-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptAlgs.py
523 lines (427 loc) · 22.1 KB
/
optAlgs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 24 18:31:13 2022
@author: uqalim8
"""
from linesearch import (backwardArmijo,
backForwardArmijo,
backForwardArmijo_mod,
dampedNewtonCGLinesearch,
dampedNewtonCGbackForwardLS,
lineSearchWolfeStrong)
import torch, time
from CG import CG, CappedCG, CGSteihaug
from MINRES import myMINRES
from hyperparameters import cTYPE, cCUDA
GD_STATS = {"ite":"g", "orcs":"g", "time":".2f", "f":".4e",
"g_norm":".4e", "alpha":".2e", "acc":".2f"}
SGD_STATS = {"ite":"g", "orcs":"g", "time":".2f", "f":".4e",
"g_norm":".4e", "acc":".2f"}
NEWTON_STATS = {"ite":"g", "inite":"g", "orcs":"g", "time":".2f",
"f":".4e", "g_norm":".4e", "alpha":".2e", "acc":".2f"}
NEWTON_NC_STATS = {"ite":"g", "inite":"g", "relr":".4e", "relHr":".4e", "dtype":"", "orcs":"g", "time":".2f",
"f":".4e", "g_norm":".4e", "alpha":".2e", "acc_train":".2f", "acc_val":".2f", "train_improv":".4e", "test_improv":".4e"}
NEWTON_TR_STATS = {"ite":"g", "inite":"g", "relr":".4e", "relHr":".4e", "dtype":"", "orcs":"g", "time":".2f",
"f":".4e", "g_norm":".4e", "delta":".2e", "acc_train":".2f", "acc_val":".2f"}
L_BFGS_STATS = {"ite":"g", "orcs":"g", "time":".2f", "f":".4e", "g_norm":".4e", "iteLS":"g",
"alpha":".2e", "acc_train":".2f", "acc_val":".2f"}
class Optimizer:
def __init__(self, fun, x0, alpha0, gradtol, maxite, maxorcs):
self.fun = fun
self.xk = x0
self.alpha0 = alpha0
self.maxorcs = maxorcs
self.k, self.orcs, self.toc, self.lineite = 0, 0, 0, 0
self.gknorm, self.record = None, None
self.maxite = maxite
self.gradtol = gradtol
self.alphak = 1
self.record = dict(((i, []) for i in self.info.keys()))
def recording(self, stats):
for n, i in enumerate(self.record.keys()):
self.record[i].append(stats[n])
def printStats(self):
if self.k == 0:
print(7 * len(self.info) * "..")
form = ["{:^13}"] * len(self.info)
print("|".join(form).format(*self.info.keys()))
print(7 * len(self.info) * "..")
form = ["{:^13" + i + "}" for i in self.info.values()]
print("|".join(form).format(*(self.record[i][-1] for i in self.info.keys())))
def progress(self, verbose, pred, print_skip = 1):
self.k += 1
self.oracleCalls()
self.recordStats(pred(self.xk))
if verbose and self.k % print_skip == 0:
self.printStats()
def termination(self):
return self.k > self.maxite or self.gknorm < self.gradtol or self.orcs > self.maxorcs or self.alphak < 1e-18
def optimize(self, verbose, pred):
self.recordStats(pred(self.xk))
self.printStats()
while not self.termination():
tic = time.time()
self.step()
self.toc += time.time() - tic
self.progress(verbose, pred)
def recordStats(self):
raise NotImplementedError
def step(self):
raise NotImplementedError
def oracleCalls(self):
raise NotImplementedError
class linesearchGD(Optimizer):
def __init__(self, fun, x0, alpha0, gradtol, maxite, maxorcs, lineMaxite, lineBetaB, lineRho):
self.info = GD_STATS
self.lineMaxite = lineMaxite
self.lineBetaB = lineBetaB
self.lineRho = lineRho
super().__init__(fun, x0, alpha0, gradtol, maxite, maxorcs)
def step(self):
pk = -self.gk
self.alphak, self.lineite = backwardArmijo(lambda x : self.fun(x, "0"), self.xk, self.fk, self.gk, self.alpha0, pk,
self.lineBetaB, self.lineRho, self.lineMaxite)
self.xk += self.alphak * pk
self.fk, self.gk = self.fun(self.xk, "01")
self.gknorm = torch.linalg.norm(self.gk, 2)
def recordStats(self, acc):
if self.k == 0:
self.fk, self.gk = self.fun(self.xk, "01")
self.gknorm = torch.linalg.norm(self.gk, 2)
self.recording((0, 0, 0, float(self.fk), float(self.gknorm), 0, acc))
else:
self.recording((self.k, self.orcs, self.toc,
float(self.fk), float(self.gknorm), self.alphak, acc))
def oracleCalls(self):
self.orcs += 2 + self.lineite
class MiniBatchSGD(Optimizer):
def __init__(self, fun, x0, gradtol, maxite, maxorcs, mini, alpha = 0.001):
self.info = SGD_STATS
self.mini = mini
super().__init__(fun, x0, alpha, gradtol, maxite, maxorcs)
def step(self):
self.gk = self.fun(self.xk, "1")
self.fk = self.fun(self.xk, "f")
self.xk -= self.alpha0 * self.gk
def recordStats(self, acc):
if self.k == 0:
self.gk = self.fun(self.xk, "1")
self.fk = self.fun(self.xk, "f")
self.inite = 0
self.gknorm = torch.linalg.norm(self.gk, 2)
self.recording((0, 0, 0, float(self.fk), float(self.gknorm), acc))
else:
self.recording((self.k, self.orcs, self.toc,
float(self.fk), float(self.gknorm), acc))
def oracleCalls(self):
self.orcs += 2 * self.mini
class Adam(Optimizer):
def __init__(self, fun, x0, gradtol, maxite, maxorcs, mini, alpha = 0.001, beta1 = 0.9, beta2 = 0.999, epsilon = 10e-8):
self.info = SGD_STATS
self.mini = mini
self.beta1 = beta1
self.beta2 = beta2
self.epsilon = epsilon
self.m = torch.zeros_like(x0, dtype = cTYPE, device = cCUDA)
self.v = torch.zeros_like(x0, dtype = cTYPE, device = cCUDA)
super().__init__(fun, x0, alpha, gradtol, maxite, maxorcs)
def step(self):
self.gk = self.fun(self.xk, "1")
self.m = self.beta1 * self.m + (1 - self.beta1) * self.gk
self.v = self.beta2 * self.v + (1 - self.beta2) * (self.gk ** 2)
mp = self.m / (1 - self.beta1 ** (self.k + 1))
vp = self.v / (1 - self.beta2 ** (self.k + 1))
self.xk -= self.alpha0 * mp / (torch.sqrt(vp) - self.epsilon)
def recordStats(self, acc):
if self.k == 0:
self.gk = self.fun(self.xk, "1")
self.fk = self.fun(self.xk, "f")
#self.inite = 0
self.gknorm = torch.linalg.norm(self.gk, 2)
self.recording((0, 0, 0, float(self.fk), float(self.gknorm), acc))
else:
if not self.k % 100:
self.gknorm = torch.linalg.norm(self.gk, 2)
self.recording((self.k, self.orcs, self.toc,
float(self.fun(self.xk, "f")), float(self.gknorm), acc))
def oracleCalls(self):
self.orcs += 2 * self.mini
class NewtonCG(Optimizer):
def __init__(self, fun, x0, alpha0, gradtol, maxite, maxorcs, restol, inmaxite,
lineMaxite, lineBetaB, lineRho):
self.info = NEWTON_STATS
self.restol = restol
self.inmaxite = inmaxite
self.lineMaxite = lineMaxite
self.lineBetaB = lineBetaB
self.lineRho = lineRho
super().__init__(fun, x0, alpha0, gradtol, maxite, maxorcs)
def step(self):
pk, self.inite = CG(self.hk, -self.gk, tol = self.restol, maxite = self.inmaxite)
self.alphak, self.lineite = backwardArmijo(lambda x : self.fun(x, "0"), self.xk, self.fk, self.gk, self.alpha0, pk,
self.lineBetaB, self.lineRho, self.lineMaxite)
self.xk += self.alphak * pk
self.fk, self.gk, self.hk = self.fun(self.xk, "012")
self.gknorm = torch.linalg.norm(self.gk, 2)
def recordStats(self, acc):
if self.k == 0:
self.fk, self.gk, self.hk = self.fun(self.xk, "012")
self.inite = 0
self.gknorm = torch.linalg.norm(self.gk, 2)
self.recording((0, 0, 0, 0, float(self.fk), float(self.gknorm), 0, acc))
else:
self.recording((self.k, self.inite, self.orcs, self.toc,
float(self.fk), float(self.gknorm), self.alphak, acc))
def oracleCalls(self):
self.orcs += 2 + 2 * self.inite + self.lineite
class NewtonCG_NC(Optimizer):
# Without second order optimality
# Simplified, i.e. without minimum eigenvalue oracle
def __init__(self, fun, x0, alpha0, gradtol, maxite, maxorcs, restol, inmaxite,
lineMaxite, lineBeta, lineRho, epsilon, Hsub):
self.info = NEWTON_NC_STATS
self.restol = restol
self.inmaxite = inmaxite
self.lineMaxite = lineMaxite
self.lineBeta = lineBeta
self.lineRho = lineRho
self.epsilon = epsilon
self.Hsub = Hsub
self.alpha0 = alpha0
super().__init__(fun, x0, alpha0, gradtol, maxite, maxorcs)
def step(self):
pk, self.dtype, self.inite, pHp, self.relr, self.relHr = CappedCG(self.hk, -self.gk, self.restol, self.epsilon, self.inmaxite)
normpk = torch.linalg.norm(pk, 2)**3
if self.dtype == "NC":
pk = - torch.sign(torch.dot(pk, self.gk)) * abs(pHp) * pk / normpk
self.alphak, self.lineite = dampedNewtonCGLinesearch(lambda x : self.fun(x, "0"), self.xk, self.fk, self.alpha0, pk,
normpk, self.lineBeta, self.lineRho, self.lineMaxite)
self.xk += self.alphak * pk
self.fk, self.gk, self.hk = self.fun(self.xk, "012")
def recordStats(self, acc):
if self.k == 0:
self.fk, self.gk, self.hk = self.fun(self.xk, "012")
self.inite = 0
self.gknorm = torch.linalg.norm(self.gk, 2)
self.recording((0, 0, 0, 0, "None", 0, 0, float(self.fk),
float(self.gknorm), 0, acc[0], acc[1]))
else:
self.gknorm = torch.linalg.norm(self.gk, 2)
self.recording((self.k, self.inite, float(self.relr), float(self.relHr),
self.dtype, self.orcs, self.toc, float(self.fk),
float(self.gknorm), self.alphak, acc[0], acc[1]))
def oracleCalls(self):
self.orcs += 2 + 2 * self.inite * self.Hsub + self.lineite
class NewtonCG_NC_FW(NewtonCG_NC):
def step(self):
pk, self.dtype, self.inite, pHp, _ = CappedCG(self.hk, -self.gk, self.restol, self.epsilon, self.inmaxite)
normpkcubed = torch.linalg.norm(pk, 2)**3
if self.dtype == "NC":
pk = - torch.sign(torch.dot(pk, self.gk)) * abs(pHp) * pk / normpkcubed
self.alphak, self.lineite = dampedNewtonCGbackForwardLS(lambda x : self.fun(x, "0"), self.xk, self.fk, self.alpha0, pk,
normpkcubed, self.lineBeta, self.lineRho, self.lineMaxite)
else:
self.alphak, self.lineite = dampedNewtonCGLinesearch(lambda x : self.fun(x, "0"), self.xk, self.fk, self.alpha0, pk,
normpkcubed, self.lineBeta, self.lineRho, self.lineMaxite)
self.xk += self.alphak * pk
self.fk, self.gk, self.hk = self.fun(self.xk, "012")
class NewtonMR_NC(Optimizer):
def __init__(self, fun, x0, alpha0, gradtol, maxite, maxorcs, restol, inmaxite, sigma,
lineMaxite, lineBetaB, lineRho, lineBetaFB, Hsub):
self.info = NEWTON_NC_STATS
self.restol = restol
self.inmaxite = inmaxite
self.lineMaxite = lineMaxite
self.lineBetaB = lineBetaB
self.lineRho = lineRho
self.lineBetaFB = lineBetaFB
self.sigma = sigma
self.Hsub = Hsub
self.alpha_npc = 1
super().__init__(fun, x0, alpha0, gradtol, maxite, maxorcs)
def step(self):
pk, self.relr, self.relHr, self.inite, r, self.dtype = myMINRES(self.hk, -self.gk, rtol = self.restol,
maxit = self.inmaxite, sigma = self.sigma)
if self.dtype == "Sol" or self.dtype == "MAX":
self.alphak, self.lineite = backwardArmijo(lambda x : self.fun(x, "0"),
self.xk, self.fk, self.gk, self.alpha0, pk,
self.lineBetaB, self.lineRho, self.lineMaxite)
else:
self.alphak, self.lineite = backForwardArmijo_mod(lambda x : self.fun(x, "0"),
self.xk, self.fk, self.gk, self.alpha_npc, r,
self.lineBetaFB, self.lineRho, self.lineMaxite)
self.alpha_npc = self.alphak
pk = r
self.xk += self.alphak * pk
self.fk, self.gk, self.hk = self.fun(self.xk, "012")
def recordStats(self, acc):
if self.k == 0:
self.fk, self.gk, self.hk = self.fun(self.xk, "012")
self.inite = 0
self.gknorm = torch.linalg.norm(self.gk, 2)
self.recording((0, 0, 0, 0, "None", 0, 0, float(self.fk),
float(self.gknorm), 0, acc[0], acc[1], 0., 0.))
self.acc0 = acc[0]
self.acc1 = acc[1]
else:
self.gknorm = torch.linalg.norm(self.gk, 2)
self.recording((self.k, self.inite, float(self.relr), float(self.relHr),
self.dtype, self.orcs, self.toc, float(self.fk), float(self.gknorm),
self.alphak, acc[0], acc[1], (self.acc0 - acc[0])/5828, (self.acc1 - acc[1])/40000))
self.acc0 = acc[0]
self.acc1 = acc[1]
def oracleCalls(self):
self.orcs += 2 + 2 * self.inite * self.Hsub + self.lineite
class NewtonCG_TR_Steihaug(Optimizer):
def __init__(self, fun, x0, gradtol, maxite, maxorcs, restol, inmaxite,
deltaMax, delta0, eta, eta1, eta2, gamma1, gamma2, Hsub):
if not (0 < eta1 and eta1 <= eta2 and eta2 < 1 and eta < eta1):
raise Exception("etas 0 < eta < eta1 <= eta2 < 1")
if not ((0 < gamma1 and gamma1 < 1) and (gamma2 > 1)):
raise Exception("0 < gamma1 < 1 and gamma2 > 1")
self.info = NEWTON_TR_STATS
self.restol = restol
self.inmaxite = inmaxite
self.delta = delta0
self.deltaMax = deltaMax
self.eta = eta
self.eta1 = eta1
self.eta2 = eta2
self.gamma1 = gamma1
self.gamma2 = gamma2
self.Hsub = Hsub
super().__init__(fun, x0, 0, gradtol, maxite, maxorcs)
def step(self):
pk, self.relr, self.relHr, self.dtype, m, self.inite = CGSteihaug(self.hk, self.gk, self.delta, self.restol, self.inmaxite)
self.rho = (self.fk - self.fun(self.xk + pk, "0")) / m
if self.rho < self.eta1:
self.delta *= self.gamma1
else:
if self.rho > self.eta2 and self.dtype == "SOL,=":
self.delta = min(self.delta * self.gamma2, self.deltaMax)
if self.rho > self.eta:
self.xk = self.xk + pk
self.fk, self.gk, self.hk = self.fun(self.xk, "012")
def recordStats(self, acc):
if self.k == 0:
self.fk, self.gk, self.hk = self.fun(self.xk, "012")
self.inite = 0
self.gknorm = torch.linalg.norm(self.gk, 2)
self.recording((0, 0, 0, 0, "None", 0, 0, float(self.fk),
float(self.gknorm), self.delta, acc[0], acc[1]))
else:
self.gknorm = torch.linalg.norm(self.gk, 2)
self.recording((self.k, self.inite, float(self.relr), float(self.relHr), self.dtype, self.orcs,
self.toc, float(self.fk), float(self.gknorm), self.delta, acc[0], acc[1]))
def oracleCalls(self):
self.orcs += 2 + 2 * self.inite * self.Hsub + 2
class L_BFGS(Optimizer):
def __init__(self, fun, x0, alpha0, gradtol, m, maxite, maxorcs, lineMaxite):
self.info = L_BFGS_STATS
self.m = m
self.lineMaxite = lineMaxite
super().__init__(fun, x0, alpha0, gradtol, maxite, maxorcs)
def _twoloop(self, w):
k = self.s.shape[0]
alpha, rho = torch.zeros(k, dtype = cTYPE), torch.zeros(k, dtype = cTYPE)
for i in range(k):
rho[i] = 1/torch.dot(self.s[i], self.y[i])
alpha[i] = rho[i] * torch.dot(self.s[i], w)
w = w - alpha[i] * self.y[i]
w = ((torch.dot(self.s[0], self.y[0])) / torch.dot(self.y[0], self.y[0])) * w
for i in range(k - 1, -1, -1):
beta = rho[i] * torch.dot(self.y[i], w)
w = w + (alpha[i] - beta) * self.s[i]
return w
def step(self):
if not self.k:
pk = -self.gk
else:
pk = self._twoloop(-self.gk).detach()
self.alpha, self.lineite, self.lineorcs = lineSearchWolfeStrong(lambda x : self.fun(x, "01"), self.xk, pk,
self.fk, self.gk, self.alpha0, 1e5, 1e-4, 0.9, self.lineMaxite)
xkp1 = self.xk + self.alpha * pk
self.fk, gkp1 = self.fun(xkp1, "01")
# kill small alpha and terminate
if self.alpha == 0:
self.orcs = self.maxorcs
self.lineorcs = 0
if self.k and self.s.shape[0] >= self.m:
self.s = self.s[:-1]
self.y = self.y[:-1]
temps = xkp1 - self.xk
tempy = gkp1 - self.gk
if not self.k:
self.s = temps.reshape(1, -1)
self.y = tempy.reshape(1, -1)
else:
self.s = torch.cat([temps.reshape(1, -1), self.s], dim = 0)
self.y = torch.cat([tempy.reshape(1, -1), self.y], dim = 0)
self.gk = gkp1
self.xk = xkp1
def recordStats(self, acc):
if self.k == 0:
self.fk, self.gk = self.fun(self.xk, "01")
self.inite = 0
self.gknorm = torch.linalg.norm(self.gk, 2)
self.recording((0, 0, 0, float(self.fk),
float(self.gknorm), 0, 0, acc[0], acc[1]))
else:
self.gknorm = torch.linalg.norm(self.gk, 2)
self.recording((self.k, self.orcs, self.toc, float(self.fk),
float(self.gknorm), self.lineite, float(self.alpha), acc[0], acc[1]))
def oracleCalls(self):
self.orcs += 2 + self.lineorcs
if __name__ == "__main__":
from loss_funcs import logisticFun, logisticModel
from loadData import loadData
A_train, b_train, *_ = loadData()
fun = lambda x, v : logisticFun(x, A_train, b_train, 1, v)
x0 = torch.zeros(A_train.shape[-1], dtype = cTYPE)
Lg = torch.linalg.matrix_norm(A_train, 2)**2 / 4 + 1
def pred(x):
b_pred = torch.round(logisticModel(A_train, x))
return torch.sum(b_train == b_pred) / len(b_train) * 100
# print("=================== LineSearch GD ========================")
# optGD = linesearchGD(fun, x0.clone(), 10/Lg, 10e-4, 1000, 1000, 100, 10e-4, 0.9)
# optGD.optimize(True, pred)
# print("=================== Adam ========================")
# optAD = Adam(fun, x0.clone(), 10e-4, 1000, 1000)
# optAD.optimize(True, pred)
# print("=================== Newton CG ========================")
# optNEWTON = NewtonCG(fun, x0.clone(), 1, 10e-4, 1000, 1000, 10e-2, 100, 100, 10e-4, 0.9)
# optNEWTON.optimize(True, pred)
# print("=================== Newton MR NC ========================")
# optNEWTONMR = NewtonMR_NC(fun, x0.clone(), 1, 10e-4, 1000, 1000, 10e-2, 100, 100, 10e-4, 0.9, 10e-4, 1)
# optNEWTONMR.optimize(True, pred)
# print("=================== Newton CG NC ========================")
# optNEWTONCG = NewtonCG_NC(fun, x0.clone(), 1, 10e-4, 1000, 1000, 10e-2, 1000, 1000, 10e-4, 0.9, 10e-4, 1)
# optNEWTONCG.optimize(True, pred)
print("=================== L-BFGS ========================")
optL_BFGS = L_BFGS(fun, x0.clone(), 1, 10e-4, 20, 1000, 1000, 1000)
optL_BFGS.optimize(True, pred)
# print("=================== Newton TR ========================")
# optNewtonTR = NewtonCG_TR_Steihaug(fun, x0.clone(), 10e-4, 1000, 1000,
# 10e-2, 1000, 1e10, 1e5, 1/8, 0.25, 0.75, 0.25, 2, 1)
# optNewtonTR.optimize(True, pred)
import matplotlib.pyplot as plt
fig = plt.figure()
# plt.loglog(torch.tensor(optGD.record["orcs"]) + 1, optGD.record["f"], label = "GD")
# plt.loglog(torch.tensor(optAD.record["orcs"]) + 1, optAD.record["f"], label = "Adam")
# plt.loglog(torch.tensor(optNEWTON.record["orcs"]) + 1, optNEWTON.record["f"], label = "NewtonCG")
# plt.loglog(torch.tensor(optNEWTONMR.record["orcs"]) + 1, optNEWTONMR.record["f"], label = "NewtonMR_NC")
# plt.loglog(torch.tensor(optNEWTONCG.record["orcs"]) + 1, optNEWTONCG.record["f"], label = "NewtonCG_NC")
# plt.loglog(torch.tensor(optNewtonTR.record["orcs"]) + 1, optNewtonTR.record["f"], label = "NewtonTR")
plt.loglog(torch.tensor(optL_BFGS.record["orcs"]) + 1, optL_BFGS.record["f"], label = "L_BFGS")
plt.legend()
plt.show()
fig = plt.figure()
# plt.loglog(torch.tensor(optGD.record["orcs"]) + 1, optGD.record["g_norm"], label = "GD")
# plt.loglog(torch.tensor(optAD.record["orcs"]) + 1, optAD.record["g_norm"], label = "Adam")
# plt.loglog(torch.tensor(optNEWTON.record["orcs"]) + 1, optNEWTON.record["g_norm"], label = "NewtonCG")
# plt.loglog(torch.tensor(optNEWTONMR.record["orcs"]) + 1, optNEWTONMR.record["g_norm"], label = "NewtonMR_NC")
# plt.loglog(torch.tensor(optNEWTONCG.record["orcs"]) + 1, optNEWTONCG.record["g_norm"], label = "NewtonCG_NC")
# plt.loglog(torch.tensor(optNewtonTR.record["orcs"]) + 1, optNewtonTR.record["g_norm"], label = "NewtonTR")
plt.loglog(torch.tensor(optL_BFGS.record["orcs"]) + 1, optL_BFGS.record["g_norm"], label = "L_BFGS")
plt.legend()
plt.show()