forked from fhieber/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnstyle.py
260 lines (226 loc) · 10.1 KB
/
nstyle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import find_mxnet
import mxnet as mx
import numpy as np
import importlib
import logging
logging.basicConfig(level=logging.DEBUG)
import argparse
from collections import namedtuple
from skimage import io, transform
from skimage.restoration import denoise_tv_chambolle
CallbackData = namedtuple('CallbackData', field_names=['eps','epoch','img','filename'])
def get_args(arglist=None):
parser = argparse.ArgumentParser(description='neural style')
parser.add_argument('--model', type=str, default='vgg19',
choices = ['vgg'],
help = 'the pretrained model to use')
parser.add_argument('--content-image', type=str, default='input/IMG_4343.jpg',
help='the content image')
parser.add_argument('--style-image', type=str, default='input/starry_night.jpg',
help='the style image')
parser.add_argument('--stop-eps', type=float, default=.005,
help='stop if the relative chanage is less than eps')
parser.add_argument('--content-weight', type=float, default=10,
help='the weight for the content image')
parser.add_argument('--style-weight', type=float, default=1,
help='the weight for the style image')
parser.add_argument('--tv-weight', type=float, default=1e-2,
help='the magtitute on TV loss')
parser.add_argument('--max-num-epochs', type=int, default=1000,
help='the maximal number of training epochs')
parser.add_argument('--max-long-edge', type=int, default=600,
help='resize the content image')
parser.add_argument('--lr', type=float, default=.001,
help='the initial learning rate')
parser.add_argument('--gpu', type=int, default=0,
help='which gpu card to use, -1 means using cpu')
parser.add_argument('--output_dir', type=str, default='output/',
help='the output image')
parser.add_argument('--save-epochs', type=int, default=50,
help='save the output every n epochs')
parser.add_argument('--remove-noise', type=float, default=.02,
help='the magtitute to remove noise')
parser.add_argument('--lr-sched-delay', type=int, default=75,
help='how many epochs between decreasing learning rate')
parser.add_argument('--lr-sched-factor', type=int, default=0.9,
help='factor to decrease learning rate on schedule')
if arglist is None:
return parser.parse_args()
else:
return parser.parse_args(arglist)
def PreprocessContentImage(path, long_edge):
img = io.imread(path)
logging.info("load the content image, size = %s", img.shape[:2])
factor = float(long_edge) / max(img.shape[:2])
new_size = (int(img.shape[0] * factor), int(img.shape[1] * factor))
resized_img = transform.resize(img, new_size)
sample = np.asarray(resized_img) * 256
# swap axes to make image from (224, 224, 3) to (3, 224, 224)
sample = np.swapaxes(sample, 0, 2)
sample = np.swapaxes(sample, 1, 2)
# sub mean
sample[0, :] -= 123.68
sample[1, :] -= 116.779
sample[2, :] -= 103.939
logging.info("resize the content image to %s", new_size)
return np.resize(sample, (1, 3, sample.shape[1], sample.shape[2]))
def PreprocessStyleImage(path, shape):
img = io.imread(path)
resized_img = transform.resize(img, (shape[2], shape[3]))
sample = np.asarray(resized_img) * 256
sample = np.swapaxes(sample, 0, 2)
sample = np.swapaxes(sample, 1, 2)
sample[0, :] -= 123.68
sample[1, :] -= 116.779
sample[2, :] -= 103.939
return np.resize(sample, (1, 3, sample.shape[1], sample.shape[2]))
def PostprocessImage(img):
img = np.resize(img, (3, img.shape[2], img.shape[3]))
img[0, :] += 123.68
img[1, :] += 116.779
img[2, :] += 103.939
img = np.swapaxes(img, 1, 2)
img = np.swapaxes(img, 0, 2)
img = np.clip(img, 0, 255)
return img.astype('uint8')
def SaveImage(img, filename, remove_noise=0.):
logging.info('save output to %s', filename)
out = PostprocessImage(img)
if remove_noise != 0.0:
out = denoise_tv_chambolle(out, weight=remove_noise, multichannel=True)
io.imsave(filename, out)
def style_gram_symbol(input_size, style):
_, output_shapes, _ = style.infer_shape(data=(1, 3, input_size[0], input_size[1]))
gram_list = []
grad_scale = []
for i in range(len(style.list_outputs())):
shape = output_shapes[i]
x = mx.sym.Reshape(style[i], target_shape=(int(shape[1]), int(np.prod(shape[2:]))))
# use fully connected to quickly do dot(x, x^T)
gram = mx.sym.FullyConnected(x, x, no_bias=True, num_hidden=shape[1])
gram_list.append(gram)
grad_scale.append(np.prod(shape[1:]) * shape[1])
return mx.sym.Group(gram_list), grad_scale
def get_loss(gram, content):
gram_loss = []
for i in range(len(gram.list_outputs())):
gvar = mx.sym.Variable("target_gram_%d" % i)
gram_loss.append(mx.sym.sum(mx.sym.square(gvar - gram[i])))
cvar = mx.sym.Variable("target_content")
content_loss = mx.sym.sum(mx.sym.square(cvar - content))
return mx.sym.Group(gram_loss), content_loss
def get_tv_grad_executor(img, ctx, tv_weight):
"""create TV gradient executor with input binded on img
"""
if tv_weight <= 0.0:
return None
nchannel = img.shape[1]
simg = mx.sym.Variable("img")
skernel = mx.sym.Variable("kernel")
channels = mx.sym.SliceChannel(simg, num_outputs=nchannel)
out = mx.sym.Concat(*[
mx.sym.Convolution(data=channels[i], weight=skernel,
num_filter=1,
kernel=(3, 3), pad=(1,1),
no_bias=True, stride=(1,1))
for i in range(nchannel)])
kernel = mx.nd.array(np.array([[0, -1, 0],
[-1, 4, -1],
[0, -1, 0]])
.reshape((1, 1, 3, 3)),
ctx) / 8.0
out = out * tv_weight
return out.bind(ctx, args={"img": img,
"kernel": kernel})
def train_nstyle(args, callback=None):
"""Train a neural style network.
Args are from argparse and control input, output, hyper-parameters.
callback allows for display of training progress.
"""
# input
dev = mx.gpu(args.gpu) if args.gpu >= 0 else mx.cpu()
content_np = PreprocessContentImage(args.content_image, args.max_long_edge)
style_np = PreprocessStyleImage(args.style_image, shape=content_np.shape)
size = content_np.shape[2:]
# model
Executor = namedtuple('Executor', ['executor', 'data', 'data_grad'])
model_module = importlib.import_module('model_' + args.model)
style, content = model_module.get_symbol()
gram, gscale = style_gram_symbol(size, style)
model_executor = model_module.get_executor(gram, content, size, dev)
model_executor.data[:] = style_np
model_executor.executor.forward()
style_array = []
for i in range(len(model_executor.style)):
style_array.append(model_executor.style[i].copyto(mx.cpu()))
model_executor.data[:] = content_np
model_executor.executor.forward()
content_array = model_executor.content.copyto(mx.cpu())
# delete the executor
del model_executor
style_loss, content_loss = get_loss(gram, content)
model_executor = model_module.get_executor(
style_loss, content_loss, size, dev)
grad_array = []
for i in range(len(style_array)):
style_array[i].copyto(model_executor.arg_dict["target_gram_%d" % i])
grad_array.append(mx.nd.ones((1,), dev) * (float(args.style_weight) / gscale[i]))
grad_array.append(mx.nd.ones((1,), dev) * (float(args.content_weight)))
print([x.asscalar() for x in grad_array])
content_array.copyto(model_executor.arg_dict["target_content"])
# train
# initialize img with random noise
img = mx.nd.zeros(content_np.shape, ctx=dev)
img[:] = mx.rnd.uniform(-0.1, 0.1, img.shape)
lr = mx.lr_scheduler.FactorScheduler(step=args.lr_sched_delay,
factor=args.lr_sched_factor)
optimizer = mx.optimizer.NAG(
learning_rate = args.lr,
wd = 0.0001,
momentum=0.95,
lr_scheduler = lr)
optim_state = optimizer.create_state(0, img)
logging.info('start training arguments %s', args)
old_img = img.copyto(dev)
clip_norm = 1 * np.prod(img.shape)
tv_grad_executor = get_tv_grad_executor(img, dev, args.tv_weight)
for e in range(args.max_num_epochs):
img.copyto(model_executor.data)
model_executor.executor.forward()
model_executor.executor.backward(grad_array)
gnorm = mx.nd.norm(model_executor.data_grad).asscalar()
if gnorm > clip_norm:
model_executor.data_grad[:] *= clip_norm / gnorm
if tv_grad_executor is not None:
tv_grad_executor.forward()
optimizer.update(0, img,
model_executor.data_grad + tv_grad_executor.outputs[0],
optim_state)
else:
optimizer.update(0, img, model_executor.data_grad, optim_state)
new_img = img
eps = (mx.nd.norm(old_img - new_img) / mx.nd.norm(new_img)).asscalar()
old_img = new_img.copyto(dev)
logging.info('epoch %d, relative change %f', e, eps)
if eps < args.stop_eps:
logging.info('eps < args.stop_eps, training finished')
break
if callback:
cbdata = {
'eps': eps,
'epoch': e+1,
}
if (e+1) % args.save_epochs == 0:
outfn = args.output_dir + 'e_'+str(e+1)+'.jpg'
npimg = new_img.asnumpy()
SaveImage(npimg, outfn, args.remove_noise)
if callback:
cbdata['filename'] = outfn
cbdata['img'] = npimg
if callback:
callback(cbdata)
final_fn = args.output_dir + '/final.jpg'
SaveImage(new_img.asnumpy(), final_fn)
if __name__ == "__main__":
args = get_args()
train_nstyle(args)