-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatatools.py
332 lines (306 loc) · 10.8 KB
/
datatools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import gensim
import sklearn, sklearn.datasets
import sklearn.naive_bayes, sklearn.linear_model, sklearn.svm, sklearn.neighbors, sklearn.ensemble
import matplotlib.pyplot as plt
import scipy.sparse
import numpy as np
import time, re
def indices_to_onehot(a,n):
n_samples = a.size # Number of samples
E = np.zeros((n,n_samples)) # Deltas to diffuse
for it in range(n_samples):
E[(a[it]-1).astype(int),it] = 1.
return E
def create_samples(S,a,K):
n = S.shape[0] # Dimension of x
n_samples = a.size # Number of samples
E = indices_to_onehot(a,n)
t = np.floor(K*np.random.rand(n_samples)) # Diffusion times
# Storage:
x = np.zeros((n,n_samples))
#!!!
for it in range(n_samples):
St = np.linalg.matrix_power(S,t[it].astype(int))
x[:,it] = St.dot(E[:,it])
return x
def my_eig(S):
d,V = np.linalg.eig(S)
order = np.argsort(-d)
d = d[order]
V = V[:,order]
D = np.diag(d)
VV = np.linalg.inv(V)
SS = V.dot(D.dot(VV))
diff = np.absolute(S-SS)
if diff.max() > 1e-6:
print("Eigendecomposition not good enough")
return V,D
# def print_matrix(X,t=3):
# """
# Print matrix
# X: matrix
# t: number of decimals
# """
# N,M = X.shape
# assert t <= 5
# print(' ')
# #print('[', end = ' ', flush = True)
# for i in range(N):
# if i >= 1:
# print(' ', end = ' ', flush = True)
# for j in range(M):
# if t == 0:
# print('{:4.0f}'.format(X[i][j]), end = ' ', flush = True)
# elif t == 1:
# print('{:5.1f}'.format(X[i][j]), end = ' ', flush = True)
# elif t == 2:
# print('{:6.2f}'.format(X[i][j]), end = ' ', flush = True)
# elif t == 3:
# print('{:7.3f}'.format(X[i][j]), end = ' ', flush = True)
# elif t == 4:
# print('{:8.4f}'.format(X[i][j]), end = ' ', flush = True)
# elif t == 5:
# print('{:9.5f}'.format(X[i][j]), end = ' ', flush = True)
# if i < N-1:
# print(' ')
# else:
# print(']')
# print(' ')
# Helpers to process text documents.
class TextDataset(object):
def clean_text(self, num='substitute'):
# TODO: stemming, lemmatisation
for i,doc in enumerate(self.documents):
# Digits.
if num is 'spell':
doc = doc.replace('0', ' zero ')
doc = doc.replace('1', ' one ')
doc = doc.replace('2', ' two ')
doc = doc.replace('3', ' three ')
doc = doc.replace('4', ' four ')
doc = doc.replace('5', ' five ')
doc = doc.replace('6', ' six ')
doc = doc.replace('7', ' seven ')
doc = doc.replace('8', ' eight ')
doc = doc.replace('9', ' nine ')
elif num is 'substitute':
# All numbers are equal. Useful for embedding
# (countable words) ?
doc = re.sub('(\\d+)', ' NUM ', doc)
elif num is 'remove':
# Numbers are uninformative (they are all over the place).
# Useful for bag-of-words ?
# But maybe some kind of documents contain more numbers,
# e.g. finance.
# Some documents are indeed full of numbers. At least
# in 20NEWS.
doc = re.sub('[0-9]', ' ', doc)
# Remove everything except a-z characters and single space.
doc = doc.replace('$', ' dollar ')
doc = doc.lower()
doc = re.sub('[^a-z]', ' ', doc)
doc = ' '.join(doc.split()) # same as doc =
# = re.sub('\s{2,}', ' ', doc)
self.documents[i] = doc
def vectorize(self, **params):
# TODO: count or tf-idf. Or in normalize ?
vectorizer = sklearn.feature_extraction.text.CountVectorizer(**params)
self.data = vectorizer.fit_transform(self.documents)
self.vocab = vectorizer.get_feature_names()
assert len(self.vocab) == self.data.shape[1]
def data_info(self, show_classes=False):
N, M = self.data.shape
sparsity = self.data.nnz / N / M * 100
# print('N = {} documents, M = {} words, sparsity={:.4f}%'.format(
# N, M, sparsity))
if show_classes:
for i in range(len(self.class_names)):
num = sum(self.labels == i)
# print(' {:5d} documents in class {:2d} ({})'.format(
# num, i, self.class_names[i]))
def show_document(self, i):
label = self.labels[i]
name = self.class_names[label]
try:
text = self.documents[i]
wc = len(text.split())
except AttributeError:
text = None
wc = 'N/A'
# print('document {}: label {} --> {}, {} words'.format(
# i, label, name, wc))
try:
vector = self.data[i,:]
# for j in range(vector.shape[1]):
# if vector[0,j] != 0:
# print(' {:.2f} "{}" ({})'.format(
# vector[0,j], self.vocab[j], j))
except AttributeError:
pass
return text
def keep_documents(self, idx):
"""Keep the documents given by the index, discard the others."""
self.documents = [self.documents[i] for i in idx]
self.labels = self.labels[idx]
self.data = self.data[idx,:]
def keep_words(self, idx):
"""Keep the documents given by the index, discard the others."""
self.data = self.data[:,idx]
self.vocab = [self.vocab[i] for i in idx]
try:
self.embeddings = self.embeddings[idx,:]
except AttributeError:
pass
def remove_short_documents(self, nwords, vocab='selected'):
"""Remove a document if it contains less than nwords."""
if vocab is 'selected':
# Word count with selected vocabulary.
wc = self.data.sum(axis=1)
wc = np.squeeze(np.asarray(wc))
elif vocab is 'full':
# Word count with full vocabulary.
wc = np.empty(len(self.documents), dtype=np.int)
for i,doc in enumerate(self.documents):
wc[i] = len(doc.split())
idx = np.argwhere(wc >= nwords).squeeze()
self.keep_documents(idx)
return wc
def keep_top_words(self, M, Mprint=20):
"""Keep in the vocaluary the M words who appear most often."""
freq = self.data.sum(axis=0)
freq = np.squeeze(np.asarray(freq))
idx = np.argsort(freq)[::-1]
idx = idx[:M]
self.keep_words(idx)
# print('most frequent words')
# for i in range(Mprint):
# print(' {:3d}: {:10s} {:6d} counts'.format(
# i, self.vocab[i], freq[idx][i]))
return freq[idx]
def normalize(self, norm='l1'):
"""Normalize data to unit length."""
# TODO: TF-IDF.
data = self.data.astype(np.float64)
self.data = sklearn.preprocessing.normalize(data, axis=1, norm=norm)
def embed(self, filename=None, size=100):
"""Embed the vocabulary using pre-trained vectors."""
if filename:
model = gensim.models.Word2Vec.load_word2vec_format(
filename, binary=True)
size = model.vector_size
else:
class Sentences(object):
def __init__(self, documents):
self.documents = documents
def __iter__(self):
for document in self.documents:
yield document.split()
model = gensim.models.Word2Vec(Sentences(self.documents), size)
self.embeddings = np.empty((len(self.vocab), size))
keep = []
not_found = 0
for i,word in enumerate(self.vocab):
try:
self.embeddings[i,:] = model[word]
keep.append(i)
except KeyError:
not_found += 1
# print('{} words not found in corpus'.format(not_found, i))
self.keep_words(keep)
class Text20News(TextDataset):
def __init__(self, **params):
dataset = sklearn.datasets.fetch_20newsgroups(**params)
self.documents = dataset.data
self.labels = dataset.target
self.class_names = dataset.target_names
assert max(self.labels) + 1 == len(self.class_names)
N, C = len(self.documents), len(self.class_names)
# print('N = {} documents, C = {} classes'.format(N, C))
class TextRCV1(TextDataset):
def __init__(self, **params):
dataset = sklearn.datasets.fetch_rcv1(**params)
self.data = dataset.data
self.target = dataset.target
self.class_names = dataset.target_names
assert len(self.class_names) == 103 # 103 categories according
# to LYRL2004
N, C = self.target.shape
assert C == len(self.class_names)
# print('N = {} documents, C = {} classes'.format(N, C))
def remove_classes(self, keep):
## Construct a lookup table for labels.
labels_row = []
labels_col = []
class_lookup = {}
for i,name in enumerate(self.class_names):
class_lookup[name] = i
self.class_names = keep
# Index of classes to keep.
idx_keep = np.empty(len(keep))
for i,cat in enumerate(keep):
idx_keep[i] = class_lookup[cat]
self.target = self.target[:,idx_keep]
assert self.target.shape[1] == len(keep)
def show_doc_per_class(self, print_=False):
"""Number of documents per class."""
docs_per_class = np.array(self.target.astype(np.uint64).sum(axis=0)).squeeze()
# print('categories ({} assignments in total)'.format(docs_per_class.sum()))
if print_:
for i,cat in enumerate(self.class_names):
print(' {:5s}: {:6d} documents'.format(
cat, docs_per_class[i]))
plt.figure(figsize=(17,5))
plt.plot(sorted(docs_per_class[::-1]),'.')
def show_classes_per_doc(self):
"""Number of classes per document."""
classes_per_doc = np.array(self.target.sum(axis=1)).squeeze()
plt.figure(figsize=(17,5))
plt.plot(sorted(classes_per_doc[::-1]),'.')
def select_documents(self):
classes_per_doc = np.array(self.target.sum(axis=1)).squeeze()
self.target = self.target[classes_per_doc==1]
self.data = self.data[classes_per_doc==1, :]
# Convert labels from indicator form to single value.
N, C = self.target.shape
target = self.target.tocoo()
self.labels = target.col
assert self.labels.min() == 0
assert self.labels.max() == C - 1
# Bruna and Dropout used 2 * 201369 = 402738 documents.
# Probably the difference btw v1 and v2.
#return classes_per_doc
### Helpers to quantify classifier's quality.
def baseline(train_data, train_labels, test_data, test_labels, omit=[]):
"""Train various classifiers to get a baseline."""
clf, train_accuracy, test_accuracy, train_f1, test_f1, exec_time = [], [], [], [], [], []
clf.append(sklearn.neighbors.KNeighborsClassifier(n_neighbors=10))
clf.append(sklearn.linear_model.LogisticRegression())
clf.append(sklearn.naive_bayes.BernoulliNB(alpha=.01))
clf.append(sklearn.ensemble.RandomForestClassifier())
clf.append(sklearn.naive_bayes.MultinomialNB(alpha=.01))
clf.append(sklearn.linear_model.RidgeClassifier())
clf.append(sklearn.svm.LinearSVC())
for i,c in enumerate(clf):
if i not in omit:
t_start = time.process_time()
c.fit(train_data, train_labels)
train_pred = c.predict(train_data)
test_pred = c.predict(test_data)
train_accuracy.append('{:5.2f}'.format(
100*sklearn.metrics.accuracy_score(
train_labels, train_pred)))
test_accuracy.append('{:5.2f}'.format(
100*sklearn.metrics.accuracy_score(
test_labels, test_pred)))
train_f1.append('{:5.2f}'.format(
100*sklearn.metrics.f1_score(
train_labels, train_pred, average='weighted')))
test_f1.append('{:5.2f}'.format(
100*sklearn.metrics.f1_score(
test_labels, test_pred, average='weighted')))
exec_time.append('{:5.2f}'.format(time.process_time() - t_start))
print('Train accuracy: {}'.format(' '.join(train_accuracy)))
print('Test accuracy: {}'.format(' '.join(test_accuracy)))
print('Train F1 (weighted): {}'.format(' '.join(train_f1)))
print('Test F1 (weighted): {}'.format(' '.join(test_f1)))
print('Execution time: {}'.format(' '.join(exec_time)))