forked from achlipala/frap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BasicSyntax_template.v
222 lines (177 loc) · 6.12 KB
/
BasicSyntax_template.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
Require Import Frap.
(* The following definition closely mirrors a standard BNF grammar for expressions.
* It defines abstract syntax trees of arithmetic expressions. *)
Inductive arith : Set :=
| Const (n : nat)
| Plus (e1 e2 : arith)
| Times (e1 e2 : arith).
(* Here are a few examples of specific expressions. *)
Example ex1 := Const 42.
Example ex2 := Plus (Const 1) (Times (Const 2) (Const 3)).
(* How many nodes appear in the tree for an expression? *)
Fixpoint size (e : arith) : nat :=
match e with
| Const _ => 1
| Plus e1 e2 => 1 + size e1 + size e2
| Times e1 e2 => 1 + size e1 + size e2
end.
(* Here's how to run a program (evaluate a term) in Coq. *)
Compute size ex1.
Compute size ex2.
(* What's the longest path from the root of a syntax tree to a leaf? *)
Fixpoint depth (e : arith) : nat :=
match e with
| Const _ => 1
| Plus e1 e2 => 1 + max (depth e1) (depth e2)
| Times e1 e2 => 1 + max (depth e1) (depth e2)
end.
Compute depth ex1.
Compute depth ex2.
(* Our first proof!
* Size is an upper bound on depth. *)
Theorem depth_le_size : forall e, depth e <= size e.
Proof.
Admitted.
(* A silly recursive function: swap the operand orders of all binary operators. *)
Fixpoint commuter (e : arith) : arith :=
match e with
| Const _ => e
| Plus e1 e2 => Plus (commuter e2) (commuter e1)
| Times e1 e2 => Times (commuter e2) (commuter e1)
end.
Compute commuter ex1.
Compute commuter ex2.
(* [commuter] has all the appropriate interactions with other functions (and itself). *)
Theorem size_commuter : forall e, size (commuter e) = size e.
Proof.
Admitted.
Theorem depth_commuter : forall e, depth (commuter e) = depth e.
Proof.
Admitted.
Theorem commuter_inverse : forall e, commuter (commuter e) = e.
Proof.
Admitted.
(* Now we go back and add this constructor to [arith]:
<<
| Var (x : var)
>>
(* Now that we have variables, we can consider new operations,
* like substituting an expression for a variable. *)
Fixpoint substitute (inThis : arith) (replaceThis : var) (withThis : arith) : arith :=
match inThis with
| Const _ => inThis
| Var x => if x ==v replaceThis then withThis else inThis
| Plus e1 e2 => Plus (substitute e1 replaceThis withThis) (substitute e2 replaceThis withThis)
| Times e1 e2 => Times (substitute e1 replaceThis withThis) (substitute e2 replaceThis withThis)
end.
(* An intuitive property about how much [substitute] might increase depth. *)
Theorem substitute_depth : forall replaceThis withThis inThis,
depth (substitute inThis replaceThis withThis) <= depth inThis + depth withThis.
Proof.
admit.
Qed.
(* A silly self-substitution has no effect. *)
Theorem substitute_self : forall replaceThis inThis,
substitute inThis replaceThis (Var replaceThis) = inThis.
Proof.
admit.
Qed.
(* We can do substitution and commuting in either order. *)
Theorem substitute_commuter : forall replaceThis withThis inThis,
commuter (substitute inThis replaceThis withThis)
= substitute (commuter inThis) replaceThis (commuter withThis).
Proof.
admit.
Qed.
(* *Constant folding* is one of the classic compiler optimizations.
* We repeatedly find opportunities to replace fancier expressions
* with known constant values. *)
Fixpoint constantFold (e : arith) : arith :=
match e with
| Const _ => e
| Var _ => e
| Plus e1 e2 =>
let e1' := constantFold e1 in
let e2' := constantFold e2 in
match e1', e2' with
| Const n1, Const n2 => Const (n1 + n2)
| Const 0, _ => e2'
| _, Const 0 => e1'
| _, _ => Plus e1' e2'
end
| Times e1 e2 =>
let e1' := constantFold e1 in
let e2' := constantFold e2 in
match e1', e2' with
| Const n1, Const n2 => Const (n1 * n2)
| Const 1, _ => e2'
| _, Const 1 => e1'
| Const 0, _ => Const 0
| _, Const 0 => Const 0
| _, _ => Times e1' e2'
end
end.
(* This is supposed to be an *optimization*, so it had better not *increase*
* the size of an expression! *)
Theorem size_constantFold : forall e, size (constantFold e) <= size e.
Proof.
admit.
Qed.
(* Business as usual, with another commuting law *)
Theorem commuter_constantFold : forall e, commuter (constantFold e) = constantFold (commuter e).
Proof.
admit.
Qed.
(* To define a further transformation, we first write a roundabout way of
* testing whether an expression is a constant. *)
Definition isConst (e : arith) : option nat :=
match e with
| Const n => Some n
| _ => None
end.
(* Our next target is a function that finds multiplications by constants
* and pushes the multiplications to the leaves of syntax trees.
* This helper function takes a coefficient [multiplyBy] that should be
* applied to an expression. *)
Fixpoint pushMultiplicationInside' (multiplyBy : nat) (e : arith) : arith :=
match e with
| Const n => Const (multiplyBy * n)
| Var _ => Times (Const multiplyBy) e
| Plus e1 e2 => Plus (pushMultiplicationInside' multiplyBy e1)
(pushMultiplicationInside' multiplyBy e2)
| Times e1 e2 =>
match isConst e1 with
| Some k => pushMultiplicationInside' (k * multiplyBy) e2
| None => Times (pushMultiplicationInside' multiplyBy e1) e2
end
end.
(* The overall transformation just fixes the initial coefficient as [1]. *)
Definition pushMultiplicationInside (e : arith) : arith :=
pushMultiplicationInside' 1 e.
(* Let's prove this boring arithmetic property, so that we may use it below. *)
Lemma n_times_0 : forall n, n * 0 = 0.
Proof.
linear_arithmetic.
Qed.
(* A fun fact about pushing multiplication inside:
* the coefficient has no effect on depth!
* Let's show that any coefficient is equivalent to coefficient 0. *)
Lemma depth_pushMultiplicationInside'_irrelevance0 : forall e multiplyBy,
depth (pushMultiplicationInside' multiplyBy e)
= depth (pushMultiplicationInside' 0 e).
Proof.
admit.
Qed.
(* Let's prove that pushing-inside has only a small effect on depth,
* considering for now only coefficient 0. *)
Lemma depth_pushMultiplicationInside' : forall e,
depth (pushMultiplicationInside' 0 e) <= S (depth e).
Proof.
admit.
Qed.
Theorem depth_pushMultiplicationInside : forall e,
depth (pushMultiplicationInside e) <= S (depth e).
Proof.
admit.
Qed.
*)