forked from achlipala/frap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIntroToProofScripting_template.v
553 lines (442 loc) · 13.6 KB
/
IntroToProofScripting_template.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
Require Import Frap.
Set Implicit Arguments.
(** * Ltac Programming Basics *)
Theorem hmm : forall (a b c : bool),
if a
then if b
then True
else True
else if c
then True
else True.
Proof.
Admitted.
Theorem hmm2 : forall (a b : bool),
(if a then 42 else 42) = (if b then 42 else 42).
Proof.
Admitted.
(** * Automating the two-thread locked-increment example from TransitionSystems *)
(* Let's experience the process of gradually automating the proof we finished
* the last lecture with. Here's the system-definition code, stripped of
* comments. *)
Inductive increment_program :=
| Lock
| Read
| Write (local : nat)
| Unlock
| Done.
Record inc_state := {
Locked : bool;
Global : nat
}.
Record threaded_state shared private := {
Shared : shared;
Private : private
}.
Definition increment_state := threaded_state inc_state increment_program.
Inductive increment_init : increment_state -> Prop :=
| IncInit :
increment_init {| Shared := {| Locked := false; Global := O |};
Private := Lock |}.
Inductive increment_step : increment_state -> increment_state -> Prop :=
| IncLock : forall g,
increment_step {| Shared := {| Locked := false; Global := g |};
Private := Lock |}
{| Shared := {| Locked := true; Global := g |};
Private := Read |}
| IncRead : forall l g,
increment_step {| Shared := {| Locked := l; Global := g |};
Private := Read |}
{| Shared := {| Locked := l; Global := g |};
Private := Write g |}
| IncWrite : forall l g v,
increment_step {| Shared := {| Locked := l; Global := g |};
Private := Write v |}
{| Shared := {| Locked := l; Global := S v |};
Private := Unlock |}
| IncUnlock : forall l g,
increment_step {| Shared := {| Locked := l; Global := g |};
Private := Unlock |}
{| Shared := {| Locked := false; Global := g |};
Private := Done |}.
Definition increment_sys := {|
Initial := increment_init;
Step := increment_step
|}.
Inductive parallel1 shared private1 private2
(init1 : threaded_state shared private1 -> Prop)
(init2 : threaded_state shared private2 -> Prop)
: threaded_state shared (private1 * private2) -> Prop :=
| Pinit : forall sh pr1 pr2,
init1 {| Shared := sh; Private := pr1 |}
-> init2 {| Shared := sh; Private := pr2 |}
-> parallel1 init1 init2 {| Shared := sh; Private := (pr1, pr2) |}.
Inductive parallel2 shared private1 private2
(step1 : threaded_state shared private1 -> threaded_state shared private1 -> Prop)
(step2 : threaded_state shared private2 -> threaded_state shared private2 -> Prop)
: threaded_state shared (private1 * private2)
-> threaded_state shared (private1 * private2) -> Prop :=
| Pstep1 : forall sh pr1 pr2 sh' pr1',
step1 {| Shared := sh; Private := pr1 |} {| Shared := sh'; Private := pr1' |}
-> parallel2 step1 step2 {| Shared := sh; Private := (pr1, pr2) |}
{| Shared := sh'; Private := (pr1', pr2) |}
| Pstep2 : forall sh pr1 pr2 sh' pr2',
step2 {| Shared := sh; Private := pr2 |} {| Shared := sh'; Private := pr2' |}
-> parallel2 step1 step2 {| Shared := sh; Private := (pr1, pr2) |}
{| Shared := sh'; Private := (pr1, pr2') |}.
Definition parallel shared private1 private2
(sys1 : trsys (threaded_state shared private1))
(sys2 : trsys (threaded_state shared private2)) := {|
Initial := parallel1 sys1.(Initial) sys2.(Initial);
Step := parallel2 sys1.(Step) sys2.(Step)
|}.
Definition increment2_sys := parallel increment_sys increment_sys.
Definition contribution_from (pr : increment_program) : nat :=
match pr with
| Unlock => 1
| Done => 1
| _ => 0
end.
Definition has_lock (pr : increment_program) : bool :=
match pr with
| Read => true
| Write _ => true
| Unlock => true
| _ => false
end.
Definition shared_from_private (pr1 pr2 : increment_program) :=
{| Locked := has_lock pr1 || has_lock pr2;
Global := contribution_from pr1 + contribution_from pr2 |}.
Definition instruction_ok (self other : increment_program) :=
match self with
| Lock => True
| Read => has_lock other = false
| Write n => has_lock other = false /\ n = contribution_from other
| Unlock => has_lock other = false
| Done => True
end.
Inductive increment2_invariant :
threaded_state inc_state (increment_program * increment_program) -> Prop :=
| Inc2Inv : forall pr1 pr2,
instruction_ok pr1 pr2
-> instruction_ok pr2 pr1
-> increment2_invariant {| Shared := shared_from_private pr1 pr2; Private := (pr1, pr2) |}.
Lemma Inc2Inv' : forall sh pr1 pr2,
sh = shared_from_private pr1 pr2
-> instruction_ok pr1 pr2
-> instruction_ok pr2 pr1
-> increment2_invariant {| Shared := sh; Private := (pr1, pr2) |}.
Proof.
simplify.
rewrite H.
apply Inc2Inv; assumption.
Qed.
(* OK, HERE is where we prove the main theorem. *)
Theorem increment2_invariant_ok : invariantFor increment2_sys increment2_invariant.
Proof.
Admitted.
(** * Implementing some of [propositional] ourselves *)
Print True.
Print False.
Locate "/\".
Print and.
Locate "\/".
Print or.
(* Implication ([->]) is built into Coq, so nothing to look up there. *)
Section propositional.
Variables P Q R : Prop.
Theorem propositional : (P \/ Q \/ False) /\ (P -> Q) -> True /\ Q.
Proof.
Admitted.
End propositional.
(* Backtracking example #1 *)
Theorem m1 : True.
Proof.
match goal with
| [ |- _ ] => intro
| [ |- True ] => constructor
end.
Qed.
(* Backtracking example #2 *)
Theorem m2 : forall P Q R : Prop, P -> Q -> R -> Q.
Proof.
intros; match goal with
| [ H : _ |- _ ] => idtac H
end.
Admitted.
(* Let's try some more ambitious reasoning, with quantifiers. We'll be
* instantiating quantified facts heuristically. If we're not careful, we get
* in a loop repeating the same instantiation forever. *)
(* Spec: ensure that [P] doesn't follow trivially from hypotheses. *)
Ltac notHyp P := idtac.
(* Spec: add [pf] as hypothesis only if it doesn't already follow trivially. *)
Ltac extend pf := idtac.
(* Spec: add all simple consequences of known facts, including
* [forall]-quantified. *)
Ltac completer := idtac.
Section firstorder.
Variable A : Set.
Variables P Q R S : A -> Prop.
Hypothesis H1 : forall x, P x -> Q x /\ R x.
Hypothesis H2 : forall x, R x -> S x.
Theorem fo : forall (y x : A), P x -> S x.
Proof.
Admitted.
End firstorder.
(** * Functional Programming in Ltac *)
(* Spec: return length of list. *)
Ltac length ls := constr:(0).
Goal False.
let n := length (1 :: 2 :: 3 :: nil) in
pose n.
Abort.
(* Spec: map Ltac function over list. *)
Ltac map f ls := constr:(0).
Goal False.
(*let ls := map (nat * nat)%type ltac:(fun x => constr:((x, x))) (1 :: 2 :: 3 :: nil) in
pose ls.*)
Abort.
(* Now let's revisit [length] and see how we might implement "printf debugging"
* for it. *)
(** * Recursive Proof Search *)
(* Let's work on a tactic to try all possible instantiations of quantified
* hypotheses, attempting to find out where the goal becomes obvious. *)
Ltac inster n := idtac.
Section test_inster.
Variable A : Set.
Variables P Q : A -> Prop.
Variable f : A -> A.
Variable g : A -> A -> A.
Hypothesis H1 : forall x y, P (g x y) -> Q (f x).
Theorem test_inster : forall x, P (g x x) -> Q (f x).
Proof.
inster 2.
Admitted.
Hypothesis H3 : forall u v, P u /\ P v /\ u <> v -> P (g u v).
Hypothesis H4 : forall u, Q (f u) -> P u /\ P (f u).
Theorem test_inster2 : forall x y, x <> y -> P x -> Q (f y) -> Q (f x).
Proof.
inster 3.
Admitted.
End test_inster.
(** ** A fancier example of proof search (probably skipped on first
reading/run-through) *)
Definition imp (P1 P2 : Prop) := P1 -> P2.
Infix "-->" := imp (no associativity, at level 95).
Ltac imp := unfold imp; firstorder.
(** These lemmas about [imp] will be useful in the tactic that we will write. *)
Theorem and_True_prem : forall P Q,
(P /\ True --> Q)
-> (P --> Q).
Proof.
imp.
Qed.
Theorem and_True_conc : forall P Q,
(P --> Q /\ True)
-> (P --> Q).
Proof.
imp.
Qed.
Theorem pick_prem1 : forall P Q R S,
(P /\ (Q /\ R) --> S)
-> ((P /\ Q) /\ R --> S).
Proof.
imp.
Qed.
Theorem pick_prem2 : forall P Q R S,
(Q /\ (P /\ R) --> S)
-> ((P /\ Q) /\ R --> S).
Proof.
imp.
Qed.
Theorem comm_prem : forall P Q R,
(P /\ Q --> R)
-> (Q /\ P --> R).
Proof.
imp.
Qed.
Theorem pick_conc1 : forall P Q R S,
(S --> P /\ (Q /\ R))
-> (S --> (P /\ Q) /\ R).
Proof.
imp.
Qed.
Theorem pick_conc2 : forall P Q R S,
(S --> Q /\ (P /\ R))
-> (S --> (P /\ Q) /\ R).
Proof.
imp.
Qed.
Theorem comm_conc : forall P Q R,
(R --> P /\ Q)
-> (R --> Q /\ P).
Proof.
imp.
Qed.
Ltac search_prem tac :=
let rec search P :=
tac
|| (apply and_True_prem; tac)
|| match P with
| ?P1 /\ ?P2 =>
(apply pick_prem1; search P1)
|| (apply pick_prem2; search P2)
end
in match goal with
| [ |- ?P /\ _ --> _ ] => search P
| [ |- _ /\ ?P --> _ ] => apply comm_prem; search P
| [ |- _ --> _ ] => progress (tac || (apply and_True_prem; tac))
end.
Ltac search_conc tac :=
let rec search P :=
tac
|| (apply and_True_conc; tac)
|| match P with
| ?P1 /\ ?P2 =>
(apply pick_conc1; search P1)
|| (apply pick_conc2; search P2)
end
in match goal with
| [ |- _ --> ?P /\ _ ] => search P
| [ |- _ --> _ /\ ?P ] => apply comm_conc; search P
| [ |- _ --> _ ] => progress (tac || (apply and_True_conc; tac))
end.
Theorem False_prem : forall P Q,
False /\ P --> Q.
Proof.
imp.
Qed.
Theorem True_conc : forall P Q : Prop,
(P --> Q)
-> (P --> True /\ Q).
Proof.
imp.
Qed.
Theorem Match : forall P Q R : Prop,
(Q --> R)
-> (P /\ Q --> P /\ R).
Proof.
imp.
Qed.
Theorem ex_prem : forall (T : Type) (P : T -> Prop) (Q R : Prop),
(forall x, P x /\ Q --> R)
-> (ex P /\ Q --> R).
Proof.
imp.
Qed.
Theorem ex_conc : forall (T : Type) (P : T -> Prop) (Q R : Prop) x,
(Q --> P x /\ R)
-> (Q --> ex P /\ R).
Proof.
imp.
Qed.
Theorem imp_True : forall P,
P --> True.
Proof.
imp.
Qed.
Ltac matcher :=
intros;
repeat search_prem ltac:(simple apply False_prem || (simple apply ex_prem; intro));
repeat search_conc ltac:(simple apply True_conc || simple eapply ex_conc
|| search_prem ltac:(simple apply Match));
try simple apply imp_True.
(* Our tactic succeeds at proving a simple example. *)
Theorem t2 : forall P Q : Prop,
Q /\ (P /\ False) /\ P --> P /\ Q.
Proof.
matcher.
Qed.
(* In the generated proof, we find a trace of the workings of the search tactics. *)
Print t2.
(* We can also see that [matcher] is well-suited for cases where some human
* intervention is needed after the automation finishes. *)
Theorem t3 : forall P Q R : Prop,
P /\ Q --> Q /\ R /\ P.
Proof.
matcher.
Abort.
(* The [matcher] tactic even succeeds at guessing quantifier instantiations. It
* is the unification that occurs in uses of the [Match] lemma that does the
* real work here. *)
Theorem t4 : forall (P : nat -> Prop) Q, (exists x, P x /\ Q) --> Q /\ (exists x, P x).
Proof.
matcher.
Qed.
Print t4.
(** * Creating Unification Variables *)
(* A final useful ingredient in tactic crafting is the ability to allocate new
* unification variables explicitly. Before we are ready to write a tactic, we
* can try out its ingredients one at a time. *)
Theorem t5 : (forall x : nat, S x > x) -> 2 > 1.
Proof.
intros.
evar (y : nat).
let y' := eval unfold y in y in
clear y; specialize (H y').
apply H.
Qed.
(* Spec: create new evar of type [T] and pass to [k]. *)
Ltac newEvar T k := idtac.
(* Spec: instantiate initial [forall]s of [H] with new evars. *)
Ltac insterU H := idtac.
Theorem t5' : (forall x : nat, S x > x) -> 2 > 1.
Proof.
Admitted.
(* This particular example is somewhat silly, since [apply] by itself would have
* solved the goal originally. Separate forward reasoning is more useful on
* hypotheses that end in existential quantifications. Before we go through an
* example, it is useful to define a variant of [insterU] that does not clear
* the base hypothesis we pass to it. *)
Ltac insterKeep H := idtac.
Section t6.
Variables A B : Type.
Variable P : A -> B -> Prop.
Variable f : A -> A -> A.
Variable g : B -> B -> B.
Hypothesis H1 : forall v, exists u, P v u.
Hypothesis H2 : forall v1 u1 v2 u2,
P v1 u1
-> P v2 u2
-> P (f v1 v2) (g u1 u2).
Theorem t6 : forall v1 v2, exists u1, exists u2, P (f v1 v2) (g u1 u2).
Proof.
Admitted.
End t6.
(* Here's an example where something bad happens. *)
Section t7.
Variables A B : Type.
Variable Q : A -> Prop.
Variable P : A -> B -> Prop.
Variable f : A -> A -> A.
Variable g : B -> B -> B.
Hypothesis H1 : forall v, Q v -> exists u, P v u.
Hypothesis H2 : forall v1 u1 v2 u2,
P v1 u1
-> P v2 u2
-> P (f v1 v2) (g u1 u2).
Theorem t7 : forall v1 v2, Q v1 -> Q v2 -> exists u1, exists u2, P (f v1 v2) (g u1 u2).
Proof.
(*intros; do 2 insterKeep H1;
repeat match goal with
| [ H : ex _ |- _ ] => destruct H
end; eauto.
(* Oh, two trivial goals remain. *)
Unshelve.
assumption.
assumption.*)
Admitted.
End t7.
Theorem t8 : exists p : nat * nat, fst p = 3.
Proof.
econstructor.
instantiate (1 := (3, 2)).
equality.
Qed.
(* A way that plays better with automation: *)
Theorem t9 : exists p : nat * nat, fst p = 3.
Proof.
econstructor; match goal with
| [ |- fst ?x = 3 ] => unify x (3, 2)
end; equality.
Qed.