forked from laa-hecap/exercises-silafae-2024
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example.py
78 lines (62 loc) · 2.86 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
import sys
import ROOT
from ROOT import TMath
import time
# Ensure a ROOT file URL argument is provided
if len(sys.argv) < 2:
raise ValueError("No ROOT file provided. Please pass the file URL as an argument.")
root_file_url = sys.argv[1]
start = time.time()
# Open the ROOT file from the provided URL
f = ROOT.TFile.Open(root_file_url)
canvas = ROOT.TCanvas("Canvas", "cz", 800, 600)
tree = f.Get("mini")
tree.GetEntries()
# Invariant mass histogram definition
hist = ROOT.TH1F("h_M_Hyy", "Diphoton invariant-mass ; Invariant Mass m_{yy} [GeV] ; events", 30, 105, 160)
Photon_1 = ROOT.TLorentzVector()
Photon_2 = ROOT.TLorentzVector()
n = 0
for event in tree:
n += 1
# Print progress for every 10,000 events
if n % 10000 == 0:
print(n)
# Trigger condition
if tree.trigP:
goodphoton_index = [0] * 5
goodphoton_n = 0
photon_index = 0
# Loop over photons in the event
for j in range(tree.photon_n):
if tree.photon_isTightID[j] and tree.photon_pt[j] > 30000 and \
(TMath.Abs(tree.photon_eta[j]) < 2.37) and \
(TMath.Abs(tree.photon_eta[j]) < 1.37 or TMath.Abs(tree.photon_eta[j]) > 1.52):
goodphoton_n += 1
goodphoton_index[photon_index] = j
photon_index += 1
# Process only if there are exactly two good photons
if goodphoton_n == 2:
goodphoton1_index = goodphoton_index[0]
goodphoton2_index = goodphoton_index[1]
# Isolation conditions
if (tree.photon_ptcone30[goodphoton1_index] / tree.photon_pt[goodphoton1_index] < 0.065) and \
(tree.photon_etcone20[goodphoton1_index] / tree.photon_pt[goodphoton1_index] < 0.065) and \
(tree.photon_ptcone30[goodphoton2_index] / tree.photon_pt[goodphoton2_index] < 0.065) and \
(tree.photon_etcone20[goodphoton2_index] / tree.photon_pt[goodphoton2_index] < 0.065):
Photon_1.SetPtEtaPhiE(tree.photon_pt[goodphoton1_index] / 1000., tree.photon_eta[goodphoton1_index],
tree.photon_phi[goodphoton1_index], tree.photon_E[goodphoton1_index] / 1000.)
Photon_2.SetPtEtaPhiE(tree.photon_pt[goodphoton2_index] / 1000., tree.photon_eta[goodphoton2_index],
tree.photon_phi[goodphoton2_index], tree.photon_E[goodphoton2_index] / 1000.)
Photon_12 = Photon_1 + Photon_2
hist.Fill(Photon_12.M())
# Draw and save the histogram
os.makedirs('plots', exist_ok=True)
output_filename = f"plots/histogram_{os.path.basename(root_file_url).replace('.root', '.png')}"
hist.Draw("E")
canvas.SetLogy()
canvas.SaveAs(output_filename)
end = time.time()
duration = end - start
print("Finished in {} min {} s".format(int(duration // 60), int(duration % 60)))