forked from achlipala/frap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
RuleInduction.v
874 lines (732 loc) · 19.8 KB
/
RuleInduction.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
* Chapter 5: inductive relations and rule induction
* Author: Adam Chlipala
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
Require Import Frap.
(** * Finite sets as inductive predicates *)
Inductive my_favorite_numbers : nat -> Prop :=
| ILike17 : my_favorite_numbers 17
| ILike23 : my_favorite_numbers 23
| ILike42 : my_favorite_numbers 42.
Check my_favorite_numbers_ind.
Theorem favorites_below_50 : forall n, my_favorite_numbers n -> n < 50.
Proof.
simplify.
invert H.
(* [invert]: case analysis on which rules may have been used to prove an
* instance of an inductive predicate *)
linear_arithmetic.
linear_arithmetic.
linear_arithmetic.
Qed.
(** * Transitive closure of relations *)
Inductive tc {A} (R : A -> A -> Prop) : A -> A -> Prop :=
| TcBase : forall x y, R x y -> tc R x y
| TcTrans : forall x y z, tc R x y -> tc R y z -> tc R x z.
(** ** Less-than reimagined *)
Definition oneApart (n m : nat) : Prop :=
n + 1 = m.
Definition lt' : nat -> nat -> Prop := tc oneApart.
Theorem lt'_lt : forall n m, lt' n m -> n < m.
Proof.
induct 1.
unfold oneApart in H.
linear_arithmetic.
linear_arithmetic.
Qed.
Lemma lt'_O_S : forall m, lt' 0 (S m).
Proof.
induct m; simplify.
apply TcBase.
unfold oneApart.
linear_arithmetic.
apply TcTrans with (S m).
assumption.
apply TcBase.
unfold oneApart.
linear_arithmetic.
Qed.
Lemma lt_lt'' : forall n k, lt' n (S k + n).
Proof.
induct k; simplify.
apply TcBase.
unfold oneApart.
linear_arithmetic.
apply TcTrans with (S (k + n)).
assumption.
apply TcBase.
unfold oneApart.
linear_arithmetic.
Qed.
Theorem lt_lt' : forall n m, n < m -> lt' n m.
Proof.
simplify.
replace m with (S (m - n - 1) + n) by linear_arithmetic.
(* [replace]: change a subterm into another one, adding an obligation to prove
* equality of the two. *)
apply lt_lt''.
Qed.
(** ** Transitive closure is idempotent. *)
Theorem tc_tc2 : forall A (R : A -> A -> Prop) x y, tc R x y -> tc (tc R) x y.
Proof.
induct 1.
apply TcBase.
apply TcBase.
assumption.
apply TcTrans with y.
assumption.
assumption.
Qed.
Theorem tc2_tc : forall A (R : A -> A -> Prop) x y, tc (tc R) x y -> tc R x y.
Proof.
induct 1.
assumption.
apply TcTrans with y.
assumption.
assumption.
Qed.
(** * Permutation *)
(* Lifted from the Coq standard library: *)
Inductive Permutation {A} : list A -> list A -> Prop :=
| perm_nil :
Permutation [] []
| perm_skip : forall x l l',
Permutation l l' -> Permutation (x::l) (x::l')
| perm_swap : forall x y l,
Permutation (y::x::l) (x::y::l)
| perm_trans : forall l l' l'',
Permutation l l' -> Permutation l' l'' -> Permutation l l''.
Lemma Permutation_to_front : forall A (a : A) (ls : list A),
Permutation (a :: ls) (ls ++ [a]).
Proof.
induct ls; simplify.
apply perm_skip.
apply perm_nil.
apply perm_trans with (a0 :: a :: ls).
apply perm_swap.
apply perm_skip.
assumption.
Qed.
Theorem Permutation_rev : forall A (ls : list A),
Permutation ls (rev ls).
Proof.
induct ls; simplify.
apply perm_nil.
apply perm_trans with (a :: rev ls).
apply perm_skip.
assumption.
apply Permutation_to_front.
Qed.
Theorem Permutation_length : forall A (ls1 ls2 : list A),
Permutation ls1 ls2 -> length ls1 = length ls2.
Proof.
induct 1; simplify.
equality.
equality.
equality.
equality.
Qed.
Lemma Permutation_refl : forall A (ls : list A),
Permutation ls ls.
Proof.
induct ls.
apply perm_nil.
apply perm_skip.
assumption.
Qed.
Lemma Permutation_app1 : forall A (ls1 ls2 ls : list A),
Permutation ls1 ls2
-> Permutation (ls1 ++ ls) (ls2 ++ ls).
Proof.
induct 1; simplify.
apply Permutation_refl.
apply perm_skip.
apply IHPermutation.
apply perm_swap.
apply perm_trans with (l' ++ ls).
apply IHPermutation1.
apply IHPermutation2.
Qed.
Lemma Permutation_app2 : forall A (ls ls1 ls2 : list A),
Permutation ls1 ls2
-> Permutation (ls ++ ls1) (ls ++ ls2).
Proof.
induct ls; simplify.
assumption.
apply perm_skip.
apply IHls.
assumption.
Qed.
Theorem Permutation_app : forall A (ls1 ls1' ls2 ls2' : list A),
Permutation ls1 ls1'
-> Permutation ls2 ls2'
-> Permutation (ls1 ++ ls2) (ls1' ++ ls2').
Proof.
simplify.
apply perm_trans with (ls1' ++ ls2).
apply Permutation_app1.
assumption.
apply Permutation_app2.
assumption.
Qed.
(** * Simple propositional logic *)
Module SimplePropositional.
Inductive prop :=
| Truth
| Falsehood
| And (p1 p2 : prop)
| Or (p1 p2 : prop).
Inductive valid : prop -> Prop :=
| ValidTruth :
valid Truth
| ValidAnd : forall p1 p2,
valid p1
-> valid p2
-> valid (And p1 p2)
| ValidOr1 : forall p1 p2,
valid p1
-> valid (Or p1 p2)
| ValidOr2 : forall p1 p2,
valid p2
-> valid (Or p1 p2).
Fixpoint interp (p : prop) : Prop :=
match p with
| Truth => True
| Falsehood => False
| And p1 p2 => interp p1 /\ interp p2
| Or p1 p2 => interp p1 \/ interp p2
end.
Theorem interp_valid : forall p, interp p -> valid p.
Proof.
induct p; simplify.
apply ValidTruth.
propositional.
(* [propositional]: simplify goal according to the rules of propositional
* logic, a decidable theory. *)
propositional.
apply ValidAnd.
assumption.
assumption.
propositional.
apply ValidOr1.
assumption.
apply ValidOr2.
assumption.
Qed.
Theorem valid_interp : forall p, valid p -> interp p.
Proof.
induct 1; simplify.
propositional.
propositional.
propositional.
propositional.
Qed.
Fixpoint commuter (p : prop) : prop :=
match p with
| Truth => Truth
| Falsehood => Falsehood
| And p1 p2 => And (commuter p2) (commuter p1)
| Or p1 p2 => Or (commuter p2) (commuter p1)
end.
Theorem valid_commuter_fwd : forall p, valid p -> valid (commuter p).
Proof.
induct 1; simplify.
apply ValidTruth.
apply ValidAnd.
assumption.
assumption.
apply ValidOr2.
assumption.
apply ValidOr1.
assumption.
Qed.
Theorem valid_commuter_bwd : forall p, valid (commuter p) -> valid p.
Proof.
induct p; invert 1; simplify.
apply ValidTruth.
apply ValidAnd.
apply IHp1.
assumption.
apply IHp2.
assumption.
apply ValidOr2.
apply IHp2.
assumption.
apply ValidOr1.
apply IHp1.
assumption.
Qed.
End SimplePropositional.
(** * Propositional logic with implication *)
Module PropositionalWithImplication.
Inductive prop :=
| Truth
| Falsehood
| Var (x : var)
| And (p1 p2 : prop)
| Or (p1 p2 : prop)
| Imply (p1 p2 : prop).
Definition Not (p : prop) := Imply p Falsehood.
Inductive valid (hyps : prop -> Prop) : prop -> Prop :=
| ValidHyp : forall h,
hyps h
-> valid hyps h
| ValidTruthIntro :
valid hyps Truth
| ValidFalsehoodElim : forall p,
valid hyps Falsehood
-> valid hyps p
| ValidAndIntro : forall p1 p2,
valid hyps p1
-> valid hyps p2
-> valid hyps (And p1 p2)
| ValidAndElim1 : forall p1 p2,
valid hyps (And p1 p2)
-> valid hyps p1
| ValidAndElim2 : forall p1 p2,
valid hyps (And p1 p2)
-> valid hyps p2
| ValidOrIntro1 : forall p1 p2,
valid hyps p1
-> valid hyps (Or p1 p2)
| ValidOrIntro2 : forall p1 p2,
valid hyps p2
-> valid hyps (Or p1 p2)
| ValidOrElim : forall p1 p2 p,
valid hyps (Or p1 p2)
-> valid (fun h => h = p1 \/ hyps h) p
-> valid (fun h => h = p2 \/ hyps h) p
-> valid hyps p
| ValidImplyIntro : forall p1 p2,
valid (fun h => h = p1 \/ hyps h) p2
-> valid hyps (Imply p1 p2)
| ValidImplyElim : forall p1 p2,
valid hyps (Imply p1 p2)
-> valid hyps p1
-> valid hyps p2
| ValidExcludedMiddle : forall p,
valid hyps (Or p (Not p)).
Fixpoint interp (vars : var -> Prop) (p : prop) : Prop :=
match p with
| Truth => True
| Falsehood => False
| Var x => vars x
| And p1 p2 => interp vars p1 /\ interp vars p2
| Or p1 p2 => interp vars p1 \/ interp vars p2
| Imply p1 p2 => interp vars p1 -> interp vars p2
end.
Theorem valid_interp : forall vars hyps p,
valid hyps p
-> (forall h, hyps h -> interp vars h)
-> interp vars p.
Proof.
induct 1; simplify.
apply H0.
assumption.
propositional.
propositional.
propositional.
propositional.
propositional.
propositional.
propositional.
propositional.
apply IHvalid2.
propositional.
equality.
apply H2.
assumption.
apply IHvalid3.
propositional.
equality.
apply H2.
assumption.
apply IHvalid.
propositional.
equality.
apply H0.
assumption.
propositional.
excluded_middle (interp vars p); propositional.
(* Note that use of excluded middle is a bit controversial in Coq,
* and we'll generally be trying to avoid it,
* but it helps enough with this example that we don't sweat the details. *)
Qed.
Lemma valid_weaken : forall hyps1 p,
valid hyps1 p
-> forall hyps2 : prop -> Prop,
(forall h, hyps1 h -> hyps2 h)
-> valid hyps2 p.
Proof.
induct 1; simplify.
apply ValidHyp.
apply H0.
assumption.
apply ValidTruthIntro.
apply ValidFalsehoodElim.
apply IHvalid.
assumption.
apply ValidAndIntro.
apply IHvalid1.
assumption.
apply IHvalid2.
assumption.
apply ValidAndElim1 with p2.
apply IHvalid.
assumption.
apply ValidAndElim2 with p1.
apply IHvalid.
assumption.
apply ValidOrIntro1.
apply IHvalid.
assumption.
apply ValidOrIntro2.
apply IHvalid.
assumption.
apply ValidOrElim with p1 p2.
apply IHvalid1.
assumption.
apply IHvalid2.
first_order.
apply IHvalid3.
first_order.
apply ValidImplyIntro.
apply IHvalid.
propositional.
right.
apply H0.
assumption.
apply ValidImplyElim with p1.
apply IHvalid1.
assumption.
apply IHvalid2.
assumption.
apply ValidExcludedMiddle.
Qed.
Lemma valid_cut : forall hyps1 p p',
valid hyps1 p
-> forall hyps2, valid hyps2 p'
-> (forall h, hyps1 h -> hyps2 h \/ h = p')
-> valid hyps2 p.
Proof.
induct 1; simplify.
apply H1 in H.
propositional.
apply ValidHyp.
assumption.
equality.
apply ValidTruthIntro.
apply ValidFalsehoodElim.
apply IHvalid; assumption.
apply ValidAndIntro.
apply IHvalid1; assumption.
apply IHvalid2; assumption.
apply ValidAndElim1 with p2.
apply IHvalid; assumption.
apply ValidAndElim2 with p1.
apply IHvalid; assumption.
apply ValidOrIntro1.
apply IHvalid; assumption.
apply ValidOrIntro2.
apply IHvalid; assumption.
apply ValidOrElim with p1 p2.
apply IHvalid1; assumption.
apply IHvalid2.
apply valid_weaken with hyps2.
assumption.
propositional.
first_order.
apply IHvalid3.
apply valid_weaken with hyps2.
assumption.
propositional.
first_order.
apply ValidImplyIntro.
apply IHvalid.
apply valid_weaken with hyps2.
assumption.
propositional.
first_order.
apply ValidImplyElim with p1.
apply IHvalid1; assumption.
apply IHvalid2; assumption.
apply ValidExcludedMiddle.
Qed.
Fixpoint varsOf (p : prop) : list var :=
match p with
| Truth
| Falsehood => []
| Var x => [x]
| And p1 p2
| Or p1 p2
| Imply p1 p2 => varsOf p1 ++ varsOf p2
end.
Lemma interp_valid'' : forall p hyps,
(forall x, In x (varsOf p) -> hyps (Var x) \/ hyps (Not (Var x)))
-> (forall x, hyps (Var x) -> ~hyps (Not (Var x)))
-> IFF interp (fun x => hyps (Var x)) p
then valid hyps p
else valid hyps (Not p).
Proof.
induct p; unfold IF_then_else; simplify.
left; propositional.
apply ValidTruthIntro.
right; propositional.
apply ValidImplyIntro.
apply ValidHyp.
propositional.
specialize (H x); propositional.
left; propositional.
apply ValidHyp.
assumption.
right; first_order.
apply ValidHyp.
assumption.
excluded_middle (interp (fun x => hyps (Var x)) p1).
excluded_middle (interp (fun x => hyps (Var x)) p2).
left; propositional.
apply ValidAndIntro.
assert (IFF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
apply IHp1; propositional.
apply H.
apply in_or_app; propositional.
unfold IF_then_else in H3; propositional.
assert (IFF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
apply IHp2; propositional.
apply H.
apply in_or_app; propositional.
unfold IF_then_else in H3; propositional.
right; propositional.
assert (IFF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
apply IHp2; propositional.
apply H.
apply in_or_app; propositional.
unfold IF_then_else in H3; propositional.
apply ValidImplyIntro.
apply ValidImplyElim with p2.
apply valid_weaken with hyps.
assumption.
propositional.
apply ValidAndElim2 with p1.
apply ValidHyp.
propositional.
right; propositional.
assert (IFF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
apply IHp1; propositional.
apply H.
apply in_or_app; propositional.
unfold IF_then_else in H2; propositional.
apply ValidImplyIntro.
apply ValidImplyElim with p1.
apply valid_weaken with hyps.
assumption.
propositional.
apply ValidAndElim1 with p2.
apply ValidHyp.
propositional.
excluded_middle (interp (fun x => hyps (Var x)) p1).
left; propositional.
apply ValidOrIntro1.
assert (IFF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
apply IHp1; propositional.
apply H.
apply in_or_app; propositional.
unfold IF_then_else in H2; propositional.
excluded_middle (interp (fun x => hyps (Var x)) p2).
left; propositional.
apply ValidOrIntro2.
assert (IFF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
apply IHp2; propositional.
apply H.
apply in_or_app; propositional.
unfold IF_then_else in H3; propositional.
right; propositional.
apply ValidImplyIntro.
apply ValidOrElim with p1 p2.
apply ValidHyp.
propositional.
assert (IFF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
apply IHp1; propositional.
apply H.
apply in_or_app; propositional.
unfold IF_then_else in H3; propositional.
apply ValidImplyElim with p1.
apply valid_weaken with hyps.
assumption.
propositional.
apply ValidHyp.
propositional.
assert (IFF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
apply IHp2; propositional.
apply H.
apply in_or_app; propositional.
unfold IF_then_else in H3; propositional.
apply ValidImplyElim with p2.
apply valid_weaken with hyps.
assumption.
propositional.
apply ValidHyp.
propositional.
excluded_middle (interp (fun x => hyps (Var x)) p1).
excluded_middle (interp (fun x => hyps (Var x)) p2).
left; propositional.
apply ValidImplyIntro.
assert (IFF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
apply IHp2; propositional.
apply H.
apply in_or_app; propositional.
unfold IF_then_else in H3; propositional.
apply valid_weaken with hyps.
assumption.
propositional.
right; propositional.
apply ValidImplyIntro.
assert (IFF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
apply IHp1; propositional.
apply H.
apply in_or_app; propositional.
unfold IF_then_else in H3; propositional.
assert (IFF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
apply IHp2; propositional.
apply H.
apply in_or_app; propositional.
unfold IF_then_else in H4; propositional.
apply ValidImplyElim with p2.
apply valid_weaken with hyps.
assumption.
propositional.
apply ValidImplyElim with p1.
apply ValidHyp.
propositional.
apply valid_weaken with hyps.
assumption.
propositional.
left; propositional.
apply ValidImplyIntro.
assert (IFF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
apply IHp1; propositional.
apply H.
apply in_or_app; propositional.
unfold IF_then_else in H2; propositional.
apply ValidFalsehoodElim.
apply ValidImplyElim with p1.
apply valid_weaken with hyps.
assumption.
propositional.
apply ValidHyp.
propositional.
Qed.
Lemma interp_valid' : forall p leftToDo alreadySplit,
(forall x, In x (varsOf p) -> In x (alreadySplit ++ leftToDo))
-> forall hyps, (forall x, In x alreadySplit -> hyps (Var x) \/ hyps (Not (Var x)))
-> (forall x, hyps (Var x) \/ hyps (Not (Var x)) -> In x alreadySplit)
-> (forall x, hyps (Var x) -> ~hyps (Not (Var x)))
-> (forall vars : var -> Prop,
(forall x, hyps (Var x) -> vars x)
-> (forall x, hyps (Not (Var x)) -> ~vars x)
-> interp vars p)
-> valid hyps p.
Proof.
induct leftToDo; simplify.
rewrite app_nil_r in H.
assert (IFF interp (fun x : var => hyps (Var x)) p then valid hyps p else valid hyps (Not p)).
apply interp_valid''; first_order.
unfold IF_then_else in H4; propositional.
exfalso.
apply H4.
apply H3.
propositional.
first_order.
excluded_middle (In a alreadySplit).
apply IHleftToDo with alreadySplit; simplify.
apply H in H5.
apply in_app_or in H5.
simplify.
apply in_or_app.
propositional; subst.
propositional.
first_order.
first_order.
first_order.
first_order.
apply ValidOrElim with (Var a) (Not (Var a)).
apply ValidExcludedMiddle.
apply IHleftToDo with (alreadySplit ++ [a]); simplify.
apply H in H5.
apply in_app_or in H5.
simplify.
apply in_or_app.
propositional; subst.
left; apply in_or_app; propositional.
left; apply in_or_app; simplify; propositional.
apply in_app_or in H5.
simplify.
propositional; subst.
apply H0 in H6.
propositional.
propositional.
propositional.
invert H5.
apply in_or_app.
simplify.
propositional.
apply in_or_app.
simplify.
first_order.
invert H5.
apply in_or_app.
simplify.
first_order.
propositional.
invert H5.
invert H7.
first_order.
invert H5.
first_order.
apply H3.
first_order.
first_order.
apply IHleftToDo with (alreadySplit ++ [a]); simplify.
apply H in H5.
apply in_app_or in H5.
simplify.
apply in_or_app.
propositional; subst.
left; apply in_or_app; propositional.
left; apply in_or_app; simplify; propositional.
apply in_app_or in H5.
simplify.
propositional; subst.
apply H0 in H6.
propositional.
propositional.
propositional.
invert H5.
apply in_or_app.
simplify.
first_order.
invert H5.
apply in_or_app.
simplify.
propositional.
apply in_or_app.
simplify.
first_order.
propositional.
invert H7.
invert H7.
invert H5.
first_order.
first_order.
apply H3.
first_order.
first_order.
Qed.
Theorem interp_valid : forall p,
(forall vars, interp vars p)
-> valid (fun _ => False) p.
Proof.
simplify.
apply interp_valid' with (varsOf p) []; simplify; first_order.
Qed.
End PropositionalWithImplication.