-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathheartex.py
450 lines (353 loc) · 23.1 KB
/
heartex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
####
#
# program to read heart rate data from a COM port (from pulse sensor via Arduino, see http://pulsesensor.myshopify.com/)
# Copyright (C) 2015 Alex Riss
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.#
# the x-axis is just taken from the current computer time.
# this can be improved when ones takes the time from arduino (either by sending time date from the arduino, or just using the IBI values (they provide time deltas between data points))
#
# these are the things sent by Arduino:
# sensor: the raw sensor data
# IBI: inter beat interval in ms
# beats: heart rate (average of last 10 beats)
#
#
# todo:
# - real time axis (plot/input of data is now tied to current local time, should be tied to microprocessor time)
#
#
####
# config
CFG_comport = 'COM3'
CFG_baudrate = 115200
CFG_serial_timeout = 1
CFG_maxpoints = {'sensor': 50000, 'beats': 10000, 'IBI': 10000} # max data points for sensor data, heart beats, inter-beat distances
CFG_default_y = {'sensor': 500.007007, 'beats': 0.007007, 'IBI': 500.007007} # i use some special values so that I know afterwards that these are the default values (a bit of a dirty hack)
CFG_default_y = {'sensor': None, 'beats': None, 'IBI': None} # i use some special values so that I know afterwards that these are the default values (a bit of a dirty hack)
CFG_update_intervall = 20 # updates the graph every .. milliseconds
CFG_max_runtime = 240 # stops after so many seconds
CFG_max_measurement_runtime = 120 # stops after so many seconds (after first beat was detected)
CFG_initial_wait = 5 # wait 5 seconds before doing anything
CFG_update_hrv_every = 10 # update hrv descriptors every n hear beats
CFG_graph_span_min = 0.15 # x axis span of the graph in minutes
CFG_figsize = (14,8)
CFG_default_fontsize = 14
CFG_text_fontsize = {'HR': 16, 'HR_mean_all': 16, 'HR_mean_10': 16, 'HR_description':9, 'HR_description_big':12, 'beats': 16, 'IBI': 16, 'time': 14, 'HRV_descriptors': 12, 'HRV_descriptors_norm': 9}
CFG_text_color = {'HR': '#E53935', 'HR_mean_all': '#E53935', 'HR_mean_10': '#E53935', 'beats': '#3F51B5', 'IBI': '#00695C', 'time': '#A0A0A0', 'HRV_descriptors': '#FFFFFF', 'HRV_descriptors_norm': '#A0A0A0'}
CFG_plot_color = {'HR': '#A53935', 'IBI': '#00695C', 'HRV_descriptors': '#3F51B5'}
CFG_title_fontsize = 16
CFG_title_color = '#000000'
CFG_hrv_descriptors = ['HRMean', 'HRSTD', 'rMSSD', 'pNN50', 'VLF', 'LF', 'HF', 'LFHF', 'Power'] # gives the order
CFG_hrv_descriptors_labels = {'HRMean': 'HR Mean', 'HRSTD': 'HR STD', 'rMSSD': 'rMSSD', 'pNN50': 'pNN50', 'VLF': 'VLF', 'LF': 'LF', 'HF': 'HF', 'LFHF': 'LFHF', 'Power': 'Power'}
CFG_hrv_descriptors_units = {'HRMean': 'Hz', 'HRSTD': 'Hz', 'rMSSD': 'ms', 'pNN50': '%', 'VLF': 'ms2', 'LF': 'ms2', 'HF': 'ms2', 'LFHF': '', 'Power': 'ms2'}
CFG_hrv_descriptors_format = {'HRMean': '%0.1f', 'HRSTD': '%0.1f', 'rMSSD': '%0.1f', 'pNN50': '%0.1f', 'VLF': '%0.1f', 'LF': '%0.1f', 'HF': '%0.1f', 'LFHF': '%0.2f', 'Power': '%0.1f'}
CFG_hrv_descriptors_standard = {'HRMean': 75, 'HRSTD': 4, 'rMSSD': 51.7, 'pNN50': 12.3, 'VLF': 2437.2, 'LF': 2234.3, 'HF': 1442.6, 'LFHF': 1.75, 'Power': 6120.2} # standard values for hrv descriptors (from http://www.hrv24.de/HRV-Interpretation.htm), HRSTD is made up
CFG_hrv_descriptors_log_base = 4 # for dynamic adjustment of bar plot for hrv descriptors
CFG_save_history = True
CFG_filename_history = "hrv_data.xlsx"
CFG_no_arduino = False # do not connect to arduino, read data from file (for testing)
CFG_save_dump = False # save arduino data to file (for later offline testing)
CFG_temp_file = 'temp.txt' # store temp data here (if we do not want to re-record from arduino)
import serial
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib.dates
import datetime
import pickle
import math
import os.path
import threading
import openpyxl
import hrv_analysis
matplotlib.rcParams.update({'font.size': CFG_default_fontsize})
# plot class
class HRVplot:
def __init__(self, comport, baudrate, timeout):
# setup data
self.x = {}
self.y = {}
self.date_start = datetime.datetime.now()
self.date_start_num = matplotlib.dates.date2num(self.date_start)
self.date_start_measurement = datetime.datetime.now() # start of the measurement (will be set when first inter-beat-distance is detected)
self.run_ended = False # will be set to true when the measurement is done
self.hrv_descriptors = {} # current set calculated of HRV descriptors
self.hrv_descriptors_plot_norm2 = {} # normalize bar width (for plotting), defined in powers of CFG_hrv_descriptors_log_base
self.thread_update_descriptors = threading.Thread(target=self.update_descriptors_thread)
self.num_points = {'sensor': 0, 'beats': 0, 'IBI': 0}
for sym in ['sensor', 'beats', 'IBI']:
self.y[sym] = np.empty(CFG_maxpoints[sym])
self.y[sym].fill(CFG_default_y[sym])
self.x[sym] = np.empty(CFG_maxpoints[sym])
self.x[sym].fill(self.date_start_num)
# setup figure/plots
self.fig = plt.figure(num=None, figsize=CFG_figsize, facecolor='w', edgecolor='k')
self.fig.canvas.set_window_title('HeartRateEx')
gs = matplotlib.gridspec.GridSpec(2, 2, width_ratios=[3,1.5], height_ratios=[1,1])
self.ax = {}
self.ax['sensor'] = self.fig.add_subplot(gs[0,0], xlim=(self.date_start_num, self.date_start_num+1.0/24/60/60), ylim=(0, 1023)) # 1 second span in for the x-axis
self.ax['sensor'].xaxis_date()
#self.ax['beats'] = plt.axes(xlim=(0, CFG_maxpoints_beats), ylim=(0, 220))
self.ax['IBI'] = self.fig.add_subplot(gs[1,0], sharex=self.ax['sensor'], ylim=(600, 800))
self.ax['HRV_descriptors'] = self.fig.add_subplot(gs[:,1])
self.plots = {}
self.plots['sensor'], = self.ax['sensor'].plot(self.x['sensor'], self.y['sensor'], color=CFG_plot_color['HR'], linewidth=2)
#self.plots['beats'], = self.ax['beats'].plot(self.x['beats'], self.y['beats'])
self.plots['IBI'], = self.ax['IBI'].plot(self.x['IBI'], self.y['IBI'], color=CFG_plot_color['IBI'], linewidth=2)
dummy_plot, = self.ax['sensor'].plot(self.date_start_num, 500) # some dummy plot to prevent scaling errors before any real data exists, will be removed later
dummy_plot2, = self.ax['IBI'].plot(self.date_start_num, 800)
# setup captions
self.text_val = {}
for sym in ['sensor', 'IBI']:
self.ax[sym].autoscale(enable=True, axis='y', tight=False)
self.ax[sym].set_ymargin(0.5)
self.ax[sym].set_autoscaley_on(True)
self.text_IBI = self.ax['IBI'].text(1.0, 1.0, ' ', horizontalalignment='right', verticalalignment='top', transform=self.ax['IBI'].transAxes, fontsize=CFG_text_fontsize['IBI'], color=CFG_text_color['IBI'], fontweight='bold')
self.text_HR = self.ax['sensor'].text(1.0, 1.0, ' ', horizontalalignment='right', verticalalignment='top', transform=self.ax['sensor'].transAxes, fontsize=CFG_text_fontsize['HR'], color=CFG_text_color['HR'], fontweight='bold')
self.text_HR_mean_10 = self.ax['sensor'].text(0.92, 1.0, ' ', horizontalalignment='right', verticalalignment='top', transform=self.ax['sensor'].transAxes, fontsize=CFG_text_fontsize['HR_mean_10'], color=CFG_text_color['HR'], fontweight='bold', alpha=0.6)
self.text_HR_mean_all = self.ax['sensor'].text(0.84, 1.0, ' ', horizontalalignment='right', verticalalignment='top', transform=self.ax['sensor'].transAxes, fontsize=CFG_text_fontsize['HR_mean_all'], color=CFG_text_color['HR'], fontweight='bold', alpha=0.3)
self.ax['sensor'].text(1.0, 0.92, '$\heartsuit$', horizontalalignment='right', verticalalignment='top', transform=self.ax['sensor'].transAxes, fontsize=CFG_text_fontsize['HR_description_big'], color=CFG_text_color['HR'])
self.ax['sensor'].text(0.92, 0.92, 'last 10', horizontalalignment='right', verticalalignment='top', transform=self.ax['sensor'].transAxes, fontsize=CFG_text_fontsize['HR_description'], color=CFG_text_color['HR'], alpha=0.6)
self.ax['sensor'].text(0.84, 0.92, 'all', horizontalalignment='right', verticalalignment='top', transform=self.ax['sensor'].transAxes, fontsize=CFG_text_fontsize['HR_description'], color=CFG_text_color['HR'], alpha=0.3)
pos = range(len(CFG_hrv_descriptors))
vals = [1] * len(CFG_hrv_descriptors)
labels = []
self.hrv_text = {}
self.hrv_text_norm = {}
i=0
for k in CFG_hrv_descriptors:
labels.append(CFG_hrv_descriptors_labels[k])
self.hrv_text[k] = plt.annotate("", xy=(vals[-1] + 0.1, pos[len(vals)-1]), va='center', ha='right', color=CFG_text_color['HRV_descriptors'], fontsize=CFG_text_fontsize['HRV_descriptors'])
self.hrv_text_norm[k] = plt.annotate("", xy=(0.02, pos[i]-0.132), va='bottom', color=CFG_text_color['HRV_descriptors_norm'], fontsize=CFG_text_fontsize['HRV_descriptors_norm'])
i+=1
self.plots['HRV_descriptors'] = self.ax['HRV_descriptors'].barh(pos, vals, align='center', color=CFG_plot_color['HRV_descriptors'], height=0.75, edgecolor = "none")
self.ax['HRV_descriptors'].set_yticks(pos)
self.ax['HRV_descriptors'].set_yticklabels(labels)
self.ax['HRV_descriptors'].set_ylim([len(CFG_hrv_descriptors)-1+0.385, -0.385])
self.ax['HRV_descriptors'].set_xlim([0, CFG_hrv_descriptors_log_base+0.05])
for t in self.ax['HRV_descriptors'].yaxis.get_ticklines(): t.set_visible(False)
#self.text_time = self.ax['sensor'].text(1, 1.06, ' ', horizontalalignment='right', verticalalignment='bottom', transform=self.ax['sensor'].transAxes, fontsize=CFG_text_fontsize['time'], color=CFG_text_color['time'], fontweight='bold')
#self.text_time = self.ax['HRV_descriptors'].text(1, 0.20, ' ', horizontalalignment='right', verticalalignment='bottom', transform=self.ax['HRV_descriptors'].transAxes, fontsize=CFG_text_fontsize['time'], color=CFG_text_color['time'], fontweight='normal')
self.text_time = self.fig.text(0.99, 0.985, ' ', horizontalalignment='right', verticalalignment='top', fontsize=CFG_text_fontsize['time'], color=CFG_text_color['time'], fontweight='normal')
self.text_title = self.fig.text(0.01, 0.985, 'Heart rate measurement', horizontalalignment='left', verticalalignment='top', fontsize=CFG_title_fontsize, color=CFG_title_color, fontweight='bold')
self.ax['IBI'].xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%Mm %Ss'))
self.ax['IBI'].xaxis.set_major_locator(matplotlib.dates.AutoDateLocator(interval_multiples=True, minticks=2, maxticks=4))
self.ax['sensor'].set_ylabel("sensor [a.u.]")
self.ax['IBI'].set_ylabel("IBI [ms]")
self.ax['IBI'].set_xlabel("time")
self.ax['sensor'].get_xaxis().set_visible(False)
#self.ax['sensor'].xaxis.set_ticklabels([])
self.ax['sensor'].spines['right'].set_visible(False)
self.ax['sensor'].spines['top'].set_visible(False)
self.ax['sensor'].spines['bottom'].set_visible(False)
self.ax['sensor'].yaxis.set_ticks_position('left')
self.ax['sensor'].xaxis.set_ticks_position('bottom')
self.ax['IBI'].spines['right'].set_visible(False)
self.ax['IBI'].spines['top'].set_visible(False)
self.ax['IBI'].yaxis.set_ticks_position('left')
self.ax['IBI'].xaxis.set_ticks_position('bottom')
self.ax['HRV_descriptors'].spines['right'].set_visible(False)
self.ax['HRV_descriptors'].spines['top'].set_visible(False)
self.ax['HRV_descriptors'].spines['bottom'].set_visible(False)
self.ax['HRV_descriptors'].get_xaxis().set_visible(False)
#self.ax['HRV_descriptors'].yaxis.set_ticks([])
self.ax['HRV_descriptors'].yaxis.set_ticks_position('right')
gs.tight_layout(self.fig, rect=[0, 0, 1, 0.96], w_pad=3.2)
# setup input and output
if not CFG_no_arduino:
print('reading from serial port %s...' % CFG_comport)
self.ser = serial.Serial(comport, baudrate, timeout=CFG_serial_timeout) # open serial port
if CFG_save_dump: self.lines = []
if CFG_no_arduino:
self.no_arduino = pickle.load(open(CFG_temp_file, "rb" ))
self.lines_sim_iter = iter(self.no_arduino['lines'])
def _on_xlim_changed(self, ax, min_y=None, max_y=None):
"""autoscale y-axis according to current x-axis limits, based on stackoverflow code"""
xlim = ax.get_xlim()
for a in ax.figure.axes:
# shortcuts: last avoids n**2 behavior when each axis fires event
if a is ax or len(a.lines) == 0 or getattr(a, 'xlim', None) == xlim:
continue
ylim = np.inf, -np.inf
for l in a.lines:
x, y = l.get_data()
# faster, but assumes that x is sorted
start, stop = np.searchsorted(x, xlim)
yc = y[max(start-1,0):(stop+1)]
ylim = min(ylim[0], np.nanmin(yc)), max(ylim[1], np.nanmax(yc))
# x axis: emit=False avoids infinite loop
a.set_xlim(xlim, emit=False)
# y axis: set dataLim, make sure that autoscale in 'y' is on
if max_y!=None:
if ylim[1]>max_y: ylim[1]=max_y
if min_y!=None:
if ylim[0]>min_y: ylim[0]=min_y
corners = (xlim[0], ylim[0]), (xlim[1], ylim[1])
a.dataLim.update_from_data_xy(corners, ignore=True, updatex=False)
a.autoscale(enable=True, axis='y', tight=True)
# cache xlim to mark 'a' as treated
a.xlim = xlim
def update_descriptors_thread(self):
"""calculates and updates HRV descriptors"""
hrv = hrv_analysis.HRVdescriptors()
r = hrv.calculate(self.y['IBI'][:self.num_points['IBI']])
self.hrv_descriptors = r # this list is not used right now
pos = range(len(CFG_hrv_descriptors))
vals = []
for k in CFG_hrv_descriptors:
val = r[k] / CFG_hrv_descriptors_standard[k]
if val>0:
self.hrv_descriptors_plot_norm2[k] = np.sign(math.log(val, CFG_hrv_descriptors_log_base)) * np.floor(np.abs(math.log(val, CFG_hrv_descriptors_log_base)))
else:
self.hrv_descriptors_plot_norm2[k] = 1
vals.append(val / CFG_hrv_descriptors_log_base**(self.hrv_descriptors_plot_norm2[k]))
self.hrv_text[k].set_text(CFG_hrv_descriptors_format[k] % r[k])
self.hrv_text[k].set_position((vals[-1] - 0.05, pos[len(vals)-1]))
self.hrv_text_norm[k].set_text("**%0.0f" % self.hrv_descriptors_plot_norm2[k])
for rect, val in zip(self.plots['HRV_descriptors'], vals):
rect.set_width(val)
def update_descriptors(self):
"""starts thread to calculate and update HRV descriptors"""
if not self.thread_update_descriptors.isAlive():
self.thread_update_descriptors = threading.Thread(target=self.update_descriptors_thread)
self.thread_update_descriptors.start()
#@profile # for line-profiling
def update(self, frameNum):
"""reads date from serial connection and updates the plot"""
if self.run_ended: return False
update_artists = [self.ax['sensor'], self.ax['IBI'], self.ax['HRV_descriptors']] # will be return to the animation task, for update, we need a few more if we want to use blit
symbols = {"S":"sensor", "B":"beats", "Q":"IBI"} # these are the symbols that come form the arduino program
try:
#line = self.ser.readline()
if not CFG_no_arduino: serialRead = self.ser.read(self.ser.inWaiting())
now = datetime.datetime.now()
now_num = matplotlib.dates.date2num(now)
if CFG_no_arduino:
try:
arduino_input = next(self.lines_sim_iter)
except StopIteration:
self.close()
return update_artists
else:
arduino_input = serialRead.strip().decode('ascii')
if CFG_save_dump: self.lines.append(arduino_input)
except ValueError:
return update_artists
except UnicodeDecodeError:
return update_artists
for line in arduino_input.split("\r\n"):
if len(line)<2: return update_artists
elapsed = (now-self.date_start).seconds
if elapsed<CFG_initial_wait: return update_artists
sym = line[0]
if sym in symbols:
val = int(line[1:])
if sym=="S":
if val==0 and self.num_points['sensor']==0: return update_artists # for some reason the first value is always 0, just want to ignore this one
self.num_points[symbols[sym]] += 1
self.y[symbols[sym]][self.num_points[symbols[sym]]-1] = val
self.x[symbols[sym]][self.num_points[symbols[sym]]-1] = now_num
if not sym in ["S", "Q", "B"]:
print("unexpected data: %s, %s "% (sym, val))
else:
if sym in ["S", "Q"]:
x_data = self.x[symbols[sym]][:self.num_points[symbols[sym]]]
y_data = self.y[symbols[sym]][:self.num_points[symbols[sym]]]
self.plots[symbols[sym]].set_data(x_data, y_data)
if sym=='Q': # always a B and a Q together, so let's update only once
self.text_IBI.set_text(self.y['IBI'][self.num_points['IBI']-1])
self.text_HR.set_text(int(60000.0/self.y['IBI'][self.num_points['IBI']-1]))
self.text_HR_mean_10.set_text(int(self.y['beats'][self.num_points['beats']-1]))
self.text_HR_mean_all.set_text(int(np.mean(60000.0/self.y['IBI'][:self.num_points['IBI']])))
if self.num_points['IBI']>1:
if (self.num_points['IBI'] % CFG_update_hrv_every ==0):
self.update_descriptors() # calculates and updates HRV descriptors
if self.num_points['IBI']==1:
self.date_start_measurement=now
self.ax['IBI'].lines.pop(1) # remove dummy plots
self.ax['sensor'].lines.pop(1)
if self.num_points['IBI']>1:
elasped_measurement = (now-self.date_start_measurement).seconds
else:
elasped_measurement = 0
if elapsed < 3600:
elapsed_str = '{:02}:{:02}'.format(elasped_measurement % 3600 // 60, elasped_measurement % 60)
else:
elapsed_str = '{:02}:{:02}:{:02}'.format(elasped_measurement // 3600, elasped_measurement % 3600 // 60, elasped_measurement % 60)
self.text_time.set_text("Elapsed time: %s" % elapsed_str)
maxpoints_exceeded=False
for s in symbols.values():
if self.num_points[s] >= CFG_maxpoints[s]:
maxpoints_exceeded=True
if (elapsed > CFG_max_runtime or elasped_measurement > CFG_max_measurement_runtime or maxpoints_exceeded):
self.update_descriptors() # let's do it one last time
self.run_ended = True
if CFG_save_dump: pickle.dump({'IBI': self.y['IBI'][:self.num_points[symbols[sym]]], 'lines': self.lines}, open(CFG_temp_file, "wb" ))
if CFG_save_history:
self.save_history(CFG_filename_history)
break
# update graph limits/scale
if self.num_points['sensor'] == 0: return update_artists
x_lim_start = now_num - CFG_graph_span_min/24/60
#if x_lim_start < self.x['sensor'][0]: x_lim_start = self.x['sensor'][0]
self.ax['sensor'].set_xlim([x_lim_start, now_num])
self._on_xlim_changed(self.ax['sensor'])
self._on_xlim_changed(self.ax['IBI'])
return update_artists
def save_history(self, filename):
"""appends HRV data to an excel file. creates the file if it does not exist (also creates the header row in that case)"""
if not os.path.isfile(filename): # create file with default header
wb = openpyxl.Workbook()
ws = wb.active
ws.title = 'HRV History'
ws.cell(row = 1, column = 1).value = 'datetime'
i = 2
for key in CFG_hrv_descriptors:
ws.cell(row = 1, column = i).value = "%s [%s]" % (CFG_hrv_descriptors_labels[key], CFG_hrv_descriptors_units[key])
i+=1
ws.cell(row = 1, column = i).value = 'IBI data'
wb.save(filename)
wb = openpyxl.load_workbook(filename)
ws = wb.active
r = ws.max_row + 1
ws.cell(row = r, column = 1).value = self.date_start
i = 2
for key in CFG_hrv_descriptors:
if key in self.hrv_descriptors:
ws.cell(row = r, column = i).value = self.hrv_descriptors[key]
i+=1
arrstr = np.char.mod('%0.0f', self.y['IBI'][:self.num_points['IBI']])
ws.cell(row = r, column = i).value = ",".join(arrstr)
try:
wb.save(filename)
print("Written data to file: %s" % filename)
except PermissionError:
filename_new = "%s_%s.%s" % (os.path.splitext(filename)[0], datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ,os.path.splitext(filename)[1])
wb.save(filename_new) # save under a different filename
print("Written data to file: %s" % filename_new)
return True
# clean up
def close(self):
if not CFG_no_arduino:
# close serial
self.ser.flush()
self.ser.close()
# main() function
def main():
hrvplot = HRVplot(CFG_comport, CFG_baudrate, CFG_serial_timeout)
hrvplot.update(0)
anim = animation.FuncAnimation(hrvplot.fig, hrvplot.update, interval=CFG_update_intervall, blit=False)
plt.show()
hrvplot.close()
# call main
if __name__ == '__main__':
main()