-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtt_nscr_03_05.R
359 lines (295 loc) · 12.4 KB
/
tt_nscr_03_05.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# Load packages
library(tidytuesdayR)
library(tidyverse)
# Identify TidyTuesday data sets in 2022
tidytuesdayR::tt_datasets("2022")
# Download data set. Note: As list
ttdata <- tidytuesdayR::tt_load(x = 2022, week = 13)
# Select data set of interest
sportdt <- ttdata[[1]]
# Alternative
# sportdt <- ttdata$sports
# Data Exploration --------------------------------------------------------
# Explore data set
glimpse(sportdt)
# Select variables of interest & chr variables as fct
ttdt_selection <- sportdt %>%
dplyr::select(year, institution_name, classification_name, partic_men, partic_women,
ef_male_count, ef_female_count, ef_total_count, rev_men,
rev_women,total_rev_menwomen, exp_men, exp_women,
total_exp_menwomen, sports) %>%
mutate(year = as.factor(year),
institution_name = as.factor(institution_name),
classification_name = as.factor(classification_name),
sports = as.factor(sports),
total_par = partic_men + partic_women)
# How many years?
sum(table(unique(ttdt_selection$year)))
# sum(table(fct_unique(ttdt_selection$year)))
# How many divisions?
sum(table(unique(ttdt_selection$classification_name)))
# How may institutions?
sum(table(unique(ttdt_selection$institution_name)))
# How many sports?
sum(table(unique(ttdt_selection$sports)))
# How many cases per wave?
ttdt_selection %>%
count(year)
# How many cases per sport?
ttdt_selection %>%
count(sports)
# Visualizations ----------------------------------------------------------
# Plot measures per sport
ggplot(data = ttdt_selection) +
geom_bar(mapping = aes(x = sports, color = sports)) +
theme(legend.position = "none")
# Plot measures per sport (y axis)
ggplot(data = ttdt_selection) +
geom_bar(mapping = aes(y = sports, color = sports))
# Plot measures per sport (y axis ordered infrequent)
ggplot(data = ttdt_selection) +
geom_bar(mapping = aes(y = fct_infreq(sports), color = sports))
# Plot measures per sport (y)
ggplot(data = ttdt_selection) +
geom_bar(mapping = aes(y = fct_rev(fct_infreq(sports)), color = sports))
# Plot measures per sport (y)
ggplot(data = ttdt_selection) +
geom_bar(mapping = aes(y = fct_rev(fct_infreq(sports)), color = sports)) +
ylab("Sports")
# Plot measures per sport (per year)
ggplot(data = ttdt_selection) +
geom_bar(mapping = aes(y = fct_rev(fct_infreq(sports)), color = sports)) +
ylab("Sports") +
facet_wrap(vars(year)) +
theme(legend.position = "none")
# Is any NA in any of my variables?
summary(ttdt_selection)
# Remove NAs from revenues in men and women
myselection <- ttdt_selection %>%
filter(!rev_men %in% NA & !rev_women %in% NA)
# Check if NAs
summary(myselection)
# Alternative way
table(is.na(myselection))
# Calculate revenues & expenditure per participant & add new variables
myselection <- myselection %>%
mutate(exp_per_men = exp_men / partic_men,
exp_per_women = exp_women / partic_women,
exp_per_total = total_exp_menwomen / total_par,
rev_per_men = rev_men / partic_men,
rev_per_women = rev_women / partic_women,
rev_per_total = total_rev_menwomen / total_par)
# Revenue in Sports -------------------------------------------------------
# Mean revenues per sport
rev_mean <- myselection %>%
group_by(sports) %>%
summarise(mean_rev_total = mean(total_rev_menwomen))
# Plot mean revenues per sport
myselection %>%
group_by(sports) %>%
summarise(mean_rev_total = mean(total_rev_menwomen)) %>%
ggplot(aes(x = mean_rev_total, y = sports, color = sports)) +
geom_bar() +
labs(x = "Mean Revenues", y = "Sports")
# Get rid of scientific notation
options(scipen = 999)
# Activate scientific notation
# options(scipen = 0)
# Solution change to stat = "identity" in geom_bar()
myselection %>%
group_by(sports) %>%
summarise(mean_rev_total = mean(total_rev_menwomen)) %>%
ggplot(aes(x = mean_rev_total, y = sports, color = sports)) +
geom_bar(stat = "identity") +
labs(x = "Mean Revenues", y = "Sports")
# Ordering bars
myselection %>%
group_by(sports) %>%
summarise(mean_rev_total = mean(total_rev_menwomen)) %>%
ggplot(aes(x = mean_rev_total, y = fct_rev(fct_infreq(sports)), color = sports)) +
geom_bar(stat = "identity") +
labs(x = "Mean Revenues", y = "Sports")
# Bars reordered
myselection %>%
group_by(year, sports) %>%
summarise(mean_rev_total = mean(total_rev_menwomen)) %>%
ggplot(aes(x = mean_rev_total, y = reorder(sports, mean_rev_total),
color = sports)) +
geom_bar(stat = "identity") +
labs(x = "Mean Revenues", y = "Sports") +
theme(legend.position = "none") +
facet_wrap(vars(year))
# Plot mean revenues per sport and sex
myselection %>%
group_by(sports) %>%
summarise(mean_rev_men = mean(rev_men),
mean_rev_women = mean(rev_women)) %>%
pivot_longer(cols = c(mean_rev_men,mean_rev_women), names_to = "sex",
values_to = "mean_rev") %>%
ggplot(aes(x = mean_rev, y = reorder(sports, mean_rev), fill = sex)) +
geom_bar(stat = "identity") +
labs(x = "Mean Revenues", y = "Sports", fill = "Sex") +
scale_fill_discrete(labels = c("Men", "Women"))
myselection %>%
group_by(sports) %>%
summarise(mean_rev_men = mean(rev_men),
mean_rev_women = mean(rev_women)) %>%
mutate(mean_dif = sqrt((mean_rev_men - mean_rev_women) ^ 2)) %>%
ggplot(aes(x = mean_dif, y = reorder(sports, mean_dif), fill = mean_dif)) +
geom_bar(stat = "identity") +
# facet_wrap(vars(year)) +
labs(x = "Mean Sex Differences in Revenues (USD)", y = "Sports", fill = "USD")
# Expenditures in Sport ---------------------------------------------------
# Plot mean expenditure
myselection %>%
group_by(sports) %>%
summarise(mean_exp_men = mean(exp_men),
mean_exp_women = mean(exp_women)) %>%
pivot_longer(cols = c(mean_exp_men,mean_exp_women), names_to = "sex",
values_to = "mean_exp") %>%
ggplot(aes(x = mean_exp, y = reorder(sports, mean_exp), fill = sex)) +
geom_bar(stat = "identity") +
labs(x = "Mean Expenditure", y = "Sports", fill = "Sex") +
scale_fill_discrete(labels = c("Men", "Women"))
# Plotting mean differences by sex
myselection %>%
group_by(sports) %>% # if facet_wrap, add year
summarise(mean_exp_men = mean(exp_men),
mean_exp_women = mean(exp_women)) %>%
mutate(mean_dif = sqrt((mean_exp_men - mean_exp_women) ^ 2)) %>%
ggplot(aes(x = mean_dif, y = reorder(sports, mean_dif), fill = mean_dif)) +
geom_bar(stat = "identity") +
# facet_wrap(vars(year)) +
labs(x = "Mean Sex Differences (USD)", y = "Sports", fill = "USD")
## If necessary install RColorBrewer package
# install.packages(RColorBrewer)
# Set palettes (display.brewer.all())
discrete_palettes <- list(
c("orange", "skyblue"),
RColorBrewer::brewer.pal(6, "Accent"),
RColorBrewer::brewer.pal(3, "Set2")
)
# Calculate mean expenditure per participant & plot
myselection %>%
group_by(sports) %>%
summarise(mean_exp_pamen = mean(exp_per_men),
mean_exp_pawomen = mean(exp_per_women)) %>%
pivot_longer(cols = c(mean_exp_pamen,mean_exp_pawomen), names_to = "sex",
values_to = "mean_exp_pa") %>%
ggplot(aes(x = mean_exp_pa, y = reorder(sports, mean_exp_pa), fill = sex)) +
geom_bar(stat = "identity") +
labs(x = "Year and Institution Mean Expenditure per Participant",
y = "Sports", fill = "Sex") +
scale_fill_discrete(labels = c("Men", "Women"), type = discrete_palettes)
# Calculate mean expenditure per participant differences & plot
myselection %>%
group_by(sports) %>%
summarise(mean_exp_pamen = mean(exp_per_men),
mean_exp_pawomen = mean(exp_per_women)) %>%
mutate(mean_pa_dif = sqrt((mean_exp_pamen - mean_exp_pawomen) ^ 2)) %>%
ggplot(aes(x = mean_pa_dif, y = reorder(sports, mean_pa_dif),
fill = mean_pa_dif)) +
geom_bar(stat = "identity") +
# facet_wrap(vars(year)) +
labs(x = "Mean Sex Differences Expenditures per Participant (USD)",
y = "Sports", fill = "USD") +
scale_fill_continuous( type = "viridis")
# Compare plots with means: Expenditure "Gross" & per participant
plotmeanexp <- myselection %>%
group_by(sports) %>%
summarise(mean_exp_men = mean(exp_men),
mean_exp_women = mean(exp_women)) %>%
pivot_longer(cols = c(mean_exp_men,mean_exp_women), names_to = "sex",
values_to = "mean_exp") %>%
ggplot(aes(x = mean_exp, y = reorder(sports, mean_exp), fill = sex)) +
geom_bar(stat = "identity") +
labs(x = "Year and Institution Mean Expenditure", y = "Sports", fill = "Sex") +
scale_fill_discrete(labels = c("Men", "Women"))
plotmeanexp_pa <- myselection %>%
group_by(sports) %>%
summarise(mean_exp_pamen = mean(exp_per_men),
mean_exp_pawomen = mean(exp_per_women)) %>%
pivot_longer(cols = c(mean_exp_pamen,mean_exp_pawomen), names_to = "sex",
values_to = "mean_exp_pa") %>%
ggplot(aes(x = mean_exp_pa, y = reorder(sports, mean_exp_pa), fill = sex)) +
geom_bar(stat = "identity") +
labs(x = "Year and Institution Mean Expenditure per Participant",
y = "Sports", fill = "Sex") +
scale_fill_discrete(labels = c("Men", "Women"), type = discrete_palettes)
plotmeandifexp <- myselection %>%
group_by(sports) %>% # if facet_wrap, add year
summarise(mean_exp_men = mean(exp_men),
mean_exp_women = mean(exp_women)) %>%
mutate(mean_dif = sqrt((mean_exp_men - mean_exp_women) ^ 2)) %>%
ggplot(aes(x = mean_dif, y = reorder(sports, mean_dif), fill = mean_dif)) +
geom_bar(stat = "identity") +
# facet_wrap(vars(year)) +
labs(x = "Mean Sex Differences in Expenditures (USD)", y = "Sports", fill = "USD")
plotmeandifexp_pa <- myselection %>%
group_by(sports) %>%
summarise(mean_exp_pamen = mean(exp_per_men),
mean_exp_pawomen = mean(exp_per_women)) %>%
mutate(mean_pa_dif = sqrt((mean_exp_pamen - mean_exp_pawomen) ^ 2)) %>%
ggplot(aes(x = mean_pa_dif, y = reorder(sports, mean_pa_dif),
fill = mean_pa_dif)) +
geom_bar(stat = "identity") +
# facet_wrap(vars(year)) +
labs(x = "Mean Sex Differences Expenditures per Participant (USD)",
y = "Sports", fill = "USD") +
scale_fill_continuous( type = "viridis")
# If necessary install package
# install.packages("gridExtra")
# Load package
library(gridExtra)
# Plots together to compare
gridExtra::grid.arrange(plotmeanexp, plotmeanexp_pa)
gridExtra::grid.arrange(plotmeandifexp, plotmeandifexp_pa)
# Relationship between expenditure and revenue ---------------------------
plotmeandifexp_pa <- myselection %>%
group_by(sports) %>%
summarise(mean_exp_pamen = mean(exp_per_men),
mean_exp_pawomen = mean(exp_per_women)) %>%
mutate(mean_pa_dif = sqrt((mean_exp_pamen - mean_exp_pawomen) ^ 2)) %>%
ggplot(aes(x = mean_pa_dif, y = reorder(sports, mean_pa_dif),
fill = mean_pa_dif)) +
geom_bar(stat = "identity") +
# facet_wrap(vars(year)) +
labs(x = "Mean Sex Differences Expenditures per Participant (USD)",
y = "Sports", fill = "USD") +
scale_fill_continuous( type = "viridis")
plotmeandifrev_pa <- myselection %>%
group_by(sports) %>%
summarise(mean_rev_pamen = mean(rev_per_men),
mean_rev_pawomen = mean(rev_per_women)) %>%
mutate(mean_parev_dif = sqrt((mean_rev_pamen - mean_rev_pawomen) ^ 2)) %>%
ggplot(aes(x = mean_parev_dif, y = reorder(sports, mean_parev_dif),
fill = mean_parev_dif)) +
geom_bar(stat = "identity") +
# facet_wrap(vars(year)) +
labs(x = "Mean Sex Differences Revenues per Participant (USD)",
y = "Sports", fill = "USD")
# Grid plot
gridExtra::grid.arrange(plotmeandifrev_pa, plotmeandifexp_pa)
# Correlation between Expenditures and Revenues
cor(myselection$exp_men, myselection$rev_men, method = "spearman")
# Correlation between exp. and rev. per sport
myselection %>%
group_by(sports) %>%
summarise(assoc_exp_rev_men = cor(exp_men, rev_men, method = "spearman"))
# Plot association
myselection %>%
group_by(sports) %>%
ggplot(mapping = aes(x = exp_men, y = rev_men)) +
geom_point(alpha = 0.5) +
geom_smooth(method = "lm", se = FALSE, color = "blue") +
labs(x = "Men Expenditure",
y = "Men Revenue", fill = "USD") +
facet_wrap(vars(sports), scales = "free_y")
myselection %>%
group_by(sports) %>%
ggplot(mapping = aes(x = exp_women, y = rev_women)) +
geom_point(alpha = 0.5) +
geom_smooth(method = "lm", se = FALSE, color = "red") +
labs(x = "Women Expenditure",
y = "Women Revenue", fill = "USD") +
facet_wrap(vars(sports), scales = "free_y")