>
inline uint32x4_t RotateLeft<16>(const uint32x4_t& val)
{
#if defined(__aarch32__) || defined(__aarch64__)
return vreinterpretq_u32_u16(
vrev32q_u16(vreinterpretq_u16_u32(val)));
#else
// fallback to slower C++ rotation.
return vorrq_u32(vshlq_n_u32(val, 16),
vshrq_n_u32(val, 32 - 16));
#endif
}
template <>
inline uint32x4_t RotateRight<8>(const uint32x4_t& val)
{
#if defined(__aarch32__) || defined(__aarch64__)
const uint8_t maskb[16] = { 1,2,3,0, 5,6,7,4, 9,10,11,8, 13,14,15,12 };
const uint8x16_t mask = vld1q_u8(maskb);
return vreinterpretq_u32_u8(
vqtbl1q_u8(vreinterpretq_u8_u32(val), mask));
#else
// fallback to slower C++ rotation.
return vorrq_u32(vshrq_n_u32(val, 8),
vshlq_n_u32(val, 32 - 8));
#endif
}
template <>
inline uint32x4_t RotateRight<16>(const uint32x4_t& val)
{
#if defined(__aarch32__) || defined(__aarch64__)
return vreinterpretq_u32_u16(
vrev32q_u16(vreinterpretq_u16_u32(val)));
#else
// fallback to slower C++ rotation.
return vorrq_u32(vshrq_n_u32(val, 16),
vshlq_n_u32(val, 32 - 16));
#endif
}
// ChaCha's use of x86 shuffle is really a 4, 8, or 12 byte
// rotation on the 128-bit vector word:
// * [3,2,1,0] => [0,3,2,1] is Extract<1>(x)
// * [3,2,1,0] => [1,0,3,2] is Extract<2>(x)
// * [3,2,1,0] => [2,1,0,3] is Extract<3>(x)
template <unsigned int S>
inline uint32x4_t Extract(const uint32x4_t& val)
{
return vextq_u32(val, val, S);
}
// Helper to perform 64-bit addition across two elements of 32-bit vectors
inline uint32x4_t Add64(const uint32x4_t& a, const uint32x4_t& b)
{
return vreinterpretq_u32_u64(
vaddq_u64(
vreinterpretq_u64_u32(a),
vreinterpretq_u64_u32(b)));
}
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
// ***************************** SSE2 ***************************** //
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
template <unsigned int R>
inline __m128i RotateLeft(const __m128i val)
{
#ifdef __XOP__
return _mm_roti_epi32(val, R);
#else
return _mm_or_si128(_mm_slli_epi32(val, R), _mm_srli_epi32(val, 32-R));
#endif
}
template <>
inline __m128i RotateLeft<8>(const __m128i val)
{
#if defined(__XOP__)
return _mm_roti_epi32(val, 8);
#elif defined(__SSSE3__)
const __m128i mask = _mm_set_epi8(14,13,12,15, 10,9,8,11, 6,5,4,7, 2,1,0,3);
return _mm_shuffle_epi8(val, mask);
#else
return _mm_or_si128(_mm_slli_epi32(val, 8), _mm_srli_epi32(val, 32-8));
#endif
}
template <>
inline __m128i RotateLeft<16>(const __m128i val)
{
#if defined(__XOP__)
return _mm_roti_epi32(val, 16);
#elif defined(__SSSE3__)
const __m128i mask = _mm_set_epi8(13,12,15,14, 9,8,11,10, 5,4,7,6, 1,0,3,2);
return _mm_shuffle_epi8(val, mask);
#else
return _mm_or_si128(_mm_slli_epi32(val, 16), _mm_srli_epi32(val, 32-16));
#endif
}
#endif // CRYPTOPP_SSE2_INTRIN_AVAILABLE
// **************************** Altivec **************************** //
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
// ChaCha_OperateKeystream_POWER7 is optimized for POWER7. However, Altivec
// is supported by using vec_ld and vec_st, and using a composite VecAdd
// that supports 64-bit element adds. vec_ld and vec_st add significant
// overhead when memory is not aligned. Despite the drawbacks Altivec
// is profitable. The numbers for ChaCha8 are:
//
// PowerMac, C++, 2.0 GHz: 205 MB/s, 9.29 cpb
// PowerMac, Altivec, 2.0 GHz: 471 MB/s, 4.09 cpb
using CryptoPP::uint8x16_p;
using CryptoPP::uint32x4_p;
using CryptoPP::VecLoad;
using CryptoPP::VecStore;
using CryptoPP::VecPermute;
// Permutes bytes in packed 32-bit words to little endian.
// State is already in proper endian order. Input and
// output must be permuted during load and save.
inline uint32x4_p VecLoad32LE(const uint8_t src[16])
{
#if (CRYPTOPP_BIG_ENDIAN)
const uint8x16_p mask = {3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12};
const uint32x4_p val = VecLoad(src);
return VecPermute(val, val, mask);
#else
return VecLoad(src);
#endif
}
// Permutes bytes in packed 32-bit words to little endian.
// State is already in proper endian order. Input and
// output must be permuted during load and save.
inline void VecStore32LE(uint8_t dest[16], const uint32x4_p& val)
{
#if (CRYPTOPP_BIG_ENDIAN)
const uint8x16_p mask = {3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12};
VecStore(VecPermute(val, val, mask), dest);
#else
return VecStore(val, dest);
#endif
}
// ChaCha's use of x86 shuffle is really a 4, 8, or 12 byte
// rotation on the 128-bit vector word:
// * [3,2,1,0] => [0,3,2,1] is Shuffle<1>(x)
// * [3,2,1,0] => [1,0,3,2] is Shuffle<2>(x)
// * [3,2,1,0] => [2,1,0,3] is Shuffle<3>(x)
template <unsigned int S>
inline uint32x4_p Shuffle(const uint32x4_p& val)
{
CRYPTOPP_ASSERT(0);
return val;
}
template <>
inline uint32x4_p Shuffle<1>(const uint32x4_p& val)
{
const uint8x16_p mask = {4,5,6,7, 8,9,10,11, 12,13,14,15, 0,1,2,3};
return VecPermute(val, val, mask);
}
template <>
inline uint32x4_p Shuffle<2>(const uint32x4_p& val)
{
const uint8x16_p mask = {8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7};
return VecPermute(val, val, mask);
}
template <>
inline uint32x4_p Shuffle<3>(const uint32x4_p& val)
{
const uint8x16_p mask = {12,13,14,15, 0,1,2,3, 4,5,6,7, 8,9,10,11};
return VecPermute(val, val, mask);
}
#endif // CRYPTOPP_ALTIVEC_AVAILABLE
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
// ***************************** NEON ***************************** //
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
void ChaCha_OperateKeystream_NEON(const word32 *state, const byte* input, byte *output, unsigned int rounds)
{
const uint32x4_t state0 = vld1q_u32(state + 0*4);
const uint32x4_t state1 = vld1q_u32(state + 1*4);
const uint32x4_t state2 = vld1q_u32(state + 2*4);
const uint32x4_t state3 = vld1q_u32(state + 3*4);
const unsigned int w[] = {1,0,0,0, 2,0,0,0, 3,0,0,0};
const uint32x4_t CTRS[3] = {
vld1q_u32(w+0), vld1q_u32(w+4), vld1q_u32(w+8)
};
uint32x4_t r0_0 = state0;
uint32x4_t r0_1 = state1;
uint32x4_t r0_2 = state2;
uint32x4_t r0_3 = state3;
uint32x4_t r1_0 = state0;
uint32x4_t r1_1 = state1;
uint32x4_t r1_2 = state2;
uint32x4_t r1_3 = Add64(r0_3, CTRS[0]);
uint32x4_t r2_0 = state0;
uint32x4_t r2_1 = state1;
uint32x4_t r2_2 = state2;
uint32x4_t r2_3 = Add64(r0_3, CTRS[1]);
uint32x4_t r3_0 = state0;
uint32x4_t r3_1 = state1;
uint32x4_t r3_2 = state2;
uint32x4_t r3_3 = Add64(r0_3, CTRS[2]);
for (int i = static_cast<int>(rounds); i > 0; i -= 2)
{
r0_0 = vaddq_u32(r0_0, r0_1);
r1_0 = vaddq_u32(r1_0, r1_1);
r2_0 = vaddq_u32(r2_0, r2_1);
r3_0 = vaddq_u32(r3_0, r3_1);
r0_3 = veorq_u32(r0_3, r0_0);
r1_3 = veorq_u32(r1_3, r1_0);
r2_3 = veorq_u32(r2_3, r2_0);
r3_3 = veorq_u32(r3_3, r3_0);
r0_3 = RotateLeft<16>(r0_3);
r1_3 = RotateLeft<16>(r1_3);
r2_3 = RotateLeft<16>(r2_3);
r3_3 = RotateLeft<16>(r3_3);
r0_2 = vaddq_u32(r0_2, r0_3);
r1_2 = vaddq_u32(r1_2, r1_3);
r2_2 = vaddq_u32(r2_2, r2_3);
r3_2 = vaddq_u32(r3_2, r3_3);
r0_1 = veorq_u32(r0_1, r0_2);
r1_1 = veorq_u32(r1_1, r1_2);
r2_1 = veorq_u32(r2_1, r2_2);
r3_1 = veorq_u32(r3_1, r3_2);
r0_1 = RotateLeft<12>(r0_1);
r1_1 = RotateLeft<12>(r1_1);
r2_1 = RotateLeft<12>(r2_1);
r3_1 = RotateLeft<12>(r3_1);
r0_0 = vaddq_u32(r0_0, r0_1);
r1_0 = vaddq_u32(r1_0, r1_1);
r2_0 = vaddq_u32(r2_0, r2_1);
r3_0 = vaddq_u32(r3_0, r3_1);
r0_3 = veorq_u32(r0_3, r0_0);
r1_3 = veorq_u32(r1_3, r1_0);
r2_3 = veorq_u32(r2_3, r2_0);
r3_3 = veorq_u32(r3_3, r3_0);
r0_3 = RotateLeft<8>(r0_3);
r1_3 = RotateLeft<8>(r1_3);
r2_3 = RotateLeft<8>(r2_3);
r3_3 = RotateLeft<8>(r3_3);
r0_2 = vaddq_u32(r0_2, r0_3);
r1_2 = vaddq_u32(r1_2, r1_3);
r2_2 = vaddq_u32(r2_2, r2_3);
r3_2 = vaddq_u32(r3_2, r3_3);
r0_1 = veorq_u32(r0_1, r0_2);
r1_1 = veorq_u32(r1_1, r1_2);
r2_1 = veorq_u32(r2_1, r2_2);
r3_1 = veorq_u32(r3_1, r3_2);
r0_1 = RotateLeft<7>(r0_1);
r1_1 = RotateLeft<7>(r1_1);
r2_1 = RotateLeft<7>(r2_1);
r3_1 = RotateLeft<7>(r3_1);
r0_1 = Extract<1>(r0_1);
r0_2 = Extract<2>(r0_2);
r0_3 = Extract<3>(r0_3);
r1_1 = Extract<1>(r1_1);
r1_2 = Extract<2>(r1_2);
r1_3 = Extract<3>(r1_3);
r2_1 = Extract<1>(r2_1);
r2_2 = Extract<2>(r2_2);
r2_3 = Extract<3>(r2_3);
r3_1 = Extract<1>(r3_1);
r3_2 = Extract<2>(r3_2);
r3_3 = Extract<3>(r3_3);
r0_0 = vaddq_u32(r0_0, r0_1);
r1_0 = vaddq_u32(r1_0, r1_1);
r2_0 = vaddq_u32(r2_0, r2_1);
r3_0 = vaddq_u32(r3_0, r3_1);
r0_3 = veorq_u32(r0_3, r0_0);
r1_3 = veorq_u32(r1_3, r1_0);
r2_3 = veorq_u32(r2_3, r2_0);
r3_3 = veorq_u32(r3_3, r3_0);
r0_3 = RotateLeft<16>(r0_3);
r1_3 = RotateLeft<16>(r1_3);
r2_3 = RotateLeft<16>(r2_3);
r3_3 = RotateLeft<16>(r3_3);
r0_2 = vaddq_u32(r0_2, r0_3);
r1_2 = vaddq_u32(r1_2, r1_3);
r2_2 = vaddq_u32(r2_2, r2_3);
r3_2 = vaddq_u32(r3_2, r3_3);
r0_1 = veorq_u32(r0_1, r0_2);
r1_1 = veorq_u32(r1_1, r1_2);
r2_1 = veorq_u32(r2_1, r2_2);
r3_1 = veorq_u32(r3_1, r3_2);
r0_1 = RotateLeft<12>(r0_1);
r1_1 = RotateLeft<12>(r1_1);
r2_1 = RotateLeft<12>(r2_1);
r3_1 = RotateLeft<12>(r3_1);
r0_0 = vaddq_u32(r0_0, r0_1);
r1_0 = vaddq_u32(r1_0, r1_1);
r2_0 = vaddq_u32(r2_0, r2_1);
r3_0 = vaddq_u32(r3_0, r3_1);
r0_3 = veorq_u32(r0_3, r0_0);
r1_3 = veorq_u32(r1_3, r1_0);
r2_3 = veorq_u32(r2_3, r2_0);
r3_3 = veorq_u32(r3_3, r3_0);
r0_3 = RotateLeft<8>(r0_3);
r1_3 = RotateLeft<8>(r1_3);
r2_3 = RotateLeft<8>(r2_3);
r3_3 = RotateLeft<8>(r3_3);
r0_2 = vaddq_u32(r0_2, r0_3);
r1_2 = vaddq_u32(r1_2, r1_3);
r2_2 = vaddq_u32(r2_2, r2_3);
r3_2 = vaddq_u32(r3_2, r3_3);
r0_1 = veorq_u32(r0_1, r0_2);
r1_1 = veorq_u32(r1_1, r1_2);
r2_1 = veorq_u32(r2_1, r2_2);
r3_1 = veorq_u32(r3_1, r3_2);
r0_1 = RotateLeft<7>(r0_1);
r1_1 = RotateLeft<7>(r1_1);
r2_1 = RotateLeft<7>(r2_1);
r3_1 = RotateLeft<7>(r3_1);
r0_1 = Extract<3>(r0_1);
r0_2 = Extract<2>(r0_2);
r0_3 = Extract<1>(r0_3);
r1_1 = Extract<3>(r1_1);
r1_2 = Extract<2>(r1_2);
r1_3 = Extract<1>(r1_3);
r2_1 = Extract<3>(r2_1);
r2_2 = Extract<2>(r2_2);
r2_3 = Extract<1>(r2_3);
r3_1 = Extract<3>(r3_1);
r3_2 = Extract<2>(r3_2);
r3_3 = Extract<1>(r3_3);
}
r0_0 = vaddq_u32(r0_0, state0);
r0_1 = vaddq_u32(r0_1, state1);
r0_2 = vaddq_u32(r0_2, state2);
r0_3 = vaddq_u32(r0_3, state3);
r1_0 = vaddq_u32(r1_0, state0);
r1_1 = vaddq_u32(r1_1, state1);
r1_2 = vaddq_u32(r1_2, state2);
r1_3 = vaddq_u32(r1_3, state3);
r1_3 = Add64(r1_3, CTRS[0]);
r2_0 = vaddq_u32(r2_0, state0);
r2_1 = vaddq_u32(r2_1, state1);
r2_2 = vaddq_u32(r2_2, state2);
r2_3 = vaddq_u32(r2_3, state3);
r2_3 = Add64(r2_3, CTRS[1]);
r3_0 = vaddq_u32(r3_0, state0);
r3_1 = vaddq_u32(r3_1, state1);
r3_2 = vaddq_u32(r3_2, state2);
r3_3 = vaddq_u32(r3_3, state3);
r3_3 = Add64(r3_3, CTRS[2]);
if (input)
{
r0_0 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 0*16)), r0_0);
r0_1 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 1*16)), r0_1);
r0_2 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 2*16)), r0_2);
r0_3 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 3*16)), r0_3);
}
vst1q_u8(output + 0*16, vreinterpretq_u8_u32(r0_0));
vst1q_u8(output + 1*16, vreinterpretq_u8_u32(r0_1));
vst1q_u8(output + 2*16, vreinterpretq_u8_u32(r0_2));
vst1q_u8(output + 3*16, vreinterpretq_u8_u32(r0_3));
if (input)
{
r1_0 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 4*16)), r1_0);
r1_1 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 5*16)), r1_1);
r1_2 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 6*16)), r1_2);
r1_3 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 7*16)), r1_3);
}
vst1q_u8(output + 4*16, vreinterpretq_u8_u32(r1_0));
vst1q_u8(output + 5*16, vreinterpretq_u8_u32(r1_1));
vst1q_u8(output + 6*16, vreinterpretq_u8_u32(r1_2));
vst1q_u8(output + 7*16, vreinterpretq_u8_u32(r1_3));
if (input)
{
r2_0 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 8*16)), r2_0);
r2_1 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 9*16)), r2_1);
r2_2 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 10*16)), r2_2);
r2_3 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 11*16)), r2_3);
}
vst1q_u8(output + 8*16, vreinterpretq_u8_u32(r2_0));
vst1q_u8(output + 9*16, vreinterpretq_u8_u32(r2_1));
vst1q_u8(output + 10*16, vreinterpretq_u8_u32(r2_2));
vst1q_u8(output + 11*16, vreinterpretq_u8_u32(r2_3));
if (input)
{
r3_0 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 12*16)), r3_0);
r3_1 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 13*16)), r3_1);
r3_2 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 14*16)), r3_2);
r3_3 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 15*16)), r3_3);
}
vst1q_u8(output + 12*16, vreinterpretq_u8_u32(r3_0));
vst1q_u8(output + 13*16, vreinterpretq_u8_u32(r3_1));
vst1q_u8(output + 14*16, vreinterpretq_u8_u32(r3_2));
vst1q_u8(output + 15*16, vreinterpretq_u8_u32(r3_3));
}
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
// ***************************** SSE2 ***************************** //
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
void ChaCha_OperateKeystream_SSE2(const word32 *state, const byte* input, byte *output, unsigned int rounds)
{
const __m128i state0 = _mm_load_si128(reinterpret_cast<const __m128i*>(state+0*4));
const __m128i state1 = _mm_load_si128(reinterpret_cast<const __m128i*>(state+1*4));
const __m128i state2 = _mm_load_si128(reinterpret_cast<const __m128i*>(state+2*4));
const __m128i state3 = _mm_load_si128(reinterpret_cast<const __m128i*>(state+3*4));
__m128i r0_0 = state0;
__m128i r0_1 = state1;
__m128i r0_2 = state2;
__m128i r0_3 = state3;
__m128i r1_0 = state0;
__m128i r1_1 = state1;
__m128i r1_2 = state2;
__m128i r1_3 = _mm_add_epi64(r0_3, _mm_set_epi32(0, 0, 0, 1));
__m128i r2_0 = state0;
__m128i r2_1 = state1;
__m128i r2_2 = state2;
__m128i r2_3 = _mm_add_epi64(r0_3, _mm_set_epi32(0, 0, 0, 2));
__m128i r3_0 = state0;
__m128i r3_1 = state1;
__m128i r3_2 = state2;
__m128i r3_3 = _mm_add_epi64(r0_3, _mm_set_epi32(0, 0, 0, 3));
for (int i = static_cast<int>(rounds); i > 0; i -= 2)
{
r0_0 = _mm_add_epi32(r0_0, r0_1);
r1_0 = _mm_add_epi32(r1_0, r1_1);
r2_0 = _mm_add_epi32(r2_0, r2_1);
r3_0 = _mm_add_epi32(r3_0, r3_1);
r0_3 = _mm_xor_si128(r0_3, r0_0);
r1_3 = _mm_xor_si128(r1_3, r1_0);
r2_3 = _mm_xor_si128(r2_3, r2_0);
r3_3 = _mm_xor_si128(r3_3, r3_0);
r0_3 = RotateLeft<16>(r0_3);
r1_3 = RotateLeft<16>(r1_3);
r2_3 = RotateLeft<16>(r2_3);
r3_3 = RotateLeft<16>(r3_3);
r0_2 = _mm_add_epi32(r0_2, r0_3);
r1_2 = _mm_add_epi32(r1_2, r1_3);
r2_2 = _mm_add_epi32(r2_2, r2_3);
r3_2 = _mm_add_epi32(r3_2, r3_3);
r0_1 = _mm_xor_si128(r0_1, r0_2);
r1_1 = _mm_xor_si128(r1_1, r1_2);
r2_1 = _mm_xor_si128(r2_1, r2_2);
r3_1 = _mm_xor_si128(r3_1, r3_2);
r0_1 = RotateLeft<12>(r0_1);
r1_1 = RotateLeft<12>(r1_1);
r2_1 = RotateLeft<12>(r2_1);
r3_1 = RotateLeft<12>(r3_1);
r0_0 = _mm_add_epi32(r0_0, r0_1);
r1_0 = _mm_add_epi32(r1_0, r1_1);
r2_0 = _mm_add_epi32(r2_0, r2_1);
r3_0 = _mm_add_epi32(r3_0, r3_1);
r0_3 = _mm_xor_si128(r0_3, r0_0);
r1_3 = _mm_xor_si128(r1_3, r1_0);
r2_3 = _mm_xor_si128(r2_3, r2_0);
r3_3 = _mm_xor_si128(r3_3, r3_0);
r0_3 = RotateLeft<8>(r0_3);
r1_3 = RotateLeft<8>(r1_3);
r2_3 = RotateLeft<8>(r2_3);
r3_3 = RotateLeft<8>(r3_3);
r0_2 = _mm_add_epi32(r0_2, r0_3);
r1_2 = _mm_add_epi32(r1_2, r1_3);
r2_2 = _mm_add_epi32(r2_2, r2_3);
r3_2 = _mm_add_epi32(r3_2, r3_3);
r0_1 = _mm_xor_si128(r0_1, r0_2);
r1_1 = _mm_xor_si128(r1_1, r1_2);
r2_1 = _mm_xor_si128(r2_1, r2_2);
r3_1 = _mm_xor_si128(r3_1, r3_2);
r0_1 = RotateLeft<7>(r0_1);
r1_1 = RotateLeft<7>(r1_1);
r2_1 = RotateLeft<7>(r2_1);
r3_1 = RotateLeft<7>(r3_1);
r0_1 = _mm_shuffle_epi32(r0_1, _MM_SHUFFLE(0, 3, 2, 1));
r0_2 = _mm_shuffle_epi32(r0_2, _MM_SHUFFLE(1, 0, 3, 2));
r0_3 = _mm_shuffle_epi32(r0_3, _MM_SHUFFLE(2, 1, 0, 3));
r1_1 = _mm_shuffle_epi32(r1_1, _MM_SHUFFLE(0, 3, 2, 1));
r1_2 = _mm_shuffle_epi32(r1_2, _MM_SHUFFLE(1, 0, 3, 2));
r1_3 = _mm_shuffle_epi32(r1_3, _MM_SHUFFLE(2, 1, 0, 3));
r2_1 = _mm_shuffle_epi32(r2_1, _MM_SHUFFLE(0, 3, 2, 1));
r2_2 = _mm_shuffle_epi32(r2_2, _MM_SHUFFLE(1, 0, 3, 2));
r2_3 = _mm_shuffle_epi32(r2_3, _MM_SHUFFLE(2, 1, 0, 3));
r3_1 = _mm_shuffle_epi32(r3_1, _MM_SHUFFLE(0, 3, 2, 1));
r3_2 = _mm_shuffle_epi32(r3_2, _MM_SHUFFLE(1, 0, 3, 2));
r3_3 = _mm_shuffle_epi32(r3_3, _MM_SHUFFLE(2, 1, 0, 3));
r0_0 = _mm_add_epi32(r0_0, r0_1);
r1_0 = _mm_add_epi32(r1_0, r1_1);
r2_0 = _mm_add_epi32(r2_0, r2_1);
r3_0 = _mm_add_epi32(r3_0, r3_1);
r0_3 = _mm_xor_si128(r0_3, r0_0);
r1_3 = _mm_xor_si128(r1_3, r1_0);
r2_3 = _mm_xor_si128(r2_3, r2_0);
r3_3 = _mm_xor_si128(r3_3, r3_0);
r0_3 = RotateLeft<16>(r0_3);
r1_3 = RotateLeft<16>(r1_3);
r2_3 = RotateLeft<16>(r2_3);
r3_3 = RotateLeft<16>(r3_3);
r0_2 = _mm_add_epi32(r0_2, r0_3);
r1_2 = _mm_add_epi32(r1_2, r1_3);
r2_2 = _mm_add_epi32(r2_2, r2_3);
r3_2 = _mm_add_epi32(r3_2, r3_3);
r0_1 = _mm_xor_si128(r0_1, r0_2);
r1_1 = _mm_xor_si128(r1_1, r1_2);
r2_1 = _mm_xor_si128(r2_1, r2_2);
r3_1 = _mm_xor_si128(r3_1, r3_2);
r0_1 = RotateLeft<12>(r0_1);
r1_1 = RotateLeft<12>(r1_1);
r2_1 = RotateLeft<12>(r2_1);
r3_1 = RotateLeft<12>(r3_1);
r0_0 = _mm_add_epi32(r0_0, r0_1);
r1_0 = _mm_add_epi32(r1_0, r1_1);
r2_0 = _mm_add_epi32(r2_0, r2_1);
r3_0 = _mm_add_epi32(r3_0, r3_1);
r0_3 = _mm_xor_si128(r0_3, r0_0);
r1_3 = _mm_xor_si128(r1_3, r1_0);
r2_3 = _mm_xor_si128(r2_3, r2_0);
r3_3 = _mm_xor_si128(r3_3, r3_0);
r0_3 = RotateLeft<8>(r0_3);
r1_3 = RotateLeft<8>(r1_3);
r2_3 = RotateLeft<8>(r2_3);
r3_3 = RotateLeft<8>(r3_3);
r0_2 = _mm_add_epi32(r0_2, r0_3);
r1_2 = _mm_add_epi32(r1_2, r1_3);
r2_2 = _mm_add_epi32(r2_2, r2_3);
r3_2 = _mm_add_epi32(r3_2, r3_3);
r0_1 = _mm_xor_si128(r0_1, r0_2);
r1_1 = _mm_xor_si128(r1_1, r1_2);
r2_1 = _mm_xor_si128(r2_1, r2_2);
r3_1 = _mm_xor_si128(r3_1, r3_2);
r0_1 = RotateLeft<7>(r0_1);
r1_1 = RotateLeft<7>(r1_1);
r2_1 = RotateLeft<7>(r2_1);
r3_1 = RotateLeft<7>(r3_1);
r0_1 = _mm_shuffle_epi32(r0_1, _MM_SHUFFLE(2, 1, 0, 3));
r0_2 = _mm_shuffle_epi32(r0_2, _MM_SHUFFLE(1, 0, 3, 2));
r0_3 = _mm_shuffle_epi32(r0_3, _MM_SHUFFLE(0, 3, 2, 1));
r1_1 = _mm_shuffle_epi32(r1_1, _MM_SHUFFLE(2, 1, 0, 3));
r1_2 = _mm_shuffle_epi32(r1_2, _MM_SHUFFLE(1, 0, 3, 2));
r1_3 = _mm_shuffle_epi32(r1_3, _MM_SHUFFLE(0, 3, 2, 1));
r2_1 = _mm_shuffle_epi32(r2_1, _MM_SHUFFLE(2, 1, 0, 3));
r2_2 = _mm_shuffle_epi32(r2_2, _MM_SHUFFLE(1, 0, 3, 2));
r2_3 = _mm_shuffle_epi32(r2_3, _MM_SHUFFLE(0, 3, 2, 1));
r3_1 = _mm_shuffle_epi32(r3_1, _MM_SHUFFLE(2, 1, 0, 3));
r3_2 = _mm_shuffle_epi32(r3_2, _MM_SHUFFLE(1, 0, 3, 2));
r3_3 = _mm_shuffle_epi32(r3_3, _MM_SHUFFLE(0, 3, 2, 1));
}
r0_0 = _mm_add_epi32(r0_0, state0);
r0_1 = _mm_add_epi32(r0_1, state1);
r0_2 = _mm_add_epi32(r0_2, state2);
r0_3 = _mm_add_epi32(r0_3, state3);
r1_0 = _mm_add_epi32(r1_0, state0);
r1_1 = _mm_add_epi32(r1_1, state1);
r1_2 = _mm_add_epi32(r1_2, state2);
r1_3 = _mm_add_epi32(r1_3, state3);
r1_3 = _mm_add_epi64(r1_3, _mm_set_epi32(0, 0, 0, 1));
r2_0 = _mm_add_epi32(r2_0, state0);
r2_1 = _mm_add_epi32(r2_1, state1);
r2_2 = _mm_add_epi32(r2_2, state2);
r2_3 = _mm_add_epi32(r2_3, state3);
r2_3 = _mm_add_epi64(r2_3, _mm_set_epi32(0, 0, 0, 2));
r3_0 = _mm_add_epi32(r3_0, state0);
r3_1 = _mm_add_epi32(r3_1, state1);
r3_2 = _mm_add_epi32(r3_2, state2);
r3_3 = _mm_add_epi32(r3_3, state3);
r3_3 = _mm_add_epi64(r3_3, _mm_set_epi32(0, 0, 0, 3));
if (input)
{
r0_0 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+0*16)), r0_0);
r0_1 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+1*16)), r0_1);
r0_2 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+2*16)), r0_2);
r0_3 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+3*16)), r0_3);
}
_mm_storeu_si128(reinterpret_cast<__m128i*>(output+0*16), r0_0);
_mm_storeu_si128(reinterpret_cast<__m128i*>(output+1*16), r0_1);
_mm_storeu_si128(reinterpret_cast<__m128i*>(output+2*16), r0_2);
_mm_storeu_si128(reinterpret_cast<__m128i*>(output+3*16), r0_3);
if (input)
{
r1_0 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+4*16)), r1_0);
r1_1 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+5*16)), r1_1);
r1_2 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+6*16)), r1_2);
r1_3 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+7*16)), r1_3);
}
_mm_storeu_si128(reinterpret_cast<__m128i*>(output+4*16), r1_0);
_mm_storeu_si128(reinterpret_cast<__m128i*>(output+5*16), r1_1);
_mm_storeu_si128(reinterpret_cast<__m128i*>(output+6*16), r1_2);
_mm_storeu_si128(reinterpret_cast<__m128i*>(output+7*16), r1_3);
if (input)
{
r2_0 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+ 8*16)), r2_0);
r2_1 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+ 9*16)), r2_1);
r2_2 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+10*16)), r2_2);
r2_3 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+11*16)), r2_3);
}
_mm_storeu_si128(reinterpret_cast<__m128i*>(output+ 8*16), r2_0);
_mm_storeu_si128(reinterpret_cast<__m128i*>(output+ 9*16), r2_1);
_mm_storeu_si128(reinterpret_cast<__m128i*>(output+10*16), r2_2);
_mm_storeu_si128(reinterpret_cast<__m128i*>(output+11*16), r2_3);
if (input)
{
r3_0 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+12*16)), r3_0);
r3_1 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+13*16)), r3_1);
r3_2 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+14*16)), r3_2);
r3_3 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i*>(input+15*16)), r3_3);
}
_mm_storeu_si128(reinterpret_cast<__m128i*>(output+12*16), r3_0);
_mm_storeu_si128(reinterpret_cast<__m128i*>(output+13*16), r3_1);
_mm_storeu_si128(reinterpret_cast<__m128i*>(output+14*16), r3_2);
_mm_storeu_si128(reinterpret_cast<__m128i*>(output+15*16), r3_3);
}
#endif // CRYPTOPP_SSE2_INTRIN_AVAILABLE
#if (CRYPTOPP_POWER7_AVAILABLE || CRYPTOPP_ALTIVEC_AVAILABLE)
// ChaCha_OperateKeystream_CORE will use either POWER7 or ALTIVEC,
// depending on the flags used to compile this source file. The
// abstractions are handled in VecLoad, VecStore and friends. In
// the future we may to provide both POWER7 or ALTIVEC at the same
// time to better support distros.
inline void ChaCha_OperateKeystream_CORE(const word32 *state, const byte* input, byte *output, unsigned int rounds)
{
const uint32x4_p state0 = VecLoad(state + 0*4);
const uint32x4_p state1 = VecLoad(state + 1*4);
const uint32x4_p state2 = VecLoad(state + 2*4);
const uint32x4_p state3 = VecLoad(state + 3*4);
const uint32x4_p CTRS[3] = {
{1,0,0,0}, {2,0,0,0}, {3,0,0,0}
};
uint32x4_p r0_0 = state0;
uint32x4_p r0_1 = state1;
uint32x4_p r0_2 = state2;
uint32x4_p r0_3 = state3;
uint32x4_p r1_0 = state0;
uint32x4_p r1_1 = state1;
uint32x4_p r1_2 = state2;
uint32x4_p r1_3 = VecAdd64(r0_3, CTRS[0]);
uint32x4_p r2_0 = state0;
uint32x4_p r2_1 = state1;
uint32x4_p r2_2 = state2;
uint32x4_p r2_3 = VecAdd64(r0_3, CTRS[1]);
uint32x4_p r3_0 = state0;
uint32x4_p r3_1 = state1;
uint32x4_p r3_2 = state2;
uint32x4_p r3_3 = VecAdd64(r0_3, CTRS[2]);
for (int i = static_cast<int>(rounds); i > 0; i -= 2)
{
r0_0 = VecAdd(r0_0, r0_1);
r1_0 = VecAdd(r1_0, r1_1);
r2_0 = VecAdd(r2_0, r2_1);
r3_0 = VecAdd(r3_0, r3_1);
r0_3 = VecXor(r0_3, r0_0);
r1_3 = VecXor(r1_3, r1_0);
r2_3 = VecXor(r2_3, r2_0);
r3_3 = VecXor(r3_3, r3_0);
r0_3 = VecRotateLeft<16>(r0_3);
r1_3 = VecRotateLeft<16>(r1_3);
r2_3 = VecRotateLeft<16>(r2_3);
r3_3 = VecRotateLeft<16>(r3_3);
r0_2 = VecAdd(r0_2, r0_3);
r1_2 = VecAdd(r1_2, r1_3);
r2_2 = VecAdd(r2_2, r2_3);
r3_2 = VecAdd(r3_2, r3_3);
r0_1 = VecXor(r0_1, r0_2);
r1_1 = VecXor(r1_1, r1_2);
r2_1 = VecXor(r2_1, r2_2);
r3_1 = VecXor(r3_1, r3_2);
r0_1 = VecRotateLeft<12>(r0_1);
r1_1 = VecRotateLeft<12>(r1_1);
r2_1 = VecRotateLeft<12>(r2_1);
r3_1 = VecRotateLeft<12>(r3_1);
r0_0 = VecAdd(r0_0, r0_1);
r1_0 = VecAdd(r1_0, r1_1);
r2_0 = VecAdd(r2_0, r2_1);
r3_0 = VecAdd(r3_0, r3_1);
r0_3 = VecXor(r0_3, r0_0);
r1_3 = VecXor(r1_3, r1_0);
r2_3 = VecXor(r2_3, r2_0);
r3_3 = VecXor(r3_3, r3_0);
r0_3 = VecRotateLeft<8>(r0_3);
r1_3 = VecRotateLeft<8>(r1_3);
r2_3 = VecRotateLeft<8>(r2_3);
r3_3 = VecRotateLeft<8>(r3_3);
r0_2 = VecAdd(r0_2, r0_3);
r1_2 = VecAdd(r1_2, r1_3);
r2_2 = VecAdd(r2_2, r2_3);
r3_2 = VecAdd(r3_2, r3_3);
r0_1 = VecXor(r0_1, r0_2);
r1_1 = VecXor(r1_1, r1_2);
r2_1 = VecXor(r2_1, r2_2);
r3_1 = VecXor(r3_1, r3_2);
r0_1 = VecRotateLeft<7>(r0_1);
r1_1 = VecRotateLeft<7>(r1_1);
r2_1 = VecRotateLeft<7>(r2_1);
r3_1 = VecRotateLeft<7>(r3_1);
r0_1 = Shuffle<1>(r0_1);
r0_2 = Shuffle<2>(r0_2);
r0_3 = Shuffle<3>(r0_3);
r1_1 = Shuffle<1>(r1_1);
r1_2 = Shuffle<2>(r1_2);
r1_3 = Shuffle<3>(r1_3);
r2_1 = Shuffle<1>(r2_1);
r2_2 = Shuffle<2>(r2_2);
r2_3 = Shuffle<3>(r2_3);
r3_1 = Shuffle<1>(r3_1);
r3_2 = Shuffle<2>(r3_2);
r3_3 = Shuffle<3>(r3_3);
r0_0 = VecAdd(r0_0, r0_1);
r1_0 = VecAdd(r1_0, r1_1);
r2_0 = VecAdd(r2_0, r2_1);
r3_0 = VecAdd(r3_0, r3_1);
r0_3 = VecXor(r0_3, r0_0);
r1_3 = VecXor(r1_3, r1_0);
r2_3 = VecXor(r2_3, r2_0);
r3_3 = VecXor(r3_3, r3_0);
r0_3 = VecRotateLeft<16>(r0_3);
r1_3 = VecRotateLeft<16>(r1_3);
r2_3 = VecRotateLeft<16>(r2_3);
r3_3 = VecRotateLeft<16>(r3_3);
r0_2 = VecAdd(r0_2, r0_3);
r1_2 = VecAdd(r1_2, r1_3);
r2_2 = VecAdd(r2_2, r2_3);
r3_2 = VecAdd(r3_2, r3_3);
r0_1 = VecXor(r0_1, r0_2);
r1_1 = VecXor(r1_1, r1_2);
r2_1 = VecXor(r2_1, r2_2);
r3_1 = VecXor(r3_1, r3_2);
r0_1 = VecRotateLeft<12>(r0_1);
r1_1 = VecRotateLeft<12>(r1_1);
r2_1 = VecRotateLeft<12>(r2_1);
r3_1 = VecRotateLeft<12>(r3_1);
r0_0 = VecAdd(r0_0, r0_1);
r1_0 = VecAdd(r1_0, r1_1);
r2_0 = VecAdd(r2_0, r2_1);
r3_0 = VecAdd(r3_0, r3_1);
r0_3 = VecXor(r0_3, r0_0);
r1_3 = VecXor(r1_3, r1_0);
r2_3 = VecXor(r2_3, r2_0);
r3_3 = VecXor(r3_3, r3_0);
r0_3 = VecRotateLeft<8>(r0_3);
r1_3 = VecRotateLeft<8>(r1_3);
r2_3 = VecRotateLeft<8>(r2_3);
r3_3 = VecRotateLeft<8>(r3_3);
r0_2 = VecAdd(r0_2, r0_3);
r1_2 = VecAdd(r1_2, r1_3);
r2_2 = VecAdd(r2_2, r2_3);
r3_2 = VecAdd(r3_2, r3_3);
r0_1 = VecXor(r0_1, r0_2);
r1_1 = VecXor(r1_1, r1_2);
r2_1 = VecXor(r2_1, r2_2);
r3_1 = VecXor(r3_1, r3_2);
r0_1 = VecRotateLeft<7>(r0_1);
r1_1 = VecRotateLeft<7>(r1_1);