forked from InfluenceFunctional/ActiveLearningPipeline
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathprocessExperiments.py
87 lines (78 loc) · 3.71 KB
/
processExperiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from utils import *
def getScores(experiment, experiments_dir):
os.chdir(experiments_dir + experiment)
runs = os.listdir()
run_outputs = []
for run in runs:
run_outputs.append(np.load(run + '/episode0/outputsDict.npy',allow_pickle=True).item())
scores = np.asarray([run_outputs[i]['score record'] for i in range(len(runs))])
rewards = np.asarray([run_outputs[i]['rewards'] for i in range(len(runs))])
cumulative_score = np.asarray([run_outputs[i]['cumulative score'] for i in range(len(runs))])
dists = np.asarray([[[run_outputs[i]['state dict record'][j]['best clusters internal diff'],run_outputs[i]['state dict record'][j]['best clusters dataset diff'],run_outputs[i]['state dict record'][j]['best clusters random set diff']] for i in range(len(runs))] for j in range(20)])
return scores, rewards, cumulative_score, dists
scoreList = []
rewardsList = []
cumScoreList = []
distList = []
#experiments = ['A1', 'A2', 'A3', 'A4', 'A5', 'A7']
experiments = ['B1', 'B2', 'B3','C1','C2','C3']
#experiments = ['D3','D5']
#experiments = ['ubuntu_test']
plotAll = True
for experiment in experiments:
experiments_dir = 'C:/Users\mikem\Desktop/activeLearningRuns\cluster\production/'
#experiments_dir = 'C:/Users/mikem/Desktop/activeLearningRuns/'
scores, rewards, cumulative_score, dists = getScores(experiment, experiments_dir)
scoreList.append(scores)
rewardsList.append(rewards)
cumScoreList.append(cumulative_score)
distList.append(dists)
if plotAll:
plt.figure()
plt.clf()
plt.subplot(1,3,1)
plt.plot(np.arange(1,21),scores.transpose(),'o-')
plt.title(experiment)
plt.ylabel('Score',size=24)
plt.xlabel('AL Iteration',size=24)
plt.subplot(1,3,2)
plt.plot(np.arange(1,21),rewards.transpose(),'o-')
plt.ylabel('Per-Iteration Reward',size=24)
plt.xlabel('AL Iteration',size=24)
plt.subplot(1,3,3)
plt.plot(np.arange(1,21),np.average(dists[:,:,0,:],axis=-1),'o-')
plt.plot(np.arange(1,21),np.average(dists[:,:,1,:],axis=-1),'o-')
plt.plot(np.arange(1,21),np.average(dists[:,:,2,:],axis=-1),'o-')
plt.title(experiment)
plt.ylabel('Random, dataset and internal model state dists',size=24)
plt.xlabel('AL Iteration',size=24)
scoreList = np.asarray(scoreList)
rewardsList = np.asarray(rewardsList)
cumScoreList = np.asarray(cumScoreList)
distList = np.asarray(distList)
plt.figure()
plt.clf()
for i in range(len(scoreList)):
plt.subplot(1, 3, 1)
plt.plot(np.arange(1, 21), np.average(scoreList[i],axis=0), 'o-',label=experiments[i])
plt.ylabel('Cumulative Score', size=24)
plt.xlabel('AL Iteration', size=24)
plt.legend()
plt.subplot(1, 3, 2)
plt.plot(np.arange(1, 21), np.average(rewardsList[i],axis=0).transpose(), 'o-',label=experiments[i])
plt.ylabel('Per-Iteration Reward', size=24)
plt.xlabel('AL Iteration', size=24)
plt.legend()
plt.subplot(4, 3, 3)
plt.plot(np.arange(1, 21), np.average(distList[i,:,:,2,:],axis=(1,-1)), 'o-',label=experiments[i])
plt.subplot(4, 3, 6)
plt.ylabel('Random, dataset and internal dists', size=24)
plt.plot(np.arange(1, 21), np.average(distList[i,:,:,1,:],axis=(1,-1)), 'o-',label=experiments[i])
plt.subplot(4, 3, 9)
plt.plot(np.arange(1, 21), np.average(distList[i,:,:,0,:],axis=(1,-1)), 'o-',label=experiments[i])
plt.xlabel('AL Iteration', size=24)
plt.subplot(4, 3, 12)
plt.plot(np.arange(1, 21), np.average(distList[i,:,:,0,:],axis=(1,-1)) + np.average(distList[i,:,:,1,:],axis=(1,-1)) - np.average(distList[i,:,:,2,:],axis=(1,-1)), 'o-',label=experiments[i])
plt.ylabel('Combined Dist Metric')
plt.xlabel('AL Iteration', size=24)
plt.legend()