-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproblem_formulation_4.py
494 lines (385 loc) · 18.8 KB
/
problem_formulation_4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
# -*- coding: utf-8 -*-
"""
Created on Wed Apr 24 11:18:24 2019
@author: ciullo
"""
from dike_model_function import DikeNetwork # @UnresolvedImport
from ema_workbench import (Model, TimeSeriesOutcome, ScalarOutcome,
RealParameter, IntegerParameter, CategoricalParameter)
from ema_workbench.em_framework.outcomes import Constraint
from itertools import combinations
from functools import partial
import numpy as np
def sum_over(*args):
return sum(args)
def relative_risk(init_risk, *args):
# only show relative risk change of each location
EADa0 = init_risk
EADa1 = args[0]
ratio = (EADa0 - EADa1) / EADa0
return ratio
def absolute_risk(init_risk, *args):
# only show relative risk change of each location
EADa0 = init_risk
EADa1 = args[0]
ratio = (EADa0 - EADa1)
return ratio
def risk_shift_distance(init_risks, *args):
r1 = (init_risks[0] - args[0]) / init_risks[0]
r2 = (init_risks[1] - args[1]) / init_risks[1]
distance = abs(r1 - r2) / np.sqrt(2)
return distance
def max_risk_shift_distance(init_risks, *args):
distance = []
for comb in combinations(range(len(init_risks)),2):
a1, a2 = comb
r1 = (init_risks[a1] - args[a1]) / init_risks[a1]
r2 = (init_risks[a2] - args[a2]) / init_risks[a2]
# distance from the r1 = r2 line
distance.append(abs(r1 - r2) / np.sqrt(2))
return np.max(distance)
#def max_risk_shift_distance(init_risks, *args):
#
# distance = []
# count = 0
# for arg in args:
# for i in range(len(init_risks)):
# if not i == count:
# r1 = (init_risks[count] - arg) / init_risks[count]
# r2 = (init_risks[i] - args[i]) / init_risks[i]
#
# # distance from the r1 = r2 line
# distance.append(abs(r1 - r2) / np.sqrt(2))
# count += 1
# return np.max(distance)
def get_model_for_problem_formulation(problem_formulation_id):
function = DikeNetwork()
dike_model = Model('dikesnet', function=function)
# specify uncertainties, levers
# uncertainties
uncert = {'Bmax': [5, 350], 'pfail': [0, 1]}
cat_uncert = {'Brate': (1., 1.5, 10.)}
# dike levers
dike_lev = {'DikeIncrease': [0, 10]}
# Rfr project code, diversion policies,
rfr_lev = ['{}_rfr'.format(project_id) for project_id in list(range(0, 156))]
div_lev = {'Diversion_201.0': [-3, 3],
'Diversion_401.0': [-3, 3]}
uncertainties = []
levers = []
for dike in function.dikenodes:
for lev_name in dike_lev.keys():
name = "{}_{}".format(dike, lev_name)
levers.append(IntegerParameter(name, dike_lev[lev_name][0],
dike_lev[lev_name][1]))
for uncert_name in uncert.keys():
name = "{}_{}".format(dike, uncert_name)
lower, upper = uncert[uncert_name]
uncertainties.append(RealParameter(name, lower, upper))
for uncert_name in cat_uncert.keys():
name = "{}_{}".format(dike, uncert_name)
categories = cat_uncert[uncert_name]
uncertainties.append(CategoricalParameter(name, categories))
for lev_name in rfr_lev:
# choose or not a RfR project:
levers.append(IntegerParameter(lev_name, 0, 1))
for lev_name in div_lev.keys():
levers.append(IntegerParameter(lev_name, div_lev[lev_name][0],
div_lev[lev_name][1]))
dike_model.uncertainties = uncertainties
dike_model.levers = levers
direction = ScalarOutcome.MINIMIZE
# extra outcome of interest
output_list = ['Qpol', 'Qout', 'Qin', 'wl', 'status', 'critWL']
eooi = []
nl_areas = list(range(4))
de_areas = [4, 5]
# nl_max_costs = 2 * 1e8
risk_keys = {0: 'minR', 1: 'EAD', 2: 'maxR'}
ri = risk_keys[1] # risk indicator
# general
if problem_formulation_id == 0:
constraints = []
mins, maxs = 0, 0
epsilons = []
areas = nl_areas + de_areas
outcomes = []
variable_name = []
[outcomes.append(ScalarOutcome('{}_{}'.format(a, ri))) for a in areas]
for i in eooi:
[outcomes.append(TimeSeriesOutcome('{}_{}'.format(output_list[i], n))
) for n in function.dikenodes]
dike_model.outcomes = outcomes
# non-cooperative
elif problem_formulation_id == 1:
constraints = []
epsilons = []
outcomes = []
# adapt this constraint
# variable_name = []
# [variable_name.append('{}_Dike Inv Cost'.format(a)) for a in nl_areas]
# variable_name.append('RfR Total Costs')
# outcomes.append(ScalarOutcome('Investment Costs_nl',
# variable_name=variable_name,
# function=sum_over))
# constraints.append(Constraint('Investment Costs_nl',
# outcome_names='Investment Costs_nl',
# function=lambda x: max(0, x - nl_max_costs)))
variable_name = []
for e in ['{}'.format(ri), 'Dike Inv Cost']:
variable_name.extend('{}_{}'.format(a, e) for a in nl_areas)
variable_name.append('RfR Total Costs')
outcomes.append(ScalarOutcome('Total Costs_nl',
variable_name=variable_name,
function=sum_over, kind=direction))
epsilons.append(1e9)
variable_name = []
for e in ['{}'.format(ri), 'Dike Inv Cost']:
variable_name.extend('{}_{}'.format(a, e) for a in de_areas)
outcomes.append(ScalarOutcome('Total Costs_de',
variable_name=variable_name,
function=sum_over, kind=direction))
epsilons.append(1e8)
mins = [0.0] * 2
maxs = [1.9 * 1e10, 2.16 * 1e9]
dike_model.outcomes = outcomes
# intra-country cooperation:
elif problem_formulation_id == 2:
constraints = []
epsilons = []
outcomes = []
# variable_name = []
# [variable_name.append('{}_Dike Inv Cost'.format(a)) for a in nl_areas]
# variable_name.append('RfR Total Costs')
# outcomes.append(ScalarOutcome('Investment Costs_nl',
# variable_name=variable_name,
# function=sum_over))
# constraints.append(Constraint('Investment Costs_nl',
# outcome_names='Investment Costs_nl',
# function=lambda x: max(0, x - nl_max_costs)))
variable_name = []
for e in ['{}'.format(ri), 'Dike Inv Cost']:
variable_name.extend('{}_{}'.format(a, e) for a in nl_areas)
variable_name.append('RfR Total Costs')
outcomes.append(ScalarOutcome('Total Costs_nl',
variable_name=variable_name,
function=sum_over, kind=direction))
epsilons.append(1e9)
variable_name = []
for e in ['{}'.format(ri), 'Dike Inv Cost']:
variable_name.extend('{}_{}'.format(a, e) for a in de_areas)
outcomes.append(ScalarOutcome('Total Costs_de',
variable_name=variable_name,
function=sum_over, kind=direction))
epsilons.append(1e8)
init_risks = []
variable_name = []
for a in nl_areas:
init_risks.append(function.R0['{}_{}'.format(a, ri)].values[0])
variable_name.append('{}_{}'.format(a, ri))
outcomes.append(ScalarOutcome('{}_EAD'.format(a),
variable_name=['{}_EAD'.format(a)]))
# when x is positive, the function gives 0, the constraint is met
constraints.append(Constraint('{}_EAD'.format(a),
outcome_names='{}_EAD'.format(a),
function=lambda x: max(0, -x)))
outcomes.append(ScalarOutcome('max_distance_nl',
function=partial(max_risk_shift_distance, init_risks),
variable_name=variable_name, kind=direction))
# outcomes.append(ScalarOutcome('{}_u'.format(a),
# function=partial(relative_risk, init_risk[0]),
# variable_name=[variable_name[0]]))
#
# # when x is positive, the function gives 0, the constraint is met
# constraints.append(Constraint('{}_u'.format(a),
# outcome_names='{}_u'.format(a),
# function=lambda x: max(0, -x)))
init_risks = []
variable_name = []
for a in de_areas:
init_risks.append(function.R0['{}_{}'.format(a, ri)].values[0])
variable_name.append('{}_{}'.format(a, ri))
outcomes.append(ScalarOutcome('{}_EAD'.format(a),
variable_name=['{}_EAD'.format(a)]))
# when x is positive, the function gives 0, the constraint is met
constraints.append(Constraint('{}_EAD'.format(a),
outcome_names='{}_EAD'.format(a),
function=lambda x: max(0, -x)))
outcomes.append(ScalarOutcome('max_distance_de',
function=partial(max_risk_shift_distance, init_risks),
variable_name=variable_name, kind=direction))
# outcomes.append(ScalarOutcome('{}_u'.format(a),
# function=partial(relative_risk, init_risk[0]),
# variable_name=[variable_name[0]]))
#
# # when x is positive, the function gives 0, the constraint is met
# constraints.append(Constraint('{}_u'.format(a),
# outcome_names='{}_u'.format(a),
# function=lambda x: max(0, -x)))
epsilons.extend([0.05] * 5)
mins = [0.0] * 7
maxs = [1.9 * 1e10, 2.16 * 1e9] + 2 * [0.708] # 1/np.sqrt(2)
dike_model.outcomes = outcomes
# intra-country cooperation:
elif problem_formulation_id == '2b':
constraints = []
epsilons = []
outcomes = []
# variable_name = []
# [variable_name.append('{}_Dike Inv Cost'.format(a)) for a in nl_areas]
# variable_name.append('RfR Total Costs')
# outcomes.append(ScalarOutcome('Investment Costs_nl',
# variable_name=variable_name,
# function=sum_over))
# constraints.append(Constraint('Investment Costs_nl',
# outcome_names='Investment Costs_nl',
# function=lambda x: max(0, x - nl_max_costs)))
variable_name = []
for e in ['{}'.format(ri), 'Dike Inv Cost']:
variable_name.extend('{}_{}'.format(a, e) for a in nl_areas)
variable_name.append('RfR Total Costs')
outcomes.append(ScalarOutcome('Total Costs_nl',
variable_name=variable_name,
function=sum_over, kind=direction))
epsilons.append(1e9)
variable_name = []
for e in ['{}'.format(ri), 'Dike Inv Cost']:
variable_name.extend('{}_{}'.format(a, e) for a in de_areas)
outcomes.append(ScalarOutcome('Total Costs_de',
variable_name=variable_name,
function=sum_over, kind=direction))
epsilons.append(1e8)
init_risks = function.R0.values[0]
variable_name = []
for a in nl_areas+de_areas:
variable_name.append('{}_{}'.format(a, ri))
outcomes.append(ScalarOutcome('{}_EAD'.format(a),
variable_name=['{}_EAD'.format(a)]))
# when x is positive, the function gives 0, the constraint is met
constraints.append(Constraint('{}_EAD'.format(a),
outcome_names='{}_EAD'.format(a),
function=lambda x: max(0, -x)))
outcomes.append(ScalarOutcome('max_distance',
function=partial(max_risk_shift_distance, init_risks),
variable_name=variable_name, kind=direction))
# outcomes.append(ScalarOutcome('{}_u'.format(a),
# function=partial(relative_risk, init_risk[0]),
# variable_name=[variable_name[0]]))
#
# # when x is positive, the function gives 0, the constraint is met
# constraints.append(Constraint('{}_u'.format(a),
# outcome_names='{}_u'.format(a),
# function=lambda x: max(0, -x)))
epsilons.extend([0.05] * 5)
mins = [0.0] * 7
maxs = [1.9 * 1e10, 2.16 * 1e9] + 5 * [0.708] # 1/np.sqrt(2)
dike_model.outcomes = outcomes
# inter-country cooperation
elif problem_formulation_id == 3:
constraints = []
epsilons = []
outcomes = []
# variable_name = []
# [variable_name.append('{}_Dike Inv Cost'.format(a)) for a in nl_areas]
# variable_name.append('RfR Total Costs')
# outcomes.append(ScalarOutcome('Investment Costs_nl',
# variable_name=variable_name,
# function=sum_over))
# constraints.append(Constraint('Investment Costs_nl',
# outcome_names='Investment Costs_nl',
# function=lambda x: max(0, x - nl_max_costs)))
variable_name = []
for e in ['EAD', 'Dike Inv Cost']:
variable_name.extend('{}_{}'.format(a, e) for a in nl_areas+de_areas)
variable_name.append('RfR Total Costs')
outcomes.append(ScalarOutcome('Total Costs',
variable_name=variable_name,
function=sum_over, kind=direction))
epsilons.append(1e9)
init_risks = function.R0.values[0]
variable_name = []
for a in nl_areas+de_areas:
variable_name.append('{}_{}'.format(a, ri))
outcomes.append(ScalarOutcome('{}_EAD'.format(a),
variable_name=['{}_EAD'.format(a)]))
# when x is positive, the function gives 0, the constraint is met
constraints.append(Constraint('{}_EAD'.format(a),
outcome_names='{}_EAD'.format(a),
function=lambda x: max(0, -x)))
outcomes.append(ScalarOutcome('max_distance',
function=partial(max_risk_shift_distance, init_risks),
variable_name=variable_name, kind=direction))
# outcomes.append(ScalarOutcome('{}_u'.format(a),
# function=partial(relative_risk, init_risk[0]),
# variable_name=[variable_name[0]]))
#
# # when x is positive, the function gives 0, the constraint is met
# constraints.append(Constraint('{}_u'.format(a),
# outcome_names='{}_u'.format(a),
# function=lambda x: max(0, -x)))
epsilons.extend([0.05] * 5)
mins = [0.0] * 7
maxs = [1.9 * 1e10, 2.16 * 1e9] + 5 * [0.708] # 1/np.sqrt(2)
dike_model.outcomes = outcomes
# most-disaggregated version
elif problem_formulation_id == 'disaggregated':
constraints = []
epsilons = []
outcomes = []
outcomes.append(ScalarOutcome('RfR Total Costs'))
for a in nl_areas+de_areas:
outcomes.append(ScalarOutcome('{}_Dike Inv Cost'.format(a)))
outcomes.append(ScalarOutcome('{}_EAD'.format(a)))
init_risks = function.R0.values[0]
for comb in combinations(range(len(nl_areas+de_areas)),2):
a1, a2 = comb
outcomes.append(ScalarOutcome('{}_{}_distance'.format(a1,a2),
function=partial(risk_shift_distance,
init_risks[[a1,a2]]),
variable_name=['{}_EAD'.format(a1), '{}_EAD'.format(a2)],
kind=direction))
# variable_name = []
# [variable_name.append('{}_Dike Inv Cost'.format(a)) for a in nl_areas+de-areas]
# variable_name.append('RfR Total Costs')
# outcomes.append(ScalarOutcome('Investment Costs_nl',
# variable_name=variable_name,
# function=sum_over))
# constraints.append(Constraint('Investment Costs_nl',
# outcome_names='Investment Costs_nl',
# function=lambda x: max(0, x - nl_max_costs)))
# variable_name = []
#
# for e in ['EAD', 'Dike Inv Cost']:
# variable_name.extend('{}_{}'.format(a, e) for a in nl_areas+de_areas)
# variable_name.append('RfR Total Costs')
#
# outcomes.append(ScalarOutcome('Total Costs',
# variable_name=variable_name,
# function=sum_over, kind=direction))
#
#
# init_risks = function.R0.values[0]
# variable_name = []
#
# for a in nl_areas+de_areas:
# variable_name.append('{}_{}'.format(a, ri))
#
# outcomes.append(ScalarOutcome('{}_EAD'.format(a),
# variable_name=['{}_EAD'.format(a)]))
#
# outcomes.append(ScalarOutcome('max_distance',
# function=partial(max_risk_shift_distance, init_risks),
# variable_name=variable_name, kind=direction))
# outcomes.append(ScalarOutcome('{}_u'.format(a),
# function=partial(relative_risk, init_risk[0]),
# variable_name=[variable_name[0]]))
#
# # when x is positive, the function gives 0, the constraint is met
# constraints.append(Constraint('{}_u'.format(a),
# outcome_names='{}_u'.format(a),
# function=lambda x: max(0, -x)))
dike_model.outcomes = outcomes
mins, maxs = [0,0]
else:
raise TypeError('unknonw identifier')
return dike_model, epsilons, (mins, maxs), constraints